This repository has been archived by the owner on Aug 23, 2019. It is now read-only.
forked from abisee/pointer-generator
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdecode_eval.py
246 lines (207 loc) · 9.91 KB
/
decode_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
"""
This file contains code to run beam search decoding, including running ROUGE evaluation and
producing JSON datafiles for the in-browser attention visualizer, which can be found here:
https://github.com/abisee/attn_vis.
"""
import os
import time
import tensorflow as tf
import beam_search
import data
import json
import util
import logging
import numpy as np
FLAGS = tf.app.flags.FLAGS
SECS_UNTIL_NEW_CKPT = 60 # max number of seconds before loading new checkpoint
class BeamSearchDecoder(object):
"""
Beam search decoder.
"""
def __init__(self, model, batcher, vocab):
"""
Initialize decoder.
Args:
model: a Seq2SeqAttentionModel object.
batcher: a Batcher object.
vocab: Vocabulary object
"""
self._model = model
self._model.build_graph()
self._batcher = batcher
self._vocab = vocab
self._saver = tf.train.Saver() # we use this to load checkpoints for decoding
self._sess = tf.Session(config=util.get_config())
# Load an initial checkpoint to use for decoding
ckpt_path = util.load_ckpt(self._saver, self._sess)
if FLAGS.single_pass:
# Make a descriptive decode directory name
ckpt_name = "ckpt-" + ckpt_path.split('-')[-1] # this is something of the form "ckpt-123456"
self._decode_dir = os.path.join(FLAGS.log_root, get_decode_dir_name(ckpt_name))
if os.path.exists(self._decode_dir):
raise Exception(
"single_pass decode directory %s should not already exist" % self._decode_dir
)
else: # Generic decode dir name
self._decode_dir = os.path.join(FLAGS.log_root, "decode")
# Make the decode dir if necessary
if not os.path.exists(self._decode_dir): os.mkdir(self._decode_dir)
if FLAGS.single_pass:
# Make the dirs to contain output written in the correct format for pyrouge
self._rouge_ref_dir = os.path.join(self._decode_dir, "reference")
if not os.path.exists(self._rouge_ref_dir): os.mkdir(self._rouge_ref_dir)
self._rouge_dec_dir = os.path.join(self._decode_dir, "decoded")
if not os.path.exists(self._rouge_dec_dir): os.mkdir(self._rouge_dec_dir)
def decode(self):
"""
Decode examples until data is exhausted (if FLAGS.single_pass) and return, or decode
indefinitely, loading latest checkpoint at regular intervals.
"""
counter = 0
scores = []
while True:
batch = self._batcher.next_batch() # 1 example repeated across batch
if batch is None: # finished decoding dataset in single_pass mode
assert FLAGS.single_pass, "Dataset exhausted, but we are not in single_pass mode"
tf.logging.info("Decoder has finished reading dataset for single_pass.")
tf.logging.info(
"Output has been saved in %s and %s. Now starting ROUGE eval...",
self._rouge_ref_dir,
self._rouge_dec_dir,
)
tf.logging.info("Mean score: %s", sum(scores) / len(scores))
return
original_article = batch.original_articles[0] # string
original_abstract = batch.original_abstracts[0] # string
article_withunks = data.show_art_oovs(original_article, self._vocab) # string
abstract_withunks = data.show_abs_oovs(original_abstract, self._vocab, batch.art_oovs[0]) # string
# Run beam search to get best Hypothesis
t_beam = time.time()
best_hyp, best_score = beam_search.run_beam_search(
self._sess, self._model, self._vocab, batch, FLAGS.beam_size, FLAGS.max_dec_steps,
FLAGS.min_dec_steps, FLAGS.trace_path
)
scores.append(best_score)
tf.logging.info("Time to decode one example: %f", time.time() - t_beam)
tf.logging.info("Mean score: %s", sum(scores) / len(scores))
# Extract the output ids from the hypothesis and convert back to words
decoded_words = best_hyp.token_strings[1:]
# Remove the [STOP] token from decoded_words, if necessary
try:
fst_stop_idx = decoded_words.index(data.STOP_DECODING) # index of the (first) [STOP] symbol
decoded_words = decoded_words[:fst_stop_idx]
except ValueError:
decoded_words = decoded_words
decoded_output = ' '.join(decoded_words) # single string
if FLAGS.single_pass:
self.write_for_rouge(original_abstract, decoded_words, counter) # write ref summary and decoded summary to file, to eval with pyrouge later
counter += 1 # this is how many examples we've decoded
else:
# log output to screen
print_results(
article_withunks, abstract_withunks, decoded_output, best_hyp, [best_score]
)
# write info to .json file for visualization tool
self.write_for_attnvis(
article_withunks, abstract_withunks, decoded_words, best_hyp.attn_dists,
best_hyp.p_gens, best_hyp.log_probs
)
raw_input()
def break_into_sentences(self, tokens):
sents = []
while len(tokens) > 0:
try:
fst_period_idx = tokens.index(".")
except ValueError: # there is text remaining that doesn't end in "."
fst_period_idx = len(tokens)
sent = tokens[:fst_period_idx + 1] # sentence up to and including the period
tokens = tokens [fst_period_idx+1:] # everything else
sents.append(' '.join(sent))
return sents
def write_for_rouge(self, abstract, decoded_words, ex_index):
"""
Write output to file in correct format for eval with pyrouge. This is called in
single_pass mode.
Args:
abstract: string
decoded_words: list of strings
ex_index: int, the index with which to label the files
"""
# First, divide decoded output into sentences
decoded_sents = self.break_into_sentences(decoded_words)
reference_sents = self.break_into_sentences(abstract.split(' '))
# pyrouge calls a perl script that puts the data into HTML files.
# Therefore we need to make our output HTML safe.
decoded_sents = [make_html_safe(w) for w in decoded_sents]
reference_sents = [make_html_safe(w) for w in reference_sents]
# Write to file
ref_file = os.path.join(self._rouge_ref_dir, "%06d_reference.txt" % ex_index)
decoded_file = os.path.join(self._rouge_dec_dir, "%06d_decoded.txt" % ex_index)
with open(ref_file, "w") as f:
for idx,sent in enumerate(reference_sents):
f.write(sent) if idx==len(reference_sents)-1 else f.write(sent+"\n")
with open(decoded_file, "w") as f:
for idx,sent in enumerate(decoded_sents):
f.write(sent) if idx==len(decoded_sents)-1 else f.write(sent+"\n")
tf.logging.info("Wrote example %i to file" % ex_index)
def write_for_attnvis(self, article, abstract, decoded_words, attn_dists, p_gens, log_probs):
"""
Write some data to json file, which can be read into the in-browser attention visualizer
tool: https://github.com/abisee/attn_vis
Args:
article: The original article string.
abstract: The human (correct) abstract string.
attn_dists: List of arrays; the attention distributions.
decoded_words: List of strings; the words of the generated summary.
p_gens: List of scalars; the p_gen values. If not running in pointer-generator mode,
list of None.
"""
article_lst = article.split() # list of words
decoded_lst = decoded_words # list of decoded words
to_write = {
'article_lst': [make_html_safe(t) for t in article_lst],
'decoded_lst': [make_html_safe(t) for t in decoded_lst],
'abstract_str': make_html_safe(abstract),
'attn_dists': attn_dists,
'probs': np.exp(log_probs).tolist(),
'p_gens': p_gens,
}
output_fname = os.path.join(self._decode_dir, 'attn_vis_data.json')
with open(output_fname, 'w') as output_file:
json.dump(to_write, output_file)
tf.logging.info('Wrote visualization data to %s', output_fname)
def print_results(article, abstract, decoded_output, hyp, scores):
"""
Prints the article, the reference summmary and the decoded summary to screen.
"""
print ""
#tf.logging.info('ARTICLE: %s', article)
#tf.logging.info('REFERENCE SUMMARY: %s', abstract)
tf.logging.info('GENERATED SUMMARY: %s', decoded_output)
tf.logging.info('SCORES: %s', ', '.join(str(x) for x in scores))
print ""
def make_html_safe(s):
"""
Replace any angled brackets in string s to avoid interfering with HTML attention visualizer.
"""
s.replace("<", "<")
s.replace(">", ">")
return s
def get_decode_dir_name(ckpt_name):
"""
Make a descriptive name for the decode dir, including the name of the checkpoint we use to
decode. This is called in single_pass mode.
"""
if "train" in FLAGS.data_path: dataset = "train"
elif "val" in FLAGS.data_path: dataset = "val"
elif "test" in FLAGS.data_path: dataset = "test"
else:
raise ValueError(
"FLAGS.data_path %s should contain one of train, val or test" % (FLAGS.data_path)
)
dirname = "decode_%s_%imaxenc_%ibeam_%imindec_%imaxdec" % (
dataset, FLAGS.max_enc_steps, FLAGS.beam_size, FLAGS.min_dec_steps, FLAGS.max_dec_steps
)
if ckpt_name is not None:
dirname += "_%s" % ckpt_name
return dirname