-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprocessing.py
146 lines (117 loc) · 4.41 KB
/
processing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
# imported essesntial libraries
import streamlit as st
import preprocessor
import helpers
import matplotlib.pyplot as plt
import seaborn as sns
# st.title('Chat Analyzer')
# st.image('./media/background5.jpeg', width=700)
# sidebar
st.sidebar.title("Chat Analyzer Primary version")
uploaded_file = st.sidebar.file_uploader("Choose a file")
if uploaded_file is not None:
bytes_data = uploaded_file.getvalue()
data = bytes_data.decode("utf-8")
df = preprocessor.preprocess(data)
st.dataframe(df)
# fetch unique users
user_list = df['user'].unique().tolist()
for x in user_list:
if x == 'group_notification':
user_list.remove('group_notification')
break
# sort the user_list in accending order of names
user_list.insert(0, "Overall")
selected_user = st.sidebar.selectbox("Show analysis wrt", user_list)
if st.sidebar.button("Show analysis"):
# Statistics Area starts
num_messages, words, num_media_messages, num_links = helpers.fetch_stats(
selected_user, df)
st.title("Top Statistics")
col1, col2, col3, col4 = st.columns(4)
with col1:
st.header("Total Messages")
st.title(num_messages)
with col2:
st.header("Total Words")
st.title(words)
with col3:
st.header("Media Shared")
st.title(num_media_messages)
with col4:
st.header("Links Shared")
st.title(num_links)
# finding the most active users in the group(Group level)
if selected_user == 'Overall':
st.title('Most Busy Users')
x, new_df = helpers.most_busy_users(df)
fig, ax = plt.subplots()
col1, col2 = st.columns(2)
with col1:
ax.bar(x.index, x.values, color='red')
plt.xticks(rotation='vertical')
st.pyplot(fig)
with col2:
st.dataframe(new_df)
# WordCloud provides the representation all the words with different font size
st.title("Wordcloud")
df_wc = helpers.create_wordcloud(selected_user, df)
fig, ax = plt.subplots()
ax.imshow(df_wc)
st.pyplot(fig)
# most common words
most_common_df = helpers.most_common_words(selected_user, df)
fig, ax = plt.subplots()
ax.barh(most_common_df[0], most_common_df[1])
plt.xticks(rotation='vertical')
st.title('Most commmon words')
st.pyplot(fig)
# emoji analysis
emoji_df = helpers.emoji_helper(selected_user, df)
st.title("Emoji Analysis")
col1, col2 = st.columns(2)
with col1:
st.dataframe(emoji_df)
with col2:
fig, ax = plt.subplots()
ax.pie(emoji_df[1].head(),
labels=emoji_df[0].head(), autopct="%0.2f")
st.pyplot(fig)
# monthly timeline
st.title("Monthly Timeline")
timeline = helpers.monthly_timeline(selected_user, df)
fig, ax = plt.subplots()
ax.plot(timeline['time'], timeline['message'], color='green')
plt.xticks(rotation='vertical')
st.pyplot(fig)
# daily timeline
st.title("Daily Timeline")
daily_timeline = helpers.daily_timeline(selected_user, df)
fig, ax = plt.subplots()
ax.plot(daily_timeline['only_date'],
daily_timeline['message'], color='black')
plt.xticks(rotation='vertical')
st.pyplot(fig)
# activity map
st.title('Activity Map')
col1, col2 = st.columns(2)
with col1:
st.header("Most busy day")
busy_day = helpers.week_activity_map(selected_user, df)
fig, ax = plt.subplots()
ax.bar(busy_day.index, busy_day.values, color='purple')
plt.xticks(rotation='vertical')
st.pyplot(fig)
with col2:
st.header("Most busy month")
busy_month = helpers.month_activity_map(selected_user, df)
fig, ax = plt.subplots()
ax.bar(busy_month.index, busy_month.values, color='orange')
plt.xticks(rotation='vertical')
st.pyplot(fig)
# heatmap of activity
st.title("Weekly Activity Map")
user_heatmap = helpers.activity_heatmap(selected_user, df)
fig, ax = plt.subplots()
ax = sns.heatmap(user_heatmap)
st.pyplot(fig)