-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patherror.py
563 lines (480 loc) · 23.5 KB
/
error.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
import argparse
import os
import glob
import itertools
import numpy as np
import pandas as pd
from scipy.linalg import svd
import seaborn as sns
sns.set()
import matplotlib.pyplot as plt
import matplotlib.text as text
h36m_kp_names = [
"LShoulder:U", "LShoulder:V", "RShoulder:U", "RShoulder:V",
"LElbow:U", "LElbow:V", "RElbow:U", "RElbow:V",
"LWrist:U", "LWrist:V", "RWrist:U", "RWrist:V",
"LHip:U", "LHip:V", "RHip:U", "RHip:V",
"LKnee:U", "LKnee:V","RKnee:U", "RKnee:V",
"LAnkle:U", "LAnkle:V", "RAnkle:U", "RAnkle:V"
]
h36m_kps = list(dict.fromkeys(([kp.split(":")[0] for kp in h36m_kp_names])))
FORMAT = "pdf"
def first_derivative(df: pd.DataFrame, cols_from, cols_to):
t_delta = (df["time"] - df["time"].shift(1, fill_value=0).reset_index(drop=True))
t_delta.iloc[0] = 0
df_1 = (df[cols_from] - df[cols_from].shift(1, fill_value=0).reset_index(drop=True)).div(t_delta, axis=0)
df_1.iloc[0] = np.array([0] * len(df_1.columns))
df_1 = df_1.rename(columns=dict(zip(df_1.columns, cols_to)))
df_1 = pd.concat([df[["time"]], df_1], axis=1)
return df_1
def calculate_mpjpe(skeleton1, skeleton2):
"""
Calculate the Mean Per Joint Position Error (MPJPE) between two skeleton series.
Args:
skeleton1 (numpy.ndarray): The first skeleton series of shape (num_frames, num_joints, 3).
skeleton2 (numpy.ndarray): The second skeleton series of shape (num_frames, num_joints, 3).
Returns:
float: The MPJPE value.
"""
assert skeleton1.shape == skeleton2.shape, "Skeleton series must have the same shape."
num_frames, num_joints, _ = skeleton1.shape
# Calculate the Euclidean distance between corresponding joints in each frame
errors = np.linalg.norm(skeleton1 - skeleton2, axis=2)
# Exclude NaN values from the calculation
valid_errors = np.where(np.isnan(errors), 0, errors)
# Calculate the mean of errors across all frames and joints
mpjpe = np.mean(valid_errors)
return mpjpe, np.mean(valid_errors, axis=0)
def calculate_mAP(ground_truth_series, predicted_series, threshold=3):
assert len(ground_truth_series) == len(predicted_series), "Number of ground truth series must be equal to number of predicted series"
num_series = len(ground_truth_series)
num_joints = ground_truth_series[0].shape[0]
# Initialize variables for true positives, false positives, and false negatives
true_positives = np.zeros((num_series, num_joints))
false_positives = np.zeros((num_series, num_joints))
false_negatives = np.zeros((num_series, num_joints))
# Calculate precision and recall for each joint in each pose
for series_idx in range(num_series):
ground_truth_pose = ground_truth_series[series_idx]
predicted_pose = predicted_series[series_idx]
assert ground_truth_pose.shape == predicted_pose.shape, "Shape of ground truth poses must be equal to shape of predicted poses"
for joint_idx in range(num_joints):
ground_truth_joint = ground_truth_pose[joint_idx]
predicted_joint = predicted_pose[joint_idx]
# Calculate Euclidean distance between ground truth and predicted joint
distance = np.linalg.norm(ground_truth_joint - predicted_joint)
# Determine true positives, false positives, and false negatives
if distance <= threshold:
true_positives[series_idx, joint_idx] += 1
else:
false_positives[series_idx, joint_idx] += 1
false_negatives[series_idx, joint_idx] += 1
# Calculate precision and recall for each joint in each series
precision = true_positives / (true_positives + false_positives)
recall = true_positives / (true_positives + false_negatives)
# Calculate average precision for each joint in each series
average_precision = np.mean(precision, axis=0)
# Calculate mean average precision (mAP) across all joints and series
mAP = np.mean(average_precision)
return mAP, average_precision
def calculate_svd(skeleton_series):
# Convert the skeleton series into a numpy array
skeleton_array = np.array(skeleton_series)
# Replace NaN values with zeros
skeleton_array = np.nan_to_num(skeleton_array)
# Apply SVD to the skeleton array
u, s, vt = svd(skeleton_array.T, full_matrices=False)
return (u, s, vt)
def calculate_svd_reconstruction(skeleton_series, svd_info):
u, s, vt = svd_info
perc = np.cumsum(s) / np.sum(s)
return perc * 100
def find_pairs_h36m(s1_path, s2_path, camera):
s1_files = glob.glob(os.path.join(s1_path, "*" + camera + "*"))
ret = []
for s1_f in s1_files:
s1_basename = os.path.basename(s1_f).replace(" ", "")
s1_action = s1_basename.split(".")[0]
if any(c.isdigit() for c in s1_action):
actions = [s1_action, "{} {}".format(s1_action[:-1], s1_action[-1])]
else:
actions = [s1_action]
if "WalkDog" in actions:
actions.append("WalkingDog")
if "WalkDog1" in actions:
actions.append("WalkingDog1")
if "Photo" in actions:
actions.append("TakingPhoto")
if "Photo1" in actions:
actions.append("TakingPhoto1")
for a in itertools.product(actions, actions):
s1_fp = os.path.join(s1_path, "{}.{}.csv".format(a[0], camera))
s2_fp = os.path.join(s2_path, "{}.{}.csv".format(a[1], camera))
if os.path.exists(s1_fp) and os.path.exists(s2_fp):
ret.append((s1_fp, s2_fp))
break
return ret
def main_h36m(folder, s1, s2):
train_subjects = ["S1", "S5", "S6", "S7", "S8"]
test_subjects = ["S9", "S11"]
subjects = {
# "Train subjects": (train_subjects, "train"),
"Test subjects": (test_subjects, "test")
}
cameras = ["55011271"]
results = {}
for t_sub in subjects:
table_fp = "error_{}_{}_{}h36m.csv".format(s1, s2, subjects[t_sub][1])
if os.path.exists(table_fp):
print("Table between {} and {} on {} data already generated".format(s1, s2, subjects[t_sub][1]))
results[t_sub] = pd.read_csv(table_fp, index_col=0)
continue
print("Table between {} and {} on {} data generating...".format(s1, s2, subjects[t_sub][1]))
print("{}".format(t_sub))
results_t_sub = {
"camera": [],
"subject": [],
"action": [],
"MPJPE": [],
"mAP": [],
}
for kp in h36m_kps:
results_t_sub["{} JPE".format(kp)] = []
results_t_sub["{} AP".format(kp)] = []
for camera in cameras:
for sub in subjects[t_sub][0]:
s1_path = os.path.join(folder, sub, s1)
s2_path = os.path.join(folder, sub, s2)
sub_pairs = find_pairs_h36m(s1_path, s2_path, camera)
for sub_pair in sub_pairs:
action = os.path.basename(sub_pair[0]).split(".")[0]
s1_df = pd.read_csv(sub_pair[0])[h36m_kp_names]
s2_df = pd.read_csv(sub_pair[1])[h36m_kp_names]
s1_df = s1_df.iloc[:min(len(s1_df.index), len(s2_df.index))]
s2_df = s2_df.iloc[:min(len(s1_df.index), len(s2_df.index))]
s1_reshape = s1_df.values.reshape((len(s1_df.index), -1, 2))
s2_reshape = s2_df.values.reshape((len(s2_df.index), -1, 2))
mpjpe, jpe = calculate_mpjpe(s1_reshape, s2_reshape)
map, ap = calculate_mAP(s1_reshape, s2_reshape)
print("[SUB {} CAM {} ACTION {:15}] MPJPE: {:.3f} mAP: {:.5f}".format(
sub, camera, action, mpjpe, map))
results_t_sub["camera"].append(camera)
results_t_sub["subject"].append(sub)
results_t_sub["action"].append(action)
results_t_sub["MPJPE"].append(mpjpe)
results_t_sub["mAP"].append(map)
jpe_report = ""
for i, e in enumerate(jpe):
jpe_report += "{}: {:.1f}; ".format(h36m_kps[i], e)
results_t_sub["{} JPE".format(h36m_kps[i])].append(e)
print("JPE: {{ {}}}".format(jpe_report))
ap_report = ""
for i, e in enumerate(ap):
ap_report += "{}: {:.4f}; ".format(h36m_kps[i], e)
results_t_sub["{} AP".format(h36m_kps[i])].append(e)
print("AP: {{ {}}}".format(ap_report))
results[t_sub] = pd.DataFrame(results_t_sub)
results[t_sub].to_csv(table_fp)
print("==============================================")
for t_sub in results:
print("RESULTS SUMMARY on {}".format(t_sub))
error_for_list = [
"camera",
"subject",
"action"
]
error_cols = ["MPJPE", "mAP"] + ["{} JPE".format(kp) for kp in h36m_kps] + ["{} AP".format(kp) for kp in h36m_kps]
for error_for in error_for_list:
print(" - Error for {}:".format(error_for))
for index, row in results[t_sub].groupby(error_for)[error_cols].mean().iterrows():
print("{:20}: MPJPE: {:.2f} mAP: {:.4f}".format(index, row["MPJPE"], row["mAP"]))
jpe_report = ""
for kp in h36m_kps:
jpe_report += "{}: {:.1f}; ".format(kp, row["{} JPE".format(kp)])
print("{:20} JPE: {{ {}}}".format(" ", jpe_report))
ap_report = ""
for kp in h36m_kps:
ap_report += "{}: {:.3f}; ".format(kp, row["{} AP".format(kp)])
print("{:20} AP: {{ {}}}".format(" ", ap_report))
print("==============================================")
def plot(s1, s2_list):
def edit_barplot(curr_ax):
for i, ytick in enumerate(curr_ax.get_yticklabels()):
ytick = ytick.get_text()
model = ytick
model = model.replace("parco_h36m_", "")
model = model.replace("sampling", " ")
model = model.replace("_vicon", "% (vicon)")
if ytick == "parco_h36m_vicon":
model = "no-sampling (vicon)"
curr_ax.text(0, i, "{}".format(model),
color='black', va='center')
curr_ax.text(data_plot.loc[data_plot["model"] == ytick, "MPJPE"].mean(), i - 0.1,
"{:.2f}".format(data_plot.loc[data_plot["model"] == ytick, "MPJPE"].mean()),
color='black')
curr_ax.set_yticklabels(["" for l in curr_ax.get_yticklabels()])
for t_sub in ["test"]:
data_plot = {
"model": [],
"MPJPE": [],
"mAP": [],
}
for s2 in s2_list:
df = pd.read_csv("error_{}_{}_{}h36m.csv".format(s1, s2, t_sub), index_col=0)
data_plot["model"].extend([s2] * len(df.index))
data_plot["MPJPE"].extend(df["MPJPE"])
data_plot["mAP"].extend(df["mAP"])
data_plot = pd.DataFrame(data_plot)
plot_name = "error_barplot_{}_{}.{}".format(s1, t_sub, FORMAT)
print(" - {}".format(plot_name))
fig, ax = plt.subplots(2, 1, figsize=(7, 30))
sns.barplot(data=data_plot, x="MPJPE", y="model", ax=ax[0])
edit_barplot(ax[0])
sns.barplot(data=data_plot, x="mAP", y="model", ax=ax[1])
edit_barplot(ax[1])
fig.savefig(plot_name)
plt.close()
data_plot = {
"model": [],
"keypoint": [],
"JPE": [],
"AP": [],
}
for s2 in s2_list:
df = pd.read_csv("error_{}_{}_{}h36m.csv".format(s1, s2, t_sub), index_col=0)
for kp in h36m_kps:
data_plot["model"].extend([s2] * len(df.index))
data_plot["keypoint"].extend([kp] * len(df.index))
data_plot["JPE"].extend(df["{} JPE".format(kp)])
data_plot["AP"].extend(df["{} AP".format(kp)])
data_plot = pd.DataFrame(data_plot)
plot_name = "error_boxplot_{}_{}_kp.{}".format(s1, t_sub, FORMAT)
print(" - {}".format(plot_name))
fig, ax = plt.subplots(2, 1, figsize=(25, 14))
sns.boxplot(data=data_plot, x="keypoint", hue="model", y="JPE", ax=ax[0])
ax[0].set_xticklabels(ax[0].get_xticklabels(), rotation=30, fontsize=7)
sns.boxplot(data=data_plot, x="keypoint", hue="model", y="AP", ax=ax[1])
ax[1].set_xticklabels(ax[1].get_xticklabels(), rotation=30, fontsize=7)
fig.savefig(plot_name)
plt.close()
data_plot = {
"model": [],
"action": [],
"MPJPE": [],
"mAP": [],
}
for s2 in s2_list:
df = pd.read_csv("error_{}_{}_{}h36m.csv".format(s1, s2, t_sub), index_col=0)
data_plot["model"].extend([s2] * len(df.index))
data_plot["action"].extend(df["action"])
data_plot["MPJPE"].extend(df["MPJPE"])
data_plot["mAP"].extend(df["mAP"])
data_plot = pd.DataFrame(data_plot)
plot_name = "error_boxplot_{}_{}_action.{}".format(s1, t_sub, FORMAT)
print(" - {}".format(plot_name))
fig, ax = plt.subplots(2, 1, figsize=(50, 20))
sns.barplot(data=data_plot, x="action", hue="model", y="MPJPE", ax=ax[0])
ax[0].set_xticklabels(ax[0].get_xticklabels(), rotation=30, fontsize=7)
sns.barplot(data=data_plot, x="action", hue="model", y="mAP", ax=ax[1])
ax[1].set_xticklabels(ax[1].get_xticklabels(), rotation=30, fontsize=7)
fig.savefig(plot_name)
plt.close()
def save_results(s1, s2_list):
for t_sub in ["test"]:
data_csv = {
"model": [],
"MPJPE": [],
"mAP": [],
}
for s2 in s2_list:
df = pd.read_csv("error_{}_{}_{}h36m.csv".format(s1, s2, t_sub), index_col=0)
data_csv["model"].extend([s2] * len(df.index))
data_csv["MPJPE"].extend(df["MPJPE"])
data_csv["mAP"].extend(df["mAP"])
data_csv = pd.DataFrame(data_csv)
data_csv = data_csv.groupby("model").mean()
file_name = "error_barplot_{}_{}.csv".format(s1, t_sub)
data_csv.to_csv(file_name)
print(" - {}".format(file_name))
def plot_svd_h36m(folder, s1, s2_list, num_eigen_vector=30, batch_size=None, data_type="pos"):
model_list = [s1] + s2_list
train_subjects = ["S1", "S5", "S6", "S7", "S8"]
test_subjects = ["S9", "S11"]
subjects = {
# "Train subjects": (train_subjects, "train"),
"Test subjects": (test_subjects, "test")
}
cameras = ["55011271"]
if batch_size is None:
batch_size = num_eigen_vector
threshold_perc_svd = 99.8
plot_results = {}
eigen_plot_results = {}
for t_sub in subjects:
table_fp = "error_svd_{}_{}_{}h36m.csv".format(s1, data_type, subjects[t_sub][1])
eigen_table_fp = "error_eigensvd_{}_{}_{}h36m.csv".format(s1, data_type, subjects[t_sub][1])
if os.path.exists(table_fp) and os.path.exists(eigen_table_fp):
print("Table {} SVD on {} ref and {} data already generated".format(data_type, s1, subjects[t_sub][1]))
plot_results[t_sub] = pd.read_csv(table_fp, index_col=0)
eigen_plot_results[t_sub] = pd.read_csv(eigen_table_fp, index_col=0)
continue
data_plot = {
"eigen_vector": [],
"model": [],
"MPJPE": [],
"mAP": [],
"perc": [],
}
eigen_data_plot = {
"first_good_eigen_vector": [],
"model": [],
"MPJPE": [],
"mAP": [],
}
for model in model_list:
for camera in cameras:
for sub in subjects[t_sub][0]:
s1_path = os.path.join(folder, sub, s1)
model_path = os.path.join(folder, sub, model)
model_pairs = find_pairs_h36m(s1_path, model_path, camera)
model_pairs = [f_pair for f_pair in model_pairs if "ALL" not in f_pair[0]]
for model_f in model_pairs:
print(model_f[1], end="\n")
s1_df = pd.read_csv(model_f[0])[["time"] + h36m_kp_names]
model_df = pd.read_csv(model_f[1])[["time"] + h36m_kp_names]
s1_df = s1_df.iloc[:min(len(s1_df.index), len(model_df.index))]
model_df = model_df.iloc[:min(len(s1_df.index), len(model_df.index))]
if data_type == "vel":
s1_vel_df = first_derivative(s1_df, h36m_kp_names, h36m_kp_names)[h36m_kp_names]
model_vel_df = first_derivative(model_df, h36m_kp_names, h36m_kp_names)[h36m_kp_names]
else:
s1_vel_df = s1_df[h36m_kp_names]
model_vel_df = model_df[h36m_kp_names]
model_df = model_df[h36m_kp_names]
for i, data_window in enumerate(model_df.rolling(batch_size)):
if len(data_window.index) < batch_size:
continue
s1_vel_reshape = s1_vel_df.iloc[data_window.index].values.reshape((len(data_window.index), -1, 2))
model_vel_reshape = model_vel_df.iloc[data_window.index].values.reshape((len(data_window.index), -1, 2))
mpjpe, _ = calculate_mpjpe(s1_vel_reshape, model_vel_reshape)
map, _ = calculate_mAP(s1_vel_reshape, model_vel_reshape)
svd_info = calculate_svd(data_window.values)
first_good_eigen_vector = None
for e_i in range(1, num_eigen_vector + 1):
perc = calculate_svd_reconstruction(data_window.values, svd_info, e_i)
data_plot["eigen_vector"].append(e_i)
data_plot["model"].append(model)
data_plot["MPJPE"].append(mpjpe)
data_plot["mAP"].append(map)
data_plot["perc"].append(perc)
if first_good_eigen_vector is None and perc > threshold_perc_svd:
first_good_eigen_vector = e_i
print(e_i, model, perc, end="\r")
if first_good_eigen_vector is None:
first_good_eigen_vector = num_eigen_vector
eigen_data_plot["first_good_eigen_vector"].append(first_good_eigen_vector)
eigen_data_plot["model"].append(model)
eigen_data_plot["MPJPE"].append(mpjpe)
eigen_data_plot["mAP"].append(map)
data_plot = pd.DataFrame(data_plot)
plot_results[t_sub] = data_plot
plot_results[t_sub].to_csv(table_fp)
eigen_data_plot = pd.DataFrame(eigen_data_plot)
eigen_plot_results[t_sub] = eigen_data_plot
eigen_plot_results[t_sub].to_csv(eigen_table_fp)
for t_sub in plot_results:
data_plot = plot_results[t_sub]
eigen_data_plot = eigen_plot_results[t_sub]
data_plot = data_plot.loc[
(data_plot["eigen_vector"] >= 3) & (data_plot["eigen_vector"] <= 6)
& (data_plot["model"] != "vicon")
# & ((data_plot["model"] == "trtpose_PARCO") | (data_plot["model"] == "trtpose_retrained"))
]
eigen_data_plot = eigen_data_plot.loc[
(eigen_data_plot["model"] != "vicon")
# (eigen_data_plot["model"] == "trtpose_PARCO") | (eigen_data_plot["model"] == "trtpose_retrained")
]
# Plot reconstruction
plot_name = "error_lineplot_reconstruction_{}_{}h36m.{}".format(data_type, subjects[t_sub][1], FORMAT)
print(" - {}".format(plot_name))
sns.lineplot(data=data_plot, x="eigen_vector", y="perc", hue="model")
plt.savefig(plot_name)
plt.close()
# Plot SVD scatter
plot_name = "error_scatterplot_svd_MPJPE_{}_{}h36m.{}".format(data_type, subjects[t_sub][1], FORMAT)
print(" - {}".format(plot_name))
sns.relplot(
data=data_plot, x="perc", y="MPJPE", col="eigen_vector", hue="model",
kind="scatter", col_wrap=2
)
plt.savefig(plot_name)
plt.close()
plot_name = "error_scatterplot_svd_mAP_{}_{}h36m.{}".format(data_type, subjects[t_sub][1], FORMAT)
print(" - {}".format(plot_name))
sns.relplot(
data=data_plot, x="perc", y="mAP", col="eigen_vector", hue="model",
kind="scatter", col_wrap=2
)
plt.savefig(plot_name)
plt.close()
plot_name = "error_scatterplot_eigen_MPJPE_{}_{}h36m.{}".format(data_type, subjects[t_sub][1], FORMAT)
print(" - {}".format(plot_name))
sns.catplot(
data=eigen_data_plot, x="first_good_eigen_vector", y="MPJPE", hue="model",
kind="box", linewidth=0.4, height=10, aspect=1.2, showfliers = False
)
plt.xlabel(f"Minimum eigen-vector amount to obtain {threshold_perc_svd} %")
plt.savefig(plot_name)
plt.close()
plot_name = "error_scatterplot_eigen_mAP_{}_{}h36m.{}".format(data_type, subjects[t_sub][1], FORMAT)
print(" - {}".format(plot_name))
sns.catplot(
data=eigen_data_plot, x="first_good_eigen_vector", y="mAP", hue="model",
kind="box", linewidth=0.4, height=10, aspect=1.2, showfliers = False
)
plt.xlabel(f"Minimum eigen-vector amount to obtain {threshold_perc_svd} %")
plt.savefig(plot_name)
plt.close()
def main(folder, s1, s2_list, data_type):
if not os.path.exists(folder):
print("Error: folder path {} doesn't exist")
return
if data_type not in ["h36m", "coco"]:
print("Error: data_type {} is not recognized")
return
if data_type == "h36m":
for s2 in s2_list:
main_h36m(folder, s1, s2)
print("Plot reconstruction")
# plot_svd_h36m(folder, s1, s2_list, num_eigen_vector=15, batch_size=30, data_type="pos")
# plot_svd_h36m(folder, s1, s2_list, num_eigen_vector=15, batch_size=30, data_type="vel")
print("Plot general")
plot(s1, s2_list)
print("Save general")
save_results(s1, s2_list)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Error between sources of data", epilog="PARCO")
parser.add_argument("--folder",
"-f",
dest="folder",
required=True,
help="Folder with first sources")
parser.add_argument("--reference",
"-r",
dest="ref",
required=True,
help="Reference data")
parser.add_argument("--sources",
"-s",
dest="sources",
nargs="+",
required=True,
help="Sources")
parser.add_argument("--type",
"-t",
dest="type",
required=False,
default="h36m",
help="Dataset type name")
args = parser.parse_args()
main(args.folder, args.ref, args.sources, args.type)