-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
182 lines (162 loc) · 7.78 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
# --- Functions that can be moved to other files ---
from typing import List, Tuple, Dict
import os
import pandas as pd
import psycopg2
from psycopg2 import sql
import pandas as pd
from sqlalchemy import create_engine
from psycopg2.pool import SimpleConnectionPool
from contextlib import contextmanager
import psycopg2
from psycopg2 import sql
from contextlib import contextmanager
from dotenv import load_dotenv
from sklearn.metrics import precision_score, f1_score
import pandas as pd
load_dotenv()
db_connection_string ="postgresql://cvmdb_owner:[email protected]/cvmdb?sslmode=require"
def calculate_actual_results(income_statement: pd.DataFrame) -> Tuple[List[Tuple[str, int]], List[str]]:
"""Calculates actual earnings direction based on income statement."""
earnings_column = 'Resultado Líquido das Operações Continuadas'
results = []
if 'DS_CONTA' not in income_statement.columns:
raise ValueError("Expected 'DS_CONTA' column in income statement")
earnings_rows = income_statement[income_statement['DS_CONTA'] == earnings_column]
date_columns = [col for col in earnings_rows.columns if col.startswith('20') and col.endswith('-12-31')]
sorted_dates = sorted(date_columns)
for i in range(5, len(sorted_dates)):
current_earnings = earnings_rows[sorted_dates[i]].values[0]
previous_earnings = earnings_rows[sorted_dates[i-1]].values[0]
if pd.notnull(current_earnings) and pd.notnull(previous_earnings):
result = 1 if current_earnings > previous_earnings else -1
period = sorted_dates[i]
results.append((period, result))
return results, sorted_dates
def get_financial_statements_batch(cd_cvm_list: List[str]) -> Tuple[Dict[str, pd.DataFrame], Dict[str, pd.DataFrame], Dict[str, pd.DataFrame]]:
"""Fetches financial statements for a batch of CD_CVM codes."""
income_statements = execute_query(cd_cvm_list, 'ist')
balance_sheets = execute_query(cd_cvm_list, 'bs')
cash_flows = execute_query(cd_cvm_list, 'cf')
return income_statements, balance_sheets, cash_flows
# Create a connection pool
pool = SimpleConnectionPool(1, 20, db_connection_string)
@contextmanager
def get_connection():
connection = pool.getconn()
try:
yield connection
finally:
pool.putconn(connection)
def execute_query(CD_CVM_list, table_name):
with get_connection() as conn:
cursor = conn.cursor()
query = sql.SQL("""
SELECT "CD_CVM", "CD_CONTA", "DS_CONTA",
MAX(CASE WHEN "DT_FIM_EXERC" = '2010-12-31' THEN "VL_CONTA" END) AS "2010-12-31",
MAX(CASE WHEN "DT_FIM_EXERC" = '2011-12-31' THEN "VL_CONTA" END) AS "2011-12-31",
MAX(CASE WHEN "DT_FIM_EXERC" = '2012-12-31' THEN "VL_CONTA" END) AS "2012-12-31",
MAX(CASE WHEN "DT_FIM_EXERC" = '2013-12-31' THEN "VL_CONTA" END) AS "2013-12-31",
MAX(CASE WHEN "DT_FIM_EXERC" = '2014-12-31' THEN "VL_CONTA" END) AS "2014-12-31",
MAX(CASE WHEN "DT_FIM_EXERC" = '2015-12-31' THEN "VL_CONTA" END) AS "2015-12-31",
MAX(CASE WHEN "DT_FIM_EXERC" = '2016-12-31' THEN "VL_CONTA" END) AS "2016-12-31",
MAX(CASE WHEN "DT_FIM_EXERC" = '2017-12-31' THEN "VL_CONTA" END) AS "2017-12-31",
MAX(CASE WHEN "DT_FIM_EXERC" = '2018-12-31' THEN "VL_CONTA" END) AS "2018-12-31",
MAX(CASE WHEN "DT_FIM_EXERC" = '2019-12-31' THEN "VL_CONTA" END) AS "2019-12-31",
MAX(CASE WHEN "DT_FIM_EXERC" = '2020-12-31' THEN "VL_CONTA" END) AS "2020-12-31",
MAX(CASE WHEN "DT_FIM_EXERC" = '2021-12-31' THEN "VL_CONTA" END) AS "2021-12-31",
MAX(CASE WHEN "DT_FIM_EXERC" = '2022-12-31' THEN "VL_CONTA" END) AS "2022-12-31",
MAX(CASE WHEN "DT_FIM_EXERC" = '2023-12-31' THEN "VL_CONTA" END) AS "2023-12-31"
FROM
(
SELECT
*
FROM
{}
WHERE
"CD_CVM" = ANY(%s) AND
"ST_CONTA_FIXA" = 'S'
) AS filtered_data
GROUP BY "CD_CVM", "CD_CONTA", "DS_CONTA"
ORDER BY "CD_CONTA"
""").format(sql.Identifier(table_name))
try:
cursor.execute(query, (CD_CVM_list,))
columns = [desc[0] for desc in cursor.description]
result = cursor.fetchall()
print(f"Successfully executed the SQL query on the table '{table_name}' for the following CVM codes: {CD_CVM_list}")
df = pd.DataFrame(result, columns=columns)
# Drop columns where all rows are None
df = df.dropna(axis=1, how='all')
# Group by CD_CVM
return {cd_cvm: group.drop(['CD_CVM', 'CD_CONTA'], axis=1) for cd_cvm, group in df.groupby('CD_CVM')}
except psycopg2.Error as error:
print(f"Error executing query: {error}")
conn.rollback()
print("Transaction rolled back.")
return None
def get_distinct_cd_cvm():
with get_connection() as conn:
cursor = conn.cursor()
query = sql.SQL("""
SELECT DISTINCT "CD_CVM"
FROM bs
ORDER BY "CD_CVM";
""")
try:
cursor.execute(query)
result = cursor.fetchall()
print(f"Query executed successfully. Retrieved {len(result)} distinct CD_CVM values.")
# Convert the result to a list of CD_CVM values
cd_cvm_list = [row[0] for row in result]
return cd_cvm_list
except psycopg2.Error as error:
print(f"Error executing query: {error}")
conn.rollback()
def get_company_name_by_cd_cvm(cd_cvm):
with get_connection() as conn:
cursor = conn.cursor()
query = sql.SQL("""
SELECT "DENOM_CIA"
FROM bs
WHERE "CD_CVM" = %s
LIMIT 1;
""")
try:
cursor.execute(query, (cd_cvm,))
result = cursor.fetchone()
if result:
print(f"Query executed successfully. Retrieved company name: {result[0]}")
return result[0]
else:
print("No company found for CD_CVM:", cd_cvm)
return None
except psycopg2.Error as error:
print(f"Error executing query: {error}")
conn.rollback()
print("Transaction rolled back.")
return None
def analyze_model_performance(df):
grouped = df.groupby(['Model', 'Company'])
# Initialize an empty DataFrame to store the results
results = pd.DataFrame(columns=['Model', 'Company', 'Precision', 'F1 Score', 'Average Confidence Level', 'Count Magnitude'])
for name, group in grouped:
# Calculate precision and F1 score
precision = precision_score(group['ACTUAL DIRECTION'], group['DIRECTION'], average='binary', zero_division=0)
f1 = f1_score(group['ACTUAL DIRECTION'], group['DIRECTION'], average='binary', zero_division=0)
# Calculate average confidence level
avg_confidence = group['CONFIDENCE LEVEL'].mean()
# Count values in 'MAGNITUDE'
count_magnitude = group['MAGNITUDE'].value_counts().to_dict()
# Create a DataFrame for the current results and concatenate it with the main results DataFrame
current_results = pd.DataFrame([{
'Model': name[0],
'Company': name[1],
'Precision': precision,
'F1 Score': f1,
'Average Confidence Level': avg_confidence,
'Count Magnitude': count_magnitude
}])
results = pd.concat([results, current_results], ignore_index=True)
return results
#get