-
Notifications
You must be signed in to change notification settings - Fork 471
/
Copy pathinfer.py
executable file
·356 lines (332 loc) · 12.8 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import time
import os
from pipeline_stable_diffusion import StableDiffusionFastDeployPipeline
from scheduling_utils import PNDMScheduler, EulerAncestralDiscreteScheduler
try:
from paddlenlp.transformers import CLIPTokenizer
except ImportError:
from transformers import CLIPTokenizer
import fastdeploy as fd
from fastdeploy import ModelFormat
import numpy as np
import distutils.util
def parse_arguments():
import argparse
import ast
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_dir",
default="paddle_diffusion_model",
help="The model directory of diffusion_model.")
parser.add_argument(
"--model_format",
default="paddle",
choices=['paddle', 'onnx'],
help="The model format.")
parser.add_argument(
"--unet_model_prefix",
default='unet',
help="The file prefix of unet model.")
parser.add_argument(
"--vae_model_prefix",
default='vae_decoder',
help="The file prefix of vae model.")
parser.add_argument(
"--text_encoder_model_prefix",
default='text_encoder',
help="The file prefix of text_encoder model.")
parser.add_argument(
"--inference_steps",
type=int,
default=100,
help="The number of unet inference steps.")
parser.add_argument(
"--benchmark_steps",
type=int,
default=1,
help="The number of performance benchmark steps.")
parser.add_argument(
"--backend",
type=str,
default='paddle',
# Note(zhoushunjie): Will support 'tensorrt', 'paddle-tensorrt' soon.
choices=['onnx_runtime', 'paddle', 'paddle-kunlunxin'],
help="The inference runtime backend of unet model and text encoder model."
)
parser.add_argument(
"--image_path",
default="fd_astronaut_rides_horse.png",
help="The model directory of diffusion_model.")
parser.add_argument(
"--use_fp16",
type=distutils.util.strtobool,
default=False,
help="Wheter to use FP16 mode")
parser.add_argument(
"--device_id",
type=int,
default=0,
help="The selected gpu id. -1 means use cpu")
parser.add_argument(
"--scheduler",
type=str,
default='pndm',
choices=['pndm', 'euler_ancestral'],
help="The scheduler type of stable diffusion.")
return parser.parse_args()
def create_ort_runtime(model_dir, model_prefix, model_format, device_id=0):
option = fd.RuntimeOption()
option.use_ort_backend()
option.use_gpu(device_id)
if model_format == "paddle":
model_file = os.path.join(model_dir, model_prefix, "inference.pdmodel")
params_file = os.path.join(model_dir, model_prefix,
"inference.pdiparams")
option.set_model_path(model_file, params_file)
else:
onnx_file = os.path.join(model_dir, model_prefix, "inference.onnx")
option.set_model_path(onnx_file, model_format=ModelFormat.ONNX)
return fd.Runtime(option)
def create_paddle_inference_runtime(model_dir,
model_prefix,
use_trt=False,
dynamic_shape=None,
use_fp16=False,
device_id=0):
option = fd.RuntimeOption()
option.use_paddle_infer_backend()
if device_id == -1:
option.use_cpu()
else:
option.use_gpu(device_id)
if use_trt:
option.use_trt_backend()
option.enable_paddle_to_trt()
if use_fp16:
option.enable_trt_fp16()
cache_file = os.path.join(model_dir, model_prefix, "inference.trt")
option.set_trt_cache_file(cache_file)
# Need to enable collect shape for ernie
if dynamic_shape is not None:
option.enable_paddle_trt_collect_shape()
for key, shape_dict in dynamic_shape.items():
option.set_trt_input_shape(
key,
min_shape=shape_dict["min_shape"],
opt_shape=shape_dict.get("opt_shape", None),
max_shape=shape_dict.get("max_shape", None))
model_file = os.path.join(model_dir, model_prefix, "inference.pdmodel")
params_file = os.path.join(model_dir, model_prefix, "inference.pdiparams")
option.set_model_path(model_file, params_file)
return fd.Runtime(option)
def create_trt_runtime(model_dir,
model_prefix,
model_format,
workspace=(1 << 31),
dynamic_shape=None,
device_id=0):
option = fd.RuntimeOption()
option.use_trt_backend()
option.use_gpu(device_id)
option.enable_trt_fp16()
option.set_trt_max_workspace_size(workspace)
if dynamic_shape is not None:
for key, shape_dict in dynamic_shape.items():
option.set_trt_input_shape(
key,
min_shape=shape_dict["min_shape"],
opt_shape=shape_dict.get("opt_shape", None),
max_shape=shape_dict.get("max_shape", None))
if model_format == "paddle":
model_file = os.path.join(model_dir, model_prefix, "inference.pdmodel")
params_file = os.path.join(model_dir, model_prefix,
"inference.pdiparams")
option.set_model_path(model_file, params_file)
else:
onnx_file = os.path.join(model_dir, model_prefix, "inference.onnx")
option.set_model_path(onnx_file, model_format=ModelFormat.ONNX)
cache_file = os.path.join(model_dir, model_prefix, "inference.trt")
option.set_trt_cache_file(cache_file)
return fd.Runtime(option)
def create_kunlunxin_runtime(model_dir, model_prefix, use_fp16=False, device_id=0):
option = fd.RuntimeOption()
option.use_kunlunxin(
device_id,
l3_workspace_size=(64 * 1024 * 1024 - 4 * 1024),
locked=False,
autotune=False,
autotune_file="",
precision="int16",
adaptive_seqlen=True,
enable_multi_stream=True)
option.use_paddle_lite_backend()
model_file = os.path.join(model_dir, model_prefix, "inference.pdmodel")
params_file = os.path.join(model_dir, model_prefix, "inference.pdiparams")
option.set_model_path(model_file, params_file)
if use_fp16:
option.enable_lite_fp16()
return fd.Runtime(option)
def get_scheduler(args):
if args.scheduler == "pndm":
scheduler = PNDMScheduler(
beta_end=0.012,
beta_schedule="scaled_linear",
beta_start=0.00085,
num_train_timesteps=1000,
skip_prk_steps=True)
elif args.scheduler == "euler_ancestral":
scheduler = EulerAncestralDiscreteScheduler(
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear")
else:
raise ValueError(
f"Scheduler '{args.scheduler}' is not supportted right now.")
return scheduler
if __name__ == "__main__":
args = parse_arguments()
# 1. Init scheduler
scheduler = get_scheduler(args)
# 2. Init tokenizer
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
# 3. Set dynamic shape for trt backend
vae_dynamic_shape = {
"latent": {
"min_shape": [1, 4, 64, 64],
"max_shape": [2, 4, 64, 64],
"opt_shape": [2, 4, 64, 64],
}
}
unet_dynamic_shape = {
"latent_input": {
"min_shape": [1, 4, 64, 64],
"max_shape": [2, 4, 64, 64],
"opt_shape": [2, 4, 64, 64],
},
"timestep": {
"min_shape": [1],
"max_shape": [1],
"opt_shape": [1],
},
"encoder_embedding": {
"min_shape": [1, 77, 768],
"max_shape": [2, 77, 768],
"opt_shape": [2, 77, 768],
},
}
# 4. Init runtime
if args.backend == "onnx_runtime":
text_encoder_runtime = create_ort_runtime(
args.model_dir,
args.text_encoder_model_prefix,
args.model_format,
device_id=args.device_id)
vae_decoder_runtime = create_ort_runtime(
args.model_dir,
args.vae_model_prefix,
args.model_format,
device_id=args.device_id)
start = time.time()
unet_runtime = create_ort_runtime(
args.model_dir,
args.unet_model_prefix,
args.model_format,
device_id=args.device_id)
print(f"Spend {time.time() - start : .2f} s to load unet model.")
elif args.backend == "paddle" or args.backend == "paddle-tensorrt":
use_trt = True if args.backend == "paddle-tensorrt" else False
# Note(zhoushunjie): Will change to paddle runtime later
text_encoder_runtime = create_ort_runtime(
args.model_dir,
args.text_encoder_model_prefix,
args.model_format,
device_id=args.device_id)
vae_decoder_runtime = create_paddle_inference_runtime(
args.model_dir,
args.vae_model_prefix,
use_trt,
vae_dynamic_shape,
use_fp16=args.use_fp16,
device_id=args.device_id)
start = time.time()
unet_runtime = create_paddle_inference_runtime(
args.model_dir,
args.unet_model_prefix,
use_trt,
unet_dynamic_shape,
use_fp16=args.use_fp16,
device_id=args.device_id)
print(f"Spend {time.time() - start : .2f} s to load unet model.")
elif args.backend == "tensorrt":
text_encoder_runtime = create_ort_runtime(
args.model_dir, args.text_encoder_model_prefix, args.model_format)
vae_decoder_runtime = create_trt_runtime(
args.model_dir,
args.vae_model_prefix,
args.model_format,
workspace=(1 << 30),
dynamic_shape=vae_dynamic_shape,
device_id=args.device_id)
start = time.time()
unet_runtime = create_trt_runtime(
args.model_dir,
args.unet_model_prefix,
args.model_format,
dynamic_shape=unet_dynamic_shape,
device_id=args.device_id)
print(f"Spend {time.time() - start : .2f} s to load unet model.")
elif args.backend == "paddle-kunlunxin":
print("=== build text_encoder_runtime")
text_encoder_runtime = create_kunlunxin_runtime(
args.model_dir,
args.text_encoder_model_prefix,
use_fp16=False, #args.ues_fp16
device_id=args.device_id)
print("=== build vae_decoder_runtime")
vae_decoder_runtime = create_kunlunxin_runtime(
args.model_dir, args.vae_model_prefix,
use_fp16=False, #args.ues_fp16
device_id=args.device_id)
print("=== build unet_runtime")
start = time.time()
unet_runtime = create_kunlunxin_runtime(
args.model_dir, args.unet_model_prefix,
use_fp16=args.ues_fp16,
device_id=args.device_id)
print(f"Spend {time.time() - start : .2f} s to load unet model.")
pipe = StableDiffusionFastDeployPipeline(
vae_decoder_runtime=vae_decoder_runtime,
text_encoder_runtime=text_encoder_runtime,
tokenizer=tokenizer,
unet_runtime=unet_runtime,
scheduler=scheduler)
prompt = "a photo of an astronaut riding a horse on mars"
# Warm up
pipe(prompt, num_inference_steps=10)
time_costs = []
print(
f"Run the stable diffusion pipeline {args.benchmark_steps} times to test the performance."
)
for step in range(args.benchmark_steps):
start = time.time()
image = pipe(prompt, num_inference_steps=args.inference_steps)[0]
latency = time.time() - start
time_costs += [latency]
print(f"No {step:3d} time cost: {latency:2f} s")
print(
f"Mean latency: {np.mean(time_costs):2f} s, p50 latency: {np.percentile(time_costs, 50):2f} s, "
f"p90 latency: {np.percentile(time_costs, 90):2f} s, p95 latency: {np.percentile(time_costs, 95):2f} s."
)
image.save(args.image_path)
print(f"Image saved in {args.image_path}!")