-
Notifications
You must be signed in to change notification settings - Fork 3.4k
/
Copy pathprogress.py
514 lines (424 loc) · 19.3 KB
/
progress.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Progress Bars
=============
Use or override one of the progress bar callbacks.
"""
import importlib
import io
import math
import os
import sys
# check if ipywidgets is installed before importing tqdm.auto
# to ensure it won't fail and a progress bar is displayed
from typing import Optional, Union
if importlib.util.find_spec("ipywidgets") is not None:
from tqdm.auto import tqdm as _tqdm
else:
from tqdm import tqdm as _tqdm
from pytorch_lightning.callbacks import Callback
_PAD_SIZE = 5
class tqdm(_tqdm):
"""
Custom tqdm progressbar where we append 0 to floating points/strings to prevent the progress bar from flickering
"""
@staticmethod
def format_num(n) -> str:
"""Add additional padding to the formatted numbers"""
should_be_padded = isinstance(n, (float, str))
if not isinstance(n, str):
n = _tqdm.format_num(n)
if should_be_padded and "e" not in n:
if "." not in n and len(n) < _PAD_SIZE:
try:
_ = float(n)
except ValueError:
return n
n += "."
n += "0" * (_PAD_SIZE - len(n))
return n
class ProgressBarBase(Callback):
r"""
The base class for progress bars in Lightning. It is a :class:`~pytorch_lightning.callbacks.Callback`
that keeps track of the batch progress in the :class:`~pytorch_lightning.trainer.trainer.Trainer`.
You should implement your highly custom progress bars with this as the base class.
Example::
class LitProgressBar(ProgressBarBase):
def __init__(self):
super().__init__() # important :-)
self.enable = True
def disable(self):
self.enable = False
def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx):
super().on_train_batch_end(trainer, pl_module, outputs, batch, batch_idx, dataloader_idx) # important
percent = (self.train_batch_idx / self.total_train_batches) * 100
sys.stdout.flush()
sys.stdout.write(f'{percent:.01f} percent complete \r')
bar = LitProgressBar()
trainer = Trainer(callbacks=[bar])
"""
def __init__(self):
self._trainer = None
self._train_batch_idx = 0
self._val_batch_idx = 0
self._test_batch_idx = 0
self._predict_batch_idx = 0
@property
def trainer(self):
return self._trainer
@property
def train_batch_idx(self) -> int:
"""
The current batch index being processed during training.
Use this to update your progress bar.
"""
return self._train_batch_idx
@property
def val_batch_idx(self) -> int:
"""
The current batch index being processed during validation.
Use this to update your progress bar.
"""
return self._val_batch_idx
@property
def test_batch_idx(self) -> int:
"""
The current batch index being processed during testing.
Use this to update your progress bar.
"""
return self._test_batch_idx
@property
def predict_batch_idx(self) -> int:
"""
The current batch index being processed during predicting.
Use this to update your progress bar.
"""
return self._predict_batch_idx
@property
def total_train_batches(self) -> int:
"""
The total number of training batches during training, which may change from epoch to epoch.
Use this to set the total number of iterations in the progress bar. Can return ``inf`` if the
training dataloader is of infinite size.
"""
return self.trainer.num_training_batches
@property
def total_val_batches(self) -> int:
"""
The total number of validation batches during validation, which may change from epoch to epoch.
Use this to set the total number of iterations in the progress bar. Can return ``inf`` if the
validation dataloader is of infinite size.
"""
total_val_batches = 0
if self.trainer.enable_validation:
is_val_epoch = (self.trainer.current_epoch + 1) % self.trainer.check_val_every_n_epoch == 0
total_val_batches = sum(self.trainer.num_val_batches) if is_val_epoch else 0
return total_val_batches
@property
def total_test_batches(self) -> int:
"""
The total number of testing batches during testing, which may change from epoch to epoch.
Use this to set the total number of iterations in the progress bar. Can return ``inf`` if the
test dataloader is of infinite size.
"""
return sum(self.trainer.num_test_batches)
@property
def total_predict_batches(self) -> int:
"""
The total number of predicting batches during testing, which may change from epoch to epoch.
Use this to set the total number of iterations in the progress bar. Can return ``inf`` if the
predict dataloader is of infinite size.
"""
return sum(self.trainer.num_predict_batches)
def disable(self):
"""
You should provide a way to disable the progress bar.
The :class:`~pytorch_lightning.trainer.trainer.Trainer` will call this to disable the
output on processes that have a rank different from 0, e.g., in multi-node training.
"""
raise NotImplementedError
def enable(self):
"""
You should provide a way to enable the progress bar.
The :class:`~pytorch_lightning.trainer.trainer.Trainer` will call this in e.g. pre-training
routines like the :ref:`learning rate finder <advanced/lr_finder:Learning Rate Finder>`
to temporarily enable and disable the main progress bar.
"""
raise NotImplementedError
def print(self, *args, **kwargs):
"""
You should provide a way to print without breaking the progress bar.
"""
print(*args, **kwargs)
def on_init_end(self, trainer):
self._trainer = trainer
def on_train_start(self, trainer, pl_module):
self._train_batch_idx = trainer.fit_loop.batch_idx
def on_train_epoch_start(self, trainer, pl_module):
self._train_batch_idx = 0
def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx):
self._train_batch_idx += 1
def on_validation_start(self, trainer, pl_module):
self._val_batch_idx = 0
def on_validation_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx):
self._val_batch_idx += 1
def on_test_start(self, trainer, pl_module):
self._test_batch_idx = 0
def on_test_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx):
self._test_batch_idx += 1
def on_predict_epoch_start(self, trainer, pl_module):
self._predict_batch_idx = 0
def on_predict_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx):
self._predict_batch_idx += 1
class ProgressBar(ProgressBarBase):
r"""
This is the default progress bar used by Lightning. It prints to `stdout` using the
:mod:`tqdm` package and shows up to four different bars:
- **sanity check progress:** the progress during the sanity check run
- **main progress:** shows training + validation progress combined. It also accounts for
multiple validation runs during training when
:paramref:`~pytorch_lightning.trainer.trainer.Trainer.val_check_interval` is used.
- **validation progress:** only visible during validation;
shows total progress over all validation datasets.
- **test progress:** only active when testing; shows total progress over all test datasets.
For infinite datasets, the progress bar never ends.
If you want to customize the default ``tqdm`` progress bars used by Lightning, you can override
specific methods of the callback class and pass your custom implementation to the
:class:`~pytorch_lightning.trainer.trainer.Trainer`:
Example::
class LitProgressBar(ProgressBar):
def init_validation_tqdm(self):
bar = super().init_validation_tqdm()
bar.set_description('running validation ...')
return bar
bar = LitProgressBar()
trainer = Trainer(callbacks=[bar])
Args:
refresh_rate:
Determines at which rate (in number of batches) the progress bars get updated.
Set it to ``0`` to disable the display. By default, the
:class:`~pytorch_lightning.trainer.trainer.Trainer` uses this implementation of the progress
bar and sets the refresh rate to the value provided to the
:paramref:`~pytorch_lightning.trainer.trainer.Trainer.progress_bar_refresh_rate` argument in the
:class:`~pytorch_lightning.trainer.trainer.Trainer`.
process_position:
Set this to a value greater than ``0`` to offset the progress bars by this many lines.
This is useful when you have progress bars defined elsewhere and want to show all of them
together. This corresponds to
:paramref:`~pytorch_lightning.trainer.trainer.Trainer.process_position` in the
:class:`~pytorch_lightning.trainer.trainer.Trainer`.
"""
def __init__(self, refresh_rate: int = 1, process_position: int = 0):
super().__init__()
self._refresh_rate = refresh_rate
self._process_position = process_position
self._enabled = True
self.main_progress_bar = None
self.val_progress_bar = None
self.test_progress_bar = None
self.predict_progress_bar = None
def __getstate__(self):
# can't pickle the tqdm objects
state = self.__dict__.copy()
state["main_progress_bar"] = None
state["val_progress_bar"] = None
state["test_progress_bar"] = None
state["predict_progress_bar"] = None
return state
@property
def refresh_rate(self) -> int:
return self._refresh_rate
@property
def process_position(self) -> int:
return self._process_position
@property
def is_enabled(self) -> bool:
return self._enabled and self.refresh_rate > 0
@property
def is_disabled(self) -> bool:
return not self.is_enabled
def disable(self) -> None:
self._enabled = False
def enable(self) -> None:
self._enabled = True
def init_sanity_tqdm(self) -> tqdm:
"""Override this to customize the tqdm bar for the validation sanity run."""
bar = tqdm(
desc="Validation sanity check",
position=(2 * self.process_position),
disable=self.is_disabled,
leave=False,
dynamic_ncols=True,
file=sys.stdout,
)
return bar
def init_train_tqdm(self) -> tqdm:
"""Override this to customize the tqdm bar for training."""
bar = tqdm(
desc="Training",
initial=self.train_batch_idx,
position=(2 * self.process_position),
disable=self.is_disabled,
leave=True,
dynamic_ncols=True,
file=sys.stdout,
smoothing=0,
)
return bar
def init_predict_tqdm(self) -> tqdm:
"""Override this to customize the tqdm bar for predicting."""
bar = tqdm(
desc="Predicting",
initial=self.train_batch_idx,
position=(2 * self.process_position),
disable=self.is_disabled,
leave=True,
dynamic_ncols=True,
file=sys.stdout,
smoothing=0,
)
return bar
def init_validation_tqdm(self) -> tqdm:
"""Override this to customize the tqdm bar for validation."""
# The main progress bar doesn't exist in `trainer.validate()`
has_main_bar = self.main_progress_bar is not None
bar = tqdm(
desc="Validating",
position=(2 * self.process_position + has_main_bar),
disable=self.is_disabled,
leave=False,
dynamic_ncols=True,
file=sys.stdout,
)
return bar
def init_test_tqdm(self) -> tqdm:
"""Override this to customize the tqdm bar for testing."""
bar = tqdm(
desc="Testing",
position=(2 * self.process_position),
disable=self.is_disabled,
leave=True,
dynamic_ncols=True,
file=sys.stdout,
)
return bar
def on_sanity_check_start(self, trainer, pl_module):
super().on_sanity_check_start(trainer, pl_module)
self.val_progress_bar = self.init_sanity_tqdm()
self.main_progress_bar = tqdm(disable=True) # dummy progress bar
def on_sanity_check_end(self, trainer, pl_module):
super().on_sanity_check_end(trainer, pl_module)
self.main_progress_bar.close()
self.val_progress_bar.close()
def on_train_start(self, trainer, pl_module):
super().on_train_start(trainer, pl_module)
self.main_progress_bar = self.init_train_tqdm()
def on_train_epoch_start(self, trainer, pl_module):
super().on_train_epoch_start(trainer, pl_module)
total_train_batches = self.total_train_batches
total_val_batches = self.total_val_batches
if total_train_batches != float("inf") and total_val_batches != float("inf"):
# val can be checked multiple times per epoch
val_checks_per_epoch = total_train_batches // trainer.val_check_batch
total_val_batches = total_val_batches * val_checks_per_epoch
total_batches = total_train_batches + total_val_batches
reset(self.main_progress_bar, total_batches)
self.main_progress_bar.set_description(f"Epoch {trainer.current_epoch}")
def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx):
super().on_train_batch_end(trainer, pl_module, outputs, batch, batch_idx, dataloader_idx)
total_batches = self.total_train_batches + self.total_val_batches
total_batches = convert_inf(total_batches)
if self._should_update(self.train_batch_idx, total_batches):
self._update_bar(self.main_progress_bar)
self.main_progress_bar.set_postfix(trainer.progress_bar_dict)
def on_validation_start(self, trainer, pl_module):
super().on_validation_start(trainer, pl_module)
if trainer.sanity_checking:
reset(self.val_progress_bar, sum(trainer.num_sanity_val_batches))
else:
self._update_bar(self.main_progress_bar) # fill up remaining
self.val_progress_bar = self.init_validation_tqdm()
reset(self.val_progress_bar, self.total_val_batches)
def on_validation_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx):
super().on_validation_batch_end(trainer, pl_module, outputs, batch, batch_idx, dataloader_idx)
if self._should_update(self.val_batch_idx, convert_inf(self.total_val_batches)):
self._update_bar(self.val_progress_bar)
self._update_bar(self.main_progress_bar)
def on_validation_end(self, trainer, pl_module):
super().on_validation_end(trainer, pl_module)
if self.main_progress_bar is not None:
self.main_progress_bar.set_postfix(trainer.progress_bar_dict)
self.val_progress_bar.close()
def on_train_end(self, trainer, pl_module):
super().on_train_end(trainer, pl_module)
self.main_progress_bar.close()
def on_test_start(self, trainer, pl_module):
super().on_test_start(trainer, pl_module)
self.test_progress_bar = self.init_test_tqdm()
self.test_progress_bar.total = convert_inf(self.total_test_batches)
def on_test_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx):
super().on_test_batch_end(trainer, pl_module, outputs, batch, batch_idx, dataloader_idx)
if self._should_update(self.test_batch_idx, self.total_test_batches):
self._update_bar(self.test_progress_bar)
def on_test_end(self, trainer, pl_module):
super().on_test_end(trainer, pl_module)
self.test_progress_bar.close()
def on_predict_epoch_start(self, trainer, pl_module):
super().on_predict_epoch_start(trainer, pl_module)
self.predict_progress_bar = self.init_predict_tqdm()
self.predict_progress_bar.total = convert_inf(self.total_predict_batches)
def on_predict_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx):
super().on_predict_batch_end(trainer, pl_module, outputs, batch, batch_idx, dataloader_idx)
if self._should_update(self.predict_batch_idx, self.total_predict_batches):
self._update_bar(self.predict_progress_bar)
def on_predict_end(self, trainer, pl_module):
self.predict_progress_bar.close()
def print(
self, *args, sep: str = " ", end: str = os.linesep, file: Optional[io.TextIOBase] = None, nolock: bool = False
):
active_progress_bar = None
if self.main_progress_bar is not None and not self.main_progress_bar.disable:
active_progress_bar = self.main_progress_bar
elif self.val_progress_bar is not None and not self.val_progress_bar.disable:
active_progress_bar = self.val_progress_bar
elif self.test_progress_bar is not None and not self.test_progress_bar.disable:
active_progress_bar = self.test_progress_bar
elif self.predict_progress_bar is not None and not self.predict_progress_bar.disable:
active_progress_bar = self.predict_progress_bar
if active_progress_bar is not None:
s = sep.join(map(str, args))
active_progress_bar.write(s, end=end, file=file, nolock=nolock)
def _should_update(self, current, total) -> bool:
return self.is_enabled and (current % self.refresh_rate == 0 or current == total)
def _update_bar(self, bar: Optional[tqdm]) -> None:
"""Updates the bar by the refresh rate without overshooting."""
if bar is None:
return
if bar.total is not None:
delta = min(self.refresh_rate, bar.total - bar.n)
else:
# infinite / unknown size
delta = self.refresh_rate
if delta > 0:
bar.update(delta)
def convert_inf(x: Optional[Union[int, float]]) -> Optional[Union[int, float]]:
"""The tqdm doesn't support inf/nan values. We have to convert it to None."""
if x is None or math.isinf(x) or math.isnan(x):
return None
return x
def reset(bar: tqdm, total: Optional[int] = None) -> None:
"""Resets the tqdm bar to 0 progress with a new total, unless it is disabled."""
if not bar.disable:
bar.reset(total=convert_inf(total))