-
Notifications
You must be signed in to change notification settings - Fork 471
/
Copy pathinfer_arcface.py
81 lines (65 loc) · 2.09 KB
/
infer_arcface.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import fastdeploy as fd
import cv2
import numpy as np
def cosine_similarity(a, b):
a = np.array(a)
b = np.array(b)
mul_a = np.linalg.norm(a, ord=2)
mul_b = np.linalg.norm(b, ord=2)
mul_ab = np.dot(a, b)
return mul_ab / (mul_a * mul_b)
def parse_arguments():
import argparse
import ast
parser = argparse.ArgumentParser()
parser.add_argument(
"--model", required=True, help="Path of insgihtface onnx model.")
parser.add_argument(
"--face", required=True, help="Path of test face image file.")
parser.add_argument(
"--face_positive",
required=True,
help="Path of test face_positive image file.")
parser.add_argument(
"--face_negative",
required=True,
help="Path of test face_negative image file.")
parser.add_argument(
"--device",
type=str,
default='cpu',
help="Type of inference device, support 'cpu' or 'gpu'.")
parser.add_argument(
"--use_trt",
type=ast.literal_eval,
default=False,
help="Wether to use tensorrt.")
return parser.parse_args()
def build_option(args):
option = fd.RuntimeOption()
if args.device.lower() == "gpu":
option.use_gpu()
if args.use_trt:
option.use_trt_backend()
option.set_trt_input_shape("data", [1, 3, 112, 112])
return option
args = parse_arguments()
runtime_option = build_option(args)
model = fd.vision.faceid.ArcFace(args.model, runtime_option=runtime_option)
face0 = cv2.imread(args.face) # 0,1 同一个人
face1 = cv2.imread(args.face_positive)
face2 = cv2.imread(args.face_negative) # 0,2 不同的人
result0 = model.predict(face0)
result1 = model.predict(face1)
result2 = model.predict(face2)
embedding0 = result0.embedding
embedding1 = result1.embedding
embedding2 = result2.embedding
cosine01 = cosine_similarity(embedding0, embedding1)
cosine02 = cosine_similarity(embedding0, embedding2)
print(result0, end="")
print(result1, end="")
print(result2, end="")
print("Cosine 01: ", cosine01)
print("Cosine 02: ", cosine02)
print(model.runtime_option)