-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathpadim_svdd.py
368 lines (306 loc) · 13.1 KB
/
padim_svdd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
from typing import Union, Tuple
import logging
import numpy as np
import torch
from torch import Tensor, device as Device, optim
from torch.utils.tensorboard import SummaryWriter
from torchvision import utils as visionutils
from tqdm import tqdm
from padim.deep_svdd import PositionClassifier, self_supervised_loss
from padim.multi_svdd import MultiDeepSVDD, MultiAutoEncoder
from padim.base import PaDiMBase
def get_radius(dist: torch.Tensor, nu: float):
"""Optimally solve for radius R via the (1-nu)-quantile of distances."""
return np.quantile(np.sqrt(dist.clone().data.cpu().numpy()), 1 - nu)
class PaDiMSVDD(PaDiMBase):
"""A variant of the PaDiM architecture using Deep-SVDD as
the normal distribution instead of a multi-variate gaussian
"""
def __init__(
self,
num_embeddings: int = 100,
device: Union[str, Device] = "cpu",
backbone: str = "resnet18",
size: Union[None, Tuple[int, int]] = None,
**kwargs,
):
super(PaDiMSVDD, self).__init__(num_embeddings, device, backbone, size)
self._init_params(**kwargs)
self.use_self_supervision = False
self.net_name = "MLPNet"
self.net = MultiDeepSVDD(n_svdds=self.n_svdds,
input_size=self.num_embeddings,
rep_dim=self.rep_dim,
features_e=self.features_e)
def _init_params(self,
objective='one-class',
R=0.0,
nu=0.1,
features_e=16,
n_svdds=1,
rep_dim=32,
lr: float = 0.001,
weight_decay=1e-6,
lr_milestones=(30, 50),
optimizer_name='adam'):
assert objective in (
'one-class', 'soft-boundary'
), "Objective must be either 'one-class' or 'soft-boundary'."
self.objective = objective
if isinstance(R, Tensor):
self.R = R.clone().to(self.device)
else:
self.R = torch.tensor(R, device=self.device)
self.c = None
self.features_e = features_e
self.rep_dim = rep_dim
self.n_svdds = n_svdds
self.lr = lr
self.nu = nu
# number of training epochs for soft-boundary
# Deep SVDD before radius R gets updated
self.warm_up_n_epochs = 10
self.lr_milestones = lr_milestones
self.weight_decay = weight_decay
self.optimizer_name = optimizer_name
# Results
self.train_time = None
self.test_auc = None
self.test_time = None
self.test_scores = None
def pretrain(self, train_dataloader, n_epochs, *args, **kwargs):
multi_ae = MultiAutoEncoder(self.n_svdds, *args,
**kwargs).to(self.device)
multi_ae.train()
# Set optimizer (Adam optimizer for now)
optimizer = optim.Adam(multi_ae.parameters(),
lr=self.lr,
weight_decay=self.weight_decay,
amsgrad=self.optimizer_name == 'amsgrad')
# Set learning rate scheduler
scheduler = optim.lr_scheduler.MultiStepLR(
optimizer, milestones=self.lr_milestones, gamma=0.1)
pbar = tqdm(range(n_epochs))
for epoch in pbar:
loss_epoch = 0
n_batches = 0
for imgs, y_true in train_dataloader:
imgs = imgs.to(self.device)
y_true = y_true.to(self.device)
imgs = imgs[y_true == 1]
optimizer.zero_grad()
embeddings = self._embed_batch_flatten(imgs)
outputs = multi_ae(embeddings)
scores = torch.sum((outputs - embeddings)**2,
dim=tuple(range(1, outputs.dim())))
loss = torch.mean(scores)
loss.backward()
optimizer.step()
loss_epoch += loss.item()
n_batches += 1
message = 'Epoch {}/{} Loss: {:.8f}'.format(
epoch + 1, n_epochs, loss_epoch / n_batches)
pbar.set_description(message)
scheduler.step()
for net, ae in zip(self.net.svdds, multi_ae.auto_encoders):
net_dict = net.state_dict()
ae_dict = ae.state_dict()
ae_net_dict = {k: v for k, v in ae_dict.items() if k in net_dict}
net_dict.update(ae_net_dict)
net.load_state_dict(net_dict)
def train(self,
dataloader,
n_epochs=10,
test_images=None,
test_cb=None,
outlier_exposure=False,
self_supervision=False):
logger = logging.getLogger()
self.net = self.net.to(self.device)
self.use_self_supervision = self_supervision
loss_writer = SummaryWriter("tboard/losses")
if test_images is not None:
image_writer = SummaryWriter("tboard/images")
image_grid = visionutils.make_grid(test_images)
image_writer.add_image("Images/Reals", image_grid)
def make_test(global_step):
anomalies = self.predict(test_images)
anomalies_grid = visionutils.make_grid(anomalies)
image_writer.add_image("Images/Anomalies", anomalies_grid,
global_step)
else:
def make_test(_):
pass
if self_supervision:
# Encoder optimizer
encoder_optimizer = optim.Adam(
self.model.parameters(),
lr=self.lr,
weight_decay=self.weight_decay,
amsgrad=self.optimizer_name == 'amsgrad')
position_classifier = PositionClassifier(self.num_embeddings).to(self.device)
# Set optimizer (Adam optimizer for now)
optimizer = optim.Adam(self.net.parameters(),
lr=self.lr,
weight_decay=self.weight_decay,
amsgrad=self.optimizer_name == 'amsgrad')
# Set learning rate scheduler
scheduler = optim.lr_scheduler.MultiStepLR(
optimizer, milestones=self.lr_milestones, gamma=0.1)
if self.c is None:
logger.info('Initializing center c...')
self.c = self._init_center_c(dataloader)
logger.info('Center c initialized.')
logger.info('C is at %f' % torch.sum(self.c**2).item())
self.net.train()
pbar = tqdm(range(n_epochs))
for epoch in pbar:
loss_epoch = 0.0
n_batches = 0
for imgs, y_true in dataloader:
imgs = imgs.to(self.device)
y_true = y_true.to(self.device)
optimizer.zero_grad()
embeddings = self._embed_batch_flatten(imgs, self_supervision)
outputs = self.net(embeddings)
dist = torch.sum((outputs - self.c)**2, dim=2)
dist, _ = dist.min(dim=1)
if self.objective == 'soft-boundary':
scores = dist - self.R**2
loss = self.R**2 + (1 / self.nu) * torch.mean(
torch.max(torch.zeros_like(scores), scores))
else:
if outlier_exposure:
mask = torch.zeros((imgs.size(0), 104 * 104),
dtype=torch.bool,
device=self.device)
mask[y_true == 1, :] = True
mask = mask.flatten()
normal_loss = torch.mean(dist[mask])
anomalous_loss = torch.mean(
-torch.log(1 - torch.exp(-dist[~mask])))
loss = normal_loss + anomalous_loss
else:
loss = torch.mean(dist)
loss.backward(retain_graph=True)
optimizer.step()
if self_supervision:
encoder_optimizer.zero_grad()
if not outlier_exposure:
normal_embeddings = embeddings
else:
batch_size = y_true.size(0)
y_true_embeddings = y_true.bool().repeat(
(self.num_patches, 1)
).permute(1, 0).flatten() # batch_size -> batch_size * num_embeddings
normal_embeddings = embeddings[y_true_embeddings]
ssl = self_supervised_loss(normal_embeddings, position_classifier, device=self.device)
ssl.backward()
encoder_optimizer.step()
if (self.objective == 'soft-boundary') and (
epoch >= self.warm_up_n_epochs):
self.R.data = torch.tensor(get_radius(dist, self.nu),
device=self.device)
loss_epoch += loss.item()
n_batches += 1
message = 'Epoch {}/{} Loss: {:.8f}'.format(
epoch + 1, n_epochs, loss_epoch / n_batches)
pbar.set_description(message)
loss_writer.add_scalar("losses", loss_epoch, epoch)
scheduler.step()
make_test(epoch)
if epoch in self.lr_milestones:
logger.info('\tLR Scheduler: new learning rate is %g' %
float(scheduler.get_last_lr()[0]))
if test_cb is not None:
with torch.no_grad():
test_cb(epoch)
self.net.train()
logger.info('Finished training.')
return self.net
def _init_center_c(self, dataloader, eps=0.1):
n_samples = 0
c = torch.zeros((self.n_svdds, self.rep_dim), device=self.device)
self.net.eval()
with torch.no_grad():
for inputs, _ in tqdm(dataloader):
inputs = inputs.to(self.device)
inputs = self._embed_batch_flatten(inputs)
for i, svdd in enumerate(self.net.svdds):
outputs = svdd(inputs)
c[i, :] += torch.sum(outputs, dim=0)
if i == 0:
n_samples += outputs.size(0)
c /= n_samples
# If c_i is too close to 0, set to +-eps.
# Reason: a zero unit can be trivially matched with zero weights.
for i in range(self.n_svdds):
c[i, (abs(c[i]) < eps) & (c[i] < 0)] = -eps
c[i, (abs(c[i]) < eps) & (c[i] > 0)] = eps
return c
def predict(self, batch: Tensor, params=None):
self.net.eval()
with torch.no_grad():
embeddings = self._embed_batch_flatten(batch)
outputs = self.net(embeddings)
dists, _ = torch.sum((outputs - self.c)**2, dim=2).min(dim=1)
if self.objective == 'soft-boundary':
scores = dists - self.R**2
else:
scores = dists
# Return anomaly maps
return scores.reshape((-1, 1, 104, 104))
def get_params(self):
"""
Returns placeholders for the mean and covariance
"""
return torch.zeros((1, )), torch.zeros((1, 1)), self.embedding_ids
def _get_inv_cvars(self, a):
"""
Noop, like `get_params()`
"""
return a
def get_residuals(self):
def detach_numpy(t: Tensor):
return t.detach().cpu().numpy()
backbone = self._get_backbone()
net_dict = self.net.state_dict()
objective = self.objective
c, R = self.c, self.R
if self.use_self_supervision:
backbone_dict = self.model.state_dict()
return net_dict, objective, c, R, detach_numpy(
self.embedding_ids), backbone, backbone_dict
return net_dict, objective, c, R, detach_numpy(
self.embedding_ids), backbone
@staticmethod
def from_residuals(net_dict,
objective,
c,
R,
embedding_ids,
backbone,
backbone_dict=None,
device="cuda"):
num_embeddings, = embedding_ids.shape
n_svdds = 0
for key in net_dict.keys():
if key.startswith("svdds."):
n_svdds = max(n_svdds, int(key[6:].split(".")[0]))
n_svdds += 1
padim = PaDiMSVDD(num_embeddings=num_embeddings,
backbone=backbone,
device=device,
n_svdds=n_svdds,
R=R)
padim.net.load_state_dict(net_dict)
padim.net = padim.net.to(device)
padim.embedding_ids = torch.tensor(embedding_ids, device=device)
padim.R = R
if isinstance(c, Tensor):
padim.c = c.clone().to(device)
else:
padim.c = torch.tensor(c, device=device)
if backbone_dict is not None:
padim.model.load_state_dict(backbone_dict)
return padim