-
Notifications
You must be signed in to change notification settings - Fork 469
/
scheduling_utils.py
1128 lines (945 loc) · 46.2 KB
/
scheduling_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Copyright 2022 The HuggingFace Inc. team.
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from typing import Optional, Tuple, Union, Any
from scipy import integrate
import numpy as np
from config_utils import register_to_config, ConfigMixin
from dataclasses import dataclass
from collections import OrderedDict
SCHEDULER_CONFIG_NAME = "scheduler_config.json"
class BaseOutput(OrderedDict):
"""
Base class for all model outputs as dataclass. Has a `__getitem__` that allows indexing by integer or slice (like a
tuple) or strings (like a dictionary) that will ignore the `None` attributes. Otherwise behaves like a regular
python dictionary.
<Tip warning={true}>
You can't unpack a `BaseOutput` directly. Use the [`~utils.BaseOutput.to_tuple`] method to convert it to a tuple
before.
</Tip>
"""
def __post_init__(self):
class_fields = fields(self)
# Safety and consistency checks
if not len(class_fields):
raise ValueError(f"{self.__class__.__name__} has no fields.")
first_field = getattr(self, class_fields[0].name)
other_fields_are_none = all(
getattr(self, field.name) is None for field in class_fields[1:])
if other_fields_are_none and isinstance(first_field, dict):
for key, value in first_field.items():
self[key] = value
else:
for field in class_fields:
v = getattr(self, field.name)
if v is not None:
self[field.name] = v
def __delitem__(self, *args, **kwargs):
raise Exception(
f"You cannot use ``__delitem__`` on a {self.__class__.__name__} instance."
)
def setdefault(self, *args, **kwargs):
raise Exception(
f"You cannot use ``setdefault`` on a {self.__class__.__name__} instance."
)
def pop(self, *args, **kwargs):
raise Exception(
f"You cannot use ``pop`` on a {self.__class__.__name__} instance.")
def update(self, *args, **kwargs):
raise Exception(
f"You cannot use ``update`` on a {self.__class__.__name__} instance."
)
def __getitem__(self, k):
if isinstance(k, str):
inner_dict = {k: v for (k, v) in self.items()}
if self.__class__.__name__ in [
"StableDiffusionPipelineOutput", "ImagePipelineOutput"
] and k == "sample":
deprecate("samples", "0.6.0",
"Please use `.images` or `'images'` instead.")
return inner_dict["images"]
return inner_dict[k]
else:
return self.to_tuple()[k]
def __setattr__(self, name, value):
if name in self.keys() and value is not None:
# Don't call self.__setitem__ to avoid recursion errors
super().__setitem__(name, value)
super().__setattr__(name, value)
def __setitem__(self, key, value):
# Will raise a KeyException if needed
super().__setitem__(key, value)
# Don't call self.__setattr__ to avoid recursion errors
super().__setattr__(key, value)
def to_tuple(self) -> Tuple[Any]:
"""
Convert self to a tuple containing all the attributes/keys that are not `None`.
"""
return tuple(self[k] for k in self.keys())
class SchedulerMixin:
"""
Mixin containing common functions for the schedulers.
"""
config_name = SCHEDULER_CONFIG_NAME
def set_format(self, tensor_format="pt"):
return self
class SchedulerOutput(BaseOutput):
"""
Base class for the scheduler's step function output.
Args:
prev_sample (`np.ndarray` of shape `(batch_size, num_channels, height, width)` for images):
Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
denoising loop.
"""
prev_sample: np.ndarray
class DDIMSchedulerOutput(BaseOutput):
"""
Output class for the scheduler's step function output.
Args:
prev_sample (` np.ndarray` of shape `(batch_size, num_channels, height, width)` for images):
Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
denoising loop.
pred_original_sample (` np.ndarray` of shape `(batch_size, num_channels, height, width)` for images):
The predicted denoised sample (x_{0}) based on the model output from the current timestep.
`pred_original_sample` can be used to preview progress or for guidance.
"""
prev_sample: np.ndarray
pred_original_sample: Optional[np.ndarray] = None
class LMSDiscreteSchedulerOutput(BaseOutput):
"""
Output class for the scheduler's step function output.
Args:
prev_sample (`np.ndarray` of shape `(batch_size, num_channels, height, width)` for images):
Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
denoising loop.
pred_original_sample (`np.ndarray` of shape `(batch_size, num_channels, height, width)` for images):
The predicted denoised sample (x_{0}) based on the model output from the current timestep.
`pred_original_sample` can be used to preview progress or for guidance.
"""
prev_sample: np.ndarray
pred_original_sample: Optional[np.ndarray] = None
class EulerAncestralDiscreteSchedulerOutput(BaseOutput):
"""
Output class for the scheduler's step function output.
Args:
prev_sample (`np.ndarray` of shape `(batch_size, num_channels, height, width)` for images):
Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
denoising loop.
pred_original_sample (`np.ndarray` of shape `(batch_size, num_channels, height, width)` for images):
The predicted denoised sample (x_{0}) based on the model output from the current timestep.
`pred_original_sample` can be used to preview progress or for guidance.
"""
prev_sample: np.ndarray
pred_original_sample: Optional[np.ndarray] = None
def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999):
"""
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
(1-beta) over time from t = [0,1].
Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
to that part of the diffusion process.
Args:
num_diffusion_timesteps (`int`): the number of betas to produce.
max_beta (`float`): the maximum beta to use; use values lower than 1 to
prevent singularities.
Returns:
betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
"""
def alpha_bar(time_step):
return math.cos((time_step + 0.008) / 1.008 * math.pi / 2)**2
betas = []
for i in range(num_diffusion_timesteps):
t1 = i / num_diffusion_timesteps
t2 = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
return np.concatenate(betas).astype(np.float32)
class PNDMScheduler(SchedulerMixin, ConfigMixin):
@register_to_config
def __init__(
self,
num_train_timesteps: int=1000,
beta_start: float=0.0001,
beta_end: float=0.02,
beta_schedule: str="linear",
trained_betas: Optional[np.ndarray]=None,
skip_prk_steps: bool=False,
set_alpha_to_one: bool=False,
steps_offset: int=0,
**kwargs, ):
if trained_betas is not None:
self.betas = trained_betas
elif beta_schedule == "linear":
self.betas = np.linspace(
beta_start, beta_end, num_train_timesteps, dtype=np.float32)
elif beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
self.betas = (np.linspace(
beta_start**0.5,
beta_end**0.5,
num_train_timesteps,
dtype=np.float32)**2)
elif beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
self.betas = betas_for_alpha_bar(num_train_timesteps)
else:
raise NotImplementedError(
f"{beta_schedule} does is not implemented for {self.__class__}")
self.alphas = 1.0 - self.betas
self.alphas_cumprod = np.cumprod(self.alphas, axis=0)
self.final_alpha_cumprod = 1.0 if set_alpha_to_one else self.alphas_cumprod[
0]
# standard deviation of the initial noise distribution
self.init_noise_sigma = 1.0
# For now we only support F-PNDM, i.e. the runge-kutta method
# For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf
# mainly at formula (9), (12), (13) and the Algorithm 2.
self.pndm_order = 4
# running values
self.cur_model_output = 0
self.counter = 0
self.cur_sample = None
self.ets = []
# setable values
self.num_inference_steps = None
self._timesteps = np.arange(
0, num_train_timesteps)[::-1].copy().astype("int64")
self.prk_timesteps = None
self.plms_timesteps = None
self.timesteps = None
def set_timesteps(self, num_inference_steps: int, **kwargs) -> np.ndarray:
"""
Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference.
Args:
num_inference_steps (`int`):
the number of diffusion steps used when generating samples with a pre-trained model.
"""
offset = self.config.steps_offset
self.num_inference_steps = num_inference_steps
step_ratio = self.config.num_train_timesteps // self.num_inference_steps
# creates integer timesteps by multiplying by ratio
# casting to int to avoid issues when num_inference_step is power of 3
self._timesteps = (np.arange(0, num_inference_steps) *
step_ratio).round()
self._timesteps += offset
if self.config.skip_prk_steps:
# for some models like stable diffusion the prk steps can/should be skipped to
# produce better results. When using PNDM with `self.config.skip_prk_steps` the implementation
# is based on crowsonkb's PLMS sampler implementation: https://github.com/CompVis/latent-diffusion/pull/51
self.prk_timesteps = np.array([])
self.plms_timesteps = np.concatenate([
self._timesteps[:-1], self._timesteps[-2:-1],
self._timesteps[-1:]
])[::-1].copy()
else:
prk_timesteps = np.array(self._timesteps[
-self.pndm_order:]).repeat(2) + np.tile(
np.array([
0, self.config.num_train_timesteps //
num_inference_steps // 2
]), self.pndm_order)
self.prk_timesteps = (
prk_timesteps[:-1].repeat(2)[1:-1])[::-1].copy()
self.plms_timesteps = self._timesteps[:-3][::-1].copy()
self.timesteps = np.concatenate(
[self.prk_timesteps, self.plms_timesteps]).astype(np.int64)
self.ets = []
self.counter = 0
def step(
self,
model_output: np.ndarray,
timestep: int,
sample: np.ndarray,
return_dict: bool=True, ):
"""
Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
process from the learned model outputs (most often the predicted noise).
This function calls `step_prk()` or `step_plms()` depending on the internal variable `counter`.
Args:
model_output (`np.ndarray`): direct output from learned diffusion model.
timestep (`int`): current discrete timestep in the diffusion chain.
sample (`np.ndarray`):
current instance of sample being created by diffusion process.
return_dict (`bool`): option for returning tuple rather than SchedulerOutput class
Returns:
[`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
[`~schedulers.scheduling_utils.SchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When
returning a tuple, the first element is the sample tensor.
"""
if self.counter < len(
self.prk_timesteps) and not self.config.skip_prk_steps:
return self.step_prk(
model_output=model_output,
timestep=timestep,
sample=sample,
return_dict=return_dict)
else:
return self.step_plms(
model_output=model_output,
timestep=timestep,
sample=sample,
return_dict=return_dict)
def step_prk(self,
model_output: np.ndarray,
timestep: int,
sample: np.ndarray,
return_dict: bool=True):
"""
Step function propagating the sample with the Runge-Kutta method. RK takes 4 forward passes to approximate the
solution to the differential equation.
Args:
model_output (`np.ndarray`): direct output from learned diffusion model.
timestep (`int`): current discrete timestep in the diffusion chain.
sample (`np.ndarray`):
current instance of sample being created by diffusion process.
Returns:
[`~scheduling_utils.SchedulerOutput`] or `tuple`: [`~scheduling_utils.SchedulerOutput`] if `return_dict` is
True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor.
"""
if self.num_inference_steps is None:
raise ValueError(
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
)
diff_to_prev = 0 if self.counter % 2 else self.config.num_train_timesteps // self.num_inference_steps // 2
prev_timestep = timestep - diff_to_prev
timestep = self.prk_timesteps[self.counter // 4 * 4]
if self.counter % 4 == 0:
self.cur_model_output += 1 / 6 * model_output
self.ets.append(model_output)
self.cur_sample = sample
elif (self.counter - 1) % 4 == 0:
self.cur_model_output += 1 / 3 * model_output
elif (self.counter - 2) % 4 == 0:
self.cur_model_output += 1 / 3 * model_output
elif (self.counter - 3) % 4 == 0:
model_output = self.cur_model_output + 1 / 6 * model_output
self.cur_model_output = 0
# cur_sample should not be `None`
cur_sample = self.cur_sample if self.cur_sample is not None else sample
prev_sample = self._get_prev_sample(cur_sample, timestep,
prev_timestep, model_output)
self.counter += 1
if not return_dict:
return (prev_sample, )
return SchedulerOutput(prev_sample=prev_sample)
def step_plms(self,
model_output: np.ndarray,
timestep: int,
sample: np.ndarray,
return_dict: bool=True):
"""
Step function propagating the sample with the linear multi-step method. This has one forward pass with multiple
times to approximate the solution.
Args:
model_output (`np.ndarray`): direct output from learned diffusion model.
timestep (`int`): current discrete timestep in the diffusion chain.
sample (`np.ndarray`):
current instance of sample being created by diffusion process.
return_dict (`bool`): option for returning tuple rather than SchedulerOutput class
Returns:
[`~scheduling_utils.SchedulerOutput`] or `tuple`: [`~scheduling_utils.SchedulerOutput`] if `return_dict` is
True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor.
"""
if self.num_inference_steps is None:
raise ValueError(
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
)
if not self.config.skip_prk_steps and len(self.ets) < 3:
raise ValueError(
f"{self.__class__} can only be run AFTER scheduler has been run "
"in 'prk' mode for at least 12 iterations "
"See: https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/pipeline_pndm.py "
"for more information.")
prev_timestep = timestep - self.config.num_train_timesteps // self.num_inference_steps
if self.counter != 1:
self.ets.append(model_output)
else:
prev_timestep = timestep
timestep = timestep + self.config.num_train_timesteps // self.num_inference_steps
if len(self.ets) == 1 and self.counter == 0:
model_output = model_output
self.cur_sample = sample
elif len(self.ets) == 1 and self.counter == 1:
model_output = (model_output + self.ets[-1]) / 2
sample = self.cur_sample
self.cur_sample = None
elif len(self.ets) == 2:
model_output = (3 * self.ets[-1] - self.ets[-2]) / 2
elif len(self.ets) == 3:
model_output = (
23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12
else:
model_output = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] +
37 * self.ets[-3] - 9 * self.ets[-4])
prev_sample = self._get_prev_sample(sample, timestep, prev_timestep,
model_output)
self.counter += 1
if not return_dict:
return (prev_sample, )
return SchedulerOutput(prev_sample=prev_sample)
def scale_model_input(self, sample: np.ndarray, *args,
**kwargs) -> np.ndarray:
"""
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
current timestep.
Args:
sample (`np.ndarray`): input sample
Returns:
`np.ndarray`: scaled input sample
"""
return sample
def _get_prev_sample(self, sample, timestep, prev_timestep, model_output):
alpha_prod_t = self.alphas_cumprod[timestep]
alpha_prod_t_prev = self.alphas_cumprod[
prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
beta_prod_t = 1 - alpha_prod_t
beta_prod_t_prev = 1 - alpha_prod_t_prev
sample_coeff = (alpha_prod_t_prev / alpha_prod_t)**(0.5)
model_output_denom_coeff = alpha_prod_t * beta_prod_t_prev**(0.5) + (
alpha_prod_t * beta_prod_t * alpha_prod_t_prev)**(0.5)
prev_sample = (sample_coeff * sample -
(alpha_prod_t_prev - alpha_prod_t
) * model_output / model_output_denom_coeff)
return prev_sample
def add_noise(
self,
original_samples: np.ndarray,
noise: np.ndarray,
timesteps: np.ndarray, ) -> np.ndarray:
sqrt_alpha_prod = self.alphas_cumprod[timesteps]**0.5
sqrt_alpha_prod = sqrt_alpha_prod.flatten()
while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
sqrt_one_minus_alpha_prod = (1 - self.alphas_cumprod[timesteps])**0.5
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
while len(sqrt_one_minus_alpha_prod.shape) < len(
original_samples.shape):
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
return noisy_samples
def __len__(self):
return self.config.num_train_timesteps
class DDIMScheduler(SchedulerMixin, ConfigMixin):
"""
Denoising diffusion implicit models is a scheduler that extends the denoising procedure introduced in denoising
diffusion probabilistic models (DDPMs) with non-Markovian guidance.
[`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
[`~ConfigMixin`] also provides general loading and saving functionality via the [`~ConfigMixin.save_config`] and
[`~ConfigMixin.from_config`] functions.
For more details, see the original paper: https://arxiv.org/abs/2010.02502
Args:
num_train_timesteps (`int`): number of diffusion steps used to train the model.
beta_start (`float`): the starting `beta` value of inference.
beta_end (`float`): the final `beta` value.
beta_schedule (`str`):
the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
`linear`, `scaled_linear`, or `squaredcos_cap_v2`.
trained_betas (`np.ndarray`, optional):
option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
clip_sample (`bool`, default `True`):
option to clip predicted sample between -1 and 1 for numerical stability.
set_alpha_to_one (`bool`, default `True`):
each diffusion step uses the value of alphas product at that step and at the previous one. For the final
step there is no previous alpha. When this option is `True` the previous alpha product is fixed to `1`,
otherwise it uses the value of alpha at step 0.
steps_offset (`int`, default `0`):
an offset added to the inference steps. You can use a combination of `offset=1` and
`set_alpha_to_one=False`, to make the last step use step 0 for the previous alpha product, as done in
stable diffusion.
"""
@register_to_config
def __init__(
self,
num_train_timesteps: int=1000,
beta_start: float=0.0001,
beta_end: float=0.02,
beta_schedule: str="linear",
trained_betas: Optional[np.ndarray]=None,
clip_sample: bool=True,
set_alpha_to_one: bool=True,
steps_offset: int=0,
**kwargs, ):
if trained_betas is not None:
self.betas = trained_betas
elif beta_schedule == "linear":
self.betas = np.linspace(
beta_start, beta_end, num_train_timesteps, dtype=np.float32)
elif beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
self.betas = (np.linspace(
beta_start**0.5,
beta_end**0.5,
num_train_timesteps,
dtype=np.float32)**2)
elif beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
self.betas = betas_for_alpha_bar(num_train_timesteps)
else:
raise NotImplementedError(
f"{beta_schedule} does is not implemented for {self.__class__}")
self.alphas = 1.0 - self.betas
self.alphas_cumprod = np.cumprod(self.alphas, axis=0)
# At every step in ddim, we are looking into the previous alphas_cumprod
# For the final step, there is no previous alphas_cumprod because we are already at 0
# `set_alpha_to_one` decides whether we set this parameter simply to one or
# whether we use the final alpha of the "non-previous" one.
self.final_alpha_cumprod = 1.0 if set_alpha_to_one else self.alphas_cumprod[
0]
# standard deviation of the initial noise distribution
self.init_noise_sigma = 1.0
# setable values
self.num_inference_steps = None
self.timesteps = np.arange(0, num_train_timesteps)[::-1]
def scale_model_input(self,
sample: np.ndarray,
timestep: Optional[int]=None) -> np.ndarray:
"""
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
current timestep.
Args:
sample (`np.ndarray`): input sample
timestep (`int`, optional): current timestep
Returns:
`np.ndarray`: scaled input sample
"""
return sample
def _get_variance(self, timestep, prev_timestep):
alpha_prod_t = self.alphas_cumprod[timestep]
alpha_prod_t_prev = self.alphas_cumprod[
prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
beta_prod_t = 1 - alpha_prod_t
beta_prod_t_prev = 1 - alpha_prod_t_prev
variance = (beta_prod_t_prev / beta_prod_t) * (
1 - alpha_prod_t / alpha_prod_t_prev)
return variance
def set_timesteps(self, num_inference_steps: int, **kwargs):
"""
Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference.
Args:
num_inference_steps (`int`):
the number of diffusion steps used when generating samples with a pre-trained model.
"""
offset = self.config.steps_offset
self.num_inference_steps = num_inference_steps
step_ratio = self.config.num_train_timesteps // self.num_inference_steps
# creates integer timesteps by multiplying by ratio
# casting to int to avoid issues when num_inference_step is power of 3
self.timesteps = (np.arange(0, num_inference_steps) *
step_ratio).round()[::-1]
self.timesteps += offset
def step(
self,
model_output: np.ndarray,
timestep: int,
sample: np.ndarray,
eta: float=0.0,
use_clipped_model_output: bool=False,
generator=None,
return_dict: bool=True, ):
"""
Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
process from the learned model outputs (most often the predicted noise).
Args:
model_output (`np.ndarray`): direct output from learned diffusion model.
timestep (`int`): current discrete timestep in the diffusion chain.
sample (`np.ndarray`):
current instance of sample being created by diffusion process.
eta (`float`): weight of noise for added noise in diffusion step.
use_clipped_model_output (`bool`): TODO
generator: random number generator.
return_dict (`bool`): option for returning tuple rather than DDIMSchedulerOutput class
Returns:
[`~scheduling_utils.DDIMSchedulerOutput`] or `tuple`:
[`~scheduling_utils.DDIMSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When
returning a tuple, the first element is the sample tensor.
"""
if self.num_inference_steps is None:
raise ValueError(
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
)
# See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
# Ideally, read DDIM paper in-detail understanding
# Notation (<variable name> -> <name in paper>
# - pred_noise_t -> e_theta(x_t, t)
# - pred_original_sample -> f_theta(x_t, t) or x_0
# - std_dev_t -> sigma_t
# - eta -> η
# - pred_sample_direction -> "direction pointing to x_t"
# - pred_prev_sample -> "x_t-1"
# 1. get previous step value (=t-1)
prev_timestep = timestep - self.config.num_train_timesteps // self.num_inference_steps
# 2. compute alphas, betas
alpha_prod_t = self.alphas_cumprod[timestep]
alpha_prod_t_prev = self.alphas_cumprod[
prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
beta_prod_t = 1 - alpha_prod_t
# 3. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
pred_original_sample = (sample - beta_prod_t**
(0.5) * model_output) / alpha_prod_t**(0.5)
# 4. Clip "predicted x_0"
if self.config.clip_sample:
pred_original_sample = np.clip(pred_original_sample, -1, 1)
# 5. compute variance: "sigma_t(η)" -> see formula (16)
# σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
variance = self._get_variance(timestep, prev_timestep)
std_dev_t = eta * variance**(0.5)
if use_clipped_model_output:
# the model_output is always re-derived from the clipped x_0 in Glide
model_output = (sample - alpha_prod_t**
(0.5) * pred_original_sample) / beta_prod_t**(0.5)
# 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2)**(
0.5) * model_output
# 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
prev_sample = alpha_prod_t_prev**(
0.5) * pred_original_sample + pred_sample_direction
if eta > 0:
noise = np.random.randn(*model_output.shape)
variance = self._get_variance(timestep, prev_timestep)**(
0.5) * eta * noise
prev_sample = prev_sample + variance
if not return_dict:
return (prev_sample, )
return DDIMSchedulerOutput(
prev_sample=prev_sample, pred_original_sample=pred_original_sample)
def __len__(self):
return self.config.num_train_timesteps
class LMSDiscreteScheduler(SchedulerMixin, ConfigMixin):
"""
Linear Multistep Scheduler for discrete beta schedules. Based on the original k-diffusion implementation by
Katherine Crowson:
https://github.com/crowsonkb/k-diffusion/blob/481677d114f6ea445aa009cf5bd7a9cdee909e47/k_diffusion/sampling.py#L181
[`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
[`~ConfigMixin`] also provides general loading and saving functionality via the [`~ConfigMixin.save_config`] and
[`~ConfigMixin.from_config`] functions.
Args:
num_train_timesteps (`int`): number of diffusion steps used to train the model.
beta_start (`float`): the starting `beta` value of inference.
beta_end (`float`): the final `beta` value.
beta_schedule (`str`):
the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
`linear` or `scaled_linear`.
trained_betas (`np.ndarray`, optional):
option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
"""
@register_to_config
def __init__(
self,
num_train_timesteps: int=1000,
beta_start: float=0.0001,
beta_end: float=0.02,
beta_schedule: str="linear",
trained_betas: Optional[np.ndarray]=None,
**kwargs, ):
if trained_betas is not None:
self.betas = trained_betas
elif beta_schedule == "linear":
self.betas = np.linspace(
beta_start, beta_end, num_train_timesteps, dtype=np.float32)
elif beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
self.betas = (np.linspace(
beta_start**0.5,
beta_end**0.5,
num_train_timesteps,
dtype=np.float32)**2)
else:
raise NotImplementedError(
f"{beta_schedule} does is not implemented for {self.__class__}")
self.alphas = 1.0 - self.betas
self.alphas_cumprod = np.cumprod(self.alphas, axis=0)
sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod)**
0.5)
self.sigmas = np.concatenate([sigmas[::-1], [0.0]]).astype(np.float32)
# standard deviation of the initial noise distribution
self.init_noise_sigma = self.sigmas.max()
# setable values
self.num_inference_steps = None
self.timesteps = np.linspace(
0, num_train_timesteps - 1, num_train_timesteps,
dtype=float)[::-1].copy()
self.derivatives = []
def scale_model_input(self,
sample: np.ndarray,
timestep: Union[float, np.ndarray]) -> np.ndarray:
"""
Scales the denoising model input by `(sigma**2 + 1) ** 0.5` to match the K-LMS algorithm.
Args:
sample (`np.ndarray`): input sample
timestep (`float` or `np.ndarray`): the current timestep in the diffusion chain
Returns:
`np.ndarray`: scaled input sample
"""
step_index = (self.timesteps == timestep).nonzero()[0]
sigma = self.sigmas[step_index]
sample = sample / ((sigma**2 + 1)**0.5)
self.is_scale_input_called = True
return sample
def get_lms_coefficient(self, order, t, current_order):
"""
Compute a linear multistep coefficient.
Args:
order (TODO):
t (TODO):
current_order (TODO):
"""
def lms_derivative(tau):
prod = 1.0
for k in range(order):
if current_order == k:
continue
prod *= (tau - self.sigmas[t - k]) / (
self.sigmas[t - current_order] - self.sigmas[t - k])
return prod
integrated_coeff = integrate.quad(
lms_derivative, self.sigmas[t], self.sigmas[t + 1], epsrel=1e-4)[0]
return integrated_coeff
def set_timesteps(self, num_inference_steps: int):
"""
Sets the timesteps used for the diffusion chain. Supporting function to be run before inference.
Args:
num_inference_steps (`int`):
the number of diffusion steps used when generating samples with a pre-trained model.
"""
self.num_inference_steps = num_inference_steps
timesteps = np.linspace(
0,
self.config.num_train_timesteps - 1,
num_inference_steps,
dtype=float)[::-1].copy()
sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod)**
0.5)
sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32)
self.sigmas = sigmas
self.timesteps = timesteps
self.derivatives = []
def step(
self,
model_output: np.ndarray,
timestep: int,
sample: np.ndarray,
order: int=4,
return_dict: bool=True, ):
"""
Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
process from the learned model outputs (most often the predicted noise).
Args:
model_output (`np.ndarray`): direct output from learned diffusion model.
timestep (`int`): current discrete timestep in the diffusion chain.
sample (`np.ndarray`):
current instance of sample being created by diffusion process.
order: coefficient for multi-step inference.
return_dict (`bool`): option for returning tuple rather than LMSDiscreteSchedulerOutput class
Returns:
[`~scheduling_utils.LMSDiscreteSchedulerOutput`] or `tuple`:
[`~scheduling_utils.LMSDiscreteSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`.
When returning a tuple, the first element is the sample tensor.
"""
sigma = self.sigmas[int(timestep)]
# 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
pred_original_sample = sample - sigma * model_output
# 2. Convert to an ODE derivative
derivative = (sample - pred_original_sample) / sigma
self.derivatives.append(derivative)
if len(self.derivatives) > order:
self.derivatives.pop(0)
# 3. Compute linear multistep coefficients
order = min(timestep + 1, order)
lms_coeffs = [
self.get_lms_coefficient(order, timestep, curr_order)
for curr_order in range(order)
]
# 4. Compute previous sample based on the derivatives path
prev_sample = sample + sum(coeff * derivative
for coeff, derivative in zip(
lms_coeffs, reversed(self.derivatives)))
if not return_dict:
return (prev_sample, )
return LMSDiscreteSchedulerOutput(
prev_sample=prev_sample, pred_original_sample=pred_original_sample)
def add_noise(
self,
original_samples: np.ndarray,
noise: np.ndarray,
timesteps: np.ndarray, ) -> np.ndarray:
sigmas = self.sigmas
sigma = sigmas[timesteps].flatten()
while len(sigma.shape) < len(original_samples.shape):
sigma = sigma.unsqueeze(-1)
noisy_samples = original_samples + noise * sigma
return noisy_samples
def __len__(self):
return self.config.num_train_timesteps
class EulerAncestralDiscreteScheduler(SchedulerMixin, ConfigMixin):
"""
Ancestral sampling with Euler method steps. Based on the original k-diffusion implementation by Katherine Crowson:
https://github.com/crowsonkb/k-diffusion/blob/481677d114f6ea445aa009cf5bd7a9cdee909e47/k_diffusion/sampling.py#L72
[`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
[`~ConfigMixin`] also provides general loading and saving functionality via the [`~ConfigMixin.save_config`] and
[`~ConfigMixin.from_config`] functions.
Args:
num_train_timesteps (`int`): number of diffusion steps used to train the model.
beta_start (`float`): the starting `beta` value of inference.
beta_end (`float`): the final `beta` value.
beta_schedule (`str`):
the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
`linear` or `scaled_linear`.
trained_betas (`np.ndarray`, optional):
option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
"""
_compatible_classes = [
"DDIMScheduler",
"DDPMScheduler",
"LMSDiscreteScheduler",
"PNDMScheduler",
"EulerDiscreteScheduler",
"DPMSolverMultistepScheduler",
]
@register_to_config
def __init__(
self,
num_train_timesteps: int=1000,
beta_start: float=0.0001,
beta_end: float=0.02,
beta_schedule: str="linear",
trained_betas: Optional[np.ndarray]=None, ):
if trained_betas is not None:
self.betas = np.array(trained_betas)
elif beta_schedule == "linear":
self.betas = np.linspace(
beta_start, beta_end, num_train_timesteps, dtype=np.float32)
elif beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
self.betas = (np.linspace(
beta_start**0.5,
beta_end**0.5,
num_train_timesteps,
dtype="float32")**2)
else:
raise NotImplementedError(
f"{beta_schedule} does is not implemented for {self.__class__}")