-
Notifications
You must be signed in to change notification settings - Fork 471
/
Copy pathinfer.cc
170 lines (155 loc) · 5.77 KB
/
infer.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision.h"
#ifdef WIN32
const char sep = '\\';
#else
const char sep = '/';
#endif
void CpuInfer(const std::string& model_dir, const std::string& video_file) {
auto model_file = model_dir + sep + "model.pdmodel";
auto params_file = model_dir + sep + "model.pdiparams";
auto config_file = model_dir + sep + "infer_cfg.yml";
auto model = fastdeploy::vision::tracking::PPTracking(
model_file, params_file, config_file);
if (!model.Initialized()) {
std::cerr << "Failed to initialize." << std::endl;
return;
}
fastdeploy::vision::MOTResult result;
fastdeploy::vision::tracking::TrailRecorder recorder;
// during each prediction, data is inserted into the recorder. As the number of predictions increases,
// the memory will continue to grow. You can cancel the insertion through 'UnbindRecorder'.
// int count = 0; // unbind condition
model.BindRecorder(&recorder);
cv::Mat frame;
cv::VideoCapture capture(video_file);
while (capture.read(frame)) {
if (frame.empty()) {
break;
}
if (!model.Predict(&frame, &result)) {
std::cerr << "Failed to predict." << std::endl;
return;
}
// such as adding this code can cancel trail data binding
// if(count++ == 10) model.UnbindRecorder();
// std::cout << result.Str() << std::endl;
cv::Mat out_img = fastdeploy::vision::VisMOT(frame, result, 0.0, &recorder);
cv::imshow("mot",out_img);
cv::waitKey(30);
}
model.UnbindRecorder();
capture.release();
cv::destroyAllWindows();
}
void GpuInfer(const std::string& model_dir, const std::string& video_file) {
auto model_file = model_dir + sep + "model.pdmodel";
auto params_file = model_dir + sep + "model.pdiparams";
auto config_file = model_dir + sep + "infer_cfg.yml";
auto option = fastdeploy::RuntimeOption();
option.UseGpu();
auto model = fastdeploy::vision::tracking::PPTracking(
model_file, params_file, config_file, option);
if (!model.Initialized()) {
std::cerr << "Failed to initialize." << std::endl;
return;
}
fastdeploy::vision::MOTResult result;
fastdeploy::vision::tracking::TrailRecorder trail_recorder;
// during each prediction, data is inserted into the recorder. As the number of predictions increases,
// the memory will continue to grow. You can cancel the insertion through 'UnbindRecorder'.
// int count = 0; // unbind condition
model.BindRecorder(&trail_recorder);
cv::Mat frame;
cv::VideoCapture capture(video_file);
while (capture.read(frame)) {
if (frame.empty()) {
break;
}
if (!model.Predict(&frame, &result)) {
std::cerr << "Failed to predict." << std::endl;
return;
}
// such as adding this code can cancel trail data binding
//if(count++ == 10) model.UnbindRecorder();
// std::cout << result.Str() << std::endl;
cv::Mat out_img = fastdeploy::vision::VisMOT(frame, result, 0.0, &trail_recorder);
cv::imshow("mot",out_img);
cv::waitKey(30);
}
model.UnbindRecorder();
capture.release();
cv::destroyAllWindows();
}
void TrtInfer(const std::string& model_dir, const std::string& video_file) {
auto model_file = model_dir + sep + "model.pdmodel";
auto params_file = model_dir + sep + "model.pdiparams";
auto config_file = model_dir + sep + "infer_cfg.yml";
auto option = fastdeploy::RuntimeOption();
option.UseGpu();
option.UseTrtBackend();
auto model = fastdeploy::vision::tracking::PPTracking(
model_file, params_file, config_file, option);
if (!model.Initialized()) {
std::cerr << "Failed to initialize." << std::endl;
return;
}
fastdeploy::vision::MOTResult result;
fastdeploy::vision::tracking::TrailRecorder recorder;
//during each prediction, data is inserted into the recorder. As the number of predictions increases,
//the memory will continue to grow. You can cancel the insertion through 'UnbindRecorder'.
// int count = 0; // unbind condition
model.BindRecorder(&recorder);
cv::Mat frame;
cv::VideoCapture capture(video_file);
while (capture.read(frame)) {
if (frame.empty()) {
break;
}
if (!model.Predict(&frame, &result)) {
std::cerr << "Failed to predict." << std::endl;
return;
}
// such as adding this code can cancel trail data binding
// if(count++ == 10) model.UnbindRecorder();
// std::cout << result.Str() << std::endl;
cv::Mat out_img = fastdeploy::vision::VisMOT(frame, result, 0.0, &recorder);
cv::imshow("mot",out_img);
cv::waitKey(30);
}
model.UnbindRecorder();
capture.release();
cv::destroyAllWindows();
}
int main(int argc, char* argv[]) {
if (argc < 4) {
std::cout
<< "Usage: infer_demo path/to/model_dir path/to/video run_option, "
"e.g ./infer_model ./pptracking_model_dir ./person.mp4 0"
<< std::endl;
std::cout << "The data type of run_option is int, 0: run with cpu; 1: run "
"with gpu; 2: run with gpu and use tensorrt backend."
<< std::endl;
return -1;
}
if (std::atoi(argv[3]) == 0) {
CpuInfer(argv[1], argv[2]);
} else if (std::atoi(argv[3]) == 1) {
GpuInfer(argv[1], argv[2]);
} else if (std::atoi(argv[3]) == 2) {
TrtInfer(argv[1], argv[2]);
}
return 0;
}