-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_S3DIS_Sqn.py
379 lines (329 loc) · 21 KB
/
main_S3DIS_Sqn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
"""
main entry and S3DIS class for SQN network, reproduced based on the SQN paper, check https://arxiv.org/abs/2104.04891
Author: Chao YIN
Email: [email protected]
history:
- Oct. 15, 2021, create the file
difference from the codebase (main_S3DIS.py of Official RandLA-Net)
- add CLI arguments (e.g., sub_grid_size, weak_label_ratio) support with argparse to allow more flexible hyper-tuning using bash scripts
- create S3DIS_SQN class
- adjust the rest code accordingly
"""
import numpy as np
import time, pickle, argparse, glob, os, random
from os.path import join
from SqnNet import SqnNet
from tester_S3DIS_Sqn import ModelTester
from helper_ply import read_ply
# S3DIS for Sqn config
from helper_tool import ConfigS3DIS_Sqn as cfg
from helper_tool import DataProcessing as DP
from helper_tool import Plot
import tensorflow as tf
# tf.enable_eager_execution()
class S3DIS_SQN:
"""S3DIS dataset class tailored for Sqn model (w/o inheriting any TensorFlow built-in classes)
Despite not inheriting any TensorFlow built-in classes, this declaration follow the tensorflow's dataset pattern: data pipeline w. iterator and initilizer
- __int__(): initialize the dataset basic settings, e.g., dataset path, test_area_idx=5, classes, categories, and physical file paths, etc.Then it will call load_sub_sampled_clouds().
- load_sub_sampled_clouds(): load S3DIS dataset physical sub-sampled files as training and test clouds; (note: these sub-sub-sampled files are prepared by the data_prepare_s3dis.py)
- init_input_pipeline(): create tensorflow built-in dataset object using the `from_generator` method, then create its iterator and train,val_init_op operator for session running.
- get_batch_gen(): use for the above init_input_pipeline() to obtain batch data
- get_tf_mapping2(): use for the above init_input_pipeline() to organize each stage's points,neighbors,pools and up_samples into a list.
"""
def __init__(self, test_area_idx, cfg):
self.name = 'S3DIS_SQN'
# self.path = '/data/S3DIS'
self.path = 'data/S3DIS'
self.label_to_names = {0: 'ceiling',
1: 'floor',
2: 'wall',
3: 'beam',
4: 'column',
5: 'window',
6: 'door',
7: 'table',
8: 'chair',
9: 'sofa',
10: 'bookcase',
11: 'board',
12: 'clutter'}
self.num_classes = len(self.label_to_names)
self.label_values = np.sort([k for k, v in self.label_to_names.items()])
self.label_to_idx = {l: i for i, l in enumerate(self.label_values)}
self.ignored_labels = np.array([])
self.weak_label_ratio=cfg.weak_label_ratio
self.val_split = 'Area_' + str(test_area_idx)
self.all_files = glob.glob(join(self.path, 'original_ply', '*.ply')) # scan the folder for all ply files
# Initiate containers
# validation projection indice list, each item represents projection nnest id over a sub_pc for each corresponding raw pc pt-yc
self.val_proj = []
# validation labels list, each item represent a validation sub_pc's label-yc
self.val_labels = []
# possibility for control to randomly choose a point in the sub_pc evenly-yc
self.possibility = {}
self.min_possibility = {}
# {training,validation} sub_pc's kd_trees, colors, labels and names, and weak_label_mask
self.input_trees = {'training': [], 'validation': []}
self.input_colors = {'training': [], 'validation': []}
self.input_labels = {'training': [], 'validation': []}
self.input_weak_labels = {'training': [], 'validation': []}
self.input_names = {'training': [], 'validation': []}
# fill the above containers by reading physical sub_pc files-yc
self.load_sub_sampled_clouds(cfg.sub_grid_size)
def load_sub_sampled_clouds(self, sub_grid_size):
"""load sub_sampled physical files and fill all the containers, input_{trees, colors, labels, names} and val_{proj,labels} and weak label_masks-yc
Args:
sub_grid_size ([type]): sub-sampling grid size, e.g., 0.040
"""
tree_path = join(self.path, 'input_{:.3f}'.format(sub_grid_size))
for i, file_path in enumerate(self.all_files):
t0 = time.time()
cloud_name = file_path.split('/')[-1][:-4]
if self.val_split in cloud_name:
cloud_split = 'validation'
else:
cloud_split = 'training'
# Name of the input files
kd_tree_file = join(tree_path, '{:s}_KDTree.pkl'.format(cloud_name)) # e.g., Area_1_conferenceRoom_1_KDTree.pkl
sub_ply_file = join(tree_path, '{:s}.ply'.format(cloud_name)) # e.g., Area_1_conferenceRoom_1.ply
data = read_ply(sub_ply_file) # ply format: x,y,z,red,gree,blue,class
sub_colors = np.vstack((data['red'], data['green'], data['blue'])).T # (N',3), note the transpose symbol
sub_labels = data['class']
# read weak labels for sub_pc
weak_label_folder = join(self.path, 'weak_label_{}'.format(self.weak_label_ratio))
weak_label_sub_file = join(weak_label_folder, file_path.split('/')[-1][:-4] + '_sub_weak_label.ply')
if os.path.exists(weak_label_sub_file):
weak_data = read_ply(weak_label_sub_file) # ply format: x,y,z,red,gree,blue,class
weak_label_sub_mask = weak_data['weak_mask'] # (N',) to align same shape as sub_labels
else:
raise NotImplementedError("run the dataset_prepare_s3dis_sqn.py to generate weak labels for raw and sub PC")
# Read pkl with search tree
with open(kd_tree_file, 'rb') as f:
search_tree = pickle.load(f)
# input_xx is a dict contain training or validation info for all sub_pc, each of them contain a list
self.input_trees[cloud_split] += [search_tree]
self.input_colors[cloud_split] += [sub_colors]
self.input_labels[cloud_split] += [sub_labels]
# HACK: for validation set, all points should have labels meaning the weak_label_ratio is 1(i.e., all points have labels)
if cloud_split == 'validation':
self.input_weak_labels[cloud_split] += [np.ones_like(weak_label_sub_mask)]
else:
self.input_weak_labels[cloud_split] += [weak_label_sub_mask]
self.input_names[cloud_split] += [cloud_name]
size = sub_colors.shape[0] * 4 * 7
print('{:s} {:.1f} MB loaded in {:.1f}s'.format(kd_tree_file.split('/')[-1], size * 1e-6, time.time() - t0))
print('\nPreparing reprojected indices for testing')
# Get validation and test reprojected indices and labels (this is useful for validating on all raw points)
for i, file_path in enumerate(self.all_files):
t0 = time.time()
cloud_name = file_path.split('/')[-1][:-4]
# Validation projection and labels
if self.val_split in cloud_name:
proj_file = join(tree_path, '{:s}_proj.pkl'.format(cloud_name))
with open(proj_file, 'rb') as f:
proj_idx, labels = pickle.load(f)
self.val_proj += [proj_idx]
self.val_labels += [labels]
print('{:s} done in {:.1f}s'.format(cloud_name, time.time() - t0))
"""
Generate the input data flow
Intuitively, it prepare data training examples, each pc will generate numerous point cloud training/validation examples by selecting a center point in the pc evenly, then select center point's neighboring points within a radius but not more than a threshold (e.g.,10000)-yc
"""
def get_batch_gen(self, split):
if split == 'training':
num_per_epoch = cfg.train_steps * cfg.batch_size
elif split == 'validation':
num_per_epoch = cfg.val_steps * cfg.val_batch_size
# assign a possibility for all sub_pc and their containing points-yc
self.possibility[split] = []
self.min_possibility[split] = []
# Random initialize
for i, tree in enumerate(self.input_colors[split]):
self.possibility[split] += [np.random.rand(tree.data.shape[0]) * 1e-3]
self.min_possibility[split] += [float(np.min(self.possibility[split][-1]))]
def spatially_regular_gen():
# Generator loop
for i in range(num_per_epoch):
# Choose the cloud with the lowest probability
cloud_idx = int(np.argmin(self.min_possibility[split]))
# choose the point with the minimum of possibility in the cloud as query point
point_ind = np.argmin(self.possibility[split][cloud_idx])
# Get all points within the cloud from tree structure
points = np.array(self.input_trees[split][cloud_idx].data, copy=False)
# Center point of input region
center_point = points[point_ind, :].reshape(1, -1)
# Add noise to the center point
noise = np.random.normal(scale=cfg.noise_init / 10, size=center_point.shape)
pick_point = center_point + noise.astype(center_point.dtype)
# Check if the number of points in the selected cloud is less than the predefined num_points
if len(points) < cfg.num_points:
# Query all points within the cloud
queried_idx = self.input_trees[split][cloud_idx].query(pick_point, k=len(points))[1][0]
else:
# Query the predefined number of points
queried_idx = self.input_trees[split][cloud_idx].query(pick_point, k=cfg.num_points)[1][0]
# Shuffle index
queried_idx = DP.shuffle_idx(queried_idx)
# Get corresponding points and colors based on the index
queried_pc_xyz = points[queried_idx]
queried_pc_xyz = queried_pc_xyz - pick_point
queried_pc_colors = self.input_colors[split][cloud_idx][queried_idx]
queried_pc_labels = self.input_labels[split][cloud_idx][queried_idx]
queried_pc_weak_label_mask = self.input_weak_labels[split][cloud_idx][queried_idx]
# Update the possibility of the selected points
dists = np.sum(np.square((points[queried_idx] - pick_point).astype(np.float32)), axis=1)
delta = np.square(1 - dists / np.max(dists))
self.possibility[split][cloud_idx][queried_idx] += delta
self.min_possibility[split][cloud_idx] = float(np.min(self.possibility[split][cloud_idx]))
# up_sampled with replacement
if len(points) < cfg.num_points:
queried_pc_xyz, queried_pc_colors, queried_idx, queried_pc_labels, queried_pc_weak_label_mask = \
DP.data_aug_Sqn(queried_pc_xyz, queried_pc_colors, queried_pc_labels,
queried_pc_weak_label_mask, queried_idx, cfg.num_points)
if True:
yield (queried_pc_xyz.astype(np.float32),
queried_pc_colors.astype(np.float32),
queried_pc_labels,
queried_pc_weak_label_mask,
queried_idx.astype(np.int32),
np.array([cloud_idx], dtype=np.int32))
gen_func = spatially_regular_gen
gen_types = (tf.float32, tf.float32, tf.int32, tf.int32, tf.int32, tf.int32)
gen_shapes = ([None, 3], [None, 3], [None], [None], [None], [None])
return gen_func, gen_types, gen_shapes
@staticmethod
def get_tf_mapping2():
"""mapping for tranlating dataset's tensor to another form-yc
The params of tf_map() just corresponds to {xyz,features,labels,idx,cloud_idx};
Considering there are cfg.num_layers(e.g., 4) stages in the encoder, each stage will have a sub-sampling process, use a list (named flat_inputs) for managing all of them (i.e., sub_sampled point cloud info at these stages). For example, if we have 4 sub-sampling processes, the flat_inputs list will have 20 items, like: [input_points, input_neighbors, input_pools, input_up_samples, batch_features, batch_labels, batch_pc_idx(i.e. points idx in the cloud),batch_cloud_idx], so 4*(cfg.num_layers+1) items in total
Returns:
[type]: [description]
"""
def tf_map(batch_xyz, batch_features, batch_labels, batch_weak_label_mask, batch_pc_idx, batch_cloud_idx):
batch_features = tf.concat([batch_xyz, batch_features], axis=-1)
input_points = [] # (B,N,3), (B,N/4,3), (B,N/16,3), (B,N/64,3), (B,N/256,3)
input_neighbors = []
input_pools = []
input_up_samples = []
batch_xyz_cur=batch_xyz
for i in range(cfg.num_layers):
neighbour_idx = tf.py_func(DP.knn_search, [batch_xyz_cur, batch_xyz_cur, cfg.k_n], tf.int32) # (B,N,k)
sub_points = batch_xyz_cur[:, :tf.shape(batch_xyz_cur)[1] // cfg.sub_sampling_ratio[i], :] # retrieve first N/sub_sampling_ratio pts
pool_i = neighbour_idx[:, :tf.shape(batch_xyz_cur)[1] // cfg.sub_sampling_ratio[i], :] # sub_sampled points' id
up_i = tf.py_func(DP.knn_search, [sub_points, batch_xyz_cur, 1], tf.int32) # (B,N,K) over the sub_points
# input_points.append(batch_xyz)
# input_neighbors.append(neighbour_idx)
# input_pools.append(pool_i)
# input_up_samples.append(up_i)
# batch_xyz = sub_points
input_points.append(sub_points)
input_neighbors.append(neighbour_idx)
input_pools.append(pool_i)
input_up_samples.append(up_i)
batch_xyz_cur = sub_points
input_list = input_points + input_neighbors + input_pools + input_up_samples
# add batch_xyz for SQN, which is slightly different from RandLA-Net
# input_list += [batch_features, batch_labels, batch_weak_label_mask, batch_pc_idx, batch_cloud_idx]
input_list += [batch_xyz, batch_features, batch_labels, batch_weak_label_mask, batch_pc_idx, batch_cloud_idx]
return input_list # contains: [input_points, input_neighbors, input_pools, input_up_samples, batch_features, batch_labels, batch_pc_idx(i.e. points idx in the cloud),batch_cloud_idx], so 4*(cfg.num_layers+1) items in total; Note: for weakly semantic segmentation, add 1 more weak_label_mask and batch_xyz
return tf_map
def init_input_pipeline(self):
"""
obtain X,Y pair for training/validation and {train,val}_init_op operator following tensorflow pipline pattern.
"""
print('Initiating input pipelines')
cfg.ignored_label_inds = [self.label_to_idx[ign_label] for ign_label in self.ignored_labels]
gen_function, gen_types, gen_shapes = self.get_batch_gen('training')
gen_function_val, _, _ = self.get_batch_gen('validation')
self.train_data = tf.data.Dataset.from_generator(gen_function, gen_types, gen_shapes) # create the dataset from a generator
self.val_data = tf.data.Dataset.from_generator(gen_function_val, gen_types, gen_shapes)
self.batch_train_data = self.train_data.batch(cfg.batch_size) # batch the dataset object
self.batch_val_data = self.val_data.batch(cfg.val_batch_size)
map_func = self.get_tf_mapping2()
self.batch_train_data = self.batch_train_data.map(map_func=map_func) # map to another form, each batch is a list containing 4*(num_layers+1) items corresponding to points, features, labels, cloud_idx, point_idx at different sub-sampled stages for each batch
self.batch_val_data = self.batch_val_data.map(map_func=map_func)
self.batch_train_data = self.batch_train_data.prefetch(cfg.batch_size)
self.batch_val_data = self.batch_val_data.prefetch(cfg.val_batch_size)
iter = tf.data.Iterator.from_structure(self.batch_train_data.output_types, self.batch_train_data.output_shapes)
self.flat_inputs = iter.get_next() # iterator, each returns a flat_inputs list containing 20 items
# prepare operator for session to run
self.train_init_op = iter.make_initializer(self.batch_train_data)
self.val_init_op = iter.make_initializer(self.batch_val_data)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--rng_seed", type=int, default=123, help='manual seed')
parser.add_argument("--batch_size", type=int, default=3, help='batch size for training')
parser.add_argument("--val_batch_size", type=int, default=4, help='batch size for validation')
parser.add_argument('--gpu', type=int, default=0, help='the number of GPUs to use [default: 0]')
parser.add_argument("--num_points", type=int, default=40960, help='the number of points for each PC example')
parser.add_argument('--sub_grid_size', type=float, default=0.04, help='grid-sampling size')
parser.add_argument("--max_epoch", type=int, default=400, help='max epoch for training')
parser.add_argument('--test_area', type=int, default=5, help='Which area to use for test, option: 1-6 [default: 5]')
parser.add_argument('--mode', type=str, default='train', help='options: train, test, vis')
parser.add_argument('--model_path', type=str, default='None', help='pretrained model path')
# KEY: weak label ratio is defined as the number of weak points over the raw poinits
parser.add_argument('--weak_label_ratio', type=float, default=0.001, help='the weakly semantic segmentation ratio')
parser.add_argument('--concat_type', type=str, default='1234', help='how to concat point query features, default is 1234 meaning the queried features at stages 1-4 are all concatenated')
FLAGS = parser.parse_args()
# set fixed seeds for reproducible results
random.seed(FLAGS.rng_seed)
np.random.seed(FLAGS.rng_seed)
# tf.random.set_seed(FLAGS.rng_seed)
tf.random.set_random_seed(FLAGS.rng_seed)
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ['CUDA_VISIBLE_DEVICES'] = str(FLAGS.gpu)
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
Mode = FLAGS.mode
test_area = FLAGS.test_area
# override the config with argparse's arguments
cfg.num_points=FLAGS.num_points
cfg.max_epoch=FLAGS.max_epoch
cfg.batch_size=FLAGS.batch_size
cfg.val_batch_size=FLAGS.val_batch_size
cfg.sub_grid_size=FLAGS.sub_grid_size
cfg.weak_label_ratio=FLAGS.weak_label_ratio
cfg.concat_type=FLAGS.concat_type
# create S3DIS dataset object for weakly semseg using test_area as validation/test set, the rest as training set-yc
dataset = S3DIS_SQN(test_area, cfg)
dataset.init_input_pipeline()
"""provide 3 functionality: training, testing and visualization-yc
- training; pass the dataset object and dataset config to create the Network object, then start training
- testing; pass in the model checkpoint and create ModelTest object, then start testing
- visualization; plot the raw pc and sub_pc
"""
if Mode == 'train':
# NOTE: cfg is S3DIS object w. common configs, a global variable here.
model = SqnNet(dataset, cfg)
model.train(dataset)
elif Mode == 'test':
cfg.saving = False
model = SqnNet(dataset, cfg)
if FLAGS.model_path is not 'None':
chosen_snap = FLAGS.model_path
else:
chosen_snapshot = -1
logs = np.sort([os.path.join(cfg.results_dir, f) for f in os.listdir(cfg.results_dir) if f.startswith('Log')])
chosen_folder = logs[-1]
snap_path = join(chosen_folder, 'snapshots')
snap_steps = [int(f[:-5].split('-')[-1]) for f in os.listdir(snap_path) if f[-5:] == '.meta']
chosen_step = np.sort(snap_steps)[-1]
chosen_snap = os.path.join(snap_path, 'snap-{:d}'.format(chosen_step))
# TODO:
tester = ModelTester(model, dataset, restore_snap=chosen_snap)
tester.test(model, dataset)
else:
##################
# Visualize data #
##################
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
# use session to start the dataset iterator
sess.run(dataset.train_init_op)
while True:
# obtain the iterator's next element
flat_inputs = sess.run(dataset.flat_inputs)
pc_xyz = flat_inputs[4 * cfg.num_layers] # original xyz
sub_pc_xyz = flat_inputs[0] # sub_pc xyz for 1st stage
labels = flat_inputs[4 * cfg.num_layers + 2] # sub_pc labels
Plot.draw_pc_sem_ins(pc_xyz[0, :, :], labels[0, :]) # only draw 1st batch's raw PC
Plot.draw_pc_sem_ins(sub_pc_xyz[0, :, :], labels[0, 0:np.shape(sub_pc_xyz)[1]]) # draw 1st batch's sub PC