-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhelpers.py
161 lines (105 loc) · 4.2 KB
/
helpers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
# importing libraries and packages
from urlextract import URLExtract
import pandas as pd
from collections import Counter
from wordcloud import WordCloud
import emoji
extract = URLExtract()
# function to fetch the statistics
def fetch_stats(selected_user, df):
if selected_user != 'Overall':
df = df[df['user'] == selected_user]
# fetch the number of messages
num_messages = df.shape[0]
words = []
for message in df['message']:
words.extend(message.split())
# fetch number of media messages
num_media_messages = df[df['message'] == '<Media omitted>\n'].shape[0]
# fetch number of links shared
links = []
for message in df['message']:
links.extend(extract.find_urls(message))
return num_messages, len(words), num_media_messages, len(links)
# function to extract most busy users
def most_busy_users(df):
x = df['user'].value_counts().head()
df = round((df['user'].value_counts() / df.shape[0]) * 100, 2).reset_index().rename(
columns={'index': 'name', 'user': 'percent'})
return x, df
# function to create wordcloud
def create_wordcloud(selected_user, df):
f = open('stop_hinglish.txt', 'r')
stop_words = f.read()
if selected_user != 'Overall':
df = df[df['user'] == selected_user]
temp = df[df['user'] != 'group_notification']
temp = temp[temp['message'] != '<Media omitted>\n']
# since its main jon to remove hindi-english words from the dataframe
# which makes it easy to read and analyze
def remove_stop_words(message):
y = []
for word in message.lower().split():
if word not in stop_words:
y.append(word)
return " ".join(y)
wc = WordCloud(width=500, height=500, min_font_size=10,
background_color='white')
temp['message'] = temp['message'].apply(remove_stop_words)
df_wc = wc.generate(temp['message'].str.cat(sep=" "))
return df_wc
# function to find the most common words
def most_common_words(selected_user, df):
f = open('stop_hinglish.txt', 'r')
stop_words = f.read()
# select the dataframe based on the selected user
if selected_user != 'Overall':
df = df[df['user'] == selected_user]
# remove the media ommited keywords from the strings
temp = df[df['user'] != 'group_notification']
temp = temp[temp['message'] != '<Media omitted>\n']
words = []
for message in temp['message']:
for word in message.lower().split():
if word not in stop_words:
words.append(word)
most_common_df = pd.DataFrame(Counter(words).most_common(20))
return most_common_df
# function to find emojis properly
def emoji_helper(selected_user, df):
if selected_user != 'Overall':
df = df[df['user'] == selected_user]
emojis = []
for message in df['message']:
emojis.extend([c for c in message if c in emoji.UNICODE_EMOJI['en']])
emoji_df = pd.DataFrame(Counter(emojis).most_common(len(Counter(emojis))))
return emoji_df
def monthly_timeline(selected_user, df):
if selected_user != 'Overall':
df = df[df['user'] == selected_user]
timeline = df.groupby(['year', 'month_num', 'month']).count()[
'message'].reset_index()
time = []
for i in range(timeline.shape[0]):
time.append(timeline['month'][i] + "-" + str(timeline['year'][i]))
timeline['time'] = time
return timeline
def daily_timeline(selected_user, df):
if selected_user != 'Overall':
df = df[df['user'] == selected_user]
daily_timeline = df.groupby('only_date').count()['message'].reset_index()
return daily_timeline
def week_activity_map(selected_user, df):
if selected_user != 'Overall':
df = df[df['user'] == selected_user]
return df['day_name'].value_counts()
def month_activity_map(selected_user, df):
if selected_user != 'Overall':
df = df[df['user'] == selected_user]
return df['month'].value_counts()
def activity_heatmap(selected_user, df):
if selected_user != 'Overall':
df = df[df['user'] == selected_user]
user_heatmap = df.pivot_table(
index='day_name', columns='period', values='message', aggfunc='count').fillna(0)
return user_heatmap