-
Notifications
You must be signed in to change notification settings - Fork 77
/
Copy pathsb3_demo.py
56 lines (42 loc) · 1.75 KB
/
sb3_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
# Minimal SB3 demo using PufferLib's environment wrappers
import argparse
from stable_baselines3 import PPO
from stable_baselines3.common.vec_env import DummyVecEnv, SubprocVecEnv
from stable_baselines3.common.env_util import make_vec_env
from pufferlib.environments import atari
'''
elif args.backend == 'sb3':
from stable_baselines3 import PPO
from stable_baselines3.common.vec_env import DummyVecEnv, SubprocVecEnv
from stable_baselines3.common.env_util import make_vec_env
from sb3_contrib import RecurrentPPO
envs = make_vec_env(lambda: make_env(**args.env),
n_envs=args.train.num_envs, seed=args.train.seed, vec_env_cls=DummyVecEnv)
model = RecurrentPPO("CnnLstmPolicy", envs, verbose=1,
n_steps=args.train.batch_rows*args.train.bptt_horizon,
batch_size=args.train.batch_size, n_epochs=args.train.update_epochs,
gamma=args.train.gamma
)
model.learn(total_timesteps=args.train.total_timesteps)
'''
parser = argparse.ArgumentParser()
parser.add_argument('--env', type=str, default='BreakoutNoFrameskip-v4')
args = parser.parse_args()
env_creator = atari.env_creator(args.env)
envs = make_vec_env(lambda: env_creator(),
n_envs=4, seed=0, vec_env_cls=DummyVecEnv)
model = PPO("CnnPolicy", envs, verbose=1)
model.learn(total_timesteps=2000)
# Demonstrate loading
model.save(f'ppo_{args.env}')
model = PPO.load(f'ppo_{args.env}')
# Watch the agent play
env = atari.make_env(args.env, render_mode='human')
terminal = True
for _ in range(1000):
if terminal or truncated:
ob, _ = env.reset()
ob = ob.reshape(1, *ob.shape)
action, _states = model.predict(ob)
ob, reward, terminal, truncated, info = env.step(action[0])
env.render()