-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathssd-deeplab-posenet.py
executable file
·406 lines (332 loc) · 13.8 KB
/
ssd-deeplab-posenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
import sys
import argparse
import numpy as np
import cv2
import time
from PIL import Image
from time import sleep
import multiprocessing as mp
from edgetpu.basic import edgetpu_utils
from pose_engine import PoseEngine
from edgetpu.basic.basic_engine import BasicEngine
from edgetpu.detection.engine import DetectionEngine
pose_lastresults = None
deep_lastresults = None
ssd_lastresults = None
processes = []
pose_frameBuffer = None
deep_frameBuffer = None
ssd_frameBuffer = None
pose_results = None
deep_results = None
ssd_results = None
fps = ""
pose_detectfps = ""
deep_detectfps = ""
ssd_detectfps = ""
framecount = 0
pose_detectframecount = 0
deep_detectframecount = 0
ssd_detectframecount = 0
time1 = 0
time2 = 0
box_color = (255, 128, 0)
box_thickness = 1
label_background_color = (125, 175, 75)
label_text_color = (255, 255, 255)
percentage = 0.0
# COCO Labels
SSD_LABELS = ['person','bicycle','car','motorcycle','airplane','bus','train','truck','boat','',
'traffic light','fire hydrant','stop sign','parking meter','bench','bird','cat','dog','horse','sheep',
'cow','elephant','bear','','zebra','giraffe','backpack','umbrella','','',
'handbag','tie','suitcase','frisbee','skis','snowboard','sports ball','kite','baseball bat','baseball glove',
'skateboard','surfboard','tennis racket','bottle','','wine glass','cup','fork','knife','spoon',
'bowl','banana','apple','sandwich','orange','broccoli','carrot','hot dog','pizza','donut',
'cake','chair','couch','potted plant','bed','','dining table','','','toilet',
'','tv','laptop','mouse','remote','keyboard','cell phone','microwave','oven','toaster',
'sink','refrigerator','','book','clock','vase','scissors','teddy bear','hair drier','toothbrush']
# Deeplab color palettes
DEEPLAB_PALETTE = Image.open("models/colorpalette.png").getpalette()
# Posenet Edges
EDGES = (
('nose', 'left eye'),
('nose', 'right eye'),
('nose', 'left ear'),
('nose', 'right ear'),
('left ear', 'left eye'),
('right ear', 'right eye'),
('left eye', 'right eye'),
('left shoulder', 'right shoulder'),
('left shoulder', 'left elbow'),
('left shoulder', 'left hip'),
('right shoulder', 'right elbow'),
('right shoulder', 'right hip'),
('left elbow', 'left wrist'),
('right elbow', 'right wrist'),
('left hip', 'right hip'),
('left hip', 'left knee'),
('right hip', 'right knee'),
('left knee', 'left ankle'),
('right knee', 'right ankle'),
)
def camThread(pose_results, deep_results, ssd_results,
pose_frameBuffer, deep_frameBuffer, ssd_frameBuffer,
camera_width, camera_height, vidfps, usbcamno, videofile):
global fps
global pose_detectfps
global deep_detectfps
global ssd_detectfps
global framecount
global pose_detectframecount
global deep_detectframecount
global ssd_detectframecount
global time1
global time2
global pose_lastresults
global deep_lastresults
global ssd_lastresults
global cam
global window_name
global waittime
if videofile == "":
cam = cv2.VideoCapture(usbcamno)
cam.set(cv2.CAP_PROP_FPS, vidfps)
cam.set(cv2.CAP_PROP_FRAME_WIDTH, camera_width)
cam.set(cv2.CAP_PROP_FRAME_HEIGHT, camera_height)
waittime = 1
window_name = "USB Camera"
else:
cam = cv2.VideoCapture(videofile)
waittime = vidfps
window_name = "Movie File"
cv2.namedWindow(window_name, cv2.WINDOW_AUTOSIZE)
while True:
t1 = time.perf_counter()
ret, color_image = cam.read()
if not ret:
continue
if pose_frameBuffer.full():
pose_frameBuffer.get()
if deep_frameBuffer.full():
deep_frameBuffer.get()
if ssd_frameBuffer.full():
ssd_frameBuffer.get()
frames = cv2.resize(color_image, (camera_width, camera_height)).copy()
pose_frameBuffer.put(cv2.resize(color_image, (640, 480)).copy())
deep_frameBuffer.put(cv2.resize(color_image, (513, 513)).copy())
ssd_frameBuffer.put(cv2.resize(color_image, (640, 480)).copy())
res = None
# Posenet
if not pose_results.empty():
res = pose_results.get(False)
pose_detectframecount += 1
imdraw = pose_overlay_on_image(frames, res)
pose_lastresults = res
else:
imdraw = pose_overlay_on_image(frames, pose_lastresults)
# MobileNet-SSD
if not ssd_results.empty():
res = ssd_results.get(False)
ssd_detectframecount += 1
imdraw = ssd_overlay_on_image(imdraw, res)
ssd_lastresults = res
else:
imdraw = ssd_overlay_on_image(imdraw, ssd_lastresults)
# Deeplabv3
if not deep_results.empty():
res = deep_results.get(False)
deep_detectframecount += 1
imdraw = deep_overlay_on_image(imdraw, res, camera_width, camera_height)
deep_lastresults = res
else:
imdraw = deep_overlay_on_image(imdraw, deep_lastresults, camera_width, camera_height)
cv2.putText(imdraw, fps, (camera_width-170,15), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (38,0,255), 1, cv2.LINE_AA)
cv2.putText(imdraw, pose_detectfps, (camera_width-170,30), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (38,0,255), 1, cv2.LINE_AA)
cv2.putText(imdraw, deep_detectfps, (camera_width-170,45), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (38,0,255), 1, cv2.LINE_AA)
cv2.putText(imdraw, ssd_detectfps, (camera_width-170,60), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (38,0,255), 1, cv2.LINE_AA)
cv2.imshow(window_name, imdraw)
if cv2.waitKey(waittime)&0xFF == ord('q'):
break
# FPS calculation
framecount += 1
# Posenet
if framecount >= 15:
fps = "(Playback) {:.1f} FPS".format(time1/15)
pose_detectfps = "(Posenet) {:.1f} FPS".format(pose_detectframecount/time2)
deep_detectfps = "(Deeplab) {:.1f} FPS".format(deep_detectframecount/time2)
ssd_detectfps = "(SSD) {:.1f} FPS".format(ssd_detectframecount/time2)
framecount = 0
pose_detectframecount = 0
deep_detectframecount = 0
ssd_detectframecount = 0
time1 = 0
time2 = 0
t2 = time.perf_counter()
elapsedTime = t2-t1
time1 += 1/elapsedTime
time2 += elapsedTime
def pose_inferencer(results, frameBuffer, model, device):
pose_engine = None
pose_engine = PoseEngine(model, device)
print("Loaded Graphs!!! (Posenet)")
while True:
if frameBuffer.empty():
continue
# Run inference.
color_image = frameBuffer.get()
prepimg_pose = color_image[:, :, ::-1].copy()
tinf = time.perf_counter()
result_pose, inference_time = pose_engine.DetectPosesInImage(prepimg_pose)
print(time.perf_counter() - tinf, "sec (Posenet)")
results.put(result_pose)
def deep_inferencer(results, frameBuffer, model, device):
deep_engine = None
deep_engine = BasicEngine(model, device)
print("Loaded Graphs!!! (Deeplab)")
while True:
if frameBuffer.empty():
continue
# Run inference.
color_image = frameBuffer.get()
prepimg_deep = color_image[:, :, ::-1].copy()
prepimg_deep = prepimg_deep.flatten()
tinf = time.perf_counter()
latency, result_deep = deep_engine.run_inference(prepimg_deep)
print(time.perf_counter() - tinf, "sec (Deeplab)")
results.put(result_deep)
def ssd_inferencer(results, frameBuffer, model, device):
ssd_engine = None
ssd_engine = DetectionEngine(model, device)
print("Loaded Graphs!!! (SSD)")
while True:
if frameBuffer.empty():
continue
# Run inference.
color_image = frameBuffer.get()
prepimg_ssd = color_image[:, :, ::-1].copy()
prepimg_ssd = Image.fromarray(prepimg_ssd)
tinf = time.perf_counter()
result_ssd = ssd_engine.detect_with_image(prepimg_ssd, threshold=0.5, keep_aspect_ratio=True, relative_coord=False, top_k=10)
print(time.perf_counter() - tinf, "sec (SSD)")
results.put(result_ssd)
def draw_pose(img, pose, threshold=0.2):
xys = {}
for label, keypoint in pose.keypoints.items():
if keypoint.score < threshold: continue
xys[label] = (int(keypoint.yx[1]), int(keypoint.yx[0]))
img = cv2.circle(img, (int(keypoint.yx[1]), int(keypoint.yx[0])), 5, (0, 255, 0), -1)
for a, b in EDGES:
if a not in xys or b not in xys: continue
ax, ay = xys[a]
bx, by = xys[b]
img = cv2.line(img, (ax, ay), (bx, by), (0, 255, 255), 2)
def pose_overlay_on_image(frames, result):
color_image = frames
if isinstance(result, type(None)):
return color_image
img_cp = color_image.copy()
for pose in result:
draw_pose(img_cp, pose)
return img_cp
def deep_overlay_on_image(frames, result, width, height):
color_image = frames
if isinstance(result, type(None)):
return color_image
img_cp = color_image.copy()
outputimg = np.reshape(np.uint8(result), (513, 513))
outputimg = cv2.resize(outputimg, (width, height))
outputimg = Image.fromarray(outputimg, mode="P")
outputimg.putpalette(DEEPLAB_PALETTE)
outputimg = outputimg.convert("RGB")
outputimg = np.asarray(outputimg)
outputimg = cv2.cvtColor(outputimg, cv2.COLOR_RGB2BGR)
img_cp = cv2.addWeighted(img_cp, 1.0, outputimg, 0.9, 0)
return img_cp
def ssd_overlay_on_image(frames, result):
color_image = frames
if isinstance(result, type(None)):
return color_image
img_cp = color_image.copy()
for obj in result:
box = obj.bounding_box.flatten().tolist()
box_left = int(box[0])
box_top = int(box[1])
box_right = int(box[2])
box_bottom = int(box[3])
cv2.rectangle(img_cp, (box_left, box_top), (box_right, box_bottom), box_color, box_thickness)
percentage = int(obj.score * 100)
label_text = SSD_LABELS[obj.label_id] + " (" + str(percentage) + "%)"
label_size = cv2.getTextSize(label_text, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)[0]
label_left = box_left
label_top = box_top - label_size[1]
if (label_top < 1):
label_top = 1
label_right = label_left + label_size[0]
label_bottom = label_top + label_size[1]
cv2.rectangle(img_cp, (label_left - 1, label_top - 1), (label_right + 1, label_bottom + 1), label_background_color, -1)
cv2.putText(img_cp, label_text, (label_left, label_bottom), cv2.FONT_HERSHEY_SIMPLEX, 0.5, label_text_color, 1)
return img_cp
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--pose_model", default="models/posenet_mobilenet_v1_075_481_641_quant_decoder_edgetpu.tflite", help="Path of the posenet model.")
parser.add_argument("--deep_model", default="models/deeplabv3_mnv2_dm05_pascal_trainaug_edgetpu.tflite", help="Path of the deeplabv3 model.")
parser.add_argument("--ssd_model", default="models/mobilenet_ssd_v2_coco_quant_postprocess_edgetpu.tflite", help="Path of the mobilenet-ssd model.")
parser.add_argument("--usbcamno", type=int, default=0, help="USB Camera number.")
parser.add_argument('--videofile', default="", help='Path to input video file. (Default="")')
parser.add_argument('--vidfps', type=int, default=30, help='FPS of Video. (Default=30)')
parser.add_argument('--camera_width', type=int, default=640, help='USB Camera resolution (width). (Default=640)')
parser.add_argument('--camera_height', type=int, default=480, help='USB Camera resolution (height). (Default=480)')
args = parser.parse_args()
pose_model = args.pose_model
deep_model = args.deep_model
ssd_model = args.ssd_model
usbcamno = args.usbcamno
vidfps = args.vidfps
videofile = args.videofile
camera_width = args.camera_width
camera_height = args.camera_height
try:
mp.set_start_method('forkserver')
pose_frameBuffer = mp.Queue(10)
deep_frameBuffer = mp.Queue(10)
ssd_frameBuffer = mp.Queue(10)
pose_results = mp.Queue()
deep_results = mp.Queue()
ssd_results = mp.Queue()
# Start streaming
p = mp.Process(target=camThread,
args=(pose_results, deep_results, ssd_results,
pose_frameBuffer, deep_frameBuffer, ssd_frameBuffer,
camera_width, camera_height, vidfps, usbcamno, videofile),
daemon=True)
p.start()
processes.append(p)
# Activation of inferencer
devices = edgetpu_utils.ListEdgeTpuPaths(edgetpu_utils.EDGE_TPU_STATE_UNASSIGNED)
print(devices)
# Posenet
if len(devices) >= 1:
p = mp.Process(target=pose_inferencer,
args=(pose_results, pose_frameBuffer, pose_model, devices[0]),
daemon=True)
p.start()
processes.append(p)
# DeeplabV3
if len(devices) >= 2:
p = mp.Process(target=ssd_inferencer,
args=(ssd_results, ssd_frameBuffer, ssd_model, devices[1]),
daemon=True)
p.start()
processes.append(p)
# MobileNet-SSD v2
if len(devices) >= 3:
p = mp.Process(target=deep_inferencer,
args=(deep_results, deep_frameBuffer, deep_model, devices[2]),
daemon=True)
p.start()
processes.append(p)
while True:
sleep(1)
finally:
for p in range(len(processes)):
processes[p].terminate()