-
Notifications
You must be signed in to change notification settings - Fork 9
/
train.py
101 lines (86 loc) · 4.62 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import argparse
import collections
import torch
import numpy as np
import datasets.dataset as module_data
import dataloaders.dataloader as module_dataloader
import models.loss as module_loss
import models.metric as module_metric
import models.model as module_arch
from parse_config import ConfigParser
from trainer import Trainer
from utils import prepare_device
def main(config):
# fix random seeds for reproducibility
SEED = config['seed']
torch.manual_seed(SEED)
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = False
np.random.seed(SEED)
logger = config.get_logger('train')
# setup datasets instances
dynamic_features = config["features"]["dynamic"]
static_features = config["features"]["static"]
dataset = {}
dataloader = {}
for mode in ['train', 'val']:
dataset[mode] = config.init_obj('dataset', module_data,
dynamic_features=dynamic_features, static_features=static_features,
train_val_test=mode)
dataloader[mode] = config.init_obj('dataloader', module_dataloader, dataset=dataset[mode]).dataloader()
device, device_ids = prepare_device(config['n_gpu'], config['gpu_id'])
# build models architecture, then print to console
if config["model_type"] == "lstm":
model = config.init_obj('arch', module_arch, input_dim=len(dynamic_features) + len(static_features),
output_lstm=config['model_args']['dim'], dropout=config['model_args']['dropout'])
elif config["model_type"] == "transformer":
model = config.init_obj('arch', module_arch, seq_len=config["dataset"]["args"]["lag"],
input_dim=len(dynamic_features) + len(static_features),
d_model=config['model_args']['model_dim'],
nhead = config['model_args']['nheads'],
dim_feedforward=config['model_args']['ff_dim'],
num_layers=config['model_args']['num_layers'],
channel_attention=False)
elif config["model_type"] == "gtn":
model = config.init_obj('arch', module_arch, seq_len=config["dataset"]["args"]["lag"],
input_dim=len(dynamic_features) + len(static_features),
d_model=config['model_args']['model_dim'],
nhead=config['model_args']['nheads'],
dim_feedforward=config['model_args']['ff_dim'],
num_layers=config['model_args']['num_layers'],
channel_attention=True)
logger.info(model)
# prepare for (multi-device) GPU training
model = model.to(device)
if len(device_ids) > 1:
model = torch.nn.DataParallel(model, device_ids=device_ids)
# get function handles of loss and metrics
criterion = getattr(module_loss, config['loss'])
metrics = [getattr(module_metric, met) for met in config['metrics']]
# build optimizer, learning rate scheduler. delete every lines containing lr_scheduler for disabling scheduler
trainable_params = filter(lambda p: p.requires_grad, model.parameters())
optimizer = config.init_obj('optimizer', torch.optim, trainable_params)
lr_scheduler = config.init_obj('lr_scheduler', torch.optim.lr_scheduler, optimizer)
trainer = Trainer(model, criterion, metrics, optimizer,
config=config,
device=device,
data_loader=dataloader['train'],
valid_data_loader=dataloader['val'],
lr_scheduler=lr_scheduler)
trainer.train()
if __name__ == '__main__':
args = argparse.ArgumentParser(description='PyTorch Template')
args.add_argument('-c', '--config', default=None, type=str,
help='config file path (default: None)')
args.add_argument('-r', '--resume', default=None, type=str,
help='path to latest checkpoint (default: None)')
args.add_argument('-d', '--device', default=None, type=str,
help='indices of GPUs to enable (default: all)')
# custom cli options to modify configuration from default values given in json file.
CustomArgs = collections.namedtuple('CustomArgs', 'flags type target')
options = [
CustomArgs(['--lr', '--learning_rate'], type=float, target='optimizer;args;lr'),
CustomArgs(['--bs', '--batch_size'], type=int, target='datasets;args;batch_size'),
]
config = ConfigParser.from_args(args, options)
main(config)