-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_quantitative.py
111 lines (95 loc) · 3.82 KB
/
plot_quantitative.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import json
import os
import matplotlib.pyplot as plt
import pandas as pd
plt.style.use('ggplot')
# model_name_list = ['resnet18_v0', 'resnet18_v1', 'resnet18_v2', 'resnet18_v3']
model_name_list = ['resnet18_v0', 'storesnet18_v1', 'resnet18_v1', 'resnet18_v2', 'resnet18_v3']
dataset_name = 'CIFAR10'
result_file = './results/evaluation_results.json'
# result_file = './results/evaluation_results.json'
def load_results_from_json(result_file):
with open(result_file, 'r') as f:
results = json.load(f)
return results
def process_data(results):
processed_data = {}
for model_name, intensities_data in results.items():
if model_name not in model_name_list:
continue
processed_data[model_name] = {
'intensities': [],
'accuracies': [],
'eces': [],
'nlls': [],
}
for intensity, metrics_list in intensities_data.items():
# Since there's only one entry per intensity, we don't need to average
metrics = metrics_list[0]
processed_data[model_name]['intensities'].append(int(intensity))
processed_data[model_name]['accuracies'].append(metrics['acc'])
processed_data[model_name]['eces'].append(metrics['ece'])
processed_data[model_name]['nlls'].append(metrics['nll'])
return processed_data
def plot_results(processed_data):
plt.figure(figsize=(18, 6)) # Adjusted to fit three subplots
# Assign markers based on model name
markers = {
'resnet': 'o',
'storesnet': 's',
'v1': 's',
}
# Plot Accuracy
plt.subplot(1, 3, 1)
for model_name, data in processed_data.items():
marker = markers['v1'] if 'v1' in model_name else markers['storesnet'] if 'storesnet' in model_name else markers['resnet']
plt.plot(data['intensities'], data['accuracies'], marker=marker, label=model_name)
plt.xlabel('Corruption Intensity')
plt.ylabel('acc')
plt.title('Accuracy')
plt.legend()
plt.grid(True)
# Plot ECE
plt.subplot(1, 3, 2)
for model_name, data in processed_data.items():
marker = markers['v1'] if 'v1' in model_name else markers['storesnet'] if 'storesnet' in model_name else markers['resnet']
plt.plot(data['intensities'], data['eces'], marker=marker, label=model_name)
plt.xlabel('Corruption Intensity')
plt.ylabel('ECE')
plt.title('Expected Calibration Error')
plt.legend()
plt.grid(True)
# Plot NLL
plt.subplot(1, 3, 3)
for model_name, data in processed_data.items():
marker = markers['v1'] if 'v1' in model_name else markers['storesnet'] if 'storesnet' in model_name else markers['resnet']
plt.plot(data['intensities'], data['nlls'], marker=marker, label=model_name)
plt.xlabel('Corruption Intensity')
plt.ylabel('NLL')
plt.title('Negative Log-Likelihood')
plt.legend()
plt.grid(True)
plt.suptitle(f'Evaluation Results on {dataset_name}')
plt.tight_layout(rect=[0, 0, 1, 0.95])
plt.savefig(f'./plot_results/quantitative_result.png')
plt.show()
def generate_results_table(processed_data, output_file='./plot_results/evaluation_results.csv'):
tables = []
for model_name, data in processed_data.items():
table = pd.DataFrame({
'Model': model_name,
'Intensity': data['intensities'],
'Accuracy': data['accuracies'],
'ECE': data['eces'],
'NLL': data['nlls']
})
tables.append(table)
full_table = pd.concat(tables)
full_table.to_csv(output_file, index=False)
print(f"Results table saved to {output_file}")
os.makedirs(f'./plot_results', exist_ok=True)
# Load and process results
results = load_results_from_json(result_file)
processed_data = process_data(results)
plot_results(processed_data)
# generate_results_table(processed_data)