-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_vis.py
80 lines (62 loc) · 3.08 KB
/
data_vis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import os
import numpy as np
import matplotlib.pyplot as plt
import torchvision
import torchvision.transforms as transforms
import random
# Define the path to the datasets
cifar10_data_dir = '/u/48/wangp8/unix/Work/exp_cifar10/data/CIFAR10'
cifar10_c_data_dir = '/u/48/wangp8/unix/Work/exp_cifar10/data/CIFAR10-C'
# CIFAR-10 label names
cifar10_labels = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
# Load CIFAR-10 test dataset (original images)
transform = transforms.ToTensor()
cifar10_testset = torchvision.datasets.CIFAR10(root=cifar10_data_dir, train=False, download=False, transform=transform)
# Corruption types to visualize
corruption_types = ['motion_blur', 'zoom_blur', 'defocus_blur', 'fog']
# Severity levels to visualize
severity_levels = [1, 3, 5]
def plot_corruptions_grid(original_image, corruption_images, corruption_types, severity_levels):
"""
Function to plot all corruptions and severities in a grid.
"""
num_corruptions = len(corruption_types)
num_severities = len(severity_levels)
fig, axes = plt.subplots(num_severities, num_corruptions, figsize=(15, 15))
# Plot the corrupted images
for i, severity in enumerate(severity_levels):
for j, corruption_type in enumerate(corruption_types):
axes[i, j].imshow(corruption_images[severity][corruption_type])
# axes[i, j].set_title(f"{corruption_type.capitalize()}\nSeverity {severity}")
axes[i, j].axis('off')
plt.tight_layout()
plt.show()
def visualize_all_corruptions(cifar10_testset, corruption_types, severity_levels, cifar10_c_data_dir, img_index=None):
"""
Function to visualize all corruption types with their severity levels.
"""
# Select an image by index or randomly if not provided
if img_index is None:
img_index = random.randint(0, len(cifar10_testset) - 1)
img, label = cifar10_testset[img_index]
img_np = img.numpy().transpose(1, 2, 0)
corruption_images = {severity: {} for severity in severity_levels}
for corruption_type in corruption_types:
corruption_path = os.path.join(cifar10_c_data_dir, f'{corruption_type}.npy')
corrupted_data = np.load(corruption_path)
for severity in severity_levels:
start_idx = (severity - 1) * 10000
corrupted_img = corrupted_data[start_idx + img_index] # Index corresponding to the same test image
corruption_images[severity][corruption_type] = corrupted_img
# Plot the original image separately
plt.figure(figsize=(4, 4))
plt.imshow(img_np)
# plt.title(f"Original Image: {cifar10_labels[label]}")
plt.axis('off')
plt.show()
# Plot all corruptions and severities in a grid
plot_corruptions_grid(img_np, corruption_images, corruption_types, severity_levels)
# Specify the index of the image you want to visualize (or None for random selection)
img_index = 4
# Call the function to visualize all corruptions and severities
visualize_all_corruptions(cifar10_testset, corruption_types, severity_levels, cifar10_c_data_dir, 168)