-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_input_shift.py
74 lines (58 loc) · 2.41 KB
/
plot_input_shift.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import torch
import matplotlib.pyplot as plt
from model import *
from data import get_dataloader
from utils import unnormalize
import os
import warnings
warnings.filterwarnings("ignore")
# Define CIFAR-10 class names
class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer',
'dog', 'frog', 'horse', 'ship', 'truck']
def generate_noise(img, unet_ck_path, in_channels):
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
unet = UNet(in_channels=in_channels, out_channels=in_channels).to(device)
model_dict = torch.load(unet_ck_path)
unet.load_state_dict(model_dict)
unet.eval()
img = img.to(device)
with torch.no_grad():
img_noisy = unet(img)
img_noisy = unnormalize(img_noisy).permute(0, 2, 3, 1).cpu().numpy()
return img_noisy
def main():
torch.manual_seed(42)
input_dir = './data/CIFAR10'
in_channels = 3
unet_ck_dir = './checkpoints/unet'
epochs = range(60, 101, 20)
batch_size = 4 # Load 4 images to create a 2x2 grid
# Load a batch of images from the dataset
dataloader = get_dataloader(data_dir=input_dir, train=True, val=False, batch_size=batch_size)
imgs, labels = next(iter(dataloader))
# Unnormalize and convert the original images for plotting
imgs_original = unnormalize(imgs).permute(0, 2, 3, 1).cpu().numpy()
fig, axs = plt.subplots(batch_size, len(epochs) + 1, figsize=(18, 12))
for idx in range(batch_size):
class_name = class_names[labels[idx].item()]
# Plot the original image in the first column
axs[idx, 0].imshow(imgs_original[idx])
if idx == 0:
axs[idx, 0].set_title(f'Original: {class_name}')
else:
axs[idx, 0].set_title(f'{class_name}')
axs[idx, 0].axis('off')
for i, epoch in enumerate(epochs):
unet_ck_path = os.path.join(unet_ck_dir, f'unet_epoch{epoch}.pt')
img_noisy = generate_noise(imgs[idx].unsqueeze(0), unet_ck_path, in_channels)
# Plot the noisy image generated by UNet at each epoch
axs[idx, i + 1].imshow(img_noisy[0])
if idx == 0: # Only label epochs on the first row
axs[idx, i + 1].set_title(f'Epoch {epoch}')
axs[idx, i + 1].axis('off')
plt.suptitle('Input Shift')
plt.tight_layout()
plt.savefig(f'./plot_results/input_shift_grid.png')
plt.show()
if __name__ == '__main__':
main()