-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrandom_saturation_test.cpp
49 lines (44 loc) · 1.4 KB
/
random_saturation_test.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
#include "gtest/gtest.h"
extern "C" {
#include "src/new_ops3/random_saturation.h"
//#include "src/tool/tool.h"
}
void random_saturation_assign_float(Tensor t) {
int64_t size = aitisa_tensor_size(t);
float* data = (float*)aitisa_tensor_data(t);
float value = 0;
for (int i = 0; i < size; ++i) {
value = (float)i;
data[i] = value;
}
}
namespace aitisa_api {
namespace {
TEST(RandomHue, Float3d) {
Tensor input;
DataType dtype = kFloat;
Device device = {DEVICE_CPU, 0};
int64_t dims[3] = {3, 2, 3};
aitisa_create(dtype, device, dims, 3, NULL, 0, &input);
random_saturation_assign_float(input);
// tensor_printer2d(input);
Tensor output;
aitisa_random_saturation(input, 0.8, 1.2, &output);
// tensor_printer2d(output);
srand(0);
double factor = (rand() / double(RAND_MAX)) * (1.2 - 0.8) + 0.8;
float* out_data = (float*)aitisa_tensor_data(output);
float test_data[] = {0., 0., 0.3671, 1.3671, 2.3671, 3.3671,
12., 13., 14., 15., 16., 17.,
12., 13., 14., 15., 16., 17.};
int64_t size = aitisa_tensor_size(output);
for (int64_t i = 0; i < size; i++) {
/* Due to the problem of precision, consider the two numbers
are equal when their difference is less than 0.0001*/
EXPECT_TRUE(abs(out_data[i] - test_data[i]) < 0.0001);
}
aitisa_destroy(&input);
aitisa_destroy(&output);
}
} // namespace
} // namespace aitisa_api