-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcast_test.cpp
102 lines (92 loc) · 2.85 KB
/
cast_test.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
#include <math.h>
#include "gtest/gtest.h"
extern "C" {
#include "src/basic/cast.h"
#include "src/basic/factories.h"
#include "src/core/tensor.h"
#include "src/math/binary_op.h"
}
void cast_assign_int32(Tensor t) {
int64_t size = aitisa_tensor_size(t);
int32_t* data = (int32_t*)aitisa_tensor_data(t);
int32_t value = 0;
for (int i = 0; i < size; ++i) {
value = i;
data[i] = value;
}
}
void cast_assign_float(Tensor t) {
int64_t size = aitisa_tensor_size(t);
float* data = (float*)aitisa_tensor_data(t);
float value = 0;
for (int i = 0; i < size; ++i) {
value = i * 0.1;
data[i] = value;
}
}
namespace aitisa_api {
namespace {
TEST(Cast, FloatToInt32) {
Tensor input;
Tensor temp;
Tensor factor;
int64_t dims[2] = {3, 2};
Device device = {DEVICE_CPU, 0};
DataType dtype = kFloat;
aitisa_create(dtype, device, dims, 2, NULL, 0, &input);
aitisa_full(dtype, device, dims, 2, 7, &factor);
cast_assign_float(input);
aitisa_mul(input, factor, &temp);
DataType out_dtype = {TYPE_INT32, sizeof(int32_t)};
Tensor output;
Status status;
status = aitisa_cast(temp, out_dtype, &output);
DataType in_dtype_test = aitisa_tensor_data_type(input);
DataType out_dtype_test = aitisa_tensor_data_type(output);
EXPECT_EQ(in_dtype_test.code, TYPE_FLOAT);
EXPECT_EQ(out_dtype_test.code, TYPE_INT32);
int32_t* out_data = (int32_t*)aitisa_tensor_data(output);
int32_t test_data[] = {0, 0, 1, 2, 2, 3};
int64_t size = aitisa_tensor_size(output);
for (int64_t i = 0; i < size; i++) {
EXPECT_TRUE(out_data[i] == test_data[i]);
}
aitisa_destroy(&factor);
aitisa_destroy(&input);
aitisa_destroy(&temp);
aitisa_destroy(&output);
}
TEST(Cast, Int32ToDouble) {
Tensor input;
Tensor factor;
Tensor temp;
int64_t dims[2] = {3, 2};
Device device = {DEVICE_CPU, 0};
DataType dtype = kInt32;
aitisa_create(dtype, device, dims, 2, NULL, 0, &input);
aitisa_full(dtype, device, dims, 2, 2, &factor);
cast_assign_int32(input);
aitisa_mul(input, factor, &temp);
DataType out_dtype = {TYPE_DOUBLE, sizeof(double)};
Tensor output;
Status status;
status = aitisa_cast(temp, out_dtype, &output);
DataType in_dtype_test = aitisa_tensor_data_type(input);
DataType out_dtype_test = aitisa_tensor_data_type(output);
EXPECT_EQ(in_dtype_test.code, TYPE_INT32);
EXPECT_EQ(out_dtype_test.code, TYPE_DOUBLE);
double* out_data = (double*)aitisa_tensor_data(output);
double test_data[] = {0, 2, 4, 6, 8, 10};
int64_t size = aitisa_tensor_size(output);
for (int64_t i = 0; i < size; i++) {
// Due to the problem of precision, consider the two numbers
// are equal when their difference is less than 0.00001
EXPECT_TRUE(abs(out_data[i] - test_data[i]) < 0.00001);
}
aitisa_destroy(&factor);
aitisa_destroy(&input);
aitisa_destroy(&temp);
aitisa_destroy(&output);
}
} // namespace
} // namespace aitisa_api