-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain1.py
370 lines (312 loc) · 21.3 KB
/
train1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
import ast
import torch
import copy
from torch.cuda.amp import autocast
from pkd.utils import set_random_seed, time_now
from pkd.core import BasePatchKD
from lreid.data_loader import IncrementalReIDLoaders
from pkd.visualization import visualize, Logger, VisdomPlotLogger, VisdomFeatureMapsLogger
from pkd.operation import train_p_s_an_epoch, fast_test_p_s, fast_extract_p_s
import torch.nn.functional as F
def main(config):
set_random_seed(config.seed)
# init loaders and base
loaders = IncrementalReIDLoaders(config)
base = BasePatchKD(config, loaders)
###########################################################################################################
# if config.mode == 'test':
# all_set = ['cuhk01', 'cuhk02', 'grid', 'sensereid', 'viper', 'ilids', 'prid']
# config.test_dataset=config.train_dataset[:config.test_step+1]+all_set
# config.test_dataset=all_set
# config.resume_test_model=config.output_path+'/models/'+str(config.test_step)
###########################################################################################################
# 仅供训练好模型后,单独特征提取
###########################################################################################################
if config.mode == 'extract':
config.test_dataset=config.train_dataset[config.test_step]
base.resume_from_model(config.output_path+'/models/'+str(config.test_step))
with autocast(config.fp_16):
fast_extract_p_s(config, base, loaders, config.test_step, config.test_dataset)
exit(0)
###########################################################################################################
# 仅供训练好模型后,单独特征转移
###########################################################################################################
if config.mode == 'transform':
config.trans_datasets=config.train_dataset[0:config.trans_step]
base.resume_from_model(config.output_path+'/models/'+str(config.trans_step))
with autocast(config.fp_16):
for each_data in config.trans_datasets:
each_old_gallery = torch.load(config.output_path+'/features/'+str(each_data)+'.pth')
each_old_gallery['gallery_features_meter'] = F.normalize(each_old_gallery['gallery_features_meter'], p=2, dim=1)
# split
print (time_now())
for start_pos in range(0, each_old_gallery['gallery_features_meter'].shape[0], config.test_batch_size):
end_pos = min(start_pos+config.test_batch_size, each_old_gallery['gallery_features_meter'].shape[0])
each_old_gallery['gallery_features_meter'][start_pos:end_pos] = base.model_dict['transnet'](each_old_gallery['gallery_features_meter'][start_pos:end_pos])
each_old_gallery['gallery_features_meter'] = F.normalize(each_old_gallery['gallery_features_meter'], p=2, dim=1)
print (time_now(), "Old Gallery Feature Update:", config.output_path+'/features/'+str(each_data)+'.pth')
torch.save(each_old_gallery, config.output_path+'/features/'+str(each_data)+'.pth')
exit(0)
###########################################################################################################
# init logger
logger = Logger(os.path.join(base.output_dirs_dict['logs'], 'log.txt'))
logger(config)
assert config.mode in ['train', 'test', 'visualize']
if config.mode == 'train': # train mode
# initialize visdom logger under training mode
if config.visdom:
visdom_dict = {
'feature_maps': VisdomFeatureMapsLogger('image', pad_value=1, nrow=8, port=config.visdom_port,
env=config.running_time, opts={'title': f'featuremaps'})
}
# automatically resume model from the latest one
if config.auto_resume_training_from_lastest_steps:
start_train_step, start_train_epoch = base.resume_last_model()
# continual loop
for current_step in range(start_train_step, loaders.total_step):
current_total_train_epochs = config.total_continual_train_epochs if current_step > 0 else config.total_train_epochs
if current_step > 0:
logger(f'save_and_frozen old model in {current_step}')
old_model = base.copy_model_and_frozen(model_name='tasknet')
else:
old_model = None
for current_epoch in range(start_train_epoch, current_total_train_epochs):
result_dict = {}
# save model
base.save_model(current_step, current_epoch)
# train
str_lr, dict_lr = base.get_current_learning_rate()
logger(str_lr)
results = train_p_s_an_epoch(config, base, loaders, current_step, old_model, current_epoch, output_featuremaps=config.output_featuremaps)
if config.output_featuremaps and len(results) == 3:
results_dict, results_str, heatmaps = results
if config.visdom:
visdom_dict['feature_maps'].images(heatmaps)
else:
results_dict, results_str = results
logger('Time: {}; Step: {}; Epoch: {}; {}'.format(time_now(), current_step, current_epoch, results_str))
# if config.test_frequency > 0 and current_epoch % config.test_frequency == 0:
# with autocast(config.fp_16):
# rank_map_dict, rank_map_str = fast_test_p_s(config, base, loaders, current_step, if_test_forget=config.if_test_forget)
# logger(
# f'Time: {time_now()}; Test Dataset: {config.test_dataset}: {rank_map_str}')
# result_dict.update(rank_map_dict)
# if current_epoch == config.total_train_epochs - 1:
# # test
# # base.save_model(current_step, config.total_train_epochs)
# with autocast(config.fp_16):
# rank_map_dict, rank_map_str = fast_test_p_s(config, base, loaders, current_step, if_test_forget=config.if_test_forget)
# logger(
# f'Time: {time_now()}; Step: {current_step}; Epoch: {current_epoch} Test Dataset: {config.test_dataset}, {rank_map_str}')
# print(f'Current step {current_step} is finished.')
# start_train_epoch = 0
# result_dict.update(rank_map_dict)
if config.visdom:
result_dict.update(results_dict)
result_dict.update(dict_lr)
if current_step > 0:
global_current_epoch = current_epoch + (current_step-1) * current_total_train_epochs + config.total_train_epochs
else:
global_current_epoch = current_epoch
for name, value in result_dict.items():
if name in visdom_dict.keys():
visdom_dict[name].log(global_current_epoch, value, name=str(current_step))
else:
visdom_dict[name] = VisdomPlotLogger('line', port=config.visdom_port, env=config.running_time,
opts={'title': f'train {name}'})
visdom_dict[name].log(global_current_epoch, value, name=str(current_step))
if current_step > 0:
del old_model
base.save_model(current_step, current_epoch + 1)
################################################################################################
# 训练完之后保存当前阶段特征库
config.test_dataset=config.train_dataset[current_step]
base.resume_from_model(config.output_path+'/models/'+str(current_step))
with autocast(config.fp_16):
fast_extract_p_s(config, base, loaders, current_step, config.test_dataset)
################################################################################################
# 如果有旧库,且要转移,则转移
if config.trans_feat and current_step > 0:
config.trans_datasets=config.train_dataset[0:current_step]
base.resume_from_model(config.output_path+'/models/'+str(current_step))
with autocast(config.fp_16):
for each_data in config.trans_datasets:
each_old_gallery = torch.load(config.output_path+'/features/'+str(each_data)+'.pth')
each_old_gallery['gallery_features_meter'] = F.normalize(each_old_gallery['gallery_features_meter'], p=2, dim=1)
# each_old_gallery['gallery_features_meter'] = base.model_dict['transnet'](each_old_gallery['gallery_features_meter'])
for start_pos in range(0, each_old_gallery['gallery_features_meter'].shape[0], config.test_batch_size):
end_pos = min(start_pos+config.test_batch_size, each_old_gallery['gallery_features_meter'].shape[0])
each_old_gallery['gallery_features_meter'][start_pos:end_pos] = base.model_dict['transnet'](each_old_gallery['gallery_features_meter'][start_pos:end_pos])
each_old_gallery['gallery_features_meter'] = F.normalize(each_old_gallery['gallery_features_meter'], p=2, dim=1)
torch.save(each_old_gallery, config.output_path+'/features/'+str(each_data)+'.pth')
print ("Old Gallery Feature Update:", config.output_path+'/features/'+str(each_data)+'.pth')
################################################################################################
elif config.mode == 'test': # test mode
logger_test = Logger(os.path.join(base.output_dirs_dict['logs'], 'log_test.txt'))
try:
base.resume_from_model(config.resume_test_model)
except:
base.resume_last_model()
current_step = loaders.total_step - 1
with autocast(config.fp_16):
rank_map_dict, rank_map_str = fast_test_p_s(config, base, loaders, current_step, if_test_forget=config.if_test_forget)
logger_test(
f'Time: {time_now()}; Step: {current_step}; Test Dataset: {config.test_dataset}, {rank_map_str}')
print(f'Current step {current_step} is finished.')
# print(rank_map_dict)
seen_r1=[]
seen_map=[]
seen_r1_old=[]
seen_map_old=[]
unseen_r1=[]
unseen_map=[]
for name in config.test_dataset:
if name in config.train_dataset:
seen_r1.append(rank_map_dict[f'{name}_tasknet_Rank1'])
seen_map.append(rank_map_dict[f'{name}_tasknet_mAP'])
seen_r1_old.append(rank_map_dict[f'{name}_tasknet_Rank1_old'])
seen_map_old.append(rank_map_dict[f'{name}_tasknet_mAP_old'])
else:
unseen_r1.append(rank_map_dict[f'{name}_tasknet_Rank1'])
unseen_map.append(rank_map_dict[f'{name}_tasknet_mAP'])
import numpy as np
print("seen_map:",np.mean(seen_map))
print("seen_r1:",np.mean(seen_r1))
print("seen_map_old:",np.mean(seen_map_old))
print("seen_r1_old:",np.mean(seen_r1_old))
print("unseen_map:",np.mean(unseen_map))
print("unseen_r1:",np.mean(unseen_r1))
print(f"{np.mean(seen_map)}\t{np.mean(seen_r1)}\t{np.mean(seen_map_old)}\t{np.mean(seen_r1_old)}\t{np.mean(unseen_map)}\t{np.mean(unseen_r1)}")
elif config.mode == 'visualize': # visualization mode
base.resume_from_model(config.resume_visualize_model)
visualize(config, base, loaders)
if __name__ == '__main__':
import time
import argparse
import os
# os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
# os.environ["CUDA_VISIBLE_DEVICES"] = "0"
running_time = time.strftime('%Y-%m-%d-%H-%M-%S')
torch.backends.cudnn.benchmark = True
parser = argparse.ArgumentParser()
parser.add_argument('--seed', type=int, default=42)
parser.add_argument('--fp_16', type=bool, default=True)
parser.add_argument('--running_time', type=str, default=running_time)
parser.add_argument('--visdom', type=bool, default=False)
parser.add_argument('--visdom_port', type=int, default=8097)
parser.add_argument('--cuda', type=str, default='cuda')
parser.add_argument('--mode', type=str, default='train', help='trian_10, train_5, train, test or visualize')
parser.add_argument('--output_path', type=str, default=f'results/sota_o1_test', help='path to save related informations')
parser.add_argument('--continual_step', type=str, default='5',
help='10 or 5 or task')
parser.add_argument('--num_identities_per_domain', type=int, default=500,
help='250 for 10 steps, 500 for 5 steps, -1 for all aviliable identities')
parser.add_argument('--joint_train', type=bool, default=False,
help='joint all dataset')
parser.add_argument('--re_init_lr_scheduler_per_step', type=bool, default=False,
help='after_previous_step if re_init_optimizers')
parser.add_argument('--warmup_lr', type=bool, default=False,
help='0-10 epoch warmup')
# dataset configuration
machine_dataset_path = '/home/cuizhenyu/data/PRID/'
parser.add_argument('--datasets_root', type=str, default=machine_dataset_path, help='mix/market/duke/')
parser.add_argument('--combine_all', type=ast.literal_eval, default=False, help='train+query+gallery as train')
parser.add_argument('--train_dataset', nargs='+', type=str,
default=['market', 'subcuhksysu', 'duke', 'msmt17', 'cuhk03'])
parser.add_argument('--test_dataset', nargs='+', type=str,
default=['market', 'subcuhksysu', 'duke', 'msmt17', 'cuhk03'])
parser.add_argument('--image_size', type=int, nargs='+', default=[256, 128])
parser.add_argument('--test_batch_size', type=int, default=64, help='test batch size')
parser.add_argument('--p', type=int, default=32, help='person count in a batch')
parser.add_argument('--k', type=int, default=4, help='images count of a person in a batch')
parser.add_argument('--use_local_label4validation', type=bool, default=True,
help='validation use global pid label or not')
# data augmentation
parser.add_argument('--use_rea', type=ast.literal_eval, default=True)
parser.add_argument('--use_colorjitor', type=ast.literal_eval, default=False)
# model configuration
parser.add_argument('--pid_num', type=int, default=2500, help='#domain times #pid per domain')
# train configuration
parser.add_argument('--steps', type=int, default=150, help='150 for 5s32p4k, 75 for 10s32p4k')
parser.add_argument('--task_base_learning_rate', type=float, default=3.5e-4)
parser.add_argument('--task_milestones', nargs='+', type=int, default=[25, 35],
help='task_milestones for the task learning rate decay')
parser.add_argument('--task_gamma', type=float, default=0.1,
help='task_gamma for the task learning rate decay')
parser.add_argument('--new_module_learning_rate', type=float, default=3.5e-4)
parser.add_argument('--new_module_milestones', nargs='+', type=int, default=[75, 85],
help='new_milestones for the new module learning rate decay')
parser.add_argument('--new_module_gamma', type=float, default=0.1,
help='new_gamma for the new module learning rate decay')
parser.add_argument('--weight_decay', type=float, default=0.0005)
parser.add_argument('--total_train_epochs', type=int, default=50)# !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
parser.add_argument('--total_continual_train_epochs', type=int, default=50)# !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
# resume and save
parser.add_argument('--auto_resume_training_from_lastest_steps', type=ast.literal_eval, default=True)
parser.add_argument('--max_save_model_num', type=int, default=1, help='0 for max num is infinit')
parser.add_argument('--resume_train_dir', type=str, default='',
help='directory to resume training. "" stands for output_path')
# test
parser.add_argument('--fast_test', type=bool,
default=True,
help='test during train using Cython')
parser.add_argument('--test_frequency', type=int,
default=25,
help='test during train, i <= 0 means do not test during train')
parser.add_argument('--if_test_forget', type=bool,
default=True,
help='test during train for forgeting')
parser.add_argument('--resume_test_model', type=str, default='/path/to/pretrained/model',
help='only available under test model')
parser.add_argument('--test_mode', type=str, default='all', help='inter-camera, intra-camera, all')
parser.add_argument('--test_metric', type=str, default='euclidean', help='cosine, euclidean')
# visualization configuration
parser.add_argument('--resume_visualize_model', type=str, default='/path/to/pretrained/model',
help='only available under visualize model')
parser.add_argument('--visualize_dataset', type=str, default='',
help='market, duke, only available under visualize model')
parser.add_argument('--visualize_mode', type=str, default='inter-camera',
help='inter-camera, intra-camera, all, only available under visualize model')
parser.add_argument('--visualize_mode_onlyshow', type=str, default='pos', help='pos, neg, none')
parser.add_argument('--visualize_output_path', type=str, default='results/visualization/',
help='path to save visualization results, only available under visualize model')
parser.add_argument('--output_featuremaps', type=bool, default=False,
help='During training visualize featuremaps')
parser.add_argument('--output_featuremaps_frequency', type=int, default=50,
help='Frequency of visualize featuremaps')
parser.add_argument('--save_heatmaps', type=bool, default=False,
help='During training visualize featuremaps and save')
# losses configuration
parser.add_argument('--weight_x', type=float, default=1, help='weight for cross entropy loss')
# for triplet loss
parser.add_argument('--weight_t', type=float, default=1, help='weight for triplet loss')
parser.add_argument('--t_margin', type=float, default=0.3, help='margin for the triplet loss with batch hard')
parser.add_argument('--t_metric', type=str, default='euclidean', help='euclidean, cosine')
parser.add_argument('--t_l2', type=bool, default=False, help='if l2 normal for the triplet loss with batch hard')
# for logit distillation loss
parser.add_argument('--weight_kd', type=float, default=1, help='weight for cross entropy loss')
parser.add_argument('--kd_T', type=float, default=2, help='weight for cross entropy loss')
# for features disstilation
parser.add_argument('--weight_fkd', type=float, default=0, help='weight for cross entropy loss')
parser.add_argument('--fkd_l2', type=bool, default=False, help='weight for cross entropy loss')
# for patch-based losses
parser.add_argument('--weight_pd', type=float, default=0.1, help='weight for patch distillation loss')
parser.add_argument('--weight_rd', type=float, default=100, help='weight for relation distillation loss')
parser.add_argument('--weight_div', type=float, default=0.5, help='weight for patch diversity loss')
parser.add_argument('--weight_conf', type=float, default=1, help='weight for confidence loss')
# for compatible learning loss
parser.add_argument('--trans_feat', action="store_false", help='if or not transform old features')
parser.add_argument('--weight_trans', type=float, default=50, help='weight for transformation loss')
parser.add_argument('--weight_transx', type=float, default=0.05, help='weight for transformation_x loss')
parser.add_argument('--weight_anti', type=float, default=1, help='weight for anti_forget loss')
parser.add_argument('--weight_discri', type=float, default=0.01, help='weight for anti_discrimination loss')
# the number of patches per image
parser.add_argument('--K', type=int, default=3, help='the number of patches per image')
parser.add_argument('--patch_kd_loss', action='store_true',help='the number of patches per image')
parser.add_argument('--lwf', action='store_true', help='the number of patches per image')
parser.add_argument('--test_step', type=int,default=4, help='the number of patches per image')
parser.add_argument('--trans_step', type=int,default=4, help='the number of patches per image')
parser.add_argument('--num_prototype', type=int,default=16, help='the number of prototypes')
# main
config = parser.parse_args()
main(config)