
Department of Computer Science
Computer Vision and Geometry Group

Graph Based Navigation on
Resource Constrained Systems

Samuel Sadok

Bachelor’s Thesis

2016

Prof. Marc Pollefeys
Lorenz Meier

Supervisors:

Abstract

For a successful Return-To-Land operation, it is desirable for the vehicle, to only
move along known-good paths, i. e. paths that were flown before. For that, a flight
graph must be stored on the vehicle. On some drone platforms, memory is very
limited and storing the complete flight graph the naïve way is not possible.
This thesis develops a compact representation of the flight graph, together with
several methods to achieve a very small memory footprint, making it feasible for the
most resource constrained platforms. The methods are implemented as part of the
PX4 autopilot.
To conclude the work, the performance of the implementation is evaluated using
sample flight paths.

i

Contents

1 Introduction 1
1.1 The PX4 Project . 1
1.2 Motivation . 1
1.3 Constraints . 2
1.4 Approach . 2

2 Implementation 5
2.1 System Operation . 5

2.1.1 Return-To-Land . 6
2.1.2 RC Recovery . 6

2.2 Recent Path Buffer . 7
2.3 Flight Graph Data Structure . 7

2.3.1 Path Storage . 8
2.3.2 Position Representation . 9
2.3.3 Intersection Storage . 9

2.4 Graph Consolidation . 10
2.4.1 Line Detection . 10
2.4.2 Redundancy Removal . 11
2.4.3 Node Generation . 11

2.5 Routing Data Synthesis . 12
2.6 Path Finding . 13
2.7 Memory Management . 13

2.7.1 Adaptive Precision . 14
2.7.2 Rewrite Pass . 15

3 Evaluation 19
3.1 Computational Complexity . 19

3.1.1 Consolidation . 19
3.1.2 Routing Data Synthesis . 21
3.1.3 Path Finding . 21
3.1.4 Rewrite Pass . 21
3.1.5 Overall Runtimes . 22

3.2 Memory Usage . 22
3.3 CPU Load . 24

4 Conclusion 27
4.1 Future Work . 27

iii

Chapter 1

Introduction

1.1 The PX4 Project
The PX4 autopilot [1] is a modular software solution for unmanned aerial vehicles
(UAVs), commonly known as drones. It is used on many types of drones and missions
and has a diverse user base.

The software is divided into modules, where each module can be considered as
a separate, single-threaded process. Modules are started on system startup or on
demand. The system ensures that high priority tasks, such as the attitude control
loop, get sufficient CPU time.

Even though modules may share a single address space on some platforms, this
is not guaranteed. Inter-module-communication is managed by the Object-Request-
Broker (ORB). Modules can use the ORB to publish or subscribe to values of a certain
type.

1.2 Motivation
This thesis is motivated by an issue with the Return-To-Land (RTL) feature of PX4.
Return-To-Land can be requested by the vehicle commander. It is especially useful,
if the user can no longer ensure safe operation of the vehicle due to far distance or
obstruction of the sight contact. It is also commonly used for convenience, after a
mission is completed. Moreover, it is invoked automatically if the radio link to the
ground station is lost.

Currently, the RTL mode operates as follows:

1. Fly straight up to a predefined altitude.

2. Fly in a straight line to directly above the home position while maintaining
the altitude.

3. Descend and loiter or land, depending on configuration.

There will obviously arise problems if there is a tall building between the vehicle
and the home position, or if the vehicle is below some obstacle, such as a tree,

1

2 Chapter 1. Introduction

when the RTL mode is invoked. The obvious solution would be to record the entire
flight path in an array of floating point numbers and fly back along the path when
requested. There are two major problems with this approach: First, the RTL mode
may be invoked after a long flight around the same location. This would mean that
the vehicle may take a return path that is much longer than it has to be. This could
be mitigated by detecting close passings of the flight path to itself and viewing the
flight path as a graph.

The second problem is a fundamental technical issue: The PX4 autopilot is
designed to run on a multitude of different hardware platforms, some of them having
very limited memory resources. On such platforms, it is not possible to store the
entire flight path in a naïve way. Consider, for example, a tracker that records a
new position after every meter of covered flight path. After one kilometer of flight,
the memory usage would already be 12kB, if a position consists of three 32-bit
floating point numbers. Moreover, the tracker must obey a statically known memory
limit, otherwise there is a risk of using up all available resources and potentially
jeopardizing the system integrity.

Looking at the example, it seems plausible that such a tracker can be optimized,
for instance by reducing the recording fidelity or by detecting straight lines in the
flight path. This thesis looks at various methods to reduce the memory requirements
for graph based navigation. The focus of the thesis is an implementation of a tracker
which uses drastically less memory than the naïve approach, and thus enables safe
Return-To-Land operation, even on the most resource constrained systems.

1.3 Constraints

For the implementation, several constraints were layed down:

• The memory usage shall not exceed a limit of 10kB.

• Memory usage (both heap and stack) must be deterministic.

• The CPU usage is not considered critical. If some graph operations take several
hundred milliseconds, this is still acceptable as the graph is not part of the real
time control loop. It should be ensured though, that the CPU usage is not too
excessive.

• The quality of the PX4 autopilot is supposed to be monotonically increasing
with time. Therefore, any modifications of the RTL mode must perform at
least as conveniently and safely as the existing implementation.

1.4 Approach

• A simple compact linear path storage was designed.

• The concept was extended to store the complete graph. Some representations
were rejected based on considerations about complexity and maintainability.

1.4. Approach 3

• Multiple heuristics were implemented to reduce memory usage, based on
assumptions about common usage scenarios.

• The implementation was validated using unit tests, as well as SITL (software-
in-the-loop) testing.

• The implementation was tested on actual constrained hardware to verify its
feasibility in terms of computational effort and memory usage.

4 Chapter 1. Introduction

Chapter 2

Implementation

The code for the implementation can be downloaded at
https://github.com/samuelsadok/Firmware/tree/3cfc0190fcfe6495caed3065b98efc7b03cea487

This link points to the latest Git commit which should be considered part of
the thesis. The descriptions in this chapter attempt to summarize all important
implementation aspects and design considerations . If more detail on a particular
feature is desired, the reader is encouraged to consult the actual implementation
code and the comments therein. The most relevant files are:

• src/modules/navigator/tracker.cpp: Implementation of most of the graph-
based navigation

• src/modules/navigator/tracker.h: Declarations and descriptions of the
functions in tracker.cpp

• src/modules/navigator/rtl_advanced.cpp: Code for the graph-based Return-
To-Land flight mode

Some of the descriptions here differ slightly from the implementation in order to
omit uninteresting details and simplify notation. However, important differences are
mentioned when they do occur.

2.1 System Operation

Most of the functionality described in this thesis is implemented in the Tracker
class, which constitutes a component of the Navigator module of the PX4 autopilot.
The Navigator subscribes to changes of the vehicle position as well as the home
position, and forwards them to an instance of the Tracker class. The home position
is a special position that is determined by the system. It usually equals the location
of takeoff and is close to the user.

The Navigator can be in one of multiple available flight modes. A mode switch
occurs either upon user input or automatically. Two of these modes rely on path
recommendations of the Tracker. Likewise, the Tracker maintains two distinct path

5

https://github.com/samuelsadok/Firmware/tree/3cfc0190fcfe6495caed3065b98efc7b03cea487

6 Chapter 2. Implementation

storages, each targeted at a specific flight mode.

The flight graph (Section 2.3) attempts to record the entire flight path, possibly
trading off some of the precision. It’s main purpose is to support the Return-To-Land
flight mode (Section 2.1.1). As shown in Section 2.7, several heuristics help in
managing memory usage.

The recent path (Section 2.2) only stores the most recent positions that the
vehicle visited. It supports the RCRecover flight mode (Section 2.1.2). In contrary
to the graph, its precision is constant.

2.1.1 Return-To-Land

Once the RTL mode is invoked, it requests a path finding context from the tracker
(Section 2.6). It then uses this context to iteratively obtain new position recommen-
dations and turn them into waypoints for the vehicle, until the home position is
reached. It is the job of the Tracker to ensure that these recommendations make up
a sensible path and do not diverge too far from previously visited positions. Once
the vehicle is close enough to the home position, landing is initiated.

Despite rigorous testing, the graph implementation must be expected to have
bugs. For this reason, the RTL mode surveils the vehicle progress. If no new waypoint
can be set up within a predefined time span, it falls back to the legacy RTL mode.
Furthermore, the same action is taken if any internal sanity checks of the Tracker
fail. These safeguards only protect against a specific class of missbehaviour, but it is
conceivable that they can be extended if found to be neccessary.

2.1.2 RC Recovery

An RCRecover mode is available to handle loss of radio control (RC) signal appropri-
ately. It operates in a similar way as the RTL mode, in that it asks the tracker for
position recommendations. However, in contrary to RTL, the goal is not to fly to a
specific destination, but only to return to a good signal.

RC loss often occurs when the vehicle flies behind a large obstacle, such as a
building. When RC loss is detected, flying back in the reverse direction usually
quickly leads to recovery of a good signal. All of this might happen in close proximity
to the offending obstacle. Thus, the vehicle should fly at high precision during RC
recovery.

The flight graph supporting the RTL mode trades off precision for the sake of
coverage. This seems unsuitable for use in an RC loss scenario, especially since
this tends to occur far from the home position, where precision is reduced more
aggressively. This motivates the implementation of the recent-path-buffer.

2.2. Recent Path Buffer 7

15

0

14 10

x

9 5

y

4 0

z

Figure 2.1. Layout of a compact delta element (delta_item_t)

2.2 Recent Path Buffer
The recent-path-buffer (recent_path) can be seen as a ring buffer of positions. It
has configurable capacity, but is supposed to be small (e. g. 16 positions).

Each position pi is stored relative to the preceding position pi−1. The according
delta is obtained by

∆i := round
(1
u
· pi

)
︸ ︷︷ ︸

p̃i

− round
(1
u
· pi−1

)
︸ ︷︷ ︸

p̃i−1

where u is the unit size (usually 1 meter), and round applies element-wise rounding-
to-closest-integer with tie-breaking away from zero. The rounding is required due to
the delta representation in memory (see Figure 2.1). The notation p is from now on
used instead of p̃ to denote a normalized and rounded position, as virtually all of
the implementation operates on such integer positions.

The most recent position h (the path head, recent_path_head) is stored in ab-
solute coordinates, so each earlier position pi can be obtained by pi = h−

∑n
j=i+1 ∆j ,

where n is the total number of positions in the buffer.

During recording, a new position is only appended when its distance to h is large
enough. If the new position is close to any other position pi already in the path, the
buffer is rolled back up to that position, such that h← pi and n← i. This way, it is
ensured that no two positions in the buffer are too close to each other.

The memory representation of each delta is shown in Figure 2.1. A 5-bit signed
integer is allocated for each axis, so the representable range is ∆ ∈ {−16, . . . ,+15}3.
Position updates are registered at a frequency on the order of a hundred times a
second, so a violation of this range seems very unlikely.

2.3 Flight Graph Data Structure
The representation of the flight graph mainly consists of two data structures:

• Position information is stored as a sequence of delta items, similar to the
recent-path-buffer (Section 2.2).

• Intersections on the flight path, stored as a list of nodes. If two lines in the
flight path pass close to each other, they are usually linked by a node.

To ensure a predictable impact of the flight graph on the overall resource usage
of the system, it is desirable that both of these lists are allocated statically. However,

8 Chapter 2. Implementation

∆1 ∆2 · · · ∆n N3 N2 N1growth growth

flight path free space intersection storage

Figure 2.2. Layout of the graph buffer

Far delta element:

47

1

46 32

x

31

0

30 16

y

15

1

14 0

z

Jump element:

47

1

46 32
x

31
1

30 16

y

15

1

14 0

z

Figure 2.3. Additional delta element types. The bits 47, 31 and 15 enable parsing
of the stored path in both directions.

the ratio of delta elements to nodes depends on the flight pattern and cannot be
known in advance. This means that in the general case, when using two separate
buffers, one buffer may become full while there is still unused space in the other buffer.

To mitigate this problem, both of the lists share the same, statically allocated
memory area (graph). More specifically, the delta sequence is stored at the beginning
of this area and grows upwards (in terms of address), while the node list is stored
at the end of the area and grows downwards (Figure 2.2). The graph is considered
full when both lists collide. When this happens, certain heuristics are employed to
attempt to reduce memory usage (see Section 2.7).

2.3.1 Path Storage

The flight path is stored as a sequence of delta elements, similar to the recent-path-
buffer. However, in addition to the compact delta element (Figure 2.1), two more
delta representations are introduced (Figure 2.3).

Compact delta element Most of the path is stored in compact delta elements,
which occupy only two bytes of memory. Their memory layout is shown
Figure 2.1. As discussed in Section 2.2, the representable range is ∆ ∈
{−16, . . . ,+15}3. A compact delta item correspondsto a line connecting two
vertices. If a line becomes too long to be stored as a compact delta element, it
is either split into multiple compact elements or stored as a far delta element,
whichever uses less memory.

Far delta element Large position changes can be stored as far delta elements.
They occupy six bytes of memory, storing a 15-bit signed integer for each axis.
The lowest possible value (0xC000) is reserved (Section 2.7.2). The resulting
range is ∆ ∈ {−16′383, . . . ,+16′383}3. When using a unit size of 1 meter, this
corresponds to a distance of ∼16km. There are currently no mechanisms in
place to handle larger deltas.

2.3. Flight Graph Data Structure 9
95 80

i

79 64

j

b

62 48

ci

obsolete bit (Section 2.7.2)

46 32

cj

31 16

∆ a

13 0

d

Figure 2.4. Node structure layout (node_t)

Jump element Jump elements allow to represent discontinuities in the flight path.
Their representation differs from far delta elements only in one bit, which
reflects the distinct meaning.

2.3.2 Position Representation

Any position on the flight path can be written as a tuple (i, c).

i ∈ {1, . . . , n} is an index pointing to a delta element ∆i. Let the line represented
by ∆i start on pi−1 and end on pi, i. e. pi = pi−1 + ∆i. Note that in the actual
implementation, the indexing is slightly different. For instance, if the delta element
occupies multiple slots in the buffer, the index always points to the last slot used by
the element.

c ∈ [0, 1) is a coefficient, which specifies a point somewhere along the associated
line. A value of 1 represents the beginning of the line pi−1, a value of 0 represents
the end of the line pi. This value is stored as a 15-bit unsigned integer, where the
theoretical value 32′768 corresponds to the coefficient 1. Note that the value 1 cannot
be represented. This is not a problem in practice, as the beginning of a line equals
the end of the preceding line.

Given the tuple (i, c) and the vertex pi or pi−1, we can calculate the absolute
position p represented by the tuple:

p(i, c) := pi − round(c ·∆i) (2.1)
= pi−1 + ∆i − round(c ·∆i) (2.2)

Similarly, pi−1 and pi can be calculated when p is known.

2.3.3 Intersection Storage

A node links two lines i and j of the flight path that pass close to each other. In
addition to that, it stores routing information for that intersection. Thus, the nodes
act as enablers of the path finding algorithm Section 2.6. Without any nodes, the
path finding algorithm would not know about any intersections and therefore only
suggest to linearly follow the flight path. However, deleting nodes does not result in
any loss of data. The node list can always be rebuilt from the flight path, provided
sufficient free memory.

A node can be seen as a tuple ((i, ci), (j, cj),∆, d, b, a) and is represented in the
implementation by the structure node_t, occupying 12 bytes (Figure 2.4). (i, ci) and

10 Chapter 2. Implementation

(j, cj) are the two positions in the graph that are linked. ∆ stores the delta between
the two points: ∆ := p(j, cj)− p(i, ci).

d ∈ {0, . . . , 16′382,∞} stores the most recently calculated distance of the node
to home, with respect to moving along the graph. If this distance is invalid or was
just changed, the dirty-bit b is set.

Note that a node actually consists of two points in close proximity. The stored
distance-to-home is always at least as large as the true distance of either of these
points. Since d is calculated based on the surrounding nodes, the introduced error
may add up. However, no matter how large the error becomes, the worst thing that
can happen is that the path finding algorithm will chose a non optimal path.

The action a can be one of line1-forward, line1-backward, line2-forward,
line2-backward, where forward denotes the direction of increasing indices. This
reflects how the stored distance was calculated. For the path finding algorithm, this
means that when following the specified action, it is guaranteed to reach home after
covering a distance of at most d.

The current implementation only stores routing information for a single desti-
nation. Based on the initial motivation of the flight tracker, there seems to be no
obvious reason to support multiple destinations simultaneously. The implementation
does however allow to change the destination dynamically.

Beyond that, if multi-destination support is to be added, the three last fields in
each node would just have to be replicated for each destination. As the number of
destinations changes, the node size would also change, so the system could delete all
existing nodes and then rebuild the node list from scratch.

2.4 Graph Consolidation

Each new position that arrives at the Tracker and is far enough from the graph
head, is appended to the end of the flight path. The most recent positions make
up the unconsolidated area. After the maximum consolidation debt is reached, i. e.
the number of new, unconsolidated positions m∆ has reached a predefined limit, the
consolidation algorithm (consolidate_graph) is invoked. This algorithm consists of
three passes over the unconsolidated area. At the end of the algorithm, the graph is
considered fully consolidated.

2.4.1 Line Detection

The first pass attempts to compress the path without introducing too much error.
In the implementation, this is done by a line detection algorithm. In theory, other
methods could be used as well.

The line detection pass operates in a greedy fashion. It starts at the first
unconsolidated position and tries to find the longest valid line from there. Next, it

2.4. Graph Consolidation 11

continues from the end of that line to find the next line. A sequence of k positions
pi → pi+1 → · · · → pi+k is replaced by a line pi → pi+k, if all intermediate positions
pi+1, . . . ,pi+k−1 lie close to the new line (Figure 2.5).

ε

p0
p1 p2

p3

p4

Figure 2.5. Line detection: The red lines are replaced by a single line p0 → p3
because this is the longest valid line from p0. The line p0 → p4 would be invalid,
since the points p2 and p3 are no longer within the margin ε of this line. The
margin is discussed in more detail in Section 2.7.1.

2.4.2 Redundancy Removal

The redundancy removal pass accounts for the fact, that a vehicle sometimes flies
along a previously flown path. This is especially true during return-to-land operation,
where the entire return path is close previously visited positions.

Therefore, it is attempted to remove redundant positions. A sequence of k
positions pi → pi+1 → · · · → pi+k is replaced by a jump element pi → pi+k

(Section 2.3.1), if all positions lie close to some preceding line (Figure 2.6). Note,
that for k < 4, the jump element itself would require more memory than the original
points. In such a case, the repacement is omitted.

ε

p0 p1

p2

p3

p4

p5

p6

Figure 2.6. Redundancy removal: The red lines are replaced by the dotted line,
stored as a jump delta element. The positions p2, . . . , p5 are within the margin ε
of the line p0 → p1.

2.4.3 Node Generation

The node generation pass iterates through each new line, and checks if it is close
to any previous line. If this is the case, a node is generated and added to the node
list. While the first two passes are guaranteed not to increase memory usage, this
last pass does increase memory usage. The nodes themselves are implicitly defined
by the flight path, so theoretically the node generation pass adds no information.
However, in practice, the path finding algorithm requires some space for each node
where routing information is cached. Conceptually, the explicit node generation can
be seen as reserving memory for the path finding algorithm.

12 Chapter 2. Implementation

2.5 Routing Data Synthesis

The routing data is generated and refreshed lazily. The refresh_distances algo-
rithm is similar to the Bellman-Ford algorithm [2]. The main difference is that node
updates take effect immediately and not only after the remaining nodes are visited.
The algorithm looks as follows (set t = 1 for the initial iteration):

1. For each dirty node N = ((i, ci), (j, cj),∆, d, b, a) (b = 1):

(a) Reset the dirty flag: b← 0

(b) Starting at point (i, ci), walk forward on the path (in the direction of
increasing indices), until another node N ′ is encountered. While doing so,
calculate the length of the interval. Note that no absolute positions are
required for this.

(c) If N could achieve a shorter distance-to-home through the considered
interval and N ′, update d accordingly. Additionally, store the action
a← line1-forward. Analogously, if N ′ could achieve a shorter distance-
to-home through N , update N ′. Mark any updated node as dirty.

(d) Repeat step 1b for three more intervals: backward from (i, ci) and forward
and backward from (j, cj).

2. If there are any dirty nodes, increment t and go to step 1.

The algorithm is guaranteed to terminate.

Proof. Let D(t) be the sum of the distances d of all nodes at the end of iteration t.
Note that node distances are stored as integers, so we have D(t) ∈ N.

The distance of each node is monotonically decreasing with respect to t: the
update step (1b) only allows updates that improve a node distance. The sum D(t)

is a sum of monotonically decreasing functions and thus monotonically decreasing
itself.

Furthermore, node distances cannot be negative, because they start at infinity
and cannot be reduced beyond zero (since interval have non-negative length). Thus,
the sum D(t) must have a (non-negative) lower bound.

Since D(t) is discrete, this implies, that there is some point in time where no
more progress will be made, i. e. D(t) = D(t−1). In this iteration, we know that no
node distance changed. It follows, that no node was set to dirty (1b) and moreover,
all previously dirty nodes are now clean. Consequently, in step 2, the algoritm does
not continue. �

At the end of the algorithm, all nodes are clean and have valid and consistent
rounting information.

2.6. Path Finding 13

2.6 Path Finding

The path finding algorithm is organized such that it can be executed step by step.
Each iteration relies on up-to-date routing information (Section 2.5). The state is
maintained in a path finding context (path_finding_context_t). Advancing the
state is equivalent to finding the next point on the shortest path to the desired
destination (the home position).

The context can be seen as a tuple (p, (i, ci), (z, cz)). (i, ci) is the current posi-
tion on the return path, p is the corresponding absolute position and (z, cz) is a
checkpoint. Usually, the state is initialized at the graph head (p = h), and such that
(i, ci) = (z, cz).

1. If we’re not at the checkpoint, i. e. (i, ci) 6= (z, cz), go to step 5.

2. Out of all the nodes that lie on the current checkpoint, select the one that
promises the shortest distance to home. Follow the action that it recommends.
If this results in a line switch, update p. In some cases (particularly the first
iteration), the checkpoint may not lie on a node. In this case, no line switch is
done.

3. Prefetch the path in the recommended direction, until a node is encountered. In
case the checkpoint was not at a node, both directions (forward and backward)
must be considered, and the one with the shorter distance-to-home is taken.
The position of the encountered node becomes the new checkpoint (z, cz).

4. If the line switch already resulted in a position update, skip step 5.

5. If i 6= z or ci 6= cz, walk on the flight path in the direction of the checkpoint
(e. g. if i < z, walk forward). Update p accordingly.

2.7 Memory Management

After prolonged operation of the vehicle, the flight graph will eventually reach its
memory limit. A trivial solution would be to just stop recording. However, this does
not seem satisfying.

In real-world use cases, by the time the graph buffer becomes full, it is likely
that some of the flight graph is no longer required at high precision or at all. This
conjecture stems from the observation that users usually cannot control the vehicle
accurately when it is far away from them, so they tend to maintain a larger margin
to obstacles. Moreover, the main purpose of storing the graph is to find a path to a
certain destination. All parts of the graph, which do not lie on the shortest path to
this destination, can be considered non-essential.

Based on these assumptions, two heuristics were implemented that are invoked in
an interleaving manner. The overall memory management operation is shown below.

14 Chapter 2. Implementation

p is the memory pressure, starting at 1. It is incremented every other time the
graph becomes full.

1. Record flight with p = 1 until graph becomes full.

2. Increment pressure p← p+ 1 and consolidate entire graph to apply the new
margin derived from p (Section 2.7.1).

3. Continue to record flight with increased pressure until graph becomes full again.

4. Remove non-essential parts by rewriting the graph (Section 2.7.2).

5. Continue to record flight until graph becomes full again.

6. Go to step 2.

In the actual implementation, the memory pressure is tracked by the variable
memory_pressure and p is given by (memory_pressure»1) + 1.

2.7.1 Adaptive Precision

In Section 2.4, the term “close” was used without proper definition. We now define
“close” to be within some margin ε. The margin ε at some point p is a function of
that point and the memory pressure p:

ε(p, p) := max
{ Regime 1︷ ︸︸ ︷⌊p− 1

2
⌋

+ 1,
Regime 2︷ ︸︸ ︷

p · log2(‖h− p‖︸ ︷︷ ︸
distance to home

/λ)
}

The margin function was designed to satisfy the following requirements:

Regime 1 Within some range λ of the home position (e. g. λ = 64 meters), it shall
be attempted to use maximum precision, even after a few increments of memory
pressure. If the entire flight graph is within this range and contains no nodes,
the other methods will fail to yield any memory. Therefore, we are willing
to relax this requirement in extreme cases. We do this every fourth time the
memory pressure increases.

Regime 2 At further distances, the precision shall decrease with the distance to
home. A proportional decrease would reflect the ability of the user to control
the vehicle at sight. However, other modes of control are possible, therefore
a proportional decrease would be too drastic. Furthermore, the slope of the
precision decrease should increase with memory pressure.

Efficiency During a consolidation run, the ε-function is evaluated many times, so
it should be efficiently computable.

In the actual implementation, the function is slightly modified (denoted ε̂) in
order to improve efficiency. It’s output is shown in Figure 2.7. Conceptually, it is the
same function. In mathematical notation however, it looks slightly more convoluted:

2.7. Memory Management 15

ε̂(p, p) := max
{ Regime 1︷ ︸︸ ︷⌊p− 1

2
⌋

+ 1,

Regime 2︷ ︸︸ ︷
p ·
⌊(

max
{

0,
⌊
log2

squared distance to home︷ ︸︸ ︷
‖h− p‖22

⌋}
︸ ︷︷ ︸

proportional to number of bits in distance

−λ′
)
/2
⌋}

10
0

10
1

10
2

10
3

10
4

distance to home

0

5

10

15

20

25

30

35

m
a
rg

in

p=1
p=2
p=3
p=4
p=5

Figure 2.7. Margin ε̂(p, p) in relation to ‖h− p‖ for some values of p

Once the memory pressure has increased, the consolidation algorithm (Section 2.4)
is rerun across the entire graph. Since the precision is now lower, the consolidation
algorithm will tend to find more lines and redundancies and thus result in reduced
memory usage. The yield of this consolidation depends on the path. If no memory
can be freed, the memory pressure continues to increase and will at some point
neccessarily result in a successful compression.

This has not been pushed to the most extreme cases, where technical issues would
arise. In particular, intersections where both lines have a distance of more than 15
units along any axis cannot be stored in the node structure.

2.7.2 Rewrite Pass

The rewrite pass (rewrite_graph) reorganizes the entire graph, so that any non-
essential parts (i. e. parts that do not lie on the shortest path to home) are removed.
After this rewrite, the graph consists of just one single path that leads to the home
position and contains no nodes (Figure 2.8).

For the implementation, it was important that there would be no notable memory
overhead for this operation. The entire graph rewrite happens in-situ in the graph
buffer and is supported only by a small cache (e. g. 18 bytes) on the stack. The

16 Chapter 2. Implementation

0

1

23

4

0

1

2

3

Figure 2.8. Graph rewrite operation: only the shortest path to home is retained.

deltas growth rewrite area nodes

Figure 2.9. Graph buffer layout during rewrite pass

path is rebuilt in a temporary area, the rewrite area, which is located in the graph
buffer between the delta element list and the node list (Figure 2.9).

The algorithm is implemented in the function rewrite_graph and is outlined
here:

1. Start at the graph head to initialize a path finding context (Section 2.6).

2. Request the next position on the return path, and append the negative delta
to the rewrite cache (except if the delta is (0, 0, 0)).

3. At the most recent point on the path, there may be several directions, that
the path finding algorithm did not choose. For instance, if the path finding
context was at a node and the return path continues in the forward direction
(direction of increasing indices) on line 1 (the first member of the node), the
backward direction from line 1 and both directions on line 2 must have been
rejected. For these intervals, we know for certain that they will not be part of
the shortest path to home. Therefore, mark all rejected intervals as obsolete,
that is, replace the delta items with the obsolete-placeholder (0xC000) until a
node or another obsolete item is encountered. The delta item that is currently
referenced by the path finding context must be retained.

4. If the path finding context was at a node, mark this node as obsolete as well.

5. If in step 2, the destination was reached or the cache write operation failed,
flush the cache to the rewrite area:

(a) If there is enough space in front of the rewrite area to flush the entire
rewrite cache, go to step 5c. Otherwise, step 5b will create the neccessary
space.

(b) Shift the remaining delta items of the regular path to the beginning of the
graph buffer, so that the obsolete items are overwritten. Likewise, shift
the remaining nodes to the end of the graph buffer, so that the obsolete
nodes are overwritten. Also, shift the rewrite area so that its end remains
at the beginning of the node list. The shift operations are illustrated in
Figure 2.10.

(c) Dequeue the delta elements from the beginning of the rewrite cache and
copy them to the front of the rewrite area.

2.7. Memory Management 17

cache

collision

rewrite area

deltas nodes

free space rewrite areacache

Figure 2.10. This figure shows a situation where there is not enough space to
flush the rewrite cache to the rewrite area. The buffer contents are shifted to collect
the freed space of obsolete delta items and nodes (shown in gray).

6. If the cache-write failed previously, it should be empty now. Retry and then
go to step 2.

7. If the path finding algorithm did not reach the destination yet, go to step 2.

8. To complete the rewrite, shift the rebuilt path to the beginning of the graph
buffer and delete all remaining nodes.

By the time the cache must be flushed, it is guaranteed that enough space was
freed to make room for the cache contents. This claim was not investigated in detail,
but in essence, the reasoning goes like this: The path finding algorithm does not
emit more positions than the number of lines it visits, unless there are nodes on a
line. In this case however, the nodes are deleted, yielding even more space than if a
delta item was deleted.

Since the free space may not become available immediately (e. g. in the first
iteration) and since the path finding algorithm may change in the future, it is still
safer to maintain a small rewrite cache, rather than to write directly to the rewrite
area.

18 Chapter 2. Implementation

Chapter 3

Evaluation

3.1 Computational Complexity

In this section, we derive the computational complexities of the main algorithms.
These runtimes algorithms are then put into context of the overall system operation.
We consider the length of the graph buffer unbounded in this section.

3.1.1 Consolidation

All three passes of the graph consolidation (Section 2.4) operate on the unconsolidated
area at the end of the graph. Let n∆ be the number of consolidated delta items and
m∆ the initial number of unconsolidated delta items.

For the line detection pass, for each line, it is first attempted to aggregate 2
positions, then 3 positions, and so on, until the resulting line would no longer be
valid. For each candidate length i, there are i− 1 point-to-line checks. Therefore,
for each aggeregated line of length k,

∑k
i=1 i = (k+1)k

2 point-to-line checks are
performed. Let the line detection result in l lines with the lengths k1, . . . , kl. Note
that k1 + · · ·+ kl = m∆, and every line has positive length. The resulting number of
point-to-line checks is:

N =
l∑

i=1

((ki + 1)ki

2

)
(3.1)

= 1
2

l∑
i=1

(ki + 1)ki (3.2)

= 1
2

(
l∑

i=1
k2

i +
l∑

i=1
ki

)
(3.3)

≤ 1
2

(l∑
i=1

ki

)2

+
l∑

i=1
ki

 (3.4)

= 1
2
(
m2

∆ +m∆
)

(3.5)

19

20 Chapter 3. Evaluation

In step 3.4, we observe that all ki are positive and use that a2 + b2 ≤ (a + b)2

holds for positive a and b. The equality in particular holds for l = 1. In step 3.5, we
use the initial constraint

∑l
i=1 ki = m∆. Point-to-line checks have constant runtime,

thus the line detection runs in O(m2
∆).

For the redundancy removal, each unconsolidated position is checked against
every preceeding line (both consolidated and unconsolidated lines). In the worst case,
there are still m∆ unconsolidated positions, if the preceding line detection did not
result in any compression. The resulting number of point-to-line checks is therefore

m∆∑
i=0

(n∆ + i) = m∆ ·
(
n∆ + m∆

2

)

The runtime of the redundancy removal pass is thus in O(m∆n∆ +m2
∆).

The node detection can be analyzed analogously to the redundancy removal,
except that line-to-line checks are used instead of point-to-line checks: Each uncon-
solidated line is checked against every preceeding line. Furhermore, we must consider
the complexity of adding a node: for each new node, it’s closeness to all existing
nodes is verified. If there are nN nodes initially, and mN new nodes are added, this
results in mN (nN + mN/2) closeness checks. The resulting runtime of the node
detection pass is therefore O(m∆n∆ +m2

∆ +mNnN +m2
N).

To obtain a usable overall estimate, we make the following observations, without
further proofs:

(i) All three passes run in O(m∆n∆ +m2
∆ +mNnN +m2

N).

(ii) The number of added nodes mN is at most the number of line-to-line checks:
mN ≤ m∆n∆ + m2

∆
2

(iii) Of the existing lines, each line i yielded at most (i − 1) nodes, therefore:
nN ≤

∑n∆
i=1(i− 1) ≤ n2

∆

(iv) The number of unconsolidated positions is usually bounded by a constant
(MAX_CONSOLIDATION_DEBT).

(v) The total number of delta elements and nodes is bounded by the graph size n
(GRAPH_LENGTH): n∆ ≤ n, m∆ ≤ n, nN ≤ n, mN ≤ n

Based on this, we give three bounds for the overall runtime:

• Naïve estimation: Substituting the bounds from (ii) and (iii) in (i), we obtain
the estimation

O(m∆n
3
∆ +m2

∆n
2
∆ +m3

∆n∆ +m4
∆) (3.6)

• Constant m∆: For a bounded unconsolidated area size, from the naïve bound
we obtain

O(n3
∆) (3.7)

3.1. Computational Complexity 21

• With respect to graph size: Using (v), we can express the runtime from (i)
with respect to the buffer size and obtain

O(n2) (3.8)

3.1.2 Routing Data Synthesis

The routing data synthesis (Section 2.5) is comparable to Bellman-Ford [2]. Its main
structure consists of two nested loops: The inner loop iterates over each dirty node
and potentially leads to new dirty nodes. The outer loop terminates when there are
no more dirty nodes at all.

The outer loop can be analyzed analogously to the Bellman-Ford algorithm: Since
no two nodes can lie further appart than nN−1 edges, information about the shortest
path takes at most this many iterations to propagate through the entire path. The
last iteration results in no updates and therefore terminates the loop.

In the inner loop, at each dirty node, up to four adjacent intervals are measured
(walk_to_node). An interval is a sequence of consecutive delta elements, and is
bounded by jump elements or nodes. Any given interval is thus measured at most
twice (if it is bounded by two dirty nodes). Measuring an interval consists of scanning
the node list (to find the interval bounds) and walking along the interval. Measuring
an interval of length k therefore runs in O(k + nN) and measuring all (at most 4nN)
intervals twice, runs in O(2(k1 + k2 + . . .) + 8n2

∆) = O(n∆ + n2
N). In addition to

that, for each dirty node, up to four nodes are updated. Updating a node consists of
scanning the node list and runs in O(nN) ⊆ O(n∆ + n2

N).

Combining the results and applying the observation (v) from Section 3.1.1, we
obtain an overall complexity of

O(nNn∆ + n3
N) (3.9)

= O(n3) (3.10)

3.1.3 Path Finding

Assuming that all routing data is up to date, the reasoning goes similar to Section 3.1.2.
Path finding (Section 2.6) consists of walking along the shortest path (which is at
most the entire graph) and special handling at each encountered node (which is at
most every node). In particular, at each node, the node list is scanned and up to
two intervals are measured. As discussed in Section 3.1.2, this runs in O(n∆ + n2

N).
Dumping the entire shortest path has therefore the same complexity as generating
the routing data, i. e. O(nNn∆ + n3

N) = O(n3).

3.1.4 Rewrite Pass

In the beginning of the graph rewrite (Section 2.7.2), the graph is consolidatated
(O(n2)) and the routing data is generated (O(n3)). After that, the entire return
path is fetched (O(n3)) and written to the buffer.

22 Chapter 3. Evaluation

Over the course of the rewrite, the data in the graph buffer is shifted multiple
times. The worst possible shift pattern looks like this: In each iteration, only the
first item is removed and the entire remainder is shifted. Such a shift pattern has a
complexity of O(n2). This pattern is considered for both the delta list and the node
list. Similarly, shifting the growing rewrite area over the course of the rewrite has
the same complexity. In addition to that, each shift pass requires a scan over the en-
tire graph. There are at most n rewrite iterations, thus the scans run in O(n2) as well.

The rewrite pass therefore runs in O(n3).

3.1.5 Overall Runtimes

From the runtimes of the separate algorithms, we can determine the runtimes of the
operations that are relevant for the overall system operation.

Position Update Usually, only a single delta item is appended to the flight path.
However, sometimes, the graph is consolidated (with constant m∆). The
complexity is therefore O(n3

∆).

Graph Overflow When the graph becomes full, either the entire graph is consol-
idated or a rewrite is conducted. The latter has the dominant runtime of
O(n3).

Path Finding Initialization The path finding initialization is required for instance
once the RTL mode is invoked (see Section 2.1.1). It consists of calculating the
routing information and therefore runs in O(n3).

Path Finding Step At each waypoint, an iteration of the path finding algorithm
is done. Since the entire algorithm runs in O(n3) and there are at most n steps,
the amortized runtime of a path finding step is O(n2).

It shall be reiterated here, that low computational complexity was not an objective
of this thesis (as noted in Chapter 1). Instead, the objective for the optimizations
was the size of the graph buffer. Since in practice, all algorithms have a complexity
bounded by the buffer size, a small buffer automatically leads to a predictable
maximum runtime.

3.2 Memory Usage

The utilization of the memory available to the graph buffer was measured as follows:

1. A path was created via mission planning in the drone commander App QGround-
Control [3].

2. The parameters GRAPH_LENGTH and MAX_CONSOLIDATION_DEBT were both set
to a large value, so that no optimizations would be applied and the unaltered
(albeit rounded) positions would be retained.

3. The mission was flown virtually using SITL (software-in-the-loop) simulation.

3.2. Memory Usage 23

4. The graph contents (i. e. the unaltered positions) were dumped into a file
(e. g.long_path1.path in the navigator_tests folder).

5. The parameters were reset: GRAPH_LENGTH = 256, MAX_CONSOLIDATION_DEBT
= 64. Note that the actual graph buffer size is 512 Bytes.

6. The dumped path was statically compiled into a unit test.

7. In the unit test, the path was loaded into the Tracker.

8. On every instance of graph buffer overflow, the graph buffer utilization was
recorded before and after the compression action. Recall that the compression
action is either an increase of memory pressure combined with consolidation of
the whole graph, or a graph rewrite.

Note that the graph buffer utilization is equal on all architectures, as long as the
compiler yields the structure layouts described in Chapter 2. Appart from the graph
buffer, the implementation was determined to have a constant overhead of 640 Bytes.

The described measurements were conducted on two different paths. Figure 3.1
is mostly a network of routes within the vicinity of the home position. Figure 3.2
contains a convoluted flight path near the home position, provoking many intersec-
tions, and a path that reaches out for more than 2 kilometers (using unit size 1).
The results are shown in Figure 3.3 and Figure 3.4. The following observations can
be made:

Figure 3.1. Path A used for the memory and CPU tests. The blue path depicts
the path as it is stored in the buffer at the end of recording.

• On path A, the increase of memory pressure (i. e. the consolidation) is quite
effective, in that it compresses the graph to half of its original size.

• The first consolidation of path B, where the ratio of nodes to delta elements is
higher, is not as effective as on path A.

24 Chapter 3. Evaluation

• In both consolidation passes on path B, there seem to be difficulties in reducing
the number of nodes.

• The node storage uses a significant portion of the graph buffer. This can be
explained by the large memory footprint of a single node (12 Bytes).

• The rewrite is very effective. Note that a single node remains in the buffer
after a rewrite. This is a special node that represents the home position.

It should be noted that these handcrafted paths do not neccessarily reflect a real
world scenario. Both memory usage and CPU usage (Section 3.3) depend significantly
on the flight pattern (i. e. how often intersections occur). To obtain a statistically
relevant estimate, it is therefore neccessary to use sufficiently large amounts of logs
that were recorded during actual flight. However, the results shown here are valuable
as a rough estimation of performance. As such, they indicate that the memory usage
should be small enough for resource constrained hardware, even for larger paths.

3.3 CPU Load
To measure the CPU usage of the graph implementation, a setup similar to the one in
Section 3.2 was used. In particular, the same paths were used. The main difference
was, that the unit tests were executed on the PX4FMU-v4, a flight controller for
small drones, powered by a Cortex-M4F processor running at 168 MHz [4]. For each
run, the time spent for each compression action was recorded. The results are shown
in Table 3.1. Note that the compression actions have the most critical runtimes of
all algorithms, since they invoke all other algorithms.

Path, Buffer Size Consolidation 1 Rewrite Consolidation 2
Path A, 512 Bytes 85ms 44ms —
Path B, 512 Bytes 102ms 56ms 42ms
Path B, 1024 Bytes 296ms 97ms —

Table 3.1. Runtimes of critical algorithms. The second consolidation was only
triggered for in one scenario.

As in Section 3.2, these results do not accurately reflect real world scenarios.
However, they indicate that the runtimes are still acceptable for the chosen paths,
the bottleneck being the first memory pressure increment. For larger paths however,
it may be neccessary to put some work into runtime optimizations.

3.3. CPU Load 25

Figure 3.2. Part of path B used for the memory and CPU tests (the path is not
shown completely)

26 Chapter 3. Evaluation

consolidation (before & after) rewrite (before & after) final memory usage
0

100

200

300

400

500

600

m
e

m
o

ry
 u

s
a

g
e

 (
b

y
te

s
)

buffer size

delta elements
nodes

Figure 3.3. Graph buffer utilization during recording of path A

consolidation 1 (before & after) rewrite (before & after) consolidation 2 (before & after) final memory usage
0

100

200

300

400

500

600

m
e

m
o

ry
 u

s
a

g
e

 (
b

y
te

s
)

buffer size

delta elements
nodes

Figure 3.4. Graph buffer utilization during recording of path B

Chapter 4

Conclusion

An implementation was presented which stores the covered flight path in a mem-
ory efficient format. The implementation compresses straight lines and removes
redundancies and adapts the recording precision heuristically. Whenever the buffer
becomes full, the graph is either rewritten or the precision is reduced.

To evaluate memory and CPU performance of the implementation, two hand
crafted paths were loaded into the graph buffer, while monitoring memory utilization
and the runtime of critical algorithms. The obtained results indicate that the current
implementation should be suitable for real world usage, especially in terms of memory
efficiency. However CPU usage may still need to be optimized.

4.1 Future Work
Even though the implementation was verified thoroughly, flight tests must still be
conducted to test the implementation in a real world environment. The work can
then be adapted for merger into the main repository of the PX4 autopilot.

Further work could be done in improving path compression ratio, by augmenting or
replacing the line detection by a more advanced compression method. However, given
the test results, this does not seem to be neccessary, as the current implementation
already enables a decently economic memory usage. If evaluating the implementation
on real flight data reveals a significantly higher average node count than anticipated,
a more compact node storage should be implemented. Also, as mentioned before,
optimizations regarding CPU efficiency may still be required.

27

28 Chapter 4. Conclusion

Bibliography

[1] Drone software solution - px4 pro open source autopilot. http://px4.io/
technology/px4-software-stack/, accessed on 2016-09-02.

[2] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson.
Introduction to Algorithms. McGraw-Hill Higher Education, 2nd edition, 2001.

[3] Qgc - qgroundcontrol - drone control. http://qgroundcontrol.com/, accessed
on 2016-09-02.

[4] Px4fmu autopilot / flight management unit - pixhawk flight controller hardware
project. https://pixhawk.org/modules/px4fmu, accessed on 2016-09-02.

29

http://px4.io/technology/px4-software-stack/
http://px4.io/technology/px4-software-stack/
http://qgroundcontrol.com/
https://pixhawk.org/modules/px4fmu

30 Bibliography

Eigenständigkeitserklärung

Ich bestätige, die vorliegende Arbeit selbständig und in eigenen Worten verfasst zu
haben. Davon ausgeschlossen sind sprachliche und inhaltliche Korrekturvorschläge
durch die Betreuer und die Betreuerinnen der Arbeit.

Titel der Arbeit: Graph Based Navigation on Resource Constrained Systems

Verfasst von: Samuel Sadok

Ich bestätige mit meiner Unterschrift

• Ich habe keine im Merkblatt “Zitier-Knigge” beschriebene Form des Plagiats
begangen.

• Ich habe alle Methoden, Daten und Arbeitsabläufe wahrheitsgetreu dokumen-
tiert.

• Ich habe keine Daten manipuliert.

• Ich habe alle Personen erwähnt, welche die Arbeit wesentlich unterstützt haben.

Ich nehme zur Kenntnis, dass die Arbeit mit elektronischen Hilfsmitteln auf Plagiate
überprüft werden kann.

Zürich, 2. September 2016

31

https://www.ethz.ch/content/dam/ethz/main/education/rechtliches-abschluesse/leistungskontrollen/plagiat-zitierknigge.pdf

32

	Introduction
	The PX4 Project
	Motivation
	Constraints
	Approach

	Implementation
	System Operation
	Return-To-Land
	RC Recovery

	Recent Path Buffer
	Flight Graph Data Structure
	Path Storage
	Position Representation
	Intersection Storage

	Graph Consolidation
	Line Detection
	Redundancy Removal
	Node Generation

	Routing Data Synthesis
	Path Finding
	Memory Management
	Adaptive Precision
	Rewrite Pass

	Evaluation
	Computational Complexity
	Consolidation
	Routing Data Synthesis
	Path Finding
	Rewrite Pass
	Overall Runtimes

	Memory Usage
	CPU Load

	Conclusion
	Future Work

