We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
notebook中的前向计算定义代码如下,代码的注释中说每个卷积层使用Sigmoid激活函数,但实际Sigmoid函数的位置并不是这样。
# 网络的前向计算过程 def forward(self, x): x = self.conv1(x) # 每个卷积层使用Sigmoid激活函数,后面跟着一个2x2的池化 x = F.sigmoid(x) x = self.max_pool1(x) x = F.sigmoid(x) x = self.conv2(x) x = self.max_pool2(x) x = self.conv3(x) # 尺寸的逻辑:输入层将数据拉平[B,C,H,W] -> [B,C*H*W] x = paddle.reshape(x, [x.shape[0], -1]) x = self.fc1(x) x = F.sigmoid(x) x = self.fc2(x) return x
是否应该是下面这样?
# 网络的前向计算过程 def forward(self, x): x = self.conv1(x) # 每个卷积层使用Sigmoid激活函数,后面跟着一个2x2的池化 x = F.sigmoid(x) x = self.max_pool1(x) x = self.conv2(x) x = F.sigmoid(x) x = self.max_pool2(x) x = self.conv3(x) x = F.sigmoid(x) # 尺寸的逻辑:输入层将数据拉平[B,C,H,W] -> [B,C*H*W] x = paddle.reshape(x, [x.shape[0], -1]) x = self.fc1(x) x = F.sigmoid(x) x = self.fc2(x) return x
The text was updated successfully, but these errors were encountered:
No branches or pull requests
notebook中的前向计算定义代码如下,代码的注释中说每个卷积层使用Sigmoid激活函数,但实际Sigmoid函数的位置并不是这样。
是否应该是下面这样?
The text was updated successfully, but these errors were encountered: