-
Notifications
You must be signed in to change notification settings - Fork 471
/
Copy pathinfer_cosface.cc
151 lines (127 loc) · 5.45 KB
/
infer_cosface.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision.h"
void CpuInfer(const std::string& model_file,
const std::vector<std::string>& image_file) {
auto model = fastdeploy::vision::faceid::CosFace(model_file, "");
cv::Mat face0 = cv::imread(image_file[0]);
cv::Mat face1 = cv::imread(image_file[1]);
cv::Mat face2 = cv::imread(image_file[2]);
fastdeploy::vision::FaceRecognitionResult res0;
fastdeploy::vision::FaceRecognitionResult res1;
fastdeploy::vision::FaceRecognitionResult res2;
if ((!model.Predict(face0, &res0)) || (!model.Predict(face1, &res1)) ||
(!model.Predict(face2, &res2))) {
std::cerr << "Prediction Failed." << std::endl;
}
std::cout << "Prediction Done!" << std::endl;
std::cout << "--- [Face 0]:" << res0.Str();
std::cout << "--- [Face 1]:" << res1.Str();
std::cout << "--- [Face 2]:" << res2.Str();
float cosine01 = fastdeploy::vision::utils::CosineSimilarity(
res0.embedding, res1.embedding,
model.GetPostprocessor().GetL2Normalize());
float cosine02 = fastdeploy::vision::utils::CosineSimilarity(
res0.embedding, res2.embedding,
model.GetPostprocessor().GetL2Normalize());
std::cout << "Detect Done! Cosine 01: " << cosine01
<< ", Cosine 02:" << cosine02 << std::endl;
}
void GpuInfer(const std::string& model_file,
const std::vector<std::string>& image_file) {
auto option = fastdeploy::RuntimeOption();
option.UseGpu();
auto model = fastdeploy::vision::faceid::CosFace(model_file, "", option);
if (!model.Initialized()) {
std::cerr << "Failed to initialize." << std::endl;
return;
}
cv::Mat face0 = cv::imread(image_file[0]);
cv::Mat face1 = cv::imread(image_file[1]);
cv::Mat face2 = cv::imread(image_file[2]);
fastdeploy::vision::FaceRecognitionResult res0;
fastdeploy::vision::FaceRecognitionResult res1;
fastdeploy::vision::FaceRecognitionResult res2;
if ((!model.Predict(face0, &res0)) || (!model.Predict(face1, &res1)) ||
(!model.Predict(face2, &res2))) {
std::cerr << "Prediction Failed." << std::endl;
}
std::cout << "Prediction Done!" << std::endl;
std::cout << "--- [Face 0]:" << res0.Str();
std::cout << "--- [Face 1]:" << res1.Str();
std::cout << "--- [Face 2]:" << res2.Str();
float cosine01 = fastdeploy::vision::utils::CosineSimilarity(
res0.embedding, res1.embedding,
model.GetPostprocessor().GetL2Normalize());
float cosine02 = fastdeploy::vision::utils::CosineSimilarity(
res0.embedding, res2.embedding,
model.GetPostprocessor().GetL2Normalize());
std::cout << "Detect Done! Cosine 01: " << cosine01
<< ", Cosine 02:" << cosine02 << std::endl;
}
void TrtInfer(const std::string& model_file,
const std::vector<std::string>& image_file) {
auto option = fastdeploy::RuntimeOption();
option.UseGpu();
option.UseTrtBackend();
option.SetTrtInputShape("data", {1, 3, 112, 112});
auto model = fastdeploy::vision::faceid::CosFace(model_file, "", option);
if (!model.Initialized()) {
std::cerr << "Failed to initialize." << std::endl;
return;
}
cv::Mat face0 = cv::imread(image_file[0]);
cv::Mat face1 = cv::imread(image_file[1]);
cv::Mat face2 = cv::imread(image_file[2]);
fastdeploy::vision::FaceRecognitionResult res0;
fastdeploy::vision::FaceRecognitionResult res1;
fastdeploy::vision::FaceRecognitionResult res2;
if ((!model.Predict(face0, &res0)) || (!model.Predict(face1, &res1)) ||
(!model.Predict(face2, &res2))) {
std::cerr << "Prediction Failed." << std::endl;
}
std::cout << "Prediction Done!" << std::endl;
std::cout << "--- [Face 0]:" << res0.Str();
std::cout << "--- [Face 1]:" << res1.Str();
std::cout << "--- [Face 2]:" << res2.Str();
float cosine01 = fastdeploy::vision::utils::CosineSimilarity(
res0.embedding, res1.embedding,
model.GetPostprocessor().GetL2Normalize());
float cosine02 = fastdeploy::vision::utils::CosineSimilarity(
res0.embedding, res2.embedding,
model.GetPostprocessor().GetL2Normalize());
std::cout << "Detect Done! Cosine 01: " << cosine01
<< ", Cosine 02:" << cosine02 << std::endl;
}
int main(int argc, char* argv[]) {
if (argc < 6) {
std::cout << "Usage: infer_demo path/to/model path/to/image run_option, "
"e.g ./infer_cosface_demo ms1mv3_cosface_r100.onnx "
"face_0.jpg face_1.jpg face_2.jpg 0"
<< std::endl;
std::cout << "The data type of run_option is int, 0: run with cpu; 1: run "
"with gpu; 2: run with gpu and use tensorrt backend."
<< std::endl;
return -1;
}
std::vector<std::string> image_files = {argv[2], argv[3], argv[4]};
if (std::atoi(argv[5]) == 0) {
CpuInfer(argv[1], image_files);
} else if (std::atoi(argv[5]) == 1) {
GpuInfer(argv[1], image_files);
} else if (std::atoi(argv[5]) == 2) {
TrtInfer(argv[1], image_files);
}
return 0;
}