-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlambda_function.py
49 lines (31 loc) · 1.17 KB
/
lambda_function.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
# -*- coding: utf-8 -*-
"""TFlite.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1ljjMWvfE0MfKf8s-gtKaG5nkWLG9r8D4
"""
import numpy as np
from PIL import Image
import tflite_runtime.interpreter as tflite
from keras_image_helper import create_preprocessor
preprocessor = create_preprocessor('xception', target_size=(250, 250))
interpreter = tflite.Interpreter(model_path='cassava.tflite')
interpreter.allocate_tensors()
input_index = interpreter.get_input_details()[0]['index']
output_index = interpreter.get_output_details()[0]['index']
disease_class_list = ['Cassava Bacterial Blight (CBB)',
'Cassava Brown Streak Disease (CBSD)',
'Cassava Green Mottle (CGM)',
'Cassava Mosaic Disease (CMD)',
'Healthy']
def predict(url):
X = preprocessor.from_url(url)
interpreter.set_tensor(input_index, X)
interpreter.invoke()
preds = interpreter.get_tensor(output_index)
float_predictions = preds[0].tolist()
return dict(zip(disease_class_list, float_predictions)),disease_class_list[np.argmax(preds)]
def lambda_handler(event, context):
url = event['url']
result = predict(url)
return result