-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPythonCodeFile
169 lines (97 loc) · 3.35 KB
/
PythonCodeFile
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import seaborn as sn
%matplotlib inline
train=pd.read_csv(r"A:\Data Science Challenge in 7 days\train_qnU1GcL.csv")
test=pd.read_csv(r"A:\Data Science Challenge in 7 days\test_LxCaReE_DvdCKVT_gimWwKr.csv")
train=train.drop('id',axis=1)
idcol=test['id']
test=test.drop('id',axis=1)
train.shape, test.shape
train.columns
train.head()
test.columns
train.dtypes
#UNIVARIATE ANALYSIS
train['target'].value_counts()
train['target'].value_counts(normalize=True)
train['target'].value_counts().plot.bar()
sn.distplot(train["age_in_days"])
sn.distplot(train["Income"])
sn.distplot(train["no_of_premiums_paid"])
train['sourcing_channel'].value_counts().plot.bar()
#target vs sourcing channel
print(pd.crosstab(train['sourcing_channel'],train['target']))
job=pd.crosstab(train['sourcing_channel'],train['target'])
job.div(job.sum(1).astype(float), axis=0).plot(kind="bar", stacked=True, figsize=(8,8))
plt.xlabel('sourcing_channel')
plt.ylabel('Percentage')
#target vs residence_area_type
print(pd.crosstab(train['residence_area_type'],train['target']))
job=pd.crosstab(train['residence_area_type'],train['target'])
job.div(job.sum(1).astype(float), axis=0).plot(kind="bar", stacked=True, figsize=(8,8))
plt.xlabel('residence_area_type')
plt.ylabel('Percentage')
corr = train.corr()
mask = np.array(corr)
mask[np.tril_indices_from(mask)] = False
fig,ax= plt.subplots()
fig.set_size_inches(20,10)
sn.heatmap(corr, mask=mask,vmax=.9, square=True,annot=True, cmap="YlGnBu")
corr
train.isnull().sum()
test.isnull().sum()
train.fillna(train.mean(),inplace=True)
test.fillna(test.mean(),inplace=True)
#model building
target = train['target']
train = train.drop('target',1)
train = pd.get_dummies(train)
#FOR TEST
test = pd.get_dummies(test)
#x_train1=train.drop('target',axis=1)
#y_train1=train['target']
from sklearn.model_selection import train_test_split
X_train, X_val, y_train, y_val = train_test_split(train, target, test_size = 0.2, random_state=5)
#LOGISTIC REG
from sklearn.linear_model import LogisticRegression
lreg = LogisticRegression()
# fitting the model on X_train and y_train
lreg.fit(X_train,y_train)
prediction = lreg.predict(X_val)
from sklearn.metrics import accuracy_score
# calculating the accuracy score
accuracy_score(y_val, prediction)
X_val.shape, test.shape
X_val.columns
test.columns
finalpred=lreg.predict(test)
print(finalpred[500:])
submission0 = pd.DataFrame()
submission0['id'] = idcol
submission0['target'] = finalpred
submission0.to_csv('LRans.csv', header=True, index=False)
res1 = pd.DataFrame(finalpred)
#res1.columns = ["target"]
#res1.to_csv("ANSWERs.csv")
#soln=pd.read_csv("ANSWERs.csv")
#soln1=soln['targetfinalpred']
#soln1.value_counts()
#Decision
from sklearn.tree import DecisionTreeClassifier
clf = DecisionTreeClassifier(max_depth=45, random_state=40)
clf.fit(X_train,y_train)
predict = clf.predict(X_val)
accuracy_score(y_val, predict)
test_prediction = clf.predict(test)
submission = pd.DataFrame()
submission['id'] = idcol
submission['target'] = test_prediction
submission.to_csv('submission.csv', header=True, index=False)
#THIS IS THE FINAL STORED VALUES FOR SUBMISSION
soln2=pd.read_csv("submission.csv")
soln3=soln2['target']
soln3.value_counts()
#soln3.dtypes()