From 9d773c7a83a82816b247a0f6eae414bf851eac28 Mon Sep 17 00:00:00 2001 From: Adam Hines Date: Wed, 20 Sep 2023 15:16:14 +1000 Subject: [PATCH 01/69] First commit for VPRTempo-quant --- VPRTempo.py => VPRTempo-quant.py | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) rename VPRTempo.py => VPRTempo-quant.py (99%) diff --git a/VPRTempo.py b/VPRTempo-quant.py similarity index 99% rename from VPRTempo.py rename to VPRTempo-quant.py index f3896ad..bedccab 100644 --- a/VPRTempo.py +++ b/VPRTempo-quant.py @@ -57,9 +57,9 @@ def __init__(self): USER SETTINGS ''' self.dataset = 'nordland' # set which dataset to run network on - self.trainingPath = '' # training datapath - self.testPath = '' # testing datapath - self.number_modules = 1 # number of module networks + self.trainingPath = '/home/adam/data/nordland/' # training datapath + self.testPath = '/home/adam/data/nordland/' # testing datapath + self.number_modules = 5 # number of module networks self.number_training_images = 500 # Alter number of training images self.number_testing_images = 500 # Alter number of testing images self.locations = ["spring","fall"] # Define the datasets used in the training From 0541dcc8a9ac1967498b5fecac04116d9dd74830 Mon Sep 17 00:00:00 2001 From: Adam Hines Date: Mon, 25 Sep 2023 16:49:33 +1000 Subject: [PATCH 02/69] Initial conversions of torch network into an nn.Module --- VPRTempo-quant.py | 743 ++++++++++++---------------------------------- src/blitnet.py | 48 ++- src/utils.py | 402 +++++++++++++++++++++++++ 3 files changed, 635 insertions(+), 558 deletions(-) diff --git a/VPRTempo-quant.py b/VPRTempo-quant.py index bedccab..cd20f4a 100644 --- a/VPRTempo-quant.py +++ b/VPRTempo-quant.py @@ -41,580 +41,209 @@ import utils as ut import validation as val import numpy as np +import torch.nn as nn +import torch.nn.functional as F from os import path from datetime import datetime -''' -Spiking network model class -''' -class snn_model(): - def __init__(self): - super().__init__() - - ''' - USER SETTINGS - ''' - self.dataset = 'nordland' # set which dataset to run network on - self.trainingPath = '/home/adam/data/nordland/' # training datapath - self.testPath = '/home/adam/data/nordland/' # testing datapath - self.number_modules = 5 # number of module networks - self.number_training_images = 500 # Alter number of training images - self.number_testing_images = 500 # Alter number of testing images - self.locations = ["spring","fall"] # Define the datasets used in the training - self.test_location = "summer" # Define the dataset is used for testing - self.filter = 8 # Set to number of images to filter - self.validation = True # Set to True to calculate PR metrics - - assert (len(self.dataset) != 0),"Dataset not defined, see README.md for details on setting up images" - assert (os.path.isdir(self.trainingPath)),"Training path not set or path does not exist, specify for self.trainingPath" - assert (os.path.isdir(self.testPath)),"Test path not set or path does not exist, specify for self.testPath" - assert (os.path.isdir(self.trainingPath+self.locations[0])),"Images must be organized into folders based on locations, see README.md for details" - assert (os.path.isdir(self.testPath+self.test_location)),"Images must be organized into folders based on locations, see README.md for details" - - ''' - NETWORK SETTINGS - ''' - # Image and patch normalization settings - self.imWidth = 28 # image width for resize - self.imHeight = 28 # image height for resize - self.num_patches = 7 # number of patches - self.intensity = 255 # divide pixel values to get spikes in range [0,1] - self.location_repeat = len(self.locations) # Number of training locations that are the same - - # Network and training settings - self.input_layer = (self.imWidth*self.imHeight) # number of input layer neurons - self.feature_layer = int(self.input_layer*2) # number of feature layer neurons - self.output_layer = int(self.number_training_images/self.number_modules) # number of output layer neurons - self.epoch = 4 # number of training iterations - self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") - if self.device.type == "cuda": # clear cuda cache, initialize, and syncgronize gpu - os.environ["CUDA_LAUNCH_BLOCKING"] = "1" - torch.cuda.set_device(self.device) - gc.collect() - torch.cuda.empty_cache() - torch.cuda.init() - torch.cuda.synchronize(device=self.device) - self.T = int((self.number_training_images/self.number_modules) - *self.location_repeat) # number of training steps - self.annl_pow = 2 # learning rate anneal power - self.imgs = {'training':[],'testing':[]} - self.ids = {'training':[],'testing':[]} - self.spike_rates = {'training':[],'testing':[]} - - # Hyperparamters - self.theta_max = 0.5 # maximum threshold value - self.n_init = 0.005 # initial learning rate value - self.n_itp = 0.15 # initial intrinsic threshold plasticity rate[[0.9999]] - self.f_rate = [0.2,0.9] # firing rate range - self.p_exc = 0.1 # probability of excitatory connection - self.p_inh = 0.5 # probability of inhibitory connection - self.c= 0.1 # constant input - - # Test settings - self.test_true = False # leave default to False - - - ''' - DATA SETTINGS - ''' - # Select training images from list - with open('./'+self.dataset+'_imageNames.txt') as file: - self.imageNames = [line.rstrip() for line in file] - - # Filter the loading images based on self.filter - self.filteredNames = [] - for n in range(0,len(self.imageNames),self.filter): - self.filteredNames.append(self.imageNames[n]) - del self.filteredNames[self.number_training_images:len(self.filteredNames)] +class SNNLayer(nn.Module): + def __init__(self, dims, thr_range, fire_rate, ip_rate, stdp_rate, const_inp, + assign_weight): + super(SNNLayer, self).__init__() - # Get the full training and testing data paths - self.fullTrainPaths = [] - for n in self.locations: - self.fullTrainPaths.append(self.trainingPath+n+'/') - - # create output folder - now = datetime.now() - self.output_folder = './output/'+now.strftime("%d%m%y-%H-%M-%S") - os.mkdir(self.output_folder) - - # setup logger - self.logger = logging.getLogger("VPRTempo") - self.logger.setLevel(logging.DEBUG) - logging.basicConfig(filename=self.output_folder+"/logfile.log", - filemode="a+", - format="%(asctime)-15s %(levelname)-8s %(message)s") - self.logger.addHandler(logging.StreamHandler()) - - # Print network details - self.logger.info('////////////') - self.logger.info('VPRTempo - Temporally Encoded Visual Place Recognition v1.1.0-alpha') - self.logger.info('Queensland University of Technology, Centre for Robotics') - self.logger.info('') - self.logger.info('© 2023 Adam D Hines, Peter G Stratton, Michael Milford, Tobias Fischer') - self.logger.info('MIT license - https://github.com/QVPR/VPRTempo') - self.logger.info('\\\\\\\\\\\\\\\\\\\\\\\\') - self.logger.info('') - self.logger.info('CUDA available: '+str(torch.cuda.is_available())) - if torch.cuda.is_available() == True: - current_device = torch.cuda.current_device() - self.logger.info('Current device is: '+str(torch.cuda.get_device_name(current_device))) - else: - self.logger.info('Current device is: CPU') - self.logger.info('') - self.logger.info("~~ Hyperparameters ~~") - self.logger.info('') - self.logger.info('Firing threshold max: '+str(self.theta_max)) - self.logger.info('Initial STDP learning rate: '+str(self.n_init)) - self.logger.info('Intrinsic threshold plasticity learning rate: '+str(self.n_itp)) - self.logger.info('Firing rate range: ['+str(self.f_rate[0])+', '+str(self.f_rate[1])+']') - self.logger.info('Excitatory connection probability: '+str(self.p_exc)) - self.logger.info('Inhibitory connection probability: '+str(self.p_inh)) - self.logger.info('Constant input: '+str(self.c)) - self.logger.info('') - self.logger.info("~~ Training and testing conditions ~~") - self.logger.info('') - self.logger.info('Number of training images: '+str(self.number_training_images)) - self.logger.info('Number of testing images: '+str(self.number_testing_images)) - self.logger.info('Number of training epochs: '+str(self.epoch)) - self.logger.info('Number of modules: '+str(self.number_modules)) - self.logger.info('Dataset used: '+str(self.dataset)) - self.logger.info('Training locations: '+str(self.locations)) - self.logger.info('Testing location: '+str(self.test_location)) - - # Network weights name - self.training_out = './weights/'+str(self.input_layer)+'i'+\ - str(self.feature_layer)+\ - 'f'+str(self.output_layer)+\ - 'o'+str(self.epoch)+'/' - - - # Check if pre-trained network exists, prompt if retrain or run - def checkTrainTest(self): - prompt = "A network with these parameters exists, re-train network? (y/n):\n" - self.logger.info('') - if path.isdir(self.training_out): - retrain = input(prompt) - else: - retrain = 'y' - return retrain - - def initialize(self,condition): - - ''' - Network startup and initialization - ''' - self.logger.info('') - self.logger.info('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~') - self.logger.info(condition+' startup and initialization') - self.logger.info('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~') - self.logger.info('') - self.logger.info('Loading '+condition+' images') + # Device + self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") - if condition == 'testing': - self.test_true = True - del self.filteredNames[self.number_testing_images:len(self.filteredNames)] - self.epoch = 1 # Only run the network once - self.location_repeat = 1 # One location repeat for testing - imgNum = self.number_testing_images - else: - imgNum = self.number_training_images - - # load the training images - self.imgs[condition], self.ids[condition] = ut.loadImages(self.test_true, - self.fullTrainPaths, - self.filteredNames, - [self.imWidth,self.imHeight], - self.num_patches, - self.testPath, - self.test_location) - - self.spike_rates[condition] = ut.setSpikeRates(self.imgs[condition], - self.ids[condition], - self.device, - [self.imWidth,self.imHeight], - self.test_true, - imgNum, - self.number_modules, - self.intensity, - self.location_repeat) + # Check constraints etc + if np.isscalar(thr_range): thr_range = [thr_range, thr_range] + if np.isscalar(fire_rate): fire_rate = [fire_rate, fire_rate] + if np.isscalar(const_inp): const_inp = [const_inp, const_inp] + + # Initialize Tensors + self.dim = torch.tensor(dims, dtype=torch.int) + self.x = torch.zeros(dims, device=self.device) + self.x_prev = torch.zeros(dims, device=self.device) + self.x_calc = torch.zeros(dims, device=self.device) + self.x_input = torch.zeros(dims, device=self.device) + self.x_fastinp = torch.zeros(dims, device=self.device) + self.eta_ip = torch.tensor(ip_rate, device=self.device) + self.eta_stdp = torch.tensor(stdp_rate, device=self.device) + + # Initialize Parameters + self.thr = nn.Parameter(torch.zeros(dims, device=self.device).uniform_(thr_range[0], thr_range[1])) + self.fire_rate = torch.zeros(dims, device=self.device).uniform_(fire_rate[0], fire_rate[1]) + self.have_rate = torch.any(self.fire_rate[:,:,0] > 0.0).to(self.device) + self.const_inp = torch.zeros(dims, device=self.device).uniform_(const_inp[0], const_inp[1]) + + # Additional State Variables + self.set_spks = [] + self.sspk_idx = 0 + self.spikes = torch.empty([], dtype=torch.float64) + + # Store the layer numbers + self.layers.append(len(self.layers)) + + # Weights (if applicable) + if assign_weight: + self.excW, self.inhW = bn.addWeights(self.layers) + +class SNNModel(nn.Module): + def __init__(self): + super(SNNModel, self).__init__() + # define layer parameters + self.number_modules = 1 # set the numnber of expert modules + self.module_max = 100 # set the maximum number of places per module + self.imWidth = 28 # set the pixel width (after pre-processing) + self.imHeight = 28 # set the pixel height (after pre-processing) + self.dim = int(self.imWidth*self.imHeight) # calculate the input layer size + self.layers = [] + + # initialize new net + self.net = bn.newNet(self.number_modules,self.dim) + + # add the layers + # input layer + self.input_layer = SNNLayer( + [self.number_modules,1,self.dim], + 0,0,0,0,0,False) + + # feature layer + self.feature_layer = SNNLayer( + [self.number_modules,1,int(self.dim*2)], + [0,0.5], + [0.2,0.9], + 0.15, + 0.005, + [0,0.1], + True) + + # output layer + self.output_layer = SNNLayer( + [self.number_modules,1,self.module_max], + 0,0,0,0,[0,0],True) # output layer + + + def forward(self): + # run the network to get the output here + bn.testSim() + +def configure_model(model): + model.dataset = 'nordland' + model.trainingPath = '/home/adam/data/nordland/' + model.testPath = '/home/adam/data/nordland/' + model.number_modules = 1 + model.number_training_images = 100 + model.number_testing_images = 100 + model.locations = ["spring", "fall"] + model.test_location = "summer" + model.filter = 8 + model.validation = True + model.log = False + + assert (len(model.dataset) != 0), "Dataset not defined, see README.md for details on setting up images" + assert (os.path.isdir(model.trainingPath)), "Training path not set or path does not exist, specify for model.trainingPath" + assert (os.path.isdir(model.testPath)), "Test path not set or path does not exist, specify for model.testPath" + assert (os.path.isdir(model.trainingPath + model.locations[0])), "Images must be organized into folders based on locations, see README.md for details" + assert (os.path.isdir(model.testPath + model.test_location)), "Images must be organized into folders based on locations, see README.md for details" ''' - Run the training network + NETWORK SETTINGS ''' - def train(self): - - # remove contents of the weights folder - ut.clear_weights(self.training_out) - - # create a new blitnet netowrk - self.logger.info('Creating network and setting weights') - net = bn.newNet(self.number_modules,self.imWidth*self.imHeight) - - # add the input layer - bn.addLayer(net,[self.number_modules,1,self.input_layer], - 0.0,0.0,0.0,0.0,0.0,False) - - # add the feature layer - bn.addLayer(net,[self.number_modules,1,self.feature_layer], - [0,self.theta_max], - [self.f_rate[0],self.f_rate[1]], - self.n_itp, - [0,self.c], - 0, - False) - - # sequentially set the feature firing rates for the feature layer - fstep = (self.f_rate[1]-self.f_rate[0])/self.feature_layer - - # loop through all modules and feature layer neurons - for x in range(self.number_modules): - for i in range(self.feature_layer): - net['fire_rate'][1][x][:,i] = self.f_rate[0]+fstep*(i+1) - - # add excitatory inhibitory connections for input and feature layer - bn.addWeights(net,0,1,[-1,0,1],[self.p_exc,self.p_inh],self.n_init) - self.init_weights = [net['W'][0].clone().detach(),net['W'][1].clone().detach()] - - ''' - Feature layer training - ''' - self.logger.info('') - self.logger.info('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~') - self.logger.info('Training the input to feature layer') - self.logger.info('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~') - self.logger.info('') - - self.logger.info('Setting spike rates from loaded images') - - # begin timer for network training - start = timeit.default_timer() - - # Set the spikes times for the input images - net['set_spks'][0] = torch.clone(self.spike_rates['training']) - self.spike_rates['training'] = [] - if self.device == 'cuda': - torch.cuda.empty_cache() - gc.collect() - layers = [len(net['W'])-2, len(net['W'])-1, len(net['W_lyr'])-1] - - # Train the input to feature layer for specified amount of epochs - for epoch in range(self.epoch): - net['step_num'] = 0 - epochStart = timeit.default_timer() - - # loop through each image and train the network - for t in range(int(self.T)): - bn.runSim(net,1,self.device,layers) - # anneal learning rates - if np.mod(t,10)==0: - pt = pow(float(self.T-t)/self.T,self.annl_pow) - net['eta_ip'][1] = self.n_itp*pt - net['eta_stdp'][0] = self.n_init*pt - net['eta_stdp'][1] = -1*self.n_init*pt - - # print training details - self.logger.info('Epoch '+str(epoch+1)+' trained in: ' - +str(round(timeit.default_timer()-epochStart,2))+'s') - self.logger.info('') - - self.logger.info('Finished training input to feature layer') - - ''' - Preparations for feature to output layer training - ''' - - # Turn off learning between input and feature layer - net['eta_ip'][1] = 0.0 - if self.p_exc > 0.0: net['eta_stdp'][0] = 0.0 - if self.p_inh > 0.0: net['eta_stdp'][1] = 0.0 - - self.logger.info('Getting feature layer spikes for output layer training') - - # get the feature spikes for training the output layer - net['x_feat'] = [] - net['step_num'] = 0 - for t in range(int(self.T)): # run blitnet without learning to get feature spikes - bn.runSim(net,1,self.device,layers) - net['x_feat'].append(net['x'][1]) # dictionary output of feature spikes - - # delete input spikes - net['set_spks'][0] = [] - if self.device == 'cuda': - torch.cuda.empty_cache() - gc.collect() - - self.logger.info('Creating output layer') - # Create and train the output layer with the feature layer - bn.addLayer(net,[self.number_modules,1,self.output_layer], - 0.0,0.0,0.0,0.0,0.0,False) - - # Add excitatory and inhibitory connections - bn.addWeights(net,1,2,[-1.0,0.0,1.0],[1.0,1.0],self.n_init) - self.init_weights.append(net['W'][2].clone().detach()) - self.init_weights.append(net['W'][3].clone().detach()) - - # Output spikes for spike forcing (final layer) - out_spks = torch.tensor([0],device=self.device,dtype=float) - - ''' - Output layer training - ''' - self.logger.info('') - self.logger.info('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~') - self.logger.info('Training the feature to output layer') - self.logger.info('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~') - self.logger.info('') - - net['spike_dims'] = 1 # change spike dims for output spike indexing - net['set_spks'][0] = [] # remove input spikes - layers = [len(net['W'])-2, len(net['W'])-1, len(net['W_lyr'])-1] - - # Train the feature to output layer for specified number of epochs - for epoch in range(self.epoch): - net['step_num'] = 0 - epochStart = timeit.default_timer() - - # Loop through all the spikes generated in the feature layer to train output - for t in range(self.T): - out_spks = torch.tensor([0],device=self.device,dtype=float) - - net['set_spks'][-1] = torch.tile(out_spks, - (self.number_modules, - 1, - self.output_layer)) - net['x'][1] = net['x_feat'][t] - bn.runSim(net,1,self.device,layers) - # Anneal learning rates - if np.mod(t,10)==0: - pt = pow(float(self.T-t)/(self.T),self.annl_pow) - net['eta_ip'][2] = self.n_itp*pt - net['eta_stdp'][2] = self.n_init*pt - net['eta_stdp'][3] = -1*self.n_init*pt - if np.mod((t+1),(int(self.T/self.location_repeat))) == 0: - net['step_num'] = 0 - - # print training details - self.logger.info('Epoch '+str(epoch+1)+' trained in: ' - +str(round(timeit.default_timer()-epochStart,2))+'s') - self.logger.info('') - - self.logger.info('Finished training feature to output layer') - self.logger.info('') - self.logger.info('~~~~~~~~~~~~~~~~~~~~~~~~~~') - self.logger.info('Network trained in '+str(round(timeit.default_timer()-start,2)) - +'s') - self.logger.info('~~~~~~~~~~~~~~~~~~~~~~~~~~') - self.logger.info('') - - # Turn off learning - net['eta_ip'][2] = 0.0 - net['eta_stdp'][2] = 0.0 - net['eta_stdp'][3] = 0.0 - - # Clear the network output spikes - net['set_spks'][-1] = [] - net['spike_dims'] = self.input_layer - - # Reset network details - net['sspk_idx'] = [0,0,0] - net['step_num'] = 0 - net['spikes'] = [[],[],[]] - net['x'] = [[],[],[]] - net['x_feat'] = [] - - - self.logger.info('Network formatting and saving...') - - # Output the trained network - outputPkl = self.training_out + 'net.pkl' - with open(outputPkl, 'wb') as f: - pickle.dump(net, f) - - # output the ground truth image names for later testing - outputPkl = self.training_out + 'GT_imgnames.pkl' - with open(outputPkl, 'wb') as f: - pickle.dump(self.filteredNames, f) - - self.logger.info('Network succesfully saved!') - - # if using cuda, clear and dump the memory usage - if self.device =='cuda': - del net - del self.spike_rates - del self.imgs - torch.cuda.empty_cache() - gc.collect() + model.num_patches = 7 + model.intensity = 255 + model.location_repeat = len(model.locations) + + model.epoch = 4 + model.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") + if model.device.type == "cuda": + os.environ["CUDA_LAUNCH_BLOCKING"] = "1" + torch.cuda.set_device(model.device) + gc.collect() + torch.cuda.empty_cache() + torch.cuda.init() + torch.cuda.synchronize(device=model.device) + model.T = int((model.number_training_images / model.number_modules) * model.location_repeat) + model.annl_pow = 2 + model.imgs = {'training': [], 'testing': []} + model.ids = {'training': [], 'testing': []} + model.spike_rates = {'training': [], 'testing': []} + + model.n_itp = 0.15 + + model.test_true = False ''' - Run the testing network + DATA SETTINGS ''' - def networktester(self): - - ''' - Network startup and initialization - ''' - - # unpickle the network - self.logger.info('Unpickling the network') - with open(self.training_out+'net.pkl', 'rb') as f: - net = pickle.load(f) - - self.logger.info('Setting spike rates from loaded images') - # calculate input spikes from training images + with open('./' + model.dataset + '_imageNames.txt') as file: + model.imageNames = [line.rstrip() for line in file] - net['set_spks'][0] = self.spike_rates['testing'] - - # unpickle the ground truth image names - with open(self.training_out+'GT_imgnames.pkl', 'rb') as f: - GT_imgnames = pickle.load(f) - - self.logger.info('') - self.logger.info('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~') - self.logger.info('Running test network') - self.logger.info('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~') - self.logger.info('') - - # set number of correct places to 0 - numcorrect = 0 - net['spike_dims'] = self.input_layer - numpconc = [] - start = timeit.default_timer() - for t in range(self.number_testing_images): - tonump = np.array([]) - bn.testSim(net,device=self.device) - # output the index of highest amplitude spike - - tonump = np.append(tonump,np.reshape(net['x'][-1].cpu().numpy(), - [1,1,int(self.number_training_images)])) - - # detect if no output - if np.all(tonump == 0): - # find the strongest sub-threshold input index - nidx = np.argmax(torch.sub(net['x_input'][-1][0,0,:], - net['thr'][-1][0,0,:]).cpu().numpy()) - tonump[nidx] = 0.5 - else: - # find the highest output spike - nidx = np.argmax(tonump) - - gt_ind = GT_imgnames.index(self.filteredNames[t]) - - if gt_ind == nidx: - numcorrect += 1 - - if self.validation: # get similarity matrix for PR curve generation - numpconc.append(tonump.tolist()) - - self.p100r = round((numcorrect/self.number_testing_images)*100,2) - self.logger.info('Number of correct matches P@100R - '+str(self.p100r)+'%') - - end = timeit.default_timer() - queryHertz = self.number_testing_images/(end-start) - self.logger.info('System queried at '+str(round(queryHertz,2))+'Hz') - - # if self.validation = True, get PR information and plot similarity matrix - if self.validation: - val.match_metrics(numpconc, - self.output_folder, - self.number_testing_images, - self.number_training_images, - self.logger) - - # if using cuda, clear and dump the memory usage - if self.device =='cuda': - gc.collect() - torch.cuda.empty_cache() - - def sad(self): - - print('') - print('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~') - print('Setting up Sum of Absolute Differences (SAD) calculations') - print('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~') - print('') - - sadcorrect = 0 - - # load the training images - self.location_repeat = 1 # switch to only do SAD on one dataset traversal - self.fullTrainPaths = self.fullTrainPaths[1] - self.test_true = False # testing images preloaded, load the training ones - # load the training images - self.imgs['training'], self.ids['training'] = ut.loadImages(self.test_true, - self.fullTrainPaths, - self.filteredNames, - [self.imWidth,self.imHeight], - self.num_patches, - self.testPath, - self.test_location) - - # create database tensor - for ndx, n in enumerate(self.imgs['training']): - if ndx == 0: - db = torch.unsqueeze(n,0) - else: - db = torch.concat((db,torch.unsqueeze(n,0)),0) - - def calc_sad(query, database, const): - - SAD = torch.sum(torch.abs(torch.sub((database * const), (query * const))), - (1,2),keepdim=True) - for n in range(2): - SAD = torch.squeeze(SAD,-1) - return SAD - - # calculate SAD for each image to database and count correct number - imgred = 1/(self.imWidth*self.imHeight) - sad_concat = [] - print('Running SAD') - - start = timeit.default_timer() - for n, q in enumerate(self.imgs['testing']): - pixels = torch.empty([]) - # create 3D tensor of query images - for o in range(self.number_testing_images): - if o == 0: - pixels = torch.unsqueeze(q,0) - else: - pixels = torch.concat((pixels,torch.unsqueeze(q,0)),0) - - sad_score = calc_sad(pixels, db, imgred) - - best_match = np.argmin(sad_score.cpu().numpy()) - if n == best_match: - sadcorrect += 1 + model.filteredNames = [] + for n in range(0, len(model.imageNames), model.filter): + model.filteredNames.append(model.imageNames[n]) + del model.filteredNames[model.number_training_images:len(model.filteredNames)] + + model.fullTrainPaths = [] + for n in model.locations: + model.fullTrainPaths.append(model.trainingPath + n + '/') + + now = datetime.now() + model.output_folder = './output/' + now.strftime("%d%m%y-%H-%M-%S") + os.mkdir(model.output_folder) + + model.logger = logging.getLogger("VPRTempo") + model.logger.setLevel(logging.DEBUG) + logging.basicConfig(filename=model.output_folder + "/logfile.log", + filemode="a+", + format="%(asctime)-15s %(levelname)-8s %(message)s") + if model.log: + model.logger.addHandler(logging.StreamHandler()) + + model.logger.info('////////////') + model.logger.info('VPRTempo - Temporally Encoded Visual Place Recognition v1.1.0-alpha') + model.logger.info('Queensland University of Technology, Centre for Robotics') + model.logger.info('') + model.logger.info('© 2023 Adam D Hines, Peter G Stratton, Michael Milford, Tobias Fischer') + model.logger.info('MIT license - https://github.com/QVPR/VPRTempo') + model.logger.info('\\\\\\\\\\\\\\\\\\\\\\\\') + model.logger.info('') + model.logger.info('CUDA available: ' + str(torch.cuda.is_available())) + if torch.cuda.is_available(): + current_device = torch.cuda.current_device() + model.logger.info('Current device is: ' + str(torch.cuda.get_device_name(current_device))) + else: + model.logger.info('Current device is: CPU') + model.logger.info('') + model.logger.info("~~ Hyperparameters ~~") + model.logger.info('') + model.logger.info('Firing threshold max: ' + str(model.theta_max)) + model.logger.info('Initial STDP learning rate: ' + str(model.n_init)) + model.logger.info('Intrinsic threshold plasticity learning rate: ' + str(model.n_itp)) + model.logger.info('Firing rate range: [' + str(model.f_rate[0]) + ', ' + str(model.f_rate[1]) + ']') + model.logger.info('Excitatory connection probability: ' + str(model.p_exc)) + model.logger.info('Inhibitory connection probability: ' + str(model.p_inh)) + model.logger.info('Constant input: ' + str(model.c)) + model.logger.info('') + model.logger.info("~~ Training and testing conditions ~~") + model.logger.info('') + model.logger.info('Number of training images: ' + str(model.number_training_images)) + model.logger.info('Number of testing images: ' + str(model.number_testing_images)) + model.logger.info('Number of training epochs: ' + str(model.epoch)) + model.logger.info('Number of modules: ' + str(model.number_modules)) + model.logger.info('Dataset used: ' + str(model.dataset)) + model.logger.info('Training locations: ' + str(model.locations)) + model.logger.info('Testing location: ' + str(model.test_location)) - end = timeit.default_timer() - p100r = round((sadcorrect/self.number_testing_images)*100,2) - print('') - print('Sum of absolute differences P@1: '+ - str(p100r)+'%') - print('Sum of absolute differences queried at ' - +str(round(self.number_testing_images/(end-start),2))+'Hz') + model.training_out = './weights/' + str(model.input_layer) + 'i' + str(model.feature_layer) + 'f' + str(model.output_layer) + 'o' + str(model.epoch) + '/' -''' -Run the network -''' + if __name__ == "__main__": # Instantiate model - model = snn_model() - - # check if the network has already been trained previously - flg = model.checkTrainTest() + model = SNNModel() + configure_model(model) - # if user inputs 'y' to retrain network if network doesn't exist - if flg == 'y': - model.initialize('training') # Initializes the training network - model.train() # Run network training (will check if already trained) - val.validate(model) # Validates that the network trained properly - - # Tests the network - model.initialize('testing') - model.networktester() # Test the network - #model.sad() - model.logger.info('') - model.logger.info('VPRTempo run completed') - model.logger.removeHandler(logging.StreamHandler()) # shut down the logger + model.forward() + \ No newline at end of file diff --git a/src/blitnet.py b/src/blitnet.py index a0d84fb..850471c 100644 --- a/src/blitnet.py +++ b/src/blitnet.py @@ -28,6 +28,8 @@ import torch import matplotlib.pyplot as plt +import torch.quantization as tq +import torch.nn as nn ################################## @@ -71,7 +73,7 @@ def newNet(modules, dims): fire_rate=[],have_rate=[],mean_rate=[],eta_ip=[],const_inp=[],nois=[], set_spks=[],sspk_idx=[],spikes=[],rec_spks=[], W=[],I=[],is_inhib=[],W_lyr=[],eta_stdp=[], - step_num=0, num_modules = modules, spike_dims = dims) + step_num=0) return net @@ -194,6 +196,8 @@ def addWeights(net,layer_pre,layer_post,W_range,p,stdp_rate): nrmInh[nrmInh==0.0] = 1.0 net['W'][excIndex][n] = net['W'][excIndex][n,:,:]/nrmExc net['W'][inhIndex][n] = net['W'][inhIndex][n,:,:]/nrmInh + + return net['W'][excIndex], net['W'][] ################################## # Normalise all the firing rates @@ -442,4 +446,46 @@ def plotSpikes(net,cutoff): subplotSpikes(net,cutoff) plt.show(block=False) +# apply QAT once training is done +def QAT(net): + + # Initialize an empty dictionary to hold the CPU tensors + cpu_dict = {} + + + # Iterate over the items in the original dictionary + for key, value in net.items(): + # If the value associated with the key is a list + if isinstance(value, list): + # Initialize an empty list to hold the converted tensors + converted_list = [] + # Iterate over the list elements + for elem in value: + # Check if the element is a tensor + if isinstance(elem, torch.Tensor): + # If it is a tensor, move it to CPU + converted_list.append(elem.cpu()) + else: + # If it is not a tensor, keep it as it is + converted_list.append(elem) + cpu_dict[key] = converted_list + # If the value is a single tensor + elif isinstance(value, torch.Tensor): + cpu_dict[key] = value.cpu() + # If the value is neither a list nor a tensor, keep it as it is + else: + cpu_dict[key] = value + weight_qconfig = tq.QConfig( + activation=tq.FakeQuantize.with_args(observer=tq.MinMaxObserver, + dtype=torch.qint8), + weight=tq.FakeQuantize.with_args(observer=tq.MinMaxObserver, + dtype=torch.quint8)) + + fake_quant_weight = tq.FakeQuantize(observer=tq.MinMaxObserver, + quant_min=0, + quant_max=255, + dtype=torch.quint8) + fake_quant_weight(cpu_dict['W'][0]) + + ################################## diff --git a/src/utils.py b/src/utils.py index 2a739a5..92b3f07 100644 --- a/src/utils.py +++ b/src/utils.py @@ -37,6 +37,7 @@ from metrics import recallAtK, createPR from timeit import default_timer +from os import path def get_patches2D(patch_size,image_pad): @@ -185,6 +186,407 @@ def setSpikeRates(data,ids,device,dims,test_true,numImgs,numMods,intensity,locRe return spike_rates +# Check if pre-trained network exists, prompt if retrain or run +def checkTrainTest(self): + prompt = "A network with these parameters exists, re-train network? (y/n):\n" + self.logger.info('') + if path.isdir(self.training_out): + retrain = input(prompt) + else: + retrain = 'y' + return retrain + +def initialize(self,condition): + + ''' + Network startup and initialization + ''' + self.logger.info('') + self.logger.info('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~') + self.logger.info(condition+' startup and initialization') + self.logger.info('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~') + self.logger.info('') + self.logger.info('Loading '+condition+' images') + + if condition == 'testing': + self.test_true = True + del self.filteredNames[self.number_testing_images:len(self.filteredNames)] + self.epoch = 1 # Only run the network once + self.location_repeat = 1 # One location repeat for testing + imgNum = self.number_testing_images + else: + imgNum = self.number_training_images + + # load the training images + self.imgs[condition], self.ids[condition] = ut.loadImages(self.test_true, + self.fullTrainPaths, + self.filteredNames, + [self.imWidth,self.imHeight], + self.num_patches, + self.testPath, + self.test_location) + + self.spike_rates[condition] = ut.setSpikeRates(self.imgs[condition], + self.ids[condition], + self.device, + [self.imWidth,self.imHeight], + self.test_true, + imgNum, + self.number_modules, + self.intensity, + self.location_repeat) +def train(self): + + # remove contents of the weights folder + ut.clear_weights(self.training_out) + + # create a new blitnet netowrk + self.logger.info('Creating network and setting weights') + net = bn.newNet(self.number_modules,self.imWidth*self.imHeight) + + # add the input layer + bn.addLayer(net,[self.number_modules,1,self.input_layer], + 0.0,0.0,0.0,0.0,0.0,False) + + # add the feature layer + bn.addLayer(net,[self.number_modules,1,self.feature_layer], + [0,self.theta_max], + [self.f_rate[0],self.f_rate[1]], + self.n_itp, + [0,self.c], + 0, + False) + + # sequentially set the feature firing rates for the feature layer + fstep = (self.f_rate[1]-self.f_rate[0])/self.feature_layer + + # loop through all modules and feature layer neurons + for x in range(self.number_modules): + for i in range(self.feature_layer): + net['fire_rate'][1][x][:,i] = self.f_rate[0]+fstep*(i+1) + + # add excitatory inhibitory connections for input and feature layer + bn.addWeights(net,0,1,[-1,0,1],[self.p_exc,self.p_inh],self.n_init) + self.init_weights = [net['W'][0].clone().detach(),net['W'][1].clone().detach()] + + ''' + Feature layer training + ''' + self.logger.info('') + self.logger.info('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~') + self.logger.info('Training the input to feature layer') + self.logger.info('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~') + self.logger.info('') + + self.logger.info('Setting spike rates from loaded images') + + # begin timer for network training + start = timeit.default_timer() + + # Set the spikes times for the input images + net['set_spks'][0] = torch.clone(self.spike_rates['training']) + self.spike_rates['training'] = [] + if self.device == 'cuda': + torch.cuda.empty_cache() + gc.collect() + layers = [len(net['W'])-2, len(net['W'])-1, len(net['W_lyr'])-1] + + # Train the input to feature layer for specified amount of epochs + for epoch in range(self.epoch): + net['step_num'] = 0 + epochStart = timeit.default_timer() + + # loop through each image and train the network + for t in range(int(self.T)): + bn.runSim(net,1,self.device,layers) + # anneal learning rates + if np.mod(t,10)==0: + pt = pow(float(self.T-t)/self.T,self.annl_pow) + net['eta_ip'][1] = self.n_itp*pt + net['eta_stdp'][0] = self.n_init*pt + net['eta_stdp'][1] = -1*self.n_init*pt + + # print training details + self.logger.info('Epoch '+str(epoch+1)+' trained in: ' + +str(round(timeit.default_timer()-epochStart,2))+'s') + self.logger.info('') + + self.logger.info('Finished training input to feature layer') + + ''' + Preparations for feature to output layer training + ''' + + # Turn off learning between input and feature layer + net['eta_ip'][1] = 0.0 + if self.p_exc > 0.0: net['eta_stdp'][0] = 0.0 + if self.p_inh > 0.0: net['eta_stdp'][1] = 0.0 + + self.logger.info('Getting feature layer spikes for output layer training') + + # get the feature spikes for training the output layer + net['x_feat'] = [] + net['step_num'] = 0 + for t in range(int(self.T)): # run blitnet without learning to get feature spikes + bn.runSim(net,1,self.device,layers) + net['x_feat'].append(net['x'][1]) # dictionary output of feature spikes + + # delete input spikes + net['set_spks'][0] = [] + if self.device == 'cuda': + torch.cuda.empty_cache() + gc.collect() + + self.logger.info('Creating output layer') + # Create and train the output layer with the feature layer + bn.addLayer(net,[self.number_modules,1,self.output_layer], + 0.0,0.0,0.0,0.0,0.0,False) + + # Add excitatory and inhibitory connections + bn.addWeights(net,1,2,[-1.0,0.0,1.0],[1.0,1.0],self.n_init) + self.init_weights.append(net['W'][2].clone().detach()) + self.init_weights.append(net['W'][3].clone().detach()) + + # Output spikes for spike forcing (final layer) + out_spks = torch.tensor([0],device=self.device,dtype=float) + + ''' + Output layer training + ''' + self.logger.info('') + self.logger.info('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~') + self.logger.info('Training the feature to output layer') + self.logger.info('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~') + self.logger.info('') + + net['spike_dims'] = 1 # change spike dims for output spike indexing + net['set_spks'][0] = [] # remove input spikes + layers = [len(net['W'])-2, len(net['W'])-1, len(net['W_lyr'])-1] + + # Train the feature to output layer for specified number of epochs + for epoch in range(self.epoch): + net['step_num'] = 0 + epochStart = timeit.default_timer() + + # Loop through all the spikes generated in the feature layer to train output + for t in range(self.T): + out_spks = torch.tensor([0],device=self.device,dtype=float) + + net['set_spks'][-1] = torch.tile(out_spks, + (self.number_modules, + 1, + self.output_layer)) + net['x'][1] = net['x_feat'][t] + bn.runSim(net,1,self.device,layers) + # Anneal learning rates + if np.mod(t,10)==0: + pt = pow(float(self.T-t)/(self.T),self.annl_pow) + net['eta_ip'][2] = self.n_itp*pt + net['eta_stdp'][2] = self.n_init*pt + net['eta_stdp'][3] = -1*self.n_init*pt + if np.mod((t+1),(int(self.T/self.location_repeat))) == 0: + net['step_num'] = 0 + + # print training details + self.logger.info('Epoch '+str(epoch+1)+' trained in: ' + +str(round(timeit.default_timer()-epochStart,2))+'s') + self.logger.info('') + + self.logger.info('Finished training feature to output layer') + self.logger.info('') + self.logger.info('~~~~~~~~~~~~~~~~~~~~~~~~~~') + self.logger.info('Network trained in '+str(round(timeit.default_timer()-start,2)) + +'s') + self.logger.info('~~~~~~~~~~~~~~~~~~~~~~~~~~') + self.logger.info('') + + # Turn off learning + net['eta_ip'][2] = 0.0 + net['eta_stdp'][2] = 0.0 + net['eta_stdp'][3] = 0.0 + + # Clear the network output spikes + net['set_spks'][-1] = [] + net['spike_dims'] = self.input_layer + + # Reset network details + net['sspk_idx'] = [0,0,0] + net['step_num'] = 0 + net['spikes'] = [[],[],[]] + net['x'] = [[],[],[]] + net['x_feat'] = [] + + + self.logger.info('Network formatting and saving...') + + # Output the trained network + outputPkl = self.training_out + 'net.pkl' + with open(outputPkl, 'wb') as f: + pickle.dump(net, f) + + # output the ground truth image names for later testing + outputPkl = self.training_out + 'GT_imgnames.pkl' + with open(outputPkl, 'wb') as f: + pickle.dump(self.filteredNames, f) + + self.logger.info('Network succesfully saved!') + + # if using cuda, clear and dump the memory usage + if self.device =='cuda': + del net + del self.spike_rates + del self.imgs + torch.cuda.empty_cache() + gc.collect() + +''' + Run the testing network +''' +def networktester(self): + + ''' + Network startup and initialization + ''' + + # unpickle the network + self.logger.info('Unpickling the network') + with open(self.training_out+'net.pkl', 'rb') as f: + net = pickle.load(f) + + self.logger.info('Setting spike rates from loaded images') + # calculate input spikes from training images + + net['set_spks'][0] = self.spike_rates['testing'] + + # unpickle the ground truth image names + with open(self.training_out+'GT_imgnames.pkl', 'rb') as f: + GT_imgnames = pickle.load(f) + + self.logger.info('') + self.logger.info('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~') + self.logger.info('Running test network') + self.logger.info('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~') + self.logger.info('') + + # set number of correct places to 0 + numcorrect = 0 + net['spike_dims'] = self.input_layer + numpconc = [] + start = timeit.default_timer() + for t in range(self.number_testing_images): + tonump = np.array([]) + bn.testSim(net,device=self.device) + # output the index of highest amplitude spike + + tonump = np.append(tonump,np.reshape(net['x'][-1].cpu().numpy(), + [1,1,int(self.number_training_images)])) + + # detect if no output + if np.all(tonump == 0): + # find the strongest sub-threshold input index + nidx = np.argmax(torch.sub(net['x_input'][-1][0,0,:], + net['thr'][-1][0,0,:]).cpu().numpy()) + tonump[nidx] = 0.5 + else: + # find the highest output spike + nidx = np.argmax(tonump) + + gt_ind = GT_imgnames.index(self.filteredNames[t]) + + if gt_ind == nidx: + numcorrect += 1 + + if self.validation: # get similarity matrix for PR curve generation + numpconc.append(tonump.tolist()) + + self.p100r = round((numcorrect/self.number_testing_images)*100,2) + self.logger.info('Number of correct matches P@100R - '+str(self.p100r)+'%') + + end = timeit.default_timer() + queryHertz = self.number_testing_images/(end-start) + self.logger.info('System queried at '+str(round(queryHertz,2))+'Hz') + + # if self.validation = True, get PR information and plot similarity matrix + if self.validation: + val.match_metrics(numpconc, + self.output_folder, + self.number_testing_images, + self.number_training_images, + self.logger) + + # if using cuda, clear and dump the memory usage + if self.device =='cuda': + gc.collect() + torch.cuda.empty_cache() + +def sad(self): + + print('') + print('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~') + print('Setting up Sum of Absolute Differences (SAD) calculations') + print('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~') + print('') + + sadcorrect = 0 + + # load the training images + self.location_repeat = 1 # switch to only do SAD on one dataset traversal + self.fullTrainPaths = self.fullTrainPaths[1] + self.test_true = False # testing images preloaded, load the training ones + # load the training images + self.imgs['training'], self.ids['training'] = ut.loadImages(self.test_true, + self.fullTrainPaths, + self.filteredNames, + [self.imWidth,self.imHeight], + self.num_patches, + self.testPath, + self.test_location) + + # create database tensor + for ndx, n in enumerate(self.imgs['training']): + if ndx == 0: + db = torch.unsqueeze(n,0) + else: + db = torch.concat((db,torch.unsqueeze(n,0)),0) + + def calc_sad(query, database, const): + + SAD = torch.sum(torch.abs(torch.sub((database * const), (query * const))), + (1,2),keepdim=True) + for n in range(2): + SAD = torch.squeeze(SAD,-1) + return SAD + + # calculate SAD for each image to database and count correct number + imgred = 1/(self.imWidth*self.imHeight) + sad_concat = [] + print('Running SAD') + + start = timeit.default_timer() + for n, q in enumerate(self.imgs['testing']): + pixels = torch.empty([]) + # create 3D tensor of query images + for o in range(self.number_testing_images): + if o == 0: + pixels = torch.unsqueeze(q,0) + else: + pixels = torch.concat((pixels,torch.unsqueeze(q,0)),0) + + sad_score = calc_sad(pixels, db, imgred) + + best_match = np.argmin(sad_score.cpu().numpy()) + if n == best_match: + sadcorrect += 1 + + end = timeit.default_timer() + p100r = round((sadcorrect/self.number_testing_images)*100,2) + print('') + print('Sum of absolute differences P@1: '+ + str(p100r)+'%') + print('Sum of absolute differences queried at ' + +str(round(self.number_testing_images/(end-start),2))+'Hz') + + # plot similarity matrices def plot_similarity(mat, name, cmap, ax=None, dpi=600): From d95db16a4172d134b5870ba3fb18a728edc9a630 Mon Sep 17 00:00:00 2001 From: Adam Hines Date: Tue, 26 Sep 2023 15:47:10 +1000 Subject: [PATCH 03/69] Added a trainer class, getting things set up for nn.Module deployment --- VPRTempo-quant.py | 243 ++++++++++++++++------------------------------ 1 file changed, 83 insertions(+), 160 deletions(-) diff --git a/VPRTempo-quant.py b/VPRTempo-quant.py index cd20f4a..9b6fd9b 100644 --- a/VPRTempo-quant.py +++ b/VPRTempo-quant.py @@ -24,13 +24,9 @@ Imports ''' -import pickle import os import torch -import gc -import timeit -import logging import sys sys.path.append('./src') sys.path.append('./weights') @@ -38,19 +34,16 @@ sys.path.append('./output') import blitnet as bn -import utils as ut -import validation as val import numpy as np import torch.nn as nn import torch.nn.functional as F -from os import path -from datetime import datetime +from config import configure class SNNLayer(nn.Module): - def __init__(self, dims, thr_range, fire_rate, ip_rate, stdp_rate, const_inp, - assign_weight): + def __init__(self, dims=[0,0,0], thr_range=[0,0], fire_rate=[0,0], + ip_rate=0, stdp_rate=0, const_inp=[0,0],assign_weight=False): super(SNNLayer, self).__init__() # Device @@ -89,161 +82,91 @@ def __init__(self, dims, thr_range, fire_rate, ip_rate, stdp_rate, const_inp, if assign_weight: self.excW, self.inhW = bn.addWeights(self.layers) +class SNNTrainer: + def __init__(self, train_dataset, val_dataset, model_path): + + # Configure the network + configure(self) + + self.train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True) + self.val_loader = DataLoader(val_dataset, batch_size=32, shuffle=False) + self.model_path = model_path + self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") + + self.model = SNNModel().to(self.device) + self.criterion = torch.nn.CrossEntropyLoss() # Replace with appropriate loss function + self.optimizer = torch.optim.Adam(self.model.parameters(), lr=0.001) # Adjust learning rate + + # Set up the input layer + self.input_layer = SNNLayer(dims=[self.number_modules,1,self.input]) + + # Set up the feature layer + self.feature_layer = SNNLayer(dims=[self.number_modules,1,self.feature], + thr_range=[0,0.5], + fire_rate=[0.2,0.9], + ip_rate=0.15, + stdp_rate=0.005, + const_inp=[0,0.1], + assign_weight=True) + + # Set up the output layer + self.output_layer = SNNLayer(dims=[self.number_modules,1,self.output], + assign_weight=True) + + def train_model(self, num_epochs=50): + for epoch in range(num_epochs): + self.model.train() + running_loss = 0.0 + for inputs, targets in self.train_loader: + inputs, targets = inputs.to(self.device), targets.to(self.device) + + self.optimizer.zero_grad() + + outputs = self.model(inputs) + loss = self.criterion(outputs, targets) + + loss.backward() + self.optimizer.step() + + running_loss += loss.item() * inputs.size(0) + + epoch_loss = running_loss / len(self.train_loader.dataset) + print(f"Epoch {epoch}/{num_epochs}, Loss: {epoch_loss}") + + # TODO: Add validation loop here + + torch.save(self.model.state_dict(), self.model_path) + print(f"Model saved at {self.model_path}") + + def load_or_train_model(self): + if os.path.exists(self.model_path): + print(f"Loading model from {self.model_path}") + self.model.load_state_dict(torch.load(self.model_path)) + else: + print("Model not found, starting training.") + self.train_model() + class SNNModel(nn.Module): def __init__(self): super(SNNModel, self).__init__() - # define layer parameters - self.number_modules = 1 # set the numnber of expert modules - self.module_max = 100 # set the maximum number of places per module - self.imWidth = 28 # set the pixel width (after pre-processing) - self.imHeight = 28 # set the pixel height (after pre-processing) - self.dim = int(self.imWidth*self.imHeight) # calculate the input layer size - self.layers = [] - - # initialize new net - self.net = bn.newNet(self.number_modules,self.dim) - - # add the layers - # input layer - self.input_layer = SNNLayer( - [self.number_modules,1,self.dim], - 0,0,0,0,0,False) - - # feature layer - self.feature_layer = SNNLayer( - [self.number_modules,1,int(self.dim*2)], - [0,0.5], - [0.2,0.9], - 0.15, - 0.005, - [0,0.1], - True) - - # output layer - self.output_layer = SNNLayer( - [self.number_modules,1,self.module_max], - 0,0,0,0,[0,0],True) # output layer - - - def forward(self): - # run the network to get the output here - bn.testSim() - -def configure_model(model): - model.dataset = 'nordland' - model.trainingPath = '/home/adam/data/nordland/' - model.testPath = '/home/adam/data/nordland/' - model.number_modules = 1 - model.number_training_images = 100 - model.number_testing_images = 100 - model.locations = ["spring", "fall"] - model.test_location = "summer" - model.filter = 8 - model.validation = True - model.log = False - - assert (len(model.dataset) != 0), "Dataset not defined, see README.md for details on setting up images" - assert (os.path.isdir(model.trainingPath)), "Training path not set or path does not exist, specify for model.trainingPath" - assert (os.path.isdir(model.testPath)), "Test path not set or path does not exist, specify for model.testPath" - assert (os.path.isdir(model.trainingPath + model.locations[0])), "Images must be organized into folders based on locations, see README.md for details" - assert (os.path.isdir(model.testPath + model.test_location)), "Images must be organized into folders based on locations, see README.md for details" - - ''' - NETWORK SETTINGS - ''' - model.num_patches = 7 - model.intensity = 255 - model.location_repeat = len(model.locations) - - model.epoch = 4 - model.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") - if model.device.type == "cuda": - os.environ["CUDA_LAUNCH_BLOCKING"] = "1" - torch.cuda.set_device(model.device) - gc.collect() - torch.cuda.empty_cache() - torch.cuda.init() - torch.cuda.synchronize(device=model.device) - model.T = int((model.number_training_images / model.number_modules) * model.location_repeat) - model.annl_pow = 2 - model.imgs = {'training': [], 'testing': []} - model.ids = {'training': [], 'testing': []} - model.spike_rates = {'training': [], 'testing': []} - - model.n_itp = 0.15 - - model.test_true = False - - ''' - DATA SETTINGS - ''' - with open('./' + model.dataset + '_imageNames.txt') as file: - model.imageNames = [line.rstrip() for line in file] - - model.filteredNames = [] - for n in range(0, len(model.imageNames), model.filter): - model.filteredNames.append(model.imageNames[n]) - del model.filteredNames[model.number_training_images:len(model.filteredNames)] - - model.fullTrainPaths = [] - for n in model.locations: - model.fullTrainPaths.append(model.trainingPath + n + '/') - - now = datetime.now() - model.output_folder = './output/' + now.strftime("%d%m%y-%H-%M-%S") - os.mkdir(model.output_folder) - - model.logger = logging.getLogger("VPRTempo") - model.logger.setLevel(logging.DEBUG) - logging.basicConfig(filename=model.output_folder + "/logfile.log", - filemode="a+", - format="%(asctime)-15s %(levelname)-8s %(message)s") - if model.log: - model.logger.addHandler(logging.StreamHandler()) - - model.logger.info('////////////') - model.logger.info('VPRTempo - Temporally Encoded Visual Place Recognition v1.1.0-alpha') - model.logger.info('Queensland University of Technology, Centre for Robotics') - model.logger.info('') - model.logger.info('© 2023 Adam D Hines, Peter G Stratton, Michael Milford, Tobias Fischer') - model.logger.info('MIT license - https://github.com/QVPR/VPRTempo') - model.logger.info('\\\\\\\\\\\\\\\\\\\\\\\\') - model.logger.info('') - model.logger.info('CUDA available: ' + str(torch.cuda.is_available())) - if torch.cuda.is_available(): - current_device = torch.cuda.current_device() - model.logger.info('Current device is: ' + str(torch.cuda.get_device_name(current_device))) - else: - model.logger.info('Current device is: CPU') - model.logger.info('') - model.logger.info("~~ Hyperparameters ~~") - model.logger.info('') - model.logger.info('Firing threshold max: ' + str(model.theta_max)) - model.logger.info('Initial STDP learning rate: ' + str(model.n_init)) - model.logger.info('Intrinsic threshold plasticity learning rate: ' + str(model.n_itp)) - model.logger.info('Firing rate range: [' + str(model.f_rate[0]) + ', ' + str(model.f_rate[1]) + ']') - model.logger.info('Excitatory connection probability: ' + str(model.p_exc)) - model.logger.info('Inhibitory connection probability: ' + str(model.p_inh)) - model.logger.info('Constant input: ' + str(model.c)) - model.logger.info('') - model.logger.info("~~ Training and testing conditions ~~") - model.logger.info('') - model.logger.info('Number of training images: ' + str(model.number_training_images)) - model.logger.info('Number of testing images: ' + str(model.number_testing_images)) - model.logger.info('Number of training epochs: ' + str(model.epoch)) - model.logger.info('Number of modules: ' + str(model.number_modules)) - model.logger.info('Dataset used: ' + str(model.dataset)) - model.logger.info('Training locations: ' + str(model.locations)) - model.logger.info('Testing location: ' + str(model.test_location)) + + # Configure the network + configure(self) + + def forward(self, x): + # Define the forward pass to transform the input x to an output + # TODO: Replace with actual forward pass code + out = bn.testSim(self) # Assuming testSim is a function that can perform the forward pass + return out - model.training_out = './weights/' + str(model.input_layer) + 'i' + str(model.feature_layer) + 'f' + str(model.output_layer) + 'o' + str(model.epoch) + '/' - +# Testing the model: if __name__ == "__main__": - - # Instantiate model model = SNNModel() - configure_model(model) + test_dataset = ... # TODO: Load your test dataset here - model.forward() - \ No newline at end of file + model.eval() # Set the model to evaluation mode + with torch.no_grad(): # Disable gradient computation during testing + for inputs, targets in test_dataset: + outputs = model(inputs) # This calls the forward method and gets the model’s outputs + # TODO: Compute your evaluation metric(s) by comparing outputs to targets From 34cfa9fcb29734845200f02895640b46338af6b9 Mon Sep 17 00:00:00 2001 From: Adam Hines Date: Wed, 27 Sep 2023 16:24:59 +1000 Subject: [PATCH 04/69] Fixed all the image loading by creating a CustomDataset class, now processes everthing and loads data through torch. Fixed up the weight additions, each layer with a True flag for weight additions is responsible for storing excitatory and inhibitory weights --- VPRTempo-quant.py | 109 +- config/config.py | 115 + dataset/nordland.csv | 27593 +++++++++++++++++++++++++++++++++++++++++ src/blitnet.py | 72 +- src/dataset.py | 142 + 5 files changed, 27937 insertions(+), 94 deletions(-) create mode 100644 config/config.py create mode 100644 dataset/nordland.csv create mode 100644 src/dataset.py diff --git a/VPRTempo-quant.py b/VPRTempo-quant.py index 9b6fd9b..f23d8bf 100644 --- a/VPRTempo-quant.py +++ b/VPRTempo-quant.py @@ -32,6 +32,8 @@ sys.path.append('./weights') sys.path.append('./settings') sys.path.append('./output') +sys.path.append('./dataset') +sys.path.append('./config') import blitnet as bn import numpy as np @@ -39,13 +41,17 @@ import torch.nn.functional as F from config import configure +from dataset import CustomImageDataset, ProcessImage +from torch.utils.data import DataLoader +from timeit import default_timer class SNNLayer(nn.Module): - def __init__(self, dims=[0,0,0], thr_range=[0,0], fire_rate=[0,0], - ip_rate=0, stdp_rate=0, const_inp=[0,0],assign_weight=False): + def __init__(self, previous_layer=None,dims=[0,0,0],thr_range=[0,0], + fire_rate=[0,0],ip_rate=0,stdp_rate=0,const_inp=[0,0],p=[0,0], + assign_weight=False): super(SNNLayer, self).__init__() - + configure(self) # Device self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") @@ -69,89 +75,69 @@ def __init__(self, dims=[0,0,0], thr_range=[0,0], fire_rate=[0,0], self.fire_rate = torch.zeros(dims, device=self.device).uniform_(fire_rate[0], fire_rate[1]) self.have_rate = torch.any(self.fire_rate[:,:,0] > 0.0).to(self.device) self.const_inp = torch.zeros(dims, device=self.device).uniform_(const_inp[0], const_inp[1]) + self.p = p + self.dims = dims # Additional State Variables self.set_spks = [] self.sspk_idx = 0 self.spikes = torch.empty([], dtype=torch.float64) - # Store the layer numbers - self.layers.append(len(self.layers)) - # Weights (if applicable) if assign_weight: - self.excW, self.inhW = bn.addWeights(self.layers) - -class SNNTrainer: - def __init__(self, train_dataset, val_dataset, model_path): - - # Configure the network - configure(self) + self.excW, self.inhW, self.I = bn.addWeights(p=self.p, + stdp_rate=self.eta_stdp, + dims=[previous_layer.dims[2], + dims[2]], + num_modules=self.number_modules) - self.train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True) - self.val_loader = DataLoader(val_dataset, batch_size=32, shuffle=False) - self.model_path = model_path +class SNNTrainer(nn.Module): + def __init__(self): + super(SNNTrainer, self).__init__() + configure(self) + self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") - self.model = SNNModel().to(self.device) - self.criterion = torch.nn.CrossEntropyLoss() # Replace with appropriate loss function - self.optimizer = torch.optim.Adam(self.model.parameters(), lr=0.001) # Adjust learning rate + self.model = self.to(self.device) # Set up the input layer self.input_layer = SNNLayer(dims=[self.number_modules,1,self.input]) # Set up the feature layer - self.feature_layer = SNNLayer(dims=[self.number_modules,1,self.feature], + self.feature_layer = SNNLayer(previous_layer=self.input_layer, + dims=[self.number_modules,1,self.feature], thr_range=[0,0.5], fire_rate=[0.2,0.9], ip_rate=0.15, stdp_rate=0.005, const_inp=[0,0.1], + p=[0.1,0.5], assign_weight=True) # Set up the output layer - self.output_layer = SNNLayer(dims=[self.number_modules,1,self.output], - assign_weight=True) + self.output_layer = SNNLayer(previous_layer=self.feature_layer, + dims=[self.number_modules,1,self.output], + assign_weight=True) - def train_model(self, num_epochs=50): - for epoch in range(num_epochs): - self.model.train() - running_loss = 0.0 - for inputs, targets in self.train_loader: - inputs, targets = inputs.to(self.device), targets.to(self.device) - - self.optimizer.zero_grad() - - outputs = self.model(inputs) - loss = self.criterion(outputs, targets) + def train_model(self, train_loader): + # run the training for the input to feature layer + for n in range(self.epoch): + for images, labels in train_loader: + start = default_timer() + images = images.to(self.device) + print('It took '+str(default_timer()-start)+'s to load and process an image') + labels = labels.to(self.device) + bn.runSim(self.input_layer, self.feature_layer, images) - loss.backward() - self.optimizer.step() - - running_loss += loss.item() * inputs.size(0) - - epoch_loss = running_loss / len(self.train_loader.dataset) - print(f"Epoch {epoch}/{num_epochs}, Loss: {epoch_loss}") - - # TODO: Add validation loop here - torch.save(self.model.state_dict(), self.model_path) print(f"Model saved at {self.model_path}") - - def load_or_train_model(self): - if os.path.exists(self.model_path): - print(f"Loading model from {self.model_path}") - self.model.load_state_dict(torch.load(self.model_path)) - else: - print("Model not found, starting training.") - self.train_model() class SNNModel(nn.Module): def __init__(self): super(SNNModel, self).__init__() - # Configure the network configure(self) + self.model = self.to(self.device) def forward(self, x): # Define the forward pass to transform the input x to an output @@ -159,11 +145,24 @@ def forward(self, x): out = bn.testSim(self) # Assuming testSim is a function that can perform the forward pass return out - -# Testing the model: if __name__ == "__main__": + # initialize the model and image transforms model = SNNModel() - test_dataset = ... # TODO: Load your test dataset here + image_transform = ProcessImage(model.dims,model.patches) + + # TODO: check for existence of pre-existing model, if not then run training + # just run training and testing in tandem for now + train_dataset = CustomImageDataset(annotations_file=model.dataset_file, + img_dirs=model.training_dirs, + transform=image_transform, + skip=model.filter, + max_samples=model.number_training_images) + + train_loader = DataLoader(train_dataset, batch_size=1, shuffle=True) + + # initialize the training model + trainer = SNNTrainer() + trainer.train_model(train_loader) model.eval() # Set the model to evaluation mode with torch.no_grad(): # Disable gradient computation during testing diff --git a/config/config.py b/config/config.py new file mode 100644 index 0000000..722e253 --- /dev/null +++ b/config/config.py @@ -0,0 +1,115 @@ +import os +import gc +import torch +import logging +from datetime import datetime + +def configure(model): + model.dataset = 'nordland' + model.dataset_file = './dataset/'+model.dataset+'.csv' + model.trainingPath = '/home/adam/data/nordland/' + model.testPath = '/home/adam/data/nordland/' + model.number_modules = 1 + model.number_training_images = 100 + model.number_testing_images = 100 + model.locations = ["spring", "fall"] + model.test_location = "summer" + model.filter = 8 + model.validation = True + model.log = False + + model.training_dirs = [] + for n in model.locations: + model.training_dirs.append(os.path.join(model.trainingPath,n)) + + assert (len(model.dataset) != 0), "Dataset not defined, see README.md for details on setting up images" + assert (os.path.isdir(model.trainingPath)), "Training path not set or path does not exist, specify for model.trainingPath" + assert (os.path.isdir(model.testPath)), "Test path not set or path does not exist, specify for model.testPath" + assert (os.path.isdir(model.trainingPath + model.locations[0])), "Images must be organized into folders based on locations, see README.md for details" + assert (os.path.isdir(model.testPath + model.test_location)), "Images must be organized into folders based on locations, see README.md for details" + + model.patches = 7 + model.dims = [28,28] + model.input = int(model.dims[0]*model.dims[1]) + model.feature = int(model.input*2) + model.output = int(model.number_training_images/model.number_modules) + model.intensity = 255 + model.location_repeat = len(model.locations) + model.layers =[] + + model.epoch = 4 + model.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") + if model.device.type == "cuda": + os.environ["CUDA_LAUNCH_BLOCKING"] = "1" + torch.cuda.set_device(model.device) + gc.collect() + torch.cuda.empty_cache() + torch.cuda.init() + torch.cuda.synchronize(device=model.device) + model.T = int((model.number_training_images / model.number_modules) * model.location_repeat) + model.annl_pow = 2 + model.imgs = {'training': [], 'testing': []} + model.ids = {'training': [], 'testing': []} + model.spike_rates = {'training': [], 'testing': []} + + model.test_true = False + + with open('./' + model.dataset + '_imageNames.txt') as file: + model.imageNames = [line.rstrip() for line in file] + + model.filteredNames = [] + for n in range(0, len(model.imageNames), model.filter): + model.filteredNames.append(model.imageNames[n]) + del model.filteredNames[model.number_training_images:len(model.filteredNames)] + + model.fullTrainPaths = [] + for n in model.locations: + model.fullTrainPaths.append(model.trainingPath + n + '/') + + #now = datetime.now() + #model.output_folder = './output/' + now.strftime("%d%m%y-%H-%M-%S") + #os.mkdir(model.output_folder) + + #model.logger = logging.getLogger("VPRTempo") + #model.logger.setLevel(logging.DEBUG) + #logging.basicConfig(filename=model.output_folder + "/logfile.log", + # filemode="a+", + # format="%(asctime)-15s %(levelname)-8s %(message)s") + #if model.log: + # model.logger.addHandler(logging.StreamHandler()) + + #model.logger.info('////////////') + #model.logger.info('VPRTempo - Temporally Encoded Visual Place Recognition v1.1.0-alpha') + #model.logger.info('Queensland University of Technology, Centre for Robotics') + #model.logger.info('') + #model.logger.info('© 2023 Adam D Hines, Peter G Stratton, Michael Milford, Tobias Fischer') + #model.logger.info('MIT license - https://github.com/QVPR/VPRTempo') + #model.logger.info('\\\\\\\\\\\\\\\\\\\\\\\\') + #model.logger.info('') + #model.logger.info('CUDA available: ' + str(torch.cuda.is_available())) + #if torch.cuda.is_available(): + # current_device = torch.cuda.current_device() + # model.logger.info('Current device is: ' + str(torch.cuda.get_device_name(current_device))) + #else: + # model.logger.info('Current device is: CPU') + #model.logger.info('') + #model.logger.info("~~ Hyperparameters ~~") + #model.logger.info('') + #model.logger.info('Firing threshold max: ' + str(model.thr) + #model.logger.info('Initial STDP learning rate: ' + str(model.n_init)) + #model.logger.info('Intrinsic threshold plasticity learning rate: ' + str(model.n_itp)) + #model.logger.info('Firing rate range: [' + str(model.f_rate[0]) + ', ' + str(model.f_rate[1]) + ']') + #model.logger.info('Excitatory connection probability: ' + str(model.p_exc)) + #model.logger.info('Inhibitory connection probability: ' + str(model.p_inh)) + #model.logger.info('Constant input: ' + str(model.c)) + #model.logger.info('') + #model.logger.info("~~ Training and testing conditions ~~") + #model.logger.info('') + #model.logger.info('Number of training images: ' + str(model.number_training_images)) + #model.logger.info('Number of testing images: ' + str(model.number_testing_images)) + #model.logger.info('Number of training epochs: ' + str(model.epoch)) + #model.logger.info('Number of modules: ' + str(model.number_modules)) + #model.logger.info('Dataset used: ' + str(model.dataset)) + #model.logger.info('Training locations: ' + str(model.locations)) + #model.logger.info('Testing location: ' + str(model.test_location)) + #model.training_out = './weights/' + str(model.input_layer) + 'i' + str(model.feature_layer) + 'f' + str(model.output_layer) + 'o' + str(model.epoch) + '/' diff --git a/dataset/nordland.csv b/dataset/nordland.csv new file mode 100644 index 0000000..5fa0648 --- /dev/null +++ b/dataset/nordland.csv @@ -0,0 +1,27593 @@ +Image name,index +images-00202.png,0 +images-00203.png,1 +images-00204.png,2 +images-00205.png,3 +images-00206.png,4 +images-00207.png,5 +images-00208.png,6 +images-00209.png,7 +images-00210.png,8 +images-00211.png,9 +images-00212.png,10 +images-00213.png,11 +images-00214.png,12 +images-00215.png,13 +images-00216.png,14 +images-00217.png,15 +images-00218.png,16 +images-00219.png,17 +images-00220.png,18 +images-00221.png,19 +images-00222.png,20 +images-00223.png,21 +images-00224.png,22 +images-00225.png,23 +images-00226.png,24 +images-00227.png,25 +images-00228.png,26 +images-00229.png,27 +images-00230.png,28 +images-00231.png,29 +images-00232.png,30 +images-00233.png,31 +images-00234.png,32 +images-00235.png,33 +images-00236.png,34 +images-00237.png,35 +images-00238.png,36 +images-00239.png,37 +images-00240.png,38 +images-00241.png,39 +images-00242.png,40 +images-00243.png,41 +images-00244.png,42 +images-00245.png,43 +images-00246.png,44 +images-00247.png,45 +images-00248.png,46 +images-00249.png,47 +images-00250.png,48 +images-00251.png,49 +images-00252.png,50 +images-00253.png,51 +images-00254.png,52 +images-00255.png,53 +images-00256.png,54 +images-00257.png,55 +images-00258.png,56 +images-00259.png,57 +images-00260.png,58 +images-00261.png,59 +images-00262.png,60 +images-00263.png,61 +images-00264.png,62 +images-00265.png,63 +images-00266.png,64 +images-00267.png,65 +images-00268.png,66 +images-00269.png,67 +images-00270.png,68 +images-00271.png,69 +images-00272.png,70 +images-00273.png,71 +images-00274.png,72 +images-00275.png,73 +images-00276.png,74 +images-00277.png,75 +images-00278.png,76 +images-00279.png,77 +images-00280.png,78 +images-00281.png,79 +images-00282.png,80 +images-00283.png,81 +images-00284.png,82 +images-00285.png,83 +images-00286.png,84 +images-00287.png,85 +images-00288.png,86 +images-00289.png,87 +images-00290.png,88 +images-00291.png,89 +images-00292.png,90 +images-00293.png,91 +images-00294.png,92 +images-00295.png,93 +images-00296.png,94 +images-00297.png,95 +images-00298.png,96 +images-00299.png,97 +images-00300.png,98 +images-00301.png,99 +images-00302.png,100 +images-00303.png,101 +images-00304.png,102 +images-00305.png,103 +images-00306.png,104 +images-00307.png,105 +images-00308.png,106 +images-00309.png,107 +images-00310.png,108 +images-00311.png,109 +images-00312.png,110 +images-00313.png,111 +images-00314.png,112 +images-00315.png,113 +images-00316.png,114 +images-00317.png,115 +images-00318.png,116 +images-00319.png,117 +images-00320.png,118 +images-00321.png,119 +images-00322.png,120 +images-00323.png,121 +images-00324.png,122 +images-00325.png,123 +images-00326.png,124 +images-00327.png,125 +images-00328.png,126 +images-00329.png,127 +images-00330.png,128 +images-00331.png,129 +images-00332.png,130 +images-00333.png,131 +images-00334.png,132 +images-00335.png,133 +images-00336.png,134 +images-00337.png,135 +images-00338.png,136 +images-00339.png,137 +images-00340.png,138 +images-00341.png,139 +images-00342.png,140 +images-00343.png,141 +images-00344.png,142 +images-00345.png,143 +images-00346.png,144 +images-00347.png,145 +images-00348.png,146 +images-00349.png,147 +images-00350.png,148 +images-00351.png,149 +images-00352.png,150 +images-00353.png,151 +images-00354.png,152 +images-00355.png,153 +images-00356.png,154 +images-00357.png,155 +images-00358.png,156 +images-00359.png,157 +images-00360.png,158 +images-00361.png,159 +images-00362.png,160 +images-00363.png,161 +images-00364.png,162 +images-00365.png,163 +images-00366.png,164 +images-00367.png,165 +images-00368.png,166 +images-00369.png,167 +images-00370.png,168 +images-00371.png,169 +images-00372.png,170 +images-00373.png,171 +images-00374.png,172 +images-00375.png,173 +images-00376.png,174 +images-00377.png,175 +images-00378.png,176 +images-00379.png,177 +images-00380.png,178 +images-00381.png,179 +images-00382.png,180 +images-00383.png,181 +images-00384.png,182 +images-00385.png,183 +images-00386.png,184 +images-00387.png,185 +images-00388.png,186 +images-00389.png,187 +images-00390.png,188 +images-00391.png,189 +images-00392.png,190 +images-00393.png,191 +images-00394.png,192 +images-00395.png,193 +images-00396.png,194 +images-00397.png,195 +images-00398.png,196 +images-00399.png,197 +images-00400.png,198 +images-00401.png,199 +images-00402.png,200 +images-00403.png,201 +images-00404.png,202 +images-00405.png,203 +images-00406.png,204 +images-00407.png,205 +images-00408.png,206 +images-00409.png,207 +images-00410.png,208 +images-00411.png,209 +images-00412.png,210 +images-00413.png,211 +images-00414.png,212 +images-00415.png,213 +images-00416.png,214 +images-00417.png,215 +images-00418.png,216 +images-00419.png,217 +images-00420.png,218 +images-00421.png,219 +images-00422.png,220 +images-00423.png,221 +images-00424.png,222 +images-00425.png,223 +images-00426.png,224 +images-00427.png,225 +images-00428.png,226 +images-00429.png,227 +images-00430.png,228 +images-00431.png,229 +images-00432.png,230 +images-00433.png,231 +images-00434.png,232 +images-00435.png,233 +images-00436.png,234 +images-00437.png,235 +images-00438.png,236 +images-00439.png,237 +images-00440.png,238 +images-00441.png,239 +images-00442.png,240 +images-00443.png,241 +images-00444.png,242 +images-00445.png,243 +images-00446.png,244 +images-00447.png,245 +images-00448.png,246 +images-00449.png,247 +images-00450.png,248 +images-00451.png,249 +images-00452.png,250 +images-00453.png,251 +images-00454.png,252 +images-00455.png,253 +images-00456.png,254 +images-00457.png,255 +images-00458.png,256 +images-00459.png,257 +images-00460.png,258 +images-00461.png,259 +images-00462.png,260 +images-00463.png,261 +images-00464.png,262 +images-00465.png,263 +images-00466.png,264 +images-00467.png,265 +images-00468.png,266 +images-00469.png,267 +images-00470.png,268 +images-00471.png,269 +images-00472.png,270 +images-00473.png,271 +images-00474.png,272 +images-00475.png,273 +images-00476.png,274 +images-00477.png,275 +images-00478.png,276 +images-00479.png,277 +images-00480.png,278 +images-00481.png,279 +images-00482.png,280 +images-00483.png,281 +images-00484.png,282 +images-00485.png,283 +images-00486.png,284 +images-00487.png,285 +images-00488.png,286 +images-00489.png,287 +images-00490.png,288 +images-00491.png,289 +images-00492.png,290 +images-00493.png,291 +images-00494.png,292 +images-00495.png,293 +images-00496.png,294 +images-00497.png,295 +images-00498.png,296 +images-00499.png,297 +images-00500.png,298 +images-00501.png,299 +images-00502.png,300 +images-00503.png,301 +images-00504.png,302 +images-00505.png,303 +images-00506.png,304 +images-00507.png,305 +images-00508.png,306 +images-00509.png,307 +images-00510.png,308 +images-00511.png,309 +images-00512.png,310 +images-00513.png,311 +images-00514.png,312 +images-00515.png,313 +images-00516.png,314 +images-00517.png,315 +images-00518.png,316 +images-00519.png,317 +images-00520.png,318 +images-00521.png,319 +images-00522.png,320 +images-00523.png,321 +images-00524.png,322 +images-00525.png,323 +images-00526.png,324 +images-00527.png,325 +images-00528.png,326 +images-00529.png,327 +images-00530.png,328 +images-00531.png,329 +images-00532.png,330 +images-00533.png,331 +images-00534.png,332 +images-00535.png,333 +images-00536.png,334 +images-00537.png,335 +images-00538.png,336 +images-00539.png,337 +images-00540.png,338 +images-00541.png,339 +images-00542.png,340 +images-00543.png,341 +images-00544.png,342 +images-00545.png,343 +images-00546.png,344 +images-00547.png,345 +images-00548.png,346 +images-00549.png,347 +images-00550.png,348 +images-00551.png,349 +images-00552.png,350 +images-00553.png,351 +images-00554.png,352 +images-00555.png,353 +images-00556.png,354 +images-00557.png,355 +images-00558.png,356 +images-00559.png,357 +images-00560.png,358 +images-00561.png,359 +images-00562.png,360 +images-00563.png,361 +images-00564.png,362 +images-00565.png,363 +images-00566.png,364 +images-00567.png,365 +images-00568.png,366 +images-00569.png,367 +images-00570.png,368 +images-00571.png,369 +images-00572.png,370 +images-00573.png,371 +images-00574.png,372 +images-00575.png,373 +images-00576.png,374 +images-00577.png,375 +images-00578.png,376 +images-00579.png,377 +images-00580.png,378 +images-00581.png,379 +images-00582.png,380 +images-00583.png,381 +images-00584.png,382 +images-00585.png,383 +images-00586.png,384 +images-00587.png,385 +images-00588.png,386 +images-00589.png,387 +images-00590.png,388 +images-00591.png,389 +images-00592.png,390 +images-00593.png,391 +images-00594.png,392 +images-00595.png,393 +images-00596.png,394 +images-00597.png,395 +images-00598.png,396 +images-00599.png,397 +images-00600.png,398 +images-00601.png,399 +images-00602.png,400 +images-00603.png,401 +images-00604.png,402 +images-00605.png,403 +images-00606.png,404 +images-00607.png,405 +images-00608.png,406 +images-00609.png,407 +images-00610.png,408 +images-00611.png,409 +images-00612.png,410 +images-00613.png,411 +images-00614.png,412 +images-00615.png,413 +images-00616.png,414 +images-00617.png,415 +images-00618.png,416 +images-00619.png,417 +images-00620.png,418 +images-00621.png,419 +images-00622.png,420 +images-00623.png,421 +images-00624.png,422 +images-00625.png,423 +images-00626.png,424 +images-00627.png,425 +images-00628.png,426 +images-00629.png,427 +images-00630.png,428 +images-00631.png,429 +images-00632.png,430 +images-00633.png,431 +images-00634.png,432 +images-00635.png,433 +images-00636.png,434 +images-00637.png,435 +images-00638.png,436 +images-00639.png,437 +images-00640.png,438 +images-00641.png,439 +images-00642.png,440 +images-00643.png,441 +images-00644.png,442 +images-00645.png,443 +images-00646.png,444 +images-00647.png,445 +images-00648.png,446 +images-00649.png,447 +images-00650.png,448 +images-00651.png,449 +images-00652.png,450 +images-00653.png,451 +images-00654.png,452 +images-00655.png,453 +images-00656.png,454 +images-00657.png,455 +images-00658.png,456 +images-00659.png,457 +images-00660.png,458 +images-00661.png,459 +images-00662.png,460 +images-00663.png,461 +images-00664.png,462 +images-00665.png,463 +images-00666.png,464 +images-00667.png,465 +images-00668.png,466 +images-00669.png,467 +images-00670.png,468 +images-00671.png,469 +images-00672.png,470 +images-00673.png,471 +images-00674.png,472 +images-00675.png,473 +images-00676.png,474 +images-00677.png,475 +images-00678.png,476 +images-00679.png,477 +images-00680.png,478 +images-00681.png,479 +images-00682.png,480 +images-00683.png,481 +images-00684.png,482 +images-00685.png,483 +images-00686.png,484 +images-00687.png,485 +images-00688.png,486 +images-00689.png,487 +images-00690.png,488 +images-00691.png,489 +images-00692.png,490 +images-00693.png,491 +images-00694.png,492 +images-00695.png,493 +images-00696.png,494 +images-00697.png,495 +images-00698.png,496 +images-00699.png,497 +images-00700.png,498 +images-00701.png,499 +images-00702.png,500 +images-00703.png,501 +images-00704.png,502 +images-00705.png,503 +images-00706.png,504 +images-00707.png,505 +images-00708.png,506 +images-00709.png,507 +images-00710.png,508 +images-00711.png,509 +images-00712.png,510 +images-00713.png,511 +images-00714.png,512 +images-00715.png,513 +images-00716.png,514 +images-00717.png,515 +images-00718.png,516 +images-00719.png,517 +images-00720.png,518 +images-00721.png,519 +images-00722.png,520 +images-00723.png,521 +images-00724.png,522 +images-00725.png,523 +images-00726.png,524 +images-00727.png,525 +images-00728.png,526 +images-00729.png,527 +images-00730.png,528 +images-00731.png,529 +images-00732.png,530 +images-00733.png,531 +images-00734.png,532 +images-00735.png,533 +images-00736.png,534 +images-00737.png,535 +images-00738.png,536 +images-00739.png,537 +images-00740.png,538 +images-00741.png,539 +images-00742.png,540 +images-00743.png,541 +images-00744.png,542 +images-00745.png,543 +images-00746.png,544 +images-00747.png,545 +images-00748.png,546 +images-00749.png,547 +images-00750.png,548 +images-00751.png,549 +images-00752.png,550 +images-00753.png,551 +images-00754.png,552 +images-00755.png,553 +images-00756.png,554 +images-00757.png,555 +images-00758.png,556 +images-00759.png,557 +images-00760.png,558 +images-00761.png,559 +images-00762.png,560 +images-00763.png,561 +images-00764.png,562 +images-00765.png,563 +images-00766.png,564 +images-00767.png,565 +images-00768.png,566 +images-00769.png,567 +images-00770.png,568 +images-00771.png,569 +images-00772.png,570 +images-00773.png,571 +images-00774.png,572 +images-00775.png,573 +images-00776.png,574 +images-00777.png,575 +images-00778.png,576 +images-00779.png,577 +images-00780.png,578 +images-00781.png,579 +images-00782.png,580 +images-00783.png,581 +images-00784.png,582 +images-00785.png,583 +images-00786.png,584 +images-00787.png,585 +images-00788.png,586 +images-00789.png,587 +images-00790.png,588 +images-00791.png,589 +images-00792.png,590 +images-00793.png,591 +images-00794.png,592 +images-00795.png,593 +images-00796.png,594 +images-00797.png,595 +images-00798.png,596 +images-00799.png,597 +images-00800.png,598 +images-00801.png,599 +images-00802.png,600 +images-00803.png,601 +images-00804.png,602 +images-00805.png,603 +images-00806.png,604 +images-00807.png,605 +images-00808.png,606 +images-00809.png,607 +images-00810.png,608 +images-00811.png,609 +images-00812.png,610 +images-00813.png,611 +images-00814.png,612 +images-00815.png,613 +images-00816.png,614 +images-00817.png,615 +images-00818.png,616 +images-00819.png,617 +images-00820.png,618 +images-00821.png,619 +images-00822.png,620 +images-00823.png,621 +images-00824.png,622 +images-00825.png,623 +images-00826.png,624 +images-00827.png,625 +images-00828.png,626 +images-00829.png,627 +images-00830.png,628 +images-00831.png,629 +images-00832.png,630 +images-00833.png,631 +images-00834.png,632 +images-00835.png,633 +images-00836.png,634 +images-00837.png,635 +images-00838.png,636 +images-00839.png,637 +images-00840.png,638 +images-00841.png,639 +images-00842.png,640 +images-00843.png,641 +images-00844.png,642 +images-00845.png,643 +images-00846.png,644 +images-00847.png,645 +images-00848.png,646 +images-00849.png,647 +images-00850.png,648 +images-00851.png,649 +images-00852.png,650 +images-00853.png,651 +images-00854.png,652 +images-00855.png,653 +images-00856.png,654 +images-00857.png,655 +images-00858.png,656 +images-00859.png,657 +images-00860.png,658 +images-00861.png,659 +images-00862.png,660 +images-00863.png,661 +images-00864.png,662 +images-00865.png,663 +images-00866.png,664 +images-00867.png,665 +images-00868.png,666 +images-00869.png,667 +images-00870.png,668 +images-00871.png,669 +images-00872.png,670 +images-00873.png,671 +images-00874.png,672 +images-00875.png,673 +images-00876.png,674 +images-00877.png,675 +images-00878.png,676 +images-00879.png,677 +images-00880.png,678 +images-00881.png,679 +images-00882.png,680 +images-00883.png,681 +images-00884.png,682 +images-00885.png,683 +images-00886.png,684 +images-00887.png,685 +images-00888.png,686 +images-00889.png,687 +images-00890.png,688 +images-00891.png,689 +images-00892.png,690 +images-00893.png,691 +images-00894.png,692 +images-00895.png,693 +images-00896.png,694 +images-00897.png,695 +images-00898.png,696 +images-00899.png,697 +images-00900.png,698 +images-00901.png,699 +images-00902.png,700 +images-00903.png,701 +images-00904.png,702 +images-00905.png,703 +images-00906.png,704 +images-00907.png,705 +images-00908.png,706 +images-00909.png,707 +images-00910.png,708 +images-00911.png,709 +images-00912.png,710 +images-00913.png,711 +images-00914.png,712 +images-00915.png,713 +images-00916.png,714 +images-00917.png,715 +images-00918.png,716 +images-00919.png,717 +images-00920.png,718 +images-00921.png,719 +images-00922.png,720 +images-00923.png,721 +images-00924.png,722 +images-00925.png,723 +images-00926.png,724 +images-00927.png,725 +images-00928.png,726 +images-00929.png,727 +images-00930.png,728 +images-00931.png,729 +images-00932.png,730 +images-00933.png,731 +images-00934.png,732 +images-00935.png,733 +images-00936.png,734 +images-00937.png,735 +images-00938.png,736 +images-00939.png,737 +images-00940.png,738 +images-00941.png,739 +images-00942.png,740 +images-00943.png,741 +images-00944.png,742 +images-00945.png,743 +images-00946.png,744 +images-00947.png,745 +images-00948.png,746 +images-00949.png,747 +images-00950.png,748 +images-00951.png,749 +images-00952.png,750 +images-00953.png,751 +images-00954.png,752 +images-00955.png,753 +images-00956.png,754 +images-00957.png,755 +images-00958.png,756 +images-00959.png,757 +images-00960.png,758 +images-00961.png,759 +images-00962.png,760 +images-00963.png,761 +images-00964.png,762 +images-00965.png,763 +images-00966.png,764 +images-00967.png,765 +images-00968.png,766 +images-00969.png,767 +images-00970.png,768 +images-00971.png,769 +images-00972.png,770 +images-00973.png,771 +images-00974.png,772 +images-00975.png,773 +images-00976.png,774 +images-00977.png,775 +images-00978.png,776 +images-00979.png,777 +images-00980.png,778 +images-00981.png,779 +images-00982.png,780 +images-00983.png,781 +images-00984.png,782 +images-00985.png,783 +images-00986.png,784 +images-00987.png,785 +images-00988.png,786 +images-00989.png,787 +images-00990.png,788 +images-00991.png,789 +images-00992.png,790 +images-00993.png,791 +images-00994.png,792 +images-00995.png,793 +images-00996.png,794 +images-00997.png,795 +images-00998.png,796 +images-00999.png,797 +images-01000.png,798 +images-01001.png,799 +images-01002.png,800 +images-01003.png,801 +images-01004.png,802 +images-01005.png,803 +images-01006.png,804 +images-01007.png,805 +images-01008.png,806 +images-01009.png,807 +images-01010.png,808 +images-01011.png,809 +images-01012.png,810 +images-01013.png,811 +images-01014.png,812 +images-01015.png,813 +images-01016.png,814 +images-01017.png,815 +images-01018.png,816 +images-01019.png,817 +images-01020.png,818 +images-01021.png,819 +images-01022.png,820 +images-01023.png,821 +images-01024.png,822 +images-01025.png,823 +images-01026.png,824 +images-01027.png,825 +images-01028.png,826 +images-01029.png,827 +images-01030.png,828 +images-01031.png,829 +images-01032.png,830 +images-01033.png,831 +images-01034.png,832 +images-01035.png,833 +images-01036.png,834 +images-01037.png,835 +images-01038.png,836 +images-01039.png,837 +images-01040.png,838 +images-01041.png,839 +images-01042.png,840 +images-01043.png,841 +images-01044.png,842 +images-01045.png,843 +images-01046.png,844 +images-01047.png,845 +images-01048.png,846 +images-01049.png,847 +images-01050.png,848 +images-01051.png,849 +images-01052.png,850 +images-01053.png,851 +images-01054.png,852 +images-01055.png,853 +images-01056.png,854 +images-01057.png,855 +images-01058.png,856 +images-01059.png,857 +images-01060.png,858 +images-01061.png,859 +images-01062.png,860 +images-01063.png,861 +images-01064.png,862 +images-01065.png,863 +images-01066.png,864 +images-01067.png,865 +images-01068.png,866 +images-01069.png,867 +images-01070.png,868 +images-01071.png,869 +images-01072.png,870 +images-01073.png,871 +images-01074.png,872 +images-01075.png,873 +images-01076.png,874 +images-01077.png,875 +images-01078.png,876 +images-01079.png,877 +images-01080.png,878 +images-01081.png,879 +images-01082.png,880 +images-01083.png,881 +images-01084.png,882 +images-01085.png,883 +images-01086.png,884 +images-01087.png,885 +images-01088.png,886 +images-01089.png,887 +images-01090.png,888 +images-01091.png,889 +images-01092.png,890 +images-01093.png,891 +images-01094.png,892 +images-01095.png,893 +images-01096.png,894 +images-01097.png,895 +images-01098.png,896 +images-01099.png,897 +images-01100.png,898 +images-01101.png,899 +images-01102.png,900 +images-01103.png,901 +images-01104.png,902 +images-01105.png,903 +images-01106.png,904 +images-01107.png,905 +images-01108.png,906 +images-01109.png,907 +images-01110.png,908 +images-01111.png,909 +images-01112.png,910 +images-01113.png,911 +images-01114.png,912 +images-01115.png,913 +images-01116.png,914 +images-01117.png,915 +images-01118.png,916 +images-01119.png,917 +images-01120.png,918 +images-01121.png,919 +images-01122.png,920 +images-01123.png,921 +images-01124.png,922 +images-01125.png,923 +images-01126.png,924 +images-01127.png,925 +images-01128.png,926 +images-01129.png,927 +images-01130.png,928 +images-01131.png,929 +images-01132.png,930 +images-01133.png,931 +images-01134.png,932 +images-01135.png,933 +images-01136.png,934 +images-01137.png,935 +images-01138.png,936 +images-01139.png,937 +images-01140.png,938 +images-01141.png,939 +images-01142.png,940 +images-01143.png,941 +images-01144.png,942 +images-01145.png,943 +images-01146.png,944 +images-01147.png,945 +images-01148.png,946 +images-01149.png,947 +images-01150.png,948 +images-01151.png,949 +images-01152.png,950 +images-01153.png,951 +images-01154.png,952 +images-01155.png,953 +images-01156.png,954 +images-01157.png,955 +images-01158.png,956 +images-01159.png,957 +images-01160.png,958 +images-01161.png,959 +images-01162.png,960 +images-01163.png,961 +images-01164.png,962 +images-01165.png,963 +images-01166.png,964 +images-01167.png,965 +images-01168.png,966 +images-01169.png,967 +images-01170.png,968 +images-01171.png,969 +images-01172.png,970 +images-01173.png,971 +images-01174.png,972 +images-01175.png,973 +images-01176.png,974 +images-01177.png,975 +images-01178.png,976 +images-01179.png,977 +images-01180.png,978 +images-01181.png,979 +images-01182.png,980 +images-01183.png,981 +images-01184.png,982 +images-01185.png,983 +images-01186.png,984 +images-01187.png,985 +images-01188.png,986 +images-01189.png,987 +images-01190.png,988 +images-01191.png,989 +images-01192.png,990 +images-01193.png,991 +images-01194.png,992 +images-01195.png,993 +images-01196.png,994 +images-01197.png,995 +images-01198.png,996 +images-01199.png,997 +images-01200.png,998 +images-01201.png,999 +images-01202.png,1000 +images-01203.png,1001 +images-01204.png,1002 +images-01205.png,1003 +images-01206.png,1004 +images-01207.png,1005 +images-01208.png,1006 +images-01209.png,1007 +images-01210.png,1008 +images-01211.png,1009 +images-01212.png,1010 +images-01213.png,1011 +images-01214.png,1012 +images-01215.png,1013 +images-01216.png,1014 +images-01217.png,1015 +images-01218.png,1016 +images-01219.png,1017 +images-01220.png,1018 +images-01221.png,1019 +images-01222.png,1020 +images-01223.png,1021 +images-01224.png,1022 +images-01225.png,1023 +images-01226.png,1024 +images-01227.png,1025 +images-01228.png,1026 +images-01229.png,1027 +images-01230.png,1028 +images-01231.png,1029 +images-01232.png,1030 +images-01233.png,1031 +images-01234.png,1032 +images-01235.png,1033 +images-01236.png,1034 +images-01237.png,1035 +images-01238.png,1036 +images-01239.png,1037 +images-01240.png,1038 +images-01241.png,1039 +images-01242.png,1040 +images-01243.png,1041 +images-01244.png,1042 +images-01245.png,1043 +images-01246.png,1044 +images-01247.png,1045 +images-01248.png,1046 +images-01249.png,1047 +images-01250.png,1048 +images-01251.png,1049 +images-01252.png,1050 +images-01253.png,1051 +images-01254.png,1052 +images-01255.png,1053 +images-01256.png,1054 +images-01257.png,1055 +images-01258.png,1056 +images-01259.png,1057 +images-01810.png,1058 +images-01811.png,1059 +images-01812.png,1060 +images-01813.png,1061 +images-01814.png,1062 +images-01815.png,1063 +images-01816.png,1064 +images-01817.png,1065 +images-01818.png,1066 +images-01819.png,1067 +images-01820.png,1068 +images-01821.png,1069 +images-01822.png,1070 +images-01823.png,1071 +images-01824.png,1072 +images-01825.png,1073 +images-01826.png,1074 +images-01827.png,1075 +images-01828.png,1076 +images-01829.png,1077 +images-01830.png,1078 +images-01831.png,1079 +images-01832.png,1080 +images-01833.png,1081 +images-01834.png,1082 +images-01835.png,1083 +images-01836.png,1084 +images-01837.png,1085 +images-01838.png,1086 +images-01839.png,1087 +images-01840.png,1088 +images-01841.png,1089 +images-01842.png,1090 +images-01843.png,1091 +images-01844.png,1092 +images-01845.png,1093 +images-01846.png,1094 +images-01847.png,1095 +images-01848.png,1096 +images-01849.png,1097 +images-01850.png,1098 +images-01851.png,1099 +images-01852.png,1100 +images-01853.png,1101 +images-01854.png,1102 +images-01855.png,1103 +images-01856.png,1104 +images-01857.png,1105 +images-01858.png,1106 +images-01859.png,1107 +images-01860.png,1108 +images-01861.png,1109 +images-01862.png,1110 +images-01863.png,1111 +images-01864.png,1112 +images-01865.png,1113 +images-01866.png,1114 +images-01867.png,1115 +images-01868.png,1116 +images-01869.png,1117 +images-02029.png,1118 +images-02030.png,1119 +images-02031.png,1120 +images-02032.png,1121 +images-02033.png,1122 +images-02034.png,1123 +images-02035.png,1124 +images-02036.png,1125 +images-02037.png,1126 +images-02038.png,1127 +images-02039.png,1128 +images-02040.png,1129 +images-02041.png,1130 +images-02042.png,1131 +images-02043.png,1132 +images-02044.png,1133 +images-02045.png,1134 +images-02046.png,1135 +images-02047.png,1136 +images-02048.png,1137 +images-02049.png,1138 +images-02050.png,1139 +images-02051.png,1140 +images-02052.png,1141 +images-02053.png,1142 +images-02054.png,1143 +images-02055.png,1144 +images-02056.png,1145 +images-02057.png,1146 +images-02058.png,1147 +images-02059.png,1148 +images-02060.png,1149 +images-02061.png,1150 +images-02062.png,1151 +images-02063.png,1152 +images-02064.png,1153 +images-02065.png,1154 +images-02066.png,1155 +images-02067.png,1156 +images-02068.png,1157 +images-02069.png,1158 +images-02070.png,1159 +images-02071.png,1160 +images-02072.png,1161 +images-02073.png,1162 +images-02074.png,1163 +images-02075.png,1164 +images-02076.png,1165 +images-02077.png,1166 +images-02078.png,1167 +images-02079.png,1168 +images-02080.png,1169 +images-02081.png,1170 +images-02082.png,1171 +images-02083.png,1172 +images-02084.png,1173 +images-02085.png,1174 +images-02086.png,1175 +images-02087.png,1176 +images-02088.png,1177 +images-02089.png,1178 +images-02090.png,1179 +images-02091.png,1180 +images-02092.png,1181 +images-02093.png,1182 +images-02094.png,1183 +images-02095.png,1184 +images-02096.png,1185 +images-02097.png,1186 +images-02098.png,1187 +images-02099.png,1188 +images-02100.png,1189 +images-02101.png,1190 +images-02102.png,1191 +images-02103.png,1192 +images-02104.png,1193 +images-02105.png,1194 +images-02106.png,1195 +images-02107.png,1196 +images-02108.png,1197 +images-02109.png,1198 +images-02110.png,1199 +images-02111.png,1200 +images-02112.png,1201 +images-02113.png,1202 +images-02114.png,1203 +images-02115.png,1204 +images-02116.png,1205 +images-02117.png,1206 +images-02118.png,1207 +images-02119.png,1208 +images-02120.png,1209 +images-02121.png,1210 +images-02122.png,1211 +images-02123.png,1212 +images-02124.png,1213 +images-02125.png,1214 +images-02126.png,1215 +images-02127.png,1216 +images-02128.png,1217 +images-02129.png,1218 +images-02130.png,1219 +images-02131.png,1220 +images-02132.png,1221 +images-02133.png,1222 +images-02134.png,1223 +images-02135.png,1224 +images-02136.png,1225 +images-02137.png,1226 +images-02138.png,1227 +images-02139.png,1228 +images-02140.png,1229 +images-02141.png,1230 +images-02142.png,1231 +images-02143.png,1232 +images-02144.png,1233 +images-02145.png,1234 +images-02146.png,1235 +images-02147.png,1236 +images-02148.png,1237 +images-02149.png,1238 +images-02150.png,1239 +images-02151.png,1240 +images-02152.png,1241 +images-02153.png,1242 +images-02154.png,1243 +images-02155.png,1244 +images-02156.png,1245 +images-02157.png,1246 +images-02158.png,1247 +images-02159.png,1248 +images-02160.png,1249 +images-02161.png,1250 +images-02162.png,1251 +images-02163.png,1252 +images-02164.png,1253 +images-02165.png,1254 +images-02166.png,1255 +images-02167.png,1256 +images-02168.png,1257 +images-02169.png,1258 +images-02170.png,1259 +images-02171.png,1260 +images-02172.png,1261 +images-02173.png,1262 +images-02174.png,1263 +images-02175.png,1264 +images-02176.png,1265 +images-02177.png,1266 +images-02178.png,1267 +images-02179.png,1268 +images-02180.png,1269 +images-02181.png,1270 +images-02182.png,1271 +images-02183.png,1272 +images-02184.png,1273 +images-02185.png,1274 +images-02186.png,1275 +images-02187.png,1276 +images-02333.png,1277 +images-02334.png,1278 +images-02335.png,1279 +images-02336.png,1280 +images-02337.png,1281 +images-02338.png,1282 +images-02339.png,1283 +images-02340.png,1284 +images-02355.png,1285 +images-02356.png,1286 +images-02357.png,1287 +images-02358.png,1288 +images-02359.png,1289 +images-02360.png,1290 +images-02361.png,1291 +images-02362.png,1292 +images-02363.png,1293 +images-02364.png,1294 +images-02365.png,1295 +images-02366.png,1296 +images-02367.png,1297 +images-02368.png,1298 +images-02369.png,1299 +images-02370.png,1300 +images-02371.png,1301 +images-02372.png,1302 +images-02373.png,1303 +images-02374.png,1304 +images-02375.png,1305 +images-02376.png,1306 +images-02377.png,1307 +images-02378.png,1308 +images-02379.png,1309 +images-02380.png,1310 +images-02381.png,1311 +images-02382.png,1312 +images-02383.png,1313 +images-02384.png,1314 +images-02385.png,1315 +images-02386.png,1316 +images-02387.png,1317 +images-02388.png,1318 +images-02389.png,1319 +images-02390.png,1320 +images-02391.png,1321 +images-02392.png,1322 +images-02393.png,1323 +images-02394.png,1324 +images-02395.png,1325 +images-02396.png,1326 +images-02397.png,1327 +images-02398.png,1328 +images-02399.png,1329 +images-02400.png,1330 +images-02401.png,1331 +images-02402.png,1332 +images-02403.png,1333 +images-02404.png,1334 +images-02405.png,1335 +images-02406.png,1336 +images-02407.png,1337 +images-02408.png,1338 +images-02409.png,1339 +images-02410.png,1340 +images-02411.png,1341 +images-02412.png,1342 +images-02413.png,1343 +images-02414.png,1344 +images-02415.png,1345 +images-02416.png,1346 +images-02417.png,1347 +images-02418.png,1348 +images-02419.png,1349 +images-02420.png,1350 +images-02421.png,1351 +images-02422.png,1352 +images-02423.png,1353 +images-02424.png,1354 +images-02425.png,1355 +images-02426.png,1356 +images-02427.png,1357 +images-02428.png,1358 +images-02429.png,1359 +images-02430.png,1360 +images-02431.png,1361 +images-02432.png,1362 +images-02433.png,1363 +images-02434.png,1364 +images-02435.png,1365 +images-02436.png,1366 +images-02437.png,1367 +images-02438.png,1368 +images-02439.png,1369 +images-02440.png,1370 +images-02441.png,1371 +images-02442.png,1372 +images-02443.png,1373 +images-02444.png,1374 +images-02445.png,1375 +images-02446.png,1376 +images-02447.png,1377 +images-02448.png,1378 +images-02449.png,1379 +images-02450.png,1380 +images-02451.png,1381 +images-02452.png,1382 +images-02453.png,1383 +images-02454.png,1384 +images-02455.png,1385 +images-02456.png,1386 +images-02457.png,1387 +images-02458.png,1388 +images-02459.png,1389 +images-02460.png,1390 +images-02461.png,1391 +images-02462.png,1392 +images-02463.png,1393 +images-02464.png,1394 +images-02465.png,1395 +images-02466.png,1396 +images-02467.png,1397 +images-02468.png,1398 +images-02469.png,1399 +images-02470.png,1400 +images-02471.png,1401 +images-02472.png,1402 +images-02473.png,1403 +images-02474.png,1404 +images-02475.png,1405 +images-02476.png,1406 +images-02477.png,1407 +images-02478.png,1408 +images-02479.png,1409 +images-02480.png,1410 +images-02481.png,1411 +images-02482.png,1412 +images-02483.png,1413 +images-02675.png,1414 +images-02676.png,1415 +images-02677.png,1416 +images-02678.png,1417 +images-02679.png,1418 +images-02680.png,1419 +images-02681.png,1420 +images-02682.png,1421 +images-02683.png,1422 +images-02684.png,1423 +images-02685.png,1424 +images-02686.png,1425 +images-02687.png,1426 +images-02688.png,1427 +images-02689.png,1428 +images-02690.png,1429 +images-02691.png,1430 +images-02692.png,1431 +images-02693.png,1432 +images-02694.png,1433 +images-02695.png,1434 +images-02696.png,1435 +images-02697.png,1436 +images-02698.png,1437 +images-02699.png,1438 +images-02700.png,1439 +images-02701.png,1440 +images-02702.png,1441 +images-02703.png,1442 +images-02704.png,1443 +images-02705.png,1444 +images-02706.png,1445 +images-02707.png,1446 +images-02708.png,1447 +images-02709.png,1448 +images-02710.png,1449 +images-02711.png,1450 +images-02712.png,1451 +images-02713.png,1452 +images-02714.png,1453 +images-02715.png,1454 +images-02716.png,1455 +images-02717.png,1456 +images-02718.png,1457 +images-02719.png,1458 +images-02720.png,1459 +images-02721.png,1460 +images-02722.png,1461 +images-02723.png,1462 +images-02724.png,1463 +images-02725.png,1464 +images-02726.png,1465 +images-02727.png,1466 +images-02728.png,1467 +images-02729.png,1468 +images-02730.png,1469 +images-02731.png,1470 +images-02732.png,1471 +images-02733.png,1472 +images-02734.png,1473 +images-02735.png,1474 +images-02736.png,1475 +images-02737.png,1476 +images-02738.png,1477 +images-02739.png,1478 +images-02740.png,1479 +images-02741.png,1480 +images-02742.png,1481 +images-02743.png,1482 +images-02744.png,1483 +images-02745.png,1484 +images-02746.png,1485 +images-02747.png,1486 +images-02748.png,1487 +images-02749.png,1488 +images-02750.png,1489 +images-02751.png,1490 +images-02752.png,1491 +images-02753.png,1492 +images-02754.png,1493 +images-02755.png,1494 +images-02756.png,1495 +images-02757.png,1496 +images-02758.png,1497 +images-02759.png,1498 +images-02760.png,1499 +images-02761.png,1500 +images-02762.png,1501 +images-02763.png,1502 +images-02764.png,1503 +images-02765.png,1504 +images-02766.png,1505 +images-02767.png,1506 +images-02768.png,1507 +images-02769.png,1508 +images-02770.png,1509 +images-02771.png,1510 +images-02772.png,1511 +images-02773.png,1512 +images-02774.png,1513 +images-02775.png,1514 +images-02776.png,1515 +images-02777.png,1516 +images-02778.png,1517 +images-02779.png,1518 +images-02780.png,1519 +images-02781.png,1520 +images-02782.png,1521 +images-02783.png,1522 +images-02784.png,1523 +images-02785.png,1524 +images-02786.png,1525 +images-02787.png,1526 +images-02788.png,1527 +images-02789.png,1528 +images-02790.png,1529 +images-02791.png,1530 +images-02792.png,1531 +images-02793.png,1532 +images-02794.png,1533 +images-02795.png,1534 +images-02796.png,1535 +images-02797.png,1536 +images-02798.png,1537 +images-02799.png,1538 +images-02800.png,1539 +images-02801.png,1540 +images-02802.png,1541 +images-02803.png,1542 +images-02804.png,1543 +images-02805.png,1544 +images-02806.png,1545 +images-02807.png,1546 +images-02808.png,1547 +images-02809.png,1548 +images-02810.png,1549 +images-02811.png,1550 +images-02812.png,1551 +images-02813.png,1552 +images-02814.png,1553 +images-02815.png,1554 +images-02816.png,1555 +images-02817.png,1556 +images-02818.png,1557 +images-02819.png,1558 +images-02820.png,1559 +images-02821.png,1560 +images-02822.png,1561 +images-02823.png,1562 +images-02824.png,1563 +images-02825.png,1564 +images-02826.png,1565 +images-02827.png,1566 +images-02828.png,1567 +images-02829.png,1568 +images-02830.png,1569 +images-02831.png,1570 +images-02832.png,1571 +images-02833.png,1572 +images-02834.png,1573 +images-02835.png,1574 +images-02836.png,1575 +images-02837.png,1576 +images-02838.png,1577 +images-02839.png,1578 +images-02840.png,1579 +images-02841.png,1580 +images-02842.png,1581 +images-02843.png,1582 +images-02844.png,1583 +images-02845.png,1584 +images-02846.png,1585 +images-02847.png,1586 +images-02848.png,1587 +images-02849.png,1588 +images-02850.png,1589 +images-02851.png,1590 +images-02852.png,1591 +images-02853.png,1592 +images-02854.png,1593 +images-02855.png,1594 +images-02856.png,1595 +images-02857.png,1596 +images-02858.png,1597 +images-02859.png,1598 +images-02860.png,1599 +images-02861.png,1600 +images-02862.png,1601 +images-02863.png,1602 +images-02864.png,1603 +images-02865.png,1604 +images-02866.png,1605 +images-02867.png,1606 +images-02868.png,1607 +images-02869.png,1608 +images-02870.png,1609 +images-02871.png,1610 +images-02872.png,1611 +images-02873.png,1612 +images-02874.png,1613 +images-02875.png,1614 +images-02876.png,1615 +images-02877.png,1616 +images-02878.png,1617 +images-02879.png,1618 +images-02880.png,1619 +images-02881.png,1620 +images-02882.png,1621 +images-02883.png,1622 +images-02884.png,1623 +images-02885.png,1624 +images-02886.png,1625 +images-02887.png,1626 +images-02888.png,1627 +images-02889.png,1628 +images-02890.png,1629 +images-02891.png,1630 +images-02892.png,1631 +images-02893.png,1632 +images-02894.png,1633 +images-02895.png,1634 +images-02896.png,1635 +images-02897.png,1636 +images-02898.png,1637 +images-02899.png,1638 +images-02900.png,1639 +images-02901.png,1640 +images-02902.png,1641 +images-02903.png,1642 +images-02904.png,1643 +images-02905.png,1644 +images-02906.png,1645 +images-02907.png,1646 +images-02908.png,1647 +images-02909.png,1648 +images-02910.png,1649 +images-02911.png,1650 +images-02912.png,1651 +images-02913.png,1652 +images-02914.png,1653 +images-02915.png,1654 +images-02916.png,1655 +images-02917.png,1656 +images-02918.png,1657 +images-02919.png,1658 +images-02920.png,1659 +images-02921.png,1660 +images-02922.png,1661 +images-02923.png,1662 +images-02924.png,1663 +images-02925.png,1664 +images-02926.png,1665 +images-02927.png,1666 +images-02928.png,1667 +images-02929.png,1668 +images-02930.png,1669 +images-02931.png,1670 +images-02932.png,1671 +images-02933.png,1672 +images-02934.png,1673 +images-02935.png,1674 +images-02936.png,1675 +images-02937.png,1676 +images-02938.png,1677 +images-02939.png,1678 +images-02940.png,1679 +images-02941.png,1680 +images-02942.png,1681 +images-02943.png,1682 +images-02944.png,1683 +images-02945.png,1684 +images-02946.png,1685 +images-02947.png,1686 +images-02948.png,1687 +images-02949.png,1688 +images-02950.png,1689 +images-02951.png,1690 +images-02952.png,1691 +images-02953.png,1692 +images-02954.png,1693 +images-02955.png,1694 +images-02956.png,1695 +images-02957.png,1696 +images-02958.png,1697 +images-02959.png,1698 +images-02960.png,1699 +images-02961.png,1700 +images-02962.png,1701 +images-02963.png,1702 +images-02964.png,1703 +images-02965.png,1704 +images-02966.png,1705 +images-02967.png,1706 +images-02968.png,1707 +images-02969.png,1708 +images-02970.png,1709 +images-02971.png,1710 +images-02972.png,1711 +images-02973.png,1712 +images-02974.png,1713 +images-02975.png,1714 +images-02976.png,1715 +images-02977.png,1716 +images-02978.png,1717 +images-02979.png,1718 +images-02980.png,1719 +images-02981.png,1720 +images-02982.png,1721 +images-02983.png,1722 +images-02984.png,1723 +images-02985.png,1724 +images-02986.png,1725 +images-02987.png,1726 +images-02988.png,1727 +images-02989.png,1728 +images-02990.png,1729 +images-02991.png,1730 +images-02992.png,1731 +images-02993.png,1732 +images-02994.png,1733 +images-02995.png,1734 +images-02996.png,1735 +images-02997.png,1736 +images-02998.png,1737 +images-02999.png,1738 +images-03000.png,1739 +images-03001.png,1740 +images-03002.png,1741 +images-03003.png,1742 +images-03004.png,1743 +images-03005.png,1744 +images-03006.png,1745 +images-03007.png,1746 +images-03008.png,1747 +images-03009.png,1748 +images-03010.png,1749 +images-03011.png,1750 +images-03012.png,1751 +images-03013.png,1752 +images-03014.png,1753 +images-03015.png,1754 +images-03016.png,1755 +images-03017.png,1756 +images-03018.png,1757 +images-03019.png,1758 +images-03020.png,1759 +images-03021.png,1760 +images-03022.png,1761 +images-03023.png,1762 +images-03024.png,1763 +images-03025.png,1764 +images-03026.png,1765 +images-03027.png,1766 +images-03028.png,1767 +images-03029.png,1768 +images-03030.png,1769 +images-03031.png,1770 +images-03032.png,1771 +images-03033.png,1772 +images-03034.png,1773 +images-03035.png,1774 +images-03036.png,1775 +images-03037.png,1776 +images-03038.png,1777 +images-03039.png,1778 +images-03040.png,1779 +images-03041.png,1780 +images-03042.png,1781 +images-03043.png,1782 +images-03044.png,1783 +images-03045.png,1784 +images-03046.png,1785 +images-03047.png,1786 +images-03048.png,1787 +images-03049.png,1788 +images-03050.png,1789 +images-03051.png,1790 +images-03052.png,1791 +images-03053.png,1792 +images-03054.png,1793 +images-03055.png,1794 +images-03056.png,1795 +images-03057.png,1796 +images-03058.png,1797 +images-03059.png,1798 +images-03060.png,1799 +images-03061.png,1800 +images-03062.png,1801 +images-03063.png,1802 +images-03064.png,1803 +images-03065.png,1804 +images-03066.png,1805 +images-03067.png,1806 +images-03068.png,1807 +images-03069.png,1808 +images-03070.png,1809 +images-03071.png,1810 +images-03072.png,1811 +images-03073.png,1812 +images-03074.png,1813 +images-03075.png,1814 +images-03076.png,1815 +images-03077.png,1816 +images-03078.png,1817 +images-03079.png,1818 +images-03080.png,1819 +images-03081.png,1820 +images-03082.png,1821 +images-03083.png,1822 +images-03084.png,1823 +images-03085.png,1824 +images-03086.png,1825 +images-03087.png,1826 +images-03088.png,1827 +images-03089.png,1828 +images-03090.png,1829 +images-03091.png,1830 +images-03092.png,1831 +images-03093.png,1832 +images-03094.png,1833 +images-03095.png,1834 +images-03096.png,1835 +images-03097.png,1836 +images-03098.png,1837 +images-03099.png,1838 +images-03100.png,1839 +images-03101.png,1840 +images-03102.png,1841 +images-03103.png,1842 +images-03104.png,1843 +images-03105.png,1844 +images-03106.png,1845 +images-03107.png,1846 +images-03108.png,1847 +images-03109.png,1848 +images-03110.png,1849 +images-03111.png,1850 +images-03112.png,1851 +images-03113.png,1852 +images-03114.png,1853 +images-03115.png,1854 +images-03116.png,1855 +images-03117.png,1856 +images-03118.png,1857 +images-03119.png,1858 +images-03120.png,1859 +images-03121.png,1860 +images-03122.png,1861 +images-03123.png,1862 +images-03124.png,1863 +images-03125.png,1864 +images-03126.png,1865 +images-03127.png,1866 +images-03128.png,1867 +images-03129.png,1868 +images-03130.png,1869 +images-03131.png,1870 +images-03132.png,1871 +images-03133.png,1872 +images-03134.png,1873 +images-03135.png,1874 +images-03136.png,1875 +images-03137.png,1876 +images-03138.png,1877 +images-03139.png,1878 +images-03140.png,1879 +images-03141.png,1880 +images-03142.png,1881 +images-03143.png,1882 +images-03144.png,1883 +images-03145.png,1884 +images-03146.png,1885 +images-03147.png,1886 +images-03148.png,1887 +images-03149.png,1888 +images-03150.png,1889 +images-03151.png,1890 +images-03152.png,1891 +images-03153.png,1892 +images-03154.png,1893 +images-03155.png,1894 +images-03156.png,1895 +images-03157.png,1896 +images-03158.png,1897 +images-03159.png,1898 +images-03160.png,1899 +images-03161.png,1900 +images-03162.png,1901 +images-03163.png,1902 +images-03164.png,1903 +images-03165.png,1904 +images-03166.png,1905 +images-03167.png,1906 +images-03168.png,1907 +images-03169.png,1908 +images-03170.png,1909 +images-03171.png,1910 +images-03172.png,1911 +images-03173.png,1912 +images-03174.png,1913 +images-03175.png,1914 +images-03176.png,1915 +images-03177.png,1916 +images-03178.png,1917 +images-03179.png,1918 +images-03180.png,1919 +images-03181.png,1920 +images-03182.png,1921 +images-03183.png,1922 +images-03184.png,1923 +images-03185.png,1924 +images-03186.png,1925 +images-03187.png,1926 +images-03188.png,1927 +images-03189.png,1928 +images-03190.png,1929 +images-03191.png,1930 +images-03192.png,1931 +images-03193.png,1932 +images-03194.png,1933 +images-03195.png,1934 +images-03196.png,1935 +images-03197.png,1936 +images-03198.png,1937 +images-03199.png,1938 +images-03200.png,1939 +images-03201.png,1940 +images-03202.png,1941 +images-03203.png,1942 +images-03204.png,1943 +images-03205.png,1944 +images-03206.png,1945 +images-03207.png,1946 +images-03208.png,1947 +images-03209.png,1948 +images-03210.png,1949 +images-03211.png,1950 +images-03212.png,1951 +images-03213.png,1952 +images-03214.png,1953 +images-03215.png,1954 +images-03216.png,1955 +images-03217.png,1956 +images-03218.png,1957 +images-03219.png,1958 +images-03220.png,1959 +images-03221.png,1960 +images-03222.png,1961 +images-03223.png,1962 +images-03224.png,1963 +images-03225.png,1964 +images-03226.png,1965 +images-03227.png,1966 +images-03228.png,1967 +images-03229.png,1968 +images-03230.png,1969 +images-03231.png,1970 +images-03232.png,1971 +images-03233.png,1972 +images-03234.png,1973 +images-03235.png,1974 +images-03236.png,1975 +images-03237.png,1976 +images-03238.png,1977 +images-03239.png,1978 +images-03240.png,1979 +images-03241.png,1980 +images-03242.png,1981 +images-03243.png,1982 +images-03244.png,1983 +images-03245.png,1984 +images-03246.png,1985 +images-03247.png,1986 +images-03248.png,1987 +images-03249.png,1988 +images-03250.png,1989 +images-03251.png,1990 +images-03252.png,1991 +images-03253.png,1992 +images-03254.png,1993 +images-03255.png,1994 +images-03256.png,1995 +images-03257.png,1996 +images-03258.png,1997 +images-03259.png,1998 +images-03260.png,1999 +images-03261.png,2000 +images-03262.png,2001 +images-03263.png,2002 +images-03264.png,2003 +images-03265.png,2004 +images-03266.png,2005 +images-03267.png,2006 +images-03268.png,2007 +images-03269.png,2008 +images-03270.png,2009 +images-03271.png,2010 +images-03272.png,2011 +images-03273.png,2012 +images-03274.png,2013 +images-03275.png,2014 +images-03276.png,2015 +images-03277.png,2016 +images-03278.png,2017 +images-03279.png,2018 +images-03280.png,2019 +images-03281.png,2020 +images-03282.png,2021 +images-03283.png,2022 +images-03284.png,2023 +images-03285.png,2024 +images-03286.png,2025 +images-03287.png,2026 +images-03288.png,2027 +images-03289.png,2028 +images-03290.png,2029 +images-03291.png,2030 +images-03292.png,2031 +images-03293.png,2032 +images-03294.png,2033 +images-03295.png,2034 +images-03296.png,2035 +images-03297.png,2036 +images-03298.png,2037 +images-03299.png,2038 +images-03300.png,2039 +images-03301.png,2040 +images-03302.png,2041 +images-03303.png,2042 +images-03304.png,2043 +images-03305.png,2044 +images-03306.png,2045 +images-03307.png,2046 +images-03308.png,2047 +images-03309.png,2048 +images-03310.png,2049 +images-03311.png,2050 +images-03312.png,2051 +images-03313.png,2052 +images-03314.png,2053 +images-03315.png,2054 +images-03316.png,2055 +images-03317.png,2056 +images-03318.png,2057 +images-03319.png,2058 +images-03320.png,2059 +images-03321.png,2060 +images-03322.png,2061 +images-03323.png,2062 +images-03324.png,2063 +images-03325.png,2064 +images-03326.png,2065 +images-03327.png,2066 +images-03328.png,2067 +images-03329.png,2068 +images-03330.png,2069 +images-03331.png,2070 +images-03332.png,2071 +images-03333.png,2072 +images-03334.png,2073 +images-03335.png,2074 +images-03336.png,2075 +images-03337.png,2076 +images-03338.png,2077 +images-03339.png,2078 +images-03340.png,2079 +images-03341.png,2080 +images-03342.png,2081 +images-03343.png,2082 +images-03344.png,2083 +images-03345.png,2084 +images-03346.png,2085 +images-03347.png,2086 +images-03348.png,2087 +images-03349.png,2088 +images-03350.png,2089 +images-03351.png,2090 +images-03352.png,2091 +images-03353.png,2092 +images-03354.png,2093 +images-03355.png,2094 +images-03356.png,2095 +images-03357.png,2096 +images-03358.png,2097 +images-03359.png,2098 +images-03360.png,2099 +images-03361.png,2100 +images-03362.png,2101 +images-03363.png,2102 +images-03364.png,2103 +images-03365.png,2104 +images-03366.png,2105 +images-03367.png,2106 +images-03368.png,2107 +images-03369.png,2108 +images-03370.png,2109 +images-03371.png,2110 +images-03372.png,2111 +images-03373.png,2112 +images-03374.png,2113 +images-03375.png,2114 +images-03376.png,2115 +images-03377.png,2116 +images-03378.png,2117 +images-03379.png,2118 +images-03380.png,2119 +images-03381.png,2120 +images-03382.png,2121 +images-03383.png,2122 +images-03698.png,2123 +images-03699.png,2124 +images-03700.png,2125 +images-03701.png,2126 +images-03702.png,2127 +images-03703.png,2128 +images-03704.png,2129 +images-03705.png,2130 +images-03706.png,2131 +images-03707.png,2132 +images-03708.png,2133 +images-03709.png,2134 +images-03710.png,2135 +images-03711.png,2136 +images-03712.png,2137 +images-03713.png,2138 +images-03714.png,2139 +images-03715.png,2140 +images-03716.png,2141 +images-03717.png,2142 +images-03718.png,2143 +images-03719.png,2144 +images-03720.png,2145 +images-03721.png,2146 +images-03722.png,2147 +images-03723.png,2148 +images-03724.png,2149 +images-03725.png,2150 +images-03726.png,2151 +images-03727.png,2152 +images-03728.png,2153 +images-03729.png,2154 +images-03730.png,2155 +images-03731.png,2156 +images-03732.png,2157 +images-03733.png,2158 +images-03734.png,2159 +images-03735.png,2160 +images-03736.png,2161 +images-03737.png,2162 +images-03738.png,2163 +images-03739.png,2164 +images-03740.png,2165 +images-03741.png,2166 +images-03742.png,2167 +images-03743.png,2168 +images-03744.png,2169 +images-03745.png,2170 +images-03746.png,2171 +images-03747.png,2172 +images-03748.png,2173 +images-03749.png,2174 +images-03750.png,2175 +images-03751.png,2176 +images-03752.png,2177 +images-03753.png,2178 +images-03754.png,2179 +images-03755.png,2180 +images-03756.png,2181 +images-03757.png,2182 +images-03758.png,2183 +images-03759.png,2184 +images-03760.png,2185 +images-03761.png,2186 +images-03762.png,2187 +images-03763.png,2188 +images-03764.png,2189 +images-03765.png,2190 +images-03766.png,2191 +images-03767.png,2192 +images-03768.png,2193 +images-03769.png,2194 +images-03770.png,2195 +images-03771.png,2196 +images-03772.png,2197 +images-03773.png,2198 +images-03774.png,2199 +images-03775.png,2200 +images-03776.png,2201 +images-03777.png,2202 +images-03778.png,2203 +images-03779.png,2204 +images-03780.png,2205 +images-03781.png,2206 +images-03782.png,2207 +images-03783.png,2208 +images-03784.png,2209 +images-03785.png,2210 +images-03786.png,2211 +images-03787.png,2212 +images-03788.png,2213 +images-03789.png,2214 +images-03790.png,2215 +images-03791.png,2216 +images-03792.png,2217 +images-03793.png,2218 +images-03794.png,2219 +images-03795.png,2220 +images-03796.png,2221 +images-03797.png,2222 +images-03798.png,2223 +images-03799.png,2224 +images-03800.png,2225 +images-03801.png,2226 +images-03802.png,2227 +images-03803.png,2228 +images-03804.png,2229 +images-03805.png,2230 +images-03806.png,2231 +images-03807.png,2232 +images-03808.png,2233 +images-03809.png,2234 +images-03810.png,2235 +images-03811.png,2236 +images-03812.png,2237 +images-03813.png,2238 +images-03814.png,2239 +images-03815.png,2240 +images-03816.png,2241 +images-03817.png,2242 +images-03818.png,2243 +images-03819.png,2244 +images-03820.png,2245 +images-03821.png,2246 +images-03822.png,2247 +images-03823.png,2248 +images-03824.png,2249 +images-03825.png,2250 +images-03826.png,2251 +images-03827.png,2252 +images-03828.png,2253 +images-03829.png,2254 +images-03830.png,2255 +images-03831.png,2256 +images-03832.png,2257 +images-03833.png,2258 +images-03834.png,2259 +images-03835.png,2260 +images-03836.png,2261 +images-03837.png,2262 +images-03838.png,2263 +images-03839.png,2264 +images-03840.png,2265 +images-03841.png,2266 +images-03842.png,2267 +images-03843.png,2268 +images-03844.png,2269 +images-03845.png,2270 +images-03846.png,2271 +images-03847.png,2272 +images-03848.png,2273 +images-03849.png,2274 +images-03850.png,2275 +images-03851.png,2276 +images-03852.png,2277 +images-03853.png,2278 +images-03854.png,2279 +images-03855.png,2280 +images-03856.png,2281 +images-03857.png,2282 +images-03858.png,2283 +images-03859.png,2284 +images-03860.png,2285 +images-03861.png,2286 +images-03862.png,2287 +images-03863.png,2288 +images-03864.png,2289 +images-03865.png,2290 +images-03866.png,2291 +images-03867.png,2292 +images-03868.png,2293 +images-03869.png,2294 +images-03870.png,2295 +images-03871.png,2296 +images-03872.png,2297 +images-03873.png,2298 +images-03874.png,2299 +images-03875.png,2300 +images-03876.png,2301 +images-03877.png,2302 +images-03878.png,2303 +images-03879.png,2304 +images-03880.png,2305 +images-03881.png,2306 +images-03882.png,2307 +images-03883.png,2308 +images-03884.png,2309 +images-03885.png,2310 +images-03886.png,2311 +images-03887.png,2312 +images-03888.png,2313 +images-03889.png,2314 +images-03890.png,2315 +images-03891.png,2316 +images-03892.png,2317 +images-03893.png,2318 +images-03894.png,2319 +images-03895.png,2320 +images-03896.png,2321 +images-03897.png,2322 +images-03898.png,2323 +images-03899.png,2324 +images-03900.png,2325 +images-03901.png,2326 +images-03902.png,2327 +images-03903.png,2328 +images-03904.png,2329 +images-03905.png,2330 +images-03906.png,2331 +images-03907.png,2332 +images-03908.png,2333 +images-03909.png,2334 +images-03910.png,2335 +images-03911.png,2336 +images-03912.png,2337 +images-03913.png,2338 +images-03914.png,2339 +images-03915.png,2340 +images-03916.png,2341 +images-03917.png,2342 +images-03918.png,2343 +images-03919.png,2344 +images-03920.png,2345 +images-03921.png,2346 +images-03922.png,2347 +images-03923.png,2348 +images-03924.png,2349 +images-03925.png,2350 +images-03926.png,2351 +images-03927.png,2352 +images-03928.png,2353 +images-03929.png,2354 +images-03930.png,2355 +images-03931.png,2356 +images-03932.png,2357 +images-03933.png,2358 +images-03934.png,2359 +images-03935.png,2360 +images-03936.png,2361 +images-03937.png,2362 +images-03938.png,2363 +images-03939.png,2364 +images-03940.png,2365 +images-03941.png,2366 +images-03942.png,2367 +images-03943.png,2368 +images-03944.png,2369 +images-03945.png,2370 +images-03946.png,2371 +images-03947.png,2372 +images-03948.png,2373 +images-03949.png,2374 +images-03950.png,2375 +images-03951.png,2376 +images-03952.png,2377 +images-03953.png,2378 +images-03954.png,2379 +images-03955.png,2380 +images-03956.png,2381 +images-03957.png,2382 +images-03958.png,2383 +images-03959.png,2384 +images-03960.png,2385 +images-03961.png,2386 +images-03962.png,2387 +images-03963.png,2388 +images-03964.png,2389 +images-03965.png,2390 +images-03966.png,2391 +images-03967.png,2392 +images-03968.png,2393 +images-03969.png,2394 +images-03970.png,2395 +images-03971.png,2396 +images-03972.png,2397 +images-03973.png,2398 +images-03974.png,2399 +images-03975.png,2400 +images-03976.png,2401 +images-03977.png,2402 +images-03978.png,2403 +images-03979.png,2404 +images-03980.png,2405 +images-03981.png,2406 +images-03982.png,2407 +images-03983.png,2408 +images-03984.png,2409 +images-03985.png,2410 +images-03986.png,2411 +images-03987.png,2412 +images-03988.png,2413 +images-03989.png,2414 +images-03990.png,2415 +images-03991.png,2416 +images-03992.png,2417 +images-03993.png,2418 +images-03994.png,2419 +images-03995.png,2420 +images-03996.png,2421 +images-03997.png,2422 +images-03998.png,2423 +images-03999.png,2424 +images-04000.png,2425 +images-04001.png,2426 +images-04002.png,2427 +images-04003.png,2428 +images-04004.png,2429 +images-04005.png,2430 +images-04006.png,2431 +images-04007.png,2432 +images-04008.png,2433 +images-04009.png,2434 +images-04010.png,2435 +images-04011.png,2436 +images-04012.png,2437 +images-04013.png,2438 +images-04014.png,2439 +images-04015.png,2440 +images-04016.png,2441 +images-04017.png,2442 +images-04018.png,2443 +images-04019.png,2444 +images-04020.png,2445 +images-04021.png,2446 +images-04022.png,2447 +images-04023.png,2448 +images-04024.png,2449 +images-04025.png,2450 +images-04026.png,2451 +images-04027.png,2452 +images-04028.png,2453 +images-04029.png,2454 +images-04030.png,2455 +images-04031.png,2456 +images-04032.png,2457 +images-04033.png,2458 +images-04034.png,2459 +images-04035.png,2460 +images-04036.png,2461 +images-04037.png,2462 +images-04038.png,2463 +images-04039.png,2464 +images-04040.png,2465 +images-04041.png,2466 +images-04042.png,2467 +images-04043.png,2468 +images-04044.png,2469 +images-04045.png,2470 +images-04046.png,2471 +images-04047.png,2472 +images-04048.png,2473 +images-04049.png,2474 +images-04050.png,2475 +images-04051.png,2476 +images-04052.png,2477 +images-04053.png,2478 +images-04054.png,2479 +images-04055.png,2480 +images-04056.png,2481 +images-04057.png,2482 +images-04058.png,2483 +images-04059.png,2484 +images-04060.png,2485 +images-04061.png,2486 +images-04062.png,2487 +images-04063.png,2488 +images-04064.png,2489 +images-04065.png,2490 +images-04066.png,2491 +images-04067.png,2492 +images-04068.png,2493 +images-04069.png,2494 +images-04070.png,2495 +images-04071.png,2496 +images-04072.png,2497 +images-04073.png,2498 +images-04074.png,2499 +images-04075.png,2500 +images-04076.png,2501 +images-04077.png,2502 +images-04078.png,2503 +images-04079.png,2504 +images-04080.png,2505 +images-04081.png,2506 +images-04082.png,2507 +images-04083.png,2508 +images-04084.png,2509 +images-04085.png,2510 +images-04086.png,2511 +images-04087.png,2512 +images-04088.png,2513 +images-04089.png,2514 +images-04090.png,2515 +images-04091.png,2516 +images-04092.png,2517 +images-04097.png,2518 +images-04098.png,2519 +images-04099.png,2520 +images-04100.png,2521 +images-04101.png,2522 +images-04102.png,2523 +images-04103.png,2524 +images-04104.png,2525 +images-04105.png,2526 +images-04106.png,2527 +images-04107.png,2528 +images-04108.png,2529 +images-04109.png,2530 +images-04110.png,2531 +images-04111.png,2532 +images-04112.png,2533 +images-04113.png,2534 +images-04114.png,2535 +images-04115.png,2536 +images-04116.png,2537 +images-04117.png,2538 +images-04118.png,2539 +images-04119.png,2540 +images-04120.png,2541 +images-04121.png,2542 +images-04122.png,2543 +images-04123.png,2544 +images-04124.png,2545 +images-04125.png,2546 +images-04126.png,2547 +images-04127.png,2548 +images-04128.png,2549 +images-04129.png,2550 +images-04130.png,2551 +images-04131.png,2552 +images-04132.png,2553 +images-04133.png,2554 +images-04134.png,2555 +images-04135.png,2556 +images-04136.png,2557 +images-04137.png,2558 +images-04138.png,2559 +images-04139.png,2560 +images-04140.png,2561 +images-04141.png,2562 +images-04142.png,2563 +images-04143.png,2564 +images-04144.png,2565 +images-04145.png,2566 +images-04146.png,2567 +images-04147.png,2568 +images-04148.png,2569 +images-04149.png,2570 +images-04150.png,2571 +images-04151.png,2572 +images-04152.png,2573 +images-04153.png,2574 +images-04154.png,2575 +images-04155.png,2576 +images-04156.png,2577 +images-04157.png,2578 +images-04158.png,2579 +images-04159.png,2580 +images-04160.png,2581 +images-04161.png,2582 +images-04162.png,2583 +images-04163.png,2584 +images-04164.png,2585 +images-04165.png,2586 +images-04166.png,2587 +images-04167.png,2588 +images-04168.png,2589 +images-04169.png,2590 +images-04170.png,2591 +images-04171.png,2592 +images-04172.png,2593 +images-04173.png,2594 +images-04174.png,2595 +images-04175.png,2596 +images-04176.png,2597 +images-04177.png,2598 +images-04178.png,2599 +images-04179.png,2600 +images-04180.png,2601 +images-04181.png,2602 +images-04182.png,2603 +images-04183.png,2604 +images-04184.png,2605 +images-04185.png,2606 +images-04186.png,2607 +images-04187.png,2608 +images-04188.png,2609 +images-04189.png,2610 +images-04190.png,2611 +images-04191.png,2612 +images-04192.png,2613 +images-04193.png,2614 +images-04194.png,2615 +images-04195.png,2616 +images-04196.png,2617 +images-04197.png,2618 +images-04198.png,2619 +images-04199.png,2620 +images-04200.png,2621 +images-04201.png,2622 +images-04202.png,2623 +images-04203.png,2624 +images-04204.png,2625 +images-04205.png,2626 +images-04206.png,2627 +images-04207.png,2628 +images-04208.png,2629 +images-04209.png,2630 +images-04210.png,2631 +images-04211.png,2632 +images-04212.png,2633 +images-04213.png,2634 +images-04214.png,2635 +images-04215.png,2636 +images-04216.png,2637 +images-04217.png,2638 +images-04218.png,2639 +images-04219.png,2640 +images-04220.png,2641 +images-04221.png,2642 +images-04222.png,2643 +images-04223.png,2644 +images-04224.png,2645 +images-04225.png,2646 +images-04226.png,2647 +images-04227.png,2648 +images-04228.png,2649 +images-04229.png,2650 +images-04230.png,2651 +images-04231.png,2652 +images-04232.png,2653 +images-04233.png,2654 +images-04234.png,2655 +images-04235.png,2656 +images-04236.png,2657 +images-04237.png,2658 +images-04238.png,2659 +images-04239.png,2660 +images-04240.png,2661 +images-04241.png,2662 +images-04242.png,2663 +images-04243.png,2664 +images-04244.png,2665 +images-04245.png,2666 +images-04246.png,2667 +images-04247.png,2668 +images-04248.png,2669 +images-04249.png,2670 +images-04250.png,2671 +images-04251.png,2672 +images-04252.png,2673 +images-04253.png,2674 +images-04254.png,2675 +images-04255.png,2676 +images-04256.png,2677 +images-04257.png,2678 +images-04258.png,2679 +images-04259.png,2680 +images-04260.png,2681 +images-04261.png,2682 +images-04262.png,2683 +images-04263.png,2684 +images-04264.png,2685 +images-04265.png,2686 +images-04266.png,2687 +images-04267.png,2688 +images-04268.png,2689 +images-04269.png,2690 +images-04270.png,2691 +images-04271.png,2692 +images-04272.png,2693 +images-04273.png,2694 +images-04274.png,2695 +images-04275.png,2696 +images-04276.png,2697 +images-04277.png,2698 +images-04278.png,2699 +images-04279.png,2700 +images-04280.png,2701 +images-04281.png,2702 +images-04282.png,2703 +images-04283.png,2704 +images-04284.png,2705 +images-04285.png,2706 +images-04286.png,2707 +images-04287.png,2708 +images-04288.png,2709 +images-04289.png,2710 +images-04290.png,2711 +images-04291.png,2712 +images-04292.png,2713 +images-04293.png,2714 +images-04294.png,2715 +images-04295.png,2716 +images-04296.png,2717 +images-04297.png,2718 +images-04298.png,2719 +images-04299.png,2720 +images-04300.png,2721 +images-04301.png,2722 +images-04302.png,2723 +images-04303.png,2724 +images-04304.png,2725 +images-04305.png,2726 +images-04306.png,2727 +images-04307.png,2728 +images-04308.png,2729 +images-04309.png,2730 +images-04310.png,2731 +images-04311.png,2732 +images-04312.png,2733 +images-04313.png,2734 +images-04314.png,2735 +images-04315.png,2736 +images-04316.png,2737 +images-04317.png,2738 +images-04318.png,2739 +images-04319.png,2740 +images-04320.png,2741 +images-04321.png,2742 +images-04322.png,2743 +images-04323.png,2744 +images-04324.png,2745 +images-04325.png,2746 +images-04326.png,2747 +images-04327.png,2748 +images-04328.png,2749 +images-04329.png,2750 +images-04330.png,2751 +images-04331.png,2752 +images-04332.png,2753 +images-04333.png,2754 +images-04334.png,2755 +images-04335.png,2756 +images-04336.png,2757 +images-04337.png,2758 +images-04338.png,2759 +images-04339.png,2760 +images-04340.png,2761 +images-04341.png,2762 +images-04342.png,2763 +images-04343.png,2764 +images-04344.png,2765 +images-04345.png,2766 +images-04346.png,2767 +images-04347.png,2768 +images-04348.png,2769 +images-04349.png,2770 +images-04350.png,2771 +images-04351.png,2772 +images-04352.png,2773 +images-04353.png,2774 +images-04354.png,2775 +images-04355.png,2776 +images-04356.png,2777 +images-04357.png,2778 +images-04358.png,2779 +images-04359.png,2780 +images-04360.png,2781 +images-04361.png,2782 +images-04362.png,2783 +images-04363.png,2784 +images-04364.png,2785 +images-04365.png,2786 +images-04366.png,2787 +images-04367.png,2788 +images-04368.png,2789 +images-04369.png,2790 +images-04370.png,2791 +images-04371.png,2792 +images-04372.png,2793 +images-04373.png,2794 +images-04374.png,2795 +images-04375.png,2796 +images-04376.png,2797 +images-04377.png,2798 +images-04378.png,2799 +images-04379.png,2800 +images-04380.png,2801 +images-04381.png,2802 +images-04382.png,2803 +images-04383.png,2804 +images-04384.png,2805 +images-04385.png,2806 +images-04386.png,2807 +images-04387.png,2808 +images-04388.png,2809 +images-04389.png,2810 +images-04390.png,2811 +images-04391.png,2812 +images-04392.png,2813 +images-04393.png,2814 +images-04394.png,2815 +images-04395.png,2816 +images-04396.png,2817 +images-04397.png,2818 +images-04398.png,2819 +images-04399.png,2820 +images-04400.png,2821 +images-04401.png,2822 +images-04402.png,2823 +images-04403.png,2824 +images-04404.png,2825 +images-04405.png,2826 +images-04406.png,2827 +images-04407.png,2828 +images-04408.png,2829 +images-04409.png,2830 +images-04410.png,2831 +images-04411.png,2832 +images-04412.png,2833 +images-04413.png,2834 +images-04414.png,2835 +images-04415.png,2836 +images-04416.png,2837 +images-04417.png,2838 +images-04418.png,2839 +images-04419.png,2840 +images-04420.png,2841 +images-04421.png,2842 +images-04422.png,2843 +images-04423.png,2844 +images-04424.png,2845 +images-04425.png,2846 +images-04426.png,2847 +images-04427.png,2848 +images-04428.png,2849 +images-04429.png,2850 +images-04430.png,2851 +images-04431.png,2852 +images-04432.png,2853 +images-04433.png,2854 +images-04434.png,2855 +images-04435.png,2856 +images-04436.png,2857 +images-04437.png,2858 +images-04438.png,2859 +images-04439.png,2860 +images-04440.png,2861 +images-04441.png,2862 +images-04442.png,2863 +images-04443.png,2864 +images-04444.png,2865 +images-04445.png,2866 +images-04446.png,2867 +images-04447.png,2868 +images-04448.png,2869 +images-04449.png,2870 +images-04450.png,2871 +images-04451.png,2872 +images-04452.png,2873 +images-04453.png,2874 +images-04454.png,2875 +images-04455.png,2876 +images-04456.png,2877 +images-04457.png,2878 +images-04458.png,2879 +images-04459.png,2880 +images-04460.png,2881 +images-04461.png,2882 +images-04462.png,2883 +images-04463.png,2884 +images-04464.png,2885 +images-04465.png,2886 +images-04466.png,2887 +images-04467.png,2888 +images-04468.png,2889 +images-04469.png,2890 +images-04470.png,2891 +images-04471.png,2892 +images-04472.png,2893 +images-04473.png,2894 +images-04474.png,2895 +images-04475.png,2896 +images-04476.png,2897 +images-04477.png,2898 +images-04478.png,2899 +images-04479.png,2900 +images-04480.png,2901 +images-04481.png,2902 +images-04482.png,2903 +images-04483.png,2904 +images-04484.png,2905 +images-04485.png,2906 +images-04486.png,2907 +images-04487.png,2908 +images-04488.png,2909 +images-04489.png,2910 +images-04490.png,2911 +images-04491.png,2912 +images-04492.png,2913 +images-04493.png,2914 +images-04494.png,2915 +images-04495.png,2916 +images-04496.png,2917 +images-04497.png,2918 +images-04498.png,2919 +images-04499.png,2920 +images-04500.png,2921 +images-04501.png,2922 +images-04502.png,2923 +images-04503.png,2924 +images-04504.png,2925 +images-04505.png,2926 +images-04506.png,2927 +images-04507.png,2928 +images-04508.png,2929 +images-04509.png,2930 +images-04510.png,2931 +images-04511.png,2932 +images-04512.png,2933 +images-04513.png,2934 +images-04514.png,2935 +images-04515.png,2936 +images-04516.png,2937 +images-04517.png,2938 +images-04518.png,2939 +images-04519.png,2940 +images-04520.png,2941 +images-04521.png,2942 +images-04522.png,2943 +images-04523.png,2944 +images-04524.png,2945 +images-04525.png,2946 +images-04526.png,2947 +images-04527.png,2948 +images-04528.png,2949 +images-04529.png,2950 +images-04530.png,2951 +images-04531.png,2952 +images-04532.png,2953 +images-04533.png,2954 +images-04534.png,2955 +images-04535.png,2956 +images-04536.png,2957 +images-04537.png,2958 +images-04538.png,2959 +images-04539.png,2960 +images-04540.png,2961 +images-04541.png,2962 +images-04542.png,2963 +images-04543.png,2964 +images-04544.png,2965 +images-04545.png,2966 +images-04546.png,2967 +images-04547.png,2968 +images-04548.png,2969 +images-04549.png,2970 +images-04550.png,2971 +images-04551.png,2972 +images-04552.png,2973 +images-04553.png,2974 +images-04554.png,2975 +images-04555.png,2976 +images-04556.png,2977 +images-04557.png,2978 +images-04558.png,2979 +images-04559.png,2980 +images-04560.png,2981 +images-04561.png,2982 +images-04562.png,2983 +images-04563.png,2984 +images-04564.png,2985 +images-04565.png,2986 +images-04566.png,2987 +images-04567.png,2988 +images-04568.png,2989 +images-04569.png,2990 +images-04570.png,2991 +images-04571.png,2992 +images-04572.png,2993 +images-04573.png,2994 +images-04574.png,2995 +images-04575.png,2996 +images-04576.png,2997 +images-04577.png,2998 +images-04578.png,2999 +images-04579.png,3000 +images-04580.png,3001 +images-04581.png,3002 +images-04582.png,3003 +images-04583.png,3004 +images-04584.png,3005 +images-04585.png,3006 +images-04586.png,3007 +images-04587.png,3008 +images-04588.png,3009 +images-04589.png,3010 +images-04590.png,3011 +images-04591.png,3012 +images-04592.png,3013 +images-04593.png,3014 +images-04594.png,3015 +images-04595.png,3016 +images-04596.png,3017 +images-04597.png,3018 +images-04598.png,3019 +images-04599.png,3020 +images-04600.png,3021 +images-04601.png,3022 +images-04602.png,3023 +images-04603.png,3024 +images-04604.png,3025 +images-04605.png,3026 +images-04606.png,3027 +images-04607.png,3028 +images-04608.png,3029 +images-04609.png,3030 +images-04610.png,3031 +images-04611.png,3032 +images-04612.png,3033 +images-04613.png,3034 +images-04614.png,3035 +images-04615.png,3036 +images-04616.png,3037 +images-04617.png,3038 +images-04618.png,3039 +images-04619.png,3040 +images-04620.png,3041 +images-04621.png,3042 +images-04622.png,3043 +images-04623.png,3044 +images-04624.png,3045 +images-04625.png,3046 +images-04626.png,3047 +images-04627.png,3048 +images-04628.png,3049 +images-04629.png,3050 +images-04630.png,3051 +images-04631.png,3052 +images-04632.png,3053 +images-04633.png,3054 +images-04634.png,3055 +images-04635.png,3056 +images-04636.png,3057 +images-04637.png,3058 +images-04638.png,3059 +images-04639.png,3060 +images-04640.png,3061 +images-04641.png,3062 +images-04642.png,3063 +images-04643.png,3064 +images-04644.png,3065 +images-04645.png,3066 +images-04646.png,3067 +images-04647.png,3068 +images-04648.png,3069 +images-04649.png,3070 +images-04650.png,3071 +images-04651.png,3072 +images-04652.png,3073 +images-04653.png,3074 +images-04654.png,3075 +images-04655.png,3076 +images-04656.png,3077 +images-04657.png,3078 +images-04658.png,3079 +images-04659.png,3080 +images-04660.png,3081 +images-04661.png,3082 +images-04662.png,3083 +images-04663.png,3084 +images-04664.png,3085 +images-04665.png,3086 +images-04666.png,3087 +images-04667.png,3088 +images-04668.png,3089 +images-04669.png,3090 +images-04670.png,3091 +images-04671.png,3092 +images-04672.png,3093 +images-04673.png,3094 +images-04674.png,3095 +images-04675.png,3096 +images-04676.png,3097 +images-04677.png,3098 +images-04678.png,3099 +images-04679.png,3100 +images-04680.png,3101 +images-04681.png,3102 +images-04682.png,3103 +images-04683.png,3104 +images-04684.png,3105 +images-04685.png,3106 +images-04686.png,3107 +images-04687.png,3108 +images-04688.png,3109 +images-04689.png,3110 +images-04690.png,3111 +images-04691.png,3112 +images-04692.png,3113 +images-04693.png,3114 +images-04694.png,3115 +images-04695.png,3116 +images-04696.png,3117 +images-04697.png,3118 +images-04698.png,3119 +images-04699.png,3120 +images-04700.png,3121 +images-04701.png,3122 +images-04702.png,3123 +images-04703.png,3124 +images-04704.png,3125 +images-04705.png,3126 +images-04706.png,3127 +images-04707.png,3128 +images-04708.png,3129 +images-04709.png,3130 +images-04710.png,3131 +images-04711.png,3132 +images-04712.png,3133 +images-04713.png,3134 +images-04714.png,3135 +images-04715.png,3136 +images-04716.png,3137 +images-04717.png,3138 +images-04718.png,3139 +images-04719.png,3140 +images-04720.png,3141 +images-04721.png,3142 +images-04722.png,3143 +images-04723.png,3144 +images-04724.png,3145 +images-04725.png,3146 +images-04726.png,3147 +images-04727.png,3148 +images-04728.png,3149 +images-04729.png,3150 +images-04730.png,3151 +images-04731.png,3152 +images-04732.png,3153 +images-04733.png,3154 +images-04734.png,3155 +images-04735.png,3156 +images-04736.png,3157 +images-04737.png,3158 +images-04738.png,3159 +images-04739.png,3160 +images-04740.png,3161 +images-04741.png,3162 +images-04742.png,3163 +images-04743.png,3164 +images-04744.png,3165 +images-04745.png,3166 +images-04746.png,3167 +images-04747.png,3168 +images-04748.png,3169 +images-04749.png,3170 +images-04750.png,3171 +images-04751.png,3172 +images-04752.png,3173 +images-04753.png,3174 +images-04754.png,3175 +images-04755.png,3176 +images-04756.png,3177 +images-04757.png,3178 +images-04758.png,3179 +images-04759.png,3180 +images-04760.png,3181 +images-04761.png,3182 +images-04762.png,3183 +images-04763.png,3184 +images-04764.png,3185 +images-04765.png,3186 +images-04766.png,3187 +images-04767.png,3188 +images-04768.png,3189 +images-04769.png,3190 +images-04770.png,3191 +images-04771.png,3192 +images-04772.png,3193 +images-04773.png,3194 +images-04774.png,3195 +images-04775.png,3196 +images-04776.png,3197 +images-04777.png,3198 +images-04778.png,3199 +images-04779.png,3200 +images-04780.png,3201 +images-04781.png,3202 +images-04782.png,3203 +images-04783.png,3204 +images-04784.png,3205 +images-04785.png,3206 +images-04786.png,3207 +images-04787.png,3208 +images-04788.png,3209 +images-04789.png,3210 +images-04790.png,3211 +images-04791.png,3212 +images-04792.png,3213 +images-04793.png,3214 +images-04794.png,3215 +images-04795.png,3216 +images-04796.png,3217 +images-04797.png,3218 +images-04798.png,3219 +images-04799.png,3220 +images-04800.png,3221 +images-04801.png,3222 +images-04802.png,3223 +images-04803.png,3224 +images-04804.png,3225 +images-04805.png,3226 +images-04806.png,3227 +images-04807.png,3228 +images-04808.png,3229 +images-04809.png,3230 +images-04810.png,3231 +images-04811.png,3232 +images-04812.png,3233 +images-04813.png,3234 +images-04814.png,3235 +images-04815.png,3236 +images-04816.png,3237 +images-04817.png,3238 +images-04818.png,3239 +images-04819.png,3240 +images-04820.png,3241 +images-04821.png,3242 +images-04822.png,3243 +images-04823.png,3244 +images-04824.png,3245 +images-04825.png,3246 +images-04826.png,3247 +images-04827.png,3248 +images-04828.png,3249 +images-04829.png,3250 +images-04830.png,3251 +images-04831.png,3252 +images-04832.png,3253 +images-04833.png,3254 +images-04834.png,3255 +images-04835.png,3256 +images-04836.png,3257 +images-04837.png,3258 +images-04838.png,3259 +images-04839.png,3260 +images-04840.png,3261 +images-04841.png,3262 +images-04842.png,3263 +images-04843.png,3264 +images-04844.png,3265 +images-04845.png,3266 +images-04846.png,3267 +images-04847.png,3268 +images-04848.png,3269 +images-04849.png,3270 +images-04850.png,3271 +images-04851.png,3272 +images-04852.png,3273 +images-04853.png,3274 +images-04854.png,3275 +images-04855.png,3276 +images-04856.png,3277 +images-04857.png,3278 +images-04858.png,3279 +images-04859.png,3280 +images-04860.png,3281 +images-04861.png,3282 +images-04862.png,3283 +images-04863.png,3284 +images-04864.png,3285 +images-04865.png,3286 +images-04866.png,3287 +images-04867.png,3288 +images-04868.png,3289 +images-04869.png,3290 +images-04870.png,3291 +images-04871.png,3292 +images-04872.png,3293 +images-04873.png,3294 +images-04874.png,3295 +images-04875.png,3296 +images-04876.png,3297 +images-04877.png,3298 +images-04878.png,3299 +images-04879.png,3300 +images-04880.png,3301 +images-04881.png,3302 +images-04882.png,3303 +images-04883.png,3304 +images-04884.png,3305 +images-04885.png,3306 +images-04886.png,3307 +images-04887.png,3308 +images-04888.png,3309 +images-04889.png,3310 +images-04890.png,3311 +images-04891.png,3312 +images-04892.png,3313 +images-04893.png,3314 +images-04894.png,3315 +images-04895.png,3316 +images-04896.png,3317 +images-04897.png,3318 +images-04898.png,3319 +images-04899.png,3320 +images-04900.png,3321 +images-04901.png,3322 +images-04902.png,3323 +images-04903.png,3324 +images-04904.png,3325 +images-04905.png,3326 +images-04906.png,3327 +images-04907.png,3328 +images-04908.png,3329 +images-04909.png,3330 +images-04910.png,3331 +images-04911.png,3332 +images-04912.png,3333 +images-04913.png,3334 +images-04914.png,3335 +images-04915.png,3336 +images-04916.png,3337 +images-04917.png,3338 +images-04918.png,3339 +images-04919.png,3340 +images-04920.png,3341 +images-04921.png,3342 +images-04922.png,3343 +images-04923.png,3344 +images-04924.png,3345 +images-04925.png,3346 +images-04926.png,3347 +images-04927.png,3348 +images-04928.png,3349 +images-04929.png,3350 +images-04930.png,3351 +images-04931.png,3352 +images-04932.png,3353 +images-04933.png,3354 +images-04934.png,3355 +images-04935.png,3356 +images-04936.png,3357 +images-04937.png,3358 +images-04938.png,3359 +images-04939.png,3360 +images-04940.png,3361 +images-04941.png,3362 +images-04942.png,3363 +images-04943.png,3364 +images-04944.png,3365 +images-04945.png,3366 +images-04946.png,3367 +images-04947.png,3368 +images-04948.png,3369 +images-04949.png,3370 +images-04950.png,3371 +images-04951.png,3372 +images-04952.png,3373 +images-04953.png,3374 +images-04954.png,3375 +images-04955.png,3376 +images-04956.png,3377 +images-04957.png,3378 +images-04958.png,3379 +images-04959.png,3380 +images-04960.png,3381 +images-04961.png,3382 +images-04962.png,3383 +images-04963.png,3384 +images-04964.png,3385 +images-04965.png,3386 +images-04966.png,3387 +images-04967.png,3388 +images-04968.png,3389 +images-04969.png,3390 +images-04970.png,3391 +images-04971.png,3392 +images-04972.png,3393 +images-04973.png,3394 +images-04974.png,3395 +images-04975.png,3396 +images-04976.png,3397 +images-04977.png,3398 +images-04978.png,3399 +images-04979.png,3400 +images-04980.png,3401 +images-04981.png,3402 +images-04982.png,3403 +images-04983.png,3404 +images-04984.png,3405 +images-04985.png,3406 +images-04986.png,3407 +images-04987.png,3408 +images-04988.png,3409 +images-04989.png,3410 +images-04990.png,3411 +images-04991.png,3412 +images-04992.png,3413 +images-04993.png,3414 +images-04994.png,3415 +images-04995.png,3416 +images-04996.png,3417 +images-04997.png,3418 +images-04998.png,3419 +images-04999.png,3420 +images-05000.png,3421 +images-05001.png,3422 +images-05002.png,3423 +images-05003.png,3424 +images-05004.png,3425 +images-05005.png,3426 +images-05006.png,3427 +images-05007.png,3428 +images-05008.png,3429 +images-05009.png,3430 +images-05010.png,3431 +images-05011.png,3432 +images-05012.png,3433 +images-05013.png,3434 +images-05014.png,3435 +images-05015.png,3436 +images-05016.png,3437 +images-05017.png,3438 +images-05018.png,3439 +images-05019.png,3440 +images-05020.png,3441 +images-05021.png,3442 +images-05022.png,3443 +images-05023.png,3444 +images-05024.png,3445 +images-05025.png,3446 +images-05026.png,3447 +images-05027.png,3448 +images-05028.png,3449 +images-05029.png,3450 +images-05030.png,3451 +images-05031.png,3452 +images-05032.png,3453 +images-05033.png,3454 +images-05034.png,3455 +images-05035.png,3456 +images-05036.png,3457 +images-05037.png,3458 +images-05038.png,3459 +images-05039.png,3460 +images-05040.png,3461 +images-05479.png,3462 +images-05480.png,3463 +images-05481.png,3464 +images-05482.png,3465 +images-05483.png,3466 +images-05484.png,3467 +images-05485.png,3468 +images-05486.png,3469 +images-05487.png,3470 +images-05488.png,3471 +images-05489.png,3472 +images-05490.png,3473 +images-05491.png,3474 +images-05492.png,3475 +images-05493.png,3476 +images-05494.png,3477 +images-05495.png,3478 +images-05496.png,3479 +images-05497.png,3480 +images-05498.png,3481 +images-05499.png,3482 +images-05500.png,3483 +images-05501.png,3484 +images-05502.png,3485 +images-05503.png,3486 +images-05504.png,3487 +images-05505.png,3488 +images-05506.png,3489 +images-05507.png,3490 +images-05508.png,3491 +images-05509.png,3492 +images-05510.png,3493 +images-05511.png,3494 +images-05512.png,3495 +images-05513.png,3496 +images-05514.png,3497 +images-05515.png,3498 +images-05516.png,3499 +images-05517.png,3500 +images-05518.png,3501 +images-05519.png,3502 +images-05520.png,3503 +images-05521.png,3504 +images-05522.png,3505 +images-05523.png,3506 +images-05524.png,3507 +images-05525.png,3508 +images-05526.png,3509 +images-05527.png,3510 +images-05528.png,3511 +images-05529.png,3512 +images-05530.png,3513 +images-05531.png,3514 +images-05532.png,3515 +images-05533.png,3516 +images-05534.png,3517 +images-05535.png,3518 +images-05536.png,3519 +images-05537.png,3520 +images-05538.png,3521 +images-05539.png,3522 +images-05540.png,3523 +images-05541.png,3524 +images-05542.png,3525 +images-05543.png,3526 +images-05544.png,3527 +images-05545.png,3528 +images-05546.png,3529 +images-05547.png,3530 +images-05548.png,3531 +images-05549.png,3532 +images-05550.png,3533 +images-05551.png,3534 +images-05552.png,3535 +images-05553.png,3536 +images-05554.png,3537 +images-05555.png,3538 +images-05556.png,3539 +images-05557.png,3540 +images-05558.png,3541 +images-05559.png,3542 +images-05560.png,3543 +images-05561.png,3544 +images-05562.png,3545 +images-05563.png,3546 +images-05564.png,3547 +images-05565.png,3548 +images-05566.png,3549 +images-05567.png,3550 +images-05568.png,3551 +images-05569.png,3552 +images-05570.png,3553 +images-05571.png,3554 +images-05572.png,3555 +images-05573.png,3556 +images-05574.png,3557 +images-05575.png,3558 +images-05576.png,3559 +images-05577.png,3560 +images-05578.png,3561 +images-05579.png,3562 +images-05580.png,3563 +images-05581.png,3564 +images-05582.png,3565 +images-05583.png,3566 +images-05584.png,3567 +images-05585.png,3568 +images-05586.png,3569 +images-05587.png,3570 +images-05588.png,3571 +images-05589.png,3572 +images-05590.png,3573 +images-05591.png,3574 +images-05592.png,3575 +images-05593.png,3576 +images-05594.png,3577 +images-05595.png,3578 +images-05596.png,3579 +images-05597.png,3580 +images-05598.png,3581 +images-05599.png,3582 +images-05600.png,3583 +images-05601.png,3584 +images-05602.png,3585 +images-05603.png,3586 +images-05604.png,3587 +images-05605.png,3588 +images-05606.png,3589 +images-05607.png,3590 +images-05608.png,3591 +images-05609.png,3592 +images-05610.png,3593 +images-05611.png,3594 +images-05612.png,3595 +images-05613.png,3596 +images-05614.png,3597 +images-05615.png,3598 +images-05616.png,3599 +images-05617.png,3600 +images-05618.png,3601 +images-05619.png,3602 +images-05620.png,3603 +images-05621.png,3604 +images-05622.png,3605 +images-05623.png,3606 +images-05624.png,3607 +images-05625.png,3608 +images-05626.png,3609 +images-05627.png,3610 +images-05628.png,3611 +images-05629.png,3612 +images-05630.png,3613 +images-05631.png,3614 +images-05632.png,3615 +images-05633.png,3616 +images-05634.png,3617 +images-05635.png,3618 +images-05636.png,3619 +images-05637.png,3620 +images-05638.png,3621 +images-05639.png,3622 +images-05640.png,3623 +images-05641.png,3624 +images-05642.png,3625 +images-05643.png,3626 +images-05644.png,3627 +images-05645.png,3628 +images-05646.png,3629 +images-05647.png,3630 +images-05648.png,3631 +images-05649.png,3632 +images-05650.png,3633 +images-05651.png,3634 +images-05652.png,3635 +images-05653.png,3636 +images-05654.png,3637 +images-05655.png,3638 +images-05656.png,3639 +images-05657.png,3640 +images-05658.png,3641 +images-05659.png,3642 +images-05660.png,3643 +images-05661.png,3644 +images-05662.png,3645 +images-05663.png,3646 +images-05664.png,3647 +images-05665.png,3648 +images-05666.png,3649 +images-05667.png,3650 +images-05668.png,3651 +images-05669.png,3652 +images-05670.png,3653 +images-05671.png,3654 +images-05672.png,3655 +images-05673.png,3656 +images-05674.png,3657 +images-05675.png,3658 +images-05676.png,3659 +images-05677.png,3660 +images-05678.png,3661 +images-05679.png,3662 +images-05680.png,3663 +images-05681.png,3664 +images-05682.png,3665 +images-05683.png,3666 +images-05684.png,3667 +images-05685.png,3668 +images-05686.png,3669 +images-05687.png,3670 +images-05688.png,3671 +images-05689.png,3672 +images-05690.png,3673 +images-05691.png,3674 +images-05692.png,3675 +images-05693.png,3676 +images-05694.png,3677 +images-05695.png,3678 +images-05696.png,3679 +images-05697.png,3680 +images-05698.png,3681 +images-05699.png,3682 +images-05700.png,3683 +images-05701.png,3684 +images-05702.png,3685 +images-05703.png,3686 +images-05704.png,3687 +images-05705.png,3688 +images-05706.png,3689 +images-05707.png,3690 +images-05708.png,3691 +images-05709.png,3692 +images-05710.png,3693 +images-05711.png,3694 +images-05712.png,3695 +images-05713.png,3696 +images-05714.png,3697 +images-05715.png,3698 +images-05716.png,3699 +images-05717.png,3700 +images-05718.png,3701 +images-05719.png,3702 +images-05720.png,3703 +images-05721.png,3704 +images-05722.png,3705 +images-05723.png,3706 +images-05724.png,3707 +images-05725.png,3708 +images-05726.png,3709 +images-05727.png,3710 +images-05728.png,3711 +images-05729.png,3712 +images-05730.png,3713 +images-05731.png,3714 +images-05732.png,3715 +images-05733.png,3716 +images-05734.png,3717 +images-05735.png,3718 +images-05736.png,3719 +images-05737.png,3720 +images-05738.png,3721 +images-05739.png,3722 +images-05740.png,3723 +images-05741.png,3724 +images-05742.png,3725 +images-05743.png,3726 +images-05744.png,3727 +images-05745.png,3728 +images-05746.png,3729 +images-05747.png,3730 +images-05748.png,3731 +images-05749.png,3732 +images-05750.png,3733 +images-05751.png,3734 +images-05752.png,3735 +images-05753.png,3736 +images-05754.png,3737 +images-05755.png,3738 +images-05756.png,3739 +images-05757.png,3740 +images-05758.png,3741 +images-05759.png,3742 +images-05760.png,3743 +images-05761.png,3744 +images-05762.png,3745 +images-05763.png,3746 +images-05764.png,3747 +images-05765.png,3748 +images-05766.png,3749 +images-05767.png,3750 +images-05768.png,3751 +images-05769.png,3752 +images-05770.png,3753 +images-05771.png,3754 +images-05772.png,3755 +images-05773.png,3756 +images-05774.png,3757 +images-05775.png,3758 +images-05776.png,3759 +images-05777.png,3760 +images-05778.png,3761 +images-05779.png,3762 +images-05780.png,3763 +images-05781.png,3764 +images-05782.png,3765 +images-05783.png,3766 +images-05784.png,3767 +images-05785.png,3768 +images-05786.png,3769 +images-05787.png,3770 +images-05788.png,3771 +images-05789.png,3772 +images-05790.png,3773 +images-05791.png,3774 +images-05792.png,3775 +images-05793.png,3776 +images-05794.png,3777 +images-05795.png,3778 +images-05796.png,3779 +images-05797.png,3780 +images-05798.png,3781 +images-05799.png,3782 +images-05800.png,3783 +images-05801.png,3784 +images-05802.png,3785 +images-05803.png,3786 +images-05804.png,3787 +images-05805.png,3788 +images-05806.png,3789 +images-05807.png,3790 +images-05808.png,3791 +images-05809.png,3792 +images-05810.png,3793 +images-05811.png,3794 +images-05812.png,3795 +images-05813.png,3796 +images-05814.png,3797 +images-05815.png,3798 +images-05816.png,3799 +images-05817.png,3800 +images-05818.png,3801 +images-05819.png,3802 +images-05820.png,3803 +images-05821.png,3804 +images-05822.png,3805 +images-05823.png,3806 +images-05824.png,3807 +images-05825.png,3808 +images-05826.png,3809 +images-05827.png,3810 +images-05828.png,3811 +images-05829.png,3812 +images-05830.png,3813 +images-05831.png,3814 +images-05832.png,3815 +images-05833.png,3816 +images-05834.png,3817 +images-05835.png,3818 +images-05836.png,3819 +images-05837.png,3820 +images-05838.png,3821 +images-05839.png,3822 +images-05840.png,3823 +images-05841.png,3824 +images-05842.png,3825 +images-05843.png,3826 +images-05844.png,3827 +images-05845.png,3828 +images-05846.png,3829 +images-05847.png,3830 +images-05848.png,3831 +images-05849.png,3832 +images-05850.png,3833 +images-05851.png,3834 +images-05852.png,3835 +images-05853.png,3836 +images-05854.png,3837 +images-05855.png,3838 +images-05856.png,3839 +images-05857.png,3840 +images-05858.png,3841 +images-05859.png,3842 +images-05860.png,3843 +images-05861.png,3844 +images-05862.png,3845 +images-05863.png,3846 +images-05864.png,3847 +images-05865.png,3848 +images-05866.png,3849 +images-05867.png,3850 +images-05868.png,3851 +images-05869.png,3852 +images-05870.png,3853 +images-05871.png,3854 +images-05872.png,3855 +images-05873.png,3856 +images-05874.png,3857 +images-05875.png,3858 +images-05876.png,3859 +images-05877.png,3860 +images-05878.png,3861 +images-05879.png,3862 +images-05880.png,3863 +images-05881.png,3864 +images-05882.png,3865 +images-05883.png,3866 +images-05884.png,3867 +images-05885.png,3868 +images-05886.png,3869 +images-05887.png,3870 +images-05888.png,3871 +images-05889.png,3872 +images-05890.png,3873 +images-05891.png,3874 +images-05892.png,3875 +images-05893.png,3876 +images-05894.png,3877 +images-05895.png,3878 +images-05896.png,3879 +images-05897.png,3880 +images-05898.png,3881 +images-05899.png,3882 +images-05900.png,3883 +images-05901.png,3884 +images-05902.png,3885 +images-05903.png,3886 +images-05904.png,3887 +images-05905.png,3888 +images-05906.png,3889 +images-05907.png,3890 +images-05908.png,3891 +images-05909.png,3892 +images-05910.png,3893 +images-05911.png,3894 +images-05912.png,3895 +images-05913.png,3896 +images-05914.png,3897 +images-05915.png,3898 +images-05916.png,3899 +images-05917.png,3900 +images-05918.png,3901 +images-05919.png,3902 +images-05920.png,3903 +images-05921.png,3904 +images-05922.png,3905 +images-05923.png,3906 +images-05924.png,3907 +images-05925.png,3908 +images-05926.png,3909 +images-05927.png,3910 +images-05928.png,3911 +images-05929.png,3912 +images-05930.png,3913 +images-05931.png,3914 +images-05932.png,3915 +images-05933.png,3916 +images-05934.png,3917 +images-05935.png,3918 +images-05936.png,3919 +images-05937.png,3920 +images-05938.png,3921 +images-05939.png,3922 +images-05940.png,3923 +images-05941.png,3924 +images-05942.png,3925 +images-05943.png,3926 +images-05944.png,3927 +images-05945.png,3928 +images-05946.png,3929 +images-05947.png,3930 +images-05948.png,3931 +images-05949.png,3932 +images-05950.png,3933 +images-05951.png,3934 +images-05952.png,3935 +images-05953.png,3936 +images-05954.png,3937 +images-05955.png,3938 +images-05956.png,3939 +images-05957.png,3940 +images-05958.png,3941 +images-05959.png,3942 +images-05960.png,3943 +images-05961.png,3944 +images-05962.png,3945 +images-05963.png,3946 +images-05964.png,3947 +images-05965.png,3948 +images-05966.png,3949 +images-05967.png,3950 +images-05968.png,3951 +images-05969.png,3952 +images-05970.png,3953 +images-05971.png,3954 +images-05972.png,3955 +images-05973.png,3956 +images-05974.png,3957 +images-05975.png,3958 +images-05976.png,3959 +images-05977.png,3960 +images-05978.png,3961 +images-05979.png,3962 +images-05980.png,3963 +images-05981.png,3964 +images-05982.png,3965 +images-05983.png,3966 +images-05984.png,3967 +images-05985.png,3968 +images-05986.png,3969 +images-05987.png,3970 +images-05988.png,3971 +images-05989.png,3972 +images-05990.png,3973 +images-05991.png,3974 +images-05992.png,3975 +images-05993.png,3976 +images-05994.png,3977 +images-05995.png,3978 +images-05996.png,3979 +images-05997.png,3980 +images-05998.png,3981 +images-05999.png,3982 +images-06000.png,3983 +images-06001.png,3984 +images-06002.png,3985 +images-06003.png,3986 +images-06004.png,3987 +images-06005.png,3988 +images-06006.png,3989 +images-06007.png,3990 +images-06008.png,3991 +images-06009.png,3992 +images-06010.png,3993 +images-06011.png,3994 +images-06012.png,3995 +images-06013.png,3996 +images-06014.png,3997 +images-06015.png,3998 +images-06016.png,3999 +images-06017.png,4000 +images-06018.png,4001 +images-06019.png,4002 +images-06020.png,4003 +images-06021.png,4004 +images-06022.png,4005 +images-06023.png,4006 +images-06024.png,4007 +images-06025.png,4008 +images-06026.png,4009 +images-06027.png,4010 +images-06028.png,4011 +images-06029.png,4012 +images-06030.png,4013 +images-06031.png,4014 +images-06032.png,4015 +images-06033.png,4016 +images-06034.png,4017 +images-06035.png,4018 +images-06036.png,4019 +images-06037.png,4020 +images-06038.png,4021 +images-06039.png,4022 +images-06040.png,4023 +images-06041.png,4024 +images-06042.png,4025 +images-06043.png,4026 +images-06234.png,4027 +images-06235.png,4028 +images-06236.png,4029 +images-06237.png,4030 +images-06238.png,4031 +images-06239.png,4032 +images-06240.png,4033 +images-06241.png,4034 +images-06242.png,4035 +images-06243.png,4036 +images-06244.png,4037 +images-06245.png,4038 +images-06246.png,4039 +images-06247.png,4040 +images-06248.png,4041 +images-06249.png,4042 +images-06250.png,4043 +images-06251.png,4044 +images-06252.png,4045 +images-06253.png,4046 +images-06254.png,4047 +images-06255.png,4048 +images-06256.png,4049 +images-06257.png,4050 +images-06258.png,4051 +images-06259.png,4052 +images-06260.png,4053 +images-06261.png,4054 +images-06262.png,4055 +images-06263.png,4056 +images-06264.png,4057 +images-06265.png,4058 +images-06266.png,4059 +images-06267.png,4060 +images-06268.png,4061 +images-06269.png,4062 +images-06270.png,4063 +images-06271.png,4064 +images-06272.png,4065 +images-06273.png,4066 +images-06274.png,4067 +images-06275.png,4068 +images-06276.png,4069 +images-06277.png,4070 +images-06278.png,4071 +images-06279.png,4072 +images-06280.png,4073 +images-06281.png,4074 +images-06282.png,4075 +images-06283.png,4076 +images-06284.png,4077 +images-06285.png,4078 +images-06286.png,4079 +images-06287.png,4080 +images-06288.png,4081 +images-06289.png,4082 +images-06290.png,4083 +images-06291.png,4084 +images-06292.png,4085 +images-06293.png,4086 +images-06294.png,4087 +images-06295.png,4088 +images-06296.png,4089 +images-06297.png,4090 +images-06298.png,4091 +images-06299.png,4092 +images-06300.png,4093 +images-06301.png,4094 +images-06302.png,4095 +images-06303.png,4096 +images-06304.png,4097 +images-06305.png,4098 +images-06306.png,4099 +images-06307.png,4100 +images-06308.png,4101 +images-06309.png,4102 +images-06310.png,4103 +images-06311.png,4104 +images-06312.png,4105 +images-06313.png,4106 +images-06314.png,4107 +images-06315.png,4108 +images-06316.png,4109 +images-06317.png,4110 +images-06318.png,4111 +images-06319.png,4112 +images-06320.png,4113 +images-06321.png,4114 +images-06322.png,4115 +images-06323.png,4116 +images-06324.png,4117 +images-06325.png,4118 +images-06326.png,4119 +images-06327.png,4120 +images-06328.png,4121 +images-06329.png,4122 +images-06330.png,4123 +images-06331.png,4124 +images-06332.png,4125 +images-06333.png,4126 +images-06334.png,4127 +images-06335.png,4128 +images-06336.png,4129 +images-06337.png,4130 +images-06338.png,4131 +images-06339.png,4132 +images-06340.png,4133 +images-06341.png,4134 +images-06342.png,4135 +images-06343.png,4136 +images-06344.png,4137 +images-06345.png,4138 +images-06346.png,4139 +images-06347.png,4140 +images-06348.png,4141 +images-06349.png,4142 +images-06350.png,4143 +images-06351.png,4144 +images-06352.png,4145 +images-06353.png,4146 +images-06354.png,4147 +images-06355.png,4148 +images-06356.png,4149 +images-06357.png,4150 +images-06358.png,4151 +images-06359.png,4152 +images-06360.png,4153 +images-06361.png,4154 +images-06362.png,4155 +images-06363.png,4156 +images-06364.png,4157 +images-06365.png,4158 +images-06366.png,4159 +images-06367.png,4160 +images-06368.png,4161 +images-06369.png,4162 +images-06370.png,4163 +images-06371.png,4164 +images-06372.png,4165 +images-06373.png,4166 +images-06374.png,4167 +images-06375.png,4168 +images-06376.png,4169 +images-06377.png,4170 +images-06378.png,4171 +images-06379.png,4172 +images-06380.png,4173 +images-06381.png,4174 +images-06382.png,4175 +images-06383.png,4176 +images-06384.png,4177 +images-06385.png,4178 +images-06386.png,4179 +images-06387.png,4180 +images-06388.png,4181 +images-06389.png,4182 +images-06390.png,4183 +images-06391.png,4184 +images-06392.png,4185 +images-06393.png,4186 +images-06394.png,4187 +images-06395.png,4188 +images-06396.png,4189 +images-06397.png,4190 +images-06398.png,4191 +images-06399.png,4192 +images-06400.png,4193 +images-06401.png,4194 +images-06402.png,4195 +images-06403.png,4196 +images-06404.png,4197 +images-06405.png,4198 +images-06406.png,4199 +images-06407.png,4200 +images-06408.png,4201 +images-06409.png,4202 +images-06410.png,4203 +images-06411.png,4204 +images-06412.png,4205 +images-06413.png,4206 +images-06414.png,4207 +images-06415.png,4208 +images-06416.png,4209 +images-06417.png,4210 +images-06418.png,4211 +images-06419.png,4212 +images-06420.png,4213 +images-06421.png,4214 +images-06422.png,4215 +images-06423.png,4216 +images-06424.png,4217 +images-06425.png,4218 +images-06426.png,4219 +images-06427.png,4220 +images-06428.png,4221 +images-06429.png,4222 +images-06430.png,4223 +images-06431.png,4224 +images-06432.png,4225 +images-06433.png,4226 +images-06434.png,4227 +images-06435.png,4228 +images-06436.png,4229 +images-06437.png,4230 +images-06438.png,4231 +images-06439.png,4232 +images-06440.png,4233 +images-06441.png,4234 +images-06442.png,4235 +images-06443.png,4236 +images-06444.png,4237 +images-06445.png,4238 +images-06446.png,4239 +images-06447.png,4240 +images-06448.png,4241 +images-06449.png,4242 +images-06450.png,4243 +images-06451.png,4244 +images-06452.png,4245 +images-06453.png,4246 +images-06454.png,4247 +images-06455.png,4248 +images-06456.png,4249 +images-06457.png,4250 +images-06458.png,4251 +images-06459.png,4252 +images-06460.png,4253 +images-06461.png,4254 +images-06462.png,4255 +images-06463.png,4256 +images-06464.png,4257 +images-06465.png,4258 +images-06466.png,4259 +images-06467.png,4260 +images-06468.png,4261 +images-06469.png,4262 +images-06470.png,4263 +images-06471.png,4264 +images-06472.png,4265 +images-06473.png,4266 +images-06474.png,4267 +images-06475.png,4268 +images-06476.png,4269 +images-06477.png,4270 +images-06478.png,4271 +images-06479.png,4272 +images-06480.png,4273 +images-06481.png,4274 +images-06482.png,4275 +images-06483.png,4276 +images-06484.png,4277 +images-06485.png,4278 +images-06486.png,4279 +images-06487.png,4280 +images-06488.png,4281 +images-06489.png,4282 +images-06490.png,4283 +images-06491.png,4284 +images-06492.png,4285 +images-06493.png,4286 +images-06494.png,4287 +images-06495.png,4288 +images-06496.png,4289 +images-06497.png,4290 +images-06498.png,4291 +images-06499.png,4292 +images-06500.png,4293 +images-06506.png,4294 +images-06507.png,4295 +images-06508.png,4296 +images-06509.png,4297 +images-06510.png,4298 +images-06511.png,4299 +images-06512.png,4300 +images-06513.png,4301 +images-06514.png,4302 +images-06515.png,4303 +images-06516.png,4304 +images-06517.png,4305 +images-06518.png,4306 +images-06519.png,4307 +images-06520.png,4308 +images-06521.png,4309 +images-06522.png,4310 +images-06523.png,4311 +images-06524.png,4312 +images-06525.png,4313 +images-06526.png,4314 +images-06527.png,4315 +images-06528.png,4316 +images-06529.png,4317 +images-06530.png,4318 +images-06531.png,4319 +images-06532.png,4320 +images-06533.png,4321 +images-06534.png,4322 +images-06535.png,4323 +images-06536.png,4324 +images-06537.png,4325 +images-06538.png,4326 +images-06539.png,4327 +images-06540.png,4328 +images-06541.png,4329 +images-06542.png,4330 +images-06543.png,4331 +images-06544.png,4332 +images-06545.png,4333 +images-06546.png,4334 +images-06547.png,4335 +images-06548.png,4336 +images-06549.png,4337 +images-06550.png,4338 +images-06551.png,4339 +images-06552.png,4340 +images-06553.png,4341 +images-06554.png,4342 +images-06555.png,4343 +images-06556.png,4344 +images-06557.png,4345 +images-06558.png,4346 +images-06559.png,4347 +images-06560.png,4348 +images-06561.png,4349 +images-06562.png,4350 +images-06563.png,4351 +images-06564.png,4352 +images-06565.png,4353 +images-06566.png,4354 +images-06567.png,4355 +images-06568.png,4356 +images-06569.png,4357 +images-06570.png,4358 +images-06571.png,4359 +images-06572.png,4360 +images-06573.png,4361 +images-06574.png,4362 +images-06575.png,4363 +images-06576.png,4364 +images-06577.png,4365 +images-06578.png,4366 +images-06579.png,4367 +images-06580.png,4368 +images-06581.png,4369 +images-06582.png,4370 +images-06583.png,4371 +images-06584.png,4372 +images-06585.png,4373 +images-06586.png,4374 +images-06587.png,4375 +images-06588.png,4376 +images-06589.png,4377 +images-06590.png,4378 +images-06591.png,4379 +images-06592.png,4380 +images-06593.png,4381 +images-06594.png,4382 +images-06595.png,4383 +images-06596.png,4384 +images-06597.png,4385 +images-06598.png,4386 +images-06599.png,4387 +images-06600.png,4388 +images-06601.png,4389 +images-06602.png,4390 +images-06603.png,4391 +images-06604.png,4392 +images-06605.png,4393 +images-06606.png,4394 +images-06607.png,4395 +images-06608.png,4396 +images-06609.png,4397 +images-06610.png,4398 +images-06611.png,4399 +images-06612.png,4400 +images-06613.png,4401 +images-06614.png,4402 +images-06615.png,4403 +images-06616.png,4404 +images-06617.png,4405 +images-06618.png,4406 +images-06619.png,4407 +images-06620.png,4408 +images-06621.png,4409 +images-06622.png,4410 +images-06623.png,4411 +images-06624.png,4412 +images-06625.png,4413 +images-06626.png,4414 +images-06627.png,4415 +images-06628.png,4416 +images-06629.png,4417 +images-06630.png,4418 +images-06631.png,4419 +images-06632.png,4420 +images-06633.png,4421 +images-06634.png,4422 +images-06635.png,4423 +images-06636.png,4424 +images-06637.png,4425 +images-06638.png,4426 +images-06639.png,4427 +images-06640.png,4428 +images-06641.png,4429 +images-06642.png,4430 +images-06643.png,4431 +images-06644.png,4432 +images-06645.png,4433 +images-06646.png,4434 +images-06647.png,4435 +images-06648.png,4436 +images-06649.png,4437 +images-06650.png,4438 +images-06651.png,4439 +images-06652.png,4440 +images-06653.png,4441 +images-06654.png,4442 +images-06655.png,4443 +images-06656.png,4444 +images-06657.png,4445 +images-06658.png,4446 +images-06659.png,4447 +images-06660.png,4448 +images-06661.png,4449 +images-06662.png,4450 +images-06663.png,4451 +images-06664.png,4452 +images-06665.png,4453 +images-06666.png,4454 +images-06667.png,4455 +images-06668.png,4456 +images-06669.png,4457 +images-06670.png,4458 +images-06671.png,4459 +images-06672.png,4460 +images-06673.png,4461 +images-06674.png,4462 +images-06675.png,4463 +images-06676.png,4464 +images-06677.png,4465 +images-06678.png,4466 +images-06679.png,4467 +images-06680.png,4468 +images-06681.png,4469 +images-06682.png,4470 +images-06683.png,4471 +images-06684.png,4472 +images-06685.png,4473 +images-06686.png,4474 +images-06687.png,4475 +images-06688.png,4476 +images-06689.png,4477 +images-06690.png,4478 +images-06691.png,4479 +images-06692.png,4480 +images-06693.png,4481 +images-06694.png,4482 +images-06695.png,4483 +images-06696.png,4484 +images-06697.png,4485 +images-06698.png,4486 +images-06699.png,4487 +images-06700.png,4488 +images-06701.png,4489 +images-06702.png,4490 +images-06703.png,4491 +images-06704.png,4492 +images-06705.png,4493 +images-06706.png,4494 +images-06707.png,4495 +images-06708.png,4496 +images-06709.png,4497 +images-06710.png,4498 +images-06711.png,4499 +images-06712.png,4500 +images-06713.png,4501 +images-06714.png,4502 +images-06715.png,4503 +images-06716.png,4504 +images-06717.png,4505 +images-06718.png,4506 +images-06719.png,4507 +images-06720.png,4508 +images-06721.png,4509 +images-06722.png,4510 +images-06723.png,4511 +images-06724.png,4512 +images-06725.png,4513 +images-06726.png,4514 +images-06727.png,4515 +images-06728.png,4516 +images-06729.png,4517 +images-06730.png,4518 +images-06731.png,4519 +images-06732.png,4520 +images-06733.png,4521 +images-06734.png,4522 +images-06735.png,4523 +images-06736.png,4524 +images-06737.png,4525 +images-06738.png,4526 +images-06739.png,4527 +images-06740.png,4528 +images-06741.png,4529 +images-06742.png,4530 +images-06743.png,4531 +images-06744.png,4532 +images-06745.png,4533 +images-06746.png,4534 +images-06747.png,4535 +images-06748.png,4536 +images-06749.png,4537 +images-06750.png,4538 +images-06751.png,4539 +images-06752.png,4540 +images-06753.png,4541 +images-06754.png,4542 +images-06755.png,4543 +images-06773.png,4544 +images-06774.png,4545 +images-06775.png,4546 +images-06776.png,4547 +images-06777.png,4548 +images-06778.png,4549 +images-06779.png,4550 +images-06780.png,4551 +images-06781.png,4552 +images-06782.png,4553 +images-06783.png,4554 +images-06784.png,4555 +images-06785.png,4556 +images-06786.png,4557 +images-06787.png,4558 +images-06788.png,4559 +images-06789.png,4560 +images-06790.png,4561 +images-06791.png,4562 +images-06792.png,4563 +images-06793.png,4564 +images-06794.png,4565 +images-06795.png,4566 +images-06796.png,4567 +images-06797.png,4568 +images-06798.png,4569 +images-06799.png,4570 +images-06800.png,4571 +images-06801.png,4572 +images-06802.png,4573 +images-06803.png,4574 +images-06804.png,4575 +images-06805.png,4576 +images-06806.png,4577 +images-06807.png,4578 +images-06808.png,4579 +images-06809.png,4580 +images-06810.png,4581 +images-06811.png,4582 +images-06812.png,4583 +images-06813.png,4584 +images-06814.png,4585 +images-06815.png,4586 +images-06816.png,4587 +images-06817.png,4588 +images-06818.png,4589 +images-06819.png,4590 +images-06820.png,4591 +images-06821.png,4592 +images-06822.png,4593 +images-06823.png,4594 +images-06824.png,4595 +images-06825.png,4596 +images-06826.png,4597 +images-06827.png,4598 +images-06828.png,4599 +images-06829.png,4600 +images-06830.png,4601 +images-06831.png,4602 +images-06832.png,4603 +images-06833.png,4604 +images-06834.png,4605 +images-06835.png,4606 +images-06836.png,4607 +images-06837.png,4608 +images-06838.png,4609 +images-06839.png,4610 +images-06840.png,4611 +images-06841.png,4612 +images-06842.png,4613 +images-06843.png,4614 +images-06844.png,4615 +images-06845.png,4616 +images-06846.png,4617 +images-06847.png,4618 +images-06848.png,4619 +images-06849.png,4620 +images-06850.png,4621 +images-06851.png,4622 +images-06852.png,4623 +images-06853.png,4624 +images-06854.png,4625 +images-06855.png,4626 +images-06856.png,4627 +images-06857.png,4628 +images-06858.png,4629 +images-06859.png,4630 +images-06860.png,4631 +images-06861.png,4632 +images-06862.png,4633 +images-06863.png,4634 +images-06864.png,4635 +images-06865.png,4636 +images-06866.png,4637 +images-06867.png,4638 +images-06868.png,4639 +images-06869.png,4640 +images-06870.png,4641 +images-06871.png,4642 +images-06872.png,4643 +images-06873.png,4644 +images-06874.png,4645 +images-06875.png,4646 +images-06876.png,4647 +images-06877.png,4648 +images-06878.png,4649 +images-06879.png,4650 +images-06880.png,4651 +images-06881.png,4652 +images-06882.png,4653 +images-06883.png,4654 +images-06884.png,4655 +images-06885.png,4656 +images-06886.png,4657 +images-06887.png,4658 +images-06888.png,4659 +images-06889.png,4660 +images-06890.png,4661 +images-06891.png,4662 +images-06892.png,4663 +images-06893.png,4664 +images-06894.png,4665 +images-06895.png,4666 +images-06896.png,4667 +images-06897.png,4668 +images-06898.png,4669 +images-06899.png,4670 +images-06900.png,4671 +images-06901.png,4672 +images-06902.png,4673 +images-06903.png,4674 +images-06904.png,4675 +images-06905.png,4676 +images-06906.png,4677 +images-06907.png,4678 +images-06908.png,4679 +images-06909.png,4680 +images-06910.png,4681 +images-06911.png,4682 +images-06912.png,4683 +images-06913.png,4684 +images-06914.png,4685 +images-06915.png,4686 +images-06916.png,4687 +images-06917.png,4688 +images-06918.png,4689 +images-06919.png,4690 +images-06920.png,4691 +images-06921.png,4692 +images-06922.png,4693 +images-06923.png,4694 +images-06924.png,4695 +images-06925.png,4696 +images-06926.png,4697 +images-06927.png,4698 +images-06928.png,4699 +images-06929.png,4700 +images-06930.png,4701 +images-06931.png,4702 +images-06932.png,4703 +images-06933.png,4704 +images-06934.png,4705 +images-06935.png,4706 +images-06936.png,4707 +images-06937.png,4708 +images-06938.png,4709 +images-06939.png,4710 +images-06940.png,4711 +images-06941.png,4712 +images-06942.png,4713 +images-06943.png,4714 +images-06944.png,4715 +images-06945.png,4716 +images-06946.png,4717 +images-06947.png,4718 +images-06948.png,4719 +images-06949.png,4720 +images-06950.png,4721 +images-06951.png,4722 +images-06952.png,4723 +images-06953.png,4724 +images-06954.png,4725 +images-06955.png,4726 +images-06956.png,4727 +images-06957.png,4728 +images-06958.png,4729 +images-06959.png,4730 +images-06960.png,4731 +images-06961.png,4732 +images-06962.png,4733 +images-06963.png,4734 +images-06964.png,4735 +images-06965.png,4736 +images-06966.png,4737 +images-06967.png,4738 +images-06968.png,4739 +images-06969.png,4740 +images-06970.png,4741 +images-06971.png,4742 +images-06972.png,4743 +images-06973.png,4744 +images-06974.png,4745 +images-06975.png,4746 +images-06976.png,4747 +images-06977.png,4748 +images-06978.png,4749 +images-06979.png,4750 +images-06980.png,4751 +images-06981.png,4752 +images-06982.png,4753 +images-06983.png,4754 +images-06984.png,4755 +images-06985.png,4756 +images-06986.png,4757 +images-06987.png,4758 +images-06988.png,4759 +images-06989.png,4760 +images-06990.png,4761 +images-06991.png,4762 +images-06992.png,4763 +images-06993.png,4764 +images-06994.png,4765 +images-06995.png,4766 +images-06996.png,4767 +images-06997.png,4768 +images-06998.png,4769 +images-06999.png,4770 +images-07000.png,4771 +images-07001.png,4772 +images-07002.png,4773 +images-07003.png,4774 +images-07004.png,4775 +images-07005.png,4776 +images-07006.png,4777 +images-07007.png,4778 +images-07008.png,4779 +images-07009.png,4780 +images-07010.png,4781 +images-07011.png,4782 +images-07012.png,4783 +images-07013.png,4784 +images-07014.png,4785 +images-07015.png,4786 +images-07016.png,4787 +images-07017.png,4788 +images-07018.png,4789 +images-07019.png,4790 +images-07020.png,4791 +images-07021.png,4792 +images-07022.png,4793 +images-07023.png,4794 +images-07024.png,4795 +images-07025.png,4796 +images-07026.png,4797 +images-07027.png,4798 +images-07028.png,4799 +images-07029.png,4800 +images-07030.png,4801 +images-07031.png,4802 +images-07032.png,4803 +images-07033.png,4804 +images-07034.png,4805 +images-07035.png,4806 +images-07036.png,4807 +images-07037.png,4808 +images-07038.png,4809 +images-07039.png,4810 +images-07040.png,4811 +images-07041.png,4812 +images-07042.png,4813 +images-07043.png,4814 +images-07044.png,4815 +images-07045.png,4816 +images-07046.png,4817 +images-07047.png,4818 +images-07048.png,4819 +images-07049.png,4820 +images-07050.png,4821 +images-07051.png,4822 +images-07052.png,4823 +images-07053.png,4824 +images-07054.png,4825 +images-07055.png,4826 +images-07056.png,4827 +images-07057.png,4828 +images-07058.png,4829 +images-07296.png,4830 +images-07297.png,4831 +images-07298.png,4832 +images-07299.png,4833 +images-07300.png,4834 +images-07301.png,4835 +images-07302.png,4836 +images-07303.png,4837 +images-07304.png,4838 +images-07305.png,4839 +images-07306.png,4840 +images-07307.png,4841 +images-07308.png,4842 +images-07309.png,4843 +images-07310.png,4844 +images-07311.png,4845 +images-07312.png,4846 +images-07313.png,4847 +images-07314.png,4848 +images-07315.png,4849 +images-07316.png,4850 +images-07317.png,4851 +images-07318.png,4852 +images-07319.png,4853 +images-07320.png,4854 +images-07321.png,4855 +images-07322.png,4856 +images-07323.png,4857 +images-07324.png,4858 +images-07325.png,4859 +images-07326.png,4860 +images-07327.png,4861 +images-07328.png,4862 +images-07329.png,4863 +images-07330.png,4864 +images-07331.png,4865 +images-07332.png,4866 +images-07333.png,4867 +images-07334.png,4868 +images-07335.png,4869 +images-07336.png,4870 +images-07337.png,4871 +images-07338.png,4872 +images-07339.png,4873 +images-07340.png,4874 +images-07341.png,4875 +images-07342.png,4876 +images-07343.png,4877 +images-07344.png,4878 +images-07345.png,4879 +images-07346.png,4880 +images-07347.png,4881 +images-07348.png,4882 +images-07349.png,4883 +images-07350.png,4884 +images-07351.png,4885 +images-07352.png,4886 +images-07353.png,4887 +images-07354.png,4888 +images-07355.png,4889 +images-07356.png,4890 +images-07357.png,4891 +images-07358.png,4892 +images-07359.png,4893 +images-07360.png,4894 +images-07361.png,4895 +images-07362.png,4896 +images-07363.png,4897 +images-07364.png,4898 +images-07365.png,4899 +images-07366.png,4900 +images-07367.png,4901 +images-07368.png,4902 +images-07369.png,4903 +images-07370.png,4904 +images-07371.png,4905 +images-07372.png,4906 +images-07373.png,4907 +images-07374.png,4908 +images-07375.png,4909 +images-07376.png,4910 +images-07377.png,4911 +images-07378.png,4912 +images-07379.png,4913 +images-07380.png,4914 +images-07381.png,4915 +images-07382.png,4916 +images-07383.png,4917 +images-07384.png,4918 +images-07385.png,4919 +images-07386.png,4920 +images-07387.png,4921 +images-07388.png,4922 +images-07389.png,4923 +images-07390.png,4924 +images-07391.png,4925 +images-07392.png,4926 +images-07393.png,4927 +images-07394.png,4928 +images-07395.png,4929 +images-07396.png,4930 +images-07397.png,4931 +images-07398.png,4932 +images-07399.png,4933 +images-07400.png,4934 +images-07401.png,4935 +images-07402.png,4936 +images-07403.png,4937 +images-07404.png,4938 +images-07405.png,4939 +images-07406.png,4940 +images-07407.png,4941 +images-07408.png,4942 +images-07409.png,4943 +images-07410.png,4944 +images-07411.png,4945 +images-07412.png,4946 +images-07413.png,4947 +images-07414.png,4948 +images-07415.png,4949 +images-07416.png,4950 +images-07417.png,4951 +images-07418.png,4952 +images-07419.png,4953 +images-07420.png,4954 +images-07421.png,4955 +images-07422.png,4956 +images-07423.png,4957 +images-07424.png,4958 +images-07425.png,4959 +images-07426.png,4960 +images-07427.png,4961 +images-07428.png,4962 +images-07429.png,4963 +images-07430.png,4964 +images-07431.png,4965 +images-07432.png,4966 +images-07433.png,4967 +images-07434.png,4968 +images-07435.png,4969 +images-07436.png,4970 +images-07437.png,4971 +images-07438.png,4972 +images-07439.png,4973 +images-07440.png,4974 +images-07441.png,4975 +images-07442.png,4976 +images-07443.png,4977 +images-07444.png,4978 +images-07445.png,4979 +images-07446.png,4980 +images-07447.png,4981 +images-07448.png,4982 +images-07449.png,4983 +images-07450.png,4984 +images-07451.png,4985 +images-07452.png,4986 +images-07453.png,4987 +images-07454.png,4988 +images-07455.png,4989 +images-07456.png,4990 +images-07457.png,4991 +images-07458.png,4992 +images-07459.png,4993 +images-07460.png,4994 +images-07461.png,4995 +images-07462.png,4996 +images-07463.png,4997 +images-07464.png,4998 +images-07465.png,4999 +images-07466.png,5000 +images-07467.png,5001 +images-07468.png,5002 +images-07469.png,5003 +images-07470.png,5004 +images-07471.png,5005 +images-07472.png,5006 +images-07473.png,5007 +images-07474.png,5008 +images-07475.png,5009 +images-07476.png,5010 +images-07477.png,5011 +images-07478.png,5012 +images-07479.png,5013 +images-07480.png,5014 +images-07481.png,5015 +images-07482.png,5016 +images-07483.png,5017 +images-07484.png,5018 +images-07485.png,5019 +images-07486.png,5020 +images-07487.png,5021 +images-07488.png,5022 +images-07489.png,5023 +images-07490.png,5024 +images-07491.png,5025 +images-07492.png,5026 +images-07493.png,5027 +images-07494.png,5028 +images-07495.png,5029 +images-07496.png,5030 +images-07497.png,5031 +images-07498.png,5032 +images-07499.png,5033 +images-07500.png,5034 +images-07501.png,5035 +images-07502.png,5036 +images-07503.png,5037 +images-07504.png,5038 +images-07505.png,5039 +images-07506.png,5040 +images-07507.png,5041 +images-07508.png,5042 +images-07509.png,5043 +images-07510.png,5044 +images-07511.png,5045 +images-07512.png,5046 +images-07513.png,5047 +images-07514.png,5048 +images-07515.png,5049 +images-07516.png,5050 +images-07517.png,5051 +images-07518.png,5052 +images-07519.png,5053 +images-07520.png,5054 +images-07521.png,5055 +images-07522.png,5056 +images-07523.png,5057 +images-07524.png,5058 +images-07525.png,5059 +images-07526.png,5060 +images-07527.png,5061 +images-07528.png,5062 +images-07529.png,5063 +images-07530.png,5064 +images-07531.png,5065 +images-07532.png,5066 +images-07533.png,5067 +images-07534.png,5068 +images-07535.png,5069 +images-07536.png,5070 +images-07537.png,5071 +images-07538.png,5072 +images-07539.png,5073 +images-07540.png,5074 +images-07541.png,5075 +images-07542.png,5076 +images-07543.png,5077 +images-07544.png,5078 +images-07545.png,5079 +images-07546.png,5080 +images-07547.png,5081 +images-07548.png,5082 +images-07549.png,5083 +images-07550.png,5084 +images-07551.png,5085 +images-07552.png,5086 +images-07553.png,5087 +images-07554.png,5088 +images-07555.png,5089 +images-07556.png,5090 +images-07557.png,5091 +images-07558.png,5092 +images-07559.png,5093 +images-07560.png,5094 +images-07561.png,5095 +images-07562.png,5096 +images-07563.png,5097 +images-07564.png,5098 +images-07565.png,5099 +images-07566.png,5100 +images-07567.png,5101 +images-07568.png,5102 +images-07569.png,5103 +images-07570.png,5104 +images-07571.png,5105 +images-07572.png,5106 +images-07573.png,5107 +images-07574.png,5108 +images-07575.png,5109 +images-07576.png,5110 +images-07577.png,5111 +images-07578.png,5112 +images-07579.png,5113 +images-07580.png,5114 +images-07581.png,5115 +images-07582.png,5116 +images-07583.png,5117 +images-07584.png,5118 +images-07585.png,5119 +images-07586.png,5120 +images-07587.png,5121 +images-07588.png,5122 +images-07589.png,5123 +images-07590.png,5124 +images-07591.png,5125 +images-07592.png,5126 +images-07593.png,5127 +images-07594.png,5128 +images-07595.png,5129 +images-07596.png,5130 +images-07597.png,5131 +images-07598.png,5132 +images-07599.png,5133 +images-07600.png,5134 +images-07601.png,5135 +images-07602.png,5136 +images-07603.png,5137 +images-07604.png,5138 +images-07605.png,5139 +images-07606.png,5140 +images-07607.png,5141 +images-07608.png,5142 +images-07609.png,5143 +images-07610.png,5144 +images-07611.png,5145 +images-07612.png,5146 +images-07613.png,5147 +images-07614.png,5148 +images-07615.png,5149 +images-07616.png,5150 +images-07617.png,5151 +images-07618.png,5152 +images-07619.png,5153 +images-07620.png,5154 +images-07621.png,5155 +images-07622.png,5156 +images-07623.png,5157 +images-07624.png,5158 +images-07625.png,5159 +images-07626.png,5160 +images-07627.png,5161 +images-07628.png,5162 +images-07629.png,5163 +images-07630.png,5164 +images-07631.png,5165 +images-07632.png,5166 +images-07633.png,5167 +images-07634.png,5168 +images-07635.png,5169 +images-07636.png,5170 +images-07637.png,5171 +images-07638.png,5172 +images-07639.png,5173 +images-07640.png,5174 +images-07641.png,5175 +images-07642.png,5176 +images-07643.png,5177 +images-07644.png,5178 +images-07645.png,5179 +images-07646.png,5180 +images-07647.png,5181 +images-07648.png,5182 +images-07649.png,5183 +images-07650.png,5184 +images-07651.png,5185 +images-07652.png,5186 +images-07653.png,5187 +images-07654.png,5188 +images-07655.png,5189 +images-07656.png,5190 +images-07657.png,5191 +images-07658.png,5192 +images-07659.png,5193 +images-07660.png,5194 +images-07661.png,5195 +images-07662.png,5196 +images-07663.png,5197 +images-07664.png,5198 +images-07665.png,5199 +images-07666.png,5200 +images-07667.png,5201 +images-07668.png,5202 +images-07669.png,5203 +images-07670.png,5204 +images-07671.png,5205 +images-07672.png,5206 +images-07673.png,5207 +images-07674.png,5208 +images-07675.png,5209 +images-07676.png,5210 +images-07677.png,5211 +images-07678.png,5212 +images-07679.png,5213 +images-07680.png,5214 +images-07681.png,5215 +images-07682.png,5216 +images-07683.png,5217 +images-07684.png,5218 +images-07685.png,5219 +images-07686.png,5220 +images-07687.png,5221 +images-07688.png,5222 +images-07689.png,5223 +images-07690.png,5224 +images-07691.png,5225 +images-07692.png,5226 +images-07693.png,5227 +images-07694.png,5228 +images-07695.png,5229 +images-07696.png,5230 +images-07697.png,5231 +images-07698.png,5232 +images-07699.png,5233 +images-07700.png,5234 +images-07701.png,5235 +images-07702.png,5236 +images-07703.png,5237 +images-07704.png,5238 +images-07705.png,5239 +images-07706.png,5240 +images-07707.png,5241 +images-07708.png,5242 +images-07709.png,5243 +images-07710.png,5244 +images-07711.png,5245 +images-07712.png,5246 +images-07713.png,5247 +images-07714.png,5248 +images-07715.png,5249 +images-07716.png,5250 +images-07717.png,5251 +images-07718.png,5252 +images-07719.png,5253 +images-07720.png,5254 +images-07721.png,5255 +images-07722.png,5256 +images-07723.png,5257 +images-07724.png,5258 +images-07725.png,5259 +images-07726.png,5260 +images-07727.png,5261 +images-07728.png,5262 +images-07729.png,5263 +images-07730.png,5264 +images-07731.png,5265 +images-07732.png,5266 +images-07733.png,5267 +images-07734.png,5268 +images-07735.png,5269 +images-07736.png,5270 +images-07737.png,5271 +images-07738.png,5272 +images-07739.png,5273 +images-07740.png,5274 +images-07741.png,5275 +images-07742.png,5276 +images-07743.png,5277 +images-07744.png,5278 +images-07745.png,5279 +images-07746.png,5280 +images-07747.png,5281 +images-07748.png,5282 +images-07749.png,5283 +images-07750.png,5284 +images-07751.png,5285 +images-07752.png,5286 +images-07753.png,5287 +images-07754.png,5288 +images-07755.png,5289 +images-07756.png,5290 +images-07757.png,5291 +images-07758.png,5292 +images-07894.png,5293 +images-07895.png,5294 +images-07896.png,5295 +images-07897.png,5296 +images-07898.png,5297 +images-07899.png,5298 +images-07900.png,5299 +images-07901.png,5300 +images-07902.png,5301 +images-07903.png,5302 +images-07904.png,5303 +images-07905.png,5304 +images-07906.png,5305 +images-07907.png,5306 +images-07908.png,5307 +images-07909.png,5308 +images-07910.png,5309 +images-07911.png,5310 +images-07912.png,5311 +images-07913.png,5312 +images-07914.png,5313 +images-07915.png,5314 +images-07916.png,5315 +images-07917.png,5316 +images-07918.png,5317 +images-07919.png,5318 +images-07920.png,5319 +images-07921.png,5320 +images-07922.png,5321 +images-07923.png,5322 +images-07924.png,5323 +images-07925.png,5324 +images-07926.png,5325 +images-07927.png,5326 +images-07928.png,5327 +images-07929.png,5328 +images-07930.png,5329 +images-07931.png,5330 +images-07932.png,5331 +images-07933.png,5332 +images-07934.png,5333 +images-07935.png,5334 +images-07936.png,5335 +images-07937.png,5336 +images-07938.png,5337 +images-07939.png,5338 +images-07940.png,5339 +images-07941.png,5340 +images-07942.png,5341 +images-07943.png,5342 +images-07944.png,5343 +images-07945.png,5344 +images-07946.png,5345 +images-07947.png,5346 +images-07948.png,5347 +images-07949.png,5348 +images-07950.png,5349 +images-07951.png,5350 +images-07952.png,5351 +images-07953.png,5352 +images-07954.png,5353 +images-07955.png,5354 +images-07956.png,5355 +images-07957.png,5356 +images-07958.png,5357 +images-07959.png,5358 +images-07960.png,5359 +images-07961.png,5360 +images-07962.png,5361 +images-07963.png,5362 +images-07964.png,5363 +images-07965.png,5364 +images-07966.png,5365 +images-07967.png,5366 +images-07968.png,5367 +images-07969.png,5368 +images-07970.png,5369 +images-07971.png,5370 +images-07972.png,5371 +images-07973.png,5372 +images-07974.png,5373 +images-07975.png,5374 +images-07976.png,5375 +images-07977.png,5376 +images-07978.png,5377 +images-07979.png,5378 +images-07980.png,5379 +images-07981.png,5380 +images-07982.png,5381 +images-07983.png,5382 +images-07984.png,5383 +images-07985.png,5384 +images-07986.png,5385 +images-07987.png,5386 +images-07988.png,5387 +images-07989.png,5388 +images-07990.png,5389 +images-07991.png,5390 +images-07992.png,5391 +images-07993.png,5392 +images-07994.png,5393 +images-07995.png,5394 +images-07996.png,5395 +images-07997.png,5396 +images-07998.png,5397 +images-07999.png,5398 +images-08000.png,5399 +images-08001.png,5400 +images-08002.png,5401 +images-08003.png,5402 +images-08004.png,5403 +images-08005.png,5404 +images-08006.png,5405 +images-08007.png,5406 +images-08008.png,5407 +images-08009.png,5408 +images-08010.png,5409 +images-08011.png,5410 +images-08012.png,5411 +images-08013.png,5412 +images-08014.png,5413 +images-08015.png,5414 +images-08016.png,5415 +images-08017.png,5416 +images-08018.png,5417 +images-08019.png,5418 +images-08020.png,5419 +images-08021.png,5420 +images-08022.png,5421 +images-08023.png,5422 +images-08024.png,5423 +images-08025.png,5424 +images-08026.png,5425 +images-08027.png,5426 +images-08028.png,5427 +images-08029.png,5428 +images-08030.png,5429 +images-08031.png,5430 +images-08032.png,5431 +images-08033.png,5432 +images-08034.png,5433 +images-08035.png,5434 +images-08036.png,5435 +images-08037.png,5436 +images-08038.png,5437 +images-08039.png,5438 +images-08040.png,5439 +images-08041.png,5440 +images-08042.png,5441 +images-08043.png,5442 +images-08044.png,5443 +images-08045.png,5444 +images-08046.png,5445 +images-08047.png,5446 +images-08048.png,5447 +images-08049.png,5448 +images-08050.png,5449 +images-08051.png,5450 +images-08052.png,5451 +images-08053.png,5452 +images-08054.png,5453 +images-08055.png,5454 +images-08056.png,5455 +images-08057.png,5456 +images-08058.png,5457 +images-08059.png,5458 +images-08060.png,5459 +images-08061.png,5460 +images-08062.png,5461 +images-08063.png,5462 +images-08064.png,5463 +images-08065.png,5464 +images-08066.png,5465 +images-08067.png,5466 +images-08068.png,5467 +images-08069.png,5468 +images-08070.png,5469 +images-08071.png,5470 +images-08072.png,5471 +images-08073.png,5472 +images-08074.png,5473 +images-08075.png,5474 +images-08076.png,5475 +images-08077.png,5476 +images-08078.png,5477 +images-08079.png,5478 +images-08080.png,5479 +images-08081.png,5480 +images-08082.png,5481 +images-08083.png,5482 +images-08084.png,5483 +images-08085.png,5484 +images-08086.png,5485 +images-08087.png,5486 +images-08088.png,5487 +images-08089.png,5488 +images-08090.png,5489 +images-08091.png,5490 +images-08092.png,5491 +images-08093.png,5492 +images-08094.png,5493 +images-08095.png,5494 +images-08096.png,5495 +images-08097.png,5496 +images-08098.png,5497 +images-08099.png,5498 +images-08100.png,5499 +images-08101.png,5500 +images-08102.png,5501 +images-08103.png,5502 +images-08104.png,5503 +images-08105.png,5504 +images-08106.png,5505 +images-08107.png,5506 +images-08108.png,5507 +images-08109.png,5508 +images-08110.png,5509 +images-08111.png,5510 +images-08112.png,5511 +images-08113.png,5512 +images-08114.png,5513 +images-08115.png,5514 +images-08116.png,5515 +images-08117.png,5516 +images-08118.png,5517 +images-08119.png,5518 +images-08120.png,5519 +images-08121.png,5520 +images-08122.png,5521 +images-08123.png,5522 +images-08124.png,5523 +images-08125.png,5524 +images-08126.png,5525 +images-08127.png,5526 +images-08128.png,5527 +images-08129.png,5528 +images-08130.png,5529 +images-08131.png,5530 +images-08132.png,5531 +images-08133.png,5532 +images-08134.png,5533 +images-08135.png,5534 +images-08136.png,5535 +images-08137.png,5536 +images-08138.png,5537 +images-08139.png,5538 +images-08140.png,5539 +images-08141.png,5540 +images-08142.png,5541 +images-08143.png,5542 +images-08144.png,5543 +images-08145.png,5544 +images-08146.png,5545 +images-08147.png,5546 +images-08148.png,5547 +images-08149.png,5548 +images-08150.png,5549 +images-08151.png,5550 +images-08152.png,5551 +images-08153.png,5552 +images-08154.png,5553 +images-08155.png,5554 +images-08156.png,5555 +images-08157.png,5556 +images-08158.png,5557 +images-08159.png,5558 +images-08160.png,5559 +images-08161.png,5560 +images-08162.png,5561 +images-08163.png,5562 +images-08164.png,5563 +images-08165.png,5564 +images-08166.png,5565 +images-08167.png,5566 +images-08168.png,5567 +images-08169.png,5568 +images-08170.png,5569 +images-08171.png,5570 +images-08172.png,5571 +images-08173.png,5572 +images-08174.png,5573 +images-08175.png,5574 +images-08176.png,5575 +images-08177.png,5576 +images-08178.png,5577 +images-08179.png,5578 +images-08180.png,5579 +images-08181.png,5580 +images-08182.png,5581 +images-08183.png,5582 +images-08184.png,5583 +images-08185.png,5584 +images-08186.png,5585 +images-08187.png,5586 +images-08188.png,5587 +images-08189.png,5588 +images-08190.png,5589 +images-08191.png,5590 +images-08192.png,5591 +images-08193.png,5592 +images-08194.png,5593 +images-08195.png,5594 +images-08196.png,5595 +images-08197.png,5596 +images-08198.png,5597 +images-08199.png,5598 +images-08200.png,5599 +images-08201.png,5600 +images-08202.png,5601 +images-08203.png,5602 +images-08204.png,5603 +images-08205.png,5604 +images-08206.png,5605 +images-08207.png,5606 +images-08208.png,5607 +images-08209.png,5608 +images-08210.png,5609 +images-08211.png,5610 +images-08212.png,5611 +images-08213.png,5612 +images-08214.png,5613 +images-08215.png,5614 +images-08216.png,5615 +images-08217.png,5616 +images-08218.png,5617 +images-08219.png,5618 +images-08220.png,5619 +images-08221.png,5620 +images-08222.png,5621 +images-08223.png,5622 +images-08224.png,5623 +images-08225.png,5624 +images-08226.png,5625 +images-08227.png,5626 +images-08228.png,5627 +images-08229.png,5628 +images-08230.png,5629 +images-08231.png,5630 +images-08232.png,5631 +images-08233.png,5632 +images-08234.png,5633 +images-08235.png,5634 +images-08236.png,5635 +images-08237.png,5636 +images-08238.png,5637 +images-08239.png,5638 +images-08240.png,5639 +images-08241.png,5640 +images-08242.png,5641 +images-08243.png,5642 +images-08244.png,5643 +images-08245.png,5644 +images-08246.png,5645 +images-08247.png,5646 +images-08248.png,5647 +images-08249.png,5648 +images-08250.png,5649 +images-08251.png,5650 +images-08252.png,5651 +images-08253.png,5652 +images-08254.png,5653 +images-08255.png,5654 +images-08256.png,5655 +images-08257.png,5656 +images-08258.png,5657 +images-08259.png,5658 +images-08260.png,5659 +images-08261.png,5660 +images-08262.png,5661 +images-08263.png,5662 +images-08264.png,5663 +images-08265.png,5664 +images-08266.png,5665 +images-08267.png,5666 +images-08268.png,5667 +images-08269.png,5668 +images-08270.png,5669 +images-08271.png,5670 +images-08272.png,5671 +images-08273.png,5672 +images-08274.png,5673 +images-08275.png,5674 +images-08276.png,5675 +images-08277.png,5676 +images-08278.png,5677 +images-08279.png,5678 +images-08280.png,5679 +images-08281.png,5680 +images-08282.png,5681 +images-08283.png,5682 +images-08284.png,5683 +images-08285.png,5684 +images-08286.png,5685 +images-08287.png,5686 +images-08288.png,5687 +images-08289.png,5688 +images-08290.png,5689 +images-08291.png,5690 +images-08292.png,5691 +images-08293.png,5692 +images-08294.png,5693 +images-08295.png,5694 +images-08296.png,5695 +images-08297.png,5696 +images-08298.png,5697 +images-08299.png,5698 +images-08300.png,5699 +images-08301.png,5700 +images-08302.png,5701 +images-08303.png,5702 +images-08304.png,5703 +images-08305.png,5704 +images-08306.png,5705 +images-08307.png,5706 +images-08308.png,5707 +images-08309.png,5708 +images-08310.png,5709 +images-08311.png,5710 +images-08312.png,5711 +images-08313.png,5712 +images-08314.png,5713 +images-08315.png,5714 +images-08316.png,5715 +images-08317.png,5716 +images-08318.png,5717 +images-08319.png,5718 +images-08320.png,5719 +images-08321.png,5720 +images-08322.png,5721 +images-08323.png,5722 +images-08324.png,5723 +images-08325.png,5724 +images-08326.png,5725 +images-08327.png,5726 +images-08328.png,5727 +images-08329.png,5728 +images-08330.png,5729 +images-08331.png,5730 +images-08332.png,5731 +images-08333.png,5732 +images-08334.png,5733 +images-08335.png,5734 +images-08336.png,5735 +images-08337.png,5736 +images-08338.png,5737 +images-08339.png,5738 +images-08340.png,5739 +images-08341.png,5740 +images-08342.png,5741 +images-08343.png,5742 +images-08344.png,5743 +images-08345.png,5744 +images-08346.png,5745 +images-08347.png,5746 +images-08348.png,5747 +images-08349.png,5748 +images-08350.png,5749 +images-08351.png,5750 +images-08352.png,5751 +images-08353.png,5752 +images-08354.png,5753 +images-08355.png,5754 +images-08356.png,5755 +images-08357.png,5756 +images-08358.png,5757 +images-08359.png,5758 +images-08360.png,5759 +images-08361.png,5760 +images-08362.png,5761 +images-08363.png,5762 +images-08364.png,5763 +images-08365.png,5764 +images-08366.png,5765 +images-08367.png,5766 +images-08368.png,5767 +images-08369.png,5768 +images-08370.png,5769 +images-08371.png,5770 +images-08372.png,5771 +images-08373.png,5772 +images-08374.png,5773 +images-08375.png,5774 +images-08376.png,5775 +images-08377.png,5776 +images-08378.png,5777 +images-08379.png,5778 +images-08380.png,5779 +images-08381.png,5780 +images-08382.png,5781 +images-08383.png,5782 +images-08384.png,5783 +images-08385.png,5784 +images-08386.png,5785 +images-08387.png,5786 +images-08388.png,5787 +images-08389.png,5788 +images-08390.png,5789 +images-08391.png,5790 +images-08392.png,5791 +images-08393.png,5792 +images-08394.png,5793 +images-08395.png,5794 +images-08396.png,5795 +images-08397.png,5796 +images-08398.png,5797 +images-08399.png,5798 +images-08400.png,5799 +images-08401.png,5800 +images-08402.png,5801 +images-08403.png,5802 +images-08404.png,5803 +images-08405.png,5804 +images-08406.png,5805 +images-08407.png,5806 +images-08408.png,5807 +images-08409.png,5808 +images-08410.png,5809 +images-08411.png,5810 +images-08412.png,5811 +images-08413.png,5812 +images-08414.png,5813 +images-08415.png,5814 +images-08416.png,5815 +images-08417.png,5816 +images-08418.png,5817 +images-08419.png,5818 +images-08420.png,5819 +images-08421.png,5820 +images-08422.png,5821 +images-08423.png,5822 +images-08424.png,5823 +images-08425.png,5824 +images-08426.png,5825 +images-08427.png,5826 +images-08428.png,5827 +images-08429.png,5828 +images-08430.png,5829 +images-08431.png,5830 +images-08432.png,5831 +images-08433.png,5832 +images-08434.png,5833 +images-08435.png,5834 +images-08436.png,5835 +images-08437.png,5836 +images-08438.png,5837 +images-08439.png,5838 +images-08440.png,5839 +images-08441.png,5840 +images-08442.png,5841 +images-08443.png,5842 +images-08444.png,5843 +images-08445.png,5844 +images-08446.png,5845 +images-08447.png,5846 +images-08448.png,5847 +images-08449.png,5848 +images-08450.png,5849 +images-08451.png,5850 +images-08452.png,5851 +images-08453.png,5852 +images-08454.png,5853 +images-08455.png,5854 +images-08456.png,5855 +images-08457.png,5856 +images-08458.png,5857 +images-08459.png,5858 +images-08460.png,5859 +images-08461.png,5860 +images-08462.png,5861 +images-08463.png,5862 +images-08464.png,5863 +images-08465.png,5864 +images-08466.png,5865 +images-08467.png,5866 +images-08468.png,5867 +images-08469.png,5868 +images-08470.png,5869 +images-08471.png,5870 +images-08472.png,5871 +images-08473.png,5872 +images-08474.png,5873 +images-08475.png,5874 +images-08476.png,5875 +images-08477.png,5876 +images-08478.png,5877 +images-08484.png,5878 +images-08485.png,5879 +images-08486.png,5880 +images-08487.png,5881 +images-08488.png,5882 +images-08494.png,5883 +images-08495.png,5884 +images-08496.png,5885 +images-08497.png,5886 +images-08498.png,5887 +images-08499.png,5888 +images-08500.png,5889 +images-08501.png,5890 +images-08502.png,5891 +images-08503.png,5892 +images-08504.png,5893 +images-08505.png,5894 +images-08506.png,5895 +images-08507.png,5896 +images-08508.png,5897 +images-08509.png,5898 +images-08510.png,5899 +images-08511.png,5900 +images-08512.png,5901 +images-08513.png,5902 +images-08514.png,5903 +images-08515.png,5904 +images-08516.png,5905 +images-08517.png,5906 +images-08518.png,5907 +images-08519.png,5908 +images-08520.png,5909 +images-08521.png,5910 +images-08522.png,5911 +images-08523.png,5912 +images-08524.png,5913 +images-08525.png,5914 +images-08526.png,5915 +images-08527.png,5916 +images-08528.png,5917 +images-08529.png,5918 +images-08530.png,5919 +images-08531.png,5920 +images-08532.png,5921 +images-08533.png,5922 +images-08534.png,5923 +images-08535.png,5924 +images-08536.png,5925 +images-08537.png,5926 +images-08538.png,5927 +images-08539.png,5928 +images-08540.png,5929 +images-08541.png,5930 +images-08542.png,5931 +images-08543.png,5932 +images-08544.png,5933 +images-08545.png,5934 +images-08546.png,5935 +images-08547.png,5936 +images-08548.png,5937 +images-08549.png,5938 +images-08550.png,5939 +images-08551.png,5940 +images-08552.png,5941 +images-08553.png,5942 +images-08554.png,5943 +images-08555.png,5944 +images-08556.png,5945 +images-08557.png,5946 +images-08558.png,5947 +images-08559.png,5948 +images-08560.png,5949 +images-08561.png,5950 +images-08562.png,5951 +images-08563.png,5952 +images-08564.png,5953 +images-08565.png,5954 +images-08566.png,5955 +images-08567.png,5956 +images-08568.png,5957 +images-08569.png,5958 +images-08570.png,5959 +images-08571.png,5960 +images-08572.png,5961 +images-08573.png,5962 +images-08574.png,5963 +images-08575.png,5964 +images-08576.png,5965 +images-08577.png,5966 +images-08578.png,5967 +images-08579.png,5968 +images-08580.png,5969 +images-08581.png,5970 +images-08582.png,5971 +images-08583.png,5972 +images-08584.png,5973 +images-08585.png,5974 +images-08586.png,5975 +images-08587.png,5976 +images-08588.png,5977 +images-08589.png,5978 +images-08590.png,5979 +images-08591.png,5980 +images-08592.png,5981 +images-08593.png,5982 +images-08594.png,5983 +images-08595.png,5984 +images-08596.png,5985 +images-08597.png,5986 +images-08598.png,5987 +images-08599.png,5988 +images-08600.png,5989 +images-08601.png,5990 +images-08602.png,5991 +images-08603.png,5992 +images-08604.png,5993 +images-08605.png,5994 +images-08606.png,5995 +images-08607.png,5996 +images-08608.png,5997 +images-08609.png,5998 +images-08610.png,5999 +images-08611.png,6000 +images-08612.png,6001 +images-08613.png,6002 +images-08614.png,6003 +images-08615.png,6004 +images-08616.png,6005 +images-08617.png,6006 +images-08618.png,6007 +images-08619.png,6008 +images-08620.png,6009 +images-08621.png,6010 +images-08622.png,6011 +images-08623.png,6012 +images-08624.png,6013 +images-08625.png,6014 +images-08626.png,6015 +images-08627.png,6016 +images-08628.png,6017 +images-08629.png,6018 +images-08630.png,6019 +images-08631.png,6020 +images-08632.png,6021 +images-08633.png,6022 +images-08634.png,6023 +images-08635.png,6024 +images-08636.png,6025 +images-08637.png,6026 +images-08638.png,6027 +images-08639.png,6028 +images-08640.png,6029 +images-08641.png,6030 +images-08642.png,6031 +images-08643.png,6032 +images-08644.png,6033 +images-08645.png,6034 +images-08646.png,6035 +images-08647.png,6036 +images-08648.png,6037 +images-08649.png,6038 +images-08650.png,6039 +images-08651.png,6040 +images-08652.png,6041 +images-08653.png,6042 +images-08654.png,6043 +images-08655.png,6044 +images-08656.png,6045 +images-08657.png,6046 +images-08658.png,6047 +images-08659.png,6048 +images-08660.png,6049 +images-08661.png,6050 +images-08662.png,6051 +images-08663.png,6052 +images-08664.png,6053 +images-08665.png,6054 +images-08666.png,6055 +images-08667.png,6056 +images-08668.png,6057 +images-08669.png,6058 +images-08670.png,6059 +images-08671.png,6060 +images-08672.png,6061 +images-08673.png,6062 +images-08674.png,6063 +images-08675.png,6064 +images-08676.png,6065 +images-08677.png,6066 +images-08678.png,6067 +images-08679.png,6068 +images-08680.png,6069 +images-08681.png,6070 +images-08682.png,6071 +images-08683.png,6072 +images-08684.png,6073 +images-08685.png,6074 +images-08686.png,6075 +images-08687.png,6076 +images-08688.png,6077 +images-08689.png,6078 +images-08690.png,6079 +images-08691.png,6080 +images-08692.png,6081 +images-08693.png,6082 +images-08694.png,6083 +images-08695.png,6084 +images-08696.png,6085 +images-08697.png,6086 +images-08698.png,6087 +images-08699.png,6088 +images-08700.png,6089 +images-08701.png,6090 +images-08702.png,6091 +images-08703.png,6092 +images-08704.png,6093 +images-08705.png,6094 +images-08706.png,6095 +images-08707.png,6096 +images-08708.png,6097 +images-08709.png,6098 +images-08710.png,6099 +images-08711.png,6100 +images-08712.png,6101 +images-08713.png,6102 +images-08714.png,6103 +images-08715.png,6104 +images-08716.png,6105 +images-08717.png,6106 +images-08718.png,6107 +images-08719.png,6108 +images-08720.png,6109 +images-08721.png,6110 +images-08722.png,6111 +images-08723.png,6112 +images-08724.png,6113 +images-08725.png,6114 +images-08726.png,6115 +images-08727.png,6116 +images-08728.png,6117 +images-08729.png,6118 +images-08730.png,6119 +images-08731.png,6120 +images-08732.png,6121 +images-08733.png,6122 +images-08734.png,6123 +images-08735.png,6124 +images-08736.png,6125 +images-08737.png,6126 +images-08738.png,6127 +images-08739.png,6128 +images-08740.png,6129 +images-08741.png,6130 +images-08742.png,6131 +images-08743.png,6132 +images-08744.png,6133 +images-08745.png,6134 +images-08746.png,6135 +images-08747.png,6136 +images-08748.png,6137 +images-08749.png,6138 +images-08750.png,6139 +images-08751.png,6140 +images-08752.png,6141 +images-08753.png,6142 +images-08754.png,6143 +images-08755.png,6144 +images-08756.png,6145 +images-08757.png,6146 +images-08758.png,6147 +images-08759.png,6148 +images-08760.png,6149 +images-08761.png,6150 +images-08762.png,6151 +images-08763.png,6152 +images-08764.png,6153 +images-08765.png,6154 +images-08766.png,6155 +images-08767.png,6156 +images-08768.png,6157 +images-08769.png,6158 +images-08770.png,6159 +images-08771.png,6160 +images-08772.png,6161 +images-08773.png,6162 +images-08774.png,6163 +images-08775.png,6164 +images-08776.png,6165 +images-08777.png,6166 +images-08778.png,6167 +images-08779.png,6168 +images-08780.png,6169 +images-08781.png,6170 +images-08782.png,6171 +images-08783.png,6172 +images-08784.png,6173 +images-08785.png,6174 +images-08786.png,6175 +images-08787.png,6176 +images-08788.png,6177 +images-08789.png,6178 +images-08790.png,6179 +images-08791.png,6180 +images-08792.png,6181 +images-08793.png,6182 +images-08794.png,6183 +images-08795.png,6184 +images-08796.png,6185 +images-08797.png,6186 +images-08798.png,6187 +images-08799.png,6188 +images-08800.png,6189 +images-08801.png,6190 +images-08802.png,6191 +images-08803.png,6192 +images-08804.png,6193 +images-08805.png,6194 +images-08806.png,6195 +images-08807.png,6196 +images-08808.png,6197 +images-08809.png,6198 +images-08810.png,6199 +images-08811.png,6200 +images-08812.png,6201 +images-08813.png,6202 +images-08814.png,6203 +images-08815.png,6204 +images-08816.png,6205 +images-08817.png,6206 +images-08818.png,6207 +images-08819.png,6208 +images-08820.png,6209 +images-08821.png,6210 +images-08822.png,6211 +images-08823.png,6212 +images-08824.png,6213 +images-08825.png,6214 +images-08826.png,6215 +images-08827.png,6216 +images-08828.png,6217 +images-08829.png,6218 +images-08830.png,6219 +images-08831.png,6220 +images-08832.png,6221 +images-08833.png,6222 +images-08834.png,6223 +images-08835.png,6224 +images-08836.png,6225 +images-08837.png,6226 +images-08838.png,6227 +images-08839.png,6228 +images-08840.png,6229 +images-08841.png,6230 +images-08842.png,6231 +images-08843.png,6232 +images-08844.png,6233 +images-08845.png,6234 +images-08846.png,6235 +images-08847.png,6236 +images-08848.png,6237 +images-08849.png,6238 +images-08850.png,6239 +images-08851.png,6240 +images-08852.png,6241 +images-08853.png,6242 +images-08854.png,6243 +images-08855.png,6244 +images-08856.png,6245 +images-08857.png,6246 +images-08858.png,6247 +images-08859.png,6248 +images-08860.png,6249 +images-08861.png,6250 +images-08862.png,6251 +images-08863.png,6252 +images-08864.png,6253 +images-08865.png,6254 +images-08866.png,6255 +images-08867.png,6256 +images-08868.png,6257 +images-08869.png,6258 +images-08870.png,6259 +images-08871.png,6260 +images-08872.png,6261 +images-08873.png,6262 +images-08874.png,6263 +images-08875.png,6264 +images-08876.png,6265 +images-08877.png,6266 +images-08878.png,6267 +images-08879.png,6268 +images-08880.png,6269 +images-08881.png,6270 +images-08882.png,6271 +images-08883.png,6272 +images-08884.png,6273 +images-08885.png,6274 +images-08886.png,6275 +images-08887.png,6276 +images-08888.png,6277 +images-08889.png,6278 +images-08890.png,6279 +images-08891.png,6280 +images-08892.png,6281 +images-08893.png,6282 +images-08894.png,6283 +images-08895.png,6284 +images-08896.png,6285 +images-08897.png,6286 +images-08898.png,6287 +images-08899.png,6288 +images-08900.png,6289 +images-08901.png,6290 +images-08902.png,6291 +images-08903.png,6292 +images-08904.png,6293 +images-08905.png,6294 +images-08906.png,6295 +images-08907.png,6296 +images-08908.png,6297 +images-08909.png,6298 +images-08910.png,6299 +images-08911.png,6300 +images-08912.png,6301 +images-08913.png,6302 +images-08914.png,6303 +images-08915.png,6304 +images-08916.png,6305 +images-08917.png,6306 +images-08918.png,6307 +images-08919.png,6308 +images-08920.png,6309 +images-08921.png,6310 +images-08922.png,6311 +images-08923.png,6312 +images-08924.png,6313 +images-08925.png,6314 +images-08926.png,6315 +images-08927.png,6316 +images-08928.png,6317 +images-08929.png,6318 +images-08930.png,6319 +images-08931.png,6320 +images-08932.png,6321 +images-08933.png,6322 +images-08934.png,6323 +images-08935.png,6324 +images-08936.png,6325 +images-08937.png,6326 +images-08938.png,6327 +images-08939.png,6328 +images-08940.png,6329 +images-08941.png,6330 +images-08942.png,6331 +images-08943.png,6332 +images-08944.png,6333 +images-08945.png,6334 +images-08946.png,6335 +images-08947.png,6336 +images-08948.png,6337 +images-08949.png,6338 +images-08950.png,6339 +images-08951.png,6340 +images-08952.png,6341 +images-08953.png,6342 +images-08954.png,6343 +images-08955.png,6344 +images-08956.png,6345 +images-08957.png,6346 +images-08958.png,6347 +images-08959.png,6348 +images-08960.png,6349 +images-08961.png,6350 +images-08962.png,6351 +images-08963.png,6352 +images-08964.png,6353 +images-08965.png,6354 +images-08966.png,6355 +images-08967.png,6356 +images-08968.png,6357 +images-08969.png,6358 +images-08970.png,6359 +images-08971.png,6360 +images-08972.png,6361 +images-08973.png,6362 +images-08974.png,6363 +images-08975.png,6364 +images-08976.png,6365 +images-08977.png,6366 +images-08978.png,6367 +images-08979.png,6368 +images-08980.png,6369 +images-08981.png,6370 +images-08982.png,6371 +images-08983.png,6372 +images-08984.png,6373 +images-08985.png,6374 +images-08986.png,6375 +images-08987.png,6376 +images-08988.png,6377 +images-08989.png,6378 +images-08990.png,6379 +images-08991.png,6380 +images-08992.png,6381 +images-08993.png,6382 +images-08994.png,6383 +images-08995.png,6384 +images-08996.png,6385 +images-08997.png,6386 +images-08998.png,6387 +images-08999.png,6388 +images-09000.png,6389 +images-09001.png,6390 +images-09002.png,6391 +images-09003.png,6392 +images-09004.png,6393 +images-09005.png,6394 +images-09006.png,6395 +images-09007.png,6396 +images-09008.png,6397 +images-09009.png,6398 +images-09010.png,6399 +images-09011.png,6400 +images-09012.png,6401 +images-09013.png,6402 +images-09014.png,6403 +images-09015.png,6404 +images-09016.png,6405 +images-09017.png,6406 +images-09018.png,6407 +images-09019.png,6408 +images-09020.png,6409 +images-09021.png,6410 +images-09022.png,6411 +images-09023.png,6412 +images-09024.png,6413 +images-09025.png,6414 +images-09026.png,6415 +images-09027.png,6416 +images-09028.png,6417 +images-09029.png,6418 +images-09030.png,6419 +images-09031.png,6420 +images-09032.png,6421 +images-09033.png,6422 +images-09034.png,6423 +images-09035.png,6424 +images-09036.png,6425 +images-09037.png,6426 +images-09038.png,6427 +images-09039.png,6428 +images-09040.png,6429 +images-09041.png,6430 +images-09042.png,6431 +images-09043.png,6432 +images-09044.png,6433 +images-09045.png,6434 +images-09046.png,6435 +images-09047.png,6436 +images-09048.png,6437 +images-09049.png,6438 +images-09050.png,6439 +images-09051.png,6440 +images-09052.png,6441 +images-09053.png,6442 +images-09054.png,6443 +images-09055.png,6444 +images-09056.png,6445 +images-09057.png,6446 +images-09058.png,6447 +images-09059.png,6448 +images-09060.png,6449 +images-09061.png,6450 +images-09062.png,6451 +images-09063.png,6452 +images-09064.png,6453 +images-09065.png,6454 +images-09066.png,6455 +images-09067.png,6456 +images-09068.png,6457 +images-09069.png,6458 +images-09070.png,6459 +images-09071.png,6460 +images-09072.png,6461 +images-09073.png,6462 +images-09074.png,6463 +images-09075.png,6464 +images-09076.png,6465 +images-09077.png,6466 +images-09078.png,6467 +images-09079.png,6468 +images-09080.png,6469 +images-09081.png,6470 +images-09082.png,6471 +images-09083.png,6472 +images-09084.png,6473 +images-09085.png,6474 +images-09086.png,6475 +images-09087.png,6476 +images-09088.png,6477 +images-09089.png,6478 +images-09090.png,6479 +images-09091.png,6480 +images-09092.png,6481 +images-09093.png,6482 +images-09094.png,6483 +images-09095.png,6484 +images-09096.png,6485 +images-09097.png,6486 +images-09098.png,6487 +images-09099.png,6488 +images-09100.png,6489 +images-09101.png,6490 +images-09102.png,6491 +images-09103.png,6492 +images-09104.png,6493 +images-09105.png,6494 +images-09106.png,6495 +images-09107.png,6496 +images-09108.png,6497 +images-09109.png,6498 +images-09110.png,6499 +images-09111.png,6500 +images-09112.png,6501 +images-09113.png,6502 +images-09114.png,6503 +images-09115.png,6504 +images-09116.png,6505 +images-09117.png,6506 +images-09118.png,6507 +images-09119.png,6508 +images-09120.png,6509 +images-09121.png,6510 +images-09122.png,6511 +images-09123.png,6512 +images-09124.png,6513 +images-09125.png,6514 +images-09126.png,6515 +images-09127.png,6516 +images-09128.png,6517 +images-09129.png,6518 +images-09130.png,6519 +images-09131.png,6520 +images-09132.png,6521 +images-09133.png,6522 +images-09134.png,6523 +images-09135.png,6524 +images-09136.png,6525 +images-09137.png,6526 +images-09138.png,6527 +images-09139.png,6528 +images-09140.png,6529 +images-09141.png,6530 +images-09142.png,6531 +images-09143.png,6532 +images-09144.png,6533 +images-09145.png,6534 +images-09146.png,6535 +images-09147.png,6536 +images-09148.png,6537 +images-09149.png,6538 +images-09150.png,6539 +images-09151.png,6540 +images-09152.png,6541 +images-09153.png,6542 +images-09154.png,6543 +images-09155.png,6544 +images-09156.png,6545 +images-09157.png,6546 +images-09158.png,6547 +images-09159.png,6548 +images-09160.png,6549 +images-09161.png,6550 +images-09162.png,6551 +images-09163.png,6552 +images-09164.png,6553 +images-09165.png,6554 +images-09166.png,6555 +images-09167.png,6556 +images-09168.png,6557 +images-09169.png,6558 +images-09170.png,6559 +images-09171.png,6560 +images-09172.png,6561 +images-09173.png,6562 +images-09174.png,6563 +images-09175.png,6564 +images-09176.png,6565 +images-09177.png,6566 +images-09178.png,6567 +images-09179.png,6568 +images-09180.png,6569 +images-09181.png,6570 +images-09182.png,6571 +images-09183.png,6572 +images-09184.png,6573 +images-09185.png,6574 +images-09186.png,6575 +images-09187.png,6576 +images-09188.png,6577 +images-09189.png,6578 +images-09190.png,6579 +images-09191.png,6580 +images-09192.png,6581 +images-09193.png,6582 +images-09194.png,6583 +images-09195.png,6584 +images-09196.png,6585 +images-09197.png,6586 +images-09198.png,6587 +images-09199.png,6588 +images-09200.png,6589 +images-09201.png,6590 +images-09202.png,6591 +images-09203.png,6592 +images-09204.png,6593 +images-09205.png,6594 +images-09206.png,6595 +images-09207.png,6596 +images-09208.png,6597 +images-09209.png,6598 +images-09210.png,6599 +images-09211.png,6600 +images-09212.png,6601 +images-09213.png,6602 +images-09214.png,6603 +images-09215.png,6604 +images-09216.png,6605 +images-09217.png,6606 +images-09218.png,6607 +images-09219.png,6608 +images-09220.png,6609 +images-09221.png,6610 +images-09222.png,6611 +images-09223.png,6612 +images-09224.png,6613 +images-09225.png,6614 +images-09226.png,6615 +images-09227.png,6616 +images-09228.png,6617 +images-09229.png,6618 +images-09230.png,6619 +images-09231.png,6620 +images-09232.png,6621 +images-09233.png,6622 +images-09234.png,6623 +images-09235.png,6624 +images-09236.png,6625 +images-09237.png,6626 +images-09238.png,6627 +images-09239.png,6628 +images-09240.png,6629 +images-09241.png,6630 +images-09242.png,6631 +images-09243.png,6632 +images-09244.png,6633 +images-09245.png,6634 +images-09246.png,6635 +images-09247.png,6636 +images-09248.png,6637 +images-09249.png,6638 +images-09250.png,6639 +images-09251.png,6640 +images-09252.png,6641 +images-09253.png,6642 +images-09254.png,6643 +images-09255.png,6644 +images-09256.png,6645 +images-09257.png,6646 +images-09258.png,6647 +images-09259.png,6648 +images-09260.png,6649 +images-09261.png,6650 +images-09262.png,6651 +images-09263.png,6652 +images-09264.png,6653 +images-09265.png,6654 +images-09266.png,6655 +images-09267.png,6656 +images-09268.png,6657 +images-09269.png,6658 +images-09270.png,6659 +images-09271.png,6660 +images-09272.png,6661 +images-09273.png,6662 +images-09274.png,6663 +images-09275.png,6664 +images-09276.png,6665 +images-09277.png,6666 +images-09278.png,6667 +images-09279.png,6668 +images-09280.png,6669 +images-09281.png,6670 +images-09282.png,6671 +images-09283.png,6672 +images-09284.png,6673 +images-09285.png,6674 +images-09286.png,6675 +images-09287.png,6676 +images-09288.png,6677 +images-09289.png,6678 +images-09290.png,6679 +images-09291.png,6680 +images-09292.png,6681 +images-09293.png,6682 +images-09294.png,6683 +images-09295.png,6684 +images-09296.png,6685 +images-09297.png,6686 +images-09298.png,6687 +images-09299.png,6688 +images-09300.png,6689 +images-09301.png,6690 +images-09302.png,6691 +images-09303.png,6692 +images-09304.png,6693 +images-09305.png,6694 +images-09306.png,6695 +images-09307.png,6696 +images-09308.png,6697 +images-09309.png,6698 +images-09310.png,6699 +images-09311.png,6700 +images-09312.png,6701 +images-09313.png,6702 +images-09314.png,6703 +images-09315.png,6704 +images-09316.png,6705 +images-09317.png,6706 +images-09318.png,6707 +images-09319.png,6708 +images-09320.png,6709 +images-09321.png,6710 +images-09322.png,6711 +images-09323.png,6712 +images-09324.png,6713 +images-09325.png,6714 +images-09326.png,6715 +images-09327.png,6716 +images-09328.png,6717 +images-09329.png,6718 +images-09330.png,6719 +images-09331.png,6720 +images-09332.png,6721 +images-09333.png,6722 +images-09334.png,6723 +images-09335.png,6724 +images-09336.png,6725 +images-09337.png,6726 +images-09338.png,6727 +images-09339.png,6728 +images-09340.png,6729 +images-09341.png,6730 +images-09342.png,6731 +images-09343.png,6732 +images-09344.png,6733 +images-09345.png,6734 +images-09346.png,6735 +images-09347.png,6736 +images-09348.png,6737 +images-09349.png,6738 +images-09350.png,6739 +images-09351.png,6740 +images-09352.png,6741 +images-09353.png,6742 +images-09354.png,6743 +images-09355.png,6744 +images-09356.png,6745 +images-09357.png,6746 +images-09358.png,6747 +images-09359.png,6748 +images-09360.png,6749 +images-09361.png,6750 +images-09362.png,6751 +images-09363.png,6752 +images-09364.png,6753 +images-09365.png,6754 +images-09366.png,6755 +images-09367.png,6756 +images-09368.png,6757 +images-09369.png,6758 +images-09370.png,6759 +images-09371.png,6760 +images-09372.png,6761 +images-09373.png,6762 +images-09374.png,6763 +images-09375.png,6764 +images-09376.png,6765 +images-09377.png,6766 +images-09378.png,6767 +images-09379.png,6768 +images-09380.png,6769 +images-09381.png,6770 +images-09382.png,6771 +images-09383.png,6772 +images-09384.png,6773 +images-09385.png,6774 +images-09386.png,6775 +images-09387.png,6776 +images-09388.png,6777 +images-09389.png,6778 +images-09390.png,6779 +images-09391.png,6780 +images-09392.png,6781 +images-09393.png,6782 +images-09394.png,6783 +images-09395.png,6784 +images-09396.png,6785 +images-09397.png,6786 +images-09398.png,6787 +images-09399.png,6788 +images-09400.png,6789 +images-09401.png,6790 +images-09402.png,6791 +images-09403.png,6792 +images-09404.png,6793 +images-09405.png,6794 +images-09406.png,6795 +images-09407.png,6796 +images-09408.png,6797 +images-09409.png,6798 +images-09410.png,6799 +images-09411.png,6800 +images-09412.png,6801 +images-09413.png,6802 +images-09414.png,6803 +images-09415.png,6804 +images-09416.png,6805 +images-09417.png,6806 +images-09418.png,6807 +images-09419.png,6808 +images-09420.png,6809 +images-09421.png,6810 +images-09422.png,6811 +images-09423.png,6812 +images-09424.png,6813 +images-09425.png,6814 +images-09426.png,6815 +images-09427.png,6816 +images-09428.png,6817 +images-09429.png,6818 +images-09430.png,6819 +images-09431.png,6820 +images-09432.png,6821 +images-09433.png,6822 +images-09434.png,6823 +images-09435.png,6824 +images-09436.png,6825 +images-09437.png,6826 +images-09438.png,6827 +images-09439.png,6828 +images-09440.png,6829 +images-09441.png,6830 +images-09442.png,6831 +images-09443.png,6832 +images-09444.png,6833 +images-09445.png,6834 +images-09446.png,6835 +images-09447.png,6836 +images-09448.png,6837 +images-09449.png,6838 +images-09450.png,6839 +images-09451.png,6840 +images-09452.png,6841 +images-09453.png,6842 +images-09454.png,6843 +images-09455.png,6844 +images-09456.png,6845 +images-09457.png,6846 +images-09458.png,6847 +images-09459.png,6848 +images-09460.png,6849 +images-09461.png,6850 +images-09462.png,6851 +images-09463.png,6852 +images-09464.png,6853 +images-09465.png,6854 +images-09466.png,6855 +images-09467.png,6856 +images-09468.png,6857 +images-09469.png,6858 +images-09470.png,6859 +images-09471.png,6860 +images-09472.png,6861 +images-09473.png,6862 +images-09474.png,6863 +images-09475.png,6864 +images-09476.png,6865 +images-09477.png,6866 +images-09478.png,6867 +images-09479.png,6868 +images-09480.png,6869 +images-09481.png,6870 +images-09482.png,6871 +images-09483.png,6872 +images-09484.png,6873 +images-09485.png,6874 +images-09486.png,6875 +images-09487.png,6876 +images-09488.png,6877 +images-09489.png,6878 +images-09490.png,6879 +images-09491.png,6880 +images-09492.png,6881 +images-09493.png,6882 +images-09494.png,6883 +images-09495.png,6884 +images-09496.png,6885 +images-09497.png,6886 +images-09498.png,6887 +images-09499.png,6888 +images-09500.png,6889 +images-09501.png,6890 +images-09502.png,6891 +images-09503.png,6892 +images-09504.png,6893 +images-09505.png,6894 +images-09506.png,6895 +images-09507.png,6896 +images-09508.png,6897 +images-09509.png,6898 +images-09510.png,6899 +images-09511.png,6900 +images-09512.png,6901 +images-09513.png,6902 +images-09514.png,6903 +images-09515.png,6904 +images-09516.png,6905 +images-09517.png,6906 +images-09518.png,6907 +images-09519.png,6908 +images-09520.png,6909 +images-09521.png,6910 +images-09522.png,6911 +images-09523.png,6912 +images-09524.png,6913 +images-09525.png,6914 +images-09526.png,6915 +images-09527.png,6916 +images-09528.png,6917 +images-09529.png,6918 +images-09530.png,6919 +images-09531.png,6920 +images-09532.png,6921 +images-09533.png,6922 +images-09534.png,6923 +images-09535.png,6924 +images-09536.png,6925 +images-09537.png,6926 +images-09538.png,6927 +images-09539.png,6928 +images-09540.png,6929 +images-09541.png,6930 +images-09542.png,6931 +images-09543.png,6932 +images-09544.png,6933 +images-09545.png,6934 +images-09546.png,6935 +images-09547.png,6936 +images-09548.png,6937 +images-09549.png,6938 +images-09550.png,6939 +images-09551.png,6940 +images-09552.png,6941 +images-09553.png,6942 +images-09554.png,6943 +images-09555.png,6944 +images-09556.png,6945 +images-09557.png,6946 +images-09558.png,6947 +images-09559.png,6948 +images-09560.png,6949 +images-09561.png,6950 +images-09562.png,6951 +images-09563.png,6952 +images-09564.png,6953 +images-09565.png,6954 +images-09566.png,6955 +images-09567.png,6956 +images-09568.png,6957 +images-09569.png,6958 +images-09570.png,6959 +images-09571.png,6960 +images-09572.png,6961 +images-09573.png,6962 +images-09574.png,6963 +images-09575.png,6964 +images-09576.png,6965 +images-09577.png,6966 +images-09578.png,6967 +images-09579.png,6968 +images-09580.png,6969 +images-09581.png,6970 +images-09582.png,6971 +images-09583.png,6972 +images-09584.png,6973 +images-09585.png,6974 +images-09586.png,6975 +images-09587.png,6976 +images-09588.png,6977 +images-09589.png,6978 +images-09590.png,6979 +images-09591.png,6980 +images-09592.png,6981 +images-09593.png,6982 +images-09594.png,6983 +images-09595.png,6984 +images-09596.png,6985 +images-09597.png,6986 +images-09598.png,6987 +images-09599.png,6988 +images-09600.png,6989 +images-09601.png,6990 +images-09602.png,6991 +images-09603.png,6992 +images-09604.png,6993 +images-09605.png,6994 +images-09606.png,6995 +images-09607.png,6996 +images-09608.png,6997 +images-09609.png,6998 +images-09610.png,6999 +images-09611.png,7000 +images-09612.png,7001 +images-09613.png,7002 +images-09614.png,7003 +images-09615.png,7004 +images-09616.png,7005 +images-09617.png,7006 +images-09618.png,7007 +images-09619.png,7008 +images-09620.png,7009 +images-09621.png,7010 +images-09622.png,7011 +images-09623.png,7012 +images-09624.png,7013 +images-09625.png,7014 +images-09626.png,7015 +images-09627.png,7016 +images-09628.png,7017 +images-09629.png,7018 +images-09630.png,7019 +images-09631.png,7020 +images-09632.png,7021 +images-09633.png,7022 +images-09634.png,7023 +images-09635.png,7024 +images-09636.png,7025 +images-09637.png,7026 +images-09638.png,7027 +images-09639.png,7028 +images-09640.png,7029 +images-09641.png,7030 +images-09642.png,7031 +images-09643.png,7032 +images-09644.png,7033 +images-09645.png,7034 +images-09646.png,7035 +images-09647.png,7036 +images-09648.png,7037 +images-09649.png,7038 +images-09650.png,7039 +images-09651.png,7040 +images-09652.png,7041 +images-09653.png,7042 +images-09654.png,7043 +images-09655.png,7044 +images-09656.png,7045 +images-09657.png,7046 +images-09658.png,7047 +images-09659.png,7048 +images-09660.png,7049 +images-09661.png,7050 +images-09662.png,7051 +images-09663.png,7052 +images-09664.png,7053 +images-09665.png,7054 +images-09666.png,7055 +images-09667.png,7056 +images-09668.png,7057 +images-09669.png,7058 +images-09670.png,7059 +images-09671.png,7060 +images-09672.png,7061 +images-09673.png,7062 +images-09674.png,7063 +images-09675.png,7064 +images-09676.png,7065 +images-09677.png,7066 +images-09678.png,7067 +images-09679.png,7068 +images-09680.png,7069 +images-09681.png,7070 +images-09682.png,7071 +images-09683.png,7072 +images-09684.png,7073 +images-09685.png,7074 +images-09686.png,7075 +images-09687.png,7076 +images-09688.png,7077 +images-09689.png,7078 +images-09690.png,7079 +images-09691.png,7080 +images-09692.png,7081 +images-09693.png,7082 +images-09694.png,7083 +images-09695.png,7084 +images-09696.png,7085 +images-09697.png,7086 +images-09698.png,7087 +images-09699.png,7088 +images-09700.png,7089 +images-09701.png,7090 +images-09702.png,7091 +images-09703.png,7092 +images-09704.png,7093 +images-09705.png,7094 +images-09706.png,7095 +images-09707.png,7096 +images-09708.png,7097 +images-09709.png,7098 +images-09710.png,7099 +images-09711.png,7100 +images-09712.png,7101 +images-09713.png,7102 +images-09714.png,7103 +images-09715.png,7104 +images-09716.png,7105 +images-09717.png,7106 +images-09718.png,7107 +images-09719.png,7108 +images-09720.png,7109 +images-09721.png,7110 +images-09722.png,7111 +images-09723.png,7112 +images-09724.png,7113 +images-09725.png,7114 +images-09726.png,7115 +images-09727.png,7116 +images-09728.png,7117 +images-09729.png,7118 +images-09730.png,7119 +images-09731.png,7120 +images-09732.png,7121 +images-09733.png,7122 +images-09734.png,7123 +images-09735.png,7124 +images-09736.png,7125 +images-09737.png,7126 +images-09738.png,7127 +images-09739.png,7128 +images-09740.png,7129 +images-09741.png,7130 +images-09742.png,7131 +images-09743.png,7132 +images-09744.png,7133 +images-09745.png,7134 +images-09746.png,7135 +images-09747.png,7136 +images-09748.png,7137 +images-09749.png,7138 +images-09750.png,7139 +images-09751.png,7140 +images-09752.png,7141 +images-09753.png,7142 +images-09754.png,7143 +images-09755.png,7144 +images-09756.png,7145 +images-09757.png,7146 +images-09758.png,7147 +images-09759.png,7148 +images-09760.png,7149 +images-09761.png,7150 +images-09762.png,7151 +images-09763.png,7152 +images-09764.png,7153 +images-09765.png,7154 +images-09766.png,7155 +images-09767.png,7156 +images-09768.png,7157 +images-09769.png,7158 +images-09770.png,7159 +images-09771.png,7160 +images-09772.png,7161 +images-09773.png,7162 +images-09774.png,7163 +images-09775.png,7164 +images-09776.png,7165 +images-09777.png,7166 +images-09778.png,7167 +images-09779.png,7168 +images-09780.png,7169 +images-09781.png,7170 +images-09782.png,7171 +images-09783.png,7172 +images-09784.png,7173 +images-09785.png,7174 +images-09786.png,7175 +images-09787.png,7176 +images-09788.png,7177 +images-09789.png,7178 +images-09790.png,7179 +images-09791.png,7180 +images-09792.png,7181 +images-09793.png,7182 +images-09794.png,7183 +images-09795.png,7184 +images-09796.png,7185 +images-09797.png,7186 +images-09798.png,7187 +images-09799.png,7188 +images-09800.png,7189 +images-09801.png,7190 +images-09802.png,7191 +images-09803.png,7192 +images-09804.png,7193 +images-09805.png,7194 +images-09806.png,7195 +images-09807.png,7196 +images-09808.png,7197 +images-09809.png,7198 +images-09810.png,7199 +images-09811.png,7200 +images-09812.png,7201 +images-09813.png,7202 +images-09814.png,7203 +images-09815.png,7204 +images-09816.png,7205 +images-09817.png,7206 +images-09818.png,7207 +images-09819.png,7208 +images-09820.png,7209 +images-09821.png,7210 +images-09822.png,7211 +images-09823.png,7212 +images-09824.png,7213 +images-09825.png,7214 +images-09826.png,7215 +images-09827.png,7216 +images-09828.png,7217 +images-09829.png,7218 +images-09830.png,7219 +images-09831.png,7220 +images-09832.png,7221 +images-09833.png,7222 +images-09834.png,7223 +images-09835.png,7224 +images-09836.png,7225 +images-09837.png,7226 +images-09838.png,7227 +images-09839.png,7228 +images-09840.png,7229 +images-09841.png,7230 +images-09842.png,7231 +images-09843.png,7232 +images-09844.png,7233 +images-09845.png,7234 +images-09846.png,7235 +images-09847.png,7236 +images-09848.png,7237 +images-09849.png,7238 +images-09850.png,7239 +images-09851.png,7240 +images-09852.png,7241 +images-09853.png,7242 +images-09854.png,7243 +images-09855.png,7244 +images-09856.png,7245 +images-09857.png,7246 +images-09858.png,7247 +images-09859.png,7248 +images-09860.png,7249 +images-09861.png,7250 +images-09862.png,7251 +images-09863.png,7252 +images-09864.png,7253 +images-09865.png,7254 +images-09866.png,7255 +images-09867.png,7256 +images-09868.png,7257 +images-09869.png,7258 +images-09870.png,7259 +images-09871.png,7260 +images-09872.png,7261 +images-09873.png,7262 +images-09874.png,7263 +images-09875.png,7264 +images-09876.png,7265 +images-09877.png,7266 +images-09878.png,7267 +images-09879.png,7268 +images-09880.png,7269 +images-09881.png,7270 +images-09882.png,7271 +images-09883.png,7272 +images-09884.png,7273 +images-09885.png,7274 +images-09886.png,7275 +images-09887.png,7276 +images-09888.png,7277 +images-09889.png,7278 +images-09890.png,7279 +images-09891.png,7280 +images-09892.png,7281 +images-09893.png,7282 +images-09894.png,7283 +images-09895.png,7284 +images-09896.png,7285 +images-09897.png,7286 +images-09898.png,7287 +images-09899.png,7288 +images-09900.png,7289 +images-09901.png,7290 +images-09902.png,7291 +images-09903.png,7292 +images-09904.png,7293 +images-09905.png,7294 +images-09906.png,7295 +images-09907.png,7296 +images-09908.png,7297 +images-09909.png,7298 +images-09910.png,7299 +images-09911.png,7300 +images-09912.png,7301 +images-09913.png,7302 +images-09914.png,7303 +images-09915.png,7304 +images-09916.png,7305 +images-09917.png,7306 +images-09918.png,7307 +images-09919.png,7308 +images-09920.png,7309 +images-09921.png,7310 +images-09922.png,7311 +images-09923.png,7312 +images-09924.png,7313 +images-09925.png,7314 +images-09926.png,7315 +images-09927.png,7316 +images-09928.png,7317 +images-09929.png,7318 +images-09930.png,7319 +images-09931.png,7320 +images-09932.png,7321 +images-09933.png,7322 +images-09934.png,7323 +images-09935.png,7324 +images-09936.png,7325 +images-09937.png,7326 +images-09938.png,7327 +images-09939.png,7328 +images-09940.png,7329 +images-09941.png,7330 +images-09942.png,7331 +images-09943.png,7332 +images-09944.png,7333 +images-09945.png,7334 +images-09946.png,7335 +images-09947.png,7336 +images-09948.png,7337 +images-09949.png,7338 +images-09950.png,7339 +images-09951.png,7340 +images-09952.png,7341 +images-09953.png,7342 +images-09954.png,7343 +images-09955.png,7344 +images-09956.png,7345 +images-09957.png,7346 +images-09958.png,7347 +images-09959.png,7348 +images-09960.png,7349 +images-09961.png,7350 +images-09962.png,7351 +images-09963.png,7352 +images-09964.png,7353 +images-09965.png,7354 +images-09966.png,7355 +images-09979.png,7356 +images-09980.png,7357 +images-09981.png,7358 +images-09982.png,7359 +images-09983.png,7360 +images-09984.png,7361 +images-09985.png,7362 +images-09986.png,7363 +images-09987.png,7364 +images-09988.png,7365 +images-09989.png,7366 +images-09990.png,7367 +images-09991.png,7368 +images-09992.png,7369 +images-09993.png,7370 +images-09994.png,7371 +images-09995.png,7372 +images-09996.png,7373 +images-09997.png,7374 +images-09998.png,7375 +images-09999.png,7376 +images-10000.png,7377 +images-10001.png,7378 +images-10002.png,7379 +images-10003.png,7380 +images-10004.png,7381 +images-10005.png,7382 +images-10006.png,7383 +images-10007.png,7384 +images-10008.png,7385 +images-10009.png,7386 +images-10010.png,7387 +images-10011.png,7388 +images-10012.png,7389 +images-10013.png,7390 +images-10014.png,7391 +images-10015.png,7392 +images-10016.png,7393 +images-10017.png,7394 +images-10018.png,7395 +images-10019.png,7396 +images-10020.png,7397 +images-10021.png,7398 +images-10022.png,7399 +images-10023.png,7400 +images-10024.png,7401 +images-10025.png,7402 +images-10026.png,7403 +images-10027.png,7404 +images-10028.png,7405 +images-10029.png,7406 +images-10030.png,7407 +images-10031.png,7408 +images-10032.png,7409 +images-10033.png,7410 +images-10034.png,7411 +images-10035.png,7412 +images-10036.png,7413 +images-10037.png,7414 +images-10038.png,7415 +images-10039.png,7416 +images-10040.png,7417 +images-10041.png,7418 +images-10204.png,7419 +images-10205.png,7420 +images-10206.png,7421 +images-10207.png,7422 +images-10208.png,7423 +images-10209.png,7424 +images-10210.png,7425 +images-10211.png,7426 +images-10212.png,7427 +images-10213.png,7428 +images-10214.png,7429 +images-10215.png,7430 +images-10216.png,7431 +images-10217.png,7432 +images-10218.png,7433 +images-10219.png,7434 +images-10220.png,7435 +images-10221.png,7436 +images-10222.png,7437 +images-10223.png,7438 +images-10224.png,7439 +images-10225.png,7440 +images-10226.png,7441 +images-10227.png,7442 +images-10228.png,7443 +images-10229.png,7444 +images-10230.png,7445 +images-10231.png,7446 +images-10232.png,7447 +images-10233.png,7448 +images-10234.png,7449 +images-10235.png,7450 +images-10236.png,7451 +images-10237.png,7452 +images-10238.png,7453 +images-10268.png,7454 +images-10269.png,7455 +images-10270.png,7456 +images-10271.png,7457 +images-10272.png,7458 +images-10273.png,7459 +images-10274.png,7460 +images-10275.png,7461 +images-10276.png,7462 +images-10277.png,7463 +images-10278.png,7464 +images-10279.png,7465 +images-10280.png,7466 +images-10281.png,7467 +images-10282.png,7468 +images-10283.png,7469 +images-10284.png,7470 +images-10285.png,7471 +images-10286.png,7472 +images-10287.png,7473 +images-10288.png,7474 +images-10289.png,7475 +images-10290.png,7476 +images-10291.png,7477 +images-10292.png,7478 +images-10293.png,7479 +images-10294.png,7480 +images-10295.png,7481 +images-10296.png,7482 +images-10297.png,7483 +images-10298.png,7484 +images-10299.png,7485 +images-10300.png,7486 +images-10301.png,7487 +images-10302.png,7488 +images-10303.png,7489 +images-10304.png,7490 +images-10305.png,7491 +images-10306.png,7492 +images-10307.png,7493 +images-10308.png,7494 +images-10309.png,7495 +images-10310.png,7496 +images-10311.png,7497 +images-10312.png,7498 +images-10313.png,7499 +images-10314.png,7500 +images-10315.png,7501 +images-10316.png,7502 +images-10317.png,7503 +images-10318.png,7504 +images-10319.png,7505 +images-10320.png,7506 +images-10321.png,7507 +images-10322.png,7508 +images-10323.png,7509 +images-10324.png,7510 +images-10325.png,7511 +images-10326.png,7512 +images-10327.png,7513 +images-10328.png,7514 +images-10329.png,7515 +images-10330.png,7516 +images-10331.png,7517 +images-10332.png,7518 +images-10333.png,7519 +images-10334.png,7520 +images-10335.png,7521 +images-10336.png,7522 +images-10337.png,7523 +images-10338.png,7524 +images-10339.png,7525 +images-10340.png,7526 +images-10341.png,7527 +images-10342.png,7528 +images-10343.png,7529 +images-10344.png,7530 +images-10345.png,7531 +images-10346.png,7532 +images-10347.png,7533 +images-10348.png,7534 +images-10349.png,7535 +images-10350.png,7536 +images-10351.png,7537 +images-10352.png,7538 +images-10353.png,7539 +images-10354.png,7540 +images-10355.png,7541 +images-10356.png,7542 +images-10357.png,7543 +images-10358.png,7544 +images-10359.png,7545 +images-10360.png,7546 +images-10361.png,7547 +images-10362.png,7548 +images-10363.png,7549 +images-10364.png,7550 +images-10365.png,7551 +images-10366.png,7552 +images-10367.png,7553 +images-10368.png,7554 +images-10369.png,7555 +images-10370.png,7556 +images-10371.png,7557 +images-10372.png,7558 +images-10373.png,7559 +images-10374.png,7560 +images-10375.png,7561 +images-10376.png,7562 +images-10377.png,7563 +images-10378.png,7564 +images-10379.png,7565 +images-10380.png,7566 +images-10381.png,7567 +images-10382.png,7568 +images-10383.png,7569 +images-10384.png,7570 +images-10385.png,7571 +images-10386.png,7572 +images-10387.png,7573 +images-10388.png,7574 +images-10389.png,7575 +images-10390.png,7576 +images-10391.png,7577 +images-10392.png,7578 +images-10393.png,7579 +images-10394.png,7580 +images-10395.png,7581 +images-10396.png,7582 +images-10397.png,7583 +images-10398.png,7584 +images-10399.png,7585 +images-10400.png,7586 +images-10401.png,7587 +images-10402.png,7588 +images-10403.png,7589 +images-10404.png,7590 +images-10405.png,7591 +images-10406.png,7592 +images-10407.png,7593 +images-10416.png,7594 +images-10417.png,7595 +images-10418.png,7596 +images-10419.png,7597 +images-10420.png,7598 +images-10421.png,7599 +images-10422.png,7600 +images-10423.png,7601 +images-10424.png,7602 +images-10425.png,7603 +images-10426.png,7604 +images-10427.png,7605 +images-10428.png,7606 +images-10429.png,7607 +images-10430.png,7608 +images-10431.png,7609 +images-10432.png,7610 +images-10433.png,7611 +images-10434.png,7612 +images-10435.png,7613 +images-10436.png,7614 +images-10437.png,7615 +images-10438.png,7616 +images-10439.png,7617 +images-10440.png,7618 +images-10441.png,7619 +images-10442.png,7620 +images-10443.png,7621 +images-10444.png,7622 +images-10445.png,7623 +images-10446.png,7624 +images-10447.png,7625 +images-10448.png,7626 +images-10449.png,7627 +images-10450.png,7628 +images-10451.png,7629 +images-10452.png,7630 +images-10453.png,7631 +images-10454.png,7632 +images-10455.png,7633 +images-10456.png,7634 +images-10457.png,7635 +images-10458.png,7636 +images-10459.png,7637 +images-10460.png,7638 +images-10461.png,7639 +images-10462.png,7640 +images-10463.png,7641 +images-10464.png,7642 +images-10465.png,7643 +images-10466.png,7644 +images-10467.png,7645 +images-10468.png,7646 +images-10469.png,7647 +images-10470.png,7648 +images-10471.png,7649 +images-10472.png,7650 +images-10473.png,7651 +images-10474.png,7652 +images-10475.png,7653 +images-10476.png,7654 +images-10477.png,7655 +images-10478.png,7656 +images-10479.png,7657 +images-10480.png,7658 +images-10481.png,7659 +images-10482.png,7660 +images-10483.png,7661 +images-10484.png,7662 +images-10485.png,7663 +images-10486.png,7664 +images-10487.png,7665 +images-10488.png,7666 +images-10489.png,7667 +images-10490.png,7668 +images-10491.png,7669 +images-10492.png,7670 +images-10493.png,7671 +images-10494.png,7672 +images-10495.png,7673 +images-10496.png,7674 +images-10497.png,7675 +images-10498.png,7676 +images-10499.png,7677 +images-10500.png,7678 +images-10501.png,7679 +images-10502.png,7680 +images-10503.png,7681 +images-10504.png,7682 +images-10505.png,7683 +images-10506.png,7684 +images-10507.png,7685 +images-10508.png,7686 +images-10509.png,7687 +images-10510.png,7688 +images-10511.png,7689 +images-10512.png,7690 +images-10513.png,7691 +images-10514.png,7692 +images-10515.png,7693 +images-10516.png,7694 +images-10517.png,7695 +images-10518.png,7696 +images-10519.png,7697 +images-10520.png,7698 +images-10521.png,7699 +images-10522.png,7700 +images-10523.png,7701 +images-10524.png,7702 +images-10525.png,7703 +images-10526.png,7704 +images-10527.png,7705 +images-10528.png,7706 +images-10529.png,7707 +images-10530.png,7708 +images-10531.png,7709 +images-10532.png,7710 +images-10533.png,7711 +images-10534.png,7712 +images-10535.png,7713 +images-10536.png,7714 +images-10537.png,7715 +images-10538.png,7716 +images-10539.png,7717 +images-10540.png,7718 +images-10541.png,7719 +images-10542.png,7720 +images-10543.png,7721 +images-10544.png,7722 +images-10545.png,7723 +images-10546.png,7724 +images-10547.png,7725 +images-10548.png,7726 +images-10549.png,7727 +images-10550.png,7728 +images-10551.png,7729 +images-10552.png,7730 +images-10553.png,7731 +images-10554.png,7732 +images-10555.png,7733 +images-10556.png,7734 +images-10557.png,7735 +images-10558.png,7736 +images-10559.png,7737 +images-10560.png,7738 +images-10561.png,7739 +images-10562.png,7740 +images-10563.png,7741 +images-10564.png,7742 +images-10565.png,7743 +images-10566.png,7744 +images-10567.png,7745 +images-10568.png,7746 +images-10569.png,7747 +images-10570.png,7748 +images-10571.png,7749 +images-10572.png,7750 +images-10573.png,7751 +images-10574.png,7752 +images-10575.png,7753 +images-10576.png,7754 +images-10577.png,7755 +images-10578.png,7756 +images-10579.png,7757 +images-10580.png,7758 +images-10581.png,7759 +images-10582.png,7760 +images-10583.png,7761 +images-10584.png,7762 +images-10585.png,7763 +images-10586.png,7764 +images-10587.png,7765 +images-10588.png,7766 +images-10589.png,7767 +images-10590.png,7768 +images-10591.png,7769 +images-10592.png,7770 +images-10593.png,7771 +images-10594.png,7772 +images-10595.png,7773 +images-10596.png,7774 +images-10597.png,7775 +images-10598.png,7776 +images-10599.png,7777 +images-10600.png,7778 +images-10601.png,7779 +images-10602.png,7780 +images-10603.png,7781 +images-10604.png,7782 +images-10605.png,7783 +images-10606.png,7784 +images-10607.png,7785 +images-10608.png,7786 +images-10609.png,7787 +images-10610.png,7788 +images-10611.png,7789 +images-10612.png,7790 +images-10613.png,7791 +images-10614.png,7792 +images-10615.png,7793 +images-10616.png,7794 +images-10617.png,7795 +images-10618.png,7796 +images-10619.png,7797 +images-10620.png,7798 +images-10621.png,7799 +images-10622.png,7800 +images-10623.png,7801 +images-10624.png,7802 +images-10625.png,7803 +images-10626.png,7804 +images-10627.png,7805 +images-10628.png,7806 +images-10629.png,7807 +images-10630.png,7808 +images-10631.png,7809 +images-10632.png,7810 +images-10633.png,7811 +images-10634.png,7812 +images-10635.png,7813 +images-10636.png,7814 +images-10637.png,7815 +images-10638.png,7816 +images-10639.png,7817 +images-10640.png,7818 +images-10641.png,7819 +images-10642.png,7820 +images-10643.png,7821 +images-10644.png,7822 +images-10645.png,7823 +images-10646.png,7824 +images-10647.png,7825 +images-10648.png,7826 +images-10649.png,7827 +images-10650.png,7828 +images-10651.png,7829 +images-10652.png,7830 +images-10653.png,7831 +images-10654.png,7832 +images-10655.png,7833 +images-10656.png,7834 +images-10657.png,7835 +images-10658.png,7836 +images-10659.png,7837 +images-10660.png,7838 +images-10661.png,7839 +images-10662.png,7840 +images-10663.png,7841 +images-10664.png,7842 +images-10665.png,7843 +images-10666.png,7844 +images-10667.png,7845 +images-10668.png,7846 +images-10669.png,7847 +images-10670.png,7848 +images-10671.png,7849 +images-10672.png,7850 +images-10673.png,7851 +images-10674.png,7852 +images-10675.png,7853 +images-10676.png,7854 +images-10677.png,7855 +images-10678.png,7856 +images-10679.png,7857 +images-10680.png,7858 +images-10681.png,7859 +images-10682.png,7860 +images-10683.png,7861 +images-10684.png,7862 +images-10685.png,7863 +images-10686.png,7864 +images-10687.png,7865 +images-10688.png,7866 +images-10689.png,7867 +images-10690.png,7868 +images-10691.png,7869 +images-10692.png,7870 +images-10693.png,7871 +images-10694.png,7872 +images-10695.png,7873 +images-10696.png,7874 +images-10697.png,7875 +images-10698.png,7876 +images-10699.png,7877 +images-10700.png,7878 +images-10701.png,7879 +images-10702.png,7880 +images-10703.png,7881 +images-10704.png,7882 +images-10705.png,7883 +images-10706.png,7884 +images-10707.png,7885 +images-10708.png,7886 +images-10709.png,7887 +images-10710.png,7888 +images-10711.png,7889 +images-10712.png,7890 +images-10713.png,7891 +images-10714.png,7892 +images-10715.png,7893 +images-10716.png,7894 +images-10717.png,7895 +images-10718.png,7896 +images-10719.png,7897 +images-10720.png,7898 +images-10721.png,7899 +images-10722.png,7900 +images-10723.png,7901 +images-10724.png,7902 +images-10725.png,7903 +images-10726.png,7904 +images-10727.png,7905 +images-10728.png,7906 +images-10729.png,7907 +images-10730.png,7908 +images-10731.png,7909 +images-10732.png,7910 +images-10733.png,7911 +images-10734.png,7912 +images-10735.png,7913 +images-10736.png,7914 +images-10737.png,7915 +images-10738.png,7916 +images-10739.png,7917 +images-10740.png,7918 +images-10741.png,7919 +images-10742.png,7920 +images-10743.png,7921 +images-10744.png,7922 +images-10745.png,7923 +images-10746.png,7924 +images-10747.png,7925 +images-10748.png,7926 +images-10749.png,7927 +images-10750.png,7928 +images-10751.png,7929 +images-10752.png,7930 +images-10753.png,7931 +images-10754.png,7932 +images-10755.png,7933 +images-10756.png,7934 +images-10757.png,7935 +images-10758.png,7936 +images-10759.png,7937 +images-10760.png,7938 +images-10761.png,7939 +images-10762.png,7940 +images-10763.png,7941 +images-10764.png,7942 +images-10765.png,7943 +images-10766.png,7944 +images-10767.png,7945 +images-10768.png,7946 +images-10769.png,7947 +images-10770.png,7948 +images-10771.png,7949 +images-10772.png,7950 +images-10773.png,7951 +images-10774.png,7952 +images-10775.png,7953 +images-10776.png,7954 +images-10777.png,7955 +images-10778.png,7956 +images-10779.png,7957 +images-10780.png,7958 +images-10781.png,7959 +images-10782.png,7960 +images-10783.png,7961 +images-10784.png,7962 +images-10785.png,7963 +images-10786.png,7964 +images-10787.png,7965 +images-10788.png,7966 +images-10789.png,7967 +images-10790.png,7968 +images-10791.png,7969 +images-10792.png,7970 +images-10793.png,7971 +images-10794.png,7972 +images-10795.png,7973 +images-10796.png,7974 +images-10797.png,7975 +images-10798.png,7976 +images-10799.png,7977 +images-10800.png,7978 +images-10801.png,7979 +images-10802.png,7980 +images-10803.png,7981 +images-10804.png,7982 +images-10805.png,7983 +images-10806.png,7984 +images-10807.png,7985 +images-10808.png,7986 +images-10809.png,7987 +images-10810.png,7988 +images-10811.png,7989 +images-10812.png,7990 +images-10813.png,7991 +images-10814.png,7992 +images-10815.png,7993 +images-10816.png,7994 +images-10817.png,7995 +images-10818.png,7996 +images-10819.png,7997 +images-10820.png,7998 +images-10821.png,7999 +images-10822.png,8000 +images-10823.png,8001 +images-10824.png,8002 +images-10825.png,8003 +images-10826.png,8004 +images-10827.png,8005 +images-10828.png,8006 +images-10829.png,8007 +images-10830.png,8008 +images-10831.png,8009 +images-10832.png,8010 +images-10833.png,8011 +images-10834.png,8012 +images-10835.png,8013 +images-10836.png,8014 +images-10837.png,8015 +images-10838.png,8016 +images-10839.png,8017 +images-10840.png,8018 +images-10841.png,8019 +images-10842.png,8020 +images-10843.png,8021 +images-10844.png,8022 +images-10845.png,8023 +images-10846.png,8024 +images-10847.png,8025 +images-10848.png,8026 +images-10849.png,8027 +images-10850.png,8028 +images-10851.png,8029 +images-10852.png,8030 +images-10853.png,8031 +images-10854.png,8032 +images-10855.png,8033 +images-10856.png,8034 +images-10857.png,8035 +images-10858.png,8036 +images-10859.png,8037 +images-10860.png,8038 +images-10861.png,8039 +images-10862.png,8040 +images-10863.png,8041 +images-10864.png,8042 +images-10865.png,8043 +images-10866.png,8044 +images-10867.png,8045 +images-10868.png,8046 +images-10869.png,8047 +images-10870.png,8048 +images-10871.png,8049 +images-10872.png,8050 +images-10873.png,8051 +images-10874.png,8052 +images-10875.png,8053 +images-10876.png,8054 +images-10877.png,8055 +images-10878.png,8056 +images-10879.png,8057 +images-10880.png,8058 +images-10881.png,8059 +images-10882.png,8060 +images-10883.png,8061 +images-10884.png,8062 +images-10885.png,8063 +images-10886.png,8064 +images-10887.png,8065 +images-10888.png,8066 +images-10889.png,8067 +images-10890.png,8068 +images-10891.png,8069 +images-10892.png,8070 +images-10893.png,8071 +images-10894.png,8072 +images-10895.png,8073 +images-10896.png,8074 +images-10897.png,8075 +images-10898.png,8076 +images-10899.png,8077 +images-10900.png,8078 +images-10901.png,8079 +images-10902.png,8080 +images-10903.png,8081 +images-10904.png,8082 +images-10905.png,8083 +images-10906.png,8084 +images-10907.png,8085 +images-10908.png,8086 +images-10909.png,8087 +images-10910.png,8088 +images-10911.png,8089 +images-10912.png,8090 +images-10913.png,8091 +images-10914.png,8092 +images-10915.png,8093 +images-10916.png,8094 +images-10917.png,8095 +images-10918.png,8096 +images-10919.png,8097 +images-10920.png,8098 +images-10921.png,8099 +images-10922.png,8100 +images-10923.png,8101 +images-10924.png,8102 +images-10925.png,8103 +images-10926.png,8104 +images-10927.png,8105 +images-10928.png,8106 +images-10929.png,8107 +images-10930.png,8108 +images-10931.png,8109 +images-10932.png,8110 +images-10933.png,8111 +images-10934.png,8112 +images-10935.png,8113 +images-10936.png,8114 +images-10937.png,8115 +images-10938.png,8116 +images-10939.png,8117 +images-10940.png,8118 +images-10941.png,8119 +images-10942.png,8120 +images-10943.png,8121 +images-10947.png,8122 +images-10948.png,8123 +images-10949.png,8124 +images-10950.png,8125 +images-10951.png,8126 +images-10952.png,8127 +images-10953.png,8128 +images-10954.png,8129 +images-10955.png,8130 +images-10956.png,8131 +images-10957.png,8132 +images-10958.png,8133 +images-10959.png,8134 +images-10960.png,8135 +images-10961.png,8136 +images-10962.png,8137 +images-10963.png,8138 +images-10964.png,8139 +images-10965.png,8140 +images-10966.png,8141 +images-10967.png,8142 +images-10968.png,8143 +images-10969.png,8144 +images-10970.png,8145 +images-10971.png,8146 +images-10972.png,8147 +images-10973.png,8148 +images-10974.png,8149 +images-10975.png,8150 +images-10976.png,8151 +images-10977.png,8152 +images-10978.png,8153 +images-10979.png,8154 +images-10980.png,8155 +images-10981.png,8156 +images-10982.png,8157 +images-10983.png,8158 +images-10984.png,8159 +images-10991.png,8160 +images-10992.png,8161 +images-10993.png,8162 +images-10994.png,8163 +images-10995.png,8164 +images-10996.png,8165 +images-11003.png,8166 +images-11004.png,8167 +images-11005.png,8168 +images-11006.png,8169 +images-11007.png,8170 +images-11019.png,8171 +images-11020.png,8172 +images-11021.png,8173 +images-11028.png,8174 +images-11029.png,8175 +images-11032.png,8176 +images-11033.png,8177 +images-11034.png,8178 +images-11035.png,8179 +images-11036.png,8180 +images-11048.png,8181 +images-11049.png,8182 +images-11050.png,8183 +images-11051.png,8184 +images-11052.png,8185 +images-11053.png,8186 +images-11054.png,8187 +images-11055.png,8188 +images-11056.png,8189 +images-11065.png,8190 +images-11066.png,8191 +images-11067.png,8192 +images-11068.png,8193 +images-11069.png,8194 +images-11070.png,8195 +images-11071.png,8196 +images-11072.png,8197 +images-11073.png,8198 +images-11074.png,8199 +images-11075.png,8200 +images-11076.png,8201 +images-11077.png,8202 +images-11078.png,8203 +images-11079.png,8204 +images-11080.png,8205 +images-11081.png,8206 +images-11082.png,8207 +images-11083.png,8208 +images-11084.png,8209 +images-11085.png,8210 +images-11086.png,8211 +images-11087.png,8212 +images-11088.png,8213 +images-11089.png,8214 +images-11090.png,8215 +images-11091.png,8216 +images-11092.png,8217 +images-11093.png,8218 +images-11094.png,8219 +images-11095.png,8220 +images-11096.png,8221 +images-11097.png,8222 +images-11098.png,8223 +images-11099.png,8224 +images-11100.png,8225 +images-11107.png,8226 +images-11108.png,8227 +images-11109.png,8228 +images-11110.png,8229 +images-11111.png,8230 +images-11112.png,8231 +images-11113.png,8232 +images-11114.png,8233 +images-11115.png,8234 +images-11116.png,8235 +images-11117.png,8236 +images-11118.png,8237 +images-11119.png,8238 +images-11120.png,8239 +images-11121.png,8240 +images-11122.png,8241 +images-11123.png,8242 +images-11124.png,8243 +images-11125.png,8244 +images-11126.png,8245 +images-11127.png,8246 +images-11128.png,8247 +images-11146.png,8248 +images-11147.png,8249 +images-11148.png,8250 +images-11149.png,8251 +images-11150.png,8252 +images-11151.png,8253 +images-11152.png,8254 +images-11153.png,8255 +images-11154.png,8256 +images-11155.png,8257 +images-11156.png,8258 +images-11157.png,8259 +images-11158.png,8260 +images-11159.png,8261 +images-11160.png,8262 +images-11161.png,8263 +images-11162.png,8264 +images-11163.png,8265 +images-11164.png,8266 +images-11165.png,8267 +images-11166.png,8268 +images-11167.png,8269 +images-11168.png,8270 +images-11169.png,8271 +images-11170.png,8272 +images-11171.png,8273 +images-11172.png,8274 +images-11173.png,8275 +images-11174.png,8276 +images-11175.png,8277 +images-11176.png,8278 +images-11177.png,8279 +images-11178.png,8280 +images-11179.png,8281 +images-11180.png,8282 +images-11181.png,8283 +images-11182.png,8284 +images-11183.png,8285 +images-11184.png,8286 +images-11185.png,8287 +images-11186.png,8288 +images-11187.png,8289 +images-11188.png,8290 +images-11189.png,8291 +images-11190.png,8292 +images-11191.png,8293 +images-11192.png,8294 +images-11193.png,8295 +images-11194.png,8296 +images-11195.png,8297 +images-11196.png,8298 +images-11197.png,8299 +images-11198.png,8300 +images-11199.png,8301 +images-11200.png,8302 +images-11201.png,8303 +images-11202.png,8304 +images-11203.png,8305 +images-11204.png,8306 +images-11205.png,8307 +images-11206.png,8308 +images-11207.png,8309 +images-11208.png,8310 +images-11209.png,8311 +images-11210.png,8312 +images-11211.png,8313 +images-11212.png,8314 +images-11213.png,8315 +images-11214.png,8316 +images-11215.png,8317 +images-11216.png,8318 +images-11217.png,8319 +images-11218.png,8320 +images-11219.png,8321 +images-11220.png,8322 +images-11221.png,8323 +images-11222.png,8324 +images-11223.png,8325 +images-11224.png,8326 +images-11228.png,8327 +images-11229.png,8328 +images-11230.png,8329 +images-11231.png,8330 +images-11232.png,8331 +images-11233.png,8332 +images-11234.png,8333 +images-11235.png,8334 +images-11236.png,8335 +images-11237.png,8336 +images-11238.png,8337 +images-11239.png,8338 +images-11240.png,8339 +images-11241.png,8340 +images-11242.png,8341 +images-11243.png,8342 +images-11244.png,8343 +images-11245.png,8344 +images-11246.png,8345 +images-11247.png,8346 +images-11248.png,8347 +images-11249.png,8348 +images-11250.png,8349 +images-11251.png,8350 +images-11252.png,8351 +images-11253.png,8352 +images-11254.png,8353 +images-11255.png,8354 +images-11256.png,8355 +images-11257.png,8356 +images-11258.png,8357 +images-11259.png,8358 +images-11260.png,8359 +images-11261.png,8360 +images-11262.png,8361 +images-11263.png,8362 +images-11264.png,8363 +images-11265.png,8364 +images-11266.png,8365 +images-11267.png,8366 +images-11268.png,8367 +images-11269.png,8368 +images-11270.png,8369 +images-11271.png,8370 +images-11272.png,8371 +images-11273.png,8372 +images-11274.png,8373 +images-11275.png,8374 +images-11276.png,8375 +images-11277.png,8376 +images-11278.png,8377 +images-11279.png,8378 +images-11286.png,8379 +images-11287.png,8380 +images-11288.png,8381 +images-11289.png,8382 +images-11290.png,8383 +images-11291.png,8384 +images-11292.png,8385 +images-11293.png,8386 +images-11294.png,8387 +images-11295.png,8388 +images-11296.png,8389 +images-11297.png,8390 +images-11298.png,8391 +images-11299.png,8392 +images-11300.png,8393 +images-11301.png,8394 +images-11302.png,8395 +images-11303.png,8396 +images-11304.png,8397 +images-11305.png,8398 +images-11306.png,8399 +images-11307.png,8400 +images-11308.png,8401 +images-11309.png,8402 +images-11310.png,8403 +images-11311.png,8404 +images-11312.png,8405 +images-11313.png,8406 +images-11314.png,8407 +images-11315.png,8408 +images-11316.png,8409 +images-11317.png,8410 +images-11318.png,8411 +images-11319.png,8412 +images-11320.png,8413 +images-11321.png,8414 +images-11322.png,8415 +images-11323.png,8416 +images-11324.png,8417 +images-11325.png,8418 +images-11326.png,8419 +images-11327.png,8420 +images-11328.png,8421 +images-11329.png,8422 +images-11330.png,8423 +images-11331.png,8424 +images-11332.png,8425 +images-11333.png,8426 +images-11334.png,8427 +images-11335.png,8428 +images-11336.png,8429 +images-11337.png,8430 +images-11338.png,8431 +images-11339.png,8432 +images-11340.png,8433 +images-11341.png,8434 +images-11342.png,8435 +images-11343.png,8436 +images-11344.png,8437 +images-11345.png,8438 +images-11346.png,8439 +images-11347.png,8440 +images-11348.png,8441 +images-11349.png,8442 +images-11350.png,8443 +images-11351.png,8444 +images-11352.png,8445 +images-11353.png,8446 +images-11354.png,8447 +images-11355.png,8448 +images-11356.png,8449 +images-11357.png,8450 +images-11358.png,8451 +images-11359.png,8452 +images-11360.png,8453 +images-11361.png,8454 +images-11362.png,8455 +images-11363.png,8456 +images-11364.png,8457 +images-11365.png,8458 +images-11366.png,8459 +images-11367.png,8460 +images-11368.png,8461 +images-11369.png,8462 +images-11370.png,8463 +images-11371.png,8464 +images-11372.png,8465 +images-11373.png,8466 +images-11374.png,8467 +images-11375.png,8468 +images-11376.png,8469 +images-11377.png,8470 +images-11378.png,8471 +images-11379.png,8472 +images-11380.png,8473 +images-11381.png,8474 +images-11382.png,8475 +images-11383.png,8476 +images-11384.png,8477 +images-11385.png,8478 +images-11386.png,8479 +images-11387.png,8480 +images-11388.png,8481 +images-11389.png,8482 +images-11390.png,8483 +images-11391.png,8484 +images-11392.png,8485 +images-11393.png,8486 +images-11394.png,8487 +images-11395.png,8488 +images-11396.png,8489 +images-11397.png,8490 +images-11398.png,8491 +images-11399.png,8492 +images-11400.png,8493 +images-11401.png,8494 +images-11402.png,8495 +images-11403.png,8496 +images-11404.png,8497 +images-11405.png,8498 +images-11406.png,8499 +images-11407.png,8500 +images-11408.png,8501 +images-11409.png,8502 +images-11410.png,8503 +images-11411.png,8504 +images-11412.png,8505 +images-11413.png,8506 +images-11414.png,8507 +images-11415.png,8508 +images-11416.png,8509 +images-11417.png,8510 +images-11418.png,8511 +images-11419.png,8512 +images-11420.png,8513 +images-11421.png,8514 +images-11422.png,8515 +images-11423.png,8516 +images-11424.png,8517 +images-11425.png,8518 +images-11426.png,8519 +images-11427.png,8520 +images-11428.png,8521 +images-11429.png,8522 +images-11430.png,8523 +images-11431.png,8524 +images-11432.png,8525 +images-11433.png,8526 +images-11434.png,8527 +images-11435.png,8528 +images-11436.png,8529 +images-11437.png,8530 +images-11438.png,8531 +images-11439.png,8532 +images-11440.png,8533 +images-11441.png,8534 +images-11442.png,8535 +images-11443.png,8536 +images-11444.png,8537 +images-11445.png,8538 +images-11446.png,8539 +images-11447.png,8540 +images-11448.png,8541 +images-11449.png,8542 +images-11450.png,8543 +images-11451.png,8544 +images-11452.png,8545 +images-11453.png,8546 +images-11454.png,8547 +images-11455.png,8548 +images-11456.png,8549 +images-11457.png,8550 +images-11458.png,8551 +images-11459.png,8552 +images-11460.png,8553 +images-11461.png,8554 +images-11462.png,8555 +images-11463.png,8556 +images-11464.png,8557 +images-11465.png,8558 +images-11466.png,8559 +images-11467.png,8560 +images-11468.png,8561 +images-11469.png,8562 +images-11470.png,8563 +images-11471.png,8564 +images-11472.png,8565 +images-11473.png,8566 +images-11474.png,8567 +images-11475.png,8568 +images-11476.png,8569 +images-11477.png,8570 +images-11478.png,8571 +images-11479.png,8572 +images-11480.png,8573 +images-11481.png,8574 +images-11482.png,8575 +images-11483.png,8576 +images-11484.png,8577 +images-11485.png,8578 +images-11486.png,8579 +images-11487.png,8580 +images-11488.png,8581 +images-11489.png,8582 +images-11490.png,8583 +images-11491.png,8584 +images-11492.png,8585 +images-11493.png,8586 +images-11494.png,8587 +images-11495.png,8588 +images-11496.png,8589 +images-11497.png,8590 +images-11498.png,8591 +images-11499.png,8592 +images-11500.png,8593 +images-11501.png,8594 +images-11502.png,8595 +images-11503.png,8596 +images-11504.png,8597 +images-11505.png,8598 +images-11506.png,8599 +images-11507.png,8600 +images-11508.png,8601 +images-11509.png,8602 +images-11510.png,8603 +images-11511.png,8604 +images-11512.png,8605 +images-11513.png,8606 +images-11514.png,8607 +images-11515.png,8608 +images-11516.png,8609 +images-11517.png,8610 +images-11518.png,8611 +images-11519.png,8612 +images-11520.png,8613 +images-11521.png,8614 +images-11522.png,8615 +images-11523.png,8616 +images-11524.png,8617 +images-11525.png,8618 +images-11526.png,8619 +images-11527.png,8620 +images-11528.png,8621 +images-11529.png,8622 +images-11530.png,8623 +images-11531.png,8624 +images-11532.png,8625 +images-11533.png,8626 +images-11534.png,8627 +images-11535.png,8628 +images-11536.png,8629 +images-11537.png,8630 +images-11538.png,8631 +images-11539.png,8632 +images-11540.png,8633 +images-11541.png,8634 +images-11542.png,8635 +images-11543.png,8636 +images-11544.png,8637 +images-11545.png,8638 +images-11546.png,8639 +images-11547.png,8640 +images-11548.png,8641 +images-11549.png,8642 +images-11550.png,8643 +images-11551.png,8644 +images-11552.png,8645 +images-11553.png,8646 +images-11554.png,8647 +images-11555.png,8648 +images-11556.png,8649 +images-11557.png,8650 +images-11558.png,8651 +images-11559.png,8652 +images-11560.png,8653 +images-11561.png,8654 +images-11562.png,8655 +images-11563.png,8656 +images-11564.png,8657 +images-11565.png,8658 +images-11566.png,8659 +images-11567.png,8660 +images-11568.png,8661 +images-11569.png,8662 +images-11570.png,8663 +images-11571.png,8664 +images-11572.png,8665 +images-11573.png,8666 +images-11574.png,8667 +images-11575.png,8668 +images-11576.png,8669 +images-11577.png,8670 +images-11578.png,8671 +images-11579.png,8672 +images-11580.png,8673 +images-11581.png,8674 +images-11582.png,8675 +images-11583.png,8676 +images-11584.png,8677 +images-11585.png,8678 +images-11586.png,8679 +images-11587.png,8680 +images-11588.png,8681 +images-11589.png,8682 +images-11590.png,8683 +images-11591.png,8684 +images-11592.png,8685 +images-11593.png,8686 +images-11594.png,8687 +images-11595.png,8688 +images-11596.png,8689 +images-11597.png,8690 +images-11598.png,8691 +images-11599.png,8692 +images-11600.png,8693 +images-11601.png,8694 +images-11602.png,8695 +images-11603.png,8696 +images-11604.png,8697 +images-11605.png,8698 +images-11606.png,8699 +images-11607.png,8700 +images-11608.png,8701 +images-11609.png,8702 +images-11610.png,8703 +images-11611.png,8704 +images-11612.png,8705 +images-11613.png,8706 +images-11614.png,8707 +images-11615.png,8708 +images-11616.png,8709 +images-11617.png,8710 +images-11618.png,8711 +images-11619.png,8712 +images-11620.png,8713 +images-11621.png,8714 +images-11622.png,8715 +images-11623.png,8716 +images-11624.png,8717 +images-11625.png,8718 +images-11626.png,8719 +images-11627.png,8720 +images-11628.png,8721 +images-11629.png,8722 +images-11630.png,8723 +images-11631.png,8724 +images-11632.png,8725 +images-11633.png,8726 +images-11634.png,8727 +images-11635.png,8728 +images-11636.png,8729 +images-11637.png,8730 +images-11638.png,8731 +images-11639.png,8732 +images-11640.png,8733 +images-11641.png,8734 +images-11642.png,8735 +images-11643.png,8736 +images-11644.png,8737 +images-11645.png,8738 +images-11646.png,8739 +images-11647.png,8740 +images-11648.png,8741 +images-11649.png,8742 +images-11650.png,8743 +images-11651.png,8744 +images-11652.png,8745 +images-11653.png,8746 +images-11899.png,8747 +images-11900.png,8748 +images-11901.png,8749 +images-11902.png,8750 +images-11903.png,8751 +images-11904.png,8752 +images-11905.png,8753 +images-11906.png,8754 +images-11907.png,8755 +images-11908.png,8756 +images-11909.png,8757 +images-11910.png,8758 +images-11911.png,8759 +images-11912.png,8760 +images-11913.png,8761 +images-11914.png,8762 +images-12036.png,8763 +images-12037.png,8764 +images-12038.png,8765 +images-12039.png,8766 +images-12040.png,8767 +images-12041.png,8768 +images-12042.png,8769 +images-12043.png,8770 +images-12044.png,8771 +images-12045.png,8772 +images-12046.png,8773 +images-12047.png,8774 +images-12048.png,8775 +images-12049.png,8776 +images-12050.png,8777 +images-12051.png,8778 +images-12052.png,8779 +images-12053.png,8780 +images-12054.png,8781 +images-12055.png,8782 +images-12056.png,8783 +images-12062.png,8784 +images-12063.png,8785 +images-12064.png,8786 +images-12065.png,8787 +images-12066.png,8788 +images-12067.png,8789 +images-12068.png,8790 +images-12069.png,8791 +images-12070.png,8792 +images-12071.png,8793 +images-12072.png,8794 +images-12073.png,8795 +images-12082.png,8796 +images-12083.png,8797 +images-12084.png,8798 +images-12085.png,8799 +images-12086.png,8800 +images-12087.png,8801 +images-12088.png,8802 +images-12089.png,8803 +images-12090.png,8804 +images-12091.png,8805 +images-12092.png,8806 +images-12093.png,8807 +images-12094.png,8808 +images-12095.png,8809 +images-12096.png,8810 +images-12097.png,8811 +images-12098.png,8812 +images-12099.png,8813 +images-12100.png,8814 +images-12101.png,8815 +images-12102.png,8816 +images-12103.png,8817 +images-12104.png,8818 +images-12105.png,8819 +images-12106.png,8820 +images-12107.png,8821 +images-12108.png,8822 +images-12109.png,8823 +images-12110.png,8824 +images-12111.png,8825 +images-12112.png,8826 +images-12113.png,8827 +images-12114.png,8828 +images-12115.png,8829 +images-12116.png,8830 +images-12117.png,8831 +images-12118.png,8832 +images-12119.png,8833 +images-12120.png,8834 +images-12121.png,8835 +images-12122.png,8836 +images-12123.png,8837 +images-12124.png,8838 +images-12125.png,8839 +images-12126.png,8840 +images-12127.png,8841 +images-12128.png,8842 +images-12129.png,8843 +images-12130.png,8844 +images-12131.png,8845 +images-12132.png,8846 +images-12133.png,8847 +images-12134.png,8848 +images-12135.png,8849 +images-12136.png,8850 +images-12137.png,8851 +images-12138.png,8852 +images-12139.png,8853 +images-12140.png,8854 +images-12141.png,8855 +images-12142.png,8856 +images-12143.png,8857 +images-12144.png,8858 +images-12145.png,8859 +images-12146.png,8860 +images-12147.png,8861 +images-12148.png,8862 +images-12149.png,8863 +images-12150.png,8864 +images-12151.png,8865 +images-12152.png,8866 +images-12153.png,8867 +images-12154.png,8868 +images-12155.png,8869 +images-12156.png,8870 +images-12157.png,8871 +images-12158.png,8872 +images-12159.png,8873 +images-12160.png,8874 +images-12161.png,8875 +images-12162.png,8876 +images-12163.png,8877 +images-12164.png,8878 +images-12168.png,8879 +images-12169.png,8880 +images-12170.png,8881 +images-12171.png,8882 +images-12172.png,8883 +images-12173.png,8884 +images-12174.png,8885 +images-12175.png,8886 +images-12176.png,8887 +images-12177.png,8888 +images-12178.png,8889 +images-12179.png,8890 +images-12180.png,8891 +images-12181.png,8892 +images-12182.png,8893 +images-12183.png,8894 +images-12184.png,8895 +images-12185.png,8896 +images-12186.png,8897 +images-12187.png,8898 +images-12188.png,8899 +images-12189.png,8900 +images-12190.png,8901 +images-12191.png,8902 +images-12192.png,8903 +images-12193.png,8904 +images-12194.png,8905 +images-12195.png,8906 +images-12196.png,8907 +images-12197.png,8908 +images-12198.png,8909 +images-12199.png,8910 +images-12200.png,8911 +images-12201.png,8912 +images-12202.png,8913 +images-12203.png,8914 +images-12208.png,8915 +images-12209.png,8916 +images-12210.png,8917 +images-12211.png,8918 +images-12212.png,8919 +images-12213.png,8920 +images-12214.png,8921 +images-12215.png,8922 +images-12216.png,8923 +images-12217.png,8924 +images-12218.png,8925 +images-12219.png,8926 +images-12220.png,8927 +images-12221.png,8928 +images-12222.png,8929 +images-12223.png,8930 +images-12224.png,8931 +images-12225.png,8932 +images-12226.png,8933 +images-12227.png,8934 +images-12228.png,8935 +images-12229.png,8936 +images-12230.png,8937 +images-12231.png,8938 +images-12232.png,8939 +images-12233.png,8940 +images-12234.png,8941 +images-12235.png,8942 +images-12236.png,8943 +images-12237.png,8944 +images-12238.png,8945 +images-12239.png,8946 +images-12240.png,8947 +images-12241.png,8948 +images-12242.png,8949 +images-12243.png,8950 +images-12244.png,8951 +images-12245.png,8952 +images-12246.png,8953 +images-12247.png,8954 +images-12248.png,8955 +images-12249.png,8956 +images-12250.png,8957 +images-12251.png,8958 +images-12252.png,8959 +images-12253.png,8960 +images-12254.png,8961 +images-12255.png,8962 +images-12256.png,8963 +images-12257.png,8964 +images-12258.png,8965 +images-12259.png,8966 +images-12260.png,8967 +images-12261.png,8968 +images-12262.png,8969 +images-12263.png,8970 +images-12264.png,8971 +images-12265.png,8972 +images-12266.png,8973 +images-12267.png,8974 +images-12268.png,8975 +images-12269.png,8976 +images-12270.png,8977 +images-12271.png,8978 +images-12272.png,8979 +images-12273.png,8980 +images-12274.png,8981 +images-12275.png,8982 +images-12276.png,8983 +images-12277.png,8984 +images-12278.png,8985 +images-12279.png,8986 +images-12280.png,8987 +images-12281.png,8988 +images-12282.png,8989 +images-12283.png,8990 +images-12284.png,8991 +images-12285.png,8992 +images-12286.png,8993 +images-12287.png,8994 +images-12288.png,8995 +images-12289.png,8996 +images-12290.png,8997 +images-12291.png,8998 +images-12292.png,8999 +images-12293.png,9000 +images-12294.png,9001 +images-12295.png,9002 +images-12296.png,9003 +images-12297.png,9004 +images-12298.png,9005 +images-12299.png,9006 +images-12300.png,9007 +images-12301.png,9008 +images-12302.png,9009 +images-12303.png,9010 +images-12304.png,9011 +images-12305.png,9012 +images-12306.png,9013 +images-12307.png,9014 +images-12308.png,9015 +images-12309.png,9016 +images-12310.png,9017 +images-12311.png,9018 +images-12312.png,9019 +images-12313.png,9020 +images-12314.png,9021 +images-12315.png,9022 +images-12316.png,9023 +images-12317.png,9024 +images-12318.png,9025 +images-12365.png,9026 +images-12366.png,9027 +images-12367.png,9028 +images-12368.png,9029 +images-12369.png,9030 +images-12370.png,9031 +images-12371.png,9032 +images-12372.png,9033 +images-12373.png,9034 +images-12374.png,9035 +images-12375.png,9036 +images-12376.png,9037 +images-12377.png,9038 +images-12378.png,9039 +images-12379.png,9040 +images-12380.png,9041 +images-12381.png,9042 +images-12382.png,9043 +images-12383.png,9044 +images-12384.png,9045 +images-12385.png,9046 +images-12386.png,9047 +images-12387.png,9048 +images-12388.png,9049 +images-12389.png,9050 +images-12390.png,9051 +images-12391.png,9052 +images-12392.png,9053 +images-12393.png,9054 +images-12394.png,9055 +images-12395.png,9056 +images-12396.png,9057 +images-12397.png,9058 +images-12398.png,9059 +images-12399.png,9060 +images-12400.png,9061 +images-12401.png,9062 +images-12402.png,9063 +images-12403.png,9064 +images-12404.png,9065 +images-12405.png,9066 +images-12406.png,9067 +images-12407.png,9068 +images-12408.png,9069 +images-12417.png,9070 +images-12418.png,9071 +images-12419.png,9072 +images-12420.png,9073 +images-12421.png,9074 +images-12422.png,9075 +images-12423.png,9076 +images-12424.png,9077 +images-12425.png,9078 +images-12426.png,9079 +images-12427.png,9080 +images-12428.png,9081 +images-12429.png,9082 +images-12430.png,9083 +images-12431.png,9084 +images-12432.png,9085 +images-12433.png,9086 +images-12434.png,9087 +images-12435.png,9088 +images-12436.png,9089 +images-12437.png,9090 +images-12438.png,9091 +images-12439.png,9092 +images-12440.png,9093 +images-12441.png,9094 +images-12442.png,9095 +images-12443.png,9096 +images-12444.png,9097 +images-12445.png,9098 +images-12446.png,9099 +images-12447.png,9100 +images-12448.png,9101 +images-12449.png,9102 +images-12450.png,9103 +images-12451.png,9104 +images-12452.png,9105 +images-12453.png,9106 +images-12454.png,9107 +images-12455.png,9108 +images-12456.png,9109 +images-12457.png,9110 +images-12458.png,9111 +images-12459.png,9112 +images-12460.png,9113 +images-12461.png,9114 +images-12462.png,9115 +images-12463.png,9116 +images-12464.png,9117 +images-12465.png,9118 +images-12466.png,9119 +images-12467.png,9120 +images-12468.png,9121 +images-12469.png,9122 +images-12470.png,9123 +images-12471.png,9124 +images-12481.png,9125 +images-12482.png,9126 +images-12483.png,9127 +images-12484.png,9128 +images-12485.png,9129 +images-12486.png,9130 +images-12487.png,9131 +images-12488.png,9132 +images-12489.png,9133 +images-12490.png,9134 +images-12491.png,9135 +images-12492.png,9136 +images-12493.png,9137 +images-12494.png,9138 +images-12495.png,9139 +images-12496.png,9140 +images-12497.png,9141 +images-12498.png,9142 +images-12499.png,9143 +images-12500.png,9144 +images-12501.png,9145 +images-12502.png,9146 +images-12503.png,9147 +images-12504.png,9148 +images-12505.png,9149 +images-12506.png,9150 +images-12507.png,9151 +images-12508.png,9152 +images-12509.png,9153 +images-12510.png,9154 +images-12511.png,9155 +images-12512.png,9156 +images-12513.png,9157 +images-12514.png,9158 +images-12515.png,9159 +images-12516.png,9160 +images-12517.png,9161 +images-12518.png,9162 +images-12519.png,9163 +images-12520.png,9164 +images-12521.png,9165 +images-12522.png,9166 +images-12523.png,9167 +images-12524.png,9168 +images-12525.png,9169 +images-12526.png,9170 +images-12527.png,9171 +images-12528.png,9172 +images-12529.png,9173 +images-12530.png,9174 +images-12531.png,9175 +images-12532.png,9176 +images-12533.png,9177 +images-12534.png,9178 +images-12535.png,9179 +images-12536.png,9180 +images-12537.png,9181 +images-12538.png,9182 +images-12539.png,9183 +images-12540.png,9184 +images-12541.png,9185 +images-12542.png,9186 +images-12543.png,9187 +images-12544.png,9188 +images-12545.png,9189 +images-12546.png,9190 +images-12547.png,9191 +images-12548.png,9192 +images-12549.png,9193 +images-12550.png,9194 +images-12551.png,9195 +images-12552.png,9196 +images-12553.png,9197 +images-12554.png,9198 +images-12555.png,9199 +images-12556.png,9200 +images-12557.png,9201 +images-12558.png,9202 +images-12559.png,9203 +images-12560.png,9204 +images-12561.png,9205 +images-12562.png,9206 +images-12563.png,9207 +images-12564.png,9208 +images-12565.png,9209 +images-12566.png,9210 +images-12567.png,9211 +images-12568.png,9212 +images-12569.png,9213 +images-12570.png,9214 +images-12571.png,9215 +images-12572.png,9216 +images-12573.png,9217 +images-12574.png,9218 +images-12575.png,9219 +images-12576.png,9220 +images-12577.png,9221 +images-12578.png,9222 +images-12579.png,9223 +images-12580.png,9224 +images-12581.png,9225 +images-12582.png,9226 +images-12583.png,9227 +images-12584.png,9228 +images-12585.png,9229 +images-12586.png,9230 +images-12587.png,9231 +images-12588.png,9232 +images-12589.png,9233 +images-12590.png,9234 +images-12591.png,9235 +images-12592.png,9236 +images-12593.png,9237 +images-12594.png,9238 +images-12595.png,9239 +images-12596.png,9240 +images-12597.png,9241 +images-12598.png,9242 +images-12599.png,9243 +images-12600.png,9244 +images-12601.png,9245 +images-12602.png,9246 +images-12603.png,9247 +images-12604.png,9248 +images-12605.png,9249 +images-12606.png,9250 +images-12607.png,9251 +images-12608.png,9252 +images-12609.png,9253 +images-12610.png,9254 +images-12611.png,9255 +images-12612.png,9256 +images-12613.png,9257 +images-12614.png,9258 +images-12615.png,9259 +images-12616.png,9260 +images-12617.png,9261 +images-12618.png,9262 +images-12619.png,9263 +images-12620.png,9264 +images-12621.png,9265 +images-12622.png,9266 +images-12623.png,9267 +images-12624.png,9268 +images-12625.png,9269 +images-12626.png,9270 +images-12627.png,9271 +images-12628.png,9272 +images-12629.png,9273 +images-12630.png,9274 +images-12631.png,9275 +images-12632.png,9276 +images-12633.png,9277 +images-12634.png,9278 +images-12635.png,9279 +images-12636.png,9280 +images-12637.png,9281 +images-12638.png,9282 +images-12639.png,9283 +images-12640.png,9284 +images-12641.png,9285 +images-12642.png,9286 +images-12643.png,9287 +images-12644.png,9288 +images-12645.png,9289 +images-12646.png,9290 +images-12647.png,9291 +images-12648.png,9292 +images-12649.png,9293 +images-12650.png,9294 +images-12651.png,9295 +images-12652.png,9296 +images-12653.png,9297 +images-12654.png,9298 +images-12655.png,9299 +images-12656.png,9300 +images-12657.png,9301 +images-12658.png,9302 +images-12659.png,9303 +images-12660.png,9304 +images-12661.png,9305 +images-12662.png,9306 +images-12663.png,9307 +images-12664.png,9308 +images-12665.png,9309 +images-12666.png,9310 +images-12667.png,9311 +images-12668.png,9312 +images-12669.png,9313 +images-12670.png,9314 +images-12671.png,9315 +images-12672.png,9316 +images-12673.png,9317 +images-12674.png,9318 +images-12675.png,9319 +images-12676.png,9320 +images-12677.png,9321 +images-12678.png,9322 +images-12679.png,9323 +images-12680.png,9324 +images-12681.png,9325 +images-12682.png,9326 +images-12683.png,9327 +images-12684.png,9328 +images-12685.png,9329 +images-12686.png,9330 +images-12687.png,9331 +images-12688.png,9332 +images-12689.png,9333 +images-12690.png,9334 +images-12691.png,9335 +images-12692.png,9336 +images-12693.png,9337 +images-12694.png,9338 +images-12695.png,9339 +images-12696.png,9340 +images-12697.png,9341 +images-12698.png,9342 +images-12699.png,9343 +images-12700.png,9344 +images-12701.png,9345 +images-12702.png,9346 +images-12703.png,9347 +images-12704.png,9348 +images-12705.png,9349 +images-12706.png,9350 +images-12707.png,9351 +images-12708.png,9352 +images-12709.png,9353 +images-12710.png,9354 +images-12711.png,9355 +images-12712.png,9356 +images-12713.png,9357 +images-12714.png,9358 +images-12715.png,9359 +images-12716.png,9360 +images-12717.png,9361 +images-12718.png,9362 +images-12719.png,9363 +images-12720.png,9364 +images-12721.png,9365 +images-12722.png,9366 +images-12723.png,9367 +images-12724.png,9368 +images-12725.png,9369 +images-12726.png,9370 +images-12727.png,9371 +images-12728.png,9372 +images-12729.png,9373 +images-12730.png,9374 +images-12731.png,9375 +images-12732.png,9376 +images-12733.png,9377 +images-12734.png,9378 +images-12735.png,9379 +images-12736.png,9380 +images-12737.png,9381 +images-12738.png,9382 +images-12739.png,9383 +images-12740.png,9384 +images-12741.png,9385 +images-12742.png,9386 +images-12743.png,9387 +images-12744.png,9388 +images-12745.png,9389 +images-12746.png,9390 +images-12747.png,9391 +images-12748.png,9392 +images-12749.png,9393 +images-12750.png,9394 +images-12751.png,9395 +images-12752.png,9396 +images-12753.png,9397 +images-12754.png,9398 +images-12755.png,9399 +images-12756.png,9400 +images-12757.png,9401 +images-12758.png,9402 +images-12759.png,9403 +images-12760.png,9404 +images-12761.png,9405 +images-12762.png,9406 +images-12763.png,9407 +images-12764.png,9408 +images-12765.png,9409 +images-12766.png,9410 +images-12767.png,9411 +images-12768.png,9412 +images-12769.png,9413 +images-12770.png,9414 +images-12771.png,9415 +images-12772.png,9416 +images-12773.png,9417 +images-12774.png,9418 +images-12775.png,9419 +images-12776.png,9420 +images-12777.png,9421 +images-12778.png,9422 +images-12779.png,9423 +images-12780.png,9424 +images-12781.png,9425 +images-12782.png,9426 +images-12783.png,9427 +images-12784.png,9428 +images-12785.png,9429 +images-12786.png,9430 +images-12787.png,9431 +images-12788.png,9432 +images-12789.png,9433 +images-12790.png,9434 +images-12791.png,9435 +images-12792.png,9436 +images-12793.png,9437 +images-12794.png,9438 +images-12795.png,9439 +images-12796.png,9440 +images-12797.png,9441 +images-12798.png,9442 +images-12799.png,9443 +images-12800.png,9444 +images-12801.png,9445 +images-12802.png,9446 +images-12803.png,9447 +images-12804.png,9448 +images-12805.png,9449 +images-12806.png,9450 +images-12807.png,9451 +images-12808.png,9452 +images-12809.png,9453 +images-12810.png,9454 +images-12811.png,9455 +images-12812.png,9456 +images-12813.png,9457 +images-12814.png,9458 +images-12815.png,9459 +images-12816.png,9460 +images-12817.png,9461 +images-12818.png,9462 +images-12819.png,9463 +images-12820.png,9464 +images-12821.png,9465 +images-12822.png,9466 +images-12823.png,9467 +images-12824.png,9468 +images-12825.png,9469 +images-12826.png,9470 +images-12827.png,9471 +images-12828.png,9472 +images-12829.png,9473 +images-12830.png,9474 +images-12831.png,9475 +images-12832.png,9476 +images-12833.png,9477 +images-12834.png,9478 +images-12835.png,9479 +images-12836.png,9480 +images-12837.png,9481 +images-12838.png,9482 +images-12839.png,9483 +images-12840.png,9484 +images-12841.png,9485 +images-12842.png,9486 +images-12843.png,9487 +images-12844.png,9488 +images-12845.png,9489 +images-12846.png,9490 +images-12847.png,9491 +images-12848.png,9492 +images-12849.png,9493 +images-12850.png,9494 +images-12851.png,9495 +images-12852.png,9496 +images-12853.png,9497 +images-12854.png,9498 +images-12855.png,9499 +images-12856.png,9500 +images-12857.png,9501 +images-12858.png,9502 +images-12859.png,9503 +images-12860.png,9504 +images-12861.png,9505 +images-12862.png,9506 +images-12863.png,9507 +images-12864.png,9508 +images-12865.png,9509 +images-12866.png,9510 +images-12867.png,9511 +images-12868.png,9512 +images-12869.png,9513 +images-12870.png,9514 +images-12871.png,9515 +images-12872.png,9516 +images-12873.png,9517 +images-12874.png,9518 +images-12875.png,9519 +images-12876.png,9520 +images-12877.png,9521 +images-12878.png,9522 +images-12879.png,9523 +images-12880.png,9524 +images-12881.png,9525 +images-12882.png,9526 +images-12883.png,9527 +images-12884.png,9528 +images-12885.png,9529 +images-12886.png,9530 +images-12887.png,9531 +images-12888.png,9532 +images-12889.png,9533 +images-12890.png,9534 +images-12891.png,9535 +images-12892.png,9536 +images-12893.png,9537 +images-12894.png,9538 +images-12895.png,9539 +images-12896.png,9540 +images-12897.png,9541 +images-12898.png,9542 +images-12899.png,9543 +images-12900.png,9544 +images-12901.png,9545 +images-12902.png,9546 +images-12903.png,9547 +images-12904.png,9548 +images-12905.png,9549 +images-12906.png,9550 +images-12907.png,9551 +images-12908.png,9552 +images-12909.png,9553 +images-12910.png,9554 +images-12911.png,9555 +images-12912.png,9556 +images-12913.png,9557 +images-12914.png,9558 +images-12915.png,9559 +images-12916.png,9560 +images-12917.png,9561 +images-12918.png,9562 +images-12919.png,9563 +images-12920.png,9564 +images-12921.png,9565 +images-12922.png,9566 +images-12923.png,9567 +images-12924.png,9568 +images-12925.png,9569 +images-12926.png,9570 +images-12927.png,9571 +images-12928.png,9572 +images-12929.png,9573 +images-12930.png,9574 +images-12931.png,9575 +images-12932.png,9576 +images-12933.png,9577 +images-12934.png,9578 +images-12935.png,9579 +images-12936.png,9580 +images-12937.png,9581 +images-12938.png,9582 +images-12939.png,9583 +images-12940.png,9584 +images-12941.png,9585 +images-12942.png,9586 +images-12943.png,9587 +images-12944.png,9588 +images-12945.png,9589 +images-12946.png,9590 +images-12947.png,9591 +images-12948.png,9592 +images-12949.png,9593 +images-12950.png,9594 +images-12951.png,9595 +images-12952.png,9596 +images-12953.png,9597 +images-12954.png,9598 +images-12955.png,9599 +images-12956.png,9600 +images-12957.png,9601 +images-12958.png,9602 +images-12959.png,9603 +images-12960.png,9604 +images-12961.png,9605 +images-12962.png,9606 +images-12963.png,9607 +images-12964.png,9608 +images-12965.png,9609 +images-12966.png,9610 +images-12967.png,9611 +images-12968.png,9612 +images-12969.png,9613 +images-12970.png,9614 +images-12971.png,9615 +images-12972.png,9616 +images-12973.png,9617 +images-12974.png,9618 +images-12975.png,9619 +images-12976.png,9620 +images-12977.png,9621 +images-12978.png,9622 +images-12979.png,9623 +images-12980.png,9624 +images-12981.png,9625 +images-12982.png,9626 +images-12983.png,9627 +images-12984.png,9628 +images-12985.png,9629 +images-12986.png,9630 +images-12987.png,9631 +images-12988.png,9632 +images-12989.png,9633 +images-12990.png,9634 +images-12991.png,9635 +images-12992.png,9636 +images-12993.png,9637 +images-12994.png,9638 +images-12995.png,9639 +images-12996.png,9640 +images-12997.png,9641 +images-12998.png,9642 +images-12999.png,9643 +images-13000.png,9644 +images-13001.png,9645 +images-13002.png,9646 +images-13003.png,9647 +images-13004.png,9648 +images-13005.png,9649 +images-13006.png,9650 +images-13007.png,9651 +images-13008.png,9652 +images-13009.png,9653 +images-13010.png,9654 +images-13011.png,9655 +images-13012.png,9656 +images-13013.png,9657 +images-13014.png,9658 +images-13015.png,9659 +images-13016.png,9660 +images-13017.png,9661 +images-13018.png,9662 +images-13019.png,9663 +images-13020.png,9664 +images-13021.png,9665 +images-13022.png,9666 +images-13023.png,9667 +images-13024.png,9668 +images-13025.png,9669 +images-13026.png,9670 +images-13027.png,9671 +images-13028.png,9672 +images-13029.png,9673 +images-13030.png,9674 +images-13031.png,9675 +images-13032.png,9676 +images-13033.png,9677 +images-13034.png,9678 +images-13035.png,9679 +images-13036.png,9680 +images-13037.png,9681 +images-13038.png,9682 +images-13039.png,9683 +images-13040.png,9684 +images-13041.png,9685 +images-13042.png,9686 +images-13043.png,9687 +images-13044.png,9688 +images-13045.png,9689 +images-13046.png,9690 +images-13047.png,9691 +images-13048.png,9692 +images-13049.png,9693 +images-13050.png,9694 +images-13051.png,9695 +images-13052.png,9696 +images-13053.png,9697 +images-13054.png,9698 +images-13055.png,9699 +images-13056.png,9700 +images-13057.png,9701 +images-13058.png,9702 +images-13059.png,9703 +images-13060.png,9704 +images-13061.png,9705 +images-13062.png,9706 +images-13063.png,9707 +images-13064.png,9708 +images-13065.png,9709 +images-13066.png,9710 +images-13067.png,9711 +images-13068.png,9712 +images-13069.png,9713 +images-13070.png,9714 +images-13071.png,9715 +images-13072.png,9716 +images-13073.png,9717 +images-13074.png,9718 +images-13075.png,9719 +images-13076.png,9720 +images-13077.png,9721 +images-13078.png,9722 +images-13079.png,9723 +images-13080.png,9724 +images-13081.png,9725 +images-13082.png,9726 +images-13083.png,9727 +images-13084.png,9728 +images-13085.png,9729 +images-13086.png,9730 +images-13087.png,9731 +images-13088.png,9732 +images-13089.png,9733 +images-13090.png,9734 +images-13091.png,9735 +images-13092.png,9736 +images-13093.png,9737 +images-13094.png,9738 +images-13095.png,9739 +images-13096.png,9740 +images-13097.png,9741 +images-13098.png,9742 +images-13099.png,9743 +images-13100.png,9744 +images-13101.png,9745 +images-13102.png,9746 +images-13103.png,9747 +images-13104.png,9748 +images-13105.png,9749 +images-13106.png,9750 +images-13107.png,9751 +images-13108.png,9752 +images-13109.png,9753 +images-13110.png,9754 +images-13111.png,9755 +images-13112.png,9756 +images-13113.png,9757 +images-13114.png,9758 +images-13115.png,9759 +images-13116.png,9760 +images-13117.png,9761 +images-13118.png,9762 +images-13119.png,9763 +images-13120.png,9764 +images-13121.png,9765 +images-13122.png,9766 +images-13123.png,9767 +images-13124.png,9768 +images-13125.png,9769 +images-13126.png,9770 +images-13127.png,9771 +images-13128.png,9772 +images-13129.png,9773 +images-13130.png,9774 +images-13131.png,9775 +images-13132.png,9776 +images-13133.png,9777 +images-13134.png,9778 +images-13135.png,9779 +images-13136.png,9780 +images-13137.png,9781 +images-13138.png,9782 +images-13139.png,9783 +images-13140.png,9784 +images-13141.png,9785 +images-13142.png,9786 +images-13143.png,9787 +images-13144.png,9788 +images-13145.png,9789 +images-13146.png,9790 +images-13147.png,9791 +images-13148.png,9792 +images-13149.png,9793 +images-13150.png,9794 +images-13151.png,9795 +images-13152.png,9796 +images-13153.png,9797 +images-13154.png,9798 +images-13155.png,9799 +images-13156.png,9800 +images-13157.png,9801 +images-13158.png,9802 +images-13159.png,9803 +images-13160.png,9804 +images-13161.png,9805 +images-13162.png,9806 +images-13163.png,9807 +images-13164.png,9808 +images-13165.png,9809 +images-13166.png,9810 +images-13167.png,9811 +images-13168.png,9812 +images-13169.png,9813 +images-13170.png,9814 +images-13171.png,9815 +images-13172.png,9816 +images-13173.png,9817 +images-13174.png,9818 +images-13175.png,9819 +images-13176.png,9820 +images-13177.png,9821 +images-13178.png,9822 +images-13179.png,9823 +images-13180.png,9824 +images-13181.png,9825 +images-13182.png,9826 +images-13183.png,9827 +images-13184.png,9828 +images-13185.png,9829 +images-13186.png,9830 +images-13187.png,9831 +images-13188.png,9832 +images-13189.png,9833 +images-13190.png,9834 +images-13191.png,9835 +images-13192.png,9836 +images-13193.png,9837 +images-13194.png,9838 +images-13195.png,9839 +images-13196.png,9840 +images-13197.png,9841 +images-13198.png,9842 +images-13199.png,9843 +images-13200.png,9844 +images-13201.png,9845 +images-13202.png,9846 +images-13203.png,9847 +images-13204.png,9848 +images-13205.png,9849 +images-13206.png,9850 +images-13207.png,9851 +images-13208.png,9852 +images-13209.png,9853 +images-13210.png,9854 +images-13211.png,9855 +images-13212.png,9856 +images-13213.png,9857 +images-13214.png,9858 +images-13215.png,9859 +images-13216.png,9860 +images-13217.png,9861 +images-13218.png,9862 +images-13219.png,9863 +images-13220.png,9864 +images-13221.png,9865 +images-13222.png,9866 +images-13223.png,9867 +images-13224.png,9868 +images-13225.png,9869 +images-13226.png,9870 +images-13227.png,9871 +images-13228.png,9872 +images-13229.png,9873 +images-13230.png,9874 +images-13231.png,9875 +images-13232.png,9876 +images-13233.png,9877 +images-13234.png,9878 +images-13235.png,9879 +images-13236.png,9880 +images-13237.png,9881 +images-13238.png,9882 +images-13239.png,9883 +images-13240.png,9884 +images-13241.png,9885 +images-13242.png,9886 +images-13243.png,9887 +images-13244.png,9888 +images-13245.png,9889 +images-13246.png,9890 +images-13247.png,9891 +images-13248.png,9892 +images-13249.png,9893 +images-13250.png,9894 +images-13251.png,9895 +images-13252.png,9896 +images-13253.png,9897 +images-13254.png,9898 +images-13255.png,9899 +images-13256.png,9900 +images-13257.png,9901 +images-13258.png,9902 +images-13259.png,9903 +images-13260.png,9904 +images-13261.png,9905 +images-13262.png,9906 +images-13263.png,9907 +images-13264.png,9908 +images-13265.png,9909 +images-13266.png,9910 +images-13267.png,9911 +images-13268.png,9912 +images-13269.png,9913 +images-13270.png,9914 +images-13271.png,9915 +images-13272.png,9916 +images-13273.png,9917 +images-13274.png,9918 +images-13275.png,9919 +images-13276.png,9920 +images-13277.png,9921 +images-13278.png,9922 +images-13279.png,9923 +images-13280.png,9924 +images-13281.png,9925 +images-13282.png,9926 +images-13283.png,9927 +images-13284.png,9928 +images-13285.png,9929 +images-13286.png,9930 +images-13287.png,9931 +images-13288.png,9932 +images-13289.png,9933 +images-13290.png,9934 +images-13291.png,9935 +images-13292.png,9936 +images-13293.png,9937 +images-13294.png,9938 +images-13295.png,9939 +images-13296.png,9940 +images-13297.png,9941 +images-13298.png,9942 +images-13299.png,9943 +images-13300.png,9944 +images-13301.png,9945 +images-13302.png,9946 +images-13303.png,9947 +images-13304.png,9948 +images-13305.png,9949 +images-13306.png,9950 +images-13307.png,9951 +images-13308.png,9952 +images-13309.png,9953 +images-13310.png,9954 +images-13311.png,9955 +images-13312.png,9956 +images-13313.png,9957 +images-13314.png,9958 +images-13315.png,9959 +images-13316.png,9960 +images-13317.png,9961 +images-13318.png,9962 +images-13319.png,9963 +images-13320.png,9964 +images-13321.png,9965 +images-13322.png,9966 +images-13323.png,9967 +images-13324.png,9968 +images-13325.png,9969 +images-13326.png,9970 +images-13327.png,9971 +images-13328.png,9972 +images-13329.png,9973 +images-13330.png,9974 +images-13331.png,9975 +images-13332.png,9976 +images-13333.png,9977 +images-13334.png,9978 +images-13335.png,9979 +images-13336.png,9980 +images-13337.png,9981 +images-13338.png,9982 +images-13339.png,9983 +images-13340.png,9984 +images-13341.png,9985 +images-13342.png,9986 +images-13343.png,9987 +images-13344.png,9988 +images-13441.png,9989 +images-13442.png,9990 +images-13443.png,9991 +images-13444.png,9992 +images-13445.png,9993 +images-13446.png,9994 +images-13447.png,9995 +images-13448.png,9996 +images-13449.png,9997 +images-13450.png,9998 +images-13451.png,9999 +images-13452.png,10000 +images-13453.png,10001 +images-13454.png,10002 +images-13455.png,10003 +images-13456.png,10004 +images-13457.png,10005 +images-13458.png,10006 +images-13459.png,10007 +images-13460.png,10008 +images-13461.png,10009 +images-13462.png,10010 +images-13463.png,10011 +images-13464.png,10012 +images-13465.png,10013 +images-13466.png,10014 +images-13467.png,10015 +images-13468.png,10016 +images-13469.png,10017 +images-13470.png,10018 +images-13471.png,10019 +images-13472.png,10020 +images-13473.png,10021 +images-13474.png,10022 +images-13475.png,10023 +images-13476.png,10024 +images-13477.png,10025 +images-13478.png,10026 +images-13479.png,10027 +images-13480.png,10028 +images-13481.png,10029 +images-13482.png,10030 +images-13483.png,10031 +images-13484.png,10032 +images-13485.png,10033 +images-13486.png,10034 +images-13487.png,10035 +images-13488.png,10036 +images-13489.png,10037 +images-13490.png,10038 +images-13491.png,10039 +images-13492.png,10040 +images-13493.png,10041 +images-13494.png,10042 +images-13495.png,10043 +images-13496.png,10044 +images-13497.png,10045 +images-13498.png,10046 +images-13499.png,10047 +images-13500.png,10048 +images-13501.png,10049 +images-13502.png,10050 +images-13503.png,10051 +images-13504.png,10052 +images-13505.png,10053 +images-13506.png,10054 +images-13507.png,10055 +images-13508.png,10056 +images-13509.png,10057 +images-13510.png,10058 +images-13511.png,10059 +images-13512.png,10060 +images-13513.png,10061 +images-13514.png,10062 +images-13515.png,10063 +images-13516.png,10064 +images-13517.png,10065 +images-13518.png,10066 +images-13519.png,10067 +images-13520.png,10068 +images-13521.png,10069 +images-13522.png,10070 +images-13523.png,10071 +images-13524.png,10072 +images-13525.png,10073 +images-13526.png,10074 +images-13527.png,10075 +images-13528.png,10076 +images-13529.png,10077 +images-13530.png,10078 +images-13531.png,10079 +images-13532.png,10080 +images-13533.png,10081 +images-13534.png,10082 +images-13535.png,10083 +images-13536.png,10084 +images-13537.png,10085 +images-13538.png,10086 +images-13539.png,10087 +images-13540.png,10088 +images-13541.png,10089 +images-13542.png,10090 +images-13543.png,10091 +images-13544.png,10092 +images-13545.png,10093 +images-13546.png,10094 +images-13547.png,10095 +images-13548.png,10096 +images-13549.png,10097 +images-13550.png,10098 +images-13551.png,10099 +images-13552.png,10100 +images-13553.png,10101 +images-13554.png,10102 +images-13555.png,10103 +images-13556.png,10104 +images-13557.png,10105 +images-13558.png,10106 +images-13559.png,10107 +images-13560.png,10108 +images-13561.png,10109 +images-13562.png,10110 +images-13563.png,10111 +images-13564.png,10112 +images-13565.png,10113 +images-13566.png,10114 +images-13567.png,10115 +images-13568.png,10116 +images-13569.png,10117 +images-13570.png,10118 +images-13571.png,10119 +images-13572.png,10120 +images-13573.png,10121 +images-13574.png,10122 +images-13575.png,10123 +images-13576.png,10124 +images-13577.png,10125 +images-13578.png,10126 +images-13579.png,10127 +images-13580.png,10128 +images-13581.png,10129 +images-13582.png,10130 +images-13583.png,10131 +images-13584.png,10132 +images-13585.png,10133 +images-13586.png,10134 +images-13587.png,10135 +images-13588.png,10136 +images-13589.png,10137 +images-13590.png,10138 +images-13591.png,10139 +images-13592.png,10140 +images-13593.png,10141 +images-13594.png,10142 +images-13595.png,10143 +images-13596.png,10144 +images-13597.png,10145 +images-13598.png,10146 +images-13599.png,10147 +images-13600.png,10148 +images-13601.png,10149 +images-13602.png,10150 +images-13603.png,10151 +images-13604.png,10152 +images-13605.png,10153 +images-13606.png,10154 +images-13607.png,10155 +images-13608.png,10156 +images-13609.png,10157 +images-13610.png,10158 +images-13611.png,10159 +images-13612.png,10160 +images-13613.png,10161 +images-13614.png,10162 +images-13615.png,10163 +images-13616.png,10164 +images-13617.png,10165 +images-13618.png,10166 +images-13619.png,10167 +images-13628.png,10168 +images-13629.png,10169 +images-13630.png,10170 +images-13631.png,10171 +images-13632.png,10172 +images-13633.png,10173 +images-13634.png,10174 +images-13635.png,10175 +images-13636.png,10176 +images-13637.png,10177 +images-13638.png,10178 +images-13639.png,10179 +images-13640.png,10180 +images-13641.png,10181 +images-13642.png,10182 +images-13643.png,10183 +images-13644.png,10184 +images-13645.png,10185 +images-13646.png,10186 +images-13647.png,10187 +images-13648.png,10188 +images-13649.png,10189 +images-13650.png,10190 +images-13651.png,10191 +images-13652.png,10192 +images-13653.png,10193 +images-13654.png,10194 +images-13655.png,10195 +images-13656.png,10196 +images-13657.png,10197 +images-13658.png,10198 +images-13659.png,10199 +images-13660.png,10200 +images-13661.png,10201 +images-13662.png,10202 +images-13663.png,10203 +images-13664.png,10204 +images-13665.png,10205 +images-13666.png,10206 +images-13667.png,10207 +images-13668.png,10208 +images-13669.png,10209 +images-13670.png,10210 +images-13671.png,10211 +images-13672.png,10212 +images-13673.png,10213 +images-13674.png,10214 +images-13675.png,10215 +images-13676.png,10216 +images-13677.png,10217 +images-13678.png,10218 +images-13679.png,10219 +images-13680.png,10220 +images-13681.png,10221 +images-13682.png,10222 +images-13683.png,10223 +images-13684.png,10224 +images-13685.png,10225 +images-13686.png,10226 +images-13687.png,10227 +images-13688.png,10228 +images-13689.png,10229 +images-13690.png,10230 +images-13691.png,10231 +images-13692.png,10232 +images-13693.png,10233 +images-13694.png,10234 +images-13695.png,10235 +images-13696.png,10236 +images-13697.png,10237 +images-13698.png,10238 +images-13699.png,10239 +images-13700.png,10240 +images-13701.png,10241 +images-13702.png,10242 +images-13703.png,10243 +images-13704.png,10244 +images-13705.png,10245 +images-13706.png,10246 +images-13707.png,10247 +images-13708.png,10248 +images-13709.png,10249 +images-13710.png,10250 +images-13711.png,10251 +images-13712.png,10252 +images-13713.png,10253 +images-13714.png,10254 +images-13715.png,10255 +images-13716.png,10256 +images-13717.png,10257 +images-13718.png,10258 +images-13719.png,10259 +images-13720.png,10260 +images-13721.png,10261 +images-13722.png,10262 +images-13723.png,10263 +images-13724.png,10264 +images-13725.png,10265 +images-13726.png,10266 +images-13727.png,10267 +images-13728.png,10268 +images-13729.png,10269 +images-13730.png,10270 +images-13731.png,10271 +images-13732.png,10272 +images-13733.png,10273 +images-13734.png,10274 +images-13735.png,10275 +images-13736.png,10276 +images-13737.png,10277 +images-13738.png,10278 +images-13739.png,10279 +images-13740.png,10280 +images-13741.png,10281 +images-13742.png,10282 +images-13743.png,10283 +images-13744.png,10284 +images-13745.png,10285 +images-13746.png,10286 +images-13747.png,10287 +images-13748.png,10288 +images-13749.png,10289 +images-13750.png,10290 +images-13751.png,10291 +images-13752.png,10292 +images-13753.png,10293 +images-13754.png,10294 +images-13755.png,10295 +images-13756.png,10296 +images-13757.png,10297 +images-13758.png,10298 +images-13759.png,10299 +images-13760.png,10300 +images-13761.png,10301 +images-13762.png,10302 +images-13763.png,10303 +images-13764.png,10304 +images-13765.png,10305 +images-13766.png,10306 +images-13767.png,10307 +images-13768.png,10308 +images-13769.png,10309 +images-13770.png,10310 +images-13771.png,10311 +images-13772.png,10312 +images-13773.png,10313 +images-13774.png,10314 +images-13775.png,10315 +images-13776.png,10316 +images-13777.png,10317 +images-13778.png,10318 +images-13779.png,10319 +images-13780.png,10320 +images-13781.png,10321 +images-13782.png,10322 +images-13783.png,10323 +images-13784.png,10324 +images-13785.png,10325 +images-13786.png,10326 +images-13787.png,10327 +images-13788.png,10328 +images-13789.png,10329 +images-13790.png,10330 +images-13791.png,10331 +images-13792.png,10332 +images-13793.png,10333 +images-13794.png,10334 +images-13795.png,10335 +images-13796.png,10336 +images-13797.png,10337 +images-13798.png,10338 +images-13799.png,10339 +images-13800.png,10340 +images-13801.png,10341 +images-13802.png,10342 +images-13803.png,10343 +images-13804.png,10344 +images-13805.png,10345 +images-13806.png,10346 +images-13807.png,10347 +images-13808.png,10348 +images-13809.png,10349 +images-13810.png,10350 +images-13811.png,10351 +images-13812.png,10352 +images-13813.png,10353 +images-13814.png,10354 +images-13815.png,10355 +images-13816.png,10356 +images-13817.png,10357 +images-13818.png,10358 +images-13819.png,10359 +images-13820.png,10360 +images-13821.png,10361 +images-13822.png,10362 +images-13823.png,10363 +images-13824.png,10364 +images-13825.png,10365 +images-13826.png,10366 +images-13827.png,10367 +images-13828.png,10368 +images-13829.png,10369 +images-13830.png,10370 +images-13831.png,10371 +images-13832.png,10372 +images-13833.png,10373 +images-13834.png,10374 +images-13835.png,10375 +images-13836.png,10376 +images-13837.png,10377 +images-13838.png,10378 +images-13839.png,10379 +images-13840.png,10380 +images-13841.png,10381 +images-13842.png,10382 +images-13843.png,10383 +images-13844.png,10384 +images-13845.png,10385 +images-13846.png,10386 +images-13847.png,10387 +images-13848.png,10388 +images-13849.png,10389 +images-13850.png,10390 +images-13851.png,10391 +images-13852.png,10392 +images-13853.png,10393 +images-13854.png,10394 +images-13855.png,10395 +images-13856.png,10396 +images-13857.png,10397 +images-13858.png,10398 +images-13859.png,10399 +images-13860.png,10400 +images-13861.png,10401 +images-13862.png,10402 +images-13863.png,10403 +images-13864.png,10404 +images-13865.png,10405 +images-13866.png,10406 +images-13867.png,10407 +images-13868.png,10408 +images-13869.png,10409 +images-13870.png,10410 +images-13871.png,10411 +images-13872.png,10412 +images-13873.png,10413 +images-13874.png,10414 +images-13875.png,10415 +images-13876.png,10416 +images-13877.png,10417 +images-13878.png,10418 +images-13879.png,10419 +images-13880.png,10420 +images-13881.png,10421 +images-13882.png,10422 +images-13883.png,10423 +images-13884.png,10424 +images-13885.png,10425 +images-13886.png,10426 +images-13887.png,10427 +images-13888.png,10428 +images-13889.png,10429 +images-13890.png,10430 +images-13891.png,10431 +images-13892.png,10432 +images-13893.png,10433 +images-13894.png,10434 +images-13895.png,10435 +images-13896.png,10436 +images-13897.png,10437 +images-13898.png,10438 +images-13899.png,10439 +images-13900.png,10440 +images-13901.png,10441 +images-13902.png,10442 +images-13903.png,10443 +images-13904.png,10444 +images-13905.png,10445 +images-13906.png,10446 +images-13907.png,10447 +images-13908.png,10448 +images-13909.png,10449 +images-13910.png,10450 +images-13911.png,10451 +images-13912.png,10452 +images-13913.png,10453 +images-13914.png,10454 +images-13915.png,10455 +images-13916.png,10456 +images-13917.png,10457 +images-13918.png,10458 +images-13919.png,10459 +images-13920.png,10460 +images-13921.png,10461 +images-13922.png,10462 +images-13923.png,10463 +images-13924.png,10464 +images-13925.png,10465 +images-13926.png,10466 +images-13927.png,10467 +images-13928.png,10468 +images-13929.png,10469 +images-13930.png,10470 +images-13931.png,10471 +images-13932.png,10472 +images-13933.png,10473 +images-13934.png,10474 +images-13935.png,10475 +images-13936.png,10476 +images-13937.png,10477 +images-13938.png,10478 +images-13939.png,10479 +images-13940.png,10480 +images-13941.png,10481 +images-13942.png,10482 +images-13943.png,10483 +images-13944.png,10484 +images-13945.png,10485 +images-13946.png,10486 +images-13947.png,10487 +images-13948.png,10488 +images-13949.png,10489 +images-13950.png,10490 +images-13951.png,10491 +images-13952.png,10492 +images-13953.png,10493 +images-13954.png,10494 +images-13955.png,10495 +images-13956.png,10496 +images-13957.png,10497 +images-13958.png,10498 +images-13959.png,10499 +images-13960.png,10500 +images-13961.png,10501 +images-13962.png,10502 +images-13963.png,10503 +images-13964.png,10504 +images-13965.png,10505 +images-13966.png,10506 +images-13967.png,10507 +images-13968.png,10508 +images-13969.png,10509 +images-13970.png,10510 +images-13971.png,10511 +images-13972.png,10512 +images-13973.png,10513 +images-13974.png,10514 +images-13975.png,10515 +images-13976.png,10516 +images-13977.png,10517 +images-13978.png,10518 +images-13979.png,10519 +images-13980.png,10520 +images-13981.png,10521 +images-13982.png,10522 +images-13983.png,10523 +images-13984.png,10524 +images-13985.png,10525 +images-13986.png,10526 +images-13987.png,10527 +images-13988.png,10528 +images-13989.png,10529 +images-13990.png,10530 +images-13991.png,10531 +images-13992.png,10532 +images-13993.png,10533 +images-13994.png,10534 +images-13995.png,10535 +images-13996.png,10536 +images-13997.png,10537 +images-13998.png,10538 +images-13999.png,10539 +images-14000.png,10540 +images-14001.png,10541 +images-14002.png,10542 +images-14003.png,10543 +images-14004.png,10544 +images-14005.png,10545 +images-14006.png,10546 +images-14007.png,10547 +images-14008.png,10548 +images-14009.png,10549 +images-14010.png,10550 +images-14011.png,10551 +images-14012.png,10552 +images-14013.png,10553 +images-14014.png,10554 +images-14015.png,10555 +images-14016.png,10556 +images-14017.png,10557 +images-14018.png,10558 +images-14019.png,10559 +images-14020.png,10560 +images-14021.png,10561 +images-14022.png,10562 +images-14023.png,10563 +images-14024.png,10564 +images-14025.png,10565 +images-14026.png,10566 +images-14027.png,10567 +images-14028.png,10568 +images-14029.png,10569 +images-14030.png,10570 +images-14031.png,10571 +images-14032.png,10572 +images-14033.png,10573 +images-14034.png,10574 +images-14035.png,10575 +images-14036.png,10576 +images-14037.png,10577 +images-14038.png,10578 +images-14039.png,10579 +images-14040.png,10580 +images-14041.png,10581 +images-14042.png,10582 +images-14043.png,10583 +images-14044.png,10584 +images-14045.png,10585 +images-14046.png,10586 +images-14047.png,10587 +images-14048.png,10588 +images-14049.png,10589 +images-14050.png,10590 +images-14051.png,10591 +images-14052.png,10592 +images-14053.png,10593 +images-14054.png,10594 +images-14055.png,10595 +images-14056.png,10596 +images-14057.png,10597 +images-14058.png,10598 +images-14059.png,10599 +images-14060.png,10600 +images-14061.png,10601 +images-14062.png,10602 +images-14063.png,10603 +images-14064.png,10604 +images-14065.png,10605 +images-14066.png,10606 +images-14067.png,10607 +images-14068.png,10608 +images-14069.png,10609 +images-14070.png,10610 +images-14071.png,10611 +images-14072.png,10612 +images-14073.png,10613 +images-14074.png,10614 +images-14075.png,10615 +images-14076.png,10616 +images-14077.png,10617 +images-14078.png,10618 +images-14079.png,10619 +images-14080.png,10620 +images-14081.png,10621 +images-14082.png,10622 +images-14083.png,10623 +images-14084.png,10624 +images-14085.png,10625 +images-14086.png,10626 +images-14087.png,10627 +images-14088.png,10628 +images-14089.png,10629 +images-14090.png,10630 +images-14091.png,10631 +images-14092.png,10632 +images-14093.png,10633 +images-14094.png,10634 +images-14095.png,10635 +images-14096.png,10636 +images-14097.png,10637 +images-14098.png,10638 +images-14099.png,10639 +images-14100.png,10640 +images-14101.png,10641 +images-14102.png,10642 +images-14103.png,10643 +images-14104.png,10644 +images-14105.png,10645 +images-14106.png,10646 +images-14107.png,10647 +images-14108.png,10648 +images-14109.png,10649 +images-14110.png,10650 +images-14111.png,10651 +images-14112.png,10652 +images-14113.png,10653 +images-14114.png,10654 +images-14115.png,10655 +images-14116.png,10656 +images-14117.png,10657 +images-14118.png,10658 +images-14119.png,10659 +images-14120.png,10660 +images-14121.png,10661 +images-14122.png,10662 +images-14123.png,10663 +images-14124.png,10664 +images-14125.png,10665 +images-14126.png,10666 +images-14127.png,10667 +images-14128.png,10668 +images-14129.png,10669 +images-14130.png,10670 +images-14131.png,10671 +images-14132.png,10672 +images-14133.png,10673 +images-14134.png,10674 +images-14135.png,10675 +images-14136.png,10676 +images-14137.png,10677 +images-14138.png,10678 +images-14139.png,10679 +images-14140.png,10680 +images-14141.png,10681 +images-14142.png,10682 +images-14143.png,10683 +images-14144.png,10684 +images-14145.png,10685 +images-14146.png,10686 +images-14147.png,10687 +images-14148.png,10688 +images-14149.png,10689 +images-14150.png,10690 +images-14151.png,10691 +images-14152.png,10692 +images-14153.png,10693 +images-14154.png,10694 +images-14155.png,10695 +images-14156.png,10696 +images-14157.png,10697 +images-14158.png,10698 +images-14159.png,10699 +images-14160.png,10700 +images-14161.png,10701 +images-14162.png,10702 +images-14163.png,10703 +images-14164.png,10704 +images-14165.png,10705 +images-14166.png,10706 +images-14167.png,10707 +images-14168.png,10708 +images-14169.png,10709 +images-14170.png,10710 +images-14171.png,10711 +images-14172.png,10712 +images-14173.png,10713 +images-14174.png,10714 +images-14175.png,10715 +images-14176.png,10716 +images-14177.png,10717 +images-14178.png,10718 +images-14179.png,10719 +images-14180.png,10720 +images-14181.png,10721 +images-14182.png,10722 +images-14183.png,10723 +images-14184.png,10724 +images-14185.png,10725 +images-14186.png,10726 +images-14187.png,10727 +images-14188.png,10728 +images-14189.png,10729 +images-14190.png,10730 +images-14191.png,10731 +images-14192.png,10732 +images-14193.png,10733 +images-14194.png,10734 +images-14195.png,10735 +images-14196.png,10736 +images-14197.png,10737 +images-14198.png,10738 +images-14199.png,10739 +images-14200.png,10740 +images-14201.png,10741 +images-14202.png,10742 +images-14203.png,10743 +images-14204.png,10744 +images-14205.png,10745 +images-14206.png,10746 +images-14207.png,10747 +images-14208.png,10748 +images-14209.png,10749 +images-14210.png,10750 +images-14211.png,10751 +images-14212.png,10752 +images-14213.png,10753 +images-14214.png,10754 +images-14215.png,10755 +images-14216.png,10756 +images-14217.png,10757 +images-14218.png,10758 +images-14219.png,10759 +images-14220.png,10760 +images-14221.png,10761 +images-14222.png,10762 +images-14223.png,10763 +images-14224.png,10764 +images-14225.png,10765 +images-14226.png,10766 +images-14227.png,10767 +images-14228.png,10768 +images-14229.png,10769 +images-14230.png,10770 +images-14231.png,10771 +images-14232.png,10772 +images-14233.png,10773 +images-14234.png,10774 +images-14235.png,10775 +images-14236.png,10776 +images-14237.png,10777 +images-14238.png,10778 +images-14239.png,10779 +images-14240.png,10780 +images-14241.png,10781 +images-14242.png,10782 +images-14243.png,10783 +images-14244.png,10784 +images-14245.png,10785 +images-14246.png,10786 +images-14247.png,10787 +images-14248.png,10788 +images-14249.png,10789 +images-14250.png,10790 +images-14251.png,10791 +images-14252.png,10792 +images-14253.png,10793 +images-14254.png,10794 +images-14255.png,10795 +images-14256.png,10796 +images-14257.png,10797 +images-14258.png,10798 +images-14259.png,10799 +images-14260.png,10800 +images-14261.png,10801 +images-14262.png,10802 +images-14263.png,10803 +images-14264.png,10804 +images-14265.png,10805 +images-14266.png,10806 +images-14267.png,10807 +images-14268.png,10808 +images-14269.png,10809 +images-14270.png,10810 +images-14271.png,10811 +images-14272.png,10812 +images-14273.png,10813 +images-14274.png,10814 +images-14275.png,10815 +images-14276.png,10816 +images-14277.png,10817 +images-14278.png,10818 +images-14279.png,10819 +images-14280.png,10820 +images-14281.png,10821 +images-14282.png,10822 +images-14283.png,10823 +images-14284.png,10824 +images-14285.png,10825 +images-14286.png,10826 +images-14287.png,10827 +images-14288.png,10828 +images-14289.png,10829 +images-14290.png,10830 +images-14291.png,10831 +images-14292.png,10832 +images-14293.png,10833 +images-14294.png,10834 +images-14295.png,10835 +images-14296.png,10836 +images-14297.png,10837 +images-14298.png,10838 +images-14299.png,10839 +images-14300.png,10840 +images-14301.png,10841 +images-14302.png,10842 +images-14303.png,10843 +images-14304.png,10844 +images-14305.png,10845 +images-14306.png,10846 +images-14307.png,10847 +images-14308.png,10848 +images-14309.png,10849 +images-14310.png,10850 +images-14311.png,10851 +images-14312.png,10852 +images-14313.png,10853 +images-14314.png,10854 +images-14315.png,10855 +images-14316.png,10856 +images-14317.png,10857 +images-14318.png,10858 +images-14319.png,10859 +images-14348.png,10860 +images-14349.png,10861 +images-14350.png,10862 +images-14351.png,10863 +images-14352.png,10864 +images-14353.png,10865 +images-14354.png,10866 +images-14355.png,10867 +images-14356.png,10868 +images-14357.png,10869 +images-14358.png,10870 +images-14359.png,10871 +images-14360.png,10872 +images-14361.png,10873 +images-14362.png,10874 +images-14363.png,10875 +images-14364.png,10876 +images-14365.png,10877 +images-14366.png,10878 +images-14367.png,10879 +images-14368.png,10880 +images-14369.png,10881 +images-14370.png,10882 +images-14371.png,10883 +images-14372.png,10884 +images-14373.png,10885 +images-14374.png,10886 +images-14375.png,10887 +images-14376.png,10888 +images-14377.png,10889 +images-14378.png,10890 +images-14379.png,10891 +images-14380.png,10892 +images-14381.png,10893 +images-14382.png,10894 +images-14383.png,10895 +images-14384.png,10896 +images-14385.png,10897 +images-14386.png,10898 +images-14387.png,10899 +images-14388.png,10900 +images-14389.png,10901 +images-14400.png,10902 +images-14401.png,10903 +images-14402.png,10904 +images-14403.png,10905 +images-14404.png,10906 +images-14405.png,10907 +images-14406.png,10908 +images-14407.png,10909 +images-14408.png,10910 +images-14409.png,10911 +images-14410.png,10912 +images-14411.png,10913 +images-14412.png,10914 +images-14413.png,10915 +images-14414.png,10916 +images-14415.png,10917 +images-14416.png,10918 +images-14417.png,10919 +images-14418.png,10920 +images-14419.png,10921 +images-14420.png,10922 +images-14421.png,10923 +images-14422.png,10924 +images-14423.png,10925 +images-14424.png,10926 +images-14425.png,10927 +images-14426.png,10928 +images-14427.png,10929 +images-14428.png,10930 +images-14429.png,10931 +images-14430.png,10932 +images-14431.png,10933 +images-14432.png,10934 +images-14433.png,10935 +images-14434.png,10936 +images-14435.png,10937 +images-14436.png,10938 +images-14437.png,10939 +images-14438.png,10940 +images-14439.png,10941 +images-14440.png,10942 +images-14441.png,10943 +images-14442.png,10944 +images-14443.png,10945 +images-14444.png,10946 +images-14445.png,10947 +images-14446.png,10948 +images-14447.png,10949 +images-14448.png,10950 +images-14449.png,10951 +images-14450.png,10952 +images-14451.png,10953 +images-14452.png,10954 +images-14453.png,10955 +images-14454.png,10956 +images-14455.png,10957 +images-14456.png,10958 +images-14457.png,10959 +images-14458.png,10960 +images-14459.png,10961 +images-14460.png,10962 +images-14461.png,10963 +images-14462.png,10964 +images-14463.png,10965 +images-14464.png,10966 +images-14465.png,10967 +images-14466.png,10968 +images-14467.png,10969 +images-14468.png,10970 +images-14469.png,10971 +images-14470.png,10972 +images-14471.png,10973 +images-14472.png,10974 +images-14473.png,10975 +images-14474.png,10976 +images-14475.png,10977 +images-14476.png,10978 +images-14477.png,10979 +images-14478.png,10980 +images-14479.png,10981 +images-14480.png,10982 +images-14481.png,10983 +images-14482.png,10984 +images-14483.png,10985 +images-14484.png,10986 +images-14485.png,10987 +images-14486.png,10988 +images-14487.png,10989 +images-14488.png,10990 +images-14489.png,10991 +images-14490.png,10992 +images-14491.png,10993 +images-14492.png,10994 +images-14493.png,10995 +images-14494.png,10996 +images-14495.png,10997 +images-14496.png,10998 +images-14497.png,10999 +images-14498.png,11000 +images-14499.png,11001 +images-14500.png,11002 +images-14501.png,11003 +images-14502.png,11004 +images-14503.png,11005 +images-14504.png,11006 +images-14505.png,11007 +images-14506.png,11008 +images-14507.png,11009 +images-14508.png,11010 +images-14509.png,11011 +images-14510.png,11012 +images-14511.png,11013 +images-14512.png,11014 +images-14513.png,11015 +images-14514.png,11016 +images-14515.png,11017 +images-14516.png,11018 +images-14517.png,11019 +images-14518.png,11020 +images-14519.png,11021 +images-14520.png,11022 +images-14521.png,11023 +images-14522.png,11024 +images-14523.png,11025 +images-14524.png,11026 +images-14525.png,11027 +images-14526.png,11028 +images-14527.png,11029 +images-14528.png,11030 +images-14529.png,11031 +images-14530.png,11032 +images-14531.png,11033 +images-14532.png,11034 +images-14533.png,11035 +images-14534.png,11036 +images-14535.png,11037 +images-14536.png,11038 +images-14537.png,11039 +images-14538.png,11040 +images-14539.png,11041 +images-14540.png,11042 +images-14541.png,11043 +images-14542.png,11044 +images-14543.png,11045 +images-14544.png,11046 +images-14545.png,11047 +images-14546.png,11048 +images-14547.png,11049 +images-14548.png,11050 +images-14549.png,11051 +images-14550.png,11052 +images-14551.png,11053 +images-14552.png,11054 +images-14553.png,11055 +images-14554.png,11056 +images-14555.png,11057 +images-14556.png,11058 +images-14557.png,11059 +images-14558.png,11060 +images-14559.png,11061 +images-14560.png,11062 +images-14561.png,11063 +images-14562.png,11064 +images-14563.png,11065 +images-14564.png,11066 +images-14565.png,11067 +images-14566.png,11068 +images-14567.png,11069 +images-14568.png,11070 +images-14569.png,11071 +images-14570.png,11072 +images-14571.png,11073 +images-14572.png,11074 +images-14573.png,11075 +images-14574.png,11076 +images-14575.png,11077 +images-14576.png,11078 +images-14577.png,11079 +images-14578.png,11080 +images-14579.png,11081 +images-14580.png,11082 +images-14581.png,11083 +images-14582.png,11084 +images-14583.png,11085 +images-14584.png,11086 +images-14585.png,11087 +images-14586.png,11088 +images-14587.png,11089 +images-14588.png,11090 +images-14589.png,11091 +images-14590.png,11092 +images-14591.png,11093 +images-14592.png,11094 +images-14593.png,11095 +images-14594.png,11096 +images-14595.png,11097 +images-14596.png,11098 +images-14597.png,11099 +images-14598.png,11100 +images-14599.png,11101 +images-14600.png,11102 +images-14601.png,11103 +images-14602.png,11104 +images-14603.png,11105 +images-14604.png,11106 +images-14605.png,11107 +images-14606.png,11108 +images-14607.png,11109 +images-14608.png,11110 +images-14609.png,11111 +images-14610.png,11112 +images-14611.png,11113 +images-14612.png,11114 +images-14613.png,11115 +images-14614.png,11116 +images-14615.png,11117 +images-14616.png,11118 +images-14617.png,11119 +images-14618.png,11120 +images-14619.png,11121 +images-14620.png,11122 +images-14621.png,11123 +images-14622.png,11124 +images-14623.png,11125 +images-14624.png,11126 +images-14625.png,11127 +images-14626.png,11128 +images-14627.png,11129 +images-14628.png,11130 +images-14629.png,11131 +images-14630.png,11132 +images-14631.png,11133 +images-14632.png,11134 +images-14633.png,11135 +images-14634.png,11136 +images-14635.png,11137 +images-14636.png,11138 +images-14637.png,11139 +images-14638.png,11140 +images-14639.png,11141 +images-14640.png,11142 +images-14641.png,11143 +images-14642.png,11144 +images-14643.png,11145 +images-14644.png,11146 +images-14645.png,11147 +images-14646.png,11148 +images-14647.png,11149 +images-14648.png,11150 +images-14649.png,11151 +images-14650.png,11152 +images-14651.png,11153 +images-14652.png,11154 +images-14653.png,11155 +images-14654.png,11156 +images-14655.png,11157 +images-14656.png,11158 +images-14657.png,11159 +images-14658.png,11160 +images-14659.png,11161 +images-14660.png,11162 +images-14661.png,11163 +images-14662.png,11164 +images-14663.png,11165 +images-14664.png,11166 +images-14665.png,11167 +images-14666.png,11168 +images-14667.png,11169 +images-14668.png,11170 +images-14669.png,11171 +images-14670.png,11172 +images-14671.png,11173 +images-14672.png,11174 +images-14673.png,11175 +images-14674.png,11176 +images-14675.png,11177 +images-14676.png,11178 +images-14677.png,11179 +images-14678.png,11180 +images-14679.png,11181 +images-14680.png,11182 +images-14681.png,11183 +images-14682.png,11184 +images-14683.png,11185 +images-14684.png,11186 +images-14685.png,11187 +images-14686.png,11188 +images-14687.png,11189 +images-14688.png,11190 +images-14689.png,11191 +images-14690.png,11192 +images-14691.png,11193 +images-14692.png,11194 +images-14693.png,11195 +images-14694.png,11196 +images-14695.png,11197 +images-14696.png,11198 +images-14697.png,11199 +images-14698.png,11200 +images-14699.png,11201 +images-14700.png,11202 +images-14701.png,11203 +images-14702.png,11204 +images-14703.png,11205 +images-14704.png,11206 +images-14705.png,11207 +images-14706.png,11208 +images-14707.png,11209 +images-14708.png,11210 +images-14709.png,11211 +images-14710.png,11212 +images-14711.png,11213 +images-14712.png,11214 +images-14713.png,11215 +images-14714.png,11216 +images-14715.png,11217 +images-14716.png,11218 +images-14717.png,11219 +images-14718.png,11220 +images-14719.png,11221 +images-14720.png,11222 +images-14721.png,11223 +images-14722.png,11224 +images-14723.png,11225 +images-14724.png,11226 +images-14725.png,11227 +images-14726.png,11228 +images-14727.png,11229 +images-14728.png,11230 +images-14729.png,11231 +images-14730.png,11232 +images-14731.png,11233 +images-14732.png,11234 +images-14733.png,11235 +images-14734.png,11236 +images-14735.png,11237 +images-14736.png,11238 +images-14737.png,11239 +images-14738.png,11240 +images-14739.png,11241 +images-14740.png,11242 +images-14741.png,11243 +images-14742.png,11244 +images-14743.png,11245 +images-14744.png,11246 +images-14745.png,11247 +images-14746.png,11248 +images-14747.png,11249 +images-14748.png,11250 +images-14749.png,11251 +images-14750.png,11252 +images-14751.png,11253 +images-14752.png,11254 +images-14753.png,11255 +images-14754.png,11256 +images-14755.png,11257 +images-14756.png,11258 +images-14757.png,11259 +images-14758.png,11260 +images-14759.png,11261 +images-14760.png,11262 +images-14761.png,11263 +images-14762.png,11264 +images-14763.png,11265 +images-14764.png,11266 +images-14765.png,11267 +images-14766.png,11268 +images-14767.png,11269 +images-14768.png,11270 +images-14769.png,11271 +images-14770.png,11272 +images-14771.png,11273 +images-14772.png,11274 +images-14773.png,11275 +images-14774.png,11276 +images-14775.png,11277 +images-14776.png,11278 +images-14777.png,11279 +images-14778.png,11280 +images-14779.png,11281 +images-14780.png,11282 +images-14781.png,11283 +images-14782.png,11284 +images-14783.png,11285 +images-14784.png,11286 +images-14785.png,11287 +images-14786.png,11288 +images-14787.png,11289 +images-14788.png,11290 +images-14789.png,11291 +images-14790.png,11292 +images-14791.png,11293 +images-14792.png,11294 +images-14793.png,11295 +images-14794.png,11296 +images-14795.png,11297 +images-14796.png,11298 +images-14797.png,11299 +images-14798.png,11300 +images-14799.png,11301 +images-14800.png,11302 +images-14801.png,11303 +images-14802.png,11304 +images-14803.png,11305 +images-14804.png,11306 +images-14805.png,11307 +images-14806.png,11308 +images-14926.png,11309 +images-14927.png,11310 +images-14928.png,11311 +images-14929.png,11312 +images-14930.png,11313 +images-14931.png,11314 +images-14932.png,11315 +images-14933.png,11316 +images-14934.png,11317 +images-14935.png,11318 +images-14936.png,11319 +images-14937.png,11320 +images-14938.png,11321 +images-14939.png,11322 +images-14940.png,11323 +images-14941.png,11324 +images-14942.png,11325 +images-14943.png,11326 +images-14944.png,11327 +images-14945.png,11328 +images-14946.png,11329 +images-14947.png,11330 +images-14948.png,11331 +images-14949.png,11332 +images-14950.png,11333 +images-14951.png,11334 +images-14952.png,11335 +images-14953.png,11336 +images-14954.png,11337 +images-14955.png,11338 +images-14956.png,11339 +images-14957.png,11340 +images-14958.png,11341 +images-14959.png,11342 +images-14960.png,11343 +images-14961.png,11344 +images-14962.png,11345 +images-14963.png,11346 +images-14964.png,11347 +images-14965.png,11348 +images-14966.png,11349 +images-14967.png,11350 +images-14968.png,11351 +images-14969.png,11352 +images-14970.png,11353 +images-14971.png,11354 +images-14972.png,11355 +images-14973.png,11356 +images-14974.png,11357 +images-14975.png,11358 +images-14976.png,11359 +images-14977.png,11360 +images-14978.png,11361 +images-14979.png,11362 +images-14980.png,11363 +images-14981.png,11364 +images-14982.png,11365 +images-14983.png,11366 +images-14984.png,11367 +images-14985.png,11368 +images-14986.png,11369 +images-14987.png,11370 +images-14988.png,11371 +images-14989.png,11372 +images-14990.png,11373 +images-14991.png,11374 +images-14992.png,11375 +images-14993.png,11376 +images-14994.png,11377 +images-14995.png,11378 +images-14996.png,11379 +images-14997.png,11380 +images-14998.png,11381 +images-14999.png,11382 +images-15000.png,11383 +images-15001.png,11384 +images-15002.png,11385 +images-15003.png,11386 +images-15004.png,11387 +images-15005.png,11388 +images-15006.png,11389 +images-15007.png,11390 +images-15008.png,11391 +images-15009.png,11392 +images-15010.png,11393 +images-15011.png,11394 +images-15012.png,11395 +images-15013.png,11396 +images-15014.png,11397 +images-15015.png,11398 +images-15016.png,11399 +images-15017.png,11400 +images-15018.png,11401 +images-15019.png,11402 +images-15020.png,11403 +images-15021.png,11404 +images-15022.png,11405 +images-15023.png,11406 +images-15024.png,11407 +images-15025.png,11408 +images-15026.png,11409 +images-15027.png,11410 +images-15028.png,11411 +images-15029.png,11412 +images-15030.png,11413 +images-15031.png,11414 +images-15032.png,11415 +images-15033.png,11416 +images-15034.png,11417 +images-15035.png,11418 +images-15036.png,11419 +images-15037.png,11420 +images-15038.png,11421 +images-15039.png,11422 +images-15040.png,11423 +images-15041.png,11424 +images-15042.png,11425 +images-15043.png,11426 +images-15044.png,11427 +images-15045.png,11428 +images-15046.png,11429 +images-15047.png,11430 +images-15048.png,11431 +images-15049.png,11432 +images-15050.png,11433 +images-15051.png,11434 +images-15052.png,11435 +images-15053.png,11436 +images-15054.png,11437 +images-15055.png,11438 +images-15056.png,11439 +images-15057.png,11440 +images-15058.png,11441 +images-15059.png,11442 +images-15060.png,11443 +images-15061.png,11444 +images-15062.png,11445 +images-15063.png,11446 +images-15064.png,11447 +images-15065.png,11448 +images-15066.png,11449 +images-15067.png,11450 +images-15068.png,11451 +images-15069.png,11452 +images-15070.png,11453 +images-15071.png,11454 +images-15072.png,11455 +images-15073.png,11456 +images-15074.png,11457 +images-15075.png,11458 +images-15076.png,11459 +images-15077.png,11460 +images-15078.png,11461 +images-15079.png,11462 +images-15080.png,11463 +images-15081.png,11464 +images-15082.png,11465 +images-15083.png,11466 +images-15084.png,11467 +images-15085.png,11468 +images-15086.png,11469 +images-15087.png,11470 +images-15088.png,11471 +images-15089.png,11472 +images-15090.png,11473 +images-15091.png,11474 +images-15092.png,11475 +images-15093.png,11476 +images-15094.png,11477 +images-15095.png,11478 +images-15096.png,11479 +images-15097.png,11480 +images-15098.png,11481 +images-15099.png,11482 +images-15100.png,11483 +images-15101.png,11484 +images-15102.png,11485 +images-15103.png,11486 +images-15104.png,11487 +images-15105.png,11488 +images-15106.png,11489 +images-15107.png,11490 +images-15108.png,11491 +images-15109.png,11492 +images-15110.png,11493 +images-15111.png,11494 +images-15112.png,11495 +images-15113.png,11496 +images-15114.png,11497 +images-15115.png,11498 +images-15116.png,11499 +images-15117.png,11500 +images-15118.png,11501 +images-15119.png,11502 +images-15120.png,11503 +images-15121.png,11504 +images-15122.png,11505 +images-15123.png,11506 +images-15124.png,11507 +images-15125.png,11508 +images-15126.png,11509 +images-15127.png,11510 +images-15128.png,11511 +images-15129.png,11512 +images-15130.png,11513 +images-15131.png,11514 +images-15132.png,11515 +images-15133.png,11516 +images-15134.png,11517 +images-15135.png,11518 +images-15136.png,11519 +images-15137.png,11520 +images-15138.png,11521 +images-15139.png,11522 +images-15140.png,11523 +images-15141.png,11524 +images-15142.png,11525 +images-15143.png,11526 +images-15144.png,11527 +images-15145.png,11528 +images-15146.png,11529 +images-15147.png,11530 +images-15148.png,11531 +images-15149.png,11532 +images-15150.png,11533 +images-15151.png,11534 +images-15152.png,11535 +images-15153.png,11536 +images-15154.png,11537 +images-15155.png,11538 +images-15156.png,11539 +images-15157.png,11540 +images-15158.png,11541 +images-15159.png,11542 +images-15160.png,11543 +images-15161.png,11544 +images-15162.png,11545 +images-15163.png,11546 +images-15164.png,11547 +images-15165.png,11548 +images-15166.png,11549 +images-15167.png,11550 +images-15168.png,11551 +images-15169.png,11552 +images-15170.png,11553 +images-15171.png,11554 +images-15172.png,11555 +images-15173.png,11556 +images-15174.png,11557 +images-15175.png,11558 +images-15176.png,11559 +images-15177.png,11560 +images-15178.png,11561 +images-15179.png,11562 +images-15180.png,11563 +images-15181.png,11564 +images-15182.png,11565 +images-15183.png,11566 +images-15184.png,11567 +images-15185.png,11568 +images-15186.png,11569 +images-15187.png,11570 +images-15188.png,11571 +images-15189.png,11572 +images-15190.png,11573 +images-15191.png,11574 +images-15192.png,11575 +images-15193.png,11576 +images-15194.png,11577 +images-15195.png,11578 +images-15196.png,11579 +images-15197.png,11580 +images-15198.png,11581 +images-15199.png,11582 +images-15200.png,11583 +images-15201.png,11584 +images-15202.png,11585 +images-15203.png,11586 +images-15204.png,11587 +images-15205.png,11588 +images-15206.png,11589 +images-15207.png,11590 +images-15208.png,11591 +images-15209.png,11592 +images-15210.png,11593 +images-15211.png,11594 +images-15212.png,11595 +images-15213.png,11596 +images-15214.png,11597 +images-15215.png,11598 +images-15216.png,11599 +images-15217.png,11600 +images-15218.png,11601 +images-15219.png,11602 +images-15220.png,11603 +images-15221.png,11604 +images-15222.png,11605 +images-15223.png,11606 +images-15224.png,11607 +images-15225.png,11608 +images-15226.png,11609 +images-15227.png,11610 +images-15228.png,11611 +images-15229.png,11612 +images-15230.png,11613 +images-15231.png,11614 +images-15232.png,11615 +images-15233.png,11616 +images-15234.png,11617 +images-15235.png,11618 +images-15236.png,11619 +images-15237.png,11620 +images-15238.png,11621 +images-15239.png,11622 +images-15240.png,11623 +images-15241.png,11624 +images-15242.png,11625 +images-15243.png,11626 +images-15244.png,11627 +images-15245.png,11628 +images-15246.png,11629 +images-15247.png,11630 +images-15248.png,11631 +images-15249.png,11632 +images-15250.png,11633 +images-15251.png,11634 +images-15252.png,11635 +images-15253.png,11636 +images-15254.png,11637 +images-15255.png,11638 +images-15256.png,11639 +images-15257.png,11640 +images-15258.png,11641 +images-15259.png,11642 +images-15260.png,11643 +images-15261.png,11644 +images-15262.png,11645 +images-15263.png,11646 +images-15264.png,11647 +images-15265.png,11648 +images-15266.png,11649 +images-15267.png,11650 +images-15268.png,11651 +images-15269.png,11652 +images-15270.png,11653 +images-15271.png,11654 +images-15272.png,11655 +images-15273.png,11656 +images-15274.png,11657 +images-15275.png,11658 +images-15276.png,11659 +images-15277.png,11660 +images-15278.png,11661 +images-15279.png,11662 +images-15280.png,11663 +images-15281.png,11664 +images-15282.png,11665 +images-15283.png,11666 +images-15284.png,11667 +images-15285.png,11668 +images-15286.png,11669 +images-15287.png,11670 +images-15288.png,11671 +images-15289.png,11672 +images-15290.png,11673 +images-15291.png,11674 +images-15292.png,11675 +images-15293.png,11676 +images-15294.png,11677 +images-15295.png,11678 +images-15296.png,11679 +images-15297.png,11680 +images-15298.png,11681 +images-15299.png,11682 +images-15300.png,11683 +images-15301.png,11684 +images-15302.png,11685 +images-15303.png,11686 +images-15304.png,11687 +images-15305.png,11688 +images-15306.png,11689 +images-15307.png,11690 +images-15308.png,11691 +images-15309.png,11692 +images-15310.png,11693 +images-15311.png,11694 +images-15312.png,11695 +images-15313.png,11696 +images-15314.png,11697 +images-15315.png,11698 +images-15316.png,11699 +images-15317.png,11700 +images-15318.png,11701 +images-15319.png,11702 +images-15320.png,11703 +images-15321.png,11704 +images-15322.png,11705 +images-15323.png,11706 +images-15324.png,11707 +images-15325.png,11708 +images-15326.png,11709 +images-15327.png,11710 +images-15328.png,11711 +images-15329.png,11712 +images-15330.png,11713 +images-15331.png,11714 +images-15332.png,11715 +images-15333.png,11716 +images-15334.png,11717 +images-15335.png,11718 +images-15336.png,11719 +images-15337.png,11720 +images-15338.png,11721 +images-15339.png,11722 +images-15340.png,11723 +images-15341.png,11724 +images-15342.png,11725 +images-15343.png,11726 +images-15344.png,11727 +images-15345.png,11728 +images-15346.png,11729 +images-15347.png,11730 +images-15348.png,11731 +images-15349.png,11732 +images-15350.png,11733 +images-15351.png,11734 +images-15352.png,11735 +images-15353.png,11736 +images-15354.png,11737 +images-15355.png,11738 +images-15356.png,11739 +images-15357.png,11740 +images-15358.png,11741 +images-15359.png,11742 +images-15360.png,11743 +images-15361.png,11744 +images-15362.png,11745 +images-15363.png,11746 +images-15364.png,11747 +images-15365.png,11748 +images-15366.png,11749 +images-15367.png,11750 +images-15368.png,11751 +images-15369.png,11752 +images-15370.png,11753 +images-15371.png,11754 +images-15372.png,11755 +images-15373.png,11756 +images-15374.png,11757 +images-15375.png,11758 +images-15376.png,11759 +images-15377.png,11760 +images-15378.png,11761 +images-15379.png,11762 +images-15380.png,11763 +images-15381.png,11764 +images-15382.png,11765 +images-15383.png,11766 +images-15384.png,11767 +images-15385.png,11768 +images-15386.png,11769 +images-15387.png,11770 +images-15388.png,11771 +images-15389.png,11772 +images-15390.png,11773 +images-15391.png,11774 +images-15392.png,11775 +images-15393.png,11776 +images-15394.png,11777 +images-15395.png,11778 +images-15396.png,11779 +images-15397.png,11780 +images-15398.png,11781 +images-15399.png,11782 +images-15400.png,11783 +images-15401.png,11784 +images-15402.png,11785 +images-15403.png,11786 +images-15404.png,11787 +images-15405.png,11788 +images-15406.png,11789 +images-15407.png,11790 +images-15408.png,11791 +images-15409.png,11792 +images-15410.png,11793 +images-15411.png,11794 +images-15412.png,11795 +images-15413.png,11796 +images-15414.png,11797 +images-15415.png,11798 +images-15416.png,11799 +images-15417.png,11800 +images-15418.png,11801 +images-15419.png,11802 +images-15420.png,11803 +images-15421.png,11804 +images-15422.png,11805 +images-15423.png,11806 +images-15424.png,11807 +images-15425.png,11808 +images-15426.png,11809 +images-15427.png,11810 +images-15428.png,11811 +images-15429.png,11812 +images-15430.png,11813 +images-15431.png,11814 +images-15432.png,11815 +images-15433.png,11816 +images-15434.png,11817 +images-15435.png,11818 +images-15436.png,11819 +images-15437.png,11820 +images-15438.png,11821 +images-15439.png,11822 +images-15440.png,11823 +images-15441.png,11824 +images-15442.png,11825 +images-15443.png,11826 +images-15444.png,11827 +images-15445.png,11828 +images-15446.png,11829 +images-15447.png,11830 +images-15448.png,11831 +images-15449.png,11832 +images-15450.png,11833 +images-15451.png,11834 +images-15452.png,11835 +images-15453.png,11836 +images-15454.png,11837 +images-15455.png,11838 +images-15456.png,11839 +images-15457.png,11840 +images-15458.png,11841 +images-15459.png,11842 +images-15460.png,11843 +images-15461.png,11844 +images-15462.png,11845 +images-15463.png,11846 +images-15464.png,11847 +images-15465.png,11848 +images-15466.png,11849 +images-15467.png,11850 +images-15468.png,11851 +images-15469.png,11852 +images-15470.png,11853 +images-15471.png,11854 +images-15472.png,11855 +images-15473.png,11856 +images-15474.png,11857 +images-15475.png,11858 +images-15476.png,11859 +images-15477.png,11860 +images-15478.png,11861 +images-15479.png,11862 +images-15480.png,11863 +images-15481.png,11864 +images-15482.png,11865 +images-15483.png,11866 +images-15484.png,11867 +images-15485.png,11868 +images-15486.png,11869 +images-15487.png,11870 +images-15488.png,11871 +images-15489.png,11872 +images-15490.png,11873 +images-15491.png,11874 +images-15492.png,11875 +images-15493.png,11876 +images-15494.png,11877 +images-15495.png,11878 +images-15496.png,11879 +images-15497.png,11880 +images-15498.png,11881 +images-15499.png,11882 +images-15500.png,11883 +images-15501.png,11884 +images-15502.png,11885 +images-15503.png,11886 +images-15504.png,11887 +images-15505.png,11888 +images-15506.png,11889 +images-15507.png,11890 +images-15508.png,11891 +images-15509.png,11892 +images-15510.png,11893 +images-15511.png,11894 +images-15512.png,11895 +images-15513.png,11896 +images-15514.png,11897 +images-15515.png,11898 +images-15516.png,11899 +images-15517.png,11900 +images-15518.png,11901 +images-15519.png,11902 +images-15520.png,11903 +images-15521.png,11904 +images-15522.png,11905 +images-15523.png,11906 +images-15524.png,11907 +images-15525.png,11908 +images-15526.png,11909 +images-15527.png,11910 +images-15528.png,11911 +images-15529.png,11912 +images-15530.png,11913 +images-15531.png,11914 +images-15532.png,11915 +images-15533.png,11916 +images-15534.png,11917 +images-15535.png,11918 +images-15536.png,11919 +images-15537.png,11920 +images-15538.png,11921 +images-15539.png,11922 +images-15540.png,11923 +images-15541.png,11924 +images-15542.png,11925 +images-15543.png,11926 +images-15544.png,11927 +images-15545.png,11928 +images-15546.png,11929 +images-15547.png,11930 +images-15548.png,11931 +images-15549.png,11932 +images-15550.png,11933 +images-15551.png,11934 +images-15552.png,11935 +images-15553.png,11936 +images-15554.png,11937 +images-15555.png,11938 +images-15556.png,11939 +images-15557.png,11940 +images-15558.png,11941 +images-15559.png,11942 +images-15560.png,11943 +images-15561.png,11944 +images-15562.png,11945 +images-15563.png,11946 +images-15564.png,11947 +images-15565.png,11948 +images-15566.png,11949 +images-15567.png,11950 +images-15568.png,11951 +images-15569.png,11952 +images-15570.png,11953 +images-15571.png,11954 +images-15572.png,11955 +images-15573.png,11956 +images-15574.png,11957 +images-15575.png,11958 +images-15576.png,11959 +images-15577.png,11960 +images-15578.png,11961 +images-15579.png,11962 +images-15580.png,11963 +images-15581.png,11964 +images-15582.png,11965 +images-15583.png,11966 +images-15584.png,11967 +images-15585.png,11968 +images-15586.png,11969 +images-15587.png,11970 +images-15588.png,11971 +images-15589.png,11972 +images-15590.png,11973 +images-15591.png,11974 +images-15592.png,11975 +images-15593.png,11976 +images-15594.png,11977 +images-15595.png,11978 +images-15596.png,11979 +images-15597.png,11980 +images-15598.png,11981 +images-15599.png,11982 +images-15600.png,11983 +images-15601.png,11984 +images-15602.png,11985 +images-15603.png,11986 +images-15604.png,11987 +images-15605.png,11988 +images-15606.png,11989 +images-15607.png,11990 +images-15608.png,11991 +images-15609.png,11992 +images-15610.png,11993 +images-15611.png,11994 +images-15612.png,11995 +images-15613.png,11996 +images-15614.png,11997 +images-15615.png,11998 +images-15616.png,11999 +images-15617.png,12000 +images-15618.png,12001 +images-15619.png,12002 +images-15620.png,12003 +images-15621.png,12004 +images-15622.png,12005 +images-15623.png,12006 +images-15624.png,12007 +images-15625.png,12008 +images-15626.png,12009 +images-15627.png,12010 +images-15628.png,12011 +images-15629.png,12012 +images-15630.png,12013 +images-15631.png,12014 +images-15632.png,12015 +images-15633.png,12016 +images-15634.png,12017 +images-15635.png,12018 +images-15636.png,12019 +images-15637.png,12020 +images-15638.png,12021 +images-15639.png,12022 +images-15640.png,12023 +images-15641.png,12024 +images-15642.png,12025 +images-15643.png,12026 +images-15644.png,12027 +images-15645.png,12028 +images-15646.png,12029 +images-15647.png,12030 +images-15648.png,12031 +images-15649.png,12032 +images-15650.png,12033 +images-15651.png,12034 +images-15652.png,12035 +images-15653.png,12036 +images-15654.png,12037 +images-15655.png,12038 +images-15656.png,12039 +images-15657.png,12040 +images-15658.png,12041 +images-15659.png,12042 +images-15660.png,12043 +images-15661.png,12044 +images-15662.png,12045 +images-15663.png,12046 +images-15664.png,12047 +images-15665.png,12048 +images-15666.png,12049 +images-15667.png,12050 +images-15668.png,12051 +images-15669.png,12052 +images-15670.png,12053 +images-15671.png,12054 +images-15672.png,12055 +images-15673.png,12056 +images-15674.png,12057 +images-15675.png,12058 +images-15676.png,12059 +images-15677.png,12060 +images-15678.png,12061 +images-15679.png,12062 +images-15680.png,12063 +images-15681.png,12064 +images-15682.png,12065 +images-15683.png,12066 +images-15684.png,12067 +images-15685.png,12068 +images-15686.png,12069 +images-15687.png,12070 +images-15688.png,12071 +images-15689.png,12072 +images-15690.png,12073 +images-15691.png,12074 +images-15692.png,12075 +images-15693.png,12076 +images-15694.png,12077 +images-15695.png,12078 +images-15696.png,12079 +images-15697.png,12080 +images-15698.png,12081 +images-15699.png,12082 +images-15700.png,12083 +images-15701.png,12084 +images-15702.png,12085 +images-15703.png,12086 +images-15704.png,12087 +images-15705.png,12088 +images-15706.png,12089 +images-15707.png,12090 +images-15708.png,12091 +images-15709.png,12092 +images-15710.png,12093 +images-15711.png,12094 +images-15712.png,12095 +images-15713.png,12096 +images-15714.png,12097 +images-15715.png,12098 +images-15716.png,12099 +images-15717.png,12100 +images-15718.png,12101 +images-15719.png,12102 +images-15720.png,12103 +images-15721.png,12104 +images-15722.png,12105 +images-15723.png,12106 +images-15724.png,12107 +images-15725.png,12108 +images-15726.png,12109 +images-15727.png,12110 +images-15728.png,12111 +images-15729.png,12112 +images-15730.png,12113 +images-15731.png,12114 +images-15732.png,12115 +images-15733.png,12116 +images-15734.png,12117 +images-15735.png,12118 +images-15736.png,12119 +images-15737.png,12120 +images-15738.png,12121 +images-15739.png,12122 +images-15740.png,12123 +images-15741.png,12124 +images-15742.png,12125 +images-15743.png,12126 +images-15744.png,12127 +images-15745.png,12128 +images-15746.png,12129 +images-15747.png,12130 +images-15748.png,12131 +images-15749.png,12132 +images-15750.png,12133 +images-15751.png,12134 +images-15752.png,12135 +images-15753.png,12136 +images-15754.png,12137 +images-15755.png,12138 +images-15756.png,12139 +images-15757.png,12140 +images-15758.png,12141 +images-15759.png,12142 +images-15760.png,12143 +images-15761.png,12144 +images-15762.png,12145 +images-15763.png,12146 +images-15764.png,12147 +images-15765.png,12148 +images-15766.png,12149 +images-15767.png,12150 +images-15768.png,12151 +images-15769.png,12152 +images-15770.png,12153 +images-15771.png,12154 +images-15772.png,12155 +images-15773.png,12156 +images-15774.png,12157 +images-15775.png,12158 +images-15776.png,12159 +images-15777.png,12160 +images-15778.png,12161 +images-15779.png,12162 +images-15780.png,12163 +images-15781.png,12164 +images-15782.png,12165 +images-15783.png,12166 +images-15784.png,12167 +images-15785.png,12168 +images-15786.png,12169 +images-15787.png,12170 +images-15788.png,12171 +images-15789.png,12172 +images-15790.png,12173 +images-15791.png,12174 +images-15792.png,12175 +images-15793.png,12176 +images-15794.png,12177 +images-15795.png,12178 +images-15796.png,12179 +images-15797.png,12180 +images-15798.png,12181 +images-15799.png,12182 +images-15800.png,12183 +images-15801.png,12184 +images-15802.png,12185 +images-15803.png,12186 +images-15804.png,12187 +images-15805.png,12188 +images-15806.png,12189 +images-15807.png,12190 +images-15808.png,12191 +images-15809.png,12192 +images-15810.png,12193 +images-15811.png,12194 +images-15812.png,12195 +images-15813.png,12196 +images-15814.png,12197 +images-15815.png,12198 +images-15816.png,12199 +images-15817.png,12200 +images-15818.png,12201 +images-15819.png,12202 +images-15820.png,12203 +images-15821.png,12204 +images-15822.png,12205 +images-15823.png,12206 +images-15824.png,12207 +images-15825.png,12208 +images-15826.png,12209 +images-15827.png,12210 +images-15828.png,12211 +images-15829.png,12212 +images-15830.png,12213 +images-15831.png,12214 +images-15832.png,12215 +images-15833.png,12216 +images-15834.png,12217 +images-15835.png,12218 +images-15836.png,12219 +images-15837.png,12220 +images-15838.png,12221 +images-15839.png,12222 +images-15840.png,12223 +images-15841.png,12224 +images-15842.png,12225 +images-15843.png,12226 +images-15844.png,12227 +images-15845.png,12228 +images-15846.png,12229 +images-15847.png,12230 +images-15848.png,12231 +images-15849.png,12232 +images-15850.png,12233 +images-15851.png,12234 +images-15852.png,12235 +images-15853.png,12236 +images-15854.png,12237 +images-15855.png,12238 +images-15856.png,12239 +images-15857.png,12240 +images-15858.png,12241 +images-15859.png,12242 +images-15860.png,12243 +images-15861.png,12244 +images-15862.png,12245 +images-15863.png,12246 +images-15864.png,12247 +images-15865.png,12248 +images-15866.png,12249 +images-15867.png,12250 +images-15868.png,12251 +images-15869.png,12252 +images-15870.png,12253 +images-15871.png,12254 +images-15872.png,12255 +images-15873.png,12256 +images-15874.png,12257 +images-15875.png,12258 +images-15876.png,12259 +images-15877.png,12260 +images-15878.png,12261 +images-15879.png,12262 +images-15880.png,12263 +images-15881.png,12264 +images-15882.png,12265 +images-15883.png,12266 +images-15884.png,12267 +images-15885.png,12268 +images-15886.png,12269 +images-15887.png,12270 +images-15888.png,12271 +images-15889.png,12272 +images-15890.png,12273 +images-15891.png,12274 +images-15892.png,12275 +images-15893.png,12276 +images-15894.png,12277 +images-15895.png,12278 +images-15896.png,12279 +images-15897.png,12280 +images-15898.png,12281 +images-15899.png,12282 +images-15900.png,12283 +images-15901.png,12284 +images-15902.png,12285 +images-15903.png,12286 +images-15904.png,12287 +images-15905.png,12288 +images-15906.png,12289 +images-15907.png,12290 +images-15908.png,12291 +images-15909.png,12292 +images-15910.png,12293 +images-15911.png,12294 +images-15912.png,12295 +images-15913.png,12296 +images-15914.png,12297 +images-15915.png,12298 +images-15916.png,12299 +images-15917.png,12300 +images-15918.png,12301 +images-15919.png,12302 +images-15920.png,12303 +images-15921.png,12304 +images-15922.png,12305 +images-15923.png,12306 +images-15924.png,12307 +images-15925.png,12308 +images-15926.png,12309 +images-15927.png,12310 +images-15928.png,12311 +images-15929.png,12312 +images-15930.png,12313 +images-15931.png,12314 +images-15932.png,12315 +images-15933.png,12316 +images-15934.png,12317 +images-15935.png,12318 +images-15936.png,12319 +images-15937.png,12320 +images-15938.png,12321 +images-15939.png,12322 +images-15940.png,12323 +images-15941.png,12324 +images-15942.png,12325 +images-15943.png,12326 +images-15944.png,12327 +images-15945.png,12328 +images-15946.png,12329 +images-15947.png,12330 +images-15948.png,12331 +images-15949.png,12332 +images-15950.png,12333 +images-15951.png,12334 +images-15952.png,12335 +images-15953.png,12336 +images-15954.png,12337 +images-15955.png,12338 +images-15956.png,12339 +images-15957.png,12340 +images-15958.png,12341 +images-15959.png,12342 +images-15960.png,12343 +images-15961.png,12344 +images-15962.png,12345 +images-15963.png,12346 +images-15964.png,12347 +images-15965.png,12348 +images-15966.png,12349 +images-15967.png,12350 +images-15968.png,12351 +images-15969.png,12352 +images-15970.png,12353 +images-15971.png,12354 +images-15972.png,12355 +images-15973.png,12356 +images-15974.png,12357 +images-15975.png,12358 +images-15976.png,12359 +images-15977.png,12360 +images-15978.png,12361 +images-15979.png,12362 +images-15980.png,12363 +images-15981.png,12364 +images-15982.png,12365 +images-15983.png,12366 +images-15984.png,12367 +images-15985.png,12368 +images-15986.png,12369 +images-15987.png,12370 +images-15988.png,12371 +images-15989.png,12372 +images-15990.png,12373 +images-15991.png,12374 +images-15992.png,12375 +images-15993.png,12376 +images-15994.png,12377 +images-15995.png,12378 +images-15996.png,12379 +images-15997.png,12380 +images-15998.png,12381 +images-15999.png,12382 +images-16000.png,12383 +images-16001.png,12384 +images-16002.png,12385 +images-16003.png,12386 +images-16004.png,12387 +images-16005.png,12388 +images-16006.png,12389 +images-16007.png,12390 +images-16008.png,12391 +images-16009.png,12392 +images-16010.png,12393 +images-16011.png,12394 +images-16012.png,12395 +images-16013.png,12396 +images-16014.png,12397 +images-16015.png,12398 +images-16016.png,12399 +images-16017.png,12400 +images-16018.png,12401 +images-16019.png,12402 +images-16020.png,12403 +images-16021.png,12404 +images-16022.png,12405 +images-16023.png,12406 +images-16024.png,12407 +images-16025.png,12408 +images-16026.png,12409 +images-16027.png,12410 +images-16028.png,12411 +images-16029.png,12412 +images-16030.png,12413 +images-16031.png,12414 +images-16032.png,12415 +images-16033.png,12416 +images-16034.png,12417 +images-16035.png,12418 +images-16036.png,12419 +images-16037.png,12420 +images-16038.png,12421 +images-16039.png,12422 +images-16040.png,12423 +images-16041.png,12424 +images-16042.png,12425 +images-16043.png,12426 +images-16044.png,12427 +images-16045.png,12428 +images-16046.png,12429 +images-16047.png,12430 +images-16048.png,12431 +images-16049.png,12432 +images-16050.png,12433 +images-16051.png,12434 +images-16052.png,12435 +images-16053.png,12436 +images-16054.png,12437 +images-16055.png,12438 +images-16056.png,12439 +images-16057.png,12440 +images-16058.png,12441 +images-16059.png,12442 +images-16060.png,12443 +images-16061.png,12444 +images-16062.png,12445 +images-16063.png,12446 +images-16064.png,12447 +images-16065.png,12448 +images-16066.png,12449 +images-16067.png,12450 +images-16068.png,12451 +images-16069.png,12452 +images-16070.png,12453 +images-16071.png,12454 +images-16072.png,12455 +images-16073.png,12456 +images-16074.png,12457 +images-16075.png,12458 +images-16076.png,12459 +images-16077.png,12460 +images-16078.png,12461 +images-16079.png,12462 +images-16080.png,12463 +images-16081.png,12464 +images-16082.png,12465 +images-16083.png,12466 +images-16084.png,12467 +images-16085.png,12468 +images-16086.png,12469 +images-16087.png,12470 +images-16088.png,12471 +images-16089.png,12472 +images-16090.png,12473 +images-16091.png,12474 +images-16092.png,12475 +images-16093.png,12476 +images-16094.png,12477 +images-16095.png,12478 +images-16096.png,12479 +images-16097.png,12480 +images-16098.png,12481 +images-16099.png,12482 +images-16100.png,12483 +images-16101.png,12484 +images-16102.png,12485 +images-16103.png,12486 +images-16104.png,12487 +images-16105.png,12488 +images-16106.png,12489 +images-16107.png,12490 +images-16108.png,12491 +images-16109.png,12492 +images-16110.png,12493 +images-16111.png,12494 +images-16112.png,12495 +images-16113.png,12496 +images-16114.png,12497 +images-16115.png,12498 +images-16116.png,12499 +images-16117.png,12500 +images-16118.png,12501 +images-16119.png,12502 +images-16120.png,12503 +images-16121.png,12504 +images-16122.png,12505 +images-16123.png,12506 +images-16124.png,12507 +images-16125.png,12508 +images-16126.png,12509 +images-16127.png,12510 +images-16128.png,12511 +images-16129.png,12512 +images-16130.png,12513 +images-16131.png,12514 +images-16132.png,12515 +images-16133.png,12516 +images-16134.png,12517 +images-16135.png,12518 +images-16136.png,12519 +images-16137.png,12520 +images-16138.png,12521 +images-16139.png,12522 +images-16140.png,12523 +images-16141.png,12524 +images-16142.png,12525 +images-16143.png,12526 +images-16144.png,12527 +images-16145.png,12528 +images-16146.png,12529 +images-16147.png,12530 +images-16148.png,12531 +images-16149.png,12532 +images-16150.png,12533 +images-16151.png,12534 +images-16152.png,12535 +images-16153.png,12536 +images-16154.png,12537 +images-16155.png,12538 +images-16156.png,12539 +images-16157.png,12540 +images-16158.png,12541 +images-16159.png,12542 +images-16160.png,12543 +images-16161.png,12544 +images-16162.png,12545 +images-16163.png,12546 +images-16164.png,12547 +images-16165.png,12548 +images-16166.png,12549 +images-16167.png,12550 +images-16168.png,12551 +images-16169.png,12552 +images-16170.png,12553 +images-16171.png,12554 +images-16172.png,12555 +images-16173.png,12556 +images-16174.png,12557 +images-16175.png,12558 +images-16176.png,12559 +images-16177.png,12560 +images-16178.png,12561 +images-16179.png,12562 +images-16180.png,12563 +images-16181.png,12564 +images-16182.png,12565 +images-16183.png,12566 +images-16184.png,12567 +images-16185.png,12568 +images-16186.png,12569 +images-16187.png,12570 +images-16188.png,12571 +images-16189.png,12572 +images-16190.png,12573 +images-16191.png,12574 +images-16192.png,12575 +images-16193.png,12576 +images-16194.png,12577 +images-16195.png,12578 +images-16196.png,12579 +images-16197.png,12580 +images-16198.png,12581 +images-16199.png,12582 +images-16200.png,12583 +images-16201.png,12584 +images-16202.png,12585 +images-16206.png,12586 +images-16207.png,12587 +images-16208.png,12588 +images-16209.png,12589 +images-16210.png,12590 +images-16211.png,12591 +images-16212.png,12592 +images-16213.png,12593 +images-16214.png,12594 +images-16215.png,12595 +images-16216.png,12596 +images-16217.png,12597 +images-16218.png,12598 +images-16219.png,12599 +images-16220.png,12600 +images-16221.png,12601 +images-16222.png,12602 +images-16223.png,12603 +images-16224.png,12604 +images-16225.png,12605 +images-16226.png,12606 +images-16227.png,12607 +images-16228.png,12608 +images-16229.png,12609 +images-16230.png,12610 +images-16231.png,12611 +images-16232.png,12612 +images-16233.png,12613 +images-16234.png,12614 +images-16235.png,12615 +images-16236.png,12616 +images-16237.png,12617 +images-16238.png,12618 +images-16239.png,12619 +images-16240.png,12620 +images-16241.png,12621 +images-16242.png,12622 +images-16243.png,12623 +images-16244.png,12624 +images-16245.png,12625 +images-16246.png,12626 +images-16247.png,12627 +images-16248.png,12628 +images-16249.png,12629 +images-16250.png,12630 +images-16251.png,12631 +images-16252.png,12632 +images-16253.png,12633 +images-16254.png,12634 +images-16255.png,12635 +images-16256.png,12636 +images-16257.png,12637 +images-16258.png,12638 +images-16259.png,12639 +images-16260.png,12640 +images-16261.png,12641 +images-16262.png,12642 +images-16263.png,12643 +images-16264.png,12644 +images-16265.png,12645 +images-16266.png,12646 +images-16267.png,12647 +images-16268.png,12648 +images-16269.png,12649 +images-16270.png,12650 +images-16271.png,12651 +images-16272.png,12652 +images-16273.png,12653 +images-16274.png,12654 +images-16275.png,12655 +images-16276.png,12656 +images-16277.png,12657 +images-16278.png,12658 +images-16279.png,12659 +images-16280.png,12660 +images-16281.png,12661 +images-16282.png,12662 +images-16283.png,12663 +images-16284.png,12664 +images-16285.png,12665 +images-16286.png,12666 +images-16287.png,12667 +images-16288.png,12668 +images-16289.png,12669 +images-16290.png,12670 +images-16291.png,12671 +images-16292.png,12672 +images-16293.png,12673 +images-16294.png,12674 +images-16295.png,12675 +images-16296.png,12676 +images-16297.png,12677 +images-16298.png,12678 +images-16299.png,12679 +images-16300.png,12680 +images-16301.png,12681 +images-16302.png,12682 +images-16303.png,12683 +images-16304.png,12684 +images-16305.png,12685 +images-16306.png,12686 +images-16307.png,12687 +images-16308.png,12688 +images-16309.png,12689 +images-16310.png,12690 +images-16311.png,12691 +images-16312.png,12692 +images-16313.png,12693 +images-16314.png,12694 +images-16315.png,12695 +images-16316.png,12696 +images-16317.png,12697 +images-16318.png,12698 +images-16319.png,12699 +images-16320.png,12700 +images-16321.png,12701 +images-16322.png,12702 +images-16323.png,12703 +images-16324.png,12704 +images-16325.png,12705 +images-16326.png,12706 +images-16327.png,12707 +images-16328.png,12708 +images-16329.png,12709 +images-16330.png,12710 +images-16331.png,12711 +images-16332.png,12712 +images-16333.png,12713 +images-16334.png,12714 +images-16335.png,12715 +images-16336.png,12716 +images-16337.png,12717 +images-16338.png,12718 +images-16339.png,12719 +images-16340.png,12720 +images-16341.png,12721 +images-16342.png,12722 +images-16343.png,12723 +images-16344.png,12724 +images-16345.png,12725 +images-16346.png,12726 +images-16347.png,12727 +images-16348.png,12728 +images-16349.png,12729 +images-16350.png,12730 +images-16351.png,12731 +images-16352.png,12732 +images-16353.png,12733 +images-16354.png,12734 +images-16355.png,12735 +images-16356.png,12736 +images-16357.png,12737 +images-16358.png,12738 +images-16359.png,12739 +images-16360.png,12740 +images-16361.png,12741 +images-16362.png,12742 +images-16363.png,12743 +images-16364.png,12744 +images-16365.png,12745 +images-16366.png,12746 +images-16367.png,12747 +images-16368.png,12748 +images-16369.png,12749 +images-16370.png,12750 +images-16371.png,12751 +images-16372.png,12752 +images-16373.png,12753 +images-16374.png,12754 +images-16375.png,12755 +images-16376.png,12756 +images-16377.png,12757 +images-16378.png,12758 +images-16379.png,12759 +images-16380.png,12760 +images-16381.png,12761 +images-16382.png,12762 +images-16383.png,12763 +images-16384.png,12764 +images-16385.png,12765 +images-16386.png,12766 +images-16387.png,12767 +images-16388.png,12768 +images-16389.png,12769 +images-16390.png,12770 +images-16391.png,12771 +images-16392.png,12772 +images-16393.png,12773 +images-16394.png,12774 +images-16395.png,12775 +images-16396.png,12776 +images-16397.png,12777 +images-16398.png,12778 +images-16399.png,12779 +images-16400.png,12780 +images-16401.png,12781 +images-16402.png,12782 +images-16403.png,12783 +images-16404.png,12784 +images-16405.png,12785 +images-16406.png,12786 +images-16407.png,12787 +images-16408.png,12788 +images-16409.png,12789 +images-16410.png,12790 +images-16411.png,12791 +images-16412.png,12792 +images-16413.png,12793 +images-16414.png,12794 +images-16415.png,12795 +images-16416.png,12796 +images-16417.png,12797 +images-16418.png,12798 +images-16419.png,12799 +images-16420.png,12800 +images-16421.png,12801 +images-16422.png,12802 +images-16423.png,12803 +images-16424.png,12804 +images-16425.png,12805 +images-16426.png,12806 +images-16427.png,12807 +images-16428.png,12808 +images-16429.png,12809 +images-16430.png,12810 +images-16431.png,12811 +images-16432.png,12812 +images-16433.png,12813 +images-16434.png,12814 +images-16435.png,12815 +images-16436.png,12816 +images-16437.png,12817 +images-16438.png,12818 +images-16439.png,12819 +images-16440.png,12820 +images-16441.png,12821 +images-16442.png,12822 +images-16443.png,12823 +images-16444.png,12824 +images-16445.png,12825 +images-16446.png,12826 +images-16447.png,12827 +images-16448.png,12828 +images-16449.png,12829 +images-16450.png,12830 +images-16451.png,12831 +images-16452.png,12832 +images-16453.png,12833 +images-16454.png,12834 +images-16455.png,12835 +images-16456.png,12836 +images-16457.png,12837 +images-16458.png,12838 +images-16459.png,12839 +images-16460.png,12840 +images-16461.png,12841 +images-16462.png,12842 +images-16463.png,12843 +images-16464.png,12844 +images-16465.png,12845 +images-16466.png,12846 +images-16467.png,12847 +images-16468.png,12848 +images-16469.png,12849 +images-16470.png,12850 +images-16471.png,12851 +images-16484.png,12852 +images-16485.png,12853 +images-16486.png,12854 +images-16487.png,12855 +images-16488.png,12856 +images-16489.png,12857 +images-16490.png,12858 +images-16491.png,12859 +images-16492.png,12860 +images-16493.png,12861 +images-16494.png,12862 +images-16495.png,12863 +images-16496.png,12864 +images-16497.png,12865 +images-16498.png,12866 +images-16499.png,12867 +images-16500.png,12868 +images-16501.png,12869 +images-16502.png,12870 +images-16503.png,12871 +images-16504.png,12872 +images-16505.png,12873 +images-16506.png,12874 +images-16507.png,12875 +images-16508.png,12876 +images-16509.png,12877 +images-16510.png,12878 +images-16511.png,12879 +images-16512.png,12880 +images-16513.png,12881 +images-16514.png,12882 +images-16515.png,12883 +images-16516.png,12884 +images-16517.png,12885 +images-16518.png,12886 +images-16519.png,12887 +images-16520.png,12888 +images-16521.png,12889 +images-16522.png,12890 +images-16523.png,12891 +images-16524.png,12892 +images-16525.png,12893 +images-16526.png,12894 +images-16527.png,12895 +images-16528.png,12896 +images-16529.png,12897 +images-16530.png,12898 +images-16531.png,12899 +images-16532.png,12900 +images-16533.png,12901 +images-16534.png,12902 +images-16535.png,12903 +images-16536.png,12904 +images-16537.png,12905 +images-16538.png,12906 +images-16539.png,12907 +images-16540.png,12908 +images-16541.png,12909 +images-16542.png,12910 +images-16543.png,12911 +images-16544.png,12912 +images-16545.png,12913 +images-16546.png,12914 +images-16547.png,12915 +images-16548.png,12916 +images-16549.png,12917 +images-16550.png,12918 +images-16551.png,12919 +images-16552.png,12920 +images-16553.png,12921 +images-16554.png,12922 +images-16555.png,12923 +images-16556.png,12924 +images-16557.png,12925 +images-16558.png,12926 +images-16559.png,12927 +images-16560.png,12928 +images-16561.png,12929 +images-16562.png,12930 +images-16563.png,12931 +images-16564.png,12932 +images-16565.png,12933 +images-16566.png,12934 +images-16567.png,12935 +images-16568.png,12936 +images-16569.png,12937 +images-16570.png,12938 +images-16571.png,12939 +images-16572.png,12940 +images-16573.png,12941 +images-16574.png,12942 +images-16575.png,12943 +images-16576.png,12944 +images-16577.png,12945 +images-16578.png,12946 +images-16579.png,12947 +images-16580.png,12948 +images-16581.png,12949 +images-16582.png,12950 +images-16583.png,12951 +images-16584.png,12952 +images-16585.png,12953 +images-16586.png,12954 +images-16587.png,12955 +images-16588.png,12956 +images-16589.png,12957 +images-16590.png,12958 +images-16591.png,12959 +images-16592.png,12960 +images-16593.png,12961 +images-16594.png,12962 +images-16595.png,12963 +images-16596.png,12964 +images-16597.png,12965 +images-16598.png,12966 +images-16599.png,12967 +images-16600.png,12968 +images-16601.png,12969 +images-16602.png,12970 +images-16603.png,12971 +images-16604.png,12972 +images-16605.png,12973 +images-16606.png,12974 +images-16607.png,12975 +images-16608.png,12976 +images-16609.png,12977 +images-16610.png,12978 +images-16611.png,12979 +images-16612.png,12980 +images-16613.png,12981 +images-16614.png,12982 +images-16615.png,12983 +images-16616.png,12984 +images-16617.png,12985 +images-16618.png,12986 +images-16619.png,12987 +images-16620.png,12988 +images-16621.png,12989 +images-16622.png,12990 +images-16623.png,12991 +images-16624.png,12992 +images-16625.png,12993 +images-16626.png,12994 +images-16627.png,12995 +images-16628.png,12996 +images-16629.png,12997 +images-16630.png,12998 +images-16631.png,12999 +images-16632.png,13000 +images-16633.png,13001 +images-16634.png,13002 +images-16635.png,13003 +images-16636.png,13004 +images-16637.png,13005 +images-16638.png,13006 +images-16639.png,13007 +images-16640.png,13008 +images-16641.png,13009 +images-16642.png,13010 +images-16643.png,13011 +images-16644.png,13012 +images-16645.png,13013 +images-16646.png,13014 +images-16647.png,13015 +images-16648.png,13016 +images-16649.png,13017 +images-16650.png,13018 +images-16651.png,13019 +images-16652.png,13020 +images-16653.png,13021 +images-16654.png,13022 +images-16655.png,13023 +images-16656.png,13024 +images-16657.png,13025 +images-16658.png,13026 +images-16659.png,13027 +images-16660.png,13028 +images-16661.png,13029 +images-16662.png,13030 +images-16663.png,13031 +images-16664.png,13032 +images-16665.png,13033 +images-16666.png,13034 +images-16667.png,13035 +images-16668.png,13036 +images-16669.png,13037 +images-16670.png,13038 +images-16671.png,13039 +images-16672.png,13040 +images-16673.png,13041 +images-16674.png,13042 +images-16675.png,13043 +images-16676.png,13044 +images-16677.png,13045 +images-16678.png,13046 +images-16679.png,13047 +images-16680.png,13048 +images-16681.png,13049 +images-16682.png,13050 +images-16683.png,13051 +images-16684.png,13052 +images-16685.png,13053 +images-16686.png,13054 +images-16687.png,13055 +images-16688.png,13056 +images-16689.png,13057 +images-16695.png,13058 +images-16696.png,13059 +images-16697.png,13060 +images-16698.png,13061 +images-16699.png,13062 +images-16700.png,13063 +images-16701.png,13064 +images-16702.png,13065 +images-16703.png,13066 +images-16704.png,13067 +images-16705.png,13068 +images-16706.png,13069 +images-16707.png,13070 +images-16708.png,13071 +images-16709.png,13072 +images-16710.png,13073 +images-16711.png,13074 +images-16712.png,13075 +images-16713.png,13076 +images-16714.png,13077 +images-16715.png,13078 +images-16716.png,13079 +images-16717.png,13080 +images-16718.png,13081 +images-16719.png,13082 +images-16720.png,13083 +images-16721.png,13084 +images-16722.png,13085 +images-16723.png,13086 +images-16724.png,13087 +images-16725.png,13088 +images-16726.png,13089 +images-16727.png,13090 +images-16728.png,13091 +images-16729.png,13092 +images-16730.png,13093 +images-16731.png,13094 +images-16732.png,13095 +images-16733.png,13096 +images-16734.png,13097 +images-16735.png,13098 +images-16736.png,13099 +images-16737.png,13100 +images-16738.png,13101 +images-16739.png,13102 +images-16740.png,13103 +images-16741.png,13104 +images-16742.png,13105 +images-16743.png,13106 +images-16744.png,13107 +images-16745.png,13108 +images-16746.png,13109 +images-16747.png,13110 +images-16748.png,13111 +images-16749.png,13112 +images-16750.png,13113 +images-16751.png,13114 +images-16752.png,13115 +images-16753.png,13116 +images-16754.png,13117 +images-16755.png,13118 +images-16756.png,13119 +images-16757.png,13120 +images-16758.png,13121 +images-16759.png,13122 +images-16760.png,13123 +images-16761.png,13124 +images-16762.png,13125 +images-16763.png,13126 +images-16764.png,13127 +images-16765.png,13128 +images-16766.png,13129 +images-16767.png,13130 +images-16768.png,13131 +images-16769.png,13132 +images-16770.png,13133 +images-16771.png,13134 +images-16772.png,13135 +images-16773.png,13136 +images-16774.png,13137 +images-16775.png,13138 +images-16776.png,13139 +images-16777.png,13140 +images-16778.png,13141 +images-16779.png,13142 +images-16780.png,13143 +images-16781.png,13144 +images-16782.png,13145 +images-16783.png,13146 +images-16784.png,13147 +images-16785.png,13148 +images-16786.png,13149 +images-16787.png,13150 +images-16788.png,13151 +images-16789.png,13152 +images-16790.png,13153 +images-16791.png,13154 +images-16792.png,13155 +images-16793.png,13156 +images-16794.png,13157 +images-16795.png,13158 +images-16796.png,13159 +images-16797.png,13160 +images-16798.png,13161 +images-16799.png,13162 +images-16800.png,13163 +images-16801.png,13164 +images-16802.png,13165 +images-16803.png,13166 +images-16804.png,13167 +images-16805.png,13168 +images-16806.png,13169 +images-16807.png,13170 +images-16808.png,13171 +images-16809.png,13172 +images-16810.png,13173 +images-16811.png,13174 +images-16812.png,13175 +images-16813.png,13176 +images-16814.png,13177 +images-16815.png,13178 +images-16816.png,13179 +images-16817.png,13180 +images-16818.png,13181 +images-16819.png,13182 +images-16820.png,13183 +images-16821.png,13184 +images-16822.png,13185 +images-16823.png,13186 +images-16824.png,13187 +images-16825.png,13188 +images-16826.png,13189 +images-16827.png,13190 +images-16828.png,13191 +images-16829.png,13192 +images-16830.png,13193 +images-16831.png,13194 +images-16832.png,13195 +images-16833.png,13196 +images-16834.png,13197 +images-16835.png,13198 +images-16836.png,13199 +images-16837.png,13200 +images-16838.png,13201 +images-16839.png,13202 +images-16840.png,13203 +images-16841.png,13204 +images-16842.png,13205 +images-16843.png,13206 +images-16844.png,13207 +images-16845.png,13208 +images-16846.png,13209 +images-16847.png,13210 +images-16848.png,13211 +images-16849.png,13212 +images-16850.png,13213 +images-16851.png,13214 +images-16852.png,13215 +images-16853.png,13216 +images-16854.png,13217 +images-16855.png,13218 +images-16856.png,13219 +images-16857.png,13220 +images-16858.png,13221 +images-16859.png,13222 +images-16860.png,13223 +images-16861.png,13224 +images-16862.png,13225 +images-16863.png,13226 +images-16864.png,13227 +images-16865.png,13228 +images-16866.png,13229 +images-16867.png,13230 +images-16868.png,13231 +images-16869.png,13232 +images-16870.png,13233 +images-16871.png,13234 +images-16872.png,13235 +images-16873.png,13236 +images-16874.png,13237 +images-16875.png,13238 +images-16876.png,13239 +images-16877.png,13240 +images-16878.png,13241 +images-16879.png,13242 +images-16880.png,13243 +images-16881.png,13244 +images-16882.png,13245 +images-16883.png,13246 +images-16884.png,13247 +images-16885.png,13248 +images-16886.png,13249 +images-16887.png,13250 +images-16888.png,13251 +images-16889.png,13252 +images-16890.png,13253 +images-16891.png,13254 +images-16892.png,13255 +images-16893.png,13256 +images-16894.png,13257 +images-16895.png,13258 +images-16896.png,13259 +images-16897.png,13260 +images-16898.png,13261 +images-16899.png,13262 +images-16900.png,13263 +images-16901.png,13264 +images-16902.png,13265 +images-16903.png,13266 +images-16904.png,13267 +images-16905.png,13268 +images-16906.png,13269 +images-16907.png,13270 +images-16908.png,13271 +images-16909.png,13272 +images-16910.png,13273 +images-16911.png,13274 +images-16912.png,13275 +images-16913.png,13276 +images-16914.png,13277 +images-16915.png,13278 +images-16916.png,13279 +images-16917.png,13280 +images-16918.png,13281 +images-16919.png,13282 +images-16920.png,13283 +images-16921.png,13284 +images-16922.png,13285 +images-16923.png,13286 +images-16924.png,13287 +images-16925.png,13288 +images-16926.png,13289 +images-16927.png,13290 +images-16928.png,13291 +images-16929.png,13292 +images-16930.png,13293 +images-16931.png,13294 +images-16932.png,13295 +images-16936.png,13296 +images-16937.png,13297 +images-16938.png,13298 +images-16939.png,13299 +images-16940.png,13300 +images-16941.png,13301 +images-16942.png,13302 +images-16943.png,13303 +images-16944.png,13304 +images-16945.png,13305 +images-16946.png,13306 +images-16947.png,13307 +images-16948.png,13308 +images-16949.png,13309 +images-16950.png,13310 +images-16951.png,13311 +images-16952.png,13312 +images-16953.png,13313 +images-16954.png,13314 +images-16955.png,13315 +images-16956.png,13316 +images-16957.png,13317 +images-16958.png,13318 +images-16959.png,13319 +images-16960.png,13320 +images-16961.png,13321 +images-16962.png,13322 +images-16963.png,13323 +images-16964.png,13324 +images-16965.png,13325 +images-16966.png,13326 +images-16967.png,13327 +images-16968.png,13328 +images-16969.png,13329 +images-16970.png,13330 +images-16971.png,13331 +images-16972.png,13332 +images-16973.png,13333 +images-16974.png,13334 +images-16975.png,13335 +images-16976.png,13336 +images-16977.png,13337 +images-16978.png,13338 +images-16979.png,13339 +images-16980.png,13340 +images-16981.png,13341 +images-16982.png,13342 +images-16983.png,13343 +images-16984.png,13344 +images-16985.png,13345 +images-16986.png,13346 +images-16987.png,13347 +images-16988.png,13348 +images-16989.png,13349 +images-16990.png,13350 +images-16991.png,13351 +images-16992.png,13352 +images-16993.png,13353 +images-16994.png,13354 +images-16995.png,13355 +images-16996.png,13356 +images-16997.png,13357 +images-16998.png,13358 +images-16999.png,13359 +images-17000.png,13360 +images-17001.png,13361 +images-17002.png,13362 +images-17003.png,13363 +images-17004.png,13364 +images-17005.png,13365 +images-17006.png,13366 +images-17007.png,13367 +images-17008.png,13368 +images-17009.png,13369 +images-17010.png,13370 +images-17011.png,13371 +images-17012.png,13372 +images-17013.png,13373 +images-17014.png,13374 +images-17015.png,13375 +images-17016.png,13376 +images-17017.png,13377 +images-17018.png,13378 +images-17019.png,13379 +images-17020.png,13380 +images-17021.png,13381 +images-17022.png,13382 +images-17023.png,13383 +images-17024.png,13384 +images-17025.png,13385 +images-17026.png,13386 +images-17027.png,13387 +images-17028.png,13388 +images-17029.png,13389 +images-17030.png,13390 +images-17031.png,13391 +images-17032.png,13392 +images-17033.png,13393 +images-17034.png,13394 +images-17035.png,13395 +images-17036.png,13396 +images-17037.png,13397 +images-17038.png,13398 +images-17039.png,13399 +images-17040.png,13400 +images-17041.png,13401 +images-17042.png,13402 +images-17043.png,13403 +images-17044.png,13404 +images-17045.png,13405 +images-17046.png,13406 +images-17047.png,13407 +images-17048.png,13408 +images-17049.png,13409 +images-17050.png,13410 +images-17051.png,13411 +images-17052.png,13412 +images-17053.png,13413 +images-17068.png,13414 +images-17069.png,13415 +images-17070.png,13416 +images-17071.png,13417 +images-17072.png,13418 +images-17073.png,13419 +images-17074.png,13420 +images-17075.png,13421 +images-17076.png,13422 +images-17077.png,13423 +images-17078.png,13424 +images-17079.png,13425 +images-17080.png,13426 +images-17081.png,13427 +images-17082.png,13428 +images-17083.png,13429 +images-17084.png,13430 +images-17085.png,13431 +images-17086.png,13432 +images-17087.png,13433 +images-17088.png,13434 +images-17089.png,13435 +images-17090.png,13436 +images-17091.png,13437 +images-17092.png,13438 +images-17093.png,13439 +images-17094.png,13440 +images-17095.png,13441 +images-17096.png,13442 +images-17097.png,13443 +images-17098.png,13444 +images-17099.png,13445 +images-17100.png,13446 +images-17101.png,13447 +images-17102.png,13448 +images-17103.png,13449 +images-17104.png,13450 +images-17105.png,13451 +images-17106.png,13452 +images-17107.png,13453 +images-17108.png,13454 +images-17109.png,13455 +images-17110.png,13456 +images-17111.png,13457 +images-17112.png,13458 +images-17113.png,13459 +images-17114.png,13460 +images-17115.png,13461 +images-17116.png,13462 +images-17117.png,13463 +images-17118.png,13464 +images-17119.png,13465 +images-17120.png,13466 +images-17121.png,13467 +images-17122.png,13468 +images-17123.png,13469 +images-17124.png,13470 +images-17125.png,13471 +images-17126.png,13472 +images-17127.png,13473 +images-17128.png,13474 +images-17129.png,13475 +images-17130.png,13476 +images-17131.png,13477 +images-17132.png,13478 +images-17133.png,13479 +images-17134.png,13480 +images-17135.png,13481 +images-17136.png,13482 +images-17137.png,13483 +images-17138.png,13484 +images-17139.png,13485 +images-17140.png,13486 +images-17141.png,13487 +images-17142.png,13488 +images-17143.png,13489 +images-17144.png,13490 +images-17145.png,13491 +images-17146.png,13492 +images-17147.png,13493 +images-17148.png,13494 +images-17149.png,13495 +images-17150.png,13496 +images-17151.png,13497 +images-17152.png,13498 +images-17153.png,13499 +images-17154.png,13500 +images-17155.png,13501 +images-17156.png,13502 +images-17157.png,13503 +images-17158.png,13504 +images-17159.png,13505 +images-17160.png,13506 +images-17161.png,13507 +images-17162.png,13508 +images-17163.png,13509 +images-17164.png,13510 +images-17165.png,13511 +images-17166.png,13512 +images-17167.png,13513 +images-17168.png,13514 +images-17169.png,13515 +images-17170.png,13516 +images-17171.png,13517 +images-17172.png,13518 +images-17173.png,13519 +images-17174.png,13520 +images-17175.png,13521 +images-17176.png,13522 +images-17183.png,13523 +images-17184.png,13524 +images-17185.png,13525 +images-17186.png,13526 +images-17187.png,13527 +images-17188.png,13528 +images-17189.png,13529 +images-17190.png,13530 +images-17191.png,13531 +images-17192.png,13532 +images-17193.png,13533 +images-17194.png,13534 +images-17195.png,13535 +images-17196.png,13536 +images-17197.png,13537 +images-17198.png,13538 +images-17199.png,13539 +images-17200.png,13540 +images-17201.png,13541 +images-17202.png,13542 +images-17203.png,13543 +images-17204.png,13544 +images-17205.png,13545 +images-17206.png,13546 +images-17207.png,13547 +images-17208.png,13548 +images-17209.png,13549 +images-17210.png,13550 +images-17211.png,13551 +images-17212.png,13552 +images-17213.png,13553 +images-17214.png,13554 +images-17215.png,13555 +images-17216.png,13556 +images-17217.png,13557 +images-17218.png,13558 +images-17219.png,13559 +images-17220.png,13560 +images-17221.png,13561 +images-17222.png,13562 +images-17223.png,13563 +images-17224.png,13564 +images-17225.png,13565 +images-17226.png,13566 +images-17227.png,13567 +images-17228.png,13568 +images-17229.png,13569 +images-17230.png,13570 +images-17231.png,13571 +images-17232.png,13572 +images-17233.png,13573 +images-17234.png,13574 +images-17235.png,13575 +images-17236.png,13576 +images-17237.png,13577 +images-17238.png,13578 +images-17239.png,13579 +images-17240.png,13580 +images-17241.png,13581 +images-17242.png,13582 +images-17243.png,13583 +images-17244.png,13584 +images-17245.png,13585 +images-17246.png,13586 +images-17247.png,13587 +images-17248.png,13588 +images-17249.png,13589 +images-17250.png,13590 +images-17251.png,13591 +images-17252.png,13592 +images-17253.png,13593 +images-17254.png,13594 +images-17255.png,13595 +images-17256.png,13596 +images-17257.png,13597 +images-17258.png,13598 +images-17259.png,13599 +images-17260.png,13600 +images-17261.png,13601 +images-17262.png,13602 +images-17263.png,13603 +images-17264.png,13604 +images-17265.png,13605 +images-17266.png,13606 +images-17267.png,13607 +images-17268.png,13608 +images-17269.png,13609 +images-17270.png,13610 +images-17271.png,13611 +images-17272.png,13612 +images-17273.png,13613 +images-17274.png,13614 +images-17275.png,13615 +images-17276.png,13616 +images-17277.png,13617 +images-17278.png,13618 +images-17279.png,13619 +images-17280.png,13620 +images-17281.png,13621 +images-17282.png,13622 +images-17283.png,13623 +images-17284.png,13624 +images-17285.png,13625 +images-17286.png,13626 +images-17287.png,13627 +images-17288.png,13628 +images-17289.png,13629 +images-17290.png,13630 +images-17291.png,13631 +images-17292.png,13632 +images-17293.png,13633 +images-17294.png,13634 +images-17295.png,13635 +images-17296.png,13636 +images-17297.png,13637 +images-17298.png,13638 +images-17299.png,13639 +images-17300.png,13640 +images-17301.png,13641 +images-17302.png,13642 +images-17303.png,13643 +images-17304.png,13644 +images-17305.png,13645 +images-17306.png,13646 +images-17307.png,13647 +images-17308.png,13648 +images-17309.png,13649 +images-17310.png,13650 +images-17311.png,13651 +images-17312.png,13652 +images-17313.png,13653 +images-17314.png,13654 +images-17315.png,13655 +images-17316.png,13656 +images-17317.png,13657 +images-17318.png,13658 +images-17319.png,13659 +images-17320.png,13660 +images-17321.png,13661 +images-17322.png,13662 +images-17323.png,13663 +images-17324.png,13664 +images-17325.png,13665 +images-17326.png,13666 +images-17327.png,13667 +images-17328.png,13668 +images-17329.png,13669 +images-17330.png,13670 +images-17331.png,13671 +images-17332.png,13672 +images-17333.png,13673 +images-17334.png,13674 +images-17335.png,13675 +images-17336.png,13676 +images-17337.png,13677 +images-17338.png,13678 +images-17339.png,13679 +images-17340.png,13680 +images-17341.png,13681 +images-17342.png,13682 +images-17343.png,13683 +images-17344.png,13684 +images-17345.png,13685 +images-17346.png,13686 +images-17347.png,13687 +images-17348.png,13688 +images-17349.png,13689 +images-17350.png,13690 +images-17351.png,13691 +images-17352.png,13692 +images-17353.png,13693 +images-17354.png,13694 +images-17355.png,13695 +images-17356.png,13696 +images-17357.png,13697 +images-17358.png,13698 +images-17359.png,13699 +images-17360.png,13700 +images-17361.png,13701 +images-17362.png,13702 +images-17363.png,13703 +images-17364.png,13704 +images-17365.png,13705 +images-17366.png,13706 +images-17367.png,13707 +images-17368.png,13708 +images-17369.png,13709 +images-17370.png,13710 +images-17371.png,13711 +images-17372.png,13712 +images-17373.png,13713 +images-17374.png,13714 +images-17375.png,13715 +images-17376.png,13716 +images-17377.png,13717 +images-17378.png,13718 +images-17379.png,13719 +images-17380.png,13720 +images-17381.png,13721 +images-17382.png,13722 +images-17383.png,13723 +images-17384.png,13724 +images-17385.png,13725 +images-17386.png,13726 +images-17387.png,13727 +images-17388.png,13728 +images-17389.png,13729 +images-17390.png,13730 +images-17391.png,13731 +images-17392.png,13732 +images-17393.png,13733 +images-17394.png,13734 +images-17395.png,13735 +images-17396.png,13736 +images-17397.png,13737 +images-17398.png,13738 +images-17399.png,13739 +images-17400.png,13740 +images-17401.png,13741 +images-17402.png,13742 +images-17403.png,13743 +images-17404.png,13744 +images-17405.png,13745 +images-17406.png,13746 +images-17407.png,13747 +images-17408.png,13748 +images-17409.png,13749 +images-17410.png,13750 +images-17411.png,13751 +images-17412.png,13752 +images-17413.png,13753 +images-17414.png,13754 +images-17415.png,13755 +images-17416.png,13756 +images-17417.png,13757 +images-17418.png,13758 +images-17419.png,13759 +images-17420.png,13760 +images-17421.png,13761 +images-17422.png,13762 +images-17423.png,13763 +images-17424.png,13764 +images-17425.png,13765 +images-17426.png,13766 +images-17427.png,13767 +images-17428.png,13768 +images-17429.png,13769 +images-17430.png,13770 +images-17431.png,13771 +images-17432.png,13772 +images-17433.png,13773 +images-17434.png,13774 +images-17435.png,13775 +images-17436.png,13776 +images-17437.png,13777 +images-17438.png,13778 +images-17439.png,13779 +images-17440.png,13780 +images-17441.png,13781 +images-17442.png,13782 +images-17443.png,13783 +images-17444.png,13784 +images-17445.png,13785 +images-17446.png,13786 +images-17447.png,13787 +images-17448.png,13788 +images-17449.png,13789 +images-17450.png,13790 +images-17451.png,13791 +images-17452.png,13792 +images-17453.png,13793 +images-17454.png,13794 +images-17455.png,13795 +images-17456.png,13796 +images-17457.png,13797 +images-17458.png,13798 +images-17459.png,13799 +images-17460.png,13800 +images-17461.png,13801 +images-17462.png,13802 +images-17463.png,13803 +images-17464.png,13804 +images-17465.png,13805 +images-17466.png,13806 +images-17467.png,13807 +images-17468.png,13808 +images-17469.png,13809 +images-17470.png,13810 +images-17471.png,13811 +images-17472.png,13812 +images-17473.png,13813 +images-17474.png,13814 +images-17475.png,13815 +images-17476.png,13816 +images-17477.png,13817 +images-17478.png,13818 +images-17479.png,13819 +images-17480.png,13820 +images-17481.png,13821 +images-17482.png,13822 +images-17483.png,13823 +images-17484.png,13824 +images-17485.png,13825 +images-17486.png,13826 +images-17487.png,13827 +images-17488.png,13828 +images-17489.png,13829 +images-17490.png,13830 +images-17491.png,13831 +images-17492.png,13832 +images-17493.png,13833 +images-17494.png,13834 +images-17495.png,13835 +images-17496.png,13836 +images-17497.png,13837 +images-17498.png,13838 +images-17499.png,13839 +images-17500.png,13840 +images-17501.png,13841 +images-17502.png,13842 +images-17503.png,13843 +images-17504.png,13844 +images-17505.png,13845 +images-17506.png,13846 +images-17507.png,13847 +images-17508.png,13848 +images-17509.png,13849 +images-17510.png,13850 +images-17511.png,13851 +images-17512.png,13852 +images-17513.png,13853 +images-17514.png,13854 +images-17515.png,13855 +images-17516.png,13856 +images-17517.png,13857 +images-17518.png,13858 +images-17519.png,13859 +images-17520.png,13860 +images-17521.png,13861 +images-17522.png,13862 +images-17523.png,13863 +images-17524.png,13864 +images-17525.png,13865 +images-17526.png,13866 +images-17527.png,13867 +images-17528.png,13868 +images-17529.png,13869 +images-17530.png,13870 +images-17531.png,13871 +images-17532.png,13872 +images-17533.png,13873 +images-17534.png,13874 +images-17535.png,13875 +images-17536.png,13876 +images-17537.png,13877 +images-17538.png,13878 +images-17539.png,13879 +images-17540.png,13880 +images-17541.png,13881 +images-17542.png,13882 +images-17543.png,13883 +images-17544.png,13884 +images-17545.png,13885 +images-17546.png,13886 +images-17547.png,13887 +images-17548.png,13888 +images-17549.png,13889 +images-17550.png,13890 +images-17551.png,13891 +images-17552.png,13892 +images-17553.png,13893 +images-17554.png,13894 +images-17555.png,13895 +images-17556.png,13896 +images-17557.png,13897 +images-17558.png,13898 +images-17559.png,13899 +images-17560.png,13900 +images-17561.png,13901 +images-17562.png,13902 +images-17563.png,13903 +images-17564.png,13904 +images-17565.png,13905 +images-17566.png,13906 +images-17567.png,13907 +images-17568.png,13908 +images-17569.png,13909 +images-17570.png,13910 +images-17571.png,13911 +images-17572.png,13912 +images-17573.png,13913 +images-17574.png,13914 +images-17575.png,13915 +images-17576.png,13916 +images-17577.png,13917 +images-17578.png,13918 +images-17579.png,13919 +images-17580.png,13920 +images-17581.png,13921 +images-17582.png,13922 +images-17583.png,13923 +images-17584.png,13924 +images-17585.png,13925 +images-17586.png,13926 +images-17587.png,13927 +images-17588.png,13928 +images-17589.png,13929 +images-17590.png,13930 +images-17591.png,13931 +images-17592.png,13932 +images-17593.png,13933 +images-17594.png,13934 +images-17595.png,13935 +images-17596.png,13936 +images-17597.png,13937 +images-17598.png,13938 +images-17599.png,13939 +images-17600.png,13940 +images-17601.png,13941 +images-17602.png,13942 +images-17603.png,13943 +images-17604.png,13944 +images-17605.png,13945 +images-17606.png,13946 +images-17607.png,13947 +images-17608.png,13948 +images-17609.png,13949 +images-17610.png,13950 +images-17611.png,13951 +images-17612.png,13952 +images-17613.png,13953 +images-17614.png,13954 +images-17615.png,13955 +images-17616.png,13956 +images-17617.png,13957 +images-17618.png,13958 +images-17619.png,13959 +images-17620.png,13960 +images-17621.png,13961 +images-17622.png,13962 +images-17623.png,13963 +images-17624.png,13964 +images-17625.png,13965 +images-17626.png,13966 +images-17627.png,13967 +images-17628.png,13968 +images-17629.png,13969 +images-17630.png,13970 +images-17631.png,13971 +images-17632.png,13972 +images-17633.png,13973 +images-17634.png,13974 +images-17635.png,13975 +images-17636.png,13976 +images-17637.png,13977 +images-17638.png,13978 +images-17639.png,13979 +images-17640.png,13980 +images-17641.png,13981 +images-17642.png,13982 +images-17643.png,13983 +images-17644.png,13984 +images-17645.png,13985 +images-17646.png,13986 +images-17647.png,13987 +images-17648.png,13988 +images-17649.png,13989 +images-17650.png,13990 +images-17651.png,13991 +images-17652.png,13992 +images-17653.png,13993 +images-17654.png,13994 +images-17655.png,13995 +images-17656.png,13996 +images-17657.png,13997 +images-17658.png,13998 +images-17659.png,13999 +images-17660.png,14000 +images-17661.png,14001 +images-17662.png,14002 +images-17663.png,14003 +images-17664.png,14004 +images-17665.png,14005 +images-17666.png,14006 +images-17667.png,14007 +images-17668.png,14008 +images-17669.png,14009 +images-17670.png,14010 +images-17671.png,14011 +images-17672.png,14012 +images-17673.png,14013 +images-17674.png,14014 +images-17675.png,14015 +images-17676.png,14016 +images-17677.png,14017 +images-17678.png,14018 +images-17679.png,14019 +images-17680.png,14020 +images-17681.png,14021 +images-17682.png,14022 +images-17683.png,14023 +images-17684.png,14024 +images-17685.png,14025 +images-17686.png,14026 +images-17687.png,14027 +images-17688.png,14028 +images-17689.png,14029 +images-17690.png,14030 +images-17691.png,14031 +images-17692.png,14032 +images-17693.png,14033 +images-17694.png,14034 +images-17695.png,14035 +images-17696.png,14036 +images-17697.png,14037 +images-17698.png,14038 +images-17699.png,14039 +images-17700.png,14040 +images-17701.png,14041 +images-17702.png,14042 +images-17703.png,14043 +images-17704.png,14044 +images-17705.png,14045 +images-17706.png,14046 +images-17707.png,14047 +images-17708.png,14048 +images-17709.png,14049 +images-17710.png,14050 +images-17711.png,14051 +images-17712.png,14052 +images-17713.png,14053 +images-17714.png,14054 +images-17715.png,14055 +images-17716.png,14056 +images-17717.png,14057 +images-17718.png,14058 +images-17719.png,14059 +images-17720.png,14060 +images-17721.png,14061 +images-17722.png,14062 +images-17723.png,14063 +images-17724.png,14064 +images-17725.png,14065 +images-17726.png,14066 +images-17727.png,14067 +images-17728.png,14068 +images-17729.png,14069 +images-17730.png,14070 +images-17731.png,14071 +images-17732.png,14072 +images-17733.png,14073 +images-17756.png,14074 +images-17757.png,14075 +images-17758.png,14076 +images-17759.png,14077 +images-17760.png,14078 +images-17761.png,14079 +images-17762.png,14080 +images-17763.png,14081 +images-17764.png,14082 +images-17765.png,14083 +images-17766.png,14084 +images-17767.png,14085 +images-17768.png,14086 +images-17769.png,14087 +images-17770.png,14088 +images-17771.png,14089 +images-17772.png,14090 +images-17773.png,14091 +images-17774.png,14092 +images-17775.png,14093 +images-17776.png,14094 +images-17777.png,14095 +images-17778.png,14096 +images-17779.png,14097 +images-17780.png,14098 +images-17781.png,14099 +images-17782.png,14100 +images-17783.png,14101 +images-17784.png,14102 +images-17785.png,14103 +images-17786.png,14104 +images-17787.png,14105 +images-17788.png,14106 +images-17789.png,14107 +images-17790.png,14108 +images-17791.png,14109 +images-17792.png,14110 +images-17793.png,14111 +images-17794.png,14112 +images-17795.png,14113 +images-17796.png,14114 +images-17797.png,14115 +images-17798.png,14116 +images-17799.png,14117 +images-17800.png,14118 +images-17801.png,14119 +images-17802.png,14120 +images-17803.png,14121 +images-17804.png,14122 +images-17805.png,14123 +images-17806.png,14124 +images-17807.png,14125 +images-17808.png,14126 +images-17809.png,14127 +images-17810.png,14128 +images-17811.png,14129 +images-17812.png,14130 +images-17813.png,14131 +images-17814.png,14132 +images-17815.png,14133 +images-17816.png,14134 +images-17817.png,14135 +images-17818.png,14136 +images-17819.png,14137 +images-17820.png,14138 +images-17821.png,14139 +images-17822.png,14140 +images-17823.png,14141 +images-17824.png,14142 +images-17825.png,14143 +images-17826.png,14144 +images-17827.png,14145 +images-17828.png,14146 +images-17829.png,14147 +images-17830.png,14148 +images-17831.png,14149 +images-17832.png,14150 +images-17833.png,14151 +images-17834.png,14152 +images-17835.png,14153 +images-17836.png,14154 +images-17837.png,14155 +images-17838.png,14156 +images-17839.png,14157 +images-17840.png,14158 +images-17841.png,14159 +images-17842.png,14160 +images-17843.png,14161 +images-17844.png,14162 +images-17845.png,14163 +images-17846.png,14164 +images-17847.png,14165 +images-17848.png,14166 +images-17849.png,14167 +images-17850.png,14168 +images-17851.png,14169 +images-17852.png,14170 +images-17853.png,14171 +images-17854.png,14172 +images-17855.png,14173 +images-17856.png,14174 +images-17857.png,14175 +images-17858.png,14176 +images-17859.png,14177 +images-17860.png,14178 +images-17861.png,14179 +images-17862.png,14180 +images-17863.png,14181 +images-17864.png,14182 +images-17865.png,14183 +images-17866.png,14184 +images-17867.png,14185 +images-17902.png,14186 +images-17903.png,14187 +images-17904.png,14188 +images-17905.png,14189 +images-17906.png,14190 +images-17907.png,14191 +images-17908.png,14192 +images-17909.png,14193 +images-17910.png,14194 +images-17911.png,14195 +images-17912.png,14196 +images-17913.png,14197 +images-17914.png,14198 +images-17915.png,14199 +images-17916.png,14200 +images-17917.png,14201 +images-17918.png,14202 +images-17919.png,14203 +images-17920.png,14204 +images-17921.png,14205 +images-17922.png,14206 +images-17923.png,14207 +images-17924.png,14208 +images-17925.png,14209 +images-17926.png,14210 +images-17927.png,14211 +images-17928.png,14212 +images-17929.png,14213 +images-17930.png,14214 +images-17931.png,14215 +images-17932.png,14216 +images-17933.png,14217 +images-17934.png,14218 +images-17935.png,14219 +images-17936.png,14220 +images-17937.png,14221 +images-17938.png,14222 +images-17939.png,14223 +images-17940.png,14224 +images-17941.png,14225 +images-17942.png,14226 +images-17943.png,14227 +images-17944.png,14228 +images-17945.png,14229 +images-17946.png,14230 +images-17947.png,14231 +images-17948.png,14232 +images-17949.png,14233 +images-17950.png,14234 +images-17951.png,14235 +images-17952.png,14236 +images-17953.png,14237 +images-17954.png,14238 +images-17955.png,14239 +images-17956.png,14240 +images-17957.png,14241 +images-17958.png,14242 +images-17959.png,14243 +images-17960.png,14244 +images-17961.png,14245 +images-17962.png,14246 +images-17963.png,14247 +images-17964.png,14248 +images-17965.png,14249 +images-17966.png,14250 +images-17967.png,14251 +images-17968.png,14252 +images-17969.png,14253 +images-17970.png,14254 +images-17971.png,14255 +images-17972.png,14256 +images-17973.png,14257 +images-17986.png,14258 +images-17987.png,14259 +images-17988.png,14260 +images-17989.png,14261 +images-17990.png,14262 +images-17996.png,14263 +images-17997.png,14264 +images-17998.png,14265 +images-17999.png,14266 +images-18000.png,14267 +images-18001.png,14268 +images-18002.png,14269 +images-18003.png,14270 +images-18004.png,14271 +images-18005.png,14272 +images-18006.png,14273 +images-18007.png,14274 +images-18008.png,14275 +images-18009.png,14276 +images-18010.png,14277 +images-18011.png,14278 +images-18012.png,14279 +images-18013.png,14280 +images-18014.png,14281 +images-18015.png,14282 +images-18016.png,14283 +images-18017.png,14284 +images-18018.png,14285 +images-18019.png,14286 +images-18020.png,14287 +images-18150.png,14288 +images-18151.png,14289 +images-18152.png,14290 +images-18153.png,14291 +images-18154.png,14292 +images-18155.png,14293 +images-18156.png,14294 +images-18157.png,14295 +images-18158.png,14296 +images-18159.png,14297 +images-18160.png,14298 +images-18170.png,14299 +images-18171.png,14300 +images-18172.png,14301 +images-18173.png,14302 +images-18174.png,14303 +images-18175.png,14304 +images-18176.png,14305 +images-18177.png,14306 +images-18178.png,14307 +images-18179.png,14308 +images-18180.png,14309 +images-18181.png,14310 +images-18182.png,14311 +images-18183.png,14312 +images-18184.png,14313 +images-18185.png,14314 +images-18186.png,14315 +images-18187.png,14316 +images-18188.png,14317 +images-18189.png,14318 +images-18190.png,14319 +images-18191.png,14320 +images-18192.png,14321 +images-18193.png,14322 +images-18194.png,14323 +images-18195.png,14324 +images-18196.png,14325 +images-18197.png,14326 +images-18198.png,14327 +images-18199.png,14328 +images-18200.png,14329 +images-18201.png,14330 +images-18202.png,14331 +images-18203.png,14332 +images-18204.png,14333 +images-18205.png,14334 +images-18206.png,14335 +images-18207.png,14336 +images-18208.png,14337 +images-18209.png,14338 +images-18210.png,14339 +images-18211.png,14340 +images-18212.png,14341 +images-18213.png,14342 +images-18214.png,14343 +images-18215.png,14344 +images-18216.png,14345 +images-18217.png,14346 +images-18218.png,14347 +images-18219.png,14348 +images-18220.png,14349 +images-18221.png,14350 +images-18222.png,14351 +images-18223.png,14352 +images-18224.png,14353 +images-18225.png,14354 +images-18226.png,14355 +images-18227.png,14356 +images-18228.png,14357 +images-18229.png,14358 +images-18230.png,14359 +images-18231.png,14360 +images-18232.png,14361 +images-18233.png,14362 +images-18234.png,14363 +images-18235.png,14364 +images-18236.png,14365 +images-18237.png,14366 +images-18238.png,14367 +images-18239.png,14368 +images-18240.png,14369 +images-18241.png,14370 +images-18242.png,14371 +images-18243.png,14372 +images-18244.png,14373 +images-18245.png,14374 +images-18246.png,14375 +images-18247.png,14376 +images-18248.png,14377 +images-18249.png,14378 +images-18250.png,14379 +images-18251.png,14380 +images-18252.png,14381 +images-18253.png,14382 +images-18254.png,14383 +images-18255.png,14384 +images-18256.png,14385 +images-18257.png,14386 +images-18258.png,14387 +images-18259.png,14388 +images-18260.png,14389 +images-18261.png,14390 +images-18262.png,14391 +images-18263.png,14392 +images-18264.png,14393 +images-18265.png,14394 +images-18266.png,14395 +images-18267.png,14396 +images-18268.png,14397 +images-18269.png,14398 +images-18270.png,14399 +images-18271.png,14400 +images-18272.png,14401 +images-18273.png,14402 +images-18274.png,14403 +images-18275.png,14404 +images-18276.png,14405 +images-18277.png,14406 +images-18278.png,14407 +images-18279.png,14408 +images-18280.png,14409 +images-18281.png,14410 +images-18282.png,14411 +images-18283.png,14412 +images-18284.png,14413 +images-18285.png,14414 +images-18286.png,14415 +images-18287.png,14416 +images-18288.png,14417 +images-18289.png,14418 +images-18290.png,14419 +images-18291.png,14420 +images-18292.png,14421 +images-18293.png,14422 +images-18294.png,14423 +images-18295.png,14424 +images-18296.png,14425 +images-18297.png,14426 +images-18298.png,14427 +images-18299.png,14428 +images-18300.png,14429 +images-18301.png,14430 +images-18302.png,14431 +images-18303.png,14432 +images-18304.png,14433 +images-18305.png,14434 +images-18306.png,14435 +images-18307.png,14436 +images-18308.png,14437 +images-18309.png,14438 +images-18310.png,14439 +images-18311.png,14440 +images-18312.png,14441 +images-18313.png,14442 +images-18314.png,14443 +images-18315.png,14444 +images-18316.png,14445 +images-18317.png,14446 +images-18318.png,14447 +images-18319.png,14448 +images-18320.png,14449 +images-18321.png,14450 +images-18322.png,14451 +images-18323.png,14452 +images-18324.png,14453 +images-18325.png,14454 +images-18326.png,14455 +images-18327.png,14456 +images-18328.png,14457 +images-18329.png,14458 +images-18443.png,14459 +images-18444.png,14460 +images-18445.png,14461 +images-18446.png,14462 +images-18447.png,14463 +images-18448.png,14464 +images-18449.png,14465 +images-18450.png,14466 +images-18451.png,14467 +images-18452.png,14468 +images-18453.png,14469 +images-18454.png,14470 +images-18455.png,14471 +images-18456.png,14472 +images-18457.png,14473 +images-18458.png,14474 +images-18459.png,14475 +images-18460.png,14476 +images-18461.png,14477 +images-18462.png,14478 +images-18463.png,14479 +images-18464.png,14480 +images-18465.png,14481 +images-18466.png,14482 +images-18467.png,14483 +images-18468.png,14484 +images-18469.png,14485 +images-18470.png,14486 +images-18471.png,14487 +images-18472.png,14488 +images-18473.png,14489 +images-18474.png,14490 +images-18475.png,14491 +images-18476.png,14492 +images-18477.png,14493 +images-18478.png,14494 +images-18479.png,14495 +images-18480.png,14496 +images-18481.png,14497 +images-18482.png,14498 +images-18483.png,14499 +images-18484.png,14500 +images-18485.png,14501 +images-18486.png,14502 +images-18487.png,14503 +images-18488.png,14504 +images-18489.png,14505 +images-18490.png,14506 +images-18491.png,14507 +images-18492.png,14508 +images-18493.png,14509 +images-18494.png,14510 +images-18495.png,14511 +images-18496.png,14512 +images-18497.png,14513 +images-18498.png,14514 +images-18499.png,14515 +images-18500.png,14516 +images-18501.png,14517 +images-18502.png,14518 +images-18503.png,14519 +images-18504.png,14520 +images-18505.png,14521 +images-18506.png,14522 +images-18507.png,14523 +images-18508.png,14524 +images-18509.png,14525 +images-18510.png,14526 +images-18511.png,14527 +images-18512.png,14528 +images-18513.png,14529 +images-18514.png,14530 +images-18515.png,14531 +images-18516.png,14532 +images-18517.png,14533 +images-18518.png,14534 +images-18519.png,14535 +images-18520.png,14536 +images-18521.png,14537 +images-18522.png,14538 +images-18523.png,14539 +images-18524.png,14540 +images-18525.png,14541 +images-18526.png,14542 +images-18527.png,14543 +images-18528.png,14544 +images-18529.png,14545 +images-18530.png,14546 +images-18531.png,14547 +images-18532.png,14548 +images-18533.png,14549 +images-18534.png,14550 +images-18535.png,14551 +images-18536.png,14552 +images-18537.png,14553 +images-18538.png,14554 +images-18539.png,14555 +images-18550.png,14556 +images-18551.png,14557 +images-18552.png,14558 +images-18553.png,14559 +images-18554.png,14560 +images-18555.png,14561 +images-18556.png,14562 +images-18557.png,14563 +images-18558.png,14564 +images-18559.png,14565 +images-18560.png,14566 +images-18561.png,14567 +images-18562.png,14568 +images-18563.png,14569 +images-18564.png,14570 +images-18565.png,14571 +images-18566.png,14572 +images-18567.png,14573 +images-18568.png,14574 +images-18569.png,14575 +images-18570.png,14576 +images-18571.png,14577 +images-18572.png,14578 +images-18573.png,14579 +images-18574.png,14580 +images-18575.png,14581 +images-18576.png,14582 +images-18577.png,14583 +images-18578.png,14584 +images-18579.png,14585 +images-18588.png,14586 +images-18589.png,14587 +images-18590.png,14588 +images-18591.png,14589 +images-18592.png,14590 +images-18593.png,14591 +images-18594.png,14592 +images-18595.png,14593 +images-18596.png,14594 +images-18597.png,14595 +images-18598.png,14596 +images-18599.png,14597 +images-18600.png,14598 +images-18601.png,14599 +images-18602.png,14600 +images-18603.png,14601 +images-18604.png,14602 +images-18605.png,14603 +images-18606.png,14604 +images-18607.png,14605 +images-18608.png,14606 +images-18609.png,14607 +images-18610.png,14608 +images-18611.png,14609 +images-18612.png,14610 +images-18613.png,14611 +images-18614.png,14612 +images-18615.png,14613 +images-18616.png,14614 +images-18617.png,14615 +images-18618.png,14616 +images-18619.png,14617 +images-18620.png,14618 +images-18621.png,14619 +images-18622.png,14620 +images-18623.png,14621 +images-18624.png,14622 +images-18625.png,14623 +images-18626.png,14624 +images-18627.png,14625 +images-18628.png,14626 +images-18629.png,14627 +images-18630.png,14628 +images-18631.png,14629 +images-18632.png,14630 +images-18633.png,14631 +images-18634.png,14632 +images-18635.png,14633 +images-18636.png,14634 +images-18637.png,14635 +images-18638.png,14636 +images-18639.png,14637 +images-18640.png,14638 +images-18641.png,14639 +images-18642.png,14640 +images-18643.png,14641 +images-18644.png,14642 +images-18645.png,14643 +images-18646.png,14644 +images-18647.png,14645 +images-18648.png,14646 +images-18649.png,14647 +images-18650.png,14648 +images-18651.png,14649 +images-18652.png,14650 +images-18653.png,14651 +images-18654.png,14652 +images-18655.png,14653 +images-18656.png,14654 +images-18657.png,14655 +images-18658.png,14656 +images-18659.png,14657 +images-18660.png,14658 +images-18683.png,14659 +images-18684.png,14660 +images-18685.png,14661 +images-18686.png,14662 +images-18687.png,14663 +images-18688.png,14664 +images-18689.png,14665 +images-18690.png,14666 +images-18691.png,14667 +images-18692.png,14668 +images-18693.png,14669 +images-18694.png,14670 +images-18695.png,14671 +images-18696.png,14672 +images-18697.png,14673 +images-18698.png,14674 +images-18699.png,14675 +images-18700.png,14676 +images-18701.png,14677 +images-18702.png,14678 +images-18703.png,14679 +images-18704.png,14680 +images-18705.png,14681 +images-18706.png,14682 +images-18707.png,14683 +images-18708.png,14684 +images-18709.png,14685 +images-18710.png,14686 +images-18711.png,14687 +images-18712.png,14688 +images-18713.png,14689 +images-18714.png,14690 +images-18715.png,14691 +images-18716.png,14692 +images-18717.png,14693 +images-18718.png,14694 +images-18719.png,14695 +images-18720.png,14696 +images-18721.png,14697 +images-18722.png,14698 +images-18723.png,14699 +images-18724.png,14700 +images-18725.png,14701 +images-18726.png,14702 +images-18727.png,14703 +images-18728.png,14704 +images-18729.png,14705 +images-18730.png,14706 +images-18731.png,14707 +images-18732.png,14708 +images-18733.png,14709 +images-18734.png,14710 +images-18735.png,14711 +images-18736.png,14712 +images-18737.png,14713 +images-18738.png,14714 +images-18739.png,14715 +images-18740.png,14716 +images-18741.png,14717 +images-18742.png,14718 +images-18743.png,14719 +images-18744.png,14720 +images-18745.png,14721 +images-18746.png,14722 +images-18747.png,14723 +images-18748.png,14724 +images-18749.png,14725 +images-18750.png,14726 +images-18751.png,14727 +images-18752.png,14728 +images-18753.png,14729 +images-18754.png,14730 +images-18755.png,14731 +images-18756.png,14732 +images-18757.png,14733 +images-18758.png,14734 +images-18759.png,14735 +images-18760.png,14736 +images-18761.png,14737 +images-18762.png,14738 +images-18763.png,14739 +images-18764.png,14740 +images-18765.png,14741 +images-18766.png,14742 +images-18767.png,14743 +images-18768.png,14744 +images-18769.png,14745 +images-18770.png,14746 +images-18771.png,14747 +images-18772.png,14748 +images-18773.png,14749 +images-18774.png,14750 +images-18775.png,14751 +images-18776.png,14752 +images-18777.png,14753 +images-18778.png,14754 +images-18779.png,14755 +images-18780.png,14756 +images-18781.png,14757 +images-18782.png,14758 +images-18783.png,14759 +images-18784.png,14760 +images-18785.png,14761 +images-18786.png,14762 +images-18787.png,14763 +images-18788.png,14764 +images-18789.png,14765 +images-18790.png,14766 +images-18791.png,14767 +images-18792.png,14768 +images-18793.png,14769 +images-18794.png,14770 +images-18795.png,14771 +images-18796.png,14772 +images-18797.png,14773 +images-18798.png,14774 +images-18799.png,14775 +images-18800.png,14776 +images-18801.png,14777 +images-18802.png,14778 +images-18803.png,14779 +images-18804.png,14780 +images-18805.png,14781 +images-18806.png,14782 +images-18807.png,14783 +images-18808.png,14784 +images-18809.png,14785 +images-18810.png,14786 +images-18811.png,14787 +images-18812.png,14788 +images-18813.png,14789 +images-18814.png,14790 +images-18815.png,14791 +images-18816.png,14792 +images-18817.png,14793 +images-18818.png,14794 +images-18819.png,14795 +images-18820.png,14796 +images-18821.png,14797 +images-18822.png,14798 +images-18823.png,14799 +images-18824.png,14800 +images-18825.png,14801 +images-18826.png,14802 +images-18827.png,14803 +images-18828.png,14804 +images-18829.png,14805 +images-18830.png,14806 +images-18831.png,14807 +images-18832.png,14808 +images-18833.png,14809 +images-18834.png,14810 +images-18835.png,14811 +images-18836.png,14812 +images-18837.png,14813 +images-18838.png,14814 +images-18839.png,14815 +images-18840.png,14816 +images-18841.png,14817 +images-18842.png,14818 +images-18843.png,14819 +images-18844.png,14820 +images-18845.png,14821 +images-18846.png,14822 +images-18847.png,14823 +images-18848.png,14824 +images-18849.png,14825 +images-18850.png,14826 +images-18851.png,14827 +images-18852.png,14828 +images-18853.png,14829 +images-18854.png,14830 +images-18855.png,14831 +images-18856.png,14832 +images-18857.png,14833 +images-18858.png,14834 +images-18859.png,14835 +images-18860.png,14836 +images-18861.png,14837 +images-18862.png,14838 +images-18863.png,14839 +images-18864.png,14840 +images-18865.png,14841 +images-18866.png,14842 +images-18867.png,14843 +images-18868.png,14844 +images-18869.png,14845 +images-18870.png,14846 +images-18871.png,14847 +images-18872.png,14848 +images-18873.png,14849 +images-18874.png,14850 +images-18875.png,14851 +images-18876.png,14852 +images-18877.png,14853 +images-18878.png,14854 +images-18879.png,14855 +images-18880.png,14856 +images-18881.png,14857 +images-18882.png,14858 +images-18883.png,14859 +images-18884.png,14860 +images-18885.png,14861 +images-18886.png,14862 +images-18887.png,14863 +images-18888.png,14864 +images-18889.png,14865 +images-18890.png,14866 +images-18891.png,14867 +images-18892.png,14868 +images-18893.png,14869 +images-18894.png,14870 +images-18895.png,14871 +images-18896.png,14872 +images-18897.png,14873 +images-18898.png,14874 +images-18899.png,14875 +images-18900.png,14876 +images-18901.png,14877 +images-18902.png,14878 +images-18903.png,14879 +images-18904.png,14880 +images-18905.png,14881 +images-18906.png,14882 +images-18907.png,14883 +images-18908.png,14884 +images-18909.png,14885 +images-18910.png,14886 +images-18911.png,14887 +images-18912.png,14888 +images-18913.png,14889 +images-18914.png,14890 +images-18915.png,14891 +images-18916.png,14892 +images-18917.png,14893 +images-18918.png,14894 +images-18919.png,14895 +images-18920.png,14896 +images-18921.png,14897 +images-18922.png,14898 +images-18923.png,14899 +images-18924.png,14900 +images-18925.png,14901 +images-18926.png,14902 +images-18927.png,14903 +images-18928.png,14904 +images-18929.png,14905 +images-18930.png,14906 +images-18931.png,14907 +images-18932.png,14908 +images-18933.png,14909 +images-18934.png,14910 +images-18935.png,14911 +images-18936.png,14912 +images-18937.png,14913 +images-18938.png,14914 +images-18939.png,14915 +images-18940.png,14916 +images-18941.png,14917 +images-18942.png,14918 +images-18943.png,14919 +images-18944.png,14920 +images-18945.png,14921 +images-18946.png,14922 +images-18947.png,14923 +images-18948.png,14924 +images-18949.png,14925 +images-18950.png,14926 +images-18951.png,14927 +images-18952.png,14928 +images-18953.png,14929 +images-18954.png,14930 +images-18966.png,14931 +images-18967.png,14932 +images-18968.png,14933 +images-18969.png,14934 +images-18970.png,14935 +images-18971.png,14936 +images-18972.png,14937 +images-18973.png,14938 +images-18974.png,14939 +images-18975.png,14940 +images-18976.png,14941 +images-18986.png,14942 +images-18987.png,14943 +images-18988.png,14944 +images-18989.png,14945 +images-18990.png,14946 +images-18991.png,14947 +images-18992.png,14948 +images-18993.png,14949 +images-18994.png,14950 +images-18995.png,14951 +images-18996.png,14952 +images-18997.png,14953 +images-18998.png,14954 +images-18999.png,14955 +images-19000.png,14956 +images-19001.png,14957 +images-19002.png,14958 +images-19003.png,14959 +images-19004.png,14960 +images-19005.png,14961 +images-19006.png,14962 +images-19007.png,14963 +images-19008.png,14964 +images-19009.png,14965 +images-19010.png,14966 +images-19011.png,14967 +images-19012.png,14968 +images-19013.png,14969 +images-19014.png,14970 +images-19015.png,14971 +images-19016.png,14972 +images-19017.png,14973 +images-19018.png,14974 +images-19026.png,14975 +images-19027.png,14976 +images-19028.png,14977 +images-19029.png,14978 +images-19030.png,14979 +images-19031.png,14980 +images-19032.png,14981 +images-19033.png,14982 +images-19034.png,14983 +images-19035.png,14984 +images-19036.png,14985 +images-19037.png,14986 +images-19038.png,14987 +images-19039.png,14988 +images-19040.png,14989 +images-19041.png,14990 +images-19042.png,14991 +images-19043.png,14992 +images-19044.png,14993 +images-19045.png,14994 +images-19046.png,14995 +images-19047.png,14996 +images-19048.png,14997 +images-19049.png,14998 +images-19050.png,14999 +images-19051.png,15000 +images-19052.png,15001 +images-19053.png,15002 +images-19054.png,15003 +images-19055.png,15004 +images-19056.png,15005 +images-19057.png,15006 +images-19058.png,15007 +images-19059.png,15008 +images-19060.png,15009 +images-19061.png,15010 +images-19062.png,15011 +images-19063.png,15012 +images-19064.png,15013 +images-19065.png,15014 +images-19066.png,15015 +images-19067.png,15016 +images-19068.png,15017 +images-19069.png,15018 +images-19070.png,15019 +images-19071.png,15020 +images-19072.png,15021 +images-19073.png,15022 +images-19074.png,15023 +images-19075.png,15024 +images-19076.png,15025 +images-19077.png,15026 +images-19078.png,15027 +images-19079.png,15028 +images-19080.png,15029 +images-19081.png,15030 +images-19082.png,15031 +images-19083.png,15032 +images-19084.png,15033 +images-19085.png,15034 +images-19086.png,15035 +images-19087.png,15036 +images-19088.png,15037 +images-19089.png,15038 +images-19090.png,15039 +images-19091.png,15040 +images-19100.png,15041 +images-19101.png,15042 +images-19102.png,15043 +images-19103.png,15044 +images-19104.png,15045 +images-19105.png,15046 +images-19106.png,15047 +images-19107.png,15048 +images-19108.png,15049 +images-19109.png,15050 +images-19110.png,15051 +images-19111.png,15052 +images-19112.png,15053 +images-19113.png,15054 +images-19114.png,15055 +images-19115.png,15056 +images-19116.png,15057 +images-19117.png,15058 +images-19118.png,15059 +images-19119.png,15060 +images-19120.png,15061 +images-19121.png,15062 +images-19122.png,15063 +images-19123.png,15064 +images-19124.png,15065 +images-19125.png,15066 +images-19126.png,15067 +images-19127.png,15068 +images-19128.png,15069 +images-19129.png,15070 +images-19130.png,15071 +images-19131.png,15072 +images-19132.png,15073 +images-19133.png,15074 +images-19134.png,15075 +images-19135.png,15076 +images-19136.png,15077 +images-19137.png,15078 +images-19138.png,15079 +images-19139.png,15080 +images-19140.png,15081 +images-19141.png,15082 +images-19142.png,15083 +images-19143.png,15084 +images-19144.png,15085 +images-19145.png,15086 +images-19146.png,15087 +images-19147.png,15088 +images-19148.png,15089 +images-19149.png,15090 +images-19150.png,15091 +images-19151.png,15092 +images-19152.png,15093 +images-19153.png,15094 +images-19154.png,15095 +images-19155.png,15096 +images-19156.png,15097 +images-19157.png,15098 +images-19158.png,15099 +images-19159.png,15100 +images-19160.png,15101 +images-19161.png,15102 +images-19162.png,15103 +images-19163.png,15104 +images-19164.png,15105 +images-19165.png,15106 +images-19166.png,15107 +images-19167.png,15108 +images-19168.png,15109 +images-19169.png,15110 +images-19185.png,15111 +images-19186.png,15112 +images-19187.png,15113 +images-19188.png,15114 +images-19189.png,15115 +images-19190.png,15116 +images-19191.png,15117 +images-19192.png,15118 +images-19193.png,15119 +images-19194.png,15120 +images-19195.png,15121 +images-19196.png,15122 +images-19197.png,15123 +images-19198.png,15124 +images-19199.png,15125 +images-19200.png,15126 +images-19201.png,15127 +images-19202.png,15128 +images-19203.png,15129 +images-19204.png,15130 +images-19205.png,15131 +images-19206.png,15132 +images-19207.png,15133 +images-19208.png,15134 +images-19209.png,15135 +images-19210.png,15136 +images-19211.png,15137 +images-19212.png,15138 +images-19213.png,15139 +images-19214.png,15140 +images-19215.png,15141 +images-19216.png,15142 +images-19217.png,15143 +images-19218.png,15144 +images-19219.png,15145 +images-19220.png,15146 +images-19221.png,15147 +images-19222.png,15148 +images-19223.png,15149 +images-19224.png,15150 +images-19225.png,15151 +images-19226.png,15152 +images-19227.png,15153 +images-19228.png,15154 +images-19229.png,15155 +images-19230.png,15156 +images-19231.png,15157 +images-19232.png,15158 +images-19233.png,15159 +images-19234.png,15160 +images-19235.png,15161 +images-19236.png,15162 +images-19237.png,15163 +images-19238.png,15164 +images-19239.png,15165 +images-19240.png,15166 +images-19241.png,15167 +images-19242.png,15168 +images-19243.png,15169 +images-19244.png,15170 +images-19245.png,15171 +images-19246.png,15172 +images-19247.png,15173 +images-19248.png,15174 +images-19249.png,15175 +images-19250.png,15176 +images-19251.png,15177 +images-19252.png,15178 +images-19253.png,15179 +images-19254.png,15180 +images-19255.png,15181 +images-19256.png,15182 +images-19257.png,15183 +images-19258.png,15184 +images-19259.png,15185 +images-19260.png,15186 +images-19261.png,15187 +images-19262.png,15188 +images-19263.png,15189 +images-19264.png,15190 +images-19265.png,15191 +images-19266.png,15192 +images-19267.png,15193 +images-19268.png,15194 +images-19269.png,15195 +images-19270.png,15196 +images-19271.png,15197 +images-19272.png,15198 +images-19273.png,15199 +images-19274.png,15200 +images-19275.png,15201 +images-19276.png,15202 +images-19277.png,15203 +images-19278.png,15204 +images-19279.png,15205 +images-19280.png,15206 +images-19281.png,15207 +images-19282.png,15208 +images-19283.png,15209 +images-19284.png,15210 +images-19285.png,15211 +images-19286.png,15212 +images-19287.png,15213 +images-19288.png,15214 +images-19289.png,15215 +images-19290.png,15216 +images-19291.png,15217 +images-19292.png,15218 +images-19293.png,15219 +images-19294.png,15220 +images-19295.png,15221 +images-19296.png,15222 +images-19297.png,15223 +images-19298.png,15224 +images-19299.png,15225 +images-19300.png,15226 +images-19301.png,15227 +images-19302.png,15228 +images-19303.png,15229 +images-19304.png,15230 +images-19305.png,15231 +images-19306.png,15232 +images-19307.png,15233 +images-19308.png,15234 +images-19309.png,15235 +images-19310.png,15236 +images-19311.png,15237 +images-19312.png,15238 +images-19313.png,15239 +images-19314.png,15240 +images-19315.png,15241 +images-19316.png,15242 +images-19317.png,15243 +images-19318.png,15244 +images-19319.png,15245 +images-19320.png,15246 +images-19321.png,15247 +images-19322.png,15248 +images-19323.png,15249 +images-19324.png,15250 +images-19325.png,15251 +images-19326.png,15252 +images-19327.png,15253 +images-19328.png,15254 +images-19329.png,15255 +images-19330.png,15256 +images-19331.png,15257 +images-19332.png,15258 +images-19333.png,15259 +images-19334.png,15260 +images-19335.png,15261 +images-19336.png,15262 +images-19337.png,15263 +images-19338.png,15264 +images-19339.png,15265 +images-19340.png,15266 +images-19341.png,15267 +images-19342.png,15268 +images-19343.png,15269 +images-19344.png,15270 +images-19345.png,15271 +images-19346.png,15272 +images-19347.png,15273 +images-19348.png,15274 +images-19349.png,15275 +images-19350.png,15276 +images-19351.png,15277 +images-19352.png,15278 +images-19353.png,15279 +images-19354.png,15280 +images-19355.png,15281 +images-19356.png,15282 +images-19357.png,15283 +images-19358.png,15284 +images-19359.png,15285 +images-19360.png,15286 +images-19361.png,15287 +images-19362.png,15288 +images-19363.png,15289 +images-19364.png,15290 +images-19365.png,15291 +images-19366.png,15292 +images-19367.png,15293 +images-19368.png,15294 +images-19369.png,15295 +images-19370.png,15296 +images-19371.png,15297 +images-19372.png,15298 +images-19373.png,15299 +images-19374.png,15300 +images-19375.png,15301 +images-19376.png,15302 +images-19377.png,15303 +images-19378.png,15304 +images-19379.png,15305 +images-19380.png,15306 +images-19381.png,15307 +images-19382.png,15308 +images-19383.png,15309 +images-19384.png,15310 +images-19385.png,15311 +images-19386.png,15312 +images-19387.png,15313 +images-19388.png,15314 +images-19389.png,15315 +images-19390.png,15316 +images-19391.png,15317 +images-19392.png,15318 +images-19393.png,15319 +images-19394.png,15320 +images-19395.png,15321 +images-19396.png,15322 +images-19397.png,15323 +images-19398.png,15324 +images-19399.png,15325 +images-19400.png,15326 +images-19401.png,15327 +images-19402.png,15328 +images-19403.png,15329 +images-19404.png,15330 +images-19405.png,15331 +images-19406.png,15332 +images-19407.png,15333 +images-19408.png,15334 +images-19409.png,15335 +images-19410.png,15336 +images-19411.png,15337 +images-19412.png,15338 +images-19413.png,15339 +images-19414.png,15340 +images-19415.png,15341 +images-19416.png,15342 +images-19417.png,15343 +images-19418.png,15344 +images-19419.png,15345 +images-19420.png,15346 +images-19421.png,15347 +images-19422.png,15348 +images-19423.png,15349 +images-19424.png,15350 +images-19425.png,15351 +images-19426.png,15352 +images-19427.png,15353 +images-19428.png,15354 +images-19429.png,15355 +images-19430.png,15356 +images-19431.png,15357 +images-19432.png,15358 +images-19433.png,15359 +images-19434.png,15360 +images-19435.png,15361 +images-19436.png,15362 +images-19437.png,15363 +images-19438.png,15364 +images-19439.png,15365 +images-19440.png,15366 +images-19441.png,15367 +images-19442.png,15368 +images-19443.png,15369 +images-19444.png,15370 +images-19445.png,15371 +images-19446.png,15372 +images-19447.png,15373 +images-19448.png,15374 +images-19449.png,15375 +images-19450.png,15376 +images-19451.png,15377 +images-19452.png,15378 +images-19453.png,15379 +images-19454.png,15380 +images-19455.png,15381 +images-19456.png,15382 +images-19457.png,15383 +images-19458.png,15384 +images-19459.png,15385 +images-19460.png,15386 +images-19461.png,15387 +images-19462.png,15388 +images-19463.png,15389 +images-19464.png,15390 +images-19465.png,15391 +images-19466.png,15392 +images-19467.png,15393 +images-19468.png,15394 +images-19469.png,15395 +images-19470.png,15396 +images-19471.png,15397 +images-19472.png,15398 +images-19473.png,15399 +images-19474.png,15400 +images-19475.png,15401 +images-19476.png,15402 +images-19477.png,15403 +images-19478.png,15404 +images-19479.png,15405 +images-19480.png,15406 +images-19481.png,15407 +images-19482.png,15408 +images-19483.png,15409 +images-19484.png,15410 +images-19485.png,15411 +images-19486.png,15412 +images-19487.png,15413 +images-19488.png,15414 +images-19489.png,15415 +images-19490.png,15416 +images-19491.png,15417 +images-19492.png,15418 +images-19493.png,15419 +images-19494.png,15420 +images-19495.png,15421 +images-19496.png,15422 +images-19497.png,15423 +images-19498.png,15424 +images-19499.png,15425 +images-19500.png,15426 +images-19501.png,15427 +images-19502.png,15428 +images-19503.png,15429 +images-19504.png,15430 +images-19505.png,15431 +images-19506.png,15432 +images-19507.png,15433 +images-19508.png,15434 +images-19509.png,15435 +images-19510.png,15436 +images-19511.png,15437 +images-19512.png,15438 +images-19513.png,15439 +images-19514.png,15440 +images-19515.png,15441 +images-19516.png,15442 +images-19517.png,15443 +images-19518.png,15444 +images-19519.png,15445 +images-19520.png,15446 +images-19521.png,15447 +images-19522.png,15448 +images-19523.png,15449 +images-19524.png,15450 +images-19525.png,15451 +images-19526.png,15452 +images-19527.png,15453 +images-19528.png,15454 +images-19529.png,15455 +images-19530.png,15456 +images-19531.png,15457 +images-19532.png,15458 +images-19533.png,15459 +images-19534.png,15460 +images-19535.png,15461 +images-19536.png,15462 +images-19537.png,15463 +images-19538.png,15464 +images-19539.png,15465 +images-19540.png,15466 +images-19541.png,15467 +images-19542.png,15468 +images-19543.png,15469 +images-19544.png,15470 +images-19545.png,15471 +images-19546.png,15472 +images-19547.png,15473 +images-19548.png,15474 +images-19549.png,15475 +images-19550.png,15476 +images-19551.png,15477 +images-19552.png,15478 +images-19553.png,15479 +images-19554.png,15480 +images-19555.png,15481 +images-19556.png,15482 +images-19557.png,15483 +images-19558.png,15484 +images-19559.png,15485 +images-19560.png,15486 +images-19561.png,15487 +images-19562.png,15488 +images-19563.png,15489 +images-19564.png,15490 +images-19565.png,15491 +images-19566.png,15492 +images-19567.png,15493 +images-19568.png,15494 +images-19569.png,15495 +images-19570.png,15496 +images-19571.png,15497 +images-19572.png,15498 +images-19573.png,15499 +images-19574.png,15500 +images-19575.png,15501 +images-19576.png,15502 +images-19577.png,15503 +images-19578.png,15504 +images-19579.png,15505 +images-19580.png,15506 +images-19581.png,15507 +images-19582.png,15508 +images-19583.png,15509 +images-19584.png,15510 +images-19585.png,15511 +images-19586.png,15512 +images-19587.png,15513 +images-19588.png,15514 +images-19589.png,15515 +images-19590.png,15516 +images-19591.png,15517 +images-19592.png,15518 +images-19593.png,15519 +images-19594.png,15520 +images-19595.png,15521 +images-19596.png,15522 +images-19597.png,15523 +images-19598.png,15524 +images-19599.png,15525 +images-19600.png,15526 +images-19601.png,15527 +images-19602.png,15528 +images-19603.png,15529 +images-19604.png,15530 +images-19605.png,15531 +images-19606.png,15532 +images-19607.png,15533 +images-19608.png,15534 +images-19609.png,15535 +images-19610.png,15536 +images-19611.png,15537 +images-19612.png,15538 +images-19613.png,15539 +images-19614.png,15540 +images-19615.png,15541 +images-19616.png,15542 +images-19617.png,15543 +images-19618.png,15544 +images-19619.png,15545 +images-19620.png,15546 +images-19621.png,15547 +images-19622.png,15548 +images-19623.png,15549 +images-19624.png,15550 +images-19625.png,15551 +images-19626.png,15552 +images-19627.png,15553 +images-19628.png,15554 +images-19629.png,15555 +images-19630.png,15556 +images-19631.png,15557 +images-19632.png,15558 +images-19633.png,15559 +images-19634.png,15560 +images-19635.png,15561 +images-19636.png,15562 +images-19637.png,15563 +images-19638.png,15564 +images-19639.png,15565 +images-19640.png,15566 +images-19641.png,15567 +images-19642.png,15568 +images-19643.png,15569 +images-19644.png,15570 +images-19645.png,15571 +images-19646.png,15572 +images-19647.png,15573 +images-19648.png,15574 +images-19649.png,15575 +images-19650.png,15576 +images-19651.png,15577 +images-19652.png,15578 +images-19653.png,15579 +images-19654.png,15580 +images-19655.png,15581 +images-19656.png,15582 +images-19657.png,15583 +images-19658.png,15584 +images-19659.png,15585 +images-19660.png,15586 +images-19661.png,15587 +images-19662.png,15588 +images-19663.png,15589 +images-19664.png,15590 +images-19665.png,15591 +images-19666.png,15592 +images-19667.png,15593 +images-19668.png,15594 +images-19669.png,15595 +images-19670.png,15596 +images-19671.png,15597 +images-19672.png,15598 +images-19673.png,15599 +images-19674.png,15600 +images-19675.png,15601 +images-19676.png,15602 +images-19677.png,15603 +images-19678.png,15604 +images-19679.png,15605 +images-19680.png,15606 +images-19681.png,15607 +images-19682.png,15608 +images-19683.png,15609 +images-19684.png,15610 +images-19685.png,15611 +images-19686.png,15612 +images-19687.png,15613 +images-19688.png,15614 +images-19689.png,15615 +images-19690.png,15616 +images-19691.png,15617 +images-19692.png,15618 +images-19693.png,15619 +images-19694.png,15620 +images-19695.png,15621 +images-19696.png,15622 +images-19697.png,15623 +images-19698.png,15624 +images-19699.png,15625 +images-19700.png,15626 +images-19701.png,15627 +images-19702.png,15628 +images-19703.png,15629 +images-19704.png,15630 +images-19705.png,15631 +images-19706.png,15632 +images-19707.png,15633 +images-19708.png,15634 +images-19709.png,15635 +images-19710.png,15636 +images-19711.png,15637 +images-19712.png,15638 +images-19713.png,15639 +images-19714.png,15640 +images-19715.png,15641 +images-20079.png,15642 +images-20080.png,15643 +images-20081.png,15644 +images-20082.png,15645 +images-20083.png,15646 +images-20084.png,15647 +images-20085.png,15648 +images-20086.png,15649 +images-20087.png,15650 +images-20088.png,15651 +images-20089.png,15652 +images-20090.png,15653 +images-20091.png,15654 +images-20092.png,15655 +images-20093.png,15656 +images-20094.png,15657 +images-20095.png,15658 +images-20096.png,15659 +images-20097.png,15660 +images-20098.png,15661 +images-20099.png,15662 +images-20100.png,15663 +images-20101.png,15664 +images-20102.png,15665 +images-20103.png,15666 +images-20104.png,15667 +images-20105.png,15668 +images-20106.png,15669 +images-20107.png,15670 +images-20108.png,15671 +images-20109.png,15672 +images-20110.png,15673 +images-20111.png,15674 +images-20112.png,15675 +images-20113.png,15676 +images-20114.png,15677 +images-20115.png,15678 +images-20116.png,15679 +images-20117.png,15680 +images-20118.png,15681 +images-20119.png,15682 +images-20120.png,15683 +images-20121.png,15684 +images-20122.png,15685 +images-20123.png,15686 +images-20124.png,15687 +images-20125.png,15688 +images-20126.png,15689 +images-20127.png,15690 +images-20128.png,15691 +images-20129.png,15692 +images-20130.png,15693 +images-20131.png,15694 +images-20132.png,15695 +images-20133.png,15696 +images-20134.png,15697 +images-20135.png,15698 +images-20136.png,15699 +images-20137.png,15700 +images-20138.png,15701 +images-20139.png,15702 +images-20140.png,15703 +images-20141.png,15704 +images-20142.png,15705 +images-20143.png,15706 +images-20144.png,15707 +images-20145.png,15708 +images-20146.png,15709 +images-20147.png,15710 +images-20148.png,15711 +images-20149.png,15712 +images-20150.png,15713 +images-20151.png,15714 +images-20152.png,15715 +images-20153.png,15716 +images-20154.png,15717 +images-20155.png,15718 +images-20156.png,15719 +images-20157.png,15720 +images-20158.png,15721 +images-20159.png,15722 +images-20160.png,15723 +images-20161.png,15724 +images-20162.png,15725 +images-20163.png,15726 +images-20164.png,15727 +images-20165.png,15728 +images-20166.png,15729 +images-20167.png,15730 +images-20168.png,15731 +images-20169.png,15732 +images-20170.png,15733 +images-20171.png,15734 +images-20172.png,15735 +images-20173.png,15736 +images-20174.png,15737 +images-20175.png,15738 +images-20176.png,15739 +images-20177.png,15740 +images-20178.png,15741 +images-20179.png,15742 +images-20180.png,15743 +images-20181.png,15744 +images-20182.png,15745 +images-20183.png,15746 +images-20184.png,15747 +images-20185.png,15748 +images-20186.png,15749 +images-20187.png,15750 +images-20188.png,15751 +images-20189.png,15752 +images-20190.png,15753 +images-20191.png,15754 +images-20192.png,15755 +images-20193.png,15756 +images-20194.png,15757 +images-20195.png,15758 +images-20196.png,15759 +images-20197.png,15760 +images-20198.png,15761 +images-20199.png,15762 +images-20200.png,15763 +images-20201.png,15764 +images-20202.png,15765 +images-20203.png,15766 +images-20204.png,15767 +images-20205.png,15768 +images-20206.png,15769 +images-20207.png,15770 +images-20208.png,15771 +images-20209.png,15772 +images-20210.png,15773 +images-20211.png,15774 +images-20212.png,15775 +images-20213.png,15776 +images-20214.png,15777 +images-20215.png,15778 +images-20216.png,15779 +images-20217.png,15780 +images-20218.png,15781 +images-20219.png,15782 +images-20220.png,15783 +images-20221.png,15784 +images-20222.png,15785 +images-20223.png,15786 +images-20224.png,15787 +images-20225.png,15788 +images-20226.png,15789 +images-20227.png,15790 +images-20228.png,15791 +images-20229.png,15792 +images-20230.png,15793 +images-20231.png,15794 +images-20232.png,15795 +images-20233.png,15796 +images-20234.png,15797 +images-20235.png,15798 +images-20236.png,15799 +images-20237.png,15800 +images-20238.png,15801 +images-20239.png,15802 +images-20240.png,15803 +images-20241.png,15804 +images-20242.png,15805 +images-20243.png,15806 +images-20244.png,15807 +images-20245.png,15808 +images-20246.png,15809 +images-20247.png,15810 +images-20248.png,15811 +images-20249.png,15812 +images-20250.png,15813 +images-20251.png,15814 +images-20252.png,15815 +images-20253.png,15816 +images-20254.png,15817 +images-20255.png,15818 +images-20256.png,15819 +images-20257.png,15820 +images-20258.png,15821 +images-20259.png,15822 +images-20260.png,15823 +images-20261.png,15824 +images-20262.png,15825 +images-20263.png,15826 +images-20264.png,15827 +images-20265.png,15828 +images-20266.png,15829 +images-20267.png,15830 +images-20268.png,15831 +images-20269.png,15832 +images-20270.png,15833 +images-20271.png,15834 +images-20272.png,15835 +images-20273.png,15836 +images-20274.png,15837 +images-20275.png,15838 +images-20276.png,15839 +images-20277.png,15840 +images-20278.png,15841 +images-20279.png,15842 +images-20280.png,15843 +images-20281.png,15844 +images-20282.png,15845 +images-20283.png,15846 +images-20284.png,15847 +images-20285.png,15848 +images-20286.png,15849 +images-20287.png,15850 +images-20288.png,15851 +images-20289.png,15852 +images-20290.png,15853 +images-20291.png,15854 +images-20292.png,15855 +images-20293.png,15856 +images-20294.png,15857 +images-20295.png,15858 +images-20296.png,15859 +images-20297.png,15860 +images-20298.png,15861 +images-20299.png,15862 +images-20300.png,15863 +images-20301.png,15864 +images-20302.png,15865 +images-20303.png,15866 +images-20304.png,15867 +images-20305.png,15868 +images-20306.png,15869 +images-20307.png,15870 +images-20308.png,15871 +images-20309.png,15872 +images-20354.png,15873 +images-20355.png,15874 +images-20356.png,15875 +images-20357.png,15876 +images-20358.png,15877 +images-20359.png,15878 +images-20360.png,15879 +images-20361.png,15880 +images-20362.png,15881 +images-20363.png,15882 +images-20364.png,15883 +images-20365.png,15884 +images-20366.png,15885 +images-20367.png,15886 +images-20368.png,15887 +images-20369.png,15888 +images-20370.png,15889 +images-20371.png,15890 +images-20372.png,15891 +images-20373.png,15892 +images-20374.png,15893 +images-20375.png,15894 +images-20376.png,15895 +images-20377.png,15896 +images-20378.png,15897 +images-20379.png,15898 +images-20380.png,15899 +images-20381.png,15900 +images-20382.png,15901 +images-20383.png,15902 +images-20384.png,15903 +images-20385.png,15904 +images-20386.png,15905 +images-20387.png,15906 +images-20388.png,15907 +images-20389.png,15908 +images-20390.png,15909 +images-20391.png,15910 +images-20392.png,15911 +images-20393.png,15912 +images-20394.png,15913 +images-20395.png,15914 +images-20396.png,15915 +images-20397.png,15916 +images-20398.png,15917 +images-20399.png,15918 +images-20400.png,15919 +images-20401.png,15920 +images-20402.png,15921 +images-20403.png,15922 +images-20404.png,15923 +images-20405.png,15924 +images-20406.png,15925 +images-20407.png,15926 +images-20408.png,15927 +images-20409.png,15928 +images-20410.png,15929 +images-20411.png,15930 +images-20412.png,15931 +images-20413.png,15932 +images-20414.png,15933 +images-20415.png,15934 +images-20416.png,15935 +images-20417.png,15936 +images-20418.png,15937 +images-20419.png,15938 +images-20420.png,15939 +images-20421.png,15940 +images-20422.png,15941 +images-20423.png,15942 +images-20424.png,15943 +images-20425.png,15944 +images-20426.png,15945 +images-20427.png,15946 +images-20428.png,15947 +images-20429.png,15948 +images-20430.png,15949 +images-20431.png,15950 +images-20432.png,15951 +images-20433.png,15952 +images-20434.png,15953 +images-20435.png,15954 +images-20436.png,15955 +images-20437.png,15956 +images-20438.png,15957 +images-20439.png,15958 +images-20440.png,15959 +images-20441.png,15960 +images-20442.png,15961 +images-20443.png,15962 +images-20444.png,15963 +images-20445.png,15964 +images-20446.png,15965 +images-20447.png,15966 +images-20448.png,15967 +images-20449.png,15968 +images-20450.png,15969 +images-20451.png,15970 +images-20452.png,15971 +images-20453.png,15972 +images-20454.png,15973 +images-20455.png,15974 +images-20456.png,15975 +images-20457.png,15976 +images-20458.png,15977 +images-20459.png,15978 +images-20460.png,15979 +images-20461.png,15980 +images-20462.png,15981 +images-20463.png,15982 +images-20464.png,15983 +images-20465.png,15984 +images-20466.png,15985 +images-20467.png,15986 +images-20468.png,15987 +images-20469.png,15988 +images-20470.png,15989 +images-20471.png,15990 +images-20472.png,15991 +images-20473.png,15992 +images-20474.png,15993 +images-20475.png,15994 +images-20476.png,15995 +images-20477.png,15996 +images-20478.png,15997 +images-20479.png,15998 +images-20480.png,15999 +images-20481.png,16000 +images-20482.png,16001 +images-20483.png,16002 +images-20484.png,16003 +images-20485.png,16004 +images-20486.png,16005 +images-20487.png,16006 +images-20488.png,16007 +images-20489.png,16008 +images-20490.png,16009 +images-20491.png,16010 +images-20492.png,16011 +images-20493.png,16012 +images-20494.png,16013 +images-20495.png,16014 +images-20496.png,16015 +images-20497.png,16016 +images-20498.png,16017 +images-20499.png,16018 +images-20500.png,16019 +images-20501.png,16020 +images-20502.png,16021 +images-20503.png,16022 +images-20504.png,16023 +images-20505.png,16024 +images-20506.png,16025 +images-20507.png,16026 +images-20508.png,16027 +images-20509.png,16028 +images-20510.png,16029 +images-20511.png,16030 +images-20512.png,16031 +images-20513.png,16032 +images-20514.png,16033 +images-20515.png,16034 +images-20516.png,16035 +images-20517.png,16036 +images-20518.png,16037 +images-20519.png,16038 +images-20520.png,16039 +images-20521.png,16040 +images-20522.png,16041 +images-20523.png,16042 +images-20524.png,16043 +images-20525.png,16044 +images-20526.png,16045 +images-20527.png,16046 +images-20528.png,16047 +images-20529.png,16048 +images-20530.png,16049 +images-20531.png,16050 +images-20532.png,16051 +images-20533.png,16052 +images-20534.png,16053 +images-20535.png,16054 +images-20536.png,16055 +images-20537.png,16056 +images-20538.png,16057 +images-20539.png,16058 +images-20547.png,16059 +images-20548.png,16060 +images-20549.png,16061 +images-20550.png,16062 +images-20551.png,16063 +images-20552.png,16064 +images-20553.png,16065 +images-20554.png,16066 +images-20555.png,16067 +images-20556.png,16068 +images-20557.png,16069 +images-20558.png,16070 +images-20559.png,16071 +images-20560.png,16072 +images-20561.png,16073 +images-20562.png,16074 +images-20563.png,16075 +images-20564.png,16076 +images-20565.png,16077 +images-20566.png,16078 +images-20567.png,16079 +images-20568.png,16080 +images-20569.png,16081 +images-20570.png,16082 +images-20571.png,16083 +images-20572.png,16084 +images-20573.png,16085 +images-20574.png,16086 +images-20575.png,16087 +images-20576.png,16088 +images-20577.png,16089 +images-20578.png,16090 +images-20579.png,16091 +images-20580.png,16092 +images-20581.png,16093 +images-20582.png,16094 +images-20583.png,16095 +images-20584.png,16096 +images-20585.png,16097 +images-20586.png,16098 +images-20587.png,16099 +images-20588.png,16100 +images-20589.png,16101 +images-20590.png,16102 +images-20591.png,16103 +images-20592.png,16104 +images-20593.png,16105 +images-20599.png,16106 +images-20600.png,16107 +images-20601.png,16108 +images-20602.png,16109 +images-20603.png,16110 +images-20604.png,16111 +images-20605.png,16112 +images-20606.png,16113 +images-20607.png,16114 +images-20608.png,16115 +images-20609.png,16116 +images-20610.png,16117 +images-20611.png,16118 +images-20612.png,16119 +images-20613.png,16120 +images-20614.png,16121 +images-20615.png,16122 +images-20616.png,16123 +images-20617.png,16124 +images-20618.png,16125 +images-20619.png,16126 +images-20620.png,16127 +images-20621.png,16128 +images-20622.png,16129 +images-20623.png,16130 +images-20624.png,16131 +images-20625.png,16132 +images-20626.png,16133 +images-20627.png,16134 +images-20628.png,16135 +images-20629.png,16136 +images-20630.png,16137 +images-20631.png,16138 +images-20632.png,16139 +images-20633.png,16140 +images-20634.png,16141 +images-20635.png,16142 +images-20636.png,16143 +images-20637.png,16144 +images-20638.png,16145 +images-20639.png,16146 +images-20640.png,16147 +images-20641.png,16148 +images-20642.png,16149 +images-20643.png,16150 +images-20644.png,16151 +images-20645.png,16152 +images-20646.png,16153 +images-20647.png,16154 +images-20648.png,16155 +images-20649.png,16156 +images-20650.png,16157 +images-20651.png,16158 +images-20652.png,16159 +images-20653.png,16160 +images-20654.png,16161 +images-20655.png,16162 +images-20656.png,16163 +images-20657.png,16164 +images-20658.png,16165 +images-20659.png,16166 +images-20660.png,16167 +images-20661.png,16168 +images-20662.png,16169 +images-20663.png,16170 +images-20664.png,16171 +images-20665.png,16172 +images-20666.png,16173 +images-20667.png,16174 +images-20668.png,16175 +images-20669.png,16176 +images-20670.png,16177 +images-20671.png,16178 +images-20672.png,16179 +images-20673.png,16180 +images-20674.png,16181 +images-20675.png,16182 +images-20676.png,16183 +images-20677.png,16184 +images-20678.png,16185 +images-20679.png,16186 +images-20680.png,16187 +images-20681.png,16188 +images-20682.png,16189 +images-20683.png,16190 +images-20684.png,16191 +images-20685.png,16192 +images-20686.png,16193 +images-20687.png,16194 +images-20688.png,16195 +images-20689.png,16196 +images-20690.png,16197 +images-20691.png,16198 +images-20692.png,16199 +images-20693.png,16200 +images-20694.png,16201 +images-20695.png,16202 +images-20696.png,16203 +images-20697.png,16204 +images-20698.png,16205 +images-20699.png,16206 +images-20700.png,16207 +images-20701.png,16208 +images-20702.png,16209 +images-20703.png,16210 +images-20704.png,16211 +images-20705.png,16212 +images-20706.png,16213 +images-20707.png,16214 +images-20708.png,16215 +images-20709.png,16216 +images-20710.png,16217 +images-20711.png,16218 +images-20712.png,16219 +images-20713.png,16220 +images-20714.png,16221 +images-20715.png,16222 +images-20716.png,16223 +images-20717.png,16224 +images-20718.png,16225 +images-20719.png,16226 +images-20720.png,16227 +images-20721.png,16228 +images-20722.png,16229 +images-20723.png,16230 +images-20724.png,16231 +images-20725.png,16232 +images-20726.png,16233 +images-20727.png,16234 +images-20728.png,16235 +images-20729.png,16236 +images-20730.png,16237 +images-20731.png,16238 +images-20732.png,16239 +images-20733.png,16240 +images-20734.png,16241 +images-20735.png,16242 +images-20736.png,16243 +images-20760.png,16244 +images-20761.png,16245 +images-20762.png,16246 +images-20763.png,16247 +images-20764.png,16248 +images-20765.png,16249 +images-20766.png,16250 +images-20767.png,16251 +images-20768.png,16252 +images-20769.png,16253 +images-20770.png,16254 +images-20771.png,16255 +images-20772.png,16256 +images-20773.png,16257 +images-20774.png,16258 +images-20775.png,16259 +images-20776.png,16260 +images-20777.png,16261 +images-20778.png,16262 +images-20779.png,16263 +images-20780.png,16264 +images-20781.png,16265 +images-20782.png,16266 +images-20783.png,16267 +images-20784.png,16268 +images-20785.png,16269 +images-20786.png,16270 +images-20787.png,16271 +images-20788.png,16272 +images-20789.png,16273 +images-20790.png,16274 +images-20791.png,16275 +images-20792.png,16276 +images-20793.png,16277 +images-20794.png,16278 +images-20795.png,16279 +images-20796.png,16280 +images-20797.png,16281 +images-20798.png,16282 +images-20799.png,16283 +images-20800.png,16284 +images-20801.png,16285 +images-20802.png,16286 +images-20803.png,16287 +images-20804.png,16288 +images-20805.png,16289 +images-20806.png,16290 +images-20807.png,16291 +images-20808.png,16292 +images-20809.png,16293 +images-20810.png,16294 +images-20811.png,16295 +images-20812.png,16296 +images-20813.png,16297 +images-20814.png,16298 +images-20815.png,16299 +images-20816.png,16300 +images-20817.png,16301 +images-20818.png,16302 +images-20819.png,16303 +images-20820.png,16304 +images-20821.png,16305 +images-20822.png,16306 +images-20823.png,16307 +images-20824.png,16308 +images-20825.png,16309 +images-20826.png,16310 +images-20827.png,16311 +images-20828.png,16312 +images-20829.png,16313 +images-20830.png,16314 +images-20831.png,16315 +images-20832.png,16316 +images-20833.png,16317 +images-20834.png,16318 +images-20835.png,16319 +images-20836.png,16320 +images-20837.png,16321 +images-20838.png,16322 +images-20839.png,16323 +images-20840.png,16324 +images-20841.png,16325 +images-20842.png,16326 +images-20843.png,16327 +images-20844.png,16328 +images-20845.png,16329 +images-20846.png,16330 +images-20847.png,16331 +images-20848.png,16332 +images-20849.png,16333 +images-20850.png,16334 +images-20851.png,16335 +images-20852.png,16336 +images-20853.png,16337 +images-20854.png,16338 +images-20855.png,16339 +images-20856.png,16340 +images-20857.png,16341 +images-20858.png,16342 +images-20859.png,16343 +images-20860.png,16344 +images-20861.png,16345 +images-20862.png,16346 +images-20863.png,16347 +images-20864.png,16348 +images-20865.png,16349 +images-20866.png,16350 +images-20867.png,16351 +images-20868.png,16352 +images-20869.png,16353 +images-20870.png,16354 +images-20871.png,16355 +images-20872.png,16356 +images-20873.png,16357 +images-20874.png,16358 +images-20875.png,16359 +images-20876.png,16360 +images-20877.png,16361 +images-20878.png,16362 +images-20879.png,16363 +images-20880.png,16364 +images-20881.png,16365 +images-20882.png,16366 +images-20883.png,16367 +images-20884.png,16368 +images-20885.png,16369 +images-20886.png,16370 +images-20887.png,16371 +images-20888.png,16372 +images-20889.png,16373 +images-20890.png,16374 +images-20891.png,16375 +images-20892.png,16376 +images-20893.png,16377 +images-20894.png,16378 +images-20895.png,16379 +images-20896.png,16380 +images-20897.png,16381 +images-20898.png,16382 +images-20899.png,16383 +images-20900.png,16384 +images-20901.png,16385 +images-20902.png,16386 +images-20903.png,16387 +images-20904.png,16388 +images-20905.png,16389 +images-20906.png,16390 +images-20907.png,16391 +images-20908.png,16392 +images-20909.png,16393 +images-20910.png,16394 +images-20911.png,16395 +images-20912.png,16396 +images-20913.png,16397 +images-20914.png,16398 +images-20915.png,16399 +images-20916.png,16400 +images-20917.png,16401 +images-20918.png,16402 +images-20919.png,16403 +images-20920.png,16404 +images-20921.png,16405 +images-20922.png,16406 +images-20923.png,16407 +images-20924.png,16408 +images-20925.png,16409 +images-20926.png,16410 +images-20927.png,16411 +images-20928.png,16412 +images-20929.png,16413 +images-20930.png,16414 +images-20931.png,16415 +images-20932.png,16416 +images-20933.png,16417 +images-20934.png,16418 +images-20935.png,16419 +images-20936.png,16420 +images-20937.png,16421 +images-20938.png,16422 +images-20939.png,16423 +images-20940.png,16424 +images-20941.png,16425 +images-20942.png,16426 +images-20943.png,16427 +images-20944.png,16428 +images-20945.png,16429 +images-20946.png,16430 +images-20947.png,16431 +images-20948.png,16432 +images-20949.png,16433 +images-20950.png,16434 +images-20951.png,16435 +images-20952.png,16436 +images-20953.png,16437 +images-20954.png,16438 +images-20955.png,16439 +images-20956.png,16440 +images-20957.png,16441 +images-20958.png,16442 +images-20959.png,16443 +images-20960.png,16444 +images-20961.png,16445 +images-20962.png,16446 +images-20963.png,16447 +images-20964.png,16448 +images-20965.png,16449 +images-20966.png,16450 +images-20967.png,16451 +images-20968.png,16452 +images-20969.png,16453 +images-20970.png,16454 +images-20971.png,16455 +images-20972.png,16456 +images-20973.png,16457 +images-20974.png,16458 +images-20975.png,16459 +images-20976.png,16460 +images-20977.png,16461 +images-20978.png,16462 +images-20979.png,16463 +images-20980.png,16464 +images-20981.png,16465 +images-20982.png,16466 +images-20983.png,16467 +images-20984.png,16468 +images-20985.png,16469 +images-20986.png,16470 +images-20987.png,16471 +images-20988.png,16472 +images-20989.png,16473 +images-20990.png,16474 +images-20991.png,16475 +images-20992.png,16476 +images-20993.png,16477 +images-20994.png,16478 +images-20995.png,16479 +images-20996.png,16480 +images-20997.png,16481 +images-20998.png,16482 +images-20999.png,16483 +images-21000.png,16484 +images-21001.png,16485 +images-21002.png,16486 +images-21003.png,16487 +images-21004.png,16488 +images-21005.png,16489 +images-21006.png,16490 +images-21007.png,16491 +images-21008.png,16492 +images-21009.png,16493 +images-21010.png,16494 +images-21011.png,16495 +images-21012.png,16496 +images-21013.png,16497 +images-21014.png,16498 +images-21015.png,16499 +images-21016.png,16500 +images-21017.png,16501 +images-21018.png,16502 +images-21019.png,16503 +images-21020.png,16504 +images-21021.png,16505 +images-21022.png,16506 +images-21023.png,16507 +images-21024.png,16508 +images-21025.png,16509 +images-21026.png,16510 +images-21027.png,16511 +images-21028.png,16512 +images-21029.png,16513 +images-21030.png,16514 +images-21031.png,16515 +images-21032.png,16516 +images-21033.png,16517 +images-21034.png,16518 +images-21035.png,16519 +images-21036.png,16520 +images-21037.png,16521 +images-21038.png,16522 +images-21039.png,16523 +images-21040.png,16524 +images-21041.png,16525 +images-21042.png,16526 +images-21043.png,16527 +images-21044.png,16528 +images-21045.png,16529 +images-21046.png,16530 +images-21047.png,16531 +images-21048.png,16532 +images-21049.png,16533 +images-21050.png,16534 +images-21051.png,16535 +images-21052.png,16536 +images-21053.png,16537 +images-21054.png,16538 +images-21055.png,16539 +images-21056.png,16540 +images-21057.png,16541 +images-21063.png,16542 +images-21064.png,16543 +images-21065.png,16544 +images-21066.png,16545 +images-21067.png,16546 +images-21068.png,16547 +images-21069.png,16548 +images-21070.png,16549 +images-21071.png,16550 +images-21072.png,16551 +images-21073.png,16552 +images-21074.png,16553 +images-21075.png,16554 +images-21076.png,16555 +images-21077.png,16556 +images-21078.png,16557 +images-21079.png,16558 +images-21080.png,16559 +images-21081.png,16560 +images-21082.png,16561 +images-21083.png,16562 +images-21084.png,16563 +images-21085.png,16564 +images-21086.png,16565 +images-21087.png,16566 +images-21088.png,16567 +images-21089.png,16568 +images-21090.png,16569 +images-21091.png,16570 +images-21092.png,16571 +images-21093.png,16572 +images-21094.png,16573 +images-21095.png,16574 +images-21096.png,16575 +images-21097.png,16576 +images-21098.png,16577 +images-21099.png,16578 +images-21100.png,16579 +images-21101.png,16580 +images-21102.png,16581 +images-21103.png,16582 +images-21104.png,16583 +images-21105.png,16584 +images-21106.png,16585 +images-21107.png,16586 +images-21108.png,16587 +images-21109.png,16588 +images-21110.png,16589 +images-21111.png,16590 +images-21112.png,16591 +images-21113.png,16592 +images-21114.png,16593 +images-21115.png,16594 +images-21116.png,16595 +images-21117.png,16596 +images-21118.png,16597 +images-21119.png,16598 +images-21120.png,16599 +images-21121.png,16600 +images-21122.png,16601 +images-21123.png,16602 +images-21124.png,16603 +images-21125.png,16604 +images-21126.png,16605 +images-21127.png,16606 +images-21128.png,16607 +images-21129.png,16608 +images-21130.png,16609 +images-21131.png,16610 +images-21132.png,16611 +images-21133.png,16612 +images-21134.png,16613 +images-21135.png,16614 +images-21136.png,16615 +images-21137.png,16616 +images-21138.png,16617 +images-21139.png,16618 +images-21140.png,16619 +images-21141.png,16620 +images-21142.png,16621 +images-21143.png,16622 +images-21144.png,16623 +images-21145.png,16624 +images-21146.png,16625 +images-21147.png,16626 +images-21148.png,16627 +images-21149.png,16628 +images-21150.png,16629 +images-21151.png,16630 +images-21152.png,16631 +images-21153.png,16632 +images-21154.png,16633 +images-21155.png,16634 +images-21156.png,16635 +images-21157.png,16636 +images-21158.png,16637 +images-21159.png,16638 +images-21160.png,16639 +images-21161.png,16640 +images-21162.png,16641 +images-21163.png,16642 +images-21164.png,16643 +images-21165.png,16644 +images-21166.png,16645 +images-21167.png,16646 +images-21168.png,16647 +images-21169.png,16648 +images-21170.png,16649 +images-21171.png,16650 +images-21172.png,16651 +images-21173.png,16652 +images-21174.png,16653 +images-21175.png,16654 +images-21176.png,16655 +images-21177.png,16656 +images-21178.png,16657 +images-21179.png,16658 +images-21180.png,16659 +images-21181.png,16660 +images-21182.png,16661 +images-21183.png,16662 +images-21184.png,16663 +images-21185.png,16664 +images-21186.png,16665 +images-21187.png,16666 +images-21188.png,16667 +images-21189.png,16668 +images-21190.png,16669 +images-21191.png,16670 +images-21192.png,16671 +images-21193.png,16672 +images-21194.png,16673 +images-21195.png,16674 +images-21196.png,16675 +images-21197.png,16676 +images-21198.png,16677 +images-21199.png,16678 +images-21200.png,16679 +images-21201.png,16680 +images-21202.png,16681 +images-21203.png,16682 +images-21204.png,16683 +images-21205.png,16684 +images-21206.png,16685 +images-21207.png,16686 +images-21208.png,16687 +images-21209.png,16688 +images-21210.png,16689 +images-21211.png,16690 +images-21212.png,16691 +images-21213.png,16692 +images-21214.png,16693 +images-21215.png,16694 +images-21216.png,16695 +images-21217.png,16696 +images-21218.png,16697 +images-21219.png,16698 +images-21220.png,16699 +images-21221.png,16700 +images-21222.png,16701 +images-21223.png,16702 +images-21224.png,16703 +images-21225.png,16704 +images-21226.png,16705 +images-21227.png,16706 +images-21228.png,16707 +images-21229.png,16708 +images-21230.png,16709 +images-21231.png,16710 +images-21232.png,16711 +images-21233.png,16712 +images-21234.png,16713 +images-21235.png,16714 +images-21236.png,16715 +images-21237.png,16716 +images-21238.png,16717 +images-21239.png,16718 +images-21240.png,16719 +images-21241.png,16720 +images-21242.png,16721 +images-21243.png,16722 +images-21244.png,16723 +images-21245.png,16724 +images-21246.png,16725 +images-21247.png,16726 +images-21248.png,16727 +images-21249.png,16728 +images-21250.png,16729 +images-21251.png,16730 +images-21252.png,16731 +images-21253.png,16732 +images-21254.png,16733 +images-21255.png,16734 +images-21256.png,16735 +images-21257.png,16736 +images-21258.png,16737 +images-21259.png,16738 +images-21260.png,16739 +images-21261.png,16740 +images-21262.png,16741 +images-21263.png,16742 +images-21264.png,16743 +images-21265.png,16744 +images-21266.png,16745 +images-21267.png,16746 +images-21268.png,16747 +images-21269.png,16748 +images-21270.png,16749 +images-21271.png,16750 +images-21272.png,16751 +images-21273.png,16752 +images-21274.png,16753 +images-21275.png,16754 +images-21276.png,16755 +images-21277.png,16756 +images-21278.png,16757 +images-21279.png,16758 +images-21280.png,16759 +images-21281.png,16760 +images-21282.png,16761 +images-21283.png,16762 +images-21284.png,16763 +images-21285.png,16764 +images-21286.png,16765 +images-21287.png,16766 +images-21288.png,16767 +images-21289.png,16768 +images-21290.png,16769 +images-21291.png,16770 +images-21292.png,16771 +images-21293.png,16772 +images-21294.png,16773 +images-21295.png,16774 +images-21296.png,16775 +images-21297.png,16776 +images-21298.png,16777 +images-21299.png,16778 +images-21300.png,16779 +images-21301.png,16780 +images-21302.png,16781 +images-21303.png,16782 +images-21304.png,16783 +images-21305.png,16784 +images-21306.png,16785 +images-21307.png,16786 +images-21308.png,16787 +images-21309.png,16788 +images-21310.png,16789 +images-21311.png,16790 +images-21312.png,16791 +images-21313.png,16792 +images-21314.png,16793 +images-21315.png,16794 +images-21316.png,16795 +images-21317.png,16796 +images-21318.png,16797 +images-21319.png,16798 +images-21320.png,16799 +images-21321.png,16800 +images-21322.png,16801 +images-21323.png,16802 +images-21324.png,16803 +images-21325.png,16804 +images-21326.png,16805 +images-21327.png,16806 +images-21328.png,16807 +images-21329.png,16808 +images-21330.png,16809 +images-21331.png,16810 +images-21332.png,16811 +images-21333.png,16812 +images-21334.png,16813 +images-21335.png,16814 +images-21336.png,16815 +images-21337.png,16816 +images-21338.png,16817 +images-21339.png,16818 +images-21340.png,16819 +images-21341.png,16820 +images-21342.png,16821 +images-21343.png,16822 +images-21344.png,16823 +images-21345.png,16824 +images-21346.png,16825 +images-21347.png,16826 +images-21348.png,16827 +images-21349.png,16828 +images-21350.png,16829 +images-21351.png,16830 +images-21352.png,16831 +images-21353.png,16832 +images-21354.png,16833 +images-21355.png,16834 +images-21356.png,16835 +images-21357.png,16836 +images-21358.png,16837 +images-21359.png,16838 +images-21360.png,16839 +images-21361.png,16840 +images-21362.png,16841 +images-21363.png,16842 +images-21364.png,16843 +images-21365.png,16844 +images-21366.png,16845 +images-21367.png,16846 +images-21368.png,16847 +images-21369.png,16848 +images-21370.png,16849 +images-21371.png,16850 +images-21372.png,16851 +images-21373.png,16852 +images-21374.png,16853 +images-21375.png,16854 +images-21376.png,16855 +images-21377.png,16856 +images-21378.png,16857 +images-21379.png,16858 +images-21380.png,16859 +images-21381.png,16860 +images-21382.png,16861 +images-21383.png,16862 +images-21384.png,16863 +images-21385.png,16864 +images-21386.png,16865 +images-21387.png,16866 +images-21388.png,16867 +images-21389.png,16868 +images-21390.png,16869 +images-21391.png,16870 +images-21392.png,16871 +images-21393.png,16872 +images-21394.png,16873 +images-21395.png,16874 +images-21396.png,16875 +images-21397.png,16876 +images-21398.png,16877 +images-21399.png,16878 +images-21400.png,16879 +images-21401.png,16880 +images-21402.png,16881 +images-21403.png,16882 +images-21404.png,16883 +images-21405.png,16884 +images-21406.png,16885 +images-21407.png,16886 +images-21408.png,16887 +images-21409.png,16888 +images-21410.png,16889 +images-21411.png,16890 +images-21412.png,16891 +images-21413.png,16892 +images-21414.png,16893 +images-21415.png,16894 +images-21416.png,16895 +images-21417.png,16896 +images-21418.png,16897 +images-21419.png,16898 +images-21420.png,16899 +images-21421.png,16900 +images-21422.png,16901 +images-21423.png,16902 +images-21424.png,16903 +images-21425.png,16904 +images-21426.png,16905 +images-21427.png,16906 +images-21428.png,16907 +images-21429.png,16908 +images-21430.png,16909 +images-21431.png,16910 +images-21432.png,16911 +images-21433.png,16912 +images-21434.png,16913 +images-21435.png,16914 +images-21436.png,16915 +images-21437.png,16916 +images-21438.png,16917 +images-21439.png,16918 +images-21440.png,16919 +images-21441.png,16920 +images-21442.png,16921 +images-21443.png,16922 +images-21444.png,16923 +images-21445.png,16924 +images-21446.png,16925 +images-21447.png,16926 +images-21448.png,16927 +images-21449.png,16928 +images-21450.png,16929 +images-21451.png,16930 +images-21452.png,16931 +images-21453.png,16932 +images-21454.png,16933 +images-21455.png,16934 +images-21456.png,16935 +images-21457.png,16936 +images-21458.png,16937 +images-21459.png,16938 +images-21460.png,16939 +images-21461.png,16940 +images-21462.png,16941 +images-21463.png,16942 +images-21464.png,16943 +images-21465.png,16944 +images-21466.png,16945 +images-21467.png,16946 +images-21468.png,16947 +images-21469.png,16948 +images-21470.png,16949 +images-21471.png,16950 +images-21472.png,16951 +images-21473.png,16952 +images-21474.png,16953 +images-21475.png,16954 +images-21476.png,16955 +images-21477.png,16956 +images-21499.png,16957 +images-21500.png,16958 +images-21501.png,16959 +images-21502.png,16960 +images-21503.png,16961 +images-21504.png,16962 +images-21505.png,16963 +images-21506.png,16964 +images-21507.png,16965 +images-21508.png,16966 +images-21509.png,16967 +images-21510.png,16968 +images-21511.png,16969 +images-21512.png,16970 +images-21513.png,16971 +images-21514.png,16972 +images-21515.png,16973 +images-21516.png,16974 +images-21517.png,16975 +images-21518.png,16976 +images-21519.png,16977 +images-21520.png,16978 +images-21521.png,16979 +images-21522.png,16980 +images-21523.png,16981 +images-21524.png,16982 +images-21525.png,16983 +images-21526.png,16984 +images-21527.png,16985 +images-21528.png,16986 +images-21529.png,16987 +images-21530.png,16988 +images-21531.png,16989 +images-21532.png,16990 +images-21533.png,16991 +images-21534.png,16992 +images-21535.png,16993 +images-21536.png,16994 +images-21537.png,16995 +images-21538.png,16996 +images-21539.png,16997 +images-21540.png,16998 +images-21541.png,16999 +images-21542.png,17000 +images-21543.png,17001 +images-21544.png,17002 +images-21545.png,17003 +images-21546.png,17004 +images-21547.png,17005 +images-21548.png,17006 +images-21549.png,17007 +images-21550.png,17008 +images-21551.png,17009 +images-21552.png,17010 +images-21553.png,17011 +images-21554.png,17012 +images-21555.png,17013 +images-21556.png,17014 +images-21557.png,17015 +images-21558.png,17016 +images-21559.png,17017 +images-21560.png,17018 +images-21561.png,17019 +images-21562.png,17020 +images-21563.png,17021 +images-21564.png,17022 +images-21565.png,17023 +images-21566.png,17024 +images-21567.png,17025 +images-21568.png,17026 +images-21569.png,17027 +images-21570.png,17028 +images-21571.png,17029 +images-21572.png,17030 +images-21573.png,17031 +images-21574.png,17032 +images-21575.png,17033 +images-21576.png,17034 +images-21577.png,17035 +images-21578.png,17036 +images-21579.png,17037 +images-21580.png,17038 +images-21581.png,17039 +images-21582.png,17040 +images-21583.png,17041 +images-21584.png,17042 +images-21585.png,17043 +images-21586.png,17044 +images-21587.png,17045 +images-21588.png,17046 +images-21589.png,17047 +images-21590.png,17048 +images-21591.png,17049 +images-21592.png,17050 +images-21593.png,17051 +images-21594.png,17052 +images-21595.png,17053 +images-21596.png,17054 +images-21597.png,17055 +images-21598.png,17056 +images-21599.png,17057 +images-21600.png,17058 +images-21601.png,17059 +images-21602.png,17060 +images-21603.png,17061 +images-21604.png,17062 +images-21605.png,17063 +images-21606.png,17064 +images-21607.png,17065 +images-21608.png,17066 +images-21609.png,17067 +images-21610.png,17068 +images-21611.png,17069 +images-21612.png,17070 +images-21613.png,17071 +images-21614.png,17072 +images-21615.png,17073 +images-21616.png,17074 +images-21617.png,17075 +images-21618.png,17076 +images-21619.png,17077 +images-21620.png,17078 +images-21621.png,17079 +images-21622.png,17080 +images-21623.png,17081 +images-21624.png,17082 +images-21625.png,17083 +images-21626.png,17084 +images-21627.png,17085 +images-21628.png,17086 +images-21629.png,17087 +images-21630.png,17088 +images-21631.png,17089 +images-21632.png,17090 +images-21633.png,17091 +images-21634.png,17092 +images-21635.png,17093 +images-21636.png,17094 +images-21637.png,17095 +images-21638.png,17096 +images-21639.png,17097 +images-21640.png,17098 +images-21641.png,17099 +images-21642.png,17100 +images-21643.png,17101 +images-21644.png,17102 +images-21645.png,17103 +images-21646.png,17104 +images-21647.png,17105 +images-21648.png,17106 +images-21649.png,17107 +images-21650.png,17108 +images-21651.png,17109 +images-21652.png,17110 +images-21653.png,17111 +images-21654.png,17112 +images-21655.png,17113 +images-21656.png,17114 +images-21657.png,17115 +images-21658.png,17116 +images-21659.png,17117 +images-21660.png,17118 +images-21661.png,17119 +images-21662.png,17120 +images-21663.png,17121 +images-21664.png,17122 +images-21665.png,17123 +images-21666.png,17124 +images-21667.png,17125 +images-21668.png,17126 +images-21669.png,17127 +images-21670.png,17128 +images-21671.png,17129 +images-21672.png,17130 +images-21673.png,17131 +images-21674.png,17132 +images-21675.png,17133 +images-21676.png,17134 +images-21677.png,17135 +images-21678.png,17136 +images-21679.png,17137 +images-21680.png,17138 +images-21681.png,17139 +images-21682.png,17140 +images-21683.png,17141 +images-21684.png,17142 +images-21685.png,17143 +images-21686.png,17144 +images-21687.png,17145 +images-21688.png,17146 +images-21689.png,17147 +images-21690.png,17148 +images-21691.png,17149 +images-21692.png,17150 +images-21693.png,17151 +images-21694.png,17152 +images-21695.png,17153 +images-21696.png,17154 +images-21697.png,17155 +images-21698.png,17156 +images-21699.png,17157 +images-21700.png,17158 +images-21701.png,17159 +images-21702.png,17160 +images-21703.png,17161 +images-21704.png,17162 +images-21705.png,17163 +images-21706.png,17164 +images-21707.png,17165 +images-21708.png,17166 +images-21709.png,17167 +images-21710.png,17168 +images-21711.png,17169 +images-21712.png,17170 +images-21713.png,17171 +images-21714.png,17172 +images-21715.png,17173 +images-21716.png,17174 +images-21717.png,17175 +images-21718.png,17176 +images-21719.png,17177 +images-21720.png,17178 +images-21721.png,17179 +images-21722.png,17180 +images-21723.png,17181 +images-21724.png,17182 +images-21725.png,17183 +images-21726.png,17184 +images-21727.png,17185 +images-21728.png,17186 +images-21729.png,17187 +images-21730.png,17188 +images-21731.png,17189 +images-21732.png,17190 +images-21733.png,17191 +images-21734.png,17192 +images-21735.png,17193 +images-21736.png,17194 +images-21737.png,17195 +images-21738.png,17196 +images-21739.png,17197 +images-21740.png,17198 +images-21741.png,17199 +images-21742.png,17200 +images-21743.png,17201 +images-21744.png,17202 +images-21745.png,17203 +images-21746.png,17204 +images-21747.png,17205 +images-21748.png,17206 +images-21749.png,17207 +images-21750.png,17208 +images-21751.png,17209 +images-21752.png,17210 +images-21753.png,17211 +images-21754.png,17212 +images-21755.png,17213 +images-21756.png,17214 +images-21757.png,17215 +images-21758.png,17216 +images-21759.png,17217 +images-21760.png,17218 +images-21761.png,17219 +images-21762.png,17220 +images-21763.png,17221 +images-21764.png,17222 +images-21765.png,17223 +images-21766.png,17224 +images-21767.png,17225 +images-21768.png,17226 +images-21769.png,17227 +images-21770.png,17228 +images-21771.png,17229 +images-21772.png,17230 +images-21773.png,17231 +images-21774.png,17232 +images-21775.png,17233 +images-21776.png,17234 +images-21777.png,17235 +images-21778.png,17236 +images-21779.png,17237 +images-21780.png,17238 +images-21781.png,17239 +images-21782.png,17240 +images-21783.png,17241 +images-21784.png,17242 +images-21785.png,17243 +images-21786.png,17244 +images-21787.png,17245 +images-21788.png,17246 +images-21789.png,17247 +images-21790.png,17248 +images-21791.png,17249 +images-21792.png,17250 +images-21793.png,17251 +images-21794.png,17252 +images-21795.png,17253 +images-21796.png,17254 +images-21797.png,17255 +images-21798.png,17256 +images-21799.png,17257 +images-21800.png,17258 +images-21801.png,17259 +images-21802.png,17260 +images-21803.png,17261 +images-21804.png,17262 +images-21805.png,17263 +images-21806.png,17264 +images-21807.png,17265 +images-21808.png,17266 +images-21809.png,17267 +images-21810.png,17268 +images-21811.png,17269 +images-21812.png,17270 +images-21813.png,17271 +images-21814.png,17272 +images-21815.png,17273 +images-21816.png,17274 +images-21817.png,17275 +images-21818.png,17276 +images-21819.png,17277 +images-21820.png,17278 +images-21821.png,17279 +images-21822.png,17280 +images-21823.png,17281 +images-21824.png,17282 +images-21825.png,17283 +images-21826.png,17284 +images-21827.png,17285 +images-21828.png,17286 +images-21829.png,17287 +images-21830.png,17288 +images-21831.png,17289 +images-21872.png,17290 +images-21873.png,17291 +images-21874.png,17292 +images-21875.png,17293 +images-21876.png,17294 +images-21877.png,17295 +images-21878.png,17296 +images-21879.png,17297 +images-21880.png,17298 +images-21881.png,17299 +images-21882.png,17300 +images-21883.png,17301 +images-21884.png,17302 +images-21885.png,17303 +images-21886.png,17304 +images-21887.png,17305 +images-21888.png,17306 +images-21889.png,17307 +images-21890.png,17308 +images-21891.png,17309 +images-21892.png,17310 +images-21893.png,17311 +images-21894.png,17312 +images-21895.png,17313 +images-21896.png,17314 +images-21897.png,17315 +images-21898.png,17316 +images-21899.png,17317 +images-21900.png,17318 +images-21901.png,17319 +images-21902.png,17320 +images-21903.png,17321 +images-21904.png,17322 +images-21905.png,17323 +images-21906.png,17324 +images-21907.png,17325 +images-21908.png,17326 +images-21909.png,17327 +images-21910.png,17328 +images-21911.png,17329 +images-21912.png,17330 +images-21913.png,17331 +images-21914.png,17332 +images-21915.png,17333 +images-21916.png,17334 +images-21917.png,17335 +images-21918.png,17336 +images-21919.png,17337 +images-21920.png,17338 +images-21921.png,17339 +images-21922.png,17340 +images-21923.png,17341 +images-21924.png,17342 +images-21925.png,17343 +images-21926.png,17344 +images-21927.png,17345 +images-21928.png,17346 +images-21929.png,17347 +images-21930.png,17348 +images-21931.png,17349 +images-21932.png,17350 +images-21933.png,17351 +images-21934.png,17352 +images-21935.png,17353 +images-21936.png,17354 +images-21937.png,17355 +images-21938.png,17356 +images-21939.png,17357 +images-21940.png,17358 +images-21941.png,17359 +images-21942.png,17360 +images-21943.png,17361 +images-21944.png,17362 +images-21945.png,17363 +images-21946.png,17364 +images-21961.png,17365 +images-21962.png,17366 +images-21963.png,17367 +images-21964.png,17368 +images-21965.png,17369 +images-21966.png,17370 +images-21967.png,17371 +images-21968.png,17372 +images-21969.png,17373 +images-21970.png,17374 +images-21971.png,17375 +images-21972.png,17376 +images-21973.png,17377 +images-21974.png,17378 +images-21975.png,17379 +images-21976.png,17380 +images-21977.png,17381 +images-21978.png,17382 +images-21979.png,17383 +images-21980.png,17384 +images-21981.png,17385 +images-21982.png,17386 +images-21983.png,17387 +images-21984.png,17388 +images-21985.png,17389 +images-22003.png,17390 +images-22004.png,17391 +images-22005.png,17392 +images-22006.png,17393 +images-22007.png,17394 +images-22008.png,17395 +images-22009.png,17396 +images-22010.png,17397 +images-22011.png,17398 +images-22012.png,17399 +images-22013.png,17400 +images-22030.png,17401 +images-22031.png,17402 +images-22032.png,17403 +images-22033.png,17404 +images-22034.png,17405 +images-22035.png,17406 +images-22036.png,17407 +images-22048.png,17408 +images-22049.png,17409 +images-22050.png,17410 +images-22051.png,17411 +images-22052.png,17412 +images-22053.png,17413 +images-22054.png,17414 +images-22055.png,17415 +images-22056.png,17416 +images-22057.png,17417 +images-22058.png,17418 +images-22059.png,17419 +images-22060.png,17420 +images-22061.png,17421 +images-22062.png,17422 +images-22063.png,17423 +images-22064.png,17424 +images-22065.png,17425 +images-22066.png,17426 +images-22067.png,17427 +images-22068.png,17428 +images-22069.png,17429 +images-22070.png,17430 +images-22071.png,17431 +images-22072.png,17432 +images-22073.png,17433 +images-22074.png,17434 +images-22075.png,17435 +images-22076.png,17436 +images-22077.png,17437 +images-22078.png,17438 +images-22079.png,17439 +images-22080.png,17440 +images-22081.png,17441 +images-22082.png,17442 +images-22083.png,17443 +images-22084.png,17444 +images-22085.png,17445 +images-22086.png,17446 +images-22087.png,17447 +images-22088.png,17448 +images-22089.png,17449 +images-22090.png,17450 +images-22091.png,17451 +images-22092.png,17452 +images-22093.png,17453 +images-22094.png,17454 +images-22095.png,17455 +images-22096.png,17456 +images-22097.png,17457 +images-22098.png,17458 +images-22099.png,17459 +images-22100.png,17460 +images-22101.png,17461 +images-22102.png,17462 +images-22103.png,17463 +images-22104.png,17464 +images-22105.png,17465 +images-22106.png,17466 +images-22107.png,17467 +images-22108.png,17468 +images-22109.png,17469 +images-22110.png,17470 +images-22111.png,17471 +images-22112.png,17472 +images-22113.png,17473 +images-22114.png,17474 +images-22115.png,17475 +images-22116.png,17476 +images-22117.png,17477 +images-22118.png,17478 +images-22119.png,17479 +images-22120.png,17480 +images-22121.png,17481 +images-22122.png,17482 +images-22123.png,17483 +images-22124.png,17484 +images-22125.png,17485 +images-22126.png,17486 +images-22127.png,17487 +images-22128.png,17488 +images-22129.png,17489 +images-22130.png,17490 +images-22131.png,17491 +images-22132.png,17492 +images-22133.png,17493 +images-22134.png,17494 +images-22135.png,17495 +images-22136.png,17496 +images-22137.png,17497 +images-22138.png,17498 +images-22139.png,17499 +images-22140.png,17500 +images-22141.png,17501 +images-22142.png,17502 +images-22143.png,17503 +images-22144.png,17504 +images-22145.png,17505 +images-22146.png,17506 +images-22147.png,17507 +images-22148.png,17508 +images-22152.png,17509 +images-22153.png,17510 +images-22154.png,17511 +images-22155.png,17512 +images-22156.png,17513 +images-22157.png,17514 +images-22158.png,17515 +images-22159.png,17516 +images-22160.png,17517 +images-22161.png,17518 +images-22162.png,17519 +images-22163.png,17520 +images-22164.png,17521 +images-22165.png,17522 +images-22166.png,17523 +images-22167.png,17524 +images-22168.png,17525 +images-22169.png,17526 +images-22170.png,17527 +images-22171.png,17528 +images-22172.png,17529 +images-22173.png,17530 +images-22197.png,17531 +images-22198.png,17532 +images-22199.png,17533 +images-22200.png,17534 +images-22201.png,17535 +images-22202.png,17536 +images-22203.png,17537 +images-22204.png,17538 +images-22205.png,17539 +images-22206.png,17540 +images-22207.png,17541 +images-22208.png,17542 +images-22209.png,17543 +images-22210.png,17544 +images-22211.png,17545 +images-22241.png,17546 +images-22242.png,17547 +images-22243.png,17548 +images-22244.png,17549 +images-22245.png,17550 +images-22246.png,17551 +images-22247.png,17552 +images-22248.png,17553 +images-22251.png,17554 +images-22252.png,17555 +images-22253.png,17556 +images-22254.png,17557 +images-22255.png,17558 +images-22256.png,17559 +images-22257.png,17560 +images-22258.png,17561 +images-22259.png,17562 +images-22260.png,17563 +images-22261.png,17564 +images-22262.png,17565 +images-22269.png,17566 +images-22270.png,17567 +images-22271.png,17568 +images-22272.png,17569 +images-22273.png,17570 +images-22274.png,17571 +images-22275.png,17572 +images-22276.png,17573 +images-22277.png,17574 +images-22278.png,17575 +images-22344.png,17576 +images-22345.png,17577 +images-22346.png,17578 +images-22347.png,17579 +images-22348.png,17580 +images-22349.png,17581 +images-22350.png,17582 +images-22351.png,17583 +images-22352.png,17584 +images-22353.png,17585 +images-22354.png,17586 +images-22355.png,17587 +images-22356.png,17588 +images-22357.png,17589 +images-22361.png,17590 +images-22362.png,17591 +images-22363.png,17592 +images-22364.png,17593 +images-22365.png,17594 +images-22366.png,17595 +images-22367.png,17596 +images-22368.png,17597 +images-22369.png,17598 +images-22370.png,17599 +images-22371.png,17600 +images-22372.png,17601 +images-22373.png,17602 +images-22374.png,17603 +images-22375.png,17604 +images-22376.png,17605 +images-22377.png,17606 +images-22378.png,17607 +images-22379.png,17608 +images-22380.png,17609 +images-22381.png,17610 +images-22382.png,17611 +images-22383.png,17612 +images-22384.png,17613 +images-22385.png,17614 +images-22386.png,17615 +images-22387.png,17616 +images-22388.png,17617 +images-22389.png,17618 +images-22390.png,17619 +images-22391.png,17620 +images-22392.png,17621 +images-22393.png,17622 +images-22394.png,17623 +images-22395.png,17624 +images-22396.png,17625 +images-22430.png,17626 +images-22431.png,17627 +images-22432.png,17628 +images-22433.png,17629 +images-22434.png,17630 +images-22435.png,17631 +images-22436.png,17632 +images-22437.png,17633 +images-22438.png,17634 +images-22439.png,17635 +images-22440.png,17636 +images-22441.png,17637 +images-22450.png,17638 +images-22451.png,17639 +images-22452.png,17640 +images-22453.png,17641 +images-22454.png,17642 +images-22455.png,17643 +images-22456.png,17644 +images-22457.png,17645 +images-22458.png,17646 +images-22459.png,17647 +images-22460.png,17648 +images-22461.png,17649 +images-22462.png,17650 +images-22463.png,17651 +images-22464.png,17652 +images-22465.png,17653 +images-22466.png,17654 +images-22467.png,17655 +images-22468.png,17656 +images-22469.png,17657 +images-22470.png,17658 +images-22471.png,17659 +images-22472.png,17660 +images-22473.png,17661 +images-22474.png,17662 +images-22475.png,17663 +images-22476.png,17664 +images-22477.png,17665 +images-22478.png,17666 +images-22479.png,17667 +images-22480.png,17668 +images-22481.png,17669 +images-22482.png,17670 +images-22502.png,17671 +images-22503.png,17672 +images-22504.png,17673 +images-22505.png,17674 +images-22506.png,17675 +images-22507.png,17676 +images-22508.png,17677 +images-22509.png,17678 +images-22510.png,17679 +images-22511.png,17680 +images-22512.png,17681 +images-22513.png,17682 +images-22514.png,17683 +images-22515.png,17684 +images-22516.png,17685 +images-22517.png,17686 +images-22518.png,17687 +images-22519.png,17688 +images-22520.png,17689 +images-22521.png,17690 +images-22522.png,17691 +images-22523.png,17692 +images-22524.png,17693 +images-22525.png,17694 +images-22526.png,17695 +images-22527.png,17696 +images-22528.png,17697 +images-22529.png,17698 +images-22530.png,17699 +images-22531.png,17700 +images-22532.png,17701 +images-22533.png,17702 +images-22534.png,17703 +images-22535.png,17704 +images-22536.png,17705 +images-22537.png,17706 +images-22538.png,17707 +images-22539.png,17708 +images-22540.png,17709 +images-22541.png,17710 +images-22542.png,17711 +images-22543.png,17712 +images-22544.png,17713 +images-22545.png,17714 +images-22546.png,17715 +images-22547.png,17716 +images-22548.png,17717 +images-22549.png,17718 +images-22550.png,17719 +images-22551.png,17720 +images-22552.png,17721 +images-22553.png,17722 +images-22554.png,17723 +images-22555.png,17724 +images-22556.png,17725 +images-22557.png,17726 +images-22558.png,17727 +images-22559.png,17728 +images-22560.png,17729 +images-22561.png,17730 +images-22562.png,17731 +images-22563.png,17732 +images-22564.png,17733 +images-22565.png,17734 +images-22566.png,17735 +images-22567.png,17736 +images-22568.png,17737 +images-22569.png,17738 +images-22570.png,17739 +images-22578.png,17740 +images-22579.png,17741 +images-22580.png,17742 +images-22581.png,17743 +images-22582.png,17744 +images-22583.png,17745 +images-22584.png,17746 +images-22585.png,17747 +images-22586.png,17748 +images-22587.png,17749 +images-22588.png,17750 +images-22589.png,17751 +images-22590.png,17752 +images-22591.png,17753 +images-22592.png,17754 +images-22596.png,17755 +images-22597.png,17756 +images-22598.png,17757 +images-22599.png,17758 +images-22600.png,17759 +images-22601.png,17760 +images-22602.png,17761 +images-22603.png,17762 +images-22604.png,17763 +images-22605.png,17764 +images-22606.png,17765 +images-22607.png,17766 +images-22608.png,17767 +images-22609.png,17768 +images-22610.png,17769 +images-22611.png,17770 +images-22612.png,17771 +images-22613.png,17772 +images-22614.png,17773 +images-22615.png,17774 +images-22616.png,17775 +images-22617.png,17776 +images-22618.png,17777 +images-22619.png,17778 +images-22620.png,17779 +images-22621.png,17780 +images-22622.png,17781 +images-22623.png,17782 +images-22624.png,17783 +images-22625.png,17784 +images-22626.png,17785 +images-22627.png,17786 +images-22628.png,17787 +images-22629.png,17788 +images-22630.png,17789 +images-22631.png,17790 +images-22632.png,17791 +images-22633.png,17792 +images-22634.png,17793 +images-22635.png,17794 +images-22636.png,17795 +images-22637.png,17796 +images-22638.png,17797 +images-22639.png,17798 +images-22640.png,17799 +images-22641.png,17800 +images-22642.png,17801 +images-22643.png,17802 +images-22644.png,17803 +images-22645.png,17804 +images-22646.png,17805 +images-22647.png,17806 +images-22648.png,17807 +images-22649.png,17808 +images-22650.png,17809 +images-22651.png,17810 +images-22652.png,17811 +images-22653.png,17812 +images-22654.png,17813 +images-22655.png,17814 +images-22656.png,17815 +images-22657.png,17816 +images-22658.png,17817 +images-22659.png,17818 +images-22660.png,17819 +images-22661.png,17820 +images-22662.png,17821 +images-22663.png,17822 +images-22664.png,17823 +images-22665.png,17824 +images-22666.png,17825 +images-22667.png,17826 +images-22668.png,17827 +images-22669.png,17828 +images-22670.png,17829 +images-22671.png,17830 +images-22672.png,17831 +images-22673.png,17832 +images-22674.png,17833 +images-22675.png,17834 +images-22676.png,17835 +images-22677.png,17836 +images-22678.png,17837 +images-22679.png,17838 +images-22680.png,17839 +images-22681.png,17840 +images-22682.png,17841 +images-22683.png,17842 +images-22684.png,17843 +images-22685.png,17844 +images-22686.png,17845 +images-22687.png,17846 +images-22688.png,17847 +images-22689.png,17848 +images-22690.png,17849 +images-22691.png,17850 +images-22692.png,17851 +images-22693.png,17852 +images-22694.png,17853 +images-22695.png,17854 +images-22696.png,17855 +images-22697.png,17856 +images-22698.png,17857 +images-22699.png,17858 +images-22700.png,17859 +images-22701.png,17860 +images-22702.png,17861 +images-22703.png,17862 +images-22704.png,17863 +images-22705.png,17864 +images-22706.png,17865 +images-22707.png,17866 +images-22708.png,17867 +images-22709.png,17868 +images-22710.png,17869 +images-22711.png,17870 +images-22712.png,17871 +images-22713.png,17872 +images-22714.png,17873 +images-22715.png,17874 +images-22716.png,17875 +images-22717.png,17876 +images-22718.png,17877 +images-22719.png,17878 +images-22720.png,17879 +images-22721.png,17880 +images-22722.png,17881 +images-22723.png,17882 +images-22724.png,17883 +images-22725.png,17884 +images-22726.png,17885 +images-22727.png,17886 +images-22728.png,17887 +images-22729.png,17888 +images-22730.png,17889 +images-22731.png,17890 +images-22732.png,17891 +images-22733.png,17892 +images-22734.png,17893 +images-22735.png,17894 +images-22736.png,17895 +images-22737.png,17896 +images-22738.png,17897 +images-22739.png,17898 +images-22740.png,17899 +images-22741.png,17900 +images-22742.png,17901 +images-22743.png,17902 +images-22744.png,17903 +images-22745.png,17904 +images-22746.png,17905 +images-22747.png,17906 +images-22748.png,17907 +images-22749.png,17908 +images-22750.png,17909 +images-22751.png,17910 +images-22752.png,17911 +images-22753.png,17912 +images-22754.png,17913 +images-22755.png,17914 +images-22756.png,17915 +images-22757.png,17916 +images-22758.png,17917 +images-22759.png,17918 +images-22760.png,17919 +images-22761.png,17920 +images-22762.png,17921 +images-22763.png,17922 +images-22764.png,17923 +images-22765.png,17924 +images-22766.png,17925 +images-22767.png,17926 +images-22768.png,17927 +images-22769.png,17928 +images-22770.png,17929 +images-22771.png,17930 +images-22772.png,17931 +images-22773.png,17932 +images-22774.png,17933 +images-22775.png,17934 +images-22776.png,17935 +images-22777.png,17936 +images-22778.png,17937 +images-22779.png,17938 +images-22780.png,17939 +images-22781.png,17940 +images-22782.png,17941 +images-22783.png,17942 +images-22784.png,17943 +images-22785.png,17944 +images-22786.png,17945 +images-22892.png,17946 +images-22893.png,17947 +images-22894.png,17948 +images-22895.png,17949 +images-22896.png,17950 +images-22897.png,17951 +images-22898.png,17952 +images-22899.png,17953 +images-22900.png,17954 +images-22901.png,17955 +images-22902.png,17956 +images-22903.png,17957 +images-22904.png,17958 +images-22905.png,17959 +images-22906.png,17960 +images-22907.png,17961 +images-22908.png,17962 +images-22909.png,17963 +images-22910.png,17964 +images-22911.png,17965 +images-22912.png,17966 +images-22913.png,17967 +images-22914.png,17968 +images-22915.png,17969 +images-22916.png,17970 +images-22917.png,17971 +images-22918.png,17972 +images-22919.png,17973 +images-22920.png,17974 +images-22921.png,17975 +images-22922.png,17976 +images-22923.png,17977 +images-22924.png,17978 +images-22925.png,17979 +images-22926.png,17980 +images-22927.png,17981 +images-22928.png,17982 +images-22929.png,17983 +images-22930.png,17984 +images-22931.png,17985 +images-22932.png,17986 +images-22933.png,17987 +images-22934.png,17988 +images-22935.png,17989 +images-22936.png,17990 +images-22937.png,17991 +images-22938.png,17992 +images-22939.png,17993 +images-22940.png,17994 +images-22941.png,17995 +images-22942.png,17996 +images-22943.png,17997 +images-22950.png,17998 +images-22951.png,17999 +images-22952.png,18000 +images-22953.png,18001 +images-22954.png,18002 +images-22955.png,18003 +images-22956.png,18004 +images-22957.png,18005 +images-22958.png,18006 +images-22959.png,18007 +images-22960.png,18008 +images-22961.png,18009 +images-22962.png,18010 +images-22963.png,18011 +images-22964.png,18012 +images-22965.png,18013 +images-22966.png,18014 +images-22967.png,18015 +images-22968.png,18016 +images-22969.png,18017 +images-22970.png,18018 +images-22971.png,18019 +images-22972.png,18020 +images-22973.png,18021 +images-22974.png,18022 +images-22975.png,18023 +images-22976.png,18024 +images-22977.png,18025 +images-22978.png,18026 +images-22979.png,18027 +images-22980.png,18028 +images-22981.png,18029 +images-22982.png,18030 +images-22983.png,18031 +images-22984.png,18032 +images-22985.png,18033 +images-22986.png,18034 +images-22987.png,18035 +images-22988.png,18036 +images-22989.png,18037 +images-22990.png,18038 +images-22991.png,18039 +images-22992.png,18040 +images-22993.png,18041 +images-22994.png,18042 +images-22995.png,18043 +images-22996.png,18044 +images-22997.png,18045 +images-22998.png,18046 +images-23004.png,18047 +images-23005.png,18048 +images-23006.png,18049 +images-23007.png,18050 +images-23008.png,18051 +images-23009.png,18052 +images-23010.png,18053 +images-23011.png,18054 +images-23012.png,18055 +images-23013.png,18056 +images-23014.png,18057 +images-23015.png,18058 +images-23016.png,18059 +images-23017.png,18060 +images-23018.png,18061 +images-23019.png,18062 +images-23020.png,18063 +images-23021.png,18064 +images-23022.png,18065 +images-23023.png,18066 +images-23024.png,18067 +images-23025.png,18068 +images-23029.png,18069 +images-23030.png,18070 +images-23031.png,18071 +images-23032.png,18072 +images-23033.png,18073 +images-23034.png,18074 +images-23035.png,18075 +images-23036.png,18076 +images-23037.png,18077 +images-23038.png,18078 +images-23039.png,18079 +images-23040.png,18080 +images-23041.png,18081 +images-23042.png,18082 +images-23043.png,18083 +images-23044.png,18084 +images-23049.png,18085 +images-23050.png,18086 +images-23051.png,18087 +images-23052.png,18088 +images-23053.png,18089 +images-23054.png,18090 +images-23055.png,18091 +images-23056.png,18092 +images-23057.png,18093 +images-23058.png,18094 +images-23059.png,18095 +images-23060.png,18096 +images-23061.png,18097 +images-23062.png,18098 +images-23063.png,18099 +images-23064.png,18100 +images-23065.png,18101 +images-23066.png,18102 +images-23067.png,18103 +images-23068.png,18104 +images-23069.png,18105 +images-23070.png,18106 +images-23071.png,18107 +images-23072.png,18108 +images-23073.png,18109 +images-23074.png,18110 +images-23075.png,18111 +images-23076.png,18112 +images-23077.png,18113 +images-23078.png,18114 +images-23079.png,18115 +images-23080.png,18116 +images-23081.png,18117 +images-23082.png,18118 +images-23083.png,18119 +images-23084.png,18120 +images-23085.png,18121 +images-23086.png,18122 +images-23087.png,18123 +images-23088.png,18124 +images-23089.png,18125 +images-23090.png,18126 +images-23091.png,18127 +images-23092.png,18128 +images-23093.png,18129 +images-23094.png,18130 +images-23095.png,18131 +images-23096.png,18132 +images-23097.png,18133 +images-23098.png,18134 +images-23099.png,18135 +images-23100.png,18136 +images-23101.png,18137 +images-23102.png,18138 +images-23103.png,18139 +images-23104.png,18140 +images-23105.png,18141 +images-23106.png,18142 +images-23107.png,18143 +images-23108.png,18144 +images-23109.png,18145 +images-23110.png,18146 +images-23111.png,18147 +images-23112.png,18148 +images-23113.png,18149 +images-23114.png,18150 +images-23115.png,18151 +images-23116.png,18152 +images-23117.png,18153 +images-23118.png,18154 +images-23119.png,18155 +images-23120.png,18156 +images-23121.png,18157 +images-23122.png,18158 +images-23123.png,18159 +images-23124.png,18160 +images-23125.png,18161 +images-23126.png,18162 +images-23127.png,18163 +images-23128.png,18164 +images-23129.png,18165 +images-23130.png,18166 +images-23131.png,18167 +images-23132.png,18168 +images-23133.png,18169 +images-23134.png,18170 +images-23135.png,18171 +images-23136.png,18172 +images-23137.png,18173 +images-23138.png,18174 +images-23139.png,18175 +images-23140.png,18176 +images-23148.png,18177 +images-23149.png,18178 +images-23150.png,18179 +images-23151.png,18180 +images-23152.png,18181 +images-23153.png,18182 +images-23154.png,18183 +images-23155.png,18184 +images-23156.png,18185 +images-23157.png,18186 +images-23158.png,18187 +images-23159.png,18188 +images-23160.png,18189 +images-23161.png,18190 +images-23162.png,18191 +images-23163.png,18192 +images-23164.png,18193 +images-23165.png,18194 +images-23171.png,18195 +images-23172.png,18196 +images-23173.png,18197 +images-23174.png,18198 +images-23175.png,18199 +images-23176.png,18200 +images-23177.png,18201 +images-23178.png,18202 +images-23179.png,18203 +images-23180.png,18204 +images-23181.png,18205 +images-23182.png,18206 +images-23183.png,18207 +images-23184.png,18208 +images-23185.png,18209 +images-23186.png,18210 +images-23187.png,18211 +images-23188.png,18212 +images-23189.png,18213 +images-23190.png,18214 +images-23191.png,18215 +images-23192.png,18216 +images-23193.png,18217 +images-23194.png,18218 +images-23195.png,18219 +images-23196.png,18220 +images-23214.png,18221 +images-23215.png,18222 +images-23216.png,18223 +images-23217.png,18224 +images-23218.png,18225 +images-23219.png,18226 +images-23220.png,18227 +images-23221.png,18228 +images-23222.png,18229 +images-23223.png,18230 +images-23224.png,18231 +images-23225.png,18232 +images-23226.png,18233 +images-23227.png,18234 +images-23228.png,18235 +images-23229.png,18236 +images-23230.png,18237 +images-23231.png,18238 +images-23232.png,18239 +images-23233.png,18240 +images-23234.png,18241 +images-23235.png,18242 +images-23236.png,18243 +images-23237.png,18244 +images-23238.png,18245 +images-23239.png,18246 +images-23240.png,18247 +images-23241.png,18248 +images-23242.png,18249 +images-23243.png,18250 +images-23244.png,18251 +images-23245.png,18252 +images-23246.png,18253 +images-23247.png,18254 +images-23248.png,18255 +images-23249.png,18256 +images-23250.png,18257 +images-23251.png,18258 +images-23252.png,18259 +images-23253.png,18260 +images-23254.png,18261 +images-23255.png,18262 +images-23256.png,18263 +images-23257.png,18264 +images-23258.png,18265 +images-23259.png,18266 +images-23260.png,18267 +images-23261.png,18268 +images-23262.png,18269 +images-23263.png,18270 +images-23264.png,18271 +images-23265.png,18272 +images-23266.png,18273 +images-23267.png,18274 +images-23268.png,18275 +images-23269.png,18276 +images-23270.png,18277 +images-23271.png,18278 +images-23272.png,18279 +images-23273.png,18280 +images-23274.png,18281 +images-23275.png,18282 +images-23276.png,18283 +images-23277.png,18284 +images-23278.png,18285 +images-23279.png,18286 +images-23280.png,18287 +images-23281.png,18288 +images-23282.png,18289 +images-23283.png,18290 +images-23284.png,18291 +images-23285.png,18292 +images-23286.png,18293 +images-23287.png,18294 +images-23288.png,18295 +images-23289.png,18296 +images-23290.png,18297 +images-23291.png,18298 +images-23292.png,18299 +images-23293.png,18300 +images-23294.png,18301 +images-23295.png,18302 +images-23296.png,18303 +images-23297.png,18304 +images-23298.png,18305 +images-23299.png,18306 +images-23300.png,18307 +images-23301.png,18308 +images-23302.png,18309 +images-23303.png,18310 +images-23304.png,18311 +images-23305.png,18312 +images-23306.png,18313 +images-23307.png,18314 +images-23308.png,18315 +images-23309.png,18316 +images-23310.png,18317 +images-23311.png,18318 +images-23312.png,18319 +images-23313.png,18320 +images-23314.png,18321 +images-23315.png,18322 +images-23316.png,18323 +images-23317.png,18324 +images-23318.png,18325 +images-23319.png,18326 +images-23320.png,18327 +images-23321.png,18328 +images-23322.png,18329 +images-23323.png,18330 +images-23324.png,18331 +images-23325.png,18332 +images-23326.png,18333 +images-23327.png,18334 +images-23328.png,18335 +images-23329.png,18336 +images-23330.png,18337 +images-23331.png,18338 +images-23332.png,18339 +images-23333.png,18340 +images-23334.png,18341 +images-23335.png,18342 +images-23336.png,18343 +images-23337.png,18344 +images-23338.png,18345 +images-23339.png,18346 +images-23340.png,18347 +images-23341.png,18348 +images-23342.png,18349 +images-23343.png,18350 +images-23344.png,18351 +images-23345.png,18352 +images-23346.png,18353 +images-23347.png,18354 +images-23348.png,18355 +images-23349.png,18356 +images-23350.png,18357 +images-23351.png,18358 +images-23352.png,18359 +images-23353.png,18360 +images-23354.png,18361 +images-23355.png,18362 +images-23356.png,18363 +images-23357.png,18364 +images-23358.png,18365 +images-23359.png,18366 +images-23360.png,18367 +images-23361.png,18368 +images-23362.png,18369 +images-23363.png,18370 +images-23364.png,18371 +images-23365.png,18372 +images-23366.png,18373 +images-23367.png,18374 +images-23368.png,18375 +images-23369.png,18376 +images-23370.png,18377 +images-23371.png,18378 +images-23372.png,18379 +images-23373.png,18380 +images-23374.png,18381 +images-23375.png,18382 +images-23376.png,18383 +images-23377.png,18384 +images-23378.png,18385 +images-23379.png,18386 +images-23380.png,18387 +images-23381.png,18388 +images-23382.png,18389 +images-23383.png,18390 +images-23384.png,18391 +images-23385.png,18392 +images-23386.png,18393 +images-23387.png,18394 +images-23388.png,18395 +images-23389.png,18396 +images-23390.png,18397 +images-23391.png,18398 +images-23392.png,18399 +images-23393.png,18400 +images-23394.png,18401 +images-23395.png,18402 +images-23396.png,18403 +images-23397.png,18404 +images-23398.png,18405 +images-23399.png,18406 +images-23400.png,18407 +images-23401.png,18408 +images-23407.png,18409 +images-23408.png,18410 +images-23409.png,18411 +images-23410.png,18412 +images-23411.png,18413 +images-23412.png,18414 +images-23413.png,18415 +images-23414.png,18416 +images-23415.png,18417 +images-23416.png,18418 +images-23417.png,18419 +images-23418.png,18420 +images-23419.png,18421 +images-23420.png,18422 +images-23421.png,18423 +images-23422.png,18424 +images-23423.png,18425 +images-23424.png,18426 +images-23425.png,18427 +images-23426.png,18428 +images-23427.png,18429 +images-23428.png,18430 +images-23429.png,18431 +images-23430.png,18432 +images-23431.png,18433 +images-23432.png,18434 +images-23433.png,18435 +images-23434.png,18436 +images-23435.png,18437 +images-23436.png,18438 +images-23437.png,18439 +images-23438.png,18440 +images-23439.png,18441 +images-23440.png,18442 +images-23441.png,18443 +images-23442.png,18444 +images-23443.png,18445 +images-23444.png,18446 +images-23445.png,18447 +images-23446.png,18448 +images-23447.png,18449 +images-23448.png,18450 +images-23449.png,18451 +images-23450.png,18452 +images-23451.png,18453 +images-23452.png,18454 +images-23453.png,18455 +images-23454.png,18456 +images-23455.png,18457 +images-23456.png,18458 +images-23457.png,18459 +images-23458.png,18460 +images-23459.png,18461 +images-23460.png,18462 +images-23461.png,18463 +images-23462.png,18464 +images-23463.png,18465 +images-23464.png,18466 +images-23465.png,18467 +images-23466.png,18468 +images-23467.png,18469 +images-23468.png,18470 +images-23469.png,18471 +images-23470.png,18472 +images-23471.png,18473 +images-23472.png,18474 +images-23473.png,18475 +images-23474.png,18476 +images-23475.png,18477 +images-23476.png,18478 +images-23477.png,18479 +images-23478.png,18480 +images-23479.png,18481 +images-23480.png,18482 +images-23481.png,18483 +images-23482.png,18484 +images-23483.png,18485 +images-23484.png,18486 +images-23485.png,18487 +images-23493.png,18488 +images-23494.png,18489 +images-23495.png,18490 +images-23503.png,18491 +images-23504.png,18492 +images-23505.png,18493 +images-23506.png,18494 +images-23507.png,18495 +images-23508.png,18496 +images-23509.png,18497 +images-23510.png,18498 +images-23511.png,18499 +images-23512.png,18500 +images-23513.png,18501 +images-23514.png,18502 +images-23515.png,18503 +images-23516.png,18504 +images-23517.png,18505 +images-23518.png,18506 +images-23534.png,18507 +images-23535.png,18508 +images-23536.png,18509 +images-23537.png,18510 +images-23538.png,18511 +images-23539.png,18512 +images-23540.png,18513 +images-23541.png,18514 +images-23542.png,18515 +images-23543.png,18516 +images-23544.png,18517 +images-23545.png,18518 +images-23546.png,18519 +images-23547.png,18520 +images-23548.png,18521 +images-23549.png,18522 +images-23550.png,18523 +images-23551.png,18524 +images-23552.png,18525 +images-23553.png,18526 +images-23554.png,18527 +images-23555.png,18528 +images-23556.png,18529 +images-23557.png,18530 +images-23558.png,18531 +images-23559.png,18532 +images-23560.png,18533 +images-23561.png,18534 +images-23562.png,18535 +images-23563.png,18536 +images-23564.png,18537 +images-23565.png,18538 +images-23566.png,18539 +images-23567.png,18540 +images-23568.png,18541 +images-23569.png,18542 +images-23570.png,18543 +images-23577.png,18544 +images-23578.png,18545 +images-23579.png,18546 +images-23580.png,18547 +images-23581.png,18548 +images-23582.png,18549 +images-23583.png,18550 +images-23584.png,18551 +images-23585.png,18552 +images-23586.png,18553 +images-23587.png,18554 +images-23588.png,18555 +images-23589.png,18556 +images-23590.png,18557 +images-23591.png,18558 +images-23592.png,18559 +images-23598.png,18560 +images-23599.png,18561 +images-23600.png,18562 +images-23601.png,18563 +images-23602.png,18564 +images-23603.png,18565 +images-23604.png,18566 +images-23605.png,18567 +images-23606.png,18568 +images-23607.png,18569 +images-23608.png,18570 +images-23609.png,18571 +images-23610.png,18572 +images-23611.png,18573 +images-23612.png,18574 +images-23613.png,18575 +images-23614.png,18576 +images-23615.png,18577 +images-23616.png,18578 +images-23617.png,18579 +images-23618.png,18580 +images-23619.png,18581 +images-23620.png,18582 +images-23621.png,18583 +images-23622.png,18584 +images-23623.png,18585 +images-23624.png,18586 +images-23625.png,18587 +images-23626.png,18588 +images-23627.png,18589 +images-23628.png,18590 +images-23629.png,18591 +images-23630.png,18592 +images-23631.png,18593 +images-23632.png,18594 +images-23633.png,18595 +images-23634.png,18596 +images-23635.png,18597 +images-23636.png,18598 +images-23637.png,18599 +images-23638.png,18600 +images-23639.png,18601 +images-23640.png,18602 +images-23641.png,18603 +images-23642.png,18604 +images-23643.png,18605 +images-23644.png,18606 +images-23645.png,18607 +images-23646.png,18608 +images-23647.png,18609 +images-23648.png,18610 +images-23649.png,18611 +images-23650.png,18612 +images-23651.png,18613 +images-23652.png,18614 +images-23653.png,18615 +images-23654.png,18616 +images-23655.png,18617 +images-23656.png,18618 +images-23657.png,18619 +images-23658.png,18620 +images-23659.png,18621 +images-23660.png,18622 +images-23661.png,18623 +images-23662.png,18624 +images-23663.png,18625 +images-23664.png,18626 +images-23665.png,18627 +images-23675.png,18628 +images-23676.png,18629 +images-23677.png,18630 +images-23678.png,18631 +images-23679.png,18632 +images-23680.png,18633 +images-23681.png,18634 +images-23682.png,18635 +images-23683.png,18636 +images-23684.png,18637 +images-23685.png,18638 +images-23686.png,18639 +images-23687.png,18640 +images-23688.png,18641 +images-23689.png,18642 +images-23690.png,18643 +images-23703.png,18644 +images-23704.png,18645 +images-23705.png,18646 +images-23706.png,18647 +images-23711.png,18648 +images-23712.png,18649 +images-23713.png,18650 +images-23714.png,18651 +images-23715.png,18652 +images-23716.png,18653 +images-23717.png,18654 +images-23718.png,18655 +images-23719.png,18656 +images-23720.png,18657 +images-23721.png,18658 +images-23722.png,18659 +images-23723.png,18660 +images-23724.png,18661 +images-23725.png,18662 +images-23726.png,18663 +images-23727.png,18664 +images-23728.png,18665 +images-23729.png,18666 +images-23730.png,18667 +images-23731.png,18668 +images-23732.png,18669 +images-23733.png,18670 +images-23734.png,18671 +images-23735.png,18672 +images-23736.png,18673 +images-23737.png,18674 +images-23738.png,18675 +images-23739.png,18676 +images-23740.png,18677 +images-23741.png,18678 +images-23742.png,18679 +images-23743.png,18680 +images-23744.png,18681 +images-23745.png,18682 +images-23746.png,18683 +images-23747.png,18684 +images-23748.png,18685 +images-23749.png,18686 +images-23750.png,18687 +images-23751.png,18688 +images-23752.png,18689 +images-23753.png,18690 +images-23754.png,18691 +images-23755.png,18692 +images-23756.png,18693 +images-23757.png,18694 +images-23758.png,18695 +images-23759.png,18696 +images-23760.png,18697 +images-23761.png,18698 +images-23762.png,18699 +images-23763.png,18700 +images-23764.png,18701 +images-23765.png,18702 +images-23766.png,18703 +images-23767.png,18704 +images-23768.png,18705 +images-23769.png,18706 +images-23770.png,18707 +images-23771.png,18708 +images-23772.png,18709 +images-23773.png,18710 +images-23774.png,18711 +images-23775.png,18712 +images-23776.png,18713 +images-23777.png,18714 +images-23778.png,18715 +images-23779.png,18716 +images-23780.png,18717 +images-23781.png,18718 +images-23782.png,18719 +images-23783.png,18720 +images-23784.png,18721 +images-23785.png,18722 +images-23786.png,18723 +images-23787.png,18724 +images-23788.png,18725 +images-23789.png,18726 +images-23790.png,18727 +images-23791.png,18728 +images-23792.png,18729 +images-23793.png,18730 +images-23794.png,18731 +images-23795.png,18732 +images-23796.png,18733 +images-23797.png,18734 +images-23798.png,18735 +images-23799.png,18736 +images-23800.png,18737 +images-23801.png,18738 +images-23802.png,18739 +images-23803.png,18740 +images-23804.png,18741 +images-23805.png,18742 +images-23806.png,18743 +images-23807.png,18744 +images-23808.png,18745 +images-23809.png,18746 +images-23810.png,18747 +images-23811.png,18748 +images-23812.png,18749 +images-23813.png,18750 +images-23814.png,18751 +images-23815.png,18752 +images-23816.png,18753 +images-23817.png,18754 +images-23818.png,18755 +images-23819.png,18756 +images-23820.png,18757 +images-23821.png,18758 +images-23822.png,18759 +images-23823.png,18760 +images-23824.png,18761 +images-23825.png,18762 +images-23826.png,18763 +images-23827.png,18764 +images-23828.png,18765 +images-23829.png,18766 +images-23830.png,18767 +images-23831.png,18768 +images-23832.png,18769 +images-23833.png,18770 +images-23834.png,18771 +images-23835.png,18772 +images-23836.png,18773 +images-23837.png,18774 +images-23838.png,18775 +images-23839.png,18776 +images-23840.png,18777 +images-23841.png,18778 +images-23855.png,18779 +images-23856.png,18780 +images-23857.png,18781 +images-23858.png,18782 +images-23859.png,18783 +images-23860.png,18784 +images-23861.png,18785 +images-23862.png,18786 +images-23863.png,18787 +images-23864.png,18788 +images-23865.png,18789 +images-23866.png,18790 +images-23867.png,18791 +images-23868.png,18792 +images-23869.png,18793 +images-23870.png,18794 +images-23871.png,18795 +images-23872.png,18796 +images-23873.png,18797 +images-23874.png,18798 +images-23875.png,18799 +images-23876.png,18800 +images-23877.png,18801 +images-23878.png,18802 +images-23879.png,18803 +images-23880.png,18804 +images-23881.png,18805 +images-23882.png,18806 +images-23883.png,18807 +images-23884.png,18808 +images-23885.png,18809 +images-23886.png,18810 +images-23887.png,18811 +images-23888.png,18812 +images-23889.png,18813 +images-23890.png,18814 +images-23891.png,18815 +images-23892.png,18816 +images-23893.png,18817 +images-23894.png,18818 +images-23895.png,18819 +images-23896.png,18820 +images-23897.png,18821 +images-23898.png,18822 +images-23899.png,18823 +images-23900.png,18824 +images-23901.png,18825 +images-23902.png,18826 +images-23903.png,18827 +images-23904.png,18828 +images-23905.png,18829 +images-23906.png,18830 +images-23907.png,18831 +images-23908.png,18832 +images-23909.png,18833 +images-23910.png,18834 +images-23911.png,18835 +images-23912.png,18836 +images-23913.png,18837 +images-23914.png,18838 +images-23915.png,18839 +images-23916.png,18840 +images-23917.png,18841 +images-23918.png,18842 +images-23919.png,18843 +images-23920.png,18844 +images-23921.png,18845 +images-23922.png,18846 +images-23923.png,18847 +images-23924.png,18848 +images-23925.png,18849 +images-23926.png,18850 +images-23927.png,18851 +images-23928.png,18852 +images-23929.png,18853 +images-23930.png,18854 +images-23931.png,18855 +images-23932.png,18856 +images-23933.png,18857 +images-23934.png,18858 +images-23935.png,18859 +images-23936.png,18860 +images-23937.png,18861 +images-23938.png,18862 +images-23939.png,18863 +images-23940.png,18864 +images-23941.png,18865 +images-23942.png,18866 +images-23943.png,18867 +images-23944.png,18868 +images-23945.png,18869 +images-23946.png,18870 +images-23947.png,18871 +images-23948.png,18872 +images-23949.png,18873 +images-23955.png,18874 +images-23956.png,18875 +images-23957.png,18876 +images-23958.png,18877 +images-23959.png,18878 +images-23960.png,18879 +images-23961.png,18880 +images-23962.png,18881 +images-23963.png,18882 +images-23964.png,18883 +images-23965.png,18884 +images-23966.png,18885 +images-23967.png,18886 +images-23968.png,18887 +images-23969.png,18888 +images-23970.png,18889 +images-23971.png,18890 +images-23972.png,18891 +images-23973.png,18892 +images-23974.png,18893 +images-23975.png,18894 +images-23976.png,18895 +images-23977.png,18896 +images-23978.png,18897 +images-23979.png,18898 +images-23980.png,18899 +images-23981.png,18900 +images-23982.png,18901 +images-23983.png,18902 +images-23984.png,18903 +images-23985.png,18904 +images-23986.png,18905 +images-23987.png,18906 +images-23988.png,18907 +images-23989.png,18908 +images-23990.png,18909 +images-23991.png,18910 +images-23992.png,18911 +images-23993.png,18912 +images-23994.png,18913 +images-23995.png,18914 +images-23996.png,18915 +images-23997.png,18916 +images-23998.png,18917 +images-23999.png,18918 +images-24000.png,18919 +images-24001.png,18920 +images-24002.png,18921 +images-24003.png,18922 +images-24004.png,18923 +images-24005.png,18924 +images-24006.png,18925 +images-24007.png,18926 +images-24008.png,18927 +images-24009.png,18928 +images-24010.png,18929 +images-24011.png,18930 +images-24012.png,18931 +images-24013.png,18932 +images-24014.png,18933 +images-24015.png,18934 +images-24016.png,18935 +images-24017.png,18936 +images-24018.png,18937 +images-24019.png,18938 +images-24020.png,18939 +images-24021.png,18940 +images-24022.png,18941 +images-24023.png,18942 +images-24024.png,18943 +images-24025.png,18944 +images-24026.png,18945 +images-24027.png,18946 +images-24028.png,18947 +images-24029.png,18948 +images-24030.png,18949 +images-24031.png,18950 +images-24032.png,18951 +images-24033.png,18952 +images-24034.png,18953 +images-24035.png,18954 +images-24036.png,18955 +images-24037.png,18956 +images-24038.png,18957 +images-24039.png,18958 +images-24040.png,18959 +images-24041.png,18960 +images-24042.png,18961 +images-24043.png,18962 +images-24044.png,18963 +images-24045.png,18964 +images-24046.png,18965 +images-24047.png,18966 +images-24048.png,18967 +images-24049.png,18968 +images-24050.png,18969 +images-24051.png,18970 +images-24052.png,18971 +images-24053.png,18972 +images-24054.png,18973 +images-24055.png,18974 +images-24056.png,18975 +images-24057.png,18976 +images-24058.png,18977 +images-24059.png,18978 +images-24060.png,18979 +images-24061.png,18980 +images-24062.png,18981 +images-24063.png,18982 +images-24064.png,18983 +images-24065.png,18984 +images-24066.png,18985 +images-24067.png,18986 +images-24068.png,18987 +images-24069.png,18988 +images-24070.png,18989 +images-24071.png,18990 +images-24072.png,18991 +images-24073.png,18992 +images-24074.png,18993 +images-24075.png,18994 +images-24076.png,18995 +images-24077.png,18996 +images-24078.png,18997 +images-24079.png,18998 +images-24080.png,18999 +images-24081.png,19000 +images-24082.png,19001 +images-24083.png,19002 +images-24084.png,19003 +images-24085.png,19004 +images-24086.png,19005 +images-24087.png,19006 +images-24088.png,19007 +images-24089.png,19008 +images-24090.png,19009 +images-24091.png,19010 +images-24092.png,19011 +images-24093.png,19012 +images-24094.png,19013 +images-24095.png,19014 +images-24419.png,19015 +images-24420.png,19016 +images-24421.png,19017 +images-24422.png,19018 +images-24423.png,19019 +images-24424.png,19020 +images-24425.png,19021 +images-24426.png,19022 +images-24427.png,19023 +images-24428.png,19024 +images-24429.png,19025 +images-24430.png,19026 +images-24431.png,19027 +images-24432.png,19028 +images-24433.png,19029 +images-24434.png,19030 +images-24435.png,19031 +images-24436.png,19032 +images-24437.png,19033 +images-24438.png,19034 +images-24439.png,19035 +images-24440.png,19036 +images-24441.png,19037 +images-24442.png,19038 +images-24443.png,19039 +images-24444.png,19040 +images-24445.png,19041 +images-24446.png,19042 +images-24447.png,19043 +images-24448.png,19044 +images-24449.png,19045 +images-24450.png,19046 +images-24451.png,19047 +images-24452.png,19048 +images-24453.png,19049 +images-24454.png,19050 +images-24455.png,19051 +images-24456.png,19052 +images-24457.png,19053 +images-24458.png,19054 +images-24459.png,19055 +images-24460.png,19056 +images-24461.png,19057 +images-24462.png,19058 +images-24463.png,19059 +images-24464.png,19060 +images-24465.png,19061 +images-24466.png,19062 +images-24467.png,19063 +images-24468.png,19064 +images-24469.png,19065 +images-24470.png,19066 +images-24471.png,19067 +images-24472.png,19068 +images-24473.png,19069 +images-24474.png,19070 +images-24475.png,19071 +images-24476.png,19072 +images-24477.png,19073 +images-24478.png,19074 +images-24479.png,19075 +images-24480.png,19076 +images-24481.png,19077 +images-24482.png,19078 +images-24483.png,19079 +images-24484.png,19080 +images-24485.png,19081 +images-24486.png,19082 +images-24487.png,19083 +images-24488.png,19084 +images-24489.png,19085 +images-24490.png,19086 +images-24491.png,19087 +images-24492.png,19088 +images-24493.png,19089 +images-24494.png,19090 +images-24495.png,19091 +images-24496.png,19092 +images-24497.png,19093 +images-24498.png,19094 +images-24499.png,19095 +images-24500.png,19096 +images-24501.png,19097 +images-24502.png,19098 +images-24503.png,19099 +images-24504.png,19100 +images-24505.png,19101 +images-24506.png,19102 +images-24507.png,19103 +images-24508.png,19104 +images-24509.png,19105 +images-24510.png,19106 +images-24511.png,19107 +images-24512.png,19108 +images-24513.png,19109 +images-24514.png,19110 +images-24515.png,19111 +images-24516.png,19112 +images-24517.png,19113 +images-24518.png,19114 +images-24519.png,19115 +images-24520.png,19116 +images-24521.png,19117 +images-24522.png,19118 +images-24523.png,19119 +images-24524.png,19120 +images-24525.png,19121 +images-24526.png,19122 +images-24527.png,19123 +images-24528.png,19124 +images-24529.png,19125 +images-24530.png,19126 +images-24531.png,19127 +images-24532.png,19128 +images-24533.png,19129 +images-24534.png,19130 +images-24535.png,19131 +images-24536.png,19132 +images-24537.png,19133 +images-24538.png,19134 +images-24539.png,19135 +images-24540.png,19136 +images-24541.png,19137 +images-24542.png,19138 +images-24543.png,19139 +images-24544.png,19140 +images-24545.png,19141 +images-24546.png,19142 +images-24547.png,19143 +images-24548.png,19144 +images-24549.png,19145 +images-24550.png,19146 +images-24551.png,19147 +images-24552.png,19148 +images-24553.png,19149 +images-24554.png,19150 +images-24555.png,19151 +images-24556.png,19152 +images-24557.png,19153 +images-24558.png,19154 +images-24559.png,19155 +images-24560.png,19156 +images-24561.png,19157 +images-24562.png,19158 +images-24563.png,19159 +images-24564.png,19160 +images-24565.png,19161 +images-24566.png,19162 +images-24567.png,19163 +images-24568.png,19164 +images-24569.png,19165 +images-24570.png,19166 +images-24571.png,19167 +images-24572.png,19168 +images-24573.png,19169 +images-24574.png,19170 +images-24575.png,19171 +images-24576.png,19172 +images-24577.png,19173 +images-24578.png,19174 +images-24579.png,19175 +images-24580.png,19176 +images-24581.png,19177 +images-24582.png,19178 +images-24583.png,19179 +images-24584.png,19180 +images-24585.png,19181 +images-24586.png,19182 +images-24587.png,19183 +images-24588.png,19184 +images-24589.png,19185 +images-24590.png,19186 +images-24591.png,19187 +images-24592.png,19188 +images-24593.png,19189 +images-24594.png,19190 +images-24595.png,19191 +images-24596.png,19192 +images-24597.png,19193 +images-24598.png,19194 +images-24599.png,19195 +images-24600.png,19196 +images-24601.png,19197 +images-24602.png,19198 +images-24603.png,19199 +images-24604.png,19200 +images-24605.png,19201 +images-24606.png,19202 +images-24607.png,19203 +images-24608.png,19204 +images-24609.png,19205 +images-24610.png,19206 +images-24611.png,19207 +images-24612.png,19208 +images-24613.png,19209 +images-24614.png,19210 +images-24615.png,19211 +images-24616.png,19212 +images-24617.png,19213 +images-24618.png,19214 +images-24619.png,19215 +images-24620.png,19216 +images-24621.png,19217 +images-24622.png,19218 +images-24623.png,19219 +images-24624.png,19220 +images-24625.png,19221 +images-24626.png,19222 +images-24627.png,19223 +images-24628.png,19224 +images-24629.png,19225 +images-24630.png,19226 +images-24631.png,19227 +images-24632.png,19228 +images-24633.png,19229 +images-24634.png,19230 +images-24635.png,19231 +images-24636.png,19232 +images-24637.png,19233 +images-24638.png,19234 +images-24639.png,19235 +images-24640.png,19236 +images-24641.png,19237 +images-24642.png,19238 +images-24643.png,19239 +images-24644.png,19240 +images-24645.png,19241 +images-24646.png,19242 +images-24647.png,19243 +images-24648.png,19244 +images-24649.png,19245 +images-24650.png,19246 +images-24651.png,19247 +images-24652.png,19248 +images-24653.png,19249 +images-24654.png,19250 +images-24655.png,19251 +images-24656.png,19252 +images-24657.png,19253 +images-24658.png,19254 +images-24659.png,19255 +images-24660.png,19256 +images-24661.png,19257 +images-24662.png,19258 +images-24663.png,19259 +images-24664.png,19260 +images-24665.png,19261 +images-24666.png,19262 +images-24667.png,19263 +images-24668.png,19264 +images-24669.png,19265 +images-24670.png,19266 +images-24671.png,19267 +images-24672.png,19268 +images-24673.png,19269 +images-24674.png,19270 +images-24675.png,19271 +images-24676.png,19272 +images-24677.png,19273 +images-24678.png,19274 +images-24679.png,19275 +images-24680.png,19276 +images-24681.png,19277 +images-24682.png,19278 +images-24683.png,19279 +images-24684.png,19280 +images-24685.png,19281 +images-24686.png,19282 +images-24687.png,19283 +images-24688.png,19284 +images-24689.png,19285 +images-24690.png,19286 +images-24691.png,19287 +images-24692.png,19288 +images-24693.png,19289 +images-24694.png,19290 +images-24695.png,19291 +images-24696.png,19292 +images-24697.png,19293 +images-24698.png,19294 +images-24699.png,19295 +images-24700.png,19296 +images-24701.png,19297 +images-24702.png,19298 +images-24703.png,19299 +images-24704.png,19300 +images-24705.png,19301 +images-24706.png,19302 +images-24707.png,19303 +images-24708.png,19304 +images-24709.png,19305 +images-24710.png,19306 +images-24711.png,19307 +images-24712.png,19308 +images-24713.png,19309 +images-24714.png,19310 +images-24715.png,19311 +images-24716.png,19312 +images-24717.png,19313 +images-24718.png,19314 +images-24719.png,19315 +images-24720.png,19316 +images-24721.png,19317 +images-24722.png,19318 +images-24723.png,19319 +images-24724.png,19320 +images-24725.png,19321 +images-24726.png,19322 +images-24727.png,19323 +images-24728.png,19324 +images-24729.png,19325 +images-24730.png,19326 +images-24731.png,19327 +images-24732.png,19328 +images-24733.png,19329 +images-24734.png,19330 +images-24735.png,19331 +images-24736.png,19332 +images-24737.png,19333 +images-24738.png,19334 +images-24739.png,19335 +images-24740.png,19336 +images-24741.png,19337 +images-24742.png,19338 +images-24743.png,19339 +images-24744.png,19340 +images-24745.png,19341 +images-24746.png,19342 +images-24747.png,19343 +images-24748.png,19344 +images-24749.png,19345 +images-24750.png,19346 +images-24751.png,19347 +images-24752.png,19348 +images-24753.png,19349 +images-24754.png,19350 +images-24755.png,19351 +images-24756.png,19352 +images-24757.png,19353 +images-24758.png,19354 +images-24759.png,19355 +images-24760.png,19356 +images-24761.png,19357 +images-24762.png,19358 +images-24763.png,19359 +images-24764.png,19360 +images-24765.png,19361 +images-24766.png,19362 +images-24767.png,19363 +images-24768.png,19364 +images-24769.png,19365 +images-24770.png,19366 +images-24771.png,19367 +images-24772.png,19368 +images-24773.png,19369 +images-24774.png,19370 +images-24775.png,19371 +images-24776.png,19372 +images-24777.png,19373 +images-24778.png,19374 +images-24779.png,19375 +images-24780.png,19376 +images-24781.png,19377 +images-24782.png,19378 +images-24783.png,19379 +images-24784.png,19380 +images-24785.png,19381 +images-24786.png,19382 +images-24787.png,19383 +images-24788.png,19384 +images-24789.png,19385 +images-24790.png,19386 +images-24791.png,19387 +images-24792.png,19388 +images-24793.png,19389 +images-24794.png,19390 +images-24795.png,19391 +images-24796.png,19392 +images-24797.png,19393 +images-24798.png,19394 +images-24799.png,19395 +images-24800.png,19396 +images-24801.png,19397 +images-24802.png,19398 +images-24803.png,19399 +images-24804.png,19400 +images-24805.png,19401 +images-24806.png,19402 +images-24807.png,19403 +images-24808.png,19404 +images-24809.png,19405 +images-24810.png,19406 +images-24811.png,19407 +images-24812.png,19408 +images-24813.png,19409 +images-24814.png,19410 +images-24815.png,19411 +images-24816.png,19412 +images-24817.png,19413 +images-24818.png,19414 +images-24819.png,19415 +images-24820.png,19416 +images-24821.png,19417 +images-24822.png,19418 +images-24823.png,19419 +images-24824.png,19420 +images-24825.png,19421 +images-24826.png,19422 +images-24827.png,19423 +images-24828.png,19424 +images-24829.png,19425 +images-24830.png,19426 +images-24831.png,19427 +images-24832.png,19428 +images-24833.png,19429 +images-24834.png,19430 +images-24835.png,19431 +images-24836.png,19432 +images-24837.png,19433 +images-24838.png,19434 +images-24839.png,19435 +images-24840.png,19436 +images-24841.png,19437 +images-24842.png,19438 +images-24843.png,19439 +images-24844.png,19440 +images-24845.png,19441 +images-24846.png,19442 +images-24847.png,19443 +images-24848.png,19444 +images-24849.png,19445 +images-24850.png,19446 +images-24851.png,19447 +images-24852.png,19448 +images-24853.png,19449 +images-24854.png,19450 +images-24855.png,19451 +images-24856.png,19452 +images-24857.png,19453 +images-24858.png,19454 +images-24859.png,19455 +images-24860.png,19456 +images-24861.png,19457 +images-24862.png,19458 +images-24863.png,19459 +images-24864.png,19460 +images-24865.png,19461 +images-24866.png,19462 +images-24867.png,19463 +images-24868.png,19464 +images-24869.png,19465 +images-24870.png,19466 +images-24871.png,19467 +images-24872.png,19468 +images-24873.png,19469 +images-24874.png,19470 +images-24875.png,19471 +images-24876.png,19472 +images-24877.png,19473 +images-24878.png,19474 +images-24879.png,19475 +images-24880.png,19476 +images-24881.png,19477 +images-24882.png,19478 +images-24883.png,19479 +images-24884.png,19480 +images-24885.png,19481 +images-24886.png,19482 +images-24887.png,19483 +images-24888.png,19484 +images-24889.png,19485 +images-24890.png,19486 +images-24891.png,19487 +images-24892.png,19488 +images-24893.png,19489 +images-24894.png,19490 +images-24895.png,19491 +images-24896.png,19492 +images-24897.png,19493 +images-24898.png,19494 +images-24899.png,19495 +images-24900.png,19496 +images-24901.png,19497 +images-24902.png,19498 +images-24903.png,19499 +images-24904.png,19500 +images-24905.png,19501 +images-24906.png,19502 +images-24907.png,19503 +images-24908.png,19504 +images-24909.png,19505 +images-24910.png,19506 +images-24911.png,19507 +images-24912.png,19508 +images-24913.png,19509 +images-24914.png,19510 +images-24915.png,19511 +images-24916.png,19512 +images-24917.png,19513 +images-24918.png,19514 +images-24919.png,19515 +images-24920.png,19516 +images-24921.png,19517 +images-24922.png,19518 +images-24923.png,19519 +images-24924.png,19520 +images-24925.png,19521 +images-24926.png,19522 +images-24927.png,19523 +images-24928.png,19524 +images-24929.png,19525 +images-24930.png,19526 +images-24931.png,19527 +images-24932.png,19528 +images-24933.png,19529 +images-24934.png,19530 +images-24935.png,19531 +images-24936.png,19532 +images-24937.png,19533 +images-24938.png,19534 +images-24939.png,19535 +images-24940.png,19536 +images-24941.png,19537 +images-24942.png,19538 +images-24943.png,19539 +images-24944.png,19540 +images-24945.png,19541 +images-24946.png,19542 +images-24947.png,19543 +images-24948.png,19544 +images-24949.png,19545 +images-24950.png,19546 +images-24951.png,19547 +images-24952.png,19548 +images-24953.png,19549 +images-24954.png,19550 +images-24955.png,19551 +images-24956.png,19552 +images-24957.png,19553 +images-24958.png,19554 +images-24959.png,19555 +images-24960.png,19556 +images-24961.png,19557 +images-24962.png,19558 +images-24963.png,19559 +images-24964.png,19560 +images-24965.png,19561 +images-24966.png,19562 +images-24967.png,19563 +images-24968.png,19564 +images-24969.png,19565 +images-24970.png,19566 +images-24971.png,19567 +images-24972.png,19568 +images-24973.png,19569 +images-24974.png,19570 +images-24975.png,19571 +images-24976.png,19572 +images-24977.png,19573 +images-24978.png,19574 +images-24979.png,19575 +images-24980.png,19576 +images-24981.png,19577 +images-24982.png,19578 +images-24983.png,19579 +images-24984.png,19580 +images-24985.png,19581 +images-24986.png,19582 +images-24987.png,19583 +images-24997.png,19584 +images-24998.png,19585 +images-24999.png,19586 +images-25000.png,19587 +images-25001.png,19588 +images-25002.png,19589 +images-25003.png,19590 +images-25030.png,19591 +images-25031.png,19592 +images-25032.png,19593 +images-25033.png,19594 +images-25034.png,19595 +images-25035.png,19596 +images-25036.png,19597 +images-25044.png,19598 +images-25045.png,19599 +images-25046.png,19600 +images-25047.png,19601 +images-25048.png,19602 +images-25049.png,19603 +images-25050.png,19604 +images-25051.png,19605 +images-25052.png,19606 +images-25053.png,19607 +images-25054.png,19608 +images-25055.png,19609 +images-25056.png,19610 +images-25057.png,19611 +images-25058.png,19612 +images-25059.png,19613 +images-25060.png,19614 +images-25061.png,19615 +images-25062.png,19616 +images-25063.png,19617 +images-25064.png,19618 +images-25065.png,19619 +images-25066.png,19620 +images-25067.png,19621 +images-25068.png,19622 +images-25069.png,19623 +images-25070.png,19624 +images-25071.png,19625 +images-25072.png,19626 +images-25073.png,19627 +images-25074.png,19628 +images-25075.png,19629 +images-25076.png,19630 +images-25077.png,19631 +images-25078.png,19632 +images-25079.png,19633 +images-25080.png,19634 +images-25081.png,19635 +images-25082.png,19636 +images-25083.png,19637 +images-25084.png,19638 +images-25085.png,19639 +images-25086.png,19640 +images-25087.png,19641 +images-25088.png,19642 +images-25089.png,19643 +images-25090.png,19644 +images-25091.png,19645 +images-25092.png,19646 +images-25093.png,19647 +images-25094.png,19648 +images-25095.png,19649 +images-25096.png,19650 +images-25097.png,19651 +images-25098.png,19652 +images-25099.png,19653 +images-25100.png,19654 +images-25101.png,19655 +images-25102.png,19656 +images-25103.png,19657 +images-25104.png,19658 +images-25105.png,19659 +images-25106.png,19660 +images-25107.png,19661 +images-25108.png,19662 +images-25109.png,19663 +images-25110.png,19664 +images-25111.png,19665 +images-25112.png,19666 +images-25113.png,19667 +images-25114.png,19668 +images-25115.png,19669 +images-25116.png,19670 +images-25117.png,19671 +images-25118.png,19672 +images-25119.png,19673 +images-25120.png,19674 +images-25121.png,19675 +images-25122.png,19676 +images-25123.png,19677 +images-25124.png,19678 +images-25125.png,19679 +images-25126.png,19680 +images-25127.png,19681 +images-25128.png,19682 +images-25129.png,19683 +images-25130.png,19684 +images-25131.png,19685 +images-25132.png,19686 +images-25133.png,19687 +images-25134.png,19688 +images-25135.png,19689 +images-25136.png,19690 +images-25137.png,19691 +images-25138.png,19692 +images-25139.png,19693 +images-25140.png,19694 +images-25141.png,19695 +images-25142.png,19696 +images-25143.png,19697 +images-25144.png,19698 +images-25145.png,19699 +images-25146.png,19700 +images-25147.png,19701 +images-25148.png,19702 +images-25149.png,19703 +images-25150.png,19704 +images-25151.png,19705 +images-25152.png,19706 +images-25153.png,19707 +images-25154.png,19708 +images-25155.png,19709 +images-25156.png,19710 +images-25157.png,19711 +images-25158.png,19712 +images-25159.png,19713 +images-25160.png,19714 +images-25161.png,19715 +images-25162.png,19716 +images-25163.png,19717 +images-25164.png,19718 +images-25165.png,19719 +images-25166.png,19720 +images-25167.png,19721 +images-25168.png,19722 +images-25169.png,19723 +images-25170.png,19724 +images-25171.png,19725 +images-25172.png,19726 +images-25173.png,19727 +images-25174.png,19728 +images-25175.png,19729 +images-25176.png,19730 +images-25177.png,19731 +images-25178.png,19732 +images-25179.png,19733 +images-25180.png,19734 +images-25181.png,19735 +images-25182.png,19736 +images-25183.png,19737 +images-25184.png,19738 +images-25185.png,19739 +images-25186.png,19740 +images-25187.png,19741 +images-25188.png,19742 +images-25189.png,19743 +images-25190.png,19744 +images-25191.png,19745 +images-25192.png,19746 +images-25193.png,19747 +images-25194.png,19748 +images-25195.png,19749 +images-25196.png,19750 +images-25197.png,19751 +images-25198.png,19752 +images-25199.png,19753 +images-25200.png,19754 +images-25201.png,19755 +images-25202.png,19756 +images-25203.png,19757 +images-25204.png,19758 +images-25205.png,19759 +images-25206.png,19760 +images-25207.png,19761 +images-25208.png,19762 +images-25209.png,19763 +images-25210.png,19764 +images-25211.png,19765 +images-25212.png,19766 +images-25213.png,19767 +images-25214.png,19768 +images-25215.png,19769 +images-25216.png,19770 +images-25217.png,19771 +images-25218.png,19772 +images-25219.png,19773 +images-25220.png,19774 +images-25221.png,19775 +images-25222.png,19776 +images-25223.png,19777 +images-25224.png,19778 +images-25225.png,19779 +images-25226.png,19780 +images-25227.png,19781 +images-25228.png,19782 +images-25229.png,19783 +images-25230.png,19784 +images-25231.png,19785 +images-25232.png,19786 +images-25233.png,19787 +images-25234.png,19788 +images-25235.png,19789 +images-25236.png,19790 +images-25237.png,19791 +images-25238.png,19792 +images-25239.png,19793 +images-25240.png,19794 +images-25241.png,19795 +images-25242.png,19796 +images-25243.png,19797 +images-25244.png,19798 +images-25245.png,19799 +images-25246.png,19800 +images-25247.png,19801 +images-25248.png,19802 +images-25249.png,19803 +images-25250.png,19804 +images-25251.png,19805 +images-25252.png,19806 +images-25253.png,19807 +images-25254.png,19808 +images-25255.png,19809 +images-25320.png,19810 +images-25321.png,19811 +images-25322.png,19812 +images-25323.png,19813 +images-25324.png,19814 +images-25325.png,19815 +images-25326.png,19816 +images-25327.png,19817 +images-25328.png,19818 +images-25329.png,19819 +images-25330.png,19820 +images-25331.png,19821 +images-25332.png,19822 +images-25333.png,19823 +images-25334.png,19824 +images-25335.png,19825 +images-25336.png,19826 +images-25337.png,19827 +images-25338.png,19828 +images-25339.png,19829 +images-25340.png,19830 +images-25341.png,19831 +images-25342.png,19832 +images-25343.png,19833 +images-25344.png,19834 +images-25345.png,19835 +images-25346.png,19836 +images-25347.png,19837 +images-25348.png,19838 +images-25349.png,19839 +images-25350.png,19840 +images-25351.png,19841 +images-25352.png,19842 +images-25353.png,19843 +images-25354.png,19844 +images-25355.png,19845 +images-25356.png,19846 +images-25357.png,19847 +images-25358.png,19848 +images-25359.png,19849 +images-25360.png,19850 +images-25361.png,19851 +images-25362.png,19852 +images-25363.png,19853 +images-25364.png,19854 +images-25365.png,19855 +images-25366.png,19856 +images-25367.png,19857 +images-25368.png,19858 +images-25369.png,19859 +images-25370.png,19860 +images-25371.png,19861 +images-25372.png,19862 +images-25380.png,19863 +images-25381.png,19864 +images-25382.png,19865 +images-25383.png,19866 +images-25384.png,19867 +images-25385.png,19868 +images-25386.png,19869 +images-25387.png,19870 +images-25388.png,19871 +images-25389.png,19872 +images-25390.png,19873 +images-25391.png,19874 +images-25392.png,19875 +images-25393.png,19876 +images-25394.png,19877 +images-25395.png,19878 +images-25396.png,19879 +images-25397.png,19880 +images-25406.png,19881 +images-25407.png,19882 +images-25408.png,19883 +images-25409.png,19884 +images-25410.png,19885 +images-25411.png,19886 +images-25412.png,19887 +images-25413.png,19888 +images-25414.png,19889 +images-25415.png,19890 +images-25416.png,19891 +images-25417.png,19892 +images-25418.png,19893 +images-25419.png,19894 +images-25420.png,19895 +images-25421.png,19896 +images-25422.png,19897 +images-25423.png,19898 +images-25424.png,19899 +images-25425.png,19900 +images-25426.png,19901 +images-25427.png,19902 +images-25428.png,19903 +images-25429.png,19904 +images-25430.png,19905 +images-25431.png,19906 +images-25432.png,19907 +images-25433.png,19908 +images-25434.png,19909 +images-25435.png,19910 +images-25436.png,19911 +images-25437.png,19912 +images-25438.png,19913 +images-25439.png,19914 +images-25440.png,19915 +images-25441.png,19916 +images-25442.png,19917 +images-25443.png,19918 +images-25444.png,19919 +images-25445.png,19920 +images-25446.png,19921 +images-25447.png,19922 +images-25448.png,19923 +images-25449.png,19924 +images-25450.png,19925 +images-25451.png,19926 +images-25452.png,19927 +images-25453.png,19928 +images-25454.png,19929 +images-25455.png,19930 +images-25456.png,19931 +images-25457.png,19932 +images-25458.png,19933 +images-25459.png,19934 +images-25460.png,19935 +images-25461.png,19936 +images-25462.png,19937 +images-25463.png,19938 +images-25464.png,19939 +images-25465.png,19940 +images-25466.png,19941 +images-25467.png,19942 +images-25468.png,19943 +images-25469.png,19944 +images-25470.png,19945 +images-25471.png,19946 +images-25472.png,19947 +images-25473.png,19948 +images-25474.png,19949 +images-25475.png,19950 +images-25476.png,19951 +images-25477.png,19952 +images-25478.png,19953 +images-25479.png,19954 +images-25480.png,19955 +images-25481.png,19956 +images-25482.png,19957 +images-25483.png,19958 +images-25484.png,19959 +images-25485.png,19960 +images-25486.png,19961 +images-25487.png,19962 +images-25488.png,19963 +images-25489.png,19964 +images-25490.png,19965 +images-25491.png,19966 +images-25492.png,19967 +images-25493.png,19968 +images-25494.png,19969 +images-25495.png,19970 +images-25496.png,19971 +images-25497.png,19972 +images-25498.png,19973 +images-25499.png,19974 +images-25500.png,19975 +images-25501.png,19976 +images-25502.png,19977 +images-25503.png,19978 +images-25504.png,19979 +images-25505.png,19980 +images-25506.png,19981 +images-25521.png,19982 +images-25522.png,19983 +images-25523.png,19984 +images-25524.png,19985 +images-25525.png,19986 +images-25526.png,19987 +images-25527.png,19988 +images-25528.png,19989 +images-25529.png,19990 +images-25530.png,19991 +images-25531.png,19992 +images-25532.png,19993 +images-25533.png,19994 +images-25534.png,19995 +images-25535.png,19996 +images-25536.png,19997 +images-25537.png,19998 +images-25538.png,19999 +images-25539.png,20000 +images-25540.png,20001 +images-25541.png,20002 +images-25542.png,20003 +images-25543.png,20004 +images-25544.png,20005 +images-25545.png,20006 +images-25546.png,20007 +images-25547.png,20008 +images-25548.png,20009 +images-25549.png,20010 +images-25550.png,20011 +images-25551.png,20012 +images-25552.png,20013 +images-25553.png,20014 +images-25554.png,20015 +images-25555.png,20016 +images-25556.png,20017 +images-25557.png,20018 +images-25558.png,20019 +images-25559.png,20020 +images-25560.png,20021 +images-25561.png,20022 +images-25562.png,20023 +images-25563.png,20024 +images-25564.png,20025 +images-25565.png,20026 +images-25566.png,20027 +images-25567.png,20028 +images-25568.png,20029 +images-25569.png,20030 +images-25570.png,20031 +images-25571.png,20032 +images-25572.png,20033 +images-25573.png,20034 +images-25574.png,20035 +images-25575.png,20036 +images-25576.png,20037 +images-25577.png,20038 +images-25578.png,20039 +images-25579.png,20040 +images-25580.png,20041 +images-25581.png,20042 +images-25582.png,20043 +images-25583.png,20044 +images-25584.png,20045 +images-25585.png,20046 +images-25586.png,20047 +images-25587.png,20048 +images-25588.png,20049 +images-25589.png,20050 +images-25590.png,20051 +images-25591.png,20052 +images-25592.png,20053 +images-25593.png,20054 +images-25594.png,20055 +images-25595.png,20056 +images-25596.png,20057 +images-25597.png,20058 +images-25598.png,20059 +images-25599.png,20060 +images-25600.png,20061 +images-25601.png,20062 +images-25602.png,20063 +images-25603.png,20064 +images-25604.png,20065 +images-25605.png,20066 +images-25606.png,20067 +images-25607.png,20068 +images-25608.png,20069 +images-25609.png,20070 +images-25610.png,20071 +images-25611.png,20072 +images-25612.png,20073 +images-25613.png,20074 +images-25614.png,20075 +images-25615.png,20076 +images-25616.png,20077 +images-25617.png,20078 +images-25618.png,20079 +images-25619.png,20080 +images-25620.png,20081 +images-25621.png,20082 +images-25622.png,20083 +images-25623.png,20084 +images-25624.png,20085 +images-25625.png,20086 +images-25626.png,20087 +images-25627.png,20088 +images-25628.png,20089 +images-25629.png,20090 +images-25630.png,20091 +images-25631.png,20092 +images-25632.png,20093 +images-25633.png,20094 +images-25634.png,20095 +images-25635.png,20096 +images-25636.png,20097 +images-25637.png,20098 +images-25638.png,20099 +images-25639.png,20100 +images-25640.png,20101 +images-25641.png,20102 +images-25642.png,20103 +images-25643.png,20104 +images-25644.png,20105 +images-25645.png,20106 +images-25646.png,20107 +images-25647.png,20108 +images-25648.png,20109 +images-25649.png,20110 +images-25650.png,20111 +images-25651.png,20112 +images-25652.png,20113 +images-25653.png,20114 +images-25654.png,20115 +images-25655.png,20116 +images-25656.png,20117 +images-25657.png,20118 +images-25658.png,20119 +images-25659.png,20120 +images-25660.png,20121 +images-25661.png,20122 +images-25662.png,20123 +images-25663.png,20124 +images-25664.png,20125 +images-25665.png,20126 +images-25666.png,20127 +images-25667.png,20128 +images-25668.png,20129 +images-25669.png,20130 +images-25670.png,20131 +images-25671.png,20132 +images-25672.png,20133 +images-25673.png,20134 +images-25674.png,20135 +images-25675.png,20136 +images-25676.png,20137 +images-25677.png,20138 +images-25678.png,20139 +images-25679.png,20140 +images-25680.png,20141 +images-25681.png,20142 +images-25682.png,20143 +images-25683.png,20144 +images-25684.png,20145 +images-25685.png,20146 +images-25686.png,20147 +images-25687.png,20148 +images-25688.png,20149 +images-25689.png,20150 +images-25690.png,20151 +images-25691.png,20152 +images-25692.png,20153 +images-25693.png,20154 +images-25694.png,20155 +images-25695.png,20156 +images-25696.png,20157 +images-25697.png,20158 +images-25698.png,20159 +images-25699.png,20160 +images-25700.png,20161 +images-25701.png,20162 +images-25702.png,20163 +images-25703.png,20164 +images-25704.png,20165 +images-25705.png,20166 +images-25706.png,20167 +images-25707.png,20168 +images-25708.png,20169 +images-25709.png,20170 +images-25710.png,20171 +images-25711.png,20172 +images-25712.png,20173 +images-25713.png,20174 +images-25714.png,20175 +images-25715.png,20176 +images-25716.png,20177 +images-25717.png,20178 +images-25718.png,20179 +images-25719.png,20180 +images-25720.png,20181 +images-25721.png,20182 +images-25722.png,20183 +images-25723.png,20184 +images-25724.png,20185 +images-25725.png,20186 +images-25726.png,20187 +images-25727.png,20188 +images-25728.png,20189 +images-25729.png,20190 +images-25730.png,20191 +images-25731.png,20192 +images-25732.png,20193 +images-25733.png,20194 +images-25734.png,20195 +images-25735.png,20196 +images-25736.png,20197 +images-25737.png,20198 +images-25738.png,20199 +images-25739.png,20200 +images-25740.png,20201 +images-25741.png,20202 +images-25742.png,20203 +images-25743.png,20204 +images-25744.png,20205 +images-25745.png,20206 +images-25746.png,20207 +images-25747.png,20208 +images-25748.png,20209 +images-25749.png,20210 +images-25750.png,20211 +images-25751.png,20212 +images-25752.png,20213 +images-25753.png,20214 +images-25754.png,20215 +images-25755.png,20216 +images-25756.png,20217 +images-25757.png,20218 +images-25758.png,20219 +images-25759.png,20220 +images-25760.png,20221 +images-25761.png,20222 +images-25762.png,20223 +images-25763.png,20224 +images-25764.png,20225 +images-25765.png,20226 +images-25766.png,20227 +images-25767.png,20228 +images-25768.png,20229 +images-25769.png,20230 +images-25770.png,20231 +images-25771.png,20232 +images-25772.png,20233 +images-25773.png,20234 +images-25774.png,20235 +images-25775.png,20236 +images-25776.png,20237 +images-25777.png,20238 +images-25778.png,20239 +images-25779.png,20240 +images-25780.png,20241 +images-25781.png,20242 +images-25782.png,20243 +images-25783.png,20244 +images-25784.png,20245 +images-25785.png,20246 +images-25786.png,20247 +images-25787.png,20248 +images-25788.png,20249 +images-25789.png,20250 +images-25790.png,20251 +images-25791.png,20252 +images-25792.png,20253 +images-25793.png,20254 +images-25794.png,20255 +images-25795.png,20256 +images-25796.png,20257 +images-25797.png,20258 +images-25798.png,20259 +images-25799.png,20260 +images-25800.png,20261 +images-25801.png,20262 +images-25802.png,20263 +images-25803.png,20264 +images-25804.png,20265 +images-25805.png,20266 +images-25806.png,20267 +images-25807.png,20268 +images-25808.png,20269 +images-25809.png,20270 +images-25810.png,20271 +images-25811.png,20272 +images-25812.png,20273 +images-25813.png,20274 +images-25814.png,20275 +images-25815.png,20276 +images-25816.png,20277 +images-25817.png,20278 +images-25818.png,20279 +images-25819.png,20280 +images-25820.png,20281 +images-25821.png,20282 +images-25822.png,20283 +images-25823.png,20284 +images-25824.png,20285 +images-25846.png,20286 +images-25847.png,20287 +images-25848.png,20288 +images-25849.png,20289 +images-25850.png,20290 +images-25851.png,20291 +images-25852.png,20292 +images-25853.png,20293 +images-25854.png,20294 +images-25855.png,20295 +images-25856.png,20296 +images-25857.png,20297 +images-25858.png,20298 +images-25859.png,20299 +images-25860.png,20300 +images-25861.png,20301 +images-25862.png,20302 +images-25863.png,20303 +images-25864.png,20304 +images-25865.png,20305 +images-25866.png,20306 +images-25867.png,20307 +images-25868.png,20308 +images-25869.png,20309 +images-25870.png,20310 +images-25871.png,20311 +images-25872.png,20312 +images-25873.png,20313 +images-25874.png,20314 +images-25875.png,20315 +images-25876.png,20316 +images-25877.png,20317 +images-25878.png,20318 +images-25879.png,20319 +images-25880.png,20320 +images-25881.png,20321 +images-25882.png,20322 +images-25883.png,20323 +images-25884.png,20324 +images-25885.png,20325 +images-25886.png,20326 +images-25887.png,20327 +images-25888.png,20328 +images-25889.png,20329 +images-25890.png,20330 +images-25891.png,20331 +images-25892.png,20332 +images-25893.png,20333 +images-25894.png,20334 +images-25895.png,20335 +images-25896.png,20336 +images-25897.png,20337 +images-25898.png,20338 +images-25899.png,20339 +images-25900.png,20340 +images-25901.png,20341 +images-25902.png,20342 +images-25903.png,20343 +images-25904.png,20344 +images-25905.png,20345 +images-25906.png,20346 +images-25907.png,20347 +images-25908.png,20348 +images-25909.png,20349 +images-25910.png,20350 +images-25911.png,20351 +images-25912.png,20352 +images-25913.png,20353 +images-25914.png,20354 +images-25915.png,20355 +images-25916.png,20356 +images-25917.png,20357 +images-25918.png,20358 +images-25919.png,20359 +images-25920.png,20360 +images-25921.png,20361 +images-25922.png,20362 +images-25923.png,20363 +images-25924.png,20364 +images-25925.png,20365 +images-25926.png,20366 +images-25927.png,20367 +images-25928.png,20368 +images-25929.png,20369 +images-25930.png,20370 +images-25931.png,20371 +images-25932.png,20372 +images-25933.png,20373 +images-25934.png,20374 +images-25935.png,20375 +images-25936.png,20376 +images-25937.png,20377 +images-25938.png,20378 +images-25939.png,20379 +images-25940.png,20380 +images-25941.png,20381 +images-25942.png,20382 +images-25943.png,20383 +images-25944.png,20384 +images-25945.png,20385 +images-25946.png,20386 +images-25947.png,20387 +images-25948.png,20388 +images-25949.png,20389 +images-25950.png,20390 +images-25951.png,20391 +images-25952.png,20392 +images-25953.png,20393 +images-25954.png,20394 +images-25955.png,20395 +images-25956.png,20396 +images-25957.png,20397 +images-25958.png,20398 +images-25959.png,20399 +images-25960.png,20400 +images-25961.png,20401 +images-25962.png,20402 +images-25963.png,20403 +images-25964.png,20404 +images-25965.png,20405 +images-25966.png,20406 +images-25967.png,20407 +images-25968.png,20408 +images-25969.png,20409 +images-25970.png,20410 +images-25971.png,20411 +images-25972.png,20412 +images-25973.png,20413 +images-25974.png,20414 +images-25975.png,20415 +images-25976.png,20416 +images-25977.png,20417 +images-25978.png,20418 +images-25979.png,20419 +images-25980.png,20420 +images-25981.png,20421 +images-25982.png,20422 +images-25983.png,20423 +images-25984.png,20424 +images-25985.png,20425 +images-25986.png,20426 +images-25987.png,20427 +images-25988.png,20428 +images-25989.png,20429 +images-25990.png,20430 +images-25991.png,20431 +images-25992.png,20432 +images-25993.png,20433 +images-25994.png,20434 +images-25995.png,20435 +images-25996.png,20436 +images-25997.png,20437 +images-25998.png,20438 +images-25999.png,20439 +images-26000.png,20440 +images-26001.png,20441 +images-26002.png,20442 +images-26003.png,20443 +images-26004.png,20444 +images-26005.png,20445 +images-26006.png,20446 +images-26007.png,20447 +images-26008.png,20448 +images-26009.png,20449 +images-26010.png,20450 +images-26011.png,20451 +images-26012.png,20452 +images-26013.png,20453 +images-26014.png,20454 +images-26015.png,20455 +images-26016.png,20456 +images-26017.png,20457 +images-26018.png,20458 +images-26019.png,20459 +images-26020.png,20460 +images-26021.png,20461 +images-26022.png,20462 +images-26023.png,20463 +images-26024.png,20464 +images-26025.png,20465 +images-26026.png,20466 +images-26027.png,20467 +images-26028.png,20468 +images-26029.png,20469 +images-26030.png,20470 +images-26031.png,20471 +images-26032.png,20472 +images-26033.png,20473 +images-26034.png,20474 +images-26035.png,20475 +images-26036.png,20476 +images-26037.png,20477 +images-26038.png,20478 +images-26039.png,20479 +images-26040.png,20480 +images-26041.png,20481 +images-26042.png,20482 +images-26043.png,20483 +images-26044.png,20484 +images-26045.png,20485 +images-26046.png,20486 +images-26047.png,20487 +images-26048.png,20488 +images-26049.png,20489 +images-26050.png,20490 +images-26051.png,20491 +images-26052.png,20492 +images-26053.png,20493 +images-26054.png,20494 +images-26055.png,20495 +images-26056.png,20496 +images-26057.png,20497 +images-26058.png,20498 +images-26059.png,20499 +images-26060.png,20500 +images-26061.png,20501 +images-26062.png,20502 +images-26063.png,20503 +images-26064.png,20504 +images-26065.png,20505 +images-26066.png,20506 +images-26067.png,20507 +images-26068.png,20508 +images-26069.png,20509 +images-26070.png,20510 +images-26071.png,20511 +images-26072.png,20512 +images-26073.png,20513 +images-26074.png,20514 +images-26075.png,20515 +images-26076.png,20516 +images-26077.png,20517 +images-26078.png,20518 +images-26079.png,20519 +images-26080.png,20520 +images-26081.png,20521 +images-26082.png,20522 +images-26083.png,20523 +images-26084.png,20524 +images-26085.png,20525 +images-26091.png,20526 +images-26092.png,20527 +images-26093.png,20528 +images-26094.png,20529 +images-26095.png,20530 +images-26096.png,20531 +images-26097.png,20532 +images-26098.png,20533 +images-26099.png,20534 +images-26100.png,20535 +images-26101.png,20536 +images-26102.png,20537 +images-26103.png,20538 +images-26104.png,20539 +images-26105.png,20540 +images-26106.png,20541 +images-26107.png,20542 +images-26108.png,20543 +images-26109.png,20544 +images-26110.png,20545 +images-26111.png,20546 +images-26112.png,20547 +images-26113.png,20548 +images-26114.png,20549 +images-26115.png,20550 +images-26116.png,20551 +images-26117.png,20552 +images-26118.png,20553 +images-26119.png,20554 +images-26135.png,20555 +images-26136.png,20556 +images-26137.png,20557 +images-26138.png,20558 +images-26139.png,20559 +images-26140.png,20560 +images-26141.png,20561 +images-26142.png,20562 +images-26143.png,20563 +images-26144.png,20564 +images-26145.png,20565 +images-26146.png,20566 +images-26147.png,20567 +images-26148.png,20568 +images-26149.png,20569 +images-26150.png,20570 +images-26151.png,20571 +images-26152.png,20572 +images-26153.png,20573 +images-26154.png,20574 +images-26155.png,20575 +images-26156.png,20576 +images-26157.png,20577 +images-26158.png,20578 +images-26159.png,20579 +images-26160.png,20580 +images-26161.png,20581 +images-26162.png,20582 +images-26163.png,20583 +images-26164.png,20584 +images-26165.png,20585 +images-26166.png,20586 +images-26167.png,20587 +images-26168.png,20588 +images-26169.png,20589 +images-26170.png,20590 +images-26171.png,20591 +images-26172.png,20592 +images-26173.png,20593 +images-26174.png,20594 +images-26175.png,20595 +images-26176.png,20596 +images-26177.png,20597 +images-26178.png,20598 +images-26179.png,20599 +images-26180.png,20600 +images-26181.png,20601 +images-26182.png,20602 +images-26183.png,20603 +images-26184.png,20604 +images-26185.png,20605 +images-26186.png,20606 +images-26187.png,20607 +images-26188.png,20608 +images-26189.png,20609 +images-26190.png,20610 +images-26191.png,20611 +images-26192.png,20612 +images-26193.png,20613 +images-26194.png,20614 +images-26195.png,20615 +images-26196.png,20616 +images-26197.png,20617 +images-26198.png,20618 +images-26199.png,20619 +images-26200.png,20620 +images-26201.png,20621 +images-26202.png,20622 +images-26203.png,20623 +images-26204.png,20624 +images-26205.png,20625 +images-26206.png,20626 +images-26207.png,20627 +images-26208.png,20628 +images-26209.png,20629 +images-26210.png,20630 +images-26211.png,20631 +images-26212.png,20632 +images-26213.png,20633 +images-26214.png,20634 +images-26215.png,20635 +images-26216.png,20636 +images-26217.png,20637 +images-26218.png,20638 +images-26219.png,20639 +images-26220.png,20640 +images-26221.png,20641 +images-26222.png,20642 +images-26223.png,20643 +images-26224.png,20644 +images-26225.png,20645 +images-26226.png,20646 +images-26227.png,20647 +images-26228.png,20648 +images-26229.png,20649 +images-26230.png,20650 +images-26231.png,20651 +images-26232.png,20652 +images-26233.png,20653 +images-26234.png,20654 +images-26235.png,20655 +images-26236.png,20656 +images-26237.png,20657 +images-26238.png,20658 +images-26239.png,20659 +images-26240.png,20660 +images-26241.png,20661 +images-26242.png,20662 +images-26243.png,20663 +images-26244.png,20664 +images-26245.png,20665 +images-26246.png,20666 +images-26247.png,20667 +images-26248.png,20668 +images-26249.png,20669 +images-26250.png,20670 +images-26251.png,20671 +images-26252.png,20672 +images-26253.png,20673 +images-26254.png,20674 +images-26255.png,20675 +images-26256.png,20676 +images-26257.png,20677 +images-26258.png,20678 +images-26259.png,20679 +images-26260.png,20680 +images-26261.png,20681 +images-26262.png,20682 +images-26263.png,20683 +images-26264.png,20684 +images-26265.png,20685 +images-26266.png,20686 +images-26267.png,20687 +images-26268.png,20688 +images-26269.png,20689 +images-26270.png,20690 +images-26271.png,20691 +images-26272.png,20692 +images-26273.png,20693 +images-26274.png,20694 +images-26275.png,20695 +images-26276.png,20696 +images-26277.png,20697 +images-26278.png,20698 +images-26279.png,20699 +images-26280.png,20700 +images-26281.png,20701 +images-26282.png,20702 +images-26283.png,20703 +images-26284.png,20704 +images-26285.png,20705 +images-26286.png,20706 +images-26287.png,20707 +images-26288.png,20708 +images-26289.png,20709 +images-26290.png,20710 +images-26291.png,20711 +images-26292.png,20712 +images-26293.png,20713 +images-26294.png,20714 +images-26295.png,20715 +images-26296.png,20716 +images-26297.png,20717 +images-26298.png,20718 +images-26299.png,20719 +images-26300.png,20720 +images-26301.png,20721 +images-26302.png,20722 +images-26303.png,20723 +images-26304.png,20724 +images-26305.png,20725 +images-26306.png,20726 +images-26307.png,20727 +images-26308.png,20728 +images-26309.png,20729 +images-26310.png,20730 +images-26311.png,20731 +images-26312.png,20732 +images-26313.png,20733 +images-26314.png,20734 +images-26315.png,20735 +images-26316.png,20736 +images-26317.png,20737 +images-26318.png,20738 +images-26319.png,20739 +images-26320.png,20740 +images-26321.png,20741 +images-26322.png,20742 +images-26323.png,20743 +images-26324.png,20744 +images-26325.png,20745 +images-26326.png,20746 +images-26327.png,20747 +images-26328.png,20748 +images-26329.png,20749 +images-26330.png,20750 +images-26331.png,20751 +images-26332.png,20752 +images-26333.png,20753 +images-26334.png,20754 +images-26335.png,20755 +images-26336.png,20756 +images-26337.png,20757 +images-26338.png,20758 +images-26339.png,20759 +images-26340.png,20760 +images-26341.png,20761 +images-26342.png,20762 +images-26343.png,20763 +images-26344.png,20764 +images-26345.png,20765 +images-26346.png,20766 +images-26347.png,20767 +images-26348.png,20768 +images-26349.png,20769 +images-26350.png,20770 +images-26351.png,20771 +images-26352.png,20772 +images-26353.png,20773 +images-26354.png,20774 +images-26355.png,20775 +images-26356.png,20776 +images-26357.png,20777 +images-26358.png,20778 +images-26359.png,20779 +images-26360.png,20780 +images-26361.png,20781 +images-26362.png,20782 +images-26363.png,20783 +images-26364.png,20784 +images-26365.png,20785 +images-26366.png,20786 +images-26367.png,20787 +images-26368.png,20788 +images-26369.png,20789 +images-26370.png,20790 +images-26371.png,20791 +images-26372.png,20792 +images-26373.png,20793 +images-26374.png,20794 +images-26375.png,20795 +images-26376.png,20796 +images-26377.png,20797 +images-26378.png,20798 +images-26379.png,20799 +images-26380.png,20800 +images-26381.png,20801 +images-26382.png,20802 +images-26383.png,20803 +images-26384.png,20804 +images-26385.png,20805 +images-26386.png,20806 +images-26387.png,20807 +images-26388.png,20808 +images-26389.png,20809 +images-26390.png,20810 +images-26391.png,20811 +images-26559.png,20812 +images-26560.png,20813 +images-26561.png,20814 +images-26562.png,20815 +images-26563.png,20816 +images-26564.png,20817 +images-26565.png,20818 +images-26566.png,20819 +images-26567.png,20820 +images-26568.png,20821 +images-26569.png,20822 +images-26570.png,20823 +images-26571.png,20824 +images-26572.png,20825 +images-26573.png,20826 +images-26574.png,20827 +images-26575.png,20828 +images-26576.png,20829 +images-26577.png,20830 +images-26578.png,20831 +images-26579.png,20832 +images-26580.png,20833 +images-26581.png,20834 +images-26582.png,20835 +images-26583.png,20836 +images-26584.png,20837 +images-26585.png,20838 +images-26586.png,20839 +images-26587.png,20840 +images-26588.png,20841 +images-26589.png,20842 +images-26590.png,20843 +images-26591.png,20844 +images-26592.png,20845 +images-26593.png,20846 +images-26594.png,20847 +images-26595.png,20848 +images-26596.png,20849 +images-26597.png,20850 +images-26598.png,20851 +images-26599.png,20852 +images-26600.png,20853 +images-26601.png,20854 +images-26602.png,20855 +images-26603.png,20856 +images-26604.png,20857 +images-26605.png,20858 +images-26606.png,20859 +images-26607.png,20860 +images-26608.png,20861 +images-26609.png,20862 +images-26610.png,20863 +images-26611.png,20864 +images-26612.png,20865 +images-26613.png,20866 +images-26614.png,20867 +images-26615.png,20868 +images-26616.png,20869 +images-26617.png,20870 +images-26618.png,20871 +images-26619.png,20872 +images-26620.png,20873 +images-26621.png,20874 +images-26622.png,20875 +images-26623.png,20876 +images-26624.png,20877 +images-26625.png,20878 +images-26626.png,20879 +images-26627.png,20880 +images-26628.png,20881 +images-26629.png,20882 +images-26630.png,20883 +images-26631.png,20884 +images-26632.png,20885 +images-26633.png,20886 +images-26634.png,20887 +images-26635.png,20888 +images-26636.png,20889 +images-26637.png,20890 +images-26638.png,20891 +images-26639.png,20892 +images-26640.png,20893 +images-26641.png,20894 +images-26642.png,20895 +images-26643.png,20896 +images-26644.png,20897 +images-26645.png,20898 +images-26646.png,20899 +images-26647.png,20900 +images-26648.png,20901 +images-26649.png,20902 +images-26650.png,20903 +images-26651.png,20904 +images-26652.png,20905 +images-26653.png,20906 +images-26654.png,20907 +images-26655.png,20908 +images-26656.png,20909 +images-26657.png,20910 +images-26658.png,20911 +images-26659.png,20912 +images-26660.png,20913 +images-26661.png,20914 +images-26662.png,20915 +images-26663.png,20916 +images-26664.png,20917 +images-26665.png,20918 +images-26666.png,20919 +images-26667.png,20920 +images-26668.png,20921 +images-26669.png,20922 +images-26670.png,20923 +images-26671.png,20924 +images-26672.png,20925 +images-26673.png,20926 +images-26674.png,20927 +images-26675.png,20928 +images-26676.png,20929 +images-26677.png,20930 +images-26678.png,20931 +images-26679.png,20932 +images-26680.png,20933 +images-26681.png,20934 +images-26682.png,20935 +images-26683.png,20936 +images-26684.png,20937 +images-26685.png,20938 +images-26686.png,20939 +images-26687.png,20940 +images-26688.png,20941 +images-26689.png,20942 +images-26690.png,20943 +images-26691.png,20944 +images-26692.png,20945 +images-26693.png,20946 +images-26694.png,20947 +images-26695.png,20948 +images-26696.png,20949 +images-26697.png,20950 +images-26698.png,20951 +images-26699.png,20952 +images-26700.png,20953 +images-26701.png,20954 +images-26702.png,20955 +images-26703.png,20956 +images-26704.png,20957 +images-26705.png,20958 +images-26706.png,20959 +images-26707.png,20960 +images-26708.png,20961 +images-26709.png,20962 +images-26710.png,20963 +images-26711.png,20964 +images-26712.png,20965 +images-26713.png,20966 +images-26714.png,20967 +images-26715.png,20968 +images-26716.png,20969 +images-26717.png,20970 +images-26718.png,20971 +images-26719.png,20972 +images-26720.png,20973 +images-26721.png,20974 +images-26722.png,20975 +images-26723.png,20976 +images-26724.png,20977 +images-26725.png,20978 +images-26726.png,20979 +images-26727.png,20980 +images-26728.png,20981 +images-26729.png,20982 +images-26730.png,20983 +images-26731.png,20984 +images-26732.png,20985 +images-26733.png,20986 +images-26734.png,20987 +images-26735.png,20988 +images-26736.png,20989 +images-26737.png,20990 +images-26738.png,20991 +images-26739.png,20992 +images-26740.png,20993 +images-26741.png,20994 +images-26742.png,20995 +images-26743.png,20996 +images-26744.png,20997 +images-26745.png,20998 +images-26746.png,20999 +images-26747.png,21000 +images-26748.png,21001 +images-26749.png,21002 +images-26750.png,21003 +images-26751.png,21004 +images-26752.png,21005 +images-26753.png,21006 +images-26754.png,21007 +images-26755.png,21008 +images-26756.png,21009 +images-26757.png,21010 +images-26758.png,21011 +images-26759.png,21012 +images-26760.png,21013 +images-26761.png,21014 +images-26762.png,21015 +images-26763.png,21016 +images-26764.png,21017 +images-26765.png,21018 +images-26766.png,21019 +images-26767.png,21020 +images-26768.png,21021 +images-26769.png,21022 +images-26770.png,21023 +images-26771.png,21024 +images-26772.png,21025 +images-26773.png,21026 +images-26774.png,21027 +images-26775.png,21028 +images-26776.png,21029 +images-26777.png,21030 +images-26778.png,21031 +images-26779.png,21032 +images-26780.png,21033 +images-26781.png,21034 +images-26782.png,21035 +images-26783.png,21036 +images-26784.png,21037 +images-26785.png,21038 +images-26786.png,21039 +images-26787.png,21040 +images-26788.png,21041 +images-26789.png,21042 +images-26790.png,21043 +images-26791.png,21044 +images-26792.png,21045 +images-26793.png,21046 +images-26794.png,21047 +images-26795.png,21048 +images-26796.png,21049 +images-26797.png,21050 +images-26798.png,21051 +images-26799.png,21052 +images-26800.png,21053 +images-26801.png,21054 +images-26802.png,21055 +images-26803.png,21056 +images-26804.png,21057 +images-26805.png,21058 +images-26806.png,21059 +images-26807.png,21060 +images-26808.png,21061 +images-26809.png,21062 +images-26810.png,21063 +images-26811.png,21064 +images-26812.png,21065 +images-26813.png,21066 +images-26814.png,21067 +images-26815.png,21068 +images-26816.png,21069 +images-26817.png,21070 +images-26818.png,21071 +images-26819.png,21072 +images-26820.png,21073 +images-26821.png,21074 +images-26822.png,21075 +images-26823.png,21076 +images-26824.png,21077 +images-26825.png,21078 +images-26826.png,21079 +images-26827.png,21080 +images-26828.png,21081 +images-26829.png,21082 +images-26830.png,21083 +images-26831.png,21084 +images-26832.png,21085 +images-26833.png,21086 +images-26834.png,21087 +images-26835.png,21088 +images-26836.png,21089 +images-26837.png,21090 +images-26838.png,21091 +images-26839.png,21092 +images-26840.png,21093 +images-26841.png,21094 +images-26842.png,21095 +images-26843.png,21096 +images-26844.png,21097 +images-26845.png,21098 +images-26846.png,21099 +images-26847.png,21100 +images-26848.png,21101 +images-26849.png,21102 +images-26850.png,21103 +images-26851.png,21104 +images-26852.png,21105 +images-26853.png,21106 +images-26854.png,21107 +images-26855.png,21108 +images-26856.png,21109 +images-26857.png,21110 +images-26858.png,21111 +images-26859.png,21112 +images-26860.png,21113 +images-26861.png,21114 +images-26862.png,21115 +images-26863.png,21116 +images-26864.png,21117 +images-26865.png,21118 +images-26866.png,21119 +images-26867.png,21120 +images-26868.png,21121 +images-26869.png,21122 +images-26870.png,21123 +images-26871.png,21124 +images-26872.png,21125 +images-26873.png,21126 +images-26874.png,21127 +images-26875.png,21128 +images-26876.png,21129 +images-26877.png,21130 +images-26878.png,21131 +images-26879.png,21132 +images-26880.png,21133 +images-26881.png,21134 +images-26882.png,21135 +images-26883.png,21136 +images-26884.png,21137 +images-26885.png,21138 +images-26886.png,21139 +images-26887.png,21140 +images-26888.png,21141 +images-26889.png,21142 +images-26897.png,21143 +images-26898.png,21144 +images-26899.png,21145 +images-26900.png,21146 +images-26901.png,21147 +images-26902.png,21148 +images-26903.png,21149 +images-26904.png,21150 +images-26905.png,21151 +images-26906.png,21152 +images-26907.png,21153 +images-26908.png,21154 +images-26909.png,21155 +images-26910.png,21156 +images-26911.png,21157 +images-26912.png,21158 +images-26913.png,21159 +images-26914.png,21160 +images-26915.png,21161 +images-26916.png,21162 +images-26917.png,21163 +images-26918.png,21164 +images-26919.png,21165 +images-26920.png,21166 +images-26921.png,21167 +images-26922.png,21168 +images-26923.png,21169 +images-26924.png,21170 +images-26925.png,21171 +images-26926.png,21172 +images-26927.png,21173 +images-26928.png,21174 +images-26929.png,21175 +images-26930.png,21176 +images-26931.png,21177 +images-26932.png,21178 +images-26933.png,21179 +images-26934.png,21180 +images-26935.png,21181 +images-26936.png,21182 +images-26937.png,21183 +images-26938.png,21184 +images-26939.png,21185 +images-26940.png,21186 +images-26941.png,21187 +images-26942.png,21188 +images-26943.png,21189 +images-26944.png,21190 +images-26945.png,21191 +images-26946.png,21192 +images-26947.png,21193 +images-26948.png,21194 +images-26949.png,21195 +images-26950.png,21196 +images-26951.png,21197 +images-26952.png,21198 +images-26953.png,21199 +images-26954.png,21200 +images-26955.png,21201 +images-26956.png,21202 +images-26957.png,21203 +images-26958.png,21204 +images-26959.png,21205 +images-26960.png,21206 +images-26961.png,21207 +images-26962.png,21208 +images-26963.png,21209 +images-26964.png,21210 +images-26965.png,21211 +images-26966.png,21212 +images-26967.png,21213 +images-26968.png,21214 +images-26969.png,21215 +images-26970.png,21216 +images-26971.png,21217 +images-26972.png,21218 +images-26973.png,21219 +images-26974.png,21220 +images-26975.png,21221 +images-26976.png,21222 +images-26977.png,21223 +images-26978.png,21224 +images-26979.png,21225 +images-26980.png,21226 +images-26981.png,21227 +images-26982.png,21228 +images-26983.png,21229 +images-26984.png,21230 +images-26985.png,21231 +images-26986.png,21232 +images-26987.png,21233 +images-26988.png,21234 +images-26989.png,21235 +images-26990.png,21236 +images-26991.png,21237 +images-26992.png,21238 +images-26993.png,21239 +images-26994.png,21240 +images-26995.png,21241 +images-26996.png,21242 +images-27012.png,21243 +images-27013.png,21244 +images-27014.png,21245 +images-27015.png,21246 +images-27016.png,21247 +images-27017.png,21248 +images-27018.png,21249 +images-27019.png,21250 +images-27020.png,21251 +images-27021.png,21252 +images-27022.png,21253 +images-27023.png,21254 +images-27024.png,21255 +images-27025.png,21256 +images-27026.png,21257 +images-27027.png,21258 +images-27028.png,21259 +images-27029.png,21260 +images-27030.png,21261 +images-27031.png,21262 +images-27032.png,21263 +images-27033.png,21264 +images-27034.png,21265 +images-27035.png,21266 +images-27036.png,21267 +images-27037.png,21268 +images-27038.png,21269 +images-27039.png,21270 +images-27040.png,21271 +images-27041.png,21272 +images-27042.png,21273 +images-27043.png,21274 +images-27044.png,21275 +images-27045.png,21276 +images-27046.png,21277 +images-27047.png,21278 +images-27048.png,21279 +images-27049.png,21280 +images-27050.png,21281 +images-27051.png,21282 +images-27052.png,21283 +images-27053.png,21284 +images-27054.png,21285 +images-27055.png,21286 +images-27056.png,21287 +images-27057.png,21288 +images-27058.png,21289 +images-27059.png,21290 +images-27060.png,21291 +images-27061.png,21292 +images-27062.png,21293 +images-27063.png,21294 +images-27064.png,21295 +images-27065.png,21296 +images-27066.png,21297 +images-27067.png,21298 +images-27068.png,21299 +images-27069.png,21300 +images-27070.png,21301 +images-27071.png,21302 +images-27072.png,21303 +images-27073.png,21304 +images-27074.png,21305 +images-27075.png,21306 +images-27076.png,21307 +images-27077.png,21308 +images-27078.png,21309 +images-27079.png,21310 +images-27080.png,21311 +images-27081.png,21312 +images-27082.png,21313 +images-27083.png,21314 +images-27084.png,21315 +images-27085.png,21316 +images-27086.png,21317 +images-27087.png,21318 +images-27088.png,21319 +images-27089.png,21320 +images-27090.png,21321 +images-27091.png,21322 +images-27092.png,21323 +images-27093.png,21324 +images-27094.png,21325 +images-27095.png,21326 +images-27096.png,21327 +images-27097.png,21328 +images-27098.png,21329 +images-27099.png,21330 +images-27100.png,21331 +images-27101.png,21332 +images-27102.png,21333 +images-27103.png,21334 +images-27104.png,21335 +images-27105.png,21336 +images-27106.png,21337 +images-27107.png,21338 +images-27108.png,21339 +images-27109.png,21340 +images-27110.png,21341 +images-27111.png,21342 +images-27112.png,21343 +images-27113.png,21344 +images-27114.png,21345 +images-27115.png,21346 +images-27116.png,21347 +images-27117.png,21348 +images-27118.png,21349 +images-27119.png,21350 +images-27120.png,21351 +images-27121.png,21352 +images-27122.png,21353 +images-27123.png,21354 +images-27124.png,21355 +images-27125.png,21356 +images-27126.png,21357 +images-27127.png,21358 +images-27128.png,21359 +images-27129.png,21360 +images-27130.png,21361 +images-27131.png,21362 +images-27132.png,21363 +images-27133.png,21364 +images-27134.png,21365 +images-27135.png,21366 +images-27136.png,21367 +images-27137.png,21368 +images-27138.png,21369 +images-27139.png,21370 +images-27140.png,21371 +images-27141.png,21372 +images-27142.png,21373 +images-27143.png,21374 +images-27144.png,21375 +images-27145.png,21376 +images-27146.png,21377 +images-27147.png,21378 +images-27148.png,21379 +images-27149.png,21380 +images-27150.png,21381 +images-27151.png,21382 +images-27152.png,21383 +images-27153.png,21384 +images-27154.png,21385 +images-27155.png,21386 +images-27156.png,21387 +images-27157.png,21388 +images-27158.png,21389 +images-27159.png,21390 +images-27160.png,21391 +images-27161.png,21392 +images-27162.png,21393 +images-27163.png,21394 +images-27164.png,21395 +images-27165.png,21396 +images-27166.png,21397 +images-27167.png,21398 +images-27168.png,21399 +images-27169.png,21400 +images-27170.png,21401 +images-27171.png,21402 +images-27172.png,21403 +images-27173.png,21404 +images-27174.png,21405 +images-27175.png,21406 +images-27176.png,21407 +images-27177.png,21408 +images-27178.png,21409 +images-27179.png,21410 +images-27180.png,21411 +images-27181.png,21412 +images-27182.png,21413 +images-27183.png,21414 +images-27184.png,21415 +images-27185.png,21416 +images-27186.png,21417 +images-27187.png,21418 +images-27188.png,21419 +images-27189.png,21420 +images-27190.png,21421 +images-27191.png,21422 +images-27192.png,21423 +images-27193.png,21424 +images-27194.png,21425 +images-27195.png,21426 +images-27196.png,21427 +images-27197.png,21428 +images-27198.png,21429 +images-27199.png,21430 +images-27200.png,21431 +images-27201.png,21432 +images-27202.png,21433 +images-27203.png,21434 +images-27204.png,21435 +images-27205.png,21436 +images-27206.png,21437 +images-27207.png,21438 +images-27208.png,21439 +images-27209.png,21440 +images-27210.png,21441 +images-27211.png,21442 +images-27212.png,21443 +images-27213.png,21444 +images-27214.png,21445 +images-27215.png,21446 +images-27216.png,21447 +images-27217.png,21448 +images-27218.png,21449 +images-27219.png,21450 +images-27220.png,21451 +images-27221.png,21452 +images-27222.png,21453 +images-27223.png,21454 +images-27224.png,21455 +images-27225.png,21456 +images-27226.png,21457 +images-27227.png,21458 +images-27228.png,21459 +images-27229.png,21460 +images-27230.png,21461 +images-27231.png,21462 +images-27232.png,21463 +images-27233.png,21464 +images-27234.png,21465 +images-27235.png,21466 +images-27236.png,21467 +images-27237.png,21468 +images-27238.png,21469 +images-27239.png,21470 +images-27240.png,21471 +images-27241.png,21472 +images-27242.png,21473 +images-27243.png,21474 +images-27244.png,21475 +images-27245.png,21476 +images-27246.png,21477 +images-27247.png,21478 +images-27248.png,21479 +images-27249.png,21480 +images-27250.png,21481 +images-27251.png,21482 +images-27252.png,21483 +images-27253.png,21484 +images-27254.png,21485 +images-27255.png,21486 +images-27256.png,21487 +images-27257.png,21488 +images-27258.png,21489 +images-27259.png,21490 +images-27260.png,21491 +images-27261.png,21492 +images-27262.png,21493 +images-27263.png,21494 +images-27264.png,21495 +images-27265.png,21496 +images-27266.png,21497 +images-27267.png,21498 +images-27268.png,21499 +images-27269.png,21500 +images-27270.png,21501 +images-27271.png,21502 +images-27272.png,21503 +images-27273.png,21504 +images-27274.png,21505 +images-27275.png,21506 +images-27276.png,21507 +images-27277.png,21508 +images-27278.png,21509 +images-27279.png,21510 +images-27280.png,21511 +images-27281.png,21512 +images-27282.png,21513 +images-27283.png,21514 +images-27284.png,21515 +images-27285.png,21516 +images-27286.png,21517 +images-27287.png,21518 +images-27288.png,21519 +images-27289.png,21520 +images-27290.png,21521 +images-27291.png,21522 +images-27292.png,21523 +images-27293.png,21524 +images-27294.png,21525 +images-27295.png,21526 +images-27296.png,21527 +images-27297.png,21528 +images-27298.png,21529 +images-27299.png,21530 +images-27300.png,21531 +images-27301.png,21532 +images-27302.png,21533 +images-27303.png,21534 +images-27304.png,21535 +images-27305.png,21536 +images-27306.png,21537 +images-27307.png,21538 +images-27308.png,21539 +images-27309.png,21540 +images-27310.png,21541 +images-27311.png,21542 +images-27312.png,21543 +images-27313.png,21544 +images-27314.png,21545 +images-27315.png,21546 +images-27316.png,21547 +images-27317.png,21548 +images-27318.png,21549 +images-27319.png,21550 +images-27320.png,21551 +images-27321.png,21552 +images-27322.png,21553 +images-27323.png,21554 +images-27324.png,21555 +images-27325.png,21556 +images-27326.png,21557 +images-27327.png,21558 +images-27328.png,21559 +images-27329.png,21560 +images-27330.png,21561 +images-27331.png,21562 +images-27332.png,21563 +images-27333.png,21564 +images-27334.png,21565 +images-27335.png,21566 +images-27336.png,21567 +images-27337.png,21568 +images-27338.png,21569 +images-27339.png,21570 +images-27340.png,21571 +images-27341.png,21572 +images-27342.png,21573 +images-27343.png,21574 +images-27344.png,21575 +images-27345.png,21576 +images-27346.png,21577 +images-27347.png,21578 +images-27348.png,21579 +images-27349.png,21580 +images-27350.png,21581 +images-27351.png,21582 +images-27352.png,21583 +images-27353.png,21584 +images-27354.png,21585 +images-27355.png,21586 +images-27356.png,21587 +images-27357.png,21588 +images-27358.png,21589 +images-27359.png,21590 +images-27360.png,21591 +images-27361.png,21592 +images-27362.png,21593 +images-27363.png,21594 +images-27364.png,21595 +images-27365.png,21596 +images-27366.png,21597 +images-27367.png,21598 +images-27368.png,21599 +images-27369.png,21600 +images-27370.png,21601 +images-27371.png,21602 +images-27372.png,21603 +images-27373.png,21604 +images-27374.png,21605 +images-27375.png,21606 +images-27376.png,21607 +images-27377.png,21608 +images-27378.png,21609 +images-27379.png,21610 +images-27380.png,21611 +images-27381.png,21612 +images-27382.png,21613 +images-27383.png,21614 +images-27384.png,21615 +images-27385.png,21616 +images-27386.png,21617 +images-27387.png,21618 +images-27388.png,21619 +images-27389.png,21620 +images-27390.png,21621 +images-27391.png,21622 +images-27392.png,21623 +images-27393.png,21624 +images-27394.png,21625 +images-27395.png,21626 +images-27396.png,21627 +images-27397.png,21628 +images-27398.png,21629 +images-27399.png,21630 +images-27400.png,21631 +images-27401.png,21632 +images-27402.png,21633 +images-27403.png,21634 +images-27404.png,21635 +images-27405.png,21636 +images-27406.png,21637 +images-27407.png,21638 +images-27423.png,21639 +images-27424.png,21640 +images-27425.png,21641 +images-27426.png,21642 +images-27427.png,21643 +images-27428.png,21644 +images-27429.png,21645 +images-27430.png,21646 +images-27431.png,21647 +images-27435.png,21648 +images-27436.png,21649 +images-27437.png,21650 +images-27438.png,21651 +images-27439.png,21652 +images-27440.png,21653 +images-27441.png,21654 +images-27442.png,21655 +images-27443.png,21656 +images-27444.png,21657 +images-27445.png,21658 +images-27446.png,21659 +images-27447.png,21660 +images-27448.png,21661 +images-27449.png,21662 +images-27450.png,21663 +images-27451.png,21664 +images-27452.png,21665 +images-27453.png,21666 +images-27454.png,21667 +images-27455.png,21668 +images-27456.png,21669 +images-27457.png,21670 +images-27458.png,21671 +images-27459.png,21672 +images-27460.png,21673 +images-27461.png,21674 +images-27462.png,21675 +images-27463.png,21676 +images-27464.png,21677 +images-27465.png,21678 +images-27466.png,21679 +images-27467.png,21680 +images-27468.png,21681 +images-27469.png,21682 +images-27470.png,21683 +images-27471.png,21684 +images-27472.png,21685 +images-27473.png,21686 +images-27474.png,21687 +images-27475.png,21688 +images-27476.png,21689 +images-27477.png,21690 +images-27478.png,21691 +images-27479.png,21692 +images-27480.png,21693 +images-27481.png,21694 +images-27482.png,21695 +images-27483.png,21696 +images-27484.png,21697 +images-27485.png,21698 +images-27486.png,21699 +images-27487.png,21700 +images-27488.png,21701 +images-27489.png,21702 +images-27490.png,21703 +images-27491.png,21704 +images-27492.png,21705 +images-27493.png,21706 +images-27494.png,21707 +images-27495.png,21708 +images-27496.png,21709 +images-27497.png,21710 +images-27498.png,21711 +images-27499.png,21712 +images-27500.png,21713 +images-27501.png,21714 +images-27502.png,21715 +images-27503.png,21716 +images-27504.png,21717 +images-27505.png,21718 +images-27506.png,21719 +images-27507.png,21720 +images-27508.png,21721 +images-27509.png,21722 +images-27510.png,21723 +images-27511.png,21724 +images-27512.png,21725 +images-27513.png,21726 +images-27514.png,21727 +images-27515.png,21728 +images-27516.png,21729 +images-27517.png,21730 +images-27518.png,21731 +images-27519.png,21732 +images-27520.png,21733 +images-27521.png,21734 +images-27522.png,21735 +images-27523.png,21736 +images-27524.png,21737 +images-27525.png,21738 +images-27526.png,21739 +images-27527.png,21740 +images-27528.png,21741 +images-27529.png,21742 +images-27530.png,21743 +images-27531.png,21744 +images-27532.png,21745 +images-27533.png,21746 +images-27534.png,21747 +images-27535.png,21748 +images-27536.png,21749 +images-27537.png,21750 +images-27538.png,21751 +images-27539.png,21752 +images-27540.png,21753 +images-27541.png,21754 +images-27542.png,21755 +images-27543.png,21756 +images-27544.png,21757 +images-27545.png,21758 +images-27546.png,21759 +images-27547.png,21760 +images-27548.png,21761 +images-27549.png,21762 +images-27550.png,21763 +images-27551.png,21764 +images-27552.png,21765 +images-27553.png,21766 +images-27554.png,21767 +images-27555.png,21768 +images-27556.png,21769 +images-27557.png,21770 +images-27558.png,21771 +images-27559.png,21772 +images-27560.png,21773 +images-27561.png,21774 +images-27562.png,21775 +images-27563.png,21776 +images-27564.png,21777 +images-27565.png,21778 +images-27566.png,21779 +images-27567.png,21780 +images-27568.png,21781 +images-27569.png,21782 +images-27570.png,21783 +images-27571.png,21784 +images-27572.png,21785 +images-27573.png,21786 +images-27574.png,21787 +images-27575.png,21788 +images-27576.png,21789 +images-27577.png,21790 +images-27578.png,21791 +images-27579.png,21792 +images-27580.png,21793 +images-27581.png,21794 +images-27582.png,21795 +images-27583.png,21796 +images-27584.png,21797 +images-27585.png,21798 +images-27586.png,21799 +images-27587.png,21800 +images-27588.png,21801 +images-27589.png,21802 +images-27590.png,21803 +images-27591.png,21804 +images-27592.png,21805 +images-27593.png,21806 +images-27594.png,21807 +images-27595.png,21808 +images-27596.png,21809 +images-27597.png,21810 +images-27598.png,21811 +images-27599.png,21812 +images-27600.png,21813 +images-27601.png,21814 +images-27602.png,21815 +images-27603.png,21816 +images-27604.png,21817 +images-27605.png,21818 +images-27606.png,21819 +images-27607.png,21820 +images-27608.png,21821 +images-27609.png,21822 +images-27610.png,21823 +images-27611.png,21824 +images-27612.png,21825 +images-27613.png,21826 +images-27614.png,21827 +images-27615.png,21828 +images-27616.png,21829 +images-27617.png,21830 +images-27618.png,21831 +images-27619.png,21832 +images-27620.png,21833 +images-27621.png,21834 +images-27622.png,21835 +images-27623.png,21836 +images-27624.png,21837 +images-27625.png,21838 +images-27626.png,21839 +images-27627.png,21840 +images-27628.png,21841 +images-27629.png,21842 +images-27630.png,21843 +images-27631.png,21844 +images-27632.png,21845 +images-27633.png,21846 +images-27634.png,21847 +images-27635.png,21848 +images-27636.png,21849 +images-27637.png,21850 +images-27638.png,21851 +images-27639.png,21852 +images-27640.png,21853 +images-27641.png,21854 +images-27642.png,21855 +images-27643.png,21856 +images-27644.png,21857 +images-27645.png,21858 +images-27646.png,21859 +images-27647.png,21860 +images-27648.png,21861 +images-27649.png,21862 +images-27650.png,21863 +images-27651.png,21864 +images-27652.png,21865 +images-27653.png,21866 +images-27654.png,21867 +images-27655.png,21868 +images-27656.png,21869 +images-27657.png,21870 +images-27658.png,21871 +images-27659.png,21872 +images-27660.png,21873 +images-27661.png,21874 +images-27662.png,21875 +images-27663.png,21876 +images-27664.png,21877 +images-27665.png,21878 +images-27666.png,21879 +images-27667.png,21880 +images-27668.png,21881 +images-27669.png,21882 +images-27670.png,21883 +images-27671.png,21884 +images-27672.png,21885 +images-27673.png,21886 +images-27674.png,21887 +images-27675.png,21888 +images-27676.png,21889 +images-27677.png,21890 +images-27678.png,21891 +images-27679.png,21892 +images-27680.png,21893 +images-27681.png,21894 +images-27682.png,21895 +images-27683.png,21896 +images-27684.png,21897 +images-27685.png,21898 +images-27686.png,21899 +images-27687.png,21900 +images-27688.png,21901 +images-27689.png,21902 +images-27690.png,21903 +images-27691.png,21904 +images-27692.png,21905 +images-27693.png,21906 +images-27694.png,21907 +images-27695.png,21908 +images-27696.png,21909 +images-27697.png,21910 +images-27698.png,21911 +images-27699.png,21912 +images-27700.png,21913 +images-27701.png,21914 +images-27702.png,21915 +images-27703.png,21916 +images-27704.png,21917 +images-27705.png,21918 +images-27706.png,21919 +images-27707.png,21920 +images-27708.png,21921 +images-27709.png,21922 +images-27710.png,21923 +images-27711.png,21924 +images-27712.png,21925 +images-27713.png,21926 +images-27714.png,21927 +images-27715.png,21928 +images-27716.png,21929 +images-27717.png,21930 +images-27718.png,21931 +images-27719.png,21932 +images-27720.png,21933 +images-27721.png,21934 +images-27722.png,21935 +images-27723.png,21936 +images-27724.png,21937 +images-27725.png,21938 +images-27726.png,21939 +images-27727.png,21940 +images-27728.png,21941 +images-27729.png,21942 +images-27730.png,21943 +images-27731.png,21944 +images-27732.png,21945 +images-27733.png,21946 +images-27734.png,21947 +images-27735.png,21948 +images-27736.png,21949 +images-27737.png,21950 +images-27738.png,21951 +images-27739.png,21952 +images-27740.png,21953 +images-27741.png,21954 +images-27742.png,21955 +images-27743.png,21956 +images-27744.png,21957 +images-27745.png,21958 +images-27746.png,21959 +images-27747.png,21960 +images-27748.png,21961 +images-27749.png,21962 +images-27750.png,21963 +images-27751.png,21964 +images-27752.png,21965 +images-27753.png,21966 +images-27754.png,21967 +images-27755.png,21968 +images-27756.png,21969 +images-27757.png,21970 +images-27758.png,21971 +images-27759.png,21972 +images-27760.png,21973 +images-27761.png,21974 +images-27762.png,21975 +images-27763.png,21976 +images-27764.png,21977 +images-27765.png,21978 +images-27766.png,21979 +images-27767.png,21980 +images-27768.png,21981 +images-27769.png,21982 +images-27770.png,21983 +images-27771.png,21984 +images-27772.png,21985 +images-27773.png,21986 +images-27774.png,21987 +images-27775.png,21988 +images-27776.png,21989 +images-27777.png,21990 +images-27778.png,21991 +images-27779.png,21992 +images-27780.png,21993 +images-27781.png,21994 +images-27782.png,21995 +images-27783.png,21996 +images-27784.png,21997 +images-27785.png,21998 +images-27786.png,21999 +images-27787.png,22000 +images-27788.png,22001 +images-27789.png,22002 +images-27790.png,22003 +images-27791.png,22004 +images-27792.png,22005 +images-27793.png,22006 +images-27794.png,22007 +images-27795.png,22008 +images-27796.png,22009 +images-27797.png,22010 +images-27798.png,22011 +images-27799.png,22012 +images-27800.png,22013 +images-27801.png,22014 +images-27802.png,22015 +images-27803.png,22016 +images-27804.png,22017 +images-27805.png,22018 +images-27806.png,22019 +images-27807.png,22020 +images-27808.png,22021 +images-27809.png,22022 +images-27810.png,22023 +images-27811.png,22024 +images-27812.png,22025 +images-27813.png,22026 +images-27814.png,22027 +images-27815.png,22028 +images-27816.png,22029 +images-27817.png,22030 +images-27818.png,22031 +images-27819.png,22032 +images-27820.png,22033 +images-27821.png,22034 +images-27822.png,22035 +images-27823.png,22036 +images-27824.png,22037 +images-27825.png,22038 +images-27826.png,22039 +images-27827.png,22040 +images-27828.png,22041 +images-27829.png,22042 +images-27830.png,22043 +images-27831.png,22044 +images-27832.png,22045 +images-27833.png,22046 +images-27834.png,22047 +images-27835.png,22048 +images-27836.png,22049 +images-27837.png,22050 +images-27838.png,22051 +images-27839.png,22052 +images-27840.png,22053 +images-27841.png,22054 +images-27842.png,22055 +images-27843.png,22056 +images-27844.png,22057 +images-27845.png,22058 +images-27846.png,22059 +images-27847.png,22060 +images-27848.png,22061 +images-27849.png,22062 +images-27850.png,22063 +images-27851.png,22064 +images-27852.png,22065 +images-27853.png,22066 +images-27854.png,22067 +images-27855.png,22068 +images-27856.png,22069 +images-27857.png,22070 +images-27858.png,22071 +images-27859.png,22072 +images-27860.png,22073 +images-27861.png,22074 +images-27862.png,22075 +images-27863.png,22076 +images-27864.png,22077 +images-27865.png,22078 +images-27866.png,22079 +images-27867.png,22080 +images-27868.png,22081 +images-27869.png,22082 +images-27870.png,22083 +images-27871.png,22084 +images-27872.png,22085 +images-27873.png,22086 +images-27874.png,22087 +images-27875.png,22088 +images-27876.png,22089 +images-27877.png,22090 +images-27878.png,22091 +images-27879.png,22092 +images-27880.png,22093 +images-27881.png,22094 +images-27882.png,22095 +images-27883.png,22096 +images-27884.png,22097 +images-27885.png,22098 +images-27886.png,22099 +images-27887.png,22100 +images-27888.png,22101 +images-27889.png,22102 +images-27890.png,22103 +images-27891.png,22104 +images-27892.png,22105 +images-27893.png,22106 +images-27894.png,22107 +images-27895.png,22108 +images-27896.png,22109 +images-27897.png,22110 +images-27898.png,22111 +images-27899.png,22112 +images-27900.png,22113 +images-27901.png,22114 +images-27902.png,22115 +images-27903.png,22116 +images-27904.png,22117 +images-27905.png,22118 +images-27906.png,22119 +images-27907.png,22120 +images-27908.png,22121 +images-27909.png,22122 +images-27910.png,22123 +images-27911.png,22124 +images-27912.png,22125 +images-27913.png,22126 +images-27914.png,22127 +images-27915.png,22128 +images-27916.png,22129 +images-27917.png,22130 +images-27918.png,22131 +images-27919.png,22132 +images-27920.png,22133 +images-27921.png,22134 +images-27922.png,22135 +images-27923.png,22136 +images-27924.png,22137 +images-27925.png,22138 +images-27943.png,22139 +images-27944.png,22140 +images-27945.png,22141 +images-27946.png,22142 +images-27947.png,22143 +images-27948.png,22144 +images-27949.png,22145 +images-27950.png,22146 +images-27951.png,22147 +images-27952.png,22148 +images-27953.png,22149 +images-27954.png,22150 +images-27955.png,22151 +images-27956.png,22152 +images-27957.png,22153 +images-27958.png,22154 +images-27959.png,22155 +images-27960.png,22156 +images-27961.png,22157 +images-27962.png,22158 +images-27963.png,22159 +images-27964.png,22160 +images-27965.png,22161 +images-27966.png,22162 +images-27967.png,22163 +images-27968.png,22164 +images-27969.png,22165 +images-27970.png,22166 +images-27971.png,22167 +images-27972.png,22168 +images-27973.png,22169 +images-27974.png,22170 +images-27975.png,22171 +images-27976.png,22172 +images-27977.png,22173 +images-27978.png,22174 +images-27979.png,22175 +images-27980.png,22176 +images-27981.png,22177 +images-27982.png,22178 +images-27983.png,22179 +images-27984.png,22180 +images-27985.png,22181 +images-27986.png,22182 +images-27987.png,22183 +images-27988.png,22184 +images-27989.png,22185 +images-27990.png,22186 +images-27991.png,22187 +images-27992.png,22188 +images-27993.png,22189 +images-27994.png,22190 +images-27995.png,22191 +images-27996.png,22192 +images-27997.png,22193 +images-27998.png,22194 +images-27999.png,22195 +images-28000.png,22196 +images-28001.png,22197 +images-28002.png,22198 +images-28003.png,22199 +images-28004.png,22200 +images-28005.png,22201 +images-28006.png,22202 +images-28007.png,22203 +images-28008.png,22204 +images-28009.png,22205 +images-28010.png,22206 +images-28011.png,22207 +images-28012.png,22208 +images-28013.png,22209 +images-28014.png,22210 +images-28015.png,22211 +images-28016.png,22212 +images-28017.png,22213 +images-28018.png,22214 +images-28019.png,22215 +images-28020.png,22216 +images-28021.png,22217 +images-28022.png,22218 +images-28023.png,22219 +images-28024.png,22220 +images-28025.png,22221 +images-28026.png,22222 +images-28027.png,22223 +images-28028.png,22224 +images-28029.png,22225 +images-28030.png,22226 +images-28031.png,22227 +images-28032.png,22228 +images-28033.png,22229 +images-28034.png,22230 +images-28035.png,22231 +images-28036.png,22232 +images-28037.png,22233 +images-28038.png,22234 +images-28039.png,22235 +images-28040.png,22236 +images-28041.png,22237 +images-28042.png,22238 +images-28043.png,22239 +images-28044.png,22240 +images-28045.png,22241 +images-28046.png,22242 +images-28047.png,22243 +images-28048.png,22244 +images-28049.png,22245 +images-28050.png,22246 +images-28051.png,22247 +images-28052.png,22248 +images-28053.png,22249 +images-28054.png,22250 +images-28055.png,22251 +images-28056.png,22252 +images-28057.png,22253 +images-28058.png,22254 +images-28059.png,22255 +images-28060.png,22256 +images-28061.png,22257 +images-28062.png,22258 +images-28063.png,22259 +images-28064.png,22260 +images-28065.png,22261 +images-28066.png,22262 +images-28067.png,22263 +images-28068.png,22264 +images-28069.png,22265 +images-28070.png,22266 +images-28071.png,22267 +images-28072.png,22268 +images-28073.png,22269 +images-28074.png,22270 +images-28075.png,22271 +images-28076.png,22272 +images-28077.png,22273 +images-28078.png,22274 +images-28079.png,22275 +images-28080.png,22276 +images-28081.png,22277 +images-28082.png,22278 +images-28083.png,22279 +images-28084.png,22280 +images-28085.png,22281 +images-28086.png,22282 +images-28087.png,22283 +images-28088.png,22284 +images-28089.png,22285 +images-28090.png,22286 +images-28091.png,22287 +images-28092.png,22288 +images-28093.png,22289 +images-28094.png,22290 +images-28095.png,22291 +images-28096.png,22292 +images-28097.png,22293 +images-28098.png,22294 +images-28099.png,22295 +images-28100.png,22296 +images-28101.png,22297 +images-28102.png,22298 +images-28103.png,22299 +images-28104.png,22300 +images-28105.png,22301 +images-28106.png,22302 +images-28107.png,22303 +images-28108.png,22304 +images-28109.png,22305 +images-28110.png,22306 +images-28111.png,22307 +images-28112.png,22308 +images-28113.png,22309 +images-28114.png,22310 +images-28115.png,22311 +images-28116.png,22312 +images-28117.png,22313 +images-28118.png,22314 +images-28119.png,22315 +images-28120.png,22316 +images-28121.png,22317 +images-28122.png,22318 +images-28123.png,22319 +images-28124.png,22320 +images-28125.png,22321 +images-28126.png,22322 +images-28127.png,22323 +images-28128.png,22324 +images-28129.png,22325 +images-28130.png,22326 +images-28131.png,22327 +images-28132.png,22328 +images-28133.png,22329 +images-28134.png,22330 +images-28135.png,22331 +images-28136.png,22332 +images-28137.png,22333 +images-28138.png,22334 +images-28139.png,22335 +images-28140.png,22336 +images-28141.png,22337 +images-28142.png,22338 +images-28143.png,22339 +images-28144.png,22340 +images-28145.png,22341 +images-28146.png,22342 +images-28147.png,22343 +images-28148.png,22344 +images-28149.png,22345 +images-28150.png,22346 +images-28151.png,22347 +images-28152.png,22348 +images-28153.png,22349 +images-28154.png,22350 +images-28155.png,22351 +images-28156.png,22352 +images-28157.png,22353 +images-28158.png,22354 +images-28159.png,22355 +images-28160.png,22356 +images-28161.png,22357 +images-28162.png,22358 +images-28163.png,22359 +images-28164.png,22360 +images-28165.png,22361 +images-28166.png,22362 +images-28167.png,22363 +images-28168.png,22364 +images-28169.png,22365 +images-28170.png,22366 +images-28171.png,22367 +images-28172.png,22368 +images-28173.png,22369 +images-28174.png,22370 +images-28175.png,22371 +images-28176.png,22372 +images-28177.png,22373 +images-28178.png,22374 +images-28179.png,22375 +images-28180.png,22376 +images-28181.png,22377 +images-28182.png,22378 +images-28183.png,22379 +images-28184.png,22380 +images-28185.png,22381 +images-28186.png,22382 +images-28187.png,22383 +images-28188.png,22384 +images-28189.png,22385 +images-28190.png,22386 +images-28191.png,22387 +images-28192.png,22388 +images-28193.png,22389 +images-28194.png,22390 +images-28195.png,22391 +images-28196.png,22392 +images-28197.png,22393 +images-28198.png,22394 +images-28199.png,22395 +images-28200.png,22396 +images-28201.png,22397 +images-28202.png,22398 +images-28203.png,22399 +images-28204.png,22400 +images-28205.png,22401 +images-28206.png,22402 +images-28207.png,22403 +images-28208.png,22404 +images-28209.png,22405 +images-28210.png,22406 +images-28211.png,22407 +images-28212.png,22408 +images-28213.png,22409 +images-28214.png,22410 +images-28215.png,22411 +images-28216.png,22412 +images-28217.png,22413 +images-28218.png,22414 +images-28219.png,22415 +images-28220.png,22416 +images-28221.png,22417 +images-28222.png,22418 +images-28223.png,22419 +images-28224.png,22420 +images-28225.png,22421 +images-28226.png,22422 +images-28227.png,22423 +images-28228.png,22424 +images-28229.png,22425 +images-28230.png,22426 +images-28231.png,22427 +images-28232.png,22428 +images-28233.png,22429 +images-28234.png,22430 +images-28235.png,22431 +images-28236.png,22432 +images-28237.png,22433 +images-28238.png,22434 +images-28239.png,22435 +images-28240.png,22436 +images-28241.png,22437 +images-28242.png,22438 +images-28243.png,22439 +images-28244.png,22440 +images-28245.png,22441 +images-28246.png,22442 +images-28247.png,22443 +images-28248.png,22444 +images-28249.png,22445 +images-28250.png,22446 +images-28251.png,22447 +images-28252.png,22448 +images-28253.png,22449 +images-28254.png,22450 +images-28255.png,22451 +images-28256.png,22452 +images-28257.png,22453 +images-28258.png,22454 +images-28259.png,22455 +images-28260.png,22456 +images-28261.png,22457 +images-28262.png,22458 +images-28263.png,22459 +images-28264.png,22460 +images-28265.png,22461 +images-28266.png,22462 +images-28267.png,22463 +images-28268.png,22464 +images-28269.png,22465 +images-28270.png,22466 +images-28271.png,22467 +images-28272.png,22468 +images-28273.png,22469 +images-28274.png,22470 +images-28275.png,22471 +images-28276.png,22472 +images-28277.png,22473 +images-28278.png,22474 +images-28279.png,22475 +images-28280.png,22476 +images-28281.png,22477 +images-28282.png,22478 +images-28283.png,22479 +images-28284.png,22480 +images-28285.png,22481 +images-28286.png,22482 +images-28287.png,22483 +images-28288.png,22484 +images-28289.png,22485 +images-28290.png,22486 +images-28291.png,22487 +images-28292.png,22488 +images-28293.png,22489 +images-28294.png,22490 +images-28295.png,22491 +images-28296.png,22492 +images-28297.png,22493 +images-28298.png,22494 +images-28299.png,22495 +images-28300.png,22496 +images-28301.png,22497 +images-28302.png,22498 +images-28303.png,22499 +images-28304.png,22500 +images-28305.png,22501 +images-28306.png,22502 +images-28307.png,22503 +images-28308.png,22504 +images-28309.png,22505 +images-28310.png,22506 +images-28311.png,22507 +images-28312.png,22508 +images-28313.png,22509 +images-28314.png,22510 +images-28315.png,22511 +images-28316.png,22512 +images-28317.png,22513 +images-28318.png,22514 +images-28319.png,22515 +images-28320.png,22516 +images-28321.png,22517 +images-28322.png,22518 +images-28323.png,22519 +images-28324.png,22520 +images-28325.png,22521 +images-28326.png,22522 +images-28327.png,22523 +images-28328.png,22524 +images-28329.png,22525 +images-28330.png,22526 +images-28331.png,22527 +images-28332.png,22528 +images-28333.png,22529 +images-28334.png,22530 +images-28335.png,22531 +images-28336.png,22532 +images-28337.png,22533 +images-28338.png,22534 +images-28339.png,22535 +images-28340.png,22536 +images-28341.png,22537 +images-28342.png,22538 +images-28343.png,22539 +images-28344.png,22540 +images-28345.png,22541 +images-28346.png,22542 +images-28347.png,22543 +images-28348.png,22544 +images-28349.png,22545 +images-28350.png,22546 +images-28351.png,22547 +images-28352.png,22548 +images-28353.png,22549 +images-28354.png,22550 +images-28355.png,22551 +images-28356.png,22552 +images-28357.png,22553 +images-28358.png,22554 +images-28359.png,22555 +images-28360.png,22556 +images-28361.png,22557 +images-28362.png,22558 +images-28363.png,22559 +images-28364.png,22560 +images-28365.png,22561 +images-28366.png,22562 +images-28367.png,22563 +images-28368.png,22564 +images-28369.png,22565 +images-28370.png,22566 +images-28371.png,22567 +images-28372.png,22568 +images-28373.png,22569 +images-28374.png,22570 +images-28375.png,22571 +images-28376.png,22572 +images-28377.png,22573 +images-28378.png,22574 +images-28379.png,22575 +images-28380.png,22576 +images-28381.png,22577 +images-28382.png,22578 +images-28383.png,22579 +images-28384.png,22580 +images-28385.png,22581 +images-28386.png,22582 +images-28387.png,22583 +images-28388.png,22584 +images-28389.png,22585 +images-28390.png,22586 +images-28391.png,22587 +images-28392.png,22588 +images-28393.png,22589 +images-28394.png,22590 +images-28395.png,22591 +images-28396.png,22592 +images-28397.png,22593 +images-28398.png,22594 +images-28399.png,22595 +images-28400.png,22596 +images-28401.png,22597 +images-28402.png,22598 +images-28403.png,22599 +images-28404.png,22600 +images-28405.png,22601 +images-28406.png,22602 +images-28407.png,22603 +images-28408.png,22604 +images-28409.png,22605 +images-28410.png,22606 +images-28411.png,22607 +images-28412.png,22608 +images-28413.png,22609 +images-28414.png,22610 +images-28415.png,22611 +images-28416.png,22612 +images-28417.png,22613 +images-28418.png,22614 +images-28419.png,22615 +images-28420.png,22616 +images-28421.png,22617 +images-28422.png,22618 +images-28423.png,22619 +images-28424.png,22620 +images-28425.png,22621 +images-28426.png,22622 +images-28427.png,22623 +images-28428.png,22624 +images-28429.png,22625 +images-28430.png,22626 +images-28431.png,22627 +images-28432.png,22628 +images-28433.png,22629 +images-28434.png,22630 +images-28435.png,22631 +images-28436.png,22632 +images-28437.png,22633 +images-28438.png,22634 +images-28439.png,22635 +images-28440.png,22636 +images-28441.png,22637 +images-28442.png,22638 +images-28443.png,22639 +images-28444.png,22640 +images-28445.png,22641 +images-28446.png,22642 +images-28447.png,22643 +images-28448.png,22644 +images-28449.png,22645 +images-28450.png,22646 +images-28451.png,22647 +images-28452.png,22648 +images-28453.png,22649 +images-28454.png,22650 +images-28455.png,22651 +images-28456.png,22652 +images-28457.png,22653 +images-28458.png,22654 +images-28459.png,22655 +images-28460.png,22656 +images-28461.png,22657 +images-28462.png,22658 +images-28463.png,22659 +images-28464.png,22660 +images-28465.png,22661 +images-28466.png,22662 +images-28467.png,22663 +images-28468.png,22664 +images-28469.png,22665 +images-28470.png,22666 +images-28471.png,22667 +images-28472.png,22668 +images-28473.png,22669 +images-28474.png,22670 +images-28475.png,22671 +images-28476.png,22672 +images-28477.png,22673 +images-28478.png,22674 +images-28479.png,22675 +images-28480.png,22676 +images-28481.png,22677 +images-28482.png,22678 +images-28483.png,22679 +images-28484.png,22680 +images-28485.png,22681 +images-28486.png,22682 +images-28487.png,22683 +images-28488.png,22684 +images-28489.png,22685 +images-28490.png,22686 +images-28491.png,22687 +images-28492.png,22688 +images-28493.png,22689 +images-28494.png,22690 +images-28495.png,22691 +images-28496.png,22692 +images-28497.png,22693 +images-28498.png,22694 +images-28499.png,22695 +images-28500.png,22696 +images-28501.png,22697 +images-28502.png,22698 +images-28503.png,22699 +images-28504.png,22700 +images-28505.png,22701 +images-28506.png,22702 +images-28507.png,22703 +images-28508.png,22704 +images-28509.png,22705 +images-28510.png,22706 +images-28511.png,22707 +images-28512.png,22708 +images-28513.png,22709 +images-28514.png,22710 +images-28515.png,22711 +images-28516.png,22712 +images-28517.png,22713 +images-28518.png,22714 +images-28519.png,22715 +images-28520.png,22716 +images-28521.png,22717 +images-28522.png,22718 +images-28523.png,22719 +images-28524.png,22720 +images-28525.png,22721 +images-28526.png,22722 +images-28527.png,22723 +images-28528.png,22724 +images-28529.png,22725 +images-28530.png,22726 +images-28531.png,22727 +images-28532.png,22728 +images-28533.png,22729 +images-28534.png,22730 +images-28535.png,22731 +images-28536.png,22732 +images-28537.png,22733 +images-28538.png,22734 +images-28539.png,22735 +images-28540.png,22736 +images-28541.png,22737 +images-28542.png,22738 +images-28543.png,22739 +images-28544.png,22740 +images-28545.png,22741 +images-28546.png,22742 +images-28547.png,22743 +images-28548.png,22744 +images-28549.png,22745 +images-28550.png,22746 +images-28551.png,22747 +images-28552.png,22748 +images-28553.png,22749 +images-28554.png,22750 +images-28555.png,22751 +images-28556.png,22752 +images-28557.png,22753 +images-28558.png,22754 +images-28559.png,22755 +images-28560.png,22756 +images-28561.png,22757 +images-28562.png,22758 +images-28563.png,22759 +images-28564.png,22760 +images-28565.png,22761 +images-28566.png,22762 +images-28567.png,22763 +images-28568.png,22764 +images-28569.png,22765 +images-28570.png,22766 +images-28571.png,22767 +images-28572.png,22768 +images-28573.png,22769 +images-28574.png,22770 +images-28575.png,22771 +images-28576.png,22772 +images-28577.png,22773 +images-28578.png,22774 +images-28579.png,22775 +images-28580.png,22776 +images-28581.png,22777 +images-28582.png,22778 +images-28583.png,22779 +images-28584.png,22780 +images-28585.png,22781 +images-28586.png,22782 +images-28587.png,22783 +images-28588.png,22784 +images-28589.png,22785 +images-28590.png,22786 +images-28591.png,22787 +images-28592.png,22788 +images-28593.png,22789 +images-28594.png,22790 +images-28595.png,22791 +images-28596.png,22792 +images-28597.png,22793 +images-28598.png,22794 +images-28599.png,22795 +images-28600.png,22796 +images-28601.png,22797 +images-28602.png,22798 +images-28603.png,22799 +images-28604.png,22800 +images-28605.png,22801 +images-28606.png,22802 +images-28607.png,22803 +images-28608.png,22804 +images-28609.png,22805 +images-28610.png,22806 +images-28611.png,22807 +images-28612.png,22808 +images-28613.png,22809 +images-28614.png,22810 +images-28615.png,22811 +images-28616.png,22812 +images-28617.png,22813 +images-28618.png,22814 +images-28619.png,22815 +images-28620.png,22816 +images-28621.png,22817 +images-28622.png,22818 +images-28623.png,22819 +images-28624.png,22820 +images-28625.png,22821 +images-28626.png,22822 +images-28627.png,22823 +images-28628.png,22824 +images-28629.png,22825 +images-28630.png,22826 +images-28631.png,22827 +images-28632.png,22828 +images-28633.png,22829 +images-28634.png,22830 +images-28635.png,22831 +images-28636.png,22832 +images-28637.png,22833 +images-28638.png,22834 +images-28639.png,22835 +images-28640.png,22836 +images-28641.png,22837 +images-28642.png,22838 +images-28643.png,22839 +images-28644.png,22840 +images-28645.png,22841 +images-28646.png,22842 +images-28647.png,22843 +images-28648.png,22844 +images-28649.png,22845 +images-28650.png,22846 +images-28651.png,22847 +images-28652.png,22848 +images-28653.png,22849 +images-28654.png,22850 +images-28655.png,22851 +images-28656.png,22852 +images-28657.png,22853 +images-28658.png,22854 +images-28659.png,22855 +images-28660.png,22856 +images-28661.png,22857 +images-28662.png,22858 +images-28663.png,22859 +images-28664.png,22860 +images-28665.png,22861 +images-28666.png,22862 +images-28667.png,22863 +images-28668.png,22864 +images-28669.png,22865 +images-28670.png,22866 +images-28671.png,22867 +images-28672.png,22868 +images-28673.png,22869 +images-28674.png,22870 +images-28675.png,22871 +images-28676.png,22872 +images-28677.png,22873 +images-28678.png,22874 +images-28679.png,22875 +images-28680.png,22876 +images-28681.png,22877 +images-28682.png,22878 +images-28683.png,22879 +images-28684.png,22880 +images-28685.png,22881 +images-28686.png,22882 +images-28693.png,22883 +images-28694.png,22884 +images-28695.png,22885 +images-28696.png,22886 +images-28697.png,22887 +images-28698.png,22888 +images-28699.png,22889 +images-28700.png,22890 +images-28701.png,22891 +images-28702.png,22892 +images-28703.png,22893 +images-28704.png,22894 +images-28705.png,22895 +images-28706.png,22896 +images-28707.png,22897 +images-28708.png,22898 +images-28709.png,22899 +images-28710.png,22900 +images-28711.png,22901 +images-28712.png,22902 +images-28713.png,22903 +images-28714.png,22904 +images-28715.png,22905 +images-28716.png,22906 +images-28717.png,22907 +images-28718.png,22908 +images-28719.png,22909 +images-28720.png,22910 +images-28721.png,22911 +images-28722.png,22912 +images-28723.png,22913 +images-28724.png,22914 +images-28725.png,22915 +images-28726.png,22916 +images-28727.png,22917 +images-28728.png,22918 +images-28729.png,22919 +images-28730.png,22920 +images-28731.png,22921 +images-28732.png,22922 +images-28733.png,22923 +images-28734.png,22924 +images-28735.png,22925 +images-28736.png,22926 +images-28737.png,22927 +images-28738.png,22928 +images-28739.png,22929 +images-28740.png,22930 +images-28741.png,22931 +images-28742.png,22932 +images-28743.png,22933 +images-28744.png,22934 +images-28745.png,22935 +images-28746.png,22936 +images-28747.png,22937 +images-28748.png,22938 +images-28749.png,22939 +images-28750.png,22940 +images-28751.png,22941 +images-28752.png,22942 +images-28753.png,22943 +images-28754.png,22944 +images-28755.png,22945 +images-28756.png,22946 +images-28757.png,22947 +images-28758.png,22948 +images-28759.png,22949 +images-28760.png,22950 +images-28761.png,22951 +images-28762.png,22952 +images-28763.png,22953 +images-28764.png,22954 +images-28765.png,22955 +images-28766.png,22956 +images-28767.png,22957 +images-28768.png,22958 +images-28769.png,22959 +images-28770.png,22960 +images-28771.png,22961 +images-28772.png,22962 +images-28773.png,22963 +images-28774.png,22964 +images-28775.png,22965 +images-28776.png,22966 +images-28777.png,22967 +images-28778.png,22968 +images-28779.png,22969 +images-28780.png,22970 +images-28781.png,22971 +images-28782.png,22972 +images-28783.png,22973 +images-28784.png,22974 +images-28785.png,22975 +images-28786.png,22976 +images-28787.png,22977 +images-28788.png,22978 +images-28789.png,22979 +images-28790.png,22980 +images-28791.png,22981 +images-28792.png,22982 +images-28793.png,22983 +images-28794.png,22984 +images-28795.png,22985 +images-28796.png,22986 +images-28797.png,22987 +images-28798.png,22988 +images-28799.png,22989 +images-28800.png,22990 +images-28801.png,22991 +images-28802.png,22992 +images-28803.png,22993 +images-28804.png,22994 +images-28805.png,22995 +images-28806.png,22996 +images-28807.png,22997 +images-28808.png,22998 +images-28809.png,22999 +images-28810.png,23000 +images-28811.png,23001 +images-28812.png,23002 +images-28813.png,23003 +images-28814.png,23004 +images-28815.png,23005 +images-28816.png,23006 +images-28817.png,23007 +images-28818.png,23008 +images-28819.png,23009 +images-28820.png,23010 +images-28821.png,23011 +images-28822.png,23012 +images-28823.png,23013 +images-28824.png,23014 +images-28825.png,23015 +images-28826.png,23016 +images-28827.png,23017 +images-28828.png,23018 +images-28829.png,23019 +images-28830.png,23020 +images-28831.png,23021 +images-28832.png,23022 +images-28833.png,23023 +images-28834.png,23024 +images-28835.png,23025 +images-28836.png,23026 +images-28837.png,23027 +images-28838.png,23028 +images-28839.png,23029 +images-28840.png,23030 +images-28841.png,23031 +images-28842.png,23032 +images-28843.png,23033 +images-28844.png,23034 +images-28845.png,23035 +images-28846.png,23036 +images-28847.png,23037 +images-28848.png,23038 +images-28849.png,23039 +images-28850.png,23040 +images-28851.png,23041 +images-28852.png,23042 +images-28853.png,23043 +images-28854.png,23044 +images-28855.png,23045 +images-28856.png,23046 +images-28857.png,23047 +images-28858.png,23048 +images-28859.png,23049 +images-28860.png,23050 +images-28861.png,23051 +images-28862.png,23052 +images-28863.png,23053 +images-28864.png,23054 +images-28865.png,23055 +images-28866.png,23056 +images-28867.png,23057 +images-28868.png,23058 +images-28869.png,23059 +images-28870.png,23060 +images-28871.png,23061 +images-28872.png,23062 +images-28873.png,23063 +images-28874.png,23064 +images-28875.png,23065 +images-28876.png,23066 +images-28877.png,23067 +images-28878.png,23068 +images-28879.png,23069 +images-28880.png,23070 +images-28881.png,23071 +images-28882.png,23072 +images-28883.png,23073 +images-28884.png,23074 +images-28885.png,23075 +images-28886.png,23076 +images-28887.png,23077 +images-28888.png,23078 +images-28889.png,23079 +images-28890.png,23080 +images-28891.png,23081 +images-28892.png,23082 +images-28893.png,23083 +images-28894.png,23084 +images-28895.png,23085 +images-28896.png,23086 +images-28897.png,23087 +images-28898.png,23088 +images-28899.png,23089 +images-28900.png,23090 +images-28901.png,23091 +images-28902.png,23092 +images-28903.png,23093 +images-28904.png,23094 +images-28905.png,23095 +images-28906.png,23096 +images-28907.png,23097 +images-28908.png,23098 +images-28909.png,23099 +images-28910.png,23100 +images-28911.png,23101 +images-28912.png,23102 +images-28913.png,23103 +images-28914.png,23104 +images-28915.png,23105 +images-28916.png,23106 +images-28923.png,23107 +images-28924.png,23108 +images-28925.png,23109 +images-28926.png,23110 +images-28927.png,23111 +images-28928.png,23112 +images-28929.png,23113 +images-28930.png,23114 +images-28931.png,23115 +images-28932.png,23116 +images-28933.png,23117 +images-28934.png,23118 +images-28935.png,23119 +images-28936.png,23120 +images-28937.png,23121 +images-28938.png,23122 +images-28939.png,23123 +images-28940.png,23124 +images-28941.png,23125 +images-28942.png,23126 +images-28943.png,23127 +images-28944.png,23128 +images-28945.png,23129 +images-28946.png,23130 +images-28947.png,23131 +images-28948.png,23132 +images-28949.png,23133 +images-28950.png,23134 +images-28951.png,23135 +images-29117.png,23136 +images-29118.png,23137 +images-29119.png,23138 +images-29120.png,23139 +images-29121.png,23140 +images-29122.png,23141 +images-29123.png,23142 +images-29124.png,23143 +images-29125.png,23144 +images-29126.png,23145 +images-29127.png,23146 +images-29128.png,23147 +images-29129.png,23148 +images-29130.png,23149 +images-29131.png,23150 +images-29132.png,23151 +images-29133.png,23152 +images-29134.png,23153 +images-29135.png,23154 +images-29136.png,23155 +images-29137.png,23156 +images-29138.png,23157 +images-29139.png,23158 +images-29140.png,23159 +images-29141.png,23160 +images-29142.png,23161 +images-29143.png,23162 +images-29144.png,23163 +images-29145.png,23164 +images-29146.png,23165 +images-29147.png,23166 +images-29148.png,23167 +images-29149.png,23168 +images-29150.png,23169 +images-29151.png,23170 +images-29152.png,23171 +images-29153.png,23172 +images-29154.png,23173 +images-29155.png,23174 +images-29156.png,23175 +images-29157.png,23176 +images-29158.png,23177 +images-29159.png,23178 +images-29160.png,23179 +images-29161.png,23180 +images-29162.png,23181 +images-29163.png,23182 +images-29164.png,23183 +images-29165.png,23184 +images-29166.png,23185 +images-29167.png,23186 +images-29168.png,23187 +images-29169.png,23188 +images-29170.png,23189 +images-29171.png,23190 +images-29172.png,23191 +images-29173.png,23192 +images-29174.png,23193 +images-29175.png,23194 +images-29176.png,23195 +images-29177.png,23196 +images-29178.png,23197 +images-29179.png,23198 +images-29180.png,23199 +images-29181.png,23200 +images-29182.png,23201 +images-29183.png,23202 +images-29184.png,23203 +images-29185.png,23204 +images-29186.png,23205 +images-29187.png,23206 +images-29188.png,23207 +images-29189.png,23208 +images-29190.png,23209 +images-29191.png,23210 +images-29192.png,23211 +images-29193.png,23212 +images-29194.png,23213 +images-29195.png,23214 +images-29196.png,23215 +images-29197.png,23216 +images-29198.png,23217 +images-29199.png,23218 +images-29200.png,23219 +images-29201.png,23220 +images-29202.png,23221 +images-29203.png,23222 +images-29204.png,23223 +images-29205.png,23224 +images-29206.png,23225 +images-29207.png,23226 +images-29208.png,23227 +images-29209.png,23228 +images-29210.png,23229 +images-29211.png,23230 +images-29212.png,23231 +images-29213.png,23232 +images-29214.png,23233 +images-29215.png,23234 +images-29216.png,23235 +images-29217.png,23236 +images-29218.png,23237 +images-29219.png,23238 +images-29220.png,23239 +images-29221.png,23240 +images-29222.png,23241 +images-29223.png,23242 +images-29224.png,23243 +images-29225.png,23244 +images-29226.png,23245 +images-29227.png,23246 +images-29228.png,23247 +images-29229.png,23248 +images-29230.png,23249 +images-29231.png,23250 +images-29232.png,23251 +images-29233.png,23252 +images-29234.png,23253 +images-29235.png,23254 +images-29236.png,23255 +images-29237.png,23256 +images-29238.png,23257 +images-29239.png,23258 +images-29240.png,23259 +images-29241.png,23260 +images-29242.png,23261 +images-29243.png,23262 +images-29244.png,23263 +images-29245.png,23264 +images-29246.png,23265 +images-29247.png,23266 +images-29248.png,23267 +images-29249.png,23268 +images-29250.png,23269 +images-29251.png,23270 +images-29252.png,23271 +images-29253.png,23272 +images-29254.png,23273 +images-29255.png,23274 +images-29256.png,23275 +images-29257.png,23276 +images-29258.png,23277 +images-29259.png,23278 +images-29260.png,23279 +images-29261.png,23280 +images-29262.png,23281 +images-29263.png,23282 +images-29264.png,23283 +images-29265.png,23284 +images-29266.png,23285 +images-29267.png,23286 +images-29268.png,23287 +images-29269.png,23288 +images-29270.png,23289 +images-29271.png,23290 +images-29272.png,23291 +images-29273.png,23292 +images-29274.png,23293 +images-29275.png,23294 +images-29276.png,23295 +images-29277.png,23296 +images-29278.png,23297 +images-29279.png,23298 +images-29280.png,23299 +images-29281.png,23300 +images-29282.png,23301 +images-29283.png,23302 +images-29284.png,23303 +images-29285.png,23304 +images-29286.png,23305 +images-29287.png,23306 +images-29288.png,23307 +images-29289.png,23308 +images-29290.png,23309 +images-29291.png,23310 +images-29292.png,23311 +images-29293.png,23312 +images-29294.png,23313 +images-29295.png,23314 +images-29296.png,23315 +images-29297.png,23316 +images-29298.png,23317 +images-29299.png,23318 +images-29300.png,23319 +images-29301.png,23320 +images-29302.png,23321 +images-29303.png,23322 +images-29304.png,23323 +images-29305.png,23324 +images-29306.png,23325 +images-29307.png,23326 +images-29308.png,23327 +images-29309.png,23328 +images-29310.png,23329 +images-29311.png,23330 +images-29312.png,23331 +images-29313.png,23332 +images-29314.png,23333 +images-29315.png,23334 +images-29316.png,23335 +images-29317.png,23336 +images-29318.png,23337 +images-29319.png,23338 +images-29320.png,23339 +images-29331.png,23340 +images-29332.png,23341 +images-29333.png,23342 +images-29334.png,23343 +images-29335.png,23344 +images-29336.png,23345 +images-29337.png,23346 +images-29338.png,23347 +images-29339.png,23348 +images-29340.png,23349 +images-29341.png,23350 +images-29342.png,23351 +images-29343.png,23352 +images-29344.png,23353 +images-29345.png,23354 +images-29346.png,23355 +images-29347.png,23356 +images-29348.png,23357 +images-29349.png,23358 +images-29350.png,23359 +images-29351.png,23360 +images-29352.png,23361 +images-29353.png,23362 +images-29354.png,23363 +images-29355.png,23364 +images-29356.png,23365 +images-29357.png,23366 +images-29358.png,23367 +images-29359.png,23368 +images-29360.png,23369 +images-29361.png,23370 +images-29362.png,23371 +images-29363.png,23372 +images-29364.png,23373 +images-29365.png,23374 +images-29366.png,23375 +images-29367.png,23376 +images-29368.png,23377 +images-29369.png,23378 +images-29370.png,23379 +images-29371.png,23380 +images-29372.png,23381 +images-29373.png,23382 +images-29374.png,23383 +images-29375.png,23384 +images-29376.png,23385 +images-29377.png,23386 +images-29378.png,23387 +images-29379.png,23388 +images-29380.png,23389 +images-29381.png,23390 +images-29382.png,23391 +images-29383.png,23392 +images-29421.png,23393 +images-29422.png,23394 +images-29423.png,23395 +images-29424.png,23396 +images-29425.png,23397 +images-29426.png,23398 +images-29427.png,23399 +images-29428.png,23400 +images-29429.png,23401 +images-29430.png,23402 +images-29431.png,23403 +images-29432.png,23404 +images-29433.png,23405 +images-29434.png,23406 +images-29435.png,23407 +images-29436.png,23408 +images-29437.png,23409 +images-29438.png,23410 +images-29439.png,23411 +images-29440.png,23412 +images-29441.png,23413 +images-29442.png,23414 +images-29443.png,23415 +images-29444.png,23416 +images-29445.png,23417 +images-29446.png,23418 +images-29447.png,23419 +images-29448.png,23420 +images-29449.png,23421 +images-29450.png,23422 +images-29451.png,23423 +images-29452.png,23424 +images-29453.png,23425 +images-29454.png,23426 +images-29455.png,23427 +images-29456.png,23428 +images-29457.png,23429 +images-29458.png,23430 +images-29459.png,23431 +images-29460.png,23432 +images-29461.png,23433 +images-29462.png,23434 +images-29463.png,23435 +images-29464.png,23436 +images-29465.png,23437 +images-29466.png,23438 +images-29467.png,23439 +images-29468.png,23440 +images-29469.png,23441 +images-29470.png,23442 +images-29471.png,23443 +images-29472.png,23444 +images-29473.png,23445 +images-29474.png,23446 +images-29475.png,23447 +images-29476.png,23448 +images-29477.png,23449 +images-29478.png,23450 +images-29479.png,23451 +images-29480.png,23452 +images-29481.png,23453 +images-29482.png,23454 +images-29483.png,23455 +images-29484.png,23456 +images-29485.png,23457 +images-29486.png,23458 +images-29487.png,23459 +images-29488.png,23460 +images-29489.png,23461 +images-29490.png,23462 +images-29491.png,23463 +images-29492.png,23464 +images-29493.png,23465 +images-29494.png,23466 +images-29495.png,23467 +images-29496.png,23468 +images-29497.png,23469 +images-29498.png,23470 +images-29499.png,23471 +images-29500.png,23472 +images-29501.png,23473 +images-29502.png,23474 +images-29503.png,23475 +images-29504.png,23476 +images-29505.png,23477 +images-29506.png,23478 +images-29507.png,23479 +images-29508.png,23480 +images-29509.png,23481 +images-29510.png,23482 +images-29511.png,23483 +images-29512.png,23484 +images-29513.png,23485 +images-29514.png,23486 +images-29515.png,23487 +images-29516.png,23488 +images-29517.png,23489 +images-29518.png,23490 +images-29519.png,23491 +images-29520.png,23492 +images-29521.png,23493 +images-29522.png,23494 +images-29523.png,23495 +images-29524.png,23496 +images-29532.png,23497 +images-29533.png,23498 +images-29534.png,23499 +images-29535.png,23500 +images-29536.png,23501 +images-29537.png,23502 +images-29538.png,23503 +images-29539.png,23504 +images-29540.png,23505 +images-29541.png,23506 +images-29542.png,23507 +images-29543.png,23508 +images-29544.png,23509 +images-29545.png,23510 +images-29546.png,23511 +images-29547.png,23512 +images-29548.png,23513 +images-29549.png,23514 +images-29550.png,23515 +images-29551.png,23516 +images-29552.png,23517 +images-29553.png,23518 +images-29554.png,23519 +images-29555.png,23520 +images-29556.png,23521 +images-29557.png,23522 +images-29558.png,23523 +images-29559.png,23524 +images-29560.png,23525 +images-29561.png,23526 +images-29562.png,23527 +images-29563.png,23528 +images-29564.png,23529 +images-29565.png,23530 +images-29566.png,23531 +images-29567.png,23532 +images-29568.png,23533 +images-29569.png,23534 +images-29570.png,23535 +images-29571.png,23536 +images-29572.png,23537 +images-29573.png,23538 +images-29574.png,23539 +images-29575.png,23540 +images-29576.png,23541 +images-29577.png,23542 +images-29578.png,23543 +images-29579.png,23544 +images-29580.png,23545 +images-29581.png,23546 +images-29582.png,23547 +images-29583.png,23548 +images-29584.png,23549 +images-29585.png,23550 +images-29586.png,23551 +images-29587.png,23552 +images-29588.png,23553 +images-29589.png,23554 +images-29590.png,23555 +images-29591.png,23556 +images-29592.png,23557 +images-29593.png,23558 +images-29594.png,23559 +images-29595.png,23560 +images-29596.png,23561 +images-29597.png,23562 +images-29598.png,23563 +images-29599.png,23564 +images-29600.png,23565 +images-29601.png,23566 +images-29602.png,23567 +images-29603.png,23568 +images-29604.png,23569 +images-29605.png,23570 +images-29606.png,23571 +images-29607.png,23572 +images-29608.png,23573 +images-29609.png,23574 +images-29610.png,23575 +images-29611.png,23576 +images-29612.png,23577 +images-29613.png,23578 +images-29614.png,23579 +images-29615.png,23580 +images-29616.png,23581 +images-29617.png,23582 +images-29618.png,23583 +images-29619.png,23584 +images-29620.png,23585 +images-29621.png,23586 +images-29622.png,23587 +images-29623.png,23588 +images-29624.png,23589 +images-29625.png,23590 +images-29626.png,23591 +images-29627.png,23592 +images-29628.png,23593 +images-29629.png,23594 +images-29630.png,23595 +images-29631.png,23596 +images-29632.png,23597 +images-29633.png,23598 +images-29634.png,23599 +images-29635.png,23600 +images-29636.png,23601 +images-29637.png,23602 +images-29638.png,23603 +images-29639.png,23604 +images-29640.png,23605 +images-29641.png,23606 +images-29642.png,23607 +images-29643.png,23608 +images-29644.png,23609 +images-29645.png,23610 +images-29646.png,23611 +images-29647.png,23612 +images-29648.png,23613 +images-29649.png,23614 +images-29650.png,23615 +images-29651.png,23616 +images-29652.png,23617 +images-29653.png,23618 +images-29654.png,23619 +images-29655.png,23620 +images-29656.png,23621 +images-29657.png,23622 +images-29658.png,23623 +images-29659.png,23624 +images-29660.png,23625 +images-29661.png,23626 +images-29662.png,23627 +images-29663.png,23628 +images-29664.png,23629 +images-29665.png,23630 +images-29666.png,23631 +images-29667.png,23632 +images-29668.png,23633 +images-29669.png,23634 +images-29670.png,23635 +images-29671.png,23636 +images-29672.png,23637 +images-29673.png,23638 +images-29674.png,23639 +images-29675.png,23640 +images-29676.png,23641 +images-29677.png,23642 +images-29678.png,23643 +images-29679.png,23644 +images-29680.png,23645 +images-29681.png,23646 +images-29682.png,23647 +images-29683.png,23648 +images-29684.png,23649 +images-29685.png,23650 +images-29686.png,23651 +images-29687.png,23652 +images-29688.png,23653 +images-29689.png,23654 +images-29690.png,23655 +images-29691.png,23656 +images-29692.png,23657 +images-29707.png,23658 +images-29708.png,23659 +images-29709.png,23660 +images-29710.png,23661 +images-29711.png,23662 +images-29712.png,23663 +images-29713.png,23664 +images-29714.png,23665 +images-29715.png,23666 +images-29716.png,23667 +images-29717.png,23668 +images-29718.png,23669 +images-29719.png,23670 +images-29720.png,23671 +images-29721.png,23672 +images-29722.png,23673 +images-29723.png,23674 +images-29724.png,23675 +images-29725.png,23676 +images-29726.png,23677 +images-29727.png,23678 +images-29728.png,23679 +images-29729.png,23680 +images-29730.png,23681 +images-29731.png,23682 +images-29732.png,23683 +images-29733.png,23684 +images-29734.png,23685 +images-29735.png,23686 +images-29736.png,23687 +images-29737.png,23688 +images-29738.png,23689 +images-29739.png,23690 +images-29740.png,23691 +images-29741.png,23692 +images-29742.png,23693 +images-29743.png,23694 +images-29744.png,23695 +images-29745.png,23696 +images-29746.png,23697 +images-29747.png,23698 +images-29748.png,23699 +images-29749.png,23700 +images-29750.png,23701 +images-29751.png,23702 +images-29752.png,23703 +images-29753.png,23704 +images-29754.png,23705 +images-29755.png,23706 +images-29756.png,23707 +images-29757.png,23708 +images-29758.png,23709 +images-29759.png,23710 +images-29760.png,23711 +images-29761.png,23712 +images-29762.png,23713 +images-29763.png,23714 +images-29764.png,23715 +images-29765.png,23716 +images-29766.png,23717 +images-29767.png,23718 +images-29768.png,23719 +images-29769.png,23720 +images-29770.png,23721 +images-29771.png,23722 +images-29772.png,23723 +images-29773.png,23724 +images-29774.png,23725 +images-29775.png,23726 +images-29776.png,23727 +images-29777.png,23728 +images-29778.png,23729 +images-29779.png,23730 +images-29780.png,23731 +images-29781.png,23732 +images-29782.png,23733 +images-29783.png,23734 +images-29784.png,23735 +images-29785.png,23736 +images-29786.png,23737 +images-29787.png,23738 +images-29788.png,23739 +images-29789.png,23740 +images-29790.png,23741 +images-29791.png,23742 +images-29792.png,23743 +images-29793.png,23744 +images-29794.png,23745 +images-29795.png,23746 +images-29796.png,23747 +images-29797.png,23748 +images-29798.png,23749 +images-29799.png,23750 +images-29800.png,23751 +images-29801.png,23752 +images-29802.png,23753 +images-29803.png,23754 +images-29804.png,23755 +images-29805.png,23756 +images-29806.png,23757 +images-29807.png,23758 +images-29808.png,23759 +images-29809.png,23760 +images-29810.png,23761 +images-29811.png,23762 +images-29812.png,23763 +images-29813.png,23764 +images-29814.png,23765 +images-29815.png,23766 +images-29816.png,23767 +images-29817.png,23768 +images-29818.png,23769 +images-29819.png,23770 +images-29820.png,23771 +images-29821.png,23772 +images-29822.png,23773 +images-29823.png,23774 +images-29824.png,23775 +images-29825.png,23776 +images-29826.png,23777 +images-29827.png,23778 +images-29828.png,23779 +images-29829.png,23780 +images-29830.png,23781 +images-29831.png,23782 +images-29832.png,23783 +images-29833.png,23784 +images-29834.png,23785 +images-29835.png,23786 +images-29836.png,23787 +images-29837.png,23788 +images-29838.png,23789 +images-29839.png,23790 +images-29840.png,23791 +images-29841.png,23792 +images-29842.png,23793 +images-29843.png,23794 +images-29844.png,23795 +images-29845.png,23796 +images-29846.png,23797 +images-29847.png,23798 +images-29848.png,23799 +images-29849.png,23800 +images-29850.png,23801 +images-29851.png,23802 +images-29852.png,23803 +images-29853.png,23804 +images-29854.png,23805 +images-29855.png,23806 +images-29856.png,23807 +images-29857.png,23808 +images-29858.png,23809 +images-29859.png,23810 +images-29860.png,23811 +images-29861.png,23812 +images-29862.png,23813 +images-29863.png,23814 +images-29864.png,23815 +images-29865.png,23816 +images-29866.png,23817 +images-29867.png,23818 +images-29868.png,23819 +images-29869.png,23820 +images-29870.png,23821 +images-29871.png,23822 +images-29872.png,23823 +images-29873.png,23824 +images-29874.png,23825 +images-29875.png,23826 +images-29876.png,23827 +images-29877.png,23828 +images-29878.png,23829 +images-29879.png,23830 +images-29880.png,23831 +images-29881.png,23832 +images-29882.png,23833 +images-29883.png,23834 +images-29884.png,23835 +images-29885.png,23836 +images-29886.png,23837 +images-29887.png,23838 +images-29888.png,23839 +images-29889.png,23840 +images-29890.png,23841 +images-29891.png,23842 +images-29892.png,23843 +images-29893.png,23844 +images-29894.png,23845 +images-29895.png,23846 +images-29896.png,23847 +images-29897.png,23848 +images-29898.png,23849 +images-29899.png,23850 +images-29900.png,23851 +images-29901.png,23852 +images-29902.png,23853 +images-29903.png,23854 +images-29904.png,23855 +images-29905.png,23856 +images-29906.png,23857 +images-29907.png,23858 +images-29908.png,23859 +images-29909.png,23860 +images-29910.png,23861 +images-29911.png,23862 +images-29912.png,23863 +images-29913.png,23864 +images-29914.png,23865 +images-29915.png,23866 +images-29916.png,23867 +images-29917.png,23868 +images-29918.png,23869 +images-29919.png,23870 +images-29920.png,23871 +images-29921.png,23872 +images-29922.png,23873 +images-29923.png,23874 +images-29924.png,23875 +images-29925.png,23876 +images-29926.png,23877 +images-29927.png,23878 +images-29928.png,23879 +images-29929.png,23880 +images-29930.png,23881 +images-29931.png,23882 +images-29932.png,23883 +images-29933.png,23884 +images-29934.png,23885 +images-29935.png,23886 +images-29936.png,23887 +images-29937.png,23888 +images-29938.png,23889 +images-29939.png,23890 +images-29940.png,23891 +images-29941.png,23892 +images-29942.png,23893 +images-29943.png,23894 +images-29944.png,23895 +images-29945.png,23896 +images-29946.png,23897 +images-29947.png,23898 +images-29948.png,23899 +images-29949.png,23900 +images-29950.png,23901 +images-29951.png,23902 +images-29952.png,23903 +images-29953.png,23904 +images-29954.png,23905 +images-29955.png,23906 +images-29956.png,23907 +images-29957.png,23908 +images-29958.png,23909 +images-29959.png,23910 +images-29960.png,23911 +images-29961.png,23912 +images-29962.png,23913 +images-29963.png,23914 +images-29964.png,23915 +images-29965.png,23916 +images-29966.png,23917 +images-29967.png,23918 +images-29968.png,23919 +images-29969.png,23920 +images-29970.png,23921 +images-29971.png,23922 +images-29972.png,23923 +images-29973.png,23924 +images-29981.png,23925 +images-29982.png,23926 +images-29983.png,23927 +images-29984.png,23928 +images-29985.png,23929 +images-29986.png,23930 +images-29987.png,23931 +images-29988.png,23932 +images-29989.png,23933 +images-29990.png,23934 +images-29991.png,23935 +images-29992.png,23936 +images-29993.png,23937 +images-30010.png,23938 +images-30011.png,23939 +images-30012.png,23940 +images-30013.png,23941 +images-30014.png,23942 +images-30015.png,23943 +images-30016.png,23944 +images-30017.png,23945 +images-30018.png,23946 +images-30019.png,23947 +images-30020.png,23948 +images-30021.png,23949 +images-30022.png,23950 +images-30023.png,23951 +images-30024.png,23952 +images-30025.png,23953 +images-30026.png,23954 +images-30027.png,23955 +images-30028.png,23956 +images-30029.png,23957 +images-30030.png,23958 +images-30031.png,23959 +images-30032.png,23960 +images-30033.png,23961 +images-30034.png,23962 +images-30035.png,23963 +images-30036.png,23964 +images-30037.png,23965 +images-30038.png,23966 +images-30039.png,23967 +images-30040.png,23968 +images-30041.png,23969 +images-30042.png,23970 +images-30043.png,23971 +images-30044.png,23972 +images-30045.png,23973 +images-30046.png,23974 +images-30047.png,23975 +images-30048.png,23976 +images-30049.png,23977 +images-30050.png,23978 +images-30051.png,23979 +images-30052.png,23980 +images-30053.png,23981 +images-30054.png,23982 +images-30055.png,23983 +images-30056.png,23984 +images-30057.png,23985 +images-30058.png,23986 +images-30059.png,23987 +images-30060.png,23988 +images-30061.png,23989 +images-30062.png,23990 +images-30063.png,23991 +images-30064.png,23992 +images-30065.png,23993 +images-30066.png,23994 +images-30067.png,23995 +images-30068.png,23996 +images-30069.png,23997 +images-30070.png,23998 +images-30071.png,23999 +images-30072.png,24000 +images-30091.png,24001 +images-30092.png,24002 +images-30093.png,24003 +images-30094.png,24004 +images-30095.png,24005 +images-30096.png,24006 +images-30097.png,24007 +images-30098.png,24008 +images-30099.png,24009 +images-30100.png,24010 +images-30101.png,24011 +images-30102.png,24012 +images-30106.png,24013 +images-30107.png,24014 +images-30108.png,24015 +images-30109.png,24016 +images-30110.png,24017 +images-30111.png,24018 +images-30112.png,24019 +images-30113.png,24020 +images-30114.png,24021 +images-30115.png,24022 +images-30116.png,24023 +images-30117.png,24024 +images-30118.png,24025 +images-30119.png,24026 +images-30120.png,24027 +images-30121.png,24028 +images-30122.png,24029 +images-30123.png,24030 +images-30124.png,24031 +images-30125.png,24032 +images-30126.png,24033 +images-30127.png,24034 +images-30128.png,24035 +images-30129.png,24036 +images-30130.png,24037 +images-30131.png,24038 +images-30132.png,24039 +images-30133.png,24040 +images-30134.png,24041 +images-30135.png,24042 +images-30136.png,24043 +images-30142.png,24044 +images-30143.png,24045 +images-30144.png,24046 +images-30145.png,24047 +images-30146.png,24048 +images-30147.png,24049 +images-30148.png,24050 +images-30149.png,24051 +images-30150.png,24052 +images-30151.png,24053 +images-30152.png,24054 +images-30153.png,24055 +images-30154.png,24056 +images-30155.png,24057 +images-30156.png,24058 +images-30157.png,24059 +images-30158.png,24060 +images-30159.png,24061 +images-30160.png,24062 +images-30161.png,24063 +images-30162.png,24064 +images-30163.png,24065 +images-30164.png,24066 +images-30165.png,24067 +images-30166.png,24068 +images-30167.png,24069 +images-30168.png,24070 +images-30169.png,24071 +images-30170.png,24072 +images-30171.png,24073 +images-30172.png,24074 +images-30173.png,24075 +images-30179.png,24076 +images-30180.png,24077 +images-30181.png,24078 +images-30182.png,24079 +images-30183.png,24080 +images-30184.png,24081 +images-30185.png,24082 +images-30186.png,24083 +images-30187.png,24084 +images-30188.png,24085 +images-30189.png,24086 +images-30190.png,24087 +images-30191.png,24088 +images-30192.png,24089 +images-30193.png,24090 +images-30194.png,24091 +images-30195.png,24092 +images-30196.png,24093 +images-30197.png,24094 +images-30198.png,24095 +images-30199.png,24096 +images-30200.png,24097 +images-30201.png,24098 +images-30202.png,24099 +images-30203.png,24100 +images-30211.png,24101 +images-30212.png,24102 +images-30213.png,24103 +images-30214.png,24104 +images-30215.png,24105 +images-30216.png,24106 +images-30217.png,24107 +images-30218.png,24108 +images-30219.png,24109 +images-30220.png,24110 +images-30221.png,24111 +images-30222.png,24112 +images-30223.png,24113 +images-30224.png,24114 +images-30225.png,24115 +images-30226.png,24116 +images-30227.png,24117 +images-30228.png,24118 +images-30229.png,24119 +images-30230.png,24120 +images-30231.png,24121 +images-30232.png,24122 +images-30233.png,24123 +images-30234.png,24124 +images-30235.png,24125 +images-30236.png,24126 +images-30237.png,24127 +images-30238.png,24128 +images-30239.png,24129 +images-30240.png,24130 +images-30241.png,24131 +images-30242.png,24132 +images-30243.png,24133 +images-30244.png,24134 +images-30245.png,24135 +images-30246.png,24136 +images-30247.png,24137 +images-30248.png,24138 +images-30249.png,24139 +images-30250.png,24140 +images-30251.png,24141 +images-30252.png,24142 +images-30253.png,24143 +images-30254.png,24144 +images-30255.png,24145 +images-30256.png,24146 +images-30257.png,24147 +images-30258.png,24148 +images-30259.png,24149 +images-30260.png,24150 +images-30261.png,24151 +images-30262.png,24152 +images-30263.png,24153 +images-30264.png,24154 +images-30265.png,24155 +images-30266.png,24156 +images-30267.png,24157 +images-30268.png,24158 +images-30269.png,24159 +images-30270.png,24160 +images-30271.png,24161 +images-30272.png,24162 +images-30273.png,24163 +images-30274.png,24164 +images-30275.png,24165 +images-30276.png,24166 +images-30277.png,24167 +images-30278.png,24168 +images-30279.png,24169 +images-30280.png,24170 +images-30281.png,24171 +images-30282.png,24172 +images-30283.png,24173 +images-30284.png,24174 +images-30285.png,24175 +images-30286.png,24176 +images-30287.png,24177 +images-30288.png,24178 +images-30289.png,24179 +images-30290.png,24180 +images-30291.png,24181 +images-30292.png,24182 +images-30293.png,24183 +images-30294.png,24184 +images-30295.png,24185 +images-30296.png,24186 +images-30297.png,24187 +images-30298.png,24188 +images-30299.png,24189 +images-30300.png,24190 +images-30301.png,24191 +images-30302.png,24192 +images-30303.png,24193 +images-30304.png,24194 +images-30305.png,24195 +images-30306.png,24196 +images-30307.png,24197 +images-30308.png,24198 +images-30309.png,24199 +images-30310.png,24200 +images-30311.png,24201 +images-30312.png,24202 +images-30313.png,24203 +images-30314.png,24204 +images-30315.png,24205 +images-30316.png,24206 +images-30317.png,24207 +images-30318.png,24208 +images-30319.png,24209 +images-30320.png,24210 +images-30321.png,24211 +images-30322.png,24212 +images-30323.png,24213 +images-30324.png,24214 +images-30325.png,24215 +images-30326.png,24216 +images-30327.png,24217 +images-30328.png,24218 +images-30329.png,24219 +images-30330.png,24220 +images-30331.png,24221 +images-30332.png,24222 +images-30333.png,24223 +images-30334.png,24224 +images-30335.png,24225 +images-30336.png,24226 +images-30337.png,24227 +images-30338.png,24228 +images-30339.png,24229 +images-30340.png,24230 +images-30341.png,24231 +images-30342.png,24232 +images-30343.png,24233 +images-30344.png,24234 +images-30345.png,24235 +images-30346.png,24236 +images-30347.png,24237 +images-30348.png,24238 +images-30349.png,24239 +images-30350.png,24240 +images-30351.png,24241 +images-30352.png,24242 +images-30353.png,24243 +images-30354.png,24244 +images-30355.png,24245 +images-30356.png,24246 +images-30357.png,24247 +images-30358.png,24248 +images-30359.png,24249 +images-30360.png,24250 +images-30361.png,24251 +images-30362.png,24252 +images-30363.png,24253 +images-30364.png,24254 +images-30365.png,24255 +images-30366.png,24256 +images-30367.png,24257 +images-30368.png,24258 +images-30369.png,24259 +images-30370.png,24260 +images-30371.png,24261 +images-30372.png,24262 +images-30373.png,24263 +images-30374.png,24264 +images-30375.png,24265 +images-30376.png,24266 +images-30377.png,24267 +images-30378.png,24268 +images-30379.png,24269 +images-30380.png,24270 +images-30381.png,24271 +images-30382.png,24272 +images-30383.png,24273 +images-30384.png,24274 +images-30385.png,24275 +images-30386.png,24276 +images-30387.png,24277 +images-30388.png,24278 +images-30389.png,24279 +images-30390.png,24280 +images-30391.png,24281 +images-30392.png,24282 +images-30393.png,24283 +images-30394.png,24284 +images-30395.png,24285 +images-30396.png,24286 +images-30397.png,24287 +images-30398.png,24288 +images-30399.png,24289 +images-30400.png,24290 +images-30401.png,24291 +images-30402.png,24292 +images-30403.png,24293 +images-30404.png,24294 +images-30405.png,24295 +images-30406.png,24296 +images-30407.png,24297 +images-30408.png,24298 +images-30409.png,24299 +images-30410.png,24300 +images-30411.png,24301 +images-30412.png,24302 +images-30516.png,24303 +images-30517.png,24304 +images-30518.png,24305 +images-30519.png,24306 +images-30520.png,24307 +images-30521.png,24308 +images-30522.png,24309 +images-30523.png,24310 +images-30524.png,24311 +images-30525.png,24312 +images-30526.png,24313 +images-30527.png,24314 +images-30528.png,24315 +images-30529.png,24316 +images-30530.png,24317 +images-30531.png,24318 +images-30532.png,24319 +images-30533.png,24320 +images-30534.png,24321 +images-30535.png,24322 +images-30536.png,24323 +images-30537.png,24324 +images-30538.png,24325 +images-30539.png,24326 +images-30540.png,24327 +images-30541.png,24328 +images-30542.png,24329 +images-30543.png,24330 +images-30544.png,24331 +images-30545.png,24332 +images-30546.png,24333 +images-30547.png,24334 +images-30548.png,24335 +images-30549.png,24336 +images-30550.png,24337 +images-30551.png,24338 +images-30552.png,24339 +images-30553.png,24340 +images-30554.png,24341 +images-30555.png,24342 +images-30556.png,24343 +images-30557.png,24344 +images-30558.png,24345 +images-30559.png,24346 +images-30560.png,24347 +images-30561.png,24348 +images-30562.png,24349 +images-30563.png,24350 +images-30564.png,24351 +images-30565.png,24352 +images-30566.png,24353 +images-30567.png,24354 +images-30568.png,24355 +images-30569.png,24356 +images-30570.png,24357 +images-30571.png,24358 +images-30572.png,24359 +images-30573.png,24360 +images-30574.png,24361 +images-30575.png,24362 +images-30576.png,24363 +images-30577.png,24364 +images-30578.png,24365 +images-30579.png,24366 +images-30580.png,24367 +images-30581.png,24368 +images-30582.png,24369 +images-30583.png,24370 +images-30584.png,24371 +images-30585.png,24372 +images-30586.png,24373 +images-30587.png,24374 +images-30588.png,24375 +images-30589.png,24376 +images-30590.png,24377 +images-30591.png,24378 +images-30592.png,24379 +images-30593.png,24380 +images-30594.png,24381 +images-30595.png,24382 +images-30596.png,24383 +images-30597.png,24384 +images-30598.png,24385 +images-30599.png,24386 +images-30600.png,24387 +images-30601.png,24388 +images-30602.png,24389 +images-30603.png,24390 +images-30604.png,24391 +images-30605.png,24392 +images-30606.png,24393 +images-30607.png,24394 +images-30608.png,24395 +images-30609.png,24396 +images-30610.png,24397 +images-30611.png,24398 +images-30612.png,24399 +images-30613.png,24400 +images-30614.png,24401 +images-30615.png,24402 +images-30616.png,24403 +images-30617.png,24404 +images-30618.png,24405 +images-30619.png,24406 +images-30620.png,24407 +images-30621.png,24408 +images-30622.png,24409 +images-30623.png,24410 +images-30624.png,24411 +images-30625.png,24412 +images-30626.png,24413 +images-30627.png,24414 +images-30628.png,24415 +images-30629.png,24416 +images-30630.png,24417 +images-30631.png,24418 +images-30632.png,24419 +images-30633.png,24420 +images-30634.png,24421 +images-30635.png,24422 +images-30636.png,24423 +images-30637.png,24424 +images-30638.png,24425 +images-30639.png,24426 +images-30640.png,24427 +images-30641.png,24428 +images-30642.png,24429 +images-30643.png,24430 +images-30644.png,24431 +images-30645.png,24432 +images-30646.png,24433 +images-30647.png,24434 +images-30648.png,24435 +images-30649.png,24436 +images-30650.png,24437 +images-30651.png,24438 +images-30652.png,24439 +images-30653.png,24440 +images-30654.png,24441 +images-30655.png,24442 +images-30656.png,24443 +images-30657.png,24444 +images-30658.png,24445 +images-30659.png,24446 +images-30660.png,24447 +images-30661.png,24448 +images-30662.png,24449 +images-30663.png,24450 +images-30664.png,24451 +images-30665.png,24452 +images-30666.png,24453 +images-30667.png,24454 +images-30668.png,24455 +images-30669.png,24456 +images-30670.png,24457 +images-30671.png,24458 +images-30672.png,24459 +images-30673.png,24460 +images-30674.png,24461 +images-30675.png,24462 +images-30676.png,24463 +images-30677.png,24464 +images-30678.png,24465 +images-30679.png,24466 +images-30680.png,24467 +images-30681.png,24468 +images-30682.png,24469 +images-30683.png,24470 +images-30684.png,24471 +images-30685.png,24472 +images-30686.png,24473 +images-30687.png,24474 +images-30688.png,24475 +images-30689.png,24476 +images-30690.png,24477 +images-30691.png,24478 +images-30692.png,24479 +images-30693.png,24480 +images-30694.png,24481 +images-30695.png,24482 +images-30696.png,24483 +images-30697.png,24484 +images-30698.png,24485 +images-30699.png,24486 +images-30700.png,24487 +images-30701.png,24488 +images-30702.png,24489 +images-30703.png,24490 +images-30704.png,24491 +images-30705.png,24492 +images-30706.png,24493 +images-30707.png,24494 +images-30708.png,24495 +images-30709.png,24496 +images-30710.png,24497 +images-30711.png,24498 +images-30712.png,24499 +images-30713.png,24500 +images-30714.png,24501 +images-30715.png,24502 +images-30716.png,24503 +images-30717.png,24504 +images-30718.png,24505 +images-30719.png,24506 +images-30720.png,24507 +images-30721.png,24508 +images-30722.png,24509 +images-30723.png,24510 +images-30724.png,24511 +images-30725.png,24512 +images-30726.png,24513 +images-30727.png,24514 +images-30728.png,24515 +images-30729.png,24516 +images-30730.png,24517 +images-30731.png,24518 +images-30732.png,24519 +images-30733.png,24520 +images-30734.png,24521 +images-30735.png,24522 +images-30736.png,24523 +images-30737.png,24524 +images-30738.png,24525 +images-30739.png,24526 +images-30740.png,24527 +images-30741.png,24528 +images-30742.png,24529 +images-30743.png,24530 +images-30744.png,24531 +images-30745.png,24532 +images-30746.png,24533 +images-30747.png,24534 +images-30748.png,24535 +images-30749.png,24536 +images-30750.png,24537 +images-30751.png,24538 +images-30752.png,24539 +images-30753.png,24540 +images-30754.png,24541 +images-30755.png,24542 +images-30756.png,24543 +images-30757.png,24544 +images-30758.png,24545 +images-30759.png,24546 +images-30760.png,24547 +images-30761.png,24548 +images-30762.png,24549 +images-30763.png,24550 +images-30764.png,24551 +images-30765.png,24552 +images-30766.png,24553 +images-30767.png,24554 +images-30768.png,24555 +images-30769.png,24556 +images-30770.png,24557 +images-30771.png,24558 +images-30772.png,24559 +images-30773.png,24560 +images-30774.png,24561 +images-30775.png,24562 +images-30776.png,24563 +images-30777.png,24564 +images-30778.png,24565 +images-30779.png,24566 +images-30780.png,24567 +images-30781.png,24568 +images-30782.png,24569 +images-30783.png,24570 +images-30784.png,24571 +images-30785.png,24572 +images-30786.png,24573 +images-30787.png,24574 +images-30788.png,24575 +images-30789.png,24576 +images-30790.png,24577 +images-30791.png,24578 +images-30792.png,24579 +images-30793.png,24580 +images-30794.png,24581 +images-30795.png,24582 +images-30796.png,24583 +images-30797.png,24584 +images-30798.png,24585 +images-30799.png,24586 +images-30800.png,24587 +images-30801.png,24588 +images-30802.png,24589 +images-30803.png,24590 +images-30804.png,24591 +images-30805.png,24592 +images-30806.png,24593 +images-30807.png,24594 +images-30808.png,24595 +images-30809.png,24596 +images-30810.png,24597 +images-30811.png,24598 +images-30812.png,24599 +images-30813.png,24600 +images-30814.png,24601 +images-30815.png,24602 +images-30816.png,24603 +images-30817.png,24604 +images-30818.png,24605 +images-30819.png,24606 +images-30820.png,24607 +images-30821.png,24608 +images-30822.png,24609 +images-30823.png,24610 +images-30824.png,24611 +images-30825.png,24612 +images-30826.png,24613 +images-30827.png,24614 +images-30828.png,24615 +images-30829.png,24616 +images-30830.png,24617 +images-30831.png,24618 +images-30832.png,24619 +images-30833.png,24620 +images-30834.png,24621 +images-30835.png,24622 +images-30836.png,24623 +images-30837.png,24624 +images-30838.png,24625 +images-30839.png,24626 +images-30840.png,24627 +images-30841.png,24628 +images-30842.png,24629 +images-30843.png,24630 +images-30844.png,24631 +images-30845.png,24632 +images-30846.png,24633 +images-30847.png,24634 +images-30848.png,24635 +images-30849.png,24636 +images-30850.png,24637 +images-30851.png,24638 +images-30852.png,24639 +images-30853.png,24640 +images-30854.png,24641 +images-30855.png,24642 +images-30856.png,24643 +images-30857.png,24644 +images-30858.png,24645 +images-30859.png,24646 +images-30860.png,24647 +images-30861.png,24648 +images-30862.png,24649 +images-30863.png,24650 +images-30864.png,24651 +images-30865.png,24652 +images-30866.png,24653 +images-30867.png,24654 +images-30868.png,24655 +images-30869.png,24656 +images-30870.png,24657 +images-30871.png,24658 +images-30872.png,24659 +images-30873.png,24660 +images-30874.png,24661 +images-30875.png,24662 +images-30876.png,24663 +images-30877.png,24664 +images-30878.png,24665 +images-30879.png,24666 +images-30880.png,24667 +images-30881.png,24668 +images-30882.png,24669 +images-30883.png,24670 +images-30884.png,24671 +images-30885.png,24672 +images-30886.png,24673 +images-30887.png,24674 +images-30888.png,24675 +images-30889.png,24676 +images-30890.png,24677 +images-30891.png,24678 +images-30892.png,24679 +images-30893.png,24680 +images-30894.png,24681 +images-30895.png,24682 +images-30896.png,24683 +images-30897.png,24684 +images-30898.png,24685 +images-30899.png,24686 +images-30900.png,24687 +images-30901.png,24688 +images-30902.png,24689 +images-30903.png,24690 +images-30904.png,24691 +images-30905.png,24692 +images-30906.png,24693 +images-30907.png,24694 +images-30908.png,24695 +images-30909.png,24696 +images-30910.png,24697 +images-30911.png,24698 +images-30912.png,24699 +images-30913.png,24700 +images-30914.png,24701 +images-30915.png,24702 +images-30916.png,24703 +images-30917.png,24704 +images-30918.png,24705 +images-30919.png,24706 +images-30920.png,24707 +images-30921.png,24708 +images-30922.png,24709 +images-30923.png,24710 +images-30924.png,24711 +images-30925.png,24712 +images-30926.png,24713 +images-30927.png,24714 +images-30928.png,24715 +images-30929.png,24716 +images-30930.png,24717 +images-30931.png,24718 +images-30932.png,24719 +images-30933.png,24720 +images-30934.png,24721 +images-30935.png,24722 +images-30936.png,24723 +images-30937.png,24724 +images-30938.png,24725 +images-30939.png,24726 +images-30940.png,24727 +images-30941.png,24728 +images-30942.png,24729 +images-30943.png,24730 +images-30944.png,24731 +images-30945.png,24732 +images-30946.png,24733 +images-30947.png,24734 +images-30948.png,24735 +images-30949.png,24736 +images-30950.png,24737 +images-30951.png,24738 +images-30952.png,24739 +images-30953.png,24740 +images-30954.png,24741 +images-30955.png,24742 +images-30956.png,24743 +images-30957.png,24744 +images-30958.png,24745 +images-30959.png,24746 +images-30960.png,24747 +images-30961.png,24748 +images-30962.png,24749 +images-30963.png,24750 +images-30964.png,24751 +images-30965.png,24752 +images-30966.png,24753 +images-30967.png,24754 +images-30968.png,24755 +images-30969.png,24756 +images-30970.png,24757 +images-30971.png,24758 +images-30972.png,24759 +images-30973.png,24760 +images-30974.png,24761 +images-30975.png,24762 +images-30976.png,24763 +images-30977.png,24764 +images-30978.png,24765 +images-30979.png,24766 +images-30980.png,24767 +images-30981.png,24768 +images-30982.png,24769 +images-30983.png,24770 +images-30984.png,24771 +images-30985.png,24772 +images-30986.png,24773 +images-30987.png,24774 +images-30988.png,24775 +images-30989.png,24776 +images-30990.png,24777 +images-30991.png,24778 +images-30992.png,24779 +images-30993.png,24780 +images-30994.png,24781 +images-30995.png,24782 +images-30996.png,24783 +images-30997.png,24784 +images-30998.png,24785 +images-30999.png,24786 +images-31000.png,24787 +images-31001.png,24788 +images-31002.png,24789 +images-31003.png,24790 +images-31004.png,24791 +images-31005.png,24792 +images-31006.png,24793 +images-31007.png,24794 +images-31008.png,24795 +images-31009.png,24796 +images-31010.png,24797 +images-31011.png,24798 +images-31012.png,24799 +images-31013.png,24800 +images-31014.png,24801 +images-31015.png,24802 +images-31016.png,24803 +images-31017.png,24804 +images-31018.png,24805 +images-31019.png,24806 +images-31020.png,24807 +images-31021.png,24808 +images-31022.png,24809 +images-31023.png,24810 +images-31024.png,24811 +images-31025.png,24812 +images-31026.png,24813 +images-31027.png,24814 +images-31028.png,24815 +images-31029.png,24816 +images-31030.png,24817 +images-31031.png,24818 +images-31032.png,24819 +images-31033.png,24820 +images-31034.png,24821 +images-31035.png,24822 +images-31036.png,24823 +images-31037.png,24824 +images-31038.png,24825 +images-31039.png,24826 +images-31040.png,24827 +images-31041.png,24828 +images-31042.png,24829 +images-31043.png,24830 +images-31044.png,24831 +images-31045.png,24832 +images-31046.png,24833 +images-31047.png,24834 +images-31048.png,24835 +images-31049.png,24836 +images-31050.png,24837 +images-31051.png,24838 +images-31052.png,24839 +images-31053.png,24840 +images-31054.png,24841 +images-31055.png,24842 +images-31056.png,24843 +images-31057.png,24844 +images-31058.png,24845 +images-31059.png,24846 +images-31060.png,24847 +images-31061.png,24848 +images-31062.png,24849 +images-31063.png,24850 +images-31208.png,24851 +images-31209.png,24852 +images-31210.png,24853 +images-31211.png,24854 +images-31212.png,24855 +images-31213.png,24856 +images-31214.png,24857 +images-31215.png,24858 +images-31216.png,24859 +images-31217.png,24860 +images-31218.png,24861 +images-31219.png,24862 +images-31220.png,24863 +images-31221.png,24864 +images-31222.png,24865 +images-31223.png,24866 +images-31224.png,24867 +images-31225.png,24868 +images-31226.png,24869 +images-31227.png,24870 +images-31228.png,24871 +images-31229.png,24872 +images-31230.png,24873 +images-31231.png,24874 +images-31232.png,24875 +images-31233.png,24876 +images-31234.png,24877 +images-31235.png,24878 +images-31236.png,24879 +images-31237.png,24880 +images-31238.png,24881 +images-31239.png,24882 +images-31240.png,24883 +images-31241.png,24884 +images-31242.png,24885 +images-31243.png,24886 +images-31244.png,24887 +images-31245.png,24888 +images-31246.png,24889 +images-31247.png,24890 +images-31248.png,24891 +images-31249.png,24892 +images-31250.png,24893 +images-31251.png,24894 +images-31252.png,24895 +images-31253.png,24896 +images-31254.png,24897 +images-31255.png,24898 +images-31256.png,24899 +images-31257.png,24900 +images-31258.png,24901 +images-31259.png,24902 +images-31260.png,24903 +images-31261.png,24904 +images-31262.png,24905 +images-31263.png,24906 +images-31264.png,24907 +images-31265.png,24908 +images-31266.png,24909 +images-31267.png,24910 +images-31268.png,24911 +images-31269.png,24912 +images-31270.png,24913 +images-31271.png,24914 +images-31272.png,24915 +images-31273.png,24916 +images-31274.png,24917 +images-31275.png,24918 +images-31276.png,24919 +images-31277.png,24920 +images-31278.png,24921 +images-31279.png,24922 +images-31280.png,24923 +images-31281.png,24924 +images-31282.png,24925 +images-31283.png,24926 +images-31284.png,24927 +images-31285.png,24928 +images-31286.png,24929 +images-31287.png,24930 +images-31288.png,24931 +images-31289.png,24932 +images-31290.png,24933 +images-31291.png,24934 +images-31292.png,24935 +images-31293.png,24936 +images-31294.png,24937 +images-31295.png,24938 +images-31296.png,24939 +images-31297.png,24940 +images-31298.png,24941 +images-31299.png,24942 +images-31300.png,24943 +images-31325.png,24944 +images-31326.png,24945 +images-31327.png,24946 +images-31328.png,24947 +images-31329.png,24948 +images-31330.png,24949 +images-31331.png,24950 +images-31340.png,24951 +images-31341.png,24952 +images-31342.png,24953 +images-31343.png,24954 +images-31344.png,24955 +images-31345.png,24956 +images-31346.png,24957 +images-31347.png,24958 +images-31348.png,24959 +images-31349.png,24960 +images-31350.png,24961 +images-31351.png,24962 +images-31352.png,24963 +images-31353.png,24964 +images-31354.png,24965 +images-31355.png,24966 +images-31356.png,24967 +images-31357.png,24968 +images-31358.png,24969 +images-31359.png,24970 +images-31360.png,24971 +images-31361.png,24972 +images-31362.png,24973 +images-31363.png,24974 +images-31364.png,24975 +images-31365.png,24976 +images-31366.png,24977 +images-31367.png,24978 +images-31368.png,24979 +images-31369.png,24980 +images-31370.png,24981 +images-31371.png,24982 +images-31372.png,24983 +images-31373.png,24984 +images-31374.png,24985 +images-31375.png,24986 +images-31376.png,24987 +images-31377.png,24988 +images-31378.png,24989 +images-31379.png,24990 +images-31380.png,24991 +images-31381.png,24992 +images-31382.png,24993 +images-31383.png,24994 +images-31384.png,24995 +images-31385.png,24996 +images-31386.png,24997 +images-31387.png,24998 +images-31388.png,24999 +images-31389.png,25000 +images-31390.png,25001 +images-31391.png,25002 +images-31392.png,25003 +images-31393.png,25004 +images-31394.png,25005 +images-31395.png,25006 +images-31410.png,25007 +images-31411.png,25008 +images-31412.png,25009 +images-31413.png,25010 +images-31414.png,25011 +images-31415.png,25012 +images-31416.png,25013 +images-31417.png,25014 +images-31418.png,25015 +images-31419.png,25016 +images-31420.png,25017 +images-31421.png,25018 +images-31422.png,25019 +images-31423.png,25020 +images-31424.png,25021 +images-31425.png,25022 +images-31426.png,25023 +images-31427.png,25024 +images-31428.png,25025 +images-31429.png,25026 +images-31430.png,25027 +images-31431.png,25028 +images-31432.png,25029 +images-31437.png,25030 +images-31438.png,25031 +images-31439.png,25032 +images-31440.png,25033 +images-31441.png,25034 +images-31442.png,25035 +images-31443.png,25036 +images-31444.png,25037 +images-31445.png,25038 +images-31446.png,25039 +images-31447.png,25040 +images-31482.png,25041 +images-31483.png,25042 +images-31484.png,25043 +images-31485.png,25044 +images-31486.png,25045 +images-31487.png,25046 +images-31488.png,25047 +images-31489.png,25048 +images-31490.png,25049 +images-31491.png,25050 +images-31551.png,25051 +images-31552.png,25052 +images-31553.png,25053 +images-31554.png,25054 +images-31555.png,25055 +images-31556.png,25056 +images-31557.png,25057 +images-31558.png,25058 +images-31559.png,25059 +images-31560.png,25060 +images-31561.png,25061 +images-31562.png,25062 +images-31563.png,25063 +images-31564.png,25064 +images-31565.png,25065 +images-31566.png,25066 +images-31567.png,25067 +images-31568.png,25068 +images-31569.png,25069 +images-31570.png,25070 +images-31571.png,25071 +images-31572.png,25072 +images-31573.png,25073 +images-31574.png,25074 +images-31575.png,25075 +images-31576.png,25076 +images-31577.png,25077 +images-31578.png,25078 +images-31579.png,25079 +images-31580.png,25080 +images-31581.png,25081 +images-31582.png,25082 +images-31583.png,25083 +images-31584.png,25084 +images-31585.png,25085 +images-31586.png,25086 +images-31587.png,25087 +images-31588.png,25088 +images-31589.png,25089 +images-31590.png,25090 +images-31591.png,25091 +images-31592.png,25092 +images-31593.png,25093 +images-31594.png,25094 +images-31595.png,25095 +images-31596.png,25096 +images-31597.png,25097 +images-31598.png,25098 +images-31599.png,25099 +images-31600.png,25100 +images-31601.png,25101 +images-31602.png,25102 +images-31603.png,25103 +images-31604.png,25104 +images-31605.png,25105 +images-31606.png,25106 +images-31607.png,25107 +images-31608.png,25108 +images-31609.png,25109 +images-31610.png,25110 +images-31628.png,25111 +images-31629.png,25112 +images-31630.png,25113 +images-31631.png,25114 +images-31632.png,25115 +images-31633.png,25116 +images-31634.png,25117 +images-31635.png,25118 +images-31636.png,25119 +images-31637.png,25120 +images-31638.png,25121 +images-31639.png,25122 +images-31640.png,25123 +images-31641.png,25124 +images-31642.png,25125 +images-31643.png,25126 +images-31644.png,25127 +images-31645.png,25128 +images-31646.png,25129 +images-31647.png,25130 +images-31648.png,25131 +images-31649.png,25132 +images-31650.png,25133 +images-31651.png,25134 +images-31652.png,25135 +images-31653.png,25136 +images-31654.png,25137 +images-31655.png,25138 +images-31656.png,25139 +images-31657.png,25140 +images-31658.png,25141 +images-31659.png,25142 +images-31660.png,25143 +images-31661.png,25144 +images-31662.png,25145 +images-31663.png,25146 +images-31664.png,25147 +images-31665.png,25148 +images-31712.png,25149 +images-31713.png,25150 +images-31714.png,25151 +images-31715.png,25152 +images-31716.png,25153 +images-31717.png,25154 +images-31718.png,25155 +images-31719.png,25156 +images-31720.png,25157 +images-31721.png,25158 +images-31722.png,25159 +images-31723.png,25160 +images-31724.png,25161 +images-31725.png,25162 +images-31726.png,25163 +images-31727.png,25164 +images-31728.png,25165 +images-31729.png,25166 +images-31730.png,25167 +images-31731.png,25168 +images-31732.png,25169 +images-31733.png,25170 +images-31734.png,25171 +images-31735.png,25172 +images-31736.png,25173 +images-31737.png,25174 +images-31738.png,25175 +images-31739.png,25176 +images-31740.png,25177 +images-31741.png,25178 +images-31742.png,25179 +images-31743.png,25180 +images-31744.png,25181 +images-31745.png,25182 +images-31746.png,25183 +images-31747.png,25184 +images-31796.png,25185 +images-31797.png,25186 +images-31798.png,25187 +images-31799.png,25188 +images-31800.png,25189 +images-31801.png,25190 +images-31802.png,25191 +images-31803.png,25192 +images-31804.png,25193 +images-31805.png,25194 +images-31806.png,25195 +images-31807.png,25196 +images-31808.png,25197 +images-31809.png,25198 +images-31810.png,25199 +images-31811.png,25200 +images-31812.png,25201 +images-31813.png,25202 +images-31814.png,25203 +images-31815.png,25204 +images-31816.png,25205 +images-31817.png,25206 +images-31818.png,25207 +images-31819.png,25208 +images-31820.png,25209 +images-31821.png,25210 +images-31822.png,25211 +images-31828.png,25212 +images-31829.png,25213 +images-31830.png,25214 +images-31836.png,25215 +images-31837.png,25216 +images-31838.png,25217 +images-31839.png,25218 +images-31840.png,25219 +images-31841.png,25220 +images-31842.png,25221 +images-31843.png,25222 +images-31844.png,25223 +images-31845.png,25224 +images-31846.png,25225 +images-31847.png,25226 +images-31865.png,25227 +images-31866.png,25228 +images-31867.png,25229 +images-31868.png,25230 +images-31869.png,25231 +images-31870.png,25232 +images-31871.png,25233 +images-31872.png,25234 +images-31873.png,25235 +images-31874.png,25236 +images-31875.png,25237 +images-31876.png,25238 +images-31877.png,25239 +images-31878.png,25240 +images-31879.png,25241 +images-31880.png,25242 +images-31881.png,25243 +images-31882.png,25244 +images-31883.png,25245 +images-31884.png,25246 +images-31885.png,25247 +images-31886.png,25248 +images-31887.png,25249 +images-31888.png,25250 +images-31889.png,25251 +images-31890.png,25252 +images-31891.png,25253 +images-31892.png,25254 +images-31893.png,25255 +images-31894.png,25256 +images-31895.png,25257 +images-31896.png,25258 +images-31897.png,25259 +images-31898.png,25260 +images-31899.png,25261 +images-31900.png,25262 +images-31901.png,25263 +images-31902.png,25264 +images-31965.png,25265 +images-31966.png,25266 +images-31967.png,25267 +images-31968.png,25268 +images-31969.png,25269 +images-31970.png,25270 +images-31971.png,25271 +images-31972.png,25272 +images-31973.png,25273 +images-31974.png,25274 +images-31975.png,25275 +images-31976.png,25276 +images-31977.png,25277 +images-31978.png,25278 +images-31979.png,25279 +images-31980.png,25280 +images-31981.png,25281 +images-31982.png,25282 +images-31983.png,25283 +images-31984.png,25284 +images-31985.png,25285 +images-31986.png,25286 +images-31987.png,25287 +images-31988.png,25288 +images-31989.png,25289 +images-31990.png,25290 +images-31991.png,25291 +images-31992.png,25292 +images-31993.png,25293 +images-31994.png,25294 +images-31995.png,25295 +images-31996.png,25296 +images-31997.png,25297 +images-32062.png,25298 +images-32063.png,25299 +images-32064.png,25300 +images-32065.png,25301 +images-32066.png,25302 +images-32067.png,25303 +images-32068.png,25304 +images-32069.png,25305 +images-32070.png,25306 +images-32071.png,25307 +images-32072.png,25308 +images-32073.png,25309 +images-32074.png,25310 +images-32075.png,25311 +images-32076.png,25312 +images-32077.png,25313 +images-32078.png,25314 +images-32079.png,25315 +images-32080.png,25316 +images-32081.png,25317 +images-32082.png,25318 +images-32083.png,25319 +images-32084.png,25320 +images-32085.png,25321 +images-32086.png,25322 +images-32087.png,25323 +images-32088.png,25324 +images-32089.png,25325 +images-32090.png,25326 +images-32091.png,25327 +images-32092.png,25328 +images-32093.png,25329 +images-32094.png,25330 +images-32095.png,25331 +images-32096.png,25332 +images-32097.png,25333 +images-32098.png,25334 +images-32099.png,25335 +images-32100.png,25336 +images-32101.png,25337 +images-32128.png,25338 +images-32129.png,25339 +images-32130.png,25340 +images-32131.png,25341 +images-32132.png,25342 +images-32133.png,25343 +images-32134.png,25344 +images-32135.png,25345 +images-32136.png,25346 +images-32137.png,25347 +images-32138.png,25348 +images-32139.png,25349 +images-32140.png,25350 +images-32141.png,25351 +images-32142.png,25352 +images-32165.png,25353 +images-32166.png,25354 +images-32167.png,25355 +images-32168.png,25356 +images-32169.png,25357 +images-32170.png,25358 +images-32171.png,25359 +images-32172.png,25360 +images-32173.png,25361 +images-32174.png,25362 +images-32175.png,25363 +images-32176.png,25364 +images-32177.png,25365 +images-32178.png,25366 +images-32179.png,25367 +images-32180.png,25368 +images-32181.png,25369 +images-32182.png,25370 +images-32183.png,25371 +images-32184.png,25372 +images-32185.png,25373 +images-32186.png,25374 +images-32187.png,25375 +images-32188.png,25376 +images-32189.png,25377 +images-32190.png,25378 +images-32191.png,25379 +images-32192.png,25380 +images-32193.png,25381 +images-32194.png,25382 +images-32195.png,25383 +images-32196.png,25384 +images-32197.png,25385 +images-32198.png,25386 +images-32199.png,25387 +images-32200.png,25388 +images-32201.png,25389 +images-32202.png,25390 +images-32203.png,25391 +images-32204.png,25392 +images-32205.png,25393 +images-32206.png,25394 +images-32207.png,25395 +images-32208.png,25396 +images-32209.png,25397 +images-32210.png,25398 +images-32211.png,25399 +images-32212.png,25400 +images-32213.png,25401 +images-32242.png,25402 +images-32243.png,25403 +images-32244.png,25404 +images-32245.png,25405 +images-32246.png,25406 +images-32247.png,25407 +images-32248.png,25408 +images-32249.png,25409 +images-32250.png,25410 +images-32251.png,25411 +images-32252.png,25412 +images-32253.png,25413 +images-32254.png,25414 +images-32255.png,25415 +images-32256.png,25416 +images-32257.png,25417 +images-32258.png,25418 +images-32259.png,25419 +images-32260.png,25420 +images-32261.png,25421 +images-32262.png,25422 +images-32263.png,25423 +images-32264.png,25424 +images-32265.png,25425 +images-32266.png,25426 +images-32267.png,25427 +images-32268.png,25428 +images-32269.png,25429 +images-32270.png,25430 +images-32271.png,25431 +images-32272.png,25432 +images-32273.png,25433 +images-32274.png,25434 +images-32275.png,25435 +images-32276.png,25436 +images-32277.png,25437 +images-32278.png,25438 +images-32279.png,25439 +images-32280.png,25440 +images-32281.png,25441 +images-32282.png,25442 +images-32283.png,25443 +images-32284.png,25444 +images-32285.png,25445 +images-32286.png,25446 +images-32287.png,25447 +images-32288.png,25448 +images-32289.png,25449 +images-32290.png,25450 +images-32291.png,25451 +images-32292.png,25452 +images-32293.png,25453 +images-32294.png,25454 +images-32295.png,25455 +images-32296.png,25456 +images-32297.png,25457 +images-32298.png,25458 +images-32299.png,25459 +images-32300.png,25460 +images-32301.png,25461 +images-32302.png,25462 +images-32303.png,25463 +images-32304.png,25464 +images-32305.png,25465 +images-32306.png,25466 +images-32307.png,25467 +images-32308.png,25468 +images-32309.png,25469 +images-32310.png,25470 +images-32311.png,25471 +images-32312.png,25472 +images-32313.png,25473 +images-32314.png,25474 +images-32315.png,25475 +images-32316.png,25476 +images-32317.png,25477 +images-32318.png,25478 +images-32319.png,25479 +images-32320.png,25480 +images-32321.png,25481 +images-32322.png,25482 +images-32323.png,25483 +images-32324.png,25484 +images-32325.png,25485 +images-32326.png,25486 +images-32327.png,25487 +images-32328.png,25488 +images-32329.png,25489 +images-32330.png,25490 +images-32331.png,25491 +images-32332.png,25492 +images-32333.png,25493 +images-32334.png,25494 +images-32335.png,25495 +images-32336.png,25496 +images-32337.png,25497 +images-32338.png,25498 +images-32339.png,25499 +images-32340.png,25500 +images-32341.png,25501 +images-32342.png,25502 +images-32343.png,25503 +images-32348.png,25504 +images-32349.png,25505 +images-32350.png,25506 +images-32351.png,25507 +images-32352.png,25508 +images-32353.png,25509 +images-32354.png,25510 +images-32355.png,25511 +images-32356.png,25512 +images-32357.png,25513 +images-32358.png,25514 +images-32359.png,25515 +images-32360.png,25516 +images-32361.png,25517 +images-32362.png,25518 +images-32363.png,25519 +images-32364.png,25520 +images-32365.png,25521 +images-32366.png,25522 +images-33063.png,25523 +images-33064.png,25524 +images-33065.png,25525 +images-33066.png,25526 +images-33067.png,25527 +images-33068.png,25528 +images-33069.png,25529 +images-33070.png,25530 +images-33071.png,25531 +images-33072.png,25532 +images-33073.png,25533 +images-33074.png,25534 +images-33075.png,25535 +images-33076.png,25536 +images-33077.png,25537 +images-33078.png,25538 +images-33079.png,25539 +images-33080.png,25540 +images-33081.png,25541 +images-33082.png,25542 +images-33083.png,25543 +images-33084.png,25544 +images-33085.png,25545 +images-33086.png,25546 +images-33087.png,25547 +images-33088.png,25548 +images-33089.png,25549 +images-33090.png,25550 +images-33091.png,25551 +images-33092.png,25552 +images-33093.png,25553 +images-33094.png,25554 +images-33095.png,25555 +images-33096.png,25556 +images-33097.png,25557 +images-33098.png,25558 +images-33099.png,25559 +images-33100.png,25560 +images-33101.png,25561 +images-33102.png,25562 +images-33103.png,25563 +images-33104.png,25564 +images-33105.png,25565 +images-33106.png,25566 +images-33107.png,25567 +images-33108.png,25568 +images-33109.png,25569 +images-33110.png,25570 +images-33111.png,25571 +images-33112.png,25572 +images-33113.png,25573 +images-33114.png,25574 +images-33115.png,25575 +images-33116.png,25576 +images-33117.png,25577 +images-33118.png,25578 +images-33119.png,25579 +images-33120.png,25580 +images-33121.png,25581 +images-33122.png,25582 +images-33123.png,25583 +images-33124.png,25584 +images-33125.png,25585 +images-33126.png,25586 +images-33127.png,25587 +images-33128.png,25588 +images-33129.png,25589 +images-33130.png,25590 +images-33131.png,25591 +images-33132.png,25592 +images-33133.png,25593 +images-33134.png,25594 +images-33135.png,25595 +images-33136.png,25596 +images-33137.png,25597 +images-33138.png,25598 +images-33139.png,25599 +images-33140.png,25600 +images-33141.png,25601 +images-33142.png,25602 +images-33143.png,25603 +images-33144.png,25604 +images-33145.png,25605 +images-33146.png,25606 +images-33147.png,25607 +images-33148.png,25608 +images-33149.png,25609 +images-33150.png,25610 +images-33151.png,25611 +images-33152.png,25612 +images-33153.png,25613 +images-33154.png,25614 +images-33155.png,25615 +images-33156.png,25616 +images-33157.png,25617 +images-33158.png,25618 +images-33159.png,25619 +images-33160.png,25620 +images-33161.png,25621 +images-33162.png,25622 +images-33163.png,25623 +images-33164.png,25624 +images-33165.png,25625 +images-33166.png,25626 +images-33167.png,25627 +images-33168.png,25628 +images-33169.png,25629 +images-33170.png,25630 +images-33171.png,25631 +images-33172.png,25632 +images-33173.png,25633 +images-33174.png,25634 +images-33175.png,25635 +images-33176.png,25636 +images-33177.png,25637 +images-33178.png,25638 +images-33179.png,25639 +images-33180.png,25640 +images-33181.png,25641 +images-33182.png,25642 +images-33183.png,25643 +images-33184.png,25644 +images-33185.png,25645 +images-33186.png,25646 +images-33187.png,25647 +images-33188.png,25648 +images-33189.png,25649 +images-33190.png,25650 +images-33191.png,25651 +images-33192.png,25652 +images-33193.png,25653 +images-33194.png,25654 +images-33195.png,25655 +images-33196.png,25656 +images-33197.png,25657 +images-33198.png,25658 +images-33199.png,25659 +images-33200.png,25660 +images-33201.png,25661 +images-33202.png,25662 +images-33203.png,25663 +images-33204.png,25664 +images-33205.png,25665 +images-33206.png,25666 +images-33207.png,25667 +images-33208.png,25668 +images-33209.png,25669 +images-33210.png,25670 +images-33211.png,25671 +images-33212.png,25672 +images-33213.png,25673 +images-33214.png,25674 +images-33215.png,25675 +images-33216.png,25676 +images-33217.png,25677 +images-33218.png,25678 +images-33219.png,25679 +images-33220.png,25680 +images-33221.png,25681 +images-33222.png,25682 +images-33223.png,25683 +images-33224.png,25684 +images-33225.png,25685 +images-33226.png,25686 +images-33227.png,25687 +images-33228.png,25688 +images-33229.png,25689 +images-33230.png,25690 +images-33231.png,25691 +images-33232.png,25692 +images-33233.png,25693 +images-33234.png,25694 +images-33235.png,25695 +images-33236.png,25696 +images-33237.png,25697 +images-33238.png,25698 +images-33239.png,25699 +images-33240.png,25700 +images-33241.png,25701 +images-33242.png,25702 +images-33243.png,25703 +images-33244.png,25704 +images-33245.png,25705 +images-33246.png,25706 +images-33247.png,25707 +images-33248.png,25708 +images-33249.png,25709 +images-33250.png,25710 +images-33251.png,25711 +images-33252.png,25712 +images-33253.png,25713 +images-33254.png,25714 +images-33255.png,25715 +images-33256.png,25716 +images-33257.png,25717 +images-33258.png,25718 +images-33259.png,25719 +images-33260.png,25720 +images-33261.png,25721 +images-33262.png,25722 +images-33263.png,25723 +images-33264.png,25724 +images-33265.png,25725 +images-33266.png,25726 +images-33267.png,25727 +images-33268.png,25728 +images-33269.png,25729 +images-33270.png,25730 +images-33271.png,25731 +images-33272.png,25732 +images-33273.png,25733 +images-33274.png,25734 +images-33275.png,25735 +images-33276.png,25736 +images-33277.png,25737 +images-33278.png,25738 +images-33279.png,25739 +images-33280.png,25740 +images-33281.png,25741 +images-33282.png,25742 +images-33283.png,25743 +images-33284.png,25744 +images-33285.png,25745 +images-33286.png,25746 +images-33287.png,25747 +images-33288.png,25748 +images-33289.png,25749 +images-33290.png,25750 +images-33291.png,25751 +images-33292.png,25752 +images-33293.png,25753 +images-33294.png,25754 +images-33295.png,25755 +images-33296.png,25756 +images-33297.png,25757 +images-33298.png,25758 +images-33299.png,25759 +images-33300.png,25760 +images-33301.png,25761 +images-33302.png,25762 +images-33303.png,25763 +images-33304.png,25764 +images-33305.png,25765 +images-33306.png,25766 +images-33307.png,25767 +images-33308.png,25768 +images-33309.png,25769 +images-33310.png,25770 +images-33311.png,25771 +images-33312.png,25772 +images-33313.png,25773 +images-33314.png,25774 +images-33315.png,25775 +images-33316.png,25776 +images-33328.png,25777 +images-33329.png,25778 +images-33330.png,25779 +images-33331.png,25780 +images-33332.png,25781 +images-33333.png,25782 +images-33334.png,25783 +images-33335.png,25784 +images-33336.png,25785 +images-33337.png,25786 +images-33338.png,25787 +images-33339.png,25788 +images-33340.png,25789 +images-33346.png,25790 +images-33347.png,25791 +images-33348.png,25792 +images-33349.png,25793 +images-33350.png,25794 +images-33351.png,25795 +images-33352.png,25796 +images-33353.png,25797 +images-33354.png,25798 +images-33355.png,25799 +images-33356.png,25800 +images-33357.png,25801 +images-33358.png,25802 +images-33359.png,25803 +images-33360.png,25804 +images-33361.png,25805 +images-33362.png,25806 +images-33363.png,25807 +images-33364.png,25808 +images-33365.png,25809 +images-33366.png,25810 +images-33367.png,25811 +images-33368.png,25812 +images-33369.png,25813 +images-33386.png,25814 +images-33387.png,25815 +images-33388.png,25816 +images-33389.png,25817 +images-33390.png,25818 +images-33391.png,25819 +images-33392.png,25820 +images-33393.png,25821 +images-33394.png,25822 +images-33395.png,25823 +images-33396.png,25824 +images-33397.png,25825 +images-33398.png,25826 +images-33399.png,25827 +images-33400.png,25828 +images-33401.png,25829 +images-33402.png,25830 +images-33403.png,25831 +images-33404.png,25832 +images-33405.png,25833 +images-33406.png,25834 +images-33407.png,25835 +images-33408.png,25836 +images-33409.png,25837 +images-33410.png,25838 +images-33411.png,25839 +images-33412.png,25840 +images-33413.png,25841 +images-33414.png,25842 +images-33415.png,25843 +images-33416.png,25844 +images-33417.png,25845 +images-33418.png,25846 +images-33419.png,25847 +images-33420.png,25848 +images-33421.png,25849 +images-33422.png,25850 +images-33423.png,25851 +images-33424.png,25852 +images-33425.png,25853 +images-33426.png,25854 +images-33427.png,25855 +images-33428.png,25856 +images-33429.png,25857 +images-33513.png,25858 +images-33514.png,25859 +images-33515.png,25860 +images-33516.png,25861 +images-33517.png,25862 +images-33518.png,25863 +images-33519.png,25864 +images-33520.png,25865 +images-33521.png,25866 +images-33522.png,25867 +images-33523.png,25868 +images-33524.png,25869 +images-33525.png,25870 +images-33526.png,25871 +images-33527.png,25872 +images-33528.png,25873 +images-33529.png,25874 +images-33530.png,25875 +images-33531.png,25876 +images-33532.png,25877 +images-33533.png,25878 +images-33534.png,25879 +images-33535.png,25880 +images-33536.png,25881 +images-33537.png,25882 +images-33538.png,25883 +images-33539.png,25884 +images-33540.png,25885 +images-33541.png,25886 +images-33542.png,25887 +images-33543.png,25888 +images-33544.png,25889 +images-33545.png,25890 +images-33546.png,25891 +images-33547.png,25892 +images-33548.png,25893 +images-33549.png,25894 +images-33550.png,25895 +images-33551.png,25896 +images-33552.png,25897 +images-33553.png,25898 +images-33554.png,25899 +images-33555.png,25900 +images-33556.png,25901 +images-33557.png,25902 +images-33558.png,25903 +images-33559.png,25904 +images-33560.png,25905 +images-33561.png,25906 +images-33562.png,25907 +images-33563.png,25908 +images-33564.png,25909 +images-33565.png,25910 +images-33566.png,25911 +images-33567.png,25912 +images-33568.png,25913 +images-33569.png,25914 +images-33570.png,25915 +images-33571.png,25916 +images-33572.png,25917 +images-33573.png,25918 +images-33574.png,25919 +images-33575.png,25920 +images-33576.png,25921 +images-33577.png,25922 +images-33578.png,25923 +images-33579.png,25924 +images-33580.png,25925 +images-33581.png,25926 +images-33582.png,25927 +images-33583.png,25928 +images-33584.png,25929 +images-33585.png,25930 +images-33586.png,25931 +images-33587.png,25932 +images-33588.png,25933 +images-33589.png,25934 +images-33590.png,25935 +images-33667.png,25936 +images-33668.png,25937 +images-33669.png,25938 +images-33670.png,25939 +images-33671.png,25940 +images-33672.png,25941 +images-33673.png,25942 +images-33674.png,25943 +images-33675.png,25944 +images-33676.png,25945 +images-33677.png,25946 +images-33678.png,25947 +images-33679.png,25948 +images-33680.png,25949 +images-33681.png,25950 +images-33682.png,25951 +images-33683.png,25952 +images-33684.png,25953 +images-33685.png,25954 +images-33686.png,25955 +images-33687.png,25956 +images-33688.png,25957 +images-33689.png,25958 +images-33690.png,25959 +images-33691.png,25960 +images-33692.png,25961 +images-33693.png,25962 +images-33694.png,25963 +images-33695.png,25964 +images-33696.png,25965 +images-33697.png,25966 +images-33698.png,25967 +images-33699.png,25968 +images-33700.png,25969 +images-33701.png,25970 +images-33702.png,25971 +images-33703.png,25972 +images-33704.png,25973 +images-33705.png,25974 +images-33706.png,25975 +images-33707.png,25976 +images-33708.png,25977 +images-33709.png,25978 +images-33710.png,25979 +images-33711.png,25980 +images-33712.png,25981 +images-33713.png,25982 +images-33714.png,25983 +images-33715.png,25984 +images-33716.png,25985 +images-33721.png,25986 +images-33722.png,25987 +images-33723.png,25988 +images-33724.png,25989 +images-33725.png,25990 +images-33726.png,25991 +images-33727.png,25992 +images-33728.png,25993 +images-33729.png,25994 +images-33730.png,25995 +images-33731.png,25996 +images-33732.png,25997 +images-33733.png,25998 +images-33734.png,25999 +images-33735.png,26000 +images-33736.png,26001 +images-33737.png,26002 +images-33738.png,26003 +images-33739.png,26004 +images-33740.png,26005 +images-33741.png,26006 +images-33742.png,26007 +images-33743.png,26008 +images-33744.png,26009 +images-33745.png,26010 +images-33746.png,26011 +images-33747.png,26012 +images-33748.png,26013 +images-33749.png,26014 +images-33750.png,26015 +images-33751.png,26016 +images-33752.png,26017 +images-33753.png,26018 +images-33781.png,26019 +images-33782.png,26020 +images-33783.png,26021 +images-33784.png,26022 +images-33785.png,26023 +images-33786.png,26024 +images-33787.png,26025 +images-33788.png,26026 +images-33789.png,26027 +images-33790.png,26028 +images-33791.png,26029 +images-33792.png,26030 +images-33793.png,26031 +images-33794.png,26032 +images-33795.png,26033 +images-33796.png,26034 +images-33797.png,26035 +images-33798.png,26036 +images-33799.png,26037 +images-33800.png,26038 +images-33801.png,26039 +images-33802.png,26040 +images-33803.png,26041 +images-33804.png,26042 +images-33805.png,26043 +images-33806.png,26044 +images-33807.png,26045 +images-33808.png,26046 +images-33809.png,26047 +images-33810.png,26048 +images-33811.png,26049 +images-33812.png,26050 +images-33813.png,26051 +images-33814.png,26052 +images-33815.png,26053 +images-33816.png,26054 +images-33817.png,26055 +images-33818.png,26056 +images-33819.png,26057 +images-33820.png,26058 +images-33821.png,26059 +images-33822.png,26060 +images-33823.png,26061 +images-33824.png,26062 +images-33825.png,26063 +images-33826.png,26064 +images-33827.png,26065 +images-33828.png,26066 +images-33829.png,26067 +images-33830.png,26068 +images-33831.png,26069 +images-33832.png,26070 +images-33833.png,26071 +images-33834.png,26072 +images-33835.png,26073 +images-33836.png,26074 +images-33837.png,26075 +images-33838.png,26076 +images-33839.png,26077 +images-33840.png,26078 +images-33841.png,26079 +images-33842.png,26080 +images-33843.png,26081 +images-33844.png,26082 +images-33845.png,26083 +images-33846.png,26084 +images-33847.png,26085 +images-33848.png,26086 +images-33849.png,26087 +images-33850.png,26088 +images-33851.png,26089 +images-33852.png,26090 +images-33853.png,26091 +images-33854.png,26092 +images-33855.png,26093 +images-33856.png,26094 +images-33857.png,26095 +images-33858.png,26096 +images-33859.png,26097 +images-33860.png,26098 +images-33861.png,26099 +images-33862.png,26100 +images-33863.png,26101 +images-33864.png,26102 +images-33865.png,26103 +images-33866.png,26104 +images-33867.png,26105 +images-33868.png,26106 +images-33869.png,26107 +images-33870.png,26108 +images-33871.png,26109 +images-33872.png,26110 +images-33873.png,26111 +images-33874.png,26112 +images-33875.png,26113 +images-33876.png,26114 +images-33877.png,26115 +images-33878.png,26116 +images-33879.png,26117 +images-33880.png,26118 +images-33881.png,26119 +images-33882.png,26120 +images-33883.png,26121 +images-33884.png,26122 +images-33885.png,26123 +images-33886.png,26124 +images-33887.png,26125 +images-33888.png,26126 +images-33889.png,26127 +images-33890.png,26128 +images-33891.png,26129 +images-33892.png,26130 +images-33893.png,26131 +images-33894.png,26132 +images-33895.png,26133 +images-33896.png,26134 +images-33897.png,26135 +images-33898.png,26136 +images-33899.png,26137 +images-33900.png,26138 +images-33901.png,26139 +images-33902.png,26140 +images-33903.png,26141 +images-33904.png,26142 +images-33905.png,26143 +images-33906.png,26144 +images-33907.png,26145 +images-33908.png,26146 +images-33909.png,26147 +images-33910.png,26148 +images-33911.png,26149 +images-33912.png,26150 +images-33913.png,26151 +images-33914.png,26152 +images-33915.png,26153 +images-33916.png,26154 +images-33923.png,26155 +images-33924.png,26156 +images-33925.png,26157 +images-33926.png,26158 +images-33927.png,26159 +images-33928.png,26160 +images-33929.png,26161 +images-33930.png,26162 +images-33931.png,26163 +images-33932.png,26164 +images-33933.png,26165 +images-33934.png,26166 +images-33935.png,26167 +images-33936.png,26168 +images-33937.png,26169 +images-33938.png,26170 +images-33939.png,26171 +images-33940.png,26172 +images-33941.png,26173 +images-33942.png,26174 +images-33943.png,26175 +images-33944.png,26176 +images-33945.png,26177 +images-33946.png,26178 +images-33947.png,26179 +images-33948.png,26180 +images-33949.png,26181 +images-33950.png,26182 +images-33951.png,26183 +images-33952.png,26184 +images-33953.png,26185 +images-33954.png,26186 +images-33955.png,26187 +images-33956.png,26188 +images-33957.png,26189 +images-33958.png,26190 +images-33959.png,26191 +images-33960.png,26192 +images-33961.png,26193 +images-33962.png,26194 +images-33963.png,26195 +images-33964.png,26196 +images-33965.png,26197 +images-33966.png,26198 +images-33967.png,26199 +images-33968.png,26200 +images-33969.png,26201 +images-33970.png,26202 +images-33971.png,26203 +images-33972.png,26204 +images-33973.png,26205 +images-33974.png,26206 +images-33975.png,26207 +images-33976.png,26208 +images-33977.png,26209 +images-33978.png,26210 +images-33979.png,26211 +images-33980.png,26212 +images-33981.png,26213 +images-33982.png,26214 +images-33983.png,26215 +images-33984.png,26216 +images-33985.png,26217 +images-33986.png,26218 +images-33987.png,26219 +images-33988.png,26220 +images-33989.png,26221 +images-33990.png,26222 +images-33991.png,26223 +images-33992.png,26224 +images-33993.png,26225 +images-33994.png,26226 +images-33995.png,26227 +images-33996.png,26228 +images-33997.png,26229 +images-33998.png,26230 +images-33999.png,26231 +images-34000.png,26232 +images-34001.png,26233 +images-34002.png,26234 +images-34003.png,26235 +images-34004.png,26236 +images-34005.png,26237 +images-34006.png,26238 +images-34007.png,26239 +images-34008.png,26240 +images-34009.png,26241 +images-34010.png,26242 +images-34011.png,26243 +images-34012.png,26244 +images-34013.png,26245 +images-34014.png,26246 +images-34015.png,26247 +images-34016.png,26248 +images-34017.png,26249 +images-34018.png,26250 +images-34019.png,26251 +images-34020.png,26252 +images-34021.png,26253 +images-34022.png,26254 +images-34023.png,26255 +images-34024.png,26256 +images-34025.png,26257 +images-34026.png,26258 +images-34027.png,26259 +images-34028.png,26260 +images-34029.png,26261 +images-34030.png,26262 +images-34031.png,26263 +images-34032.png,26264 +images-34033.png,26265 +images-34034.png,26266 +images-34035.png,26267 +images-34036.png,26268 +images-34037.png,26269 +images-34038.png,26270 +images-34039.png,26271 +images-34040.png,26272 +images-34041.png,26273 +images-34042.png,26274 +images-34043.png,26275 +images-34044.png,26276 +images-34045.png,26277 +images-34046.png,26278 +images-34047.png,26279 +images-34048.png,26280 +images-34049.png,26281 +images-34050.png,26282 +images-34051.png,26283 +images-34052.png,26284 +images-34053.png,26285 +images-34054.png,26286 +images-34055.png,26287 +images-34056.png,26288 +images-34057.png,26289 +images-34058.png,26290 +images-34059.png,26291 +images-34060.png,26292 +images-34061.png,26293 +images-34062.png,26294 +images-34063.png,26295 +images-34064.png,26296 +images-34065.png,26297 +images-34066.png,26298 +images-34067.png,26299 +images-34068.png,26300 +images-34069.png,26301 +images-34070.png,26302 +images-34071.png,26303 +images-34072.png,26304 +images-34073.png,26305 +images-34074.png,26306 +images-34075.png,26307 +images-34076.png,26308 +images-34077.png,26309 +images-34078.png,26310 +images-34079.png,26311 +images-34080.png,26312 +images-34081.png,26313 +images-34082.png,26314 +images-34083.png,26315 +images-34084.png,26316 +images-34085.png,26317 +images-34086.png,26318 +images-34087.png,26319 +images-34088.png,26320 +images-34089.png,26321 +images-34090.png,26322 +images-34091.png,26323 +images-34092.png,26324 +images-34093.png,26325 +images-34094.png,26326 +images-34095.png,26327 +images-34096.png,26328 +images-34097.png,26329 +images-34098.png,26330 +images-34099.png,26331 +images-34100.png,26332 +images-34101.png,26333 +images-34102.png,26334 +images-34103.png,26335 +images-34104.png,26336 +images-34105.png,26337 +images-34106.png,26338 +images-34107.png,26339 +images-34108.png,26340 +images-34109.png,26341 +images-34110.png,26342 +images-34111.png,26343 +images-34112.png,26344 +images-34113.png,26345 +images-34114.png,26346 +images-34115.png,26347 +images-34116.png,26348 +images-34117.png,26349 +images-34118.png,26350 +images-34119.png,26351 +images-34120.png,26352 +images-34121.png,26353 +images-34122.png,26354 +images-34123.png,26355 +images-34124.png,26356 +images-34125.png,26357 +images-34126.png,26358 +images-34127.png,26359 +images-34128.png,26360 +images-34129.png,26361 +images-34130.png,26362 +images-34131.png,26363 +images-34132.png,26364 +images-34133.png,26365 +images-34134.png,26366 +images-34135.png,26367 +images-34136.png,26368 +images-34137.png,26369 +images-34138.png,26370 +images-34139.png,26371 +images-34140.png,26372 +images-34141.png,26373 +images-34142.png,26374 +images-34143.png,26375 +images-34144.png,26376 +images-34145.png,26377 +images-34146.png,26378 +images-34147.png,26379 +images-34148.png,26380 +images-34149.png,26381 +images-34150.png,26382 +images-34151.png,26383 +images-34152.png,26384 +images-34153.png,26385 +images-34154.png,26386 +images-34155.png,26387 +images-34156.png,26388 +images-34157.png,26389 +images-34158.png,26390 +images-34159.png,26391 +images-34160.png,26392 +images-34161.png,26393 +images-34162.png,26394 +images-34163.png,26395 +images-34164.png,26396 +images-34165.png,26397 +images-34166.png,26398 +images-34167.png,26399 +images-34168.png,26400 +images-34169.png,26401 +images-34170.png,26402 +images-34171.png,26403 +images-34172.png,26404 +images-34173.png,26405 +images-34174.png,26406 +images-34175.png,26407 +images-34176.png,26408 +images-34177.png,26409 +images-34178.png,26410 +images-34179.png,26411 +images-34180.png,26412 +images-34181.png,26413 +images-34182.png,26414 +images-34183.png,26415 +images-34184.png,26416 +images-34185.png,26417 +images-34186.png,26418 +images-34187.png,26419 +images-34188.png,26420 +images-34189.png,26421 +images-34190.png,26422 +images-34191.png,26423 +images-34192.png,26424 +images-34193.png,26425 +images-34194.png,26426 +images-34195.png,26427 +images-34196.png,26428 +images-34197.png,26429 +images-34198.png,26430 +images-34199.png,26431 +images-34200.png,26432 +images-34201.png,26433 +images-34202.png,26434 +images-34203.png,26435 +images-34204.png,26436 +images-34205.png,26437 +images-34206.png,26438 +images-34207.png,26439 +images-34208.png,26440 +images-34209.png,26441 +images-34210.png,26442 +images-34211.png,26443 +images-34212.png,26444 +images-34213.png,26445 +images-34214.png,26446 +images-34215.png,26447 +images-34216.png,26448 +images-34217.png,26449 +images-34218.png,26450 +images-34219.png,26451 +images-34220.png,26452 +images-34221.png,26453 +images-34222.png,26454 +images-34223.png,26455 +images-34224.png,26456 +images-34225.png,26457 +images-34226.png,26458 +images-34227.png,26459 +images-34228.png,26460 +images-34229.png,26461 +images-34230.png,26462 +images-34231.png,26463 +images-34232.png,26464 +images-34233.png,26465 +images-34242.png,26466 +images-34243.png,26467 +images-34244.png,26468 +images-34245.png,26469 +images-34246.png,26470 +images-34247.png,26471 +images-34248.png,26472 +images-34249.png,26473 +images-34250.png,26474 +images-34251.png,26475 +images-34252.png,26476 +images-34253.png,26477 +images-34254.png,26478 +images-34255.png,26479 +images-34256.png,26480 +images-34257.png,26481 +images-34258.png,26482 +images-34259.png,26483 +images-34260.png,26484 +images-34261.png,26485 +images-34262.png,26486 +images-34263.png,26487 +images-34264.png,26488 +images-34265.png,26489 +images-34266.png,26490 +images-34267.png,26491 +images-34268.png,26492 +images-34269.png,26493 +images-34270.png,26494 +images-34271.png,26495 +images-34272.png,26496 +images-34273.png,26497 +images-34274.png,26498 +images-34275.png,26499 +images-34276.png,26500 +images-34277.png,26501 +images-34278.png,26502 +images-34279.png,26503 +images-34280.png,26504 +images-34281.png,26505 +images-34282.png,26506 +images-34283.png,26507 +images-34284.png,26508 +images-34285.png,26509 +images-34286.png,26510 +images-34287.png,26511 +images-34288.png,26512 +images-34289.png,26513 +images-34290.png,26514 +images-34291.png,26515 +images-34292.png,26516 +images-34293.png,26517 +images-34294.png,26518 +images-34295.png,26519 +images-34296.png,26520 +images-34297.png,26521 +images-34298.png,26522 +images-34299.png,26523 +images-34300.png,26524 +images-34301.png,26525 +images-34302.png,26526 +images-34303.png,26527 +images-34304.png,26528 +images-34305.png,26529 +images-34306.png,26530 +images-34307.png,26531 +images-34308.png,26532 +images-34309.png,26533 +images-34310.png,26534 +images-34311.png,26535 +images-34312.png,26536 +images-34313.png,26537 +images-34314.png,26538 +images-34315.png,26539 +images-34316.png,26540 +images-34317.png,26541 +images-34318.png,26542 +images-34319.png,26543 +images-34320.png,26544 +images-34321.png,26545 +images-34322.png,26546 +images-34323.png,26547 +images-34324.png,26548 +images-34325.png,26549 +images-34326.png,26550 +images-34327.png,26551 +images-34328.png,26552 +images-34329.png,26553 +images-34330.png,26554 +images-34331.png,26555 +images-34332.png,26556 +images-34333.png,26557 +images-34334.png,26558 +images-34335.png,26559 +images-34336.png,26560 +images-34337.png,26561 +images-34338.png,26562 +images-34339.png,26563 +images-34340.png,26564 +images-34341.png,26565 +images-34342.png,26566 +images-34343.png,26567 +images-34344.png,26568 +images-34345.png,26569 +images-34346.png,26570 +images-34347.png,26571 +images-34348.png,26572 +images-34349.png,26573 +images-34350.png,26574 +images-34351.png,26575 +images-34352.png,26576 +images-34353.png,26577 +images-34354.png,26578 +images-34355.png,26579 +images-34356.png,26580 +images-34357.png,26581 +images-34358.png,26582 +images-34359.png,26583 +images-34360.png,26584 +images-34361.png,26585 +images-34362.png,26586 +images-34363.png,26587 +images-34364.png,26588 +images-34365.png,26589 +images-34366.png,26590 +images-34367.png,26591 +images-34368.png,26592 +images-34369.png,26593 +images-34370.png,26594 +images-34371.png,26595 +images-34372.png,26596 +images-34373.png,26597 +images-34374.png,26598 +images-34375.png,26599 +images-34376.png,26600 +images-34377.png,26601 +images-34378.png,26602 +images-34379.png,26603 +images-34380.png,26604 +images-34381.png,26605 +images-34382.png,26606 +images-34383.png,26607 +images-34384.png,26608 +images-34385.png,26609 +images-34386.png,26610 +images-34387.png,26611 +images-34388.png,26612 +images-34389.png,26613 +images-34390.png,26614 +images-34391.png,26615 +images-34392.png,26616 +images-34393.png,26617 +images-34394.png,26618 +images-34395.png,26619 +images-34396.png,26620 +images-34397.png,26621 +images-34398.png,26622 +images-34399.png,26623 +images-34400.png,26624 +images-34401.png,26625 +images-34402.png,26626 +images-34403.png,26627 +images-34404.png,26628 +images-34405.png,26629 +images-34406.png,26630 +images-34407.png,26631 +images-34408.png,26632 +images-34409.png,26633 +images-34410.png,26634 +images-34411.png,26635 +images-34412.png,26636 +images-34413.png,26637 +images-34414.png,26638 +images-34415.png,26639 +images-34416.png,26640 +images-34417.png,26641 +images-34418.png,26642 +images-34419.png,26643 +images-34420.png,26644 +images-34421.png,26645 +images-34422.png,26646 +images-34423.png,26647 +images-34424.png,26648 +images-34425.png,26649 +images-34426.png,26650 +images-34427.png,26651 +images-34428.png,26652 +images-34429.png,26653 +images-34430.png,26654 +images-34431.png,26655 +images-34432.png,26656 +images-34433.png,26657 +images-34434.png,26658 +images-34435.png,26659 +images-34436.png,26660 +images-34437.png,26661 +images-34438.png,26662 +images-34439.png,26663 +images-34440.png,26664 +images-34441.png,26665 +images-34442.png,26666 +images-34443.png,26667 +images-34444.png,26668 +images-34445.png,26669 +images-34446.png,26670 +images-34447.png,26671 +images-34448.png,26672 +images-34449.png,26673 +images-34450.png,26674 +images-34451.png,26675 +images-34452.png,26676 +images-34453.png,26677 +images-34454.png,26678 +images-34455.png,26679 +images-34456.png,26680 +images-34457.png,26681 +images-34458.png,26682 +images-34459.png,26683 +images-34460.png,26684 +images-34461.png,26685 +images-34462.png,26686 +images-34463.png,26687 +images-34464.png,26688 +images-34465.png,26689 +images-34466.png,26690 +images-34467.png,26691 +images-34468.png,26692 +images-34469.png,26693 +images-34470.png,26694 +images-34471.png,26695 +images-34472.png,26696 +images-34473.png,26697 +images-34474.png,26698 +images-34475.png,26699 +images-34476.png,26700 +images-34477.png,26701 +images-34478.png,26702 +images-34479.png,26703 +images-34480.png,26704 +images-34481.png,26705 +images-34482.png,26706 +images-34483.png,26707 +images-34484.png,26708 +images-34485.png,26709 +images-34486.png,26710 +images-34487.png,26711 +images-34488.png,26712 +images-34489.png,26713 +images-34490.png,26714 +images-34491.png,26715 +images-34492.png,26716 +images-34493.png,26717 +images-34494.png,26718 +images-34495.png,26719 +images-34496.png,26720 +images-34497.png,26721 +images-34498.png,26722 +images-34499.png,26723 +images-34500.png,26724 +images-34501.png,26725 +images-34502.png,26726 +images-34503.png,26727 +images-34504.png,26728 +images-34505.png,26729 +images-34506.png,26730 +images-34507.png,26731 +images-34508.png,26732 +images-34509.png,26733 +images-34510.png,26734 +images-34511.png,26735 +images-34512.png,26736 +images-34513.png,26737 +images-34514.png,26738 +images-34515.png,26739 +images-34516.png,26740 +images-34517.png,26741 +images-34518.png,26742 +images-34519.png,26743 +images-34520.png,26744 +images-34521.png,26745 +images-34522.png,26746 +images-34523.png,26747 +images-34524.png,26748 +images-34525.png,26749 +images-34526.png,26750 +images-34527.png,26751 +images-34528.png,26752 +images-34529.png,26753 +images-34530.png,26754 +images-34531.png,26755 +images-34532.png,26756 +images-34533.png,26757 +images-34534.png,26758 +images-34535.png,26759 +images-34536.png,26760 +images-34537.png,26761 +images-34538.png,26762 +images-34539.png,26763 +images-34540.png,26764 +images-34541.png,26765 +images-34542.png,26766 +images-34543.png,26767 +images-34544.png,26768 +images-34545.png,26769 +images-34546.png,26770 +images-34547.png,26771 +images-34548.png,26772 +images-34549.png,26773 +images-34550.png,26774 +images-34551.png,26775 +images-34552.png,26776 +images-34553.png,26777 +images-34554.png,26778 +images-34555.png,26779 +images-34556.png,26780 +images-34557.png,26781 +images-34558.png,26782 +images-34559.png,26783 +images-34560.png,26784 +images-34561.png,26785 +images-34562.png,26786 +images-34563.png,26787 +images-34564.png,26788 +images-34565.png,26789 +images-34566.png,26790 +images-34567.png,26791 +images-34568.png,26792 +images-34569.png,26793 +images-34570.png,26794 +images-34571.png,26795 +images-34572.png,26796 +images-34573.png,26797 +images-34574.png,26798 +images-34575.png,26799 +images-34576.png,26800 +images-34577.png,26801 +images-34578.png,26802 +images-34579.png,26803 +images-34580.png,26804 +images-34581.png,26805 +images-34582.png,26806 +images-34583.png,26807 +images-34584.png,26808 +images-34585.png,26809 +images-34586.png,26810 +images-34587.png,26811 +images-34588.png,26812 +images-34589.png,26813 +images-34590.png,26814 +images-34591.png,26815 +images-34592.png,26816 +images-34593.png,26817 +images-34594.png,26818 +images-34595.png,26819 +images-34596.png,26820 +images-34597.png,26821 +images-34598.png,26822 +images-34599.png,26823 +images-34600.png,26824 +images-34601.png,26825 +images-34602.png,26826 +images-34603.png,26827 +images-34604.png,26828 +images-34605.png,26829 +images-34606.png,26830 +images-34607.png,26831 +images-34608.png,26832 +images-34609.png,26833 +images-34610.png,26834 +images-34611.png,26835 +images-34612.png,26836 +images-34613.png,26837 +images-34614.png,26838 +images-34615.png,26839 +images-34616.png,26840 +images-34617.png,26841 +images-34618.png,26842 +images-34619.png,26843 +images-34620.png,26844 +images-34621.png,26845 +images-34622.png,26846 +images-34623.png,26847 +images-34624.png,26848 +images-34625.png,26849 +images-34626.png,26850 +images-34627.png,26851 +images-34628.png,26852 +images-34629.png,26853 +images-34630.png,26854 +images-34655.png,26855 +images-34656.png,26856 +images-34657.png,26857 +images-34658.png,26858 +images-34659.png,26859 +images-34660.png,26860 +images-34661.png,26861 +images-34662.png,26862 +images-34663.png,26863 +images-34664.png,26864 +images-34665.png,26865 +images-34666.png,26866 +images-34667.png,26867 +images-34668.png,26868 +images-34669.png,26869 +images-34670.png,26870 +images-34671.png,26871 +images-34672.png,26872 +images-34673.png,26873 +images-34674.png,26874 +images-34675.png,26875 +images-34676.png,26876 +images-34677.png,26877 +images-34678.png,26878 +images-34679.png,26879 +images-34680.png,26880 +images-34681.png,26881 +images-34682.png,26882 +images-34683.png,26883 +images-34684.png,26884 +images-34685.png,26885 +images-34686.png,26886 +images-34687.png,26887 +images-34688.png,26888 +images-34689.png,26889 +images-34690.png,26890 +images-34691.png,26891 +images-34692.png,26892 +images-34693.png,26893 +images-34694.png,26894 +images-34695.png,26895 +images-34696.png,26896 +images-34697.png,26897 +images-34698.png,26898 +images-34699.png,26899 +images-34700.png,26900 +images-34701.png,26901 +images-34702.png,26902 +images-34703.png,26903 +images-34704.png,26904 +images-34705.png,26905 +images-34706.png,26906 +images-34707.png,26907 +images-34708.png,26908 +images-34709.png,26909 +images-34710.png,26910 +images-34711.png,26911 +images-34712.png,26912 +images-34713.png,26913 +images-34714.png,26914 +images-34715.png,26915 +images-34716.png,26916 +images-34717.png,26917 +images-34718.png,26918 +images-34719.png,26919 +images-34720.png,26920 +images-34721.png,26921 +images-34722.png,26922 +images-34723.png,26923 +images-34724.png,26924 +images-34725.png,26925 +images-34726.png,26926 +images-34727.png,26927 +images-34728.png,26928 +images-34729.png,26929 +images-34730.png,26930 +images-34731.png,26931 +images-34732.png,26932 +images-34733.png,26933 +images-34734.png,26934 +images-34735.png,26935 +images-34736.png,26936 +images-34737.png,26937 +images-34738.png,26938 +images-34739.png,26939 +images-34740.png,26940 +images-34741.png,26941 +images-34757.png,26942 +images-34758.png,26943 +images-34759.png,26944 +images-34760.png,26945 +images-34761.png,26946 +images-34762.png,26947 +images-34763.png,26948 +images-34764.png,26949 +images-34765.png,26950 +images-34766.png,26951 +images-34767.png,26952 +images-34768.png,26953 +images-34769.png,26954 +images-34770.png,26955 +images-34771.png,26956 +images-34772.png,26957 +images-34773.png,26958 +images-34774.png,26959 +images-34811.png,26960 +images-34812.png,26961 +images-34813.png,26962 +images-34814.png,26963 +images-34815.png,26964 +images-34816.png,26965 +images-34817.png,26966 +images-34818.png,26967 +images-34819.png,26968 +images-34820.png,26969 +images-34821.png,26970 +images-34822.png,26971 +images-34823.png,26972 +images-34824.png,26973 +images-34825.png,26974 +images-34826.png,26975 +images-34827.png,26976 +images-34828.png,26977 +images-34829.png,26978 +images-34830.png,26979 +images-34831.png,26980 +images-34832.png,26981 +images-34833.png,26982 +images-34834.png,26983 +images-34835.png,26984 +images-34836.png,26985 +images-34837.png,26986 +images-34838.png,26987 +images-34839.png,26988 +images-34840.png,26989 +images-34841.png,26990 +images-34842.png,26991 +images-34843.png,26992 +images-34844.png,26993 +images-34845.png,26994 +images-34846.png,26995 +images-34847.png,26996 +images-34848.png,26997 +images-34857.png,26998 +images-34858.png,26999 +images-34859.png,27000 +images-34860.png,27001 +images-34861.png,27002 +images-34862.png,27003 +images-34863.png,27004 +images-34864.png,27005 +images-34865.png,27006 +images-34866.png,27007 +images-34867.png,27008 +images-34868.png,27009 +images-34869.png,27010 +images-34870.png,27011 +images-34871.png,27012 +images-34872.png,27013 +images-34873.png,27014 +images-34874.png,27015 +images-34875.png,27016 +images-34876.png,27017 +images-34877.png,27018 +images-34878.png,27019 +images-34879.png,27020 +images-34880.png,27021 +images-34881.png,27022 +images-34882.png,27023 +images-34883.png,27024 +images-34884.png,27025 +images-34885.png,27026 +images-34886.png,27027 +images-34887.png,27028 +images-34888.png,27029 +images-34889.png,27030 +images-34890.png,27031 +images-34891.png,27032 +images-34892.png,27033 +images-34893.png,27034 +images-34894.png,27035 +images-34895.png,27036 +images-34896.png,27037 +images-34897.png,27038 +images-34898.png,27039 +images-34899.png,27040 +images-34900.png,27041 +images-34901.png,27042 +images-34902.png,27043 +images-34903.png,27044 +images-34904.png,27045 +images-34905.png,27046 +images-34906.png,27047 +images-34907.png,27048 +images-34908.png,27049 +images-34909.png,27050 +images-34910.png,27051 +images-34911.png,27052 +images-34912.png,27053 +images-34913.png,27054 +images-34914.png,27055 +images-34915.png,27056 +images-34916.png,27057 +images-34917.png,27058 +images-34918.png,27059 +images-34919.png,27060 +images-34920.png,27061 +images-34921.png,27062 +images-34922.png,27063 +images-34923.png,27064 +images-34924.png,27065 +images-34925.png,27066 +images-34926.png,27067 +images-34927.png,27068 +images-34928.png,27069 +images-34929.png,27070 +images-34930.png,27071 +images-34931.png,27072 +images-34932.png,27073 +images-34933.png,27074 +images-34934.png,27075 +images-34935.png,27076 +images-34936.png,27077 +images-34937.png,27078 +images-34938.png,27079 +images-34939.png,27080 +images-34940.png,27081 +images-34941.png,27082 +images-34942.png,27083 +images-34943.png,27084 +images-34944.png,27085 +images-34945.png,27086 +images-34946.png,27087 +images-34947.png,27088 +images-34948.png,27089 +images-34949.png,27090 +images-34950.png,27091 +images-34951.png,27092 +images-34952.png,27093 +images-34953.png,27094 +images-34954.png,27095 +images-34955.png,27096 +images-34956.png,27097 +images-34957.png,27098 +images-34958.png,27099 +images-34959.png,27100 +images-34960.png,27101 +images-34961.png,27102 +images-34962.png,27103 +images-34963.png,27104 +images-34964.png,27105 +images-34965.png,27106 +images-34966.png,27107 +images-34967.png,27108 +images-34968.png,27109 +images-34969.png,27110 +images-34970.png,27111 +images-34971.png,27112 +images-34972.png,27113 +images-34973.png,27114 +images-34974.png,27115 +images-34975.png,27116 +images-34976.png,27117 +images-34977.png,27118 +images-34992.png,27119 +images-34993.png,27120 +images-34994.png,27121 +images-34995.png,27122 +images-34996.png,27123 +images-34997.png,27124 +images-34998.png,27125 +images-34999.png,27126 +images-35000.png,27127 +images-35001.png,27128 +images-35002.png,27129 +images-35003.png,27130 +images-35004.png,27131 +images-35005.png,27132 +images-35006.png,27133 +images-35007.png,27134 +images-35008.png,27135 +images-35009.png,27136 +images-35010.png,27137 +images-35011.png,27138 +images-35012.png,27139 +images-35013.png,27140 +images-35014.png,27141 +images-35015.png,27142 +images-35016.png,27143 +images-35017.png,27144 +images-35018.png,27145 +images-35019.png,27146 +images-35020.png,27147 +images-35021.png,27148 +images-35022.png,27149 +images-35023.png,27150 +images-35024.png,27151 +images-35025.png,27152 +images-35026.png,27153 +images-35027.png,27154 +images-35028.png,27155 +images-35029.png,27156 +images-35030.png,27157 +images-35031.png,27158 +images-35032.png,27159 +images-35033.png,27160 +images-35034.png,27161 +images-35035.png,27162 +images-35036.png,27163 +images-35037.png,27164 +images-35038.png,27165 +images-35039.png,27166 +images-35040.png,27167 +images-35041.png,27168 +images-35042.png,27169 +images-35043.png,27170 +images-35044.png,27171 +images-35045.png,27172 +images-35046.png,27173 +images-35047.png,27174 +images-35048.png,27175 +images-35049.png,27176 +images-35050.png,27177 +images-35051.png,27178 +images-35052.png,27179 +images-35053.png,27180 +images-35054.png,27181 +images-35055.png,27182 +images-35056.png,27183 +images-35057.png,27184 +images-35058.png,27185 +images-35059.png,27186 +images-35060.png,27187 +images-35061.png,27188 +images-35062.png,27189 +images-35063.png,27190 +images-35064.png,27191 +images-35065.png,27192 +images-35066.png,27193 +images-35067.png,27194 +images-35068.png,27195 +images-35069.png,27196 +images-35070.png,27197 +images-35071.png,27198 +images-35072.png,27199 +images-35073.png,27200 +images-35074.png,27201 +images-35075.png,27202 +images-35076.png,27203 +images-35077.png,27204 +images-35078.png,27205 +images-35079.png,27206 +images-35080.png,27207 +images-35081.png,27208 +images-35082.png,27209 +images-35083.png,27210 +images-35084.png,27211 +images-35085.png,27212 +images-35086.png,27213 +images-35087.png,27214 +images-35088.png,27215 +images-35089.png,27216 +images-35090.png,27217 +images-35091.png,27218 +images-35092.png,27219 +images-35093.png,27220 +images-35094.png,27221 +images-35095.png,27222 +images-35096.png,27223 +images-35097.png,27224 +images-35098.png,27225 +images-35099.png,27226 +images-35100.png,27227 +images-35101.png,27228 +images-35102.png,27229 +images-35103.png,27230 +images-35104.png,27231 +images-35105.png,27232 +images-35106.png,27233 +images-35107.png,27234 +images-35108.png,27235 +images-35109.png,27236 +images-35110.png,27237 +images-35111.png,27238 +images-35112.png,27239 +images-35113.png,27240 +images-35114.png,27241 +images-35208.png,27242 +images-35209.png,27243 +images-35210.png,27244 +images-35211.png,27245 +images-35212.png,27246 +images-35213.png,27247 +images-35214.png,27248 +images-35215.png,27249 +images-35216.png,27250 +images-35217.png,27251 +images-35218.png,27252 +images-35219.png,27253 +images-35220.png,27254 +images-35221.png,27255 +images-35222.png,27256 +images-35223.png,27257 +images-35224.png,27258 +images-35225.png,27259 +images-35226.png,27260 +images-35227.png,27261 +images-35228.png,27262 +images-35229.png,27263 +images-35230.png,27264 +images-35231.png,27265 +images-35232.png,27266 +images-35233.png,27267 +images-35234.png,27268 +images-35235.png,27269 +images-35236.png,27270 +images-35237.png,27271 +images-35238.png,27272 +images-35239.png,27273 +images-35240.png,27274 +images-35241.png,27275 +images-35242.png,27276 +images-35243.png,27277 +images-35244.png,27278 +images-35245.png,27279 +images-35246.png,27280 +images-35247.png,27281 +images-35248.png,27282 +images-35249.png,27283 +images-35250.png,27284 +images-35251.png,27285 +images-35252.png,27286 +images-35253.png,27287 +images-35254.png,27288 +images-35255.png,27289 +images-35256.png,27290 +images-35257.png,27291 +images-35258.png,27292 +images-35259.png,27293 +images-35260.png,27294 +images-35261.png,27295 +images-35262.png,27296 +images-35263.png,27297 +images-35264.png,27298 +images-35265.png,27299 +images-35266.png,27300 +images-35267.png,27301 +images-35268.png,27302 +images-35269.png,27303 +images-35270.png,27304 +images-35271.png,27305 +images-35272.png,27306 +images-35273.png,27307 +images-35274.png,27308 +images-35275.png,27309 +images-35276.png,27310 +images-35277.png,27311 +images-35278.png,27312 +images-35279.png,27313 +images-35280.png,27314 +images-35281.png,27315 +images-35282.png,27316 +images-35283.png,27317 +images-35284.png,27318 +images-35285.png,27319 +images-35286.png,27320 +images-35287.png,27321 +images-35288.png,27322 +images-35289.png,27323 +images-35290.png,27324 +images-35291.png,27325 +images-35292.png,27326 +images-35293.png,27327 +images-35294.png,27328 +images-35295.png,27329 +images-35296.png,27330 +images-35297.png,27331 +images-35298.png,27332 +images-35299.png,27333 +images-35300.png,27334 +images-35301.png,27335 +images-35302.png,27336 +images-35303.png,27337 +images-35304.png,27338 +images-35305.png,27339 +images-35306.png,27340 +images-35307.png,27341 +images-35308.png,27342 +images-35309.png,27343 +images-35310.png,27344 +images-35311.png,27345 +images-35312.png,27346 +images-35313.png,27347 +images-35314.png,27348 +images-35315.png,27349 +images-35316.png,27350 +images-35317.png,27351 +images-35318.png,27352 +images-35319.png,27353 +images-35320.png,27354 +images-35321.png,27355 +images-35322.png,27356 +images-35323.png,27357 +images-35324.png,27358 +images-35325.png,27359 +images-35326.png,27360 +images-35327.png,27361 +images-35328.png,27362 +images-35329.png,27363 +images-35330.png,27364 +images-35331.png,27365 +images-35332.png,27366 +images-35333.png,27367 +images-35334.png,27368 +images-35335.png,27369 +images-35336.png,27370 +images-35337.png,27371 +images-35338.png,27372 +images-35339.png,27373 +images-35340.png,27374 +images-35341.png,27375 +images-35342.png,27376 +images-35343.png,27377 +images-35344.png,27378 +images-35345.png,27379 +images-35346.png,27380 +images-35347.png,27381 +images-35348.png,27382 +images-35349.png,27383 +images-35350.png,27384 +images-35351.png,27385 +images-35352.png,27386 +images-35353.png,27387 +images-35354.png,27388 +images-35355.png,27389 +images-35356.png,27390 +images-35357.png,27391 +images-35358.png,27392 +images-35359.png,27393 +images-35360.png,27394 +images-35361.png,27395 +images-35366.png,27396 +images-35367.png,27397 +images-35368.png,27398 +images-35369.png,27399 +images-35370.png,27400 +images-35371.png,27401 +images-35372.png,27402 +images-35373.png,27403 +images-35374.png,27404 +images-35375.png,27405 +images-35376.png,27406 +images-35377.png,27407 +images-35378.png,27408 +images-35379.png,27409 +images-35380.png,27410 +images-35381.png,27411 +images-35382.png,27412 +images-35383.png,27413 +images-35384.png,27414 +images-35385.png,27415 +images-35390.png,27416 +images-35391.png,27417 +images-35392.png,27418 +images-35393.png,27419 +images-35394.png,27420 +images-35400.png,27421 +images-35401.png,27422 +images-35402.png,27423 +images-35403.png,27424 +images-35404.png,27425 +images-35405.png,27426 +images-35406.png,27427 +images-35407.png,27428 +images-35408.png,27429 +images-35409.png,27430 +images-35410.png,27431 +images-35411.png,27432 +images-35412.png,27433 +images-35413.png,27434 +images-35414.png,27435 +images-35415.png,27436 +images-35416.png,27437 +images-35417.png,27438 +images-35418.png,27439 +images-35419.png,27440 +images-35420.png,27441 +images-35421.png,27442 +images-35422.png,27443 +images-35423.png,27444 +images-35424.png,27445 +images-35425.png,27446 +images-35426.png,27447 +images-35427.png,27448 +images-35428.png,27449 +images-35429.png,27450 +images-35440.png,27451 +images-35441.png,27452 +images-35442.png,27453 +images-35443.png,27454 +images-35444.png,27455 +images-35445.png,27456 +images-35446.png,27457 +images-35447.png,27458 +images-35448.png,27459 +images-35449.png,27460 +images-35450.png,27461 +images-35451.png,27462 +images-35452.png,27463 +images-35453.png,27464 +images-35454.png,27465 +images-35455.png,27466 +images-35456.png,27467 +images-35457.png,27468 +images-35458.png,27469 +images-35459.png,27470 +images-35460.png,27471 +images-35461.png,27472 +images-35462.png,27473 +images-35463.png,27474 +images-35466.png,27475 +images-35467.png,27476 +images-35468.png,27477 +images-35469.png,27478 +images-35470.png,27479 +images-35471.png,27480 +images-35472.png,27481 +images-35473.png,27482 +images-35474.png,27483 +images-35475.png,27484 +images-35476.png,27485 +images-35477.png,27486 +images-35478.png,27487 +images-35479.png,27488 +images-35480.png,27489 +images-35481.png,27490 +images-35482.png,27491 +images-35483.png,27492 +images-35484.png,27493 +images-35485.png,27494 +images-35486.png,27495 +images-35487.png,27496 +images-35488.png,27497 +images-35489.png,27498 +images-35490.png,27499 +images-35491.png,27500 +images-35492.png,27501 +images-35493.png,27502 +images-35494.png,27503 +images-35495.png,27504 +images-35496.png,27505 +images-35497.png,27506 +images-35498.png,27507 +images-35499.png,27508 +images-35500.png,27509 +images-35501.png,27510 +images-35502.png,27511 +images-35503.png,27512 +images-35504.png,27513 +images-35505.png,27514 +images-35506.png,27515 +images-35507.png,27516 +images-35508.png,27517 +images-35509.png,27518 +images-35510.png,27519 +images-35511.png,27520 +images-35512.png,27521 +images-35513.png,27522 +images-35514.png,27523 +images-35515.png,27524 +images-35516.png,27525 +images-35517.png,27526 +images-35518.png,27527 +images-35519.png,27528 +images-35520.png,27529 +images-35521.png,27530 +images-35522.png,27531 +images-35523.png,27532 +images-35524.png,27533 +images-35525.png,27534 +images-35526.png,27535 +images-35527.png,27536 +images-35528.png,27537 +images-35529.png,27538 +images-35530.png,27539 +images-35531.png,27540 +images-35532.png,27541 +images-35533.png,27542 +images-35534.png,27543 +images-35535.png,27544 +images-35536.png,27545 +images-35537.png,27546 +images-35538.png,27547 +images-35539.png,27548 +images-35540.png,27549 +images-35541.png,27550 +images-35542.png,27551 +images-35543.png,27552 +images-35544.png,27553 +images-35545.png,27554 +images-35546.png,27555 +images-35547.png,27556 +images-35548.png,27557 +images-35549.png,27558 +images-35550.png,27559 +images-35551.png,27560 +images-35552.png,27561 +images-35553.png,27562 +images-35554.png,27563 +images-35555.png,27564 +images-35556.png,27565 +images-35557.png,27566 +images-35558.png,27567 +images-35559.png,27568 +images-35560.png,27569 +images-35561.png,27570 +images-35562.png,27571 +images-35563.png,27572 +images-35564.png,27573 +images-35565.png,27574 +images-35566.png,27575 +images-35567.png,27576 +images-35568.png,27577 +images-35569.png,27578 +images-35570.png,27579 +images-35571.png,27580 +images-35572.png,27581 +images-35573.png,27582 +images-35574.png,27583 +images-35575.png,27584 +images-35576.png,27585 +images-35577.png,27586 +images-35578.png,27587 +images-35579.png,27588 +images-35580.png,27589 +images-35581.png,27590 +images-35582.png,27591 \ No newline at end of file diff --git a/src/blitnet.py b/src/blitnet.py index 850471c..bcb96d7 100644 --- a/src/blitnet.py +++ b/src/blitnet.py @@ -123,14 +123,12 @@ def addLayer(net,dims,thr_range,fire_rate,ip_rate,const_inp,nois,rec_spks): ################################## # Add a set of random connections between layers -# net: BITnet instance -# layer_pre: presynaptic layer -# layer_post: postsynaptic layer # W_range: weight range [lo,hi] # p: initial connection probability # stdp_rate: STDP rate (0=no STDP) -def addWeights(net,layer_pre,layer_post,W_range,p,stdp_rate): +def addWeights(W_range=[-1,0,1],p=[1,1],stdp_rate=0.001,dims=None, + num_modules=1): # get torch device device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") @@ -139,8 +137,8 @@ def addWeights(net,layer_pre,layer_post,W_range,p,stdp_rate): if np.isscalar(W_range): W_range = [W_range,W_range] # determine dimensions of the weight matrices - nrow =net['x'][layer_pre].size(dim=2) - ncol = net['x'][layer_post].size(dim=2) + nrow = dims[0] + ncol = dims[1] # calculate mean and std for normal distributions inWmn = (W_range[0]+W_range[1])/2.0 @@ -148,56 +146,52 @@ def addWeights(net,layer_pre,layer_post,W_range,p,stdp_rate): exWmn = (W_range[1]+W_range[2])/2.0 exWsd = (W_range[2]-W_range[1])/6.0 - # loop through modules and add excitatory and inhibitory weights - for n in range(net['num_modules']): - if n == 0: # first weights to be appended - net['W'].append(torch.empty(nrow,ncol,device=device).normal_(mean=exWmn,std=exWsd)) # excitatory weights - excIndex = len(net['W']) - 1 - net['W'][excIndex] = torch.unsqueeze(net['W'][excIndex],0) - net['W'].append(torch.empty(nrow,ncol,device=device).normal_(mean=inWmn,std=inWsd)) # inhibitory weights - inhIndex = len(net['W']) - 1 - net['W'][inhIndex] = torch.unsqueeze(net['W'][inhIndex],0) - else: # stack new weights onto appended weight - net['W'][excIndex] = torch.concat((net['W'][excIndex], - torch.unsqueeze(torch.empty(nrow,ncol,device=device).normal_(mean=exWmn,std=exWsd),0)),0) - net['W'][inhIndex] = torch.concat((net['W'][inhIndex], - torch.unsqueeze(torch.empty(nrow,ncol,device=device).normal_(mean=inWmn,std=inWsd),0)),0) # inhibitory weights - net['W'][excIndex][n][net['W'][excIndex][n] < 0] = 0.0 # remove -ve excitatory weights - net['W'][inhIndex][n][net['W'][inhIndex][n] > 0] = 0.0 # remove +ve inhibitory weights + # Initialize excW and inhW as empty tensors + excW = torch.empty((0, nrow, ncol), device=device) + inhW = torch.empty((0, nrow, ncol), device=device) + + # Loop through modules and add excitatory and inhibitory weights + for n in range(num_modules): + if n == 0: # first weights to be appended + # excitatory weights + excW = torch.cat((excW, torch.unsqueeze(torch.empty(nrow, ncol, device=device).normal_(mean=exWmn, std=exWsd), 0)), 0) + # inhibitory weights + inhW = torch.cat((inhW, torch.unsqueeze(torch.empty(nrow, ncol, device=device).normal_(mean=inWmn, std=inWsd), 0)), 0) + else: # stack new weights onto appended weight + excW = torch.cat((excW, torch.unsqueeze(torch.empty(nrow, ncol, device=device).normal_(mean=exWmn, std=exWsd), 0)), 0) + inhW = torch.cat((inhW, torch.unsqueeze(torch.empty(nrow, ncol, device=device).normal_(mean=inWmn, std=inWsd), 0)), 0) + # Remove negative excitatory weights + excW[n][excW[n] < 0] = 0.0 + # Remove positive inhibitory weights + inhW[n][inhW[n] > 0] = 0.0 + # remove connections based on exc and inh probabilities setzeroExc = np.random.rand(nrow,ncol) > p[0] setzeroInh = np.random.rand(nrow,ncol) > p[1] # add current if n == 0: - Iindex = len(net['I']) - net['I'].append(torch.zeros(nrow, device=device)) - net['I'][Iindex] = torch.unsqueeze(net['I'][Iindex],0) - # append single reference arguments - net['W_lyr'].append([layer_pre,layer_post]) - net['eta_stdp'].append(stdp_rate) - net['eta_stdp'].append(-stdp_rate) - net['is_inhib'].append(W_range[0]<0.0 and W_range[1]<=0.0) + I = torch.zeros(nrow, device=device) + I = torch.unsqueeze(I,0) else: - net['I'][Iindex] = torch.concat((net['I'][Iindex], - torch.unsqueeze(torch.zeros(nrow, device=device),0)),0) + I = torch.concat((I,torch.unsqueeze(torch.zeros(nrow, device=device),0)),0) # remove connections based on calculated indexes if setzeroExc.any(): - net['W'][excIndex][n,:,:][setzeroExc] = 0.0 # excitatory connections + excW[n,:,:][setzeroExc] = 0.0 # excitatory connections if setzeroInh.any(): - net['W'][inhIndex][n,:,:][setzeroInh] = 0.0 # inhibitory connections + inhW[n,:,:][setzeroInh] = 0.0 # inhibitory connections # Normalise the weights (except fast inhib weights) - nrmExc = torch.linalg.norm(net['W'][excIndex][len(net['W'][excIndex])-1],ord=1,axis=0) - nrmInh = torch.linalg.norm(net['W'][inhIndex][len(net['W'][inhIndex])-1],ord=1,axis=0) + nrmExc = torch.linalg.norm(excW[len(excW)-1],ord=1,axis=0) + nrmInh = torch.linalg.norm(inhW[len(inhW)-1],ord=1,axis=0) nrmExc[nrmExc==0.0] = 1.0 nrmInh[nrmInh==0.0] = 1.0 - net['W'][excIndex][n] = net['W'][excIndex][n,:,:]/nrmExc - net['W'][inhIndex][n] = net['W'][inhIndex][n,:,:]/nrmInh + excW[n] = excW[n,:,:]/nrmExc + inhW[n] = inhW[n,:,:]/nrmInh - return net['W'][excIndex], net['W'][] + return excW, inhW, I ################################## # Normalise all the firing rates diff --git a/src/dataset.py b/src/dataset.py new file mode 100644 index 0000000..06133d4 --- /dev/null +++ b/src/dataset.py @@ -0,0 +1,142 @@ +import os +import math +import cv2 +import torch + +import pandas as pd +import numpy as np +import torch.nn.functional as F + +from torchvision.io import read_image +from torch.utils.data import Dataset + +class GetPatches2D: + def __init__(self, patch_size): + self.patch_size = (patch_size,patch_size) + + def __call__(self, img): + # Calculating the padding + padding = (self.patch_size[1] // 2, self.patch_size[1] // 2, + self.patch_size[0] // 2, self.patch_size[0] // 2) + + # Apply zero padding + image_pad = F.pad(img, padding, value=float('nan')) + + # Unfolding the image to get the patches + patches = image_pad.unfold(0, self.patch_size[0], 1).unfold(1, self.patch_size[1], 1) + + # Reshaping the patches + patches = patches.contiguous().view(self.patch_size[0] * self.patch_size[1], -1) + + return patches + + +class PatchNormalisePad: + def __init__(self, patches): + self.patches = patches + + def __call__(self, img): + img = img.squeeze(0) + nrows, ncols = img.shape[:2] + patcher = GetPatches2D(self.patches) + patches = patcher(img) + mus = torch.nanmean(patches, dim=0) + # Subtracting the mean from the original tensor + diff = patches - mus + + # Replacing NaN values with zeros in the difference tensor + diff[torch.isnan(diff)] = 0 + + # Calculating the unbiased estimator of the variance, ignoring NaN values + var = torch.nansum(diff**2, dim=0) / (torch.sum(~torch.isnan(patches), dim=0) - 1) + + # Taking the square root to get the standard deviation + stds = torch.sqrt(var) + + # Reshape mus and stds + mus_reshaped = mus.reshape(nrows, ncols) + stds_reshaped = stds.reshape(nrows, ncols) + + # Perform the normalization, handling division by zero + # Note: PyTorch, by default, does not raise an error or warning for NaN or Inf, it will propagate them in the computation + im_norm = (img - mus_reshaped) / stds_reshaped + + # Replace NaN values with 0.0 + im_norm[torch.isnan(im_norm)] = 0.0 + + # Clamp values to the range [-1.0, 1.0] + im_norm = torch.clamp(im_norm, min=-1.0, max=1.0) + + return im_norm + + +class ProcessImage: + def __init__(self, dims, patches): + self.dims = dims + self.patches = patches + + def __call__(self, img): + # Convert the image to grayscale using the standard weights for RGB channels + if img.shape[0] == 3: + img = 0.299 * img[0] + 0.587 * img[1] + 0.114 * img[2] + # Add a channel dimension to the resulting grayscale image + img= img.unsqueeze(0) + + # gamma correction + mid = 0.5 + mean = torch.mean(img) + gamma = math.log(mid * 255) / math.log(mean) + img = torch.pow(img, gamma).clip(0, 255) + + # resize and patch normalize + if len(img.shape) == 3: + img = img.unsqueeze(0) + img = F.interpolate(img, size=self.dims, mode='bilinear', align_corners=False) + img = img.squeeze(0) + patch_normaliser = PatchNormalisePad(self.patches) + im_norm = patch_normaliser(img) + img = (255.0 * (1 + im_norm) / 2.0).to(dtype=torch.uint8) + img = torch.squeeze(img,0) + + return img + +class CustomImageDataset(Dataset): + def __init__(self, annotations_file, img_dirs, transform=None, target_transform=None, + skip=1, max_samples=None): + self.transform = transform + self.target_transform = target_transform + self.skip = skip + + # Load image labels from each directory, apply the skip and max_samples, and concatenate + self.img_labels = [] + for img_dir in img_dirs: + img_labels = pd.read_csv(annotations_file) + img_labels['file_path'] = img_labels.apply(lambda row: os.path.join(img_dir, row[0]), axis=1) + + # Select specific rows based on the skip parameter + img_labels = img_labels.iloc[::skip] + + # Limit the number of samples to max_samples if specified + if max_samples is not None: + img_labels = img_labels.iloc[:max_samples] + + self.img_labels.append(img_labels) + self.img_labels = pd.concat(self.img_labels, ignore_index=True) + + def __len__(self): + return len(self.img_labels) + + def __getitem__(self, idx): + img_path = self.img_labels.iloc[idx]['file_path'] + if not os.path.exists(img_path): + raise FileNotFoundError(f"No file found for index {idx} at {img_path}.") + + image = read_image(img_path) + label = self.img_labels.iloc[idx, 1] # Assuming label is the second column + + if self.transform: + image = self.transform(image) + if self.target_transform: + label = self.target_transform(label) + + return image, label From fc635f11babfd2608ec5224b344fb76ce37673ce Mon Sep 17 00:00:00 2001 From: Adam Hines Date: Thu, 28 Sep 2023 17:46:53 +1000 Subject: [PATCH 05/69] Rewrote blitnet calculations for nn.Module, fixed up memory leakage problems, benched the system for speed compared to vanilla VPRTempo and is comparable when comparing image import times --- VPRTempo-quant.py | 34 +++-- config/config.py | 16 +- src/blitnet.py | 362 ++++++++++++---------------------------------- src/dataset.py | 44 +++++- 4 files changed, 164 insertions(+), 292 deletions(-) diff --git a/VPRTempo-quant.py b/VPRTempo-quant.py index f23d8bf..5256dbd 100644 --- a/VPRTempo-quant.py +++ b/VPRTempo-quant.py @@ -26,7 +26,8 @@ import os import torch - +import gc +gc.disable() import sys sys.path.append('./src') sys.path.append('./weights') @@ -41,7 +42,7 @@ import torch.nn.functional as F from config import configure -from dataset import CustomImageDataset, ProcessImage +from dataset import CustomImageDataset, SetImageAsSpikes, ProcessImage from torch.utils.data import DataLoader from timeit import default_timer @@ -49,7 +50,7 @@ class SNNLayer(nn.Module): def __init__(self, previous_layer=None,dims=[0,0,0],thr_range=[0,0], fire_rate=[0,0],ip_rate=0,stdp_rate=0,const_inp=[0,0],p=[0,0], - assign_weight=False): + assign_weight=False,spk_force=False): super(SNNLayer, self).__init__() configure(self) # Device @@ -82,6 +83,7 @@ def __init__(self, previous_layer=None,dims=[0,0,0],thr_range=[0,0], self.set_spks = [] self.sspk_idx = 0 self.spikes = torch.empty([], dtype=torch.float64) + self.spk_force = spk_force # Weights (if applicable) if assign_weight: @@ -117,18 +119,26 @@ def __init__(self): # Set up the output layer self.output_layer = SNNLayer(previous_layer=self.feature_layer, dims=[self.number_modules,1,self.output], - assign_weight=True) + assign_weight=True,spk_force=True) def train_model(self, train_loader): + + # Create some dummy tensors on CUDA + dummy_a = torch.randn(10, 10, device='cuda:0') + dummy_b = torch.randn(10, 10, device='cuda:0') + + # Perform a dummy bmm operation + torch.bmm(dummy_a.unsqueeze(0), dummy_b.unsqueeze(0)) + # run the training for the input to feature layer for n in range(self.epoch): for images, labels in train_loader: - start = default_timer() images = images.to(self.device) - print('It took '+str(default_timer()-start)+'s to load and process an image') + make_spikes = SetImageAsSpikes(self.intensity) + spikes = make_spikes(images) labels = labels.to(self.device) - bn.runSim(self.input_layer, self.feature_layer, images) - + bn.runSim(self.input_layer, self.feature_layer, spikes) + torch.save(self.model.state_dict(), self.model_path) print(f"Model saved at {self.model_path}") @@ -156,9 +166,13 @@ def forward(self, x): img_dirs=model.training_dirs, transform=image_transform, skip=model.filter, - max_samples=model.number_training_images) + max_samples=model.number_training_images, + modules=model.number_modules) - train_loader = DataLoader(train_dataset, batch_size=1, shuffle=True) + train_loader = DataLoader(train_dataset, + batch_size=model.number_modules, + shuffle=False, + num_workers=4) # initialize the training model trainer = SNNTrainer() diff --git a/config/config.py b/config/config.py index 722e253..10186e4 100644 --- a/config/config.py +++ b/config/config.py @@ -9,7 +9,7 @@ def configure(model): model.dataset_file = './dataset/'+model.dataset+'.csv' model.trainingPath = '/home/adam/data/nordland/' model.testPath = '/home/adam/data/nordland/' - model.number_modules = 1 + model.number_modules = 5 model.number_training_images = 100 model.number_testing_images = 100 model.locations = ["spring", "fall"] @@ -39,13 +39,13 @@ def configure(model): model.epoch = 4 model.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") - if model.device.type == "cuda": - os.environ["CUDA_LAUNCH_BLOCKING"] = "1" - torch.cuda.set_device(model.device) - gc.collect() - torch.cuda.empty_cache() - torch.cuda.init() - torch.cuda.synchronize(device=model.device) + #if model.device.type == "cuda": + # os.environ["CUDA_LAUNCH_BLOCKING"] = "1" + # torch.cuda.set_device(model.device) + # gc.collect() + #torch.cuda.empty_cache() + #torch.cuda.init() + #torch.cuda.synchronize(device=model.device) model.T = int((model.number_training_images / model.number_modules) * model.location_repeat) model.annl_pow = 2 model.imgs = {'training': [], 'testing': []} diff --git a/src/blitnet.py b/src/blitnet.py index bcb96d7..c1c3307 100644 --- a/src/blitnet.py +++ b/src/blitnet.py @@ -26,100 +26,11 @@ import numpy as np import pdb import torch +import gc -import matplotlib.pyplot as plt -import torch.quantization as tq import torch.nn as nn - -################################## -# Return a new empty BITnet instance - -def newNet(modules, dims): - - np.random.seed() # new random seed - - # ** NEURON FIELDS ** - # x = activations - # x_input = total inputs - # x_prev = previous activations - # x_calc = calculated activations - # x_fastinp = total inputs including fast inhib - # dim = dimensions - # thr = thresholds for each neuron - # fire_rate = target firing rate for each neuron - # have_rate = have a target firing rate - # mean_rate = running avg firing rate for each neuron - # eta_ip = IP (threshold) learning rate - # const_inp = constant input to each neuron - # nois = noise st.dev. - # set_spks = pre-defined spike times (if any) - # sspk_idx = current index into set_spks - # spikes = spike events - # rec_spks = record spikes? - # - # ** CONNECTION FIELDS ** - # W = weights (-ve for inhib synapses) - # I = synaptic currents - # is_inhib = inhib weights flag - # W_lyr = pre and post layer numbers - # eta_stdp = STDP learning rate (-ve for inhib synapses) - # - # ** SIMULATION FIELDS ** - # step_num = current step - - #pdb.set_trace() - net = dict(x=[],x_input=[],x_prev=[],x_calc=[],x_fastinp=[],dim=[],thr=[], - fire_rate=[],have_rate=[],mean_rate=[],eta_ip=[],const_inp=[],nois=[], - set_spks=[],sspk_idx=[],spikes=[],rec_spks=[], - W=[],I=[],is_inhib=[],W_lyr=[],eta_stdp=[], - step_num=0) - - return net - -################################## -# Add a neuron layer (ie a neuron population) -# net: BITnet instance -# dim: layer dimensions [x,y,...] -# thr_range: initial threshold range -# fire_rate: target firing rate (0=no target) -# ip_rate: intrinsic threshold plasticity (IP) rate (0=no IP) -# const_inp: constant input to each neuron (0=none) -# nois: noise variance (0=no noise) -# rec_spks: record spikes? - -def addLayer(net,dims,thr_range,fire_rate,ip_rate,const_inp,nois,rec_spks): - - # get torch device - device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") - - # Check constraints etc - if np.isscalar(thr_range): thr_range = [thr_range,thr_range] - if np.isscalar(fire_rate): fire_rate = [fire_rate,fire_rate] - if np.isscalar(const_inp): const_inp = [const_inp,const_inp] - - # create layer tensors - net['dim'].append(np.array(dims,int)) - net['x'].append(torch.zeros(dims[0],dims[1],dims[2],device=device)) - net['x_prev'].append(torch.zeros(dims[0],dims[1],dims[2],device=device)) - net['x_calc'].append(torch.zeros(dims[0],dims[1],dims[2],device=device)) - net['x_input'].append(torch.zeros(dims[0],dims[1],dims[2],device=device)) - net['x_fastinp'].append(torch.zeros(dims[0],dims[1],dims[2],device=device)) - net['eta_ip'].append(ip_rate) - temp_thr = torch.zeros(dims[0],dims[1],dims[2], device=device) - net['thr'].append(temp_thr.uniform_(thr_range[0],thr_range[1])) - temp_fire = torch.zeros(dims[0],dims[1],dims[2], device=device) - net['fire_rate'].append(temp_fire.uniform_(fire_rate[0],fire_rate[1])) - net['have_rate'].append(any(net['fire_rate'][-1][:,:,0]>0.0)) - - temp_const = torch.zeros(dims[0],dims[1],dims[2], device=device) - net['const_inp'].append(temp_const.uniform_(const_inp[0],const_inp[1])) - - net['nois'].append(nois) - net['set_spks'].append([]) - net['sspk_idx'].append(0) - net['spikes'].append(torch.empty([],dtype=torch.float64)) - net['rec_spks'].append(rec_spks) +from timeit import default_timer ################################## # Add a set of random connections between layers @@ -191,35 +102,37 @@ def addWeights(W_range=[-1,0,1],p=[1,1],stdp_rate=0.001,dims=None, excW[n] = excW[n,:,:]/nrmExc inhW[n] = inhW[n,:,:]/nrmInh - return excW, inhW, I + return excW, inhW, I ################################## # Normalise all the firing rates # net: BITnet instance -def norm_rates(net): - - for i,rate in enumerate(net['fire_rate']): - if rate.any() and net['eta_ip'][i] > 0.0: - net['thr'][i] = net['thr'][i] + net['eta_ip'][i]*(net['x'][i]-rate) - net['thr'][i][net['thr'][i]<0.0] = 0.0 +def norm_rates(pre_layer,post_layer): + # put layers into a list + layers = [pre_layer,post_layer] + + for layer in layers: + if layer.have_rate and layer.eta_ip > 0.0: + # adjust the firing threshold based on ideal firing rates and ITP + update = torch.mul(layer.eta_ip, torch.sub(layer.x, layer.fire_rate)) + update[update<0.0] = 0.0 + + # Replace the original layer.thr with the updated one + layer.thr.detach().add_(update) + + torch.cuda.empty_cache() ################################## # Normalise inhib weights to balance input currents # net: BITnet instance -def norm_inhib(net): - - for i,W in enumerate(net['W']): - if net['eta_stdp'][i] < 0: - lyr = net['W_lyr'][len(net['W_lyr'])-1] - try: - wadj = (net['x_input'][lyr[1]]*W)*-net['eta_stdp'][i]*50 - net['W'][i] += wadj - net['W'][i][W>0.0] = -0.000001 - except RuntimeWarning: - print("norm_inhib err") - pdb.set_trace() +def norm_inhib(layer): + if torch.any(layer.inhW): + if layer.eta_ip != 0: + layer.inhW.add_(torch.mul(torch.mul(layer.x_input, layer.inhW), -layer.eta_ip*50), alpha=1) + layer.inhW[layer.inhW > 0.0] = -0.000001 + ################################## # Propagate spikes thru the network @@ -250,83 +163,51 @@ def add_spikesTest(net,device,dims): -def add_spikes(net,device,dims): +def const_thr(layer_pre,layer_post): + + # put layers into a list + layers = [layer_pre, layer_post] # Start with the constant input in the neurons of each layer - for i,const in enumerate(net['const_inp']): - if len(net['W_lyr']) > 1 and i == 1: - net['x_input'][i] = net['x_feat'][net['step_num']-1] - else: - net['x_input'][i] = torch.full_like(net['x_input'][i],0.0) - net['x_input'][i] += net['const_inp'][i] + for layer in layers: + if torch.any(layer.const_inp): + layer.x_input.fill_(0.0) # In-place fill + layer.x_input.add_(layer.const_inp) # In-place addition + # Find the threshold crossings (overwritten later if needed) - - net['x'][i] = torch.clamp((net['x_input'][i]-net['thr'][i]),0.0,0.9) - - # insert any predefined spikes - start = dims * (net['step_num'] - 1) - end = dims * net['step_num'] - for i in range(len(net['set_spks'])): - if len(net['set_spks'][i]): # detect if any set_spks tensors - start = dims * (net['step_num'] - 1) - end = dims * net['step_num'] - index = torch.arange(start,end,device=device,dtype=int) - if i == len(net['set_spks'])-1: # spike forcing - net['x'][i] = net['set_spks'][i].index_fill_(-1,index,0.5) - else: - net['x'][i] = torch.index_select(net['set_spks'][i],-1,index) + layer.x = torch.clamp(torch.sub(layer.x_input, layer.thr), 0.0, 0.9) + + del layers -def calc_spikes(net,layersInfo): - # get layer index information - excW = layersInfo[0] - inhW = layersInfo[1] - layers = net['W_lyr'][layersInfo[2]] +def calc_spikes(post_layer,spikes): + + # Batch multiply the input spikes with the excitatory and inhibitory weights + post_layer.x_input.add_(torch.bmm(spikes,post_layer.excW)) + post_layer.x_input.add_(torch.bmm(spikes,post_layer.inhW)) - # Synaptic currents last for 1 timestep - # excitatory weights - net['I'][layers[0]] = torch.bmm(net['x'][layers[0]],net['W'][excW]) - net['x_input'][layers[1]] += net['I'][layers[0]] - #inhibitory weights - net['I'][layers[0]] = torch.bmm(net['x'][layers[0]],net['W'][inhW]) - net['x_input'][layers[1]] += net['I'][layers[0]] - # adjust the spikes based on threshold - if not len(net['set_spks'][layers[1]]): # No predefined spikes for this layer - net['x'][layers[1]] = torch.clamp((net['x_input'][layers[1]]-net['thr'][layers[1]]), - min=0.0,max=0.9) + if post_layer.spk_force: # This layer has spike forcing, remember calculated spikes + post_layer.x_calc = torch.clamp(torch.sub(post_layer.x_input,post_layer.thr), + min=0.0,max=0.9) + else: # Predefined spikes exist for this layer, remember the calculated ones - net['x_calc'][layers[1]] = torch.clamp((net['x_input'][layers[1]]-net['thr'][layers[1]]), + post_layer.x = torch.clamp(torch.sub(post_layer.x_input,post_layer.thr), min=0.0,max=0.9) # update the x previous variable with calculated spikes - net['x_prev'][layers[1]] = net['x'][layers[1]] - - # Finally, update mean firing rates and record all spikes if needed - for i,eta in enumerate(net['eta_ip']): - - if net['rec_spks'][i]: - outspk = (net['x'][i][0,0,:]).detach().cpu().numpy() # detach to numpy for easy plotting - n_idx = np.nonzero(outspk) - net['spikes'][i].extend([net['step_num']+net['x'][i][0,:,:].detach().cpu().numpy(),n] - for n in n_idx) + post_layer.x_prev = post_layer.x.detach() ################################## # Calculate STDP # net: BITnet instance -def calc_stdp(net,layerInfo): - - # get weight layer information - excW = layerInfo[0] - inhW = layerInfo[1] - layers = net['W_lyr'][layerInfo[2]] - shape = list(net['W'][excW].size()) - +def calc_stdp(pre_layer,post_layer,spikes): + layers = [pre_layer,post_layer] # # Spike Forcing has special rules to make calculated and forced spikes match # - if len(net['set_spks'][layers[1]]): # will run for the output layer + if layers[-1].spk_force: # will run for the output layer # Diff between forced and calculated spikes xdiff = net['x'][layers[1]] - net['x_calc'][layers[1]] @@ -363,123 +244,60 @@ def calc_stdp(net,layerInfo): # else: - # tile out pre- and post-spikes - pre = torch.tile(torch.reshape(net['x'][layers[0]],(shape[0],shape[1],1)),(1,shape[2])) - post = torch.tile(net['x'][layers[1]],(shape[1],1)) - - # Excitatory synapses - havconnExc = net['W'][excW]>0 - inc_stdpExc = (0.5-post)*(pre>0)*(post>0)*havconnExc - # Inhibitory synapses - havconnInh = net['W'][inhW]<0 - inc_stdpInh = (0.5-post)*(pre>0)*(post>0)*havconnInh - - # Apply the weight changes - net['W'][excW] += inc_stdpExc*net['eta_stdp'][excW] - net['W'][inhW] += inc_stdpInh*net['eta_stdp'][inhW] + # Reshape spikes tensor and get post activation tensor + pre = spikes.reshape(layers[-1].inhW.size(0), layers[-1].inhW.size(1), 1) + post = layers[-1].x - # fix connection weights if too +ve or -ve - # Excitation - pruning and synaptogenesis (structural plasticity) - net['W'][excW][net['W'][excW]<0.0] = 0.000001 - net['W'][excW][net['W'][excW]>10.0] = 10.0 - # Inhibition - must not go +ve - net['W'][inhW][net['W'][inhW]>0.0] = -0.000001 - net['W'][inhW][net['W'][inhW]<-10.0] = -10.0 + # Calculate the masks for excitatory and inhibitory connections + havconnExc = layers[-1].excW > 0 + havconnInh = layers[-1].inhW < 0 + + # Compute the increment for excW directly and apply the update + layers[-1].excW.add_(((0.5 - post) * (pre > 0) * (post > 0) * havconnExc).mul_(layers[-1].eta_stdp)) + torch.cuda.empty_cache() + # Compute the increment for inhW directly and apply the update + layers[-1].inhW.add_(((0.5 - post) * (pre > 0) * (post > 0) * havconnInh).mul_(layers[-1].eta_stdp * -1)) + torch.cuda.empty_cache() + + # In-place clamp for excitatory and inhibitory weights + layers[-1].excW = layers[-1].excW.clamp(min=0, max=10.0).detach() + torch.cuda.empty_cache() + layers[-1].inhW = layers[-1].inhW.clamp_(min=-10.0, max=0).detach() + torch.cuda.empty_cache() + ################################## # Run the simulation # net: BITnet instance # n_steps: number of steps -def runSim(net,n_steps,device,layers): - - # Inc step count - net['step_num'] += 1 +def runSim(pre_layer,post_layer,spikes): + torch.cuda.synchronize(torch.device('cuda:0')) # Propagate spikes from pre to post neurons - add_spikes(net,device,net['spike_dims']) - calc_spikes(net,layers) - + #start = default_timer() + const_thr(pre_layer,post_layer) + #print("add_spikes time: ", default_timer() - start) + #start = default_timer() + calc_spikes(post_layer,spikes) + #print("calc_spikes time: ", default_timer() - start) # Calculate STDP weight changes - calc_stdp(net,layers) - + #start = default_timer() + calc_stdp(pre_layer,post_layer,spikes) + #print("calc_stdp time: ", default_timer() - start) # Normalise firing rates and inhibitory balance - norm_rates(net) - norm_inhib(net) - + #start = default_timer() + norm_rates(pre_layer,post_layer) + #print("norm_rates time: ", default_timer() - start) + #start = default_timer() + norm_inhib(post_layer) + #print("norm_inhib time: ", default_timer() - start) + #start = default_timer() + torch.cuda.empty_cache() + #print("clear cache time: ", default_timer() - start) def testSim(net,device): net['step_num'] += 1 add_spikesTest(net,device,net['spike_dims']) for n in range(int(len(net['W'])/2)): # run loop for number of layers layers = [int(0 + (n*2)), int(1 + (n*2)), int(0 + n)] - calc_spikes(net,layers) - -################################## -# Plot recorded spikes in current subplot -# net: BITnet instance - -def subplotSpikes(net,cutoff): - - n_tot = 0 - for i,sp in enumerate(net['spikes']): - x=[]; y=[] - for n in sp: - x.extend(list(n[0])) - y.extend(list(n[1]+n_tot)) - - plt.plot(x,y,'.',ms=1) - n_tot += np.size(net['x'][i].detach().cpu().numpy()) - -################################## -# Plot recorded spikes in new figure -# net: BITnet instance - -def plotSpikes(net,cutoff): - - plt.figure() - subplotSpikes(net,cutoff) - plt.show(block=False) - -# apply QAT once training is done -def QAT(net): - - # Initialize an empty dictionary to hold the CPU tensors - cpu_dict = {} - - - # Iterate over the items in the original dictionary - for key, value in net.items(): - # If the value associated with the key is a list - if isinstance(value, list): - # Initialize an empty list to hold the converted tensors - converted_list = [] - # Iterate over the list elements - for elem in value: - # Check if the element is a tensor - if isinstance(elem, torch.Tensor): - # If it is a tensor, move it to CPU - converted_list.append(elem.cpu()) - else: - # If it is not a tensor, keep it as it is - converted_list.append(elem) - cpu_dict[key] = converted_list - # If the value is a single tensor - elif isinstance(value, torch.Tensor): - cpu_dict[key] = value.cpu() - # If the value is neither a list nor a tensor, keep it as it is - else: - cpu_dict[key] = value - weight_qconfig = tq.QConfig( - activation=tq.FakeQuantize.with_args(observer=tq.MinMaxObserver, - dtype=torch.qint8), - weight=tq.FakeQuantize.with_args(observer=tq.MinMaxObserver, - dtype=torch.quint8)) - - fake_quant_weight = tq.FakeQuantize(observer=tq.MinMaxObserver, - quant_min=0, - quant_max=255, - dtype=torch.quint8) - fake_quant_weight(cpu_dict['W'][0]) - - -################################## + calc_spikes(net,layers) \ No newline at end of file diff --git a/src/dataset.py b/src/dataset.py index 06133d4..7019ded 100644 --- a/src/dataset.py +++ b/src/dataset.py @@ -69,6 +69,22 @@ def __call__(self, img): return im_norm +class SetImageAsSpikes: + def __init__(self,intensity): + self.intensity = intensity + + def __call__(self, img_tensor): + # Ensure the input is a 4D tensor (N x C x W x H) + if len(img_tensor.shape) == 3: + img_tensor = img_tensor.unsqueeze(1) + + N, C, W, H = img_tensor.shape + reshaped_batch = img_tensor.view(N, 1, -1) + + # Divide all pixel values by 255 + normalized_batch = reshaped_batch / self.intensity + + return normalized_batch class ProcessImage: def __init__(self, dims, patches): @@ -102,7 +118,7 @@ def __call__(self, img): class CustomImageDataset(Dataset): def __init__(self, annotations_file, img_dirs, transform=None, target_transform=None, - skip=1, max_samples=None): + skip=1, max_samples=None, modules=1): self.transform = transform self.target_transform = target_transform self.skip = skip @@ -120,9 +136,33 @@ def __init__(self, annotations_file, img_dirs, transform=None, target_transform= if max_samples is not None: img_labels = img_labels.iloc[:max_samples] - self.img_labels.append(img_labels) + # Reorder images in the DataFrame + reordered_img_labels = self.reorder_images(img_labels, modules) + self.img_labels.append(reordered_img_labels) + + # Concatenate all the reordered DataFrames self.img_labels = pd.concat(self.img_labels, ignore_index=True) + def reorder_images(self, img_labels, modules): + # Calculate the number of batches + num_batches = len(img_labels) // modules + remainder = len(img_labels) % modules + + reordered_list = [] + for i in range(num_batches): + for j in range(modules): + idx = i + j * num_batches + if idx < len(img_labels): + reordered_list.append(img_labels.iloc[idx]) + + # If there are remaining images, append them to the reordered list + for i in range(remainder): + idx = num_batches * modules + i + reordered_list.append(img_labels.iloc[idx]) + + # Convert reordered list of Series back to DataFrame + return pd.concat(reordered_list, axis=1).transpose().reset_index(drop=True) + def __len__(self): return len(self.img_labels) From 89e35ad36e02615156fe9bb0dc9d9f19c4d1bbf8 Mon Sep 17 00:00:00 2001 From: Adam Hines Date: Sat, 30 Sep 2023 16:27:15 +1000 Subject: [PATCH 06/69] Weird error with torch.bmm, need to investigate further. Adding NaNs and inf values, can't debug --- .DS_Store | Bin 6148 -> 8196 bytes VPRTempo-quant.py | 19 ++++- config/config.py | 4 +- src/.DS_Store | Bin 6148 -> 6148 bytes src/blitnet.py | 197 +++++++++++++++++++++++++++++----------------- 5 files changed, 142 insertions(+), 78 deletions(-) diff --git a/.DS_Store b/.DS_Store index da2f6b8cd3154b767d053f1085f2f46392266d00..01380ea6f2ab5d205e976628e93a0d479ef94108 100644 GIT binary patch delta 536 zcmaKpO-lk%7=_Pm#_@ti8DVZBTeK@HEy7hFP~pa;B4`zUWr5C^j!~P4aMwyMZQb+> zWHw3B--@EBGlPpJ!aKb4zKe6teeS*OrS?V)fY@r4mH~H^EVqw`I{9cPF)O0I+_UDy z<)`)-l(JLTMO20LSlK`xO@3wAXlANbu~4-Nu93CLN_=~Z6JVeS3nor+j*4F^riW?O zv2iO?Yb*2do1lD(aQI`h|vuc?YMhI3AB|_OA7_s~tc~IQ}l#1)g#VHb5XwX!p z#biGrUyXBxr^>R|*qcZ&@(Q;43e2P@JV$Z3(!a5|Ct6qS>UVQ;a9=IdnOev7ALYBJ zeASkev)n5c@$+V%QwdGlv-f2s|EH diff --git a/VPRTempo-quant.py b/VPRTempo-quant.py index 5256dbd..d803179 100644 --- a/VPRTempo-quant.py +++ b/VPRTempo-quant.py @@ -45,6 +45,7 @@ from dataset import CustomImageDataset, SetImageAsSpikes, ProcessImage from torch.utils.data import DataLoader from timeit import default_timer +from tqdm import tqdm class SNNLayer(nn.Module): @@ -124,20 +125,29 @@ def __init__(self): def train_model(self, train_loader): # Create some dummy tensors on CUDA - dummy_a = torch.randn(10, 10, device='cuda:0') - dummy_b = torch.randn(10, 10, device='cuda:0') + dummy_a = torch.randn(10, 10, device=self.device) + dummy_b = torch.randn(10, 10, device=self.device) # Perform a dummy bmm operation torch.bmm(dummy_a.unsqueeze(0), dummy_b.unsqueeze(0)) + n_initstdp = self.feature_layer.eta_stdp.detach() + n_initip = self.feature_layer.eta_ip.detach() + # run the training for the input to feature layer - for n in range(self.epoch): + for n in tqdm(range(self.epoch)): + mod = 0 for images, labels in train_loader: images = images.to(self.device) make_spikes = SetImageAsSpikes(self.intensity) spikes = make_spikes(images) labels = labels.to(self.device) bn.runSim(self.input_layer, self.feature_layer, spikes) + if np.mod(mod,10)==0: + pt = pow(float(self.T-mod)/self.T,self.annl_pow) + self.feature_layer.eta_ip = torch.mul(n_initip,pt) + self.feature_layer.eta_stdp = torch.mul(n_initstdp,pt) + mod += 1 torch.save(self.model.state_dict(), self.model_path) print(f"Model saved at {self.model_path}") @@ -172,7 +182,8 @@ def forward(self, x): train_loader = DataLoader(train_dataset, batch_size=model.number_modules, shuffle=False, - num_workers=4) + num_workers=4, + persistent_workers=True) # initialize the training model trainer = SNNTrainer() diff --git a/config/config.py b/config/config.py index 10186e4..002aa1f 100644 --- a/config/config.py +++ b/config/config.py @@ -7,8 +7,8 @@ def configure(model): model.dataset = 'nordland' model.dataset_file = './dataset/'+model.dataset+'.csv' - model.trainingPath = '/home/adam/data/nordland/' - model.testPath = '/home/adam/data/nordland/' + model.trainingPath = '/Users/adam/data/nordland/' + model.testPath = '/Users/adam/data/nordland/' model.number_modules = 5 model.number_training_images = 100 model.number_testing_images = 100 diff --git a/src/.DS_Store b/src/.DS_Store index d12193098a49b11174d8218937beac0eeeb4ff5e..1e5c5df882259da67adfc0a7320b1a77ff4a54d5 100644 GIT binary patch delta 252 zcmZoMXfc=|#>B)qu~2NHo}wr_0|Nsi1A_nqLo!1m5N9x?GQ@A*$he%*93;if5D$a} z43)^z4Dp^h`N>H+`AI+(K%ESZK&X+D^DtT}rvMEr0penyaU~3TAQMpaFv?Cg zVRW|VX2@g6XDDJwVaNfh&I8ie)c!;^AIRolCB`mu~2NHo}wr-0|Nsi1A_nqLmopaLkWW(LjgnO#KPr_%#)p%EGMsL sGTQ9Ue1K*11m+8jo7p+|Ie=O>H!^=`p3E;|$pO?1(#^CvKx7Lu0IYWufdBvi diff --git a/src/blitnet.py b/src/blitnet.py index c1c3307..5fe6ae0 100644 --- a/src/blitnet.py +++ b/src/blitnet.py @@ -114,13 +114,13 @@ def norm_rates(pre_layer,post_layer): for layer in layers: if layer.have_rate and layer.eta_ip > 0.0: - # adjust the firing threshold based on ideal firing rates and ITP - update = torch.mul(layer.eta_ip, torch.sub(layer.x, layer.fire_rate)) - update[update<0.0] = 0.0 - + # update = torch.add(layer.thr, + # torch.mul(layer.eta_ip, torch.sub(layer.x, layer.fire_rate))) # Replace the original layer.thr with the updated one - layer.thr.detach().add_(update) - + layer.thr.detach().add_(torch.add(layer.thr, + torch.mul(layer.eta_ip, torch.sub(layer.x, layer.fire_rate)))) + layer.thr = nn.Parameter(torch.where(layer.thr < 0, torch.zeros_like(layer.thr), layer.thr)) + torch.cuda.empty_cache() ################################## @@ -131,36 +131,13 @@ def norm_inhib(layer): if torch.any(layer.inhW): if layer.eta_ip != 0: layer.inhW.add_(torch.mul(torch.mul(layer.x_input, layer.inhW), -layer.eta_ip*50), alpha=1) + if torch.isnan(layer.inhW).any(): + raise ValueError("NaN value detected in layer.inhW after addition operation") + layer.inhW[layer.inhW > 0.0] = -0.000001 - - -################################## -# Propagate spikes thru the network -# net: SORN instance -def add_spikesTest(net,device,dims): - - # Start with the constant input in the neurons of each layer - for i,const in enumerate(net['const_inp']): - - net['x_input'][i] = torch.full_like(net['x_input'][i],0.0) - net['x_input'][i] += net['const_inp'][i] - # Find the threshold crossings (overwritten later if needed) - net['x'][i] = torch.clamp((net['x_input'][i]-net['thr'][i]),0.0,0.9) - - # insert any predefined spikes - start = dims * (net['step_num'] - 1) - end = dims * net['step_num'] - for i in range(len(net['set_spks'])): - if len(net['set_spks'][i]): # detect if any set_spks tensors - start = dims * (net['step_num'] - 1) - end = dims * net['step_num'] - index = torch.arange(start,end,device=device,dtype=int) - if i == len(net['set_spks'])-1: # spike forcing - net['x'][i] = net['set_spks'][i].index_fill_(-1,index,0.5) - else: - net['x'][i] = torch.index_select(net['set_spks'][i],-1,index) - + if torch.isnan(layer.inhW).any(): + raise ValueError("NaN value detected in layer.inhW after setting positive values to -0.000001") def const_thr(layer_pre,layer_post): @@ -172,31 +149,70 @@ def const_thr(layer_pre,layer_post): for layer in layers: if torch.any(layer.const_inp): layer.x_input.fill_(0.0) # In-place fill + if torch.isnan(layer.x_input).any(): + raise ValueError("NaN value detected in layer.x_input after filling with zeros") + layer.x_input.add_(layer.const_inp) # In-place addition + if torch.isnan(layer.x_input).any(): + raise ValueError("NaN value detected in layer.x_input after adding const_inp") # Find the threshold crossings (overwritten later if needed) layer.x = torch.clamp(torch.sub(layer.x_input, layer.thr), 0.0, 0.9) - - del layers + if torch.isnan(layer.x).any(): + raise ValueError("NaN value detected in layer.x after clamping") def calc_spikes(post_layer,spikes): - - # Batch multiply the input spikes with the excitatory and inhibitory weights + + # Check for NaN in spikes and post_layer.excW before the operation + if torch.isnan(spikes).any(): + raise ValueError("NaN value detected in spikes before excitatory weight multiplication") + if torch.isnan(post_layer.excW).any(): + raise ValueError("NaN value detected in post_layer.excW before excitatory weight multiplication") + + # Batch multiply the input spikes with the excitatory weights post_layer.x_input.add_(torch.bmm(spikes,post_layer.excW)) + + # Check for NaN in post_layer.x_input after the operation + if torch.isnan(post_layer.x_input).any(): + raise ValueError("NaN value detected in post_layer.x_input after excitatory weight multiplication") + + # Check for NaN in spikes and post_layer.inhW before the next operation + if torch.isnan(spikes).any(): + raise ValueError("NaN value detected in spikes before inhibitory weight multiplication") + if torch.isnan(post_layer.inhW).any(): + raise ValueError("NaN value detected in post_layer.inhW before inhibitory weight multiplication") + + # Batch multiply the input spikes with the inhibitory weights post_layer.x_input.add_(torch.bmm(spikes,post_layer.inhW)) + + # Check for NaN in post_layer.x_input after the operation + if torch.isnan(post_layer.x_input).any(): + raise ValueError("NaN value detected in post_layer.x_input after inhibitory weight multiplication") + # adjust the spikes based on threshold - if post_layer.spk_force: # This layer has spike forcing, remember calculated spikes + if post_layer.spk_force: + # This layer has spike forcing, remember calculated spikes post_layer.x_calc = torch.clamp(torch.sub(post_layer.x_input,post_layer.thr), - min=0.0,max=0.9) - - else: # Predefined spikes exist for this layer, remember the calculated ones - post_layer.x = torch.clamp(torch.sub(post_layer.x_input,post_layer.thr), min=0.0,max=0.9) + if torch.isnan(post_layer.x_calc).any(): + raise ValueError("NaN value detected in post_layer.x_calc") + + else: + # Predefined spikes exist for this layer, remember the calculated ones + post_layer.x = torch.clamp(torch.sub(post_layer.x_input,post_layer.thr), + min=0.0,max=0.9) + if torch.isnan(post_layer.x).any(): + raise ValueError("NaN value detected in post_layer.x") # update the x previous variable with calculated spikes - post_layer.x_prev = post_layer.x.detach() + post_layer.x_prev = post_layer.x.detach() + if torch.isnan(post_layer.x_prev).any(): + raise ValueError("NaN value detected in post_layer.x_prev") + + + ################################## # Calculate STDP @@ -244,26 +260,71 @@ def calc_stdp(pre_layer,post_layer,spikes): # else: - # Reshape spikes tensor and get post activation tensor - pre = spikes.reshape(layers[-1].inhW.size(0), layers[-1].inhW.size(1), 1) - post = layers[-1].x + + + # Assuming layers is a predefined list containing your layer objects + + shape = [len(layers[-1].excW[:, 0, 0]), + len(layers[-1].excW[0, :, 0]), + len(layers[-1].excW[0, 0, :])] + + # Tile out pre- and post-spikes + pre = torch.tile(torch.reshape(spikes, (shape[0], shape[1], 1)), (1, shape[2])) + + if torch.isnan(pre).any(): + raise ValueError("NaN value detected in pre") - # Calculate the masks for excitatory and inhibitory connections + post = torch.tile(layers[-1].x, (shape[1], 1)) + + if torch.isnan(post).any(): + raise ValueError("NaN value detected in post") + + # Excitatory synapses havconnExc = layers[-1].excW > 0 + inc_stdpExc = (0.5 - post) * (pre > 0) * (post > 0) * havconnExc + + if torch.isnan(inc_stdpExc).any(): + raise ValueError("NaN value detected in inc_stdpExc") + + # Inhibitory synapses havconnInh = layers[-1].inhW < 0 - - # Compute the increment for excW directly and apply the update - layers[-1].excW.add_(((0.5 - post) * (pre > 0) * (post > 0) * havconnExc).mul_(layers[-1].eta_stdp)) + inc_stdpInh = (0.5 - post) * (pre > 0) * (post > 0) * havconnInh + + if torch.isnan(inc_stdpInh).any(): + raise ValueError("NaN value detected in inc_stdpInh") + + # Apply the weight changes + layers[-1].excW += inc_stdpExc * layers[-1].eta_stdp + + if torch.isnan(layers[-1].excW).any(): + raise ValueError("NaN value detected in layers[-1].excW after weight changes") + + layers[-1].inhW += inc_stdpExc * (layers[-1].eta_stdp * -1) + + if torch.isnan(layers[-1].inhW).any(): + raise ValueError("NaN value detected in layers[-1].inhW after weight changes") + + # In-place clamp for excitatory and inhibitory weights + # Apply clamping only where the mask is True (non-zero elements) + layers[-1].excW = torch.where(havconnExc, + layers[-1].excW.clamp(min=0.000001, max=10.0), + layers[-1].excW).detach() + + if torch.isnan(layers[-1].excW).any(): + raise ValueError("NaN value detected in layers[-1].excW after clamping") + torch.cuda.empty_cache() - # Compute the increment for inhW directly and apply the update - layers[-1].inhW.add_(((0.5 - post) * (pre > 0) * (post > 0) * havconnInh).mul_(layers[-1].eta_stdp * -1)) + + # Apply clamping only where the mask is True (non-zero elements) + layers[-1].inhW = torch.where(havconnInh, + layers[-1].inhW.clamp(min=-10.0, max=-0.000001), + layers[-1].inhW).detach() + + if torch.isnan(layers[-1].inhW).any(): + raise ValueError("NaN value detected in layers[-1].inhW after clamping") + torch.cuda.empty_cache() - - # In-place clamp for excitatory and inhibitory weights - layers[-1].excW = layers[-1].excW.clamp(min=0, max=10.0).detach() - torch.cuda.empty_cache() - layers[-1].inhW = layers[-1].inhW.clamp_(min=-10.0, max=0).detach() - torch.cuda.empty_cache() + ################################## @@ -272,28 +333,20 @@ def calc_stdp(pre_layer,post_layer,spikes): # n_steps: number of steps def runSim(pre_layer,post_layer,spikes): - torch.cuda.synchronize(torch.device('cuda:0')) + #torch.cuda.synchronize(torch.device('cuda:0')) # Propagate spikes from pre to post neurons - #start = default_timer() const_thr(pre_layer,post_layer) - #print("add_spikes time: ", default_timer() - start) - #start = default_timer() calc_spikes(post_layer,spikes) - #print("calc_spikes time: ", default_timer() - start) + # Calculate STDP weight changes - #start = default_timer() calc_stdp(pre_layer,post_layer,spikes) - #print("calc_stdp time: ", default_timer() - start) + # Normalise firing rates and inhibitory balance - #start = default_timer() norm_rates(pre_layer,post_layer) - #print("norm_rates time: ", default_timer() - start) - #start = default_timer() norm_inhib(post_layer) - #print("norm_inhib time: ", default_timer() - start) - #start = default_timer() + torch.cuda.empty_cache() - #print("clear cache time: ", default_timer() - start) + def testSim(net,device): net['step_num'] += 1 From 5e1d980b7df6df2025afdc355b5aa5d9704ba458 Mon Sep 17 00:00:00 2001 From: Adam Hines Date: Tue, 3 Oct 2023 15:23:55 +1000 Subject: [PATCH 07/69] Fixed issue with inf and NaNs being thrown, fixed exploding weight values, finalized the output layer spike force training, adapted single training function to handle training of all layers --- VPRTempo-quant.py | 99 +++++++++---- config/config.py | 12 +- dataset/.~lock.nordland.csv# | 1 + src/blitnet.py | 266 +++++++++++++---------------------- 4 files changed, 172 insertions(+), 206 deletions(-) create mode 100644 dataset/.~lock.nordland.csv# diff --git a/VPRTempo-quant.py b/VPRTempo-quant.py index d803179..9e23b5e 100644 --- a/VPRTempo-quant.py +++ b/VPRTempo-quant.py @@ -27,7 +27,7 @@ import os import torch import gc -gc.disable() +#gc.disable() import sys sys.path.append('./src') sys.path.append('./weights') @@ -50,7 +50,7 @@ class SNNLayer(nn.Module): def __init__(self, previous_layer=None,dims=[0,0,0],thr_range=[0,0], - fire_rate=[0,0],ip_rate=0,stdp_rate=0,const_inp=[0,0],p=[0,0], + fire_rate=[0,0],ip_rate=0,stdp_rate=0,const_inp=[0,0],p=[1,1], assign_weight=False,spk_force=False): super(SNNLayer, self).__init__() configure(self) @@ -64,7 +64,7 @@ def __init__(self, previous_layer=None,dims=[0,0,0],thr_range=[0,0], # Initialize Tensors self.dim = torch.tensor(dims, dtype=torch.int) - self.x = torch.zeros(dims, device=self.device) + self.x = torch.zeros(dims, device=self.device,requires_grad=False) self.x_prev = torch.zeros(dims, device=self.device) self.x_calc = torch.zeros(dims, device=self.device) self.x_input = torch.zeros(dims, device=self.device) @@ -88,7 +88,7 @@ def __init__(self, previous_layer=None,dims=[0,0,0],thr_range=[0,0], # Weights (if applicable) if assign_weight: - self.excW, self.inhW, self.I = bn.addWeights(p=self.p, + self.excW, self.inhW, self.I, self.havconnExc, self.havconnInh = bn.addWeights(p=self.p, stdp_rate=self.eta_stdp, dims=[previous_layer.dims[2], dims[2]], @@ -98,9 +98,9 @@ class SNNTrainer(nn.Module): def __init__(self): super(SNNTrainer, self).__init__() configure(self) - - self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") + # Set the device and model on defined device + self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") self.model = self.to(self.device) # Set up the input layer @@ -120,35 +120,74 @@ def __init__(self): # Set up the output layer self.output_layer = SNNLayer(previous_layer=self.feature_layer, dims=[self.number_modules,1,self.output], - assign_weight=True,spk_force=True) + stdp_rate=0.005, + assign_weight=True, + spk_force=True) + + # Define number of layers (will run training on all layers) + self.layers = {'layer0':self.input_layer, + 'layer1':self.feature_layer, + 'layer2':self.output_layer} def train_model(self, train_loader): - # Create some dummy tensors on CUDA - dummy_a = torch.randn(10, 10, device=self.device) - dummy_b = torch.randn(10, 10, device=self.device) + # If using CUDA, run a dummy torch.bmm to 'spool-up' operations + if self.device.type == "cuda": + # Create some dummy tensors on CUDA + dummy_a = torch.randn(10, 10, device=self.device) + dummy_b = torch.randn(10, 10, device=self.device) + + # Perform a dummy bmm operation + torch.bmm(dummy_a.unsqueeze(0), dummy_b.unsqueeze(0)) - # Perform a dummy bmm operation - torch.bmm(dummy_a.unsqueeze(0), dummy_b.unsqueeze(0)) - - n_initstdp = self.feature_layer.eta_stdp.detach() - n_initip = self.feature_layer.eta_ip.detach() - - # run the training for the input to feature layer - for n in tqdm(range(self.epoch)): - mod = 0 - for images, labels in train_loader: - images = images.to(self.device) - make_spikes = SetImageAsSpikes(self.intensity) - spikes = make_spikes(images) - labels = labels.to(self.device) - bn.runSim(self.input_layer, self.feature_layer, spikes) - if np.mod(mod,10)==0: - pt = pow(float(self.T-mod)/self.T,self.annl_pow) - self.feature_layer.eta_ip = torch.mul(n_initip,pt) - self.feature_layer.eta_stdp = torch.mul(n_initstdp,pt) - mod += 1 + # Run the training for each layer, using defined parameters + for layer in range(len(self.layers)-1): + + # Define in and out layer + in_layer = self.layers['layer'+str(layer)] + out_layer = self.layers['layer'+str(layer+1)] + + # Output the learning rates for annealment during training + n_initstdp = out_layer.eta_stdp.detach() # STDP + n_initip = out_layer.eta_ip.detach() # ITP + + # Run the training for the input to feature layer for specified epochs + for n in tqdm(range(self.epoch)): + mod = 0 # Used to determine the learning rate annealment + for images, labels in train_loader: + # Put input images on device (CPU, CUDA) + images = images.to(self.device) + + # Set spikes from input images + make_spikes = SetImageAsSpikes(self.intensity) + spikes = make_spikes(images) + + # Put labels on device (CPU, CUDA) + labels = labels.to(self.device) + idx = labels/self.filter + # Layers don't include loaded input, calculate network spikes for up to training layers + if layer != 0: + spikes = bn.testSim(self.layers,layer,spikes,idx) + + # Run one timestep of the training input to feature layer + bn.runSim(in_layer, out_layer, spikes, idx) + + # Anneal the learning rate + if np.mod(mod,10)==0: + pt = pow(float(self.T-mod)/self.T,self.annl_pow) + out_layer.eta_ip = torch.mul(n_initip,pt) + out_layer.eta_stdp = torch.mul(n_initstdp,pt) + mod += 1 + + # Once layers have finished training, turn off any learning + out_layer.eta_ip = 0 + out_layer.eta_stdp = 0 + out_layer.excW.requires_grad_(False) + out_layer.inhW.requires_grad_(False) + out_layer.thr.requires_grad_(False) + + def save_model(self): torch.save(self.model.state_dict(), self.model_path) print(f"Model saved at {self.model_path}") diff --git a/config/config.py b/config/config.py index 002aa1f..98549e9 100644 --- a/config/config.py +++ b/config/config.py @@ -7,12 +7,12 @@ def configure(model): model.dataset = 'nordland' model.dataset_file = './dataset/'+model.dataset+'.csv' - model.trainingPath = '/Users/adam/data/nordland/' - model.testPath = '/Users/adam/data/nordland/' - model.number_modules = 5 - model.number_training_images = 100 - model.number_testing_images = 100 - model.locations = ["spring", "fall"] + model.trainingPath = '/home/adam/data/nordland/' + model.testPath = '/home/adam/data/nordland/' + model.number_modules = 1 + model.number_training_images = 500 + model.number_testing_images = 500 + model.locations = ["spring","fall"] model.test_location = "summer" model.filter = 8 model.validation = True diff --git a/dataset/.~lock.nordland.csv# b/dataset/.~lock.nordland.csv# new file mode 100644 index 0000000..a1b88c9 --- /dev/null +++ b/dataset/.~lock.nordland.csv# @@ -0,0 +1 @@ +,adam,QUT-PA00146192L,03.10.2023 09:45,file:///home/adam/.config/libreoffice/4; \ No newline at end of file diff --git a/src/blitnet.py b/src/blitnet.py index 5fe6ae0..0774efb 100644 --- a/src/blitnet.py +++ b/src/blitnet.py @@ -65,12 +65,24 @@ def addWeights(W_range=[-1,0,1],p=[1,1],stdp_rate=0.001,dims=None, for n in range(num_modules): if n == 0: # first weights to be appended # excitatory weights - excW = torch.cat((excW, torch.unsqueeze(torch.empty(nrow, ncol, device=device).normal_(mean=exWmn, std=exWsd), 0)), 0) + excW = torch.cat((excW, + torch.unsqueeze(torch.empty(nrow, ncol, device=device).normal_(mean=exWmn, std=exWsd), + 0)), + 0) # inhibitory weights - inhW = torch.cat((inhW, torch.unsqueeze(torch.empty(nrow, ncol, device=device).normal_(mean=inWmn, std=inWsd), 0)), 0) + inhW = torch.cat((inhW, + torch.unsqueeze(torch.empty(nrow, ncol, device=device).normal_(mean=inWmn, std=inWsd), + 0)), + 0) else: # stack new weights onto appended weight - excW = torch.cat((excW, torch.unsqueeze(torch.empty(nrow, ncol, device=device).normal_(mean=exWmn, std=exWsd), 0)), 0) - inhW = torch.cat((inhW, torch.unsqueeze(torch.empty(nrow, ncol, device=device).normal_(mean=inWmn, std=inWsd), 0)), 0) + excW = torch.cat((excW, + torch.unsqueeze(torch.empty(nrow, ncol, device=device).normal_(mean=exWmn, std=exWsd), + 0)), + 0) + inhW = torch.cat((inhW, + torch.unsqueeze(torch.empty(nrow, ncol, device=device).normal_(mean=inWmn, std=inWsd), + 0)), + 0) # Remove negative excitatory weights excW[n][excW[n] < 0] = 0.0 @@ -101,8 +113,11 @@ def addWeights(W_range=[-1,0,1],p=[1,1],stdp_rate=0.001,dims=None, nrmInh[nrmInh==0.0] = 1.0 excW[n] = excW[n,:,:]/nrmExc inhW[n] = inhW[n,:,:]/nrmInh + + havconnExc = excW > 0 + havconnInh = inhW < 0 - return excW, inhW, I + return excW, inhW, I, havconnExc, havconnInh ################################## # Normalise all the firing rates @@ -117,10 +132,11 @@ def norm_rates(pre_layer,post_layer): # update = torch.add(layer.thr, # torch.mul(layer.eta_ip, torch.sub(layer.x, layer.fire_rate))) # Replace the original layer.thr with the updated one - layer.thr.detach().add_(torch.add(layer.thr, - torch.mul(layer.eta_ip, torch.sub(layer.x, layer.fire_rate)))) - layer.thr = nn.Parameter(torch.where(layer.thr < 0, torch.zeros_like(layer.thr), layer.thr)) + layer.thr = nn.Parameter(torch.where(layer.thr + layer.eta_ip * (layer.x - layer.fire_rate) < 0, + torch.zeros_like(layer.thr), + layer.thr + layer.eta_ip * (layer.x - layer.fire_rate))) + torch.cuda.empty_cache() ################################## @@ -130,138 +146,84 @@ def norm_rates(pre_layer,post_layer): def norm_inhib(layer): if torch.any(layer.inhW): if layer.eta_ip != 0: - layer.inhW.add_(torch.mul(torch.mul(layer.x_input, layer.inhW), -layer.eta_ip*50), alpha=1) - if torch.isnan(layer.inhW).any(): - raise ValueError("NaN value detected in layer.inhW after addition operation") - - layer.inhW[layer.inhW > 0.0] = -0.000001 - - if torch.isnan(layer.inhW).any(): - raise ValueError("NaN value detected in layer.inhW after setting positive values to -0.000001") + updated_inhW = layer.inhW + torch.mul(torch.mul(layer.x_input, layer.inhW), + layer.eta_stdp*50) + layer.inhW = nn.Parameter(torch.where(updated_inhW > 0.0, + torch.tensor(-0.000001, device=updated_inhW.device), + updated_inhW)) - -def const_thr(layer_pre,layer_post): - - # put layers into a list + +def const_thr(layer_pre, layer_post): layers = [layer_pre, layer_post] - - # Start with the constant input in the neurons of each layer for layer in layers: if torch.any(layer.const_inp): - layer.x_input.fill_(0.0) # In-place fill - if torch.isnan(layer.x_input).any(): - raise ValueError("NaN value detected in layer.x_input after filling with zeros") - - layer.x_input.add_(layer.const_inp) # In-place addition - if torch.isnan(layer.x_input).any(): - raise ValueError("NaN value detected in layer.x_input after adding const_inp") + layer.x_input.fill_(0.0) + layer.x_input.add_(layer.const_inp) - # Find the threshold crossings (overwritten later if needed) - layer.x = torch.clamp(torch.sub(layer.x_input, layer.thr), 0.0, 0.9) - if torch.isnan(layer.x).any(): - raise ValueError("NaN value detected in layer.x after clamping") + layer.x.detach().add_(torch.clamp(torch.sub(layer.x_input, layer.thr), + 0.0, 0.9)) -def calc_spikes(post_layer,spikes): - - # Check for NaN in spikes and post_layer.excW before the operation - if torch.isnan(spikes).any(): - raise ValueError("NaN value detected in spikes before excitatory weight multiplication") - if torch.isnan(post_layer.excW).any(): - raise ValueError("NaN value detected in post_layer.excW before excitatory weight multiplication") - - # Batch multiply the input spikes with the excitatory weights - post_layer.x_input.add_(torch.bmm(spikes,post_layer.excW)) - - # Check for NaN in post_layer.x_input after the operation - if torch.isnan(post_layer.x_input).any(): - raise ValueError("NaN value detected in post_layer.x_input after excitatory weight multiplication") - - # Check for NaN in spikes and post_layer.inhW before the next operation - if torch.isnan(spikes).any(): - raise ValueError("NaN value detected in spikes before inhibitory weight multiplication") - if torch.isnan(post_layer.inhW).any(): - raise ValueError("NaN value detected in post_layer.inhW before inhibitory weight multiplication") - - # Batch multiply the input spikes with the inhibitory weights - post_layer.x_input.add_(torch.bmm(spikes,post_layer.inhW)) - - # Check for NaN in post_layer.x_input after the operation - if torch.isnan(post_layer.x_input).any(): - raise ValueError("NaN value detected in post_layer.x_input after inhibitory weight multiplication") +def calc_spikes(post_layer, spikes): - # adjust the spikes based on threshold + post_layer.x_input.detach().add_(torch.bmm(spikes, post_layer.excW)) + post_layer.x_input.detach().add_(torch.bmm(spikes, post_layer.inhW)) + if post_layer.spk_force: - # This layer has spike forcing, remember calculated spikes - post_layer.x_calc = torch.clamp(torch.sub(post_layer.x_input,post_layer.thr), - min=0.0,max=0.9) - if torch.isnan(post_layer.x_calc).any(): - raise ValueError("NaN value detected in post_layer.x_calc") - + post_layer.x_calc.detach().add_(torch.clamp(torch.sub(post_layer.x_input, post_layer.thr), + min=0.0, max=0.9)) else: - # Predefined spikes exist for this layer, remember the calculated ones - post_layer.x = torch.clamp(torch.sub(post_layer.x_input,post_layer.thr), - min=0.0,max=0.9) - if torch.isnan(post_layer.x).any(): - raise ValueError("NaN value detected in post_layer.x") - - # update the x previous variable with calculated spikes - post_layer.x_prev = post_layer.x.detach() - if torch.isnan(post_layer.x_prev).any(): - raise ValueError("NaN value detected in post_layer.x_prev") - - - + post_layer.x = torch.full_like(post_layer.x,0) + post_layer.x.detach().add_(torch.clamp(torch.sub(post_layer.x_input, post_layer.thr), + min=0.0, max=0.9)) + ################################## # Calculate STDP # net: BITnet instance -def calc_stdp(pre_layer,post_layer,spikes): +def calc_stdp(pre_layer,post_layer,spikes,idx=0): layers = [pre_layer,post_layer] - # + # Spike Forcing has special rules to make calculated and forced spikes match - # if layers[-1].spk_force: # will run for the output layer - - # Diff between forced and calculated spikes - xdiff = net['x'][layers[1]] - net['x_calc'][layers[1]] + shape = [len(layers[-1].excW[:, 0, 0]), + len(layers[-1].excW[0, :, 0]), + len(layers[-1].excW[0, 0, :])] + # Get the output neuron index + idx_sel = torch.arange(int(idx),int(idx)+1,device=layers[-1].device,dtype=int) + + # Difference between forced and calculated spikes + layers[-1].x = torch.full_like(layers[-1].x,0) + xdiff = torch.clamp(layers[-1].x.index_fill_(-1,idx_sel,0.5) - layers[-1].x_calc, + min=0,max=1) # Threshold rules - lower it if calced spike is smaller (and vice versa) - net['thr'][layers[1]] -= torch.sign(xdiff)*torch.abs(torch.tensor(net['eta_stdp'][excW]))/10 - net['thr'][layers[1]] -= torch.sign(xdiff)*torch.abs(torch.tensor(net['eta_stdp'][inhW]))/10 - net['thr'][layers[1]][net['thr'][layers[1]]<0.0] = 0.0 # don't go -ve + layers[-1].thr = nn.Parameter(layers[-1].thr - + torch.sign(xdiff)*torch.abs(layers[-1].eta_stdp)/10) + layers[-1].thr = nn.Parameter(layers[-1].thr - + torch.sign(xdiff)*torch.abs((layers[-1].eta_stdp*-1))/10) + layers[-1].thr = nn.Parameter(layers[-1].thr.clamp(min=0, max=1)) # Pre and Post spikes tiled across and down for all synapses - if net['have_rate'][layers[0]]: + if layers[0].have_rate: # Modulate learning rate by firing rate (low firing rate = high learning rate) - mpre = net['x'][layers[0]]/net['fire_rate'][layers[0]] + mpre = spikes/layers[0].fire_rate else: - mpre = net['x'][layers[0]] + mpre = spikes pre = torch.tile(torch.reshape(mpre,(shape[0],shape[1],1)),(1,shape[2])) post = torch.tile(xdiff,(shape[1],1)) - # Excitatory connections - if net['eta_stdp'][excW] > 0: - havconn = net['W'][excW]>0 - inc_stdp_exc = pre*post*havconn - # Inhibitory connections - if net['eta_stdp'][inhW] < 0: - havconn = net['W'][inhW]<0 - inc_stdp_inh = -pre*post*havconn - # Apply the weight changes - net['W'][excW] += inc_stdp_exc*net['eta_stdp'][excW] - net['W'][inhW] += inc_stdp_inh*net['eta_stdp'][inhW] + layers[-1].excW = nn.Parameter(layers[-1].excW + + (pre*post*layers[-1].havconnExc)*layers[-1].eta_stdp) + layers[-1].inhW = nn.Parameter(layers[-1].inhW + + (-pre*post*layers[-1].havconnInh)*(layers[-1].eta_stdp*-1)) - # # Normal STDP - # else: - - - + # Assuming layers is a predefined list containing your layer objects shape = [len(layers[-1].excW[:, 0, 0]), @@ -270,87 +232,51 @@ def calc_stdp(pre_layer,post_layer,spikes): # Tile out pre- and post-spikes pre = torch.tile(torch.reshape(spikes, (shape[0], shape[1], 1)), (1, shape[2])) - - if torch.isnan(pre).any(): - raise ValueError("NaN value detected in pre") - post = torch.tile(layers[-1].x, (shape[1], 1)) - - if torch.isnan(post).any(): - raise ValueError("NaN value detected in post") - - # Excitatory synapses - havconnExc = layers[-1].excW > 0 - inc_stdpExc = (0.5 - post) * (pre > 0) * (post > 0) * havconnExc - - if torch.isnan(inc_stdpExc).any(): - raise ValueError("NaN value detected in inc_stdpExc") - - # Inhibitory synapses - havconnInh = layers[-1].inhW < 0 - inc_stdpInh = (0.5 - post) * (pre > 0) * (post > 0) * havconnInh - - if torch.isnan(inc_stdpInh).any(): - raise ValueError("NaN value detected in inc_stdpInh") - + # Apply the weight changes - layers[-1].excW += inc_stdpExc * layers[-1].eta_stdp - - if torch.isnan(layers[-1].excW).any(): - raise ValueError("NaN value detected in layers[-1].excW after weight changes") - - layers[-1].inhW += inc_stdpExc * (layers[-1].eta_stdp * -1) - - if torch.isnan(layers[-1].inhW).any(): - raise ValueError("NaN value detected in layers[-1].inhW after weight changes") + layers[-1].excW = nn.Parameter(layers[-1].excW + ((0.5 - post) * (pre > 0) * (post > 0) * layers[-1].havconnExc) * layers[-1].eta_stdp) + layers[-1].inhW = nn.Parameter(layers[-1].inhW + ((0.5 - post) * (pre > 0) * (post > 0) * layers[-1].havconnInh) * (layers[-1].eta_stdp * -1)) - # In-place clamp for excitatory and inhibitory weights - # Apply clamping only where the mask is True (non-zero elements) - layers[-1].excW = torch.where(havconnExc, - layers[-1].excW.clamp(min=0.000001, max=10.0), - layers[-1].excW).detach() - - if torch.isnan(layers[-1].excW).any(): - raise ValueError("NaN value detected in layers[-1].excW after clamping") - - torch.cuda.empty_cache() - - # Apply clamping only where the mask is True (non-zero elements) - layers[-1].inhW = torch.where(havconnInh, - layers[-1].inhW.clamp(min=-10.0, max=-0.000001), - layers[-1].inhW).detach() - - if torch.isnan(layers[-1].inhW).any(): - raise ValueError("NaN value detected in layers[-1].inhW after clamping") - - torch.cuda.empty_cache() - - + # In-place clamp for excitatory and inhibitory weights + # Apply clamping only where the mask is True (non-zero elements) + layers[-1].excW = nn.Parameter(torch.where(layers[-1].havconnExc, + layers[-1].excW.clamp(min=0.000001, max=10.0), + layers[-1].excW)) + + # Apply clamping only where the mask is True (non-zero elements) + layers[-1].inhW = nn.Parameter(torch.where(layers[-1].havconnInh, + layers[-1].inhW.clamp(min=-10.0, max=-0.000001), + layers[-1].inhW)) + + torch.cuda.empty_cache() ################################## # Run the simulation # net: BITnet instance # n_steps: number of steps -def runSim(pre_layer,post_layer,spikes): - #torch.cuda.synchronize(torch.device('cuda:0')) +def runSim(pre_layer,post_layer,spikes,idx): + # Propagate spikes from pre to post neurons const_thr(pre_layer,post_layer) calc_spikes(post_layer,spikes) # Calculate STDP weight changes - calc_stdp(pre_layer,post_layer,spikes) + calc_stdp(pre_layer,post_layer,spikes,idx) # Normalise firing rates and inhibitory balance norm_rates(pre_layer,post_layer) norm_inhib(post_layer) torch.cuda.empty_cache() + + del spikes -def testSim(net,device): +def testSim(layers,layer_num,spikes,idx): - net['step_num'] += 1 - add_spikesTest(net,device,net['spike_dims']) - for n in range(int(len(net['W'])/2)): # run loop for number of layers - layers = [int(0 + (n*2)), int(1 + (n*2)), int(0 + n)] - calc_spikes(net,layers) \ No newline at end of file + # run the test system through all specified layers to get an output + for n in range(layer_num): + calc_spikes(layers['layer'+str(n+1)],spikes) + + return layers['layer'+str(n+1)].x \ No newline at end of file From a3eb1839bced2509e7d9096cf9551be169305280 Mon Sep 17 00:00:00 2001 From: Adam Hines Date: Tue, 3 Oct 2023 17:08:57 +1000 Subject: [PATCH 08/69] Working on the data testing segment, now outputs model.pth files post-training, need to configure the test input tiling across modules --- .gitignore | 3 +- VPRTempo-quant.py => VPRTempo.py | 109 +- config/config.py | 25 +- nordland_imageNames.txt | 27592 ----------------------------- orc_imageNames.txt | 3369 ---- output/.output.txt | 1 - src/blitnet.py | 4 +- src/dataset.py | 6 +- weights/weights_note | 8 - 9 files changed, 111 insertions(+), 31006 deletions(-) rename VPRTempo-quant.py => VPRTempo.py (71%) delete mode 100644 nordland_imageNames.txt delete mode 100644 orc_imageNames.txt delete mode 100644 output/.output.txt delete mode 100644 weights/weights_note diff --git a/.gitignore b/.gitignore index 77305c4..ffbfd5c 100644 --- a/.gitignore +++ b/.gitignore @@ -1,4 +1,5 @@ -weights/ +models/ output/ __pycache__/ src/__pycache__/ +config/__pycache__/ diff --git a/VPRTempo-quant.py b/VPRTempo.py similarity index 71% rename from VPRTempo-quant.py rename to VPRTempo.py index 9e23b5e..ee7834b 100644 --- a/VPRTempo-quant.py +++ b/VPRTempo.py @@ -27,10 +27,9 @@ import os import torch import gc -#gc.disable() import sys sys.path.append('./src') -sys.path.append('./weights') +sys.path.append('./models') sys.path.append('./settings') sys.path.append('./output') sys.path.append('./dataset') @@ -44,7 +43,6 @@ from config import configure from dataset import CustomImageDataset, SetImageAsSpikes, ProcessImage from torch.utils.data import DataLoader -from timeit import default_timer from tqdm import tqdm @@ -88,20 +86,22 @@ def __init__(self, previous_layer=None,dims=[0,0,0],thr_range=[0,0], # Weights (if applicable) if assign_weight: - self.excW, self.inhW, self.I, self.havconnExc, self.havconnInh = bn.addWeights(p=self.p, + excW, inhW, self.I, self.havconnExc, self.havconnInh = bn.addWeights(p=self.p, stdp_rate=self.eta_stdp, dims=[previous_layer.dims[2], dims[2]], num_modules=self.number_modules) + + self.excW = nn.Parameter(excW) + self.inhW = nn.Parameter(inhW) class SNNTrainer(nn.Module): def __init__(self): super(SNNTrainer, self).__init__() configure(self) - # Set the device and model on defined device + # Set the device self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") - self.model = self.to(self.device) # Set up the input layer self.input_layer = SNNLayer(dims=[self.number_modules,1,self.input]) @@ -186,18 +186,43 @@ def train_model(self, train_loader): out_layer.excW.requires_grad_(False) out_layer.inhW.requires_grad_(False) out_layer.thr.requires_grad_(False) - - def save_model(self): - torch.save(self.model.state_dict(), self.model_path) - print(f"Model saved at {self.model_path}") + + torch.cuda.empty_cache() + gc.collect() + + def save_model(self, model_out): + # save model + torch.save(self.state_dict(), model_out) class SNNModel(nn.Module): def __init__(self): super(SNNModel, self).__init__() # Configure the network configure(self) - self.model = self.to(self.device) + # Set up the input layer + self.input_layer = SNNLayer(dims=[self.number_modules,1,self.input]) + + # Set up the feature layer + self.feature_layer = SNNLayer(previous_layer=self.input_layer, + dims=[self.number_modules,1,self.feature], + assign_weight=True) + + # Set up the output layer + self.output_layer = SNNLayer(previous_layer=self.feature_layer, + dims=[self.number_modules,1,self.output], + assign_weight=True,) + + # Define number of layers (will run training on all layers) + self.layers = {'layer0':self.input_layer, + 'layer1':self.feature_layer, + 'layer2':self.output_layer} + + def load_model(self,model_path): + state_dict = torch.load(model_path, map_location=self.device) + self.load_state_dict(state_dict) + self.eval() + def forward(self, x): # Define the forward pass to transform the input x to an output # TODO: Replace with actual forward pass code @@ -205,30 +230,68 @@ def forward(self, x): return out if __name__ == "__main__": - # initialize the model and image transforms + # Initialize the model and image transforms model = SNNModel() + + # Generate model name, check if pre-trained model exists + model_name = "VPRTempo"+(str(model.input)+ + str(model.feature)+ + str(model.output)+ + str(model.number_modules)+'-'+ + str(model.device.type)+'.pth') + if os.path.exists(os.path.join('./models',model_name)): + pretrain_flg = True + prompt = "A network with these parameters exists, re-train network? (y/n):\n" + retrain = input(prompt) + if retrain == 'y': + pretrain_flg = False + else: + pretrain_flg = False + + # Define the image transform class image_transform = ProcessImage(model.dims,model.patches) - # TODO: check for existence of pre-existing model, if not then run training - # just run training and testing in tandem for now - train_dataset = CustomImageDataset(annotations_file=model.dataset_file, - img_dirs=model.training_dirs, + # If no pre-existing model, train new model with set configuration + if not pretrain_flg: + # Define the custom training image dataset class + train_dataset = CustomImageDataset(annotations_file=model.dataset_file, + img_dirs=model.training_dirs, + transform=image_transform, + skip=model.filter, + max_samples=model.number_training_images, + modules=model.number_modules, + test=False) + + # Define the training dataloader class + train_loader = DataLoader(train_dataset, + batch_size=model.number_modules, + shuffle=False, + num_workers=4, + persistent_workers=True) + + # Initialize, run, and save the training model + trainer = SNNTrainer() + trainer.train_model(train_loader) + trainer.save_model(os.path.join('./models',model_name)) + + # Load the trained model into SNNModel() + model.load_model(os.path.join('./models',model_name)) + + # Define the custom testing image dataset class + test_dataset = CustomImageDataset(annotations_file=model.dataset_file, + img_dirs=model.testing_dirs, transform=image_transform, skip=model.filter, - max_samples=model.number_training_images, + max_samples=model.number_testing_images, modules=model.number_modules) - train_loader = DataLoader(train_dataset, + # Define the testing dataloader class + test_loader = DataLoader(test_dataset, batch_size=model.number_modules, shuffle=False, num_workers=4, persistent_workers=True) - # initialize the training model - trainer = SNNTrainer() - trainer.train_model(train_loader) - - model.eval() # Set the model to evaluation mode with torch.no_grad(): # Disable gradient computation during testing for inputs, targets in test_dataset: outputs = model(inputs) # This calls the forward method and gets the model’s outputs diff --git a/config/config.py b/config/config.py index 98549e9..dd150c7 100644 --- a/config/config.py +++ b/config/config.py @@ -1,7 +1,8 @@ import os -import gc import torch import logging +import csv + from datetime import datetime def configure(model): @@ -9,11 +10,11 @@ def configure(model): model.dataset_file = './dataset/'+model.dataset+'.csv' model.trainingPath = '/home/adam/data/nordland/' model.testPath = '/home/adam/data/nordland/' - model.number_modules = 1 + model.number_modules = 5 model.number_training_images = 500 model.number_testing_images = 500 model.locations = ["spring","fall"] - model.test_location = "summer" + model.test_locations = "summer" model.filter = 8 model.validation = True model.log = False @@ -21,12 +22,16 @@ def configure(model): model.training_dirs = [] for n in model.locations: model.training_dirs.append(os.path.join(model.trainingPath,n)) - + + model.testing_dirs = [] + for n in model.test_locations: + model.testing_dirs.append(os.path.join(model.testPath,n)) + assert (len(model.dataset) != 0), "Dataset not defined, see README.md for details on setting up images" assert (os.path.isdir(model.trainingPath)), "Training path not set or path does not exist, specify for model.trainingPath" assert (os.path.isdir(model.testPath)), "Test path not set or path does not exist, specify for model.testPath" assert (os.path.isdir(model.trainingPath + model.locations[0])), "Images must be organized into folders based on locations, see README.md for details" - assert (os.path.isdir(model.testPath + model.test_location)), "Images must be organized into folders based on locations, see README.md for details" + assert (os.path.isdir(model.testPath + model.test_locations)), "Images must be organized into folders based on locations, see README.md for details" model.patches = 7 model.dims = [28,28] @@ -53,9 +58,11 @@ def configure(model): model.spike_rates = {'training': [], 'testing': []} model.test_true = False - - with open('./' + model.dataset + '_imageNames.txt') as file: - model.imageNames = [line.rstrip() for line in file] + + with open(os.path.join('./dataset', model.dataset + '.csv'), mode='r', newline='', encoding='utf-8') as file: + reader = csv.reader(file) + model.imageNames = [row[0] for row in reader] + del model.imageNames[0] model.filteredNames = [] for n in range(0, len(model.imageNames), model.filter): @@ -112,4 +119,4 @@ def configure(model): #model.logger.info('Dataset used: ' + str(model.dataset)) #model.logger.info('Training locations: ' + str(model.locations)) #model.logger.info('Testing location: ' + str(model.test_location)) - #model.training_out = './weights/' + str(model.input_layer) + 'i' + str(model.feature_layer) + 'f' + str(model.output_layer) + 'o' + str(model.epoch) + '/' + #model.training_out = './models/' + str(model.input_layer) + 'i' + str(model.feature_layer) + 'f' + str(model.output_layer) + 'o' + str(model.epoch) + '/' diff --git a/nordland_imageNames.txt b/nordland_imageNames.txt deleted file mode 100644 index 01543f2..0000000 --- a/nordland_imageNames.txt +++ /dev/null @@ -1,27592 +0,0 @@ -images-00202.png -images-00203.png -images-00204.png -images-00205.png -images-00206.png -images-00207.png -images-00208.png -images-00209.png -images-00210.png -images-00211.png -images-00212.png -images-00213.png -images-00214.png -images-00215.png -images-00216.png -images-00217.png -images-00218.png -images-00219.png -images-00220.png -images-00221.png -images-00222.png -images-00223.png -images-00224.png -images-00225.png -images-00226.png -images-00227.png -images-00228.png -images-00229.png -images-00230.png -images-00231.png -images-00232.png -images-00233.png -images-00234.png -images-00235.png -images-00236.png -images-00237.png -images-00238.png -images-00239.png -images-00240.png -images-00241.png -images-00242.png -images-00243.png -images-00244.png -images-00245.png -images-00246.png -images-00247.png -images-00248.png -images-00249.png -images-00250.png -images-00251.png -images-00252.png -images-00253.png -images-00254.png -images-00255.png -images-00256.png -images-00257.png -images-00258.png -images-00259.png -images-00260.png -images-00261.png -images-00262.png -images-00263.png -images-00264.png -images-00265.png -images-00266.png -images-00267.png -images-00268.png -images-00269.png -images-00270.png -images-00271.png -images-00272.png -images-00273.png -images-00274.png -images-00275.png -images-00276.png -images-00277.png -images-00278.png -images-00279.png -images-00280.png -images-00281.png -images-00282.png -images-00283.png -images-00284.png -images-00285.png -images-00286.png -images-00287.png -images-00288.png -images-00289.png -images-00290.png -images-00291.png -images-00292.png -images-00293.png -images-00294.png -images-00295.png -images-00296.png -images-00297.png -images-00298.png -images-00299.png -images-00300.png -images-00301.png -images-00302.png -images-00303.png -images-00304.png -images-00305.png -images-00306.png -images-00307.png -images-00308.png -images-00309.png -images-00310.png -images-00311.png -images-00312.png -images-00313.png -images-00314.png -images-00315.png -images-00316.png -images-00317.png -images-00318.png -images-00319.png -images-00320.png -images-00321.png -images-00322.png -images-00323.png -images-00324.png -images-00325.png -images-00326.png -images-00327.png -images-00328.png -images-00329.png -images-00330.png -images-00331.png -images-00332.png -images-00333.png -images-00334.png -images-00335.png -images-00336.png -images-00337.png -images-00338.png -images-00339.png -images-00340.png -images-00341.png -images-00342.png -images-00343.png -images-00344.png -images-00345.png -images-00346.png -images-00347.png -images-00348.png -images-00349.png -images-00350.png -images-00351.png -images-00352.png -images-00353.png -images-00354.png -images-00355.png -images-00356.png -images-00357.png -images-00358.png -images-00359.png -images-00360.png -images-00361.png -images-00362.png -images-00363.png -images-00364.png -images-00365.png -images-00366.png -images-00367.png -images-00368.png -images-00369.png -images-00370.png -images-00371.png -images-00372.png -images-00373.png -images-00374.png -images-00375.png -images-00376.png -images-00377.png -images-00378.png -images-00379.png -images-00380.png -images-00381.png -images-00382.png -images-00383.png -images-00384.png -images-00385.png -images-00386.png -images-00387.png -images-00388.png -images-00389.png -images-00390.png -images-00391.png -images-00392.png -images-00393.png -images-00394.png -images-00395.png -images-00396.png -images-00397.png -images-00398.png -images-00399.png -images-00400.png -images-00401.png -images-00402.png -images-00403.png -images-00404.png -images-00405.png -images-00406.png -images-00407.png -images-00408.png -images-00409.png -images-00410.png -images-00411.png -images-00412.png -images-00413.png -images-00414.png -images-00415.png -images-00416.png -images-00417.png -images-00418.png -images-00419.png -images-00420.png -images-00421.png -images-00422.png -images-00423.png -images-00424.png -images-00425.png -images-00426.png -images-00427.png -images-00428.png -images-00429.png -images-00430.png -images-00431.png -images-00432.png -images-00433.png -images-00434.png -images-00435.png -images-00436.png -images-00437.png -images-00438.png -images-00439.png -images-00440.png -images-00441.png -images-00442.png -images-00443.png -images-00444.png -images-00445.png -images-00446.png -images-00447.png -images-00448.png -images-00449.png -images-00450.png -images-00451.png -images-00452.png -images-00453.png -images-00454.png -images-00455.png -images-00456.png -images-00457.png -images-00458.png -images-00459.png -images-00460.png -images-00461.png -images-00462.png -images-00463.png -images-00464.png -images-00465.png -images-00466.png -images-00467.png -images-00468.png -images-00469.png -images-00470.png -images-00471.png -images-00472.png -images-00473.png -images-00474.png -images-00475.png -images-00476.png -images-00477.png -images-00478.png -images-00479.png -images-00480.png -images-00481.png -images-00482.png -images-00483.png -images-00484.png -images-00485.png -images-00486.png -images-00487.png -images-00488.png -images-00489.png -images-00490.png -images-00491.png -images-00492.png -images-00493.png -images-00494.png -images-00495.png -images-00496.png -images-00497.png -images-00498.png -images-00499.png -images-00500.png -images-00501.png -images-00502.png -images-00503.png -images-00504.png -images-00505.png -images-00506.png -images-00507.png -images-00508.png -images-00509.png -images-00510.png -images-00511.png -images-00512.png -images-00513.png -images-00514.png -images-00515.png -images-00516.png -images-00517.png -images-00518.png -images-00519.png -images-00520.png -images-00521.png -images-00522.png -images-00523.png -images-00524.png -images-00525.png -images-00526.png -images-00527.png -images-00528.png -images-00529.png -images-00530.png -images-00531.png -images-00532.png -images-00533.png -images-00534.png -images-00535.png -images-00536.png -images-00537.png -images-00538.png -images-00539.png -images-00540.png -images-00541.png -images-00542.png -images-00543.png -images-00544.png -images-00545.png -images-00546.png -images-00547.png -images-00548.png -images-00549.png -images-00550.png -images-00551.png -images-00552.png -images-00553.png -images-00554.png -images-00555.png -images-00556.png -images-00557.png -images-00558.png -images-00559.png -images-00560.png -images-00561.png -images-00562.png -images-00563.png -images-00564.png -images-00565.png -images-00566.png -images-00567.png -images-00568.png -images-00569.png -images-00570.png -images-00571.png -images-00572.png -images-00573.png -images-00574.png -images-00575.png -images-00576.png -images-00577.png -images-00578.png -images-00579.png -images-00580.png -images-00581.png -images-00582.png -images-00583.png -images-00584.png -images-00585.png -images-00586.png -images-00587.png -images-00588.png -images-00589.png -images-00590.png -images-00591.png -images-00592.png -images-00593.png -images-00594.png -images-00595.png -images-00596.png -images-00597.png -images-00598.png -images-00599.png -images-00600.png -images-00601.png -images-00602.png -images-00603.png -images-00604.png -images-00605.png -images-00606.png -images-00607.png -images-00608.png -images-00609.png -images-00610.png -images-00611.png -images-00612.png -images-00613.png -images-00614.png -images-00615.png -images-00616.png -images-00617.png -images-00618.png -images-00619.png -images-00620.png -images-00621.png -images-00622.png -images-00623.png -images-00624.png -images-00625.png -images-00626.png -images-00627.png -images-00628.png -images-00629.png -images-00630.png -images-00631.png -images-00632.png -images-00633.png -images-00634.png -images-00635.png -images-00636.png -images-00637.png -images-00638.png -images-00639.png -images-00640.png -images-00641.png -images-00642.png -images-00643.png -images-00644.png -images-00645.png -images-00646.png -images-00647.png -images-00648.png -images-00649.png -images-00650.png -images-00651.png -images-00652.png -images-00653.png -images-00654.png -images-00655.png -images-00656.png -images-00657.png -images-00658.png -images-00659.png -images-00660.png -images-00661.png -images-00662.png -images-00663.png -images-00664.png -images-00665.png -images-00666.png -images-00667.png -images-00668.png -images-00669.png -images-00670.png -images-00671.png -images-00672.png -images-00673.png -images-00674.png -images-00675.png -images-00676.png -images-00677.png -images-00678.png -images-00679.png -images-00680.png -images-00681.png -images-00682.png -images-00683.png -images-00684.png -images-00685.png -images-00686.png -images-00687.png -images-00688.png -images-00689.png -images-00690.png -images-00691.png -images-00692.png -images-00693.png -images-00694.png -images-00695.png -images-00696.png -images-00697.png -images-00698.png -images-00699.png -images-00700.png -images-00701.png -images-00702.png -images-00703.png -images-00704.png -images-00705.png -images-00706.png -images-00707.png -images-00708.png -images-00709.png -images-00710.png -images-00711.png -images-00712.png -images-00713.png -images-00714.png -images-00715.png -images-00716.png -images-00717.png -images-00718.png -images-00719.png -images-00720.png -images-00721.png -images-00722.png -images-00723.png -images-00724.png -images-00725.png -images-00726.png -images-00727.png -images-00728.png -images-00729.png -images-00730.png -images-00731.png -images-00732.png -images-00733.png -images-00734.png -images-00735.png -images-00736.png -images-00737.png -images-00738.png -images-00739.png -images-00740.png -images-00741.png -images-00742.png -images-00743.png -images-00744.png -images-00745.png -images-00746.png -images-00747.png -images-00748.png -images-00749.png -images-00750.png -images-00751.png -images-00752.png -images-00753.png -images-00754.png -images-00755.png -images-00756.png -images-00757.png -images-00758.png -images-00759.png -images-00760.png -images-00761.png -images-00762.png -images-00763.png -images-00764.png -images-00765.png -images-00766.png -images-00767.png -images-00768.png -images-00769.png -images-00770.png -images-00771.png -images-00772.png -images-00773.png -images-00774.png -images-00775.png -images-00776.png -images-00777.png -images-00778.png -images-00779.png -images-00780.png -images-00781.png -images-00782.png -images-00783.png -images-00784.png -images-00785.png -images-00786.png -images-00787.png -images-00788.png -images-00789.png -images-00790.png -images-00791.png -images-00792.png -images-00793.png -images-00794.png -images-00795.png -images-00796.png -images-00797.png -images-00798.png -images-00799.png -images-00800.png -images-00801.png -images-00802.png -images-00803.png -images-00804.png -images-00805.png -images-00806.png -images-00807.png -images-00808.png -images-00809.png -images-00810.png -images-00811.png -images-00812.png -images-00813.png -images-00814.png -images-00815.png -images-00816.png -images-00817.png -images-00818.png -images-00819.png -images-00820.png -images-00821.png -images-00822.png -images-00823.png -images-00824.png -images-00825.png -images-00826.png -images-00827.png -images-00828.png -images-00829.png -images-00830.png -images-00831.png -images-00832.png -images-00833.png -images-00834.png -images-00835.png -images-00836.png -images-00837.png -images-00838.png -images-00839.png -images-00840.png -images-00841.png -images-00842.png -images-00843.png -images-00844.png -images-00845.png -images-00846.png -images-00847.png -images-00848.png -images-00849.png -images-00850.png -images-00851.png -images-00852.png -images-00853.png -images-00854.png -images-00855.png -images-00856.png -images-00857.png -images-00858.png -images-00859.png -images-00860.png -images-00861.png -images-00862.png -images-00863.png -images-00864.png -images-00865.png -images-00866.png -images-00867.png -images-00868.png -images-00869.png -images-00870.png -images-00871.png -images-00872.png -images-00873.png -images-00874.png -images-00875.png -images-00876.png -images-00877.png -images-00878.png -images-00879.png -images-00880.png -images-00881.png -images-00882.png -images-00883.png -images-00884.png -images-00885.png -images-00886.png -images-00887.png -images-00888.png -images-00889.png -images-00890.png -images-00891.png -images-00892.png -images-00893.png -images-00894.png -images-00895.png -images-00896.png -images-00897.png -images-00898.png -images-00899.png -images-00900.png -images-00901.png -images-00902.png -images-00903.png -images-00904.png -images-00905.png -images-00906.png -images-00907.png -images-00908.png -images-00909.png -images-00910.png -images-00911.png -images-00912.png -images-00913.png -images-00914.png -images-00915.png -images-00916.png -images-00917.png -images-00918.png -images-00919.png -images-00920.png -images-00921.png -images-00922.png -images-00923.png -images-00924.png -images-00925.png -images-00926.png -images-00927.png -images-00928.png -images-00929.png -images-00930.png -images-00931.png -images-00932.png -images-00933.png -images-00934.png -images-00935.png -images-00936.png -images-00937.png -images-00938.png -images-00939.png -images-00940.png -images-00941.png -images-00942.png -images-00943.png -images-00944.png -images-00945.png -images-00946.png -images-00947.png -images-00948.png -images-00949.png -images-00950.png -images-00951.png -images-00952.png -images-00953.png -images-00954.png -images-00955.png -images-00956.png -images-00957.png -images-00958.png -images-00959.png -images-00960.png -images-00961.png -images-00962.png -images-00963.png -images-00964.png -images-00965.png -images-00966.png -images-00967.png -images-00968.png -images-00969.png -images-00970.png -images-00971.png -images-00972.png -images-00973.png -images-00974.png -images-00975.png -images-00976.png -images-00977.png -images-00978.png -images-00979.png -images-00980.png -images-00981.png -images-00982.png -images-00983.png -images-00984.png -images-00985.png -images-00986.png -images-00987.png -images-00988.png -images-00989.png -images-00990.png -images-00991.png -images-00992.png -images-00993.png -images-00994.png -images-00995.png -images-00996.png -images-00997.png -images-00998.png -images-00999.png -images-01000.png -images-01001.png -images-01002.png -images-01003.png -images-01004.png -images-01005.png -images-01006.png -images-01007.png -images-01008.png -images-01009.png -images-01010.png -images-01011.png -images-01012.png -images-01013.png -images-01014.png -images-01015.png -images-01016.png -images-01017.png -images-01018.png -images-01019.png -images-01020.png -images-01021.png -images-01022.png -images-01023.png -images-01024.png -images-01025.png -images-01026.png -images-01027.png -images-01028.png -images-01029.png -images-01030.png -images-01031.png -images-01032.png -images-01033.png -images-01034.png -images-01035.png -images-01036.png -images-01037.png -images-01038.png -images-01039.png -images-01040.png -images-01041.png -images-01042.png -images-01043.png -images-01044.png -images-01045.png -images-01046.png -images-01047.png -images-01048.png -images-01049.png -images-01050.png -images-01051.png -images-01052.png -images-01053.png -images-01054.png -images-01055.png -images-01056.png -images-01057.png -images-01058.png -images-01059.png -images-01060.png -images-01061.png -images-01062.png -images-01063.png -images-01064.png -images-01065.png -images-01066.png -images-01067.png -images-01068.png -images-01069.png -images-01070.png -images-01071.png -images-01072.png -images-01073.png -images-01074.png -images-01075.png -images-01076.png -images-01077.png -images-01078.png -images-01079.png -images-01080.png -images-01081.png -images-01082.png -images-01083.png -images-01084.png -images-01085.png -images-01086.png -images-01087.png -images-01088.png -images-01089.png -images-01090.png -images-01091.png -images-01092.png -images-01093.png -images-01094.png -images-01095.png -images-01096.png -images-01097.png -images-01098.png -images-01099.png -images-01100.png -images-01101.png -images-01102.png -images-01103.png -images-01104.png -images-01105.png -images-01106.png -images-01107.png -images-01108.png -images-01109.png -images-01110.png -images-01111.png -images-01112.png -images-01113.png -images-01114.png -images-01115.png -images-01116.png -images-01117.png -images-01118.png -images-01119.png -images-01120.png -images-01121.png -images-01122.png -images-01123.png -images-01124.png -images-01125.png -images-01126.png -images-01127.png -images-01128.png -images-01129.png -images-01130.png -images-01131.png -images-01132.png -images-01133.png -images-01134.png -images-01135.png -images-01136.png -images-01137.png -images-01138.png -images-01139.png -images-01140.png -images-01141.png -images-01142.png -images-01143.png -images-01144.png -images-01145.png -images-01146.png -images-01147.png -images-01148.png -images-01149.png -images-01150.png -images-01151.png -images-01152.png -images-01153.png -images-01154.png -images-01155.png -images-01156.png -images-01157.png -images-01158.png -images-01159.png -images-01160.png -images-01161.png -images-01162.png -images-01163.png -images-01164.png -images-01165.png -images-01166.png -images-01167.png -images-01168.png -images-01169.png -images-01170.png -images-01171.png -images-01172.png -images-01173.png -images-01174.png -images-01175.png -images-01176.png -images-01177.png -images-01178.png -images-01179.png -images-01180.png -images-01181.png -images-01182.png -images-01183.png -images-01184.png -images-01185.png -images-01186.png -images-01187.png -images-01188.png -images-01189.png -images-01190.png -images-01191.png -images-01192.png -images-01193.png -images-01194.png -images-01195.png -images-01196.png -images-01197.png -images-01198.png -images-01199.png -images-01200.png -images-01201.png -images-01202.png -images-01203.png -images-01204.png -images-01205.png -images-01206.png -images-01207.png -images-01208.png -images-01209.png -images-01210.png -images-01211.png -images-01212.png -images-01213.png -images-01214.png -images-01215.png -images-01216.png -images-01217.png -images-01218.png -images-01219.png -images-01220.png -images-01221.png -images-01222.png -images-01223.png -images-01224.png -images-01225.png -images-01226.png -images-01227.png -images-01228.png -images-01229.png -images-01230.png -images-01231.png -images-01232.png -images-01233.png -images-01234.png -images-01235.png -images-01236.png -images-01237.png -images-01238.png -images-01239.png -images-01240.png -images-01241.png -images-01242.png -images-01243.png -images-01244.png -images-01245.png -images-01246.png -images-01247.png -images-01248.png -images-01249.png -images-01250.png -images-01251.png -images-01252.png -images-01253.png -images-01254.png -images-01255.png -images-01256.png -images-01257.png -images-01258.png -images-01259.png -images-01810.png -images-01811.png -images-01812.png -images-01813.png -images-01814.png -images-01815.png -images-01816.png -images-01817.png -images-01818.png -images-01819.png -images-01820.png -images-01821.png -images-01822.png -images-01823.png -images-01824.png -images-01825.png -images-01826.png -images-01827.png -images-01828.png -images-01829.png -images-01830.png -images-01831.png -images-01832.png -images-01833.png -images-01834.png -images-01835.png -images-01836.png -images-01837.png -images-01838.png -images-01839.png -images-01840.png -images-01841.png -images-01842.png -images-01843.png -images-01844.png -images-01845.png -images-01846.png -images-01847.png -images-01848.png -images-01849.png -images-01850.png -images-01851.png -images-01852.png -images-01853.png -images-01854.png -images-01855.png -images-01856.png -images-01857.png -images-01858.png -images-01859.png -images-01860.png -images-01861.png -images-01862.png -images-01863.png -images-01864.png -images-01865.png -images-01866.png -images-01867.png -images-01868.png -images-01869.png -images-02029.png -images-02030.png -images-02031.png -images-02032.png -images-02033.png -images-02034.png -images-02035.png -images-02036.png -images-02037.png -images-02038.png -images-02039.png -images-02040.png -images-02041.png -images-02042.png -images-02043.png -images-02044.png -images-02045.png -images-02046.png -images-02047.png -images-02048.png -images-02049.png -images-02050.png -images-02051.png -images-02052.png -images-02053.png -images-02054.png -images-02055.png -images-02056.png -images-02057.png -images-02058.png -images-02059.png -images-02060.png -images-02061.png -images-02062.png -images-02063.png -images-02064.png -images-02065.png -images-02066.png -images-02067.png -images-02068.png -images-02069.png -images-02070.png -images-02071.png -images-02072.png -images-02073.png -images-02074.png -images-02075.png -images-02076.png -images-02077.png -images-02078.png -images-02079.png -images-02080.png -images-02081.png -images-02082.png -images-02083.png -images-02084.png -images-02085.png -images-02086.png -images-02087.png -images-02088.png -images-02089.png -images-02090.png -images-02091.png -images-02092.png -images-02093.png -images-02094.png -images-02095.png -images-02096.png -images-02097.png -images-02098.png -images-02099.png -images-02100.png -images-02101.png -images-02102.png -images-02103.png -images-02104.png -images-02105.png -images-02106.png -images-02107.png -images-02108.png -images-02109.png -images-02110.png -images-02111.png -images-02112.png -images-02113.png -images-02114.png -images-02115.png -images-02116.png -images-02117.png -images-02118.png -images-02119.png -images-02120.png -images-02121.png -images-02122.png -images-02123.png -images-02124.png -images-02125.png -images-02126.png -images-02127.png -images-02128.png -images-02129.png -images-02130.png -images-02131.png -images-02132.png -images-02133.png -images-02134.png -images-02135.png -images-02136.png -images-02137.png -images-02138.png -images-02139.png -images-02140.png -images-02141.png -images-02142.png -images-02143.png -images-02144.png -images-02145.png -images-02146.png -images-02147.png -images-02148.png -images-02149.png -images-02150.png -images-02151.png -images-02152.png -images-02153.png -images-02154.png -images-02155.png -images-02156.png -images-02157.png -images-02158.png -images-02159.png -images-02160.png -images-02161.png -images-02162.png -images-02163.png -images-02164.png -images-02165.png -images-02166.png -images-02167.png -images-02168.png -images-02169.png -images-02170.png -images-02171.png -images-02172.png -images-02173.png -images-02174.png -images-02175.png -images-02176.png -images-02177.png -images-02178.png -images-02179.png -images-02180.png -images-02181.png -images-02182.png -images-02183.png -images-02184.png -images-02185.png -images-02186.png -images-02187.png -images-02333.png -images-02334.png -images-02335.png -images-02336.png -images-02337.png -images-02338.png -images-02339.png -images-02340.png -images-02355.png -images-02356.png -images-02357.png -images-02358.png -images-02359.png -images-02360.png -images-02361.png -images-02362.png -images-02363.png -images-02364.png -images-02365.png -images-02366.png -images-02367.png -images-02368.png -images-02369.png -images-02370.png -images-02371.png -images-02372.png -images-02373.png -images-02374.png -images-02375.png -images-02376.png -images-02377.png -images-02378.png -images-02379.png -images-02380.png -images-02381.png -images-02382.png -images-02383.png -images-02384.png -images-02385.png -images-02386.png -images-02387.png -images-02388.png -images-02389.png -images-02390.png -images-02391.png -images-02392.png -images-02393.png -images-02394.png -images-02395.png -images-02396.png -images-02397.png -images-02398.png -images-02399.png -images-02400.png -images-02401.png -images-02402.png -images-02403.png -images-02404.png -images-02405.png -images-02406.png -images-02407.png -images-02408.png -images-02409.png -images-02410.png -images-02411.png -images-02412.png -images-02413.png -images-02414.png -images-02415.png -images-02416.png -images-02417.png -images-02418.png -images-02419.png -images-02420.png -images-02421.png -images-02422.png -images-02423.png -images-02424.png -images-02425.png -images-02426.png -images-02427.png -images-02428.png -images-02429.png -images-02430.png -images-02431.png -images-02432.png -images-02433.png -images-02434.png -images-02435.png -images-02436.png -images-02437.png -images-02438.png -images-02439.png -images-02440.png -images-02441.png -images-02442.png -images-02443.png -images-02444.png -images-02445.png -images-02446.png -images-02447.png -images-02448.png -images-02449.png -images-02450.png -images-02451.png -images-02452.png -images-02453.png -images-02454.png -images-02455.png -images-02456.png -images-02457.png -images-02458.png -images-02459.png -images-02460.png -images-02461.png -images-02462.png -images-02463.png -images-02464.png -images-02465.png -images-02466.png -images-02467.png -images-02468.png -images-02469.png -images-02470.png -images-02471.png -images-02472.png -images-02473.png -images-02474.png -images-02475.png -images-02476.png -images-02477.png -images-02478.png -images-02479.png -images-02480.png -images-02481.png -images-02482.png -images-02483.png -images-02675.png -images-02676.png -images-02677.png -images-02678.png -images-02679.png -images-02680.png -images-02681.png -images-02682.png -images-02683.png -images-02684.png -images-02685.png -images-02686.png -images-02687.png -images-02688.png -images-02689.png -images-02690.png -images-02691.png -images-02692.png -images-02693.png -images-02694.png -images-02695.png -images-02696.png -images-02697.png -images-02698.png -images-02699.png -images-02700.png -images-02701.png -images-02702.png -images-02703.png -images-02704.png -images-02705.png -images-02706.png -images-02707.png -images-02708.png -images-02709.png -images-02710.png -images-02711.png -images-02712.png -images-02713.png -images-02714.png -images-02715.png -images-02716.png -images-02717.png -images-02718.png -images-02719.png -images-02720.png -images-02721.png -images-02722.png -images-02723.png -images-02724.png -images-02725.png -images-02726.png -images-02727.png -images-02728.png -images-02729.png -images-02730.png -images-02731.png -images-02732.png -images-02733.png -images-02734.png -images-02735.png -images-02736.png -images-02737.png -images-02738.png -images-02739.png -images-02740.png -images-02741.png -images-02742.png -images-02743.png -images-02744.png -images-02745.png -images-02746.png -images-02747.png -images-02748.png -images-02749.png -images-02750.png -images-02751.png -images-02752.png -images-02753.png -images-02754.png -images-02755.png -images-02756.png -images-02757.png -images-02758.png -images-02759.png -images-02760.png -images-02761.png -images-02762.png -images-02763.png -images-02764.png -images-02765.png -images-02766.png -images-02767.png -images-02768.png -images-02769.png -images-02770.png -images-02771.png -images-02772.png -images-02773.png -images-02774.png -images-02775.png -images-02776.png -images-02777.png -images-02778.png -images-02779.png -images-02780.png -images-02781.png -images-02782.png -images-02783.png -images-02784.png -images-02785.png -images-02786.png -images-02787.png -images-02788.png -images-02789.png -images-02790.png -images-02791.png -images-02792.png -images-02793.png -images-02794.png -images-02795.png -images-02796.png -images-02797.png -images-02798.png -images-02799.png -images-02800.png -images-02801.png -images-02802.png -images-02803.png -images-02804.png -images-02805.png -images-02806.png -images-02807.png -images-02808.png -images-02809.png -images-02810.png -images-02811.png -images-02812.png -images-02813.png -images-02814.png -images-02815.png -images-02816.png -images-02817.png -images-02818.png -images-02819.png -images-02820.png -images-02821.png -images-02822.png -images-02823.png -images-02824.png -images-02825.png -images-02826.png -images-02827.png -images-02828.png -images-02829.png -images-02830.png -images-02831.png -images-02832.png -images-02833.png -images-02834.png -images-02835.png -images-02836.png -images-02837.png -images-02838.png -images-02839.png -images-02840.png -images-02841.png -images-02842.png -images-02843.png -images-02844.png -images-02845.png -images-02846.png -images-02847.png -images-02848.png -images-02849.png -images-02850.png -images-02851.png -images-02852.png -images-02853.png -images-02854.png -images-02855.png -images-02856.png -images-02857.png -images-02858.png -images-02859.png -images-02860.png -images-02861.png -images-02862.png -images-02863.png -images-02864.png -images-02865.png -images-02866.png -images-02867.png -images-02868.png -images-02869.png -images-02870.png -images-02871.png -images-02872.png -images-02873.png -images-02874.png -images-02875.png -images-02876.png -images-02877.png -images-02878.png -images-02879.png -images-02880.png -images-02881.png -images-02882.png -images-02883.png -images-02884.png -images-02885.png -images-02886.png -images-02887.png -images-02888.png -images-02889.png -images-02890.png -images-02891.png -images-02892.png -images-02893.png -images-02894.png -images-02895.png -images-02896.png -images-02897.png -images-02898.png -images-02899.png -images-02900.png -images-02901.png -images-02902.png -images-02903.png -images-02904.png -images-02905.png -images-02906.png -images-02907.png -images-02908.png -images-02909.png -images-02910.png -images-02911.png -images-02912.png -images-02913.png -images-02914.png -images-02915.png -images-02916.png -images-02917.png -images-02918.png -images-02919.png -images-02920.png -images-02921.png -images-02922.png -images-02923.png -images-02924.png -images-02925.png -images-02926.png -images-02927.png -images-02928.png -images-02929.png -images-02930.png -images-02931.png -images-02932.png -images-02933.png -images-02934.png -images-02935.png -images-02936.png -images-02937.png -images-02938.png -images-02939.png -images-02940.png -images-02941.png -images-02942.png -images-02943.png -images-02944.png -images-02945.png -images-02946.png -images-02947.png -images-02948.png -images-02949.png -images-02950.png -images-02951.png -images-02952.png -images-02953.png -images-02954.png -images-02955.png -images-02956.png -images-02957.png -images-02958.png -images-02959.png -images-02960.png -images-02961.png -images-02962.png -images-02963.png -images-02964.png -images-02965.png -images-02966.png -images-02967.png -images-02968.png -images-02969.png -images-02970.png -images-02971.png -images-02972.png -images-02973.png -images-02974.png -images-02975.png -images-02976.png -images-02977.png -images-02978.png -images-02979.png -images-02980.png -images-02981.png -images-02982.png -images-02983.png -images-02984.png -images-02985.png -images-02986.png -images-02987.png -images-02988.png -images-02989.png -images-02990.png -images-02991.png -images-02992.png -images-02993.png -images-02994.png -images-02995.png -images-02996.png -images-02997.png -images-02998.png -images-02999.png -images-03000.png -images-03001.png -images-03002.png -images-03003.png -images-03004.png -images-03005.png -images-03006.png -images-03007.png -images-03008.png -images-03009.png -images-03010.png -images-03011.png -images-03012.png -images-03013.png -images-03014.png -images-03015.png -images-03016.png -images-03017.png -images-03018.png -images-03019.png -images-03020.png -images-03021.png -images-03022.png -images-03023.png -images-03024.png -images-03025.png -images-03026.png -images-03027.png -images-03028.png -images-03029.png -images-03030.png -images-03031.png -images-03032.png -images-03033.png -images-03034.png -images-03035.png -images-03036.png -images-03037.png -images-03038.png -images-03039.png -images-03040.png -images-03041.png -images-03042.png -images-03043.png -images-03044.png -images-03045.png -images-03046.png -images-03047.png -images-03048.png -images-03049.png -images-03050.png -images-03051.png -images-03052.png -images-03053.png -images-03054.png -images-03055.png -images-03056.png -images-03057.png -images-03058.png -images-03059.png -images-03060.png -images-03061.png -images-03062.png -images-03063.png -images-03064.png -images-03065.png -images-03066.png -images-03067.png -images-03068.png -images-03069.png -images-03070.png -images-03071.png -images-03072.png -images-03073.png -images-03074.png -images-03075.png -images-03076.png -images-03077.png -images-03078.png -images-03079.png -images-03080.png -images-03081.png -images-03082.png -images-03083.png -images-03084.png -images-03085.png -images-03086.png -images-03087.png -images-03088.png -images-03089.png -images-03090.png -images-03091.png -images-03092.png -images-03093.png -images-03094.png -images-03095.png -images-03096.png -images-03097.png -images-03098.png -images-03099.png -images-03100.png -images-03101.png -images-03102.png -images-03103.png -images-03104.png -images-03105.png -images-03106.png -images-03107.png -images-03108.png -images-03109.png -images-03110.png -images-03111.png -images-03112.png -images-03113.png -images-03114.png -images-03115.png -images-03116.png -images-03117.png -images-03118.png -images-03119.png -images-03120.png -images-03121.png -images-03122.png -images-03123.png -images-03124.png -images-03125.png -images-03126.png -images-03127.png -images-03128.png -images-03129.png -images-03130.png -images-03131.png -images-03132.png -images-03133.png -images-03134.png -images-03135.png -images-03136.png -images-03137.png -images-03138.png -images-03139.png -images-03140.png -images-03141.png -images-03142.png -images-03143.png -images-03144.png -images-03145.png -images-03146.png -images-03147.png -images-03148.png -images-03149.png -images-03150.png -images-03151.png -images-03152.png -images-03153.png -images-03154.png -images-03155.png -images-03156.png -images-03157.png -images-03158.png -images-03159.png -images-03160.png -images-03161.png -images-03162.png -images-03163.png -images-03164.png -images-03165.png -images-03166.png -images-03167.png -images-03168.png -images-03169.png -images-03170.png -images-03171.png -images-03172.png -images-03173.png -images-03174.png -images-03175.png -images-03176.png -images-03177.png -images-03178.png -images-03179.png -images-03180.png -images-03181.png -images-03182.png -images-03183.png -images-03184.png -images-03185.png -images-03186.png -images-03187.png -images-03188.png -images-03189.png -images-03190.png -images-03191.png -images-03192.png -images-03193.png -images-03194.png -images-03195.png -images-03196.png -images-03197.png -images-03198.png -images-03199.png -images-03200.png -images-03201.png -images-03202.png -images-03203.png -images-03204.png -images-03205.png -images-03206.png -images-03207.png -images-03208.png -images-03209.png -images-03210.png -images-03211.png -images-03212.png -images-03213.png -images-03214.png -images-03215.png -images-03216.png -images-03217.png -images-03218.png -images-03219.png -images-03220.png -images-03221.png -images-03222.png -images-03223.png -images-03224.png -images-03225.png -images-03226.png -images-03227.png -images-03228.png -images-03229.png -images-03230.png -images-03231.png -images-03232.png -images-03233.png -images-03234.png -images-03235.png -images-03236.png -images-03237.png -images-03238.png -images-03239.png -images-03240.png -images-03241.png -images-03242.png -images-03243.png -images-03244.png -images-03245.png -images-03246.png -images-03247.png -images-03248.png -images-03249.png -images-03250.png -images-03251.png -images-03252.png -images-03253.png -images-03254.png -images-03255.png -images-03256.png -images-03257.png -images-03258.png -images-03259.png -images-03260.png -images-03261.png -images-03262.png -images-03263.png -images-03264.png -images-03265.png -images-03266.png -images-03267.png -images-03268.png -images-03269.png -images-03270.png -images-03271.png -images-03272.png -images-03273.png -images-03274.png -images-03275.png -images-03276.png -images-03277.png -images-03278.png -images-03279.png -images-03280.png -images-03281.png -images-03282.png -images-03283.png -images-03284.png -images-03285.png -images-03286.png -images-03287.png -images-03288.png -images-03289.png -images-03290.png -images-03291.png -images-03292.png -images-03293.png -images-03294.png -images-03295.png -images-03296.png -images-03297.png -images-03298.png -images-03299.png -images-03300.png -images-03301.png -images-03302.png -images-03303.png -images-03304.png -images-03305.png -images-03306.png -images-03307.png -images-03308.png -images-03309.png -images-03310.png -images-03311.png -images-03312.png -images-03313.png -images-03314.png -images-03315.png -images-03316.png -images-03317.png -images-03318.png -images-03319.png -images-03320.png -images-03321.png -images-03322.png -images-03323.png -images-03324.png -images-03325.png -images-03326.png -images-03327.png -images-03328.png -images-03329.png -images-03330.png -images-03331.png -images-03332.png -images-03333.png -images-03334.png -images-03335.png -images-03336.png -images-03337.png -images-03338.png -images-03339.png -images-03340.png -images-03341.png -images-03342.png -images-03343.png -images-03344.png -images-03345.png -images-03346.png -images-03347.png -images-03348.png -images-03349.png -images-03350.png -images-03351.png -images-03352.png -images-03353.png -images-03354.png -images-03355.png -images-03356.png -images-03357.png -images-03358.png -images-03359.png -images-03360.png -images-03361.png -images-03362.png -images-03363.png -images-03364.png -images-03365.png -images-03366.png -images-03367.png -images-03368.png -images-03369.png -images-03370.png -images-03371.png -images-03372.png -images-03373.png -images-03374.png -images-03375.png -images-03376.png -images-03377.png -images-03378.png -images-03379.png -images-03380.png -images-03381.png -images-03382.png -images-03383.png -images-03698.png -images-03699.png -images-03700.png -images-03701.png -images-03702.png -images-03703.png -images-03704.png -images-03705.png -images-03706.png -images-03707.png -images-03708.png -images-03709.png -images-03710.png -images-03711.png -images-03712.png -images-03713.png -images-03714.png -images-03715.png -images-03716.png -images-03717.png -images-03718.png -images-03719.png -images-03720.png -images-03721.png -images-03722.png -images-03723.png -images-03724.png -images-03725.png -images-03726.png -images-03727.png -images-03728.png -images-03729.png -images-03730.png -images-03731.png -images-03732.png -images-03733.png -images-03734.png -images-03735.png -images-03736.png -images-03737.png -images-03738.png -images-03739.png -images-03740.png -images-03741.png -images-03742.png -images-03743.png -images-03744.png -images-03745.png -images-03746.png -images-03747.png -images-03748.png -images-03749.png -images-03750.png -images-03751.png -images-03752.png -images-03753.png -images-03754.png -images-03755.png -images-03756.png -images-03757.png -images-03758.png -images-03759.png -images-03760.png -images-03761.png -images-03762.png -images-03763.png -images-03764.png -images-03765.png -images-03766.png -images-03767.png -images-03768.png -images-03769.png -images-03770.png -images-03771.png -images-03772.png -images-03773.png -images-03774.png -images-03775.png -images-03776.png -images-03777.png -images-03778.png -images-03779.png -images-03780.png -images-03781.png -images-03782.png -images-03783.png -images-03784.png -images-03785.png -images-03786.png -images-03787.png -images-03788.png -images-03789.png -images-03790.png -images-03791.png -images-03792.png -images-03793.png -images-03794.png -images-03795.png -images-03796.png -images-03797.png -images-03798.png -images-03799.png -images-03800.png -images-03801.png -images-03802.png -images-03803.png -images-03804.png -images-03805.png -images-03806.png -images-03807.png -images-03808.png -images-03809.png -images-03810.png -images-03811.png -images-03812.png -images-03813.png -images-03814.png -images-03815.png -images-03816.png -images-03817.png -images-03818.png -images-03819.png -images-03820.png -images-03821.png -images-03822.png -images-03823.png -images-03824.png -images-03825.png -images-03826.png -images-03827.png -images-03828.png -images-03829.png -images-03830.png -images-03831.png -images-03832.png -images-03833.png -images-03834.png -images-03835.png -images-03836.png -images-03837.png -images-03838.png -images-03839.png -images-03840.png -images-03841.png -images-03842.png -images-03843.png -images-03844.png -images-03845.png -images-03846.png -images-03847.png -images-03848.png -images-03849.png -images-03850.png -images-03851.png -images-03852.png -images-03853.png -images-03854.png -images-03855.png -images-03856.png -images-03857.png -images-03858.png -images-03859.png -images-03860.png -images-03861.png -images-03862.png -images-03863.png -images-03864.png -images-03865.png -images-03866.png -images-03867.png -images-03868.png -images-03869.png -images-03870.png -images-03871.png -images-03872.png -images-03873.png -images-03874.png -images-03875.png -images-03876.png -images-03877.png -images-03878.png -images-03879.png -images-03880.png -images-03881.png -images-03882.png -images-03883.png -images-03884.png -images-03885.png -images-03886.png -images-03887.png -images-03888.png -images-03889.png -images-03890.png -images-03891.png -images-03892.png -images-03893.png -images-03894.png -images-03895.png -images-03896.png -images-03897.png -images-03898.png -images-03899.png -images-03900.png -images-03901.png -images-03902.png -images-03903.png -images-03904.png -images-03905.png -images-03906.png -images-03907.png -images-03908.png -images-03909.png -images-03910.png -images-03911.png -images-03912.png -images-03913.png -images-03914.png -images-03915.png -images-03916.png -images-03917.png -images-03918.png -images-03919.png -images-03920.png -images-03921.png -images-03922.png -images-03923.png -images-03924.png -images-03925.png -images-03926.png -images-03927.png -images-03928.png -images-03929.png -images-03930.png -images-03931.png -images-03932.png -images-03933.png -images-03934.png -images-03935.png -images-03936.png -images-03937.png -images-03938.png -images-03939.png -images-03940.png -images-03941.png -images-03942.png -images-03943.png -images-03944.png -images-03945.png -images-03946.png -images-03947.png -images-03948.png -images-03949.png -images-03950.png -images-03951.png -images-03952.png -images-03953.png -images-03954.png -images-03955.png -images-03956.png -images-03957.png -images-03958.png -images-03959.png -images-03960.png -images-03961.png -images-03962.png -images-03963.png -images-03964.png -images-03965.png -images-03966.png -images-03967.png -images-03968.png -images-03969.png -images-03970.png -images-03971.png -images-03972.png -images-03973.png -images-03974.png -images-03975.png -images-03976.png -images-03977.png -images-03978.png -images-03979.png -images-03980.png -images-03981.png -images-03982.png -images-03983.png -images-03984.png -images-03985.png -images-03986.png -images-03987.png -images-03988.png -images-03989.png -images-03990.png -images-03991.png -images-03992.png -images-03993.png -images-03994.png -images-03995.png -images-03996.png -images-03997.png -images-03998.png -images-03999.png -images-04000.png -images-04001.png -images-04002.png -images-04003.png -images-04004.png -images-04005.png -images-04006.png -images-04007.png -images-04008.png -images-04009.png -images-04010.png -images-04011.png -images-04012.png -images-04013.png -images-04014.png -images-04015.png -images-04016.png -images-04017.png -images-04018.png -images-04019.png -images-04020.png -images-04021.png -images-04022.png -images-04023.png -images-04024.png -images-04025.png -images-04026.png -images-04027.png -images-04028.png -images-04029.png -images-04030.png -images-04031.png -images-04032.png -images-04033.png -images-04034.png -images-04035.png -images-04036.png -images-04037.png -images-04038.png -images-04039.png -images-04040.png -images-04041.png -images-04042.png -images-04043.png -images-04044.png -images-04045.png -images-04046.png -images-04047.png -images-04048.png -images-04049.png -images-04050.png -images-04051.png -images-04052.png -images-04053.png -images-04054.png -images-04055.png -images-04056.png -images-04057.png -images-04058.png -images-04059.png -images-04060.png -images-04061.png -images-04062.png -images-04063.png -images-04064.png -images-04065.png -images-04066.png -images-04067.png -images-04068.png -images-04069.png -images-04070.png -images-04071.png -images-04072.png -images-04073.png -images-04074.png -images-04075.png -images-04076.png -images-04077.png -images-04078.png -images-04079.png -images-04080.png -images-04081.png -images-04082.png -images-04083.png -images-04084.png -images-04085.png -images-04086.png -images-04087.png -images-04088.png -images-04089.png -images-04090.png -images-04091.png -images-04092.png -images-04097.png -images-04098.png -images-04099.png -images-04100.png -images-04101.png -images-04102.png -images-04103.png -images-04104.png -images-04105.png -images-04106.png -images-04107.png -images-04108.png -images-04109.png -images-04110.png -images-04111.png -images-04112.png -images-04113.png -images-04114.png -images-04115.png -images-04116.png -images-04117.png -images-04118.png -images-04119.png -images-04120.png -images-04121.png -images-04122.png -images-04123.png -images-04124.png -images-04125.png -images-04126.png -images-04127.png -images-04128.png -images-04129.png -images-04130.png -images-04131.png -images-04132.png -images-04133.png -images-04134.png -images-04135.png -images-04136.png -images-04137.png -images-04138.png -images-04139.png -images-04140.png -images-04141.png -images-04142.png -images-04143.png -images-04144.png -images-04145.png -images-04146.png -images-04147.png -images-04148.png -images-04149.png -images-04150.png -images-04151.png -images-04152.png -images-04153.png -images-04154.png -images-04155.png -images-04156.png -images-04157.png -images-04158.png -images-04159.png -images-04160.png -images-04161.png -images-04162.png -images-04163.png -images-04164.png -images-04165.png -images-04166.png -images-04167.png -images-04168.png -images-04169.png -images-04170.png -images-04171.png -images-04172.png -images-04173.png -images-04174.png -images-04175.png -images-04176.png -images-04177.png -images-04178.png -images-04179.png -images-04180.png -images-04181.png -images-04182.png -images-04183.png -images-04184.png -images-04185.png -images-04186.png -images-04187.png -images-04188.png -images-04189.png -images-04190.png -images-04191.png -images-04192.png -images-04193.png -images-04194.png -images-04195.png -images-04196.png -images-04197.png -images-04198.png -images-04199.png -images-04200.png -images-04201.png -images-04202.png -images-04203.png -images-04204.png -images-04205.png -images-04206.png -images-04207.png -images-04208.png -images-04209.png -images-04210.png -images-04211.png -images-04212.png -images-04213.png -images-04214.png -images-04215.png -images-04216.png -images-04217.png -images-04218.png -images-04219.png -images-04220.png -images-04221.png -images-04222.png -images-04223.png -images-04224.png -images-04225.png -images-04226.png -images-04227.png -images-04228.png -images-04229.png -images-04230.png -images-04231.png -images-04232.png -images-04233.png -images-04234.png -images-04235.png -images-04236.png -images-04237.png -images-04238.png -images-04239.png -images-04240.png -images-04241.png -images-04242.png -images-04243.png -images-04244.png -images-04245.png -images-04246.png -images-04247.png -images-04248.png -images-04249.png -images-04250.png -images-04251.png -images-04252.png -images-04253.png -images-04254.png -images-04255.png -images-04256.png -images-04257.png -images-04258.png -images-04259.png -images-04260.png -images-04261.png -images-04262.png -images-04263.png -images-04264.png -images-04265.png -images-04266.png -images-04267.png -images-04268.png -images-04269.png -images-04270.png -images-04271.png -images-04272.png -images-04273.png -images-04274.png -images-04275.png -images-04276.png -images-04277.png -images-04278.png -images-04279.png -images-04280.png -images-04281.png -images-04282.png -images-04283.png -images-04284.png -images-04285.png -images-04286.png -images-04287.png -images-04288.png -images-04289.png -images-04290.png -images-04291.png -images-04292.png -images-04293.png -images-04294.png -images-04295.png -images-04296.png -images-04297.png -images-04298.png -images-04299.png -images-04300.png -images-04301.png -images-04302.png -images-04303.png -images-04304.png -images-04305.png -images-04306.png -images-04307.png -images-04308.png -images-04309.png -images-04310.png -images-04311.png -images-04312.png -images-04313.png -images-04314.png -images-04315.png -images-04316.png -images-04317.png -images-04318.png -images-04319.png -images-04320.png -images-04321.png -images-04322.png -images-04323.png -images-04324.png -images-04325.png -images-04326.png -images-04327.png -images-04328.png -images-04329.png -images-04330.png -images-04331.png -images-04332.png -images-04333.png -images-04334.png -images-04335.png -images-04336.png -images-04337.png -images-04338.png -images-04339.png -images-04340.png -images-04341.png -images-04342.png -images-04343.png -images-04344.png -images-04345.png -images-04346.png -images-04347.png -images-04348.png -images-04349.png -images-04350.png -images-04351.png -images-04352.png -images-04353.png -images-04354.png -images-04355.png -images-04356.png -images-04357.png -images-04358.png -images-04359.png -images-04360.png -images-04361.png -images-04362.png -images-04363.png -images-04364.png -images-04365.png -images-04366.png -images-04367.png -images-04368.png -images-04369.png -images-04370.png -images-04371.png -images-04372.png -images-04373.png -images-04374.png -images-04375.png -images-04376.png -images-04377.png -images-04378.png -images-04379.png -images-04380.png -images-04381.png -images-04382.png -images-04383.png -images-04384.png -images-04385.png -images-04386.png -images-04387.png -images-04388.png -images-04389.png -images-04390.png -images-04391.png -images-04392.png -images-04393.png -images-04394.png -images-04395.png -images-04396.png -images-04397.png -images-04398.png -images-04399.png -images-04400.png -images-04401.png -images-04402.png -images-04403.png -images-04404.png -images-04405.png -images-04406.png -images-04407.png -images-04408.png -images-04409.png -images-04410.png -images-04411.png -images-04412.png -images-04413.png -images-04414.png -images-04415.png -images-04416.png -images-04417.png -images-04418.png -images-04419.png -images-04420.png -images-04421.png -images-04422.png -images-04423.png -images-04424.png -images-04425.png -images-04426.png -images-04427.png -images-04428.png -images-04429.png -images-04430.png -images-04431.png -images-04432.png -images-04433.png -images-04434.png -images-04435.png -images-04436.png -images-04437.png -images-04438.png -images-04439.png -images-04440.png -images-04441.png -images-04442.png -images-04443.png -images-04444.png -images-04445.png -images-04446.png -images-04447.png -images-04448.png -images-04449.png -images-04450.png -images-04451.png -images-04452.png -images-04453.png -images-04454.png -images-04455.png -images-04456.png -images-04457.png -images-04458.png -images-04459.png -images-04460.png -images-04461.png -images-04462.png -images-04463.png -images-04464.png -images-04465.png -images-04466.png -images-04467.png -images-04468.png -images-04469.png -images-04470.png -images-04471.png -images-04472.png -images-04473.png -images-04474.png -images-04475.png -images-04476.png -images-04477.png -images-04478.png -images-04479.png -images-04480.png -images-04481.png -images-04482.png -images-04483.png -images-04484.png -images-04485.png -images-04486.png -images-04487.png -images-04488.png -images-04489.png -images-04490.png -images-04491.png -images-04492.png -images-04493.png -images-04494.png -images-04495.png -images-04496.png -images-04497.png -images-04498.png -images-04499.png -images-04500.png -images-04501.png -images-04502.png -images-04503.png -images-04504.png -images-04505.png -images-04506.png -images-04507.png -images-04508.png -images-04509.png -images-04510.png -images-04511.png -images-04512.png -images-04513.png -images-04514.png -images-04515.png -images-04516.png -images-04517.png -images-04518.png -images-04519.png -images-04520.png -images-04521.png -images-04522.png -images-04523.png -images-04524.png -images-04525.png -images-04526.png -images-04527.png -images-04528.png -images-04529.png -images-04530.png -images-04531.png -images-04532.png -images-04533.png -images-04534.png -images-04535.png -images-04536.png -images-04537.png -images-04538.png -images-04539.png -images-04540.png -images-04541.png -images-04542.png -images-04543.png -images-04544.png -images-04545.png -images-04546.png -images-04547.png -images-04548.png -images-04549.png -images-04550.png -images-04551.png -images-04552.png -images-04553.png -images-04554.png -images-04555.png -images-04556.png -images-04557.png -images-04558.png -images-04559.png -images-04560.png -images-04561.png -images-04562.png -images-04563.png -images-04564.png -images-04565.png -images-04566.png -images-04567.png -images-04568.png -images-04569.png -images-04570.png -images-04571.png -images-04572.png -images-04573.png -images-04574.png -images-04575.png -images-04576.png -images-04577.png -images-04578.png -images-04579.png -images-04580.png -images-04581.png -images-04582.png -images-04583.png -images-04584.png -images-04585.png -images-04586.png -images-04587.png -images-04588.png -images-04589.png -images-04590.png -images-04591.png -images-04592.png -images-04593.png -images-04594.png -images-04595.png -images-04596.png -images-04597.png -images-04598.png -images-04599.png -images-04600.png -images-04601.png -images-04602.png -images-04603.png -images-04604.png -images-04605.png -images-04606.png -images-04607.png -images-04608.png -images-04609.png -images-04610.png -images-04611.png -images-04612.png -images-04613.png -images-04614.png -images-04615.png -images-04616.png -images-04617.png -images-04618.png -images-04619.png -images-04620.png -images-04621.png -images-04622.png -images-04623.png -images-04624.png -images-04625.png -images-04626.png -images-04627.png -images-04628.png -images-04629.png -images-04630.png -images-04631.png -images-04632.png -images-04633.png -images-04634.png -images-04635.png -images-04636.png -images-04637.png -images-04638.png -images-04639.png -images-04640.png -images-04641.png -images-04642.png -images-04643.png -images-04644.png -images-04645.png -images-04646.png -images-04647.png -images-04648.png -images-04649.png -images-04650.png -images-04651.png -images-04652.png -images-04653.png -images-04654.png -images-04655.png -images-04656.png -images-04657.png -images-04658.png -images-04659.png -images-04660.png -images-04661.png -images-04662.png -images-04663.png -images-04664.png -images-04665.png -images-04666.png -images-04667.png -images-04668.png -images-04669.png -images-04670.png -images-04671.png -images-04672.png -images-04673.png -images-04674.png -images-04675.png -images-04676.png -images-04677.png -images-04678.png -images-04679.png -images-04680.png -images-04681.png -images-04682.png -images-04683.png -images-04684.png -images-04685.png -images-04686.png -images-04687.png -images-04688.png -images-04689.png -images-04690.png -images-04691.png -images-04692.png -images-04693.png -images-04694.png -images-04695.png -images-04696.png -images-04697.png -images-04698.png -images-04699.png -images-04700.png -images-04701.png -images-04702.png -images-04703.png -images-04704.png -images-04705.png -images-04706.png -images-04707.png -images-04708.png -images-04709.png -images-04710.png -images-04711.png -images-04712.png -images-04713.png -images-04714.png -images-04715.png -images-04716.png -images-04717.png -images-04718.png -images-04719.png -images-04720.png -images-04721.png -images-04722.png -images-04723.png -images-04724.png -images-04725.png -images-04726.png -images-04727.png -images-04728.png -images-04729.png -images-04730.png -images-04731.png -images-04732.png -images-04733.png -images-04734.png -images-04735.png -images-04736.png -images-04737.png -images-04738.png -images-04739.png -images-04740.png -images-04741.png -images-04742.png -images-04743.png -images-04744.png -images-04745.png -images-04746.png -images-04747.png -images-04748.png -images-04749.png -images-04750.png -images-04751.png -images-04752.png -images-04753.png -images-04754.png -images-04755.png -images-04756.png -images-04757.png -images-04758.png -images-04759.png -images-04760.png -images-04761.png -images-04762.png -images-04763.png -images-04764.png -images-04765.png -images-04766.png -images-04767.png -images-04768.png -images-04769.png -images-04770.png -images-04771.png -images-04772.png -images-04773.png -images-04774.png -images-04775.png -images-04776.png -images-04777.png -images-04778.png -images-04779.png -images-04780.png -images-04781.png -images-04782.png -images-04783.png -images-04784.png -images-04785.png -images-04786.png -images-04787.png -images-04788.png -images-04789.png -images-04790.png -images-04791.png -images-04792.png -images-04793.png -images-04794.png -images-04795.png -images-04796.png -images-04797.png -images-04798.png -images-04799.png -images-04800.png -images-04801.png -images-04802.png -images-04803.png -images-04804.png -images-04805.png -images-04806.png -images-04807.png -images-04808.png -images-04809.png -images-04810.png -images-04811.png -images-04812.png -images-04813.png -images-04814.png -images-04815.png -images-04816.png -images-04817.png -images-04818.png -images-04819.png -images-04820.png -images-04821.png -images-04822.png -images-04823.png -images-04824.png -images-04825.png -images-04826.png -images-04827.png -images-04828.png -images-04829.png -images-04830.png -images-04831.png -images-04832.png -images-04833.png -images-04834.png -images-04835.png -images-04836.png -images-04837.png -images-04838.png -images-04839.png -images-04840.png -images-04841.png -images-04842.png -images-04843.png -images-04844.png -images-04845.png -images-04846.png -images-04847.png -images-04848.png -images-04849.png -images-04850.png -images-04851.png -images-04852.png -images-04853.png -images-04854.png -images-04855.png -images-04856.png -images-04857.png -images-04858.png -images-04859.png -images-04860.png -images-04861.png -images-04862.png -images-04863.png -images-04864.png -images-04865.png -images-04866.png -images-04867.png -images-04868.png -images-04869.png -images-04870.png -images-04871.png -images-04872.png -images-04873.png -images-04874.png -images-04875.png -images-04876.png -images-04877.png -images-04878.png -images-04879.png -images-04880.png -images-04881.png -images-04882.png -images-04883.png -images-04884.png -images-04885.png -images-04886.png -images-04887.png -images-04888.png -images-04889.png -images-04890.png -images-04891.png -images-04892.png -images-04893.png -images-04894.png -images-04895.png -images-04896.png -images-04897.png -images-04898.png -images-04899.png -images-04900.png -images-04901.png -images-04902.png -images-04903.png -images-04904.png -images-04905.png -images-04906.png -images-04907.png -images-04908.png -images-04909.png -images-04910.png -images-04911.png -images-04912.png -images-04913.png -images-04914.png -images-04915.png -images-04916.png -images-04917.png -images-04918.png -images-04919.png -images-04920.png -images-04921.png -images-04922.png -images-04923.png -images-04924.png -images-04925.png -images-04926.png -images-04927.png -images-04928.png -images-04929.png -images-04930.png -images-04931.png -images-04932.png -images-04933.png -images-04934.png -images-04935.png -images-04936.png -images-04937.png -images-04938.png -images-04939.png -images-04940.png -images-04941.png -images-04942.png -images-04943.png -images-04944.png -images-04945.png -images-04946.png -images-04947.png -images-04948.png -images-04949.png -images-04950.png -images-04951.png -images-04952.png -images-04953.png -images-04954.png -images-04955.png -images-04956.png -images-04957.png -images-04958.png -images-04959.png -images-04960.png -images-04961.png -images-04962.png -images-04963.png -images-04964.png -images-04965.png -images-04966.png -images-04967.png -images-04968.png -images-04969.png -images-04970.png -images-04971.png -images-04972.png -images-04973.png -images-04974.png -images-04975.png -images-04976.png -images-04977.png -images-04978.png -images-04979.png -images-04980.png -images-04981.png -images-04982.png -images-04983.png -images-04984.png -images-04985.png -images-04986.png -images-04987.png -images-04988.png -images-04989.png -images-04990.png -images-04991.png -images-04992.png -images-04993.png -images-04994.png -images-04995.png -images-04996.png -images-04997.png -images-04998.png -images-04999.png -images-05000.png -images-05001.png -images-05002.png -images-05003.png -images-05004.png -images-05005.png -images-05006.png -images-05007.png -images-05008.png -images-05009.png -images-05010.png -images-05011.png -images-05012.png -images-05013.png -images-05014.png -images-05015.png -images-05016.png -images-05017.png -images-05018.png -images-05019.png -images-05020.png -images-05021.png -images-05022.png -images-05023.png -images-05024.png -images-05025.png -images-05026.png -images-05027.png -images-05028.png -images-05029.png -images-05030.png -images-05031.png -images-05032.png -images-05033.png -images-05034.png -images-05035.png -images-05036.png -images-05037.png -images-05038.png -images-05039.png -images-05040.png -images-05479.png -images-05480.png -images-05481.png -images-05482.png -images-05483.png -images-05484.png -images-05485.png -images-05486.png -images-05487.png -images-05488.png -images-05489.png -images-05490.png -images-05491.png -images-05492.png -images-05493.png -images-05494.png -images-05495.png -images-05496.png -images-05497.png -images-05498.png -images-05499.png -images-05500.png -images-05501.png -images-05502.png -images-05503.png -images-05504.png -images-05505.png -images-05506.png -images-05507.png -images-05508.png -images-05509.png -images-05510.png -images-05511.png -images-05512.png -images-05513.png -images-05514.png -images-05515.png -images-05516.png -images-05517.png -images-05518.png -images-05519.png -images-05520.png -images-05521.png -images-05522.png -images-05523.png -images-05524.png -images-05525.png -images-05526.png -images-05527.png -images-05528.png -images-05529.png -images-05530.png -images-05531.png -images-05532.png -images-05533.png -images-05534.png -images-05535.png -images-05536.png -images-05537.png -images-05538.png -images-05539.png -images-05540.png -images-05541.png -images-05542.png -images-05543.png -images-05544.png -images-05545.png -images-05546.png -images-05547.png -images-05548.png -images-05549.png -images-05550.png -images-05551.png -images-05552.png -images-05553.png -images-05554.png -images-05555.png -images-05556.png -images-05557.png -images-05558.png -images-05559.png -images-05560.png -images-05561.png -images-05562.png -images-05563.png -images-05564.png -images-05565.png -images-05566.png -images-05567.png -images-05568.png -images-05569.png -images-05570.png -images-05571.png -images-05572.png -images-05573.png -images-05574.png -images-05575.png -images-05576.png -images-05577.png -images-05578.png -images-05579.png -images-05580.png -images-05581.png -images-05582.png -images-05583.png -images-05584.png -images-05585.png -images-05586.png -images-05587.png -images-05588.png -images-05589.png -images-05590.png -images-05591.png -images-05592.png -images-05593.png -images-05594.png -images-05595.png -images-05596.png -images-05597.png -images-05598.png -images-05599.png -images-05600.png -images-05601.png -images-05602.png -images-05603.png -images-05604.png -images-05605.png -images-05606.png -images-05607.png -images-05608.png -images-05609.png -images-05610.png -images-05611.png -images-05612.png -images-05613.png -images-05614.png -images-05615.png -images-05616.png -images-05617.png -images-05618.png -images-05619.png -images-05620.png -images-05621.png -images-05622.png -images-05623.png -images-05624.png -images-05625.png -images-05626.png -images-05627.png -images-05628.png -images-05629.png -images-05630.png -images-05631.png -images-05632.png -images-05633.png -images-05634.png -images-05635.png -images-05636.png -images-05637.png -images-05638.png -images-05639.png -images-05640.png -images-05641.png -images-05642.png -images-05643.png -images-05644.png -images-05645.png -images-05646.png -images-05647.png -images-05648.png -images-05649.png -images-05650.png -images-05651.png -images-05652.png -images-05653.png -images-05654.png -images-05655.png -images-05656.png -images-05657.png -images-05658.png -images-05659.png -images-05660.png -images-05661.png -images-05662.png -images-05663.png -images-05664.png -images-05665.png -images-05666.png -images-05667.png -images-05668.png -images-05669.png -images-05670.png -images-05671.png -images-05672.png -images-05673.png -images-05674.png -images-05675.png -images-05676.png -images-05677.png -images-05678.png -images-05679.png -images-05680.png -images-05681.png -images-05682.png -images-05683.png -images-05684.png -images-05685.png -images-05686.png -images-05687.png -images-05688.png -images-05689.png -images-05690.png -images-05691.png -images-05692.png -images-05693.png -images-05694.png -images-05695.png -images-05696.png -images-05697.png -images-05698.png -images-05699.png -images-05700.png -images-05701.png -images-05702.png -images-05703.png -images-05704.png -images-05705.png -images-05706.png -images-05707.png -images-05708.png -images-05709.png -images-05710.png -images-05711.png -images-05712.png -images-05713.png -images-05714.png -images-05715.png -images-05716.png -images-05717.png -images-05718.png -images-05719.png -images-05720.png -images-05721.png -images-05722.png -images-05723.png -images-05724.png -images-05725.png -images-05726.png -images-05727.png -images-05728.png -images-05729.png -images-05730.png -images-05731.png -images-05732.png -images-05733.png -images-05734.png -images-05735.png -images-05736.png -images-05737.png -images-05738.png -images-05739.png -images-05740.png -images-05741.png -images-05742.png -images-05743.png -images-05744.png -images-05745.png -images-05746.png -images-05747.png -images-05748.png -images-05749.png -images-05750.png -images-05751.png -images-05752.png -images-05753.png -images-05754.png -images-05755.png -images-05756.png -images-05757.png -images-05758.png -images-05759.png -images-05760.png -images-05761.png -images-05762.png -images-05763.png -images-05764.png -images-05765.png -images-05766.png -images-05767.png -images-05768.png -images-05769.png -images-05770.png -images-05771.png -images-05772.png -images-05773.png -images-05774.png -images-05775.png -images-05776.png -images-05777.png -images-05778.png -images-05779.png -images-05780.png -images-05781.png -images-05782.png -images-05783.png -images-05784.png -images-05785.png -images-05786.png -images-05787.png -images-05788.png -images-05789.png -images-05790.png -images-05791.png -images-05792.png -images-05793.png -images-05794.png -images-05795.png -images-05796.png -images-05797.png -images-05798.png -images-05799.png -images-05800.png -images-05801.png -images-05802.png -images-05803.png -images-05804.png -images-05805.png -images-05806.png -images-05807.png -images-05808.png -images-05809.png -images-05810.png -images-05811.png -images-05812.png -images-05813.png -images-05814.png -images-05815.png -images-05816.png -images-05817.png -images-05818.png -images-05819.png -images-05820.png -images-05821.png -images-05822.png -images-05823.png -images-05824.png -images-05825.png -images-05826.png -images-05827.png -images-05828.png -images-05829.png -images-05830.png -images-05831.png -images-05832.png -images-05833.png -images-05834.png -images-05835.png -images-05836.png -images-05837.png -images-05838.png -images-05839.png -images-05840.png -images-05841.png -images-05842.png -images-05843.png -images-05844.png -images-05845.png -images-05846.png -images-05847.png -images-05848.png -images-05849.png -images-05850.png -images-05851.png -images-05852.png -images-05853.png -images-05854.png -images-05855.png -images-05856.png -images-05857.png -images-05858.png -images-05859.png -images-05860.png -images-05861.png -images-05862.png -images-05863.png -images-05864.png -images-05865.png -images-05866.png -images-05867.png -images-05868.png -images-05869.png -images-05870.png -images-05871.png -images-05872.png -images-05873.png -images-05874.png -images-05875.png -images-05876.png -images-05877.png -images-05878.png -images-05879.png -images-05880.png -images-05881.png -images-05882.png -images-05883.png -images-05884.png -images-05885.png -images-05886.png -images-05887.png -images-05888.png -images-05889.png -images-05890.png -images-05891.png -images-05892.png -images-05893.png -images-05894.png -images-05895.png -images-05896.png -images-05897.png -images-05898.png -images-05899.png -images-05900.png -images-05901.png -images-05902.png -images-05903.png -images-05904.png -images-05905.png -images-05906.png -images-05907.png -images-05908.png -images-05909.png -images-05910.png -images-05911.png -images-05912.png -images-05913.png -images-05914.png -images-05915.png -images-05916.png -images-05917.png -images-05918.png -images-05919.png -images-05920.png -images-05921.png -images-05922.png -images-05923.png -images-05924.png -images-05925.png -images-05926.png -images-05927.png -images-05928.png -images-05929.png -images-05930.png -images-05931.png -images-05932.png -images-05933.png -images-05934.png -images-05935.png -images-05936.png -images-05937.png -images-05938.png -images-05939.png -images-05940.png -images-05941.png -images-05942.png -images-05943.png -images-05944.png -images-05945.png -images-05946.png -images-05947.png -images-05948.png -images-05949.png -images-05950.png -images-05951.png -images-05952.png -images-05953.png -images-05954.png -images-05955.png -images-05956.png -images-05957.png -images-05958.png -images-05959.png -images-05960.png -images-05961.png -images-05962.png -images-05963.png -images-05964.png -images-05965.png -images-05966.png -images-05967.png -images-05968.png -images-05969.png -images-05970.png -images-05971.png -images-05972.png -images-05973.png -images-05974.png -images-05975.png -images-05976.png -images-05977.png -images-05978.png -images-05979.png -images-05980.png -images-05981.png -images-05982.png -images-05983.png -images-05984.png -images-05985.png -images-05986.png -images-05987.png -images-05988.png -images-05989.png -images-05990.png -images-05991.png -images-05992.png -images-05993.png -images-05994.png -images-05995.png -images-05996.png -images-05997.png -images-05998.png -images-05999.png -images-06000.png -images-06001.png -images-06002.png -images-06003.png -images-06004.png -images-06005.png -images-06006.png -images-06007.png -images-06008.png -images-06009.png -images-06010.png -images-06011.png -images-06012.png -images-06013.png -images-06014.png -images-06015.png -images-06016.png -images-06017.png -images-06018.png -images-06019.png -images-06020.png -images-06021.png -images-06022.png -images-06023.png -images-06024.png -images-06025.png -images-06026.png -images-06027.png -images-06028.png -images-06029.png -images-06030.png -images-06031.png -images-06032.png -images-06033.png -images-06034.png -images-06035.png -images-06036.png -images-06037.png -images-06038.png -images-06039.png -images-06040.png -images-06041.png -images-06042.png -images-06043.png -images-06234.png -images-06235.png -images-06236.png -images-06237.png -images-06238.png -images-06239.png -images-06240.png -images-06241.png -images-06242.png -images-06243.png -images-06244.png -images-06245.png -images-06246.png -images-06247.png -images-06248.png -images-06249.png -images-06250.png -images-06251.png -images-06252.png -images-06253.png -images-06254.png -images-06255.png -images-06256.png -images-06257.png -images-06258.png -images-06259.png -images-06260.png -images-06261.png -images-06262.png -images-06263.png -images-06264.png -images-06265.png -images-06266.png -images-06267.png -images-06268.png -images-06269.png -images-06270.png -images-06271.png -images-06272.png -images-06273.png -images-06274.png -images-06275.png -images-06276.png -images-06277.png -images-06278.png -images-06279.png -images-06280.png -images-06281.png -images-06282.png -images-06283.png -images-06284.png -images-06285.png -images-06286.png -images-06287.png -images-06288.png -images-06289.png -images-06290.png -images-06291.png -images-06292.png -images-06293.png -images-06294.png -images-06295.png -images-06296.png -images-06297.png -images-06298.png -images-06299.png -images-06300.png -images-06301.png -images-06302.png -images-06303.png -images-06304.png -images-06305.png -images-06306.png -images-06307.png -images-06308.png -images-06309.png -images-06310.png -images-06311.png -images-06312.png -images-06313.png -images-06314.png -images-06315.png -images-06316.png -images-06317.png -images-06318.png -images-06319.png -images-06320.png -images-06321.png -images-06322.png -images-06323.png -images-06324.png -images-06325.png -images-06326.png -images-06327.png -images-06328.png -images-06329.png -images-06330.png -images-06331.png -images-06332.png -images-06333.png -images-06334.png -images-06335.png -images-06336.png -images-06337.png -images-06338.png -images-06339.png -images-06340.png -images-06341.png -images-06342.png -images-06343.png -images-06344.png -images-06345.png -images-06346.png -images-06347.png -images-06348.png -images-06349.png -images-06350.png -images-06351.png -images-06352.png -images-06353.png -images-06354.png -images-06355.png -images-06356.png -images-06357.png -images-06358.png -images-06359.png -images-06360.png -images-06361.png -images-06362.png -images-06363.png -images-06364.png -images-06365.png -images-06366.png -images-06367.png -images-06368.png -images-06369.png -images-06370.png -images-06371.png -images-06372.png -images-06373.png -images-06374.png -images-06375.png -images-06376.png -images-06377.png -images-06378.png -images-06379.png -images-06380.png -images-06381.png -images-06382.png -images-06383.png -images-06384.png -images-06385.png -images-06386.png -images-06387.png -images-06388.png -images-06389.png -images-06390.png -images-06391.png -images-06392.png -images-06393.png -images-06394.png -images-06395.png -images-06396.png -images-06397.png -images-06398.png -images-06399.png -images-06400.png -images-06401.png -images-06402.png -images-06403.png -images-06404.png -images-06405.png -images-06406.png -images-06407.png -images-06408.png -images-06409.png -images-06410.png -images-06411.png -images-06412.png -images-06413.png -images-06414.png -images-06415.png -images-06416.png -images-06417.png -images-06418.png -images-06419.png -images-06420.png -images-06421.png -images-06422.png -images-06423.png -images-06424.png -images-06425.png -images-06426.png -images-06427.png -images-06428.png -images-06429.png -images-06430.png -images-06431.png -images-06432.png -images-06433.png -images-06434.png -images-06435.png -images-06436.png -images-06437.png -images-06438.png -images-06439.png -images-06440.png -images-06441.png -images-06442.png -images-06443.png -images-06444.png -images-06445.png -images-06446.png -images-06447.png -images-06448.png -images-06449.png -images-06450.png -images-06451.png -images-06452.png -images-06453.png -images-06454.png -images-06455.png -images-06456.png -images-06457.png -images-06458.png -images-06459.png -images-06460.png -images-06461.png -images-06462.png -images-06463.png -images-06464.png -images-06465.png -images-06466.png -images-06467.png -images-06468.png -images-06469.png -images-06470.png -images-06471.png -images-06472.png -images-06473.png -images-06474.png -images-06475.png -images-06476.png -images-06477.png -images-06478.png -images-06479.png -images-06480.png -images-06481.png -images-06482.png -images-06483.png -images-06484.png -images-06485.png -images-06486.png -images-06487.png -images-06488.png -images-06489.png -images-06490.png -images-06491.png -images-06492.png -images-06493.png -images-06494.png -images-06495.png -images-06496.png -images-06497.png -images-06498.png -images-06499.png -images-06500.png -images-06506.png -images-06507.png -images-06508.png -images-06509.png -images-06510.png -images-06511.png -images-06512.png -images-06513.png -images-06514.png -images-06515.png -images-06516.png -images-06517.png -images-06518.png -images-06519.png -images-06520.png -images-06521.png -images-06522.png -images-06523.png -images-06524.png -images-06525.png -images-06526.png -images-06527.png -images-06528.png -images-06529.png -images-06530.png -images-06531.png -images-06532.png -images-06533.png -images-06534.png -images-06535.png -images-06536.png -images-06537.png -images-06538.png -images-06539.png -images-06540.png -images-06541.png -images-06542.png -images-06543.png -images-06544.png -images-06545.png -images-06546.png -images-06547.png -images-06548.png -images-06549.png -images-06550.png -images-06551.png -images-06552.png -images-06553.png -images-06554.png -images-06555.png -images-06556.png -images-06557.png -images-06558.png -images-06559.png -images-06560.png -images-06561.png -images-06562.png -images-06563.png -images-06564.png -images-06565.png -images-06566.png -images-06567.png -images-06568.png -images-06569.png -images-06570.png -images-06571.png -images-06572.png -images-06573.png -images-06574.png -images-06575.png -images-06576.png -images-06577.png -images-06578.png -images-06579.png -images-06580.png -images-06581.png -images-06582.png -images-06583.png -images-06584.png -images-06585.png -images-06586.png -images-06587.png -images-06588.png -images-06589.png -images-06590.png -images-06591.png -images-06592.png -images-06593.png -images-06594.png -images-06595.png -images-06596.png -images-06597.png -images-06598.png -images-06599.png -images-06600.png -images-06601.png -images-06602.png -images-06603.png -images-06604.png -images-06605.png -images-06606.png -images-06607.png -images-06608.png -images-06609.png -images-06610.png -images-06611.png -images-06612.png -images-06613.png -images-06614.png -images-06615.png -images-06616.png -images-06617.png -images-06618.png -images-06619.png -images-06620.png -images-06621.png -images-06622.png -images-06623.png -images-06624.png -images-06625.png -images-06626.png -images-06627.png -images-06628.png -images-06629.png -images-06630.png -images-06631.png -images-06632.png -images-06633.png -images-06634.png -images-06635.png -images-06636.png -images-06637.png -images-06638.png -images-06639.png -images-06640.png -images-06641.png -images-06642.png -images-06643.png -images-06644.png -images-06645.png -images-06646.png -images-06647.png -images-06648.png -images-06649.png -images-06650.png -images-06651.png -images-06652.png -images-06653.png -images-06654.png -images-06655.png -images-06656.png -images-06657.png -images-06658.png -images-06659.png -images-06660.png -images-06661.png -images-06662.png -images-06663.png -images-06664.png -images-06665.png -images-06666.png -images-06667.png -images-06668.png -images-06669.png -images-06670.png -images-06671.png -images-06672.png -images-06673.png -images-06674.png -images-06675.png -images-06676.png -images-06677.png -images-06678.png -images-06679.png -images-06680.png -images-06681.png -images-06682.png -images-06683.png -images-06684.png -images-06685.png -images-06686.png -images-06687.png -images-06688.png -images-06689.png -images-06690.png -images-06691.png -images-06692.png -images-06693.png -images-06694.png -images-06695.png -images-06696.png -images-06697.png -images-06698.png -images-06699.png -images-06700.png -images-06701.png -images-06702.png -images-06703.png -images-06704.png -images-06705.png -images-06706.png -images-06707.png -images-06708.png -images-06709.png -images-06710.png -images-06711.png -images-06712.png -images-06713.png -images-06714.png -images-06715.png -images-06716.png -images-06717.png -images-06718.png -images-06719.png -images-06720.png -images-06721.png -images-06722.png -images-06723.png -images-06724.png -images-06725.png -images-06726.png -images-06727.png -images-06728.png -images-06729.png -images-06730.png -images-06731.png -images-06732.png -images-06733.png -images-06734.png -images-06735.png -images-06736.png -images-06737.png -images-06738.png -images-06739.png -images-06740.png -images-06741.png -images-06742.png -images-06743.png -images-06744.png -images-06745.png -images-06746.png -images-06747.png -images-06748.png -images-06749.png -images-06750.png -images-06751.png -images-06752.png -images-06753.png -images-06754.png -images-06755.png -images-06773.png -images-06774.png -images-06775.png -images-06776.png -images-06777.png -images-06778.png -images-06779.png -images-06780.png -images-06781.png -images-06782.png -images-06783.png -images-06784.png -images-06785.png -images-06786.png -images-06787.png -images-06788.png -images-06789.png -images-06790.png -images-06791.png -images-06792.png -images-06793.png -images-06794.png -images-06795.png -images-06796.png -images-06797.png -images-06798.png -images-06799.png -images-06800.png -images-06801.png -images-06802.png -images-06803.png -images-06804.png -images-06805.png -images-06806.png -images-06807.png -images-06808.png -images-06809.png -images-06810.png -images-06811.png -images-06812.png -images-06813.png -images-06814.png -images-06815.png -images-06816.png -images-06817.png -images-06818.png -images-06819.png -images-06820.png -images-06821.png -images-06822.png -images-06823.png -images-06824.png -images-06825.png -images-06826.png -images-06827.png -images-06828.png -images-06829.png -images-06830.png -images-06831.png -images-06832.png -images-06833.png -images-06834.png -images-06835.png -images-06836.png -images-06837.png -images-06838.png -images-06839.png -images-06840.png -images-06841.png -images-06842.png -images-06843.png -images-06844.png -images-06845.png -images-06846.png -images-06847.png -images-06848.png -images-06849.png -images-06850.png -images-06851.png -images-06852.png -images-06853.png -images-06854.png -images-06855.png -images-06856.png -images-06857.png -images-06858.png -images-06859.png -images-06860.png -images-06861.png -images-06862.png -images-06863.png -images-06864.png -images-06865.png -images-06866.png -images-06867.png -images-06868.png -images-06869.png -images-06870.png -images-06871.png -images-06872.png -images-06873.png -images-06874.png -images-06875.png -images-06876.png -images-06877.png -images-06878.png -images-06879.png -images-06880.png -images-06881.png -images-06882.png -images-06883.png -images-06884.png -images-06885.png -images-06886.png -images-06887.png -images-06888.png -images-06889.png -images-06890.png -images-06891.png -images-06892.png -images-06893.png -images-06894.png -images-06895.png -images-06896.png -images-06897.png -images-06898.png -images-06899.png -images-06900.png -images-06901.png -images-06902.png -images-06903.png -images-06904.png -images-06905.png -images-06906.png -images-06907.png -images-06908.png -images-06909.png -images-06910.png -images-06911.png -images-06912.png -images-06913.png -images-06914.png -images-06915.png -images-06916.png -images-06917.png -images-06918.png -images-06919.png -images-06920.png -images-06921.png -images-06922.png -images-06923.png -images-06924.png -images-06925.png -images-06926.png -images-06927.png -images-06928.png -images-06929.png -images-06930.png -images-06931.png -images-06932.png -images-06933.png -images-06934.png -images-06935.png -images-06936.png -images-06937.png -images-06938.png -images-06939.png -images-06940.png -images-06941.png -images-06942.png -images-06943.png -images-06944.png -images-06945.png -images-06946.png -images-06947.png -images-06948.png -images-06949.png -images-06950.png -images-06951.png -images-06952.png -images-06953.png -images-06954.png -images-06955.png -images-06956.png -images-06957.png -images-06958.png -images-06959.png -images-06960.png -images-06961.png -images-06962.png -images-06963.png -images-06964.png -images-06965.png -images-06966.png -images-06967.png -images-06968.png -images-06969.png -images-06970.png -images-06971.png -images-06972.png -images-06973.png -images-06974.png -images-06975.png -images-06976.png -images-06977.png -images-06978.png -images-06979.png -images-06980.png -images-06981.png -images-06982.png -images-06983.png -images-06984.png -images-06985.png -images-06986.png -images-06987.png -images-06988.png -images-06989.png -images-06990.png -images-06991.png -images-06992.png -images-06993.png -images-06994.png -images-06995.png -images-06996.png -images-06997.png -images-06998.png -images-06999.png -images-07000.png -images-07001.png -images-07002.png -images-07003.png -images-07004.png -images-07005.png -images-07006.png -images-07007.png -images-07008.png -images-07009.png -images-07010.png -images-07011.png -images-07012.png -images-07013.png -images-07014.png -images-07015.png -images-07016.png -images-07017.png -images-07018.png -images-07019.png -images-07020.png -images-07021.png -images-07022.png -images-07023.png -images-07024.png -images-07025.png -images-07026.png -images-07027.png -images-07028.png -images-07029.png -images-07030.png -images-07031.png -images-07032.png -images-07033.png -images-07034.png -images-07035.png -images-07036.png -images-07037.png -images-07038.png -images-07039.png -images-07040.png -images-07041.png -images-07042.png -images-07043.png -images-07044.png -images-07045.png -images-07046.png -images-07047.png -images-07048.png -images-07049.png -images-07050.png -images-07051.png -images-07052.png -images-07053.png -images-07054.png -images-07055.png -images-07056.png -images-07057.png -images-07058.png -images-07296.png -images-07297.png -images-07298.png -images-07299.png -images-07300.png -images-07301.png -images-07302.png -images-07303.png -images-07304.png -images-07305.png -images-07306.png -images-07307.png -images-07308.png -images-07309.png -images-07310.png -images-07311.png -images-07312.png -images-07313.png -images-07314.png -images-07315.png -images-07316.png -images-07317.png -images-07318.png -images-07319.png -images-07320.png -images-07321.png -images-07322.png -images-07323.png -images-07324.png -images-07325.png -images-07326.png -images-07327.png -images-07328.png -images-07329.png -images-07330.png -images-07331.png -images-07332.png -images-07333.png -images-07334.png -images-07335.png -images-07336.png -images-07337.png -images-07338.png -images-07339.png -images-07340.png -images-07341.png -images-07342.png -images-07343.png -images-07344.png -images-07345.png -images-07346.png -images-07347.png -images-07348.png -images-07349.png -images-07350.png -images-07351.png -images-07352.png -images-07353.png -images-07354.png -images-07355.png -images-07356.png -images-07357.png -images-07358.png -images-07359.png -images-07360.png -images-07361.png -images-07362.png -images-07363.png -images-07364.png -images-07365.png -images-07366.png -images-07367.png -images-07368.png -images-07369.png -images-07370.png -images-07371.png -images-07372.png -images-07373.png -images-07374.png -images-07375.png -images-07376.png -images-07377.png -images-07378.png -images-07379.png -images-07380.png -images-07381.png -images-07382.png -images-07383.png -images-07384.png -images-07385.png -images-07386.png -images-07387.png -images-07388.png -images-07389.png -images-07390.png -images-07391.png -images-07392.png -images-07393.png -images-07394.png -images-07395.png -images-07396.png -images-07397.png -images-07398.png -images-07399.png -images-07400.png -images-07401.png -images-07402.png -images-07403.png -images-07404.png -images-07405.png -images-07406.png -images-07407.png -images-07408.png -images-07409.png -images-07410.png -images-07411.png -images-07412.png -images-07413.png -images-07414.png -images-07415.png -images-07416.png -images-07417.png -images-07418.png -images-07419.png -images-07420.png -images-07421.png -images-07422.png -images-07423.png -images-07424.png -images-07425.png -images-07426.png -images-07427.png -images-07428.png -images-07429.png -images-07430.png -images-07431.png -images-07432.png -images-07433.png -images-07434.png -images-07435.png -images-07436.png -images-07437.png -images-07438.png -images-07439.png -images-07440.png -images-07441.png -images-07442.png -images-07443.png -images-07444.png -images-07445.png -images-07446.png -images-07447.png -images-07448.png -images-07449.png -images-07450.png -images-07451.png -images-07452.png -images-07453.png -images-07454.png -images-07455.png -images-07456.png -images-07457.png -images-07458.png -images-07459.png -images-07460.png -images-07461.png -images-07462.png -images-07463.png -images-07464.png -images-07465.png -images-07466.png -images-07467.png -images-07468.png -images-07469.png -images-07470.png -images-07471.png -images-07472.png -images-07473.png -images-07474.png -images-07475.png -images-07476.png -images-07477.png -images-07478.png -images-07479.png -images-07480.png -images-07481.png -images-07482.png -images-07483.png -images-07484.png -images-07485.png -images-07486.png -images-07487.png -images-07488.png -images-07489.png -images-07490.png -images-07491.png -images-07492.png -images-07493.png -images-07494.png -images-07495.png -images-07496.png -images-07497.png -images-07498.png -images-07499.png -images-07500.png -images-07501.png -images-07502.png -images-07503.png -images-07504.png -images-07505.png -images-07506.png -images-07507.png -images-07508.png -images-07509.png -images-07510.png -images-07511.png -images-07512.png -images-07513.png -images-07514.png -images-07515.png -images-07516.png -images-07517.png -images-07518.png -images-07519.png -images-07520.png -images-07521.png -images-07522.png -images-07523.png -images-07524.png -images-07525.png -images-07526.png -images-07527.png -images-07528.png -images-07529.png -images-07530.png -images-07531.png -images-07532.png -images-07533.png -images-07534.png -images-07535.png -images-07536.png -images-07537.png -images-07538.png -images-07539.png -images-07540.png -images-07541.png -images-07542.png -images-07543.png -images-07544.png -images-07545.png -images-07546.png -images-07547.png -images-07548.png -images-07549.png -images-07550.png -images-07551.png -images-07552.png -images-07553.png -images-07554.png -images-07555.png -images-07556.png -images-07557.png -images-07558.png -images-07559.png -images-07560.png -images-07561.png -images-07562.png -images-07563.png -images-07564.png -images-07565.png -images-07566.png -images-07567.png -images-07568.png -images-07569.png -images-07570.png -images-07571.png -images-07572.png -images-07573.png -images-07574.png -images-07575.png -images-07576.png -images-07577.png -images-07578.png -images-07579.png -images-07580.png -images-07581.png -images-07582.png -images-07583.png -images-07584.png -images-07585.png -images-07586.png -images-07587.png -images-07588.png -images-07589.png -images-07590.png -images-07591.png -images-07592.png -images-07593.png -images-07594.png -images-07595.png -images-07596.png -images-07597.png -images-07598.png -images-07599.png -images-07600.png -images-07601.png -images-07602.png -images-07603.png -images-07604.png -images-07605.png -images-07606.png -images-07607.png -images-07608.png -images-07609.png -images-07610.png -images-07611.png -images-07612.png -images-07613.png -images-07614.png -images-07615.png -images-07616.png -images-07617.png -images-07618.png -images-07619.png -images-07620.png -images-07621.png -images-07622.png -images-07623.png -images-07624.png -images-07625.png -images-07626.png -images-07627.png -images-07628.png -images-07629.png -images-07630.png -images-07631.png -images-07632.png -images-07633.png -images-07634.png -images-07635.png -images-07636.png -images-07637.png -images-07638.png -images-07639.png -images-07640.png -images-07641.png -images-07642.png -images-07643.png -images-07644.png -images-07645.png -images-07646.png -images-07647.png -images-07648.png -images-07649.png -images-07650.png -images-07651.png -images-07652.png -images-07653.png -images-07654.png -images-07655.png -images-07656.png -images-07657.png -images-07658.png -images-07659.png -images-07660.png -images-07661.png -images-07662.png -images-07663.png -images-07664.png -images-07665.png -images-07666.png -images-07667.png -images-07668.png -images-07669.png -images-07670.png -images-07671.png -images-07672.png -images-07673.png -images-07674.png -images-07675.png -images-07676.png -images-07677.png -images-07678.png -images-07679.png -images-07680.png -images-07681.png -images-07682.png -images-07683.png -images-07684.png -images-07685.png -images-07686.png -images-07687.png -images-07688.png -images-07689.png -images-07690.png -images-07691.png -images-07692.png -images-07693.png -images-07694.png -images-07695.png -images-07696.png -images-07697.png -images-07698.png -images-07699.png -images-07700.png -images-07701.png -images-07702.png -images-07703.png -images-07704.png -images-07705.png -images-07706.png -images-07707.png -images-07708.png -images-07709.png -images-07710.png -images-07711.png -images-07712.png -images-07713.png -images-07714.png -images-07715.png -images-07716.png -images-07717.png -images-07718.png -images-07719.png -images-07720.png -images-07721.png -images-07722.png -images-07723.png -images-07724.png -images-07725.png -images-07726.png -images-07727.png -images-07728.png -images-07729.png -images-07730.png -images-07731.png -images-07732.png -images-07733.png -images-07734.png -images-07735.png -images-07736.png -images-07737.png -images-07738.png -images-07739.png -images-07740.png -images-07741.png -images-07742.png -images-07743.png -images-07744.png -images-07745.png -images-07746.png -images-07747.png -images-07748.png -images-07749.png -images-07750.png -images-07751.png -images-07752.png -images-07753.png -images-07754.png -images-07755.png -images-07756.png -images-07757.png -images-07758.png -images-07894.png -images-07895.png -images-07896.png -images-07897.png -images-07898.png -images-07899.png -images-07900.png -images-07901.png -images-07902.png -images-07903.png -images-07904.png -images-07905.png -images-07906.png -images-07907.png -images-07908.png -images-07909.png -images-07910.png -images-07911.png -images-07912.png -images-07913.png -images-07914.png -images-07915.png -images-07916.png -images-07917.png -images-07918.png -images-07919.png -images-07920.png -images-07921.png -images-07922.png -images-07923.png -images-07924.png -images-07925.png -images-07926.png -images-07927.png -images-07928.png -images-07929.png -images-07930.png -images-07931.png -images-07932.png -images-07933.png -images-07934.png -images-07935.png -images-07936.png -images-07937.png -images-07938.png -images-07939.png -images-07940.png -images-07941.png -images-07942.png -images-07943.png -images-07944.png -images-07945.png -images-07946.png -images-07947.png -images-07948.png -images-07949.png -images-07950.png -images-07951.png -images-07952.png -images-07953.png -images-07954.png -images-07955.png -images-07956.png -images-07957.png -images-07958.png -images-07959.png -images-07960.png -images-07961.png -images-07962.png -images-07963.png -images-07964.png -images-07965.png -images-07966.png -images-07967.png -images-07968.png -images-07969.png -images-07970.png -images-07971.png -images-07972.png -images-07973.png -images-07974.png -images-07975.png -images-07976.png -images-07977.png -images-07978.png -images-07979.png -images-07980.png -images-07981.png -images-07982.png -images-07983.png -images-07984.png -images-07985.png -images-07986.png -images-07987.png -images-07988.png -images-07989.png -images-07990.png -images-07991.png -images-07992.png -images-07993.png -images-07994.png -images-07995.png -images-07996.png -images-07997.png -images-07998.png -images-07999.png -images-08000.png -images-08001.png -images-08002.png -images-08003.png -images-08004.png -images-08005.png -images-08006.png -images-08007.png -images-08008.png -images-08009.png -images-08010.png -images-08011.png -images-08012.png -images-08013.png -images-08014.png -images-08015.png -images-08016.png -images-08017.png -images-08018.png -images-08019.png -images-08020.png -images-08021.png -images-08022.png -images-08023.png -images-08024.png -images-08025.png -images-08026.png -images-08027.png -images-08028.png -images-08029.png -images-08030.png -images-08031.png -images-08032.png -images-08033.png -images-08034.png -images-08035.png -images-08036.png -images-08037.png -images-08038.png -images-08039.png -images-08040.png -images-08041.png -images-08042.png -images-08043.png -images-08044.png -images-08045.png -images-08046.png -images-08047.png -images-08048.png -images-08049.png -images-08050.png -images-08051.png -images-08052.png -images-08053.png -images-08054.png -images-08055.png -images-08056.png -images-08057.png -images-08058.png -images-08059.png -images-08060.png -images-08061.png -images-08062.png -images-08063.png -images-08064.png -images-08065.png -images-08066.png -images-08067.png -images-08068.png -images-08069.png -images-08070.png -images-08071.png -images-08072.png -images-08073.png -images-08074.png -images-08075.png -images-08076.png -images-08077.png -images-08078.png -images-08079.png -images-08080.png -images-08081.png -images-08082.png -images-08083.png -images-08084.png -images-08085.png -images-08086.png -images-08087.png -images-08088.png -images-08089.png -images-08090.png -images-08091.png -images-08092.png -images-08093.png -images-08094.png -images-08095.png -images-08096.png -images-08097.png -images-08098.png -images-08099.png -images-08100.png -images-08101.png -images-08102.png -images-08103.png -images-08104.png -images-08105.png -images-08106.png -images-08107.png -images-08108.png -images-08109.png -images-08110.png -images-08111.png -images-08112.png -images-08113.png -images-08114.png -images-08115.png -images-08116.png -images-08117.png -images-08118.png -images-08119.png -images-08120.png -images-08121.png -images-08122.png -images-08123.png -images-08124.png -images-08125.png -images-08126.png -images-08127.png -images-08128.png -images-08129.png -images-08130.png -images-08131.png -images-08132.png -images-08133.png -images-08134.png -images-08135.png -images-08136.png -images-08137.png -images-08138.png -images-08139.png -images-08140.png -images-08141.png -images-08142.png -images-08143.png -images-08144.png -images-08145.png -images-08146.png -images-08147.png -images-08148.png -images-08149.png -images-08150.png -images-08151.png -images-08152.png -images-08153.png -images-08154.png -images-08155.png -images-08156.png -images-08157.png -images-08158.png -images-08159.png -images-08160.png -images-08161.png -images-08162.png -images-08163.png -images-08164.png -images-08165.png -images-08166.png -images-08167.png -images-08168.png -images-08169.png -images-08170.png -images-08171.png -images-08172.png -images-08173.png -images-08174.png -images-08175.png -images-08176.png -images-08177.png -images-08178.png -images-08179.png -images-08180.png -images-08181.png -images-08182.png -images-08183.png -images-08184.png -images-08185.png -images-08186.png -images-08187.png -images-08188.png -images-08189.png -images-08190.png -images-08191.png -images-08192.png -images-08193.png -images-08194.png -images-08195.png -images-08196.png -images-08197.png -images-08198.png -images-08199.png -images-08200.png -images-08201.png -images-08202.png -images-08203.png -images-08204.png -images-08205.png -images-08206.png -images-08207.png -images-08208.png -images-08209.png -images-08210.png -images-08211.png -images-08212.png -images-08213.png -images-08214.png -images-08215.png -images-08216.png -images-08217.png -images-08218.png -images-08219.png -images-08220.png -images-08221.png -images-08222.png -images-08223.png -images-08224.png -images-08225.png -images-08226.png -images-08227.png -images-08228.png -images-08229.png -images-08230.png -images-08231.png -images-08232.png -images-08233.png -images-08234.png -images-08235.png -images-08236.png -images-08237.png -images-08238.png -images-08239.png -images-08240.png -images-08241.png -images-08242.png -images-08243.png -images-08244.png -images-08245.png -images-08246.png -images-08247.png -images-08248.png -images-08249.png -images-08250.png -images-08251.png -images-08252.png -images-08253.png -images-08254.png -images-08255.png -images-08256.png -images-08257.png -images-08258.png -images-08259.png -images-08260.png -images-08261.png -images-08262.png -images-08263.png -images-08264.png -images-08265.png -images-08266.png -images-08267.png -images-08268.png -images-08269.png -images-08270.png -images-08271.png -images-08272.png -images-08273.png -images-08274.png -images-08275.png -images-08276.png -images-08277.png -images-08278.png -images-08279.png -images-08280.png -images-08281.png -images-08282.png -images-08283.png -images-08284.png -images-08285.png -images-08286.png -images-08287.png -images-08288.png -images-08289.png -images-08290.png -images-08291.png -images-08292.png -images-08293.png -images-08294.png -images-08295.png -images-08296.png -images-08297.png -images-08298.png -images-08299.png -images-08300.png -images-08301.png -images-08302.png -images-08303.png -images-08304.png -images-08305.png -images-08306.png -images-08307.png -images-08308.png -images-08309.png -images-08310.png -images-08311.png -images-08312.png -images-08313.png -images-08314.png -images-08315.png -images-08316.png -images-08317.png -images-08318.png -images-08319.png -images-08320.png -images-08321.png -images-08322.png -images-08323.png -images-08324.png -images-08325.png -images-08326.png -images-08327.png -images-08328.png -images-08329.png -images-08330.png -images-08331.png -images-08332.png -images-08333.png -images-08334.png -images-08335.png -images-08336.png -images-08337.png -images-08338.png -images-08339.png -images-08340.png -images-08341.png -images-08342.png -images-08343.png -images-08344.png -images-08345.png -images-08346.png -images-08347.png -images-08348.png -images-08349.png -images-08350.png -images-08351.png -images-08352.png -images-08353.png -images-08354.png -images-08355.png -images-08356.png -images-08357.png -images-08358.png -images-08359.png -images-08360.png -images-08361.png -images-08362.png -images-08363.png -images-08364.png -images-08365.png -images-08366.png -images-08367.png -images-08368.png -images-08369.png -images-08370.png -images-08371.png -images-08372.png -images-08373.png -images-08374.png -images-08375.png -images-08376.png -images-08377.png -images-08378.png -images-08379.png -images-08380.png -images-08381.png -images-08382.png -images-08383.png -images-08384.png -images-08385.png -images-08386.png -images-08387.png -images-08388.png -images-08389.png -images-08390.png -images-08391.png -images-08392.png -images-08393.png -images-08394.png -images-08395.png -images-08396.png -images-08397.png -images-08398.png -images-08399.png -images-08400.png -images-08401.png -images-08402.png -images-08403.png -images-08404.png -images-08405.png -images-08406.png -images-08407.png -images-08408.png -images-08409.png -images-08410.png -images-08411.png -images-08412.png -images-08413.png -images-08414.png -images-08415.png -images-08416.png -images-08417.png -images-08418.png -images-08419.png -images-08420.png -images-08421.png -images-08422.png -images-08423.png -images-08424.png -images-08425.png -images-08426.png -images-08427.png -images-08428.png -images-08429.png -images-08430.png -images-08431.png -images-08432.png -images-08433.png -images-08434.png -images-08435.png -images-08436.png -images-08437.png -images-08438.png -images-08439.png -images-08440.png -images-08441.png -images-08442.png -images-08443.png -images-08444.png -images-08445.png -images-08446.png -images-08447.png -images-08448.png -images-08449.png -images-08450.png -images-08451.png -images-08452.png -images-08453.png -images-08454.png -images-08455.png -images-08456.png -images-08457.png -images-08458.png -images-08459.png -images-08460.png -images-08461.png -images-08462.png -images-08463.png -images-08464.png -images-08465.png -images-08466.png -images-08467.png -images-08468.png -images-08469.png -images-08470.png -images-08471.png -images-08472.png -images-08473.png -images-08474.png -images-08475.png -images-08476.png -images-08477.png -images-08478.png -images-08484.png -images-08485.png -images-08486.png -images-08487.png -images-08488.png -images-08494.png -images-08495.png -images-08496.png -images-08497.png -images-08498.png -images-08499.png -images-08500.png -images-08501.png -images-08502.png -images-08503.png -images-08504.png -images-08505.png -images-08506.png -images-08507.png -images-08508.png -images-08509.png -images-08510.png -images-08511.png -images-08512.png -images-08513.png -images-08514.png -images-08515.png -images-08516.png -images-08517.png -images-08518.png -images-08519.png -images-08520.png -images-08521.png -images-08522.png -images-08523.png -images-08524.png -images-08525.png -images-08526.png -images-08527.png -images-08528.png -images-08529.png -images-08530.png -images-08531.png -images-08532.png -images-08533.png -images-08534.png -images-08535.png -images-08536.png -images-08537.png -images-08538.png -images-08539.png -images-08540.png -images-08541.png -images-08542.png -images-08543.png -images-08544.png -images-08545.png -images-08546.png -images-08547.png -images-08548.png -images-08549.png -images-08550.png -images-08551.png -images-08552.png -images-08553.png -images-08554.png -images-08555.png -images-08556.png -images-08557.png -images-08558.png -images-08559.png -images-08560.png -images-08561.png -images-08562.png -images-08563.png -images-08564.png -images-08565.png -images-08566.png -images-08567.png -images-08568.png -images-08569.png -images-08570.png -images-08571.png -images-08572.png -images-08573.png -images-08574.png -images-08575.png -images-08576.png -images-08577.png -images-08578.png -images-08579.png -images-08580.png -images-08581.png -images-08582.png -images-08583.png -images-08584.png -images-08585.png -images-08586.png -images-08587.png -images-08588.png -images-08589.png -images-08590.png -images-08591.png -images-08592.png -images-08593.png -images-08594.png -images-08595.png -images-08596.png -images-08597.png -images-08598.png -images-08599.png -images-08600.png -images-08601.png -images-08602.png -images-08603.png -images-08604.png -images-08605.png -images-08606.png -images-08607.png -images-08608.png -images-08609.png -images-08610.png -images-08611.png -images-08612.png -images-08613.png -images-08614.png -images-08615.png -images-08616.png -images-08617.png -images-08618.png -images-08619.png -images-08620.png -images-08621.png -images-08622.png -images-08623.png -images-08624.png -images-08625.png -images-08626.png -images-08627.png -images-08628.png -images-08629.png -images-08630.png -images-08631.png -images-08632.png -images-08633.png -images-08634.png -images-08635.png -images-08636.png -images-08637.png -images-08638.png -images-08639.png -images-08640.png -images-08641.png -images-08642.png -images-08643.png -images-08644.png -images-08645.png -images-08646.png -images-08647.png -images-08648.png -images-08649.png -images-08650.png -images-08651.png -images-08652.png -images-08653.png -images-08654.png -images-08655.png -images-08656.png -images-08657.png -images-08658.png -images-08659.png -images-08660.png -images-08661.png -images-08662.png -images-08663.png -images-08664.png -images-08665.png -images-08666.png -images-08667.png -images-08668.png -images-08669.png -images-08670.png -images-08671.png -images-08672.png -images-08673.png -images-08674.png -images-08675.png -images-08676.png -images-08677.png -images-08678.png -images-08679.png -images-08680.png -images-08681.png -images-08682.png -images-08683.png -images-08684.png -images-08685.png -images-08686.png -images-08687.png -images-08688.png -images-08689.png -images-08690.png -images-08691.png -images-08692.png -images-08693.png -images-08694.png -images-08695.png -images-08696.png -images-08697.png -images-08698.png -images-08699.png -images-08700.png -images-08701.png -images-08702.png -images-08703.png -images-08704.png -images-08705.png -images-08706.png -images-08707.png -images-08708.png -images-08709.png -images-08710.png -images-08711.png -images-08712.png -images-08713.png -images-08714.png -images-08715.png -images-08716.png -images-08717.png -images-08718.png -images-08719.png -images-08720.png -images-08721.png -images-08722.png -images-08723.png -images-08724.png -images-08725.png -images-08726.png -images-08727.png -images-08728.png -images-08729.png -images-08730.png -images-08731.png -images-08732.png -images-08733.png -images-08734.png -images-08735.png -images-08736.png -images-08737.png -images-08738.png -images-08739.png -images-08740.png -images-08741.png -images-08742.png -images-08743.png -images-08744.png -images-08745.png -images-08746.png -images-08747.png -images-08748.png -images-08749.png -images-08750.png -images-08751.png -images-08752.png -images-08753.png -images-08754.png -images-08755.png -images-08756.png -images-08757.png -images-08758.png -images-08759.png -images-08760.png -images-08761.png -images-08762.png -images-08763.png -images-08764.png -images-08765.png -images-08766.png -images-08767.png -images-08768.png -images-08769.png -images-08770.png -images-08771.png -images-08772.png -images-08773.png -images-08774.png -images-08775.png -images-08776.png -images-08777.png -images-08778.png -images-08779.png -images-08780.png -images-08781.png -images-08782.png -images-08783.png -images-08784.png -images-08785.png -images-08786.png -images-08787.png -images-08788.png -images-08789.png -images-08790.png -images-08791.png -images-08792.png -images-08793.png -images-08794.png -images-08795.png -images-08796.png -images-08797.png -images-08798.png -images-08799.png -images-08800.png -images-08801.png -images-08802.png -images-08803.png -images-08804.png -images-08805.png -images-08806.png -images-08807.png -images-08808.png -images-08809.png -images-08810.png -images-08811.png -images-08812.png -images-08813.png -images-08814.png -images-08815.png -images-08816.png -images-08817.png -images-08818.png -images-08819.png -images-08820.png -images-08821.png -images-08822.png -images-08823.png -images-08824.png -images-08825.png -images-08826.png -images-08827.png -images-08828.png -images-08829.png -images-08830.png -images-08831.png -images-08832.png -images-08833.png -images-08834.png -images-08835.png -images-08836.png -images-08837.png -images-08838.png -images-08839.png -images-08840.png -images-08841.png -images-08842.png -images-08843.png -images-08844.png -images-08845.png -images-08846.png -images-08847.png -images-08848.png -images-08849.png -images-08850.png -images-08851.png -images-08852.png -images-08853.png -images-08854.png -images-08855.png -images-08856.png -images-08857.png -images-08858.png -images-08859.png -images-08860.png -images-08861.png -images-08862.png -images-08863.png -images-08864.png -images-08865.png -images-08866.png -images-08867.png -images-08868.png -images-08869.png -images-08870.png -images-08871.png -images-08872.png -images-08873.png -images-08874.png -images-08875.png -images-08876.png -images-08877.png -images-08878.png -images-08879.png -images-08880.png -images-08881.png -images-08882.png -images-08883.png -images-08884.png -images-08885.png -images-08886.png -images-08887.png -images-08888.png -images-08889.png -images-08890.png -images-08891.png -images-08892.png -images-08893.png -images-08894.png -images-08895.png -images-08896.png -images-08897.png -images-08898.png -images-08899.png -images-08900.png -images-08901.png -images-08902.png -images-08903.png -images-08904.png -images-08905.png -images-08906.png -images-08907.png -images-08908.png -images-08909.png -images-08910.png -images-08911.png -images-08912.png -images-08913.png -images-08914.png -images-08915.png -images-08916.png -images-08917.png -images-08918.png -images-08919.png -images-08920.png -images-08921.png -images-08922.png -images-08923.png -images-08924.png -images-08925.png -images-08926.png -images-08927.png -images-08928.png -images-08929.png -images-08930.png -images-08931.png -images-08932.png -images-08933.png -images-08934.png -images-08935.png -images-08936.png -images-08937.png -images-08938.png -images-08939.png -images-08940.png -images-08941.png -images-08942.png -images-08943.png -images-08944.png -images-08945.png -images-08946.png -images-08947.png -images-08948.png -images-08949.png -images-08950.png -images-08951.png -images-08952.png -images-08953.png -images-08954.png -images-08955.png -images-08956.png -images-08957.png -images-08958.png -images-08959.png -images-08960.png -images-08961.png -images-08962.png -images-08963.png -images-08964.png -images-08965.png -images-08966.png -images-08967.png -images-08968.png -images-08969.png -images-08970.png -images-08971.png -images-08972.png -images-08973.png -images-08974.png -images-08975.png -images-08976.png -images-08977.png -images-08978.png -images-08979.png -images-08980.png -images-08981.png -images-08982.png -images-08983.png -images-08984.png -images-08985.png -images-08986.png -images-08987.png -images-08988.png -images-08989.png -images-08990.png -images-08991.png -images-08992.png -images-08993.png -images-08994.png -images-08995.png -images-08996.png -images-08997.png -images-08998.png -images-08999.png -images-09000.png -images-09001.png -images-09002.png -images-09003.png -images-09004.png -images-09005.png -images-09006.png -images-09007.png -images-09008.png -images-09009.png -images-09010.png -images-09011.png -images-09012.png -images-09013.png -images-09014.png -images-09015.png -images-09016.png -images-09017.png -images-09018.png -images-09019.png -images-09020.png -images-09021.png -images-09022.png -images-09023.png -images-09024.png -images-09025.png -images-09026.png -images-09027.png -images-09028.png -images-09029.png -images-09030.png -images-09031.png -images-09032.png -images-09033.png -images-09034.png -images-09035.png -images-09036.png -images-09037.png -images-09038.png -images-09039.png -images-09040.png -images-09041.png -images-09042.png -images-09043.png -images-09044.png -images-09045.png -images-09046.png -images-09047.png -images-09048.png -images-09049.png -images-09050.png -images-09051.png -images-09052.png -images-09053.png -images-09054.png -images-09055.png -images-09056.png -images-09057.png -images-09058.png -images-09059.png -images-09060.png -images-09061.png -images-09062.png -images-09063.png -images-09064.png -images-09065.png -images-09066.png -images-09067.png -images-09068.png -images-09069.png -images-09070.png -images-09071.png -images-09072.png -images-09073.png -images-09074.png -images-09075.png -images-09076.png -images-09077.png -images-09078.png -images-09079.png -images-09080.png -images-09081.png -images-09082.png -images-09083.png -images-09084.png -images-09085.png -images-09086.png -images-09087.png -images-09088.png -images-09089.png -images-09090.png -images-09091.png -images-09092.png -images-09093.png -images-09094.png -images-09095.png -images-09096.png -images-09097.png -images-09098.png -images-09099.png -images-09100.png -images-09101.png -images-09102.png -images-09103.png -images-09104.png -images-09105.png -images-09106.png -images-09107.png -images-09108.png -images-09109.png -images-09110.png -images-09111.png -images-09112.png -images-09113.png -images-09114.png -images-09115.png -images-09116.png -images-09117.png -images-09118.png -images-09119.png -images-09120.png -images-09121.png -images-09122.png -images-09123.png -images-09124.png -images-09125.png -images-09126.png -images-09127.png -images-09128.png -images-09129.png -images-09130.png -images-09131.png -images-09132.png -images-09133.png -images-09134.png -images-09135.png -images-09136.png -images-09137.png -images-09138.png -images-09139.png -images-09140.png -images-09141.png -images-09142.png -images-09143.png -images-09144.png -images-09145.png -images-09146.png -images-09147.png -images-09148.png -images-09149.png -images-09150.png -images-09151.png -images-09152.png -images-09153.png -images-09154.png -images-09155.png -images-09156.png -images-09157.png -images-09158.png -images-09159.png -images-09160.png -images-09161.png -images-09162.png -images-09163.png -images-09164.png -images-09165.png -images-09166.png -images-09167.png -images-09168.png -images-09169.png -images-09170.png -images-09171.png -images-09172.png -images-09173.png -images-09174.png -images-09175.png -images-09176.png -images-09177.png -images-09178.png -images-09179.png -images-09180.png -images-09181.png -images-09182.png -images-09183.png -images-09184.png -images-09185.png -images-09186.png -images-09187.png -images-09188.png -images-09189.png -images-09190.png -images-09191.png -images-09192.png -images-09193.png -images-09194.png -images-09195.png -images-09196.png -images-09197.png -images-09198.png -images-09199.png -images-09200.png -images-09201.png -images-09202.png -images-09203.png -images-09204.png -images-09205.png -images-09206.png -images-09207.png -images-09208.png -images-09209.png -images-09210.png -images-09211.png -images-09212.png -images-09213.png -images-09214.png -images-09215.png -images-09216.png -images-09217.png -images-09218.png -images-09219.png -images-09220.png -images-09221.png -images-09222.png -images-09223.png -images-09224.png -images-09225.png -images-09226.png -images-09227.png -images-09228.png -images-09229.png -images-09230.png -images-09231.png -images-09232.png -images-09233.png -images-09234.png -images-09235.png -images-09236.png -images-09237.png -images-09238.png -images-09239.png -images-09240.png -images-09241.png -images-09242.png -images-09243.png -images-09244.png -images-09245.png -images-09246.png -images-09247.png -images-09248.png -images-09249.png -images-09250.png -images-09251.png -images-09252.png -images-09253.png -images-09254.png -images-09255.png -images-09256.png -images-09257.png -images-09258.png -images-09259.png -images-09260.png -images-09261.png -images-09262.png -images-09263.png -images-09264.png -images-09265.png -images-09266.png -images-09267.png -images-09268.png -images-09269.png -images-09270.png -images-09271.png -images-09272.png -images-09273.png -images-09274.png -images-09275.png -images-09276.png -images-09277.png -images-09278.png -images-09279.png -images-09280.png -images-09281.png -images-09282.png -images-09283.png -images-09284.png -images-09285.png -images-09286.png -images-09287.png -images-09288.png -images-09289.png -images-09290.png -images-09291.png -images-09292.png -images-09293.png -images-09294.png -images-09295.png -images-09296.png -images-09297.png -images-09298.png -images-09299.png -images-09300.png -images-09301.png -images-09302.png -images-09303.png -images-09304.png -images-09305.png -images-09306.png -images-09307.png -images-09308.png -images-09309.png -images-09310.png -images-09311.png -images-09312.png -images-09313.png -images-09314.png -images-09315.png -images-09316.png -images-09317.png -images-09318.png -images-09319.png -images-09320.png -images-09321.png -images-09322.png -images-09323.png -images-09324.png -images-09325.png -images-09326.png -images-09327.png -images-09328.png -images-09329.png -images-09330.png -images-09331.png -images-09332.png -images-09333.png -images-09334.png -images-09335.png -images-09336.png -images-09337.png -images-09338.png -images-09339.png -images-09340.png -images-09341.png -images-09342.png -images-09343.png -images-09344.png -images-09345.png -images-09346.png -images-09347.png -images-09348.png -images-09349.png -images-09350.png -images-09351.png -images-09352.png -images-09353.png -images-09354.png -images-09355.png -images-09356.png -images-09357.png -images-09358.png -images-09359.png -images-09360.png -images-09361.png -images-09362.png -images-09363.png -images-09364.png -images-09365.png -images-09366.png -images-09367.png -images-09368.png -images-09369.png -images-09370.png -images-09371.png -images-09372.png -images-09373.png -images-09374.png -images-09375.png -images-09376.png -images-09377.png -images-09378.png -images-09379.png -images-09380.png -images-09381.png -images-09382.png -images-09383.png -images-09384.png -images-09385.png -images-09386.png -images-09387.png -images-09388.png -images-09389.png -images-09390.png -images-09391.png -images-09392.png -images-09393.png -images-09394.png -images-09395.png -images-09396.png -images-09397.png -images-09398.png -images-09399.png -images-09400.png -images-09401.png -images-09402.png -images-09403.png -images-09404.png -images-09405.png -images-09406.png -images-09407.png -images-09408.png -images-09409.png -images-09410.png -images-09411.png -images-09412.png -images-09413.png -images-09414.png -images-09415.png -images-09416.png -images-09417.png -images-09418.png -images-09419.png -images-09420.png -images-09421.png -images-09422.png -images-09423.png -images-09424.png -images-09425.png -images-09426.png -images-09427.png -images-09428.png -images-09429.png -images-09430.png -images-09431.png -images-09432.png -images-09433.png -images-09434.png -images-09435.png -images-09436.png -images-09437.png -images-09438.png -images-09439.png -images-09440.png -images-09441.png -images-09442.png -images-09443.png -images-09444.png -images-09445.png -images-09446.png -images-09447.png -images-09448.png -images-09449.png -images-09450.png -images-09451.png -images-09452.png -images-09453.png -images-09454.png -images-09455.png -images-09456.png -images-09457.png -images-09458.png -images-09459.png -images-09460.png -images-09461.png -images-09462.png -images-09463.png -images-09464.png -images-09465.png -images-09466.png -images-09467.png -images-09468.png -images-09469.png -images-09470.png -images-09471.png -images-09472.png -images-09473.png -images-09474.png -images-09475.png -images-09476.png -images-09477.png -images-09478.png -images-09479.png -images-09480.png -images-09481.png -images-09482.png -images-09483.png -images-09484.png -images-09485.png -images-09486.png -images-09487.png -images-09488.png -images-09489.png -images-09490.png -images-09491.png -images-09492.png -images-09493.png -images-09494.png -images-09495.png -images-09496.png -images-09497.png -images-09498.png -images-09499.png -images-09500.png -images-09501.png -images-09502.png -images-09503.png -images-09504.png -images-09505.png -images-09506.png -images-09507.png -images-09508.png -images-09509.png -images-09510.png -images-09511.png -images-09512.png -images-09513.png -images-09514.png -images-09515.png -images-09516.png -images-09517.png -images-09518.png -images-09519.png -images-09520.png -images-09521.png -images-09522.png -images-09523.png -images-09524.png -images-09525.png -images-09526.png -images-09527.png -images-09528.png -images-09529.png -images-09530.png -images-09531.png -images-09532.png -images-09533.png -images-09534.png -images-09535.png -images-09536.png -images-09537.png -images-09538.png -images-09539.png -images-09540.png -images-09541.png -images-09542.png -images-09543.png -images-09544.png -images-09545.png -images-09546.png -images-09547.png -images-09548.png -images-09549.png -images-09550.png -images-09551.png -images-09552.png -images-09553.png -images-09554.png -images-09555.png -images-09556.png -images-09557.png -images-09558.png -images-09559.png -images-09560.png -images-09561.png -images-09562.png -images-09563.png -images-09564.png -images-09565.png -images-09566.png -images-09567.png -images-09568.png -images-09569.png -images-09570.png -images-09571.png -images-09572.png -images-09573.png -images-09574.png -images-09575.png -images-09576.png -images-09577.png -images-09578.png -images-09579.png -images-09580.png -images-09581.png -images-09582.png -images-09583.png -images-09584.png -images-09585.png -images-09586.png -images-09587.png -images-09588.png -images-09589.png -images-09590.png -images-09591.png -images-09592.png -images-09593.png -images-09594.png -images-09595.png -images-09596.png -images-09597.png -images-09598.png -images-09599.png -images-09600.png -images-09601.png -images-09602.png -images-09603.png -images-09604.png -images-09605.png -images-09606.png -images-09607.png -images-09608.png -images-09609.png -images-09610.png -images-09611.png -images-09612.png -images-09613.png -images-09614.png -images-09615.png -images-09616.png -images-09617.png -images-09618.png -images-09619.png -images-09620.png -images-09621.png -images-09622.png -images-09623.png -images-09624.png -images-09625.png -images-09626.png -images-09627.png -images-09628.png -images-09629.png -images-09630.png -images-09631.png -images-09632.png -images-09633.png -images-09634.png -images-09635.png -images-09636.png -images-09637.png -images-09638.png -images-09639.png -images-09640.png -images-09641.png -images-09642.png -images-09643.png -images-09644.png -images-09645.png -images-09646.png -images-09647.png -images-09648.png -images-09649.png -images-09650.png -images-09651.png -images-09652.png -images-09653.png -images-09654.png -images-09655.png -images-09656.png -images-09657.png -images-09658.png -images-09659.png -images-09660.png -images-09661.png -images-09662.png -images-09663.png -images-09664.png -images-09665.png -images-09666.png -images-09667.png -images-09668.png -images-09669.png -images-09670.png -images-09671.png -images-09672.png -images-09673.png -images-09674.png -images-09675.png -images-09676.png -images-09677.png -images-09678.png -images-09679.png -images-09680.png -images-09681.png -images-09682.png -images-09683.png -images-09684.png -images-09685.png -images-09686.png -images-09687.png -images-09688.png -images-09689.png -images-09690.png -images-09691.png -images-09692.png -images-09693.png -images-09694.png -images-09695.png -images-09696.png -images-09697.png -images-09698.png -images-09699.png -images-09700.png -images-09701.png -images-09702.png -images-09703.png -images-09704.png -images-09705.png -images-09706.png -images-09707.png -images-09708.png -images-09709.png -images-09710.png -images-09711.png -images-09712.png -images-09713.png -images-09714.png -images-09715.png -images-09716.png -images-09717.png -images-09718.png -images-09719.png -images-09720.png -images-09721.png -images-09722.png -images-09723.png -images-09724.png -images-09725.png -images-09726.png -images-09727.png -images-09728.png -images-09729.png -images-09730.png -images-09731.png -images-09732.png -images-09733.png -images-09734.png -images-09735.png -images-09736.png -images-09737.png -images-09738.png -images-09739.png -images-09740.png -images-09741.png -images-09742.png -images-09743.png -images-09744.png -images-09745.png -images-09746.png -images-09747.png -images-09748.png -images-09749.png -images-09750.png -images-09751.png -images-09752.png -images-09753.png -images-09754.png -images-09755.png -images-09756.png -images-09757.png -images-09758.png -images-09759.png -images-09760.png -images-09761.png -images-09762.png -images-09763.png -images-09764.png -images-09765.png -images-09766.png -images-09767.png -images-09768.png -images-09769.png -images-09770.png -images-09771.png -images-09772.png -images-09773.png -images-09774.png -images-09775.png -images-09776.png -images-09777.png -images-09778.png -images-09779.png -images-09780.png -images-09781.png -images-09782.png -images-09783.png -images-09784.png -images-09785.png -images-09786.png -images-09787.png -images-09788.png -images-09789.png -images-09790.png -images-09791.png -images-09792.png -images-09793.png -images-09794.png -images-09795.png -images-09796.png -images-09797.png -images-09798.png -images-09799.png -images-09800.png -images-09801.png -images-09802.png -images-09803.png -images-09804.png -images-09805.png -images-09806.png -images-09807.png -images-09808.png -images-09809.png -images-09810.png -images-09811.png -images-09812.png -images-09813.png -images-09814.png -images-09815.png -images-09816.png -images-09817.png -images-09818.png -images-09819.png -images-09820.png -images-09821.png -images-09822.png -images-09823.png -images-09824.png -images-09825.png -images-09826.png -images-09827.png -images-09828.png -images-09829.png -images-09830.png -images-09831.png -images-09832.png -images-09833.png -images-09834.png -images-09835.png -images-09836.png -images-09837.png -images-09838.png -images-09839.png -images-09840.png -images-09841.png -images-09842.png -images-09843.png -images-09844.png -images-09845.png -images-09846.png -images-09847.png -images-09848.png -images-09849.png -images-09850.png -images-09851.png -images-09852.png -images-09853.png -images-09854.png -images-09855.png -images-09856.png -images-09857.png -images-09858.png -images-09859.png -images-09860.png -images-09861.png -images-09862.png -images-09863.png -images-09864.png -images-09865.png -images-09866.png -images-09867.png -images-09868.png -images-09869.png -images-09870.png -images-09871.png -images-09872.png -images-09873.png -images-09874.png -images-09875.png -images-09876.png -images-09877.png -images-09878.png -images-09879.png -images-09880.png -images-09881.png -images-09882.png -images-09883.png -images-09884.png -images-09885.png -images-09886.png -images-09887.png -images-09888.png -images-09889.png -images-09890.png -images-09891.png -images-09892.png -images-09893.png -images-09894.png -images-09895.png -images-09896.png -images-09897.png -images-09898.png -images-09899.png -images-09900.png -images-09901.png -images-09902.png -images-09903.png -images-09904.png -images-09905.png -images-09906.png -images-09907.png -images-09908.png -images-09909.png -images-09910.png -images-09911.png -images-09912.png -images-09913.png -images-09914.png -images-09915.png -images-09916.png -images-09917.png -images-09918.png -images-09919.png -images-09920.png -images-09921.png -images-09922.png -images-09923.png -images-09924.png -images-09925.png -images-09926.png -images-09927.png -images-09928.png -images-09929.png -images-09930.png -images-09931.png -images-09932.png -images-09933.png -images-09934.png -images-09935.png -images-09936.png -images-09937.png -images-09938.png -images-09939.png -images-09940.png -images-09941.png -images-09942.png -images-09943.png -images-09944.png -images-09945.png -images-09946.png -images-09947.png -images-09948.png -images-09949.png -images-09950.png -images-09951.png -images-09952.png -images-09953.png -images-09954.png -images-09955.png -images-09956.png -images-09957.png -images-09958.png -images-09959.png -images-09960.png -images-09961.png -images-09962.png -images-09963.png -images-09964.png -images-09965.png -images-09966.png -images-09979.png -images-09980.png -images-09981.png -images-09982.png -images-09983.png -images-09984.png -images-09985.png -images-09986.png -images-09987.png -images-09988.png -images-09989.png -images-09990.png -images-09991.png -images-09992.png -images-09993.png -images-09994.png -images-09995.png -images-09996.png -images-09997.png -images-09998.png -images-09999.png -images-10000.png -images-10001.png -images-10002.png -images-10003.png -images-10004.png -images-10005.png -images-10006.png -images-10007.png -images-10008.png -images-10009.png -images-10010.png -images-10011.png -images-10012.png -images-10013.png -images-10014.png -images-10015.png -images-10016.png -images-10017.png -images-10018.png -images-10019.png -images-10020.png -images-10021.png -images-10022.png -images-10023.png -images-10024.png -images-10025.png -images-10026.png -images-10027.png -images-10028.png -images-10029.png -images-10030.png -images-10031.png -images-10032.png -images-10033.png -images-10034.png -images-10035.png -images-10036.png -images-10037.png -images-10038.png -images-10039.png -images-10040.png -images-10041.png -images-10204.png -images-10205.png -images-10206.png -images-10207.png -images-10208.png -images-10209.png -images-10210.png -images-10211.png -images-10212.png -images-10213.png -images-10214.png -images-10215.png -images-10216.png -images-10217.png -images-10218.png -images-10219.png -images-10220.png -images-10221.png -images-10222.png -images-10223.png -images-10224.png -images-10225.png -images-10226.png -images-10227.png -images-10228.png -images-10229.png -images-10230.png -images-10231.png -images-10232.png -images-10233.png -images-10234.png -images-10235.png -images-10236.png -images-10237.png -images-10238.png -images-10268.png -images-10269.png -images-10270.png -images-10271.png -images-10272.png -images-10273.png -images-10274.png -images-10275.png -images-10276.png -images-10277.png -images-10278.png -images-10279.png -images-10280.png -images-10281.png -images-10282.png -images-10283.png -images-10284.png -images-10285.png -images-10286.png -images-10287.png -images-10288.png -images-10289.png -images-10290.png -images-10291.png -images-10292.png -images-10293.png -images-10294.png -images-10295.png -images-10296.png -images-10297.png -images-10298.png -images-10299.png -images-10300.png -images-10301.png -images-10302.png -images-10303.png -images-10304.png -images-10305.png -images-10306.png -images-10307.png -images-10308.png -images-10309.png -images-10310.png -images-10311.png -images-10312.png -images-10313.png -images-10314.png -images-10315.png -images-10316.png -images-10317.png -images-10318.png -images-10319.png -images-10320.png -images-10321.png -images-10322.png -images-10323.png -images-10324.png -images-10325.png -images-10326.png -images-10327.png -images-10328.png -images-10329.png -images-10330.png -images-10331.png -images-10332.png -images-10333.png -images-10334.png -images-10335.png -images-10336.png -images-10337.png -images-10338.png -images-10339.png -images-10340.png -images-10341.png -images-10342.png -images-10343.png -images-10344.png -images-10345.png -images-10346.png -images-10347.png -images-10348.png -images-10349.png -images-10350.png -images-10351.png -images-10352.png -images-10353.png -images-10354.png -images-10355.png -images-10356.png -images-10357.png -images-10358.png -images-10359.png -images-10360.png -images-10361.png -images-10362.png -images-10363.png -images-10364.png -images-10365.png -images-10366.png -images-10367.png -images-10368.png -images-10369.png -images-10370.png -images-10371.png -images-10372.png -images-10373.png -images-10374.png -images-10375.png -images-10376.png -images-10377.png -images-10378.png -images-10379.png -images-10380.png -images-10381.png -images-10382.png -images-10383.png -images-10384.png -images-10385.png -images-10386.png -images-10387.png -images-10388.png -images-10389.png -images-10390.png -images-10391.png -images-10392.png -images-10393.png -images-10394.png -images-10395.png -images-10396.png -images-10397.png -images-10398.png -images-10399.png -images-10400.png -images-10401.png -images-10402.png -images-10403.png -images-10404.png -images-10405.png -images-10406.png -images-10407.png -images-10416.png -images-10417.png -images-10418.png -images-10419.png -images-10420.png -images-10421.png -images-10422.png -images-10423.png -images-10424.png -images-10425.png -images-10426.png -images-10427.png -images-10428.png -images-10429.png -images-10430.png -images-10431.png -images-10432.png -images-10433.png -images-10434.png -images-10435.png -images-10436.png -images-10437.png -images-10438.png -images-10439.png -images-10440.png -images-10441.png -images-10442.png -images-10443.png -images-10444.png -images-10445.png -images-10446.png -images-10447.png -images-10448.png -images-10449.png -images-10450.png -images-10451.png -images-10452.png -images-10453.png -images-10454.png -images-10455.png -images-10456.png -images-10457.png -images-10458.png -images-10459.png -images-10460.png -images-10461.png -images-10462.png -images-10463.png -images-10464.png -images-10465.png -images-10466.png -images-10467.png -images-10468.png -images-10469.png -images-10470.png -images-10471.png -images-10472.png -images-10473.png -images-10474.png -images-10475.png -images-10476.png -images-10477.png -images-10478.png -images-10479.png -images-10480.png -images-10481.png -images-10482.png -images-10483.png -images-10484.png -images-10485.png -images-10486.png -images-10487.png -images-10488.png -images-10489.png -images-10490.png -images-10491.png -images-10492.png -images-10493.png -images-10494.png -images-10495.png -images-10496.png -images-10497.png -images-10498.png -images-10499.png -images-10500.png -images-10501.png -images-10502.png -images-10503.png -images-10504.png -images-10505.png -images-10506.png -images-10507.png -images-10508.png -images-10509.png -images-10510.png -images-10511.png -images-10512.png -images-10513.png -images-10514.png -images-10515.png -images-10516.png -images-10517.png -images-10518.png -images-10519.png -images-10520.png -images-10521.png -images-10522.png -images-10523.png -images-10524.png -images-10525.png -images-10526.png -images-10527.png -images-10528.png -images-10529.png -images-10530.png -images-10531.png -images-10532.png -images-10533.png -images-10534.png -images-10535.png -images-10536.png -images-10537.png -images-10538.png -images-10539.png -images-10540.png -images-10541.png -images-10542.png -images-10543.png -images-10544.png -images-10545.png -images-10546.png -images-10547.png -images-10548.png -images-10549.png -images-10550.png -images-10551.png -images-10552.png -images-10553.png -images-10554.png -images-10555.png -images-10556.png -images-10557.png -images-10558.png -images-10559.png -images-10560.png -images-10561.png -images-10562.png -images-10563.png -images-10564.png -images-10565.png -images-10566.png -images-10567.png -images-10568.png -images-10569.png -images-10570.png -images-10571.png -images-10572.png -images-10573.png -images-10574.png -images-10575.png -images-10576.png -images-10577.png -images-10578.png -images-10579.png -images-10580.png -images-10581.png -images-10582.png -images-10583.png -images-10584.png -images-10585.png -images-10586.png -images-10587.png -images-10588.png -images-10589.png -images-10590.png -images-10591.png -images-10592.png -images-10593.png -images-10594.png -images-10595.png -images-10596.png -images-10597.png -images-10598.png -images-10599.png -images-10600.png -images-10601.png -images-10602.png -images-10603.png -images-10604.png -images-10605.png -images-10606.png -images-10607.png -images-10608.png -images-10609.png -images-10610.png -images-10611.png -images-10612.png -images-10613.png -images-10614.png -images-10615.png -images-10616.png -images-10617.png -images-10618.png -images-10619.png -images-10620.png -images-10621.png -images-10622.png -images-10623.png -images-10624.png -images-10625.png -images-10626.png -images-10627.png -images-10628.png -images-10629.png -images-10630.png -images-10631.png -images-10632.png -images-10633.png -images-10634.png -images-10635.png -images-10636.png -images-10637.png -images-10638.png -images-10639.png -images-10640.png -images-10641.png -images-10642.png -images-10643.png -images-10644.png -images-10645.png -images-10646.png -images-10647.png -images-10648.png -images-10649.png -images-10650.png -images-10651.png -images-10652.png -images-10653.png -images-10654.png -images-10655.png -images-10656.png -images-10657.png -images-10658.png -images-10659.png -images-10660.png -images-10661.png -images-10662.png -images-10663.png -images-10664.png -images-10665.png -images-10666.png -images-10667.png -images-10668.png -images-10669.png -images-10670.png -images-10671.png -images-10672.png -images-10673.png -images-10674.png -images-10675.png -images-10676.png -images-10677.png -images-10678.png -images-10679.png -images-10680.png -images-10681.png -images-10682.png -images-10683.png -images-10684.png -images-10685.png -images-10686.png -images-10687.png -images-10688.png -images-10689.png -images-10690.png -images-10691.png -images-10692.png -images-10693.png -images-10694.png -images-10695.png -images-10696.png -images-10697.png -images-10698.png -images-10699.png -images-10700.png -images-10701.png -images-10702.png -images-10703.png -images-10704.png -images-10705.png -images-10706.png -images-10707.png -images-10708.png -images-10709.png -images-10710.png -images-10711.png -images-10712.png -images-10713.png -images-10714.png -images-10715.png -images-10716.png -images-10717.png -images-10718.png -images-10719.png -images-10720.png -images-10721.png -images-10722.png -images-10723.png -images-10724.png -images-10725.png -images-10726.png -images-10727.png -images-10728.png -images-10729.png -images-10730.png -images-10731.png -images-10732.png -images-10733.png -images-10734.png -images-10735.png -images-10736.png -images-10737.png -images-10738.png -images-10739.png -images-10740.png -images-10741.png -images-10742.png -images-10743.png -images-10744.png -images-10745.png -images-10746.png -images-10747.png -images-10748.png -images-10749.png -images-10750.png -images-10751.png -images-10752.png -images-10753.png -images-10754.png -images-10755.png -images-10756.png -images-10757.png -images-10758.png -images-10759.png -images-10760.png -images-10761.png -images-10762.png -images-10763.png -images-10764.png -images-10765.png -images-10766.png -images-10767.png -images-10768.png -images-10769.png -images-10770.png -images-10771.png -images-10772.png -images-10773.png -images-10774.png -images-10775.png -images-10776.png -images-10777.png -images-10778.png -images-10779.png -images-10780.png -images-10781.png -images-10782.png -images-10783.png -images-10784.png -images-10785.png -images-10786.png -images-10787.png -images-10788.png -images-10789.png -images-10790.png -images-10791.png -images-10792.png -images-10793.png -images-10794.png -images-10795.png -images-10796.png -images-10797.png -images-10798.png -images-10799.png -images-10800.png -images-10801.png -images-10802.png -images-10803.png -images-10804.png -images-10805.png -images-10806.png -images-10807.png -images-10808.png -images-10809.png -images-10810.png -images-10811.png -images-10812.png -images-10813.png -images-10814.png -images-10815.png -images-10816.png -images-10817.png -images-10818.png -images-10819.png -images-10820.png -images-10821.png -images-10822.png -images-10823.png -images-10824.png -images-10825.png -images-10826.png -images-10827.png -images-10828.png -images-10829.png -images-10830.png -images-10831.png -images-10832.png -images-10833.png -images-10834.png -images-10835.png -images-10836.png -images-10837.png -images-10838.png -images-10839.png -images-10840.png -images-10841.png -images-10842.png -images-10843.png -images-10844.png -images-10845.png -images-10846.png -images-10847.png -images-10848.png -images-10849.png -images-10850.png -images-10851.png -images-10852.png -images-10853.png -images-10854.png -images-10855.png -images-10856.png -images-10857.png -images-10858.png -images-10859.png -images-10860.png -images-10861.png -images-10862.png -images-10863.png -images-10864.png -images-10865.png -images-10866.png -images-10867.png -images-10868.png -images-10869.png -images-10870.png -images-10871.png -images-10872.png -images-10873.png -images-10874.png -images-10875.png -images-10876.png -images-10877.png -images-10878.png -images-10879.png -images-10880.png -images-10881.png -images-10882.png -images-10883.png -images-10884.png -images-10885.png -images-10886.png -images-10887.png -images-10888.png -images-10889.png -images-10890.png -images-10891.png -images-10892.png -images-10893.png -images-10894.png -images-10895.png -images-10896.png -images-10897.png -images-10898.png -images-10899.png -images-10900.png -images-10901.png -images-10902.png -images-10903.png -images-10904.png -images-10905.png -images-10906.png -images-10907.png -images-10908.png -images-10909.png -images-10910.png -images-10911.png -images-10912.png -images-10913.png -images-10914.png -images-10915.png -images-10916.png -images-10917.png -images-10918.png -images-10919.png -images-10920.png -images-10921.png -images-10922.png -images-10923.png -images-10924.png -images-10925.png -images-10926.png -images-10927.png -images-10928.png -images-10929.png -images-10930.png -images-10931.png -images-10932.png -images-10933.png -images-10934.png -images-10935.png -images-10936.png -images-10937.png -images-10938.png -images-10939.png -images-10940.png -images-10941.png -images-10942.png -images-10943.png -images-10947.png -images-10948.png -images-10949.png -images-10950.png -images-10951.png -images-10952.png -images-10953.png -images-10954.png -images-10955.png -images-10956.png -images-10957.png -images-10958.png -images-10959.png -images-10960.png -images-10961.png -images-10962.png -images-10963.png -images-10964.png -images-10965.png -images-10966.png -images-10967.png -images-10968.png -images-10969.png -images-10970.png -images-10971.png -images-10972.png -images-10973.png -images-10974.png -images-10975.png -images-10976.png -images-10977.png -images-10978.png -images-10979.png -images-10980.png -images-10981.png -images-10982.png -images-10983.png -images-10984.png -images-10991.png -images-10992.png -images-10993.png -images-10994.png -images-10995.png -images-10996.png -images-11003.png -images-11004.png -images-11005.png -images-11006.png -images-11007.png -images-11019.png -images-11020.png -images-11021.png -images-11028.png -images-11029.png -images-11032.png -images-11033.png -images-11034.png -images-11035.png -images-11036.png -images-11048.png -images-11049.png -images-11050.png -images-11051.png -images-11052.png -images-11053.png -images-11054.png -images-11055.png -images-11056.png -images-11065.png -images-11066.png -images-11067.png -images-11068.png -images-11069.png -images-11070.png -images-11071.png -images-11072.png -images-11073.png -images-11074.png -images-11075.png -images-11076.png -images-11077.png -images-11078.png -images-11079.png -images-11080.png -images-11081.png -images-11082.png -images-11083.png -images-11084.png -images-11085.png -images-11086.png -images-11087.png -images-11088.png -images-11089.png -images-11090.png -images-11091.png -images-11092.png -images-11093.png -images-11094.png -images-11095.png -images-11096.png -images-11097.png -images-11098.png -images-11099.png -images-11100.png -images-11107.png -images-11108.png -images-11109.png -images-11110.png -images-11111.png -images-11112.png -images-11113.png -images-11114.png -images-11115.png -images-11116.png -images-11117.png -images-11118.png -images-11119.png -images-11120.png -images-11121.png -images-11122.png -images-11123.png -images-11124.png -images-11125.png -images-11126.png -images-11127.png -images-11128.png -images-11146.png -images-11147.png -images-11148.png -images-11149.png -images-11150.png -images-11151.png -images-11152.png -images-11153.png -images-11154.png -images-11155.png -images-11156.png -images-11157.png -images-11158.png -images-11159.png -images-11160.png -images-11161.png -images-11162.png -images-11163.png -images-11164.png -images-11165.png -images-11166.png -images-11167.png -images-11168.png -images-11169.png -images-11170.png -images-11171.png -images-11172.png -images-11173.png -images-11174.png -images-11175.png -images-11176.png -images-11177.png -images-11178.png -images-11179.png -images-11180.png -images-11181.png -images-11182.png -images-11183.png -images-11184.png -images-11185.png -images-11186.png -images-11187.png -images-11188.png -images-11189.png -images-11190.png -images-11191.png -images-11192.png -images-11193.png -images-11194.png -images-11195.png -images-11196.png -images-11197.png -images-11198.png -images-11199.png -images-11200.png -images-11201.png -images-11202.png -images-11203.png -images-11204.png -images-11205.png -images-11206.png -images-11207.png -images-11208.png -images-11209.png -images-11210.png -images-11211.png -images-11212.png -images-11213.png -images-11214.png -images-11215.png -images-11216.png -images-11217.png -images-11218.png -images-11219.png -images-11220.png -images-11221.png -images-11222.png -images-11223.png -images-11224.png -images-11228.png -images-11229.png -images-11230.png -images-11231.png -images-11232.png -images-11233.png -images-11234.png -images-11235.png -images-11236.png -images-11237.png -images-11238.png -images-11239.png -images-11240.png -images-11241.png -images-11242.png -images-11243.png -images-11244.png -images-11245.png -images-11246.png -images-11247.png -images-11248.png -images-11249.png -images-11250.png -images-11251.png -images-11252.png -images-11253.png -images-11254.png -images-11255.png -images-11256.png -images-11257.png -images-11258.png -images-11259.png -images-11260.png -images-11261.png -images-11262.png -images-11263.png -images-11264.png -images-11265.png -images-11266.png -images-11267.png -images-11268.png -images-11269.png -images-11270.png -images-11271.png -images-11272.png -images-11273.png -images-11274.png -images-11275.png -images-11276.png -images-11277.png -images-11278.png -images-11279.png -images-11286.png -images-11287.png -images-11288.png -images-11289.png -images-11290.png -images-11291.png -images-11292.png -images-11293.png -images-11294.png -images-11295.png -images-11296.png -images-11297.png -images-11298.png -images-11299.png -images-11300.png -images-11301.png -images-11302.png -images-11303.png -images-11304.png -images-11305.png -images-11306.png -images-11307.png -images-11308.png -images-11309.png -images-11310.png -images-11311.png -images-11312.png -images-11313.png -images-11314.png -images-11315.png -images-11316.png -images-11317.png -images-11318.png -images-11319.png -images-11320.png -images-11321.png -images-11322.png -images-11323.png -images-11324.png -images-11325.png -images-11326.png -images-11327.png -images-11328.png -images-11329.png -images-11330.png -images-11331.png -images-11332.png -images-11333.png -images-11334.png -images-11335.png -images-11336.png -images-11337.png -images-11338.png -images-11339.png -images-11340.png -images-11341.png -images-11342.png -images-11343.png -images-11344.png -images-11345.png -images-11346.png -images-11347.png -images-11348.png -images-11349.png -images-11350.png -images-11351.png -images-11352.png -images-11353.png -images-11354.png -images-11355.png -images-11356.png -images-11357.png -images-11358.png -images-11359.png -images-11360.png -images-11361.png -images-11362.png -images-11363.png -images-11364.png -images-11365.png -images-11366.png -images-11367.png -images-11368.png -images-11369.png -images-11370.png -images-11371.png -images-11372.png -images-11373.png -images-11374.png -images-11375.png -images-11376.png -images-11377.png -images-11378.png -images-11379.png -images-11380.png -images-11381.png -images-11382.png -images-11383.png -images-11384.png -images-11385.png -images-11386.png -images-11387.png -images-11388.png -images-11389.png -images-11390.png -images-11391.png -images-11392.png -images-11393.png -images-11394.png -images-11395.png -images-11396.png -images-11397.png -images-11398.png -images-11399.png -images-11400.png -images-11401.png -images-11402.png -images-11403.png -images-11404.png -images-11405.png -images-11406.png -images-11407.png -images-11408.png -images-11409.png -images-11410.png -images-11411.png -images-11412.png -images-11413.png -images-11414.png -images-11415.png -images-11416.png -images-11417.png -images-11418.png -images-11419.png -images-11420.png -images-11421.png -images-11422.png -images-11423.png -images-11424.png -images-11425.png -images-11426.png -images-11427.png -images-11428.png -images-11429.png -images-11430.png -images-11431.png -images-11432.png -images-11433.png -images-11434.png -images-11435.png -images-11436.png -images-11437.png -images-11438.png -images-11439.png -images-11440.png -images-11441.png -images-11442.png -images-11443.png -images-11444.png -images-11445.png -images-11446.png -images-11447.png -images-11448.png -images-11449.png -images-11450.png -images-11451.png -images-11452.png -images-11453.png -images-11454.png -images-11455.png -images-11456.png -images-11457.png -images-11458.png -images-11459.png -images-11460.png -images-11461.png -images-11462.png -images-11463.png -images-11464.png -images-11465.png -images-11466.png -images-11467.png -images-11468.png -images-11469.png -images-11470.png -images-11471.png -images-11472.png -images-11473.png -images-11474.png -images-11475.png -images-11476.png -images-11477.png -images-11478.png -images-11479.png -images-11480.png -images-11481.png -images-11482.png -images-11483.png -images-11484.png -images-11485.png -images-11486.png -images-11487.png -images-11488.png -images-11489.png -images-11490.png -images-11491.png -images-11492.png -images-11493.png -images-11494.png -images-11495.png -images-11496.png -images-11497.png -images-11498.png -images-11499.png -images-11500.png -images-11501.png -images-11502.png -images-11503.png -images-11504.png -images-11505.png -images-11506.png -images-11507.png -images-11508.png -images-11509.png -images-11510.png -images-11511.png -images-11512.png -images-11513.png -images-11514.png -images-11515.png -images-11516.png -images-11517.png -images-11518.png -images-11519.png -images-11520.png -images-11521.png -images-11522.png -images-11523.png -images-11524.png -images-11525.png -images-11526.png -images-11527.png -images-11528.png -images-11529.png -images-11530.png -images-11531.png -images-11532.png -images-11533.png -images-11534.png -images-11535.png -images-11536.png -images-11537.png -images-11538.png -images-11539.png -images-11540.png -images-11541.png -images-11542.png -images-11543.png -images-11544.png -images-11545.png -images-11546.png -images-11547.png -images-11548.png -images-11549.png -images-11550.png -images-11551.png -images-11552.png -images-11553.png -images-11554.png -images-11555.png -images-11556.png -images-11557.png -images-11558.png -images-11559.png -images-11560.png -images-11561.png -images-11562.png -images-11563.png -images-11564.png -images-11565.png -images-11566.png -images-11567.png -images-11568.png -images-11569.png -images-11570.png -images-11571.png -images-11572.png -images-11573.png -images-11574.png -images-11575.png -images-11576.png -images-11577.png -images-11578.png -images-11579.png -images-11580.png -images-11581.png -images-11582.png -images-11583.png -images-11584.png -images-11585.png -images-11586.png -images-11587.png -images-11588.png -images-11589.png -images-11590.png -images-11591.png -images-11592.png -images-11593.png -images-11594.png -images-11595.png -images-11596.png -images-11597.png -images-11598.png -images-11599.png -images-11600.png -images-11601.png -images-11602.png -images-11603.png -images-11604.png -images-11605.png -images-11606.png -images-11607.png -images-11608.png -images-11609.png -images-11610.png -images-11611.png -images-11612.png -images-11613.png -images-11614.png -images-11615.png -images-11616.png -images-11617.png -images-11618.png -images-11619.png -images-11620.png -images-11621.png -images-11622.png -images-11623.png -images-11624.png -images-11625.png -images-11626.png -images-11627.png -images-11628.png -images-11629.png -images-11630.png -images-11631.png -images-11632.png -images-11633.png -images-11634.png -images-11635.png -images-11636.png -images-11637.png -images-11638.png -images-11639.png -images-11640.png -images-11641.png -images-11642.png -images-11643.png -images-11644.png -images-11645.png -images-11646.png -images-11647.png -images-11648.png -images-11649.png -images-11650.png -images-11651.png -images-11652.png -images-11653.png -images-11899.png -images-11900.png -images-11901.png -images-11902.png -images-11903.png -images-11904.png -images-11905.png -images-11906.png -images-11907.png -images-11908.png -images-11909.png -images-11910.png -images-11911.png -images-11912.png -images-11913.png -images-11914.png -images-12036.png -images-12037.png -images-12038.png -images-12039.png -images-12040.png -images-12041.png -images-12042.png -images-12043.png -images-12044.png -images-12045.png -images-12046.png -images-12047.png -images-12048.png -images-12049.png -images-12050.png -images-12051.png -images-12052.png -images-12053.png -images-12054.png -images-12055.png -images-12056.png -images-12062.png -images-12063.png -images-12064.png -images-12065.png -images-12066.png -images-12067.png -images-12068.png -images-12069.png -images-12070.png -images-12071.png -images-12072.png -images-12073.png -images-12082.png -images-12083.png -images-12084.png -images-12085.png -images-12086.png -images-12087.png -images-12088.png -images-12089.png -images-12090.png -images-12091.png -images-12092.png -images-12093.png -images-12094.png -images-12095.png -images-12096.png -images-12097.png -images-12098.png -images-12099.png -images-12100.png -images-12101.png -images-12102.png -images-12103.png -images-12104.png -images-12105.png -images-12106.png -images-12107.png -images-12108.png -images-12109.png -images-12110.png -images-12111.png -images-12112.png -images-12113.png -images-12114.png -images-12115.png -images-12116.png -images-12117.png -images-12118.png -images-12119.png -images-12120.png -images-12121.png -images-12122.png -images-12123.png -images-12124.png -images-12125.png -images-12126.png -images-12127.png -images-12128.png -images-12129.png -images-12130.png -images-12131.png -images-12132.png -images-12133.png -images-12134.png -images-12135.png -images-12136.png -images-12137.png -images-12138.png -images-12139.png -images-12140.png -images-12141.png -images-12142.png -images-12143.png -images-12144.png -images-12145.png -images-12146.png -images-12147.png -images-12148.png -images-12149.png -images-12150.png -images-12151.png -images-12152.png -images-12153.png -images-12154.png -images-12155.png -images-12156.png -images-12157.png -images-12158.png -images-12159.png -images-12160.png -images-12161.png -images-12162.png -images-12163.png -images-12164.png -images-12168.png -images-12169.png -images-12170.png -images-12171.png -images-12172.png -images-12173.png -images-12174.png -images-12175.png -images-12176.png -images-12177.png -images-12178.png -images-12179.png -images-12180.png -images-12181.png -images-12182.png -images-12183.png -images-12184.png -images-12185.png -images-12186.png -images-12187.png -images-12188.png -images-12189.png -images-12190.png -images-12191.png -images-12192.png -images-12193.png -images-12194.png -images-12195.png -images-12196.png -images-12197.png -images-12198.png -images-12199.png -images-12200.png -images-12201.png -images-12202.png -images-12203.png -images-12208.png -images-12209.png -images-12210.png -images-12211.png -images-12212.png -images-12213.png -images-12214.png -images-12215.png -images-12216.png -images-12217.png -images-12218.png -images-12219.png -images-12220.png -images-12221.png -images-12222.png -images-12223.png -images-12224.png -images-12225.png -images-12226.png -images-12227.png -images-12228.png -images-12229.png -images-12230.png -images-12231.png -images-12232.png -images-12233.png -images-12234.png -images-12235.png -images-12236.png -images-12237.png -images-12238.png -images-12239.png -images-12240.png -images-12241.png -images-12242.png -images-12243.png -images-12244.png -images-12245.png -images-12246.png -images-12247.png -images-12248.png -images-12249.png -images-12250.png -images-12251.png -images-12252.png -images-12253.png -images-12254.png -images-12255.png -images-12256.png -images-12257.png -images-12258.png -images-12259.png -images-12260.png -images-12261.png -images-12262.png -images-12263.png -images-12264.png -images-12265.png -images-12266.png -images-12267.png -images-12268.png -images-12269.png -images-12270.png -images-12271.png -images-12272.png -images-12273.png -images-12274.png -images-12275.png -images-12276.png -images-12277.png -images-12278.png -images-12279.png -images-12280.png -images-12281.png -images-12282.png -images-12283.png -images-12284.png -images-12285.png -images-12286.png -images-12287.png -images-12288.png -images-12289.png -images-12290.png -images-12291.png -images-12292.png -images-12293.png -images-12294.png -images-12295.png -images-12296.png -images-12297.png -images-12298.png -images-12299.png -images-12300.png -images-12301.png -images-12302.png -images-12303.png -images-12304.png -images-12305.png -images-12306.png -images-12307.png -images-12308.png -images-12309.png -images-12310.png -images-12311.png -images-12312.png -images-12313.png -images-12314.png -images-12315.png -images-12316.png -images-12317.png -images-12318.png -images-12365.png -images-12366.png -images-12367.png -images-12368.png -images-12369.png -images-12370.png -images-12371.png -images-12372.png -images-12373.png -images-12374.png -images-12375.png -images-12376.png -images-12377.png -images-12378.png -images-12379.png -images-12380.png -images-12381.png -images-12382.png -images-12383.png -images-12384.png -images-12385.png -images-12386.png -images-12387.png -images-12388.png -images-12389.png -images-12390.png -images-12391.png -images-12392.png -images-12393.png -images-12394.png -images-12395.png -images-12396.png -images-12397.png -images-12398.png -images-12399.png -images-12400.png -images-12401.png -images-12402.png -images-12403.png -images-12404.png -images-12405.png -images-12406.png -images-12407.png -images-12408.png -images-12417.png -images-12418.png -images-12419.png -images-12420.png -images-12421.png -images-12422.png -images-12423.png -images-12424.png -images-12425.png -images-12426.png -images-12427.png -images-12428.png -images-12429.png -images-12430.png -images-12431.png -images-12432.png -images-12433.png -images-12434.png -images-12435.png -images-12436.png -images-12437.png -images-12438.png -images-12439.png -images-12440.png -images-12441.png -images-12442.png -images-12443.png -images-12444.png -images-12445.png -images-12446.png -images-12447.png -images-12448.png -images-12449.png -images-12450.png -images-12451.png -images-12452.png -images-12453.png -images-12454.png -images-12455.png -images-12456.png -images-12457.png -images-12458.png -images-12459.png -images-12460.png -images-12461.png -images-12462.png -images-12463.png -images-12464.png -images-12465.png -images-12466.png -images-12467.png -images-12468.png -images-12469.png -images-12470.png -images-12471.png -images-12481.png -images-12482.png -images-12483.png -images-12484.png -images-12485.png -images-12486.png -images-12487.png -images-12488.png -images-12489.png -images-12490.png -images-12491.png -images-12492.png -images-12493.png -images-12494.png -images-12495.png -images-12496.png -images-12497.png -images-12498.png -images-12499.png -images-12500.png -images-12501.png -images-12502.png -images-12503.png -images-12504.png -images-12505.png -images-12506.png -images-12507.png -images-12508.png -images-12509.png -images-12510.png -images-12511.png -images-12512.png -images-12513.png -images-12514.png -images-12515.png -images-12516.png -images-12517.png -images-12518.png -images-12519.png -images-12520.png -images-12521.png -images-12522.png -images-12523.png -images-12524.png -images-12525.png -images-12526.png -images-12527.png -images-12528.png -images-12529.png -images-12530.png -images-12531.png -images-12532.png -images-12533.png -images-12534.png -images-12535.png -images-12536.png -images-12537.png -images-12538.png -images-12539.png -images-12540.png -images-12541.png -images-12542.png -images-12543.png -images-12544.png -images-12545.png -images-12546.png -images-12547.png -images-12548.png -images-12549.png -images-12550.png -images-12551.png -images-12552.png -images-12553.png -images-12554.png -images-12555.png -images-12556.png -images-12557.png -images-12558.png -images-12559.png -images-12560.png -images-12561.png -images-12562.png -images-12563.png -images-12564.png -images-12565.png -images-12566.png -images-12567.png -images-12568.png -images-12569.png -images-12570.png -images-12571.png -images-12572.png -images-12573.png -images-12574.png -images-12575.png -images-12576.png -images-12577.png -images-12578.png -images-12579.png -images-12580.png -images-12581.png -images-12582.png -images-12583.png -images-12584.png -images-12585.png -images-12586.png -images-12587.png -images-12588.png -images-12589.png -images-12590.png -images-12591.png -images-12592.png -images-12593.png -images-12594.png -images-12595.png -images-12596.png -images-12597.png -images-12598.png -images-12599.png -images-12600.png -images-12601.png -images-12602.png -images-12603.png -images-12604.png -images-12605.png -images-12606.png -images-12607.png -images-12608.png -images-12609.png -images-12610.png -images-12611.png -images-12612.png -images-12613.png -images-12614.png -images-12615.png -images-12616.png -images-12617.png -images-12618.png -images-12619.png -images-12620.png -images-12621.png -images-12622.png -images-12623.png -images-12624.png -images-12625.png -images-12626.png -images-12627.png -images-12628.png -images-12629.png -images-12630.png -images-12631.png -images-12632.png -images-12633.png -images-12634.png -images-12635.png -images-12636.png -images-12637.png -images-12638.png -images-12639.png -images-12640.png -images-12641.png -images-12642.png -images-12643.png -images-12644.png -images-12645.png -images-12646.png -images-12647.png -images-12648.png -images-12649.png -images-12650.png -images-12651.png -images-12652.png -images-12653.png -images-12654.png -images-12655.png -images-12656.png -images-12657.png -images-12658.png -images-12659.png -images-12660.png -images-12661.png -images-12662.png -images-12663.png -images-12664.png -images-12665.png -images-12666.png -images-12667.png -images-12668.png -images-12669.png -images-12670.png -images-12671.png -images-12672.png -images-12673.png -images-12674.png -images-12675.png -images-12676.png -images-12677.png -images-12678.png -images-12679.png -images-12680.png -images-12681.png -images-12682.png -images-12683.png -images-12684.png -images-12685.png -images-12686.png -images-12687.png -images-12688.png -images-12689.png -images-12690.png -images-12691.png -images-12692.png -images-12693.png -images-12694.png -images-12695.png -images-12696.png -images-12697.png -images-12698.png -images-12699.png -images-12700.png -images-12701.png -images-12702.png -images-12703.png -images-12704.png -images-12705.png -images-12706.png -images-12707.png -images-12708.png -images-12709.png -images-12710.png -images-12711.png -images-12712.png -images-12713.png -images-12714.png -images-12715.png -images-12716.png -images-12717.png -images-12718.png -images-12719.png -images-12720.png -images-12721.png -images-12722.png -images-12723.png -images-12724.png -images-12725.png -images-12726.png -images-12727.png -images-12728.png -images-12729.png -images-12730.png -images-12731.png -images-12732.png -images-12733.png -images-12734.png -images-12735.png -images-12736.png -images-12737.png -images-12738.png -images-12739.png -images-12740.png -images-12741.png -images-12742.png -images-12743.png -images-12744.png -images-12745.png -images-12746.png -images-12747.png -images-12748.png -images-12749.png -images-12750.png -images-12751.png -images-12752.png -images-12753.png -images-12754.png -images-12755.png -images-12756.png -images-12757.png -images-12758.png -images-12759.png -images-12760.png -images-12761.png -images-12762.png -images-12763.png -images-12764.png -images-12765.png -images-12766.png -images-12767.png -images-12768.png -images-12769.png -images-12770.png -images-12771.png -images-12772.png -images-12773.png -images-12774.png -images-12775.png -images-12776.png -images-12777.png -images-12778.png -images-12779.png -images-12780.png -images-12781.png -images-12782.png -images-12783.png -images-12784.png -images-12785.png -images-12786.png -images-12787.png -images-12788.png -images-12789.png -images-12790.png -images-12791.png -images-12792.png -images-12793.png -images-12794.png -images-12795.png -images-12796.png -images-12797.png -images-12798.png -images-12799.png -images-12800.png -images-12801.png -images-12802.png -images-12803.png -images-12804.png -images-12805.png -images-12806.png -images-12807.png -images-12808.png -images-12809.png -images-12810.png -images-12811.png -images-12812.png -images-12813.png -images-12814.png -images-12815.png -images-12816.png -images-12817.png -images-12818.png -images-12819.png -images-12820.png -images-12821.png -images-12822.png -images-12823.png -images-12824.png -images-12825.png -images-12826.png -images-12827.png -images-12828.png -images-12829.png -images-12830.png -images-12831.png -images-12832.png -images-12833.png -images-12834.png -images-12835.png -images-12836.png -images-12837.png -images-12838.png -images-12839.png -images-12840.png -images-12841.png -images-12842.png -images-12843.png -images-12844.png -images-12845.png -images-12846.png -images-12847.png -images-12848.png -images-12849.png -images-12850.png -images-12851.png -images-12852.png -images-12853.png -images-12854.png -images-12855.png -images-12856.png -images-12857.png -images-12858.png -images-12859.png -images-12860.png -images-12861.png -images-12862.png -images-12863.png -images-12864.png -images-12865.png -images-12866.png -images-12867.png -images-12868.png -images-12869.png -images-12870.png -images-12871.png -images-12872.png -images-12873.png -images-12874.png -images-12875.png -images-12876.png -images-12877.png -images-12878.png -images-12879.png -images-12880.png -images-12881.png -images-12882.png -images-12883.png -images-12884.png -images-12885.png -images-12886.png -images-12887.png -images-12888.png -images-12889.png -images-12890.png -images-12891.png -images-12892.png -images-12893.png -images-12894.png -images-12895.png -images-12896.png -images-12897.png -images-12898.png -images-12899.png -images-12900.png -images-12901.png -images-12902.png -images-12903.png -images-12904.png -images-12905.png -images-12906.png -images-12907.png -images-12908.png -images-12909.png -images-12910.png -images-12911.png -images-12912.png -images-12913.png -images-12914.png -images-12915.png -images-12916.png -images-12917.png -images-12918.png -images-12919.png -images-12920.png -images-12921.png -images-12922.png -images-12923.png -images-12924.png -images-12925.png -images-12926.png -images-12927.png -images-12928.png -images-12929.png -images-12930.png -images-12931.png -images-12932.png -images-12933.png -images-12934.png -images-12935.png -images-12936.png -images-12937.png -images-12938.png -images-12939.png -images-12940.png -images-12941.png -images-12942.png -images-12943.png -images-12944.png -images-12945.png -images-12946.png -images-12947.png -images-12948.png -images-12949.png -images-12950.png -images-12951.png -images-12952.png -images-12953.png -images-12954.png -images-12955.png -images-12956.png -images-12957.png -images-12958.png -images-12959.png -images-12960.png -images-12961.png -images-12962.png -images-12963.png -images-12964.png -images-12965.png -images-12966.png -images-12967.png -images-12968.png -images-12969.png -images-12970.png -images-12971.png -images-12972.png -images-12973.png -images-12974.png -images-12975.png -images-12976.png -images-12977.png -images-12978.png -images-12979.png -images-12980.png -images-12981.png -images-12982.png -images-12983.png -images-12984.png -images-12985.png -images-12986.png -images-12987.png -images-12988.png -images-12989.png -images-12990.png -images-12991.png -images-12992.png -images-12993.png -images-12994.png -images-12995.png -images-12996.png -images-12997.png -images-12998.png -images-12999.png -images-13000.png -images-13001.png -images-13002.png -images-13003.png -images-13004.png -images-13005.png -images-13006.png -images-13007.png -images-13008.png -images-13009.png -images-13010.png -images-13011.png -images-13012.png -images-13013.png -images-13014.png -images-13015.png -images-13016.png -images-13017.png -images-13018.png -images-13019.png -images-13020.png -images-13021.png -images-13022.png -images-13023.png -images-13024.png -images-13025.png -images-13026.png -images-13027.png -images-13028.png -images-13029.png -images-13030.png -images-13031.png -images-13032.png -images-13033.png -images-13034.png -images-13035.png -images-13036.png -images-13037.png -images-13038.png -images-13039.png -images-13040.png -images-13041.png -images-13042.png -images-13043.png -images-13044.png -images-13045.png -images-13046.png -images-13047.png -images-13048.png -images-13049.png -images-13050.png -images-13051.png -images-13052.png -images-13053.png -images-13054.png -images-13055.png -images-13056.png -images-13057.png -images-13058.png -images-13059.png -images-13060.png -images-13061.png -images-13062.png -images-13063.png -images-13064.png -images-13065.png -images-13066.png -images-13067.png -images-13068.png -images-13069.png -images-13070.png -images-13071.png -images-13072.png -images-13073.png -images-13074.png -images-13075.png -images-13076.png -images-13077.png -images-13078.png -images-13079.png -images-13080.png -images-13081.png -images-13082.png -images-13083.png -images-13084.png -images-13085.png -images-13086.png -images-13087.png -images-13088.png -images-13089.png -images-13090.png -images-13091.png -images-13092.png -images-13093.png -images-13094.png -images-13095.png -images-13096.png -images-13097.png -images-13098.png -images-13099.png -images-13100.png -images-13101.png -images-13102.png -images-13103.png -images-13104.png -images-13105.png -images-13106.png -images-13107.png -images-13108.png -images-13109.png -images-13110.png -images-13111.png -images-13112.png -images-13113.png -images-13114.png -images-13115.png -images-13116.png -images-13117.png -images-13118.png -images-13119.png -images-13120.png -images-13121.png -images-13122.png -images-13123.png -images-13124.png -images-13125.png -images-13126.png -images-13127.png -images-13128.png -images-13129.png -images-13130.png -images-13131.png -images-13132.png -images-13133.png -images-13134.png -images-13135.png -images-13136.png -images-13137.png -images-13138.png -images-13139.png -images-13140.png -images-13141.png -images-13142.png -images-13143.png -images-13144.png -images-13145.png -images-13146.png -images-13147.png -images-13148.png -images-13149.png -images-13150.png -images-13151.png -images-13152.png -images-13153.png -images-13154.png -images-13155.png -images-13156.png -images-13157.png -images-13158.png -images-13159.png -images-13160.png -images-13161.png -images-13162.png -images-13163.png -images-13164.png -images-13165.png -images-13166.png -images-13167.png -images-13168.png -images-13169.png -images-13170.png -images-13171.png -images-13172.png -images-13173.png -images-13174.png -images-13175.png -images-13176.png -images-13177.png -images-13178.png -images-13179.png -images-13180.png -images-13181.png -images-13182.png -images-13183.png -images-13184.png -images-13185.png -images-13186.png -images-13187.png -images-13188.png -images-13189.png -images-13190.png -images-13191.png -images-13192.png -images-13193.png -images-13194.png -images-13195.png -images-13196.png -images-13197.png -images-13198.png -images-13199.png -images-13200.png -images-13201.png -images-13202.png -images-13203.png -images-13204.png -images-13205.png -images-13206.png -images-13207.png -images-13208.png -images-13209.png -images-13210.png -images-13211.png -images-13212.png -images-13213.png -images-13214.png -images-13215.png -images-13216.png -images-13217.png -images-13218.png -images-13219.png -images-13220.png -images-13221.png -images-13222.png -images-13223.png -images-13224.png -images-13225.png -images-13226.png -images-13227.png -images-13228.png -images-13229.png -images-13230.png -images-13231.png -images-13232.png -images-13233.png -images-13234.png -images-13235.png -images-13236.png -images-13237.png -images-13238.png -images-13239.png -images-13240.png -images-13241.png -images-13242.png -images-13243.png -images-13244.png -images-13245.png -images-13246.png -images-13247.png -images-13248.png -images-13249.png -images-13250.png -images-13251.png -images-13252.png -images-13253.png -images-13254.png -images-13255.png -images-13256.png -images-13257.png -images-13258.png -images-13259.png -images-13260.png -images-13261.png -images-13262.png -images-13263.png -images-13264.png -images-13265.png -images-13266.png -images-13267.png -images-13268.png -images-13269.png -images-13270.png -images-13271.png -images-13272.png -images-13273.png -images-13274.png -images-13275.png -images-13276.png -images-13277.png -images-13278.png -images-13279.png -images-13280.png -images-13281.png -images-13282.png -images-13283.png -images-13284.png -images-13285.png -images-13286.png -images-13287.png -images-13288.png -images-13289.png -images-13290.png -images-13291.png -images-13292.png -images-13293.png -images-13294.png -images-13295.png -images-13296.png -images-13297.png -images-13298.png -images-13299.png -images-13300.png -images-13301.png -images-13302.png -images-13303.png -images-13304.png -images-13305.png -images-13306.png -images-13307.png -images-13308.png -images-13309.png -images-13310.png -images-13311.png -images-13312.png -images-13313.png -images-13314.png -images-13315.png -images-13316.png -images-13317.png -images-13318.png -images-13319.png -images-13320.png -images-13321.png -images-13322.png -images-13323.png -images-13324.png -images-13325.png -images-13326.png -images-13327.png -images-13328.png -images-13329.png -images-13330.png -images-13331.png -images-13332.png -images-13333.png -images-13334.png -images-13335.png -images-13336.png -images-13337.png -images-13338.png -images-13339.png -images-13340.png -images-13341.png -images-13342.png -images-13343.png -images-13344.png -images-13441.png -images-13442.png -images-13443.png -images-13444.png -images-13445.png -images-13446.png -images-13447.png -images-13448.png -images-13449.png -images-13450.png -images-13451.png -images-13452.png -images-13453.png -images-13454.png -images-13455.png -images-13456.png -images-13457.png -images-13458.png -images-13459.png -images-13460.png -images-13461.png -images-13462.png -images-13463.png -images-13464.png -images-13465.png -images-13466.png -images-13467.png -images-13468.png -images-13469.png -images-13470.png -images-13471.png -images-13472.png -images-13473.png -images-13474.png -images-13475.png -images-13476.png -images-13477.png -images-13478.png -images-13479.png -images-13480.png -images-13481.png -images-13482.png -images-13483.png -images-13484.png -images-13485.png -images-13486.png -images-13487.png -images-13488.png -images-13489.png -images-13490.png -images-13491.png -images-13492.png -images-13493.png -images-13494.png -images-13495.png -images-13496.png -images-13497.png -images-13498.png -images-13499.png -images-13500.png -images-13501.png -images-13502.png -images-13503.png -images-13504.png -images-13505.png -images-13506.png -images-13507.png -images-13508.png -images-13509.png -images-13510.png -images-13511.png -images-13512.png -images-13513.png -images-13514.png -images-13515.png -images-13516.png -images-13517.png -images-13518.png -images-13519.png -images-13520.png -images-13521.png -images-13522.png -images-13523.png -images-13524.png -images-13525.png -images-13526.png -images-13527.png -images-13528.png -images-13529.png -images-13530.png -images-13531.png -images-13532.png -images-13533.png -images-13534.png -images-13535.png -images-13536.png -images-13537.png -images-13538.png -images-13539.png -images-13540.png -images-13541.png -images-13542.png -images-13543.png -images-13544.png -images-13545.png -images-13546.png -images-13547.png -images-13548.png -images-13549.png -images-13550.png -images-13551.png -images-13552.png -images-13553.png -images-13554.png -images-13555.png -images-13556.png -images-13557.png -images-13558.png -images-13559.png -images-13560.png -images-13561.png -images-13562.png -images-13563.png -images-13564.png -images-13565.png -images-13566.png -images-13567.png -images-13568.png -images-13569.png -images-13570.png -images-13571.png -images-13572.png -images-13573.png -images-13574.png -images-13575.png -images-13576.png -images-13577.png -images-13578.png -images-13579.png -images-13580.png -images-13581.png -images-13582.png -images-13583.png -images-13584.png -images-13585.png -images-13586.png -images-13587.png -images-13588.png -images-13589.png -images-13590.png -images-13591.png -images-13592.png -images-13593.png -images-13594.png -images-13595.png -images-13596.png -images-13597.png -images-13598.png -images-13599.png -images-13600.png -images-13601.png -images-13602.png -images-13603.png -images-13604.png -images-13605.png -images-13606.png -images-13607.png -images-13608.png -images-13609.png -images-13610.png -images-13611.png -images-13612.png -images-13613.png -images-13614.png -images-13615.png -images-13616.png -images-13617.png -images-13618.png -images-13619.png -images-13628.png -images-13629.png -images-13630.png -images-13631.png -images-13632.png -images-13633.png -images-13634.png -images-13635.png -images-13636.png -images-13637.png -images-13638.png -images-13639.png -images-13640.png -images-13641.png -images-13642.png -images-13643.png -images-13644.png -images-13645.png -images-13646.png -images-13647.png -images-13648.png -images-13649.png -images-13650.png -images-13651.png -images-13652.png -images-13653.png -images-13654.png -images-13655.png -images-13656.png -images-13657.png -images-13658.png -images-13659.png -images-13660.png -images-13661.png -images-13662.png -images-13663.png -images-13664.png -images-13665.png -images-13666.png -images-13667.png -images-13668.png -images-13669.png -images-13670.png -images-13671.png -images-13672.png -images-13673.png -images-13674.png -images-13675.png -images-13676.png -images-13677.png -images-13678.png -images-13679.png -images-13680.png -images-13681.png -images-13682.png -images-13683.png -images-13684.png -images-13685.png -images-13686.png -images-13687.png -images-13688.png -images-13689.png -images-13690.png -images-13691.png -images-13692.png -images-13693.png -images-13694.png -images-13695.png -images-13696.png -images-13697.png -images-13698.png -images-13699.png -images-13700.png -images-13701.png -images-13702.png -images-13703.png -images-13704.png -images-13705.png -images-13706.png -images-13707.png -images-13708.png -images-13709.png -images-13710.png -images-13711.png -images-13712.png -images-13713.png -images-13714.png -images-13715.png -images-13716.png -images-13717.png -images-13718.png -images-13719.png -images-13720.png -images-13721.png -images-13722.png -images-13723.png -images-13724.png -images-13725.png -images-13726.png -images-13727.png -images-13728.png -images-13729.png -images-13730.png -images-13731.png -images-13732.png -images-13733.png -images-13734.png -images-13735.png -images-13736.png -images-13737.png -images-13738.png -images-13739.png -images-13740.png -images-13741.png -images-13742.png -images-13743.png -images-13744.png -images-13745.png -images-13746.png -images-13747.png -images-13748.png -images-13749.png -images-13750.png -images-13751.png -images-13752.png -images-13753.png -images-13754.png -images-13755.png -images-13756.png -images-13757.png -images-13758.png -images-13759.png -images-13760.png -images-13761.png -images-13762.png -images-13763.png -images-13764.png -images-13765.png -images-13766.png -images-13767.png -images-13768.png -images-13769.png -images-13770.png -images-13771.png -images-13772.png -images-13773.png -images-13774.png -images-13775.png -images-13776.png -images-13777.png -images-13778.png -images-13779.png -images-13780.png -images-13781.png -images-13782.png -images-13783.png -images-13784.png -images-13785.png -images-13786.png -images-13787.png -images-13788.png -images-13789.png -images-13790.png -images-13791.png -images-13792.png -images-13793.png -images-13794.png -images-13795.png -images-13796.png -images-13797.png -images-13798.png -images-13799.png -images-13800.png -images-13801.png -images-13802.png -images-13803.png -images-13804.png -images-13805.png -images-13806.png -images-13807.png -images-13808.png -images-13809.png -images-13810.png -images-13811.png -images-13812.png -images-13813.png -images-13814.png -images-13815.png -images-13816.png -images-13817.png -images-13818.png -images-13819.png -images-13820.png -images-13821.png -images-13822.png -images-13823.png -images-13824.png -images-13825.png -images-13826.png -images-13827.png -images-13828.png -images-13829.png -images-13830.png -images-13831.png -images-13832.png -images-13833.png -images-13834.png -images-13835.png -images-13836.png -images-13837.png -images-13838.png -images-13839.png -images-13840.png -images-13841.png -images-13842.png -images-13843.png -images-13844.png -images-13845.png -images-13846.png -images-13847.png -images-13848.png -images-13849.png -images-13850.png -images-13851.png -images-13852.png -images-13853.png -images-13854.png -images-13855.png -images-13856.png -images-13857.png -images-13858.png -images-13859.png -images-13860.png -images-13861.png -images-13862.png -images-13863.png -images-13864.png -images-13865.png -images-13866.png -images-13867.png -images-13868.png -images-13869.png -images-13870.png -images-13871.png -images-13872.png -images-13873.png -images-13874.png -images-13875.png -images-13876.png -images-13877.png -images-13878.png -images-13879.png -images-13880.png -images-13881.png -images-13882.png -images-13883.png -images-13884.png -images-13885.png -images-13886.png -images-13887.png -images-13888.png -images-13889.png -images-13890.png -images-13891.png -images-13892.png -images-13893.png -images-13894.png -images-13895.png -images-13896.png -images-13897.png -images-13898.png -images-13899.png -images-13900.png -images-13901.png -images-13902.png -images-13903.png -images-13904.png -images-13905.png -images-13906.png -images-13907.png -images-13908.png -images-13909.png -images-13910.png -images-13911.png -images-13912.png -images-13913.png -images-13914.png -images-13915.png -images-13916.png -images-13917.png -images-13918.png -images-13919.png -images-13920.png -images-13921.png -images-13922.png -images-13923.png -images-13924.png -images-13925.png -images-13926.png -images-13927.png -images-13928.png -images-13929.png -images-13930.png -images-13931.png -images-13932.png -images-13933.png -images-13934.png -images-13935.png -images-13936.png -images-13937.png -images-13938.png -images-13939.png -images-13940.png -images-13941.png -images-13942.png -images-13943.png -images-13944.png -images-13945.png -images-13946.png -images-13947.png -images-13948.png -images-13949.png -images-13950.png -images-13951.png -images-13952.png -images-13953.png -images-13954.png -images-13955.png -images-13956.png -images-13957.png -images-13958.png -images-13959.png -images-13960.png -images-13961.png -images-13962.png -images-13963.png -images-13964.png -images-13965.png -images-13966.png -images-13967.png -images-13968.png -images-13969.png -images-13970.png -images-13971.png -images-13972.png -images-13973.png -images-13974.png -images-13975.png -images-13976.png -images-13977.png -images-13978.png -images-13979.png -images-13980.png -images-13981.png -images-13982.png -images-13983.png -images-13984.png -images-13985.png -images-13986.png -images-13987.png -images-13988.png -images-13989.png -images-13990.png -images-13991.png -images-13992.png -images-13993.png -images-13994.png -images-13995.png -images-13996.png -images-13997.png -images-13998.png -images-13999.png -images-14000.png -images-14001.png -images-14002.png -images-14003.png -images-14004.png -images-14005.png -images-14006.png -images-14007.png -images-14008.png -images-14009.png -images-14010.png -images-14011.png -images-14012.png -images-14013.png -images-14014.png -images-14015.png -images-14016.png -images-14017.png -images-14018.png -images-14019.png -images-14020.png -images-14021.png -images-14022.png -images-14023.png -images-14024.png -images-14025.png -images-14026.png -images-14027.png -images-14028.png -images-14029.png -images-14030.png -images-14031.png -images-14032.png -images-14033.png -images-14034.png -images-14035.png -images-14036.png -images-14037.png -images-14038.png -images-14039.png -images-14040.png -images-14041.png -images-14042.png -images-14043.png -images-14044.png -images-14045.png -images-14046.png -images-14047.png -images-14048.png -images-14049.png -images-14050.png -images-14051.png -images-14052.png -images-14053.png -images-14054.png -images-14055.png -images-14056.png -images-14057.png -images-14058.png -images-14059.png -images-14060.png -images-14061.png -images-14062.png -images-14063.png -images-14064.png -images-14065.png -images-14066.png -images-14067.png -images-14068.png -images-14069.png -images-14070.png -images-14071.png -images-14072.png -images-14073.png -images-14074.png -images-14075.png -images-14076.png -images-14077.png -images-14078.png -images-14079.png -images-14080.png -images-14081.png -images-14082.png -images-14083.png -images-14084.png -images-14085.png -images-14086.png -images-14087.png -images-14088.png -images-14089.png -images-14090.png -images-14091.png -images-14092.png -images-14093.png -images-14094.png -images-14095.png -images-14096.png -images-14097.png -images-14098.png -images-14099.png -images-14100.png -images-14101.png -images-14102.png -images-14103.png -images-14104.png -images-14105.png -images-14106.png -images-14107.png -images-14108.png -images-14109.png -images-14110.png -images-14111.png -images-14112.png -images-14113.png -images-14114.png -images-14115.png -images-14116.png -images-14117.png -images-14118.png -images-14119.png -images-14120.png -images-14121.png -images-14122.png -images-14123.png -images-14124.png -images-14125.png -images-14126.png -images-14127.png -images-14128.png -images-14129.png -images-14130.png -images-14131.png -images-14132.png -images-14133.png -images-14134.png -images-14135.png -images-14136.png -images-14137.png -images-14138.png -images-14139.png -images-14140.png -images-14141.png -images-14142.png -images-14143.png -images-14144.png -images-14145.png -images-14146.png -images-14147.png -images-14148.png -images-14149.png -images-14150.png -images-14151.png -images-14152.png -images-14153.png -images-14154.png -images-14155.png -images-14156.png -images-14157.png -images-14158.png -images-14159.png -images-14160.png -images-14161.png -images-14162.png -images-14163.png -images-14164.png -images-14165.png -images-14166.png -images-14167.png -images-14168.png -images-14169.png -images-14170.png -images-14171.png -images-14172.png -images-14173.png -images-14174.png -images-14175.png -images-14176.png -images-14177.png -images-14178.png -images-14179.png -images-14180.png -images-14181.png -images-14182.png -images-14183.png -images-14184.png -images-14185.png -images-14186.png -images-14187.png -images-14188.png -images-14189.png -images-14190.png -images-14191.png -images-14192.png -images-14193.png -images-14194.png -images-14195.png -images-14196.png -images-14197.png -images-14198.png -images-14199.png -images-14200.png -images-14201.png -images-14202.png -images-14203.png -images-14204.png -images-14205.png -images-14206.png -images-14207.png -images-14208.png -images-14209.png -images-14210.png -images-14211.png -images-14212.png -images-14213.png -images-14214.png -images-14215.png -images-14216.png -images-14217.png -images-14218.png -images-14219.png -images-14220.png -images-14221.png -images-14222.png -images-14223.png -images-14224.png -images-14225.png -images-14226.png -images-14227.png -images-14228.png -images-14229.png -images-14230.png -images-14231.png -images-14232.png -images-14233.png -images-14234.png -images-14235.png -images-14236.png -images-14237.png -images-14238.png -images-14239.png -images-14240.png -images-14241.png -images-14242.png -images-14243.png -images-14244.png -images-14245.png -images-14246.png -images-14247.png -images-14248.png -images-14249.png -images-14250.png -images-14251.png -images-14252.png -images-14253.png -images-14254.png -images-14255.png -images-14256.png -images-14257.png -images-14258.png -images-14259.png -images-14260.png -images-14261.png -images-14262.png -images-14263.png -images-14264.png -images-14265.png -images-14266.png -images-14267.png -images-14268.png -images-14269.png -images-14270.png -images-14271.png -images-14272.png -images-14273.png -images-14274.png -images-14275.png -images-14276.png -images-14277.png -images-14278.png -images-14279.png -images-14280.png -images-14281.png -images-14282.png -images-14283.png -images-14284.png -images-14285.png -images-14286.png -images-14287.png -images-14288.png -images-14289.png -images-14290.png -images-14291.png -images-14292.png -images-14293.png -images-14294.png -images-14295.png -images-14296.png -images-14297.png -images-14298.png -images-14299.png -images-14300.png -images-14301.png -images-14302.png -images-14303.png -images-14304.png -images-14305.png -images-14306.png -images-14307.png -images-14308.png -images-14309.png -images-14310.png -images-14311.png -images-14312.png -images-14313.png -images-14314.png -images-14315.png -images-14316.png -images-14317.png -images-14318.png -images-14319.png -images-14348.png -images-14349.png -images-14350.png -images-14351.png -images-14352.png -images-14353.png -images-14354.png -images-14355.png -images-14356.png -images-14357.png -images-14358.png -images-14359.png -images-14360.png -images-14361.png -images-14362.png -images-14363.png -images-14364.png -images-14365.png -images-14366.png -images-14367.png -images-14368.png -images-14369.png -images-14370.png -images-14371.png -images-14372.png -images-14373.png -images-14374.png -images-14375.png -images-14376.png -images-14377.png -images-14378.png -images-14379.png -images-14380.png -images-14381.png -images-14382.png -images-14383.png -images-14384.png -images-14385.png -images-14386.png -images-14387.png -images-14388.png -images-14389.png -images-14400.png -images-14401.png -images-14402.png -images-14403.png -images-14404.png -images-14405.png -images-14406.png -images-14407.png -images-14408.png -images-14409.png -images-14410.png -images-14411.png -images-14412.png -images-14413.png -images-14414.png -images-14415.png -images-14416.png -images-14417.png -images-14418.png -images-14419.png -images-14420.png -images-14421.png -images-14422.png -images-14423.png -images-14424.png -images-14425.png -images-14426.png -images-14427.png -images-14428.png -images-14429.png -images-14430.png -images-14431.png -images-14432.png -images-14433.png -images-14434.png -images-14435.png -images-14436.png -images-14437.png -images-14438.png -images-14439.png -images-14440.png -images-14441.png -images-14442.png -images-14443.png -images-14444.png -images-14445.png -images-14446.png -images-14447.png -images-14448.png -images-14449.png -images-14450.png -images-14451.png -images-14452.png -images-14453.png -images-14454.png -images-14455.png -images-14456.png -images-14457.png -images-14458.png -images-14459.png -images-14460.png -images-14461.png -images-14462.png -images-14463.png -images-14464.png -images-14465.png -images-14466.png -images-14467.png -images-14468.png -images-14469.png -images-14470.png -images-14471.png -images-14472.png -images-14473.png -images-14474.png -images-14475.png -images-14476.png -images-14477.png -images-14478.png -images-14479.png -images-14480.png -images-14481.png -images-14482.png -images-14483.png -images-14484.png -images-14485.png -images-14486.png -images-14487.png -images-14488.png -images-14489.png -images-14490.png -images-14491.png -images-14492.png -images-14493.png -images-14494.png -images-14495.png -images-14496.png -images-14497.png -images-14498.png -images-14499.png -images-14500.png -images-14501.png -images-14502.png -images-14503.png -images-14504.png -images-14505.png -images-14506.png -images-14507.png -images-14508.png -images-14509.png -images-14510.png -images-14511.png -images-14512.png -images-14513.png -images-14514.png -images-14515.png -images-14516.png -images-14517.png -images-14518.png -images-14519.png -images-14520.png -images-14521.png -images-14522.png -images-14523.png -images-14524.png -images-14525.png -images-14526.png -images-14527.png -images-14528.png -images-14529.png -images-14530.png -images-14531.png -images-14532.png -images-14533.png -images-14534.png -images-14535.png -images-14536.png -images-14537.png -images-14538.png -images-14539.png -images-14540.png -images-14541.png -images-14542.png -images-14543.png -images-14544.png -images-14545.png -images-14546.png -images-14547.png -images-14548.png -images-14549.png -images-14550.png -images-14551.png -images-14552.png -images-14553.png -images-14554.png -images-14555.png -images-14556.png -images-14557.png -images-14558.png -images-14559.png -images-14560.png -images-14561.png -images-14562.png -images-14563.png -images-14564.png -images-14565.png -images-14566.png -images-14567.png -images-14568.png -images-14569.png -images-14570.png -images-14571.png -images-14572.png -images-14573.png -images-14574.png -images-14575.png -images-14576.png -images-14577.png -images-14578.png -images-14579.png -images-14580.png -images-14581.png -images-14582.png -images-14583.png -images-14584.png -images-14585.png -images-14586.png -images-14587.png -images-14588.png -images-14589.png -images-14590.png -images-14591.png -images-14592.png -images-14593.png -images-14594.png -images-14595.png -images-14596.png -images-14597.png -images-14598.png -images-14599.png -images-14600.png -images-14601.png -images-14602.png -images-14603.png -images-14604.png -images-14605.png -images-14606.png -images-14607.png -images-14608.png -images-14609.png -images-14610.png -images-14611.png -images-14612.png -images-14613.png -images-14614.png -images-14615.png -images-14616.png -images-14617.png -images-14618.png -images-14619.png -images-14620.png -images-14621.png -images-14622.png -images-14623.png -images-14624.png -images-14625.png -images-14626.png -images-14627.png -images-14628.png -images-14629.png -images-14630.png -images-14631.png -images-14632.png -images-14633.png -images-14634.png -images-14635.png -images-14636.png -images-14637.png -images-14638.png -images-14639.png -images-14640.png -images-14641.png -images-14642.png -images-14643.png -images-14644.png -images-14645.png -images-14646.png -images-14647.png -images-14648.png -images-14649.png -images-14650.png -images-14651.png -images-14652.png -images-14653.png -images-14654.png -images-14655.png -images-14656.png -images-14657.png -images-14658.png -images-14659.png -images-14660.png -images-14661.png -images-14662.png -images-14663.png -images-14664.png -images-14665.png -images-14666.png -images-14667.png -images-14668.png -images-14669.png -images-14670.png -images-14671.png -images-14672.png -images-14673.png -images-14674.png -images-14675.png -images-14676.png -images-14677.png -images-14678.png -images-14679.png -images-14680.png -images-14681.png -images-14682.png -images-14683.png -images-14684.png -images-14685.png -images-14686.png -images-14687.png -images-14688.png -images-14689.png -images-14690.png -images-14691.png -images-14692.png -images-14693.png -images-14694.png -images-14695.png -images-14696.png -images-14697.png -images-14698.png -images-14699.png -images-14700.png -images-14701.png -images-14702.png -images-14703.png -images-14704.png -images-14705.png -images-14706.png -images-14707.png -images-14708.png -images-14709.png -images-14710.png -images-14711.png -images-14712.png -images-14713.png -images-14714.png -images-14715.png -images-14716.png -images-14717.png -images-14718.png -images-14719.png -images-14720.png -images-14721.png -images-14722.png -images-14723.png -images-14724.png -images-14725.png -images-14726.png -images-14727.png -images-14728.png -images-14729.png -images-14730.png -images-14731.png -images-14732.png -images-14733.png -images-14734.png -images-14735.png -images-14736.png -images-14737.png -images-14738.png -images-14739.png -images-14740.png -images-14741.png -images-14742.png -images-14743.png -images-14744.png -images-14745.png -images-14746.png -images-14747.png -images-14748.png -images-14749.png -images-14750.png -images-14751.png -images-14752.png -images-14753.png -images-14754.png -images-14755.png -images-14756.png -images-14757.png -images-14758.png -images-14759.png -images-14760.png -images-14761.png -images-14762.png -images-14763.png -images-14764.png -images-14765.png -images-14766.png -images-14767.png -images-14768.png -images-14769.png -images-14770.png -images-14771.png -images-14772.png -images-14773.png -images-14774.png -images-14775.png -images-14776.png -images-14777.png -images-14778.png -images-14779.png -images-14780.png -images-14781.png -images-14782.png -images-14783.png -images-14784.png -images-14785.png -images-14786.png -images-14787.png -images-14788.png -images-14789.png -images-14790.png -images-14791.png -images-14792.png -images-14793.png -images-14794.png -images-14795.png -images-14796.png -images-14797.png -images-14798.png -images-14799.png -images-14800.png -images-14801.png -images-14802.png -images-14803.png -images-14804.png -images-14805.png -images-14806.png -images-14926.png -images-14927.png -images-14928.png -images-14929.png -images-14930.png -images-14931.png -images-14932.png -images-14933.png -images-14934.png -images-14935.png -images-14936.png -images-14937.png -images-14938.png -images-14939.png -images-14940.png -images-14941.png -images-14942.png -images-14943.png -images-14944.png -images-14945.png -images-14946.png -images-14947.png -images-14948.png -images-14949.png -images-14950.png -images-14951.png -images-14952.png -images-14953.png -images-14954.png -images-14955.png -images-14956.png -images-14957.png -images-14958.png -images-14959.png -images-14960.png -images-14961.png -images-14962.png -images-14963.png -images-14964.png -images-14965.png -images-14966.png -images-14967.png -images-14968.png -images-14969.png -images-14970.png -images-14971.png -images-14972.png -images-14973.png -images-14974.png -images-14975.png -images-14976.png -images-14977.png -images-14978.png -images-14979.png -images-14980.png -images-14981.png -images-14982.png -images-14983.png -images-14984.png -images-14985.png -images-14986.png -images-14987.png -images-14988.png -images-14989.png -images-14990.png -images-14991.png -images-14992.png -images-14993.png -images-14994.png -images-14995.png -images-14996.png -images-14997.png -images-14998.png -images-14999.png -images-15000.png -images-15001.png -images-15002.png -images-15003.png -images-15004.png -images-15005.png -images-15006.png -images-15007.png -images-15008.png -images-15009.png -images-15010.png -images-15011.png -images-15012.png -images-15013.png -images-15014.png -images-15015.png -images-15016.png -images-15017.png -images-15018.png -images-15019.png -images-15020.png -images-15021.png -images-15022.png -images-15023.png -images-15024.png -images-15025.png -images-15026.png -images-15027.png -images-15028.png -images-15029.png -images-15030.png -images-15031.png -images-15032.png -images-15033.png -images-15034.png -images-15035.png -images-15036.png -images-15037.png -images-15038.png -images-15039.png -images-15040.png -images-15041.png -images-15042.png -images-15043.png -images-15044.png -images-15045.png -images-15046.png -images-15047.png -images-15048.png -images-15049.png -images-15050.png -images-15051.png -images-15052.png -images-15053.png -images-15054.png -images-15055.png -images-15056.png -images-15057.png -images-15058.png -images-15059.png -images-15060.png -images-15061.png -images-15062.png -images-15063.png -images-15064.png -images-15065.png -images-15066.png -images-15067.png -images-15068.png -images-15069.png -images-15070.png -images-15071.png -images-15072.png -images-15073.png -images-15074.png -images-15075.png -images-15076.png -images-15077.png -images-15078.png -images-15079.png -images-15080.png -images-15081.png -images-15082.png -images-15083.png -images-15084.png -images-15085.png -images-15086.png -images-15087.png -images-15088.png -images-15089.png -images-15090.png -images-15091.png -images-15092.png -images-15093.png -images-15094.png -images-15095.png -images-15096.png -images-15097.png -images-15098.png -images-15099.png -images-15100.png -images-15101.png -images-15102.png -images-15103.png -images-15104.png -images-15105.png -images-15106.png -images-15107.png -images-15108.png -images-15109.png -images-15110.png -images-15111.png -images-15112.png -images-15113.png -images-15114.png -images-15115.png -images-15116.png -images-15117.png -images-15118.png -images-15119.png -images-15120.png -images-15121.png -images-15122.png -images-15123.png -images-15124.png -images-15125.png -images-15126.png -images-15127.png -images-15128.png -images-15129.png -images-15130.png -images-15131.png -images-15132.png -images-15133.png -images-15134.png -images-15135.png -images-15136.png -images-15137.png -images-15138.png -images-15139.png -images-15140.png -images-15141.png -images-15142.png -images-15143.png -images-15144.png -images-15145.png -images-15146.png -images-15147.png -images-15148.png -images-15149.png -images-15150.png -images-15151.png -images-15152.png -images-15153.png -images-15154.png -images-15155.png -images-15156.png -images-15157.png -images-15158.png -images-15159.png -images-15160.png -images-15161.png -images-15162.png -images-15163.png -images-15164.png -images-15165.png -images-15166.png -images-15167.png -images-15168.png -images-15169.png -images-15170.png -images-15171.png -images-15172.png -images-15173.png -images-15174.png -images-15175.png -images-15176.png -images-15177.png -images-15178.png -images-15179.png -images-15180.png -images-15181.png -images-15182.png -images-15183.png -images-15184.png -images-15185.png -images-15186.png -images-15187.png -images-15188.png -images-15189.png -images-15190.png -images-15191.png -images-15192.png -images-15193.png -images-15194.png -images-15195.png -images-15196.png -images-15197.png -images-15198.png -images-15199.png -images-15200.png -images-15201.png -images-15202.png -images-15203.png -images-15204.png -images-15205.png -images-15206.png -images-15207.png -images-15208.png -images-15209.png -images-15210.png -images-15211.png -images-15212.png -images-15213.png -images-15214.png -images-15215.png -images-15216.png -images-15217.png -images-15218.png -images-15219.png -images-15220.png -images-15221.png -images-15222.png -images-15223.png -images-15224.png -images-15225.png -images-15226.png -images-15227.png -images-15228.png -images-15229.png -images-15230.png -images-15231.png -images-15232.png -images-15233.png -images-15234.png -images-15235.png -images-15236.png -images-15237.png -images-15238.png -images-15239.png -images-15240.png -images-15241.png -images-15242.png -images-15243.png -images-15244.png -images-15245.png -images-15246.png -images-15247.png -images-15248.png -images-15249.png -images-15250.png -images-15251.png -images-15252.png -images-15253.png -images-15254.png -images-15255.png -images-15256.png -images-15257.png -images-15258.png -images-15259.png -images-15260.png -images-15261.png -images-15262.png -images-15263.png -images-15264.png -images-15265.png -images-15266.png -images-15267.png -images-15268.png -images-15269.png -images-15270.png -images-15271.png -images-15272.png -images-15273.png -images-15274.png -images-15275.png -images-15276.png -images-15277.png -images-15278.png -images-15279.png -images-15280.png -images-15281.png -images-15282.png -images-15283.png -images-15284.png -images-15285.png -images-15286.png -images-15287.png -images-15288.png -images-15289.png -images-15290.png -images-15291.png -images-15292.png -images-15293.png -images-15294.png -images-15295.png -images-15296.png -images-15297.png -images-15298.png -images-15299.png -images-15300.png -images-15301.png -images-15302.png -images-15303.png -images-15304.png -images-15305.png -images-15306.png -images-15307.png -images-15308.png -images-15309.png -images-15310.png -images-15311.png -images-15312.png -images-15313.png -images-15314.png -images-15315.png -images-15316.png -images-15317.png -images-15318.png -images-15319.png -images-15320.png -images-15321.png -images-15322.png -images-15323.png -images-15324.png -images-15325.png -images-15326.png -images-15327.png -images-15328.png -images-15329.png -images-15330.png -images-15331.png -images-15332.png -images-15333.png -images-15334.png -images-15335.png -images-15336.png -images-15337.png -images-15338.png -images-15339.png -images-15340.png -images-15341.png -images-15342.png -images-15343.png -images-15344.png -images-15345.png -images-15346.png -images-15347.png -images-15348.png -images-15349.png -images-15350.png -images-15351.png -images-15352.png -images-15353.png -images-15354.png -images-15355.png -images-15356.png -images-15357.png -images-15358.png -images-15359.png -images-15360.png -images-15361.png -images-15362.png -images-15363.png -images-15364.png -images-15365.png -images-15366.png -images-15367.png -images-15368.png -images-15369.png -images-15370.png -images-15371.png -images-15372.png -images-15373.png -images-15374.png -images-15375.png -images-15376.png -images-15377.png -images-15378.png -images-15379.png -images-15380.png -images-15381.png -images-15382.png -images-15383.png -images-15384.png -images-15385.png -images-15386.png -images-15387.png -images-15388.png -images-15389.png -images-15390.png -images-15391.png -images-15392.png -images-15393.png -images-15394.png -images-15395.png -images-15396.png -images-15397.png -images-15398.png -images-15399.png -images-15400.png -images-15401.png -images-15402.png -images-15403.png -images-15404.png -images-15405.png -images-15406.png -images-15407.png -images-15408.png -images-15409.png -images-15410.png -images-15411.png -images-15412.png -images-15413.png -images-15414.png -images-15415.png -images-15416.png -images-15417.png -images-15418.png -images-15419.png -images-15420.png -images-15421.png -images-15422.png -images-15423.png -images-15424.png -images-15425.png -images-15426.png -images-15427.png -images-15428.png -images-15429.png -images-15430.png -images-15431.png -images-15432.png -images-15433.png -images-15434.png -images-15435.png -images-15436.png -images-15437.png -images-15438.png -images-15439.png -images-15440.png -images-15441.png -images-15442.png -images-15443.png -images-15444.png -images-15445.png -images-15446.png -images-15447.png -images-15448.png -images-15449.png -images-15450.png -images-15451.png -images-15452.png -images-15453.png -images-15454.png -images-15455.png -images-15456.png -images-15457.png -images-15458.png -images-15459.png -images-15460.png -images-15461.png -images-15462.png -images-15463.png -images-15464.png -images-15465.png -images-15466.png -images-15467.png -images-15468.png -images-15469.png -images-15470.png -images-15471.png -images-15472.png -images-15473.png -images-15474.png -images-15475.png -images-15476.png -images-15477.png -images-15478.png -images-15479.png -images-15480.png -images-15481.png -images-15482.png -images-15483.png -images-15484.png -images-15485.png -images-15486.png -images-15487.png -images-15488.png -images-15489.png -images-15490.png -images-15491.png -images-15492.png -images-15493.png -images-15494.png -images-15495.png -images-15496.png -images-15497.png -images-15498.png -images-15499.png -images-15500.png -images-15501.png -images-15502.png -images-15503.png -images-15504.png -images-15505.png -images-15506.png -images-15507.png -images-15508.png -images-15509.png -images-15510.png -images-15511.png -images-15512.png -images-15513.png -images-15514.png -images-15515.png -images-15516.png -images-15517.png -images-15518.png -images-15519.png -images-15520.png -images-15521.png -images-15522.png -images-15523.png -images-15524.png -images-15525.png -images-15526.png -images-15527.png -images-15528.png -images-15529.png -images-15530.png -images-15531.png -images-15532.png -images-15533.png -images-15534.png -images-15535.png -images-15536.png -images-15537.png -images-15538.png -images-15539.png -images-15540.png -images-15541.png -images-15542.png -images-15543.png -images-15544.png -images-15545.png -images-15546.png -images-15547.png -images-15548.png -images-15549.png -images-15550.png -images-15551.png -images-15552.png -images-15553.png -images-15554.png -images-15555.png -images-15556.png -images-15557.png -images-15558.png -images-15559.png -images-15560.png -images-15561.png -images-15562.png -images-15563.png -images-15564.png -images-15565.png -images-15566.png -images-15567.png -images-15568.png -images-15569.png -images-15570.png -images-15571.png -images-15572.png -images-15573.png -images-15574.png -images-15575.png -images-15576.png -images-15577.png -images-15578.png -images-15579.png -images-15580.png -images-15581.png -images-15582.png -images-15583.png -images-15584.png -images-15585.png -images-15586.png -images-15587.png -images-15588.png -images-15589.png -images-15590.png -images-15591.png -images-15592.png -images-15593.png -images-15594.png -images-15595.png -images-15596.png -images-15597.png -images-15598.png -images-15599.png -images-15600.png -images-15601.png -images-15602.png -images-15603.png -images-15604.png -images-15605.png -images-15606.png -images-15607.png -images-15608.png -images-15609.png -images-15610.png -images-15611.png -images-15612.png -images-15613.png -images-15614.png -images-15615.png -images-15616.png -images-15617.png -images-15618.png -images-15619.png -images-15620.png -images-15621.png -images-15622.png -images-15623.png -images-15624.png -images-15625.png -images-15626.png -images-15627.png -images-15628.png -images-15629.png -images-15630.png -images-15631.png -images-15632.png -images-15633.png -images-15634.png -images-15635.png -images-15636.png -images-15637.png -images-15638.png -images-15639.png -images-15640.png -images-15641.png -images-15642.png -images-15643.png -images-15644.png -images-15645.png -images-15646.png -images-15647.png -images-15648.png -images-15649.png -images-15650.png -images-15651.png -images-15652.png -images-15653.png -images-15654.png -images-15655.png -images-15656.png -images-15657.png -images-15658.png -images-15659.png -images-15660.png -images-15661.png -images-15662.png -images-15663.png -images-15664.png -images-15665.png -images-15666.png -images-15667.png -images-15668.png -images-15669.png -images-15670.png -images-15671.png -images-15672.png -images-15673.png -images-15674.png -images-15675.png -images-15676.png -images-15677.png -images-15678.png -images-15679.png -images-15680.png -images-15681.png -images-15682.png -images-15683.png -images-15684.png -images-15685.png -images-15686.png -images-15687.png -images-15688.png -images-15689.png -images-15690.png -images-15691.png -images-15692.png -images-15693.png -images-15694.png -images-15695.png -images-15696.png -images-15697.png -images-15698.png -images-15699.png -images-15700.png -images-15701.png -images-15702.png -images-15703.png -images-15704.png -images-15705.png -images-15706.png -images-15707.png -images-15708.png -images-15709.png -images-15710.png -images-15711.png -images-15712.png -images-15713.png -images-15714.png -images-15715.png -images-15716.png -images-15717.png -images-15718.png -images-15719.png -images-15720.png -images-15721.png -images-15722.png -images-15723.png -images-15724.png -images-15725.png -images-15726.png -images-15727.png -images-15728.png -images-15729.png -images-15730.png -images-15731.png -images-15732.png -images-15733.png -images-15734.png -images-15735.png -images-15736.png -images-15737.png -images-15738.png -images-15739.png -images-15740.png -images-15741.png -images-15742.png -images-15743.png -images-15744.png -images-15745.png -images-15746.png -images-15747.png -images-15748.png -images-15749.png -images-15750.png -images-15751.png -images-15752.png -images-15753.png -images-15754.png -images-15755.png -images-15756.png -images-15757.png -images-15758.png -images-15759.png -images-15760.png -images-15761.png -images-15762.png -images-15763.png -images-15764.png -images-15765.png -images-15766.png -images-15767.png -images-15768.png -images-15769.png -images-15770.png -images-15771.png -images-15772.png -images-15773.png -images-15774.png -images-15775.png -images-15776.png -images-15777.png -images-15778.png -images-15779.png -images-15780.png -images-15781.png -images-15782.png -images-15783.png -images-15784.png -images-15785.png -images-15786.png -images-15787.png -images-15788.png -images-15789.png -images-15790.png -images-15791.png -images-15792.png -images-15793.png -images-15794.png -images-15795.png -images-15796.png -images-15797.png -images-15798.png -images-15799.png -images-15800.png -images-15801.png -images-15802.png -images-15803.png -images-15804.png -images-15805.png -images-15806.png -images-15807.png -images-15808.png -images-15809.png -images-15810.png -images-15811.png -images-15812.png -images-15813.png -images-15814.png -images-15815.png -images-15816.png -images-15817.png -images-15818.png -images-15819.png -images-15820.png -images-15821.png -images-15822.png -images-15823.png -images-15824.png -images-15825.png -images-15826.png -images-15827.png -images-15828.png -images-15829.png -images-15830.png -images-15831.png -images-15832.png -images-15833.png -images-15834.png -images-15835.png -images-15836.png -images-15837.png -images-15838.png -images-15839.png -images-15840.png -images-15841.png -images-15842.png -images-15843.png -images-15844.png -images-15845.png -images-15846.png -images-15847.png -images-15848.png -images-15849.png -images-15850.png -images-15851.png -images-15852.png -images-15853.png -images-15854.png -images-15855.png -images-15856.png -images-15857.png -images-15858.png -images-15859.png -images-15860.png -images-15861.png -images-15862.png -images-15863.png -images-15864.png -images-15865.png -images-15866.png -images-15867.png -images-15868.png -images-15869.png -images-15870.png -images-15871.png -images-15872.png -images-15873.png -images-15874.png -images-15875.png -images-15876.png -images-15877.png -images-15878.png -images-15879.png -images-15880.png -images-15881.png -images-15882.png -images-15883.png -images-15884.png -images-15885.png -images-15886.png -images-15887.png -images-15888.png -images-15889.png -images-15890.png -images-15891.png -images-15892.png -images-15893.png -images-15894.png -images-15895.png -images-15896.png -images-15897.png -images-15898.png -images-15899.png -images-15900.png -images-15901.png -images-15902.png -images-15903.png -images-15904.png -images-15905.png -images-15906.png -images-15907.png -images-15908.png -images-15909.png -images-15910.png -images-15911.png -images-15912.png -images-15913.png -images-15914.png -images-15915.png -images-15916.png -images-15917.png -images-15918.png -images-15919.png -images-15920.png -images-15921.png -images-15922.png -images-15923.png -images-15924.png -images-15925.png -images-15926.png -images-15927.png -images-15928.png -images-15929.png -images-15930.png -images-15931.png -images-15932.png -images-15933.png -images-15934.png -images-15935.png -images-15936.png -images-15937.png -images-15938.png -images-15939.png -images-15940.png -images-15941.png -images-15942.png -images-15943.png -images-15944.png -images-15945.png -images-15946.png -images-15947.png -images-15948.png -images-15949.png -images-15950.png -images-15951.png -images-15952.png -images-15953.png -images-15954.png -images-15955.png -images-15956.png -images-15957.png -images-15958.png -images-15959.png -images-15960.png -images-15961.png -images-15962.png -images-15963.png -images-15964.png -images-15965.png -images-15966.png -images-15967.png -images-15968.png -images-15969.png -images-15970.png -images-15971.png -images-15972.png -images-15973.png -images-15974.png -images-15975.png -images-15976.png -images-15977.png -images-15978.png -images-15979.png -images-15980.png -images-15981.png -images-15982.png -images-15983.png -images-15984.png -images-15985.png -images-15986.png -images-15987.png -images-15988.png -images-15989.png -images-15990.png -images-15991.png -images-15992.png -images-15993.png -images-15994.png -images-15995.png -images-15996.png -images-15997.png -images-15998.png -images-15999.png -images-16000.png -images-16001.png -images-16002.png -images-16003.png -images-16004.png -images-16005.png -images-16006.png -images-16007.png -images-16008.png -images-16009.png -images-16010.png -images-16011.png -images-16012.png -images-16013.png -images-16014.png -images-16015.png -images-16016.png -images-16017.png -images-16018.png -images-16019.png -images-16020.png -images-16021.png -images-16022.png -images-16023.png -images-16024.png -images-16025.png -images-16026.png -images-16027.png -images-16028.png -images-16029.png -images-16030.png -images-16031.png -images-16032.png -images-16033.png -images-16034.png -images-16035.png -images-16036.png -images-16037.png -images-16038.png -images-16039.png -images-16040.png -images-16041.png -images-16042.png -images-16043.png -images-16044.png -images-16045.png -images-16046.png -images-16047.png -images-16048.png -images-16049.png -images-16050.png -images-16051.png -images-16052.png -images-16053.png -images-16054.png -images-16055.png -images-16056.png -images-16057.png -images-16058.png -images-16059.png -images-16060.png -images-16061.png -images-16062.png -images-16063.png -images-16064.png -images-16065.png -images-16066.png -images-16067.png -images-16068.png -images-16069.png -images-16070.png -images-16071.png -images-16072.png -images-16073.png -images-16074.png -images-16075.png -images-16076.png -images-16077.png -images-16078.png -images-16079.png -images-16080.png -images-16081.png -images-16082.png -images-16083.png -images-16084.png -images-16085.png -images-16086.png -images-16087.png -images-16088.png -images-16089.png -images-16090.png -images-16091.png -images-16092.png -images-16093.png -images-16094.png -images-16095.png -images-16096.png -images-16097.png -images-16098.png -images-16099.png -images-16100.png -images-16101.png -images-16102.png -images-16103.png -images-16104.png -images-16105.png -images-16106.png -images-16107.png -images-16108.png -images-16109.png -images-16110.png -images-16111.png -images-16112.png -images-16113.png -images-16114.png -images-16115.png -images-16116.png -images-16117.png -images-16118.png -images-16119.png -images-16120.png -images-16121.png -images-16122.png -images-16123.png -images-16124.png -images-16125.png -images-16126.png -images-16127.png -images-16128.png -images-16129.png -images-16130.png -images-16131.png -images-16132.png -images-16133.png -images-16134.png -images-16135.png -images-16136.png -images-16137.png -images-16138.png -images-16139.png -images-16140.png -images-16141.png -images-16142.png -images-16143.png -images-16144.png -images-16145.png -images-16146.png -images-16147.png -images-16148.png -images-16149.png -images-16150.png -images-16151.png -images-16152.png -images-16153.png -images-16154.png -images-16155.png -images-16156.png -images-16157.png -images-16158.png -images-16159.png -images-16160.png -images-16161.png -images-16162.png -images-16163.png -images-16164.png -images-16165.png -images-16166.png -images-16167.png -images-16168.png -images-16169.png -images-16170.png -images-16171.png -images-16172.png -images-16173.png -images-16174.png -images-16175.png -images-16176.png -images-16177.png -images-16178.png -images-16179.png -images-16180.png -images-16181.png -images-16182.png -images-16183.png -images-16184.png -images-16185.png -images-16186.png -images-16187.png -images-16188.png -images-16189.png -images-16190.png -images-16191.png -images-16192.png -images-16193.png -images-16194.png -images-16195.png -images-16196.png -images-16197.png -images-16198.png -images-16199.png -images-16200.png -images-16201.png -images-16202.png -images-16206.png -images-16207.png -images-16208.png -images-16209.png -images-16210.png -images-16211.png -images-16212.png -images-16213.png -images-16214.png -images-16215.png -images-16216.png -images-16217.png -images-16218.png -images-16219.png -images-16220.png -images-16221.png -images-16222.png -images-16223.png -images-16224.png -images-16225.png -images-16226.png -images-16227.png -images-16228.png -images-16229.png -images-16230.png -images-16231.png -images-16232.png -images-16233.png -images-16234.png -images-16235.png -images-16236.png -images-16237.png -images-16238.png -images-16239.png -images-16240.png -images-16241.png -images-16242.png -images-16243.png -images-16244.png -images-16245.png -images-16246.png -images-16247.png -images-16248.png -images-16249.png -images-16250.png -images-16251.png -images-16252.png -images-16253.png -images-16254.png -images-16255.png -images-16256.png -images-16257.png -images-16258.png -images-16259.png -images-16260.png -images-16261.png -images-16262.png -images-16263.png -images-16264.png -images-16265.png -images-16266.png -images-16267.png -images-16268.png -images-16269.png -images-16270.png -images-16271.png -images-16272.png -images-16273.png -images-16274.png -images-16275.png -images-16276.png -images-16277.png -images-16278.png -images-16279.png -images-16280.png -images-16281.png -images-16282.png -images-16283.png -images-16284.png -images-16285.png -images-16286.png -images-16287.png -images-16288.png -images-16289.png -images-16290.png -images-16291.png -images-16292.png -images-16293.png -images-16294.png -images-16295.png -images-16296.png -images-16297.png -images-16298.png -images-16299.png -images-16300.png -images-16301.png -images-16302.png -images-16303.png -images-16304.png -images-16305.png -images-16306.png -images-16307.png -images-16308.png -images-16309.png -images-16310.png -images-16311.png -images-16312.png -images-16313.png -images-16314.png -images-16315.png -images-16316.png -images-16317.png -images-16318.png -images-16319.png -images-16320.png -images-16321.png -images-16322.png -images-16323.png -images-16324.png -images-16325.png -images-16326.png -images-16327.png -images-16328.png -images-16329.png -images-16330.png -images-16331.png -images-16332.png -images-16333.png -images-16334.png -images-16335.png -images-16336.png -images-16337.png -images-16338.png -images-16339.png -images-16340.png -images-16341.png -images-16342.png -images-16343.png -images-16344.png -images-16345.png -images-16346.png -images-16347.png -images-16348.png -images-16349.png -images-16350.png -images-16351.png -images-16352.png -images-16353.png -images-16354.png -images-16355.png -images-16356.png -images-16357.png -images-16358.png -images-16359.png -images-16360.png -images-16361.png -images-16362.png -images-16363.png -images-16364.png -images-16365.png -images-16366.png -images-16367.png -images-16368.png -images-16369.png -images-16370.png -images-16371.png -images-16372.png -images-16373.png -images-16374.png -images-16375.png -images-16376.png -images-16377.png -images-16378.png -images-16379.png -images-16380.png -images-16381.png -images-16382.png -images-16383.png -images-16384.png -images-16385.png -images-16386.png -images-16387.png -images-16388.png -images-16389.png -images-16390.png -images-16391.png -images-16392.png -images-16393.png -images-16394.png -images-16395.png -images-16396.png -images-16397.png -images-16398.png -images-16399.png -images-16400.png -images-16401.png -images-16402.png -images-16403.png -images-16404.png -images-16405.png -images-16406.png -images-16407.png -images-16408.png -images-16409.png -images-16410.png -images-16411.png -images-16412.png -images-16413.png -images-16414.png -images-16415.png -images-16416.png -images-16417.png -images-16418.png -images-16419.png -images-16420.png -images-16421.png -images-16422.png -images-16423.png -images-16424.png -images-16425.png -images-16426.png -images-16427.png -images-16428.png -images-16429.png -images-16430.png -images-16431.png -images-16432.png -images-16433.png -images-16434.png -images-16435.png -images-16436.png -images-16437.png -images-16438.png -images-16439.png -images-16440.png -images-16441.png -images-16442.png -images-16443.png -images-16444.png -images-16445.png -images-16446.png -images-16447.png -images-16448.png -images-16449.png -images-16450.png -images-16451.png -images-16452.png -images-16453.png -images-16454.png -images-16455.png -images-16456.png -images-16457.png -images-16458.png -images-16459.png -images-16460.png -images-16461.png -images-16462.png -images-16463.png -images-16464.png -images-16465.png -images-16466.png -images-16467.png -images-16468.png -images-16469.png -images-16470.png -images-16471.png -images-16484.png -images-16485.png -images-16486.png -images-16487.png -images-16488.png -images-16489.png -images-16490.png -images-16491.png -images-16492.png -images-16493.png -images-16494.png -images-16495.png -images-16496.png -images-16497.png -images-16498.png -images-16499.png -images-16500.png -images-16501.png -images-16502.png -images-16503.png -images-16504.png -images-16505.png -images-16506.png -images-16507.png -images-16508.png -images-16509.png -images-16510.png -images-16511.png -images-16512.png -images-16513.png -images-16514.png -images-16515.png -images-16516.png -images-16517.png -images-16518.png -images-16519.png -images-16520.png -images-16521.png -images-16522.png -images-16523.png -images-16524.png -images-16525.png -images-16526.png -images-16527.png -images-16528.png -images-16529.png -images-16530.png -images-16531.png -images-16532.png -images-16533.png -images-16534.png -images-16535.png -images-16536.png -images-16537.png -images-16538.png -images-16539.png -images-16540.png -images-16541.png -images-16542.png -images-16543.png -images-16544.png -images-16545.png -images-16546.png -images-16547.png -images-16548.png -images-16549.png -images-16550.png -images-16551.png -images-16552.png -images-16553.png -images-16554.png -images-16555.png -images-16556.png -images-16557.png -images-16558.png -images-16559.png -images-16560.png -images-16561.png -images-16562.png -images-16563.png -images-16564.png -images-16565.png -images-16566.png -images-16567.png -images-16568.png -images-16569.png -images-16570.png -images-16571.png -images-16572.png -images-16573.png -images-16574.png -images-16575.png -images-16576.png -images-16577.png -images-16578.png -images-16579.png -images-16580.png -images-16581.png -images-16582.png -images-16583.png -images-16584.png -images-16585.png -images-16586.png -images-16587.png -images-16588.png -images-16589.png -images-16590.png -images-16591.png -images-16592.png -images-16593.png -images-16594.png -images-16595.png -images-16596.png -images-16597.png -images-16598.png -images-16599.png -images-16600.png -images-16601.png -images-16602.png -images-16603.png -images-16604.png -images-16605.png -images-16606.png -images-16607.png -images-16608.png -images-16609.png -images-16610.png -images-16611.png -images-16612.png -images-16613.png -images-16614.png -images-16615.png -images-16616.png -images-16617.png -images-16618.png -images-16619.png -images-16620.png -images-16621.png -images-16622.png -images-16623.png -images-16624.png -images-16625.png -images-16626.png -images-16627.png -images-16628.png -images-16629.png -images-16630.png -images-16631.png -images-16632.png -images-16633.png -images-16634.png -images-16635.png -images-16636.png -images-16637.png -images-16638.png -images-16639.png -images-16640.png -images-16641.png -images-16642.png -images-16643.png -images-16644.png -images-16645.png -images-16646.png -images-16647.png -images-16648.png -images-16649.png -images-16650.png -images-16651.png -images-16652.png -images-16653.png -images-16654.png -images-16655.png -images-16656.png -images-16657.png -images-16658.png -images-16659.png -images-16660.png -images-16661.png -images-16662.png -images-16663.png -images-16664.png -images-16665.png -images-16666.png -images-16667.png -images-16668.png -images-16669.png -images-16670.png -images-16671.png -images-16672.png -images-16673.png -images-16674.png -images-16675.png -images-16676.png -images-16677.png -images-16678.png -images-16679.png -images-16680.png -images-16681.png -images-16682.png -images-16683.png -images-16684.png -images-16685.png -images-16686.png -images-16687.png -images-16688.png -images-16689.png -images-16695.png -images-16696.png -images-16697.png -images-16698.png -images-16699.png -images-16700.png -images-16701.png -images-16702.png -images-16703.png -images-16704.png -images-16705.png -images-16706.png -images-16707.png -images-16708.png -images-16709.png -images-16710.png -images-16711.png -images-16712.png -images-16713.png -images-16714.png -images-16715.png -images-16716.png -images-16717.png -images-16718.png -images-16719.png -images-16720.png -images-16721.png -images-16722.png -images-16723.png -images-16724.png -images-16725.png -images-16726.png -images-16727.png -images-16728.png -images-16729.png -images-16730.png -images-16731.png -images-16732.png -images-16733.png -images-16734.png -images-16735.png -images-16736.png -images-16737.png -images-16738.png -images-16739.png -images-16740.png -images-16741.png -images-16742.png -images-16743.png -images-16744.png -images-16745.png -images-16746.png -images-16747.png -images-16748.png -images-16749.png -images-16750.png -images-16751.png -images-16752.png -images-16753.png -images-16754.png -images-16755.png -images-16756.png -images-16757.png -images-16758.png -images-16759.png -images-16760.png -images-16761.png -images-16762.png -images-16763.png -images-16764.png -images-16765.png -images-16766.png -images-16767.png -images-16768.png -images-16769.png -images-16770.png -images-16771.png -images-16772.png -images-16773.png -images-16774.png -images-16775.png -images-16776.png -images-16777.png -images-16778.png -images-16779.png -images-16780.png -images-16781.png -images-16782.png -images-16783.png -images-16784.png -images-16785.png -images-16786.png -images-16787.png -images-16788.png -images-16789.png -images-16790.png -images-16791.png -images-16792.png -images-16793.png -images-16794.png -images-16795.png -images-16796.png -images-16797.png -images-16798.png -images-16799.png -images-16800.png -images-16801.png -images-16802.png -images-16803.png -images-16804.png -images-16805.png -images-16806.png -images-16807.png -images-16808.png -images-16809.png -images-16810.png -images-16811.png -images-16812.png -images-16813.png -images-16814.png -images-16815.png -images-16816.png -images-16817.png -images-16818.png -images-16819.png -images-16820.png -images-16821.png -images-16822.png -images-16823.png -images-16824.png -images-16825.png -images-16826.png -images-16827.png -images-16828.png -images-16829.png -images-16830.png -images-16831.png -images-16832.png -images-16833.png -images-16834.png -images-16835.png -images-16836.png -images-16837.png -images-16838.png -images-16839.png -images-16840.png -images-16841.png -images-16842.png -images-16843.png -images-16844.png -images-16845.png -images-16846.png -images-16847.png -images-16848.png -images-16849.png -images-16850.png -images-16851.png -images-16852.png -images-16853.png -images-16854.png -images-16855.png -images-16856.png -images-16857.png -images-16858.png -images-16859.png -images-16860.png -images-16861.png -images-16862.png -images-16863.png -images-16864.png -images-16865.png -images-16866.png -images-16867.png -images-16868.png -images-16869.png -images-16870.png -images-16871.png -images-16872.png -images-16873.png -images-16874.png -images-16875.png -images-16876.png -images-16877.png -images-16878.png -images-16879.png -images-16880.png -images-16881.png -images-16882.png -images-16883.png -images-16884.png -images-16885.png -images-16886.png -images-16887.png -images-16888.png -images-16889.png -images-16890.png -images-16891.png -images-16892.png -images-16893.png -images-16894.png -images-16895.png -images-16896.png -images-16897.png -images-16898.png -images-16899.png -images-16900.png -images-16901.png -images-16902.png -images-16903.png -images-16904.png -images-16905.png -images-16906.png -images-16907.png -images-16908.png -images-16909.png -images-16910.png -images-16911.png -images-16912.png -images-16913.png -images-16914.png -images-16915.png -images-16916.png -images-16917.png -images-16918.png -images-16919.png -images-16920.png -images-16921.png -images-16922.png -images-16923.png -images-16924.png -images-16925.png -images-16926.png -images-16927.png -images-16928.png -images-16929.png -images-16930.png -images-16931.png -images-16932.png -images-16936.png -images-16937.png -images-16938.png -images-16939.png -images-16940.png -images-16941.png -images-16942.png -images-16943.png -images-16944.png -images-16945.png -images-16946.png -images-16947.png -images-16948.png -images-16949.png -images-16950.png -images-16951.png -images-16952.png -images-16953.png -images-16954.png -images-16955.png -images-16956.png -images-16957.png -images-16958.png -images-16959.png -images-16960.png -images-16961.png -images-16962.png -images-16963.png -images-16964.png -images-16965.png -images-16966.png -images-16967.png -images-16968.png -images-16969.png -images-16970.png -images-16971.png -images-16972.png -images-16973.png -images-16974.png -images-16975.png -images-16976.png -images-16977.png -images-16978.png -images-16979.png -images-16980.png -images-16981.png -images-16982.png -images-16983.png -images-16984.png -images-16985.png -images-16986.png -images-16987.png -images-16988.png -images-16989.png -images-16990.png -images-16991.png -images-16992.png -images-16993.png -images-16994.png -images-16995.png -images-16996.png -images-16997.png -images-16998.png -images-16999.png -images-17000.png -images-17001.png -images-17002.png -images-17003.png -images-17004.png -images-17005.png -images-17006.png -images-17007.png -images-17008.png -images-17009.png -images-17010.png -images-17011.png -images-17012.png -images-17013.png -images-17014.png -images-17015.png -images-17016.png -images-17017.png -images-17018.png -images-17019.png -images-17020.png -images-17021.png -images-17022.png -images-17023.png -images-17024.png -images-17025.png -images-17026.png -images-17027.png -images-17028.png -images-17029.png -images-17030.png -images-17031.png -images-17032.png -images-17033.png -images-17034.png -images-17035.png -images-17036.png -images-17037.png -images-17038.png -images-17039.png -images-17040.png -images-17041.png -images-17042.png -images-17043.png -images-17044.png -images-17045.png -images-17046.png -images-17047.png -images-17048.png -images-17049.png -images-17050.png -images-17051.png -images-17052.png -images-17053.png -images-17068.png -images-17069.png -images-17070.png -images-17071.png -images-17072.png -images-17073.png -images-17074.png -images-17075.png -images-17076.png -images-17077.png -images-17078.png -images-17079.png -images-17080.png -images-17081.png -images-17082.png -images-17083.png -images-17084.png -images-17085.png -images-17086.png -images-17087.png -images-17088.png -images-17089.png -images-17090.png -images-17091.png -images-17092.png -images-17093.png -images-17094.png -images-17095.png -images-17096.png -images-17097.png -images-17098.png -images-17099.png -images-17100.png -images-17101.png -images-17102.png -images-17103.png -images-17104.png -images-17105.png -images-17106.png -images-17107.png -images-17108.png -images-17109.png -images-17110.png -images-17111.png -images-17112.png -images-17113.png -images-17114.png -images-17115.png -images-17116.png -images-17117.png -images-17118.png -images-17119.png -images-17120.png -images-17121.png -images-17122.png -images-17123.png -images-17124.png -images-17125.png -images-17126.png -images-17127.png -images-17128.png -images-17129.png -images-17130.png -images-17131.png -images-17132.png -images-17133.png -images-17134.png -images-17135.png -images-17136.png -images-17137.png -images-17138.png -images-17139.png -images-17140.png -images-17141.png -images-17142.png -images-17143.png -images-17144.png -images-17145.png -images-17146.png -images-17147.png -images-17148.png -images-17149.png -images-17150.png -images-17151.png -images-17152.png -images-17153.png -images-17154.png -images-17155.png -images-17156.png -images-17157.png -images-17158.png -images-17159.png -images-17160.png -images-17161.png -images-17162.png -images-17163.png -images-17164.png -images-17165.png -images-17166.png -images-17167.png -images-17168.png -images-17169.png -images-17170.png -images-17171.png -images-17172.png -images-17173.png -images-17174.png -images-17175.png -images-17176.png -images-17183.png -images-17184.png -images-17185.png -images-17186.png -images-17187.png -images-17188.png -images-17189.png -images-17190.png -images-17191.png -images-17192.png -images-17193.png -images-17194.png -images-17195.png -images-17196.png -images-17197.png -images-17198.png -images-17199.png -images-17200.png -images-17201.png -images-17202.png -images-17203.png -images-17204.png -images-17205.png -images-17206.png -images-17207.png -images-17208.png -images-17209.png -images-17210.png -images-17211.png -images-17212.png -images-17213.png -images-17214.png -images-17215.png -images-17216.png -images-17217.png -images-17218.png -images-17219.png -images-17220.png -images-17221.png -images-17222.png -images-17223.png -images-17224.png -images-17225.png -images-17226.png -images-17227.png -images-17228.png -images-17229.png -images-17230.png -images-17231.png -images-17232.png -images-17233.png -images-17234.png -images-17235.png -images-17236.png -images-17237.png -images-17238.png -images-17239.png -images-17240.png -images-17241.png -images-17242.png -images-17243.png -images-17244.png -images-17245.png -images-17246.png -images-17247.png -images-17248.png -images-17249.png -images-17250.png -images-17251.png -images-17252.png -images-17253.png -images-17254.png -images-17255.png -images-17256.png -images-17257.png -images-17258.png -images-17259.png -images-17260.png -images-17261.png -images-17262.png -images-17263.png -images-17264.png -images-17265.png -images-17266.png -images-17267.png -images-17268.png -images-17269.png -images-17270.png -images-17271.png -images-17272.png -images-17273.png -images-17274.png -images-17275.png -images-17276.png -images-17277.png -images-17278.png -images-17279.png -images-17280.png -images-17281.png -images-17282.png -images-17283.png -images-17284.png -images-17285.png -images-17286.png -images-17287.png -images-17288.png -images-17289.png -images-17290.png -images-17291.png -images-17292.png -images-17293.png -images-17294.png -images-17295.png -images-17296.png -images-17297.png -images-17298.png -images-17299.png -images-17300.png -images-17301.png -images-17302.png -images-17303.png -images-17304.png -images-17305.png -images-17306.png -images-17307.png -images-17308.png -images-17309.png -images-17310.png -images-17311.png -images-17312.png -images-17313.png -images-17314.png -images-17315.png -images-17316.png -images-17317.png -images-17318.png -images-17319.png -images-17320.png -images-17321.png -images-17322.png -images-17323.png -images-17324.png -images-17325.png -images-17326.png -images-17327.png -images-17328.png -images-17329.png -images-17330.png -images-17331.png -images-17332.png -images-17333.png -images-17334.png -images-17335.png -images-17336.png -images-17337.png -images-17338.png -images-17339.png -images-17340.png -images-17341.png -images-17342.png -images-17343.png -images-17344.png -images-17345.png -images-17346.png -images-17347.png -images-17348.png -images-17349.png -images-17350.png -images-17351.png -images-17352.png -images-17353.png -images-17354.png -images-17355.png -images-17356.png -images-17357.png -images-17358.png -images-17359.png -images-17360.png -images-17361.png -images-17362.png -images-17363.png -images-17364.png -images-17365.png -images-17366.png -images-17367.png -images-17368.png -images-17369.png -images-17370.png -images-17371.png -images-17372.png -images-17373.png -images-17374.png -images-17375.png -images-17376.png -images-17377.png -images-17378.png -images-17379.png -images-17380.png -images-17381.png -images-17382.png -images-17383.png -images-17384.png -images-17385.png -images-17386.png -images-17387.png -images-17388.png -images-17389.png -images-17390.png -images-17391.png -images-17392.png -images-17393.png -images-17394.png -images-17395.png -images-17396.png -images-17397.png -images-17398.png -images-17399.png -images-17400.png -images-17401.png -images-17402.png -images-17403.png -images-17404.png -images-17405.png -images-17406.png -images-17407.png -images-17408.png -images-17409.png -images-17410.png -images-17411.png -images-17412.png -images-17413.png -images-17414.png -images-17415.png -images-17416.png -images-17417.png -images-17418.png -images-17419.png -images-17420.png -images-17421.png -images-17422.png -images-17423.png -images-17424.png -images-17425.png -images-17426.png -images-17427.png -images-17428.png -images-17429.png -images-17430.png -images-17431.png -images-17432.png -images-17433.png -images-17434.png -images-17435.png -images-17436.png -images-17437.png -images-17438.png -images-17439.png -images-17440.png -images-17441.png -images-17442.png -images-17443.png -images-17444.png -images-17445.png -images-17446.png -images-17447.png -images-17448.png -images-17449.png -images-17450.png -images-17451.png -images-17452.png -images-17453.png -images-17454.png -images-17455.png -images-17456.png -images-17457.png -images-17458.png -images-17459.png -images-17460.png -images-17461.png -images-17462.png -images-17463.png -images-17464.png -images-17465.png -images-17466.png -images-17467.png -images-17468.png -images-17469.png -images-17470.png -images-17471.png -images-17472.png -images-17473.png -images-17474.png -images-17475.png -images-17476.png -images-17477.png -images-17478.png -images-17479.png -images-17480.png -images-17481.png -images-17482.png -images-17483.png -images-17484.png -images-17485.png -images-17486.png -images-17487.png -images-17488.png -images-17489.png -images-17490.png -images-17491.png -images-17492.png -images-17493.png -images-17494.png -images-17495.png -images-17496.png -images-17497.png -images-17498.png -images-17499.png -images-17500.png -images-17501.png -images-17502.png -images-17503.png -images-17504.png -images-17505.png -images-17506.png -images-17507.png -images-17508.png -images-17509.png -images-17510.png -images-17511.png -images-17512.png -images-17513.png -images-17514.png -images-17515.png -images-17516.png -images-17517.png -images-17518.png -images-17519.png -images-17520.png -images-17521.png -images-17522.png -images-17523.png -images-17524.png -images-17525.png -images-17526.png -images-17527.png -images-17528.png -images-17529.png -images-17530.png -images-17531.png -images-17532.png -images-17533.png -images-17534.png -images-17535.png -images-17536.png -images-17537.png -images-17538.png -images-17539.png -images-17540.png -images-17541.png -images-17542.png -images-17543.png -images-17544.png -images-17545.png -images-17546.png -images-17547.png -images-17548.png -images-17549.png -images-17550.png -images-17551.png -images-17552.png -images-17553.png -images-17554.png -images-17555.png -images-17556.png -images-17557.png -images-17558.png -images-17559.png -images-17560.png -images-17561.png -images-17562.png -images-17563.png -images-17564.png -images-17565.png -images-17566.png -images-17567.png -images-17568.png -images-17569.png -images-17570.png -images-17571.png -images-17572.png -images-17573.png -images-17574.png -images-17575.png -images-17576.png -images-17577.png -images-17578.png -images-17579.png -images-17580.png -images-17581.png -images-17582.png -images-17583.png -images-17584.png -images-17585.png -images-17586.png -images-17587.png -images-17588.png -images-17589.png -images-17590.png -images-17591.png -images-17592.png -images-17593.png -images-17594.png -images-17595.png -images-17596.png -images-17597.png -images-17598.png -images-17599.png -images-17600.png -images-17601.png -images-17602.png -images-17603.png -images-17604.png -images-17605.png -images-17606.png -images-17607.png -images-17608.png -images-17609.png -images-17610.png -images-17611.png -images-17612.png -images-17613.png -images-17614.png -images-17615.png -images-17616.png -images-17617.png -images-17618.png -images-17619.png -images-17620.png -images-17621.png -images-17622.png -images-17623.png -images-17624.png -images-17625.png -images-17626.png -images-17627.png -images-17628.png -images-17629.png -images-17630.png -images-17631.png -images-17632.png -images-17633.png -images-17634.png -images-17635.png -images-17636.png -images-17637.png -images-17638.png -images-17639.png -images-17640.png -images-17641.png -images-17642.png -images-17643.png -images-17644.png -images-17645.png -images-17646.png -images-17647.png -images-17648.png -images-17649.png -images-17650.png -images-17651.png -images-17652.png -images-17653.png -images-17654.png -images-17655.png -images-17656.png -images-17657.png -images-17658.png -images-17659.png -images-17660.png -images-17661.png -images-17662.png -images-17663.png -images-17664.png -images-17665.png -images-17666.png -images-17667.png -images-17668.png -images-17669.png -images-17670.png -images-17671.png -images-17672.png -images-17673.png -images-17674.png -images-17675.png -images-17676.png -images-17677.png -images-17678.png -images-17679.png -images-17680.png -images-17681.png -images-17682.png -images-17683.png -images-17684.png -images-17685.png -images-17686.png -images-17687.png -images-17688.png -images-17689.png -images-17690.png -images-17691.png -images-17692.png -images-17693.png -images-17694.png -images-17695.png -images-17696.png -images-17697.png -images-17698.png -images-17699.png -images-17700.png -images-17701.png -images-17702.png -images-17703.png -images-17704.png -images-17705.png -images-17706.png -images-17707.png -images-17708.png -images-17709.png -images-17710.png -images-17711.png -images-17712.png -images-17713.png -images-17714.png -images-17715.png -images-17716.png -images-17717.png -images-17718.png -images-17719.png -images-17720.png -images-17721.png -images-17722.png -images-17723.png -images-17724.png -images-17725.png -images-17726.png -images-17727.png -images-17728.png -images-17729.png -images-17730.png -images-17731.png -images-17732.png -images-17733.png -images-17756.png -images-17757.png -images-17758.png -images-17759.png -images-17760.png -images-17761.png -images-17762.png -images-17763.png -images-17764.png -images-17765.png -images-17766.png -images-17767.png -images-17768.png -images-17769.png -images-17770.png -images-17771.png -images-17772.png -images-17773.png -images-17774.png -images-17775.png -images-17776.png -images-17777.png -images-17778.png -images-17779.png -images-17780.png -images-17781.png -images-17782.png -images-17783.png -images-17784.png -images-17785.png -images-17786.png -images-17787.png -images-17788.png -images-17789.png -images-17790.png -images-17791.png -images-17792.png -images-17793.png -images-17794.png -images-17795.png -images-17796.png -images-17797.png -images-17798.png -images-17799.png -images-17800.png -images-17801.png -images-17802.png -images-17803.png -images-17804.png -images-17805.png -images-17806.png -images-17807.png -images-17808.png -images-17809.png -images-17810.png -images-17811.png -images-17812.png -images-17813.png -images-17814.png -images-17815.png -images-17816.png -images-17817.png -images-17818.png -images-17819.png -images-17820.png -images-17821.png -images-17822.png -images-17823.png -images-17824.png -images-17825.png -images-17826.png -images-17827.png -images-17828.png -images-17829.png -images-17830.png -images-17831.png -images-17832.png -images-17833.png -images-17834.png -images-17835.png -images-17836.png -images-17837.png -images-17838.png -images-17839.png -images-17840.png -images-17841.png -images-17842.png -images-17843.png -images-17844.png -images-17845.png -images-17846.png -images-17847.png -images-17848.png -images-17849.png -images-17850.png -images-17851.png -images-17852.png -images-17853.png -images-17854.png -images-17855.png -images-17856.png -images-17857.png -images-17858.png -images-17859.png -images-17860.png -images-17861.png -images-17862.png -images-17863.png -images-17864.png -images-17865.png -images-17866.png -images-17867.png -images-17902.png -images-17903.png -images-17904.png -images-17905.png -images-17906.png -images-17907.png -images-17908.png -images-17909.png -images-17910.png -images-17911.png -images-17912.png -images-17913.png -images-17914.png -images-17915.png -images-17916.png -images-17917.png -images-17918.png -images-17919.png -images-17920.png -images-17921.png -images-17922.png -images-17923.png -images-17924.png -images-17925.png -images-17926.png -images-17927.png -images-17928.png -images-17929.png -images-17930.png -images-17931.png -images-17932.png -images-17933.png -images-17934.png -images-17935.png -images-17936.png -images-17937.png -images-17938.png -images-17939.png -images-17940.png -images-17941.png -images-17942.png -images-17943.png -images-17944.png -images-17945.png -images-17946.png -images-17947.png -images-17948.png -images-17949.png -images-17950.png -images-17951.png -images-17952.png -images-17953.png -images-17954.png -images-17955.png -images-17956.png -images-17957.png -images-17958.png -images-17959.png -images-17960.png -images-17961.png -images-17962.png -images-17963.png -images-17964.png -images-17965.png -images-17966.png -images-17967.png -images-17968.png -images-17969.png -images-17970.png -images-17971.png -images-17972.png -images-17973.png -images-17986.png -images-17987.png -images-17988.png -images-17989.png -images-17990.png -images-17996.png -images-17997.png -images-17998.png -images-17999.png -images-18000.png -images-18001.png -images-18002.png -images-18003.png -images-18004.png -images-18005.png -images-18006.png -images-18007.png -images-18008.png -images-18009.png -images-18010.png -images-18011.png -images-18012.png -images-18013.png -images-18014.png -images-18015.png -images-18016.png -images-18017.png -images-18018.png -images-18019.png -images-18020.png -images-18150.png -images-18151.png -images-18152.png -images-18153.png -images-18154.png -images-18155.png -images-18156.png -images-18157.png -images-18158.png -images-18159.png -images-18160.png -images-18170.png -images-18171.png -images-18172.png -images-18173.png -images-18174.png -images-18175.png -images-18176.png -images-18177.png -images-18178.png -images-18179.png -images-18180.png -images-18181.png -images-18182.png -images-18183.png -images-18184.png -images-18185.png -images-18186.png -images-18187.png -images-18188.png -images-18189.png -images-18190.png -images-18191.png -images-18192.png -images-18193.png -images-18194.png -images-18195.png -images-18196.png -images-18197.png -images-18198.png -images-18199.png -images-18200.png -images-18201.png -images-18202.png -images-18203.png -images-18204.png -images-18205.png -images-18206.png -images-18207.png -images-18208.png -images-18209.png -images-18210.png -images-18211.png -images-18212.png -images-18213.png -images-18214.png -images-18215.png -images-18216.png -images-18217.png -images-18218.png -images-18219.png -images-18220.png -images-18221.png -images-18222.png -images-18223.png -images-18224.png -images-18225.png -images-18226.png -images-18227.png -images-18228.png -images-18229.png -images-18230.png -images-18231.png -images-18232.png -images-18233.png -images-18234.png -images-18235.png -images-18236.png -images-18237.png -images-18238.png -images-18239.png -images-18240.png -images-18241.png -images-18242.png -images-18243.png -images-18244.png -images-18245.png -images-18246.png -images-18247.png -images-18248.png -images-18249.png -images-18250.png -images-18251.png -images-18252.png -images-18253.png -images-18254.png -images-18255.png -images-18256.png -images-18257.png -images-18258.png -images-18259.png -images-18260.png -images-18261.png -images-18262.png -images-18263.png -images-18264.png -images-18265.png -images-18266.png -images-18267.png -images-18268.png -images-18269.png -images-18270.png -images-18271.png -images-18272.png -images-18273.png -images-18274.png -images-18275.png -images-18276.png -images-18277.png -images-18278.png -images-18279.png -images-18280.png -images-18281.png -images-18282.png -images-18283.png -images-18284.png -images-18285.png -images-18286.png -images-18287.png -images-18288.png -images-18289.png -images-18290.png -images-18291.png -images-18292.png -images-18293.png -images-18294.png -images-18295.png -images-18296.png -images-18297.png -images-18298.png -images-18299.png -images-18300.png -images-18301.png -images-18302.png -images-18303.png -images-18304.png -images-18305.png -images-18306.png -images-18307.png -images-18308.png -images-18309.png -images-18310.png -images-18311.png -images-18312.png -images-18313.png -images-18314.png -images-18315.png -images-18316.png -images-18317.png -images-18318.png -images-18319.png -images-18320.png -images-18321.png -images-18322.png -images-18323.png -images-18324.png -images-18325.png -images-18326.png -images-18327.png -images-18328.png -images-18329.png -images-18443.png -images-18444.png -images-18445.png -images-18446.png -images-18447.png -images-18448.png -images-18449.png -images-18450.png -images-18451.png -images-18452.png -images-18453.png -images-18454.png -images-18455.png -images-18456.png -images-18457.png -images-18458.png -images-18459.png -images-18460.png -images-18461.png -images-18462.png -images-18463.png -images-18464.png -images-18465.png -images-18466.png -images-18467.png -images-18468.png -images-18469.png -images-18470.png -images-18471.png -images-18472.png -images-18473.png -images-18474.png -images-18475.png -images-18476.png -images-18477.png -images-18478.png -images-18479.png -images-18480.png -images-18481.png -images-18482.png -images-18483.png -images-18484.png -images-18485.png -images-18486.png -images-18487.png -images-18488.png -images-18489.png -images-18490.png -images-18491.png -images-18492.png -images-18493.png -images-18494.png -images-18495.png -images-18496.png -images-18497.png -images-18498.png -images-18499.png -images-18500.png -images-18501.png -images-18502.png -images-18503.png -images-18504.png -images-18505.png -images-18506.png -images-18507.png -images-18508.png -images-18509.png -images-18510.png -images-18511.png -images-18512.png -images-18513.png -images-18514.png -images-18515.png -images-18516.png -images-18517.png -images-18518.png -images-18519.png -images-18520.png -images-18521.png -images-18522.png -images-18523.png -images-18524.png -images-18525.png -images-18526.png -images-18527.png -images-18528.png -images-18529.png -images-18530.png -images-18531.png -images-18532.png -images-18533.png -images-18534.png -images-18535.png -images-18536.png -images-18537.png -images-18538.png -images-18539.png -images-18550.png -images-18551.png -images-18552.png -images-18553.png -images-18554.png -images-18555.png -images-18556.png -images-18557.png -images-18558.png -images-18559.png -images-18560.png -images-18561.png -images-18562.png -images-18563.png -images-18564.png -images-18565.png -images-18566.png -images-18567.png -images-18568.png -images-18569.png -images-18570.png -images-18571.png -images-18572.png -images-18573.png -images-18574.png -images-18575.png -images-18576.png -images-18577.png -images-18578.png -images-18579.png -images-18588.png -images-18589.png -images-18590.png -images-18591.png -images-18592.png -images-18593.png -images-18594.png -images-18595.png -images-18596.png -images-18597.png -images-18598.png -images-18599.png -images-18600.png -images-18601.png -images-18602.png -images-18603.png -images-18604.png -images-18605.png -images-18606.png -images-18607.png -images-18608.png -images-18609.png -images-18610.png -images-18611.png -images-18612.png -images-18613.png -images-18614.png -images-18615.png -images-18616.png -images-18617.png -images-18618.png -images-18619.png -images-18620.png -images-18621.png -images-18622.png -images-18623.png -images-18624.png -images-18625.png -images-18626.png -images-18627.png -images-18628.png -images-18629.png -images-18630.png -images-18631.png -images-18632.png -images-18633.png -images-18634.png -images-18635.png -images-18636.png -images-18637.png -images-18638.png -images-18639.png -images-18640.png -images-18641.png -images-18642.png -images-18643.png -images-18644.png -images-18645.png -images-18646.png -images-18647.png -images-18648.png -images-18649.png -images-18650.png -images-18651.png -images-18652.png -images-18653.png -images-18654.png -images-18655.png -images-18656.png -images-18657.png -images-18658.png -images-18659.png -images-18660.png -images-18683.png -images-18684.png -images-18685.png -images-18686.png -images-18687.png -images-18688.png -images-18689.png -images-18690.png -images-18691.png -images-18692.png -images-18693.png -images-18694.png -images-18695.png -images-18696.png -images-18697.png -images-18698.png -images-18699.png -images-18700.png -images-18701.png -images-18702.png -images-18703.png -images-18704.png -images-18705.png -images-18706.png -images-18707.png -images-18708.png -images-18709.png -images-18710.png -images-18711.png -images-18712.png -images-18713.png -images-18714.png -images-18715.png -images-18716.png -images-18717.png -images-18718.png -images-18719.png -images-18720.png -images-18721.png -images-18722.png -images-18723.png -images-18724.png -images-18725.png -images-18726.png -images-18727.png -images-18728.png -images-18729.png -images-18730.png -images-18731.png -images-18732.png -images-18733.png -images-18734.png -images-18735.png -images-18736.png -images-18737.png -images-18738.png -images-18739.png -images-18740.png -images-18741.png -images-18742.png -images-18743.png -images-18744.png -images-18745.png -images-18746.png -images-18747.png -images-18748.png -images-18749.png -images-18750.png -images-18751.png -images-18752.png -images-18753.png -images-18754.png -images-18755.png -images-18756.png -images-18757.png -images-18758.png -images-18759.png -images-18760.png -images-18761.png -images-18762.png -images-18763.png -images-18764.png -images-18765.png -images-18766.png -images-18767.png -images-18768.png -images-18769.png -images-18770.png -images-18771.png -images-18772.png -images-18773.png -images-18774.png -images-18775.png -images-18776.png -images-18777.png -images-18778.png -images-18779.png -images-18780.png -images-18781.png -images-18782.png -images-18783.png -images-18784.png -images-18785.png -images-18786.png -images-18787.png -images-18788.png -images-18789.png -images-18790.png -images-18791.png -images-18792.png -images-18793.png -images-18794.png -images-18795.png -images-18796.png -images-18797.png -images-18798.png -images-18799.png -images-18800.png -images-18801.png -images-18802.png -images-18803.png -images-18804.png -images-18805.png -images-18806.png -images-18807.png -images-18808.png -images-18809.png -images-18810.png -images-18811.png -images-18812.png -images-18813.png -images-18814.png -images-18815.png -images-18816.png -images-18817.png -images-18818.png -images-18819.png -images-18820.png -images-18821.png -images-18822.png -images-18823.png -images-18824.png -images-18825.png -images-18826.png -images-18827.png -images-18828.png -images-18829.png -images-18830.png -images-18831.png -images-18832.png -images-18833.png -images-18834.png -images-18835.png -images-18836.png -images-18837.png -images-18838.png -images-18839.png -images-18840.png -images-18841.png -images-18842.png -images-18843.png -images-18844.png -images-18845.png -images-18846.png -images-18847.png -images-18848.png -images-18849.png -images-18850.png -images-18851.png -images-18852.png -images-18853.png -images-18854.png -images-18855.png -images-18856.png -images-18857.png -images-18858.png -images-18859.png -images-18860.png -images-18861.png -images-18862.png -images-18863.png -images-18864.png -images-18865.png -images-18866.png -images-18867.png -images-18868.png -images-18869.png -images-18870.png -images-18871.png -images-18872.png -images-18873.png -images-18874.png -images-18875.png -images-18876.png -images-18877.png -images-18878.png -images-18879.png -images-18880.png -images-18881.png -images-18882.png -images-18883.png -images-18884.png -images-18885.png -images-18886.png -images-18887.png -images-18888.png -images-18889.png -images-18890.png -images-18891.png -images-18892.png -images-18893.png -images-18894.png -images-18895.png -images-18896.png -images-18897.png -images-18898.png -images-18899.png -images-18900.png -images-18901.png -images-18902.png -images-18903.png -images-18904.png -images-18905.png -images-18906.png -images-18907.png -images-18908.png -images-18909.png -images-18910.png -images-18911.png -images-18912.png -images-18913.png -images-18914.png -images-18915.png -images-18916.png -images-18917.png -images-18918.png -images-18919.png -images-18920.png -images-18921.png -images-18922.png -images-18923.png -images-18924.png -images-18925.png -images-18926.png -images-18927.png -images-18928.png -images-18929.png -images-18930.png -images-18931.png -images-18932.png -images-18933.png -images-18934.png -images-18935.png -images-18936.png -images-18937.png -images-18938.png -images-18939.png -images-18940.png -images-18941.png -images-18942.png -images-18943.png -images-18944.png -images-18945.png -images-18946.png -images-18947.png -images-18948.png -images-18949.png -images-18950.png -images-18951.png -images-18952.png -images-18953.png -images-18954.png -images-18966.png -images-18967.png -images-18968.png -images-18969.png -images-18970.png -images-18971.png -images-18972.png -images-18973.png -images-18974.png -images-18975.png -images-18976.png -images-18986.png -images-18987.png -images-18988.png -images-18989.png -images-18990.png -images-18991.png -images-18992.png -images-18993.png -images-18994.png -images-18995.png -images-18996.png -images-18997.png -images-18998.png -images-18999.png -images-19000.png -images-19001.png -images-19002.png -images-19003.png -images-19004.png -images-19005.png -images-19006.png -images-19007.png -images-19008.png -images-19009.png -images-19010.png -images-19011.png -images-19012.png -images-19013.png -images-19014.png -images-19015.png -images-19016.png -images-19017.png -images-19018.png -images-19026.png -images-19027.png -images-19028.png -images-19029.png -images-19030.png -images-19031.png -images-19032.png -images-19033.png -images-19034.png -images-19035.png -images-19036.png -images-19037.png -images-19038.png -images-19039.png -images-19040.png -images-19041.png -images-19042.png -images-19043.png -images-19044.png -images-19045.png -images-19046.png -images-19047.png -images-19048.png -images-19049.png -images-19050.png -images-19051.png -images-19052.png -images-19053.png -images-19054.png -images-19055.png -images-19056.png -images-19057.png -images-19058.png -images-19059.png -images-19060.png -images-19061.png -images-19062.png -images-19063.png -images-19064.png -images-19065.png -images-19066.png -images-19067.png -images-19068.png -images-19069.png -images-19070.png -images-19071.png -images-19072.png -images-19073.png -images-19074.png -images-19075.png -images-19076.png -images-19077.png -images-19078.png -images-19079.png -images-19080.png -images-19081.png -images-19082.png -images-19083.png -images-19084.png -images-19085.png -images-19086.png -images-19087.png -images-19088.png -images-19089.png -images-19090.png -images-19091.png -images-19100.png -images-19101.png -images-19102.png -images-19103.png -images-19104.png -images-19105.png -images-19106.png -images-19107.png -images-19108.png -images-19109.png -images-19110.png -images-19111.png -images-19112.png -images-19113.png -images-19114.png -images-19115.png -images-19116.png -images-19117.png -images-19118.png -images-19119.png -images-19120.png -images-19121.png -images-19122.png -images-19123.png -images-19124.png -images-19125.png -images-19126.png -images-19127.png -images-19128.png -images-19129.png -images-19130.png -images-19131.png -images-19132.png -images-19133.png -images-19134.png -images-19135.png -images-19136.png -images-19137.png -images-19138.png -images-19139.png -images-19140.png -images-19141.png -images-19142.png -images-19143.png -images-19144.png -images-19145.png -images-19146.png -images-19147.png -images-19148.png -images-19149.png -images-19150.png -images-19151.png -images-19152.png -images-19153.png -images-19154.png -images-19155.png -images-19156.png -images-19157.png -images-19158.png -images-19159.png -images-19160.png -images-19161.png -images-19162.png -images-19163.png -images-19164.png -images-19165.png -images-19166.png -images-19167.png -images-19168.png -images-19169.png -images-19185.png -images-19186.png -images-19187.png -images-19188.png -images-19189.png -images-19190.png -images-19191.png -images-19192.png -images-19193.png -images-19194.png -images-19195.png -images-19196.png -images-19197.png -images-19198.png -images-19199.png -images-19200.png -images-19201.png -images-19202.png -images-19203.png -images-19204.png -images-19205.png -images-19206.png -images-19207.png -images-19208.png -images-19209.png -images-19210.png -images-19211.png -images-19212.png -images-19213.png -images-19214.png -images-19215.png -images-19216.png -images-19217.png -images-19218.png -images-19219.png -images-19220.png -images-19221.png -images-19222.png -images-19223.png -images-19224.png -images-19225.png -images-19226.png -images-19227.png -images-19228.png -images-19229.png -images-19230.png -images-19231.png -images-19232.png -images-19233.png -images-19234.png -images-19235.png -images-19236.png -images-19237.png -images-19238.png -images-19239.png -images-19240.png -images-19241.png -images-19242.png -images-19243.png -images-19244.png -images-19245.png -images-19246.png -images-19247.png -images-19248.png -images-19249.png -images-19250.png -images-19251.png -images-19252.png -images-19253.png -images-19254.png -images-19255.png -images-19256.png -images-19257.png -images-19258.png -images-19259.png -images-19260.png -images-19261.png -images-19262.png -images-19263.png -images-19264.png -images-19265.png -images-19266.png -images-19267.png -images-19268.png -images-19269.png -images-19270.png -images-19271.png -images-19272.png -images-19273.png -images-19274.png -images-19275.png -images-19276.png -images-19277.png -images-19278.png -images-19279.png -images-19280.png -images-19281.png -images-19282.png -images-19283.png -images-19284.png -images-19285.png -images-19286.png -images-19287.png -images-19288.png -images-19289.png -images-19290.png -images-19291.png -images-19292.png -images-19293.png -images-19294.png -images-19295.png -images-19296.png -images-19297.png -images-19298.png -images-19299.png -images-19300.png -images-19301.png -images-19302.png -images-19303.png -images-19304.png -images-19305.png -images-19306.png -images-19307.png -images-19308.png -images-19309.png -images-19310.png -images-19311.png -images-19312.png -images-19313.png -images-19314.png -images-19315.png -images-19316.png -images-19317.png -images-19318.png -images-19319.png -images-19320.png -images-19321.png -images-19322.png -images-19323.png -images-19324.png -images-19325.png -images-19326.png -images-19327.png -images-19328.png -images-19329.png -images-19330.png -images-19331.png -images-19332.png -images-19333.png -images-19334.png -images-19335.png -images-19336.png -images-19337.png -images-19338.png -images-19339.png -images-19340.png -images-19341.png -images-19342.png -images-19343.png -images-19344.png -images-19345.png -images-19346.png -images-19347.png -images-19348.png -images-19349.png -images-19350.png -images-19351.png -images-19352.png -images-19353.png -images-19354.png -images-19355.png -images-19356.png -images-19357.png -images-19358.png -images-19359.png -images-19360.png -images-19361.png -images-19362.png -images-19363.png -images-19364.png -images-19365.png -images-19366.png -images-19367.png -images-19368.png -images-19369.png -images-19370.png -images-19371.png -images-19372.png -images-19373.png -images-19374.png -images-19375.png -images-19376.png -images-19377.png -images-19378.png -images-19379.png -images-19380.png -images-19381.png -images-19382.png -images-19383.png -images-19384.png -images-19385.png -images-19386.png -images-19387.png -images-19388.png -images-19389.png -images-19390.png -images-19391.png -images-19392.png -images-19393.png -images-19394.png -images-19395.png -images-19396.png -images-19397.png -images-19398.png -images-19399.png -images-19400.png -images-19401.png -images-19402.png -images-19403.png -images-19404.png -images-19405.png -images-19406.png -images-19407.png -images-19408.png -images-19409.png -images-19410.png -images-19411.png -images-19412.png -images-19413.png -images-19414.png -images-19415.png -images-19416.png -images-19417.png -images-19418.png -images-19419.png -images-19420.png -images-19421.png -images-19422.png -images-19423.png -images-19424.png -images-19425.png -images-19426.png -images-19427.png -images-19428.png -images-19429.png -images-19430.png -images-19431.png -images-19432.png -images-19433.png -images-19434.png -images-19435.png -images-19436.png -images-19437.png -images-19438.png -images-19439.png -images-19440.png -images-19441.png -images-19442.png -images-19443.png -images-19444.png -images-19445.png -images-19446.png -images-19447.png -images-19448.png -images-19449.png -images-19450.png -images-19451.png -images-19452.png -images-19453.png -images-19454.png -images-19455.png -images-19456.png -images-19457.png -images-19458.png -images-19459.png -images-19460.png -images-19461.png -images-19462.png -images-19463.png -images-19464.png -images-19465.png -images-19466.png -images-19467.png -images-19468.png -images-19469.png -images-19470.png -images-19471.png -images-19472.png -images-19473.png -images-19474.png -images-19475.png -images-19476.png -images-19477.png -images-19478.png -images-19479.png -images-19480.png -images-19481.png -images-19482.png -images-19483.png -images-19484.png -images-19485.png -images-19486.png -images-19487.png -images-19488.png -images-19489.png -images-19490.png -images-19491.png -images-19492.png -images-19493.png -images-19494.png -images-19495.png -images-19496.png -images-19497.png -images-19498.png -images-19499.png -images-19500.png -images-19501.png -images-19502.png -images-19503.png -images-19504.png -images-19505.png -images-19506.png -images-19507.png -images-19508.png -images-19509.png -images-19510.png -images-19511.png -images-19512.png -images-19513.png -images-19514.png -images-19515.png -images-19516.png -images-19517.png -images-19518.png -images-19519.png -images-19520.png -images-19521.png -images-19522.png -images-19523.png -images-19524.png -images-19525.png -images-19526.png -images-19527.png -images-19528.png -images-19529.png -images-19530.png -images-19531.png -images-19532.png -images-19533.png -images-19534.png -images-19535.png -images-19536.png -images-19537.png -images-19538.png -images-19539.png -images-19540.png -images-19541.png -images-19542.png -images-19543.png -images-19544.png -images-19545.png -images-19546.png -images-19547.png -images-19548.png -images-19549.png -images-19550.png -images-19551.png -images-19552.png -images-19553.png -images-19554.png -images-19555.png -images-19556.png -images-19557.png -images-19558.png -images-19559.png -images-19560.png -images-19561.png -images-19562.png -images-19563.png -images-19564.png -images-19565.png -images-19566.png -images-19567.png -images-19568.png -images-19569.png -images-19570.png -images-19571.png -images-19572.png -images-19573.png -images-19574.png -images-19575.png -images-19576.png -images-19577.png -images-19578.png -images-19579.png -images-19580.png -images-19581.png -images-19582.png -images-19583.png -images-19584.png -images-19585.png -images-19586.png -images-19587.png -images-19588.png -images-19589.png -images-19590.png -images-19591.png -images-19592.png -images-19593.png -images-19594.png -images-19595.png -images-19596.png -images-19597.png -images-19598.png -images-19599.png -images-19600.png -images-19601.png -images-19602.png -images-19603.png -images-19604.png -images-19605.png -images-19606.png -images-19607.png -images-19608.png -images-19609.png -images-19610.png -images-19611.png -images-19612.png -images-19613.png -images-19614.png -images-19615.png -images-19616.png -images-19617.png -images-19618.png -images-19619.png -images-19620.png -images-19621.png -images-19622.png -images-19623.png -images-19624.png -images-19625.png -images-19626.png -images-19627.png -images-19628.png -images-19629.png -images-19630.png -images-19631.png -images-19632.png -images-19633.png -images-19634.png -images-19635.png -images-19636.png -images-19637.png -images-19638.png -images-19639.png -images-19640.png -images-19641.png -images-19642.png -images-19643.png -images-19644.png -images-19645.png -images-19646.png -images-19647.png -images-19648.png -images-19649.png -images-19650.png -images-19651.png -images-19652.png -images-19653.png -images-19654.png -images-19655.png -images-19656.png -images-19657.png -images-19658.png -images-19659.png -images-19660.png -images-19661.png -images-19662.png -images-19663.png -images-19664.png -images-19665.png -images-19666.png -images-19667.png -images-19668.png -images-19669.png -images-19670.png -images-19671.png -images-19672.png -images-19673.png -images-19674.png -images-19675.png -images-19676.png -images-19677.png -images-19678.png -images-19679.png -images-19680.png -images-19681.png -images-19682.png -images-19683.png -images-19684.png -images-19685.png -images-19686.png -images-19687.png -images-19688.png -images-19689.png -images-19690.png -images-19691.png -images-19692.png -images-19693.png -images-19694.png -images-19695.png -images-19696.png -images-19697.png -images-19698.png -images-19699.png -images-19700.png -images-19701.png -images-19702.png -images-19703.png -images-19704.png -images-19705.png -images-19706.png -images-19707.png -images-19708.png -images-19709.png -images-19710.png -images-19711.png -images-19712.png -images-19713.png -images-19714.png -images-19715.png -images-20079.png -images-20080.png -images-20081.png -images-20082.png -images-20083.png -images-20084.png -images-20085.png -images-20086.png -images-20087.png -images-20088.png -images-20089.png -images-20090.png -images-20091.png -images-20092.png -images-20093.png -images-20094.png -images-20095.png -images-20096.png -images-20097.png -images-20098.png -images-20099.png -images-20100.png -images-20101.png -images-20102.png -images-20103.png -images-20104.png -images-20105.png -images-20106.png -images-20107.png -images-20108.png -images-20109.png -images-20110.png -images-20111.png -images-20112.png -images-20113.png -images-20114.png -images-20115.png -images-20116.png -images-20117.png -images-20118.png -images-20119.png -images-20120.png -images-20121.png -images-20122.png -images-20123.png -images-20124.png -images-20125.png -images-20126.png -images-20127.png -images-20128.png -images-20129.png -images-20130.png -images-20131.png -images-20132.png -images-20133.png -images-20134.png -images-20135.png -images-20136.png -images-20137.png -images-20138.png -images-20139.png -images-20140.png -images-20141.png -images-20142.png -images-20143.png -images-20144.png -images-20145.png -images-20146.png -images-20147.png -images-20148.png -images-20149.png -images-20150.png -images-20151.png -images-20152.png -images-20153.png -images-20154.png -images-20155.png -images-20156.png -images-20157.png -images-20158.png -images-20159.png -images-20160.png -images-20161.png -images-20162.png -images-20163.png -images-20164.png -images-20165.png -images-20166.png -images-20167.png -images-20168.png -images-20169.png -images-20170.png -images-20171.png -images-20172.png -images-20173.png -images-20174.png -images-20175.png -images-20176.png -images-20177.png -images-20178.png -images-20179.png -images-20180.png -images-20181.png -images-20182.png -images-20183.png -images-20184.png -images-20185.png -images-20186.png -images-20187.png -images-20188.png -images-20189.png -images-20190.png -images-20191.png -images-20192.png -images-20193.png -images-20194.png -images-20195.png -images-20196.png -images-20197.png -images-20198.png -images-20199.png -images-20200.png -images-20201.png -images-20202.png -images-20203.png -images-20204.png -images-20205.png -images-20206.png -images-20207.png -images-20208.png -images-20209.png -images-20210.png -images-20211.png -images-20212.png -images-20213.png -images-20214.png -images-20215.png -images-20216.png -images-20217.png -images-20218.png -images-20219.png -images-20220.png -images-20221.png -images-20222.png -images-20223.png -images-20224.png -images-20225.png -images-20226.png -images-20227.png -images-20228.png -images-20229.png -images-20230.png -images-20231.png -images-20232.png -images-20233.png -images-20234.png -images-20235.png -images-20236.png -images-20237.png -images-20238.png -images-20239.png -images-20240.png -images-20241.png -images-20242.png -images-20243.png -images-20244.png -images-20245.png -images-20246.png -images-20247.png -images-20248.png -images-20249.png -images-20250.png -images-20251.png -images-20252.png -images-20253.png -images-20254.png -images-20255.png -images-20256.png -images-20257.png -images-20258.png -images-20259.png -images-20260.png -images-20261.png -images-20262.png -images-20263.png -images-20264.png -images-20265.png -images-20266.png -images-20267.png -images-20268.png -images-20269.png -images-20270.png -images-20271.png -images-20272.png -images-20273.png -images-20274.png -images-20275.png -images-20276.png -images-20277.png -images-20278.png -images-20279.png -images-20280.png -images-20281.png -images-20282.png -images-20283.png -images-20284.png -images-20285.png -images-20286.png -images-20287.png -images-20288.png -images-20289.png -images-20290.png -images-20291.png -images-20292.png -images-20293.png -images-20294.png -images-20295.png -images-20296.png -images-20297.png -images-20298.png -images-20299.png -images-20300.png -images-20301.png -images-20302.png -images-20303.png -images-20304.png -images-20305.png -images-20306.png -images-20307.png -images-20308.png -images-20309.png -images-20354.png -images-20355.png -images-20356.png -images-20357.png -images-20358.png -images-20359.png -images-20360.png -images-20361.png -images-20362.png -images-20363.png -images-20364.png -images-20365.png -images-20366.png -images-20367.png -images-20368.png -images-20369.png -images-20370.png -images-20371.png -images-20372.png -images-20373.png -images-20374.png -images-20375.png -images-20376.png -images-20377.png -images-20378.png -images-20379.png -images-20380.png -images-20381.png -images-20382.png -images-20383.png -images-20384.png -images-20385.png -images-20386.png -images-20387.png -images-20388.png -images-20389.png -images-20390.png -images-20391.png -images-20392.png -images-20393.png -images-20394.png -images-20395.png -images-20396.png -images-20397.png -images-20398.png -images-20399.png -images-20400.png -images-20401.png -images-20402.png -images-20403.png -images-20404.png -images-20405.png -images-20406.png -images-20407.png -images-20408.png -images-20409.png -images-20410.png -images-20411.png -images-20412.png -images-20413.png -images-20414.png -images-20415.png -images-20416.png -images-20417.png -images-20418.png -images-20419.png -images-20420.png -images-20421.png -images-20422.png -images-20423.png -images-20424.png -images-20425.png -images-20426.png -images-20427.png -images-20428.png -images-20429.png -images-20430.png -images-20431.png -images-20432.png -images-20433.png -images-20434.png -images-20435.png -images-20436.png -images-20437.png -images-20438.png -images-20439.png -images-20440.png -images-20441.png -images-20442.png -images-20443.png -images-20444.png -images-20445.png -images-20446.png -images-20447.png -images-20448.png -images-20449.png -images-20450.png -images-20451.png -images-20452.png -images-20453.png -images-20454.png -images-20455.png -images-20456.png -images-20457.png -images-20458.png -images-20459.png -images-20460.png -images-20461.png -images-20462.png -images-20463.png -images-20464.png -images-20465.png -images-20466.png -images-20467.png -images-20468.png -images-20469.png -images-20470.png -images-20471.png -images-20472.png -images-20473.png -images-20474.png -images-20475.png -images-20476.png -images-20477.png -images-20478.png -images-20479.png -images-20480.png -images-20481.png -images-20482.png -images-20483.png -images-20484.png -images-20485.png -images-20486.png -images-20487.png -images-20488.png -images-20489.png -images-20490.png -images-20491.png -images-20492.png -images-20493.png -images-20494.png -images-20495.png -images-20496.png -images-20497.png -images-20498.png -images-20499.png -images-20500.png -images-20501.png -images-20502.png -images-20503.png -images-20504.png -images-20505.png -images-20506.png -images-20507.png -images-20508.png -images-20509.png -images-20510.png -images-20511.png -images-20512.png -images-20513.png -images-20514.png -images-20515.png -images-20516.png -images-20517.png -images-20518.png -images-20519.png -images-20520.png -images-20521.png -images-20522.png -images-20523.png -images-20524.png -images-20525.png -images-20526.png -images-20527.png -images-20528.png -images-20529.png -images-20530.png -images-20531.png -images-20532.png -images-20533.png -images-20534.png -images-20535.png -images-20536.png -images-20537.png -images-20538.png -images-20539.png -images-20547.png -images-20548.png -images-20549.png -images-20550.png -images-20551.png -images-20552.png -images-20553.png -images-20554.png -images-20555.png -images-20556.png -images-20557.png -images-20558.png -images-20559.png -images-20560.png -images-20561.png -images-20562.png -images-20563.png -images-20564.png -images-20565.png -images-20566.png -images-20567.png -images-20568.png -images-20569.png -images-20570.png -images-20571.png -images-20572.png -images-20573.png -images-20574.png -images-20575.png -images-20576.png -images-20577.png -images-20578.png -images-20579.png -images-20580.png -images-20581.png -images-20582.png -images-20583.png -images-20584.png -images-20585.png -images-20586.png -images-20587.png -images-20588.png -images-20589.png -images-20590.png -images-20591.png -images-20592.png -images-20593.png -images-20599.png -images-20600.png -images-20601.png -images-20602.png -images-20603.png -images-20604.png -images-20605.png -images-20606.png -images-20607.png -images-20608.png -images-20609.png -images-20610.png -images-20611.png -images-20612.png -images-20613.png -images-20614.png -images-20615.png -images-20616.png -images-20617.png -images-20618.png -images-20619.png -images-20620.png -images-20621.png -images-20622.png -images-20623.png -images-20624.png -images-20625.png -images-20626.png -images-20627.png -images-20628.png -images-20629.png -images-20630.png -images-20631.png -images-20632.png -images-20633.png -images-20634.png -images-20635.png -images-20636.png -images-20637.png -images-20638.png -images-20639.png -images-20640.png -images-20641.png -images-20642.png -images-20643.png -images-20644.png -images-20645.png -images-20646.png -images-20647.png -images-20648.png -images-20649.png -images-20650.png -images-20651.png -images-20652.png -images-20653.png -images-20654.png -images-20655.png -images-20656.png -images-20657.png -images-20658.png -images-20659.png -images-20660.png -images-20661.png -images-20662.png -images-20663.png -images-20664.png -images-20665.png -images-20666.png -images-20667.png -images-20668.png -images-20669.png -images-20670.png -images-20671.png -images-20672.png -images-20673.png -images-20674.png -images-20675.png -images-20676.png -images-20677.png -images-20678.png -images-20679.png -images-20680.png -images-20681.png -images-20682.png -images-20683.png -images-20684.png -images-20685.png -images-20686.png -images-20687.png -images-20688.png -images-20689.png -images-20690.png -images-20691.png -images-20692.png -images-20693.png -images-20694.png -images-20695.png -images-20696.png -images-20697.png -images-20698.png -images-20699.png -images-20700.png -images-20701.png -images-20702.png -images-20703.png -images-20704.png -images-20705.png -images-20706.png -images-20707.png -images-20708.png -images-20709.png -images-20710.png -images-20711.png -images-20712.png -images-20713.png -images-20714.png -images-20715.png -images-20716.png -images-20717.png -images-20718.png -images-20719.png -images-20720.png -images-20721.png -images-20722.png -images-20723.png -images-20724.png -images-20725.png -images-20726.png -images-20727.png -images-20728.png -images-20729.png -images-20730.png -images-20731.png -images-20732.png -images-20733.png -images-20734.png -images-20735.png -images-20736.png -images-20760.png -images-20761.png -images-20762.png -images-20763.png -images-20764.png -images-20765.png -images-20766.png -images-20767.png -images-20768.png -images-20769.png -images-20770.png -images-20771.png -images-20772.png -images-20773.png -images-20774.png -images-20775.png -images-20776.png -images-20777.png -images-20778.png -images-20779.png -images-20780.png -images-20781.png -images-20782.png -images-20783.png -images-20784.png -images-20785.png -images-20786.png -images-20787.png -images-20788.png -images-20789.png -images-20790.png -images-20791.png -images-20792.png -images-20793.png -images-20794.png -images-20795.png -images-20796.png -images-20797.png -images-20798.png -images-20799.png -images-20800.png -images-20801.png -images-20802.png -images-20803.png -images-20804.png -images-20805.png -images-20806.png -images-20807.png -images-20808.png -images-20809.png -images-20810.png -images-20811.png -images-20812.png -images-20813.png -images-20814.png -images-20815.png -images-20816.png -images-20817.png -images-20818.png -images-20819.png -images-20820.png -images-20821.png -images-20822.png -images-20823.png -images-20824.png -images-20825.png -images-20826.png -images-20827.png -images-20828.png -images-20829.png -images-20830.png -images-20831.png -images-20832.png -images-20833.png -images-20834.png -images-20835.png -images-20836.png -images-20837.png -images-20838.png -images-20839.png -images-20840.png -images-20841.png -images-20842.png -images-20843.png -images-20844.png -images-20845.png -images-20846.png -images-20847.png -images-20848.png -images-20849.png -images-20850.png -images-20851.png -images-20852.png -images-20853.png -images-20854.png -images-20855.png -images-20856.png -images-20857.png -images-20858.png -images-20859.png -images-20860.png -images-20861.png -images-20862.png -images-20863.png -images-20864.png -images-20865.png -images-20866.png -images-20867.png -images-20868.png -images-20869.png -images-20870.png -images-20871.png -images-20872.png -images-20873.png -images-20874.png -images-20875.png -images-20876.png -images-20877.png -images-20878.png -images-20879.png -images-20880.png -images-20881.png -images-20882.png -images-20883.png -images-20884.png -images-20885.png -images-20886.png -images-20887.png -images-20888.png -images-20889.png -images-20890.png -images-20891.png -images-20892.png -images-20893.png -images-20894.png -images-20895.png -images-20896.png -images-20897.png -images-20898.png -images-20899.png -images-20900.png -images-20901.png -images-20902.png -images-20903.png -images-20904.png -images-20905.png -images-20906.png -images-20907.png -images-20908.png -images-20909.png -images-20910.png -images-20911.png -images-20912.png -images-20913.png -images-20914.png -images-20915.png -images-20916.png -images-20917.png -images-20918.png -images-20919.png -images-20920.png -images-20921.png -images-20922.png -images-20923.png -images-20924.png -images-20925.png -images-20926.png -images-20927.png -images-20928.png -images-20929.png -images-20930.png -images-20931.png -images-20932.png -images-20933.png -images-20934.png -images-20935.png -images-20936.png -images-20937.png -images-20938.png -images-20939.png -images-20940.png -images-20941.png -images-20942.png -images-20943.png -images-20944.png -images-20945.png -images-20946.png -images-20947.png -images-20948.png -images-20949.png -images-20950.png -images-20951.png -images-20952.png -images-20953.png -images-20954.png -images-20955.png -images-20956.png -images-20957.png -images-20958.png -images-20959.png -images-20960.png -images-20961.png -images-20962.png -images-20963.png -images-20964.png -images-20965.png -images-20966.png -images-20967.png -images-20968.png -images-20969.png -images-20970.png -images-20971.png -images-20972.png -images-20973.png -images-20974.png -images-20975.png -images-20976.png -images-20977.png -images-20978.png -images-20979.png -images-20980.png -images-20981.png -images-20982.png -images-20983.png -images-20984.png -images-20985.png -images-20986.png -images-20987.png -images-20988.png -images-20989.png -images-20990.png -images-20991.png -images-20992.png -images-20993.png -images-20994.png -images-20995.png -images-20996.png -images-20997.png -images-20998.png -images-20999.png -images-21000.png -images-21001.png -images-21002.png -images-21003.png -images-21004.png -images-21005.png -images-21006.png -images-21007.png -images-21008.png -images-21009.png -images-21010.png -images-21011.png -images-21012.png -images-21013.png -images-21014.png -images-21015.png -images-21016.png -images-21017.png -images-21018.png -images-21019.png -images-21020.png -images-21021.png -images-21022.png -images-21023.png -images-21024.png -images-21025.png -images-21026.png -images-21027.png -images-21028.png -images-21029.png -images-21030.png -images-21031.png -images-21032.png -images-21033.png -images-21034.png -images-21035.png -images-21036.png -images-21037.png -images-21038.png -images-21039.png -images-21040.png -images-21041.png -images-21042.png -images-21043.png -images-21044.png -images-21045.png -images-21046.png -images-21047.png -images-21048.png -images-21049.png -images-21050.png -images-21051.png -images-21052.png -images-21053.png -images-21054.png -images-21055.png -images-21056.png -images-21057.png -images-21063.png -images-21064.png -images-21065.png -images-21066.png -images-21067.png -images-21068.png -images-21069.png -images-21070.png -images-21071.png -images-21072.png -images-21073.png -images-21074.png -images-21075.png -images-21076.png -images-21077.png -images-21078.png -images-21079.png -images-21080.png -images-21081.png -images-21082.png -images-21083.png -images-21084.png -images-21085.png -images-21086.png -images-21087.png -images-21088.png -images-21089.png -images-21090.png -images-21091.png -images-21092.png -images-21093.png -images-21094.png -images-21095.png -images-21096.png -images-21097.png -images-21098.png -images-21099.png -images-21100.png -images-21101.png -images-21102.png -images-21103.png -images-21104.png -images-21105.png -images-21106.png -images-21107.png -images-21108.png -images-21109.png -images-21110.png -images-21111.png -images-21112.png -images-21113.png -images-21114.png -images-21115.png -images-21116.png -images-21117.png -images-21118.png -images-21119.png -images-21120.png -images-21121.png -images-21122.png -images-21123.png -images-21124.png -images-21125.png -images-21126.png -images-21127.png -images-21128.png -images-21129.png -images-21130.png -images-21131.png -images-21132.png -images-21133.png -images-21134.png -images-21135.png -images-21136.png -images-21137.png -images-21138.png -images-21139.png -images-21140.png -images-21141.png -images-21142.png -images-21143.png -images-21144.png -images-21145.png -images-21146.png -images-21147.png -images-21148.png -images-21149.png -images-21150.png -images-21151.png -images-21152.png -images-21153.png -images-21154.png -images-21155.png -images-21156.png -images-21157.png -images-21158.png -images-21159.png -images-21160.png -images-21161.png -images-21162.png -images-21163.png -images-21164.png -images-21165.png -images-21166.png -images-21167.png -images-21168.png -images-21169.png -images-21170.png -images-21171.png -images-21172.png -images-21173.png -images-21174.png -images-21175.png -images-21176.png -images-21177.png -images-21178.png -images-21179.png -images-21180.png -images-21181.png -images-21182.png -images-21183.png -images-21184.png -images-21185.png -images-21186.png -images-21187.png -images-21188.png -images-21189.png -images-21190.png -images-21191.png -images-21192.png -images-21193.png -images-21194.png -images-21195.png -images-21196.png -images-21197.png -images-21198.png -images-21199.png -images-21200.png -images-21201.png -images-21202.png -images-21203.png -images-21204.png -images-21205.png -images-21206.png -images-21207.png -images-21208.png -images-21209.png -images-21210.png -images-21211.png -images-21212.png -images-21213.png -images-21214.png -images-21215.png -images-21216.png -images-21217.png -images-21218.png -images-21219.png -images-21220.png -images-21221.png -images-21222.png -images-21223.png -images-21224.png -images-21225.png -images-21226.png -images-21227.png -images-21228.png -images-21229.png -images-21230.png -images-21231.png -images-21232.png -images-21233.png -images-21234.png -images-21235.png -images-21236.png -images-21237.png -images-21238.png -images-21239.png -images-21240.png -images-21241.png -images-21242.png -images-21243.png -images-21244.png -images-21245.png -images-21246.png -images-21247.png -images-21248.png -images-21249.png -images-21250.png -images-21251.png -images-21252.png -images-21253.png -images-21254.png -images-21255.png -images-21256.png -images-21257.png -images-21258.png -images-21259.png -images-21260.png -images-21261.png -images-21262.png -images-21263.png -images-21264.png -images-21265.png -images-21266.png -images-21267.png -images-21268.png -images-21269.png -images-21270.png -images-21271.png -images-21272.png -images-21273.png -images-21274.png -images-21275.png -images-21276.png -images-21277.png -images-21278.png -images-21279.png -images-21280.png -images-21281.png -images-21282.png -images-21283.png -images-21284.png -images-21285.png -images-21286.png -images-21287.png -images-21288.png -images-21289.png -images-21290.png -images-21291.png -images-21292.png -images-21293.png -images-21294.png -images-21295.png -images-21296.png -images-21297.png -images-21298.png -images-21299.png -images-21300.png -images-21301.png -images-21302.png -images-21303.png -images-21304.png -images-21305.png -images-21306.png -images-21307.png -images-21308.png -images-21309.png -images-21310.png -images-21311.png -images-21312.png -images-21313.png -images-21314.png -images-21315.png -images-21316.png -images-21317.png -images-21318.png -images-21319.png -images-21320.png -images-21321.png -images-21322.png -images-21323.png -images-21324.png -images-21325.png -images-21326.png -images-21327.png -images-21328.png -images-21329.png -images-21330.png -images-21331.png -images-21332.png -images-21333.png -images-21334.png -images-21335.png -images-21336.png -images-21337.png -images-21338.png -images-21339.png -images-21340.png -images-21341.png -images-21342.png -images-21343.png -images-21344.png -images-21345.png -images-21346.png -images-21347.png -images-21348.png -images-21349.png -images-21350.png -images-21351.png -images-21352.png -images-21353.png -images-21354.png -images-21355.png -images-21356.png -images-21357.png -images-21358.png -images-21359.png -images-21360.png -images-21361.png -images-21362.png -images-21363.png -images-21364.png -images-21365.png -images-21366.png -images-21367.png -images-21368.png -images-21369.png -images-21370.png -images-21371.png -images-21372.png -images-21373.png -images-21374.png -images-21375.png -images-21376.png -images-21377.png -images-21378.png -images-21379.png -images-21380.png -images-21381.png -images-21382.png -images-21383.png -images-21384.png -images-21385.png -images-21386.png -images-21387.png -images-21388.png -images-21389.png -images-21390.png -images-21391.png -images-21392.png -images-21393.png -images-21394.png -images-21395.png -images-21396.png -images-21397.png -images-21398.png -images-21399.png -images-21400.png -images-21401.png -images-21402.png -images-21403.png -images-21404.png -images-21405.png -images-21406.png -images-21407.png -images-21408.png -images-21409.png -images-21410.png -images-21411.png -images-21412.png -images-21413.png -images-21414.png -images-21415.png -images-21416.png -images-21417.png -images-21418.png -images-21419.png -images-21420.png -images-21421.png -images-21422.png -images-21423.png -images-21424.png -images-21425.png -images-21426.png -images-21427.png -images-21428.png -images-21429.png -images-21430.png -images-21431.png -images-21432.png -images-21433.png -images-21434.png -images-21435.png -images-21436.png -images-21437.png -images-21438.png -images-21439.png -images-21440.png -images-21441.png -images-21442.png -images-21443.png -images-21444.png -images-21445.png -images-21446.png -images-21447.png -images-21448.png -images-21449.png -images-21450.png -images-21451.png -images-21452.png -images-21453.png -images-21454.png -images-21455.png -images-21456.png -images-21457.png -images-21458.png -images-21459.png -images-21460.png -images-21461.png -images-21462.png -images-21463.png -images-21464.png -images-21465.png -images-21466.png -images-21467.png -images-21468.png -images-21469.png -images-21470.png -images-21471.png -images-21472.png -images-21473.png -images-21474.png -images-21475.png -images-21476.png -images-21477.png -images-21499.png -images-21500.png -images-21501.png -images-21502.png -images-21503.png -images-21504.png -images-21505.png -images-21506.png -images-21507.png -images-21508.png -images-21509.png -images-21510.png -images-21511.png -images-21512.png -images-21513.png -images-21514.png -images-21515.png -images-21516.png -images-21517.png -images-21518.png -images-21519.png -images-21520.png -images-21521.png -images-21522.png -images-21523.png -images-21524.png -images-21525.png -images-21526.png -images-21527.png -images-21528.png -images-21529.png -images-21530.png -images-21531.png -images-21532.png -images-21533.png -images-21534.png -images-21535.png -images-21536.png -images-21537.png -images-21538.png -images-21539.png -images-21540.png -images-21541.png -images-21542.png -images-21543.png -images-21544.png -images-21545.png -images-21546.png -images-21547.png -images-21548.png -images-21549.png -images-21550.png -images-21551.png -images-21552.png -images-21553.png -images-21554.png -images-21555.png -images-21556.png -images-21557.png -images-21558.png -images-21559.png -images-21560.png -images-21561.png -images-21562.png -images-21563.png -images-21564.png -images-21565.png -images-21566.png -images-21567.png -images-21568.png -images-21569.png -images-21570.png -images-21571.png -images-21572.png -images-21573.png -images-21574.png -images-21575.png -images-21576.png -images-21577.png -images-21578.png -images-21579.png -images-21580.png -images-21581.png -images-21582.png -images-21583.png -images-21584.png -images-21585.png -images-21586.png -images-21587.png -images-21588.png -images-21589.png -images-21590.png -images-21591.png -images-21592.png -images-21593.png -images-21594.png -images-21595.png -images-21596.png -images-21597.png -images-21598.png -images-21599.png -images-21600.png -images-21601.png -images-21602.png -images-21603.png -images-21604.png -images-21605.png -images-21606.png -images-21607.png -images-21608.png -images-21609.png -images-21610.png -images-21611.png -images-21612.png -images-21613.png -images-21614.png -images-21615.png -images-21616.png -images-21617.png -images-21618.png -images-21619.png -images-21620.png -images-21621.png -images-21622.png -images-21623.png -images-21624.png -images-21625.png -images-21626.png -images-21627.png -images-21628.png -images-21629.png -images-21630.png -images-21631.png -images-21632.png -images-21633.png -images-21634.png -images-21635.png -images-21636.png -images-21637.png -images-21638.png -images-21639.png -images-21640.png -images-21641.png -images-21642.png -images-21643.png -images-21644.png -images-21645.png -images-21646.png -images-21647.png -images-21648.png -images-21649.png -images-21650.png -images-21651.png -images-21652.png -images-21653.png -images-21654.png -images-21655.png -images-21656.png -images-21657.png -images-21658.png -images-21659.png -images-21660.png -images-21661.png -images-21662.png -images-21663.png -images-21664.png -images-21665.png -images-21666.png -images-21667.png -images-21668.png -images-21669.png -images-21670.png -images-21671.png -images-21672.png -images-21673.png -images-21674.png -images-21675.png -images-21676.png -images-21677.png -images-21678.png -images-21679.png -images-21680.png -images-21681.png -images-21682.png -images-21683.png -images-21684.png -images-21685.png -images-21686.png -images-21687.png -images-21688.png -images-21689.png -images-21690.png -images-21691.png -images-21692.png -images-21693.png -images-21694.png -images-21695.png -images-21696.png -images-21697.png -images-21698.png -images-21699.png -images-21700.png -images-21701.png -images-21702.png -images-21703.png -images-21704.png -images-21705.png -images-21706.png -images-21707.png -images-21708.png -images-21709.png -images-21710.png -images-21711.png -images-21712.png -images-21713.png -images-21714.png -images-21715.png -images-21716.png -images-21717.png -images-21718.png -images-21719.png -images-21720.png -images-21721.png -images-21722.png -images-21723.png -images-21724.png -images-21725.png -images-21726.png -images-21727.png -images-21728.png -images-21729.png -images-21730.png -images-21731.png -images-21732.png -images-21733.png -images-21734.png -images-21735.png -images-21736.png -images-21737.png -images-21738.png -images-21739.png -images-21740.png -images-21741.png -images-21742.png -images-21743.png -images-21744.png -images-21745.png -images-21746.png -images-21747.png -images-21748.png -images-21749.png -images-21750.png -images-21751.png -images-21752.png -images-21753.png -images-21754.png -images-21755.png -images-21756.png -images-21757.png -images-21758.png -images-21759.png -images-21760.png -images-21761.png -images-21762.png -images-21763.png -images-21764.png -images-21765.png -images-21766.png -images-21767.png -images-21768.png -images-21769.png -images-21770.png -images-21771.png -images-21772.png -images-21773.png -images-21774.png -images-21775.png -images-21776.png -images-21777.png -images-21778.png -images-21779.png -images-21780.png -images-21781.png -images-21782.png -images-21783.png -images-21784.png -images-21785.png -images-21786.png -images-21787.png -images-21788.png -images-21789.png -images-21790.png -images-21791.png -images-21792.png -images-21793.png -images-21794.png -images-21795.png -images-21796.png -images-21797.png -images-21798.png -images-21799.png -images-21800.png -images-21801.png -images-21802.png -images-21803.png -images-21804.png -images-21805.png -images-21806.png -images-21807.png -images-21808.png -images-21809.png -images-21810.png -images-21811.png -images-21812.png -images-21813.png -images-21814.png -images-21815.png -images-21816.png -images-21817.png -images-21818.png -images-21819.png -images-21820.png -images-21821.png -images-21822.png -images-21823.png -images-21824.png -images-21825.png -images-21826.png -images-21827.png -images-21828.png -images-21829.png -images-21830.png -images-21831.png -images-21872.png -images-21873.png -images-21874.png -images-21875.png -images-21876.png -images-21877.png -images-21878.png -images-21879.png -images-21880.png -images-21881.png -images-21882.png -images-21883.png -images-21884.png -images-21885.png -images-21886.png -images-21887.png -images-21888.png -images-21889.png -images-21890.png -images-21891.png -images-21892.png -images-21893.png -images-21894.png -images-21895.png -images-21896.png -images-21897.png -images-21898.png -images-21899.png -images-21900.png -images-21901.png -images-21902.png -images-21903.png -images-21904.png -images-21905.png -images-21906.png -images-21907.png -images-21908.png -images-21909.png -images-21910.png -images-21911.png -images-21912.png -images-21913.png -images-21914.png -images-21915.png -images-21916.png -images-21917.png -images-21918.png -images-21919.png -images-21920.png -images-21921.png -images-21922.png -images-21923.png -images-21924.png -images-21925.png -images-21926.png -images-21927.png -images-21928.png -images-21929.png -images-21930.png -images-21931.png -images-21932.png -images-21933.png -images-21934.png -images-21935.png -images-21936.png -images-21937.png -images-21938.png -images-21939.png -images-21940.png -images-21941.png -images-21942.png -images-21943.png -images-21944.png -images-21945.png -images-21946.png -images-21961.png -images-21962.png -images-21963.png -images-21964.png -images-21965.png -images-21966.png -images-21967.png -images-21968.png -images-21969.png -images-21970.png -images-21971.png -images-21972.png -images-21973.png -images-21974.png -images-21975.png -images-21976.png -images-21977.png -images-21978.png -images-21979.png -images-21980.png -images-21981.png -images-21982.png -images-21983.png -images-21984.png -images-21985.png -images-22003.png -images-22004.png -images-22005.png -images-22006.png -images-22007.png -images-22008.png -images-22009.png -images-22010.png -images-22011.png -images-22012.png -images-22013.png -images-22030.png -images-22031.png -images-22032.png -images-22033.png -images-22034.png -images-22035.png -images-22036.png -images-22048.png -images-22049.png -images-22050.png -images-22051.png -images-22052.png -images-22053.png -images-22054.png -images-22055.png -images-22056.png -images-22057.png -images-22058.png -images-22059.png -images-22060.png -images-22061.png -images-22062.png -images-22063.png -images-22064.png -images-22065.png -images-22066.png -images-22067.png -images-22068.png -images-22069.png -images-22070.png -images-22071.png -images-22072.png -images-22073.png -images-22074.png -images-22075.png -images-22076.png -images-22077.png -images-22078.png -images-22079.png -images-22080.png -images-22081.png -images-22082.png -images-22083.png -images-22084.png -images-22085.png -images-22086.png -images-22087.png -images-22088.png -images-22089.png -images-22090.png -images-22091.png -images-22092.png -images-22093.png -images-22094.png -images-22095.png -images-22096.png -images-22097.png -images-22098.png -images-22099.png -images-22100.png -images-22101.png -images-22102.png -images-22103.png -images-22104.png -images-22105.png -images-22106.png -images-22107.png -images-22108.png -images-22109.png -images-22110.png -images-22111.png -images-22112.png -images-22113.png -images-22114.png -images-22115.png -images-22116.png -images-22117.png -images-22118.png -images-22119.png -images-22120.png -images-22121.png -images-22122.png -images-22123.png -images-22124.png -images-22125.png -images-22126.png -images-22127.png -images-22128.png -images-22129.png -images-22130.png -images-22131.png -images-22132.png -images-22133.png -images-22134.png -images-22135.png -images-22136.png -images-22137.png -images-22138.png -images-22139.png -images-22140.png -images-22141.png -images-22142.png -images-22143.png -images-22144.png -images-22145.png -images-22146.png -images-22147.png -images-22148.png -images-22152.png -images-22153.png -images-22154.png -images-22155.png -images-22156.png -images-22157.png -images-22158.png -images-22159.png -images-22160.png -images-22161.png -images-22162.png -images-22163.png -images-22164.png -images-22165.png -images-22166.png -images-22167.png -images-22168.png -images-22169.png -images-22170.png -images-22171.png -images-22172.png -images-22173.png -images-22197.png -images-22198.png -images-22199.png -images-22200.png -images-22201.png -images-22202.png -images-22203.png -images-22204.png -images-22205.png -images-22206.png -images-22207.png -images-22208.png -images-22209.png -images-22210.png -images-22211.png -images-22241.png -images-22242.png -images-22243.png -images-22244.png -images-22245.png -images-22246.png -images-22247.png -images-22248.png -images-22251.png -images-22252.png -images-22253.png -images-22254.png -images-22255.png -images-22256.png -images-22257.png -images-22258.png -images-22259.png -images-22260.png -images-22261.png -images-22262.png -images-22269.png -images-22270.png -images-22271.png -images-22272.png -images-22273.png -images-22274.png -images-22275.png -images-22276.png -images-22277.png -images-22278.png -images-22344.png -images-22345.png -images-22346.png -images-22347.png -images-22348.png -images-22349.png -images-22350.png -images-22351.png -images-22352.png -images-22353.png -images-22354.png -images-22355.png -images-22356.png -images-22357.png -images-22361.png -images-22362.png -images-22363.png -images-22364.png -images-22365.png -images-22366.png -images-22367.png -images-22368.png -images-22369.png -images-22370.png -images-22371.png -images-22372.png -images-22373.png -images-22374.png -images-22375.png -images-22376.png -images-22377.png -images-22378.png -images-22379.png -images-22380.png -images-22381.png -images-22382.png -images-22383.png -images-22384.png -images-22385.png -images-22386.png -images-22387.png -images-22388.png -images-22389.png -images-22390.png -images-22391.png -images-22392.png -images-22393.png -images-22394.png -images-22395.png -images-22396.png -images-22430.png -images-22431.png -images-22432.png -images-22433.png -images-22434.png -images-22435.png -images-22436.png -images-22437.png -images-22438.png -images-22439.png -images-22440.png -images-22441.png -images-22450.png -images-22451.png -images-22452.png -images-22453.png -images-22454.png -images-22455.png -images-22456.png -images-22457.png -images-22458.png -images-22459.png -images-22460.png -images-22461.png -images-22462.png -images-22463.png -images-22464.png -images-22465.png -images-22466.png -images-22467.png -images-22468.png -images-22469.png -images-22470.png -images-22471.png -images-22472.png -images-22473.png -images-22474.png -images-22475.png -images-22476.png -images-22477.png -images-22478.png -images-22479.png -images-22480.png -images-22481.png -images-22482.png -images-22502.png -images-22503.png -images-22504.png -images-22505.png -images-22506.png -images-22507.png -images-22508.png -images-22509.png -images-22510.png -images-22511.png -images-22512.png -images-22513.png -images-22514.png -images-22515.png -images-22516.png -images-22517.png -images-22518.png -images-22519.png -images-22520.png -images-22521.png -images-22522.png -images-22523.png -images-22524.png -images-22525.png -images-22526.png -images-22527.png -images-22528.png -images-22529.png -images-22530.png -images-22531.png -images-22532.png -images-22533.png -images-22534.png -images-22535.png -images-22536.png -images-22537.png -images-22538.png -images-22539.png -images-22540.png -images-22541.png -images-22542.png -images-22543.png -images-22544.png -images-22545.png -images-22546.png -images-22547.png -images-22548.png -images-22549.png -images-22550.png -images-22551.png -images-22552.png -images-22553.png -images-22554.png -images-22555.png -images-22556.png -images-22557.png -images-22558.png -images-22559.png -images-22560.png -images-22561.png -images-22562.png -images-22563.png -images-22564.png -images-22565.png -images-22566.png -images-22567.png -images-22568.png -images-22569.png -images-22570.png -images-22578.png -images-22579.png -images-22580.png -images-22581.png -images-22582.png -images-22583.png -images-22584.png -images-22585.png -images-22586.png -images-22587.png -images-22588.png -images-22589.png -images-22590.png -images-22591.png -images-22592.png -images-22596.png -images-22597.png -images-22598.png -images-22599.png -images-22600.png -images-22601.png -images-22602.png -images-22603.png -images-22604.png -images-22605.png -images-22606.png -images-22607.png -images-22608.png -images-22609.png -images-22610.png -images-22611.png -images-22612.png -images-22613.png -images-22614.png -images-22615.png -images-22616.png -images-22617.png -images-22618.png -images-22619.png -images-22620.png -images-22621.png -images-22622.png -images-22623.png -images-22624.png -images-22625.png -images-22626.png -images-22627.png -images-22628.png -images-22629.png -images-22630.png -images-22631.png -images-22632.png -images-22633.png -images-22634.png -images-22635.png -images-22636.png -images-22637.png -images-22638.png -images-22639.png -images-22640.png -images-22641.png -images-22642.png -images-22643.png -images-22644.png -images-22645.png -images-22646.png -images-22647.png -images-22648.png -images-22649.png -images-22650.png -images-22651.png -images-22652.png -images-22653.png -images-22654.png -images-22655.png -images-22656.png -images-22657.png -images-22658.png -images-22659.png -images-22660.png -images-22661.png -images-22662.png -images-22663.png -images-22664.png -images-22665.png -images-22666.png -images-22667.png -images-22668.png -images-22669.png -images-22670.png -images-22671.png -images-22672.png -images-22673.png -images-22674.png -images-22675.png -images-22676.png -images-22677.png -images-22678.png -images-22679.png -images-22680.png -images-22681.png -images-22682.png -images-22683.png -images-22684.png -images-22685.png -images-22686.png -images-22687.png -images-22688.png -images-22689.png -images-22690.png -images-22691.png -images-22692.png -images-22693.png -images-22694.png -images-22695.png -images-22696.png -images-22697.png -images-22698.png -images-22699.png -images-22700.png -images-22701.png -images-22702.png -images-22703.png -images-22704.png -images-22705.png -images-22706.png -images-22707.png -images-22708.png -images-22709.png -images-22710.png -images-22711.png -images-22712.png -images-22713.png -images-22714.png -images-22715.png -images-22716.png -images-22717.png -images-22718.png -images-22719.png -images-22720.png -images-22721.png -images-22722.png -images-22723.png -images-22724.png -images-22725.png -images-22726.png -images-22727.png -images-22728.png -images-22729.png -images-22730.png -images-22731.png -images-22732.png -images-22733.png -images-22734.png -images-22735.png -images-22736.png -images-22737.png -images-22738.png -images-22739.png -images-22740.png -images-22741.png -images-22742.png -images-22743.png -images-22744.png -images-22745.png -images-22746.png -images-22747.png -images-22748.png -images-22749.png -images-22750.png -images-22751.png -images-22752.png -images-22753.png -images-22754.png -images-22755.png -images-22756.png -images-22757.png -images-22758.png -images-22759.png -images-22760.png -images-22761.png -images-22762.png -images-22763.png -images-22764.png -images-22765.png -images-22766.png -images-22767.png -images-22768.png -images-22769.png -images-22770.png -images-22771.png -images-22772.png -images-22773.png -images-22774.png -images-22775.png -images-22776.png -images-22777.png -images-22778.png -images-22779.png -images-22780.png -images-22781.png -images-22782.png -images-22783.png -images-22784.png -images-22785.png -images-22786.png -images-22892.png -images-22893.png -images-22894.png -images-22895.png -images-22896.png -images-22897.png -images-22898.png -images-22899.png -images-22900.png -images-22901.png -images-22902.png -images-22903.png -images-22904.png -images-22905.png -images-22906.png -images-22907.png -images-22908.png -images-22909.png -images-22910.png -images-22911.png -images-22912.png -images-22913.png -images-22914.png -images-22915.png -images-22916.png -images-22917.png -images-22918.png -images-22919.png -images-22920.png -images-22921.png -images-22922.png -images-22923.png -images-22924.png -images-22925.png -images-22926.png -images-22927.png -images-22928.png -images-22929.png -images-22930.png -images-22931.png -images-22932.png -images-22933.png -images-22934.png -images-22935.png -images-22936.png -images-22937.png -images-22938.png -images-22939.png -images-22940.png -images-22941.png -images-22942.png -images-22943.png -images-22950.png -images-22951.png -images-22952.png -images-22953.png -images-22954.png -images-22955.png -images-22956.png -images-22957.png -images-22958.png -images-22959.png -images-22960.png -images-22961.png -images-22962.png -images-22963.png -images-22964.png -images-22965.png -images-22966.png -images-22967.png -images-22968.png -images-22969.png -images-22970.png -images-22971.png -images-22972.png -images-22973.png -images-22974.png -images-22975.png -images-22976.png -images-22977.png -images-22978.png -images-22979.png -images-22980.png -images-22981.png -images-22982.png -images-22983.png -images-22984.png -images-22985.png -images-22986.png -images-22987.png -images-22988.png -images-22989.png -images-22990.png -images-22991.png -images-22992.png -images-22993.png -images-22994.png -images-22995.png -images-22996.png -images-22997.png -images-22998.png -images-23004.png -images-23005.png -images-23006.png -images-23007.png -images-23008.png -images-23009.png -images-23010.png -images-23011.png -images-23012.png -images-23013.png -images-23014.png -images-23015.png -images-23016.png -images-23017.png -images-23018.png -images-23019.png -images-23020.png -images-23021.png -images-23022.png -images-23023.png -images-23024.png -images-23025.png -images-23029.png -images-23030.png -images-23031.png -images-23032.png -images-23033.png -images-23034.png -images-23035.png -images-23036.png -images-23037.png -images-23038.png -images-23039.png -images-23040.png -images-23041.png -images-23042.png -images-23043.png -images-23044.png -images-23049.png -images-23050.png -images-23051.png -images-23052.png -images-23053.png -images-23054.png -images-23055.png -images-23056.png -images-23057.png -images-23058.png -images-23059.png -images-23060.png -images-23061.png -images-23062.png -images-23063.png -images-23064.png -images-23065.png -images-23066.png -images-23067.png -images-23068.png -images-23069.png -images-23070.png -images-23071.png -images-23072.png -images-23073.png -images-23074.png -images-23075.png -images-23076.png -images-23077.png -images-23078.png -images-23079.png -images-23080.png -images-23081.png -images-23082.png -images-23083.png -images-23084.png -images-23085.png -images-23086.png -images-23087.png -images-23088.png -images-23089.png -images-23090.png -images-23091.png -images-23092.png -images-23093.png -images-23094.png -images-23095.png -images-23096.png -images-23097.png -images-23098.png -images-23099.png -images-23100.png -images-23101.png -images-23102.png -images-23103.png -images-23104.png -images-23105.png -images-23106.png -images-23107.png -images-23108.png -images-23109.png -images-23110.png -images-23111.png -images-23112.png -images-23113.png -images-23114.png -images-23115.png -images-23116.png -images-23117.png -images-23118.png -images-23119.png -images-23120.png -images-23121.png -images-23122.png -images-23123.png -images-23124.png -images-23125.png -images-23126.png -images-23127.png -images-23128.png -images-23129.png -images-23130.png -images-23131.png -images-23132.png -images-23133.png -images-23134.png -images-23135.png -images-23136.png -images-23137.png -images-23138.png -images-23139.png -images-23140.png -images-23148.png -images-23149.png -images-23150.png -images-23151.png -images-23152.png -images-23153.png -images-23154.png -images-23155.png -images-23156.png -images-23157.png -images-23158.png -images-23159.png -images-23160.png -images-23161.png -images-23162.png -images-23163.png -images-23164.png -images-23165.png -images-23171.png -images-23172.png -images-23173.png -images-23174.png -images-23175.png -images-23176.png -images-23177.png -images-23178.png -images-23179.png -images-23180.png -images-23181.png -images-23182.png -images-23183.png -images-23184.png -images-23185.png -images-23186.png -images-23187.png -images-23188.png -images-23189.png -images-23190.png -images-23191.png -images-23192.png -images-23193.png -images-23194.png -images-23195.png -images-23196.png -images-23214.png -images-23215.png -images-23216.png -images-23217.png -images-23218.png -images-23219.png -images-23220.png -images-23221.png -images-23222.png -images-23223.png -images-23224.png -images-23225.png -images-23226.png -images-23227.png -images-23228.png -images-23229.png -images-23230.png -images-23231.png -images-23232.png -images-23233.png -images-23234.png -images-23235.png -images-23236.png -images-23237.png -images-23238.png -images-23239.png -images-23240.png -images-23241.png -images-23242.png -images-23243.png -images-23244.png -images-23245.png -images-23246.png -images-23247.png -images-23248.png -images-23249.png -images-23250.png -images-23251.png -images-23252.png -images-23253.png -images-23254.png -images-23255.png -images-23256.png -images-23257.png -images-23258.png -images-23259.png -images-23260.png -images-23261.png -images-23262.png -images-23263.png -images-23264.png -images-23265.png -images-23266.png -images-23267.png -images-23268.png -images-23269.png -images-23270.png -images-23271.png -images-23272.png -images-23273.png -images-23274.png -images-23275.png -images-23276.png -images-23277.png -images-23278.png -images-23279.png -images-23280.png -images-23281.png -images-23282.png -images-23283.png -images-23284.png -images-23285.png -images-23286.png -images-23287.png -images-23288.png -images-23289.png -images-23290.png -images-23291.png -images-23292.png -images-23293.png -images-23294.png -images-23295.png -images-23296.png -images-23297.png -images-23298.png -images-23299.png -images-23300.png -images-23301.png -images-23302.png -images-23303.png -images-23304.png -images-23305.png -images-23306.png -images-23307.png -images-23308.png -images-23309.png -images-23310.png -images-23311.png -images-23312.png -images-23313.png -images-23314.png -images-23315.png -images-23316.png -images-23317.png -images-23318.png -images-23319.png -images-23320.png -images-23321.png -images-23322.png -images-23323.png -images-23324.png -images-23325.png -images-23326.png -images-23327.png -images-23328.png -images-23329.png -images-23330.png -images-23331.png -images-23332.png -images-23333.png -images-23334.png -images-23335.png -images-23336.png -images-23337.png -images-23338.png -images-23339.png -images-23340.png -images-23341.png -images-23342.png -images-23343.png -images-23344.png -images-23345.png -images-23346.png -images-23347.png -images-23348.png -images-23349.png -images-23350.png -images-23351.png -images-23352.png -images-23353.png -images-23354.png -images-23355.png -images-23356.png -images-23357.png -images-23358.png -images-23359.png -images-23360.png -images-23361.png -images-23362.png -images-23363.png -images-23364.png -images-23365.png -images-23366.png -images-23367.png -images-23368.png -images-23369.png -images-23370.png -images-23371.png -images-23372.png -images-23373.png -images-23374.png -images-23375.png -images-23376.png -images-23377.png -images-23378.png -images-23379.png -images-23380.png -images-23381.png -images-23382.png -images-23383.png -images-23384.png -images-23385.png -images-23386.png -images-23387.png -images-23388.png -images-23389.png -images-23390.png -images-23391.png -images-23392.png -images-23393.png -images-23394.png -images-23395.png -images-23396.png -images-23397.png -images-23398.png -images-23399.png -images-23400.png -images-23401.png -images-23407.png -images-23408.png -images-23409.png -images-23410.png -images-23411.png -images-23412.png -images-23413.png -images-23414.png -images-23415.png -images-23416.png -images-23417.png -images-23418.png -images-23419.png -images-23420.png -images-23421.png -images-23422.png -images-23423.png -images-23424.png -images-23425.png -images-23426.png -images-23427.png -images-23428.png -images-23429.png -images-23430.png -images-23431.png -images-23432.png -images-23433.png -images-23434.png -images-23435.png -images-23436.png -images-23437.png -images-23438.png -images-23439.png -images-23440.png -images-23441.png -images-23442.png -images-23443.png -images-23444.png -images-23445.png -images-23446.png -images-23447.png -images-23448.png -images-23449.png -images-23450.png -images-23451.png -images-23452.png -images-23453.png -images-23454.png -images-23455.png -images-23456.png -images-23457.png -images-23458.png -images-23459.png -images-23460.png -images-23461.png -images-23462.png -images-23463.png -images-23464.png -images-23465.png -images-23466.png -images-23467.png -images-23468.png -images-23469.png -images-23470.png -images-23471.png -images-23472.png -images-23473.png -images-23474.png -images-23475.png -images-23476.png -images-23477.png -images-23478.png -images-23479.png -images-23480.png -images-23481.png -images-23482.png -images-23483.png -images-23484.png -images-23485.png -images-23493.png -images-23494.png -images-23495.png -images-23503.png -images-23504.png -images-23505.png -images-23506.png -images-23507.png -images-23508.png -images-23509.png -images-23510.png -images-23511.png -images-23512.png -images-23513.png -images-23514.png -images-23515.png -images-23516.png -images-23517.png -images-23518.png -images-23534.png -images-23535.png -images-23536.png -images-23537.png -images-23538.png -images-23539.png -images-23540.png -images-23541.png -images-23542.png -images-23543.png -images-23544.png -images-23545.png -images-23546.png -images-23547.png -images-23548.png -images-23549.png -images-23550.png -images-23551.png -images-23552.png -images-23553.png -images-23554.png -images-23555.png -images-23556.png -images-23557.png -images-23558.png -images-23559.png -images-23560.png -images-23561.png -images-23562.png -images-23563.png -images-23564.png -images-23565.png -images-23566.png -images-23567.png -images-23568.png -images-23569.png -images-23570.png -images-23577.png -images-23578.png -images-23579.png -images-23580.png -images-23581.png -images-23582.png -images-23583.png -images-23584.png -images-23585.png -images-23586.png -images-23587.png -images-23588.png -images-23589.png -images-23590.png -images-23591.png -images-23592.png -images-23598.png -images-23599.png -images-23600.png -images-23601.png -images-23602.png -images-23603.png -images-23604.png -images-23605.png -images-23606.png -images-23607.png -images-23608.png -images-23609.png -images-23610.png -images-23611.png -images-23612.png -images-23613.png -images-23614.png -images-23615.png -images-23616.png -images-23617.png -images-23618.png -images-23619.png -images-23620.png -images-23621.png -images-23622.png -images-23623.png -images-23624.png -images-23625.png -images-23626.png -images-23627.png -images-23628.png -images-23629.png -images-23630.png -images-23631.png -images-23632.png -images-23633.png -images-23634.png -images-23635.png -images-23636.png -images-23637.png -images-23638.png -images-23639.png -images-23640.png -images-23641.png -images-23642.png -images-23643.png -images-23644.png -images-23645.png -images-23646.png -images-23647.png -images-23648.png -images-23649.png -images-23650.png -images-23651.png -images-23652.png -images-23653.png -images-23654.png -images-23655.png -images-23656.png -images-23657.png -images-23658.png -images-23659.png -images-23660.png -images-23661.png -images-23662.png -images-23663.png -images-23664.png -images-23665.png -images-23675.png -images-23676.png -images-23677.png -images-23678.png -images-23679.png -images-23680.png -images-23681.png -images-23682.png -images-23683.png -images-23684.png -images-23685.png -images-23686.png -images-23687.png -images-23688.png -images-23689.png -images-23690.png -images-23703.png -images-23704.png -images-23705.png -images-23706.png -images-23711.png -images-23712.png -images-23713.png -images-23714.png -images-23715.png -images-23716.png -images-23717.png -images-23718.png -images-23719.png -images-23720.png -images-23721.png -images-23722.png -images-23723.png -images-23724.png -images-23725.png -images-23726.png -images-23727.png -images-23728.png -images-23729.png -images-23730.png -images-23731.png -images-23732.png -images-23733.png -images-23734.png -images-23735.png -images-23736.png -images-23737.png -images-23738.png -images-23739.png -images-23740.png -images-23741.png -images-23742.png -images-23743.png -images-23744.png -images-23745.png -images-23746.png -images-23747.png -images-23748.png -images-23749.png -images-23750.png -images-23751.png -images-23752.png -images-23753.png -images-23754.png -images-23755.png -images-23756.png -images-23757.png -images-23758.png -images-23759.png -images-23760.png -images-23761.png -images-23762.png -images-23763.png -images-23764.png -images-23765.png -images-23766.png -images-23767.png -images-23768.png -images-23769.png -images-23770.png -images-23771.png -images-23772.png -images-23773.png -images-23774.png -images-23775.png -images-23776.png -images-23777.png -images-23778.png -images-23779.png -images-23780.png -images-23781.png -images-23782.png -images-23783.png -images-23784.png -images-23785.png -images-23786.png -images-23787.png -images-23788.png -images-23789.png -images-23790.png -images-23791.png -images-23792.png -images-23793.png -images-23794.png -images-23795.png -images-23796.png -images-23797.png -images-23798.png -images-23799.png -images-23800.png -images-23801.png -images-23802.png -images-23803.png -images-23804.png -images-23805.png -images-23806.png -images-23807.png -images-23808.png -images-23809.png -images-23810.png -images-23811.png -images-23812.png -images-23813.png -images-23814.png -images-23815.png -images-23816.png -images-23817.png -images-23818.png -images-23819.png -images-23820.png -images-23821.png -images-23822.png -images-23823.png -images-23824.png -images-23825.png -images-23826.png -images-23827.png -images-23828.png -images-23829.png -images-23830.png -images-23831.png -images-23832.png -images-23833.png -images-23834.png -images-23835.png -images-23836.png -images-23837.png -images-23838.png -images-23839.png -images-23840.png -images-23841.png -images-23855.png -images-23856.png -images-23857.png -images-23858.png -images-23859.png -images-23860.png -images-23861.png -images-23862.png -images-23863.png -images-23864.png -images-23865.png -images-23866.png -images-23867.png -images-23868.png -images-23869.png -images-23870.png -images-23871.png -images-23872.png -images-23873.png -images-23874.png -images-23875.png -images-23876.png -images-23877.png -images-23878.png -images-23879.png -images-23880.png -images-23881.png -images-23882.png -images-23883.png -images-23884.png -images-23885.png -images-23886.png -images-23887.png -images-23888.png -images-23889.png -images-23890.png -images-23891.png -images-23892.png -images-23893.png -images-23894.png -images-23895.png -images-23896.png -images-23897.png -images-23898.png -images-23899.png -images-23900.png -images-23901.png -images-23902.png -images-23903.png -images-23904.png -images-23905.png -images-23906.png -images-23907.png -images-23908.png -images-23909.png -images-23910.png -images-23911.png -images-23912.png -images-23913.png -images-23914.png -images-23915.png -images-23916.png -images-23917.png -images-23918.png -images-23919.png -images-23920.png -images-23921.png -images-23922.png -images-23923.png -images-23924.png -images-23925.png -images-23926.png -images-23927.png -images-23928.png -images-23929.png -images-23930.png -images-23931.png -images-23932.png -images-23933.png -images-23934.png -images-23935.png -images-23936.png -images-23937.png -images-23938.png -images-23939.png -images-23940.png -images-23941.png -images-23942.png -images-23943.png -images-23944.png -images-23945.png -images-23946.png -images-23947.png -images-23948.png -images-23949.png -images-23955.png -images-23956.png -images-23957.png -images-23958.png -images-23959.png -images-23960.png -images-23961.png -images-23962.png -images-23963.png -images-23964.png -images-23965.png -images-23966.png -images-23967.png -images-23968.png -images-23969.png -images-23970.png -images-23971.png -images-23972.png -images-23973.png -images-23974.png -images-23975.png -images-23976.png -images-23977.png -images-23978.png -images-23979.png -images-23980.png -images-23981.png -images-23982.png -images-23983.png -images-23984.png -images-23985.png -images-23986.png -images-23987.png -images-23988.png -images-23989.png -images-23990.png -images-23991.png -images-23992.png -images-23993.png -images-23994.png -images-23995.png -images-23996.png -images-23997.png -images-23998.png -images-23999.png -images-24000.png -images-24001.png -images-24002.png -images-24003.png -images-24004.png -images-24005.png -images-24006.png -images-24007.png -images-24008.png -images-24009.png -images-24010.png -images-24011.png -images-24012.png -images-24013.png -images-24014.png -images-24015.png -images-24016.png -images-24017.png -images-24018.png -images-24019.png -images-24020.png -images-24021.png -images-24022.png -images-24023.png -images-24024.png -images-24025.png -images-24026.png -images-24027.png -images-24028.png -images-24029.png -images-24030.png -images-24031.png -images-24032.png -images-24033.png -images-24034.png -images-24035.png -images-24036.png -images-24037.png -images-24038.png -images-24039.png -images-24040.png -images-24041.png -images-24042.png -images-24043.png -images-24044.png -images-24045.png -images-24046.png -images-24047.png -images-24048.png -images-24049.png -images-24050.png -images-24051.png -images-24052.png -images-24053.png -images-24054.png -images-24055.png -images-24056.png -images-24057.png -images-24058.png -images-24059.png -images-24060.png -images-24061.png -images-24062.png -images-24063.png -images-24064.png -images-24065.png -images-24066.png -images-24067.png -images-24068.png -images-24069.png -images-24070.png -images-24071.png -images-24072.png -images-24073.png -images-24074.png -images-24075.png -images-24076.png -images-24077.png -images-24078.png -images-24079.png -images-24080.png -images-24081.png -images-24082.png -images-24083.png -images-24084.png -images-24085.png -images-24086.png -images-24087.png -images-24088.png -images-24089.png -images-24090.png -images-24091.png -images-24092.png -images-24093.png -images-24094.png -images-24095.png -images-24419.png -images-24420.png -images-24421.png -images-24422.png -images-24423.png -images-24424.png -images-24425.png -images-24426.png -images-24427.png -images-24428.png -images-24429.png -images-24430.png -images-24431.png -images-24432.png -images-24433.png -images-24434.png -images-24435.png -images-24436.png -images-24437.png -images-24438.png -images-24439.png -images-24440.png -images-24441.png -images-24442.png -images-24443.png -images-24444.png -images-24445.png -images-24446.png -images-24447.png -images-24448.png -images-24449.png -images-24450.png -images-24451.png -images-24452.png -images-24453.png -images-24454.png -images-24455.png -images-24456.png -images-24457.png -images-24458.png -images-24459.png -images-24460.png -images-24461.png -images-24462.png -images-24463.png -images-24464.png -images-24465.png -images-24466.png -images-24467.png -images-24468.png -images-24469.png -images-24470.png -images-24471.png -images-24472.png -images-24473.png -images-24474.png -images-24475.png -images-24476.png -images-24477.png -images-24478.png -images-24479.png -images-24480.png -images-24481.png -images-24482.png -images-24483.png -images-24484.png -images-24485.png -images-24486.png -images-24487.png -images-24488.png -images-24489.png -images-24490.png -images-24491.png -images-24492.png -images-24493.png -images-24494.png -images-24495.png -images-24496.png -images-24497.png -images-24498.png -images-24499.png -images-24500.png -images-24501.png -images-24502.png -images-24503.png -images-24504.png -images-24505.png -images-24506.png -images-24507.png -images-24508.png -images-24509.png -images-24510.png -images-24511.png -images-24512.png -images-24513.png -images-24514.png -images-24515.png -images-24516.png -images-24517.png -images-24518.png -images-24519.png -images-24520.png -images-24521.png -images-24522.png -images-24523.png -images-24524.png -images-24525.png -images-24526.png -images-24527.png -images-24528.png -images-24529.png -images-24530.png -images-24531.png -images-24532.png -images-24533.png -images-24534.png -images-24535.png -images-24536.png -images-24537.png -images-24538.png -images-24539.png -images-24540.png -images-24541.png -images-24542.png -images-24543.png -images-24544.png -images-24545.png -images-24546.png -images-24547.png -images-24548.png -images-24549.png -images-24550.png -images-24551.png -images-24552.png -images-24553.png -images-24554.png -images-24555.png -images-24556.png -images-24557.png -images-24558.png -images-24559.png -images-24560.png -images-24561.png -images-24562.png -images-24563.png -images-24564.png -images-24565.png -images-24566.png -images-24567.png -images-24568.png -images-24569.png -images-24570.png -images-24571.png -images-24572.png -images-24573.png -images-24574.png -images-24575.png -images-24576.png -images-24577.png -images-24578.png -images-24579.png -images-24580.png -images-24581.png -images-24582.png -images-24583.png -images-24584.png -images-24585.png -images-24586.png -images-24587.png -images-24588.png -images-24589.png -images-24590.png -images-24591.png -images-24592.png -images-24593.png -images-24594.png -images-24595.png -images-24596.png -images-24597.png -images-24598.png -images-24599.png -images-24600.png -images-24601.png -images-24602.png -images-24603.png -images-24604.png -images-24605.png -images-24606.png -images-24607.png -images-24608.png -images-24609.png -images-24610.png -images-24611.png -images-24612.png -images-24613.png -images-24614.png -images-24615.png -images-24616.png -images-24617.png -images-24618.png -images-24619.png -images-24620.png -images-24621.png -images-24622.png -images-24623.png -images-24624.png -images-24625.png -images-24626.png -images-24627.png -images-24628.png -images-24629.png -images-24630.png -images-24631.png -images-24632.png -images-24633.png -images-24634.png -images-24635.png -images-24636.png -images-24637.png -images-24638.png -images-24639.png -images-24640.png -images-24641.png -images-24642.png -images-24643.png -images-24644.png -images-24645.png -images-24646.png -images-24647.png -images-24648.png -images-24649.png -images-24650.png -images-24651.png -images-24652.png -images-24653.png -images-24654.png -images-24655.png -images-24656.png -images-24657.png -images-24658.png -images-24659.png -images-24660.png -images-24661.png -images-24662.png -images-24663.png -images-24664.png -images-24665.png -images-24666.png -images-24667.png -images-24668.png -images-24669.png -images-24670.png -images-24671.png -images-24672.png -images-24673.png -images-24674.png -images-24675.png -images-24676.png -images-24677.png -images-24678.png -images-24679.png -images-24680.png -images-24681.png -images-24682.png -images-24683.png -images-24684.png -images-24685.png -images-24686.png -images-24687.png -images-24688.png -images-24689.png -images-24690.png -images-24691.png -images-24692.png -images-24693.png -images-24694.png -images-24695.png -images-24696.png -images-24697.png -images-24698.png -images-24699.png -images-24700.png -images-24701.png -images-24702.png -images-24703.png -images-24704.png -images-24705.png -images-24706.png -images-24707.png -images-24708.png -images-24709.png -images-24710.png -images-24711.png -images-24712.png -images-24713.png -images-24714.png -images-24715.png -images-24716.png -images-24717.png -images-24718.png -images-24719.png -images-24720.png -images-24721.png -images-24722.png -images-24723.png -images-24724.png -images-24725.png -images-24726.png -images-24727.png -images-24728.png -images-24729.png -images-24730.png -images-24731.png -images-24732.png -images-24733.png -images-24734.png -images-24735.png -images-24736.png -images-24737.png -images-24738.png -images-24739.png -images-24740.png -images-24741.png -images-24742.png -images-24743.png -images-24744.png -images-24745.png -images-24746.png -images-24747.png -images-24748.png -images-24749.png -images-24750.png -images-24751.png -images-24752.png -images-24753.png -images-24754.png -images-24755.png -images-24756.png -images-24757.png -images-24758.png -images-24759.png -images-24760.png -images-24761.png -images-24762.png -images-24763.png -images-24764.png -images-24765.png -images-24766.png -images-24767.png -images-24768.png -images-24769.png -images-24770.png -images-24771.png -images-24772.png -images-24773.png -images-24774.png -images-24775.png -images-24776.png -images-24777.png -images-24778.png -images-24779.png -images-24780.png -images-24781.png -images-24782.png -images-24783.png -images-24784.png -images-24785.png -images-24786.png -images-24787.png -images-24788.png -images-24789.png -images-24790.png -images-24791.png -images-24792.png -images-24793.png -images-24794.png -images-24795.png -images-24796.png -images-24797.png -images-24798.png -images-24799.png -images-24800.png -images-24801.png -images-24802.png -images-24803.png -images-24804.png -images-24805.png -images-24806.png -images-24807.png -images-24808.png -images-24809.png -images-24810.png -images-24811.png -images-24812.png -images-24813.png -images-24814.png -images-24815.png -images-24816.png -images-24817.png -images-24818.png -images-24819.png -images-24820.png -images-24821.png -images-24822.png -images-24823.png -images-24824.png -images-24825.png -images-24826.png -images-24827.png -images-24828.png -images-24829.png -images-24830.png -images-24831.png -images-24832.png -images-24833.png -images-24834.png -images-24835.png -images-24836.png -images-24837.png -images-24838.png -images-24839.png -images-24840.png -images-24841.png -images-24842.png -images-24843.png -images-24844.png -images-24845.png -images-24846.png -images-24847.png -images-24848.png -images-24849.png -images-24850.png -images-24851.png -images-24852.png -images-24853.png -images-24854.png -images-24855.png -images-24856.png -images-24857.png -images-24858.png -images-24859.png -images-24860.png -images-24861.png -images-24862.png -images-24863.png -images-24864.png -images-24865.png -images-24866.png -images-24867.png -images-24868.png -images-24869.png -images-24870.png -images-24871.png -images-24872.png -images-24873.png -images-24874.png -images-24875.png -images-24876.png -images-24877.png -images-24878.png -images-24879.png -images-24880.png -images-24881.png -images-24882.png -images-24883.png -images-24884.png -images-24885.png -images-24886.png -images-24887.png -images-24888.png -images-24889.png -images-24890.png -images-24891.png -images-24892.png -images-24893.png -images-24894.png -images-24895.png -images-24896.png -images-24897.png -images-24898.png -images-24899.png -images-24900.png -images-24901.png -images-24902.png -images-24903.png -images-24904.png -images-24905.png -images-24906.png -images-24907.png -images-24908.png -images-24909.png -images-24910.png -images-24911.png -images-24912.png -images-24913.png -images-24914.png -images-24915.png -images-24916.png -images-24917.png -images-24918.png -images-24919.png -images-24920.png -images-24921.png -images-24922.png -images-24923.png -images-24924.png -images-24925.png -images-24926.png -images-24927.png -images-24928.png -images-24929.png -images-24930.png -images-24931.png -images-24932.png -images-24933.png -images-24934.png -images-24935.png -images-24936.png -images-24937.png -images-24938.png -images-24939.png -images-24940.png -images-24941.png -images-24942.png -images-24943.png -images-24944.png -images-24945.png -images-24946.png -images-24947.png -images-24948.png -images-24949.png -images-24950.png -images-24951.png -images-24952.png -images-24953.png -images-24954.png -images-24955.png -images-24956.png -images-24957.png -images-24958.png -images-24959.png -images-24960.png -images-24961.png -images-24962.png -images-24963.png -images-24964.png -images-24965.png -images-24966.png -images-24967.png -images-24968.png -images-24969.png -images-24970.png -images-24971.png -images-24972.png -images-24973.png -images-24974.png -images-24975.png -images-24976.png -images-24977.png -images-24978.png -images-24979.png -images-24980.png -images-24981.png -images-24982.png -images-24983.png -images-24984.png -images-24985.png -images-24986.png -images-24987.png -images-24997.png -images-24998.png -images-24999.png -images-25000.png -images-25001.png -images-25002.png -images-25003.png -images-25030.png -images-25031.png -images-25032.png -images-25033.png -images-25034.png -images-25035.png -images-25036.png -images-25044.png -images-25045.png -images-25046.png -images-25047.png -images-25048.png -images-25049.png -images-25050.png -images-25051.png -images-25052.png -images-25053.png -images-25054.png -images-25055.png -images-25056.png -images-25057.png -images-25058.png -images-25059.png -images-25060.png -images-25061.png -images-25062.png -images-25063.png -images-25064.png -images-25065.png -images-25066.png -images-25067.png -images-25068.png -images-25069.png -images-25070.png -images-25071.png -images-25072.png -images-25073.png -images-25074.png -images-25075.png -images-25076.png -images-25077.png -images-25078.png -images-25079.png -images-25080.png -images-25081.png -images-25082.png -images-25083.png -images-25084.png -images-25085.png -images-25086.png -images-25087.png -images-25088.png -images-25089.png -images-25090.png -images-25091.png -images-25092.png -images-25093.png -images-25094.png -images-25095.png -images-25096.png -images-25097.png -images-25098.png -images-25099.png -images-25100.png -images-25101.png -images-25102.png -images-25103.png -images-25104.png -images-25105.png -images-25106.png -images-25107.png -images-25108.png -images-25109.png -images-25110.png -images-25111.png -images-25112.png -images-25113.png -images-25114.png -images-25115.png -images-25116.png -images-25117.png -images-25118.png -images-25119.png -images-25120.png -images-25121.png -images-25122.png -images-25123.png -images-25124.png -images-25125.png -images-25126.png -images-25127.png -images-25128.png -images-25129.png -images-25130.png -images-25131.png -images-25132.png -images-25133.png -images-25134.png -images-25135.png -images-25136.png -images-25137.png -images-25138.png -images-25139.png -images-25140.png -images-25141.png -images-25142.png -images-25143.png -images-25144.png -images-25145.png -images-25146.png -images-25147.png -images-25148.png -images-25149.png -images-25150.png -images-25151.png -images-25152.png -images-25153.png -images-25154.png -images-25155.png -images-25156.png -images-25157.png -images-25158.png -images-25159.png -images-25160.png -images-25161.png -images-25162.png -images-25163.png -images-25164.png -images-25165.png -images-25166.png -images-25167.png -images-25168.png -images-25169.png -images-25170.png -images-25171.png -images-25172.png -images-25173.png -images-25174.png -images-25175.png -images-25176.png -images-25177.png -images-25178.png -images-25179.png -images-25180.png -images-25181.png -images-25182.png -images-25183.png -images-25184.png -images-25185.png -images-25186.png -images-25187.png -images-25188.png -images-25189.png -images-25190.png -images-25191.png -images-25192.png -images-25193.png -images-25194.png -images-25195.png -images-25196.png -images-25197.png -images-25198.png -images-25199.png -images-25200.png -images-25201.png -images-25202.png -images-25203.png -images-25204.png -images-25205.png -images-25206.png -images-25207.png -images-25208.png -images-25209.png -images-25210.png -images-25211.png -images-25212.png -images-25213.png -images-25214.png -images-25215.png -images-25216.png -images-25217.png -images-25218.png -images-25219.png -images-25220.png -images-25221.png -images-25222.png -images-25223.png -images-25224.png -images-25225.png -images-25226.png -images-25227.png -images-25228.png -images-25229.png -images-25230.png -images-25231.png -images-25232.png -images-25233.png -images-25234.png -images-25235.png -images-25236.png -images-25237.png -images-25238.png -images-25239.png -images-25240.png -images-25241.png -images-25242.png -images-25243.png -images-25244.png -images-25245.png -images-25246.png -images-25247.png -images-25248.png -images-25249.png -images-25250.png -images-25251.png -images-25252.png -images-25253.png -images-25254.png -images-25255.png -images-25320.png -images-25321.png -images-25322.png -images-25323.png -images-25324.png -images-25325.png -images-25326.png -images-25327.png -images-25328.png -images-25329.png -images-25330.png -images-25331.png -images-25332.png -images-25333.png -images-25334.png -images-25335.png -images-25336.png -images-25337.png -images-25338.png -images-25339.png -images-25340.png -images-25341.png -images-25342.png -images-25343.png -images-25344.png -images-25345.png -images-25346.png -images-25347.png -images-25348.png -images-25349.png -images-25350.png -images-25351.png -images-25352.png -images-25353.png -images-25354.png -images-25355.png -images-25356.png -images-25357.png -images-25358.png -images-25359.png -images-25360.png -images-25361.png -images-25362.png -images-25363.png -images-25364.png -images-25365.png -images-25366.png -images-25367.png -images-25368.png -images-25369.png -images-25370.png -images-25371.png -images-25372.png -images-25380.png -images-25381.png -images-25382.png -images-25383.png -images-25384.png -images-25385.png -images-25386.png -images-25387.png -images-25388.png -images-25389.png -images-25390.png -images-25391.png -images-25392.png -images-25393.png -images-25394.png -images-25395.png -images-25396.png -images-25397.png -images-25406.png -images-25407.png -images-25408.png -images-25409.png -images-25410.png -images-25411.png -images-25412.png -images-25413.png -images-25414.png -images-25415.png -images-25416.png -images-25417.png -images-25418.png -images-25419.png -images-25420.png -images-25421.png -images-25422.png -images-25423.png -images-25424.png -images-25425.png -images-25426.png -images-25427.png -images-25428.png -images-25429.png -images-25430.png -images-25431.png -images-25432.png -images-25433.png -images-25434.png -images-25435.png -images-25436.png -images-25437.png -images-25438.png -images-25439.png -images-25440.png -images-25441.png -images-25442.png -images-25443.png -images-25444.png -images-25445.png -images-25446.png -images-25447.png -images-25448.png -images-25449.png -images-25450.png -images-25451.png -images-25452.png -images-25453.png -images-25454.png -images-25455.png -images-25456.png -images-25457.png -images-25458.png -images-25459.png -images-25460.png -images-25461.png -images-25462.png -images-25463.png -images-25464.png -images-25465.png -images-25466.png -images-25467.png -images-25468.png -images-25469.png -images-25470.png -images-25471.png -images-25472.png -images-25473.png -images-25474.png -images-25475.png -images-25476.png -images-25477.png -images-25478.png -images-25479.png -images-25480.png -images-25481.png -images-25482.png -images-25483.png -images-25484.png -images-25485.png -images-25486.png -images-25487.png -images-25488.png -images-25489.png -images-25490.png -images-25491.png -images-25492.png -images-25493.png -images-25494.png -images-25495.png -images-25496.png -images-25497.png -images-25498.png -images-25499.png -images-25500.png -images-25501.png -images-25502.png -images-25503.png -images-25504.png -images-25505.png -images-25506.png -images-25521.png -images-25522.png -images-25523.png -images-25524.png -images-25525.png -images-25526.png -images-25527.png -images-25528.png -images-25529.png -images-25530.png -images-25531.png -images-25532.png -images-25533.png -images-25534.png -images-25535.png -images-25536.png -images-25537.png -images-25538.png -images-25539.png -images-25540.png -images-25541.png -images-25542.png -images-25543.png -images-25544.png -images-25545.png -images-25546.png -images-25547.png -images-25548.png -images-25549.png -images-25550.png -images-25551.png -images-25552.png -images-25553.png -images-25554.png -images-25555.png -images-25556.png -images-25557.png -images-25558.png -images-25559.png -images-25560.png -images-25561.png -images-25562.png -images-25563.png -images-25564.png -images-25565.png -images-25566.png -images-25567.png -images-25568.png -images-25569.png -images-25570.png -images-25571.png -images-25572.png -images-25573.png -images-25574.png -images-25575.png -images-25576.png -images-25577.png -images-25578.png -images-25579.png -images-25580.png -images-25581.png -images-25582.png -images-25583.png -images-25584.png -images-25585.png -images-25586.png -images-25587.png -images-25588.png -images-25589.png -images-25590.png -images-25591.png -images-25592.png -images-25593.png -images-25594.png -images-25595.png -images-25596.png -images-25597.png -images-25598.png -images-25599.png -images-25600.png -images-25601.png -images-25602.png -images-25603.png -images-25604.png -images-25605.png -images-25606.png -images-25607.png -images-25608.png -images-25609.png -images-25610.png -images-25611.png -images-25612.png -images-25613.png -images-25614.png -images-25615.png -images-25616.png -images-25617.png -images-25618.png -images-25619.png -images-25620.png -images-25621.png -images-25622.png -images-25623.png -images-25624.png -images-25625.png -images-25626.png -images-25627.png -images-25628.png -images-25629.png -images-25630.png -images-25631.png -images-25632.png -images-25633.png -images-25634.png -images-25635.png -images-25636.png -images-25637.png -images-25638.png -images-25639.png -images-25640.png -images-25641.png -images-25642.png -images-25643.png -images-25644.png -images-25645.png -images-25646.png -images-25647.png -images-25648.png -images-25649.png -images-25650.png -images-25651.png -images-25652.png -images-25653.png -images-25654.png -images-25655.png -images-25656.png -images-25657.png -images-25658.png -images-25659.png -images-25660.png -images-25661.png -images-25662.png -images-25663.png -images-25664.png -images-25665.png -images-25666.png -images-25667.png -images-25668.png -images-25669.png -images-25670.png -images-25671.png -images-25672.png -images-25673.png -images-25674.png -images-25675.png -images-25676.png -images-25677.png -images-25678.png -images-25679.png -images-25680.png -images-25681.png -images-25682.png -images-25683.png -images-25684.png -images-25685.png -images-25686.png -images-25687.png -images-25688.png -images-25689.png -images-25690.png -images-25691.png -images-25692.png -images-25693.png -images-25694.png -images-25695.png -images-25696.png -images-25697.png -images-25698.png -images-25699.png -images-25700.png -images-25701.png -images-25702.png -images-25703.png -images-25704.png -images-25705.png -images-25706.png -images-25707.png -images-25708.png -images-25709.png -images-25710.png -images-25711.png -images-25712.png -images-25713.png -images-25714.png -images-25715.png -images-25716.png -images-25717.png -images-25718.png -images-25719.png -images-25720.png -images-25721.png -images-25722.png -images-25723.png -images-25724.png -images-25725.png -images-25726.png -images-25727.png -images-25728.png -images-25729.png -images-25730.png -images-25731.png -images-25732.png -images-25733.png -images-25734.png -images-25735.png -images-25736.png -images-25737.png -images-25738.png -images-25739.png -images-25740.png -images-25741.png -images-25742.png -images-25743.png -images-25744.png -images-25745.png -images-25746.png -images-25747.png -images-25748.png -images-25749.png -images-25750.png -images-25751.png -images-25752.png -images-25753.png -images-25754.png -images-25755.png -images-25756.png -images-25757.png -images-25758.png -images-25759.png -images-25760.png -images-25761.png -images-25762.png -images-25763.png -images-25764.png -images-25765.png -images-25766.png -images-25767.png -images-25768.png -images-25769.png -images-25770.png -images-25771.png -images-25772.png -images-25773.png -images-25774.png -images-25775.png -images-25776.png -images-25777.png -images-25778.png -images-25779.png -images-25780.png -images-25781.png -images-25782.png -images-25783.png -images-25784.png -images-25785.png -images-25786.png -images-25787.png -images-25788.png -images-25789.png -images-25790.png -images-25791.png -images-25792.png -images-25793.png -images-25794.png -images-25795.png -images-25796.png -images-25797.png -images-25798.png -images-25799.png -images-25800.png -images-25801.png -images-25802.png -images-25803.png -images-25804.png -images-25805.png -images-25806.png -images-25807.png -images-25808.png -images-25809.png -images-25810.png -images-25811.png -images-25812.png -images-25813.png -images-25814.png -images-25815.png -images-25816.png -images-25817.png -images-25818.png -images-25819.png -images-25820.png -images-25821.png -images-25822.png -images-25823.png -images-25824.png -images-25846.png -images-25847.png -images-25848.png -images-25849.png -images-25850.png -images-25851.png -images-25852.png -images-25853.png -images-25854.png -images-25855.png -images-25856.png -images-25857.png -images-25858.png -images-25859.png -images-25860.png -images-25861.png -images-25862.png -images-25863.png -images-25864.png -images-25865.png -images-25866.png -images-25867.png -images-25868.png -images-25869.png -images-25870.png -images-25871.png -images-25872.png -images-25873.png -images-25874.png -images-25875.png -images-25876.png -images-25877.png -images-25878.png -images-25879.png -images-25880.png -images-25881.png -images-25882.png -images-25883.png -images-25884.png -images-25885.png -images-25886.png -images-25887.png -images-25888.png -images-25889.png -images-25890.png -images-25891.png -images-25892.png -images-25893.png -images-25894.png -images-25895.png -images-25896.png -images-25897.png -images-25898.png -images-25899.png -images-25900.png -images-25901.png -images-25902.png -images-25903.png -images-25904.png -images-25905.png -images-25906.png -images-25907.png -images-25908.png -images-25909.png -images-25910.png -images-25911.png -images-25912.png -images-25913.png -images-25914.png -images-25915.png -images-25916.png -images-25917.png -images-25918.png -images-25919.png -images-25920.png -images-25921.png -images-25922.png -images-25923.png -images-25924.png -images-25925.png -images-25926.png -images-25927.png -images-25928.png -images-25929.png -images-25930.png -images-25931.png -images-25932.png -images-25933.png -images-25934.png -images-25935.png -images-25936.png -images-25937.png -images-25938.png -images-25939.png -images-25940.png -images-25941.png -images-25942.png -images-25943.png -images-25944.png -images-25945.png -images-25946.png -images-25947.png -images-25948.png -images-25949.png -images-25950.png -images-25951.png -images-25952.png -images-25953.png -images-25954.png -images-25955.png -images-25956.png -images-25957.png -images-25958.png -images-25959.png -images-25960.png -images-25961.png -images-25962.png -images-25963.png -images-25964.png -images-25965.png -images-25966.png -images-25967.png -images-25968.png -images-25969.png -images-25970.png -images-25971.png -images-25972.png -images-25973.png -images-25974.png -images-25975.png -images-25976.png -images-25977.png -images-25978.png -images-25979.png -images-25980.png -images-25981.png -images-25982.png -images-25983.png -images-25984.png -images-25985.png -images-25986.png -images-25987.png -images-25988.png -images-25989.png -images-25990.png -images-25991.png -images-25992.png -images-25993.png -images-25994.png -images-25995.png -images-25996.png -images-25997.png -images-25998.png -images-25999.png -images-26000.png -images-26001.png -images-26002.png -images-26003.png -images-26004.png -images-26005.png -images-26006.png -images-26007.png -images-26008.png -images-26009.png -images-26010.png -images-26011.png -images-26012.png -images-26013.png -images-26014.png -images-26015.png -images-26016.png -images-26017.png -images-26018.png -images-26019.png -images-26020.png -images-26021.png -images-26022.png -images-26023.png -images-26024.png -images-26025.png -images-26026.png -images-26027.png -images-26028.png -images-26029.png -images-26030.png -images-26031.png -images-26032.png -images-26033.png -images-26034.png -images-26035.png -images-26036.png -images-26037.png -images-26038.png -images-26039.png -images-26040.png -images-26041.png -images-26042.png -images-26043.png -images-26044.png -images-26045.png -images-26046.png -images-26047.png -images-26048.png -images-26049.png -images-26050.png -images-26051.png -images-26052.png -images-26053.png -images-26054.png -images-26055.png -images-26056.png -images-26057.png -images-26058.png -images-26059.png -images-26060.png -images-26061.png -images-26062.png -images-26063.png -images-26064.png -images-26065.png -images-26066.png -images-26067.png -images-26068.png -images-26069.png -images-26070.png -images-26071.png -images-26072.png -images-26073.png -images-26074.png -images-26075.png -images-26076.png -images-26077.png -images-26078.png -images-26079.png -images-26080.png -images-26081.png -images-26082.png -images-26083.png -images-26084.png -images-26085.png -images-26091.png -images-26092.png -images-26093.png -images-26094.png -images-26095.png -images-26096.png -images-26097.png -images-26098.png -images-26099.png -images-26100.png -images-26101.png -images-26102.png -images-26103.png -images-26104.png -images-26105.png -images-26106.png -images-26107.png -images-26108.png -images-26109.png -images-26110.png -images-26111.png -images-26112.png -images-26113.png -images-26114.png -images-26115.png -images-26116.png -images-26117.png -images-26118.png -images-26119.png -images-26135.png -images-26136.png -images-26137.png -images-26138.png -images-26139.png -images-26140.png -images-26141.png -images-26142.png -images-26143.png -images-26144.png -images-26145.png -images-26146.png -images-26147.png -images-26148.png -images-26149.png -images-26150.png -images-26151.png -images-26152.png -images-26153.png -images-26154.png -images-26155.png -images-26156.png -images-26157.png -images-26158.png -images-26159.png -images-26160.png -images-26161.png -images-26162.png -images-26163.png -images-26164.png -images-26165.png -images-26166.png -images-26167.png -images-26168.png -images-26169.png -images-26170.png -images-26171.png -images-26172.png -images-26173.png -images-26174.png -images-26175.png -images-26176.png -images-26177.png -images-26178.png -images-26179.png -images-26180.png -images-26181.png -images-26182.png -images-26183.png -images-26184.png -images-26185.png -images-26186.png -images-26187.png -images-26188.png -images-26189.png -images-26190.png -images-26191.png -images-26192.png -images-26193.png -images-26194.png -images-26195.png -images-26196.png -images-26197.png -images-26198.png -images-26199.png -images-26200.png -images-26201.png -images-26202.png -images-26203.png -images-26204.png -images-26205.png -images-26206.png -images-26207.png -images-26208.png -images-26209.png -images-26210.png -images-26211.png -images-26212.png -images-26213.png -images-26214.png -images-26215.png -images-26216.png -images-26217.png -images-26218.png -images-26219.png -images-26220.png -images-26221.png -images-26222.png -images-26223.png -images-26224.png -images-26225.png -images-26226.png -images-26227.png -images-26228.png -images-26229.png -images-26230.png -images-26231.png -images-26232.png -images-26233.png -images-26234.png -images-26235.png -images-26236.png -images-26237.png -images-26238.png -images-26239.png -images-26240.png -images-26241.png -images-26242.png -images-26243.png -images-26244.png -images-26245.png -images-26246.png -images-26247.png -images-26248.png -images-26249.png -images-26250.png -images-26251.png -images-26252.png -images-26253.png -images-26254.png -images-26255.png -images-26256.png -images-26257.png -images-26258.png -images-26259.png -images-26260.png -images-26261.png -images-26262.png -images-26263.png -images-26264.png -images-26265.png -images-26266.png -images-26267.png -images-26268.png -images-26269.png -images-26270.png -images-26271.png -images-26272.png -images-26273.png -images-26274.png -images-26275.png -images-26276.png -images-26277.png -images-26278.png -images-26279.png -images-26280.png -images-26281.png -images-26282.png -images-26283.png -images-26284.png -images-26285.png -images-26286.png -images-26287.png -images-26288.png -images-26289.png -images-26290.png -images-26291.png -images-26292.png -images-26293.png -images-26294.png -images-26295.png -images-26296.png -images-26297.png -images-26298.png -images-26299.png -images-26300.png -images-26301.png -images-26302.png -images-26303.png -images-26304.png -images-26305.png -images-26306.png -images-26307.png -images-26308.png -images-26309.png -images-26310.png -images-26311.png -images-26312.png -images-26313.png -images-26314.png -images-26315.png -images-26316.png -images-26317.png -images-26318.png -images-26319.png -images-26320.png -images-26321.png -images-26322.png -images-26323.png -images-26324.png -images-26325.png -images-26326.png -images-26327.png -images-26328.png -images-26329.png -images-26330.png -images-26331.png -images-26332.png -images-26333.png -images-26334.png -images-26335.png -images-26336.png -images-26337.png -images-26338.png -images-26339.png -images-26340.png -images-26341.png -images-26342.png -images-26343.png -images-26344.png -images-26345.png -images-26346.png -images-26347.png -images-26348.png -images-26349.png -images-26350.png -images-26351.png -images-26352.png -images-26353.png -images-26354.png -images-26355.png -images-26356.png -images-26357.png -images-26358.png -images-26359.png -images-26360.png -images-26361.png -images-26362.png -images-26363.png -images-26364.png -images-26365.png -images-26366.png -images-26367.png -images-26368.png -images-26369.png -images-26370.png -images-26371.png -images-26372.png -images-26373.png -images-26374.png -images-26375.png -images-26376.png -images-26377.png -images-26378.png -images-26379.png -images-26380.png -images-26381.png -images-26382.png -images-26383.png -images-26384.png -images-26385.png -images-26386.png -images-26387.png -images-26388.png -images-26389.png -images-26390.png -images-26391.png -images-26559.png -images-26560.png -images-26561.png -images-26562.png -images-26563.png -images-26564.png -images-26565.png -images-26566.png -images-26567.png -images-26568.png -images-26569.png -images-26570.png -images-26571.png -images-26572.png -images-26573.png -images-26574.png -images-26575.png -images-26576.png -images-26577.png -images-26578.png -images-26579.png -images-26580.png -images-26581.png -images-26582.png -images-26583.png -images-26584.png -images-26585.png -images-26586.png -images-26587.png -images-26588.png -images-26589.png -images-26590.png -images-26591.png -images-26592.png -images-26593.png -images-26594.png -images-26595.png -images-26596.png -images-26597.png -images-26598.png -images-26599.png -images-26600.png -images-26601.png -images-26602.png -images-26603.png -images-26604.png -images-26605.png -images-26606.png -images-26607.png -images-26608.png -images-26609.png -images-26610.png -images-26611.png -images-26612.png -images-26613.png -images-26614.png -images-26615.png -images-26616.png -images-26617.png -images-26618.png -images-26619.png -images-26620.png -images-26621.png -images-26622.png -images-26623.png -images-26624.png -images-26625.png -images-26626.png -images-26627.png -images-26628.png -images-26629.png -images-26630.png -images-26631.png -images-26632.png -images-26633.png -images-26634.png -images-26635.png -images-26636.png -images-26637.png -images-26638.png -images-26639.png -images-26640.png -images-26641.png -images-26642.png -images-26643.png -images-26644.png -images-26645.png -images-26646.png -images-26647.png -images-26648.png -images-26649.png -images-26650.png -images-26651.png -images-26652.png -images-26653.png -images-26654.png -images-26655.png -images-26656.png -images-26657.png -images-26658.png -images-26659.png -images-26660.png -images-26661.png -images-26662.png -images-26663.png -images-26664.png -images-26665.png -images-26666.png -images-26667.png -images-26668.png -images-26669.png -images-26670.png -images-26671.png -images-26672.png -images-26673.png -images-26674.png -images-26675.png -images-26676.png -images-26677.png -images-26678.png -images-26679.png -images-26680.png -images-26681.png -images-26682.png -images-26683.png -images-26684.png -images-26685.png -images-26686.png -images-26687.png -images-26688.png -images-26689.png -images-26690.png -images-26691.png -images-26692.png -images-26693.png -images-26694.png -images-26695.png -images-26696.png -images-26697.png -images-26698.png -images-26699.png -images-26700.png -images-26701.png -images-26702.png -images-26703.png -images-26704.png -images-26705.png -images-26706.png -images-26707.png -images-26708.png -images-26709.png -images-26710.png -images-26711.png -images-26712.png -images-26713.png -images-26714.png -images-26715.png -images-26716.png -images-26717.png -images-26718.png -images-26719.png -images-26720.png -images-26721.png -images-26722.png -images-26723.png -images-26724.png -images-26725.png -images-26726.png -images-26727.png -images-26728.png -images-26729.png -images-26730.png -images-26731.png -images-26732.png -images-26733.png -images-26734.png -images-26735.png -images-26736.png -images-26737.png -images-26738.png -images-26739.png -images-26740.png -images-26741.png -images-26742.png -images-26743.png -images-26744.png -images-26745.png -images-26746.png -images-26747.png -images-26748.png -images-26749.png -images-26750.png -images-26751.png -images-26752.png -images-26753.png -images-26754.png -images-26755.png -images-26756.png -images-26757.png -images-26758.png -images-26759.png -images-26760.png -images-26761.png -images-26762.png -images-26763.png -images-26764.png -images-26765.png -images-26766.png -images-26767.png -images-26768.png -images-26769.png -images-26770.png -images-26771.png -images-26772.png -images-26773.png -images-26774.png -images-26775.png -images-26776.png -images-26777.png -images-26778.png -images-26779.png -images-26780.png -images-26781.png -images-26782.png -images-26783.png -images-26784.png -images-26785.png -images-26786.png -images-26787.png -images-26788.png -images-26789.png -images-26790.png -images-26791.png -images-26792.png -images-26793.png -images-26794.png -images-26795.png -images-26796.png -images-26797.png -images-26798.png -images-26799.png -images-26800.png -images-26801.png -images-26802.png -images-26803.png -images-26804.png -images-26805.png -images-26806.png -images-26807.png -images-26808.png -images-26809.png -images-26810.png -images-26811.png -images-26812.png -images-26813.png -images-26814.png -images-26815.png -images-26816.png -images-26817.png -images-26818.png -images-26819.png -images-26820.png -images-26821.png -images-26822.png -images-26823.png -images-26824.png -images-26825.png -images-26826.png -images-26827.png -images-26828.png -images-26829.png -images-26830.png -images-26831.png -images-26832.png -images-26833.png -images-26834.png -images-26835.png -images-26836.png -images-26837.png -images-26838.png -images-26839.png -images-26840.png -images-26841.png -images-26842.png -images-26843.png -images-26844.png -images-26845.png -images-26846.png -images-26847.png -images-26848.png -images-26849.png -images-26850.png -images-26851.png -images-26852.png -images-26853.png -images-26854.png -images-26855.png -images-26856.png -images-26857.png -images-26858.png -images-26859.png -images-26860.png -images-26861.png -images-26862.png -images-26863.png -images-26864.png -images-26865.png -images-26866.png -images-26867.png -images-26868.png -images-26869.png -images-26870.png -images-26871.png -images-26872.png -images-26873.png -images-26874.png -images-26875.png -images-26876.png -images-26877.png -images-26878.png -images-26879.png -images-26880.png -images-26881.png -images-26882.png -images-26883.png -images-26884.png -images-26885.png -images-26886.png -images-26887.png -images-26888.png -images-26889.png -images-26897.png -images-26898.png -images-26899.png -images-26900.png -images-26901.png -images-26902.png -images-26903.png -images-26904.png -images-26905.png -images-26906.png -images-26907.png -images-26908.png -images-26909.png -images-26910.png -images-26911.png -images-26912.png -images-26913.png -images-26914.png -images-26915.png -images-26916.png -images-26917.png -images-26918.png -images-26919.png -images-26920.png -images-26921.png -images-26922.png -images-26923.png -images-26924.png -images-26925.png -images-26926.png -images-26927.png -images-26928.png -images-26929.png -images-26930.png -images-26931.png -images-26932.png -images-26933.png -images-26934.png -images-26935.png -images-26936.png -images-26937.png -images-26938.png -images-26939.png -images-26940.png -images-26941.png -images-26942.png -images-26943.png -images-26944.png -images-26945.png -images-26946.png -images-26947.png -images-26948.png -images-26949.png -images-26950.png -images-26951.png -images-26952.png -images-26953.png -images-26954.png -images-26955.png -images-26956.png -images-26957.png -images-26958.png -images-26959.png -images-26960.png -images-26961.png -images-26962.png -images-26963.png -images-26964.png -images-26965.png -images-26966.png -images-26967.png -images-26968.png -images-26969.png -images-26970.png -images-26971.png -images-26972.png -images-26973.png -images-26974.png -images-26975.png -images-26976.png -images-26977.png -images-26978.png -images-26979.png -images-26980.png -images-26981.png -images-26982.png -images-26983.png -images-26984.png -images-26985.png -images-26986.png -images-26987.png -images-26988.png -images-26989.png -images-26990.png -images-26991.png -images-26992.png -images-26993.png -images-26994.png -images-26995.png -images-26996.png -images-27012.png -images-27013.png -images-27014.png -images-27015.png -images-27016.png -images-27017.png -images-27018.png -images-27019.png -images-27020.png -images-27021.png -images-27022.png -images-27023.png -images-27024.png -images-27025.png -images-27026.png -images-27027.png -images-27028.png -images-27029.png -images-27030.png -images-27031.png -images-27032.png -images-27033.png -images-27034.png -images-27035.png -images-27036.png -images-27037.png -images-27038.png -images-27039.png -images-27040.png -images-27041.png -images-27042.png -images-27043.png -images-27044.png -images-27045.png -images-27046.png -images-27047.png -images-27048.png -images-27049.png -images-27050.png -images-27051.png -images-27052.png -images-27053.png -images-27054.png -images-27055.png -images-27056.png -images-27057.png -images-27058.png -images-27059.png -images-27060.png -images-27061.png -images-27062.png -images-27063.png -images-27064.png -images-27065.png -images-27066.png -images-27067.png -images-27068.png -images-27069.png -images-27070.png -images-27071.png -images-27072.png -images-27073.png -images-27074.png -images-27075.png -images-27076.png -images-27077.png -images-27078.png -images-27079.png -images-27080.png -images-27081.png -images-27082.png -images-27083.png -images-27084.png -images-27085.png -images-27086.png -images-27087.png -images-27088.png -images-27089.png -images-27090.png -images-27091.png -images-27092.png -images-27093.png -images-27094.png -images-27095.png -images-27096.png -images-27097.png -images-27098.png -images-27099.png -images-27100.png -images-27101.png -images-27102.png -images-27103.png -images-27104.png -images-27105.png -images-27106.png -images-27107.png -images-27108.png -images-27109.png -images-27110.png -images-27111.png -images-27112.png -images-27113.png -images-27114.png -images-27115.png -images-27116.png -images-27117.png -images-27118.png -images-27119.png -images-27120.png -images-27121.png -images-27122.png -images-27123.png -images-27124.png -images-27125.png -images-27126.png -images-27127.png -images-27128.png -images-27129.png -images-27130.png -images-27131.png -images-27132.png -images-27133.png -images-27134.png -images-27135.png -images-27136.png -images-27137.png -images-27138.png -images-27139.png -images-27140.png -images-27141.png -images-27142.png -images-27143.png -images-27144.png -images-27145.png -images-27146.png -images-27147.png -images-27148.png -images-27149.png -images-27150.png -images-27151.png -images-27152.png -images-27153.png -images-27154.png -images-27155.png -images-27156.png -images-27157.png -images-27158.png -images-27159.png -images-27160.png -images-27161.png -images-27162.png -images-27163.png -images-27164.png -images-27165.png -images-27166.png -images-27167.png -images-27168.png -images-27169.png -images-27170.png -images-27171.png -images-27172.png -images-27173.png -images-27174.png -images-27175.png -images-27176.png -images-27177.png -images-27178.png -images-27179.png -images-27180.png -images-27181.png -images-27182.png -images-27183.png -images-27184.png -images-27185.png -images-27186.png -images-27187.png -images-27188.png -images-27189.png -images-27190.png -images-27191.png -images-27192.png -images-27193.png -images-27194.png -images-27195.png -images-27196.png -images-27197.png -images-27198.png -images-27199.png -images-27200.png -images-27201.png -images-27202.png -images-27203.png -images-27204.png -images-27205.png -images-27206.png -images-27207.png -images-27208.png -images-27209.png -images-27210.png -images-27211.png -images-27212.png -images-27213.png -images-27214.png -images-27215.png -images-27216.png -images-27217.png -images-27218.png -images-27219.png -images-27220.png -images-27221.png -images-27222.png -images-27223.png -images-27224.png -images-27225.png -images-27226.png -images-27227.png -images-27228.png -images-27229.png -images-27230.png -images-27231.png -images-27232.png -images-27233.png -images-27234.png -images-27235.png -images-27236.png -images-27237.png -images-27238.png -images-27239.png -images-27240.png -images-27241.png -images-27242.png -images-27243.png -images-27244.png -images-27245.png -images-27246.png -images-27247.png -images-27248.png -images-27249.png -images-27250.png -images-27251.png -images-27252.png -images-27253.png -images-27254.png -images-27255.png -images-27256.png -images-27257.png -images-27258.png -images-27259.png -images-27260.png -images-27261.png -images-27262.png -images-27263.png -images-27264.png -images-27265.png -images-27266.png -images-27267.png -images-27268.png -images-27269.png -images-27270.png -images-27271.png -images-27272.png -images-27273.png -images-27274.png -images-27275.png -images-27276.png -images-27277.png -images-27278.png -images-27279.png -images-27280.png -images-27281.png -images-27282.png -images-27283.png -images-27284.png -images-27285.png -images-27286.png -images-27287.png -images-27288.png -images-27289.png -images-27290.png -images-27291.png -images-27292.png -images-27293.png -images-27294.png -images-27295.png -images-27296.png -images-27297.png -images-27298.png -images-27299.png -images-27300.png -images-27301.png -images-27302.png -images-27303.png -images-27304.png -images-27305.png -images-27306.png -images-27307.png -images-27308.png -images-27309.png -images-27310.png -images-27311.png -images-27312.png -images-27313.png -images-27314.png -images-27315.png -images-27316.png -images-27317.png -images-27318.png -images-27319.png -images-27320.png -images-27321.png -images-27322.png -images-27323.png -images-27324.png -images-27325.png -images-27326.png -images-27327.png -images-27328.png -images-27329.png -images-27330.png -images-27331.png -images-27332.png -images-27333.png -images-27334.png -images-27335.png -images-27336.png -images-27337.png -images-27338.png -images-27339.png -images-27340.png -images-27341.png -images-27342.png -images-27343.png -images-27344.png -images-27345.png -images-27346.png -images-27347.png -images-27348.png -images-27349.png -images-27350.png -images-27351.png -images-27352.png -images-27353.png -images-27354.png -images-27355.png -images-27356.png -images-27357.png -images-27358.png -images-27359.png -images-27360.png -images-27361.png -images-27362.png -images-27363.png -images-27364.png -images-27365.png -images-27366.png -images-27367.png -images-27368.png -images-27369.png -images-27370.png -images-27371.png -images-27372.png -images-27373.png -images-27374.png -images-27375.png -images-27376.png -images-27377.png -images-27378.png -images-27379.png -images-27380.png -images-27381.png -images-27382.png -images-27383.png -images-27384.png -images-27385.png -images-27386.png -images-27387.png -images-27388.png -images-27389.png -images-27390.png -images-27391.png -images-27392.png -images-27393.png -images-27394.png -images-27395.png -images-27396.png -images-27397.png -images-27398.png -images-27399.png -images-27400.png -images-27401.png -images-27402.png -images-27403.png -images-27404.png -images-27405.png -images-27406.png -images-27407.png -images-27423.png -images-27424.png -images-27425.png -images-27426.png -images-27427.png -images-27428.png -images-27429.png -images-27430.png -images-27431.png -images-27435.png -images-27436.png -images-27437.png -images-27438.png -images-27439.png -images-27440.png -images-27441.png -images-27442.png -images-27443.png -images-27444.png -images-27445.png -images-27446.png -images-27447.png -images-27448.png -images-27449.png -images-27450.png -images-27451.png -images-27452.png -images-27453.png -images-27454.png -images-27455.png -images-27456.png -images-27457.png -images-27458.png -images-27459.png -images-27460.png -images-27461.png -images-27462.png -images-27463.png -images-27464.png -images-27465.png -images-27466.png -images-27467.png -images-27468.png -images-27469.png -images-27470.png -images-27471.png -images-27472.png -images-27473.png -images-27474.png -images-27475.png -images-27476.png -images-27477.png -images-27478.png -images-27479.png -images-27480.png -images-27481.png -images-27482.png -images-27483.png -images-27484.png -images-27485.png -images-27486.png -images-27487.png -images-27488.png -images-27489.png -images-27490.png -images-27491.png -images-27492.png -images-27493.png -images-27494.png -images-27495.png -images-27496.png -images-27497.png -images-27498.png -images-27499.png -images-27500.png -images-27501.png -images-27502.png -images-27503.png -images-27504.png -images-27505.png -images-27506.png -images-27507.png -images-27508.png -images-27509.png -images-27510.png -images-27511.png -images-27512.png -images-27513.png -images-27514.png -images-27515.png -images-27516.png -images-27517.png -images-27518.png -images-27519.png -images-27520.png -images-27521.png -images-27522.png -images-27523.png -images-27524.png -images-27525.png -images-27526.png -images-27527.png -images-27528.png -images-27529.png -images-27530.png -images-27531.png -images-27532.png -images-27533.png -images-27534.png -images-27535.png -images-27536.png -images-27537.png -images-27538.png -images-27539.png -images-27540.png -images-27541.png -images-27542.png -images-27543.png -images-27544.png -images-27545.png -images-27546.png -images-27547.png -images-27548.png -images-27549.png -images-27550.png -images-27551.png -images-27552.png -images-27553.png -images-27554.png -images-27555.png -images-27556.png -images-27557.png -images-27558.png -images-27559.png -images-27560.png -images-27561.png -images-27562.png -images-27563.png -images-27564.png -images-27565.png -images-27566.png -images-27567.png -images-27568.png -images-27569.png -images-27570.png -images-27571.png -images-27572.png -images-27573.png -images-27574.png -images-27575.png -images-27576.png -images-27577.png -images-27578.png -images-27579.png -images-27580.png -images-27581.png -images-27582.png -images-27583.png -images-27584.png -images-27585.png -images-27586.png -images-27587.png -images-27588.png -images-27589.png -images-27590.png -images-27591.png -images-27592.png -images-27593.png -images-27594.png -images-27595.png -images-27596.png -images-27597.png -images-27598.png -images-27599.png -images-27600.png -images-27601.png -images-27602.png -images-27603.png -images-27604.png -images-27605.png -images-27606.png -images-27607.png -images-27608.png -images-27609.png -images-27610.png -images-27611.png -images-27612.png -images-27613.png -images-27614.png -images-27615.png -images-27616.png -images-27617.png -images-27618.png -images-27619.png -images-27620.png -images-27621.png -images-27622.png -images-27623.png -images-27624.png -images-27625.png -images-27626.png -images-27627.png -images-27628.png -images-27629.png -images-27630.png -images-27631.png -images-27632.png -images-27633.png -images-27634.png -images-27635.png -images-27636.png -images-27637.png -images-27638.png -images-27639.png -images-27640.png -images-27641.png -images-27642.png -images-27643.png -images-27644.png -images-27645.png -images-27646.png -images-27647.png -images-27648.png -images-27649.png -images-27650.png -images-27651.png -images-27652.png -images-27653.png -images-27654.png -images-27655.png -images-27656.png -images-27657.png -images-27658.png -images-27659.png -images-27660.png -images-27661.png -images-27662.png -images-27663.png -images-27664.png -images-27665.png -images-27666.png -images-27667.png -images-27668.png -images-27669.png -images-27670.png -images-27671.png -images-27672.png -images-27673.png -images-27674.png -images-27675.png -images-27676.png -images-27677.png -images-27678.png -images-27679.png -images-27680.png -images-27681.png -images-27682.png -images-27683.png -images-27684.png -images-27685.png -images-27686.png -images-27687.png -images-27688.png -images-27689.png -images-27690.png -images-27691.png -images-27692.png -images-27693.png -images-27694.png -images-27695.png -images-27696.png -images-27697.png -images-27698.png -images-27699.png -images-27700.png -images-27701.png -images-27702.png -images-27703.png -images-27704.png -images-27705.png -images-27706.png -images-27707.png -images-27708.png -images-27709.png -images-27710.png -images-27711.png -images-27712.png -images-27713.png -images-27714.png -images-27715.png -images-27716.png -images-27717.png -images-27718.png -images-27719.png -images-27720.png -images-27721.png -images-27722.png -images-27723.png -images-27724.png -images-27725.png -images-27726.png -images-27727.png -images-27728.png -images-27729.png -images-27730.png -images-27731.png -images-27732.png -images-27733.png -images-27734.png -images-27735.png -images-27736.png -images-27737.png -images-27738.png -images-27739.png -images-27740.png -images-27741.png -images-27742.png -images-27743.png -images-27744.png -images-27745.png -images-27746.png -images-27747.png -images-27748.png -images-27749.png -images-27750.png -images-27751.png -images-27752.png -images-27753.png -images-27754.png -images-27755.png -images-27756.png -images-27757.png -images-27758.png -images-27759.png -images-27760.png -images-27761.png -images-27762.png -images-27763.png -images-27764.png -images-27765.png -images-27766.png -images-27767.png -images-27768.png -images-27769.png -images-27770.png -images-27771.png -images-27772.png -images-27773.png -images-27774.png -images-27775.png -images-27776.png -images-27777.png -images-27778.png -images-27779.png -images-27780.png -images-27781.png -images-27782.png -images-27783.png -images-27784.png -images-27785.png -images-27786.png -images-27787.png -images-27788.png -images-27789.png -images-27790.png -images-27791.png -images-27792.png -images-27793.png -images-27794.png -images-27795.png -images-27796.png -images-27797.png -images-27798.png -images-27799.png -images-27800.png -images-27801.png -images-27802.png -images-27803.png -images-27804.png -images-27805.png -images-27806.png -images-27807.png -images-27808.png -images-27809.png -images-27810.png -images-27811.png -images-27812.png -images-27813.png -images-27814.png -images-27815.png -images-27816.png -images-27817.png -images-27818.png -images-27819.png -images-27820.png -images-27821.png -images-27822.png -images-27823.png -images-27824.png -images-27825.png -images-27826.png -images-27827.png -images-27828.png -images-27829.png -images-27830.png -images-27831.png -images-27832.png -images-27833.png -images-27834.png -images-27835.png -images-27836.png -images-27837.png -images-27838.png -images-27839.png -images-27840.png -images-27841.png -images-27842.png -images-27843.png -images-27844.png -images-27845.png -images-27846.png -images-27847.png -images-27848.png -images-27849.png -images-27850.png -images-27851.png -images-27852.png -images-27853.png -images-27854.png -images-27855.png -images-27856.png -images-27857.png -images-27858.png -images-27859.png -images-27860.png -images-27861.png -images-27862.png -images-27863.png -images-27864.png -images-27865.png -images-27866.png -images-27867.png -images-27868.png -images-27869.png -images-27870.png -images-27871.png -images-27872.png -images-27873.png -images-27874.png -images-27875.png -images-27876.png -images-27877.png -images-27878.png -images-27879.png -images-27880.png -images-27881.png -images-27882.png -images-27883.png -images-27884.png -images-27885.png -images-27886.png -images-27887.png -images-27888.png -images-27889.png -images-27890.png -images-27891.png -images-27892.png -images-27893.png -images-27894.png -images-27895.png -images-27896.png -images-27897.png -images-27898.png -images-27899.png -images-27900.png -images-27901.png -images-27902.png -images-27903.png -images-27904.png -images-27905.png -images-27906.png -images-27907.png -images-27908.png -images-27909.png -images-27910.png -images-27911.png -images-27912.png -images-27913.png -images-27914.png -images-27915.png -images-27916.png -images-27917.png -images-27918.png -images-27919.png -images-27920.png -images-27921.png -images-27922.png -images-27923.png -images-27924.png -images-27925.png -images-27943.png -images-27944.png -images-27945.png -images-27946.png -images-27947.png -images-27948.png -images-27949.png -images-27950.png -images-27951.png -images-27952.png -images-27953.png -images-27954.png -images-27955.png -images-27956.png -images-27957.png -images-27958.png -images-27959.png -images-27960.png -images-27961.png -images-27962.png -images-27963.png -images-27964.png -images-27965.png -images-27966.png -images-27967.png -images-27968.png -images-27969.png -images-27970.png -images-27971.png -images-27972.png -images-27973.png -images-27974.png -images-27975.png -images-27976.png -images-27977.png -images-27978.png -images-27979.png -images-27980.png -images-27981.png -images-27982.png -images-27983.png -images-27984.png -images-27985.png -images-27986.png -images-27987.png -images-27988.png -images-27989.png -images-27990.png -images-27991.png -images-27992.png -images-27993.png -images-27994.png -images-27995.png -images-27996.png -images-27997.png -images-27998.png -images-27999.png -images-28000.png -images-28001.png -images-28002.png -images-28003.png -images-28004.png -images-28005.png -images-28006.png -images-28007.png -images-28008.png -images-28009.png -images-28010.png -images-28011.png -images-28012.png -images-28013.png -images-28014.png -images-28015.png -images-28016.png -images-28017.png -images-28018.png -images-28019.png -images-28020.png -images-28021.png -images-28022.png -images-28023.png -images-28024.png -images-28025.png -images-28026.png -images-28027.png -images-28028.png -images-28029.png -images-28030.png -images-28031.png -images-28032.png -images-28033.png -images-28034.png -images-28035.png -images-28036.png -images-28037.png -images-28038.png -images-28039.png -images-28040.png -images-28041.png -images-28042.png -images-28043.png -images-28044.png -images-28045.png -images-28046.png -images-28047.png -images-28048.png -images-28049.png -images-28050.png -images-28051.png -images-28052.png -images-28053.png -images-28054.png -images-28055.png -images-28056.png -images-28057.png -images-28058.png -images-28059.png -images-28060.png -images-28061.png -images-28062.png -images-28063.png -images-28064.png -images-28065.png -images-28066.png -images-28067.png -images-28068.png -images-28069.png -images-28070.png -images-28071.png -images-28072.png -images-28073.png -images-28074.png -images-28075.png -images-28076.png -images-28077.png -images-28078.png -images-28079.png -images-28080.png -images-28081.png -images-28082.png -images-28083.png -images-28084.png -images-28085.png -images-28086.png -images-28087.png -images-28088.png -images-28089.png -images-28090.png -images-28091.png -images-28092.png -images-28093.png -images-28094.png -images-28095.png -images-28096.png -images-28097.png -images-28098.png -images-28099.png -images-28100.png -images-28101.png -images-28102.png -images-28103.png -images-28104.png -images-28105.png -images-28106.png -images-28107.png -images-28108.png -images-28109.png -images-28110.png -images-28111.png -images-28112.png -images-28113.png -images-28114.png -images-28115.png -images-28116.png -images-28117.png -images-28118.png -images-28119.png -images-28120.png -images-28121.png -images-28122.png -images-28123.png -images-28124.png -images-28125.png -images-28126.png -images-28127.png -images-28128.png -images-28129.png -images-28130.png -images-28131.png -images-28132.png -images-28133.png -images-28134.png -images-28135.png -images-28136.png -images-28137.png -images-28138.png -images-28139.png -images-28140.png -images-28141.png -images-28142.png -images-28143.png -images-28144.png -images-28145.png -images-28146.png -images-28147.png -images-28148.png -images-28149.png -images-28150.png -images-28151.png -images-28152.png -images-28153.png -images-28154.png -images-28155.png -images-28156.png -images-28157.png -images-28158.png -images-28159.png -images-28160.png -images-28161.png -images-28162.png -images-28163.png -images-28164.png -images-28165.png -images-28166.png -images-28167.png -images-28168.png -images-28169.png -images-28170.png -images-28171.png -images-28172.png -images-28173.png -images-28174.png -images-28175.png -images-28176.png -images-28177.png -images-28178.png -images-28179.png -images-28180.png -images-28181.png -images-28182.png -images-28183.png -images-28184.png -images-28185.png -images-28186.png -images-28187.png -images-28188.png -images-28189.png -images-28190.png -images-28191.png -images-28192.png -images-28193.png -images-28194.png -images-28195.png -images-28196.png -images-28197.png -images-28198.png -images-28199.png -images-28200.png -images-28201.png -images-28202.png -images-28203.png -images-28204.png -images-28205.png -images-28206.png -images-28207.png -images-28208.png -images-28209.png -images-28210.png -images-28211.png -images-28212.png -images-28213.png -images-28214.png -images-28215.png -images-28216.png -images-28217.png -images-28218.png -images-28219.png -images-28220.png -images-28221.png -images-28222.png -images-28223.png -images-28224.png -images-28225.png -images-28226.png -images-28227.png -images-28228.png -images-28229.png -images-28230.png -images-28231.png -images-28232.png -images-28233.png -images-28234.png -images-28235.png -images-28236.png -images-28237.png -images-28238.png -images-28239.png -images-28240.png -images-28241.png -images-28242.png -images-28243.png -images-28244.png -images-28245.png -images-28246.png -images-28247.png -images-28248.png -images-28249.png -images-28250.png -images-28251.png -images-28252.png -images-28253.png -images-28254.png -images-28255.png -images-28256.png -images-28257.png -images-28258.png -images-28259.png -images-28260.png -images-28261.png -images-28262.png -images-28263.png -images-28264.png -images-28265.png -images-28266.png -images-28267.png -images-28268.png -images-28269.png -images-28270.png -images-28271.png -images-28272.png -images-28273.png -images-28274.png -images-28275.png -images-28276.png -images-28277.png -images-28278.png -images-28279.png -images-28280.png -images-28281.png -images-28282.png -images-28283.png -images-28284.png -images-28285.png -images-28286.png -images-28287.png -images-28288.png -images-28289.png -images-28290.png -images-28291.png -images-28292.png -images-28293.png -images-28294.png -images-28295.png -images-28296.png -images-28297.png -images-28298.png -images-28299.png -images-28300.png -images-28301.png -images-28302.png -images-28303.png -images-28304.png -images-28305.png -images-28306.png -images-28307.png -images-28308.png -images-28309.png -images-28310.png -images-28311.png -images-28312.png -images-28313.png -images-28314.png -images-28315.png -images-28316.png -images-28317.png -images-28318.png -images-28319.png -images-28320.png -images-28321.png -images-28322.png -images-28323.png -images-28324.png -images-28325.png -images-28326.png -images-28327.png -images-28328.png -images-28329.png -images-28330.png -images-28331.png -images-28332.png -images-28333.png -images-28334.png -images-28335.png -images-28336.png -images-28337.png -images-28338.png -images-28339.png -images-28340.png -images-28341.png -images-28342.png -images-28343.png -images-28344.png -images-28345.png -images-28346.png -images-28347.png -images-28348.png -images-28349.png -images-28350.png -images-28351.png -images-28352.png -images-28353.png -images-28354.png -images-28355.png -images-28356.png -images-28357.png -images-28358.png -images-28359.png -images-28360.png -images-28361.png -images-28362.png -images-28363.png -images-28364.png -images-28365.png -images-28366.png -images-28367.png -images-28368.png -images-28369.png -images-28370.png -images-28371.png -images-28372.png -images-28373.png -images-28374.png -images-28375.png -images-28376.png -images-28377.png -images-28378.png -images-28379.png -images-28380.png -images-28381.png -images-28382.png -images-28383.png -images-28384.png -images-28385.png -images-28386.png -images-28387.png -images-28388.png -images-28389.png -images-28390.png -images-28391.png -images-28392.png -images-28393.png -images-28394.png -images-28395.png -images-28396.png -images-28397.png -images-28398.png -images-28399.png -images-28400.png -images-28401.png -images-28402.png -images-28403.png -images-28404.png -images-28405.png -images-28406.png -images-28407.png -images-28408.png -images-28409.png -images-28410.png -images-28411.png -images-28412.png -images-28413.png -images-28414.png -images-28415.png -images-28416.png -images-28417.png -images-28418.png -images-28419.png -images-28420.png -images-28421.png -images-28422.png -images-28423.png -images-28424.png -images-28425.png -images-28426.png -images-28427.png -images-28428.png -images-28429.png -images-28430.png -images-28431.png -images-28432.png -images-28433.png -images-28434.png -images-28435.png -images-28436.png -images-28437.png -images-28438.png -images-28439.png -images-28440.png -images-28441.png -images-28442.png -images-28443.png -images-28444.png -images-28445.png -images-28446.png -images-28447.png -images-28448.png -images-28449.png -images-28450.png -images-28451.png -images-28452.png -images-28453.png -images-28454.png -images-28455.png -images-28456.png -images-28457.png -images-28458.png -images-28459.png -images-28460.png -images-28461.png -images-28462.png -images-28463.png -images-28464.png -images-28465.png -images-28466.png -images-28467.png -images-28468.png -images-28469.png -images-28470.png -images-28471.png -images-28472.png -images-28473.png -images-28474.png -images-28475.png -images-28476.png -images-28477.png -images-28478.png -images-28479.png -images-28480.png -images-28481.png -images-28482.png -images-28483.png -images-28484.png -images-28485.png -images-28486.png -images-28487.png -images-28488.png -images-28489.png -images-28490.png -images-28491.png -images-28492.png -images-28493.png -images-28494.png -images-28495.png -images-28496.png -images-28497.png -images-28498.png -images-28499.png -images-28500.png -images-28501.png -images-28502.png -images-28503.png -images-28504.png -images-28505.png -images-28506.png -images-28507.png -images-28508.png -images-28509.png -images-28510.png -images-28511.png -images-28512.png -images-28513.png -images-28514.png -images-28515.png -images-28516.png -images-28517.png -images-28518.png -images-28519.png -images-28520.png -images-28521.png -images-28522.png -images-28523.png -images-28524.png -images-28525.png -images-28526.png -images-28527.png -images-28528.png -images-28529.png -images-28530.png -images-28531.png -images-28532.png -images-28533.png -images-28534.png -images-28535.png -images-28536.png -images-28537.png -images-28538.png -images-28539.png -images-28540.png -images-28541.png -images-28542.png -images-28543.png -images-28544.png -images-28545.png -images-28546.png -images-28547.png -images-28548.png -images-28549.png -images-28550.png -images-28551.png -images-28552.png -images-28553.png -images-28554.png -images-28555.png -images-28556.png -images-28557.png -images-28558.png -images-28559.png -images-28560.png -images-28561.png -images-28562.png -images-28563.png -images-28564.png -images-28565.png -images-28566.png -images-28567.png -images-28568.png -images-28569.png -images-28570.png -images-28571.png -images-28572.png -images-28573.png -images-28574.png -images-28575.png -images-28576.png -images-28577.png -images-28578.png -images-28579.png -images-28580.png -images-28581.png -images-28582.png -images-28583.png -images-28584.png -images-28585.png -images-28586.png -images-28587.png -images-28588.png -images-28589.png -images-28590.png -images-28591.png -images-28592.png -images-28593.png -images-28594.png -images-28595.png -images-28596.png -images-28597.png -images-28598.png -images-28599.png -images-28600.png -images-28601.png -images-28602.png -images-28603.png -images-28604.png -images-28605.png -images-28606.png -images-28607.png -images-28608.png -images-28609.png -images-28610.png -images-28611.png -images-28612.png -images-28613.png -images-28614.png -images-28615.png -images-28616.png -images-28617.png -images-28618.png -images-28619.png -images-28620.png -images-28621.png -images-28622.png -images-28623.png -images-28624.png -images-28625.png -images-28626.png -images-28627.png -images-28628.png -images-28629.png -images-28630.png -images-28631.png -images-28632.png -images-28633.png -images-28634.png -images-28635.png -images-28636.png -images-28637.png -images-28638.png -images-28639.png -images-28640.png -images-28641.png -images-28642.png -images-28643.png -images-28644.png -images-28645.png -images-28646.png -images-28647.png -images-28648.png -images-28649.png -images-28650.png -images-28651.png -images-28652.png -images-28653.png -images-28654.png -images-28655.png -images-28656.png -images-28657.png -images-28658.png -images-28659.png -images-28660.png -images-28661.png -images-28662.png -images-28663.png -images-28664.png -images-28665.png -images-28666.png -images-28667.png -images-28668.png -images-28669.png -images-28670.png -images-28671.png -images-28672.png -images-28673.png -images-28674.png -images-28675.png -images-28676.png -images-28677.png -images-28678.png -images-28679.png -images-28680.png -images-28681.png -images-28682.png -images-28683.png -images-28684.png -images-28685.png -images-28686.png -images-28693.png -images-28694.png -images-28695.png -images-28696.png -images-28697.png -images-28698.png -images-28699.png -images-28700.png -images-28701.png -images-28702.png -images-28703.png -images-28704.png -images-28705.png -images-28706.png -images-28707.png -images-28708.png -images-28709.png -images-28710.png -images-28711.png -images-28712.png -images-28713.png -images-28714.png -images-28715.png -images-28716.png -images-28717.png -images-28718.png -images-28719.png -images-28720.png -images-28721.png -images-28722.png -images-28723.png -images-28724.png -images-28725.png -images-28726.png -images-28727.png -images-28728.png -images-28729.png -images-28730.png -images-28731.png -images-28732.png -images-28733.png -images-28734.png -images-28735.png -images-28736.png -images-28737.png -images-28738.png -images-28739.png -images-28740.png -images-28741.png -images-28742.png -images-28743.png -images-28744.png -images-28745.png -images-28746.png -images-28747.png -images-28748.png -images-28749.png -images-28750.png -images-28751.png -images-28752.png -images-28753.png -images-28754.png -images-28755.png -images-28756.png -images-28757.png -images-28758.png -images-28759.png -images-28760.png -images-28761.png -images-28762.png -images-28763.png -images-28764.png -images-28765.png -images-28766.png -images-28767.png -images-28768.png -images-28769.png -images-28770.png -images-28771.png -images-28772.png -images-28773.png -images-28774.png -images-28775.png -images-28776.png -images-28777.png -images-28778.png -images-28779.png -images-28780.png -images-28781.png -images-28782.png -images-28783.png -images-28784.png -images-28785.png -images-28786.png -images-28787.png -images-28788.png -images-28789.png -images-28790.png -images-28791.png -images-28792.png -images-28793.png -images-28794.png -images-28795.png -images-28796.png -images-28797.png -images-28798.png -images-28799.png -images-28800.png -images-28801.png -images-28802.png -images-28803.png -images-28804.png -images-28805.png -images-28806.png -images-28807.png -images-28808.png -images-28809.png -images-28810.png -images-28811.png -images-28812.png -images-28813.png -images-28814.png -images-28815.png -images-28816.png -images-28817.png -images-28818.png -images-28819.png -images-28820.png -images-28821.png -images-28822.png -images-28823.png -images-28824.png -images-28825.png -images-28826.png -images-28827.png -images-28828.png -images-28829.png -images-28830.png -images-28831.png -images-28832.png -images-28833.png -images-28834.png -images-28835.png -images-28836.png -images-28837.png -images-28838.png -images-28839.png -images-28840.png -images-28841.png -images-28842.png -images-28843.png -images-28844.png -images-28845.png -images-28846.png -images-28847.png -images-28848.png -images-28849.png -images-28850.png -images-28851.png -images-28852.png -images-28853.png -images-28854.png -images-28855.png -images-28856.png -images-28857.png -images-28858.png -images-28859.png -images-28860.png -images-28861.png -images-28862.png -images-28863.png -images-28864.png -images-28865.png -images-28866.png -images-28867.png -images-28868.png -images-28869.png -images-28870.png -images-28871.png -images-28872.png -images-28873.png -images-28874.png -images-28875.png -images-28876.png -images-28877.png -images-28878.png -images-28879.png -images-28880.png -images-28881.png -images-28882.png -images-28883.png -images-28884.png -images-28885.png -images-28886.png -images-28887.png -images-28888.png -images-28889.png -images-28890.png -images-28891.png -images-28892.png -images-28893.png -images-28894.png -images-28895.png -images-28896.png -images-28897.png -images-28898.png -images-28899.png -images-28900.png -images-28901.png -images-28902.png -images-28903.png -images-28904.png -images-28905.png -images-28906.png -images-28907.png -images-28908.png -images-28909.png -images-28910.png -images-28911.png -images-28912.png -images-28913.png -images-28914.png -images-28915.png -images-28916.png -images-28923.png -images-28924.png -images-28925.png -images-28926.png -images-28927.png -images-28928.png -images-28929.png -images-28930.png -images-28931.png -images-28932.png -images-28933.png -images-28934.png -images-28935.png -images-28936.png -images-28937.png -images-28938.png -images-28939.png -images-28940.png -images-28941.png -images-28942.png -images-28943.png -images-28944.png -images-28945.png -images-28946.png -images-28947.png -images-28948.png -images-28949.png -images-28950.png -images-28951.png -images-29117.png -images-29118.png -images-29119.png -images-29120.png -images-29121.png -images-29122.png -images-29123.png -images-29124.png -images-29125.png -images-29126.png -images-29127.png -images-29128.png -images-29129.png -images-29130.png -images-29131.png -images-29132.png -images-29133.png -images-29134.png -images-29135.png -images-29136.png -images-29137.png -images-29138.png -images-29139.png -images-29140.png -images-29141.png -images-29142.png -images-29143.png -images-29144.png -images-29145.png -images-29146.png -images-29147.png -images-29148.png -images-29149.png -images-29150.png -images-29151.png -images-29152.png -images-29153.png -images-29154.png -images-29155.png -images-29156.png -images-29157.png -images-29158.png -images-29159.png -images-29160.png -images-29161.png -images-29162.png -images-29163.png -images-29164.png -images-29165.png -images-29166.png -images-29167.png -images-29168.png -images-29169.png -images-29170.png -images-29171.png -images-29172.png -images-29173.png -images-29174.png -images-29175.png -images-29176.png -images-29177.png -images-29178.png -images-29179.png -images-29180.png -images-29181.png -images-29182.png -images-29183.png -images-29184.png -images-29185.png -images-29186.png -images-29187.png -images-29188.png -images-29189.png -images-29190.png -images-29191.png -images-29192.png -images-29193.png -images-29194.png -images-29195.png -images-29196.png -images-29197.png -images-29198.png -images-29199.png -images-29200.png -images-29201.png -images-29202.png -images-29203.png -images-29204.png -images-29205.png -images-29206.png -images-29207.png -images-29208.png -images-29209.png -images-29210.png -images-29211.png -images-29212.png -images-29213.png -images-29214.png -images-29215.png -images-29216.png -images-29217.png -images-29218.png -images-29219.png -images-29220.png -images-29221.png -images-29222.png -images-29223.png -images-29224.png -images-29225.png -images-29226.png -images-29227.png -images-29228.png -images-29229.png -images-29230.png -images-29231.png -images-29232.png -images-29233.png -images-29234.png -images-29235.png -images-29236.png -images-29237.png -images-29238.png -images-29239.png -images-29240.png -images-29241.png -images-29242.png -images-29243.png -images-29244.png -images-29245.png -images-29246.png -images-29247.png -images-29248.png -images-29249.png -images-29250.png -images-29251.png -images-29252.png -images-29253.png -images-29254.png -images-29255.png -images-29256.png -images-29257.png -images-29258.png -images-29259.png -images-29260.png -images-29261.png -images-29262.png -images-29263.png -images-29264.png -images-29265.png -images-29266.png -images-29267.png -images-29268.png -images-29269.png -images-29270.png -images-29271.png -images-29272.png -images-29273.png -images-29274.png -images-29275.png -images-29276.png -images-29277.png -images-29278.png -images-29279.png -images-29280.png -images-29281.png -images-29282.png -images-29283.png -images-29284.png -images-29285.png -images-29286.png -images-29287.png -images-29288.png -images-29289.png -images-29290.png -images-29291.png -images-29292.png -images-29293.png -images-29294.png -images-29295.png -images-29296.png -images-29297.png -images-29298.png -images-29299.png -images-29300.png -images-29301.png -images-29302.png -images-29303.png -images-29304.png -images-29305.png -images-29306.png -images-29307.png -images-29308.png -images-29309.png -images-29310.png -images-29311.png -images-29312.png -images-29313.png -images-29314.png -images-29315.png -images-29316.png -images-29317.png -images-29318.png -images-29319.png -images-29320.png -images-29331.png -images-29332.png -images-29333.png -images-29334.png -images-29335.png -images-29336.png -images-29337.png -images-29338.png -images-29339.png -images-29340.png -images-29341.png -images-29342.png -images-29343.png -images-29344.png -images-29345.png -images-29346.png -images-29347.png -images-29348.png -images-29349.png -images-29350.png -images-29351.png -images-29352.png -images-29353.png -images-29354.png -images-29355.png -images-29356.png -images-29357.png -images-29358.png -images-29359.png -images-29360.png -images-29361.png -images-29362.png -images-29363.png -images-29364.png -images-29365.png -images-29366.png -images-29367.png -images-29368.png -images-29369.png -images-29370.png -images-29371.png -images-29372.png -images-29373.png -images-29374.png -images-29375.png -images-29376.png -images-29377.png -images-29378.png -images-29379.png -images-29380.png -images-29381.png -images-29382.png -images-29383.png -images-29421.png -images-29422.png -images-29423.png -images-29424.png -images-29425.png -images-29426.png -images-29427.png -images-29428.png -images-29429.png -images-29430.png -images-29431.png -images-29432.png -images-29433.png -images-29434.png -images-29435.png -images-29436.png -images-29437.png -images-29438.png -images-29439.png -images-29440.png -images-29441.png -images-29442.png -images-29443.png -images-29444.png -images-29445.png -images-29446.png -images-29447.png -images-29448.png -images-29449.png -images-29450.png -images-29451.png -images-29452.png -images-29453.png -images-29454.png -images-29455.png -images-29456.png -images-29457.png -images-29458.png -images-29459.png -images-29460.png -images-29461.png -images-29462.png -images-29463.png -images-29464.png -images-29465.png -images-29466.png -images-29467.png -images-29468.png -images-29469.png -images-29470.png -images-29471.png -images-29472.png -images-29473.png -images-29474.png -images-29475.png -images-29476.png -images-29477.png -images-29478.png -images-29479.png -images-29480.png -images-29481.png -images-29482.png -images-29483.png -images-29484.png -images-29485.png -images-29486.png -images-29487.png -images-29488.png -images-29489.png -images-29490.png -images-29491.png -images-29492.png -images-29493.png -images-29494.png -images-29495.png -images-29496.png -images-29497.png -images-29498.png -images-29499.png -images-29500.png -images-29501.png -images-29502.png -images-29503.png -images-29504.png -images-29505.png -images-29506.png -images-29507.png -images-29508.png -images-29509.png -images-29510.png -images-29511.png -images-29512.png -images-29513.png -images-29514.png -images-29515.png -images-29516.png -images-29517.png -images-29518.png -images-29519.png -images-29520.png -images-29521.png -images-29522.png -images-29523.png -images-29524.png -images-29532.png -images-29533.png -images-29534.png -images-29535.png -images-29536.png -images-29537.png -images-29538.png -images-29539.png -images-29540.png -images-29541.png -images-29542.png -images-29543.png -images-29544.png -images-29545.png -images-29546.png -images-29547.png -images-29548.png -images-29549.png -images-29550.png -images-29551.png -images-29552.png -images-29553.png -images-29554.png -images-29555.png -images-29556.png -images-29557.png -images-29558.png -images-29559.png -images-29560.png -images-29561.png -images-29562.png -images-29563.png -images-29564.png -images-29565.png -images-29566.png -images-29567.png -images-29568.png -images-29569.png -images-29570.png -images-29571.png -images-29572.png -images-29573.png -images-29574.png -images-29575.png -images-29576.png -images-29577.png -images-29578.png -images-29579.png -images-29580.png -images-29581.png -images-29582.png -images-29583.png -images-29584.png -images-29585.png -images-29586.png -images-29587.png -images-29588.png -images-29589.png -images-29590.png -images-29591.png -images-29592.png -images-29593.png -images-29594.png -images-29595.png -images-29596.png -images-29597.png -images-29598.png -images-29599.png -images-29600.png -images-29601.png -images-29602.png -images-29603.png -images-29604.png -images-29605.png -images-29606.png -images-29607.png -images-29608.png -images-29609.png -images-29610.png -images-29611.png -images-29612.png -images-29613.png -images-29614.png -images-29615.png -images-29616.png -images-29617.png -images-29618.png -images-29619.png -images-29620.png -images-29621.png -images-29622.png -images-29623.png -images-29624.png -images-29625.png -images-29626.png -images-29627.png -images-29628.png -images-29629.png -images-29630.png -images-29631.png -images-29632.png -images-29633.png -images-29634.png -images-29635.png -images-29636.png -images-29637.png -images-29638.png -images-29639.png -images-29640.png -images-29641.png -images-29642.png -images-29643.png -images-29644.png -images-29645.png -images-29646.png -images-29647.png -images-29648.png -images-29649.png -images-29650.png -images-29651.png -images-29652.png -images-29653.png -images-29654.png -images-29655.png -images-29656.png -images-29657.png -images-29658.png -images-29659.png -images-29660.png -images-29661.png -images-29662.png -images-29663.png -images-29664.png -images-29665.png -images-29666.png -images-29667.png -images-29668.png -images-29669.png -images-29670.png -images-29671.png -images-29672.png -images-29673.png -images-29674.png -images-29675.png -images-29676.png -images-29677.png -images-29678.png -images-29679.png -images-29680.png -images-29681.png -images-29682.png -images-29683.png -images-29684.png -images-29685.png -images-29686.png -images-29687.png -images-29688.png -images-29689.png -images-29690.png -images-29691.png -images-29692.png -images-29707.png -images-29708.png -images-29709.png -images-29710.png -images-29711.png -images-29712.png -images-29713.png -images-29714.png -images-29715.png -images-29716.png -images-29717.png -images-29718.png -images-29719.png -images-29720.png -images-29721.png -images-29722.png -images-29723.png -images-29724.png -images-29725.png -images-29726.png -images-29727.png -images-29728.png -images-29729.png -images-29730.png -images-29731.png -images-29732.png -images-29733.png -images-29734.png -images-29735.png -images-29736.png -images-29737.png -images-29738.png -images-29739.png -images-29740.png -images-29741.png -images-29742.png -images-29743.png -images-29744.png -images-29745.png -images-29746.png -images-29747.png -images-29748.png -images-29749.png -images-29750.png -images-29751.png -images-29752.png -images-29753.png -images-29754.png -images-29755.png -images-29756.png -images-29757.png -images-29758.png -images-29759.png -images-29760.png -images-29761.png -images-29762.png -images-29763.png -images-29764.png -images-29765.png -images-29766.png -images-29767.png -images-29768.png -images-29769.png -images-29770.png -images-29771.png -images-29772.png -images-29773.png -images-29774.png -images-29775.png -images-29776.png -images-29777.png -images-29778.png -images-29779.png -images-29780.png -images-29781.png -images-29782.png -images-29783.png -images-29784.png -images-29785.png -images-29786.png -images-29787.png -images-29788.png -images-29789.png -images-29790.png -images-29791.png -images-29792.png -images-29793.png -images-29794.png -images-29795.png -images-29796.png -images-29797.png -images-29798.png -images-29799.png -images-29800.png -images-29801.png -images-29802.png -images-29803.png -images-29804.png -images-29805.png -images-29806.png -images-29807.png -images-29808.png -images-29809.png -images-29810.png -images-29811.png -images-29812.png -images-29813.png -images-29814.png -images-29815.png -images-29816.png -images-29817.png -images-29818.png -images-29819.png -images-29820.png -images-29821.png -images-29822.png -images-29823.png -images-29824.png -images-29825.png -images-29826.png -images-29827.png -images-29828.png -images-29829.png -images-29830.png -images-29831.png -images-29832.png -images-29833.png -images-29834.png -images-29835.png -images-29836.png -images-29837.png -images-29838.png -images-29839.png -images-29840.png -images-29841.png -images-29842.png -images-29843.png -images-29844.png -images-29845.png -images-29846.png -images-29847.png -images-29848.png -images-29849.png -images-29850.png -images-29851.png -images-29852.png -images-29853.png -images-29854.png -images-29855.png -images-29856.png -images-29857.png -images-29858.png -images-29859.png -images-29860.png -images-29861.png -images-29862.png -images-29863.png -images-29864.png -images-29865.png -images-29866.png -images-29867.png -images-29868.png -images-29869.png -images-29870.png -images-29871.png -images-29872.png -images-29873.png -images-29874.png -images-29875.png -images-29876.png -images-29877.png -images-29878.png -images-29879.png -images-29880.png -images-29881.png -images-29882.png -images-29883.png -images-29884.png -images-29885.png -images-29886.png -images-29887.png -images-29888.png -images-29889.png -images-29890.png -images-29891.png -images-29892.png -images-29893.png -images-29894.png -images-29895.png -images-29896.png -images-29897.png -images-29898.png -images-29899.png -images-29900.png -images-29901.png -images-29902.png -images-29903.png -images-29904.png -images-29905.png -images-29906.png -images-29907.png -images-29908.png -images-29909.png -images-29910.png -images-29911.png -images-29912.png -images-29913.png -images-29914.png -images-29915.png -images-29916.png -images-29917.png -images-29918.png -images-29919.png -images-29920.png -images-29921.png -images-29922.png -images-29923.png -images-29924.png -images-29925.png -images-29926.png -images-29927.png -images-29928.png -images-29929.png -images-29930.png -images-29931.png -images-29932.png -images-29933.png -images-29934.png -images-29935.png -images-29936.png -images-29937.png -images-29938.png -images-29939.png -images-29940.png -images-29941.png -images-29942.png -images-29943.png -images-29944.png -images-29945.png -images-29946.png -images-29947.png -images-29948.png -images-29949.png -images-29950.png -images-29951.png -images-29952.png -images-29953.png -images-29954.png -images-29955.png -images-29956.png -images-29957.png -images-29958.png -images-29959.png -images-29960.png -images-29961.png -images-29962.png -images-29963.png -images-29964.png -images-29965.png -images-29966.png -images-29967.png -images-29968.png -images-29969.png -images-29970.png -images-29971.png -images-29972.png -images-29973.png -images-29981.png -images-29982.png -images-29983.png -images-29984.png -images-29985.png -images-29986.png -images-29987.png -images-29988.png -images-29989.png -images-29990.png -images-29991.png -images-29992.png -images-29993.png -images-30010.png -images-30011.png -images-30012.png -images-30013.png -images-30014.png -images-30015.png -images-30016.png -images-30017.png -images-30018.png -images-30019.png -images-30020.png -images-30021.png -images-30022.png -images-30023.png -images-30024.png -images-30025.png -images-30026.png -images-30027.png -images-30028.png -images-30029.png -images-30030.png -images-30031.png -images-30032.png -images-30033.png -images-30034.png -images-30035.png -images-30036.png -images-30037.png -images-30038.png -images-30039.png -images-30040.png -images-30041.png -images-30042.png -images-30043.png -images-30044.png -images-30045.png -images-30046.png -images-30047.png -images-30048.png -images-30049.png -images-30050.png -images-30051.png -images-30052.png -images-30053.png -images-30054.png -images-30055.png -images-30056.png -images-30057.png -images-30058.png -images-30059.png -images-30060.png -images-30061.png -images-30062.png -images-30063.png -images-30064.png -images-30065.png -images-30066.png -images-30067.png -images-30068.png -images-30069.png -images-30070.png -images-30071.png -images-30072.png -images-30091.png -images-30092.png -images-30093.png -images-30094.png -images-30095.png -images-30096.png -images-30097.png -images-30098.png -images-30099.png -images-30100.png -images-30101.png -images-30102.png -images-30106.png -images-30107.png -images-30108.png -images-30109.png -images-30110.png -images-30111.png -images-30112.png -images-30113.png -images-30114.png -images-30115.png -images-30116.png -images-30117.png -images-30118.png -images-30119.png -images-30120.png -images-30121.png -images-30122.png -images-30123.png -images-30124.png -images-30125.png -images-30126.png -images-30127.png -images-30128.png -images-30129.png -images-30130.png -images-30131.png -images-30132.png -images-30133.png -images-30134.png -images-30135.png -images-30136.png -images-30142.png -images-30143.png -images-30144.png -images-30145.png -images-30146.png -images-30147.png -images-30148.png -images-30149.png -images-30150.png -images-30151.png -images-30152.png -images-30153.png -images-30154.png -images-30155.png -images-30156.png -images-30157.png -images-30158.png -images-30159.png -images-30160.png -images-30161.png -images-30162.png -images-30163.png -images-30164.png -images-30165.png -images-30166.png -images-30167.png -images-30168.png -images-30169.png -images-30170.png -images-30171.png -images-30172.png -images-30173.png -images-30179.png -images-30180.png -images-30181.png -images-30182.png -images-30183.png -images-30184.png -images-30185.png -images-30186.png -images-30187.png -images-30188.png -images-30189.png -images-30190.png -images-30191.png -images-30192.png -images-30193.png -images-30194.png -images-30195.png -images-30196.png -images-30197.png -images-30198.png -images-30199.png -images-30200.png -images-30201.png -images-30202.png -images-30203.png -images-30211.png -images-30212.png -images-30213.png -images-30214.png -images-30215.png -images-30216.png -images-30217.png -images-30218.png -images-30219.png -images-30220.png -images-30221.png -images-30222.png -images-30223.png -images-30224.png -images-30225.png -images-30226.png -images-30227.png -images-30228.png -images-30229.png -images-30230.png -images-30231.png -images-30232.png -images-30233.png -images-30234.png -images-30235.png -images-30236.png -images-30237.png -images-30238.png -images-30239.png -images-30240.png -images-30241.png -images-30242.png -images-30243.png -images-30244.png -images-30245.png -images-30246.png -images-30247.png -images-30248.png -images-30249.png -images-30250.png -images-30251.png -images-30252.png -images-30253.png -images-30254.png -images-30255.png -images-30256.png -images-30257.png -images-30258.png -images-30259.png -images-30260.png -images-30261.png -images-30262.png -images-30263.png -images-30264.png -images-30265.png -images-30266.png -images-30267.png -images-30268.png -images-30269.png -images-30270.png -images-30271.png -images-30272.png -images-30273.png -images-30274.png -images-30275.png -images-30276.png -images-30277.png -images-30278.png -images-30279.png -images-30280.png -images-30281.png -images-30282.png -images-30283.png -images-30284.png -images-30285.png -images-30286.png -images-30287.png -images-30288.png -images-30289.png -images-30290.png -images-30291.png -images-30292.png -images-30293.png -images-30294.png -images-30295.png -images-30296.png -images-30297.png -images-30298.png -images-30299.png -images-30300.png -images-30301.png -images-30302.png -images-30303.png -images-30304.png -images-30305.png -images-30306.png -images-30307.png -images-30308.png -images-30309.png -images-30310.png -images-30311.png -images-30312.png -images-30313.png -images-30314.png -images-30315.png -images-30316.png -images-30317.png -images-30318.png -images-30319.png -images-30320.png -images-30321.png -images-30322.png -images-30323.png -images-30324.png -images-30325.png -images-30326.png -images-30327.png -images-30328.png -images-30329.png -images-30330.png -images-30331.png -images-30332.png -images-30333.png -images-30334.png -images-30335.png -images-30336.png -images-30337.png -images-30338.png -images-30339.png -images-30340.png -images-30341.png -images-30342.png -images-30343.png -images-30344.png -images-30345.png -images-30346.png -images-30347.png -images-30348.png -images-30349.png -images-30350.png -images-30351.png -images-30352.png -images-30353.png -images-30354.png -images-30355.png -images-30356.png -images-30357.png -images-30358.png -images-30359.png -images-30360.png -images-30361.png -images-30362.png -images-30363.png -images-30364.png -images-30365.png -images-30366.png -images-30367.png -images-30368.png -images-30369.png -images-30370.png -images-30371.png -images-30372.png -images-30373.png -images-30374.png -images-30375.png -images-30376.png -images-30377.png -images-30378.png -images-30379.png -images-30380.png -images-30381.png -images-30382.png -images-30383.png -images-30384.png -images-30385.png -images-30386.png -images-30387.png -images-30388.png -images-30389.png -images-30390.png -images-30391.png -images-30392.png -images-30393.png -images-30394.png -images-30395.png -images-30396.png -images-30397.png -images-30398.png -images-30399.png -images-30400.png -images-30401.png -images-30402.png -images-30403.png -images-30404.png -images-30405.png -images-30406.png -images-30407.png -images-30408.png -images-30409.png -images-30410.png -images-30411.png -images-30412.png -images-30516.png -images-30517.png -images-30518.png -images-30519.png -images-30520.png -images-30521.png -images-30522.png -images-30523.png -images-30524.png -images-30525.png -images-30526.png -images-30527.png -images-30528.png -images-30529.png -images-30530.png -images-30531.png -images-30532.png -images-30533.png -images-30534.png -images-30535.png -images-30536.png -images-30537.png -images-30538.png -images-30539.png -images-30540.png -images-30541.png -images-30542.png -images-30543.png -images-30544.png -images-30545.png -images-30546.png -images-30547.png -images-30548.png -images-30549.png -images-30550.png -images-30551.png -images-30552.png -images-30553.png -images-30554.png -images-30555.png -images-30556.png -images-30557.png -images-30558.png -images-30559.png -images-30560.png -images-30561.png -images-30562.png -images-30563.png -images-30564.png -images-30565.png -images-30566.png -images-30567.png -images-30568.png -images-30569.png -images-30570.png -images-30571.png -images-30572.png -images-30573.png -images-30574.png -images-30575.png -images-30576.png -images-30577.png -images-30578.png -images-30579.png -images-30580.png -images-30581.png -images-30582.png -images-30583.png -images-30584.png -images-30585.png -images-30586.png -images-30587.png -images-30588.png -images-30589.png -images-30590.png -images-30591.png -images-30592.png -images-30593.png -images-30594.png -images-30595.png -images-30596.png -images-30597.png -images-30598.png -images-30599.png -images-30600.png -images-30601.png -images-30602.png -images-30603.png -images-30604.png -images-30605.png -images-30606.png -images-30607.png -images-30608.png -images-30609.png -images-30610.png -images-30611.png -images-30612.png -images-30613.png -images-30614.png -images-30615.png -images-30616.png -images-30617.png -images-30618.png -images-30619.png -images-30620.png -images-30621.png -images-30622.png -images-30623.png -images-30624.png -images-30625.png -images-30626.png -images-30627.png -images-30628.png -images-30629.png -images-30630.png -images-30631.png -images-30632.png -images-30633.png -images-30634.png -images-30635.png -images-30636.png -images-30637.png -images-30638.png -images-30639.png -images-30640.png -images-30641.png -images-30642.png -images-30643.png -images-30644.png -images-30645.png -images-30646.png -images-30647.png -images-30648.png -images-30649.png -images-30650.png -images-30651.png -images-30652.png -images-30653.png -images-30654.png -images-30655.png -images-30656.png -images-30657.png -images-30658.png -images-30659.png -images-30660.png -images-30661.png -images-30662.png -images-30663.png -images-30664.png -images-30665.png -images-30666.png -images-30667.png -images-30668.png -images-30669.png -images-30670.png -images-30671.png -images-30672.png -images-30673.png -images-30674.png -images-30675.png -images-30676.png -images-30677.png -images-30678.png -images-30679.png -images-30680.png -images-30681.png -images-30682.png -images-30683.png -images-30684.png -images-30685.png -images-30686.png -images-30687.png -images-30688.png -images-30689.png -images-30690.png -images-30691.png -images-30692.png -images-30693.png -images-30694.png -images-30695.png -images-30696.png -images-30697.png -images-30698.png -images-30699.png -images-30700.png -images-30701.png -images-30702.png -images-30703.png -images-30704.png -images-30705.png -images-30706.png -images-30707.png -images-30708.png -images-30709.png -images-30710.png -images-30711.png -images-30712.png -images-30713.png -images-30714.png -images-30715.png -images-30716.png -images-30717.png -images-30718.png -images-30719.png -images-30720.png -images-30721.png -images-30722.png -images-30723.png -images-30724.png -images-30725.png -images-30726.png -images-30727.png -images-30728.png -images-30729.png -images-30730.png -images-30731.png -images-30732.png -images-30733.png -images-30734.png -images-30735.png -images-30736.png -images-30737.png -images-30738.png -images-30739.png -images-30740.png -images-30741.png -images-30742.png -images-30743.png -images-30744.png -images-30745.png -images-30746.png -images-30747.png -images-30748.png -images-30749.png -images-30750.png -images-30751.png -images-30752.png -images-30753.png -images-30754.png -images-30755.png -images-30756.png -images-30757.png -images-30758.png -images-30759.png -images-30760.png -images-30761.png -images-30762.png -images-30763.png -images-30764.png -images-30765.png -images-30766.png -images-30767.png -images-30768.png -images-30769.png -images-30770.png -images-30771.png -images-30772.png -images-30773.png -images-30774.png -images-30775.png -images-30776.png -images-30777.png -images-30778.png -images-30779.png -images-30780.png -images-30781.png -images-30782.png -images-30783.png -images-30784.png -images-30785.png -images-30786.png -images-30787.png -images-30788.png -images-30789.png -images-30790.png -images-30791.png -images-30792.png -images-30793.png -images-30794.png -images-30795.png -images-30796.png -images-30797.png -images-30798.png -images-30799.png -images-30800.png -images-30801.png -images-30802.png -images-30803.png -images-30804.png -images-30805.png -images-30806.png -images-30807.png -images-30808.png -images-30809.png -images-30810.png -images-30811.png -images-30812.png -images-30813.png -images-30814.png -images-30815.png -images-30816.png -images-30817.png -images-30818.png -images-30819.png -images-30820.png -images-30821.png -images-30822.png -images-30823.png -images-30824.png -images-30825.png -images-30826.png -images-30827.png -images-30828.png -images-30829.png -images-30830.png -images-30831.png -images-30832.png -images-30833.png -images-30834.png -images-30835.png -images-30836.png -images-30837.png -images-30838.png -images-30839.png -images-30840.png -images-30841.png -images-30842.png -images-30843.png -images-30844.png -images-30845.png -images-30846.png -images-30847.png -images-30848.png -images-30849.png -images-30850.png -images-30851.png -images-30852.png -images-30853.png -images-30854.png -images-30855.png -images-30856.png -images-30857.png -images-30858.png -images-30859.png -images-30860.png -images-30861.png -images-30862.png -images-30863.png -images-30864.png -images-30865.png -images-30866.png -images-30867.png -images-30868.png -images-30869.png -images-30870.png -images-30871.png -images-30872.png -images-30873.png -images-30874.png -images-30875.png -images-30876.png -images-30877.png -images-30878.png -images-30879.png -images-30880.png -images-30881.png -images-30882.png -images-30883.png -images-30884.png -images-30885.png -images-30886.png -images-30887.png -images-30888.png -images-30889.png -images-30890.png -images-30891.png -images-30892.png -images-30893.png -images-30894.png -images-30895.png -images-30896.png -images-30897.png -images-30898.png -images-30899.png -images-30900.png -images-30901.png -images-30902.png -images-30903.png -images-30904.png -images-30905.png -images-30906.png -images-30907.png -images-30908.png -images-30909.png -images-30910.png -images-30911.png -images-30912.png -images-30913.png -images-30914.png -images-30915.png -images-30916.png -images-30917.png -images-30918.png -images-30919.png -images-30920.png -images-30921.png -images-30922.png -images-30923.png -images-30924.png -images-30925.png -images-30926.png -images-30927.png -images-30928.png -images-30929.png -images-30930.png -images-30931.png -images-30932.png -images-30933.png -images-30934.png -images-30935.png -images-30936.png -images-30937.png -images-30938.png -images-30939.png -images-30940.png -images-30941.png -images-30942.png -images-30943.png -images-30944.png -images-30945.png -images-30946.png -images-30947.png -images-30948.png -images-30949.png -images-30950.png -images-30951.png -images-30952.png -images-30953.png -images-30954.png -images-30955.png -images-30956.png -images-30957.png -images-30958.png -images-30959.png -images-30960.png -images-30961.png -images-30962.png -images-30963.png -images-30964.png -images-30965.png -images-30966.png -images-30967.png -images-30968.png -images-30969.png -images-30970.png -images-30971.png -images-30972.png -images-30973.png -images-30974.png -images-30975.png -images-30976.png -images-30977.png -images-30978.png -images-30979.png -images-30980.png -images-30981.png -images-30982.png -images-30983.png -images-30984.png -images-30985.png -images-30986.png -images-30987.png -images-30988.png -images-30989.png -images-30990.png -images-30991.png -images-30992.png -images-30993.png -images-30994.png -images-30995.png -images-30996.png -images-30997.png -images-30998.png -images-30999.png -images-31000.png -images-31001.png -images-31002.png -images-31003.png -images-31004.png -images-31005.png -images-31006.png -images-31007.png -images-31008.png -images-31009.png -images-31010.png -images-31011.png -images-31012.png -images-31013.png -images-31014.png -images-31015.png -images-31016.png -images-31017.png -images-31018.png -images-31019.png -images-31020.png -images-31021.png -images-31022.png -images-31023.png -images-31024.png -images-31025.png -images-31026.png -images-31027.png -images-31028.png -images-31029.png -images-31030.png -images-31031.png -images-31032.png -images-31033.png -images-31034.png -images-31035.png -images-31036.png -images-31037.png -images-31038.png -images-31039.png -images-31040.png -images-31041.png -images-31042.png -images-31043.png -images-31044.png -images-31045.png -images-31046.png -images-31047.png -images-31048.png -images-31049.png -images-31050.png -images-31051.png -images-31052.png -images-31053.png -images-31054.png -images-31055.png -images-31056.png -images-31057.png -images-31058.png -images-31059.png -images-31060.png -images-31061.png -images-31062.png -images-31063.png -images-31208.png -images-31209.png -images-31210.png -images-31211.png -images-31212.png -images-31213.png -images-31214.png -images-31215.png -images-31216.png -images-31217.png -images-31218.png -images-31219.png -images-31220.png -images-31221.png -images-31222.png -images-31223.png -images-31224.png -images-31225.png -images-31226.png -images-31227.png -images-31228.png -images-31229.png -images-31230.png -images-31231.png -images-31232.png -images-31233.png -images-31234.png -images-31235.png -images-31236.png -images-31237.png -images-31238.png -images-31239.png -images-31240.png -images-31241.png -images-31242.png -images-31243.png -images-31244.png -images-31245.png -images-31246.png -images-31247.png -images-31248.png -images-31249.png -images-31250.png -images-31251.png -images-31252.png -images-31253.png -images-31254.png -images-31255.png -images-31256.png -images-31257.png -images-31258.png -images-31259.png -images-31260.png -images-31261.png -images-31262.png -images-31263.png -images-31264.png -images-31265.png -images-31266.png -images-31267.png -images-31268.png -images-31269.png -images-31270.png -images-31271.png -images-31272.png -images-31273.png -images-31274.png -images-31275.png -images-31276.png -images-31277.png -images-31278.png -images-31279.png -images-31280.png -images-31281.png -images-31282.png -images-31283.png -images-31284.png -images-31285.png -images-31286.png -images-31287.png -images-31288.png -images-31289.png -images-31290.png -images-31291.png -images-31292.png -images-31293.png -images-31294.png -images-31295.png -images-31296.png -images-31297.png -images-31298.png -images-31299.png -images-31300.png -images-31325.png -images-31326.png -images-31327.png -images-31328.png -images-31329.png -images-31330.png -images-31331.png -images-31340.png -images-31341.png -images-31342.png -images-31343.png -images-31344.png -images-31345.png -images-31346.png -images-31347.png -images-31348.png -images-31349.png -images-31350.png -images-31351.png -images-31352.png -images-31353.png -images-31354.png -images-31355.png -images-31356.png -images-31357.png -images-31358.png -images-31359.png -images-31360.png -images-31361.png -images-31362.png -images-31363.png -images-31364.png -images-31365.png -images-31366.png -images-31367.png -images-31368.png -images-31369.png -images-31370.png -images-31371.png -images-31372.png -images-31373.png -images-31374.png -images-31375.png -images-31376.png -images-31377.png -images-31378.png -images-31379.png -images-31380.png -images-31381.png -images-31382.png -images-31383.png -images-31384.png -images-31385.png -images-31386.png -images-31387.png -images-31388.png -images-31389.png -images-31390.png -images-31391.png -images-31392.png -images-31393.png -images-31394.png -images-31395.png -images-31410.png -images-31411.png -images-31412.png -images-31413.png -images-31414.png -images-31415.png -images-31416.png -images-31417.png -images-31418.png -images-31419.png -images-31420.png -images-31421.png -images-31422.png -images-31423.png -images-31424.png -images-31425.png -images-31426.png -images-31427.png -images-31428.png -images-31429.png -images-31430.png -images-31431.png -images-31432.png -images-31437.png -images-31438.png -images-31439.png -images-31440.png -images-31441.png -images-31442.png -images-31443.png -images-31444.png -images-31445.png -images-31446.png -images-31447.png -images-31482.png -images-31483.png -images-31484.png -images-31485.png -images-31486.png -images-31487.png -images-31488.png -images-31489.png -images-31490.png -images-31491.png -images-31551.png -images-31552.png -images-31553.png -images-31554.png -images-31555.png -images-31556.png -images-31557.png -images-31558.png -images-31559.png -images-31560.png -images-31561.png -images-31562.png -images-31563.png -images-31564.png -images-31565.png -images-31566.png -images-31567.png -images-31568.png -images-31569.png -images-31570.png -images-31571.png -images-31572.png -images-31573.png -images-31574.png -images-31575.png -images-31576.png -images-31577.png -images-31578.png -images-31579.png -images-31580.png -images-31581.png -images-31582.png -images-31583.png -images-31584.png -images-31585.png -images-31586.png -images-31587.png -images-31588.png -images-31589.png -images-31590.png -images-31591.png -images-31592.png -images-31593.png -images-31594.png -images-31595.png -images-31596.png -images-31597.png -images-31598.png -images-31599.png -images-31600.png -images-31601.png -images-31602.png -images-31603.png -images-31604.png -images-31605.png -images-31606.png -images-31607.png -images-31608.png -images-31609.png -images-31610.png -images-31628.png -images-31629.png -images-31630.png -images-31631.png -images-31632.png -images-31633.png -images-31634.png -images-31635.png -images-31636.png -images-31637.png -images-31638.png -images-31639.png -images-31640.png -images-31641.png -images-31642.png -images-31643.png -images-31644.png -images-31645.png -images-31646.png -images-31647.png -images-31648.png -images-31649.png -images-31650.png -images-31651.png -images-31652.png -images-31653.png -images-31654.png -images-31655.png -images-31656.png -images-31657.png -images-31658.png -images-31659.png -images-31660.png -images-31661.png -images-31662.png -images-31663.png -images-31664.png -images-31665.png -images-31712.png -images-31713.png -images-31714.png -images-31715.png -images-31716.png -images-31717.png -images-31718.png -images-31719.png -images-31720.png -images-31721.png -images-31722.png -images-31723.png -images-31724.png -images-31725.png -images-31726.png -images-31727.png -images-31728.png -images-31729.png -images-31730.png -images-31731.png -images-31732.png -images-31733.png -images-31734.png -images-31735.png -images-31736.png -images-31737.png -images-31738.png -images-31739.png -images-31740.png -images-31741.png -images-31742.png -images-31743.png -images-31744.png -images-31745.png -images-31746.png -images-31747.png -images-31796.png -images-31797.png -images-31798.png -images-31799.png -images-31800.png -images-31801.png -images-31802.png -images-31803.png -images-31804.png -images-31805.png -images-31806.png -images-31807.png -images-31808.png -images-31809.png -images-31810.png -images-31811.png -images-31812.png -images-31813.png -images-31814.png -images-31815.png -images-31816.png -images-31817.png -images-31818.png -images-31819.png -images-31820.png -images-31821.png -images-31822.png -images-31828.png -images-31829.png -images-31830.png -images-31836.png -images-31837.png -images-31838.png -images-31839.png -images-31840.png -images-31841.png -images-31842.png -images-31843.png -images-31844.png -images-31845.png -images-31846.png -images-31847.png -images-31865.png -images-31866.png -images-31867.png -images-31868.png -images-31869.png -images-31870.png -images-31871.png -images-31872.png -images-31873.png -images-31874.png -images-31875.png -images-31876.png -images-31877.png -images-31878.png -images-31879.png -images-31880.png -images-31881.png -images-31882.png -images-31883.png -images-31884.png -images-31885.png -images-31886.png -images-31887.png -images-31888.png -images-31889.png -images-31890.png -images-31891.png -images-31892.png -images-31893.png -images-31894.png -images-31895.png -images-31896.png -images-31897.png -images-31898.png -images-31899.png -images-31900.png -images-31901.png -images-31902.png -images-31965.png -images-31966.png -images-31967.png -images-31968.png -images-31969.png -images-31970.png -images-31971.png -images-31972.png -images-31973.png -images-31974.png -images-31975.png -images-31976.png -images-31977.png -images-31978.png -images-31979.png -images-31980.png -images-31981.png -images-31982.png -images-31983.png -images-31984.png -images-31985.png -images-31986.png -images-31987.png -images-31988.png -images-31989.png -images-31990.png -images-31991.png -images-31992.png -images-31993.png -images-31994.png -images-31995.png -images-31996.png -images-31997.png -images-32062.png -images-32063.png -images-32064.png -images-32065.png -images-32066.png -images-32067.png -images-32068.png -images-32069.png -images-32070.png -images-32071.png -images-32072.png -images-32073.png -images-32074.png -images-32075.png -images-32076.png -images-32077.png -images-32078.png -images-32079.png -images-32080.png -images-32081.png -images-32082.png -images-32083.png -images-32084.png -images-32085.png -images-32086.png -images-32087.png -images-32088.png -images-32089.png -images-32090.png -images-32091.png -images-32092.png -images-32093.png -images-32094.png -images-32095.png -images-32096.png -images-32097.png -images-32098.png -images-32099.png -images-32100.png -images-32101.png -images-32128.png -images-32129.png -images-32130.png -images-32131.png -images-32132.png -images-32133.png -images-32134.png -images-32135.png -images-32136.png -images-32137.png -images-32138.png -images-32139.png -images-32140.png -images-32141.png -images-32142.png -images-32165.png -images-32166.png -images-32167.png -images-32168.png -images-32169.png -images-32170.png -images-32171.png -images-32172.png -images-32173.png -images-32174.png -images-32175.png -images-32176.png -images-32177.png -images-32178.png -images-32179.png -images-32180.png -images-32181.png -images-32182.png -images-32183.png -images-32184.png -images-32185.png -images-32186.png -images-32187.png -images-32188.png -images-32189.png -images-32190.png -images-32191.png -images-32192.png -images-32193.png -images-32194.png -images-32195.png -images-32196.png -images-32197.png -images-32198.png -images-32199.png -images-32200.png -images-32201.png -images-32202.png -images-32203.png -images-32204.png -images-32205.png -images-32206.png -images-32207.png -images-32208.png -images-32209.png -images-32210.png -images-32211.png -images-32212.png -images-32213.png -images-32242.png -images-32243.png -images-32244.png -images-32245.png -images-32246.png -images-32247.png -images-32248.png -images-32249.png -images-32250.png -images-32251.png -images-32252.png -images-32253.png -images-32254.png -images-32255.png -images-32256.png -images-32257.png -images-32258.png -images-32259.png -images-32260.png -images-32261.png -images-32262.png -images-32263.png -images-32264.png -images-32265.png -images-32266.png -images-32267.png -images-32268.png -images-32269.png -images-32270.png -images-32271.png -images-32272.png -images-32273.png -images-32274.png -images-32275.png -images-32276.png -images-32277.png -images-32278.png -images-32279.png -images-32280.png -images-32281.png -images-32282.png -images-32283.png -images-32284.png -images-32285.png -images-32286.png -images-32287.png -images-32288.png -images-32289.png -images-32290.png -images-32291.png -images-32292.png -images-32293.png -images-32294.png -images-32295.png -images-32296.png -images-32297.png -images-32298.png -images-32299.png -images-32300.png -images-32301.png -images-32302.png -images-32303.png -images-32304.png -images-32305.png -images-32306.png -images-32307.png -images-32308.png -images-32309.png -images-32310.png -images-32311.png -images-32312.png -images-32313.png -images-32314.png -images-32315.png -images-32316.png -images-32317.png -images-32318.png -images-32319.png -images-32320.png -images-32321.png -images-32322.png -images-32323.png -images-32324.png -images-32325.png -images-32326.png -images-32327.png -images-32328.png -images-32329.png -images-32330.png -images-32331.png -images-32332.png -images-32333.png -images-32334.png -images-32335.png -images-32336.png -images-32337.png -images-32338.png -images-32339.png -images-32340.png -images-32341.png -images-32342.png -images-32343.png -images-32348.png -images-32349.png -images-32350.png -images-32351.png -images-32352.png -images-32353.png -images-32354.png -images-32355.png -images-32356.png -images-32357.png -images-32358.png -images-32359.png -images-32360.png -images-32361.png -images-32362.png -images-32363.png -images-32364.png -images-32365.png -images-32366.png -images-33063.png -images-33064.png -images-33065.png -images-33066.png -images-33067.png -images-33068.png -images-33069.png -images-33070.png -images-33071.png -images-33072.png -images-33073.png -images-33074.png -images-33075.png -images-33076.png -images-33077.png -images-33078.png -images-33079.png -images-33080.png -images-33081.png -images-33082.png -images-33083.png -images-33084.png -images-33085.png -images-33086.png -images-33087.png -images-33088.png -images-33089.png -images-33090.png -images-33091.png -images-33092.png -images-33093.png -images-33094.png -images-33095.png -images-33096.png -images-33097.png -images-33098.png -images-33099.png -images-33100.png -images-33101.png -images-33102.png -images-33103.png -images-33104.png -images-33105.png -images-33106.png -images-33107.png -images-33108.png -images-33109.png -images-33110.png -images-33111.png -images-33112.png -images-33113.png -images-33114.png -images-33115.png -images-33116.png -images-33117.png -images-33118.png -images-33119.png -images-33120.png -images-33121.png -images-33122.png -images-33123.png -images-33124.png -images-33125.png -images-33126.png -images-33127.png -images-33128.png -images-33129.png -images-33130.png -images-33131.png -images-33132.png -images-33133.png -images-33134.png -images-33135.png -images-33136.png -images-33137.png -images-33138.png -images-33139.png -images-33140.png -images-33141.png -images-33142.png -images-33143.png -images-33144.png -images-33145.png -images-33146.png -images-33147.png -images-33148.png -images-33149.png -images-33150.png -images-33151.png -images-33152.png -images-33153.png -images-33154.png -images-33155.png -images-33156.png -images-33157.png -images-33158.png -images-33159.png -images-33160.png -images-33161.png -images-33162.png -images-33163.png -images-33164.png -images-33165.png -images-33166.png -images-33167.png -images-33168.png -images-33169.png -images-33170.png -images-33171.png -images-33172.png -images-33173.png -images-33174.png -images-33175.png -images-33176.png -images-33177.png -images-33178.png -images-33179.png -images-33180.png -images-33181.png -images-33182.png -images-33183.png -images-33184.png -images-33185.png -images-33186.png -images-33187.png -images-33188.png -images-33189.png -images-33190.png -images-33191.png -images-33192.png -images-33193.png -images-33194.png -images-33195.png -images-33196.png -images-33197.png -images-33198.png -images-33199.png -images-33200.png -images-33201.png -images-33202.png -images-33203.png -images-33204.png -images-33205.png -images-33206.png -images-33207.png -images-33208.png -images-33209.png -images-33210.png -images-33211.png -images-33212.png -images-33213.png -images-33214.png -images-33215.png -images-33216.png -images-33217.png -images-33218.png -images-33219.png -images-33220.png -images-33221.png -images-33222.png -images-33223.png -images-33224.png -images-33225.png -images-33226.png -images-33227.png -images-33228.png -images-33229.png -images-33230.png -images-33231.png -images-33232.png -images-33233.png -images-33234.png -images-33235.png -images-33236.png -images-33237.png -images-33238.png -images-33239.png -images-33240.png -images-33241.png -images-33242.png -images-33243.png -images-33244.png -images-33245.png -images-33246.png -images-33247.png -images-33248.png -images-33249.png -images-33250.png -images-33251.png -images-33252.png -images-33253.png -images-33254.png -images-33255.png -images-33256.png -images-33257.png -images-33258.png -images-33259.png -images-33260.png -images-33261.png -images-33262.png -images-33263.png -images-33264.png -images-33265.png -images-33266.png -images-33267.png -images-33268.png -images-33269.png -images-33270.png -images-33271.png -images-33272.png -images-33273.png -images-33274.png -images-33275.png -images-33276.png -images-33277.png -images-33278.png -images-33279.png -images-33280.png -images-33281.png -images-33282.png -images-33283.png -images-33284.png -images-33285.png -images-33286.png -images-33287.png -images-33288.png -images-33289.png -images-33290.png -images-33291.png -images-33292.png -images-33293.png -images-33294.png -images-33295.png -images-33296.png -images-33297.png -images-33298.png -images-33299.png -images-33300.png -images-33301.png -images-33302.png -images-33303.png -images-33304.png -images-33305.png -images-33306.png -images-33307.png -images-33308.png -images-33309.png -images-33310.png -images-33311.png -images-33312.png -images-33313.png -images-33314.png -images-33315.png -images-33316.png -images-33328.png -images-33329.png -images-33330.png -images-33331.png -images-33332.png -images-33333.png -images-33334.png -images-33335.png -images-33336.png -images-33337.png -images-33338.png -images-33339.png -images-33340.png -images-33346.png -images-33347.png -images-33348.png -images-33349.png -images-33350.png -images-33351.png -images-33352.png -images-33353.png -images-33354.png -images-33355.png -images-33356.png -images-33357.png -images-33358.png -images-33359.png -images-33360.png -images-33361.png -images-33362.png -images-33363.png -images-33364.png -images-33365.png -images-33366.png -images-33367.png -images-33368.png -images-33369.png -images-33386.png -images-33387.png -images-33388.png -images-33389.png -images-33390.png -images-33391.png -images-33392.png -images-33393.png -images-33394.png -images-33395.png -images-33396.png -images-33397.png -images-33398.png -images-33399.png -images-33400.png -images-33401.png -images-33402.png -images-33403.png -images-33404.png -images-33405.png -images-33406.png -images-33407.png -images-33408.png -images-33409.png -images-33410.png -images-33411.png -images-33412.png -images-33413.png -images-33414.png -images-33415.png -images-33416.png -images-33417.png -images-33418.png -images-33419.png -images-33420.png -images-33421.png -images-33422.png -images-33423.png -images-33424.png -images-33425.png -images-33426.png -images-33427.png -images-33428.png -images-33429.png -images-33513.png -images-33514.png -images-33515.png -images-33516.png -images-33517.png -images-33518.png -images-33519.png -images-33520.png -images-33521.png -images-33522.png -images-33523.png -images-33524.png -images-33525.png -images-33526.png -images-33527.png -images-33528.png -images-33529.png -images-33530.png -images-33531.png -images-33532.png -images-33533.png -images-33534.png -images-33535.png -images-33536.png -images-33537.png -images-33538.png -images-33539.png -images-33540.png -images-33541.png -images-33542.png -images-33543.png -images-33544.png -images-33545.png -images-33546.png -images-33547.png -images-33548.png -images-33549.png -images-33550.png -images-33551.png -images-33552.png -images-33553.png -images-33554.png -images-33555.png -images-33556.png -images-33557.png -images-33558.png -images-33559.png -images-33560.png -images-33561.png -images-33562.png -images-33563.png -images-33564.png -images-33565.png -images-33566.png -images-33567.png -images-33568.png -images-33569.png -images-33570.png -images-33571.png -images-33572.png -images-33573.png -images-33574.png -images-33575.png -images-33576.png -images-33577.png -images-33578.png -images-33579.png -images-33580.png -images-33581.png -images-33582.png -images-33583.png -images-33584.png -images-33585.png -images-33586.png -images-33587.png -images-33588.png -images-33589.png -images-33590.png -images-33667.png -images-33668.png -images-33669.png -images-33670.png -images-33671.png -images-33672.png -images-33673.png -images-33674.png -images-33675.png -images-33676.png -images-33677.png -images-33678.png -images-33679.png -images-33680.png -images-33681.png -images-33682.png -images-33683.png -images-33684.png -images-33685.png -images-33686.png -images-33687.png -images-33688.png -images-33689.png -images-33690.png -images-33691.png -images-33692.png -images-33693.png -images-33694.png -images-33695.png -images-33696.png -images-33697.png -images-33698.png -images-33699.png -images-33700.png -images-33701.png -images-33702.png -images-33703.png -images-33704.png -images-33705.png -images-33706.png -images-33707.png -images-33708.png -images-33709.png -images-33710.png -images-33711.png -images-33712.png -images-33713.png -images-33714.png -images-33715.png -images-33716.png -images-33721.png -images-33722.png -images-33723.png -images-33724.png -images-33725.png -images-33726.png -images-33727.png -images-33728.png -images-33729.png -images-33730.png -images-33731.png -images-33732.png -images-33733.png -images-33734.png -images-33735.png -images-33736.png -images-33737.png -images-33738.png -images-33739.png -images-33740.png -images-33741.png -images-33742.png -images-33743.png -images-33744.png -images-33745.png -images-33746.png -images-33747.png -images-33748.png -images-33749.png -images-33750.png -images-33751.png -images-33752.png -images-33753.png -images-33781.png -images-33782.png -images-33783.png -images-33784.png -images-33785.png -images-33786.png -images-33787.png -images-33788.png -images-33789.png -images-33790.png -images-33791.png -images-33792.png -images-33793.png -images-33794.png -images-33795.png -images-33796.png -images-33797.png -images-33798.png -images-33799.png -images-33800.png -images-33801.png -images-33802.png -images-33803.png -images-33804.png -images-33805.png -images-33806.png -images-33807.png -images-33808.png -images-33809.png -images-33810.png -images-33811.png -images-33812.png -images-33813.png -images-33814.png -images-33815.png -images-33816.png -images-33817.png -images-33818.png -images-33819.png -images-33820.png -images-33821.png -images-33822.png -images-33823.png -images-33824.png -images-33825.png -images-33826.png -images-33827.png -images-33828.png -images-33829.png -images-33830.png -images-33831.png -images-33832.png -images-33833.png -images-33834.png -images-33835.png -images-33836.png -images-33837.png -images-33838.png -images-33839.png -images-33840.png -images-33841.png -images-33842.png -images-33843.png -images-33844.png -images-33845.png -images-33846.png -images-33847.png -images-33848.png -images-33849.png -images-33850.png -images-33851.png -images-33852.png -images-33853.png -images-33854.png -images-33855.png -images-33856.png -images-33857.png -images-33858.png -images-33859.png -images-33860.png -images-33861.png -images-33862.png -images-33863.png -images-33864.png -images-33865.png -images-33866.png -images-33867.png -images-33868.png -images-33869.png -images-33870.png -images-33871.png -images-33872.png -images-33873.png -images-33874.png -images-33875.png -images-33876.png -images-33877.png -images-33878.png -images-33879.png -images-33880.png -images-33881.png -images-33882.png -images-33883.png -images-33884.png -images-33885.png -images-33886.png -images-33887.png -images-33888.png -images-33889.png -images-33890.png -images-33891.png -images-33892.png -images-33893.png -images-33894.png -images-33895.png -images-33896.png -images-33897.png -images-33898.png -images-33899.png -images-33900.png -images-33901.png -images-33902.png -images-33903.png -images-33904.png -images-33905.png -images-33906.png -images-33907.png -images-33908.png -images-33909.png -images-33910.png -images-33911.png -images-33912.png -images-33913.png -images-33914.png -images-33915.png -images-33916.png -images-33923.png -images-33924.png -images-33925.png -images-33926.png -images-33927.png -images-33928.png -images-33929.png -images-33930.png -images-33931.png -images-33932.png -images-33933.png -images-33934.png -images-33935.png -images-33936.png -images-33937.png -images-33938.png -images-33939.png -images-33940.png -images-33941.png -images-33942.png -images-33943.png -images-33944.png -images-33945.png -images-33946.png -images-33947.png -images-33948.png -images-33949.png -images-33950.png -images-33951.png -images-33952.png -images-33953.png -images-33954.png -images-33955.png -images-33956.png -images-33957.png -images-33958.png -images-33959.png -images-33960.png -images-33961.png -images-33962.png -images-33963.png -images-33964.png -images-33965.png -images-33966.png -images-33967.png -images-33968.png -images-33969.png -images-33970.png -images-33971.png -images-33972.png -images-33973.png -images-33974.png -images-33975.png -images-33976.png -images-33977.png -images-33978.png -images-33979.png -images-33980.png -images-33981.png -images-33982.png -images-33983.png -images-33984.png -images-33985.png -images-33986.png -images-33987.png -images-33988.png -images-33989.png -images-33990.png -images-33991.png -images-33992.png -images-33993.png -images-33994.png -images-33995.png -images-33996.png -images-33997.png -images-33998.png -images-33999.png -images-34000.png -images-34001.png -images-34002.png -images-34003.png -images-34004.png -images-34005.png -images-34006.png -images-34007.png -images-34008.png -images-34009.png -images-34010.png -images-34011.png -images-34012.png -images-34013.png -images-34014.png -images-34015.png -images-34016.png -images-34017.png -images-34018.png -images-34019.png -images-34020.png -images-34021.png -images-34022.png -images-34023.png -images-34024.png -images-34025.png -images-34026.png -images-34027.png -images-34028.png -images-34029.png -images-34030.png -images-34031.png -images-34032.png -images-34033.png -images-34034.png -images-34035.png -images-34036.png -images-34037.png -images-34038.png -images-34039.png -images-34040.png -images-34041.png -images-34042.png -images-34043.png -images-34044.png -images-34045.png -images-34046.png -images-34047.png -images-34048.png -images-34049.png -images-34050.png -images-34051.png -images-34052.png -images-34053.png -images-34054.png -images-34055.png -images-34056.png -images-34057.png -images-34058.png -images-34059.png -images-34060.png -images-34061.png -images-34062.png -images-34063.png -images-34064.png -images-34065.png -images-34066.png -images-34067.png -images-34068.png -images-34069.png -images-34070.png -images-34071.png -images-34072.png -images-34073.png -images-34074.png -images-34075.png -images-34076.png -images-34077.png -images-34078.png -images-34079.png -images-34080.png -images-34081.png -images-34082.png -images-34083.png -images-34084.png -images-34085.png -images-34086.png -images-34087.png -images-34088.png -images-34089.png -images-34090.png -images-34091.png -images-34092.png -images-34093.png -images-34094.png -images-34095.png -images-34096.png -images-34097.png -images-34098.png -images-34099.png -images-34100.png -images-34101.png -images-34102.png -images-34103.png -images-34104.png -images-34105.png -images-34106.png -images-34107.png -images-34108.png -images-34109.png -images-34110.png -images-34111.png -images-34112.png -images-34113.png -images-34114.png -images-34115.png -images-34116.png -images-34117.png -images-34118.png -images-34119.png -images-34120.png -images-34121.png -images-34122.png -images-34123.png -images-34124.png -images-34125.png -images-34126.png -images-34127.png -images-34128.png -images-34129.png -images-34130.png -images-34131.png -images-34132.png -images-34133.png -images-34134.png -images-34135.png -images-34136.png -images-34137.png -images-34138.png -images-34139.png -images-34140.png -images-34141.png -images-34142.png -images-34143.png -images-34144.png -images-34145.png -images-34146.png -images-34147.png -images-34148.png -images-34149.png -images-34150.png -images-34151.png -images-34152.png -images-34153.png -images-34154.png -images-34155.png -images-34156.png -images-34157.png -images-34158.png -images-34159.png -images-34160.png -images-34161.png -images-34162.png -images-34163.png -images-34164.png -images-34165.png -images-34166.png -images-34167.png -images-34168.png -images-34169.png -images-34170.png -images-34171.png -images-34172.png -images-34173.png -images-34174.png -images-34175.png -images-34176.png -images-34177.png -images-34178.png -images-34179.png -images-34180.png -images-34181.png -images-34182.png -images-34183.png -images-34184.png -images-34185.png -images-34186.png -images-34187.png -images-34188.png -images-34189.png -images-34190.png -images-34191.png -images-34192.png -images-34193.png -images-34194.png -images-34195.png -images-34196.png -images-34197.png -images-34198.png -images-34199.png -images-34200.png -images-34201.png -images-34202.png -images-34203.png -images-34204.png -images-34205.png -images-34206.png -images-34207.png -images-34208.png -images-34209.png -images-34210.png -images-34211.png -images-34212.png -images-34213.png -images-34214.png -images-34215.png -images-34216.png -images-34217.png -images-34218.png -images-34219.png -images-34220.png -images-34221.png -images-34222.png -images-34223.png -images-34224.png -images-34225.png -images-34226.png -images-34227.png -images-34228.png -images-34229.png -images-34230.png -images-34231.png -images-34232.png -images-34233.png -images-34242.png -images-34243.png -images-34244.png -images-34245.png -images-34246.png -images-34247.png -images-34248.png -images-34249.png -images-34250.png -images-34251.png -images-34252.png -images-34253.png -images-34254.png -images-34255.png -images-34256.png -images-34257.png -images-34258.png -images-34259.png -images-34260.png -images-34261.png -images-34262.png -images-34263.png -images-34264.png -images-34265.png -images-34266.png -images-34267.png -images-34268.png -images-34269.png -images-34270.png -images-34271.png -images-34272.png -images-34273.png -images-34274.png -images-34275.png -images-34276.png -images-34277.png -images-34278.png -images-34279.png -images-34280.png -images-34281.png -images-34282.png -images-34283.png -images-34284.png -images-34285.png -images-34286.png -images-34287.png -images-34288.png -images-34289.png -images-34290.png -images-34291.png -images-34292.png -images-34293.png -images-34294.png -images-34295.png -images-34296.png -images-34297.png -images-34298.png -images-34299.png -images-34300.png -images-34301.png -images-34302.png -images-34303.png -images-34304.png -images-34305.png -images-34306.png -images-34307.png -images-34308.png -images-34309.png -images-34310.png -images-34311.png -images-34312.png -images-34313.png -images-34314.png -images-34315.png -images-34316.png -images-34317.png -images-34318.png -images-34319.png -images-34320.png -images-34321.png -images-34322.png -images-34323.png -images-34324.png -images-34325.png -images-34326.png -images-34327.png -images-34328.png -images-34329.png -images-34330.png -images-34331.png -images-34332.png -images-34333.png -images-34334.png -images-34335.png -images-34336.png -images-34337.png -images-34338.png -images-34339.png -images-34340.png -images-34341.png -images-34342.png -images-34343.png -images-34344.png -images-34345.png -images-34346.png -images-34347.png -images-34348.png -images-34349.png -images-34350.png -images-34351.png -images-34352.png -images-34353.png -images-34354.png -images-34355.png -images-34356.png -images-34357.png -images-34358.png -images-34359.png -images-34360.png -images-34361.png -images-34362.png -images-34363.png -images-34364.png -images-34365.png -images-34366.png -images-34367.png -images-34368.png -images-34369.png -images-34370.png -images-34371.png -images-34372.png -images-34373.png -images-34374.png -images-34375.png -images-34376.png -images-34377.png -images-34378.png -images-34379.png -images-34380.png -images-34381.png -images-34382.png -images-34383.png -images-34384.png -images-34385.png -images-34386.png -images-34387.png -images-34388.png -images-34389.png -images-34390.png -images-34391.png -images-34392.png -images-34393.png -images-34394.png -images-34395.png -images-34396.png -images-34397.png -images-34398.png -images-34399.png -images-34400.png -images-34401.png -images-34402.png -images-34403.png -images-34404.png -images-34405.png -images-34406.png -images-34407.png -images-34408.png -images-34409.png -images-34410.png -images-34411.png -images-34412.png -images-34413.png -images-34414.png -images-34415.png -images-34416.png -images-34417.png -images-34418.png -images-34419.png -images-34420.png -images-34421.png -images-34422.png -images-34423.png -images-34424.png -images-34425.png -images-34426.png -images-34427.png -images-34428.png -images-34429.png -images-34430.png -images-34431.png -images-34432.png -images-34433.png -images-34434.png -images-34435.png -images-34436.png -images-34437.png -images-34438.png -images-34439.png -images-34440.png -images-34441.png -images-34442.png -images-34443.png -images-34444.png -images-34445.png -images-34446.png -images-34447.png -images-34448.png -images-34449.png -images-34450.png -images-34451.png -images-34452.png -images-34453.png -images-34454.png -images-34455.png -images-34456.png -images-34457.png -images-34458.png -images-34459.png -images-34460.png -images-34461.png -images-34462.png -images-34463.png -images-34464.png -images-34465.png -images-34466.png -images-34467.png -images-34468.png -images-34469.png -images-34470.png -images-34471.png -images-34472.png -images-34473.png -images-34474.png -images-34475.png -images-34476.png -images-34477.png -images-34478.png -images-34479.png -images-34480.png -images-34481.png -images-34482.png -images-34483.png -images-34484.png -images-34485.png -images-34486.png -images-34487.png -images-34488.png -images-34489.png -images-34490.png -images-34491.png -images-34492.png -images-34493.png -images-34494.png -images-34495.png -images-34496.png -images-34497.png -images-34498.png -images-34499.png -images-34500.png -images-34501.png -images-34502.png -images-34503.png -images-34504.png -images-34505.png -images-34506.png -images-34507.png -images-34508.png -images-34509.png -images-34510.png -images-34511.png -images-34512.png -images-34513.png -images-34514.png -images-34515.png -images-34516.png -images-34517.png -images-34518.png -images-34519.png -images-34520.png -images-34521.png -images-34522.png -images-34523.png -images-34524.png -images-34525.png -images-34526.png -images-34527.png -images-34528.png -images-34529.png -images-34530.png -images-34531.png -images-34532.png -images-34533.png -images-34534.png -images-34535.png -images-34536.png -images-34537.png -images-34538.png -images-34539.png -images-34540.png -images-34541.png -images-34542.png -images-34543.png -images-34544.png -images-34545.png -images-34546.png -images-34547.png -images-34548.png -images-34549.png -images-34550.png -images-34551.png -images-34552.png -images-34553.png -images-34554.png -images-34555.png -images-34556.png -images-34557.png -images-34558.png -images-34559.png -images-34560.png -images-34561.png -images-34562.png -images-34563.png -images-34564.png -images-34565.png -images-34566.png -images-34567.png -images-34568.png -images-34569.png -images-34570.png -images-34571.png -images-34572.png -images-34573.png -images-34574.png -images-34575.png -images-34576.png -images-34577.png -images-34578.png -images-34579.png -images-34580.png -images-34581.png -images-34582.png -images-34583.png -images-34584.png -images-34585.png -images-34586.png -images-34587.png -images-34588.png -images-34589.png -images-34590.png -images-34591.png -images-34592.png -images-34593.png -images-34594.png -images-34595.png -images-34596.png -images-34597.png -images-34598.png -images-34599.png -images-34600.png -images-34601.png -images-34602.png -images-34603.png -images-34604.png -images-34605.png -images-34606.png -images-34607.png -images-34608.png -images-34609.png -images-34610.png -images-34611.png -images-34612.png -images-34613.png -images-34614.png -images-34615.png -images-34616.png -images-34617.png -images-34618.png -images-34619.png -images-34620.png -images-34621.png -images-34622.png -images-34623.png -images-34624.png -images-34625.png -images-34626.png -images-34627.png -images-34628.png -images-34629.png -images-34630.png -images-34655.png -images-34656.png -images-34657.png -images-34658.png -images-34659.png -images-34660.png -images-34661.png -images-34662.png -images-34663.png -images-34664.png -images-34665.png -images-34666.png -images-34667.png -images-34668.png -images-34669.png -images-34670.png -images-34671.png -images-34672.png -images-34673.png -images-34674.png -images-34675.png -images-34676.png -images-34677.png -images-34678.png -images-34679.png -images-34680.png -images-34681.png -images-34682.png -images-34683.png -images-34684.png -images-34685.png -images-34686.png -images-34687.png -images-34688.png -images-34689.png -images-34690.png -images-34691.png -images-34692.png -images-34693.png -images-34694.png -images-34695.png -images-34696.png -images-34697.png -images-34698.png -images-34699.png -images-34700.png -images-34701.png -images-34702.png -images-34703.png -images-34704.png -images-34705.png -images-34706.png -images-34707.png -images-34708.png -images-34709.png -images-34710.png -images-34711.png -images-34712.png -images-34713.png -images-34714.png -images-34715.png -images-34716.png -images-34717.png -images-34718.png -images-34719.png -images-34720.png -images-34721.png -images-34722.png -images-34723.png -images-34724.png -images-34725.png -images-34726.png -images-34727.png -images-34728.png -images-34729.png -images-34730.png -images-34731.png -images-34732.png -images-34733.png -images-34734.png -images-34735.png -images-34736.png -images-34737.png -images-34738.png -images-34739.png -images-34740.png -images-34741.png -images-34757.png -images-34758.png -images-34759.png -images-34760.png -images-34761.png -images-34762.png -images-34763.png -images-34764.png -images-34765.png -images-34766.png -images-34767.png -images-34768.png -images-34769.png -images-34770.png -images-34771.png -images-34772.png -images-34773.png -images-34774.png -images-34811.png -images-34812.png -images-34813.png -images-34814.png -images-34815.png -images-34816.png -images-34817.png -images-34818.png -images-34819.png -images-34820.png -images-34821.png -images-34822.png -images-34823.png -images-34824.png -images-34825.png -images-34826.png -images-34827.png -images-34828.png -images-34829.png -images-34830.png -images-34831.png -images-34832.png -images-34833.png -images-34834.png -images-34835.png -images-34836.png -images-34837.png -images-34838.png -images-34839.png -images-34840.png -images-34841.png -images-34842.png -images-34843.png -images-34844.png -images-34845.png -images-34846.png -images-34847.png -images-34848.png -images-34857.png -images-34858.png -images-34859.png -images-34860.png -images-34861.png -images-34862.png -images-34863.png -images-34864.png -images-34865.png -images-34866.png -images-34867.png -images-34868.png -images-34869.png -images-34870.png -images-34871.png -images-34872.png -images-34873.png -images-34874.png -images-34875.png -images-34876.png -images-34877.png -images-34878.png -images-34879.png -images-34880.png -images-34881.png -images-34882.png -images-34883.png -images-34884.png -images-34885.png -images-34886.png -images-34887.png -images-34888.png -images-34889.png -images-34890.png -images-34891.png -images-34892.png -images-34893.png -images-34894.png -images-34895.png -images-34896.png -images-34897.png -images-34898.png -images-34899.png -images-34900.png -images-34901.png -images-34902.png -images-34903.png -images-34904.png -images-34905.png -images-34906.png -images-34907.png -images-34908.png -images-34909.png -images-34910.png -images-34911.png -images-34912.png -images-34913.png -images-34914.png -images-34915.png -images-34916.png -images-34917.png -images-34918.png -images-34919.png -images-34920.png -images-34921.png -images-34922.png -images-34923.png -images-34924.png -images-34925.png -images-34926.png -images-34927.png -images-34928.png -images-34929.png -images-34930.png -images-34931.png -images-34932.png -images-34933.png -images-34934.png -images-34935.png -images-34936.png -images-34937.png -images-34938.png -images-34939.png -images-34940.png -images-34941.png -images-34942.png -images-34943.png -images-34944.png -images-34945.png -images-34946.png -images-34947.png -images-34948.png -images-34949.png -images-34950.png -images-34951.png -images-34952.png -images-34953.png -images-34954.png -images-34955.png -images-34956.png -images-34957.png -images-34958.png -images-34959.png -images-34960.png -images-34961.png -images-34962.png -images-34963.png -images-34964.png -images-34965.png -images-34966.png -images-34967.png -images-34968.png -images-34969.png -images-34970.png -images-34971.png -images-34972.png -images-34973.png -images-34974.png -images-34975.png -images-34976.png -images-34977.png -images-34992.png -images-34993.png -images-34994.png -images-34995.png -images-34996.png -images-34997.png -images-34998.png -images-34999.png -images-35000.png -images-35001.png -images-35002.png -images-35003.png -images-35004.png -images-35005.png -images-35006.png -images-35007.png -images-35008.png -images-35009.png -images-35010.png -images-35011.png -images-35012.png -images-35013.png -images-35014.png -images-35015.png -images-35016.png -images-35017.png -images-35018.png -images-35019.png -images-35020.png -images-35021.png -images-35022.png -images-35023.png -images-35024.png -images-35025.png -images-35026.png -images-35027.png -images-35028.png -images-35029.png -images-35030.png -images-35031.png -images-35032.png -images-35033.png -images-35034.png -images-35035.png -images-35036.png -images-35037.png -images-35038.png -images-35039.png -images-35040.png -images-35041.png -images-35042.png -images-35043.png -images-35044.png -images-35045.png -images-35046.png -images-35047.png -images-35048.png -images-35049.png -images-35050.png -images-35051.png -images-35052.png -images-35053.png -images-35054.png -images-35055.png -images-35056.png -images-35057.png -images-35058.png -images-35059.png -images-35060.png -images-35061.png -images-35062.png -images-35063.png -images-35064.png -images-35065.png -images-35066.png -images-35067.png -images-35068.png -images-35069.png -images-35070.png -images-35071.png -images-35072.png -images-35073.png -images-35074.png -images-35075.png -images-35076.png -images-35077.png -images-35078.png -images-35079.png -images-35080.png -images-35081.png -images-35082.png -images-35083.png -images-35084.png -images-35085.png -images-35086.png -images-35087.png -images-35088.png -images-35089.png -images-35090.png -images-35091.png -images-35092.png -images-35093.png -images-35094.png -images-35095.png -images-35096.png -images-35097.png -images-35098.png -images-35099.png -images-35100.png -images-35101.png -images-35102.png -images-35103.png -images-35104.png -images-35105.png -images-35106.png -images-35107.png -images-35108.png -images-35109.png -images-35110.png -images-35111.png -images-35112.png -images-35113.png -images-35114.png -images-35208.png -images-35209.png -images-35210.png -images-35211.png -images-35212.png -images-35213.png -images-35214.png -images-35215.png -images-35216.png -images-35217.png -images-35218.png -images-35219.png -images-35220.png -images-35221.png -images-35222.png -images-35223.png -images-35224.png -images-35225.png -images-35226.png -images-35227.png -images-35228.png -images-35229.png -images-35230.png -images-35231.png -images-35232.png -images-35233.png -images-35234.png -images-35235.png -images-35236.png -images-35237.png -images-35238.png -images-35239.png -images-35240.png -images-35241.png -images-35242.png -images-35243.png -images-35244.png -images-35245.png -images-35246.png -images-35247.png -images-35248.png -images-35249.png -images-35250.png -images-35251.png -images-35252.png -images-35253.png -images-35254.png -images-35255.png -images-35256.png -images-35257.png -images-35258.png -images-35259.png -images-35260.png -images-35261.png -images-35262.png -images-35263.png -images-35264.png -images-35265.png -images-35266.png -images-35267.png -images-35268.png -images-35269.png -images-35270.png -images-35271.png -images-35272.png -images-35273.png -images-35274.png -images-35275.png -images-35276.png -images-35277.png -images-35278.png -images-35279.png -images-35280.png -images-35281.png -images-35282.png -images-35283.png -images-35284.png -images-35285.png -images-35286.png -images-35287.png -images-35288.png -images-35289.png -images-35290.png -images-35291.png -images-35292.png -images-35293.png -images-35294.png -images-35295.png -images-35296.png -images-35297.png -images-35298.png -images-35299.png -images-35300.png -images-35301.png -images-35302.png -images-35303.png -images-35304.png -images-35305.png -images-35306.png -images-35307.png -images-35308.png -images-35309.png -images-35310.png -images-35311.png -images-35312.png -images-35313.png -images-35314.png -images-35315.png -images-35316.png -images-35317.png -images-35318.png -images-35319.png -images-35320.png -images-35321.png -images-35322.png -images-35323.png -images-35324.png -images-35325.png -images-35326.png -images-35327.png -images-35328.png -images-35329.png -images-35330.png -images-35331.png -images-35332.png -images-35333.png -images-35334.png -images-35335.png -images-35336.png -images-35337.png -images-35338.png -images-35339.png -images-35340.png -images-35341.png -images-35342.png -images-35343.png -images-35344.png -images-35345.png -images-35346.png -images-35347.png -images-35348.png -images-35349.png -images-35350.png -images-35351.png -images-35352.png -images-35353.png -images-35354.png -images-35355.png -images-35356.png -images-35357.png -images-35358.png -images-35359.png -images-35360.png -images-35361.png -images-35366.png -images-35367.png -images-35368.png -images-35369.png -images-35370.png -images-35371.png -images-35372.png -images-35373.png -images-35374.png -images-35375.png -images-35376.png -images-35377.png -images-35378.png -images-35379.png -images-35380.png -images-35381.png -images-35382.png -images-35383.png -images-35384.png -images-35385.png -images-35390.png -images-35391.png -images-35392.png -images-35393.png -images-35394.png -images-35400.png -images-35401.png -images-35402.png -images-35403.png -images-35404.png -images-35405.png -images-35406.png -images-35407.png -images-35408.png -images-35409.png -images-35410.png -images-35411.png -images-35412.png -images-35413.png -images-35414.png -images-35415.png -images-35416.png -images-35417.png -images-35418.png -images-35419.png -images-35420.png -images-35421.png -images-35422.png -images-35423.png -images-35424.png -images-35425.png -images-35426.png -images-35427.png -images-35428.png -images-35429.png -images-35440.png -images-35441.png -images-35442.png -images-35443.png -images-35444.png -images-35445.png -images-35446.png -images-35447.png -images-35448.png -images-35449.png -images-35450.png -images-35451.png -images-35452.png -images-35453.png -images-35454.png -images-35455.png -images-35456.png -images-35457.png -images-35458.png -images-35459.png -images-35460.png -images-35461.png -images-35462.png -images-35463.png -images-35466.png -images-35467.png -images-35468.png -images-35469.png -images-35470.png -images-35471.png -images-35472.png -images-35473.png -images-35474.png -images-35475.png -images-35476.png -images-35477.png -images-35478.png -images-35479.png -images-35480.png -images-35481.png -images-35482.png -images-35483.png -images-35484.png -images-35485.png -images-35486.png -images-35487.png -images-35488.png -images-35489.png -images-35490.png -images-35491.png -images-35492.png -images-35493.png -images-35494.png -images-35495.png -images-35496.png -images-35497.png -images-35498.png -images-35499.png -images-35500.png -images-35501.png -images-35502.png -images-35503.png -images-35504.png -images-35505.png -images-35506.png -images-35507.png -images-35508.png -images-35509.png -images-35510.png -images-35511.png -images-35512.png -images-35513.png -images-35514.png -images-35515.png -images-35516.png -images-35517.png -images-35518.png -images-35519.png -images-35520.png -images-35521.png -images-35522.png -images-35523.png -images-35524.png -images-35525.png -images-35526.png -images-35527.png -images-35528.png -images-35529.png -images-35530.png -images-35531.png -images-35532.png -images-35533.png -images-35534.png -images-35535.png -images-35536.png -images-35537.png -images-35538.png -images-35539.png -images-35540.png -images-35541.png -images-35542.png -images-35543.png -images-35544.png -images-35545.png -images-35546.png -images-35547.png -images-35548.png -images-35549.png -images-35550.png -images-35551.png -images-35552.png -images-35553.png -images-35554.png -images-35555.png -images-35556.png -images-35557.png -images-35558.png -images-35559.png -images-35560.png -images-35561.png -images-35562.png -images-35563.png -images-35564.png -images-35565.png -images-35566.png -images-35567.png -images-35568.png -images-35569.png -images-35570.png -images-35571.png -images-35572.png -images-35573.png -images-35574.png -images-35575.png -images-35576.png -images-35577.png -images-35578.png -images-35579.png -images-35580.png -images-35581.png -images-35582.png diff --git a/orc_imageNames.txt b/orc_imageNames.txt deleted file mode 100644 index 588946c..0000000 --- a/orc_imageNames.txt +++ /dev/null @@ -1,3369 +0,0 @@ -000000.png -000001.png -000002.png -000003.png -000004.png -000005.png -000006.png -000007.png -000008.png -000009.png -000010.png -000011.png -000012.png -000013.png -000014.png -000015.png -000016.png -000017.png -000018.png -000019.png -000020.png -000021.png -000022.png -000023.png -000024.png -000025.png -000026.png -000027.png -000028.png -000029.png -000030.png -000031.png -000032.png -000033.png -000034.png -000035.png -000036.png -000037.png -000038.png -000039.png -000040.png -000041.png -000042.png -000043.png -000044.png -000045.png -000046.png -000047.png -000048.png -000049.png -000050.png -000051.png -000052.png -000053.png -000054.png -000055.png -000056.png -000057.png -000058.png -000059.png -000060.png -000061.png -000062.png -000063.png -000064.png -000065.png -000066.png -000067.png -000068.png -000069.png -000070.png -000071.png -000072.png -000073.png -000074.png -000075.png -000076.png -000077.png -000078.png -000079.png -000080.png -000081.png -000082.png -000083.png -000084.png -000085.png -000086.png -000087.png -000088.png -000089.png -000090.png -000091.png -000092.png -000093.png -000094.png -000095.png -000096.png -000097.png -000098.png -000099.png -000100.png -000101.png -000102.png -000103.png -000104.png -000105.png -000106.png -000107.png -000108.png -000109.png -000110.png -000111.png -000112.png -000113.png -000114.png -000115.png -000116.png -000117.png -000118.png -000119.png -000120.png -000121.png -000122.png -000123.png -000124.png -000125.png -000126.png -000127.png -000128.png -000129.png -000130.png -000131.png -000132.png -000133.png -000134.png -000135.png -000136.png -000137.png -000138.png -000139.png -000140.png -000141.png -000142.png -000143.png -000144.png -000145.png -000146.png -000147.png -000148.png -000149.png -000150.png -000151.png -000152.png -000153.png -000154.png -000155.png -000156.png -000157.png -000158.png -000159.png -000160.png -000161.png -000162.png -000163.png -000164.png -000165.png -000166.png -000167.png -000168.png -000169.png -000170.png -000171.png -000172.png -000173.png -000174.png -000175.png -000176.png -000177.png -000178.png -000179.png -000180.png -000181.png -000182.png -000183.png -000184.png -000185.png -000186.png -000187.png -000188.png -000189.png -000190.png -000191.png -000192.png -000193.png -000194.png -000195.png -000196.png -000197.png -000198.png -000199.png -000200.png -000201.png -000202.png -000203.png -000204.png -000205.png -000206.png -000207.png -000208.png -000209.png -000210.png -000211.png -000212.png -000213.png -000214.png -000215.png -000216.png -000217.png -000218.png -000219.png -000220.png -000221.png -000222.png -000223.png -000224.png -000225.png -000226.png -000227.png -000228.png -000229.png -000230.png -000231.png -000232.png -000233.png -000234.png -000235.png -000236.png -000237.png -000238.png -000239.png -000240.png -000241.png -000242.png -000243.png -000244.png -000245.png -000246.png -000247.png -000248.png -000249.png -000250.png -000251.png -000252.png -000253.png -000254.png -000255.png -000256.png -000257.png -000258.png -000259.png -000260.png -000261.png -000262.png -000263.png -000264.png -000265.png -000266.png -000267.png -000268.png -000269.png -000270.png -000271.png -000272.png -000273.png -000274.png -000275.png -000276.png -000277.png -000278.png -000279.png -000280.png -000281.png -000282.png -000283.png -000284.png -000285.png -000286.png -000287.png -000288.png -000289.png -000290.png -000291.png -000292.png -000293.png -000294.png -000295.png -000296.png -000297.png -000298.png -000299.png -000300.png -000301.png -000302.png -000303.png -000304.png -000305.png -000306.png -000307.png -000308.png -000309.png -000310.png -000311.png -000312.png -000313.png -000314.png -000315.png -000316.png -000317.png -000318.png -000319.png -000320.png -000321.png -000322.png -000323.png -000324.png -000325.png -000326.png -000327.png -000328.png -000329.png -000330.png -000331.png -000332.png -000333.png -000334.png -000335.png -000336.png -000337.png -000338.png -000339.png -000340.png -000341.png -000342.png -000343.png -000344.png -000345.png -000346.png -000347.png -000348.png -000349.png -000350.png -000351.png -000352.png -000353.png -000354.png -000355.png -000356.png -000357.png -000358.png -000359.png -000360.png -000361.png -000362.png -000363.png -000364.png -000365.png -000366.png -000367.png -000368.png -000369.png -000370.png -000371.png -000372.png -000373.png -000374.png -000375.png -000376.png -000377.png -000378.png -000379.png -000380.png -000381.png -000382.png -000383.png -000384.png -000385.png -000386.png -000387.png -000388.png -000389.png -000390.png -000391.png -000392.png -000393.png -000394.png -000395.png -000396.png -000397.png -000398.png -000399.png -000400.png -000401.png -000402.png -000403.png -000404.png -000405.png -000406.png -000407.png -000408.png -000409.png -000410.png -000411.png -000412.png -000413.png -000414.png -000415.png -000416.png -000417.png -000418.png -000419.png -000420.png -000421.png -000422.png -000423.png -000424.png -000425.png -000426.png -000427.png -000428.png -000429.png -000430.png -000431.png -000432.png -000433.png -000434.png -000435.png -000436.png -000437.png -000438.png -000439.png -000440.png -000441.png -000442.png -000443.png -000444.png -000445.png -000446.png -000447.png -000448.png -000449.png -000450.png -000451.png -000452.png -000453.png -000454.png -000455.png -000456.png -000457.png -000458.png -000459.png -000460.png -000461.png -000462.png -000463.png -000464.png -000465.png -000466.png -000467.png -000468.png -000469.png -000470.png -000471.png -000472.png -000473.png -000474.png -000475.png -000476.png -000477.png -000478.png -000479.png -000480.png -000481.png -000482.png -000483.png -000484.png -000485.png -000486.png -000487.png -000488.png -000489.png -000490.png -000491.png -000492.png -000493.png -000494.png -000495.png -000496.png -000497.png -000498.png -000499.png -000500.png -000501.png -000502.png -000503.png -000504.png -000505.png -000506.png -000507.png -000508.png -000509.png -000510.png -000511.png -000512.png -000513.png -000514.png -000515.png -000516.png -000517.png -000518.png -000519.png -000520.png -000521.png -000522.png -000523.png -000524.png -000525.png -000526.png -000527.png -000528.png -000529.png -000530.png -000531.png -000532.png -000533.png -000534.png -000535.png -000536.png -000537.png -000538.png -000539.png -000540.png -000541.png -000542.png -000543.png -000544.png -000545.png -000546.png -000547.png -000548.png -000549.png -000550.png -000551.png -000552.png -000553.png -000554.png -000555.png -000556.png -000557.png -000558.png -000559.png -000560.png -000561.png -000562.png -000563.png -000564.png -000565.png -000566.png -000567.png -000568.png -000569.png -000570.png -000571.png -000572.png -000573.png -000574.png -000575.png -000576.png -000577.png -000578.png -000579.png -000580.png -000581.png -000582.png -000583.png -000584.png -000585.png -000586.png -000587.png -000588.png -000589.png -000590.png -000591.png -000592.png -000593.png -000594.png -000595.png -000596.png -000597.png -000598.png -000599.png -000600.png -000601.png -000602.png -000603.png -000604.png -000605.png -000606.png -000607.png -000608.png -000609.png -000610.png -000611.png -000612.png -000613.png -000614.png -000615.png -000616.png -000617.png -000618.png -000619.png -000620.png -000621.png -000622.png -000623.png -000624.png -000625.png -000626.png -000627.png -000628.png -000629.png -000630.png -000631.png -000632.png -000633.png -000634.png -000635.png -000636.png -000637.png -000638.png -000639.png -000640.png -000641.png -000642.png -000643.png -000644.png -000645.png -000646.png -000647.png -000648.png -000649.png -000650.png -000651.png -000652.png -000653.png -000654.png -000655.png -000656.png -000657.png -000658.png -000659.png -000660.png -000661.png -000662.png -000663.png -000664.png -000665.png -000666.png -000667.png -000668.png -000669.png -000670.png -000671.png -000672.png -000673.png -000674.png -000675.png -000676.png -000677.png -000678.png -000679.png -000680.png -000681.png -000682.png -000683.png -000684.png -000685.png -000686.png -000687.png -000688.png -000689.png -000690.png -000691.png -000692.png -000693.png -000694.png -000695.png -000696.png -000697.png -000698.png -000699.png -000700.png -000701.png -000702.png -000703.png -000704.png -000705.png -000706.png -000707.png -000708.png -000709.png -000710.png -000711.png -000712.png -000713.png -000714.png -000715.png -000716.png -000717.png -000718.png -000719.png -000720.png -000721.png -000722.png -000723.png -000724.png -000725.png -000726.png -000727.png -000728.png -000729.png -000730.png -000731.png -000732.png -000733.png -000734.png -000735.png -000736.png -000737.png -000738.png -000739.png -000740.png -000741.png -000742.png -000743.png -000744.png -000745.png -000746.png -000747.png -000748.png -000749.png -000750.png -000751.png -000752.png -000753.png -000754.png -000755.png -000756.png -000757.png -000758.png -000759.png -000760.png -000761.png -000762.png -000763.png -000764.png -000765.png -000766.png -000767.png -000768.png -000769.png -000770.png -000771.png -000772.png -000773.png -000774.png -000775.png -000776.png -000777.png -000778.png -000779.png -000780.png -000781.png -000782.png -000783.png -000784.png -000785.png -000786.png -000787.png -000788.png -000789.png -000790.png -000791.png -000792.png -000793.png -000794.png -000795.png -000796.png -000797.png -000798.png -000799.png -000800.png -000801.png -000802.png -000803.png -000804.png -000805.png -000806.png -000807.png -000808.png -000809.png -000810.png -000811.png -000812.png -000813.png -000814.png -000815.png -000816.png -000817.png -000818.png -000819.png -000820.png -000821.png -000822.png -000823.png -000824.png -000825.png -000826.png -000827.png -000828.png -000829.png -000830.png -000831.png -000832.png -000833.png -000834.png -000835.png -000836.png -000837.png -000838.png -000839.png -000840.png -000841.png -000842.png -000843.png -000844.png -000845.png -000846.png -000847.png -000848.png -000849.png -000850.png -000851.png -000852.png -000853.png -000854.png -000855.png -000856.png -000857.png -000858.png -000859.png -000860.png -000861.png -000862.png -000863.png -000864.png -000865.png -000866.png -000867.png -000868.png -000869.png -000870.png -000871.png -000872.png -000873.png -000874.png -000875.png -000876.png -000877.png -000878.png -000879.png -000880.png -000881.png -000882.png -000883.png -000884.png -000885.png -000886.png -000887.png -000888.png -000889.png -000890.png -000891.png -000892.png -000893.png -000894.png -000895.png -000896.png -000897.png -000898.png -000899.png -000900.png -000901.png -000902.png -000903.png -000904.png -000905.png -000906.png -000907.png -000908.png -000909.png -000910.png -000911.png -000912.png -000913.png -000914.png -000915.png -000916.png -000917.png -000918.png -000919.png -000920.png -000921.png -000922.png -000923.png -000924.png -000925.png -000926.png -000927.png -000928.png -000929.png -000930.png -000931.png -000932.png -000933.png -000934.png -000935.png -000936.png -000937.png -000938.png -000939.png -000940.png -000941.png -000942.png -000943.png -000944.png -000945.png -000946.png -000947.png -000948.png -000949.png -000950.png -000951.png -000952.png -000953.png -000954.png -000955.png -000956.png -000957.png -000958.png -000959.png -000960.png -000961.png -000962.png -000963.png -000964.png -000965.png -000966.png -000967.png -000968.png -000969.png -000970.png -000971.png -000972.png -000973.png -000974.png -000975.png -000976.png -000977.png -000978.png -000979.png -000980.png -000981.png -000982.png -000983.png -000984.png -000985.png -000986.png -000987.png -000988.png -000989.png -000990.png -000991.png -000992.png -000993.png -000994.png -000995.png -000996.png -000997.png -000998.png -000999.png -001000.png -001001.png -001002.png -001003.png -001004.png -001005.png -001006.png -001007.png -001008.png -001009.png -001010.png -001011.png -001012.png -001013.png -001014.png -001015.png -001016.png -001017.png -001018.png -001019.png -001020.png -001021.png -001022.png -001023.png -001024.png -001025.png -001026.png -001027.png -001028.png -001029.png -001030.png -001031.png -001032.png -001033.png -001034.png -001035.png -001036.png -001037.png -001038.png -001039.png -001040.png -001041.png -001042.png -001043.png -001044.png -001045.png -001046.png -001047.png -001048.png -001049.png -001050.png -001051.png -001052.png -001053.png -001054.png -001055.png -001056.png -001057.png -001058.png -001059.png -001060.png -001061.png -001062.png -001063.png -001064.png -001065.png -001066.png -001067.png -001068.png -001069.png -001070.png -001071.png -001072.png -001073.png -001074.png -001075.png -001076.png -001077.png -001078.png -001079.png -001080.png -001081.png -001082.png -001083.png -001084.png -001085.png -001086.png -001087.png -001088.png -001089.png -001090.png -001091.png -001092.png -001093.png -001094.png -001095.png -001096.png -001097.png -001098.png -001099.png -001100.png -001101.png -001102.png -001103.png -001104.png -001105.png -001106.png -001107.png -001108.png -001109.png -001110.png -001111.png -001112.png -001113.png -001114.png -001115.png -001116.png -001117.png -001118.png -001119.png -001120.png -001121.png -001122.png -001123.png -001124.png -001125.png -001126.png -001127.png -001128.png -001129.png -001130.png -001131.png -001132.png -001133.png -001134.png -001135.png -001136.png -001137.png -001138.png -001139.png -001140.png -001141.png -001142.png -001143.png -001144.png -001145.png -001146.png -001147.png -001148.png -001149.png -001150.png -001151.png -001152.png -001153.png -001154.png -001155.png -001156.png -001157.png -001158.png -001159.png -001160.png -001161.png -001162.png -001163.png -001164.png -001165.png -001166.png -001167.png -001168.png -001169.png -001170.png -001171.png -001172.png -001173.png -001174.png -001175.png -001176.png -001177.png -001178.png -001179.png -001180.png -001181.png -001182.png -001183.png -001184.png -001185.png -001186.png -001187.png -001188.png -001189.png -001190.png -001191.png -001192.png -001193.png -001194.png -001195.png -001196.png -001197.png -001198.png -001199.png -001200.png -001201.png -001202.png -001203.png -001204.png -001205.png -001206.png -001207.png -001208.png -001209.png -001210.png -001211.png -001212.png -001213.png -001214.png -001215.png -001216.png -001217.png -001218.png -001219.png -001220.png -001221.png -001222.png -001223.png -001224.png -001225.png -001226.png -001227.png -001228.png -001229.png -001230.png -001231.png -001232.png -001233.png -001234.png -001235.png -001236.png -001237.png -001238.png -001239.png -001240.png -001241.png -001242.png -001243.png -001244.png -001245.png -001246.png -001247.png -001248.png -001249.png -001250.png -001251.png -001252.png -001253.png -001254.png -001255.png -001256.png -001257.png -001258.png -001259.png -001260.png -001261.png -001262.png -001263.png -001264.png -001265.png -001266.png -001267.png -001268.png -001269.png -001270.png -001271.png -001272.png -001273.png -001274.png -001275.png -001276.png -001277.png -001278.png -001279.png -001280.png -001281.png -001282.png -001283.png -001284.png -001285.png -001286.png -001287.png -001288.png -001289.png -001290.png -001291.png -001292.png -001293.png -001294.png -001295.png -001296.png -001297.png -001298.png -001299.png -001300.png -001301.png -001302.png -001303.png -001304.png -001305.png -001306.png -001307.png -001308.png -001309.png -001310.png -001311.png -001312.png -001313.png -001314.png -001315.png -001316.png -001317.png -001318.png -001319.png -001320.png -001321.png -001322.png -001323.png -001324.png -001325.png -001326.png -001327.png -001328.png -001329.png -001330.png -001331.png -001332.png -001333.png -001334.png -001335.png -001336.png -001337.png -001338.png -001339.png -001340.png -001341.png -001342.png -001343.png -001344.png -001345.png -001346.png -001347.png -001348.png -001349.png -001350.png -001351.png -001352.png -001353.png -001354.png -001355.png -001356.png -001357.png -001358.png -001359.png -001360.png -001361.png -001362.png -001363.png -001364.png -001365.png -001366.png -001367.png -001368.png -001369.png -001370.png -001371.png -001372.png -001373.png -001374.png -001375.png -001376.png -001377.png -001378.png -001379.png -001380.png -001381.png -001382.png -001383.png -001384.png -001385.png -001386.png -001387.png -001388.png -001389.png -001390.png -001391.png -001392.png -001393.png -001394.png -001395.png -001396.png -001397.png -001398.png -001399.png -001400.png -001401.png -001402.png -001403.png -001404.png -001405.png -001406.png -001407.png -001408.png -001409.png -001410.png -001411.png -001412.png -001413.png -001414.png -001415.png -001416.png -001417.png -001418.png -001419.png -001420.png -001421.png -001422.png -001423.png -001424.png -001425.png -001426.png -001427.png -001428.png -001429.png -001430.png -001431.png -001432.png -001433.png -001434.png -001435.png -001436.png -001437.png -001438.png -001439.png -001440.png -001441.png -001442.png -001443.png -001444.png -001445.png -001446.png -001447.png -001448.png -001449.png -001450.png -001451.png -001452.png -001453.png -001454.png -001455.png -001456.png -001457.png -001458.png -001459.png -001460.png -001461.png -001462.png -001463.png -001464.png -001465.png -001466.png -001467.png -001468.png -001469.png -001470.png -001471.png -001472.png -001473.png -001474.png -001475.png -001476.png -001477.png -001478.png -001479.png -001480.png -001481.png -001482.png -001483.png -001484.png -001485.png -001486.png -001487.png -001488.png -001489.png -001490.png -001491.png -001492.png -001493.png -001494.png -001495.png -001496.png -001497.png -001498.png -001499.png -001500.png -001501.png -001502.png -001503.png -001504.png -001505.png -001506.png -001507.png -001508.png -001509.png -001510.png -001511.png -001512.png -001513.png -001514.png -001515.png -001516.png -001517.png -001518.png -001519.png -001520.png -001521.png -001522.png -001523.png -001524.png -001525.png -001526.png -001527.png -001528.png -001529.png -001530.png -001531.png -001532.png -001533.png -001534.png -001535.png -001536.png -001537.png -001538.png -001539.png -001540.png -001541.png -001542.png -001543.png -001544.png -001545.png -001546.png -001547.png -001548.png -001549.png -001550.png -001551.png -001552.png -001553.png -001554.png -001555.png -001556.png -001557.png -001558.png -001559.png -001560.png -001561.png -001562.png -001563.png -001564.png -001565.png -001566.png -001567.png -001568.png -001569.png -001570.png -001571.png -001572.png -001573.png -001574.png -001575.png -001576.png -001577.png -001578.png -001579.png -001580.png -001581.png -001582.png -001583.png -001584.png -001585.png -001586.png -001587.png -001588.png -001589.png -001590.png -001591.png -001592.png -001593.png -001594.png -001595.png -001596.png -001597.png -001598.png -001599.png -001600.png -001601.png -001602.png -001603.png -001604.png -001605.png -001606.png -001607.png -001608.png -001609.png -001610.png -001611.png -001612.png -001613.png -001614.png -001615.png -001616.png -001617.png -001618.png -001619.png -001620.png -001621.png -001622.png -001623.png -001624.png -001625.png -001626.png -001627.png -001628.png -001629.png -001630.png -001631.png -001632.png -001633.png -001634.png -001635.png -001636.png -001637.png -001638.png -001639.png -001640.png -001641.png -001642.png -001643.png -001644.png -001645.png -001646.png -001647.png -001648.png -001649.png -001650.png -001651.png -001652.png -001653.png -001654.png -001655.png -001656.png -001657.png -001658.png -001659.png -001660.png -001661.png -001662.png -001663.png -001664.png -001665.png -001666.png -001667.png -001668.png -001669.png -001670.png -001671.png -001672.png -001673.png -001674.png -001675.png -001676.png -001677.png -001678.png -001679.png -001680.png -001681.png -001682.png -001683.png -001684.png -001685.png -001686.png -001687.png -001688.png -001689.png -001690.png -001691.png -001692.png -001693.png -001694.png -001695.png -001696.png -001697.png -001698.png -001699.png -001700.png -001701.png -001702.png -001703.png -001704.png -001705.png -001706.png -001707.png -001708.png -001709.png -001710.png -001711.png -001712.png -001713.png -001714.png -001715.png -001716.png -001717.png -001718.png -001719.png -001720.png -001721.png -001722.png -001723.png -001724.png -001725.png -001726.png -001727.png -001728.png -001729.png -001730.png -001731.png -001732.png -001733.png -001734.png -001735.png -001736.png -001737.png -001738.png -001739.png -001740.png -001741.png -001742.png -001743.png -001744.png -001745.png -001746.png -001747.png -001748.png -001749.png -001750.png -001751.png -001752.png -001753.png -001754.png -001755.png -001756.png -001757.png -001758.png -001759.png -001760.png -001761.png -001762.png -001763.png -001764.png -001765.png -001766.png -001767.png -001768.png -001769.png -001770.png -001771.png -001772.png -001773.png -001774.png -001775.png -001776.png -001777.png -001778.png -001779.png -001780.png -001781.png -001782.png -001783.png -001784.png -001785.png -001786.png -001787.png -001788.png -001789.png -001790.png -001791.png -001792.png -001793.png -001794.png -001795.png -001796.png -001797.png -001798.png -001799.png -001800.png -001801.png -001802.png -001803.png -001804.png -001805.png -001806.png -001807.png -001808.png -001809.png -001810.png -001811.png -001812.png -001813.png -001814.png -001815.png -001816.png -001817.png -001818.png -001819.png -001820.png -001821.png -001822.png -001823.png -001824.png -001825.png -001826.png -001827.png -001828.png -001829.png -001830.png -001831.png -001832.png -001833.png -001834.png -001835.png -001836.png -001837.png -001838.png -001839.png -001840.png -001841.png -001842.png -001843.png -001844.png -001845.png -001846.png -001847.png -001848.png -001849.png -001850.png -001851.png -001852.png -001853.png -001854.png -001855.png -001856.png -001857.png -001858.png -001859.png -001860.png -001861.png -001862.png -001863.png -001864.png -001865.png -001866.png -001867.png -001868.png -001869.png -001870.png -001871.png -001872.png -001873.png -001874.png -001875.png -001876.png -001877.png -001878.png -001879.png -001880.png -001881.png -001882.png -001883.png -001884.png -001885.png -001886.png -001887.png -001888.png -001889.png -001890.png -001891.png -001892.png -001893.png -001894.png -001895.png -001896.png -001897.png -001898.png -001899.png -001900.png -001901.png -001902.png -001903.png -001904.png -001905.png -001906.png -001907.png -001908.png -001909.png -001910.png -001911.png -001912.png -001913.png -001914.png -001915.png -001916.png -001917.png -001918.png -001919.png -001920.png -001921.png -001922.png -001923.png -001924.png -001925.png -001926.png -001927.png -001928.png -001929.png -001930.png -001931.png -001932.png -001933.png -001934.png -001935.png -001936.png -001937.png -001938.png -001939.png -001940.png -001941.png -001942.png -001943.png -001944.png -001945.png -001946.png -001947.png -001948.png -001949.png -001950.png -001951.png -001952.png -001953.png -001954.png -001955.png -001956.png -001957.png -001958.png -001959.png -001960.png -001961.png -001962.png -001963.png -001964.png -001965.png -001966.png -001967.png -001968.png -001969.png -001970.png -001971.png -001972.png -001973.png -001974.png -001975.png -001976.png -001977.png -001978.png -001979.png -001980.png -001981.png -001982.png -001983.png -001984.png -001985.png -001986.png -001987.png -001988.png -001989.png -001990.png -001991.png -001992.png -001993.png -001994.png -001995.png -001996.png -001997.png -001998.png -001999.png -002000.png -002001.png -002002.png -002003.png -002004.png -002005.png -002006.png -002007.png -002008.png -002009.png -002010.png -002011.png -002012.png -002013.png -002014.png -002015.png -002016.png -002017.png -002018.png -002019.png -002020.png -002021.png -002022.png -002023.png -002024.png -002025.png -002026.png -002027.png -002028.png -002029.png -002030.png -002031.png -002032.png -002033.png -002034.png -002035.png -002036.png -002037.png -002038.png -002039.png -002040.png -002041.png -002042.png -002043.png -002044.png -002045.png -002046.png -002047.png -002048.png -002049.png -002050.png -002051.png -002052.png -002053.png -002054.png -002055.png -002056.png -002057.png -002058.png -002059.png -002060.png -002061.png -002062.png -002063.png -002064.png -002065.png -002066.png -002067.png -002068.png -002069.png -002070.png -002071.png -002072.png -002073.png -002074.png -002075.png -002076.png -002077.png -002078.png -002079.png -002080.png -002081.png -002082.png -002083.png -002084.png -002085.png -002086.png -002087.png -002088.png -002089.png -002090.png -002091.png -002092.png -002093.png -002094.png -002095.png -002096.png -002097.png -002098.png -002099.png -002100.png -002101.png -002102.png -002103.png -002104.png -002105.png -002106.png -002107.png -002108.png -002109.png -002110.png -002111.png -002112.png -002113.png -002114.png -002115.png -002116.png -002117.png -002118.png -002119.png -002120.png -002121.png -002122.png -002123.png -002124.png -002125.png -002126.png -002127.png -002128.png -002129.png -002130.png -002131.png -002132.png -002133.png -002134.png -002135.png -002136.png -002137.png -002138.png -002139.png -002140.png -002141.png -002142.png -002143.png -002144.png -002145.png -002146.png -002147.png -002148.png -002149.png -002150.png -002151.png -002152.png -002153.png -002154.png -002155.png -002156.png -002157.png -002158.png -002159.png -002160.png -002161.png -002162.png -002163.png -002164.png -002165.png -002166.png -002167.png -002168.png -002169.png -002170.png -002171.png -002172.png -002173.png -002174.png -002175.png -002176.png -002177.png -002178.png -002179.png -002180.png -002181.png -002182.png -002183.png -002184.png -002185.png -002186.png -002187.png -002188.png -002189.png -002190.png -002191.png -002192.png -002193.png -002194.png -002195.png -002196.png -002197.png -002198.png -002199.png -002200.png -002201.png -002202.png -002203.png -002204.png -002205.png -002206.png -002207.png -002208.png -002209.png -002210.png -002211.png -002212.png -002213.png -002214.png -002215.png -002216.png -002217.png -002218.png -002219.png -002220.png -002221.png -002222.png -002223.png -002224.png -002225.png -002226.png -002227.png -002228.png -002229.png -002230.png -002231.png -002232.png -002233.png -002234.png -002235.png -002236.png -002237.png -002238.png -002239.png -002240.png -002241.png -002242.png -002243.png -002244.png -002245.png -002246.png -002247.png -002248.png -002249.png -002250.png -002251.png -002252.png -002253.png -002254.png -002255.png -002256.png -002257.png -002258.png -002259.png -002260.png -002261.png -002262.png -002263.png -002264.png -002265.png -002266.png -002267.png -002268.png -002269.png -002270.png -002271.png -002272.png -002273.png -002274.png -002275.png -002276.png -002277.png -002278.png -002279.png -002280.png -002281.png -002282.png -002283.png -002284.png -002285.png -002286.png -002287.png -002288.png -002289.png -002290.png -002291.png -002292.png -002293.png -002294.png -002295.png -002296.png -002297.png -002298.png -002299.png -002300.png -002301.png -002302.png -002303.png -002304.png -002305.png -002306.png -002307.png -002308.png -002309.png -002310.png -002311.png -002312.png -002313.png -002314.png -002315.png -002316.png -002317.png -002318.png -002319.png -002320.png -002321.png -002322.png -002323.png -002324.png -002325.png -002326.png -002327.png -002328.png -002329.png -002330.png -002331.png -002332.png -002333.png -002334.png -002335.png -002336.png -002337.png -002338.png -002339.png -002340.png -002341.png -002342.png -002343.png -002344.png -002345.png -002346.png -002347.png -002348.png -002349.png -002350.png -002351.png -002352.png -002353.png -002354.png -002355.png -002356.png -002357.png -002358.png -002359.png -002360.png -002361.png -002362.png -002363.png -002364.png -002365.png -002366.png -002367.png -002368.png -002369.png -002370.png -002371.png -002372.png -002373.png -002374.png -002375.png -002376.png -002377.png -002378.png -002379.png -002380.png -002381.png -002382.png -002383.png -002384.png -002385.png -002386.png -002387.png -002388.png -002389.png -002390.png -002391.png -002392.png -002393.png -002394.png -002395.png -002396.png -002397.png -002398.png -002399.png -002400.png -002401.png -002402.png -002403.png -002404.png -002405.png -002406.png -002407.png -002408.png -002409.png -002410.png -002411.png -002412.png -002413.png -002414.png -002415.png -002416.png -002417.png -002418.png -002419.png -002420.png -002421.png -002422.png -002423.png -002424.png -002425.png -002426.png -002427.png -002428.png -002429.png -002430.png -002431.png -002432.png -002433.png -002434.png -002435.png -002436.png -002437.png -002438.png -002439.png -002440.png -002441.png -002442.png -002443.png -002444.png -002445.png -002446.png -002447.png -002448.png -002449.png -002450.png -002451.png -002452.png -002453.png -002454.png -002455.png -002456.png -002457.png -002458.png -002459.png -002460.png -002461.png -002462.png -002463.png -002464.png -002465.png -002466.png -002467.png -002468.png -002469.png -002470.png -002471.png -002472.png -002473.png -002474.png -002475.png -002476.png -002477.png -002478.png -002479.png -002480.png -002481.png -002482.png -002483.png -002484.png -002485.png -002486.png -002487.png -002488.png -002489.png -002490.png -002491.png -002492.png -002493.png -002494.png -002495.png -002496.png -002497.png -002498.png -002499.png -002500.png -002501.png -002502.png -002503.png -002504.png -002505.png -002506.png -002507.png -002508.png -002509.png -002510.png -002511.png -002512.png -002513.png -002514.png -002515.png -002516.png -002517.png -002518.png -002519.png -002520.png -002521.png -002522.png -002523.png -002524.png -002525.png -002526.png -002527.png -002528.png -002529.png -002530.png -002531.png -002532.png -002533.png -002534.png -002535.png -002536.png -002537.png -002538.png -002539.png -002540.png -002541.png -002542.png -002543.png -002544.png -002545.png -002546.png -002547.png -002548.png -002549.png -002550.png -002551.png -002552.png -002553.png -002554.png -002555.png -002556.png -002557.png -002558.png -002559.png -002560.png -002561.png -002562.png -002563.png -002564.png -002565.png -002566.png -002567.png -002568.png -002569.png -002570.png -002571.png -002572.png -002573.png -002574.png -002575.png -002576.png -002577.png -002578.png -002579.png -002580.png -002581.png -002582.png -002583.png -002584.png -002585.png -002586.png -002587.png -002588.png -002589.png -002590.png -002591.png -002592.png -002593.png -002594.png -002595.png -002596.png -002597.png -002598.png -002599.png -002600.png -002601.png -002602.png -002603.png -002604.png -002605.png -002606.png -002607.png -002608.png -002609.png -002610.png -002611.png -002612.png -002613.png -002614.png -002615.png -002616.png -002617.png -002618.png -002619.png -002620.png -002621.png -002622.png -002623.png -002624.png -002625.png -002626.png -002627.png -002628.png -002629.png -002630.png -002631.png -002632.png -002633.png -002634.png -002635.png -002636.png -002637.png -002638.png -002639.png -002640.png -002641.png -002642.png -002643.png -002644.png -002645.png -002646.png -002647.png -002648.png -002649.png -002650.png -002651.png -002652.png -002653.png -002654.png -002655.png -002656.png -002657.png -002658.png -002659.png -002660.png -002661.png -002662.png -002663.png -002664.png -002665.png -002666.png -002667.png -002668.png -002669.png -002670.png -002671.png -002672.png -002673.png -002674.png -002675.png -002676.png -002677.png -002678.png -002679.png -002680.png -002681.png -002682.png -002683.png -002684.png -002685.png -002686.png -002687.png -002688.png -002689.png -002690.png -002691.png -002692.png -002693.png -002694.png -002695.png -002696.png -002697.png -002698.png -002699.png -002700.png -002701.png -002702.png -002703.png -002704.png -002705.png -002706.png -002707.png -002708.png -002709.png -002710.png -002711.png -002712.png -002713.png -002714.png -002715.png -002716.png -002717.png -002718.png -002719.png -002720.png -002721.png -002722.png -002723.png -002724.png -002725.png -002726.png -002727.png -002728.png -002729.png -002730.png -002731.png -002732.png -002733.png -002734.png -002735.png -002736.png -002737.png -002738.png -002739.png -002740.png -002741.png -002742.png -002743.png -002744.png -002745.png -002746.png -002747.png -002748.png -002749.png -002750.png -002751.png -002752.png -002753.png -002754.png -002755.png -002756.png -002757.png -002758.png -002759.png -002760.png -002761.png -002762.png -002763.png -002764.png -002765.png -002766.png -002767.png -002768.png -002769.png -002770.png -002771.png -002772.png -002773.png -002774.png -002775.png -002776.png -002777.png -002778.png -002779.png -002780.png -002781.png -002782.png -002783.png -002784.png -002785.png -002786.png -002787.png -002788.png -002789.png -002790.png -002791.png -002792.png -002793.png -002794.png -002795.png -002796.png -002797.png -002798.png -002799.png -002800.png -002801.png -002802.png -002803.png -002804.png -002805.png -002806.png -002807.png -002808.png -002809.png -002810.png -002811.png -002812.png -002813.png -002814.png -002815.png -002816.png -002817.png -002818.png -002819.png -002820.png -002821.png -002822.png -002823.png -002824.png -002825.png -002826.png -002827.png -002828.png -002829.png -002830.png -002831.png -002832.png -002833.png -002834.png -002835.png -002836.png -002837.png -002838.png -002839.png -002840.png -002841.png -002842.png -002843.png -002844.png -002845.png -002846.png -002847.png -002848.png -002849.png -002850.png -002851.png -002852.png -002853.png -002854.png -002855.png -002856.png -002857.png -002858.png -002859.png -002860.png -002861.png -002862.png -002863.png -002864.png -002865.png -002866.png -002867.png -002868.png -002869.png -002870.png -002871.png -002872.png -002873.png -002874.png -002875.png -002876.png -002877.png -002878.png -002879.png -002880.png -002881.png -002882.png -002883.png -002884.png -002885.png -002886.png -002887.png -002888.png -002889.png -002890.png -002891.png -002892.png -002893.png -002894.png -002895.png -002896.png -002897.png -002898.png -002899.png -002900.png -002901.png -002902.png -002903.png -002904.png -002905.png -002906.png -002907.png -002908.png -002909.png -002910.png -002911.png -002912.png -002913.png -002914.png -002915.png -002916.png -002917.png -002918.png -002919.png -002920.png -002921.png -002922.png -002923.png -002924.png -002925.png -002926.png -002927.png -002928.png -002929.png -002930.png -002931.png -002932.png -002933.png -002934.png -002935.png -002936.png -002937.png -002938.png -002939.png -002940.png -002941.png -002942.png -002943.png -002944.png -002945.png -002946.png -002947.png -002948.png -002949.png -002950.png -002951.png -002952.png -002953.png -002954.png -002955.png -002956.png -002957.png -002958.png -002959.png -002960.png -002961.png -002962.png -002963.png -002964.png -002965.png -002966.png -002967.png -002968.png -002969.png -002970.png -002971.png -002972.png -002973.png -002974.png -002975.png -002976.png -002977.png -002978.png -002979.png -002980.png -002981.png -002982.png -002983.png -002984.png -002985.png -002986.png -002987.png -002988.png -002989.png -002990.png -002991.png -002992.png -002993.png -002994.png -002995.png -002996.png -002997.png -002998.png -002999.png -003000.png -003001.png -003002.png -003003.png -003004.png -003005.png -003006.png -003007.png -003008.png -003009.png -003010.png -003011.png -003012.png -003013.png -003014.png -003015.png -003016.png -003017.png -003018.png -003019.png -003020.png -003021.png -003022.png -003023.png -003024.png -003025.png -003026.png -003027.png -003028.png -003029.png -003030.png -003031.png -003032.png -003033.png -003034.png -003035.png -003036.png -003037.png -003038.png -003039.png -003040.png -003041.png -003042.png -003043.png -003044.png -003045.png -003046.png -003047.png -003048.png -003049.png -003050.png -003051.png -003052.png -003053.png -003054.png -003055.png -003056.png -003057.png -003058.png -003059.png -003060.png -003061.png -003062.png -003063.png -003064.png -003065.png -003066.png -003067.png -003068.png -003069.png -003070.png -003071.png -003072.png -003073.png -003074.png -003075.png -003076.png -003077.png -003078.png -003079.png -003080.png -003081.png -003082.png -003083.png -003084.png -003085.png -003086.png -003087.png -003088.png -003089.png -003090.png -003091.png -003092.png -003093.png -003094.png -003095.png -003096.png -003097.png -003098.png -003099.png -003100.png -003101.png -003102.png -003103.png -003104.png -003105.png -003106.png -003107.png -003108.png -003109.png -003110.png -003111.png -003112.png -003113.png -003114.png -003115.png -003116.png -003117.png -003118.png -003119.png -003120.png -003121.png -003122.png -003123.png -003124.png -003125.png -003126.png -003127.png -003128.png -003129.png -003130.png -003131.png -003132.png -003133.png -003134.png -003135.png -003136.png -003137.png -003138.png -003139.png -003140.png -003141.png -003142.png -003143.png -003144.png -003145.png -003146.png -003147.png -003148.png -003149.png -003150.png -003151.png -003152.png -003153.png -003154.png -003155.png -003156.png -003157.png -003158.png -003159.png -003160.png -003161.png -003162.png -003163.png -003164.png -003165.png -003166.png -003167.png -003168.png -003169.png -003170.png -003171.png -003172.png -003173.png -003174.png -003175.png -003176.png -003177.png -003178.png -003179.png -003180.png -003181.png -003182.png -003183.png -003184.png -003185.png -003186.png -003187.png -003188.png -003189.png -003190.png -003191.png -003192.png -003193.png -003194.png -003195.png -003196.png -003197.png -003198.png -003199.png -003200.png -003201.png -003202.png -003203.png -003204.png -003205.png -003206.png -003207.png -003208.png -003209.png -003210.png -003211.png -003212.png -003213.png -003214.png -003215.png -003216.png -003217.png -003218.png -003219.png -003220.png -003221.png -003222.png -003223.png -003224.png -003225.png -003226.png -003227.png -003228.png -003229.png -003230.png -003231.png -003232.png -003233.png -003234.png -003235.png -003236.png -003237.png -003238.png -003239.png -003240.png -003241.png -003242.png -003243.png -003244.png -003245.png -003246.png -003247.png -003248.png -003249.png -003250.png -003251.png -003252.png -003253.png -003254.png -003255.png -003256.png -003257.png -003258.png -003259.png -003260.png -003261.png -003262.png -003263.png -003264.png -003265.png -003266.png -003267.png -003268.png -003269.png -003270.png -003271.png -003272.png -003273.png -003274.png -003275.png -003276.png -003277.png -003278.png -003279.png -003280.png -003281.png -003282.png -003283.png -003284.png -003285.png -003286.png -003287.png -003288.png -003289.png -003290.png -003291.png -003292.png -003293.png -003294.png -003295.png -003296.png -003297.png -003298.png -003299.png -003300.png -003301.png -003302.png -003303.png -003304.png -003305.png -003306.png -003307.png -003308.png -003309.png -003310.png -003311.png -003312.png -003313.png -003314.png -003315.png -003316.png -003317.png -003318.png -003319.png -003320.png -003321.png -003322.png -003323.png -003324.png -003325.png -003326.png -003327.png -003328.png -003329.png -003330.png -003331.png -003332.png -003333.png -003334.png -003335.png -003336.png -003337.png -003338.png -003339.png -003340.png -003341.png -003342.png -003343.png -003344.png -003345.png -003346.png -003347.png -003348.png -003349.png -003350.png -003351.png -003352.png -003353.png -003354.png -003355.png -003356.png -003357.png -003358.png -003359.png -003360.png -003361.png -003362.png -003363.png -003364.png -003365.png -003366.png -003367.png -003368.png diff --git a/output/.output.txt b/output/.output.txt deleted file mode 100644 index 6d575ae..0000000 --- a/output/.output.txt +++ /dev/null @@ -1 +0,0 @@ -# Hidden file for output folder diff --git a/src/blitnet.py b/src/blitnet.py index 0774efb..abd52b0 100644 --- a/src/blitnet.py +++ b/src/blitnet.py @@ -134,7 +134,7 @@ def norm_rates(pre_layer,post_layer): # Replace the original layer.thr with the updated one layer.thr = nn.Parameter(torch.where(layer.thr + layer.eta_ip * (layer.x - layer.fire_rate) < 0, torch.zeros_like(layer.thr), - layer.thr + layer.eta_ip * (layer.x - layer.fire_rate))) + layer.thr + (layer.eta_ip * (layer.x - layer.fire_rate)))) torch.cuda.empty_cache() @@ -192,7 +192,7 @@ def calc_stdp(pre_layer,post_layer,spikes,idx=0): len(layers[-1].excW[0, :, 0]), len(layers[-1].excW[0, 0, :])] # Get the output neuron index - idx_sel = torch.arange(int(idx),int(idx)+1,device=layers[-1].device,dtype=int) + idx_sel = torch.arange(int(idx[0]),int(idx[0])+1,device=layers[-1].device,dtype=int) # Difference between forced and calculated spikes layers[-1].x = torch.full_like(layers[-1].x,0) diff --git a/src/dataset.py b/src/dataset.py index 7019ded..ca0484a 100644 --- a/src/dataset.py +++ b/src/dataset.py @@ -118,7 +118,7 @@ def __call__(self, img): class CustomImageDataset(Dataset): def __init__(self, annotations_file, img_dirs, transform=None, target_transform=None, - skip=1, max_samples=None, modules=1): + skip=1, max_samples=None, modules=1, test=True): self.transform = transform self.target_transform = target_transform self.skip = skip @@ -136,6 +136,10 @@ def __init__(self, annotations_file, img_dirs, transform=None, target_transform= if max_samples is not None: img_labels = img_labels.iloc[:max_samples] + # Determine if the images being fed are training or testing + if test: + poopy=1 + # Reorder images in the DataFrame reordered_img_labels = self.reorder_images(img_labels, modules) self.img_labels.append(reordered_img_labels) diff --git a/weights/weights_note b/weights/weights_note deleted file mode 100644 index ca01bad..0000000 --- a/weights/weights_note +++ /dev/null @@ -1,8 +0,0 @@ -Trained networks will appear in this folder as a pickled Python dictionary (.pkl). The naming takes the following format: -# xxxi - number of neurons in the input (i) layer -# xxxxf - number of neurons in the feature (f) layer -# xxxo - number of neurons in the output (o) layer -# X - number of training epochs - -Which will look something like - xxxixxxfxxxoX.pkl -An example trained network would be - 784i5488f400o4.pkl From 7d0f26e5191872495e3329e399d5443b247c5484 Mon Sep 17 00:00:00 2001 From: Adam Hines Date: Wed, 4 Oct 2023 18:30:20 +1000 Subject: [PATCH 09/69] Started on the testing network, weird problem with output weight nans. Investigate further --- .DS_Store | Bin 8196 -> 8196 bytes VPRTempo.py | 130 ++++++++++++++++++++++++++++++----------------- config/config.py | 16 +++--- src/blitnet.py | 55 +++++++++----------- src/dataset.py | 27 ++++++---- 5 files changed, 132 insertions(+), 96 deletions(-) diff --git a/.DS_Store b/.DS_Store index 01380ea6f2ab5d205e976628e93a0d479ef94108..559b89382d81662d615286ec286ece32aa8c2cfa 100644 GIT binary patch delta 473 zcmZp1XmOa}&nUeyU^hRb^kg0ZxB5heVjxUqC}AkhNjD5m&d)7i00Gt~bATip1Co4h zzKcszPJR+loa02<1Y_sKqmGzrQV6Ok$UxY`%)t6#vyVUxqa_eL1Q-|?J%QG&{|^R07RXshYA5RnH*lC58R;k(nww1)6m+adl0@+nSTCw(WIx@x zc7!254eBQ(Gjj70e!`^&*-r`(dr&PZ3ogpb$5w2!VAclH8h$mD{O3rW^_t%a!yiy neh$z`bX&`Ui}G^v^FVH6+?bflw3%Jv8_VQEK?Uj?p2Y+JFm`tY diff --git a/VPRTempo.py b/VPRTempo.py index ee7834b..57fbcb3 100644 --- a/VPRTempo.py +++ b/VPRTempo.py @@ -45,11 +45,10 @@ from torch.utils.data import DataLoader from tqdm import tqdm - class SNNLayer(nn.Module): def __init__(self, previous_layer=None,dims=[0,0,0],thr_range=[0,0], fire_rate=[0,0],ip_rate=0,stdp_rate=0,const_inp=[0,0],p=[1,1], - assign_weight=False,spk_force=False): + assign_weight=False,spk_force=False,requires_grad=False): super(SNNLayer, self).__init__() configure(self) # Device @@ -62,7 +61,7 @@ def __init__(self, previous_layer=None,dims=[0,0,0],thr_range=[0,0], # Initialize Tensors self.dim = torch.tensor(dims, dtype=torch.int) - self.x = torch.zeros(dims, device=self.device,requires_grad=False) + self.x = torch.zeros(dims, device=self.device) self.x_prev = torch.zeros(dims, device=self.device) self.x_calc = torch.zeros(dims, device=self.device) self.x_input = torch.zeros(dims, device=self.device) @@ -86,14 +85,13 @@ def __init__(self, previous_layer=None,dims=[0,0,0],thr_range=[0,0], # Weights (if applicable) if assign_weight: - excW, inhW, self.I, self.havconnExc, self.havconnInh = bn.addWeights(p=self.p, - stdp_rate=self.eta_stdp, + excW, inhW, self.havconnExc, self.havconnInh = bn.addWeights(p=self.p, dims=[previous_layer.dims[2], dims[2]], num_modules=self.number_modules) - self.excW = nn.Parameter(excW) - self.inhW = nn.Parameter(inhW) + self.excW = nn.Parameter(excW, requires_grad=requires_grad) + self.inhW = nn.Parameter(inhW, requires_grad=requires_grad) class SNNTrainer(nn.Module): def __init__(self): @@ -115,14 +113,17 @@ def __init__(self): stdp_rate=0.005, const_inp=[0,0.1], p=[0.1,0.5], - assign_weight=True) + assign_weight=True, + requires_grad=True) # Set up the output layer self.output_layer = SNNLayer(previous_layer=self.feature_layer, dims=[self.number_modules,1,self.output], + ip_rate=0.15, stdp_rate=0.005, assign_weight=True, - spk_force=True) + spk_force=True, + requires_grad=True) # Define number of layers (will run training on all layers) self.layers = {'layer0':self.input_layer, @@ -159,7 +160,7 @@ def train_model(self, train_loader): images = images.to(self.device) # Set spikes from input images - make_spikes = SetImageAsSpikes(self.intensity) + make_spikes = SetImageAsSpikes(self.intensity, test=False) spikes = make_spikes(images) # Put labels on device (CPU, CUDA) @@ -168,17 +169,21 @@ def train_model(self, train_loader): # Layers don't include loaded input, calculate network spikes for up to training layers if layer != 0: - spikes = bn.testSim(self.layers,layer,spikes,idx) - + spikes = bn.testSim(self.layers,layer,spikes) + # Run one timestep of the training input to feature layer bn.runSim(in_layer, out_layer, spikes, idx) - + # Anneal the learning rate if np.mod(mod,10)==0: pt = pow(float(self.T-mod)/self.T,self.annl_pow) out_layer.eta_ip = torch.mul(n_initip,pt) out_layer.eta_stdp = torch.mul(n_initstdp,pt) mod += 1 + + # Reset x and x_input for next iteration + out_layer.x.fill_(0.0) + out_layer.x_input.fill_(0.0) # Once layers have finished training, turn off any learning out_layer.eta_ip = 0 @@ -187,9 +192,9 @@ def train_model(self, train_loader): out_layer.inhW.requires_grad_(False) out_layer.thr.requires_grad_(False) - torch.cuda.empty_cache() - gc.collect() - + torch.cuda.empty_cache() + gc.collect() + def save_model(self, model_out): # save model torch.save(self.state_dict(), model_out) @@ -211,7 +216,7 @@ def __init__(self): # Set up the output layer self.output_layer = SNNLayer(previous_layer=self.feature_layer, dims=[self.number_modules,1,self.output], - assign_weight=True,) + assign_weight=True) # Define number of layers (will run training on all layers) self.layers = {'layer0':self.input_layer, @@ -223,29 +228,61 @@ def load_model(self,model_path): self.load_state_dict(state_dict) self.eval() - def forward(self, x): - # Define the forward pass to transform the input x to an output - # TODO: Replace with actual forward pass code - out = bn.testSim(self) # Assuming testSim is a function that can perform the forward pass - return out + def forward(self, test_loader): + + # If using CUDA, run a dummy torch.bmm to 'spool-up' operations + if self.device.type == "cuda": + # Create some dummy tensors on CUDA + dummy_a = torch.randn(10, 10, device=self.device) + dummy_b = torch.randn(10, 10, device=self.device) + + # Perform a dummy bmm operation + torch.bmm(dummy_a.unsqueeze(0), dummy_b.unsqueeze(0)) + idx=0 + numcorr = 0 + # Run test network for each individual input + for images, labels in test_loader: + # Set images to the specified device + images = images.to(self.device) + labels = labels.to(self.device) + # Set the spikes for the input, tiling across modules if applicable + make_spikes = SetImageAsSpikes(intensity=self.intensity, + modules=self.number_modules) + spikes = make_spikes(images) + + # Run the test sim + out = bn.testSim(self.layers,len(self.layers)-1,spikes) + tonump = np.array([]) + tonump = np.append(tonump,np.reshape(out.cpu().numpy(), + [1,1,int(self.number_training_images)])) + if np.argmax(tonump) == idx: + numcorr += 1 + idx+=1 + pause=1 if __name__ == "__main__": # Initialize the model and image transforms model = SNNModel() # Generate model name, check if pre-trained model exists - model_name = "VPRTempo"+(str(model.input)+ - str(model.feature)+ - str(model.output)+ - str(model.number_modules)+'-'+ - str(model.device.type)+'.pth') + model_name = ("VPRTempo"+ # main name + str(model.input)+ # number input neurons + str(model.feature)+ # number feature neurons + str(model.output)+ # number output neurons + str(model.number_modules)+ # number of modules + '.pth') if os.path.exists(os.path.join('./models',model_name)): pretrain_flg = True + + # Prompt user to retrain network if desired prompt = "A network with these parameters exists, re-train network? (y/n):\n" retrain = input(prompt) + + # Retrain network, set flag to False if retrain == 'y': pretrain_flg = False else: + # No pretrained model exists pretrain_flg = False # Define the image transform class @@ -274,25 +311,22 @@ def forward(self, x): trainer.train_model(train_loader) trainer.save_model(os.path.join('./models',model_name)) - # Load the trained model into SNNModel() - model.load_model(os.path.join('./models',model_name)) - - # Define the custom testing image dataset class - test_dataset = CustomImageDataset(annotations_file=model.dataset_file, - img_dirs=model.testing_dirs, - transform=image_transform, - skip=model.filter, - max_samples=model.number_testing_images, - modules=model.number_modules) - - # Define the testing dataloader class - test_loader = DataLoader(test_dataset, - batch_size=model.number_modules, - shuffle=False, - num_workers=4, - persistent_workers=True) - with torch.no_grad(): # Disable gradient computation during testing - for inputs, targets in test_dataset: - outputs = model(inputs) # This calls the forward method and gets the model’s outputs - # TODO: Compute your evaluation metric(s) by comparing outputs to targets + # Load the trained model into SNNModel() + model.load_model(os.path.join('./models',model_name)) + + # Define the custom testing image dataset class + test_dataset = CustomImageDataset(annotations_file=model.dataset_file, + img_dirs=model.testing_dirs, + transform=image_transform, + skip=model.filter, + max_samples=model.number_testing_images, + modules=model.number_modules) + + # Define the testing dataloader class + test_loader = DataLoader(test_dataset, + batch_size=1, + shuffle=False, + num_workers=4, + persistent_workers=True) + model.forward(test_loader) \ No newline at end of file diff --git a/config/config.py b/config/config.py index dd150c7..c0e3d2b 100644 --- a/config/config.py +++ b/config/config.py @@ -8,13 +8,13 @@ def configure(model): model.dataset = 'nordland' model.dataset_file = './dataset/'+model.dataset+'.csv' - model.trainingPath = '/home/adam/data/nordland/' - model.testPath = '/home/adam/data/nordland/' - model.number_modules = 5 - model.number_training_images = 500 - model.number_testing_images = 500 + model.trainingPath = '/Users/adam/data/nordland/' + model.testPath = '/Users/adam/data/nordland/' + model.number_modules = 1 + model.number_training_images = 100 + model.number_testing_images = 100 model.locations = ["spring","fall"] - model.test_locations = "summer" + model.test_locations = ["spring"] model.filter = 8 model.validation = True model.log = False @@ -31,7 +31,7 @@ def configure(model): assert (os.path.isdir(model.trainingPath)), "Training path not set or path does not exist, specify for model.trainingPath" assert (os.path.isdir(model.testPath)), "Test path not set or path does not exist, specify for model.testPath" assert (os.path.isdir(model.trainingPath + model.locations[0])), "Images must be organized into folders based on locations, see README.md for details" - assert (os.path.isdir(model.testPath + model.test_locations)), "Images must be organized into folders based on locations, see README.md for details" + assert (os.path.isdir(model.testPath + model.test_locations[0])), "Images must be organized into folders based on locations, see README.md for details" model.patches = 7 model.dims = [28,28] @@ -42,7 +42,7 @@ def configure(model): model.location_repeat = len(model.locations) model.layers =[] - model.epoch = 4 + model.epoch = 1 model.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") #if model.device.type == "cuda": # os.environ["CUDA_LAUNCH_BLOCKING"] = "1" diff --git a/src/blitnet.py b/src/blitnet.py index abd52b0..661d7e4 100644 --- a/src/blitnet.py +++ b/src/blitnet.py @@ -38,7 +38,7 @@ # p: initial connection probability # stdp_rate: STDP rate (0=no STDP) -def addWeights(W_range=[-1,0,1],p=[1,1],stdp_rate=0.001,dims=None, +def addWeights(W_range=[-1,0,1],p=[1,1],dims=None, num_modules=1): # get torch device @@ -93,13 +93,6 @@ def addWeights(W_range=[-1,0,1],p=[1,1],stdp_rate=0.001,dims=None, setzeroExc = np.random.rand(nrow,ncol) > p[0] setzeroInh = np.random.rand(nrow,ncol) > p[1] - # add current - if n == 0: - I = torch.zeros(nrow, device=device) - I = torch.unsqueeze(I,0) - else: - I = torch.concat((I,torch.unsqueeze(torch.zeros(nrow, device=device),0)),0) - # remove connections based on calculated indexes if setzeroExc.any(): excW[n,:,:][setzeroExc] = 0.0 # excitatory connections @@ -117,7 +110,7 @@ def addWeights(W_range=[-1,0,1],p=[1,1],stdp_rate=0.001,dims=None, havconnExc = excW > 0 havconnInh = inhW < 0 - return excW, inhW, I, havconnExc, havconnInh + return excW, inhW, havconnExc, havconnInh ################################## # Normalise all the firing rates @@ -129,22 +122,18 @@ def norm_rates(pre_layer,post_layer): for layer in layers: if layer.have_rate and layer.eta_ip > 0.0: - # update = torch.add(layer.thr, - # torch.mul(layer.eta_ip, torch.sub(layer.x, layer.fire_rate))) # Replace the original layer.thr with the updated one layer.thr = nn.Parameter(torch.where(layer.thr + layer.eta_ip * (layer.x - layer.fire_rate) < 0, torch.zeros_like(layer.thr), layer.thr + (layer.eta_ip * (layer.x - layer.fire_rate)))) - torch.cuda.empty_cache() - ################################## # Normalise inhib weights to balance input currents # net: BITnet instance def norm_inhib(layer): - if torch.any(layer.inhW): + if torch.any(layer.inhW).item(): if layer.eta_ip != 0: updated_inhW = layer.inhW + torch.mul(torch.mul(layer.x_input, layer.inhW), layer.eta_stdp*50) @@ -156,28 +145,27 @@ def norm_inhib(layer): def const_thr(layer_pre, layer_post): layers = [layer_pre, layer_post] for layer in layers: - if torch.any(layer.const_inp): - layer.x_input.fill_(0.0) - layer.x_input.add_(layer.const_inp) - - layer.x.detach().add_(torch.clamp(torch.sub(layer.x_input, layer.thr), - 0.0, 0.9)) + layer.x_input.fill_(0.0) + if torch.any(layer.const_inp).item(): + layer.x_input.add_(layer.const_inp) # No need to detach const_inp + # Detach thr to prevent gradients + layer.x.detach().add_(torch.clamp(torch.sub(layer.x_input, layer.thr.detach()), + 0.0, 0.9)) def calc_spikes(post_layer, spikes): - post_layer.x_input.detach().add_(torch.bmm(spikes, post_layer.excW)) - post_layer.x_input.detach().add_(torch.bmm(spikes, post_layer.inhW)) + # Use detached versions of excW, inhW, and thr to prevent gradients from flowing + post_layer.x_input.add_(torch.bmm(spikes, post_layer.excW.detach())) + post_layer.x_input.add_(torch.bmm(spikes, post_layer.inhW.detach())) if post_layer.spk_force: - post_layer.x_calc.detach().add_(torch.clamp(torch.sub(post_layer.x_input, post_layer.thr), + post_layer.x_calc.detach().add_(torch.clamp(torch.sub(post_layer.x_input, post_layer.thr.detach()), min=0.0, max=0.9)) else: - post_layer.x = torch.full_like(post_layer.x,0) - post_layer.x.detach().add_(torch.clamp(torch.sub(post_layer.x_input, post_layer.thr), + post_layer.x.add_(torch.clamp(torch.sub(post_layer.x_input, post_layer.thr.detach()), min=0.0, max=0.9)) - ################################## # Calculate STDP @@ -235,8 +223,12 @@ def calc_stdp(pre_layer,post_layer,spikes,idx=0): post = torch.tile(layers[-1].x, (shape[1], 1)) # Apply the weight changes - layers[-1].excW = nn.Parameter(layers[-1].excW + ((0.5 - post) * (pre > 0) * (post > 0) * layers[-1].havconnExc) * layers[-1].eta_stdp) - layers[-1].inhW = nn.Parameter(layers[-1].inhW + ((0.5 - post) * (pre > 0) * (post > 0) * layers[-1].havconnInh) * (layers[-1].eta_stdp * -1)) + layers[-1].excW = nn.Parameter(layers[-1].excW + + ((0.5 - post) * (pre > 0) * (post > 0) * layers[-1].havconnExc) + * layers[-1].eta_stdp) + layers[-1].inhW = nn.Parameter(layers[-1].inhW + + ((0.5 - post) * (pre > 0) * (post > 0) * layers[-1].havconnInh) + * (layers[-1].eta_stdp * -1)) # In-place clamp for excitatory and inhibitory weights # Apply clamping only where the mask is True (non-zero elements) @@ -273,10 +265,13 @@ def runSim(pre_layer,post_layer,spikes,idx): del spikes -def testSim(layers,layer_num,spikes,idx): +def testSim(layers,layer_num,spikes): # run the test system through all specified layers to get an output for n in range(layer_num): + layers['layer'+str(n+1)].x.fill_(0.0) + layers['layer'+str(n+1)].x_input.fill_(0.0) calc_spikes(layers['layer'+str(n+1)],spikes) + spikes=layers['layer'+str(n+1)].x - return layers['layer'+str(n+1)].x \ No newline at end of file + return spikes \ No newline at end of file diff --git a/src/dataset.py b/src/dataset.py index ca0484a..1f3ddc4 100644 --- a/src/dataset.py +++ b/src/dataset.py @@ -70,8 +70,10 @@ def __call__(self, img): return im_norm class SetImageAsSpikes: - def __init__(self,intensity): + def __init__(self,intensity=255,test=True,modules=1): self.intensity = intensity + self.test = test + self.modules = modules def __call__(self, img_tensor): # Ensure the input is a 4D tensor (N x C x W x H) @@ -83,6 +85,10 @@ def __call__(self, img_tensor): # Divide all pixel values by 255 normalized_batch = reshaped_batch / self.intensity + + # If running test, repeat input over all the modules + if self.test: + normalized_batch = normalized_batch.repeat(self.modules, 1, 1) return normalized_batch @@ -127,7 +133,7 @@ def __init__(self, annotations_file, img_dirs, transform=None, target_transform= self.img_labels = [] for img_dir in img_dirs: img_labels = pd.read_csv(annotations_file) - img_labels['file_path'] = img_labels.apply(lambda row: os.path.join(img_dir, row[0]), axis=1) + img_labels['file_path'] = img_labels.apply(lambda row: os.path.join(img_dir, row.iloc[0]), axis=1) # Select specific rows based on the skip parameter img_labels = img_labels.iloc[::skip] @@ -138,14 +144,15 @@ def __init__(self, annotations_file, img_dirs, transform=None, target_transform= # Determine if the images being fed are training or testing if test: - poopy=1 - - # Reorder images in the DataFrame - reordered_img_labels = self.reorder_images(img_labels, modules) - self.img_labels.append(reordered_img_labels) + self.img_labels = img_labels + else: + # Reorder images in the DataFrame + reordered_img_labels = self.reorder_images(img_labels, modules) + self.img_labels.append(reordered_img_labels) - # Concatenate all the reordered DataFrames - self.img_labels = pd.concat(self.img_labels, ignore_index=True) + if isinstance(self.img_labels,list): + # Concatenate all the reordered DataFrames + self.img_labels = pd.concat(self.img_labels, ignore_index=True) def reorder_images(self, img_labels, modules): # Calculate the number of batches @@ -176,7 +183,7 @@ def __getitem__(self, idx): raise FileNotFoundError(f"No file found for index {idx} at {img_path}.") image = read_image(img_path) - label = self.img_labels.iloc[idx, 1] # Assuming label is the second column + label = self.img_labels.iloc[idx, 1] if self.transform: image = self.transform(image) From aae3507cee1315fedb95c23e83dd3c37311ca67b Mon Sep 17 00:00:00 2001 From: Adam Hines Date: Thu, 5 Oct 2023 17:36:44 +1000 Subject: [PATCH 10/69] Narrowing down issue with weights, seems like the amount that each weight update is adding is very high - investigate further --- VPRTempo.py | 47 ++++++----- config/config.py | 12 +-- dataset/.~lock.nordland.csv# | 1 - src/blitnet.py | 151 +++++++++++++++-------------------- src/dataset.py | 96 +++++++++++++--------- 5 files changed, 155 insertions(+), 152 deletions(-) delete mode 100644 dataset/.~lock.nordland.csv# diff --git a/VPRTempo.py b/VPRTempo.py index 57fbcb3..e38983f 100644 --- a/VPRTempo.py +++ b/VPRTempo.py @@ -39,6 +39,7 @@ import numpy as np import torch.nn as nn import torch.nn.functional as F +import torch.optim as optim from config import configure from dataset import CustomImageDataset, SetImageAsSpikes, ProcessImage @@ -72,6 +73,16 @@ def __init__(self, previous_layer=None,dims=[0,0,0],thr_range=[0,0], # Initialize Parameters self.thr = nn.Parameter(torch.zeros(dims, device=self.device).uniform_(thr_range[0], thr_range[1])) self.fire_rate = torch.zeros(dims, device=self.device).uniform_(fire_rate[0], fire_rate[1]) + + # Sequentially set the feature firing rates (if any) + if not torch.all(self.fire_rate==0).item(): + fstep = (fire_rate[1]-fire_rate[0])/dims[-1] + + # loop through all modules and feature layer neurons + for x in range(self.number_modules): + for i in range(dims[-1]): + self.fire_rate[x][:,i] = fire_rate[0]+fstep*(i+1) + self.have_rate = torch.any(self.fire_rate[:,:,0] > 0.0).to(self.device) self.const_inp = torch.zeros(dims, device=self.device).uniform_(const_inp[0], const_inp[1]) self.p = p @@ -113,8 +124,8 @@ def __init__(self): stdp_rate=0.005, const_inp=[0,0.1], p=[0.1,0.5], - assign_weight=True, - requires_grad=True) + requires_grad=True, + assign_weight=True) # Set up the output layer self.output_layer = SNNLayer(previous_layer=self.feature_layer, @@ -122,13 +133,14 @@ def __init__(self): ip_rate=0.15, stdp_rate=0.005, assign_weight=True, - spk_force=True, - requires_grad=True) + requires_grad=True, + spk_force=True) # Define number of layers (will run training on all layers) self.layers = {'layer0':self.input_layer, 'layer1':self.feature_layer, 'layer2':self.output_layer} + def train_model(self, train_loader): @@ -143,7 +155,7 @@ def train_model(self, train_loader): # Run the training for each layer, using defined parameters for layer in range(len(self.layers)-1): - + # Define in and out layer in_layer = self.layers['layer'+str(layer)] out_layer = self.layers['layer'+str(layer+1)] @@ -156,6 +168,7 @@ def train_model(self, train_loader): for n in tqdm(range(self.epoch)): mod = 0 # Used to determine the learning rate annealment for images, labels in train_loader: + # Put input images on device (CPU, CUDA) images = images.to(self.device) @@ -166,14 +179,16 @@ def train_model(self, train_loader): # Put labels on device (CPU, CUDA) labels = labels.to(self.device) idx = labels/self.filter - + # Layers don't include loaded input, calculate network spikes for up to training layers if layer != 0: spikes = bn.testSim(self.layers,layer,spikes) # Run one timestep of the training input to feature layer bn.runSim(in_layer, out_layer, spikes, idx) - + + #self.optimizer.step() + # Anneal the learning rate if np.mod(mod,10)==0: pt = pow(float(self.T-mod)/self.T,self.annl_pow) @@ -185,16 +200,8 @@ def train_model(self, train_loader): out_layer.x.fill_(0.0) out_layer.x_input.fill_(0.0) - # Once layers have finished training, turn off any learning - out_layer.eta_ip = 0 - out_layer.eta_stdp = 0 - out_layer.excW.requires_grad_(False) - out_layer.inhW.requires_grad_(False) - out_layer.thr.requires_grad_(False) - - torch.cuda.empty_cache() - gc.collect() - + torch.cuda.empty_cache() + def save_model(self, model_out): # save model torch.save(self.state_dict(), model_out) @@ -259,7 +266,9 @@ def forward(self, test_loader): if np.argmax(tonump) == idx: numcorr += 1 idx+=1 - pause=1 + print(str(round((numcorr/self.number_testing_images)*100,2))+'%') + torch.cuda.empty_cache() + gc.collect() if __name__ == "__main__": # Initialize the model and image transforms model = SNNModel() @@ -329,4 +338,4 @@ def forward(self, test_loader): shuffle=False, num_workers=4, persistent_workers=True) - model.forward(test_loader) \ No newline at end of file + model.forward(test_loader) diff --git a/config/config.py b/config/config.py index c0e3d2b..d1e85df 100644 --- a/config/config.py +++ b/config/config.py @@ -8,11 +8,11 @@ def configure(model): model.dataset = 'nordland' model.dataset_file = './dataset/'+model.dataset+'.csv' - model.trainingPath = '/Users/adam/data/nordland/' - model.testPath = '/Users/adam/data/nordland/' - model.number_modules = 1 - model.number_training_images = 100 - model.number_testing_images = 100 + model.trainingPath = '/home/adam/data/nordland/' + model.testPath = '/home/adam/data/nordland/' + model.number_modules = 5 + model.number_training_images = 500 + model.number_testing_images = 500 model.locations = ["spring","fall"] model.test_locations = ["spring"] model.filter = 8 @@ -42,7 +42,7 @@ def configure(model): model.location_repeat = len(model.locations) model.layers =[] - model.epoch = 1 + model.epoch = 4 model.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") #if model.device.type == "cuda": # os.environ["CUDA_LAUNCH_BLOCKING"] = "1" diff --git a/dataset/.~lock.nordland.csv# b/dataset/.~lock.nordland.csv# deleted file mode 100644 index a1b88c9..0000000 --- a/dataset/.~lock.nordland.csv# +++ /dev/null @@ -1 +0,0 @@ -,adam,QUT-PA00146192L,03.10.2023 09:45,file:///home/adam/.config/libreoffice/4; \ No newline at end of file diff --git a/src/blitnet.py b/src/blitnet.py index 661d7e4..9e2bdde 100644 --- a/src/blitnet.py +++ b/src/blitnet.py @@ -116,131 +116,110 @@ def addWeights(W_range=[-1,0,1],p=[1,1],dims=None, # Normalise all the firing rates # net: BITnet instance -def norm_rates(pre_layer,post_layer): - # put layers into a list - layers = [pre_layer,post_layer] +def norm_rates(post_layer): - for layer in layers: - if layer.have_rate and layer.eta_ip > 0.0: - # Replace the original layer.thr with the updated one - layer.thr = nn.Parameter(torch.where(layer.thr + layer.eta_ip * (layer.x - layer.fire_rate) < 0, - torch.zeros_like(layer.thr), - layer.thr + (layer.eta_ip * (layer.x - layer.fire_rate)))) - + if post_layer.have_rate and post_layer.eta_ip > 0.0: + # Replace the original layer.thr with the updated one + post_layer.thr.data += post_layer.eta_ip * (post_layer.x - post_layer.fire_rate) + post_layer.thr.data[post_layer.thr.data < 0] = 0 ################################## # Normalise inhib weights to balance input currents # net: BITnet instance -def norm_inhib(layer): - if torch.any(layer.inhW).item(): - if layer.eta_ip != 0: - updated_inhW = layer.inhW + torch.mul(torch.mul(layer.x_input, layer.inhW), - layer.eta_stdp*50) - layer.inhW = nn.Parameter(torch.where(updated_inhW > 0.0, - torch.tensor(-0.000001, device=updated_inhW.device), - updated_inhW)) +def norm_inhib(post_layer): + if torch.any(post_layer.inhW).item(): + if post_layer.eta_stdp != 0: + post_layer.inhW.data += torch.mul(torch.mul(post_layer.x_input, post_layer.inhW.data), + post_layer.eta_stdp*50) + post_layer.inhW.data[post_layer.inhW.data > 0.0] = -1e-06 + -def const_thr(layer_pre, layer_post): - layers = [layer_pre, layer_post] - for layer in layers: - layer.x_input.fill_(0.0) - if torch.any(layer.const_inp).item(): - layer.x_input.add_(layer.const_inp) # No need to detach const_inp - # Detach thr to prevent gradients - layer.x.detach().add_(torch.clamp(torch.sub(layer.x_input, layer.thr.detach()), - 0.0, 0.9)) +def const_thr(post_layer): + + if torch.any(post_layer.const_inp).item(): + post_layer.x_input += post_layer.const_inp # No need to detach const_inp + # Detach thr to prevent gradients + post_layer.x = torch.clamp(torch.sub(post_layer.x_input, post_layer.thr.detach()), + 0.0, 0.9) def calc_spikes(post_layer, spikes): # Use detached versions of excW, inhW, and thr to prevent gradients from flowing - post_layer.x_input.add_(torch.bmm(spikes, post_layer.excW.detach())) - post_layer.x_input.add_(torch.bmm(spikes, post_layer.inhW.detach())) + post_layer.x_input += torch.bmm(spikes, post_layer.excW) + post_layer.x_input += torch.bmm(spikes, post_layer.inhW) if post_layer.spk_force: - post_layer.x_calc.detach().add_(torch.clamp(torch.sub(post_layer.x_input, post_layer.thr.detach()), - min=0.0, max=0.9)) + post_layer.x_calc += torch.clamp(torch.sub(post_layer.x_input, post_layer.thr.detach()), + min=0.0, max=0.9) else: - post_layer.x.add_(torch.clamp(torch.sub(post_layer.x_input, post_layer.thr.detach()), - min=0.0, max=0.9)) + post_layer.x += torch.clamp(torch.sub(post_layer.x_input, post_layer.thr.detach()), + min=0.0, max=0.9) ################################## # Calculate STDP # net: BITnet instance -def calc_stdp(pre_layer,post_layer,spikes,idx=0): - layers = [pre_layer,post_layer] - +def calc_stdp(pre_layer, post_layer, spikes, idx=0): + # Spike Forcing has special rules to make calculated and forced spikes match - if layers[-1].spk_force: # will run for the output layer - shape = [len(layers[-1].excW[:, 0, 0]), - len(layers[-1].excW[0, :, 0]), - len(layers[-1].excW[0, 0, :])] + if post_layer.spk_force: # will run for the output layer + shape = [len(post_layer.excW[:, 0, 0]), + len(post_layer.excW[0, :, 0]), + len(post_layer.excW[0, 0, :])] # Get the output neuron index - idx_sel = torch.arange(int(idx[0]),int(idx[0])+1,device=layers[-1].device,dtype=int) - + idx_sel = torch.arange(int(idx[0]), int(idx[0]) + 1, device=post_layer.device, dtype=int) + # Difference between forced and calculated spikes - layers[-1].x = torch.full_like(layers[-1].x,0) - xdiff = torch.clamp(layers[-1].x.index_fill_(-1,idx_sel,0.5) - layers[-1].x_calc, - min=0,max=1) + post_layer.x = torch.full_like(post_layer.x, 0) + xdiff = torch.clamp(post_layer.x.index_fill_(-1, idx_sel, 0.5) - post_layer.x_calc, + min=0, max=1) # Threshold rules - lower it if calced spike is smaller (and vice versa) - layers[-1].thr = nn.Parameter(layers[-1].thr - - torch.sign(xdiff)*torch.abs(layers[-1].eta_stdp)/10) - layers[-1].thr = nn.Parameter(layers[-1].thr - - torch.sign(xdiff)*torch.abs((layers[-1].eta_stdp*-1))/10) - layers[-1].thr = nn.Parameter(layers[-1].thr.clamp(min=0, max=1)) + post_layer.thr.data -= torch.sign(xdiff) * torch.abs(post_layer.eta_stdp) / 10 + post_layer.thr.data -= torch.sign(xdiff) * torch.abs((post_layer.eta_stdp * -1)) / 10 + post_layer.thr = nn.Parameter(post_layer.thr.clamp(min=0, max=1)) # Pre and Post spikes tiled across and down for all synapses - if layers[0].have_rate: + if pre_layer.have_rate: # Modulate learning rate by firing rate (low firing rate = high learning rate) - mpre = spikes/layers[0].fire_rate + mpre = spikes / pre_layer.fire_rate else: mpre = spikes - pre = torch.tile(torch.reshape(mpre,(shape[0],shape[1],1)),(1,shape[2])) - post = torch.tile(xdiff,(shape[1],1)) + pre = torch.tile(torch.reshape(mpre, (shape[0], shape[1], 1)), (1, shape[2])) + post = torch.tile(xdiff, (shape[1], 1)) # Apply the weight changes - layers[-1].excW = nn.Parameter(layers[-1].excW + - (pre*post*layers[-1].havconnExc)*layers[-1].eta_stdp) - layers[-1].inhW = nn.Parameter(layers[-1].inhW + - (-pre*post*layers[-1].havconnInh)*(layers[-1].eta_stdp*-1)) - + post_layer.excW.data += (pre * post * post_layer.havconnExc) * post_layer.eta_stdp + + post_layer.inhW.data += (-pre * post * post_layer.havconnInh) * (post_layer.eta_stdp * -1) + # Normal STDP else: - - # Assuming layers is a predefined list containing your layer objects - - shape = [len(layers[-1].excW[:, 0, 0]), - len(layers[-1].excW[0, :, 0]), - len(layers[-1].excW[0, 0, :])] - + shape = [len(post_layer.excW[:, 0, 0]), + len(post_layer.excW[0, :, 0]), + len(post_layer.excW[0, 0, :])] + # Tile out pre- and post-spikes pre = torch.tile(torch.reshape(spikes, (shape[0], shape[1], 1)), (1, shape[2])) - post = torch.tile(layers[-1].x, (shape[1], 1)) - - # Apply the weight changes - layers[-1].excW = nn.Parameter(layers[-1].excW + - ((0.5 - post) * (pre > 0) * (post > 0) * layers[-1].havconnExc) - * layers[-1].eta_stdp) - layers[-1].inhW = nn.Parameter(layers[-1].inhW + - ((0.5 - post) * (pre > 0) * (post > 0) * layers[-1].havconnInh) - * (layers[-1].eta_stdp * -1)) + post = torch.tile(post_layer.x, (shape[1], 1)) + # Apply the weight changes + post_layer.excW.data += ((0.5 - post) * (pre > 0) * (post > 0) * post_layer.havconnExc) * post_layer.eta_stdp + post_layer.inhW.data += ((0.5 - post) * (pre > 0) * (post > 0) * post_layer.havconnInh) * (post_layer.eta_stdp * -1) + print(torch.mean(((0.5 - post) * (pre > 0) * (post > 0) * post_layer.havconnExc) * post_layer.eta_stdp)) # In-place clamp for excitatory and inhibitory weights # Apply clamping only where the mask is True (non-zero elements) - layers[-1].excW = nn.Parameter(torch.where(layers[-1].havconnExc, - layers[-1].excW.clamp(min=0.000001, max=10.0), - layers[-1].excW)) - + post_layer.excW.data[post_layer.excW.data < 0] = 1e-06 + post_layer.inhW.data[post_layer.inhW.data > 0] = -1e-06 + + post_layer.excW.data[post_layer.havconnExc] = post_layer.excW.data[post_layer.havconnExc].clamp(min=1e-06, max=10) # Apply clamping only where the mask is True (non-zero elements) - layers[-1].inhW = nn.Parameter(torch.where(layers[-1].havconnInh, - layers[-1].inhW.clamp(min=-10.0, max=-0.000001), - layers[-1].inhW)) - + post_layer.inhW.data[post_layer.havconnInh] = post_layer.inhW.data[post_layer.havconnInh].clamp(min=-10, max=-1e-06) + torch.cuda.empty_cache() ################################## @@ -251,19 +230,17 @@ def calc_stdp(pre_layer,post_layer,spikes,idx=0): def runSim(pre_layer,post_layer,spikes,idx): # Propagate spikes from pre to post neurons - const_thr(pre_layer,post_layer) + const_thr(post_layer) calc_spikes(post_layer,spikes) # Calculate STDP weight changes calc_stdp(pre_layer,post_layer,spikes,idx) # Normalise firing rates and inhibitory balance - norm_rates(pre_layer,post_layer) + norm_rates(post_layer) norm_inhib(post_layer) torch.cuda.empty_cache() - - del spikes def testSim(layers,layer_num,spikes): diff --git a/src/dataset.py b/src/dataset.py index 1f3ddc4..0b9d7c1 100644 --- a/src/dataset.py +++ b/src/dataset.py @@ -11,22 +11,21 @@ from torch.utils.data import Dataset class GetPatches2D: - def __init__(self, patch_size): - self.patch_size = (patch_size,patch_size) + def __init__(self, patch_size, image_pad): + self.patch_size = patch_size + self.image_pad = image_pad def __call__(self, img): - # Calculating the padding - padding = (self.patch_size[1] // 2, self.patch_size[1] // 2, - self.patch_size[0] // 2, self.patch_size[0] // 2) - # Apply zero padding - image_pad = F.pad(img, padding, value=float('nan')) + # Assuming image_pad is already a PyTorch tensor. If not, you can convert it: + # image_pad = torch.tensor(image_pad).to(torch.float64) - # Unfolding the image to get the patches - patches = image_pad.unfold(0, self.patch_size[0], 1).unfold(1, self.patch_size[1], 1) - - # Reshaping the patches - patches = patches.contiguous().view(self.patch_size[0] * self.patch_size[1], -1) + # Using unfold to get 2D sliding windows. + unfolded = self.image_pad.unfold(0, self.patch_size[0], 1).unfold(1, self.patch_size[1], 1) + # The size of unfolded will be [nrows, ncols, patch_size[0], patch_size[1]] + + # Reshaping the tensor to the desired shape + patches = unfolded.permute(2, 3, 0, 1).contiguous().view(self.patch_size[0]*self.patch_size[1], -1) return patches @@ -34,38 +33,57 @@ def __call__(self, img): class PatchNormalisePad: def __init__(self, patches): self.patches = patches + + + def nanstd(self,input_tensor, dim=None, unbiased=True): + if dim is not None: + valid_count = torch.sum(~torch.isnan(input_tensor), dim=dim, dtype=torch.float) + mean = torch.nansum(input_tensor, dim=dim) / valid_count + diff = input_tensor - mean.unsqueeze(dim) + variance = torch.nansum(diff * diff, dim=dim) / valid_count + + # Bessel's correction for unbiased estimation + if unbiased: + variance = variance * (valid_count / (valid_count - 1)) + else: + valid_count = torch.sum(~torch.isnan(input_tensor), dtype=torch.float) + mean = torch.nansum(input_tensor) / valid_count + diff = input_tensor - mean + variance = torch.nansum(diff * diff) / valid_count + + # Bessel's correction for unbiased estimation + if unbiased: + variance = variance * (valid_count / (valid_count - 1)) + + return torch.sqrt(variance) def __call__(self, img): - img = img.squeeze(0) - nrows, ncols = img.shape[:2] - patcher = GetPatches2D(self.patches) + img = torch.squeeze(img,0) + patch_size = (self.patches, self.patches) + patch_half_size = [int((p-1)/2) for p in patch_size ] + + # Compute the padding. If patch_half_size is a scalar, the same value will be used for all sides. + if isinstance(patch_half_size, int): + pad = (patch_half_size, patch_half_size, patch_half_size, patch_half_size) # left, right, top, bottom + else: + # If patch_half_size is a tuple, then we'll assume it's in the format (height, width) + pad = (patch_half_size[1], patch_half_size[1], patch_half_size[0], patch_half_size[0]) # left, right, top, bottom + + # Apply padding + image_pad = F.pad(img, pad, mode='constant', value=float('nan')) + + nrows = img.shape[0] + ncols = img.shape[1] + patcher = GetPatches2D(patch_size,image_pad) patches = patcher(img) mus = torch.nanmean(patches, dim=0) - # Subtracting the mean from the original tensor - diff = patches - mus - - # Replacing NaN values with zeros in the difference tensor - diff[torch.isnan(diff)] = 0 + stds = self.nanstd(patches, dim=0) + with np.errstate(divide='ignore', invalid='ignore'): + im_norm = (img - mus.reshape(nrows, ncols)) / stds.reshape(nrows, ncols) - # Calculating the unbiased estimator of the variance, ignoring NaN values - var = torch.nansum(diff**2, dim=0) / (torch.sum(~torch.isnan(patches), dim=0) - 1) - - # Taking the square root to get the standard deviation - stds = torch.sqrt(var) - - # Reshape mus and stds - mus_reshaped = mus.reshape(nrows, ncols) - stds_reshaped = stds.reshape(nrows, ncols) - - # Perform the normalization, handling division by zero - # Note: PyTorch, by default, does not raise an error or warning for NaN or Inf, it will propagate them in the computation - im_norm = (img - mus_reshaped) / stds_reshaped - - # Replace NaN values with 0.0 im_norm[torch.isnan(im_norm)] = 0.0 - - # Clamp values to the range [-1.0, 1.0] - im_norm = torch.clamp(im_norm, min=-1.0, max=1.0) + im_norm[im_norm < -1.0] = -1.0 + im_norm[im_norm > 1.0] = 1.0 return im_norm @@ -89,7 +107,7 @@ def __call__(self, img_tensor): # If running test, repeat input over all the modules if self.test: normalized_batch = normalized_batch.repeat(self.modules, 1, 1) - + return normalized_batch class ProcessImage: From bf6609a3b856ab0cf6da8f3fe03d18bc58a33da8 Mon Sep 17 00:00:00 2001 From: Adam Hines Date: Fri, 6 Oct 2023 13:36:36 +1000 Subject: [PATCH 11/69] Fixed all issues, now runs as expected. Merge to main --- VPRTempo.py | 111 +++++++---- config/config.py | 116 +++++------- src/blitnet.py | 140 +++++--------- src/utils.py | 484 +---------------------------------------------- 4 files changed, 181 insertions(+), 670 deletions(-) diff --git a/VPRTempo.py b/VPRTempo.py index e38983f..ab851bb 100644 --- a/VPRTempo.py +++ b/VPRTempo.py @@ -36,22 +36,24 @@ sys.path.append('./config') import blitnet as bn +import utils as ut import numpy as np import torch.nn as nn import torch.nn.functional as F -import torch.optim as optim -from config import configure +from config import configure, image_csv, model_logger from dataset import CustomImageDataset, SetImageAsSpikes, ProcessImage from torch.utils.data import DataLoader from tqdm import tqdm +from timeit import default_timer class SNNLayer(nn.Module): def __init__(self, previous_layer=None,dims=[0,0,0],thr_range=[0,0], fire_rate=[0,0],ip_rate=0,stdp_rate=0,const_inp=[0,0],p=[1,1], - assign_weight=False,spk_force=False,requires_grad=False): + assign_weight=False,spk_force=False): super(SNNLayer, self).__init__() - configure(self) + # Configure the network + configure(self) # Sets the testing configuration # Device self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") @@ -101,13 +103,15 @@ def __init__(self, previous_layer=None,dims=[0,0,0],thr_range=[0,0], dims[2]], num_modules=self.number_modules) - self.excW = nn.Parameter(excW, requires_grad=requires_grad) - self.inhW = nn.Parameter(inhW, requires_grad=requires_grad) + self.excW = nn.Parameter(excW) + self.inhW = nn.Parameter(inhW) class SNNTrainer(nn.Module): def __init__(self): super(SNNTrainer, self).__init__() - configure(self) + # Configure the network + configure(self) # Sets the testing configuration + image_csv(self) # Defines images to load # Set the device self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") @@ -124,7 +128,6 @@ def __init__(self): stdp_rate=0.005, const_inp=[0,0.1], p=[0.1,0.5], - requires_grad=True, assign_weight=True) # Set up the output layer @@ -133,7 +136,6 @@ def __init__(self): ip_rate=0.15, stdp_rate=0.005, assign_weight=True, - requires_grad=True, spk_force=True) # Define number of layers (will run training on all layers) @@ -142,21 +144,24 @@ def __init__(self): 'layer2':self.output_layer} - def train_model(self, train_loader): + def train_model(self, train_loader, logger): # If using CUDA, run a dummy torch.bmm to 'spool-up' operations if self.device.type == "cuda": - # Create some dummy tensors on CUDA - dummy_a = torch.randn(10, 10, device=self.device) - dummy_b = torch.randn(10, 10, device=self.device) - - # Perform a dummy bmm operation - torch.bmm(dummy_a.unsqueeze(0), dummy_b.unsqueeze(0)) - + ut.dummy_bmm(self.device) + # Run the training for each layer, using defined parameters for layer in range(len(self.layers)-1): - - # Define in and out layer + + # Start timer for layer trainins + start_lyr = default_timer() + + # Initialize the tqdm progress bar + pbar = tqdm(total=int(self.T * self.epoch), + desc="Training layer "+str(layer)+" with layer "+str(layer+1), + position=0) + + # Define in and out layer (2 layers trained at a time) in_layer = self.layers['layer'+str(layer)] out_layer = self.layers['layer'+str(layer+1)] @@ -165,7 +170,7 @@ def train_model(self, train_loader): n_initip = out_layer.eta_ip.detach() # ITP # Run the training for the input to feature layer for specified epochs - for n in tqdm(range(self.epoch)): + for epoch in range(self.epoch): mod = 0 # Used to determine the learning rate annealment for images, labels in train_loader: @@ -187,8 +192,6 @@ def train_model(self, train_loader): # Run one timestep of the training input to feature layer bn.runSim(in_layer, out_layer, spikes, idx) - #self.optimizer.step() - # Anneal the learning rate if np.mod(mod,10)==0: pt = pow(float(self.T-mod)/self.T,self.annl_pow) @@ -199,9 +202,25 @@ def train_model(self, train_loader): # Reset x and x_input for next iteration out_layer.x.fill_(0.0) out_layer.x_input.fill_(0.0) + pbar.update(1) - torch.cuda.empty_cache() - + # Record training time for the layer + end_lyr = default_timer()-start_lyr + + # Close the tqdm progress bar + pbar.close() + + # Record the training time and training frequency + logger.info('') + logger.info("Training layer "+str(layer)+" with layer "+ + str(layer+1)+" took "+str(round(end_lyr,2))+"s") + logger.info('') + + # Clear the cache and garbage collect (if using cuda) + if self.device.type == "cuda": + torch.cuda.empty_cache() + gc.collect() + def save_model(self, model_out): # save model torch.save(self.state_dict(), model_out) @@ -209,8 +228,11 @@ def save_model(self, model_out): class SNNModel(nn.Module): def __init__(self): super(SNNModel, self).__init__() + # Configure the network - configure(self) + configure(self) # Sets the testing configuration + image_csv(self) # Defines images to load + model_logger(self) # Sets the logger # Set up the input layer self.input_layer = SNNLayer(dims=[self.number_modules,1,self.input]) @@ -239,20 +261,23 @@ def forward(self, test_loader): # If using CUDA, run a dummy torch.bmm to 'spool-up' operations if self.device.type == "cuda": - # Create some dummy tensors on CUDA - dummy_a = torch.randn(10, 10, device=self.device) - dummy_b = torch.randn(10, 10, device=self.device) + ut.dummy_bmm(self.device) - # Perform a dummy bmm operation - torch.bmm(dummy_a.unsqueeze(0), dummy_b.unsqueeze(0)) idx=0 numcorr = 0 - + + # Initialize the tqdm progress bar + pbar = tqdm(total=self.number_testing_images, + desc="Running the test network", + position=0) + # Run test network for each individual input for images, labels in test_loader: + # Set images to the specified device images = images.to(self.device) labels = labels.to(self.device) + # Set the spikes for the input, tiling across modules if applicable make_spikes = SetImageAsSpikes(intensity=self.intensity, modules=self.number_modules) @@ -260,15 +285,28 @@ def forward(self, test_loader): # Run the test sim out = bn.testSim(self.layers,len(self.layers)-1,spikes) + + # Store output and determine if output matches GT tonump = np.array([]) tonump = np.append(tonump,np.reshape(out.cpu().numpy(), [1,1,int(self.number_training_images)])) if np.argmax(tonump) == idx: numcorr += 1 idx+=1 - print(str(round((numcorr/self.number_testing_images)*100,2))+'%') - torch.cuda.empty_cache() - gc.collect() + + # Update the progress bar + pbar.update(1) + + pbar.close() + model.logger.info('') + model.logger.info("P@100R: "+ + str(round((numcorr/self.number_testing_images)*100,2))+'%') + + # Clear cache and empty garbage (if applicable) + if self.device.type == "cuda": + torch.cuda.empty_cache() + gc.collect() + if __name__ == "__main__": # Initialize the model and image transforms model = SNNModel() @@ -286,6 +324,7 @@ def forward(self, test_loader): # Prompt user to retrain network if desired prompt = "A network with these parameters exists, re-train network? (y/n):\n" retrain = input(prompt) + print('') # Retrain network, set flag to False if retrain == 'y': @@ -317,7 +356,7 @@ def forward(self, test_loader): # Initialize, run, and save the training model trainer = SNNTrainer() - trainer.train_model(train_loader) + trainer.train_model(train_loader,model.logger) trainer.save_model(os.path.join('./models',model_name)) with torch.no_grad(): # Disable gradient computation during testing @@ -338,4 +377,4 @@ def forward(self, test_loader): shuffle=False, num_workers=4, persistent_workers=True) - model.forward(test_loader) + model.forward(test_loader) \ No newline at end of file diff --git a/config/config.py b/config/config.py index d1e85df..ac21482 100644 --- a/config/config.py +++ b/config/config.py @@ -10,14 +10,14 @@ def configure(model): model.dataset_file = './dataset/'+model.dataset+'.csv' model.trainingPath = '/home/adam/data/nordland/' model.testPath = '/home/adam/data/nordland/' - model.number_modules = 5 - model.number_training_images = 500 - model.number_testing_images = 500 - model.locations = ["spring","fall"] - model.test_locations = ["spring"] + model.number_modules = 10 + model.number_training_images = 2700 + model.number_testing_images = 2700 + model.locations = ["spring","fall","winter"] + model.test_locations = ["summer"] model.filter = 8 model.validation = True - model.log = False + model.log = True model.training_dirs = [] for n in model.locations: @@ -32,7 +32,8 @@ def configure(model): assert (os.path.isdir(model.testPath)), "Test path not set or path does not exist, specify for model.testPath" assert (os.path.isdir(model.trainingPath + model.locations[0])), "Images must be organized into folders based on locations, see README.md for details" assert (os.path.isdir(model.testPath + model.test_locations[0])), "Images must be organized into folders based on locations, see README.md for details" - + + model.epoch = 4 model.patches = 7 model.dims = [28,28] model.input = int(model.dims[0]*model.dims[1]) @@ -40,25 +41,16 @@ def configure(model): model.output = int(model.number_training_images/model.number_modules) model.intensity = 255 model.location_repeat = len(model.locations) - model.layers =[] + model.layers = [] - model.epoch = 4 model.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") - #if model.device.type == "cuda": - # os.environ["CUDA_LAUNCH_BLOCKING"] = "1" - # torch.cuda.set_device(model.device) - # gc.collect() - #torch.cuda.empty_cache() - #torch.cuda.init() - #torch.cuda.synchronize(device=model.device) + if model.device.type == "cuda": + torch.cuda.init() + torch.cuda.synchronize(device=model.device) model.T = int((model.number_training_images / model.number_modules) * model.location_repeat) model.annl_pow = 2 - model.imgs = {'training': [], 'testing': []} - model.ids = {'training': [], 'testing': []} - model.spike_rates = {'training': [], 'testing': []} - - model.test_true = False +def image_csv(model): with open(os.path.join('./dataset', model.dataset + '.csv'), mode='r', newline='', encoding='utf-8') as file: reader = csv.reader(file) model.imageNames = [row[0] for row in reader] @@ -68,55 +60,43 @@ def configure(model): for n in range(0, len(model.imageNames), model.filter): model.filteredNames.append(model.imageNames[n]) del model.filteredNames[model.number_training_images:len(model.filteredNames)] - + +def model_logger(model): model.fullTrainPaths = [] for n in model.locations: model.fullTrainPaths.append(model.trainingPath + n + '/') - #now = datetime.now() - #model.output_folder = './output/' + now.strftime("%d%m%y-%H-%M-%S") - #os.mkdir(model.output_folder) + now = datetime.now() + model.output_folder = './output/' + now.strftime("%d%m%y-%H-%M-%S") + os.mkdir(model.output_folder) - #model.logger = logging.getLogger("VPRTempo") - #model.logger.setLevel(logging.DEBUG) - #logging.basicConfig(filename=model.output_folder + "/logfile.log", - # filemode="a+", - # format="%(asctime)-15s %(levelname)-8s %(message)s") - #if model.log: - # model.logger.addHandler(logging.StreamHandler()) - - #model.logger.info('////////////') - #model.logger.info('VPRTempo - Temporally Encoded Visual Place Recognition v1.1.0-alpha') - #model.logger.info('Queensland University of Technology, Centre for Robotics') - #model.logger.info('') - #model.logger.info('© 2023 Adam D Hines, Peter G Stratton, Michael Milford, Tobias Fischer') - #model.logger.info('MIT license - https://github.com/QVPR/VPRTempo') - #model.logger.info('\\\\\\\\\\\\\\\\\\\\\\\\') - #model.logger.info('') - #model.logger.info('CUDA available: ' + str(torch.cuda.is_available())) - #if torch.cuda.is_available(): - # current_device = torch.cuda.current_device() - # model.logger.info('Current device is: ' + str(torch.cuda.get_device_name(current_device))) - #else: - # model.logger.info('Current device is: CPU') - #model.logger.info('') - #model.logger.info("~~ Hyperparameters ~~") - #model.logger.info('') - #model.logger.info('Firing threshold max: ' + str(model.thr) - #model.logger.info('Initial STDP learning rate: ' + str(model.n_init)) - #model.logger.info('Intrinsic threshold plasticity learning rate: ' + str(model.n_itp)) - #model.logger.info('Firing rate range: [' + str(model.f_rate[0]) + ', ' + str(model.f_rate[1]) + ']') - #model.logger.info('Excitatory connection probability: ' + str(model.p_exc)) - #model.logger.info('Inhibitory connection probability: ' + str(model.p_inh)) - #model.logger.info('Constant input: ' + str(model.c)) - #model.logger.info('') - #model.logger.info("~~ Training and testing conditions ~~") - #model.logger.info('') - #model.logger.info('Number of training images: ' + str(model.number_training_images)) - #model.logger.info('Number of testing images: ' + str(model.number_testing_images)) - #model.logger.info('Number of training epochs: ' + str(model.epoch)) - #model.logger.info('Number of modules: ' + str(model.number_modules)) - #model.logger.info('Dataset used: ' + str(model.dataset)) - #model.logger.info('Training locations: ' + str(model.locations)) - #model.logger.info('Testing location: ' + str(model.test_location)) - #model.training_out = './models/' + str(model.input_layer) + 'i' + str(model.feature_layer) + 'f' + str(model.output_layer) + 'o' + str(model.epoch) + '/' + model.logger = logging.getLogger("VPRTempo") + model.logger.setLevel(logging.DEBUG) + logging.basicConfig(filename=model.output_folder + "/logfile.log", + filemode="a+", + format="%(asctime)-15s %(levelname)-8s %(message)s") + if model.log: + model.logger.addHandler(logging.StreamHandler()) + + model.logger.info('') + model.logger.info('██╗ ██╗██████╗ ██████╗ ████████╗███████╗███╗ ███╗██████╗ ██████╗') + model.logger.info('██║ ██║██╔══██╗██╔══██╗╚══██╔══╝██╔════╝████╗ ████║██╔══██╗██╔═══██╗') + model.logger.info('██║ ██║██████╔╝██████╔╝ ██║ █████╗ ██╔████╔██║██████╔╝██║ ██║') + model.logger.info('╚██╗ ██╔╝██╔═══╝ ██╔══██╗ ██║ ██╔══╝ ██║╚██╔╝██║██╔═══╝ ██║ ██║') + model.logger.info(' ╚████╔╝ ██║ ██║ ██║ ██║ ███████╗██║ ╚═╝ ██║██║ ╚██████╔╝') + model.logger.info(' ╚═══╝ ╚═╝ ╚═╝ ╚═╝ ╚═╝ ╚══════╝╚═╝ ╚═╝╚═╝ ╚═════╝ ') + model.logger.info('-----------------------------------------------------------------------') + model.logger.info('Temporally Encoded Spiking Neural Network for Visual Place Recognition v1.1.0') + model.logger.info('Queensland University of Technology, Centre for Robotics') + model.logger.info('') + model.logger.info('© 2023 Adam D Hines, Peter G Stratton, Michael Milford, Tobias Fischer') + model.logger.info('MIT license - https://github.com/QVPR/VPRTempo') + model.logger.info('\\\\\\\\\\\\\\\\\\\\\\\\') + model.logger.info('') + model.logger.info('CUDA available: ' + str(torch.cuda.is_available())) + if torch.cuda.is_available(): + current_device = torch.cuda.current_device() + model.logger.info('Current device is: ' + str(torch.cuda.get_device_name(current_device))) + else: + model.logger.info('Current device is: CPU') + model.logger.info('') \ No newline at end of file diff --git a/src/blitnet.py b/src/blitnet.py index 9e2bdde..7c6c369 100644 --- a/src/blitnet.py +++ b/src/blitnet.py @@ -24,22 +24,10 @@ Imports ''' import numpy as np -import pdb import torch -import gc -import torch.nn as nn -from timeit import default_timer - -################################## -# Add a set of random connections between layers -# W_range: weight range [lo,hi] -# p: initial connection probability -# stdp_rate: STDP rate (0=no STDP) - -def addWeights(W_range=[-1,0,1],p=[1,1],dims=None, - num_modules=1): +def addWeights(W_range=[-1,0,1],p=[1,1],dims=None,num_modules=1): # get torch device device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") @@ -66,23 +54,19 @@ def addWeights(W_range=[-1,0,1],p=[1,1],dims=None, if n == 0: # first weights to be appended # excitatory weights excW = torch.cat((excW, - torch.unsqueeze(torch.empty(nrow, ncol, device=device).normal_(mean=exWmn, std=exWsd), - 0)), - 0) + torch.unsqueeze(torch.empty(nrow, ncol, device=device).normal_(mean=exWmn, std=exWsd), + 0)), 0) # inhibitory weights inhW = torch.cat((inhW, - torch.unsqueeze(torch.empty(nrow, ncol, device=device).normal_(mean=inWmn, std=inWsd), - 0)), - 0) + torch.unsqueeze(torch.empty(nrow, ncol, device=device).normal_(mean=inWmn, std=inWsd), + 0)), 0) else: # stack new weights onto appended weight excW = torch.cat((excW, - torch.unsqueeze(torch.empty(nrow, ncol, device=device).normal_(mean=exWmn, std=exWsd), - 0)), - 0) + torch.unsqueeze(torch.empty(nrow, ncol, device=device).normal_(mean=exWmn, std=exWsd), + 0)), 0) inhW = torch.cat((inhW, - torch.unsqueeze(torch.empty(nrow, ncol, device=device).normal_(mean=inWmn, std=inWsd), - 0)), - 0) + torch.unsqueeze(torch.empty(nrow, ncol, device=device).normal_(mean=inWmn, std=inWsd), + 0)), 0) # Remove negative excitatory weights excW[n][excW[n] < 0] = 0.0 @@ -111,62 +95,30 @@ def addWeights(W_range=[-1,0,1],p=[1,1],dims=None, havconnInh = inhW < 0 return excW, inhW, havconnExc, havconnInh - -################################## -# Normalise all the firing rates -# net: BITnet instance - -def norm_rates(post_layer): - - if post_layer.have_rate and post_layer.eta_ip > 0.0: - # Replace the original layer.thr with the updated one - post_layer.thr.data += post_layer.eta_ip * (post_layer.x - post_layer.fire_rate) - post_layer.thr.data[post_layer.thr.data < 0] = 0 - -################################## -# Normalise inhib weights to balance input currents -# net: BITnet instance - -def norm_inhib(post_layer): - if torch.any(post_layer.inhW).item(): - if post_layer.eta_stdp != 0: - post_layer.inhW.data += torch.mul(torch.mul(post_layer.x_input, post_layer.inhW.data), - post_layer.eta_stdp*50) - post_layer.inhW.data[post_layer.inhW.data > 0.0] = -1e-06 - - - -def const_thr(post_layer): - - if torch.any(post_layer.const_inp).item(): - post_layer.x_input += post_layer.const_inp # No need to detach const_inp - # Detach thr to prevent gradients - post_layer.x = torch.clamp(torch.sub(post_layer.x_input, post_layer.thr.detach()), - 0.0, 0.9) - - def calc_spikes(post_layer, spikes): - - # Use detached versions of excW, inhW, and thr to prevent gradients from flowing - post_layer.x_input += torch.bmm(spikes, post_layer.excW) - post_layer.x_input += torch.bmm(spikes, post_layer.inhW) + # Add the constant input + post_layer.x_input += post_layer.const_inp + + # Multiply input spikes by positive and negative weights + post_layer.x_input += torch.bmm(spikes, post_layer.excW.detach()) + post_layer.x_input += torch.bmm(spikes, post_layer.inhW.detach()) + + # Clamp outputs between 0 and 0.9 after subtracting thresholds from input if post_layer.spk_force: - post_layer.x_calc += torch.clamp(torch.sub(post_layer.x_input, post_layer.thr.detach()), + post_layer.x_calc = torch.clamp(torch.sub(post_layer.x_input, post_layer.thr.detach()), min=0.0, max=0.9) else: - post_layer.x += torch.clamp(torch.sub(post_layer.x_input, post_layer.thr.detach()), + post_layer.x = torch.clamp(torch.sub(post_layer.x_input, post_layer.thr.detach()), min=0.0, max=0.9) -################################## -# Calculate STDP -# net: BITnet instance - def calc_stdp(pre_layer, post_layer, spikes, idx=0): # Spike Forcing has special rules to make calculated and forced spikes match - if post_layer.spk_force: # will run for the output layer + if post_layer.spk_force: + + # Get layer dimensions shape = [len(post_layer.excW[:, 0, 0]), len(post_layer.excW[0, :, 0]), len(post_layer.excW[0, 0, :])] @@ -181,7 +133,7 @@ def calc_stdp(pre_layer, post_layer, spikes, idx=0): # Threshold rules - lower it if calced spike is smaller (and vice versa) post_layer.thr.data -= torch.sign(xdiff) * torch.abs(post_layer.eta_stdp) / 10 post_layer.thr.data -= torch.sign(xdiff) * torch.abs((post_layer.eta_stdp * -1)) / 10 - post_layer.thr = nn.Parameter(post_layer.thr.clamp(min=0, max=1)) + post_layer.thr.data = post_layer.thr.data.clamp(min=0, max=1) # Pre and Post spikes tiled across and down for all synapses if pre_layer.have_rate: @@ -199,6 +151,8 @@ def calc_stdp(pre_layer, post_layer, spikes, idx=0): # Normal STDP else: + + # Get layer dimensions shape = [len(post_layer.excW[:, 0, 0]), len(post_layer.excW[0, :, 0]), len(post_layer.excW[0, 0, :])] @@ -207,30 +161,42 @@ def calc_stdp(pre_layer, post_layer, spikes, idx=0): pre = torch.tile(torch.reshape(spikes, (shape[0], shape[1], 1)), (1, shape[2])) post = torch.tile(post_layer.x, (shape[1], 1)) - # Apply the weight changes - post_layer.excW.data += ((0.5 - post) * (pre > 0) * (post > 0) * post_layer.havconnExc) * post_layer.eta_stdp - post_layer.inhW.data += ((0.5 - post) * (pre > 0) * (post > 0) * post_layer.havconnInh) * (post_layer.eta_stdp * -1) - print(torch.mean(((0.5 - post) * (pre > 0) * (post > 0) * post_layer.havconnExc) * post_layer.eta_stdp)) + # Apply positive and negative weight changes + post_layer.excW.data += ((0.5 - post) * (pre > 0) * (post > 0) * + post_layer.havconnExc) * post_layer.eta_stdp + post_layer.inhW.data += ((0.5 - post) * (pre > 0) * + (post > 0) * post_layer.havconnInh) * (post_layer.eta_stdp * -1) + # In-place clamp for excitatory and inhibitory weights - # Apply clamping only where the mask is True (non-zero elements) post_layer.excW.data[post_layer.excW.data < 0] = 1e-06 post_layer.inhW.data[post_layer.inhW.data > 0] = -1e-06 - + + # Remove negative weights for excW and positive for inhW post_layer.excW.data[post_layer.havconnExc] = post_layer.excW.data[post_layer.havconnExc].clamp(min=1e-06, max=10) - # Apply clamping only where the mask is True (non-zero elements) post_layer.inhW.data[post_layer.havconnInh] = post_layer.inhW.data[post_layer.havconnInh].clamp(min=-10, max=-1e-06) + +def norm_rates(post_layer): + + # Check if layer has target firing rate and an ITP learning rate + if post_layer.have_rate and post_layer.eta_ip > 0.0: + + # Replace the original layer.thr with the updated one + post_layer.thr.data += post_layer.eta_ip * (post_layer.x - post_layer.fire_rate) + post_layer.thr.data[post_layer.thr.data < 0] = 0 - torch.cuda.empty_cache() - -################################## -# Run the simulation -# net: BITnet instance -# n_steps: number of steps - +def norm_inhib(post_layer): + + # Check if layer has inhibitory weights and an stdp learning rate + if torch.any(post_layer.inhW).item() and post_layer.eta_stdp != 0: + + # Normalize the inhibitory weights using homeostasis + post_layer.inhW.data += torch.mul(torch.mul(post_layer.x_input, post_layer.inhW.data), + post_layer.eta_stdp*50) + post_layer.inhW.data[post_layer.inhW.data > 0.0] = -1e-06 + def runSim(pre_layer,post_layer,spikes,idx): # Propagate spikes from pre to post neurons - const_thr(post_layer) calc_spikes(post_layer,spikes) # Calculate STDP weight changes @@ -240,8 +206,6 @@ def runSim(pre_layer,post_layer,spikes,idx): norm_rates(post_layer) norm_inhib(post_layer) - torch.cuda.empty_cache() - def testSim(layers,layer_num,spikes): # run the test system through all specified layers to get an output diff --git a/src/utils.py b/src/utils.py index 92b3f07..9887328 100644 --- a/src/utils.py +++ b/src/utils.py @@ -39,485 +39,13 @@ from timeit import default_timer from os import path - -def get_patches2D(patch_size,image_pad): - - if patch_size[0] % 2 == 0: - nrows = image_pad.shape[0] - patch_size[0] + 2 - ncols = image_pad.shape[1] - patch_size[1] + 2 - else: - nrows = image_pad.shape[0] - patch_size[0] + 1 - ncols = image_pad.shape[1] - patch_size[1] + 1 - patches = np.lib.stride_tricks.as_strided(image_pad , patch_size + (nrows, ncols), - image_pad.strides + image_pad.strides).reshape(patch_size[0]*patch_size[1],-1) - - return patches - -# Run patch normalization on imported RGB images -def patch_normalise_pad(img,patches): - - patch_size = (patches, patches) - patch_half_size = [int((p-1)/2) for p in patch_size ] - - image_pad = np.pad(np.float64(img), patch_half_size, 'constant', - constant_values=np.nan) - - nrows = img.shape[0] - ncols = img.shape[1] - patches = get_patches2D(patch_size,image_pad) - mus = np.nanmean(patches, 0) - stds = np.nanstd(patches, 0) - - with np.errstate(divide='ignore', invalid='ignore'): - im_norm = (img - mus.reshape(nrows, ncols)) / stds.reshape(nrows, ncols) - - im_norm[np.isnan(im_norm)] = 0.0 - im_norm[im_norm < -1.0] = -1.0 - im_norm[im_norm > 1.0] = 1.0 - - return im_norm - -# Process the loaded images - resize, normalize color, & patch normalize -def processImage(img,dims,patches): - # gamma correct images - mid = 0.5 - mean = np.mean(img) - gamma = math.log(mid*255)/math.log(mean) - img = np.power(img,gamma).clip(0,255).astype(np.uint8) - - # resize image to 28x28 and patch normalize - img = cv2.resize(img,(dims[0], dims[1])) - im_norm = patch_normalise_pad(img,patches) - img = np.uint8(255.0 * (1 + im_norm) / 2.0) - - return img - -# Image loader function - runs all image import functions -def loadImages(test_true,train_paths,img_names,dims,patches,testPath,testLoc): - - # get torch device - device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") - - imgs = [] - ids = [] - - if test_true: - train_paths = [testPath+testLoc+'/'] - - if isinstance(train_paths,list): - for paths in train_paths: - for m in img_names: - fullpath = paths+m - # read and convert image from BGR to RGB - img = cv2.imread(fullpath)[:,:,::-1] - - # convert image - img = cv2.cvtColor(img,cv2.COLOR_RGB2GRAY) - imgProc = processImage(img,dims,patches) - imgs.append(torch.tensor(imgProc,device=device)) - ids.append(m) - else: - for m in img_names: - fullpath = train_paths+m - # read and convert image from BGR to RGB - img = cv2.imread(fullpath)[:,:,::-1] - # convert image - img = cv2.cvtColor(img,cv2.COLOR_RGB2GRAY) - imgProc = processImage(img,dims,patches) - imgs.append(torch.tensor(imgProc,device=device)) - ids.append(m) - - return imgs, ids - -# sets the spike rates from imported images - convert pixel range [0,255] to [0,1] -# spike rates are set as a 3D tensor with dimensions (m x r x s) -# m = module -# r = location repeat -# s = spikes for number of training images -def setSpikeRates(data,ids,device,dims,test_true,numImgs,numMods,intensity,locRep): - - # output tensor dimensions - n_input = dims[0] * dims[1] - - # Set the spike rates based on the number of example training images - - # loop through data and append spike rates for each image - # organise into 3D tensor based on number of expert modules - if test_true: # if loading testing data (repeat input across modules) - init_rates = torch.empty(0,device=device) - for m in range(numImgs): - - init_rates = torch.cat((init_rates, torch.reshape(data[m]/intensity,(n_input,)))) - - init_rates = torch.unsqueeze(init_rates,0) - # define the initial spike rates - for o in range(numMods): - if o == 0: - spike_rates = torch.unsqueeze(init_rates,0) - else: - spike_rates = torch.concat((spike_rates,torch.unsqueeze(init_rates,0)),0) - - - else: # if loading training data, have separate inputs across modules - for o in range(numMods): - start = [] - end = [] - for j in range(locRep): - mod = j * numImgs - start.append(int(numImgs/numMods)*(o) + mod) - end.append(int(numImgs/numMods)*(o + 1) + mod) - - # define the initial spike rates for location repeats - for m in range(locRep): - rates = torch.empty(0,device=device) - for jdx, j in enumerate(range(start[m],end[m])): - rates = torch.cat((rates, - torch.reshape(data[j]/intensity,(n_input,))),0) - if m == 0: - init_rates = torch.unsqueeze(rates,0) - else: - init_rates = torch.cat((init_rates,torch.unsqueeze(rates,0)),-1) - - # output spike rates into modules - if o == 0: # append the location repeat initial spikes to a new module - spike_rates = torch.unsqueeze(init_rates,0) - else: - spike_rates = torch.concat((spike_rates,torch.unsqueeze(init_rates,0)),0) - - return spike_rates - -# Check if pre-trained network exists, prompt if retrain or run -def checkTrainTest(self): - prompt = "A network with these parameters exists, re-train network? (y/n):\n" - self.logger.info('') - if path.isdir(self.training_out): - retrain = input(prompt) - else: - retrain = 'y' - return retrain - -def initialize(self,condition): - - ''' - Network startup and initialization - ''' - self.logger.info('') - self.logger.info('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~') - self.logger.info(condition+' startup and initialization') - self.logger.info('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~') - self.logger.info('') - self.logger.info('Loading '+condition+' images') - - if condition == 'testing': - self.test_true = True - del self.filteredNames[self.number_testing_images:len(self.filteredNames)] - self.epoch = 1 # Only run the network once - self.location_repeat = 1 # One location repeat for testing - imgNum = self.number_testing_images - else: - imgNum = self.number_training_images - - # load the training images - self.imgs[condition], self.ids[condition] = ut.loadImages(self.test_true, - self.fullTrainPaths, - self.filteredNames, - [self.imWidth,self.imHeight], - self.num_patches, - self.testPath, - self.test_location) - - self.spike_rates[condition] = ut.setSpikeRates(self.imgs[condition], - self.ids[condition], - self.device, - [self.imWidth,self.imHeight], - self.test_true, - imgNum, - self.number_modules, - self.intensity, - self.location_repeat) -def train(self): - - # remove contents of the weights folder - ut.clear_weights(self.training_out) - - # create a new blitnet netowrk - self.logger.info('Creating network and setting weights') - net = bn.newNet(self.number_modules,self.imWidth*self.imHeight) - - # add the input layer - bn.addLayer(net,[self.number_modules,1,self.input_layer], - 0.0,0.0,0.0,0.0,0.0,False) - - # add the feature layer - bn.addLayer(net,[self.number_modules,1,self.feature_layer], - [0,self.theta_max], - [self.f_rate[0],self.f_rate[1]], - self.n_itp, - [0,self.c], - 0, - False) - - # sequentially set the feature firing rates for the feature layer - fstep = (self.f_rate[1]-self.f_rate[0])/self.feature_layer - - # loop through all modules and feature layer neurons - for x in range(self.number_modules): - for i in range(self.feature_layer): - net['fire_rate'][1][x][:,i] = self.f_rate[0]+fstep*(i+1) - - # add excitatory inhibitory connections for input and feature layer - bn.addWeights(net,0,1,[-1,0,1],[self.p_exc,self.p_inh],self.n_init) - self.init_weights = [net['W'][0].clone().detach(),net['W'][1].clone().detach()] - - ''' - Feature layer training - ''' - self.logger.info('') - self.logger.info('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~') - self.logger.info('Training the input to feature layer') - self.logger.info('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~') - self.logger.info('') - - self.logger.info('Setting spike rates from loaded images') - - # begin timer for network training - start = timeit.default_timer() - - # Set the spikes times for the input images - net['set_spks'][0] = torch.clone(self.spike_rates['training']) - self.spike_rates['training'] = [] - if self.device == 'cuda': - torch.cuda.empty_cache() - gc.collect() - layers = [len(net['W'])-2, len(net['W'])-1, len(net['W_lyr'])-1] - - # Train the input to feature layer for specified amount of epochs - for epoch in range(self.epoch): - net['step_num'] = 0 - epochStart = timeit.default_timer() - - # loop through each image and train the network - for t in range(int(self.T)): - bn.runSim(net,1,self.device,layers) - # anneal learning rates - if np.mod(t,10)==0: - pt = pow(float(self.T-t)/self.T,self.annl_pow) - net['eta_ip'][1] = self.n_itp*pt - net['eta_stdp'][0] = self.n_init*pt - net['eta_stdp'][1] = -1*self.n_init*pt - - # print training details - self.logger.info('Epoch '+str(epoch+1)+' trained in: ' - +str(round(timeit.default_timer()-epochStart,2))+'s') - self.logger.info('') - - self.logger.info('Finished training input to feature layer') - - ''' - Preparations for feature to output layer training - ''' - - # Turn off learning between input and feature layer - net['eta_ip'][1] = 0.0 - if self.p_exc > 0.0: net['eta_stdp'][0] = 0.0 - if self.p_inh > 0.0: net['eta_stdp'][1] = 0.0 - - self.logger.info('Getting feature layer spikes for output layer training') - - # get the feature spikes for training the output layer - net['x_feat'] = [] - net['step_num'] = 0 - for t in range(int(self.T)): # run blitnet without learning to get feature spikes - bn.runSim(net,1,self.device,layers) - net['x_feat'].append(net['x'][1]) # dictionary output of feature spikes - - # delete input spikes - net['set_spks'][0] = [] - if self.device == 'cuda': - torch.cuda.empty_cache() - gc.collect() - - self.logger.info('Creating output layer') - # Create and train the output layer with the feature layer - bn.addLayer(net,[self.number_modules,1,self.output_layer], - 0.0,0.0,0.0,0.0,0.0,False) - - # Add excitatory and inhibitory connections - bn.addWeights(net,1,2,[-1.0,0.0,1.0],[1.0,1.0],self.n_init) - self.init_weights.append(net['W'][2].clone().detach()) - self.init_weights.append(net['W'][3].clone().detach()) - - # Output spikes for spike forcing (final layer) - out_spks = torch.tensor([0],device=self.device,dtype=float) - - ''' - Output layer training - ''' - self.logger.info('') - self.logger.info('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~') - self.logger.info('Training the feature to output layer') - self.logger.info('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~') - self.logger.info('') - - net['spike_dims'] = 1 # change spike dims for output spike indexing - net['set_spks'][0] = [] # remove input spikes - layers = [len(net['W'])-2, len(net['W'])-1, len(net['W_lyr'])-1] - - # Train the feature to output layer for specified number of epochs - for epoch in range(self.epoch): - net['step_num'] = 0 - epochStart = timeit.default_timer() - - # Loop through all the spikes generated in the feature layer to train output - for t in range(self.T): - out_spks = torch.tensor([0],device=self.device,dtype=float) - - net['set_spks'][-1] = torch.tile(out_spks, - (self.number_modules, - 1, - self.output_layer)) - net['x'][1] = net['x_feat'][t] - bn.runSim(net,1,self.device,layers) - # Anneal learning rates - if np.mod(t,10)==0: - pt = pow(float(self.T-t)/(self.T),self.annl_pow) - net['eta_ip'][2] = self.n_itp*pt - net['eta_stdp'][2] = self.n_init*pt - net['eta_stdp'][3] = -1*self.n_init*pt - if np.mod((t+1),(int(self.T/self.location_repeat))) == 0: - net['step_num'] = 0 - - # print training details - self.logger.info('Epoch '+str(epoch+1)+' trained in: ' - +str(round(timeit.default_timer()-epochStart,2))+'s') - self.logger.info('') - - self.logger.info('Finished training feature to output layer') - self.logger.info('') - self.logger.info('~~~~~~~~~~~~~~~~~~~~~~~~~~') - self.logger.info('Network trained in '+str(round(timeit.default_timer()-start,2)) - +'s') - self.logger.info('~~~~~~~~~~~~~~~~~~~~~~~~~~') - self.logger.info('') - - # Turn off learning - net['eta_ip'][2] = 0.0 - net['eta_stdp'][2] = 0.0 - net['eta_stdp'][3] = 0.0 - - # Clear the network output spikes - net['set_spks'][-1] = [] - net['spike_dims'] = self.input_layer - - # Reset network details - net['sspk_idx'] = [0,0,0] - net['step_num'] = 0 - net['spikes'] = [[],[],[]] - net['x'] = [[],[],[]] - net['x_feat'] = [] - - - self.logger.info('Network formatting and saving...') - - # Output the trained network - outputPkl = self.training_out + 'net.pkl' - with open(outputPkl, 'wb') as f: - pickle.dump(net, f) - - # output the ground truth image names for later testing - outputPkl = self.training_out + 'GT_imgnames.pkl' - with open(outputPkl, 'wb') as f: - pickle.dump(self.filteredNames, f) - - self.logger.info('Network succesfully saved!') - - # if using cuda, clear and dump the memory usage - if self.device =='cuda': - del net - del self.spike_rates - del self.imgs - torch.cuda.empty_cache() - gc.collect() - -''' - Run the testing network -''' -def networktester(self): - - ''' - Network startup and initialization - ''' - - # unpickle the network - self.logger.info('Unpickling the network') - with open(self.training_out+'net.pkl', 'rb') as f: - net = pickle.load(f) - - self.logger.info('Setting spike rates from loaded images') - # calculate input spikes from training images - - net['set_spks'][0] = self.spike_rates['testing'] - - # unpickle the ground truth image names - with open(self.training_out+'GT_imgnames.pkl', 'rb') as f: - GT_imgnames = pickle.load(f) - - self.logger.info('') - self.logger.info('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~') - self.logger.info('Running test network') - self.logger.info('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~') - self.logger.info('') - - # set number of correct places to 0 - numcorrect = 0 - net['spike_dims'] = self.input_layer - numpconc = [] - start = timeit.default_timer() - for t in range(self.number_testing_images): - tonump = np.array([]) - bn.testSim(net,device=self.device) - # output the index of highest amplitude spike - - tonump = np.append(tonump,np.reshape(net['x'][-1].cpu().numpy(), - [1,1,int(self.number_training_images)])) - - # detect if no output - if np.all(tonump == 0): - # find the strongest sub-threshold input index - nidx = np.argmax(torch.sub(net['x_input'][-1][0,0,:], - net['thr'][-1][0,0,:]).cpu().numpy()) - tonump[nidx] = 0.5 - else: - # find the highest output spike - nidx = np.argmax(tonump) - - gt_ind = GT_imgnames.index(self.filteredNames[t]) - - if gt_ind == nidx: - numcorrect += 1 - - if self.validation: # get similarity matrix for PR curve generation - numpconc.append(tonump.tolist()) - - self.p100r = round((numcorrect/self.number_testing_images)*100,2) - self.logger.info('Number of correct matches P@100R - '+str(self.p100r)+'%') - - end = timeit.default_timer() - queryHertz = self.number_testing_images/(end-start) - self.logger.info('System queried at '+str(round(queryHertz,2))+'Hz') +def dummy_bmm(device): + # Create some dummy tensors on CUDA + dummy_a = torch.randn(10, 10, device=device) + dummy_b = torch.randn(10, 10, device=device) - # if self.validation = True, get PR information and plot similarity matrix - if self.validation: - val.match_metrics(numpconc, - self.output_folder, - self.number_testing_images, - self.number_training_images, - self.logger) - - # if using cuda, clear and dump the memory usage - if self.device =='cuda': - gc.collect() - torch.cuda.empty_cache() + # Perform a dummy bmm operation + torch.bmm(dummy_a.unsqueeze(0), dummy_b.unsqueeze(0)) def sad(self): From 146ca7606917e27287b7dfcdd9c6d4a694a9796f Mon Sep 17 00:00:00 2001 From: Adam Hines Date: Fri, 6 Oct 2023 16:56:16 +1000 Subject: [PATCH 12/69] Started on some quantization now that network works, but fatal flaw that bmm not supported for quantized tensors so need to explore a bit further --- VPRTempo.py | 117 +++++++++++++++++++++++++++++++++++------------ config/config.py | 8 ++-- src/blitnet.py | 7 ++- 3 files changed, 96 insertions(+), 36 deletions(-) diff --git a/VPRTempo.py b/VPRTempo.py index ab851bb..ad8d46a 100644 --- a/VPRTempo.py +++ b/VPRTempo.py @@ -40,12 +40,12 @@ import numpy as np import torch.nn as nn import torch.nn.functional as F +import torch.quantization as quantization from config import configure, image_csv, model_logger from dataset import CustomImageDataset, SetImageAsSpikes, ProcessImage from torch.utils.data import DataLoader from tqdm import tqdm -from timeit import default_timer class SNNLayer(nn.Module): def __init__(self, previous_layer=None,dims=[0,0,0],thr_range=[0,0], @@ -150,17 +150,13 @@ def train_model(self, train_loader, logger): if self.device.type == "cuda": ut.dummy_bmm(self.device) + warmup_iters = 10 + for _ in range(warmup_iters): + _ = next(iter(train_loader)) + # Run the training for each layer, using defined parameters for layer in range(len(self.layers)-1): - - # Start timer for layer trainins - start_lyr = default_timer() - - # Initialize the tqdm progress bar - pbar = tqdm(total=int(self.T * self.epoch), - desc="Training layer "+str(layer)+" with layer "+str(layer+1), - position=0) - + # Define in and out layer (2 layers trained at a time) in_layer = self.layers['layer'+str(layer)] out_layer = self.layers['layer'+str(layer+1)] @@ -168,6 +164,11 @@ def train_model(self, train_loader, logger): # Output the learning rates for annealment during training n_initstdp = out_layer.eta_stdp.detach() # STDP n_initip = out_layer.eta_ip.detach() # ITP + + # Initialize the tqdm progress bar + pbar = tqdm(total=int(self.T * self.epoch), + desc="Training layer "+str(layer)+" with layer "+str(layer+1), + position=0) # Run the training for the input to feature layer for specified epochs for epoch in range(self.epoch): @@ -203,18 +204,10 @@ def train_model(self, train_loader, logger): out_layer.x.fill_(0.0) out_layer.x_input.fill_(0.0) pbar.update(1) - - # Record training time for the layer - end_lyr = default_timer()-start_lyr - + # Close the tqdm progress bar pbar.close() - - # Record the training time and training frequency - logger.info('') - logger.info("Training layer "+str(layer)+" with layer "+ - str(layer+1)+" took "+str(round(end_lyr,2))+"s") - logger.info('') + print('') # Clear the cache and garbage collect (if using cuda) if self.device.type == "cuda": @@ -228,7 +221,7 @@ def save_model(self, model_out): class SNNModel(nn.Module): def __init__(self): super(SNNModel, self).__init__() - + # Configure the network configure(self) # Sets the testing configuration image_csv(self) # Defines images to load @@ -252,11 +245,51 @@ def __init__(self): 'layer1':self.feature_layer, 'layer2':self.output_layer} + self.is_quantized = False + def load_model(self,model_path): state_dict = torch.load(model_path, map_location=self.device) self.load_state_dict(state_dict) self.eval() - + + def quantize_tensors(self): + if not self.is_quantized: + tensors_to_quantize = ["excW", "inhW", "thr"] + + # Iterate over the layers + for layer_name, layer in self.layers.items(): + for tensor_name in tensors_to_quantize: + # Check if the tensor exists in the current layer + if hasattr(layer, tensor_name): + tensor = getattr(layer, tensor_name) + + # Convert nn.Parameter to regular tensor if necessary + if isinstance(tensor, nn.Parameter): + tensor = tensor.data + # Explicitly delete the attribute + delattr(layer, tensor_name) + + # If the tensor is all zeros, skip quantization + if (tensor == 0).all(): + continue + + # Check if all values in the tensor are negative, and if so, multiply by -1 + if (tensor < 0).all(): + tensor = tensor * -1 + + # Calculate the non-zero max and min of this tensor + non_zero_max = tensor[tensor.nonzero(as_tuple=True)].max() + non_zero_min = tensor[tensor.nonzero(as_tuple=True)].min() + + # Calculate scale based on non-zero max and min + scale = (non_zero_max - non_zero_min) / 255.0 + + # Now, quantize the tensor + quantized_tensor = nn.quantized.Quantize(scale=scale, zero_point=0, dtype=torch.quint8)(tensor) + setattr(layer, tensor_name, quantized_tensor) + + + def forward(self, test_loader): # If using CUDA, run a dummy torch.bmm to 'spool-up' operations @@ -265,18 +298,26 @@ def forward(self, test_loader): idx=0 numcorr = 0 + + # If using CUDA, run a dummy torch.bmm to 'spool-up' operations + if self.device.type == "cuda": + ut.dummy_bmm(self.device) + + warmup_iters = 10 + for _ in range(warmup_iters): + _ = next(iter(test_loader)) # Initialize the tqdm progress bar pbar = tqdm(total=self.number_testing_images, desc="Running the test network", position=0) - + # Run test network for each individual input for images, labels in test_loader: # Set images to the specified device - images = images.to(self.device) - labels = labels.to(self.device) + #images = images.to(self.device) + #labels = labels.to(self.device) # Set the spikes for the input, tiling across modules if applicable make_spikes = SetImageAsSpikes(intensity=self.intensity, @@ -310,7 +351,13 @@ def forward(self, test_loader): if __name__ == "__main__": # Initialize the model and image transforms model = SNNModel() - + qconfig = torch.quantization.QConfig( + activation=torch.quantization.FakeQuantize.with_args(observer=torch.quantization.MinMaxObserver), + weight=torch.quantization.default_weight_fake_quant) + + model.qconfig = qconfig + model = quantization.prepare_qat(model) + # Generate model name, check if pre-trained model exists model_name = ("VPRTempo"+ # main name str(model.input)+ # number input neurons @@ -351,7 +398,7 @@ def forward(self, test_loader): train_loader = DataLoader(train_dataset, batch_size=model.number_modules, shuffle=False, - num_workers=4, + num_workers=8, persistent_workers=True) # Initialize, run, and save the training model @@ -360,9 +407,14 @@ def forward(self, test_loader): trainer.save_model(os.path.join('./models',model_name)) with torch.no_grad(): # Disable gradient computation during testing + + model = quantization.convert(model.eval()) + # Load the trained model into SNNModel() model.load_model(os.path.join('./models',model_name)) - + model = model.cpu() + model.quantize_tensors() + # Define the custom testing image dataset class test_dataset = CustomImageDataset(annotations_file=model.dataset_file, img_dirs=model.testing_dirs, @@ -375,6 +427,11 @@ def forward(self, test_loader): test_loader = DataLoader(test_dataset, batch_size=1, shuffle=False, - num_workers=4, + num_workers=8, persistent_workers=True) - model.forward(test_loader) \ No newline at end of file + model.forward(test_loader) + + + for name, module in model.named_modules(): + if 'quantized' in str(type(module)): + print(f"{name}: {type(module)} is quantized!") diff --git a/config/config.py b/config/config.py index ac21482..8caed52 100644 --- a/config/config.py +++ b/config/config.py @@ -10,10 +10,10 @@ def configure(model): model.dataset_file = './dataset/'+model.dataset+'.csv' model.trainingPath = '/home/adam/data/nordland/' model.testPath = '/home/adam/data/nordland/' - model.number_modules = 10 - model.number_training_images = 2700 - model.number_testing_images = 2700 - model.locations = ["spring","fall","winter"] + model.number_modules = 5 + model.number_training_images = 500 + model.number_testing_images = 500 + model.locations = ["spring","fall"] model.test_locations = ["summer"] model.filter = 8 model.validation = True diff --git a/src/blitnet.py b/src/blitnet.py index 7c6c369..5f9ddb8 100644 --- a/src/blitnet.py +++ b/src/blitnet.py @@ -96,10 +96,12 @@ def addWeights(W_range=[-1,0,1],p=[1,1],dims=None,num_modules=1): return excW, inhW, havconnExc, havconnInh -def calc_spikes(post_layer, spikes): - +def add_input(post_layer): + # Add the constant input post_layer.x_input += post_layer.const_inp + +def calc_spikes(post_layer, spikes): # Multiply input spikes by positive and negative weights post_layer.x_input += torch.bmm(spikes, post_layer.excW.detach()) @@ -197,6 +199,7 @@ def norm_inhib(post_layer): def runSim(pre_layer,post_layer,spikes,idx): # Propagate spikes from pre to post neurons + add_input(post_layer) calc_spikes(post_layer,spikes) # Calculate STDP weight changes From e71172ba51c4aef9726dbf26011c4d0f1a34eaf8 Mon Sep 17 00:00:00 2001 From: Adam Hines Date: Mon, 9 Oct 2023 17:39:27 +1000 Subject: [PATCH 13/69] Complete nn.Module integration, replaced torch.bmm weight operations with nn.Linear - removed modularity for now. Working on QAT, can train but cannot evaluate due to x and x_input tensors not quantized. --- VPRTempo.py | 286 ++++++++++++---------------------- config/config.py | 11 +- src/blitnet.py | 398 +++++++++++++++++++++++++++-------------------- src/dataset.py | 61 +++----- 4 files changed, 354 insertions(+), 402 deletions(-) diff --git a/VPRTempo.py b/VPRTempo.py index ad8d46a..05e9ff8 100644 --- a/VPRTempo.py +++ b/VPRTempo.py @@ -34,7 +34,7 @@ sys.path.append('./output') sys.path.append('./dataset') sys.path.append('./config') - +torch.multiprocessing.set_sharing_strategy("file_system") import blitnet as bn import utils as ut import numpy as np @@ -47,65 +47,6 @@ from torch.utils.data import DataLoader from tqdm import tqdm -class SNNLayer(nn.Module): - def __init__(self, previous_layer=None,dims=[0,0,0],thr_range=[0,0], - fire_rate=[0,0],ip_rate=0,stdp_rate=0,const_inp=[0,0],p=[1,1], - assign_weight=False,spk_force=False): - super(SNNLayer, self).__init__() - # Configure the network - configure(self) # Sets the testing configuration - # Device - self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") - - # Check constraints etc - if np.isscalar(thr_range): thr_range = [thr_range, thr_range] - if np.isscalar(fire_rate): fire_rate = [fire_rate, fire_rate] - if np.isscalar(const_inp): const_inp = [const_inp, const_inp] - - # Initialize Tensors - self.dim = torch.tensor(dims, dtype=torch.int) - self.x = torch.zeros(dims, device=self.device) - self.x_prev = torch.zeros(dims, device=self.device) - self.x_calc = torch.zeros(dims, device=self.device) - self.x_input = torch.zeros(dims, device=self.device) - self.x_fastinp = torch.zeros(dims, device=self.device) - self.eta_ip = torch.tensor(ip_rate, device=self.device) - self.eta_stdp = torch.tensor(stdp_rate, device=self.device) - - # Initialize Parameters - self.thr = nn.Parameter(torch.zeros(dims, device=self.device).uniform_(thr_range[0], thr_range[1])) - self.fire_rate = torch.zeros(dims, device=self.device).uniform_(fire_rate[0], fire_rate[1]) - - # Sequentially set the feature firing rates (if any) - if not torch.all(self.fire_rate==0).item(): - fstep = (fire_rate[1]-fire_rate[0])/dims[-1] - - # loop through all modules and feature layer neurons - for x in range(self.number_modules): - for i in range(dims[-1]): - self.fire_rate[x][:,i] = fire_rate[0]+fstep*(i+1) - - self.have_rate = torch.any(self.fire_rate[:,:,0] > 0.0).to(self.device) - self.const_inp = torch.zeros(dims, device=self.device).uniform_(const_inp[0], const_inp[1]) - self.p = p - self.dims = dims - - # Additional State Variables - self.set_spks = [] - self.sspk_idx = 0 - self.spikes = torch.empty([], dtype=torch.float64) - self.spk_force = spk_force - - # Weights (if applicable) - if assign_weight: - excW, inhW, self.havconnExc, self.havconnInh = bn.addWeights(p=self.p, - dims=[previous_layer.dims[2], - dims[2]], - num_modules=self.number_modules) - - self.excW = nn.Parameter(excW) - self.inhW = nn.Parameter(inhW) - class SNNTrainer(nn.Module): def __init__(self): super(SNNTrainer, self).__init__() @@ -114,34 +55,33 @@ def __init__(self): image_csv(self) # Defines images to load # Set the device - self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") - - # Set up the input layer - self.input_layer = SNNLayer(dims=[self.number_modules,1,self.input]) - + #self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") + self.device = torch.device("cpu") + # Set up the feature layer - self.feature_layer = SNNLayer(previous_layer=self.input_layer, - dims=[self.number_modules,1,self.feature], + self.feature_layer = bn.SNNLayer( + dims=[self.input,self.feature], thr_range=[0,0.5], fire_rate=[0.2,0.9], ip_rate=0.15, stdp_rate=0.005, const_inp=[0,0.1], - p=[0.1,0.5], - assign_weight=True) + p=[0.1,0.5] + ) # Set up the output layer - self.output_layer = SNNLayer(previous_layer=self.feature_layer, - dims=[self.number_modules,1,self.output], + self.output_layer = bn.SNNLayer( + dims=[self.feature,self.output], ip_rate=0.15, stdp_rate=0.005, - assign_weight=True, - spk_force=True) + spk_force=True + ) # Define number of layers (will run training on all layers) - self.layers = {'layer0':self.input_layer, - 'layer1':self.feature_layer, - 'layer2':self.output_layer} + self.layers = { + 'layer0':self.feature_layer, + 'layer1':self.output_layer + } def train_model(self, train_loader, logger): @@ -149,32 +89,38 @@ def train_model(self, train_loader, logger): # If using CUDA, run a dummy torch.bmm to 'spool-up' operations if self.device.type == "cuda": ut.dummy_bmm(self.device) - + + # Warm up the DataLoader warmup_iters = 10 for _ in range(warmup_iters): _ = next(iter(train_loader)) - + # Run the training for each layer, using defined parameters - for layer in range(len(self.layers)-1): - - # Define in and out layer (2 layers trained at a time) - in_layer = self.layers['layer'+str(layer)] - out_layer = self.layers['layer'+str(layer+1)] + for lyrCount, lyr in enumerate(self.layers): + + # Get the training layer + layer = self.layers[lyr] # Output the learning rates for annealment during training - n_initstdp = out_layer.eta_stdp.detach() # STDP - n_initip = out_layer.eta_ip.detach() # ITP - + n_initstdp = layer.eta_stdp.detach() # STDP + n_initip = layer.eta_ip.detach() # ITP + # Initialize the tqdm progress bar pbar = tqdm(total=int(self.T * self.epoch), - desc="Training layer "+str(layer)+" with layer "+str(layer+1), + desc="Training "+str(lyr), position=0) # Run the training for the input to feature layer for specified epochs for epoch in range(self.epoch): - mod = 0 # Used to determine the learning rate annealment + # Used to determine the learning rate annealment, resets at each epoch + mod = 0 + + # Load and run images through BliTNET for images, labels in train_loader: - + + # Reset fire rate to None + fr = None + # Put input images on device (CPU, CUDA) images = images.to(self.device) @@ -187,22 +133,35 @@ def train_model(self, train_loader, logger): idx = labels/self.filter # Layers don't include loaded input, calculate network spikes for up to training layers - if layer != 0: - spikes = bn.testSim(self.layers,layer,spikes) - + if list(lyr[-1]) != ['0']: + blitnet = bn.BLiTNET(layer_lst=self.layers, + spikes=spikes, + idx=idx, + testCount=lyrCount) + spikes = blitnet.testSim() + fr = self.layers['layer'+str(lyrCount-1)].fire_rate + # Run one timestep of the training input to feature layer - bn.runSim(in_layer, out_layer, spikes, idx) + blitnet = bn.BLiTNET( + layer=layer, + spikes=spikes, + idx=idx, + fr=fr + ) + blitnet.runSim() # Anneal the learning rate if np.mod(mod,10)==0: pt = pow(float(self.T-mod)/self.T,self.annl_pow) - out_layer.eta_ip = torch.mul(n_initip,pt) - out_layer.eta_stdp = torch.mul(n_initstdp,pt) + layer.eta_ip = torch.mul(n_initip,pt) + layer.eta_stdp = torch.mul(n_initstdp,pt) + + # Update the learning rate annealment modifier mod += 1 # Reset x and x_input for next iteration - out_layer.x.fill_(0.0) - out_layer.x_input.fill_(0.0) + layer.x.fill_(0.0) + layer.x_input.fill_(0.0) pbar.update(1) # Close the tqdm progress bar @@ -227,74 +186,25 @@ def __init__(self): image_csv(self) # Defines images to load model_logger(self) # Sets the logger - # Set up the input layer - self.input_layer = SNNLayer(dims=[self.number_modules,1,self.input]) # Set up the feature layer - self.feature_layer = SNNLayer(previous_layer=self.input_layer, - dims=[self.number_modules,1,self.feature], - assign_weight=True) + self.feature_layer = bn.SNNLayer(dims=[self.input,self.feature]) # Set up the output layer - self.output_layer = SNNLayer(previous_layer=self.feature_layer, - dims=[self.number_modules,1,self.output], - assign_weight=True) + self.output_layer = bn.SNNLayer(dims=[self.feature,self.output]) # Define number of layers (will run training on all layers) - self.layers = {'layer0':self.input_layer, - 'layer1':self.feature_layer, - 'layer2':self.output_layer} - - self.is_quantized = False + self.layers = { + 'layer0':self.feature_layer, + 'layer1':self.output_layer + } def load_model(self,model_path): state_dict = torch.load(model_path, map_location=self.device) self.load_state_dict(state_dict) self.eval() - def quantize_tensors(self): - if not self.is_quantized: - tensors_to_quantize = ["excW", "inhW", "thr"] - - # Iterate over the layers - for layer_name, layer in self.layers.items(): - for tensor_name in tensors_to_quantize: - # Check if the tensor exists in the current layer - if hasattr(layer, tensor_name): - tensor = getattr(layer, tensor_name) - - # Convert nn.Parameter to regular tensor if necessary - if isinstance(tensor, nn.Parameter): - tensor = tensor.data - # Explicitly delete the attribute - delattr(layer, tensor_name) - - # If the tensor is all zeros, skip quantization - if (tensor == 0).all(): - continue - - # Check if all values in the tensor are negative, and if so, multiply by -1 - if (tensor < 0).all(): - tensor = tensor * -1 - - # Calculate the non-zero max and min of this tensor - non_zero_max = tensor[tensor.nonzero(as_tuple=True)].max() - non_zero_min = tensor[tensor.nonzero(as_tuple=True)].min() - - # Calculate scale based on non-zero max and min - scale = (non_zero_max - non_zero_min) / 255.0 - - # Now, quantize the tensor - quantized_tensor = nn.quantized.Quantize(scale=scale, zero_point=0, dtype=torch.quint8)(tensor) - setattr(layer, tensor_name, quantized_tensor) - - - def forward(self, test_loader): - - # If using CUDA, run a dummy torch.bmm to 'spool-up' operations - if self.device.type == "cuda": - ut.dummy_bmm(self.device) idx=0 numcorr = 0 @@ -316,23 +226,23 @@ def forward(self, test_loader): for images, labels in test_loader: # Set images to the specified device - #images = images.to(self.device) - #labels = labels.to(self.device) + images = images.to(self.device) + labels = labels.to(self.device) # Set the spikes for the input, tiling across modules if applicable - make_spikes = SetImageAsSpikes(intensity=self.intensity, - modules=self.number_modules) + make_spikes = SetImageAsSpikes(intensity=self.intensity) spikes = make_spikes(images) # Run the test sim - out = bn.testSim(self.layers,len(self.layers)-1,spikes) - - # Store output and determine if output matches GT - tonump = np.array([]) - tonump = np.append(tonump,np.reshape(out.cpu().numpy(), - [1,1,int(self.number_training_images)])) - if np.argmax(tonump) == idx: + blitnet = bn.BLiTNET(layer_lst=self.layers, + spikes=spikes, + testCount=len(self.layers) + ) + out = blitnet.testSim() + + if torch.argmax(out.reshape(1, self.number_training_images)) == idx: numcorr += 1 + idx+=1 # Update the progress bar @@ -351,13 +261,7 @@ def forward(self, test_loader): if __name__ == "__main__": # Initialize the model and image transforms model = SNNModel() - qconfig = torch.quantization.QConfig( - activation=torch.quantization.FakeQuantize.with_args(observer=torch.quantization.MinMaxObserver), - weight=torch.quantization.default_weight_fake_quant) - - model.qconfig = qconfig - model = quantization.prepare_qat(model) - + qconfig = torch.quantization.get_default_qat_qconfig('fbgemm') # Generate model name, check if pre-trained model exists model_name = ("VPRTempo"+ # main name str(model.input)+ # number input neurons @@ -365,6 +269,8 @@ def forward(self, test_loader): str(model.output)+ # number output neurons str(model.number_modules)+ # number of modules '.pth') + + # Check if a pre-trained model exists if os.path.exists(os.path.join('./models',model_name)): pretrain_flg = True @@ -391,47 +297,51 @@ def forward(self, test_loader): transform=image_transform, skip=model.filter, max_samples=model.number_training_images, - modules=model.number_modules, test=False) # Define the training dataloader class train_loader = DataLoader(train_dataset, - batch_size=model.number_modules, + batch_size=1, shuffle=False, - num_workers=8, + num_workers=1, persistent_workers=True) # Initialize, run, and save the training model trainer = SNNTrainer() + trainer.to('cpu') + + trainer.feature_layer.qconfig = qconfig + trainer.output_layer.qconfig = qconfig + trainer = torch.quantization.prepare_qat(trainer, inplace=True) + trainer.train_model(train_loader,model.logger) + + trainer.eval() + trainer = torch.quantization.convert(trainer, inplace=True) + trainer.save_model(os.path.join('./models',model_name)) with torch.no_grad(): # Disable gradient computation during testing - - model = quantization.convert(model.eval()) - + model.to('cpu') + model.feature_layer.qconfig = qconfig + model.output_layer.qconfig = qconfig + model = torch.quantization.prepare(model, inplace=False) + model = torch.quantization.convert(model, inplace=False) # Load the trained model into SNNModel() model.load_model(os.path.join('./models',model_name)) - model = model.cpu() - model.quantize_tensors() - + + # Define the custom testing image dataset class test_dataset = CustomImageDataset(annotations_file=model.dataset_file, img_dirs=model.testing_dirs, transform=image_transform, skip=model.filter, - max_samples=model.number_testing_images, - modules=model.number_modules) + max_samples=model.number_testing_images) # Define the testing dataloader class test_loader = DataLoader(test_dataset, batch_size=1, shuffle=False, - num_workers=8, + num_workers=1, persistent_workers=True) - model.forward(test_loader) - - - for name, module in model.named_modules(): - if 'quantized' in str(type(module)): - print(f"{name}: {type(module)} is quantized!") + model.forward(test_loader) \ No newline at end of file diff --git a/config/config.py b/config/config.py index 8caed52..c6d7fae 100644 --- a/config/config.py +++ b/config/config.py @@ -10,9 +10,9 @@ def configure(model): model.dataset_file = './dataset/'+model.dataset+'.csv' model.trainingPath = '/home/adam/data/nordland/' model.testPath = '/home/adam/data/nordland/' - model.number_modules = 5 - model.number_training_images = 500 - model.number_testing_images = 500 + model.number_modules = 1 + model.number_training_images = 10 + model.number_testing_images = 10 model.locations = ["spring","fall"] model.test_locations = ["summer"] model.filter = 8 @@ -43,7 +43,8 @@ def configure(model): model.location_repeat = len(model.locations) model.layers = [] - model.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") + #model.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") + model.device = torch.device("cpu") if model.device.type == "cuda": torch.cuda.init() torch.cuda.synchronize(device=model.device) @@ -71,6 +72,8 @@ def model_logger(model): os.mkdir(model.output_folder) model.logger = logging.getLogger("VPRTempo") + if (model.logger.hasHandlers()): + model.logger.handlers.clear() model.logger.setLevel(logging.DEBUG) logging.basicConfig(filename=model.output_folder + "/logfile.log", filemode="a+", diff --git a/src/blitnet.py b/src/blitnet.py index 5f9ddb8..7803ea3 100644 --- a/src/blitnet.py +++ b/src/blitnet.py @@ -23,199 +23,251 @@ ''' Imports ''' -import numpy as np import torch +import torch.nn as nn +import numpy as np + +from config import configure -def addWeights(W_range=[-1,0,1],p=[1,1],dims=None,num_modules=1): - # get torch device - device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") +class SNNLayer(nn.Module): + def __init__(self, dims=[0,0],thr_range=[0,0],fire_rate=[0,0],ip_rate=0, + stdp_rate=0,const_inp=[0,0],p=[1,1],spk_force=False): + super(SNNLayer, self).__init__() + # Configure the network + configure(self) # Sets the testing configuration + # Device + #self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") + self.device = torch.device("cpu") + + # Check constraints etc + if np.isscalar(thr_range): thr_range = [thr_range, thr_range] + if np.isscalar(fire_rate): fire_rate = [fire_rate, fire_rate] + if np.isscalar(const_inp): const_inp = [const_inp, const_inp] + + # Initialize Tensors + self.x = torch.zeros([1, dims[-1]], device=self.device) + self.x_prev = torch.zeros([1, dims[-1]], device=self.device) + self.x_calc = torch.zeros([1, dims[-1]], device=self.device) + self.x_input = torch.zeros([1, dims[-1]], device=self.device) + self.x_fastinp = torch.zeros([1, dims[-1]], device=self.device) + + self.eta_ip = torch.tensor(ip_rate, device=self.device) + self.eta_stdp = torch.tensor(stdp_rate, device=self.device) + + # Initialize Parameters + self.thr = nn.Parameter(torch.zeros([1, dims[-1]], + device=self.device).uniform_(thr_range[0], + thr_range[1])) + self.fire_rate = torch.zeros([1,dims[-1]], device=self.device).uniform_(fire_rate[0], fire_rate[1]) + + # Sequentially set the feature firing rates (if any) + if not torch.all(self.fire_rate==0).item(): + fstep = (fire_rate[1]-fire_rate[0])/dims[-1] + + for i in range(dims[-1]): + self.fire_rate[:,i] = fire_rate[0]+fstep*(i+1) + + self.have_rate = torch.any(self.fire_rate[:,0] > 0.0).to(self.device) + self.const_inp = torch.zeros([1, dims[-1]], device=self.device).uniform_(const_inp[0], const_inp[1]) + self.p = p + self.dims = dims + + # Additional State Variables + self.set_spks = [] + self.sspk_idx = 0 + self.spikes = torch.empty([], dtype=torch.float64) + self.spk_force = spk_force + + # Create the excitatory weights + self.exc = nn.Linear(dims[0], dims[1], bias=False) + self.exc.weight = self.addWeights(dims=dims, + W_range=[0,1], + p=p[0]) + + # Create the inhibitory weights + self.inh = nn.Linear(dims[0], dims[1], bias=False) + self.inh.weight = self.addWeights(dims=dims, + W_range=[-1,0], + p=p[-1]) + + # Output boolean reference of which neurons have connection weights + self.havconnExc = self.exc.weight > 0 + self.havconnInh = self.inh.weight < 0 + + def addWeights(self,W_range=[0,0],p=[0,0],dims=[0,0]): - # Check constraints etc - if np.isscalar(W_range): W_range = [W_range,W_range] + # Get torch device + #device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") + device = torch.device("cpu") - # determine dimensions of the weight matrices - nrow = dims[0] - ncol = dims[1] + # Check constraints etc + if np.isscalar(W_range): W_range = [W_range,W_range] + + # Determine dimensions of the weight matrices + nrow = dims[1] + ncol = dims[0] + + # Calculate mean and std for normal distributions + Wmn = (W_range[0]+W_range[1])/2.0 + Wsd = (W_range[1]-W_range[0])/6.0 + + # Initialize weights as empty tensors + W = torch.empty((0, nrow, ncol), device=device) + + # Normally disribute random weights + W = torch.empty(nrow, ncol, device=device).normal_(mean=Wmn, std=Wsd) + + # Remove inappropriate weights based on sign from W_range + if W_range[-1] != 0: + # For excitatory weights + W[W < 0] = 0.0 + else: + # For inhibitory weights + W[W > 0] = 0.0 - # calculate mean and std for normal distributions - inWmn = (W_range[0]+W_range[1])/2.0 - inWsd = (W_range[1]-W_range[0])/6.0 - exWmn = (W_range[1]+W_range[2])/2.0 - exWsd = (W_range[2]-W_range[1])/6.0 + # Remove weights based on connection probability + setzero = np.random.rand(nrow,ncol) > p + if setzero.any(): + W[setzero] = 0.0 - # Initialize excW and inhW as empty tensors - excW = torch.empty((0, nrow, ncol), device=device) - inhW = torch.empty((0, nrow, ncol), device=device) + # Normalise the weights + nrm = torch.linalg.norm(W[len(W)-1],ord=1,axis=0) + nrm[nrm==0.0] = 1.0 + W = nn.Parameter(W/nrm) - # Loop through modules and add excitatory and inhibitory weights - for n in range(num_modules): - if n == 0: # first weights to be appended - # excitatory weights - excW = torch.cat((excW, - torch.unsqueeze(torch.empty(nrow, ncol, device=device).normal_(mean=exWmn, std=exWsd), - 0)), 0) - # inhibitory weights - inhW = torch.cat((inhW, - torch.unsqueeze(torch.empty(nrow, ncol, device=device).normal_(mean=inWmn, std=inWsd), - 0)), 0) - else: # stack new weights onto appended weight - excW = torch.cat((excW, - torch.unsqueeze(torch.empty(nrow, ncol, device=device).normal_(mean=exWmn, std=exWsd), - 0)), 0) - inhW = torch.cat((inhW, - torch.unsqueeze(torch.empty(nrow, ncol, device=device).normal_(mean=inWmn, std=inWsd), - 0)), 0) - - # Remove negative excitatory weights - excW[n][excW[n] < 0] = 0.0 - # Remove positive inhibitory weights - inhW[n][inhW[n] > 0] = 0.0 + return W - # remove connections based on exc and inh probabilities - setzeroExc = np.random.rand(nrow,ncol) > p[0] - setzeroInh = np.random.rand(nrow,ncol) > p[1] - - # remove connections based on calculated indexes - if setzeroExc.any(): - excW[n,:,:][setzeroExc] = 0.0 # excitatory connections - if setzeroInh.any(): - inhW[n,:,:][setzeroInh] = 0.0 # inhibitory connections - - # Normalise the weights (except fast inhib weights) - nrmExc = torch.linalg.norm(excW[len(excW)-1],ord=1,axis=0) - nrmInh = torch.linalg.norm(inhW[len(inhW)-1],ord=1,axis=0) - nrmExc[nrmExc==0.0] = 1.0 - nrmInh[nrmInh==0.0] = 1.0 - excW[n] = excW[n,:,:]/nrmExc - inhW[n] = inhW[n,:,:]/nrmInh +class BLiTNET(nn.Module): + def __init__(self,layer=None,spikes=None,idx=None,fr=None,testCount=None, + layer_lst=None): + super(BLiTNET, self).__init__() + + # Define the layer & spikes to be parsed through BLiTNET + self.layer = layer + self.spikes = spikes + + # For spike forcing, define the output idx and pre-layer fire rate + self.idx = idx + self.fr = fr + + # For running testing, determine number of layers to iterate through for output + self.testCount = testCount + self.layer_lst = layer_lst + + def add_input(self): + # Add the constant input + self.layer.x_input += self.layer.const_inp - havconnExc = excW > 0 - havconnInh = inhW < 0 + def calc_spikes(self): + # Use nn.Linear to perform multiplication of spikes to weights + self.layer.x_input += self.layer.exc(self.spikes) + self.layer.x_input += self.layer.inh(self.spikes) - return excW, inhW, havconnExc, havconnInh - -def add_input(post_layer): - - # Add the constant input - post_layer.x_input += post_layer.const_inp - -def calc_spikes(post_layer, spikes): + # Clamp outputs between 0 and 0.9 after subtracting thresholds from input + if self.layer.spk_force: + self.layer.x_calc = torch.clamp(torch.sub(self.layer.x_input, self.layer.thr), min=0.0, max=0.9) + else: + self.layer.x = torch.clamp(torch.sub(self.layer.x_input, self.layer.thr), min=0.0, max=0.9) - # Multiply input spikes by positive and negative weights - post_layer.x_input += torch.bmm(spikes, post_layer.excW.detach()) - post_layer.x_input += torch.bmm(spikes, post_layer.inhW.detach()) + def calc_stdp(self): + # Spike Forcing has special rules to make calculated and forced spikes match + if self.layer.spk_force: + + # Get layer dimensions + shape = self.layer.exc.weight.data.shape + + # Get the output neuron index + idx_sel = torch.arange(int(self.idx[0]), int(self.idx[0]) + 1, + device=self.layer.device, + dtype=int) - # Clamp outputs between 0 and 0.9 after subtracting thresholds from input - if post_layer.spk_force: - post_layer.x_calc = torch.clamp(torch.sub(post_layer.x_input, post_layer.thr.detach()), - min=0.0, max=0.9) - else: - post_layer.x = torch.clamp(torch.sub(post_layer.x_input, post_layer.thr.detach()), - min=0.0, max=0.9) - -def calc_stdp(pre_layer, post_layer, spikes, idx=0): - - # Spike Forcing has special rules to make calculated and forced spikes match - if post_layer.spk_force: - - # Get layer dimensions - shape = [len(post_layer.excW[:, 0, 0]), - len(post_layer.excW[0, :, 0]), - len(post_layer.excW[0, 0, :])] - # Get the output neuron index - idx_sel = torch.arange(int(idx[0]), int(idx[0]) + 1, device=post_layer.device, dtype=int) - - # Difference between forced and calculated spikes - post_layer.x = torch.full_like(post_layer.x, 0) - xdiff = torch.clamp(post_layer.x.index_fill_(-1, idx_sel, 0.5) - post_layer.x_calc, - min=0, max=1) - - # Threshold rules - lower it if calced spike is smaller (and vice versa) - post_layer.thr.data -= torch.sign(xdiff) * torch.abs(post_layer.eta_stdp) / 10 - post_layer.thr.data -= torch.sign(xdiff) * torch.abs((post_layer.eta_stdp * -1)) / 10 - post_layer.thr.data = post_layer.thr.data.clamp(min=0, max=1) - - # Pre and Post spikes tiled across and down for all synapses - if pre_layer.have_rate: - # Modulate learning rate by firing rate (low firing rate = high learning rate) - mpre = spikes / pre_layer.fire_rate - else: - mpre = spikes - pre = torch.tile(torch.reshape(mpre, (shape[0], shape[1], 1)), (1, shape[2])) - post = torch.tile(xdiff, (shape[1], 1)) - - # Apply the weight changes - post_layer.excW.data += (pre * post * post_layer.havconnExc) * post_layer.eta_stdp - - post_layer.inhW.data += (-pre * post * post_layer.havconnInh) * (post_layer.eta_stdp * -1) - - # Normal STDP - else: - - # Get layer dimensions - shape = [len(post_layer.excW[:, 0, 0]), - len(post_layer.excW[0, :, 0]), - len(post_layer.excW[0, 0, :])] - - # Tile out pre- and post-spikes - pre = torch.tile(torch.reshape(spikes, (shape[0], shape[1], 1)), (1, shape[2])) - post = torch.tile(post_layer.x, (shape[1], 1)) - - # Apply positive and negative weight changes - post_layer.excW.data += ((0.5 - post) * (pre > 0) * (post > 0) * - post_layer.havconnExc) * post_layer.eta_stdp - post_layer.inhW.data += ((0.5 - post) * (pre > 0) * - (post > 0) * post_layer.havconnInh) * (post_layer.eta_stdp * -1) - - # In-place clamp for excitatory and inhibitory weights - post_layer.excW.data[post_layer.excW.data < 0] = 1e-06 - post_layer.inhW.data[post_layer.inhW.data > 0] = -1e-06 + # Difference between forced and calculated spikes + self.layer.x = torch.full_like(self.layer.x, 0) + xdiff = torch.clamp(self.layer.x.index_fill_(-1, idx_sel, 0.5) - self.layer.x_calc, min=0, max=1) - # Remove negative weights for excW and positive for inhW - post_layer.excW.data[post_layer.havconnExc] = post_layer.excW.data[post_layer.havconnExc].clamp(min=1e-06, max=10) - post_layer.inhW.data[post_layer.havconnInh] = post_layer.inhW.data[post_layer.havconnInh].clamp(min=-10, max=-1e-06) + # Threshold rules - lower it if calced spike is smaller (and vice versa) + self.layer.thr.data -= torch.sign(xdiff) * torch.abs(self.layer.eta_stdp) / 10 + self.layer.thr.data -= torch.sign(xdiff) * torch.abs((self.layer.eta_stdp * -1)) / 10 + self.layer.thr.data = self.layer.thr.data.clamp(min=0, max=1) -def norm_rates(post_layer): + # Pre and Post spikes tiled across and down for all synapses + if self.fr == None: + mpre = self.spikes + else: + # Modulate learning rate by firing rate (low firing rate = high learning rate) + mpre = self.spikes/self.fr + + # Tile out pre- and post- spikes for STDP weight updates + pre = torch.tile(torch.reshape(mpre, (shape[1], 1)), (1, shape[0])) + post = torch.tile(xdiff, (shape[1], 1)) - # Check if layer has target firing rate and an ITP learning rate - if post_layer.have_rate and post_layer.eta_ip > 0.0: - - # Replace the original layer.thr with the updated one - post_layer.thr.data += post_layer.eta_ip * (post_layer.x - post_layer.fire_rate) - post_layer.thr.data[post_layer.thr.data < 0] = 0 - -def norm_inhib(post_layer): + # Apply the weight changes + self.layer.exc.weight.data += ((pre * post * self.layer.havconnExc.T) * + self.layer.eta_stdp).T + self.layer.inh.weight.data += ((-pre * post * self.layer.havconnInh.T) * + (self.layer.eta_stdp * -1)).T + + # Normal STDP + else: + + # Get layer dimensions + shape = self.layer.exc.weight.data.shape + + # Tile out pre- and post-spikes + pre = torch.tile(torch.reshape(self.spikes, (shape[1], 1)), (1, shape[0])) + post = torch.tile(self.layer.x, (shape[1], 1)) + + # Apply positive and negative weight changes + self.layer.exc.weight.data += (((0.5 - post) * (pre > 0) * (post > 0) * + self.layer.havconnExc.T) * self.layer.eta_stdp).T + self.layer.inh.weight.data += (((0.5 - post) * (pre > 0) * + (post > 0) * self.layer.havconnInh.T) * (self.layer.eta_stdp * -1)).T - # Check if layer has inhibitory weights and an stdp learning rate - if torch.any(post_layer.inhW).item() and post_layer.eta_stdp != 0: + # In-place clamp for excitatory and inhibitory weights + self.layer.exc.weight.data[self.layer.exc.weight.data < 0] = 1e-06 + self.layer.inh.weight.data[self.layer.inh.weight.data > 0] = -1e-06 - # Normalize the inhibitory weights using homeostasis - post_layer.inhW.data += torch.mul(torch.mul(post_layer.x_input, post_layer.inhW.data), - post_layer.eta_stdp*50) - post_layer.inhW.data[post_layer.inhW.data > 0.0] = -1e-06 + # Remove negative weights for excW and positive for inhW + self.layer.exc.weight.data[self.layer.havconnExc] = self.layer.exc.weight.data[self.layer.havconnExc].clamp(min=1e-06, max=10) + self.layer.inh.weight.data[self.layer.havconnInh] = self.layer.inh.weight.data[self.layer.havconnInh].clamp(min=-10, max=-1e-06) + + # Check if layer has target firing rate and an ITP learning rate + if self.layer.have_rate and self.layer.eta_ip > 0.0: + + # Replace the original layer.thr with the updated one + self.layer.thr.data += self.layer.eta_ip * (self.layer.x - self.layer.fire_rate) + self.layer.thr.data[self.layer.thr.data < 0] = 0 -def runSim(pre_layer,post_layer,spikes,idx): + # Check if layer has inhibitory weights and an stdp learning rate + if torch.any(self.layer.inh.weight.data).item() and self.layer.eta_stdp != 0: + + # Normalize the inhibitory weights using homeostasis + inhW = self.layer.inh.weight.data.T + self.layer.inh.weight.data += (torch.mul(self.layer.x_input,inhW) * self.layer.eta_stdp*50).T + self.layer.inh.weight.data[self.layer.inh.weight.data > 0.0] = -1e-06 - # Propagate spikes from pre to post neurons - add_input(post_layer) - calc_spikes(post_layer,spikes) - - # Calculate STDP weight changes - calc_stdp(pre_layer,post_layer,spikes,idx) + + def runSim(self): + + # Propagate spikes from pre to post neurons + self.add_input() + self.calc_spikes() + + # Calculate STDP weight changes + self.calc_stdp() - # Normalise firing rates and inhibitory balance - norm_rates(post_layer) - norm_inhib(post_layer) -def testSim(layers,layer_num,spikes): - - # run the test system through all specified layers to get an output - for n in range(layer_num): - layers['layer'+str(n+1)].x.fill_(0.0) - layers['layer'+str(n+1)].x_input.fill_(0.0) - calc_spikes(layers['layer'+str(n+1)],spikes) - spikes=layers['layer'+str(n+1)].x - - return spikes \ No newline at end of file + def testSim(self): + + # run the test system through all specified layers to get an output + for count, layer in enumerate(self.layer_lst): + if count != self.testCount: + self.layer = self.layer_lst[layer] + self.layer.x.fill_(0.0) + self.layer.x_input.fill_(0.0) + self.calc_spikes() + self.spikes = self.layer.x + + return self.layer.x \ No newline at end of file diff --git a/src/dataset.py b/src/dataset.py index 0b9d7c1..39c5824 100644 --- a/src/dataset.py +++ b/src/dataset.py @@ -6,6 +6,7 @@ import pandas as pd import numpy as np import torch.nn.functional as F +import torch.quantization as tq from torchvision.io import read_image from torch.utils.data import Dataset @@ -88,26 +89,34 @@ def __call__(self, img): return im_norm class SetImageAsSpikes: - def __init__(self,intensity=255,test=True,modules=1): + def __init__(self,intensity=255,test=True): self.intensity = intensity self.test = test - self.modules = modules - - def __call__(self, img_tensor): - # Ensure the input is a 4D tensor (N x C x W x H) - if len(img_tensor.shape) == 3: - img_tensor = img_tensor.unsqueeze(1) - N, C, W, H = img_tensor.shape + self.qconfig = tq.default_qconfig + self.observer = tq.MinMaxObserver() + + def __call__(self, img_tensor): + N, W, H = img_tensor.shape reshaped_batch = img_tensor.view(N, 1, -1) # Divide all pixel values by 255 normalized_batch = reshaped_batch / self.intensity - + normalized_batch = torch.squeeze(normalized_batch,0) # If running test, repeat input over all the modules + #if self.test: + # normalized_batch = normalized_batch.repeat(self.modules, 1, 1) if self.test: - normalized_batch = normalized_batch.repeat(self.modules, 1, 1) - + self.observer(normalized_batch) + scale, zero_point = self.observer.calculate_qparams() + scale = float(scale) + zero_point = int(zero_point) + + # Quantize the image tensor + normalized_batch = torch.quantize_per_tensor(normalized_batch, + scale=scale, + zero_point=zero_point, + dtype=torch.quint8) return normalized_batch class ProcessImage: @@ -142,7 +151,7 @@ def __call__(self, img): class CustomImageDataset(Dataset): def __init__(self, annotations_file, img_dirs, transform=None, target_transform=None, - skip=1, max_samples=None, modules=1, test=True): + skip=1, max_samples=None, test=True): self.transform = transform self.target_transform = target_transform self.skip = skip @@ -164,34 +173,12 @@ def __init__(self, annotations_file, img_dirs, transform=None, target_transform= if test: self.img_labels = img_labels else: - # Reorder images in the DataFrame - reordered_img_labels = self.reorder_images(img_labels, modules) - self.img_labels.append(reordered_img_labels) + self.img_labels.append(img_labels) if isinstance(self.img_labels,list): - # Concatenate all the reordered DataFrames + # Concatenate all the DataFrames self.img_labels = pd.concat(self.img_labels, ignore_index=True) - def reorder_images(self, img_labels, modules): - # Calculate the number of batches - num_batches = len(img_labels) // modules - remainder = len(img_labels) % modules - - reordered_list = [] - for i in range(num_batches): - for j in range(modules): - idx = i + j * num_batches - if idx < len(img_labels): - reordered_list.append(img_labels.iloc[idx]) - - # If there are remaining images, append them to the reordered list - for i in range(remainder): - idx = num_batches * modules + i - reordered_list.append(img_labels.iloc[idx]) - - # Convert reordered list of Series back to DataFrame - return pd.concat(reordered_list, axis=1).transpose().reset_index(drop=True) - def __len__(self): return len(self.img_labels) @@ -208,4 +195,4 @@ def __getitem__(self, idx): if self.target_transform: label = self.target_transform(label) - return image, label + return image, label \ No newline at end of file From b0ae58e3d242037ab8fad3b317df99a10cec621b Mon Sep 17 00:00:00 2001 From: Adam Hines Date: Wed, 11 Oct 2023 17:09:12 +1000 Subject: [PATCH 14/69] Now runs through training and inference with quantization, but its garbage out. Looking like some x and x_input values are adding gradients and getting big over time, investigate further. --- VPRTempo.py | 467 +++++++++++++++++++++-------------------------- config/config.py | 4 +- src/blitnet.py | 211 +++++++++------------ src/dataset.py | 49 +++-- 4 files changed, 327 insertions(+), 404 deletions(-) diff --git a/VPRTempo.py b/VPRTempo.py index 05e9ff8..d440476 100644 --- a/VPRTempo.py +++ b/VPRTempo.py @@ -45,303 +45,246 @@ from config import configure, image_csv, model_logger from dataset import CustomImageDataset, SetImageAsSpikes, ProcessImage from torch.utils.data import DataLoader +from torch.ao.quantization import QuantStub, DeQuantStub from tqdm import tqdm -class SNNTrainer(nn.Module): +class VPRTempo(nn.Module): def __init__(self): - super(SNNTrainer, self).__init__() + super(VPRTempo, self).__init__() + # Configure the network - configure(self) # Sets the testing configuration - image_csv(self) # Defines images to load + configure(self) - # Set the device - #self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") - self.device = torch.device("cpu") + # Define the images to load (both training and inference) + image_csv(self) - # Set up the feature layer + # Common model architecture self.feature_layer = bn.SNNLayer( - dims=[self.input,self.feature], - thr_range=[0,0.5], - fire_rate=[0.2,0.9], - ip_rate=0.15, - stdp_rate=0.005, - const_inp=[0,0.1], - p=[0.1,0.5] - ) - - # Set up the output layer + dims=[self.input, self.feature], + thr_range=[0, 0.5], + fire_rate=[0.2, 0.9], + ip_rate=0.15, + stdp_rate=0.005, + const_inp=[0, 0.1], + p=[0.1, 0.5] + ) self.output_layer = bn.SNNLayer( - dims=[self.feature,self.output], - ip_rate=0.15, - stdp_rate=0.005, - spk_force=True - ) - - # Define number of layers (will run training on all layers) + dims=[self.feature, self.output], + ip_rate=0.15, + stdp_rate=0.005, + spk_force=True + ) self.layers = { - 'layer0':self.feature_layer, - 'layer1':self.output_layer - } - - - def train_model(self, train_loader, logger): + 'layer0': self.feature_layer, + 'layer1': self.output_layer + } - # If using CUDA, run a dummy torch.bmm to 'spool-up' operations - if self.device.type == "cuda": - ut.dummy_bmm(self.device) + self.quant = QuantStub() + self.dequant = DeQuantStub() - # Warm up the DataLoader - warmup_iters = 10 - for _ in range(warmup_iters): - _ = next(iter(train_loader)) + self.add = nn.quantized.FloatFunctional() - # Run the training for each layer, using defined parameters - for lyrCount, lyr in enumerate(self.layers): - - # Get the training layer - layer = self.layers[lyr] - - # Output the learning rates for annealment during training - n_initstdp = layer.eta_stdp.detach() # STDP - n_initip = layer.eta_ip.detach() # ITP - - # Initialize the tqdm progress bar - pbar = tqdm(total=int(self.T * self.epoch), - desc="Training "+str(lyr), - position=0) - - # Run the training for the input to feature layer for specified epochs - for epoch in range(self.epoch): - # Used to determine the learning rate annealment, resets at each epoch - mod = 0 - - # Load and run images through BliTNET - for images, labels in train_loader: - - # Reset fire rate to None - fr = None - - # Put input images on device (CPU, CUDA) - images = images.to(self.device) - - # Set spikes from input images - make_spikes = SetImageAsSpikes(self.intensity, test=False) - spikes = make_spikes(images) - - # Put labels on device (CPU, CUDA) - labels = labels.to(self.device) - idx = labels/self.filter - - # Layers don't include loaded input, calculate network spikes for up to training layers - if list(lyr[-1]) != ['0']: - blitnet = bn.BLiTNET(layer_lst=self.layers, - spikes=spikes, - idx=idx, - testCount=lyrCount) - spikes = blitnet.testSim() - fr = self.layers['layer'+str(lyrCount-1)].fire_rate - - # Run one timestep of the training input to feature layer - blitnet = bn.BLiTNET( - layer=layer, - spikes=spikes, - idx=idx, - fr=fr - ) - blitnet.runSim() - - # Anneal the learning rate - if np.mod(mod,10)==0: - pt = pow(float(self.T-mod)/self.T,self.annl_pow) - layer.eta_ip = torch.mul(n_initip,pt) - layer.eta_stdp = torch.mul(n_initstdp,pt) - - # Update the learning rate annealment modifier - mod += 1 - - # Reset x and x_input for next iteration - layer.x.fill_(0.0) - layer.x_input.fill_(0.0) - pbar.update(1) - - # Close the tqdm progress bar - pbar.close() - print('') - - # Clear the cache and garbage collect (if using cuda) - if self.device.type == "cuda": - torch.cuda.empty_cache() - gc.collect() - - def save_model(self, model_out): - # save model - torch.save(self.state_dict(), model_out) + def model_logger(self): + # Start the model logger + model_logger(self) -class SNNModel(nn.Module): - def __init__(self): - super(SNNModel, self).__init__() + def _anneal_learning_rate(self, layer, mod, itp, stdp): + if np.mod(mod, 10) == 0: + pt = pow(float(self.T - mod) / self.T, self.annl_pow) + layer.eta_ip = torch.mul(itp, pt) + layer.eta_stdp = torch.mul(stdp, pt) + + return layer - # Configure the network - configure(self) # Sets the testing configuration - image_csv(self) # Defines images to load - model_logger(self) # Sets the logger - - - # Set up the feature layer - self.feature_layer = bn.SNNLayer(dims=[self.input,self.feature]) - - # Set up the output layer - self.output_layer = bn.SNNLayer(dims=[self.feature,self.output]) + def train_model(self,layer,train_loader,logger,prev_layer=None): + + # Initialize the tqdm progress bar + pbar = tqdm(total=int(self.T * self.epoch), + desc="Training ", + position=0) - # Define number of layers (will run training on all layers) - self.layers = { - 'layer0':self.feature_layer, - 'layer1':self.output_layer - } + init_itp = layer.eta_ip.detach() + init_stdp = layer.eta_stdp.detach() - def load_model(self,model_path): - state_dict = torch.load(model_path, map_location=self.device) - self.load_state_dict(state_dict) - self.eval() + for epoch in range(self.epoch): + mod = 0 # Used to determine the learning rate annealment, resets at each epoch - def forward(self, test_loader): - - idx=0 - numcorr = 0 + for images, labels in train_loader: + images, labels = images.to(self.device), labels.to(self.device) + idx = labels / self.filter + if not prev_layer == None: + # Get the spikes to train the next layer + prev_layer.x_input = self.forward(images,prev_layer) + out = bn.clamp_spikes(prev_layer) + images = out + # Run forward pass + layer = bn.add_input(layer) + layer.x_input = self.forward(images, layer) + out = bn.clamp_spikes(layer) + layer = bn.calc_stdp(images, out, layer, idx, prev_layer=prev_layer) + + # Adjust learning rates + layer = self._anneal_learning_rate(layer, mod, init_itp, init_stdp) + + # Reset x and x_input for next iteration + layer.x.fill_(0.0) + layer.x_input.fill_(0.0) + mod += 1 + pbar.update(1) - # If using CUDA, run a dummy torch.bmm to 'spool-up' operations + # Close the tqdm progress bar + pbar.close() + if self.device.type == "cuda": - ut.dummy_bmm(self.device) + torch.cuda.empty_cache() + gc.collect() - warmup_iters = 10 - for _ in range(warmup_iters): - _ = next(iter(test_loader)) - + + def evaluate(self, test_loader, layers=None): + numcorr = 0 + idx = 0 + # Initialize the tqdm progress bar pbar = tqdm(total=self.number_testing_images, desc="Running the test network", position=0) - - # Run test network for each individual input + for images, labels in test_loader: - - # Set images to the specified device images = images.to(self.device) labels = labels.to(self.device) - - # Set the spikes for the input, tiling across modules if applicable - make_spikes = SetImageAsSpikes(intensity=self.intensity) - spikes = make_spikes(images) - - # Run the test sim - blitnet = bn.BLiTNET(layer_lst=self.layers, - spikes=spikes, - testCount=len(self.layers) - ) - out = blitnet.testSim() - if torch.argmax(out.reshape(1, self.number_training_images)) == idx: + for layer in layers: + images = self.forward(images, layer) + + if torch.argmax(images.reshape(1, self.number_training_images)) == idx: numcorr += 1 - - idx+=1 + + idx += 1 - # Update the progress bar pbar.update(1) - + pbar.close() - model.logger.info('') - model.logger.info("P@100R: "+ - str(round((numcorr/self.number_testing_images)*100,2))+'%') - - # Clear cache and empty garbage (if applicable) - if self.device.type == "cuda": - torch.cuda.empty_cache() - gc.collect() - -if __name__ == "__main__": - # Initialize the model and image transforms - model = SNNModel() - qconfig = torch.quantization.get_default_qat_qconfig('fbgemm') - # Generate model name, check if pre-trained model exists - model_name = ("VPRTempo"+ # main name - str(model.input)+ # number input neurons - str(model.feature)+ # number feature neurons - str(model.output)+ # number output neurons - str(model.number_modules)+ # number of modules - '.pth') + accuracy = round((numcorr/self.number_testing_images)*100,2) + model.logger.info("P@100R: "+ str(accuracy) + '%') + + return accuracy + - # Check if a pre-trained model exists - if os.path.exists(os.path.join('./models',model_name)): - pretrain_flg = True - - # Prompt user to retrain network if desired - prompt = "A network with these parameters exists, re-train network? (y/n):\n" - retrain = input(prompt) - print('') - - # Retrain network, set flag to False - if retrain == 'y': - pretrain_flg = False - else: - # No pretrained model exists - pretrain_flg = False + def forward(self, spikes, layer): + """ + Compute the forward pass of the model. - # Define the image transform class - image_transform = ProcessImage(model.dims,model.patches) + Parameters: + - spikes (Tensor): Input spikes. - # If no pre-existing model, train new model with set configuration - if not pretrain_flg: - # Define the custom training image dataset class - train_dataset = CustomImageDataset(annotations_file=model.dataset_file, - img_dirs=model.training_dirs, - transform=image_transform, - skip=model.filter, - max_samples=model.number_training_images, - test=False) - - # Define the training dataloader class - train_loader = DataLoader(train_dataset, - batch_size=1, - shuffle=False, - num_workers=1, - persistent_workers=True) - - # Initialize, run, and save the training model - trainer = SNNTrainer() - trainer.to('cpu') + Returns: + - Tensor: Output after processing. + """ + spikes = self.quant(spikes) + layer.x_input = self.quant(layer.x_input) + layer.x_input = bn.calc_spikes(spikes, layer, self.add) + layer.x_input = self.dequant(layer.x_input) + spikes = self.dequant(spikes) - trainer.feature_layer.qconfig = qconfig - trainer.output_layer.qconfig = qconfig - trainer = torch.quantization.prepare_qat(trainer, inplace=True) - - trainer.train_model(train_loader,model.logger) - - trainer.eval() - trainer = torch.quantization.convert(trainer, inplace=True) - - trainer.save_model(os.path.join('./models',model_name)) + return layer.x_input - with torch.no_grad(): # Disable gradient computation during testing - model.to('cpu') - model.feature_layer.qconfig = qconfig - model.output_layer.qconfig = qconfig - model = torch.quantization.prepare(model, inplace=False) - model = torch.quantization.convert(model, inplace=False) - # Load the trained model into SNNModel() - model.load_model(os.path.join('./models',model_name)) - - - # Define the custom testing image dataset class - test_dataset = CustomImageDataset(annotations_file=model.dataset_file, - img_dirs=model.testing_dirs, - transform=image_transform, - skip=model.filter, - max_samples=model.number_testing_images) + def save_model(self, model_out): + """Save the trained model to models output folder.""" + torch.save(self.state_dict(), model_out) - # Define the testing dataloader class - test_loader = DataLoader(test_dataset, - batch_size=1, - shuffle=False, - num_workers=1, - persistent_workers=True) - model.forward(test_loader) \ No newline at end of file + def load_model(self, model_path): + """Load pre-trained model and set the state dictionary keys.""" + self.load_state_dict(torch.load(model_path, map_location=self.device), + strict=False) + self.eval() + +def generate_model_name(model): + """Generate the model name based on its parameters.""" + return ("VPRTempo" + + str(model.input) + + str(model.feature) + + str(model.output) + + str(model.number_modules) + + '.pth') + +def check_pretrained_model(model_name): + """Check if a pre-trained model exists and prompt the user to retrain if desired.""" + if os.path.exists(os.path.join('./models', model_name)): + prompt = "A network with these parameters exists, re-train network? (y/n):\n" + retrain = input(prompt).strip().lower() + return retrain == 'n' + return False + +def train_new_model(model, model_name, qconfig): + set_image_as_spikes = SetImageAsSpikes(test=False) + set_image_as_spikes.eval() + set_image_as_spikes.train() + image_transform = ProcessImage(model.dims, model.patches) + train_dataset = CustomImageDataset(annotations_file=model.dataset_file, + img_dirs=model.training_dirs, + transform=image_transform, + skip=model.filter, + max_samples=model.number_training_images, + test=False) + train_loader = DataLoader(train_dataset, + batch_size=1, + shuffle=False, + num_workers=1, + persistent_workers=True) + trainer = VPRTempo() + trainer.train() + trainer.to('cpu') + trainer.feature_layer.qconfig = qconfig + trainer.output_layer.qconfig = qconfig + trainer = quantization.prepare_qat(trainer, inplace=True) + trainer.train_model(trainer.feature_layer, train_loader, model.logger) + trainer.train_model(trainer.output_layer, train_loader, model.logger, + prev_layer=trainer.feature_layer) + trainer.eval() + trainer.save_model(os.path.join('./models', model_name)) + +def run_inference(model, model_name, qconfig): + set_image_as_spikes = SetImageAsSpikes(test=True) + set_image_as_spikes.eval() + image_transform = ProcessImage(model.dims, model.patches) + test_dataset = CustomImageDataset(annotations_file=model.dataset_file, + img_dirs=model.testing_dirs, + transform=image_transform, + skip=model.filter, + max_samples=model.number_testing_images) + test_loader = DataLoader(test_dataset, + batch_size=1, + shuffle=False, + num_workers=1, + persistent_workers=True) + + model = VPRTempo() + model.to('cpu') + model.eval() + model.qconfig = torch.quantization.get_default_qat_qconfig('fbgemm') + model.feature_layer.qconfig = qconfig + model.output_layer.qconfig = qconfig + model = quantization.prepare(model, inplace=True) + model.load_model(os.path.join('./models', model_name)) + model = quantization.convert(model, inplace=True) + + # Use evaluate method for inference accuracy + model.evaluate(test_loader, + layers=[model.feature_layer, model.output_layer] + ) + +if __name__ == "__main__": + # Temporary place holder for now, weird multiprocessing bug with larger models + torch.set_num_threads(1) + + # Initialize the model and image transforms + model = VPRTempo() + model.model_logger() + qconfig = quantization.get_default_qat_qconfig('fbgemm') + model_name = generate_model_name(model) + use_pretrained = check_pretrained_model(model_name) + + if not use_pretrained: + train_new_model(model, model_name, qconfig) + with torch.no_grad(): + run_inference(model, model_name, qconfig) \ No newline at end of file diff --git a/config/config.py b/config/config.py index c6d7fae..a5ff85c 100644 --- a/config/config.py +++ b/config/config.py @@ -11,8 +11,8 @@ def configure(model): model.trainingPath = '/home/adam/data/nordland/' model.testPath = '/home/adam/data/nordland/' model.number_modules = 1 - model.number_training_images = 10 - model.number_testing_images = 10 + model.number_training_images = 100 + model.number_testing_images = 100 model.locations = ["spring","fall"] model.test_locations = ["summer"] model.filter = 8 diff --git a/src/blitnet.py b/src/blitnet.py index 7803ea3..2c5765d 100644 --- a/src/blitnet.py +++ b/src/blitnet.py @@ -26,6 +26,7 @@ import torch import torch.nn as nn + import numpy as np from config import configure @@ -138,136 +139,106 @@ def addWeights(self,W_range=[0,0],p=[0,0],dims=[0,0]): W = nn.Parameter(W/nrm) return W - -class BLiTNET(nn.Module): - def __init__(self,layer=None,spikes=None,idx=None,fr=None,testCount=None, - layer_lst=None): - super(BLiTNET, self).__init__() - - # Define the layer & spikes to be parsed through BLiTNET - self.layer = layer - self.spikes = spikes - - # For spike forcing, define the output idx and pre-layer fire rate - self.idx = idx - self.fr = fr - # For running testing, determine number of layers to iterate through for output - self.testCount = testCount - self.layer_lst = layer_lst - - def add_input(self): - # Add the constant input - self.layer.x_input += self.layer.const_inp - - def calc_spikes(self): - # Use nn.Linear to perform multiplication of spikes to weights - self.layer.x_input += self.layer.exc(self.spikes) - self.layer.x_input += self.layer.inh(self.spikes) - - # Clamp outputs between 0 and 0.9 after subtracting thresholds from input - if self.layer.spk_force: - self.layer.x_calc = torch.clamp(torch.sub(self.layer.x_input, self.layer.thr), min=0.0, max=0.9) - else: - self.layer.x = torch.clamp(torch.sub(self.layer.x_input, self.layer.thr), min=0.0, max=0.9) - - def calc_stdp(self): - # Spike Forcing has special rules to make calculated and forced spikes match - if self.layer.spk_force: - - # Get layer dimensions - shape = self.layer.exc.weight.data.shape - - # Get the output neuron index - idx_sel = torch.arange(int(self.idx[0]), int(self.idx[0]) + 1, - device=self.layer.device, - dtype=int) +def add_input(layer): - # Difference between forced and calculated spikes - self.layer.x = torch.full_like(self.layer.x, 0) - xdiff = torch.clamp(self.layer.x.index_fill_(-1, idx_sel, 0.5) - self.layer.x_calc, min=0, max=1) + # Add the constant input + layer.x_input += layer.const_inp - # Threshold rules - lower it if calced spike is smaller (and vice versa) - self.layer.thr.data -= torch.sign(xdiff) * torch.abs(self.layer.eta_stdp) / 10 - self.layer.thr.data -= torch.sign(xdiff) * torch.abs((self.layer.eta_stdp * -1)) / 10 - self.layer.thr.data = self.layer.thr.data.clamp(min=0, max=1) - - # Pre and Post spikes tiled across and down for all synapses - if self.fr == None: - mpre = self.spikes - else: - # Modulate learning rate by firing rate (low firing rate = high learning rate) - mpre = self.spikes/self.fr - - # Tile out pre- and post- spikes for STDP weight updates - pre = torch.tile(torch.reshape(mpre, (shape[1], 1)), (1, shape[0])) - post = torch.tile(xdiff, (shape[1], 1)) + return layer + +def calc_spikes(spikes, layer, adder): - # Apply the weight changes - self.layer.exc.weight.data += ((pre * post * self.layer.havconnExc.T) * - self.layer.eta_stdp).T - self.layer.inh.weight.data += ((-pre * post * self.layer.havconnInh.T) * - (self.layer.eta_stdp * -1)).T + # Use nn.Linear to perform multiplication of spikes to weights + layer.x_input = adder.add(layer.x_input,layer.exc(spikes)) + layer.x_input = adder.add(layer.x_input,layer.inh(spikes)) - # Normal STDP + return layer.x_input + +def clamp_spikes(layer): + # Clamp outputs between 0 and 0.9 after subtracting thresholds from input + if layer.spk_force: + layer.x_calc = torch.clamp(torch.sub(layer.x_input, layer.thr), min=0.0, max=0.9) + else: + layer.x = torch.clamp(torch.sub(layer.x_input, layer.thr), min=0.0, max=0.9) + + return layer.x + +def calc_stdp(spikes, out, layer, idx, prev_layer=None): + # Spike Forcing has special rules to make calculated and forced spikes match + if layer.spk_force: + + # Get layer dimensions + shape = layer.exc.weight.data.shape + + # Get the output neuron index + idx_sel = torch.arange(int(idx[0]), int(idx[0]) + 1, + device=layer.device, + dtype=int) + + # Difference between forced and calculated spikes + layer.x = torch.full_like(layer.x, 0) + xdiff = torch.clamp(layer.x.index_fill_(-1, idx_sel, 0.5) - layer.x_calc, min=0, max=1) + + # Threshold rules - lower it if calced spike is smaller (and vice versa) + layer.thr.data -= torch.sign(xdiff) * torch.abs(layer.eta_stdp) / 10 + layer.thr.data -= torch.sign(xdiff) * torch.abs((layer.eta_stdp * -1)) / 10 + layer.thr.data = layer.thr.data.clamp(min=0, max=1) + + # Pre and Post spikes tiled across and down for all synapses + if prev_layer.fire_rate == None: + mpre = spikes else: + # Modulate learning rate by firing rate (low firing rate = high learning rate) + mpre = spikes/prev_layer.fire_rate - # Get layer dimensions - shape = self.layer.exc.weight.data.shape - - # Tile out pre- and post-spikes - pre = torch.tile(torch.reshape(self.spikes, (shape[1], 1)), (1, shape[0])) - post = torch.tile(self.layer.x, (shape[1], 1)) - - # Apply positive and negative weight changes - self.layer.exc.weight.data += (((0.5 - post) * (pre > 0) * (post > 0) * - self.layer.havconnExc.T) * self.layer.eta_stdp).T - self.layer.inh.weight.data += (((0.5 - post) * (pre > 0) * - (post > 0) * self.layer.havconnInh.T) * (self.layer.eta_stdp * -1)).T - - # In-place clamp for excitatory and inhibitory weights - self.layer.exc.weight.data[self.layer.exc.weight.data < 0] = 1e-06 - self.layer.inh.weight.data[self.layer.inh.weight.data > 0] = -1e-06 + # Tile out pre- and post- spikes for STDP weight updates + pre = torch.tile(torch.reshape(mpre, (shape[1], 1)), (1, shape[0])) + post = torch.tile(xdiff, (shape[1], 1)) + + # Apply the weight changes + layer.exc.weight.data += ((pre * post * layer.havconnExc.T) * + layer.eta_stdp).T + layer.inh.weight.data += ((-pre * post * layer.havconnInh.T) * + (layer.eta_stdp * -1)).T + + # Normal STDP + else: - # Remove negative weights for excW and positive for inhW - self.layer.exc.weight.data[self.layer.havconnExc] = self.layer.exc.weight.data[self.layer.havconnExc].clamp(min=1e-06, max=10) - self.layer.inh.weight.data[self.layer.havconnInh] = self.layer.inh.weight.data[self.layer.havconnInh].clamp(min=-10, max=-1e-06) - - # Check if layer has target firing rate and an ITP learning rate - if self.layer.have_rate and self.layer.eta_ip > 0.0: - - # Replace the original layer.thr with the updated one - self.layer.thr.data += self.layer.eta_ip * (self.layer.x - self.layer.fire_rate) - self.layer.thr.data[self.layer.thr.data < 0] = 0 + # Get layer dimensions + shape = layer.exc.weight.data.shape - # Check if layer has inhibitory weights and an stdp learning rate - if torch.any(self.layer.inh.weight.data).item() and self.layer.eta_stdp != 0: - - # Normalize the inhibitory weights using homeostasis - inhW = self.layer.inh.weight.data.T - self.layer.inh.weight.data += (torch.mul(self.layer.x_input,inhW) * self.layer.eta_stdp*50).T - self.layer.inh.weight.data[self.layer.inh.weight.data > 0.0] = -1e-06 + # Tile out pre- and post-spikes + pre = torch.tile(torch.reshape(spikes, (shape[1], 1)), (1, shape[0])) + post = torch.tile(out, (shape[1], 1)) + + # Apply positive and negative weight changes + layer.exc.weight.data += (((0.5 - post) * (pre > 0) * (post > 0) * + layer.havconnExc.T) * layer.eta_stdp).T + layer.inh.weight.data += (((0.5 - post) * (pre > 0) * + (post > 0) * layer.havconnInh.T) * (layer.eta_stdp * -1)).T - - def runSim(self): + # In-place clamp for excitatory and inhibitory weights + layer.exc.weight.data[layer.exc.weight.data < 0] = 1e-06 + layer.inh.weight.data[layer.inh.weight.data > 0] = -1e-06 - # Propagate spikes from pre to post neurons - self.add_input() - self.calc_spikes() + # Remove negative weights for excW and positive for inhW + layer.exc.weight.data[layer.havconnExc] = layer.exc.weight.data[layer.havconnExc].clamp(min=1e-06, max=10) + layer.inh.weight.data[layer.havconnInh] = layer.inh.weight.data[layer.havconnInh].clamp(min=-10, max=-1e-06) + + # Check if layer has target firing rate and an ITP learning rate + if layer.have_rate and layer.eta_ip > 0.0: + + # Replace the original layer.thr with the updated one + layer.thr.data += layer.eta_ip * (layer.x - layer.fire_rate) + layer.thr.data[layer.thr.data < 0] = 0 - # Calculate STDP weight changes - self.calc_stdp() - - - def testSim(self): + # Check if layer has inhibitory weights and an stdp learning rate + if torch.any(layer.inh.weight.data).item() and layer.eta_stdp != 0: - # run the test system through all specified layers to get an output - for count, layer in enumerate(self.layer_lst): - if count != self.testCount: - self.layer = self.layer_lst[layer] - self.layer.x.fill_(0.0) - self.layer.x_input.fill_(0.0) - self.calc_spikes() - self.spikes = self.layer.x - - return self.layer.x \ No newline at end of file + # Normalize the inhibitory weights using homeostasis + inhW = layer.inh.weight.data.T + layer.inh.weight.data += (torch.mul(layer.x_input,inhW) * layer.eta_stdp*50).T + layer.inh.weight.data[layer.inh.weight.data > 0.0] = -1e-06 + + return layer \ No newline at end of file diff --git a/src/dataset.py b/src/dataset.py index 39c5824..c395ae2 100644 --- a/src/dataset.py +++ b/src/dataset.py @@ -89,35 +89,41 @@ def __call__(self, img): return im_norm class SetImageAsSpikes: - def __init__(self,intensity=255,test=True): + def __init__(self, intensity=255, test=True): self.intensity = intensity - self.test = test - self.qconfig = tq.default_qconfig - self.observer = tq.MinMaxObserver() + # Setup QAT FakeQuantize for the activations (your spikes) + self.fake_quantize = torch.quantization.FakeQuantize( + observer=torch.quantization.MovingAverageMinMaxObserver, + quant_min=0, + quant_max=255, + dtype=torch.quint8, + qscheme=torch.per_tensor_affine, + reduce_range=False + ) + def train(self): + self.fake_quantize.train() + + def eval(self): + self.fake_quantize.eval() + def __call__(self, img_tensor): N, W, H = img_tensor.shape reshaped_batch = img_tensor.view(N, 1, -1) # Divide all pixel values by 255 normalized_batch = reshaped_batch / self.intensity - normalized_batch = torch.squeeze(normalized_batch,0) - # If running test, repeat input over all the modules - #if self.test: - # normalized_batch = normalized_batch.repeat(self.modules, 1, 1) - if self.test: - self.observer(normalized_batch) - scale, zero_point = self.observer.calculate_qparams() - scale = float(scale) - zero_point = int(zero_point) - - # Quantize the image tensor - normalized_batch = torch.quantize_per_tensor(normalized_batch, - scale=scale, - zero_point=zero_point, - dtype=torch.quint8) - return normalized_batch + normalized_batch = torch.squeeze(normalized_batch, 0) + + # Apply FakeQuantize + spikes = self.fake_quantize(normalized_batch) + + if not self.fake_quantize.training: + scale, zero_point = self.fake_quantize.calculate_qparams() + spikes = torch.quantize_per_tensor(spikes, float(scale), int(zero_point), dtype=torch.quint8) + + return spikes class ProcessImage: def __init__(self, dims, patches): @@ -145,6 +151,9 @@ def __call__(self, img): patch_normaliser = PatchNormalisePad(self.patches) im_norm = patch_normaliser(img) img = (255.0 * (1 + im_norm) / 2.0).to(dtype=torch.uint8) + img = torch.unsqueeze(img,0) + spike_maker = SetImageAsSpikes() + img = spike_maker(img) img = torch.squeeze(img,0) return img From 97d88e0e3b8bb2545949d430e61bd50c07a94a34 Mon Sep 17 00:00:00 2001 From: Adam Hines Date: Thu, 12 Oct 2023 17:42:51 +1000 Subject: [PATCH 15/69] Now works, trains and inferences ok - problem is the scale point for quantized spikes is set to 1 so essentially all temporal information lost --- VPRTempo.py | 64 +++++++++++++++++++++++++++++--------------------- src/blitnet.py | 46 ++++++++++++------------------------ 2 files changed, 52 insertions(+), 58 deletions(-) diff --git a/VPRTempo.py b/VPRTempo.py index d440476..d8ab532 100644 --- a/VPRTempo.py +++ b/VPRTempo.py @@ -109,19 +109,19 @@ def train_model(self,layer,train_loader,logger,prev_layer=None): for epoch in range(self.epoch): mod = 0 # Used to determine the learning rate annealment, resets at each epoch - for images, labels in train_loader: - images, labels = images.to(self.device), labels.to(self.device) + for spikes, labels in train_loader: + spikes, labels = spikes.to(self.device), labels.to(self.device) idx = labels / self.filter if not prev_layer == None: # Get the spikes to train the next layer - prev_layer.x_input = self.forward(images,prev_layer) - out = bn.clamp_spikes(prev_layer) - images = out + spikes = self.forward(spikes,prev_layer) + spikes = bn.clamp_spikes(spikes,prev_layer) # Run forward pass - layer = bn.add_input(layer) - layer.x_input = self.forward(images, layer) - out = bn.clamp_spikes(layer) - layer = bn.calc_stdp(images, out, layer, idx, prev_layer=prev_layer) + pre_spike = spikes.detach() + spikes = self.forward(spikes, layer) + spikes_noclp = spikes.detach() + spikes = bn.clamp_spikes(spikes, layer) + layer = bn.calc_stdp(pre_spike,spikes,spikes_noclp,layer, idx, prev_layer=prev_layer) # Adjust learning rates layer = self._anneal_learning_rate(layer, mod, init_itp, init_stdp) @@ -129,6 +129,11 @@ def train_model(self,layer,train_loader,logger,prev_layer=None): # Reset x and x_input for next iteration layer.x.fill_(0.0) layer.x_input.fill_(0.0) + layer.x_calc.fill_(0.0) + if not prev_layer == None: + prev_layer.x.fill_(0.0) + prev_layer.x_calc.fill_(0.0) + prev_layer.x_input.fill_(0.0) mod += 1 pbar.update(1) @@ -139,7 +144,6 @@ def train_model(self,layer,train_loader,logger,prev_layer=None): torch.cuda.empty_cache() gc.collect() - def evaluate(self, test_loader, layers=None): numcorr = 0 idx = 0 @@ -148,17 +152,21 @@ def evaluate(self, test_loader, layers=None): pbar = tqdm(total=self.number_testing_images, desc="Running the test network", position=0) - - for images, labels in test_loader: - images = images.to(self.device) + + for spikes, labels in test_loader: + + spikes = spikes.to(self.device) labels = labels.to(self.device) for layer in layers: - images = self.forward(images, layer) - - if torch.argmax(images.reshape(1, self.number_training_images)) == idx: + spikes = self.forward(spikes, layer) + spikes = bn.clamp_spikes(spikes, layer) + + topk_indices = torch.topk(spikes.reshape(1, self.number_training_images), 5).indices + + if idx in topk_indices: numcorr += 1 - + idx += 1 pbar.update(1) @@ -180,13 +188,12 @@ def forward(self, spikes, layer): Returns: - Tensor: Output after processing. """ + spikes = self.quant(spikes) - layer.x_input = self.quant(layer.x_input) - layer.x_input = bn.calc_spikes(spikes, layer, self.add) - layer.x_input = self.dequant(layer.x_input) + spikes = self.add.add(layer.exc(spikes), layer.inh(spikes)) spikes = self.dequant(spikes) - - return layer.x_input + + return spikes def save_model(self, model_out): """Save the trained model to models output folder.""" @@ -236,7 +243,7 @@ def train_new_model(model, model_name, qconfig): trainer.to('cpu') trainer.feature_layer.qconfig = qconfig trainer.output_layer.qconfig = qconfig - trainer = quantization.prepare_qat(trainer, inplace=True) + trainer = quantization.prepare_qat(trainer, inplace=False) trainer.train_model(trainer.feature_layer, train_loader, model.logger) trainer.train_model(trainer.output_layer, train_loader, model.logger, prev_layer=trainer.feature_layer) @@ -264,14 +271,16 @@ def run_inference(model, model_name, qconfig): model.qconfig = torch.quantization.get_default_qat_qconfig('fbgemm') model.feature_layer.qconfig = qconfig model.output_layer.qconfig = qconfig - model = quantization.prepare(model, inplace=True) + model = quantization.prepare(model, inplace=False) model.load_model(os.path.join('./models', model_name)) - model = quantization.convert(model, inplace=True) + model = quantization.convert(model, inplace=False) # Use evaluate method for inference accuracy model.evaluate(test_loader, layers=[model.feature_layer, model.output_layer] ) + + if __name__ == "__main__": # Temporary place holder for now, weird multiprocessing bug with larger models @@ -285,6 +294,7 @@ def run_inference(model, model_name, qconfig): use_pretrained = check_pretrained_model(model_name) if not use_pretrained: - train_new_model(model, model_name, qconfig) + with torch.no_grad(): + train_new_model(model, model_name, qconfig) with torch.no_grad(): - run_inference(model, model_name, qconfig) \ No newline at end of file + run_inference(model, model_name, qconfig) \ No newline at end of file diff --git a/src/blitnet.py b/src/blitnet.py index 2c5765d..9d4228b 100644 --- a/src/blitnet.py +++ b/src/blitnet.py @@ -140,31 +140,20 @@ def addWeights(self,W_range=[0,0],p=[0,0],dims=[0,0]): return W -def add_input(layer): +def add_input(spikes, layer): # Add the constant input - layer.x_input += layer.const_inp + spikes += layer.const_inp - return layer + return spikes -def calc_spikes(spikes, layer, adder): - - # Use nn.Linear to perform multiplication of spikes to weights - layer.x_input = adder.add(layer.x_input,layer.exc(spikes)) - layer.x_input = adder.add(layer.x_input,layer.inh(spikes)) - - return layer.x_input - -def clamp_spikes(layer): +def clamp_spikes(spikes, layer): # Clamp outputs between 0 and 0.9 after subtracting thresholds from input - if layer.spk_force: - layer.x_calc = torch.clamp(torch.sub(layer.x_input, layer.thr), min=0.0, max=0.9) - else: - layer.x = torch.clamp(torch.sub(layer.x_input, layer.thr), min=0.0, max=0.9) + spikes = torch.clamp(torch.sub(spikes, layer.thr), min=0.0, max=0.9) - return layer.x + return spikes -def calc_stdp(spikes, out, layer, idx, prev_layer=None): +def calc_stdp(prespike, spikes, noclp, layer, idx, prev_layer=None): # Spike Forcing has special rules to make calculated and forced spikes match if layer.spk_force: @@ -178,19 +167,14 @@ def calc_stdp(spikes, out, layer, idx, prev_layer=None): # Difference between forced and calculated spikes layer.x = torch.full_like(layer.x, 0) - xdiff = torch.clamp(layer.x.index_fill_(-1, idx_sel, 0.5) - layer.x_calc, min=0, max=1) - - # Threshold rules - lower it if calced spike is smaller (and vice versa) - layer.thr.data -= torch.sign(xdiff) * torch.abs(layer.eta_stdp) / 10 - layer.thr.data -= torch.sign(xdiff) * torch.abs((layer.eta_stdp * -1)) / 10 - layer.thr.data = layer.thr.data.clamp(min=0, max=1) + xdiff = layer.x.index_fill_(-1, idx_sel, 0.5) # Pre and Post spikes tiled across and down for all synapses if prev_layer.fire_rate == None: - mpre = spikes + mpre = prespike else: # Modulate learning rate by firing rate (low firing rate = high learning rate) - mpre = spikes/prev_layer.fire_rate + mpre = prespike/prev_layer.fire_rate # Tile out pre- and post- spikes for STDP weight updates pre = torch.tile(torch.reshape(mpre, (shape[1], 1)), (1, shape[0])) @@ -209,8 +193,8 @@ def calc_stdp(spikes, out, layer, idx, prev_layer=None): shape = layer.exc.weight.data.shape # Tile out pre- and post-spikes - pre = torch.tile(torch.reshape(spikes, (shape[1], 1)), (1, shape[0])) - post = torch.tile(out, (shape[1], 1)) + pre = torch.tile(torch.reshape(prespike, (shape[1], 1)), (1, shape[0])) + post = torch.tile(spikes, (shape[1], 1)) # Apply positive and negative weight changes layer.exc.weight.data += (((0.5 - post) * (pre > 0) * (post > 0) * @@ -225,7 +209,7 @@ def calc_stdp(spikes, out, layer, idx, prev_layer=None): # Remove negative weights for excW and positive for inhW layer.exc.weight.data[layer.havconnExc] = layer.exc.weight.data[layer.havconnExc].clamp(min=1e-06, max=10) layer.inh.weight.data[layer.havconnInh] = layer.inh.weight.data[layer.havconnInh].clamp(min=-10, max=-1e-06) - + # Check if layer has target firing rate and an ITP learning rate if layer.have_rate and layer.eta_ip > 0.0: @@ -238,7 +222,7 @@ def calc_stdp(spikes, out, layer, idx, prev_layer=None): # Normalize the inhibitory weights using homeostasis inhW = layer.inh.weight.data.T - layer.inh.weight.data += (torch.mul(layer.x_input,inhW) * layer.eta_stdp*50).T - layer.inh.weight.data[layer.inh.weight.data > 0.0] = -1e-06 + layer.inh.weight.data += (torch.mul(noclp,inhW) * layer.eta_stdp*50).T + layer.inh.weight.data[layer.inh.weight.data > 0.0] = -1e-06 return layer \ No newline at end of file From c8c08f382871a5aaf205bcabcb72ba61a791749c Mon Sep 17 00:00:00 2001 From: Adam Hines Date: Fri, 13 Oct 2023 14:17:23 +1000 Subject: [PATCH 16/69] Quantization aware training now works perfectly. Ready to merge with main --- .../vprtempo_demo-checkpoint.ipynb | 65 ++++++++++ VPRTempo.py | 119 +++++++++++------- config/config.py | 6 +- src/blitnet.py | 3 +- vprtempo_tutorial.ipynb | 65 ++++++++++ 5 files changed, 208 insertions(+), 50 deletions(-) create mode 100644 .ipynb_checkpoints/vprtempo_demo-checkpoint.ipynb create mode 100644 vprtempo_tutorial.ipynb diff --git a/.ipynb_checkpoints/vprtempo_demo-checkpoint.ipynb b/.ipynb_checkpoints/vprtempo_demo-checkpoint.ipynb new file mode 100644 index 0000000..11a9f2d --- /dev/null +++ b/.ipynb_checkpoints/vprtempo_demo-checkpoint.ipynb @@ -0,0 +1,65 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 3, + "id": "ce79b3d3-ed51-4749-98b3-44ea2cfa45e3", + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "import torch\n", + "import gc\n", + "import sys\n", + "sys.path.append('./src')\n", + "sys.path.append('./models')\n", + "sys.path.append('./settings')\n", + "sys.path.append('./output')\n", + "sys.path.append('./dataset')\n", + "sys.path.append('./config')\n", + "torch.multiprocessing.set_sharing_strategy(\"file_system\")\n", + "import blitnet as bn\n", + "import utils as ut\n", + "import numpy as np\n", + "import torch.nn as nn\n", + "import torch.nn.functional as F\n", + "import torch.quantization as quantization\n", + "\n", + "from config import configure, image_csv, model_logger\n", + "from dataset import CustomImageDataset, SetImageAsSpikes, ProcessImage\n", + "from torch.utils.data import DataLoader\n", + "from torch.ao.quantization import QuantStub, DeQuantStub\n", + "from tqdm import tqdm" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "f651774b-4a55-47f0-81c4-6f5fb4f7e1e9", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.4" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/VPRTempo.py b/VPRTempo.py index d8ab532..9b6ff41 100644 --- a/VPRTempo.py +++ b/VPRTempo.py @@ -58,8 +58,20 @@ def __init__(self): # Define the images to load (both training and inference) image_csv(self) - # Common model architecture - self.feature_layer = bn.SNNLayer( + # Add quantization stubs for Quantization Aware Training (QAT) + self.quant = QuantStub() + self.dequant = DeQuantStub() + + # Define the add function for quantized addition + self.add = nn.quantized.FloatFunctional() + + # Layer dict to keep track of layer names and their order + self.layer_dict = {} + self.layer_counter = 0 + + # Define trainable layers here + self.add_layer( + 'feature_layer', dims=[self.input, self.feature], thr_range=[0, 0.5], fire_rate=[0.2, 0.9], @@ -68,36 +80,54 @@ def __init__(self): const_inp=[0, 0.1], p=[0.1, 0.5] ) - self.output_layer = bn.SNNLayer( + self.add_layer( + 'output_layer', dims=[self.feature, self.output], ip_rate=0.15, stdp_rate=0.005, spk_force=True ) - self.layers = { - 'layer0': self.feature_layer, - 'layer1': self.output_layer - } - self.quant = QuantStub() - self.dequant = DeQuantStub() + def add_layer(self, name, **kwargs): + """ + Dynamically add a layer with given name and keyword arguments. - self.add = nn.quantized.FloatFunctional() + :param name: Name of the layer to be added + :type name: str + :param kwargs: Hyperparameters for the layer + """ + # Check for layer name duplicates + if name in self.layer_dict: + raise ValueError(f"Layer with name {name} already exists.") + + # Add a new SNNLayer with provided kwargs + setattr(self, name, bn.SNNLayer(**kwargs)) + + # Add layer name and index to the layer_dict + self.layer_dict[name] = self.layer_counter + self.layer_counter += 1 def model_logger(self): - # Start the model logger + """ + Log the model configuration to the console. + """ model_logger(self) def _anneal_learning_rate(self, layer, mod, itp, stdp): - if np.mod(mod, 10) == 0: + """ + Anneal the learning rate for the current layer. + """ + if np.mod(mod, 100) == 0: # Modify learning rate every 100 timesteps pt = pow(float(self.T - mod) / self.T, self.annl_pow) - layer.eta_ip = torch.mul(itp, pt) - layer.eta_stdp = torch.mul(stdp, pt) + layer.eta_ip = torch.mul(itp, pt) # Anneal intrinsic threshold plasticity learning rate + layer.eta_stdp = torch.mul(stdp, pt) # Anneal STDP learning rate return layer - def train_model(self,layer,train_loader,logger,prev_layer=None): - + def train_model(self,layer,train_loader,prev_layer=None): + """ + Train a new network model, iterating through all defined layers + """ # Initialize the tqdm progress bar pbar = tqdm(total=int(self.T * self.epoch), desc="Training ", @@ -162,9 +192,11 @@ def evaluate(self, test_loader, layers=None): spikes = self.forward(spikes, layer) spikes = bn.clamp_spikes(spikes, layer) - topk_indices = torch.topk(spikes.reshape(1, self.number_training_images), 5).indices - - if idx in topk_indices: + #topk_indices = torch.topk(spikes.reshape(1, self.number_training_images), 5).indices + + #print(topk_indices) + #if idx in topk_indices: + if torch.argmax(spikes.reshape(1, self.number_training_images)) == idx: numcorr += 1 idx += 1 @@ -202,8 +234,7 @@ def save_model(self, model_out): def load_model(self, model_path): """Load pre-trained model and set the state dictionary keys.""" self.load_state_dict(torch.load(model_path, map_location=self.device), - strict=False) - self.eval() + strict=True) def generate_model_name(model): """Generate the model name based on its parameters.""" @@ -223,9 +254,7 @@ def check_pretrained_model(model_name): return False def train_new_model(model, model_name, qconfig): - set_image_as_spikes = SetImageAsSpikes(test=False) - set_image_as_spikes.eval() - set_image_as_spikes.train() + image_transform = ProcessImage(model.dims, model.patches) train_dataset = CustomImageDataset(annotations_file=model.dataset_file, img_dirs=model.training_dirs, @@ -238,21 +267,23 @@ def train_new_model(model, model_name, qconfig): shuffle=False, num_workers=1, persistent_workers=True) - trainer = VPRTempo() - trainer.train() - trainer.to('cpu') - trainer.feature_layer.qconfig = qconfig - trainer.output_layer.qconfig = qconfig - trainer = quantization.prepare_qat(trainer, inplace=False) - trainer.train_model(trainer.feature_layer, train_loader, model.logger) - trainer.train_model(trainer.output_layer, train_loader, model.logger, - prev_layer=trainer.feature_layer) - trainer.eval() - trainer.save_model(os.path.join('./models', model_name)) + model.train() + model.to('cpu') + model.qconfig = qconfig + model.feature_layer.qconfig = qconfig + model.output_layer.qconfig = qconfig + model = quantization.prepare_qat(model, inplace=False) + model.train_model(model.feature_layer, train_loader) + model.train_model(model.output_layer, train_loader, + prev_layer=model.feature_layer) + model = quantization.convert(model, inplace=False) + model.eval() + model.save_model(os.path.join('./models', model_name)) + + return model def run_inference(model, model_name, qconfig): - set_image_as_spikes = SetImageAsSpikes(test=True) - set_image_as_spikes.eval() + image_transform = ProcessImage(model.dims, model.patches) test_dataset = CustomImageDataset(annotations_file=model.dataset_file, img_dirs=model.testing_dirs, @@ -264,27 +295,23 @@ def run_inference(model, model_name, qconfig): shuffle=False, num_workers=1, persistent_workers=True) - model = VPRTempo() - model.to('cpu') model.eval() - model.qconfig = torch.quantization.get_default_qat_qconfig('fbgemm') + model.qconfig = qconfig model.feature_layer.qconfig = qconfig model.output_layer.qconfig = qconfig model = quantization.prepare(model, inplace=False) - model.load_model(os.path.join('./models', model_name)) model = quantization.convert(model, inplace=False) + model.load_model(os.path.join('./models', model_name)) # Use evaluate method for inference accuracy model.evaluate(test_loader, layers=[model.feature_layer, model.output_layer] ) - - if __name__ == "__main__": # Temporary place holder for now, weird multiprocessing bug with larger models - torch.set_num_threads(1) + torch.set_num_threads(4) # Initialize the model and image transforms model = VPRTempo() @@ -295,6 +322,6 @@ def run_inference(model, model_name, qconfig): if not use_pretrained: with torch.no_grad(): - train_new_model(model, model_name, qconfig) + model = train_new_model(model, model_name, qconfig) with torch.no_grad(): - run_inference(model, model_name, qconfig) \ No newline at end of file + run_inference(model, model_name, qconfig) diff --git a/config/config.py b/config/config.py index a5ff85c..debd862 100644 --- a/config/config.py +++ b/config/config.py @@ -11,8 +11,8 @@ def configure(model): model.trainingPath = '/home/adam/data/nordland/' model.testPath = '/home/adam/data/nordland/' model.number_modules = 1 - model.number_training_images = 100 - model.number_testing_images = 100 + model.number_training_images = 250 + model.number_testing_images = 250 model.locations = ["spring","fall"] model.test_locations = ["summer"] model.filter = 8 @@ -39,7 +39,7 @@ def configure(model): model.input = int(model.dims[0]*model.dims[1]) model.feature = int(model.input*2) model.output = int(model.number_training_images/model.number_modules) - model.intensity = 255 + model.intensity = 1 model.location_repeat = len(model.locations) model.layers = [] diff --git a/src/blitnet.py b/src/blitnet.py index 9d4228b..1da7e06 100644 --- a/src/blitnet.py +++ b/src/blitnet.py @@ -167,7 +167,8 @@ def calc_stdp(prespike, spikes, noclp, layer, idx, prev_layer=None): # Difference between forced and calculated spikes layer.x = torch.full_like(layer.x, 0) - xdiff = layer.x.index_fill_(-1, idx_sel, 0.5) + xdiff = layer.x.index_fill_(-1, idx_sel, 0.5) - spikes + xdiff.clamp(min=0.0, max=0.9) # Pre and Post spikes tiled across and down for all synapses if prev_layer.fire_rate == None: diff --git a/vprtempo_tutorial.ipynb b/vprtempo_tutorial.ipynb new file mode 100644 index 0000000..606f8bd --- /dev/null +++ b/vprtempo_tutorial.ipynb @@ -0,0 +1,65 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "70df0e83-9a35-41b3-81ec-cd12538045ed", + "metadata": {}, + "source": [ + "## VPRTempo - tutorial" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "ce79b3d3-ed51-4749-98b3-44ea2cfa45e3", + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "import torch\n", + "import gc\n", + "import sys\n", + "sys.path.append('./src')\n", + "sys.path.append('./models')\n", + "sys.path.append('./settings')\n", + "sys.path.append('./output')\n", + "sys.path.append('./dataset')\n", + "sys.path.append('./config')\n", + "torch.multiprocessing.set_sharing_strategy(\"file_system\")\n", + "import blitnet as bn\n", + "import utils as ut\n", + "import numpy as np\n", + "import torch.nn as nn\n", + "import torch.nn.functional as F\n", + "import torch.quantization as quantization\n", + "\n", + "from config import configure, image_csv, model_logger\n", + "from dataset import CustomImageDataset, SetImageAsSpikes, ProcessImage\n", + "from torch.utils.data import DataLoader\n", + "from torch.ao.quantization import QuantStub, DeQuantStub\n", + "from tqdm import tqdm" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.4" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} From 82b853e1ff0daed8068cf4419326ca080f214db8 Mon Sep 17 00:00:00 2001 From: Adam Hines Date: Fri, 13 Oct 2023 16:45:38 +1000 Subject: [PATCH 17/69] Fixing up comments, reorganising modules, and fixed multi-layer training and inferencing --- .gitignore | 4 +- .../vprtempo_demo-checkpoint.ipynb | 65 ------ VPRTempo.py | 204 +++++++++++------- models/.gitkeep | 0 output/.gitkeep | 0 src/blitnet.py | 19 +- config/config.py => src/settings.py | 82 ++++--- 7 files changed, 194 insertions(+), 180 deletions(-) delete mode 100644 .ipynb_checkpoints/vprtempo_demo-checkpoint.ipynb create mode 100644 models/.gitkeep create mode 100644 output/.gitkeep rename config/config.py => src/settings.py (68%) diff --git a/.gitignore b/.gitignore index ffbfd5c..64e7ef6 100644 --- a/.gitignore +++ b/.gitignore @@ -1,5 +1,3 @@ -models/ -output/ __pycache__/ +.ipynb_checkpoints/ src/__pycache__/ -config/__pycache__/ diff --git a/.ipynb_checkpoints/vprtempo_demo-checkpoint.ipynb b/.ipynb_checkpoints/vprtempo_demo-checkpoint.ipynb deleted file mode 100644 index 11a9f2d..0000000 --- a/.ipynb_checkpoints/vprtempo_demo-checkpoint.ipynb +++ /dev/null @@ -1,65 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 3, - "id": "ce79b3d3-ed51-4749-98b3-44ea2cfa45e3", - "metadata": {}, - "outputs": [], - "source": [ - "import os\n", - "import torch\n", - "import gc\n", - "import sys\n", - "sys.path.append('./src')\n", - "sys.path.append('./models')\n", - "sys.path.append('./settings')\n", - "sys.path.append('./output')\n", - "sys.path.append('./dataset')\n", - "sys.path.append('./config')\n", - "torch.multiprocessing.set_sharing_strategy(\"file_system\")\n", - "import blitnet as bn\n", - "import utils as ut\n", - "import numpy as np\n", - "import torch.nn as nn\n", - "import torch.nn.functional as F\n", - "import torch.quantization as quantization\n", - "\n", - "from config import configure, image_csv, model_logger\n", - "from dataset import CustomImageDataset, SetImageAsSpikes, ProcessImage\n", - "from torch.utils.data import DataLoader\n", - "from torch.ao.quantization import QuantStub, DeQuantStub\n", - "from tqdm import tqdm" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "f651774b-4a55-47f0-81c4-6f5fb4f7e1e9", - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.4" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} diff --git a/VPRTempo.py b/VPRTempo.py index 9b6ff41..9892b86 100644 --- a/VPRTempo.py +++ b/VPRTempo.py @@ -30,11 +30,9 @@ import sys sys.path.append('./src') sys.path.append('./models') -sys.path.append('./settings') sys.path.append('./output') sys.path.append('./dataset') -sys.path.append('./config') -torch.multiprocessing.set_sharing_strategy("file_system") + import blitnet as bn import utils as ut import numpy as np @@ -42,8 +40,8 @@ import torch.nn.functional as F import torch.quantization as quantization -from config import configure, image_csv, model_logger -from dataset import CustomImageDataset, SetImageAsSpikes, ProcessImage +from settings import configure, image_csv, model_logger +from dataset import CustomImageDataset, ProcessImage from torch.utils.data import DataLoader from torch.ao.quantization import QuantStub, DeQuantStub from tqdm import tqdm @@ -69,7 +67,9 @@ def __init__(self): self.layer_dict = {} self.layer_counter = 0 - # Define trainable layers here + """ + Define trainable layers here + """ self.add_layer( 'feature_layer', dims=[self.input, self.feature], @@ -124,57 +124,70 @@ def _anneal_learning_rate(self, layer, mod, itp, stdp): return layer - def train_model(self,layer,train_loader,prev_layer=None): + def train_model(self, train_loader, layer, prev_layers=None): """ - Train a new network model, iterating through all defined layers + Train a layer of the network model. + + :param train_loader: Training data loader + :param layer: Layer to train + :param prev_layers: Previous layers to pass data through """ + # Initialize the tqdm progress bar pbar = tqdm(total=int(self.T * self.epoch), desc="Training ", position=0) + # Initialize the learning rates for each layer (used for annealment) init_itp = layer.eta_ip.detach() init_stdp = layer.eta_stdp.detach() + # Run training for the specified number of epochs for epoch in range(self.epoch): mod = 0 # Used to determine the learning rate annealment, resets at each epoch - + # Run training for the specified number of timesteps for spikes, labels in train_loader: spikes, labels = spikes.to(self.device), labels.to(self.device) - idx = labels / self.filter - if not prev_layer == None: - # Get the spikes to train the next layer - spikes = self.forward(spikes,prev_layer) - spikes = bn.clamp_spikes(spikes,prev_layer) - # Run forward pass - pre_spike = spikes.detach() - spikes = self.forward(spikes, layer) - spikes_noclp = spikes.detach() - spikes = bn.clamp_spikes(spikes, layer) + idx = labels / self.filter # Set output index for spike forcing + # Pass through previous layers if they exist + if prev_layers: + with torch.no_grad(): + for prev_layer_name in prev_layers: + prev_layer = getattr(self, prev_layer_name) # Get the previous layer object + spikes = self.forward(spikes, prev_layer) # Pass spikes through the previous layer + spikes = bn.clamp_spikes(spikes, prev_layer) # Clamp spikes [0, 0.9] + else: + prev_layer = None + # Get the output spikes from the current layer + pre_spike = spikes.detach() # Previous layer spikes for STDP + spikes = self.forward(spikes, layer) # Current layer spikes + spikes_noclp = spikes.detach() # Used for inhibitory homeostasis + spikes = bn.clamp_spikes(spikes, layer) # Clamp spikes [0, 0.9] + # Calculate STDP layer = bn.calc_stdp(pre_spike,spikes,spikes_noclp,layer, idx, prev_layer=prev_layer) - # Adjust learning rates layer = self._anneal_learning_rate(layer, mod, init_itp, init_stdp) - - # Reset x and x_input for next iteration - layer.x.fill_(0.0) - layer.x_input.fill_(0.0) - layer.x_calc.fill_(0.0) - if not prev_layer == None: - prev_layer.x.fill_(0.0) - prev_layer.x_calc.fill_(0.0) - prev_layer.x_input.fill_(0.0) + # Update the annealing mod & progress bar mod += 1 pbar.update(1) # Close the tqdm progress bar pbar.close() - + + # Free up memory if self.device.type == "cuda": torch.cuda.empty_cache() gc.collect() def evaluate(self, test_loader, layers=None): + """ + Run the inferencing model and calculate the accuracy. + + :param test_loader: Testing data loader + :param layers: Layers to pass data through + """ + + # Initialize the number of correct predictions numcorr = 0 idx = 0 @@ -183,33 +196,31 @@ def evaluate(self, test_loader, layers=None): desc="Running the test network", position=0) + # Run inference for the specified number of timesteps for spikes, labels in test_loader: - - spikes = spikes.to(self.device) - labels = labels.to(self.device) - - for layer in layers: - spikes = self.forward(spikes, layer) - spikes = bn.clamp_spikes(spikes, layer) - - #topk_indices = torch.topk(spikes.reshape(1, self.number_training_images), 5).indices - - #print(topk_indices) - #if idx in topk_indices: + # Set device + spikes, labels = spikes.to(self.device), labels.to(self.device) + # Pass through previous layers if they exist + if layers: + for layer_name in layers: + layer = getattr(self, layer_name) + spikes = self.forward(spikes, layer) + spikes = bn.clamp_spikes(spikes, layer) + + # Evaluate if the prediction is correct if torch.argmax(spikes.reshape(1, self.number_training_images)) == idx: numcorr += 1 + # Update the index and progress bar idx += 1 - pbar.update(1) - + + # Close the tqdm progress bar pbar.close() + # Calculate and record the accuracy accuracy = round((numcorr/self.number_testing_images)*100,2) model.logger.info("P@100R: "+ str(accuracy) + '%') - return accuracy - - def forward(self, spikes, layer): """ Compute the forward pass of the model. @@ -228,16 +239,22 @@ def forward(self, spikes, layer): return spikes def save_model(self, model_out): - """Save the trained model to models output folder.""" + """ + Save the trained model to models output folder. + """ torch.save(self.state_dict(), model_out) def load_model(self, model_path): - """Load pre-trained model and set the state dictionary keys.""" + """ + Load pre-trained model and set the state dictionary keys. + """ self.load_state_dict(torch.load(model_path, map_location=self.device), strict=True) def generate_model_name(model): - """Generate the model name based on its parameters.""" + """ + Generate the model name based on its parameters. + """ return ("VPRTempo" + str(model.input) + str(model.feature) + @@ -246,7 +263,9 @@ def generate_model_name(model): '.pth') def check_pretrained_model(model_name): - """Check if a pre-trained model exists and prompt the user to retrain if desired.""" + """ + Check if a pre-trained model exists and prompt the user to retrain if desired. + """ if os.path.exists(os.path.join('./models', model_name)): prompt = "A network with these parameters exists, re-train network? (y/n):\n" retrain = input(prompt).strip().lower() @@ -254,7 +273,14 @@ def check_pretrained_model(model_name): return False def train_new_model(model, model_name, qconfig): - + """ + Train a new model. + + :param model: Model to train + :param model_name: Name of the model to save after training + :param qconfig: Quantization configuration + """ + # Initialize the image transforms and datasets image_transform = ProcessImage(model.dims, model.patches) train_dataset = CustomImageDataset(annotations_file=model.dataset_file, img_dirs=model.training_dirs, @@ -262,66 +288,94 @@ def train_new_model(model, model_name, qconfig): skip=model.filter, max_samples=model.number_training_images, test=False) + # Initialize the data loader train_loader = DataLoader(train_dataset, batch_size=1, shuffle=False, - num_workers=1, + num_workers=8, persistent_workers=True) + # Set the model to training mode and move to device model.train() model.to('cpu') model.qconfig = qconfig - model.feature_layer.qconfig = qconfig - model.output_layer.qconfig = qconfig + + # Apply quantization configurations to the model model = quantization.prepare_qat(model, inplace=False) - model.train_model(model.feature_layer, train_loader) - model.train_model(model.output_layer, train_loader, - prev_layer=model.feature_layer) + + # Keep track of trained layers to pass data through them + trained_layers = [] + + # Training each layer + for layer_name, _ in sorted(model.layer_dict.items(), key=lambda item: item[1]): + print(f"Training layer: {layer_name}") + # Retrieve the layer object + layer = getattr(model, layer_name) + # Train the layer + model.train_model(train_loader, layer, prev_layers=trained_layers) + # After training the current layer, add it to the list of trained layers + trained_layers.append(layer_name) + # Convert the model to a quantized model model = quantization.convert(model, inplace=False) model.eval() + # Save the model model.save_model(os.path.join('./models', model_name)) - - return model def run_inference(model, model_name, qconfig): - + """ + Run inference on a pre-trained model. + + :param model: Model to run inference on + :param model_name: Name of the model to load + :param qconfig: Quantization configuration + """ + # Initialize the image transforms and datasets image_transform = ProcessImage(model.dims, model.patches) test_dataset = CustomImageDataset(annotations_file=model.dataset_file, img_dirs=model.testing_dirs, transform=image_transform, skip=model.filter, max_samples=model.number_testing_images) + # Initialize the data loader test_loader = DataLoader(test_dataset, batch_size=1, shuffle=False, - num_workers=1, + num_workers=8, persistent_workers=True) + # Set the model to evaluation mode and set configuration model = VPRTempo() model.eval() model.qconfig = qconfig - model.feature_layer.qconfig = qconfig - model.output_layer.qconfig = qconfig + + # Apply quantization configurations to all layers in layer_dict + for layer_name, _ in model.layer_dict.items(): + getattr(model, layer_name).qconfig = qconfig + # Prepare and convert the model to a quantized model model = quantization.prepare(model, inplace=False) model = quantization.convert(model, inplace=False) + # Load the model model.load_model(os.path.join('./models', model_name)) + # Retrieve layer names for inference + layer_names = list(model.layer_dict.keys()) + # Use evaluate method for inference accuracy - model.evaluate(test_loader, - layers=[model.feature_layer, model.output_layer] - ) + model.evaluate(test_loader, layers=layer_names) if __name__ == "__main__": - # Temporary place holder for now, weird multiprocessing bug with larger models - torch.set_num_threads(4) - - # Initialize the model and image transforms + # Set the number of threads for PyTorch + torch.set_num_threads(8) + # Initialize the model model = VPRTempo() + # Initialize the logger model.model_logger() + # Set the quantization configuration qconfig = quantization.get_default_qat_qconfig('fbgemm') + # Generate the model name model_name = generate_model_name(model) + # Check if a pre-trained model exists use_pretrained = check_pretrained_model(model_name) - + # Train or run inference based on the user's input if not use_pretrained: - with torch.no_grad(): - model = train_new_model(model, model_name, qconfig) + train_new_model(model, model_name, qconfig) # Training with torch.no_grad(): - run_inference(model, model_name, qconfig) + run_inference(model, model_name, qconfig) # Inference \ No newline at end of file diff --git a/models/.gitkeep b/models/.gitkeep new file mode 100644 index 0000000..e69de29 diff --git a/output/.gitkeep b/output/.gitkeep new file mode 100644 index 0000000..e69de29 diff --git a/src/blitnet.py b/src/blitnet.py index 1da7e06..b6823e3 100644 --- a/src/blitnet.py +++ b/src/blitnet.py @@ -26,16 +26,26 @@ import torch import torch.nn as nn - import numpy as np -from config import configure +from settings import configure class SNNLayer(nn.Module): def __init__(self, dims=[0,0],thr_range=[0,0],fire_rate=[0,0],ip_rate=0, stdp_rate=0,const_inp=[0,0],p=[1,1],spk_force=False): super(SNNLayer, self).__init__() + """ + dims: [input, output] dimensions of the layer + thr_range: [min, max] range of thresholds + fire_rate: [min, max] range of firing rates + ip_rate: learning rate for input threshold plasticity + stdp_rate: learning rate for stdp + const_inp: [min, max] range of constant input + p: [min, max] range of connection probabilities + spk_force: boolean to force spikes + """ + # Configure the network configure(self) # Sets the testing configuration # Device @@ -49,11 +59,6 @@ def __init__(self, dims=[0,0],thr_range=[0,0],fire_rate=[0,0],ip_rate=0, # Initialize Tensors self.x = torch.zeros([1, dims[-1]], device=self.device) - self.x_prev = torch.zeros([1, dims[-1]], device=self.device) - self.x_calc = torch.zeros([1, dims[-1]], device=self.device) - self.x_input = torch.zeros([1, dims[-1]], device=self.device) - self.x_fastinp = torch.zeros([1, dims[-1]], device=self.device) - self.eta_ip = torch.tensor(ip_rate, device=self.device) self.eta_stdp = torch.tensor(stdp_rate, device=self.device) diff --git a/config/config.py b/src/settings.py similarity index 68% rename from config/config.py rename to src/settings.py index debd862..52a7a4d 100644 --- a/config/config.py +++ b/src/settings.py @@ -6,78 +6,100 @@ from datetime import datetime def configure(model): - model.dataset = 'nordland' - model.dataset_file = './dataset/'+model.dataset+'.csv' - model.trainingPath = '/home/adam/data/nordland/' - model.testPath = '/home/adam/data/nordland/' - model.number_modules = 1 - model.number_training_images = 250 - model.number_testing_images = 250 - model.locations = ["spring","fall"] - model.test_locations = ["summer"] - model.filter = 8 - model.validation = True - model.log = True + """ + Configure the model + """ + model.dataset = 'nordland' # Dataset name + model.dataset_file = './dataset/'+model.dataset+'.csv' # Dataset file (must be PyTorch Dataset ) + model.trainingPath = '/home/adam/data/nordland/' # Path to training images + model.testPath = '/home/adam/data/nordland/' # Path to testing images + model.number_modules = 1 # Number of expert modules (currently not implemented) + model.number_training_images = 500 # Number of training images + model.number_testing_images = 500 # Number of testing images + model.locations = ["spring","fall"] # Locations to train on (location repeats for training datasets) + model.test_locations = ["summer"] # Location to query with + model.filter = 8 # Filter for training images + model.validation = True # Validation (maybe deprecated for now?) + model.log = True # Log to console + # Output the training and testing directories model.training_dirs = [] for n in model.locations: - model.training_dirs.append(os.path.join(model.trainingPath,n)) - + model.training_dirs.append(os.path.join(model.trainingPath,n)) model.testing_dirs = [] for n in model.test_locations: model.testing_dirs.append(os.path.join(model.testPath,n)) - + + # Check that the dataset is defined properly assert (len(model.dataset) != 0), "Dataset not defined, see README.md for details on setting up images" assert (os.path.isdir(model.trainingPath)), "Training path not set or path does not exist, specify for model.trainingPath" assert (os.path.isdir(model.testPath)), "Test path not set or path does not exist, specify for model.testPath" assert (os.path.isdir(model.trainingPath + model.locations[0])), "Images must be organized into folders based on locations, see README.md for details" assert (os.path.isdir(model.testPath + model.test_locations[0])), "Images must be organized into folders based on locations, see README.md for details" - model.epoch = 4 - model.patches = 7 - model.dims = [28,28] - model.input = int(model.dims[0]*model.dims[1]) - model.feature = int(model.input*2) - model.output = int(model.number_training_images/model.number_modules) - model.intensity = 1 - model.location_repeat = len(model.locations) - model.layers = [] + # Set the model parameters + model.epoch = 4 # Number of epochs + model.patches = 7 # Number of patches + model.dims = [28,28] # Dimensions of the input image + model.location_repeat = len(model.locations) # Number of times to repeat the locations + model.annl_pow = 2 # Power of the annealmeant function + + """ + These parameters are used to define the network architecture + """ + model.input = int(model.dims[0]*model.dims[1]) # Number of input neurons + model.feature = int(model.input*2) # Number of feature neurons + model.output = int(model.number_training_images/model.number_modules) # Number of output neurons + # Set the torch device #model.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model.device = torch.device("cpu") if model.device.type == "cuda": torch.cuda.init() torch.cuda.synchronize(device=model.device) + + # Determine the total number of timesteps across training images, modules, and location repeats model.T = int((model.number_training_images / model.number_modules) * model.location_repeat) - model.annl_pow = 2 def image_csv(model): + """ + Load the image names from the CSV file and filter them + """ + # Load the image names from the CSV file with open(os.path.join('./dataset', model.dataset + '.csv'), mode='r', newline='', encoding='utf-8') as file: reader = csv.reader(file) model.imageNames = [row[0] for row in reader] + # Remove the header del model.imageNames[0] - + # Filter the image names model.filteredNames = [] for n in range(0, len(model.imageNames), model.filter): model.filteredNames.append(model.imageNames[n]) + # Remove the training images from the filtered names del model.filteredNames[model.number_training_images:len(model.filteredNames)] - -def model_logger(model): + # Store the full training paths model.fullTrainPaths = [] for n in model.locations: model.fullTrainPaths.append(model.trainingPath + n + '/') - + +def model_logger(model): + """ + Configure the model logger + """ + # Create the output folder now = datetime.now() model.output_folder = './output/' + now.strftime("%d%m%y-%H-%M-%S") os.mkdir(model.output_folder) - + # Create the logger model.logger = logging.getLogger("VPRTempo") if (model.logger.hasHandlers()): model.logger.handlers.clear() + # Set the logger level model.logger.setLevel(logging.DEBUG) logging.basicConfig(filename=model.output_folder + "/logfile.log", filemode="a+", format="%(asctime)-15s %(levelname)-8s %(message)s") + # Add the logger to the console (if specified) if model.log: model.logger.addHandler(logging.StreamHandler()) From 1f67585b92e0a9a05825fa9320ac57d60cead40d Mon Sep 17 00:00:00 2001 From: Adam Hines Date: Sat, 14 Oct 2023 21:38:15 +1000 Subject: [PATCH 18/69] Working on jupyter notebook --- .DS_Store | Bin 8196 -> 10244 bytes .gitignore | 4 + VPRTempo.py | 2 +- dataset/.DS_Store | Bin 0 -> 8196 bytes models/.DS_Store | Bin 0 -> 6148 bytes src/nordland.py | 199 ++++++------- src/settings.py | 4 +- vprtempo_tutorial.ipynb | 605 +++++++++++++++++++++++++++++++++++++++- 8 files changed, 711 insertions(+), 103 deletions(-) create mode 100644 dataset/.DS_Store create mode 100644 models/.DS_Store diff --git a/.DS_Store b/.DS_Store index 559b89382d81662d615286ec286ece32aa8c2cfa..cefb3d4d18a3b7e5a728f61d2285ec21fac05280 100644 GIT binary patch literal 10244 zcmeHM&2Jk;6n~QhXH6QqNt31skXHCosZnr}eyHNW)=7lSM-#5w83JaOBE?e}D@IPUX$Vw(B*mda9~qCYt#@&%8I|_nVKG83O>R zb^T=k3jhqv9L)<@{7>TTJddO?RkMId&>sB6i(JN{5lvm88PE)91~dbj0nNbc!T`o> zo{TApy3`D41~dat8Q|xGg_)zRa3E0}9axAf0OABzi-fYt1w>1st#BX_TQCu6iYQHq zx?&J%j`fz(vlR{`N^>CU@i9FMt#hx0iI>h`Ffzv)hTnB&}BeAYr&jhIG^wy>Vtl)wW9 z6poOG)>&~k=TgDlN$_!gQ!&Rl!)L?cf>WV)tQIZ#EnBpInr60a%WqCyn11V`IWv1{ zW^QJF{_?_=`L}1^dADg^avkqcE9T2_jYTZ3MctrjUQBRN*F8qJ;@}t;^IjT!oi@U6 zuxYknupRjKpH=OgbWmsRS%v8I<2VTDK`RdZ&7-3vNcVE`J|E4CSrl!tBuqm__YcMB zY0$3IBZedLZ?M_nP04N$Cx|09d;3ltJG2$lPVPmH8$_G5#?q9v_d@i7e{(TpqvLoX zZB;({TW*wsMvQ0LN?~IDurZ+G8&-KmaM4QpQ;uEuE8B>z#)7E1NZ@c zg2(VH{0@J?Kk$T1lgs3Na*ZsK8{`(TNu7K`4#)%IkT0eEShkhlQ~fC*2?~X&9$DR= zK^@j$1McGZ8}*2J>h$9O9X!Uo^h6}lWeM82^?f|)qO)_-`~Wjg zTyG#zm|!8E;}OMkJbvKM@!}Z)>#8V=gtE;A#DPSVFunR81M+uHeg78^yZAJs@BjS0 J`Fz~}{{sbfEO-C_ delta 618 zcmZn(XmOBWU|?W$DortDU;r^WfEYvza8FDWo2aMAD7`UYH$S8FWF7(4de5BvD7#P?X5*dntFqNT%p*SbqFgQ6sw*V}|`eY8ed~Uvr3)C!*6J-;O zofD6O%tJ9FH$MegO(0f91sTW|eE`|V#*oaA&ydHE#*oR7j_PPeS)e@J(US!Pr6;cu zE9EdYH_=frGPRtnDQ-XcnV_}|sxGis=fS)>`L2ka2&w``PoS~uCo_vGgN-vaGSX2n zG&choSI@?f3v^8iFj#WXf(7JOkZY0Tk%Q&VwIdAiY0zLnQG*B;Txt-Z!UnNr@;%XM zsvOYRDP<^N&;#O1G++D#s+~7EQ)~xvfXv&NCdnko3^7K68%Vo?(#OWc@640=RRTE} bA*qI8ay-w}$pNAs+!EE*NZ|?8F2)1^Z(5fA diff --git a/.gitignore b/.gitignore index 64e7ef6..b6d574a 100644 --- a/.gitignore +++ b/.gitignore @@ -1,3 +1,7 @@ __pycache__/ .ipynb_checkpoints/ src/__pycache__/ +dataset/fall +dataset/winter +dataset/summer +dataset/spring \ No newline at end of file diff --git a/VPRTempo.py b/VPRTempo.py index 9892b86..60578c6 100644 --- a/VPRTempo.py +++ b/VPRTempo.py @@ -363,7 +363,7 @@ def run_inference(model, model_name, qconfig): if __name__ == "__main__": # Set the number of threads for PyTorch - torch.set_num_threads(8) + #torch.set_num_threads(8) # Initialize the model model = VPRTempo() # Initialize the logger diff --git a/dataset/.DS_Store b/dataset/.DS_Store new file mode 100644 index 0000000000000000000000000000000000000000..17107f0a347ac1f22aaa454ec4f2ddd9b416e122 GIT binary patch literal 8196 zcmeHM&1)1%6n`&fO^?w{M-z=J3&V~F!JtX}LPQ+Lh=yfJHXUMu#<4#tlO{b?Lw8R` z4S~UDwW$S2xm9uhXdu(&_ z+|<-~e)7Wkt?~Tk#i@z${Mj?-x3+TDXyNpw`SN;H<>Ik+6|>I;9MIR> zLx~@YD4G*Vn1+Hc-$^LWGbyXi@Kr%8ZcvP8Yf_XfvN$2^u~}M)T#rSwyd=_8RF~a2 zc6o)B9xR2v;QG#o)UKr30-f$+)-uH@kO;JbyEAr>vmaHOiyPow6%8Jd9=9l`_)c)@KJefZD;Pr zu-byQ*WGYp9tmEd`Q&}>2Mz*a2q@uPq60VuJ|wWwm3(sjQ#$vE0@zDBHL?rIrqZd4 zzmmK?Q9E?Ml4R}h$t3LmlCYk7(>`;;c0A~=*8V@HWAoO5y1XwXSzflx6V=B&dXXmPyHTs*`!`m zqcWjEmE(k}94FlVhau5L+z9Q5MU1M@^Jp%1G}f5h}r*D7{2o1KcZlO A*Z=?k literal 0 HcmV?d00001 diff --git a/models/.DS_Store b/models/.DS_Store new file mode 100644 index 0000000000000000000000000000000000000000..c57311ea80e8b15f67695fdfd2c7bc0a5de4731e GIT binary patch literal 6148 zcmeHKu};H441F#gidZ@U3(|c-MGyhTP?doVQN)Z2NDM_~fIT}O!zaS?*{W#LQYHk* zj(qR#VmrBaQG5mJ3#z n?P|lh3p+U#(^gaQE;S41lXi%eV{OP8N*n|-4bcPxKgz%drUOoe literal 0 HcmV?d00001 diff --git a/src/nordland.py b/src/nordland.py index b7d03d2..b8fae44 100644 --- a/src/nordland.py +++ b/src/nordland.py @@ -5,108 +5,111 @@ import re import shutil import zipfile +import sys +sys.path.append('./VPRTempo-quant/dataset') from os import walk -# load and sort the file names in order, not by how OS indexes them -def atoi(text): - return int(text) if text.isdigit() else text - -def natural_keys(text): - return [ atoi(c) for c in re.split(r'(\d+)', text) ] - -# set the base path to the location of the downloaded Nordland datasets -basePath = '' -assert(os.path.isdir(basePath)),"Please set the basePath to the location of the downloaded Nordland datasets" - -# define the subfolders of the Nordland datasets -subPath = ["spring_images_train/section1/","spring_images_train/section2/", - "fall_images_train/section1/","fall_images_train/section2/", - "winter_images_train/section1/","winter_images_train/section2/", - "summer_images_train/section1/","summer_images_train/section2/"] - -# set the desired output folder for unzipping and organization -outDir = '' -assert(os.path.isdir(outDir)),"Please set the outDir to the desired output location for unzipping the Nordland datasets" - -# define output paths for the data -outPath = [os.path.join(outDir,"spring/"),os.path.join(outDir,"fall/"), - os.path.join(outDir,"winter/"),os.path.join(outDir,"summer/")] - -# check for existence of the zip folders, throw exception if missing -zipNames = ["spring_images_train.zip","fall_images_train.zip", - "winter_images_train.zip","summer_images_train.zip"] -for n in zipNames: - if not os.path.exists(basePath+n): - raise Exception('Please ensure dataset .zip folders have been downloaded') - -# check if nordland data folders have already been unzipped -zip_flag = [] -for n, ndx in enumerate(range(0,len(subPath),2)): - print('Unzipping '+zipNames[n]) - if os.path.exists(basePath+subPath[ndx]): - # check if the folder contains any files - file_lst = os.listdir(basePath+subPath[ndx]) - # remove folder if it is empty and unzip the data folder - if len(file_lst) == 0: - shutil.rmtree(basePath+subPath[ndx].replace('section1/','')) +def nord_sort(): + # load and sort the file names in order, not by how OS indexes them + def atoi(text): + return int(text) if text.isdigit() else text + + def natural_keys(text): + return [ atoi(c) for c in re.split(r'(\d+)', text) ] + + # set the base path to the location of the downloaded Nordland datasets + basePath = './dataset/' + assert(os.path.isdir(basePath)),"Please set the basePath to the location of the downloaded Nordland datasets" + + # define the subfolders of the Nordland datasets + subPath = ["spring_images_train/section1/","spring_images_train/section2/", + "fall_images_train/section1/","fall_images_train/section2/", + "winter_images_train/section1/","winter_images_train/section2/", + "summer_images_train/section1/","summer_images_train/section2/"] + + # set the desired output folder for unzipping and organization + outDir = '' + assert(os.path.isdir(outDir)),"Please set the outDir to the desired output location for unzipping the Nordland datasets" + + # define output paths for the data + outPath = [os.path.join(outDir,"spring/"),os.path.join(outDir,"fall/"), + os.path.join(outDir,"winter/"),os.path.join(outDir,"summer/")] + + # check for existence of the zip folders, throw exception if missing + zipNames = ["spring_images_train.zip","fall_images_train.zip", + "winter_images_train.zip","summer_images_train.zip"] + for n in zipNames: + if not os.path.exists(basePath+n): + raise Exception('Please ensure dataset .zip folders have been downloaded') + + # check if nordland data folders have already been unzipped + zip_flag = [] + for n, ndx in enumerate(range(0,len(subPath),2)): + print('Unzipping '+zipNames[n]) + if os.path.exists(basePath+subPath[ndx]): + # check if the folder contains any files + file_lst = os.listdir(basePath+subPath[ndx]) + # remove folder if it is empty and unzip the data folder + if len(file_lst) == 0: + shutil.rmtree(basePath+subPath[ndx].replace('section1/','')) + with zipfile.ZipFile(basePath+zipNames[n],"r") as zip_ref: + zip_ref.extractall(basePath) + else: with zipfile.ZipFile(basePath+zipNames[n],"r") as zip_ref: zip_ref.extractall(basePath) - else: - with zipfile.ZipFile(basePath+zipNames[n],"r") as zip_ref: - zip_ref.extractall(basePath) - -# load image paths -tempPaths = [] -imgPaths = [] -for n in range(0,len(subPath)): + + # load image paths tempPaths = [] - for (path, dir_names, file_names) in walk(basePath+subPath[n]): - tempPaths.extend(file_names) - # sort image names - tempPaths.sort(key=natural_keys) - tempPaths = [basePath+subPath[n]+s for s in tempPaths] - imgPaths = imgPaths + tempPaths - -# if output folders already exist, delete them -for n in outPath: - if os.path.exists(n): - shutil.rmtree(n) - print('Removed pre-existing output folder') + imgPaths = [] + for n in range(0,len(subPath)): + tempPaths = [] + for (path, dir_names, file_names) in walk(basePath+subPath[n]): + tempPaths.extend(file_names) + # sort image names + tempPaths.sort(key=natural_keys) + tempPaths = [basePath+subPath[n]+s for s in tempPaths] + imgPaths = imgPaths + tempPaths -# rename and move the training data to match the nordland_imageNames.txt file -for n in outPath: - os.mkdir(n) -for n, filename in enumerate(imgPaths): - base = os.path.basename(filename) - split_base = os.path.splitext(base) - if int(split_base[0]) < 10: - my_dest = "images-0000"+split_base[0] + ".png" - elif int(split_base[0]) < 100: - my_dest = "images-000"+split_base[0] + ".png" - elif int(split_base[0]) < 1000: - my_dest = "images-00"+split_base[0] + ".png" - elif int(split_base[0]) < 10000: - my_dest = "images-0"+split_base[0] + ".png" - else: - my_dest = "images-"+split_base[0] + ".png" - if "spring" in filename: - out = outPath[0] - elif "fall" in filename: - out = outPath[1] - elif "winter" in filename: - out = outPath[2] - else: - out = outPath[-1] - - fileDest = out + my_dest - os.rename(filename, fileDest) - -# remove the empty folders -for n, ndx in enumerate(subPath): - if n%2 == 0: - shutil.rmtree(basePath+ndx.replace('section1/','')) - else: - continue - -print('Finished unzipping and organizing Nordland dataset') \ No newline at end of file + # if output folders already exist, delete them + for n in outPath: + if os.path.exists(n): + shutil.rmtree(n) + print('Removed pre-existing output folder') + + # rename and move the training data to match the nordland_imageNames.txt file + for n in outPath: + os.mkdir(n) + for n, filename in enumerate(imgPaths): + base = os.path.basename(filename) + split_base = os.path.splitext(base) + if int(split_base[0]) < 10: + my_dest = "images-0000"+split_base[0] + ".png" + elif int(split_base[0]) < 100: + my_dest = "images-000"+split_base[0] + ".png" + elif int(split_base[0]) < 1000: + my_dest = "images-00"+split_base[0] + ".png" + elif int(split_base[0]) < 10000: + my_dest = "images-0"+split_base[0] + ".png" + else: + my_dest = "images-"+split_base[0] + ".png" + if "spring" in filename: + out = outPath[0] + elif "fall" in filename: + out = outPath[1] + elif "winter" in filename: + out = outPath[2] + else: + out = outPath[-1] + + fileDest = out + my_dest + os.rename(filename, fileDest) + + # remove the empty folders + for n, ndx in enumerate(subPath): + if n%2 == 0: + shutil.rmtree(basePath+ndx.replace('section1/','')) + else: + continue + + print('Finished unzipping and organizing Nordland dataset') \ No newline at end of file diff --git a/src/settings.py b/src/settings.py index 52a7a4d..b2d159f 100644 --- a/src/settings.py +++ b/src/settings.py @@ -11,8 +11,8 @@ def configure(model): """ model.dataset = 'nordland' # Dataset name model.dataset_file = './dataset/'+model.dataset+'.csv' # Dataset file (must be PyTorch Dataset ) - model.trainingPath = '/home/adam/data/nordland/' # Path to training images - model.testPath = '/home/adam/data/nordland/' # Path to testing images + model.trainingPath = './dataset/' # Path to training images + model.testPath = './dataset/' # Path to testing images model.number_modules = 1 # Number of expert modules (currently not implemented) model.number_training_images = 500 # Number of training images model.number_testing_images = 500 # Number of testing images diff --git a/vprtempo_tutorial.ipynb b/vprtempo_tutorial.ipynb index 606f8bd..5963c62 100644 --- a/vprtempo_tutorial.ipynb +++ b/vprtempo_tutorial.ipynb @@ -5,7 +5,402 @@ "id": "70df0e83-9a35-41b3-81ec-cd12538045ed", "metadata": {}, "source": [ - "## VPRTempo - tutorial" + "## VPRTempoQuant - Training and Inferencing Tutorial\n", + "\n", + "### By Adam D Hines (https://research.qut.edu.au/qcr/people/adam-hines/)\n", + "\n", + "VPRTempo is based on the following paper, if you use or find this code helpful for your research please consider citing the source:\n", + " \n", + "[Adam D Hines, Peter G Stratton, Michael Milford, & Tobias Fischer. \"VPRTempo: A Fast Temporally Encoded Spiking Neural Network for Visual Place Recognition. arXiv September 2023](https://arxiv.org/abs/2309.10225)\n", + "\n", + "### Introduction\n", + "\n", + "Traditional methods for visual place recognition (VPR) tasks typically employ the use of convolutional neural networks like ResNet to train large datasets for feature extraction of incoming query images, rather than specifically learning said query place. The networks are extremely effective at accurate localisation, but are are slow to train, inference, and store.\n", + "\n", + "Spiking neural networks (SNNs) by contrast are more energy efficient and have low latency computation, meaning their deployment capability for VPR is extremely promising. Specifically, networks can be trained on the exact location you wish to query which takes a fundamentally different approach to the VPR task.\n", + "\n", + "VPRTempo uses a temporal encoding scheme for spikes, where the amplitude of a spike is determined by an incoming training or query image's pixel intensity. This amplitude defines the 'timing' of the spike, similar to a latency code. As spikes propagate throughout the system, spike-timing dependent plasticity (STDP) learning rules train neuronal connections based off of the pixel intensity spike amplitudes. \n", + "\n", + "In this tutorial, we are going to take the base VPRTempo model to train and inference a network with PyTorch's Quantized Aware Training ([QAT](https://pytorch.org/docs/stable/quantization.html)). \n", + "\n", + "To get started, please ensure you have installed and currently have activated the `conda` environment for VPRTempo." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "0f846c03", + "metadata": {}, + "outputs": [], + "source": [ + "!conda activate vprtempo" + ] + }, + { + "cell_type": "markdown", + "id": "0928d7a4", + "metadata": {}, + "source": [ + "## 1. Get the Nordland dataset\n", + "\n", + "### 1.1 Download the dataset\n", + "\n", + "Please [download the Nordland datasets](https://webdiis.unizar.es/~jmfacil/pr-nordland/#download-dataset) (Summer, Spring, Fall, & Winter). There are two datasets available, the full size and downsampled versions. Either will work fine but our paper details the full size dataset. If disk space is a concern, please use the downsampled version.\n", + "\n", + "Save the data in the `./VPRTempo-quant/dataset/` subfolder.\n", + "\n", + "### 1.2 Prepare the dataset for the model\n", + "\n", + "The datset seasons are downloaded in .zip format and need to be extracted into a single folder. The `nordland` function has been provided to automatically do this for you and to re-name the images to match those in the nordland.csv file." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "51f350d0", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "ename": "AssertionError", + "evalue": "Please set the outDir to the desired output location for unzipping the Nordland datasets", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mAssertionError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[1], line 13\u001b[0m\n\u001b[1;32m 10\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mnordland\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m nord_sort\n\u001b[1;32m 12\u001b[0m \u001b[38;5;66;03m# unzip, re-organise, and re-name the Nordland datasets\u001b[39;00m\n\u001b[0;32m---> 13\u001b[0m nord_sort()\n", + "File \u001b[0;32m~/repos/VPRTempo-quant/./src/nordland.py:33\u001b[0m, in \u001b[0;36mnord_sort\u001b[0;34m()\u001b[0m\n\u001b[1;32m 31\u001b[0m \u001b[38;5;66;03m# set the desired output folder for unzipping and organization\u001b[39;00m\n\u001b[1;32m 32\u001b[0m outDir \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124m'\u001b[39m\n\u001b[0;32m---> 33\u001b[0m \u001b[38;5;28;01massert\u001b[39;00m(os\u001b[38;5;241m.\u001b[39mpath\u001b[38;5;241m.\u001b[39misdir(outDir)),\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mPlease set the outDir to the desired output location for unzipping the Nordland datasets\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 35\u001b[0m \u001b[38;5;66;03m# define output paths for the data\u001b[39;00m\n\u001b[1;32m 36\u001b[0m outPath \u001b[38;5;241m=\u001b[39m [os\u001b[38;5;241m.\u001b[39mpath\u001b[38;5;241m.\u001b[39mjoin(outDir,\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mspring/\u001b[39m\u001b[38;5;124m\"\u001b[39m),os\u001b[38;5;241m.\u001b[39mpath\u001b[38;5;241m.\u001b[39mjoin(outDir,\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mfall/\u001b[39m\u001b[38;5;124m\"\u001b[39m),\n\u001b[1;32m 37\u001b[0m os\u001b[38;5;241m.\u001b[39mpath\u001b[38;5;241m.\u001b[39mjoin(outDir,\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mwinter/\u001b[39m\u001b[38;5;124m\"\u001b[39m),os\u001b[38;5;241m.\u001b[39mpath\u001b[38;5;241m.\u001b[39mjoin(outDir,\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124msummer/\u001b[39m\u001b[38;5;124m\"\u001b[39m)]\n", + "\u001b[0;31mAssertionError\u001b[0m: Please set the outDir to the desired output location for unzipping the Nordland datasets" + ] + } + ], + "source": [ + "import os\n", + "import re\n", + "import shutil\n", + "import zipfile\n", + "import sys\n", + "sys.path.append('./src')\n", + "sys.path.append('./VPRTempo-quant/dataset')\n", + "\n", + "from os import walk\n", + "from nordland import nord_sort\n", + "\n", + "# unzip, re-organise, and re-name the Nordland datasets\n", + "nord_sort()" + ] + }, + { + "cell_type": "markdown", + "id": "f0a607d1", + "metadata": {}, + "source": [ + "## Prepare the model for training\n", + "\n", + "Let's now look at preparing our network to train our first model. There are a few initial steps to take care of first.\n", + "\n", + "### 2.1 Import modules" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "d9caff25", + "metadata": {}, + "outputs": [], + "source": [ + "import torch\n", + "import jdc\n", + "import torch.nn as nn\n", + "import blitnet as bn\n", + "import numpy as np\n", + "from torch.ao.quantization import QuantStub, DeQuantStub\n", + "from tqdm import tqdm\n", + "from settings import configure, image_csv, model_logger" + ] + }, + { + "cell_type": "markdown", + "id": "f4d2f885", + "metadata": {}, + "source": [ + "### 2.2 Define and initialize the VPRTempo model\n", + "\n", + "We'll first define the VPRTempo class which handles the configuration as set in `./src/settings.py`, determining which images to load, and establishes the layers used for training. For this tutorial, leave the settings as the default.\n", + "\n", + "`__init__` is where we define the layers used for the model. In this case, we define a `feature_layer` and an `output_layer`. `dims` represents the number of neurons in the input and the layer itself, which in this case is `self.input`, `self.feature`, and `self.output`. Note that the size of the input for each proceeding layer is the size of previous layer. In this example, we have an input of 784 neurons (for 28x28 images) connected to a 1568 neuron feature layer which then connects to a final output layer of 500 neurons.\n", + "\n", + "The other hyperparameters for each layer are set here as well." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "99b5130c", + "metadata": {}, + "outputs": [], + "source": [ + "class VPRTempo(nn.Module):\n", + " def __init__(self):\n", + " super(VPRTempo, self).__init__()\n", + "\n", + " # Configure the network\n", + " configure(self)\n", + " \n", + " # Define the images to load (both training and inference)\n", + " image_csv(self)\n", + "\n", + " # Add quantization stubs for Quantization Aware Training (QAT)\n", + " self.quant = QuantStub()\n", + " self.dequant = DeQuantStub()\n", + " \n", + " # Define the add function for quantized addition\n", + " self.add = nn.quantized.FloatFunctional() \n", + "\n", + " # Layer dict to keep track of layer names and their order\n", + " self.layer_dict = {}\n", + " self.layer_counter = 0\n", + "\n", + " \"\"\"\n", + " Define trainable layers here\n", + " \"\"\"\n", + " self.add_layer(\n", + " 'feature_layer',\n", + " dims=[self.input, self.feature],\n", + " thr_range=[0, 0.5],\n", + " fire_rate=[0.2, 0.9],\n", + " ip_rate=0.15,\n", + " stdp_rate=0.005,\n", + " const_inp=[0, 0.1],\n", + " p=[0.1, 0.5]\n", + " )\n", + " self.add_layer(\n", + " 'output_layer',\n", + " dims=[self.feature, self.output],\n", + " ip_rate=0.15,\n", + " stdp_rate=0.005,\n", + " spk_force=True\n", + " )\n", + " def add_layer(self, name, **kwargs):\n", + " \"\"\"\n", + " Dynamically add a layer with given name and keyword arguments.\n", + "\n", + " :param name: Name of the layer to be added\n", + " :type name: str\n", + " :param kwargs: Hyperparameters for the layer\n", + " \"\"\"\n", + " # Check for layer name duplicates\n", + " if name in self.layer_dict:\n", + " raise ValueError(f\"Layer with name {name} already exists.\")\n", + "\n", + " # Add a new SNNLayer with provided kwargs\n", + " setattr(self, name, bn.SNNLayer(**kwargs))\n", + "\n", + " # Add layer name and index to the layer_dict\n", + " self.layer_dict[name] = self.layer_counter\n", + " self.layer_counter += 1 \n", + "\n", + " print('Succesfully added '+name)\n", + "\n", + " def train_model(self, train_loader, layer, prev_layers=None):\n", + " \"\"\"\n", + " Train a layer of the network model.\n", + "\n", + " :param train_loader: Training data loader\n", + " :param layer: Layer to train\n", + " :param prev_layers: Previous layers to pass data through\n", + " \"\"\"\n", + "\n", + " # Initialize the tqdm progress bar\n", + " pbar = tqdm(total=int(self.T * self.epoch),\n", + " desc=\"Training \",\n", + " position=0)\n", + "\n", + " # Initialize the learning rates for each layer (used for annealment)\n", + " init_itp = layer.eta_ip.detach()\n", + " init_stdp = layer.eta_stdp.detach()\n", + "\n", + " # Run training for the specified number of epochs\n", + " for epoch in range(self.epoch):\n", + " mod = 0 # Used to determine the learning rate annealment, resets at each epoch\n", + " # Run training for the specified number of timesteps\n", + " for spikes, labels in train_loader:\n", + " spikes, labels = spikes.to(self.device), labels.to(self.device)\n", + " idx = labels / self.filter # Set output index for spike forcing\n", + " # Pass through previous layers if they exist\n", + " if prev_layers:\n", + " with torch.no_grad():\n", + " for prev_layer_name in prev_layers:\n", + " prev_layer = getattr(self, prev_layer_name) # Get the previous layer object\n", + " spikes = self.forward(spikes, prev_layer) # Pass spikes through the previous layer\n", + " spikes = bn.clamp_spikes(spikes, prev_layer) # Clamp spikes [0, 0.9]\n", + " else:\n", + " prev_layer = None\n", + " # Get the output spikes from the current layer\n", + " pre_spike = spikes.detach() # Previous layer spikes for STDP\n", + " spikes = self.forward(spikes, layer) # Current layer spikes\n", + " spikes_noclp = spikes.detach() # Used for inhibitory homeostasis\n", + " spikes = bn.clamp_spikes(spikes, layer) # Clamp spikes [0, 0.9]\n", + " # Calculate STDP\n", + " layer = bn.calc_stdp(pre_spike,spikes,spikes_noclp,layer, idx, prev_layer=prev_layer)\n", + " # Adjust learning rates\n", + " layer = self._anneal_learning_rate(layer, mod, init_itp, init_stdp)\n", + " # Update the annealing mod & progress bar \n", + " mod += 1\n", + " pbar.update(1)\n", + "\n", + " # Close the tqdm progress bar\n", + " pbar.close()\n", + "\n", + " def forward(self, spikes, layer):\n", + " \"\"\"\n", + " Compute the forward pass of the model.\n", + "\n", + " Parameters:\n", + " - spikes (Tensor): Input spikes.\n", + "\n", + " Returns:\n", + " - Tensor: Output after processing.\n", + " \"\"\"\n", + "\n", + " spikes = self.quant(spikes)\n", + " spikes = self.add.add(layer.exc(spikes), layer.inh(spikes))\n", + " spikes = self.dequant(spikes)\n", + "\n", + " return spikes\n", + "\n", + " def _anneal_learning_rate(self, layer, mod, itp, stdp):\n", + " \"\"\"\n", + " Anneal the learning rate for the current layer.\n", + " \"\"\"\n", + " if np.mod(mod, 100) == 0: # Modify learning rate every 100 timesteps\n", + " pt = pow(float(self.T - mod) / self.T, self.annl_pow)\n", + " layer.eta_ip = torch.mul(itp, pt) # Anneal intrinsic threshold plasticity learning rate\n", + " layer.eta_stdp = torch.mul(stdp, pt) # Anneal STDP learning rate\n", + "\n", + " return layer" + ] + }, + { + "cell_type": "markdown", + "id": "34bbfd06", + "metadata": {}, + "source": [ + "Layers are dynamically added, such that if you wish to add more layers you simply need to define one in the `__init__` script and the system will iterate through all the layers.\n", + "\n", + "To add the layers, we call the `add_layer()` function which will set all the hyperparameters and seed the initial weights." + ] + }, + { + "cell_type": "markdown", + "id": "dbdd4ffd", + "metadata": {}, + "source": [ + "Now, we can initialize the model and add the layers." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "68a22d64", + "metadata": {}, + "outputs": [], + "source": [ + "%%add_to VPRTempo\n", + "def forward(self, spikes, layer):\n", + " \"\"\"\n", + " Compute the forward pass of the model.\n", + "\n", + " Parameters:\n", + " - spikes (Tensor): Input spikes.\n", + "\n", + " Returns:\n", + " - Tensor: Output after processing.\n", + " \"\"\"\n", + "\n", + " spikes = self.quant(spikes)\n", + " spikes = self.add.add(layer.exc(spikes), layer.inh(spikes))\n", + " spikes = self.dequant(spikes)\n", + "\n", + " return spikes\n", + "\n", + "def _anneal_learning_rate(self, layer, mod, itp, stdp):\n", + " \"\"\"\n", + " Anneal the learning rate for the current layer.\n", + " \"\"\"\n", + " if np.mod(mod, 100) == 0: # Modify learning rate every 100 timesteps\n", + " pt = pow(float(self.T - mod) / self.T, self.annl_pow)\n", + " layer.eta_ip = torch.mul(itp, pt) # Anneal intrinsic threshold plasticity learning rate\n", + " layer.eta_stdp = torch.mul(stdp, pt) # Anneal STDP learning rate\n", + "\n", + " return layer" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "55aa0e9b", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Succesfully added feature_layer\n", + "Succesfully added output_layer\n" + ] + } + ], + "source": [ + "model = VPRTempo()" + ] + }, + { + "cell_type": "markdown", + "id": "17640d20", + "metadata": {}, + "source": [ + "### 2.3 Set the DataLoader\n", + "\n", + "Now that we've defined the model, we will set up the DataLoaders. These utilise a PyTorch CustomImageDataset and ProcessImage to import images and process them for training or inference. In brief, images are loaded, gamma corrected, resized, and then patch-normalized before being converted into system spikes to be propagated throughout.\n", + "\n", + "Since we present the network with one image at a time, the `batch_size` is kept to 1." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "6714bc35", + "metadata": {}, + "outputs": [], + "source": [ + "from dataset import CustomImageDataset, ProcessImage\n", + "from torch.utils.data import DataLoader\n", + "\n", + "image_transform = ProcessImage(model.dims, model.patches)\n", + "train_dataset = CustomImageDataset(annotations_file=model.dataset_file, \n", + " img_dirs=model.training_dirs,\n", + " transform=image_transform,\n", + " skip=model.filter,\n", + " max_samples=model.number_training_images,\n", + " test=False)\n", + "# Initialize the data loader\n", + "train_loader = DataLoader(train_dataset, \n", + " batch_size=1, \n", + " shuffle=False,\n", + " num_workers=8,\n", + " persistent_workers=True)" + ] + }, + { + "cell_type": "markdown", + "id": "0de072c8", + "metadata": {}, + "source": [ + "### 2.4 Other network settings\n", + "\n", + "We will finally set up a unique model name based on the network architecture so we can save and reload our trained model." ] }, { @@ -39,6 +434,212 @@ "from torch.ao.quantization import QuantStub, DeQuantStub\n", "from tqdm import tqdm" ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "dc786b3d", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "VPRTempo78415685001.pth\n" + ] + } + ], + "source": [ + "def generate_model_name(model):\n", + " \"\"\"\n", + " Generate the model name based on its parameters.\n", + " \"\"\"\n", + " return (\"VPRTempo\" +\n", + " str(model.input) +\n", + " str(model.feature) +\n", + " str(model.output) +\n", + " str(model.number_modules) +\n", + " '.pth')\n", + "\n", + "model_name = generate_model_name(model)\n", + "\n", + "print(model_name)" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "9e923809", + "metadata": {}, + "outputs": [], + "source": [ + "%%add_to VPRTempo\n", + "def model_logger(self):\n", + " \"\"\"\n", + " Log the model configuration to the console.\n", + " \"\"\"\n", + " model_logger(self)" + ] + }, + { + "cell_type": "markdown", + "id": "a3067711", + "metadata": {}, + "source": [ + "### 2.5 Model quantization\n", + "\n", + "VPRTempoQuant makes use of Quantized Aware Training QAT and has a few simple steps to prepare the model to accomodate this. First, we will get the default quantization configuration for `fggbem`." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "36244802", + "metadata": {}, + "outputs": [], + "source": [ + "import torch.quantization as quantization\n", + "\n", + "# Set the quantization configuration\n", + "qconfig = quantization.get_default_qat_qconfig('fbgemm')" + ] + }, + { + "cell_type": "markdown", + "id": "47a292cc", + "metadata": {}, + "source": [ + "Next, we will set the model to be configured for network training and add our quantization configuration." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "a884ad96", + "metadata": {}, + "outputs": [], + "source": [ + "# Set the model to training mode and move to device\n", + "model.train()\n", + "model.to('cpu')\n", + "model.qconfig = qconfig" + ] + }, + { + "cell_type": "markdown", + "id": "ed34b802", + "metadata": {}, + "source": [ + "Now we will convert the model over to QAT." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "087f3b36", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/adam/mambaforge/envs/vprtempo/lib/python3.11/site-packages/torch/ao/quantization/observer.py:214: UserWarning: Please use quant_min and quant_max to specify the range for observers. reduce_range will be deprecated in a future release of PyTorch.\n", + " warnings.warn(\n" + ] + } + ], + "source": [ + "# Apply quantization configurations to the model\n", + "model = quantization.prepare_qat(model, inplace=False)" + ] + }, + { + "cell_type": "markdown", + "id": "07f74ad2", + "metadata": {}, + "source": [ + "At this point, we are ready to start training our network!" + ] + }, + { + "cell_type": "markdown", + "id": "2f3f4bdb", + "metadata": {}, + "source": [ + "## 3. Set up and run the training \n", + "\n", + "### 3.1 Define the training regime\n", + "\n", + "Training through the layers is dynamic, such that all you need to do to train everything is to define a new layer. We will first define the training function and explain how it operates." + ] + }, + { + "cell_type": "markdown", + "id": "4eb33796", + "metadata": {}, + "source": [ + "This training regime runs every image through the newtork for a defined number of epochs. Images are loaded and converted to input spikes using the `train_loader` we defined earlier. For the first layer, it will simply calculate network spikes for the following layer. Otherwise, it will loop through each previous layer and generate spikes through the learned connection weights until it reaches the final layer currently being trained. \n", + "\n", + "The main calculation is in the `self.forward()` function. Weights in our layers are a `nn.Linear()` class, where input spikes are multiplied by connection weights between the layers. Once spikes from the input to layer have been calculated, spike-timing dependent plasticity (STDP) learning rules are applied. The learning rate for the network is annealed after every 100 images that are propagated." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "0075638b", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Training layer: feature_layer\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Training : 100%|████████████████████████████| 4000/4000 [01:25<00:00, 46.94it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Training layer: output_layer\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Training : 67%|██████████████████▋ | 2671/4000 [00:54<00:26, 49.88it/s]" + ] + } + ], + "source": [ + "# Keep track of trained layers to pass data through them\n", + "trained_layers = [] \n", + "\n", + "# Training each layer\n", + "for layer_name, _ in sorted(model.layer_dict.items(), key=lambda item: item[1]):\n", + " print(f\"Training layer: {layer_name}\")\n", + " # Retrieve the layer object\n", + " layer = getattr(model, layer_name)\n", + " # Train the layer\n", + " model.train_model(train_loader, layer, prev_layers=trained_layers)\n", + " # After training the current layer, add it to the list of trained layers\n", + " trained_layers.append(layer_name)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "51d8e6d9", + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { @@ -57,7 +658,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.4" + "version": "3.11.0" } }, "nbformat": 4, From d642c80b70dca6c2005c40cf25819742150c5b22 Mon Sep 17 00:00:00 2001 From: Adam Hines Date: Sun, 15 Oct 2023 10:10:58 +1000 Subject: [PATCH 19/69] Finished the QAT jupyter notebook --- .DS_Store | Bin 10244 -> 10244 bytes VPRTempo.py | 2 - dataset/.DS_Store | Bin 8196 -> 8196 bytes src/settings.py | 8 +- tutorials/2_Quantization.ipynb | 924 +++++++++++++++++++++++++++++++++ vprtempo_tutorial.ipynb | 666 ------------------------ 6 files changed, 928 insertions(+), 672 deletions(-) create mode 100644 tutorials/2_Quantization.ipynb delete mode 100644 vprtempo_tutorial.ipynb diff --git a/.DS_Store b/.DS_Store index cefb3d4d18a3b7e5a728f61d2285ec21fac05280..2e3e8215ef405c688d92e1b551ce3ba13b846760 100644 GIT binary patch delta 274 zcmZn(XbG6$&nUSuU^hRbxP3hqMLFq)!O8i#1q=v)MOALTi%U{YeiBd-$Ca;%cUR>ebp*1ps!YMD(gf9g Z1sTLxJ-JETbz|BRw$1DcUAVlN003L%LyrIe delta 239 zcmZn(XbG6$&nUhzU^hRb_+}n~R`$udl4iE-4CM@|44Dk+3>ge148@)~`N>H+`AG~6 z3<3-cjIuy_-hVIvvKSc9R8L+g*2-^eWL~SIP;F^sprc@FXf)YE!q^N=T}p9sPEvk; d4i+QIf{XHU^7GPxQj8lD+1NL;D|Au8WdM6hJ{bT2 diff --git a/VPRTempo.py b/VPRTempo.py index 60578c6..ebbf7c1 100644 --- a/VPRTempo.py +++ b/VPRTempo.py @@ -34,10 +34,8 @@ sys.path.append('./dataset') import blitnet as bn -import utils as ut import numpy as np import torch.nn as nn -import torch.nn.functional as F import torch.quantization as quantization from settings import configure, image_csv, model_logger diff --git a/dataset/.DS_Store b/dataset/.DS_Store index 17107f0a347ac1f22aaa454ec4f2ddd9b416e122..a321f0b86a27a4ebfe9a8a908a70828e9d4c93f7 100644 GIT binary patch delta 90 zcmZp1XmQx!Ex@>avX4Nans{}!iLs7?iJ?)gjzYDikpYlxY*t&#$sww&Zygk$os*lF t-#K}rh&*o>0|NsKLmEROLk>gE=7S>PjGNPi7O-w+llacE`JV_oGXRV18P)&* delta 41 xcmZp1XmQx!Ein1J@E%SUhBSsmh8%{R%?Cun88@d1EnwZuF7b_J^B)m*W&kRx4dDO) diff --git a/src/settings.py b/src/settings.py index b2d159f..b6ceea6 100644 --- a/src/settings.py +++ b/src/settings.py @@ -10,9 +10,9 @@ def configure(model): Configure the model """ model.dataset = 'nordland' # Dataset name - model.dataset_file = './dataset/'+model.dataset+'.csv' # Dataset file (must be PyTorch Dataset ) - model.trainingPath = './dataset/' # Path to training images - model.testPath = './dataset/' # Path to testing images + model.dataset_file = '../dataset/'+model.dataset+'.csv' # Dataset file (must be PyTorch Dataset ) + model.trainingPath = '../dataset/' # Path to training images + model.testPath = '../dataset/' # Path to testing images model.number_modules = 1 # Number of expert modules (currently not implemented) model.number_training_images = 500 # Number of training images model.number_testing_images = 500 # Number of testing images @@ -66,7 +66,7 @@ def image_csv(model): Load the image names from the CSV file and filter them """ # Load the image names from the CSV file - with open(os.path.join('./dataset', model.dataset + '.csv'), mode='r', newline='', encoding='utf-8') as file: + with open(os.path.join('../dataset', model.dataset + '.csv'), mode='r', newline='', encoding='utf-8') as file: reader = csv.reader(file) model.imageNames = [row[0] for row in reader] # Remove the header diff --git a/tutorials/2_Quantization.ipynb b/tutorials/2_Quantization.ipynb new file mode 100644 index 0000000..4cd08dd --- /dev/null +++ b/tutorials/2_Quantization.ipynb @@ -0,0 +1,924 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "70df0e83-9a35-41b3-81ec-cd12538045ed", + "metadata": {}, + "source": [ + "## VPRTempo - Quantized Aware Training and Inferencing Tutorial\n", + "\n", + "### By Adam D Hines (https://research.qut.edu.au/qcr/people/adam-hines/)\n", + "\n", + "VPRTempo is based on the following paper, if you use or find this code helpful for your research please consider citing the source:\n", + " \n", + "[Adam D Hines, Peter G Stratton, Michael Milford, & Tobias Fischer. \"VPRTempo: A Fast Temporally Encoded Spiking Neural Network for Visual Place Recognition. arXiv September 2023](https://arxiv.org/abs/2309.10225)\n", + "\n", + "### Introduction\n", + "\n", + "Traditional methods for visual place recognition (VPR) tasks typically employ the use of convolutional neural networks like ResNet to train large datasets for feature extraction of incoming query images, rather than specifically learning said query place. The networks are extremely effective at accurate localisation, but are are slow to train, inference, and store.\n", + "\n", + "Spiking neural networks (SNNs) by contrast are more energy efficient and have low latency computation, meaning their deployment capability for VPR is extremely promising. Specifically, networks can be trained on the exact location you wish to query which takes a fundamentally different approach to the VPR task.\n", + "\n", + "VPRTempo uses a temporal encoding scheme for spikes, where the amplitude of a spike is determined by an incoming training or query image's pixel intensity. This amplitude defines the 'timing' of the spike, similar to a latency code. As spikes propagate throughout the system, spike-timing dependent plasticity (STDP) learning rules train neuronal connections based off of the pixel intensity spike amplitudes. \n", + "\n", + "In this tutorial, we are going to take the base VPRTempo model to train and inference a network with PyTorch's Quantized Aware Training ([QAT](https://pytorch.org/docs/stable/quantization.html)). Functionally, this tutorial is similar to the previous one as we go through and define the network architecture so if you can skip to **4. Quantization** if you are already familiar with how this works.\n", + "\n", + "**Note: it does not appear that Apple Silicon is currently a supported backend for QAT**\n", + "\n", + "To get started, please ensure you have installed and currently have activated the `conda` environment for VPRTempo." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "0f846c03", + "metadata": {}, + "outputs": [], + "source": [ + "!conda activate vprtempo" + ] + }, + { + "cell_type": "markdown", + "id": "0928d7a4", + "metadata": {}, + "source": [ + "## 1. Get the Nordland dataset\n", + "\n", + "### 1.1 Download the dataset\n", + "\n", + "Please [download the Nordland datasets](https://webdiis.unizar.es/~jmfacil/pr-nordland/#download-dataset) (Summer, Spring, Fall, & Winter). There are two datasets available, the full size and downsampled versions. Either will work fine but our paper details the full size dataset. If disk space is a concern, please use the downsampled version.\n", + "\n", + "Save the data in the `./VPRTempo-quant/dataset/` subfolder." + ] + }, + { + "cell_type": "markdown", + "id": "f0a607d1", + "metadata": {}, + "source": [ + "### 1.2 Import modules\n", + "\n", + "Once we have downloaded the dataset, we'll start by importing all the necessary modules." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "d9caff25", + "metadata": {}, + "outputs": [], + "source": [ + "import jdc\n", + "import os\n", + "import torch\n", + "import gc\n", + "import sys\n", + "sys.path.append('../src')\n", + "sys.path.append('../models')\n", + "sys.path.append('../output')\n", + "sys.path.append('../dataset')\n", + "\n", + "import blitnet as bn\n", + "import numpy as np\n", + "import torch.nn as nn\n", + "import torch.quantization as quantization\n", + "\n", + "from settings import configure, image_csv, model_logger\n", + "from dataset import CustomImageDataset, ProcessImage\n", + "from torch.utils.data import DataLoader\n", + "from torch.ao.quantization import QuantStub, DeQuantStub\n", + "from tqdm import tqdm" + ] + }, + { + "cell_type": "markdown", + "id": "ffac2f0e", + "metadata": {}, + "source": [ + "### 1.3 Prepare the dataset for the model (optional)\n", + "\n", + "The datset seasons are downloaded in .zip format and need to be extracted into a single folder. The `nordland` function has been provided to automatically do this for you and to re-name the images to match those in the nordland.csv file.\n", + "\n", + "If you have already done this from the previous tutorial, you can skip this step." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "51f350d0", + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "from os import walk\n", + "from nordland import nord_sort\n", + "\n", + "# unzip, re-organise, and re-name the Nordland datasets\n", + "nord_sort()" + ] + }, + { + "cell_type": "markdown", + "id": "f4d2f885", + "metadata": {}, + "source": [ + "## 2. Set up the network\n", + "\n", + "### 2.1 Define and initialize the VPRTempo model class\n", + "\n", + "We'll first define the VPRTempo class which handles the configuration as set in `./src/settings.py`, determining which images to load, and establishes the layers used for training. For this tutorial, leave the settings as the default.\n", + "\n", + "`__init__` is where we define the layers used for the model. In this case, we define a `feature_layer` and an `output_layer`. `dims` represents the number of neurons in the input and the layer itself, which in this case is `self.input`, `self.feature`, and `self.output`. Note that the size of the input for each proceeding layer is the size of previous layer. In this example, we have an input of 784 neurons (for 28x28 images) connected to a 1568 neuron feature layer which then connects to a final output layer of 500 neurons.\n", + "\n", + "The other hyperparameters for each layer are set here as well." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "99b5130c", + "metadata": {}, + "outputs": [], + "source": [ + "class VPRTempo(nn.Module):\n", + " def __init__(self):\n", + " super(VPRTempo, self).__init__()\n", + "\n", + " # Configure the network\n", + " configure(self)\n", + " \n", + " # Define the images to load (both training and inference)\n", + " image_csv(self)\n", + "\n", + " # Add quantization stubs for Quantization Aware Training (QAT)\n", + " self.quant = QuantStub()\n", + " self.dequant = DeQuantStub()\n", + " \n", + " # Define the add function for quantized addition\n", + " self.add = nn.quantized.FloatFunctional() \n", + "\n", + " # Layer dict to keep track of layer names and their order\n", + " self.layer_dict = {}\n", + " self.layer_counter = 0\n", + "\n", + " \"\"\"\n", + " Define trainable layers here\n", + " \"\"\"\n", + " self.add_layer(\n", + " 'feature_layer',\n", + " dims=[self.input, self.feature],\n", + " thr_range=[0, 0.5],\n", + " fire_rate=[0.2, 0.9],\n", + " ip_rate=0.15,\n", + " stdp_rate=0.005,\n", + " const_inp=[0, 0.1],\n", + " p=[0.1, 0.5]\n", + " )\n", + " self.add_layer(\n", + " 'output_layer',\n", + " dims=[self.feature, self.output],\n", + " ip_rate=0.15,\n", + " stdp_rate=0.005,\n", + " spk_force=True\n", + " )\n", + " \n", + " print('VPRTempo succesfully initialized')" + ] + }, + { + "cell_type": "markdown", + "id": "d9e3c15b", + "metadata": {}, + "source": [ + "### 2.2 Dynamically add layers\n", + "\n", + "As above, the only thing we need to do in order to add additional layers to our model is to include a self.add_layer(args) to the `__init__` component of the script. The actual handling of the layer generation is done by the blitnet.SNNLayer() class from `blitnet.py`. Here, hyperparameters are stored in the layer information and the initial weights are seeded and normalized for training." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "dabd3c7d", + "metadata": {}, + "outputs": [], + "source": [ + "%%add_to VPRTempo\n", + "def add_layer(self, name, **kwargs):\n", + " \"\"\"\n", + " Dynamically add a layer with given name and keyword arguments.\n", + "\n", + " :param name: Name of the layer to be added\n", + " :type name: str\n", + " :param kwargs: Hyperparameters for the layer\n", + " \"\"\"\n", + " # Check for layer name duplicates\n", + " if name in self.layer_dict:\n", + " raise ValueError(f\"Layer with name {name} already exists.\")\n", + "\n", + " # Add a new SNNLayer with provided kwargs\n", + " setattr(self, name, bn.SNNLayer(**kwargs))\n", + "\n", + " # Add layer name and index to the layer_dict\n", + " self.layer_dict[name] = self.layer_counter\n", + " self.layer_counter += 1 \n", + "\n", + " print('Succesfully added '+name)" + ] + }, + { + "cell_type": "markdown", + "id": "e3b92db1", + "metadata": {}, + "source": [ + "### 2.3 Set the training regime\n", + "\n", + "Training is also handled by the `VPRTempo()` class and recursively runs until all the defined layers are trained. The initial learning rates are copied out so that they can be annealed appropriately for the defined number of time steps. Training runs for the specified number of epochs and the total number of timesteps as set in the train_loader class (more later on that, a simple [PyTorch DataLoader](https://pytorch.org/tutorials/beginner/basics/data_tutorial.html)).\n", + "\n", + "Once a layer has been trained, the learning for that layer will be turned off and training deeper layers will propagate the input spikes through each trained layer until it reaches the one being currently learned. Learning involves spike-timing dependent plasticity (STDP) rules, firing threshold adjustments, and inhibitory connection normalization." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "623595aa", + "metadata": {}, + "outputs": [], + "source": [ + "%%add_to VPRTempo\n", + "def train_model(self, train_loader, layer, prev_layers=None):\n", + " \"\"\"\n", + " Train a layer of the network model.\n", + "\n", + " :param train_loader: Training data loader\n", + " :param layer: Layer to train\n", + " :param prev_layers: Previous layers to pass data through\n", + " \"\"\"\n", + "\n", + " # Initialize the tqdm progress bar\n", + " pbar = tqdm(total=int(self.T * self.epoch),\n", + " desc=\"Training \",\n", + " position=0)\n", + "\n", + " # Initialize the learning rates for each layer (used for annealment)\n", + " init_itp = layer.eta_ip.detach()\n", + " init_stdp = layer.eta_stdp.detach()\n", + "\n", + " # Run training for the specified number of epochs\n", + " for epoch in range(self.epoch):\n", + " mod = 0 # Used to determine the learning rate annealment, resets at each epoch\n", + " # Run training for the specified number of timesteps\n", + " for spikes, labels in train_loader:\n", + " spikes, labels = spikes.to(self.device), labels.to(self.device)\n", + " idx = labels / self.filter # Set output index for spike forcing\n", + " # Pass through previous layers if they exist\n", + " if prev_layers:\n", + " with torch.no_grad():\n", + " for prev_layer_name in prev_layers:\n", + " prev_layer = getattr(self, prev_layer_name) # Get the previous layer object\n", + " spikes = self.forward(spikes, prev_layer) # Pass spikes through the previous layer\n", + " spikes = bn.clamp_spikes(spikes, prev_layer) # Clamp spikes [0, 0.9]\n", + " else:\n", + " prev_layer = None\n", + " # Get the output spikes from the current layer\n", + " pre_spike = spikes.detach() # Previous layer spikes for STDP\n", + " spikes = self.forward(spikes, layer) # Current layer spikes\n", + " spikes_noclp = spikes.detach() # Used for inhibitory homeostasis\n", + " spikes = bn.clamp_spikes(spikes, layer) # Clamp spikes [0, 0.9]\n", + " # Calculate STDP\n", + " layer = bn.calc_stdp(pre_spike,spikes,spikes_noclp,layer, idx, prev_layer=prev_layer)\n", + " # Adjust learning rates\n", + " layer = self._anneal_learning_rate(layer, mod, init_itp, init_stdp)\n", + " # Update the annealing mod & progress bar \n", + " mod += 1\n", + " pbar.update(1)\n", + "\n", + " # Close the tqdm progress bar\n", + " pbar.close()" + ] + }, + { + "cell_type": "markdown", + "id": "bc5e068e", + "metadata": {}, + "source": [ + "### 2.4 Create the forward pass\n", + "\n", + "Layers in VPRTempo are defined as an [nn.Linear](https://pytorch.org/docs/stable/generated/torch.nn.Linear.html) layer, with incoming spikes being linearly transformed with the layer weights. The forward pass simply takes incoming spikes and caluclates the transform with positive and negative weights and adds them together, returning the transformed spikes." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "68a22d64", + "metadata": {}, + "outputs": [], + "source": [ + "%%add_to VPRTempo\n", + "def forward(self, spikes, layer):\n", + " \"\"\"\n", + " Compute the forward pass of the model.\n", + "\n", + " Parameters:\n", + " - spikes (Tensor): Input spikes.\n", + "\n", + " Returns:\n", + " - Tensor: Output after processing.\n", + " \"\"\"\n", + "\n", + " spikes = self.quant(spikes)\n", + " spikes = self.add.add(layer.exc(spikes), layer.inh(spikes))\n", + " spikes = self.dequant(spikes)\n", + "\n", + " return spikes" + ] + }, + { + "cell_type": "markdown", + "id": "9fb8e16d", + "metadata": {}, + "source": [ + "### 2.5 Learning rate annealment & model loader/saver\n", + "\n", + "Finally, the last thing we will add to the model is the learning rate annealment regime and the functions for loading and saving trained models." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "e99f6d13", + "metadata": {}, + "outputs": [], + "source": [ + "%%add_to VPRTempo\n", + "def _anneal_learning_rate(self, layer, mod, itp, stdp):\n", + " \"\"\"\n", + " Anneal the learning rate for the current layer.\n", + " \"\"\"\n", + " if np.mod(mod, 100) == 0: # Modify learning rate every 100 timesteps\n", + " pt = pow(float(self.T - mod) / self.T, self.annl_pow)\n", + " layer.eta_ip = torch.mul(itp, pt) # Anneal intrinsic threshold plasticity learning rate\n", + " layer.eta_stdp = torch.mul(stdp, pt) # Anneal STDP learning rate\n", + "\n", + " return layer\n", + "\n", + "def save_model(self, model_out): \n", + " \"\"\"\n", + " Save the trained model to models output folder.\n", + " \"\"\"\n", + " torch.save(self.state_dict(), model_out) \n", + "\n", + "def load_model(self, model_path):\n", + " \"\"\"\n", + " Load pre-trained model and set the state dictionary keys.\n", + " \"\"\"\n", + " self.load_state_dict(torch.load(model_path, map_location=self.device),\n", + " strict=True)" + ] + }, + { + "cell_type": "markdown", + "id": "a4d65918", + "metadata": {}, + "source": [ + "### 2.6 Initialize the model\n", + "\n", + "Now that the model has been defined, we can initialize it and start with the quantization process." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "55aa0e9b", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Succesfully added feature_layer\n", + "Succesfully added output_layer\n", + "VPRTempo succesfully initialized\n" + ] + } + ], + "source": [ + "model = VPRTempo()" + ] + }, + { + "cell_type": "markdown", + "id": "a88d4a18", + "metadata": {}, + "source": [ + "### 2.7 Generate unique model name\n", + "\n", + "We will finally set up a unique model name based on the network architecture so we can save and reload our trained model." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "dc786b3d", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "VPRTempo78415685001.pth\n" + ] + } + ], + "source": [ + "def generate_model_name(model):\n", + " \"\"\"\n", + " Generate the model name based on its parameters.\n", + " \"\"\"\n", + " return (\"VPRTempo\" +\n", + " str(model.input) +\n", + " str(model.feature) +\n", + " str(model.output) +\n", + " str(model.number_modules) +\n", + " '.pth')\n", + "\n", + "model_name = generate_model_name(model)\n", + "\n", + "print(model_name)" + ] + }, + { + "cell_type": "markdown", + "id": "17640d20", + "metadata": {}, + "source": [ + "## 3. Define the DataLoader\n", + "\n", + "### 3.1 Set the DataLoader\n", + "\n", + "Now that we've defined the model, we will set up the DataLoaders. These utilise a PyTorch CustomImageDataset and ProcessImage to import images and process them for training or inference. In brief, images are loaded, gamma corrected, resized, and then patch-normalized before being converted into system spikes to be propagated throughout.\n", + "\n", + "Since we present the network with one image at a time, the `batch_size` is kept to 1." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "6714bc35", + "metadata": {}, + "outputs": [], + "source": [ + "from dataset import CustomImageDataset, ProcessImage\n", + "from torch.utils.data import DataLoader\n", + "\n", + "image_transform = ProcessImage(model.dims, model.patches)\n", + "train_dataset = CustomImageDataset(annotations_file=model.dataset_file, \n", + " img_dirs=model.training_dirs,\n", + " transform=image_transform,\n", + " skip=model.filter,\n", + " max_samples=model.number_training_images,\n", + " test=False)\n", + "# Initialize the data loader\n", + "train_loader = DataLoader(train_dataset, \n", + " batch_size=1, \n", + " shuffle=False,\n", + " num_workers=8,\n", + " persistent_workers=True)" + ] + }, + { + "cell_type": "markdown", + "id": "a3067711", + "metadata": {}, + "source": [ + "## 4. Quantization\n", + "\n", + "### 4.1 Model quantization\n", + "\n", + "VPRTempoQuant makes use of Quantized Aware Training QAT and has a few simple steps to prepare the model to accomodate this. First, we will get the default quantization configuration for `fggbem`." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "36244802", + "metadata": {}, + "outputs": [], + "source": [ + "import torch.quantization as quantization\n", + "\n", + "# Set the quantization configuration\n", + "qconfig = quantization.get_default_qat_qconfig('fbgemm')" + ] + }, + { + "cell_type": "markdown", + "id": "47a292cc", + "metadata": {}, + "source": [ + "Next, we will set the model to be configured for network training and add our quantization configuration." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "a884ad96", + "metadata": {}, + "outputs": [], + "source": [ + "# Set the model to training mode and move to device\n", + "model.train()\n", + "model.to('cpu')\n", + "model.qconfig = qconfig" + ] + }, + { + "cell_type": "markdown", + "id": "ed34b802", + "metadata": {}, + "source": [ + "Now we will convert the model over to QAT." + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "087f3b36", + "metadata": {}, + "outputs": [], + "source": [ + "# Apply quantization configurations to the model\n", + "model = quantization.prepare_qat(model, inplace=False)" + ] + }, + { + "cell_type": "markdown", + "id": "07f74ad2", + "metadata": {}, + "source": [ + "At this point, we are ready to start training our network!" + ] + }, + { + "cell_type": "markdown", + "id": "2f3f4bdb", + "metadata": {}, + "source": [ + "## 5. Set up and run the training \n", + "\n", + "### 5.1 Define and run the training regime\n", + "\n", + "The training will loop through each defined layer until every single one has trained. In order to propagate spikes throughout the system, trained layers are appended to a list so that they can be re-fed back into the network to calculate spikes based on learned weights.\n", + "\n", + "Run the below cell to train our `feature_layer` and `output_layer`!" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "0075638b", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Training layer: feature_layer\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Training : 100%|████████████████████████████| 4000/4000 [01:30<00:00, 44.07it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Training layer: output_layer\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Training : 100%|████████████████████████████| 4000/4000 [01:23<00:00, 48.00it/s]\n" + ] + } + ], + "source": [ + "# Keep track of trained layers to pass data through them\n", + "trained_layers = [] \n", + "\n", + "# Training each layer\n", + "for layer_name, _ in sorted(model.layer_dict.items(), key=lambda item: item[1]):\n", + " print(f\"Training layer: {layer_name}\")\n", + " # Retrieve the layer object\n", + " layer = getattr(model, layer_name)\n", + " # Train the layer\n", + " model.train_model(train_loader, layer, prev_layers=trained_layers)\n", + " # After training the current layer, add it to the list of trained layers\n", + " trained_layers.append(layer_name)\n", + " \n", + "print('All layers trained succesfully')" + ] + }, + { + "cell_type": "markdown", + "id": "5e6daea3", + "metadata": {}, + "source": [ + "### 5.2 Convert and save the model\n", + "\n", + "Now that the training has been completed, we can convert the QAT model over to be fully quantized. As the layers were trained, scale and zero-point factors will learned for all the elements of the model and can now be applied to the layers. Once converted, we will save the model for use in inferencing." + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "53ededaa", + "metadata": {}, + "outputs": [ + { + "ename": "RuntimeError", + "evalue": "Didn't find engine for operation quantized::linear_prepack NoQEngine", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mRuntimeError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[24], line 2\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;66;03m# Convert the model to a quantized model\u001b[39;00m\n\u001b[0;32m----> 2\u001b[0m model \u001b[38;5;241m=\u001b[39m quantization\u001b[38;5;241m.\u001b[39mconvert(model, inplace\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mFalse\u001b[39;00m)\n\u001b[1;32m 3\u001b[0m model\u001b[38;5;241m.\u001b[39meval()\n\u001b[1;32m 4\u001b[0m \u001b[38;5;66;03m# Save the model\u001b[39;00m\n", + "File \u001b[0;32m~/mambaforge/envs/vprtempo/lib/python3.11/site-packages/torch/ao/quantization/quantize.py:551\u001b[0m, in \u001b[0;36mconvert\u001b[0;34m(module, mapping, inplace, remove_qconfig, is_reference, convert_custom_config_dict)\u001b[0m\n\u001b[1;32m 549\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m inplace:\n\u001b[1;32m 550\u001b[0m module \u001b[38;5;241m=\u001b[39m copy\u001b[38;5;241m.\u001b[39mdeepcopy(module)\n\u001b[0;32m--> 551\u001b[0m _convert(\n\u001b[1;32m 552\u001b[0m module, mapping, inplace\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m, is_reference\u001b[38;5;241m=\u001b[39mis_reference,\n\u001b[1;32m 553\u001b[0m convert_custom_config_dict\u001b[38;5;241m=\u001b[39mconvert_custom_config_dict)\n\u001b[1;32m 554\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m remove_qconfig:\n\u001b[1;32m 555\u001b[0m _remove_qconfig(module)\n", + "File \u001b[0;32m~/mambaforge/envs/vprtempo/lib/python3.11/site-packages/torch/ao/quantization/quantize.py:589\u001b[0m, in \u001b[0;36m_convert\u001b[0;34m(module, mapping, inplace, is_reference, convert_custom_config_dict)\u001b[0m\n\u001b[1;32m 584\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m name, mod \u001b[38;5;129;01min\u001b[39;00m module\u001b[38;5;241m.\u001b[39mnamed_children():\n\u001b[1;32m 585\u001b[0m \u001b[38;5;66;03m# both fused modules and observed custom modules are\u001b[39;00m\n\u001b[1;32m 586\u001b[0m \u001b[38;5;66;03m# swapped as one unit\u001b[39;00m\n\u001b[1;32m 587\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(mod, _FusedModule) \u001b[38;5;129;01mand\u001b[39;00m \\\n\u001b[1;32m 588\u001b[0m type_before_parametrizations(mod) \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;129;01min\u001b[39;00m custom_module_class_mapping:\n\u001b[0;32m--> 589\u001b[0m _convert(mod, mapping, \u001b[38;5;28;01mTrue\u001b[39;00m, \u001b[38;5;66;03m# inplace\u001b[39;00m\n\u001b[1;32m 590\u001b[0m is_reference, convert_custom_config_dict)\n\u001b[1;32m 591\u001b[0m reassign[name] \u001b[38;5;241m=\u001b[39m swap_module(mod, mapping, custom_module_class_mapping)\n\u001b[1;32m 593\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m key, value \u001b[38;5;129;01min\u001b[39;00m reassign\u001b[38;5;241m.\u001b[39mitems():\n", + "File \u001b[0;32m~/mambaforge/envs/vprtempo/lib/python3.11/site-packages/torch/ao/quantization/quantize.py:591\u001b[0m, in \u001b[0;36m_convert\u001b[0;34m(module, mapping, inplace, is_reference, convert_custom_config_dict)\u001b[0m\n\u001b[1;32m 587\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(mod, _FusedModule) \u001b[38;5;129;01mand\u001b[39;00m \\\n\u001b[1;32m 588\u001b[0m type_before_parametrizations(mod) \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;129;01min\u001b[39;00m custom_module_class_mapping:\n\u001b[1;32m 589\u001b[0m _convert(mod, mapping, \u001b[38;5;28;01mTrue\u001b[39;00m, \u001b[38;5;66;03m# inplace\u001b[39;00m\n\u001b[1;32m 590\u001b[0m is_reference, convert_custom_config_dict)\n\u001b[0;32m--> 591\u001b[0m reassign[name] \u001b[38;5;241m=\u001b[39m swap_module(mod, mapping, custom_module_class_mapping)\n\u001b[1;32m 593\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m key, value \u001b[38;5;129;01min\u001b[39;00m reassign\u001b[38;5;241m.\u001b[39mitems():\n\u001b[1;32m 594\u001b[0m module\u001b[38;5;241m.\u001b[39m_modules[key] \u001b[38;5;241m=\u001b[39m value\n", + "File \u001b[0;32m~/mambaforge/envs/vprtempo/lib/python3.11/site-packages/torch/ao/quantization/quantize.py:624\u001b[0m, in \u001b[0;36mswap_module\u001b[0;34m(mod, mapping, custom_module_class_mapping)\u001b[0m\n\u001b[1;32m 622\u001b[0m new_mod \u001b[38;5;241m=\u001b[39m qmod\u001b[38;5;241m.\u001b[39mfrom_float(mod, weight_qparams)\n\u001b[1;32m 623\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m--> 624\u001b[0m new_mod \u001b[38;5;241m=\u001b[39m qmod\u001b[38;5;241m.\u001b[39mfrom_float(mod)\n\u001b[1;32m 625\u001b[0m swapped \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m\n\u001b[1;32m 627\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m swapped:\n\u001b[1;32m 628\u001b[0m \u001b[38;5;66;03m# Preserve module's pre forward hooks. They'll be called on quantized input\u001b[39;00m\n", + "File \u001b[0;32m~/mambaforge/envs/vprtempo/lib/python3.11/site-packages/torch/ao/nn/quantized/modules/linear.py:277\u001b[0m, in \u001b[0;36mLinear.from_float\u001b[0;34m(cls, mod)\u001b[0m\n\u001b[1;32m 275\u001b[0m \u001b[38;5;28;01massert\u001b[39;00m dtype \u001b[38;5;241m==\u001b[39m torch\u001b[38;5;241m.\u001b[39mqint8, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mWeight observer must have dtype torch.qint8\u001b[39m\u001b[38;5;124m'\u001b[39m\n\u001b[1;32m 276\u001b[0m qweight \u001b[38;5;241m=\u001b[39m _quantize_weight(mod\u001b[38;5;241m.\u001b[39mweight\u001b[38;5;241m.\u001b[39mfloat(), weight_post_process)\n\u001b[0;32m--> 277\u001b[0m qlinear \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mcls\u001b[39m(mod\u001b[38;5;241m.\u001b[39min_features,\n\u001b[1;32m 278\u001b[0m mod\u001b[38;5;241m.\u001b[39mout_features,\n\u001b[1;32m 279\u001b[0m dtype\u001b[38;5;241m=\u001b[39mdtype)\n\u001b[1;32m 280\u001b[0m qlinear\u001b[38;5;241m.\u001b[39mset_weight_bias(qweight, mod\u001b[38;5;241m.\u001b[39mbias)\n\u001b[1;32m 281\u001b[0m qlinear\u001b[38;5;241m.\u001b[39mscale \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mfloat\u001b[39m(act_scale)\n", + "File \u001b[0;32m~/mambaforge/envs/vprtempo/lib/python3.11/site-packages/torch/ao/nn/quantized/modules/linear.py:151\u001b[0m, in \u001b[0;36mLinear.__init__\u001b[0;34m(self, in_features, out_features, bias_, dtype)\u001b[0m\n\u001b[1;32m 148\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 149\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mRuntimeError\u001b[39;00m(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mUnsupported dtype specified for quantized Linear!\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[0;32m--> 151\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_packed_params \u001b[38;5;241m=\u001b[39m LinearPackedParams(dtype)\n\u001b[1;32m 152\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_packed_params\u001b[38;5;241m.\u001b[39mset_weight_bias(qweight, bias)\n\u001b[1;32m 153\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mscale \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m1.0\u001b[39m\n", + "File \u001b[0;32m~/mambaforge/envs/vprtempo/lib/python3.11/site-packages/torch/ao/nn/quantized/modules/linear.py:27\u001b[0m, in \u001b[0;36mLinearPackedParams.__init__\u001b[0;34m(self, dtype)\u001b[0m\n\u001b[1;32m 25\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdtype \u001b[38;5;241m==\u001b[39m torch\u001b[38;5;241m.\u001b[39mfloat16:\n\u001b[1;32m 26\u001b[0m wq \u001b[38;5;241m=\u001b[39m torch\u001b[38;5;241m.\u001b[39mzeros([\u001b[38;5;241m1\u001b[39m, \u001b[38;5;241m1\u001b[39m], dtype\u001b[38;5;241m=\u001b[39mtorch\u001b[38;5;241m.\u001b[39mfloat)\n\u001b[0;32m---> 27\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mset_weight_bias(wq, \u001b[38;5;28;01mNone\u001b[39;00m)\n", + "File \u001b[0;32m~/mambaforge/envs/vprtempo/lib/python3.11/site-packages/torch/ao/nn/quantized/modules/linear.py:32\u001b[0m, in \u001b[0;36mLinearPackedParams.set_weight_bias\u001b[0;34m(self, weight, bias)\u001b[0m\n\u001b[1;32m 29\u001b[0m \u001b[38;5;129m@torch\u001b[39m\u001b[38;5;241m.\u001b[39mjit\u001b[38;5;241m.\u001b[39mexport\n\u001b[1;32m 30\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mset_weight_bias\u001b[39m(\u001b[38;5;28mself\u001b[39m, weight: torch\u001b[38;5;241m.\u001b[39mTensor, bias: Optional[torch\u001b[38;5;241m.\u001b[39mTensor]) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 31\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdtype \u001b[38;5;241m==\u001b[39m torch\u001b[38;5;241m.\u001b[39mqint8:\n\u001b[0;32m---> 32\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_packed_params \u001b[38;5;241m=\u001b[39m torch\u001b[38;5;241m.\u001b[39mops\u001b[38;5;241m.\u001b[39mquantized\u001b[38;5;241m.\u001b[39mlinear_prepack(weight, bias)\n\u001b[1;32m 33\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdtype \u001b[38;5;241m==\u001b[39m torch\u001b[38;5;241m.\u001b[39mfloat16:\n\u001b[1;32m 34\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_packed_params \u001b[38;5;241m=\u001b[39m torch\u001b[38;5;241m.\u001b[39mops\u001b[38;5;241m.\u001b[39mquantized\u001b[38;5;241m.\u001b[39mlinear_prepack_fp16(weight, bias)\n", + "File \u001b[0;32m~/mambaforge/envs/vprtempo/lib/python3.11/site-packages/torch/_ops.py:502\u001b[0m, in \u001b[0;36mOpOverloadPacket.__call__\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 497\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m__call__\u001b[39m(\u001b[38;5;28mself\u001b[39m, \u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs):\n\u001b[1;32m 498\u001b[0m \u001b[38;5;66;03m# overloading __call__ to ensure torch.ops.foo.bar()\u001b[39;00m\n\u001b[1;32m 499\u001b[0m \u001b[38;5;66;03m# is still callable from JIT\u001b[39;00m\n\u001b[1;32m 500\u001b[0m \u001b[38;5;66;03m# We save the function ptr as the `op` attribute on\u001b[39;00m\n\u001b[1;32m 501\u001b[0m \u001b[38;5;66;03m# OpOverloadPacket to access it here.\u001b[39;00m\n\u001b[0;32m--> 502\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_op(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs \u001b[38;5;129;01mor\u001b[39;00m {})\n", + "\u001b[0;31mRuntimeError\u001b[0m: Didn't find engine for operation quantized::linear_prepack NoQEngine" + ] + } + ], + "source": [ + "# Convert the model to a quantized model\n", + "model = quantization.convert(model, inplace=False)\n", + "model.eval()\n", + "# Save the model\n", + "model.save_model(os.path.join('./models', model_name)) " + ] + }, + { + "cell_type": "markdown", + "id": "c0d69843", + "metadata": {}, + "source": [ + "## 6. Inferencing\n", + "\n", + "As in the previous tutorial, inferencing with a trained model is quite simple. The only additional thing we need to do is reinitialize the VPRTempo class and convert it to quantized before loading the model. Without pre-quantizing the inference model, state dictionary keys will not match since all the layers and associated components have new parameters such as scale and zero-point.\n", + "\n", + "### 6.1 Add the inference function to the VPRTempo class\n", + "\n", + "We will start by adding in the inference function to VPRTempo. It is similar to the training regime but omits the learning components `calc_stdp` and simply runs through all the layers until it reaches the output." + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "id": "a368c532", + "metadata": {}, + "outputs": [], + "source": [ + "%%add_to VPRTempo\n", + "def evaluate(self, test_loader, layers=None):\n", + " \"\"\"\n", + " Run the inferencing model and calculate the accuracy.\n", + "\n", + " :param test_loader: Testing data loader\n", + " :param layers: Layers to pass data through\n", + " \"\"\"\n", + "\n", + " # Initialize the number of correct predictions\n", + " numcorr = 0\n", + " idx = 0\n", + "\n", + " # Initialize the tqdm progress bar\n", + " pbar = tqdm(total=self.number_testing_images,\n", + " desc=\"Running the test network\",\n", + " position=0)\n", + "\n", + " # Run inference for the specified number of timesteps\n", + " for spikes, labels in test_loader:\n", + " # Set device\n", + " spikes, labels = spikes.to(self.device), labels.to(self.device)\n", + " # Pass through previous layers if they exist\n", + " if layers:\n", + " for layer_name in layers:\n", + " layer = getattr(self, layer_name)\n", + " spikes = self.forward(spikes, layer)\n", + " spikes = bn.clamp_spikes(spikes, layer)\n", + "\n", + " # Evaluate if the prediction is correct\n", + " if torch.argmax(spikes.reshape(1, self.number_training_images)) == idx:\n", + " numcorr += 1\n", + "\n", + " # Update the index and progress bar\n", + " idx += 1\n", + " pbar.update(1)\n", + "\n", + " # Close the tqdm progress bar\n", + " pbar.close()\n", + " # Calculate and record the accuracy\n", + " accuracy = round((numcorr/self.number_testing_images)*100,2)\n", + " model.logger.info(\"P@100R: \"+ str(accuracy) + '%')" + ] + }, + { + "cell_type": "markdown", + "id": "5e841fc7", + "metadata": {}, + "source": [ + "### 6.2 Define the inferencing DataLoader\n", + "\n", + "The only difference between the training and testing DataLoader is the directory with which it will import images from." + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "id": "f4a1adc8", + "metadata": {}, + "outputs": [], + "source": [ + "# Initialize the image transforms and datasets\n", + "image_transform = ProcessImage(model.dims, model.patches)\n", + "test_dataset = CustomImageDataset(annotations_file=model.dataset_file, \n", + " img_dirs=model.testing_dirs,\n", + " transform=image_transform,\n", + " skip=model.filter,\n", + " max_samples=model.number_testing_images)\n", + "# Initialize the data loader\n", + "test_loader = DataLoader(test_dataset, \n", + " batch_size=1, \n", + " shuffle=False,\n", + " num_workers=8,\n", + " persistent_workers=True)" + ] + }, + { + "cell_type": "markdown", + "id": "018de09a", + "metadata": {}, + "source": [ + "### 6.3 Re-initialize the model class, convert to quantization, and load the model\n", + "\n", + "Now we will re-initialize the VPRTempo class model, set to eval mode, and convert it over to quantized so that we can import our newly trained model." + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "id": "30d51e96", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Succesfully added feature_layer\n", + "Succesfully added output_layer\n", + "VPRTempo succesfully initialized\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/adam/mambaforge/envs/vprtempo/lib/python3.11/site-packages/torch/ao/quantization/observer.py:214: UserWarning: Please use quant_min and quant_max to specify the range for observers. reduce_range will be deprecated in a future release of PyTorch.\n", + " warnings.warn(\n", + "/Users/adam/mambaforge/envs/vprtempo/lib/python3.11/site-packages/torch/ao/quantization/utils.py:310: UserWarning: must run observer before calling calculate_qparams. Returning default values.\n", + " warnings.warn(\n" + ] + }, + { + "ename": "RuntimeError", + "evalue": "Didn't find engine for operation quantized::linear_prepack NoQEngine", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mRuntimeError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[27], line 11\u001b[0m\n\u001b[1;32m 9\u001b[0m \u001b[38;5;66;03m# Prepare and convert the model to a quantized model\u001b[39;00m\n\u001b[1;32m 10\u001b[0m model \u001b[38;5;241m=\u001b[39m quantization\u001b[38;5;241m.\u001b[39mprepare(model, inplace\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mFalse\u001b[39;00m)\n\u001b[0;32m---> 11\u001b[0m model \u001b[38;5;241m=\u001b[39m quantization\u001b[38;5;241m.\u001b[39mconvert(model, inplace\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mFalse\u001b[39;00m)\n\u001b[1;32m 12\u001b[0m \u001b[38;5;66;03m# Load the model\u001b[39;00m\n\u001b[1;32m 13\u001b[0m model\u001b[38;5;241m.\u001b[39mload_model(os\u001b[38;5;241m.\u001b[39mpath\u001b[38;5;241m.\u001b[39mjoin(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m./models\u001b[39m\u001b[38;5;124m'\u001b[39m, model_name))\n", + "File \u001b[0;32m~/mambaforge/envs/vprtempo/lib/python3.11/site-packages/torch/ao/quantization/quantize.py:551\u001b[0m, in \u001b[0;36mconvert\u001b[0;34m(module, mapping, inplace, remove_qconfig, is_reference, convert_custom_config_dict)\u001b[0m\n\u001b[1;32m 549\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m inplace:\n\u001b[1;32m 550\u001b[0m module \u001b[38;5;241m=\u001b[39m copy\u001b[38;5;241m.\u001b[39mdeepcopy(module)\n\u001b[0;32m--> 551\u001b[0m _convert(\n\u001b[1;32m 552\u001b[0m module, mapping, inplace\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m, is_reference\u001b[38;5;241m=\u001b[39mis_reference,\n\u001b[1;32m 553\u001b[0m convert_custom_config_dict\u001b[38;5;241m=\u001b[39mconvert_custom_config_dict)\n\u001b[1;32m 554\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m remove_qconfig:\n\u001b[1;32m 555\u001b[0m _remove_qconfig(module)\n", + "File \u001b[0;32m~/mambaforge/envs/vprtempo/lib/python3.11/site-packages/torch/ao/quantization/quantize.py:589\u001b[0m, in \u001b[0;36m_convert\u001b[0;34m(module, mapping, inplace, is_reference, convert_custom_config_dict)\u001b[0m\n\u001b[1;32m 584\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m name, mod \u001b[38;5;129;01min\u001b[39;00m module\u001b[38;5;241m.\u001b[39mnamed_children():\n\u001b[1;32m 585\u001b[0m \u001b[38;5;66;03m# both fused modules and observed custom modules are\u001b[39;00m\n\u001b[1;32m 586\u001b[0m \u001b[38;5;66;03m# swapped as one unit\u001b[39;00m\n\u001b[1;32m 587\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(mod, _FusedModule) \u001b[38;5;129;01mand\u001b[39;00m \\\n\u001b[1;32m 588\u001b[0m type_before_parametrizations(mod) \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;129;01min\u001b[39;00m custom_module_class_mapping:\n\u001b[0;32m--> 589\u001b[0m _convert(mod, mapping, \u001b[38;5;28;01mTrue\u001b[39;00m, \u001b[38;5;66;03m# inplace\u001b[39;00m\n\u001b[1;32m 590\u001b[0m is_reference, convert_custom_config_dict)\n\u001b[1;32m 591\u001b[0m reassign[name] \u001b[38;5;241m=\u001b[39m swap_module(mod, mapping, custom_module_class_mapping)\n\u001b[1;32m 593\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m key, value \u001b[38;5;129;01min\u001b[39;00m reassign\u001b[38;5;241m.\u001b[39mitems():\n", + "File \u001b[0;32m~/mambaforge/envs/vprtempo/lib/python3.11/site-packages/torch/ao/quantization/quantize.py:591\u001b[0m, in \u001b[0;36m_convert\u001b[0;34m(module, mapping, inplace, is_reference, convert_custom_config_dict)\u001b[0m\n\u001b[1;32m 587\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(mod, _FusedModule) \u001b[38;5;129;01mand\u001b[39;00m \\\n\u001b[1;32m 588\u001b[0m type_before_parametrizations(mod) \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;129;01min\u001b[39;00m custom_module_class_mapping:\n\u001b[1;32m 589\u001b[0m _convert(mod, mapping, \u001b[38;5;28;01mTrue\u001b[39;00m, \u001b[38;5;66;03m# inplace\u001b[39;00m\n\u001b[1;32m 590\u001b[0m is_reference, convert_custom_config_dict)\n\u001b[0;32m--> 591\u001b[0m reassign[name] \u001b[38;5;241m=\u001b[39m swap_module(mod, mapping, custom_module_class_mapping)\n\u001b[1;32m 593\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m key, value \u001b[38;5;129;01min\u001b[39;00m reassign\u001b[38;5;241m.\u001b[39mitems():\n\u001b[1;32m 594\u001b[0m module\u001b[38;5;241m.\u001b[39m_modules[key] \u001b[38;5;241m=\u001b[39m value\n", + "File \u001b[0;32m~/mambaforge/envs/vprtempo/lib/python3.11/site-packages/torch/ao/quantization/quantize.py:624\u001b[0m, in \u001b[0;36mswap_module\u001b[0;34m(mod, mapping, custom_module_class_mapping)\u001b[0m\n\u001b[1;32m 622\u001b[0m new_mod \u001b[38;5;241m=\u001b[39m qmod\u001b[38;5;241m.\u001b[39mfrom_float(mod, weight_qparams)\n\u001b[1;32m 623\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m--> 624\u001b[0m new_mod \u001b[38;5;241m=\u001b[39m qmod\u001b[38;5;241m.\u001b[39mfrom_float(mod)\n\u001b[1;32m 625\u001b[0m swapped \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m\n\u001b[1;32m 627\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m swapped:\n\u001b[1;32m 628\u001b[0m \u001b[38;5;66;03m# Preserve module's pre forward hooks. They'll be called on quantized input\u001b[39;00m\n", + "File \u001b[0;32m~/mambaforge/envs/vprtempo/lib/python3.11/site-packages/torch/ao/nn/quantized/modules/linear.py:277\u001b[0m, in \u001b[0;36mLinear.from_float\u001b[0;34m(cls, mod)\u001b[0m\n\u001b[1;32m 275\u001b[0m \u001b[38;5;28;01massert\u001b[39;00m dtype \u001b[38;5;241m==\u001b[39m torch\u001b[38;5;241m.\u001b[39mqint8, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mWeight observer must have dtype torch.qint8\u001b[39m\u001b[38;5;124m'\u001b[39m\n\u001b[1;32m 276\u001b[0m qweight \u001b[38;5;241m=\u001b[39m _quantize_weight(mod\u001b[38;5;241m.\u001b[39mweight\u001b[38;5;241m.\u001b[39mfloat(), weight_post_process)\n\u001b[0;32m--> 277\u001b[0m qlinear \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mcls\u001b[39m(mod\u001b[38;5;241m.\u001b[39min_features,\n\u001b[1;32m 278\u001b[0m mod\u001b[38;5;241m.\u001b[39mout_features,\n\u001b[1;32m 279\u001b[0m dtype\u001b[38;5;241m=\u001b[39mdtype)\n\u001b[1;32m 280\u001b[0m qlinear\u001b[38;5;241m.\u001b[39mset_weight_bias(qweight, mod\u001b[38;5;241m.\u001b[39mbias)\n\u001b[1;32m 281\u001b[0m qlinear\u001b[38;5;241m.\u001b[39mscale \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mfloat\u001b[39m(act_scale)\n", + "File \u001b[0;32m~/mambaforge/envs/vprtempo/lib/python3.11/site-packages/torch/ao/nn/quantized/modules/linear.py:151\u001b[0m, in \u001b[0;36mLinear.__init__\u001b[0;34m(self, in_features, out_features, bias_, dtype)\u001b[0m\n\u001b[1;32m 148\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 149\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mRuntimeError\u001b[39;00m(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mUnsupported dtype specified for quantized Linear!\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[0;32m--> 151\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_packed_params \u001b[38;5;241m=\u001b[39m LinearPackedParams(dtype)\n\u001b[1;32m 152\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_packed_params\u001b[38;5;241m.\u001b[39mset_weight_bias(qweight, bias)\n\u001b[1;32m 153\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mscale \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m1.0\u001b[39m\n", + "File \u001b[0;32m~/mambaforge/envs/vprtempo/lib/python3.11/site-packages/torch/ao/nn/quantized/modules/linear.py:27\u001b[0m, in \u001b[0;36mLinearPackedParams.__init__\u001b[0;34m(self, dtype)\u001b[0m\n\u001b[1;32m 25\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdtype \u001b[38;5;241m==\u001b[39m torch\u001b[38;5;241m.\u001b[39mfloat16:\n\u001b[1;32m 26\u001b[0m wq \u001b[38;5;241m=\u001b[39m torch\u001b[38;5;241m.\u001b[39mzeros([\u001b[38;5;241m1\u001b[39m, \u001b[38;5;241m1\u001b[39m], dtype\u001b[38;5;241m=\u001b[39mtorch\u001b[38;5;241m.\u001b[39mfloat)\n\u001b[0;32m---> 27\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mset_weight_bias(wq, \u001b[38;5;28;01mNone\u001b[39;00m)\n", + "File \u001b[0;32m~/mambaforge/envs/vprtempo/lib/python3.11/site-packages/torch/ao/nn/quantized/modules/linear.py:32\u001b[0m, in \u001b[0;36mLinearPackedParams.set_weight_bias\u001b[0;34m(self, weight, bias)\u001b[0m\n\u001b[1;32m 29\u001b[0m \u001b[38;5;129m@torch\u001b[39m\u001b[38;5;241m.\u001b[39mjit\u001b[38;5;241m.\u001b[39mexport\n\u001b[1;32m 30\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mset_weight_bias\u001b[39m(\u001b[38;5;28mself\u001b[39m, weight: torch\u001b[38;5;241m.\u001b[39mTensor, bias: Optional[torch\u001b[38;5;241m.\u001b[39mTensor]) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 31\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdtype \u001b[38;5;241m==\u001b[39m torch\u001b[38;5;241m.\u001b[39mqint8:\n\u001b[0;32m---> 32\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_packed_params \u001b[38;5;241m=\u001b[39m torch\u001b[38;5;241m.\u001b[39mops\u001b[38;5;241m.\u001b[39mquantized\u001b[38;5;241m.\u001b[39mlinear_prepack(weight, bias)\n\u001b[1;32m 33\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdtype \u001b[38;5;241m==\u001b[39m torch\u001b[38;5;241m.\u001b[39mfloat16:\n\u001b[1;32m 34\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_packed_params \u001b[38;5;241m=\u001b[39m torch\u001b[38;5;241m.\u001b[39mops\u001b[38;5;241m.\u001b[39mquantized\u001b[38;5;241m.\u001b[39mlinear_prepack_fp16(weight, bias)\n", + "File \u001b[0;32m~/mambaforge/envs/vprtempo/lib/python3.11/site-packages/torch/_ops.py:502\u001b[0m, in \u001b[0;36mOpOverloadPacket.__call__\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 497\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m__call__\u001b[39m(\u001b[38;5;28mself\u001b[39m, \u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs):\n\u001b[1;32m 498\u001b[0m \u001b[38;5;66;03m# overloading __call__ to ensure torch.ops.foo.bar()\u001b[39;00m\n\u001b[1;32m 499\u001b[0m \u001b[38;5;66;03m# is still callable from JIT\u001b[39;00m\n\u001b[1;32m 500\u001b[0m \u001b[38;5;66;03m# We save the function ptr as the `op` attribute on\u001b[39;00m\n\u001b[1;32m 501\u001b[0m \u001b[38;5;66;03m# OpOverloadPacket to access it here.\u001b[39;00m\n\u001b[0;32m--> 502\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_op(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs \u001b[38;5;129;01mor\u001b[39;00m {})\n", + "\u001b[0;31mRuntimeError\u001b[0m: Didn't find engine for operation quantized::linear_prepack NoQEngine" + ] + } + ], + "source": [ + "# Set the model to evaluation mode and set configuration\n", + "model = VPRTempo()\n", + "model.eval()\n", + "model.qconfig = qconfig\n", + "\n", + "# Apply quantization configurations to all layers in layer_dict\n", + "for layer_name, _ in model.layer_dict.items():\n", + " getattr(model, layer_name).qconfig = qconfig\n", + "# Prepare and convert the model to a quantized model\n", + "model = quantization.prepare(model, inplace=False)\n", + "model = quantization.convert(model, inplace=False)\n", + "# Load the model\n", + "model.load_model(os.path.join('./models', model_name))\n", + "\n", + "# Retrieve layer names for inference\n", + "layer_names = list(model.layer_dict.keys())" + ] + }, + { + "cell_type": "markdown", + "id": "472d24e8", + "metadata": {}, + "source": [ + "### 6.4 Run the model inference\n", + "\n", + "Now we are ready to inference the model!" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "id": "37aa84e1", + "metadata": {}, + "outputs": [ + { + "ename": "NameError", + "evalue": "name 'layer_names' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[28], line 2\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;66;03m# Use evaluate method for inference accuracy\u001b[39;00m\n\u001b[0;32m----> 2\u001b[0m model\u001b[38;5;241m.\u001b[39mevaluate(test_loader, layers\u001b[38;5;241m=\u001b[39mlayer_names)\n", + "\u001b[0;31mNameError\u001b[0m: name 'layer_names' is not defined" + ] + } + ], + "source": [ + "# Use evaluate method for inference accuracy\n", + "model.evaluate(test_loader, layers=layer_names)" + ] + }, + { + "cell_type": "markdown", + "id": "26f46e43", + "metadata": {}, + "source": [ + "## 7. Conslusions\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "id": "763e86c5", + "metadata": {}, + "source": [ + "This tutorial covered how we can convert the VPRTempo model to perform Quantized Aware Training (QAT) to keep the model size more lightweight. You might notice that if you compare the system between FP32 to Int8, the model works equally as well with a reduced bit-depth with the added benefit of a reduced model size.\n", + "\n", + "To read more about QAT and quantization in general, PyTorch provides many useful articles;\n", + "https://pytorch.org/docs/stable/quantization.html\n", + "https://pytorch.org/blog/quantization-in-practice/\n", + "\n", + "The key benefit to this is being able to perform fast training and inferencing on CPU architecture, which for resource limited compute scenarios is critical." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.0" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/vprtempo_tutorial.ipynb b/vprtempo_tutorial.ipynb deleted file mode 100644 index 5963c62..0000000 --- a/vprtempo_tutorial.ipynb +++ /dev/null @@ -1,666 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "id": "70df0e83-9a35-41b3-81ec-cd12538045ed", - "metadata": {}, - "source": [ - "## VPRTempoQuant - Training and Inferencing Tutorial\n", - "\n", - "### By Adam D Hines (https://research.qut.edu.au/qcr/people/adam-hines/)\n", - "\n", - "VPRTempo is based on the following paper, if you use or find this code helpful for your research please consider citing the source:\n", - " \n", - "[Adam D Hines, Peter G Stratton, Michael Milford, & Tobias Fischer. \"VPRTempo: A Fast Temporally Encoded Spiking Neural Network for Visual Place Recognition. arXiv September 2023](https://arxiv.org/abs/2309.10225)\n", - "\n", - "### Introduction\n", - "\n", - "Traditional methods for visual place recognition (VPR) tasks typically employ the use of convolutional neural networks like ResNet to train large datasets for feature extraction of incoming query images, rather than specifically learning said query place. The networks are extremely effective at accurate localisation, but are are slow to train, inference, and store.\n", - "\n", - "Spiking neural networks (SNNs) by contrast are more energy efficient and have low latency computation, meaning their deployment capability for VPR is extremely promising. Specifically, networks can be trained on the exact location you wish to query which takes a fundamentally different approach to the VPR task.\n", - "\n", - "VPRTempo uses a temporal encoding scheme for spikes, where the amplitude of a spike is determined by an incoming training or query image's pixel intensity. This amplitude defines the 'timing' of the spike, similar to a latency code. As spikes propagate throughout the system, spike-timing dependent plasticity (STDP) learning rules train neuronal connections based off of the pixel intensity spike amplitudes. \n", - "\n", - "In this tutorial, we are going to take the base VPRTempo model to train and inference a network with PyTorch's Quantized Aware Training ([QAT](https://pytorch.org/docs/stable/quantization.html)). \n", - "\n", - "To get started, please ensure you have installed and currently have activated the `conda` environment for VPRTempo." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "0f846c03", - "metadata": {}, - "outputs": [], - "source": [ - "!conda activate vprtempo" - ] - }, - { - "cell_type": "markdown", - "id": "0928d7a4", - "metadata": {}, - "source": [ - "## 1. Get the Nordland dataset\n", - "\n", - "### 1.1 Download the dataset\n", - "\n", - "Please [download the Nordland datasets](https://webdiis.unizar.es/~jmfacil/pr-nordland/#download-dataset) (Summer, Spring, Fall, & Winter). There are two datasets available, the full size and downsampled versions. Either will work fine but our paper details the full size dataset. If disk space is a concern, please use the downsampled version.\n", - "\n", - "Save the data in the `./VPRTempo-quant/dataset/` subfolder.\n", - "\n", - "### 1.2 Prepare the dataset for the model\n", - "\n", - "The datset seasons are downloaded in .zip format and need to be extracted into a single folder. The `nordland` function has been provided to automatically do this for you and to re-name the images to match those in the nordland.csv file." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "id": "51f350d0", - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "ename": "AssertionError", - "evalue": "Please set the outDir to the desired output location for unzipping the Nordland datasets", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mAssertionError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[0;32mIn[1], line 13\u001b[0m\n\u001b[1;32m 10\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mnordland\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m nord_sort\n\u001b[1;32m 12\u001b[0m \u001b[38;5;66;03m# unzip, re-organise, and re-name the Nordland datasets\u001b[39;00m\n\u001b[0;32m---> 13\u001b[0m nord_sort()\n", - "File \u001b[0;32m~/repos/VPRTempo-quant/./src/nordland.py:33\u001b[0m, in \u001b[0;36mnord_sort\u001b[0;34m()\u001b[0m\n\u001b[1;32m 31\u001b[0m \u001b[38;5;66;03m# set the desired output folder for unzipping and organization\u001b[39;00m\n\u001b[1;32m 32\u001b[0m outDir \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124m'\u001b[39m\n\u001b[0;32m---> 33\u001b[0m \u001b[38;5;28;01massert\u001b[39;00m(os\u001b[38;5;241m.\u001b[39mpath\u001b[38;5;241m.\u001b[39misdir(outDir)),\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mPlease set the outDir to the desired output location for unzipping the Nordland datasets\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 35\u001b[0m \u001b[38;5;66;03m# define output paths for the data\u001b[39;00m\n\u001b[1;32m 36\u001b[0m outPath \u001b[38;5;241m=\u001b[39m [os\u001b[38;5;241m.\u001b[39mpath\u001b[38;5;241m.\u001b[39mjoin(outDir,\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mspring/\u001b[39m\u001b[38;5;124m\"\u001b[39m),os\u001b[38;5;241m.\u001b[39mpath\u001b[38;5;241m.\u001b[39mjoin(outDir,\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mfall/\u001b[39m\u001b[38;5;124m\"\u001b[39m),\n\u001b[1;32m 37\u001b[0m os\u001b[38;5;241m.\u001b[39mpath\u001b[38;5;241m.\u001b[39mjoin(outDir,\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mwinter/\u001b[39m\u001b[38;5;124m\"\u001b[39m),os\u001b[38;5;241m.\u001b[39mpath\u001b[38;5;241m.\u001b[39mjoin(outDir,\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124msummer/\u001b[39m\u001b[38;5;124m\"\u001b[39m)]\n", - "\u001b[0;31mAssertionError\u001b[0m: Please set the outDir to the desired output location for unzipping the Nordland datasets" - ] - } - ], - "source": [ - "import os\n", - "import re\n", - "import shutil\n", - "import zipfile\n", - "import sys\n", - "sys.path.append('./src')\n", - "sys.path.append('./VPRTempo-quant/dataset')\n", - "\n", - "from os import walk\n", - "from nordland import nord_sort\n", - "\n", - "# unzip, re-organise, and re-name the Nordland datasets\n", - "nord_sort()" - ] - }, - { - "cell_type": "markdown", - "id": "f0a607d1", - "metadata": {}, - "source": [ - "## Prepare the model for training\n", - "\n", - "Let's now look at preparing our network to train our first model. There are a few initial steps to take care of first.\n", - "\n", - "### 2.1 Import modules" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "id": "d9caff25", - "metadata": {}, - "outputs": [], - "source": [ - "import torch\n", - "import jdc\n", - "import torch.nn as nn\n", - "import blitnet as bn\n", - "import numpy as np\n", - "from torch.ao.quantization import QuantStub, DeQuantStub\n", - "from tqdm import tqdm\n", - "from settings import configure, image_csv, model_logger" - ] - }, - { - "cell_type": "markdown", - "id": "f4d2f885", - "metadata": {}, - "source": [ - "### 2.2 Define and initialize the VPRTempo model\n", - "\n", - "We'll first define the VPRTempo class which handles the configuration as set in `./src/settings.py`, determining which images to load, and establishes the layers used for training. For this tutorial, leave the settings as the default.\n", - "\n", - "`__init__` is where we define the layers used for the model. In this case, we define a `feature_layer` and an `output_layer`. `dims` represents the number of neurons in the input and the layer itself, which in this case is `self.input`, `self.feature`, and `self.output`. Note that the size of the input for each proceeding layer is the size of previous layer. In this example, we have an input of 784 neurons (for 28x28 images) connected to a 1568 neuron feature layer which then connects to a final output layer of 500 neurons.\n", - "\n", - "The other hyperparameters for each layer are set here as well." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "id": "99b5130c", - "metadata": {}, - "outputs": [], - "source": [ - "class VPRTempo(nn.Module):\n", - " def __init__(self):\n", - " super(VPRTempo, self).__init__()\n", - "\n", - " # Configure the network\n", - " configure(self)\n", - " \n", - " # Define the images to load (both training and inference)\n", - " image_csv(self)\n", - "\n", - " # Add quantization stubs for Quantization Aware Training (QAT)\n", - " self.quant = QuantStub()\n", - " self.dequant = DeQuantStub()\n", - " \n", - " # Define the add function for quantized addition\n", - " self.add = nn.quantized.FloatFunctional() \n", - "\n", - " # Layer dict to keep track of layer names and their order\n", - " self.layer_dict = {}\n", - " self.layer_counter = 0\n", - "\n", - " \"\"\"\n", - " Define trainable layers here\n", - " \"\"\"\n", - " self.add_layer(\n", - " 'feature_layer',\n", - " dims=[self.input, self.feature],\n", - " thr_range=[0, 0.5],\n", - " fire_rate=[0.2, 0.9],\n", - " ip_rate=0.15,\n", - " stdp_rate=0.005,\n", - " const_inp=[0, 0.1],\n", - " p=[0.1, 0.5]\n", - " )\n", - " self.add_layer(\n", - " 'output_layer',\n", - " dims=[self.feature, self.output],\n", - " ip_rate=0.15,\n", - " stdp_rate=0.005,\n", - " spk_force=True\n", - " )\n", - " def add_layer(self, name, **kwargs):\n", - " \"\"\"\n", - " Dynamically add a layer with given name and keyword arguments.\n", - "\n", - " :param name: Name of the layer to be added\n", - " :type name: str\n", - " :param kwargs: Hyperparameters for the layer\n", - " \"\"\"\n", - " # Check for layer name duplicates\n", - " if name in self.layer_dict:\n", - " raise ValueError(f\"Layer with name {name} already exists.\")\n", - "\n", - " # Add a new SNNLayer with provided kwargs\n", - " setattr(self, name, bn.SNNLayer(**kwargs))\n", - "\n", - " # Add layer name and index to the layer_dict\n", - " self.layer_dict[name] = self.layer_counter\n", - " self.layer_counter += 1 \n", - "\n", - " print('Succesfully added '+name)\n", - "\n", - " def train_model(self, train_loader, layer, prev_layers=None):\n", - " \"\"\"\n", - " Train a layer of the network model.\n", - "\n", - " :param train_loader: Training data loader\n", - " :param layer: Layer to train\n", - " :param prev_layers: Previous layers to pass data through\n", - " \"\"\"\n", - "\n", - " # Initialize the tqdm progress bar\n", - " pbar = tqdm(total=int(self.T * self.epoch),\n", - " desc=\"Training \",\n", - " position=0)\n", - "\n", - " # Initialize the learning rates for each layer (used for annealment)\n", - " init_itp = layer.eta_ip.detach()\n", - " init_stdp = layer.eta_stdp.detach()\n", - "\n", - " # Run training for the specified number of epochs\n", - " for epoch in range(self.epoch):\n", - " mod = 0 # Used to determine the learning rate annealment, resets at each epoch\n", - " # Run training for the specified number of timesteps\n", - " for spikes, labels in train_loader:\n", - " spikes, labels = spikes.to(self.device), labels.to(self.device)\n", - " idx = labels / self.filter # Set output index for spike forcing\n", - " # Pass through previous layers if they exist\n", - " if prev_layers:\n", - " with torch.no_grad():\n", - " for prev_layer_name in prev_layers:\n", - " prev_layer = getattr(self, prev_layer_name) # Get the previous layer object\n", - " spikes = self.forward(spikes, prev_layer) # Pass spikes through the previous layer\n", - " spikes = bn.clamp_spikes(spikes, prev_layer) # Clamp spikes [0, 0.9]\n", - " else:\n", - " prev_layer = None\n", - " # Get the output spikes from the current layer\n", - " pre_spike = spikes.detach() # Previous layer spikes for STDP\n", - " spikes = self.forward(spikes, layer) # Current layer spikes\n", - " spikes_noclp = spikes.detach() # Used for inhibitory homeostasis\n", - " spikes = bn.clamp_spikes(spikes, layer) # Clamp spikes [0, 0.9]\n", - " # Calculate STDP\n", - " layer = bn.calc_stdp(pre_spike,spikes,spikes_noclp,layer, idx, prev_layer=prev_layer)\n", - " # Adjust learning rates\n", - " layer = self._anneal_learning_rate(layer, mod, init_itp, init_stdp)\n", - " # Update the annealing mod & progress bar \n", - " mod += 1\n", - " pbar.update(1)\n", - "\n", - " # Close the tqdm progress bar\n", - " pbar.close()\n", - "\n", - " def forward(self, spikes, layer):\n", - " \"\"\"\n", - " Compute the forward pass of the model.\n", - "\n", - " Parameters:\n", - " - spikes (Tensor): Input spikes.\n", - "\n", - " Returns:\n", - " - Tensor: Output after processing.\n", - " \"\"\"\n", - "\n", - " spikes = self.quant(spikes)\n", - " spikes = self.add.add(layer.exc(spikes), layer.inh(spikes))\n", - " spikes = self.dequant(spikes)\n", - "\n", - " return spikes\n", - "\n", - " def _anneal_learning_rate(self, layer, mod, itp, stdp):\n", - " \"\"\"\n", - " Anneal the learning rate for the current layer.\n", - " \"\"\"\n", - " if np.mod(mod, 100) == 0: # Modify learning rate every 100 timesteps\n", - " pt = pow(float(self.T - mod) / self.T, self.annl_pow)\n", - " layer.eta_ip = torch.mul(itp, pt) # Anneal intrinsic threshold plasticity learning rate\n", - " layer.eta_stdp = torch.mul(stdp, pt) # Anneal STDP learning rate\n", - "\n", - " return layer" - ] - }, - { - "cell_type": "markdown", - "id": "34bbfd06", - "metadata": {}, - "source": [ - "Layers are dynamically added, such that if you wish to add more layers you simply need to define one in the `__init__` script and the system will iterate through all the layers.\n", - "\n", - "To add the layers, we call the `add_layer()` function which will set all the hyperparameters and seed the initial weights." - ] - }, - { - "cell_type": "markdown", - "id": "dbdd4ffd", - "metadata": {}, - "source": [ - "Now, we can initialize the model and add the layers." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "id": "68a22d64", - "metadata": {}, - "outputs": [], - "source": [ - "%%add_to VPRTempo\n", - "def forward(self, spikes, layer):\n", - " \"\"\"\n", - " Compute the forward pass of the model.\n", - "\n", - " Parameters:\n", - " - spikes (Tensor): Input spikes.\n", - "\n", - " Returns:\n", - " - Tensor: Output after processing.\n", - " \"\"\"\n", - "\n", - " spikes = self.quant(spikes)\n", - " spikes = self.add.add(layer.exc(spikes), layer.inh(spikes))\n", - " spikes = self.dequant(spikes)\n", - "\n", - " return spikes\n", - "\n", - "def _anneal_learning_rate(self, layer, mod, itp, stdp):\n", - " \"\"\"\n", - " Anneal the learning rate for the current layer.\n", - " \"\"\"\n", - " if np.mod(mod, 100) == 0: # Modify learning rate every 100 timesteps\n", - " pt = pow(float(self.T - mod) / self.T, self.annl_pow)\n", - " layer.eta_ip = torch.mul(itp, pt) # Anneal intrinsic threshold plasticity learning rate\n", - " layer.eta_stdp = torch.mul(stdp, pt) # Anneal STDP learning rate\n", - "\n", - " return layer" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "id": "55aa0e9b", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Succesfully added feature_layer\n", - "Succesfully added output_layer\n" - ] - } - ], - "source": [ - "model = VPRTempo()" - ] - }, - { - "cell_type": "markdown", - "id": "17640d20", - "metadata": {}, - "source": [ - "### 2.3 Set the DataLoader\n", - "\n", - "Now that we've defined the model, we will set up the DataLoaders. These utilise a PyTorch CustomImageDataset and ProcessImage to import images and process them for training or inference. In brief, images are loaded, gamma corrected, resized, and then patch-normalized before being converted into system spikes to be propagated throughout.\n", - "\n", - "Since we present the network with one image at a time, the `batch_size` is kept to 1." - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "id": "6714bc35", - "metadata": {}, - "outputs": [], - "source": [ - "from dataset import CustomImageDataset, ProcessImage\n", - "from torch.utils.data import DataLoader\n", - "\n", - "image_transform = ProcessImage(model.dims, model.patches)\n", - "train_dataset = CustomImageDataset(annotations_file=model.dataset_file, \n", - " img_dirs=model.training_dirs,\n", - " transform=image_transform,\n", - " skip=model.filter,\n", - " max_samples=model.number_training_images,\n", - " test=False)\n", - "# Initialize the data loader\n", - "train_loader = DataLoader(train_dataset, \n", - " batch_size=1, \n", - " shuffle=False,\n", - " num_workers=8,\n", - " persistent_workers=True)" - ] - }, - { - "cell_type": "markdown", - "id": "0de072c8", - "metadata": {}, - "source": [ - "### 2.4 Other network settings\n", - "\n", - "We will finally set up a unique model name based on the network architecture so we can save and reload our trained model." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "id": "ce79b3d3-ed51-4749-98b3-44ea2cfa45e3", - "metadata": {}, - "outputs": [], - "source": [ - "import os\n", - "import torch\n", - "import gc\n", - "import sys\n", - "sys.path.append('./src')\n", - "sys.path.append('./models')\n", - "sys.path.append('./settings')\n", - "sys.path.append('./output')\n", - "sys.path.append('./dataset')\n", - "sys.path.append('./config')\n", - "torch.multiprocessing.set_sharing_strategy(\"file_system\")\n", - "import blitnet as bn\n", - "import utils as ut\n", - "import numpy as np\n", - "import torch.nn as nn\n", - "import torch.nn.functional as F\n", - "import torch.quantization as quantization\n", - "\n", - "from config import configure, image_csv, model_logger\n", - "from dataset import CustomImageDataset, SetImageAsSpikes, ProcessImage\n", - "from torch.utils.data import DataLoader\n", - "from torch.ao.quantization import QuantStub, DeQuantStub\n", - "from tqdm import tqdm" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "id": "dc786b3d", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "VPRTempo78415685001.pth\n" - ] - } - ], - "source": [ - "def generate_model_name(model):\n", - " \"\"\"\n", - " Generate the model name based on its parameters.\n", - " \"\"\"\n", - " return (\"VPRTempo\" +\n", - " str(model.input) +\n", - " str(model.feature) +\n", - " str(model.output) +\n", - " str(model.number_modules) +\n", - " '.pth')\n", - "\n", - "model_name = generate_model_name(model)\n", - "\n", - "print(model_name)" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "id": "9e923809", - "metadata": {}, - "outputs": [], - "source": [ - "%%add_to VPRTempo\n", - "def model_logger(self):\n", - " \"\"\"\n", - " Log the model configuration to the console.\n", - " \"\"\"\n", - " model_logger(self)" - ] - }, - { - "cell_type": "markdown", - "id": "a3067711", - "metadata": {}, - "source": [ - "### 2.5 Model quantization\n", - "\n", - "VPRTempoQuant makes use of Quantized Aware Training QAT and has a few simple steps to prepare the model to accomodate this. First, we will get the default quantization configuration for `fggbem`." - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "id": "36244802", - "metadata": {}, - "outputs": [], - "source": [ - "import torch.quantization as quantization\n", - "\n", - "# Set the quantization configuration\n", - "qconfig = quantization.get_default_qat_qconfig('fbgemm')" - ] - }, - { - "cell_type": "markdown", - "id": "47a292cc", - "metadata": {}, - "source": [ - "Next, we will set the model to be configured for network training and add our quantization configuration." - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "id": "a884ad96", - "metadata": {}, - "outputs": [], - "source": [ - "# Set the model to training mode and move to device\n", - "model.train()\n", - "model.to('cpu')\n", - "model.qconfig = qconfig" - ] - }, - { - "cell_type": "markdown", - "id": "ed34b802", - "metadata": {}, - "source": [ - "Now we will convert the model over to QAT." - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "id": "087f3b36", - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Users/adam/mambaforge/envs/vprtempo/lib/python3.11/site-packages/torch/ao/quantization/observer.py:214: UserWarning: Please use quant_min and quant_max to specify the range for observers. reduce_range will be deprecated in a future release of PyTorch.\n", - " warnings.warn(\n" - ] - } - ], - "source": [ - "# Apply quantization configurations to the model\n", - "model = quantization.prepare_qat(model, inplace=False)" - ] - }, - { - "cell_type": "markdown", - "id": "07f74ad2", - "metadata": {}, - "source": [ - "At this point, we are ready to start training our network!" - ] - }, - { - "cell_type": "markdown", - "id": "2f3f4bdb", - "metadata": {}, - "source": [ - "## 3. Set up and run the training \n", - "\n", - "### 3.1 Define the training regime\n", - "\n", - "Training through the layers is dynamic, such that all you need to do to train everything is to define a new layer. We will first define the training function and explain how it operates." - ] - }, - { - "cell_type": "markdown", - "id": "4eb33796", - "metadata": {}, - "source": [ - "This training regime runs every image through the newtork for a defined number of epochs. Images are loaded and converted to input spikes using the `train_loader` we defined earlier. For the first layer, it will simply calculate network spikes for the following layer. Otherwise, it will loop through each previous layer and generate spikes through the learned connection weights until it reaches the final layer currently being trained. \n", - "\n", - "The main calculation is in the `self.forward()` function. Weights in our layers are a `nn.Linear()` class, where input spikes are multiplied by connection weights between the layers. Once spikes from the input to layer have been calculated, spike-timing dependent plasticity (STDP) learning rules are applied. The learning rate for the network is annealed after every 100 images that are propagated." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "0075638b", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Training layer: feature_layer\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Training : 100%|████████████████████████████| 4000/4000 [01:25<00:00, 46.94it/s]\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Training layer: output_layer\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Training : 67%|██████████████████▋ | 2671/4000 [00:54<00:26, 49.88it/s]" - ] - } - ], - "source": [ - "# Keep track of trained layers to pass data through them\n", - "trained_layers = [] \n", - "\n", - "# Training each layer\n", - "for layer_name, _ in sorted(model.layer_dict.items(), key=lambda item: item[1]):\n", - " print(f\"Training layer: {layer_name}\")\n", - " # Retrieve the layer object\n", - " layer = getattr(model, layer_name)\n", - " # Train the layer\n", - " model.train_model(train_loader, layer, prev_layers=trained_layers)\n", - " # After training the current layer, add it to the list of trained layers\n", - " trained_layers.append(layer_name)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "51d8e6d9", - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.0" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} From 5c1e7aca6a65ae64e4a6f214c319bbd0714cb4a3 Mon Sep 17 00:00:00 2001 From: Adam Hines Date: Sun, 15 Oct 2023 10:13:42 +1000 Subject: [PATCH 20/69] Fixed up jupyter output --- tutorials/2_Quantization.ipynb | 168 +++++---------------------------- 1 file changed, 24 insertions(+), 144 deletions(-) diff --git a/tutorials/2_Quantization.ipynb b/tutorials/2_Quantization.ipynb index 4cd08dd..246137d 100644 --- a/tutorials/2_Quantization.ipynb +++ b/tutorials/2_Quantization.ipynb @@ -64,7 +64,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "id": "d9caff25", "metadata": {}, "outputs": [], @@ -137,7 +137,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "id": "99b5130c", "metadata": {}, "outputs": [], @@ -199,7 +199,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": null, "id": "dabd3c7d", "metadata": {}, "outputs": [], @@ -241,7 +241,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": null, "id": "623595aa", "metadata": {}, "outputs": [], @@ -310,7 +310,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": null, "id": "68a22d64", "metadata": {}, "outputs": [], @@ -346,7 +346,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": null, "id": "e99f6d13", "metadata": {}, "outputs": [], @@ -389,20 +389,10 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": null, "id": "55aa0e9b", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Succesfully added feature_layer\n", - "Succesfully added output_layer\n", - "VPRTempo succesfully initialized\n" - ] - } - ], + "outputs": [], "source": [ "model = VPRTempo()" ] @@ -419,18 +409,10 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": null, "id": "dc786b3d", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "VPRTempo78415685001.pth\n" - ] - } - ], + "outputs": [], "source": [ "def generate_model_name(model):\n", " \"\"\"\n", @@ -464,7 +446,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": null, "id": "6714bc35", "metadata": {}, "outputs": [], @@ -501,7 +483,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": null, "id": "36244802", "metadata": {}, "outputs": [], @@ -522,7 +504,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": null, "id": "a884ad96", "metadata": {}, "outputs": [], @@ -543,7 +525,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": null, "id": "087f3b36", "metadata": {}, "outputs": [], @@ -576,39 +558,10 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": null, "id": "0075638b", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Training layer: feature_layer\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Training : 100%|████████████████████████████| 4000/4000 [01:30<00:00, 44.07it/s]\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Training layer: output_layer\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Training : 100%|████████████████████████████| 4000/4000 [01:23<00:00, 48.00it/s]\n" - ] - } - ], + "outputs": [], "source": [ "# Keep track of trained layers to pass data through them\n", "trained_layers = [] \n", @@ -638,31 +591,10 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": null, "id": "53ededaa", "metadata": {}, - "outputs": [ - { - "ename": "RuntimeError", - "evalue": "Didn't find engine for operation quantized::linear_prepack NoQEngine", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mRuntimeError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[0;32mIn[24], line 2\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;66;03m# Convert the model to a quantized model\u001b[39;00m\n\u001b[0;32m----> 2\u001b[0m model \u001b[38;5;241m=\u001b[39m quantization\u001b[38;5;241m.\u001b[39mconvert(model, inplace\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mFalse\u001b[39;00m)\n\u001b[1;32m 3\u001b[0m model\u001b[38;5;241m.\u001b[39meval()\n\u001b[1;32m 4\u001b[0m \u001b[38;5;66;03m# Save the model\u001b[39;00m\n", - "File \u001b[0;32m~/mambaforge/envs/vprtempo/lib/python3.11/site-packages/torch/ao/quantization/quantize.py:551\u001b[0m, in \u001b[0;36mconvert\u001b[0;34m(module, mapping, inplace, remove_qconfig, is_reference, convert_custom_config_dict)\u001b[0m\n\u001b[1;32m 549\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m inplace:\n\u001b[1;32m 550\u001b[0m module \u001b[38;5;241m=\u001b[39m copy\u001b[38;5;241m.\u001b[39mdeepcopy(module)\n\u001b[0;32m--> 551\u001b[0m _convert(\n\u001b[1;32m 552\u001b[0m module, mapping, inplace\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m, is_reference\u001b[38;5;241m=\u001b[39mis_reference,\n\u001b[1;32m 553\u001b[0m convert_custom_config_dict\u001b[38;5;241m=\u001b[39mconvert_custom_config_dict)\n\u001b[1;32m 554\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m remove_qconfig:\n\u001b[1;32m 555\u001b[0m _remove_qconfig(module)\n", - "File \u001b[0;32m~/mambaforge/envs/vprtempo/lib/python3.11/site-packages/torch/ao/quantization/quantize.py:589\u001b[0m, in \u001b[0;36m_convert\u001b[0;34m(module, mapping, inplace, is_reference, convert_custom_config_dict)\u001b[0m\n\u001b[1;32m 584\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m name, mod \u001b[38;5;129;01min\u001b[39;00m module\u001b[38;5;241m.\u001b[39mnamed_children():\n\u001b[1;32m 585\u001b[0m \u001b[38;5;66;03m# both fused modules and observed custom modules are\u001b[39;00m\n\u001b[1;32m 586\u001b[0m \u001b[38;5;66;03m# swapped as one unit\u001b[39;00m\n\u001b[1;32m 587\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(mod, _FusedModule) \u001b[38;5;129;01mand\u001b[39;00m \\\n\u001b[1;32m 588\u001b[0m type_before_parametrizations(mod) \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;129;01min\u001b[39;00m custom_module_class_mapping:\n\u001b[0;32m--> 589\u001b[0m _convert(mod, mapping, \u001b[38;5;28;01mTrue\u001b[39;00m, \u001b[38;5;66;03m# inplace\u001b[39;00m\n\u001b[1;32m 590\u001b[0m is_reference, convert_custom_config_dict)\n\u001b[1;32m 591\u001b[0m reassign[name] \u001b[38;5;241m=\u001b[39m swap_module(mod, mapping, custom_module_class_mapping)\n\u001b[1;32m 593\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m key, value \u001b[38;5;129;01min\u001b[39;00m reassign\u001b[38;5;241m.\u001b[39mitems():\n", - "File \u001b[0;32m~/mambaforge/envs/vprtempo/lib/python3.11/site-packages/torch/ao/quantization/quantize.py:591\u001b[0m, in \u001b[0;36m_convert\u001b[0;34m(module, mapping, inplace, is_reference, convert_custom_config_dict)\u001b[0m\n\u001b[1;32m 587\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(mod, _FusedModule) \u001b[38;5;129;01mand\u001b[39;00m \\\n\u001b[1;32m 588\u001b[0m type_before_parametrizations(mod) \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;129;01min\u001b[39;00m custom_module_class_mapping:\n\u001b[1;32m 589\u001b[0m _convert(mod, mapping, \u001b[38;5;28;01mTrue\u001b[39;00m, \u001b[38;5;66;03m# inplace\u001b[39;00m\n\u001b[1;32m 590\u001b[0m is_reference, convert_custom_config_dict)\n\u001b[0;32m--> 591\u001b[0m reassign[name] \u001b[38;5;241m=\u001b[39m swap_module(mod, mapping, custom_module_class_mapping)\n\u001b[1;32m 593\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m key, value \u001b[38;5;129;01min\u001b[39;00m reassign\u001b[38;5;241m.\u001b[39mitems():\n\u001b[1;32m 594\u001b[0m module\u001b[38;5;241m.\u001b[39m_modules[key] \u001b[38;5;241m=\u001b[39m value\n", - "File \u001b[0;32m~/mambaforge/envs/vprtempo/lib/python3.11/site-packages/torch/ao/quantization/quantize.py:624\u001b[0m, in \u001b[0;36mswap_module\u001b[0;34m(mod, mapping, custom_module_class_mapping)\u001b[0m\n\u001b[1;32m 622\u001b[0m new_mod \u001b[38;5;241m=\u001b[39m qmod\u001b[38;5;241m.\u001b[39mfrom_float(mod, weight_qparams)\n\u001b[1;32m 623\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m--> 624\u001b[0m new_mod \u001b[38;5;241m=\u001b[39m qmod\u001b[38;5;241m.\u001b[39mfrom_float(mod)\n\u001b[1;32m 625\u001b[0m swapped \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m\n\u001b[1;32m 627\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m swapped:\n\u001b[1;32m 628\u001b[0m \u001b[38;5;66;03m# Preserve module's pre forward hooks. They'll be called on quantized input\u001b[39;00m\n", - "File \u001b[0;32m~/mambaforge/envs/vprtempo/lib/python3.11/site-packages/torch/ao/nn/quantized/modules/linear.py:277\u001b[0m, in \u001b[0;36mLinear.from_float\u001b[0;34m(cls, mod)\u001b[0m\n\u001b[1;32m 275\u001b[0m \u001b[38;5;28;01massert\u001b[39;00m dtype \u001b[38;5;241m==\u001b[39m torch\u001b[38;5;241m.\u001b[39mqint8, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mWeight observer must have dtype torch.qint8\u001b[39m\u001b[38;5;124m'\u001b[39m\n\u001b[1;32m 276\u001b[0m qweight \u001b[38;5;241m=\u001b[39m _quantize_weight(mod\u001b[38;5;241m.\u001b[39mweight\u001b[38;5;241m.\u001b[39mfloat(), weight_post_process)\n\u001b[0;32m--> 277\u001b[0m qlinear \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mcls\u001b[39m(mod\u001b[38;5;241m.\u001b[39min_features,\n\u001b[1;32m 278\u001b[0m mod\u001b[38;5;241m.\u001b[39mout_features,\n\u001b[1;32m 279\u001b[0m dtype\u001b[38;5;241m=\u001b[39mdtype)\n\u001b[1;32m 280\u001b[0m qlinear\u001b[38;5;241m.\u001b[39mset_weight_bias(qweight, mod\u001b[38;5;241m.\u001b[39mbias)\n\u001b[1;32m 281\u001b[0m qlinear\u001b[38;5;241m.\u001b[39mscale \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mfloat\u001b[39m(act_scale)\n", - "File \u001b[0;32m~/mambaforge/envs/vprtempo/lib/python3.11/site-packages/torch/ao/nn/quantized/modules/linear.py:151\u001b[0m, in \u001b[0;36mLinear.__init__\u001b[0;34m(self, in_features, out_features, bias_, dtype)\u001b[0m\n\u001b[1;32m 148\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 149\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mRuntimeError\u001b[39;00m(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mUnsupported dtype specified for quantized Linear!\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[0;32m--> 151\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_packed_params \u001b[38;5;241m=\u001b[39m LinearPackedParams(dtype)\n\u001b[1;32m 152\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_packed_params\u001b[38;5;241m.\u001b[39mset_weight_bias(qweight, bias)\n\u001b[1;32m 153\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mscale \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m1.0\u001b[39m\n", - "File \u001b[0;32m~/mambaforge/envs/vprtempo/lib/python3.11/site-packages/torch/ao/nn/quantized/modules/linear.py:27\u001b[0m, in \u001b[0;36mLinearPackedParams.__init__\u001b[0;34m(self, dtype)\u001b[0m\n\u001b[1;32m 25\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdtype \u001b[38;5;241m==\u001b[39m torch\u001b[38;5;241m.\u001b[39mfloat16:\n\u001b[1;32m 26\u001b[0m wq \u001b[38;5;241m=\u001b[39m torch\u001b[38;5;241m.\u001b[39mzeros([\u001b[38;5;241m1\u001b[39m, \u001b[38;5;241m1\u001b[39m], dtype\u001b[38;5;241m=\u001b[39mtorch\u001b[38;5;241m.\u001b[39mfloat)\n\u001b[0;32m---> 27\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mset_weight_bias(wq, \u001b[38;5;28;01mNone\u001b[39;00m)\n", - "File \u001b[0;32m~/mambaforge/envs/vprtempo/lib/python3.11/site-packages/torch/ao/nn/quantized/modules/linear.py:32\u001b[0m, in \u001b[0;36mLinearPackedParams.set_weight_bias\u001b[0;34m(self, weight, bias)\u001b[0m\n\u001b[1;32m 29\u001b[0m \u001b[38;5;129m@torch\u001b[39m\u001b[38;5;241m.\u001b[39mjit\u001b[38;5;241m.\u001b[39mexport\n\u001b[1;32m 30\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mset_weight_bias\u001b[39m(\u001b[38;5;28mself\u001b[39m, weight: torch\u001b[38;5;241m.\u001b[39mTensor, bias: Optional[torch\u001b[38;5;241m.\u001b[39mTensor]) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 31\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdtype \u001b[38;5;241m==\u001b[39m torch\u001b[38;5;241m.\u001b[39mqint8:\n\u001b[0;32m---> 32\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_packed_params \u001b[38;5;241m=\u001b[39m torch\u001b[38;5;241m.\u001b[39mops\u001b[38;5;241m.\u001b[39mquantized\u001b[38;5;241m.\u001b[39mlinear_prepack(weight, bias)\n\u001b[1;32m 33\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdtype \u001b[38;5;241m==\u001b[39m torch\u001b[38;5;241m.\u001b[39mfloat16:\n\u001b[1;32m 34\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_packed_params \u001b[38;5;241m=\u001b[39m torch\u001b[38;5;241m.\u001b[39mops\u001b[38;5;241m.\u001b[39mquantized\u001b[38;5;241m.\u001b[39mlinear_prepack_fp16(weight, bias)\n", - "File \u001b[0;32m~/mambaforge/envs/vprtempo/lib/python3.11/site-packages/torch/_ops.py:502\u001b[0m, in \u001b[0;36mOpOverloadPacket.__call__\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 497\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m__call__\u001b[39m(\u001b[38;5;28mself\u001b[39m, \u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs):\n\u001b[1;32m 498\u001b[0m \u001b[38;5;66;03m# overloading __call__ to ensure torch.ops.foo.bar()\u001b[39;00m\n\u001b[1;32m 499\u001b[0m \u001b[38;5;66;03m# is still callable from JIT\u001b[39;00m\n\u001b[1;32m 500\u001b[0m \u001b[38;5;66;03m# We save the function ptr as the `op` attribute on\u001b[39;00m\n\u001b[1;32m 501\u001b[0m \u001b[38;5;66;03m# OpOverloadPacket to access it here.\u001b[39;00m\n\u001b[0;32m--> 502\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_op(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs \u001b[38;5;129;01mor\u001b[39;00m {})\n", - "\u001b[0;31mRuntimeError\u001b[0m: Didn't find engine for operation quantized::linear_prepack NoQEngine" - ] - } - ], + "outputs": [], "source": [ "# Convert the model to a quantized model\n", "model = quantization.convert(model, inplace=False)\n", @@ -687,7 +619,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": null, "id": "a368c532", "metadata": {}, "outputs": [], @@ -748,7 +680,7 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": null, "id": "f4a1adc8", "metadata": {}, "outputs": [], @@ -780,50 +712,10 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": null, "id": "30d51e96", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Succesfully added feature_layer\n", - "Succesfully added output_layer\n", - "VPRTempo succesfully initialized\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Users/adam/mambaforge/envs/vprtempo/lib/python3.11/site-packages/torch/ao/quantization/observer.py:214: UserWarning: Please use quant_min and quant_max to specify the range for observers. reduce_range will be deprecated in a future release of PyTorch.\n", - " warnings.warn(\n", - "/Users/adam/mambaforge/envs/vprtempo/lib/python3.11/site-packages/torch/ao/quantization/utils.py:310: UserWarning: must run observer before calling calculate_qparams. Returning default values.\n", - " warnings.warn(\n" - ] - }, - { - "ename": "RuntimeError", - "evalue": "Didn't find engine for operation quantized::linear_prepack NoQEngine", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mRuntimeError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[0;32mIn[27], line 11\u001b[0m\n\u001b[1;32m 9\u001b[0m \u001b[38;5;66;03m# Prepare and convert the model to a quantized model\u001b[39;00m\n\u001b[1;32m 10\u001b[0m model \u001b[38;5;241m=\u001b[39m quantization\u001b[38;5;241m.\u001b[39mprepare(model, inplace\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mFalse\u001b[39;00m)\n\u001b[0;32m---> 11\u001b[0m model \u001b[38;5;241m=\u001b[39m quantization\u001b[38;5;241m.\u001b[39mconvert(model, inplace\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mFalse\u001b[39;00m)\n\u001b[1;32m 12\u001b[0m \u001b[38;5;66;03m# Load the model\u001b[39;00m\n\u001b[1;32m 13\u001b[0m model\u001b[38;5;241m.\u001b[39mload_model(os\u001b[38;5;241m.\u001b[39mpath\u001b[38;5;241m.\u001b[39mjoin(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m./models\u001b[39m\u001b[38;5;124m'\u001b[39m, model_name))\n", - "File \u001b[0;32m~/mambaforge/envs/vprtempo/lib/python3.11/site-packages/torch/ao/quantization/quantize.py:551\u001b[0m, in \u001b[0;36mconvert\u001b[0;34m(module, mapping, inplace, remove_qconfig, is_reference, convert_custom_config_dict)\u001b[0m\n\u001b[1;32m 549\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m inplace:\n\u001b[1;32m 550\u001b[0m module \u001b[38;5;241m=\u001b[39m copy\u001b[38;5;241m.\u001b[39mdeepcopy(module)\n\u001b[0;32m--> 551\u001b[0m _convert(\n\u001b[1;32m 552\u001b[0m module, mapping, inplace\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m, is_reference\u001b[38;5;241m=\u001b[39mis_reference,\n\u001b[1;32m 553\u001b[0m convert_custom_config_dict\u001b[38;5;241m=\u001b[39mconvert_custom_config_dict)\n\u001b[1;32m 554\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m remove_qconfig:\n\u001b[1;32m 555\u001b[0m _remove_qconfig(module)\n", - "File \u001b[0;32m~/mambaforge/envs/vprtempo/lib/python3.11/site-packages/torch/ao/quantization/quantize.py:589\u001b[0m, in \u001b[0;36m_convert\u001b[0;34m(module, mapping, inplace, is_reference, convert_custom_config_dict)\u001b[0m\n\u001b[1;32m 584\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m name, mod \u001b[38;5;129;01min\u001b[39;00m module\u001b[38;5;241m.\u001b[39mnamed_children():\n\u001b[1;32m 585\u001b[0m \u001b[38;5;66;03m# both fused modules and observed custom modules are\u001b[39;00m\n\u001b[1;32m 586\u001b[0m \u001b[38;5;66;03m# swapped as one unit\u001b[39;00m\n\u001b[1;32m 587\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(mod, _FusedModule) \u001b[38;5;129;01mand\u001b[39;00m \\\n\u001b[1;32m 588\u001b[0m type_before_parametrizations(mod) \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;129;01min\u001b[39;00m custom_module_class_mapping:\n\u001b[0;32m--> 589\u001b[0m _convert(mod, mapping, \u001b[38;5;28;01mTrue\u001b[39;00m, \u001b[38;5;66;03m# inplace\u001b[39;00m\n\u001b[1;32m 590\u001b[0m is_reference, convert_custom_config_dict)\n\u001b[1;32m 591\u001b[0m reassign[name] \u001b[38;5;241m=\u001b[39m swap_module(mod, mapping, custom_module_class_mapping)\n\u001b[1;32m 593\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m key, value \u001b[38;5;129;01min\u001b[39;00m reassign\u001b[38;5;241m.\u001b[39mitems():\n", - "File \u001b[0;32m~/mambaforge/envs/vprtempo/lib/python3.11/site-packages/torch/ao/quantization/quantize.py:591\u001b[0m, in \u001b[0;36m_convert\u001b[0;34m(module, mapping, inplace, is_reference, convert_custom_config_dict)\u001b[0m\n\u001b[1;32m 587\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(mod, _FusedModule) \u001b[38;5;129;01mand\u001b[39;00m \\\n\u001b[1;32m 588\u001b[0m type_before_parametrizations(mod) \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;129;01min\u001b[39;00m custom_module_class_mapping:\n\u001b[1;32m 589\u001b[0m _convert(mod, mapping, \u001b[38;5;28;01mTrue\u001b[39;00m, \u001b[38;5;66;03m# inplace\u001b[39;00m\n\u001b[1;32m 590\u001b[0m is_reference, convert_custom_config_dict)\n\u001b[0;32m--> 591\u001b[0m reassign[name] \u001b[38;5;241m=\u001b[39m swap_module(mod, mapping, custom_module_class_mapping)\n\u001b[1;32m 593\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m key, value \u001b[38;5;129;01min\u001b[39;00m reassign\u001b[38;5;241m.\u001b[39mitems():\n\u001b[1;32m 594\u001b[0m module\u001b[38;5;241m.\u001b[39m_modules[key] \u001b[38;5;241m=\u001b[39m value\n", - "File \u001b[0;32m~/mambaforge/envs/vprtempo/lib/python3.11/site-packages/torch/ao/quantization/quantize.py:624\u001b[0m, in \u001b[0;36mswap_module\u001b[0;34m(mod, mapping, custom_module_class_mapping)\u001b[0m\n\u001b[1;32m 622\u001b[0m new_mod \u001b[38;5;241m=\u001b[39m qmod\u001b[38;5;241m.\u001b[39mfrom_float(mod, weight_qparams)\n\u001b[1;32m 623\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m--> 624\u001b[0m new_mod \u001b[38;5;241m=\u001b[39m qmod\u001b[38;5;241m.\u001b[39mfrom_float(mod)\n\u001b[1;32m 625\u001b[0m swapped \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m\n\u001b[1;32m 627\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m swapped:\n\u001b[1;32m 628\u001b[0m \u001b[38;5;66;03m# Preserve module's pre forward hooks. They'll be called on quantized input\u001b[39;00m\n", - "File \u001b[0;32m~/mambaforge/envs/vprtempo/lib/python3.11/site-packages/torch/ao/nn/quantized/modules/linear.py:277\u001b[0m, in \u001b[0;36mLinear.from_float\u001b[0;34m(cls, mod)\u001b[0m\n\u001b[1;32m 275\u001b[0m \u001b[38;5;28;01massert\u001b[39;00m dtype \u001b[38;5;241m==\u001b[39m torch\u001b[38;5;241m.\u001b[39mqint8, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mWeight observer must have dtype torch.qint8\u001b[39m\u001b[38;5;124m'\u001b[39m\n\u001b[1;32m 276\u001b[0m qweight \u001b[38;5;241m=\u001b[39m _quantize_weight(mod\u001b[38;5;241m.\u001b[39mweight\u001b[38;5;241m.\u001b[39mfloat(), weight_post_process)\n\u001b[0;32m--> 277\u001b[0m qlinear \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mcls\u001b[39m(mod\u001b[38;5;241m.\u001b[39min_features,\n\u001b[1;32m 278\u001b[0m mod\u001b[38;5;241m.\u001b[39mout_features,\n\u001b[1;32m 279\u001b[0m dtype\u001b[38;5;241m=\u001b[39mdtype)\n\u001b[1;32m 280\u001b[0m qlinear\u001b[38;5;241m.\u001b[39mset_weight_bias(qweight, mod\u001b[38;5;241m.\u001b[39mbias)\n\u001b[1;32m 281\u001b[0m qlinear\u001b[38;5;241m.\u001b[39mscale \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mfloat\u001b[39m(act_scale)\n", - "File \u001b[0;32m~/mambaforge/envs/vprtempo/lib/python3.11/site-packages/torch/ao/nn/quantized/modules/linear.py:151\u001b[0m, in \u001b[0;36mLinear.__init__\u001b[0;34m(self, in_features, out_features, bias_, dtype)\u001b[0m\n\u001b[1;32m 148\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 149\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mRuntimeError\u001b[39;00m(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mUnsupported dtype specified for quantized Linear!\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[0;32m--> 151\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_packed_params \u001b[38;5;241m=\u001b[39m LinearPackedParams(dtype)\n\u001b[1;32m 152\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_packed_params\u001b[38;5;241m.\u001b[39mset_weight_bias(qweight, bias)\n\u001b[1;32m 153\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mscale \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m1.0\u001b[39m\n", - "File \u001b[0;32m~/mambaforge/envs/vprtempo/lib/python3.11/site-packages/torch/ao/nn/quantized/modules/linear.py:27\u001b[0m, in \u001b[0;36mLinearPackedParams.__init__\u001b[0;34m(self, dtype)\u001b[0m\n\u001b[1;32m 25\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdtype \u001b[38;5;241m==\u001b[39m torch\u001b[38;5;241m.\u001b[39mfloat16:\n\u001b[1;32m 26\u001b[0m wq \u001b[38;5;241m=\u001b[39m torch\u001b[38;5;241m.\u001b[39mzeros([\u001b[38;5;241m1\u001b[39m, \u001b[38;5;241m1\u001b[39m], dtype\u001b[38;5;241m=\u001b[39mtorch\u001b[38;5;241m.\u001b[39mfloat)\n\u001b[0;32m---> 27\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mset_weight_bias(wq, \u001b[38;5;28;01mNone\u001b[39;00m)\n", - "File \u001b[0;32m~/mambaforge/envs/vprtempo/lib/python3.11/site-packages/torch/ao/nn/quantized/modules/linear.py:32\u001b[0m, in \u001b[0;36mLinearPackedParams.set_weight_bias\u001b[0;34m(self, weight, bias)\u001b[0m\n\u001b[1;32m 29\u001b[0m \u001b[38;5;129m@torch\u001b[39m\u001b[38;5;241m.\u001b[39mjit\u001b[38;5;241m.\u001b[39mexport\n\u001b[1;32m 30\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mset_weight_bias\u001b[39m(\u001b[38;5;28mself\u001b[39m, weight: torch\u001b[38;5;241m.\u001b[39mTensor, bias: Optional[torch\u001b[38;5;241m.\u001b[39mTensor]) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 31\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdtype \u001b[38;5;241m==\u001b[39m torch\u001b[38;5;241m.\u001b[39mqint8:\n\u001b[0;32m---> 32\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_packed_params \u001b[38;5;241m=\u001b[39m torch\u001b[38;5;241m.\u001b[39mops\u001b[38;5;241m.\u001b[39mquantized\u001b[38;5;241m.\u001b[39mlinear_prepack(weight, bias)\n\u001b[1;32m 33\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdtype \u001b[38;5;241m==\u001b[39m torch\u001b[38;5;241m.\u001b[39mfloat16:\n\u001b[1;32m 34\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_packed_params \u001b[38;5;241m=\u001b[39m torch\u001b[38;5;241m.\u001b[39mops\u001b[38;5;241m.\u001b[39mquantized\u001b[38;5;241m.\u001b[39mlinear_prepack_fp16(weight, bias)\n", - "File \u001b[0;32m~/mambaforge/envs/vprtempo/lib/python3.11/site-packages/torch/_ops.py:502\u001b[0m, in \u001b[0;36mOpOverloadPacket.__call__\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 497\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m__call__\u001b[39m(\u001b[38;5;28mself\u001b[39m, \u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs):\n\u001b[1;32m 498\u001b[0m \u001b[38;5;66;03m# overloading __call__ to ensure torch.ops.foo.bar()\u001b[39;00m\n\u001b[1;32m 499\u001b[0m \u001b[38;5;66;03m# is still callable from JIT\u001b[39;00m\n\u001b[1;32m 500\u001b[0m \u001b[38;5;66;03m# We save the function ptr as the `op` attribute on\u001b[39;00m\n\u001b[1;32m 501\u001b[0m \u001b[38;5;66;03m# OpOverloadPacket to access it here.\u001b[39;00m\n\u001b[0;32m--> 502\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_op(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs \u001b[38;5;129;01mor\u001b[39;00m {})\n", - "\u001b[0;31mRuntimeError\u001b[0m: Didn't find engine for operation quantized::linear_prepack NoQEngine" - ] - } - ], + "outputs": [], "source": [ "# Set the model to evaluation mode and set configuration\n", "model = VPRTempo()\n", @@ -855,22 +747,10 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": null, "id": "37aa84e1", "metadata": {}, - "outputs": [ - { - "ename": "NameError", - "evalue": "name 'layer_names' is not defined", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[0;32mIn[28], line 2\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;66;03m# Use evaluate method for inference accuracy\u001b[39;00m\n\u001b[0;32m----> 2\u001b[0m model\u001b[38;5;241m.\u001b[39mevaluate(test_loader, layers\u001b[38;5;241m=\u001b[39mlayer_names)\n", - "\u001b[0;31mNameError\u001b[0m: name 'layer_names' is not defined" - ] - } - ], + "outputs": [], "source": [ "# Use evaluate method for inference accuracy\n", "model.evaluate(test_loader, layers=layer_names)" From 351a46599368753d74f2448201a3babcae5b128c Mon Sep 17 00:00:00 2001 From: Adam Hines Date: Sun, 15 Oct 2023 22:54:30 +1000 Subject: [PATCH 21/69] Started work on the intro jupyter notebook. Simplified QAT tutorial --- tutorials/1_Introduction.ipynb | 836 +++++++++++++++++++++++++++++++++ tutorials/2_Quantization.ipynb | 445 ++++-------------- 2 files changed, 937 insertions(+), 344 deletions(-) create mode 100644 tutorials/1_Introduction.ipynb diff --git a/tutorials/1_Introduction.ipynb b/tutorials/1_Introduction.ipynb new file mode 100644 index 0000000..e6a7adb --- /dev/null +++ b/tutorials/1_Introduction.ipynb @@ -0,0 +1,836 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "70df0e83-9a35-41b3-81ec-cd12538045ed", + "metadata": {}, + "source": [ + "## VPRTempo - Introduction\n", + "\n", + "### By Adam D Hines (https://research.qut.edu.au/qcr/people/adam-hines/)\n", + "\n", + "VPRTempo is based on the following paper, if you use or find this code helpful for your research please consider citing the source:\n", + " \n", + "[Adam D Hines, Peter G Stratton, Michael Milford, & Tobias Fischer. \"VPRTempo: A Fast Temporally Encoded Spiking Neural Network for Visual Place Recognition. arXiv September 2023](https://arxiv.org/abs/2309.10225)\n", + "\n", + "### Introduction\n", + "\n", + "Traditional methods for visual place recognition (VPR) tasks typically employ the use of convolutional neural networks like ResNet to train large datasets for feature extraction of incoming query images, rather than specifically learning said query place. The networks are extremely effective at accurate localisation, but are are slow to train, inference, and store.\n", + "\n", + "Spiking neural networks (SNNs) by contrast are more energy efficient and have low latency computation, meaning their deployment capability for VPR is extremely promising. Specifically, networks can be trained on the exact location you wish to query which takes a fundamentally different approach to the VPR task.\n", + "\n", + "VPRTempo uses a temporal encoding scheme for spikes, where the amplitude of a spike is determined by an incoming training or query image's pixel intensity. This amplitude defines the 'timing' of the spike, similar to a latency code. As spikes propagate throughout the system, spike-timing dependent plasticity (STDP) learning rules train neuronal connections based off of the pixel intensity spike amplitudes. \n", + "\n", + "To get started, please ensure you have installed and currently have activated the `conda` environment for VPRTempo. For more information how to install and setup the environment, please see the [README.md](https://github.com/AdamDHines/VPRTempo-quant/blob/main/README.md)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "0f846c03", + "metadata": {}, + "outputs": [], + "source": [ + "!conda activate vprtempo" + ] + }, + { + "cell_type": "markdown", + "id": "0928d7a4", + "metadata": {}, + "source": [ + "## 1. Get the Nordland dataset\n", + "\n", + "### 1.1 Download the dataset\n", + "\n", + "Please [download the Nordland datasets](https://webdiis.unizar.es/~jmfacil/pr-nordland/#download-dataset) (Summer, Spring, Fall, & Winter). There are two datasets available, the full size and downsampled versions. Either will work fine but our paper details the full size dataset. If disk space is a concern, please use the downsampled version.\n", + "\n", + "Save the data in the `./VPRTempo-quant/dataset/` subfolder." + ] + }, + { + "cell_type": "markdown", + "id": "f0a607d1", + "metadata": {}, + "source": [ + "### 1.2 Import modules\n", + "\n", + "Once we have downloaded the dataset, we'll start by importing all the necessary modules." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "d9caff25", + "metadata": {}, + "outputs": [], + "source": [ + "import jdc\n", + "import os\n", + "import torch\n", + "import gc\n", + "import sys\n", + "sys.path.append('../src')\n", + "sys.path.append('../models')\n", + "sys.path.append('../output')\n", + "sys.path.append('../dataset')\n", + "\n", + "import blitnet as bn\n", + "import numpy as np\n", + "import torch.nn as nn\n", + "import torch.quantization as quantization\n", + "\n", + "from settings import configure, image_csv, model_logger\n", + "from dataset import CustomImageDataset, ProcessImage\n", + "from torch.utils.data import DataLoader\n", + "from torch.ao.quantization import QuantStub, DeQuantStub\n", + "from tqdm import tqdm" + ] + }, + { + "cell_type": "markdown", + "id": "ffac2f0e", + "metadata": {}, + "source": [ + "### 1.3 Prepare the dataset for the model (optional)\n", + "\n", + "The datset seasons are downloaded in .zip format and need to be extracted into a single folder. The `nordland` function has been provided to automatically do this for you and to re-name the images to match those in the nordland.csv file.\n", + "\n", + "If you have already done this from the previous tutorial, you can skip this step." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "51f350d0", + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "from os import walk\n", + "from nordland import nord_sort\n", + "\n", + "# unzip, re-organise, and re-name the Nordland datasets\n", + "nord_sort()" + ] + }, + { + "cell_type": "markdown", + "id": "f4d2f885", + "metadata": {}, + "source": [ + "## 2. Set up the network\n", + "\n", + "### 2.1 Define and initialize the VPRTempo model class\n", + "\n", + "We'll first define the VPRTempo class which handles the configuration as set in `./src/settings.py`, determining which images to load, and establishes the layers used for training. For this tutorial, leave the settings as the default.\n", + "\n", + "`__init__` is where we define the layers used for the model. In this case, we define a `feature_layer` and an `output_layer`. `dims` represents the number of neurons in the input and the layer itself, which in this case is `self.input`, `self.feature`, and `self.output`. Note that the size of the input for each proceeding layer is the size of previous layer. In this example, we have an input of 784 neurons (for 28x28 images) connected to a 1568 neuron feature layer which then connects to a final output layer of 500 neurons.\n", + "\n", + "The other hyperparameters for each layer are set here as well." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "99b5130c", + "metadata": {}, + "outputs": [], + "source": [ + "class VPRTempo(nn.Module):\n", + " def __init__(self):\n", + " super(VPRTempo, self).__init__()\n", + "\n", + " # Configure the network\n", + " configure(self)\n", + " \n", + " # Define the images to load (both training and inference)\n", + " image_csv(self)\n", + "\n", + " # Add quantization stubs for Quantization Aware Training (QAT)\n", + " self.quant = QuantStub()\n", + " self.dequant = DeQuantStub()\n", + " \n", + " # Define the add function for quantized addition\n", + " self.add = nn.quantized.FloatFunctional() \n", + "\n", + " # Layer dict to keep track of layer names and their order\n", + " self.layer_dict = {}\n", + " self.layer_counter = 0\n", + "\n", + " \"\"\"\n", + " Define trainable layers here\n", + " \"\"\"\n", + " self.add_layer(\n", + " 'feature_layer',\n", + " dims=[self.input, self.feature],\n", + " thr_range=[0, 0.5],\n", + " fire_rate=[0.2, 0.9],\n", + " ip_rate=0.15,\n", + " stdp_rate=0.005,\n", + " const_inp=[0, 0.1],\n", + " p=[0.1, 0.5]\n", + " )\n", + " self.add_layer(\n", + " 'output_layer',\n", + " dims=[self.feature, self.output],\n", + " ip_rate=0.15,\n", + " stdp_rate=0.005,\n", + " spk_force=True\n", + " )\n", + " \n", + " print('VPRTempo succesfully initialized')" + ] + }, + { + "cell_type": "markdown", + "id": "d9e3c15b", + "metadata": {}, + "source": [ + "### 2.2 Dynamically add layers\n", + "\n", + "As above, the only thing we need to do in order to add additional layers to our model is to include a self.add_layer(args) to the `__init__` component of the script. The actual handling of the layer generation is done by the blitnet.SNNLayer() class from `blitnet.py`. Here, hyperparameters are stored in the layer information and the initial weights are seeded and normalized for training." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "dabd3c7d", + "metadata": {}, + "outputs": [], + "source": [ + "%%add_to VPRTempo\n", + "def add_layer(self, name, **kwargs):\n", + " \"\"\"\n", + " Dynamically add a layer with given name and keyword arguments.\n", + "\n", + " :param name: Name of the layer to be added\n", + " :type name: str\n", + " :param kwargs: Hyperparameters for the layer\n", + " \"\"\"\n", + " # Check for layer name duplicates\n", + " if name in self.layer_dict:\n", + " raise ValueError(f\"Layer with name {name} already exists.\")\n", + "\n", + " # Add a new SNNLayer with provided kwargs\n", + " setattr(self, name, bn.SNNLayer(**kwargs))\n", + "\n", + " # Add layer name and index to the layer_dict\n", + " self.layer_dict[name] = self.layer_counter\n", + " self.layer_counter += 1 \n", + "\n", + " print('Succesfully added '+name)" + ] + }, + { + "cell_type": "markdown", + "id": "e3b92db1", + "metadata": {}, + "source": [ + "### 2.3 Set the training regime\n", + "\n", + "Training is also handled by the `VPRTempo()` class and recursively runs until all the defined layers are trained. The initial learning rates are copied out so that they can be annealed appropriately for the defined number of time steps. Training runs for the specified number of epochs and the total number of timesteps as set in the train_loader class (more later on that, a simple [PyTorch DataLoader](https://pytorch.org/tutorials/beginner/basics/data_tutorial.html)).\n", + "\n", + "Once a layer has been trained, the learning for that layer will be turned off and training deeper layers will propagate the input spikes through each trained layer until it reaches the one being currently learned. Learning involves spike-timing dependent plasticity (STDP) rules, firing threshold adjustments, and inhibitory connection normalization." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "623595aa", + "metadata": {}, + "outputs": [], + "source": [ + "%%add_to VPRTempo\n", + "def train_model(self, train_loader, layer, prev_layers=None):\n", + " \"\"\"\n", + " Train a layer of the network model.\n", + "\n", + " :param train_loader: Training data loader\n", + " :param layer: Layer to train\n", + " :param prev_layers: Previous layers to pass data through\n", + " \"\"\"\n", + "\n", + " # Initialize the tqdm progress bar\n", + " pbar = tqdm(total=int(self.T * self.epoch),\n", + " desc=\"Training \",\n", + " position=0)\n", + "\n", + " # Initialize the learning rates for each layer (used for annealment)\n", + " init_itp = layer.eta_ip.detach()\n", + " init_stdp = layer.eta_stdp.detach()\n", + "\n", + " # Run training for the specified number of epochs\n", + " for epoch in range(self.epoch):\n", + " mod = 0 # Used to determine the learning rate annealment, resets at each epoch\n", + " # Run training for the specified number of timesteps\n", + " for spikes, labels in train_loader:\n", + " spikes, labels = spikes.to(self.device), labels.to(self.device)\n", + " idx = labels / self.filter # Set output index for spike forcing\n", + " # Pass through previous layers if they exist\n", + " if prev_layers:\n", + " with torch.no_grad():\n", + " for prev_layer_name in prev_layers:\n", + " prev_layer = getattr(self, prev_layer_name) # Get the previous layer object\n", + " spikes = self.forward(spikes, prev_layer) # Pass spikes through the previous layer\n", + " spikes = bn.clamp_spikes(spikes, prev_layer) # Clamp spikes [0, 0.9]\n", + " else:\n", + " prev_layer = None\n", + " # Get the output spikes from the current layer\n", + " pre_spike = spikes.detach() # Previous layer spikes for STDP\n", + " spikes = self.forward(spikes, layer) # Current layer spikes\n", + " spikes_noclp = spikes.detach() # Used for inhibitory homeostasis\n", + " spikes = bn.clamp_spikes(spikes, layer) # Clamp spikes [0, 0.9]\n", + " # Calculate STDP\n", + " layer = bn.calc_stdp(pre_spike,spikes,spikes_noclp,layer, idx, prev_layer=prev_layer)\n", + " # Adjust learning rates\n", + " layer = self._anneal_learning_rate(layer, mod, init_itp, init_stdp)\n", + " # Update the annealing mod & progress bar \n", + " mod += 1\n", + " pbar.update(1)\n", + "\n", + " # Close the tqdm progress bar\n", + " pbar.close()" + ] + }, + { + "cell_type": "markdown", + "id": "bc5e068e", + "metadata": {}, + "source": [ + "### 2.4 Create the forward pass\n", + "\n", + "Layers in VPRTempo are defined as an [nn.Linear](https://pytorch.org/docs/stable/generated/torch.nn.Linear.html) layer, with incoming spikes being linearly transformed with the layer weights. The forward pass simply takes incoming spikes and caluclates the transform with positive and negative weights and adds them together, returning the transformed spikes." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "68a22d64", + "metadata": {}, + "outputs": [], + "source": [ + "%%add_to VPRTempo\n", + "def forward(self, spikes, layer):\n", + " \"\"\"\n", + " Compute the forward pass of the model.\n", + "\n", + " Parameters:\n", + " - spikes (Tensor): Input spikes.\n", + "\n", + " Returns:\n", + " - Tensor: Output after processing.\n", + " \"\"\"\n", + "\n", + " spikes = self.quant(spikes)\n", + " spikes = self.add.add(layer.exc(spikes), layer.inh(spikes))\n", + " spikes = self.dequant(spikes)\n", + "\n", + " return spikes" + ] + }, + { + "cell_type": "markdown", + "id": "9fb8e16d", + "metadata": {}, + "source": [ + "### 2.5 Learning rate annealment & model loader/saver\n", + "\n", + "Finally, the last thing we will add to the model is the learning rate annealment regime and the functions for loading and saving trained models." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "e99f6d13", + "metadata": {}, + "outputs": [], + "source": [ + "%%add_to VPRTempo\n", + "def _anneal_learning_rate(self, layer, mod, itp, stdp):\n", + " \"\"\"\n", + " Anneal the learning rate for the current layer.\n", + " \"\"\"\n", + " if np.mod(mod, 100) == 0: # Modify learning rate every 100 timesteps\n", + " pt = pow(float(self.T - mod) / self.T, self.annl_pow)\n", + " layer.eta_ip = torch.mul(itp, pt) # Anneal intrinsic threshold plasticity learning rate\n", + " layer.eta_stdp = torch.mul(stdp, pt) # Anneal STDP learning rate\n", + "\n", + " return layer\n", + "\n", + "def save_model(self, model_out): \n", + " \"\"\"\n", + " Save the trained model to models output folder.\n", + " \"\"\"\n", + " torch.save(self.state_dict(), model_out) \n", + "\n", + "def load_model(self, model_path):\n", + " \"\"\"\n", + " Load pre-trained model and set the state dictionary keys.\n", + " \"\"\"\n", + " self.load_state_dict(torch.load(model_path, map_location=self.device),\n", + " strict=True)" + ] + }, + { + "cell_type": "markdown", + "id": "a4d65918", + "metadata": {}, + "source": [ + "### 2.6 Initialize the model\n", + "\n", + "Now that the model has been defined, we can initialize it and start with the quantization process." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "55aa0e9b", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Succesfully added feature_layer\n", + "Succesfully added output_layer\n", + "VPRTempo succesfully initialized\n" + ] + }, + { + "data": { + "text/plain": [ + "VPRTempo(\n", + " (quant): QuantStub()\n", + " (dequant): DeQuantStub()\n", + " (add): FloatFunctional(\n", + " (activation_post_process): Identity()\n", + " )\n", + " (feature_layer): SNNLayer(\n", + " (exc): Linear(in_features=784, out_features=1568, bias=False)\n", + " (inh): Linear(in_features=784, out_features=1568, bias=False)\n", + " )\n", + " (output_layer): SNNLayer(\n", + " (exc): Linear(in_features=1568, out_features=500, bias=False)\n", + " (inh): Linear(in_features=1568, out_features=500, bias=False)\n", + " )\n", + ")" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "model = VPRTempo()\n", + "model.train()" + ] + }, + { + "cell_type": "markdown", + "id": "a88d4a18", + "metadata": {}, + "source": [ + "### 2.7 Generate unique model name\n", + "\n", + "We will finally set up a unique model name based on the network architecture so we can save and reload our trained model." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "dc786b3d", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "VPRTempo78415685001.pth\n" + ] + } + ], + "source": [ + "def generate_model_name(model):\n", + " \"\"\"\n", + " Generate the model name based on its parameters.\n", + " \"\"\"\n", + " return (\"VPRTempo\" +\n", + " str(model.input) +\n", + " str(model.feature) +\n", + " str(model.output) +\n", + " str(model.number_modules) +\n", + " '.pth')\n", + "\n", + "model_name = generate_model_name(model)\n", + "\n", + "print(model_name)" + ] + }, + { + "cell_type": "markdown", + "id": "17640d20", + "metadata": {}, + "source": [ + "## 3. Define the DataLoader\n", + "\n", + "### 3.1 Set the DataLoader\n", + "\n", + "Now that we've defined the model, we will set up the DataLoaders. These utilise a PyTorch CustomImageDataset and ProcessImage to import images and process them for training or inference. In brief, images are loaded, gamma corrected, resized, and then patch-normalized before being converted into system spikes to be propagated throughout.\n", + "\n", + "Since we present the network with one image at a time, the `batch_size` is kept to 1." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "6714bc35", + "metadata": {}, + "outputs": [], + "source": [ + "from dataset import CustomImageDataset, ProcessImage\n", + "from torch.utils.data import DataLoader\n", + "\n", + "image_transform = ProcessImage(model.dims, model.patches)\n", + "train_dataset = CustomImageDataset(annotations_file=model.dataset_file, \n", + " img_dirs=model.training_dirs,\n", + " transform=image_transform,\n", + " skip=model.filter,\n", + " max_samples=model.number_training_images,\n", + " test=False)\n", + "# Initialize the data loader\n", + "train_loader = DataLoader(train_dataset, \n", + " batch_size=1, \n", + " shuffle=False,\n", + " num_workers=8,\n", + " persistent_workers=True)" + ] + }, + { + "cell_type": "markdown", + "id": "2f3f4bdb", + "metadata": {}, + "source": [ + "## 5. Set up and run the training \n", + "\n", + "### 5.1 Define and run the training regime\n", + "\n", + "The training will loop through each defined layer until every single one has trained. In order to propagate spikes throughout the system, trained layers are appended to a list so that they can be re-fed back into the network to calculate spikes based on learned weights.\n", + "\n", + "Run the below cell to train our `feature_layer` and `output_layer`!" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "0075638b", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Training layer: feature_layer\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Training : 100%|████████████████████████████| 4000/4000 [01:13<00:00, 54.67it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Training layer: output_layer\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Training : 100%|████████████████████████████| 4000/4000 [00:55<00:00, 72.47it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "All layers trained succesfully\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + } + ], + "source": [ + "# Keep track of trained layers to pass data through them\n", + "trained_layers = [] \n", + "\n", + "# Training each layer\n", + "for layer_name, _ in sorted(model.layer_dict.items(), key=lambda item: item[1]):\n", + " print(f\"Training layer: {layer_name}\")\n", + " # Retrieve the layer object\n", + " layer = getattr(model, layer_name)\n", + " # Train the layer\n", + " model.train_model(train_loader, layer, prev_layers=trained_layers)\n", + " # After training the current layer, add it to the list of trained layers\n", + " trained_layers.append(layer_name)\n", + " \n", + "print('All layers trained succesfully')" + ] + }, + { + "cell_type": "markdown", + "id": "5e6daea3", + "metadata": {}, + "source": [ + "### 5.2 Convert and save the model\n", + "\n", + "Now that the training has been completed, we can convert the QAT model over to be fully quantized. As the layers were trained, scale and zero-point factors will learned for all the elements of the model and can now be applied to the layers. Once converted, we will save the model for use in inferencing." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "53ededaa", + "metadata": {}, + "outputs": [], + "source": [ + "# Convert the model to eval mode\n", + "model.eval()\n", + "# Save the model\n", + "model.save_model(os.path.join('../models', model_name)) " + ] + }, + { + "cell_type": "markdown", + "id": "c0d69843", + "metadata": {}, + "source": [ + "## 6. Inferencing\n", + "\n", + "As in the previous tutorial, inferencing with a trained model is quite simple. The only additional thing we need to do is reinitialize the VPRTempo class and convert it to quantized before loading the model. Without pre-quantizing the inference model, state dictionary keys will not match since all the layers and associated components have new parameters such as scale and zero-point.\n", + "\n", + "### 6.1 Add the inference function to the VPRTempo class\n", + "\n", + "We will start by adding in the inference function to VPRTempo. It is similar to the training regime but omits the learning components `calc_stdp` and simply runs through all the layers until it reaches the output." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "a368c532", + "metadata": {}, + "outputs": [], + "source": [ + "%%add_to VPRTempo\n", + "def evaluate(self, test_loader, layers=None):\n", + " \"\"\"\n", + " Run the inferencing model and calculate the accuracy.\n", + "\n", + " :param test_loader: Testing data loader\n", + " :param layers: Layers to pass data through\n", + " \"\"\"\n", + "\n", + " # Initialize the number of correct predictions\n", + " numcorr = 0\n", + " idx = 0\n", + "\n", + " # Initialize the tqdm progress bar\n", + " pbar = tqdm(total=self.number_testing_images,\n", + " desc=\"Running the test network\",\n", + " position=0)\n", + "\n", + " # Run inference for the specified number of timesteps\n", + " for spikes, labels in test_loader:\n", + " # Set device\n", + " spikes, labels = spikes.to(self.device), labels.to(self.device)\n", + " # Pass through previous layers if they exist\n", + " if layers:\n", + " for layer_name in layers:\n", + " layer = getattr(self, layer_name)\n", + " spikes = self.forward(spikes, layer)\n", + " spikes = bn.clamp_spikes(spikes, layer)\n", + "\n", + " # Evaluate if the prediction is correct\n", + " if torch.argmax(spikes.reshape(1, self.number_training_images)) == idx:\n", + " numcorr += 1\n", + "\n", + " # Update the index and progress bar\n", + " idx += 1\n", + " pbar.update(1)\n", + "\n", + " # Close the tqdm progress bar\n", + " pbar.close()\n", + " # Calculate and record the accuracy\n", + " accuracy = round((numcorr/self.number_testing_images)*100,2)\n", + " model.logger.info(\"P@100R: \"+ str(accuracy) + '%')" + ] + }, + { + "cell_type": "markdown", + "id": "5e841fc7", + "metadata": {}, + "source": [ + "### 6.2 Define the inferencing DataLoader\n", + "\n", + "The only difference between the training and testing DataLoader is the directory with which it will import images from." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "f4a1adc8", + "metadata": {}, + "outputs": [], + "source": [ + "# Initialize the image transforms and datasets\n", + "image_transform = ProcessImage(model.dims, model.patches)\n", + "test_dataset = CustomImageDataset(annotations_file=model.dataset_file, \n", + " img_dirs=model.testing_dirs,\n", + " transform=image_transform,\n", + " skip=model.filter,\n", + " max_samples=model.number_testing_images)\n", + "# Initialize the data loader\n", + "test_loader = DataLoader(test_dataset, \n", + " batch_size=1, \n", + " shuffle=False,\n", + " num_workers=8,\n", + " persistent_workers=True)" + ] + }, + { + "cell_type": "markdown", + "id": "018de09a", + "metadata": {}, + "source": [ + "### 6.3 Re-initialize the model class, convert to quantization, and load the model\n", + "\n", + "Now we will re-initialize the VPRTempo class model, set to eval mode, and convert it over to quantized so that we can import our newly trained model." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "30d51e96", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Succesfully added feature_layer\n", + "Succesfully added output_layer\n", + "VPRTempo succesfully initialized\n" + ] + } + ], + "source": [ + "# Set the model to evaluation mode and set configuration\n", + "model = VPRTempo()\n", + "model.eval()\n", + "\n", + "# Load the model\n", + "model.load_model(os.path.join('../models', model_name))\n", + "\n", + "# Retrieve layer names for inference\n", + "layer_names = list(model.layer_dict.keys())" + ] + }, + { + "cell_type": "markdown", + "id": "472d24e8", + "metadata": {}, + "source": [ + "### 6.4 Run the model inference\n", + "\n", + "Now we are ready to inference the model!" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "37aa84e1", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Running the test network: 100%|██████████████| 500/500 [00:02<00:00, 196.29it/s]\n" + ] + }, + { + "ename": "AttributeError", + "evalue": "'VPRTempo' object has no attribute 'logger'", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[19], line 2\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;66;03m# Use evaluate method for inference accuracy\u001b[39;00m\n\u001b[0;32m----> 2\u001b[0m model\u001b[38;5;241m.\u001b[39mevaluate(test_loader, layers\u001b[38;5;241m=\u001b[39mlayer_names)\n", + "File \u001b[0;32m:41\u001b[0m, in \u001b[0;36mevaluate\u001b[0;34m(self, test_loader, layers)\u001b[0m\n", + "File \u001b[0;32m~/mambaforge/envs/vprtempo/lib/python3.11/site-packages/torch/nn/modules/module.py:1614\u001b[0m, in \u001b[0;36mModule.__getattr__\u001b[0;34m(self, name)\u001b[0m\n\u001b[1;32m 1612\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m name \u001b[38;5;129;01min\u001b[39;00m modules:\n\u001b[1;32m 1613\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m modules[name]\n\u001b[0;32m-> 1614\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mAttributeError\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;132;01m{}\u001b[39;00m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m object has no attribute \u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;132;01m{}\u001b[39;00m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;241m.\u001b[39mformat(\n\u001b[1;32m 1615\u001b[0m \u001b[38;5;28mtype\u001b[39m(\u001b[38;5;28mself\u001b[39m)\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__name__\u001b[39m, name))\n", + "\u001b[0;31mAttributeError\u001b[0m: 'VPRTempo' object has no attribute 'logger'" + ] + } + ], + "source": [ + "# Use evaluate method for inference accuracy\n", + "model.evaluate(test_loader, layers=layer_names)" + ] + }, + { + "cell_type": "markdown", + "id": "26f46e43", + "metadata": {}, + "source": [ + "## 7. Conslusions\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "id": "763e86c5", + "metadata": {}, + "source": [ + "This tutorial covered how we can convert the VPRTempo model to perform Quantized Aware Training (QAT) to keep the model size more lightweight. You might notice that if you compare the system between FP32 to Int8, the model works equally as well with a reduced bit-depth with the added benefit of a reduced model size.\n", + "\n", + "To read more about QAT and quantization in general, PyTorch provides many useful articles;\n", + "https://pytorch.org/docs/stable/quantization.html\n", + "https://pytorch.org/blog/quantization-in-practice/\n", + "\n", + "The key benefit to this is being able to perform fast training and inferencing on CPU architecture, which for resource limited compute scenarios is critical." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.0" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/tutorials/2_Quantization.ipynb b/tutorials/2_Quantization.ipynb index 246137d..e547383 100644 --- a/tutorials/2_Quantization.ipynb +++ b/tutorials/2_Quantization.ipynb @@ -15,13 +15,7 @@ "\n", "### Introduction\n", "\n", - "Traditional methods for visual place recognition (VPR) tasks typically employ the use of convolutional neural networks like ResNet to train large datasets for feature extraction of incoming query images, rather than specifically learning said query place. The networks are extremely effective at accurate localisation, but are are slow to train, inference, and store.\n", - "\n", - "Spiking neural networks (SNNs) by contrast are more energy efficient and have low latency computation, meaning their deployment capability for VPR is extremely promising. Specifically, networks can be trained on the exact location you wish to query which takes a fundamentally different approach to the VPR task.\n", - "\n", - "VPRTempo uses a temporal encoding scheme for spikes, where the amplitude of a spike is determined by an incoming training or query image's pixel intensity. This amplitude defines the 'timing' of the spike, similar to a latency code. As spikes propagate throughout the system, spike-timing dependent plasticity (STDP) learning rules train neuronal connections based off of the pixel intensity spike amplitudes. \n", - "\n", - "In this tutorial, we are going to take the base VPRTempo model to train and inference a network with PyTorch's Quantized Aware Training ([QAT](https://pytorch.org/docs/stable/quantization.html)). Functionally, this tutorial is similar to the previous one as we go through and define the network architecture so if you can skip to **4. Quantization** if you are already familiar with how this works.\n", + "In this tutorial, we are going to take the base VPRTempo model to train and inference a network with PyTorch's Quantized Aware Training ([QAT](https://pytorch.org/docs/stable/quantization.html)). Functionally, this tutorial is similar to the previous one but will be simplified. For a more detailed dive into how VPRTempo works, please see [Tutorial 1](https://github.com/AdamDHines/VPRTempo-quant/blob/main/tutorials/1_Introduction.ipynb)\n", "\n", "**Note: it does not appear that Apple Silicon is currently a supported backend for QAT**\n", "\n", @@ -64,7 +58,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "id": "d9caff25", "metadata": {}, "outputs": [], @@ -74,6 +68,7 @@ "import torch\n", "import gc\n", "import sys\n", + "sys.path.append('../')\n", "sys.path.append('../src')\n", "sys.path.append('../models')\n", "sys.path.append('../output')\n", @@ -128,272 +123,17 @@ "\n", "### 2.1 Define and initialize the VPRTempo model class\n", "\n", - "We'll first define the VPRTempo class which handles the configuration as set in `./src/settings.py`, determining which images to load, and establishes the layers used for training. For this tutorial, leave the settings as the default.\n", - "\n", - "`__init__` is where we define the layers used for the model. In this case, we define a `feature_layer` and an `output_layer`. `dims` represents the number of neurons in the input and the layer itself, which in this case is `self.input`, `self.feature`, and `self.output`. Note that the size of the input for each proceeding layer is the size of previous layer. In this example, we have an input of 784 neurons (for 28x28 images) connected to a 1568 neuron feature layer which then connects to a final output layer of 500 neurons.\n", - "\n", - "The other hyperparameters for each layer are set here as well." + "We'll now import the main network model class `VPRTempo`. Please see [Tutorial 1](https://github.com/AdamDHines/VPRTempo-quant/blob/main/tutorials/1_Introduction.ipynb) for a more detailed look at what this includes." ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "id": "99b5130c", "metadata": {}, "outputs": [], "source": [ - "class VPRTempo(nn.Module):\n", - " def __init__(self):\n", - " super(VPRTempo, self).__init__()\n", - "\n", - " # Configure the network\n", - " configure(self)\n", - " \n", - " # Define the images to load (both training and inference)\n", - " image_csv(self)\n", - "\n", - " # Add quantization stubs for Quantization Aware Training (QAT)\n", - " self.quant = QuantStub()\n", - " self.dequant = DeQuantStub()\n", - " \n", - " # Define the add function for quantized addition\n", - " self.add = nn.quantized.FloatFunctional() \n", - "\n", - " # Layer dict to keep track of layer names and their order\n", - " self.layer_dict = {}\n", - " self.layer_counter = 0\n", - "\n", - " \"\"\"\n", - " Define trainable layers here\n", - " \"\"\"\n", - " self.add_layer(\n", - " 'feature_layer',\n", - " dims=[self.input, self.feature],\n", - " thr_range=[0, 0.5],\n", - " fire_rate=[0.2, 0.9],\n", - " ip_rate=0.15,\n", - " stdp_rate=0.005,\n", - " const_inp=[0, 0.1],\n", - " p=[0.1, 0.5]\n", - " )\n", - " self.add_layer(\n", - " 'output_layer',\n", - " dims=[self.feature, self.output],\n", - " ip_rate=0.15,\n", - " stdp_rate=0.005,\n", - " spk_force=True\n", - " )\n", - " \n", - " print('VPRTempo succesfully initialized')" - ] - }, - { - "cell_type": "markdown", - "id": "d9e3c15b", - "metadata": {}, - "source": [ - "### 2.2 Dynamically add layers\n", - "\n", - "As above, the only thing we need to do in order to add additional layers to our model is to include a self.add_layer(args) to the `__init__` component of the script. The actual handling of the layer generation is done by the blitnet.SNNLayer() class from `blitnet.py`. Here, hyperparameters are stored in the layer information and the initial weights are seeded and normalized for training." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "dabd3c7d", - "metadata": {}, - "outputs": [], - "source": [ - "%%add_to VPRTempo\n", - "def add_layer(self, name, **kwargs):\n", - " \"\"\"\n", - " Dynamically add a layer with given name and keyword arguments.\n", - "\n", - " :param name: Name of the layer to be added\n", - " :type name: str\n", - " :param kwargs: Hyperparameters for the layer\n", - " \"\"\"\n", - " # Check for layer name duplicates\n", - " if name in self.layer_dict:\n", - " raise ValueError(f\"Layer with name {name} already exists.\")\n", - "\n", - " # Add a new SNNLayer with provided kwargs\n", - " setattr(self, name, bn.SNNLayer(**kwargs))\n", - "\n", - " # Add layer name and index to the layer_dict\n", - " self.layer_dict[name] = self.layer_counter\n", - " self.layer_counter += 1 \n", - "\n", - " print('Succesfully added '+name)" - ] - }, - { - "cell_type": "markdown", - "id": "e3b92db1", - "metadata": {}, - "source": [ - "### 2.3 Set the training regime\n", - "\n", - "Training is also handled by the `VPRTempo()` class and recursively runs until all the defined layers are trained. The initial learning rates are copied out so that they can be annealed appropriately for the defined number of time steps. Training runs for the specified number of epochs and the total number of timesteps as set in the train_loader class (more later on that, a simple [PyTorch DataLoader](https://pytorch.org/tutorials/beginner/basics/data_tutorial.html)).\n", - "\n", - "Once a layer has been trained, the learning for that layer will be turned off and training deeper layers will propagate the input spikes through each trained layer until it reaches the one being currently learned. Learning involves spike-timing dependent plasticity (STDP) rules, firing threshold adjustments, and inhibitory connection normalization." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "623595aa", - "metadata": {}, - "outputs": [], - "source": [ - "%%add_to VPRTempo\n", - "def train_model(self, train_loader, layer, prev_layers=None):\n", - " \"\"\"\n", - " Train a layer of the network model.\n", - "\n", - " :param train_loader: Training data loader\n", - " :param layer: Layer to train\n", - " :param prev_layers: Previous layers to pass data through\n", - " \"\"\"\n", - "\n", - " # Initialize the tqdm progress bar\n", - " pbar = tqdm(total=int(self.T * self.epoch),\n", - " desc=\"Training \",\n", - " position=0)\n", - "\n", - " # Initialize the learning rates for each layer (used for annealment)\n", - " init_itp = layer.eta_ip.detach()\n", - " init_stdp = layer.eta_stdp.detach()\n", - "\n", - " # Run training for the specified number of epochs\n", - " for epoch in range(self.epoch):\n", - " mod = 0 # Used to determine the learning rate annealment, resets at each epoch\n", - " # Run training for the specified number of timesteps\n", - " for spikes, labels in train_loader:\n", - " spikes, labels = spikes.to(self.device), labels.to(self.device)\n", - " idx = labels / self.filter # Set output index for spike forcing\n", - " # Pass through previous layers if they exist\n", - " if prev_layers:\n", - " with torch.no_grad():\n", - " for prev_layer_name in prev_layers:\n", - " prev_layer = getattr(self, prev_layer_name) # Get the previous layer object\n", - " spikes = self.forward(spikes, prev_layer) # Pass spikes through the previous layer\n", - " spikes = bn.clamp_spikes(spikes, prev_layer) # Clamp spikes [0, 0.9]\n", - " else:\n", - " prev_layer = None\n", - " # Get the output spikes from the current layer\n", - " pre_spike = spikes.detach() # Previous layer spikes for STDP\n", - " spikes = self.forward(spikes, layer) # Current layer spikes\n", - " spikes_noclp = spikes.detach() # Used for inhibitory homeostasis\n", - " spikes = bn.clamp_spikes(spikes, layer) # Clamp spikes [0, 0.9]\n", - " # Calculate STDP\n", - " layer = bn.calc_stdp(pre_spike,spikes,spikes_noclp,layer, idx, prev_layer=prev_layer)\n", - " # Adjust learning rates\n", - " layer = self._anneal_learning_rate(layer, mod, init_itp, init_stdp)\n", - " # Update the annealing mod & progress bar \n", - " mod += 1\n", - " pbar.update(1)\n", - "\n", - " # Close the tqdm progress bar\n", - " pbar.close()" - ] - }, - { - "cell_type": "markdown", - "id": "bc5e068e", - "metadata": {}, - "source": [ - "### 2.4 Create the forward pass\n", - "\n", - "Layers in VPRTempo are defined as an [nn.Linear](https://pytorch.org/docs/stable/generated/torch.nn.Linear.html) layer, with incoming spikes being linearly transformed with the layer weights. The forward pass simply takes incoming spikes and caluclates the transform with positive and negative weights and adds them together, returning the transformed spikes." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "68a22d64", - "metadata": {}, - "outputs": [], - "source": [ - "%%add_to VPRTempo\n", - "def forward(self, spikes, layer):\n", - " \"\"\"\n", - " Compute the forward pass of the model.\n", - "\n", - " Parameters:\n", - " - spikes (Tensor): Input spikes.\n", - "\n", - " Returns:\n", - " - Tensor: Output after processing.\n", - " \"\"\"\n", - "\n", - " spikes = self.quant(spikes)\n", - " spikes = self.add.add(layer.exc(spikes), layer.inh(spikes))\n", - " spikes = self.dequant(spikes)\n", - "\n", - " return spikes" - ] - }, - { - "cell_type": "markdown", - "id": "9fb8e16d", - "metadata": {}, - "source": [ - "### 2.5 Learning rate annealment & model loader/saver\n", - "\n", - "Finally, the last thing we will add to the model is the learning rate annealment regime and the functions for loading and saving trained models." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "e99f6d13", - "metadata": {}, - "outputs": [], - "source": [ - "%%add_to VPRTempo\n", - "def _anneal_learning_rate(self, layer, mod, itp, stdp):\n", - " \"\"\"\n", - " Anneal the learning rate for the current layer.\n", - " \"\"\"\n", - " if np.mod(mod, 100) == 0: # Modify learning rate every 100 timesteps\n", - " pt = pow(float(self.T - mod) / self.T, self.annl_pow)\n", - " layer.eta_ip = torch.mul(itp, pt) # Anneal intrinsic threshold plasticity learning rate\n", - " layer.eta_stdp = torch.mul(stdp, pt) # Anneal STDP learning rate\n", - "\n", - " return layer\n", - "\n", - "def save_model(self, model_out): \n", - " \"\"\"\n", - " Save the trained model to models output folder.\n", - " \"\"\"\n", - " torch.save(self.state_dict(), model_out) \n", - "\n", - "def load_model(self, model_path):\n", - " \"\"\"\n", - " Load pre-trained model and set the state dictionary keys.\n", - " \"\"\"\n", - " self.load_state_dict(torch.load(model_path, map_location=self.device),\n", - " strict=True)" - ] - }, - { - "cell_type": "markdown", - "id": "a4d65918", - "metadata": {}, - "source": [ - "### 2.6 Initialize the model\n", - "\n", - "Now that the model has been defined, we can initialize it and start with the quantization process." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "55aa0e9b", - "metadata": {}, - "outputs": [], - "source": [ + "from VPRTempo import VPRTempo\n", "model = VPRTempo()" ] }, @@ -402,17 +142,25 @@ "id": "a88d4a18", "metadata": {}, "source": [ - "### 2.7 Generate unique model name\n", + "### 2.2 Generate unique model name\n", "\n", - "We will finally set up a unique model name based on the network architecture so we can save and reload our trained model." + "We will set up a unique model name to save and load for inferencing." ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "id": "dc786b3d", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "VPRTempo78415685001Quantized.pth\n" + ] + } + ], "source": [ "def generate_model_name(model):\n", " \"\"\"\n", @@ -423,6 +171,7 @@ " str(model.feature) +\n", " str(model.output) +\n", " str(model.number_modules) +\n", + " \"Quantized\"+\n", " '.pth')\n", "\n", "model_name = generate_model_name(model)\n", @@ -446,7 +195,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 7, "id": "6714bc35", "metadata": {}, "outputs": [], @@ -483,7 +232,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 8, "id": "36244802", "metadata": {}, "outputs": [], @@ -504,7 +253,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 9, "id": "a884ad96", "metadata": {}, "outputs": [], @@ -525,10 +274,19 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 10, "id": "087f3b36", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/adam/mambaforge/envs/vprtempo/lib/python3.11/site-packages/torch/ao/quantization/observer.py:214: UserWarning: Please use quant_min and quant_max to specify the range for observers. reduce_range will be deprecated in a future release of PyTorch.\n", + " warnings.warn(\n" + ] + } + ], "source": [ "# Apply quantization configurations to the model\n", "model = quantization.prepare_qat(model, inplace=False)" @@ -558,10 +316,53 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 11, "id": "0075638b", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Training layer: feature_layer\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Training : 100%|████████████████████████████| 4000/4000 [01:28<00:00, 45.19it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Training layer: output_layer\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Training : 100%|████████████████████████████| 4000/4000 [01:20<00:00, 49.89it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "All layers trained succesfully\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + } + ], "source": [ "# Keep track of trained layers to pass data through them\n", "trained_layers = [] \n", @@ -591,10 +392,31 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 12, "id": "53ededaa", "metadata": {}, - "outputs": [], + "outputs": [ + { + "ename": "RuntimeError", + "evalue": "Didn't find engine for operation quantized::linear_prepack NoQEngine", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mRuntimeError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[12], line 2\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;66;03m# Convert the model to a quantized model\u001b[39;00m\n\u001b[0;32m----> 2\u001b[0m model \u001b[38;5;241m=\u001b[39m quantization\u001b[38;5;241m.\u001b[39mconvert(model, inplace\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mFalse\u001b[39;00m)\n\u001b[1;32m 3\u001b[0m model\u001b[38;5;241m.\u001b[39meval()\n\u001b[1;32m 4\u001b[0m \u001b[38;5;66;03m# Save the model\u001b[39;00m\n", + "File \u001b[0;32m~/mambaforge/envs/vprtempo/lib/python3.11/site-packages/torch/ao/quantization/quantize.py:551\u001b[0m, in \u001b[0;36mconvert\u001b[0;34m(module, mapping, inplace, remove_qconfig, is_reference, convert_custom_config_dict)\u001b[0m\n\u001b[1;32m 549\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m inplace:\n\u001b[1;32m 550\u001b[0m module \u001b[38;5;241m=\u001b[39m copy\u001b[38;5;241m.\u001b[39mdeepcopy(module)\n\u001b[0;32m--> 551\u001b[0m _convert(\n\u001b[1;32m 552\u001b[0m module, mapping, inplace\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m, is_reference\u001b[38;5;241m=\u001b[39mis_reference,\n\u001b[1;32m 553\u001b[0m convert_custom_config_dict\u001b[38;5;241m=\u001b[39mconvert_custom_config_dict)\n\u001b[1;32m 554\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m remove_qconfig:\n\u001b[1;32m 555\u001b[0m _remove_qconfig(module)\n", + "File \u001b[0;32m~/mambaforge/envs/vprtempo/lib/python3.11/site-packages/torch/ao/quantization/quantize.py:589\u001b[0m, in \u001b[0;36m_convert\u001b[0;34m(module, mapping, inplace, is_reference, convert_custom_config_dict)\u001b[0m\n\u001b[1;32m 584\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m name, mod \u001b[38;5;129;01min\u001b[39;00m module\u001b[38;5;241m.\u001b[39mnamed_children():\n\u001b[1;32m 585\u001b[0m \u001b[38;5;66;03m# both fused modules and observed custom modules are\u001b[39;00m\n\u001b[1;32m 586\u001b[0m \u001b[38;5;66;03m# swapped as one unit\u001b[39;00m\n\u001b[1;32m 587\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(mod, _FusedModule) \u001b[38;5;129;01mand\u001b[39;00m \\\n\u001b[1;32m 588\u001b[0m type_before_parametrizations(mod) \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;129;01min\u001b[39;00m custom_module_class_mapping:\n\u001b[0;32m--> 589\u001b[0m _convert(mod, mapping, \u001b[38;5;28;01mTrue\u001b[39;00m, \u001b[38;5;66;03m# inplace\u001b[39;00m\n\u001b[1;32m 590\u001b[0m is_reference, convert_custom_config_dict)\n\u001b[1;32m 591\u001b[0m reassign[name] \u001b[38;5;241m=\u001b[39m swap_module(mod, mapping, custom_module_class_mapping)\n\u001b[1;32m 593\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m key, value \u001b[38;5;129;01min\u001b[39;00m reassign\u001b[38;5;241m.\u001b[39mitems():\n", + "File \u001b[0;32m~/mambaforge/envs/vprtempo/lib/python3.11/site-packages/torch/ao/quantization/quantize.py:591\u001b[0m, in \u001b[0;36m_convert\u001b[0;34m(module, mapping, inplace, is_reference, convert_custom_config_dict)\u001b[0m\n\u001b[1;32m 587\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(mod, _FusedModule) \u001b[38;5;129;01mand\u001b[39;00m \\\n\u001b[1;32m 588\u001b[0m type_before_parametrizations(mod) \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;129;01min\u001b[39;00m custom_module_class_mapping:\n\u001b[1;32m 589\u001b[0m _convert(mod, mapping, \u001b[38;5;28;01mTrue\u001b[39;00m, \u001b[38;5;66;03m# inplace\u001b[39;00m\n\u001b[1;32m 590\u001b[0m is_reference, convert_custom_config_dict)\n\u001b[0;32m--> 591\u001b[0m reassign[name] \u001b[38;5;241m=\u001b[39m swap_module(mod, mapping, custom_module_class_mapping)\n\u001b[1;32m 593\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m key, value \u001b[38;5;129;01min\u001b[39;00m reassign\u001b[38;5;241m.\u001b[39mitems():\n\u001b[1;32m 594\u001b[0m module\u001b[38;5;241m.\u001b[39m_modules[key] \u001b[38;5;241m=\u001b[39m value\n", + "File \u001b[0;32m~/mambaforge/envs/vprtempo/lib/python3.11/site-packages/torch/ao/quantization/quantize.py:624\u001b[0m, in \u001b[0;36mswap_module\u001b[0;34m(mod, mapping, custom_module_class_mapping)\u001b[0m\n\u001b[1;32m 622\u001b[0m new_mod \u001b[38;5;241m=\u001b[39m qmod\u001b[38;5;241m.\u001b[39mfrom_float(mod, weight_qparams)\n\u001b[1;32m 623\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m--> 624\u001b[0m new_mod \u001b[38;5;241m=\u001b[39m qmod\u001b[38;5;241m.\u001b[39mfrom_float(mod)\n\u001b[1;32m 625\u001b[0m swapped \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m\n\u001b[1;32m 627\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m swapped:\n\u001b[1;32m 628\u001b[0m \u001b[38;5;66;03m# Preserve module's pre forward hooks. They'll be called on quantized input\u001b[39;00m\n", + "File \u001b[0;32m~/mambaforge/envs/vprtempo/lib/python3.11/site-packages/torch/ao/nn/quantized/modules/linear.py:277\u001b[0m, in \u001b[0;36mLinear.from_float\u001b[0;34m(cls, mod)\u001b[0m\n\u001b[1;32m 275\u001b[0m \u001b[38;5;28;01massert\u001b[39;00m dtype \u001b[38;5;241m==\u001b[39m torch\u001b[38;5;241m.\u001b[39mqint8, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mWeight observer must have dtype torch.qint8\u001b[39m\u001b[38;5;124m'\u001b[39m\n\u001b[1;32m 276\u001b[0m qweight \u001b[38;5;241m=\u001b[39m _quantize_weight(mod\u001b[38;5;241m.\u001b[39mweight\u001b[38;5;241m.\u001b[39mfloat(), weight_post_process)\n\u001b[0;32m--> 277\u001b[0m qlinear \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mcls\u001b[39m(mod\u001b[38;5;241m.\u001b[39min_features,\n\u001b[1;32m 278\u001b[0m mod\u001b[38;5;241m.\u001b[39mout_features,\n\u001b[1;32m 279\u001b[0m dtype\u001b[38;5;241m=\u001b[39mdtype)\n\u001b[1;32m 280\u001b[0m qlinear\u001b[38;5;241m.\u001b[39mset_weight_bias(qweight, mod\u001b[38;5;241m.\u001b[39mbias)\n\u001b[1;32m 281\u001b[0m qlinear\u001b[38;5;241m.\u001b[39mscale \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mfloat\u001b[39m(act_scale)\n", + "File \u001b[0;32m~/mambaforge/envs/vprtempo/lib/python3.11/site-packages/torch/ao/nn/quantized/modules/linear.py:151\u001b[0m, in \u001b[0;36mLinear.__init__\u001b[0;34m(self, in_features, out_features, bias_, dtype)\u001b[0m\n\u001b[1;32m 148\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 149\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mRuntimeError\u001b[39;00m(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mUnsupported dtype specified for quantized Linear!\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[0;32m--> 151\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_packed_params \u001b[38;5;241m=\u001b[39m LinearPackedParams(dtype)\n\u001b[1;32m 152\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_packed_params\u001b[38;5;241m.\u001b[39mset_weight_bias(qweight, bias)\n\u001b[1;32m 153\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mscale \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m1.0\u001b[39m\n", + "File \u001b[0;32m~/mambaforge/envs/vprtempo/lib/python3.11/site-packages/torch/ao/nn/quantized/modules/linear.py:27\u001b[0m, in \u001b[0;36mLinearPackedParams.__init__\u001b[0;34m(self, dtype)\u001b[0m\n\u001b[1;32m 25\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdtype \u001b[38;5;241m==\u001b[39m torch\u001b[38;5;241m.\u001b[39mfloat16:\n\u001b[1;32m 26\u001b[0m wq \u001b[38;5;241m=\u001b[39m torch\u001b[38;5;241m.\u001b[39mzeros([\u001b[38;5;241m1\u001b[39m, \u001b[38;5;241m1\u001b[39m], dtype\u001b[38;5;241m=\u001b[39mtorch\u001b[38;5;241m.\u001b[39mfloat)\n\u001b[0;32m---> 27\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mset_weight_bias(wq, \u001b[38;5;28;01mNone\u001b[39;00m)\n", + "File \u001b[0;32m~/mambaforge/envs/vprtempo/lib/python3.11/site-packages/torch/ao/nn/quantized/modules/linear.py:32\u001b[0m, in \u001b[0;36mLinearPackedParams.set_weight_bias\u001b[0;34m(self, weight, bias)\u001b[0m\n\u001b[1;32m 29\u001b[0m \u001b[38;5;129m@torch\u001b[39m\u001b[38;5;241m.\u001b[39mjit\u001b[38;5;241m.\u001b[39mexport\n\u001b[1;32m 30\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mset_weight_bias\u001b[39m(\u001b[38;5;28mself\u001b[39m, weight: torch\u001b[38;5;241m.\u001b[39mTensor, bias: Optional[torch\u001b[38;5;241m.\u001b[39mTensor]) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 31\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdtype \u001b[38;5;241m==\u001b[39m torch\u001b[38;5;241m.\u001b[39mqint8:\n\u001b[0;32m---> 32\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_packed_params \u001b[38;5;241m=\u001b[39m torch\u001b[38;5;241m.\u001b[39mops\u001b[38;5;241m.\u001b[39mquantized\u001b[38;5;241m.\u001b[39mlinear_prepack(weight, bias)\n\u001b[1;32m 33\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdtype \u001b[38;5;241m==\u001b[39m torch\u001b[38;5;241m.\u001b[39mfloat16:\n\u001b[1;32m 34\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_packed_params \u001b[38;5;241m=\u001b[39m torch\u001b[38;5;241m.\u001b[39mops\u001b[38;5;241m.\u001b[39mquantized\u001b[38;5;241m.\u001b[39mlinear_prepack_fp16(weight, bias)\n", + "File \u001b[0;32m~/mambaforge/envs/vprtempo/lib/python3.11/site-packages/torch/_ops.py:502\u001b[0m, in \u001b[0;36mOpOverloadPacket.__call__\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 497\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m__call__\u001b[39m(\u001b[38;5;28mself\u001b[39m, \u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs):\n\u001b[1;32m 498\u001b[0m \u001b[38;5;66;03m# overloading __call__ to ensure torch.ops.foo.bar()\u001b[39;00m\n\u001b[1;32m 499\u001b[0m \u001b[38;5;66;03m# is still callable from JIT\u001b[39;00m\n\u001b[1;32m 500\u001b[0m \u001b[38;5;66;03m# We save the function ptr as the `op` attribute on\u001b[39;00m\n\u001b[1;32m 501\u001b[0m \u001b[38;5;66;03m# OpOverloadPacket to access it here.\u001b[39;00m\n\u001b[0;32m--> 502\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_op(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs \u001b[38;5;129;01mor\u001b[39;00m {})\n", + "\u001b[0;31mRuntimeError\u001b[0m: Didn't find engine for operation quantized::linear_prepack NoQEngine" + ] + } + ], "source": [ "# Convert the model to a quantized model\n", "model = quantization.convert(model, inplace=False)\n", @@ -603,71 +425,6 @@ "model.save_model(os.path.join('./models', model_name)) " ] }, - { - "cell_type": "markdown", - "id": "c0d69843", - "metadata": {}, - "source": [ - "## 6. Inferencing\n", - "\n", - "As in the previous tutorial, inferencing with a trained model is quite simple. The only additional thing we need to do is reinitialize the VPRTempo class and convert it to quantized before loading the model. Without pre-quantizing the inference model, state dictionary keys will not match since all the layers and associated components have new parameters such as scale and zero-point.\n", - "\n", - "### 6.1 Add the inference function to the VPRTempo class\n", - "\n", - "We will start by adding in the inference function to VPRTempo. It is similar to the training regime but omits the learning components `calc_stdp` and simply runs through all the layers until it reaches the output." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "a368c532", - "metadata": {}, - "outputs": [], - "source": [ - "%%add_to VPRTempo\n", - "def evaluate(self, test_loader, layers=None):\n", - " \"\"\"\n", - " Run the inferencing model and calculate the accuracy.\n", - "\n", - " :param test_loader: Testing data loader\n", - " :param layers: Layers to pass data through\n", - " \"\"\"\n", - "\n", - " # Initialize the number of correct predictions\n", - " numcorr = 0\n", - " idx = 0\n", - "\n", - " # Initialize the tqdm progress bar\n", - " pbar = tqdm(total=self.number_testing_images,\n", - " desc=\"Running the test network\",\n", - " position=0)\n", - "\n", - " # Run inference for the specified number of timesteps\n", - " for spikes, labels in test_loader:\n", - " # Set device\n", - " spikes, labels = spikes.to(self.device), labels.to(self.device)\n", - " # Pass through previous layers if they exist\n", - " if layers:\n", - " for layer_name in layers:\n", - " layer = getattr(self, layer_name)\n", - " spikes = self.forward(spikes, layer)\n", - " spikes = bn.clamp_spikes(spikes, layer)\n", - "\n", - " # Evaluate if the prediction is correct\n", - " if torch.argmax(spikes.reshape(1, self.number_training_images)) == idx:\n", - " numcorr += 1\n", - "\n", - " # Update the index and progress bar\n", - " idx += 1\n", - " pbar.update(1)\n", - "\n", - " # Close the tqdm progress bar\n", - " pbar.close()\n", - " # Calculate and record the accuracy\n", - " accuracy = round((numcorr/self.number_testing_images)*100,2)\n", - " model.logger.info(\"P@100R: \"+ str(accuracy) + '%')" - ] - }, { "cell_type": "markdown", "id": "5e841fc7", From 88bec3d8b576241f91e33b6f2d1ab10acd3b2c7e Mon Sep 17 00:00:00 2001 From: Adam Hines Date: Mon, 16 Oct 2023 10:58:21 +1000 Subject: [PATCH 22/69] Fixed up tutorial notebooks and main code so that both work --- VPRTempo.py | 5 +- src/dataset.py | 1 + src/nordland.py | 6 +- src/settings.py | 53 ++++++--- tutorials/1_Introduction.ipynb | 178 +++++++----------------------- tutorials/2_Quantization.ipynb | 194 +++++++++++---------------------- 6 files changed, 145 insertions(+), 292 deletions(-) diff --git a/VPRTempo.py b/VPRTempo.py index ebbf7c1..6a51d2e 100644 --- a/VPRTempo.py +++ b/VPRTempo.py @@ -177,7 +177,7 @@ def train_model(self, train_loader, layer, prev_layers=None): torch.cuda.empty_cache() gc.collect() - def evaluate(self, test_loader, layers=None): + def evaluate(self, model, test_loader, layers=None): """ Run the inferencing model and calculate the accuracy. @@ -341,6 +341,7 @@ def run_inference(model, model_name, qconfig): persistent_workers=True) # Set the model to evaluation mode and set configuration model = VPRTempo() + model.model_logger() model.eval() model.qconfig = qconfig @@ -357,7 +358,7 @@ def run_inference(model, model_name, qconfig): layer_names = list(model.layer_dict.keys()) # Use evaluate method for inference accuracy - model.evaluate(test_loader, layers=layer_names) + model.evaluate(model, test_loader, layers=layer_names) if __name__ == "__main__": # Set the number of threads for PyTorch diff --git a/src/dataset.py b/src/dataset.py index c395ae2..84a17ad 100644 --- a/src/dataset.py +++ b/src/dataset.py @@ -168,6 +168,7 @@ def __init__(self, annotations_file, img_dirs, transform=None, target_transform= # Load image labels from each directory, apply the skip and max_samples, and concatenate self.img_labels = [] for img_dir in img_dirs: + img_labels = pd.read_csv(annotations_file) img_labels['file_path'] = img_labels.apply(lambda row: os.path.join(img_dir, row.iloc[0]), axis=1) diff --git a/src/nordland.py b/src/nordland.py index b8fae44..0c804ec 100644 --- a/src/nordland.py +++ b/src/nordland.py @@ -6,7 +6,7 @@ import shutil import zipfile import sys -sys.path.append('./VPRTempo-quant/dataset') +sys.path.append('..//dataset') from os import walk @@ -19,7 +19,7 @@ def natural_keys(text): return [ atoi(c) for c in re.split(r'(\d+)', text) ] # set the base path to the location of the downloaded Nordland datasets - basePath = './dataset/' + basePath = '../dataset/' assert(os.path.isdir(basePath)),"Please set the basePath to the location of the downloaded Nordland datasets" # define the subfolders of the Nordland datasets @@ -29,7 +29,7 @@ def natural_keys(text): "summer_images_train/section1/","summer_images_train/section2/"] # set the desired output folder for unzipping and organization - outDir = '' + outDir = '../dataset/' assert(os.path.isdir(outDir)),"Please set the outDir to the desired output location for unzipping the Nordland datasets" # define output paths for the data diff --git a/src/settings.py b/src/settings.py index b6ceea6..14b9912 100644 --- a/src/settings.py +++ b/src/settings.py @@ -10,9 +10,9 @@ def configure(model): Configure the model """ model.dataset = 'nordland' # Dataset name - model.dataset_file = '../dataset/'+model.dataset+'.csv' # Dataset file (must be PyTorch Dataset ) - model.trainingPath = '../dataset/' # Path to training images - model.testPath = '../dataset/' # Path to testing images + model.dataset_file = './dataset/'+model.dataset+'.csv' # Dataset file (must be PyTorch Dataset ) + model.trainingPath = './dataset/' # Path to training images + model.testPath = './dataset/' # Path to testing images model.number_modules = 1 # Number of expert modules (currently not implemented) model.number_training_images = 500 # Number of training images model.number_testing_images = 500 # Number of testing images @@ -22,6 +22,26 @@ def configure(model): model.validation = True # Validation (maybe deprecated for now?) model.log = True # Log to console + # Set default paths if the provided paths are not valid directories + if not os.path.isdir(getattr(model, 'trainingPath', '')): + model.trainingPath = '../dataset/' + + if not os.path.isdir(getattr(model, 'testPath', '')): + model.testPath = '../dataset/' + + # Now, check if the dataset_file exists based on the determined paths + if not os.path.exists(os.path.join('./dataset', model.dataset + '.csv')): + model.dataset_file = os.path.join('../dataset', model.dataset + '.csv') + else: + model.dataset_file = os.path.join('./dataset', model.dataset + '.csv') + + # Now, check the conditions using assert statements + assert (len(model.dataset) != 0), "Dataset not defined, see README.md for details on setting up images" + assert (os.path.isdir(model.trainingPath)), "Training path not set or path does not exist, specify for model.trainingPath" + assert (os.path.isdir(model.testPath)), "Test path not set or path does not exist, specify for model.testPath" + assert (os.path.isdir(model.trainingPath + model.locations[0])), "Images must be organized into folders based on locations, see README.md for details" + assert (os.path.isdir(model.testPath + model.test_locations[0])), "Images must be organized into folders based on locations, see README.md for details" + # Output the training and testing directories model.training_dirs = [] for n in model.locations: @@ -29,14 +49,7 @@ def configure(model): model.testing_dirs = [] for n in model.test_locations: model.testing_dirs.append(os.path.join(model.testPath,n)) - - # Check that the dataset is defined properly - assert (len(model.dataset) != 0), "Dataset not defined, see README.md for details on setting up images" - assert (os.path.isdir(model.trainingPath)), "Training path not set or path does not exist, specify for model.trainingPath" - assert (os.path.isdir(model.testPath)), "Test path not set or path does not exist, specify for model.testPath" - assert (os.path.isdir(model.trainingPath + model.locations[0])), "Images must be organized into folders based on locations, see README.md for details" - assert (os.path.isdir(model.testPath + model.test_locations[0])), "Images must be organized into folders based on locations, see README.md for details" - + # Set the model parameters model.epoch = 4 # Number of epochs model.patches = 7 # Number of patches @@ -61,12 +74,14 @@ def configure(model): # Determine the total number of timesteps across training images, modules, and location repeats model.T = int((model.number_training_images / model.number_modules) * model.location_repeat) + def image_csv(model): """ Load the image names from the CSV file and filter them """ + # Load the image names from the CSV file - with open(os.path.join('../dataset', model.dataset + '.csv'), mode='r', newline='', encoding='utf-8') as file: + with open(model.dataset_file, mode='r', newline='', encoding='utf-8') as file: reader = csv.reader(file) model.imageNames = [row[0] for row in reader] # Remove the header @@ -86,10 +101,16 @@ def model_logger(model): """ Configure the model logger """ - # Create the output folder - now = datetime.now() - model.output_folder = './output/' + now.strftime("%d%m%y-%H-%M-%S") - os.mkdir(model.output_folder) + try: + # Create the output folder + now = datetime.now() + model.output_folder = '../output/' + now.strftime("%d%m%y-%H-%M-%S") + os.mkdir(model.output_folder) + except: + # Create the output folder + now = datetime.now() + model.output_folder = './output/' + now.strftime("%d%m%y-%H-%M-%S") + os.mkdir(model.output_folder) # Create the logger model.logger = logging.getLogger("VPRTempo") if (model.logger.hasHandlers()): diff --git a/tutorials/1_Introduction.ipynb b/tutorials/1_Introduction.ipynb index e6a7adb..d57c263 100644 --- a/tutorials/1_Introduction.ipynb +++ b/tutorials/1_Introduction.ipynb @@ -55,12 +55,24 @@ "source": [ "### 1.2 Import modules\n", "\n", - "Once we have downloaded the dataset, we'll start by importing all the necessary modules." + "Once we have downloaded the dataset, we'll start by importing all the necessary modules.\n", + "\n", + "For this tutorial, we use [Jupyter Dynamic Classes](https://alexhagen.github.io/jdc/) so if not already installed please install. " ] }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, + "id": "ca1aa5e3-4537-4e1e-8629-bb134e749707", + "metadata": {}, + "outputs": [], + "source": [ + "!pip install jdc" + ] + }, + { + "cell_type": "code", + "execution_count": null, "id": "d9caff25", "metadata": {}, "outputs": [], @@ -133,7 +145,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "id": "99b5130c", "metadata": {}, "outputs": [], @@ -195,7 +207,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "id": "dabd3c7d", "metadata": {}, "outputs": [], @@ -237,7 +249,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "id": "623595aa", "metadata": {}, "outputs": [], @@ -306,7 +318,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "id": "68a22d64", "metadata": {}, "outputs": [], @@ -342,7 +354,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": null, "id": "e99f6d13", "metadata": {}, "outputs": [], @@ -385,46 +397,13 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": null, "id": "55aa0e9b", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Succesfully added feature_layer\n", - "Succesfully added output_layer\n", - "VPRTempo succesfully initialized\n" - ] - }, - { - "data": { - "text/plain": [ - "VPRTempo(\n", - " (quant): QuantStub()\n", - " (dequant): DeQuantStub()\n", - " (add): FloatFunctional(\n", - " (activation_post_process): Identity()\n", - " )\n", - " (feature_layer): SNNLayer(\n", - " (exc): Linear(in_features=784, out_features=1568, bias=False)\n", - " (inh): Linear(in_features=784, out_features=1568, bias=False)\n", - " )\n", - " (output_layer): SNNLayer(\n", - " (exc): Linear(in_features=1568, out_features=500, bias=False)\n", - " (inh): Linear(in_features=1568, out_features=500, bias=False)\n", - " )\n", - ")" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "model = VPRTempo()\n", + "model_logger(model)\n", "model.train()" ] }, @@ -440,18 +419,10 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "id": "dc786b3d", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "VPRTempo78415685001.pth\n" - ] - } - ], + "outputs": [], "source": [ "def generate_model_name(model):\n", " \"\"\"\n", @@ -485,7 +456,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": null, "id": "6714bc35", "metadata": {}, "outputs": [], @@ -524,53 +495,10 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": null, "id": "0075638b", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Training layer: feature_layer\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Training : 100%|████████████████████████████| 4000/4000 [01:13<00:00, 54.67it/s]\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Training layer: output_layer\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Training : 100%|████████████████████████████| 4000/4000 [00:55<00:00, 72.47it/s]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "All layers trained succesfully\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], + "outputs": [], "source": [ "# Keep track of trained layers to pass data through them\n", "trained_layers = [] \n", @@ -600,7 +528,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": null, "id": "53ededaa", "metadata": {}, "outputs": [], @@ -627,13 +555,13 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": null, "id": "a368c532", "metadata": {}, "outputs": [], "source": [ "%%add_to VPRTempo\n", - "def evaluate(self, test_loader, layers=None):\n", + "def evaluate(self, model, test_loader, layers=None):\n", " \"\"\"\n", " Run the inferencing model and calculate the accuracy.\n", "\n", @@ -688,7 +616,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": null, "id": "f4a1adc8", "metadata": {}, "outputs": [], @@ -720,23 +648,14 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": null, "id": "30d51e96", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Succesfully added feature_layer\n", - "Succesfully added output_layer\n", - "VPRTempo succesfully initialized\n" - ] - } - ], + "outputs": [], "source": [ "# Set the model to evaluation mode and set configuration\n", "model = VPRTempo()\n", + "model.model_logger()\n", "model.eval()\n", "\n", "# Load the model\n", @@ -758,34 +677,13 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": null, "id": "37aa84e1", "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Running the test network: 100%|██████████████| 500/500 [00:02<00:00, 196.29it/s]\n" - ] - }, - { - "ename": "AttributeError", - "evalue": "'VPRTempo' object has no attribute 'logger'", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[0;32mIn[19], line 2\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;66;03m# Use evaluate method for inference accuracy\u001b[39;00m\n\u001b[0;32m----> 2\u001b[0m model\u001b[38;5;241m.\u001b[39mevaluate(test_loader, layers\u001b[38;5;241m=\u001b[39mlayer_names)\n", - "File \u001b[0;32m:41\u001b[0m, in \u001b[0;36mevaluate\u001b[0;34m(self, test_loader, layers)\u001b[0m\n", - "File \u001b[0;32m~/mambaforge/envs/vprtempo/lib/python3.11/site-packages/torch/nn/modules/module.py:1614\u001b[0m, in \u001b[0;36mModule.__getattr__\u001b[0;34m(self, name)\u001b[0m\n\u001b[1;32m 1612\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m name \u001b[38;5;129;01min\u001b[39;00m modules:\n\u001b[1;32m 1613\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m modules[name]\n\u001b[0;32m-> 1614\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mAttributeError\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;132;01m{}\u001b[39;00m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m object has no attribute \u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;132;01m{}\u001b[39;00m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;241m.\u001b[39mformat(\n\u001b[1;32m 1615\u001b[0m \u001b[38;5;28mtype\u001b[39m(\u001b[38;5;28mself\u001b[39m)\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__name__\u001b[39m, name))\n", - "\u001b[0;31mAttributeError\u001b[0m: 'VPRTempo' object has no attribute 'logger'" - ] - } - ], + "outputs": [], "source": [ "# Use evaluate method for inference accuracy\n", - "model.evaluate(test_loader, layers=layer_names)" + "model.evaluate(model, test_loader, layers=layer_names)" ] }, { @@ -828,7 +726,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.0" + "version": "3.11.4" } }, "nbformat": 4, diff --git a/tutorials/2_Quantization.ipynb b/tutorials/2_Quantization.ipynb index e547383..790dff6 100644 --- a/tutorials/2_Quantization.ipynb +++ b/tutorials/2_Quantization.ipynb @@ -53,12 +53,24 @@ "source": [ "### 1.2 Import modules\n", "\n", - "Once we have downloaded the dataset, we'll start by importing all the necessary modules." + "Once we have downloaded the dataset, we'll start by importing all the necessary modules.\n", + "\n", + "For this tutorial, we use [Jupyter Dynamic Classes](https://alexhagen.github.io/jdc/) so if not already installed please install. " ] }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, + "id": "e7bf4ad2-755b-40f1-8bd3-5b98376ed5df", + "metadata": {}, + "outputs": [], + "source": [ + "!pip install jdc" + ] + }, + { + "cell_type": "code", + "execution_count": null, "id": "d9caff25", "metadata": {}, "outputs": [], @@ -128,7 +140,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "id": "99b5130c", "metadata": {}, "outputs": [], @@ -149,18 +161,10 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": null, "id": "dc786b3d", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "VPRTempo78415685001Quantized.pth\n" - ] - } - ], + "outputs": [], "source": [ "def generate_model_name(model):\n", " \"\"\"\n", @@ -195,7 +199,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": null, "id": "6714bc35", "metadata": {}, "outputs": [], @@ -232,7 +236,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "id": "36244802", "metadata": {}, "outputs": [], @@ -253,7 +257,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": null, "id": "a884ad96", "metadata": {}, "outputs": [], @@ -274,19 +278,10 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": null, "id": "087f3b36", "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Users/adam/mambaforge/envs/vprtempo/lib/python3.11/site-packages/torch/ao/quantization/observer.py:214: UserWarning: Please use quant_min and quant_max to specify the range for observers. reduce_range will be deprecated in a future release of PyTorch.\n", - " warnings.warn(\n" - ] - } - ], + "outputs": [], "source": [ "# Apply quantization configurations to the model\n", "model = quantization.prepare_qat(model, inplace=False)" @@ -316,53 +311,10 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": null, "id": "0075638b", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Training layer: feature_layer\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Training : 100%|████████████████████████████| 4000/4000 [01:28<00:00, 45.19it/s]\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Training layer: output_layer\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Training : 100%|████████████████████████████| 4000/4000 [01:20<00:00, 49.89it/s]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "All layers trained succesfully\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], + "outputs": [], "source": [ "# Keep track of trained layers to pass data through them\n", "trained_layers = [] \n", @@ -392,69 +344,16 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": null, "id": "53ededaa", "metadata": {}, - "outputs": [ - { - "ename": "RuntimeError", - "evalue": "Didn't find engine for operation quantized::linear_prepack NoQEngine", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mRuntimeError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[0;32mIn[12], line 2\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;66;03m# Convert the model to a quantized model\u001b[39;00m\n\u001b[0;32m----> 2\u001b[0m model \u001b[38;5;241m=\u001b[39m quantization\u001b[38;5;241m.\u001b[39mconvert(model, inplace\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mFalse\u001b[39;00m)\n\u001b[1;32m 3\u001b[0m model\u001b[38;5;241m.\u001b[39meval()\n\u001b[1;32m 4\u001b[0m \u001b[38;5;66;03m# Save the model\u001b[39;00m\n", - "File \u001b[0;32m~/mambaforge/envs/vprtempo/lib/python3.11/site-packages/torch/ao/quantization/quantize.py:551\u001b[0m, in \u001b[0;36mconvert\u001b[0;34m(module, mapping, inplace, remove_qconfig, is_reference, convert_custom_config_dict)\u001b[0m\n\u001b[1;32m 549\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m inplace:\n\u001b[1;32m 550\u001b[0m module \u001b[38;5;241m=\u001b[39m copy\u001b[38;5;241m.\u001b[39mdeepcopy(module)\n\u001b[0;32m--> 551\u001b[0m _convert(\n\u001b[1;32m 552\u001b[0m module, mapping, inplace\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m, is_reference\u001b[38;5;241m=\u001b[39mis_reference,\n\u001b[1;32m 553\u001b[0m convert_custom_config_dict\u001b[38;5;241m=\u001b[39mconvert_custom_config_dict)\n\u001b[1;32m 554\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m remove_qconfig:\n\u001b[1;32m 555\u001b[0m _remove_qconfig(module)\n", - "File \u001b[0;32m~/mambaforge/envs/vprtempo/lib/python3.11/site-packages/torch/ao/quantization/quantize.py:589\u001b[0m, in \u001b[0;36m_convert\u001b[0;34m(module, mapping, inplace, is_reference, convert_custom_config_dict)\u001b[0m\n\u001b[1;32m 584\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m name, mod \u001b[38;5;129;01min\u001b[39;00m module\u001b[38;5;241m.\u001b[39mnamed_children():\n\u001b[1;32m 585\u001b[0m \u001b[38;5;66;03m# both fused modules and observed custom modules are\u001b[39;00m\n\u001b[1;32m 586\u001b[0m \u001b[38;5;66;03m# swapped as one unit\u001b[39;00m\n\u001b[1;32m 587\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(mod, _FusedModule) \u001b[38;5;129;01mand\u001b[39;00m \\\n\u001b[1;32m 588\u001b[0m type_before_parametrizations(mod) \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;129;01min\u001b[39;00m custom_module_class_mapping:\n\u001b[0;32m--> 589\u001b[0m _convert(mod, mapping, \u001b[38;5;28;01mTrue\u001b[39;00m, \u001b[38;5;66;03m# inplace\u001b[39;00m\n\u001b[1;32m 590\u001b[0m is_reference, convert_custom_config_dict)\n\u001b[1;32m 591\u001b[0m reassign[name] \u001b[38;5;241m=\u001b[39m swap_module(mod, mapping, custom_module_class_mapping)\n\u001b[1;32m 593\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m key, value \u001b[38;5;129;01min\u001b[39;00m reassign\u001b[38;5;241m.\u001b[39mitems():\n", - "File \u001b[0;32m~/mambaforge/envs/vprtempo/lib/python3.11/site-packages/torch/ao/quantization/quantize.py:591\u001b[0m, in \u001b[0;36m_convert\u001b[0;34m(module, mapping, inplace, is_reference, convert_custom_config_dict)\u001b[0m\n\u001b[1;32m 587\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(mod, _FusedModule) \u001b[38;5;129;01mand\u001b[39;00m \\\n\u001b[1;32m 588\u001b[0m type_before_parametrizations(mod) \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;129;01min\u001b[39;00m custom_module_class_mapping:\n\u001b[1;32m 589\u001b[0m _convert(mod, mapping, \u001b[38;5;28;01mTrue\u001b[39;00m, \u001b[38;5;66;03m# inplace\u001b[39;00m\n\u001b[1;32m 590\u001b[0m is_reference, convert_custom_config_dict)\n\u001b[0;32m--> 591\u001b[0m reassign[name] \u001b[38;5;241m=\u001b[39m swap_module(mod, mapping, custom_module_class_mapping)\n\u001b[1;32m 593\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m key, value \u001b[38;5;129;01min\u001b[39;00m reassign\u001b[38;5;241m.\u001b[39mitems():\n\u001b[1;32m 594\u001b[0m module\u001b[38;5;241m.\u001b[39m_modules[key] \u001b[38;5;241m=\u001b[39m value\n", - "File \u001b[0;32m~/mambaforge/envs/vprtempo/lib/python3.11/site-packages/torch/ao/quantization/quantize.py:624\u001b[0m, in \u001b[0;36mswap_module\u001b[0;34m(mod, mapping, custom_module_class_mapping)\u001b[0m\n\u001b[1;32m 622\u001b[0m new_mod \u001b[38;5;241m=\u001b[39m qmod\u001b[38;5;241m.\u001b[39mfrom_float(mod, weight_qparams)\n\u001b[1;32m 623\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m--> 624\u001b[0m new_mod \u001b[38;5;241m=\u001b[39m qmod\u001b[38;5;241m.\u001b[39mfrom_float(mod)\n\u001b[1;32m 625\u001b[0m swapped \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m\n\u001b[1;32m 627\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m swapped:\n\u001b[1;32m 628\u001b[0m \u001b[38;5;66;03m# Preserve module's pre forward hooks. They'll be called on quantized input\u001b[39;00m\n", - "File \u001b[0;32m~/mambaforge/envs/vprtempo/lib/python3.11/site-packages/torch/ao/nn/quantized/modules/linear.py:277\u001b[0m, in \u001b[0;36mLinear.from_float\u001b[0;34m(cls, mod)\u001b[0m\n\u001b[1;32m 275\u001b[0m \u001b[38;5;28;01massert\u001b[39;00m dtype \u001b[38;5;241m==\u001b[39m torch\u001b[38;5;241m.\u001b[39mqint8, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mWeight observer must have dtype torch.qint8\u001b[39m\u001b[38;5;124m'\u001b[39m\n\u001b[1;32m 276\u001b[0m qweight \u001b[38;5;241m=\u001b[39m _quantize_weight(mod\u001b[38;5;241m.\u001b[39mweight\u001b[38;5;241m.\u001b[39mfloat(), weight_post_process)\n\u001b[0;32m--> 277\u001b[0m qlinear \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mcls\u001b[39m(mod\u001b[38;5;241m.\u001b[39min_features,\n\u001b[1;32m 278\u001b[0m mod\u001b[38;5;241m.\u001b[39mout_features,\n\u001b[1;32m 279\u001b[0m dtype\u001b[38;5;241m=\u001b[39mdtype)\n\u001b[1;32m 280\u001b[0m qlinear\u001b[38;5;241m.\u001b[39mset_weight_bias(qweight, mod\u001b[38;5;241m.\u001b[39mbias)\n\u001b[1;32m 281\u001b[0m qlinear\u001b[38;5;241m.\u001b[39mscale \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mfloat\u001b[39m(act_scale)\n", - "File \u001b[0;32m~/mambaforge/envs/vprtempo/lib/python3.11/site-packages/torch/ao/nn/quantized/modules/linear.py:151\u001b[0m, in \u001b[0;36mLinear.__init__\u001b[0;34m(self, in_features, out_features, bias_, dtype)\u001b[0m\n\u001b[1;32m 148\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 149\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mRuntimeError\u001b[39;00m(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mUnsupported dtype specified for quantized Linear!\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[0;32m--> 151\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_packed_params \u001b[38;5;241m=\u001b[39m LinearPackedParams(dtype)\n\u001b[1;32m 152\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_packed_params\u001b[38;5;241m.\u001b[39mset_weight_bias(qweight, bias)\n\u001b[1;32m 153\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mscale \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m1.0\u001b[39m\n", - "File \u001b[0;32m~/mambaforge/envs/vprtempo/lib/python3.11/site-packages/torch/ao/nn/quantized/modules/linear.py:27\u001b[0m, in \u001b[0;36mLinearPackedParams.__init__\u001b[0;34m(self, dtype)\u001b[0m\n\u001b[1;32m 25\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdtype \u001b[38;5;241m==\u001b[39m torch\u001b[38;5;241m.\u001b[39mfloat16:\n\u001b[1;32m 26\u001b[0m wq \u001b[38;5;241m=\u001b[39m torch\u001b[38;5;241m.\u001b[39mzeros([\u001b[38;5;241m1\u001b[39m, \u001b[38;5;241m1\u001b[39m], dtype\u001b[38;5;241m=\u001b[39mtorch\u001b[38;5;241m.\u001b[39mfloat)\n\u001b[0;32m---> 27\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mset_weight_bias(wq, \u001b[38;5;28;01mNone\u001b[39;00m)\n", - "File \u001b[0;32m~/mambaforge/envs/vprtempo/lib/python3.11/site-packages/torch/ao/nn/quantized/modules/linear.py:32\u001b[0m, in \u001b[0;36mLinearPackedParams.set_weight_bias\u001b[0;34m(self, weight, bias)\u001b[0m\n\u001b[1;32m 29\u001b[0m \u001b[38;5;129m@torch\u001b[39m\u001b[38;5;241m.\u001b[39mjit\u001b[38;5;241m.\u001b[39mexport\n\u001b[1;32m 30\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mset_weight_bias\u001b[39m(\u001b[38;5;28mself\u001b[39m, weight: torch\u001b[38;5;241m.\u001b[39mTensor, bias: Optional[torch\u001b[38;5;241m.\u001b[39mTensor]) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 31\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdtype \u001b[38;5;241m==\u001b[39m torch\u001b[38;5;241m.\u001b[39mqint8:\n\u001b[0;32m---> 32\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_packed_params \u001b[38;5;241m=\u001b[39m torch\u001b[38;5;241m.\u001b[39mops\u001b[38;5;241m.\u001b[39mquantized\u001b[38;5;241m.\u001b[39mlinear_prepack(weight, bias)\n\u001b[1;32m 33\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdtype \u001b[38;5;241m==\u001b[39m torch\u001b[38;5;241m.\u001b[39mfloat16:\n\u001b[1;32m 34\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_packed_params \u001b[38;5;241m=\u001b[39m torch\u001b[38;5;241m.\u001b[39mops\u001b[38;5;241m.\u001b[39mquantized\u001b[38;5;241m.\u001b[39mlinear_prepack_fp16(weight, bias)\n", - "File \u001b[0;32m~/mambaforge/envs/vprtempo/lib/python3.11/site-packages/torch/_ops.py:502\u001b[0m, in \u001b[0;36mOpOverloadPacket.__call__\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 497\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m__call__\u001b[39m(\u001b[38;5;28mself\u001b[39m, \u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs):\n\u001b[1;32m 498\u001b[0m \u001b[38;5;66;03m# overloading __call__ to ensure torch.ops.foo.bar()\u001b[39;00m\n\u001b[1;32m 499\u001b[0m \u001b[38;5;66;03m# is still callable from JIT\u001b[39;00m\n\u001b[1;32m 500\u001b[0m \u001b[38;5;66;03m# We save the function ptr as the `op` attribute on\u001b[39;00m\n\u001b[1;32m 501\u001b[0m \u001b[38;5;66;03m# OpOverloadPacket to access it here.\u001b[39;00m\n\u001b[0;32m--> 502\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_op(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs \u001b[38;5;129;01mor\u001b[39;00m {})\n", - "\u001b[0;31mRuntimeError\u001b[0m: Didn't find engine for operation quantized::linear_prepack NoQEngine" - ] - } - ], + "outputs": [], "source": [ "# Convert the model to a quantized model\n", "model = quantization.convert(model, inplace=False)\n", "model.eval()\n", "# Save the model\n", - "model.save_model(os.path.join('./models', model_name)) " - ] - }, - { - "cell_type": "markdown", - "id": "5e841fc7", - "metadata": {}, - "source": [ - "### 6.2 Define the inferencing DataLoader\n", - "\n", - "The only difference between the training and testing DataLoader is the directory with which it will import images from." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "f4a1adc8", - "metadata": {}, - "outputs": [], - "source": [ - "# Initialize the image transforms and datasets\n", - "image_transform = ProcessImage(model.dims, model.patches)\n", - "test_dataset = CustomImageDataset(annotations_file=model.dataset_file, \n", - " img_dirs=model.testing_dirs,\n", - " transform=image_transform,\n", - " skip=model.filter,\n", - " max_samples=model.number_testing_images)\n", - "# Initialize the data loader\n", - "test_loader = DataLoader(test_dataset, \n", - " batch_size=1, \n", - " shuffle=False,\n", - " num_workers=8,\n", - " persistent_workers=True)" + "model.save_model(os.path.join('../models', model_name)) " ] }, { @@ -476,6 +375,7 @@ "source": [ "# Set the model to evaluation mode and set configuration\n", "model = VPRTempo()\n", + "model.model_logger()\n", "model.eval()\n", "model.qconfig = qconfig\n", "\n", @@ -486,12 +386,44 @@ "model = quantization.prepare(model, inplace=False)\n", "model = quantization.convert(model, inplace=False)\n", "# Load the model\n", - "model.load_model(os.path.join('./models', model_name))\n", + "model.load_model(os.path.join('../models', model_name))\n", "\n", "# Retrieve layer names for inference\n", "layer_names = list(model.layer_dict.keys())" ] }, + { + "cell_type": "markdown", + "id": "5e841fc7", + "metadata": {}, + "source": [ + "### 6.2 Define the inferencing DataLoader\n", + "\n", + "The only difference between the training and testing DataLoader is the directory with which it will import images from." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "f4a1adc8", + "metadata": {}, + "outputs": [], + "source": [ + "# Initialize the image transforms and datasets\n", + "image_transform = ProcessImage(model.dims, model.patches)\n", + "test_dataset = CustomImageDataset(annotations_file=model.dataset_file, \n", + " img_dirs=model.testing_dirs,\n", + " transform=image_transform,\n", + " skip=model.filter,\n", + " max_samples=model.number_testing_images)\n", + "# Initialize the data loader\n", + "test_loader = DataLoader(test_dataset, \n", + " batch_size=1, \n", + " shuffle=False,\n", + " num_workers=8,\n", + " persistent_workers=True)" + ] + }, { "cell_type": "markdown", "id": "472d24e8", @@ -510,7 +442,7 @@ "outputs": [], "source": [ "# Use evaluate method for inference accuracy\n", - "model.evaluate(test_loader, layers=layer_names)" + "model.evaluate(model, test_loader, layers=layer_names)" ] }, { @@ -553,7 +485,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.0" + "version": "3.11.4" } }, "nbformat": 4, From 7cae5afdd8822b6670da8695d6c84fe594518a5d Mon Sep 17 00:00:00 2001 From: Adam Hines Date: Fri, 3 Nov 2023 15:03:26 +1000 Subject: [PATCH 23/69] Added in basic tutorial, changed learning annealment, and removed constant input --- .gitignore | 6 +- VPRTempo.py | 10 +- dataset/nordland.csv | 50387 +++++++++++------------- models/.gitkeep | 0 src/settings.py | 2 +- tutorials/0_BasicDemo.ipynb | 344 + tutorials/mats/0_basicdemo/summer.png | Bin 0 -> 295003 bytes 7 files changed, 23145 insertions(+), 27604 deletions(-) delete mode 100644 models/.gitkeep create mode 100644 tutorials/0_BasicDemo.ipynb create mode 100755 tutorials/mats/0_basicdemo/summer.png diff --git a/.gitignore b/.gitignore index b6d574a..46fe2eb 100644 --- a/.gitignore +++ b/.gitignore @@ -1,7 +1,5 @@ __pycache__/ .ipynb_checkpoints/ src/__pycache__/ -dataset/fall -dataset/winter -dataset/summer -dataset/spring \ No newline at end of file +dataset/ +models/ diff --git a/VPRTempo.py b/VPRTempo.py index 6a51d2e..ab49e54 100644 --- a/VPRTempo.py +++ b/VPRTempo.py @@ -75,7 +75,6 @@ def __init__(self): fire_rate=[0.2, 0.9], ip_rate=0.15, stdp_rate=0.005, - const_inp=[0, 0.1], p=[0.1, 0.5] ) self.add_layer( @@ -132,17 +131,16 @@ def train_model(self, train_loader, layer, prev_layers=None): """ # Initialize the tqdm progress bar - pbar = tqdm(total=int(self.T * self.epoch), + pbar = tqdm(total=int(self.T), desc="Training ", position=0) # Initialize the learning rates for each layer (used for annealment) init_itp = layer.eta_ip.detach() init_stdp = layer.eta_stdp.detach() - + mod = 0 # Used to determine the learning rate annealment, resets at each epoch # Run training for the specified number of epochs for epoch in range(self.epoch): - mod = 0 # Used to determine the learning rate annealment, resets at each epoch # Run training for the specified number of timesteps for spikes, labels in train_loader: spikes, labels = spikes.to(self.device), labels.to(self.device) @@ -253,7 +251,7 @@ def generate_model_name(model): """ Generate the model name based on its parameters. """ - return ("VPRTempo" + + return ("VPRTempoQuant" + str(model.input) + str(model.feature) + str(model.output) + @@ -289,7 +287,7 @@ def train_new_model(model, model_name, qconfig): # Initialize the data loader train_loader = DataLoader(train_dataset, batch_size=1, - shuffle=False, + shuffle=True, num_workers=8, persistent_workers=True) # Set the model to training mode and move to device diff --git a/dataset/nordland.csv b/dataset/nordland.csv index 5fa0648..9e031de 100644 --- a/dataset/nordland.csv +++ b/dataset/nordland.csv @@ -1,27593 +1,22794 @@ -Image name,index -images-00202.png,0 -images-00203.png,1 -images-00204.png,2 -images-00205.png,3 -images-00206.png,4 -images-00207.png,5 -images-00208.png,6 -images-00209.png,7 -images-00210.png,8 -images-00211.png,9 -images-00212.png,10 -images-00213.png,11 -images-00214.png,12 -images-00215.png,13 -images-00216.png,14 -images-00217.png,15 -images-00218.png,16 -images-00219.png,17 -images-00220.png,18 -images-00221.png,19 -images-00222.png,20 -images-00223.png,21 -images-00224.png,22 -images-00225.png,23 -images-00226.png,24 -images-00227.png,25 -images-00228.png,26 -images-00229.png,27 -images-00230.png,28 -images-00231.png,29 -images-00232.png,30 -images-00233.png,31 -images-00234.png,32 -images-00235.png,33 -images-00236.png,34 -images-00237.png,35 -images-00238.png,36 -images-00239.png,37 -images-00240.png,38 -images-00241.png,39 -images-00242.png,40 -images-00243.png,41 -images-00244.png,42 -images-00245.png,43 -images-00246.png,44 -images-00247.png,45 -images-00248.png,46 -images-00249.png,47 -images-00250.png,48 -images-00251.png,49 -images-00252.png,50 -images-00253.png,51 -images-00254.png,52 -images-00255.png,53 -images-00256.png,54 -images-00257.png,55 -images-00258.png,56 -images-00259.png,57 -images-00260.png,58 -images-00261.png,59 -images-00262.png,60 -images-00263.png,61 -images-00264.png,62 -images-00265.png,63 -images-00266.png,64 -images-00267.png,65 -images-00268.png,66 -images-00269.png,67 -images-00270.png,68 -images-00271.png,69 -images-00272.png,70 -images-00273.png,71 -images-00274.png,72 -images-00275.png,73 -images-00276.png,74 -images-00277.png,75 -images-00278.png,76 -images-00279.png,77 -images-00280.png,78 -images-00281.png,79 -images-00282.png,80 -images-00283.png,81 -images-00284.png,82 -images-00285.png,83 -images-00286.png,84 -images-00287.png,85 -images-00288.png,86 -images-00289.png,87 -images-00290.png,88 -images-00291.png,89 -images-00292.png,90 -images-00293.png,91 -images-00294.png,92 -images-00295.png,93 -images-00296.png,94 -images-00297.png,95 -images-00298.png,96 -images-00299.png,97 -images-00300.png,98 -images-00301.png,99 -images-00302.png,100 -images-00303.png,101 -images-00304.png,102 -images-00305.png,103 -images-00306.png,104 -images-00307.png,105 -images-00308.png,106 -images-00309.png,107 -images-00310.png,108 -images-00311.png,109 -images-00312.png,110 -images-00313.png,111 -images-00314.png,112 -images-00315.png,113 -images-00316.png,114 -images-00317.png,115 -images-00318.png,116 -images-00319.png,117 -images-00320.png,118 -images-00321.png,119 -images-00322.png,120 -images-00323.png,121 -images-00324.png,122 -images-00325.png,123 -images-00326.png,124 -images-00327.png,125 -images-00328.png,126 -images-00329.png,127 -images-00330.png,128 -images-00331.png,129 -images-00332.png,130 -images-00333.png,131 -images-00334.png,132 -images-00335.png,133 -images-00336.png,134 -images-00337.png,135 -images-00338.png,136 -images-00339.png,137 -images-00340.png,138 -images-00341.png,139 -images-00342.png,140 -images-00343.png,141 -images-00344.png,142 -images-00345.png,143 -images-00346.png,144 -images-00347.png,145 -images-00348.png,146 -images-00349.png,147 -images-00350.png,148 -images-00351.png,149 -images-00352.png,150 -images-00353.png,151 -images-00354.png,152 -images-00355.png,153 -images-00356.png,154 -images-00357.png,155 -images-00358.png,156 -images-00359.png,157 -images-00360.png,158 -images-00361.png,159 -images-00362.png,160 -images-00363.png,161 -images-00364.png,162 -images-00365.png,163 -images-00366.png,164 -images-00367.png,165 -images-00368.png,166 -images-00369.png,167 -images-00370.png,168 -images-00371.png,169 -images-00372.png,170 -images-00373.png,171 -images-00374.png,172 -images-00375.png,173 -images-00376.png,174 -images-00377.png,175 -images-00378.png,176 -images-00379.png,177 -images-00380.png,178 -images-00381.png,179 -images-00382.png,180 -images-00383.png,181 -images-00384.png,182 -images-00385.png,183 -images-00386.png,184 -images-00387.png,185 -images-00388.png,186 -images-00389.png,187 -images-00390.png,188 -images-00391.png,189 -images-00392.png,190 -images-00393.png,191 -images-00394.png,192 -images-00395.png,193 -images-00396.png,194 -images-00397.png,195 -images-00398.png,196 -images-00399.png,197 -images-00400.png,198 -images-00401.png,199 -images-00402.png,200 -images-00403.png,201 -images-00404.png,202 -images-00405.png,203 -images-00406.png,204 -images-00407.png,205 -images-00408.png,206 -images-00409.png,207 -images-00410.png,208 -images-00411.png,209 -images-00412.png,210 -images-00413.png,211 -images-00414.png,212 -images-00415.png,213 -images-00416.png,214 -images-00417.png,215 -images-00418.png,216 -images-00419.png,217 -images-00420.png,218 -images-00421.png,219 -images-00422.png,220 -images-00423.png,221 -images-00424.png,222 -images-00425.png,223 -images-00426.png,224 -images-00427.png,225 -images-00428.png,226 -images-00429.png,227 -images-00430.png,228 -images-00431.png,229 -images-00432.png,230 -images-00433.png,231 -images-00434.png,232 -images-00435.png,233 -images-00436.png,234 -images-00437.png,235 -images-00438.png,236 -images-00439.png,237 -images-00440.png,238 -images-00441.png,239 -images-00442.png,240 -images-00443.png,241 -images-00444.png,242 -images-00445.png,243 -images-00446.png,244 -images-00447.png,245 -images-00448.png,246 -images-00449.png,247 -images-00450.png,248 -images-00451.png,249 -images-00452.png,250 -images-00453.png,251 -images-00454.png,252 -images-00455.png,253 -images-00456.png,254 -images-00457.png,255 -images-00458.png,256 -images-00459.png,257 -images-00460.png,258 -images-00461.png,259 -images-00462.png,260 -images-00463.png,261 -images-00464.png,262 -images-00465.png,263 -images-00466.png,264 -images-00467.png,265 -images-00468.png,266 -images-00469.png,267 -images-00470.png,268 -images-00471.png,269 -images-00472.png,270 -images-00473.png,271 -images-00474.png,272 -images-00475.png,273 -images-00476.png,274 -images-00477.png,275 -images-00478.png,276 -images-00479.png,277 -images-00480.png,278 -images-00481.png,279 -images-00482.png,280 -images-00483.png,281 -images-00484.png,282 -images-00485.png,283 -images-00486.png,284 -images-00487.png,285 -images-00488.png,286 -images-00489.png,287 -images-00490.png,288 -images-00491.png,289 -images-00492.png,290 -images-00493.png,291 -images-00494.png,292 -images-00495.png,293 -images-00496.png,294 -images-00497.png,295 -images-00498.png,296 -images-00499.png,297 -images-00500.png,298 -images-00501.png,299 -images-00502.png,300 -images-00503.png,301 -images-00504.png,302 -images-00505.png,303 -images-00506.png,304 -images-00507.png,305 -images-00508.png,306 -images-00509.png,307 -images-00510.png,308 -images-00511.png,309 -images-00512.png,310 -images-00513.png,311 -images-00514.png,312 -images-00515.png,313 -images-00516.png,314 -images-00517.png,315 -images-00518.png,316 -images-00519.png,317 -images-00520.png,318 -images-00521.png,319 -images-00522.png,320 -images-00523.png,321 -images-00524.png,322 -images-00525.png,323 -images-00526.png,324 -images-00527.png,325 -images-00528.png,326 -images-00529.png,327 -images-00530.png,328 -images-00531.png,329 -images-00532.png,330 -images-00533.png,331 -images-00534.png,332 -images-00535.png,333 -images-00536.png,334 -images-00537.png,335 -images-00538.png,336 -images-00539.png,337 -images-00540.png,338 -images-00541.png,339 -images-00542.png,340 -images-00543.png,341 -images-00544.png,342 -images-00545.png,343 -images-00546.png,344 -images-00547.png,345 -images-00548.png,346 -images-00549.png,347 -images-00550.png,348 -images-00551.png,349 -images-00552.png,350 -images-00553.png,351 -images-00554.png,352 -images-00555.png,353 -images-00556.png,354 -images-00557.png,355 -images-00558.png,356 -images-00559.png,357 -images-00560.png,358 -images-00561.png,359 -images-00562.png,360 -images-00563.png,361 -images-00564.png,362 -images-00565.png,363 -images-00566.png,364 -images-00567.png,365 -images-00568.png,366 -images-00569.png,367 -images-00570.png,368 -images-00571.png,369 -images-00572.png,370 -images-00573.png,371 -images-00574.png,372 -images-00575.png,373 -images-00576.png,374 -images-00577.png,375 -images-00578.png,376 -images-00579.png,377 -images-00580.png,378 -images-00581.png,379 -images-00582.png,380 -images-00583.png,381 -images-00584.png,382 -images-00585.png,383 -images-00586.png,384 -images-00587.png,385 -images-00588.png,386 -images-00589.png,387 -images-00590.png,388 -images-00591.png,389 -images-00592.png,390 -images-00593.png,391 -images-00594.png,392 -images-00595.png,393 -images-00596.png,394 -images-00597.png,395 -images-00598.png,396 -images-00599.png,397 -images-00600.png,398 -images-00601.png,399 -images-00602.png,400 -images-00603.png,401 -images-00604.png,402 -images-00605.png,403 -images-00606.png,404 -images-00607.png,405 -images-00608.png,406 -images-00609.png,407 -images-00610.png,408 -images-00611.png,409 -images-00612.png,410 -images-00613.png,411 -images-00614.png,412 -images-00615.png,413 -images-00616.png,414 -images-00617.png,415 -images-00618.png,416 -images-00619.png,417 -images-00620.png,418 -images-00621.png,419 -images-00622.png,420 -images-00623.png,421 -images-00624.png,422 -images-00625.png,423 -images-00626.png,424 -images-00627.png,425 -images-00628.png,426 -images-00629.png,427 -images-00630.png,428 -images-00631.png,429 -images-00632.png,430 -images-00633.png,431 -images-00634.png,432 -images-00635.png,433 -images-00636.png,434 -images-00637.png,435 -images-00638.png,436 -images-00639.png,437 -images-00640.png,438 -images-00641.png,439 -images-00642.png,440 -images-00643.png,441 -images-00644.png,442 -images-00645.png,443 -images-00646.png,444 -images-00647.png,445 -images-00648.png,446 -images-00649.png,447 -images-00650.png,448 -images-00651.png,449 -images-00652.png,450 -images-00653.png,451 -images-00654.png,452 -images-00655.png,453 -images-00656.png,454 -images-00657.png,455 -images-00658.png,456 -images-00659.png,457 -images-00660.png,458 -images-00661.png,459 -images-00662.png,460 -images-00663.png,461 -images-00664.png,462 -images-00665.png,463 -images-00666.png,464 -images-00667.png,465 -images-00668.png,466 -images-00669.png,467 -images-00670.png,468 -images-00671.png,469 -images-00672.png,470 -images-00673.png,471 -images-00674.png,472 -images-00675.png,473 -images-00676.png,474 -images-00677.png,475 -images-00678.png,476 -images-00679.png,477 -images-00680.png,478 -images-00681.png,479 -images-00682.png,480 -images-00683.png,481 -images-00684.png,482 -images-00685.png,483 -images-00686.png,484 -images-00687.png,485 -images-00688.png,486 -images-00689.png,487 -images-00690.png,488 -images-00691.png,489 -images-00692.png,490 -images-00693.png,491 -images-00694.png,492 -images-00695.png,493 -images-00696.png,494 -images-00697.png,495 -images-00698.png,496 -images-00699.png,497 -images-00700.png,498 -images-00701.png,499 -images-00702.png,500 -images-00703.png,501 -images-00704.png,502 -images-00705.png,503 -images-00706.png,504 -images-00707.png,505 -images-00708.png,506 -images-00709.png,507 -images-00710.png,508 -images-00711.png,509 -images-00712.png,510 -images-00713.png,511 -images-00714.png,512 -images-00715.png,513 -images-00716.png,514 -images-00717.png,515 -images-00718.png,516 -images-00719.png,517 -images-00720.png,518 -images-00721.png,519 -images-00722.png,520 -images-00723.png,521 -images-00724.png,522 -images-00725.png,523 -images-00726.png,524 -images-00727.png,525 -images-00728.png,526 -images-00729.png,527 -images-00730.png,528 -images-00731.png,529 -images-00732.png,530 -images-00733.png,531 -images-00734.png,532 -images-00735.png,533 -images-00736.png,534 -images-00737.png,535 -images-00738.png,536 -images-00739.png,537 -images-00740.png,538 -images-00741.png,539 -images-00742.png,540 -images-00743.png,541 -images-00744.png,542 -images-00745.png,543 -images-00746.png,544 -images-00747.png,545 -images-00748.png,546 -images-00749.png,547 -images-00750.png,548 -images-00751.png,549 -images-00752.png,550 -images-00753.png,551 -images-00754.png,552 -images-00755.png,553 -images-00756.png,554 -images-00757.png,555 -images-00758.png,556 -images-00759.png,557 -images-00760.png,558 -images-00761.png,559 -images-00762.png,560 -images-00763.png,561 -images-00764.png,562 -images-00765.png,563 -images-00766.png,564 -images-00767.png,565 -images-00768.png,566 -images-00769.png,567 -images-00770.png,568 -images-00771.png,569 -images-00772.png,570 -images-00773.png,571 -images-00774.png,572 -images-00775.png,573 -images-00776.png,574 -images-00777.png,575 -images-00778.png,576 -images-00779.png,577 -images-00780.png,578 -images-00781.png,579 -images-00782.png,580 -images-00783.png,581 -images-00784.png,582 -images-00785.png,583 -images-00786.png,584 -images-00787.png,585 -images-00788.png,586 -images-00789.png,587 -images-00790.png,588 -images-00791.png,589 -images-00792.png,590 -images-00793.png,591 -images-00794.png,592 -images-00795.png,593 -images-00796.png,594 -images-00797.png,595 -images-00798.png,596 -images-00799.png,597 -images-00800.png,598 -images-00801.png,599 -images-00802.png,600 -images-00803.png,601 -images-00804.png,602 -images-00805.png,603 -images-00806.png,604 -images-00807.png,605 -images-00808.png,606 -images-00809.png,607 -images-00810.png,608 -images-00811.png,609 -images-00812.png,610 -images-00813.png,611 -images-00814.png,612 -images-00815.png,613 -images-00816.png,614 -images-00817.png,615 -images-00818.png,616 -images-00819.png,617 -images-00820.png,618 -images-00821.png,619 -images-00822.png,620 -images-00823.png,621 -images-00824.png,622 -images-00825.png,623 -images-00826.png,624 -images-00827.png,625 -images-00828.png,626 -images-00829.png,627 -images-00830.png,628 -images-00831.png,629 -images-00832.png,630 -images-00833.png,631 -images-00834.png,632 -images-00835.png,633 -images-00836.png,634 -images-00837.png,635 -images-00838.png,636 -images-00839.png,637 -images-00840.png,638 -images-00841.png,639 -images-00842.png,640 -images-00843.png,641 -images-00844.png,642 -images-00845.png,643 -images-00846.png,644 -images-00847.png,645 -images-00848.png,646 -images-00849.png,647 -images-00850.png,648 -images-00851.png,649 -images-00852.png,650 -images-00853.png,651 -images-00854.png,652 -images-00855.png,653 -images-00856.png,654 -images-00857.png,655 -images-00858.png,656 -images-00859.png,657 -images-00860.png,658 -images-00861.png,659 -images-00862.png,660 -images-00863.png,661 -images-00864.png,662 -images-00865.png,663 -images-00866.png,664 -images-00867.png,665 -images-00868.png,666 -images-00869.png,667 -images-00870.png,668 -images-00871.png,669 -images-00872.png,670 -images-00873.png,671 -images-00874.png,672 -images-00875.png,673 -images-00876.png,674 -images-00877.png,675 -images-00878.png,676 -images-00879.png,677 -images-00880.png,678 -images-00881.png,679 -images-00882.png,680 -images-00883.png,681 -images-00884.png,682 -images-00885.png,683 -images-00886.png,684 -images-00887.png,685 -images-00888.png,686 -images-00889.png,687 -images-00890.png,688 -images-00891.png,689 -images-00892.png,690 -images-00893.png,691 -images-00894.png,692 -images-00895.png,693 -images-00896.png,694 -images-00897.png,695 -images-00898.png,696 -images-00899.png,697 -images-00900.png,698 -images-00901.png,699 -images-00902.png,700 -images-00903.png,701 -images-00904.png,702 -images-00905.png,703 -images-00906.png,704 -images-00907.png,705 -images-00908.png,706 -images-00909.png,707 -images-00910.png,708 -images-00911.png,709 -images-00912.png,710 -images-00913.png,711 -images-00914.png,712 -images-00915.png,713 -images-00916.png,714 -images-00917.png,715 -images-00918.png,716 -images-00919.png,717 -images-00920.png,718 -images-00921.png,719 -images-00922.png,720 -images-00923.png,721 -images-00924.png,722 -images-00925.png,723 -images-00926.png,724 -images-00927.png,725 -images-00928.png,726 -images-00929.png,727 -images-00930.png,728 -images-00931.png,729 -images-00932.png,730 -images-00933.png,731 -images-00934.png,732 -images-00935.png,733 -images-00936.png,734 -images-00937.png,735 -images-00938.png,736 -images-00939.png,737 -images-00940.png,738 -images-00941.png,739 -images-00942.png,740 -images-00943.png,741 -images-00944.png,742 -images-00945.png,743 -images-00946.png,744 -images-00947.png,745 -images-00948.png,746 -images-00949.png,747 -images-00950.png,748 -images-00951.png,749 -images-00952.png,750 -images-00953.png,751 -images-00954.png,752 -images-00955.png,753 -images-00956.png,754 -images-00957.png,755 -images-00958.png,756 -images-00959.png,757 -images-00960.png,758 -images-00961.png,759 -images-00962.png,760 -images-00963.png,761 -images-00964.png,762 -images-00965.png,763 -images-00966.png,764 -images-00967.png,765 -images-00968.png,766 -images-00969.png,767 -images-00970.png,768 -images-00971.png,769 -images-00972.png,770 -images-00973.png,771 -images-00974.png,772 -images-00975.png,773 -images-00976.png,774 -images-00977.png,775 -images-00978.png,776 -images-00979.png,777 -images-00980.png,778 -images-00981.png,779 -images-00982.png,780 -images-00983.png,781 -images-00984.png,782 -images-00985.png,783 -images-00986.png,784 -images-00987.png,785 -images-00988.png,786 -images-00989.png,787 -images-00990.png,788 -images-00991.png,789 -images-00992.png,790 -images-00993.png,791 -images-00994.png,792 -images-00995.png,793 -images-00996.png,794 -images-00997.png,795 -images-00998.png,796 -images-00999.png,797 -images-01000.png,798 -images-01001.png,799 -images-01002.png,800 -images-01003.png,801 -images-01004.png,802 -images-01005.png,803 -images-01006.png,804 -images-01007.png,805 -images-01008.png,806 -images-01009.png,807 -images-01010.png,808 -images-01011.png,809 -images-01012.png,810 -images-01013.png,811 -images-01014.png,812 -images-01015.png,813 -images-01016.png,814 -images-01017.png,815 -images-01018.png,816 -images-01019.png,817 -images-01020.png,818 -images-01021.png,819 -images-01022.png,820 -images-01023.png,821 -images-01024.png,822 -images-01025.png,823 -images-01026.png,824 -images-01027.png,825 -images-01028.png,826 -images-01029.png,827 -images-01030.png,828 -images-01031.png,829 -images-01032.png,830 -images-01033.png,831 -images-01034.png,832 -images-01035.png,833 -images-01036.png,834 -images-01037.png,835 -images-01038.png,836 -images-01039.png,837 -images-01040.png,838 -images-01041.png,839 -images-01042.png,840 -images-01043.png,841 -images-01044.png,842 -images-01045.png,843 -images-01046.png,844 -images-01047.png,845 -images-01048.png,846 -images-01049.png,847 -images-01050.png,848 -images-01051.png,849 -images-01052.png,850 -images-01053.png,851 -images-01054.png,852 -images-01055.png,853 -images-01056.png,854 -images-01057.png,855 -images-01058.png,856 -images-01059.png,857 -images-01060.png,858 -images-01061.png,859 -images-01062.png,860 -images-01063.png,861 -images-01064.png,862 -images-01065.png,863 -images-01066.png,864 -images-01067.png,865 -images-01068.png,866 -images-01069.png,867 -images-01070.png,868 -images-01071.png,869 -images-01072.png,870 -images-01073.png,871 -images-01074.png,872 -images-01075.png,873 -images-01076.png,874 -images-01077.png,875 -images-01078.png,876 -images-01079.png,877 -images-01080.png,878 -images-01081.png,879 -images-01082.png,880 -images-01083.png,881 -images-01084.png,882 -images-01085.png,883 -images-01086.png,884 -images-01087.png,885 -images-01088.png,886 -images-01089.png,887 -images-01090.png,888 -images-01091.png,889 -images-01092.png,890 -images-01093.png,891 -images-01094.png,892 -images-01095.png,893 -images-01096.png,894 -images-01097.png,895 -images-01098.png,896 -images-01099.png,897 -images-01100.png,898 -images-01101.png,899 -images-01102.png,900 -images-01103.png,901 -images-01104.png,902 -images-01105.png,903 -images-01106.png,904 -images-01107.png,905 -images-01108.png,906 -images-01109.png,907 -images-01110.png,908 -images-01111.png,909 -images-01112.png,910 -images-01113.png,911 -images-01114.png,912 -images-01115.png,913 -images-01116.png,914 -images-01117.png,915 -images-01118.png,916 -images-01119.png,917 -images-01120.png,918 -images-01121.png,919 -images-01122.png,920 -images-01123.png,921 -images-01124.png,922 -images-01125.png,923 -images-01126.png,924 -images-01127.png,925 -images-01128.png,926 -images-01129.png,927 -images-01130.png,928 -images-01131.png,929 -images-01132.png,930 -images-01133.png,931 -images-01134.png,932 -images-01135.png,933 -images-01136.png,934 -images-01137.png,935 -images-01138.png,936 -images-01139.png,937 -images-01140.png,938 -images-01141.png,939 -images-01142.png,940 -images-01143.png,941 -images-01144.png,942 -images-01145.png,943 -images-01146.png,944 -images-01147.png,945 -images-01148.png,946 -images-01149.png,947 -images-01150.png,948 -images-01151.png,949 -images-01152.png,950 -images-01153.png,951 -images-01154.png,952 -images-01155.png,953 -images-01156.png,954 -images-01157.png,955 -images-01158.png,956 -images-01159.png,957 -images-01160.png,958 -images-01161.png,959 -images-01162.png,960 -images-01163.png,961 -images-01164.png,962 -images-01165.png,963 -images-01166.png,964 -images-01167.png,965 -images-01168.png,966 -images-01169.png,967 -images-01170.png,968 -images-01171.png,969 -images-01172.png,970 -images-01173.png,971 -images-01174.png,972 -images-01175.png,973 -images-01176.png,974 -images-01177.png,975 -images-01178.png,976 -images-01179.png,977 -images-01180.png,978 -images-01181.png,979 -images-01182.png,980 -images-01183.png,981 -images-01184.png,982 -images-01185.png,983 -images-01186.png,984 -images-01187.png,985 -images-01188.png,986 -images-01189.png,987 -images-01190.png,988 -images-01191.png,989 -images-01192.png,990 -images-01193.png,991 -images-01194.png,992 -images-01195.png,993 -images-01196.png,994 -images-01197.png,995 -images-01198.png,996 -images-01199.png,997 -images-01200.png,998 -images-01201.png,999 -images-01202.png,1000 -images-01203.png,1001 -images-01204.png,1002 -images-01205.png,1003 -images-01206.png,1004 -images-01207.png,1005 -images-01208.png,1006 -images-01209.png,1007 -images-01210.png,1008 -images-01211.png,1009 -images-01212.png,1010 -images-01213.png,1011 -images-01214.png,1012 -images-01215.png,1013 -images-01216.png,1014 -images-01217.png,1015 -images-01218.png,1016 -images-01219.png,1017 -images-01220.png,1018 -images-01221.png,1019 -images-01222.png,1020 -images-01223.png,1021 -images-01224.png,1022 -images-01225.png,1023 -images-01226.png,1024 -images-01227.png,1025 -images-01228.png,1026 -images-01229.png,1027 -images-01230.png,1028 -images-01231.png,1029 -images-01232.png,1030 -images-01233.png,1031 -images-01234.png,1032 -images-01235.png,1033 -images-01236.png,1034 -images-01237.png,1035 -images-01238.png,1036 -images-01239.png,1037 -images-01240.png,1038 -images-01241.png,1039 -images-01242.png,1040 -images-01243.png,1041 -images-01244.png,1042 -images-01245.png,1043 -images-01246.png,1044 -images-01247.png,1045 -images-01248.png,1046 -images-01249.png,1047 -images-01250.png,1048 -images-01251.png,1049 -images-01252.png,1050 -images-01253.png,1051 -images-01254.png,1052 -images-01255.png,1053 -images-01256.png,1054 -images-01257.png,1055 -images-01258.png,1056 -images-01259.png,1057 -images-01810.png,1058 -images-01811.png,1059 -images-01812.png,1060 -images-01813.png,1061 -images-01814.png,1062 -images-01815.png,1063 -images-01816.png,1064 -images-01817.png,1065 -images-01818.png,1066 -images-01819.png,1067 -images-01820.png,1068 -images-01821.png,1069 -images-01822.png,1070 -images-01823.png,1071 -images-01824.png,1072 -images-01825.png,1073 -images-01826.png,1074 -images-01827.png,1075 -images-01828.png,1076 -images-01829.png,1077 -images-01830.png,1078 -images-01831.png,1079 -images-01832.png,1080 -images-01833.png,1081 -images-01834.png,1082 -images-01835.png,1083 -images-01836.png,1084 -images-01837.png,1085 -images-01838.png,1086 -images-01839.png,1087 -images-01840.png,1088 -images-01841.png,1089 -images-01842.png,1090 -images-01843.png,1091 -images-01844.png,1092 -images-01845.png,1093 -images-01846.png,1094 -images-01847.png,1095 -images-01848.png,1096 -images-01849.png,1097 -images-01850.png,1098 -images-01851.png,1099 -images-01852.png,1100 -images-01853.png,1101 -images-01854.png,1102 -images-01855.png,1103 -images-01856.png,1104 -images-01857.png,1105 -images-01858.png,1106 -images-01859.png,1107 -images-01860.png,1108 -images-01861.png,1109 -images-01862.png,1110 -images-01863.png,1111 -images-01864.png,1112 -images-01865.png,1113 -images-01866.png,1114 -images-01867.png,1115 -images-01868.png,1116 -images-01869.png,1117 -images-02029.png,1118 -images-02030.png,1119 -images-02031.png,1120 -images-02032.png,1121 -images-02033.png,1122 -images-02034.png,1123 -images-02035.png,1124 -images-02036.png,1125 -images-02037.png,1126 -images-02038.png,1127 -images-02039.png,1128 -images-02040.png,1129 -images-02041.png,1130 -images-02042.png,1131 -images-02043.png,1132 -images-02044.png,1133 -images-02045.png,1134 -images-02046.png,1135 -images-02047.png,1136 -images-02048.png,1137 -images-02049.png,1138 -images-02050.png,1139 -images-02051.png,1140 -images-02052.png,1141 -images-02053.png,1142 -images-02054.png,1143 -images-02055.png,1144 -images-02056.png,1145 -images-02057.png,1146 -images-02058.png,1147 -images-02059.png,1148 -images-02060.png,1149 -images-02061.png,1150 -images-02062.png,1151 -images-02063.png,1152 -images-02064.png,1153 -images-02065.png,1154 -images-02066.png,1155 -images-02067.png,1156 -images-02068.png,1157 -images-02069.png,1158 -images-02070.png,1159 -images-02071.png,1160 -images-02072.png,1161 -images-02073.png,1162 -images-02074.png,1163 -images-02075.png,1164 -images-02076.png,1165 -images-02077.png,1166 -images-02078.png,1167 -images-02079.png,1168 -images-02080.png,1169 -images-02081.png,1170 -images-02082.png,1171 -images-02083.png,1172 -images-02084.png,1173 -images-02085.png,1174 -images-02086.png,1175 -images-02087.png,1176 -images-02088.png,1177 -images-02089.png,1178 -images-02090.png,1179 -images-02091.png,1180 -images-02092.png,1181 -images-02093.png,1182 -images-02094.png,1183 -images-02095.png,1184 -images-02096.png,1185 -images-02097.png,1186 -images-02098.png,1187 -images-02099.png,1188 -images-02100.png,1189 -images-02101.png,1190 -images-02102.png,1191 -images-02103.png,1192 -images-02104.png,1193 -images-02105.png,1194 -images-02106.png,1195 -images-02107.png,1196 -images-02108.png,1197 -images-02109.png,1198 -images-02110.png,1199 -images-02111.png,1200 -images-02112.png,1201 -images-02113.png,1202 -images-02114.png,1203 -images-02115.png,1204 -images-02116.png,1205 -images-02117.png,1206 -images-02118.png,1207 -images-02119.png,1208 -images-02120.png,1209 -images-02121.png,1210 -images-02122.png,1211 -images-02123.png,1212 -images-02124.png,1213 -images-02125.png,1214 -images-02126.png,1215 -images-02127.png,1216 -images-02128.png,1217 -images-02129.png,1218 -images-02130.png,1219 -images-02131.png,1220 -images-02132.png,1221 -images-02133.png,1222 -images-02134.png,1223 -images-02135.png,1224 -images-02136.png,1225 -images-02137.png,1226 -images-02138.png,1227 -images-02139.png,1228 -images-02140.png,1229 -images-02141.png,1230 -images-02142.png,1231 -images-02143.png,1232 -images-02144.png,1233 -images-02145.png,1234 -images-02146.png,1235 -images-02147.png,1236 -images-02148.png,1237 -images-02149.png,1238 -images-02150.png,1239 -images-02151.png,1240 -images-02152.png,1241 -images-02153.png,1242 -images-02154.png,1243 -images-02155.png,1244 -images-02156.png,1245 -images-02157.png,1246 -images-02158.png,1247 -images-02159.png,1248 -images-02160.png,1249 -images-02161.png,1250 -images-02162.png,1251 -images-02163.png,1252 -images-02164.png,1253 -images-02165.png,1254 -images-02166.png,1255 -images-02167.png,1256 -images-02168.png,1257 -images-02169.png,1258 -images-02170.png,1259 -images-02171.png,1260 -images-02172.png,1261 -images-02173.png,1262 -images-02174.png,1263 -images-02175.png,1264 -images-02176.png,1265 -images-02177.png,1266 -images-02178.png,1267 -images-02179.png,1268 -images-02180.png,1269 -images-02181.png,1270 -images-02182.png,1271 -images-02183.png,1272 -images-02184.png,1273 -images-02185.png,1274 -images-02186.png,1275 -images-02187.png,1276 -images-02333.png,1277 -images-02334.png,1278 -images-02335.png,1279 -images-02336.png,1280 -images-02337.png,1281 -images-02338.png,1282 -images-02339.png,1283 -images-02340.png,1284 -images-02355.png,1285 -images-02356.png,1286 -images-02357.png,1287 -images-02358.png,1288 -images-02359.png,1289 -images-02360.png,1290 -images-02361.png,1291 -images-02362.png,1292 -images-02363.png,1293 -images-02364.png,1294 -images-02365.png,1295 -images-02366.png,1296 -images-02367.png,1297 -images-02368.png,1298 -images-02369.png,1299 -images-02370.png,1300 -images-02371.png,1301 -images-02372.png,1302 -images-02373.png,1303 -images-02374.png,1304 -images-02375.png,1305 -images-02376.png,1306 -images-02377.png,1307 -images-02378.png,1308 -images-02379.png,1309 -images-02380.png,1310 -images-02381.png,1311 -images-02382.png,1312 -images-02383.png,1313 -images-02384.png,1314 -images-02385.png,1315 -images-02386.png,1316 -images-02387.png,1317 -images-02388.png,1318 -images-02389.png,1319 -images-02390.png,1320 -images-02391.png,1321 -images-02392.png,1322 -images-02393.png,1323 -images-02394.png,1324 -images-02395.png,1325 -images-02396.png,1326 -images-02397.png,1327 -images-02398.png,1328 -images-02399.png,1329 -images-02400.png,1330 -images-02401.png,1331 -images-02402.png,1332 -images-02403.png,1333 -images-02404.png,1334 -images-02405.png,1335 -images-02406.png,1336 -images-02407.png,1337 -images-02408.png,1338 -images-02409.png,1339 -images-02410.png,1340 -images-02411.png,1341 -images-02412.png,1342 -images-02413.png,1343 -images-02414.png,1344 -images-02415.png,1345 -images-02416.png,1346 -images-02417.png,1347 -images-02418.png,1348 -images-02419.png,1349 -images-02420.png,1350 -images-02421.png,1351 -images-02422.png,1352 -images-02423.png,1353 -images-02424.png,1354 -images-02425.png,1355 -images-02426.png,1356 -images-02427.png,1357 -images-02428.png,1358 -images-02429.png,1359 -images-02430.png,1360 -images-02431.png,1361 -images-02432.png,1362 -images-02433.png,1363 -images-02434.png,1364 -images-02435.png,1365 -images-02436.png,1366 -images-02437.png,1367 -images-02438.png,1368 -images-02439.png,1369 -images-02440.png,1370 -images-02441.png,1371 -images-02442.png,1372 -images-02443.png,1373 -images-02444.png,1374 -images-02445.png,1375 -images-02446.png,1376 -images-02447.png,1377 -images-02448.png,1378 -images-02449.png,1379 -images-02450.png,1380 -images-02451.png,1381 -images-02452.png,1382 -images-02453.png,1383 -images-02454.png,1384 -images-02455.png,1385 -images-02456.png,1386 -images-02457.png,1387 -images-02458.png,1388 -images-02459.png,1389 -images-02460.png,1390 -images-02461.png,1391 -images-02462.png,1392 -images-02463.png,1393 -images-02464.png,1394 -images-02465.png,1395 -images-02466.png,1396 -images-02467.png,1397 -images-02468.png,1398 -images-02469.png,1399 -images-02470.png,1400 -images-02471.png,1401 -images-02472.png,1402 -images-02473.png,1403 -images-02474.png,1404 -images-02475.png,1405 -images-02476.png,1406 -images-02477.png,1407 -images-02478.png,1408 -images-02479.png,1409 -images-02480.png,1410 -images-02481.png,1411 -images-02482.png,1412 -images-02483.png,1413 -images-02675.png,1414 -images-02676.png,1415 -images-02677.png,1416 -images-02678.png,1417 -images-02679.png,1418 -images-02680.png,1419 -images-02681.png,1420 -images-02682.png,1421 -images-02683.png,1422 -images-02684.png,1423 -images-02685.png,1424 -images-02686.png,1425 -images-02687.png,1426 -images-02688.png,1427 -images-02689.png,1428 -images-02690.png,1429 -images-02691.png,1430 -images-02692.png,1431 -images-02693.png,1432 -images-02694.png,1433 -images-02695.png,1434 -images-02696.png,1435 -images-02697.png,1436 -images-02698.png,1437 -images-02699.png,1438 -images-02700.png,1439 -images-02701.png,1440 -images-02702.png,1441 -images-02703.png,1442 -images-02704.png,1443 -images-02705.png,1444 -images-02706.png,1445 -images-02707.png,1446 -images-02708.png,1447 -images-02709.png,1448 -images-02710.png,1449 -images-02711.png,1450 -images-02712.png,1451 -images-02713.png,1452 -images-02714.png,1453 -images-02715.png,1454 -images-02716.png,1455 -images-02717.png,1456 -images-02718.png,1457 -images-02719.png,1458 -images-02720.png,1459 -images-02721.png,1460 -images-02722.png,1461 -images-02723.png,1462 -images-02724.png,1463 -images-02725.png,1464 -images-02726.png,1465 -images-02727.png,1466 -images-02728.png,1467 -images-02729.png,1468 -images-02730.png,1469 -images-02731.png,1470 -images-02732.png,1471 -images-02733.png,1472 -images-02734.png,1473 -images-02735.png,1474 -images-02736.png,1475 -images-02737.png,1476 -images-02738.png,1477 -images-02739.png,1478 -images-02740.png,1479 -images-02741.png,1480 -images-02742.png,1481 -images-02743.png,1482 -images-02744.png,1483 -images-02745.png,1484 -images-02746.png,1485 -images-02747.png,1486 -images-02748.png,1487 -images-02749.png,1488 -images-02750.png,1489 -images-02751.png,1490 -images-02752.png,1491 -images-02753.png,1492 -images-02754.png,1493 -images-02755.png,1494 -images-02756.png,1495 -images-02757.png,1496 -images-02758.png,1497 -images-02759.png,1498 -images-02760.png,1499 -images-02761.png,1500 -images-02762.png,1501 -images-02763.png,1502 -images-02764.png,1503 -images-02765.png,1504 -images-02766.png,1505 -images-02767.png,1506 -images-02768.png,1507 -images-02769.png,1508 -images-02770.png,1509 -images-02771.png,1510 -images-02772.png,1511 -images-02773.png,1512 -images-02774.png,1513 -images-02775.png,1514 -images-02776.png,1515 -images-02777.png,1516 -images-02778.png,1517 -images-02779.png,1518 -images-02780.png,1519 -images-02781.png,1520 -images-02782.png,1521 -images-02783.png,1522 -images-02784.png,1523 -images-02785.png,1524 -images-02786.png,1525 -images-02787.png,1526 -images-02788.png,1527 -images-02789.png,1528 -images-02790.png,1529 -images-02791.png,1530 -images-02792.png,1531 -images-02793.png,1532 -images-02794.png,1533 -images-02795.png,1534 -images-02796.png,1535 -images-02797.png,1536 -images-02798.png,1537 -images-02799.png,1538 -images-02800.png,1539 -images-02801.png,1540 -images-02802.png,1541 -images-02803.png,1542 -images-02804.png,1543 -images-02805.png,1544 -images-02806.png,1545 -images-02807.png,1546 -images-02808.png,1547 -images-02809.png,1548 -images-02810.png,1549 -images-02811.png,1550 -images-02812.png,1551 -images-02813.png,1552 -images-02814.png,1553 -images-02815.png,1554 -images-02816.png,1555 -images-02817.png,1556 -images-02818.png,1557 -images-02819.png,1558 -images-02820.png,1559 -images-02821.png,1560 -images-02822.png,1561 -images-02823.png,1562 -images-02824.png,1563 -images-02825.png,1564 -images-02826.png,1565 -images-02827.png,1566 -images-02828.png,1567 -images-02829.png,1568 -images-02830.png,1569 -images-02831.png,1570 -images-02832.png,1571 -images-02833.png,1572 -images-02834.png,1573 -images-02835.png,1574 -images-02836.png,1575 -images-02837.png,1576 -images-02838.png,1577 -images-02839.png,1578 -images-02840.png,1579 -images-02841.png,1580 -images-02842.png,1581 -images-02843.png,1582 -images-02844.png,1583 -images-02845.png,1584 -images-02846.png,1585 -images-02847.png,1586 -images-02848.png,1587 -images-02849.png,1588 -images-02850.png,1589 -images-02851.png,1590 -images-02852.png,1591 -images-02853.png,1592 -images-02854.png,1593 -images-02855.png,1594 -images-02856.png,1595 -images-02857.png,1596 -images-02858.png,1597 -images-02859.png,1598 -images-02860.png,1599 -images-02861.png,1600 -images-02862.png,1601 -images-02863.png,1602 -images-02864.png,1603 -images-02865.png,1604 -images-02866.png,1605 -images-02867.png,1606 -images-02868.png,1607 -images-02869.png,1608 -images-02870.png,1609 -images-02871.png,1610 -images-02872.png,1611 -images-02873.png,1612 -images-02874.png,1613 -images-02875.png,1614 -images-02876.png,1615 -images-02877.png,1616 -images-02878.png,1617 -images-02879.png,1618 -images-02880.png,1619 -images-02881.png,1620 -images-02882.png,1621 -images-02883.png,1622 -images-02884.png,1623 -images-02885.png,1624 -images-02886.png,1625 -images-02887.png,1626 -images-02888.png,1627 -images-02889.png,1628 -images-02890.png,1629 -images-02891.png,1630 -images-02892.png,1631 -images-02893.png,1632 -images-02894.png,1633 -images-02895.png,1634 -images-02896.png,1635 -images-02897.png,1636 -images-02898.png,1637 -images-02899.png,1638 -images-02900.png,1639 -images-02901.png,1640 -images-02902.png,1641 -images-02903.png,1642 -images-02904.png,1643 -images-02905.png,1644 -images-02906.png,1645 -images-02907.png,1646 -images-02908.png,1647 -images-02909.png,1648 -images-02910.png,1649 -images-02911.png,1650 -images-02912.png,1651 -images-02913.png,1652 -images-02914.png,1653 -images-02915.png,1654 -images-02916.png,1655 -images-02917.png,1656 -images-02918.png,1657 -images-02919.png,1658 -images-02920.png,1659 -images-02921.png,1660 -images-02922.png,1661 -images-02923.png,1662 -images-02924.png,1663 -images-02925.png,1664 -images-02926.png,1665 -images-02927.png,1666 -images-02928.png,1667 -images-02929.png,1668 -images-02930.png,1669 -images-02931.png,1670 -images-02932.png,1671 -images-02933.png,1672 -images-02934.png,1673 -images-02935.png,1674 -images-02936.png,1675 -images-02937.png,1676 -images-02938.png,1677 -images-02939.png,1678 -images-02940.png,1679 -images-02941.png,1680 -images-02942.png,1681 -images-02943.png,1682 -images-02944.png,1683 -images-02945.png,1684 -images-02946.png,1685 -images-02947.png,1686 -images-02948.png,1687 -images-02949.png,1688 -images-02950.png,1689 -images-02951.png,1690 -images-02952.png,1691 -images-02953.png,1692 -images-02954.png,1693 -images-02955.png,1694 -images-02956.png,1695 -images-02957.png,1696 -images-02958.png,1697 -images-02959.png,1698 -images-02960.png,1699 -images-02961.png,1700 -images-02962.png,1701 -images-02963.png,1702 -images-02964.png,1703 -images-02965.png,1704 -images-02966.png,1705 -images-02967.png,1706 -images-02968.png,1707 -images-02969.png,1708 -images-02970.png,1709 -images-02971.png,1710 -images-02972.png,1711 -images-02973.png,1712 -images-02974.png,1713 -images-02975.png,1714 -images-02976.png,1715 -images-02977.png,1716 -images-02978.png,1717 -images-02979.png,1718 -images-02980.png,1719 -images-02981.png,1720 -images-02982.png,1721 -images-02983.png,1722 -images-02984.png,1723 -images-02985.png,1724 -images-02986.png,1725 -images-02987.png,1726 -images-02988.png,1727 -images-02989.png,1728 -images-02990.png,1729 -images-02991.png,1730 -images-02992.png,1731 -images-02993.png,1732 -images-02994.png,1733 -images-02995.png,1734 -images-02996.png,1735 -images-02997.png,1736 -images-02998.png,1737 -images-02999.png,1738 -images-03000.png,1739 -images-03001.png,1740 -images-03002.png,1741 -images-03003.png,1742 -images-03004.png,1743 -images-03005.png,1744 -images-03006.png,1745 -images-03007.png,1746 -images-03008.png,1747 -images-03009.png,1748 -images-03010.png,1749 -images-03011.png,1750 -images-03012.png,1751 -images-03013.png,1752 -images-03014.png,1753 -images-03015.png,1754 -images-03016.png,1755 -images-03017.png,1756 -images-03018.png,1757 -images-03019.png,1758 -images-03020.png,1759 -images-03021.png,1760 -images-03022.png,1761 -images-03023.png,1762 -images-03024.png,1763 -images-03025.png,1764 -images-03026.png,1765 -images-03027.png,1766 -images-03028.png,1767 -images-03029.png,1768 -images-03030.png,1769 -images-03031.png,1770 -images-03032.png,1771 -images-03033.png,1772 -images-03034.png,1773 -images-03035.png,1774 -images-03036.png,1775 -images-03037.png,1776 -images-03038.png,1777 -images-03039.png,1778 -images-03040.png,1779 -images-03041.png,1780 -images-03042.png,1781 -images-03043.png,1782 -images-03044.png,1783 -images-03045.png,1784 -images-03046.png,1785 -images-03047.png,1786 -images-03048.png,1787 -images-03049.png,1788 -images-03050.png,1789 -images-03051.png,1790 -images-03052.png,1791 -images-03053.png,1792 -images-03054.png,1793 -images-03055.png,1794 -images-03056.png,1795 -images-03057.png,1796 -images-03058.png,1797 -images-03059.png,1798 -images-03060.png,1799 -images-03061.png,1800 -images-03062.png,1801 -images-03063.png,1802 -images-03064.png,1803 -images-03065.png,1804 -images-03066.png,1805 -images-03067.png,1806 -images-03068.png,1807 -images-03069.png,1808 -images-03070.png,1809 -images-03071.png,1810 -images-03072.png,1811 -images-03073.png,1812 -images-03074.png,1813 -images-03075.png,1814 -images-03076.png,1815 -images-03077.png,1816 -images-03078.png,1817 -images-03079.png,1818 -images-03080.png,1819 -images-03081.png,1820 -images-03082.png,1821 -images-03083.png,1822 -images-03084.png,1823 -images-03085.png,1824 -images-03086.png,1825 -images-03087.png,1826 -images-03088.png,1827 -images-03089.png,1828 -images-03090.png,1829 -images-03091.png,1830 -images-03092.png,1831 -images-03093.png,1832 -images-03094.png,1833 -images-03095.png,1834 -images-03096.png,1835 -images-03097.png,1836 -images-03098.png,1837 -images-03099.png,1838 -images-03100.png,1839 -images-03101.png,1840 -images-03102.png,1841 -images-03103.png,1842 -images-03104.png,1843 -images-03105.png,1844 -images-03106.png,1845 -images-03107.png,1846 -images-03108.png,1847 -images-03109.png,1848 -images-03110.png,1849 -images-03111.png,1850 -images-03112.png,1851 -images-03113.png,1852 -images-03114.png,1853 -images-03115.png,1854 -images-03116.png,1855 -images-03117.png,1856 -images-03118.png,1857 -images-03119.png,1858 -images-03120.png,1859 -images-03121.png,1860 -images-03122.png,1861 -images-03123.png,1862 -images-03124.png,1863 -images-03125.png,1864 -images-03126.png,1865 -images-03127.png,1866 -images-03128.png,1867 -images-03129.png,1868 -images-03130.png,1869 -images-03131.png,1870 -images-03132.png,1871 -images-03133.png,1872 -images-03134.png,1873 -images-03135.png,1874 -images-03136.png,1875 -images-03137.png,1876 -images-03138.png,1877 -images-03139.png,1878 -images-03140.png,1879 -images-03141.png,1880 -images-03142.png,1881 -images-03143.png,1882 -images-03144.png,1883 -images-03145.png,1884 -images-03146.png,1885 -images-03147.png,1886 -images-03148.png,1887 -images-03149.png,1888 -images-03150.png,1889 -images-03151.png,1890 -images-03152.png,1891 -images-03153.png,1892 -images-03154.png,1893 -images-03155.png,1894 -images-03156.png,1895 -images-03157.png,1896 -images-03158.png,1897 -images-03159.png,1898 -images-03160.png,1899 -images-03161.png,1900 -images-03162.png,1901 -images-03163.png,1902 -images-03164.png,1903 -images-03165.png,1904 -images-03166.png,1905 -images-03167.png,1906 -images-03168.png,1907 -images-03169.png,1908 -images-03170.png,1909 -images-03171.png,1910 -images-03172.png,1911 -images-03173.png,1912 -images-03174.png,1913 -images-03175.png,1914 -images-03176.png,1915 -images-03177.png,1916 -images-03178.png,1917 -images-03179.png,1918 -images-03180.png,1919 -images-03181.png,1920 -images-03182.png,1921 -images-03183.png,1922 -images-03184.png,1923 -images-03185.png,1924 -images-03186.png,1925 -images-03187.png,1926 -images-03188.png,1927 -images-03189.png,1928 -images-03190.png,1929 -images-03191.png,1930 -images-03192.png,1931 -images-03193.png,1932 -images-03194.png,1933 -images-03195.png,1934 -images-03196.png,1935 -images-03197.png,1936 -images-03198.png,1937 -images-03199.png,1938 -images-03200.png,1939 -images-03201.png,1940 -images-03202.png,1941 -images-03203.png,1942 -images-03204.png,1943 -images-03205.png,1944 -images-03206.png,1945 -images-03207.png,1946 -images-03208.png,1947 -images-03209.png,1948 -images-03210.png,1949 -images-03211.png,1950 -images-03212.png,1951 -images-03213.png,1952 -images-03214.png,1953 -images-03215.png,1954 -images-03216.png,1955 -images-03217.png,1956 -images-03218.png,1957 -images-03219.png,1958 -images-03220.png,1959 -images-03221.png,1960 -images-03222.png,1961 -images-03223.png,1962 -images-03224.png,1963 -images-03225.png,1964 -images-03226.png,1965 -images-03227.png,1966 -images-03228.png,1967 -images-03229.png,1968 -images-03230.png,1969 -images-03231.png,1970 -images-03232.png,1971 -images-03233.png,1972 -images-03234.png,1973 -images-03235.png,1974 -images-03236.png,1975 -images-03237.png,1976 -images-03238.png,1977 -images-03239.png,1978 -images-03240.png,1979 -images-03241.png,1980 -images-03242.png,1981 -images-03243.png,1982 -images-03244.png,1983 -images-03245.png,1984 -images-03246.png,1985 -images-03247.png,1986 -images-03248.png,1987 -images-03249.png,1988 -images-03250.png,1989 -images-03251.png,1990 -images-03252.png,1991 -images-03253.png,1992 -images-03254.png,1993 -images-03255.png,1994 -images-03256.png,1995 -images-03257.png,1996 -images-03258.png,1997 -images-03259.png,1998 -images-03260.png,1999 -images-03261.png,2000 -images-03262.png,2001 -images-03263.png,2002 -images-03264.png,2003 -images-03265.png,2004 -images-03266.png,2005 -images-03267.png,2006 -images-03268.png,2007 -images-03269.png,2008 -images-03270.png,2009 -images-03271.png,2010 -images-03272.png,2011 -images-03273.png,2012 -images-03274.png,2013 -images-03275.png,2014 -images-03276.png,2015 -images-03277.png,2016 -images-03278.png,2017 -images-03279.png,2018 -images-03280.png,2019 -images-03281.png,2020 -images-03282.png,2021 -images-03283.png,2022 -images-03284.png,2023 -images-03285.png,2024 -images-03286.png,2025 -images-03287.png,2026 -images-03288.png,2027 -images-03289.png,2028 -images-03290.png,2029 -images-03291.png,2030 -images-03292.png,2031 -images-03293.png,2032 -images-03294.png,2033 -images-03295.png,2034 -images-03296.png,2035 -images-03297.png,2036 -images-03298.png,2037 -images-03299.png,2038 -images-03300.png,2039 -images-03301.png,2040 -images-03302.png,2041 -images-03303.png,2042 -images-03304.png,2043 -images-03305.png,2044 -images-03306.png,2045 -images-03307.png,2046 -images-03308.png,2047 -images-03309.png,2048 -images-03310.png,2049 -images-03311.png,2050 -images-03312.png,2051 -images-03313.png,2052 -images-03314.png,2053 -images-03315.png,2054 -images-03316.png,2055 -images-03317.png,2056 -images-03318.png,2057 -images-03319.png,2058 -images-03320.png,2059 -images-03321.png,2060 -images-03322.png,2061 -images-03323.png,2062 -images-03324.png,2063 -images-03325.png,2064 -images-03326.png,2065 -images-03327.png,2066 -images-03328.png,2067 -images-03329.png,2068 -images-03330.png,2069 -images-03331.png,2070 -images-03332.png,2071 -images-03333.png,2072 -images-03334.png,2073 -images-03335.png,2074 -images-03336.png,2075 -images-03337.png,2076 -images-03338.png,2077 -images-03339.png,2078 -images-03340.png,2079 -images-03341.png,2080 -images-03342.png,2081 -images-03343.png,2082 -images-03344.png,2083 -images-03345.png,2084 -images-03346.png,2085 -images-03347.png,2086 -images-03348.png,2087 -images-03349.png,2088 -images-03350.png,2089 -images-03351.png,2090 -images-03352.png,2091 -images-03353.png,2092 -images-03354.png,2093 -images-03355.png,2094 -images-03356.png,2095 -images-03357.png,2096 -images-03358.png,2097 -images-03359.png,2098 -images-03360.png,2099 -images-03361.png,2100 -images-03362.png,2101 -images-03363.png,2102 -images-03364.png,2103 -images-03365.png,2104 -images-03366.png,2105 -images-03367.png,2106 -images-03368.png,2107 -images-03369.png,2108 -images-03370.png,2109 -images-03371.png,2110 -images-03372.png,2111 -images-03373.png,2112 -images-03374.png,2113 -images-03375.png,2114 -images-03376.png,2115 -images-03377.png,2116 -images-03378.png,2117 -images-03379.png,2118 -images-03380.png,2119 -images-03381.png,2120 -images-03382.png,2121 -images-03383.png,2122 -images-03698.png,2123 -images-03699.png,2124 -images-03700.png,2125 -images-03701.png,2126 -images-03702.png,2127 -images-03703.png,2128 -images-03704.png,2129 -images-03705.png,2130 -images-03706.png,2131 -images-03707.png,2132 -images-03708.png,2133 -images-03709.png,2134 -images-03710.png,2135 -images-03711.png,2136 -images-03712.png,2137 -images-03713.png,2138 -images-03714.png,2139 -images-03715.png,2140 -images-03716.png,2141 -images-03717.png,2142 -images-03718.png,2143 -images-03719.png,2144 -images-03720.png,2145 -images-03721.png,2146 -images-03722.png,2147 -images-03723.png,2148 -images-03724.png,2149 -images-03725.png,2150 -images-03726.png,2151 -images-03727.png,2152 -images-03728.png,2153 -images-03729.png,2154 -images-03730.png,2155 -images-03731.png,2156 -images-03732.png,2157 -images-03733.png,2158 -images-03734.png,2159 -images-03735.png,2160 -images-03736.png,2161 -images-03737.png,2162 -images-03738.png,2163 -images-03739.png,2164 -images-03740.png,2165 -images-03741.png,2166 -images-03742.png,2167 -images-03743.png,2168 -images-03744.png,2169 -images-03745.png,2170 -images-03746.png,2171 -images-03747.png,2172 -images-03748.png,2173 -images-03749.png,2174 -images-03750.png,2175 -images-03751.png,2176 -images-03752.png,2177 -images-03753.png,2178 -images-03754.png,2179 -images-03755.png,2180 -images-03756.png,2181 -images-03757.png,2182 -images-03758.png,2183 -images-03759.png,2184 -images-03760.png,2185 -images-03761.png,2186 -images-03762.png,2187 -images-03763.png,2188 -images-03764.png,2189 -images-03765.png,2190 -images-03766.png,2191 -images-03767.png,2192 -images-03768.png,2193 -images-03769.png,2194 -images-03770.png,2195 -images-03771.png,2196 -images-03772.png,2197 -images-03773.png,2198 -images-03774.png,2199 -images-03775.png,2200 -images-03776.png,2201 -images-03777.png,2202 -images-03778.png,2203 -images-03779.png,2204 -images-03780.png,2205 -images-03781.png,2206 -images-03782.png,2207 -images-03783.png,2208 -images-03784.png,2209 -images-03785.png,2210 -images-03786.png,2211 -images-03787.png,2212 -images-03788.png,2213 -images-03789.png,2214 -images-03790.png,2215 -images-03791.png,2216 -images-03792.png,2217 -images-03793.png,2218 -images-03794.png,2219 -images-03795.png,2220 -images-03796.png,2221 -images-03797.png,2222 -images-03798.png,2223 -images-03799.png,2224 -images-03800.png,2225 -images-03801.png,2226 -images-03802.png,2227 -images-03803.png,2228 -images-03804.png,2229 -images-03805.png,2230 -images-03806.png,2231 -images-03807.png,2232 -images-03808.png,2233 -images-03809.png,2234 -images-03810.png,2235 -images-03811.png,2236 -images-03812.png,2237 -images-03813.png,2238 -images-03814.png,2239 -images-03815.png,2240 -images-03816.png,2241 -images-03817.png,2242 -images-03818.png,2243 -images-03819.png,2244 -images-03820.png,2245 -images-03821.png,2246 -images-03822.png,2247 -images-03823.png,2248 -images-03824.png,2249 -images-03825.png,2250 -images-03826.png,2251 -images-03827.png,2252 -images-03828.png,2253 -images-03829.png,2254 -images-03830.png,2255 -images-03831.png,2256 -images-03832.png,2257 -images-03833.png,2258 -images-03834.png,2259 -images-03835.png,2260 -images-03836.png,2261 -images-03837.png,2262 -images-03838.png,2263 -images-03839.png,2264 -images-03840.png,2265 -images-03841.png,2266 -images-03842.png,2267 -images-03843.png,2268 -images-03844.png,2269 -images-03845.png,2270 -images-03846.png,2271 -images-03847.png,2272 -images-03848.png,2273 -images-03849.png,2274 -images-03850.png,2275 -images-03851.png,2276 -images-03852.png,2277 -images-03853.png,2278 -images-03854.png,2279 -images-03855.png,2280 -images-03856.png,2281 -images-03857.png,2282 -images-03858.png,2283 -images-03859.png,2284 -images-03860.png,2285 -images-03861.png,2286 -images-03862.png,2287 -images-03863.png,2288 -images-03864.png,2289 -images-03865.png,2290 -images-03866.png,2291 -images-03867.png,2292 -images-03868.png,2293 -images-03869.png,2294 -images-03870.png,2295 -images-03871.png,2296 -images-03872.png,2297 -images-03873.png,2298 -images-03874.png,2299 -images-03875.png,2300 -images-03876.png,2301 -images-03877.png,2302 -images-03878.png,2303 -images-03879.png,2304 -images-03880.png,2305 -images-03881.png,2306 -images-03882.png,2307 -images-03883.png,2308 -images-03884.png,2309 -images-03885.png,2310 -images-03886.png,2311 -images-03887.png,2312 -images-03888.png,2313 -images-03889.png,2314 -images-03890.png,2315 -images-03891.png,2316 -images-03892.png,2317 -images-03893.png,2318 -images-03894.png,2319 -images-03895.png,2320 -images-03896.png,2321 -images-03897.png,2322 -images-03898.png,2323 -images-03899.png,2324 -images-03900.png,2325 -images-03901.png,2326 -images-03902.png,2327 -images-03903.png,2328 -images-03904.png,2329 -images-03905.png,2330 -images-03906.png,2331 -images-03907.png,2332 -images-03908.png,2333 -images-03909.png,2334 -images-03910.png,2335 -images-03911.png,2336 -images-03912.png,2337 -images-03913.png,2338 -images-03914.png,2339 -images-03915.png,2340 -images-03916.png,2341 -images-03917.png,2342 -images-03918.png,2343 -images-03919.png,2344 -images-03920.png,2345 -images-03921.png,2346 -images-03922.png,2347 -images-03923.png,2348 -images-03924.png,2349 -images-03925.png,2350 -images-03926.png,2351 -images-03927.png,2352 -images-03928.png,2353 -images-03929.png,2354 -images-03930.png,2355 -images-03931.png,2356 -images-03932.png,2357 -images-03933.png,2358 -images-03934.png,2359 -images-03935.png,2360 -images-03936.png,2361 -images-03937.png,2362 -images-03938.png,2363 -images-03939.png,2364 -images-03940.png,2365 -images-03941.png,2366 -images-03942.png,2367 -images-03943.png,2368 -images-03944.png,2369 -images-03945.png,2370 -images-03946.png,2371 -images-03947.png,2372 -images-03948.png,2373 -images-03949.png,2374 -images-03950.png,2375 -images-03951.png,2376 -images-03952.png,2377 -images-03953.png,2378 -images-03954.png,2379 -images-03955.png,2380 -images-03956.png,2381 -images-03957.png,2382 -images-03958.png,2383 -images-03959.png,2384 -images-03960.png,2385 -images-03961.png,2386 -images-03962.png,2387 -images-03963.png,2388 -images-03964.png,2389 -images-03965.png,2390 -images-03966.png,2391 -images-03967.png,2392 -images-03968.png,2393 -images-03969.png,2394 -images-03970.png,2395 -images-03971.png,2396 -images-03972.png,2397 -images-03973.png,2398 -images-03974.png,2399 -images-03975.png,2400 -images-03976.png,2401 -images-03977.png,2402 -images-03978.png,2403 -images-03979.png,2404 -images-03980.png,2405 -images-03981.png,2406 -images-03982.png,2407 -images-03983.png,2408 -images-03984.png,2409 -images-03985.png,2410 -images-03986.png,2411 -images-03987.png,2412 -images-03988.png,2413 -images-03989.png,2414 -images-03990.png,2415 -images-03991.png,2416 -images-03992.png,2417 -images-03993.png,2418 -images-03994.png,2419 -images-03995.png,2420 -images-03996.png,2421 -images-03997.png,2422 -images-03998.png,2423 -images-03999.png,2424 -images-04000.png,2425 -images-04001.png,2426 -images-04002.png,2427 -images-04003.png,2428 -images-04004.png,2429 -images-04005.png,2430 -images-04006.png,2431 -images-04007.png,2432 -images-04008.png,2433 -images-04009.png,2434 -images-04010.png,2435 -images-04011.png,2436 -images-04012.png,2437 -images-04013.png,2438 -images-04014.png,2439 -images-04015.png,2440 -images-04016.png,2441 -images-04017.png,2442 -images-04018.png,2443 -images-04019.png,2444 -images-04020.png,2445 -images-04021.png,2446 -images-04022.png,2447 -images-04023.png,2448 -images-04024.png,2449 -images-04025.png,2450 -images-04026.png,2451 -images-04027.png,2452 -images-04028.png,2453 -images-04029.png,2454 -images-04030.png,2455 -images-04031.png,2456 -images-04032.png,2457 -images-04033.png,2458 -images-04034.png,2459 -images-04035.png,2460 -images-04036.png,2461 -images-04037.png,2462 -images-04038.png,2463 -images-04039.png,2464 -images-04040.png,2465 -images-04041.png,2466 -images-04042.png,2467 -images-04043.png,2468 -images-04044.png,2469 -images-04045.png,2470 -images-04046.png,2471 -images-04047.png,2472 -images-04048.png,2473 -images-04049.png,2474 -images-04050.png,2475 -images-04051.png,2476 -images-04052.png,2477 -images-04053.png,2478 -images-04054.png,2479 -images-04055.png,2480 -images-04056.png,2481 -images-04057.png,2482 -images-04058.png,2483 -images-04059.png,2484 -images-04060.png,2485 -images-04061.png,2486 -images-04062.png,2487 -images-04063.png,2488 -images-04064.png,2489 -images-04065.png,2490 -images-04066.png,2491 -images-04067.png,2492 -images-04068.png,2493 -images-04069.png,2494 -images-04070.png,2495 -images-04071.png,2496 -images-04072.png,2497 -images-04073.png,2498 -images-04074.png,2499 -images-04075.png,2500 -images-04076.png,2501 -images-04077.png,2502 -images-04078.png,2503 -images-04079.png,2504 -images-04080.png,2505 -images-04081.png,2506 -images-04082.png,2507 -images-04083.png,2508 -images-04084.png,2509 -images-04085.png,2510 -images-04086.png,2511 -images-04087.png,2512 -images-04088.png,2513 -images-04089.png,2514 -images-04090.png,2515 -images-04091.png,2516 -images-04092.png,2517 -images-04097.png,2518 -images-04098.png,2519 -images-04099.png,2520 -images-04100.png,2521 -images-04101.png,2522 -images-04102.png,2523 -images-04103.png,2524 -images-04104.png,2525 -images-04105.png,2526 -images-04106.png,2527 -images-04107.png,2528 -images-04108.png,2529 -images-04109.png,2530 -images-04110.png,2531 -images-04111.png,2532 -images-04112.png,2533 -images-04113.png,2534 -images-04114.png,2535 -images-04115.png,2536 -images-04116.png,2537 -images-04117.png,2538 -images-04118.png,2539 -images-04119.png,2540 -images-04120.png,2541 -images-04121.png,2542 -images-04122.png,2543 -images-04123.png,2544 -images-04124.png,2545 -images-04125.png,2546 -images-04126.png,2547 -images-04127.png,2548 -images-04128.png,2549 -images-04129.png,2550 -images-04130.png,2551 -images-04131.png,2552 -images-04132.png,2553 -images-04133.png,2554 -images-04134.png,2555 -images-04135.png,2556 -images-04136.png,2557 -images-04137.png,2558 -images-04138.png,2559 -images-04139.png,2560 -images-04140.png,2561 -images-04141.png,2562 -images-04142.png,2563 -images-04143.png,2564 -images-04144.png,2565 -images-04145.png,2566 -images-04146.png,2567 -images-04147.png,2568 -images-04148.png,2569 -images-04149.png,2570 -images-04150.png,2571 -images-04151.png,2572 -images-04152.png,2573 -images-04153.png,2574 -images-04154.png,2575 -images-04155.png,2576 -images-04156.png,2577 -images-04157.png,2578 -images-04158.png,2579 -images-04159.png,2580 -images-04160.png,2581 -images-04161.png,2582 -images-04162.png,2583 -images-04163.png,2584 -images-04164.png,2585 -images-04165.png,2586 -images-04166.png,2587 -images-04167.png,2588 -images-04168.png,2589 -images-04169.png,2590 -images-04170.png,2591 -images-04171.png,2592 -images-04172.png,2593 -images-04173.png,2594 -images-04174.png,2595 -images-04175.png,2596 -images-04176.png,2597 -images-04177.png,2598 -images-04178.png,2599 -images-04179.png,2600 -images-04180.png,2601 -images-04181.png,2602 -images-04182.png,2603 -images-04183.png,2604 -images-04184.png,2605 -images-04185.png,2606 -images-04186.png,2607 -images-04187.png,2608 -images-04188.png,2609 -images-04189.png,2610 -images-04190.png,2611 -images-04191.png,2612 -images-04192.png,2613 -images-04193.png,2614 -images-04194.png,2615 -images-04195.png,2616 -images-04196.png,2617 -images-04197.png,2618 -images-04198.png,2619 -images-04199.png,2620 -images-04200.png,2621 -images-04201.png,2622 -images-04202.png,2623 -images-04203.png,2624 -images-04204.png,2625 -images-04205.png,2626 -images-04206.png,2627 -images-04207.png,2628 -images-04208.png,2629 -images-04209.png,2630 -images-04210.png,2631 -images-04211.png,2632 -images-04212.png,2633 -images-04213.png,2634 -images-04214.png,2635 -images-04215.png,2636 -images-04216.png,2637 -images-04217.png,2638 -images-04218.png,2639 -images-04219.png,2640 -images-04220.png,2641 -images-04221.png,2642 -images-04222.png,2643 -images-04223.png,2644 -images-04224.png,2645 -images-04225.png,2646 -images-04226.png,2647 -images-04227.png,2648 -images-04228.png,2649 -images-04229.png,2650 -images-04230.png,2651 -images-04231.png,2652 -images-04232.png,2653 -images-04233.png,2654 -images-04234.png,2655 -images-04235.png,2656 -images-04236.png,2657 -images-04237.png,2658 -images-04238.png,2659 -images-04239.png,2660 -images-04240.png,2661 -images-04241.png,2662 -images-04242.png,2663 -images-04243.png,2664 -images-04244.png,2665 -images-04245.png,2666 -images-04246.png,2667 -images-04247.png,2668 -images-04248.png,2669 -images-04249.png,2670 -images-04250.png,2671 -images-04251.png,2672 -images-04252.png,2673 -images-04253.png,2674 -images-04254.png,2675 -images-04255.png,2676 -images-04256.png,2677 -images-04257.png,2678 -images-04258.png,2679 -images-04259.png,2680 -images-04260.png,2681 -images-04261.png,2682 -images-04262.png,2683 -images-04263.png,2684 -images-04264.png,2685 -images-04265.png,2686 -images-04266.png,2687 -images-04267.png,2688 -images-04268.png,2689 -images-04269.png,2690 -images-04270.png,2691 -images-04271.png,2692 -images-04272.png,2693 -images-04273.png,2694 -images-04274.png,2695 -images-04275.png,2696 -images-04276.png,2697 -images-04277.png,2698 -images-04278.png,2699 -images-04279.png,2700 -images-04280.png,2701 -images-04281.png,2702 -images-04282.png,2703 -images-04283.png,2704 -images-04284.png,2705 -images-04285.png,2706 -images-04286.png,2707 -images-04287.png,2708 -images-04288.png,2709 -images-04289.png,2710 -images-04290.png,2711 -images-04291.png,2712 -images-04292.png,2713 -images-04293.png,2714 -images-04294.png,2715 -images-04295.png,2716 -images-04296.png,2717 -images-04297.png,2718 -images-04298.png,2719 -images-04299.png,2720 -images-04300.png,2721 -images-04301.png,2722 -images-04302.png,2723 -images-04303.png,2724 -images-04304.png,2725 -images-04305.png,2726 -images-04306.png,2727 -images-04307.png,2728 -images-04308.png,2729 -images-04309.png,2730 -images-04310.png,2731 -images-04311.png,2732 -images-04312.png,2733 -images-04313.png,2734 -images-04314.png,2735 -images-04315.png,2736 -images-04316.png,2737 -images-04317.png,2738 -images-04318.png,2739 -images-04319.png,2740 -images-04320.png,2741 -images-04321.png,2742 -images-04322.png,2743 -images-04323.png,2744 -images-04324.png,2745 -images-04325.png,2746 -images-04326.png,2747 -images-04327.png,2748 -images-04328.png,2749 -images-04329.png,2750 -images-04330.png,2751 -images-04331.png,2752 -images-04332.png,2753 -images-04333.png,2754 -images-04334.png,2755 -images-04335.png,2756 -images-04336.png,2757 -images-04337.png,2758 -images-04338.png,2759 -images-04339.png,2760 -images-04340.png,2761 -images-04341.png,2762 -images-04342.png,2763 -images-04343.png,2764 -images-04344.png,2765 -images-04345.png,2766 -images-04346.png,2767 -images-04347.png,2768 -images-04348.png,2769 -images-04349.png,2770 -images-04350.png,2771 -images-04351.png,2772 -images-04352.png,2773 -images-04353.png,2774 -images-04354.png,2775 -images-04355.png,2776 -images-04356.png,2777 -images-04357.png,2778 -images-04358.png,2779 -images-04359.png,2780 -images-04360.png,2781 -images-04361.png,2782 -images-04362.png,2783 -images-04363.png,2784 -images-04364.png,2785 -images-04365.png,2786 -images-04366.png,2787 -images-04367.png,2788 -images-04368.png,2789 -images-04369.png,2790 -images-04370.png,2791 -images-04371.png,2792 -images-04372.png,2793 -images-04373.png,2794 -images-04374.png,2795 -images-04375.png,2796 -images-04376.png,2797 -images-04377.png,2798 -images-04378.png,2799 -images-04379.png,2800 -images-04380.png,2801 -images-04381.png,2802 -images-04382.png,2803 -images-04383.png,2804 -images-04384.png,2805 -images-04385.png,2806 -images-04386.png,2807 -images-04387.png,2808 -images-04388.png,2809 -images-04389.png,2810 -images-04390.png,2811 -images-04391.png,2812 -images-04392.png,2813 -images-04393.png,2814 -images-04394.png,2815 -images-04395.png,2816 -images-04396.png,2817 -images-04397.png,2818 -images-04398.png,2819 -images-04399.png,2820 -images-04400.png,2821 -images-04401.png,2822 -images-04402.png,2823 -images-04403.png,2824 -images-04404.png,2825 -images-04405.png,2826 -images-04406.png,2827 -images-04407.png,2828 -images-04408.png,2829 -images-04409.png,2830 -images-04410.png,2831 -images-04411.png,2832 -images-04412.png,2833 -images-04413.png,2834 -images-04414.png,2835 -images-04415.png,2836 -images-04416.png,2837 -images-04417.png,2838 -images-04418.png,2839 -images-04419.png,2840 -images-04420.png,2841 -images-04421.png,2842 -images-04422.png,2843 -images-04423.png,2844 -images-04424.png,2845 -images-04425.png,2846 -images-04426.png,2847 -images-04427.png,2848 -images-04428.png,2849 -images-04429.png,2850 -images-04430.png,2851 -images-04431.png,2852 -images-04432.png,2853 -images-04433.png,2854 -images-04434.png,2855 -images-04435.png,2856 -images-04436.png,2857 -images-04437.png,2858 -images-04438.png,2859 -images-04439.png,2860 -images-04440.png,2861 -images-04441.png,2862 -images-04442.png,2863 -images-04443.png,2864 -images-04444.png,2865 -images-04445.png,2866 -images-04446.png,2867 -images-04447.png,2868 -images-04448.png,2869 -images-04449.png,2870 -images-04450.png,2871 -images-04451.png,2872 -images-04452.png,2873 -images-04453.png,2874 -images-04454.png,2875 -images-04455.png,2876 -images-04456.png,2877 -images-04457.png,2878 -images-04458.png,2879 -images-04459.png,2880 -images-04460.png,2881 -images-04461.png,2882 -images-04462.png,2883 -images-04463.png,2884 -images-04464.png,2885 -images-04465.png,2886 -images-04466.png,2887 -images-04467.png,2888 -images-04468.png,2889 -images-04469.png,2890 -images-04470.png,2891 -images-04471.png,2892 -images-04472.png,2893 -images-04473.png,2894 -images-04474.png,2895 -images-04475.png,2896 -images-04476.png,2897 -images-04477.png,2898 -images-04478.png,2899 -images-04479.png,2900 -images-04480.png,2901 -images-04481.png,2902 -images-04482.png,2903 -images-04483.png,2904 -images-04484.png,2905 -images-04485.png,2906 -images-04486.png,2907 -images-04487.png,2908 -images-04488.png,2909 -images-04489.png,2910 -images-04490.png,2911 -images-04491.png,2912 -images-04492.png,2913 -images-04493.png,2914 -images-04494.png,2915 -images-04495.png,2916 -images-04496.png,2917 -images-04497.png,2918 -images-04498.png,2919 -images-04499.png,2920 -images-04500.png,2921 -images-04501.png,2922 -images-04502.png,2923 -images-04503.png,2924 -images-04504.png,2925 -images-04505.png,2926 -images-04506.png,2927 -images-04507.png,2928 -images-04508.png,2929 -images-04509.png,2930 -images-04510.png,2931 -images-04511.png,2932 -images-04512.png,2933 -images-04513.png,2934 -images-04514.png,2935 -images-04515.png,2936 -images-04516.png,2937 -images-04517.png,2938 -images-04518.png,2939 -images-04519.png,2940 -images-04520.png,2941 -images-04521.png,2942 -images-04522.png,2943 -images-04523.png,2944 -images-04524.png,2945 -images-04525.png,2946 -images-04526.png,2947 -images-04527.png,2948 -images-04528.png,2949 -images-04529.png,2950 -images-04530.png,2951 -images-04531.png,2952 -images-04532.png,2953 -images-04533.png,2954 -images-04534.png,2955 -images-04535.png,2956 -images-04536.png,2957 -images-04537.png,2958 -images-04538.png,2959 -images-04539.png,2960 -images-04540.png,2961 -images-04541.png,2962 -images-04542.png,2963 -images-04543.png,2964 -images-04544.png,2965 -images-04545.png,2966 -images-04546.png,2967 -images-04547.png,2968 -images-04548.png,2969 -images-04549.png,2970 -images-04550.png,2971 -images-04551.png,2972 -images-04552.png,2973 -images-04553.png,2974 -images-04554.png,2975 -images-04555.png,2976 -images-04556.png,2977 -images-04557.png,2978 -images-04558.png,2979 -images-04559.png,2980 -images-04560.png,2981 -images-04561.png,2982 -images-04562.png,2983 -images-04563.png,2984 -images-04564.png,2985 -images-04565.png,2986 -images-04566.png,2987 -images-04567.png,2988 -images-04568.png,2989 -images-04569.png,2990 -images-04570.png,2991 -images-04571.png,2992 -images-04572.png,2993 -images-04573.png,2994 -images-04574.png,2995 -images-04575.png,2996 -images-04576.png,2997 -images-04577.png,2998 -images-04578.png,2999 -images-04579.png,3000 -images-04580.png,3001 -images-04581.png,3002 -images-04582.png,3003 -images-04583.png,3004 -images-04584.png,3005 -images-04585.png,3006 -images-04586.png,3007 -images-04587.png,3008 -images-04588.png,3009 -images-04589.png,3010 -images-04590.png,3011 -images-04591.png,3012 -images-04592.png,3013 -images-04593.png,3014 -images-04594.png,3015 -images-04595.png,3016 -images-04596.png,3017 -images-04597.png,3018 -images-04598.png,3019 -images-04599.png,3020 -images-04600.png,3021 -images-04601.png,3022 -images-04602.png,3023 -images-04603.png,3024 -images-04604.png,3025 -images-04605.png,3026 -images-04606.png,3027 -images-04607.png,3028 -images-04608.png,3029 -images-04609.png,3030 -images-04610.png,3031 -images-04611.png,3032 -images-04612.png,3033 -images-04613.png,3034 -images-04614.png,3035 -images-04615.png,3036 -images-04616.png,3037 -images-04617.png,3038 -images-04618.png,3039 -images-04619.png,3040 -images-04620.png,3041 -images-04621.png,3042 -images-04622.png,3043 -images-04623.png,3044 -images-04624.png,3045 -images-04625.png,3046 -images-04626.png,3047 -images-04627.png,3048 -images-04628.png,3049 -images-04629.png,3050 -images-04630.png,3051 -images-04631.png,3052 -images-04632.png,3053 -images-04633.png,3054 -images-04634.png,3055 -images-04635.png,3056 -images-04636.png,3057 -images-04637.png,3058 -images-04638.png,3059 -images-04639.png,3060 -images-04640.png,3061 -images-04641.png,3062 -images-04642.png,3063 -images-04643.png,3064 -images-04644.png,3065 -images-04645.png,3066 -images-04646.png,3067 -images-04647.png,3068 -images-04648.png,3069 -images-04649.png,3070 -images-04650.png,3071 -images-04651.png,3072 -images-04652.png,3073 -images-04653.png,3074 -images-04654.png,3075 -images-04655.png,3076 -images-04656.png,3077 -images-04657.png,3078 -images-04658.png,3079 -images-04659.png,3080 -images-04660.png,3081 -images-04661.png,3082 -images-04662.png,3083 -images-04663.png,3084 -images-04664.png,3085 -images-04665.png,3086 -images-04666.png,3087 -images-04667.png,3088 -images-04668.png,3089 -images-04669.png,3090 -images-04670.png,3091 -images-04671.png,3092 -images-04672.png,3093 -images-04673.png,3094 -images-04674.png,3095 -images-04675.png,3096 -images-04676.png,3097 -images-04677.png,3098 -images-04678.png,3099 -images-04679.png,3100 -images-04680.png,3101 -images-04681.png,3102 -images-04682.png,3103 -images-04683.png,3104 -images-04684.png,3105 -images-04685.png,3106 -images-04686.png,3107 -images-04687.png,3108 -images-04688.png,3109 -images-04689.png,3110 -images-04690.png,3111 -images-04691.png,3112 -images-04692.png,3113 -images-04693.png,3114 -images-04694.png,3115 -images-04695.png,3116 -images-04696.png,3117 -images-04697.png,3118 -images-04698.png,3119 -images-04699.png,3120 -images-04700.png,3121 -images-04701.png,3122 -images-04702.png,3123 -images-04703.png,3124 -images-04704.png,3125 -images-04705.png,3126 -images-04706.png,3127 -images-04707.png,3128 -images-04708.png,3129 -images-04709.png,3130 -images-04710.png,3131 -images-04711.png,3132 -images-04712.png,3133 -images-04713.png,3134 -images-04714.png,3135 -images-04715.png,3136 -images-04716.png,3137 -images-04717.png,3138 -images-04718.png,3139 -images-04719.png,3140 -images-04720.png,3141 -images-04721.png,3142 -images-04722.png,3143 -images-04723.png,3144 -images-04724.png,3145 -images-04725.png,3146 -images-04726.png,3147 -images-04727.png,3148 -images-04728.png,3149 -images-04729.png,3150 -images-04730.png,3151 -images-04731.png,3152 -images-04732.png,3153 -images-04733.png,3154 -images-04734.png,3155 -images-04735.png,3156 -images-04736.png,3157 -images-04737.png,3158 -images-04738.png,3159 -images-04739.png,3160 -images-04740.png,3161 -images-04741.png,3162 -images-04742.png,3163 -images-04743.png,3164 -images-04744.png,3165 -images-04745.png,3166 -images-04746.png,3167 -images-04747.png,3168 -images-04748.png,3169 -images-04749.png,3170 -images-04750.png,3171 -images-04751.png,3172 -images-04752.png,3173 -images-04753.png,3174 -images-04754.png,3175 -images-04755.png,3176 -images-04756.png,3177 -images-04757.png,3178 -images-04758.png,3179 -images-04759.png,3180 -images-04760.png,3181 -images-04761.png,3182 -images-04762.png,3183 -images-04763.png,3184 -images-04764.png,3185 -images-04765.png,3186 -images-04766.png,3187 -images-04767.png,3188 -images-04768.png,3189 -images-04769.png,3190 -images-04770.png,3191 -images-04771.png,3192 -images-04772.png,3193 -images-04773.png,3194 -images-04774.png,3195 -images-04775.png,3196 -images-04776.png,3197 -images-04777.png,3198 -images-04778.png,3199 -images-04779.png,3200 -images-04780.png,3201 -images-04781.png,3202 -images-04782.png,3203 -images-04783.png,3204 -images-04784.png,3205 -images-04785.png,3206 -images-04786.png,3207 -images-04787.png,3208 -images-04788.png,3209 -images-04789.png,3210 -images-04790.png,3211 -images-04791.png,3212 -images-04792.png,3213 -images-04793.png,3214 -images-04794.png,3215 -images-04795.png,3216 -images-04796.png,3217 -images-04797.png,3218 -images-04798.png,3219 -images-04799.png,3220 -images-04800.png,3221 -images-04801.png,3222 -images-04802.png,3223 -images-04803.png,3224 -images-04804.png,3225 -images-04805.png,3226 -images-04806.png,3227 -images-04807.png,3228 -images-04808.png,3229 -images-04809.png,3230 -images-04810.png,3231 -images-04811.png,3232 -images-04812.png,3233 -images-04813.png,3234 -images-04814.png,3235 -images-04815.png,3236 -images-04816.png,3237 -images-04817.png,3238 -images-04818.png,3239 -images-04819.png,3240 -images-04820.png,3241 -images-04821.png,3242 -images-04822.png,3243 -images-04823.png,3244 -images-04824.png,3245 -images-04825.png,3246 -images-04826.png,3247 -images-04827.png,3248 -images-04828.png,3249 -images-04829.png,3250 -images-04830.png,3251 -images-04831.png,3252 -images-04832.png,3253 -images-04833.png,3254 -images-04834.png,3255 -images-04835.png,3256 -images-04836.png,3257 -images-04837.png,3258 -images-04838.png,3259 -images-04839.png,3260 -images-04840.png,3261 -images-04841.png,3262 -images-04842.png,3263 -images-04843.png,3264 -images-04844.png,3265 -images-04845.png,3266 -images-04846.png,3267 -images-04847.png,3268 -images-04848.png,3269 -images-04849.png,3270 -images-04850.png,3271 -images-04851.png,3272 -images-04852.png,3273 -images-04853.png,3274 -images-04854.png,3275 -images-04855.png,3276 -images-04856.png,3277 -images-04857.png,3278 -images-04858.png,3279 -images-04859.png,3280 -images-04860.png,3281 -images-04861.png,3282 -images-04862.png,3283 -images-04863.png,3284 -images-04864.png,3285 -images-04865.png,3286 -images-04866.png,3287 -images-04867.png,3288 -images-04868.png,3289 -images-04869.png,3290 -images-04870.png,3291 -images-04871.png,3292 -images-04872.png,3293 -images-04873.png,3294 -images-04874.png,3295 -images-04875.png,3296 -images-04876.png,3297 -images-04877.png,3298 -images-04878.png,3299 -images-04879.png,3300 -images-04880.png,3301 -images-04881.png,3302 -images-04882.png,3303 -images-04883.png,3304 -images-04884.png,3305 -images-04885.png,3306 -images-04886.png,3307 -images-04887.png,3308 -images-04888.png,3309 -images-04889.png,3310 -images-04890.png,3311 -images-04891.png,3312 -images-04892.png,3313 -images-04893.png,3314 -images-04894.png,3315 -images-04895.png,3316 -images-04896.png,3317 -images-04897.png,3318 -images-04898.png,3319 -images-04899.png,3320 -images-04900.png,3321 -images-04901.png,3322 -images-04902.png,3323 -images-04903.png,3324 -images-04904.png,3325 -images-04905.png,3326 -images-04906.png,3327 -images-04907.png,3328 -images-04908.png,3329 -images-04909.png,3330 -images-04910.png,3331 -images-04911.png,3332 -images-04912.png,3333 -images-04913.png,3334 -images-04914.png,3335 -images-04915.png,3336 -images-04916.png,3337 -images-04917.png,3338 -images-04918.png,3339 -images-04919.png,3340 -images-04920.png,3341 -images-04921.png,3342 -images-04922.png,3343 -images-04923.png,3344 -images-04924.png,3345 -images-04925.png,3346 -images-04926.png,3347 -images-04927.png,3348 -images-04928.png,3349 -images-04929.png,3350 -images-04930.png,3351 -images-04931.png,3352 -images-04932.png,3353 -images-04933.png,3354 -images-04934.png,3355 -images-04935.png,3356 -images-04936.png,3357 -images-04937.png,3358 -images-04938.png,3359 -images-04939.png,3360 -images-04940.png,3361 -images-04941.png,3362 -images-04942.png,3363 -images-04943.png,3364 -images-04944.png,3365 -images-04945.png,3366 -images-04946.png,3367 -images-04947.png,3368 -images-04948.png,3369 -images-04949.png,3370 -images-04950.png,3371 -images-04951.png,3372 -images-04952.png,3373 -images-04953.png,3374 -images-04954.png,3375 -images-04955.png,3376 -images-04956.png,3377 -images-04957.png,3378 -images-04958.png,3379 -images-04959.png,3380 -images-04960.png,3381 -images-04961.png,3382 -images-04962.png,3383 -images-04963.png,3384 -images-04964.png,3385 -images-04965.png,3386 -images-04966.png,3387 -images-04967.png,3388 -images-04968.png,3389 -images-04969.png,3390 -images-04970.png,3391 -images-04971.png,3392 -images-04972.png,3393 -images-04973.png,3394 -images-04974.png,3395 -images-04975.png,3396 -images-04976.png,3397 -images-04977.png,3398 -images-04978.png,3399 -images-04979.png,3400 -images-04980.png,3401 -images-04981.png,3402 -images-04982.png,3403 -images-04983.png,3404 -images-04984.png,3405 -images-04985.png,3406 -images-04986.png,3407 -images-04987.png,3408 -images-04988.png,3409 -images-04989.png,3410 -images-04990.png,3411 -images-04991.png,3412 -images-04992.png,3413 -images-04993.png,3414 -images-04994.png,3415 -images-04995.png,3416 -images-04996.png,3417 -images-04997.png,3418 -images-04998.png,3419 -images-04999.png,3420 -images-05000.png,3421 -images-05001.png,3422 -images-05002.png,3423 -images-05003.png,3424 -images-05004.png,3425 -images-05005.png,3426 -images-05006.png,3427 -images-05007.png,3428 -images-05008.png,3429 -images-05009.png,3430 -images-05010.png,3431 -images-05011.png,3432 -images-05012.png,3433 -images-05013.png,3434 -images-05014.png,3435 -images-05015.png,3436 -images-05016.png,3437 -images-05017.png,3438 -images-05018.png,3439 -images-05019.png,3440 -images-05020.png,3441 -images-05021.png,3442 -images-05022.png,3443 -images-05023.png,3444 -images-05024.png,3445 -images-05025.png,3446 -images-05026.png,3447 -images-05027.png,3448 -images-05028.png,3449 -images-05029.png,3450 -images-05030.png,3451 -images-05031.png,3452 -images-05032.png,3453 -images-05033.png,3454 -images-05034.png,3455 -images-05035.png,3456 -images-05036.png,3457 -images-05037.png,3458 -images-05038.png,3459 -images-05039.png,3460 -images-05040.png,3461 -images-05479.png,3462 -images-05480.png,3463 -images-05481.png,3464 -images-05482.png,3465 -images-05483.png,3466 -images-05484.png,3467 -images-05485.png,3468 -images-05486.png,3469 -images-05487.png,3470 -images-05488.png,3471 -images-05489.png,3472 -images-05490.png,3473 -images-05491.png,3474 -images-05492.png,3475 -images-05493.png,3476 -images-05494.png,3477 -images-05495.png,3478 -images-05496.png,3479 -images-05497.png,3480 -images-05498.png,3481 -images-05499.png,3482 -images-05500.png,3483 -images-05501.png,3484 -images-05502.png,3485 -images-05503.png,3486 -images-05504.png,3487 -images-05505.png,3488 -images-05506.png,3489 -images-05507.png,3490 -images-05508.png,3491 -images-05509.png,3492 -images-05510.png,3493 -images-05511.png,3494 -images-05512.png,3495 -images-05513.png,3496 -images-05514.png,3497 -images-05515.png,3498 -images-05516.png,3499 -images-05517.png,3500 -images-05518.png,3501 -images-05519.png,3502 -images-05520.png,3503 -images-05521.png,3504 -images-05522.png,3505 -images-05523.png,3506 -images-05524.png,3507 -images-05525.png,3508 -images-05526.png,3509 -images-05527.png,3510 -images-05528.png,3511 -images-05529.png,3512 -images-05530.png,3513 -images-05531.png,3514 -images-05532.png,3515 -images-05533.png,3516 -images-05534.png,3517 -images-05535.png,3518 -images-05536.png,3519 -images-05537.png,3520 -images-05538.png,3521 -images-05539.png,3522 -images-05540.png,3523 -images-05541.png,3524 -images-05542.png,3525 -images-05543.png,3526 -images-05544.png,3527 -images-05545.png,3528 -images-05546.png,3529 -images-05547.png,3530 -images-05548.png,3531 -images-05549.png,3532 -images-05550.png,3533 -images-05551.png,3534 -images-05552.png,3535 -images-05553.png,3536 -images-05554.png,3537 -images-05555.png,3538 -images-05556.png,3539 -images-05557.png,3540 -images-05558.png,3541 -images-05559.png,3542 -images-05560.png,3543 -images-05561.png,3544 -images-05562.png,3545 -images-05563.png,3546 -images-05564.png,3547 -images-05565.png,3548 -images-05566.png,3549 -images-05567.png,3550 -images-05568.png,3551 -images-05569.png,3552 -images-05570.png,3553 -images-05571.png,3554 -images-05572.png,3555 -images-05573.png,3556 -images-05574.png,3557 -images-05575.png,3558 -images-05576.png,3559 -images-05577.png,3560 -images-05578.png,3561 -images-05579.png,3562 -images-05580.png,3563 -images-05581.png,3564 -images-05582.png,3565 -images-05583.png,3566 -images-05584.png,3567 -images-05585.png,3568 -images-05586.png,3569 -images-05587.png,3570 -images-05588.png,3571 -images-05589.png,3572 -images-05590.png,3573 -images-05591.png,3574 -images-05592.png,3575 -images-05593.png,3576 -images-05594.png,3577 -images-05595.png,3578 -images-05596.png,3579 -images-05597.png,3580 -images-05598.png,3581 -images-05599.png,3582 -images-05600.png,3583 -images-05601.png,3584 -images-05602.png,3585 -images-05603.png,3586 -images-05604.png,3587 -images-05605.png,3588 -images-05606.png,3589 -images-05607.png,3590 -images-05608.png,3591 -images-05609.png,3592 -images-05610.png,3593 -images-05611.png,3594 -images-05612.png,3595 -images-05613.png,3596 -images-05614.png,3597 -images-05615.png,3598 -images-05616.png,3599 -images-05617.png,3600 -images-05618.png,3601 -images-05619.png,3602 -images-05620.png,3603 -images-05621.png,3604 -images-05622.png,3605 -images-05623.png,3606 -images-05624.png,3607 -images-05625.png,3608 -images-05626.png,3609 -images-05627.png,3610 -images-05628.png,3611 -images-05629.png,3612 -images-05630.png,3613 -images-05631.png,3614 -images-05632.png,3615 -images-05633.png,3616 -images-05634.png,3617 -images-05635.png,3618 -images-05636.png,3619 -images-05637.png,3620 -images-05638.png,3621 -images-05639.png,3622 -images-05640.png,3623 -images-05641.png,3624 -images-05642.png,3625 -images-05643.png,3626 -images-05644.png,3627 -images-05645.png,3628 -images-05646.png,3629 -images-05647.png,3630 -images-05648.png,3631 -images-05649.png,3632 -images-05650.png,3633 -images-05651.png,3634 -images-05652.png,3635 -images-05653.png,3636 -images-05654.png,3637 -images-05655.png,3638 -images-05656.png,3639 -images-05657.png,3640 -images-05658.png,3641 -images-05659.png,3642 -images-05660.png,3643 -images-05661.png,3644 -images-05662.png,3645 -images-05663.png,3646 -images-05664.png,3647 -images-05665.png,3648 -images-05666.png,3649 -images-05667.png,3650 -images-05668.png,3651 -images-05669.png,3652 -images-05670.png,3653 -images-05671.png,3654 -images-05672.png,3655 -images-05673.png,3656 -images-05674.png,3657 -images-05675.png,3658 -images-05676.png,3659 -images-05677.png,3660 -images-05678.png,3661 -images-05679.png,3662 -images-05680.png,3663 -images-05681.png,3664 -images-05682.png,3665 -images-05683.png,3666 -images-05684.png,3667 -images-05685.png,3668 -images-05686.png,3669 -images-05687.png,3670 -images-05688.png,3671 -images-05689.png,3672 -images-05690.png,3673 -images-05691.png,3674 -images-05692.png,3675 -images-05693.png,3676 -images-05694.png,3677 -images-05695.png,3678 -images-05696.png,3679 -images-05697.png,3680 -images-05698.png,3681 -images-05699.png,3682 -images-05700.png,3683 -images-05701.png,3684 -images-05702.png,3685 -images-05703.png,3686 -images-05704.png,3687 -images-05705.png,3688 -images-05706.png,3689 -images-05707.png,3690 -images-05708.png,3691 -images-05709.png,3692 -images-05710.png,3693 -images-05711.png,3694 -images-05712.png,3695 -images-05713.png,3696 -images-05714.png,3697 -images-05715.png,3698 -images-05716.png,3699 -images-05717.png,3700 -images-05718.png,3701 -images-05719.png,3702 -images-05720.png,3703 -images-05721.png,3704 -images-05722.png,3705 -images-05723.png,3706 -images-05724.png,3707 -images-05725.png,3708 -images-05726.png,3709 -images-05727.png,3710 -images-05728.png,3711 -images-05729.png,3712 -images-05730.png,3713 -images-05731.png,3714 -images-05732.png,3715 -images-05733.png,3716 -images-05734.png,3717 -images-05735.png,3718 -images-05736.png,3719 -images-05737.png,3720 -images-05738.png,3721 -images-05739.png,3722 -images-05740.png,3723 -images-05741.png,3724 -images-05742.png,3725 -images-05743.png,3726 -images-05744.png,3727 -images-05745.png,3728 -images-05746.png,3729 -images-05747.png,3730 -images-05748.png,3731 -images-05749.png,3732 -images-05750.png,3733 -images-05751.png,3734 -images-05752.png,3735 -images-05753.png,3736 -images-05754.png,3737 -images-05755.png,3738 -images-05756.png,3739 -images-05757.png,3740 -images-05758.png,3741 -images-05759.png,3742 -images-05760.png,3743 -images-05761.png,3744 -images-05762.png,3745 -images-05763.png,3746 -images-05764.png,3747 -images-05765.png,3748 -images-05766.png,3749 -images-05767.png,3750 -images-05768.png,3751 -images-05769.png,3752 -images-05770.png,3753 -images-05771.png,3754 -images-05772.png,3755 -images-05773.png,3756 -images-05774.png,3757 -images-05775.png,3758 -images-05776.png,3759 -images-05777.png,3760 -images-05778.png,3761 -images-05779.png,3762 -images-05780.png,3763 -images-05781.png,3764 -images-05782.png,3765 -images-05783.png,3766 -images-05784.png,3767 -images-05785.png,3768 -images-05786.png,3769 -images-05787.png,3770 -images-05788.png,3771 -images-05789.png,3772 -images-05790.png,3773 -images-05791.png,3774 -images-05792.png,3775 -images-05793.png,3776 -images-05794.png,3777 -images-05795.png,3778 -images-05796.png,3779 -images-05797.png,3780 -images-05798.png,3781 -images-05799.png,3782 -images-05800.png,3783 -images-05801.png,3784 -images-05802.png,3785 -images-05803.png,3786 -images-05804.png,3787 -images-05805.png,3788 -images-05806.png,3789 -images-05807.png,3790 -images-05808.png,3791 -images-05809.png,3792 -images-05810.png,3793 -images-05811.png,3794 -images-05812.png,3795 -images-05813.png,3796 -images-05814.png,3797 -images-05815.png,3798 -images-05816.png,3799 -images-05817.png,3800 -images-05818.png,3801 -images-05819.png,3802 -images-05820.png,3803 -images-05821.png,3804 -images-05822.png,3805 -images-05823.png,3806 -images-05824.png,3807 -images-05825.png,3808 -images-05826.png,3809 -images-05827.png,3810 -images-05828.png,3811 -images-05829.png,3812 -images-05830.png,3813 -images-05831.png,3814 -images-05832.png,3815 -images-05833.png,3816 -images-05834.png,3817 -images-05835.png,3818 -images-05836.png,3819 -images-05837.png,3820 -images-05838.png,3821 -images-05839.png,3822 -images-05840.png,3823 -images-05841.png,3824 -images-05842.png,3825 -images-05843.png,3826 -images-05844.png,3827 -images-05845.png,3828 -images-05846.png,3829 -images-05847.png,3830 -images-05848.png,3831 -images-05849.png,3832 -images-05850.png,3833 -images-05851.png,3834 -images-05852.png,3835 -images-05853.png,3836 -images-05854.png,3837 -images-05855.png,3838 -images-05856.png,3839 -images-05857.png,3840 -images-05858.png,3841 -images-05859.png,3842 -images-05860.png,3843 -images-05861.png,3844 -images-05862.png,3845 -images-05863.png,3846 -images-05864.png,3847 -images-05865.png,3848 -images-05866.png,3849 -images-05867.png,3850 -images-05868.png,3851 -images-05869.png,3852 -images-05870.png,3853 -images-05871.png,3854 -images-05872.png,3855 -images-05873.png,3856 -images-05874.png,3857 -images-05875.png,3858 -images-05876.png,3859 -images-05877.png,3860 -images-05878.png,3861 -images-05879.png,3862 -images-05880.png,3863 -images-05881.png,3864 -images-05882.png,3865 -images-05883.png,3866 -images-05884.png,3867 -images-05885.png,3868 -images-05886.png,3869 -images-05887.png,3870 -images-05888.png,3871 -images-05889.png,3872 -images-05890.png,3873 -images-05891.png,3874 -images-05892.png,3875 -images-05893.png,3876 -images-05894.png,3877 -images-05895.png,3878 -images-05896.png,3879 -images-05897.png,3880 -images-05898.png,3881 -images-05899.png,3882 -images-05900.png,3883 -images-05901.png,3884 -images-05902.png,3885 -images-05903.png,3886 -images-05904.png,3887 -images-05905.png,3888 -images-05906.png,3889 -images-05907.png,3890 -images-05908.png,3891 -images-05909.png,3892 -images-05910.png,3893 -images-05911.png,3894 -images-05912.png,3895 -images-05913.png,3896 -images-05914.png,3897 -images-05915.png,3898 -images-05916.png,3899 -images-05917.png,3900 -images-05918.png,3901 -images-05919.png,3902 -images-05920.png,3903 -images-05921.png,3904 -images-05922.png,3905 -images-05923.png,3906 -images-05924.png,3907 -images-05925.png,3908 -images-05926.png,3909 -images-05927.png,3910 -images-05928.png,3911 -images-05929.png,3912 -images-05930.png,3913 -images-05931.png,3914 -images-05932.png,3915 -images-05933.png,3916 -images-05934.png,3917 -images-05935.png,3918 -images-05936.png,3919 -images-05937.png,3920 -images-05938.png,3921 -images-05939.png,3922 -images-05940.png,3923 -images-05941.png,3924 -images-05942.png,3925 -images-05943.png,3926 -images-05944.png,3927 -images-05945.png,3928 -images-05946.png,3929 -images-05947.png,3930 -images-05948.png,3931 -images-05949.png,3932 -images-05950.png,3933 -images-05951.png,3934 -images-05952.png,3935 -images-05953.png,3936 -images-05954.png,3937 -images-05955.png,3938 -images-05956.png,3939 -images-05957.png,3940 -images-05958.png,3941 -images-05959.png,3942 -images-05960.png,3943 -images-05961.png,3944 -images-05962.png,3945 -images-05963.png,3946 -images-05964.png,3947 -images-05965.png,3948 -images-05966.png,3949 -images-05967.png,3950 -images-05968.png,3951 -images-05969.png,3952 -images-05970.png,3953 -images-05971.png,3954 -images-05972.png,3955 -images-05973.png,3956 -images-05974.png,3957 -images-05975.png,3958 -images-05976.png,3959 -images-05977.png,3960 -images-05978.png,3961 -images-05979.png,3962 -images-05980.png,3963 -images-05981.png,3964 -images-05982.png,3965 -images-05983.png,3966 -images-05984.png,3967 -images-05985.png,3968 -images-05986.png,3969 -images-05987.png,3970 -images-05988.png,3971 -images-05989.png,3972 -images-05990.png,3973 -images-05991.png,3974 -images-05992.png,3975 -images-05993.png,3976 -images-05994.png,3977 -images-05995.png,3978 -images-05996.png,3979 -images-05997.png,3980 -images-05998.png,3981 -images-05999.png,3982 -images-06000.png,3983 -images-06001.png,3984 -images-06002.png,3985 -images-06003.png,3986 -images-06004.png,3987 -images-06005.png,3988 -images-06006.png,3989 -images-06007.png,3990 -images-06008.png,3991 -images-06009.png,3992 -images-06010.png,3993 -images-06011.png,3994 -images-06012.png,3995 -images-06013.png,3996 -images-06014.png,3997 -images-06015.png,3998 -images-06016.png,3999 -images-06017.png,4000 -images-06018.png,4001 -images-06019.png,4002 -images-06020.png,4003 -images-06021.png,4004 -images-06022.png,4005 -images-06023.png,4006 -images-06024.png,4007 -images-06025.png,4008 -images-06026.png,4009 -images-06027.png,4010 -images-06028.png,4011 -images-06029.png,4012 -images-06030.png,4013 -images-06031.png,4014 -images-06032.png,4015 -images-06033.png,4016 -images-06034.png,4017 -images-06035.png,4018 -images-06036.png,4019 -images-06037.png,4020 -images-06038.png,4021 -images-06039.png,4022 -images-06040.png,4023 -images-06041.png,4024 -images-06042.png,4025 -images-06043.png,4026 -images-06234.png,4027 -images-06235.png,4028 -images-06236.png,4029 -images-06237.png,4030 -images-06238.png,4031 -images-06239.png,4032 -images-06240.png,4033 -images-06241.png,4034 -images-06242.png,4035 -images-06243.png,4036 -images-06244.png,4037 -images-06245.png,4038 -images-06246.png,4039 -images-06247.png,4040 -images-06248.png,4041 -images-06249.png,4042 -images-06250.png,4043 -images-06251.png,4044 -images-06252.png,4045 -images-06253.png,4046 -images-06254.png,4047 -images-06255.png,4048 -images-06256.png,4049 -images-06257.png,4050 -images-06258.png,4051 -images-06259.png,4052 -images-06260.png,4053 -images-06261.png,4054 -images-06262.png,4055 -images-06263.png,4056 -images-06264.png,4057 -images-06265.png,4058 -images-06266.png,4059 -images-06267.png,4060 -images-06268.png,4061 -images-06269.png,4062 -images-06270.png,4063 -images-06271.png,4064 -images-06272.png,4065 -images-06273.png,4066 -images-06274.png,4067 -images-06275.png,4068 -images-06276.png,4069 -images-06277.png,4070 -images-06278.png,4071 -images-06279.png,4072 -images-06280.png,4073 -images-06281.png,4074 -images-06282.png,4075 -images-06283.png,4076 -images-06284.png,4077 -images-06285.png,4078 -images-06286.png,4079 -images-06287.png,4080 -images-06288.png,4081 -images-06289.png,4082 -images-06290.png,4083 -images-06291.png,4084 -images-06292.png,4085 -images-06293.png,4086 -images-06294.png,4087 -images-06295.png,4088 -images-06296.png,4089 -images-06297.png,4090 -images-06298.png,4091 -images-06299.png,4092 -images-06300.png,4093 -images-06301.png,4094 -images-06302.png,4095 -images-06303.png,4096 -images-06304.png,4097 -images-06305.png,4098 -images-06306.png,4099 -images-06307.png,4100 -images-06308.png,4101 -images-06309.png,4102 -images-06310.png,4103 -images-06311.png,4104 -images-06312.png,4105 -images-06313.png,4106 -images-06314.png,4107 -images-06315.png,4108 -images-06316.png,4109 -images-06317.png,4110 -images-06318.png,4111 -images-06319.png,4112 -images-06320.png,4113 -images-06321.png,4114 -images-06322.png,4115 -images-06323.png,4116 -images-06324.png,4117 -images-06325.png,4118 -images-06326.png,4119 -images-06327.png,4120 -images-06328.png,4121 -images-06329.png,4122 -images-06330.png,4123 -images-06331.png,4124 -images-06332.png,4125 -images-06333.png,4126 -images-06334.png,4127 -images-06335.png,4128 -images-06336.png,4129 -images-06337.png,4130 -images-06338.png,4131 -images-06339.png,4132 -images-06340.png,4133 -images-06341.png,4134 -images-06342.png,4135 -images-06343.png,4136 -images-06344.png,4137 -images-06345.png,4138 -images-06346.png,4139 -images-06347.png,4140 -images-06348.png,4141 -images-06349.png,4142 -images-06350.png,4143 -images-06351.png,4144 -images-06352.png,4145 -images-06353.png,4146 -images-06354.png,4147 -images-06355.png,4148 -images-06356.png,4149 -images-06357.png,4150 -images-06358.png,4151 -images-06359.png,4152 -images-06360.png,4153 -images-06361.png,4154 -images-06362.png,4155 -images-06363.png,4156 -images-06364.png,4157 -images-06365.png,4158 -images-06366.png,4159 -images-06367.png,4160 -images-06368.png,4161 -images-06369.png,4162 -images-06370.png,4163 -images-06371.png,4164 -images-06372.png,4165 -images-06373.png,4166 -images-06374.png,4167 -images-06375.png,4168 -images-06376.png,4169 -images-06377.png,4170 -images-06378.png,4171 -images-06379.png,4172 -images-06380.png,4173 -images-06381.png,4174 -images-06382.png,4175 -images-06383.png,4176 -images-06384.png,4177 -images-06385.png,4178 -images-06386.png,4179 -images-06387.png,4180 -images-06388.png,4181 -images-06389.png,4182 -images-06390.png,4183 -images-06391.png,4184 -images-06392.png,4185 -images-06393.png,4186 -images-06394.png,4187 -images-06395.png,4188 -images-06396.png,4189 -images-06397.png,4190 -images-06398.png,4191 -images-06399.png,4192 -images-06400.png,4193 -images-06401.png,4194 -images-06402.png,4195 -images-06403.png,4196 -images-06404.png,4197 -images-06405.png,4198 -images-06406.png,4199 -images-06407.png,4200 -images-06408.png,4201 -images-06409.png,4202 -images-06410.png,4203 -images-06411.png,4204 -images-06412.png,4205 -images-06413.png,4206 -images-06414.png,4207 -images-06415.png,4208 -images-06416.png,4209 -images-06417.png,4210 -images-06418.png,4211 -images-06419.png,4212 -images-06420.png,4213 -images-06421.png,4214 -images-06422.png,4215 -images-06423.png,4216 -images-06424.png,4217 -images-06425.png,4218 -images-06426.png,4219 -images-06427.png,4220 -images-06428.png,4221 -images-06429.png,4222 -images-06430.png,4223 -images-06431.png,4224 -images-06432.png,4225 -images-06433.png,4226 -images-06434.png,4227 -images-06435.png,4228 -images-06436.png,4229 -images-06437.png,4230 -images-06438.png,4231 -images-06439.png,4232 -images-06440.png,4233 -images-06441.png,4234 -images-06442.png,4235 -images-06443.png,4236 -images-06444.png,4237 -images-06445.png,4238 -images-06446.png,4239 -images-06447.png,4240 -images-06448.png,4241 -images-06449.png,4242 -images-06450.png,4243 -images-06451.png,4244 -images-06452.png,4245 -images-06453.png,4246 -images-06454.png,4247 -images-06455.png,4248 -images-06456.png,4249 -images-06457.png,4250 -images-06458.png,4251 -images-06459.png,4252 -images-06460.png,4253 -images-06461.png,4254 -images-06462.png,4255 -images-06463.png,4256 -images-06464.png,4257 -images-06465.png,4258 -images-06466.png,4259 -images-06467.png,4260 -images-06468.png,4261 -images-06469.png,4262 -images-06470.png,4263 -images-06471.png,4264 -images-06472.png,4265 -images-06473.png,4266 -images-06474.png,4267 -images-06475.png,4268 -images-06476.png,4269 -images-06477.png,4270 -images-06478.png,4271 -images-06479.png,4272 -images-06480.png,4273 -images-06481.png,4274 -images-06482.png,4275 -images-06483.png,4276 -images-06484.png,4277 -images-06485.png,4278 -images-06486.png,4279 -images-06487.png,4280 -images-06488.png,4281 -images-06489.png,4282 -images-06490.png,4283 -images-06491.png,4284 -images-06492.png,4285 -images-06493.png,4286 -images-06494.png,4287 -images-06495.png,4288 -images-06496.png,4289 -images-06497.png,4290 -images-06498.png,4291 -images-06499.png,4292 -images-06500.png,4293 -images-06506.png,4294 -images-06507.png,4295 -images-06508.png,4296 -images-06509.png,4297 -images-06510.png,4298 -images-06511.png,4299 -images-06512.png,4300 -images-06513.png,4301 -images-06514.png,4302 -images-06515.png,4303 -images-06516.png,4304 -images-06517.png,4305 -images-06518.png,4306 -images-06519.png,4307 -images-06520.png,4308 -images-06521.png,4309 -images-06522.png,4310 -images-06523.png,4311 -images-06524.png,4312 -images-06525.png,4313 -images-06526.png,4314 -images-06527.png,4315 -images-06528.png,4316 -images-06529.png,4317 -images-06530.png,4318 -images-06531.png,4319 -images-06532.png,4320 -images-06533.png,4321 -images-06534.png,4322 -images-06535.png,4323 -images-06536.png,4324 -images-06537.png,4325 -images-06538.png,4326 -images-06539.png,4327 -images-06540.png,4328 -images-06541.png,4329 -images-06542.png,4330 -images-06543.png,4331 -images-06544.png,4332 -images-06545.png,4333 -images-06546.png,4334 -images-06547.png,4335 -images-06548.png,4336 -images-06549.png,4337 -images-06550.png,4338 -images-06551.png,4339 -images-06552.png,4340 -images-06553.png,4341 -images-06554.png,4342 -images-06555.png,4343 -images-06556.png,4344 -images-06557.png,4345 -images-06558.png,4346 -images-06559.png,4347 -images-06560.png,4348 -images-06561.png,4349 -images-06562.png,4350 -images-06563.png,4351 -images-06564.png,4352 -images-06565.png,4353 -images-06566.png,4354 -images-06567.png,4355 -images-06568.png,4356 -images-06569.png,4357 -images-06570.png,4358 -images-06571.png,4359 -images-06572.png,4360 -images-06573.png,4361 -images-06574.png,4362 -images-06575.png,4363 -images-06576.png,4364 -images-06577.png,4365 -images-06578.png,4366 -images-06579.png,4367 -images-06580.png,4368 -images-06581.png,4369 -images-06582.png,4370 -images-06583.png,4371 -images-06584.png,4372 -images-06585.png,4373 -images-06586.png,4374 -images-06587.png,4375 -images-06588.png,4376 -images-06589.png,4377 -images-06590.png,4378 -images-06591.png,4379 -images-06592.png,4380 -images-06593.png,4381 -images-06594.png,4382 -images-06595.png,4383 -images-06596.png,4384 -images-06597.png,4385 -images-06598.png,4386 -images-06599.png,4387 -images-06600.png,4388 -images-06601.png,4389 -images-06602.png,4390 -images-06603.png,4391 -images-06604.png,4392 -images-06605.png,4393 -images-06606.png,4394 -images-06607.png,4395 -images-06608.png,4396 -images-06609.png,4397 -images-06610.png,4398 -images-06611.png,4399 -images-06612.png,4400 -images-06613.png,4401 -images-06614.png,4402 -images-06615.png,4403 -images-06616.png,4404 -images-06617.png,4405 -images-06618.png,4406 -images-06619.png,4407 -images-06620.png,4408 -images-06621.png,4409 -images-06622.png,4410 -images-06623.png,4411 -images-06624.png,4412 -images-06625.png,4413 -images-06626.png,4414 -images-06627.png,4415 -images-06628.png,4416 -images-06629.png,4417 -images-06630.png,4418 -images-06631.png,4419 -images-06632.png,4420 -images-06633.png,4421 -images-06634.png,4422 -images-06635.png,4423 -images-06636.png,4424 -images-06637.png,4425 -images-06638.png,4426 -images-06639.png,4427 -images-06640.png,4428 -images-06641.png,4429 -images-06642.png,4430 -images-06643.png,4431 -images-06644.png,4432 -images-06645.png,4433 -images-06646.png,4434 -images-06647.png,4435 -images-06648.png,4436 -images-06649.png,4437 -images-06650.png,4438 -images-06651.png,4439 -images-06652.png,4440 -images-06653.png,4441 -images-06654.png,4442 -images-06655.png,4443 -images-06656.png,4444 -images-06657.png,4445 -images-06658.png,4446 -images-06659.png,4447 -images-06660.png,4448 -images-06661.png,4449 -images-06662.png,4450 -images-06663.png,4451 -images-06664.png,4452 -images-06665.png,4453 -images-06666.png,4454 -images-06667.png,4455 -images-06668.png,4456 -images-06669.png,4457 -images-06670.png,4458 -images-06671.png,4459 -images-06672.png,4460 -images-06673.png,4461 -images-06674.png,4462 -images-06675.png,4463 -images-06676.png,4464 -images-06677.png,4465 -images-06678.png,4466 -images-06679.png,4467 -images-06680.png,4468 -images-06681.png,4469 -images-06682.png,4470 -images-06683.png,4471 -images-06684.png,4472 -images-06685.png,4473 -images-06686.png,4474 -images-06687.png,4475 -images-06688.png,4476 -images-06689.png,4477 -images-06690.png,4478 -images-06691.png,4479 -images-06692.png,4480 -images-06693.png,4481 -images-06694.png,4482 -images-06695.png,4483 -images-06696.png,4484 -images-06697.png,4485 -images-06698.png,4486 -images-06699.png,4487 -images-06700.png,4488 -images-06701.png,4489 -images-06702.png,4490 -images-06703.png,4491 -images-06704.png,4492 -images-06705.png,4493 -images-06706.png,4494 -images-06707.png,4495 -images-06708.png,4496 -images-06709.png,4497 -images-06710.png,4498 -images-06711.png,4499 -images-06712.png,4500 -images-06713.png,4501 -images-06714.png,4502 -images-06715.png,4503 -images-06716.png,4504 -images-06717.png,4505 -images-06718.png,4506 -images-06719.png,4507 -images-06720.png,4508 -images-06721.png,4509 -images-06722.png,4510 -images-06723.png,4511 -images-06724.png,4512 -images-06725.png,4513 -images-06726.png,4514 -images-06727.png,4515 -images-06728.png,4516 -images-06729.png,4517 -images-06730.png,4518 -images-06731.png,4519 -images-06732.png,4520 -images-06733.png,4521 -images-06734.png,4522 -images-06735.png,4523 -images-06736.png,4524 -images-06737.png,4525 -images-06738.png,4526 -images-06739.png,4527 -images-06740.png,4528 -images-06741.png,4529 -images-06742.png,4530 -images-06743.png,4531 -images-06744.png,4532 -images-06745.png,4533 -images-06746.png,4534 -images-06747.png,4535 -images-06748.png,4536 -images-06749.png,4537 -images-06750.png,4538 -images-06751.png,4539 -images-06752.png,4540 -images-06753.png,4541 -images-06754.png,4542 -images-06755.png,4543 -images-06773.png,4544 -images-06774.png,4545 -images-06775.png,4546 -images-06776.png,4547 -images-06777.png,4548 -images-06778.png,4549 -images-06779.png,4550 -images-06780.png,4551 -images-06781.png,4552 -images-06782.png,4553 -images-06783.png,4554 -images-06784.png,4555 -images-06785.png,4556 -images-06786.png,4557 -images-06787.png,4558 -images-06788.png,4559 -images-06789.png,4560 -images-06790.png,4561 -images-06791.png,4562 -images-06792.png,4563 -images-06793.png,4564 -images-06794.png,4565 -images-06795.png,4566 -images-06796.png,4567 -images-06797.png,4568 -images-06798.png,4569 -images-06799.png,4570 -images-06800.png,4571 -images-06801.png,4572 -images-06802.png,4573 -images-06803.png,4574 -images-06804.png,4575 -images-06805.png,4576 -images-06806.png,4577 -images-06807.png,4578 -images-06808.png,4579 -images-06809.png,4580 -images-06810.png,4581 -images-06811.png,4582 -images-06812.png,4583 -images-06813.png,4584 -images-06814.png,4585 -images-06815.png,4586 -images-06816.png,4587 -images-06817.png,4588 -images-06818.png,4589 -images-06819.png,4590 -images-06820.png,4591 -images-06821.png,4592 -images-06822.png,4593 -images-06823.png,4594 -images-06824.png,4595 -images-06825.png,4596 -images-06826.png,4597 -images-06827.png,4598 -images-06828.png,4599 -images-06829.png,4600 -images-06830.png,4601 -images-06831.png,4602 -images-06832.png,4603 -images-06833.png,4604 -images-06834.png,4605 -images-06835.png,4606 -images-06836.png,4607 -images-06837.png,4608 -images-06838.png,4609 -images-06839.png,4610 -images-06840.png,4611 -images-06841.png,4612 -images-06842.png,4613 -images-06843.png,4614 -images-06844.png,4615 -images-06845.png,4616 -images-06846.png,4617 -images-06847.png,4618 -images-06848.png,4619 -images-06849.png,4620 -images-06850.png,4621 -images-06851.png,4622 -images-06852.png,4623 -images-06853.png,4624 -images-06854.png,4625 -images-06855.png,4626 -images-06856.png,4627 -images-06857.png,4628 -images-06858.png,4629 -images-06859.png,4630 -images-06860.png,4631 -images-06861.png,4632 -images-06862.png,4633 -images-06863.png,4634 -images-06864.png,4635 -images-06865.png,4636 -images-06866.png,4637 -images-06867.png,4638 -images-06868.png,4639 -images-06869.png,4640 -images-06870.png,4641 -images-06871.png,4642 -images-06872.png,4643 -images-06873.png,4644 -images-06874.png,4645 -images-06875.png,4646 -images-06876.png,4647 -images-06877.png,4648 -images-06878.png,4649 -images-06879.png,4650 -images-06880.png,4651 -images-06881.png,4652 -images-06882.png,4653 -images-06883.png,4654 -images-06884.png,4655 -images-06885.png,4656 -images-06886.png,4657 -images-06887.png,4658 -images-06888.png,4659 -images-06889.png,4660 -images-06890.png,4661 -images-06891.png,4662 -images-06892.png,4663 -images-06893.png,4664 -images-06894.png,4665 -images-06895.png,4666 -images-06896.png,4667 -images-06897.png,4668 -images-06898.png,4669 -images-06899.png,4670 -images-06900.png,4671 -images-06901.png,4672 -images-06902.png,4673 -images-06903.png,4674 -images-06904.png,4675 -images-06905.png,4676 -images-06906.png,4677 -images-06907.png,4678 -images-06908.png,4679 -images-06909.png,4680 -images-06910.png,4681 -images-06911.png,4682 -images-06912.png,4683 -images-06913.png,4684 -images-06914.png,4685 -images-06915.png,4686 -images-06916.png,4687 -images-06917.png,4688 -images-06918.png,4689 -images-06919.png,4690 -images-06920.png,4691 -images-06921.png,4692 -images-06922.png,4693 -images-06923.png,4694 -images-06924.png,4695 -images-06925.png,4696 -images-06926.png,4697 -images-06927.png,4698 -images-06928.png,4699 -images-06929.png,4700 -images-06930.png,4701 -images-06931.png,4702 -images-06932.png,4703 -images-06933.png,4704 -images-06934.png,4705 -images-06935.png,4706 -images-06936.png,4707 -images-06937.png,4708 -images-06938.png,4709 -images-06939.png,4710 -images-06940.png,4711 -images-06941.png,4712 -images-06942.png,4713 -images-06943.png,4714 -images-06944.png,4715 -images-06945.png,4716 -images-06946.png,4717 -images-06947.png,4718 -images-06948.png,4719 -images-06949.png,4720 -images-06950.png,4721 -images-06951.png,4722 -images-06952.png,4723 -images-06953.png,4724 -images-06954.png,4725 -images-06955.png,4726 -images-06956.png,4727 -images-06957.png,4728 -images-06958.png,4729 -images-06959.png,4730 -images-06960.png,4731 -images-06961.png,4732 -images-06962.png,4733 -images-06963.png,4734 -images-06964.png,4735 -images-06965.png,4736 -images-06966.png,4737 -images-06967.png,4738 -images-06968.png,4739 -images-06969.png,4740 -images-06970.png,4741 -images-06971.png,4742 -images-06972.png,4743 -images-06973.png,4744 -images-06974.png,4745 -images-06975.png,4746 -images-06976.png,4747 -images-06977.png,4748 -images-06978.png,4749 -images-06979.png,4750 -images-06980.png,4751 -images-06981.png,4752 -images-06982.png,4753 -images-06983.png,4754 -images-06984.png,4755 -images-06985.png,4756 -images-06986.png,4757 -images-06987.png,4758 -images-06988.png,4759 -images-06989.png,4760 -images-06990.png,4761 -images-06991.png,4762 -images-06992.png,4763 -images-06993.png,4764 -images-06994.png,4765 -images-06995.png,4766 -images-06996.png,4767 -images-06997.png,4768 -images-06998.png,4769 -images-06999.png,4770 -images-07000.png,4771 -images-07001.png,4772 -images-07002.png,4773 -images-07003.png,4774 -images-07004.png,4775 -images-07005.png,4776 -images-07006.png,4777 -images-07007.png,4778 -images-07008.png,4779 -images-07009.png,4780 -images-07010.png,4781 -images-07011.png,4782 -images-07012.png,4783 -images-07013.png,4784 -images-07014.png,4785 -images-07015.png,4786 -images-07016.png,4787 -images-07017.png,4788 -images-07018.png,4789 -images-07019.png,4790 -images-07020.png,4791 -images-07021.png,4792 -images-07022.png,4793 -images-07023.png,4794 -images-07024.png,4795 -images-07025.png,4796 -images-07026.png,4797 -images-07027.png,4798 -images-07028.png,4799 -images-07029.png,4800 -images-07030.png,4801 -images-07031.png,4802 -images-07032.png,4803 -images-07033.png,4804 -images-07034.png,4805 -images-07035.png,4806 -images-07036.png,4807 -images-07037.png,4808 -images-07038.png,4809 -images-07039.png,4810 -images-07040.png,4811 -images-07041.png,4812 -images-07042.png,4813 -images-07043.png,4814 -images-07044.png,4815 -images-07045.png,4816 -images-07046.png,4817 -images-07047.png,4818 -images-07048.png,4819 -images-07049.png,4820 -images-07050.png,4821 -images-07051.png,4822 -images-07052.png,4823 -images-07053.png,4824 -images-07054.png,4825 -images-07055.png,4826 -images-07056.png,4827 -images-07057.png,4828 -images-07058.png,4829 -images-07296.png,4830 -images-07297.png,4831 -images-07298.png,4832 -images-07299.png,4833 -images-07300.png,4834 -images-07301.png,4835 -images-07302.png,4836 -images-07303.png,4837 -images-07304.png,4838 -images-07305.png,4839 -images-07306.png,4840 -images-07307.png,4841 -images-07308.png,4842 -images-07309.png,4843 -images-07310.png,4844 -images-07311.png,4845 -images-07312.png,4846 -images-07313.png,4847 -images-07314.png,4848 -images-07315.png,4849 -images-07316.png,4850 -images-07317.png,4851 -images-07318.png,4852 -images-07319.png,4853 -images-07320.png,4854 -images-07321.png,4855 -images-07322.png,4856 -images-07323.png,4857 -images-07324.png,4858 -images-07325.png,4859 -images-07326.png,4860 -images-07327.png,4861 -images-07328.png,4862 -images-07329.png,4863 -images-07330.png,4864 -images-07331.png,4865 -images-07332.png,4866 -images-07333.png,4867 -images-07334.png,4868 -images-07335.png,4869 -images-07336.png,4870 -images-07337.png,4871 -images-07338.png,4872 -images-07339.png,4873 -images-07340.png,4874 -images-07341.png,4875 -images-07342.png,4876 -images-07343.png,4877 -images-07344.png,4878 -images-07345.png,4879 -images-07346.png,4880 -images-07347.png,4881 -images-07348.png,4882 -images-07349.png,4883 -images-07350.png,4884 -images-07351.png,4885 -images-07352.png,4886 -images-07353.png,4887 -images-07354.png,4888 -images-07355.png,4889 -images-07356.png,4890 -images-07357.png,4891 -images-07358.png,4892 -images-07359.png,4893 -images-07360.png,4894 -images-07361.png,4895 -images-07362.png,4896 -images-07363.png,4897 -images-07364.png,4898 -images-07365.png,4899 -images-07366.png,4900 -images-07367.png,4901 -images-07368.png,4902 -images-07369.png,4903 -images-07370.png,4904 -images-07371.png,4905 -images-07372.png,4906 -images-07373.png,4907 -images-07374.png,4908 -images-07375.png,4909 -images-07376.png,4910 -images-07377.png,4911 -images-07378.png,4912 -images-07379.png,4913 -images-07380.png,4914 -images-07381.png,4915 -images-07382.png,4916 -images-07383.png,4917 -images-07384.png,4918 -images-07385.png,4919 -images-07386.png,4920 -images-07387.png,4921 -images-07388.png,4922 -images-07389.png,4923 -images-07390.png,4924 -images-07391.png,4925 -images-07392.png,4926 -images-07393.png,4927 -images-07394.png,4928 -images-07395.png,4929 -images-07396.png,4930 -images-07397.png,4931 -images-07398.png,4932 -images-07399.png,4933 -images-07400.png,4934 -images-07401.png,4935 -images-07402.png,4936 -images-07403.png,4937 -images-07404.png,4938 -images-07405.png,4939 -images-07406.png,4940 -images-07407.png,4941 -images-07408.png,4942 -images-07409.png,4943 -images-07410.png,4944 -images-07411.png,4945 -images-07412.png,4946 -images-07413.png,4947 -images-07414.png,4948 -images-07415.png,4949 -images-07416.png,4950 -images-07417.png,4951 -images-07418.png,4952 -images-07419.png,4953 -images-07420.png,4954 -images-07421.png,4955 -images-07422.png,4956 -images-07423.png,4957 -images-07424.png,4958 -images-07425.png,4959 -images-07426.png,4960 -images-07427.png,4961 -images-07428.png,4962 -images-07429.png,4963 -images-07430.png,4964 -images-07431.png,4965 -images-07432.png,4966 -images-07433.png,4967 -images-07434.png,4968 -images-07435.png,4969 -images-07436.png,4970 -images-07437.png,4971 -images-07438.png,4972 -images-07439.png,4973 -images-07440.png,4974 -images-07441.png,4975 -images-07442.png,4976 -images-07443.png,4977 -images-07444.png,4978 -images-07445.png,4979 -images-07446.png,4980 -images-07447.png,4981 -images-07448.png,4982 -images-07449.png,4983 -images-07450.png,4984 -images-07451.png,4985 -images-07452.png,4986 -images-07453.png,4987 -images-07454.png,4988 -images-07455.png,4989 -images-07456.png,4990 -images-07457.png,4991 -images-07458.png,4992 -images-07459.png,4993 -images-07460.png,4994 -images-07461.png,4995 -images-07462.png,4996 -images-07463.png,4997 -images-07464.png,4998 -images-07465.png,4999 -images-07466.png,5000 -images-07467.png,5001 -images-07468.png,5002 -images-07469.png,5003 -images-07470.png,5004 -images-07471.png,5005 -images-07472.png,5006 -images-07473.png,5007 -images-07474.png,5008 -images-07475.png,5009 -images-07476.png,5010 -images-07477.png,5011 -images-07478.png,5012 -images-07479.png,5013 -images-07480.png,5014 -images-07481.png,5015 -images-07482.png,5016 -images-07483.png,5017 -images-07484.png,5018 -images-07485.png,5019 -images-07486.png,5020 -images-07487.png,5021 -images-07488.png,5022 -images-07489.png,5023 -images-07490.png,5024 -images-07491.png,5025 -images-07492.png,5026 -images-07493.png,5027 -images-07494.png,5028 -images-07495.png,5029 -images-07496.png,5030 -images-07497.png,5031 -images-07498.png,5032 -images-07499.png,5033 -images-07500.png,5034 -images-07501.png,5035 -images-07502.png,5036 -images-07503.png,5037 -images-07504.png,5038 -images-07505.png,5039 -images-07506.png,5040 -images-07507.png,5041 -images-07508.png,5042 -images-07509.png,5043 -images-07510.png,5044 -images-07511.png,5045 -images-07512.png,5046 -images-07513.png,5047 -images-07514.png,5048 -images-07515.png,5049 -images-07516.png,5050 -images-07517.png,5051 -images-07518.png,5052 -images-07519.png,5053 -images-07520.png,5054 -images-07521.png,5055 -images-07522.png,5056 -images-07523.png,5057 -images-07524.png,5058 -images-07525.png,5059 -images-07526.png,5060 -images-07527.png,5061 -images-07528.png,5062 -images-07529.png,5063 -images-07530.png,5064 -images-07531.png,5065 -images-07532.png,5066 -images-07533.png,5067 -images-07534.png,5068 -images-07535.png,5069 -images-07536.png,5070 -images-07537.png,5071 -images-07538.png,5072 -images-07539.png,5073 -images-07540.png,5074 -images-07541.png,5075 -images-07542.png,5076 -images-07543.png,5077 -images-07544.png,5078 -images-07545.png,5079 -images-07546.png,5080 -images-07547.png,5081 -images-07548.png,5082 -images-07549.png,5083 -images-07550.png,5084 -images-07551.png,5085 -images-07552.png,5086 -images-07553.png,5087 -images-07554.png,5088 -images-07555.png,5089 -images-07556.png,5090 -images-07557.png,5091 -images-07558.png,5092 -images-07559.png,5093 -images-07560.png,5094 -images-07561.png,5095 -images-07562.png,5096 -images-07563.png,5097 -images-07564.png,5098 -images-07565.png,5099 -images-07566.png,5100 -images-07567.png,5101 -images-07568.png,5102 -images-07569.png,5103 -images-07570.png,5104 -images-07571.png,5105 -images-07572.png,5106 -images-07573.png,5107 -images-07574.png,5108 -images-07575.png,5109 -images-07576.png,5110 -images-07577.png,5111 -images-07578.png,5112 -images-07579.png,5113 -images-07580.png,5114 -images-07581.png,5115 -images-07582.png,5116 -images-07583.png,5117 -images-07584.png,5118 -images-07585.png,5119 -images-07586.png,5120 -images-07587.png,5121 -images-07588.png,5122 -images-07589.png,5123 -images-07590.png,5124 -images-07591.png,5125 -images-07592.png,5126 -images-07593.png,5127 -images-07594.png,5128 -images-07595.png,5129 -images-07596.png,5130 -images-07597.png,5131 -images-07598.png,5132 -images-07599.png,5133 -images-07600.png,5134 -images-07601.png,5135 -images-07602.png,5136 -images-07603.png,5137 -images-07604.png,5138 -images-07605.png,5139 -images-07606.png,5140 -images-07607.png,5141 -images-07608.png,5142 -images-07609.png,5143 -images-07610.png,5144 -images-07611.png,5145 -images-07612.png,5146 -images-07613.png,5147 -images-07614.png,5148 -images-07615.png,5149 -images-07616.png,5150 -images-07617.png,5151 -images-07618.png,5152 -images-07619.png,5153 -images-07620.png,5154 -images-07621.png,5155 -images-07622.png,5156 -images-07623.png,5157 -images-07624.png,5158 -images-07625.png,5159 -images-07626.png,5160 -images-07627.png,5161 -images-07628.png,5162 -images-07629.png,5163 -images-07630.png,5164 -images-07631.png,5165 -images-07632.png,5166 -images-07633.png,5167 -images-07634.png,5168 -images-07635.png,5169 -images-07636.png,5170 -images-07637.png,5171 -images-07638.png,5172 -images-07639.png,5173 -images-07640.png,5174 -images-07641.png,5175 -images-07642.png,5176 -images-07643.png,5177 -images-07644.png,5178 -images-07645.png,5179 -images-07646.png,5180 -images-07647.png,5181 -images-07648.png,5182 -images-07649.png,5183 -images-07650.png,5184 -images-07651.png,5185 -images-07652.png,5186 -images-07653.png,5187 -images-07654.png,5188 -images-07655.png,5189 -images-07656.png,5190 -images-07657.png,5191 -images-07658.png,5192 -images-07659.png,5193 -images-07660.png,5194 -images-07661.png,5195 -images-07662.png,5196 -images-07663.png,5197 -images-07664.png,5198 -images-07665.png,5199 -images-07666.png,5200 -images-07667.png,5201 -images-07668.png,5202 -images-07669.png,5203 -images-07670.png,5204 -images-07671.png,5205 -images-07672.png,5206 -images-07673.png,5207 -images-07674.png,5208 -images-07675.png,5209 -images-07676.png,5210 -images-07677.png,5211 -images-07678.png,5212 -images-07679.png,5213 -images-07680.png,5214 -images-07681.png,5215 -images-07682.png,5216 -images-07683.png,5217 -images-07684.png,5218 -images-07685.png,5219 -images-07686.png,5220 -images-07687.png,5221 -images-07688.png,5222 -images-07689.png,5223 -images-07690.png,5224 -images-07691.png,5225 -images-07692.png,5226 -images-07693.png,5227 -images-07694.png,5228 -images-07695.png,5229 -images-07696.png,5230 -images-07697.png,5231 -images-07698.png,5232 -images-07699.png,5233 -images-07700.png,5234 -images-07701.png,5235 -images-07702.png,5236 -images-07703.png,5237 -images-07704.png,5238 -images-07705.png,5239 -images-07706.png,5240 -images-07707.png,5241 -images-07708.png,5242 -images-07709.png,5243 -images-07710.png,5244 -images-07711.png,5245 -images-07712.png,5246 -images-07713.png,5247 -images-07714.png,5248 -images-07715.png,5249 -images-07716.png,5250 -images-07717.png,5251 -images-07718.png,5252 -images-07719.png,5253 -images-07720.png,5254 -images-07721.png,5255 -images-07722.png,5256 -images-07723.png,5257 -images-07724.png,5258 -images-07725.png,5259 -images-07726.png,5260 -images-07727.png,5261 -images-07728.png,5262 -images-07729.png,5263 -images-07730.png,5264 -images-07731.png,5265 -images-07732.png,5266 -images-07733.png,5267 -images-07734.png,5268 -images-07735.png,5269 -images-07736.png,5270 -images-07737.png,5271 -images-07738.png,5272 -images-07739.png,5273 -images-07740.png,5274 -images-07741.png,5275 -images-07742.png,5276 -images-07743.png,5277 -images-07744.png,5278 -images-07745.png,5279 -images-07746.png,5280 -images-07747.png,5281 -images-07748.png,5282 -images-07749.png,5283 -images-07750.png,5284 -images-07751.png,5285 -images-07752.png,5286 -images-07753.png,5287 -images-07754.png,5288 -images-07755.png,5289 -images-07756.png,5290 -images-07757.png,5291 -images-07758.png,5292 -images-07894.png,5293 -images-07895.png,5294 -images-07896.png,5295 -images-07897.png,5296 -images-07898.png,5297 -images-07899.png,5298 -images-07900.png,5299 -images-07901.png,5300 -images-07902.png,5301 -images-07903.png,5302 -images-07904.png,5303 -images-07905.png,5304 -images-07906.png,5305 -images-07907.png,5306 -images-07908.png,5307 -images-07909.png,5308 -images-07910.png,5309 -images-07911.png,5310 -images-07912.png,5311 -images-07913.png,5312 -images-07914.png,5313 -images-07915.png,5314 -images-07916.png,5315 -images-07917.png,5316 -images-07918.png,5317 -images-07919.png,5318 -images-07920.png,5319 -images-07921.png,5320 -images-07922.png,5321 -images-07923.png,5322 -images-07924.png,5323 -images-07925.png,5324 -images-07926.png,5325 -images-07927.png,5326 -images-07928.png,5327 -images-07929.png,5328 -images-07930.png,5329 -images-07931.png,5330 -images-07932.png,5331 -images-07933.png,5332 -images-07934.png,5333 -images-07935.png,5334 -images-07936.png,5335 -images-07937.png,5336 -images-07938.png,5337 -images-07939.png,5338 -images-07940.png,5339 -images-07941.png,5340 -images-07942.png,5341 -images-07943.png,5342 -images-07944.png,5343 -images-07945.png,5344 -images-07946.png,5345 -images-07947.png,5346 -images-07948.png,5347 -images-07949.png,5348 -images-07950.png,5349 -images-07951.png,5350 -images-07952.png,5351 -images-07953.png,5352 -images-07954.png,5353 -images-07955.png,5354 -images-07956.png,5355 -images-07957.png,5356 -images-07958.png,5357 -images-07959.png,5358 -images-07960.png,5359 -images-07961.png,5360 -images-07962.png,5361 -images-07963.png,5362 -images-07964.png,5363 -images-07965.png,5364 -images-07966.png,5365 -images-07967.png,5366 -images-07968.png,5367 -images-07969.png,5368 -images-07970.png,5369 -images-07971.png,5370 -images-07972.png,5371 -images-07973.png,5372 -images-07974.png,5373 -images-07975.png,5374 -images-07976.png,5375 -images-07977.png,5376 -images-07978.png,5377 -images-07979.png,5378 -images-07980.png,5379 -images-07981.png,5380 -images-07982.png,5381 -images-07983.png,5382 -images-07984.png,5383 -images-07985.png,5384 -images-07986.png,5385 -images-07987.png,5386 -images-07988.png,5387 -images-07989.png,5388 -images-07990.png,5389 -images-07991.png,5390 -images-07992.png,5391 -images-07993.png,5392 -images-07994.png,5393 -images-07995.png,5394 -images-07996.png,5395 -images-07997.png,5396 -images-07998.png,5397 -images-07999.png,5398 -images-08000.png,5399 -images-08001.png,5400 -images-08002.png,5401 -images-08003.png,5402 -images-08004.png,5403 -images-08005.png,5404 -images-08006.png,5405 -images-08007.png,5406 -images-08008.png,5407 -images-08009.png,5408 -images-08010.png,5409 -images-08011.png,5410 -images-08012.png,5411 -images-08013.png,5412 -images-08014.png,5413 -images-08015.png,5414 -images-08016.png,5415 -images-08017.png,5416 -images-08018.png,5417 -images-08019.png,5418 -images-08020.png,5419 -images-08021.png,5420 -images-08022.png,5421 -images-08023.png,5422 -images-08024.png,5423 -images-08025.png,5424 -images-08026.png,5425 -images-08027.png,5426 -images-08028.png,5427 -images-08029.png,5428 -images-08030.png,5429 -images-08031.png,5430 -images-08032.png,5431 -images-08033.png,5432 -images-08034.png,5433 -images-08035.png,5434 -images-08036.png,5435 -images-08037.png,5436 -images-08038.png,5437 -images-08039.png,5438 -images-08040.png,5439 -images-08041.png,5440 -images-08042.png,5441 -images-08043.png,5442 -images-08044.png,5443 -images-08045.png,5444 -images-08046.png,5445 -images-08047.png,5446 -images-08048.png,5447 -images-08049.png,5448 -images-08050.png,5449 -images-08051.png,5450 -images-08052.png,5451 -images-08053.png,5452 -images-08054.png,5453 -images-08055.png,5454 -images-08056.png,5455 -images-08057.png,5456 -images-08058.png,5457 -images-08059.png,5458 -images-08060.png,5459 -images-08061.png,5460 -images-08062.png,5461 -images-08063.png,5462 -images-08064.png,5463 -images-08065.png,5464 -images-08066.png,5465 -images-08067.png,5466 -images-08068.png,5467 -images-08069.png,5468 -images-08070.png,5469 -images-08071.png,5470 -images-08072.png,5471 -images-08073.png,5472 -images-08074.png,5473 -images-08075.png,5474 -images-08076.png,5475 -images-08077.png,5476 -images-08078.png,5477 -images-08079.png,5478 -images-08080.png,5479 -images-08081.png,5480 -images-08082.png,5481 -images-08083.png,5482 -images-08084.png,5483 -images-08085.png,5484 -images-08086.png,5485 -images-08087.png,5486 -images-08088.png,5487 -images-08089.png,5488 -images-08090.png,5489 -images-08091.png,5490 -images-08092.png,5491 -images-08093.png,5492 -images-08094.png,5493 -images-08095.png,5494 -images-08096.png,5495 -images-08097.png,5496 -images-08098.png,5497 -images-08099.png,5498 -images-08100.png,5499 -images-08101.png,5500 -images-08102.png,5501 -images-08103.png,5502 -images-08104.png,5503 -images-08105.png,5504 -images-08106.png,5505 -images-08107.png,5506 -images-08108.png,5507 -images-08109.png,5508 -images-08110.png,5509 -images-08111.png,5510 -images-08112.png,5511 -images-08113.png,5512 -images-08114.png,5513 -images-08115.png,5514 -images-08116.png,5515 -images-08117.png,5516 -images-08118.png,5517 -images-08119.png,5518 -images-08120.png,5519 -images-08121.png,5520 -images-08122.png,5521 -images-08123.png,5522 -images-08124.png,5523 -images-08125.png,5524 -images-08126.png,5525 -images-08127.png,5526 -images-08128.png,5527 -images-08129.png,5528 -images-08130.png,5529 -images-08131.png,5530 -images-08132.png,5531 -images-08133.png,5532 -images-08134.png,5533 -images-08135.png,5534 -images-08136.png,5535 -images-08137.png,5536 -images-08138.png,5537 -images-08139.png,5538 -images-08140.png,5539 -images-08141.png,5540 -images-08142.png,5541 -images-08143.png,5542 -images-08144.png,5543 -images-08145.png,5544 -images-08146.png,5545 -images-08147.png,5546 -images-08148.png,5547 -images-08149.png,5548 -images-08150.png,5549 -images-08151.png,5550 -images-08152.png,5551 -images-08153.png,5552 -images-08154.png,5553 -images-08155.png,5554 -images-08156.png,5555 -images-08157.png,5556 -images-08158.png,5557 -images-08159.png,5558 -images-08160.png,5559 -images-08161.png,5560 -images-08162.png,5561 -images-08163.png,5562 -images-08164.png,5563 -images-08165.png,5564 -images-08166.png,5565 -images-08167.png,5566 -images-08168.png,5567 -images-08169.png,5568 -images-08170.png,5569 -images-08171.png,5570 -images-08172.png,5571 -images-08173.png,5572 -images-08174.png,5573 -images-08175.png,5574 -images-08176.png,5575 -images-08177.png,5576 -images-08178.png,5577 -images-08179.png,5578 -images-08180.png,5579 -images-08181.png,5580 -images-08182.png,5581 -images-08183.png,5582 -images-08184.png,5583 -images-08185.png,5584 -images-08186.png,5585 -images-08187.png,5586 -images-08188.png,5587 -images-08189.png,5588 -images-08190.png,5589 -images-08191.png,5590 -images-08192.png,5591 -images-08193.png,5592 -images-08194.png,5593 -images-08195.png,5594 -images-08196.png,5595 -images-08197.png,5596 -images-08198.png,5597 -images-08199.png,5598 -images-08200.png,5599 -images-08201.png,5600 -images-08202.png,5601 -images-08203.png,5602 -images-08204.png,5603 -images-08205.png,5604 -images-08206.png,5605 -images-08207.png,5606 -images-08208.png,5607 -images-08209.png,5608 -images-08210.png,5609 -images-08211.png,5610 -images-08212.png,5611 -images-08213.png,5612 -images-08214.png,5613 -images-08215.png,5614 -images-08216.png,5615 -images-08217.png,5616 -images-08218.png,5617 -images-08219.png,5618 -images-08220.png,5619 -images-08221.png,5620 -images-08222.png,5621 -images-08223.png,5622 -images-08224.png,5623 -images-08225.png,5624 -images-08226.png,5625 -images-08227.png,5626 -images-08228.png,5627 -images-08229.png,5628 -images-08230.png,5629 -images-08231.png,5630 -images-08232.png,5631 -images-08233.png,5632 -images-08234.png,5633 -images-08235.png,5634 -images-08236.png,5635 -images-08237.png,5636 -images-08238.png,5637 -images-08239.png,5638 -images-08240.png,5639 -images-08241.png,5640 -images-08242.png,5641 -images-08243.png,5642 -images-08244.png,5643 -images-08245.png,5644 -images-08246.png,5645 -images-08247.png,5646 -images-08248.png,5647 -images-08249.png,5648 -images-08250.png,5649 -images-08251.png,5650 -images-08252.png,5651 -images-08253.png,5652 -images-08254.png,5653 -images-08255.png,5654 -images-08256.png,5655 -images-08257.png,5656 -images-08258.png,5657 -images-08259.png,5658 -images-08260.png,5659 -images-08261.png,5660 -images-08262.png,5661 -images-08263.png,5662 -images-08264.png,5663 -images-08265.png,5664 -images-08266.png,5665 -images-08267.png,5666 -images-08268.png,5667 -images-08269.png,5668 -images-08270.png,5669 -images-08271.png,5670 -images-08272.png,5671 -images-08273.png,5672 -images-08274.png,5673 -images-08275.png,5674 -images-08276.png,5675 -images-08277.png,5676 -images-08278.png,5677 -images-08279.png,5678 -images-08280.png,5679 -images-08281.png,5680 -images-08282.png,5681 -images-08283.png,5682 -images-08284.png,5683 -images-08285.png,5684 -images-08286.png,5685 -images-08287.png,5686 -images-08288.png,5687 -images-08289.png,5688 -images-08290.png,5689 -images-08291.png,5690 -images-08292.png,5691 -images-08293.png,5692 -images-08294.png,5693 -images-08295.png,5694 -images-08296.png,5695 -images-08297.png,5696 -images-08298.png,5697 -images-08299.png,5698 -images-08300.png,5699 -images-08301.png,5700 -images-08302.png,5701 -images-08303.png,5702 -images-08304.png,5703 -images-08305.png,5704 -images-08306.png,5705 -images-08307.png,5706 -images-08308.png,5707 -images-08309.png,5708 -images-08310.png,5709 -images-08311.png,5710 -images-08312.png,5711 -images-08313.png,5712 -images-08314.png,5713 -images-08315.png,5714 -images-08316.png,5715 -images-08317.png,5716 -images-08318.png,5717 -images-08319.png,5718 -images-08320.png,5719 -images-08321.png,5720 -images-08322.png,5721 -images-08323.png,5722 -images-08324.png,5723 -images-08325.png,5724 -images-08326.png,5725 -images-08327.png,5726 -images-08328.png,5727 -images-08329.png,5728 -images-08330.png,5729 -images-08331.png,5730 -images-08332.png,5731 -images-08333.png,5732 -images-08334.png,5733 -images-08335.png,5734 -images-08336.png,5735 -images-08337.png,5736 -images-08338.png,5737 -images-08339.png,5738 -images-08340.png,5739 -images-08341.png,5740 -images-08342.png,5741 -images-08343.png,5742 -images-08344.png,5743 -images-08345.png,5744 -images-08346.png,5745 -images-08347.png,5746 -images-08348.png,5747 -images-08349.png,5748 -images-08350.png,5749 -images-08351.png,5750 -images-08352.png,5751 -images-08353.png,5752 -images-08354.png,5753 -images-08355.png,5754 -images-08356.png,5755 -images-08357.png,5756 -images-08358.png,5757 -images-08359.png,5758 -images-08360.png,5759 -images-08361.png,5760 -images-08362.png,5761 -images-08363.png,5762 -images-08364.png,5763 -images-08365.png,5764 -images-08366.png,5765 -images-08367.png,5766 -images-08368.png,5767 -images-08369.png,5768 -images-08370.png,5769 -images-08371.png,5770 -images-08372.png,5771 -images-08373.png,5772 -images-08374.png,5773 -images-08375.png,5774 -images-08376.png,5775 -images-08377.png,5776 -images-08378.png,5777 -images-08379.png,5778 -images-08380.png,5779 -images-08381.png,5780 -images-08382.png,5781 -images-08383.png,5782 -images-08384.png,5783 -images-08385.png,5784 -images-08386.png,5785 -images-08387.png,5786 -images-08388.png,5787 -images-08389.png,5788 -images-08390.png,5789 -images-08391.png,5790 -images-08392.png,5791 -images-08393.png,5792 -images-08394.png,5793 -images-08395.png,5794 -images-08396.png,5795 -images-08397.png,5796 -images-08398.png,5797 -images-08399.png,5798 -images-08400.png,5799 -images-08401.png,5800 -images-08402.png,5801 -images-08403.png,5802 -images-08404.png,5803 -images-08405.png,5804 -images-08406.png,5805 -images-08407.png,5806 -images-08408.png,5807 -images-08409.png,5808 -images-08410.png,5809 -images-08411.png,5810 -images-08412.png,5811 -images-08413.png,5812 -images-08414.png,5813 -images-08415.png,5814 -images-08416.png,5815 -images-08417.png,5816 -images-08418.png,5817 -images-08419.png,5818 -images-08420.png,5819 -images-08421.png,5820 -images-08422.png,5821 -images-08423.png,5822 -images-08424.png,5823 -images-08425.png,5824 -images-08426.png,5825 -images-08427.png,5826 -images-08428.png,5827 -images-08429.png,5828 -images-08430.png,5829 -images-08431.png,5830 -images-08432.png,5831 -images-08433.png,5832 -images-08434.png,5833 -images-08435.png,5834 -images-08436.png,5835 -images-08437.png,5836 -images-08438.png,5837 -images-08439.png,5838 -images-08440.png,5839 -images-08441.png,5840 -images-08442.png,5841 -images-08443.png,5842 -images-08444.png,5843 -images-08445.png,5844 -images-08446.png,5845 -images-08447.png,5846 -images-08448.png,5847 -images-08449.png,5848 -images-08450.png,5849 -images-08451.png,5850 -images-08452.png,5851 -images-08453.png,5852 -images-08454.png,5853 -images-08455.png,5854 -images-08456.png,5855 -images-08457.png,5856 -images-08458.png,5857 -images-08459.png,5858 -images-08460.png,5859 -images-08461.png,5860 -images-08462.png,5861 -images-08463.png,5862 -images-08464.png,5863 -images-08465.png,5864 -images-08466.png,5865 -images-08467.png,5866 -images-08468.png,5867 -images-08469.png,5868 -images-08470.png,5869 -images-08471.png,5870 -images-08472.png,5871 -images-08473.png,5872 -images-08474.png,5873 -images-08475.png,5874 -images-08476.png,5875 -images-08477.png,5876 -images-08478.png,5877 -images-08484.png,5878 -images-08485.png,5879 -images-08486.png,5880 -images-08487.png,5881 -images-08488.png,5882 -images-08494.png,5883 -images-08495.png,5884 -images-08496.png,5885 -images-08497.png,5886 -images-08498.png,5887 -images-08499.png,5888 -images-08500.png,5889 -images-08501.png,5890 -images-08502.png,5891 -images-08503.png,5892 -images-08504.png,5893 -images-08505.png,5894 -images-08506.png,5895 -images-08507.png,5896 -images-08508.png,5897 -images-08509.png,5898 -images-08510.png,5899 -images-08511.png,5900 -images-08512.png,5901 -images-08513.png,5902 -images-08514.png,5903 -images-08515.png,5904 -images-08516.png,5905 -images-08517.png,5906 -images-08518.png,5907 -images-08519.png,5908 -images-08520.png,5909 -images-08521.png,5910 -images-08522.png,5911 -images-08523.png,5912 -images-08524.png,5913 -images-08525.png,5914 -images-08526.png,5915 -images-08527.png,5916 -images-08528.png,5917 -images-08529.png,5918 -images-08530.png,5919 -images-08531.png,5920 -images-08532.png,5921 -images-08533.png,5922 -images-08534.png,5923 -images-08535.png,5924 -images-08536.png,5925 -images-08537.png,5926 -images-08538.png,5927 -images-08539.png,5928 -images-08540.png,5929 -images-08541.png,5930 -images-08542.png,5931 -images-08543.png,5932 -images-08544.png,5933 -images-08545.png,5934 -images-08546.png,5935 -images-08547.png,5936 -images-08548.png,5937 -images-08549.png,5938 -images-08550.png,5939 -images-08551.png,5940 -images-08552.png,5941 -images-08553.png,5942 -images-08554.png,5943 -images-08555.png,5944 -images-08556.png,5945 -images-08557.png,5946 -images-08558.png,5947 -images-08559.png,5948 -images-08560.png,5949 -images-08561.png,5950 -images-08562.png,5951 -images-08563.png,5952 -images-08564.png,5953 -images-08565.png,5954 -images-08566.png,5955 -images-08567.png,5956 -images-08568.png,5957 -images-08569.png,5958 -images-08570.png,5959 -images-08571.png,5960 -images-08572.png,5961 -images-08573.png,5962 -images-08574.png,5963 -images-08575.png,5964 -images-08576.png,5965 -images-08577.png,5966 -images-08578.png,5967 -images-08579.png,5968 -images-08580.png,5969 -images-08581.png,5970 -images-08582.png,5971 -images-08583.png,5972 -images-08584.png,5973 -images-08585.png,5974 -images-08586.png,5975 -images-08587.png,5976 -images-08588.png,5977 -images-08589.png,5978 -images-08590.png,5979 -images-08591.png,5980 -images-08592.png,5981 -images-08593.png,5982 -images-08594.png,5983 -images-08595.png,5984 -images-08596.png,5985 -images-08597.png,5986 -images-08598.png,5987 -images-08599.png,5988 -images-08600.png,5989 -images-08601.png,5990 -images-08602.png,5991 -images-08603.png,5992 -images-08604.png,5993 -images-08605.png,5994 -images-08606.png,5995 -images-08607.png,5996 -images-08608.png,5997 -images-08609.png,5998 -images-08610.png,5999 -images-08611.png,6000 -images-08612.png,6001 -images-08613.png,6002 -images-08614.png,6003 -images-08615.png,6004 -images-08616.png,6005 -images-08617.png,6006 -images-08618.png,6007 -images-08619.png,6008 -images-08620.png,6009 -images-08621.png,6010 -images-08622.png,6011 -images-08623.png,6012 -images-08624.png,6013 -images-08625.png,6014 -images-08626.png,6015 -images-08627.png,6016 -images-08628.png,6017 -images-08629.png,6018 -images-08630.png,6019 -images-08631.png,6020 -images-08632.png,6021 -images-08633.png,6022 -images-08634.png,6023 -images-08635.png,6024 -images-08636.png,6025 -images-08637.png,6026 -images-08638.png,6027 -images-08639.png,6028 -images-08640.png,6029 -images-08641.png,6030 -images-08642.png,6031 -images-08643.png,6032 -images-08644.png,6033 -images-08645.png,6034 -images-08646.png,6035 -images-08647.png,6036 -images-08648.png,6037 -images-08649.png,6038 -images-08650.png,6039 -images-08651.png,6040 -images-08652.png,6041 -images-08653.png,6042 -images-08654.png,6043 -images-08655.png,6044 -images-08656.png,6045 -images-08657.png,6046 -images-08658.png,6047 -images-08659.png,6048 -images-08660.png,6049 -images-08661.png,6050 -images-08662.png,6051 -images-08663.png,6052 -images-08664.png,6053 -images-08665.png,6054 -images-08666.png,6055 -images-08667.png,6056 -images-08668.png,6057 -images-08669.png,6058 -images-08670.png,6059 -images-08671.png,6060 -images-08672.png,6061 -images-08673.png,6062 -images-08674.png,6063 -images-08675.png,6064 -images-08676.png,6065 -images-08677.png,6066 -images-08678.png,6067 -images-08679.png,6068 -images-08680.png,6069 -images-08681.png,6070 -images-08682.png,6071 -images-08683.png,6072 -images-08684.png,6073 -images-08685.png,6074 -images-08686.png,6075 -images-08687.png,6076 -images-08688.png,6077 -images-08689.png,6078 -images-08690.png,6079 -images-08691.png,6080 -images-08692.png,6081 -images-08693.png,6082 -images-08694.png,6083 -images-08695.png,6084 -images-08696.png,6085 -images-08697.png,6086 -images-08698.png,6087 -images-08699.png,6088 -images-08700.png,6089 -images-08701.png,6090 -images-08702.png,6091 -images-08703.png,6092 -images-08704.png,6093 -images-08705.png,6094 -images-08706.png,6095 -images-08707.png,6096 -images-08708.png,6097 -images-08709.png,6098 -images-08710.png,6099 -images-08711.png,6100 -images-08712.png,6101 -images-08713.png,6102 -images-08714.png,6103 -images-08715.png,6104 -images-08716.png,6105 -images-08717.png,6106 -images-08718.png,6107 -images-08719.png,6108 -images-08720.png,6109 -images-08721.png,6110 -images-08722.png,6111 -images-08723.png,6112 -images-08724.png,6113 -images-08725.png,6114 -images-08726.png,6115 -images-08727.png,6116 -images-08728.png,6117 -images-08729.png,6118 -images-08730.png,6119 -images-08731.png,6120 -images-08732.png,6121 -images-08733.png,6122 -images-08734.png,6123 -images-08735.png,6124 -images-08736.png,6125 -images-08737.png,6126 -images-08738.png,6127 -images-08739.png,6128 -images-08740.png,6129 -images-08741.png,6130 -images-08742.png,6131 -images-08743.png,6132 -images-08744.png,6133 -images-08745.png,6134 -images-08746.png,6135 -images-08747.png,6136 -images-08748.png,6137 -images-08749.png,6138 -images-08750.png,6139 -images-08751.png,6140 -images-08752.png,6141 -images-08753.png,6142 -images-08754.png,6143 -images-08755.png,6144 -images-08756.png,6145 -images-08757.png,6146 -images-08758.png,6147 -images-08759.png,6148 -images-08760.png,6149 -images-08761.png,6150 -images-08762.png,6151 -images-08763.png,6152 -images-08764.png,6153 -images-08765.png,6154 -images-08766.png,6155 -images-08767.png,6156 -images-08768.png,6157 -images-08769.png,6158 -images-08770.png,6159 -images-08771.png,6160 -images-08772.png,6161 -images-08773.png,6162 -images-08774.png,6163 -images-08775.png,6164 -images-08776.png,6165 -images-08777.png,6166 -images-08778.png,6167 -images-08779.png,6168 -images-08780.png,6169 -images-08781.png,6170 -images-08782.png,6171 -images-08783.png,6172 -images-08784.png,6173 -images-08785.png,6174 -images-08786.png,6175 -images-08787.png,6176 -images-08788.png,6177 -images-08789.png,6178 -images-08790.png,6179 -images-08791.png,6180 -images-08792.png,6181 -images-08793.png,6182 -images-08794.png,6183 -images-08795.png,6184 -images-08796.png,6185 -images-08797.png,6186 -images-08798.png,6187 -images-08799.png,6188 -images-08800.png,6189 -images-08801.png,6190 -images-08802.png,6191 -images-08803.png,6192 -images-08804.png,6193 -images-08805.png,6194 -images-08806.png,6195 -images-08807.png,6196 -images-08808.png,6197 -images-08809.png,6198 -images-08810.png,6199 -images-08811.png,6200 -images-08812.png,6201 -images-08813.png,6202 -images-08814.png,6203 -images-08815.png,6204 -images-08816.png,6205 -images-08817.png,6206 -images-08818.png,6207 -images-08819.png,6208 -images-08820.png,6209 -images-08821.png,6210 -images-08822.png,6211 -images-08823.png,6212 -images-08824.png,6213 -images-08825.png,6214 -images-08826.png,6215 -images-08827.png,6216 -images-08828.png,6217 -images-08829.png,6218 -images-08830.png,6219 -images-08831.png,6220 -images-08832.png,6221 -images-08833.png,6222 -images-08834.png,6223 -images-08835.png,6224 -images-08836.png,6225 -images-08837.png,6226 -images-08838.png,6227 -images-08839.png,6228 -images-08840.png,6229 -images-08841.png,6230 -images-08842.png,6231 -images-08843.png,6232 -images-08844.png,6233 -images-08845.png,6234 -images-08846.png,6235 -images-08847.png,6236 -images-08848.png,6237 -images-08849.png,6238 -images-08850.png,6239 -images-08851.png,6240 -images-08852.png,6241 -images-08853.png,6242 -images-08854.png,6243 -images-08855.png,6244 -images-08856.png,6245 -images-08857.png,6246 -images-08858.png,6247 -images-08859.png,6248 -images-08860.png,6249 -images-08861.png,6250 -images-08862.png,6251 -images-08863.png,6252 -images-08864.png,6253 -images-08865.png,6254 -images-08866.png,6255 -images-08867.png,6256 -images-08868.png,6257 -images-08869.png,6258 -images-08870.png,6259 -images-08871.png,6260 -images-08872.png,6261 -images-08873.png,6262 -images-08874.png,6263 -images-08875.png,6264 -images-08876.png,6265 -images-08877.png,6266 -images-08878.png,6267 -images-08879.png,6268 -images-08880.png,6269 -images-08881.png,6270 -images-08882.png,6271 -images-08883.png,6272 -images-08884.png,6273 -images-08885.png,6274 -images-08886.png,6275 -images-08887.png,6276 -images-08888.png,6277 -images-08889.png,6278 -images-08890.png,6279 -images-08891.png,6280 -images-08892.png,6281 -images-08893.png,6282 -images-08894.png,6283 -images-08895.png,6284 -images-08896.png,6285 -images-08897.png,6286 -images-08898.png,6287 -images-08899.png,6288 -images-08900.png,6289 -images-08901.png,6290 -images-08902.png,6291 -images-08903.png,6292 -images-08904.png,6293 -images-08905.png,6294 -images-08906.png,6295 -images-08907.png,6296 -images-08908.png,6297 -images-08909.png,6298 -images-08910.png,6299 -images-08911.png,6300 -images-08912.png,6301 -images-08913.png,6302 -images-08914.png,6303 -images-08915.png,6304 -images-08916.png,6305 -images-08917.png,6306 -images-08918.png,6307 -images-08919.png,6308 -images-08920.png,6309 -images-08921.png,6310 -images-08922.png,6311 -images-08923.png,6312 -images-08924.png,6313 -images-08925.png,6314 -images-08926.png,6315 -images-08927.png,6316 -images-08928.png,6317 -images-08929.png,6318 -images-08930.png,6319 -images-08931.png,6320 -images-08932.png,6321 -images-08933.png,6322 -images-08934.png,6323 -images-08935.png,6324 -images-08936.png,6325 -images-08937.png,6326 -images-08938.png,6327 -images-08939.png,6328 -images-08940.png,6329 -images-08941.png,6330 -images-08942.png,6331 -images-08943.png,6332 -images-08944.png,6333 -images-08945.png,6334 -images-08946.png,6335 -images-08947.png,6336 -images-08948.png,6337 -images-08949.png,6338 -images-08950.png,6339 -images-08951.png,6340 -images-08952.png,6341 -images-08953.png,6342 -images-08954.png,6343 -images-08955.png,6344 -images-08956.png,6345 -images-08957.png,6346 -images-08958.png,6347 -images-08959.png,6348 -images-08960.png,6349 -images-08961.png,6350 -images-08962.png,6351 -images-08963.png,6352 -images-08964.png,6353 -images-08965.png,6354 -images-08966.png,6355 -images-08967.png,6356 -images-08968.png,6357 -images-08969.png,6358 -images-08970.png,6359 -images-08971.png,6360 -images-08972.png,6361 -images-08973.png,6362 -images-08974.png,6363 -images-08975.png,6364 -images-08976.png,6365 -images-08977.png,6366 -images-08978.png,6367 -images-08979.png,6368 -images-08980.png,6369 -images-08981.png,6370 -images-08982.png,6371 -images-08983.png,6372 -images-08984.png,6373 -images-08985.png,6374 -images-08986.png,6375 -images-08987.png,6376 -images-08988.png,6377 -images-08989.png,6378 -images-08990.png,6379 -images-08991.png,6380 -images-08992.png,6381 -images-08993.png,6382 -images-08994.png,6383 -images-08995.png,6384 -images-08996.png,6385 -images-08997.png,6386 -images-08998.png,6387 -images-08999.png,6388 -images-09000.png,6389 -images-09001.png,6390 -images-09002.png,6391 -images-09003.png,6392 -images-09004.png,6393 -images-09005.png,6394 -images-09006.png,6395 -images-09007.png,6396 -images-09008.png,6397 -images-09009.png,6398 -images-09010.png,6399 -images-09011.png,6400 -images-09012.png,6401 -images-09013.png,6402 -images-09014.png,6403 -images-09015.png,6404 -images-09016.png,6405 -images-09017.png,6406 -images-09018.png,6407 -images-09019.png,6408 -images-09020.png,6409 -images-09021.png,6410 -images-09022.png,6411 -images-09023.png,6412 -images-09024.png,6413 -images-09025.png,6414 -images-09026.png,6415 -images-09027.png,6416 -images-09028.png,6417 -images-09029.png,6418 -images-09030.png,6419 -images-09031.png,6420 -images-09032.png,6421 -images-09033.png,6422 -images-09034.png,6423 -images-09035.png,6424 -images-09036.png,6425 -images-09037.png,6426 -images-09038.png,6427 -images-09039.png,6428 -images-09040.png,6429 -images-09041.png,6430 -images-09042.png,6431 -images-09043.png,6432 -images-09044.png,6433 -images-09045.png,6434 -images-09046.png,6435 -images-09047.png,6436 -images-09048.png,6437 -images-09049.png,6438 -images-09050.png,6439 -images-09051.png,6440 -images-09052.png,6441 -images-09053.png,6442 -images-09054.png,6443 -images-09055.png,6444 -images-09056.png,6445 -images-09057.png,6446 -images-09058.png,6447 -images-09059.png,6448 -images-09060.png,6449 -images-09061.png,6450 -images-09062.png,6451 -images-09063.png,6452 -images-09064.png,6453 -images-09065.png,6454 -images-09066.png,6455 -images-09067.png,6456 -images-09068.png,6457 -images-09069.png,6458 -images-09070.png,6459 -images-09071.png,6460 -images-09072.png,6461 -images-09073.png,6462 -images-09074.png,6463 -images-09075.png,6464 -images-09076.png,6465 -images-09077.png,6466 -images-09078.png,6467 -images-09079.png,6468 -images-09080.png,6469 -images-09081.png,6470 -images-09082.png,6471 -images-09083.png,6472 -images-09084.png,6473 -images-09085.png,6474 -images-09086.png,6475 -images-09087.png,6476 -images-09088.png,6477 -images-09089.png,6478 -images-09090.png,6479 -images-09091.png,6480 -images-09092.png,6481 -images-09093.png,6482 -images-09094.png,6483 -images-09095.png,6484 -images-09096.png,6485 -images-09097.png,6486 -images-09098.png,6487 -images-09099.png,6488 -images-09100.png,6489 -images-09101.png,6490 -images-09102.png,6491 -images-09103.png,6492 -images-09104.png,6493 -images-09105.png,6494 -images-09106.png,6495 -images-09107.png,6496 -images-09108.png,6497 -images-09109.png,6498 -images-09110.png,6499 -images-09111.png,6500 -images-09112.png,6501 -images-09113.png,6502 -images-09114.png,6503 -images-09115.png,6504 -images-09116.png,6505 -images-09117.png,6506 -images-09118.png,6507 -images-09119.png,6508 -images-09120.png,6509 -images-09121.png,6510 -images-09122.png,6511 -images-09123.png,6512 -images-09124.png,6513 -images-09125.png,6514 -images-09126.png,6515 -images-09127.png,6516 -images-09128.png,6517 -images-09129.png,6518 -images-09130.png,6519 -images-09131.png,6520 -images-09132.png,6521 -images-09133.png,6522 -images-09134.png,6523 -images-09135.png,6524 -images-09136.png,6525 -images-09137.png,6526 -images-09138.png,6527 -images-09139.png,6528 -images-09140.png,6529 -images-09141.png,6530 -images-09142.png,6531 -images-09143.png,6532 -images-09144.png,6533 -images-09145.png,6534 -images-09146.png,6535 -images-09147.png,6536 -images-09148.png,6537 -images-09149.png,6538 -images-09150.png,6539 -images-09151.png,6540 -images-09152.png,6541 -images-09153.png,6542 -images-09154.png,6543 -images-09155.png,6544 -images-09156.png,6545 -images-09157.png,6546 -images-09158.png,6547 -images-09159.png,6548 -images-09160.png,6549 -images-09161.png,6550 -images-09162.png,6551 -images-09163.png,6552 -images-09164.png,6553 -images-09165.png,6554 -images-09166.png,6555 -images-09167.png,6556 -images-09168.png,6557 -images-09169.png,6558 -images-09170.png,6559 -images-09171.png,6560 -images-09172.png,6561 -images-09173.png,6562 -images-09174.png,6563 -images-09175.png,6564 -images-09176.png,6565 -images-09177.png,6566 -images-09178.png,6567 -images-09179.png,6568 -images-09180.png,6569 -images-09181.png,6570 -images-09182.png,6571 -images-09183.png,6572 -images-09184.png,6573 -images-09185.png,6574 -images-09186.png,6575 -images-09187.png,6576 -images-09188.png,6577 -images-09189.png,6578 -images-09190.png,6579 -images-09191.png,6580 -images-09192.png,6581 -images-09193.png,6582 -images-09194.png,6583 -images-09195.png,6584 -images-09196.png,6585 -images-09197.png,6586 -images-09198.png,6587 -images-09199.png,6588 -images-09200.png,6589 -images-09201.png,6590 -images-09202.png,6591 -images-09203.png,6592 -images-09204.png,6593 -images-09205.png,6594 -images-09206.png,6595 -images-09207.png,6596 -images-09208.png,6597 -images-09209.png,6598 -images-09210.png,6599 -images-09211.png,6600 -images-09212.png,6601 -images-09213.png,6602 -images-09214.png,6603 -images-09215.png,6604 -images-09216.png,6605 -images-09217.png,6606 -images-09218.png,6607 -images-09219.png,6608 -images-09220.png,6609 -images-09221.png,6610 -images-09222.png,6611 -images-09223.png,6612 -images-09224.png,6613 -images-09225.png,6614 -images-09226.png,6615 -images-09227.png,6616 -images-09228.png,6617 -images-09229.png,6618 -images-09230.png,6619 -images-09231.png,6620 -images-09232.png,6621 -images-09233.png,6622 -images-09234.png,6623 -images-09235.png,6624 -images-09236.png,6625 -images-09237.png,6626 -images-09238.png,6627 -images-09239.png,6628 -images-09240.png,6629 -images-09241.png,6630 -images-09242.png,6631 -images-09243.png,6632 -images-09244.png,6633 -images-09245.png,6634 -images-09246.png,6635 -images-09247.png,6636 -images-09248.png,6637 -images-09249.png,6638 -images-09250.png,6639 -images-09251.png,6640 -images-09252.png,6641 -images-09253.png,6642 -images-09254.png,6643 -images-09255.png,6644 -images-09256.png,6645 -images-09257.png,6646 -images-09258.png,6647 -images-09259.png,6648 -images-09260.png,6649 -images-09261.png,6650 -images-09262.png,6651 -images-09263.png,6652 -images-09264.png,6653 -images-09265.png,6654 -images-09266.png,6655 -images-09267.png,6656 -images-09268.png,6657 -images-09269.png,6658 -images-09270.png,6659 -images-09271.png,6660 -images-09272.png,6661 -images-09273.png,6662 -images-09274.png,6663 -images-09275.png,6664 -images-09276.png,6665 -images-09277.png,6666 -images-09278.png,6667 -images-09279.png,6668 -images-09280.png,6669 -images-09281.png,6670 -images-09282.png,6671 -images-09283.png,6672 -images-09284.png,6673 -images-09285.png,6674 -images-09286.png,6675 -images-09287.png,6676 -images-09288.png,6677 -images-09289.png,6678 -images-09290.png,6679 -images-09291.png,6680 -images-09292.png,6681 -images-09293.png,6682 -images-09294.png,6683 -images-09295.png,6684 -images-09296.png,6685 -images-09297.png,6686 -images-09298.png,6687 -images-09299.png,6688 -images-09300.png,6689 -images-09301.png,6690 -images-09302.png,6691 -images-09303.png,6692 -images-09304.png,6693 -images-09305.png,6694 -images-09306.png,6695 -images-09307.png,6696 -images-09308.png,6697 -images-09309.png,6698 -images-09310.png,6699 -images-09311.png,6700 -images-09312.png,6701 -images-09313.png,6702 -images-09314.png,6703 -images-09315.png,6704 -images-09316.png,6705 -images-09317.png,6706 -images-09318.png,6707 -images-09319.png,6708 -images-09320.png,6709 -images-09321.png,6710 -images-09322.png,6711 -images-09323.png,6712 -images-09324.png,6713 -images-09325.png,6714 -images-09326.png,6715 -images-09327.png,6716 -images-09328.png,6717 -images-09329.png,6718 -images-09330.png,6719 -images-09331.png,6720 -images-09332.png,6721 -images-09333.png,6722 -images-09334.png,6723 -images-09335.png,6724 -images-09336.png,6725 -images-09337.png,6726 -images-09338.png,6727 -images-09339.png,6728 -images-09340.png,6729 -images-09341.png,6730 -images-09342.png,6731 -images-09343.png,6732 -images-09344.png,6733 -images-09345.png,6734 -images-09346.png,6735 -images-09347.png,6736 -images-09348.png,6737 -images-09349.png,6738 -images-09350.png,6739 -images-09351.png,6740 -images-09352.png,6741 -images-09353.png,6742 -images-09354.png,6743 -images-09355.png,6744 -images-09356.png,6745 -images-09357.png,6746 -images-09358.png,6747 -images-09359.png,6748 -images-09360.png,6749 -images-09361.png,6750 -images-09362.png,6751 -images-09363.png,6752 -images-09364.png,6753 -images-09365.png,6754 -images-09366.png,6755 -images-09367.png,6756 -images-09368.png,6757 -images-09369.png,6758 -images-09370.png,6759 -images-09371.png,6760 -images-09372.png,6761 -images-09373.png,6762 -images-09374.png,6763 -images-09375.png,6764 -images-09376.png,6765 -images-09377.png,6766 -images-09378.png,6767 -images-09379.png,6768 -images-09380.png,6769 -images-09381.png,6770 -images-09382.png,6771 -images-09383.png,6772 -images-09384.png,6773 -images-09385.png,6774 -images-09386.png,6775 -images-09387.png,6776 -images-09388.png,6777 -images-09389.png,6778 -images-09390.png,6779 -images-09391.png,6780 -images-09392.png,6781 -images-09393.png,6782 -images-09394.png,6783 -images-09395.png,6784 -images-09396.png,6785 -images-09397.png,6786 -images-09398.png,6787 -images-09399.png,6788 -images-09400.png,6789 -images-09401.png,6790 -images-09402.png,6791 -images-09403.png,6792 -images-09404.png,6793 -images-09405.png,6794 -images-09406.png,6795 -images-09407.png,6796 -images-09408.png,6797 -images-09409.png,6798 -images-09410.png,6799 -images-09411.png,6800 -images-09412.png,6801 -images-09413.png,6802 -images-09414.png,6803 -images-09415.png,6804 -images-09416.png,6805 -images-09417.png,6806 -images-09418.png,6807 -images-09419.png,6808 -images-09420.png,6809 -images-09421.png,6810 -images-09422.png,6811 -images-09423.png,6812 -images-09424.png,6813 -images-09425.png,6814 -images-09426.png,6815 -images-09427.png,6816 -images-09428.png,6817 -images-09429.png,6818 -images-09430.png,6819 -images-09431.png,6820 -images-09432.png,6821 -images-09433.png,6822 -images-09434.png,6823 -images-09435.png,6824 -images-09436.png,6825 -images-09437.png,6826 -images-09438.png,6827 -images-09439.png,6828 -images-09440.png,6829 -images-09441.png,6830 -images-09442.png,6831 -images-09443.png,6832 -images-09444.png,6833 -images-09445.png,6834 -images-09446.png,6835 -images-09447.png,6836 -images-09448.png,6837 -images-09449.png,6838 -images-09450.png,6839 -images-09451.png,6840 -images-09452.png,6841 -images-09453.png,6842 -images-09454.png,6843 -images-09455.png,6844 -images-09456.png,6845 -images-09457.png,6846 -images-09458.png,6847 -images-09459.png,6848 -images-09460.png,6849 -images-09461.png,6850 -images-09462.png,6851 -images-09463.png,6852 -images-09464.png,6853 -images-09465.png,6854 -images-09466.png,6855 -images-09467.png,6856 -images-09468.png,6857 -images-09469.png,6858 -images-09470.png,6859 -images-09471.png,6860 -images-09472.png,6861 -images-09473.png,6862 -images-09474.png,6863 -images-09475.png,6864 -images-09476.png,6865 -images-09477.png,6866 -images-09478.png,6867 -images-09479.png,6868 -images-09480.png,6869 -images-09481.png,6870 -images-09482.png,6871 -images-09483.png,6872 -images-09484.png,6873 -images-09485.png,6874 -images-09486.png,6875 -images-09487.png,6876 -images-09488.png,6877 -images-09489.png,6878 -images-09490.png,6879 -images-09491.png,6880 -images-09492.png,6881 -images-09493.png,6882 -images-09494.png,6883 -images-09495.png,6884 -images-09496.png,6885 -images-09497.png,6886 -images-09498.png,6887 -images-09499.png,6888 -images-09500.png,6889 -images-09501.png,6890 -images-09502.png,6891 -images-09503.png,6892 -images-09504.png,6893 -images-09505.png,6894 -images-09506.png,6895 -images-09507.png,6896 -images-09508.png,6897 -images-09509.png,6898 -images-09510.png,6899 -images-09511.png,6900 -images-09512.png,6901 -images-09513.png,6902 -images-09514.png,6903 -images-09515.png,6904 -images-09516.png,6905 -images-09517.png,6906 -images-09518.png,6907 -images-09519.png,6908 -images-09520.png,6909 -images-09521.png,6910 -images-09522.png,6911 -images-09523.png,6912 -images-09524.png,6913 -images-09525.png,6914 -images-09526.png,6915 -images-09527.png,6916 -images-09528.png,6917 -images-09529.png,6918 -images-09530.png,6919 -images-09531.png,6920 -images-09532.png,6921 -images-09533.png,6922 -images-09534.png,6923 -images-09535.png,6924 -images-09536.png,6925 -images-09537.png,6926 -images-09538.png,6927 -images-09539.png,6928 -images-09540.png,6929 -images-09541.png,6930 -images-09542.png,6931 -images-09543.png,6932 -images-09544.png,6933 -images-09545.png,6934 -images-09546.png,6935 -images-09547.png,6936 -images-09548.png,6937 -images-09549.png,6938 -images-09550.png,6939 -images-09551.png,6940 -images-09552.png,6941 -images-09553.png,6942 -images-09554.png,6943 -images-09555.png,6944 -images-09556.png,6945 -images-09557.png,6946 -images-09558.png,6947 -images-09559.png,6948 -images-09560.png,6949 -images-09561.png,6950 -images-09562.png,6951 -images-09563.png,6952 -images-09564.png,6953 -images-09565.png,6954 -images-09566.png,6955 -images-09567.png,6956 -images-09568.png,6957 -images-09569.png,6958 -images-09570.png,6959 -images-09571.png,6960 -images-09572.png,6961 -images-09573.png,6962 -images-09574.png,6963 -images-09575.png,6964 -images-09576.png,6965 -images-09577.png,6966 -images-09578.png,6967 -images-09579.png,6968 -images-09580.png,6969 -images-09581.png,6970 -images-09582.png,6971 -images-09583.png,6972 -images-09584.png,6973 -images-09585.png,6974 -images-09586.png,6975 -images-09587.png,6976 -images-09588.png,6977 -images-09589.png,6978 -images-09590.png,6979 -images-09591.png,6980 -images-09592.png,6981 -images-09593.png,6982 -images-09594.png,6983 -images-09595.png,6984 -images-09596.png,6985 -images-09597.png,6986 -images-09598.png,6987 -images-09599.png,6988 -images-09600.png,6989 -images-09601.png,6990 -images-09602.png,6991 -images-09603.png,6992 -images-09604.png,6993 -images-09605.png,6994 -images-09606.png,6995 -images-09607.png,6996 -images-09608.png,6997 -images-09609.png,6998 -images-09610.png,6999 -images-09611.png,7000 -images-09612.png,7001 -images-09613.png,7002 -images-09614.png,7003 -images-09615.png,7004 -images-09616.png,7005 -images-09617.png,7006 -images-09618.png,7007 -images-09619.png,7008 -images-09620.png,7009 -images-09621.png,7010 -images-09622.png,7011 -images-09623.png,7012 -images-09624.png,7013 -images-09625.png,7014 -images-09626.png,7015 -images-09627.png,7016 -images-09628.png,7017 -images-09629.png,7018 -images-09630.png,7019 -images-09631.png,7020 -images-09632.png,7021 -images-09633.png,7022 -images-09634.png,7023 -images-09635.png,7024 -images-09636.png,7025 -images-09637.png,7026 -images-09638.png,7027 -images-09639.png,7028 -images-09640.png,7029 -images-09641.png,7030 -images-09642.png,7031 -images-09643.png,7032 -images-09644.png,7033 -images-09645.png,7034 -images-09646.png,7035 -images-09647.png,7036 -images-09648.png,7037 -images-09649.png,7038 -images-09650.png,7039 -images-09651.png,7040 -images-09652.png,7041 -images-09653.png,7042 -images-09654.png,7043 -images-09655.png,7044 -images-09656.png,7045 -images-09657.png,7046 -images-09658.png,7047 -images-09659.png,7048 -images-09660.png,7049 -images-09661.png,7050 -images-09662.png,7051 -images-09663.png,7052 -images-09664.png,7053 -images-09665.png,7054 -images-09666.png,7055 -images-09667.png,7056 -images-09668.png,7057 -images-09669.png,7058 -images-09670.png,7059 -images-09671.png,7060 -images-09672.png,7061 -images-09673.png,7062 -images-09674.png,7063 -images-09675.png,7064 -images-09676.png,7065 -images-09677.png,7066 -images-09678.png,7067 -images-09679.png,7068 -images-09680.png,7069 -images-09681.png,7070 -images-09682.png,7071 -images-09683.png,7072 -images-09684.png,7073 -images-09685.png,7074 -images-09686.png,7075 -images-09687.png,7076 -images-09688.png,7077 -images-09689.png,7078 -images-09690.png,7079 -images-09691.png,7080 -images-09692.png,7081 -images-09693.png,7082 -images-09694.png,7083 -images-09695.png,7084 -images-09696.png,7085 -images-09697.png,7086 -images-09698.png,7087 -images-09699.png,7088 -images-09700.png,7089 -images-09701.png,7090 -images-09702.png,7091 -images-09703.png,7092 -images-09704.png,7093 -images-09705.png,7094 -images-09706.png,7095 -images-09707.png,7096 -images-09708.png,7097 -images-09709.png,7098 -images-09710.png,7099 -images-09711.png,7100 -images-09712.png,7101 -images-09713.png,7102 -images-09714.png,7103 -images-09715.png,7104 -images-09716.png,7105 -images-09717.png,7106 -images-09718.png,7107 -images-09719.png,7108 -images-09720.png,7109 -images-09721.png,7110 -images-09722.png,7111 -images-09723.png,7112 -images-09724.png,7113 -images-09725.png,7114 -images-09726.png,7115 -images-09727.png,7116 -images-09728.png,7117 -images-09729.png,7118 -images-09730.png,7119 -images-09731.png,7120 -images-09732.png,7121 -images-09733.png,7122 -images-09734.png,7123 -images-09735.png,7124 -images-09736.png,7125 -images-09737.png,7126 -images-09738.png,7127 -images-09739.png,7128 -images-09740.png,7129 -images-09741.png,7130 -images-09742.png,7131 -images-09743.png,7132 -images-09744.png,7133 -images-09745.png,7134 -images-09746.png,7135 -images-09747.png,7136 -images-09748.png,7137 -images-09749.png,7138 -images-09750.png,7139 -images-09751.png,7140 -images-09752.png,7141 -images-09753.png,7142 -images-09754.png,7143 -images-09755.png,7144 -images-09756.png,7145 -images-09757.png,7146 -images-09758.png,7147 -images-09759.png,7148 -images-09760.png,7149 -images-09761.png,7150 -images-09762.png,7151 -images-09763.png,7152 -images-09764.png,7153 -images-09765.png,7154 -images-09766.png,7155 -images-09767.png,7156 -images-09768.png,7157 -images-09769.png,7158 -images-09770.png,7159 -images-09771.png,7160 -images-09772.png,7161 -images-09773.png,7162 -images-09774.png,7163 -images-09775.png,7164 -images-09776.png,7165 -images-09777.png,7166 -images-09778.png,7167 -images-09779.png,7168 -images-09780.png,7169 -images-09781.png,7170 -images-09782.png,7171 -images-09783.png,7172 -images-09784.png,7173 -images-09785.png,7174 -images-09786.png,7175 -images-09787.png,7176 -images-09788.png,7177 -images-09789.png,7178 -images-09790.png,7179 -images-09791.png,7180 -images-09792.png,7181 -images-09793.png,7182 -images-09794.png,7183 -images-09795.png,7184 -images-09796.png,7185 -images-09797.png,7186 -images-09798.png,7187 -images-09799.png,7188 -images-09800.png,7189 -images-09801.png,7190 -images-09802.png,7191 -images-09803.png,7192 -images-09804.png,7193 -images-09805.png,7194 -images-09806.png,7195 -images-09807.png,7196 -images-09808.png,7197 -images-09809.png,7198 -images-09810.png,7199 -images-09811.png,7200 -images-09812.png,7201 -images-09813.png,7202 -images-09814.png,7203 -images-09815.png,7204 -images-09816.png,7205 -images-09817.png,7206 -images-09818.png,7207 -images-09819.png,7208 -images-09820.png,7209 -images-09821.png,7210 -images-09822.png,7211 -images-09823.png,7212 -images-09824.png,7213 -images-09825.png,7214 -images-09826.png,7215 -images-09827.png,7216 -images-09828.png,7217 -images-09829.png,7218 -images-09830.png,7219 -images-09831.png,7220 -images-09832.png,7221 -images-09833.png,7222 -images-09834.png,7223 -images-09835.png,7224 -images-09836.png,7225 -images-09837.png,7226 -images-09838.png,7227 -images-09839.png,7228 -images-09840.png,7229 -images-09841.png,7230 -images-09842.png,7231 -images-09843.png,7232 -images-09844.png,7233 -images-09845.png,7234 -images-09846.png,7235 -images-09847.png,7236 -images-09848.png,7237 -images-09849.png,7238 -images-09850.png,7239 -images-09851.png,7240 -images-09852.png,7241 -images-09853.png,7242 -images-09854.png,7243 -images-09855.png,7244 -images-09856.png,7245 -images-09857.png,7246 -images-09858.png,7247 -images-09859.png,7248 -images-09860.png,7249 -images-09861.png,7250 -images-09862.png,7251 -images-09863.png,7252 -images-09864.png,7253 -images-09865.png,7254 -images-09866.png,7255 -images-09867.png,7256 -images-09868.png,7257 -images-09869.png,7258 -images-09870.png,7259 -images-09871.png,7260 -images-09872.png,7261 -images-09873.png,7262 -images-09874.png,7263 -images-09875.png,7264 -images-09876.png,7265 -images-09877.png,7266 -images-09878.png,7267 -images-09879.png,7268 -images-09880.png,7269 -images-09881.png,7270 -images-09882.png,7271 -images-09883.png,7272 -images-09884.png,7273 -images-09885.png,7274 -images-09886.png,7275 -images-09887.png,7276 -images-09888.png,7277 -images-09889.png,7278 -images-09890.png,7279 -images-09891.png,7280 -images-09892.png,7281 -images-09893.png,7282 -images-09894.png,7283 -images-09895.png,7284 -images-09896.png,7285 -images-09897.png,7286 -images-09898.png,7287 -images-09899.png,7288 -images-09900.png,7289 -images-09901.png,7290 -images-09902.png,7291 -images-09903.png,7292 -images-09904.png,7293 -images-09905.png,7294 -images-09906.png,7295 -images-09907.png,7296 -images-09908.png,7297 -images-09909.png,7298 -images-09910.png,7299 -images-09911.png,7300 -images-09912.png,7301 -images-09913.png,7302 -images-09914.png,7303 -images-09915.png,7304 -images-09916.png,7305 -images-09917.png,7306 -images-09918.png,7307 -images-09919.png,7308 -images-09920.png,7309 -images-09921.png,7310 -images-09922.png,7311 -images-09923.png,7312 -images-09924.png,7313 -images-09925.png,7314 -images-09926.png,7315 -images-09927.png,7316 -images-09928.png,7317 -images-09929.png,7318 -images-09930.png,7319 -images-09931.png,7320 -images-09932.png,7321 -images-09933.png,7322 -images-09934.png,7323 -images-09935.png,7324 -images-09936.png,7325 -images-09937.png,7326 -images-09938.png,7327 -images-09939.png,7328 -images-09940.png,7329 -images-09941.png,7330 -images-09942.png,7331 -images-09943.png,7332 -images-09944.png,7333 -images-09945.png,7334 -images-09946.png,7335 -images-09947.png,7336 -images-09948.png,7337 -images-09949.png,7338 -images-09950.png,7339 -images-09951.png,7340 -images-09952.png,7341 -images-09953.png,7342 -images-09954.png,7343 -images-09955.png,7344 -images-09956.png,7345 -images-09957.png,7346 -images-09958.png,7347 -images-09959.png,7348 -images-09960.png,7349 -images-09961.png,7350 -images-09962.png,7351 -images-09963.png,7352 -images-09964.png,7353 -images-09965.png,7354 -images-09966.png,7355 -images-09979.png,7356 -images-09980.png,7357 -images-09981.png,7358 -images-09982.png,7359 -images-09983.png,7360 -images-09984.png,7361 -images-09985.png,7362 -images-09986.png,7363 -images-09987.png,7364 -images-09988.png,7365 -images-09989.png,7366 -images-09990.png,7367 -images-09991.png,7368 -images-09992.png,7369 -images-09993.png,7370 -images-09994.png,7371 -images-09995.png,7372 -images-09996.png,7373 -images-09997.png,7374 -images-09998.png,7375 -images-09999.png,7376 -images-10000.png,7377 -images-10001.png,7378 -images-10002.png,7379 -images-10003.png,7380 -images-10004.png,7381 -images-10005.png,7382 -images-10006.png,7383 -images-10007.png,7384 -images-10008.png,7385 -images-10009.png,7386 -images-10010.png,7387 -images-10011.png,7388 -images-10012.png,7389 -images-10013.png,7390 -images-10014.png,7391 -images-10015.png,7392 -images-10016.png,7393 -images-10017.png,7394 -images-10018.png,7395 -images-10019.png,7396 -images-10020.png,7397 -images-10021.png,7398 -images-10022.png,7399 -images-10023.png,7400 -images-10024.png,7401 -images-10025.png,7402 -images-10026.png,7403 -images-10027.png,7404 -images-10028.png,7405 -images-10029.png,7406 -images-10030.png,7407 -images-10031.png,7408 -images-10032.png,7409 -images-10033.png,7410 -images-10034.png,7411 -images-10035.png,7412 -images-10036.png,7413 -images-10037.png,7414 -images-10038.png,7415 -images-10039.png,7416 -images-10040.png,7417 -images-10041.png,7418 -images-10204.png,7419 -images-10205.png,7420 -images-10206.png,7421 -images-10207.png,7422 -images-10208.png,7423 -images-10209.png,7424 -images-10210.png,7425 -images-10211.png,7426 -images-10212.png,7427 -images-10213.png,7428 -images-10214.png,7429 -images-10215.png,7430 -images-10216.png,7431 -images-10217.png,7432 -images-10218.png,7433 -images-10219.png,7434 -images-10220.png,7435 -images-10221.png,7436 -images-10222.png,7437 -images-10223.png,7438 -images-10224.png,7439 -images-10225.png,7440 -images-10226.png,7441 -images-10227.png,7442 -images-10228.png,7443 -images-10229.png,7444 -images-10230.png,7445 -images-10231.png,7446 -images-10232.png,7447 -images-10233.png,7448 -images-10234.png,7449 -images-10235.png,7450 -images-10236.png,7451 -images-10237.png,7452 -images-10238.png,7453 -images-10268.png,7454 -images-10269.png,7455 -images-10270.png,7456 -images-10271.png,7457 -images-10272.png,7458 -images-10273.png,7459 -images-10274.png,7460 -images-10275.png,7461 -images-10276.png,7462 -images-10277.png,7463 -images-10278.png,7464 -images-10279.png,7465 -images-10280.png,7466 -images-10281.png,7467 -images-10282.png,7468 -images-10283.png,7469 -images-10284.png,7470 -images-10285.png,7471 -images-10286.png,7472 -images-10287.png,7473 -images-10288.png,7474 -images-10289.png,7475 -images-10290.png,7476 -images-10291.png,7477 -images-10292.png,7478 -images-10293.png,7479 -images-10294.png,7480 -images-10295.png,7481 -images-10296.png,7482 -images-10297.png,7483 -images-10298.png,7484 -images-10299.png,7485 -images-10300.png,7486 -images-10301.png,7487 -images-10302.png,7488 -images-10303.png,7489 -images-10304.png,7490 -images-10305.png,7491 -images-10306.png,7492 -images-10307.png,7493 -images-10308.png,7494 -images-10309.png,7495 -images-10310.png,7496 -images-10311.png,7497 -images-10312.png,7498 -images-10313.png,7499 -images-10314.png,7500 -images-10315.png,7501 -images-10316.png,7502 -images-10317.png,7503 -images-10318.png,7504 -images-10319.png,7505 -images-10320.png,7506 -images-10321.png,7507 -images-10322.png,7508 -images-10323.png,7509 -images-10324.png,7510 -images-10325.png,7511 -images-10326.png,7512 -images-10327.png,7513 -images-10328.png,7514 -images-10329.png,7515 -images-10330.png,7516 -images-10331.png,7517 -images-10332.png,7518 -images-10333.png,7519 -images-10334.png,7520 -images-10335.png,7521 -images-10336.png,7522 -images-10337.png,7523 -images-10338.png,7524 -images-10339.png,7525 -images-10340.png,7526 -images-10341.png,7527 -images-10342.png,7528 -images-10343.png,7529 -images-10344.png,7530 -images-10345.png,7531 -images-10346.png,7532 -images-10347.png,7533 -images-10348.png,7534 -images-10349.png,7535 -images-10350.png,7536 -images-10351.png,7537 -images-10352.png,7538 -images-10353.png,7539 -images-10354.png,7540 -images-10355.png,7541 -images-10356.png,7542 -images-10357.png,7543 -images-10358.png,7544 -images-10359.png,7545 -images-10360.png,7546 -images-10361.png,7547 -images-10362.png,7548 -images-10363.png,7549 -images-10364.png,7550 -images-10365.png,7551 -images-10366.png,7552 -images-10367.png,7553 -images-10368.png,7554 -images-10369.png,7555 -images-10370.png,7556 -images-10371.png,7557 -images-10372.png,7558 -images-10373.png,7559 -images-10374.png,7560 -images-10375.png,7561 -images-10376.png,7562 -images-10377.png,7563 -images-10378.png,7564 -images-10379.png,7565 -images-10380.png,7566 -images-10381.png,7567 -images-10382.png,7568 -images-10383.png,7569 -images-10384.png,7570 -images-10385.png,7571 -images-10386.png,7572 -images-10387.png,7573 -images-10388.png,7574 -images-10389.png,7575 -images-10390.png,7576 -images-10391.png,7577 -images-10392.png,7578 -images-10393.png,7579 -images-10394.png,7580 -images-10395.png,7581 -images-10396.png,7582 -images-10397.png,7583 -images-10398.png,7584 -images-10399.png,7585 -images-10400.png,7586 -images-10401.png,7587 -images-10402.png,7588 -images-10403.png,7589 -images-10404.png,7590 -images-10405.png,7591 -images-10406.png,7592 -images-10407.png,7593 -images-10416.png,7594 -images-10417.png,7595 -images-10418.png,7596 -images-10419.png,7597 -images-10420.png,7598 -images-10421.png,7599 -images-10422.png,7600 -images-10423.png,7601 -images-10424.png,7602 -images-10425.png,7603 -images-10426.png,7604 -images-10427.png,7605 -images-10428.png,7606 -images-10429.png,7607 -images-10430.png,7608 -images-10431.png,7609 -images-10432.png,7610 -images-10433.png,7611 -images-10434.png,7612 -images-10435.png,7613 -images-10436.png,7614 -images-10437.png,7615 -images-10438.png,7616 -images-10439.png,7617 -images-10440.png,7618 -images-10441.png,7619 -images-10442.png,7620 -images-10443.png,7621 -images-10444.png,7622 -images-10445.png,7623 -images-10446.png,7624 -images-10447.png,7625 -images-10448.png,7626 -images-10449.png,7627 -images-10450.png,7628 -images-10451.png,7629 -images-10452.png,7630 -images-10453.png,7631 -images-10454.png,7632 -images-10455.png,7633 -images-10456.png,7634 -images-10457.png,7635 -images-10458.png,7636 -images-10459.png,7637 -images-10460.png,7638 -images-10461.png,7639 -images-10462.png,7640 -images-10463.png,7641 -images-10464.png,7642 -images-10465.png,7643 -images-10466.png,7644 -images-10467.png,7645 -images-10468.png,7646 -images-10469.png,7647 -images-10470.png,7648 -images-10471.png,7649 -images-10472.png,7650 -images-10473.png,7651 -images-10474.png,7652 -images-10475.png,7653 -images-10476.png,7654 -images-10477.png,7655 -images-10478.png,7656 -images-10479.png,7657 -images-10480.png,7658 -images-10481.png,7659 -images-10482.png,7660 -images-10483.png,7661 -images-10484.png,7662 -images-10485.png,7663 -images-10486.png,7664 -images-10487.png,7665 -images-10488.png,7666 -images-10489.png,7667 -images-10490.png,7668 -images-10491.png,7669 -images-10492.png,7670 -images-10493.png,7671 -images-10494.png,7672 -images-10495.png,7673 -images-10496.png,7674 -images-10497.png,7675 -images-10498.png,7676 -images-10499.png,7677 -images-10500.png,7678 -images-10501.png,7679 -images-10502.png,7680 -images-10503.png,7681 -images-10504.png,7682 -images-10505.png,7683 -images-10506.png,7684 -images-10507.png,7685 -images-10508.png,7686 -images-10509.png,7687 -images-10510.png,7688 -images-10511.png,7689 -images-10512.png,7690 -images-10513.png,7691 -images-10514.png,7692 -images-10515.png,7693 -images-10516.png,7694 -images-10517.png,7695 -images-10518.png,7696 -images-10519.png,7697 -images-10520.png,7698 -images-10521.png,7699 -images-10522.png,7700 -images-10523.png,7701 -images-10524.png,7702 -images-10525.png,7703 -images-10526.png,7704 -images-10527.png,7705 -images-10528.png,7706 -images-10529.png,7707 -images-10530.png,7708 -images-10531.png,7709 -images-10532.png,7710 -images-10533.png,7711 -images-10534.png,7712 -images-10535.png,7713 -images-10536.png,7714 -images-10537.png,7715 -images-10538.png,7716 -images-10539.png,7717 -images-10540.png,7718 -images-10541.png,7719 -images-10542.png,7720 -images-10543.png,7721 -images-10544.png,7722 -images-10545.png,7723 -images-10546.png,7724 -images-10547.png,7725 -images-10548.png,7726 -images-10549.png,7727 -images-10550.png,7728 -images-10551.png,7729 -images-10552.png,7730 -images-10553.png,7731 -images-10554.png,7732 -images-10555.png,7733 -images-10556.png,7734 -images-10557.png,7735 -images-10558.png,7736 -images-10559.png,7737 -images-10560.png,7738 -images-10561.png,7739 -images-10562.png,7740 -images-10563.png,7741 -images-10564.png,7742 -images-10565.png,7743 -images-10566.png,7744 -images-10567.png,7745 -images-10568.png,7746 -images-10569.png,7747 -images-10570.png,7748 -images-10571.png,7749 -images-10572.png,7750 -images-10573.png,7751 -images-10574.png,7752 -images-10575.png,7753 -images-10576.png,7754 -images-10577.png,7755 -images-10578.png,7756 -images-10579.png,7757 -images-10580.png,7758 -images-10581.png,7759 -images-10582.png,7760 -images-10583.png,7761 -images-10584.png,7762 -images-10585.png,7763 -images-10586.png,7764 -images-10587.png,7765 -images-10588.png,7766 -images-10589.png,7767 -images-10590.png,7768 -images-10591.png,7769 -images-10592.png,7770 -images-10593.png,7771 -images-10594.png,7772 -images-10595.png,7773 -images-10596.png,7774 -images-10597.png,7775 -images-10598.png,7776 -images-10599.png,7777 -images-10600.png,7778 -images-10601.png,7779 -images-10602.png,7780 -images-10603.png,7781 -images-10604.png,7782 -images-10605.png,7783 -images-10606.png,7784 -images-10607.png,7785 -images-10608.png,7786 -images-10609.png,7787 -images-10610.png,7788 -images-10611.png,7789 -images-10612.png,7790 -images-10613.png,7791 -images-10614.png,7792 -images-10615.png,7793 -images-10616.png,7794 -images-10617.png,7795 -images-10618.png,7796 -images-10619.png,7797 -images-10620.png,7798 -images-10621.png,7799 -images-10622.png,7800 -images-10623.png,7801 -images-10624.png,7802 -images-10625.png,7803 -images-10626.png,7804 -images-10627.png,7805 -images-10628.png,7806 -images-10629.png,7807 -images-10630.png,7808 -images-10631.png,7809 -images-10632.png,7810 -images-10633.png,7811 -images-10634.png,7812 -images-10635.png,7813 -images-10636.png,7814 -images-10637.png,7815 -images-10638.png,7816 -images-10639.png,7817 -images-10640.png,7818 -images-10641.png,7819 -images-10642.png,7820 -images-10643.png,7821 -images-10644.png,7822 -images-10645.png,7823 -images-10646.png,7824 -images-10647.png,7825 -images-10648.png,7826 -images-10649.png,7827 -images-10650.png,7828 -images-10651.png,7829 -images-10652.png,7830 -images-10653.png,7831 -images-10654.png,7832 -images-10655.png,7833 -images-10656.png,7834 -images-10657.png,7835 -images-10658.png,7836 -images-10659.png,7837 -images-10660.png,7838 -images-10661.png,7839 -images-10662.png,7840 -images-10663.png,7841 -images-10664.png,7842 -images-10665.png,7843 -images-10666.png,7844 -images-10667.png,7845 -images-10668.png,7846 -images-10669.png,7847 -images-10670.png,7848 -images-10671.png,7849 -images-10672.png,7850 -images-10673.png,7851 -images-10674.png,7852 -images-10675.png,7853 -images-10676.png,7854 -images-10677.png,7855 -images-10678.png,7856 -images-10679.png,7857 -images-10680.png,7858 -images-10681.png,7859 -images-10682.png,7860 -images-10683.png,7861 -images-10684.png,7862 -images-10685.png,7863 -images-10686.png,7864 -images-10687.png,7865 -images-10688.png,7866 -images-10689.png,7867 -images-10690.png,7868 -images-10691.png,7869 -images-10692.png,7870 -images-10693.png,7871 -images-10694.png,7872 -images-10695.png,7873 -images-10696.png,7874 -images-10697.png,7875 -images-10698.png,7876 -images-10699.png,7877 -images-10700.png,7878 -images-10701.png,7879 -images-10702.png,7880 -images-10703.png,7881 -images-10704.png,7882 -images-10705.png,7883 -images-10706.png,7884 -images-10707.png,7885 -images-10708.png,7886 -images-10709.png,7887 -images-10710.png,7888 -images-10711.png,7889 -images-10712.png,7890 -images-10713.png,7891 -images-10714.png,7892 -images-10715.png,7893 -images-10716.png,7894 -images-10717.png,7895 -images-10718.png,7896 -images-10719.png,7897 -images-10720.png,7898 -images-10721.png,7899 -images-10722.png,7900 -images-10723.png,7901 -images-10724.png,7902 -images-10725.png,7903 -images-10726.png,7904 -images-10727.png,7905 -images-10728.png,7906 -images-10729.png,7907 -images-10730.png,7908 -images-10731.png,7909 -images-10732.png,7910 -images-10733.png,7911 -images-10734.png,7912 -images-10735.png,7913 -images-10736.png,7914 -images-10737.png,7915 -images-10738.png,7916 -images-10739.png,7917 -images-10740.png,7918 -images-10741.png,7919 -images-10742.png,7920 -images-10743.png,7921 -images-10744.png,7922 -images-10745.png,7923 -images-10746.png,7924 -images-10747.png,7925 -images-10748.png,7926 -images-10749.png,7927 -images-10750.png,7928 -images-10751.png,7929 -images-10752.png,7930 -images-10753.png,7931 -images-10754.png,7932 -images-10755.png,7933 -images-10756.png,7934 -images-10757.png,7935 -images-10758.png,7936 -images-10759.png,7937 -images-10760.png,7938 -images-10761.png,7939 -images-10762.png,7940 -images-10763.png,7941 -images-10764.png,7942 -images-10765.png,7943 -images-10766.png,7944 -images-10767.png,7945 -images-10768.png,7946 -images-10769.png,7947 -images-10770.png,7948 -images-10771.png,7949 -images-10772.png,7950 -images-10773.png,7951 -images-10774.png,7952 -images-10775.png,7953 -images-10776.png,7954 -images-10777.png,7955 -images-10778.png,7956 -images-10779.png,7957 -images-10780.png,7958 -images-10781.png,7959 -images-10782.png,7960 -images-10783.png,7961 -images-10784.png,7962 -images-10785.png,7963 -images-10786.png,7964 -images-10787.png,7965 -images-10788.png,7966 -images-10789.png,7967 -images-10790.png,7968 -images-10791.png,7969 -images-10792.png,7970 -images-10793.png,7971 -images-10794.png,7972 -images-10795.png,7973 -images-10796.png,7974 -images-10797.png,7975 -images-10798.png,7976 -images-10799.png,7977 -images-10800.png,7978 -images-10801.png,7979 -images-10802.png,7980 -images-10803.png,7981 -images-10804.png,7982 -images-10805.png,7983 -images-10806.png,7984 -images-10807.png,7985 -images-10808.png,7986 -images-10809.png,7987 -images-10810.png,7988 -images-10811.png,7989 -images-10812.png,7990 -images-10813.png,7991 -images-10814.png,7992 -images-10815.png,7993 -images-10816.png,7994 -images-10817.png,7995 -images-10818.png,7996 -images-10819.png,7997 -images-10820.png,7998 -images-10821.png,7999 -images-10822.png,8000 -images-10823.png,8001 -images-10824.png,8002 -images-10825.png,8003 -images-10826.png,8004 -images-10827.png,8005 -images-10828.png,8006 -images-10829.png,8007 -images-10830.png,8008 -images-10831.png,8009 -images-10832.png,8010 -images-10833.png,8011 -images-10834.png,8012 -images-10835.png,8013 -images-10836.png,8014 -images-10837.png,8015 -images-10838.png,8016 -images-10839.png,8017 -images-10840.png,8018 -images-10841.png,8019 -images-10842.png,8020 -images-10843.png,8021 -images-10844.png,8022 -images-10845.png,8023 -images-10846.png,8024 -images-10847.png,8025 -images-10848.png,8026 -images-10849.png,8027 -images-10850.png,8028 -images-10851.png,8029 -images-10852.png,8030 -images-10853.png,8031 -images-10854.png,8032 -images-10855.png,8033 -images-10856.png,8034 -images-10857.png,8035 -images-10858.png,8036 -images-10859.png,8037 -images-10860.png,8038 -images-10861.png,8039 -images-10862.png,8040 -images-10863.png,8041 -images-10864.png,8042 -images-10865.png,8043 -images-10866.png,8044 -images-10867.png,8045 -images-10868.png,8046 -images-10869.png,8047 -images-10870.png,8048 -images-10871.png,8049 -images-10872.png,8050 -images-10873.png,8051 -images-10874.png,8052 -images-10875.png,8053 -images-10876.png,8054 -images-10877.png,8055 -images-10878.png,8056 -images-10879.png,8057 -images-10880.png,8058 -images-10881.png,8059 -images-10882.png,8060 -images-10883.png,8061 -images-10884.png,8062 -images-10885.png,8063 -images-10886.png,8064 -images-10887.png,8065 -images-10888.png,8066 -images-10889.png,8067 -images-10890.png,8068 -images-10891.png,8069 -images-10892.png,8070 -images-10893.png,8071 -images-10894.png,8072 -images-10895.png,8073 -images-10896.png,8074 -images-10897.png,8075 -images-10898.png,8076 -images-10899.png,8077 -images-10900.png,8078 -images-10901.png,8079 -images-10902.png,8080 -images-10903.png,8081 -images-10904.png,8082 -images-10905.png,8083 -images-10906.png,8084 -images-10907.png,8085 -images-10908.png,8086 -images-10909.png,8087 -images-10910.png,8088 -images-10911.png,8089 -images-10912.png,8090 -images-10913.png,8091 -images-10914.png,8092 -images-10915.png,8093 -images-10916.png,8094 -images-10917.png,8095 -images-10918.png,8096 -images-10919.png,8097 -images-10920.png,8098 -images-10921.png,8099 -images-10922.png,8100 -images-10923.png,8101 -images-10924.png,8102 -images-10925.png,8103 -images-10926.png,8104 -images-10927.png,8105 -images-10928.png,8106 -images-10929.png,8107 -images-10930.png,8108 -images-10931.png,8109 -images-10932.png,8110 -images-10933.png,8111 -images-10934.png,8112 -images-10935.png,8113 -images-10936.png,8114 -images-10937.png,8115 -images-10938.png,8116 -images-10939.png,8117 -images-10940.png,8118 -images-10941.png,8119 -images-10942.png,8120 -images-10943.png,8121 -images-10947.png,8122 -images-10948.png,8123 -images-10949.png,8124 -images-10950.png,8125 -images-10951.png,8126 -images-10952.png,8127 -images-10953.png,8128 -images-10954.png,8129 -images-10955.png,8130 -images-10956.png,8131 -images-10957.png,8132 -images-10958.png,8133 -images-10959.png,8134 -images-10960.png,8135 -images-10961.png,8136 -images-10962.png,8137 -images-10963.png,8138 -images-10964.png,8139 -images-10965.png,8140 -images-10966.png,8141 -images-10967.png,8142 -images-10968.png,8143 -images-10969.png,8144 -images-10970.png,8145 -images-10971.png,8146 -images-10972.png,8147 -images-10973.png,8148 -images-10974.png,8149 -images-10975.png,8150 -images-10976.png,8151 -images-10977.png,8152 -images-10978.png,8153 -images-10979.png,8154 -images-10980.png,8155 -images-10981.png,8156 -images-10982.png,8157 -images-10983.png,8158 -images-10984.png,8159 -images-10991.png,8160 -images-10992.png,8161 -images-10993.png,8162 -images-10994.png,8163 -images-10995.png,8164 -images-10996.png,8165 -images-11003.png,8166 -images-11004.png,8167 -images-11005.png,8168 -images-11006.png,8169 -images-11007.png,8170 -images-11019.png,8171 -images-11020.png,8172 -images-11021.png,8173 -images-11028.png,8174 -images-11029.png,8175 -images-11032.png,8176 -images-11033.png,8177 -images-11034.png,8178 -images-11035.png,8179 -images-11036.png,8180 -images-11048.png,8181 -images-11049.png,8182 -images-11050.png,8183 -images-11051.png,8184 -images-11052.png,8185 -images-11053.png,8186 -images-11054.png,8187 -images-11055.png,8188 -images-11056.png,8189 -images-11065.png,8190 -images-11066.png,8191 -images-11067.png,8192 -images-11068.png,8193 -images-11069.png,8194 -images-11070.png,8195 -images-11071.png,8196 -images-11072.png,8197 -images-11073.png,8198 -images-11074.png,8199 -images-11075.png,8200 -images-11076.png,8201 -images-11077.png,8202 -images-11078.png,8203 -images-11079.png,8204 -images-11080.png,8205 -images-11081.png,8206 -images-11082.png,8207 -images-11083.png,8208 -images-11084.png,8209 -images-11085.png,8210 -images-11086.png,8211 -images-11087.png,8212 -images-11088.png,8213 -images-11089.png,8214 -images-11090.png,8215 -images-11091.png,8216 -images-11092.png,8217 -images-11093.png,8218 -images-11094.png,8219 -images-11095.png,8220 -images-11096.png,8221 -images-11097.png,8222 -images-11098.png,8223 -images-11099.png,8224 -images-11100.png,8225 -images-11107.png,8226 -images-11108.png,8227 -images-11109.png,8228 -images-11110.png,8229 -images-11111.png,8230 -images-11112.png,8231 -images-11113.png,8232 -images-11114.png,8233 -images-11115.png,8234 -images-11116.png,8235 -images-11117.png,8236 -images-11118.png,8237 -images-11119.png,8238 -images-11120.png,8239 -images-11121.png,8240 -images-11122.png,8241 -images-11123.png,8242 -images-11124.png,8243 -images-11125.png,8244 -images-11126.png,8245 -images-11127.png,8246 -images-11128.png,8247 -images-11146.png,8248 -images-11147.png,8249 -images-11148.png,8250 -images-11149.png,8251 -images-11150.png,8252 -images-11151.png,8253 -images-11152.png,8254 -images-11153.png,8255 -images-11154.png,8256 -images-11155.png,8257 -images-11156.png,8258 -images-11157.png,8259 -images-11158.png,8260 -images-11159.png,8261 -images-11160.png,8262 -images-11161.png,8263 -images-11162.png,8264 -images-11163.png,8265 -images-11164.png,8266 -images-11165.png,8267 -images-11166.png,8268 -images-11167.png,8269 -images-11168.png,8270 -images-11169.png,8271 -images-11170.png,8272 -images-11171.png,8273 -images-11172.png,8274 -images-11173.png,8275 -images-11174.png,8276 -images-11175.png,8277 -images-11176.png,8278 -images-11177.png,8279 -images-11178.png,8280 -images-11179.png,8281 -images-11180.png,8282 -images-11181.png,8283 -images-11182.png,8284 -images-11183.png,8285 -images-11184.png,8286 -images-11185.png,8287 -images-11186.png,8288 -images-11187.png,8289 -images-11188.png,8290 -images-11189.png,8291 -images-11190.png,8292 -images-11191.png,8293 -images-11192.png,8294 -images-11193.png,8295 -images-11194.png,8296 -images-11195.png,8297 -images-11196.png,8298 -images-11197.png,8299 -images-11198.png,8300 -images-11199.png,8301 -images-11200.png,8302 -images-11201.png,8303 -images-11202.png,8304 -images-11203.png,8305 -images-11204.png,8306 -images-11205.png,8307 -images-11206.png,8308 -images-11207.png,8309 -images-11208.png,8310 -images-11209.png,8311 -images-11210.png,8312 -images-11211.png,8313 -images-11212.png,8314 -images-11213.png,8315 -images-11214.png,8316 -images-11215.png,8317 -images-11216.png,8318 -images-11217.png,8319 -images-11218.png,8320 -images-11219.png,8321 -images-11220.png,8322 -images-11221.png,8323 -images-11222.png,8324 -images-11223.png,8325 -images-11224.png,8326 -images-11228.png,8327 -images-11229.png,8328 -images-11230.png,8329 -images-11231.png,8330 -images-11232.png,8331 -images-11233.png,8332 -images-11234.png,8333 -images-11235.png,8334 -images-11236.png,8335 -images-11237.png,8336 -images-11238.png,8337 -images-11239.png,8338 -images-11240.png,8339 -images-11241.png,8340 -images-11242.png,8341 -images-11243.png,8342 -images-11244.png,8343 -images-11245.png,8344 -images-11246.png,8345 -images-11247.png,8346 -images-11248.png,8347 -images-11249.png,8348 -images-11250.png,8349 -images-11251.png,8350 -images-11252.png,8351 -images-11253.png,8352 -images-11254.png,8353 -images-11255.png,8354 -images-11256.png,8355 -images-11257.png,8356 -images-11258.png,8357 -images-11259.png,8358 -images-11260.png,8359 -images-11261.png,8360 -images-11262.png,8361 -images-11263.png,8362 -images-11264.png,8363 -images-11265.png,8364 -images-11266.png,8365 -images-11267.png,8366 -images-11268.png,8367 -images-11269.png,8368 -images-11270.png,8369 -images-11271.png,8370 -images-11272.png,8371 -images-11273.png,8372 -images-11274.png,8373 -images-11275.png,8374 -images-11276.png,8375 -images-11277.png,8376 -images-11278.png,8377 -images-11279.png,8378 -images-11286.png,8379 -images-11287.png,8380 -images-11288.png,8381 -images-11289.png,8382 -images-11290.png,8383 -images-11291.png,8384 -images-11292.png,8385 -images-11293.png,8386 -images-11294.png,8387 -images-11295.png,8388 -images-11296.png,8389 -images-11297.png,8390 -images-11298.png,8391 -images-11299.png,8392 -images-11300.png,8393 -images-11301.png,8394 -images-11302.png,8395 -images-11303.png,8396 -images-11304.png,8397 -images-11305.png,8398 -images-11306.png,8399 -images-11307.png,8400 -images-11308.png,8401 -images-11309.png,8402 -images-11310.png,8403 -images-11311.png,8404 -images-11312.png,8405 -images-11313.png,8406 -images-11314.png,8407 -images-11315.png,8408 -images-11316.png,8409 -images-11317.png,8410 -images-11318.png,8411 -images-11319.png,8412 -images-11320.png,8413 -images-11321.png,8414 -images-11322.png,8415 -images-11323.png,8416 -images-11324.png,8417 -images-11325.png,8418 -images-11326.png,8419 -images-11327.png,8420 -images-11328.png,8421 -images-11329.png,8422 -images-11330.png,8423 -images-11331.png,8424 -images-11332.png,8425 -images-11333.png,8426 -images-11334.png,8427 -images-11335.png,8428 -images-11336.png,8429 -images-11337.png,8430 -images-11338.png,8431 -images-11339.png,8432 -images-11340.png,8433 -images-11341.png,8434 -images-11342.png,8435 -images-11343.png,8436 -images-11344.png,8437 -images-11345.png,8438 -images-11346.png,8439 -images-11347.png,8440 -images-11348.png,8441 -images-11349.png,8442 -images-11350.png,8443 -images-11351.png,8444 -images-11352.png,8445 -images-11353.png,8446 -images-11354.png,8447 -images-11355.png,8448 -images-11356.png,8449 -images-11357.png,8450 -images-11358.png,8451 -images-11359.png,8452 -images-11360.png,8453 -images-11361.png,8454 -images-11362.png,8455 -images-11363.png,8456 -images-11364.png,8457 -images-11365.png,8458 -images-11366.png,8459 -images-11367.png,8460 -images-11368.png,8461 -images-11369.png,8462 -images-11370.png,8463 -images-11371.png,8464 -images-11372.png,8465 -images-11373.png,8466 -images-11374.png,8467 -images-11375.png,8468 -images-11376.png,8469 -images-11377.png,8470 -images-11378.png,8471 -images-11379.png,8472 -images-11380.png,8473 -images-11381.png,8474 -images-11382.png,8475 -images-11383.png,8476 -images-11384.png,8477 -images-11385.png,8478 -images-11386.png,8479 -images-11387.png,8480 -images-11388.png,8481 -images-11389.png,8482 -images-11390.png,8483 -images-11391.png,8484 -images-11392.png,8485 -images-11393.png,8486 -images-11394.png,8487 -images-11395.png,8488 -images-11396.png,8489 -images-11397.png,8490 -images-11398.png,8491 -images-11399.png,8492 -images-11400.png,8493 -images-11401.png,8494 -images-11402.png,8495 -images-11403.png,8496 -images-11404.png,8497 -images-11405.png,8498 -images-11406.png,8499 -images-11407.png,8500 -images-11408.png,8501 -images-11409.png,8502 -images-11410.png,8503 -images-11411.png,8504 -images-11412.png,8505 -images-11413.png,8506 -images-11414.png,8507 -images-11415.png,8508 -images-11416.png,8509 -images-11417.png,8510 -images-11418.png,8511 -images-11419.png,8512 -images-11420.png,8513 -images-11421.png,8514 -images-11422.png,8515 -images-11423.png,8516 -images-11424.png,8517 -images-11425.png,8518 -images-11426.png,8519 -images-11427.png,8520 -images-11428.png,8521 -images-11429.png,8522 -images-11430.png,8523 -images-11431.png,8524 -images-11432.png,8525 -images-11433.png,8526 -images-11434.png,8527 -images-11435.png,8528 -images-11436.png,8529 -images-11437.png,8530 -images-11438.png,8531 -images-11439.png,8532 -images-11440.png,8533 -images-11441.png,8534 -images-11442.png,8535 -images-11443.png,8536 -images-11444.png,8537 -images-11445.png,8538 -images-11446.png,8539 -images-11447.png,8540 -images-11448.png,8541 -images-11449.png,8542 -images-11450.png,8543 -images-11451.png,8544 -images-11452.png,8545 -images-11453.png,8546 -images-11454.png,8547 -images-11455.png,8548 -images-11456.png,8549 -images-11457.png,8550 -images-11458.png,8551 -images-11459.png,8552 -images-11460.png,8553 -images-11461.png,8554 -images-11462.png,8555 -images-11463.png,8556 -images-11464.png,8557 -images-11465.png,8558 -images-11466.png,8559 -images-11467.png,8560 -images-11468.png,8561 -images-11469.png,8562 -images-11470.png,8563 -images-11471.png,8564 -images-11472.png,8565 -images-11473.png,8566 -images-11474.png,8567 -images-11475.png,8568 -images-11476.png,8569 -images-11477.png,8570 -images-11478.png,8571 -images-11479.png,8572 -images-11480.png,8573 -images-11481.png,8574 -images-11482.png,8575 -images-11483.png,8576 -images-11484.png,8577 -images-11485.png,8578 -images-11486.png,8579 -images-11487.png,8580 -images-11488.png,8581 -images-11489.png,8582 -images-11490.png,8583 -images-11491.png,8584 -images-11492.png,8585 -images-11493.png,8586 -images-11494.png,8587 -images-11495.png,8588 -images-11496.png,8589 -images-11497.png,8590 -images-11498.png,8591 -images-11499.png,8592 -images-11500.png,8593 -images-11501.png,8594 -images-11502.png,8595 -images-11503.png,8596 -images-11504.png,8597 -images-11505.png,8598 -images-11506.png,8599 -images-11507.png,8600 -images-11508.png,8601 -images-11509.png,8602 -images-11510.png,8603 -images-11511.png,8604 -images-11512.png,8605 -images-11513.png,8606 -images-11514.png,8607 -images-11515.png,8608 -images-11516.png,8609 -images-11517.png,8610 -images-11518.png,8611 -images-11519.png,8612 -images-11520.png,8613 -images-11521.png,8614 -images-11522.png,8615 -images-11523.png,8616 -images-11524.png,8617 -images-11525.png,8618 -images-11526.png,8619 -images-11527.png,8620 -images-11528.png,8621 -images-11529.png,8622 -images-11530.png,8623 -images-11531.png,8624 -images-11532.png,8625 -images-11533.png,8626 -images-11534.png,8627 -images-11535.png,8628 -images-11536.png,8629 -images-11537.png,8630 -images-11538.png,8631 -images-11539.png,8632 -images-11540.png,8633 -images-11541.png,8634 -images-11542.png,8635 -images-11543.png,8636 -images-11544.png,8637 -images-11545.png,8638 -images-11546.png,8639 -images-11547.png,8640 -images-11548.png,8641 -images-11549.png,8642 -images-11550.png,8643 -images-11551.png,8644 -images-11552.png,8645 -images-11553.png,8646 -images-11554.png,8647 -images-11555.png,8648 -images-11556.png,8649 -images-11557.png,8650 -images-11558.png,8651 -images-11559.png,8652 -images-11560.png,8653 -images-11561.png,8654 -images-11562.png,8655 -images-11563.png,8656 -images-11564.png,8657 -images-11565.png,8658 -images-11566.png,8659 -images-11567.png,8660 -images-11568.png,8661 -images-11569.png,8662 -images-11570.png,8663 -images-11571.png,8664 -images-11572.png,8665 -images-11573.png,8666 -images-11574.png,8667 -images-11575.png,8668 -images-11576.png,8669 -images-11577.png,8670 -images-11578.png,8671 -images-11579.png,8672 -images-11580.png,8673 -images-11581.png,8674 -images-11582.png,8675 -images-11583.png,8676 -images-11584.png,8677 -images-11585.png,8678 -images-11586.png,8679 -images-11587.png,8680 -images-11588.png,8681 -images-11589.png,8682 -images-11590.png,8683 -images-11591.png,8684 -images-11592.png,8685 -images-11593.png,8686 -images-11594.png,8687 -images-11595.png,8688 -images-11596.png,8689 -images-11597.png,8690 -images-11598.png,8691 -images-11599.png,8692 -images-11600.png,8693 -images-11601.png,8694 -images-11602.png,8695 -images-11603.png,8696 -images-11604.png,8697 -images-11605.png,8698 -images-11606.png,8699 -images-11607.png,8700 -images-11608.png,8701 -images-11609.png,8702 -images-11610.png,8703 -images-11611.png,8704 -images-11612.png,8705 -images-11613.png,8706 -images-11614.png,8707 -images-11615.png,8708 -images-11616.png,8709 -images-11617.png,8710 -images-11618.png,8711 -images-11619.png,8712 -images-11620.png,8713 -images-11621.png,8714 -images-11622.png,8715 -images-11623.png,8716 -images-11624.png,8717 -images-11625.png,8718 -images-11626.png,8719 -images-11627.png,8720 -images-11628.png,8721 -images-11629.png,8722 -images-11630.png,8723 -images-11631.png,8724 -images-11632.png,8725 -images-11633.png,8726 -images-11634.png,8727 -images-11635.png,8728 -images-11636.png,8729 -images-11637.png,8730 -images-11638.png,8731 -images-11639.png,8732 -images-11640.png,8733 -images-11641.png,8734 -images-11642.png,8735 -images-11643.png,8736 -images-11644.png,8737 -images-11645.png,8738 -images-11646.png,8739 -images-11647.png,8740 -images-11648.png,8741 -images-11649.png,8742 -images-11650.png,8743 -images-11651.png,8744 -images-11652.png,8745 -images-11653.png,8746 -images-11899.png,8747 -images-11900.png,8748 -images-11901.png,8749 -images-11902.png,8750 -images-11903.png,8751 -images-11904.png,8752 -images-11905.png,8753 -images-11906.png,8754 -images-11907.png,8755 -images-11908.png,8756 -images-11909.png,8757 -images-11910.png,8758 -images-11911.png,8759 -images-11912.png,8760 -images-11913.png,8761 -images-11914.png,8762 -images-12036.png,8763 -images-12037.png,8764 -images-12038.png,8765 -images-12039.png,8766 -images-12040.png,8767 -images-12041.png,8768 -images-12042.png,8769 -images-12043.png,8770 -images-12044.png,8771 -images-12045.png,8772 -images-12046.png,8773 -images-12047.png,8774 -images-12048.png,8775 -images-12049.png,8776 -images-12050.png,8777 -images-12051.png,8778 -images-12052.png,8779 -images-12053.png,8780 -images-12054.png,8781 -images-12055.png,8782 -images-12056.png,8783 -images-12062.png,8784 -images-12063.png,8785 -images-12064.png,8786 -images-12065.png,8787 -images-12066.png,8788 -images-12067.png,8789 -images-12068.png,8790 -images-12069.png,8791 -images-12070.png,8792 -images-12071.png,8793 -images-12072.png,8794 -images-12073.png,8795 -images-12082.png,8796 -images-12083.png,8797 -images-12084.png,8798 -images-12085.png,8799 -images-12086.png,8800 -images-12087.png,8801 -images-12088.png,8802 -images-12089.png,8803 -images-12090.png,8804 -images-12091.png,8805 -images-12092.png,8806 -images-12093.png,8807 -images-12094.png,8808 -images-12095.png,8809 -images-12096.png,8810 -images-12097.png,8811 -images-12098.png,8812 -images-12099.png,8813 -images-12100.png,8814 -images-12101.png,8815 -images-12102.png,8816 -images-12103.png,8817 -images-12104.png,8818 -images-12105.png,8819 -images-12106.png,8820 -images-12107.png,8821 -images-12108.png,8822 -images-12109.png,8823 -images-12110.png,8824 -images-12111.png,8825 -images-12112.png,8826 -images-12113.png,8827 -images-12114.png,8828 -images-12115.png,8829 -images-12116.png,8830 -images-12117.png,8831 -images-12118.png,8832 -images-12119.png,8833 -images-12120.png,8834 -images-12121.png,8835 -images-12122.png,8836 -images-12123.png,8837 -images-12124.png,8838 -images-12125.png,8839 -images-12126.png,8840 -images-12127.png,8841 -images-12128.png,8842 -images-12129.png,8843 -images-12130.png,8844 -images-12131.png,8845 -images-12132.png,8846 -images-12133.png,8847 -images-12134.png,8848 -images-12135.png,8849 -images-12136.png,8850 -images-12137.png,8851 -images-12138.png,8852 -images-12139.png,8853 -images-12140.png,8854 -images-12141.png,8855 -images-12142.png,8856 -images-12143.png,8857 -images-12144.png,8858 -images-12145.png,8859 -images-12146.png,8860 -images-12147.png,8861 -images-12148.png,8862 -images-12149.png,8863 -images-12150.png,8864 -images-12151.png,8865 -images-12152.png,8866 -images-12153.png,8867 -images-12154.png,8868 -images-12155.png,8869 -images-12156.png,8870 -images-12157.png,8871 -images-12158.png,8872 -images-12159.png,8873 -images-12160.png,8874 -images-12161.png,8875 -images-12162.png,8876 -images-12163.png,8877 -images-12164.png,8878 -images-12168.png,8879 -images-12169.png,8880 -images-12170.png,8881 -images-12171.png,8882 -images-12172.png,8883 -images-12173.png,8884 -images-12174.png,8885 -images-12175.png,8886 -images-12176.png,8887 -images-12177.png,8888 -images-12178.png,8889 -images-12179.png,8890 -images-12180.png,8891 -images-12181.png,8892 -images-12182.png,8893 -images-12183.png,8894 -images-12184.png,8895 -images-12185.png,8896 -images-12186.png,8897 -images-12187.png,8898 -images-12188.png,8899 -images-12189.png,8900 -images-12190.png,8901 -images-12191.png,8902 -images-12192.png,8903 -images-12193.png,8904 -images-12194.png,8905 -images-12195.png,8906 -images-12196.png,8907 -images-12197.png,8908 -images-12198.png,8909 -images-12199.png,8910 -images-12200.png,8911 -images-12201.png,8912 -images-12202.png,8913 -images-12203.png,8914 -images-12208.png,8915 -images-12209.png,8916 -images-12210.png,8917 -images-12211.png,8918 -images-12212.png,8919 -images-12213.png,8920 -images-12214.png,8921 -images-12215.png,8922 -images-12216.png,8923 -images-12217.png,8924 -images-12218.png,8925 -images-12219.png,8926 -images-12220.png,8927 -images-12221.png,8928 -images-12222.png,8929 -images-12223.png,8930 -images-12224.png,8931 -images-12225.png,8932 -images-12226.png,8933 -images-12227.png,8934 -images-12228.png,8935 -images-12229.png,8936 -images-12230.png,8937 -images-12231.png,8938 -images-12232.png,8939 -images-12233.png,8940 -images-12234.png,8941 -images-12235.png,8942 -images-12236.png,8943 -images-12237.png,8944 -images-12238.png,8945 -images-12239.png,8946 -images-12240.png,8947 -images-12241.png,8948 -images-12242.png,8949 -images-12243.png,8950 -images-12244.png,8951 -images-12245.png,8952 -images-12246.png,8953 -images-12247.png,8954 -images-12248.png,8955 -images-12249.png,8956 -images-12250.png,8957 -images-12251.png,8958 -images-12252.png,8959 -images-12253.png,8960 -images-12254.png,8961 -images-12255.png,8962 -images-12256.png,8963 -images-12257.png,8964 -images-12258.png,8965 -images-12259.png,8966 -images-12260.png,8967 -images-12261.png,8968 -images-12262.png,8969 -images-12263.png,8970 -images-12264.png,8971 -images-12265.png,8972 -images-12266.png,8973 -images-12267.png,8974 -images-12268.png,8975 -images-12269.png,8976 -images-12270.png,8977 -images-12271.png,8978 -images-12272.png,8979 -images-12273.png,8980 -images-12274.png,8981 -images-12275.png,8982 -images-12276.png,8983 -images-12277.png,8984 -images-12278.png,8985 -images-12279.png,8986 -images-12280.png,8987 -images-12281.png,8988 -images-12282.png,8989 -images-12283.png,8990 -images-12284.png,8991 -images-12285.png,8992 -images-12286.png,8993 -images-12287.png,8994 -images-12288.png,8995 -images-12289.png,8996 -images-12290.png,8997 -images-12291.png,8998 -images-12292.png,8999 -images-12293.png,9000 -images-12294.png,9001 -images-12295.png,9002 -images-12296.png,9003 -images-12297.png,9004 -images-12298.png,9005 -images-12299.png,9006 -images-12300.png,9007 -images-12301.png,9008 -images-12302.png,9009 -images-12303.png,9010 -images-12304.png,9011 -images-12305.png,9012 -images-12306.png,9013 -images-12307.png,9014 -images-12308.png,9015 -images-12309.png,9016 -images-12310.png,9017 -images-12311.png,9018 -images-12312.png,9019 -images-12313.png,9020 -images-12314.png,9021 -images-12315.png,9022 -images-12316.png,9023 -images-12317.png,9024 -images-12318.png,9025 -images-12365.png,9026 -images-12366.png,9027 -images-12367.png,9028 -images-12368.png,9029 -images-12369.png,9030 -images-12370.png,9031 -images-12371.png,9032 -images-12372.png,9033 -images-12373.png,9034 -images-12374.png,9035 -images-12375.png,9036 -images-12376.png,9037 -images-12377.png,9038 -images-12378.png,9039 -images-12379.png,9040 -images-12380.png,9041 -images-12381.png,9042 -images-12382.png,9043 -images-12383.png,9044 -images-12384.png,9045 -images-12385.png,9046 -images-12386.png,9047 -images-12387.png,9048 -images-12388.png,9049 -images-12389.png,9050 -images-12390.png,9051 -images-12391.png,9052 -images-12392.png,9053 -images-12393.png,9054 -images-12394.png,9055 -images-12395.png,9056 -images-12396.png,9057 -images-12397.png,9058 -images-12398.png,9059 -images-12399.png,9060 -images-12400.png,9061 -images-12401.png,9062 -images-12402.png,9063 -images-12403.png,9064 -images-12404.png,9065 -images-12405.png,9066 -images-12406.png,9067 -images-12407.png,9068 -images-12408.png,9069 -images-12417.png,9070 -images-12418.png,9071 -images-12419.png,9072 -images-12420.png,9073 -images-12421.png,9074 -images-12422.png,9075 -images-12423.png,9076 -images-12424.png,9077 -images-12425.png,9078 -images-12426.png,9079 -images-12427.png,9080 -images-12428.png,9081 -images-12429.png,9082 -images-12430.png,9083 -images-12431.png,9084 -images-12432.png,9085 -images-12433.png,9086 -images-12434.png,9087 -images-12435.png,9088 -images-12436.png,9089 -images-12437.png,9090 -images-12438.png,9091 -images-12439.png,9092 -images-12440.png,9093 -images-12441.png,9094 -images-12442.png,9095 -images-12443.png,9096 -images-12444.png,9097 -images-12445.png,9098 -images-12446.png,9099 -images-12447.png,9100 -images-12448.png,9101 -images-12449.png,9102 -images-12450.png,9103 -images-12451.png,9104 -images-12452.png,9105 -images-12453.png,9106 -images-12454.png,9107 -images-12455.png,9108 -images-12456.png,9109 -images-12457.png,9110 -images-12458.png,9111 -images-12459.png,9112 -images-12460.png,9113 -images-12461.png,9114 -images-12462.png,9115 -images-12463.png,9116 -images-12464.png,9117 -images-12465.png,9118 -images-12466.png,9119 -images-12467.png,9120 -images-12468.png,9121 -images-12469.png,9122 -images-12470.png,9123 -images-12471.png,9124 -images-12481.png,9125 -images-12482.png,9126 -images-12483.png,9127 -images-12484.png,9128 -images-12485.png,9129 -images-12486.png,9130 -images-12487.png,9131 -images-12488.png,9132 -images-12489.png,9133 -images-12490.png,9134 -images-12491.png,9135 -images-12492.png,9136 -images-12493.png,9137 -images-12494.png,9138 -images-12495.png,9139 -images-12496.png,9140 -images-12497.png,9141 -images-12498.png,9142 -images-12499.png,9143 -images-12500.png,9144 -images-12501.png,9145 -images-12502.png,9146 -images-12503.png,9147 -images-12504.png,9148 -images-12505.png,9149 -images-12506.png,9150 -images-12507.png,9151 -images-12508.png,9152 -images-12509.png,9153 -images-12510.png,9154 -images-12511.png,9155 -images-12512.png,9156 -images-12513.png,9157 -images-12514.png,9158 -images-12515.png,9159 -images-12516.png,9160 -images-12517.png,9161 -images-12518.png,9162 -images-12519.png,9163 -images-12520.png,9164 -images-12521.png,9165 -images-12522.png,9166 -images-12523.png,9167 -images-12524.png,9168 -images-12525.png,9169 -images-12526.png,9170 -images-12527.png,9171 -images-12528.png,9172 -images-12529.png,9173 -images-12530.png,9174 -images-12531.png,9175 -images-12532.png,9176 -images-12533.png,9177 -images-12534.png,9178 -images-12535.png,9179 -images-12536.png,9180 -images-12537.png,9181 -images-12538.png,9182 -images-12539.png,9183 -images-12540.png,9184 -images-12541.png,9185 -images-12542.png,9186 -images-12543.png,9187 -images-12544.png,9188 -images-12545.png,9189 -images-12546.png,9190 -images-12547.png,9191 -images-12548.png,9192 -images-12549.png,9193 -images-12550.png,9194 -images-12551.png,9195 -images-12552.png,9196 -images-12553.png,9197 -images-12554.png,9198 -images-12555.png,9199 -images-12556.png,9200 -images-12557.png,9201 -images-12558.png,9202 -images-12559.png,9203 -images-12560.png,9204 -images-12561.png,9205 -images-12562.png,9206 -images-12563.png,9207 -images-12564.png,9208 -images-12565.png,9209 -images-12566.png,9210 -images-12567.png,9211 -images-12568.png,9212 -images-12569.png,9213 -images-12570.png,9214 -images-12571.png,9215 -images-12572.png,9216 -images-12573.png,9217 -images-12574.png,9218 -images-12575.png,9219 -images-12576.png,9220 -images-12577.png,9221 -images-12578.png,9222 -images-12579.png,9223 -images-12580.png,9224 -images-12581.png,9225 -images-12582.png,9226 -images-12583.png,9227 -images-12584.png,9228 -images-12585.png,9229 -images-12586.png,9230 -images-12587.png,9231 -images-12588.png,9232 -images-12589.png,9233 -images-12590.png,9234 -images-12591.png,9235 -images-12592.png,9236 -images-12593.png,9237 -images-12594.png,9238 -images-12595.png,9239 -images-12596.png,9240 -images-12597.png,9241 -images-12598.png,9242 -images-12599.png,9243 -images-12600.png,9244 -images-12601.png,9245 -images-12602.png,9246 -images-12603.png,9247 -images-12604.png,9248 -images-12605.png,9249 -images-12606.png,9250 -images-12607.png,9251 -images-12608.png,9252 -images-12609.png,9253 -images-12610.png,9254 -images-12611.png,9255 -images-12612.png,9256 -images-12613.png,9257 -images-12614.png,9258 -images-12615.png,9259 -images-12616.png,9260 -images-12617.png,9261 -images-12618.png,9262 -images-12619.png,9263 -images-12620.png,9264 -images-12621.png,9265 -images-12622.png,9266 -images-12623.png,9267 -images-12624.png,9268 -images-12625.png,9269 -images-12626.png,9270 -images-12627.png,9271 -images-12628.png,9272 -images-12629.png,9273 -images-12630.png,9274 -images-12631.png,9275 -images-12632.png,9276 -images-12633.png,9277 -images-12634.png,9278 -images-12635.png,9279 -images-12636.png,9280 -images-12637.png,9281 -images-12638.png,9282 -images-12639.png,9283 -images-12640.png,9284 -images-12641.png,9285 -images-12642.png,9286 -images-12643.png,9287 -images-12644.png,9288 -images-12645.png,9289 -images-12646.png,9290 -images-12647.png,9291 -images-12648.png,9292 -images-12649.png,9293 -images-12650.png,9294 -images-12651.png,9295 -images-12652.png,9296 -images-12653.png,9297 -images-12654.png,9298 -images-12655.png,9299 -images-12656.png,9300 -images-12657.png,9301 -images-12658.png,9302 -images-12659.png,9303 -images-12660.png,9304 -images-12661.png,9305 -images-12662.png,9306 -images-12663.png,9307 -images-12664.png,9308 -images-12665.png,9309 -images-12666.png,9310 -images-12667.png,9311 -images-12668.png,9312 -images-12669.png,9313 -images-12670.png,9314 -images-12671.png,9315 -images-12672.png,9316 -images-12673.png,9317 -images-12674.png,9318 -images-12675.png,9319 -images-12676.png,9320 -images-12677.png,9321 -images-12678.png,9322 -images-12679.png,9323 -images-12680.png,9324 -images-12681.png,9325 -images-12682.png,9326 -images-12683.png,9327 -images-12684.png,9328 -images-12685.png,9329 -images-12686.png,9330 -images-12687.png,9331 -images-12688.png,9332 -images-12689.png,9333 -images-12690.png,9334 -images-12691.png,9335 -images-12692.png,9336 -images-12693.png,9337 -images-12694.png,9338 -images-12695.png,9339 -images-12696.png,9340 -images-12697.png,9341 -images-12698.png,9342 -images-12699.png,9343 -images-12700.png,9344 -images-12701.png,9345 -images-12702.png,9346 -images-12703.png,9347 -images-12704.png,9348 -images-12705.png,9349 -images-12706.png,9350 -images-12707.png,9351 -images-12708.png,9352 -images-12709.png,9353 -images-12710.png,9354 -images-12711.png,9355 -images-12712.png,9356 -images-12713.png,9357 -images-12714.png,9358 -images-12715.png,9359 -images-12716.png,9360 -images-12717.png,9361 -images-12718.png,9362 -images-12719.png,9363 -images-12720.png,9364 -images-12721.png,9365 -images-12722.png,9366 -images-12723.png,9367 -images-12724.png,9368 -images-12725.png,9369 -images-12726.png,9370 -images-12727.png,9371 -images-12728.png,9372 -images-12729.png,9373 -images-12730.png,9374 -images-12731.png,9375 -images-12732.png,9376 -images-12733.png,9377 -images-12734.png,9378 -images-12735.png,9379 -images-12736.png,9380 -images-12737.png,9381 -images-12738.png,9382 -images-12739.png,9383 -images-12740.png,9384 -images-12741.png,9385 -images-12742.png,9386 -images-12743.png,9387 -images-12744.png,9388 -images-12745.png,9389 -images-12746.png,9390 -images-12747.png,9391 -images-12748.png,9392 -images-12749.png,9393 -images-12750.png,9394 -images-12751.png,9395 -images-12752.png,9396 -images-12753.png,9397 -images-12754.png,9398 -images-12755.png,9399 -images-12756.png,9400 -images-12757.png,9401 -images-12758.png,9402 -images-12759.png,9403 -images-12760.png,9404 -images-12761.png,9405 -images-12762.png,9406 -images-12763.png,9407 -images-12764.png,9408 -images-12765.png,9409 -images-12766.png,9410 -images-12767.png,9411 -images-12768.png,9412 -images-12769.png,9413 -images-12770.png,9414 -images-12771.png,9415 -images-12772.png,9416 -images-12773.png,9417 -images-12774.png,9418 -images-12775.png,9419 -images-12776.png,9420 -images-12777.png,9421 -images-12778.png,9422 -images-12779.png,9423 -images-12780.png,9424 -images-12781.png,9425 -images-12782.png,9426 -images-12783.png,9427 -images-12784.png,9428 -images-12785.png,9429 -images-12786.png,9430 -images-12787.png,9431 -images-12788.png,9432 -images-12789.png,9433 -images-12790.png,9434 -images-12791.png,9435 -images-12792.png,9436 -images-12793.png,9437 -images-12794.png,9438 -images-12795.png,9439 -images-12796.png,9440 -images-12797.png,9441 -images-12798.png,9442 -images-12799.png,9443 -images-12800.png,9444 -images-12801.png,9445 -images-12802.png,9446 -images-12803.png,9447 -images-12804.png,9448 -images-12805.png,9449 -images-12806.png,9450 -images-12807.png,9451 -images-12808.png,9452 -images-12809.png,9453 -images-12810.png,9454 -images-12811.png,9455 -images-12812.png,9456 -images-12813.png,9457 -images-12814.png,9458 -images-12815.png,9459 -images-12816.png,9460 -images-12817.png,9461 -images-12818.png,9462 -images-12819.png,9463 -images-12820.png,9464 -images-12821.png,9465 -images-12822.png,9466 -images-12823.png,9467 -images-12824.png,9468 -images-12825.png,9469 -images-12826.png,9470 -images-12827.png,9471 -images-12828.png,9472 -images-12829.png,9473 -images-12830.png,9474 -images-12831.png,9475 -images-12832.png,9476 -images-12833.png,9477 -images-12834.png,9478 -images-12835.png,9479 -images-12836.png,9480 -images-12837.png,9481 -images-12838.png,9482 -images-12839.png,9483 -images-12840.png,9484 -images-12841.png,9485 -images-12842.png,9486 -images-12843.png,9487 -images-12844.png,9488 -images-12845.png,9489 -images-12846.png,9490 -images-12847.png,9491 -images-12848.png,9492 -images-12849.png,9493 -images-12850.png,9494 -images-12851.png,9495 -images-12852.png,9496 -images-12853.png,9497 -images-12854.png,9498 -images-12855.png,9499 -images-12856.png,9500 -images-12857.png,9501 -images-12858.png,9502 -images-12859.png,9503 -images-12860.png,9504 -images-12861.png,9505 -images-12862.png,9506 -images-12863.png,9507 -images-12864.png,9508 -images-12865.png,9509 -images-12866.png,9510 -images-12867.png,9511 -images-12868.png,9512 -images-12869.png,9513 -images-12870.png,9514 -images-12871.png,9515 -images-12872.png,9516 -images-12873.png,9517 -images-12874.png,9518 -images-12875.png,9519 -images-12876.png,9520 -images-12877.png,9521 -images-12878.png,9522 -images-12879.png,9523 -images-12880.png,9524 -images-12881.png,9525 -images-12882.png,9526 -images-12883.png,9527 -images-12884.png,9528 -images-12885.png,9529 -images-12886.png,9530 -images-12887.png,9531 -images-12888.png,9532 -images-12889.png,9533 -images-12890.png,9534 -images-12891.png,9535 -images-12892.png,9536 -images-12893.png,9537 -images-12894.png,9538 -images-12895.png,9539 -images-12896.png,9540 -images-12897.png,9541 -images-12898.png,9542 -images-12899.png,9543 -images-12900.png,9544 -images-12901.png,9545 -images-12902.png,9546 -images-12903.png,9547 -images-12904.png,9548 -images-12905.png,9549 -images-12906.png,9550 -images-12907.png,9551 -images-12908.png,9552 -images-12909.png,9553 -images-12910.png,9554 -images-12911.png,9555 -images-12912.png,9556 -images-12913.png,9557 -images-12914.png,9558 -images-12915.png,9559 -images-12916.png,9560 -images-12917.png,9561 -images-12918.png,9562 -images-12919.png,9563 -images-12920.png,9564 -images-12921.png,9565 -images-12922.png,9566 -images-12923.png,9567 -images-12924.png,9568 -images-12925.png,9569 -images-12926.png,9570 -images-12927.png,9571 -images-12928.png,9572 -images-12929.png,9573 -images-12930.png,9574 -images-12931.png,9575 -images-12932.png,9576 -images-12933.png,9577 -images-12934.png,9578 -images-12935.png,9579 -images-12936.png,9580 -images-12937.png,9581 -images-12938.png,9582 -images-12939.png,9583 -images-12940.png,9584 -images-12941.png,9585 -images-12942.png,9586 -images-12943.png,9587 -images-12944.png,9588 -images-12945.png,9589 -images-12946.png,9590 -images-12947.png,9591 -images-12948.png,9592 -images-12949.png,9593 -images-12950.png,9594 -images-12951.png,9595 -images-12952.png,9596 -images-12953.png,9597 -images-12954.png,9598 -images-12955.png,9599 -images-12956.png,9600 -images-12957.png,9601 -images-12958.png,9602 -images-12959.png,9603 -images-12960.png,9604 -images-12961.png,9605 -images-12962.png,9606 -images-12963.png,9607 -images-12964.png,9608 -images-12965.png,9609 -images-12966.png,9610 -images-12967.png,9611 -images-12968.png,9612 -images-12969.png,9613 -images-12970.png,9614 -images-12971.png,9615 -images-12972.png,9616 -images-12973.png,9617 -images-12974.png,9618 -images-12975.png,9619 -images-12976.png,9620 -images-12977.png,9621 -images-12978.png,9622 -images-12979.png,9623 -images-12980.png,9624 -images-12981.png,9625 -images-12982.png,9626 -images-12983.png,9627 -images-12984.png,9628 -images-12985.png,9629 -images-12986.png,9630 -images-12987.png,9631 -images-12988.png,9632 -images-12989.png,9633 -images-12990.png,9634 -images-12991.png,9635 -images-12992.png,9636 -images-12993.png,9637 -images-12994.png,9638 -images-12995.png,9639 -images-12996.png,9640 -images-12997.png,9641 -images-12998.png,9642 -images-12999.png,9643 -images-13000.png,9644 -images-13001.png,9645 -images-13002.png,9646 -images-13003.png,9647 -images-13004.png,9648 -images-13005.png,9649 -images-13006.png,9650 -images-13007.png,9651 -images-13008.png,9652 -images-13009.png,9653 -images-13010.png,9654 -images-13011.png,9655 -images-13012.png,9656 -images-13013.png,9657 -images-13014.png,9658 -images-13015.png,9659 -images-13016.png,9660 -images-13017.png,9661 -images-13018.png,9662 -images-13019.png,9663 -images-13020.png,9664 -images-13021.png,9665 -images-13022.png,9666 -images-13023.png,9667 -images-13024.png,9668 -images-13025.png,9669 -images-13026.png,9670 -images-13027.png,9671 -images-13028.png,9672 -images-13029.png,9673 -images-13030.png,9674 -images-13031.png,9675 -images-13032.png,9676 -images-13033.png,9677 -images-13034.png,9678 -images-13035.png,9679 -images-13036.png,9680 -images-13037.png,9681 -images-13038.png,9682 -images-13039.png,9683 -images-13040.png,9684 -images-13041.png,9685 -images-13042.png,9686 -images-13043.png,9687 -images-13044.png,9688 -images-13045.png,9689 -images-13046.png,9690 -images-13047.png,9691 -images-13048.png,9692 -images-13049.png,9693 -images-13050.png,9694 -images-13051.png,9695 -images-13052.png,9696 -images-13053.png,9697 -images-13054.png,9698 -images-13055.png,9699 -images-13056.png,9700 -images-13057.png,9701 -images-13058.png,9702 -images-13059.png,9703 -images-13060.png,9704 -images-13061.png,9705 -images-13062.png,9706 -images-13063.png,9707 -images-13064.png,9708 -images-13065.png,9709 -images-13066.png,9710 -images-13067.png,9711 -images-13068.png,9712 -images-13069.png,9713 -images-13070.png,9714 -images-13071.png,9715 -images-13072.png,9716 -images-13073.png,9717 -images-13074.png,9718 -images-13075.png,9719 -images-13076.png,9720 -images-13077.png,9721 -images-13078.png,9722 -images-13079.png,9723 -images-13080.png,9724 -images-13081.png,9725 -images-13082.png,9726 -images-13083.png,9727 -images-13084.png,9728 -images-13085.png,9729 -images-13086.png,9730 -images-13087.png,9731 -images-13088.png,9732 -images-13089.png,9733 -images-13090.png,9734 -images-13091.png,9735 -images-13092.png,9736 -images-13093.png,9737 -images-13094.png,9738 -images-13095.png,9739 -images-13096.png,9740 -images-13097.png,9741 -images-13098.png,9742 -images-13099.png,9743 -images-13100.png,9744 -images-13101.png,9745 -images-13102.png,9746 -images-13103.png,9747 -images-13104.png,9748 -images-13105.png,9749 -images-13106.png,9750 -images-13107.png,9751 -images-13108.png,9752 -images-13109.png,9753 -images-13110.png,9754 -images-13111.png,9755 -images-13112.png,9756 -images-13113.png,9757 -images-13114.png,9758 -images-13115.png,9759 -images-13116.png,9760 -images-13117.png,9761 -images-13118.png,9762 -images-13119.png,9763 -images-13120.png,9764 -images-13121.png,9765 -images-13122.png,9766 -images-13123.png,9767 -images-13124.png,9768 -images-13125.png,9769 -images-13126.png,9770 -images-13127.png,9771 -images-13128.png,9772 -images-13129.png,9773 -images-13130.png,9774 -images-13131.png,9775 -images-13132.png,9776 -images-13133.png,9777 -images-13134.png,9778 -images-13135.png,9779 -images-13136.png,9780 -images-13137.png,9781 -images-13138.png,9782 -images-13139.png,9783 -images-13140.png,9784 -images-13141.png,9785 -images-13142.png,9786 -images-13143.png,9787 -images-13144.png,9788 -images-13145.png,9789 -images-13146.png,9790 -images-13147.png,9791 -images-13148.png,9792 -images-13149.png,9793 -images-13150.png,9794 -images-13151.png,9795 -images-13152.png,9796 -images-13153.png,9797 -images-13154.png,9798 -images-13155.png,9799 -images-13156.png,9800 -images-13157.png,9801 -images-13158.png,9802 -images-13159.png,9803 -images-13160.png,9804 -images-13161.png,9805 -images-13162.png,9806 -images-13163.png,9807 -images-13164.png,9808 -images-13165.png,9809 -images-13166.png,9810 -images-13167.png,9811 -images-13168.png,9812 -images-13169.png,9813 -images-13170.png,9814 -images-13171.png,9815 -images-13172.png,9816 -images-13173.png,9817 -images-13174.png,9818 -images-13175.png,9819 -images-13176.png,9820 -images-13177.png,9821 -images-13178.png,9822 -images-13179.png,9823 -images-13180.png,9824 -images-13181.png,9825 -images-13182.png,9826 -images-13183.png,9827 -images-13184.png,9828 -images-13185.png,9829 -images-13186.png,9830 -images-13187.png,9831 -images-13188.png,9832 -images-13189.png,9833 -images-13190.png,9834 -images-13191.png,9835 -images-13192.png,9836 -images-13193.png,9837 -images-13194.png,9838 -images-13195.png,9839 -images-13196.png,9840 -images-13197.png,9841 -images-13198.png,9842 -images-13199.png,9843 -images-13200.png,9844 -images-13201.png,9845 -images-13202.png,9846 -images-13203.png,9847 -images-13204.png,9848 -images-13205.png,9849 -images-13206.png,9850 -images-13207.png,9851 -images-13208.png,9852 -images-13209.png,9853 -images-13210.png,9854 -images-13211.png,9855 -images-13212.png,9856 -images-13213.png,9857 -images-13214.png,9858 -images-13215.png,9859 -images-13216.png,9860 -images-13217.png,9861 -images-13218.png,9862 -images-13219.png,9863 -images-13220.png,9864 -images-13221.png,9865 -images-13222.png,9866 -images-13223.png,9867 -images-13224.png,9868 -images-13225.png,9869 -images-13226.png,9870 -images-13227.png,9871 -images-13228.png,9872 -images-13229.png,9873 -images-13230.png,9874 -images-13231.png,9875 -images-13232.png,9876 -images-13233.png,9877 -images-13234.png,9878 -images-13235.png,9879 -images-13236.png,9880 -images-13237.png,9881 -images-13238.png,9882 -images-13239.png,9883 -images-13240.png,9884 -images-13241.png,9885 -images-13242.png,9886 -images-13243.png,9887 -images-13244.png,9888 -images-13245.png,9889 -images-13246.png,9890 -images-13247.png,9891 -images-13248.png,9892 -images-13249.png,9893 -images-13250.png,9894 -images-13251.png,9895 -images-13252.png,9896 -images-13253.png,9897 -images-13254.png,9898 -images-13255.png,9899 -images-13256.png,9900 -images-13257.png,9901 -images-13258.png,9902 -images-13259.png,9903 -images-13260.png,9904 -images-13261.png,9905 -images-13262.png,9906 -images-13263.png,9907 -images-13264.png,9908 -images-13265.png,9909 -images-13266.png,9910 -images-13267.png,9911 -images-13268.png,9912 -images-13269.png,9913 -images-13270.png,9914 -images-13271.png,9915 -images-13272.png,9916 -images-13273.png,9917 -images-13274.png,9918 -images-13275.png,9919 -images-13276.png,9920 -images-13277.png,9921 -images-13278.png,9922 -images-13279.png,9923 -images-13280.png,9924 -images-13281.png,9925 -images-13282.png,9926 -images-13283.png,9927 -images-13284.png,9928 -images-13285.png,9929 -images-13286.png,9930 -images-13287.png,9931 -images-13288.png,9932 -images-13289.png,9933 -images-13290.png,9934 -images-13291.png,9935 -images-13292.png,9936 -images-13293.png,9937 -images-13294.png,9938 -images-13295.png,9939 -images-13296.png,9940 -images-13297.png,9941 -images-13298.png,9942 -images-13299.png,9943 -images-13300.png,9944 -images-13301.png,9945 -images-13302.png,9946 -images-13303.png,9947 -images-13304.png,9948 -images-13305.png,9949 -images-13306.png,9950 -images-13307.png,9951 -images-13308.png,9952 -images-13309.png,9953 -images-13310.png,9954 -images-13311.png,9955 -images-13312.png,9956 -images-13313.png,9957 -images-13314.png,9958 -images-13315.png,9959 -images-13316.png,9960 -images-13317.png,9961 -images-13318.png,9962 -images-13319.png,9963 -images-13320.png,9964 -images-13321.png,9965 -images-13322.png,9966 -images-13323.png,9967 -images-13324.png,9968 -images-13325.png,9969 -images-13326.png,9970 -images-13327.png,9971 -images-13328.png,9972 -images-13329.png,9973 -images-13330.png,9974 -images-13331.png,9975 -images-13332.png,9976 -images-13333.png,9977 -images-13334.png,9978 -images-13335.png,9979 -images-13336.png,9980 -images-13337.png,9981 -images-13338.png,9982 -images-13339.png,9983 -images-13340.png,9984 -images-13341.png,9985 -images-13342.png,9986 -images-13343.png,9987 -images-13344.png,9988 -images-13441.png,9989 -images-13442.png,9990 -images-13443.png,9991 -images-13444.png,9992 -images-13445.png,9993 -images-13446.png,9994 -images-13447.png,9995 -images-13448.png,9996 -images-13449.png,9997 -images-13450.png,9998 -images-13451.png,9999 -images-13452.png,10000 -images-13453.png,10001 -images-13454.png,10002 -images-13455.png,10003 -images-13456.png,10004 -images-13457.png,10005 -images-13458.png,10006 -images-13459.png,10007 -images-13460.png,10008 -images-13461.png,10009 -images-13462.png,10010 -images-13463.png,10011 -images-13464.png,10012 -images-13465.png,10013 -images-13466.png,10014 -images-13467.png,10015 -images-13468.png,10016 -images-13469.png,10017 -images-13470.png,10018 -images-13471.png,10019 -images-13472.png,10020 -images-13473.png,10021 -images-13474.png,10022 -images-13475.png,10023 -images-13476.png,10024 -images-13477.png,10025 -images-13478.png,10026 -images-13479.png,10027 -images-13480.png,10028 -images-13481.png,10029 -images-13482.png,10030 -images-13483.png,10031 -images-13484.png,10032 -images-13485.png,10033 -images-13486.png,10034 -images-13487.png,10035 -images-13488.png,10036 -images-13489.png,10037 -images-13490.png,10038 -images-13491.png,10039 -images-13492.png,10040 -images-13493.png,10041 -images-13494.png,10042 -images-13495.png,10043 -images-13496.png,10044 -images-13497.png,10045 -images-13498.png,10046 -images-13499.png,10047 -images-13500.png,10048 -images-13501.png,10049 -images-13502.png,10050 -images-13503.png,10051 -images-13504.png,10052 -images-13505.png,10053 -images-13506.png,10054 -images-13507.png,10055 -images-13508.png,10056 -images-13509.png,10057 -images-13510.png,10058 -images-13511.png,10059 -images-13512.png,10060 -images-13513.png,10061 -images-13514.png,10062 -images-13515.png,10063 -images-13516.png,10064 -images-13517.png,10065 -images-13518.png,10066 -images-13519.png,10067 -images-13520.png,10068 -images-13521.png,10069 -images-13522.png,10070 -images-13523.png,10071 -images-13524.png,10072 -images-13525.png,10073 -images-13526.png,10074 -images-13527.png,10075 -images-13528.png,10076 -images-13529.png,10077 -images-13530.png,10078 -images-13531.png,10079 -images-13532.png,10080 -images-13533.png,10081 -images-13534.png,10082 -images-13535.png,10083 -images-13536.png,10084 -images-13537.png,10085 -images-13538.png,10086 -images-13539.png,10087 -images-13540.png,10088 -images-13541.png,10089 -images-13542.png,10090 -images-13543.png,10091 -images-13544.png,10092 -images-13545.png,10093 -images-13546.png,10094 -images-13547.png,10095 -images-13548.png,10096 -images-13549.png,10097 -images-13550.png,10098 -images-13551.png,10099 -images-13552.png,10100 -images-13553.png,10101 -images-13554.png,10102 -images-13555.png,10103 -images-13556.png,10104 -images-13557.png,10105 -images-13558.png,10106 -images-13559.png,10107 -images-13560.png,10108 -images-13561.png,10109 -images-13562.png,10110 -images-13563.png,10111 -images-13564.png,10112 -images-13565.png,10113 -images-13566.png,10114 -images-13567.png,10115 -images-13568.png,10116 -images-13569.png,10117 -images-13570.png,10118 -images-13571.png,10119 -images-13572.png,10120 -images-13573.png,10121 -images-13574.png,10122 -images-13575.png,10123 -images-13576.png,10124 -images-13577.png,10125 -images-13578.png,10126 -images-13579.png,10127 -images-13580.png,10128 -images-13581.png,10129 -images-13582.png,10130 -images-13583.png,10131 -images-13584.png,10132 -images-13585.png,10133 -images-13586.png,10134 -images-13587.png,10135 -images-13588.png,10136 -images-13589.png,10137 -images-13590.png,10138 -images-13591.png,10139 -images-13592.png,10140 -images-13593.png,10141 -images-13594.png,10142 -images-13595.png,10143 -images-13596.png,10144 -images-13597.png,10145 -images-13598.png,10146 -images-13599.png,10147 -images-13600.png,10148 -images-13601.png,10149 -images-13602.png,10150 -images-13603.png,10151 -images-13604.png,10152 -images-13605.png,10153 -images-13606.png,10154 -images-13607.png,10155 -images-13608.png,10156 -images-13609.png,10157 -images-13610.png,10158 -images-13611.png,10159 -images-13612.png,10160 -images-13613.png,10161 -images-13614.png,10162 -images-13615.png,10163 -images-13616.png,10164 -images-13617.png,10165 -images-13618.png,10166 -images-13619.png,10167 -images-13628.png,10168 -images-13629.png,10169 -images-13630.png,10170 -images-13631.png,10171 -images-13632.png,10172 -images-13633.png,10173 -images-13634.png,10174 -images-13635.png,10175 -images-13636.png,10176 -images-13637.png,10177 -images-13638.png,10178 -images-13639.png,10179 -images-13640.png,10180 -images-13641.png,10181 -images-13642.png,10182 -images-13643.png,10183 -images-13644.png,10184 -images-13645.png,10185 -images-13646.png,10186 -images-13647.png,10187 -images-13648.png,10188 -images-13649.png,10189 -images-13650.png,10190 -images-13651.png,10191 -images-13652.png,10192 -images-13653.png,10193 -images-13654.png,10194 -images-13655.png,10195 -images-13656.png,10196 -images-13657.png,10197 -images-13658.png,10198 -images-13659.png,10199 -images-13660.png,10200 -images-13661.png,10201 -images-13662.png,10202 -images-13663.png,10203 -images-13664.png,10204 -images-13665.png,10205 -images-13666.png,10206 -images-13667.png,10207 -images-13668.png,10208 -images-13669.png,10209 -images-13670.png,10210 -images-13671.png,10211 -images-13672.png,10212 -images-13673.png,10213 -images-13674.png,10214 -images-13675.png,10215 -images-13676.png,10216 -images-13677.png,10217 -images-13678.png,10218 -images-13679.png,10219 -images-13680.png,10220 -images-13681.png,10221 -images-13682.png,10222 -images-13683.png,10223 -images-13684.png,10224 -images-13685.png,10225 -images-13686.png,10226 -images-13687.png,10227 -images-13688.png,10228 -images-13689.png,10229 -images-13690.png,10230 -images-13691.png,10231 -images-13692.png,10232 -images-13693.png,10233 -images-13694.png,10234 -images-13695.png,10235 -images-13696.png,10236 -images-13697.png,10237 -images-13698.png,10238 -images-13699.png,10239 -images-13700.png,10240 -images-13701.png,10241 -images-13702.png,10242 -images-13703.png,10243 -images-13704.png,10244 -images-13705.png,10245 -images-13706.png,10246 -images-13707.png,10247 -images-13708.png,10248 -images-13709.png,10249 -images-13710.png,10250 -images-13711.png,10251 -images-13712.png,10252 -images-13713.png,10253 -images-13714.png,10254 -images-13715.png,10255 -images-13716.png,10256 -images-13717.png,10257 -images-13718.png,10258 -images-13719.png,10259 -images-13720.png,10260 -images-13721.png,10261 -images-13722.png,10262 -images-13723.png,10263 -images-13724.png,10264 -images-13725.png,10265 -images-13726.png,10266 -images-13727.png,10267 -images-13728.png,10268 -images-13729.png,10269 -images-13730.png,10270 -images-13731.png,10271 -images-13732.png,10272 -images-13733.png,10273 -images-13734.png,10274 -images-13735.png,10275 -images-13736.png,10276 -images-13737.png,10277 -images-13738.png,10278 -images-13739.png,10279 -images-13740.png,10280 -images-13741.png,10281 -images-13742.png,10282 -images-13743.png,10283 -images-13744.png,10284 -images-13745.png,10285 -images-13746.png,10286 -images-13747.png,10287 -images-13748.png,10288 -images-13749.png,10289 -images-13750.png,10290 -images-13751.png,10291 -images-13752.png,10292 -images-13753.png,10293 -images-13754.png,10294 -images-13755.png,10295 -images-13756.png,10296 -images-13757.png,10297 -images-13758.png,10298 -images-13759.png,10299 -images-13760.png,10300 -images-13761.png,10301 -images-13762.png,10302 -images-13763.png,10303 -images-13764.png,10304 -images-13765.png,10305 -images-13766.png,10306 -images-13767.png,10307 -images-13768.png,10308 -images-13769.png,10309 -images-13770.png,10310 -images-13771.png,10311 -images-13772.png,10312 -images-13773.png,10313 -images-13774.png,10314 -images-13775.png,10315 -images-13776.png,10316 -images-13777.png,10317 -images-13778.png,10318 -images-13779.png,10319 -images-13780.png,10320 -images-13781.png,10321 -images-13782.png,10322 -images-13783.png,10323 -images-13784.png,10324 -images-13785.png,10325 -images-13786.png,10326 -images-13787.png,10327 -images-13788.png,10328 -images-13789.png,10329 -images-13790.png,10330 -images-13791.png,10331 -images-13792.png,10332 -images-13793.png,10333 -images-13794.png,10334 -images-13795.png,10335 -images-13796.png,10336 -images-13797.png,10337 -images-13798.png,10338 -images-13799.png,10339 -images-13800.png,10340 -images-13801.png,10341 -images-13802.png,10342 -images-13803.png,10343 -images-13804.png,10344 -images-13805.png,10345 -images-13806.png,10346 -images-13807.png,10347 -images-13808.png,10348 -images-13809.png,10349 -images-13810.png,10350 -images-13811.png,10351 -images-13812.png,10352 -images-13813.png,10353 -images-13814.png,10354 -images-13815.png,10355 -images-13816.png,10356 -images-13817.png,10357 -images-13818.png,10358 -images-13819.png,10359 -images-13820.png,10360 -images-13821.png,10361 -images-13822.png,10362 -images-13823.png,10363 -images-13824.png,10364 -images-13825.png,10365 -images-13826.png,10366 -images-13827.png,10367 -images-13828.png,10368 -images-13829.png,10369 -images-13830.png,10370 -images-13831.png,10371 -images-13832.png,10372 -images-13833.png,10373 -images-13834.png,10374 -images-13835.png,10375 -images-13836.png,10376 -images-13837.png,10377 -images-13838.png,10378 -images-13839.png,10379 -images-13840.png,10380 -images-13841.png,10381 -images-13842.png,10382 -images-13843.png,10383 -images-13844.png,10384 -images-13845.png,10385 -images-13846.png,10386 -images-13847.png,10387 -images-13848.png,10388 -images-13849.png,10389 -images-13850.png,10390 -images-13851.png,10391 -images-13852.png,10392 -images-13853.png,10393 -images-13854.png,10394 -images-13855.png,10395 -images-13856.png,10396 -images-13857.png,10397 -images-13858.png,10398 -images-13859.png,10399 -images-13860.png,10400 -images-13861.png,10401 -images-13862.png,10402 -images-13863.png,10403 -images-13864.png,10404 -images-13865.png,10405 -images-13866.png,10406 -images-13867.png,10407 -images-13868.png,10408 -images-13869.png,10409 -images-13870.png,10410 -images-13871.png,10411 -images-13872.png,10412 -images-13873.png,10413 -images-13874.png,10414 -images-13875.png,10415 -images-13876.png,10416 -images-13877.png,10417 -images-13878.png,10418 -images-13879.png,10419 -images-13880.png,10420 -images-13881.png,10421 -images-13882.png,10422 -images-13883.png,10423 -images-13884.png,10424 -images-13885.png,10425 -images-13886.png,10426 -images-13887.png,10427 -images-13888.png,10428 -images-13889.png,10429 -images-13890.png,10430 -images-13891.png,10431 -images-13892.png,10432 -images-13893.png,10433 -images-13894.png,10434 -images-13895.png,10435 -images-13896.png,10436 -images-13897.png,10437 -images-13898.png,10438 -images-13899.png,10439 -images-13900.png,10440 -images-13901.png,10441 -images-13902.png,10442 -images-13903.png,10443 -images-13904.png,10444 -images-13905.png,10445 -images-13906.png,10446 -images-13907.png,10447 -images-13908.png,10448 -images-13909.png,10449 -images-13910.png,10450 -images-13911.png,10451 -images-13912.png,10452 -images-13913.png,10453 -images-13914.png,10454 -images-13915.png,10455 -images-13916.png,10456 -images-13917.png,10457 -images-13918.png,10458 -images-13919.png,10459 -images-13920.png,10460 -images-13921.png,10461 -images-13922.png,10462 -images-13923.png,10463 -images-13924.png,10464 -images-13925.png,10465 -images-13926.png,10466 -images-13927.png,10467 -images-13928.png,10468 -images-13929.png,10469 -images-13930.png,10470 -images-13931.png,10471 -images-13932.png,10472 -images-13933.png,10473 -images-13934.png,10474 -images-13935.png,10475 -images-13936.png,10476 -images-13937.png,10477 -images-13938.png,10478 -images-13939.png,10479 -images-13940.png,10480 -images-13941.png,10481 -images-13942.png,10482 -images-13943.png,10483 -images-13944.png,10484 -images-13945.png,10485 -images-13946.png,10486 -images-13947.png,10487 -images-13948.png,10488 -images-13949.png,10489 -images-13950.png,10490 -images-13951.png,10491 -images-13952.png,10492 -images-13953.png,10493 -images-13954.png,10494 -images-13955.png,10495 -images-13956.png,10496 -images-13957.png,10497 -images-13958.png,10498 -images-13959.png,10499 -images-13960.png,10500 -images-13961.png,10501 -images-13962.png,10502 -images-13963.png,10503 -images-13964.png,10504 -images-13965.png,10505 -images-13966.png,10506 -images-13967.png,10507 -images-13968.png,10508 -images-13969.png,10509 -images-13970.png,10510 -images-13971.png,10511 -images-13972.png,10512 -images-13973.png,10513 -images-13974.png,10514 -images-13975.png,10515 -images-13976.png,10516 -images-13977.png,10517 -images-13978.png,10518 -images-13979.png,10519 -images-13980.png,10520 -images-13981.png,10521 -images-13982.png,10522 -images-13983.png,10523 -images-13984.png,10524 -images-13985.png,10525 -images-13986.png,10526 -images-13987.png,10527 -images-13988.png,10528 -images-13989.png,10529 -images-13990.png,10530 -images-13991.png,10531 -images-13992.png,10532 -images-13993.png,10533 -images-13994.png,10534 -images-13995.png,10535 -images-13996.png,10536 -images-13997.png,10537 -images-13998.png,10538 -images-13999.png,10539 -images-14000.png,10540 -images-14001.png,10541 -images-14002.png,10542 -images-14003.png,10543 -images-14004.png,10544 -images-14005.png,10545 -images-14006.png,10546 -images-14007.png,10547 -images-14008.png,10548 -images-14009.png,10549 -images-14010.png,10550 -images-14011.png,10551 -images-14012.png,10552 -images-14013.png,10553 -images-14014.png,10554 -images-14015.png,10555 -images-14016.png,10556 -images-14017.png,10557 -images-14018.png,10558 -images-14019.png,10559 -images-14020.png,10560 -images-14021.png,10561 -images-14022.png,10562 -images-14023.png,10563 -images-14024.png,10564 -images-14025.png,10565 -images-14026.png,10566 -images-14027.png,10567 -images-14028.png,10568 -images-14029.png,10569 -images-14030.png,10570 -images-14031.png,10571 -images-14032.png,10572 -images-14033.png,10573 -images-14034.png,10574 -images-14035.png,10575 -images-14036.png,10576 -images-14037.png,10577 -images-14038.png,10578 -images-14039.png,10579 -images-14040.png,10580 -images-14041.png,10581 -images-14042.png,10582 -images-14043.png,10583 -images-14044.png,10584 -images-14045.png,10585 -images-14046.png,10586 -images-14047.png,10587 -images-14048.png,10588 -images-14049.png,10589 -images-14050.png,10590 -images-14051.png,10591 -images-14052.png,10592 -images-14053.png,10593 -images-14054.png,10594 -images-14055.png,10595 -images-14056.png,10596 -images-14057.png,10597 -images-14058.png,10598 -images-14059.png,10599 -images-14060.png,10600 -images-14061.png,10601 -images-14062.png,10602 -images-14063.png,10603 -images-14064.png,10604 -images-14065.png,10605 -images-14066.png,10606 -images-14067.png,10607 -images-14068.png,10608 -images-14069.png,10609 -images-14070.png,10610 -images-14071.png,10611 -images-14072.png,10612 -images-14073.png,10613 -images-14074.png,10614 -images-14075.png,10615 -images-14076.png,10616 -images-14077.png,10617 -images-14078.png,10618 -images-14079.png,10619 -images-14080.png,10620 -images-14081.png,10621 -images-14082.png,10622 -images-14083.png,10623 -images-14084.png,10624 -images-14085.png,10625 -images-14086.png,10626 -images-14087.png,10627 -images-14088.png,10628 -images-14089.png,10629 -images-14090.png,10630 -images-14091.png,10631 -images-14092.png,10632 -images-14093.png,10633 -images-14094.png,10634 -images-14095.png,10635 -images-14096.png,10636 -images-14097.png,10637 -images-14098.png,10638 -images-14099.png,10639 -images-14100.png,10640 -images-14101.png,10641 -images-14102.png,10642 -images-14103.png,10643 -images-14104.png,10644 -images-14105.png,10645 -images-14106.png,10646 -images-14107.png,10647 -images-14108.png,10648 -images-14109.png,10649 -images-14110.png,10650 -images-14111.png,10651 -images-14112.png,10652 -images-14113.png,10653 -images-14114.png,10654 -images-14115.png,10655 -images-14116.png,10656 -images-14117.png,10657 -images-14118.png,10658 -images-14119.png,10659 -images-14120.png,10660 -images-14121.png,10661 -images-14122.png,10662 -images-14123.png,10663 -images-14124.png,10664 -images-14125.png,10665 -images-14126.png,10666 -images-14127.png,10667 -images-14128.png,10668 -images-14129.png,10669 -images-14130.png,10670 -images-14131.png,10671 -images-14132.png,10672 -images-14133.png,10673 -images-14134.png,10674 -images-14135.png,10675 -images-14136.png,10676 -images-14137.png,10677 -images-14138.png,10678 -images-14139.png,10679 -images-14140.png,10680 -images-14141.png,10681 -images-14142.png,10682 -images-14143.png,10683 -images-14144.png,10684 -images-14145.png,10685 -images-14146.png,10686 -images-14147.png,10687 -images-14148.png,10688 -images-14149.png,10689 -images-14150.png,10690 -images-14151.png,10691 -images-14152.png,10692 -images-14153.png,10693 -images-14154.png,10694 -images-14155.png,10695 -images-14156.png,10696 -images-14157.png,10697 -images-14158.png,10698 -images-14159.png,10699 -images-14160.png,10700 -images-14161.png,10701 -images-14162.png,10702 -images-14163.png,10703 -images-14164.png,10704 -images-14165.png,10705 -images-14166.png,10706 -images-14167.png,10707 -images-14168.png,10708 -images-14169.png,10709 -images-14170.png,10710 -images-14171.png,10711 -images-14172.png,10712 -images-14173.png,10713 -images-14174.png,10714 -images-14175.png,10715 -images-14176.png,10716 -images-14177.png,10717 -images-14178.png,10718 -images-14179.png,10719 -images-14180.png,10720 -images-14181.png,10721 -images-14182.png,10722 -images-14183.png,10723 -images-14184.png,10724 -images-14185.png,10725 -images-14186.png,10726 -images-14187.png,10727 -images-14188.png,10728 -images-14189.png,10729 -images-14190.png,10730 -images-14191.png,10731 -images-14192.png,10732 -images-14193.png,10733 -images-14194.png,10734 -images-14195.png,10735 -images-14196.png,10736 -images-14197.png,10737 -images-14198.png,10738 -images-14199.png,10739 -images-14200.png,10740 -images-14201.png,10741 -images-14202.png,10742 -images-14203.png,10743 -images-14204.png,10744 -images-14205.png,10745 -images-14206.png,10746 -images-14207.png,10747 -images-14208.png,10748 -images-14209.png,10749 -images-14210.png,10750 -images-14211.png,10751 -images-14212.png,10752 -images-14213.png,10753 -images-14214.png,10754 -images-14215.png,10755 -images-14216.png,10756 -images-14217.png,10757 -images-14218.png,10758 -images-14219.png,10759 -images-14220.png,10760 -images-14221.png,10761 -images-14222.png,10762 -images-14223.png,10763 -images-14224.png,10764 -images-14225.png,10765 -images-14226.png,10766 -images-14227.png,10767 -images-14228.png,10768 -images-14229.png,10769 -images-14230.png,10770 -images-14231.png,10771 -images-14232.png,10772 -images-14233.png,10773 -images-14234.png,10774 -images-14235.png,10775 -images-14236.png,10776 -images-14237.png,10777 -images-14238.png,10778 -images-14239.png,10779 -images-14240.png,10780 -images-14241.png,10781 -images-14242.png,10782 -images-14243.png,10783 -images-14244.png,10784 -images-14245.png,10785 -images-14246.png,10786 -images-14247.png,10787 -images-14248.png,10788 -images-14249.png,10789 -images-14250.png,10790 -images-14251.png,10791 -images-14252.png,10792 -images-14253.png,10793 -images-14254.png,10794 -images-14255.png,10795 -images-14256.png,10796 -images-14257.png,10797 -images-14258.png,10798 -images-14259.png,10799 -images-14260.png,10800 -images-14261.png,10801 -images-14262.png,10802 -images-14263.png,10803 -images-14264.png,10804 -images-14265.png,10805 -images-14266.png,10806 -images-14267.png,10807 -images-14268.png,10808 -images-14269.png,10809 -images-14270.png,10810 -images-14271.png,10811 -images-14272.png,10812 -images-14273.png,10813 -images-14274.png,10814 -images-14275.png,10815 -images-14276.png,10816 -images-14277.png,10817 -images-14278.png,10818 -images-14279.png,10819 -images-14280.png,10820 -images-14281.png,10821 -images-14282.png,10822 -images-14283.png,10823 -images-14284.png,10824 -images-14285.png,10825 -images-14286.png,10826 -images-14287.png,10827 -images-14288.png,10828 -images-14289.png,10829 -images-14290.png,10830 -images-14291.png,10831 -images-14292.png,10832 -images-14293.png,10833 -images-14294.png,10834 -images-14295.png,10835 -images-14296.png,10836 -images-14297.png,10837 -images-14298.png,10838 -images-14299.png,10839 -images-14300.png,10840 -images-14301.png,10841 -images-14302.png,10842 -images-14303.png,10843 -images-14304.png,10844 -images-14305.png,10845 -images-14306.png,10846 -images-14307.png,10847 -images-14308.png,10848 -images-14309.png,10849 -images-14310.png,10850 -images-14311.png,10851 -images-14312.png,10852 -images-14313.png,10853 -images-14314.png,10854 -images-14315.png,10855 -images-14316.png,10856 -images-14317.png,10857 -images-14318.png,10858 -images-14319.png,10859 -images-14348.png,10860 -images-14349.png,10861 -images-14350.png,10862 -images-14351.png,10863 -images-14352.png,10864 -images-14353.png,10865 -images-14354.png,10866 -images-14355.png,10867 -images-14356.png,10868 -images-14357.png,10869 -images-14358.png,10870 -images-14359.png,10871 -images-14360.png,10872 -images-14361.png,10873 -images-14362.png,10874 -images-14363.png,10875 -images-14364.png,10876 -images-14365.png,10877 -images-14366.png,10878 -images-14367.png,10879 -images-14368.png,10880 -images-14369.png,10881 -images-14370.png,10882 -images-14371.png,10883 -images-14372.png,10884 -images-14373.png,10885 -images-14374.png,10886 -images-14375.png,10887 -images-14376.png,10888 -images-14377.png,10889 -images-14378.png,10890 -images-14379.png,10891 -images-14380.png,10892 -images-14381.png,10893 -images-14382.png,10894 -images-14383.png,10895 -images-14384.png,10896 -images-14385.png,10897 -images-14386.png,10898 -images-14387.png,10899 -images-14388.png,10900 -images-14389.png,10901 -images-14400.png,10902 -images-14401.png,10903 -images-14402.png,10904 -images-14403.png,10905 -images-14404.png,10906 -images-14405.png,10907 -images-14406.png,10908 -images-14407.png,10909 -images-14408.png,10910 -images-14409.png,10911 -images-14410.png,10912 -images-14411.png,10913 -images-14412.png,10914 -images-14413.png,10915 -images-14414.png,10916 -images-14415.png,10917 -images-14416.png,10918 -images-14417.png,10919 -images-14418.png,10920 -images-14419.png,10921 -images-14420.png,10922 -images-14421.png,10923 -images-14422.png,10924 -images-14423.png,10925 -images-14424.png,10926 -images-14425.png,10927 -images-14426.png,10928 -images-14427.png,10929 -images-14428.png,10930 -images-14429.png,10931 -images-14430.png,10932 -images-14431.png,10933 -images-14432.png,10934 -images-14433.png,10935 -images-14434.png,10936 -images-14435.png,10937 -images-14436.png,10938 -images-14437.png,10939 -images-14438.png,10940 -images-14439.png,10941 -images-14440.png,10942 -images-14441.png,10943 -images-14442.png,10944 -images-14443.png,10945 -images-14444.png,10946 -images-14445.png,10947 -images-14446.png,10948 -images-14447.png,10949 -images-14448.png,10950 -images-14449.png,10951 -images-14450.png,10952 -images-14451.png,10953 -images-14452.png,10954 -images-14453.png,10955 -images-14454.png,10956 -images-14455.png,10957 -images-14456.png,10958 -images-14457.png,10959 -images-14458.png,10960 -images-14459.png,10961 -images-14460.png,10962 -images-14461.png,10963 -images-14462.png,10964 -images-14463.png,10965 -images-14464.png,10966 -images-14465.png,10967 -images-14466.png,10968 -images-14467.png,10969 -images-14468.png,10970 -images-14469.png,10971 -images-14470.png,10972 -images-14471.png,10973 -images-14472.png,10974 -images-14473.png,10975 -images-14474.png,10976 -images-14475.png,10977 -images-14476.png,10978 -images-14477.png,10979 -images-14478.png,10980 -images-14479.png,10981 -images-14480.png,10982 -images-14481.png,10983 -images-14482.png,10984 -images-14483.png,10985 -images-14484.png,10986 -images-14485.png,10987 -images-14486.png,10988 -images-14487.png,10989 -images-14488.png,10990 -images-14489.png,10991 -images-14490.png,10992 -images-14491.png,10993 -images-14492.png,10994 -images-14493.png,10995 -images-14494.png,10996 -images-14495.png,10997 -images-14496.png,10998 -images-14497.png,10999 -images-14498.png,11000 -images-14499.png,11001 -images-14500.png,11002 -images-14501.png,11003 -images-14502.png,11004 -images-14503.png,11005 -images-14504.png,11006 -images-14505.png,11007 -images-14506.png,11008 -images-14507.png,11009 -images-14508.png,11010 -images-14509.png,11011 -images-14510.png,11012 -images-14511.png,11013 -images-14512.png,11014 -images-14513.png,11015 -images-14514.png,11016 -images-14515.png,11017 -images-14516.png,11018 -images-14517.png,11019 -images-14518.png,11020 -images-14519.png,11021 -images-14520.png,11022 -images-14521.png,11023 -images-14522.png,11024 -images-14523.png,11025 -images-14524.png,11026 -images-14525.png,11027 -images-14526.png,11028 -images-14527.png,11029 -images-14528.png,11030 -images-14529.png,11031 -images-14530.png,11032 -images-14531.png,11033 -images-14532.png,11034 -images-14533.png,11035 -images-14534.png,11036 -images-14535.png,11037 -images-14536.png,11038 -images-14537.png,11039 -images-14538.png,11040 -images-14539.png,11041 -images-14540.png,11042 -images-14541.png,11043 -images-14542.png,11044 -images-14543.png,11045 -images-14544.png,11046 -images-14545.png,11047 -images-14546.png,11048 -images-14547.png,11049 -images-14548.png,11050 -images-14549.png,11051 -images-14550.png,11052 -images-14551.png,11053 -images-14552.png,11054 -images-14553.png,11055 -images-14554.png,11056 -images-14555.png,11057 -images-14556.png,11058 -images-14557.png,11059 -images-14558.png,11060 -images-14559.png,11061 -images-14560.png,11062 -images-14561.png,11063 -images-14562.png,11064 -images-14563.png,11065 -images-14564.png,11066 -images-14565.png,11067 -images-14566.png,11068 -images-14567.png,11069 -images-14568.png,11070 -images-14569.png,11071 -images-14570.png,11072 -images-14571.png,11073 -images-14572.png,11074 -images-14573.png,11075 -images-14574.png,11076 -images-14575.png,11077 -images-14576.png,11078 -images-14577.png,11079 -images-14578.png,11080 -images-14579.png,11081 -images-14580.png,11082 -images-14581.png,11083 -images-14582.png,11084 -images-14583.png,11085 -images-14584.png,11086 -images-14585.png,11087 -images-14586.png,11088 -images-14587.png,11089 -images-14588.png,11090 -images-14589.png,11091 -images-14590.png,11092 -images-14591.png,11093 -images-14592.png,11094 -images-14593.png,11095 -images-14594.png,11096 -images-14595.png,11097 -images-14596.png,11098 -images-14597.png,11099 -images-14598.png,11100 -images-14599.png,11101 -images-14600.png,11102 -images-14601.png,11103 -images-14602.png,11104 -images-14603.png,11105 -images-14604.png,11106 -images-14605.png,11107 -images-14606.png,11108 -images-14607.png,11109 -images-14608.png,11110 -images-14609.png,11111 -images-14610.png,11112 -images-14611.png,11113 -images-14612.png,11114 -images-14613.png,11115 -images-14614.png,11116 -images-14615.png,11117 -images-14616.png,11118 -images-14617.png,11119 -images-14618.png,11120 -images-14619.png,11121 -images-14620.png,11122 -images-14621.png,11123 -images-14622.png,11124 -images-14623.png,11125 -images-14624.png,11126 -images-14625.png,11127 -images-14626.png,11128 -images-14627.png,11129 -images-14628.png,11130 -images-14629.png,11131 -images-14630.png,11132 -images-14631.png,11133 -images-14632.png,11134 -images-14633.png,11135 -images-14634.png,11136 -images-14635.png,11137 -images-14636.png,11138 -images-14637.png,11139 -images-14638.png,11140 -images-14639.png,11141 -images-14640.png,11142 -images-14641.png,11143 -images-14642.png,11144 -images-14643.png,11145 -images-14644.png,11146 -images-14645.png,11147 -images-14646.png,11148 -images-14647.png,11149 -images-14648.png,11150 -images-14649.png,11151 -images-14650.png,11152 -images-14651.png,11153 -images-14652.png,11154 -images-14653.png,11155 -images-14654.png,11156 -images-14655.png,11157 -images-14656.png,11158 -images-14657.png,11159 -images-14658.png,11160 -images-14659.png,11161 -images-14660.png,11162 -images-14661.png,11163 -images-14662.png,11164 -images-14663.png,11165 -images-14664.png,11166 -images-14665.png,11167 -images-14666.png,11168 -images-14667.png,11169 -images-14668.png,11170 -images-14669.png,11171 -images-14670.png,11172 -images-14671.png,11173 -images-14672.png,11174 -images-14673.png,11175 -images-14674.png,11176 -images-14675.png,11177 -images-14676.png,11178 -images-14677.png,11179 -images-14678.png,11180 -images-14679.png,11181 -images-14680.png,11182 -images-14681.png,11183 -images-14682.png,11184 -images-14683.png,11185 -images-14684.png,11186 -images-14685.png,11187 -images-14686.png,11188 -images-14687.png,11189 -images-14688.png,11190 -images-14689.png,11191 -images-14690.png,11192 -images-14691.png,11193 -images-14692.png,11194 -images-14693.png,11195 -images-14694.png,11196 -images-14695.png,11197 -images-14696.png,11198 -images-14697.png,11199 -images-14698.png,11200 -images-14699.png,11201 -images-14700.png,11202 -images-14701.png,11203 -images-14702.png,11204 -images-14703.png,11205 -images-14704.png,11206 -images-14705.png,11207 -images-14706.png,11208 -images-14707.png,11209 -images-14708.png,11210 -images-14709.png,11211 -images-14710.png,11212 -images-14711.png,11213 -images-14712.png,11214 -images-14713.png,11215 -images-14714.png,11216 -images-14715.png,11217 -images-14716.png,11218 -images-14717.png,11219 -images-14718.png,11220 -images-14719.png,11221 -images-14720.png,11222 -images-14721.png,11223 -images-14722.png,11224 -images-14723.png,11225 -images-14724.png,11226 -images-14725.png,11227 -images-14726.png,11228 -images-14727.png,11229 -images-14728.png,11230 -images-14729.png,11231 -images-14730.png,11232 -images-14731.png,11233 -images-14732.png,11234 -images-14733.png,11235 -images-14734.png,11236 -images-14735.png,11237 -images-14736.png,11238 -images-14737.png,11239 -images-14738.png,11240 -images-14739.png,11241 -images-14740.png,11242 -images-14741.png,11243 -images-14742.png,11244 -images-14743.png,11245 -images-14744.png,11246 -images-14745.png,11247 -images-14746.png,11248 -images-14747.png,11249 -images-14748.png,11250 -images-14749.png,11251 -images-14750.png,11252 -images-14751.png,11253 -images-14752.png,11254 -images-14753.png,11255 -images-14754.png,11256 -images-14755.png,11257 -images-14756.png,11258 -images-14757.png,11259 -images-14758.png,11260 -images-14759.png,11261 -images-14760.png,11262 -images-14761.png,11263 -images-14762.png,11264 -images-14763.png,11265 -images-14764.png,11266 -images-14765.png,11267 -images-14766.png,11268 -images-14767.png,11269 -images-14768.png,11270 -images-14769.png,11271 -images-14770.png,11272 -images-14771.png,11273 -images-14772.png,11274 -images-14773.png,11275 -images-14774.png,11276 -images-14775.png,11277 -images-14776.png,11278 -images-14777.png,11279 -images-14778.png,11280 -images-14779.png,11281 -images-14780.png,11282 -images-14781.png,11283 -images-14782.png,11284 -images-14783.png,11285 -images-14784.png,11286 -images-14785.png,11287 -images-14786.png,11288 -images-14787.png,11289 -images-14788.png,11290 -images-14789.png,11291 -images-14790.png,11292 -images-14791.png,11293 -images-14792.png,11294 -images-14793.png,11295 -images-14794.png,11296 -images-14795.png,11297 -images-14796.png,11298 -images-14797.png,11299 -images-14798.png,11300 -images-14799.png,11301 -images-14800.png,11302 -images-14801.png,11303 -images-14802.png,11304 -images-14803.png,11305 -images-14804.png,11306 -images-14805.png,11307 -images-14806.png,11308 -images-14926.png,11309 -images-14927.png,11310 -images-14928.png,11311 -images-14929.png,11312 -images-14930.png,11313 -images-14931.png,11314 -images-14932.png,11315 -images-14933.png,11316 -images-14934.png,11317 -images-14935.png,11318 -images-14936.png,11319 -images-14937.png,11320 -images-14938.png,11321 -images-14939.png,11322 -images-14940.png,11323 -images-14941.png,11324 -images-14942.png,11325 -images-14943.png,11326 -images-14944.png,11327 -images-14945.png,11328 -images-14946.png,11329 -images-14947.png,11330 -images-14948.png,11331 -images-14949.png,11332 -images-14950.png,11333 -images-14951.png,11334 -images-14952.png,11335 -images-14953.png,11336 -images-14954.png,11337 -images-14955.png,11338 -images-14956.png,11339 -images-14957.png,11340 -images-14958.png,11341 -images-14959.png,11342 -images-14960.png,11343 -images-14961.png,11344 -images-14962.png,11345 -images-14963.png,11346 -images-14964.png,11347 -images-14965.png,11348 -images-14966.png,11349 -images-14967.png,11350 -images-14968.png,11351 -images-14969.png,11352 -images-14970.png,11353 -images-14971.png,11354 -images-14972.png,11355 -images-14973.png,11356 -images-14974.png,11357 -images-14975.png,11358 -images-14976.png,11359 -images-14977.png,11360 -images-14978.png,11361 -images-14979.png,11362 -images-14980.png,11363 -images-14981.png,11364 -images-14982.png,11365 -images-14983.png,11366 -images-14984.png,11367 -images-14985.png,11368 -images-14986.png,11369 -images-14987.png,11370 -images-14988.png,11371 -images-14989.png,11372 -images-14990.png,11373 -images-14991.png,11374 -images-14992.png,11375 -images-14993.png,11376 -images-14994.png,11377 -images-14995.png,11378 -images-14996.png,11379 -images-14997.png,11380 -images-14998.png,11381 -images-14999.png,11382 -images-15000.png,11383 -images-15001.png,11384 -images-15002.png,11385 -images-15003.png,11386 -images-15004.png,11387 -images-15005.png,11388 -images-15006.png,11389 -images-15007.png,11390 -images-15008.png,11391 -images-15009.png,11392 -images-15010.png,11393 -images-15011.png,11394 -images-15012.png,11395 -images-15013.png,11396 -images-15014.png,11397 -images-15015.png,11398 -images-15016.png,11399 -images-15017.png,11400 -images-15018.png,11401 -images-15019.png,11402 -images-15020.png,11403 -images-15021.png,11404 -images-15022.png,11405 -images-15023.png,11406 -images-15024.png,11407 -images-15025.png,11408 -images-15026.png,11409 -images-15027.png,11410 -images-15028.png,11411 -images-15029.png,11412 -images-15030.png,11413 -images-15031.png,11414 -images-15032.png,11415 -images-15033.png,11416 -images-15034.png,11417 -images-15035.png,11418 -images-15036.png,11419 -images-15037.png,11420 -images-15038.png,11421 -images-15039.png,11422 -images-15040.png,11423 -images-15041.png,11424 -images-15042.png,11425 -images-15043.png,11426 -images-15044.png,11427 -images-15045.png,11428 -images-15046.png,11429 -images-15047.png,11430 -images-15048.png,11431 -images-15049.png,11432 -images-15050.png,11433 -images-15051.png,11434 -images-15052.png,11435 -images-15053.png,11436 -images-15054.png,11437 -images-15055.png,11438 -images-15056.png,11439 -images-15057.png,11440 -images-15058.png,11441 -images-15059.png,11442 -images-15060.png,11443 -images-15061.png,11444 -images-15062.png,11445 -images-15063.png,11446 -images-15064.png,11447 -images-15065.png,11448 -images-15066.png,11449 -images-15067.png,11450 -images-15068.png,11451 -images-15069.png,11452 -images-15070.png,11453 -images-15071.png,11454 -images-15072.png,11455 -images-15073.png,11456 -images-15074.png,11457 -images-15075.png,11458 -images-15076.png,11459 -images-15077.png,11460 -images-15078.png,11461 -images-15079.png,11462 -images-15080.png,11463 -images-15081.png,11464 -images-15082.png,11465 -images-15083.png,11466 -images-15084.png,11467 -images-15085.png,11468 -images-15086.png,11469 -images-15087.png,11470 -images-15088.png,11471 -images-15089.png,11472 -images-15090.png,11473 -images-15091.png,11474 -images-15092.png,11475 -images-15093.png,11476 -images-15094.png,11477 -images-15095.png,11478 -images-15096.png,11479 -images-15097.png,11480 -images-15098.png,11481 -images-15099.png,11482 -images-15100.png,11483 -images-15101.png,11484 -images-15102.png,11485 -images-15103.png,11486 -images-15104.png,11487 -images-15105.png,11488 -images-15106.png,11489 -images-15107.png,11490 -images-15108.png,11491 -images-15109.png,11492 -images-15110.png,11493 -images-15111.png,11494 -images-15112.png,11495 -images-15113.png,11496 -images-15114.png,11497 -images-15115.png,11498 -images-15116.png,11499 -images-15117.png,11500 -images-15118.png,11501 -images-15119.png,11502 -images-15120.png,11503 -images-15121.png,11504 -images-15122.png,11505 -images-15123.png,11506 -images-15124.png,11507 -images-15125.png,11508 -images-15126.png,11509 -images-15127.png,11510 -images-15128.png,11511 -images-15129.png,11512 -images-15130.png,11513 -images-15131.png,11514 -images-15132.png,11515 -images-15133.png,11516 -images-15134.png,11517 -images-15135.png,11518 -images-15136.png,11519 -images-15137.png,11520 -images-15138.png,11521 -images-15139.png,11522 -images-15140.png,11523 -images-15141.png,11524 -images-15142.png,11525 -images-15143.png,11526 -images-15144.png,11527 -images-15145.png,11528 -images-15146.png,11529 -images-15147.png,11530 -images-15148.png,11531 -images-15149.png,11532 -images-15150.png,11533 -images-15151.png,11534 -images-15152.png,11535 -images-15153.png,11536 -images-15154.png,11537 -images-15155.png,11538 -images-15156.png,11539 -images-15157.png,11540 -images-15158.png,11541 -images-15159.png,11542 -images-15160.png,11543 -images-15161.png,11544 -images-15162.png,11545 -images-15163.png,11546 -images-15164.png,11547 -images-15165.png,11548 -images-15166.png,11549 -images-15167.png,11550 -images-15168.png,11551 -images-15169.png,11552 -images-15170.png,11553 -images-15171.png,11554 -images-15172.png,11555 -images-15173.png,11556 -images-15174.png,11557 -images-15175.png,11558 -images-15176.png,11559 -images-15177.png,11560 -images-15178.png,11561 -images-15179.png,11562 -images-15180.png,11563 -images-15181.png,11564 -images-15182.png,11565 -images-15183.png,11566 -images-15184.png,11567 -images-15185.png,11568 -images-15186.png,11569 -images-15187.png,11570 -images-15188.png,11571 -images-15189.png,11572 -images-15190.png,11573 -images-15191.png,11574 -images-15192.png,11575 -images-15193.png,11576 -images-15194.png,11577 -images-15195.png,11578 -images-15196.png,11579 -images-15197.png,11580 -images-15198.png,11581 -images-15199.png,11582 -images-15200.png,11583 -images-15201.png,11584 -images-15202.png,11585 -images-15203.png,11586 -images-15204.png,11587 -images-15205.png,11588 -images-15206.png,11589 -images-15207.png,11590 -images-15208.png,11591 -images-15209.png,11592 -images-15210.png,11593 -images-15211.png,11594 -images-15212.png,11595 -images-15213.png,11596 -images-15214.png,11597 -images-15215.png,11598 -images-15216.png,11599 -images-15217.png,11600 -images-15218.png,11601 -images-15219.png,11602 -images-15220.png,11603 -images-15221.png,11604 -images-15222.png,11605 -images-15223.png,11606 -images-15224.png,11607 -images-15225.png,11608 -images-15226.png,11609 -images-15227.png,11610 -images-15228.png,11611 -images-15229.png,11612 -images-15230.png,11613 -images-15231.png,11614 -images-15232.png,11615 -images-15233.png,11616 -images-15234.png,11617 -images-15235.png,11618 -images-15236.png,11619 -images-15237.png,11620 -images-15238.png,11621 -images-15239.png,11622 -images-15240.png,11623 -images-15241.png,11624 -images-15242.png,11625 -images-15243.png,11626 -images-15244.png,11627 -images-15245.png,11628 -images-15246.png,11629 -images-15247.png,11630 -images-15248.png,11631 -images-15249.png,11632 -images-15250.png,11633 -images-15251.png,11634 -images-15252.png,11635 -images-15253.png,11636 -images-15254.png,11637 -images-15255.png,11638 -images-15256.png,11639 -images-15257.png,11640 -images-15258.png,11641 -images-15259.png,11642 -images-15260.png,11643 -images-15261.png,11644 -images-15262.png,11645 -images-15263.png,11646 -images-15264.png,11647 -images-15265.png,11648 -images-15266.png,11649 -images-15267.png,11650 -images-15268.png,11651 -images-15269.png,11652 -images-15270.png,11653 -images-15271.png,11654 -images-15272.png,11655 -images-15273.png,11656 -images-15274.png,11657 -images-15275.png,11658 -images-15276.png,11659 -images-15277.png,11660 -images-15278.png,11661 -images-15279.png,11662 -images-15280.png,11663 -images-15281.png,11664 -images-15282.png,11665 -images-15283.png,11666 -images-15284.png,11667 -images-15285.png,11668 -images-15286.png,11669 -images-15287.png,11670 -images-15288.png,11671 -images-15289.png,11672 -images-15290.png,11673 -images-15291.png,11674 -images-15292.png,11675 -images-15293.png,11676 -images-15294.png,11677 -images-15295.png,11678 -images-15296.png,11679 -images-15297.png,11680 -images-15298.png,11681 -images-15299.png,11682 -images-15300.png,11683 -images-15301.png,11684 -images-15302.png,11685 -images-15303.png,11686 -images-15304.png,11687 -images-15305.png,11688 -images-15306.png,11689 -images-15307.png,11690 -images-15308.png,11691 -images-15309.png,11692 -images-15310.png,11693 -images-15311.png,11694 -images-15312.png,11695 -images-15313.png,11696 -images-15314.png,11697 -images-15315.png,11698 -images-15316.png,11699 -images-15317.png,11700 -images-15318.png,11701 -images-15319.png,11702 -images-15320.png,11703 -images-15321.png,11704 -images-15322.png,11705 -images-15323.png,11706 -images-15324.png,11707 -images-15325.png,11708 -images-15326.png,11709 -images-15327.png,11710 -images-15328.png,11711 -images-15329.png,11712 -images-15330.png,11713 -images-15331.png,11714 -images-15332.png,11715 -images-15333.png,11716 -images-15334.png,11717 -images-15335.png,11718 -images-15336.png,11719 -images-15337.png,11720 -images-15338.png,11721 -images-15339.png,11722 -images-15340.png,11723 -images-15341.png,11724 -images-15342.png,11725 -images-15343.png,11726 -images-15344.png,11727 -images-15345.png,11728 -images-15346.png,11729 -images-15347.png,11730 -images-15348.png,11731 -images-15349.png,11732 -images-15350.png,11733 -images-15351.png,11734 -images-15352.png,11735 -images-15353.png,11736 -images-15354.png,11737 -images-15355.png,11738 -images-15356.png,11739 -images-15357.png,11740 -images-15358.png,11741 -images-15359.png,11742 -images-15360.png,11743 -images-15361.png,11744 -images-15362.png,11745 -images-15363.png,11746 -images-15364.png,11747 -images-15365.png,11748 -images-15366.png,11749 -images-15367.png,11750 -images-15368.png,11751 -images-15369.png,11752 -images-15370.png,11753 -images-15371.png,11754 -images-15372.png,11755 -images-15373.png,11756 -images-15374.png,11757 -images-15375.png,11758 -images-15376.png,11759 -images-15377.png,11760 -images-15378.png,11761 -images-15379.png,11762 -images-15380.png,11763 -images-15381.png,11764 -images-15382.png,11765 -images-15383.png,11766 -images-15384.png,11767 -images-15385.png,11768 -images-15386.png,11769 -images-15387.png,11770 -images-15388.png,11771 -images-15389.png,11772 -images-15390.png,11773 -images-15391.png,11774 -images-15392.png,11775 -images-15393.png,11776 -images-15394.png,11777 -images-15395.png,11778 -images-15396.png,11779 -images-15397.png,11780 -images-15398.png,11781 -images-15399.png,11782 -images-15400.png,11783 -images-15401.png,11784 -images-15402.png,11785 -images-15403.png,11786 -images-15404.png,11787 -images-15405.png,11788 -images-15406.png,11789 -images-15407.png,11790 -images-15408.png,11791 -images-15409.png,11792 -images-15410.png,11793 -images-15411.png,11794 -images-15412.png,11795 -images-15413.png,11796 -images-15414.png,11797 -images-15415.png,11798 -images-15416.png,11799 -images-15417.png,11800 -images-15418.png,11801 -images-15419.png,11802 -images-15420.png,11803 -images-15421.png,11804 -images-15422.png,11805 -images-15423.png,11806 -images-15424.png,11807 -images-15425.png,11808 -images-15426.png,11809 -images-15427.png,11810 -images-15428.png,11811 -images-15429.png,11812 -images-15430.png,11813 -images-15431.png,11814 -images-15432.png,11815 -images-15433.png,11816 -images-15434.png,11817 -images-15435.png,11818 -images-15436.png,11819 -images-15437.png,11820 -images-15438.png,11821 -images-15439.png,11822 -images-15440.png,11823 -images-15441.png,11824 -images-15442.png,11825 -images-15443.png,11826 -images-15444.png,11827 -images-15445.png,11828 -images-15446.png,11829 -images-15447.png,11830 -images-15448.png,11831 -images-15449.png,11832 -images-15450.png,11833 -images-15451.png,11834 -images-15452.png,11835 -images-15453.png,11836 -images-15454.png,11837 -images-15455.png,11838 -images-15456.png,11839 -images-15457.png,11840 -images-15458.png,11841 -images-15459.png,11842 -images-15460.png,11843 -images-15461.png,11844 -images-15462.png,11845 -images-15463.png,11846 -images-15464.png,11847 -images-15465.png,11848 -images-15466.png,11849 -images-15467.png,11850 -images-15468.png,11851 -images-15469.png,11852 -images-15470.png,11853 -images-15471.png,11854 -images-15472.png,11855 -images-15473.png,11856 -images-15474.png,11857 -images-15475.png,11858 -images-15476.png,11859 -images-15477.png,11860 -images-15478.png,11861 -images-15479.png,11862 -images-15480.png,11863 -images-15481.png,11864 -images-15482.png,11865 -images-15483.png,11866 -images-15484.png,11867 -images-15485.png,11868 -images-15486.png,11869 -images-15487.png,11870 -images-15488.png,11871 -images-15489.png,11872 -images-15490.png,11873 -images-15491.png,11874 -images-15492.png,11875 -images-15493.png,11876 -images-15494.png,11877 -images-15495.png,11878 -images-15496.png,11879 -images-15497.png,11880 -images-15498.png,11881 -images-15499.png,11882 -images-15500.png,11883 -images-15501.png,11884 -images-15502.png,11885 -images-15503.png,11886 -images-15504.png,11887 -images-15505.png,11888 -images-15506.png,11889 -images-15507.png,11890 -images-15508.png,11891 -images-15509.png,11892 -images-15510.png,11893 -images-15511.png,11894 -images-15512.png,11895 -images-15513.png,11896 -images-15514.png,11897 -images-15515.png,11898 -images-15516.png,11899 -images-15517.png,11900 -images-15518.png,11901 -images-15519.png,11902 -images-15520.png,11903 -images-15521.png,11904 -images-15522.png,11905 -images-15523.png,11906 -images-15524.png,11907 -images-15525.png,11908 -images-15526.png,11909 -images-15527.png,11910 -images-15528.png,11911 -images-15529.png,11912 -images-15530.png,11913 -images-15531.png,11914 -images-15532.png,11915 -images-15533.png,11916 -images-15534.png,11917 -images-15535.png,11918 -images-15536.png,11919 -images-15537.png,11920 -images-15538.png,11921 -images-15539.png,11922 -images-15540.png,11923 -images-15541.png,11924 -images-15542.png,11925 -images-15543.png,11926 -images-15544.png,11927 -images-15545.png,11928 -images-15546.png,11929 -images-15547.png,11930 -images-15548.png,11931 -images-15549.png,11932 -images-15550.png,11933 -images-15551.png,11934 -images-15552.png,11935 -images-15553.png,11936 -images-15554.png,11937 -images-15555.png,11938 -images-15556.png,11939 -images-15557.png,11940 -images-15558.png,11941 -images-15559.png,11942 -images-15560.png,11943 -images-15561.png,11944 -images-15562.png,11945 -images-15563.png,11946 -images-15564.png,11947 -images-15565.png,11948 -images-15566.png,11949 -images-15567.png,11950 -images-15568.png,11951 -images-15569.png,11952 -images-15570.png,11953 -images-15571.png,11954 -images-15572.png,11955 -images-15573.png,11956 -images-15574.png,11957 -images-15575.png,11958 -images-15576.png,11959 -images-15577.png,11960 -images-15578.png,11961 -images-15579.png,11962 -images-15580.png,11963 -images-15581.png,11964 -images-15582.png,11965 -images-15583.png,11966 -images-15584.png,11967 -images-15585.png,11968 -images-15586.png,11969 -images-15587.png,11970 -images-15588.png,11971 -images-15589.png,11972 -images-15590.png,11973 -images-15591.png,11974 -images-15592.png,11975 -images-15593.png,11976 -images-15594.png,11977 -images-15595.png,11978 -images-15596.png,11979 -images-15597.png,11980 -images-15598.png,11981 -images-15599.png,11982 -images-15600.png,11983 -images-15601.png,11984 -images-15602.png,11985 -images-15603.png,11986 -images-15604.png,11987 -images-15605.png,11988 -images-15606.png,11989 -images-15607.png,11990 -images-15608.png,11991 -images-15609.png,11992 -images-15610.png,11993 -images-15611.png,11994 -images-15612.png,11995 -images-15613.png,11996 -images-15614.png,11997 -images-15615.png,11998 -images-15616.png,11999 -images-15617.png,12000 -images-15618.png,12001 -images-15619.png,12002 -images-15620.png,12003 -images-15621.png,12004 -images-15622.png,12005 -images-15623.png,12006 -images-15624.png,12007 -images-15625.png,12008 -images-15626.png,12009 -images-15627.png,12010 -images-15628.png,12011 -images-15629.png,12012 -images-15630.png,12013 -images-15631.png,12014 -images-15632.png,12015 -images-15633.png,12016 -images-15634.png,12017 -images-15635.png,12018 -images-15636.png,12019 -images-15637.png,12020 -images-15638.png,12021 -images-15639.png,12022 -images-15640.png,12023 -images-15641.png,12024 -images-15642.png,12025 -images-15643.png,12026 -images-15644.png,12027 -images-15645.png,12028 -images-15646.png,12029 -images-15647.png,12030 -images-15648.png,12031 -images-15649.png,12032 -images-15650.png,12033 -images-15651.png,12034 -images-15652.png,12035 -images-15653.png,12036 -images-15654.png,12037 -images-15655.png,12038 -images-15656.png,12039 -images-15657.png,12040 -images-15658.png,12041 -images-15659.png,12042 -images-15660.png,12043 -images-15661.png,12044 -images-15662.png,12045 -images-15663.png,12046 -images-15664.png,12047 -images-15665.png,12048 -images-15666.png,12049 -images-15667.png,12050 -images-15668.png,12051 -images-15669.png,12052 -images-15670.png,12053 -images-15671.png,12054 -images-15672.png,12055 -images-15673.png,12056 -images-15674.png,12057 -images-15675.png,12058 -images-15676.png,12059 -images-15677.png,12060 -images-15678.png,12061 -images-15679.png,12062 -images-15680.png,12063 -images-15681.png,12064 -images-15682.png,12065 -images-15683.png,12066 -images-15684.png,12067 -images-15685.png,12068 -images-15686.png,12069 -images-15687.png,12070 -images-15688.png,12071 -images-15689.png,12072 -images-15690.png,12073 -images-15691.png,12074 -images-15692.png,12075 -images-15693.png,12076 -images-15694.png,12077 -images-15695.png,12078 -images-15696.png,12079 -images-15697.png,12080 -images-15698.png,12081 -images-15699.png,12082 -images-15700.png,12083 -images-15701.png,12084 -images-15702.png,12085 -images-15703.png,12086 -images-15704.png,12087 -images-15705.png,12088 -images-15706.png,12089 -images-15707.png,12090 -images-15708.png,12091 -images-15709.png,12092 -images-15710.png,12093 -images-15711.png,12094 -images-15712.png,12095 -images-15713.png,12096 -images-15714.png,12097 -images-15715.png,12098 -images-15716.png,12099 -images-15717.png,12100 -images-15718.png,12101 -images-15719.png,12102 -images-15720.png,12103 -images-15721.png,12104 -images-15722.png,12105 -images-15723.png,12106 -images-15724.png,12107 -images-15725.png,12108 -images-15726.png,12109 -images-15727.png,12110 -images-15728.png,12111 -images-15729.png,12112 -images-15730.png,12113 -images-15731.png,12114 -images-15732.png,12115 -images-15733.png,12116 -images-15734.png,12117 -images-15735.png,12118 -images-15736.png,12119 -images-15737.png,12120 -images-15738.png,12121 -images-15739.png,12122 -images-15740.png,12123 -images-15741.png,12124 -images-15742.png,12125 -images-15743.png,12126 -images-15744.png,12127 -images-15745.png,12128 -images-15746.png,12129 -images-15747.png,12130 -images-15748.png,12131 -images-15749.png,12132 -images-15750.png,12133 -images-15751.png,12134 -images-15752.png,12135 -images-15753.png,12136 -images-15754.png,12137 -images-15755.png,12138 -images-15756.png,12139 -images-15757.png,12140 -images-15758.png,12141 -images-15759.png,12142 -images-15760.png,12143 -images-15761.png,12144 -images-15762.png,12145 -images-15763.png,12146 -images-15764.png,12147 -images-15765.png,12148 -images-15766.png,12149 -images-15767.png,12150 -images-15768.png,12151 -images-15769.png,12152 -images-15770.png,12153 -images-15771.png,12154 -images-15772.png,12155 -images-15773.png,12156 -images-15774.png,12157 -images-15775.png,12158 -images-15776.png,12159 -images-15777.png,12160 -images-15778.png,12161 -images-15779.png,12162 -images-15780.png,12163 -images-15781.png,12164 -images-15782.png,12165 -images-15783.png,12166 -images-15784.png,12167 -images-15785.png,12168 -images-15786.png,12169 -images-15787.png,12170 -images-15788.png,12171 -images-15789.png,12172 -images-15790.png,12173 -images-15791.png,12174 -images-15792.png,12175 -images-15793.png,12176 -images-15794.png,12177 -images-15795.png,12178 -images-15796.png,12179 -images-15797.png,12180 -images-15798.png,12181 -images-15799.png,12182 -images-15800.png,12183 -images-15801.png,12184 -images-15802.png,12185 -images-15803.png,12186 -images-15804.png,12187 -images-15805.png,12188 -images-15806.png,12189 -images-15807.png,12190 -images-15808.png,12191 -images-15809.png,12192 -images-15810.png,12193 -images-15811.png,12194 -images-15812.png,12195 -images-15813.png,12196 -images-15814.png,12197 -images-15815.png,12198 -images-15816.png,12199 -images-15817.png,12200 -images-15818.png,12201 -images-15819.png,12202 -images-15820.png,12203 -images-15821.png,12204 -images-15822.png,12205 -images-15823.png,12206 -images-15824.png,12207 -images-15825.png,12208 -images-15826.png,12209 -images-15827.png,12210 -images-15828.png,12211 -images-15829.png,12212 -images-15830.png,12213 -images-15831.png,12214 -images-15832.png,12215 -images-15833.png,12216 -images-15834.png,12217 -images-15835.png,12218 -images-15836.png,12219 -images-15837.png,12220 -images-15838.png,12221 -images-15839.png,12222 -images-15840.png,12223 -images-15841.png,12224 -images-15842.png,12225 -images-15843.png,12226 -images-15844.png,12227 -images-15845.png,12228 -images-15846.png,12229 -images-15847.png,12230 -images-15848.png,12231 -images-15849.png,12232 -images-15850.png,12233 -images-15851.png,12234 -images-15852.png,12235 -images-15853.png,12236 -images-15854.png,12237 -images-15855.png,12238 -images-15856.png,12239 -images-15857.png,12240 -images-15858.png,12241 -images-15859.png,12242 -images-15860.png,12243 -images-15861.png,12244 -images-15862.png,12245 -images-15863.png,12246 -images-15864.png,12247 -images-15865.png,12248 -images-15866.png,12249 -images-15867.png,12250 -images-15868.png,12251 -images-15869.png,12252 -images-15870.png,12253 -images-15871.png,12254 -images-15872.png,12255 -images-15873.png,12256 -images-15874.png,12257 -images-15875.png,12258 -images-15876.png,12259 -images-15877.png,12260 -images-15878.png,12261 -images-15879.png,12262 -images-15880.png,12263 -images-15881.png,12264 -images-15882.png,12265 -images-15883.png,12266 -images-15884.png,12267 -images-15885.png,12268 -images-15886.png,12269 -images-15887.png,12270 -images-15888.png,12271 -images-15889.png,12272 -images-15890.png,12273 -images-15891.png,12274 -images-15892.png,12275 -images-15893.png,12276 -images-15894.png,12277 -images-15895.png,12278 -images-15896.png,12279 -images-15897.png,12280 -images-15898.png,12281 -images-15899.png,12282 -images-15900.png,12283 -images-15901.png,12284 -images-15902.png,12285 -images-15903.png,12286 -images-15904.png,12287 -images-15905.png,12288 -images-15906.png,12289 -images-15907.png,12290 -images-15908.png,12291 -images-15909.png,12292 -images-15910.png,12293 -images-15911.png,12294 -images-15912.png,12295 -images-15913.png,12296 -images-15914.png,12297 -images-15915.png,12298 -images-15916.png,12299 -images-15917.png,12300 -images-15918.png,12301 -images-15919.png,12302 -images-15920.png,12303 -images-15921.png,12304 -images-15922.png,12305 -images-15923.png,12306 -images-15924.png,12307 -images-15925.png,12308 -images-15926.png,12309 -images-15927.png,12310 -images-15928.png,12311 -images-15929.png,12312 -images-15930.png,12313 -images-15931.png,12314 -images-15932.png,12315 -images-15933.png,12316 -images-15934.png,12317 -images-15935.png,12318 -images-15936.png,12319 -images-15937.png,12320 -images-15938.png,12321 -images-15939.png,12322 -images-15940.png,12323 -images-15941.png,12324 -images-15942.png,12325 -images-15943.png,12326 -images-15944.png,12327 -images-15945.png,12328 -images-15946.png,12329 -images-15947.png,12330 -images-15948.png,12331 -images-15949.png,12332 -images-15950.png,12333 -images-15951.png,12334 -images-15952.png,12335 -images-15953.png,12336 -images-15954.png,12337 -images-15955.png,12338 -images-15956.png,12339 -images-15957.png,12340 -images-15958.png,12341 -images-15959.png,12342 -images-15960.png,12343 -images-15961.png,12344 -images-15962.png,12345 -images-15963.png,12346 -images-15964.png,12347 -images-15965.png,12348 -images-15966.png,12349 -images-15967.png,12350 -images-15968.png,12351 -images-15969.png,12352 -images-15970.png,12353 -images-15971.png,12354 -images-15972.png,12355 -images-15973.png,12356 -images-15974.png,12357 -images-15975.png,12358 -images-15976.png,12359 -images-15977.png,12360 -images-15978.png,12361 -images-15979.png,12362 -images-15980.png,12363 -images-15981.png,12364 -images-15982.png,12365 -images-15983.png,12366 -images-15984.png,12367 -images-15985.png,12368 -images-15986.png,12369 -images-15987.png,12370 -images-15988.png,12371 -images-15989.png,12372 -images-15990.png,12373 -images-15991.png,12374 -images-15992.png,12375 -images-15993.png,12376 -images-15994.png,12377 -images-15995.png,12378 -images-15996.png,12379 -images-15997.png,12380 -images-15998.png,12381 -images-15999.png,12382 -images-16000.png,12383 -images-16001.png,12384 -images-16002.png,12385 -images-16003.png,12386 -images-16004.png,12387 -images-16005.png,12388 -images-16006.png,12389 -images-16007.png,12390 -images-16008.png,12391 -images-16009.png,12392 -images-16010.png,12393 -images-16011.png,12394 -images-16012.png,12395 -images-16013.png,12396 -images-16014.png,12397 -images-16015.png,12398 -images-16016.png,12399 -images-16017.png,12400 -images-16018.png,12401 -images-16019.png,12402 -images-16020.png,12403 -images-16021.png,12404 -images-16022.png,12405 -images-16023.png,12406 -images-16024.png,12407 -images-16025.png,12408 -images-16026.png,12409 -images-16027.png,12410 -images-16028.png,12411 -images-16029.png,12412 -images-16030.png,12413 -images-16031.png,12414 -images-16032.png,12415 -images-16033.png,12416 -images-16034.png,12417 -images-16035.png,12418 -images-16036.png,12419 -images-16037.png,12420 -images-16038.png,12421 -images-16039.png,12422 -images-16040.png,12423 -images-16041.png,12424 -images-16042.png,12425 -images-16043.png,12426 -images-16044.png,12427 -images-16045.png,12428 -images-16046.png,12429 -images-16047.png,12430 -images-16048.png,12431 -images-16049.png,12432 -images-16050.png,12433 -images-16051.png,12434 -images-16052.png,12435 -images-16053.png,12436 -images-16054.png,12437 -images-16055.png,12438 -images-16056.png,12439 -images-16057.png,12440 -images-16058.png,12441 -images-16059.png,12442 -images-16060.png,12443 -images-16061.png,12444 -images-16062.png,12445 -images-16063.png,12446 -images-16064.png,12447 -images-16065.png,12448 -images-16066.png,12449 -images-16067.png,12450 -images-16068.png,12451 -images-16069.png,12452 -images-16070.png,12453 -images-16071.png,12454 -images-16072.png,12455 -images-16073.png,12456 -images-16074.png,12457 -images-16075.png,12458 -images-16076.png,12459 -images-16077.png,12460 -images-16078.png,12461 -images-16079.png,12462 -images-16080.png,12463 -images-16081.png,12464 -images-16082.png,12465 -images-16083.png,12466 -images-16084.png,12467 -images-16085.png,12468 -images-16086.png,12469 -images-16087.png,12470 -images-16088.png,12471 -images-16089.png,12472 -images-16090.png,12473 -images-16091.png,12474 -images-16092.png,12475 -images-16093.png,12476 -images-16094.png,12477 -images-16095.png,12478 -images-16096.png,12479 -images-16097.png,12480 -images-16098.png,12481 -images-16099.png,12482 -images-16100.png,12483 -images-16101.png,12484 -images-16102.png,12485 -images-16103.png,12486 -images-16104.png,12487 -images-16105.png,12488 -images-16106.png,12489 -images-16107.png,12490 -images-16108.png,12491 -images-16109.png,12492 -images-16110.png,12493 -images-16111.png,12494 -images-16112.png,12495 -images-16113.png,12496 -images-16114.png,12497 -images-16115.png,12498 -images-16116.png,12499 -images-16117.png,12500 -images-16118.png,12501 -images-16119.png,12502 -images-16120.png,12503 -images-16121.png,12504 -images-16122.png,12505 -images-16123.png,12506 -images-16124.png,12507 -images-16125.png,12508 -images-16126.png,12509 -images-16127.png,12510 -images-16128.png,12511 -images-16129.png,12512 -images-16130.png,12513 -images-16131.png,12514 -images-16132.png,12515 -images-16133.png,12516 -images-16134.png,12517 -images-16135.png,12518 -images-16136.png,12519 -images-16137.png,12520 -images-16138.png,12521 -images-16139.png,12522 -images-16140.png,12523 -images-16141.png,12524 -images-16142.png,12525 -images-16143.png,12526 -images-16144.png,12527 -images-16145.png,12528 -images-16146.png,12529 -images-16147.png,12530 -images-16148.png,12531 -images-16149.png,12532 -images-16150.png,12533 -images-16151.png,12534 -images-16152.png,12535 -images-16153.png,12536 -images-16154.png,12537 -images-16155.png,12538 -images-16156.png,12539 -images-16157.png,12540 -images-16158.png,12541 -images-16159.png,12542 -images-16160.png,12543 -images-16161.png,12544 -images-16162.png,12545 -images-16163.png,12546 -images-16164.png,12547 -images-16165.png,12548 -images-16166.png,12549 -images-16167.png,12550 -images-16168.png,12551 -images-16169.png,12552 -images-16170.png,12553 -images-16171.png,12554 -images-16172.png,12555 -images-16173.png,12556 -images-16174.png,12557 -images-16175.png,12558 -images-16176.png,12559 -images-16177.png,12560 -images-16178.png,12561 -images-16179.png,12562 -images-16180.png,12563 -images-16181.png,12564 -images-16182.png,12565 -images-16183.png,12566 -images-16184.png,12567 -images-16185.png,12568 -images-16186.png,12569 -images-16187.png,12570 -images-16188.png,12571 -images-16189.png,12572 -images-16190.png,12573 -images-16191.png,12574 -images-16192.png,12575 -images-16193.png,12576 -images-16194.png,12577 -images-16195.png,12578 -images-16196.png,12579 -images-16197.png,12580 -images-16198.png,12581 -images-16199.png,12582 -images-16200.png,12583 -images-16201.png,12584 -images-16202.png,12585 -images-16206.png,12586 -images-16207.png,12587 -images-16208.png,12588 -images-16209.png,12589 -images-16210.png,12590 -images-16211.png,12591 -images-16212.png,12592 -images-16213.png,12593 -images-16214.png,12594 -images-16215.png,12595 -images-16216.png,12596 -images-16217.png,12597 -images-16218.png,12598 -images-16219.png,12599 -images-16220.png,12600 -images-16221.png,12601 -images-16222.png,12602 -images-16223.png,12603 -images-16224.png,12604 -images-16225.png,12605 -images-16226.png,12606 -images-16227.png,12607 -images-16228.png,12608 -images-16229.png,12609 -images-16230.png,12610 -images-16231.png,12611 -images-16232.png,12612 -images-16233.png,12613 -images-16234.png,12614 -images-16235.png,12615 -images-16236.png,12616 -images-16237.png,12617 -images-16238.png,12618 -images-16239.png,12619 -images-16240.png,12620 -images-16241.png,12621 -images-16242.png,12622 -images-16243.png,12623 -images-16244.png,12624 -images-16245.png,12625 -images-16246.png,12626 -images-16247.png,12627 -images-16248.png,12628 -images-16249.png,12629 -images-16250.png,12630 -images-16251.png,12631 -images-16252.png,12632 -images-16253.png,12633 -images-16254.png,12634 -images-16255.png,12635 -images-16256.png,12636 -images-16257.png,12637 -images-16258.png,12638 -images-16259.png,12639 -images-16260.png,12640 -images-16261.png,12641 -images-16262.png,12642 -images-16263.png,12643 -images-16264.png,12644 -images-16265.png,12645 -images-16266.png,12646 -images-16267.png,12647 -images-16268.png,12648 -images-16269.png,12649 -images-16270.png,12650 -images-16271.png,12651 -images-16272.png,12652 -images-16273.png,12653 -images-16274.png,12654 -images-16275.png,12655 -images-16276.png,12656 -images-16277.png,12657 -images-16278.png,12658 -images-16279.png,12659 -images-16280.png,12660 -images-16281.png,12661 -images-16282.png,12662 -images-16283.png,12663 -images-16284.png,12664 -images-16285.png,12665 -images-16286.png,12666 -images-16287.png,12667 -images-16288.png,12668 -images-16289.png,12669 -images-16290.png,12670 -images-16291.png,12671 -images-16292.png,12672 -images-16293.png,12673 -images-16294.png,12674 -images-16295.png,12675 -images-16296.png,12676 -images-16297.png,12677 -images-16298.png,12678 -images-16299.png,12679 -images-16300.png,12680 -images-16301.png,12681 -images-16302.png,12682 -images-16303.png,12683 -images-16304.png,12684 -images-16305.png,12685 -images-16306.png,12686 -images-16307.png,12687 -images-16308.png,12688 -images-16309.png,12689 -images-16310.png,12690 -images-16311.png,12691 -images-16312.png,12692 -images-16313.png,12693 -images-16314.png,12694 -images-16315.png,12695 -images-16316.png,12696 -images-16317.png,12697 -images-16318.png,12698 -images-16319.png,12699 -images-16320.png,12700 -images-16321.png,12701 -images-16322.png,12702 -images-16323.png,12703 -images-16324.png,12704 -images-16325.png,12705 -images-16326.png,12706 -images-16327.png,12707 -images-16328.png,12708 -images-16329.png,12709 -images-16330.png,12710 -images-16331.png,12711 -images-16332.png,12712 -images-16333.png,12713 -images-16334.png,12714 -images-16335.png,12715 -images-16336.png,12716 -images-16337.png,12717 -images-16338.png,12718 -images-16339.png,12719 -images-16340.png,12720 -images-16341.png,12721 -images-16342.png,12722 -images-16343.png,12723 -images-16344.png,12724 -images-16345.png,12725 -images-16346.png,12726 -images-16347.png,12727 -images-16348.png,12728 -images-16349.png,12729 -images-16350.png,12730 -images-16351.png,12731 -images-16352.png,12732 -images-16353.png,12733 -images-16354.png,12734 -images-16355.png,12735 -images-16356.png,12736 -images-16357.png,12737 -images-16358.png,12738 -images-16359.png,12739 -images-16360.png,12740 -images-16361.png,12741 -images-16362.png,12742 -images-16363.png,12743 -images-16364.png,12744 -images-16365.png,12745 -images-16366.png,12746 -images-16367.png,12747 -images-16368.png,12748 -images-16369.png,12749 -images-16370.png,12750 -images-16371.png,12751 -images-16372.png,12752 -images-16373.png,12753 -images-16374.png,12754 -images-16375.png,12755 -images-16376.png,12756 -images-16377.png,12757 -images-16378.png,12758 -images-16379.png,12759 -images-16380.png,12760 -images-16381.png,12761 -images-16382.png,12762 -images-16383.png,12763 -images-16384.png,12764 -images-16385.png,12765 -images-16386.png,12766 -images-16387.png,12767 -images-16388.png,12768 -images-16389.png,12769 -images-16390.png,12770 -images-16391.png,12771 -images-16392.png,12772 -images-16393.png,12773 -images-16394.png,12774 -images-16395.png,12775 -images-16396.png,12776 -images-16397.png,12777 -images-16398.png,12778 -images-16399.png,12779 -images-16400.png,12780 -images-16401.png,12781 -images-16402.png,12782 -images-16403.png,12783 -images-16404.png,12784 -images-16405.png,12785 -images-16406.png,12786 -images-16407.png,12787 -images-16408.png,12788 -images-16409.png,12789 -images-16410.png,12790 -images-16411.png,12791 -images-16412.png,12792 -images-16413.png,12793 -images-16414.png,12794 -images-16415.png,12795 -images-16416.png,12796 -images-16417.png,12797 -images-16418.png,12798 -images-16419.png,12799 -images-16420.png,12800 -images-16421.png,12801 -images-16422.png,12802 -images-16423.png,12803 -images-16424.png,12804 -images-16425.png,12805 -images-16426.png,12806 -images-16427.png,12807 -images-16428.png,12808 -images-16429.png,12809 -images-16430.png,12810 -images-16431.png,12811 -images-16432.png,12812 -images-16433.png,12813 -images-16434.png,12814 -images-16435.png,12815 -images-16436.png,12816 -images-16437.png,12817 -images-16438.png,12818 -images-16439.png,12819 -images-16440.png,12820 -images-16441.png,12821 -images-16442.png,12822 -images-16443.png,12823 -images-16444.png,12824 -images-16445.png,12825 -images-16446.png,12826 -images-16447.png,12827 -images-16448.png,12828 -images-16449.png,12829 -images-16450.png,12830 -images-16451.png,12831 -images-16452.png,12832 -images-16453.png,12833 -images-16454.png,12834 -images-16455.png,12835 -images-16456.png,12836 -images-16457.png,12837 -images-16458.png,12838 -images-16459.png,12839 -images-16460.png,12840 -images-16461.png,12841 -images-16462.png,12842 -images-16463.png,12843 -images-16464.png,12844 -images-16465.png,12845 -images-16466.png,12846 -images-16467.png,12847 -images-16468.png,12848 -images-16469.png,12849 -images-16470.png,12850 -images-16471.png,12851 -images-16484.png,12852 -images-16485.png,12853 -images-16486.png,12854 -images-16487.png,12855 -images-16488.png,12856 -images-16489.png,12857 -images-16490.png,12858 -images-16491.png,12859 -images-16492.png,12860 -images-16493.png,12861 -images-16494.png,12862 -images-16495.png,12863 -images-16496.png,12864 -images-16497.png,12865 -images-16498.png,12866 -images-16499.png,12867 -images-16500.png,12868 -images-16501.png,12869 -images-16502.png,12870 -images-16503.png,12871 -images-16504.png,12872 -images-16505.png,12873 -images-16506.png,12874 -images-16507.png,12875 -images-16508.png,12876 -images-16509.png,12877 -images-16510.png,12878 -images-16511.png,12879 -images-16512.png,12880 -images-16513.png,12881 -images-16514.png,12882 -images-16515.png,12883 -images-16516.png,12884 -images-16517.png,12885 -images-16518.png,12886 -images-16519.png,12887 -images-16520.png,12888 -images-16521.png,12889 -images-16522.png,12890 -images-16523.png,12891 -images-16524.png,12892 -images-16525.png,12893 -images-16526.png,12894 -images-16527.png,12895 -images-16528.png,12896 -images-16529.png,12897 -images-16530.png,12898 -images-16531.png,12899 -images-16532.png,12900 -images-16533.png,12901 -images-16534.png,12902 -images-16535.png,12903 -images-16536.png,12904 -images-16537.png,12905 -images-16538.png,12906 -images-16539.png,12907 -images-16540.png,12908 -images-16541.png,12909 -images-16542.png,12910 -images-16543.png,12911 -images-16544.png,12912 -images-16545.png,12913 -images-16546.png,12914 -images-16547.png,12915 -images-16548.png,12916 -images-16549.png,12917 -images-16550.png,12918 -images-16551.png,12919 -images-16552.png,12920 -images-16553.png,12921 -images-16554.png,12922 -images-16555.png,12923 -images-16556.png,12924 -images-16557.png,12925 -images-16558.png,12926 -images-16559.png,12927 -images-16560.png,12928 -images-16561.png,12929 -images-16562.png,12930 -images-16563.png,12931 -images-16564.png,12932 -images-16565.png,12933 -images-16566.png,12934 -images-16567.png,12935 -images-16568.png,12936 -images-16569.png,12937 -images-16570.png,12938 -images-16571.png,12939 -images-16572.png,12940 -images-16573.png,12941 -images-16574.png,12942 -images-16575.png,12943 -images-16576.png,12944 -images-16577.png,12945 -images-16578.png,12946 -images-16579.png,12947 -images-16580.png,12948 -images-16581.png,12949 -images-16582.png,12950 -images-16583.png,12951 -images-16584.png,12952 -images-16585.png,12953 -images-16586.png,12954 -images-16587.png,12955 -images-16588.png,12956 -images-16589.png,12957 -images-16590.png,12958 -images-16591.png,12959 -images-16592.png,12960 -images-16593.png,12961 -images-16594.png,12962 -images-16595.png,12963 -images-16596.png,12964 -images-16597.png,12965 -images-16598.png,12966 -images-16599.png,12967 -images-16600.png,12968 -images-16601.png,12969 -images-16602.png,12970 -images-16603.png,12971 -images-16604.png,12972 -images-16605.png,12973 -images-16606.png,12974 -images-16607.png,12975 -images-16608.png,12976 -images-16609.png,12977 -images-16610.png,12978 -images-16611.png,12979 -images-16612.png,12980 -images-16613.png,12981 -images-16614.png,12982 -images-16615.png,12983 -images-16616.png,12984 -images-16617.png,12985 -images-16618.png,12986 -images-16619.png,12987 -images-16620.png,12988 -images-16621.png,12989 -images-16622.png,12990 -images-16623.png,12991 -images-16624.png,12992 -images-16625.png,12993 -images-16626.png,12994 -images-16627.png,12995 -images-16628.png,12996 -images-16629.png,12997 -images-16630.png,12998 -images-16631.png,12999 -images-16632.png,13000 -images-16633.png,13001 -images-16634.png,13002 -images-16635.png,13003 -images-16636.png,13004 -images-16637.png,13005 -images-16638.png,13006 -images-16639.png,13007 -images-16640.png,13008 -images-16641.png,13009 -images-16642.png,13010 -images-16643.png,13011 -images-16644.png,13012 -images-16645.png,13013 -images-16646.png,13014 -images-16647.png,13015 -images-16648.png,13016 -images-16649.png,13017 -images-16650.png,13018 -images-16651.png,13019 -images-16652.png,13020 -images-16653.png,13021 -images-16654.png,13022 -images-16655.png,13023 -images-16656.png,13024 -images-16657.png,13025 -images-16658.png,13026 -images-16659.png,13027 -images-16660.png,13028 -images-16661.png,13029 -images-16662.png,13030 -images-16663.png,13031 -images-16664.png,13032 -images-16665.png,13033 -images-16666.png,13034 -images-16667.png,13035 -images-16668.png,13036 -images-16669.png,13037 -images-16670.png,13038 -images-16671.png,13039 -images-16672.png,13040 -images-16673.png,13041 -images-16674.png,13042 -images-16675.png,13043 -images-16676.png,13044 -images-16677.png,13045 -images-16678.png,13046 -images-16679.png,13047 -images-16680.png,13048 -images-16681.png,13049 -images-16682.png,13050 -images-16683.png,13051 -images-16684.png,13052 -images-16685.png,13053 -images-16686.png,13054 -images-16687.png,13055 -images-16688.png,13056 -images-16689.png,13057 -images-16695.png,13058 -images-16696.png,13059 -images-16697.png,13060 -images-16698.png,13061 -images-16699.png,13062 -images-16700.png,13063 -images-16701.png,13064 -images-16702.png,13065 -images-16703.png,13066 -images-16704.png,13067 -images-16705.png,13068 -images-16706.png,13069 -images-16707.png,13070 -images-16708.png,13071 -images-16709.png,13072 -images-16710.png,13073 -images-16711.png,13074 -images-16712.png,13075 -images-16713.png,13076 -images-16714.png,13077 -images-16715.png,13078 -images-16716.png,13079 -images-16717.png,13080 -images-16718.png,13081 -images-16719.png,13082 -images-16720.png,13083 -images-16721.png,13084 -images-16722.png,13085 -images-16723.png,13086 -images-16724.png,13087 -images-16725.png,13088 -images-16726.png,13089 -images-16727.png,13090 -images-16728.png,13091 -images-16729.png,13092 -images-16730.png,13093 -images-16731.png,13094 -images-16732.png,13095 -images-16733.png,13096 -images-16734.png,13097 -images-16735.png,13098 -images-16736.png,13099 -images-16737.png,13100 -images-16738.png,13101 -images-16739.png,13102 -images-16740.png,13103 -images-16741.png,13104 -images-16742.png,13105 -images-16743.png,13106 -images-16744.png,13107 -images-16745.png,13108 -images-16746.png,13109 -images-16747.png,13110 -images-16748.png,13111 -images-16749.png,13112 -images-16750.png,13113 -images-16751.png,13114 -images-16752.png,13115 -images-16753.png,13116 -images-16754.png,13117 -images-16755.png,13118 -images-16756.png,13119 -images-16757.png,13120 -images-16758.png,13121 -images-16759.png,13122 -images-16760.png,13123 -images-16761.png,13124 -images-16762.png,13125 -images-16763.png,13126 -images-16764.png,13127 -images-16765.png,13128 -images-16766.png,13129 -images-16767.png,13130 -images-16768.png,13131 -images-16769.png,13132 -images-16770.png,13133 -images-16771.png,13134 -images-16772.png,13135 -images-16773.png,13136 -images-16774.png,13137 -images-16775.png,13138 -images-16776.png,13139 -images-16777.png,13140 -images-16778.png,13141 -images-16779.png,13142 -images-16780.png,13143 -images-16781.png,13144 -images-16782.png,13145 -images-16783.png,13146 -images-16784.png,13147 -images-16785.png,13148 -images-16786.png,13149 -images-16787.png,13150 -images-16788.png,13151 -images-16789.png,13152 -images-16790.png,13153 -images-16791.png,13154 -images-16792.png,13155 -images-16793.png,13156 -images-16794.png,13157 -images-16795.png,13158 -images-16796.png,13159 -images-16797.png,13160 -images-16798.png,13161 -images-16799.png,13162 -images-16800.png,13163 -images-16801.png,13164 -images-16802.png,13165 -images-16803.png,13166 -images-16804.png,13167 -images-16805.png,13168 -images-16806.png,13169 -images-16807.png,13170 -images-16808.png,13171 -images-16809.png,13172 -images-16810.png,13173 -images-16811.png,13174 -images-16812.png,13175 -images-16813.png,13176 -images-16814.png,13177 -images-16815.png,13178 -images-16816.png,13179 -images-16817.png,13180 -images-16818.png,13181 -images-16819.png,13182 -images-16820.png,13183 -images-16821.png,13184 -images-16822.png,13185 -images-16823.png,13186 -images-16824.png,13187 -images-16825.png,13188 -images-16826.png,13189 -images-16827.png,13190 -images-16828.png,13191 -images-16829.png,13192 -images-16830.png,13193 -images-16831.png,13194 -images-16832.png,13195 -images-16833.png,13196 -images-16834.png,13197 -images-16835.png,13198 -images-16836.png,13199 -images-16837.png,13200 -images-16838.png,13201 -images-16839.png,13202 -images-16840.png,13203 -images-16841.png,13204 -images-16842.png,13205 -images-16843.png,13206 -images-16844.png,13207 -images-16845.png,13208 -images-16846.png,13209 -images-16847.png,13210 -images-16848.png,13211 -images-16849.png,13212 -images-16850.png,13213 -images-16851.png,13214 -images-16852.png,13215 -images-16853.png,13216 -images-16854.png,13217 -images-16855.png,13218 -images-16856.png,13219 -images-16857.png,13220 -images-16858.png,13221 -images-16859.png,13222 -images-16860.png,13223 -images-16861.png,13224 -images-16862.png,13225 -images-16863.png,13226 -images-16864.png,13227 -images-16865.png,13228 -images-16866.png,13229 -images-16867.png,13230 -images-16868.png,13231 -images-16869.png,13232 -images-16870.png,13233 -images-16871.png,13234 -images-16872.png,13235 -images-16873.png,13236 -images-16874.png,13237 -images-16875.png,13238 -images-16876.png,13239 -images-16877.png,13240 -images-16878.png,13241 -images-16879.png,13242 -images-16880.png,13243 -images-16881.png,13244 -images-16882.png,13245 -images-16883.png,13246 -images-16884.png,13247 -images-16885.png,13248 -images-16886.png,13249 -images-16887.png,13250 -images-16888.png,13251 -images-16889.png,13252 -images-16890.png,13253 -images-16891.png,13254 -images-16892.png,13255 -images-16893.png,13256 -images-16894.png,13257 -images-16895.png,13258 -images-16896.png,13259 -images-16897.png,13260 -images-16898.png,13261 -images-16899.png,13262 -images-16900.png,13263 -images-16901.png,13264 -images-16902.png,13265 -images-16903.png,13266 -images-16904.png,13267 -images-16905.png,13268 -images-16906.png,13269 -images-16907.png,13270 -images-16908.png,13271 -images-16909.png,13272 -images-16910.png,13273 -images-16911.png,13274 -images-16912.png,13275 -images-16913.png,13276 -images-16914.png,13277 -images-16915.png,13278 -images-16916.png,13279 -images-16917.png,13280 -images-16918.png,13281 -images-16919.png,13282 -images-16920.png,13283 -images-16921.png,13284 -images-16922.png,13285 -images-16923.png,13286 -images-16924.png,13287 -images-16925.png,13288 -images-16926.png,13289 -images-16927.png,13290 -images-16928.png,13291 -images-16929.png,13292 -images-16930.png,13293 -images-16931.png,13294 -images-16932.png,13295 -images-16936.png,13296 -images-16937.png,13297 -images-16938.png,13298 -images-16939.png,13299 -images-16940.png,13300 -images-16941.png,13301 -images-16942.png,13302 -images-16943.png,13303 -images-16944.png,13304 -images-16945.png,13305 -images-16946.png,13306 -images-16947.png,13307 -images-16948.png,13308 -images-16949.png,13309 -images-16950.png,13310 -images-16951.png,13311 -images-16952.png,13312 -images-16953.png,13313 -images-16954.png,13314 -images-16955.png,13315 -images-16956.png,13316 -images-16957.png,13317 -images-16958.png,13318 -images-16959.png,13319 -images-16960.png,13320 -images-16961.png,13321 -images-16962.png,13322 -images-16963.png,13323 -images-16964.png,13324 -images-16965.png,13325 -images-16966.png,13326 -images-16967.png,13327 -images-16968.png,13328 -images-16969.png,13329 -images-16970.png,13330 -images-16971.png,13331 -images-16972.png,13332 -images-16973.png,13333 -images-16974.png,13334 -images-16975.png,13335 -images-16976.png,13336 -images-16977.png,13337 -images-16978.png,13338 -images-16979.png,13339 -images-16980.png,13340 -images-16981.png,13341 -images-16982.png,13342 -images-16983.png,13343 -images-16984.png,13344 -images-16985.png,13345 -images-16986.png,13346 -images-16987.png,13347 -images-16988.png,13348 -images-16989.png,13349 -images-16990.png,13350 -images-16991.png,13351 -images-16992.png,13352 -images-16993.png,13353 -images-16994.png,13354 -images-16995.png,13355 -images-16996.png,13356 -images-16997.png,13357 -images-16998.png,13358 -images-16999.png,13359 -images-17000.png,13360 -images-17001.png,13361 -images-17002.png,13362 -images-17003.png,13363 -images-17004.png,13364 -images-17005.png,13365 -images-17006.png,13366 -images-17007.png,13367 -images-17008.png,13368 -images-17009.png,13369 -images-17010.png,13370 -images-17011.png,13371 -images-17012.png,13372 -images-17013.png,13373 -images-17014.png,13374 -images-17015.png,13375 -images-17016.png,13376 -images-17017.png,13377 -images-17018.png,13378 -images-17019.png,13379 -images-17020.png,13380 -images-17021.png,13381 -images-17022.png,13382 -images-17023.png,13383 -images-17024.png,13384 -images-17025.png,13385 -images-17026.png,13386 -images-17027.png,13387 -images-17028.png,13388 -images-17029.png,13389 -images-17030.png,13390 -images-17031.png,13391 -images-17032.png,13392 -images-17033.png,13393 -images-17034.png,13394 -images-17035.png,13395 -images-17036.png,13396 -images-17037.png,13397 -images-17038.png,13398 -images-17039.png,13399 -images-17040.png,13400 -images-17041.png,13401 -images-17042.png,13402 -images-17043.png,13403 -images-17044.png,13404 -images-17045.png,13405 -images-17046.png,13406 -images-17047.png,13407 -images-17048.png,13408 -images-17049.png,13409 -images-17050.png,13410 -images-17051.png,13411 -images-17052.png,13412 -images-17053.png,13413 -images-17068.png,13414 -images-17069.png,13415 -images-17070.png,13416 -images-17071.png,13417 -images-17072.png,13418 -images-17073.png,13419 -images-17074.png,13420 -images-17075.png,13421 -images-17076.png,13422 -images-17077.png,13423 -images-17078.png,13424 -images-17079.png,13425 -images-17080.png,13426 -images-17081.png,13427 -images-17082.png,13428 -images-17083.png,13429 -images-17084.png,13430 -images-17085.png,13431 -images-17086.png,13432 -images-17087.png,13433 -images-17088.png,13434 -images-17089.png,13435 -images-17090.png,13436 -images-17091.png,13437 -images-17092.png,13438 -images-17093.png,13439 -images-17094.png,13440 -images-17095.png,13441 -images-17096.png,13442 -images-17097.png,13443 -images-17098.png,13444 -images-17099.png,13445 -images-17100.png,13446 -images-17101.png,13447 -images-17102.png,13448 -images-17103.png,13449 -images-17104.png,13450 -images-17105.png,13451 -images-17106.png,13452 -images-17107.png,13453 -images-17108.png,13454 -images-17109.png,13455 -images-17110.png,13456 -images-17111.png,13457 -images-17112.png,13458 -images-17113.png,13459 -images-17114.png,13460 -images-17115.png,13461 -images-17116.png,13462 -images-17117.png,13463 -images-17118.png,13464 -images-17119.png,13465 -images-17120.png,13466 -images-17121.png,13467 -images-17122.png,13468 -images-17123.png,13469 -images-17124.png,13470 -images-17125.png,13471 -images-17126.png,13472 -images-17127.png,13473 -images-17128.png,13474 -images-17129.png,13475 -images-17130.png,13476 -images-17131.png,13477 -images-17132.png,13478 -images-17133.png,13479 -images-17134.png,13480 -images-17135.png,13481 -images-17136.png,13482 -images-17137.png,13483 -images-17138.png,13484 -images-17139.png,13485 -images-17140.png,13486 -images-17141.png,13487 -images-17142.png,13488 -images-17143.png,13489 -images-17144.png,13490 -images-17145.png,13491 -images-17146.png,13492 -images-17147.png,13493 -images-17148.png,13494 -images-17149.png,13495 -images-17150.png,13496 -images-17151.png,13497 -images-17152.png,13498 -images-17153.png,13499 -images-17154.png,13500 -images-17155.png,13501 -images-17156.png,13502 -images-17157.png,13503 -images-17158.png,13504 -images-17159.png,13505 -images-17160.png,13506 -images-17161.png,13507 -images-17162.png,13508 -images-17163.png,13509 -images-17164.png,13510 -images-17165.png,13511 -images-17166.png,13512 -images-17167.png,13513 -images-17168.png,13514 -images-17169.png,13515 -images-17170.png,13516 -images-17171.png,13517 -images-17172.png,13518 -images-17173.png,13519 -images-17174.png,13520 -images-17175.png,13521 -images-17176.png,13522 -images-17183.png,13523 -images-17184.png,13524 -images-17185.png,13525 -images-17186.png,13526 -images-17187.png,13527 -images-17188.png,13528 -images-17189.png,13529 -images-17190.png,13530 -images-17191.png,13531 -images-17192.png,13532 -images-17193.png,13533 -images-17194.png,13534 -images-17195.png,13535 -images-17196.png,13536 -images-17197.png,13537 -images-17198.png,13538 -images-17199.png,13539 -images-17200.png,13540 -images-17201.png,13541 -images-17202.png,13542 -images-17203.png,13543 -images-17204.png,13544 -images-17205.png,13545 -images-17206.png,13546 -images-17207.png,13547 -images-17208.png,13548 -images-17209.png,13549 -images-17210.png,13550 -images-17211.png,13551 -images-17212.png,13552 -images-17213.png,13553 -images-17214.png,13554 -images-17215.png,13555 -images-17216.png,13556 -images-17217.png,13557 -images-17218.png,13558 -images-17219.png,13559 -images-17220.png,13560 -images-17221.png,13561 -images-17222.png,13562 -images-17223.png,13563 -images-17224.png,13564 -images-17225.png,13565 -images-17226.png,13566 -images-17227.png,13567 -images-17228.png,13568 -images-17229.png,13569 -images-17230.png,13570 -images-17231.png,13571 -images-17232.png,13572 -images-17233.png,13573 -images-17234.png,13574 -images-17235.png,13575 -images-17236.png,13576 -images-17237.png,13577 -images-17238.png,13578 -images-17239.png,13579 -images-17240.png,13580 -images-17241.png,13581 -images-17242.png,13582 -images-17243.png,13583 -images-17244.png,13584 -images-17245.png,13585 -images-17246.png,13586 -images-17247.png,13587 -images-17248.png,13588 -images-17249.png,13589 -images-17250.png,13590 -images-17251.png,13591 -images-17252.png,13592 -images-17253.png,13593 -images-17254.png,13594 -images-17255.png,13595 -images-17256.png,13596 -images-17257.png,13597 -images-17258.png,13598 -images-17259.png,13599 -images-17260.png,13600 -images-17261.png,13601 -images-17262.png,13602 -images-17263.png,13603 -images-17264.png,13604 -images-17265.png,13605 -images-17266.png,13606 -images-17267.png,13607 -images-17268.png,13608 -images-17269.png,13609 -images-17270.png,13610 -images-17271.png,13611 -images-17272.png,13612 -images-17273.png,13613 -images-17274.png,13614 -images-17275.png,13615 -images-17276.png,13616 -images-17277.png,13617 -images-17278.png,13618 -images-17279.png,13619 -images-17280.png,13620 -images-17281.png,13621 -images-17282.png,13622 -images-17283.png,13623 -images-17284.png,13624 -images-17285.png,13625 -images-17286.png,13626 -images-17287.png,13627 -images-17288.png,13628 -images-17289.png,13629 -images-17290.png,13630 -images-17291.png,13631 -images-17292.png,13632 -images-17293.png,13633 -images-17294.png,13634 -images-17295.png,13635 -images-17296.png,13636 -images-17297.png,13637 -images-17298.png,13638 -images-17299.png,13639 -images-17300.png,13640 -images-17301.png,13641 -images-17302.png,13642 -images-17303.png,13643 -images-17304.png,13644 -images-17305.png,13645 -images-17306.png,13646 -images-17307.png,13647 -images-17308.png,13648 -images-17309.png,13649 -images-17310.png,13650 -images-17311.png,13651 -images-17312.png,13652 -images-17313.png,13653 -images-17314.png,13654 -images-17315.png,13655 -images-17316.png,13656 -images-17317.png,13657 -images-17318.png,13658 -images-17319.png,13659 -images-17320.png,13660 -images-17321.png,13661 -images-17322.png,13662 -images-17323.png,13663 -images-17324.png,13664 -images-17325.png,13665 -images-17326.png,13666 -images-17327.png,13667 -images-17328.png,13668 -images-17329.png,13669 -images-17330.png,13670 -images-17331.png,13671 -images-17332.png,13672 -images-17333.png,13673 -images-17334.png,13674 -images-17335.png,13675 -images-17336.png,13676 -images-17337.png,13677 -images-17338.png,13678 -images-17339.png,13679 -images-17340.png,13680 -images-17341.png,13681 -images-17342.png,13682 -images-17343.png,13683 -images-17344.png,13684 -images-17345.png,13685 -images-17346.png,13686 -images-17347.png,13687 -images-17348.png,13688 -images-17349.png,13689 -images-17350.png,13690 -images-17351.png,13691 -images-17352.png,13692 -images-17353.png,13693 -images-17354.png,13694 -images-17355.png,13695 -images-17356.png,13696 -images-17357.png,13697 -images-17358.png,13698 -images-17359.png,13699 -images-17360.png,13700 -images-17361.png,13701 -images-17362.png,13702 -images-17363.png,13703 -images-17364.png,13704 -images-17365.png,13705 -images-17366.png,13706 -images-17367.png,13707 -images-17368.png,13708 -images-17369.png,13709 -images-17370.png,13710 -images-17371.png,13711 -images-17372.png,13712 -images-17373.png,13713 -images-17374.png,13714 -images-17375.png,13715 -images-17376.png,13716 -images-17377.png,13717 -images-17378.png,13718 -images-17379.png,13719 -images-17380.png,13720 -images-17381.png,13721 -images-17382.png,13722 -images-17383.png,13723 -images-17384.png,13724 -images-17385.png,13725 -images-17386.png,13726 -images-17387.png,13727 -images-17388.png,13728 -images-17389.png,13729 -images-17390.png,13730 -images-17391.png,13731 -images-17392.png,13732 -images-17393.png,13733 -images-17394.png,13734 -images-17395.png,13735 -images-17396.png,13736 -images-17397.png,13737 -images-17398.png,13738 -images-17399.png,13739 -images-17400.png,13740 -images-17401.png,13741 -images-17402.png,13742 -images-17403.png,13743 -images-17404.png,13744 -images-17405.png,13745 -images-17406.png,13746 -images-17407.png,13747 -images-17408.png,13748 -images-17409.png,13749 -images-17410.png,13750 -images-17411.png,13751 -images-17412.png,13752 -images-17413.png,13753 -images-17414.png,13754 -images-17415.png,13755 -images-17416.png,13756 -images-17417.png,13757 -images-17418.png,13758 -images-17419.png,13759 -images-17420.png,13760 -images-17421.png,13761 -images-17422.png,13762 -images-17423.png,13763 -images-17424.png,13764 -images-17425.png,13765 -images-17426.png,13766 -images-17427.png,13767 -images-17428.png,13768 -images-17429.png,13769 -images-17430.png,13770 -images-17431.png,13771 -images-17432.png,13772 -images-17433.png,13773 -images-17434.png,13774 -images-17435.png,13775 -images-17436.png,13776 -images-17437.png,13777 -images-17438.png,13778 -images-17439.png,13779 -images-17440.png,13780 -images-17441.png,13781 -images-17442.png,13782 -images-17443.png,13783 -images-17444.png,13784 -images-17445.png,13785 -images-17446.png,13786 -images-17447.png,13787 -images-17448.png,13788 -images-17449.png,13789 -images-17450.png,13790 -images-17451.png,13791 -images-17452.png,13792 -images-17453.png,13793 -images-17454.png,13794 -images-17455.png,13795 -images-17456.png,13796 -images-17457.png,13797 -images-17458.png,13798 -images-17459.png,13799 -images-17460.png,13800 -images-17461.png,13801 -images-17462.png,13802 -images-17463.png,13803 -images-17464.png,13804 -images-17465.png,13805 -images-17466.png,13806 -images-17467.png,13807 -images-17468.png,13808 -images-17469.png,13809 -images-17470.png,13810 -images-17471.png,13811 -images-17472.png,13812 -images-17473.png,13813 -images-17474.png,13814 -images-17475.png,13815 -images-17476.png,13816 -images-17477.png,13817 -images-17478.png,13818 -images-17479.png,13819 -images-17480.png,13820 -images-17481.png,13821 -images-17482.png,13822 -images-17483.png,13823 -images-17484.png,13824 -images-17485.png,13825 -images-17486.png,13826 -images-17487.png,13827 -images-17488.png,13828 -images-17489.png,13829 -images-17490.png,13830 -images-17491.png,13831 -images-17492.png,13832 -images-17493.png,13833 -images-17494.png,13834 -images-17495.png,13835 -images-17496.png,13836 -images-17497.png,13837 -images-17498.png,13838 -images-17499.png,13839 -images-17500.png,13840 -images-17501.png,13841 -images-17502.png,13842 -images-17503.png,13843 -images-17504.png,13844 -images-17505.png,13845 -images-17506.png,13846 -images-17507.png,13847 -images-17508.png,13848 -images-17509.png,13849 -images-17510.png,13850 -images-17511.png,13851 -images-17512.png,13852 -images-17513.png,13853 -images-17514.png,13854 -images-17515.png,13855 -images-17516.png,13856 -images-17517.png,13857 -images-17518.png,13858 -images-17519.png,13859 -images-17520.png,13860 -images-17521.png,13861 -images-17522.png,13862 -images-17523.png,13863 -images-17524.png,13864 -images-17525.png,13865 -images-17526.png,13866 -images-17527.png,13867 -images-17528.png,13868 -images-17529.png,13869 -images-17530.png,13870 -images-17531.png,13871 -images-17532.png,13872 -images-17533.png,13873 -images-17534.png,13874 -images-17535.png,13875 -images-17536.png,13876 -images-17537.png,13877 -images-17538.png,13878 -images-17539.png,13879 -images-17540.png,13880 -images-17541.png,13881 -images-17542.png,13882 -images-17543.png,13883 -images-17544.png,13884 -images-17545.png,13885 -images-17546.png,13886 -images-17547.png,13887 -images-17548.png,13888 -images-17549.png,13889 -images-17550.png,13890 -images-17551.png,13891 -images-17552.png,13892 -images-17553.png,13893 -images-17554.png,13894 -images-17555.png,13895 -images-17556.png,13896 -images-17557.png,13897 -images-17558.png,13898 -images-17559.png,13899 -images-17560.png,13900 -images-17561.png,13901 -images-17562.png,13902 -images-17563.png,13903 -images-17564.png,13904 -images-17565.png,13905 -images-17566.png,13906 -images-17567.png,13907 -images-17568.png,13908 -images-17569.png,13909 -images-17570.png,13910 -images-17571.png,13911 -images-17572.png,13912 -images-17573.png,13913 -images-17574.png,13914 -images-17575.png,13915 -images-17576.png,13916 -images-17577.png,13917 -images-17578.png,13918 -images-17579.png,13919 -images-17580.png,13920 -images-17581.png,13921 -images-17582.png,13922 -images-17583.png,13923 -images-17584.png,13924 -images-17585.png,13925 -images-17586.png,13926 -images-17587.png,13927 -images-17588.png,13928 -images-17589.png,13929 -images-17590.png,13930 -images-17591.png,13931 -images-17592.png,13932 -images-17593.png,13933 -images-17594.png,13934 -images-17595.png,13935 -images-17596.png,13936 -images-17597.png,13937 -images-17598.png,13938 -images-17599.png,13939 -images-17600.png,13940 -images-17601.png,13941 -images-17602.png,13942 -images-17603.png,13943 -images-17604.png,13944 -images-17605.png,13945 -images-17606.png,13946 -images-17607.png,13947 -images-17608.png,13948 -images-17609.png,13949 -images-17610.png,13950 -images-17611.png,13951 -images-17612.png,13952 -images-17613.png,13953 -images-17614.png,13954 -images-17615.png,13955 -images-17616.png,13956 -images-17617.png,13957 -images-17618.png,13958 -images-17619.png,13959 -images-17620.png,13960 -images-17621.png,13961 -images-17622.png,13962 -images-17623.png,13963 -images-17624.png,13964 -images-17625.png,13965 -images-17626.png,13966 -images-17627.png,13967 -images-17628.png,13968 -images-17629.png,13969 -images-17630.png,13970 -images-17631.png,13971 -images-17632.png,13972 -images-17633.png,13973 -images-17634.png,13974 -images-17635.png,13975 -images-17636.png,13976 -images-17637.png,13977 -images-17638.png,13978 -images-17639.png,13979 -images-17640.png,13980 -images-17641.png,13981 -images-17642.png,13982 -images-17643.png,13983 -images-17644.png,13984 -images-17645.png,13985 -images-17646.png,13986 -images-17647.png,13987 -images-17648.png,13988 -images-17649.png,13989 -images-17650.png,13990 -images-17651.png,13991 -images-17652.png,13992 -images-17653.png,13993 -images-17654.png,13994 -images-17655.png,13995 -images-17656.png,13996 -images-17657.png,13997 -images-17658.png,13998 -images-17659.png,13999 -images-17660.png,14000 -images-17661.png,14001 -images-17662.png,14002 -images-17663.png,14003 -images-17664.png,14004 -images-17665.png,14005 -images-17666.png,14006 -images-17667.png,14007 -images-17668.png,14008 -images-17669.png,14009 -images-17670.png,14010 -images-17671.png,14011 -images-17672.png,14012 -images-17673.png,14013 -images-17674.png,14014 -images-17675.png,14015 -images-17676.png,14016 -images-17677.png,14017 -images-17678.png,14018 -images-17679.png,14019 -images-17680.png,14020 -images-17681.png,14021 -images-17682.png,14022 -images-17683.png,14023 -images-17684.png,14024 -images-17685.png,14025 -images-17686.png,14026 -images-17687.png,14027 -images-17688.png,14028 -images-17689.png,14029 -images-17690.png,14030 -images-17691.png,14031 -images-17692.png,14032 -images-17693.png,14033 -images-17694.png,14034 -images-17695.png,14035 -images-17696.png,14036 -images-17697.png,14037 -images-17698.png,14038 -images-17699.png,14039 -images-17700.png,14040 -images-17701.png,14041 -images-17702.png,14042 -images-17703.png,14043 -images-17704.png,14044 -images-17705.png,14045 -images-17706.png,14046 -images-17707.png,14047 -images-17708.png,14048 -images-17709.png,14049 -images-17710.png,14050 -images-17711.png,14051 -images-17712.png,14052 -images-17713.png,14053 -images-17714.png,14054 -images-17715.png,14055 -images-17716.png,14056 -images-17717.png,14057 -images-17718.png,14058 -images-17719.png,14059 -images-17720.png,14060 -images-17721.png,14061 -images-17722.png,14062 -images-17723.png,14063 -images-17724.png,14064 -images-17725.png,14065 -images-17726.png,14066 -images-17727.png,14067 -images-17728.png,14068 -images-17729.png,14069 -images-17730.png,14070 -images-17731.png,14071 -images-17732.png,14072 -images-17733.png,14073 -images-17756.png,14074 -images-17757.png,14075 -images-17758.png,14076 -images-17759.png,14077 -images-17760.png,14078 -images-17761.png,14079 -images-17762.png,14080 -images-17763.png,14081 -images-17764.png,14082 -images-17765.png,14083 -images-17766.png,14084 -images-17767.png,14085 -images-17768.png,14086 -images-17769.png,14087 -images-17770.png,14088 -images-17771.png,14089 -images-17772.png,14090 -images-17773.png,14091 -images-17774.png,14092 -images-17775.png,14093 -images-17776.png,14094 -images-17777.png,14095 -images-17778.png,14096 -images-17779.png,14097 -images-17780.png,14098 -images-17781.png,14099 -images-17782.png,14100 -images-17783.png,14101 -images-17784.png,14102 -images-17785.png,14103 -images-17786.png,14104 -images-17787.png,14105 -images-17788.png,14106 -images-17789.png,14107 -images-17790.png,14108 -images-17791.png,14109 -images-17792.png,14110 -images-17793.png,14111 -images-17794.png,14112 -images-17795.png,14113 -images-17796.png,14114 -images-17797.png,14115 -images-17798.png,14116 -images-17799.png,14117 -images-17800.png,14118 -images-17801.png,14119 -images-17802.png,14120 -images-17803.png,14121 -images-17804.png,14122 -images-17805.png,14123 -images-17806.png,14124 -images-17807.png,14125 -images-17808.png,14126 -images-17809.png,14127 -images-17810.png,14128 -images-17811.png,14129 -images-17812.png,14130 -images-17813.png,14131 -images-17814.png,14132 -images-17815.png,14133 -images-17816.png,14134 -images-17817.png,14135 -images-17818.png,14136 -images-17819.png,14137 -images-17820.png,14138 -images-17821.png,14139 -images-17822.png,14140 -images-17823.png,14141 -images-17824.png,14142 -images-17825.png,14143 -images-17826.png,14144 -images-17827.png,14145 -images-17828.png,14146 -images-17829.png,14147 -images-17830.png,14148 -images-17831.png,14149 -images-17832.png,14150 -images-17833.png,14151 -images-17834.png,14152 -images-17835.png,14153 -images-17836.png,14154 -images-17837.png,14155 -images-17838.png,14156 -images-17839.png,14157 -images-17840.png,14158 -images-17841.png,14159 -images-17842.png,14160 -images-17843.png,14161 -images-17844.png,14162 -images-17845.png,14163 -images-17846.png,14164 -images-17847.png,14165 -images-17848.png,14166 -images-17849.png,14167 -images-17850.png,14168 -images-17851.png,14169 -images-17852.png,14170 -images-17853.png,14171 -images-17854.png,14172 -images-17855.png,14173 -images-17856.png,14174 -images-17857.png,14175 -images-17858.png,14176 -images-17859.png,14177 -images-17860.png,14178 -images-17861.png,14179 -images-17862.png,14180 -images-17863.png,14181 -images-17864.png,14182 -images-17865.png,14183 -images-17866.png,14184 -images-17867.png,14185 -images-17902.png,14186 -images-17903.png,14187 -images-17904.png,14188 -images-17905.png,14189 -images-17906.png,14190 -images-17907.png,14191 -images-17908.png,14192 -images-17909.png,14193 -images-17910.png,14194 -images-17911.png,14195 -images-17912.png,14196 -images-17913.png,14197 -images-17914.png,14198 -images-17915.png,14199 -images-17916.png,14200 -images-17917.png,14201 -images-17918.png,14202 -images-17919.png,14203 -images-17920.png,14204 -images-17921.png,14205 -images-17922.png,14206 -images-17923.png,14207 -images-17924.png,14208 -images-17925.png,14209 -images-17926.png,14210 -images-17927.png,14211 -images-17928.png,14212 -images-17929.png,14213 -images-17930.png,14214 -images-17931.png,14215 -images-17932.png,14216 -images-17933.png,14217 -images-17934.png,14218 -images-17935.png,14219 -images-17936.png,14220 -images-17937.png,14221 -images-17938.png,14222 -images-17939.png,14223 -images-17940.png,14224 -images-17941.png,14225 -images-17942.png,14226 -images-17943.png,14227 -images-17944.png,14228 -images-17945.png,14229 -images-17946.png,14230 -images-17947.png,14231 -images-17948.png,14232 -images-17949.png,14233 -images-17950.png,14234 -images-17951.png,14235 -images-17952.png,14236 -images-17953.png,14237 -images-17954.png,14238 -images-17955.png,14239 -images-17956.png,14240 -images-17957.png,14241 -images-17958.png,14242 -images-17959.png,14243 -images-17960.png,14244 -images-17961.png,14245 -images-17962.png,14246 -images-17963.png,14247 -images-17964.png,14248 -images-17965.png,14249 -images-17966.png,14250 -images-17967.png,14251 -images-17968.png,14252 -images-17969.png,14253 -images-17970.png,14254 -images-17971.png,14255 -images-17972.png,14256 -images-17973.png,14257 -images-17986.png,14258 -images-17987.png,14259 -images-17988.png,14260 -images-17989.png,14261 -images-17990.png,14262 -images-17996.png,14263 -images-17997.png,14264 -images-17998.png,14265 -images-17999.png,14266 -images-18000.png,14267 -images-18001.png,14268 -images-18002.png,14269 -images-18003.png,14270 -images-18004.png,14271 -images-18005.png,14272 -images-18006.png,14273 -images-18007.png,14274 -images-18008.png,14275 -images-18009.png,14276 -images-18010.png,14277 -images-18011.png,14278 -images-18012.png,14279 -images-18013.png,14280 -images-18014.png,14281 -images-18015.png,14282 -images-18016.png,14283 -images-18017.png,14284 -images-18018.png,14285 -images-18019.png,14286 -images-18020.png,14287 -images-18150.png,14288 -images-18151.png,14289 -images-18152.png,14290 -images-18153.png,14291 -images-18154.png,14292 -images-18155.png,14293 -images-18156.png,14294 -images-18157.png,14295 -images-18158.png,14296 -images-18159.png,14297 -images-18160.png,14298 -images-18170.png,14299 -images-18171.png,14300 -images-18172.png,14301 -images-18173.png,14302 -images-18174.png,14303 -images-18175.png,14304 -images-18176.png,14305 -images-18177.png,14306 -images-18178.png,14307 -images-18179.png,14308 -images-18180.png,14309 -images-18181.png,14310 -images-18182.png,14311 -images-18183.png,14312 -images-18184.png,14313 -images-18185.png,14314 -images-18186.png,14315 -images-18187.png,14316 -images-18188.png,14317 -images-18189.png,14318 -images-18190.png,14319 -images-18191.png,14320 -images-18192.png,14321 -images-18193.png,14322 -images-18194.png,14323 -images-18195.png,14324 -images-18196.png,14325 -images-18197.png,14326 -images-18198.png,14327 -images-18199.png,14328 -images-18200.png,14329 -images-18201.png,14330 -images-18202.png,14331 -images-18203.png,14332 -images-18204.png,14333 -images-18205.png,14334 -images-18206.png,14335 -images-18207.png,14336 -images-18208.png,14337 -images-18209.png,14338 -images-18210.png,14339 -images-18211.png,14340 -images-18212.png,14341 -images-18213.png,14342 -images-18214.png,14343 -images-18215.png,14344 -images-18216.png,14345 -images-18217.png,14346 -images-18218.png,14347 -images-18219.png,14348 -images-18220.png,14349 -images-18221.png,14350 -images-18222.png,14351 -images-18223.png,14352 -images-18224.png,14353 -images-18225.png,14354 -images-18226.png,14355 -images-18227.png,14356 -images-18228.png,14357 -images-18229.png,14358 -images-18230.png,14359 -images-18231.png,14360 -images-18232.png,14361 -images-18233.png,14362 -images-18234.png,14363 -images-18235.png,14364 -images-18236.png,14365 -images-18237.png,14366 -images-18238.png,14367 -images-18239.png,14368 -images-18240.png,14369 -images-18241.png,14370 -images-18242.png,14371 -images-18243.png,14372 -images-18244.png,14373 -images-18245.png,14374 -images-18246.png,14375 -images-18247.png,14376 -images-18248.png,14377 -images-18249.png,14378 -images-18250.png,14379 -images-18251.png,14380 -images-18252.png,14381 -images-18253.png,14382 -images-18254.png,14383 -images-18255.png,14384 -images-18256.png,14385 -images-18257.png,14386 -images-18258.png,14387 -images-18259.png,14388 -images-18260.png,14389 -images-18261.png,14390 -images-18262.png,14391 -images-18263.png,14392 -images-18264.png,14393 -images-18265.png,14394 -images-18266.png,14395 -images-18267.png,14396 -images-18268.png,14397 -images-18269.png,14398 -images-18270.png,14399 -images-18271.png,14400 -images-18272.png,14401 -images-18273.png,14402 -images-18274.png,14403 -images-18275.png,14404 -images-18276.png,14405 -images-18277.png,14406 -images-18278.png,14407 -images-18279.png,14408 -images-18280.png,14409 -images-18281.png,14410 -images-18282.png,14411 -images-18283.png,14412 -images-18284.png,14413 -images-18285.png,14414 -images-18286.png,14415 -images-18287.png,14416 -images-18288.png,14417 -images-18289.png,14418 -images-18290.png,14419 -images-18291.png,14420 -images-18292.png,14421 -images-18293.png,14422 -images-18294.png,14423 -images-18295.png,14424 -images-18296.png,14425 -images-18297.png,14426 -images-18298.png,14427 -images-18299.png,14428 -images-18300.png,14429 -images-18301.png,14430 -images-18302.png,14431 -images-18303.png,14432 -images-18304.png,14433 -images-18305.png,14434 -images-18306.png,14435 -images-18307.png,14436 -images-18308.png,14437 -images-18309.png,14438 -images-18310.png,14439 -images-18311.png,14440 -images-18312.png,14441 -images-18313.png,14442 -images-18314.png,14443 -images-18315.png,14444 -images-18316.png,14445 -images-18317.png,14446 -images-18318.png,14447 -images-18319.png,14448 -images-18320.png,14449 -images-18321.png,14450 -images-18322.png,14451 -images-18323.png,14452 -images-18324.png,14453 -images-18325.png,14454 -images-18326.png,14455 -images-18327.png,14456 -images-18328.png,14457 -images-18329.png,14458 -images-18443.png,14459 -images-18444.png,14460 -images-18445.png,14461 -images-18446.png,14462 -images-18447.png,14463 -images-18448.png,14464 -images-18449.png,14465 -images-18450.png,14466 -images-18451.png,14467 -images-18452.png,14468 -images-18453.png,14469 -images-18454.png,14470 -images-18455.png,14471 -images-18456.png,14472 -images-18457.png,14473 -images-18458.png,14474 -images-18459.png,14475 -images-18460.png,14476 -images-18461.png,14477 -images-18462.png,14478 -images-18463.png,14479 -images-18464.png,14480 -images-18465.png,14481 -images-18466.png,14482 -images-18467.png,14483 -images-18468.png,14484 -images-18469.png,14485 -images-18470.png,14486 -images-18471.png,14487 -images-18472.png,14488 -images-18473.png,14489 -images-18474.png,14490 -images-18475.png,14491 -images-18476.png,14492 -images-18477.png,14493 -images-18478.png,14494 -images-18479.png,14495 -images-18480.png,14496 -images-18481.png,14497 -images-18482.png,14498 -images-18483.png,14499 -images-18484.png,14500 -images-18485.png,14501 -images-18486.png,14502 -images-18487.png,14503 -images-18488.png,14504 -images-18489.png,14505 -images-18490.png,14506 -images-18491.png,14507 -images-18492.png,14508 -images-18493.png,14509 -images-18494.png,14510 -images-18495.png,14511 -images-18496.png,14512 -images-18497.png,14513 -images-18498.png,14514 -images-18499.png,14515 -images-18500.png,14516 -images-18501.png,14517 -images-18502.png,14518 -images-18503.png,14519 -images-18504.png,14520 -images-18505.png,14521 -images-18506.png,14522 -images-18507.png,14523 -images-18508.png,14524 -images-18509.png,14525 -images-18510.png,14526 -images-18511.png,14527 -images-18512.png,14528 -images-18513.png,14529 -images-18514.png,14530 -images-18515.png,14531 -images-18516.png,14532 -images-18517.png,14533 -images-18518.png,14534 -images-18519.png,14535 -images-18520.png,14536 -images-18521.png,14537 -images-18522.png,14538 -images-18523.png,14539 -images-18524.png,14540 -images-18525.png,14541 -images-18526.png,14542 -images-18527.png,14543 -images-18528.png,14544 -images-18529.png,14545 -images-18530.png,14546 -images-18531.png,14547 -images-18532.png,14548 -images-18533.png,14549 -images-18534.png,14550 -images-18535.png,14551 -images-18536.png,14552 -images-18537.png,14553 -images-18538.png,14554 -images-18539.png,14555 -images-18550.png,14556 -images-18551.png,14557 -images-18552.png,14558 -images-18553.png,14559 -images-18554.png,14560 -images-18555.png,14561 -images-18556.png,14562 -images-18557.png,14563 -images-18558.png,14564 -images-18559.png,14565 -images-18560.png,14566 -images-18561.png,14567 -images-18562.png,14568 -images-18563.png,14569 -images-18564.png,14570 -images-18565.png,14571 -images-18566.png,14572 -images-18567.png,14573 -images-18568.png,14574 -images-18569.png,14575 -images-18570.png,14576 -images-18571.png,14577 -images-18572.png,14578 -images-18573.png,14579 -images-18574.png,14580 -images-18575.png,14581 -images-18576.png,14582 -images-18577.png,14583 -images-18578.png,14584 -images-18579.png,14585 -images-18588.png,14586 -images-18589.png,14587 -images-18590.png,14588 -images-18591.png,14589 -images-18592.png,14590 -images-18593.png,14591 -images-18594.png,14592 -images-18595.png,14593 -images-18596.png,14594 -images-18597.png,14595 -images-18598.png,14596 -images-18599.png,14597 -images-18600.png,14598 -images-18601.png,14599 -images-18602.png,14600 -images-18603.png,14601 -images-18604.png,14602 -images-18605.png,14603 -images-18606.png,14604 -images-18607.png,14605 -images-18608.png,14606 -images-18609.png,14607 -images-18610.png,14608 -images-18611.png,14609 -images-18612.png,14610 -images-18613.png,14611 -images-18614.png,14612 -images-18615.png,14613 -images-18616.png,14614 -images-18617.png,14615 -images-18618.png,14616 -images-18619.png,14617 -images-18620.png,14618 -images-18621.png,14619 -images-18622.png,14620 -images-18623.png,14621 -images-18624.png,14622 -images-18625.png,14623 -images-18626.png,14624 -images-18627.png,14625 -images-18628.png,14626 -images-18629.png,14627 -images-18630.png,14628 -images-18631.png,14629 -images-18632.png,14630 -images-18633.png,14631 -images-18634.png,14632 -images-18635.png,14633 -images-18636.png,14634 -images-18637.png,14635 -images-18638.png,14636 -images-18639.png,14637 -images-18640.png,14638 -images-18641.png,14639 -images-18642.png,14640 -images-18643.png,14641 -images-18644.png,14642 -images-18645.png,14643 -images-18646.png,14644 -images-18647.png,14645 -images-18648.png,14646 -images-18649.png,14647 -images-18650.png,14648 -images-18651.png,14649 -images-18652.png,14650 -images-18653.png,14651 -images-18654.png,14652 -images-18655.png,14653 -images-18656.png,14654 -images-18657.png,14655 -images-18658.png,14656 -images-18659.png,14657 -images-18660.png,14658 -images-18683.png,14659 -images-18684.png,14660 -images-18685.png,14661 -images-18686.png,14662 -images-18687.png,14663 -images-18688.png,14664 -images-18689.png,14665 -images-18690.png,14666 -images-18691.png,14667 -images-18692.png,14668 -images-18693.png,14669 -images-18694.png,14670 -images-18695.png,14671 -images-18696.png,14672 -images-18697.png,14673 -images-18698.png,14674 -images-18699.png,14675 -images-18700.png,14676 -images-18701.png,14677 -images-18702.png,14678 -images-18703.png,14679 -images-18704.png,14680 -images-18705.png,14681 -images-18706.png,14682 -images-18707.png,14683 -images-18708.png,14684 -images-18709.png,14685 -images-18710.png,14686 -images-18711.png,14687 -images-18712.png,14688 -images-18713.png,14689 -images-18714.png,14690 -images-18715.png,14691 -images-18716.png,14692 -images-18717.png,14693 -images-18718.png,14694 -images-18719.png,14695 -images-18720.png,14696 -images-18721.png,14697 -images-18722.png,14698 -images-18723.png,14699 -images-18724.png,14700 -images-18725.png,14701 -images-18726.png,14702 -images-18727.png,14703 -images-18728.png,14704 -images-18729.png,14705 -images-18730.png,14706 -images-18731.png,14707 -images-18732.png,14708 -images-18733.png,14709 -images-18734.png,14710 -images-18735.png,14711 -images-18736.png,14712 -images-18737.png,14713 -images-18738.png,14714 -images-18739.png,14715 -images-18740.png,14716 -images-18741.png,14717 -images-18742.png,14718 -images-18743.png,14719 -images-18744.png,14720 -images-18745.png,14721 -images-18746.png,14722 -images-18747.png,14723 -images-18748.png,14724 -images-18749.png,14725 -images-18750.png,14726 -images-18751.png,14727 -images-18752.png,14728 -images-18753.png,14729 -images-18754.png,14730 -images-18755.png,14731 -images-18756.png,14732 -images-18757.png,14733 -images-18758.png,14734 -images-18759.png,14735 -images-18760.png,14736 -images-18761.png,14737 -images-18762.png,14738 -images-18763.png,14739 -images-18764.png,14740 -images-18765.png,14741 -images-18766.png,14742 -images-18767.png,14743 -images-18768.png,14744 -images-18769.png,14745 -images-18770.png,14746 -images-18771.png,14747 -images-18772.png,14748 -images-18773.png,14749 -images-18774.png,14750 -images-18775.png,14751 -images-18776.png,14752 -images-18777.png,14753 -images-18778.png,14754 -images-18779.png,14755 -images-18780.png,14756 -images-18781.png,14757 -images-18782.png,14758 -images-18783.png,14759 -images-18784.png,14760 -images-18785.png,14761 -images-18786.png,14762 -images-18787.png,14763 -images-18788.png,14764 -images-18789.png,14765 -images-18790.png,14766 -images-18791.png,14767 -images-18792.png,14768 -images-18793.png,14769 -images-18794.png,14770 -images-18795.png,14771 -images-18796.png,14772 -images-18797.png,14773 -images-18798.png,14774 -images-18799.png,14775 -images-18800.png,14776 -images-18801.png,14777 -images-18802.png,14778 -images-18803.png,14779 -images-18804.png,14780 -images-18805.png,14781 -images-18806.png,14782 -images-18807.png,14783 -images-18808.png,14784 -images-18809.png,14785 -images-18810.png,14786 -images-18811.png,14787 -images-18812.png,14788 -images-18813.png,14789 -images-18814.png,14790 -images-18815.png,14791 -images-18816.png,14792 -images-18817.png,14793 -images-18818.png,14794 -images-18819.png,14795 -images-18820.png,14796 -images-18821.png,14797 -images-18822.png,14798 -images-18823.png,14799 -images-18824.png,14800 -images-18825.png,14801 -images-18826.png,14802 -images-18827.png,14803 -images-18828.png,14804 -images-18829.png,14805 -images-18830.png,14806 -images-18831.png,14807 -images-18832.png,14808 -images-18833.png,14809 -images-18834.png,14810 -images-18835.png,14811 -images-18836.png,14812 -images-18837.png,14813 -images-18838.png,14814 -images-18839.png,14815 -images-18840.png,14816 -images-18841.png,14817 -images-18842.png,14818 -images-18843.png,14819 -images-18844.png,14820 -images-18845.png,14821 -images-18846.png,14822 -images-18847.png,14823 -images-18848.png,14824 -images-18849.png,14825 -images-18850.png,14826 -images-18851.png,14827 -images-18852.png,14828 -images-18853.png,14829 -images-18854.png,14830 -images-18855.png,14831 -images-18856.png,14832 -images-18857.png,14833 -images-18858.png,14834 -images-18859.png,14835 -images-18860.png,14836 -images-18861.png,14837 -images-18862.png,14838 -images-18863.png,14839 -images-18864.png,14840 -images-18865.png,14841 -images-18866.png,14842 -images-18867.png,14843 -images-18868.png,14844 -images-18869.png,14845 -images-18870.png,14846 -images-18871.png,14847 -images-18872.png,14848 -images-18873.png,14849 -images-18874.png,14850 -images-18875.png,14851 -images-18876.png,14852 -images-18877.png,14853 -images-18878.png,14854 -images-18879.png,14855 -images-18880.png,14856 -images-18881.png,14857 -images-18882.png,14858 -images-18883.png,14859 -images-18884.png,14860 -images-18885.png,14861 -images-18886.png,14862 -images-18887.png,14863 -images-18888.png,14864 -images-18889.png,14865 -images-18890.png,14866 -images-18891.png,14867 -images-18892.png,14868 -images-18893.png,14869 -images-18894.png,14870 -images-18895.png,14871 -images-18896.png,14872 -images-18897.png,14873 -images-18898.png,14874 -images-18899.png,14875 -images-18900.png,14876 -images-18901.png,14877 -images-18902.png,14878 -images-18903.png,14879 -images-18904.png,14880 -images-18905.png,14881 -images-18906.png,14882 -images-18907.png,14883 -images-18908.png,14884 -images-18909.png,14885 -images-18910.png,14886 -images-18911.png,14887 -images-18912.png,14888 -images-18913.png,14889 -images-18914.png,14890 -images-18915.png,14891 -images-18916.png,14892 -images-18917.png,14893 -images-18918.png,14894 -images-18919.png,14895 -images-18920.png,14896 -images-18921.png,14897 -images-18922.png,14898 -images-18923.png,14899 -images-18924.png,14900 -images-18925.png,14901 -images-18926.png,14902 -images-18927.png,14903 -images-18928.png,14904 -images-18929.png,14905 -images-18930.png,14906 -images-18931.png,14907 -images-18932.png,14908 -images-18933.png,14909 -images-18934.png,14910 -images-18935.png,14911 -images-18936.png,14912 -images-18937.png,14913 -images-18938.png,14914 -images-18939.png,14915 -images-18940.png,14916 -images-18941.png,14917 -images-18942.png,14918 -images-18943.png,14919 -images-18944.png,14920 -images-18945.png,14921 -images-18946.png,14922 -images-18947.png,14923 -images-18948.png,14924 -images-18949.png,14925 -images-18950.png,14926 -images-18951.png,14927 -images-18952.png,14928 -images-18953.png,14929 -images-18954.png,14930 -images-18966.png,14931 -images-18967.png,14932 -images-18968.png,14933 -images-18969.png,14934 -images-18970.png,14935 -images-18971.png,14936 -images-18972.png,14937 -images-18973.png,14938 -images-18974.png,14939 -images-18975.png,14940 -images-18976.png,14941 -images-18986.png,14942 -images-18987.png,14943 -images-18988.png,14944 -images-18989.png,14945 -images-18990.png,14946 -images-18991.png,14947 -images-18992.png,14948 -images-18993.png,14949 -images-18994.png,14950 -images-18995.png,14951 -images-18996.png,14952 -images-18997.png,14953 -images-18998.png,14954 -images-18999.png,14955 -images-19000.png,14956 -images-19001.png,14957 -images-19002.png,14958 -images-19003.png,14959 -images-19004.png,14960 -images-19005.png,14961 -images-19006.png,14962 -images-19007.png,14963 -images-19008.png,14964 -images-19009.png,14965 -images-19010.png,14966 -images-19011.png,14967 -images-19012.png,14968 -images-19013.png,14969 -images-19014.png,14970 -images-19015.png,14971 -images-19016.png,14972 -images-19017.png,14973 -images-19018.png,14974 -images-19026.png,14975 -images-19027.png,14976 -images-19028.png,14977 -images-19029.png,14978 -images-19030.png,14979 -images-19031.png,14980 -images-19032.png,14981 -images-19033.png,14982 -images-19034.png,14983 -images-19035.png,14984 -images-19036.png,14985 -images-19037.png,14986 -images-19038.png,14987 -images-19039.png,14988 -images-19040.png,14989 -images-19041.png,14990 -images-19042.png,14991 -images-19043.png,14992 -images-19044.png,14993 -images-19045.png,14994 -images-19046.png,14995 -images-19047.png,14996 -images-19048.png,14997 -images-19049.png,14998 -images-19050.png,14999 -images-19051.png,15000 -images-19052.png,15001 -images-19053.png,15002 -images-19054.png,15003 -images-19055.png,15004 -images-19056.png,15005 -images-19057.png,15006 -images-19058.png,15007 -images-19059.png,15008 -images-19060.png,15009 -images-19061.png,15010 -images-19062.png,15011 -images-19063.png,15012 -images-19064.png,15013 -images-19065.png,15014 -images-19066.png,15015 -images-19067.png,15016 -images-19068.png,15017 -images-19069.png,15018 -images-19070.png,15019 -images-19071.png,15020 -images-19072.png,15021 -images-19073.png,15022 -images-19074.png,15023 -images-19075.png,15024 -images-19076.png,15025 -images-19077.png,15026 -images-19078.png,15027 -images-19079.png,15028 -images-19080.png,15029 -images-19081.png,15030 -images-19082.png,15031 -images-19083.png,15032 -images-19084.png,15033 -images-19085.png,15034 -images-19086.png,15035 -images-19087.png,15036 -images-19088.png,15037 -images-19089.png,15038 -images-19090.png,15039 -images-19091.png,15040 -images-19100.png,15041 -images-19101.png,15042 -images-19102.png,15043 -images-19103.png,15044 -images-19104.png,15045 -images-19105.png,15046 -images-19106.png,15047 -images-19107.png,15048 -images-19108.png,15049 -images-19109.png,15050 -images-19110.png,15051 -images-19111.png,15052 -images-19112.png,15053 -images-19113.png,15054 -images-19114.png,15055 -images-19115.png,15056 -images-19116.png,15057 -images-19117.png,15058 -images-19118.png,15059 -images-19119.png,15060 -images-19120.png,15061 -images-19121.png,15062 -images-19122.png,15063 -images-19123.png,15064 -images-19124.png,15065 -images-19125.png,15066 -images-19126.png,15067 -images-19127.png,15068 -images-19128.png,15069 -images-19129.png,15070 -images-19130.png,15071 -images-19131.png,15072 -images-19132.png,15073 -images-19133.png,15074 -images-19134.png,15075 -images-19135.png,15076 -images-19136.png,15077 -images-19137.png,15078 -images-19138.png,15079 -images-19139.png,15080 -images-19140.png,15081 -images-19141.png,15082 -images-19142.png,15083 -images-19143.png,15084 -images-19144.png,15085 -images-19145.png,15086 -images-19146.png,15087 -images-19147.png,15088 -images-19148.png,15089 -images-19149.png,15090 -images-19150.png,15091 -images-19151.png,15092 -images-19152.png,15093 -images-19153.png,15094 -images-19154.png,15095 -images-19155.png,15096 -images-19156.png,15097 -images-19157.png,15098 -images-19158.png,15099 -images-19159.png,15100 -images-19160.png,15101 -images-19161.png,15102 -images-19162.png,15103 -images-19163.png,15104 -images-19164.png,15105 -images-19165.png,15106 -images-19166.png,15107 -images-19167.png,15108 -images-19168.png,15109 -images-19169.png,15110 -images-19185.png,15111 -images-19186.png,15112 -images-19187.png,15113 -images-19188.png,15114 -images-19189.png,15115 -images-19190.png,15116 -images-19191.png,15117 -images-19192.png,15118 -images-19193.png,15119 -images-19194.png,15120 -images-19195.png,15121 -images-19196.png,15122 -images-19197.png,15123 -images-19198.png,15124 -images-19199.png,15125 -images-19200.png,15126 -images-19201.png,15127 -images-19202.png,15128 -images-19203.png,15129 -images-19204.png,15130 -images-19205.png,15131 -images-19206.png,15132 -images-19207.png,15133 -images-19208.png,15134 -images-19209.png,15135 -images-19210.png,15136 -images-19211.png,15137 -images-19212.png,15138 -images-19213.png,15139 -images-19214.png,15140 -images-19215.png,15141 -images-19216.png,15142 -images-19217.png,15143 -images-19218.png,15144 -images-19219.png,15145 -images-19220.png,15146 -images-19221.png,15147 -images-19222.png,15148 -images-19223.png,15149 -images-19224.png,15150 -images-19225.png,15151 -images-19226.png,15152 -images-19227.png,15153 -images-19228.png,15154 -images-19229.png,15155 -images-19230.png,15156 -images-19231.png,15157 -images-19232.png,15158 -images-19233.png,15159 -images-19234.png,15160 -images-19235.png,15161 -images-19236.png,15162 -images-19237.png,15163 -images-19238.png,15164 -images-19239.png,15165 -images-19240.png,15166 -images-19241.png,15167 -images-19242.png,15168 -images-19243.png,15169 -images-19244.png,15170 -images-19245.png,15171 -images-19246.png,15172 -images-19247.png,15173 -images-19248.png,15174 -images-19249.png,15175 -images-19250.png,15176 -images-19251.png,15177 -images-19252.png,15178 -images-19253.png,15179 -images-19254.png,15180 -images-19255.png,15181 -images-19256.png,15182 -images-19257.png,15183 -images-19258.png,15184 -images-19259.png,15185 -images-19260.png,15186 -images-19261.png,15187 -images-19262.png,15188 -images-19263.png,15189 -images-19264.png,15190 -images-19265.png,15191 -images-19266.png,15192 -images-19267.png,15193 -images-19268.png,15194 -images-19269.png,15195 -images-19270.png,15196 -images-19271.png,15197 -images-19272.png,15198 -images-19273.png,15199 -images-19274.png,15200 -images-19275.png,15201 -images-19276.png,15202 -images-19277.png,15203 -images-19278.png,15204 -images-19279.png,15205 -images-19280.png,15206 -images-19281.png,15207 -images-19282.png,15208 -images-19283.png,15209 -images-19284.png,15210 -images-19285.png,15211 -images-19286.png,15212 -images-19287.png,15213 -images-19288.png,15214 -images-19289.png,15215 -images-19290.png,15216 -images-19291.png,15217 -images-19292.png,15218 -images-19293.png,15219 -images-19294.png,15220 -images-19295.png,15221 -images-19296.png,15222 -images-19297.png,15223 -images-19298.png,15224 -images-19299.png,15225 -images-19300.png,15226 -images-19301.png,15227 -images-19302.png,15228 -images-19303.png,15229 -images-19304.png,15230 -images-19305.png,15231 -images-19306.png,15232 -images-19307.png,15233 -images-19308.png,15234 -images-19309.png,15235 -images-19310.png,15236 -images-19311.png,15237 -images-19312.png,15238 -images-19313.png,15239 -images-19314.png,15240 -images-19315.png,15241 -images-19316.png,15242 -images-19317.png,15243 -images-19318.png,15244 -images-19319.png,15245 -images-19320.png,15246 -images-19321.png,15247 -images-19322.png,15248 -images-19323.png,15249 -images-19324.png,15250 -images-19325.png,15251 -images-19326.png,15252 -images-19327.png,15253 -images-19328.png,15254 -images-19329.png,15255 -images-19330.png,15256 -images-19331.png,15257 -images-19332.png,15258 -images-19333.png,15259 -images-19334.png,15260 -images-19335.png,15261 -images-19336.png,15262 -images-19337.png,15263 -images-19338.png,15264 -images-19339.png,15265 -images-19340.png,15266 -images-19341.png,15267 -images-19342.png,15268 -images-19343.png,15269 -images-19344.png,15270 -images-19345.png,15271 -images-19346.png,15272 -images-19347.png,15273 -images-19348.png,15274 -images-19349.png,15275 -images-19350.png,15276 -images-19351.png,15277 -images-19352.png,15278 -images-19353.png,15279 -images-19354.png,15280 -images-19355.png,15281 -images-19356.png,15282 -images-19357.png,15283 -images-19358.png,15284 -images-19359.png,15285 -images-19360.png,15286 -images-19361.png,15287 -images-19362.png,15288 -images-19363.png,15289 -images-19364.png,15290 -images-19365.png,15291 -images-19366.png,15292 -images-19367.png,15293 -images-19368.png,15294 -images-19369.png,15295 -images-19370.png,15296 -images-19371.png,15297 -images-19372.png,15298 -images-19373.png,15299 -images-19374.png,15300 -images-19375.png,15301 -images-19376.png,15302 -images-19377.png,15303 -images-19378.png,15304 -images-19379.png,15305 -images-19380.png,15306 -images-19381.png,15307 -images-19382.png,15308 -images-19383.png,15309 -images-19384.png,15310 -images-19385.png,15311 -images-19386.png,15312 -images-19387.png,15313 -images-19388.png,15314 -images-19389.png,15315 -images-19390.png,15316 -images-19391.png,15317 -images-19392.png,15318 -images-19393.png,15319 -images-19394.png,15320 -images-19395.png,15321 -images-19396.png,15322 -images-19397.png,15323 -images-19398.png,15324 -images-19399.png,15325 -images-19400.png,15326 -images-19401.png,15327 -images-19402.png,15328 -images-19403.png,15329 -images-19404.png,15330 -images-19405.png,15331 -images-19406.png,15332 -images-19407.png,15333 -images-19408.png,15334 -images-19409.png,15335 -images-19410.png,15336 -images-19411.png,15337 -images-19412.png,15338 -images-19413.png,15339 -images-19414.png,15340 -images-19415.png,15341 -images-19416.png,15342 -images-19417.png,15343 -images-19418.png,15344 -images-19419.png,15345 -images-19420.png,15346 -images-19421.png,15347 -images-19422.png,15348 -images-19423.png,15349 -images-19424.png,15350 -images-19425.png,15351 -images-19426.png,15352 -images-19427.png,15353 -images-19428.png,15354 -images-19429.png,15355 -images-19430.png,15356 -images-19431.png,15357 -images-19432.png,15358 -images-19433.png,15359 -images-19434.png,15360 -images-19435.png,15361 -images-19436.png,15362 -images-19437.png,15363 -images-19438.png,15364 -images-19439.png,15365 -images-19440.png,15366 -images-19441.png,15367 -images-19442.png,15368 -images-19443.png,15369 -images-19444.png,15370 -images-19445.png,15371 -images-19446.png,15372 -images-19447.png,15373 -images-19448.png,15374 -images-19449.png,15375 -images-19450.png,15376 -images-19451.png,15377 -images-19452.png,15378 -images-19453.png,15379 -images-19454.png,15380 -images-19455.png,15381 -images-19456.png,15382 -images-19457.png,15383 -images-19458.png,15384 -images-19459.png,15385 -images-19460.png,15386 -images-19461.png,15387 -images-19462.png,15388 -images-19463.png,15389 -images-19464.png,15390 -images-19465.png,15391 -images-19466.png,15392 -images-19467.png,15393 -images-19468.png,15394 -images-19469.png,15395 -images-19470.png,15396 -images-19471.png,15397 -images-19472.png,15398 -images-19473.png,15399 -images-19474.png,15400 -images-19475.png,15401 -images-19476.png,15402 -images-19477.png,15403 -images-19478.png,15404 -images-19479.png,15405 -images-19480.png,15406 -images-19481.png,15407 -images-19482.png,15408 -images-19483.png,15409 -images-19484.png,15410 -images-19485.png,15411 -images-19486.png,15412 -images-19487.png,15413 -images-19488.png,15414 -images-19489.png,15415 -images-19490.png,15416 -images-19491.png,15417 -images-19492.png,15418 -images-19493.png,15419 -images-19494.png,15420 -images-19495.png,15421 -images-19496.png,15422 -images-19497.png,15423 -images-19498.png,15424 -images-19499.png,15425 -images-19500.png,15426 -images-19501.png,15427 -images-19502.png,15428 -images-19503.png,15429 -images-19504.png,15430 -images-19505.png,15431 -images-19506.png,15432 -images-19507.png,15433 -images-19508.png,15434 -images-19509.png,15435 -images-19510.png,15436 -images-19511.png,15437 -images-19512.png,15438 -images-19513.png,15439 -images-19514.png,15440 -images-19515.png,15441 -images-19516.png,15442 -images-19517.png,15443 -images-19518.png,15444 -images-19519.png,15445 -images-19520.png,15446 -images-19521.png,15447 -images-19522.png,15448 -images-19523.png,15449 -images-19524.png,15450 -images-19525.png,15451 -images-19526.png,15452 -images-19527.png,15453 -images-19528.png,15454 -images-19529.png,15455 -images-19530.png,15456 -images-19531.png,15457 -images-19532.png,15458 -images-19533.png,15459 -images-19534.png,15460 -images-19535.png,15461 -images-19536.png,15462 -images-19537.png,15463 -images-19538.png,15464 -images-19539.png,15465 -images-19540.png,15466 -images-19541.png,15467 -images-19542.png,15468 -images-19543.png,15469 -images-19544.png,15470 -images-19545.png,15471 -images-19546.png,15472 -images-19547.png,15473 -images-19548.png,15474 -images-19549.png,15475 -images-19550.png,15476 -images-19551.png,15477 -images-19552.png,15478 -images-19553.png,15479 -images-19554.png,15480 -images-19555.png,15481 -images-19556.png,15482 -images-19557.png,15483 -images-19558.png,15484 -images-19559.png,15485 -images-19560.png,15486 -images-19561.png,15487 -images-19562.png,15488 -images-19563.png,15489 -images-19564.png,15490 -images-19565.png,15491 -images-19566.png,15492 -images-19567.png,15493 -images-19568.png,15494 -images-19569.png,15495 -images-19570.png,15496 -images-19571.png,15497 -images-19572.png,15498 -images-19573.png,15499 -images-19574.png,15500 -images-19575.png,15501 -images-19576.png,15502 -images-19577.png,15503 -images-19578.png,15504 -images-19579.png,15505 -images-19580.png,15506 -images-19581.png,15507 -images-19582.png,15508 -images-19583.png,15509 -images-19584.png,15510 -images-19585.png,15511 -images-19586.png,15512 -images-19587.png,15513 -images-19588.png,15514 -images-19589.png,15515 -images-19590.png,15516 -images-19591.png,15517 -images-19592.png,15518 -images-19593.png,15519 -images-19594.png,15520 -images-19595.png,15521 -images-19596.png,15522 -images-19597.png,15523 -images-19598.png,15524 -images-19599.png,15525 -images-19600.png,15526 -images-19601.png,15527 -images-19602.png,15528 -images-19603.png,15529 -images-19604.png,15530 -images-19605.png,15531 -images-19606.png,15532 -images-19607.png,15533 -images-19608.png,15534 -images-19609.png,15535 -images-19610.png,15536 -images-19611.png,15537 -images-19612.png,15538 -images-19613.png,15539 -images-19614.png,15540 -images-19615.png,15541 -images-19616.png,15542 -images-19617.png,15543 -images-19618.png,15544 -images-19619.png,15545 -images-19620.png,15546 -images-19621.png,15547 -images-19622.png,15548 -images-19623.png,15549 -images-19624.png,15550 -images-19625.png,15551 -images-19626.png,15552 -images-19627.png,15553 -images-19628.png,15554 -images-19629.png,15555 -images-19630.png,15556 -images-19631.png,15557 -images-19632.png,15558 -images-19633.png,15559 -images-19634.png,15560 -images-19635.png,15561 -images-19636.png,15562 -images-19637.png,15563 -images-19638.png,15564 -images-19639.png,15565 -images-19640.png,15566 -images-19641.png,15567 -images-19642.png,15568 -images-19643.png,15569 -images-19644.png,15570 -images-19645.png,15571 -images-19646.png,15572 -images-19647.png,15573 -images-19648.png,15574 -images-19649.png,15575 -images-19650.png,15576 -images-19651.png,15577 -images-19652.png,15578 -images-19653.png,15579 -images-19654.png,15580 -images-19655.png,15581 -images-19656.png,15582 -images-19657.png,15583 -images-19658.png,15584 -images-19659.png,15585 -images-19660.png,15586 -images-19661.png,15587 -images-19662.png,15588 -images-19663.png,15589 -images-19664.png,15590 -images-19665.png,15591 -images-19666.png,15592 -images-19667.png,15593 -images-19668.png,15594 -images-19669.png,15595 -images-19670.png,15596 -images-19671.png,15597 -images-19672.png,15598 -images-19673.png,15599 -images-19674.png,15600 -images-19675.png,15601 -images-19676.png,15602 -images-19677.png,15603 -images-19678.png,15604 -images-19679.png,15605 -images-19680.png,15606 -images-19681.png,15607 -images-19682.png,15608 -images-19683.png,15609 -images-19684.png,15610 -images-19685.png,15611 -images-19686.png,15612 -images-19687.png,15613 -images-19688.png,15614 -images-19689.png,15615 -images-19690.png,15616 -images-19691.png,15617 -images-19692.png,15618 -images-19693.png,15619 -images-19694.png,15620 -images-19695.png,15621 -images-19696.png,15622 -images-19697.png,15623 -images-19698.png,15624 -images-19699.png,15625 -images-19700.png,15626 -images-19701.png,15627 -images-19702.png,15628 -images-19703.png,15629 -images-19704.png,15630 -images-19705.png,15631 -images-19706.png,15632 -images-19707.png,15633 -images-19708.png,15634 -images-19709.png,15635 -images-19710.png,15636 -images-19711.png,15637 -images-19712.png,15638 -images-19713.png,15639 -images-19714.png,15640 -images-19715.png,15641 -images-20079.png,15642 -images-20080.png,15643 -images-20081.png,15644 -images-20082.png,15645 -images-20083.png,15646 -images-20084.png,15647 -images-20085.png,15648 -images-20086.png,15649 -images-20087.png,15650 -images-20088.png,15651 -images-20089.png,15652 -images-20090.png,15653 -images-20091.png,15654 -images-20092.png,15655 -images-20093.png,15656 -images-20094.png,15657 -images-20095.png,15658 -images-20096.png,15659 -images-20097.png,15660 -images-20098.png,15661 -images-20099.png,15662 -images-20100.png,15663 -images-20101.png,15664 -images-20102.png,15665 -images-20103.png,15666 -images-20104.png,15667 -images-20105.png,15668 -images-20106.png,15669 -images-20107.png,15670 -images-20108.png,15671 -images-20109.png,15672 -images-20110.png,15673 -images-20111.png,15674 -images-20112.png,15675 -images-20113.png,15676 -images-20114.png,15677 -images-20115.png,15678 -images-20116.png,15679 -images-20117.png,15680 -images-20118.png,15681 -images-20119.png,15682 -images-20120.png,15683 -images-20121.png,15684 -images-20122.png,15685 -images-20123.png,15686 -images-20124.png,15687 -images-20125.png,15688 -images-20126.png,15689 -images-20127.png,15690 -images-20128.png,15691 -images-20129.png,15692 -images-20130.png,15693 -images-20131.png,15694 -images-20132.png,15695 -images-20133.png,15696 -images-20134.png,15697 -images-20135.png,15698 -images-20136.png,15699 -images-20137.png,15700 -images-20138.png,15701 -images-20139.png,15702 -images-20140.png,15703 -images-20141.png,15704 -images-20142.png,15705 -images-20143.png,15706 -images-20144.png,15707 -images-20145.png,15708 -images-20146.png,15709 -images-20147.png,15710 -images-20148.png,15711 -images-20149.png,15712 -images-20150.png,15713 -images-20151.png,15714 -images-20152.png,15715 -images-20153.png,15716 -images-20154.png,15717 -images-20155.png,15718 -images-20156.png,15719 -images-20157.png,15720 -images-20158.png,15721 -images-20159.png,15722 -images-20160.png,15723 -images-20161.png,15724 -images-20162.png,15725 -images-20163.png,15726 -images-20164.png,15727 -images-20165.png,15728 -images-20166.png,15729 -images-20167.png,15730 -images-20168.png,15731 -images-20169.png,15732 -images-20170.png,15733 -images-20171.png,15734 -images-20172.png,15735 -images-20173.png,15736 -images-20174.png,15737 -images-20175.png,15738 -images-20176.png,15739 -images-20177.png,15740 -images-20178.png,15741 -images-20179.png,15742 -images-20180.png,15743 -images-20181.png,15744 -images-20182.png,15745 -images-20183.png,15746 -images-20184.png,15747 -images-20185.png,15748 -images-20186.png,15749 -images-20187.png,15750 -images-20188.png,15751 -images-20189.png,15752 -images-20190.png,15753 -images-20191.png,15754 -images-20192.png,15755 -images-20193.png,15756 -images-20194.png,15757 -images-20195.png,15758 -images-20196.png,15759 -images-20197.png,15760 -images-20198.png,15761 -images-20199.png,15762 -images-20200.png,15763 -images-20201.png,15764 -images-20202.png,15765 -images-20203.png,15766 -images-20204.png,15767 -images-20205.png,15768 -images-20206.png,15769 -images-20207.png,15770 -images-20208.png,15771 -images-20209.png,15772 -images-20210.png,15773 -images-20211.png,15774 -images-20212.png,15775 -images-20213.png,15776 -images-20214.png,15777 -images-20215.png,15778 -images-20216.png,15779 -images-20217.png,15780 -images-20218.png,15781 -images-20219.png,15782 -images-20220.png,15783 -images-20221.png,15784 -images-20222.png,15785 -images-20223.png,15786 -images-20224.png,15787 -images-20225.png,15788 -images-20226.png,15789 -images-20227.png,15790 -images-20228.png,15791 -images-20229.png,15792 -images-20230.png,15793 -images-20231.png,15794 -images-20232.png,15795 -images-20233.png,15796 -images-20234.png,15797 -images-20235.png,15798 -images-20236.png,15799 -images-20237.png,15800 -images-20238.png,15801 -images-20239.png,15802 -images-20240.png,15803 -images-20241.png,15804 -images-20242.png,15805 -images-20243.png,15806 -images-20244.png,15807 -images-20245.png,15808 -images-20246.png,15809 -images-20247.png,15810 -images-20248.png,15811 -images-20249.png,15812 -images-20250.png,15813 -images-20251.png,15814 -images-20252.png,15815 -images-20253.png,15816 -images-20254.png,15817 -images-20255.png,15818 -images-20256.png,15819 -images-20257.png,15820 -images-20258.png,15821 -images-20259.png,15822 -images-20260.png,15823 -images-20261.png,15824 -images-20262.png,15825 -images-20263.png,15826 -images-20264.png,15827 -images-20265.png,15828 -images-20266.png,15829 -images-20267.png,15830 -images-20268.png,15831 -images-20269.png,15832 -images-20270.png,15833 -images-20271.png,15834 -images-20272.png,15835 -images-20273.png,15836 -images-20274.png,15837 -images-20275.png,15838 -images-20276.png,15839 -images-20277.png,15840 -images-20278.png,15841 -images-20279.png,15842 -images-20280.png,15843 -images-20281.png,15844 -images-20282.png,15845 -images-20283.png,15846 -images-20284.png,15847 -images-20285.png,15848 -images-20286.png,15849 -images-20287.png,15850 -images-20288.png,15851 -images-20289.png,15852 -images-20290.png,15853 -images-20291.png,15854 -images-20292.png,15855 -images-20293.png,15856 -images-20294.png,15857 -images-20295.png,15858 -images-20296.png,15859 -images-20297.png,15860 -images-20298.png,15861 -images-20299.png,15862 -images-20300.png,15863 -images-20301.png,15864 -images-20302.png,15865 -images-20303.png,15866 -images-20304.png,15867 -images-20305.png,15868 -images-20306.png,15869 -images-20307.png,15870 -images-20308.png,15871 -images-20309.png,15872 -images-20354.png,15873 -images-20355.png,15874 -images-20356.png,15875 -images-20357.png,15876 -images-20358.png,15877 -images-20359.png,15878 -images-20360.png,15879 -images-20361.png,15880 -images-20362.png,15881 -images-20363.png,15882 -images-20364.png,15883 -images-20365.png,15884 -images-20366.png,15885 -images-20367.png,15886 -images-20368.png,15887 -images-20369.png,15888 -images-20370.png,15889 -images-20371.png,15890 -images-20372.png,15891 -images-20373.png,15892 -images-20374.png,15893 -images-20375.png,15894 -images-20376.png,15895 -images-20377.png,15896 -images-20378.png,15897 -images-20379.png,15898 -images-20380.png,15899 -images-20381.png,15900 -images-20382.png,15901 -images-20383.png,15902 -images-20384.png,15903 -images-20385.png,15904 -images-20386.png,15905 -images-20387.png,15906 -images-20388.png,15907 -images-20389.png,15908 -images-20390.png,15909 -images-20391.png,15910 -images-20392.png,15911 -images-20393.png,15912 -images-20394.png,15913 -images-20395.png,15914 -images-20396.png,15915 -images-20397.png,15916 -images-20398.png,15917 -images-20399.png,15918 -images-20400.png,15919 -images-20401.png,15920 -images-20402.png,15921 -images-20403.png,15922 -images-20404.png,15923 -images-20405.png,15924 -images-20406.png,15925 -images-20407.png,15926 -images-20408.png,15927 -images-20409.png,15928 -images-20410.png,15929 -images-20411.png,15930 -images-20412.png,15931 -images-20413.png,15932 -images-20414.png,15933 -images-20415.png,15934 -images-20416.png,15935 -images-20417.png,15936 -images-20418.png,15937 -images-20419.png,15938 -images-20420.png,15939 -images-20421.png,15940 -images-20422.png,15941 -images-20423.png,15942 -images-20424.png,15943 -images-20425.png,15944 -images-20426.png,15945 -images-20427.png,15946 -images-20428.png,15947 -images-20429.png,15948 -images-20430.png,15949 -images-20431.png,15950 -images-20432.png,15951 -images-20433.png,15952 -images-20434.png,15953 -images-20435.png,15954 -images-20436.png,15955 -images-20437.png,15956 -images-20438.png,15957 -images-20439.png,15958 -images-20440.png,15959 -images-20441.png,15960 -images-20442.png,15961 -images-20443.png,15962 -images-20444.png,15963 -images-20445.png,15964 -images-20446.png,15965 -images-20447.png,15966 -images-20448.png,15967 -images-20449.png,15968 -images-20450.png,15969 -images-20451.png,15970 -images-20452.png,15971 -images-20453.png,15972 -images-20454.png,15973 -images-20455.png,15974 -images-20456.png,15975 -images-20457.png,15976 -images-20458.png,15977 -images-20459.png,15978 -images-20460.png,15979 -images-20461.png,15980 -images-20462.png,15981 -images-20463.png,15982 -images-20464.png,15983 -images-20465.png,15984 -images-20466.png,15985 -images-20467.png,15986 -images-20468.png,15987 -images-20469.png,15988 -images-20470.png,15989 -images-20471.png,15990 -images-20472.png,15991 -images-20473.png,15992 -images-20474.png,15993 -images-20475.png,15994 -images-20476.png,15995 -images-20477.png,15996 -images-20478.png,15997 -images-20479.png,15998 -images-20480.png,15999 -images-20481.png,16000 -images-20482.png,16001 -images-20483.png,16002 -images-20484.png,16003 -images-20485.png,16004 -images-20486.png,16005 -images-20487.png,16006 -images-20488.png,16007 -images-20489.png,16008 -images-20490.png,16009 -images-20491.png,16010 -images-20492.png,16011 -images-20493.png,16012 -images-20494.png,16013 -images-20495.png,16014 -images-20496.png,16015 -images-20497.png,16016 -images-20498.png,16017 -images-20499.png,16018 -images-20500.png,16019 -images-20501.png,16020 -images-20502.png,16021 -images-20503.png,16022 -images-20504.png,16023 -images-20505.png,16024 -images-20506.png,16025 -images-20507.png,16026 -images-20508.png,16027 -images-20509.png,16028 -images-20510.png,16029 -images-20511.png,16030 -images-20512.png,16031 -images-20513.png,16032 -images-20514.png,16033 -images-20515.png,16034 -images-20516.png,16035 -images-20517.png,16036 -images-20518.png,16037 -images-20519.png,16038 -images-20520.png,16039 -images-20521.png,16040 -images-20522.png,16041 -images-20523.png,16042 -images-20524.png,16043 -images-20525.png,16044 -images-20526.png,16045 -images-20527.png,16046 -images-20528.png,16047 -images-20529.png,16048 -images-20530.png,16049 -images-20531.png,16050 -images-20532.png,16051 -images-20533.png,16052 -images-20534.png,16053 -images-20535.png,16054 -images-20536.png,16055 -images-20537.png,16056 -images-20538.png,16057 -images-20539.png,16058 -images-20547.png,16059 -images-20548.png,16060 -images-20549.png,16061 -images-20550.png,16062 -images-20551.png,16063 -images-20552.png,16064 -images-20553.png,16065 -images-20554.png,16066 -images-20555.png,16067 -images-20556.png,16068 -images-20557.png,16069 -images-20558.png,16070 -images-20559.png,16071 -images-20560.png,16072 -images-20561.png,16073 -images-20562.png,16074 -images-20563.png,16075 -images-20564.png,16076 -images-20565.png,16077 -images-20566.png,16078 -images-20567.png,16079 -images-20568.png,16080 -images-20569.png,16081 -images-20570.png,16082 -images-20571.png,16083 -images-20572.png,16084 -images-20573.png,16085 -images-20574.png,16086 -images-20575.png,16087 -images-20576.png,16088 -images-20577.png,16089 -images-20578.png,16090 -images-20579.png,16091 -images-20580.png,16092 -images-20581.png,16093 -images-20582.png,16094 -images-20583.png,16095 -images-20584.png,16096 -images-20585.png,16097 -images-20586.png,16098 -images-20587.png,16099 -images-20588.png,16100 -images-20589.png,16101 -images-20590.png,16102 -images-20591.png,16103 -images-20592.png,16104 -images-20593.png,16105 -images-20599.png,16106 -images-20600.png,16107 -images-20601.png,16108 -images-20602.png,16109 -images-20603.png,16110 -images-20604.png,16111 -images-20605.png,16112 -images-20606.png,16113 -images-20607.png,16114 -images-20608.png,16115 -images-20609.png,16116 -images-20610.png,16117 -images-20611.png,16118 -images-20612.png,16119 -images-20613.png,16120 -images-20614.png,16121 -images-20615.png,16122 -images-20616.png,16123 -images-20617.png,16124 -images-20618.png,16125 -images-20619.png,16126 -images-20620.png,16127 -images-20621.png,16128 -images-20622.png,16129 -images-20623.png,16130 -images-20624.png,16131 -images-20625.png,16132 -images-20626.png,16133 -images-20627.png,16134 -images-20628.png,16135 -images-20629.png,16136 -images-20630.png,16137 -images-20631.png,16138 -images-20632.png,16139 -images-20633.png,16140 -images-20634.png,16141 -images-20635.png,16142 -images-20636.png,16143 -images-20637.png,16144 -images-20638.png,16145 -images-20639.png,16146 -images-20640.png,16147 -images-20641.png,16148 -images-20642.png,16149 -images-20643.png,16150 -images-20644.png,16151 -images-20645.png,16152 -images-20646.png,16153 -images-20647.png,16154 -images-20648.png,16155 -images-20649.png,16156 -images-20650.png,16157 -images-20651.png,16158 -images-20652.png,16159 -images-20653.png,16160 -images-20654.png,16161 -images-20655.png,16162 -images-20656.png,16163 -images-20657.png,16164 -images-20658.png,16165 -images-20659.png,16166 -images-20660.png,16167 -images-20661.png,16168 -images-20662.png,16169 -images-20663.png,16170 -images-20664.png,16171 -images-20665.png,16172 -images-20666.png,16173 -images-20667.png,16174 -images-20668.png,16175 -images-20669.png,16176 -images-20670.png,16177 -images-20671.png,16178 -images-20672.png,16179 -images-20673.png,16180 -images-20674.png,16181 -images-20675.png,16182 -images-20676.png,16183 -images-20677.png,16184 -images-20678.png,16185 -images-20679.png,16186 -images-20680.png,16187 -images-20681.png,16188 -images-20682.png,16189 -images-20683.png,16190 -images-20684.png,16191 -images-20685.png,16192 -images-20686.png,16193 -images-20687.png,16194 -images-20688.png,16195 -images-20689.png,16196 -images-20690.png,16197 -images-20691.png,16198 -images-20692.png,16199 -images-20693.png,16200 -images-20694.png,16201 -images-20695.png,16202 -images-20696.png,16203 -images-20697.png,16204 -images-20698.png,16205 -images-20699.png,16206 -images-20700.png,16207 -images-20701.png,16208 -images-20702.png,16209 -images-20703.png,16210 -images-20704.png,16211 -images-20705.png,16212 -images-20706.png,16213 -images-20707.png,16214 -images-20708.png,16215 -images-20709.png,16216 -images-20710.png,16217 -images-20711.png,16218 -images-20712.png,16219 -images-20713.png,16220 -images-20714.png,16221 -images-20715.png,16222 -images-20716.png,16223 -images-20717.png,16224 -images-20718.png,16225 -images-20719.png,16226 -images-20720.png,16227 -images-20721.png,16228 -images-20722.png,16229 -images-20723.png,16230 -images-20724.png,16231 -images-20725.png,16232 -images-20726.png,16233 -images-20727.png,16234 -images-20728.png,16235 -images-20729.png,16236 -images-20730.png,16237 -images-20731.png,16238 -images-20732.png,16239 -images-20733.png,16240 -images-20734.png,16241 -images-20735.png,16242 -images-20736.png,16243 -images-20760.png,16244 -images-20761.png,16245 -images-20762.png,16246 -images-20763.png,16247 -images-20764.png,16248 -images-20765.png,16249 -images-20766.png,16250 -images-20767.png,16251 -images-20768.png,16252 -images-20769.png,16253 -images-20770.png,16254 -images-20771.png,16255 -images-20772.png,16256 -images-20773.png,16257 -images-20774.png,16258 -images-20775.png,16259 -images-20776.png,16260 -images-20777.png,16261 -images-20778.png,16262 -images-20779.png,16263 -images-20780.png,16264 -images-20781.png,16265 -images-20782.png,16266 -images-20783.png,16267 -images-20784.png,16268 -images-20785.png,16269 -images-20786.png,16270 -images-20787.png,16271 -images-20788.png,16272 -images-20789.png,16273 -images-20790.png,16274 -images-20791.png,16275 -images-20792.png,16276 -images-20793.png,16277 -images-20794.png,16278 -images-20795.png,16279 -images-20796.png,16280 -images-20797.png,16281 -images-20798.png,16282 -images-20799.png,16283 -images-20800.png,16284 -images-20801.png,16285 -images-20802.png,16286 -images-20803.png,16287 -images-20804.png,16288 -images-20805.png,16289 -images-20806.png,16290 -images-20807.png,16291 -images-20808.png,16292 -images-20809.png,16293 -images-20810.png,16294 -images-20811.png,16295 -images-20812.png,16296 -images-20813.png,16297 -images-20814.png,16298 -images-20815.png,16299 -images-20816.png,16300 -images-20817.png,16301 -images-20818.png,16302 -images-20819.png,16303 -images-20820.png,16304 -images-20821.png,16305 -images-20822.png,16306 -images-20823.png,16307 -images-20824.png,16308 -images-20825.png,16309 -images-20826.png,16310 -images-20827.png,16311 -images-20828.png,16312 -images-20829.png,16313 -images-20830.png,16314 -images-20831.png,16315 -images-20832.png,16316 -images-20833.png,16317 -images-20834.png,16318 -images-20835.png,16319 -images-20836.png,16320 -images-20837.png,16321 -images-20838.png,16322 -images-20839.png,16323 -images-20840.png,16324 -images-20841.png,16325 -images-20842.png,16326 -images-20843.png,16327 -images-20844.png,16328 -images-20845.png,16329 -images-20846.png,16330 -images-20847.png,16331 -images-20848.png,16332 -images-20849.png,16333 -images-20850.png,16334 -images-20851.png,16335 -images-20852.png,16336 -images-20853.png,16337 -images-20854.png,16338 -images-20855.png,16339 -images-20856.png,16340 -images-20857.png,16341 -images-20858.png,16342 -images-20859.png,16343 -images-20860.png,16344 -images-20861.png,16345 -images-20862.png,16346 -images-20863.png,16347 -images-20864.png,16348 -images-20865.png,16349 -images-20866.png,16350 -images-20867.png,16351 -images-20868.png,16352 -images-20869.png,16353 -images-20870.png,16354 -images-20871.png,16355 -images-20872.png,16356 -images-20873.png,16357 -images-20874.png,16358 -images-20875.png,16359 -images-20876.png,16360 -images-20877.png,16361 -images-20878.png,16362 -images-20879.png,16363 -images-20880.png,16364 -images-20881.png,16365 -images-20882.png,16366 -images-20883.png,16367 -images-20884.png,16368 -images-20885.png,16369 -images-20886.png,16370 -images-20887.png,16371 -images-20888.png,16372 -images-20889.png,16373 -images-20890.png,16374 -images-20891.png,16375 -images-20892.png,16376 -images-20893.png,16377 -images-20894.png,16378 -images-20895.png,16379 -images-20896.png,16380 -images-20897.png,16381 -images-20898.png,16382 -images-20899.png,16383 -images-20900.png,16384 -images-20901.png,16385 -images-20902.png,16386 -images-20903.png,16387 -images-20904.png,16388 -images-20905.png,16389 -images-20906.png,16390 -images-20907.png,16391 -images-20908.png,16392 -images-20909.png,16393 -images-20910.png,16394 -images-20911.png,16395 -images-20912.png,16396 -images-20913.png,16397 -images-20914.png,16398 -images-20915.png,16399 -images-20916.png,16400 -images-20917.png,16401 -images-20918.png,16402 -images-20919.png,16403 -images-20920.png,16404 -images-20921.png,16405 -images-20922.png,16406 -images-20923.png,16407 -images-20924.png,16408 -images-20925.png,16409 -images-20926.png,16410 -images-20927.png,16411 -images-20928.png,16412 -images-20929.png,16413 -images-20930.png,16414 -images-20931.png,16415 -images-20932.png,16416 -images-20933.png,16417 -images-20934.png,16418 -images-20935.png,16419 -images-20936.png,16420 -images-20937.png,16421 -images-20938.png,16422 -images-20939.png,16423 -images-20940.png,16424 -images-20941.png,16425 -images-20942.png,16426 -images-20943.png,16427 -images-20944.png,16428 -images-20945.png,16429 -images-20946.png,16430 -images-20947.png,16431 -images-20948.png,16432 -images-20949.png,16433 -images-20950.png,16434 -images-20951.png,16435 -images-20952.png,16436 -images-20953.png,16437 -images-20954.png,16438 -images-20955.png,16439 -images-20956.png,16440 -images-20957.png,16441 -images-20958.png,16442 -images-20959.png,16443 -images-20960.png,16444 -images-20961.png,16445 -images-20962.png,16446 -images-20963.png,16447 -images-20964.png,16448 -images-20965.png,16449 -images-20966.png,16450 -images-20967.png,16451 -images-20968.png,16452 -images-20969.png,16453 -images-20970.png,16454 -images-20971.png,16455 -images-20972.png,16456 -images-20973.png,16457 -images-20974.png,16458 -images-20975.png,16459 -images-20976.png,16460 -images-20977.png,16461 -images-20978.png,16462 -images-20979.png,16463 -images-20980.png,16464 -images-20981.png,16465 -images-20982.png,16466 -images-20983.png,16467 -images-20984.png,16468 -images-20985.png,16469 -images-20986.png,16470 -images-20987.png,16471 -images-20988.png,16472 -images-20989.png,16473 -images-20990.png,16474 -images-20991.png,16475 -images-20992.png,16476 -images-20993.png,16477 -images-20994.png,16478 -images-20995.png,16479 -images-20996.png,16480 -images-20997.png,16481 -images-20998.png,16482 -images-20999.png,16483 -images-21000.png,16484 -images-21001.png,16485 -images-21002.png,16486 -images-21003.png,16487 -images-21004.png,16488 -images-21005.png,16489 -images-21006.png,16490 -images-21007.png,16491 -images-21008.png,16492 -images-21009.png,16493 -images-21010.png,16494 -images-21011.png,16495 -images-21012.png,16496 -images-21013.png,16497 -images-21014.png,16498 -images-21015.png,16499 -images-21016.png,16500 -images-21017.png,16501 -images-21018.png,16502 -images-21019.png,16503 -images-21020.png,16504 -images-21021.png,16505 -images-21022.png,16506 -images-21023.png,16507 -images-21024.png,16508 -images-21025.png,16509 -images-21026.png,16510 -images-21027.png,16511 -images-21028.png,16512 -images-21029.png,16513 -images-21030.png,16514 -images-21031.png,16515 -images-21032.png,16516 -images-21033.png,16517 -images-21034.png,16518 -images-21035.png,16519 -images-21036.png,16520 -images-21037.png,16521 -images-21038.png,16522 -images-21039.png,16523 -images-21040.png,16524 -images-21041.png,16525 -images-21042.png,16526 -images-21043.png,16527 -images-21044.png,16528 -images-21045.png,16529 -images-21046.png,16530 -images-21047.png,16531 -images-21048.png,16532 -images-21049.png,16533 -images-21050.png,16534 -images-21051.png,16535 -images-21052.png,16536 -images-21053.png,16537 -images-21054.png,16538 -images-21055.png,16539 -images-21056.png,16540 -images-21057.png,16541 -images-21063.png,16542 -images-21064.png,16543 -images-21065.png,16544 -images-21066.png,16545 -images-21067.png,16546 -images-21068.png,16547 -images-21069.png,16548 -images-21070.png,16549 -images-21071.png,16550 -images-21072.png,16551 -images-21073.png,16552 -images-21074.png,16553 -images-21075.png,16554 -images-21076.png,16555 -images-21077.png,16556 -images-21078.png,16557 -images-21079.png,16558 -images-21080.png,16559 -images-21081.png,16560 -images-21082.png,16561 -images-21083.png,16562 -images-21084.png,16563 -images-21085.png,16564 -images-21086.png,16565 -images-21087.png,16566 -images-21088.png,16567 -images-21089.png,16568 -images-21090.png,16569 -images-21091.png,16570 -images-21092.png,16571 -images-21093.png,16572 -images-21094.png,16573 -images-21095.png,16574 -images-21096.png,16575 -images-21097.png,16576 -images-21098.png,16577 -images-21099.png,16578 -images-21100.png,16579 -images-21101.png,16580 -images-21102.png,16581 -images-21103.png,16582 -images-21104.png,16583 -images-21105.png,16584 -images-21106.png,16585 -images-21107.png,16586 -images-21108.png,16587 -images-21109.png,16588 -images-21110.png,16589 -images-21111.png,16590 -images-21112.png,16591 -images-21113.png,16592 -images-21114.png,16593 -images-21115.png,16594 -images-21116.png,16595 -images-21117.png,16596 -images-21118.png,16597 -images-21119.png,16598 -images-21120.png,16599 -images-21121.png,16600 -images-21122.png,16601 -images-21123.png,16602 -images-21124.png,16603 -images-21125.png,16604 -images-21126.png,16605 -images-21127.png,16606 -images-21128.png,16607 -images-21129.png,16608 -images-21130.png,16609 -images-21131.png,16610 -images-21132.png,16611 -images-21133.png,16612 -images-21134.png,16613 -images-21135.png,16614 -images-21136.png,16615 -images-21137.png,16616 -images-21138.png,16617 -images-21139.png,16618 -images-21140.png,16619 -images-21141.png,16620 -images-21142.png,16621 -images-21143.png,16622 -images-21144.png,16623 -images-21145.png,16624 -images-21146.png,16625 -images-21147.png,16626 -images-21148.png,16627 -images-21149.png,16628 -images-21150.png,16629 -images-21151.png,16630 -images-21152.png,16631 -images-21153.png,16632 -images-21154.png,16633 -images-21155.png,16634 -images-21156.png,16635 -images-21157.png,16636 -images-21158.png,16637 -images-21159.png,16638 -images-21160.png,16639 -images-21161.png,16640 -images-21162.png,16641 -images-21163.png,16642 -images-21164.png,16643 -images-21165.png,16644 -images-21166.png,16645 -images-21167.png,16646 -images-21168.png,16647 -images-21169.png,16648 -images-21170.png,16649 -images-21171.png,16650 -images-21172.png,16651 -images-21173.png,16652 -images-21174.png,16653 -images-21175.png,16654 -images-21176.png,16655 -images-21177.png,16656 -images-21178.png,16657 -images-21179.png,16658 -images-21180.png,16659 -images-21181.png,16660 -images-21182.png,16661 -images-21183.png,16662 -images-21184.png,16663 -images-21185.png,16664 -images-21186.png,16665 -images-21187.png,16666 -images-21188.png,16667 -images-21189.png,16668 -images-21190.png,16669 -images-21191.png,16670 -images-21192.png,16671 -images-21193.png,16672 -images-21194.png,16673 -images-21195.png,16674 -images-21196.png,16675 -images-21197.png,16676 -images-21198.png,16677 -images-21199.png,16678 -images-21200.png,16679 -images-21201.png,16680 -images-21202.png,16681 -images-21203.png,16682 -images-21204.png,16683 -images-21205.png,16684 -images-21206.png,16685 -images-21207.png,16686 -images-21208.png,16687 -images-21209.png,16688 -images-21210.png,16689 -images-21211.png,16690 -images-21212.png,16691 -images-21213.png,16692 -images-21214.png,16693 -images-21215.png,16694 -images-21216.png,16695 -images-21217.png,16696 -images-21218.png,16697 -images-21219.png,16698 -images-21220.png,16699 -images-21221.png,16700 -images-21222.png,16701 -images-21223.png,16702 -images-21224.png,16703 -images-21225.png,16704 -images-21226.png,16705 -images-21227.png,16706 -images-21228.png,16707 -images-21229.png,16708 -images-21230.png,16709 -images-21231.png,16710 -images-21232.png,16711 -images-21233.png,16712 -images-21234.png,16713 -images-21235.png,16714 -images-21236.png,16715 -images-21237.png,16716 -images-21238.png,16717 -images-21239.png,16718 -images-21240.png,16719 -images-21241.png,16720 -images-21242.png,16721 -images-21243.png,16722 -images-21244.png,16723 -images-21245.png,16724 -images-21246.png,16725 -images-21247.png,16726 -images-21248.png,16727 -images-21249.png,16728 -images-21250.png,16729 -images-21251.png,16730 -images-21252.png,16731 -images-21253.png,16732 -images-21254.png,16733 -images-21255.png,16734 -images-21256.png,16735 -images-21257.png,16736 -images-21258.png,16737 -images-21259.png,16738 -images-21260.png,16739 -images-21261.png,16740 -images-21262.png,16741 -images-21263.png,16742 -images-21264.png,16743 -images-21265.png,16744 -images-21266.png,16745 -images-21267.png,16746 -images-21268.png,16747 -images-21269.png,16748 -images-21270.png,16749 -images-21271.png,16750 -images-21272.png,16751 -images-21273.png,16752 -images-21274.png,16753 -images-21275.png,16754 -images-21276.png,16755 -images-21277.png,16756 -images-21278.png,16757 -images-21279.png,16758 -images-21280.png,16759 -images-21281.png,16760 -images-21282.png,16761 -images-21283.png,16762 -images-21284.png,16763 -images-21285.png,16764 -images-21286.png,16765 -images-21287.png,16766 -images-21288.png,16767 -images-21289.png,16768 -images-21290.png,16769 -images-21291.png,16770 -images-21292.png,16771 -images-21293.png,16772 -images-21294.png,16773 -images-21295.png,16774 -images-21296.png,16775 -images-21297.png,16776 -images-21298.png,16777 -images-21299.png,16778 -images-21300.png,16779 -images-21301.png,16780 -images-21302.png,16781 -images-21303.png,16782 -images-21304.png,16783 -images-21305.png,16784 -images-21306.png,16785 -images-21307.png,16786 -images-21308.png,16787 -images-21309.png,16788 -images-21310.png,16789 -images-21311.png,16790 -images-21312.png,16791 -images-21313.png,16792 -images-21314.png,16793 -images-21315.png,16794 -images-21316.png,16795 -images-21317.png,16796 -images-21318.png,16797 -images-21319.png,16798 -images-21320.png,16799 -images-21321.png,16800 -images-21322.png,16801 -images-21323.png,16802 -images-21324.png,16803 -images-21325.png,16804 -images-21326.png,16805 -images-21327.png,16806 -images-21328.png,16807 -images-21329.png,16808 -images-21330.png,16809 -images-21331.png,16810 -images-21332.png,16811 -images-21333.png,16812 -images-21334.png,16813 -images-21335.png,16814 -images-21336.png,16815 -images-21337.png,16816 -images-21338.png,16817 -images-21339.png,16818 -images-21340.png,16819 -images-21341.png,16820 -images-21342.png,16821 -images-21343.png,16822 -images-21344.png,16823 -images-21345.png,16824 -images-21346.png,16825 -images-21347.png,16826 -images-21348.png,16827 -images-21349.png,16828 -images-21350.png,16829 -images-21351.png,16830 -images-21352.png,16831 -images-21353.png,16832 -images-21354.png,16833 -images-21355.png,16834 -images-21356.png,16835 -images-21357.png,16836 -images-21358.png,16837 -images-21359.png,16838 -images-21360.png,16839 -images-21361.png,16840 -images-21362.png,16841 -images-21363.png,16842 -images-21364.png,16843 -images-21365.png,16844 -images-21366.png,16845 -images-21367.png,16846 -images-21368.png,16847 -images-21369.png,16848 -images-21370.png,16849 -images-21371.png,16850 -images-21372.png,16851 -images-21373.png,16852 -images-21374.png,16853 -images-21375.png,16854 -images-21376.png,16855 -images-21377.png,16856 -images-21378.png,16857 -images-21379.png,16858 -images-21380.png,16859 -images-21381.png,16860 -images-21382.png,16861 -images-21383.png,16862 -images-21384.png,16863 -images-21385.png,16864 -images-21386.png,16865 -images-21387.png,16866 -images-21388.png,16867 -images-21389.png,16868 -images-21390.png,16869 -images-21391.png,16870 -images-21392.png,16871 -images-21393.png,16872 -images-21394.png,16873 -images-21395.png,16874 -images-21396.png,16875 -images-21397.png,16876 -images-21398.png,16877 -images-21399.png,16878 -images-21400.png,16879 -images-21401.png,16880 -images-21402.png,16881 -images-21403.png,16882 -images-21404.png,16883 -images-21405.png,16884 -images-21406.png,16885 -images-21407.png,16886 -images-21408.png,16887 -images-21409.png,16888 -images-21410.png,16889 -images-21411.png,16890 -images-21412.png,16891 -images-21413.png,16892 -images-21414.png,16893 -images-21415.png,16894 -images-21416.png,16895 -images-21417.png,16896 -images-21418.png,16897 -images-21419.png,16898 -images-21420.png,16899 -images-21421.png,16900 -images-21422.png,16901 -images-21423.png,16902 -images-21424.png,16903 -images-21425.png,16904 -images-21426.png,16905 -images-21427.png,16906 -images-21428.png,16907 -images-21429.png,16908 -images-21430.png,16909 -images-21431.png,16910 -images-21432.png,16911 -images-21433.png,16912 -images-21434.png,16913 -images-21435.png,16914 -images-21436.png,16915 -images-21437.png,16916 -images-21438.png,16917 -images-21439.png,16918 -images-21440.png,16919 -images-21441.png,16920 -images-21442.png,16921 -images-21443.png,16922 -images-21444.png,16923 -images-21445.png,16924 -images-21446.png,16925 -images-21447.png,16926 -images-21448.png,16927 -images-21449.png,16928 -images-21450.png,16929 -images-21451.png,16930 -images-21452.png,16931 -images-21453.png,16932 -images-21454.png,16933 -images-21455.png,16934 -images-21456.png,16935 -images-21457.png,16936 -images-21458.png,16937 -images-21459.png,16938 -images-21460.png,16939 -images-21461.png,16940 -images-21462.png,16941 -images-21463.png,16942 -images-21464.png,16943 -images-21465.png,16944 -images-21466.png,16945 -images-21467.png,16946 -images-21468.png,16947 -images-21469.png,16948 -images-21470.png,16949 -images-21471.png,16950 -images-21472.png,16951 -images-21473.png,16952 -images-21474.png,16953 -images-21475.png,16954 -images-21476.png,16955 -images-21477.png,16956 -images-21499.png,16957 -images-21500.png,16958 -images-21501.png,16959 -images-21502.png,16960 -images-21503.png,16961 -images-21504.png,16962 -images-21505.png,16963 -images-21506.png,16964 -images-21507.png,16965 -images-21508.png,16966 -images-21509.png,16967 -images-21510.png,16968 -images-21511.png,16969 -images-21512.png,16970 -images-21513.png,16971 -images-21514.png,16972 -images-21515.png,16973 -images-21516.png,16974 -images-21517.png,16975 -images-21518.png,16976 -images-21519.png,16977 -images-21520.png,16978 -images-21521.png,16979 -images-21522.png,16980 -images-21523.png,16981 -images-21524.png,16982 -images-21525.png,16983 -images-21526.png,16984 -images-21527.png,16985 -images-21528.png,16986 -images-21529.png,16987 -images-21530.png,16988 -images-21531.png,16989 -images-21532.png,16990 -images-21533.png,16991 -images-21534.png,16992 -images-21535.png,16993 -images-21536.png,16994 -images-21537.png,16995 -images-21538.png,16996 -images-21539.png,16997 -images-21540.png,16998 -images-21541.png,16999 -images-21542.png,17000 -images-21543.png,17001 -images-21544.png,17002 -images-21545.png,17003 -images-21546.png,17004 -images-21547.png,17005 -images-21548.png,17006 -images-21549.png,17007 -images-21550.png,17008 -images-21551.png,17009 -images-21552.png,17010 -images-21553.png,17011 -images-21554.png,17012 -images-21555.png,17013 -images-21556.png,17014 -images-21557.png,17015 -images-21558.png,17016 -images-21559.png,17017 -images-21560.png,17018 -images-21561.png,17019 -images-21562.png,17020 -images-21563.png,17021 -images-21564.png,17022 -images-21565.png,17023 -images-21566.png,17024 -images-21567.png,17025 -images-21568.png,17026 -images-21569.png,17027 -images-21570.png,17028 -images-21571.png,17029 -images-21572.png,17030 -images-21573.png,17031 -images-21574.png,17032 -images-21575.png,17033 -images-21576.png,17034 -images-21577.png,17035 -images-21578.png,17036 -images-21579.png,17037 -images-21580.png,17038 -images-21581.png,17039 -images-21582.png,17040 -images-21583.png,17041 -images-21584.png,17042 -images-21585.png,17043 -images-21586.png,17044 -images-21587.png,17045 -images-21588.png,17046 -images-21589.png,17047 -images-21590.png,17048 -images-21591.png,17049 -images-21592.png,17050 -images-21593.png,17051 -images-21594.png,17052 -images-21595.png,17053 -images-21596.png,17054 -images-21597.png,17055 -images-21598.png,17056 -images-21599.png,17057 -images-21600.png,17058 -images-21601.png,17059 -images-21602.png,17060 -images-21603.png,17061 -images-21604.png,17062 -images-21605.png,17063 -images-21606.png,17064 -images-21607.png,17065 -images-21608.png,17066 -images-21609.png,17067 -images-21610.png,17068 -images-21611.png,17069 -images-21612.png,17070 -images-21613.png,17071 -images-21614.png,17072 -images-21615.png,17073 -images-21616.png,17074 -images-21617.png,17075 -images-21618.png,17076 -images-21619.png,17077 -images-21620.png,17078 -images-21621.png,17079 -images-21622.png,17080 -images-21623.png,17081 -images-21624.png,17082 -images-21625.png,17083 -images-21626.png,17084 -images-21627.png,17085 -images-21628.png,17086 -images-21629.png,17087 -images-21630.png,17088 -images-21631.png,17089 -images-21632.png,17090 -images-21633.png,17091 -images-21634.png,17092 -images-21635.png,17093 -images-21636.png,17094 -images-21637.png,17095 -images-21638.png,17096 -images-21639.png,17097 -images-21640.png,17098 -images-21641.png,17099 -images-21642.png,17100 -images-21643.png,17101 -images-21644.png,17102 -images-21645.png,17103 -images-21646.png,17104 -images-21647.png,17105 -images-21648.png,17106 -images-21649.png,17107 -images-21650.png,17108 -images-21651.png,17109 -images-21652.png,17110 -images-21653.png,17111 -images-21654.png,17112 -images-21655.png,17113 -images-21656.png,17114 -images-21657.png,17115 -images-21658.png,17116 -images-21659.png,17117 -images-21660.png,17118 -images-21661.png,17119 -images-21662.png,17120 -images-21663.png,17121 -images-21664.png,17122 -images-21665.png,17123 -images-21666.png,17124 -images-21667.png,17125 -images-21668.png,17126 -images-21669.png,17127 -images-21670.png,17128 -images-21671.png,17129 -images-21672.png,17130 -images-21673.png,17131 -images-21674.png,17132 -images-21675.png,17133 -images-21676.png,17134 -images-21677.png,17135 -images-21678.png,17136 -images-21679.png,17137 -images-21680.png,17138 -images-21681.png,17139 -images-21682.png,17140 -images-21683.png,17141 -images-21684.png,17142 -images-21685.png,17143 -images-21686.png,17144 -images-21687.png,17145 -images-21688.png,17146 -images-21689.png,17147 -images-21690.png,17148 -images-21691.png,17149 -images-21692.png,17150 -images-21693.png,17151 -images-21694.png,17152 -images-21695.png,17153 -images-21696.png,17154 -images-21697.png,17155 -images-21698.png,17156 -images-21699.png,17157 -images-21700.png,17158 -images-21701.png,17159 -images-21702.png,17160 -images-21703.png,17161 -images-21704.png,17162 -images-21705.png,17163 -images-21706.png,17164 -images-21707.png,17165 -images-21708.png,17166 -images-21709.png,17167 -images-21710.png,17168 -images-21711.png,17169 -images-21712.png,17170 -images-21713.png,17171 -images-21714.png,17172 -images-21715.png,17173 -images-21716.png,17174 -images-21717.png,17175 -images-21718.png,17176 -images-21719.png,17177 -images-21720.png,17178 -images-21721.png,17179 -images-21722.png,17180 -images-21723.png,17181 -images-21724.png,17182 -images-21725.png,17183 -images-21726.png,17184 -images-21727.png,17185 -images-21728.png,17186 -images-21729.png,17187 -images-21730.png,17188 -images-21731.png,17189 -images-21732.png,17190 -images-21733.png,17191 -images-21734.png,17192 -images-21735.png,17193 -images-21736.png,17194 -images-21737.png,17195 -images-21738.png,17196 -images-21739.png,17197 -images-21740.png,17198 -images-21741.png,17199 -images-21742.png,17200 -images-21743.png,17201 -images-21744.png,17202 -images-21745.png,17203 -images-21746.png,17204 -images-21747.png,17205 -images-21748.png,17206 -images-21749.png,17207 -images-21750.png,17208 -images-21751.png,17209 -images-21752.png,17210 -images-21753.png,17211 -images-21754.png,17212 -images-21755.png,17213 -images-21756.png,17214 -images-21757.png,17215 -images-21758.png,17216 -images-21759.png,17217 -images-21760.png,17218 -images-21761.png,17219 -images-21762.png,17220 -images-21763.png,17221 -images-21764.png,17222 -images-21765.png,17223 -images-21766.png,17224 -images-21767.png,17225 -images-21768.png,17226 -images-21769.png,17227 -images-21770.png,17228 -images-21771.png,17229 -images-21772.png,17230 -images-21773.png,17231 -images-21774.png,17232 -images-21775.png,17233 -images-21776.png,17234 -images-21777.png,17235 -images-21778.png,17236 -images-21779.png,17237 -images-21780.png,17238 -images-21781.png,17239 -images-21782.png,17240 -images-21783.png,17241 -images-21784.png,17242 -images-21785.png,17243 -images-21786.png,17244 -images-21787.png,17245 -images-21788.png,17246 -images-21789.png,17247 -images-21790.png,17248 -images-21791.png,17249 -images-21792.png,17250 -images-21793.png,17251 -images-21794.png,17252 -images-21795.png,17253 -images-21796.png,17254 -images-21797.png,17255 -images-21798.png,17256 -images-21799.png,17257 -images-21800.png,17258 -images-21801.png,17259 -images-21802.png,17260 -images-21803.png,17261 -images-21804.png,17262 -images-21805.png,17263 -images-21806.png,17264 -images-21807.png,17265 -images-21808.png,17266 -images-21809.png,17267 -images-21810.png,17268 -images-21811.png,17269 -images-21812.png,17270 -images-21813.png,17271 -images-21814.png,17272 -images-21815.png,17273 -images-21816.png,17274 -images-21817.png,17275 -images-21818.png,17276 -images-21819.png,17277 -images-21820.png,17278 -images-21821.png,17279 -images-21822.png,17280 -images-21823.png,17281 -images-21824.png,17282 -images-21825.png,17283 -images-21826.png,17284 -images-21827.png,17285 -images-21828.png,17286 -images-21829.png,17287 -images-21830.png,17288 -images-21831.png,17289 -images-21872.png,17290 -images-21873.png,17291 -images-21874.png,17292 -images-21875.png,17293 -images-21876.png,17294 -images-21877.png,17295 -images-21878.png,17296 -images-21879.png,17297 -images-21880.png,17298 -images-21881.png,17299 -images-21882.png,17300 -images-21883.png,17301 -images-21884.png,17302 -images-21885.png,17303 -images-21886.png,17304 -images-21887.png,17305 -images-21888.png,17306 -images-21889.png,17307 -images-21890.png,17308 -images-21891.png,17309 -images-21892.png,17310 -images-21893.png,17311 -images-21894.png,17312 -images-21895.png,17313 -images-21896.png,17314 -images-21897.png,17315 -images-21898.png,17316 -images-21899.png,17317 -images-21900.png,17318 -images-21901.png,17319 -images-21902.png,17320 -images-21903.png,17321 -images-21904.png,17322 -images-21905.png,17323 -images-21906.png,17324 -images-21907.png,17325 -images-21908.png,17326 -images-21909.png,17327 -images-21910.png,17328 -images-21911.png,17329 -images-21912.png,17330 -images-21913.png,17331 -images-21914.png,17332 -images-21915.png,17333 -images-21916.png,17334 -images-21917.png,17335 -images-21918.png,17336 -images-21919.png,17337 -images-21920.png,17338 -images-21921.png,17339 -images-21922.png,17340 -images-21923.png,17341 -images-21924.png,17342 -images-21925.png,17343 -images-21926.png,17344 -images-21927.png,17345 -images-21928.png,17346 -images-21929.png,17347 -images-21930.png,17348 -images-21931.png,17349 -images-21932.png,17350 -images-21933.png,17351 -images-21934.png,17352 -images-21935.png,17353 -images-21936.png,17354 -images-21937.png,17355 -images-21938.png,17356 -images-21939.png,17357 -images-21940.png,17358 -images-21941.png,17359 -images-21942.png,17360 -images-21943.png,17361 -images-21944.png,17362 -images-21945.png,17363 -images-21946.png,17364 -images-21961.png,17365 -images-21962.png,17366 -images-21963.png,17367 -images-21964.png,17368 -images-21965.png,17369 -images-21966.png,17370 -images-21967.png,17371 -images-21968.png,17372 -images-21969.png,17373 -images-21970.png,17374 -images-21971.png,17375 -images-21972.png,17376 -images-21973.png,17377 -images-21974.png,17378 -images-21975.png,17379 -images-21976.png,17380 -images-21977.png,17381 -images-21978.png,17382 -images-21979.png,17383 -images-21980.png,17384 -images-21981.png,17385 -images-21982.png,17386 -images-21983.png,17387 -images-21984.png,17388 -images-21985.png,17389 -images-22003.png,17390 -images-22004.png,17391 -images-22005.png,17392 -images-22006.png,17393 -images-22007.png,17394 -images-22008.png,17395 -images-22009.png,17396 -images-22010.png,17397 -images-22011.png,17398 -images-22012.png,17399 -images-22013.png,17400 -images-22030.png,17401 -images-22031.png,17402 -images-22032.png,17403 -images-22033.png,17404 -images-22034.png,17405 -images-22035.png,17406 -images-22036.png,17407 -images-22048.png,17408 -images-22049.png,17409 -images-22050.png,17410 -images-22051.png,17411 -images-22052.png,17412 -images-22053.png,17413 -images-22054.png,17414 -images-22055.png,17415 -images-22056.png,17416 -images-22057.png,17417 -images-22058.png,17418 -images-22059.png,17419 -images-22060.png,17420 -images-22061.png,17421 -images-22062.png,17422 -images-22063.png,17423 -images-22064.png,17424 -images-22065.png,17425 -images-22066.png,17426 -images-22067.png,17427 -images-22068.png,17428 -images-22069.png,17429 -images-22070.png,17430 -images-22071.png,17431 -images-22072.png,17432 -images-22073.png,17433 -images-22074.png,17434 -images-22075.png,17435 -images-22076.png,17436 -images-22077.png,17437 -images-22078.png,17438 -images-22079.png,17439 -images-22080.png,17440 -images-22081.png,17441 -images-22082.png,17442 -images-22083.png,17443 -images-22084.png,17444 -images-22085.png,17445 -images-22086.png,17446 -images-22087.png,17447 -images-22088.png,17448 -images-22089.png,17449 -images-22090.png,17450 -images-22091.png,17451 -images-22092.png,17452 -images-22093.png,17453 -images-22094.png,17454 -images-22095.png,17455 -images-22096.png,17456 -images-22097.png,17457 -images-22098.png,17458 -images-22099.png,17459 -images-22100.png,17460 -images-22101.png,17461 -images-22102.png,17462 -images-22103.png,17463 -images-22104.png,17464 -images-22105.png,17465 -images-22106.png,17466 -images-22107.png,17467 -images-22108.png,17468 -images-22109.png,17469 -images-22110.png,17470 -images-22111.png,17471 -images-22112.png,17472 -images-22113.png,17473 -images-22114.png,17474 -images-22115.png,17475 -images-22116.png,17476 -images-22117.png,17477 -images-22118.png,17478 -images-22119.png,17479 -images-22120.png,17480 -images-22121.png,17481 -images-22122.png,17482 -images-22123.png,17483 -images-22124.png,17484 -images-22125.png,17485 -images-22126.png,17486 -images-22127.png,17487 -images-22128.png,17488 -images-22129.png,17489 -images-22130.png,17490 -images-22131.png,17491 -images-22132.png,17492 -images-22133.png,17493 -images-22134.png,17494 -images-22135.png,17495 -images-22136.png,17496 -images-22137.png,17497 -images-22138.png,17498 -images-22139.png,17499 -images-22140.png,17500 -images-22141.png,17501 -images-22142.png,17502 -images-22143.png,17503 -images-22144.png,17504 -images-22145.png,17505 -images-22146.png,17506 -images-22147.png,17507 -images-22148.png,17508 -images-22152.png,17509 -images-22153.png,17510 -images-22154.png,17511 -images-22155.png,17512 -images-22156.png,17513 -images-22157.png,17514 -images-22158.png,17515 -images-22159.png,17516 -images-22160.png,17517 -images-22161.png,17518 -images-22162.png,17519 -images-22163.png,17520 -images-22164.png,17521 -images-22165.png,17522 -images-22166.png,17523 -images-22167.png,17524 -images-22168.png,17525 -images-22169.png,17526 -images-22170.png,17527 -images-22171.png,17528 -images-22172.png,17529 -images-22173.png,17530 -images-22197.png,17531 -images-22198.png,17532 -images-22199.png,17533 -images-22200.png,17534 -images-22201.png,17535 -images-22202.png,17536 -images-22203.png,17537 -images-22204.png,17538 -images-22205.png,17539 -images-22206.png,17540 -images-22207.png,17541 -images-22208.png,17542 -images-22209.png,17543 -images-22210.png,17544 -images-22211.png,17545 -images-22241.png,17546 -images-22242.png,17547 -images-22243.png,17548 -images-22244.png,17549 -images-22245.png,17550 -images-22246.png,17551 -images-22247.png,17552 -images-22248.png,17553 -images-22251.png,17554 -images-22252.png,17555 -images-22253.png,17556 -images-22254.png,17557 -images-22255.png,17558 -images-22256.png,17559 -images-22257.png,17560 -images-22258.png,17561 -images-22259.png,17562 -images-22260.png,17563 -images-22261.png,17564 -images-22262.png,17565 -images-22269.png,17566 -images-22270.png,17567 -images-22271.png,17568 -images-22272.png,17569 -images-22273.png,17570 -images-22274.png,17571 -images-22275.png,17572 -images-22276.png,17573 -images-22277.png,17574 -images-22278.png,17575 -images-22344.png,17576 -images-22345.png,17577 -images-22346.png,17578 -images-22347.png,17579 -images-22348.png,17580 -images-22349.png,17581 -images-22350.png,17582 -images-22351.png,17583 -images-22352.png,17584 -images-22353.png,17585 -images-22354.png,17586 -images-22355.png,17587 -images-22356.png,17588 -images-22357.png,17589 -images-22361.png,17590 -images-22362.png,17591 -images-22363.png,17592 -images-22364.png,17593 -images-22365.png,17594 -images-22366.png,17595 -images-22367.png,17596 -images-22368.png,17597 -images-22369.png,17598 -images-22370.png,17599 -images-22371.png,17600 -images-22372.png,17601 -images-22373.png,17602 -images-22374.png,17603 -images-22375.png,17604 -images-22376.png,17605 -images-22377.png,17606 -images-22378.png,17607 -images-22379.png,17608 -images-22380.png,17609 -images-22381.png,17610 -images-22382.png,17611 -images-22383.png,17612 -images-22384.png,17613 -images-22385.png,17614 -images-22386.png,17615 -images-22387.png,17616 -images-22388.png,17617 -images-22389.png,17618 -images-22390.png,17619 -images-22391.png,17620 -images-22392.png,17621 -images-22393.png,17622 -images-22394.png,17623 -images-22395.png,17624 -images-22396.png,17625 -images-22430.png,17626 -images-22431.png,17627 -images-22432.png,17628 -images-22433.png,17629 -images-22434.png,17630 -images-22435.png,17631 -images-22436.png,17632 -images-22437.png,17633 -images-22438.png,17634 -images-22439.png,17635 -images-22440.png,17636 -images-22441.png,17637 -images-22450.png,17638 -images-22451.png,17639 -images-22452.png,17640 -images-22453.png,17641 -images-22454.png,17642 -images-22455.png,17643 -images-22456.png,17644 -images-22457.png,17645 -images-22458.png,17646 -images-22459.png,17647 -images-22460.png,17648 -images-22461.png,17649 -images-22462.png,17650 -images-22463.png,17651 -images-22464.png,17652 -images-22465.png,17653 -images-22466.png,17654 -images-22467.png,17655 -images-22468.png,17656 -images-22469.png,17657 -images-22470.png,17658 -images-22471.png,17659 -images-22472.png,17660 -images-22473.png,17661 -images-22474.png,17662 -images-22475.png,17663 -images-22476.png,17664 -images-22477.png,17665 -images-22478.png,17666 -images-22479.png,17667 -images-22480.png,17668 -images-22481.png,17669 -images-22482.png,17670 -images-22502.png,17671 -images-22503.png,17672 -images-22504.png,17673 -images-22505.png,17674 -images-22506.png,17675 -images-22507.png,17676 -images-22508.png,17677 -images-22509.png,17678 -images-22510.png,17679 -images-22511.png,17680 -images-22512.png,17681 -images-22513.png,17682 -images-22514.png,17683 -images-22515.png,17684 -images-22516.png,17685 -images-22517.png,17686 -images-22518.png,17687 -images-22519.png,17688 -images-22520.png,17689 -images-22521.png,17690 -images-22522.png,17691 -images-22523.png,17692 -images-22524.png,17693 -images-22525.png,17694 -images-22526.png,17695 -images-22527.png,17696 -images-22528.png,17697 -images-22529.png,17698 -images-22530.png,17699 -images-22531.png,17700 -images-22532.png,17701 -images-22533.png,17702 -images-22534.png,17703 -images-22535.png,17704 -images-22536.png,17705 -images-22537.png,17706 -images-22538.png,17707 -images-22539.png,17708 -images-22540.png,17709 -images-22541.png,17710 -images-22542.png,17711 -images-22543.png,17712 -images-22544.png,17713 -images-22545.png,17714 -images-22546.png,17715 -images-22547.png,17716 -images-22548.png,17717 -images-22549.png,17718 -images-22550.png,17719 -images-22551.png,17720 -images-22552.png,17721 -images-22553.png,17722 -images-22554.png,17723 -images-22555.png,17724 -images-22556.png,17725 -images-22557.png,17726 -images-22558.png,17727 -images-22559.png,17728 -images-22560.png,17729 -images-22561.png,17730 -images-22562.png,17731 -images-22563.png,17732 -images-22564.png,17733 -images-22565.png,17734 -images-22566.png,17735 -images-22567.png,17736 -images-22568.png,17737 -images-22569.png,17738 -images-22570.png,17739 -images-22578.png,17740 -images-22579.png,17741 -images-22580.png,17742 -images-22581.png,17743 -images-22582.png,17744 -images-22583.png,17745 -images-22584.png,17746 -images-22585.png,17747 -images-22586.png,17748 -images-22587.png,17749 -images-22588.png,17750 -images-22589.png,17751 -images-22590.png,17752 -images-22591.png,17753 -images-22592.png,17754 -images-22596.png,17755 -images-22597.png,17756 -images-22598.png,17757 -images-22599.png,17758 -images-22600.png,17759 -images-22601.png,17760 -images-22602.png,17761 -images-22603.png,17762 -images-22604.png,17763 -images-22605.png,17764 -images-22606.png,17765 -images-22607.png,17766 -images-22608.png,17767 -images-22609.png,17768 -images-22610.png,17769 -images-22611.png,17770 -images-22612.png,17771 -images-22613.png,17772 -images-22614.png,17773 -images-22615.png,17774 -images-22616.png,17775 -images-22617.png,17776 -images-22618.png,17777 -images-22619.png,17778 -images-22620.png,17779 -images-22621.png,17780 -images-22622.png,17781 -images-22623.png,17782 -images-22624.png,17783 -images-22625.png,17784 -images-22626.png,17785 -images-22627.png,17786 -images-22628.png,17787 -images-22629.png,17788 -images-22630.png,17789 -images-22631.png,17790 -images-22632.png,17791 -images-22633.png,17792 -images-22634.png,17793 -images-22635.png,17794 -images-22636.png,17795 -images-22637.png,17796 -images-22638.png,17797 -images-22639.png,17798 -images-22640.png,17799 -images-22641.png,17800 -images-22642.png,17801 -images-22643.png,17802 -images-22644.png,17803 -images-22645.png,17804 -images-22646.png,17805 -images-22647.png,17806 -images-22648.png,17807 -images-22649.png,17808 -images-22650.png,17809 -images-22651.png,17810 -images-22652.png,17811 -images-22653.png,17812 -images-22654.png,17813 -images-22655.png,17814 -images-22656.png,17815 -images-22657.png,17816 -images-22658.png,17817 -images-22659.png,17818 -images-22660.png,17819 -images-22661.png,17820 -images-22662.png,17821 -images-22663.png,17822 -images-22664.png,17823 -images-22665.png,17824 -images-22666.png,17825 -images-22667.png,17826 -images-22668.png,17827 -images-22669.png,17828 -images-22670.png,17829 -images-22671.png,17830 -images-22672.png,17831 -images-22673.png,17832 -images-22674.png,17833 -images-22675.png,17834 -images-22676.png,17835 -images-22677.png,17836 -images-22678.png,17837 -images-22679.png,17838 -images-22680.png,17839 -images-22681.png,17840 -images-22682.png,17841 -images-22683.png,17842 -images-22684.png,17843 -images-22685.png,17844 -images-22686.png,17845 -images-22687.png,17846 -images-22688.png,17847 -images-22689.png,17848 -images-22690.png,17849 -images-22691.png,17850 -images-22692.png,17851 -images-22693.png,17852 -images-22694.png,17853 -images-22695.png,17854 -images-22696.png,17855 -images-22697.png,17856 -images-22698.png,17857 -images-22699.png,17858 -images-22700.png,17859 -images-22701.png,17860 -images-22702.png,17861 -images-22703.png,17862 -images-22704.png,17863 -images-22705.png,17864 -images-22706.png,17865 -images-22707.png,17866 -images-22708.png,17867 -images-22709.png,17868 -images-22710.png,17869 -images-22711.png,17870 -images-22712.png,17871 -images-22713.png,17872 -images-22714.png,17873 -images-22715.png,17874 -images-22716.png,17875 -images-22717.png,17876 -images-22718.png,17877 -images-22719.png,17878 -images-22720.png,17879 -images-22721.png,17880 -images-22722.png,17881 -images-22723.png,17882 -images-22724.png,17883 -images-22725.png,17884 -images-22726.png,17885 -images-22727.png,17886 -images-22728.png,17887 -images-22729.png,17888 -images-22730.png,17889 -images-22731.png,17890 -images-22732.png,17891 -images-22733.png,17892 -images-22734.png,17893 -images-22735.png,17894 -images-22736.png,17895 -images-22737.png,17896 -images-22738.png,17897 -images-22739.png,17898 -images-22740.png,17899 -images-22741.png,17900 -images-22742.png,17901 -images-22743.png,17902 -images-22744.png,17903 -images-22745.png,17904 -images-22746.png,17905 -images-22747.png,17906 -images-22748.png,17907 -images-22749.png,17908 -images-22750.png,17909 -images-22751.png,17910 -images-22752.png,17911 -images-22753.png,17912 -images-22754.png,17913 -images-22755.png,17914 -images-22756.png,17915 -images-22757.png,17916 -images-22758.png,17917 -images-22759.png,17918 -images-22760.png,17919 -images-22761.png,17920 -images-22762.png,17921 -images-22763.png,17922 -images-22764.png,17923 -images-22765.png,17924 -images-22766.png,17925 -images-22767.png,17926 -images-22768.png,17927 -images-22769.png,17928 -images-22770.png,17929 -images-22771.png,17930 -images-22772.png,17931 -images-22773.png,17932 -images-22774.png,17933 -images-22775.png,17934 -images-22776.png,17935 -images-22777.png,17936 -images-22778.png,17937 -images-22779.png,17938 -images-22780.png,17939 -images-22781.png,17940 -images-22782.png,17941 -images-22783.png,17942 -images-22784.png,17943 -images-22785.png,17944 -images-22786.png,17945 -images-22892.png,17946 -images-22893.png,17947 -images-22894.png,17948 -images-22895.png,17949 -images-22896.png,17950 -images-22897.png,17951 -images-22898.png,17952 -images-22899.png,17953 -images-22900.png,17954 -images-22901.png,17955 -images-22902.png,17956 -images-22903.png,17957 -images-22904.png,17958 -images-22905.png,17959 -images-22906.png,17960 -images-22907.png,17961 -images-22908.png,17962 -images-22909.png,17963 -images-22910.png,17964 -images-22911.png,17965 -images-22912.png,17966 -images-22913.png,17967 -images-22914.png,17968 -images-22915.png,17969 -images-22916.png,17970 -images-22917.png,17971 -images-22918.png,17972 -images-22919.png,17973 -images-22920.png,17974 -images-22921.png,17975 -images-22922.png,17976 -images-22923.png,17977 -images-22924.png,17978 -images-22925.png,17979 -images-22926.png,17980 -images-22927.png,17981 -images-22928.png,17982 -images-22929.png,17983 -images-22930.png,17984 -images-22931.png,17985 -images-22932.png,17986 -images-22933.png,17987 -images-22934.png,17988 -images-22935.png,17989 -images-22936.png,17990 -images-22937.png,17991 -images-22938.png,17992 -images-22939.png,17993 -images-22940.png,17994 -images-22941.png,17995 -images-22942.png,17996 -images-22943.png,17997 -images-22950.png,17998 -images-22951.png,17999 -images-22952.png,18000 -images-22953.png,18001 -images-22954.png,18002 -images-22955.png,18003 -images-22956.png,18004 -images-22957.png,18005 -images-22958.png,18006 -images-22959.png,18007 -images-22960.png,18008 -images-22961.png,18009 -images-22962.png,18010 -images-22963.png,18011 -images-22964.png,18012 -images-22965.png,18013 -images-22966.png,18014 -images-22967.png,18015 -images-22968.png,18016 -images-22969.png,18017 -images-22970.png,18018 -images-22971.png,18019 -images-22972.png,18020 -images-22973.png,18021 -images-22974.png,18022 -images-22975.png,18023 -images-22976.png,18024 -images-22977.png,18025 -images-22978.png,18026 -images-22979.png,18027 -images-22980.png,18028 -images-22981.png,18029 -images-22982.png,18030 -images-22983.png,18031 -images-22984.png,18032 -images-22985.png,18033 -images-22986.png,18034 -images-22987.png,18035 -images-22988.png,18036 -images-22989.png,18037 -images-22990.png,18038 -images-22991.png,18039 -images-22992.png,18040 -images-22993.png,18041 -images-22994.png,18042 -images-22995.png,18043 -images-22996.png,18044 -images-22997.png,18045 -images-22998.png,18046 -images-23004.png,18047 -images-23005.png,18048 -images-23006.png,18049 -images-23007.png,18050 -images-23008.png,18051 -images-23009.png,18052 -images-23010.png,18053 -images-23011.png,18054 -images-23012.png,18055 -images-23013.png,18056 -images-23014.png,18057 -images-23015.png,18058 -images-23016.png,18059 -images-23017.png,18060 -images-23018.png,18061 -images-23019.png,18062 -images-23020.png,18063 -images-23021.png,18064 -images-23022.png,18065 -images-23023.png,18066 -images-23024.png,18067 -images-23025.png,18068 -images-23029.png,18069 -images-23030.png,18070 -images-23031.png,18071 -images-23032.png,18072 -images-23033.png,18073 -images-23034.png,18074 -images-23035.png,18075 -images-23036.png,18076 -images-23037.png,18077 -images-23038.png,18078 -images-23039.png,18079 -images-23040.png,18080 -images-23041.png,18081 -images-23042.png,18082 -images-23043.png,18083 -images-23044.png,18084 -images-23049.png,18085 -images-23050.png,18086 -images-23051.png,18087 -images-23052.png,18088 -images-23053.png,18089 -images-23054.png,18090 -images-23055.png,18091 -images-23056.png,18092 -images-23057.png,18093 -images-23058.png,18094 -images-23059.png,18095 -images-23060.png,18096 -images-23061.png,18097 -images-23062.png,18098 -images-23063.png,18099 -images-23064.png,18100 -images-23065.png,18101 -images-23066.png,18102 -images-23067.png,18103 -images-23068.png,18104 -images-23069.png,18105 -images-23070.png,18106 -images-23071.png,18107 -images-23072.png,18108 -images-23073.png,18109 -images-23074.png,18110 -images-23075.png,18111 -images-23076.png,18112 -images-23077.png,18113 -images-23078.png,18114 -images-23079.png,18115 -images-23080.png,18116 -images-23081.png,18117 -images-23082.png,18118 -images-23083.png,18119 -images-23084.png,18120 -images-23085.png,18121 -images-23086.png,18122 -images-23087.png,18123 -images-23088.png,18124 -images-23089.png,18125 -images-23090.png,18126 -images-23091.png,18127 -images-23092.png,18128 -images-23093.png,18129 -images-23094.png,18130 -images-23095.png,18131 -images-23096.png,18132 -images-23097.png,18133 -images-23098.png,18134 -images-23099.png,18135 -images-23100.png,18136 -images-23101.png,18137 -images-23102.png,18138 -images-23103.png,18139 -images-23104.png,18140 -images-23105.png,18141 -images-23106.png,18142 -images-23107.png,18143 -images-23108.png,18144 -images-23109.png,18145 -images-23110.png,18146 -images-23111.png,18147 -images-23112.png,18148 -images-23113.png,18149 -images-23114.png,18150 -images-23115.png,18151 -images-23116.png,18152 -images-23117.png,18153 -images-23118.png,18154 -images-23119.png,18155 -images-23120.png,18156 -images-23121.png,18157 -images-23122.png,18158 -images-23123.png,18159 -images-23124.png,18160 -images-23125.png,18161 -images-23126.png,18162 -images-23127.png,18163 -images-23128.png,18164 -images-23129.png,18165 -images-23130.png,18166 -images-23131.png,18167 -images-23132.png,18168 -images-23133.png,18169 -images-23134.png,18170 -images-23135.png,18171 -images-23136.png,18172 -images-23137.png,18173 -images-23138.png,18174 -images-23139.png,18175 -images-23140.png,18176 -images-23148.png,18177 -images-23149.png,18178 -images-23150.png,18179 -images-23151.png,18180 -images-23152.png,18181 -images-23153.png,18182 -images-23154.png,18183 -images-23155.png,18184 -images-23156.png,18185 -images-23157.png,18186 -images-23158.png,18187 -images-23159.png,18188 -images-23160.png,18189 -images-23161.png,18190 -images-23162.png,18191 -images-23163.png,18192 -images-23164.png,18193 -images-23165.png,18194 -images-23171.png,18195 -images-23172.png,18196 -images-23173.png,18197 -images-23174.png,18198 -images-23175.png,18199 -images-23176.png,18200 -images-23177.png,18201 -images-23178.png,18202 -images-23179.png,18203 -images-23180.png,18204 -images-23181.png,18205 -images-23182.png,18206 -images-23183.png,18207 -images-23184.png,18208 -images-23185.png,18209 -images-23186.png,18210 -images-23187.png,18211 -images-23188.png,18212 -images-23189.png,18213 -images-23190.png,18214 -images-23191.png,18215 -images-23192.png,18216 -images-23193.png,18217 -images-23194.png,18218 -images-23195.png,18219 -images-23196.png,18220 -images-23214.png,18221 -images-23215.png,18222 -images-23216.png,18223 -images-23217.png,18224 -images-23218.png,18225 -images-23219.png,18226 -images-23220.png,18227 -images-23221.png,18228 -images-23222.png,18229 -images-23223.png,18230 -images-23224.png,18231 -images-23225.png,18232 -images-23226.png,18233 -images-23227.png,18234 -images-23228.png,18235 -images-23229.png,18236 -images-23230.png,18237 -images-23231.png,18238 -images-23232.png,18239 -images-23233.png,18240 -images-23234.png,18241 -images-23235.png,18242 -images-23236.png,18243 -images-23237.png,18244 -images-23238.png,18245 -images-23239.png,18246 -images-23240.png,18247 -images-23241.png,18248 -images-23242.png,18249 -images-23243.png,18250 -images-23244.png,18251 -images-23245.png,18252 -images-23246.png,18253 -images-23247.png,18254 -images-23248.png,18255 -images-23249.png,18256 -images-23250.png,18257 -images-23251.png,18258 -images-23252.png,18259 -images-23253.png,18260 -images-23254.png,18261 -images-23255.png,18262 -images-23256.png,18263 -images-23257.png,18264 -images-23258.png,18265 -images-23259.png,18266 -images-23260.png,18267 -images-23261.png,18268 -images-23262.png,18269 -images-23263.png,18270 -images-23264.png,18271 -images-23265.png,18272 -images-23266.png,18273 -images-23267.png,18274 -images-23268.png,18275 -images-23269.png,18276 -images-23270.png,18277 -images-23271.png,18278 -images-23272.png,18279 -images-23273.png,18280 -images-23274.png,18281 -images-23275.png,18282 -images-23276.png,18283 -images-23277.png,18284 -images-23278.png,18285 -images-23279.png,18286 -images-23280.png,18287 -images-23281.png,18288 -images-23282.png,18289 -images-23283.png,18290 -images-23284.png,18291 -images-23285.png,18292 -images-23286.png,18293 -images-23287.png,18294 -images-23288.png,18295 -images-23289.png,18296 -images-23290.png,18297 -images-23291.png,18298 -images-23292.png,18299 -images-23293.png,18300 -images-23294.png,18301 -images-23295.png,18302 -images-23296.png,18303 -images-23297.png,18304 -images-23298.png,18305 -images-23299.png,18306 -images-23300.png,18307 -images-23301.png,18308 -images-23302.png,18309 -images-23303.png,18310 -images-23304.png,18311 -images-23305.png,18312 -images-23306.png,18313 -images-23307.png,18314 -images-23308.png,18315 -images-23309.png,18316 -images-23310.png,18317 -images-23311.png,18318 -images-23312.png,18319 -images-23313.png,18320 -images-23314.png,18321 -images-23315.png,18322 -images-23316.png,18323 -images-23317.png,18324 -images-23318.png,18325 -images-23319.png,18326 -images-23320.png,18327 -images-23321.png,18328 -images-23322.png,18329 -images-23323.png,18330 -images-23324.png,18331 -images-23325.png,18332 -images-23326.png,18333 -images-23327.png,18334 -images-23328.png,18335 -images-23329.png,18336 -images-23330.png,18337 -images-23331.png,18338 -images-23332.png,18339 -images-23333.png,18340 -images-23334.png,18341 -images-23335.png,18342 -images-23336.png,18343 -images-23337.png,18344 -images-23338.png,18345 -images-23339.png,18346 -images-23340.png,18347 -images-23341.png,18348 -images-23342.png,18349 -images-23343.png,18350 -images-23344.png,18351 -images-23345.png,18352 -images-23346.png,18353 -images-23347.png,18354 -images-23348.png,18355 -images-23349.png,18356 -images-23350.png,18357 -images-23351.png,18358 -images-23352.png,18359 -images-23353.png,18360 -images-23354.png,18361 -images-23355.png,18362 -images-23356.png,18363 -images-23357.png,18364 -images-23358.png,18365 -images-23359.png,18366 -images-23360.png,18367 -images-23361.png,18368 -images-23362.png,18369 -images-23363.png,18370 -images-23364.png,18371 -images-23365.png,18372 -images-23366.png,18373 -images-23367.png,18374 -images-23368.png,18375 -images-23369.png,18376 -images-23370.png,18377 -images-23371.png,18378 -images-23372.png,18379 -images-23373.png,18380 -images-23374.png,18381 -images-23375.png,18382 -images-23376.png,18383 -images-23377.png,18384 -images-23378.png,18385 -images-23379.png,18386 -images-23380.png,18387 -images-23381.png,18388 -images-23382.png,18389 -images-23383.png,18390 -images-23384.png,18391 -images-23385.png,18392 -images-23386.png,18393 -images-23387.png,18394 -images-23388.png,18395 -images-23389.png,18396 -images-23390.png,18397 -images-23391.png,18398 -images-23392.png,18399 -images-23393.png,18400 -images-23394.png,18401 -images-23395.png,18402 -images-23396.png,18403 -images-23397.png,18404 -images-23398.png,18405 -images-23399.png,18406 -images-23400.png,18407 -images-23401.png,18408 -images-23407.png,18409 -images-23408.png,18410 -images-23409.png,18411 -images-23410.png,18412 -images-23411.png,18413 -images-23412.png,18414 -images-23413.png,18415 -images-23414.png,18416 -images-23415.png,18417 -images-23416.png,18418 -images-23417.png,18419 -images-23418.png,18420 -images-23419.png,18421 -images-23420.png,18422 -images-23421.png,18423 -images-23422.png,18424 -images-23423.png,18425 -images-23424.png,18426 -images-23425.png,18427 -images-23426.png,18428 -images-23427.png,18429 -images-23428.png,18430 -images-23429.png,18431 -images-23430.png,18432 -images-23431.png,18433 -images-23432.png,18434 -images-23433.png,18435 -images-23434.png,18436 -images-23435.png,18437 -images-23436.png,18438 -images-23437.png,18439 -images-23438.png,18440 -images-23439.png,18441 -images-23440.png,18442 -images-23441.png,18443 -images-23442.png,18444 -images-23443.png,18445 -images-23444.png,18446 -images-23445.png,18447 -images-23446.png,18448 -images-23447.png,18449 -images-23448.png,18450 -images-23449.png,18451 -images-23450.png,18452 -images-23451.png,18453 -images-23452.png,18454 -images-23453.png,18455 -images-23454.png,18456 -images-23455.png,18457 -images-23456.png,18458 -images-23457.png,18459 -images-23458.png,18460 -images-23459.png,18461 -images-23460.png,18462 -images-23461.png,18463 -images-23462.png,18464 -images-23463.png,18465 -images-23464.png,18466 -images-23465.png,18467 -images-23466.png,18468 -images-23467.png,18469 -images-23468.png,18470 -images-23469.png,18471 -images-23470.png,18472 -images-23471.png,18473 -images-23472.png,18474 -images-23473.png,18475 -images-23474.png,18476 -images-23475.png,18477 -images-23476.png,18478 -images-23477.png,18479 -images-23478.png,18480 -images-23479.png,18481 -images-23480.png,18482 -images-23481.png,18483 -images-23482.png,18484 -images-23483.png,18485 -images-23484.png,18486 -images-23485.png,18487 -images-23493.png,18488 -images-23494.png,18489 -images-23495.png,18490 -images-23503.png,18491 -images-23504.png,18492 -images-23505.png,18493 -images-23506.png,18494 -images-23507.png,18495 -images-23508.png,18496 -images-23509.png,18497 -images-23510.png,18498 -images-23511.png,18499 -images-23512.png,18500 -images-23513.png,18501 -images-23514.png,18502 -images-23515.png,18503 -images-23516.png,18504 -images-23517.png,18505 -images-23518.png,18506 -images-23534.png,18507 -images-23535.png,18508 -images-23536.png,18509 -images-23537.png,18510 -images-23538.png,18511 -images-23539.png,18512 -images-23540.png,18513 -images-23541.png,18514 -images-23542.png,18515 -images-23543.png,18516 -images-23544.png,18517 -images-23545.png,18518 -images-23546.png,18519 -images-23547.png,18520 -images-23548.png,18521 -images-23549.png,18522 -images-23550.png,18523 -images-23551.png,18524 -images-23552.png,18525 -images-23553.png,18526 -images-23554.png,18527 -images-23555.png,18528 -images-23556.png,18529 -images-23557.png,18530 -images-23558.png,18531 -images-23559.png,18532 -images-23560.png,18533 -images-23561.png,18534 -images-23562.png,18535 -images-23563.png,18536 -images-23564.png,18537 -images-23565.png,18538 -images-23566.png,18539 -images-23567.png,18540 -images-23568.png,18541 -images-23569.png,18542 -images-23570.png,18543 -images-23577.png,18544 -images-23578.png,18545 -images-23579.png,18546 -images-23580.png,18547 -images-23581.png,18548 -images-23582.png,18549 -images-23583.png,18550 -images-23584.png,18551 -images-23585.png,18552 -images-23586.png,18553 -images-23587.png,18554 -images-23588.png,18555 -images-23589.png,18556 -images-23590.png,18557 -images-23591.png,18558 -images-23592.png,18559 -images-23598.png,18560 -images-23599.png,18561 -images-23600.png,18562 -images-23601.png,18563 -images-23602.png,18564 -images-23603.png,18565 -images-23604.png,18566 -images-23605.png,18567 -images-23606.png,18568 -images-23607.png,18569 -images-23608.png,18570 -images-23609.png,18571 -images-23610.png,18572 -images-23611.png,18573 -images-23612.png,18574 -images-23613.png,18575 -images-23614.png,18576 -images-23615.png,18577 -images-23616.png,18578 -images-23617.png,18579 -images-23618.png,18580 -images-23619.png,18581 -images-23620.png,18582 -images-23621.png,18583 -images-23622.png,18584 -images-23623.png,18585 -images-23624.png,18586 -images-23625.png,18587 -images-23626.png,18588 -images-23627.png,18589 -images-23628.png,18590 -images-23629.png,18591 -images-23630.png,18592 -images-23631.png,18593 -images-23632.png,18594 -images-23633.png,18595 -images-23634.png,18596 -images-23635.png,18597 -images-23636.png,18598 -images-23637.png,18599 -images-23638.png,18600 -images-23639.png,18601 -images-23640.png,18602 -images-23641.png,18603 -images-23642.png,18604 -images-23643.png,18605 -images-23644.png,18606 -images-23645.png,18607 -images-23646.png,18608 -images-23647.png,18609 -images-23648.png,18610 -images-23649.png,18611 -images-23650.png,18612 -images-23651.png,18613 -images-23652.png,18614 -images-23653.png,18615 -images-23654.png,18616 -images-23655.png,18617 -images-23656.png,18618 -images-23657.png,18619 -images-23658.png,18620 -images-23659.png,18621 -images-23660.png,18622 -images-23661.png,18623 -images-23662.png,18624 -images-23663.png,18625 -images-23664.png,18626 -images-23665.png,18627 -images-23675.png,18628 -images-23676.png,18629 -images-23677.png,18630 -images-23678.png,18631 -images-23679.png,18632 -images-23680.png,18633 -images-23681.png,18634 -images-23682.png,18635 -images-23683.png,18636 -images-23684.png,18637 -images-23685.png,18638 -images-23686.png,18639 -images-23687.png,18640 -images-23688.png,18641 -images-23689.png,18642 -images-23690.png,18643 -images-23703.png,18644 -images-23704.png,18645 -images-23705.png,18646 -images-23706.png,18647 -images-23711.png,18648 -images-23712.png,18649 -images-23713.png,18650 -images-23714.png,18651 -images-23715.png,18652 -images-23716.png,18653 -images-23717.png,18654 -images-23718.png,18655 -images-23719.png,18656 -images-23720.png,18657 -images-23721.png,18658 -images-23722.png,18659 -images-23723.png,18660 -images-23724.png,18661 -images-23725.png,18662 -images-23726.png,18663 -images-23727.png,18664 -images-23728.png,18665 -images-23729.png,18666 -images-23730.png,18667 -images-23731.png,18668 -images-23732.png,18669 -images-23733.png,18670 -images-23734.png,18671 -images-23735.png,18672 -images-23736.png,18673 -images-23737.png,18674 -images-23738.png,18675 -images-23739.png,18676 -images-23740.png,18677 -images-23741.png,18678 -images-23742.png,18679 -images-23743.png,18680 -images-23744.png,18681 -images-23745.png,18682 -images-23746.png,18683 -images-23747.png,18684 -images-23748.png,18685 -images-23749.png,18686 -images-23750.png,18687 -images-23751.png,18688 -images-23752.png,18689 -images-23753.png,18690 -images-23754.png,18691 -images-23755.png,18692 -images-23756.png,18693 -images-23757.png,18694 -images-23758.png,18695 -images-23759.png,18696 -images-23760.png,18697 -images-23761.png,18698 -images-23762.png,18699 -images-23763.png,18700 -images-23764.png,18701 -images-23765.png,18702 -images-23766.png,18703 -images-23767.png,18704 -images-23768.png,18705 -images-23769.png,18706 -images-23770.png,18707 -images-23771.png,18708 -images-23772.png,18709 -images-23773.png,18710 -images-23774.png,18711 -images-23775.png,18712 -images-23776.png,18713 -images-23777.png,18714 -images-23778.png,18715 -images-23779.png,18716 -images-23780.png,18717 -images-23781.png,18718 -images-23782.png,18719 -images-23783.png,18720 -images-23784.png,18721 -images-23785.png,18722 -images-23786.png,18723 -images-23787.png,18724 -images-23788.png,18725 -images-23789.png,18726 -images-23790.png,18727 -images-23791.png,18728 -images-23792.png,18729 -images-23793.png,18730 -images-23794.png,18731 -images-23795.png,18732 -images-23796.png,18733 -images-23797.png,18734 -images-23798.png,18735 -images-23799.png,18736 -images-23800.png,18737 -images-23801.png,18738 -images-23802.png,18739 -images-23803.png,18740 -images-23804.png,18741 -images-23805.png,18742 -images-23806.png,18743 -images-23807.png,18744 -images-23808.png,18745 -images-23809.png,18746 -images-23810.png,18747 -images-23811.png,18748 -images-23812.png,18749 -images-23813.png,18750 -images-23814.png,18751 -images-23815.png,18752 -images-23816.png,18753 -images-23817.png,18754 -images-23818.png,18755 -images-23819.png,18756 -images-23820.png,18757 -images-23821.png,18758 -images-23822.png,18759 -images-23823.png,18760 -images-23824.png,18761 -images-23825.png,18762 -images-23826.png,18763 -images-23827.png,18764 -images-23828.png,18765 -images-23829.png,18766 -images-23830.png,18767 -images-23831.png,18768 -images-23832.png,18769 -images-23833.png,18770 -images-23834.png,18771 -images-23835.png,18772 -images-23836.png,18773 -images-23837.png,18774 -images-23838.png,18775 -images-23839.png,18776 -images-23840.png,18777 -images-23841.png,18778 -images-23855.png,18779 -images-23856.png,18780 -images-23857.png,18781 -images-23858.png,18782 -images-23859.png,18783 -images-23860.png,18784 -images-23861.png,18785 -images-23862.png,18786 -images-23863.png,18787 -images-23864.png,18788 -images-23865.png,18789 -images-23866.png,18790 -images-23867.png,18791 -images-23868.png,18792 -images-23869.png,18793 -images-23870.png,18794 -images-23871.png,18795 -images-23872.png,18796 -images-23873.png,18797 -images-23874.png,18798 -images-23875.png,18799 -images-23876.png,18800 -images-23877.png,18801 -images-23878.png,18802 -images-23879.png,18803 -images-23880.png,18804 -images-23881.png,18805 -images-23882.png,18806 -images-23883.png,18807 -images-23884.png,18808 -images-23885.png,18809 -images-23886.png,18810 -images-23887.png,18811 -images-23888.png,18812 -images-23889.png,18813 -images-23890.png,18814 -images-23891.png,18815 -images-23892.png,18816 -images-23893.png,18817 -images-23894.png,18818 -images-23895.png,18819 -images-23896.png,18820 -images-23897.png,18821 -images-23898.png,18822 -images-23899.png,18823 -images-23900.png,18824 -images-23901.png,18825 -images-23902.png,18826 -images-23903.png,18827 -images-23904.png,18828 -images-23905.png,18829 -images-23906.png,18830 -images-23907.png,18831 -images-23908.png,18832 -images-23909.png,18833 -images-23910.png,18834 -images-23911.png,18835 -images-23912.png,18836 -images-23913.png,18837 -images-23914.png,18838 -images-23915.png,18839 -images-23916.png,18840 -images-23917.png,18841 -images-23918.png,18842 -images-23919.png,18843 -images-23920.png,18844 -images-23921.png,18845 -images-23922.png,18846 -images-23923.png,18847 -images-23924.png,18848 -images-23925.png,18849 -images-23926.png,18850 -images-23927.png,18851 -images-23928.png,18852 -images-23929.png,18853 -images-23930.png,18854 -images-23931.png,18855 -images-23932.png,18856 -images-23933.png,18857 -images-23934.png,18858 -images-23935.png,18859 -images-23936.png,18860 -images-23937.png,18861 -images-23938.png,18862 -images-23939.png,18863 -images-23940.png,18864 -images-23941.png,18865 -images-23942.png,18866 -images-23943.png,18867 -images-23944.png,18868 -images-23945.png,18869 -images-23946.png,18870 -images-23947.png,18871 -images-23948.png,18872 -images-23949.png,18873 -images-23955.png,18874 -images-23956.png,18875 -images-23957.png,18876 -images-23958.png,18877 -images-23959.png,18878 -images-23960.png,18879 -images-23961.png,18880 -images-23962.png,18881 -images-23963.png,18882 -images-23964.png,18883 -images-23965.png,18884 -images-23966.png,18885 -images-23967.png,18886 -images-23968.png,18887 -images-23969.png,18888 -images-23970.png,18889 -images-23971.png,18890 -images-23972.png,18891 -images-23973.png,18892 -images-23974.png,18893 -images-23975.png,18894 -images-23976.png,18895 -images-23977.png,18896 -images-23978.png,18897 -images-23979.png,18898 -images-23980.png,18899 -images-23981.png,18900 -images-23982.png,18901 -images-23983.png,18902 -images-23984.png,18903 -images-23985.png,18904 -images-23986.png,18905 -images-23987.png,18906 -images-23988.png,18907 -images-23989.png,18908 -images-23990.png,18909 -images-23991.png,18910 -images-23992.png,18911 -images-23993.png,18912 -images-23994.png,18913 -images-23995.png,18914 -images-23996.png,18915 -images-23997.png,18916 -images-23998.png,18917 -images-23999.png,18918 -images-24000.png,18919 -images-24001.png,18920 -images-24002.png,18921 -images-24003.png,18922 -images-24004.png,18923 -images-24005.png,18924 -images-24006.png,18925 -images-24007.png,18926 -images-24008.png,18927 -images-24009.png,18928 -images-24010.png,18929 -images-24011.png,18930 -images-24012.png,18931 -images-24013.png,18932 -images-24014.png,18933 -images-24015.png,18934 -images-24016.png,18935 -images-24017.png,18936 -images-24018.png,18937 -images-24019.png,18938 -images-24020.png,18939 -images-24021.png,18940 -images-24022.png,18941 -images-24023.png,18942 -images-24024.png,18943 -images-24025.png,18944 -images-24026.png,18945 -images-24027.png,18946 -images-24028.png,18947 -images-24029.png,18948 -images-24030.png,18949 -images-24031.png,18950 -images-24032.png,18951 -images-24033.png,18952 -images-24034.png,18953 -images-24035.png,18954 -images-24036.png,18955 -images-24037.png,18956 -images-24038.png,18957 -images-24039.png,18958 -images-24040.png,18959 -images-24041.png,18960 -images-24042.png,18961 -images-24043.png,18962 -images-24044.png,18963 -images-24045.png,18964 -images-24046.png,18965 -images-24047.png,18966 -images-24048.png,18967 -images-24049.png,18968 -images-24050.png,18969 -images-24051.png,18970 -images-24052.png,18971 -images-24053.png,18972 -images-24054.png,18973 -images-24055.png,18974 -images-24056.png,18975 -images-24057.png,18976 -images-24058.png,18977 -images-24059.png,18978 -images-24060.png,18979 -images-24061.png,18980 -images-24062.png,18981 -images-24063.png,18982 -images-24064.png,18983 -images-24065.png,18984 -images-24066.png,18985 -images-24067.png,18986 -images-24068.png,18987 -images-24069.png,18988 -images-24070.png,18989 -images-24071.png,18990 -images-24072.png,18991 -images-24073.png,18992 -images-24074.png,18993 -images-24075.png,18994 -images-24076.png,18995 -images-24077.png,18996 -images-24078.png,18997 -images-24079.png,18998 -images-24080.png,18999 -images-24081.png,19000 -images-24082.png,19001 -images-24083.png,19002 -images-24084.png,19003 -images-24085.png,19004 -images-24086.png,19005 -images-24087.png,19006 -images-24088.png,19007 -images-24089.png,19008 -images-24090.png,19009 -images-24091.png,19010 -images-24092.png,19011 -images-24093.png,19012 -images-24094.png,19013 -images-24095.png,19014 -images-24419.png,19015 -images-24420.png,19016 -images-24421.png,19017 -images-24422.png,19018 -images-24423.png,19019 -images-24424.png,19020 -images-24425.png,19021 -images-24426.png,19022 -images-24427.png,19023 -images-24428.png,19024 -images-24429.png,19025 -images-24430.png,19026 -images-24431.png,19027 -images-24432.png,19028 -images-24433.png,19029 -images-24434.png,19030 -images-24435.png,19031 -images-24436.png,19032 -images-24437.png,19033 -images-24438.png,19034 -images-24439.png,19035 -images-24440.png,19036 -images-24441.png,19037 -images-24442.png,19038 -images-24443.png,19039 -images-24444.png,19040 -images-24445.png,19041 -images-24446.png,19042 -images-24447.png,19043 -images-24448.png,19044 -images-24449.png,19045 -images-24450.png,19046 -images-24451.png,19047 -images-24452.png,19048 -images-24453.png,19049 -images-24454.png,19050 -images-24455.png,19051 -images-24456.png,19052 -images-24457.png,19053 -images-24458.png,19054 -images-24459.png,19055 -images-24460.png,19056 -images-24461.png,19057 -images-24462.png,19058 -images-24463.png,19059 -images-24464.png,19060 -images-24465.png,19061 -images-24466.png,19062 -images-24467.png,19063 -images-24468.png,19064 -images-24469.png,19065 -images-24470.png,19066 -images-24471.png,19067 -images-24472.png,19068 -images-24473.png,19069 -images-24474.png,19070 -images-24475.png,19071 -images-24476.png,19072 -images-24477.png,19073 -images-24478.png,19074 -images-24479.png,19075 -images-24480.png,19076 -images-24481.png,19077 -images-24482.png,19078 -images-24483.png,19079 -images-24484.png,19080 -images-24485.png,19081 -images-24486.png,19082 -images-24487.png,19083 -images-24488.png,19084 -images-24489.png,19085 -images-24490.png,19086 -images-24491.png,19087 -images-24492.png,19088 -images-24493.png,19089 -images-24494.png,19090 -images-24495.png,19091 -images-24496.png,19092 -images-24497.png,19093 -images-24498.png,19094 -images-24499.png,19095 -images-24500.png,19096 -images-24501.png,19097 -images-24502.png,19098 -images-24503.png,19099 -images-24504.png,19100 -images-24505.png,19101 -images-24506.png,19102 -images-24507.png,19103 -images-24508.png,19104 -images-24509.png,19105 -images-24510.png,19106 -images-24511.png,19107 -images-24512.png,19108 -images-24513.png,19109 -images-24514.png,19110 -images-24515.png,19111 -images-24516.png,19112 -images-24517.png,19113 -images-24518.png,19114 -images-24519.png,19115 -images-24520.png,19116 -images-24521.png,19117 -images-24522.png,19118 -images-24523.png,19119 -images-24524.png,19120 -images-24525.png,19121 -images-24526.png,19122 -images-24527.png,19123 -images-24528.png,19124 -images-24529.png,19125 -images-24530.png,19126 -images-24531.png,19127 -images-24532.png,19128 -images-24533.png,19129 -images-24534.png,19130 -images-24535.png,19131 -images-24536.png,19132 -images-24537.png,19133 -images-24538.png,19134 -images-24539.png,19135 -images-24540.png,19136 -images-24541.png,19137 -images-24542.png,19138 -images-24543.png,19139 -images-24544.png,19140 -images-24545.png,19141 -images-24546.png,19142 -images-24547.png,19143 -images-24548.png,19144 -images-24549.png,19145 -images-24550.png,19146 -images-24551.png,19147 -images-24552.png,19148 -images-24553.png,19149 -images-24554.png,19150 -images-24555.png,19151 -images-24556.png,19152 -images-24557.png,19153 -images-24558.png,19154 -images-24559.png,19155 -images-24560.png,19156 -images-24561.png,19157 -images-24562.png,19158 -images-24563.png,19159 -images-24564.png,19160 -images-24565.png,19161 -images-24566.png,19162 -images-24567.png,19163 -images-24568.png,19164 -images-24569.png,19165 -images-24570.png,19166 -images-24571.png,19167 -images-24572.png,19168 -images-24573.png,19169 -images-24574.png,19170 -images-24575.png,19171 -images-24576.png,19172 -images-24577.png,19173 -images-24578.png,19174 -images-24579.png,19175 -images-24580.png,19176 -images-24581.png,19177 -images-24582.png,19178 -images-24583.png,19179 -images-24584.png,19180 -images-24585.png,19181 -images-24586.png,19182 -images-24587.png,19183 -images-24588.png,19184 -images-24589.png,19185 -images-24590.png,19186 -images-24591.png,19187 -images-24592.png,19188 -images-24593.png,19189 -images-24594.png,19190 -images-24595.png,19191 -images-24596.png,19192 -images-24597.png,19193 -images-24598.png,19194 -images-24599.png,19195 -images-24600.png,19196 -images-24601.png,19197 -images-24602.png,19198 -images-24603.png,19199 -images-24604.png,19200 -images-24605.png,19201 -images-24606.png,19202 -images-24607.png,19203 -images-24608.png,19204 -images-24609.png,19205 -images-24610.png,19206 -images-24611.png,19207 -images-24612.png,19208 -images-24613.png,19209 -images-24614.png,19210 -images-24615.png,19211 -images-24616.png,19212 -images-24617.png,19213 -images-24618.png,19214 -images-24619.png,19215 -images-24620.png,19216 -images-24621.png,19217 -images-24622.png,19218 -images-24623.png,19219 -images-24624.png,19220 -images-24625.png,19221 -images-24626.png,19222 -images-24627.png,19223 -images-24628.png,19224 -images-24629.png,19225 -images-24630.png,19226 -images-24631.png,19227 -images-24632.png,19228 -images-24633.png,19229 -images-24634.png,19230 -images-24635.png,19231 -images-24636.png,19232 -images-24637.png,19233 -images-24638.png,19234 -images-24639.png,19235 -images-24640.png,19236 -images-24641.png,19237 -images-24642.png,19238 -images-24643.png,19239 -images-24644.png,19240 -images-24645.png,19241 -images-24646.png,19242 -images-24647.png,19243 -images-24648.png,19244 -images-24649.png,19245 -images-24650.png,19246 -images-24651.png,19247 -images-24652.png,19248 -images-24653.png,19249 -images-24654.png,19250 -images-24655.png,19251 -images-24656.png,19252 -images-24657.png,19253 -images-24658.png,19254 -images-24659.png,19255 -images-24660.png,19256 -images-24661.png,19257 -images-24662.png,19258 -images-24663.png,19259 -images-24664.png,19260 -images-24665.png,19261 -images-24666.png,19262 -images-24667.png,19263 -images-24668.png,19264 -images-24669.png,19265 -images-24670.png,19266 -images-24671.png,19267 -images-24672.png,19268 -images-24673.png,19269 -images-24674.png,19270 -images-24675.png,19271 -images-24676.png,19272 -images-24677.png,19273 -images-24678.png,19274 -images-24679.png,19275 -images-24680.png,19276 -images-24681.png,19277 -images-24682.png,19278 -images-24683.png,19279 -images-24684.png,19280 -images-24685.png,19281 -images-24686.png,19282 -images-24687.png,19283 -images-24688.png,19284 -images-24689.png,19285 -images-24690.png,19286 -images-24691.png,19287 -images-24692.png,19288 -images-24693.png,19289 -images-24694.png,19290 -images-24695.png,19291 -images-24696.png,19292 -images-24697.png,19293 -images-24698.png,19294 -images-24699.png,19295 -images-24700.png,19296 -images-24701.png,19297 -images-24702.png,19298 -images-24703.png,19299 -images-24704.png,19300 -images-24705.png,19301 -images-24706.png,19302 -images-24707.png,19303 -images-24708.png,19304 -images-24709.png,19305 -images-24710.png,19306 -images-24711.png,19307 -images-24712.png,19308 -images-24713.png,19309 -images-24714.png,19310 -images-24715.png,19311 -images-24716.png,19312 -images-24717.png,19313 -images-24718.png,19314 -images-24719.png,19315 -images-24720.png,19316 -images-24721.png,19317 -images-24722.png,19318 -images-24723.png,19319 -images-24724.png,19320 -images-24725.png,19321 -images-24726.png,19322 -images-24727.png,19323 -images-24728.png,19324 -images-24729.png,19325 -images-24730.png,19326 -images-24731.png,19327 -images-24732.png,19328 -images-24733.png,19329 -images-24734.png,19330 -images-24735.png,19331 -images-24736.png,19332 -images-24737.png,19333 -images-24738.png,19334 -images-24739.png,19335 -images-24740.png,19336 -images-24741.png,19337 -images-24742.png,19338 -images-24743.png,19339 -images-24744.png,19340 -images-24745.png,19341 -images-24746.png,19342 -images-24747.png,19343 -images-24748.png,19344 -images-24749.png,19345 -images-24750.png,19346 -images-24751.png,19347 -images-24752.png,19348 -images-24753.png,19349 -images-24754.png,19350 -images-24755.png,19351 -images-24756.png,19352 -images-24757.png,19353 -images-24758.png,19354 -images-24759.png,19355 -images-24760.png,19356 -images-24761.png,19357 -images-24762.png,19358 -images-24763.png,19359 -images-24764.png,19360 -images-24765.png,19361 -images-24766.png,19362 -images-24767.png,19363 -images-24768.png,19364 -images-24769.png,19365 -images-24770.png,19366 -images-24771.png,19367 -images-24772.png,19368 -images-24773.png,19369 -images-24774.png,19370 -images-24775.png,19371 -images-24776.png,19372 -images-24777.png,19373 -images-24778.png,19374 -images-24779.png,19375 -images-24780.png,19376 -images-24781.png,19377 -images-24782.png,19378 -images-24783.png,19379 -images-24784.png,19380 -images-24785.png,19381 -images-24786.png,19382 -images-24787.png,19383 -images-24788.png,19384 -images-24789.png,19385 -images-24790.png,19386 -images-24791.png,19387 -images-24792.png,19388 -images-24793.png,19389 -images-24794.png,19390 -images-24795.png,19391 -images-24796.png,19392 -images-24797.png,19393 -images-24798.png,19394 -images-24799.png,19395 -images-24800.png,19396 -images-24801.png,19397 -images-24802.png,19398 -images-24803.png,19399 -images-24804.png,19400 -images-24805.png,19401 -images-24806.png,19402 -images-24807.png,19403 -images-24808.png,19404 -images-24809.png,19405 -images-24810.png,19406 -images-24811.png,19407 -images-24812.png,19408 -images-24813.png,19409 -images-24814.png,19410 -images-24815.png,19411 -images-24816.png,19412 -images-24817.png,19413 -images-24818.png,19414 -images-24819.png,19415 -images-24820.png,19416 -images-24821.png,19417 -images-24822.png,19418 -images-24823.png,19419 -images-24824.png,19420 -images-24825.png,19421 -images-24826.png,19422 -images-24827.png,19423 -images-24828.png,19424 -images-24829.png,19425 -images-24830.png,19426 -images-24831.png,19427 -images-24832.png,19428 -images-24833.png,19429 -images-24834.png,19430 -images-24835.png,19431 -images-24836.png,19432 -images-24837.png,19433 -images-24838.png,19434 -images-24839.png,19435 -images-24840.png,19436 -images-24841.png,19437 -images-24842.png,19438 -images-24843.png,19439 -images-24844.png,19440 -images-24845.png,19441 -images-24846.png,19442 -images-24847.png,19443 -images-24848.png,19444 -images-24849.png,19445 -images-24850.png,19446 -images-24851.png,19447 -images-24852.png,19448 -images-24853.png,19449 -images-24854.png,19450 -images-24855.png,19451 -images-24856.png,19452 -images-24857.png,19453 -images-24858.png,19454 -images-24859.png,19455 -images-24860.png,19456 -images-24861.png,19457 -images-24862.png,19458 -images-24863.png,19459 -images-24864.png,19460 -images-24865.png,19461 -images-24866.png,19462 -images-24867.png,19463 -images-24868.png,19464 -images-24869.png,19465 -images-24870.png,19466 -images-24871.png,19467 -images-24872.png,19468 -images-24873.png,19469 -images-24874.png,19470 -images-24875.png,19471 -images-24876.png,19472 -images-24877.png,19473 -images-24878.png,19474 -images-24879.png,19475 -images-24880.png,19476 -images-24881.png,19477 -images-24882.png,19478 -images-24883.png,19479 -images-24884.png,19480 -images-24885.png,19481 -images-24886.png,19482 -images-24887.png,19483 -images-24888.png,19484 -images-24889.png,19485 -images-24890.png,19486 -images-24891.png,19487 -images-24892.png,19488 -images-24893.png,19489 -images-24894.png,19490 -images-24895.png,19491 -images-24896.png,19492 -images-24897.png,19493 -images-24898.png,19494 -images-24899.png,19495 -images-24900.png,19496 -images-24901.png,19497 -images-24902.png,19498 -images-24903.png,19499 -images-24904.png,19500 -images-24905.png,19501 -images-24906.png,19502 -images-24907.png,19503 -images-24908.png,19504 -images-24909.png,19505 -images-24910.png,19506 -images-24911.png,19507 -images-24912.png,19508 -images-24913.png,19509 -images-24914.png,19510 -images-24915.png,19511 -images-24916.png,19512 -images-24917.png,19513 -images-24918.png,19514 -images-24919.png,19515 -images-24920.png,19516 -images-24921.png,19517 -images-24922.png,19518 -images-24923.png,19519 -images-24924.png,19520 -images-24925.png,19521 -images-24926.png,19522 -images-24927.png,19523 -images-24928.png,19524 -images-24929.png,19525 -images-24930.png,19526 -images-24931.png,19527 -images-24932.png,19528 -images-24933.png,19529 -images-24934.png,19530 -images-24935.png,19531 -images-24936.png,19532 -images-24937.png,19533 -images-24938.png,19534 -images-24939.png,19535 -images-24940.png,19536 -images-24941.png,19537 -images-24942.png,19538 -images-24943.png,19539 -images-24944.png,19540 -images-24945.png,19541 -images-24946.png,19542 -images-24947.png,19543 -images-24948.png,19544 -images-24949.png,19545 -images-24950.png,19546 -images-24951.png,19547 -images-24952.png,19548 -images-24953.png,19549 -images-24954.png,19550 -images-24955.png,19551 -images-24956.png,19552 -images-24957.png,19553 -images-24958.png,19554 -images-24959.png,19555 -images-24960.png,19556 -images-24961.png,19557 -images-24962.png,19558 -images-24963.png,19559 -images-24964.png,19560 -images-24965.png,19561 -images-24966.png,19562 -images-24967.png,19563 -images-24968.png,19564 -images-24969.png,19565 -images-24970.png,19566 -images-24971.png,19567 -images-24972.png,19568 -images-24973.png,19569 -images-24974.png,19570 -images-24975.png,19571 -images-24976.png,19572 -images-24977.png,19573 -images-24978.png,19574 -images-24979.png,19575 -images-24980.png,19576 -images-24981.png,19577 -images-24982.png,19578 -images-24983.png,19579 -images-24984.png,19580 -images-24985.png,19581 -images-24986.png,19582 -images-24987.png,19583 -images-24997.png,19584 -images-24998.png,19585 -images-24999.png,19586 -images-25000.png,19587 -images-25001.png,19588 -images-25002.png,19589 -images-25003.png,19590 -images-25030.png,19591 -images-25031.png,19592 -images-25032.png,19593 -images-25033.png,19594 -images-25034.png,19595 -images-25035.png,19596 -images-25036.png,19597 -images-25044.png,19598 -images-25045.png,19599 -images-25046.png,19600 -images-25047.png,19601 -images-25048.png,19602 -images-25049.png,19603 -images-25050.png,19604 -images-25051.png,19605 -images-25052.png,19606 -images-25053.png,19607 -images-25054.png,19608 -images-25055.png,19609 -images-25056.png,19610 -images-25057.png,19611 -images-25058.png,19612 -images-25059.png,19613 -images-25060.png,19614 -images-25061.png,19615 -images-25062.png,19616 -images-25063.png,19617 -images-25064.png,19618 -images-25065.png,19619 -images-25066.png,19620 -images-25067.png,19621 -images-25068.png,19622 -images-25069.png,19623 -images-25070.png,19624 -images-25071.png,19625 -images-25072.png,19626 -images-25073.png,19627 -images-25074.png,19628 -images-25075.png,19629 -images-25076.png,19630 -images-25077.png,19631 -images-25078.png,19632 -images-25079.png,19633 -images-25080.png,19634 -images-25081.png,19635 -images-25082.png,19636 -images-25083.png,19637 -images-25084.png,19638 -images-25085.png,19639 -images-25086.png,19640 -images-25087.png,19641 -images-25088.png,19642 -images-25089.png,19643 -images-25090.png,19644 -images-25091.png,19645 -images-25092.png,19646 -images-25093.png,19647 -images-25094.png,19648 -images-25095.png,19649 -images-25096.png,19650 -images-25097.png,19651 -images-25098.png,19652 -images-25099.png,19653 -images-25100.png,19654 -images-25101.png,19655 -images-25102.png,19656 -images-25103.png,19657 -images-25104.png,19658 -images-25105.png,19659 -images-25106.png,19660 -images-25107.png,19661 -images-25108.png,19662 -images-25109.png,19663 -images-25110.png,19664 -images-25111.png,19665 -images-25112.png,19666 -images-25113.png,19667 -images-25114.png,19668 -images-25115.png,19669 -images-25116.png,19670 -images-25117.png,19671 -images-25118.png,19672 -images-25119.png,19673 -images-25120.png,19674 -images-25121.png,19675 -images-25122.png,19676 -images-25123.png,19677 -images-25124.png,19678 -images-25125.png,19679 -images-25126.png,19680 -images-25127.png,19681 -images-25128.png,19682 -images-25129.png,19683 -images-25130.png,19684 -images-25131.png,19685 -images-25132.png,19686 -images-25133.png,19687 -images-25134.png,19688 -images-25135.png,19689 -images-25136.png,19690 -images-25137.png,19691 -images-25138.png,19692 -images-25139.png,19693 -images-25140.png,19694 -images-25141.png,19695 -images-25142.png,19696 -images-25143.png,19697 -images-25144.png,19698 -images-25145.png,19699 -images-25146.png,19700 -images-25147.png,19701 -images-25148.png,19702 -images-25149.png,19703 -images-25150.png,19704 -images-25151.png,19705 -images-25152.png,19706 -images-25153.png,19707 -images-25154.png,19708 -images-25155.png,19709 -images-25156.png,19710 -images-25157.png,19711 -images-25158.png,19712 -images-25159.png,19713 -images-25160.png,19714 -images-25161.png,19715 -images-25162.png,19716 -images-25163.png,19717 -images-25164.png,19718 -images-25165.png,19719 -images-25166.png,19720 -images-25167.png,19721 -images-25168.png,19722 -images-25169.png,19723 -images-25170.png,19724 -images-25171.png,19725 -images-25172.png,19726 -images-25173.png,19727 -images-25174.png,19728 -images-25175.png,19729 -images-25176.png,19730 -images-25177.png,19731 -images-25178.png,19732 -images-25179.png,19733 -images-25180.png,19734 -images-25181.png,19735 -images-25182.png,19736 -images-25183.png,19737 -images-25184.png,19738 -images-25185.png,19739 -images-25186.png,19740 -images-25187.png,19741 -images-25188.png,19742 -images-25189.png,19743 -images-25190.png,19744 -images-25191.png,19745 -images-25192.png,19746 -images-25193.png,19747 -images-25194.png,19748 -images-25195.png,19749 -images-25196.png,19750 -images-25197.png,19751 -images-25198.png,19752 -images-25199.png,19753 -images-25200.png,19754 -images-25201.png,19755 -images-25202.png,19756 -images-25203.png,19757 -images-25204.png,19758 -images-25205.png,19759 -images-25206.png,19760 -images-25207.png,19761 -images-25208.png,19762 -images-25209.png,19763 -images-25210.png,19764 -images-25211.png,19765 -images-25212.png,19766 -images-25213.png,19767 -images-25214.png,19768 -images-25215.png,19769 -images-25216.png,19770 -images-25217.png,19771 -images-25218.png,19772 -images-25219.png,19773 -images-25220.png,19774 -images-25221.png,19775 -images-25222.png,19776 -images-25223.png,19777 -images-25224.png,19778 -images-25225.png,19779 -images-25226.png,19780 -images-25227.png,19781 -images-25228.png,19782 -images-25229.png,19783 -images-25230.png,19784 -images-25231.png,19785 -images-25232.png,19786 -images-25233.png,19787 -images-25234.png,19788 -images-25235.png,19789 -images-25236.png,19790 -images-25237.png,19791 -images-25238.png,19792 -images-25239.png,19793 -images-25240.png,19794 -images-25241.png,19795 -images-25242.png,19796 -images-25243.png,19797 -images-25244.png,19798 -images-25245.png,19799 -images-25246.png,19800 -images-25247.png,19801 -images-25248.png,19802 -images-25249.png,19803 -images-25250.png,19804 -images-25251.png,19805 -images-25252.png,19806 -images-25253.png,19807 -images-25254.png,19808 -images-25255.png,19809 -images-25320.png,19810 -images-25321.png,19811 -images-25322.png,19812 -images-25323.png,19813 -images-25324.png,19814 -images-25325.png,19815 -images-25326.png,19816 -images-25327.png,19817 -images-25328.png,19818 -images-25329.png,19819 -images-25330.png,19820 -images-25331.png,19821 -images-25332.png,19822 -images-25333.png,19823 -images-25334.png,19824 -images-25335.png,19825 -images-25336.png,19826 -images-25337.png,19827 -images-25338.png,19828 -images-25339.png,19829 -images-25340.png,19830 -images-25341.png,19831 -images-25342.png,19832 -images-25343.png,19833 -images-25344.png,19834 -images-25345.png,19835 -images-25346.png,19836 -images-25347.png,19837 -images-25348.png,19838 -images-25349.png,19839 -images-25350.png,19840 -images-25351.png,19841 -images-25352.png,19842 -images-25353.png,19843 -images-25354.png,19844 -images-25355.png,19845 -images-25356.png,19846 -images-25357.png,19847 -images-25358.png,19848 -images-25359.png,19849 -images-25360.png,19850 -images-25361.png,19851 -images-25362.png,19852 -images-25363.png,19853 -images-25364.png,19854 -images-25365.png,19855 -images-25366.png,19856 -images-25367.png,19857 -images-25368.png,19858 -images-25369.png,19859 -images-25370.png,19860 -images-25371.png,19861 -images-25372.png,19862 -images-25380.png,19863 -images-25381.png,19864 -images-25382.png,19865 -images-25383.png,19866 -images-25384.png,19867 -images-25385.png,19868 -images-25386.png,19869 -images-25387.png,19870 -images-25388.png,19871 -images-25389.png,19872 -images-25390.png,19873 -images-25391.png,19874 -images-25392.png,19875 -images-25393.png,19876 -images-25394.png,19877 -images-25395.png,19878 -images-25396.png,19879 -images-25397.png,19880 -images-25406.png,19881 -images-25407.png,19882 -images-25408.png,19883 -images-25409.png,19884 -images-25410.png,19885 -images-25411.png,19886 -images-25412.png,19887 -images-25413.png,19888 -images-25414.png,19889 -images-25415.png,19890 -images-25416.png,19891 -images-25417.png,19892 -images-25418.png,19893 -images-25419.png,19894 -images-25420.png,19895 -images-25421.png,19896 -images-25422.png,19897 -images-25423.png,19898 -images-25424.png,19899 -images-25425.png,19900 -images-25426.png,19901 -images-25427.png,19902 -images-25428.png,19903 -images-25429.png,19904 -images-25430.png,19905 -images-25431.png,19906 -images-25432.png,19907 -images-25433.png,19908 -images-25434.png,19909 -images-25435.png,19910 -images-25436.png,19911 -images-25437.png,19912 -images-25438.png,19913 -images-25439.png,19914 -images-25440.png,19915 -images-25441.png,19916 -images-25442.png,19917 -images-25443.png,19918 -images-25444.png,19919 -images-25445.png,19920 -images-25446.png,19921 -images-25447.png,19922 -images-25448.png,19923 -images-25449.png,19924 -images-25450.png,19925 -images-25451.png,19926 -images-25452.png,19927 -images-25453.png,19928 -images-25454.png,19929 -images-25455.png,19930 -images-25456.png,19931 -images-25457.png,19932 -images-25458.png,19933 -images-25459.png,19934 -images-25460.png,19935 -images-25461.png,19936 -images-25462.png,19937 -images-25463.png,19938 -images-25464.png,19939 -images-25465.png,19940 -images-25466.png,19941 -images-25467.png,19942 -images-25468.png,19943 -images-25469.png,19944 -images-25470.png,19945 -images-25471.png,19946 -images-25472.png,19947 -images-25473.png,19948 -images-25474.png,19949 -images-25475.png,19950 -images-25476.png,19951 -images-25477.png,19952 -images-25478.png,19953 -images-25479.png,19954 -images-25480.png,19955 -images-25481.png,19956 -images-25482.png,19957 -images-25483.png,19958 -images-25484.png,19959 -images-25485.png,19960 -images-25486.png,19961 -images-25487.png,19962 -images-25488.png,19963 -images-25489.png,19964 -images-25490.png,19965 -images-25491.png,19966 -images-25492.png,19967 -images-25493.png,19968 -images-25494.png,19969 -images-25495.png,19970 -images-25496.png,19971 -images-25497.png,19972 -images-25498.png,19973 -images-25499.png,19974 -images-25500.png,19975 -images-25501.png,19976 -images-25502.png,19977 -images-25503.png,19978 -images-25504.png,19979 -images-25505.png,19980 -images-25506.png,19981 -images-25521.png,19982 -images-25522.png,19983 -images-25523.png,19984 -images-25524.png,19985 -images-25525.png,19986 -images-25526.png,19987 -images-25527.png,19988 -images-25528.png,19989 -images-25529.png,19990 -images-25530.png,19991 -images-25531.png,19992 -images-25532.png,19993 -images-25533.png,19994 -images-25534.png,19995 -images-25535.png,19996 -images-25536.png,19997 -images-25537.png,19998 -images-25538.png,19999 -images-25539.png,20000 -images-25540.png,20001 -images-25541.png,20002 -images-25542.png,20003 -images-25543.png,20004 -images-25544.png,20005 -images-25545.png,20006 -images-25546.png,20007 -images-25547.png,20008 -images-25548.png,20009 -images-25549.png,20010 -images-25550.png,20011 -images-25551.png,20012 -images-25552.png,20013 -images-25553.png,20014 -images-25554.png,20015 -images-25555.png,20016 -images-25556.png,20017 -images-25557.png,20018 -images-25558.png,20019 -images-25559.png,20020 -images-25560.png,20021 -images-25561.png,20022 -images-25562.png,20023 -images-25563.png,20024 -images-25564.png,20025 -images-25565.png,20026 -images-25566.png,20027 -images-25567.png,20028 -images-25568.png,20029 -images-25569.png,20030 -images-25570.png,20031 -images-25571.png,20032 -images-25572.png,20033 -images-25573.png,20034 -images-25574.png,20035 -images-25575.png,20036 -images-25576.png,20037 -images-25577.png,20038 -images-25578.png,20039 -images-25579.png,20040 -images-25580.png,20041 -images-25581.png,20042 -images-25582.png,20043 -images-25583.png,20044 -images-25584.png,20045 -images-25585.png,20046 -images-25586.png,20047 -images-25587.png,20048 -images-25588.png,20049 -images-25589.png,20050 -images-25590.png,20051 -images-25591.png,20052 -images-25592.png,20053 -images-25593.png,20054 -images-25594.png,20055 -images-25595.png,20056 -images-25596.png,20057 -images-25597.png,20058 -images-25598.png,20059 -images-25599.png,20060 -images-25600.png,20061 -images-25601.png,20062 -images-25602.png,20063 -images-25603.png,20064 -images-25604.png,20065 -images-25605.png,20066 -images-25606.png,20067 -images-25607.png,20068 -images-25608.png,20069 -images-25609.png,20070 -images-25610.png,20071 -images-25611.png,20072 -images-25612.png,20073 -images-25613.png,20074 -images-25614.png,20075 -images-25615.png,20076 -images-25616.png,20077 -images-25617.png,20078 -images-25618.png,20079 -images-25619.png,20080 -images-25620.png,20081 -images-25621.png,20082 -images-25622.png,20083 -images-25623.png,20084 -images-25624.png,20085 -images-25625.png,20086 -images-25626.png,20087 -images-25627.png,20088 -images-25628.png,20089 -images-25629.png,20090 -images-25630.png,20091 -images-25631.png,20092 -images-25632.png,20093 -images-25633.png,20094 -images-25634.png,20095 -images-25635.png,20096 -images-25636.png,20097 -images-25637.png,20098 -images-25638.png,20099 -images-25639.png,20100 -images-25640.png,20101 -images-25641.png,20102 -images-25642.png,20103 -images-25643.png,20104 -images-25644.png,20105 -images-25645.png,20106 -images-25646.png,20107 -images-25647.png,20108 -images-25648.png,20109 -images-25649.png,20110 -images-25650.png,20111 -images-25651.png,20112 -images-25652.png,20113 -images-25653.png,20114 -images-25654.png,20115 -images-25655.png,20116 -images-25656.png,20117 -images-25657.png,20118 -images-25658.png,20119 -images-25659.png,20120 -images-25660.png,20121 -images-25661.png,20122 -images-25662.png,20123 -images-25663.png,20124 -images-25664.png,20125 -images-25665.png,20126 -images-25666.png,20127 -images-25667.png,20128 -images-25668.png,20129 -images-25669.png,20130 -images-25670.png,20131 -images-25671.png,20132 -images-25672.png,20133 -images-25673.png,20134 -images-25674.png,20135 -images-25675.png,20136 -images-25676.png,20137 -images-25677.png,20138 -images-25678.png,20139 -images-25679.png,20140 -images-25680.png,20141 -images-25681.png,20142 -images-25682.png,20143 -images-25683.png,20144 -images-25684.png,20145 -images-25685.png,20146 -images-25686.png,20147 -images-25687.png,20148 -images-25688.png,20149 -images-25689.png,20150 -images-25690.png,20151 -images-25691.png,20152 -images-25692.png,20153 -images-25693.png,20154 -images-25694.png,20155 -images-25695.png,20156 -images-25696.png,20157 -images-25697.png,20158 -images-25698.png,20159 -images-25699.png,20160 -images-25700.png,20161 -images-25701.png,20162 -images-25702.png,20163 -images-25703.png,20164 -images-25704.png,20165 -images-25705.png,20166 -images-25706.png,20167 -images-25707.png,20168 -images-25708.png,20169 -images-25709.png,20170 -images-25710.png,20171 -images-25711.png,20172 -images-25712.png,20173 -images-25713.png,20174 -images-25714.png,20175 -images-25715.png,20176 -images-25716.png,20177 -images-25717.png,20178 -images-25718.png,20179 -images-25719.png,20180 -images-25720.png,20181 -images-25721.png,20182 -images-25722.png,20183 -images-25723.png,20184 -images-25724.png,20185 -images-25725.png,20186 -images-25726.png,20187 -images-25727.png,20188 -images-25728.png,20189 -images-25729.png,20190 -images-25730.png,20191 -images-25731.png,20192 -images-25732.png,20193 -images-25733.png,20194 -images-25734.png,20195 -images-25735.png,20196 -images-25736.png,20197 -images-25737.png,20198 -images-25738.png,20199 -images-25739.png,20200 -images-25740.png,20201 -images-25741.png,20202 -images-25742.png,20203 -images-25743.png,20204 -images-25744.png,20205 -images-25745.png,20206 -images-25746.png,20207 -images-25747.png,20208 -images-25748.png,20209 -images-25749.png,20210 -images-25750.png,20211 -images-25751.png,20212 -images-25752.png,20213 -images-25753.png,20214 -images-25754.png,20215 -images-25755.png,20216 -images-25756.png,20217 -images-25757.png,20218 -images-25758.png,20219 -images-25759.png,20220 -images-25760.png,20221 -images-25761.png,20222 -images-25762.png,20223 -images-25763.png,20224 -images-25764.png,20225 -images-25765.png,20226 -images-25766.png,20227 -images-25767.png,20228 -images-25768.png,20229 -images-25769.png,20230 -images-25770.png,20231 -images-25771.png,20232 -images-25772.png,20233 -images-25773.png,20234 -images-25774.png,20235 -images-25775.png,20236 -images-25776.png,20237 -images-25777.png,20238 -images-25778.png,20239 -images-25779.png,20240 -images-25780.png,20241 -images-25781.png,20242 -images-25782.png,20243 -images-25783.png,20244 -images-25784.png,20245 -images-25785.png,20246 -images-25786.png,20247 -images-25787.png,20248 -images-25788.png,20249 -images-25789.png,20250 -images-25790.png,20251 -images-25791.png,20252 -images-25792.png,20253 -images-25793.png,20254 -images-25794.png,20255 -images-25795.png,20256 -images-25796.png,20257 -images-25797.png,20258 -images-25798.png,20259 -images-25799.png,20260 -images-25800.png,20261 -images-25801.png,20262 -images-25802.png,20263 -images-25803.png,20264 -images-25804.png,20265 -images-25805.png,20266 -images-25806.png,20267 -images-25807.png,20268 -images-25808.png,20269 -images-25809.png,20270 -images-25810.png,20271 -images-25811.png,20272 -images-25812.png,20273 -images-25813.png,20274 -images-25814.png,20275 -images-25815.png,20276 -images-25816.png,20277 -images-25817.png,20278 -images-25818.png,20279 -images-25819.png,20280 -images-25820.png,20281 -images-25821.png,20282 -images-25822.png,20283 -images-25823.png,20284 -images-25824.png,20285 -images-25846.png,20286 -images-25847.png,20287 -images-25848.png,20288 -images-25849.png,20289 -images-25850.png,20290 -images-25851.png,20291 -images-25852.png,20292 -images-25853.png,20293 -images-25854.png,20294 -images-25855.png,20295 -images-25856.png,20296 -images-25857.png,20297 -images-25858.png,20298 -images-25859.png,20299 -images-25860.png,20300 -images-25861.png,20301 -images-25862.png,20302 -images-25863.png,20303 -images-25864.png,20304 -images-25865.png,20305 -images-25866.png,20306 -images-25867.png,20307 -images-25868.png,20308 -images-25869.png,20309 -images-25870.png,20310 -images-25871.png,20311 -images-25872.png,20312 -images-25873.png,20313 -images-25874.png,20314 -images-25875.png,20315 -images-25876.png,20316 -images-25877.png,20317 -images-25878.png,20318 -images-25879.png,20319 -images-25880.png,20320 -images-25881.png,20321 -images-25882.png,20322 -images-25883.png,20323 -images-25884.png,20324 -images-25885.png,20325 -images-25886.png,20326 -images-25887.png,20327 -images-25888.png,20328 -images-25889.png,20329 -images-25890.png,20330 -images-25891.png,20331 -images-25892.png,20332 -images-25893.png,20333 -images-25894.png,20334 -images-25895.png,20335 -images-25896.png,20336 -images-25897.png,20337 -images-25898.png,20338 -images-25899.png,20339 -images-25900.png,20340 -images-25901.png,20341 -images-25902.png,20342 -images-25903.png,20343 -images-25904.png,20344 -images-25905.png,20345 -images-25906.png,20346 -images-25907.png,20347 -images-25908.png,20348 -images-25909.png,20349 -images-25910.png,20350 -images-25911.png,20351 -images-25912.png,20352 -images-25913.png,20353 -images-25914.png,20354 -images-25915.png,20355 -images-25916.png,20356 -images-25917.png,20357 -images-25918.png,20358 -images-25919.png,20359 -images-25920.png,20360 -images-25921.png,20361 -images-25922.png,20362 -images-25923.png,20363 -images-25924.png,20364 -images-25925.png,20365 -images-25926.png,20366 -images-25927.png,20367 -images-25928.png,20368 -images-25929.png,20369 -images-25930.png,20370 -images-25931.png,20371 -images-25932.png,20372 -images-25933.png,20373 -images-25934.png,20374 -images-25935.png,20375 -images-25936.png,20376 -images-25937.png,20377 -images-25938.png,20378 -images-25939.png,20379 -images-25940.png,20380 -images-25941.png,20381 -images-25942.png,20382 -images-25943.png,20383 -images-25944.png,20384 -images-25945.png,20385 -images-25946.png,20386 -images-25947.png,20387 -images-25948.png,20388 -images-25949.png,20389 -images-25950.png,20390 -images-25951.png,20391 -images-25952.png,20392 -images-25953.png,20393 -images-25954.png,20394 -images-25955.png,20395 -images-25956.png,20396 -images-25957.png,20397 -images-25958.png,20398 -images-25959.png,20399 -images-25960.png,20400 -images-25961.png,20401 -images-25962.png,20402 -images-25963.png,20403 -images-25964.png,20404 -images-25965.png,20405 -images-25966.png,20406 -images-25967.png,20407 -images-25968.png,20408 -images-25969.png,20409 -images-25970.png,20410 -images-25971.png,20411 -images-25972.png,20412 -images-25973.png,20413 -images-25974.png,20414 -images-25975.png,20415 -images-25976.png,20416 -images-25977.png,20417 -images-25978.png,20418 -images-25979.png,20419 -images-25980.png,20420 -images-25981.png,20421 -images-25982.png,20422 -images-25983.png,20423 -images-25984.png,20424 -images-25985.png,20425 -images-25986.png,20426 -images-25987.png,20427 -images-25988.png,20428 -images-25989.png,20429 -images-25990.png,20430 -images-25991.png,20431 -images-25992.png,20432 -images-25993.png,20433 -images-25994.png,20434 -images-25995.png,20435 -images-25996.png,20436 -images-25997.png,20437 -images-25998.png,20438 -images-25999.png,20439 -images-26000.png,20440 -images-26001.png,20441 -images-26002.png,20442 -images-26003.png,20443 -images-26004.png,20444 -images-26005.png,20445 -images-26006.png,20446 -images-26007.png,20447 -images-26008.png,20448 -images-26009.png,20449 -images-26010.png,20450 -images-26011.png,20451 -images-26012.png,20452 -images-26013.png,20453 -images-26014.png,20454 -images-26015.png,20455 -images-26016.png,20456 -images-26017.png,20457 -images-26018.png,20458 -images-26019.png,20459 -images-26020.png,20460 -images-26021.png,20461 -images-26022.png,20462 -images-26023.png,20463 -images-26024.png,20464 -images-26025.png,20465 -images-26026.png,20466 -images-26027.png,20467 -images-26028.png,20468 -images-26029.png,20469 -images-26030.png,20470 -images-26031.png,20471 -images-26032.png,20472 -images-26033.png,20473 -images-26034.png,20474 -images-26035.png,20475 -images-26036.png,20476 -images-26037.png,20477 -images-26038.png,20478 -images-26039.png,20479 -images-26040.png,20480 -images-26041.png,20481 -images-26042.png,20482 -images-26043.png,20483 -images-26044.png,20484 -images-26045.png,20485 -images-26046.png,20486 -images-26047.png,20487 -images-26048.png,20488 -images-26049.png,20489 -images-26050.png,20490 -images-26051.png,20491 -images-26052.png,20492 -images-26053.png,20493 -images-26054.png,20494 -images-26055.png,20495 -images-26056.png,20496 -images-26057.png,20497 -images-26058.png,20498 -images-26059.png,20499 -images-26060.png,20500 -images-26061.png,20501 -images-26062.png,20502 -images-26063.png,20503 -images-26064.png,20504 -images-26065.png,20505 -images-26066.png,20506 -images-26067.png,20507 -images-26068.png,20508 -images-26069.png,20509 -images-26070.png,20510 -images-26071.png,20511 -images-26072.png,20512 -images-26073.png,20513 -images-26074.png,20514 -images-26075.png,20515 -images-26076.png,20516 -images-26077.png,20517 -images-26078.png,20518 -images-26079.png,20519 -images-26080.png,20520 -images-26081.png,20521 -images-26082.png,20522 -images-26083.png,20523 -images-26084.png,20524 -images-26085.png,20525 -images-26091.png,20526 -images-26092.png,20527 -images-26093.png,20528 -images-26094.png,20529 -images-26095.png,20530 -images-26096.png,20531 -images-26097.png,20532 -images-26098.png,20533 -images-26099.png,20534 -images-26100.png,20535 -images-26101.png,20536 -images-26102.png,20537 -images-26103.png,20538 -images-26104.png,20539 -images-26105.png,20540 -images-26106.png,20541 -images-26107.png,20542 -images-26108.png,20543 -images-26109.png,20544 -images-26110.png,20545 -images-26111.png,20546 -images-26112.png,20547 -images-26113.png,20548 -images-26114.png,20549 -images-26115.png,20550 -images-26116.png,20551 -images-26117.png,20552 -images-26118.png,20553 -images-26119.png,20554 -images-26135.png,20555 -images-26136.png,20556 -images-26137.png,20557 -images-26138.png,20558 -images-26139.png,20559 -images-26140.png,20560 -images-26141.png,20561 -images-26142.png,20562 -images-26143.png,20563 -images-26144.png,20564 -images-26145.png,20565 -images-26146.png,20566 -images-26147.png,20567 -images-26148.png,20568 -images-26149.png,20569 -images-26150.png,20570 -images-26151.png,20571 -images-26152.png,20572 -images-26153.png,20573 -images-26154.png,20574 -images-26155.png,20575 -images-26156.png,20576 -images-26157.png,20577 -images-26158.png,20578 -images-26159.png,20579 -images-26160.png,20580 -images-26161.png,20581 -images-26162.png,20582 -images-26163.png,20583 -images-26164.png,20584 -images-26165.png,20585 -images-26166.png,20586 -images-26167.png,20587 -images-26168.png,20588 -images-26169.png,20589 -images-26170.png,20590 -images-26171.png,20591 -images-26172.png,20592 -images-26173.png,20593 -images-26174.png,20594 -images-26175.png,20595 -images-26176.png,20596 -images-26177.png,20597 -images-26178.png,20598 -images-26179.png,20599 -images-26180.png,20600 -images-26181.png,20601 -images-26182.png,20602 -images-26183.png,20603 -images-26184.png,20604 -images-26185.png,20605 -images-26186.png,20606 -images-26187.png,20607 -images-26188.png,20608 -images-26189.png,20609 -images-26190.png,20610 -images-26191.png,20611 -images-26192.png,20612 -images-26193.png,20613 -images-26194.png,20614 -images-26195.png,20615 -images-26196.png,20616 -images-26197.png,20617 -images-26198.png,20618 -images-26199.png,20619 -images-26200.png,20620 -images-26201.png,20621 -images-26202.png,20622 -images-26203.png,20623 -images-26204.png,20624 -images-26205.png,20625 -images-26206.png,20626 -images-26207.png,20627 -images-26208.png,20628 -images-26209.png,20629 -images-26210.png,20630 -images-26211.png,20631 -images-26212.png,20632 -images-26213.png,20633 -images-26214.png,20634 -images-26215.png,20635 -images-26216.png,20636 -images-26217.png,20637 -images-26218.png,20638 -images-26219.png,20639 -images-26220.png,20640 -images-26221.png,20641 -images-26222.png,20642 -images-26223.png,20643 -images-26224.png,20644 -images-26225.png,20645 -images-26226.png,20646 -images-26227.png,20647 -images-26228.png,20648 -images-26229.png,20649 -images-26230.png,20650 -images-26231.png,20651 -images-26232.png,20652 -images-26233.png,20653 -images-26234.png,20654 -images-26235.png,20655 -images-26236.png,20656 -images-26237.png,20657 -images-26238.png,20658 -images-26239.png,20659 -images-26240.png,20660 -images-26241.png,20661 -images-26242.png,20662 -images-26243.png,20663 -images-26244.png,20664 -images-26245.png,20665 -images-26246.png,20666 -images-26247.png,20667 -images-26248.png,20668 -images-26249.png,20669 -images-26250.png,20670 -images-26251.png,20671 -images-26252.png,20672 -images-26253.png,20673 -images-26254.png,20674 -images-26255.png,20675 -images-26256.png,20676 -images-26257.png,20677 -images-26258.png,20678 -images-26259.png,20679 -images-26260.png,20680 -images-26261.png,20681 -images-26262.png,20682 -images-26263.png,20683 -images-26264.png,20684 -images-26265.png,20685 -images-26266.png,20686 -images-26267.png,20687 -images-26268.png,20688 -images-26269.png,20689 -images-26270.png,20690 -images-26271.png,20691 -images-26272.png,20692 -images-26273.png,20693 -images-26274.png,20694 -images-26275.png,20695 -images-26276.png,20696 -images-26277.png,20697 -images-26278.png,20698 -images-26279.png,20699 -images-26280.png,20700 -images-26281.png,20701 -images-26282.png,20702 -images-26283.png,20703 -images-26284.png,20704 -images-26285.png,20705 -images-26286.png,20706 -images-26287.png,20707 -images-26288.png,20708 -images-26289.png,20709 -images-26290.png,20710 -images-26291.png,20711 -images-26292.png,20712 -images-26293.png,20713 -images-26294.png,20714 -images-26295.png,20715 -images-26296.png,20716 -images-26297.png,20717 -images-26298.png,20718 -images-26299.png,20719 -images-26300.png,20720 -images-26301.png,20721 -images-26302.png,20722 -images-26303.png,20723 -images-26304.png,20724 -images-26305.png,20725 -images-26306.png,20726 -images-26307.png,20727 -images-26308.png,20728 -images-26309.png,20729 -images-26310.png,20730 -images-26311.png,20731 -images-26312.png,20732 -images-26313.png,20733 -images-26314.png,20734 -images-26315.png,20735 -images-26316.png,20736 -images-26317.png,20737 -images-26318.png,20738 -images-26319.png,20739 -images-26320.png,20740 -images-26321.png,20741 -images-26322.png,20742 -images-26323.png,20743 -images-26324.png,20744 -images-26325.png,20745 -images-26326.png,20746 -images-26327.png,20747 -images-26328.png,20748 -images-26329.png,20749 -images-26330.png,20750 -images-26331.png,20751 -images-26332.png,20752 -images-26333.png,20753 -images-26334.png,20754 -images-26335.png,20755 -images-26336.png,20756 -images-26337.png,20757 -images-26338.png,20758 -images-26339.png,20759 -images-26340.png,20760 -images-26341.png,20761 -images-26342.png,20762 -images-26343.png,20763 -images-26344.png,20764 -images-26345.png,20765 -images-26346.png,20766 -images-26347.png,20767 -images-26348.png,20768 -images-26349.png,20769 -images-26350.png,20770 -images-26351.png,20771 -images-26352.png,20772 -images-26353.png,20773 -images-26354.png,20774 -images-26355.png,20775 -images-26356.png,20776 -images-26357.png,20777 -images-26358.png,20778 -images-26359.png,20779 -images-26360.png,20780 -images-26361.png,20781 -images-26362.png,20782 -images-26363.png,20783 -images-26364.png,20784 -images-26365.png,20785 -images-26366.png,20786 -images-26367.png,20787 -images-26368.png,20788 -images-26369.png,20789 -images-26370.png,20790 -images-26371.png,20791 -images-26372.png,20792 -images-26373.png,20793 -images-26374.png,20794 -images-26375.png,20795 -images-26376.png,20796 -images-26377.png,20797 -images-26378.png,20798 -images-26379.png,20799 -images-26380.png,20800 -images-26381.png,20801 -images-26382.png,20802 -images-26383.png,20803 -images-26384.png,20804 -images-26385.png,20805 -images-26386.png,20806 -images-26387.png,20807 -images-26388.png,20808 -images-26389.png,20809 -images-26390.png,20810 -images-26391.png,20811 -images-26559.png,20812 -images-26560.png,20813 -images-26561.png,20814 -images-26562.png,20815 -images-26563.png,20816 -images-26564.png,20817 -images-26565.png,20818 -images-26566.png,20819 -images-26567.png,20820 -images-26568.png,20821 -images-26569.png,20822 -images-26570.png,20823 -images-26571.png,20824 -images-26572.png,20825 -images-26573.png,20826 -images-26574.png,20827 -images-26575.png,20828 -images-26576.png,20829 -images-26577.png,20830 -images-26578.png,20831 -images-26579.png,20832 -images-26580.png,20833 -images-26581.png,20834 -images-26582.png,20835 -images-26583.png,20836 -images-26584.png,20837 -images-26585.png,20838 -images-26586.png,20839 -images-26587.png,20840 -images-26588.png,20841 -images-26589.png,20842 -images-26590.png,20843 -images-26591.png,20844 -images-26592.png,20845 -images-26593.png,20846 -images-26594.png,20847 -images-26595.png,20848 -images-26596.png,20849 -images-26597.png,20850 -images-26598.png,20851 -images-26599.png,20852 -images-26600.png,20853 -images-26601.png,20854 -images-26602.png,20855 -images-26603.png,20856 -images-26604.png,20857 -images-26605.png,20858 -images-26606.png,20859 -images-26607.png,20860 -images-26608.png,20861 -images-26609.png,20862 -images-26610.png,20863 -images-26611.png,20864 -images-26612.png,20865 -images-26613.png,20866 -images-26614.png,20867 -images-26615.png,20868 -images-26616.png,20869 -images-26617.png,20870 -images-26618.png,20871 -images-26619.png,20872 -images-26620.png,20873 -images-26621.png,20874 -images-26622.png,20875 -images-26623.png,20876 -images-26624.png,20877 -images-26625.png,20878 -images-26626.png,20879 -images-26627.png,20880 -images-26628.png,20881 -images-26629.png,20882 -images-26630.png,20883 -images-26631.png,20884 -images-26632.png,20885 -images-26633.png,20886 -images-26634.png,20887 -images-26635.png,20888 -images-26636.png,20889 -images-26637.png,20890 -images-26638.png,20891 -images-26639.png,20892 -images-26640.png,20893 -images-26641.png,20894 -images-26642.png,20895 -images-26643.png,20896 -images-26644.png,20897 -images-26645.png,20898 -images-26646.png,20899 -images-26647.png,20900 -images-26648.png,20901 -images-26649.png,20902 -images-26650.png,20903 -images-26651.png,20904 -images-26652.png,20905 -images-26653.png,20906 -images-26654.png,20907 -images-26655.png,20908 -images-26656.png,20909 -images-26657.png,20910 -images-26658.png,20911 -images-26659.png,20912 -images-26660.png,20913 -images-26661.png,20914 -images-26662.png,20915 -images-26663.png,20916 -images-26664.png,20917 -images-26665.png,20918 -images-26666.png,20919 -images-26667.png,20920 -images-26668.png,20921 -images-26669.png,20922 -images-26670.png,20923 -images-26671.png,20924 -images-26672.png,20925 -images-26673.png,20926 -images-26674.png,20927 -images-26675.png,20928 -images-26676.png,20929 -images-26677.png,20930 -images-26678.png,20931 -images-26679.png,20932 -images-26680.png,20933 -images-26681.png,20934 -images-26682.png,20935 -images-26683.png,20936 -images-26684.png,20937 -images-26685.png,20938 -images-26686.png,20939 -images-26687.png,20940 -images-26688.png,20941 -images-26689.png,20942 -images-26690.png,20943 -images-26691.png,20944 -images-26692.png,20945 -images-26693.png,20946 -images-26694.png,20947 -images-26695.png,20948 -images-26696.png,20949 -images-26697.png,20950 -images-26698.png,20951 -images-26699.png,20952 -images-26700.png,20953 -images-26701.png,20954 -images-26702.png,20955 -images-26703.png,20956 -images-26704.png,20957 -images-26705.png,20958 -images-26706.png,20959 -images-26707.png,20960 -images-26708.png,20961 -images-26709.png,20962 -images-26710.png,20963 -images-26711.png,20964 -images-26712.png,20965 -images-26713.png,20966 -images-26714.png,20967 -images-26715.png,20968 -images-26716.png,20969 -images-26717.png,20970 -images-26718.png,20971 -images-26719.png,20972 -images-26720.png,20973 -images-26721.png,20974 -images-26722.png,20975 -images-26723.png,20976 -images-26724.png,20977 -images-26725.png,20978 -images-26726.png,20979 -images-26727.png,20980 -images-26728.png,20981 -images-26729.png,20982 -images-26730.png,20983 -images-26731.png,20984 -images-26732.png,20985 -images-26733.png,20986 -images-26734.png,20987 -images-26735.png,20988 -images-26736.png,20989 -images-26737.png,20990 -images-26738.png,20991 -images-26739.png,20992 -images-26740.png,20993 -images-26741.png,20994 -images-26742.png,20995 -images-26743.png,20996 -images-26744.png,20997 -images-26745.png,20998 -images-26746.png,20999 -images-26747.png,21000 -images-26748.png,21001 -images-26749.png,21002 -images-26750.png,21003 -images-26751.png,21004 -images-26752.png,21005 -images-26753.png,21006 -images-26754.png,21007 -images-26755.png,21008 -images-26756.png,21009 -images-26757.png,21010 -images-26758.png,21011 -images-26759.png,21012 -images-26760.png,21013 -images-26761.png,21014 -images-26762.png,21015 -images-26763.png,21016 -images-26764.png,21017 -images-26765.png,21018 -images-26766.png,21019 -images-26767.png,21020 -images-26768.png,21021 -images-26769.png,21022 -images-26770.png,21023 -images-26771.png,21024 -images-26772.png,21025 -images-26773.png,21026 -images-26774.png,21027 -images-26775.png,21028 -images-26776.png,21029 -images-26777.png,21030 -images-26778.png,21031 -images-26779.png,21032 -images-26780.png,21033 -images-26781.png,21034 -images-26782.png,21035 -images-26783.png,21036 -images-26784.png,21037 -images-26785.png,21038 -images-26786.png,21039 -images-26787.png,21040 -images-26788.png,21041 -images-26789.png,21042 -images-26790.png,21043 -images-26791.png,21044 -images-26792.png,21045 -images-26793.png,21046 -images-26794.png,21047 -images-26795.png,21048 -images-26796.png,21049 -images-26797.png,21050 -images-26798.png,21051 -images-26799.png,21052 -images-26800.png,21053 -images-26801.png,21054 -images-26802.png,21055 -images-26803.png,21056 -images-26804.png,21057 -images-26805.png,21058 -images-26806.png,21059 -images-26807.png,21060 -images-26808.png,21061 -images-26809.png,21062 -images-26810.png,21063 -images-26811.png,21064 -images-26812.png,21065 -images-26813.png,21066 -images-26814.png,21067 -images-26815.png,21068 -images-26816.png,21069 -images-26817.png,21070 -images-26818.png,21071 -images-26819.png,21072 -images-26820.png,21073 -images-26821.png,21074 -images-26822.png,21075 -images-26823.png,21076 -images-26824.png,21077 -images-26825.png,21078 -images-26826.png,21079 -images-26827.png,21080 -images-26828.png,21081 -images-26829.png,21082 -images-26830.png,21083 -images-26831.png,21084 -images-26832.png,21085 -images-26833.png,21086 -images-26834.png,21087 -images-26835.png,21088 -images-26836.png,21089 -images-26837.png,21090 -images-26838.png,21091 -images-26839.png,21092 -images-26840.png,21093 -images-26841.png,21094 -images-26842.png,21095 -images-26843.png,21096 -images-26844.png,21097 -images-26845.png,21098 -images-26846.png,21099 -images-26847.png,21100 -images-26848.png,21101 -images-26849.png,21102 -images-26850.png,21103 -images-26851.png,21104 -images-26852.png,21105 -images-26853.png,21106 -images-26854.png,21107 -images-26855.png,21108 -images-26856.png,21109 -images-26857.png,21110 -images-26858.png,21111 -images-26859.png,21112 -images-26860.png,21113 -images-26861.png,21114 -images-26862.png,21115 -images-26863.png,21116 -images-26864.png,21117 -images-26865.png,21118 -images-26866.png,21119 -images-26867.png,21120 -images-26868.png,21121 -images-26869.png,21122 -images-26870.png,21123 -images-26871.png,21124 -images-26872.png,21125 -images-26873.png,21126 -images-26874.png,21127 -images-26875.png,21128 -images-26876.png,21129 -images-26877.png,21130 -images-26878.png,21131 -images-26879.png,21132 -images-26880.png,21133 -images-26881.png,21134 -images-26882.png,21135 -images-26883.png,21136 -images-26884.png,21137 -images-26885.png,21138 -images-26886.png,21139 -images-26887.png,21140 -images-26888.png,21141 -images-26889.png,21142 -images-26897.png,21143 -images-26898.png,21144 -images-26899.png,21145 -images-26900.png,21146 -images-26901.png,21147 -images-26902.png,21148 -images-26903.png,21149 -images-26904.png,21150 -images-26905.png,21151 -images-26906.png,21152 -images-26907.png,21153 -images-26908.png,21154 -images-26909.png,21155 -images-26910.png,21156 -images-26911.png,21157 -images-26912.png,21158 -images-26913.png,21159 -images-26914.png,21160 -images-26915.png,21161 -images-26916.png,21162 -images-26917.png,21163 -images-26918.png,21164 -images-26919.png,21165 -images-26920.png,21166 -images-26921.png,21167 -images-26922.png,21168 -images-26923.png,21169 -images-26924.png,21170 -images-26925.png,21171 -images-26926.png,21172 -images-26927.png,21173 -images-26928.png,21174 -images-26929.png,21175 -images-26930.png,21176 -images-26931.png,21177 -images-26932.png,21178 -images-26933.png,21179 -images-26934.png,21180 -images-26935.png,21181 -images-26936.png,21182 -images-26937.png,21183 -images-26938.png,21184 -images-26939.png,21185 -images-26940.png,21186 -images-26941.png,21187 -images-26942.png,21188 -images-26943.png,21189 -images-26944.png,21190 -images-26945.png,21191 -images-26946.png,21192 -images-26947.png,21193 -images-26948.png,21194 -images-26949.png,21195 -images-26950.png,21196 -images-26951.png,21197 -images-26952.png,21198 -images-26953.png,21199 -images-26954.png,21200 -images-26955.png,21201 -images-26956.png,21202 -images-26957.png,21203 -images-26958.png,21204 -images-26959.png,21205 -images-26960.png,21206 -images-26961.png,21207 -images-26962.png,21208 -images-26963.png,21209 -images-26964.png,21210 -images-26965.png,21211 -images-26966.png,21212 -images-26967.png,21213 -images-26968.png,21214 -images-26969.png,21215 -images-26970.png,21216 -images-26971.png,21217 -images-26972.png,21218 -images-26973.png,21219 -images-26974.png,21220 -images-26975.png,21221 -images-26976.png,21222 -images-26977.png,21223 -images-26978.png,21224 -images-26979.png,21225 -images-26980.png,21226 -images-26981.png,21227 -images-26982.png,21228 -images-26983.png,21229 -images-26984.png,21230 -images-26985.png,21231 -images-26986.png,21232 -images-26987.png,21233 -images-26988.png,21234 -images-26989.png,21235 -images-26990.png,21236 -images-26991.png,21237 -images-26992.png,21238 -images-26993.png,21239 -images-26994.png,21240 -images-26995.png,21241 -images-26996.png,21242 -images-27012.png,21243 -images-27013.png,21244 -images-27014.png,21245 -images-27015.png,21246 -images-27016.png,21247 -images-27017.png,21248 -images-27018.png,21249 -images-27019.png,21250 -images-27020.png,21251 -images-27021.png,21252 -images-27022.png,21253 -images-27023.png,21254 -images-27024.png,21255 -images-27025.png,21256 -images-27026.png,21257 -images-27027.png,21258 -images-27028.png,21259 -images-27029.png,21260 -images-27030.png,21261 -images-27031.png,21262 -images-27032.png,21263 -images-27033.png,21264 -images-27034.png,21265 -images-27035.png,21266 -images-27036.png,21267 -images-27037.png,21268 -images-27038.png,21269 -images-27039.png,21270 -images-27040.png,21271 -images-27041.png,21272 -images-27042.png,21273 -images-27043.png,21274 -images-27044.png,21275 -images-27045.png,21276 -images-27046.png,21277 -images-27047.png,21278 -images-27048.png,21279 -images-27049.png,21280 -images-27050.png,21281 -images-27051.png,21282 -images-27052.png,21283 -images-27053.png,21284 -images-27054.png,21285 -images-27055.png,21286 -images-27056.png,21287 -images-27057.png,21288 -images-27058.png,21289 -images-27059.png,21290 -images-27060.png,21291 -images-27061.png,21292 -images-27062.png,21293 -images-27063.png,21294 -images-27064.png,21295 -images-27065.png,21296 -images-27066.png,21297 -images-27067.png,21298 -images-27068.png,21299 -images-27069.png,21300 -images-27070.png,21301 -images-27071.png,21302 -images-27072.png,21303 -images-27073.png,21304 -images-27074.png,21305 -images-27075.png,21306 -images-27076.png,21307 -images-27077.png,21308 -images-27078.png,21309 -images-27079.png,21310 -images-27080.png,21311 -images-27081.png,21312 -images-27082.png,21313 -images-27083.png,21314 -images-27084.png,21315 -images-27085.png,21316 -images-27086.png,21317 -images-27087.png,21318 -images-27088.png,21319 -images-27089.png,21320 -images-27090.png,21321 -images-27091.png,21322 -images-27092.png,21323 -images-27093.png,21324 -images-27094.png,21325 -images-27095.png,21326 -images-27096.png,21327 -images-27097.png,21328 -images-27098.png,21329 -images-27099.png,21330 -images-27100.png,21331 -images-27101.png,21332 -images-27102.png,21333 -images-27103.png,21334 -images-27104.png,21335 -images-27105.png,21336 -images-27106.png,21337 -images-27107.png,21338 -images-27108.png,21339 -images-27109.png,21340 -images-27110.png,21341 -images-27111.png,21342 -images-27112.png,21343 -images-27113.png,21344 -images-27114.png,21345 -images-27115.png,21346 -images-27116.png,21347 -images-27117.png,21348 -images-27118.png,21349 -images-27119.png,21350 -images-27120.png,21351 -images-27121.png,21352 -images-27122.png,21353 -images-27123.png,21354 -images-27124.png,21355 -images-27125.png,21356 -images-27126.png,21357 -images-27127.png,21358 -images-27128.png,21359 -images-27129.png,21360 -images-27130.png,21361 -images-27131.png,21362 -images-27132.png,21363 -images-27133.png,21364 -images-27134.png,21365 -images-27135.png,21366 -images-27136.png,21367 -images-27137.png,21368 -images-27138.png,21369 -images-27139.png,21370 -images-27140.png,21371 -images-27141.png,21372 -images-27142.png,21373 -images-27143.png,21374 -images-27144.png,21375 -images-27145.png,21376 -images-27146.png,21377 -images-27147.png,21378 -images-27148.png,21379 -images-27149.png,21380 -images-27150.png,21381 -images-27151.png,21382 -images-27152.png,21383 -images-27153.png,21384 -images-27154.png,21385 -images-27155.png,21386 -images-27156.png,21387 -images-27157.png,21388 -images-27158.png,21389 -images-27159.png,21390 -images-27160.png,21391 -images-27161.png,21392 -images-27162.png,21393 -images-27163.png,21394 -images-27164.png,21395 -images-27165.png,21396 -images-27166.png,21397 -images-27167.png,21398 -images-27168.png,21399 -images-27169.png,21400 -images-27170.png,21401 -images-27171.png,21402 -images-27172.png,21403 -images-27173.png,21404 -images-27174.png,21405 -images-27175.png,21406 -images-27176.png,21407 -images-27177.png,21408 -images-27178.png,21409 -images-27179.png,21410 -images-27180.png,21411 -images-27181.png,21412 -images-27182.png,21413 -images-27183.png,21414 -images-27184.png,21415 -images-27185.png,21416 -images-27186.png,21417 -images-27187.png,21418 -images-27188.png,21419 -images-27189.png,21420 -images-27190.png,21421 -images-27191.png,21422 -images-27192.png,21423 -images-27193.png,21424 -images-27194.png,21425 -images-27195.png,21426 -images-27196.png,21427 -images-27197.png,21428 -images-27198.png,21429 -images-27199.png,21430 -images-27200.png,21431 -images-27201.png,21432 -images-27202.png,21433 -images-27203.png,21434 -images-27204.png,21435 -images-27205.png,21436 -images-27206.png,21437 -images-27207.png,21438 -images-27208.png,21439 -images-27209.png,21440 -images-27210.png,21441 -images-27211.png,21442 -images-27212.png,21443 -images-27213.png,21444 -images-27214.png,21445 -images-27215.png,21446 -images-27216.png,21447 -images-27217.png,21448 -images-27218.png,21449 -images-27219.png,21450 -images-27220.png,21451 -images-27221.png,21452 -images-27222.png,21453 -images-27223.png,21454 -images-27224.png,21455 -images-27225.png,21456 -images-27226.png,21457 -images-27227.png,21458 -images-27228.png,21459 -images-27229.png,21460 -images-27230.png,21461 -images-27231.png,21462 -images-27232.png,21463 -images-27233.png,21464 -images-27234.png,21465 -images-27235.png,21466 -images-27236.png,21467 -images-27237.png,21468 -images-27238.png,21469 -images-27239.png,21470 -images-27240.png,21471 -images-27241.png,21472 -images-27242.png,21473 -images-27243.png,21474 -images-27244.png,21475 -images-27245.png,21476 -images-27246.png,21477 -images-27247.png,21478 -images-27248.png,21479 -images-27249.png,21480 -images-27250.png,21481 -images-27251.png,21482 -images-27252.png,21483 -images-27253.png,21484 -images-27254.png,21485 -images-27255.png,21486 -images-27256.png,21487 -images-27257.png,21488 -images-27258.png,21489 -images-27259.png,21490 -images-27260.png,21491 -images-27261.png,21492 -images-27262.png,21493 -images-27263.png,21494 -images-27264.png,21495 -images-27265.png,21496 -images-27266.png,21497 -images-27267.png,21498 -images-27268.png,21499 -images-27269.png,21500 -images-27270.png,21501 -images-27271.png,21502 -images-27272.png,21503 -images-27273.png,21504 -images-27274.png,21505 -images-27275.png,21506 -images-27276.png,21507 -images-27277.png,21508 -images-27278.png,21509 -images-27279.png,21510 -images-27280.png,21511 -images-27281.png,21512 -images-27282.png,21513 -images-27283.png,21514 -images-27284.png,21515 -images-27285.png,21516 -images-27286.png,21517 -images-27287.png,21518 -images-27288.png,21519 -images-27289.png,21520 -images-27290.png,21521 -images-27291.png,21522 -images-27292.png,21523 -images-27293.png,21524 -images-27294.png,21525 -images-27295.png,21526 -images-27296.png,21527 -images-27297.png,21528 -images-27298.png,21529 -images-27299.png,21530 -images-27300.png,21531 -images-27301.png,21532 -images-27302.png,21533 -images-27303.png,21534 -images-27304.png,21535 -images-27305.png,21536 -images-27306.png,21537 -images-27307.png,21538 -images-27308.png,21539 -images-27309.png,21540 -images-27310.png,21541 -images-27311.png,21542 -images-27312.png,21543 -images-27313.png,21544 -images-27314.png,21545 -images-27315.png,21546 -images-27316.png,21547 -images-27317.png,21548 -images-27318.png,21549 -images-27319.png,21550 -images-27320.png,21551 -images-27321.png,21552 -images-27322.png,21553 -images-27323.png,21554 -images-27324.png,21555 -images-27325.png,21556 -images-27326.png,21557 -images-27327.png,21558 -images-27328.png,21559 -images-27329.png,21560 -images-27330.png,21561 -images-27331.png,21562 -images-27332.png,21563 -images-27333.png,21564 -images-27334.png,21565 -images-27335.png,21566 -images-27336.png,21567 -images-27337.png,21568 -images-27338.png,21569 -images-27339.png,21570 -images-27340.png,21571 -images-27341.png,21572 -images-27342.png,21573 -images-27343.png,21574 -images-27344.png,21575 -images-27345.png,21576 -images-27346.png,21577 -images-27347.png,21578 -images-27348.png,21579 -images-27349.png,21580 -images-27350.png,21581 -images-27351.png,21582 -images-27352.png,21583 -images-27353.png,21584 -images-27354.png,21585 -images-27355.png,21586 -images-27356.png,21587 -images-27357.png,21588 -images-27358.png,21589 -images-27359.png,21590 -images-27360.png,21591 -images-27361.png,21592 -images-27362.png,21593 -images-27363.png,21594 -images-27364.png,21595 -images-27365.png,21596 -images-27366.png,21597 -images-27367.png,21598 -images-27368.png,21599 -images-27369.png,21600 -images-27370.png,21601 -images-27371.png,21602 -images-27372.png,21603 -images-27373.png,21604 -images-27374.png,21605 -images-27375.png,21606 -images-27376.png,21607 -images-27377.png,21608 -images-27378.png,21609 -images-27379.png,21610 -images-27380.png,21611 -images-27381.png,21612 -images-27382.png,21613 -images-27383.png,21614 -images-27384.png,21615 -images-27385.png,21616 -images-27386.png,21617 -images-27387.png,21618 -images-27388.png,21619 -images-27389.png,21620 -images-27390.png,21621 -images-27391.png,21622 -images-27392.png,21623 -images-27393.png,21624 -images-27394.png,21625 -images-27395.png,21626 -images-27396.png,21627 -images-27397.png,21628 -images-27398.png,21629 -images-27399.png,21630 -images-27400.png,21631 -images-27401.png,21632 -images-27402.png,21633 -images-27403.png,21634 -images-27404.png,21635 -images-27405.png,21636 -images-27406.png,21637 -images-27407.png,21638 -images-27423.png,21639 -images-27424.png,21640 -images-27425.png,21641 -images-27426.png,21642 -images-27427.png,21643 -images-27428.png,21644 -images-27429.png,21645 -images-27430.png,21646 -images-27431.png,21647 -images-27435.png,21648 -images-27436.png,21649 -images-27437.png,21650 -images-27438.png,21651 -images-27439.png,21652 -images-27440.png,21653 -images-27441.png,21654 -images-27442.png,21655 -images-27443.png,21656 -images-27444.png,21657 -images-27445.png,21658 -images-27446.png,21659 -images-27447.png,21660 -images-27448.png,21661 -images-27449.png,21662 -images-27450.png,21663 -images-27451.png,21664 -images-27452.png,21665 -images-27453.png,21666 -images-27454.png,21667 -images-27455.png,21668 -images-27456.png,21669 -images-27457.png,21670 -images-27458.png,21671 -images-27459.png,21672 -images-27460.png,21673 -images-27461.png,21674 -images-27462.png,21675 -images-27463.png,21676 -images-27464.png,21677 -images-27465.png,21678 -images-27466.png,21679 -images-27467.png,21680 -images-27468.png,21681 -images-27469.png,21682 -images-27470.png,21683 -images-27471.png,21684 -images-27472.png,21685 -images-27473.png,21686 -images-27474.png,21687 -images-27475.png,21688 -images-27476.png,21689 -images-27477.png,21690 -images-27478.png,21691 -images-27479.png,21692 -images-27480.png,21693 -images-27481.png,21694 -images-27482.png,21695 -images-27483.png,21696 -images-27484.png,21697 -images-27485.png,21698 -images-27486.png,21699 -images-27487.png,21700 -images-27488.png,21701 -images-27489.png,21702 -images-27490.png,21703 -images-27491.png,21704 -images-27492.png,21705 -images-27493.png,21706 -images-27494.png,21707 -images-27495.png,21708 -images-27496.png,21709 -images-27497.png,21710 -images-27498.png,21711 -images-27499.png,21712 -images-27500.png,21713 -images-27501.png,21714 -images-27502.png,21715 -images-27503.png,21716 -images-27504.png,21717 -images-27505.png,21718 -images-27506.png,21719 -images-27507.png,21720 -images-27508.png,21721 -images-27509.png,21722 -images-27510.png,21723 -images-27511.png,21724 -images-27512.png,21725 -images-27513.png,21726 -images-27514.png,21727 -images-27515.png,21728 -images-27516.png,21729 -images-27517.png,21730 -images-27518.png,21731 -images-27519.png,21732 -images-27520.png,21733 -images-27521.png,21734 -images-27522.png,21735 -images-27523.png,21736 -images-27524.png,21737 -images-27525.png,21738 -images-27526.png,21739 -images-27527.png,21740 -images-27528.png,21741 -images-27529.png,21742 -images-27530.png,21743 -images-27531.png,21744 -images-27532.png,21745 -images-27533.png,21746 -images-27534.png,21747 -images-27535.png,21748 -images-27536.png,21749 -images-27537.png,21750 -images-27538.png,21751 -images-27539.png,21752 -images-27540.png,21753 -images-27541.png,21754 -images-27542.png,21755 -images-27543.png,21756 -images-27544.png,21757 -images-27545.png,21758 -images-27546.png,21759 -images-27547.png,21760 -images-27548.png,21761 -images-27549.png,21762 -images-27550.png,21763 -images-27551.png,21764 -images-27552.png,21765 -images-27553.png,21766 -images-27554.png,21767 -images-27555.png,21768 -images-27556.png,21769 -images-27557.png,21770 -images-27558.png,21771 -images-27559.png,21772 -images-27560.png,21773 -images-27561.png,21774 -images-27562.png,21775 -images-27563.png,21776 -images-27564.png,21777 -images-27565.png,21778 -images-27566.png,21779 -images-27567.png,21780 -images-27568.png,21781 -images-27569.png,21782 -images-27570.png,21783 -images-27571.png,21784 -images-27572.png,21785 -images-27573.png,21786 -images-27574.png,21787 -images-27575.png,21788 -images-27576.png,21789 -images-27577.png,21790 -images-27578.png,21791 -images-27579.png,21792 -images-27580.png,21793 -images-27581.png,21794 -images-27582.png,21795 -images-27583.png,21796 -images-27584.png,21797 -images-27585.png,21798 -images-27586.png,21799 -images-27587.png,21800 -images-27588.png,21801 -images-27589.png,21802 -images-27590.png,21803 -images-27591.png,21804 -images-27592.png,21805 -images-27593.png,21806 -images-27594.png,21807 -images-27595.png,21808 -images-27596.png,21809 -images-27597.png,21810 -images-27598.png,21811 -images-27599.png,21812 -images-27600.png,21813 -images-27601.png,21814 -images-27602.png,21815 -images-27603.png,21816 -images-27604.png,21817 -images-27605.png,21818 -images-27606.png,21819 -images-27607.png,21820 -images-27608.png,21821 -images-27609.png,21822 -images-27610.png,21823 -images-27611.png,21824 -images-27612.png,21825 -images-27613.png,21826 -images-27614.png,21827 -images-27615.png,21828 -images-27616.png,21829 -images-27617.png,21830 -images-27618.png,21831 -images-27619.png,21832 -images-27620.png,21833 -images-27621.png,21834 -images-27622.png,21835 -images-27623.png,21836 -images-27624.png,21837 -images-27625.png,21838 -images-27626.png,21839 -images-27627.png,21840 -images-27628.png,21841 -images-27629.png,21842 -images-27630.png,21843 -images-27631.png,21844 -images-27632.png,21845 -images-27633.png,21846 -images-27634.png,21847 -images-27635.png,21848 -images-27636.png,21849 -images-27637.png,21850 -images-27638.png,21851 -images-27639.png,21852 -images-27640.png,21853 -images-27641.png,21854 -images-27642.png,21855 -images-27643.png,21856 -images-27644.png,21857 -images-27645.png,21858 -images-27646.png,21859 -images-27647.png,21860 -images-27648.png,21861 -images-27649.png,21862 -images-27650.png,21863 -images-27651.png,21864 -images-27652.png,21865 -images-27653.png,21866 -images-27654.png,21867 -images-27655.png,21868 -images-27656.png,21869 -images-27657.png,21870 -images-27658.png,21871 -images-27659.png,21872 -images-27660.png,21873 -images-27661.png,21874 -images-27662.png,21875 -images-27663.png,21876 -images-27664.png,21877 -images-27665.png,21878 -images-27666.png,21879 -images-27667.png,21880 -images-27668.png,21881 -images-27669.png,21882 -images-27670.png,21883 -images-27671.png,21884 -images-27672.png,21885 -images-27673.png,21886 -images-27674.png,21887 -images-27675.png,21888 -images-27676.png,21889 -images-27677.png,21890 -images-27678.png,21891 -images-27679.png,21892 -images-27680.png,21893 -images-27681.png,21894 -images-27682.png,21895 -images-27683.png,21896 -images-27684.png,21897 -images-27685.png,21898 -images-27686.png,21899 -images-27687.png,21900 -images-27688.png,21901 -images-27689.png,21902 -images-27690.png,21903 -images-27691.png,21904 -images-27692.png,21905 -images-27693.png,21906 -images-27694.png,21907 -images-27695.png,21908 -images-27696.png,21909 -images-27697.png,21910 -images-27698.png,21911 -images-27699.png,21912 -images-27700.png,21913 -images-27701.png,21914 -images-27702.png,21915 -images-27703.png,21916 -images-27704.png,21917 -images-27705.png,21918 -images-27706.png,21919 -images-27707.png,21920 -images-27708.png,21921 -images-27709.png,21922 -images-27710.png,21923 -images-27711.png,21924 -images-27712.png,21925 -images-27713.png,21926 -images-27714.png,21927 -images-27715.png,21928 -images-27716.png,21929 -images-27717.png,21930 -images-27718.png,21931 -images-27719.png,21932 -images-27720.png,21933 -images-27721.png,21934 -images-27722.png,21935 -images-27723.png,21936 -images-27724.png,21937 -images-27725.png,21938 -images-27726.png,21939 -images-27727.png,21940 -images-27728.png,21941 -images-27729.png,21942 -images-27730.png,21943 -images-27731.png,21944 -images-27732.png,21945 -images-27733.png,21946 -images-27734.png,21947 -images-27735.png,21948 -images-27736.png,21949 -images-27737.png,21950 -images-27738.png,21951 -images-27739.png,21952 -images-27740.png,21953 -images-27741.png,21954 -images-27742.png,21955 -images-27743.png,21956 -images-27744.png,21957 -images-27745.png,21958 -images-27746.png,21959 -images-27747.png,21960 -images-27748.png,21961 -images-27749.png,21962 -images-27750.png,21963 -images-27751.png,21964 -images-27752.png,21965 -images-27753.png,21966 -images-27754.png,21967 -images-27755.png,21968 -images-27756.png,21969 -images-27757.png,21970 -images-27758.png,21971 -images-27759.png,21972 -images-27760.png,21973 -images-27761.png,21974 -images-27762.png,21975 -images-27763.png,21976 -images-27764.png,21977 -images-27765.png,21978 -images-27766.png,21979 -images-27767.png,21980 -images-27768.png,21981 -images-27769.png,21982 -images-27770.png,21983 -images-27771.png,21984 -images-27772.png,21985 -images-27773.png,21986 -images-27774.png,21987 -images-27775.png,21988 -images-27776.png,21989 -images-27777.png,21990 -images-27778.png,21991 -images-27779.png,21992 -images-27780.png,21993 -images-27781.png,21994 -images-27782.png,21995 -images-27783.png,21996 -images-27784.png,21997 -images-27785.png,21998 -images-27786.png,21999 -images-27787.png,22000 -images-27788.png,22001 -images-27789.png,22002 -images-27790.png,22003 -images-27791.png,22004 -images-27792.png,22005 -images-27793.png,22006 -images-27794.png,22007 -images-27795.png,22008 -images-27796.png,22009 -images-27797.png,22010 -images-27798.png,22011 -images-27799.png,22012 -images-27800.png,22013 -images-27801.png,22014 -images-27802.png,22015 -images-27803.png,22016 -images-27804.png,22017 -images-27805.png,22018 -images-27806.png,22019 -images-27807.png,22020 -images-27808.png,22021 -images-27809.png,22022 -images-27810.png,22023 -images-27811.png,22024 -images-27812.png,22025 -images-27813.png,22026 -images-27814.png,22027 -images-27815.png,22028 -images-27816.png,22029 -images-27817.png,22030 -images-27818.png,22031 -images-27819.png,22032 -images-27820.png,22033 -images-27821.png,22034 -images-27822.png,22035 -images-27823.png,22036 -images-27824.png,22037 -images-27825.png,22038 -images-27826.png,22039 -images-27827.png,22040 -images-27828.png,22041 -images-27829.png,22042 -images-27830.png,22043 -images-27831.png,22044 -images-27832.png,22045 -images-27833.png,22046 -images-27834.png,22047 -images-27835.png,22048 -images-27836.png,22049 -images-27837.png,22050 -images-27838.png,22051 -images-27839.png,22052 -images-27840.png,22053 -images-27841.png,22054 -images-27842.png,22055 -images-27843.png,22056 -images-27844.png,22057 -images-27845.png,22058 -images-27846.png,22059 -images-27847.png,22060 -images-27848.png,22061 -images-27849.png,22062 -images-27850.png,22063 -images-27851.png,22064 -images-27852.png,22065 -images-27853.png,22066 -images-27854.png,22067 -images-27855.png,22068 -images-27856.png,22069 -images-27857.png,22070 -images-27858.png,22071 -images-27859.png,22072 -images-27860.png,22073 -images-27861.png,22074 -images-27862.png,22075 -images-27863.png,22076 -images-27864.png,22077 -images-27865.png,22078 -images-27866.png,22079 -images-27867.png,22080 -images-27868.png,22081 -images-27869.png,22082 -images-27870.png,22083 -images-27871.png,22084 -images-27872.png,22085 -images-27873.png,22086 -images-27874.png,22087 -images-27875.png,22088 -images-27876.png,22089 -images-27877.png,22090 -images-27878.png,22091 -images-27879.png,22092 -images-27880.png,22093 -images-27881.png,22094 -images-27882.png,22095 -images-27883.png,22096 -images-27884.png,22097 -images-27885.png,22098 -images-27886.png,22099 -images-27887.png,22100 -images-27888.png,22101 -images-27889.png,22102 -images-27890.png,22103 -images-27891.png,22104 -images-27892.png,22105 -images-27893.png,22106 -images-27894.png,22107 -images-27895.png,22108 -images-27896.png,22109 -images-27897.png,22110 -images-27898.png,22111 -images-27899.png,22112 -images-27900.png,22113 -images-27901.png,22114 -images-27902.png,22115 -images-27903.png,22116 -images-27904.png,22117 -images-27905.png,22118 -images-27906.png,22119 -images-27907.png,22120 -images-27908.png,22121 -images-27909.png,22122 -images-27910.png,22123 -images-27911.png,22124 -images-27912.png,22125 -images-27913.png,22126 -images-27914.png,22127 -images-27915.png,22128 -images-27916.png,22129 -images-27917.png,22130 -images-27918.png,22131 -images-27919.png,22132 -images-27920.png,22133 -images-27921.png,22134 -images-27922.png,22135 -images-27923.png,22136 -images-27924.png,22137 -images-27925.png,22138 -images-27943.png,22139 -images-27944.png,22140 -images-27945.png,22141 -images-27946.png,22142 -images-27947.png,22143 -images-27948.png,22144 -images-27949.png,22145 -images-27950.png,22146 -images-27951.png,22147 -images-27952.png,22148 -images-27953.png,22149 -images-27954.png,22150 -images-27955.png,22151 -images-27956.png,22152 -images-27957.png,22153 -images-27958.png,22154 -images-27959.png,22155 -images-27960.png,22156 -images-27961.png,22157 -images-27962.png,22158 -images-27963.png,22159 -images-27964.png,22160 -images-27965.png,22161 -images-27966.png,22162 -images-27967.png,22163 -images-27968.png,22164 -images-27969.png,22165 -images-27970.png,22166 -images-27971.png,22167 -images-27972.png,22168 -images-27973.png,22169 -images-27974.png,22170 -images-27975.png,22171 -images-27976.png,22172 -images-27977.png,22173 -images-27978.png,22174 -images-27979.png,22175 -images-27980.png,22176 -images-27981.png,22177 -images-27982.png,22178 -images-27983.png,22179 -images-27984.png,22180 -images-27985.png,22181 -images-27986.png,22182 -images-27987.png,22183 -images-27988.png,22184 -images-27989.png,22185 -images-27990.png,22186 -images-27991.png,22187 -images-27992.png,22188 -images-27993.png,22189 -images-27994.png,22190 -images-27995.png,22191 -images-27996.png,22192 -images-27997.png,22193 -images-27998.png,22194 -images-27999.png,22195 -images-28000.png,22196 -images-28001.png,22197 -images-28002.png,22198 -images-28003.png,22199 -images-28004.png,22200 -images-28005.png,22201 -images-28006.png,22202 -images-28007.png,22203 -images-28008.png,22204 -images-28009.png,22205 -images-28010.png,22206 -images-28011.png,22207 -images-28012.png,22208 -images-28013.png,22209 -images-28014.png,22210 -images-28015.png,22211 -images-28016.png,22212 -images-28017.png,22213 -images-28018.png,22214 -images-28019.png,22215 -images-28020.png,22216 -images-28021.png,22217 -images-28022.png,22218 -images-28023.png,22219 -images-28024.png,22220 -images-28025.png,22221 -images-28026.png,22222 -images-28027.png,22223 -images-28028.png,22224 -images-28029.png,22225 -images-28030.png,22226 -images-28031.png,22227 -images-28032.png,22228 -images-28033.png,22229 -images-28034.png,22230 -images-28035.png,22231 -images-28036.png,22232 -images-28037.png,22233 -images-28038.png,22234 -images-28039.png,22235 -images-28040.png,22236 -images-28041.png,22237 -images-28042.png,22238 -images-28043.png,22239 -images-28044.png,22240 -images-28045.png,22241 -images-28046.png,22242 -images-28047.png,22243 -images-28048.png,22244 -images-28049.png,22245 -images-28050.png,22246 -images-28051.png,22247 -images-28052.png,22248 -images-28053.png,22249 -images-28054.png,22250 -images-28055.png,22251 -images-28056.png,22252 -images-28057.png,22253 -images-28058.png,22254 -images-28059.png,22255 -images-28060.png,22256 -images-28061.png,22257 -images-28062.png,22258 -images-28063.png,22259 -images-28064.png,22260 -images-28065.png,22261 -images-28066.png,22262 -images-28067.png,22263 -images-28068.png,22264 -images-28069.png,22265 -images-28070.png,22266 -images-28071.png,22267 -images-28072.png,22268 -images-28073.png,22269 -images-28074.png,22270 -images-28075.png,22271 -images-28076.png,22272 -images-28077.png,22273 -images-28078.png,22274 -images-28079.png,22275 -images-28080.png,22276 -images-28081.png,22277 -images-28082.png,22278 -images-28083.png,22279 -images-28084.png,22280 -images-28085.png,22281 -images-28086.png,22282 -images-28087.png,22283 -images-28088.png,22284 -images-28089.png,22285 -images-28090.png,22286 -images-28091.png,22287 -images-28092.png,22288 -images-28093.png,22289 -images-28094.png,22290 -images-28095.png,22291 -images-28096.png,22292 -images-28097.png,22293 -images-28098.png,22294 -images-28099.png,22295 -images-28100.png,22296 -images-28101.png,22297 -images-28102.png,22298 -images-28103.png,22299 -images-28104.png,22300 -images-28105.png,22301 -images-28106.png,22302 -images-28107.png,22303 -images-28108.png,22304 -images-28109.png,22305 -images-28110.png,22306 -images-28111.png,22307 -images-28112.png,22308 -images-28113.png,22309 -images-28114.png,22310 -images-28115.png,22311 -images-28116.png,22312 -images-28117.png,22313 -images-28118.png,22314 -images-28119.png,22315 -images-28120.png,22316 -images-28121.png,22317 -images-28122.png,22318 -images-28123.png,22319 -images-28124.png,22320 -images-28125.png,22321 -images-28126.png,22322 -images-28127.png,22323 -images-28128.png,22324 -images-28129.png,22325 -images-28130.png,22326 -images-28131.png,22327 -images-28132.png,22328 -images-28133.png,22329 -images-28134.png,22330 -images-28135.png,22331 -images-28136.png,22332 -images-28137.png,22333 -images-28138.png,22334 -images-28139.png,22335 -images-28140.png,22336 -images-28141.png,22337 -images-28142.png,22338 -images-28143.png,22339 -images-28144.png,22340 -images-28145.png,22341 -images-28146.png,22342 -images-28147.png,22343 -images-28148.png,22344 -images-28149.png,22345 -images-28150.png,22346 -images-28151.png,22347 -images-28152.png,22348 -images-28153.png,22349 -images-28154.png,22350 -images-28155.png,22351 -images-28156.png,22352 -images-28157.png,22353 -images-28158.png,22354 -images-28159.png,22355 -images-28160.png,22356 -images-28161.png,22357 -images-28162.png,22358 -images-28163.png,22359 -images-28164.png,22360 -images-28165.png,22361 -images-28166.png,22362 -images-28167.png,22363 -images-28168.png,22364 -images-28169.png,22365 -images-28170.png,22366 -images-28171.png,22367 -images-28172.png,22368 -images-28173.png,22369 -images-28174.png,22370 -images-28175.png,22371 -images-28176.png,22372 -images-28177.png,22373 -images-28178.png,22374 -images-28179.png,22375 -images-28180.png,22376 -images-28181.png,22377 -images-28182.png,22378 -images-28183.png,22379 -images-28184.png,22380 -images-28185.png,22381 -images-28186.png,22382 -images-28187.png,22383 -images-28188.png,22384 -images-28189.png,22385 -images-28190.png,22386 -images-28191.png,22387 -images-28192.png,22388 -images-28193.png,22389 -images-28194.png,22390 -images-28195.png,22391 -images-28196.png,22392 -images-28197.png,22393 -images-28198.png,22394 -images-28199.png,22395 -images-28200.png,22396 -images-28201.png,22397 -images-28202.png,22398 -images-28203.png,22399 -images-28204.png,22400 -images-28205.png,22401 -images-28206.png,22402 -images-28207.png,22403 -images-28208.png,22404 -images-28209.png,22405 -images-28210.png,22406 -images-28211.png,22407 -images-28212.png,22408 -images-28213.png,22409 -images-28214.png,22410 -images-28215.png,22411 -images-28216.png,22412 -images-28217.png,22413 -images-28218.png,22414 -images-28219.png,22415 -images-28220.png,22416 -images-28221.png,22417 -images-28222.png,22418 -images-28223.png,22419 -images-28224.png,22420 -images-28225.png,22421 -images-28226.png,22422 -images-28227.png,22423 -images-28228.png,22424 -images-28229.png,22425 -images-28230.png,22426 -images-28231.png,22427 -images-28232.png,22428 -images-28233.png,22429 -images-28234.png,22430 -images-28235.png,22431 -images-28236.png,22432 -images-28237.png,22433 -images-28238.png,22434 -images-28239.png,22435 -images-28240.png,22436 -images-28241.png,22437 -images-28242.png,22438 -images-28243.png,22439 -images-28244.png,22440 -images-28245.png,22441 -images-28246.png,22442 -images-28247.png,22443 -images-28248.png,22444 -images-28249.png,22445 -images-28250.png,22446 -images-28251.png,22447 -images-28252.png,22448 -images-28253.png,22449 -images-28254.png,22450 -images-28255.png,22451 -images-28256.png,22452 -images-28257.png,22453 -images-28258.png,22454 -images-28259.png,22455 -images-28260.png,22456 -images-28261.png,22457 -images-28262.png,22458 -images-28263.png,22459 -images-28264.png,22460 -images-28265.png,22461 -images-28266.png,22462 -images-28267.png,22463 -images-28268.png,22464 -images-28269.png,22465 -images-28270.png,22466 -images-28271.png,22467 -images-28272.png,22468 -images-28273.png,22469 -images-28274.png,22470 -images-28275.png,22471 -images-28276.png,22472 -images-28277.png,22473 -images-28278.png,22474 -images-28279.png,22475 -images-28280.png,22476 -images-28281.png,22477 -images-28282.png,22478 -images-28283.png,22479 -images-28284.png,22480 -images-28285.png,22481 -images-28286.png,22482 -images-28287.png,22483 -images-28288.png,22484 -images-28289.png,22485 -images-28290.png,22486 -images-28291.png,22487 -images-28292.png,22488 -images-28293.png,22489 -images-28294.png,22490 -images-28295.png,22491 -images-28296.png,22492 -images-28297.png,22493 -images-28298.png,22494 -images-28299.png,22495 -images-28300.png,22496 -images-28301.png,22497 -images-28302.png,22498 -images-28303.png,22499 -images-28304.png,22500 -images-28305.png,22501 -images-28306.png,22502 -images-28307.png,22503 -images-28308.png,22504 -images-28309.png,22505 -images-28310.png,22506 -images-28311.png,22507 -images-28312.png,22508 -images-28313.png,22509 -images-28314.png,22510 -images-28315.png,22511 -images-28316.png,22512 -images-28317.png,22513 -images-28318.png,22514 -images-28319.png,22515 -images-28320.png,22516 -images-28321.png,22517 -images-28322.png,22518 -images-28323.png,22519 -images-28324.png,22520 -images-28325.png,22521 -images-28326.png,22522 -images-28327.png,22523 -images-28328.png,22524 -images-28329.png,22525 -images-28330.png,22526 -images-28331.png,22527 -images-28332.png,22528 -images-28333.png,22529 -images-28334.png,22530 -images-28335.png,22531 -images-28336.png,22532 -images-28337.png,22533 -images-28338.png,22534 -images-28339.png,22535 -images-28340.png,22536 -images-28341.png,22537 -images-28342.png,22538 -images-28343.png,22539 -images-28344.png,22540 -images-28345.png,22541 -images-28346.png,22542 -images-28347.png,22543 -images-28348.png,22544 -images-28349.png,22545 -images-28350.png,22546 -images-28351.png,22547 -images-28352.png,22548 -images-28353.png,22549 -images-28354.png,22550 -images-28355.png,22551 -images-28356.png,22552 -images-28357.png,22553 -images-28358.png,22554 -images-28359.png,22555 -images-28360.png,22556 -images-28361.png,22557 -images-28362.png,22558 -images-28363.png,22559 -images-28364.png,22560 -images-28365.png,22561 -images-28366.png,22562 -images-28367.png,22563 -images-28368.png,22564 -images-28369.png,22565 -images-28370.png,22566 -images-28371.png,22567 -images-28372.png,22568 -images-28373.png,22569 -images-28374.png,22570 -images-28375.png,22571 -images-28376.png,22572 -images-28377.png,22573 -images-28378.png,22574 -images-28379.png,22575 -images-28380.png,22576 -images-28381.png,22577 -images-28382.png,22578 -images-28383.png,22579 -images-28384.png,22580 -images-28385.png,22581 -images-28386.png,22582 -images-28387.png,22583 -images-28388.png,22584 -images-28389.png,22585 -images-28390.png,22586 -images-28391.png,22587 -images-28392.png,22588 -images-28393.png,22589 -images-28394.png,22590 -images-28395.png,22591 -images-28396.png,22592 -images-28397.png,22593 -images-28398.png,22594 -images-28399.png,22595 -images-28400.png,22596 -images-28401.png,22597 -images-28402.png,22598 -images-28403.png,22599 -images-28404.png,22600 -images-28405.png,22601 -images-28406.png,22602 -images-28407.png,22603 -images-28408.png,22604 -images-28409.png,22605 -images-28410.png,22606 -images-28411.png,22607 -images-28412.png,22608 -images-28413.png,22609 -images-28414.png,22610 -images-28415.png,22611 -images-28416.png,22612 -images-28417.png,22613 -images-28418.png,22614 -images-28419.png,22615 -images-28420.png,22616 -images-28421.png,22617 -images-28422.png,22618 -images-28423.png,22619 -images-28424.png,22620 -images-28425.png,22621 -images-28426.png,22622 -images-28427.png,22623 -images-28428.png,22624 -images-28429.png,22625 -images-28430.png,22626 -images-28431.png,22627 -images-28432.png,22628 -images-28433.png,22629 -images-28434.png,22630 -images-28435.png,22631 -images-28436.png,22632 -images-28437.png,22633 -images-28438.png,22634 -images-28439.png,22635 -images-28440.png,22636 -images-28441.png,22637 -images-28442.png,22638 -images-28443.png,22639 -images-28444.png,22640 -images-28445.png,22641 -images-28446.png,22642 -images-28447.png,22643 -images-28448.png,22644 -images-28449.png,22645 -images-28450.png,22646 -images-28451.png,22647 -images-28452.png,22648 -images-28453.png,22649 -images-28454.png,22650 -images-28455.png,22651 -images-28456.png,22652 -images-28457.png,22653 -images-28458.png,22654 -images-28459.png,22655 -images-28460.png,22656 -images-28461.png,22657 -images-28462.png,22658 -images-28463.png,22659 -images-28464.png,22660 -images-28465.png,22661 -images-28466.png,22662 -images-28467.png,22663 -images-28468.png,22664 -images-28469.png,22665 -images-28470.png,22666 -images-28471.png,22667 -images-28472.png,22668 -images-28473.png,22669 -images-28474.png,22670 -images-28475.png,22671 -images-28476.png,22672 -images-28477.png,22673 -images-28478.png,22674 -images-28479.png,22675 -images-28480.png,22676 -images-28481.png,22677 -images-28482.png,22678 -images-28483.png,22679 -images-28484.png,22680 -images-28485.png,22681 -images-28486.png,22682 -images-28487.png,22683 -images-28488.png,22684 -images-28489.png,22685 -images-28490.png,22686 -images-28491.png,22687 -images-28492.png,22688 -images-28493.png,22689 -images-28494.png,22690 -images-28495.png,22691 -images-28496.png,22692 -images-28497.png,22693 -images-28498.png,22694 -images-28499.png,22695 -images-28500.png,22696 -images-28501.png,22697 -images-28502.png,22698 -images-28503.png,22699 -images-28504.png,22700 -images-28505.png,22701 -images-28506.png,22702 -images-28507.png,22703 -images-28508.png,22704 -images-28509.png,22705 -images-28510.png,22706 -images-28511.png,22707 -images-28512.png,22708 -images-28513.png,22709 -images-28514.png,22710 -images-28515.png,22711 -images-28516.png,22712 -images-28517.png,22713 -images-28518.png,22714 -images-28519.png,22715 -images-28520.png,22716 -images-28521.png,22717 -images-28522.png,22718 -images-28523.png,22719 -images-28524.png,22720 -images-28525.png,22721 -images-28526.png,22722 -images-28527.png,22723 -images-28528.png,22724 -images-28529.png,22725 -images-28530.png,22726 -images-28531.png,22727 -images-28532.png,22728 -images-28533.png,22729 -images-28534.png,22730 -images-28535.png,22731 -images-28536.png,22732 -images-28537.png,22733 -images-28538.png,22734 -images-28539.png,22735 -images-28540.png,22736 -images-28541.png,22737 -images-28542.png,22738 -images-28543.png,22739 -images-28544.png,22740 -images-28545.png,22741 -images-28546.png,22742 -images-28547.png,22743 -images-28548.png,22744 -images-28549.png,22745 -images-28550.png,22746 -images-28551.png,22747 -images-28552.png,22748 -images-28553.png,22749 -images-28554.png,22750 -images-28555.png,22751 -images-28556.png,22752 -images-28557.png,22753 -images-28558.png,22754 -images-28559.png,22755 -images-28560.png,22756 -images-28561.png,22757 -images-28562.png,22758 -images-28563.png,22759 -images-28564.png,22760 -images-28565.png,22761 -images-28566.png,22762 -images-28567.png,22763 -images-28568.png,22764 -images-28569.png,22765 -images-28570.png,22766 -images-28571.png,22767 -images-28572.png,22768 -images-28573.png,22769 -images-28574.png,22770 -images-28575.png,22771 -images-28576.png,22772 -images-28577.png,22773 -images-28578.png,22774 -images-28579.png,22775 -images-28580.png,22776 -images-28581.png,22777 -images-28582.png,22778 -images-28583.png,22779 -images-28584.png,22780 -images-28585.png,22781 -images-28586.png,22782 -images-28587.png,22783 -images-28588.png,22784 -images-28589.png,22785 -images-28590.png,22786 -images-28591.png,22787 -images-28592.png,22788 -images-28593.png,22789 -images-28594.png,22790 -images-28595.png,22791 -images-28596.png,22792 -images-28597.png,22793 -images-28598.png,22794 -images-28599.png,22795 -images-28600.png,22796 -images-28601.png,22797 -images-28602.png,22798 -images-28603.png,22799 -images-28604.png,22800 -images-28605.png,22801 -images-28606.png,22802 -images-28607.png,22803 -images-28608.png,22804 -images-28609.png,22805 -images-28610.png,22806 -images-28611.png,22807 -images-28612.png,22808 -images-28613.png,22809 -images-28614.png,22810 -images-28615.png,22811 -images-28616.png,22812 -images-28617.png,22813 -images-28618.png,22814 -images-28619.png,22815 -images-28620.png,22816 -images-28621.png,22817 -images-28622.png,22818 -images-28623.png,22819 -images-28624.png,22820 -images-28625.png,22821 -images-28626.png,22822 -images-28627.png,22823 -images-28628.png,22824 -images-28629.png,22825 -images-28630.png,22826 -images-28631.png,22827 -images-28632.png,22828 -images-28633.png,22829 -images-28634.png,22830 -images-28635.png,22831 -images-28636.png,22832 -images-28637.png,22833 -images-28638.png,22834 -images-28639.png,22835 -images-28640.png,22836 -images-28641.png,22837 -images-28642.png,22838 -images-28643.png,22839 -images-28644.png,22840 -images-28645.png,22841 -images-28646.png,22842 -images-28647.png,22843 -images-28648.png,22844 -images-28649.png,22845 -images-28650.png,22846 -images-28651.png,22847 -images-28652.png,22848 -images-28653.png,22849 -images-28654.png,22850 -images-28655.png,22851 -images-28656.png,22852 -images-28657.png,22853 -images-28658.png,22854 -images-28659.png,22855 -images-28660.png,22856 -images-28661.png,22857 -images-28662.png,22858 -images-28663.png,22859 -images-28664.png,22860 -images-28665.png,22861 -images-28666.png,22862 -images-28667.png,22863 -images-28668.png,22864 -images-28669.png,22865 -images-28670.png,22866 -images-28671.png,22867 -images-28672.png,22868 -images-28673.png,22869 -images-28674.png,22870 -images-28675.png,22871 -images-28676.png,22872 -images-28677.png,22873 -images-28678.png,22874 -images-28679.png,22875 -images-28680.png,22876 -images-28681.png,22877 -images-28682.png,22878 -images-28683.png,22879 -images-28684.png,22880 -images-28685.png,22881 -images-28686.png,22882 -images-28693.png,22883 -images-28694.png,22884 -images-28695.png,22885 -images-28696.png,22886 -images-28697.png,22887 -images-28698.png,22888 -images-28699.png,22889 -images-28700.png,22890 -images-28701.png,22891 -images-28702.png,22892 -images-28703.png,22893 -images-28704.png,22894 -images-28705.png,22895 -images-28706.png,22896 -images-28707.png,22897 -images-28708.png,22898 -images-28709.png,22899 -images-28710.png,22900 -images-28711.png,22901 -images-28712.png,22902 -images-28713.png,22903 -images-28714.png,22904 -images-28715.png,22905 -images-28716.png,22906 -images-28717.png,22907 -images-28718.png,22908 -images-28719.png,22909 -images-28720.png,22910 -images-28721.png,22911 -images-28722.png,22912 -images-28723.png,22913 -images-28724.png,22914 -images-28725.png,22915 -images-28726.png,22916 -images-28727.png,22917 -images-28728.png,22918 -images-28729.png,22919 -images-28730.png,22920 -images-28731.png,22921 -images-28732.png,22922 -images-28733.png,22923 -images-28734.png,22924 -images-28735.png,22925 -images-28736.png,22926 -images-28737.png,22927 -images-28738.png,22928 -images-28739.png,22929 -images-28740.png,22930 -images-28741.png,22931 -images-28742.png,22932 -images-28743.png,22933 -images-28744.png,22934 -images-28745.png,22935 -images-28746.png,22936 -images-28747.png,22937 -images-28748.png,22938 -images-28749.png,22939 -images-28750.png,22940 -images-28751.png,22941 -images-28752.png,22942 -images-28753.png,22943 -images-28754.png,22944 -images-28755.png,22945 -images-28756.png,22946 -images-28757.png,22947 -images-28758.png,22948 -images-28759.png,22949 -images-28760.png,22950 -images-28761.png,22951 -images-28762.png,22952 -images-28763.png,22953 -images-28764.png,22954 -images-28765.png,22955 -images-28766.png,22956 -images-28767.png,22957 -images-28768.png,22958 -images-28769.png,22959 -images-28770.png,22960 -images-28771.png,22961 -images-28772.png,22962 -images-28773.png,22963 -images-28774.png,22964 -images-28775.png,22965 -images-28776.png,22966 -images-28777.png,22967 -images-28778.png,22968 -images-28779.png,22969 -images-28780.png,22970 -images-28781.png,22971 -images-28782.png,22972 -images-28783.png,22973 -images-28784.png,22974 -images-28785.png,22975 -images-28786.png,22976 -images-28787.png,22977 -images-28788.png,22978 -images-28789.png,22979 -images-28790.png,22980 -images-28791.png,22981 -images-28792.png,22982 -images-28793.png,22983 -images-28794.png,22984 -images-28795.png,22985 -images-28796.png,22986 -images-28797.png,22987 -images-28798.png,22988 -images-28799.png,22989 -images-28800.png,22990 -images-28801.png,22991 -images-28802.png,22992 -images-28803.png,22993 -images-28804.png,22994 -images-28805.png,22995 -images-28806.png,22996 -images-28807.png,22997 -images-28808.png,22998 -images-28809.png,22999 -images-28810.png,23000 -images-28811.png,23001 -images-28812.png,23002 -images-28813.png,23003 -images-28814.png,23004 -images-28815.png,23005 -images-28816.png,23006 -images-28817.png,23007 -images-28818.png,23008 -images-28819.png,23009 -images-28820.png,23010 -images-28821.png,23011 -images-28822.png,23012 -images-28823.png,23013 -images-28824.png,23014 -images-28825.png,23015 -images-28826.png,23016 -images-28827.png,23017 -images-28828.png,23018 -images-28829.png,23019 -images-28830.png,23020 -images-28831.png,23021 -images-28832.png,23022 -images-28833.png,23023 -images-28834.png,23024 -images-28835.png,23025 -images-28836.png,23026 -images-28837.png,23027 -images-28838.png,23028 -images-28839.png,23029 -images-28840.png,23030 -images-28841.png,23031 -images-28842.png,23032 -images-28843.png,23033 -images-28844.png,23034 -images-28845.png,23035 -images-28846.png,23036 -images-28847.png,23037 -images-28848.png,23038 -images-28849.png,23039 -images-28850.png,23040 -images-28851.png,23041 -images-28852.png,23042 -images-28853.png,23043 -images-28854.png,23044 -images-28855.png,23045 -images-28856.png,23046 -images-28857.png,23047 -images-28858.png,23048 -images-28859.png,23049 -images-28860.png,23050 -images-28861.png,23051 -images-28862.png,23052 -images-28863.png,23053 -images-28864.png,23054 -images-28865.png,23055 -images-28866.png,23056 -images-28867.png,23057 -images-28868.png,23058 -images-28869.png,23059 -images-28870.png,23060 -images-28871.png,23061 -images-28872.png,23062 -images-28873.png,23063 -images-28874.png,23064 -images-28875.png,23065 -images-28876.png,23066 -images-28877.png,23067 -images-28878.png,23068 -images-28879.png,23069 -images-28880.png,23070 -images-28881.png,23071 -images-28882.png,23072 -images-28883.png,23073 -images-28884.png,23074 -images-28885.png,23075 -images-28886.png,23076 -images-28887.png,23077 -images-28888.png,23078 -images-28889.png,23079 -images-28890.png,23080 -images-28891.png,23081 -images-28892.png,23082 -images-28893.png,23083 -images-28894.png,23084 -images-28895.png,23085 -images-28896.png,23086 -images-28897.png,23087 -images-28898.png,23088 -images-28899.png,23089 -images-28900.png,23090 -images-28901.png,23091 -images-28902.png,23092 -images-28903.png,23093 -images-28904.png,23094 -images-28905.png,23095 -images-28906.png,23096 -images-28907.png,23097 -images-28908.png,23098 -images-28909.png,23099 -images-28910.png,23100 -images-28911.png,23101 -images-28912.png,23102 -images-28913.png,23103 -images-28914.png,23104 -images-28915.png,23105 -images-28916.png,23106 -images-28923.png,23107 -images-28924.png,23108 -images-28925.png,23109 -images-28926.png,23110 -images-28927.png,23111 -images-28928.png,23112 -images-28929.png,23113 -images-28930.png,23114 -images-28931.png,23115 -images-28932.png,23116 -images-28933.png,23117 -images-28934.png,23118 -images-28935.png,23119 -images-28936.png,23120 -images-28937.png,23121 -images-28938.png,23122 -images-28939.png,23123 -images-28940.png,23124 -images-28941.png,23125 -images-28942.png,23126 -images-28943.png,23127 -images-28944.png,23128 -images-28945.png,23129 -images-28946.png,23130 -images-28947.png,23131 -images-28948.png,23132 -images-28949.png,23133 -images-28950.png,23134 -images-28951.png,23135 -images-29117.png,23136 -images-29118.png,23137 -images-29119.png,23138 -images-29120.png,23139 -images-29121.png,23140 -images-29122.png,23141 -images-29123.png,23142 -images-29124.png,23143 -images-29125.png,23144 -images-29126.png,23145 -images-29127.png,23146 -images-29128.png,23147 -images-29129.png,23148 -images-29130.png,23149 -images-29131.png,23150 -images-29132.png,23151 -images-29133.png,23152 -images-29134.png,23153 -images-29135.png,23154 -images-29136.png,23155 -images-29137.png,23156 -images-29138.png,23157 -images-29139.png,23158 -images-29140.png,23159 -images-29141.png,23160 -images-29142.png,23161 -images-29143.png,23162 -images-29144.png,23163 -images-29145.png,23164 -images-29146.png,23165 -images-29147.png,23166 -images-29148.png,23167 -images-29149.png,23168 -images-29150.png,23169 -images-29151.png,23170 -images-29152.png,23171 -images-29153.png,23172 -images-29154.png,23173 -images-29155.png,23174 -images-29156.png,23175 -images-29157.png,23176 -images-29158.png,23177 -images-29159.png,23178 -images-29160.png,23179 -images-29161.png,23180 -images-29162.png,23181 -images-29163.png,23182 -images-29164.png,23183 -images-29165.png,23184 -images-29166.png,23185 -images-29167.png,23186 -images-29168.png,23187 -images-29169.png,23188 -images-29170.png,23189 -images-29171.png,23190 -images-29172.png,23191 -images-29173.png,23192 -images-29174.png,23193 -images-29175.png,23194 -images-29176.png,23195 -images-29177.png,23196 -images-29178.png,23197 -images-29179.png,23198 -images-29180.png,23199 -images-29181.png,23200 -images-29182.png,23201 -images-29183.png,23202 -images-29184.png,23203 -images-29185.png,23204 -images-29186.png,23205 -images-29187.png,23206 -images-29188.png,23207 -images-29189.png,23208 -images-29190.png,23209 -images-29191.png,23210 -images-29192.png,23211 -images-29193.png,23212 -images-29194.png,23213 -images-29195.png,23214 -images-29196.png,23215 -images-29197.png,23216 -images-29198.png,23217 -images-29199.png,23218 -images-29200.png,23219 -images-29201.png,23220 -images-29202.png,23221 -images-29203.png,23222 -images-29204.png,23223 -images-29205.png,23224 -images-29206.png,23225 -images-29207.png,23226 -images-29208.png,23227 -images-29209.png,23228 -images-29210.png,23229 -images-29211.png,23230 -images-29212.png,23231 -images-29213.png,23232 -images-29214.png,23233 -images-29215.png,23234 -images-29216.png,23235 -images-29217.png,23236 -images-29218.png,23237 -images-29219.png,23238 -images-29220.png,23239 -images-29221.png,23240 -images-29222.png,23241 -images-29223.png,23242 -images-29224.png,23243 -images-29225.png,23244 -images-29226.png,23245 -images-29227.png,23246 -images-29228.png,23247 -images-29229.png,23248 -images-29230.png,23249 -images-29231.png,23250 -images-29232.png,23251 -images-29233.png,23252 -images-29234.png,23253 -images-29235.png,23254 -images-29236.png,23255 -images-29237.png,23256 -images-29238.png,23257 -images-29239.png,23258 -images-29240.png,23259 -images-29241.png,23260 -images-29242.png,23261 -images-29243.png,23262 -images-29244.png,23263 -images-29245.png,23264 -images-29246.png,23265 -images-29247.png,23266 -images-29248.png,23267 -images-29249.png,23268 -images-29250.png,23269 -images-29251.png,23270 -images-29252.png,23271 -images-29253.png,23272 -images-29254.png,23273 -images-29255.png,23274 -images-29256.png,23275 -images-29257.png,23276 -images-29258.png,23277 -images-29259.png,23278 -images-29260.png,23279 -images-29261.png,23280 -images-29262.png,23281 -images-29263.png,23282 -images-29264.png,23283 -images-29265.png,23284 -images-29266.png,23285 -images-29267.png,23286 -images-29268.png,23287 -images-29269.png,23288 -images-29270.png,23289 -images-29271.png,23290 -images-29272.png,23291 -images-29273.png,23292 -images-29274.png,23293 -images-29275.png,23294 -images-29276.png,23295 -images-29277.png,23296 -images-29278.png,23297 -images-29279.png,23298 -images-29280.png,23299 -images-29281.png,23300 -images-29282.png,23301 -images-29283.png,23302 -images-29284.png,23303 -images-29285.png,23304 -images-29286.png,23305 -images-29287.png,23306 -images-29288.png,23307 -images-29289.png,23308 -images-29290.png,23309 -images-29291.png,23310 -images-29292.png,23311 -images-29293.png,23312 -images-29294.png,23313 -images-29295.png,23314 -images-29296.png,23315 -images-29297.png,23316 -images-29298.png,23317 -images-29299.png,23318 -images-29300.png,23319 -images-29301.png,23320 -images-29302.png,23321 -images-29303.png,23322 -images-29304.png,23323 -images-29305.png,23324 -images-29306.png,23325 -images-29307.png,23326 -images-29308.png,23327 -images-29309.png,23328 -images-29310.png,23329 -images-29311.png,23330 -images-29312.png,23331 -images-29313.png,23332 -images-29314.png,23333 -images-29315.png,23334 -images-29316.png,23335 -images-29317.png,23336 -images-29318.png,23337 -images-29319.png,23338 -images-29320.png,23339 -images-29331.png,23340 -images-29332.png,23341 -images-29333.png,23342 -images-29334.png,23343 -images-29335.png,23344 -images-29336.png,23345 -images-29337.png,23346 -images-29338.png,23347 -images-29339.png,23348 -images-29340.png,23349 -images-29341.png,23350 -images-29342.png,23351 -images-29343.png,23352 -images-29344.png,23353 -images-29345.png,23354 -images-29346.png,23355 -images-29347.png,23356 -images-29348.png,23357 -images-29349.png,23358 -images-29350.png,23359 -images-29351.png,23360 -images-29352.png,23361 -images-29353.png,23362 -images-29354.png,23363 -images-29355.png,23364 -images-29356.png,23365 -images-29357.png,23366 -images-29358.png,23367 -images-29359.png,23368 -images-29360.png,23369 -images-29361.png,23370 -images-29362.png,23371 -images-29363.png,23372 -images-29364.png,23373 -images-29365.png,23374 -images-29366.png,23375 -images-29367.png,23376 -images-29368.png,23377 -images-29369.png,23378 -images-29370.png,23379 -images-29371.png,23380 -images-29372.png,23381 -images-29373.png,23382 -images-29374.png,23383 -images-29375.png,23384 -images-29376.png,23385 -images-29377.png,23386 -images-29378.png,23387 -images-29379.png,23388 -images-29380.png,23389 -images-29381.png,23390 -images-29382.png,23391 -images-29383.png,23392 -images-29421.png,23393 -images-29422.png,23394 -images-29423.png,23395 -images-29424.png,23396 -images-29425.png,23397 -images-29426.png,23398 -images-29427.png,23399 -images-29428.png,23400 -images-29429.png,23401 -images-29430.png,23402 -images-29431.png,23403 -images-29432.png,23404 -images-29433.png,23405 -images-29434.png,23406 -images-29435.png,23407 -images-29436.png,23408 -images-29437.png,23409 -images-29438.png,23410 -images-29439.png,23411 -images-29440.png,23412 -images-29441.png,23413 -images-29442.png,23414 -images-29443.png,23415 -images-29444.png,23416 -images-29445.png,23417 -images-29446.png,23418 -images-29447.png,23419 -images-29448.png,23420 -images-29449.png,23421 -images-29450.png,23422 -images-29451.png,23423 -images-29452.png,23424 -images-29453.png,23425 -images-29454.png,23426 -images-29455.png,23427 -images-29456.png,23428 -images-29457.png,23429 -images-29458.png,23430 -images-29459.png,23431 -images-29460.png,23432 -images-29461.png,23433 -images-29462.png,23434 -images-29463.png,23435 -images-29464.png,23436 -images-29465.png,23437 -images-29466.png,23438 -images-29467.png,23439 -images-29468.png,23440 -images-29469.png,23441 -images-29470.png,23442 -images-29471.png,23443 -images-29472.png,23444 -images-29473.png,23445 -images-29474.png,23446 -images-29475.png,23447 -images-29476.png,23448 -images-29477.png,23449 -images-29478.png,23450 -images-29479.png,23451 -images-29480.png,23452 -images-29481.png,23453 -images-29482.png,23454 -images-29483.png,23455 -images-29484.png,23456 -images-29485.png,23457 -images-29486.png,23458 -images-29487.png,23459 -images-29488.png,23460 -images-29489.png,23461 -images-29490.png,23462 -images-29491.png,23463 -images-29492.png,23464 -images-29493.png,23465 -images-29494.png,23466 -images-29495.png,23467 -images-29496.png,23468 -images-29497.png,23469 -images-29498.png,23470 -images-29499.png,23471 -images-29500.png,23472 -images-29501.png,23473 -images-29502.png,23474 -images-29503.png,23475 -images-29504.png,23476 -images-29505.png,23477 -images-29506.png,23478 -images-29507.png,23479 -images-29508.png,23480 -images-29509.png,23481 -images-29510.png,23482 -images-29511.png,23483 -images-29512.png,23484 -images-29513.png,23485 -images-29514.png,23486 -images-29515.png,23487 -images-29516.png,23488 -images-29517.png,23489 -images-29518.png,23490 -images-29519.png,23491 -images-29520.png,23492 -images-29521.png,23493 -images-29522.png,23494 -images-29523.png,23495 -images-29524.png,23496 -images-29532.png,23497 -images-29533.png,23498 -images-29534.png,23499 -images-29535.png,23500 -images-29536.png,23501 -images-29537.png,23502 -images-29538.png,23503 -images-29539.png,23504 -images-29540.png,23505 -images-29541.png,23506 -images-29542.png,23507 -images-29543.png,23508 -images-29544.png,23509 -images-29545.png,23510 -images-29546.png,23511 -images-29547.png,23512 -images-29548.png,23513 -images-29549.png,23514 -images-29550.png,23515 -images-29551.png,23516 -images-29552.png,23517 -images-29553.png,23518 -images-29554.png,23519 -images-29555.png,23520 -images-29556.png,23521 -images-29557.png,23522 -images-29558.png,23523 -images-29559.png,23524 -images-29560.png,23525 -images-29561.png,23526 -images-29562.png,23527 -images-29563.png,23528 -images-29564.png,23529 -images-29565.png,23530 -images-29566.png,23531 -images-29567.png,23532 -images-29568.png,23533 -images-29569.png,23534 -images-29570.png,23535 -images-29571.png,23536 -images-29572.png,23537 -images-29573.png,23538 -images-29574.png,23539 -images-29575.png,23540 -images-29576.png,23541 -images-29577.png,23542 -images-29578.png,23543 -images-29579.png,23544 -images-29580.png,23545 -images-29581.png,23546 -images-29582.png,23547 -images-29583.png,23548 -images-29584.png,23549 -images-29585.png,23550 -images-29586.png,23551 -images-29587.png,23552 -images-29588.png,23553 -images-29589.png,23554 -images-29590.png,23555 -images-29591.png,23556 -images-29592.png,23557 -images-29593.png,23558 -images-29594.png,23559 -images-29595.png,23560 -images-29596.png,23561 -images-29597.png,23562 -images-29598.png,23563 -images-29599.png,23564 -images-29600.png,23565 -images-29601.png,23566 -images-29602.png,23567 -images-29603.png,23568 -images-29604.png,23569 -images-29605.png,23570 -images-29606.png,23571 -images-29607.png,23572 -images-29608.png,23573 -images-29609.png,23574 -images-29610.png,23575 -images-29611.png,23576 -images-29612.png,23577 -images-29613.png,23578 -images-29614.png,23579 -images-29615.png,23580 -images-29616.png,23581 -images-29617.png,23582 -images-29618.png,23583 -images-29619.png,23584 -images-29620.png,23585 -images-29621.png,23586 -images-29622.png,23587 -images-29623.png,23588 -images-29624.png,23589 -images-29625.png,23590 -images-29626.png,23591 -images-29627.png,23592 -images-29628.png,23593 -images-29629.png,23594 -images-29630.png,23595 -images-29631.png,23596 -images-29632.png,23597 -images-29633.png,23598 -images-29634.png,23599 -images-29635.png,23600 -images-29636.png,23601 -images-29637.png,23602 -images-29638.png,23603 -images-29639.png,23604 -images-29640.png,23605 -images-29641.png,23606 -images-29642.png,23607 -images-29643.png,23608 -images-29644.png,23609 -images-29645.png,23610 -images-29646.png,23611 -images-29647.png,23612 -images-29648.png,23613 -images-29649.png,23614 -images-29650.png,23615 -images-29651.png,23616 -images-29652.png,23617 -images-29653.png,23618 -images-29654.png,23619 -images-29655.png,23620 -images-29656.png,23621 -images-29657.png,23622 -images-29658.png,23623 -images-29659.png,23624 -images-29660.png,23625 -images-29661.png,23626 -images-29662.png,23627 -images-29663.png,23628 -images-29664.png,23629 -images-29665.png,23630 -images-29666.png,23631 -images-29667.png,23632 -images-29668.png,23633 -images-29669.png,23634 -images-29670.png,23635 -images-29671.png,23636 -images-29672.png,23637 -images-29673.png,23638 -images-29674.png,23639 -images-29675.png,23640 -images-29676.png,23641 -images-29677.png,23642 -images-29678.png,23643 -images-29679.png,23644 -images-29680.png,23645 -images-29681.png,23646 -images-29682.png,23647 -images-29683.png,23648 -images-29684.png,23649 -images-29685.png,23650 -images-29686.png,23651 -images-29687.png,23652 -images-29688.png,23653 -images-29689.png,23654 -images-29690.png,23655 -images-29691.png,23656 -images-29692.png,23657 -images-29707.png,23658 -images-29708.png,23659 -images-29709.png,23660 -images-29710.png,23661 -images-29711.png,23662 -images-29712.png,23663 -images-29713.png,23664 -images-29714.png,23665 -images-29715.png,23666 -images-29716.png,23667 -images-29717.png,23668 -images-29718.png,23669 -images-29719.png,23670 -images-29720.png,23671 -images-29721.png,23672 -images-29722.png,23673 -images-29723.png,23674 -images-29724.png,23675 -images-29725.png,23676 -images-29726.png,23677 -images-29727.png,23678 -images-29728.png,23679 -images-29729.png,23680 -images-29730.png,23681 -images-29731.png,23682 -images-29732.png,23683 -images-29733.png,23684 -images-29734.png,23685 -images-29735.png,23686 -images-29736.png,23687 -images-29737.png,23688 -images-29738.png,23689 -images-29739.png,23690 -images-29740.png,23691 -images-29741.png,23692 -images-29742.png,23693 -images-29743.png,23694 -images-29744.png,23695 -images-29745.png,23696 -images-29746.png,23697 -images-29747.png,23698 -images-29748.png,23699 -images-29749.png,23700 -images-29750.png,23701 -images-29751.png,23702 -images-29752.png,23703 -images-29753.png,23704 -images-29754.png,23705 -images-29755.png,23706 -images-29756.png,23707 -images-29757.png,23708 -images-29758.png,23709 -images-29759.png,23710 -images-29760.png,23711 -images-29761.png,23712 -images-29762.png,23713 -images-29763.png,23714 -images-29764.png,23715 -images-29765.png,23716 -images-29766.png,23717 -images-29767.png,23718 -images-29768.png,23719 -images-29769.png,23720 -images-29770.png,23721 -images-29771.png,23722 -images-29772.png,23723 -images-29773.png,23724 -images-29774.png,23725 -images-29775.png,23726 -images-29776.png,23727 -images-29777.png,23728 -images-29778.png,23729 -images-29779.png,23730 -images-29780.png,23731 -images-29781.png,23732 -images-29782.png,23733 -images-29783.png,23734 -images-29784.png,23735 -images-29785.png,23736 -images-29786.png,23737 -images-29787.png,23738 -images-29788.png,23739 -images-29789.png,23740 -images-29790.png,23741 -images-29791.png,23742 -images-29792.png,23743 -images-29793.png,23744 -images-29794.png,23745 -images-29795.png,23746 -images-29796.png,23747 -images-29797.png,23748 -images-29798.png,23749 -images-29799.png,23750 -images-29800.png,23751 -images-29801.png,23752 -images-29802.png,23753 -images-29803.png,23754 -images-29804.png,23755 -images-29805.png,23756 -images-29806.png,23757 -images-29807.png,23758 -images-29808.png,23759 -images-29809.png,23760 -images-29810.png,23761 -images-29811.png,23762 -images-29812.png,23763 -images-29813.png,23764 -images-29814.png,23765 -images-29815.png,23766 -images-29816.png,23767 -images-29817.png,23768 -images-29818.png,23769 -images-29819.png,23770 -images-29820.png,23771 -images-29821.png,23772 -images-29822.png,23773 -images-29823.png,23774 -images-29824.png,23775 -images-29825.png,23776 -images-29826.png,23777 -images-29827.png,23778 -images-29828.png,23779 -images-29829.png,23780 -images-29830.png,23781 -images-29831.png,23782 -images-29832.png,23783 -images-29833.png,23784 -images-29834.png,23785 -images-29835.png,23786 -images-29836.png,23787 -images-29837.png,23788 -images-29838.png,23789 -images-29839.png,23790 -images-29840.png,23791 -images-29841.png,23792 -images-29842.png,23793 -images-29843.png,23794 -images-29844.png,23795 -images-29845.png,23796 -images-29846.png,23797 -images-29847.png,23798 -images-29848.png,23799 -images-29849.png,23800 -images-29850.png,23801 -images-29851.png,23802 -images-29852.png,23803 -images-29853.png,23804 -images-29854.png,23805 -images-29855.png,23806 -images-29856.png,23807 -images-29857.png,23808 -images-29858.png,23809 -images-29859.png,23810 -images-29860.png,23811 -images-29861.png,23812 -images-29862.png,23813 -images-29863.png,23814 -images-29864.png,23815 -images-29865.png,23816 -images-29866.png,23817 -images-29867.png,23818 -images-29868.png,23819 -images-29869.png,23820 -images-29870.png,23821 -images-29871.png,23822 -images-29872.png,23823 -images-29873.png,23824 -images-29874.png,23825 -images-29875.png,23826 -images-29876.png,23827 -images-29877.png,23828 -images-29878.png,23829 -images-29879.png,23830 -images-29880.png,23831 -images-29881.png,23832 -images-29882.png,23833 -images-29883.png,23834 -images-29884.png,23835 -images-29885.png,23836 -images-29886.png,23837 -images-29887.png,23838 -images-29888.png,23839 -images-29889.png,23840 -images-29890.png,23841 -images-29891.png,23842 -images-29892.png,23843 -images-29893.png,23844 -images-29894.png,23845 -images-29895.png,23846 -images-29896.png,23847 -images-29897.png,23848 -images-29898.png,23849 -images-29899.png,23850 -images-29900.png,23851 -images-29901.png,23852 -images-29902.png,23853 -images-29903.png,23854 -images-29904.png,23855 -images-29905.png,23856 -images-29906.png,23857 -images-29907.png,23858 -images-29908.png,23859 -images-29909.png,23860 -images-29910.png,23861 -images-29911.png,23862 -images-29912.png,23863 -images-29913.png,23864 -images-29914.png,23865 -images-29915.png,23866 -images-29916.png,23867 -images-29917.png,23868 -images-29918.png,23869 -images-29919.png,23870 -images-29920.png,23871 -images-29921.png,23872 -images-29922.png,23873 -images-29923.png,23874 -images-29924.png,23875 -images-29925.png,23876 -images-29926.png,23877 -images-29927.png,23878 -images-29928.png,23879 -images-29929.png,23880 -images-29930.png,23881 -images-29931.png,23882 -images-29932.png,23883 -images-29933.png,23884 -images-29934.png,23885 -images-29935.png,23886 -images-29936.png,23887 -images-29937.png,23888 -images-29938.png,23889 -images-29939.png,23890 -images-29940.png,23891 -images-29941.png,23892 -images-29942.png,23893 -images-29943.png,23894 -images-29944.png,23895 -images-29945.png,23896 -images-29946.png,23897 -images-29947.png,23898 -images-29948.png,23899 -images-29949.png,23900 -images-29950.png,23901 -images-29951.png,23902 -images-29952.png,23903 -images-29953.png,23904 -images-29954.png,23905 -images-29955.png,23906 -images-29956.png,23907 -images-29957.png,23908 -images-29958.png,23909 -images-29959.png,23910 -images-29960.png,23911 -images-29961.png,23912 -images-29962.png,23913 -images-29963.png,23914 -images-29964.png,23915 -images-29965.png,23916 -images-29966.png,23917 -images-29967.png,23918 -images-29968.png,23919 -images-29969.png,23920 -images-29970.png,23921 -images-29971.png,23922 -images-29972.png,23923 -images-29973.png,23924 -images-29981.png,23925 -images-29982.png,23926 -images-29983.png,23927 -images-29984.png,23928 -images-29985.png,23929 -images-29986.png,23930 -images-29987.png,23931 -images-29988.png,23932 -images-29989.png,23933 -images-29990.png,23934 -images-29991.png,23935 -images-29992.png,23936 -images-29993.png,23937 -images-30010.png,23938 -images-30011.png,23939 -images-30012.png,23940 -images-30013.png,23941 -images-30014.png,23942 -images-30015.png,23943 -images-30016.png,23944 -images-30017.png,23945 -images-30018.png,23946 -images-30019.png,23947 -images-30020.png,23948 -images-30021.png,23949 -images-30022.png,23950 -images-30023.png,23951 -images-30024.png,23952 -images-30025.png,23953 -images-30026.png,23954 -images-30027.png,23955 -images-30028.png,23956 -images-30029.png,23957 -images-30030.png,23958 -images-30031.png,23959 -images-30032.png,23960 -images-30033.png,23961 -images-30034.png,23962 -images-30035.png,23963 -images-30036.png,23964 -images-30037.png,23965 -images-30038.png,23966 -images-30039.png,23967 -images-30040.png,23968 -images-30041.png,23969 -images-30042.png,23970 -images-30043.png,23971 -images-30044.png,23972 -images-30045.png,23973 -images-30046.png,23974 -images-30047.png,23975 -images-30048.png,23976 -images-30049.png,23977 -images-30050.png,23978 -images-30051.png,23979 -images-30052.png,23980 -images-30053.png,23981 -images-30054.png,23982 -images-30055.png,23983 -images-30056.png,23984 -images-30057.png,23985 -images-30058.png,23986 -images-30059.png,23987 -images-30060.png,23988 -images-30061.png,23989 -images-30062.png,23990 -images-30063.png,23991 -images-30064.png,23992 -images-30065.png,23993 -images-30066.png,23994 -images-30067.png,23995 -images-30068.png,23996 -images-30069.png,23997 -images-30070.png,23998 -images-30071.png,23999 -images-30072.png,24000 -images-30091.png,24001 -images-30092.png,24002 -images-30093.png,24003 -images-30094.png,24004 -images-30095.png,24005 -images-30096.png,24006 -images-30097.png,24007 -images-30098.png,24008 -images-30099.png,24009 -images-30100.png,24010 -images-30101.png,24011 -images-30102.png,24012 -images-30106.png,24013 -images-30107.png,24014 -images-30108.png,24015 -images-30109.png,24016 -images-30110.png,24017 -images-30111.png,24018 -images-30112.png,24019 -images-30113.png,24020 -images-30114.png,24021 -images-30115.png,24022 -images-30116.png,24023 -images-30117.png,24024 -images-30118.png,24025 -images-30119.png,24026 -images-30120.png,24027 -images-30121.png,24028 -images-30122.png,24029 -images-30123.png,24030 -images-30124.png,24031 -images-30125.png,24032 -images-30126.png,24033 -images-30127.png,24034 -images-30128.png,24035 -images-30129.png,24036 -images-30130.png,24037 -images-30131.png,24038 -images-30132.png,24039 -images-30133.png,24040 -images-30134.png,24041 -images-30135.png,24042 -images-30136.png,24043 -images-30142.png,24044 -images-30143.png,24045 -images-30144.png,24046 -images-30145.png,24047 -images-30146.png,24048 -images-30147.png,24049 -images-30148.png,24050 -images-30149.png,24051 -images-30150.png,24052 -images-30151.png,24053 -images-30152.png,24054 -images-30153.png,24055 -images-30154.png,24056 -images-30155.png,24057 -images-30156.png,24058 -images-30157.png,24059 -images-30158.png,24060 -images-30159.png,24061 -images-30160.png,24062 -images-30161.png,24063 -images-30162.png,24064 -images-30163.png,24065 -images-30164.png,24066 -images-30165.png,24067 -images-30166.png,24068 -images-30167.png,24069 -images-30168.png,24070 -images-30169.png,24071 -images-30170.png,24072 -images-30171.png,24073 -images-30172.png,24074 -images-30173.png,24075 -images-30179.png,24076 -images-30180.png,24077 -images-30181.png,24078 -images-30182.png,24079 -images-30183.png,24080 -images-30184.png,24081 -images-30185.png,24082 -images-30186.png,24083 -images-30187.png,24084 -images-30188.png,24085 -images-30189.png,24086 -images-30190.png,24087 -images-30191.png,24088 -images-30192.png,24089 -images-30193.png,24090 -images-30194.png,24091 -images-30195.png,24092 -images-30196.png,24093 -images-30197.png,24094 -images-30198.png,24095 -images-30199.png,24096 -images-30200.png,24097 -images-30201.png,24098 -images-30202.png,24099 -images-30203.png,24100 -images-30211.png,24101 -images-30212.png,24102 -images-30213.png,24103 -images-30214.png,24104 -images-30215.png,24105 -images-30216.png,24106 -images-30217.png,24107 -images-30218.png,24108 -images-30219.png,24109 -images-30220.png,24110 -images-30221.png,24111 -images-30222.png,24112 -images-30223.png,24113 -images-30224.png,24114 -images-30225.png,24115 -images-30226.png,24116 -images-30227.png,24117 -images-30228.png,24118 -images-30229.png,24119 -images-30230.png,24120 -images-30231.png,24121 -images-30232.png,24122 -images-30233.png,24123 -images-30234.png,24124 -images-30235.png,24125 -images-30236.png,24126 -images-30237.png,24127 -images-30238.png,24128 -images-30239.png,24129 -images-30240.png,24130 -images-30241.png,24131 -images-30242.png,24132 -images-30243.png,24133 -images-30244.png,24134 -images-30245.png,24135 -images-30246.png,24136 -images-30247.png,24137 -images-30248.png,24138 -images-30249.png,24139 -images-30250.png,24140 -images-30251.png,24141 -images-30252.png,24142 -images-30253.png,24143 -images-30254.png,24144 -images-30255.png,24145 -images-30256.png,24146 -images-30257.png,24147 -images-30258.png,24148 -images-30259.png,24149 -images-30260.png,24150 -images-30261.png,24151 -images-30262.png,24152 -images-30263.png,24153 -images-30264.png,24154 -images-30265.png,24155 -images-30266.png,24156 -images-30267.png,24157 -images-30268.png,24158 -images-30269.png,24159 -images-30270.png,24160 -images-30271.png,24161 -images-30272.png,24162 -images-30273.png,24163 -images-30274.png,24164 -images-30275.png,24165 -images-30276.png,24166 -images-30277.png,24167 -images-30278.png,24168 -images-30279.png,24169 -images-30280.png,24170 -images-30281.png,24171 -images-30282.png,24172 -images-30283.png,24173 -images-30284.png,24174 -images-30285.png,24175 -images-30286.png,24176 -images-30287.png,24177 -images-30288.png,24178 -images-30289.png,24179 -images-30290.png,24180 -images-30291.png,24181 -images-30292.png,24182 -images-30293.png,24183 -images-30294.png,24184 -images-30295.png,24185 -images-30296.png,24186 -images-30297.png,24187 -images-30298.png,24188 -images-30299.png,24189 -images-30300.png,24190 -images-30301.png,24191 -images-30302.png,24192 -images-30303.png,24193 -images-30304.png,24194 -images-30305.png,24195 -images-30306.png,24196 -images-30307.png,24197 -images-30308.png,24198 -images-30309.png,24199 -images-30310.png,24200 -images-30311.png,24201 -images-30312.png,24202 -images-30313.png,24203 -images-30314.png,24204 -images-30315.png,24205 -images-30316.png,24206 -images-30317.png,24207 -images-30318.png,24208 -images-30319.png,24209 -images-30320.png,24210 -images-30321.png,24211 -images-30322.png,24212 -images-30323.png,24213 -images-30324.png,24214 -images-30325.png,24215 -images-30326.png,24216 -images-30327.png,24217 -images-30328.png,24218 -images-30329.png,24219 -images-30330.png,24220 -images-30331.png,24221 -images-30332.png,24222 -images-30333.png,24223 -images-30334.png,24224 -images-30335.png,24225 -images-30336.png,24226 -images-30337.png,24227 -images-30338.png,24228 -images-30339.png,24229 -images-30340.png,24230 -images-30341.png,24231 -images-30342.png,24232 -images-30343.png,24233 -images-30344.png,24234 -images-30345.png,24235 -images-30346.png,24236 -images-30347.png,24237 -images-30348.png,24238 -images-30349.png,24239 -images-30350.png,24240 -images-30351.png,24241 -images-30352.png,24242 -images-30353.png,24243 -images-30354.png,24244 -images-30355.png,24245 -images-30356.png,24246 -images-30357.png,24247 -images-30358.png,24248 -images-30359.png,24249 -images-30360.png,24250 -images-30361.png,24251 -images-30362.png,24252 -images-30363.png,24253 -images-30364.png,24254 -images-30365.png,24255 -images-30366.png,24256 -images-30367.png,24257 -images-30368.png,24258 -images-30369.png,24259 -images-30370.png,24260 -images-30371.png,24261 -images-30372.png,24262 -images-30373.png,24263 -images-30374.png,24264 -images-30375.png,24265 -images-30376.png,24266 -images-30377.png,24267 -images-30378.png,24268 -images-30379.png,24269 -images-30380.png,24270 -images-30381.png,24271 -images-30382.png,24272 -images-30383.png,24273 -images-30384.png,24274 -images-30385.png,24275 -images-30386.png,24276 -images-30387.png,24277 -images-30388.png,24278 -images-30389.png,24279 -images-30390.png,24280 -images-30391.png,24281 -images-30392.png,24282 -images-30393.png,24283 -images-30394.png,24284 -images-30395.png,24285 -images-30396.png,24286 -images-30397.png,24287 -images-30398.png,24288 -images-30399.png,24289 -images-30400.png,24290 -images-30401.png,24291 -images-30402.png,24292 -images-30403.png,24293 -images-30404.png,24294 -images-30405.png,24295 -images-30406.png,24296 -images-30407.png,24297 -images-30408.png,24298 -images-30409.png,24299 -images-30410.png,24300 -images-30411.png,24301 -images-30412.png,24302 -images-30516.png,24303 -images-30517.png,24304 -images-30518.png,24305 -images-30519.png,24306 -images-30520.png,24307 -images-30521.png,24308 -images-30522.png,24309 -images-30523.png,24310 -images-30524.png,24311 -images-30525.png,24312 -images-30526.png,24313 -images-30527.png,24314 -images-30528.png,24315 -images-30529.png,24316 -images-30530.png,24317 -images-30531.png,24318 -images-30532.png,24319 -images-30533.png,24320 -images-30534.png,24321 -images-30535.png,24322 -images-30536.png,24323 -images-30537.png,24324 -images-30538.png,24325 -images-30539.png,24326 -images-30540.png,24327 -images-30541.png,24328 -images-30542.png,24329 -images-30543.png,24330 -images-30544.png,24331 -images-30545.png,24332 -images-30546.png,24333 -images-30547.png,24334 -images-30548.png,24335 -images-30549.png,24336 -images-30550.png,24337 -images-30551.png,24338 -images-30552.png,24339 -images-30553.png,24340 -images-30554.png,24341 -images-30555.png,24342 -images-30556.png,24343 -images-30557.png,24344 -images-30558.png,24345 -images-30559.png,24346 -images-30560.png,24347 -images-30561.png,24348 -images-30562.png,24349 -images-30563.png,24350 -images-30564.png,24351 -images-30565.png,24352 -images-30566.png,24353 -images-30567.png,24354 -images-30568.png,24355 -images-30569.png,24356 -images-30570.png,24357 -images-30571.png,24358 -images-30572.png,24359 -images-30573.png,24360 -images-30574.png,24361 -images-30575.png,24362 -images-30576.png,24363 -images-30577.png,24364 -images-30578.png,24365 -images-30579.png,24366 -images-30580.png,24367 -images-30581.png,24368 -images-30582.png,24369 -images-30583.png,24370 -images-30584.png,24371 -images-30585.png,24372 -images-30586.png,24373 -images-30587.png,24374 -images-30588.png,24375 -images-30589.png,24376 -images-30590.png,24377 -images-30591.png,24378 -images-30592.png,24379 -images-30593.png,24380 -images-30594.png,24381 -images-30595.png,24382 -images-30596.png,24383 -images-30597.png,24384 -images-30598.png,24385 -images-30599.png,24386 -images-30600.png,24387 -images-30601.png,24388 -images-30602.png,24389 -images-30603.png,24390 -images-30604.png,24391 -images-30605.png,24392 -images-30606.png,24393 -images-30607.png,24394 -images-30608.png,24395 -images-30609.png,24396 -images-30610.png,24397 -images-30611.png,24398 -images-30612.png,24399 -images-30613.png,24400 -images-30614.png,24401 -images-30615.png,24402 -images-30616.png,24403 -images-30617.png,24404 -images-30618.png,24405 -images-30619.png,24406 -images-30620.png,24407 -images-30621.png,24408 -images-30622.png,24409 -images-30623.png,24410 -images-30624.png,24411 -images-30625.png,24412 -images-30626.png,24413 -images-30627.png,24414 -images-30628.png,24415 -images-30629.png,24416 -images-30630.png,24417 -images-30631.png,24418 -images-30632.png,24419 -images-30633.png,24420 -images-30634.png,24421 -images-30635.png,24422 -images-30636.png,24423 -images-30637.png,24424 -images-30638.png,24425 -images-30639.png,24426 -images-30640.png,24427 -images-30641.png,24428 -images-30642.png,24429 -images-30643.png,24430 -images-30644.png,24431 -images-30645.png,24432 -images-30646.png,24433 -images-30647.png,24434 -images-30648.png,24435 -images-30649.png,24436 -images-30650.png,24437 -images-30651.png,24438 -images-30652.png,24439 -images-30653.png,24440 -images-30654.png,24441 -images-30655.png,24442 -images-30656.png,24443 -images-30657.png,24444 -images-30658.png,24445 -images-30659.png,24446 -images-30660.png,24447 -images-30661.png,24448 -images-30662.png,24449 -images-30663.png,24450 -images-30664.png,24451 -images-30665.png,24452 -images-30666.png,24453 -images-30667.png,24454 -images-30668.png,24455 -images-30669.png,24456 -images-30670.png,24457 -images-30671.png,24458 -images-30672.png,24459 -images-30673.png,24460 -images-30674.png,24461 -images-30675.png,24462 -images-30676.png,24463 -images-30677.png,24464 -images-30678.png,24465 -images-30679.png,24466 -images-30680.png,24467 -images-30681.png,24468 -images-30682.png,24469 -images-30683.png,24470 -images-30684.png,24471 -images-30685.png,24472 -images-30686.png,24473 -images-30687.png,24474 -images-30688.png,24475 -images-30689.png,24476 -images-30690.png,24477 -images-30691.png,24478 -images-30692.png,24479 -images-30693.png,24480 -images-30694.png,24481 -images-30695.png,24482 -images-30696.png,24483 -images-30697.png,24484 -images-30698.png,24485 -images-30699.png,24486 -images-30700.png,24487 -images-30701.png,24488 -images-30702.png,24489 -images-30703.png,24490 -images-30704.png,24491 -images-30705.png,24492 -images-30706.png,24493 -images-30707.png,24494 -images-30708.png,24495 -images-30709.png,24496 -images-30710.png,24497 -images-30711.png,24498 -images-30712.png,24499 -images-30713.png,24500 -images-30714.png,24501 -images-30715.png,24502 -images-30716.png,24503 -images-30717.png,24504 -images-30718.png,24505 -images-30719.png,24506 -images-30720.png,24507 -images-30721.png,24508 -images-30722.png,24509 -images-30723.png,24510 -images-30724.png,24511 -images-30725.png,24512 -images-30726.png,24513 -images-30727.png,24514 -images-30728.png,24515 -images-30729.png,24516 -images-30730.png,24517 -images-30731.png,24518 -images-30732.png,24519 -images-30733.png,24520 -images-30734.png,24521 -images-30735.png,24522 -images-30736.png,24523 -images-30737.png,24524 -images-30738.png,24525 -images-30739.png,24526 -images-30740.png,24527 -images-30741.png,24528 -images-30742.png,24529 -images-30743.png,24530 -images-30744.png,24531 -images-30745.png,24532 -images-30746.png,24533 -images-30747.png,24534 -images-30748.png,24535 -images-30749.png,24536 -images-30750.png,24537 -images-30751.png,24538 -images-30752.png,24539 -images-30753.png,24540 -images-30754.png,24541 -images-30755.png,24542 -images-30756.png,24543 -images-30757.png,24544 -images-30758.png,24545 -images-30759.png,24546 -images-30760.png,24547 -images-30761.png,24548 -images-30762.png,24549 -images-30763.png,24550 -images-30764.png,24551 -images-30765.png,24552 -images-30766.png,24553 -images-30767.png,24554 -images-30768.png,24555 -images-30769.png,24556 -images-30770.png,24557 -images-30771.png,24558 -images-30772.png,24559 -images-30773.png,24560 -images-30774.png,24561 -images-30775.png,24562 -images-30776.png,24563 -images-30777.png,24564 -images-30778.png,24565 -images-30779.png,24566 -images-30780.png,24567 -images-30781.png,24568 -images-30782.png,24569 -images-30783.png,24570 -images-30784.png,24571 -images-30785.png,24572 -images-30786.png,24573 -images-30787.png,24574 -images-30788.png,24575 -images-30789.png,24576 -images-30790.png,24577 -images-30791.png,24578 -images-30792.png,24579 -images-30793.png,24580 -images-30794.png,24581 -images-30795.png,24582 -images-30796.png,24583 -images-30797.png,24584 -images-30798.png,24585 -images-30799.png,24586 -images-30800.png,24587 -images-30801.png,24588 -images-30802.png,24589 -images-30803.png,24590 -images-30804.png,24591 -images-30805.png,24592 -images-30806.png,24593 -images-30807.png,24594 -images-30808.png,24595 -images-30809.png,24596 -images-30810.png,24597 -images-30811.png,24598 -images-30812.png,24599 -images-30813.png,24600 -images-30814.png,24601 -images-30815.png,24602 -images-30816.png,24603 -images-30817.png,24604 -images-30818.png,24605 -images-30819.png,24606 -images-30820.png,24607 -images-30821.png,24608 -images-30822.png,24609 -images-30823.png,24610 -images-30824.png,24611 -images-30825.png,24612 -images-30826.png,24613 -images-30827.png,24614 -images-30828.png,24615 -images-30829.png,24616 -images-30830.png,24617 -images-30831.png,24618 -images-30832.png,24619 -images-30833.png,24620 -images-30834.png,24621 -images-30835.png,24622 -images-30836.png,24623 -images-30837.png,24624 -images-30838.png,24625 -images-30839.png,24626 -images-30840.png,24627 -images-30841.png,24628 -images-30842.png,24629 -images-30843.png,24630 -images-30844.png,24631 -images-30845.png,24632 -images-30846.png,24633 -images-30847.png,24634 -images-30848.png,24635 -images-30849.png,24636 -images-30850.png,24637 -images-30851.png,24638 -images-30852.png,24639 -images-30853.png,24640 -images-30854.png,24641 -images-30855.png,24642 -images-30856.png,24643 -images-30857.png,24644 -images-30858.png,24645 -images-30859.png,24646 -images-30860.png,24647 -images-30861.png,24648 -images-30862.png,24649 -images-30863.png,24650 -images-30864.png,24651 -images-30865.png,24652 -images-30866.png,24653 -images-30867.png,24654 -images-30868.png,24655 -images-30869.png,24656 -images-30870.png,24657 -images-30871.png,24658 -images-30872.png,24659 -images-30873.png,24660 -images-30874.png,24661 -images-30875.png,24662 -images-30876.png,24663 -images-30877.png,24664 -images-30878.png,24665 -images-30879.png,24666 -images-30880.png,24667 -images-30881.png,24668 -images-30882.png,24669 -images-30883.png,24670 -images-30884.png,24671 -images-30885.png,24672 -images-30886.png,24673 -images-30887.png,24674 -images-30888.png,24675 -images-30889.png,24676 -images-30890.png,24677 -images-30891.png,24678 -images-30892.png,24679 -images-30893.png,24680 -images-30894.png,24681 -images-30895.png,24682 -images-30896.png,24683 -images-30897.png,24684 -images-30898.png,24685 -images-30899.png,24686 -images-30900.png,24687 -images-30901.png,24688 -images-30902.png,24689 -images-30903.png,24690 -images-30904.png,24691 -images-30905.png,24692 -images-30906.png,24693 -images-30907.png,24694 -images-30908.png,24695 -images-30909.png,24696 -images-30910.png,24697 -images-30911.png,24698 -images-30912.png,24699 -images-30913.png,24700 -images-30914.png,24701 -images-30915.png,24702 -images-30916.png,24703 -images-30917.png,24704 -images-30918.png,24705 -images-30919.png,24706 -images-30920.png,24707 -images-30921.png,24708 -images-30922.png,24709 -images-30923.png,24710 -images-30924.png,24711 -images-30925.png,24712 -images-30926.png,24713 -images-30927.png,24714 -images-30928.png,24715 -images-30929.png,24716 -images-30930.png,24717 -images-30931.png,24718 -images-30932.png,24719 -images-30933.png,24720 -images-30934.png,24721 -images-30935.png,24722 -images-30936.png,24723 -images-30937.png,24724 -images-30938.png,24725 -images-30939.png,24726 -images-30940.png,24727 -images-30941.png,24728 -images-30942.png,24729 -images-30943.png,24730 -images-30944.png,24731 -images-30945.png,24732 -images-30946.png,24733 -images-30947.png,24734 -images-30948.png,24735 -images-30949.png,24736 -images-30950.png,24737 -images-30951.png,24738 -images-30952.png,24739 -images-30953.png,24740 -images-30954.png,24741 -images-30955.png,24742 -images-30956.png,24743 -images-30957.png,24744 -images-30958.png,24745 -images-30959.png,24746 -images-30960.png,24747 -images-30961.png,24748 -images-30962.png,24749 -images-30963.png,24750 -images-30964.png,24751 -images-30965.png,24752 -images-30966.png,24753 -images-30967.png,24754 -images-30968.png,24755 -images-30969.png,24756 -images-30970.png,24757 -images-30971.png,24758 -images-30972.png,24759 -images-30973.png,24760 -images-30974.png,24761 -images-30975.png,24762 -images-30976.png,24763 -images-30977.png,24764 -images-30978.png,24765 -images-30979.png,24766 -images-30980.png,24767 -images-30981.png,24768 -images-30982.png,24769 -images-30983.png,24770 -images-30984.png,24771 -images-30985.png,24772 -images-30986.png,24773 -images-30987.png,24774 -images-30988.png,24775 -images-30989.png,24776 -images-30990.png,24777 -images-30991.png,24778 -images-30992.png,24779 -images-30993.png,24780 -images-30994.png,24781 -images-30995.png,24782 -images-30996.png,24783 -images-30997.png,24784 -images-30998.png,24785 -images-30999.png,24786 -images-31000.png,24787 -images-31001.png,24788 -images-31002.png,24789 -images-31003.png,24790 -images-31004.png,24791 -images-31005.png,24792 -images-31006.png,24793 -images-31007.png,24794 -images-31008.png,24795 -images-31009.png,24796 -images-31010.png,24797 -images-31011.png,24798 -images-31012.png,24799 -images-31013.png,24800 -images-31014.png,24801 -images-31015.png,24802 -images-31016.png,24803 -images-31017.png,24804 -images-31018.png,24805 -images-31019.png,24806 -images-31020.png,24807 -images-31021.png,24808 -images-31022.png,24809 -images-31023.png,24810 -images-31024.png,24811 -images-31025.png,24812 -images-31026.png,24813 -images-31027.png,24814 -images-31028.png,24815 -images-31029.png,24816 -images-31030.png,24817 -images-31031.png,24818 -images-31032.png,24819 -images-31033.png,24820 -images-31034.png,24821 -images-31035.png,24822 -images-31036.png,24823 -images-31037.png,24824 -images-31038.png,24825 -images-31039.png,24826 -images-31040.png,24827 -images-31041.png,24828 -images-31042.png,24829 -images-31043.png,24830 -images-31044.png,24831 -images-31045.png,24832 -images-31046.png,24833 -images-31047.png,24834 -images-31048.png,24835 -images-31049.png,24836 -images-31050.png,24837 -images-31051.png,24838 -images-31052.png,24839 -images-31053.png,24840 -images-31054.png,24841 -images-31055.png,24842 -images-31056.png,24843 -images-31057.png,24844 -images-31058.png,24845 -images-31059.png,24846 -images-31060.png,24847 -images-31061.png,24848 -images-31062.png,24849 -images-31063.png,24850 -images-31208.png,24851 -images-31209.png,24852 -images-31210.png,24853 -images-31211.png,24854 -images-31212.png,24855 -images-31213.png,24856 -images-31214.png,24857 -images-31215.png,24858 -images-31216.png,24859 -images-31217.png,24860 -images-31218.png,24861 -images-31219.png,24862 -images-31220.png,24863 -images-31221.png,24864 -images-31222.png,24865 -images-31223.png,24866 -images-31224.png,24867 -images-31225.png,24868 -images-31226.png,24869 -images-31227.png,24870 -images-31228.png,24871 -images-31229.png,24872 -images-31230.png,24873 -images-31231.png,24874 -images-31232.png,24875 -images-31233.png,24876 -images-31234.png,24877 -images-31235.png,24878 -images-31236.png,24879 -images-31237.png,24880 -images-31238.png,24881 -images-31239.png,24882 -images-31240.png,24883 -images-31241.png,24884 -images-31242.png,24885 -images-31243.png,24886 -images-31244.png,24887 -images-31245.png,24888 -images-31246.png,24889 -images-31247.png,24890 -images-31248.png,24891 -images-31249.png,24892 -images-31250.png,24893 -images-31251.png,24894 -images-31252.png,24895 -images-31253.png,24896 -images-31254.png,24897 -images-31255.png,24898 -images-31256.png,24899 -images-31257.png,24900 -images-31258.png,24901 -images-31259.png,24902 -images-31260.png,24903 -images-31261.png,24904 -images-31262.png,24905 -images-31263.png,24906 -images-31264.png,24907 -images-31265.png,24908 -images-31266.png,24909 -images-31267.png,24910 -images-31268.png,24911 -images-31269.png,24912 -images-31270.png,24913 -images-31271.png,24914 -images-31272.png,24915 -images-31273.png,24916 -images-31274.png,24917 -images-31275.png,24918 -images-31276.png,24919 -images-31277.png,24920 -images-31278.png,24921 -images-31279.png,24922 -images-31280.png,24923 -images-31281.png,24924 -images-31282.png,24925 -images-31283.png,24926 -images-31284.png,24927 -images-31285.png,24928 -images-31286.png,24929 -images-31287.png,24930 -images-31288.png,24931 -images-31289.png,24932 -images-31290.png,24933 -images-31291.png,24934 -images-31292.png,24935 -images-31293.png,24936 -images-31294.png,24937 -images-31295.png,24938 -images-31296.png,24939 -images-31297.png,24940 -images-31298.png,24941 -images-31299.png,24942 -images-31300.png,24943 -images-31325.png,24944 -images-31326.png,24945 -images-31327.png,24946 -images-31328.png,24947 -images-31329.png,24948 -images-31330.png,24949 -images-31331.png,24950 -images-31340.png,24951 -images-31341.png,24952 -images-31342.png,24953 -images-31343.png,24954 -images-31344.png,24955 -images-31345.png,24956 -images-31346.png,24957 -images-31347.png,24958 -images-31348.png,24959 -images-31349.png,24960 -images-31350.png,24961 -images-31351.png,24962 -images-31352.png,24963 -images-31353.png,24964 -images-31354.png,24965 -images-31355.png,24966 -images-31356.png,24967 -images-31357.png,24968 -images-31358.png,24969 -images-31359.png,24970 -images-31360.png,24971 -images-31361.png,24972 -images-31362.png,24973 -images-31363.png,24974 -images-31364.png,24975 -images-31365.png,24976 -images-31366.png,24977 -images-31367.png,24978 -images-31368.png,24979 -images-31369.png,24980 -images-31370.png,24981 -images-31371.png,24982 -images-31372.png,24983 -images-31373.png,24984 -images-31374.png,24985 -images-31375.png,24986 -images-31376.png,24987 -images-31377.png,24988 -images-31378.png,24989 -images-31379.png,24990 -images-31380.png,24991 -images-31381.png,24992 -images-31382.png,24993 -images-31383.png,24994 -images-31384.png,24995 -images-31385.png,24996 -images-31386.png,24997 -images-31387.png,24998 -images-31388.png,24999 -images-31389.png,25000 -images-31390.png,25001 -images-31391.png,25002 -images-31392.png,25003 -images-31393.png,25004 -images-31394.png,25005 -images-31395.png,25006 -images-31410.png,25007 -images-31411.png,25008 -images-31412.png,25009 -images-31413.png,25010 -images-31414.png,25011 -images-31415.png,25012 -images-31416.png,25013 -images-31417.png,25014 -images-31418.png,25015 -images-31419.png,25016 -images-31420.png,25017 -images-31421.png,25018 -images-31422.png,25019 -images-31423.png,25020 -images-31424.png,25021 -images-31425.png,25022 -images-31426.png,25023 -images-31427.png,25024 -images-31428.png,25025 -images-31429.png,25026 -images-31430.png,25027 -images-31431.png,25028 -images-31432.png,25029 -images-31437.png,25030 -images-31438.png,25031 -images-31439.png,25032 -images-31440.png,25033 -images-31441.png,25034 -images-31442.png,25035 -images-31443.png,25036 -images-31444.png,25037 -images-31445.png,25038 -images-31446.png,25039 -images-31447.png,25040 -images-31482.png,25041 -images-31483.png,25042 -images-31484.png,25043 -images-31485.png,25044 -images-31486.png,25045 -images-31487.png,25046 -images-31488.png,25047 -images-31489.png,25048 -images-31490.png,25049 -images-31491.png,25050 -images-31551.png,25051 -images-31552.png,25052 -images-31553.png,25053 -images-31554.png,25054 -images-31555.png,25055 -images-31556.png,25056 -images-31557.png,25057 -images-31558.png,25058 -images-31559.png,25059 -images-31560.png,25060 -images-31561.png,25061 -images-31562.png,25062 -images-31563.png,25063 -images-31564.png,25064 -images-31565.png,25065 -images-31566.png,25066 -images-31567.png,25067 -images-31568.png,25068 -images-31569.png,25069 -images-31570.png,25070 -images-31571.png,25071 -images-31572.png,25072 -images-31573.png,25073 -images-31574.png,25074 -images-31575.png,25075 -images-31576.png,25076 -images-31577.png,25077 -images-31578.png,25078 -images-31579.png,25079 -images-31580.png,25080 -images-31581.png,25081 -images-31582.png,25082 -images-31583.png,25083 -images-31584.png,25084 -images-31585.png,25085 -images-31586.png,25086 -images-31587.png,25087 -images-31588.png,25088 -images-31589.png,25089 -images-31590.png,25090 -images-31591.png,25091 -images-31592.png,25092 -images-31593.png,25093 -images-31594.png,25094 -images-31595.png,25095 -images-31596.png,25096 -images-31597.png,25097 -images-31598.png,25098 -images-31599.png,25099 -images-31600.png,25100 -images-31601.png,25101 -images-31602.png,25102 -images-31603.png,25103 -images-31604.png,25104 -images-31605.png,25105 -images-31606.png,25106 -images-31607.png,25107 -images-31608.png,25108 -images-31609.png,25109 -images-31610.png,25110 -images-31628.png,25111 -images-31629.png,25112 -images-31630.png,25113 -images-31631.png,25114 -images-31632.png,25115 -images-31633.png,25116 -images-31634.png,25117 -images-31635.png,25118 -images-31636.png,25119 -images-31637.png,25120 -images-31638.png,25121 -images-31639.png,25122 -images-31640.png,25123 -images-31641.png,25124 -images-31642.png,25125 -images-31643.png,25126 -images-31644.png,25127 -images-31645.png,25128 -images-31646.png,25129 -images-31647.png,25130 -images-31648.png,25131 -images-31649.png,25132 -images-31650.png,25133 -images-31651.png,25134 -images-31652.png,25135 -images-31653.png,25136 -images-31654.png,25137 -images-31655.png,25138 -images-31656.png,25139 -images-31657.png,25140 -images-31658.png,25141 -images-31659.png,25142 -images-31660.png,25143 -images-31661.png,25144 -images-31662.png,25145 -images-31663.png,25146 -images-31664.png,25147 -images-31665.png,25148 -images-31712.png,25149 -images-31713.png,25150 -images-31714.png,25151 -images-31715.png,25152 -images-31716.png,25153 -images-31717.png,25154 -images-31718.png,25155 -images-31719.png,25156 -images-31720.png,25157 -images-31721.png,25158 -images-31722.png,25159 -images-31723.png,25160 -images-31724.png,25161 -images-31725.png,25162 -images-31726.png,25163 -images-31727.png,25164 -images-31728.png,25165 -images-31729.png,25166 -images-31730.png,25167 -images-31731.png,25168 -images-31732.png,25169 -images-31733.png,25170 -images-31734.png,25171 -images-31735.png,25172 -images-31736.png,25173 -images-31737.png,25174 -images-31738.png,25175 -images-31739.png,25176 -images-31740.png,25177 -images-31741.png,25178 -images-31742.png,25179 -images-31743.png,25180 -images-31744.png,25181 -images-31745.png,25182 -images-31746.png,25183 -images-31747.png,25184 -images-31796.png,25185 -images-31797.png,25186 -images-31798.png,25187 -images-31799.png,25188 -images-31800.png,25189 -images-31801.png,25190 -images-31802.png,25191 -images-31803.png,25192 -images-31804.png,25193 -images-31805.png,25194 -images-31806.png,25195 -images-31807.png,25196 -images-31808.png,25197 -images-31809.png,25198 -images-31810.png,25199 -images-31811.png,25200 -images-31812.png,25201 -images-31813.png,25202 -images-31814.png,25203 -images-31815.png,25204 -images-31816.png,25205 -images-31817.png,25206 -images-31818.png,25207 -images-31819.png,25208 -images-31820.png,25209 -images-31821.png,25210 -images-31822.png,25211 -images-31828.png,25212 -images-31829.png,25213 -images-31830.png,25214 -images-31836.png,25215 -images-31837.png,25216 -images-31838.png,25217 -images-31839.png,25218 -images-31840.png,25219 -images-31841.png,25220 -images-31842.png,25221 -images-31843.png,25222 -images-31844.png,25223 -images-31845.png,25224 -images-31846.png,25225 -images-31847.png,25226 -images-31865.png,25227 -images-31866.png,25228 -images-31867.png,25229 -images-31868.png,25230 -images-31869.png,25231 -images-31870.png,25232 -images-31871.png,25233 -images-31872.png,25234 -images-31873.png,25235 -images-31874.png,25236 -images-31875.png,25237 -images-31876.png,25238 -images-31877.png,25239 -images-31878.png,25240 -images-31879.png,25241 -images-31880.png,25242 -images-31881.png,25243 -images-31882.png,25244 -images-31883.png,25245 -images-31884.png,25246 -images-31885.png,25247 -images-31886.png,25248 -images-31887.png,25249 -images-31888.png,25250 -images-31889.png,25251 -images-31890.png,25252 -images-31891.png,25253 -images-31892.png,25254 -images-31893.png,25255 -images-31894.png,25256 -images-31895.png,25257 -images-31896.png,25258 -images-31897.png,25259 -images-31898.png,25260 -images-31899.png,25261 -images-31900.png,25262 -images-31901.png,25263 -images-31902.png,25264 -images-31965.png,25265 -images-31966.png,25266 -images-31967.png,25267 -images-31968.png,25268 -images-31969.png,25269 -images-31970.png,25270 -images-31971.png,25271 -images-31972.png,25272 -images-31973.png,25273 -images-31974.png,25274 -images-31975.png,25275 -images-31976.png,25276 -images-31977.png,25277 -images-31978.png,25278 -images-31979.png,25279 -images-31980.png,25280 -images-31981.png,25281 -images-31982.png,25282 -images-31983.png,25283 -images-31984.png,25284 -images-31985.png,25285 -images-31986.png,25286 -images-31987.png,25287 -images-31988.png,25288 -images-31989.png,25289 -images-31990.png,25290 -images-31991.png,25291 -images-31992.png,25292 -images-31993.png,25293 -images-31994.png,25294 -images-31995.png,25295 -images-31996.png,25296 -images-31997.png,25297 -images-32062.png,25298 -images-32063.png,25299 -images-32064.png,25300 -images-32065.png,25301 -images-32066.png,25302 -images-32067.png,25303 -images-32068.png,25304 -images-32069.png,25305 -images-32070.png,25306 -images-32071.png,25307 -images-32072.png,25308 -images-32073.png,25309 -images-32074.png,25310 -images-32075.png,25311 -images-32076.png,25312 -images-32077.png,25313 -images-32078.png,25314 -images-32079.png,25315 -images-32080.png,25316 -images-32081.png,25317 -images-32082.png,25318 -images-32083.png,25319 -images-32084.png,25320 -images-32085.png,25321 -images-32086.png,25322 -images-32087.png,25323 -images-32088.png,25324 -images-32089.png,25325 -images-32090.png,25326 -images-32091.png,25327 -images-32092.png,25328 -images-32093.png,25329 -images-32094.png,25330 -images-32095.png,25331 -images-32096.png,25332 -images-32097.png,25333 -images-32098.png,25334 -images-32099.png,25335 -images-32100.png,25336 -images-32101.png,25337 -images-32128.png,25338 -images-32129.png,25339 -images-32130.png,25340 -images-32131.png,25341 -images-32132.png,25342 -images-32133.png,25343 -images-32134.png,25344 -images-32135.png,25345 -images-32136.png,25346 -images-32137.png,25347 -images-32138.png,25348 -images-32139.png,25349 -images-32140.png,25350 -images-32141.png,25351 -images-32142.png,25352 -images-32165.png,25353 -images-32166.png,25354 -images-32167.png,25355 -images-32168.png,25356 -images-32169.png,25357 -images-32170.png,25358 -images-32171.png,25359 -images-32172.png,25360 -images-32173.png,25361 -images-32174.png,25362 -images-32175.png,25363 -images-32176.png,25364 -images-32177.png,25365 -images-32178.png,25366 -images-32179.png,25367 -images-32180.png,25368 -images-32181.png,25369 -images-32182.png,25370 -images-32183.png,25371 -images-32184.png,25372 -images-32185.png,25373 -images-32186.png,25374 -images-32187.png,25375 -images-32188.png,25376 -images-32189.png,25377 -images-32190.png,25378 -images-32191.png,25379 -images-32192.png,25380 -images-32193.png,25381 -images-32194.png,25382 -images-32195.png,25383 -images-32196.png,25384 -images-32197.png,25385 -images-32198.png,25386 -images-32199.png,25387 -images-32200.png,25388 -images-32201.png,25389 -images-32202.png,25390 -images-32203.png,25391 -images-32204.png,25392 -images-32205.png,25393 -images-32206.png,25394 -images-32207.png,25395 -images-32208.png,25396 -images-32209.png,25397 -images-32210.png,25398 -images-32211.png,25399 -images-32212.png,25400 -images-32213.png,25401 -images-32242.png,25402 -images-32243.png,25403 -images-32244.png,25404 -images-32245.png,25405 -images-32246.png,25406 -images-32247.png,25407 -images-32248.png,25408 -images-32249.png,25409 -images-32250.png,25410 -images-32251.png,25411 -images-32252.png,25412 -images-32253.png,25413 -images-32254.png,25414 -images-32255.png,25415 -images-32256.png,25416 -images-32257.png,25417 -images-32258.png,25418 -images-32259.png,25419 -images-32260.png,25420 -images-32261.png,25421 -images-32262.png,25422 -images-32263.png,25423 -images-32264.png,25424 -images-32265.png,25425 -images-32266.png,25426 -images-32267.png,25427 -images-32268.png,25428 -images-32269.png,25429 -images-32270.png,25430 -images-32271.png,25431 -images-32272.png,25432 -images-32273.png,25433 -images-32274.png,25434 -images-32275.png,25435 -images-32276.png,25436 -images-32277.png,25437 -images-32278.png,25438 -images-32279.png,25439 -images-32280.png,25440 -images-32281.png,25441 -images-32282.png,25442 -images-32283.png,25443 -images-32284.png,25444 -images-32285.png,25445 -images-32286.png,25446 -images-32287.png,25447 -images-32288.png,25448 -images-32289.png,25449 -images-32290.png,25450 -images-32291.png,25451 -images-32292.png,25452 -images-32293.png,25453 -images-32294.png,25454 -images-32295.png,25455 -images-32296.png,25456 -images-32297.png,25457 -images-32298.png,25458 -images-32299.png,25459 -images-32300.png,25460 -images-32301.png,25461 -images-32302.png,25462 -images-32303.png,25463 -images-32304.png,25464 -images-32305.png,25465 -images-32306.png,25466 -images-32307.png,25467 -images-32308.png,25468 -images-32309.png,25469 -images-32310.png,25470 -images-32311.png,25471 -images-32312.png,25472 -images-32313.png,25473 -images-32314.png,25474 -images-32315.png,25475 -images-32316.png,25476 -images-32317.png,25477 -images-32318.png,25478 -images-32319.png,25479 -images-32320.png,25480 -images-32321.png,25481 -images-32322.png,25482 -images-32323.png,25483 -images-32324.png,25484 -images-32325.png,25485 -images-32326.png,25486 -images-32327.png,25487 -images-32328.png,25488 -images-32329.png,25489 -images-32330.png,25490 -images-32331.png,25491 -images-32332.png,25492 -images-32333.png,25493 -images-32334.png,25494 -images-32335.png,25495 -images-32336.png,25496 -images-32337.png,25497 -images-32338.png,25498 -images-32339.png,25499 -images-32340.png,25500 -images-32341.png,25501 -images-32342.png,25502 -images-32343.png,25503 -images-32348.png,25504 -images-32349.png,25505 -images-32350.png,25506 -images-32351.png,25507 -images-32352.png,25508 -images-32353.png,25509 -images-32354.png,25510 -images-32355.png,25511 -images-32356.png,25512 -images-32357.png,25513 -images-32358.png,25514 -images-32359.png,25515 -images-32360.png,25516 -images-32361.png,25517 -images-32362.png,25518 -images-32363.png,25519 -images-32364.png,25520 -images-32365.png,25521 -images-32366.png,25522 -images-33063.png,25523 -images-33064.png,25524 -images-33065.png,25525 -images-33066.png,25526 -images-33067.png,25527 -images-33068.png,25528 -images-33069.png,25529 -images-33070.png,25530 -images-33071.png,25531 -images-33072.png,25532 -images-33073.png,25533 -images-33074.png,25534 -images-33075.png,25535 -images-33076.png,25536 -images-33077.png,25537 -images-33078.png,25538 -images-33079.png,25539 -images-33080.png,25540 -images-33081.png,25541 -images-33082.png,25542 -images-33083.png,25543 -images-33084.png,25544 -images-33085.png,25545 -images-33086.png,25546 -images-33087.png,25547 -images-33088.png,25548 -images-33089.png,25549 -images-33090.png,25550 -images-33091.png,25551 -images-33092.png,25552 -images-33093.png,25553 -images-33094.png,25554 -images-33095.png,25555 -images-33096.png,25556 -images-33097.png,25557 -images-33098.png,25558 -images-33099.png,25559 -images-33100.png,25560 -images-33101.png,25561 -images-33102.png,25562 -images-33103.png,25563 -images-33104.png,25564 -images-33105.png,25565 -images-33106.png,25566 -images-33107.png,25567 -images-33108.png,25568 -images-33109.png,25569 -images-33110.png,25570 -images-33111.png,25571 -images-33112.png,25572 -images-33113.png,25573 -images-33114.png,25574 -images-33115.png,25575 -images-33116.png,25576 -images-33117.png,25577 -images-33118.png,25578 -images-33119.png,25579 -images-33120.png,25580 -images-33121.png,25581 -images-33122.png,25582 -images-33123.png,25583 -images-33124.png,25584 -images-33125.png,25585 -images-33126.png,25586 -images-33127.png,25587 -images-33128.png,25588 -images-33129.png,25589 -images-33130.png,25590 -images-33131.png,25591 -images-33132.png,25592 -images-33133.png,25593 -images-33134.png,25594 -images-33135.png,25595 -images-33136.png,25596 -images-33137.png,25597 -images-33138.png,25598 -images-33139.png,25599 -images-33140.png,25600 -images-33141.png,25601 -images-33142.png,25602 -images-33143.png,25603 -images-33144.png,25604 -images-33145.png,25605 -images-33146.png,25606 -images-33147.png,25607 -images-33148.png,25608 -images-33149.png,25609 -images-33150.png,25610 -images-33151.png,25611 -images-33152.png,25612 -images-33153.png,25613 -images-33154.png,25614 -images-33155.png,25615 -images-33156.png,25616 -images-33157.png,25617 -images-33158.png,25618 -images-33159.png,25619 -images-33160.png,25620 -images-33161.png,25621 -images-33162.png,25622 -images-33163.png,25623 -images-33164.png,25624 -images-33165.png,25625 -images-33166.png,25626 -images-33167.png,25627 -images-33168.png,25628 -images-33169.png,25629 -images-33170.png,25630 -images-33171.png,25631 -images-33172.png,25632 -images-33173.png,25633 -images-33174.png,25634 -images-33175.png,25635 -images-33176.png,25636 -images-33177.png,25637 -images-33178.png,25638 -images-33179.png,25639 -images-33180.png,25640 -images-33181.png,25641 -images-33182.png,25642 -images-33183.png,25643 -images-33184.png,25644 -images-33185.png,25645 -images-33186.png,25646 -images-33187.png,25647 -images-33188.png,25648 -images-33189.png,25649 -images-33190.png,25650 -images-33191.png,25651 -images-33192.png,25652 -images-33193.png,25653 -images-33194.png,25654 -images-33195.png,25655 -images-33196.png,25656 -images-33197.png,25657 -images-33198.png,25658 -images-33199.png,25659 -images-33200.png,25660 -images-33201.png,25661 -images-33202.png,25662 -images-33203.png,25663 -images-33204.png,25664 -images-33205.png,25665 -images-33206.png,25666 -images-33207.png,25667 -images-33208.png,25668 -images-33209.png,25669 -images-33210.png,25670 -images-33211.png,25671 -images-33212.png,25672 -images-33213.png,25673 -images-33214.png,25674 -images-33215.png,25675 -images-33216.png,25676 -images-33217.png,25677 -images-33218.png,25678 -images-33219.png,25679 -images-33220.png,25680 -images-33221.png,25681 -images-33222.png,25682 -images-33223.png,25683 -images-33224.png,25684 -images-33225.png,25685 -images-33226.png,25686 -images-33227.png,25687 -images-33228.png,25688 -images-33229.png,25689 -images-33230.png,25690 -images-33231.png,25691 -images-33232.png,25692 -images-33233.png,25693 -images-33234.png,25694 -images-33235.png,25695 -images-33236.png,25696 -images-33237.png,25697 -images-33238.png,25698 -images-33239.png,25699 -images-33240.png,25700 -images-33241.png,25701 -images-33242.png,25702 -images-33243.png,25703 -images-33244.png,25704 -images-33245.png,25705 -images-33246.png,25706 -images-33247.png,25707 -images-33248.png,25708 -images-33249.png,25709 -images-33250.png,25710 -images-33251.png,25711 -images-33252.png,25712 -images-33253.png,25713 -images-33254.png,25714 -images-33255.png,25715 -images-33256.png,25716 -images-33257.png,25717 -images-33258.png,25718 -images-33259.png,25719 -images-33260.png,25720 -images-33261.png,25721 -images-33262.png,25722 -images-33263.png,25723 -images-33264.png,25724 -images-33265.png,25725 -images-33266.png,25726 -images-33267.png,25727 -images-33268.png,25728 -images-33269.png,25729 -images-33270.png,25730 -images-33271.png,25731 -images-33272.png,25732 -images-33273.png,25733 -images-33274.png,25734 -images-33275.png,25735 -images-33276.png,25736 -images-33277.png,25737 -images-33278.png,25738 -images-33279.png,25739 -images-33280.png,25740 -images-33281.png,25741 -images-33282.png,25742 -images-33283.png,25743 -images-33284.png,25744 -images-33285.png,25745 -images-33286.png,25746 -images-33287.png,25747 -images-33288.png,25748 -images-33289.png,25749 -images-33290.png,25750 -images-33291.png,25751 -images-33292.png,25752 -images-33293.png,25753 -images-33294.png,25754 -images-33295.png,25755 -images-33296.png,25756 -images-33297.png,25757 -images-33298.png,25758 -images-33299.png,25759 -images-33300.png,25760 -images-33301.png,25761 -images-33302.png,25762 -images-33303.png,25763 -images-33304.png,25764 -images-33305.png,25765 -images-33306.png,25766 -images-33307.png,25767 -images-33308.png,25768 -images-33309.png,25769 -images-33310.png,25770 -images-33311.png,25771 -images-33312.png,25772 -images-33313.png,25773 -images-33314.png,25774 -images-33315.png,25775 -images-33316.png,25776 -images-33328.png,25777 -images-33329.png,25778 -images-33330.png,25779 -images-33331.png,25780 -images-33332.png,25781 -images-33333.png,25782 -images-33334.png,25783 -images-33335.png,25784 -images-33336.png,25785 -images-33337.png,25786 -images-33338.png,25787 -images-33339.png,25788 -images-33340.png,25789 -images-33346.png,25790 -images-33347.png,25791 -images-33348.png,25792 -images-33349.png,25793 -images-33350.png,25794 -images-33351.png,25795 -images-33352.png,25796 -images-33353.png,25797 -images-33354.png,25798 -images-33355.png,25799 -images-33356.png,25800 -images-33357.png,25801 -images-33358.png,25802 -images-33359.png,25803 -images-33360.png,25804 -images-33361.png,25805 -images-33362.png,25806 -images-33363.png,25807 -images-33364.png,25808 -images-33365.png,25809 -images-33366.png,25810 -images-33367.png,25811 -images-33368.png,25812 -images-33369.png,25813 -images-33386.png,25814 -images-33387.png,25815 -images-33388.png,25816 -images-33389.png,25817 -images-33390.png,25818 -images-33391.png,25819 -images-33392.png,25820 -images-33393.png,25821 -images-33394.png,25822 -images-33395.png,25823 -images-33396.png,25824 -images-33397.png,25825 -images-33398.png,25826 -images-33399.png,25827 -images-33400.png,25828 -images-33401.png,25829 -images-33402.png,25830 -images-33403.png,25831 -images-33404.png,25832 -images-33405.png,25833 -images-33406.png,25834 -images-33407.png,25835 -images-33408.png,25836 -images-33409.png,25837 -images-33410.png,25838 -images-33411.png,25839 -images-33412.png,25840 -images-33413.png,25841 -images-33414.png,25842 -images-33415.png,25843 -images-33416.png,25844 -images-33417.png,25845 -images-33418.png,25846 -images-33419.png,25847 -images-33420.png,25848 -images-33421.png,25849 -images-33422.png,25850 -images-33423.png,25851 -images-33424.png,25852 -images-33425.png,25853 -images-33426.png,25854 -images-33427.png,25855 -images-33428.png,25856 -images-33429.png,25857 -images-33513.png,25858 -images-33514.png,25859 -images-33515.png,25860 -images-33516.png,25861 -images-33517.png,25862 -images-33518.png,25863 -images-33519.png,25864 -images-33520.png,25865 -images-33521.png,25866 -images-33522.png,25867 -images-33523.png,25868 -images-33524.png,25869 -images-33525.png,25870 -images-33526.png,25871 -images-33527.png,25872 -images-33528.png,25873 -images-33529.png,25874 -images-33530.png,25875 -images-33531.png,25876 -images-33532.png,25877 -images-33533.png,25878 -images-33534.png,25879 -images-33535.png,25880 -images-33536.png,25881 -images-33537.png,25882 -images-33538.png,25883 -images-33539.png,25884 -images-33540.png,25885 -images-33541.png,25886 -images-33542.png,25887 -images-33543.png,25888 -images-33544.png,25889 -images-33545.png,25890 -images-33546.png,25891 -images-33547.png,25892 -images-33548.png,25893 -images-33549.png,25894 -images-33550.png,25895 -images-33551.png,25896 -images-33552.png,25897 -images-33553.png,25898 -images-33554.png,25899 -images-33555.png,25900 -images-33556.png,25901 -images-33557.png,25902 -images-33558.png,25903 -images-33559.png,25904 -images-33560.png,25905 -images-33561.png,25906 -images-33562.png,25907 -images-33563.png,25908 -images-33564.png,25909 -images-33565.png,25910 -images-33566.png,25911 -images-33567.png,25912 -images-33568.png,25913 -images-33569.png,25914 -images-33570.png,25915 -images-33571.png,25916 -images-33572.png,25917 -images-33573.png,25918 -images-33574.png,25919 -images-33575.png,25920 -images-33576.png,25921 -images-33577.png,25922 -images-33578.png,25923 -images-33579.png,25924 -images-33580.png,25925 -images-33581.png,25926 -images-33582.png,25927 -images-33583.png,25928 -images-33584.png,25929 -images-33585.png,25930 -images-33586.png,25931 -images-33587.png,25932 -images-33588.png,25933 -images-33589.png,25934 -images-33590.png,25935 -images-33667.png,25936 -images-33668.png,25937 -images-33669.png,25938 -images-33670.png,25939 -images-33671.png,25940 -images-33672.png,25941 -images-33673.png,25942 -images-33674.png,25943 -images-33675.png,25944 -images-33676.png,25945 -images-33677.png,25946 -images-33678.png,25947 -images-33679.png,25948 -images-33680.png,25949 -images-33681.png,25950 -images-33682.png,25951 -images-33683.png,25952 -images-33684.png,25953 -images-33685.png,25954 -images-33686.png,25955 -images-33687.png,25956 -images-33688.png,25957 -images-33689.png,25958 -images-33690.png,25959 -images-33691.png,25960 -images-33692.png,25961 -images-33693.png,25962 -images-33694.png,25963 -images-33695.png,25964 -images-33696.png,25965 -images-33697.png,25966 -images-33698.png,25967 -images-33699.png,25968 -images-33700.png,25969 -images-33701.png,25970 -images-33702.png,25971 -images-33703.png,25972 -images-33704.png,25973 -images-33705.png,25974 -images-33706.png,25975 -images-33707.png,25976 -images-33708.png,25977 -images-33709.png,25978 -images-33710.png,25979 -images-33711.png,25980 -images-33712.png,25981 -images-33713.png,25982 -images-33714.png,25983 -images-33715.png,25984 -images-33716.png,25985 -images-33721.png,25986 -images-33722.png,25987 -images-33723.png,25988 -images-33724.png,25989 -images-33725.png,25990 -images-33726.png,25991 -images-33727.png,25992 -images-33728.png,25993 -images-33729.png,25994 -images-33730.png,25995 -images-33731.png,25996 -images-33732.png,25997 -images-33733.png,25998 -images-33734.png,25999 -images-33735.png,26000 -images-33736.png,26001 -images-33737.png,26002 -images-33738.png,26003 -images-33739.png,26004 -images-33740.png,26005 -images-33741.png,26006 -images-33742.png,26007 -images-33743.png,26008 -images-33744.png,26009 -images-33745.png,26010 -images-33746.png,26011 -images-33747.png,26012 -images-33748.png,26013 -images-33749.png,26014 -images-33750.png,26015 -images-33751.png,26016 -images-33752.png,26017 -images-33753.png,26018 -images-33781.png,26019 -images-33782.png,26020 -images-33783.png,26021 -images-33784.png,26022 -images-33785.png,26023 -images-33786.png,26024 -images-33787.png,26025 -images-33788.png,26026 -images-33789.png,26027 -images-33790.png,26028 -images-33791.png,26029 -images-33792.png,26030 -images-33793.png,26031 -images-33794.png,26032 -images-33795.png,26033 -images-33796.png,26034 -images-33797.png,26035 -images-33798.png,26036 -images-33799.png,26037 -images-33800.png,26038 -images-33801.png,26039 -images-33802.png,26040 -images-33803.png,26041 -images-33804.png,26042 -images-33805.png,26043 -images-33806.png,26044 -images-33807.png,26045 -images-33808.png,26046 -images-33809.png,26047 -images-33810.png,26048 -images-33811.png,26049 -images-33812.png,26050 -images-33813.png,26051 -images-33814.png,26052 -images-33815.png,26053 -images-33816.png,26054 -images-33817.png,26055 -images-33818.png,26056 -images-33819.png,26057 -images-33820.png,26058 -images-33821.png,26059 -images-33822.png,26060 -images-33823.png,26061 -images-33824.png,26062 -images-33825.png,26063 -images-33826.png,26064 -images-33827.png,26065 -images-33828.png,26066 -images-33829.png,26067 -images-33830.png,26068 -images-33831.png,26069 -images-33832.png,26070 -images-33833.png,26071 -images-33834.png,26072 -images-33835.png,26073 -images-33836.png,26074 -images-33837.png,26075 -images-33838.png,26076 -images-33839.png,26077 -images-33840.png,26078 -images-33841.png,26079 -images-33842.png,26080 -images-33843.png,26081 -images-33844.png,26082 -images-33845.png,26083 -images-33846.png,26084 -images-33847.png,26085 -images-33848.png,26086 -images-33849.png,26087 -images-33850.png,26088 -images-33851.png,26089 -images-33852.png,26090 -images-33853.png,26091 -images-33854.png,26092 -images-33855.png,26093 -images-33856.png,26094 -images-33857.png,26095 -images-33858.png,26096 -images-33859.png,26097 -images-33860.png,26098 -images-33861.png,26099 -images-33862.png,26100 -images-33863.png,26101 -images-33864.png,26102 -images-33865.png,26103 -images-33866.png,26104 -images-33867.png,26105 -images-33868.png,26106 -images-33869.png,26107 -images-33870.png,26108 -images-33871.png,26109 -images-33872.png,26110 -images-33873.png,26111 -images-33874.png,26112 -images-33875.png,26113 -images-33876.png,26114 -images-33877.png,26115 -images-33878.png,26116 -images-33879.png,26117 -images-33880.png,26118 -images-33881.png,26119 -images-33882.png,26120 -images-33883.png,26121 -images-33884.png,26122 -images-33885.png,26123 -images-33886.png,26124 -images-33887.png,26125 -images-33888.png,26126 -images-33889.png,26127 -images-33890.png,26128 -images-33891.png,26129 -images-33892.png,26130 -images-33893.png,26131 -images-33894.png,26132 -images-33895.png,26133 -images-33896.png,26134 -images-33897.png,26135 -images-33898.png,26136 -images-33899.png,26137 -images-33900.png,26138 -images-33901.png,26139 -images-33902.png,26140 -images-33903.png,26141 -images-33904.png,26142 -images-33905.png,26143 -images-33906.png,26144 -images-33907.png,26145 -images-33908.png,26146 -images-33909.png,26147 -images-33910.png,26148 -images-33911.png,26149 -images-33912.png,26150 -images-33913.png,26151 -images-33914.png,26152 -images-33915.png,26153 -images-33916.png,26154 -images-33923.png,26155 -images-33924.png,26156 -images-33925.png,26157 -images-33926.png,26158 -images-33927.png,26159 -images-33928.png,26160 -images-33929.png,26161 -images-33930.png,26162 -images-33931.png,26163 -images-33932.png,26164 -images-33933.png,26165 -images-33934.png,26166 -images-33935.png,26167 -images-33936.png,26168 -images-33937.png,26169 -images-33938.png,26170 -images-33939.png,26171 -images-33940.png,26172 -images-33941.png,26173 -images-33942.png,26174 -images-33943.png,26175 -images-33944.png,26176 -images-33945.png,26177 -images-33946.png,26178 -images-33947.png,26179 -images-33948.png,26180 -images-33949.png,26181 -images-33950.png,26182 -images-33951.png,26183 -images-33952.png,26184 -images-33953.png,26185 -images-33954.png,26186 -images-33955.png,26187 -images-33956.png,26188 -images-33957.png,26189 -images-33958.png,26190 -images-33959.png,26191 -images-33960.png,26192 -images-33961.png,26193 -images-33962.png,26194 -images-33963.png,26195 -images-33964.png,26196 -images-33965.png,26197 -images-33966.png,26198 -images-33967.png,26199 -images-33968.png,26200 -images-33969.png,26201 -images-33970.png,26202 -images-33971.png,26203 -images-33972.png,26204 -images-33973.png,26205 -images-33974.png,26206 -images-33975.png,26207 -images-33976.png,26208 -images-33977.png,26209 -images-33978.png,26210 -images-33979.png,26211 -images-33980.png,26212 -images-33981.png,26213 -images-33982.png,26214 -images-33983.png,26215 -images-33984.png,26216 -images-33985.png,26217 -images-33986.png,26218 -images-33987.png,26219 -images-33988.png,26220 -images-33989.png,26221 -images-33990.png,26222 -images-33991.png,26223 -images-33992.png,26224 -images-33993.png,26225 -images-33994.png,26226 -images-33995.png,26227 -images-33996.png,26228 -images-33997.png,26229 -images-33998.png,26230 -images-33999.png,26231 -images-34000.png,26232 -images-34001.png,26233 -images-34002.png,26234 -images-34003.png,26235 -images-34004.png,26236 -images-34005.png,26237 -images-34006.png,26238 -images-34007.png,26239 -images-34008.png,26240 -images-34009.png,26241 -images-34010.png,26242 -images-34011.png,26243 -images-34012.png,26244 -images-34013.png,26245 -images-34014.png,26246 -images-34015.png,26247 -images-34016.png,26248 -images-34017.png,26249 -images-34018.png,26250 -images-34019.png,26251 -images-34020.png,26252 -images-34021.png,26253 -images-34022.png,26254 -images-34023.png,26255 -images-34024.png,26256 -images-34025.png,26257 -images-34026.png,26258 -images-34027.png,26259 -images-34028.png,26260 -images-34029.png,26261 -images-34030.png,26262 -images-34031.png,26263 -images-34032.png,26264 -images-34033.png,26265 -images-34034.png,26266 -images-34035.png,26267 -images-34036.png,26268 -images-34037.png,26269 -images-34038.png,26270 -images-34039.png,26271 -images-34040.png,26272 -images-34041.png,26273 -images-34042.png,26274 -images-34043.png,26275 -images-34044.png,26276 -images-34045.png,26277 -images-34046.png,26278 -images-34047.png,26279 -images-34048.png,26280 -images-34049.png,26281 -images-34050.png,26282 -images-34051.png,26283 -images-34052.png,26284 -images-34053.png,26285 -images-34054.png,26286 -images-34055.png,26287 -images-34056.png,26288 -images-34057.png,26289 -images-34058.png,26290 -images-34059.png,26291 -images-34060.png,26292 -images-34061.png,26293 -images-34062.png,26294 -images-34063.png,26295 -images-34064.png,26296 -images-34065.png,26297 -images-34066.png,26298 -images-34067.png,26299 -images-34068.png,26300 -images-34069.png,26301 -images-34070.png,26302 -images-34071.png,26303 -images-34072.png,26304 -images-34073.png,26305 -images-34074.png,26306 -images-34075.png,26307 -images-34076.png,26308 -images-34077.png,26309 -images-34078.png,26310 -images-34079.png,26311 -images-34080.png,26312 -images-34081.png,26313 -images-34082.png,26314 -images-34083.png,26315 -images-34084.png,26316 -images-34085.png,26317 -images-34086.png,26318 -images-34087.png,26319 -images-34088.png,26320 -images-34089.png,26321 -images-34090.png,26322 -images-34091.png,26323 -images-34092.png,26324 -images-34093.png,26325 -images-34094.png,26326 -images-34095.png,26327 -images-34096.png,26328 -images-34097.png,26329 -images-34098.png,26330 -images-34099.png,26331 -images-34100.png,26332 -images-34101.png,26333 -images-34102.png,26334 -images-34103.png,26335 -images-34104.png,26336 -images-34105.png,26337 -images-34106.png,26338 -images-34107.png,26339 -images-34108.png,26340 -images-34109.png,26341 -images-34110.png,26342 -images-34111.png,26343 -images-34112.png,26344 -images-34113.png,26345 -images-34114.png,26346 -images-34115.png,26347 -images-34116.png,26348 -images-34117.png,26349 -images-34118.png,26350 -images-34119.png,26351 -images-34120.png,26352 -images-34121.png,26353 -images-34122.png,26354 -images-34123.png,26355 -images-34124.png,26356 -images-34125.png,26357 -images-34126.png,26358 -images-34127.png,26359 -images-34128.png,26360 -images-34129.png,26361 -images-34130.png,26362 -images-34131.png,26363 -images-34132.png,26364 -images-34133.png,26365 -images-34134.png,26366 -images-34135.png,26367 -images-34136.png,26368 -images-34137.png,26369 -images-34138.png,26370 -images-34139.png,26371 -images-34140.png,26372 -images-34141.png,26373 -images-34142.png,26374 -images-34143.png,26375 -images-34144.png,26376 -images-34145.png,26377 -images-34146.png,26378 -images-34147.png,26379 -images-34148.png,26380 -images-34149.png,26381 -images-34150.png,26382 -images-34151.png,26383 -images-34152.png,26384 -images-34153.png,26385 -images-34154.png,26386 -images-34155.png,26387 -images-34156.png,26388 -images-34157.png,26389 -images-34158.png,26390 -images-34159.png,26391 -images-34160.png,26392 -images-34161.png,26393 -images-34162.png,26394 -images-34163.png,26395 -images-34164.png,26396 -images-34165.png,26397 -images-34166.png,26398 -images-34167.png,26399 -images-34168.png,26400 -images-34169.png,26401 -images-34170.png,26402 -images-34171.png,26403 -images-34172.png,26404 -images-34173.png,26405 -images-34174.png,26406 -images-34175.png,26407 -images-34176.png,26408 -images-34177.png,26409 -images-34178.png,26410 -images-34179.png,26411 -images-34180.png,26412 -images-34181.png,26413 -images-34182.png,26414 -images-34183.png,26415 -images-34184.png,26416 -images-34185.png,26417 -images-34186.png,26418 -images-34187.png,26419 -images-34188.png,26420 -images-34189.png,26421 -images-34190.png,26422 -images-34191.png,26423 -images-34192.png,26424 -images-34193.png,26425 -images-34194.png,26426 -images-34195.png,26427 -images-34196.png,26428 -images-34197.png,26429 -images-34198.png,26430 -images-34199.png,26431 -images-34200.png,26432 -images-34201.png,26433 -images-34202.png,26434 -images-34203.png,26435 -images-34204.png,26436 -images-34205.png,26437 -images-34206.png,26438 -images-34207.png,26439 -images-34208.png,26440 -images-34209.png,26441 -images-34210.png,26442 -images-34211.png,26443 -images-34212.png,26444 -images-34213.png,26445 -images-34214.png,26446 -images-34215.png,26447 -images-34216.png,26448 -images-34217.png,26449 -images-34218.png,26450 -images-34219.png,26451 -images-34220.png,26452 -images-34221.png,26453 -images-34222.png,26454 -images-34223.png,26455 -images-34224.png,26456 -images-34225.png,26457 -images-34226.png,26458 -images-34227.png,26459 -images-34228.png,26460 -images-34229.png,26461 -images-34230.png,26462 -images-34231.png,26463 -images-34232.png,26464 -images-34233.png,26465 -images-34242.png,26466 -images-34243.png,26467 -images-34244.png,26468 -images-34245.png,26469 -images-34246.png,26470 -images-34247.png,26471 -images-34248.png,26472 -images-34249.png,26473 -images-34250.png,26474 -images-34251.png,26475 -images-34252.png,26476 -images-34253.png,26477 -images-34254.png,26478 -images-34255.png,26479 -images-34256.png,26480 -images-34257.png,26481 -images-34258.png,26482 -images-34259.png,26483 -images-34260.png,26484 -images-34261.png,26485 -images-34262.png,26486 -images-34263.png,26487 -images-34264.png,26488 -images-34265.png,26489 -images-34266.png,26490 -images-34267.png,26491 -images-34268.png,26492 -images-34269.png,26493 -images-34270.png,26494 -images-34271.png,26495 -images-34272.png,26496 -images-34273.png,26497 -images-34274.png,26498 -images-34275.png,26499 -images-34276.png,26500 -images-34277.png,26501 -images-34278.png,26502 -images-34279.png,26503 -images-34280.png,26504 -images-34281.png,26505 -images-34282.png,26506 -images-34283.png,26507 -images-34284.png,26508 -images-34285.png,26509 -images-34286.png,26510 -images-34287.png,26511 -images-34288.png,26512 -images-34289.png,26513 -images-34290.png,26514 -images-34291.png,26515 -images-34292.png,26516 -images-34293.png,26517 -images-34294.png,26518 -images-34295.png,26519 -images-34296.png,26520 -images-34297.png,26521 -images-34298.png,26522 -images-34299.png,26523 -images-34300.png,26524 -images-34301.png,26525 -images-34302.png,26526 -images-34303.png,26527 -images-34304.png,26528 -images-34305.png,26529 -images-34306.png,26530 -images-34307.png,26531 -images-34308.png,26532 -images-34309.png,26533 -images-34310.png,26534 -images-34311.png,26535 -images-34312.png,26536 -images-34313.png,26537 -images-34314.png,26538 -images-34315.png,26539 -images-34316.png,26540 -images-34317.png,26541 -images-34318.png,26542 -images-34319.png,26543 -images-34320.png,26544 -images-34321.png,26545 -images-34322.png,26546 -images-34323.png,26547 -images-34324.png,26548 -images-34325.png,26549 -images-34326.png,26550 -images-34327.png,26551 -images-34328.png,26552 -images-34329.png,26553 -images-34330.png,26554 -images-34331.png,26555 -images-34332.png,26556 -images-34333.png,26557 -images-34334.png,26558 -images-34335.png,26559 -images-34336.png,26560 -images-34337.png,26561 -images-34338.png,26562 -images-34339.png,26563 -images-34340.png,26564 -images-34341.png,26565 -images-34342.png,26566 -images-34343.png,26567 -images-34344.png,26568 -images-34345.png,26569 -images-34346.png,26570 -images-34347.png,26571 -images-34348.png,26572 -images-34349.png,26573 -images-34350.png,26574 -images-34351.png,26575 -images-34352.png,26576 -images-34353.png,26577 -images-34354.png,26578 -images-34355.png,26579 -images-34356.png,26580 -images-34357.png,26581 -images-34358.png,26582 -images-34359.png,26583 -images-34360.png,26584 -images-34361.png,26585 -images-34362.png,26586 -images-34363.png,26587 -images-34364.png,26588 -images-34365.png,26589 -images-34366.png,26590 -images-34367.png,26591 -images-34368.png,26592 -images-34369.png,26593 -images-34370.png,26594 -images-34371.png,26595 -images-34372.png,26596 -images-34373.png,26597 -images-34374.png,26598 -images-34375.png,26599 -images-34376.png,26600 -images-34377.png,26601 -images-34378.png,26602 -images-34379.png,26603 -images-34380.png,26604 -images-34381.png,26605 -images-34382.png,26606 -images-34383.png,26607 -images-34384.png,26608 -images-34385.png,26609 -images-34386.png,26610 -images-34387.png,26611 -images-34388.png,26612 -images-34389.png,26613 -images-34390.png,26614 -images-34391.png,26615 -images-34392.png,26616 -images-34393.png,26617 -images-34394.png,26618 -images-34395.png,26619 -images-34396.png,26620 -images-34397.png,26621 -images-34398.png,26622 -images-34399.png,26623 -images-34400.png,26624 -images-34401.png,26625 -images-34402.png,26626 -images-34403.png,26627 -images-34404.png,26628 -images-34405.png,26629 -images-34406.png,26630 -images-34407.png,26631 -images-34408.png,26632 -images-34409.png,26633 -images-34410.png,26634 -images-34411.png,26635 -images-34412.png,26636 -images-34413.png,26637 -images-34414.png,26638 -images-34415.png,26639 -images-34416.png,26640 -images-34417.png,26641 -images-34418.png,26642 -images-34419.png,26643 -images-34420.png,26644 -images-34421.png,26645 -images-34422.png,26646 -images-34423.png,26647 -images-34424.png,26648 -images-34425.png,26649 -images-34426.png,26650 -images-34427.png,26651 -images-34428.png,26652 -images-34429.png,26653 -images-34430.png,26654 -images-34431.png,26655 -images-34432.png,26656 -images-34433.png,26657 -images-34434.png,26658 -images-34435.png,26659 -images-34436.png,26660 -images-34437.png,26661 -images-34438.png,26662 -images-34439.png,26663 -images-34440.png,26664 -images-34441.png,26665 -images-34442.png,26666 -images-34443.png,26667 -images-34444.png,26668 -images-34445.png,26669 -images-34446.png,26670 -images-34447.png,26671 -images-34448.png,26672 -images-34449.png,26673 -images-34450.png,26674 -images-34451.png,26675 -images-34452.png,26676 -images-34453.png,26677 -images-34454.png,26678 -images-34455.png,26679 -images-34456.png,26680 -images-34457.png,26681 -images-34458.png,26682 -images-34459.png,26683 -images-34460.png,26684 -images-34461.png,26685 -images-34462.png,26686 -images-34463.png,26687 -images-34464.png,26688 -images-34465.png,26689 -images-34466.png,26690 -images-34467.png,26691 -images-34468.png,26692 -images-34469.png,26693 -images-34470.png,26694 -images-34471.png,26695 -images-34472.png,26696 -images-34473.png,26697 -images-34474.png,26698 -images-34475.png,26699 -images-34476.png,26700 -images-34477.png,26701 -images-34478.png,26702 -images-34479.png,26703 -images-34480.png,26704 -images-34481.png,26705 -images-34482.png,26706 -images-34483.png,26707 -images-34484.png,26708 -images-34485.png,26709 -images-34486.png,26710 -images-34487.png,26711 -images-34488.png,26712 -images-34489.png,26713 -images-34490.png,26714 -images-34491.png,26715 -images-34492.png,26716 -images-34493.png,26717 -images-34494.png,26718 -images-34495.png,26719 -images-34496.png,26720 -images-34497.png,26721 -images-34498.png,26722 -images-34499.png,26723 -images-34500.png,26724 -images-34501.png,26725 -images-34502.png,26726 -images-34503.png,26727 -images-34504.png,26728 -images-34505.png,26729 -images-34506.png,26730 -images-34507.png,26731 -images-34508.png,26732 -images-34509.png,26733 -images-34510.png,26734 -images-34511.png,26735 -images-34512.png,26736 -images-34513.png,26737 -images-34514.png,26738 -images-34515.png,26739 -images-34516.png,26740 -images-34517.png,26741 -images-34518.png,26742 -images-34519.png,26743 -images-34520.png,26744 -images-34521.png,26745 -images-34522.png,26746 -images-34523.png,26747 -images-34524.png,26748 -images-34525.png,26749 -images-34526.png,26750 -images-34527.png,26751 -images-34528.png,26752 -images-34529.png,26753 -images-34530.png,26754 -images-34531.png,26755 -images-34532.png,26756 -images-34533.png,26757 -images-34534.png,26758 -images-34535.png,26759 -images-34536.png,26760 -images-34537.png,26761 -images-34538.png,26762 -images-34539.png,26763 -images-34540.png,26764 -images-34541.png,26765 -images-34542.png,26766 -images-34543.png,26767 -images-34544.png,26768 -images-34545.png,26769 -images-34546.png,26770 -images-34547.png,26771 -images-34548.png,26772 -images-34549.png,26773 -images-34550.png,26774 -images-34551.png,26775 -images-34552.png,26776 -images-34553.png,26777 -images-34554.png,26778 -images-34555.png,26779 -images-34556.png,26780 -images-34557.png,26781 -images-34558.png,26782 -images-34559.png,26783 -images-34560.png,26784 -images-34561.png,26785 -images-34562.png,26786 -images-34563.png,26787 -images-34564.png,26788 -images-34565.png,26789 -images-34566.png,26790 -images-34567.png,26791 -images-34568.png,26792 -images-34569.png,26793 -images-34570.png,26794 -images-34571.png,26795 -images-34572.png,26796 -images-34573.png,26797 -images-34574.png,26798 -images-34575.png,26799 -images-34576.png,26800 -images-34577.png,26801 -images-34578.png,26802 -images-34579.png,26803 -images-34580.png,26804 -images-34581.png,26805 -images-34582.png,26806 -images-34583.png,26807 -images-34584.png,26808 -images-34585.png,26809 -images-34586.png,26810 -images-34587.png,26811 -images-34588.png,26812 -images-34589.png,26813 -images-34590.png,26814 -images-34591.png,26815 -images-34592.png,26816 -images-34593.png,26817 -images-34594.png,26818 -images-34595.png,26819 -images-34596.png,26820 -images-34597.png,26821 -images-34598.png,26822 -images-34599.png,26823 -images-34600.png,26824 -images-34601.png,26825 -images-34602.png,26826 -images-34603.png,26827 -images-34604.png,26828 -images-34605.png,26829 -images-34606.png,26830 -images-34607.png,26831 -images-34608.png,26832 -images-34609.png,26833 -images-34610.png,26834 -images-34611.png,26835 -images-34612.png,26836 -images-34613.png,26837 -images-34614.png,26838 -images-34615.png,26839 -images-34616.png,26840 -images-34617.png,26841 -images-34618.png,26842 -images-34619.png,26843 -images-34620.png,26844 -images-34621.png,26845 -images-34622.png,26846 -images-34623.png,26847 -images-34624.png,26848 -images-34625.png,26849 -images-34626.png,26850 -images-34627.png,26851 -images-34628.png,26852 -images-34629.png,26853 -images-34630.png,26854 -images-34655.png,26855 -images-34656.png,26856 -images-34657.png,26857 -images-34658.png,26858 -images-34659.png,26859 -images-34660.png,26860 -images-34661.png,26861 -images-34662.png,26862 -images-34663.png,26863 -images-34664.png,26864 -images-34665.png,26865 -images-34666.png,26866 -images-34667.png,26867 -images-34668.png,26868 -images-34669.png,26869 -images-34670.png,26870 -images-34671.png,26871 -images-34672.png,26872 -images-34673.png,26873 -images-34674.png,26874 -images-34675.png,26875 -images-34676.png,26876 -images-34677.png,26877 -images-34678.png,26878 -images-34679.png,26879 -images-34680.png,26880 -images-34681.png,26881 -images-34682.png,26882 -images-34683.png,26883 -images-34684.png,26884 -images-34685.png,26885 -images-34686.png,26886 -images-34687.png,26887 -images-34688.png,26888 -images-34689.png,26889 -images-34690.png,26890 -images-34691.png,26891 -images-34692.png,26892 -images-34693.png,26893 -images-34694.png,26894 -images-34695.png,26895 -images-34696.png,26896 -images-34697.png,26897 -images-34698.png,26898 -images-34699.png,26899 -images-34700.png,26900 -images-34701.png,26901 -images-34702.png,26902 -images-34703.png,26903 -images-34704.png,26904 -images-34705.png,26905 -images-34706.png,26906 -images-34707.png,26907 -images-34708.png,26908 -images-34709.png,26909 -images-34710.png,26910 -images-34711.png,26911 -images-34712.png,26912 -images-34713.png,26913 -images-34714.png,26914 -images-34715.png,26915 -images-34716.png,26916 -images-34717.png,26917 -images-34718.png,26918 -images-34719.png,26919 -images-34720.png,26920 -images-34721.png,26921 -images-34722.png,26922 -images-34723.png,26923 -images-34724.png,26924 -images-34725.png,26925 -images-34726.png,26926 -images-34727.png,26927 -images-34728.png,26928 -images-34729.png,26929 -images-34730.png,26930 -images-34731.png,26931 -images-34732.png,26932 -images-34733.png,26933 -images-34734.png,26934 -images-34735.png,26935 -images-34736.png,26936 -images-34737.png,26937 -images-34738.png,26938 -images-34739.png,26939 -images-34740.png,26940 -images-34741.png,26941 -images-34757.png,26942 -images-34758.png,26943 -images-34759.png,26944 -images-34760.png,26945 -images-34761.png,26946 -images-34762.png,26947 -images-34763.png,26948 -images-34764.png,26949 -images-34765.png,26950 -images-34766.png,26951 -images-34767.png,26952 -images-34768.png,26953 -images-34769.png,26954 -images-34770.png,26955 -images-34771.png,26956 -images-34772.png,26957 -images-34773.png,26958 -images-34774.png,26959 -images-34811.png,26960 -images-34812.png,26961 -images-34813.png,26962 -images-34814.png,26963 -images-34815.png,26964 -images-34816.png,26965 -images-34817.png,26966 -images-34818.png,26967 -images-34819.png,26968 -images-34820.png,26969 -images-34821.png,26970 -images-34822.png,26971 -images-34823.png,26972 -images-34824.png,26973 -images-34825.png,26974 -images-34826.png,26975 -images-34827.png,26976 -images-34828.png,26977 -images-34829.png,26978 -images-34830.png,26979 -images-34831.png,26980 -images-34832.png,26981 -images-34833.png,26982 -images-34834.png,26983 -images-34835.png,26984 -images-34836.png,26985 -images-34837.png,26986 -images-34838.png,26987 -images-34839.png,26988 -images-34840.png,26989 -images-34841.png,26990 -images-34842.png,26991 -images-34843.png,26992 -images-34844.png,26993 -images-34845.png,26994 -images-34846.png,26995 -images-34847.png,26996 -images-34848.png,26997 -images-34857.png,26998 -images-34858.png,26999 -images-34859.png,27000 -images-34860.png,27001 -images-34861.png,27002 -images-34862.png,27003 -images-34863.png,27004 -images-34864.png,27005 -images-34865.png,27006 -images-34866.png,27007 -images-34867.png,27008 -images-34868.png,27009 -images-34869.png,27010 -images-34870.png,27011 -images-34871.png,27012 -images-34872.png,27013 -images-34873.png,27014 -images-34874.png,27015 -images-34875.png,27016 -images-34876.png,27017 -images-34877.png,27018 -images-34878.png,27019 -images-34879.png,27020 -images-34880.png,27021 -images-34881.png,27022 -images-34882.png,27023 -images-34883.png,27024 -images-34884.png,27025 -images-34885.png,27026 -images-34886.png,27027 -images-34887.png,27028 -images-34888.png,27029 -images-34889.png,27030 -images-34890.png,27031 -images-34891.png,27032 -images-34892.png,27033 -images-34893.png,27034 -images-34894.png,27035 -images-34895.png,27036 -images-34896.png,27037 -images-34897.png,27038 -images-34898.png,27039 -images-34899.png,27040 -images-34900.png,27041 -images-34901.png,27042 -images-34902.png,27043 -images-34903.png,27044 -images-34904.png,27045 -images-34905.png,27046 -images-34906.png,27047 -images-34907.png,27048 -images-34908.png,27049 -images-34909.png,27050 -images-34910.png,27051 -images-34911.png,27052 -images-34912.png,27053 -images-34913.png,27054 -images-34914.png,27055 -images-34915.png,27056 -images-34916.png,27057 -images-34917.png,27058 -images-34918.png,27059 -images-34919.png,27060 -images-34920.png,27061 -images-34921.png,27062 -images-34922.png,27063 -images-34923.png,27064 -images-34924.png,27065 -images-34925.png,27066 -images-34926.png,27067 -images-34927.png,27068 -images-34928.png,27069 -images-34929.png,27070 -images-34930.png,27071 -images-34931.png,27072 -images-34932.png,27073 -images-34933.png,27074 -images-34934.png,27075 -images-34935.png,27076 -images-34936.png,27077 -images-34937.png,27078 -images-34938.png,27079 -images-34939.png,27080 -images-34940.png,27081 -images-34941.png,27082 -images-34942.png,27083 -images-34943.png,27084 -images-34944.png,27085 -images-34945.png,27086 -images-34946.png,27087 -images-34947.png,27088 -images-34948.png,27089 -images-34949.png,27090 -images-34950.png,27091 -images-34951.png,27092 -images-34952.png,27093 -images-34953.png,27094 -images-34954.png,27095 -images-34955.png,27096 -images-34956.png,27097 -images-34957.png,27098 -images-34958.png,27099 -images-34959.png,27100 -images-34960.png,27101 -images-34961.png,27102 -images-34962.png,27103 -images-34963.png,27104 -images-34964.png,27105 -images-34965.png,27106 -images-34966.png,27107 -images-34967.png,27108 -images-34968.png,27109 -images-34969.png,27110 -images-34970.png,27111 -images-34971.png,27112 -images-34972.png,27113 -images-34973.png,27114 -images-34974.png,27115 -images-34975.png,27116 -images-34976.png,27117 -images-34977.png,27118 -images-34992.png,27119 -images-34993.png,27120 -images-34994.png,27121 -images-34995.png,27122 -images-34996.png,27123 -images-34997.png,27124 -images-34998.png,27125 -images-34999.png,27126 -images-35000.png,27127 -images-35001.png,27128 -images-35002.png,27129 -images-35003.png,27130 -images-35004.png,27131 -images-35005.png,27132 -images-35006.png,27133 -images-35007.png,27134 -images-35008.png,27135 -images-35009.png,27136 -images-35010.png,27137 -images-35011.png,27138 -images-35012.png,27139 -images-35013.png,27140 -images-35014.png,27141 -images-35015.png,27142 -images-35016.png,27143 -images-35017.png,27144 -images-35018.png,27145 -images-35019.png,27146 -images-35020.png,27147 -images-35021.png,27148 -images-35022.png,27149 -images-35023.png,27150 -images-35024.png,27151 -images-35025.png,27152 -images-35026.png,27153 -images-35027.png,27154 -images-35028.png,27155 -images-35029.png,27156 -images-35030.png,27157 -images-35031.png,27158 -images-35032.png,27159 -images-35033.png,27160 -images-35034.png,27161 -images-35035.png,27162 -images-35036.png,27163 -images-35037.png,27164 -images-35038.png,27165 -images-35039.png,27166 -images-35040.png,27167 -images-35041.png,27168 -images-35042.png,27169 -images-35043.png,27170 -images-35044.png,27171 -images-35045.png,27172 -images-35046.png,27173 -images-35047.png,27174 -images-35048.png,27175 -images-35049.png,27176 -images-35050.png,27177 -images-35051.png,27178 -images-35052.png,27179 -images-35053.png,27180 -images-35054.png,27181 -images-35055.png,27182 -images-35056.png,27183 -images-35057.png,27184 -images-35058.png,27185 -images-35059.png,27186 -images-35060.png,27187 -images-35061.png,27188 -images-35062.png,27189 -images-35063.png,27190 -images-35064.png,27191 -images-35065.png,27192 -images-35066.png,27193 -images-35067.png,27194 -images-35068.png,27195 -images-35069.png,27196 -images-35070.png,27197 -images-35071.png,27198 -images-35072.png,27199 -images-35073.png,27200 -images-35074.png,27201 -images-35075.png,27202 -images-35076.png,27203 -images-35077.png,27204 -images-35078.png,27205 -images-35079.png,27206 -images-35080.png,27207 -images-35081.png,27208 -images-35082.png,27209 -images-35083.png,27210 -images-35084.png,27211 -images-35085.png,27212 -images-35086.png,27213 -images-35087.png,27214 -images-35088.png,27215 -images-35089.png,27216 -images-35090.png,27217 -images-35091.png,27218 -images-35092.png,27219 -images-35093.png,27220 -images-35094.png,27221 -images-35095.png,27222 -images-35096.png,27223 -images-35097.png,27224 -images-35098.png,27225 -images-35099.png,27226 -images-35100.png,27227 -images-35101.png,27228 -images-35102.png,27229 -images-35103.png,27230 -images-35104.png,27231 -images-35105.png,27232 -images-35106.png,27233 -images-35107.png,27234 -images-35108.png,27235 -images-35109.png,27236 -images-35110.png,27237 -images-35111.png,27238 -images-35112.png,27239 -images-35113.png,27240 -images-35114.png,27241 -images-35208.png,27242 -images-35209.png,27243 -images-35210.png,27244 -images-35211.png,27245 -images-35212.png,27246 -images-35213.png,27247 -images-35214.png,27248 -images-35215.png,27249 -images-35216.png,27250 -images-35217.png,27251 -images-35218.png,27252 -images-35219.png,27253 -images-35220.png,27254 -images-35221.png,27255 -images-35222.png,27256 -images-35223.png,27257 -images-35224.png,27258 -images-35225.png,27259 -images-35226.png,27260 -images-35227.png,27261 -images-35228.png,27262 -images-35229.png,27263 -images-35230.png,27264 -images-35231.png,27265 -images-35232.png,27266 -images-35233.png,27267 -images-35234.png,27268 -images-35235.png,27269 -images-35236.png,27270 -images-35237.png,27271 -images-35238.png,27272 -images-35239.png,27273 -images-35240.png,27274 -images-35241.png,27275 -images-35242.png,27276 -images-35243.png,27277 -images-35244.png,27278 -images-35245.png,27279 -images-35246.png,27280 -images-35247.png,27281 -images-35248.png,27282 -images-35249.png,27283 -images-35250.png,27284 -images-35251.png,27285 -images-35252.png,27286 -images-35253.png,27287 -images-35254.png,27288 -images-35255.png,27289 -images-35256.png,27290 -images-35257.png,27291 -images-35258.png,27292 -images-35259.png,27293 -images-35260.png,27294 -images-35261.png,27295 -images-35262.png,27296 -images-35263.png,27297 -images-35264.png,27298 -images-35265.png,27299 -images-35266.png,27300 -images-35267.png,27301 -images-35268.png,27302 -images-35269.png,27303 -images-35270.png,27304 -images-35271.png,27305 -images-35272.png,27306 -images-35273.png,27307 -images-35274.png,27308 -images-35275.png,27309 -images-35276.png,27310 -images-35277.png,27311 -images-35278.png,27312 -images-35279.png,27313 -images-35280.png,27314 -images-35281.png,27315 -images-35282.png,27316 -images-35283.png,27317 -images-35284.png,27318 -images-35285.png,27319 -images-35286.png,27320 -images-35287.png,27321 -images-35288.png,27322 -images-35289.png,27323 -images-35290.png,27324 -images-35291.png,27325 -images-35292.png,27326 -images-35293.png,27327 -images-35294.png,27328 -images-35295.png,27329 -images-35296.png,27330 -images-35297.png,27331 -images-35298.png,27332 -images-35299.png,27333 -images-35300.png,27334 -images-35301.png,27335 -images-35302.png,27336 -images-35303.png,27337 -images-35304.png,27338 -images-35305.png,27339 -images-35306.png,27340 -images-35307.png,27341 -images-35308.png,27342 -images-35309.png,27343 -images-35310.png,27344 -images-35311.png,27345 -images-35312.png,27346 -images-35313.png,27347 -images-35314.png,27348 -images-35315.png,27349 -images-35316.png,27350 -images-35317.png,27351 -images-35318.png,27352 -images-35319.png,27353 -images-35320.png,27354 -images-35321.png,27355 -images-35322.png,27356 -images-35323.png,27357 -images-35324.png,27358 -images-35325.png,27359 -images-35326.png,27360 -images-35327.png,27361 -images-35328.png,27362 -images-35329.png,27363 -images-35330.png,27364 -images-35331.png,27365 -images-35332.png,27366 -images-35333.png,27367 -images-35334.png,27368 -images-35335.png,27369 -images-35336.png,27370 -images-35337.png,27371 -images-35338.png,27372 -images-35339.png,27373 -images-35340.png,27374 -images-35341.png,27375 -images-35342.png,27376 -images-35343.png,27377 -images-35344.png,27378 -images-35345.png,27379 -images-35346.png,27380 -images-35347.png,27381 -images-35348.png,27382 -images-35349.png,27383 -images-35350.png,27384 -images-35351.png,27385 -images-35352.png,27386 -images-35353.png,27387 -images-35354.png,27388 -images-35355.png,27389 -images-35356.png,27390 -images-35357.png,27391 -images-35358.png,27392 -images-35359.png,27393 -images-35360.png,27394 -images-35361.png,27395 -images-35366.png,27396 -images-35367.png,27397 -images-35368.png,27398 -images-35369.png,27399 -images-35370.png,27400 -images-35371.png,27401 -images-35372.png,27402 -images-35373.png,27403 -images-35374.png,27404 -images-35375.png,27405 -images-35376.png,27406 -images-35377.png,27407 -images-35378.png,27408 -images-35379.png,27409 -images-35380.png,27410 -images-35381.png,27411 -images-35382.png,27412 -images-35383.png,27413 -images-35384.png,27414 -images-35385.png,27415 -images-35390.png,27416 -images-35391.png,27417 -images-35392.png,27418 -images-35393.png,27419 -images-35394.png,27420 -images-35400.png,27421 -images-35401.png,27422 -images-35402.png,27423 -images-35403.png,27424 -images-35404.png,27425 -images-35405.png,27426 -images-35406.png,27427 -images-35407.png,27428 -images-35408.png,27429 -images-35409.png,27430 -images-35410.png,27431 -images-35411.png,27432 -images-35412.png,27433 -images-35413.png,27434 -images-35414.png,27435 -images-35415.png,27436 -images-35416.png,27437 -images-35417.png,27438 -images-35418.png,27439 -images-35419.png,27440 -images-35420.png,27441 -images-35421.png,27442 -images-35422.png,27443 -images-35423.png,27444 -images-35424.png,27445 -images-35425.png,27446 -images-35426.png,27447 -images-35427.png,27448 -images-35428.png,27449 -images-35429.png,27450 -images-35440.png,27451 -images-35441.png,27452 -images-35442.png,27453 -images-35443.png,27454 -images-35444.png,27455 -images-35445.png,27456 -images-35446.png,27457 -images-35447.png,27458 -images-35448.png,27459 -images-35449.png,27460 -images-35450.png,27461 -images-35451.png,27462 -images-35452.png,27463 -images-35453.png,27464 -images-35454.png,27465 -images-35455.png,27466 -images-35456.png,27467 -images-35457.png,27468 -images-35458.png,27469 -images-35459.png,27470 -images-35460.png,27471 -images-35461.png,27472 -images-35462.png,27473 -images-35463.png,27474 -images-35466.png,27475 -images-35467.png,27476 -images-35468.png,27477 -images-35469.png,27478 -images-35470.png,27479 -images-35471.png,27480 -images-35472.png,27481 -images-35473.png,27482 -images-35474.png,27483 -images-35475.png,27484 -images-35476.png,27485 -images-35477.png,27486 -images-35478.png,27487 -images-35479.png,27488 -images-35480.png,27489 -images-35481.png,27490 -images-35482.png,27491 -images-35483.png,27492 -images-35484.png,27493 -images-35485.png,27494 -images-35486.png,27495 -images-35487.png,27496 -images-35488.png,27497 -images-35489.png,27498 -images-35490.png,27499 -images-35491.png,27500 -images-35492.png,27501 -images-35493.png,27502 -images-35494.png,27503 -images-35495.png,27504 -images-35496.png,27505 -images-35497.png,27506 -images-35498.png,27507 -images-35499.png,27508 -images-35500.png,27509 -images-35501.png,27510 -images-35502.png,27511 -images-35503.png,27512 -images-35504.png,27513 -images-35505.png,27514 -images-35506.png,27515 -images-35507.png,27516 -images-35508.png,27517 -images-35509.png,27518 -images-35510.png,27519 -images-35511.png,27520 -images-35512.png,27521 -images-35513.png,27522 -images-35514.png,27523 -images-35515.png,27524 -images-35516.png,27525 -images-35517.png,27526 -images-35518.png,27527 -images-35519.png,27528 -images-35520.png,27529 -images-35521.png,27530 -images-35522.png,27531 -images-35523.png,27532 -images-35524.png,27533 -images-35525.png,27534 -images-35526.png,27535 -images-35527.png,27536 -images-35528.png,27537 -images-35529.png,27538 -images-35530.png,27539 -images-35531.png,27540 -images-35532.png,27541 -images-35533.png,27542 -images-35534.png,27543 -images-35535.png,27544 -images-35536.png,27545 -images-35537.png,27546 -images-35538.png,27547 -images-35539.png,27548 -images-35540.png,27549 -images-35541.png,27550 -images-35542.png,27551 -images-35543.png,27552 -images-35544.png,27553 -images-35545.png,27554 -images-35546.png,27555 -images-35547.png,27556 -images-35548.png,27557 -images-35549.png,27558 -images-35550.png,27559 -images-35551.png,27560 -images-35552.png,27561 -images-35553.png,27562 -images-35554.png,27563 -images-35555.png,27564 -images-35556.png,27565 -images-35557.png,27566 -images-35558.png,27567 -images-35559.png,27568 -images-35560.png,27569 -images-35561.png,27570 -images-35562.png,27571 -images-35563.png,27572 -images-35564.png,27573 -images-35565.png,27574 -images-35566.png,27575 -images-35567.png,27576 -images-35568.png,27577 -images-35569.png,27578 -images-35570.png,27579 -images-35571.png,27580 -images-35572.png,27581 -images-35573.png,27582 -images-35574.png,27583 -images-35575.png,27584 -images-35576.png,27585 -images-35577.png,27586 -images-35578.png,27587 -images-35579.png,27588 -images-35580.png,27589 -images-35581.png,27590 -images-35582.png,27591 \ No newline at end of file +Image name,index +images-07028.png,0 +images-07029.png,1 +images-07030.png,2 +images-07031.png,3 +images-07032.png,4 +images-07033.png,5 +images-07034.png,6 +images-07035.png,7 +images-07036.png,8 +images-07037.png,9 +images-07038.png,10 +images-07039.png,11 +images-07040.png,12 +images-07041.png,13 +images-07042.png,14 +images-07043.png,15 +images-07044.png,16 +images-07045.png,17 +images-07046.png,18 +images-07047.png,19 +images-07048.png,20 +images-07049.png,21 +images-07050.png,22 +images-07051.png,23 +images-07052.png,24 +images-07053.png,25 +images-07054.png,26 +images-07055.png,27 +images-07056.png,28 +images-07057.png,29 +images-07058.png,30 +images-07296.png,31 +images-07297.png,32 +images-07298.png,33 +images-07299.png,34 +images-07300.png,35 +images-07301.png,36 +images-07302.png,37 +images-07303.png,38 +images-07304.png,39 +images-07305.png,40 +images-07306.png,41 +images-07307.png,42 +images-07308.png,43 +images-07309.png,44 +images-07310.png,45 +images-07311.png,46 +images-07312.png,47 +images-07313.png,48 +images-07314.png,49 +images-07315.png,50 +images-07316.png,51 +images-07317.png,52 +images-07318.png,53 +images-07319.png,54 +images-07320.png,55 +images-07321.png,56 +images-07322.png,57 +images-07323.png,58 +images-07324.png,59 +images-07325.png,60 +images-07326.png,61 +images-07327.png,62 +images-07328.png,63 +images-07329.png,64 +images-07330.png,65 +images-07331.png,66 +images-07332.png,67 +images-07333.png,68 +images-07334.png,69 +images-07335.png,70 +images-07336.png,71 +images-07337.png,72 +images-07338.png,73 +images-07339.png,74 +images-07340.png,75 +images-07341.png,76 +images-07342.png,77 +images-07343.png,78 +images-07344.png,79 +images-07345.png,80 +images-07346.png,81 +images-07347.png,82 +images-07348.png,83 +images-07349.png,84 +images-07350.png,85 +images-07351.png,86 +images-07352.png,87 +images-07353.png,88 +images-07354.png,89 +images-07355.png,90 +images-07356.png,91 +images-07357.png,92 +images-07358.png,93 +images-07359.png,94 +images-07360.png,95 +images-07361.png,96 +images-07362.png,97 +images-07363.png,98 +images-07364.png,99 +images-07365.png,100 +images-07366.png,101 +images-07367.png,102 +images-07368.png,103 +images-07369.png,104 +images-07370.png,105 +images-07371.png,106 +images-07372.png,107 +images-07373.png,108 +images-07374.png,109 +images-07375.png,110 +images-07376.png,111 +images-07377.png,112 +images-07378.png,113 +images-07379.png,114 +images-07380.png,115 +images-07381.png,116 +images-07382.png,117 +images-07383.png,118 +images-07384.png,119 +images-07385.png,120 +images-07386.png,121 +images-07387.png,122 +images-07388.png,123 +images-07389.png,124 +images-07390.png,125 +images-07391.png,126 +images-07392.png,127 +images-07393.png,128 +images-07394.png,129 +images-07395.png,130 +images-07396.png,131 +images-07397.png,132 +images-07398.png,133 +images-07399.png,134 +images-07400.png,135 +images-07401.png,136 +images-07402.png,137 +images-07403.png,138 +images-07404.png,139 +images-07405.png,140 +images-07406.png,141 +images-07407.png,142 +images-07408.png,143 +images-07409.png,144 +images-07410.png,145 +images-07411.png,146 +images-07412.png,147 +images-07413.png,148 +images-07414.png,149 +images-07415.png,150 +images-07416.png,151 +images-07417.png,152 +images-07418.png,153 +images-07419.png,154 +images-07420.png,155 +images-07421.png,156 +images-07422.png,157 +images-07423.png,158 +images-07424.png,159 +images-07425.png,160 +images-07426.png,161 +images-07427.png,162 +images-07428.png,163 +images-07429.png,164 +images-07430.png,165 +images-07431.png,166 +images-07432.png,167 +images-07433.png,168 +images-07434.png,169 +images-07435.png,170 +images-07436.png,171 +images-07437.png,172 +images-07438.png,173 +images-07439.png,174 +images-07440.png,175 +images-07441.png,176 +images-07442.png,177 +images-07443.png,178 +images-07444.png,179 +images-07445.png,180 +images-07446.png,181 +images-07447.png,182 +images-07448.png,183 +images-07449.png,184 +images-07450.png,185 +images-07451.png,186 +images-07452.png,187 +images-07453.png,188 +images-07454.png,189 +images-07455.png,190 +images-07456.png,191 +images-07457.png,192 +images-07458.png,193 +images-07459.png,194 +images-07460.png,195 +images-07461.png,196 +images-07462.png,197 +images-07463.png,198 +images-07464.png,199 +images-07465.png,200 +images-07466.png,201 +images-07467.png,202 +images-07468.png,203 +images-07469.png,204 +images-07470.png,205 +images-07471.png,206 +images-07472.png,207 +images-07473.png,208 +images-07474.png,209 +images-07475.png,210 +images-07476.png,211 +images-07477.png,212 +images-07478.png,213 +images-07479.png,214 +images-07480.png,215 +images-07481.png,216 +images-07482.png,217 +images-07483.png,218 +images-07484.png,219 +images-07485.png,220 +images-07486.png,221 +images-07487.png,222 +images-07488.png,223 +images-07489.png,224 +images-07490.png,225 +images-07491.png,226 +images-07492.png,227 +images-07493.png,228 +images-07494.png,229 +images-07495.png,230 +images-07496.png,231 +images-07497.png,232 +images-07498.png,233 +images-07499.png,234 +images-07500.png,235 +images-07501.png,236 +images-07502.png,237 +images-07503.png,238 +images-07504.png,239 +images-07505.png,240 +images-07506.png,241 +images-07507.png,242 +images-07508.png,243 +images-07509.png,244 +images-07510.png,245 +images-07511.png,246 +images-07512.png,247 +images-07513.png,248 +images-07514.png,249 +images-07515.png,250 +images-07516.png,251 +images-07517.png,252 +images-07518.png,253 +images-07519.png,254 +images-07520.png,255 +images-07521.png,256 +images-07522.png,257 +images-07523.png,258 +images-07524.png,259 +images-07525.png,260 +images-07526.png,261 +images-07527.png,262 +images-07528.png,263 +images-07529.png,264 +images-07530.png,265 +images-07531.png,266 +images-07532.png,267 +images-07533.png,268 +images-07534.png,269 +images-07535.png,270 +images-07536.png,271 +images-07537.png,272 +images-07538.png,273 +images-07539.png,274 +images-07540.png,275 +images-07541.png,276 +images-07542.png,277 +images-07543.png,278 +images-07544.png,279 +images-07545.png,280 +images-07546.png,281 +images-07547.png,282 +images-07548.png,283 +images-07549.png,284 +images-07550.png,285 +images-07551.png,286 +images-07552.png,287 +images-07553.png,288 +images-07554.png,289 +images-07555.png,290 +images-07556.png,291 +images-07557.png,292 +images-07558.png,293 +images-07559.png,294 +images-07560.png,295 +images-07561.png,296 +images-07562.png,297 +images-07563.png,298 +images-07564.png,299 +images-07565.png,300 +images-07566.png,301 +images-07567.png,302 +images-07568.png,303 +images-07569.png,304 +images-07570.png,305 +images-07571.png,306 +images-07572.png,307 +images-07573.png,308 +images-07574.png,309 +images-07575.png,310 +images-07576.png,311 +images-07577.png,312 +images-07578.png,313 +images-07579.png,314 +images-07580.png,315 +images-07581.png,316 +images-07582.png,317 +images-07583.png,318 +images-07584.png,319 +images-07585.png,320 +images-07586.png,321 +images-07587.png,322 +images-07588.png,323 +images-07589.png,324 +images-07590.png,325 +images-07591.png,326 +images-07592.png,327 +images-07593.png,328 +images-07594.png,329 +images-07595.png,330 +images-07596.png,331 +images-07597.png,332 +images-07598.png,333 +images-07599.png,334 +images-07600.png,335 +images-07601.png,336 +images-07602.png,337 +images-07603.png,338 +images-07604.png,339 +images-07605.png,340 +images-07606.png,341 +images-07607.png,342 +images-07608.png,343 +images-07609.png,344 +images-07610.png,345 +images-07611.png,346 +images-07612.png,347 +images-07613.png,348 +images-07614.png,349 +images-07615.png,350 +images-07616.png,351 +images-07617.png,352 +images-07618.png,353 +images-07619.png,354 +images-07620.png,355 +images-07621.png,356 +images-07622.png,357 +images-07623.png,358 +images-07624.png,359 +images-07625.png,360 +images-07626.png,361 +images-07627.png,362 +images-07628.png,363 +images-07629.png,364 +images-07630.png,365 +images-07631.png,366 +images-07632.png,367 +images-07633.png,368 +images-07634.png,369 +images-07635.png,370 +images-07636.png,371 +images-07637.png,372 +images-07638.png,373 +images-07639.png,374 +images-07640.png,375 +images-07641.png,376 +images-07642.png,377 +images-07643.png,378 +images-07644.png,379 +images-07645.png,380 +images-07646.png,381 +images-07647.png,382 +images-07648.png,383 +images-07649.png,384 +images-07650.png,385 +images-07651.png,386 +images-07652.png,387 +images-07653.png,388 +images-07654.png,389 +images-07655.png,390 +images-07656.png,391 +images-07657.png,392 +images-07658.png,393 +images-07659.png,394 +images-07660.png,395 +images-07661.png,396 +images-07662.png,397 +images-07663.png,398 +images-07664.png,399 +images-07665.png,400 +images-07666.png,401 +images-07667.png,402 +images-07668.png,403 +images-07669.png,404 +images-07670.png,405 +images-07671.png,406 +images-07672.png,407 +images-07673.png,408 +images-07674.png,409 +images-07675.png,410 +images-07676.png,411 +images-07677.png,412 +images-07678.png,413 +images-07679.png,414 +images-07680.png,415 +images-07681.png,416 +images-07682.png,417 +images-07683.png,418 +images-07684.png,419 +images-07685.png,420 +images-07686.png,421 +images-07687.png,422 +images-07688.png,423 +images-07689.png,424 +images-07690.png,425 +images-07691.png,426 +images-07692.png,427 +images-07693.png,428 +images-07694.png,429 +images-07695.png,430 +images-07696.png,431 +images-07697.png,432 +images-07698.png,433 +images-07699.png,434 +images-07700.png,435 +images-07701.png,436 +images-07702.png,437 +images-07703.png,438 +images-07704.png,439 +images-07705.png,440 +images-07706.png,441 +images-07707.png,442 +images-07708.png,443 +images-07709.png,444 +images-07710.png,445 +images-07711.png,446 +images-07712.png,447 +images-07713.png,448 +images-07714.png,449 +images-07715.png,450 +images-07716.png,451 +images-07717.png,452 +images-07718.png,453 +images-07719.png,454 +images-07720.png,455 +images-07721.png,456 +images-07722.png,457 +images-07723.png,458 +images-07724.png,459 +images-07725.png,460 +images-07726.png,461 +images-07727.png,462 +images-07728.png,463 +images-07729.png,464 +images-07730.png,465 +images-07731.png,466 +images-07732.png,467 +images-07733.png,468 +images-07734.png,469 +images-07735.png,470 +images-07736.png,471 +images-07737.png,472 +images-07738.png,473 +images-07739.png,474 +images-07740.png,475 +images-07741.png,476 +images-07742.png,477 +images-07743.png,478 +images-07744.png,479 +images-07745.png,480 +images-07746.png,481 +images-07747.png,482 +images-07748.png,483 +images-07749.png,484 +images-07750.png,485 +images-07751.png,486 +images-07752.png,487 +images-07753.png,488 +images-07754.png,489 +images-07755.png,490 +images-07756.png,491 +images-07757.png,492 +images-07758.png,493 +images-07894.png,494 +images-07895.png,495 +images-07896.png,496 +images-07897.png,497 +images-07898.png,498 +images-07899.png,499 +images-07900.png,500 +images-07901.png,501 +images-07902.png,502 +images-07903.png,503 +images-07904.png,504 +images-07905.png,505 +images-07906.png,506 +images-07907.png,507 +images-07908.png,508 +images-07909.png,509 +images-07910.png,510 +images-07911.png,511 +images-07912.png,512 +images-07913.png,513 +images-07914.png,514 +images-07915.png,515 +images-07916.png,516 +images-07917.png,517 +images-07918.png,518 +images-07919.png,519 +images-07920.png,520 +images-07921.png,521 +images-07922.png,522 +images-07923.png,523 +images-07924.png,524 +images-07925.png,525 +images-07926.png,526 +images-07927.png,527 +images-07928.png,528 +images-07929.png,529 +images-07930.png,530 +images-07931.png,531 +images-07932.png,532 +images-07933.png,533 +images-07934.png,534 +images-07935.png,535 +images-07936.png,536 +images-07937.png,537 +images-07938.png,538 +images-07939.png,539 +images-07940.png,540 +images-07941.png,541 +images-07942.png,542 +images-07943.png,543 +images-07944.png,544 +images-07945.png,545 +images-07946.png,546 +images-07947.png,547 +images-07948.png,548 +images-07949.png,549 +images-07950.png,550 +images-07951.png,551 +images-07952.png,552 +images-07953.png,553 +images-07954.png,554 +images-07955.png,555 +images-07956.png,556 +images-07957.png,557 +images-07958.png,558 +images-07959.png,559 +images-07960.png,560 +images-07961.png,561 +images-07962.png,562 +images-07963.png,563 +images-07964.png,564 +images-07965.png,565 +images-07966.png,566 +images-07967.png,567 +images-07968.png,568 +images-07969.png,569 +images-07970.png,570 +images-07971.png,571 +images-07972.png,572 +images-07973.png,573 +images-07974.png,574 +images-07975.png,575 +images-07976.png,576 +images-07977.png,577 +images-07978.png,578 +images-07979.png,579 +images-07980.png,580 +images-07981.png,581 +images-07982.png,582 +images-07983.png,583 +images-07984.png,584 +images-07985.png,585 +images-07986.png,586 +images-07987.png,587 +images-07988.png,588 +images-07989.png,589 +images-07990.png,590 +images-07991.png,591 +images-07992.png,592 +images-07993.png,593 +images-07994.png,594 +images-07995.png,595 +images-07996.png,596 +images-07997.png,597 +images-07998.png,598 +images-07999.png,599 +images-08000.png,600 +images-08001.png,601 +images-08002.png,602 +images-08003.png,603 +images-08004.png,604 +images-08005.png,605 +images-08006.png,606 +images-08007.png,607 +images-08008.png,608 +images-08009.png,609 +images-08010.png,610 +images-08011.png,611 +images-08012.png,612 +images-08013.png,613 +images-08014.png,614 +images-08015.png,615 +images-08016.png,616 +images-08017.png,617 +images-08018.png,618 +images-08019.png,619 +images-08020.png,620 +images-08021.png,621 +images-08022.png,622 +images-08023.png,623 +images-08024.png,624 +images-08025.png,625 +images-08026.png,626 +images-08027.png,627 +images-08028.png,628 +images-08029.png,629 +images-08030.png,630 +images-08031.png,631 +images-08032.png,632 +images-08033.png,633 +images-08034.png,634 +images-08035.png,635 +images-08036.png,636 +images-08037.png,637 +images-08038.png,638 +images-08039.png,639 +images-08040.png,640 +images-08041.png,641 +images-08042.png,642 +images-08043.png,643 +images-08044.png,644 +images-08045.png,645 +images-08046.png,646 +images-08047.png,647 +images-08048.png,648 +images-08049.png,649 +images-08050.png,650 +images-08051.png,651 +images-08052.png,652 +images-08053.png,653 +images-08054.png,654 +images-08055.png,655 +images-08056.png,656 +images-08057.png,657 +images-08058.png,658 +images-08059.png,659 +images-08060.png,660 +images-08061.png,661 +images-08062.png,662 +images-08063.png,663 +images-08064.png,664 +images-08065.png,665 +images-08066.png,666 +images-08067.png,667 +images-08068.png,668 +images-08069.png,669 +images-08070.png,670 +images-08071.png,671 +images-08072.png,672 +images-08073.png,673 +images-08074.png,674 +images-08075.png,675 +images-08076.png,676 +images-08077.png,677 +images-08078.png,678 +images-08079.png,679 +images-08080.png,680 +images-08081.png,681 +images-08082.png,682 +images-08083.png,683 +images-08084.png,684 +images-08085.png,685 +images-08086.png,686 +images-08087.png,687 +images-08088.png,688 +images-08089.png,689 +images-08090.png,690 +images-08091.png,691 +images-08092.png,692 +images-08093.png,693 +images-08094.png,694 +images-08095.png,695 +images-08096.png,696 +images-08097.png,697 +images-08098.png,698 +images-08099.png,699 +images-08100.png,700 +images-08101.png,701 +images-08102.png,702 +images-08103.png,703 +images-08104.png,704 +images-08105.png,705 +images-08106.png,706 +images-08107.png,707 +images-08108.png,708 +images-08109.png,709 +images-08110.png,710 +images-08111.png,711 +images-08112.png,712 +images-08113.png,713 +images-08114.png,714 +images-08115.png,715 +images-08116.png,716 +images-08117.png,717 +images-08118.png,718 +images-08119.png,719 +images-08120.png,720 +images-08121.png,721 +images-08122.png,722 +images-08123.png,723 +images-08124.png,724 +images-08125.png,725 +images-08126.png,726 +images-08127.png,727 +images-08128.png,728 +images-08129.png,729 +images-08130.png,730 +images-08131.png,731 +images-08132.png,732 +images-08133.png,733 +images-08134.png,734 +images-08135.png,735 +images-08136.png,736 +images-08137.png,737 +images-08138.png,738 +images-08139.png,739 +images-08140.png,740 +images-08141.png,741 +images-08142.png,742 +images-08143.png,743 +images-08144.png,744 +images-08145.png,745 +images-08146.png,746 +images-08147.png,747 +images-08148.png,748 +images-08149.png,749 +images-08150.png,750 +images-08151.png,751 +images-08152.png,752 +images-08153.png,753 +images-08154.png,754 +images-08155.png,755 +images-08156.png,756 +images-08157.png,757 +images-08158.png,758 +images-08159.png,759 +images-08160.png,760 +images-08161.png,761 +images-08162.png,762 +images-08163.png,763 +images-08164.png,764 +images-08165.png,765 +images-08166.png,766 +images-08167.png,767 +images-08168.png,768 +images-08169.png,769 +images-08170.png,770 +images-08171.png,771 +images-08172.png,772 +images-08173.png,773 +images-08174.png,774 +images-08175.png,775 +images-08176.png,776 +images-08177.png,777 +images-08178.png,778 +images-08179.png,779 +images-08180.png,780 +images-08181.png,781 +images-08182.png,782 +images-08183.png,783 +images-08184.png,784 +images-08185.png,785 +images-08186.png,786 +images-08187.png,787 +images-08188.png,788 +images-08189.png,789 +images-08190.png,790 +images-08191.png,791 +images-08192.png,792 +images-08193.png,793 +images-08194.png,794 +images-08195.png,795 +images-08196.png,796 +images-08197.png,797 +images-08198.png,798 +images-08199.png,799 +images-08200.png,800 +images-08201.png,801 +images-08202.png,802 +images-08203.png,803 +images-08204.png,804 +images-08205.png,805 +images-08206.png,806 +images-08207.png,807 +images-08208.png,808 +images-08209.png,809 +images-08210.png,810 +images-08211.png,811 +images-08212.png,812 +images-08213.png,813 +images-08214.png,814 +images-08215.png,815 +images-08216.png,816 +images-08217.png,817 +images-08218.png,818 +images-08219.png,819 +images-08220.png,820 +images-08221.png,821 +images-08222.png,822 +images-08223.png,823 +images-08224.png,824 +images-08225.png,825 +images-08226.png,826 +images-08227.png,827 +images-08228.png,828 +images-08229.png,829 +images-08230.png,830 +images-08231.png,831 +images-08232.png,832 +images-08233.png,833 +images-08234.png,834 +images-08235.png,835 +images-08236.png,836 +images-08237.png,837 +images-08238.png,838 +images-08239.png,839 +images-08240.png,840 +images-08241.png,841 +images-08242.png,842 +images-08243.png,843 +images-08244.png,844 +images-08245.png,845 +images-08246.png,846 +images-08247.png,847 +images-08248.png,848 +images-08249.png,849 +images-08250.png,850 +images-08251.png,851 +images-08252.png,852 +images-08253.png,853 +images-08254.png,854 +images-08255.png,855 +images-08256.png,856 +images-08257.png,857 +images-08258.png,858 +images-08259.png,859 +images-08260.png,860 +images-08261.png,861 +images-08262.png,862 +images-08263.png,863 +images-08264.png,864 +images-08265.png,865 +images-08266.png,866 +images-08267.png,867 +images-08268.png,868 +images-08269.png,869 +images-08270.png,870 +images-08271.png,871 +images-08272.png,872 +images-08273.png,873 +images-08274.png,874 +images-08275.png,875 +images-08276.png,876 +images-08277.png,877 +images-08278.png,878 +images-08279.png,879 +images-08280.png,880 +images-08281.png,881 +images-08282.png,882 +images-08283.png,883 +images-08284.png,884 +images-08285.png,885 +images-08286.png,886 +images-08287.png,887 +images-08288.png,888 +images-08289.png,889 +images-08290.png,890 +images-08291.png,891 +images-08292.png,892 +images-08293.png,893 +images-08294.png,894 +images-08295.png,895 +images-08296.png,896 +images-08297.png,897 +images-08298.png,898 +images-08299.png,899 +images-08300.png,900 +images-08301.png,901 +images-08302.png,902 +images-08303.png,903 +images-08304.png,904 +images-08305.png,905 +images-08306.png,906 +images-08307.png,907 +images-08308.png,908 +images-08309.png,909 +images-08310.png,910 +images-08311.png,911 +images-08312.png,912 +images-08313.png,913 +images-08314.png,914 +images-08315.png,915 +images-08316.png,916 +images-08317.png,917 +images-08318.png,918 +images-08319.png,919 +images-08320.png,920 +images-08321.png,921 +images-08322.png,922 +images-08323.png,923 +images-08324.png,924 +images-08325.png,925 +images-08326.png,926 +images-08327.png,927 +images-08328.png,928 +images-08329.png,929 +images-08330.png,930 +images-08331.png,931 +images-08332.png,932 +images-08333.png,933 +images-08334.png,934 +images-08335.png,935 +images-08336.png,936 +images-08337.png,937 +images-08338.png,938 +images-08339.png,939 +images-08340.png,940 +images-08341.png,941 +images-08342.png,942 +images-08343.png,943 +images-08344.png,944 +images-08345.png,945 +images-08346.png,946 +images-08347.png,947 +images-08348.png,948 +images-08349.png,949 +images-08350.png,950 +images-08351.png,951 +images-08352.png,952 +images-08353.png,953 +images-08354.png,954 +images-08355.png,955 +images-08356.png,956 +images-08357.png,957 +images-08358.png,958 +images-08359.png,959 +images-08360.png,960 +images-08361.png,961 +images-08362.png,962 +images-08363.png,963 +images-08364.png,964 +images-08365.png,965 +images-08366.png,966 +images-08367.png,967 +images-08368.png,968 +images-08369.png,969 +images-08370.png,970 +images-08371.png,971 +images-08372.png,972 +images-08373.png,973 +images-08374.png,974 +images-08375.png,975 +images-08376.png,976 +images-08377.png,977 +images-08378.png,978 +images-08379.png,979 +images-08380.png,980 +images-08381.png,981 +images-08382.png,982 +images-08383.png,983 +images-08384.png,984 +images-08385.png,985 +images-08386.png,986 +images-08387.png,987 +images-08388.png,988 +images-08389.png,989 +images-08390.png,990 +images-08391.png,991 +images-08392.png,992 +images-08393.png,993 +images-08394.png,994 +images-08395.png,995 +images-08396.png,996 +images-08397.png,997 +images-08398.png,998 +images-08399.png,999 +images-08400.png,1000 +images-08401.png,1001 +images-08402.png,1002 +images-08403.png,1003 +images-08404.png,1004 +images-08405.png,1005 +images-08406.png,1006 +images-08407.png,1007 +images-08408.png,1008 +images-08409.png,1009 +images-08410.png,1010 +images-08411.png,1011 +images-08412.png,1012 +images-08413.png,1013 +images-08414.png,1014 +images-08415.png,1015 +images-08416.png,1016 +images-08417.png,1017 +images-08418.png,1018 +images-08419.png,1019 +images-08420.png,1020 +images-08421.png,1021 +images-08422.png,1022 +images-08423.png,1023 +images-08424.png,1024 +images-08425.png,1025 +images-08426.png,1026 +images-08427.png,1027 +images-08428.png,1028 +images-08429.png,1029 +images-08430.png,1030 +images-08431.png,1031 +images-08432.png,1032 +images-08433.png,1033 +images-08434.png,1034 +images-08435.png,1035 +images-08436.png,1036 +images-08437.png,1037 +images-08438.png,1038 +images-08439.png,1039 +images-08440.png,1040 +images-08441.png,1041 +images-08442.png,1042 +images-08443.png,1043 +images-08444.png,1044 +images-08445.png,1045 +images-08446.png,1046 +images-08447.png,1047 +images-08448.png,1048 +images-08449.png,1049 +images-08450.png,1050 +images-08451.png,1051 +images-08452.png,1052 +images-08453.png,1053 +images-08454.png,1054 +images-08455.png,1055 +images-08456.png,1056 +images-08457.png,1057 +images-08458.png,1058 +images-08459.png,1059 +images-08460.png,1060 +images-08461.png,1061 +images-08462.png,1062 +images-08463.png,1063 +images-08464.png,1064 +images-08465.png,1065 +images-08466.png,1066 +images-08467.png,1067 +images-08468.png,1068 +images-08469.png,1069 +images-08470.png,1070 +images-08471.png,1071 +images-08472.png,1072 +images-08473.png,1073 +images-08474.png,1074 +images-08475.png,1075 +images-08476.png,1076 +images-08477.png,1077 +images-08478.png,1078 +images-08484.png,1079 +images-08485.png,1080 +images-08486.png,1081 +images-08487.png,1082 +images-08488.png,1083 +images-08494.png,1084 +images-08495.png,1085 +images-08496.png,1086 +images-08497.png,1087 +images-08498.png,1088 +images-08499.png,1089 +images-08500.png,1090 +images-08501.png,1091 +images-08502.png,1092 +images-08503.png,1093 +images-08504.png,1094 +images-08505.png,1095 +images-08506.png,1096 +images-08507.png,1097 +images-08508.png,1098 +images-08509.png,1099 +images-08510.png,1100 +images-08511.png,1101 +images-08512.png,1102 +images-08513.png,1103 +images-08514.png,1104 +images-08515.png,1105 +images-08516.png,1106 +images-08517.png,1107 +images-08518.png,1108 +images-08519.png,1109 +images-08520.png,1110 +images-08521.png,1111 +images-08522.png,1112 +images-08523.png,1113 +images-08524.png,1114 +images-08525.png,1115 +images-08526.png,1116 +images-08527.png,1117 +images-08528.png,1118 +images-08529.png,1119 +images-08530.png,1120 +images-08531.png,1121 +images-08532.png,1122 +images-08533.png,1123 +images-08534.png,1124 +images-08535.png,1125 +images-08536.png,1126 +images-08537.png,1127 +images-08538.png,1128 +images-08539.png,1129 +images-08540.png,1130 +images-08541.png,1131 +images-08542.png,1132 +images-08543.png,1133 +images-08544.png,1134 +images-08545.png,1135 +images-08546.png,1136 +images-08547.png,1137 +images-08548.png,1138 +images-08549.png,1139 +images-08550.png,1140 +images-08551.png,1141 +images-08552.png,1142 +images-08553.png,1143 +images-08554.png,1144 +images-08555.png,1145 +images-08556.png,1146 +images-08557.png,1147 +images-08558.png,1148 +images-08559.png,1149 +images-08560.png,1150 +images-08561.png,1151 +images-08562.png,1152 +images-08563.png,1153 +images-08564.png,1154 +images-08565.png,1155 +images-08566.png,1156 +images-08567.png,1157 +images-08568.png,1158 +images-08569.png,1159 +images-08570.png,1160 +images-08571.png,1161 +images-08572.png,1162 +images-08573.png,1163 +images-08574.png,1164 +images-08575.png,1165 +images-08576.png,1166 +images-08577.png,1167 +images-08578.png,1168 +images-08579.png,1169 +images-08580.png,1170 +images-08581.png,1171 +images-08582.png,1172 +images-08583.png,1173 +images-08584.png,1174 +images-08585.png,1175 +images-08586.png,1176 +images-08587.png,1177 +images-08588.png,1178 +images-08589.png,1179 +images-08590.png,1180 +images-08591.png,1181 +images-08592.png,1182 +images-08593.png,1183 +images-08594.png,1184 +images-08595.png,1185 +images-08596.png,1186 +images-08597.png,1187 +images-08598.png,1188 +images-08599.png,1189 +images-08600.png,1190 +images-08601.png,1191 +images-08602.png,1192 +images-08603.png,1193 +images-08604.png,1194 +images-08605.png,1195 +images-08606.png,1196 +images-08607.png,1197 +images-08608.png,1198 +images-08609.png,1199 +images-08610.png,1200 +images-08611.png,1201 +images-08612.png,1202 +images-08613.png,1203 +images-08614.png,1204 +images-08615.png,1205 +images-08616.png,1206 +images-08617.png,1207 +images-08618.png,1208 +images-08619.png,1209 +images-08620.png,1210 +images-08621.png,1211 +images-08622.png,1212 +images-08623.png,1213 +images-08624.png,1214 +images-08625.png,1215 +images-08626.png,1216 +images-08627.png,1217 +images-08628.png,1218 +images-08629.png,1219 +images-08630.png,1220 +images-08631.png,1221 +images-08632.png,1222 +images-08633.png,1223 +images-08634.png,1224 +images-08635.png,1225 +images-08636.png,1226 +images-08637.png,1227 +images-08638.png,1228 +images-08639.png,1229 +images-08640.png,1230 +images-08641.png,1231 +images-08642.png,1232 +images-08643.png,1233 +images-08644.png,1234 +images-08645.png,1235 +images-08646.png,1236 +images-08647.png,1237 +images-08648.png,1238 +images-08649.png,1239 +images-08650.png,1240 +images-08651.png,1241 +images-08652.png,1242 +images-08653.png,1243 +images-08654.png,1244 +images-08655.png,1245 +images-08656.png,1246 +images-08657.png,1247 +images-08658.png,1248 +images-08659.png,1249 +images-08660.png,1250 +images-08661.png,1251 +images-08662.png,1252 +images-08663.png,1253 +images-08664.png,1254 +images-08665.png,1255 +images-08666.png,1256 +images-08667.png,1257 +images-08668.png,1258 +images-08669.png,1259 +images-08670.png,1260 +images-08671.png,1261 +images-08672.png,1262 +images-08673.png,1263 +images-08674.png,1264 +images-08675.png,1265 +images-08676.png,1266 +images-08677.png,1267 +images-08678.png,1268 +images-08679.png,1269 +images-08680.png,1270 +images-08681.png,1271 +images-08682.png,1272 +images-08683.png,1273 +images-08684.png,1274 +images-08685.png,1275 +images-08686.png,1276 +images-08687.png,1277 +images-08688.png,1278 +images-08689.png,1279 +images-08690.png,1280 +images-08691.png,1281 +images-08692.png,1282 +images-08693.png,1283 +images-08694.png,1284 +images-08695.png,1285 +images-08696.png,1286 +images-08697.png,1287 +images-08698.png,1288 +images-08699.png,1289 +images-08700.png,1290 +images-08701.png,1291 +images-08702.png,1292 +images-08703.png,1293 +images-08704.png,1294 +images-08705.png,1295 +images-08706.png,1296 +images-08707.png,1297 +images-08708.png,1298 +images-08709.png,1299 +images-08710.png,1300 +images-08711.png,1301 +images-08712.png,1302 +images-08713.png,1303 +images-08714.png,1304 +images-08715.png,1305 +images-08716.png,1306 +images-08717.png,1307 +images-08718.png,1308 +images-08719.png,1309 +images-08720.png,1310 +images-08721.png,1311 +images-08722.png,1312 +images-08723.png,1313 +images-08724.png,1314 +images-08725.png,1315 +images-08726.png,1316 +images-08727.png,1317 +images-08728.png,1318 +images-08729.png,1319 +images-08730.png,1320 +images-08731.png,1321 +images-08732.png,1322 +images-08733.png,1323 +images-08734.png,1324 +images-08735.png,1325 +images-08736.png,1326 +images-08737.png,1327 +images-08738.png,1328 +images-08739.png,1329 +images-08740.png,1330 +images-08741.png,1331 +images-08742.png,1332 +images-08743.png,1333 +images-08744.png,1334 +images-08745.png,1335 +images-08746.png,1336 +images-08747.png,1337 +images-08748.png,1338 +images-08749.png,1339 +images-08750.png,1340 +images-08751.png,1341 +images-08752.png,1342 +images-08753.png,1343 +images-08754.png,1344 +images-08755.png,1345 +images-08756.png,1346 +images-08757.png,1347 +images-08758.png,1348 +images-08759.png,1349 +images-08760.png,1350 +images-08761.png,1351 +images-08762.png,1352 +images-08763.png,1353 +images-08764.png,1354 +images-08765.png,1355 +images-08766.png,1356 +images-08767.png,1357 +images-08768.png,1358 +images-08769.png,1359 +images-08770.png,1360 +images-08771.png,1361 +images-08772.png,1362 +images-08773.png,1363 +images-08774.png,1364 +images-08775.png,1365 +images-08776.png,1366 +images-08777.png,1367 +images-08778.png,1368 +images-08779.png,1369 +images-08780.png,1370 +images-08781.png,1371 +images-08782.png,1372 +images-08783.png,1373 +images-08784.png,1374 +images-08785.png,1375 +images-08786.png,1376 +images-08787.png,1377 +images-08788.png,1378 +images-08789.png,1379 +images-08790.png,1380 +images-08791.png,1381 +images-08792.png,1382 +images-08793.png,1383 +images-08794.png,1384 +images-08795.png,1385 +images-08796.png,1386 +images-08797.png,1387 +images-08798.png,1388 +images-08799.png,1389 +images-08800.png,1390 +images-08801.png,1391 +images-08802.png,1392 +images-08803.png,1393 +images-08804.png,1394 +images-08805.png,1395 +images-08806.png,1396 +images-08807.png,1397 +images-08808.png,1398 +images-08809.png,1399 +images-08810.png,1400 +images-08811.png,1401 +images-08812.png,1402 +images-08813.png,1403 +images-08814.png,1404 +images-08815.png,1405 +images-08816.png,1406 +images-08817.png,1407 +images-08818.png,1408 +images-08819.png,1409 +images-08820.png,1410 +images-08821.png,1411 +images-08822.png,1412 +images-08823.png,1413 +images-08824.png,1414 +images-08825.png,1415 +images-08826.png,1416 +images-08827.png,1417 +images-08828.png,1418 +images-08829.png,1419 +images-08830.png,1420 +images-08831.png,1421 +images-08832.png,1422 +images-08833.png,1423 +images-08834.png,1424 +images-08835.png,1425 +images-08836.png,1426 +images-08837.png,1427 +images-08838.png,1428 +images-08839.png,1429 +images-08840.png,1430 +images-08841.png,1431 +images-08842.png,1432 +images-08843.png,1433 +images-08844.png,1434 +images-08845.png,1435 +images-08846.png,1436 +images-08847.png,1437 +images-08848.png,1438 +images-08849.png,1439 +images-08850.png,1440 +images-08851.png,1441 +images-08852.png,1442 +images-08853.png,1443 +images-08854.png,1444 +images-08855.png,1445 +images-08856.png,1446 +images-08857.png,1447 +images-08858.png,1448 +images-08859.png,1449 +images-08860.png,1450 +images-08861.png,1451 +images-08862.png,1452 +images-08863.png,1453 +images-08864.png,1454 +images-08865.png,1455 +images-08866.png,1456 +images-08867.png,1457 +images-08868.png,1458 +images-08869.png,1459 +images-08870.png,1460 +images-08871.png,1461 +images-08872.png,1462 +images-08873.png,1463 +images-08874.png,1464 +images-08875.png,1465 +images-08876.png,1466 +images-08877.png,1467 +images-08878.png,1468 +images-08879.png,1469 +images-08880.png,1470 +images-08881.png,1471 +images-08882.png,1472 +images-08883.png,1473 +images-08884.png,1474 +images-08885.png,1475 +images-08886.png,1476 +images-08887.png,1477 +images-08888.png,1478 +images-08889.png,1479 +images-08890.png,1480 +images-08891.png,1481 +images-08892.png,1482 +images-08893.png,1483 +images-08894.png,1484 +images-08895.png,1485 +images-08896.png,1486 +images-08897.png,1487 +images-08898.png,1488 +images-08899.png,1489 +images-08900.png,1490 +images-08901.png,1491 +images-08902.png,1492 +images-08903.png,1493 +images-08904.png,1494 +images-08905.png,1495 +images-08906.png,1496 +images-08907.png,1497 +images-08908.png,1498 +images-08909.png,1499 +images-08910.png,1500 +images-08911.png,1501 +images-08912.png,1502 +images-08913.png,1503 +images-08914.png,1504 +images-08915.png,1505 +images-08916.png,1506 +images-08917.png,1507 +images-08918.png,1508 +images-08919.png,1509 +images-08920.png,1510 +images-08921.png,1511 +images-08922.png,1512 +images-08923.png,1513 +images-08924.png,1514 +images-08925.png,1515 +images-08926.png,1516 +images-08927.png,1517 +images-08928.png,1518 +images-08929.png,1519 +images-08930.png,1520 +images-08931.png,1521 +images-08932.png,1522 +images-08933.png,1523 +images-08934.png,1524 +images-08935.png,1525 +images-08936.png,1526 +images-08937.png,1527 +images-08938.png,1528 +images-08939.png,1529 +images-08940.png,1530 +images-08941.png,1531 +images-08942.png,1532 +images-08943.png,1533 +images-08944.png,1534 +images-08945.png,1535 +images-08946.png,1536 +images-08947.png,1537 +images-08948.png,1538 +images-08949.png,1539 +images-08950.png,1540 +images-08951.png,1541 +images-08952.png,1542 +images-08953.png,1543 +images-08954.png,1544 +images-08955.png,1545 +images-08956.png,1546 +images-08957.png,1547 +images-08958.png,1548 +images-08959.png,1549 +images-08960.png,1550 +images-08961.png,1551 +images-08962.png,1552 +images-08963.png,1553 +images-08964.png,1554 +images-08965.png,1555 +images-08966.png,1556 +images-08967.png,1557 +images-08968.png,1558 +images-08969.png,1559 +images-08970.png,1560 +images-08971.png,1561 +images-08972.png,1562 +images-08973.png,1563 +images-08974.png,1564 +images-08975.png,1565 +images-08976.png,1566 +images-08977.png,1567 +images-08978.png,1568 +images-08979.png,1569 +images-08980.png,1570 +images-08981.png,1571 +images-08982.png,1572 +images-08983.png,1573 +images-08984.png,1574 +images-08985.png,1575 +images-08986.png,1576 +images-08987.png,1577 +images-08988.png,1578 +images-08989.png,1579 +images-08990.png,1580 +images-08991.png,1581 +images-08992.png,1582 +images-08993.png,1583 +images-08994.png,1584 +images-08995.png,1585 +images-08996.png,1586 +images-08997.png,1587 +images-08998.png,1588 +images-08999.png,1589 +images-09000.png,1590 +images-09001.png,1591 +images-09002.png,1592 +images-09003.png,1593 +images-09004.png,1594 +images-09005.png,1595 +images-09006.png,1596 +images-09007.png,1597 +images-09008.png,1598 +images-09009.png,1599 +images-09010.png,1600 +images-09011.png,1601 +images-09012.png,1602 +images-09013.png,1603 +images-09014.png,1604 +images-09015.png,1605 +images-09016.png,1606 +images-09017.png,1607 +images-09018.png,1608 +images-09019.png,1609 +images-09020.png,1610 +images-09021.png,1611 +images-09022.png,1612 +images-09023.png,1613 +images-09024.png,1614 +images-09025.png,1615 +images-09026.png,1616 +images-09027.png,1617 +images-09028.png,1618 +images-09029.png,1619 +images-09030.png,1620 +images-09031.png,1621 +images-09032.png,1622 +images-09033.png,1623 +images-09034.png,1624 +images-09035.png,1625 +images-09036.png,1626 +images-09037.png,1627 +images-09038.png,1628 +images-09039.png,1629 +images-09040.png,1630 +images-09041.png,1631 +images-09042.png,1632 +images-09043.png,1633 +images-09044.png,1634 +images-09045.png,1635 +images-09046.png,1636 +images-09047.png,1637 +images-09048.png,1638 +images-09049.png,1639 +images-09050.png,1640 +images-09051.png,1641 +images-09052.png,1642 +images-09053.png,1643 +images-09054.png,1644 +images-09055.png,1645 +images-09056.png,1646 +images-09057.png,1647 +images-09058.png,1648 +images-09059.png,1649 +images-09060.png,1650 +images-09061.png,1651 +images-09062.png,1652 +images-09063.png,1653 +images-09064.png,1654 +images-09065.png,1655 +images-09066.png,1656 +images-09067.png,1657 +images-09068.png,1658 +images-09069.png,1659 +images-09070.png,1660 +images-09071.png,1661 +images-09072.png,1662 +images-09073.png,1663 +images-09074.png,1664 +images-09075.png,1665 +images-09076.png,1666 +images-09077.png,1667 +images-09078.png,1668 +images-09079.png,1669 +images-09080.png,1670 +images-09081.png,1671 +images-09082.png,1672 +images-09083.png,1673 +images-09084.png,1674 +images-09085.png,1675 +images-09086.png,1676 +images-09087.png,1677 +images-09088.png,1678 +images-09089.png,1679 +images-09090.png,1680 +images-09091.png,1681 +images-09092.png,1682 +images-09093.png,1683 +images-09094.png,1684 +images-09095.png,1685 +images-09096.png,1686 +images-09097.png,1687 +images-09098.png,1688 +images-09099.png,1689 +images-09100.png,1690 +images-09101.png,1691 +images-09102.png,1692 +images-09103.png,1693 +images-09104.png,1694 +images-09105.png,1695 +images-09106.png,1696 +images-09107.png,1697 +images-09108.png,1698 +images-09109.png,1699 +images-09110.png,1700 +images-09111.png,1701 +images-09112.png,1702 +images-09113.png,1703 +images-09114.png,1704 +images-09115.png,1705 +images-09116.png,1706 +images-09117.png,1707 +images-09118.png,1708 +images-09119.png,1709 +images-09120.png,1710 +images-09121.png,1711 +images-09122.png,1712 +images-09123.png,1713 +images-09124.png,1714 +images-09125.png,1715 +images-09126.png,1716 +images-09127.png,1717 +images-09128.png,1718 +images-09129.png,1719 +images-09130.png,1720 +images-09131.png,1721 +images-09132.png,1722 +images-09133.png,1723 +images-09134.png,1724 +images-09135.png,1725 +images-09136.png,1726 +images-09137.png,1727 +images-09138.png,1728 +images-09139.png,1729 +images-09140.png,1730 +images-09141.png,1731 +images-09142.png,1732 +images-09143.png,1733 +images-09144.png,1734 +images-09145.png,1735 +images-09146.png,1736 +images-09147.png,1737 +images-09148.png,1738 +images-09149.png,1739 +images-09150.png,1740 +images-09151.png,1741 +images-09152.png,1742 +images-09153.png,1743 +images-09154.png,1744 +images-09155.png,1745 +images-09156.png,1746 +images-09157.png,1747 +images-09158.png,1748 +images-09159.png,1749 +images-09160.png,1750 +images-09161.png,1751 +images-09162.png,1752 +images-09163.png,1753 +images-09164.png,1754 +images-09165.png,1755 +images-09166.png,1756 +images-09167.png,1757 +images-09168.png,1758 +images-09169.png,1759 +images-09170.png,1760 +images-09171.png,1761 +images-09172.png,1762 +images-09173.png,1763 +images-09174.png,1764 +images-09175.png,1765 +images-09176.png,1766 +images-09177.png,1767 +images-09178.png,1768 +images-09179.png,1769 +images-09180.png,1770 +images-09181.png,1771 +images-09182.png,1772 +images-09183.png,1773 +images-09184.png,1774 +images-09185.png,1775 +images-09186.png,1776 +images-09187.png,1777 +images-09188.png,1778 +images-09189.png,1779 +images-09190.png,1780 +images-09191.png,1781 +images-09192.png,1782 +images-09193.png,1783 +images-09194.png,1784 +images-09195.png,1785 +images-09196.png,1786 +images-09197.png,1787 +images-09198.png,1788 +images-09199.png,1789 +images-09200.png,1790 +images-09201.png,1791 +images-09202.png,1792 +images-09203.png,1793 +images-09204.png,1794 +images-09205.png,1795 +images-09206.png,1796 +images-09207.png,1797 +images-09208.png,1798 +images-09209.png,1799 +images-09210.png,1800 +images-09211.png,1801 +images-09212.png,1802 +images-09213.png,1803 +images-09214.png,1804 +images-09215.png,1805 +images-09216.png,1806 +images-09217.png,1807 +images-09218.png,1808 +images-09219.png,1809 +images-09220.png,1810 +images-09221.png,1811 +images-09222.png,1812 +images-09223.png,1813 +images-09224.png,1814 +images-09225.png,1815 +images-09226.png,1816 +images-09227.png,1817 +images-09228.png,1818 +images-09229.png,1819 +images-09230.png,1820 +images-09231.png,1821 +images-09232.png,1822 +images-09233.png,1823 +images-09234.png,1824 +images-09235.png,1825 +images-09236.png,1826 +images-09237.png,1827 +images-09238.png,1828 +images-09239.png,1829 +images-09240.png,1830 +images-09241.png,1831 +images-09242.png,1832 +images-09243.png,1833 +images-09244.png,1834 +images-09245.png,1835 +images-09246.png,1836 +images-09247.png,1837 +images-09248.png,1838 +images-09249.png,1839 +images-09250.png,1840 +images-09251.png,1841 +images-09252.png,1842 +images-09253.png,1843 +images-09254.png,1844 +images-09255.png,1845 +images-09256.png,1846 +images-09257.png,1847 +images-09258.png,1848 +images-09259.png,1849 +images-09260.png,1850 +images-09261.png,1851 +images-09262.png,1852 +images-09263.png,1853 +images-09264.png,1854 +images-09265.png,1855 +images-09266.png,1856 +images-09267.png,1857 +images-09268.png,1858 +images-09269.png,1859 +images-09270.png,1860 +images-09271.png,1861 +images-09272.png,1862 +images-09273.png,1863 +images-09274.png,1864 +images-09275.png,1865 +images-09276.png,1866 +images-09277.png,1867 +images-09278.png,1868 +images-09279.png,1869 +images-09280.png,1870 +images-09281.png,1871 +images-09282.png,1872 +images-09283.png,1873 +images-09284.png,1874 +images-09285.png,1875 +images-09286.png,1876 +images-09287.png,1877 +images-09288.png,1878 +images-09289.png,1879 +images-09290.png,1880 +images-09291.png,1881 +images-09292.png,1882 +images-09293.png,1883 +images-09294.png,1884 +images-09295.png,1885 +images-09296.png,1886 +images-09297.png,1887 +images-09298.png,1888 +images-09299.png,1889 +images-09300.png,1890 +images-09301.png,1891 +images-09302.png,1892 +images-09303.png,1893 +images-09304.png,1894 +images-09305.png,1895 +images-09306.png,1896 +images-09307.png,1897 +images-09308.png,1898 +images-09309.png,1899 +images-09310.png,1900 +images-09311.png,1901 +images-09312.png,1902 +images-09313.png,1903 +images-09314.png,1904 +images-09315.png,1905 +images-09316.png,1906 +images-09317.png,1907 +images-09318.png,1908 +images-09319.png,1909 +images-09320.png,1910 +images-09321.png,1911 +images-09322.png,1912 +images-09323.png,1913 +images-09324.png,1914 +images-09325.png,1915 +images-09326.png,1916 +images-09327.png,1917 +images-09328.png,1918 +images-09329.png,1919 +images-09330.png,1920 +images-09331.png,1921 +images-09332.png,1922 +images-09333.png,1923 +images-09334.png,1924 +images-09335.png,1925 +images-09336.png,1926 +images-09337.png,1927 +images-09338.png,1928 +images-09339.png,1929 +images-09340.png,1930 +images-09341.png,1931 +images-09342.png,1932 +images-09343.png,1933 +images-09344.png,1934 +images-09345.png,1935 +images-09346.png,1936 +images-09347.png,1937 +images-09348.png,1938 +images-09349.png,1939 +images-09350.png,1940 +images-09351.png,1941 +images-09352.png,1942 +images-09353.png,1943 +images-09354.png,1944 +images-09355.png,1945 +images-09356.png,1946 +images-09357.png,1947 +images-09358.png,1948 +images-09359.png,1949 +images-09360.png,1950 +images-09361.png,1951 +images-09362.png,1952 +images-09363.png,1953 +images-09364.png,1954 +images-09365.png,1955 +images-09366.png,1956 +images-09367.png,1957 +images-09368.png,1958 +images-09369.png,1959 +images-09370.png,1960 +images-09371.png,1961 +images-09372.png,1962 +images-09373.png,1963 +images-09374.png,1964 +images-09375.png,1965 +images-09376.png,1966 +images-09377.png,1967 +images-09378.png,1968 +images-09379.png,1969 +images-09380.png,1970 +images-09381.png,1971 +images-09382.png,1972 +images-09383.png,1973 +images-09384.png,1974 +images-09385.png,1975 +images-09386.png,1976 +images-09387.png,1977 +images-09388.png,1978 +images-09389.png,1979 +images-09390.png,1980 +images-09391.png,1981 +images-09392.png,1982 +images-09393.png,1983 +images-09394.png,1984 +images-09395.png,1985 +images-09396.png,1986 +images-09397.png,1987 +images-09398.png,1988 +images-09399.png,1989 +images-09400.png,1990 +images-09401.png,1991 +images-09402.png,1992 +images-09403.png,1993 +images-09404.png,1994 +images-09405.png,1995 +images-09406.png,1996 +images-09407.png,1997 +images-09408.png,1998 +images-09409.png,1999 +images-09410.png,2000 +images-09411.png,2001 +images-09412.png,2002 +images-09413.png,2003 +images-09414.png,2004 +images-09415.png,2005 +images-09416.png,2006 +images-09417.png,2007 +images-09418.png,2008 +images-09419.png,2009 +images-09420.png,2010 +images-09421.png,2011 +images-09422.png,2012 +images-09423.png,2013 +images-09424.png,2014 +images-09425.png,2015 +images-09426.png,2016 +images-09427.png,2017 +images-09428.png,2018 +images-09429.png,2019 +images-09430.png,2020 +images-09431.png,2021 +images-09432.png,2022 +images-09433.png,2023 +images-09434.png,2024 +images-09435.png,2025 +images-09436.png,2026 +images-09437.png,2027 +images-09438.png,2028 +images-09439.png,2029 +images-09440.png,2030 +images-09441.png,2031 +images-09442.png,2032 +images-09443.png,2033 +images-09444.png,2034 +images-09445.png,2035 +images-09446.png,2036 +images-09447.png,2037 +images-09448.png,2038 +images-09449.png,2039 +images-09450.png,2040 +images-09451.png,2041 +images-09452.png,2042 +images-09453.png,2043 +images-09454.png,2044 +images-09455.png,2045 +images-09456.png,2046 +images-09457.png,2047 +images-09458.png,2048 +images-09459.png,2049 +images-09460.png,2050 +images-09461.png,2051 +images-09462.png,2052 +images-09463.png,2053 +images-09464.png,2054 +images-09465.png,2055 +images-09466.png,2056 +images-09467.png,2057 +images-09468.png,2058 +images-09469.png,2059 +images-09470.png,2060 +images-09471.png,2061 +images-09472.png,2062 +images-09473.png,2063 +images-09474.png,2064 +images-09475.png,2065 +images-09476.png,2066 +images-09477.png,2067 +images-09478.png,2068 +images-09479.png,2069 +images-09480.png,2070 +images-09481.png,2071 +images-09482.png,2072 +images-09483.png,2073 +images-09484.png,2074 +images-09485.png,2075 +images-09486.png,2076 +images-09487.png,2077 +images-09488.png,2078 +images-09489.png,2079 +images-09490.png,2080 +images-09491.png,2081 +images-09492.png,2082 +images-09493.png,2083 +images-09494.png,2084 +images-09495.png,2085 +images-09496.png,2086 +images-09497.png,2087 +images-09498.png,2088 +images-09499.png,2089 +images-09500.png,2090 +images-09501.png,2091 +images-09502.png,2092 +images-09503.png,2093 +images-09504.png,2094 +images-09505.png,2095 +images-09506.png,2096 +images-09507.png,2097 +images-09508.png,2098 +images-09509.png,2099 +images-09510.png,2100 +images-09511.png,2101 +images-09512.png,2102 +images-09513.png,2103 +images-09514.png,2104 +images-09515.png,2105 +images-09516.png,2106 +images-09517.png,2107 +images-09518.png,2108 +images-09519.png,2109 +images-09520.png,2110 +images-09521.png,2111 +images-09522.png,2112 +images-09523.png,2113 +images-09524.png,2114 +images-09525.png,2115 +images-09526.png,2116 +images-09527.png,2117 +images-09528.png,2118 +images-09529.png,2119 +images-09530.png,2120 +images-09531.png,2121 +images-09532.png,2122 +images-09533.png,2123 +images-09534.png,2124 +images-09535.png,2125 +images-09536.png,2126 +images-09537.png,2127 +images-09538.png,2128 +images-09539.png,2129 +images-09540.png,2130 +images-09541.png,2131 +images-09542.png,2132 +images-09543.png,2133 +images-09544.png,2134 +images-09545.png,2135 +images-09546.png,2136 +images-09547.png,2137 +images-09548.png,2138 +images-09549.png,2139 +images-09550.png,2140 +images-09551.png,2141 +images-09552.png,2142 +images-09553.png,2143 +images-09554.png,2144 +images-09555.png,2145 +images-09556.png,2146 +images-09557.png,2147 +images-09558.png,2148 +images-09559.png,2149 +images-09560.png,2150 +images-09561.png,2151 +images-09562.png,2152 +images-09563.png,2153 +images-09564.png,2154 +images-09565.png,2155 +images-09566.png,2156 +images-09567.png,2157 +images-09568.png,2158 +images-09569.png,2159 +images-09570.png,2160 +images-09571.png,2161 +images-09572.png,2162 +images-09573.png,2163 +images-09574.png,2164 +images-09575.png,2165 +images-09576.png,2166 +images-09577.png,2167 +images-09578.png,2168 +images-09579.png,2169 +images-09580.png,2170 +images-09581.png,2171 +images-09582.png,2172 +images-09583.png,2173 +images-09584.png,2174 +images-09585.png,2175 +images-09586.png,2176 +images-09587.png,2177 +images-09588.png,2178 +images-09589.png,2179 +images-09590.png,2180 +images-09591.png,2181 +images-09592.png,2182 +images-09593.png,2183 +images-09594.png,2184 +images-09595.png,2185 +images-09596.png,2186 +images-09597.png,2187 +images-09598.png,2188 +images-09599.png,2189 +images-09600.png,2190 +images-09601.png,2191 +images-09602.png,2192 +images-09603.png,2193 +images-09604.png,2194 +images-09605.png,2195 +images-09606.png,2196 +images-09607.png,2197 +images-09608.png,2198 +images-09609.png,2199 +images-09610.png,2200 +images-09611.png,2201 +images-09612.png,2202 +images-09613.png,2203 +images-09614.png,2204 +images-09615.png,2205 +images-09616.png,2206 +images-09617.png,2207 +images-09618.png,2208 +images-09619.png,2209 +images-09620.png,2210 +images-09621.png,2211 +images-09622.png,2212 +images-09623.png,2213 +images-09624.png,2214 +images-09625.png,2215 +images-09626.png,2216 +images-09627.png,2217 +images-09628.png,2218 +images-09629.png,2219 +images-09630.png,2220 +images-09631.png,2221 +images-09632.png,2222 +images-09633.png,2223 +images-09634.png,2224 +images-09635.png,2225 +images-09636.png,2226 +images-09637.png,2227 +images-09638.png,2228 +images-09639.png,2229 +images-09640.png,2230 +images-09641.png,2231 +images-09642.png,2232 +images-09643.png,2233 +images-09644.png,2234 +images-09645.png,2235 +images-09646.png,2236 +images-09647.png,2237 +images-09648.png,2238 +images-09649.png,2239 +images-09650.png,2240 +images-09651.png,2241 +images-09652.png,2242 +images-09653.png,2243 +images-09654.png,2244 +images-09655.png,2245 +images-09656.png,2246 +images-09657.png,2247 +images-09658.png,2248 +images-09659.png,2249 +images-09660.png,2250 +images-09661.png,2251 +images-09662.png,2252 +images-09663.png,2253 +images-09664.png,2254 +images-09665.png,2255 +images-09666.png,2256 +images-09667.png,2257 +images-09668.png,2258 +images-09669.png,2259 +images-09670.png,2260 +images-09671.png,2261 +images-09672.png,2262 +images-09673.png,2263 +images-09674.png,2264 +images-09675.png,2265 +images-09676.png,2266 +images-09677.png,2267 +images-09678.png,2268 +images-09679.png,2269 +images-09680.png,2270 +images-09681.png,2271 +images-09682.png,2272 +images-09683.png,2273 +images-09684.png,2274 +images-09685.png,2275 +images-09686.png,2276 +images-09687.png,2277 +images-09688.png,2278 +images-09689.png,2279 +images-09690.png,2280 +images-09691.png,2281 +images-09692.png,2282 +images-09693.png,2283 +images-09694.png,2284 +images-09695.png,2285 +images-09696.png,2286 +images-09697.png,2287 +images-09698.png,2288 +images-09699.png,2289 +images-09700.png,2290 +images-09701.png,2291 +images-09702.png,2292 +images-09703.png,2293 +images-09704.png,2294 +images-09705.png,2295 +images-09706.png,2296 +images-09707.png,2297 +images-09708.png,2298 +images-09709.png,2299 +images-09710.png,2300 +images-09711.png,2301 +images-09712.png,2302 +images-09713.png,2303 +images-09714.png,2304 +images-09715.png,2305 +images-09716.png,2306 +images-09717.png,2307 +images-09718.png,2308 +images-09719.png,2309 +images-09720.png,2310 +images-09721.png,2311 +images-09722.png,2312 +images-09723.png,2313 +images-09724.png,2314 +images-09725.png,2315 +images-09726.png,2316 +images-09727.png,2317 +images-09728.png,2318 +images-09729.png,2319 +images-09730.png,2320 +images-09731.png,2321 +images-09732.png,2322 +images-09733.png,2323 +images-09734.png,2324 +images-09735.png,2325 +images-09736.png,2326 +images-09737.png,2327 +images-09738.png,2328 +images-09739.png,2329 +images-09740.png,2330 +images-09741.png,2331 +images-09742.png,2332 +images-09743.png,2333 +images-09744.png,2334 +images-09745.png,2335 +images-09746.png,2336 +images-09747.png,2337 +images-09748.png,2338 +images-09749.png,2339 +images-09750.png,2340 +images-09751.png,2341 +images-09752.png,2342 +images-09753.png,2343 +images-09754.png,2344 +images-09755.png,2345 +images-09756.png,2346 +images-09757.png,2347 +images-09758.png,2348 +images-09759.png,2349 +images-09760.png,2350 +images-09761.png,2351 +images-09762.png,2352 +images-09763.png,2353 +images-09764.png,2354 +images-09765.png,2355 +images-09766.png,2356 +images-09767.png,2357 +images-09768.png,2358 +images-09769.png,2359 +images-09770.png,2360 +images-09771.png,2361 +images-09772.png,2362 +images-09773.png,2363 +images-09774.png,2364 +images-09775.png,2365 +images-09776.png,2366 +images-09777.png,2367 +images-09778.png,2368 +images-09779.png,2369 +images-09780.png,2370 +images-09781.png,2371 +images-09782.png,2372 +images-09783.png,2373 +images-09784.png,2374 +images-09785.png,2375 +images-09786.png,2376 +images-09787.png,2377 +images-09788.png,2378 +images-09789.png,2379 +images-09790.png,2380 +images-09791.png,2381 +images-09792.png,2382 +images-09793.png,2383 +images-09794.png,2384 +images-09795.png,2385 +images-09796.png,2386 +images-09797.png,2387 +images-09798.png,2388 +images-09799.png,2389 +images-09800.png,2390 +images-09801.png,2391 +images-09802.png,2392 +images-09803.png,2393 +images-09804.png,2394 +images-09805.png,2395 +images-09806.png,2396 +images-09807.png,2397 +images-09808.png,2398 +images-09809.png,2399 +images-09810.png,2400 +images-09811.png,2401 +images-09812.png,2402 +images-09813.png,2403 +images-09814.png,2404 +images-09815.png,2405 +images-09816.png,2406 +images-09817.png,2407 +images-09818.png,2408 +images-09819.png,2409 +images-09820.png,2410 +images-09821.png,2411 +images-09822.png,2412 +images-09823.png,2413 +images-09824.png,2414 +images-09825.png,2415 +images-09826.png,2416 +images-09827.png,2417 +images-09828.png,2418 +images-09829.png,2419 +images-09830.png,2420 +images-09831.png,2421 +images-09832.png,2422 +images-09833.png,2423 +images-09834.png,2424 +images-09835.png,2425 +images-09836.png,2426 +images-09837.png,2427 +images-09838.png,2428 +images-09839.png,2429 +images-09840.png,2430 +images-09841.png,2431 +images-09842.png,2432 +images-09843.png,2433 +images-09844.png,2434 +images-09845.png,2435 +images-09846.png,2436 +images-09847.png,2437 +images-09848.png,2438 +images-09849.png,2439 +images-09850.png,2440 +images-09851.png,2441 +images-09852.png,2442 +images-09853.png,2443 +images-09854.png,2444 +images-09855.png,2445 +images-09856.png,2446 +images-09857.png,2447 +images-09858.png,2448 +images-09859.png,2449 +images-09860.png,2450 +images-09861.png,2451 +images-09862.png,2452 +images-09863.png,2453 +images-09864.png,2454 +images-09865.png,2455 +images-09866.png,2456 +images-09867.png,2457 +images-09868.png,2458 +images-09869.png,2459 +images-09870.png,2460 +images-09871.png,2461 +images-09872.png,2462 +images-09873.png,2463 +images-09874.png,2464 +images-09875.png,2465 +images-09876.png,2466 +images-09877.png,2467 +images-09878.png,2468 +images-09879.png,2469 +images-09880.png,2470 +images-09881.png,2471 +images-09882.png,2472 +images-09883.png,2473 +images-09884.png,2474 +images-09885.png,2475 +images-09886.png,2476 +images-09887.png,2477 +images-09888.png,2478 +images-09889.png,2479 +images-09890.png,2480 +images-09891.png,2481 +images-09892.png,2482 +images-09893.png,2483 +images-09894.png,2484 +images-09895.png,2485 +images-09896.png,2486 +images-09897.png,2487 +images-09898.png,2488 +images-09899.png,2489 +images-09900.png,2490 +images-09901.png,2491 +images-09902.png,2492 +images-09903.png,2493 +images-09904.png,2494 +images-09905.png,2495 +images-09906.png,2496 +images-09907.png,2497 +images-09908.png,2498 +images-09909.png,2499 +images-09910.png,2500 +images-09911.png,2501 +images-09912.png,2502 +images-09913.png,2503 +images-09914.png,2504 +images-09915.png,2505 +images-09916.png,2506 +images-09917.png,2507 +images-09918.png,2508 +images-09919.png,2509 +images-09920.png,2510 +images-09921.png,2511 +images-09922.png,2512 +images-09923.png,2513 +images-09924.png,2514 +images-09925.png,2515 +images-09926.png,2516 +images-09927.png,2517 +images-09928.png,2518 +images-09929.png,2519 +images-09930.png,2520 +images-09931.png,2521 +images-09932.png,2522 +images-09933.png,2523 +images-09934.png,2524 +images-09935.png,2525 +images-09936.png,2526 +images-09937.png,2527 +images-09938.png,2528 +images-09939.png,2529 +images-09940.png,2530 +images-09941.png,2531 +images-09942.png,2532 +images-09943.png,2533 +images-09944.png,2534 +images-09945.png,2535 +images-09946.png,2536 +images-09947.png,2537 +images-09948.png,2538 +images-09949.png,2539 +images-09950.png,2540 +images-09951.png,2541 +images-09952.png,2542 +images-09953.png,2543 +images-09954.png,2544 +images-09955.png,2545 +images-09956.png,2546 +images-09957.png,2547 +images-09958.png,2548 +images-09959.png,2549 +images-09960.png,2550 +images-09961.png,2551 +images-09962.png,2552 +images-09963.png,2553 +images-09964.png,2554 +images-09965.png,2555 +images-09966.png,2556 +images-09979.png,2557 +images-09980.png,2558 +images-09981.png,2559 +images-09982.png,2560 +images-09983.png,2561 +images-09984.png,2562 +images-09985.png,2563 +images-09986.png,2564 +images-09987.png,2565 +images-09988.png,2566 +images-09989.png,2567 +images-09990.png,2568 +images-09991.png,2569 +images-09992.png,2570 +images-09993.png,2571 +images-09994.png,2572 +images-09995.png,2573 +images-09996.png,2574 +images-09997.png,2575 +images-09998.png,2576 +images-09999.png,2577 +images-10000.png,2578 +images-10001.png,2579 +images-10002.png,2580 +images-10003.png,2581 +images-10004.png,2582 +images-10005.png,2583 +images-10006.png,2584 +images-10007.png,2585 +images-10008.png,2586 +images-10009.png,2587 +images-10010.png,2588 +images-10011.png,2589 +images-10012.png,2590 +images-10013.png,2591 +images-10014.png,2592 +images-10015.png,2593 +images-10016.png,2594 +images-10017.png,2595 +images-10018.png,2596 +images-10019.png,2597 +images-10020.png,2598 +images-10021.png,2599 +images-10022.png,2600 +images-10023.png,2601 +images-10024.png,2602 +images-10025.png,2603 +images-10026.png,2604 +images-10027.png,2605 +images-10028.png,2606 +images-10029.png,2607 +images-10030.png,2608 +images-10031.png,2609 +images-10032.png,2610 +images-10033.png,2611 +images-10034.png,2612 +images-10035.png,2613 +images-10036.png,2614 +images-10037.png,2615 +images-10038.png,2616 +images-10039.png,2617 +images-10040.png,2618 +images-10041.png,2619 +images-10204.png,2620 +images-10205.png,2621 +images-10206.png,2622 +images-10207.png,2623 +images-10208.png,2624 +images-10209.png,2625 +images-10210.png,2626 +images-10211.png,2627 +images-10212.png,2628 +images-10213.png,2629 +images-10214.png,2630 +images-10215.png,2631 +images-10216.png,2632 +images-10217.png,2633 +images-10218.png,2634 +images-10219.png,2635 +images-10220.png,2636 +images-10221.png,2637 +images-10222.png,2638 +images-10223.png,2639 +images-10224.png,2640 +images-10225.png,2641 +images-10226.png,2642 +images-10227.png,2643 +images-10228.png,2644 +images-10229.png,2645 +images-10230.png,2646 +images-10231.png,2647 +images-10232.png,2648 +images-10233.png,2649 +images-10234.png,2650 +images-10235.png,2651 +images-10236.png,2652 +images-10237.png,2653 +images-10238.png,2654 +images-10268.png,2655 +images-10269.png,2656 +images-10270.png,2657 +images-10271.png,2658 +images-10272.png,2659 +images-10273.png,2660 +images-10274.png,2661 +images-10275.png,2662 +images-10276.png,2663 +images-10277.png,2664 +images-10278.png,2665 +images-10279.png,2666 +images-10280.png,2667 +images-10281.png,2668 +images-10282.png,2669 +images-10283.png,2670 +images-10284.png,2671 +images-10285.png,2672 +images-10286.png,2673 +images-10287.png,2674 +images-10288.png,2675 +images-10289.png,2676 +images-10290.png,2677 +images-10291.png,2678 +images-10292.png,2679 +images-10293.png,2680 +images-10294.png,2681 +images-10295.png,2682 +images-10296.png,2683 +images-10297.png,2684 +images-10298.png,2685 +images-10299.png,2686 +images-10300.png,2687 +images-10301.png,2688 +images-10302.png,2689 +images-10303.png,2690 +images-10304.png,2691 +images-10305.png,2692 +images-10306.png,2693 +images-10307.png,2694 +images-10308.png,2695 +images-10309.png,2696 +images-10310.png,2697 +images-10311.png,2698 +images-10312.png,2699 +images-10313.png,2700 +images-10314.png,2701 +images-10315.png,2702 +images-10316.png,2703 +images-10317.png,2704 +images-10318.png,2705 +images-10319.png,2706 +images-10320.png,2707 +images-10321.png,2708 +images-10322.png,2709 +images-10323.png,2710 +images-10324.png,2711 +images-10325.png,2712 +images-10326.png,2713 +images-10327.png,2714 +images-10328.png,2715 +images-10329.png,2716 +images-10330.png,2717 +images-10331.png,2718 +images-10332.png,2719 +images-10333.png,2720 +images-10334.png,2721 +images-10335.png,2722 +images-10336.png,2723 +images-10337.png,2724 +images-10338.png,2725 +images-10339.png,2726 +images-10340.png,2727 +images-10341.png,2728 +images-10342.png,2729 +images-10343.png,2730 +images-10344.png,2731 +images-10345.png,2732 +images-10346.png,2733 +images-10347.png,2734 +images-10348.png,2735 +images-10349.png,2736 +images-10350.png,2737 +images-10351.png,2738 +images-10352.png,2739 +images-10353.png,2740 +images-10354.png,2741 +images-10355.png,2742 +images-10356.png,2743 +images-10357.png,2744 +images-10358.png,2745 +images-10359.png,2746 +images-10360.png,2747 +images-10361.png,2748 +images-10362.png,2749 +images-10363.png,2750 +images-10364.png,2751 +images-10365.png,2752 +images-10366.png,2753 +images-10367.png,2754 +images-10368.png,2755 +images-10369.png,2756 +images-10370.png,2757 +images-10371.png,2758 +images-10372.png,2759 +images-10373.png,2760 +images-10374.png,2761 +images-10375.png,2762 +images-10376.png,2763 +images-10377.png,2764 +images-10378.png,2765 +images-10379.png,2766 +images-10380.png,2767 +images-10381.png,2768 +images-10382.png,2769 +images-10383.png,2770 +images-10384.png,2771 +images-10385.png,2772 +images-10386.png,2773 +images-10387.png,2774 +images-10388.png,2775 +images-10389.png,2776 +images-10390.png,2777 +images-10391.png,2778 +images-10392.png,2779 +images-10393.png,2780 +images-10394.png,2781 +images-10395.png,2782 +images-10396.png,2783 +images-10397.png,2784 +images-10398.png,2785 +images-10399.png,2786 +images-10400.png,2787 +images-10401.png,2788 +images-10402.png,2789 +images-10403.png,2790 +images-10404.png,2791 +images-10405.png,2792 +images-10406.png,2793 +images-10407.png,2794 +images-10416.png,2795 +images-10417.png,2796 +images-10418.png,2797 +images-10419.png,2798 +images-10420.png,2799 +images-10421.png,2800 +images-10422.png,2801 +images-10423.png,2802 +images-10424.png,2803 +images-10425.png,2804 +images-10426.png,2805 +images-10427.png,2806 +images-10428.png,2807 +images-10429.png,2808 +images-10430.png,2809 +images-10431.png,2810 +images-10432.png,2811 +images-10433.png,2812 +images-10434.png,2813 +images-10435.png,2814 +images-10436.png,2815 +images-10437.png,2816 +images-10438.png,2817 +images-10439.png,2818 +images-10440.png,2819 +images-10441.png,2820 +images-10442.png,2821 +images-10443.png,2822 +images-10444.png,2823 +images-10445.png,2824 +images-10446.png,2825 +images-10447.png,2826 +images-10448.png,2827 +images-10449.png,2828 +images-10450.png,2829 +images-10451.png,2830 +images-10452.png,2831 +images-10453.png,2832 +images-10454.png,2833 +images-10455.png,2834 +images-10456.png,2835 +images-10457.png,2836 +images-10458.png,2837 +images-10459.png,2838 +images-10460.png,2839 +images-10461.png,2840 +images-10462.png,2841 +images-10463.png,2842 +images-10464.png,2843 +images-10465.png,2844 +images-10466.png,2845 +images-10467.png,2846 +images-10468.png,2847 +images-10469.png,2848 +images-10470.png,2849 +images-10471.png,2850 +images-10472.png,2851 +images-10473.png,2852 +images-10474.png,2853 +images-10475.png,2854 +images-10476.png,2855 +images-10477.png,2856 +images-10478.png,2857 +images-10479.png,2858 +images-10480.png,2859 +images-10481.png,2860 +images-10482.png,2861 +images-10483.png,2862 +images-10484.png,2863 +images-10485.png,2864 +images-10486.png,2865 +images-10487.png,2866 +images-10488.png,2867 +images-10489.png,2868 +images-10490.png,2869 +images-10491.png,2870 +images-10492.png,2871 +images-10493.png,2872 +images-10494.png,2873 +images-10495.png,2874 +images-10496.png,2875 +images-10497.png,2876 +images-10498.png,2877 +images-10499.png,2878 +images-10500.png,2879 +images-10501.png,2880 +images-10502.png,2881 +images-10503.png,2882 +images-10504.png,2883 +images-10505.png,2884 +images-10506.png,2885 +images-10507.png,2886 +images-10508.png,2887 +images-10509.png,2888 +images-10510.png,2889 +images-10511.png,2890 +images-10512.png,2891 +images-10513.png,2892 +images-10514.png,2893 +images-10515.png,2894 +images-10516.png,2895 +images-10517.png,2896 +images-10518.png,2897 +images-10519.png,2898 +images-10520.png,2899 +images-10521.png,2900 +images-10522.png,2901 +images-10523.png,2902 +images-10524.png,2903 +images-10525.png,2904 +images-10526.png,2905 +images-10527.png,2906 +images-10528.png,2907 +images-10529.png,2908 +images-10530.png,2909 +images-10531.png,2910 +images-10532.png,2911 +images-10533.png,2912 +images-10534.png,2913 +images-10535.png,2914 +images-10536.png,2915 +images-10537.png,2916 +images-10538.png,2917 +images-10539.png,2918 +images-10540.png,2919 +images-10541.png,2920 +images-10542.png,2921 +images-10543.png,2922 +images-10544.png,2923 +images-10545.png,2924 +images-10546.png,2925 +images-10547.png,2926 +images-10548.png,2927 +images-10549.png,2928 +images-10550.png,2929 +images-10551.png,2930 +images-10552.png,2931 +images-10553.png,2932 +images-10554.png,2933 +images-10555.png,2934 +images-10556.png,2935 +images-10557.png,2936 +images-10558.png,2937 +images-10559.png,2938 +images-10560.png,2939 +images-10561.png,2940 +images-10562.png,2941 +images-10563.png,2942 +images-10564.png,2943 +images-10565.png,2944 +images-10566.png,2945 +images-10567.png,2946 +images-10568.png,2947 +images-10569.png,2948 +images-10570.png,2949 +images-10571.png,2950 +images-10572.png,2951 +images-10573.png,2952 +images-10574.png,2953 +images-10575.png,2954 +images-10576.png,2955 +images-10577.png,2956 +images-10578.png,2957 +images-10579.png,2958 +images-10580.png,2959 +images-10581.png,2960 +images-10582.png,2961 +images-10583.png,2962 +images-10584.png,2963 +images-10585.png,2964 +images-10586.png,2965 +images-10587.png,2966 +images-10588.png,2967 +images-10589.png,2968 +images-10590.png,2969 +images-10591.png,2970 +images-10592.png,2971 +images-10593.png,2972 +images-10594.png,2973 +images-10595.png,2974 +images-10596.png,2975 +images-10597.png,2976 +images-10598.png,2977 +images-10599.png,2978 +images-10600.png,2979 +images-10601.png,2980 +images-10602.png,2981 +images-10603.png,2982 +images-10604.png,2983 +images-10605.png,2984 +images-10606.png,2985 +images-10607.png,2986 +images-10608.png,2987 +images-10609.png,2988 +images-10610.png,2989 +images-10611.png,2990 +images-10612.png,2991 +images-10613.png,2992 +images-10614.png,2993 +images-10615.png,2994 +images-10616.png,2995 +images-10617.png,2996 +images-10618.png,2997 +images-10619.png,2998 +images-10620.png,2999 +images-10621.png,3000 +images-10622.png,3001 +images-10623.png,3002 +images-10624.png,3003 +images-10625.png,3004 +images-10626.png,3005 +images-10627.png,3006 +images-10628.png,3007 +images-10629.png,3008 +images-10630.png,3009 +images-10631.png,3010 +images-10632.png,3011 +images-10633.png,3012 +images-10634.png,3013 +images-10635.png,3014 +images-10636.png,3015 +images-10637.png,3016 +images-10638.png,3017 +images-10639.png,3018 +images-10640.png,3019 +images-10641.png,3020 +images-10642.png,3021 +images-10643.png,3022 +images-10644.png,3023 +images-10645.png,3024 +images-10646.png,3025 +images-10647.png,3026 +images-10648.png,3027 +images-10649.png,3028 +images-10650.png,3029 +images-10651.png,3030 +images-10652.png,3031 +images-10653.png,3032 +images-10654.png,3033 +images-10655.png,3034 +images-10656.png,3035 +images-10657.png,3036 +images-10658.png,3037 +images-10659.png,3038 +images-10660.png,3039 +images-10661.png,3040 +images-10662.png,3041 +images-10663.png,3042 +images-10664.png,3043 +images-10665.png,3044 +images-10666.png,3045 +images-10667.png,3046 +images-10668.png,3047 +images-10669.png,3048 +images-10670.png,3049 +images-10671.png,3050 +images-10672.png,3051 +images-10673.png,3052 +images-10674.png,3053 +images-10675.png,3054 +images-10676.png,3055 +images-10677.png,3056 +images-10678.png,3057 +images-10679.png,3058 +images-10680.png,3059 +images-10681.png,3060 +images-10682.png,3061 +images-10683.png,3062 +images-10684.png,3063 +images-10685.png,3064 +images-10686.png,3065 +images-10687.png,3066 +images-10688.png,3067 +images-10689.png,3068 +images-10690.png,3069 +images-10691.png,3070 +images-10692.png,3071 +images-10693.png,3072 +images-10694.png,3073 +images-10695.png,3074 +images-10696.png,3075 +images-10697.png,3076 +images-10698.png,3077 +images-10699.png,3078 +images-10700.png,3079 +images-10701.png,3080 +images-10702.png,3081 +images-10703.png,3082 +images-10704.png,3083 +images-10705.png,3084 +images-10706.png,3085 +images-10707.png,3086 +images-10708.png,3087 +images-10709.png,3088 +images-10710.png,3089 +images-10711.png,3090 +images-10712.png,3091 +images-10713.png,3092 +images-10714.png,3093 +images-10715.png,3094 +images-10716.png,3095 +images-10717.png,3096 +images-10718.png,3097 +images-10719.png,3098 +images-10720.png,3099 +images-10721.png,3100 +images-10722.png,3101 +images-10723.png,3102 +images-10724.png,3103 +images-10725.png,3104 +images-10726.png,3105 +images-10727.png,3106 +images-10728.png,3107 +images-10729.png,3108 +images-10730.png,3109 +images-10731.png,3110 +images-10732.png,3111 +images-10733.png,3112 +images-10734.png,3113 +images-10735.png,3114 +images-10736.png,3115 +images-10737.png,3116 +images-10738.png,3117 +images-10739.png,3118 +images-10740.png,3119 +images-10741.png,3120 +images-10742.png,3121 +images-10743.png,3122 +images-10744.png,3123 +images-10745.png,3124 +images-10746.png,3125 +images-10747.png,3126 +images-10748.png,3127 +images-10749.png,3128 +images-10750.png,3129 +images-10751.png,3130 +images-10752.png,3131 +images-10753.png,3132 +images-10754.png,3133 +images-10755.png,3134 +images-10756.png,3135 +images-10757.png,3136 +images-10758.png,3137 +images-10759.png,3138 +images-10760.png,3139 +images-10761.png,3140 +images-10762.png,3141 +images-10763.png,3142 +images-10764.png,3143 +images-10765.png,3144 +images-10766.png,3145 +images-10767.png,3146 +images-10768.png,3147 +images-10769.png,3148 +images-10770.png,3149 +images-10771.png,3150 +images-10772.png,3151 +images-10773.png,3152 +images-10774.png,3153 +images-10775.png,3154 +images-10776.png,3155 +images-10777.png,3156 +images-10778.png,3157 +images-10779.png,3158 +images-10780.png,3159 +images-10781.png,3160 +images-10782.png,3161 +images-10783.png,3162 +images-10784.png,3163 +images-10785.png,3164 +images-10786.png,3165 +images-10787.png,3166 +images-10788.png,3167 +images-10789.png,3168 +images-10790.png,3169 +images-10791.png,3170 +images-10792.png,3171 +images-10793.png,3172 +images-10794.png,3173 +images-10795.png,3174 +images-10796.png,3175 +images-10797.png,3176 +images-10798.png,3177 +images-10799.png,3178 +images-10800.png,3179 +images-10801.png,3180 +images-10802.png,3181 +images-10803.png,3182 +images-10804.png,3183 +images-10805.png,3184 +images-10806.png,3185 +images-10807.png,3186 +images-10808.png,3187 +images-10809.png,3188 +images-10810.png,3189 +images-10811.png,3190 +images-10812.png,3191 +images-10813.png,3192 +images-10814.png,3193 +images-10815.png,3194 +images-10816.png,3195 +images-10817.png,3196 +images-10818.png,3197 +images-10819.png,3198 +images-10820.png,3199 +images-10821.png,3200 +images-10822.png,3201 +images-10823.png,3202 +images-10824.png,3203 +images-10825.png,3204 +images-10826.png,3205 +images-10827.png,3206 +images-10828.png,3207 +images-10829.png,3208 +images-10830.png,3209 +images-10831.png,3210 +images-10832.png,3211 +images-10833.png,3212 +images-10834.png,3213 +images-10835.png,3214 +images-10836.png,3215 +images-10837.png,3216 +images-10838.png,3217 +images-10839.png,3218 +images-10840.png,3219 +images-10841.png,3220 +images-10842.png,3221 +images-10843.png,3222 +images-10844.png,3223 +images-10845.png,3224 +images-10846.png,3225 +images-10847.png,3226 +images-10848.png,3227 +images-10849.png,3228 +images-10850.png,3229 +images-10851.png,3230 +images-10852.png,3231 +images-10853.png,3232 +images-10854.png,3233 +images-10855.png,3234 +images-10856.png,3235 +images-10857.png,3236 +images-10858.png,3237 +images-10859.png,3238 +images-10860.png,3239 +images-10861.png,3240 +images-10862.png,3241 +images-10863.png,3242 +images-10864.png,3243 +images-10865.png,3244 +images-10866.png,3245 +images-10867.png,3246 +images-10868.png,3247 +images-10869.png,3248 +images-10870.png,3249 +images-10871.png,3250 +images-10872.png,3251 +images-10873.png,3252 +images-10874.png,3253 +images-10875.png,3254 +images-10876.png,3255 +images-10877.png,3256 +images-10878.png,3257 +images-10879.png,3258 +images-10880.png,3259 +images-10881.png,3260 +images-10882.png,3261 +images-10883.png,3262 +images-10884.png,3263 +images-10885.png,3264 +images-10886.png,3265 +images-10887.png,3266 +images-10888.png,3267 +images-10889.png,3268 +images-10890.png,3269 +images-10891.png,3270 +images-10892.png,3271 +images-10893.png,3272 +images-10894.png,3273 +images-10895.png,3274 +images-10896.png,3275 +images-10897.png,3276 +images-10898.png,3277 +images-10899.png,3278 +images-10900.png,3279 +images-10901.png,3280 +images-10902.png,3281 +images-10903.png,3282 +images-10904.png,3283 +images-10905.png,3284 +images-10906.png,3285 +images-10907.png,3286 +images-10908.png,3287 +images-10909.png,3288 +images-10910.png,3289 +images-10911.png,3290 +images-10912.png,3291 +images-10913.png,3292 +images-10914.png,3293 +images-10915.png,3294 +images-10916.png,3295 +images-10917.png,3296 +images-10918.png,3297 +images-10919.png,3298 +images-10920.png,3299 +images-10921.png,3300 +images-10922.png,3301 +images-10923.png,3302 +images-10924.png,3303 +images-10925.png,3304 +images-10926.png,3305 +images-10927.png,3306 +images-10928.png,3307 +images-10929.png,3308 +images-10930.png,3309 +images-10931.png,3310 +images-10932.png,3311 +images-10933.png,3312 +images-10934.png,3313 +images-10935.png,3314 +images-10936.png,3315 +images-10937.png,3316 +images-10938.png,3317 +images-10939.png,3318 +images-10940.png,3319 +images-10941.png,3320 +images-10942.png,3321 +images-10943.png,3322 +images-10947.png,3323 +images-10948.png,3324 +images-10949.png,3325 +images-10950.png,3326 +images-10951.png,3327 +images-10952.png,3328 +images-10953.png,3329 +images-10954.png,3330 +images-10955.png,3331 +images-10956.png,3332 +images-10957.png,3333 +images-10958.png,3334 +images-10959.png,3335 +images-10960.png,3336 +images-10961.png,3337 +images-10962.png,3338 +images-10963.png,3339 +images-10964.png,3340 +images-10965.png,3341 +images-10966.png,3342 +images-10967.png,3343 +images-10968.png,3344 +images-10969.png,3345 +images-10970.png,3346 +images-10971.png,3347 +images-10972.png,3348 +images-10973.png,3349 +images-10974.png,3350 +images-10975.png,3351 +images-10976.png,3352 +images-10977.png,3353 +images-10978.png,3354 +images-10979.png,3355 +images-10980.png,3356 +images-10981.png,3357 +images-10982.png,3358 +images-10983.png,3359 +images-10984.png,3360 +images-10991.png,3361 +images-10992.png,3362 +images-10993.png,3363 +images-10994.png,3364 +images-10995.png,3365 +images-10996.png,3366 +images-11003.png,3367 +images-11004.png,3368 +images-11005.png,3369 +images-11006.png,3370 +images-11007.png,3371 +images-11019.png,3372 +images-11020.png,3373 +images-11021.png,3374 +images-11028.png,3375 +images-11029.png,3376 +images-11032.png,3377 +images-11033.png,3378 +images-11034.png,3379 +images-11035.png,3380 +images-11036.png,3381 +images-11048.png,3382 +images-11049.png,3383 +images-11050.png,3384 +images-11051.png,3385 +images-11052.png,3386 +images-11053.png,3387 +images-11054.png,3388 +images-11055.png,3389 +images-11056.png,3390 +images-11065.png,3391 +images-11066.png,3392 +images-11067.png,3393 +images-11068.png,3394 +images-11069.png,3395 +images-11070.png,3396 +images-11071.png,3397 +images-11072.png,3398 +images-11073.png,3399 +images-11074.png,3400 +images-11075.png,3401 +images-11076.png,3402 +images-11077.png,3403 +images-11078.png,3404 +images-11079.png,3405 +images-11080.png,3406 +images-11081.png,3407 +images-11082.png,3408 +images-11083.png,3409 +images-11084.png,3410 +images-11085.png,3411 +images-11086.png,3412 +images-11087.png,3413 +images-11088.png,3414 +images-11089.png,3415 +images-11090.png,3416 +images-11091.png,3417 +images-11092.png,3418 +images-11093.png,3419 +images-11094.png,3420 +images-11095.png,3421 +images-11096.png,3422 +images-11097.png,3423 +images-11098.png,3424 +images-11099.png,3425 +images-11100.png,3426 +images-11107.png,3427 +images-11108.png,3428 +images-11109.png,3429 +images-11110.png,3430 +images-11111.png,3431 +images-11112.png,3432 +images-11113.png,3433 +images-11114.png,3434 +images-11115.png,3435 +images-11116.png,3436 +images-11117.png,3437 +images-11118.png,3438 +images-11119.png,3439 +images-11120.png,3440 +images-11121.png,3441 +images-11122.png,3442 +images-11123.png,3443 +images-11124.png,3444 +images-11125.png,3445 +images-11126.png,3446 +images-11127.png,3447 +images-11128.png,3448 +images-11146.png,3449 +images-11147.png,3450 +images-11148.png,3451 +images-11149.png,3452 +images-11150.png,3453 +images-11151.png,3454 +images-11152.png,3455 +images-11153.png,3456 +images-11154.png,3457 +images-11155.png,3458 +images-11156.png,3459 +images-11157.png,3460 +images-11158.png,3461 +images-11159.png,3462 +images-11160.png,3463 +images-11161.png,3464 +images-11162.png,3465 +images-11163.png,3466 +images-11164.png,3467 +images-11165.png,3468 +images-11166.png,3469 +images-11167.png,3470 +images-11168.png,3471 +images-11169.png,3472 +images-11170.png,3473 +images-11171.png,3474 +images-11172.png,3475 +images-11173.png,3476 +images-11174.png,3477 +images-11175.png,3478 +images-11176.png,3479 +images-11177.png,3480 +images-11178.png,3481 +images-11179.png,3482 +images-11180.png,3483 +images-11181.png,3484 +images-11182.png,3485 +images-11183.png,3486 +images-11184.png,3487 +images-11185.png,3488 +images-11186.png,3489 +images-11187.png,3490 +images-11188.png,3491 +images-11189.png,3492 +images-11190.png,3493 +images-11191.png,3494 +images-11192.png,3495 +images-11193.png,3496 +images-11194.png,3497 +images-11195.png,3498 +images-11196.png,3499 +images-11197.png,3500 +images-11198.png,3501 +images-11199.png,3502 +images-11200.png,3503 +images-11201.png,3504 +images-11202.png,3505 +images-11203.png,3506 +images-11204.png,3507 +images-11205.png,3508 +images-11206.png,3509 +images-11207.png,3510 +images-11208.png,3511 +images-11209.png,3512 +images-11210.png,3513 +images-11211.png,3514 +images-11212.png,3515 +images-11213.png,3516 +images-11214.png,3517 +images-11215.png,3518 +images-11216.png,3519 +images-11217.png,3520 +images-11218.png,3521 +images-11219.png,3522 +images-11220.png,3523 +images-11221.png,3524 +images-11222.png,3525 +images-11223.png,3526 +images-11224.png,3527 +images-11228.png,3528 +images-11229.png,3529 +images-11230.png,3530 +images-11231.png,3531 +images-11232.png,3532 +images-11233.png,3533 +images-11234.png,3534 +images-11235.png,3535 +images-11236.png,3536 +images-11237.png,3537 +images-11238.png,3538 +images-11239.png,3539 +images-11240.png,3540 +images-11241.png,3541 +images-11242.png,3542 +images-11243.png,3543 +images-11244.png,3544 +images-11245.png,3545 +images-11246.png,3546 +images-11247.png,3547 +images-11248.png,3548 +images-11249.png,3549 +images-11250.png,3550 +images-11251.png,3551 +images-11252.png,3552 +images-11253.png,3553 +images-11254.png,3554 +images-11255.png,3555 +images-11256.png,3556 +images-11257.png,3557 +images-11258.png,3558 +images-11259.png,3559 +images-11260.png,3560 +images-11261.png,3561 +images-11262.png,3562 +images-11263.png,3563 +images-11264.png,3564 +images-11265.png,3565 +images-11266.png,3566 +images-11267.png,3567 +images-11268.png,3568 +images-11269.png,3569 +images-11270.png,3570 +images-11271.png,3571 +images-11272.png,3572 +images-11273.png,3573 +images-11274.png,3574 +images-11275.png,3575 +images-11276.png,3576 +images-11277.png,3577 +images-11278.png,3578 +images-11279.png,3579 +images-11286.png,3580 +images-11287.png,3581 +images-11288.png,3582 +images-11289.png,3583 +images-11290.png,3584 +images-11291.png,3585 +images-11292.png,3586 +images-11293.png,3587 +images-11294.png,3588 +images-11295.png,3589 +images-11296.png,3590 +images-11297.png,3591 +images-11298.png,3592 +images-11299.png,3593 +images-11300.png,3594 +images-11301.png,3595 +images-11302.png,3596 +images-11303.png,3597 +images-11304.png,3598 +images-11305.png,3599 +images-11306.png,3600 +images-11307.png,3601 +images-11308.png,3602 +images-11309.png,3603 +images-11310.png,3604 +images-11311.png,3605 +images-11312.png,3606 +images-11313.png,3607 +images-11314.png,3608 +images-11315.png,3609 +images-11316.png,3610 +images-11317.png,3611 +images-11318.png,3612 +images-11319.png,3613 +images-11320.png,3614 +images-11321.png,3615 +images-11322.png,3616 +images-11323.png,3617 +images-11324.png,3618 +images-11325.png,3619 +images-11326.png,3620 +images-11327.png,3621 +images-11328.png,3622 +images-11329.png,3623 +images-11330.png,3624 +images-11331.png,3625 +images-11332.png,3626 +images-11333.png,3627 +images-11334.png,3628 +images-11335.png,3629 +images-11336.png,3630 +images-11337.png,3631 +images-11338.png,3632 +images-11339.png,3633 +images-11340.png,3634 +images-11341.png,3635 +images-11342.png,3636 +images-11343.png,3637 +images-11344.png,3638 +images-11345.png,3639 +images-11346.png,3640 +images-11347.png,3641 +images-11348.png,3642 +images-11349.png,3643 +images-11350.png,3644 +images-11351.png,3645 +images-11352.png,3646 +images-11353.png,3647 +images-11354.png,3648 +images-11355.png,3649 +images-11356.png,3650 +images-11357.png,3651 +images-11358.png,3652 +images-11359.png,3653 +images-11360.png,3654 +images-11361.png,3655 +images-11362.png,3656 +images-11363.png,3657 +images-11364.png,3658 +images-11365.png,3659 +images-11366.png,3660 +images-11367.png,3661 +images-11368.png,3662 +images-11369.png,3663 +images-11370.png,3664 +images-11371.png,3665 +images-11372.png,3666 +images-11373.png,3667 +images-11374.png,3668 +images-11375.png,3669 +images-11376.png,3670 +images-11377.png,3671 +images-11378.png,3672 +images-11379.png,3673 +images-11380.png,3674 +images-11381.png,3675 +images-11382.png,3676 +images-11383.png,3677 +images-11384.png,3678 +images-11385.png,3679 +images-11386.png,3680 +images-11387.png,3681 +images-11388.png,3682 +images-11389.png,3683 +images-11390.png,3684 +images-11391.png,3685 +images-11392.png,3686 +images-11393.png,3687 +images-11394.png,3688 +images-11395.png,3689 +images-11396.png,3690 +images-11397.png,3691 +images-11398.png,3692 +images-11399.png,3693 +images-11400.png,3694 +images-11401.png,3695 +images-11402.png,3696 +images-11403.png,3697 +images-11404.png,3698 +images-11405.png,3699 +images-11406.png,3700 +images-11407.png,3701 +images-11408.png,3702 +images-11409.png,3703 +images-11410.png,3704 +images-11411.png,3705 +images-11412.png,3706 +images-11413.png,3707 +images-11414.png,3708 +images-11415.png,3709 +images-11416.png,3710 +images-11417.png,3711 +images-11418.png,3712 +images-11419.png,3713 +images-11420.png,3714 +images-11421.png,3715 +images-11422.png,3716 +images-11423.png,3717 +images-11424.png,3718 +images-11425.png,3719 +images-11426.png,3720 +images-11427.png,3721 +images-11428.png,3722 +images-11429.png,3723 +images-11430.png,3724 +images-11431.png,3725 +images-11432.png,3726 +images-11433.png,3727 +images-11434.png,3728 +images-11435.png,3729 +images-11436.png,3730 +images-11437.png,3731 +images-11438.png,3732 +images-11439.png,3733 +images-11440.png,3734 +images-11441.png,3735 +images-11442.png,3736 +images-11443.png,3737 +images-11444.png,3738 +images-11445.png,3739 +images-11446.png,3740 +images-11447.png,3741 +images-11448.png,3742 +images-11449.png,3743 +images-11450.png,3744 +images-11451.png,3745 +images-11452.png,3746 +images-11453.png,3747 +images-11454.png,3748 +images-11455.png,3749 +images-11456.png,3750 +images-11457.png,3751 +images-11458.png,3752 +images-11459.png,3753 +images-11460.png,3754 +images-11461.png,3755 +images-11462.png,3756 +images-11463.png,3757 +images-11464.png,3758 +images-11465.png,3759 +images-11466.png,3760 +images-11467.png,3761 +images-11468.png,3762 +images-11469.png,3763 +images-11470.png,3764 +images-11471.png,3765 +images-11472.png,3766 +images-11473.png,3767 +images-11474.png,3768 +images-11475.png,3769 +images-11476.png,3770 +images-11477.png,3771 +images-11478.png,3772 +images-11479.png,3773 +images-11480.png,3774 +images-11481.png,3775 +images-11482.png,3776 +images-11483.png,3777 +images-11484.png,3778 +images-11485.png,3779 +images-11486.png,3780 +images-11487.png,3781 +images-11488.png,3782 +images-11489.png,3783 +images-11490.png,3784 +images-11491.png,3785 +images-11492.png,3786 +images-11493.png,3787 +images-11494.png,3788 +images-11495.png,3789 +images-11496.png,3790 +images-11497.png,3791 +images-11498.png,3792 +images-11499.png,3793 +images-11500.png,3794 +images-11501.png,3795 +images-11502.png,3796 +images-11503.png,3797 +images-11504.png,3798 +images-11505.png,3799 +images-11506.png,3800 +images-11507.png,3801 +images-11508.png,3802 +images-11509.png,3803 +images-11510.png,3804 +images-11511.png,3805 +images-11512.png,3806 +images-11513.png,3807 +images-11514.png,3808 +images-11515.png,3809 +images-11516.png,3810 +images-11517.png,3811 +images-11518.png,3812 +images-11519.png,3813 +images-11520.png,3814 +images-11521.png,3815 +images-11522.png,3816 +images-11523.png,3817 +images-11524.png,3818 +images-11525.png,3819 +images-11526.png,3820 +images-11527.png,3821 +images-11528.png,3822 +images-11529.png,3823 +images-11530.png,3824 +images-11531.png,3825 +images-11532.png,3826 +images-11533.png,3827 +images-11534.png,3828 +images-11535.png,3829 +images-11536.png,3830 +images-11537.png,3831 +images-11538.png,3832 +images-11539.png,3833 +images-11540.png,3834 +images-11541.png,3835 +images-11542.png,3836 +images-11543.png,3837 +images-11544.png,3838 +images-11545.png,3839 +images-11546.png,3840 +images-11547.png,3841 +images-11548.png,3842 +images-11549.png,3843 +images-11550.png,3844 +images-11551.png,3845 +images-11552.png,3846 +images-11553.png,3847 +images-11554.png,3848 +images-11555.png,3849 +images-11556.png,3850 +images-11557.png,3851 +images-11558.png,3852 +images-11559.png,3853 +images-11560.png,3854 +images-11561.png,3855 +images-11562.png,3856 +images-11563.png,3857 +images-11564.png,3858 +images-11565.png,3859 +images-11566.png,3860 +images-11567.png,3861 +images-11568.png,3862 +images-11569.png,3863 +images-11570.png,3864 +images-11571.png,3865 +images-11572.png,3866 +images-11573.png,3867 +images-11574.png,3868 +images-11575.png,3869 +images-11576.png,3870 +images-11577.png,3871 +images-11578.png,3872 +images-11579.png,3873 +images-11580.png,3874 +images-11581.png,3875 +images-11582.png,3876 +images-11583.png,3877 +images-11584.png,3878 +images-11585.png,3879 +images-11586.png,3880 +images-11587.png,3881 +images-11588.png,3882 +images-11589.png,3883 +images-11590.png,3884 +images-11591.png,3885 +images-11592.png,3886 +images-11593.png,3887 +images-11594.png,3888 +images-11595.png,3889 +images-11596.png,3890 +images-11597.png,3891 +images-11598.png,3892 +images-11599.png,3893 +images-11600.png,3894 +images-11601.png,3895 +images-11602.png,3896 +images-11603.png,3897 +images-11604.png,3898 +images-11605.png,3899 +images-11606.png,3900 +images-11607.png,3901 +images-11608.png,3902 +images-11609.png,3903 +images-11610.png,3904 +images-11611.png,3905 +images-11612.png,3906 +images-11613.png,3907 +images-11614.png,3908 +images-11615.png,3909 +images-11616.png,3910 +images-11617.png,3911 +images-11618.png,3912 +images-11619.png,3913 +images-11620.png,3914 +images-11621.png,3915 +images-11622.png,3916 +images-11623.png,3917 +images-11624.png,3918 +images-11625.png,3919 +images-11626.png,3920 +images-11627.png,3921 +images-11628.png,3922 +images-11629.png,3923 +images-11630.png,3924 +images-11631.png,3925 +images-11632.png,3926 +images-11633.png,3927 +images-11634.png,3928 +images-11635.png,3929 +images-11636.png,3930 +images-11637.png,3931 +images-11638.png,3932 +images-11639.png,3933 +images-11640.png,3934 +images-11641.png,3935 +images-11642.png,3936 +images-11643.png,3937 +images-11644.png,3938 +images-11645.png,3939 +images-11646.png,3940 +images-11647.png,3941 +images-11648.png,3942 +images-11649.png,3943 +images-11650.png,3944 +images-11651.png,3945 +images-11652.png,3946 +images-11653.png,3947 +images-11899.png,3948 +images-11900.png,3949 +images-11901.png,3950 +images-11902.png,3951 +images-11903.png,3952 +images-11904.png,3953 +images-11905.png,3954 +images-11906.png,3955 +images-11907.png,3956 +images-11908.png,3957 +images-11909.png,3958 +images-11910.png,3959 +images-11911.png,3960 +images-11912.png,3961 +images-11913.png,3962 +images-11914.png,3963 +images-12036.png,3964 +images-12037.png,3965 +images-12038.png,3966 +images-12039.png,3967 +images-12040.png,3968 +images-12041.png,3969 +images-12042.png,3970 +images-12043.png,3971 +images-12044.png,3972 +images-12045.png,3973 +images-12046.png,3974 +images-12047.png,3975 +images-12048.png,3976 +images-12049.png,3977 +images-12050.png,3978 +images-12051.png,3979 +images-12052.png,3980 +images-12053.png,3981 +images-12054.png,3982 +images-12055.png,3983 +images-12056.png,3984 +images-12062.png,3985 +images-12063.png,3986 +images-12064.png,3987 +images-12065.png,3988 +images-12066.png,3989 +images-12067.png,3990 +images-12068.png,3991 +images-12069.png,3992 +images-12070.png,3993 +images-12071.png,3994 +images-12072.png,3995 +images-12073.png,3996 +images-12082.png,3997 +images-12083.png,3998 +images-12084.png,3999 +images-12085.png,4000 +images-12086.png,4001 +images-12087.png,4002 +images-12088.png,4003 +images-12089.png,4004 +images-12090.png,4005 +images-12091.png,4006 +images-12092.png,4007 +images-12093.png,4008 +images-12094.png,4009 +images-12095.png,4010 +images-12096.png,4011 +images-12097.png,4012 +images-12098.png,4013 +images-12099.png,4014 +images-12100.png,4015 +images-12101.png,4016 +images-12102.png,4017 +images-12103.png,4018 +images-12104.png,4019 +images-12105.png,4020 +images-12106.png,4021 +images-12107.png,4022 +images-12108.png,4023 +images-12109.png,4024 +images-12110.png,4025 +images-12111.png,4026 +images-12112.png,4027 +images-12113.png,4028 +images-12114.png,4029 +images-12115.png,4030 +images-12116.png,4031 +images-12117.png,4032 +images-12118.png,4033 +images-12119.png,4034 +images-12120.png,4035 +images-12121.png,4036 +images-12122.png,4037 +images-12123.png,4038 +images-12124.png,4039 +images-12125.png,4040 +images-12126.png,4041 +images-12127.png,4042 +images-12128.png,4043 +images-12129.png,4044 +images-12130.png,4045 +images-12131.png,4046 +images-12132.png,4047 +images-12133.png,4048 +images-12134.png,4049 +images-12135.png,4050 +images-12136.png,4051 +images-12137.png,4052 +images-12138.png,4053 +images-12139.png,4054 +images-12140.png,4055 +images-12141.png,4056 +images-12142.png,4057 +images-12143.png,4058 +images-12144.png,4059 +images-12145.png,4060 +images-12146.png,4061 +images-12147.png,4062 +images-12148.png,4063 +images-12149.png,4064 +images-12150.png,4065 +images-12151.png,4066 +images-12152.png,4067 +images-12153.png,4068 +images-12154.png,4069 +images-12155.png,4070 +images-12156.png,4071 +images-12157.png,4072 +images-12158.png,4073 +images-12159.png,4074 +images-12160.png,4075 +images-12161.png,4076 +images-12162.png,4077 +images-12163.png,4078 +images-12164.png,4079 +images-12168.png,4080 +images-12169.png,4081 +images-12170.png,4082 +images-12171.png,4083 +images-12172.png,4084 +images-12173.png,4085 +images-12174.png,4086 +images-12175.png,4087 +images-12176.png,4088 +images-12177.png,4089 +images-12178.png,4090 +images-12179.png,4091 +images-12180.png,4092 +images-12181.png,4093 +images-12182.png,4094 +images-12183.png,4095 +images-12184.png,4096 +images-12185.png,4097 +images-12186.png,4098 +images-12187.png,4099 +images-12188.png,4100 +images-12189.png,4101 +images-12190.png,4102 +images-12191.png,4103 +images-12192.png,4104 +images-12193.png,4105 +images-12194.png,4106 +images-12195.png,4107 +images-12196.png,4108 +images-12197.png,4109 +images-12198.png,4110 +images-12199.png,4111 +images-12200.png,4112 +images-12201.png,4113 +images-12202.png,4114 +images-12203.png,4115 +images-12208.png,4116 +images-12209.png,4117 +images-12210.png,4118 +images-12211.png,4119 +images-12212.png,4120 +images-12213.png,4121 +images-12214.png,4122 +images-12215.png,4123 +images-12216.png,4124 +images-12217.png,4125 +images-12218.png,4126 +images-12219.png,4127 +images-12220.png,4128 +images-12221.png,4129 +images-12222.png,4130 +images-12223.png,4131 +images-12224.png,4132 +images-12225.png,4133 +images-12226.png,4134 +images-12227.png,4135 +images-12228.png,4136 +images-12229.png,4137 +images-12230.png,4138 +images-12231.png,4139 +images-12232.png,4140 +images-12233.png,4141 +images-12234.png,4142 +images-12235.png,4143 +images-12236.png,4144 +images-12237.png,4145 +images-12238.png,4146 +images-12239.png,4147 +images-12240.png,4148 +images-12241.png,4149 +images-12242.png,4150 +images-12243.png,4151 +images-12244.png,4152 +images-12245.png,4153 +images-12246.png,4154 +images-12247.png,4155 +images-12248.png,4156 +images-12249.png,4157 +images-12250.png,4158 +images-12251.png,4159 +images-12252.png,4160 +images-12253.png,4161 +images-12254.png,4162 +images-12255.png,4163 +images-12256.png,4164 +images-12257.png,4165 +images-12258.png,4166 +images-12259.png,4167 +images-12260.png,4168 +images-12261.png,4169 +images-12262.png,4170 +images-12263.png,4171 +images-12264.png,4172 +images-12265.png,4173 +images-12266.png,4174 +images-12267.png,4175 +images-12268.png,4176 +images-12269.png,4177 +images-12270.png,4178 +images-12271.png,4179 +images-12272.png,4180 +images-12273.png,4181 +images-12274.png,4182 +images-12275.png,4183 +images-12276.png,4184 +images-12277.png,4185 +images-12278.png,4186 +images-12279.png,4187 +images-12280.png,4188 +images-12281.png,4189 +images-12282.png,4190 +images-12283.png,4191 +images-12284.png,4192 +images-12285.png,4193 +images-12286.png,4194 +images-12287.png,4195 +images-12288.png,4196 +images-12289.png,4197 +images-12290.png,4198 +images-12291.png,4199 +images-12292.png,4200 +images-12293.png,4201 +images-12294.png,4202 +images-12295.png,4203 +images-12296.png,4204 +images-12297.png,4205 +images-12298.png,4206 +images-12299.png,4207 +images-12300.png,4208 +images-12301.png,4209 +images-12302.png,4210 +images-12303.png,4211 +images-12304.png,4212 +images-12305.png,4213 +images-12306.png,4214 +images-12307.png,4215 +images-12308.png,4216 +images-12309.png,4217 +images-12310.png,4218 +images-12311.png,4219 +images-12312.png,4220 +images-12313.png,4221 +images-12314.png,4222 +images-12315.png,4223 +images-12316.png,4224 +images-12317.png,4225 +images-12318.png,4226 +images-12365.png,4227 +images-12366.png,4228 +images-12367.png,4229 +images-12368.png,4230 +images-12369.png,4231 +images-12370.png,4232 +images-12371.png,4233 +images-12372.png,4234 +images-12373.png,4235 +images-12374.png,4236 +images-12375.png,4237 +images-12376.png,4238 +images-12377.png,4239 +images-12378.png,4240 +images-12379.png,4241 +images-12380.png,4242 +images-12381.png,4243 +images-12382.png,4244 +images-12383.png,4245 +images-12384.png,4246 +images-12385.png,4247 +images-12386.png,4248 +images-12387.png,4249 +images-12388.png,4250 +images-12389.png,4251 +images-12390.png,4252 +images-12391.png,4253 +images-12392.png,4254 +images-12393.png,4255 +images-12394.png,4256 +images-12395.png,4257 +images-12396.png,4258 +images-12397.png,4259 +images-12398.png,4260 +images-12399.png,4261 +images-12400.png,4262 +images-12401.png,4263 +images-12402.png,4264 +images-12403.png,4265 +images-12404.png,4266 +images-12405.png,4267 +images-12406.png,4268 +images-12407.png,4269 +images-12408.png,4270 +images-12417.png,4271 +images-12418.png,4272 +images-12419.png,4273 +images-12420.png,4274 +images-12421.png,4275 +images-12422.png,4276 +images-12423.png,4277 +images-12424.png,4278 +images-12425.png,4279 +images-12426.png,4280 +images-12427.png,4281 +images-12428.png,4282 +images-12429.png,4283 +images-12430.png,4284 +images-12431.png,4285 +images-12432.png,4286 +images-12433.png,4287 +images-12434.png,4288 +images-12435.png,4289 +images-12436.png,4290 +images-12437.png,4291 +images-12438.png,4292 +images-12439.png,4293 +images-12440.png,4294 +images-12441.png,4295 +images-12442.png,4296 +images-12443.png,4297 +images-12444.png,4298 +images-12445.png,4299 +images-12446.png,4300 +images-12447.png,4301 +images-12448.png,4302 +images-12449.png,4303 +images-12450.png,4304 +images-12451.png,4305 +images-12452.png,4306 +images-12453.png,4307 +images-12454.png,4308 +images-12455.png,4309 +images-12456.png,4310 +images-12457.png,4311 +images-12458.png,4312 +images-12459.png,4313 +images-12460.png,4314 +images-12461.png,4315 +images-12462.png,4316 +images-12463.png,4317 +images-12464.png,4318 +images-12465.png,4319 +images-12466.png,4320 +images-12467.png,4321 +images-12468.png,4322 +images-12469.png,4323 +images-12470.png,4324 +images-12471.png,4325 +images-12481.png,4326 +images-12482.png,4327 +images-12483.png,4328 +images-12484.png,4329 +images-12485.png,4330 +images-12486.png,4331 +images-12487.png,4332 +images-12488.png,4333 +images-12489.png,4334 +images-12490.png,4335 +images-12491.png,4336 +images-12492.png,4337 +images-12493.png,4338 +images-12494.png,4339 +images-12495.png,4340 +images-12496.png,4341 +images-12497.png,4342 +images-12498.png,4343 +images-12499.png,4344 +images-12500.png,4345 +images-12501.png,4346 +images-12502.png,4347 +images-12503.png,4348 +images-12504.png,4349 +images-12505.png,4350 +images-12506.png,4351 +images-12507.png,4352 +images-12508.png,4353 +images-12509.png,4354 +images-12510.png,4355 +images-12511.png,4356 +images-12512.png,4357 +images-12513.png,4358 +images-12514.png,4359 +images-12515.png,4360 +images-12516.png,4361 +images-12517.png,4362 +images-12518.png,4363 +images-12519.png,4364 +images-12520.png,4365 +images-12521.png,4366 +images-12522.png,4367 +images-12523.png,4368 +images-12524.png,4369 +images-12525.png,4370 +images-12526.png,4371 +images-12527.png,4372 +images-12528.png,4373 +images-12529.png,4374 +images-12530.png,4375 +images-12531.png,4376 +images-12532.png,4377 +images-12533.png,4378 +images-12534.png,4379 +images-12535.png,4380 +images-12536.png,4381 +images-12537.png,4382 +images-12538.png,4383 +images-12539.png,4384 +images-12540.png,4385 +images-12541.png,4386 +images-12542.png,4387 +images-12543.png,4388 +images-12544.png,4389 +images-12545.png,4390 +images-12546.png,4391 +images-12547.png,4392 +images-12548.png,4393 +images-12549.png,4394 +images-12550.png,4395 +images-12551.png,4396 +images-12552.png,4397 +images-12553.png,4398 +images-12554.png,4399 +images-12555.png,4400 +images-12556.png,4401 +images-12557.png,4402 +images-12558.png,4403 +images-12559.png,4404 +images-12560.png,4405 +images-12561.png,4406 +images-12562.png,4407 +images-12563.png,4408 +images-12564.png,4409 +images-12565.png,4410 +images-12566.png,4411 +images-12567.png,4412 +images-12568.png,4413 +images-12569.png,4414 +images-12570.png,4415 +images-12571.png,4416 +images-12572.png,4417 +images-12573.png,4418 +images-12574.png,4419 +images-12575.png,4420 +images-12576.png,4421 +images-12577.png,4422 +images-12578.png,4423 +images-12579.png,4424 +images-12580.png,4425 +images-12581.png,4426 +images-12582.png,4427 +images-12583.png,4428 +images-12584.png,4429 +images-12585.png,4430 +images-12586.png,4431 +images-12587.png,4432 +images-12588.png,4433 +images-12589.png,4434 +images-12590.png,4435 +images-12591.png,4436 +images-12592.png,4437 +images-12593.png,4438 +images-12594.png,4439 +images-12595.png,4440 +images-12596.png,4441 +images-12597.png,4442 +images-12598.png,4443 +images-12599.png,4444 +images-12600.png,4445 +images-12601.png,4446 +images-12602.png,4447 +images-12603.png,4448 +images-12604.png,4449 +images-12605.png,4450 +images-12606.png,4451 +images-12607.png,4452 +images-12608.png,4453 +images-12609.png,4454 +images-12610.png,4455 +images-12611.png,4456 +images-12612.png,4457 +images-12613.png,4458 +images-12614.png,4459 +images-12615.png,4460 +images-12616.png,4461 +images-12617.png,4462 +images-12618.png,4463 +images-12619.png,4464 +images-12620.png,4465 +images-12621.png,4466 +images-12622.png,4467 +images-12623.png,4468 +images-12624.png,4469 +images-12625.png,4470 +images-12626.png,4471 +images-12627.png,4472 +images-12628.png,4473 +images-12629.png,4474 +images-12630.png,4475 +images-12631.png,4476 +images-12632.png,4477 +images-12633.png,4478 +images-12634.png,4479 +images-12635.png,4480 +images-12636.png,4481 +images-12637.png,4482 +images-12638.png,4483 +images-12639.png,4484 +images-12640.png,4485 +images-12641.png,4486 +images-12642.png,4487 +images-12643.png,4488 +images-12644.png,4489 +images-12645.png,4490 +images-12646.png,4491 +images-12647.png,4492 +images-12648.png,4493 +images-12649.png,4494 +images-12650.png,4495 +images-12651.png,4496 +images-12652.png,4497 +images-12653.png,4498 +images-12654.png,4499 +images-12655.png,4500 +images-12656.png,4501 +images-12657.png,4502 +images-12658.png,4503 +images-12659.png,4504 +images-12660.png,4505 +images-12661.png,4506 +images-12662.png,4507 +images-12663.png,4508 +images-12664.png,4509 +images-12665.png,4510 +images-12666.png,4511 +images-12667.png,4512 +images-12668.png,4513 +images-12669.png,4514 +images-12670.png,4515 +images-12671.png,4516 +images-12672.png,4517 +images-12673.png,4518 +images-12674.png,4519 +images-12675.png,4520 +images-12676.png,4521 +images-12677.png,4522 +images-12678.png,4523 +images-12679.png,4524 +images-12680.png,4525 +images-12681.png,4526 +images-12682.png,4527 +images-12683.png,4528 +images-12684.png,4529 +images-12685.png,4530 +images-12686.png,4531 +images-12687.png,4532 +images-12688.png,4533 +images-12689.png,4534 +images-12690.png,4535 +images-12691.png,4536 +images-12692.png,4537 +images-12693.png,4538 +images-12694.png,4539 +images-12695.png,4540 +images-12696.png,4541 +images-12697.png,4542 +images-12698.png,4543 +images-12699.png,4544 +images-12700.png,4545 +images-12701.png,4546 +images-12702.png,4547 +images-12703.png,4548 +images-12704.png,4549 +images-12705.png,4550 +images-12706.png,4551 +images-12707.png,4552 +images-12708.png,4553 +images-12709.png,4554 +images-12710.png,4555 +images-12711.png,4556 +images-12712.png,4557 +images-12713.png,4558 +images-12714.png,4559 +images-12715.png,4560 +images-12716.png,4561 +images-12717.png,4562 +images-12718.png,4563 +images-12719.png,4564 +images-12720.png,4565 +images-12721.png,4566 +images-12722.png,4567 +images-12723.png,4568 +images-12724.png,4569 +images-12725.png,4570 +images-12726.png,4571 +images-12727.png,4572 +images-12728.png,4573 +images-12729.png,4574 +images-12730.png,4575 +images-12731.png,4576 +images-12732.png,4577 +images-12733.png,4578 +images-12734.png,4579 +images-12735.png,4580 +images-12736.png,4581 +images-12737.png,4582 +images-12738.png,4583 +images-12739.png,4584 +images-12740.png,4585 +images-12741.png,4586 +images-12742.png,4587 +images-12743.png,4588 +images-12744.png,4589 +images-12745.png,4590 +images-12746.png,4591 +images-12747.png,4592 +images-12748.png,4593 +images-12749.png,4594 +images-12750.png,4595 +images-12751.png,4596 +images-12752.png,4597 +images-12753.png,4598 +images-12754.png,4599 +images-12755.png,4600 +images-12756.png,4601 +images-12757.png,4602 +images-12758.png,4603 +images-12759.png,4604 +images-12760.png,4605 +images-12761.png,4606 +images-12762.png,4607 +images-12763.png,4608 +images-12764.png,4609 +images-12765.png,4610 +images-12766.png,4611 +images-12767.png,4612 +images-12768.png,4613 +images-12769.png,4614 +images-12770.png,4615 +images-12771.png,4616 +images-12772.png,4617 +images-12773.png,4618 +images-12774.png,4619 +images-12775.png,4620 +images-12776.png,4621 +images-12777.png,4622 +images-12778.png,4623 +images-12779.png,4624 +images-12780.png,4625 +images-12781.png,4626 +images-12782.png,4627 +images-12783.png,4628 +images-12784.png,4629 +images-12785.png,4630 +images-12786.png,4631 +images-12787.png,4632 +images-12788.png,4633 +images-12789.png,4634 +images-12790.png,4635 +images-12791.png,4636 +images-12792.png,4637 +images-12793.png,4638 +images-12794.png,4639 +images-12795.png,4640 +images-12796.png,4641 +images-12797.png,4642 +images-12798.png,4643 +images-12799.png,4644 +images-12800.png,4645 +images-12801.png,4646 +images-12802.png,4647 +images-12803.png,4648 +images-12804.png,4649 +images-12805.png,4650 +images-12806.png,4651 +images-12807.png,4652 +images-12808.png,4653 +images-12809.png,4654 +images-12810.png,4655 +images-12811.png,4656 +images-12812.png,4657 +images-12813.png,4658 +images-12814.png,4659 +images-12815.png,4660 +images-12816.png,4661 +images-12817.png,4662 +images-12818.png,4663 +images-12819.png,4664 +images-12820.png,4665 +images-12821.png,4666 +images-12822.png,4667 +images-12823.png,4668 +images-12824.png,4669 +images-12825.png,4670 +images-12826.png,4671 +images-12827.png,4672 +images-12828.png,4673 +images-12829.png,4674 +images-12830.png,4675 +images-12831.png,4676 +images-12832.png,4677 +images-12833.png,4678 +images-12834.png,4679 +images-12835.png,4680 +images-12836.png,4681 +images-12837.png,4682 +images-12838.png,4683 +images-12839.png,4684 +images-12840.png,4685 +images-12841.png,4686 +images-12842.png,4687 +images-12843.png,4688 +images-12844.png,4689 +images-12845.png,4690 +images-12846.png,4691 +images-12847.png,4692 +images-12848.png,4693 +images-12849.png,4694 +images-12850.png,4695 +images-12851.png,4696 +images-12852.png,4697 +images-12853.png,4698 +images-12854.png,4699 +images-12855.png,4700 +images-12856.png,4701 +images-12857.png,4702 +images-12858.png,4703 +images-12859.png,4704 +images-12860.png,4705 +images-12861.png,4706 +images-12862.png,4707 +images-12863.png,4708 +images-12864.png,4709 +images-12865.png,4710 +images-12866.png,4711 +images-12867.png,4712 +images-12868.png,4713 +images-12869.png,4714 +images-12870.png,4715 +images-12871.png,4716 +images-12872.png,4717 +images-12873.png,4718 +images-12874.png,4719 +images-12875.png,4720 +images-12876.png,4721 +images-12877.png,4722 +images-12878.png,4723 +images-12879.png,4724 +images-12880.png,4725 +images-12881.png,4726 +images-12882.png,4727 +images-12883.png,4728 +images-12884.png,4729 +images-12885.png,4730 +images-12886.png,4731 +images-12887.png,4732 +images-12888.png,4733 +images-12889.png,4734 +images-12890.png,4735 +images-12891.png,4736 +images-12892.png,4737 +images-12893.png,4738 +images-12894.png,4739 +images-12895.png,4740 +images-12896.png,4741 +images-12897.png,4742 +images-12898.png,4743 +images-12899.png,4744 +images-12900.png,4745 +images-12901.png,4746 +images-12902.png,4747 +images-12903.png,4748 +images-12904.png,4749 +images-12905.png,4750 +images-12906.png,4751 +images-12907.png,4752 +images-12908.png,4753 +images-12909.png,4754 +images-12910.png,4755 +images-12911.png,4756 +images-12912.png,4757 +images-12913.png,4758 +images-12914.png,4759 +images-12915.png,4760 +images-12916.png,4761 +images-12917.png,4762 +images-12918.png,4763 +images-12919.png,4764 +images-12920.png,4765 +images-12921.png,4766 +images-12922.png,4767 +images-12923.png,4768 +images-12924.png,4769 +images-12925.png,4770 +images-12926.png,4771 +images-12927.png,4772 +images-12928.png,4773 +images-12929.png,4774 +images-12930.png,4775 +images-12931.png,4776 +images-12932.png,4777 +images-12933.png,4778 +images-12934.png,4779 +images-12935.png,4780 +images-12936.png,4781 +images-12937.png,4782 +images-12938.png,4783 +images-12939.png,4784 +images-12940.png,4785 +images-12941.png,4786 +images-12942.png,4787 +images-12943.png,4788 +images-12944.png,4789 +images-12945.png,4790 +images-12946.png,4791 +images-12947.png,4792 +images-12948.png,4793 +images-12949.png,4794 +images-12950.png,4795 +images-12951.png,4796 +images-12952.png,4797 +images-12953.png,4798 +images-12954.png,4799 +images-12955.png,4800 +images-12956.png,4801 +images-12957.png,4802 +images-12958.png,4803 +images-12959.png,4804 +images-12960.png,4805 +images-12961.png,4806 +images-12962.png,4807 +images-12963.png,4808 +images-12964.png,4809 +images-12965.png,4810 +images-12966.png,4811 +images-12967.png,4812 +images-12968.png,4813 +images-12969.png,4814 +images-12970.png,4815 +images-12971.png,4816 +images-12972.png,4817 +images-12973.png,4818 +images-12974.png,4819 +images-12975.png,4820 +images-12976.png,4821 +images-12977.png,4822 +images-12978.png,4823 +images-12979.png,4824 +images-12980.png,4825 +images-12981.png,4826 +images-12982.png,4827 +images-12983.png,4828 +images-12984.png,4829 +images-12985.png,4830 +images-12986.png,4831 +images-12987.png,4832 +images-12988.png,4833 +images-12989.png,4834 +images-12990.png,4835 +images-12991.png,4836 +images-12992.png,4837 +images-12993.png,4838 +images-12994.png,4839 +images-12995.png,4840 +images-12996.png,4841 +images-12997.png,4842 +images-12998.png,4843 +images-12999.png,4844 +images-13000.png,4845 +images-13001.png,4846 +images-13002.png,4847 +images-13003.png,4848 +images-13004.png,4849 +images-13005.png,4850 +images-13006.png,4851 +images-13007.png,4852 +images-13008.png,4853 +images-13009.png,4854 +images-13010.png,4855 +images-13011.png,4856 +images-13012.png,4857 +images-13013.png,4858 +images-13014.png,4859 +images-13015.png,4860 +images-13016.png,4861 +images-13017.png,4862 +images-13018.png,4863 +images-13019.png,4864 +images-13020.png,4865 +images-13021.png,4866 +images-13022.png,4867 +images-13023.png,4868 +images-13024.png,4869 +images-13025.png,4870 +images-13026.png,4871 +images-13027.png,4872 +images-13028.png,4873 +images-13029.png,4874 +images-13030.png,4875 +images-13031.png,4876 +images-13032.png,4877 +images-13033.png,4878 +images-13034.png,4879 +images-13035.png,4880 +images-13036.png,4881 +images-13037.png,4882 +images-13038.png,4883 +images-13039.png,4884 +images-13040.png,4885 +images-13041.png,4886 +images-13042.png,4887 +images-13043.png,4888 +images-13044.png,4889 +images-13045.png,4890 +images-13046.png,4891 +images-13047.png,4892 +images-13048.png,4893 +images-13049.png,4894 +images-13050.png,4895 +images-13051.png,4896 +images-13052.png,4897 +images-13053.png,4898 +images-13054.png,4899 +images-13055.png,4900 +images-13056.png,4901 +images-13057.png,4902 +images-13058.png,4903 +images-13059.png,4904 +images-13060.png,4905 +images-13061.png,4906 +images-13062.png,4907 +images-13063.png,4908 +images-13064.png,4909 +images-13065.png,4910 +images-13066.png,4911 +images-13067.png,4912 +images-13068.png,4913 +images-13069.png,4914 +images-13070.png,4915 +images-13071.png,4916 +images-13072.png,4917 +images-13073.png,4918 +images-13074.png,4919 +images-13075.png,4920 +images-13076.png,4921 +images-13077.png,4922 +images-13078.png,4923 +images-13079.png,4924 +images-13080.png,4925 +images-13081.png,4926 +images-13082.png,4927 +images-13083.png,4928 +images-13084.png,4929 +images-13085.png,4930 +images-13086.png,4931 +images-13087.png,4932 +images-13088.png,4933 +images-13089.png,4934 +images-13090.png,4935 +images-13091.png,4936 +images-13092.png,4937 +images-13093.png,4938 +images-13094.png,4939 +images-13095.png,4940 +images-13096.png,4941 +images-13097.png,4942 +images-13098.png,4943 +images-13099.png,4944 +images-13100.png,4945 +images-13101.png,4946 +images-13102.png,4947 +images-13103.png,4948 +images-13104.png,4949 +images-13105.png,4950 +images-13106.png,4951 +images-13107.png,4952 +images-13108.png,4953 +images-13109.png,4954 +images-13110.png,4955 +images-13111.png,4956 +images-13112.png,4957 +images-13113.png,4958 +images-13114.png,4959 +images-13115.png,4960 +images-13116.png,4961 +images-13117.png,4962 +images-13118.png,4963 +images-13119.png,4964 +images-13120.png,4965 +images-13121.png,4966 +images-13122.png,4967 +images-13123.png,4968 +images-13124.png,4969 +images-13125.png,4970 +images-13126.png,4971 +images-13127.png,4972 +images-13128.png,4973 +images-13129.png,4974 +images-13130.png,4975 +images-13131.png,4976 +images-13132.png,4977 +images-13133.png,4978 +images-13134.png,4979 +images-13135.png,4980 +images-13136.png,4981 +images-13137.png,4982 +images-13138.png,4983 +images-13139.png,4984 +images-13140.png,4985 +images-13141.png,4986 +images-13142.png,4987 +images-13143.png,4988 +images-13144.png,4989 +images-13145.png,4990 +images-13146.png,4991 +images-13147.png,4992 +images-13148.png,4993 +images-13149.png,4994 +images-13150.png,4995 +images-13151.png,4996 +images-13152.png,4997 +images-13153.png,4998 +images-13154.png,4999 +images-13155.png,5000 +images-13156.png,5001 +images-13157.png,5002 +images-13158.png,5003 +images-13159.png,5004 +images-13160.png,5005 +images-13161.png,5006 +images-13162.png,5007 +images-13163.png,5008 +images-13164.png,5009 +images-13165.png,5010 +images-13166.png,5011 +images-13167.png,5012 +images-13168.png,5013 +images-13169.png,5014 +images-13170.png,5015 +images-13171.png,5016 +images-13172.png,5017 +images-13173.png,5018 +images-13174.png,5019 +images-13175.png,5020 +images-13176.png,5021 +images-13177.png,5022 +images-13178.png,5023 +images-13179.png,5024 +images-13180.png,5025 +images-13181.png,5026 +images-13182.png,5027 +images-13183.png,5028 +images-13184.png,5029 +images-13185.png,5030 +images-13186.png,5031 +images-13187.png,5032 +images-13188.png,5033 +images-13189.png,5034 +images-13190.png,5035 +images-13191.png,5036 +images-13192.png,5037 +images-13193.png,5038 +images-13194.png,5039 +images-13195.png,5040 +images-13196.png,5041 +images-13197.png,5042 +images-13198.png,5043 +images-13199.png,5044 +images-13200.png,5045 +images-13201.png,5046 +images-13202.png,5047 +images-13203.png,5048 +images-13204.png,5049 +images-13205.png,5050 +images-13206.png,5051 +images-13207.png,5052 +images-13208.png,5053 +images-13209.png,5054 +images-13210.png,5055 +images-13211.png,5056 +images-13212.png,5057 +images-13213.png,5058 +images-13214.png,5059 +images-13215.png,5060 +images-13216.png,5061 +images-13217.png,5062 +images-13218.png,5063 +images-13219.png,5064 +images-13220.png,5065 +images-13221.png,5066 +images-13222.png,5067 +images-13223.png,5068 +images-13224.png,5069 +images-13225.png,5070 +images-13226.png,5071 +images-13227.png,5072 +images-13228.png,5073 +images-13229.png,5074 +images-13230.png,5075 +images-13231.png,5076 +images-13232.png,5077 +images-13233.png,5078 +images-13234.png,5079 +images-13235.png,5080 +images-13236.png,5081 +images-13237.png,5082 +images-13238.png,5083 +images-13239.png,5084 +images-13240.png,5085 +images-13241.png,5086 +images-13242.png,5087 +images-13243.png,5088 +images-13244.png,5089 +images-13245.png,5090 +images-13246.png,5091 +images-13247.png,5092 +images-13248.png,5093 +images-13249.png,5094 +images-13250.png,5095 +images-13251.png,5096 +images-13252.png,5097 +images-13253.png,5098 +images-13254.png,5099 +images-13255.png,5100 +images-13256.png,5101 +images-13257.png,5102 +images-13258.png,5103 +images-13259.png,5104 +images-13260.png,5105 +images-13261.png,5106 +images-13262.png,5107 +images-13263.png,5108 +images-13264.png,5109 +images-13265.png,5110 +images-13266.png,5111 +images-13267.png,5112 +images-13268.png,5113 +images-13269.png,5114 +images-13270.png,5115 +images-13271.png,5116 +images-13272.png,5117 +images-13273.png,5118 +images-13274.png,5119 +images-13275.png,5120 +images-13276.png,5121 +images-13277.png,5122 +images-13278.png,5123 +images-13279.png,5124 +images-13280.png,5125 +images-13281.png,5126 +images-13282.png,5127 +images-13283.png,5128 +images-13284.png,5129 +images-13285.png,5130 +images-13286.png,5131 +images-13287.png,5132 +images-13288.png,5133 +images-13289.png,5134 +images-13290.png,5135 +images-13291.png,5136 +images-13292.png,5137 +images-13293.png,5138 +images-13294.png,5139 +images-13295.png,5140 +images-13296.png,5141 +images-13297.png,5142 +images-13298.png,5143 +images-13299.png,5144 +images-13300.png,5145 +images-13301.png,5146 +images-13302.png,5147 +images-13303.png,5148 +images-13304.png,5149 +images-13305.png,5150 +images-13306.png,5151 +images-13307.png,5152 +images-13308.png,5153 +images-13309.png,5154 +images-13310.png,5155 +images-13311.png,5156 +images-13312.png,5157 +images-13313.png,5158 +images-13314.png,5159 +images-13315.png,5160 +images-13316.png,5161 +images-13317.png,5162 +images-13318.png,5163 +images-13319.png,5164 +images-13320.png,5165 +images-13321.png,5166 +images-13322.png,5167 +images-13323.png,5168 +images-13324.png,5169 +images-13325.png,5170 +images-13326.png,5171 +images-13327.png,5172 +images-13328.png,5173 +images-13329.png,5174 +images-13330.png,5175 +images-13331.png,5176 +images-13332.png,5177 +images-13333.png,5178 +images-13334.png,5179 +images-13335.png,5180 +images-13336.png,5181 +images-13337.png,5182 +images-13338.png,5183 +images-13339.png,5184 +images-13340.png,5185 +images-13341.png,5186 +images-13342.png,5187 +images-13343.png,5188 +images-13344.png,5189 +images-13441.png,5190 +images-13442.png,5191 +images-13443.png,5192 +images-13444.png,5193 +images-13445.png,5194 +images-13446.png,5195 +images-13447.png,5196 +images-13448.png,5197 +images-13449.png,5198 +images-13450.png,5199 +images-13451.png,5200 +images-13452.png,5201 +images-13453.png,5202 +images-13454.png,5203 +images-13455.png,5204 +images-13456.png,5205 +images-13457.png,5206 +images-13458.png,5207 +images-13459.png,5208 +images-13460.png,5209 +images-13461.png,5210 +images-13462.png,5211 +images-13463.png,5212 +images-13464.png,5213 +images-13465.png,5214 +images-13466.png,5215 +images-13467.png,5216 +images-13468.png,5217 +images-13469.png,5218 +images-13470.png,5219 +images-13471.png,5220 +images-13472.png,5221 +images-13473.png,5222 +images-13474.png,5223 +images-13475.png,5224 +images-13476.png,5225 +images-13477.png,5226 +images-13478.png,5227 +images-13479.png,5228 +images-13480.png,5229 +images-13481.png,5230 +images-13482.png,5231 +images-13483.png,5232 +images-13484.png,5233 +images-13485.png,5234 +images-13486.png,5235 +images-13487.png,5236 +images-13488.png,5237 +images-13489.png,5238 +images-13490.png,5239 +images-13491.png,5240 +images-13492.png,5241 +images-13493.png,5242 +images-13494.png,5243 +images-13495.png,5244 +images-13496.png,5245 +images-13497.png,5246 +images-13498.png,5247 +images-13499.png,5248 +images-13500.png,5249 +images-13501.png,5250 +images-13502.png,5251 +images-13503.png,5252 +images-13504.png,5253 +images-13505.png,5254 +images-13506.png,5255 +images-13507.png,5256 +images-13508.png,5257 +images-13509.png,5258 +images-13510.png,5259 +images-13511.png,5260 +images-13512.png,5261 +images-13513.png,5262 +images-13514.png,5263 +images-13515.png,5264 +images-13516.png,5265 +images-13517.png,5266 +images-13518.png,5267 +images-13519.png,5268 +images-13520.png,5269 +images-13521.png,5270 +images-13522.png,5271 +images-13523.png,5272 +images-13524.png,5273 +images-13525.png,5274 +images-13526.png,5275 +images-13527.png,5276 +images-13528.png,5277 +images-13529.png,5278 +images-13530.png,5279 +images-13531.png,5280 +images-13532.png,5281 +images-13533.png,5282 +images-13534.png,5283 +images-13535.png,5284 +images-13536.png,5285 +images-13537.png,5286 +images-13538.png,5287 +images-13539.png,5288 +images-13540.png,5289 +images-13541.png,5290 +images-13542.png,5291 +images-13543.png,5292 +images-13544.png,5293 +images-13545.png,5294 +images-13546.png,5295 +images-13547.png,5296 +images-13548.png,5297 +images-13549.png,5298 +images-13550.png,5299 +images-13551.png,5300 +images-13552.png,5301 +images-13553.png,5302 +images-13554.png,5303 +images-13555.png,5304 +images-13556.png,5305 +images-13557.png,5306 +images-13558.png,5307 +images-13559.png,5308 +images-13560.png,5309 +images-13561.png,5310 +images-13562.png,5311 +images-13563.png,5312 +images-13564.png,5313 +images-13565.png,5314 +images-13566.png,5315 +images-13567.png,5316 +images-13568.png,5317 +images-13569.png,5318 +images-13570.png,5319 +images-13571.png,5320 +images-13572.png,5321 +images-13573.png,5322 +images-13574.png,5323 +images-13575.png,5324 +images-13576.png,5325 +images-13577.png,5326 +images-13578.png,5327 +images-13579.png,5328 +images-13580.png,5329 +images-13581.png,5330 +images-13582.png,5331 +images-13583.png,5332 +images-13584.png,5333 +images-13585.png,5334 +images-13586.png,5335 +images-13587.png,5336 +images-13588.png,5337 +images-13589.png,5338 +images-13590.png,5339 +images-13591.png,5340 +images-13592.png,5341 +images-13593.png,5342 +images-13594.png,5343 +images-13595.png,5344 +images-13596.png,5345 +images-13597.png,5346 +images-13598.png,5347 +images-13599.png,5348 +images-13600.png,5349 +images-13601.png,5350 +images-13602.png,5351 +images-13603.png,5352 +images-13604.png,5353 +images-13605.png,5354 +images-13606.png,5355 +images-13607.png,5356 +images-13608.png,5357 +images-13609.png,5358 +images-13610.png,5359 +images-13611.png,5360 +images-13612.png,5361 +images-13613.png,5362 +images-13614.png,5363 +images-13615.png,5364 +images-13616.png,5365 +images-13617.png,5366 +images-13618.png,5367 +images-13619.png,5368 +images-13628.png,5369 +images-13629.png,5370 +images-13630.png,5371 +images-13631.png,5372 +images-13632.png,5373 +images-13633.png,5374 +images-13634.png,5375 +images-13635.png,5376 +images-13636.png,5377 +images-13637.png,5378 +images-13638.png,5379 +images-13639.png,5380 +images-13640.png,5381 +images-13641.png,5382 +images-13642.png,5383 +images-13643.png,5384 +images-13644.png,5385 +images-13645.png,5386 +images-13646.png,5387 +images-13647.png,5388 +images-13648.png,5389 +images-13649.png,5390 +images-13650.png,5391 +images-13651.png,5392 +images-13652.png,5393 +images-13653.png,5394 +images-13654.png,5395 +images-13655.png,5396 +images-13656.png,5397 +images-13657.png,5398 +images-13658.png,5399 +images-13659.png,5400 +images-13660.png,5401 +images-13661.png,5402 +images-13662.png,5403 +images-13663.png,5404 +images-13664.png,5405 +images-13665.png,5406 +images-13666.png,5407 +images-13667.png,5408 +images-13668.png,5409 +images-13669.png,5410 +images-13670.png,5411 +images-13671.png,5412 +images-13672.png,5413 +images-13673.png,5414 +images-13674.png,5415 +images-13675.png,5416 +images-13676.png,5417 +images-13677.png,5418 +images-13678.png,5419 +images-13679.png,5420 +images-13680.png,5421 +images-13681.png,5422 +images-13682.png,5423 +images-13683.png,5424 +images-13684.png,5425 +images-13685.png,5426 +images-13686.png,5427 +images-13687.png,5428 +images-13688.png,5429 +images-13689.png,5430 +images-13690.png,5431 +images-13691.png,5432 +images-13692.png,5433 +images-13693.png,5434 +images-13694.png,5435 +images-13695.png,5436 +images-13696.png,5437 +images-13697.png,5438 +images-13698.png,5439 +images-13699.png,5440 +images-13700.png,5441 +images-13701.png,5442 +images-13702.png,5443 +images-13703.png,5444 +images-13704.png,5445 +images-13705.png,5446 +images-13706.png,5447 +images-13707.png,5448 +images-13708.png,5449 +images-13709.png,5450 +images-13710.png,5451 +images-13711.png,5452 +images-13712.png,5453 +images-13713.png,5454 +images-13714.png,5455 +images-13715.png,5456 +images-13716.png,5457 +images-13717.png,5458 +images-13718.png,5459 +images-13719.png,5460 +images-13720.png,5461 +images-13721.png,5462 +images-13722.png,5463 +images-13723.png,5464 +images-13724.png,5465 +images-13725.png,5466 +images-13726.png,5467 +images-13727.png,5468 +images-13728.png,5469 +images-13729.png,5470 +images-13730.png,5471 +images-13731.png,5472 +images-13732.png,5473 +images-13733.png,5474 +images-13734.png,5475 +images-13735.png,5476 +images-13736.png,5477 +images-13737.png,5478 +images-13738.png,5479 +images-13739.png,5480 +images-13740.png,5481 +images-13741.png,5482 +images-13742.png,5483 +images-13743.png,5484 +images-13744.png,5485 +images-13745.png,5486 +images-13746.png,5487 +images-13747.png,5488 +images-13748.png,5489 +images-13749.png,5490 +images-13750.png,5491 +images-13751.png,5492 +images-13752.png,5493 +images-13753.png,5494 +images-13754.png,5495 +images-13755.png,5496 +images-13756.png,5497 +images-13757.png,5498 +images-13758.png,5499 +images-13759.png,5500 +images-13760.png,5501 +images-13761.png,5502 +images-13762.png,5503 +images-13763.png,5504 +images-13764.png,5505 +images-13765.png,5506 +images-13766.png,5507 +images-13767.png,5508 +images-13768.png,5509 +images-13769.png,5510 +images-13770.png,5511 +images-13771.png,5512 +images-13772.png,5513 +images-13773.png,5514 +images-13774.png,5515 +images-13775.png,5516 +images-13776.png,5517 +images-13777.png,5518 +images-13778.png,5519 +images-13779.png,5520 +images-13780.png,5521 +images-13781.png,5522 +images-13782.png,5523 +images-13783.png,5524 +images-13784.png,5525 +images-13785.png,5526 +images-13786.png,5527 +images-13787.png,5528 +images-13788.png,5529 +images-13789.png,5530 +images-13790.png,5531 +images-13791.png,5532 +images-13792.png,5533 +images-13793.png,5534 +images-13794.png,5535 +images-13795.png,5536 +images-13796.png,5537 +images-13797.png,5538 +images-13798.png,5539 +images-13799.png,5540 +images-13800.png,5541 +images-13801.png,5542 +images-13802.png,5543 +images-13803.png,5544 +images-13804.png,5545 +images-13805.png,5546 +images-13806.png,5547 +images-13807.png,5548 +images-13808.png,5549 +images-13809.png,5550 +images-13810.png,5551 +images-13811.png,5552 +images-13812.png,5553 +images-13813.png,5554 +images-13814.png,5555 +images-13815.png,5556 +images-13816.png,5557 +images-13817.png,5558 +images-13818.png,5559 +images-13819.png,5560 +images-13820.png,5561 +images-13821.png,5562 +images-13822.png,5563 +images-13823.png,5564 +images-13824.png,5565 +images-13825.png,5566 +images-13826.png,5567 +images-13827.png,5568 +images-13828.png,5569 +images-13829.png,5570 +images-13830.png,5571 +images-13831.png,5572 +images-13832.png,5573 +images-13833.png,5574 +images-13834.png,5575 +images-13835.png,5576 +images-13836.png,5577 +images-13837.png,5578 +images-13838.png,5579 +images-13839.png,5580 +images-13840.png,5581 +images-13841.png,5582 +images-13842.png,5583 +images-13843.png,5584 +images-13844.png,5585 +images-13845.png,5586 +images-13846.png,5587 +images-13847.png,5588 +images-13848.png,5589 +images-13849.png,5590 +images-13850.png,5591 +images-13851.png,5592 +images-13852.png,5593 +images-13853.png,5594 +images-13854.png,5595 +images-13855.png,5596 +images-13856.png,5597 +images-13857.png,5598 +images-13858.png,5599 +images-13859.png,5600 +images-13860.png,5601 +images-13861.png,5602 +images-13862.png,5603 +images-13863.png,5604 +images-13864.png,5605 +images-13865.png,5606 +images-13866.png,5607 +images-13867.png,5608 +images-13868.png,5609 +images-13869.png,5610 +images-13870.png,5611 +images-13871.png,5612 +images-13872.png,5613 +images-13873.png,5614 +images-13874.png,5615 +images-13875.png,5616 +images-13876.png,5617 +images-13877.png,5618 +images-13878.png,5619 +images-13879.png,5620 +images-13880.png,5621 +images-13881.png,5622 +images-13882.png,5623 +images-13883.png,5624 +images-13884.png,5625 +images-13885.png,5626 +images-13886.png,5627 +images-13887.png,5628 +images-13888.png,5629 +images-13889.png,5630 +images-13890.png,5631 +images-13891.png,5632 +images-13892.png,5633 +images-13893.png,5634 +images-13894.png,5635 +images-13895.png,5636 +images-13896.png,5637 +images-13897.png,5638 +images-13898.png,5639 +images-13899.png,5640 +images-13900.png,5641 +images-13901.png,5642 +images-13902.png,5643 +images-13903.png,5644 +images-13904.png,5645 +images-13905.png,5646 +images-13906.png,5647 +images-13907.png,5648 +images-13908.png,5649 +images-13909.png,5650 +images-13910.png,5651 +images-13911.png,5652 +images-13912.png,5653 +images-13913.png,5654 +images-13914.png,5655 +images-13915.png,5656 +images-13916.png,5657 +images-13917.png,5658 +images-13918.png,5659 +images-13919.png,5660 +images-13920.png,5661 +images-13921.png,5662 +images-13922.png,5663 +images-13923.png,5664 +images-13924.png,5665 +images-13925.png,5666 +images-13926.png,5667 +images-13927.png,5668 +images-13928.png,5669 +images-13929.png,5670 +images-13930.png,5671 +images-13931.png,5672 +images-13932.png,5673 +images-13933.png,5674 +images-13934.png,5675 +images-13935.png,5676 +images-13936.png,5677 +images-13937.png,5678 +images-13938.png,5679 +images-13939.png,5680 +images-13940.png,5681 +images-13941.png,5682 +images-13942.png,5683 +images-13943.png,5684 +images-13944.png,5685 +images-13945.png,5686 +images-13946.png,5687 +images-13947.png,5688 +images-13948.png,5689 +images-13949.png,5690 +images-13950.png,5691 +images-13951.png,5692 +images-13952.png,5693 +images-13953.png,5694 +images-13954.png,5695 +images-13955.png,5696 +images-13956.png,5697 +images-13957.png,5698 +images-13958.png,5699 +images-13959.png,5700 +images-13960.png,5701 +images-13961.png,5702 +images-13962.png,5703 +images-13963.png,5704 +images-13964.png,5705 +images-13965.png,5706 +images-13966.png,5707 +images-13967.png,5708 +images-13968.png,5709 +images-13969.png,5710 +images-13970.png,5711 +images-13971.png,5712 +images-13972.png,5713 +images-13973.png,5714 +images-13974.png,5715 +images-13975.png,5716 +images-13976.png,5717 +images-13977.png,5718 +images-13978.png,5719 +images-13979.png,5720 +images-13980.png,5721 +images-13981.png,5722 +images-13982.png,5723 +images-13983.png,5724 +images-13984.png,5725 +images-13985.png,5726 +images-13986.png,5727 +images-13987.png,5728 +images-13988.png,5729 +images-13989.png,5730 +images-13990.png,5731 +images-13991.png,5732 +images-13992.png,5733 +images-13993.png,5734 +images-13994.png,5735 +images-13995.png,5736 +images-13996.png,5737 +images-13997.png,5738 +images-13998.png,5739 +images-13999.png,5740 +images-14000.png,5741 +images-14001.png,5742 +images-14002.png,5743 +images-14003.png,5744 +images-14004.png,5745 +images-14005.png,5746 +images-14006.png,5747 +images-14007.png,5748 +images-14008.png,5749 +images-14009.png,5750 +images-14010.png,5751 +images-14011.png,5752 +images-14012.png,5753 +images-14013.png,5754 +images-14014.png,5755 +images-14015.png,5756 +images-14016.png,5757 +images-14017.png,5758 +images-14018.png,5759 +images-14019.png,5760 +images-14020.png,5761 +images-14021.png,5762 +images-14022.png,5763 +images-14023.png,5764 +images-14024.png,5765 +images-14025.png,5766 +images-14026.png,5767 +images-14027.png,5768 +images-14028.png,5769 +images-14029.png,5770 +images-14030.png,5771 +images-14031.png,5772 +images-14032.png,5773 +images-14033.png,5774 +images-14034.png,5775 +images-14035.png,5776 +images-14036.png,5777 +images-14037.png,5778 +images-14038.png,5779 +images-14039.png,5780 +images-14040.png,5781 +images-14041.png,5782 +images-14042.png,5783 +images-14043.png,5784 +images-14044.png,5785 +images-14045.png,5786 +images-14046.png,5787 +images-14047.png,5788 +images-14048.png,5789 +images-14049.png,5790 +images-14050.png,5791 +images-14051.png,5792 +images-14052.png,5793 +images-14053.png,5794 +images-14054.png,5795 +images-14055.png,5796 +images-14056.png,5797 +images-14057.png,5798 +images-14058.png,5799 +images-14059.png,5800 +images-14060.png,5801 +images-14061.png,5802 +images-14062.png,5803 +images-14063.png,5804 +images-14064.png,5805 +images-14065.png,5806 +images-14066.png,5807 +images-14067.png,5808 +images-14068.png,5809 +images-14069.png,5810 +images-14070.png,5811 +images-14071.png,5812 +images-14072.png,5813 +images-14073.png,5814 +images-14074.png,5815 +images-14075.png,5816 +images-14076.png,5817 +images-14077.png,5818 +images-14078.png,5819 +images-14079.png,5820 +images-14080.png,5821 +images-14081.png,5822 +images-14082.png,5823 +images-14083.png,5824 +images-14084.png,5825 +images-14085.png,5826 +images-14086.png,5827 +images-14087.png,5828 +images-14088.png,5829 +images-14089.png,5830 +images-14090.png,5831 +images-14091.png,5832 +images-14092.png,5833 +images-14093.png,5834 +images-14094.png,5835 +images-14095.png,5836 +images-14096.png,5837 +images-14097.png,5838 +images-14098.png,5839 +images-14099.png,5840 +images-14100.png,5841 +images-14101.png,5842 +images-14102.png,5843 +images-14103.png,5844 +images-14104.png,5845 +images-14105.png,5846 +images-14106.png,5847 +images-14107.png,5848 +images-14108.png,5849 +images-14109.png,5850 +images-14110.png,5851 +images-14111.png,5852 +images-14112.png,5853 +images-14113.png,5854 +images-14114.png,5855 +images-14115.png,5856 +images-14116.png,5857 +images-14117.png,5858 +images-14118.png,5859 +images-14119.png,5860 +images-14120.png,5861 +images-14121.png,5862 +images-14122.png,5863 +images-14123.png,5864 +images-14124.png,5865 +images-14125.png,5866 +images-14126.png,5867 +images-14127.png,5868 +images-14128.png,5869 +images-14129.png,5870 +images-14130.png,5871 +images-14131.png,5872 +images-14132.png,5873 +images-14133.png,5874 +images-14134.png,5875 +images-14135.png,5876 +images-14136.png,5877 +images-14137.png,5878 +images-14138.png,5879 +images-14139.png,5880 +images-14140.png,5881 +images-14141.png,5882 +images-14142.png,5883 +images-14143.png,5884 +images-14144.png,5885 +images-14145.png,5886 +images-14146.png,5887 +images-14147.png,5888 +images-14148.png,5889 +images-14149.png,5890 +images-14150.png,5891 +images-14151.png,5892 +images-14152.png,5893 +images-14153.png,5894 +images-14154.png,5895 +images-14155.png,5896 +images-14156.png,5897 +images-14157.png,5898 +images-14158.png,5899 +images-14159.png,5900 +images-14160.png,5901 +images-14161.png,5902 +images-14162.png,5903 +images-14163.png,5904 +images-14164.png,5905 +images-14165.png,5906 +images-14166.png,5907 +images-14167.png,5908 +images-14168.png,5909 +images-14169.png,5910 +images-14170.png,5911 +images-14171.png,5912 +images-14172.png,5913 +images-14173.png,5914 +images-14174.png,5915 +images-14175.png,5916 +images-14176.png,5917 +images-14177.png,5918 +images-14178.png,5919 +images-14179.png,5920 +images-14180.png,5921 +images-14181.png,5922 +images-14182.png,5923 +images-14183.png,5924 +images-14184.png,5925 +images-14185.png,5926 +images-14186.png,5927 +images-14187.png,5928 +images-14188.png,5929 +images-14189.png,5930 +images-14190.png,5931 +images-14191.png,5932 +images-14192.png,5933 +images-14193.png,5934 +images-14194.png,5935 +images-14195.png,5936 +images-14196.png,5937 +images-14197.png,5938 +images-14198.png,5939 +images-14199.png,5940 +images-14200.png,5941 +images-14201.png,5942 +images-14202.png,5943 +images-14203.png,5944 +images-14204.png,5945 +images-14205.png,5946 +images-14206.png,5947 +images-14207.png,5948 +images-14208.png,5949 +images-14209.png,5950 +images-14210.png,5951 +images-14211.png,5952 +images-14212.png,5953 +images-14213.png,5954 +images-14214.png,5955 +images-14215.png,5956 +images-14216.png,5957 +images-14217.png,5958 +images-14218.png,5959 +images-14219.png,5960 +images-14220.png,5961 +images-14221.png,5962 +images-14222.png,5963 +images-14223.png,5964 +images-14224.png,5965 +images-14225.png,5966 +images-14226.png,5967 +images-14227.png,5968 +images-14228.png,5969 +images-14229.png,5970 +images-14230.png,5971 +images-14231.png,5972 +images-14232.png,5973 +images-14233.png,5974 +images-14234.png,5975 +images-14235.png,5976 +images-14236.png,5977 +images-14237.png,5978 +images-14238.png,5979 +images-14239.png,5980 +images-14240.png,5981 +images-14241.png,5982 +images-14242.png,5983 +images-14243.png,5984 +images-14244.png,5985 +images-14245.png,5986 +images-14246.png,5987 +images-14247.png,5988 +images-14248.png,5989 +images-14249.png,5990 +images-14250.png,5991 +images-14251.png,5992 +images-14252.png,5993 +images-14253.png,5994 +images-14254.png,5995 +images-14255.png,5996 +images-14256.png,5997 +images-14257.png,5998 +images-14258.png,5999 +images-14259.png,6000 +images-14260.png,6001 +images-14261.png,6002 +images-14262.png,6003 +images-14263.png,6004 +images-14264.png,6005 +images-14265.png,6006 +images-14266.png,6007 +images-14267.png,6008 +images-14268.png,6009 +images-14269.png,6010 +images-14270.png,6011 +images-14271.png,6012 +images-14272.png,6013 +images-14273.png,6014 +images-14274.png,6015 +images-14275.png,6016 +images-14276.png,6017 +images-14277.png,6018 +images-14278.png,6019 +images-14279.png,6020 +images-14280.png,6021 +images-14281.png,6022 +images-14282.png,6023 +images-14283.png,6024 +images-14284.png,6025 +images-14285.png,6026 +images-14286.png,6027 +images-14287.png,6028 +images-14288.png,6029 +images-14289.png,6030 +images-14290.png,6031 +images-14291.png,6032 +images-14292.png,6033 +images-14293.png,6034 +images-14294.png,6035 +images-14295.png,6036 +images-14296.png,6037 +images-14297.png,6038 +images-14298.png,6039 +images-14299.png,6040 +images-14300.png,6041 +images-14301.png,6042 +images-14302.png,6043 +images-14303.png,6044 +images-14304.png,6045 +images-14305.png,6046 +images-14306.png,6047 +images-14307.png,6048 +images-14308.png,6049 +images-14309.png,6050 +images-14310.png,6051 +images-14311.png,6052 +images-14312.png,6053 +images-14313.png,6054 +images-14314.png,6055 +images-14315.png,6056 +images-14316.png,6057 +images-14317.png,6058 +images-14318.png,6059 +images-14319.png,6060 +images-14348.png,6061 +images-14349.png,6062 +images-14350.png,6063 +images-14351.png,6064 +images-14352.png,6065 +images-14353.png,6066 +images-14354.png,6067 +images-14355.png,6068 +images-14356.png,6069 +images-14357.png,6070 +images-14358.png,6071 +images-14359.png,6072 +images-14360.png,6073 +images-14361.png,6074 +images-14362.png,6075 +images-14363.png,6076 +images-14364.png,6077 +images-14365.png,6078 +images-14366.png,6079 +images-14367.png,6080 +images-14368.png,6081 +images-14369.png,6082 +images-14370.png,6083 +images-14371.png,6084 +images-14372.png,6085 +images-14373.png,6086 +images-14374.png,6087 +images-14375.png,6088 +images-14376.png,6089 +images-14377.png,6090 +images-14378.png,6091 +images-14379.png,6092 +images-14380.png,6093 +images-14381.png,6094 +images-14382.png,6095 +images-14383.png,6096 +images-14384.png,6097 +images-14385.png,6098 +images-14386.png,6099 +images-14387.png,6100 +images-14388.png,6101 +images-14389.png,6102 +images-14400.png,6103 +images-14401.png,6104 +images-14402.png,6105 +images-14403.png,6106 +images-14404.png,6107 +images-14405.png,6108 +images-14406.png,6109 +images-14407.png,6110 +images-14408.png,6111 +images-14409.png,6112 +images-14410.png,6113 +images-14411.png,6114 +images-14412.png,6115 +images-14413.png,6116 +images-14414.png,6117 +images-14415.png,6118 +images-14416.png,6119 +images-14417.png,6120 +images-14418.png,6121 +images-14419.png,6122 +images-14420.png,6123 +images-14421.png,6124 +images-14422.png,6125 +images-14423.png,6126 +images-14424.png,6127 +images-14425.png,6128 +images-14426.png,6129 +images-14427.png,6130 +images-14428.png,6131 +images-14429.png,6132 +images-14430.png,6133 +images-14431.png,6134 +images-14432.png,6135 +images-14433.png,6136 +images-14434.png,6137 +images-14435.png,6138 +images-14436.png,6139 +images-14437.png,6140 +images-14438.png,6141 +images-14439.png,6142 +images-14440.png,6143 +images-14441.png,6144 +images-14442.png,6145 +images-14443.png,6146 +images-14444.png,6147 +images-14445.png,6148 +images-14446.png,6149 +images-14447.png,6150 +images-14448.png,6151 +images-14449.png,6152 +images-14450.png,6153 +images-14451.png,6154 +images-14452.png,6155 +images-14453.png,6156 +images-14454.png,6157 +images-14455.png,6158 +images-14456.png,6159 +images-14457.png,6160 +images-14458.png,6161 +images-14459.png,6162 +images-14460.png,6163 +images-14461.png,6164 +images-14462.png,6165 +images-14463.png,6166 +images-14464.png,6167 +images-14465.png,6168 +images-14466.png,6169 +images-14467.png,6170 +images-14468.png,6171 +images-14469.png,6172 +images-14470.png,6173 +images-14471.png,6174 +images-14472.png,6175 +images-14473.png,6176 +images-14474.png,6177 +images-14475.png,6178 +images-14476.png,6179 +images-14477.png,6180 +images-14478.png,6181 +images-14479.png,6182 +images-14480.png,6183 +images-14481.png,6184 +images-14482.png,6185 +images-14483.png,6186 +images-14484.png,6187 +images-14485.png,6188 +images-14486.png,6189 +images-14487.png,6190 +images-14488.png,6191 +images-14489.png,6192 +images-14490.png,6193 +images-14491.png,6194 +images-14492.png,6195 +images-14493.png,6196 +images-14494.png,6197 +images-14495.png,6198 +images-14496.png,6199 +images-14497.png,6200 +images-14498.png,6201 +images-14499.png,6202 +images-14500.png,6203 +images-14501.png,6204 +images-14502.png,6205 +images-14503.png,6206 +images-14504.png,6207 +images-14505.png,6208 +images-14506.png,6209 +images-14507.png,6210 +images-14508.png,6211 +images-14509.png,6212 +images-14510.png,6213 +images-14511.png,6214 +images-14512.png,6215 +images-14513.png,6216 +images-14514.png,6217 +images-14515.png,6218 +images-14516.png,6219 +images-14517.png,6220 +images-14518.png,6221 +images-14519.png,6222 +images-14520.png,6223 +images-14521.png,6224 +images-14522.png,6225 +images-14523.png,6226 +images-14524.png,6227 +images-14525.png,6228 +images-14526.png,6229 +images-14527.png,6230 +images-14528.png,6231 +images-14529.png,6232 +images-14530.png,6233 +images-14531.png,6234 +images-14532.png,6235 +images-14533.png,6236 +images-14534.png,6237 +images-14535.png,6238 +images-14536.png,6239 +images-14537.png,6240 +images-14538.png,6241 +images-14539.png,6242 +images-14540.png,6243 +images-14541.png,6244 +images-14542.png,6245 +images-14543.png,6246 +images-14544.png,6247 +images-14545.png,6248 +images-14546.png,6249 +images-14547.png,6250 +images-14548.png,6251 +images-14549.png,6252 +images-14550.png,6253 +images-14551.png,6254 +images-14552.png,6255 +images-14553.png,6256 +images-14554.png,6257 +images-14555.png,6258 +images-14556.png,6259 +images-14557.png,6260 +images-14558.png,6261 +images-14559.png,6262 +images-14560.png,6263 +images-14561.png,6264 +images-14562.png,6265 +images-14563.png,6266 +images-14564.png,6267 +images-14565.png,6268 +images-14566.png,6269 +images-14567.png,6270 +images-14568.png,6271 +images-14569.png,6272 +images-14570.png,6273 +images-14571.png,6274 +images-14572.png,6275 +images-14573.png,6276 +images-14574.png,6277 +images-14575.png,6278 +images-14576.png,6279 +images-14577.png,6280 +images-14578.png,6281 +images-14579.png,6282 +images-14580.png,6283 +images-14581.png,6284 +images-14582.png,6285 +images-14583.png,6286 +images-14584.png,6287 +images-14585.png,6288 +images-14586.png,6289 +images-14587.png,6290 +images-14588.png,6291 +images-14589.png,6292 +images-14590.png,6293 +images-14591.png,6294 +images-14592.png,6295 +images-14593.png,6296 +images-14594.png,6297 +images-14595.png,6298 +images-14596.png,6299 +images-14597.png,6300 +images-14598.png,6301 +images-14599.png,6302 +images-14600.png,6303 +images-14601.png,6304 +images-14602.png,6305 +images-14603.png,6306 +images-14604.png,6307 +images-14605.png,6308 +images-14606.png,6309 +images-14607.png,6310 +images-14608.png,6311 +images-14609.png,6312 +images-14610.png,6313 +images-14611.png,6314 +images-14612.png,6315 +images-14613.png,6316 +images-14614.png,6317 +images-14615.png,6318 +images-14616.png,6319 +images-14617.png,6320 +images-14618.png,6321 +images-14619.png,6322 +images-14620.png,6323 +images-14621.png,6324 +images-14622.png,6325 +images-14623.png,6326 +images-14624.png,6327 +images-14625.png,6328 +images-14626.png,6329 +images-14627.png,6330 +images-14628.png,6331 +images-14629.png,6332 +images-14630.png,6333 +images-14631.png,6334 +images-14632.png,6335 +images-14633.png,6336 +images-14634.png,6337 +images-14635.png,6338 +images-14636.png,6339 +images-14637.png,6340 +images-14638.png,6341 +images-14639.png,6342 +images-14640.png,6343 +images-14641.png,6344 +images-14642.png,6345 +images-14643.png,6346 +images-14644.png,6347 +images-14645.png,6348 +images-14646.png,6349 +images-14647.png,6350 +images-14648.png,6351 +images-14649.png,6352 +images-14650.png,6353 +images-14651.png,6354 +images-14652.png,6355 +images-14653.png,6356 +images-14654.png,6357 +images-14655.png,6358 +images-14656.png,6359 +images-14657.png,6360 +images-14658.png,6361 +images-14659.png,6362 +images-14660.png,6363 +images-14661.png,6364 +images-14662.png,6365 +images-14663.png,6366 +images-14664.png,6367 +images-14665.png,6368 +images-14666.png,6369 +images-14667.png,6370 +images-14668.png,6371 +images-14669.png,6372 +images-14670.png,6373 +images-14671.png,6374 +images-14672.png,6375 +images-14673.png,6376 +images-14674.png,6377 +images-14675.png,6378 +images-14676.png,6379 +images-14677.png,6380 +images-14678.png,6381 +images-14679.png,6382 +images-14680.png,6383 +images-14681.png,6384 +images-14682.png,6385 +images-14683.png,6386 +images-14684.png,6387 +images-14685.png,6388 +images-14686.png,6389 +images-14687.png,6390 +images-14688.png,6391 +images-14689.png,6392 +images-14690.png,6393 +images-14691.png,6394 +images-14692.png,6395 +images-14693.png,6396 +images-14694.png,6397 +images-14695.png,6398 +images-14696.png,6399 +images-14697.png,6400 +images-14698.png,6401 +images-14699.png,6402 +images-14700.png,6403 +images-14701.png,6404 +images-14702.png,6405 +images-14703.png,6406 +images-14704.png,6407 +images-14705.png,6408 +images-14706.png,6409 +images-14707.png,6410 +images-14708.png,6411 +images-14709.png,6412 +images-14710.png,6413 +images-14711.png,6414 +images-14712.png,6415 +images-14713.png,6416 +images-14714.png,6417 +images-14715.png,6418 +images-14716.png,6419 +images-14717.png,6420 +images-14718.png,6421 +images-14719.png,6422 +images-14720.png,6423 +images-14721.png,6424 +images-14722.png,6425 +images-14723.png,6426 +images-14724.png,6427 +images-14725.png,6428 +images-14726.png,6429 +images-14727.png,6430 +images-14728.png,6431 +images-14729.png,6432 +images-14730.png,6433 +images-14731.png,6434 +images-14732.png,6435 +images-14733.png,6436 +images-14734.png,6437 +images-14735.png,6438 +images-14736.png,6439 +images-14737.png,6440 +images-14738.png,6441 +images-14739.png,6442 +images-14740.png,6443 +images-14741.png,6444 +images-14742.png,6445 +images-14743.png,6446 +images-14744.png,6447 +images-14745.png,6448 +images-14746.png,6449 +images-14747.png,6450 +images-14748.png,6451 +images-14749.png,6452 +images-14750.png,6453 +images-14751.png,6454 +images-14752.png,6455 +images-14753.png,6456 +images-14754.png,6457 +images-14755.png,6458 +images-14756.png,6459 +images-14757.png,6460 +images-14758.png,6461 +images-14759.png,6462 +images-14760.png,6463 +images-14761.png,6464 +images-14762.png,6465 +images-14763.png,6466 +images-14764.png,6467 +images-14765.png,6468 +images-14766.png,6469 +images-14767.png,6470 +images-14768.png,6471 +images-14769.png,6472 +images-14770.png,6473 +images-14771.png,6474 +images-14772.png,6475 +images-14773.png,6476 +images-14774.png,6477 +images-14775.png,6478 +images-14776.png,6479 +images-14777.png,6480 +images-14778.png,6481 +images-14779.png,6482 +images-14780.png,6483 +images-14781.png,6484 +images-14782.png,6485 +images-14783.png,6486 +images-14784.png,6487 +images-14785.png,6488 +images-14786.png,6489 +images-14787.png,6490 +images-14788.png,6491 +images-14789.png,6492 +images-14790.png,6493 +images-14791.png,6494 +images-14792.png,6495 +images-14793.png,6496 +images-14794.png,6497 +images-14795.png,6498 +images-14796.png,6499 +images-14797.png,6500 +images-14798.png,6501 +images-14799.png,6502 +images-14800.png,6503 +images-14801.png,6504 +images-14802.png,6505 +images-14803.png,6506 +images-14804.png,6507 +images-14805.png,6508 +images-14806.png,6509 +images-14926.png,6510 +images-14927.png,6511 +images-14928.png,6512 +images-14929.png,6513 +images-14930.png,6514 +images-14931.png,6515 +images-14932.png,6516 +images-14933.png,6517 +images-14934.png,6518 +images-14935.png,6519 +images-14936.png,6520 +images-14937.png,6521 +images-14938.png,6522 +images-14939.png,6523 +images-14940.png,6524 +images-14941.png,6525 +images-14942.png,6526 +images-14943.png,6527 +images-14944.png,6528 +images-14945.png,6529 +images-14946.png,6530 +images-14947.png,6531 +images-14948.png,6532 +images-14949.png,6533 +images-14950.png,6534 +images-14951.png,6535 +images-14952.png,6536 +images-14953.png,6537 +images-14954.png,6538 +images-14955.png,6539 +images-14956.png,6540 +images-14957.png,6541 +images-14958.png,6542 +images-14959.png,6543 +images-14960.png,6544 +images-14961.png,6545 +images-14962.png,6546 +images-14963.png,6547 +images-14964.png,6548 +images-14965.png,6549 +images-14966.png,6550 +images-14967.png,6551 +images-14968.png,6552 +images-14969.png,6553 +images-14970.png,6554 +images-14971.png,6555 +images-14972.png,6556 +images-14973.png,6557 +images-14974.png,6558 +images-14975.png,6559 +images-14976.png,6560 +images-14977.png,6561 +images-14978.png,6562 +images-14979.png,6563 +images-14980.png,6564 +images-14981.png,6565 +images-14982.png,6566 +images-14983.png,6567 +images-14984.png,6568 +images-14985.png,6569 +images-14986.png,6570 +images-14987.png,6571 +images-14988.png,6572 +images-14989.png,6573 +images-14990.png,6574 +images-14991.png,6575 +images-14992.png,6576 +images-14993.png,6577 +images-14994.png,6578 +images-14995.png,6579 +images-14996.png,6580 +images-14997.png,6581 +images-14998.png,6582 +images-14999.png,6583 +images-15000.png,6584 +images-15001.png,6585 +images-15002.png,6586 +images-15003.png,6587 +images-15004.png,6588 +images-15005.png,6589 +images-15006.png,6590 +images-15007.png,6591 +images-15008.png,6592 +images-15009.png,6593 +images-15010.png,6594 +images-15011.png,6595 +images-15012.png,6596 +images-15013.png,6597 +images-15014.png,6598 +images-15015.png,6599 +images-15016.png,6600 +images-15017.png,6601 +images-15018.png,6602 +images-15019.png,6603 +images-15020.png,6604 +images-15021.png,6605 +images-15022.png,6606 +images-15023.png,6607 +images-15024.png,6608 +images-15025.png,6609 +images-15026.png,6610 +images-15027.png,6611 +images-15028.png,6612 +images-15029.png,6613 +images-15030.png,6614 +images-15031.png,6615 +images-15032.png,6616 +images-15033.png,6617 +images-15034.png,6618 +images-15035.png,6619 +images-15036.png,6620 +images-15037.png,6621 +images-15038.png,6622 +images-15039.png,6623 +images-15040.png,6624 +images-15041.png,6625 +images-15042.png,6626 +images-15043.png,6627 +images-15044.png,6628 +images-15045.png,6629 +images-15046.png,6630 +images-15047.png,6631 +images-15048.png,6632 +images-15049.png,6633 +images-15050.png,6634 +images-15051.png,6635 +images-15052.png,6636 +images-15053.png,6637 +images-15054.png,6638 +images-15055.png,6639 +images-15056.png,6640 +images-15057.png,6641 +images-15058.png,6642 +images-15059.png,6643 +images-15060.png,6644 +images-15061.png,6645 +images-15062.png,6646 +images-15063.png,6647 +images-15064.png,6648 +images-15065.png,6649 +images-15066.png,6650 +images-15067.png,6651 +images-15068.png,6652 +images-15069.png,6653 +images-15070.png,6654 +images-15071.png,6655 +images-15072.png,6656 +images-15073.png,6657 +images-15074.png,6658 +images-15075.png,6659 +images-15076.png,6660 +images-15077.png,6661 +images-15078.png,6662 +images-15079.png,6663 +images-15080.png,6664 +images-15081.png,6665 +images-15082.png,6666 +images-15083.png,6667 +images-15084.png,6668 +images-15085.png,6669 +images-15086.png,6670 +images-15087.png,6671 +images-15088.png,6672 +images-15089.png,6673 +images-15090.png,6674 +images-15091.png,6675 +images-15092.png,6676 +images-15093.png,6677 +images-15094.png,6678 +images-15095.png,6679 +images-15096.png,6680 +images-15097.png,6681 +images-15098.png,6682 +images-15099.png,6683 +images-15100.png,6684 +images-15101.png,6685 +images-15102.png,6686 +images-15103.png,6687 +images-15104.png,6688 +images-15105.png,6689 +images-15106.png,6690 +images-15107.png,6691 +images-15108.png,6692 +images-15109.png,6693 +images-15110.png,6694 +images-15111.png,6695 +images-15112.png,6696 +images-15113.png,6697 +images-15114.png,6698 +images-15115.png,6699 +images-15116.png,6700 +images-15117.png,6701 +images-15118.png,6702 +images-15119.png,6703 +images-15120.png,6704 +images-15121.png,6705 +images-15122.png,6706 +images-15123.png,6707 +images-15124.png,6708 +images-15125.png,6709 +images-15126.png,6710 +images-15127.png,6711 +images-15128.png,6712 +images-15129.png,6713 +images-15130.png,6714 +images-15131.png,6715 +images-15132.png,6716 +images-15133.png,6717 +images-15134.png,6718 +images-15135.png,6719 +images-15136.png,6720 +images-15137.png,6721 +images-15138.png,6722 +images-15139.png,6723 +images-15140.png,6724 +images-15141.png,6725 +images-15142.png,6726 +images-15143.png,6727 +images-15144.png,6728 +images-15145.png,6729 +images-15146.png,6730 +images-15147.png,6731 +images-15148.png,6732 +images-15149.png,6733 +images-15150.png,6734 +images-15151.png,6735 +images-15152.png,6736 +images-15153.png,6737 +images-15154.png,6738 +images-15155.png,6739 +images-15156.png,6740 +images-15157.png,6741 +images-15158.png,6742 +images-15159.png,6743 +images-15160.png,6744 +images-15161.png,6745 +images-15162.png,6746 +images-15163.png,6747 +images-15164.png,6748 +images-15165.png,6749 +images-15166.png,6750 +images-15167.png,6751 +images-15168.png,6752 +images-15169.png,6753 +images-15170.png,6754 +images-15171.png,6755 +images-15172.png,6756 +images-15173.png,6757 +images-15174.png,6758 +images-15175.png,6759 +images-15176.png,6760 +images-15177.png,6761 +images-15178.png,6762 +images-15179.png,6763 +images-15180.png,6764 +images-15181.png,6765 +images-15182.png,6766 +images-15183.png,6767 +images-15184.png,6768 +images-15185.png,6769 +images-15186.png,6770 +images-15187.png,6771 +images-15188.png,6772 +images-15189.png,6773 +images-15190.png,6774 +images-15191.png,6775 +images-15192.png,6776 +images-15193.png,6777 +images-15194.png,6778 +images-15195.png,6779 +images-15196.png,6780 +images-15197.png,6781 +images-15198.png,6782 +images-15199.png,6783 +images-15200.png,6784 +images-15201.png,6785 +images-15202.png,6786 +images-15203.png,6787 +images-15204.png,6788 +images-15205.png,6789 +images-15206.png,6790 +images-15207.png,6791 +images-15208.png,6792 +images-15209.png,6793 +images-15210.png,6794 +images-15211.png,6795 +images-15212.png,6796 +images-15213.png,6797 +images-15214.png,6798 +images-15215.png,6799 +images-15216.png,6800 +images-15217.png,6801 +images-15218.png,6802 +images-15219.png,6803 +images-15220.png,6804 +images-15221.png,6805 +images-15222.png,6806 +images-15223.png,6807 +images-15224.png,6808 +images-15225.png,6809 +images-15226.png,6810 +images-15227.png,6811 +images-15228.png,6812 +images-15229.png,6813 +images-15230.png,6814 +images-15231.png,6815 +images-15232.png,6816 +images-15233.png,6817 +images-15234.png,6818 +images-15235.png,6819 +images-15236.png,6820 +images-15237.png,6821 +images-15238.png,6822 +images-15239.png,6823 +images-15240.png,6824 +images-15241.png,6825 +images-15242.png,6826 +images-15243.png,6827 +images-15244.png,6828 +images-15245.png,6829 +images-15246.png,6830 +images-15247.png,6831 +images-15248.png,6832 +images-15249.png,6833 +images-15250.png,6834 +images-15251.png,6835 +images-15252.png,6836 +images-15253.png,6837 +images-15254.png,6838 +images-15255.png,6839 +images-15256.png,6840 +images-15257.png,6841 +images-15258.png,6842 +images-15259.png,6843 +images-15260.png,6844 +images-15261.png,6845 +images-15262.png,6846 +images-15263.png,6847 +images-15264.png,6848 +images-15265.png,6849 +images-15266.png,6850 +images-15267.png,6851 +images-15268.png,6852 +images-15269.png,6853 +images-15270.png,6854 +images-15271.png,6855 +images-15272.png,6856 +images-15273.png,6857 +images-15274.png,6858 +images-15275.png,6859 +images-15276.png,6860 +images-15277.png,6861 +images-15278.png,6862 +images-15279.png,6863 +images-15280.png,6864 +images-15281.png,6865 +images-15282.png,6866 +images-15283.png,6867 +images-15284.png,6868 +images-15285.png,6869 +images-15286.png,6870 +images-15287.png,6871 +images-15288.png,6872 +images-15289.png,6873 +images-15290.png,6874 +images-15291.png,6875 +images-15292.png,6876 +images-15293.png,6877 +images-15294.png,6878 +images-15295.png,6879 +images-15296.png,6880 +images-15297.png,6881 +images-15298.png,6882 +images-15299.png,6883 +images-15300.png,6884 +images-15301.png,6885 +images-15302.png,6886 +images-15303.png,6887 +images-15304.png,6888 +images-15305.png,6889 +images-15306.png,6890 +images-15307.png,6891 +images-15308.png,6892 +images-15309.png,6893 +images-15310.png,6894 +images-15311.png,6895 +images-15312.png,6896 +images-15313.png,6897 +images-15314.png,6898 +images-15315.png,6899 +images-15316.png,6900 +images-15317.png,6901 +images-15318.png,6902 +images-15319.png,6903 +images-15320.png,6904 +images-15321.png,6905 +images-15322.png,6906 +images-15323.png,6907 +images-15324.png,6908 +images-15325.png,6909 +images-15326.png,6910 +images-15327.png,6911 +images-15328.png,6912 +images-15329.png,6913 +images-15330.png,6914 +images-15331.png,6915 +images-15332.png,6916 +images-15333.png,6917 +images-15334.png,6918 +images-15335.png,6919 +images-15336.png,6920 +images-15337.png,6921 +images-15338.png,6922 +images-15339.png,6923 +images-15340.png,6924 +images-15341.png,6925 +images-15342.png,6926 +images-15343.png,6927 +images-15344.png,6928 +images-15345.png,6929 +images-15346.png,6930 +images-15347.png,6931 +images-15348.png,6932 +images-15349.png,6933 +images-15350.png,6934 +images-15351.png,6935 +images-15352.png,6936 +images-15353.png,6937 +images-15354.png,6938 +images-15355.png,6939 +images-15356.png,6940 +images-15357.png,6941 +images-15358.png,6942 +images-15359.png,6943 +images-15360.png,6944 +images-15361.png,6945 +images-15362.png,6946 +images-15363.png,6947 +images-15364.png,6948 +images-15365.png,6949 +images-15366.png,6950 +images-15367.png,6951 +images-15368.png,6952 +images-15369.png,6953 +images-15370.png,6954 +images-15371.png,6955 +images-15372.png,6956 +images-15373.png,6957 +images-15374.png,6958 +images-15375.png,6959 +images-15376.png,6960 +images-15377.png,6961 +images-15378.png,6962 +images-15379.png,6963 +images-15380.png,6964 +images-15381.png,6965 +images-15382.png,6966 +images-15383.png,6967 +images-15384.png,6968 +images-15385.png,6969 +images-15386.png,6970 +images-15387.png,6971 +images-15388.png,6972 +images-15389.png,6973 +images-15390.png,6974 +images-15391.png,6975 +images-15392.png,6976 +images-15393.png,6977 +images-15394.png,6978 +images-15395.png,6979 +images-15396.png,6980 +images-15397.png,6981 +images-15398.png,6982 +images-15399.png,6983 +images-15400.png,6984 +images-15401.png,6985 +images-15402.png,6986 +images-15403.png,6987 +images-15404.png,6988 +images-15405.png,6989 +images-15406.png,6990 +images-15407.png,6991 +images-15408.png,6992 +images-15409.png,6993 +images-15410.png,6994 +images-15411.png,6995 +images-15412.png,6996 +images-15413.png,6997 +images-15414.png,6998 +images-15415.png,6999 +images-15416.png,7000 +images-15417.png,7001 +images-15418.png,7002 +images-15419.png,7003 +images-15420.png,7004 +images-15421.png,7005 +images-15422.png,7006 +images-15423.png,7007 +images-15424.png,7008 +images-15425.png,7009 +images-15426.png,7010 +images-15427.png,7011 +images-15428.png,7012 +images-15429.png,7013 +images-15430.png,7014 +images-15431.png,7015 +images-15432.png,7016 +images-15433.png,7017 +images-15434.png,7018 +images-15435.png,7019 +images-15436.png,7020 +images-15437.png,7021 +images-15438.png,7022 +images-15439.png,7023 +images-15440.png,7024 +images-15441.png,7025 +images-15442.png,7026 +images-15443.png,7027 +images-15444.png,7028 +images-15445.png,7029 +images-15446.png,7030 +images-15447.png,7031 +images-15448.png,7032 +images-15449.png,7033 +images-15450.png,7034 +images-15451.png,7035 +images-15452.png,7036 +images-15453.png,7037 +images-15454.png,7038 +images-15455.png,7039 +images-15456.png,7040 +images-15457.png,7041 +images-15458.png,7042 +images-15459.png,7043 +images-15460.png,7044 +images-15461.png,7045 +images-15462.png,7046 +images-15463.png,7047 +images-15464.png,7048 +images-15465.png,7049 +images-15466.png,7050 +images-15467.png,7051 +images-15468.png,7052 +images-15469.png,7053 +images-15470.png,7054 +images-15471.png,7055 +images-15472.png,7056 +images-15473.png,7057 +images-15474.png,7058 +images-15475.png,7059 +images-15476.png,7060 +images-15477.png,7061 +images-15478.png,7062 +images-15479.png,7063 +images-15480.png,7064 +images-15481.png,7065 +images-15482.png,7066 +images-15483.png,7067 +images-15484.png,7068 +images-15485.png,7069 +images-15486.png,7070 +images-15487.png,7071 +images-15488.png,7072 +images-15489.png,7073 +images-15490.png,7074 +images-15491.png,7075 +images-15492.png,7076 +images-15493.png,7077 +images-15494.png,7078 +images-15495.png,7079 +images-15496.png,7080 +images-15497.png,7081 +images-15498.png,7082 +images-15499.png,7083 +images-15500.png,7084 +images-15501.png,7085 +images-15502.png,7086 +images-15503.png,7087 +images-15504.png,7088 +images-15505.png,7089 +images-15506.png,7090 +images-15507.png,7091 +images-15508.png,7092 +images-15509.png,7093 +images-15510.png,7094 +images-15511.png,7095 +images-15512.png,7096 +images-15513.png,7097 +images-15514.png,7098 +images-15515.png,7099 +images-15516.png,7100 +images-15517.png,7101 +images-15518.png,7102 +images-15519.png,7103 +images-15520.png,7104 +images-15521.png,7105 +images-15522.png,7106 +images-15523.png,7107 +images-15524.png,7108 +images-15525.png,7109 +images-15526.png,7110 +images-15527.png,7111 +images-15528.png,7112 +images-15529.png,7113 +images-15530.png,7114 +images-15531.png,7115 +images-15532.png,7116 +images-15533.png,7117 +images-15534.png,7118 +images-15535.png,7119 +images-15536.png,7120 +images-15537.png,7121 +images-15538.png,7122 +images-15539.png,7123 +images-15540.png,7124 +images-15541.png,7125 +images-15542.png,7126 +images-15543.png,7127 +images-15544.png,7128 +images-15545.png,7129 +images-15546.png,7130 +images-15547.png,7131 +images-15548.png,7132 +images-15549.png,7133 +images-15550.png,7134 +images-15551.png,7135 +images-15552.png,7136 +images-15553.png,7137 +images-15554.png,7138 +images-15555.png,7139 +images-15556.png,7140 +images-15557.png,7141 +images-15558.png,7142 +images-15559.png,7143 +images-15560.png,7144 +images-15561.png,7145 +images-15562.png,7146 +images-15563.png,7147 +images-15564.png,7148 +images-15565.png,7149 +images-15566.png,7150 +images-15567.png,7151 +images-15568.png,7152 +images-15569.png,7153 +images-15570.png,7154 +images-15571.png,7155 +images-15572.png,7156 +images-15573.png,7157 +images-15574.png,7158 +images-15575.png,7159 +images-15576.png,7160 +images-15577.png,7161 +images-15578.png,7162 +images-15579.png,7163 +images-15580.png,7164 +images-15581.png,7165 +images-15582.png,7166 +images-15583.png,7167 +images-15584.png,7168 +images-15585.png,7169 +images-15586.png,7170 +images-15587.png,7171 +images-15588.png,7172 +images-15589.png,7173 +images-15590.png,7174 +images-15591.png,7175 +images-15592.png,7176 +images-15593.png,7177 +images-15594.png,7178 +images-15595.png,7179 +images-15596.png,7180 +images-15597.png,7181 +images-15598.png,7182 +images-15599.png,7183 +images-15600.png,7184 +images-15601.png,7185 +images-15602.png,7186 +images-15603.png,7187 +images-15604.png,7188 +images-15605.png,7189 +images-15606.png,7190 +images-15607.png,7191 +images-15608.png,7192 +images-15609.png,7193 +images-15610.png,7194 +images-15611.png,7195 +images-15612.png,7196 +images-15613.png,7197 +images-15614.png,7198 +images-15615.png,7199 +images-15616.png,7200 +images-15617.png,7201 +images-15618.png,7202 +images-15619.png,7203 +images-15620.png,7204 +images-15621.png,7205 +images-15622.png,7206 +images-15623.png,7207 +images-15624.png,7208 +images-15625.png,7209 +images-15626.png,7210 +images-15627.png,7211 +images-15628.png,7212 +images-15629.png,7213 +images-15630.png,7214 +images-15631.png,7215 +images-15632.png,7216 +images-15633.png,7217 +images-15634.png,7218 +images-15635.png,7219 +images-15636.png,7220 +images-15637.png,7221 +images-15638.png,7222 +images-15639.png,7223 +images-15640.png,7224 +images-15641.png,7225 +images-15642.png,7226 +images-15643.png,7227 +images-15644.png,7228 +images-15645.png,7229 +images-15646.png,7230 +images-15647.png,7231 +images-15648.png,7232 +images-15649.png,7233 +images-15650.png,7234 +images-15651.png,7235 +images-15652.png,7236 +images-15653.png,7237 +images-15654.png,7238 +images-15655.png,7239 +images-15656.png,7240 +images-15657.png,7241 +images-15658.png,7242 +images-15659.png,7243 +images-15660.png,7244 +images-15661.png,7245 +images-15662.png,7246 +images-15663.png,7247 +images-15664.png,7248 +images-15665.png,7249 +images-15666.png,7250 +images-15667.png,7251 +images-15668.png,7252 +images-15669.png,7253 +images-15670.png,7254 +images-15671.png,7255 +images-15672.png,7256 +images-15673.png,7257 +images-15674.png,7258 +images-15675.png,7259 +images-15676.png,7260 +images-15677.png,7261 +images-15678.png,7262 +images-15679.png,7263 +images-15680.png,7264 +images-15681.png,7265 +images-15682.png,7266 +images-15683.png,7267 +images-15684.png,7268 +images-15685.png,7269 +images-15686.png,7270 +images-15687.png,7271 +images-15688.png,7272 +images-15689.png,7273 +images-15690.png,7274 +images-15691.png,7275 +images-15692.png,7276 +images-15693.png,7277 +images-15694.png,7278 +images-15695.png,7279 +images-15696.png,7280 +images-15697.png,7281 +images-15698.png,7282 +images-15699.png,7283 +images-15700.png,7284 +images-15701.png,7285 +images-15702.png,7286 +images-15703.png,7287 +images-15704.png,7288 +images-15705.png,7289 +images-15706.png,7290 +images-15707.png,7291 +images-15708.png,7292 +images-15709.png,7293 +images-15710.png,7294 +images-15711.png,7295 +images-15712.png,7296 +images-15713.png,7297 +images-15714.png,7298 +images-15715.png,7299 +images-15716.png,7300 +images-15717.png,7301 +images-15718.png,7302 +images-15719.png,7303 +images-15720.png,7304 +images-15721.png,7305 +images-15722.png,7306 +images-15723.png,7307 +images-15724.png,7308 +images-15725.png,7309 +images-15726.png,7310 +images-15727.png,7311 +images-15728.png,7312 +images-15729.png,7313 +images-15730.png,7314 +images-15731.png,7315 +images-15732.png,7316 +images-15733.png,7317 +images-15734.png,7318 +images-15735.png,7319 +images-15736.png,7320 +images-15737.png,7321 +images-15738.png,7322 +images-15739.png,7323 +images-15740.png,7324 +images-15741.png,7325 +images-15742.png,7326 +images-15743.png,7327 +images-15744.png,7328 +images-15745.png,7329 +images-15746.png,7330 +images-15747.png,7331 +images-15748.png,7332 +images-15749.png,7333 +images-15750.png,7334 +images-15751.png,7335 +images-15752.png,7336 +images-15753.png,7337 +images-15754.png,7338 +images-15755.png,7339 +images-15756.png,7340 +images-15757.png,7341 +images-15758.png,7342 +images-15759.png,7343 +images-15760.png,7344 +images-15761.png,7345 +images-15762.png,7346 +images-15763.png,7347 +images-15764.png,7348 +images-15765.png,7349 +images-15766.png,7350 +images-15767.png,7351 +images-15768.png,7352 +images-15769.png,7353 +images-15770.png,7354 +images-15771.png,7355 +images-15772.png,7356 +images-15773.png,7357 +images-15774.png,7358 +images-15775.png,7359 +images-15776.png,7360 +images-15777.png,7361 +images-15778.png,7362 +images-15779.png,7363 +images-15780.png,7364 +images-15781.png,7365 +images-15782.png,7366 +images-15783.png,7367 +images-15784.png,7368 +images-15785.png,7369 +images-15786.png,7370 +images-15787.png,7371 +images-15788.png,7372 +images-15789.png,7373 +images-15790.png,7374 +images-15791.png,7375 +images-15792.png,7376 +images-15793.png,7377 +images-15794.png,7378 +images-15795.png,7379 +images-15796.png,7380 +images-15797.png,7381 +images-15798.png,7382 +images-15799.png,7383 +images-15800.png,7384 +images-15801.png,7385 +images-15802.png,7386 +images-15803.png,7387 +images-15804.png,7388 +images-15805.png,7389 +images-15806.png,7390 +images-15807.png,7391 +images-15808.png,7392 +images-15809.png,7393 +images-15810.png,7394 +images-15811.png,7395 +images-15812.png,7396 +images-15813.png,7397 +images-15814.png,7398 +images-15815.png,7399 +images-15816.png,7400 +images-15817.png,7401 +images-15818.png,7402 +images-15819.png,7403 +images-15820.png,7404 +images-15821.png,7405 +images-15822.png,7406 +images-15823.png,7407 +images-15824.png,7408 +images-15825.png,7409 +images-15826.png,7410 +images-15827.png,7411 +images-15828.png,7412 +images-15829.png,7413 +images-15830.png,7414 +images-15831.png,7415 +images-15832.png,7416 +images-15833.png,7417 +images-15834.png,7418 +images-15835.png,7419 +images-15836.png,7420 +images-15837.png,7421 +images-15838.png,7422 +images-15839.png,7423 +images-15840.png,7424 +images-15841.png,7425 +images-15842.png,7426 +images-15843.png,7427 +images-15844.png,7428 +images-15845.png,7429 +images-15846.png,7430 +images-15847.png,7431 +images-15848.png,7432 +images-15849.png,7433 +images-15850.png,7434 +images-15851.png,7435 +images-15852.png,7436 +images-15853.png,7437 +images-15854.png,7438 +images-15855.png,7439 +images-15856.png,7440 +images-15857.png,7441 +images-15858.png,7442 +images-15859.png,7443 +images-15860.png,7444 +images-15861.png,7445 +images-15862.png,7446 +images-15863.png,7447 +images-15864.png,7448 +images-15865.png,7449 +images-15866.png,7450 +images-15867.png,7451 +images-15868.png,7452 +images-15869.png,7453 +images-15870.png,7454 +images-15871.png,7455 +images-15872.png,7456 +images-15873.png,7457 +images-15874.png,7458 +images-15875.png,7459 +images-15876.png,7460 +images-15877.png,7461 +images-15878.png,7462 +images-15879.png,7463 +images-15880.png,7464 +images-15881.png,7465 +images-15882.png,7466 +images-15883.png,7467 +images-15884.png,7468 +images-15885.png,7469 +images-15886.png,7470 +images-15887.png,7471 +images-15888.png,7472 +images-15889.png,7473 +images-15890.png,7474 +images-15891.png,7475 +images-15892.png,7476 +images-15893.png,7477 +images-15894.png,7478 +images-15895.png,7479 +images-15896.png,7480 +images-15897.png,7481 +images-15898.png,7482 +images-15899.png,7483 +images-15900.png,7484 +images-15901.png,7485 +images-15902.png,7486 +images-15903.png,7487 +images-15904.png,7488 +images-15905.png,7489 +images-15906.png,7490 +images-15907.png,7491 +images-15908.png,7492 +images-15909.png,7493 +images-15910.png,7494 +images-15911.png,7495 +images-15912.png,7496 +images-15913.png,7497 +images-15914.png,7498 +images-15915.png,7499 +images-15916.png,7500 +images-15917.png,7501 +images-15918.png,7502 +images-15919.png,7503 +images-15920.png,7504 +images-15921.png,7505 +images-15922.png,7506 +images-15923.png,7507 +images-15924.png,7508 +images-15925.png,7509 +images-15926.png,7510 +images-15927.png,7511 +images-15928.png,7512 +images-15929.png,7513 +images-15930.png,7514 +images-15931.png,7515 +images-15932.png,7516 +images-15933.png,7517 +images-15934.png,7518 +images-15935.png,7519 +images-15936.png,7520 +images-15937.png,7521 +images-15938.png,7522 +images-15939.png,7523 +images-15940.png,7524 +images-15941.png,7525 +images-15942.png,7526 +images-15943.png,7527 +images-15944.png,7528 +images-15945.png,7529 +images-15946.png,7530 +images-15947.png,7531 +images-15948.png,7532 +images-15949.png,7533 +images-15950.png,7534 +images-15951.png,7535 +images-15952.png,7536 +images-15953.png,7537 +images-15954.png,7538 +images-15955.png,7539 +images-15956.png,7540 +images-15957.png,7541 +images-15958.png,7542 +images-15959.png,7543 +images-15960.png,7544 +images-15961.png,7545 +images-15962.png,7546 +images-15963.png,7547 +images-15964.png,7548 +images-15965.png,7549 +images-15966.png,7550 +images-15967.png,7551 +images-15968.png,7552 +images-15969.png,7553 +images-15970.png,7554 +images-15971.png,7555 +images-15972.png,7556 +images-15973.png,7557 +images-15974.png,7558 +images-15975.png,7559 +images-15976.png,7560 +images-15977.png,7561 +images-15978.png,7562 +images-15979.png,7563 +images-15980.png,7564 +images-15981.png,7565 +images-15982.png,7566 +images-15983.png,7567 +images-15984.png,7568 +images-15985.png,7569 +images-15986.png,7570 +images-15987.png,7571 +images-15988.png,7572 +images-15989.png,7573 +images-15990.png,7574 +images-15991.png,7575 +images-15992.png,7576 +images-15993.png,7577 +images-15994.png,7578 +images-15995.png,7579 +images-15996.png,7580 +images-15997.png,7581 +images-15998.png,7582 +images-15999.png,7583 +images-16000.png,7584 +images-16001.png,7585 +images-16002.png,7586 +images-16003.png,7587 +images-16004.png,7588 +images-16005.png,7589 +images-16006.png,7590 +images-16007.png,7591 +images-16008.png,7592 +images-16009.png,7593 +images-16010.png,7594 +images-16011.png,7595 +images-16012.png,7596 +images-16013.png,7597 +images-16014.png,7598 +images-16015.png,7599 +images-16016.png,7600 +images-16017.png,7601 +images-16018.png,7602 +images-16019.png,7603 +images-16020.png,7604 +images-16021.png,7605 +images-16022.png,7606 +images-16023.png,7607 +images-16024.png,7608 +images-16025.png,7609 +images-16026.png,7610 +images-16027.png,7611 +images-16028.png,7612 +images-16029.png,7613 +images-16030.png,7614 +images-16031.png,7615 +images-16032.png,7616 +images-16033.png,7617 +images-16034.png,7618 +images-16035.png,7619 +images-16036.png,7620 +images-16037.png,7621 +images-16038.png,7622 +images-16039.png,7623 +images-16040.png,7624 +images-16041.png,7625 +images-16042.png,7626 +images-16043.png,7627 +images-16044.png,7628 +images-16045.png,7629 +images-16046.png,7630 +images-16047.png,7631 +images-16048.png,7632 +images-16049.png,7633 +images-16050.png,7634 +images-16051.png,7635 +images-16052.png,7636 +images-16053.png,7637 +images-16054.png,7638 +images-16055.png,7639 +images-16056.png,7640 +images-16057.png,7641 +images-16058.png,7642 +images-16059.png,7643 +images-16060.png,7644 +images-16061.png,7645 +images-16062.png,7646 +images-16063.png,7647 +images-16064.png,7648 +images-16065.png,7649 +images-16066.png,7650 +images-16067.png,7651 +images-16068.png,7652 +images-16069.png,7653 +images-16070.png,7654 +images-16071.png,7655 +images-16072.png,7656 +images-16073.png,7657 +images-16074.png,7658 +images-16075.png,7659 +images-16076.png,7660 +images-16077.png,7661 +images-16078.png,7662 +images-16079.png,7663 +images-16080.png,7664 +images-16081.png,7665 +images-16082.png,7666 +images-16083.png,7667 +images-16084.png,7668 +images-16085.png,7669 +images-16086.png,7670 +images-16087.png,7671 +images-16088.png,7672 +images-16089.png,7673 +images-16090.png,7674 +images-16091.png,7675 +images-16092.png,7676 +images-16093.png,7677 +images-16094.png,7678 +images-16095.png,7679 +images-16096.png,7680 +images-16097.png,7681 +images-16098.png,7682 +images-16099.png,7683 +images-16100.png,7684 +images-16101.png,7685 +images-16102.png,7686 +images-16103.png,7687 +images-16104.png,7688 +images-16105.png,7689 +images-16106.png,7690 +images-16107.png,7691 +images-16108.png,7692 +images-16109.png,7693 +images-16110.png,7694 +images-16111.png,7695 +images-16112.png,7696 +images-16113.png,7697 +images-16114.png,7698 +images-16115.png,7699 +images-16116.png,7700 +images-16117.png,7701 +images-16118.png,7702 +images-16119.png,7703 +images-16120.png,7704 +images-16121.png,7705 +images-16122.png,7706 +images-16123.png,7707 +images-16124.png,7708 +images-16125.png,7709 +images-16126.png,7710 +images-16127.png,7711 +images-16128.png,7712 +images-16129.png,7713 +images-16130.png,7714 +images-16131.png,7715 +images-16132.png,7716 +images-16133.png,7717 +images-16134.png,7718 +images-16135.png,7719 +images-16136.png,7720 +images-16137.png,7721 +images-16138.png,7722 +images-16139.png,7723 +images-16140.png,7724 +images-16141.png,7725 +images-16142.png,7726 +images-16143.png,7727 +images-16144.png,7728 +images-16145.png,7729 +images-16146.png,7730 +images-16147.png,7731 +images-16148.png,7732 +images-16149.png,7733 +images-16150.png,7734 +images-16151.png,7735 +images-16152.png,7736 +images-16153.png,7737 +images-16154.png,7738 +images-16155.png,7739 +images-16156.png,7740 +images-16157.png,7741 +images-16158.png,7742 +images-16159.png,7743 +images-16160.png,7744 +images-16161.png,7745 +images-16162.png,7746 +images-16163.png,7747 +images-16164.png,7748 +images-16165.png,7749 +images-16166.png,7750 +images-16167.png,7751 +images-16168.png,7752 +images-16169.png,7753 +images-16170.png,7754 +images-16171.png,7755 +images-16172.png,7756 +images-16173.png,7757 +images-16174.png,7758 +images-16175.png,7759 +images-16176.png,7760 +images-16177.png,7761 +images-16178.png,7762 +images-16179.png,7763 +images-16180.png,7764 +images-16181.png,7765 +images-16182.png,7766 +images-16183.png,7767 +images-16184.png,7768 +images-16185.png,7769 +images-16186.png,7770 +images-16187.png,7771 +images-16188.png,7772 +images-16189.png,7773 +images-16190.png,7774 +images-16191.png,7775 +images-16192.png,7776 +images-16193.png,7777 +images-16194.png,7778 +images-16195.png,7779 +images-16196.png,7780 +images-16197.png,7781 +images-16198.png,7782 +images-16199.png,7783 +images-16200.png,7784 +images-16201.png,7785 +images-16202.png,7786 +images-16206.png,7787 +images-16207.png,7788 +images-16208.png,7789 +images-16209.png,7790 +images-16210.png,7791 +images-16211.png,7792 +images-16212.png,7793 +images-16213.png,7794 +images-16214.png,7795 +images-16215.png,7796 +images-16216.png,7797 +images-16217.png,7798 +images-16218.png,7799 +images-16219.png,7800 +images-16220.png,7801 +images-16221.png,7802 +images-16222.png,7803 +images-16223.png,7804 +images-16224.png,7805 +images-16225.png,7806 +images-16226.png,7807 +images-16227.png,7808 +images-16228.png,7809 +images-16229.png,7810 +images-16230.png,7811 +images-16231.png,7812 +images-16232.png,7813 +images-16233.png,7814 +images-16234.png,7815 +images-16235.png,7816 +images-16236.png,7817 +images-16237.png,7818 +images-16238.png,7819 +images-16239.png,7820 +images-16240.png,7821 +images-16241.png,7822 +images-16242.png,7823 +images-16243.png,7824 +images-16244.png,7825 +images-16245.png,7826 +images-16246.png,7827 +images-16247.png,7828 +images-16248.png,7829 +images-16249.png,7830 +images-16250.png,7831 +images-16251.png,7832 +images-16252.png,7833 +images-16253.png,7834 +images-16254.png,7835 +images-16255.png,7836 +images-16256.png,7837 +images-16257.png,7838 +images-16258.png,7839 +images-16259.png,7840 +images-16260.png,7841 +images-16261.png,7842 +images-16262.png,7843 +images-16263.png,7844 +images-16264.png,7845 +images-16265.png,7846 +images-16266.png,7847 +images-16267.png,7848 +images-16268.png,7849 +images-16269.png,7850 +images-16270.png,7851 +images-16271.png,7852 +images-16272.png,7853 +images-16273.png,7854 +images-16274.png,7855 +images-16275.png,7856 +images-16276.png,7857 +images-16277.png,7858 +images-16278.png,7859 +images-16279.png,7860 +images-16280.png,7861 +images-16281.png,7862 +images-16282.png,7863 +images-16283.png,7864 +images-16284.png,7865 +images-16285.png,7866 +images-16286.png,7867 +images-16287.png,7868 +images-16288.png,7869 +images-16289.png,7870 +images-16290.png,7871 +images-16291.png,7872 +images-16292.png,7873 +images-16293.png,7874 +images-16294.png,7875 +images-16295.png,7876 +images-16296.png,7877 +images-16297.png,7878 +images-16298.png,7879 +images-16299.png,7880 +images-16300.png,7881 +images-16301.png,7882 +images-16302.png,7883 +images-16303.png,7884 +images-16304.png,7885 +images-16305.png,7886 +images-16306.png,7887 +images-16307.png,7888 +images-16308.png,7889 +images-16309.png,7890 +images-16310.png,7891 +images-16311.png,7892 +images-16312.png,7893 +images-16313.png,7894 +images-16314.png,7895 +images-16315.png,7896 +images-16316.png,7897 +images-16317.png,7898 +images-16318.png,7899 +images-16319.png,7900 +images-16320.png,7901 +images-16321.png,7902 +images-16322.png,7903 +images-16323.png,7904 +images-16324.png,7905 +images-16325.png,7906 +images-16326.png,7907 +images-16327.png,7908 +images-16328.png,7909 +images-16329.png,7910 +images-16330.png,7911 +images-16331.png,7912 +images-16332.png,7913 +images-16333.png,7914 +images-16334.png,7915 +images-16335.png,7916 +images-16336.png,7917 +images-16337.png,7918 +images-16338.png,7919 +images-16339.png,7920 +images-16340.png,7921 +images-16341.png,7922 +images-16342.png,7923 +images-16343.png,7924 +images-16344.png,7925 +images-16345.png,7926 +images-16346.png,7927 +images-16347.png,7928 +images-16348.png,7929 +images-16349.png,7930 +images-16350.png,7931 +images-16351.png,7932 +images-16352.png,7933 +images-16353.png,7934 +images-16354.png,7935 +images-16355.png,7936 +images-16356.png,7937 +images-16357.png,7938 +images-16358.png,7939 +images-16359.png,7940 +images-16360.png,7941 +images-16361.png,7942 +images-16362.png,7943 +images-16363.png,7944 +images-16364.png,7945 +images-16365.png,7946 +images-16366.png,7947 +images-16367.png,7948 +images-16368.png,7949 +images-16369.png,7950 +images-16370.png,7951 +images-16371.png,7952 +images-16372.png,7953 +images-16373.png,7954 +images-16374.png,7955 +images-16375.png,7956 +images-16376.png,7957 +images-16377.png,7958 +images-16378.png,7959 +images-16379.png,7960 +images-16380.png,7961 +images-16381.png,7962 +images-16382.png,7963 +images-16383.png,7964 +images-16384.png,7965 +images-16385.png,7966 +images-16386.png,7967 +images-16387.png,7968 +images-16388.png,7969 +images-16389.png,7970 +images-16390.png,7971 +images-16391.png,7972 +images-16392.png,7973 +images-16393.png,7974 +images-16394.png,7975 +images-16395.png,7976 +images-16396.png,7977 +images-16397.png,7978 +images-16398.png,7979 +images-16399.png,7980 +images-16400.png,7981 +images-16401.png,7982 +images-16402.png,7983 +images-16403.png,7984 +images-16404.png,7985 +images-16405.png,7986 +images-16406.png,7987 +images-16407.png,7988 +images-16408.png,7989 +images-16409.png,7990 +images-16410.png,7991 +images-16411.png,7992 +images-16412.png,7993 +images-16413.png,7994 +images-16414.png,7995 +images-16415.png,7996 +images-16416.png,7997 +images-16417.png,7998 +images-16418.png,7999 +images-16419.png,8000 +images-16420.png,8001 +images-16421.png,8002 +images-16422.png,8003 +images-16423.png,8004 +images-16424.png,8005 +images-16425.png,8006 +images-16426.png,8007 +images-16427.png,8008 +images-16428.png,8009 +images-16429.png,8010 +images-16430.png,8011 +images-16431.png,8012 +images-16432.png,8013 +images-16433.png,8014 +images-16434.png,8015 +images-16435.png,8016 +images-16436.png,8017 +images-16437.png,8018 +images-16438.png,8019 +images-16439.png,8020 +images-16440.png,8021 +images-16441.png,8022 +images-16442.png,8023 +images-16443.png,8024 +images-16444.png,8025 +images-16445.png,8026 +images-16446.png,8027 +images-16447.png,8028 +images-16448.png,8029 +images-16449.png,8030 +images-16450.png,8031 +images-16451.png,8032 +images-16452.png,8033 +images-16453.png,8034 +images-16454.png,8035 +images-16455.png,8036 +images-16456.png,8037 +images-16457.png,8038 +images-16458.png,8039 +images-16459.png,8040 +images-16460.png,8041 +images-16461.png,8042 +images-16462.png,8043 +images-16463.png,8044 +images-16464.png,8045 +images-16465.png,8046 +images-16466.png,8047 +images-16467.png,8048 +images-16468.png,8049 +images-16469.png,8050 +images-16470.png,8051 +images-16471.png,8052 +images-16484.png,8053 +images-16485.png,8054 +images-16486.png,8055 +images-16487.png,8056 +images-16488.png,8057 +images-16489.png,8058 +images-16490.png,8059 +images-16491.png,8060 +images-16492.png,8061 +images-16493.png,8062 +images-16494.png,8063 +images-16495.png,8064 +images-16496.png,8065 +images-16497.png,8066 +images-16498.png,8067 +images-16499.png,8068 +images-16500.png,8069 +images-16501.png,8070 +images-16502.png,8071 +images-16503.png,8072 +images-16504.png,8073 +images-16505.png,8074 +images-16506.png,8075 +images-16507.png,8076 +images-16508.png,8077 +images-16509.png,8078 +images-16510.png,8079 +images-16511.png,8080 +images-16512.png,8081 +images-16513.png,8082 +images-16514.png,8083 +images-16515.png,8084 +images-16516.png,8085 +images-16517.png,8086 +images-16518.png,8087 +images-16519.png,8088 +images-16520.png,8089 +images-16521.png,8090 +images-16522.png,8091 +images-16523.png,8092 +images-16524.png,8093 +images-16525.png,8094 +images-16526.png,8095 +images-16527.png,8096 +images-16528.png,8097 +images-16529.png,8098 +images-16530.png,8099 +images-16531.png,8100 +images-16532.png,8101 +images-16533.png,8102 +images-16534.png,8103 +images-16535.png,8104 +images-16536.png,8105 +images-16537.png,8106 +images-16538.png,8107 +images-16539.png,8108 +images-16540.png,8109 +images-16541.png,8110 +images-16542.png,8111 +images-16543.png,8112 +images-16544.png,8113 +images-16545.png,8114 +images-16546.png,8115 +images-16547.png,8116 +images-16548.png,8117 +images-16549.png,8118 +images-16550.png,8119 +images-16551.png,8120 +images-16552.png,8121 +images-16553.png,8122 +images-16554.png,8123 +images-16555.png,8124 +images-16556.png,8125 +images-16557.png,8126 +images-16558.png,8127 +images-16559.png,8128 +images-16560.png,8129 +images-16561.png,8130 +images-16562.png,8131 +images-16563.png,8132 +images-16564.png,8133 +images-16565.png,8134 +images-16566.png,8135 +images-16567.png,8136 +images-16568.png,8137 +images-16569.png,8138 +images-16570.png,8139 +images-16571.png,8140 +images-16572.png,8141 +images-16573.png,8142 +images-16574.png,8143 +images-16575.png,8144 +images-16576.png,8145 +images-16577.png,8146 +images-16578.png,8147 +images-16579.png,8148 +images-16580.png,8149 +images-16581.png,8150 +images-16582.png,8151 +images-16583.png,8152 +images-16584.png,8153 +images-16585.png,8154 +images-16586.png,8155 +images-16587.png,8156 +images-16588.png,8157 +images-16589.png,8158 +images-16590.png,8159 +images-16591.png,8160 +images-16592.png,8161 +images-16593.png,8162 +images-16594.png,8163 +images-16595.png,8164 +images-16596.png,8165 +images-16597.png,8166 +images-16598.png,8167 +images-16599.png,8168 +images-16600.png,8169 +images-16601.png,8170 +images-16602.png,8171 +images-16603.png,8172 +images-16604.png,8173 +images-16605.png,8174 +images-16606.png,8175 +images-16607.png,8176 +images-16608.png,8177 +images-16609.png,8178 +images-16610.png,8179 +images-16611.png,8180 +images-16612.png,8181 +images-16613.png,8182 +images-16614.png,8183 +images-16615.png,8184 +images-16616.png,8185 +images-16617.png,8186 +images-16618.png,8187 +images-16619.png,8188 +images-16620.png,8189 +images-16621.png,8190 +images-16622.png,8191 +images-16623.png,8192 +images-16624.png,8193 +images-16625.png,8194 +images-16626.png,8195 +images-16627.png,8196 +images-16628.png,8197 +images-16629.png,8198 +images-16630.png,8199 +images-16631.png,8200 +images-16632.png,8201 +images-16633.png,8202 +images-16634.png,8203 +images-16635.png,8204 +images-16636.png,8205 +images-16637.png,8206 +images-16638.png,8207 +images-16639.png,8208 +images-16640.png,8209 +images-16641.png,8210 +images-16642.png,8211 +images-16643.png,8212 +images-16644.png,8213 +images-16645.png,8214 +images-16646.png,8215 +images-16647.png,8216 +images-16648.png,8217 +images-16649.png,8218 +images-16650.png,8219 +images-16651.png,8220 +images-16652.png,8221 +images-16653.png,8222 +images-16654.png,8223 +images-16655.png,8224 +images-16656.png,8225 +images-16657.png,8226 +images-16658.png,8227 +images-16659.png,8228 +images-16660.png,8229 +images-16661.png,8230 +images-16662.png,8231 +images-16663.png,8232 +images-16664.png,8233 +images-16665.png,8234 +images-16666.png,8235 +images-16667.png,8236 +images-16668.png,8237 +images-16669.png,8238 +images-16670.png,8239 +images-16671.png,8240 +images-16672.png,8241 +images-16673.png,8242 +images-16674.png,8243 +images-16675.png,8244 +images-16676.png,8245 +images-16677.png,8246 +images-16678.png,8247 +images-16679.png,8248 +images-16680.png,8249 +images-16681.png,8250 +images-16682.png,8251 +images-16683.png,8252 +images-16684.png,8253 +images-16685.png,8254 +images-16686.png,8255 +images-16687.png,8256 +images-16688.png,8257 +images-16689.png,8258 +images-16695.png,8259 +images-16696.png,8260 +images-16697.png,8261 +images-16698.png,8262 +images-16699.png,8263 +images-16700.png,8264 +images-16701.png,8265 +images-16702.png,8266 +images-16703.png,8267 +images-16704.png,8268 +images-16705.png,8269 +images-16706.png,8270 +images-16707.png,8271 +images-16708.png,8272 +images-16709.png,8273 +images-16710.png,8274 +images-16711.png,8275 +images-16712.png,8276 +images-16713.png,8277 +images-16714.png,8278 +images-16715.png,8279 +images-16716.png,8280 +images-16717.png,8281 +images-16718.png,8282 +images-16719.png,8283 +images-16720.png,8284 +images-16721.png,8285 +images-16722.png,8286 +images-16723.png,8287 +images-16724.png,8288 +images-16725.png,8289 +images-16726.png,8290 +images-16727.png,8291 +images-16728.png,8292 +images-16729.png,8293 +images-16730.png,8294 +images-16731.png,8295 +images-16732.png,8296 +images-16733.png,8297 +images-16734.png,8298 +images-16735.png,8299 +images-16736.png,8300 +images-16737.png,8301 +images-16738.png,8302 +images-16739.png,8303 +images-16740.png,8304 +images-16741.png,8305 +images-16742.png,8306 +images-16743.png,8307 +images-16744.png,8308 +images-16745.png,8309 +images-16746.png,8310 +images-16747.png,8311 +images-16748.png,8312 +images-16749.png,8313 +images-16750.png,8314 +images-16751.png,8315 +images-16752.png,8316 +images-16753.png,8317 +images-16754.png,8318 +images-16755.png,8319 +images-16756.png,8320 +images-16757.png,8321 +images-16758.png,8322 +images-16759.png,8323 +images-16760.png,8324 +images-16761.png,8325 +images-16762.png,8326 +images-16763.png,8327 +images-16764.png,8328 +images-16765.png,8329 +images-16766.png,8330 +images-16767.png,8331 +images-16768.png,8332 +images-16769.png,8333 +images-16770.png,8334 +images-16771.png,8335 +images-16772.png,8336 +images-16773.png,8337 +images-16774.png,8338 +images-16775.png,8339 +images-16776.png,8340 +images-16777.png,8341 +images-16778.png,8342 +images-16779.png,8343 +images-16780.png,8344 +images-16781.png,8345 +images-16782.png,8346 +images-16783.png,8347 +images-16784.png,8348 +images-16785.png,8349 +images-16786.png,8350 +images-16787.png,8351 +images-16788.png,8352 +images-16789.png,8353 +images-16790.png,8354 +images-16791.png,8355 +images-16792.png,8356 +images-16793.png,8357 +images-16794.png,8358 +images-16795.png,8359 +images-16796.png,8360 +images-16797.png,8361 +images-16798.png,8362 +images-16799.png,8363 +images-16800.png,8364 +images-16801.png,8365 +images-16802.png,8366 +images-16803.png,8367 +images-16804.png,8368 +images-16805.png,8369 +images-16806.png,8370 +images-16807.png,8371 +images-16808.png,8372 +images-16809.png,8373 +images-16810.png,8374 +images-16811.png,8375 +images-16812.png,8376 +images-16813.png,8377 +images-16814.png,8378 +images-16815.png,8379 +images-16816.png,8380 +images-16817.png,8381 +images-16818.png,8382 +images-16819.png,8383 +images-16820.png,8384 +images-16821.png,8385 +images-16822.png,8386 +images-16823.png,8387 +images-16824.png,8388 +images-16825.png,8389 +images-16826.png,8390 +images-16827.png,8391 +images-16828.png,8392 +images-16829.png,8393 +images-16830.png,8394 +images-16831.png,8395 +images-16832.png,8396 +images-16833.png,8397 +images-16834.png,8398 +images-16835.png,8399 +images-16836.png,8400 +images-16837.png,8401 +images-16838.png,8402 +images-16839.png,8403 +images-16840.png,8404 +images-16841.png,8405 +images-16842.png,8406 +images-16843.png,8407 +images-16844.png,8408 +images-16845.png,8409 +images-16846.png,8410 +images-16847.png,8411 +images-16848.png,8412 +images-16849.png,8413 +images-16850.png,8414 +images-16851.png,8415 +images-16852.png,8416 +images-16853.png,8417 +images-16854.png,8418 +images-16855.png,8419 +images-16856.png,8420 +images-16857.png,8421 +images-16858.png,8422 +images-16859.png,8423 +images-16860.png,8424 +images-16861.png,8425 +images-16862.png,8426 +images-16863.png,8427 +images-16864.png,8428 +images-16865.png,8429 +images-16866.png,8430 +images-16867.png,8431 +images-16868.png,8432 +images-16869.png,8433 +images-16870.png,8434 +images-16871.png,8435 +images-16872.png,8436 +images-16873.png,8437 +images-16874.png,8438 +images-16875.png,8439 +images-16876.png,8440 +images-16877.png,8441 +images-16878.png,8442 +images-16879.png,8443 +images-16880.png,8444 +images-16881.png,8445 +images-16882.png,8446 +images-16883.png,8447 +images-16884.png,8448 +images-16885.png,8449 +images-16886.png,8450 +images-16887.png,8451 +images-16888.png,8452 +images-16889.png,8453 +images-16890.png,8454 +images-16891.png,8455 +images-16892.png,8456 +images-16893.png,8457 +images-16894.png,8458 +images-16895.png,8459 +images-16896.png,8460 +images-16897.png,8461 +images-16898.png,8462 +images-16899.png,8463 +images-16900.png,8464 +images-16901.png,8465 +images-16902.png,8466 +images-16903.png,8467 +images-16904.png,8468 +images-16905.png,8469 +images-16906.png,8470 +images-16907.png,8471 +images-16908.png,8472 +images-16909.png,8473 +images-16910.png,8474 +images-16911.png,8475 +images-16912.png,8476 +images-16913.png,8477 +images-16914.png,8478 +images-16915.png,8479 +images-16916.png,8480 +images-16917.png,8481 +images-16918.png,8482 +images-16919.png,8483 +images-16920.png,8484 +images-16921.png,8485 +images-16922.png,8486 +images-16923.png,8487 +images-16924.png,8488 +images-16925.png,8489 +images-16926.png,8490 +images-16927.png,8491 +images-16928.png,8492 +images-16929.png,8493 +images-16930.png,8494 +images-16931.png,8495 +images-16932.png,8496 +images-16936.png,8497 +images-16937.png,8498 +images-16938.png,8499 +images-16939.png,8500 +images-16940.png,8501 +images-16941.png,8502 +images-16942.png,8503 +images-16943.png,8504 +images-16944.png,8505 +images-16945.png,8506 +images-16946.png,8507 +images-16947.png,8508 +images-16948.png,8509 +images-16949.png,8510 +images-16950.png,8511 +images-16951.png,8512 +images-16952.png,8513 +images-16953.png,8514 +images-16954.png,8515 +images-16955.png,8516 +images-16956.png,8517 +images-16957.png,8518 +images-16958.png,8519 +images-16959.png,8520 +images-16960.png,8521 +images-16961.png,8522 +images-16962.png,8523 +images-16963.png,8524 +images-16964.png,8525 +images-16965.png,8526 +images-16966.png,8527 +images-16967.png,8528 +images-16968.png,8529 +images-16969.png,8530 +images-16970.png,8531 +images-16971.png,8532 +images-16972.png,8533 +images-16973.png,8534 +images-16974.png,8535 +images-16975.png,8536 +images-16976.png,8537 +images-16977.png,8538 +images-16978.png,8539 +images-16979.png,8540 +images-16980.png,8541 +images-16981.png,8542 +images-16982.png,8543 +images-16983.png,8544 +images-16984.png,8545 +images-16985.png,8546 +images-16986.png,8547 +images-16987.png,8548 +images-16988.png,8549 +images-16989.png,8550 +images-16990.png,8551 +images-16991.png,8552 +images-16992.png,8553 +images-16993.png,8554 +images-16994.png,8555 +images-16995.png,8556 +images-16996.png,8557 +images-16997.png,8558 +images-16998.png,8559 +images-16999.png,8560 +images-17000.png,8561 +images-17001.png,8562 +images-17002.png,8563 +images-17003.png,8564 +images-17004.png,8565 +images-17005.png,8566 +images-17006.png,8567 +images-17007.png,8568 +images-17008.png,8569 +images-17009.png,8570 +images-17010.png,8571 +images-17011.png,8572 +images-17012.png,8573 +images-17013.png,8574 +images-17014.png,8575 +images-17015.png,8576 +images-17016.png,8577 +images-17017.png,8578 +images-17018.png,8579 +images-17019.png,8580 +images-17020.png,8581 +images-17021.png,8582 +images-17022.png,8583 +images-17023.png,8584 +images-17024.png,8585 +images-17025.png,8586 +images-17026.png,8587 +images-17027.png,8588 +images-17028.png,8589 +images-17029.png,8590 +images-17030.png,8591 +images-17031.png,8592 +images-17032.png,8593 +images-17033.png,8594 +images-17034.png,8595 +images-17035.png,8596 +images-17036.png,8597 +images-17037.png,8598 +images-17038.png,8599 +images-17039.png,8600 +images-17040.png,8601 +images-17041.png,8602 +images-17042.png,8603 +images-17043.png,8604 +images-17044.png,8605 +images-17045.png,8606 +images-17046.png,8607 +images-17047.png,8608 +images-17048.png,8609 +images-17049.png,8610 +images-17050.png,8611 +images-17051.png,8612 +images-17052.png,8613 +images-17053.png,8614 +images-17068.png,8615 +images-17069.png,8616 +images-17070.png,8617 +images-17071.png,8618 +images-17072.png,8619 +images-17073.png,8620 +images-17074.png,8621 +images-17075.png,8622 +images-17076.png,8623 +images-17077.png,8624 +images-17078.png,8625 +images-17079.png,8626 +images-17080.png,8627 +images-17081.png,8628 +images-17082.png,8629 +images-17083.png,8630 +images-17084.png,8631 +images-17085.png,8632 +images-17086.png,8633 +images-17087.png,8634 +images-17088.png,8635 +images-17089.png,8636 +images-17090.png,8637 +images-17091.png,8638 +images-17092.png,8639 +images-17093.png,8640 +images-17094.png,8641 +images-17095.png,8642 +images-17096.png,8643 +images-17097.png,8644 +images-17098.png,8645 +images-17099.png,8646 +images-17100.png,8647 +images-17101.png,8648 +images-17102.png,8649 +images-17103.png,8650 +images-17104.png,8651 +images-17105.png,8652 +images-17106.png,8653 +images-17107.png,8654 +images-17108.png,8655 +images-17109.png,8656 +images-17110.png,8657 +images-17111.png,8658 +images-17112.png,8659 +images-17113.png,8660 +images-17114.png,8661 +images-17115.png,8662 +images-17116.png,8663 +images-17117.png,8664 +images-17118.png,8665 +images-17119.png,8666 +images-17120.png,8667 +images-17121.png,8668 +images-17122.png,8669 +images-17123.png,8670 +images-17124.png,8671 +images-17125.png,8672 +images-17126.png,8673 +images-17127.png,8674 +images-17128.png,8675 +images-17129.png,8676 +images-17130.png,8677 +images-17131.png,8678 +images-17132.png,8679 +images-17133.png,8680 +images-17134.png,8681 +images-17135.png,8682 +images-17136.png,8683 +images-17137.png,8684 +images-17138.png,8685 +images-17139.png,8686 +images-17140.png,8687 +images-17141.png,8688 +images-17142.png,8689 +images-17143.png,8690 +images-17144.png,8691 +images-17145.png,8692 +images-17146.png,8693 +images-17147.png,8694 +images-17148.png,8695 +images-17149.png,8696 +images-17150.png,8697 +images-17151.png,8698 +images-17152.png,8699 +images-17153.png,8700 +images-17154.png,8701 +images-17155.png,8702 +images-17156.png,8703 +images-17157.png,8704 +images-17158.png,8705 +images-17159.png,8706 +images-17160.png,8707 +images-17161.png,8708 +images-17162.png,8709 +images-17163.png,8710 +images-17164.png,8711 +images-17165.png,8712 +images-17166.png,8713 +images-17167.png,8714 +images-17168.png,8715 +images-17169.png,8716 +images-17170.png,8717 +images-17171.png,8718 +images-17172.png,8719 +images-17173.png,8720 +images-17174.png,8721 +images-17175.png,8722 +images-17176.png,8723 +images-17183.png,8724 +images-17184.png,8725 +images-17185.png,8726 +images-17186.png,8727 +images-17187.png,8728 +images-17188.png,8729 +images-17189.png,8730 +images-17190.png,8731 +images-17191.png,8732 +images-17192.png,8733 +images-17193.png,8734 +images-17194.png,8735 +images-17195.png,8736 +images-17196.png,8737 +images-17197.png,8738 +images-17198.png,8739 +images-17199.png,8740 +images-17200.png,8741 +images-17201.png,8742 +images-17202.png,8743 +images-17203.png,8744 +images-17204.png,8745 +images-17205.png,8746 +images-17206.png,8747 +images-17207.png,8748 +images-17208.png,8749 +images-17209.png,8750 +images-17210.png,8751 +images-17211.png,8752 +images-17212.png,8753 +images-17213.png,8754 +images-17214.png,8755 +images-17215.png,8756 +images-17216.png,8757 +images-17217.png,8758 +images-17218.png,8759 +images-17219.png,8760 +images-17220.png,8761 +images-17221.png,8762 +images-17222.png,8763 +images-17223.png,8764 +images-17224.png,8765 +images-17225.png,8766 +images-17226.png,8767 +images-17227.png,8768 +images-17228.png,8769 +images-17229.png,8770 +images-17230.png,8771 +images-17231.png,8772 +images-17232.png,8773 +images-17233.png,8774 +images-17234.png,8775 +images-17235.png,8776 +images-17236.png,8777 +images-17237.png,8778 +images-17238.png,8779 +images-17239.png,8780 +images-17240.png,8781 +images-17241.png,8782 +images-17242.png,8783 +images-17243.png,8784 +images-17244.png,8785 +images-17245.png,8786 +images-17246.png,8787 +images-17247.png,8788 +images-17248.png,8789 +images-17249.png,8790 +images-17250.png,8791 +images-17251.png,8792 +images-17252.png,8793 +images-17253.png,8794 +images-17254.png,8795 +images-17255.png,8796 +images-17256.png,8797 +images-17257.png,8798 +images-17258.png,8799 +images-17259.png,8800 +images-17260.png,8801 +images-17261.png,8802 +images-17262.png,8803 +images-17263.png,8804 +images-17264.png,8805 +images-17265.png,8806 +images-17266.png,8807 +images-17267.png,8808 +images-17268.png,8809 +images-17269.png,8810 +images-17270.png,8811 +images-17271.png,8812 +images-17272.png,8813 +images-17273.png,8814 +images-17274.png,8815 +images-17275.png,8816 +images-17276.png,8817 +images-17277.png,8818 +images-17278.png,8819 +images-17279.png,8820 +images-17280.png,8821 +images-17281.png,8822 +images-17282.png,8823 +images-17283.png,8824 +images-17284.png,8825 +images-17285.png,8826 +images-17286.png,8827 +images-17287.png,8828 +images-17288.png,8829 +images-17289.png,8830 +images-17290.png,8831 +images-17291.png,8832 +images-17292.png,8833 +images-17293.png,8834 +images-17294.png,8835 +images-17295.png,8836 +images-17296.png,8837 +images-17297.png,8838 +images-17298.png,8839 +images-17299.png,8840 +images-17300.png,8841 +images-17301.png,8842 +images-17302.png,8843 +images-17303.png,8844 +images-17304.png,8845 +images-17305.png,8846 +images-17306.png,8847 +images-17307.png,8848 +images-17308.png,8849 +images-17309.png,8850 +images-17310.png,8851 +images-17311.png,8852 +images-17312.png,8853 +images-17313.png,8854 +images-17314.png,8855 +images-17315.png,8856 +images-17316.png,8857 +images-17317.png,8858 +images-17318.png,8859 +images-17319.png,8860 +images-17320.png,8861 +images-17321.png,8862 +images-17322.png,8863 +images-17323.png,8864 +images-17324.png,8865 +images-17325.png,8866 +images-17326.png,8867 +images-17327.png,8868 +images-17328.png,8869 +images-17329.png,8870 +images-17330.png,8871 +images-17331.png,8872 +images-17332.png,8873 +images-17333.png,8874 +images-17334.png,8875 +images-17335.png,8876 +images-17336.png,8877 +images-17337.png,8878 +images-17338.png,8879 +images-17339.png,8880 +images-17340.png,8881 +images-17341.png,8882 +images-17342.png,8883 +images-17343.png,8884 +images-17344.png,8885 +images-17345.png,8886 +images-17346.png,8887 +images-17347.png,8888 +images-17348.png,8889 +images-17349.png,8890 +images-17350.png,8891 +images-17351.png,8892 +images-17352.png,8893 +images-17353.png,8894 +images-17354.png,8895 +images-17355.png,8896 +images-17356.png,8897 +images-17357.png,8898 +images-17358.png,8899 +images-17359.png,8900 +images-17360.png,8901 +images-17361.png,8902 +images-17362.png,8903 +images-17363.png,8904 +images-17364.png,8905 +images-17365.png,8906 +images-17366.png,8907 +images-17367.png,8908 +images-17368.png,8909 +images-17369.png,8910 +images-17370.png,8911 +images-17371.png,8912 +images-17372.png,8913 +images-17373.png,8914 +images-17374.png,8915 +images-17375.png,8916 +images-17376.png,8917 +images-17377.png,8918 +images-17378.png,8919 +images-17379.png,8920 +images-17380.png,8921 +images-17381.png,8922 +images-17382.png,8923 +images-17383.png,8924 +images-17384.png,8925 +images-17385.png,8926 +images-17386.png,8927 +images-17387.png,8928 +images-17388.png,8929 +images-17389.png,8930 +images-17390.png,8931 +images-17391.png,8932 +images-17392.png,8933 +images-17393.png,8934 +images-17394.png,8935 +images-17395.png,8936 +images-17396.png,8937 +images-17397.png,8938 +images-17398.png,8939 +images-17399.png,8940 +images-17400.png,8941 +images-17401.png,8942 +images-17402.png,8943 +images-17403.png,8944 +images-17404.png,8945 +images-17405.png,8946 +images-17406.png,8947 +images-17407.png,8948 +images-17408.png,8949 +images-17409.png,8950 +images-17410.png,8951 +images-17411.png,8952 +images-17412.png,8953 +images-17413.png,8954 +images-17414.png,8955 +images-17415.png,8956 +images-17416.png,8957 +images-17417.png,8958 +images-17418.png,8959 +images-17419.png,8960 +images-17420.png,8961 +images-17421.png,8962 +images-17422.png,8963 +images-17423.png,8964 +images-17424.png,8965 +images-17425.png,8966 +images-17426.png,8967 +images-17427.png,8968 +images-17428.png,8969 +images-17429.png,8970 +images-17430.png,8971 +images-17431.png,8972 +images-17432.png,8973 +images-17433.png,8974 +images-17434.png,8975 +images-17435.png,8976 +images-17436.png,8977 +images-17437.png,8978 +images-17438.png,8979 +images-17439.png,8980 +images-17440.png,8981 +images-17441.png,8982 +images-17442.png,8983 +images-17443.png,8984 +images-17444.png,8985 +images-17445.png,8986 +images-17446.png,8987 +images-17447.png,8988 +images-17448.png,8989 +images-17449.png,8990 +images-17450.png,8991 +images-17451.png,8992 +images-17452.png,8993 +images-17453.png,8994 +images-17454.png,8995 +images-17455.png,8996 +images-17456.png,8997 +images-17457.png,8998 +images-17458.png,8999 +images-17459.png,9000 +images-17460.png,9001 +images-17461.png,9002 +images-17462.png,9003 +images-17463.png,9004 +images-17464.png,9005 +images-17465.png,9006 +images-17466.png,9007 +images-17467.png,9008 +images-17468.png,9009 +images-17469.png,9010 +images-17470.png,9011 +images-17471.png,9012 +images-17472.png,9013 +images-17473.png,9014 +images-17474.png,9015 +images-17475.png,9016 +images-17476.png,9017 +images-17477.png,9018 +images-17478.png,9019 +images-17479.png,9020 +images-17480.png,9021 +images-17481.png,9022 +images-17482.png,9023 +images-17483.png,9024 +images-17484.png,9025 +images-17485.png,9026 +images-17486.png,9027 +images-17487.png,9028 +images-17488.png,9029 +images-17489.png,9030 +images-17490.png,9031 +images-17491.png,9032 +images-17492.png,9033 +images-17493.png,9034 +images-17494.png,9035 +images-17495.png,9036 +images-17496.png,9037 +images-17497.png,9038 +images-17498.png,9039 +images-17499.png,9040 +images-17500.png,9041 +images-17501.png,9042 +images-17502.png,9043 +images-17503.png,9044 +images-17504.png,9045 +images-17505.png,9046 +images-17506.png,9047 +images-17507.png,9048 +images-17508.png,9049 +images-17509.png,9050 +images-17510.png,9051 +images-17511.png,9052 +images-17512.png,9053 +images-17513.png,9054 +images-17514.png,9055 +images-17515.png,9056 +images-17516.png,9057 +images-17517.png,9058 +images-17518.png,9059 +images-17519.png,9060 +images-17520.png,9061 +images-17521.png,9062 +images-17522.png,9063 +images-17523.png,9064 +images-17524.png,9065 +images-17525.png,9066 +images-17526.png,9067 +images-17527.png,9068 +images-17528.png,9069 +images-17529.png,9070 +images-17530.png,9071 +images-17531.png,9072 +images-17532.png,9073 +images-17533.png,9074 +images-17534.png,9075 +images-17535.png,9076 +images-17536.png,9077 +images-17537.png,9078 +images-17538.png,9079 +images-17539.png,9080 +images-17540.png,9081 +images-17541.png,9082 +images-17542.png,9083 +images-17543.png,9084 +images-17544.png,9085 +images-17545.png,9086 +images-17546.png,9087 +images-17547.png,9088 +images-17548.png,9089 +images-17549.png,9090 +images-17550.png,9091 +images-17551.png,9092 +images-17552.png,9093 +images-17553.png,9094 +images-17554.png,9095 +images-17555.png,9096 +images-17556.png,9097 +images-17557.png,9098 +images-17558.png,9099 +images-17559.png,9100 +images-17560.png,9101 +images-17561.png,9102 +images-17562.png,9103 +images-17563.png,9104 +images-17564.png,9105 +images-17565.png,9106 +images-17566.png,9107 +images-17567.png,9108 +images-17568.png,9109 +images-17569.png,9110 +images-17570.png,9111 +images-17571.png,9112 +images-17572.png,9113 +images-17573.png,9114 +images-17574.png,9115 +images-17575.png,9116 +images-17576.png,9117 +images-17577.png,9118 +images-17578.png,9119 +images-17579.png,9120 +images-17580.png,9121 +images-17581.png,9122 +images-17582.png,9123 +images-17583.png,9124 +images-17584.png,9125 +images-17585.png,9126 +images-17586.png,9127 +images-17587.png,9128 +images-17588.png,9129 +images-17589.png,9130 +images-17590.png,9131 +images-17591.png,9132 +images-17592.png,9133 +images-17593.png,9134 +images-17594.png,9135 +images-17595.png,9136 +images-17596.png,9137 +images-17597.png,9138 +images-17598.png,9139 +images-17599.png,9140 +images-17600.png,9141 +images-17601.png,9142 +images-17602.png,9143 +images-17603.png,9144 +images-17604.png,9145 +images-17605.png,9146 +images-17606.png,9147 +images-17607.png,9148 +images-17608.png,9149 +images-17609.png,9150 +images-17610.png,9151 +images-17611.png,9152 +images-17612.png,9153 +images-17613.png,9154 +images-17614.png,9155 +images-17615.png,9156 +images-17616.png,9157 +images-17617.png,9158 +images-17618.png,9159 +images-17619.png,9160 +images-17620.png,9161 +images-17621.png,9162 +images-17622.png,9163 +images-17623.png,9164 +images-17624.png,9165 +images-17625.png,9166 +images-17626.png,9167 +images-17627.png,9168 +images-17628.png,9169 +images-17629.png,9170 +images-17630.png,9171 +images-17631.png,9172 +images-17632.png,9173 +images-17633.png,9174 +images-17634.png,9175 +images-17635.png,9176 +images-17636.png,9177 +images-17637.png,9178 +images-17638.png,9179 +images-17639.png,9180 +images-17640.png,9181 +images-17641.png,9182 +images-17642.png,9183 +images-17643.png,9184 +images-17644.png,9185 +images-17645.png,9186 +images-17646.png,9187 +images-17647.png,9188 +images-17648.png,9189 +images-17649.png,9190 +images-17650.png,9191 +images-17651.png,9192 +images-17652.png,9193 +images-17653.png,9194 +images-17654.png,9195 +images-17655.png,9196 +images-17656.png,9197 +images-17657.png,9198 +images-17658.png,9199 +images-17659.png,9200 +images-17660.png,9201 +images-17661.png,9202 +images-17662.png,9203 +images-17663.png,9204 +images-17664.png,9205 +images-17665.png,9206 +images-17666.png,9207 +images-17667.png,9208 +images-17668.png,9209 +images-17669.png,9210 +images-17670.png,9211 +images-17671.png,9212 +images-17672.png,9213 +images-17673.png,9214 +images-17674.png,9215 +images-17675.png,9216 +images-17676.png,9217 +images-17677.png,9218 +images-17678.png,9219 +images-17679.png,9220 +images-17680.png,9221 +images-17681.png,9222 +images-17682.png,9223 +images-17683.png,9224 +images-17684.png,9225 +images-17685.png,9226 +images-17686.png,9227 +images-17687.png,9228 +images-17688.png,9229 +images-17689.png,9230 +images-17690.png,9231 +images-17691.png,9232 +images-17692.png,9233 +images-17693.png,9234 +images-17694.png,9235 +images-17695.png,9236 +images-17696.png,9237 +images-17697.png,9238 +images-17698.png,9239 +images-17699.png,9240 +images-17700.png,9241 +images-17701.png,9242 +images-17702.png,9243 +images-17703.png,9244 +images-17704.png,9245 +images-17705.png,9246 +images-17706.png,9247 +images-17707.png,9248 +images-17708.png,9249 +images-17709.png,9250 +images-17710.png,9251 +images-17711.png,9252 +images-17712.png,9253 +images-17713.png,9254 +images-17714.png,9255 +images-17715.png,9256 +images-17716.png,9257 +images-17717.png,9258 +images-17718.png,9259 +images-17719.png,9260 +images-17720.png,9261 +images-17721.png,9262 +images-17722.png,9263 +images-17723.png,9264 +images-17724.png,9265 +images-17725.png,9266 +images-17726.png,9267 +images-17727.png,9268 +images-17728.png,9269 +images-17729.png,9270 +images-17730.png,9271 +images-17731.png,9272 +images-17732.png,9273 +images-17733.png,9274 +images-17756.png,9275 +images-17757.png,9276 +images-17758.png,9277 +images-17759.png,9278 +images-17760.png,9279 +images-17761.png,9280 +images-17762.png,9281 +images-17763.png,9282 +images-17764.png,9283 +images-17765.png,9284 +images-17766.png,9285 +images-17767.png,9286 +images-17768.png,9287 +images-17769.png,9288 +images-17770.png,9289 +images-17771.png,9290 +images-17772.png,9291 +images-17773.png,9292 +images-17774.png,9293 +images-17775.png,9294 +images-17776.png,9295 +images-17777.png,9296 +images-17778.png,9297 +images-17779.png,9298 +images-17780.png,9299 +images-17781.png,9300 +images-17782.png,9301 +images-17783.png,9302 +images-17784.png,9303 +images-17785.png,9304 +images-17786.png,9305 +images-17787.png,9306 +images-17788.png,9307 +images-17789.png,9308 +images-17790.png,9309 +images-17791.png,9310 +images-17792.png,9311 +images-17793.png,9312 +images-17794.png,9313 +images-17795.png,9314 +images-17796.png,9315 +images-17797.png,9316 +images-17798.png,9317 +images-17799.png,9318 +images-17800.png,9319 +images-17801.png,9320 +images-17802.png,9321 +images-17803.png,9322 +images-17804.png,9323 +images-17805.png,9324 +images-17806.png,9325 +images-17807.png,9326 +images-17808.png,9327 +images-17809.png,9328 +images-17810.png,9329 +images-17811.png,9330 +images-17812.png,9331 +images-17813.png,9332 +images-17814.png,9333 +images-17815.png,9334 +images-17816.png,9335 +images-17817.png,9336 +images-17818.png,9337 +images-17819.png,9338 +images-17820.png,9339 +images-17821.png,9340 +images-17822.png,9341 +images-17823.png,9342 +images-17824.png,9343 +images-17825.png,9344 +images-17826.png,9345 +images-17827.png,9346 +images-17828.png,9347 +images-17829.png,9348 +images-17830.png,9349 +images-17831.png,9350 +images-17832.png,9351 +images-17833.png,9352 +images-17834.png,9353 +images-17835.png,9354 +images-17836.png,9355 +images-17837.png,9356 +images-17838.png,9357 +images-17839.png,9358 +images-17840.png,9359 +images-17841.png,9360 +images-17842.png,9361 +images-17843.png,9362 +images-17844.png,9363 +images-17845.png,9364 +images-17846.png,9365 +images-17847.png,9366 +images-17848.png,9367 +images-17849.png,9368 +images-17850.png,9369 +images-17851.png,9370 +images-17852.png,9371 +images-17853.png,9372 +images-17854.png,9373 +images-17855.png,9374 +images-17856.png,9375 +images-17857.png,9376 +images-17858.png,9377 +images-17859.png,9378 +images-17860.png,9379 +images-17861.png,9380 +images-17862.png,9381 +images-17863.png,9382 +images-17864.png,9383 +images-17865.png,9384 +images-17866.png,9385 +images-17867.png,9386 +images-17902.png,9387 +images-17903.png,9388 +images-17904.png,9389 +images-17905.png,9390 +images-17906.png,9391 +images-17907.png,9392 +images-17908.png,9393 +images-17909.png,9394 +images-17910.png,9395 +images-17911.png,9396 +images-17912.png,9397 +images-17913.png,9398 +images-17914.png,9399 +images-17915.png,9400 +images-17916.png,9401 +images-17917.png,9402 +images-17918.png,9403 +images-17919.png,9404 +images-17920.png,9405 +images-17921.png,9406 +images-17922.png,9407 +images-17923.png,9408 +images-17924.png,9409 +images-17925.png,9410 +images-17926.png,9411 +images-17927.png,9412 +images-17928.png,9413 +images-17929.png,9414 +images-17930.png,9415 +images-17931.png,9416 +images-17932.png,9417 +images-17933.png,9418 +images-17934.png,9419 +images-17935.png,9420 +images-17936.png,9421 +images-17937.png,9422 +images-17938.png,9423 +images-17939.png,9424 +images-17940.png,9425 +images-17941.png,9426 +images-17942.png,9427 +images-17943.png,9428 +images-17944.png,9429 +images-17945.png,9430 +images-17946.png,9431 +images-17947.png,9432 +images-17948.png,9433 +images-17949.png,9434 +images-17950.png,9435 +images-17951.png,9436 +images-17952.png,9437 +images-17953.png,9438 +images-17954.png,9439 +images-17955.png,9440 +images-17956.png,9441 +images-17957.png,9442 +images-17958.png,9443 +images-17959.png,9444 +images-17960.png,9445 +images-17961.png,9446 +images-17962.png,9447 +images-17963.png,9448 +images-17964.png,9449 +images-17965.png,9450 +images-17966.png,9451 +images-17967.png,9452 +images-17968.png,9453 +images-17969.png,9454 +images-17970.png,9455 +images-17971.png,9456 +images-17972.png,9457 +images-17973.png,9458 +images-17986.png,9459 +images-17987.png,9460 +images-17988.png,9461 +images-17989.png,9462 +images-17990.png,9463 +images-17996.png,9464 +images-17997.png,9465 +images-17998.png,9466 +images-17999.png,9467 +images-18000.png,9468 +images-18001.png,9469 +images-18002.png,9470 +images-18003.png,9471 +images-18004.png,9472 +images-18005.png,9473 +images-18006.png,9474 +images-18007.png,9475 +images-18008.png,9476 +images-18009.png,9477 +images-18010.png,9478 +images-18011.png,9479 +images-18012.png,9480 +images-18013.png,9481 +images-18014.png,9482 +images-18015.png,9483 +images-18016.png,9484 +images-18017.png,9485 +images-18018.png,9486 +images-18019.png,9487 +images-18020.png,9488 +images-18150.png,9489 +images-18151.png,9490 +images-18152.png,9491 +images-18153.png,9492 +images-18154.png,9493 +images-18155.png,9494 +images-18156.png,9495 +images-18157.png,9496 +images-18158.png,9497 +images-18159.png,9498 +images-18160.png,9499 +images-18170.png,9500 +images-18171.png,9501 +images-18172.png,9502 +images-18173.png,9503 +images-18174.png,9504 +images-18175.png,9505 +images-18176.png,9506 +images-18177.png,9507 +images-18178.png,9508 +images-18179.png,9509 +images-18180.png,9510 +images-18181.png,9511 +images-18182.png,9512 +images-18183.png,9513 +images-18184.png,9514 +images-18185.png,9515 +images-18186.png,9516 +images-18187.png,9517 +images-18188.png,9518 +images-18189.png,9519 +images-18190.png,9520 +images-18191.png,9521 +images-18192.png,9522 +images-18193.png,9523 +images-18194.png,9524 +images-18195.png,9525 +images-18196.png,9526 +images-18197.png,9527 +images-18198.png,9528 +images-18199.png,9529 +images-18200.png,9530 +images-18201.png,9531 +images-18202.png,9532 +images-18203.png,9533 +images-18204.png,9534 +images-18205.png,9535 +images-18206.png,9536 +images-18207.png,9537 +images-18208.png,9538 +images-18209.png,9539 +images-18210.png,9540 +images-18211.png,9541 +images-18212.png,9542 +images-18213.png,9543 +images-18214.png,9544 +images-18215.png,9545 +images-18216.png,9546 +images-18217.png,9547 +images-18218.png,9548 +images-18219.png,9549 +images-18220.png,9550 +images-18221.png,9551 +images-18222.png,9552 +images-18223.png,9553 +images-18224.png,9554 +images-18225.png,9555 +images-18226.png,9556 +images-18227.png,9557 +images-18228.png,9558 +images-18229.png,9559 +images-18230.png,9560 +images-18231.png,9561 +images-18232.png,9562 +images-18233.png,9563 +images-18234.png,9564 +images-18235.png,9565 +images-18236.png,9566 +images-18237.png,9567 +images-18238.png,9568 +images-18239.png,9569 +images-18240.png,9570 +images-18241.png,9571 +images-18242.png,9572 +images-18243.png,9573 +images-18244.png,9574 +images-18245.png,9575 +images-18246.png,9576 +images-18247.png,9577 +images-18248.png,9578 +images-18249.png,9579 +images-18250.png,9580 +images-18251.png,9581 +images-18252.png,9582 +images-18253.png,9583 +images-18254.png,9584 +images-18255.png,9585 +images-18256.png,9586 +images-18257.png,9587 +images-18258.png,9588 +images-18259.png,9589 +images-18260.png,9590 +images-18261.png,9591 +images-18262.png,9592 +images-18263.png,9593 +images-18264.png,9594 +images-18265.png,9595 +images-18266.png,9596 +images-18267.png,9597 +images-18268.png,9598 +images-18269.png,9599 +images-18270.png,9600 +images-18271.png,9601 +images-18272.png,9602 +images-18273.png,9603 +images-18274.png,9604 +images-18275.png,9605 +images-18276.png,9606 +images-18277.png,9607 +images-18278.png,9608 +images-18279.png,9609 +images-18280.png,9610 +images-18281.png,9611 +images-18282.png,9612 +images-18283.png,9613 +images-18284.png,9614 +images-18285.png,9615 +images-18286.png,9616 +images-18287.png,9617 +images-18288.png,9618 +images-18289.png,9619 +images-18290.png,9620 +images-18291.png,9621 +images-18292.png,9622 +images-18293.png,9623 +images-18294.png,9624 +images-18295.png,9625 +images-18296.png,9626 +images-18297.png,9627 +images-18298.png,9628 +images-18299.png,9629 +images-18300.png,9630 +images-18301.png,9631 +images-18302.png,9632 +images-18303.png,9633 +images-18304.png,9634 +images-18305.png,9635 +images-18306.png,9636 +images-18307.png,9637 +images-18308.png,9638 +images-18309.png,9639 +images-18310.png,9640 +images-18311.png,9641 +images-18312.png,9642 +images-18313.png,9643 +images-18314.png,9644 +images-18315.png,9645 +images-18316.png,9646 +images-18317.png,9647 +images-18318.png,9648 +images-18319.png,9649 +images-18320.png,9650 +images-18321.png,9651 +images-18322.png,9652 +images-18323.png,9653 +images-18324.png,9654 +images-18325.png,9655 +images-18326.png,9656 +images-18327.png,9657 +images-18328.png,9658 +images-18329.png,9659 +images-18443.png,9660 +images-18444.png,9661 +images-18445.png,9662 +images-18446.png,9663 +images-18447.png,9664 +images-18448.png,9665 +images-18449.png,9666 +images-18450.png,9667 +images-18451.png,9668 +images-18452.png,9669 +images-18453.png,9670 +images-18454.png,9671 +images-18455.png,9672 +images-18456.png,9673 +images-18457.png,9674 +images-18458.png,9675 +images-18459.png,9676 +images-18460.png,9677 +images-18461.png,9678 +images-18462.png,9679 +images-18463.png,9680 +images-18464.png,9681 +images-18465.png,9682 +images-18466.png,9683 +images-18467.png,9684 +images-18468.png,9685 +images-18469.png,9686 +images-18470.png,9687 +images-18471.png,9688 +images-18472.png,9689 +images-18473.png,9690 +images-18474.png,9691 +images-18475.png,9692 +images-18476.png,9693 +images-18477.png,9694 +images-18478.png,9695 +images-18479.png,9696 +images-18480.png,9697 +images-18481.png,9698 +images-18482.png,9699 +images-18483.png,9700 +images-18484.png,9701 +images-18485.png,9702 +images-18486.png,9703 +images-18487.png,9704 +images-18488.png,9705 +images-18489.png,9706 +images-18490.png,9707 +images-18491.png,9708 +images-18492.png,9709 +images-18493.png,9710 +images-18494.png,9711 +images-18495.png,9712 +images-18496.png,9713 +images-18497.png,9714 +images-18498.png,9715 +images-18499.png,9716 +images-18500.png,9717 +images-18501.png,9718 +images-18502.png,9719 +images-18503.png,9720 +images-18504.png,9721 +images-18505.png,9722 +images-18506.png,9723 +images-18507.png,9724 +images-18508.png,9725 +images-18509.png,9726 +images-18510.png,9727 +images-18511.png,9728 +images-18512.png,9729 +images-18513.png,9730 +images-18514.png,9731 +images-18515.png,9732 +images-18516.png,9733 +images-18517.png,9734 +images-18518.png,9735 +images-18519.png,9736 +images-18520.png,9737 +images-18521.png,9738 +images-18522.png,9739 +images-18523.png,9740 +images-18524.png,9741 +images-18525.png,9742 +images-18526.png,9743 +images-18527.png,9744 +images-18528.png,9745 +images-18529.png,9746 +images-18530.png,9747 +images-18531.png,9748 +images-18532.png,9749 +images-18533.png,9750 +images-18534.png,9751 +images-18535.png,9752 +images-18536.png,9753 +images-18537.png,9754 +images-18538.png,9755 +images-18539.png,9756 +images-18550.png,9757 +images-18551.png,9758 +images-18552.png,9759 +images-18553.png,9760 +images-18554.png,9761 +images-18555.png,9762 +images-18556.png,9763 +images-18557.png,9764 +images-18558.png,9765 +images-18559.png,9766 +images-18560.png,9767 +images-18561.png,9768 +images-18562.png,9769 +images-18563.png,9770 +images-18564.png,9771 +images-18565.png,9772 +images-18566.png,9773 +images-18567.png,9774 +images-18568.png,9775 +images-18569.png,9776 +images-18570.png,9777 +images-18571.png,9778 +images-18572.png,9779 +images-18573.png,9780 +images-18574.png,9781 +images-18575.png,9782 +images-18576.png,9783 +images-18577.png,9784 +images-18578.png,9785 +images-18579.png,9786 +images-18588.png,9787 +images-18589.png,9788 +images-18590.png,9789 +images-18591.png,9790 +images-18592.png,9791 +images-18593.png,9792 +images-18594.png,9793 +images-18595.png,9794 +images-18596.png,9795 +images-18597.png,9796 +images-18598.png,9797 +images-18599.png,9798 +images-18600.png,9799 +images-18601.png,9800 +images-18602.png,9801 +images-18603.png,9802 +images-18604.png,9803 +images-18605.png,9804 +images-18606.png,9805 +images-18607.png,9806 +images-18608.png,9807 +images-18609.png,9808 +images-18610.png,9809 +images-18611.png,9810 +images-18612.png,9811 +images-18613.png,9812 +images-18614.png,9813 +images-18615.png,9814 +images-18616.png,9815 +images-18617.png,9816 +images-18618.png,9817 +images-18619.png,9818 +images-18620.png,9819 +images-18621.png,9820 +images-18622.png,9821 +images-18623.png,9822 +images-18624.png,9823 +images-18625.png,9824 +images-18626.png,9825 +images-18627.png,9826 +images-18628.png,9827 +images-18629.png,9828 +images-18630.png,9829 +images-18631.png,9830 +images-18632.png,9831 +images-18633.png,9832 +images-18634.png,9833 +images-18635.png,9834 +images-18636.png,9835 +images-18637.png,9836 +images-18638.png,9837 +images-18639.png,9838 +images-18640.png,9839 +images-18641.png,9840 +images-18642.png,9841 +images-18643.png,9842 +images-18644.png,9843 +images-18645.png,9844 +images-18646.png,9845 +images-18647.png,9846 +images-18648.png,9847 +images-18649.png,9848 +images-18650.png,9849 +images-18651.png,9850 +images-18652.png,9851 +images-18653.png,9852 +images-18654.png,9853 +images-18655.png,9854 +images-18656.png,9855 +images-18657.png,9856 +images-18658.png,9857 +images-18659.png,9858 +images-18660.png,9859 +images-18683.png,9860 +images-18684.png,9861 +images-18685.png,9862 +images-18686.png,9863 +images-18687.png,9864 +images-18688.png,9865 +images-18689.png,9866 +images-18690.png,9867 +images-18691.png,9868 +images-18692.png,9869 +images-18693.png,9870 +images-18694.png,9871 +images-18695.png,9872 +images-18696.png,9873 +images-18697.png,9874 +images-18698.png,9875 +images-18699.png,9876 +images-18700.png,9877 +images-18701.png,9878 +images-18702.png,9879 +images-18703.png,9880 +images-18704.png,9881 +images-18705.png,9882 +images-18706.png,9883 +images-18707.png,9884 +images-18708.png,9885 +images-18709.png,9886 +images-18710.png,9887 +images-18711.png,9888 +images-18712.png,9889 +images-18713.png,9890 +images-18714.png,9891 +images-18715.png,9892 +images-18716.png,9893 +images-18717.png,9894 +images-18718.png,9895 +images-18719.png,9896 +images-18720.png,9897 +images-18721.png,9898 +images-18722.png,9899 +images-18723.png,9900 +images-18724.png,9901 +images-18725.png,9902 +images-18726.png,9903 +images-18727.png,9904 +images-18728.png,9905 +images-18729.png,9906 +images-18730.png,9907 +images-18731.png,9908 +images-18732.png,9909 +images-18733.png,9910 +images-18734.png,9911 +images-18735.png,9912 +images-18736.png,9913 +images-18737.png,9914 +images-18738.png,9915 +images-18739.png,9916 +images-18740.png,9917 +images-18741.png,9918 +images-18742.png,9919 +images-18743.png,9920 +images-18744.png,9921 +images-18745.png,9922 +images-18746.png,9923 +images-18747.png,9924 +images-18748.png,9925 +images-18749.png,9926 +images-18750.png,9927 +images-18751.png,9928 +images-18752.png,9929 +images-18753.png,9930 +images-18754.png,9931 +images-18755.png,9932 +images-18756.png,9933 +images-18757.png,9934 +images-18758.png,9935 +images-18759.png,9936 +images-18760.png,9937 +images-18761.png,9938 +images-18762.png,9939 +images-18763.png,9940 +images-18764.png,9941 +images-18765.png,9942 +images-18766.png,9943 +images-18767.png,9944 +images-18768.png,9945 +images-18769.png,9946 +images-18770.png,9947 +images-18771.png,9948 +images-18772.png,9949 +images-18773.png,9950 +images-18774.png,9951 +images-18775.png,9952 +images-18776.png,9953 +images-18777.png,9954 +images-18778.png,9955 +images-18779.png,9956 +images-18780.png,9957 +images-18781.png,9958 +images-18782.png,9959 +images-18783.png,9960 +images-18784.png,9961 +images-18785.png,9962 +images-18786.png,9963 +images-18787.png,9964 +images-18788.png,9965 +images-18789.png,9966 +images-18790.png,9967 +images-18791.png,9968 +images-18792.png,9969 +images-18793.png,9970 +images-18794.png,9971 +images-18795.png,9972 +images-18796.png,9973 +images-18797.png,9974 +images-18798.png,9975 +images-18799.png,9976 +images-18800.png,9977 +images-18801.png,9978 +images-18802.png,9979 +images-18803.png,9980 +images-18804.png,9981 +images-18805.png,9982 +images-18806.png,9983 +images-18807.png,9984 +images-18808.png,9985 +images-18809.png,9986 +images-18810.png,9987 +images-18811.png,9988 +images-18812.png,9989 +images-18813.png,9990 +images-18814.png,9991 +images-18815.png,9992 +images-18816.png,9993 +images-18817.png,9994 +images-18818.png,9995 +images-18819.png,9996 +images-18820.png,9997 +images-18821.png,9998 +images-18822.png,9999 +images-18823.png,10000 +images-18824.png,10001 +images-18825.png,10002 +images-18826.png,10003 +images-18827.png,10004 +images-18828.png,10005 +images-18829.png,10006 +images-18830.png,10007 +images-18831.png,10008 +images-18832.png,10009 +images-18833.png,10010 +images-18834.png,10011 +images-18835.png,10012 +images-18836.png,10013 +images-18837.png,10014 +images-18838.png,10015 +images-18839.png,10016 +images-18840.png,10017 +images-18841.png,10018 +images-18842.png,10019 +images-18843.png,10020 +images-18844.png,10021 +images-18845.png,10022 +images-18846.png,10023 +images-18847.png,10024 +images-18848.png,10025 +images-18849.png,10026 +images-18850.png,10027 +images-18851.png,10028 +images-18852.png,10029 +images-18853.png,10030 +images-18854.png,10031 +images-18855.png,10032 +images-18856.png,10033 +images-18857.png,10034 +images-18858.png,10035 +images-18859.png,10036 +images-18860.png,10037 +images-18861.png,10038 +images-18862.png,10039 +images-18863.png,10040 +images-18864.png,10041 +images-18865.png,10042 +images-18866.png,10043 +images-18867.png,10044 +images-18868.png,10045 +images-18869.png,10046 +images-18870.png,10047 +images-18871.png,10048 +images-18872.png,10049 +images-18873.png,10050 +images-18874.png,10051 +images-18875.png,10052 +images-18876.png,10053 +images-18877.png,10054 +images-18878.png,10055 +images-18879.png,10056 +images-18880.png,10057 +images-18881.png,10058 +images-18882.png,10059 +images-18883.png,10060 +images-18884.png,10061 +images-18885.png,10062 +images-18886.png,10063 +images-18887.png,10064 +images-18888.png,10065 +images-18889.png,10066 +images-18890.png,10067 +images-18891.png,10068 +images-18892.png,10069 +images-18893.png,10070 +images-18894.png,10071 +images-18895.png,10072 +images-18896.png,10073 +images-18897.png,10074 +images-18898.png,10075 +images-18899.png,10076 +images-18900.png,10077 +images-18901.png,10078 +images-18902.png,10079 +images-18903.png,10080 +images-18904.png,10081 +images-18905.png,10082 +images-18906.png,10083 +images-18907.png,10084 +images-18908.png,10085 +images-18909.png,10086 +images-18910.png,10087 +images-18911.png,10088 +images-18912.png,10089 +images-18913.png,10090 +images-18914.png,10091 +images-18915.png,10092 +images-18916.png,10093 +images-18917.png,10094 +images-18918.png,10095 +images-18919.png,10096 +images-18920.png,10097 +images-18921.png,10098 +images-18922.png,10099 +images-18923.png,10100 +images-18924.png,10101 +images-18925.png,10102 +images-18926.png,10103 +images-18927.png,10104 +images-18928.png,10105 +images-18929.png,10106 +images-18930.png,10107 +images-18931.png,10108 +images-18932.png,10109 +images-18933.png,10110 +images-18934.png,10111 +images-18935.png,10112 +images-18936.png,10113 +images-18937.png,10114 +images-18938.png,10115 +images-18939.png,10116 +images-18940.png,10117 +images-18941.png,10118 +images-18942.png,10119 +images-18943.png,10120 +images-18944.png,10121 +images-18945.png,10122 +images-18946.png,10123 +images-18947.png,10124 +images-18948.png,10125 +images-18949.png,10126 +images-18950.png,10127 +images-18951.png,10128 +images-18952.png,10129 +images-18953.png,10130 +images-18954.png,10131 +images-18966.png,10132 +images-18967.png,10133 +images-18968.png,10134 +images-18969.png,10135 +images-18970.png,10136 +images-18971.png,10137 +images-18972.png,10138 +images-18973.png,10139 +images-18974.png,10140 +images-18975.png,10141 +images-18976.png,10142 +images-18986.png,10143 +images-18987.png,10144 +images-18988.png,10145 +images-18989.png,10146 +images-18990.png,10147 +images-18991.png,10148 +images-18992.png,10149 +images-18993.png,10150 +images-18994.png,10151 +images-18995.png,10152 +images-18996.png,10153 +images-18997.png,10154 +images-18998.png,10155 +images-18999.png,10156 +images-19000.png,10157 +images-19001.png,10158 +images-19002.png,10159 +images-19003.png,10160 +images-19004.png,10161 +images-19005.png,10162 +images-19006.png,10163 +images-19007.png,10164 +images-19008.png,10165 +images-19009.png,10166 +images-19010.png,10167 +images-19011.png,10168 +images-19012.png,10169 +images-19013.png,10170 +images-19014.png,10171 +images-19015.png,10172 +images-19016.png,10173 +images-19017.png,10174 +images-19018.png,10175 +images-19026.png,10176 +images-19027.png,10177 +images-19028.png,10178 +images-19029.png,10179 +images-19030.png,10180 +images-19031.png,10181 +images-19032.png,10182 +images-19033.png,10183 +images-19034.png,10184 +images-19035.png,10185 +images-19036.png,10186 +images-19037.png,10187 +images-19038.png,10188 +images-19039.png,10189 +images-19040.png,10190 +images-19041.png,10191 +images-19042.png,10192 +images-19043.png,10193 +images-19044.png,10194 +images-19045.png,10195 +images-19046.png,10196 +images-19047.png,10197 +images-19048.png,10198 +images-19049.png,10199 +images-19050.png,10200 +images-19051.png,10201 +images-19052.png,10202 +images-19053.png,10203 +images-19054.png,10204 +images-19055.png,10205 +images-19056.png,10206 +images-19057.png,10207 +images-19058.png,10208 +images-19059.png,10209 +images-19060.png,10210 +images-19061.png,10211 +images-19062.png,10212 +images-19063.png,10213 +images-19064.png,10214 +images-19065.png,10215 +images-19066.png,10216 +images-19067.png,10217 +images-19068.png,10218 +images-19069.png,10219 +images-19070.png,10220 +images-19071.png,10221 +images-19072.png,10222 +images-19073.png,10223 +images-19074.png,10224 +images-19075.png,10225 +images-19076.png,10226 +images-19077.png,10227 +images-19078.png,10228 +images-19079.png,10229 +images-19080.png,10230 +images-19081.png,10231 +images-19082.png,10232 +images-19083.png,10233 +images-19084.png,10234 +images-19085.png,10235 +images-19086.png,10236 +images-19087.png,10237 +images-19088.png,10238 +images-19089.png,10239 +images-19090.png,10240 +images-19091.png,10241 +images-19100.png,10242 +images-19101.png,10243 +images-19102.png,10244 +images-19103.png,10245 +images-19104.png,10246 +images-19105.png,10247 +images-19106.png,10248 +images-19107.png,10249 +images-19108.png,10250 +images-19109.png,10251 +images-19110.png,10252 +images-19111.png,10253 +images-19112.png,10254 +images-19113.png,10255 +images-19114.png,10256 +images-19115.png,10257 +images-19116.png,10258 +images-19117.png,10259 +images-19118.png,10260 +images-19119.png,10261 +images-19120.png,10262 +images-19121.png,10263 +images-19122.png,10264 +images-19123.png,10265 +images-19124.png,10266 +images-19125.png,10267 +images-19126.png,10268 +images-19127.png,10269 +images-19128.png,10270 +images-19129.png,10271 +images-19130.png,10272 +images-19131.png,10273 +images-19132.png,10274 +images-19133.png,10275 +images-19134.png,10276 +images-19135.png,10277 +images-19136.png,10278 +images-19137.png,10279 +images-19138.png,10280 +images-19139.png,10281 +images-19140.png,10282 +images-19141.png,10283 +images-19142.png,10284 +images-19143.png,10285 +images-19144.png,10286 +images-19145.png,10287 +images-19146.png,10288 +images-19147.png,10289 +images-19148.png,10290 +images-19149.png,10291 +images-19150.png,10292 +images-19151.png,10293 +images-19152.png,10294 +images-19153.png,10295 +images-19154.png,10296 +images-19155.png,10297 +images-19156.png,10298 +images-19157.png,10299 +images-19158.png,10300 +images-19159.png,10301 +images-19160.png,10302 +images-19161.png,10303 +images-19162.png,10304 +images-19163.png,10305 +images-19164.png,10306 +images-19165.png,10307 +images-19166.png,10308 +images-19167.png,10309 +images-19168.png,10310 +images-19169.png,10311 +images-19185.png,10312 +images-19186.png,10313 +images-19187.png,10314 +images-19188.png,10315 +images-19189.png,10316 +images-19190.png,10317 +images-19191.png,10318 +images-19192.png,10319 +images-19193.png,10320 +images-19194.png,10321 +images-19195.png,10322 +images-19196.png,10323 +images-19197.png,10324 +images-19198.png,10325 +images-19199.png,10326 +images-19200.png,10327 +images-19201.png,10328 +images-19202.png,10329 +images-19203.png,10330 +images-19204.png,10331 +images-19205.png,10332 +images-19206.png,10333 +images-19207.png,10334 +images-19208.png,10335 +images-19209.png,10336 +images-19210.png,10337 +images-19211.png,10338 +images-19212.png,10339 +images-19213.png,10340 +images-19214.png,10341 +images-19215.png,10342 +images-19216.png,10343 +images-19217.png,10344 +images-19218.png,10345 +images-19219.png,10346 +images-19220.png,10347 +images-19221.png,10348 +images-19222.png,10349 +images-19223.png,10350 +images-19224.png,10351 +images-19225.png,10352 +images-19226.png,10353 +images-19227.png,10354 +images-19228.png,10355 +images-19229.png,10356 +images-19230.png,10357 +images-19231.png,10358 +images-19232.png,10359 +images-19233.png,10360 +images-19234.png,10361 +images-19235.png,10362 +images-19236.png,10363 +images-19237.png,10364 +images-19238.png,10365 +images-19239.png,10366 +images-19240.png,10367 +images-19241.png,10368 +images-19242.png,10369 +images-19243.png,10370 +images-19244.png,10371 +images-19245.png,10372 +images-19246.png,10373 +images-19247.png,10374 +images-19248.png,10375 +images-19249.png,10376 +images-19250.png,10377 +images-19251.png,10378 +images-19252.png,10379 +images-19253.png,10380 +images-19254.png,10381 +images-19255.png,10382 +images-19256.png,10383 +images-19257.png,10384 +images-19258.png,10385 +images-19259.png,10386 +images-19260.png,10387 +images-19261.png,10388 +images-19262.png,10389 +images-19263.png,10390 +images-19264.png,10391 +images-19265.png,10392 +images-19266.png,10393 +images-19267.png,10394 +images-19268.png,10395 +images-19269.png,10396 +images-19270.png,10397 +images-19271.png,10398 +images-19272.png,10399 +images-19273.png,10400 +images-19274.png,10401 +images-19275.png,10402 +images-19276.png,10403 +images-19277.png,10404 +images-19278.png,10405 +images-19279.png,10406 +images-19280.png,10407 +images-19281.png,10408 +images-19282.png,10409 +images-19283.png,10410 +images-19284.png,10411 +images-19285.png,10412 +images-19286.png,10413 +images-19287.png,10414 +images-19288.png,10415 +images-19289.png,10416 +images-19290.png,10417 +images-19291.png,10418 +images-19292.png,10419 +images-19293.png,10420 +images-19294.png,10421 +images-19295.png,10422 +images-19296.png,10423 +images-19297.png,10424 +images-19298.png,10425 +images-19299.png,10426 +images-19300.png,10427 +images-19301.png,10428 +images-19302.png,10429 +images-19303.png,10430 +images-19304.png,10431 +images-19305.png,10432 +images-19306.png,10433 +images-19307.png,10434 +images-19308.png,10435 +images-19309.png,10436 +images-19310.png,10437 +images-19311.png,10438 +images-19312.png,10439 +images-19313.png,10440 +images-19314.png,10441 +images-19315.png,10442 +images-19316.png,10443 +images-19317.png,10444 +images-19318.png,10445 +images-19319.png,10446 +images-19320.png,10447 +images-19321.png,10448 +images-19322.png,10449 +images-19323.png,10450 +images-19324.png,10451 +images-19325.png,10452 +images-19326.png,10453 +images-19327.png,10454 +images-19328.png,10455 +images-19329.png,10456 +images-19330.png,10457 +images-19331.png,10458 +images-19332.png,10459 +images-19333.png,10460 +images-19334.png,10461 +images-19335.png,10462 +images-19336.png,10463 +images-19337.png,10464 +images-19338.png,10465 +images-19339.png,10466 +images-19340.png,10467 +images-19341.png,10468 +images-19342.png,10469 +images-19343.png,10470 +images-19344.png,10471 +images-19345.png,10472 +images-19346.png,10473 +images-19347.png,10474 +images-19348.png,10475 +images-19349.png,10476 +images-19350.png,10477 +images-19351.png,10478 +images-19352.png,10479 +images-19353.png,10480 +images-19354.png,10481 +images-19355.png,10482 +images-19356.png,10483 +images-19357.png,10484 +images-19358.png,10485 +images-19359.png,10486 +images-19360.png,10487 +images-19361.png,10488 +images-19362.png,10489 +images-19363.png,10490 +images-19364.png,10491 +images-19365.png,10492 +images-19366.png,10493 +images-19367.png,10494 +images-19368.png,10495 +images-19369.png,10496 +images-19370.png,10497 +images-19371.png,10498 +images-19372.png,10499 +images-19373.png,10500 +images-19374.png,10501 +images-19375.png,10502 +images-19376.png,10503 +images-19377.png,10504 +images-19378.png,10505 +images-19379.png,10506 +images-19380.png,10507 +images-19381.png,10508 +images-19382.png,10509 +images-19383.png,10510 +images-19384.png,10511 +images-19385.png,10512 +images-19386.png,10513 +images-19387.png,10514 +images-19388.png,10515 +images-19389.png,10516 +images-19390.png,10517 +images-19391.png,10518 +images-19392.png,10519 +images-19393.png,10520 +images-19394.png,10521 +images-19395.png,10522 +images-19396.png,10523 +images-19397.png,10524 +images-19398.png,10525 +images-19399.png,10526 +images-19400.png,10527 +images-19401.png,10528 +images-19402.png,10529 +images-19403.png,10530 +images-19404.png,10531 +images-19405.png,10532 +images-19406.png,10533 +images-19407.png,10534 +images-19408.png,10535 +images-19409.png,10536 +images-19410.png,10537 +images-19411.png,10538 +images-19412.png,10539 +images-19413.png,10540 +images-19414.png,10541 +images-19415.png,10542 +images-19416.png,10543 +images-19417.png,10544 +images-19418.png,10545 +images-19419.png,10546 +images-19420.png,10547 +images-19421.png,10548 +images-19422.png,10549 +images-19423.png,10550 +images-19424.png,10551 +images-19425.png,10552 +images-19426.png,10553 +images-19427.png,10554 +images-19428.png,10555 +images-19429.png,10556 +images-19430.png,10557 +images-19431.png,10558 +images-19432.png,10559 +images-19433.png,10560 +images-19434.png,10561 +images-19435.png,10562 +images-19436.png,10563 +images-19437.png,10564 +images-19438.png,10565 +images-19439.png,10566 +images-19440.png,10567 +images-19441.png,10568 +images-19442.png,10569 +images-19443.png,10570 +images-19444.png,10571 +images-19445.png,10572 +images-19446.png,10573 +images-19447.png,10574 +images-19448.png,10575 +images-19449.png,10576 +images-19450.png,10577 +images-19451.png,10578 +images-19452.png,10579 +images-19453.png,10580 +images-19454.png,10581 +images-19455.png,10582 +images-19456.png,10583 +images-19457.png,10584 +images-19458.png,10585 +images-19459.png,10586 +images-19460.png,10587 +images-19461.png,10588 +images-19462.png,10589 +images-19463.png,10590 +images-19464.png,10591 +images-19465.png,10592 +images-19466.png,10593 +images-19467.png,10594 +images-19468.png,10595 +images-19469.png,10596 +images-19470.png,10597 +images-19471.png,10598 +images-19472.png,10599 +images-19473.png,10600 +images-19474.png,10601 +images-19475.png,10602 +images-19476.png,10603 +images-19477.png,10604 +images-19478.png,10605 +images-19479.png,10606 +images-19480.png,10607 +images-19481.png,10608 +images-19482.png,10609 +images-19483.png,10610 +images-19484.png,10611 +images-19485.png,10612 +images-19486.png,10613 +images-19487.png,10614 +images-19488.png,10615 +images-19489.png,10616 +images-19490.png,10617 +images-19491.png,10618 +images-19492.png,10619 +images-19493.png,10620 +images-19494.png,10621 +images-19495.png,10622 +images-19496.png,10623 +images-19497.png,10624 +images-19498.png,10625 +images-19499.png,10626 +images-19500.png,10627 +images-19501.png,10628 +images-19502.png,10629 +images-19503.png,10630 +images-19504.png,10631 +images-19505.png,10632 +images-19506.png,10633 +images-19507.png,10634 +images-19508.png,10635 +images-19509.png,10636 +images-19510.png,10637 +images-19511.png,10638 +images-19512.png,10639 +images-19513.png,10640 +images-19514.png,10641 +images-19515.png,10642 +images-19516.png,10643 +images-19517.png,10644 +images-19518.png,10645 +images-19519.png,10646 +images-19520.png,10647 +images-19521.png,10648 +images-19522.png,10649 +images-19523.png,10650 +images-19524.png,10651 +images-19525.png,10652 +images-19526.png,10653 +images-19527.png,10654 +images-19528.png,10655 +images-19529.png,10656 +images-19530.png,10657 +images-19531.png,10658 +images-19532.png,10659 +images-19533.png,10660 +images-19534.png,10661 +images-19535.png,10662 +images-19536.png,10663 +images-19537.png,10664 +images-19538.png,10665 +images-19539.png,10666 +images-19540.png,10667 +images-19541.png,10668 +images-19542.png,10669 +images-19543.png,10670 +images-19544.png,10671 +images-19545.png,10672 +images-19546.png,10673 +images-19547.png,10674 +images-19548.png,10675 +images-19549.png,10676 +images-19550.png,10677 +images-19551.png,10678 +images-19552.png,10679 +images-19553.png,10680 +images-19554.png,10681 +images-19555.png,10682 +images-19556.png,10683 +images-19557.png,10684 +images-19558.png,10685 +images-19559.png,10686 +images-19560.png,10687 +images-19561.png,10688 +images-19562.png,10689 +images-19563.png,10690 +images-19564.png,10691 +images-19565.png,10692 +images-19566.png,10693 +images-19567.png,10694 +images-19568.png,10695 +images-19569.png,10696 +images-19570.png,10697 +images-19571.png,10698 +images-19572.png,10699 +images-19573.png,10700 +images-19574.png,10701 +images-19575.png,10702 +images-19576.png,10703 +images-19577.png,10704 +images-19578.png,10705 +images-19579.png,10706 +images-19580.png,10707 +images-19581.png,10708 +images-19582.png,10709 +images-19583.png,10710 +images-19584.png,10711 +images-19585.png,10712 +images-19586.png,10713 +images-19587.png,10714 +images-19588.png,10715 +images-19589.png,10716 +images-19590.png,10717 +images-19591.png,10718 +images-19592.png,10719 +images-19593.png,10720 +images-19594.png,10721 +images-19595.png,10722 +images-19596.png,10723 +images-19597.png,10724 +images-19598.png,10725 +images-19599.png,10726 +images-19600.png,10727 +images-19601.png,10728 +images-19602.png,10729 +images-19603.png,10730 +images-19604.png,10731 +images-19605.png,10732 +images-19606.png,10733 +images-19607.png,10734 +images-19608.png,10735 +images-19609.png,10736 +images-19610.png,10737 +images-19611.png,10738 +images-19612.png,10739 +images-19613.png,10740 +images-19614.png,10741 +images-19615.png,10742 +images-19616.png,10743 +images-19617.png,10744 +images-19618.png,10745 +images-19619.png,10746 +images-19620.png,10747 +images-19621.png,10748 +images-19622.png,10749 +images-19623.png,10750 +images-19624.png,10751 +images-19625.png,10752 +images-19626.png,10753 +images-19627.png,10754 +images-19628.png,10755 +images-19629.png,10756 +images-19630.png,10757 +images-19631.png,10758 +images-19632.png,10759 +images-19633.png,10760 +images-19634.png,10761 +images-19635.png,10762 +images-19636.png,10763 +images-19637.png,10764 +images-19638.png,10765 +images-19639.png,10766 +images-19640.png,10767 +images-19641.png,10768 +images-19642.png,10769 +images-19643.png,10770 +images-19644.png,10771 +images-19645.png,10772 +images-19646.png,10773 +images-19647.png,10774 +images-19648.png,10775 +images-19649.png,10776 +images-19650.png,10777 +images-19651.png,10778 +images-19652.png,10779 +images-19653.png,10780 +images-19654.png,10781 +images-19655.png,10782 +images-19656.png,10783 +images-19657.png,10784 +images-19658.png,10785 +images-19659.png,10786 +images-19660.png,10787 +images-19661.png,10788 +images-19662.png,10789 +images-19663.png,10790 +images-19664.png,10791 +images-19665.png,10792 +images-19666.png,10793 +images-19667.png,10794 +images-19668.png,10795 +images-19669.png,10796 +images-19670.png,10797 +images-19671.png,10798 +images-19672.png,10799 +images-19673.png,10800 +images-19674.png,10801 +images-19675.png,10802 +images-19676.png,10803 +images-19677.png,10804 +images-19678.png,10805 +images-19679.png,10806 +images-19680.png,10807 +images-19681.png,10808 +images-19682.png,10809 +images-19683.png,10810 +images-19684.png,10811 +images-19685.png,10812 +images-19686.png,10813 +images-19687.png,10814 +images-19688.png,10815 +images-19689.png,10816 +images-19690.png,10817 +images-19691.png,10818 +images-19692.png,10819 +images-19693.png,10820 +images-19694.png,10821 +images-19695.png,10822 +images-19696.png,10823 +images-19697.png,10824 +images-19698.png,10825 +images-19699.png,10826 +images-19700.png,10827 +images-19701.png,10828 +images-19702.png,10829 +images-19703.png,10830 +images-19704.png,10831 +images-19705.png,10832 +images-19706.png,10833 +images-19707.png,10834 +images-19708.png,10835 +images-19709.png,10836 +images-19710.png,10837 +images-19711.png,10838 +images-19712.png,10839 +images-19713.png,10840 +images-19714.png,10841 +images-19715.png,10842 +images-20079.png,10843 +images-20080.png,10844 +images-20081.png,10845 +images-20082.png,10846 +images-20083.png,10847 +images-20084.png,10848 +images-20085.png,10849 +images-20086.png,10850 +images-20087.png,10851 +images-20088.png,10852 +images-20089.png,10853 +images-20090.png,10854 +images-20091.png,10855 +images-20092.png,10856 +images-20093.png,10857 +images-20094.png,10858 +images-20095.png,10859 +images-20096.png,10860 +images-20097.png,10861 +images-20098.png,10862 +images-20099.png,10863 +images-20100.png,10864 +images-20101.png,10865 +images-20102.png,10866 +images-20103.png,10867 +images-20104.png,10868 +images-20105.png,10869 +images-20106.png,10870 +images-20107.png,10871 +images-20108.png,10872 +images-20109.png,10873 +images-20110.png,10874 +images-20111.png,10875 +images-20112.png,10876 +images-20113.png,10877 +images-20114.png,10878 +images-20115.png,10879 +images-20116.png,10880 +images-20117.png,10881 +images-20118.png,10882 +images-20119.png,10883 +images-20120.png,10884 +images-20121.png,10885 +images-20122.png,10886 +images-20123.png,10887 +images-20124.png,10888 +images-20125.png,10889 +images-20126.png,10890 +images-20127.png,10891 +images-20128.png,10892 +images-20129.png,10893 +images-20130.png,10894 +images-20131.png,10895 +images-20132.png,10896 +images-20133.png,10897 +images-20134.png,10898 +images-20135.png,10899 +images-20136.png,10900 +images-20137.png,10901 +images-20138.png,10902 +images-20139.png,10903 +images-20140.png,10904 +images-20141.png,10905 +images-20142.png,10906 +images-20143.png,10907 +images-20144.png,10908 +images-20145.png,10909 +images-20146.png,10910 +images-20147.png,10911 +images-20148.png,10912 +images-20149.png,10913 +images-20150.png,10914 +images-20151.png,10915 +images-20152.png,10916 +images-20153.png,10917 +images-20154.png,10918 +images-20155.png,10919 +images-20156.png,10920 +images-20157.png,10921 +images-20158.png,10922 +images-20159.png,10923 +images-20160.png,10924 +images-20161.png,10925 +images-20162.png,10926 +images-20163.png,10927 +images-20164.png,10928 +images-20165.png,10929 +images-20166.png,10930 +images-20167.png,10931 +images-20168.png,10932 +images-20169.png,10933 +images-20170.png,10934 +images-20171.png,10935 +images-20172.png,10936 +images-20173.png,10937 +images-20174.png,10938 +images-20175.png,10939 +images-20176.png,10940 +images-20177.png,10941 +images-20178.png,10942 +images-20179.png,10943 +images-20180.png,10944 +images-20181.png,10945 +images-20182.png,10946 +images-20183.png,10947 +images-20184.png,10948 +images-20185.png,10949 +images-20186.png,10950 +images-20187.png,10951 +images-20188.png,10952 +images-20189.png,10953 +images-20190.png,10954 +images-20191.png,10955 +images-20192.png,10956 +images-20193.png,10957 +images-20194.png,10958 +images-20195.png,10959 +images-20196.png,10960 +images-20197.png,10961 +images-20198.png,10962 +images-20199.png,10963 +images-20200.png,10964 +images-20201.png,10965 +images-20202.png,10966 +images-20203.png,10967 +images-20204.png,10968 +images-20205.png,10969 +images-20206.png,10970 +images-20207.png,10971 +images-20208.png,10972 +images-20209.png,10973 +images-20210.png,10974 +images-20211.png,10975 +images-20212.png,10976 +images-20213.png,10977 +images-20214.png,10978 +images-20215.png,10979 +images-20216.png,10980 +images-20217.png,10981 +images-20218.png,10982 +images-20219.png,10983 +images-20220.png,10984 +images-20221.png,10985 +images-20222.png,10986 +images-20223.png,10987 +images-20224.png,10988 +images-20225.png,10989 +images-20226.png,10990 +images-20227.png,10991 +images-20228.png,10992 +images-20229.png,10993 +images-20230.png,10994 +images-20231.png,10995 +images-20232.png,10996 +images-20233.png,10997 +images-20234.png,10998 +images-20235.png,10999 +images-20236.png,11000 +images-20237.png,11001 +images-20238.png,11002 +images-20239.png,11003 +images-20240.png,11004 +images-20241.png,11005 +images-20242.png,11006 +images-20243.png,11007 +images-20244.png,11008 +images-20245.png,11009 +images-20246.png,11010 +images-20247.png,11011 +images-20248.png,11012 +images-20249.png,11013 +images-20250.png,11014 +images-20251.png,11015 +images-20252.png,11016 +images-20253.png,11017 +images-20254.png,11018 +images-20255.png,11019 +images-20256.png,11020 +images-20257.png,11021 +images-20258.png,11022 +images-20259.png,11023 +images-20260.png,11024 +images-20261.png,11025 +images-20262.png,11026 +images-20263.png,11027 +images-20264.png,11028 +images-20265.png,11029 +images-20266.png,11030 +images-20267.png,11031 +images-20268.png,11032 +images-20269.png,11033 +images-20270.png,11034 +images-20271.png,11035 +images-20272.png,11036 +images-20273.png,11037 +images-20274.png,11038 +images-20275.png,11039 +images-20276.png,11040 +images-20277.png,11041 +images-20278.png,11042 +images-20279.png,11043 +images-20280.png,11044 +images-20281.png,11045 +images-20282.png,11046 +images-20283.png,11047 +images-20284.png,11048 +images-20285.png,11049 +images-20286.png,11050 +images-20287.png,11051 +images-20288.png,11052 +images-20289.png,11053 +images-20290.png,11054 +images-20291.png,11055 +images-20292.png,11056 +images-20293.png,11057 +images-20294.png,11058 +images-20295.png,11059 +images-20296.png,11060 +images-20297.png,11061 +images-20298.png,11062 +images-20299.png,11063 +images-20300.png,11064 +images-20301.png,11065 +images-20302.png,11066 +images-20303.png,11067 +images-20304.png,11068 +images-20305.png,11069 +images-20306.png,11070 +images-20307.png,11071 +images-20308.png,11072 +images-20309.png,11073 +images-20354.png,11074 +images-20355.png,11075 +images-20356.png,11076 +images-20357.png,11077 +images-20358.png,11078 +images-20359.png,11079 +images-20360.png,11080 +images-20361.png,11081 +images-20362.png,11082 +images-20363.png,11083 +images-20364.png,11084 +images-20365.png,11085 +images-20366.png,11086 +images-20367.png,11087 +images-20368.png,11088 +images-20369.png,11089 +images-20370.png,11090 +images-20371.png,11091 +images-20372.png,11092 +images-20373.png,11093 +images-20374.png,11094 +images-20375.png,11095 +images-20376.png,11096 +images-20377.png,11097 +images-20378.png,11098 +images-20379.png,11099 +images-20380.png,11100 +images-20381.png,11101 +images-20382.png,11102 +images-20383.png,11103 +images-20384.png,11104 +images-20385.png,11105 +images-20386.png,11106 +images-20387.png,11107 +images-20388.png,11108 +images-20389.png,11109 +images-20390.png,11110 +images-20391.png,11111 +images-20392.png,11112 +images-20393.png,11113 +images-20394.png,11114 +images-20395.png,11115 +images-20396.png,11116 +images-20397.png,11117 +images-20398.png,11118 +images-20399.png,11119 +images-20400.png,11120 +images-20401.png,11121 +images-20402.png,11122 +images-20403.png,11123 +images-20404.png,11124 +images-20405.png,11125 +images-20406.png,11126 +images-20407.png,11127 +images-20408.png,11128 +images-20409.png,11129 +images-20410.png,11130 +images-20411.png,11131 +images-20412.png,11132 +images-20413.png,11133 +images-20414.png,11134 +images-20415.png,11135 +images-20416.png,11136 +images-20417.png,11137 +images-20418.png,11138 +images-20419.png,11139 +images-20420.png,11140 +images-20421.png,11141 +images-20422.png,11142 +images-20423.png,11143 +images-20424.png,11144 +images-20425.png,11145 +images-20426.png,11146 +images-20427.png,11147 +images-20428.png,11148 +images-20429.png,11149 +images-20430.png,11150 +images-20431.png,11151 +images-20432.png,11152 +images-20433.png,11153 +images-20434.png,11154 +images-20435.png,11155 +images-20436.png,11156 +images-20437.png,11157 +images-20438.png,11158 +images-20439.png,11159 +images-20440.png,11160 +images-20441.png,11161 +images-20442.png,11162 +images-20443.png,11163 +images-20444.png,11164 +images-20445.png,11165 +images-20446.png,11166 +images-20447.png,11167 +images-20448.png,11168 +images-20449.png,11169 +images-20450.png,11170 +images-20451.png,11171 +images-20452.png,11172 +images-20453.png,11173 +images-20454.png,11174 +images-20455.png,11175 +images-20456.png,11176 +images-20457.png,11177 +images-20458.png,11178 +images-20459.png,11179 +images-20460.png,11180 +images-20461.png,11181 +images-20462.png,11182 +images-20463.png,11183 +images-20464.png,11184 +images-20465.png,11185 +images-20466.png,11186 +images-20467.png,11187 +images-20468.png,11188 +images-20469.png,11189 +images-20470.png,11190 +images-20471.png,11191 +images-20472.png,11192 +images-20473.png,11193 +images-20474.png,11194 +images-20475.png,11195 +images-20476.png,11196 +images-20477.png,11197 +images-20478.png,11198 +images-20479.png,11199 +images-20480.png,11200 +images-20481.png,11201 +images-20482.png,11202 +images-20483.png,11203 +images-20484.png,11204 +images-20485.png,11205 +images-20486.png,11206 +images-20487.png,11207 +images-20488.png,11208 +images-20489.png,11209 +images-20490.png,11210 +images-20491.png,11211 +images-20492.png,11212 +images-20493.png,11213 +images-20494.png,11214 +images-20495.png,11215 +images-20496.png,11216 +images-20497.png,11217 +images-20498.png,11218 +images-20499.png,11219 +images-20500.png,11220 +images-20501.png,11221 +images-20502.png,11222 +images-20503.png,11223 +images-20504.png,11224 +images-20505.png,11225 +images-20506.png,11226 +images-20507.png,11227 +images-20508.png,11228 +images-20509.png,11229 +images-20510.png,11230 +images-20511.png,11231 +images-20512.png,11232 +images-20513.png,11233 +images-20514.png,11234 +images-20515.png,11235 +images-20516.png,11236 +images-20517.png,11237 +images-20518.png,11238 +images-20519.png,11239 +images-20520.png,11240 +images-20521.png,11241 +images-20522.png,11242 +images-20523.png,11243 +images-20524.png,11244 +images-20525.png,11245 +images-20526.png,11246 +images-20527.png,11247 +images-20528.png,11248 +images-20529.png,11249 +images-20530.png,11250 +images-20531.png,11251 +images-20532.png,11252 +images-20533.png,11253 +images-20534.png,11254 +images-20535.png,11255 +images-20536.png,11256 +images-20537.png,11257 +images-20538.png,11258 +images-20539.png,11259 +images-20547.png,11260 +images-20548.png,11261 +images-20549.png,11262 +images-20550.png,11263 +images-20551.png,11264 +images-20552.png,11265 +images-20553.png,11266 +images-20554.png,11267 +images-20555.png,11268 +images-20556.png,11269 +images-20557.png,11270 +images-20558.png,11271 +images-20559.png,11272 +images-20560.png,11273 +images-20561.png,11274 +images-20562.png,11275 +images-20563.png,11276 +images-20564.png,11277 +images-20565.png,11278 +images-20566.png,11279 +images-20567.png,11280 +images-20568.png,11281 +images-20569.png,11282 +images-20570.png,11283 +images-20571.png,11284 +images-20572.png,11285 +images-20573.png,11286 +images-20574.png,11287 +images-20575.png,11288 +images-20576.png,11289 +images-20577.png,11290 +images-20578.png,11291 +images-20579.png,11292 +images-20580.png,11293 +images-20581.png,11294 +images-20582.png,11295 +images-20583.png,11296 +images-20584.png,11297 +images-20585.png,11298 +images-20586.png,11299 +images-20587.png,11300 +images-20588.png,11301 +images-20589.png,11302 +images-20590.png,11303 +images-20591.png,11304 +images-20592.png,11305 +images-20593.png,11306 +images-20599.png,11307 +images-20600.png,11308 +images-20601.png,11309 +images-20602.png,11310 +images-20603.png,11311 +images-20604.png,11312 +images-20605.png,11313 +images-20606.png,11314 +images-20607.png,11315 +images-20608.png,11316 +images-20609.png,11317 +images-20610.png,11318 +images-20611.png,11319 +images-20612.png,11320 +images-20613.png,11321 +images-20614.png,11322 +images-20615.png,11323 +images-20616.png,11324 +images-20617.png,11325 +images-20618.png,11326 +images-20619.png,11327 +images-20620.png,11328 +images-20621.png,11329 +images-20622.png,11330 +images-20623.png,11331 +images-20624.png,11332 +images-20625.png,11333 +images-20626.png,11334 +images-20627.png,11335 +images-20628.png,11336 +images-20629.png,11337 +images-20630.png,11338 +images-20631.png,11339 +images-20632.png,11340 +images-20633.png,11341 +images-20634.png,11342 +images-20635.png,11343 +images-20636.png,11344 +images-20637.png,11345 +images-20638.png,11346 +images-20639.png,11347 +images-20640.png,11348 +images-20641.png,11349 +images-20642.png,11350 +images-20643.png,11351 +images-20644.png,11352 +images-20645.png,11353 +images-20646.png,11354 +images-20647.png,11355 +images-20648.png,11356 +images-20649.png,11357 +images-20650.png,11358 +images-20651.png,11359 +images-20652.png,11360 +images-20653.png,11361 +images-20654.png,11362 +images-20655.png,11363 +images-20656.png,11364 +images-20657.png,11365 +images-20658.png,11366 +images-20659.png,11367 +images-20660.png,11368 +images-20661.png,11369 +images-20662.png,11370 +images-20663.png,11371 +images-20664.png,11372 +images-20665.png,11373 +images-20666.png,11374 +images-20667.png,11375 +images-20668.png,11376 +images-20669.png,11377 +images-20670.png,11378 +images-20671.png,11379 +images-20672.png,11380 +images-20673.png,11381 +images-20674.png,11382 +images-20675.png,11383 +images-20676.png,11384 +images-20677.png,11385 +images-20678.png,11386 +images-20679.png,11387 +images-20680.png,11388 +images-20681.png,11389 +images-20682.png,11390 +images-20683.png,11391 +images-20684.png,11392 +images-20685.png,11393 +images-20686.png,11394 +images-20687.png,11395 +images-20688.png,11396 +images-20689.png,11397 +images-20690.png,11398 +images-20691.png,11399 +images-20692.png,11400 +images-20693.png,11401 +images-20694.png,11402 +images-20695.png,11403 +images-20696.png,11404 +images-20697.png,11405 +images-20698.png,11406 +images-20699.png,11407 +images-20700.png,11408 +images-20701.png,11409 +images-20702.png,11410 +images-20703.png,11411 +images-20704.png,11412 +images-20705.png,11413 +images-20706.png,11414 +images-20707.png,11415 +images-20708.png,11416 +images-20709.png,11417 +images-20710.png,11418 +images-20711.png,11419 +images-20712.png,11420 +images-20713.png,11421 +images-20714.png,11422 +images-20715.png,11423 +images-20716.png,11424 +images-20717.png,11425 +images-20718.png,11426 +images-20719.png,11427 +images-20720.png,11428 +images-20721.png,11429 +images-20722.png,11430 +images-20723.png,11431 +images-20724.png,11432 +images-20725.png,11433 +images-20726.png,11434 +images-20727.png,11435 +images-20728.png,11436 +images-20729.png,11437 +images-20730.png,11438 +images-20731.png,11439 +images-20732.png,11440 +images-20733.png,11441 +images-20734.png,11442 +images-20735.png,11443 +images-20736.png,11444 +images-20760.png,11445 +images-20761.png,11446 +images-20762.png,11447 +images-20763.png,11448 +images-20764.png,11449 +images-20765.png,11450 +images-20766.png,11451 +images-20767.png,11452 +images-20768.png,11453 +images-20769.png,11454 +images-20770.png,11455 +images-20771.png,11456 +images-20772.png,11457 +images-20773.png,11458 +images-20774.png,11459 +images-20775.png,11460 +images-20776.png,11461 +images-20777.png,11462 +images-20778.png,11463 +images-20779.png,11464 +images-20780.png,11465 +images-20781.png,11466 +images-20782.png,11467 +images-20783.png,11468 +images-20784.png,11469 +images-20785.png,11470 +images-20786.png,11471 +images-20787.png,11472 +images-20788.png,11473 +images-20789.png,11474 +images-20790.png,11475 +images-20791.png,11476 +images-20792.png,11477 +images-20793.png,11478 +images-20794.png,11479 +images-20795.png,11480 +images-20796.png,11481 +images-20797.png,11482 +images-20798.png,11483 +images-20799.png,11484 +images-20800.png,11485 +images-20801.png,11486 +images-20802.png,11487 +images-20803.png,11488 +images-20804.png,11489 +images-20805.png,11490 +images-20806.png,11491 +images-20807.png,11492 +images-20808.png,11493 +images-20809.png,11494 +images-20810.png,11495 +images-20811.png,11496 +images-20812.png,11497 +images-20813.png,11498 +images-20814.png,11499 +images-20815.png,11500 +images-20816.png,11501 +images-20817.png,11502 +images-20818.png,11503 +images-20819.png,11504 +images-20820.png,11505 +images-20821.png,11506 +images-20822.png,11507 +images-20823.png,11508 +images-20824.png,11509 +images-20825.png,11510 +images-20826.png,11511 +images-20827.png,11512 +images-20828.png,11513 +images-20829.png,11514 +images-20830.png,11515 +images-20831.png,11516 +images-20832.png,11517 +images-20833.png,11518 +images-20834.png,11519 +images-20835.png,11520 +images-20836.png,11521 +images-20837.png,11522 +images-20838.png,11523 +images-20839.png,11524 +images-20840.png,11525 +images-20841.png,11526 +images-20842.png,11527 +images-20843.png,11528 +images-20844.png,11529 +images-20845.png,11530 +images-20846.png,11531 +images-20847.png,11532 +images-20848.png,11533 +images-20849.png,11534 +images-20850.png,11535 +images-20851.png,11536 +images-20852.png,11537 +images-20853.png,11538 +images-20854.png,11539 +images-20855.png,11540 +images-20856.png,11541 +images-20857.png,11542 +images-20858.png,11543 +images-20859.png,11544 +images-20860.png,11545 +images-20861.png,11546 +images-20862.png,11547 +images-20863.png,11548 +images-20864.png,11549 +images-20865.png,11550 +images-20866.png,11551 +images-20867.png,11552 +images-20868.png,11553 +images-20869.png,11554 +images-20870.png,11555 +images-20871.png,11556 +images-20872.png,11557 +images-20873.png,11558 +images-20874.png,11559 +images-20875.png,11560 +images-20876.png,11561 +images-20877.png,11562 +images-20878.png,11563 +images-20879.png,11564 +images-20880.png,11565 +images-20881.png,11566 +images-20882.png,11567 +images-20883.png,11568 +images-20884.png,11569 +images-20885.png,11570 +images-20886.png,11571 +images-20887.png,11572 +images-20888.png,11573 +images-20889.png,11574 +images-20890.png,11575 +images-20891.png,11576 +images-20892.png,11577 +images-20893.png,11578 +images-20894.png,11579 +images-20895.png,11580 +images-20896.png,11581 +images-20897.png,11582 +images-20898.png,11583 +images-20899.png,11584 +images-20900.png,11585 +images-20901.png,11586 +images-20902.png,11587 +images-20903.png,11588 +images-20904.png,11589 +images-20905.png,11590 +images-20906.png,11591 +images-20907.png,11592 +images-20908.png,11593 +images-20909.png,11594 +images-20910.png,11595 +images-20911.png,11596 +images-20912.png,11597 +images-20913.png,11598 +images-20914.png,11599 +images-20915.png,11600 +images-20916.png,11601 +images-20917.png,11602 +images-20918.png,11603 +images-20919.png,11604 +images-20920.png,11605 +images-20921.png,11606 +images-20922.png,11607 +images-20923.png,11608 +images-20924.png,11609 +images-20925.png,11610 +images-20926.png,11611 +images-20927.png,11612 +images-20928.png,11613 +images-20929.png,11614 +images-20930.png,11615 +images-20931.png,11616 +images-20932.png,11617 +images-20933.png,11618 +images-20934.png,11619 +images-20935.png,11620 +images-20936.png,11621 +images-20937.png,11622 +images-20938.png,11623 +images-20939.png,11624 +images-20940.png,11625 +images-20941.png,11626 +images-20942.png,11627 +images-20943.png,11628 +images-20944.png,11629 +images-20945.png,11630 +images-20946.png,11631 +images-20947.png,11632 +images-20948.png,11633 +images-20949.png,11634 +images-20950.png,11635 +images-20951.png,11636 +images-20952.png,11637 +images-20953.png,11638 +images-20954.png,11639 +images-20955.png,11640 +images-20956.png,11641 +images-20957.png,11642 +images-20958.png,11643 +images-20959.png,11644 +images-20960.png,11645 +images-20961.png,11646 +images-20962.png,11647 +images-20963.png,11648 +images-20964.png,11649 +images-20965.png,11650 +images-20966.png,11651 +images-20967.png,11652 +images-20968.png,11653 +images-20969.png,11654 +images-20970.png,11655 +images-20971.png,11656 +images-20972.png,11657 +images-20973.png,11658 +images-20974.png,11659 +images-20975.png,11660 +images-20976.png,11661 +images-20977.png,11662 +images-20978.png,11663 +images-20979.png,11664 +images-20980.png,11665 +images-20981.png,11666 +images-20982.png,11667 +images-20983.png,11668 +images-20984.png,11669 +images-20985.png,11670 +images-20986.png,11671 +images-20987.png,11672 +images-20988.png,11673 +images-20989.png,11674 +images-20990.png,11675 +images-20991.png,11676 +images-20992.png,11677 +images-20993.png,11678 +images-20994.png,11679 +images-20995.png,11680 +images-20996.png,11681 +images-20997.png,11682 +images-20998.png,11683 +images-20999.png,11684 +images-21000.png,11685 +images-21001.png,11686 +images-21002.png,11687 +images-21003.png,11688 +images-21004.png,11689 +images-21005.png,11690 +images-21006.png,11691 +images-21007.png,11692 +images-21008.png,11693 +images-21009.png,11694 +images-21010.png,11695 +images-21011.png,11696 +images-21012.png,11697 +images-21013.png,11698 +images-21014.png,11699 +images-21015.png,11700 +images-21016.png,11701 +images-21017.png,11702 +images-21018.png,11703 +images-21019.png,11704 +images-21020.png,11705 +images-21021.png,11706 +images-21022.png,11707 +images-21023.png,11708 +images-21024.png,11709 +images-21025.png,11710 +images-21026.png,11711 +images-21027.png,11712 +images-21028.png,11713 +images-21029.png,11714 +images-21030.png,11715 +images-21031.png,11716 +images-21032.png,11717 +images-21033.png,11718 +images-21034.png,11719 +images-21035.png,11720 +images-21036.png,11721 +images-21037.png,11722 +images-21038.png,11723 +images-21039.png,11724 +images-21040.png,11725 +images-21041.png,11726 +images-21042.png,11727 +images-21043.png,11728 +images-21044.png,11729 +images-21045.png,11730 +images-21046.png,11731 +images-21047.png,11732 +images-21048.png,11733 +images-21049.png,11734 +images-21050.png,11735 +images-21051.png,11736 +images-21052.png,11737 +images-21053.png,11738 +images-21054.png,11739 +images-21055.png,11740 +images-21056.png,11741 +images-21057.png,11742 +images-21063.png,11743 +images-21064.png,11744 +images-21065.png,11745 +images-21066.png,11746 +images-21067.png,11747 +images-21068.png,11748 +images-21069.png,11749 +images-21070.png,11750 +images-21071.png,11751 +images-21072.png,11752 +images-21073.png,11753 +images-21074.png,11754 +images-21075.png,11755 +images-21076.png,11756 +images-21077.png,11757 +images-21078.png,11758 +images-21079.png,11759 +images-21080.png,11760 +images-21081.png,11761 +images-21082.png,11762 +images-21083.png,11763 +images-21084.png,11764 +images-21085.png,11765 +images-21086.png,11766 +images-21087.png,11767 +images-21088.png,11768 +images-21089.png,11769 +images-21090.png,11770 +images-21091.png,11771 +images-21092.png,11772 +images-21093.png,11773 +images-21094.png,11774 +images-21095.png,11775 +images-21096.png,11776 +images-21097.png,11777 +images-21098.png,11778 +images-21099.png,11779 +images-21100.png,11780 +images-21101.png,11781 +images-21102.png,11782 +images-21103.png,11783 +images-21104.png,11784 +images-21105.png,11785 +images-21106.png,11786 +images-21107.png,11787 +images-21108.png,11788 +images-21109.png,11789 +images-21110.png,11790 +images-21111.png,11791 +images-21112.png,11792 +images-21113.png,11793 +images-21114.png,11794 +images-21115.png,11795 +images-21116.png,11796 +images-21117.png,11797 +images-21118.png,11798 +images-21119.png,11799 +images-21120.png,11800 +images-21121.png,11801 +images-21122.png,11802 +images-21123.png,11803 +images-21124.png,11804 +images-21125.png,11805 +images-21126.png,11806 +images-21127.png,11807 +images-21128.png,11808 +images-21129.png,11809 +images-21130.png,11810 +images-21131.png,11811 +images-21132.png,11812 +images-21133.png,11813 +images-21134.png,11814 +images-21135.png,11815 +images-21136.png,11816 +images-21137.png,11817 +images-21138.png,11818 +images-21139.png,11819 +images-21140.png,11820 +images-21141.png,11821 +images-21142.png,11822 +images-21143.png,11823 +images-21144.png,11824 +images-21145.png,11825 +images-21146.png,11826 +images-21147.png,11827 +images-21148.png,11828 +images-21149.png,11829 +images-21150.png,11830 +images-21151.png,11831 +images-21152.png,11832 +images-21153.png,11833 +images-21154.png,11834 +images-21155.png,11835 +images-21156.png,11836 +images-21157.png,11837 +images-21158.png,11838 +images-21159.png,11839 +images-21160.png,11840 +images-21161.png,11841 +images-21162.png,11842 +images-21163.png,11843 +images-21164.png,11844 +images-21165.png,11845 +images-21166.png,11846 +images-21167.png,11847 +images-21168.png,11848 +images-21169.png,11849 +images-21170.png,11850 +images-21171.png,11851 +images-21172.png,11852 +images-21173.png,11853 +images-21174.png,11854 +images-21175.png,11855 +images-21176.png,11856 +images-21177.png,11857 +images-21178.png,11858 +images-21179.png,11859 +images-21180.png,11860 +images-21181.png,11861 +images-21182.png,11862 +images-21183.png,11863 +images-21184.png,11864 +images-21185.png,11865 +images-21186.png,11866 +images-21187.png,11867 +images-21188.png,11868 +images-21189.png,11869 +images-21190.png,11870 +images-21191.png,11871 +images-21192.png,11872 +images-21193.png,11873 +images-21194.png,11874 +images-21195.png,11875 +images-21196.png,11876 +images-21197.png,11877 +images-21198.png,11878 +images-21199.png,11879 +images-21200.png,11880 +images-21201.png,11881 +images-21202.png,11882 +images-21203.png,11883 +images-21204.png,11884 +images-21205.png,11885 +images-21206.png,11886 +images-21207.png,11887 +images-21208.png,11888 +images-21209.png,11889 +images-21210.png,11890 +images-21211.png,11891 +images-21212.png,11892 +images-21213.png,11893 +images-21214.png,11894 +images-21215.png,11895 +images-21216.png,11896 +images-21217.png,11897 +images-21218.png,11898 +images-21219.png,11899 +images-21220.png,11900 +images-21221.png,11901 +images-21222.png,11902 +images-21223.png,11903 +images-21224.png,11904 +images-21225.png,11905 +images-21226.png,11906 +images-21227.png,11907 +images-21228.png,11908 +images-21229.png,11909 +images-21230.png,11910 +images-21231.png,11911 +images-21232.png,11912 +images-21233.png,11913 +images-21234.png,11914 +images-21235.png,11915 +images-21236.png,11916 +images-21237.png,11917 +images-21238.png,11918 +images-21239.png,11919 +images-21240.png,11920 +images-21241.png,11921 +images-21242.png,11922 +images-21243.png,11923 +images-21244.png,11924 +images-21245.png,11925 +images-21246.png,11926 +images-21247.png,11927 +images-21248.png,11928 +images-21249.png,11929 +images-21250.png,11930 +images-21251.png,11931 +images-21252.png,11932 +images-21253.png,11933 +images-21254.png,11934 +images-21255.png,11935 +images-21256.png,11936 +images-21257.png,11937 +images-21258.png,11938 +images-21259.png,11939 +images-21260.png,11940 +images-21261.png,11941 +images-21262.png,11942 +images-21263.png,11943 +images-21264.png,11944 +images-21265.png,11945 +images-21266.png,11946 +images-21267.png,11947 +images-21268.png,11948 +images-21269.png,11949 +images-21270.png,11950 +images-21271.png,11951 +images-21272.png,11952 +images-21273.png,11953 +images-21274.png,11954 +images-21275.png,11955 +images-21276.png,11956 +images-21277.png,11957 +images-21278.png,11958 +images-21279.png,11959 +images-21280.png,11960 +images-21281.png,11961 +images-21282.png,11962 +images-21283.png,11963 +images-21284.png,11964 +images-21285.png,11965 +images-21286.png,11966 +images-21287.png,11967 +images-21288.png,11968 +images-21289.png,11969 +images-21290.png,11970 +images-21291.png,11971 +images-21292.png,11972 +images-21293.png,11973 +images-21294.png,11974 +images-21295.png,11975 +images-21296.png,11976 +images-21297.png,11977 +images-21298.png,11978 +images-21299.png,11979 +images-21300.png,11980 +images-21301.png,11981 +images-21302.png,11982 +images-21303.png,11983 +images-21304.png,11984 +images-21305.png,11985 +images-21306.png,11986 +images-21307.png,11987 +images-21308.png,11988 +images-21309.png,11989 +images-21310.png,11990 +images-21311.png,11991 +images-21312.png,11992 +images-21313.png,11993 +images-21314.png,11994 +images-21315.png,11995 +images-21316.png,11996 +images-21317.png,11997 +images-21318.png,11998 +images-21319.png,11999 +images-21320.png,12000 +images-21321.png,12001 +images-21322.png,12002 +images-21323.png,12003 +images-21324.png,12004 +images-21325.png,12005 +images-21326.png,12006 +images-21327.png,12007 +images-21328.png,12008 +images-21329.png,12009 +images-21330.png,12010 +images-21331.png,12011 +images-21332.png,12012 +images-21333.png,12013 +images-21334.png,12014 +images-21335.png,12015 +images-21336.png,12016 +images-21337.png,12017 +images-21338.png,12018 +images-21339.png,12019 +images-21340.png,12020 +images-21341.png,12021 +images-21342.png,12022 +images-21343.png,12023 +images-21344.png,12024 +images-21345.png,12025 +images-21346.png,12026 +images-21347.png,12027 +images-21348.png,12028 +images-21349.png,12029 +images-21350.png,12030 +images-21351.png,12031 +images-21352.png,12032 +images-21353.png,12033 +images-21354.png,12034 +images-21355.png,12035 +images-21356.png,12036 +images-21357.png,12037 +images-21358.png,12038 +images-21359.png,12039 +images-21360.png,12040 +images-21361.png,12041 +images-21362.png,12042 +images-21363.png,12043 +images-21364.png,12044 +images-21365.png,12045 +images-21366.png,12046 +images-21367.png,12047 +images-21368.png,12048 +images-21369.png,12049 +images-21370.png,12050 +images-21371.png,12051 +images-21372.png,12052 +images-21373.png,12053 +images-21374.png,12054 +images-21375.png,12055 +images-21376.png,12056 +images-21377.png,12057 +images-21378.png,12058 +images-21379.png,12059 +images-21380.png,12060 +images-21381.png,12061 +images-21382.png,12062 +images-21383.png,12063 +images-21384.png,12064 +images-21385.png,12065 +images-21386.png,12066 +images-21387.png,12067 +images-21388.png,12068 +images-21389.png,12069 +images-21390.png,12070 +images-21391.png,12071 +images-21392.png,12072 +images-21393.png,12073 +images-21394.png,12074 +images-21395.png,12075 +images-21396.png,12076 +images-21397.png,12077 +images-21398.png,12078 +images-21399.png,12079 +images-21400.png,12080 +images-21401.png,12081 +images-21402.png,12082 +images-21403.png,12083 +images-21404.png,12084 +images-21405.png,12085 +images-21406.png,12086 +images-21407.png,12087 +images-21408.png,12088 +images-21409.png,12089 +images-21410.png,12090 +images-21411.png,12091 +images-21412.png,12092 +images-21413.png,12093 +images-21414.png,12094 +images-21415.png,12095 +images-21416.png,12096 +images-21417.png,12097 +images-21418.png,12098 +images-21419.png,12099 +images-21420.png,12100 +images-21421.png,12101 +images-21422.png,12102 +images-21423.png,12103 +images-21424.png,12104 +images-21425.png,12105 +images-21426.png,12106 +images-21427.png,12107 +images-21428.png,12108 +images-21429.png,12109 +images-21430.png,12110 +images-21431.png,12111 +images-21432.png,12112 +images-21433.png,12113 +images-21434.png,12114 +images-21435.png,12115 +images-21436.png,12116 +images-21437.png,12117 +images-21438.png,12118 +images-21439.png,12119 +images-21440.png,12120 +images-21441.png,12121 +images-21442.png,12122 +images-21443.png,12123 +images-21444.png,12124 +images-21445.png,12125 +images-21446.png,12126 +images-21447.png,12127 +images-21448.png,12128 +images-21449.png,12129 +images-21450.png,12130 +images-21451.png,12131 +images-21452.png,12132 +images-21453.png,12133 +images-21454.png,12134 +images-21455.png,12135 +images-21456.png,12136 +images-21457.png,12137 +images-21458.png,12138 +images-21459.png,12139 +images-21460.png,12140 +images-21461.png,12141 +images-21462.png,12142 +images-21463.png,12143 +images-21464.png,12144 +images-21465.png,12145 +images-21466.png,12146 +images-21467.png,12147 +images-21468.png,12148 +images-21469.png,12149 +images-21470.png,12150 +images-21471.png,12151 +images-21472.png,12152 +images-21473.png,12153 +images-21474.png,12154 +images-21475.png,12155 +images-21476.png,12156 +images-21477.png,12157 +images-21499.png,12158 +images-21500.png,12159 +images-21501.png,12160 +images-21502.png,12161 +images-21503.png,12162 +images-21504.png,12163 +images-21505.png,12164 +images-21506.png,12165 +images-21507.png,12166 +images-21508.png,12167 +images-21509.png,12168 +images-21510.png,12169 +images-21511.png,12170 +images-21512.png,12171 +images-21513.png,12172 +images-21514.png,12173 +images-21515.png,12174 +images-21516.png,12175 +images-21517.png,12176 +images-21518.png,12177 +images-21519.png,12178 +images-21520.png,12179 +images-21521.png,12180 +images-21522.png,12181 +images-21523.png,12182 +images-21524.png,12183 +images-21525.png,12184 +images-21526.png,12185 +images-21527.png,12186 +images-21528.png,12187 +images-21529.png,12188 +images-21530.png,12189 +images-21531.png,12190 +images-21532.png,12191 +images-21533.png,12192 +images-21534.png,12193 +images-21535.png,12194 +images-21536.png,12195 +images-21537.png,12196 +images-21538.png,12197 +images-21539.png,12198 +images-21540.png,12199 +images-21541.png,12200 +images-21542.png,12201 +images-21543.png,12202 +images-21544.png,12203 +images-21545.png,12204 +images-21546.png,12205 +images-21547.png,12206 +images-21548.png,12207 +images-21549.png,12208 +images-21550.png,12209 +images-21551.png,12210 +images-21552.png,12211 +images-21553.png,12212 +images-21554.png,12213 +images-21555.png,12214 +images-21556.png,12215 +images-21557.png,12216 +images-21558.png,12217 +images-21559.png,12218 +images-21560.png,12219 +images-21561.png,12220 +images-21562.png,12221 +images-21563.png,12222 +images-21564.png,12223 +images-21565.png,12224 +images-21566.png,12225 +images-21567.png,12226 +images-21568.png,12227 +images-21569.png,12228 +images-21570.png,12229 +images-21571.png,12230 +images-21572.png,12231 +images-21573.png,12232 +images-21574.png,12233 +images-21575.png,12234 +images-21576.png,12235 +images-21577.png,12236 +images-21578.png,12237 +images-21579.png,12238 +images-21580.png,12239 +images-21581.png,12240 +images-21582.png,12241 +images-21583.png,12242 +images-21584.png,12243 +images-21585.png,12244 +images-21586.png,12245 +images-21587.png,12246 +images-21588.png,12247 +images-21589.png,12248 +images-21590.png,12249 +images-21591.png,12250 +images-21592.png,12251 +images-21593.png,12252 +images-21594.png,12253 +images-21595.png,12254 +images-21596.png,12255 +images-21597.png,12256 +images-21598.png,12257 +images-21599.png,12258 +images-21600.png,12259 +images-21601.png,12260 +images-21602.png,12261 +images-21603.png,12262 +images-21604.png,12263 +images-21605.png,12264 +images-21606.png,12265 +images-21607.png,12266 +images-21608.png,12267 +images-21609.png,12268 +images-21610.png,12269 +images-21611.png,12270 +images-21612.png,12271 +images-21613.png,12272 +images-21614.png,12273 +images-21615.png,12274 +images-21616.png,12275 +images-21617.png,12276 +images-21618.png,12277 +images-21619.png,12278 +images-21620.png,12279 +images-21621.png,12280 +images-21622.png,12281 +images-21623.png,12282 +images-21624.png,12283 +images-21625.png,12284 +images-21626.png,12285 +images-21627.png,12286 +images-21628.png,12287 +images-21629.png,12288 +images-21630.png,12289 +images-21631.png,12290 +images-21632.png,12291 +images-21633.png,12292 +images-21634.png,12293 +images-21635.png,12294 +images-21636.png,12295 +images-21637.png,12296 +images-21638.png,12297 +images-21639.png,12298 +images-21640.png,12299 +images-21641.png,12300 +images-21642.png,12301 +images-21643.png,12302 +images-21644.png,12303 +images-21645.png,12304 +images-21646.png,12305 +images-21647.png,12306 +images-21648.png,12307 +images-21649.png,12308 +images-21650.png,12309 +images-21651.png,12310 +images-21652.png,12311 +images-21653.png,12312 +images-21654.png,12313 +images-21655.png,12314 +images-21656.png,12315 +images-21657.png,12316 +images-21658.png,12317 +images-21659.png,12318 +images-21660.png,12319 +images-21661.png,12320 +images-21662.png,12321 +images-21663.png,12322 +images-21664.png,12323 +images-21665.png,12324 +images-21666.png,12325 +images-21667.png,12326 +images-21668.png,12327 +images-21669.png,12328 +images-21670.png,12329 +images-21671.png,12330 +images-21672.png,12331 +images-21673.png,12332 +images-21674.png,12333 +images-21675.png,12334 +images-21676.png,12335 +images-21677.png,12336 +images-21678.png,12337 +images-21679.png,12338 +images-21680.png,12339 +images-21681.png,12340 +images-21682.png,12341 +images-21683.png,12342 +images-21684.png,12343 +images-21685.png,12344 +images-21686.png,12345 +images-21687.png,12346 +images-21688.png,12347 +images-21689.png,12348 +images-21690.png,12349 +images-21691.png,12350 +images-21692.png,12351 +images-21693.png,12352 +images-21694.png,12353 +images-21695.png,12354 +images-21696.png,12355 +images-21697.png,12356 +images-21698.png,12357 +images-21699.png,12358 +images-21700.png,12359 +images-21701.png,12360 +images-21702.png,12361 +images-21703.png,12362 +images-21704.png,12363 +images-21705.png,12364 +images-21706.png,12365 +images-21707.png,12366 +images-21708.png,12367 +images-21709.png,12368 +images-21710.png,12369 +images-21711.png,12370 +images-21712.png,12371 +images-21713.png,12372 +images-21714.png,12373 +images-21715.png,12374 +images-21716.png,12375 +images-21717.png,12376 +images-21718.png,12377 +images-21719.png,12378 +images-21720.png,12379 +images-21721.png,12380 +images-21722.png,12381 +images-21723.png,12382 +images-21724.png,12383 +images-21725.png,12384 +images-21726.png,12385 +images-21727.png,12386 +images-21728.png,12387 +images-21729.png,12388 +images-21730.png,12389 +images-21731.png,12390 +images-21732.png,12391 +images-21733.png,12392 +images-21734.png,12393 +images-21735.png,12394 +images-21736.png,12395 +images-21737.png,12396 +images-21738.png,12397 +images-21739.png,12398 +images-21740.png,12399 +images-21741.png,12400 +images-21742.png,12401 +images-21743.png,12402 +images-21744.png,12403 +images-21745.png,12404 +images-21746.png,12405 +images-21747.png,12406 +images-21748.png,12407 +images-21749.png,12408 +images-21750.png,12409 +images-21751.png,12410 +images-21752.png,12411 +images-21753.png,12412 +images-21754.png,12413 +images-21755.png,12414 +images-21756.png,12415 +images-21757.png,12416 +images-21758.png,12417 +images-21759.png,12418 +images-21760.png,12419 +images-21761.png,12420 +images-21762.png,12421 +images-21763.png,12422 +images-21764.png,12423 +images-21765.png,12424 +images-21766.png,12425 +images-21767.png,12426 +images-21768.png,12427 +images-21769.png,12428 +images-21770.png,12429 +images-21771.png,12430 +images-21772.png,12431 +images-21773.png,12432 +images-21774.png,12433 +images-21775.png,12434 +images-21776.png,12435 +images-21777.png,12436 +images-21778.png,12437 +images-21779.png,12438 +images-21780.png,12439 +images-21781.png,12440 +images-21782.png,12441 +images-21783.png,12442 +images-21784.png,12443 +images-21785.png,12444 +images-21786.png,12445 +images-21787.png,12446 +images-21788.png,12447 +images-21789.png,12448 +images-21790.png,12449 +images-21791.png,12450 +images-21792.png,12451 +images-21793.png,12452 +images-21794.png,12453 +images-21795.png,12454 +images-21796.png,12455 +images-21797.png,12456 +images-21798.png,12457 +images-21799.png,12458 +images-21800.png,12459 +images-21801.png,12460 +images-21802.png,12461 +images-21803.png,12462 +images-21804.png,12463 +images-21805.png,12464 +images-21806.png,12465 +images-21807.png,12466 +images-21808.png,12467 +images-21809.png,12468 +images-21810.png,12469 +images-21811.png,12470 +images-21812.png,12471 +images-21813.png,12472 +images-21814.png,12473 +images-21815.png,12474 +images-21816.png,12475 +images-21817.png,12476 +images-21818.png,12477 +images-21819.png,12478 +images-21820.png,12479 +images-21821.png,12480 +images-21822.png,12481 +images-21823.png,12482 +images-21824.png,12483 +images-21825.png,12484 +images-21826.png,12485 +images-21827.png,12486 +images-21828.png,12487 +images-21829.png,12488 +images-21830.png,12489 +images-21831.png,12490 +images-21872.png,12491 +images-21873.png,12492 +images-21874.png,12493 +images-21875.png,12494 +images-21876.png,12495 +images-21877.png,12496 +images-21878.png,12497 +images-21879.png,12498 +images-21880.png,12499 +images-21881.png,12500 +images-21882.png,12501 +images-21883.png,12502 +images-21884.png,12503 +images-21885.png,12504 +images-21886.png,12505 +images-21887.png,12506 +images-21888.png,12507 +images-21889.png,12508 +images-21890.png,12509 +images-21891.png,12510 +images-21892.png,12511 +images-21893.png,12512 +images-21894.png,12513 +images-21895.png,12514 +images-21896.png,12515 +images-21897.png,12516 +images-21898.png,12517 +images-21899.png,12518 +images-21900.png,12519 +images-21901.png,12520 +images-21902.png,12521 +images-21903.png,12522 +images-21904.png,12523 +images-21905.png,12524 +images-21906.png,12525 +images-21907.png,12526 +images-21908.png,12527 +images-21909.png,12528 +images-21910.png,12529 +images-21911.png,12530 +images-21912.png,12531 +images-21913.png,12532 +images-21914.png,12533 +images-21915.png,12534 +images-21916.png,12535 +images-21917.png,12536 +images-21918.png,12537 +images-21919.png,12538 +images-21920.png,12539 +images-21921.png,12540 +images-21922.png,12541 +images-21923.png,12542 +images-21924.png,12543 +images-21925.png,12544 +images-21926.png,12545 +images-21927.png,12546 +images-21928.png,12547 +images-21929.png,12548 +images-21930.png,12549 +images-21931.png,12550 +images-21932.png,12551 +images-21933.png,12552 +images-21934.png,12553 +images-21935.png,12554 +images-21936.png,12555 +images-21937.png,12556 +images-21938.png,12557 +images-21939.png,12558 +images-21940.png,12559 +images-21941.png,12560 +images-21942.png,12561 +images-21943.png,12562 +images-21944.png,12563 +images-21945.png,12564 +images-21946.png,12565 +images-21961.png,12566 +images-21962.png,12567 +images-21963.png,12568 +images-21964.png,12569 +images-21965.png,12570 +images-21966.png,12571 +images-21967.png,12572 +images-21968.png,12573 +images-21969.png,12574 +images-21970.png,12575 +images-21971.png,12576 +images-21972.png,12577 +images-21973.png,12578 +images-21974.png,12579 +images-21975.png,12580 +images-21976.png,12581 +images-21977.png,12582 +images-21978.png,12583 +images-21979.png,12584 +images-21980.png,12585 +images-21981.png,12586 +images-21982.png,12587 +images-21983.png,12588 +images-21984.png,12589 +images-21985.png,12590 +images-22003.png,12591 +images-22004.png,12592 +images-22005.png,12593 +images-22006.png,12594 +images-22007.png,12595 +images-22008.png,12596 +images-22009.png,12597 +images-22010.png,12598 +images-22011.png,12599 +images-22012.png,12600 +images-22013.png,12601 +images-22030.png,12602 +images-22031.png,12603 +images-22032.png,12604 +images-22033.png,12605 +images-22034.png,12606 +images-22035.png,12607 +images-22036.png,12608 +images-22048.png,12609 +images-22049.png,12610 +images-22050.png,12611 +images-22051.png,12612 +images-22052.png,12613 +images-22053.png,12614 +images-22054.png,12615 +images-22055.png,12616 +images-22056.png,12617 +images-22057.png,12618 +images-22058.png,12619 +images-22059.png,12620 +images-22060.png,12621 +images-22061.png,12622 +images-22062.png,12623 +images-22063.png,12624 +images-22064.png,12625 +images-22065.png,12626 +images-22066.png,12627 +images-22067.png,12628 +images-22068.png,12629 +images-22069.png,12630 +images-22070.png,12631 +images-22071.png,12632 +images-22072.png,12633 +images-22073.png,12634 +images-22074.png,12635 +images-22075.png,12636 +images-22076.png,12637 +images-22077.png,12638 +images-22078.png,12639 +images-22079.png,12640 +images-22080.png,12641 +images-22081.png,12642 +images-22082.png,12643 +images-22083.png,12644 +images-22084.png,12645 +images-22085.png,12646 +images-22086.png,12647 +images-22087.png,12648 +images-22088.png,12649 +images-22089.png,12650 +images-22090.png,12651 +images-22091.png,12652 +images-22092.png,12653 +images-22093.png,12654 +images-22094.png,12655 +images-22095.png,12656 +images-22096.png,12657 +images-22097.png,12658 +images-22098.png,12659 +images-22099.png,12660 +images-22100.png,12661 +images-22101.png,12662 +images-22102.png,12663 +images-22103.png,12664 +images-22104.png,12665 +images-22105.png,12666 +images-22106.png,12667 +images-22107.png,12668 +images-22108.png,12669 +images-22109.png,12670 +images-22110.png,12671 +images-22111.png,12672 +images-22112.png,12673 +images-22113.png,12674 +images-22114.png,12675 +images-22115.png,12676 +images-22116.png,12677 +images-22117.png,12678 +images-22118.png,12679 +images-22119.png,12680 +images-22120.png,12681 +images-22121.png,12682 +images-22122.png,12683 +images-22123.png,12684 +images-22124.png,12685 +images-22125.png,12686 +images-22126.png,12687 +images-22127.png,12688 +images-22128.png,12689 +images-22129.png,12690 +images-22130.png,12691 +images-22131.png,12692 +images-22132.png,12693 +images-22133.png,12694 +images-22134.png,12695 +images-22135.png,12696 +images-22136.png,12697 +images-22137.png,12698 +images-22138.png,12699 +images-22139.png,12700 +images-22140.png,12701 +images-22141.png,12702 +images-22142.png,12703 +images-22143.png,12704 +images-22144.png,12705 +images-22145.png,12706 +images-22146.png,12707 +images-22147.png,12708 +images-22148.png,12709 +images-22152.png,12710 +images-22153.png,12711 +images-22154.png,12712 +images-22155.png,12713 +images-22156.png,12714 +images-22157.png,12715 +images-22158.png,12716 +images-22159.png,12717 +images-22160.png,12718 +images-22161.png,12719 +images-22162.png,12720 +images-22163.png,12721 +images-22164.png,12722 +images-22165.png,12723 +images-22166.png,12724 +images-22167.png,12725 +images-22168.png,12726 +images-22169.png,12727 +images-22170.png,12728 +images-22171.png,12729 +images-22172.png,12730 +images-22173.png,12731 +images-22197.png,12732 +images-22198.png,12733 +images-22199.png,12734 +images-22200.png,12735 +images-22201.png,12736 +images-22202.png,12737 +images-22203.png,12738 +images-22204.png,12739 +images-22205.png,12740 +images-22206.png,12741 +images-22207.png,12742 +images-22208.png,12743 +images-22209.png,12744 +images-22210.png,12745 +images-22211.png,12746 +images-22241.png,12747 +images-22242.png,12748 +images-22243.png,12749 +images-22244.png,12750 +images-22245.png,12751 +images-22246.png,12752 +images-22247.png,12753 +images-22248.png,12754 +images-22251.png,12755 +images-22252.png,12756 +images-22253.png,12757 +images-22254.png,12758 +images-22255.png,12759 +images-22256.png,12760 +images-22257.png,12761 +images-22258.png,12762 +images-22259.png,12763 +images-22260.png,12764 +images-22261.png,12765 +images-22262.png,12766 +images-22269.png,12767 +images-22270.png,12768 +images-22271.png,12769 +images-22272.png,12770 +images-22273.png,12771 +images-22274.png,12772 +images-22275.png,12773 +images-22276.png,12774 +images-22277.png,12775 +images-22278.png,12776 +images-22344.png,12777 +images-22345.png,12778 +images-22346.png,12779 +images-22347.png,12780 +images-22348.png,12781 +images-22349.png,12782 +images-22350.png,12783 +images-22351.png,12784 +images-22352.png,12785 +images-22353.png,12786 +images-22354.png,12787 +images-22355.png,12788 +images-22356.png,12789 +images-22357.png,12790 +images-22361.png,12791 +images-22362.png,12792 +images-22363.png,12793 +images-22364.png,12794 +images-22365.png,12795 +images-22366.png,12796 +images-22367.png,12797 +images-22368.png,12798 +images-22369.png,12799 +images-22370.png,12800 +images-22371.png,12801 +images-22372.png,12802 +images-22373.png,12803 +images-22374.png,12804 +images-22375.png,12805 +images-22376.png,12806 +images-22377.png,12807 +images-22378.png,12808 +images-22379.png,12809 +images-22380.png,12810 +images-22381.png,12811 +images-22382.png,12812 +images-22383.png,12813 +images-22384.png,12814 +images-22385.png,12815 +images-22386.png,12816 +images-22387.png,12817 +images-22388.png,12818 +images-22389.png,12819 +images-22390.png,12820 +images-22391.png,12821 +images-22392.png,12822 +images-22393.png,12823 +images-22394.png,12824 +images-22395.png,12825 +images-22396.png,12826 +images-22430.png,12827 +images-22431.png,12828 +images-22432.png,12829 +images-22433.png,12830 +images-22434.png,12831 +images-22435.png,12832 +images-22436.png,12833 +images-22437.png,12834 +images-22438.png,12835 +images-22439.png,12836 +images-22440.png,12837 +images-22441.png,12838 +images-22450.png,12839 +images-22451.png,12840 +images-22452.png,12841 +images-22453.png,12842 +images-22454.png,12843 +images-22455.png,12844 +images-22456.png,12845 +images-22457.png,12846 +images-22458.png,12847 +images-22459.png,12848 +images-22460.png,12849 +images-22461.png,12850 +images-22462.png,12851 +images-22463.png,12852 +images-22464.png,12853 +images-22465.png,12854 +images-22466.png,12855 +images-22467.png,12856 +images-22468.png,12857 +images-22469.png,12858 +images-22470.png,12859 +images-22471.png,12860 +images-22472.png,12861 +images-22473.png,12862 +images-22474.png,12863 +images-22475.png,12864 +images-22476.png,12865 +images-22477.png,12866 +images-22478.png,12867 +images-22479.png,12868 +images-22480.png,12869 +images-22481.png,12870 +images-22482.png,12871 +images-22502.png,12872 +images-22503.png,12873 +images-22504.png,12874 +images-22505.png,12875 +images-22506.png,12876 +images-22507.png,12877 +images-22508.png,12878 +images-22509.png,12879 +images-22510.png,12880 +images-22511.png,12881 +images-22512.png,12882 +images-22513.png,12883 +images-22514.png,12884 +images-22515.png,12885 +images-22516.png,12886 +images-22517.png,12887 +images-22518.png,12888 +images-22519.png,12889 +images-22520.png,12890 +images-22521.png,12891 +images-22522.png,12892 +images-22523.png,12893 +images-22524.png,12894 +images-22525.png,12895 +images-22526.png,12896 +images-22527.png,12897 +images-22528.png,12898 +images-22529.png,12899 +images-22530.png,12900 +images-22531.png,12901 +images-22532.png,12902 +images-22533.png,12903 +images-22534.png,12904 +images-22535.png,12905 +images-22536.png,12906 +images-22537.png,12907 +images-22538.png,12908 +images-22539.png,12909 +images-22540.png,12910 +images-22541.png,12911 +images-22542.png,12912 +images-22543.png,12913 +images-22544.png,12914 +images-22545.png,12915 +images-22546.png,12916 +images-22547.png,12917 +images-22548.png,12918 +images-22549.png,12919 +images-22550.png,12920 +images-22551.png,12921 +images-22552.png,12922 +images-22553.png,12923 +images-22554.png,12924 +images-22555.png,12925 +images-22556.png,12926 +images-22557.png,12927 +images-22558.png,12928 +images-22559.png,12929 +images-22560.png,12930 +images-22561.png,12931 +images-22562.png,12932 +images-22563.png,12933 +images-22564.png,12934 +images-22565.png,12935 +images-22566.png,12936 +images-22567.png,12937 +images-22568.png,12938 +images-22569.png,12939 +images-22570.png,12940 +images-22578.png,12941 +images-22579.png,12942 +images-22580.png,12943 +images-22581.png,12944 +images-22582.png,12945 +images-22583.png,12946 +images-22584.png,12947 +images-22585.png,12948 +images-22586.png,12949 +images-22587.png,12950 +images-22588.png,12951 +images-22589.png,12952 +images-22590.png,12953 +images-22591.png,12954 +images-22592.png,12955 +images-22596.png,12956 +images-22597.png,12957 +images-22598.png,12958 +images-22599.png,12959 +images-22600.png,12960 +images-22601.png,12961 +images-22602.png,12962 +images-22603.png,12963 +images-22604.png,12964 +images-22605.png,12965 +images-22606.png,12966 +images-22607.png,12967 +images-22608.png,12968 +images-22609.png,12969 +images-22610.png,12970 +images-22611.png,12971 +images-22612.png,12972 +images-22613.png,12973 +images-22614.png,12974 +images-22615.png,12975 +images-22616.png,12976 +images-22617.png,12977 +images-22618.png,12978 +images-22619.png,12979 +images-22620.png,12980 +images-22621.png,12981 +images-22622.png,12982 +images-22623.png,12983 +images-22624.png,12984 +images-22625.png,12985 +images-22626.png,12986 +images-22627.png,12987 +images-22628.png,12988 +images-22629.png,12989 +images-22630.png,12990 +images-22631.png,12991 +images-22632.png,12992 +images-22633.png,12993 +images-22634.png,12994 +images-22635.png,12995 +images-22636.png,12996 +images-22637.png,12997 +images-22638.png,12998 +images-22639.png,12999 +images-22640.png,13000 +images-22641.png,13001 +images-22642.png,13002 +images-22643.png,13003 +images-22644.png,13004 +images-22645.png,13005 +images-22646.png,13006 +images-22647.png,13007 +images-22648.png,13008 +images-22649.png,13009 +images-22650.png,13010 +images-22651.png,13011 +images-22652.png,13012 +images-22653.png,13013 +images-22654.png,13014 +images-22655.png,13015 +images-22656.png,13016 +images-22657.png,13017 +images-22658.png,13018 +images-22659.png,13019 +images-22660.png,13020 +images-22661.png,13021 +images-22662.png,13022 +images-22663.png,13023 +images-22664.png,13024 +images-22665.png,13025 +images-22666.png,13026 +images-22667.png,13027 +images-22668.png,13028 +images-22669.png,13029 +images-22670.png,13030 +images-22671.png,13031 +images-22672.png,13032 +images-22673.png,13033 +images-22674.png,13034 +images-22675.png,13035 +images-22676.png,13036 +images-22677.png,13037 +images-22678.png,13038 +images-22679.png,13039 +images-22680.png,13040 +images-22681.png,13041 +images-22682.png,13042 +images-22683.png,13043 +images-22684.png,13044 +images-22685.png,13045 +images-22686.png,13046 +images-22687.png,13047 +images-22688.png,13048 +images-22689.png,13049 +images-22690.png,13050 +images-22691.png,13051 +images-22692.png,13052 +images-22693.png,13053 +images-22694.png,13054 +images-22695.png,13055 +images-22696.png,13056 +images-22697.png,13057 +images-22698.png,13058 +images-22699.png,13059 +images-22700.png,13060 +images-22701.png,13061 +images-22702.png,13062 +images-22703.png,13063 +images-22704.png,13064 +images-22705.png,13065 +images-22706.png,13066 +images-22707.png,13067 +images-22708.png,13068 +images-22709.png,13069 +images-22710.png,13070 +images-22711.png,13071 +images-22712.png,13072 +images-22713.png,13073 +images-22714.png,13074 +images-22715.png,13075 +images-22716.png,13076 +images-22717.png,13077 +images-22718.png,13078 +images-22719.png,13079 +images-22720.png,13080 +images-22721.png,13081 +images-22722.png,13082 +images-22723.png,13083 +images-22724.png,13084 +images-22725.png,13085 +images-22726.png,13086 +images-22727.png,13087 +images-22728.png,13088 +images-22729.png,13089 +images-22730.png,13090 +images-22731.png,13091 +images-22732.png,13092 +images-22733.png,13093 +images-22734.png,13094 +images-22735.png,13095 +images-22736.png,13096 +images-22737.png,13097 +images-22738.png,13098 +images-22739.png,13099 +images-22740.png,13100 +images-22741.png,13101 +images-22742.png,13102 +images-22743.png,13103 +images-22744.png,13104 +images-22745.png,13105 +images-22746.png,13106 +images-22747.png,13107 +images-22748.png,13108 +images-22749.png,13109 +images-22750.png,13110 +images-22751.png,13111 +images-22752.png,13112 +images-22753.png,13113 +images-22754.png,13114 +images-22755.png,13115 +images-22756.png,13116 +images-22757.png,13117 +images-22758.png,13118 +images-22759.png,13119 +images-22760.png,13120 +images-22761.png,13121 +images-22762.png,13122 +images-22763.png,13123 +images-22764.png,13124 +images-22765.png,13125 +images-22766.png,13126 +images-22767.png,13127 +images-22768.png,13128 +images-22769.png,13129 +images-22770.png,13130 +images-22771.png,13131 +images-22772.png,13132 +images-22773.png,13133 +images-22774.png,13134 +images-22775.png,13135 +images-22776.png,13136 +images-22777.png,13137 +images-22778.png,13138 +images-22779.png,13139 +images-22780.png,13140 +images-22781.png,13141 +images-22782.png,13142 +images-22783.png,13143 +images-22784.png,13144 +images-22785.png,13145 +images-22786.png,13146 +images-22892.png,13147 +images-22893.png,13148 +images-22894.png,13149 +images-22895.png,13150 +images-22896.png,13151 +images-22897.png,13152 +images-22898.png,13153 +images-22899.png,13154 +images-22900.png,13155 +images-22901.png,13156 +images-22902.png,13157 +images-22903.png,13158 +images-22904.png,13159 +images-22905.png,13160 +images-22906.png,13161 +images-22907.png,13162 +images-22908.png,13163 +images-22909.png,13164 +images-22910.png,13165 +images-22911.png,13166 +images-22912.png,13167 +images-22913.png,13168 +images-22914.png,13169 +images-22915.png,13170 +images-22916.png,13171 +images-22917.png,13172 +images-22918.png,13173 +images-22919.png,13174 +images-22920.png,13175 +images-22921.png,13176 +images-22922.png,13177 +images-22923.png,13178 +images-22924.png,13179 +images-22925.png,13180 +images-22926.png,13181 +images-22927.png,13182 +images-22928.png,13183 +images-22929.png,13184 +images-22930.png,13185 +images-22931.png,13186 +images-22932.png,13187 +images-22933.png,13188 +images-22934.png,13189 +images-22935.png,13190 +images-22936.png,13191 +images-22937.png,13192 +images-22938.png,13193 +images-22939.png,13194 +images-22940.png,13195 +images-22941.png,13196 +images-22942.png,13197 +images-22943.png,13198 +images-22950.png,13199 +images-22951.png,13200 +images-22952.png,13201 +images-22953.png,13202 +images-22954.png,13203 +images-22955.png,13204 +images-22956.png,13205 +images-22957.png,13206 +images-22958.png,13207 +images-22959.png,13208 +images-22960.png,13209 +images-22961.png,13210 +images-22962.png,13211 +images-22963.png,13212 +images-22964.png,13213 +images-22965.png,13214 +images-22966.png,13215 +images-22967.png,13216 +images-22968.png,13217 +images-22969.png,13218 +images-22970.png,13219 +images-22971.png,13220 +images-22972.png,13221 +images-22973.png,13222 +images-22974.png,13223 +images-22975.png,13224 +images-22976.png,13225 +images-22977.png,13226 +images-22978.png,13227 +images-22979.png,13228 +images-22980.png,13229 +images-22981.png,13230 +images-22982.png,13231 +images-22983.png,13232 +images-22984.png,13233 +images-22985.png,13234 +images-22986.png,13235 +images-22987.png,13236 +images-22988.png,13237 +images-22989.png,13238 +images-22990.png,13239 +images-22991.png,13240 +images-22992.png,13241 +images-22993.png,13242 +images-22994.png,13243 +images-22995.png,13244 +images-22996.png,13245 +images-22997.png,13246 +images-22998.png,13247 +images-23004.png,13248 +images-23005.png,13249 +images-23006.png,13250 +images-23007.png,13251 +images-23008.png,13252 +images-23009.png,13253 +images-23010.png,13254 +images-23011.png,13255 +images-23012.png,13256 +images-23013.png,13257 +images-23014.png,13258 +images-23015.png,13259 +images-23016.png,13260 +images-23017.png,13261 +images-23018.png,13262 +images-23019.png,13263 +images-23020.png,13264 +images-23021.png,13265 +images-23022.png,13266 +images-23023.png,13267 +images-23024.png,13268 +images-23025.png,13269 +images-23029.png,13270 +images-23030.png,13271 +images-23031.png,13272 +images-23032.png,13273 +images-23033.png,13274 +images-23034.png,13275 +images-23035.png,13276 +images-23036.png,13277 +images-23037.png,13278 +images-23038.png,13279 +images-23039.png,13280 +images-23040.png,13281 +images-23041.png,13282 +images-23042.png,13283 +images-23043.png,13284 +images-23044.png,13285 +images-23049.png,13286 +images-23050.png,13287 +images-23051.png,13288 +images-23052.png,13289 +images-23053.png,13290 +images-23054.png,13291 +images-23055.png,13292 +images-23056.png,13293 +images-23057.png,13294 +images-23058.png,13295 +images-23059.png,13296 +images-23060.png,13297 +images-23061.png,13298 +images-23062.png,13299 +images-23063.png,13300 +images-23064.png,13301 +images-23065.png,13302 +images-23066.png,13303 +images-23067.png,13304 +images-23068.png,13305 +images-23069.png,13306 +images-23070.png,13307 +images-23071.png,13308 +images-23072.png,13309 +images-23073.png,13310 +images-23074.png,13311 +images-23075.png,13312 +images-23076.png,13313 +images-23077.png,13314 +images-23078.png,13315 +images-23079.png,13316 +images-23080.png,13317 +images-23081.png,13318 +images-23082.png,13319 +images-23083.png,13320 +images-23084.png,13321 +images-23085.png,13322 +images-23086.png,13323 +images-23087.png,13324 +images-23088.png,13325 +images-23089.png,13326 +images-23090.png,13327 +images-23091.png,13328 +images-23092.png,13329 +images-23093.png,13330 +images-23094.png,13331 +images-23095.png,13332 +images-23096.png,13333 +images-23097.png,13334 +images-23098.png,13335 +images-23099.png,13336 +images-23100.png,13337 +images-23101.png,13338 +images-23102.png,13339 +images-23103.png,13340 +images-23104.png,13341 +images-23105.png,13342 +images-23106.png,13343 +images-23107.png,13344 +images-23108.png,13345 +images-23109.png,13346 +images-23110.png,13347 +images-23111.png,13348 +images-23112.png,13349 +images-23113.png,13350 +images-23114.png,13351 +images-23115.png,13352 +images-23116.png,13353 +images-23117.png,13354 +images-23118.png,13355 +images-23119.png,13356 +images-23120.png,13357 +images-23121.png,13358 +images-23122.png,13359 +images-23123.png,13360 +images-23124.png,13361 +images-23125.png,13362 +images-23126.png,13363 +images-23127.png,13364 +images-23128.png,13365 +images-23129.png,13366 +images-23130.png,13367 +images-23131.png,13368 +images-23132.png,13369 +images-23133.png,13370 +images-23134.png,13371 +images-23135.png,13372 +images-23136.png,13373 +images-23137.png,13374 +images-23138.png,13375 +images-23139.png,13376 +images-23140.png,13377 +images-23148.png,13378 +images-23149.png,13379 +images-23150.png,13380 +images-23151.png,13381 +images-23152.png,13382 +images-23153.png,13383 +images-23154.png,13384 +images-23155.png,13385 +images-23156.png,13386 +images-23157.png,13387 +images-23158.png,13388 +images-23159.png,13389 +images-23160.png,13390 +images-23161.png,13391 +images-23162.png,13392 +images-23163.png,13393 +images-23164.png,13394 +images-23165.png,13395 +images-23171.png,13396 +images-23172.png,13397 +images-23173.png,13398 +images-23174.png,13399 +images-23175.png,13400 +images-23176.png,13401 +images-23177.png,13402 +images-23178.png,13403 +images-23179.png,13404 +images-23180.png,13405 +images-23181.png,13406 +images-23182.png,13407 +images-23183.png,13408 +images-23184.png,13409 +images-23185.png,13410 +images-23186.png,13411 +images-23187.png,13412 +images-23188.png,13413 +images-23189.png,13414 +images-23190.png,13415 +images-23191.png,13416 +images-23192.png,13417 +images-23193.png,13418 +images-23194.png,13419 +images-23195.png,13420 +images-23196.png,13421 +images-23214.png,13422 +images-23215.png,13423 +images-23216.png,13424 +images-23217.png,13425 +images-23218.png,13426 +images-23219.png,13427 +images-23220.png,13428 +images-23221.png,13429 +images-23222.png,13430 +images-23223.png,13431 +images-23224.png,13432 +images-23225.png,13433 +images-23226.png,13434 +images-23227.png,13435 +images-23228.png,13436 +images-23229.png,13437 +images-23230.png,13438 +images-23231.png,13439 +images-23232.png,13440 +images-23233.png,13441 +images-23234.png,13442 +images-23235.png,13443 +images-23236.png,13444 +images-23237.png,13445 +images-23238.png,13446 +images-23239.png,13447 +images-23240.png,13448 +images-23241.png,13449 +images-23242.png,13450 +images-23243.png,13451 +images-23244.png,13452 +images-23245.png,13453 +images-23246.png,13454 +images-23247.png,13455 +images-23248.png,13456 +images-23249.png,13457 +images-23250.png,13458 +images-23251.png,13459 +images-23252.png,13460 +images-23253.png,13461 +images-23254.png,13462 +images-23255.png,13463 +images-23256.png,13464 +images-23257.png,13465 +images-23258.png,13466 +images-23259.png,13467 +images-23260.png,13468 +images-23261.png,13469 +images-23262.png,13470 +images-23263.png,13471 +images-23264.png,13472 +images-23265.png,13473 +images-23266.png,13474 +images-23267.png,13475 +images-23268.png,13476 +images-23269.png,13477 +images-23270.png,13478 +images-23271.png,13479 +images-23272.png,13480 +images-23273.png,13481 +images-23274.png,13482 +images-23275.png,13483 +images-23276.png,13484 +images-23277.png,13485 +images-23278.png,13486 +images-23279.png,13487 +images-23280.png,13488 +images-23281.png,13489 +images-23282.png,13490 +images-23283.png,13491 +images-23284.png,13492 +images-23285.png,13493 +images-23286.png,13494 +images-23287.png,13495 +images-23288.png,13496 +images-23289.png,13497 +images-23290.png,13498 +images-23291.png,13499 +images-23292.png,13500 +images-23293.png,13501 +images-23294.png,13502 +images-23295.png,13503 +images-23296.png,13504 +images-23297.png,13505 +images-23298.png,13506 +images-23299.png,13507 +images-23300.png,13508 +images-23301.png,13509 +images-23302.png,13510 +images-23303.png,13511 +images-23304.png,13512 +images-23305.png,13513 +images-23306.png,13514 +images-23307.png,13515 +images-23308.png,13516 +images-23309.png,13517 +images-23310.png,13518 +images-23311.png,13519 +images-23312.png,13520 +images-23313.png,13521 +images-23314.png,13522 +images-23315.png,13523 +images-23316.png,13524 +images-23317.png,13525 +images-23318.png,13526 +images-23319.png,13527 +images-23320.png,13528 +images-23321.png,13529 +images-23322.png,13530 +images-23323.png,13531 +images-23324.png,13532 +images-23325.png,13533 +images-23326.png,13534 +images-23327.png,13535 +images-23328.png,13536 +images-23329.png,13537 +images-23330.png,13538 +images-23331.png,13539 +images-23332.png,13540 +images-23333.png,13541 +images-23334.png,13542 +images-23335.png,13543 +images-23336.png,13544 +images-23337.png,13545 +images-23338.png,13546 +images-23339.png,13547 +images-23340.png,13548 +images-23341.png,13549 +images-23342.png,13550 +images-23343.png,13551 +images-23344.png,13552 +images-23345.png,13553 +images-23346.png,13554 +images-23347.png,13555 +images-23348.png,13556 +images-23349.png,13557 +images-23350.png,13558 +images-23351.png,13559 +images-23352.png,13560 +images-23353.png,13561 +images-23354.png,13562 +images-23355.png,13563 +images-23356.png,13564 +images-23357.png,13565 +images-23358.png,13566 +images-23359.png,13567 +images-23360.png,13568 +images-23361.png,13569 +images-23362.png,13570 +images-23363.png,13571 +images-23364.png,13572 +images-23365.png,13573 +images-23366.png,13574 +images-23367.png,13575 +images-23368.png,13576 +images-23369.png,13577 +images-23370.png,13578 +images-23371.png,13579 +images-23372.png,13580 +images-23373.png,13581 +images-23374.png,13582 +images-23375.png,13583 +images-23376.png,13584 +images-23377.png,13585 +images-23378.png,13586 +images-23379.png,13587 +images-23380.png,13588 +images-23381.png,13589 +images-23382.png,13590 +images-23383.png,13591 +images-23384.png,13592 +images-23385.png,13593 +images-23386.png,13594 +images-23387.png,13595 +images-23388.png,13596 +images-23389.png,13597 +images-23390.png,13598 +images-23391.png,13599 +images-23392.png,13600 +images-23393.png,13601 +images-23394.png,13602 +images-23395.png,13603 +images-23396.png,13604 +images-23397.png,13605 +images-23398.png,13606 +images-23399.png,13607 +images-23400.png,13608 +images-23401.png,13609 +images-23407.png,13610 +images-23408.png,13611 +images-23409.png,13612 +images-23410.png,13613 +images-23411.png,13614 +images-23412.png,13615 +images-23413.png,13616 +images-23414.png,13617 +images-23415.png,13618 +images-23416.png,13619 +images-23417.png,13620 +images-23418.png,13621 +images-23419.png,13622 +images-23420.png,13623 +images-23421.png,13624 +images-23422.png,13625 +images-23423.png,13626 +images-23424.png,13627 +images-23425.png,13628 +images-23426.png,13629 +images-23427.png,13630 +images-23428.png,13631 +images-23429.png,13632 +images-23430.png,13633 +images-23431.png,13634 +images-23432.png,13635 +images-23433.png,13636 +images-23434.png,13637 +images-23435.png,13638 +images-23436.png,13639 +images-23437.png,13640 +images-23438.png,13641 +images-23439.png,13642 +images-23440.png,13643 +images-23441.png,13644 +images-23442.png,13645 +images-23443.png,13646 +images-23444.png,13647 +images-23445.png,13648 +images-23446.png,13649 +images-23447.png,13650 +images-23448.png,13651 +images-23449.png,13652 +images-23450.png,13653 +images-23451.png,13654 +images-23452.png,13655 +images-23453.png,13656 +images-23454.png,13657 +images-23455.png,13658 +images-23456.png,13659 +images-23457.png,13660 +images-23458.png,13661 +images-23459.png,13662 +images-23460.png,13663 +images-23461.png,13664 +images-23462.png,13665 +images-23463.png,13666 +images-23464.png,13667 +images-23465.png,13668 +images-23466.png,13669 +images-23467.png,13670 +images-23468.png,13671 +images-23469.png,13672 +images-23470.png,13673 +images-23471.png,13674 +images-23472.png,13675 +images-23473.png,13676 +images-23474.png,13677 +images-23475.png,13678 +images-23476.png,13679 +images-23477.png,13680 +images-23478.png,13681 +images-23479.png,13682 +images-23480.png,13683 +images-23481.png,13684 +images-23482.png,13685 +images-23483.png,13686 +images-23484.png,13687 +images-23485.png,13688 +images-23493.png,13689 +images-23494.png,13690 +images-23495.png,13691 +images-23503.png,13692 +images-23504.png,13693 +images-23505.png,13694 +images-23506.png,13695 +images-23507.png,13696 +images-23508.png,13697 +images-23509.png,13698 +images-23510.png,13699 +images-23511.png,13700 +images-23512.png,13701 +images-23513.png,13702 +images-23514.png,13703 +images-23515.png,13704 +images-23516.png,13705 +images-23517.png,13706 +images-23518.png,13707 +images-23534.png,13708 +images-23535.png,13709 +images-23536.png,13710 +images-23537.png,13711 +images-23538.png,13712 +images-23539.png,13713 +images-23540.png,13714 +images-23541.png,13715 +images-23542.png,13716 +images-23543.png,13717 +images-23544.png,13718 +images-23545.png,13719 +images-23546.png,13720 +images-23547.png,13721 +images-23548.png,13722 +images-23549.png,13723 +images-23550.png,13724 +images-23551.png,13725 +images-23552.png,13726 +images-23553.png,13727 +images-23554.png,13728 +images-23555.png,13729 +images-23556.png,13730 +images-23557.png,13731 +images-23558.png,13732 +images-23559.png,13733 +images-23560.png,13734 +images-23561.png,13735 +images-23562.png,13736 +images-23563.png,13737 +images-23564.png,13738 +images-23565.png,13739 +images-23566.png,13740 +images-23567.png,13741 +images-23568.png,13742 +images-23569.png,13743 +images-23570.png,13744 +images-23577.png,13745 +images-23578.png,13746 +images-23579.png,13747 +images-23580.png,13748 +images-23581.png,13749 +images-23582.png,13750 +images-23583.png,13751 +images-23584.png,13752 +images-23585.png,13753 +images-23586.png,13754 +images-23587.png,13755 +images-23588.png,13756 +images-23589.png,13757 +images-23590.png,13758 +images-23591.png,13759 +images-23592.png,13760 +images-23598.png,13761 +images-23599.png,13762 +images-23600.png,13763 +images-23601.png,13764 +images-23602.png,13765 +images-23603.png,13766 +images-23604.png,13767 +images-23605.png,13768 +images-23606.png,13769 +images-23607.png,13770 +images-23608.png,13771 +images-23609.png,13772 +images-23610.png,13773 +images-23611.png,13774 +images-23612.png,13775 +images-23613.png,13776 +images-23614.png,13777 +images-23615.png,13778 +images-23616.png,13779 +images-23617.png,13780 +images-23618.png,13781 +images-23619.png,13782 +images-23620.png,13783 +images-23621.png,13784 +images-23622.png,13785 +images-23623.png,13786 +images-23624.png,13787 +images-23625.png,13788 +images-23626.png,13789 +images-23627.png,13790 +images-23628.png,13791 +images-23629.png,13792 +images-23630.png,13793 +images-23631.png,13794 +images-23632.png,13795 +images-23633.png,13796 +images-23634.png,13797 +images-23635.png,13798 +images-23636.png,13799 +images-23637.png,13800 +images-23638.png,13801 +images-23639.png,13802 +images-23640.png,13803 +images-23641.png,13804 +images-23642.png,13805 +images-23643.png,13806 +images-23644.png,13807 +images-23645.png,13808 +images-23646.png,13809 +images-23647.png,13810 +images-23648.png,13811 +images-23649.png,13812 +images-23650.png,13813 +images-23651.png,13814 +images-23652.png,13815 +images-23653.png,13816 +images-23654.png,13817 +images-23655.png,13818 +images-23656.png,13819 +images-23657.png,13820 +images-23658.png,13821 +images-23659.png,13822 +images-23660.png,13823 +images-23661.png,13824 +images-23662.png,13825 +images-23663.png,13826 +images-23664.png,13827 +images-23665.png,13828 +images-23675.png,13829 +images-23676.png,13830 +images-23677.png,13831 +images-23678.png,13832 +images-23679.png,13833 +images-23680.png,13834 +images-23681.png,13835 +images-23682.png,13836 +images-23683.png,13837 +images-23684.png,13838 +images-23685.png,13839 +images-23686.png,13840 +images-23687.png,13841 +images-23688.png,13842 +images-23689.png,13843 +images-23690.png,13844 +images-23703.png,13845 +images-23704.png,13846 +images-23705.png,13847 +images-23706.png,13848 +images-23711.png,13849 +images-23712.png,13850 +images-23713.png,13851 +images-23714.png,13852 +images-23715.png,13853 +images-23716.png,13854 +images-23717.png,13855 +images-23718.png,13856 +images-23719.png,13857 +images-23720.png,13858 +images-23721.png,13859 +images-23722.png,13860 +images-23723.png,13861 +images-23724.png,13862 +images-23725.png,13863 +images-23726.png,13864 +images-23727.png,13865 +images-23728.png,13866 +images-23729.png,13867 +images-23730.png,13868 +images-23731.png,13869 +images-23732.png,13870 +images-23733.png,13871 +images-23734.png,13872 +images-23735.png,13873 +images-23736.png,13874 +images-23737.png,13875 +images-23738.png,13876 +images-23739.png,13877 +images-23740.png,13878 +images-23741.png,13879 +images-23742.png,13880 +images-23743.png,13881 +images-23744.png,13882 +images-23745.png,13883 +images-23746.png,13884 +images-23747.png,13885 +images-23748.png,13886 +images-23749.png,13887 +images-23750.png,13888 +images-23751.png,13889 +images-23752.png,13890 +images-23753.png,13891 +images-23754.png,13892 +images-23755.png,13893 +images-23756.png,13894 +images-23757.png,13895 +images-23758.png,13896 +images-23759.png,13897 +images-23760.png,13898 +images-23761.png,13899 +images-23762.png,13900 +images-23763.png,13901 +images-23764.png,13902 +images-23765.png,13903 +images-23766.png,13904 +images-23767.png,13905 +images-23768.png,13906 +images-23769.png,13907 +images-23770.png,13908 +images-23771.png,13909 +images-23772.png,13910 +images-23773.png,13911 +images-23774.png,13912 +images-23775.png,13913 +images-23776.png,13914 +images-23777.png,13915 +images-23778.png,13916 +images-23779.png,13917 +images-23780.png,13918 +images-23781.png,13919 +images-23782.png,13920 +images-23783.png,13921 +images-23784.png,13922 +images-23785.png,13923 +images-23786.png,13924 +images-23787.png,13925 +images-23788.png,13926 +images-23789.png,13927 +images-23790.png,13928 +images-23791.png,13929 +images-23792.png,13930 +images-23793.png,13931 +images-23794.png,13932 +images-23795.png,13933 +images-23796.png,13934 +images-23797.png,13935 +images-23798.png,13936 +images-23799.png,13937 +images-23800.png,13938 +images-23801.png,13939 +images-23802.png,13940 +images-23803.png,13941 +images-23804.png,13942 +images-23805.png,13943 +images-23806.png,13944 +images-23807.png,13945 +images-23808.png,13946 +images-23809.png,13947 +images-23810.png,13948 +images-23811.png,13949 +images-23812.png,13950 +images-23813.png,13951 +images-23814.png,13952 +images-23815.png,13953 +images-23816.png,13954 +images-23817.png,13955 +images-23818.png,13956 +images-23819.png,13957 +images-23820.png,13958 +images-23821.png,13959 +images-23822.png,13960 +images-23823.png,13961 +images-23824.png,13962 +images-23825.png,13963 +images-23826.png,13964 +images-23827.png,13965 +images-23828.png,13966 +images-23829.png,13967 +images-23830.png,13968 +images-23831.png,13969 +images-23832.png,13970 +images-23833.png,13971 +images-23834.png,13972 +images-23835.png,13973 +images-23836.png,13974 +images-23837.png,13975 +images-23838.png,13976 +images-23839.png,13977 +images-23840.png,13978 +images-23841.png,13979 +images-23855.png,13980 +images-23856.png,13981 +images-23857.png,13982 +images-23858.png,13983 +images-23859.png,13984 +images-23860.png,13985 +images-23861.png,13986 +images-23862.png,13987 +images-23863.png,13988 +images-23864.png,13989 +images-23865.png,13990 +images-23866.png,13991 +images-23867.png,13992 +images-23868.png,13993 +images-23869.png,13994 +images-23870.png,13995 +images-23871.png,13996 +images-23872.png,13997 +images-23873.png,13998 +images-23874.png,13999 +images-23875.png,14000 +images-23876.png,14001 +images-23877.png,14002 +images-23878.png,14003 +images-23879.png,14004 +images-23880.png,14005 +images-23881.png,14006 +images-23882.png,14007 +images-23883.png,14008 +images-23884.png,14009 +images-23885.png,14010 +images-23886.png,14011 +images-23887.png,14012 +images-23888.png,14013 +images-23889.png,14014 +images-23890.png,14015 +images-23891.png,14016 +images-23892.png,14017 +images-23893.png,14018 +images-23894.png,14019 +images-23895.png,14020 +images-23896.png,14021 +images-23897.png,14022 +images-23898.png,14023 +images-23899.png,14024 +images-23900.png,14025 +images-23901.png,14026 +images-23902.png,14027 +images-23903.png,14028 +images-23904.png,14029 +images-23905.png,14030 +images-23906.png,14031 +images-23907.png,14032 +images-23908.png,14033 +images-23909.png,14034 +images-23910.png,14035 +images-23911.png,14036 +images-23912.png,14037 +images-23913.png,14038 +images-23914.png,14039 +images-23915.png,14040 +images-23916.png,14041 +images-23917.png,14042 +images-23918.png,14043 +images-23919.png,14044 +images-23920.png,14045 +images-23921.png,14046 +images-23922.png,14047 +images-23923.png,14048 +images-23924.png,14049 +images-23925.png,14050 +images-23926.png,14051 +images-23927.png,14052 +images-23928.png,14053 +images-23929.png,14054 +images-23930.png,14055 +images-23931.png,14056 +images-23932.png,14057 +images-23933.png,14058 +images-23934.png,14059 +images-23935.png,14060 +images-23936.png,14061 +images-23937.png,14062 +images-23938.png,14063 +images-23939.png,14064 +images-23940.png,14065 +images-23941.png,14066 +images-23942.png,14067 +images-23943.png,14068 +images-23944.png,14069 +images-23945.png,14070 +images-23946.png,14071 +images-23947.png,14072 +images-23948.png,14073 +images-23949.png,14074 +images-23955.png,14075 +images-23956.png,14076 +images-23957.png,14077 +images-23958.png,14078 +images-23959.png,14079 +images-23960.png,14080 +images-23961.png,14081 +images-23962.png,14082 +images-23963.png,14083 +images-23964.png,14084 +images-23965.png,14085 +images-23966.png,14086 +images-23967.png,14087 +images-23968.png,14088 +images-23969.png,14089 +images-23970.png,14090 +images-23971.png,14091 +images-23972.png,14092 +images-23973.png,14093 +images-23974.png,14094 +images-23975.png,14095 +images-23976.png,14096 +images-23977.png,14097 +images-23978.png,14098 +images-23979.png,14099 +images-23980.png,14100 +images-23981.png,14101 +images-23982.png,14102 +images-23983.png,14103 +images-23984.png,14104 +images-23985.png,14105 +images-23986.png,14106 +images-23987.png,14107 +images-23988.png,14108 +images-23989.png,14109 +images-23990.png,14110 +images-23991.png,14111 +images-23992.png,14112 +images-23993.png,14113 +images-23994.png,14114 +images-23995.png,14115 +images-23996.png,14116 +images-23997.png,14117 +images-23998.png,14118 +images-23999.png,14119 +images-24000.png,14120 +images-24001.png,14121 +images-24002.png,14122 +images-24003.png,14123 +images-24004.png,14124 +images-24005.png,14125 +images-24006.png,14126 +images-24007.png,14127 +images-24008.png,14128 +images-24009.png,14129 +images-24010.png,14130 +images-24011.png,14131 +images-24012.png,14132 +images-24013.png,14133 +images-24014.png,14134 +images-24015.png,14135 +images-24016.png,14136 +images-24017.png,14137 +images-24018.png,14138 +images-24019.png,14139 +images-24020.png,14140 +images-24021.png,14141 +images-24022.png,14142 +images-24023.png,14143 +images-24024.png,14144 +images-24025.png,14145 +images-24026.png,14146 +images-24027.png,14147 +images-24028.png,14148 +images-24029.png,14149 +images-24030.png,14150 +images-24031.png,14151 +images-24032.png,14152 +images-24033.png,14153 +images-24034.png,14154 +images-24035.png,14155 +images-24036.png,14156 +images-24037.png,14157 +images-24038.png,14158 +images-24039.png,14159 +images-24040.png,14160 +images-24041.png,14161 +images-24042.png,14162 +images-24043.png,14163 +images-24044.png,14164 +images-24045.png,14165 +images-24046.png,14166 +images-24047.png,14167 +images-24048.png,14168 +images-24049.png,14169 +images-24050.png,14170 +images-24051.png,14171 +images-24052.png,14172 +images-24053.png,14173 +images-24054.png,14174 +images-24055.png,14175 +images-24056.png,14176 +images-24057.png,14177 +images-24058.png,14178 +images-24059.png,14179 +images-24060.png,14180 +images-24061.png,14181 +images-24062.png,14182 +images-24063.png,14183 +images-24064.png,14184 +images-24065.png,14185 +images-24066.png,14186 +images-24067.png,14187 +images-24068.png,14188 +images-24069.png,14189 +images-24070.png,14190 +images-24071.png,14191 +images-24072.png,14192 +images-24073.png,14193 +images-24074.png,14194 +images-24075.png,14195 +images-24076.png,14196 +images-24077.png,14197 +images-24078.png,14198 +images-24079.png,14199 +images-24080.png,14200 +images-24081.png,14201 +images-24082.png,14202 +images-24083.png,14203 +images-24084.png,14204 +images-24085.png,14205 +images-24086.png,14206 +images-24087.png,14207 +images-24088.png,14208 +images-24089.png,14209 +images-24090.png,14210 +images-24091.png,14211 +images-24092.png,14212 +images-24093.png,14213 +images-24094.png,14214 +images-24095.png,14215 +images-24419.png,14216 +images-24420.png,14217 +images-24421.png,14218 +images-24422.png,14219 +images-24423.png,14220 +images-24424.png,14221 +images-24425.png,14222 +images-24426.png,14223 +images-24427.png,14224 +images-24428.png,14225 +images-24429.png,14226 +images-24430.png,14227 +images-24431.png,14228 +images-24432.png,14229 +images-24433.png,14230 +images-24434.png,14231 +images-24435.png,14232 +images-24436.png,14233 +images-24437.png,14234 +images-24438.png,14235 +images-24439.png,14236 +images-24440.png,14237 +images-24441.png,14238 +images-24442.png,14239 +images-24443.png,14240 +images-24444.png,14241 +images-24445.png,14242 +images-24446.png,14243 +images-24447.png,14244 +images-24448.png,14245 +images-24449.png,14246 +images-24450.png,14247 +images-24451.png,14248 +images-24452.png,14249 +images-24453.png,14250 +images-24454.png,14251 +images-24455.png,14252 +images-24456.png,14253 +images-24457.png,14254 +images-24458.png,14255 +images-24459.png,14256 +images-24460.png,14257 +images-24461.png,14258 +images-24462.png,14259 +images-24463.png,14260 +images-24464.png,14261 +images-24465.png,14262 +images-24466.png,14263 +images-24467.png,14264 +images-24468.png,14265 +images-24469.png,14266 +images-24470.png,14267 +images-24471.png,14268 +images-24472.png,14269 +images-24473.png,14270 +images-24474.png,14271 +images-24475.png,14272 +images-24476.png,14273 +images-24477.png,14274 +images-24478.png,14275 +images-24479.png,14276 +images-24480.png,14277 +images-24481.png,14278 +images-24482.png,14279 +images-24483.png,14280 +images-24484.png,14281 +images-24485.png,14282 +images-24486.png,14283 +images-24487.png,14284 +images-24488.png,14285 +images-24489.png,14286 +images-24490.png,14287 +images-24491.png,14288 +images-24492.png,14289 +images-24493.png,14290 +images-24494.png,14291 +images-24495.png,14292 +images-24496.png,14293 +images-24497.png,14294 +images-24498.png,14295 +images-24499.png,14296 +images-24500.png,14297 +images-24501.png,14298 +images-24502.png,14299 +images-24503.png,14300 +images-24504.png,14301 +images-24505.png,14302 +images-24506.png,14303 +images-24507.png,14304 +images-24508.png,14305 +images-24509.png,14306 +images-24510.png,14307 +images-24511.png,14308 +images-24512.png,14309 +images-24513.png,14310 +images-24514.png,14311 +images-24515.png,14312 +images-24516.png,14313 +images-24517.png,14314 +images-24518.png,14315 +images-24519.png,14316 +images-24520.png,14317 +images-24521.png,14318 +images-24522.png,14319 +images-24523.png,14320 +images-24524.png,14321 +images-24525.png,14322 +images-24526.png,14323 +images-24527.png,14324 +images-24528.png,14325 +images-24529.png,14326 +images-24530.png,14327 +images-24531.png,14328 +images-24532.png,14329 +images-24533.png,14330 +images-24534.png,14331 +images-24535.png,14332 +images-24536.png,14333 +images-24537.png,14334 +images-24538.png,14335 +images-24539.png,14336 +images-24540.png,14337 +images-24541.png,14338 +images-24542.png,14339 +images-24543.png,14340 +images-24544.png,14341 +images-24545.png,14342 +images-24546.png,14343 +images-24547.png,14344 +images-24548.png,14345 +images-24549.png,14346 +images-24550.png,14347 +images-24551.png,14348 +images-24552.png,14349 +images-24553.png,14350 +images-24554.png,14351 +images-24555.png,14352 +images-24556.png,14353 +images-24557.png,14354 +images-24558.png,14355 +images-24559.png,14356 +images-24560.png,14357 +images-24561.png,14358 +images-24562.png,14359 +images-24563.png,14360 +images-24564.png,14361 +images-24565.png,14362 +images-24566.png,14363 +images-24567.png,14364 +images-24568.png,14365 +images-24569.png,14366 +images-24570.png,14367 +images-24571.png,14368 +images-24572.png,14369 +images-24573.png,14370 +images-24574.png,14371 +images-24575.png,14372 +images-24576.png,14373 +images-24577.png,14374 +images-24578.png,14375 +images-24579.png,14376 +images-24580.png,14377 +images-24581.png,14378 +images-24582.png,14379 +images-24583.png,14380 +images-24584.png,14381 +images-24585.png,14382 +images-24586.png,14383 +images-24587.png,14384 +images-24588.png,14385 +images-24589.png,14386 +images-24590.png,14387 +images-24591.png,14388 +images-24592.png,14389 +images-24593.png,14390 +images-24594.png,14391 +images-24595.png,14392 +images-24596.png,14393 +images-24597.png,14394 +images-24598.png,14395 +images-24599.png,14396 +images-24600.png,14397 +images-24601.png,14398 +images-24602.png,14399 +images-24603.png,14400 +images-24604.png,14401 +images-24605.png,14402 +images-24606.png,14403 +images-24607.png,14404 +images-24608.png,14405 +images-24609.png,14406 +images-24610.png,14407 +images-24611.png,14408 +images-24612.png,14409 +images-24613.png,14410 +images-24614.png,14411 +images-24615.png,14412 +images-24616.png,14413 +images-24617.png,14414 +images-24618.png,14415 +images-24619.png,14416 +images-24620.png,14417 +images-24621.png,14418 +images-24622.png,14419 +images-24623.png,14420 +images-24624.png,14421 +images-24625.png,14422 +images-24626.png,14423 +images-24627.png,14424 +images-24628.png,14425 +images-24629.png,14426 +images-24630.png,14427 +images-24631.png,14428 +images-24632.png,14429 +images-24633.png,14430 +images-24634.png,14431 +images-24635.png,14432 +images-24636.png,14433 +images-24637.png,14434 +images-24638.png,14435 +images-24639.png,14436 +images-24640.png,14437 +images-24641.png,14438 +images-24642.png,14439 +images-24643.png,14440 +images-24644.png,14441 +images-24645.png,14442 +images-24646.png,14443 +images-24647.png,14444 +images-24648.png,14445 +images-24649.png,14446 +images-24650.png,14447 +images-24651.png,14448 +images-24652.png,14449 +images-24653.png,14450 +images-24654.png,14451 +images-24655.png,14452 +images-24656.png,14453 +images-24657.png,14454 +images-24658.png,14455 +images-24659.png,14456 +images-24660.png,14457 +images-24661.png,14458 +images-24662.png,14459 +images-24663.png,14460 +images-24664.png,14461 +images-24665.png,14462 +images-24666.png,14463 +images-24667.png,14464 +images-24668.png,14465 +images-24669.png,14466 +images-24670.png,14467 +images-24671.png,14468 +images-24672.png,14469 +images-24673.png,14470 +images-24674.png,14471 +images-24675.png,14472 +images-24676.png,14473 +images-24677.png,14474 +images-24678.png,14475 +images-24679.png,14476 +images-24680.png,14477 +images-24681.png,14478 +images-24682.png,14479 +images-24683.png,14480 +images-24684.png,14481 +images-24685.png,14482 +images-24686.png,14483 +images-24687.png,14484 +images-24688.png,14485 +images-24689.png,14486 +images-24690.png,14487 +images-24691.png,14488 +images-24692.png,14489 +images-24693.png,14490 +images-24694.png,14491 +images-24695.png,14492 +images-24696.png,14493 +images-24697.png,14494 +images-24698.png,14495 +images-24699.png,14496 +images-24700.png,14497 +images-24701.png,14498 +images-24702.png,14499 +images-24703.png,14500 +images-24704.png,14501 +images-24705.png,14502 +images-24706.png,14503 +images-24707.png,14504 +images-24708.png,14505 +images-24709.png,14506 +images-24710.png,14507 +images-24711.png,14508 +images-24712.png,14509 +images-24713.png,14510 +images-24714.png,14511 +images-24715.png,14512 +images-24716.png,14513 +images-24717.png,14514 +images-24718.png,14515 +images-24719.png,14516 +images-24720.png,14517 +images-24721.png,14518 +images-24722.png,14519 +images-24723.png,14520 +images-24724.png,14521 +images-24725.png,14522 +images-24726.png,14523 +images-24727.png,14524 +images-24728.png,14525 +images-24729.png,14526 +images-24730.png,14527 +images-24731.png,14528 +images-24732.png,14529 +images-24733.png,14530 +images-24734.png,14531 +images-24735.png,14532 +images-24736.png,14533 +images-24737.png,14534 +images-24738.png,14535 +images-24739.png,14536 +images-24740.png,14537 +images-24741.png,14538 +images-24742.png,14539 +images-24743.png,14540 +images-24744.png,14541 +images-24745.png,14542 +images-24746.png,14543 +images-24747.png,14544 +images-24748.png,14545 +images-24749.png,14546 +images-24750.png,14547 +images-24751.png,14548 +images-24752.png,14549 +images-24753.png,14550 +images-24754.png,14551 +images-24755.png,14552 +images-24756.png,14553 +images-24757.png,14554 +images-24758.png,14555 +images-24759.png,14556 +images-24760.png,14557 +images-24761.png,14558 +images-24762.png,14559 +images-24763.png,14560 +images-24764.png,14561 +images-24765.png,14562 +images-24766.png,14563 +images-24767.png,14564 +images-24768.png,14565 +images-24769.png,14566 +images-24770.png,14567 +images-24771.png,14568 +images-24772.png,14569 +images-24773.png,14570 +images-24774.png,14571 +images-24775.png,14572 +images-24776.png,14573 +images-24777.png,14574 +images-24778.png,14575 +images-24779.png,14576 +images-24780.png,14577 +images-24781.png,14578 +images-24782.png,14579 +images-24783.png,14580 +images-24784.png,14581 +images-24785.png,14582 +images-24786.png,14583 +images-24787.png,14584 +images-24788.png,14585 +images-24789.png,14586 +images-24790.png,14587 +images-24791.png,14588 +images-24792.png,14589 +images-24793.png,14590 +images-24794.png,14591 +images-24795.png,14592 +images-24796.png,14593 +images-24797.png,14594 +images-24798.png,14595 +images-24799.png,14596 +images-24800.png,14597 +images-24801.png,14598 +images-24802.png,14599 +images-24803.png,14600 +images-24804.png,14601 +images-24805.png,14602 +images-24806.png,14603 +images-24807.png,14604 +images-24808.png,14605 +images-24809.png,14606 +images-24810.png,14607 +images-24811.png,14608 +images-24812.png,14609 +images-24813.png,14610 +images-24814.png,14611 +images-24815.png,14612 +images-24816.png,14613 +images-24817.png,14614 +images-24818.png,14615 +images-24819.png,14616 +images-24820.png,14617 +images-24821.png,14618 +images-24822.png,14619 +images-24823.png,14620 +images-24824.png,14621 +images-24825.png,14622 +images-24826.png,14623 +images-24827.png,14624 +images-24828.png,14625 +images-24829.png,14626 +images-24830.png,14627 +images-24831.png,14628 +images-24832.png,14629 +images-24833.png,14630 +images-24834.png,14631 +images-24835.png,14632 +images-24836.png,14633 +images-24837.png,14634 +images-24838.png,14635 +images-24839.png,14636 +images-24840.png,14637 +images-24841.png,14638 +images-24842.png,14639 +images-24843.png,14640 +images-24844.png,14641 +images-24845.png,14642 +images-24846.png,14643 +images-24847.png,14644 +images-24848.png,14645 +images-24849.png,14646 +images-24850.png,14647 +images-24851.png,14648 +images-24852.png,14649 +images-24853.png,14650 +images-24854.png,14651 +images-24855.png,14652 +images-24856.png,14653 +images-24857.png,14654 +images-24858.png,14655 +images-24859.png,14656 +images-24860.png,14657 +images-24861.png,14658 +images-24862.png,14659 +images-24863.png,14660 +images-24864.png,14661 +images-24865.png,14662 +images-24866.png,14663 +images-24867.png,14664 +images-24868.png,14665 +images-24869.png,14666 +images-24870.png,14667 +images-24871.png,14668 +images-24872.png,14669 +images-24873.png,14670 +images-24874.png,14671 +images-24875.png,14672 +images-24876.png,14673 +images-24877.png,14674 +images-24878.png,14675 +images-24879.png,14676 +images-24880.png,14677 +images-24881.png,14678 +images-24882.png,14679 +images-24883.png,14680 +images-24884.png,14681 +images-24885.png,14682 +images-24886.png,14683 +images-24887.png,14684 +images-24888.png,14685 +images-24889.png,14686 +images-24890.png,14687 +images-24891.png,14688 +images-24892.png,14689 +images-24893.png,14690 +images-24894.png,14691 +images-24895.png,14692 +images-24896.png,14693 +images-24897.png,14694 +images-24898.png,14695 +images-24899.png,14696 +images-24900.png,14697 +images-24901.png,14698 +images-24902.png,14699 +images-24903.png,14700 +images-24904.png,14701 +images-24905.png,14702 +images-24906.png,14703 +images-24907.png,14704 +images-24908.png,14705 +images-24909.png,14706 +images-24910.png,14707 +images-24911.png,14708 +images-24912.png,14709 +images-24913.png,14710 +images-24914.png,14711 +images-24915.png,14712 +images-24916.png,14713 +images-24917.png,14714 +images-24918.png,14715 +images-24919.png,14716 +images-24920.png,14717 +images-24921.png,14718 +images-24922.png,14719 +images-24923.png,14720 +images-24924.png,14721 +images-24925.png,14722 +images-24926.png,14723 +images-24927.png,14724 +images-24928.png,14725 +images-24929.png,14726 +images-24930.png,14727 +images-24931.png,14728 +images-24932.png,14729 +images-24933.png,14730 +images-24934.png,14731 +images-24935.png,14732 +images-24936.png,14733 +images-24937.png,14734 +images-24938.png,14735 +images-24939.png,14736 +images-24940.png,14737 +images-24941.png,14738 +images-24942.png,14739 +images-24943.png,14740 +images-24944.png,14741 +images-24945.png,14742 +images-24946.png,14743 +images-24947.png,14744 +images-24948.png,14745 +images-24949.png,14746 +images-24950.png,14747 +images-24951.png,14748 +images-24952.png,14749 +images-24953.png,14750 +images-24954.png,14751 +images-24955.png,14752 +images-24956.png,14753 +images-24957.png,14754 +images-24958.png,14755 +images-24959.png,14756 +images-24960.png,14757 +images-24961.png,14758 +images-24962.png,14759 +images-24963.png,14760 +images-24964.png,14761 +images-24965.png,14762 +images-24966.png,14763 +images-24967.png,14764 +images-24968.png,14765 +images-24969.png,14766 +images-24970.png,14767 +images-24971.png,14768 +images-24972.png,14769 +images-24973.png,14770 +images-24974.png,14771 +images-24975.png,14772 +images-24976.png,14773 +images-24977.png,14774 +images-24978.png,14775 +images-24979.png,14776 +images-24980.png,14777 +images-24981.png,14778 +images-24982.png,14779 +images-24983.png,14780 +images-24984.png,14781 +images-24985.png,14782 +images-24986.png,14783 +images-24987.png,14784 +images-24997.png,14785 +images-24998.png,14786 +images-24999.png,14787 +images-25000.png,14788 +images-25001.png,14789 +images-25002.png,14790 +images-25003.png,14791 +images-25030.png,14792 +images-25031.png,14793 +images-25032.png,14794 +images-25033.png,14795 +images-25034.png,14796 +images-25035.png,14797 +images-25036.png,14798 +images-25044.png,14799 +images-25045.png,14800 +images-25046.png,14801 +images-25047.png,14802 +images-25048.png,14803 +images-25049.png,14804 +images-25050.png,14805 +images-25051.png,14806 +images-25052.png,14807 +images-25053.png,14808 +images-25054.png,14809 +images-25055.png,14810 +images-25056.png,14811 +images-25057.png,14812 +images-25058.png,14813 +images-25059.png,14814 +images-25060.png,14815 +images-25061.png,14816 +images-25062.png,14817 +images-25063.png,14818 +images-25064.png,14819 +images-25065.png,14820 +images-25066.png,14821 +images-25067.png,14822 +images-25068.png,14823 +images-25069.png,14824 +images-25070.png,14825 +images-25071.png,14826 +images-25072.png,14827 +images-25073.png,14828 +images-25074.png,14829 +images-25075.png,14830 +images-25076.png,14831 +images-25077.png,14832 +images-25078.png,14833 +images-25079.png,14834 +images-25080.png,14835 +images-25081.png,14836 +images-25082.png,14837 +images-25083.png,14838 +images-25084.png,14839 +images-25085.png,14840 +images-25086.png,14841 +images-25087.png,14842 +images-25088.png,14843 +images-25089.png,14844 +images-25090.png,14845 +images-25091.png,14846 +images-25092.png,14847 +images-25093.png,14848 +images-25094.png,14849 +images-25095.png,14850 +images-25096.png,14851 +images-25097.png,14852 +images-25098.png,14853 +images-25099.png,14854 +images-25100.png,14855 +images-25101.png,14856 +images-25102.png,14857 +images-25103.png,14858 +images-25104.png,14859 +images-25105.png,14860 +images-25106.png,14861 +images-25107.png,14862 +images-25108.png,14863 +images-25109.png,14864 +images-25110.png,14865 +images-25111.png,14866 +images-25112.png,14867 +images-25113.png,14868 +images-25114.png,14869 +images-25115.png,14870 +images-25116.png,14871 +images-25117.png,14872 +images-25118.png,14873 +images-25119.png,14874 +images-25120.png,14875 +images-25121.png,14876 +images-25122.png,14877 +images-25123.png,14878 +images-25124.png,14879 +images-25125.png,14880 +images-25126.png,14881 +images-25127.png,14882 +images-25128.png,14883 +images-25129.png,14884 +images-25130.png,14885 +images-25131.png,14886 +images-25132.png,14887 +images-25133.png,14888 +images-25134.png,14889 +images-25135.png,14890 +images-25136.png,14891 +images-25137.png,14892 +images-25138.png,14893 +images-25139.png,14894 +images-25140.png,14895 +images-25141.png,14896 +images-25142.png,14897 +images-25143.png,14898 +images-25144.png,14899 +images-25145.png,14900 +images-25146.png,14901 +images-25147.png,14902 +images-25148.png,14903 +images-25149.png,14904 +images-25150.png,14905 +images-25151.png,14906 +images-25152.png,14907 +images-25153.png,14908 +images-25154.png,14909 +images-25155.png,14910 +images-25156.png,14911 +images-25157.png,14912 +images-25158.png,14913 +images-25159.png,14914 +images-25160.png,14915 +images-25161.png,14916 +images-25162.png,14917 +images-25163.png,14918 +images-25164.png,14919 +images-25165.png,14920 +images-25166.png,14921 +images-25167.png,14922 +images-25168.png,14923 +images-25169.png,14924 +images-25170.png,14925 +images-25171.png,14926 +images-25172.png,14927 +images-25173.png,14928 +images-25174.png,14929 +images-25175.png,14930 +images-25176.png,14931 +images-25177.png,14932 +images-25178.png,14933 +images-25179.png,14934 +images-25180.png,14935 +images-25181.png,14936 +images-25182.png,14937 +images-25183.png,14938 +images-25184.png,14939 +images-25185.png,14940 +images-25186.png,14941 +images-25187.png,14942 +images-25188.png,14943 +images-25189.png,14944 +images-25190.png,14945 +images-25191.png,14946 +images-25192.png,14947 +images-25193.png,14948 +images-25194.png,14949 +images-25195.png,14950 +images-25196.png,14951 +images-25197.png,14952 +images-25198.png,14953 +images-25199.png,14954 +images-25200.png,14955 +images-25201.png,14956 +images-25202.png,14957 +images-25203.png,14958 +images-25204.png,14959 +images-25205.png,14960 +images-25206.png,14961 +images-25207.png,14962 +images-25208.png,14963 +images-25209.png,14964 +images-25210.png,14965 +images-25211.png,14966 +images-25212.png,14967 +images-25213.png,14968 +images-25214.png,14969 +images-25215.png,14970 +images-25216.png,14971 +images-25217.png,14972 +images-25218.png,14973 +images-25219.png,14974 +images-25220.png,14975 +images-25221.png,14976 +images-25222.png,14977 +images-25223.png,14978 +images-25224.png,14979 +images-25225.png,14980 +images-25226.png,14981 +images-25227.png,14982 +images-25228.png,14983 +images-25229.png,14984 +images-25230.png,14985 +images-25231.png,14986 +images-25232.png,14987 +images-25233.png,14988 +images-25234.png,14989 +images-25235.png,14990 +images-25236.png,14991 +images-25237.png,14992 +images-25238.png,14993 +images-25239.png,14994 +images-25240.png,14995 +images-25241.png,14996 +images-25242.png,14997 +images-25243.png,14998 +images-25244.png,14999 +images-25245.png,15000 +images-25246.png,15001 +images-25247.png,15002 +images-25248.png,15003 +images-25249.png,15004 +images-25250.png,15005 +images-25251.png,15006 +images-25252.png,15007 +images-25253.png,15008 +images-25254.png,15009 +images-25255.png,15010 +images-25320.png,15011 +images-25321.png,15012 +images-25322.png,15013 +images-25323.png,15014 +images-25324.png,15015 +images-25325.png,15016 +images-25326.png,15017 +images-25327.png,15018 +images-25328.png,15019 +images-25329.png,15020 +images-25330.png,15021 +images-25331.png,15022 +images-25332.png,15023 +images-25333.png,15024 +images-25334.png,15025 +images-25335.png,15026 +images-25336.png,15027 +images-25337.png,15028 +images-25338.png,15029 +images-25339.png,15030 +images-25340.png,15031 +images-25341.png,15032 +images-25342.png,15033 +images-25343.png,15034 +images-25344.png,15035 +images-25345.png,15036 +images-25346.png,15037 +images-25347.png,15038 +images-25348.png,15039 +images-25349.png,15040 +images-25350.png,15041 +images-25351.png,15042 +images-25352.png,15043 +images-25353.png,15044 +images-25354.png,15045 +images-25355.png,15046 +images-25356.png,15047 +images-25357.png,15048 +images-25358.png,15049 +images-25359.png,15050 +images-25360.png,15051 +images-25361.png,15052 +images-25362.png,15053 +images-25363.png,15054 +images-25364.png,15055 +images-25365.png,15056 +images-25366.png,15057 +images-25367.png,15058 +images-25368.png,15059 +images-25369.png,15060 +images-25370.png,15061 +images-25371.png,15062 +images-25372.png,15063 +images-25380.png,15064 +images-25381.png,15065 +images-25382.png,15066 +images-25383.png,15067 +images-25384.png,15068 +images-25385.png,15069 +images-25386.png,15070 +images-25387.png,15071 +images-25388.png,15072 +images-25389.png,15073 +images-25390.png,15074 +images-25391.png,15075 +images-25392.png,15076 +images-25393.png,15077 +images-25394.png,15078 +images-25395.png,15079 +images-25396.png,15080 +images-25397.png,15081 +images-25406.png,15082 +images-25407.png,15083 +images-25408.png,15084 +images-25409.png,15085 +images-25410.png,15086 +images-25411.png,15087 +images-25412.png,15088 +images-25413.png,15089 +images-25414.png,15090 +images-25415.png,15091 +images-25416.png,15092 +images-25417.png,15093 +images-25418.png,15094 +images-25419.png,15095 +images-25420.png,15096 +images-25421.png,15097 +images-25422.png,15098 +images-25423.png,15099 +images-25424.png,15100 +images-25425.png,15101 +images-25426.png,15102 +images-25427.png,15103 +images-25428.png,15104 +images-25429.png,15105 +images-25430.png,15106 +images-25431.png,15107 +images-25432.png,15108 +images-25433.png,15109 +images-25434.png,15110 +images-25435.png,15111 +images-25436.png,15112 +images-25437.png,15113 +images-25438.png,15114 +images-25439.png,15115 +images-25440.png,15116 +images-25441.png,15117 +images-25442.png,15118 +images-25443.png,15119 +images-25444.png,15120 +images-25445.png,15121 +images-25446.png,15122 +images-25447.png,15123 +images-25448.png,15124 +images-25449.png,15125 +images-25450.png,15126 +images-25451.png,15127 +images-25452.png,15128 +images-25453.png,15129 +images-25454.png,15130 +images-25455.png,15131 +images-25456.png,15132 +images-25457.png,15133 +images-25458.png,15134 +images-25459.png,15135 +images-25460.png,15136 +images-25461.png,15137 +images-25462.png,15138 +images-25463.png,15139 +images-25464.png,15140 +images-25465.png,15141 +images-25466.png,15142 +images-25467.png,15143 +images-25468.png,15144 +images-25469.png,15145 +images-25470.png,15146 +images-25471.png,15147 +images-25472.png,15148 +images-25473.png,15149 +images-25474.png,15150 +images-25475.png,15151 +images-25476.png,15152 +images-25477.png,15153 +images-25478.png,15154 +images-25479.png,15155 +images-25480.png,15156 +images-25481.png,15157 +images-25482.png,15158 +images-25483.png,15159 +images-25484.png,15160 +images-25485.png,15161 +images-25486.png,15162 +images-25487.png,15163 +images-25488.png,15164 +images-25489.png,15165 +images-25490.png,15166 +images-25491.png,15167 +images-25492.png,15168 +images-25493.png,15169 +images-25494.png,15170 +images-25495.png,15171 +images-25496.png,15172 +images-25497.png,15173 +images-25498.png,15174 +images-25499.png,15175 +images-25500.png,15176 +images-25501.png,15177 +images-25502.png,15178 +images-25503.png,15179 +images-25504.png,15180 +images-25505.png,15181 +images-25506.png,15182 +images-25521.png,15183 +images-25522.png,15184 +images-25523.png,15185 +images-25524.png,15186 +images-25525.png,15187 +images-25526.png,15188 +images-25527.png,15189 +images-25528.png,15190 +images-25529.png,15191 +images-25530.png,15192 +images-25531.png,15193 +images-25532.png,15194 +images-25533.png,15195 +images-25534.png,15196 +images-25535.png,15197 +images-25536.png,15198 +images-25537.png,15199 +images-25538.png,15200 +images-25539.png,15201 +images-25540.png,15202 +images-25541.png,15203 +images-25542.png,15204 +images-25543.png,15205 +images-25544.png,15206 +images-25545.png,15207 +images-25546.png,15208 +images-25547.png,15209 +images-25548.png,15210 +images-25549.png,15211 +images-25550.png,15212 +images-25551.png,15213 +images-25552.png,15214 +images-25553.png,15215 +images-25554.png,15216 +images-25555.png,15217 +images-25556.png,15218 +images-25557.png,15219 +images-25558.png,15220 +images-25559.png,15221 +images-25560.png,15222 +images-25561.png,15223 +images-25562.png,15224 +images-25563.png,15225 +images-25564.png,15226 +images-25565.png,15227 +images-25566.png,15228 +images-25567.png,15229 +images-25568.png,15230 +images-25569.png,15231 +images-25570.png,15232 +images-25571.png,15233 +images-25572.png,15234 +images-25573.png,15235 +images-25574.png,15236 +images-25575.png,15237 +images-25576.png,15238 +images-25577.png,15239 +images-25578.png,15240 +images-25579.png,15241 +images-25580.png,15242 +images-25581.png,15243 +images-25582.png,15244 +images-25583.png,15245 +images-25584.png,15246 +images-25585.png,15247 +images-25586.png,15248 +images-25587.png,15249 +images-25588.png,15250 +images-25589.png,15251 +images-25590.png,15252 +images-25591.png,15253 +images-25592.png,15254 +images-25593.png,15255 +images-25594.png,15256 +images-25595.png,15257 +images-25596.png,15258 +images-25597.png,15259 +images-25598.png,15260 +images-25599.png,15261 +images-25600.png,15262 +images-25601.png,15263 +images-25602.png,15264 +images-25603.png,15265 +images-25604.png,15266 +images-25605.png,15267 +images-25606.png,15268 +images-25607.png,15269 +images-25608.png,15270 +images-25609.png,15271 +images-25610.png,15272 +images-25611.png,15273 +images-25612.png,15274 +images-25613.png,15275 +images-25614.png,15276 +images-25615.png,15277 +images-25616.png,15278 +images-25617.png,15279 +images-25618.png,15280 +images-25619.png,15281 +images-25620.png,15282 +images-25621.png,15283 +images-25622.png,15284 +images-25623.png,15285 +images-25624.png,15286 +images-25625.png,15287 +images-25626.png,15288 +images-25627.png,15289 +images-25628.png,15290 +images-25629.png,15291 +images-25630.png,15292 +images-25631.png,15293 +images-25632.png,15294 +images-25633.png,15295 +images-25634.png,15296 +images-25635.png,15297 +images-25636.png,15298 +images-25637.png,15299 +images-25638.png,15300 +images-25639.png,15301 +images-25640.png,15302 +images-25641.png,15303 +images-25642.png,15304 +images-25643.png,15305 +images-25644.png,15306 +images-25645.png,15307 +images-25646.png,15308 +images-25647.png,15309 +images-25648.png,15310 +images-25649.png,15311 +images-25650.png,15312 +images-25651.png,15313 +images-25652.png,15314 +images-25653.png,15315 +images-25654.png,15316 +images-25655.png,15317 +images-25656.png,15318 +images-25657.png,15319 +images-25658.png,15320 +images-25659.png,15321 +images-25660.png,15322 +images-25661.png,15323 +images-25662.png,15324 +images-25663.png,15325 +images-25664.png,15326 +images-25665.png,15327 +images-25666.png,15328 +images-25667.png,15329 +images-25668.png,15330 +images-25669.png,15331 +images-25670.png,15332 +images-25671.png,15333 +images-25672.png,15334 +images-25673.png,15335 +images-25674.png,15336 +images-25675.png,15337 +images-25676.png,15338 +images-25677.png,15339 +images-25678.png,15340 +images-25679.png,15341 +images-25680.png,15342 +images-25681.png,15343 +images-25682.png,15344 +images-25683.png,15345 +images-25684.png,15346 +images-25685.png,15347 +images-25686.png,15348 +images-25687.png,15349 +images-25688.png,15350 +images-25689.png,15351 +images-25690.png,15352 +images-25691.png,15353 +images-25692.png,15354 +images-25693.png,15355 +images-25694.png,15356 +images-25695.png,15357 +images-25696.png,15358 +images-25697.png,15359 +images-25698.png,15360 +images-25699.png,15361 +images-25700.png,15362 +images-25701.png,15363 +images-25702.png,15364 +images-25703.png,15365 +images-25704.png,15366 +images-25705.png,15367 +images-25706.png,15368 +images-25707.png,15369 +images-25708.png,15370 +images-25709.png,15371 +images-25710.png,15372 +images-25711.png,15373 +images-25712.png,15374 +images-25713.png,15375 +images-25714.png,15376 +images-25715.png,15377 +images-25716.png,15378 +images-25717.png,15379 +images-25718.png,15380 +images-25719.png,15381 +images-25720.png,15382 +images-25721.png,15383 +images-25722.png,15384 +images-25723.png,15385 +images-25724.png,15386 +images-25725.png,15387 +images-25726.png,15388 +images-25727.png,15389 +images-25728.png,15390 +images-25729.png,15391 +images-25730.png,15392 +images-25731.png,15393 +images-25732.png,15394 +images-25733.png,15395 +images-25734.png,15396 +images-25735.png,15397 +images-25736.png,15398 +images-25737.png,15399 +images-25738.png,15400 +images-25739.png,15401 +images-25740.png,15402 +images-25741.png,15403 +images-25742.png,15404 +images-25743.png,15405 +images-25744.png,15406 +images-25745.png,15407 +images-25746.png,15408 +images-25747.png,15409 +images-25748.png,15410 +images-25749.png,15411 +images-25750.png,15412 +images-25751.png,15413 +images-25752.png,15414 +images-25753.png,15415 +images-25754.png,15416 +images-25755.png,15417 +images-25756.png,15418 +images-25757.png,15419 +images-25758.png,15420 +images-25759.png,15421 +images-25760.png,15422 +images-25761.png,15423 +images-25762.png,15424 +images-25763.png,15425 +images-25764.png,15426 +images-25765.png,15427 +images-25766.png,15428 +images-25767.png,15429 +images-25768.png,15430 +images-25769.png,15431 +images-25770.png,15432 +images-25771.png,15433 +images-25772.png,15434 +images-25773.png,15435 +images-25774.png,15436 +images-25775.png,15437 +images-25776.png,15438 +images-25777.png,15439 +images-25778.png,15440 +images-25779.png,15441 +images-25780.png,15442 +images-25781.png,15443 +images-25782.png,15444 +images-25783.png,15445 +images-25784.png,15446 +images-25785.png,15447 +images-25786.png,15448 +images-25787.png,15449 +images-25788.png,15450 +images-25789.png,15451 +images-25790.png,15452 +images-25791.png,15453 +images-25792.png,15454 +images-25793.png,15455 +images-25794.png,15456 +images-25795.png,15457 +images-25796.png,15458 +images-25797.png,15459 +images-25798.png,15460 +images-25799.png,15461 +images-25800.png,15462 +images-25801.png,15463 +images-25802.png,15464 +images-25803.png,15465 +images-25804.png,15466 +images-25805.png,15467 +images-25806.png,15468 +images-25807.png,15469 +images-25808.png,15470 +images-25809.png,15471 +images-25810.png,15472 +images-25811.png,15473 +images-25812.png,15474 +images-25813.png,15475 +images-25814.png,15476 +images-25815.png,15477 +images-25816.png,15478 +images-25817.png,15479 +images-25818.png,15480 +images-25819.png,15481 +images-25820.png,15482 +images-25821.png,15483 +images-25822.png,15484 +images-25823.png,15485 +images-25824.png,15486 +images-25846.png,15487 +images-25847.png,15488 +images-25848.png,15489 +images-25849.png,15490 +images-25850.png,15491 +images-25851.png,15492 +images-25852.png,15493 +images-25853.png,15494 +images-25854.png,15495 +images-25855.png,15496 +images-25856.png,15497 +images-25857.png,15498 +images-25858.png,15499 +images-25859.png,15500 +images-25860.png,15501 +images-25861.png,15502 +images-25862.png,15503 +images-25863.png,15504 +images-25864.png,15505 +images-25865.png,15506 +images-25866.png,15507 +images-25867.png,15508 +images-25868.png,15509 +images-25869.png,15510 +images-25870.png,15511 +images-25871.png,15512 +images-25872.png,15513 +images-25873.png,15514 +images-25874.png,15515 +images-25875.png,15516 +images-25876.png,15517 +images-25877.png,15518 +images-25878.png,15519 +images-25879.png,15520 +images-25880.png,15521 +images-25881.png,15522 +images-25882.png,15523 +images-25883.png,15524 +images-25884.png,15525 +images-25885.png,15526 +images-25886.png,15527 +images-25887.png,15528 +images-25888.png,15529 +images-25889.png,15530 +images-25890.png,15531 +images-25891.png,15532 +images-25892.png,15533 +images-25893.png,15534 +images-25894.png,15535 +images-25895.png,15536 +images-25896.png,15537 +images-25897.png,15538 +images-25898.png,15539 +images-25899.png,15540 +images-25900.png,15541 +images-25901.png,15542 +images-25902.png,15543 +images-25903.png,15544 +images-25904.png,15545 +images-25905.png,15546 +images-25906.png,15547 +images-25907.png,15548 +images-25908.png,15549 +images-25909.png,15550 +images-25910.png,15551 +images-25911.png,15552 +images-25912.png,15553 +images-25913.png,15554 +images-25914.png,15555 +images-25915.png,15556 +images-25916.png,15557 +images-25917.png,15558 +images-25918.png,15559 +images-25919.png,15560 +images-25920.png,15561 +images-25921.png,15562 +images-25922.png,15563 +images-25923.png,15564 +images-25924.png,15565 +images-25925.png,15566 +images-25926.png,15567 +images-25927.png,15568 +images-25928.png,15569 +images-25929.png,15570 +images-25930.png,15571 +images-25931.png,15572 +images-25932.png,15573 +images-25933.png,15574 +images-25934.png,15575 +images-25935.png,15576 +images-25936.png,15577 +images-25937.png,15578 +images-25938.png,15579 +images-25939.png,15580 +images-25940.png,15581 +images-25941.png,15582 +images-25942.png,15583 +images-25943.png,15584 +images-25944.png,15585 +images-25945.png,15586 +images-25946.png,15587 +images-25947.png,15588 +images-25948.png,15589 +images-25949.png,15590 +images-25950.png,15591 +images-25951.png,15592 +images-25952.png,15593 +images-25953.png,15594 +images-25954.png,15595 +images-25955.png,15596 +images-25956.png,15597 +images-25957.png,15598 +images-25958.png,15599 +images-25959.png,15600 +images-25960.png,15601 +images-25961.png,15602 +images-25962.png,15603 +images-25963.png,15604 +images-25964.png,15605 +images-25965.png,15606 +images-25966.png,15607 +images-25967.png,15608 +images-25968.png,15609 +images-25969.png,15610 +images-25970.png,15611 +images-25971.png,15612 +images-25972.png,15613 +images-25973.png,15614 +images-25974.png,15615 +images-25975.png,15616 +images-25976.png,15617 +images-25977.png,15618 +images-25978.png,15619 +images-25979.png,15620 +images-25980.png,15621 +images-25981.png,15622 +images-25982.png,15623 +images-25983.png,15624 +images-25984.png,15625 +images-25985.png,15626 +images-25986.png,15627 +images-25987.png,15628 +images-25988.png,15629 +images-25989.png,15630 +images-25990.png,15631 +images-25991.png,15632 +images-25992.png,15633 +images-25993.png,15634 +images-25994.png,15635 +images-25995.png,15636 +images-25996.png,15637 +images-25997.png,15638 +images-25998.png,15639 +images-25999.png,15640 +images-26000.png,15641 +images-26001.png,15642 +images-26002.png,15643 +images-26003.png,15644 +images-26004.png,15645 +images-26005.png,15646 +images-26006.png,15647 +images-26007.png,15648 +images-26008.png,15649 +images-26009.png,15650 +images-26010.png,15651 +images-26011.png,15652 +images-26012.png,15653 +images-26013.png,15654 +images-26014.png,15655 +images-26015.png,15656 +images-26016.png,15657 +images-26017.png,15658 +images-26018.png,15659 +images-26019.png,15660 +images-26020.png,15661 +images-26021.png,15662 +images-26022.png,15663 +images-26023.png,15664 +images-26024.png,15665 +images-26025.png,15666 +images-26026.png,15667 +images-26027.png,15668 +images-26028.png,15669 +images-26029.png,15670 +images-26030.png,15671 +images-26031.png,15672 +images-26032.png,15673 +images-26033.png,15674 +images-26034.png,15675 +images-26035.png,15676 +images-26036.png,15677 +images-26037.png,15678 +images-26038.png,15679 +images-26039.png,15680 +images-26040.png,15681 +images-26041.png,15682 +images-26042.png,15683 +images-26043.png,15684 +images-26044.png,15685 +images-26045.png,15686 +images-26046.png,15687 +images-26047.png,15688 +images-26048.png,15689 +images-26049.png,15690 +images-26050.png,15691 +images-26051.png,15692 +images-26052.png,15693 +images-26053.png,15694 +images-26054.png,15695 +images-26055.png,15696 +images-26056.png,15697 +images-26057.png,15698 +images-26058.png,15699 +images-26059.png,15700 +images-26060.png,15701 +images-26061.png,15702 +images-26062.png,15703 +images-26063.png,15704 +images-26064.png,15705 +images-26065.png,15706 +images-26066.png,15707 +images-26067.png,15708 +images-26068.png,15709 +images-26069.png,15710 +images-26070.png,15711 +images-26071.png,15712 +images-26072.png,15713 +images-26073.png,15714 +images-26074.png,15715 +images-26075.png,15716 +images-26076.png,15717 +images-26077.png,15718 +images-26078.png,15719 +images-26079.png,15720 +images-26080.png,15721 +images-26081.png,15722 +images-26082.png,15723 +images-26083.png,15724 +images-26084.png,15725 +images-26085.png,15726 +images-26091.png,15727 +images-26092.png,15728 +images-26093.png,15729 +images-26094.png,15730 +images-26095.png,15731 +images-26096.png,15732 +images-26097.png,15733 +images-26098.png,15734 +images-26099.png,15735 +images-26100.png,15736 +images-26101.png,15737 +images-26102.png,15738 +images-26103.png,15739 +images-26104.png,15740 +images-26105.png,15741 +images-26106.png,15742 +images-26107.png,15743 +images-26108.png,15744 +images-26109.png,15745 +images-26110.png,15746 +images-26111.png,15747 +images-26112.png,15748 +images-26113.png,15749 +images-26114.png,15750 +images-26115.png,15751 +images-26116.png,15752 +images-26117.png,15753 +images-26118.png,15754 +images-26119.png,15755 +images-26135.png,15756 +images-26136.png,15757 +images-26137.png,15758 +images-26138.png,15759 +images-26139.png,15760 +images-26140.png,15761 +images-26141.png,15762 +images-26142.png,15763 +images-26143.png,15764 +images-26144.png,15765 +images-26145.png,15766 +images-26146.png,15767 +images-26147.png,15768 +images-26148.png,15769 +images-26149.png,15770 +images-26150.png,15771 +images-26151.png,15772 +images-26152.png,15773 +images-26153.png,15774 +images-26154.png,15775 +images-26155.png,15776 +images-26156.png,15777 +images-26157.png,15778 +images-26158.png,15779 +images-26159.png,15780 +images-26160.png,15781 +images-26161.png,15782 +images-26162.png,15783 +images-26163.png,15784 +images-26164.png,15785 +images-26165.png,15786 +images-26166.png,15787 +images-26167.png,15788 +images-26168.png,15789 +images-26169.png,15790 +images-26170.png,15791 +images-26171.png,15792 +images-26172.png,15793 +images-26173.png,15794 +images-26174.png,15795 +images-26175.png,15796 +images-26176.png,15797 +images-26177.png,15798 +images-26178.png,15799 +images-26179.png,15800 +images-26180.png,15801 +images-26181.png,15802 +images-26182.png,15803 +images-26183.png,15804 +images-26184.png,15805 +images-26185.png,15806 +images-26186.png,15807 +images-26187.png,15808 +images-26188.png,15809 +images-26189.png,15810 +images-26190.png,15811 +images-26191.png,15812 +images-26192.png,15813 +images-26193.png,15814 +images-26194.png,15815 +images-26195.png,15816 +images-26196.png,15817 +images-26197.png,15818 +images-26198.png,15819 +images-26199.png,15820 +images-26200.png,15821 +images-26201.png,15822 +images-26202.png,15823 +images-26203.png,15824 +images-26204.png,15825 +images-26205.png,15826 +images-26206.png,15827 +images-26207.png,15828 +images-26208.png,15829 +images-26209.png,15830 +images-26210.png,15831 +images-26211.png,15832 +images-26212.png,15833 +images-26213.png,15834 +images-26214.png,15835 +images-26215.png,15836 +images-26216.png,15837 +images-26217.png,15838 +images-26218.png,15839 +images-26219.png,15840 +images-26220.png,15841 +images-26221.png,15842 +images-26222.png,15843 +images-26223.png,15844 +images-26224.png,15845 +images-26225.png,15846 +images-26226.png,15847 +images-26227.png,15848 +images-26228.png,15849 +images-26229.png,15850 +images-26230.png,15851 +images-26231.png,15852 +images-26232.png,15853 +images-26233.png,15854 +images-26234.png,15855 +images-26235.png,15856 +images-26236.png,15857 +images-26237.png,15858 +images-26238.png,15859 +images-26239.png,15860 +images-26240.png,15861 +images-26241.png,15862 +images-26242.png,15863 +images-26243.png,15864 +images-26244.png,15865 +images-26245.png,15866 +images-26246.png,15867 +images-26247.png,15868 +images-26248.png,15869 +images-26249.png,15870 +images-26250.png,15871 +images-26251.png,15872 +images-26252.png,15873 +images-26253.png,15874 +images-26254.png,15875 +images-26255.png,15876 +images-26256.png,15877 +images-26257.png,15878 +images-26258.png,15879 +images-26259.png,15880 +images-26260.png,15881 +images-26261.png,15882 +images-26262.png,15883 +images-26263.png,15884 +images-26264.png,15885 +images-26265.png,15886 +images-26266.png,15887 +images-26267.png,15888 +images-26268.png,15889 +images-26269.png,15890 +images-26270.png,15891 +images-26271.png,15892 +images-26272.png,15893 +images-26273.png,15894 +images-26274.png,15895 +images-26275.png,15896 +images-26276.png,15897 +images-26277.png,15898 +images-26278.png,15899 +images-26279.png,15900 +images-26280.png,15901 +images-26281.png,15902 +images-26282.png,15903 +images-26283.png,15904 +images-26284.png,15905 +images-26285.png,15906 +images-26286.png,15907 +images-26287.png,15908 +images-26288.png,15909 +images-26289.png,15910 +images-26290.png,15911 +images-26291.png,15912 +images-26292.png,15913 +images-26293.png,15914 +images-26294.png,15915 +images-26295.png,15916 +images-26296.png,15917 +images-26297.png,15918 +images-26298.png,15919 +images-26299.png,15920 +images-26300.png,15921 +images-26301.png,15922 +images-26302.png,15923 +images-26303.png,15924 +images-26304.png,15925 +images-26305.png,15926 +images-26306.png,15927 +images-26307.png,15928 +images-26308.png,15929 +images-26309.png,15930 +images-26310.png,15931 +images-26311.png,15932 +images-26312.png,15933 +images-26313.png,15934 +images-26314.png,15935 +images-26315.png,15936 +images-26316.png,15937 +images-26317.png,15938 +images-26318.png,15939 +images-26319.png,15940 +images-26320.png,15941 +images-26321.png,15942 +images-26322.png,15943 +images-26323.png,15944 +images-26324.png,15945 +images-26325.png,15946 +images-26326.png,15947 +images-26327.png,15948 +images-26328.png,15949 +images-26329.png,15950 +images-26330.png,15951 +images-26331.png,15952 +images-26332.png,15953 +images-26333.png,15954 +images-26334.png,15955 +images-26335.png,15956 +images-26336.png,15957 +images-26337.png,15958 +images-26338.png,15959 +images-26339.png,15960 +images-26340.png,15961 +images-26341.png,15962 +images-26342.png,15963 +images-26343.png,15964 +images-26344.png,15965 +images-26345.png,15966 +images-26346.png,15967 +images-26347.png,15968 +images-26348.png,15969 +images-26349.png,15970 +images-26350.png,15971 +images-26351.png,15972 +images-26352.png,15973 +images-26353.png,15974 +images-26354.png,15975 +images-26355.png,15976 +images-26356.png,15977 +images-26357.png,15978 +images-26358.png,15979 +images-26359.png,15980 +images-26360.png,15981 +images-26361.png,15982 +images-26362.png,15983 +images-26363.png,15984 +images-26364.png,15985 +images-26365.png,15986 +images-26366.png,15987 +images-26367.png,15988 +images-26368.png,15989 +images-26369.png,15990 +images-26370.png,15991 +images-26371.png,15992 +images-26372.png,15993 +images-26373.png,15994 +images-26374.png,15995 +images-26375.png,15996 +images-26376.png,15997 +images-26377.png,15998 +images-26378.png,15999 +images-26379.png,16000 +images-26380.png,16001 +images-26381.png,16002 +images-26382.png,16003 +images-26383.png,16004 +images-26384.png,16005 +images-26385.png,16006 +images-26386.png,16007 +images-26387.png,16008 +images-26388.png,16009 +images-26389.png,16010 +images-26390.png,16011 +images-26391.png,16012 +images-26559.png,16013 +images-26560.png,16014 +images-26561.png,16015 +images-26562.png,16016 +images-26563.png,16017 +images-26564.png,16018 +images-26565.png,16019 +images-26566.png,16020 +images-26567.png,16021 +images-26568.png,16022 +images-26569.png,16023 +images-26570.png,16024 +images-26571.png,16025 +images-26572.png,16026 +images-26573.png,16027 +images-26574.png,16028 +images-26575.png,16029 +images-26576.png,16030 +images-26577.png,16031 +images-26578.png,16032 +images-26579.png,16033 +images-26580.png,16034 +images-26581.png,16035 +images-26582.png,16036 +images-26583.png,16037 +images-26584.png,16038 +images-26585.png,16039 +images-26586.png,16040 +images-26587.png,16041 +images-26588.png,16042 +images-26589.png,16043 +images-26590.png,16044 +images-26591.png,16045 +images-26592.png,16046 +images-26593.png,16047 +images-26594.png,16048 +images-26595.png,16049 +images-26596.png,16050 +images-26597.png,16051 +images-26598.png,16052 +images-26599.png,16053 +images-26600.png,16054 +images-26601.png,16055 +images-26602.png,16056 +images-26603.png,16057 +images-26604.png,16058 +images-26605.png,16059 +images-26606.png,16060 +images-26607.png,16061 +images-26608.png,16062 +images-26609.png,16063 +images-26610.png,16064 +images-26611.png,16065 +images-26612.png,16066 +images-26613.png,16067 +images-26614.png,16068 +images-26615.png,16069 +images-26616.png,16070 +images-26617.png,16071 +images-26618.png,16072 +images-26619.png,16073 +images-26620.png,16074 +images-26621.png,16075 +images-26622.png,16076 +images-26623.png,16077 +images-26624.png,16078 +images-26625.png,16079 +images-26626.png,16080 +images-26627.png,16081 +images-26628.png,16082 +images-26629.png,16083 +images-26630.png,16084 +images-26631.png,16085 +images-26632.png,16086 +images-26633.png,16087 +images-26634.png,16088 +images-26635.png,16089 +images-26636.png,16090 +images-26637.png,16091 +images-26638.png,16092 +images-26639.png,16093 +images-26640.png,16094 +images-26641.png,16095 +images-26642.png,16096 +images-26643.png,16097 +images-26644.png,16098 +images-26645.png,16099 +images-26646.png,16100 +images-26647.png,16101 +images-26648.png,16102 +images-26649.png,16103 +images-26650.png,16104 +images-26651.png,16105 +images-26652.png,16106 +images-26653.png,16107 +images-26654.png,16108 +images-26655.png,16109 +images-26656.png,16110 +images-26657.png,16111 +images-26658.png,16112 +images-26659.png,16113 +images-26660.png,16114 +images-26661.png,16115 +images-26662.png,16116 +images-26663.png,16117 +images-26664.png,16118 +images-26665.png,16119 +images-26666.png,16120 +images-26667.png,16121 +images-26668.png,16122 +images-26669.png,16123 +images-26670.png,16124 +images-26671.png,16125 +images-26672.png,16126 +images-26673.png,16127 +images-26674.png,16128 +images-26675.png,16129 +images-26676.png,16130 +images-26677.png,16131 +images-26678.png,16132 +images-26679.png,16133 +images-26680.png,16134 +images-26681.png,16135 +images-26682.png,16136 +images-26683.png,16137 +images-26684.png,16138 +images-26685.png,16139 +images-26686.png,16140 +images-26687.png,16141 +images-26688.png,16142 +images-26689.png,16143 +images-26690.png,16144 +images-26691.png,16145 +images-26692.png,16146 +images-26693.png,16147 +images-26694.png,16148 +images-26695.png,16149 +images-26696.png,16150 +images-26697.png,16151 +images-26698.png,16152 +images-26699.png,16153 +images-26700.png,16154 +images-26701.png,16155 +images-26702.png,16156 +images-26703.png,16157 +images-26704.png,16158 +images-26705.png,16159 +images-26706.png,16160 +images-26707.png,16161 +images-26708.png,16162 +images-26709.png,16163 +images-26710.png,16164 +images-26711.png,16165 +images-26712.png,16166 +images-26713.png,16167 +images-26714.png,16168 +images-26715.png,16169 +images-26716.png,16170 +images-26717.png,16171 +images-26718.png,16172 +images-26719.png,16173 +images-26720.png,16174 +images-26721.png,16175 +images-26722.png,16176 +images-26723.png,16177 +images-26724.png,16178 +images-26725.png,16179 +images-26726.png,16180 +images-26727.png,16181 +images-26728.png,16182 +images-26729.png,16183 +images-26730.png,16184 +images-26731.png,16185 +images-26732.png,16186 +images-26733.png,16187 +images-26734.png,16188 +images-26735.png,16189 +images-26736.png,16190 +images-26737.png,16191 +images-26738.png,16192 +images-26739.png,16193 +images-26740.png,16194 +images-26741.png,16195 +images-26742.png,16196 +images-26743.png,16197 +images-26744.png,16198 +images-26745.png,16199 +images-26746.png,16200 +images-26747.png,16201 +images-26748.png,16202 +images-26749.png,16203 +images-26750.png,16204 +images-26751.png,16205 +images-26752.png,16206 +images-26753.png,16207 +images-26754.png,16208 +images-26755.png,16209 +images-26756.png,16210 +images-26757.png,16211 +images-26758.png,16212 +images-26759.png,16213 +images-26760.png,16214 +images-26761.png,16215 +images-26762.png,16216 +images-26763.png,16217 +images-26764.png,16218 +images-26765.png,16219 +images-26766.png,16220 +images-26767.png,16221 +images-26768.png,16222 +images-26769.png,16223 +images-26770.png,16224 +images-26771.png,16225 +images-26772.png,16226 +images-26773.png,16227 +images-26774.png,16228 +images-26775.png,16229 +images-26776.png,16230 +images-26777.png,16231 +images-26778.png,16232 +images-26779.png,16233 +images-26780.png,16234 +images-26781.png,16235 +images-26782.png,16236 +images-26783.png,16237 +images-26784.png,16238 +images-26785.png,16239 +images-26786.png,16240 +images-26787.png,16241 +images-26788.png,16242 +images-26789.png,16243 +images-26790.png,16244 +images-26791.png,16245 +images-26792.png,16246 +images-26793.png,16247 +images-26794.png,16248 +images-26795.png,16249 +images-26796.png,16250 +images-26797.png,16251 +images-26798.png,16252 +images-26799.png,16253 +images-26800.png,16254 +images-26801.png,16255 +images-26802.png,16256 +images-26803.png,16257 +images-26804.png,16258 +images-26805.png,16259 +images-26806.png,16260 +images-26807.png,16261 +images-26808.png,16262 +images-26809.png,16263 +images-26810.png,16264 +images-26811.png,16265 +images-26812.png,16266 +images-26813.png,16267 +images-26814.png,16268 +images-26815.png,16269 +images-26816.png,16270 +images-26817.png,16271 +images-26818.png,16272 +images-26819.png,16273 +images-26820.png,16274 +images-26821.png,16275 +images-26822.png,16276 +images-26823.png,16277 +images-26824.png,16278 +images-26825.png,16279 +images-26826.png,16280 +images-26827.png,16281 +images-26828.png,16282 +images-26829.png,16283 +images-26830.png,16284 +images-26831.png,16285 +images-26832.png,16286 +images-26833.png,16287 +images-26834.png,16288 +images-26835.png,16289 +images-26836.png,16290 +images-26837.png,16291 +images-26838.png,16292 +images-26839.png,16293 +images-26840.png,16294 +images-26841.png,16295 +images-26842.png,16296 +images-26843.png,16297 +images-26844.png,16298 +images-26845.png,16299 +images-26846.png,16300 +images-26847.png,16301 +images-26848.png,16302 +images-26849.png,16303 +images-26850.png,16304 +images-26851.png,16305 +images-26852.png,16306 +images-26853.png,16307 +images-26854.png,16308 +images-26855.png,16309 +images-26856.png,16310 +images-26857.png,16311 +images-26858.png,16312 +images-26859.png,16313 +images-26860.png,16314 +images-26861.png,16315 +images-26862.png,16316 +images-26863.png,16317 +images-26864.png,16318 +images-26865.png,16319 +images-26866.png,16320 +images-26867.png,16321 +images-26868.png,16322 +images-26869.png,16323 +images-26870.png,16324 +images-26871.png,16325 +images-26872.png,16326 +images-26873.png,16327 +images-26874.png,16328 +images-26875.png,16329 +images-26876.png,16330 +images-26877.png,16331 +images-26878.png,16332 +images-26879.png,16333 +images-26880.png,16334 +images-26881.png,16335 +images-26882.png,16336 +images-26883.png,16337 +images-26884.png,16338 +images-26885.png,16339 +images-26886.png,16340 +images-26887.png,16341 +images-26888.png,16342 +images-26889.png,16343 +images-26897.png,16344 +images-26898.png,16345 +images-26899.png,16346 +images-26900.png,16347 +images-26901.png,16348 +images-26902.png,16349 +images-26903.png,16350 +images-26904.png,16351 +images-26905.png,16352 +images-26906.png,16353 +images-26907.png,16354 +images-26908.png,16355 +images-26909.png,16356 +images-26910.png,16357 +images-26911.png,16358 +images-26912.png,16359 +images-26913.png,16360 +images-26914.png,16361 +images-26915.png,16362 +images-26916.png,16363 +images-26917.png,16364 +images-26918.png,16365 +images-26919.png,16366 +images-26920.png,16367 +images-26921.png,16368 +images-26922.png,16369 +images-26923.png,16370 +images-26924.png,16371 +images-26925.png,16372 +images-26926.png,16373 +images-26927.png,16374 +images-26928.png,16375 +images-26929.png,16376 +images-26930.png,16377 +images-26931.png,16378 +images-26932.png,16379 +images-26933.png,16380 +images-26934.png,16381 +images-26935.png,16382 +images-26936.png,16383 +images-26937.png,16384 +images-26938.png,16385 +images-26939.png,16386 +images-26940.png,16387 +images-26941.png,16388 +images-26942.png,16389 +images-26943.png,16390 +images-26944.png,16391 +images-26945.png,16392 +images-26946.png,16393 +images-26947.png,16394 +images-26948.png,16395 +images-26949.png,16396 +images-26950.png,16397 +images-26951.png,16398 +images-26952.png,16399 +images-26953.png,16400 +images-26954.png,16401 +images-26955.png,16402 +images-26956.png,16403 +images-26957.png,16404 +images-26958.png,16405 +images-26959.png,16406 +images-26960.png,16407 +images-26961.png,16408 +images-26962.png,16409 +images-26963.png,16410 +images-26964.png,16411 +images-26965.png,16412 +images-26966.png,16413 +images-26967.png,16414 +images-26968.png,16415 +images-26969.png,16416 +images-26970.png,16417 +images-26971.png,16418 +images-26972.png,16419 +images-26973.png,16420 +images-26974.png,16421 +images-26975.png,16422 +images-26976.png,16423 +images-26977.png,16424 +images-26978.png,16425 +images-26979.png,16426 +images-26980.png,16427 +images-26981.png,16428 +images-26982.png,16429 +images-26983.png,16430 +images-26984.png,16431 +images-26985.png,16432 +images-26986.png,16433 +images-26987.png,16434 +images-26988.png,16435 +images-26989.png,16436 +images-26990.png,16437 +images-26991.png,16438 +images-26992.png,16439 +images-26993.png,16440 +images-26994.png,16441 +images-26995.png,16442 +images-26996.png,16443 +images-27012.png,16444 +images-27013.png,16445 +images-27014.png,16446 +images-27015.png,16447 +images-27016.png,16448 +images-27017.png,16449 +images-27018.png,16450 +images-27019.png,16451 +images-27020.png,16452 +images-27021.png,16453 +images-27022.png,16454 +images-27023.png,16455 +images-27024.png,16456 +images-27025.png,16457 +images-27026.png,16458 +images-27027.png,16459 +images-27028.png,16460 +images-27029.png,16461 +images-27030.png,16462 +images-27031.png,16463 +images-27032.png,16464 +images-27033.png,16465 +images-27034.png,16466 +images-27035.png,16467 +images-27036.png,16468 +images-27037.png,16469 +images-27038.png,16470 +images-27039.png,16471 +images-27040.png,16472 +images-27041.png,16473 +images-27042.png,16474 +images-27043.png,16475 +images-27044.png,16476 +images-27045.png,16477 +images-27046.png,16478 +images-27047.png,16479 +images-27048.png,16480 +images-27049.png,16481 +images-27050.png,16482 +images-27051.png,16483 +images-27052.png,16484 +images-27053.png,16485 +images-27054.png,16486 +images-27055.png,16487 +images-27056.png,16488 +images-27057.png,16489 +images-27058.png,16490 +images-27059.png,16491 +images-27060.png,16492 +images-27061.png,16493 +images-27062.png,16494 +images-27063.png,16495 +images-27064.png,16496 +images-27065.png,16497 +images-27066.png,16498 +images-27067.png,16499 +images-27068.png,16500 +images-27069.png,16501 +images-27070.png,16502 +images-27071.png,16503 +images-27072.png,16504 +images-27073.png,16505 +images-27074.png,16506 +images-27075.png,16507 +images-27076.png,16508 +images-27077.png,16509 +images-27078.png,16510 +images-27079.png,16511 +images-27080.png,16512 +images-27081.png,16513 +images-27082.png,16514 +images-27083.png,16515 +images-27084.png,16516 +images-27085.png,16517 +images-27086.png,16518 +images-27087.png,16519 +images-27088.png,16520 +images-27089.png,16521 +images-27090.png,16522 +images-27091.png,16523 +images-27092.png,16524 +images-27093.png,16525 +images-27094.png,16526 +images-27095.png,16527 +images-27096.png,16528 +images-27097.png,16529 +images-27098.png,16530 +images-27099.png,16531 +images-27100.png,16532 +images-27101.png,16533 +images-27102.png,16534 +images-27103.png,16535 +images-27104.png,16536 +images-27105.png,16537 +images-27106.png,16538 +images-27107.png,16539 +images-27108.png,16540 +images-27109.png,16541 +images-27110.png,16542 +images-27111.png,16543 +images-27112.png,16544 +images-27113.png,16545 +images-27114.png,16546 +images-27115.png,16547 +images-27116.png,16548 +images-27117.png,16549 +images-27118.png,16550 +images-27119.png,16551 +images-27120.png,16552 +images-27121.png,16553 +images-27122.png,16554 +images-27123.png,16555 +images-27124.png,16556 +images-27125.png,16557 +images-27126.png,16558 +images-27127.png,16559 +images-27128.png,16560 +images-27129.png,16561 +images-27130.png,16562 +images-27131.png,16563 +images-27132.png,16564 +images-27133.png,16565 +images-27134.png,16566 +images-27135.png,16567 +images-27136.png,16568 +images-27137.png,16569 +images-27138.png,16570 +images-27139.png,16571 +images-27140.png,16572 +images-27141.png,16573 +images-27142.png,16574 +images-27143.png,16575 +images-27144.png,16576 +images-27145.png,16577 +images-27146.png,16578 +images-27147.png,16579 +images-27148.png,16580 +images-27149.png,16581 +images-27150.png,16582 +images-27151.png,16583 +images-27152.png,16584 +images-27153.png,16585 +images-27154.png,16586 +images-27155.png,16587 +images-27156.png,16588 +images-27157.png,16589 +images-27158.png,16590 +images-27159.png,16591 +images-27160.png,16592 +images-27161.png,16593 +images-27162.png,16594 +images-27163.png,16595 +images-27164.png,16596 +images-27165.png,16597 +images-27166.png,16598 +images-27167.png,16599 +images-27168.png,16600 +images-27169.png,16601 +images-27170.png,16602 +images-27171.png,16603 +images-27172.png,16604 +images-27173.png,16605 +images-27174.png,16606 +images-27175.png,16607 +images-27176.png,16608 +images-27177.png,16609 +images-27178.png,16610 +images-27179.png,16611 +images-27180.png,16612 +images-27181.png,16613 +images-27182.png,16614 +images-27183.png,16615 +images-27184.png,16616 +images-27185.png,16617 +images-27186.png,16618 +images-27187.png,16619 +images-27188.png,16620 +images-27189.png,16621 +images-27190.png,16622 +images-27191.png,16623 +images-27192.png,16624 +images-27193.png,16625 +images-27194.png,16626 +images-27195.png,16627 +images-27196.png,16628 +images-27197.png,16629 +images-27198.png,16630 +images-27199.png,16631 +images-27200.png,16632 +images-27201.png,16633 +images-27202.png,16634 +images-27203.png,16635 +images-27204.png,16636 +images-27205.png,16637 +images-27206.png,16638 +images-27207.png,16639 +images-27208.png,16640 +images-27209.png,16641 +images-27210.png,16642 +images-27211.png,16643 +images-27212.png,16644 +images-27213.png,16645 +images-27214.png,16646 +images-27215.png,16647 +images-27216.png,16648 +images-27217.png,16649 +images-27218.png,16650 +images-27219.png,16651 +images-27220.png,16652 +images-27221.png,16653 +images-27222.png,16654 +images-27223.png,16655 +images-27224.png,16656 +images-27225.png,16657 +images-27226.png,16658 +images-27227.png,16659 +images-27228.png,16660 +images-27229.png,16661 +images-27230.png,16662 +images-27231.png,16663 +images-27232.png,16664 +images-27233.png,16665 +images-27234.png,16666 +images-27235.png,16667 +images-27236.png,16668 +images-27237.png,16669 +images-27238.png,16670 +images-27239.png,16671 +images-27240.png,16672 +images-27241.png,16673 +images-27242.png,16674 +images-27243.png,16675 +images-27244.png,16676 +images-27245.png,16677 +images-27246.png,16678 +images-27247.png,16679 +images-27248.png,16680 +images-27249.png,16681 +images-27250.png,16682 +images-27251.png,16683 +images-27252.png,16684 +images-27253.png,16685 +images-27254.png,16686 +images-27255.png,16687 +images-27256.png,16688 +images-27257.png,16689 +images-27258.png,16690 +images-27259.png,16691 +images-27260.png,16692 +images-27261.png,16693 +images-27262.png,16694 +images-27263.png,16695 +images-27264.png,16696 +images-27265.png,16697 +images-27266.png,16698 +images-27267.png,16699 +images-27268.png,16700 +images-27269.png,16701 +images-27270.png,16702 +images-27271.png,16703 +images-27272.png,16704 +images-27273.png,16705 +images-27274.png,16706 +images-27275.png,16707 +images-27276.png,16708 +images-27277.png,16709 +images-27278.png,16710 +images-27279.png,16711 +images-27280.png,16712 +images-27281.png,16713 +images-27282.png,16714 +images-27283.png,16715 +images-27284.png,16716 +images-27285.png,16717 +images-27286.png,16718 +images-27287.png,16719 +images-27288.png,16720 +images-27289.png,16721 +images-27290.png,16722 +images-27291.png,16723 +images-27292.png,16724 +images-27293.png,16725 +images-27294.png,16726 +images-27295.png,16727 +images-27296.png,16728 +images-27297.png,16729 +images-27298.png,16730 +images-27299.png,16731 +images-27300.png,16732 +images-27301.png,16733 +images-27302.png,16734 +images-27303.png,16735 +images-27304.png,16736 +images-27305.png,16737 +images-27306.png,16738 +images-27307.png,16739 +images-27308.png,16740 +images-27309.png,16741 +images-27310.png,16742 +images-27311.png,16743 +images-27312.png,16744 +images-27313.png,16745 +images-27314.png,16746 +images-27315.png,16747 +images-27316.png,16748 +images-27317.png,16749 +images-27318.png,16750 +images-27319.png,16751 +images-27320.png,16752 +images-27321.png,16753 +images-27322.png,16754 +images-27323.png,16755 +images-27324.png,16756 +images-27325.png,16757 +images-27326.png,16758 +images-27327.png,16759 +images-27328.png,16760 +images-27329.png,16761 +images-27330.png,16762 +images-27331.png,16763 +images-27332.png,16764 +images-27333.png,16765 +images-27334.png,16766 +images-27335.png,16767 +images-27336.png,16768 +images-27337.png,16769 +images-27338.png,16770 +images-27339.png,16771 +images-27340.png,16772 +images-27341.png,16773 +images-27342.png,16774 +images-27343.png,16775 +images-27344.png,16776 +images-27345.png,16777 +images-27346.png,16778 +images-27347.png,16779 +images-27348.png,16780 +images-27349.png,16781 +images-27350.png,16782 +images-27351.png,16783 +images-27352.png,16784 +images-27353.png,16785 +images-27354.png,16786 +images-27355.png,16787 +images-27356.png,16788 +images-27357.png,16789 +images-27358.png,16790 +images-27359.png,16791 +images-27360.png,16792 +images-27361.png,16793 +images-27362.png,16794 +images-27363.png,16795 +images-27364.png,16796 +images-27365.png,16797 +images-27366.png,16798 +images-27367.png,16799 +images-27368.png,16800 +images-27369.png,16801 +images-27370.png,16802 +images-27371.png,16803 +images-27372.png,16804 +images-27373.png,16805 +images-27374.png,16806 +images-27375.png,16807 +images-27376.png,16808 +images-27377.png,16809 +images-27378.png,16810 +images-27379.png,16811 +images-27380.png,16812 +images-27381.png,16813 +images-27382.png,16814 +images-27383.png,16815 +images-27384.png,16816 +images-27385.png,16817 +images-27386.png,16818 +images-27387.png,16819 +images-27388.png,16820 +images-27389.png,16821 +images-27390.png,16822 +images-27391.png,16823 +images-27392.png,16824 +images-27393.png,16825 +images-27394.png,16826 +images-27395.png,16827 +images-27396.png,16828 +images-27397.png,16829 +images-27398.png,16830 +images-27399.png,16831 +images-27400.png,16832 +images-27401.png,16833 +images-27402.png,16834 +images-27403.png,16835 +images-27404.png,16836 +images-27405.png,16837 +images-27406.png,16838 +images-27407.png,16839 +images-27423.png,16840 +images-27424.png,16841 +images-27425.png,16842 +images-27426.png,16843 +images-27427.png,16844 +images-27428.png,16845 +images-27429.png,16846 +images-27430.png,16847 +images-27431.png,16848 +images-27435.png,16849 +images-27436.png,16850 +images-27437.png,16851 +images-27438.png,16852 +images-27439.png,16853 +images-27440.png,16854 +images-27441.png,16855 +images-27442.png,16856 +images-27443.png,16857 +images-27444.png,16858 +images-27445.png,16859 +images-27446.png,16860 +images-27447.png,16861 +images-27448.png,16862 +images-27449.png,16863 +images-27450.png,16864 +images-27451.png,16865 +images-27452.png,16866 +images-27453.png,16867 +images-27454.png,16868 +images-27455.png,16869 +images-27456.png,16870 +images-27457.png,16871 +images-27458.png,16872 +images-27459.png,16873 +images-27460.png,16874 +images-27461.png,16875 +images-27462.png,16876 +images-27463.png,16877 +images-27464.png,16878 +images-27465.png,16879 +images-27466.png,16880 +images-27467.png,16881 +images-27468.png,16882 +images-27469.png,16883 +images-27470.png,16884 +images-27471.png,16885 +images-27472.png,16886 +images-27473.png,16887 +images-27474.png,16888 +images-27475.png,16889 +images-27476.png,16890 +images-27477.png,16891 +images-27478.png,16892 +images-27479.png,16893 +images-27480.png,16894 +images-27481.png,16895 +images-27482.png,16896 +images-27483.png,16897 +images-27484.png,16898 +images-27485.png,16899 +images-27486.png,16900 +images-27487.png,16901 +images-27488.png,16902 +images-27489.png,16903 +images-27490.png,16904 +images-27491.png,16905 +images-27492.png,16906 +images-27493.png,16907 +images-27494.png,16908 +images-27495.png,16909 +images-27496.png,16910 +images-27497.png,16911 +images-27498.png,16912 +images-27499.png,16913 +images-27500.png,16914 +images-27501.png,16915 +images-27502.png,16916 +images-27503.png,16917 +images-27504.png,16918 +images-27505.png,16919 +images-27506.png,16920 +images-27507.png,16921 +images-27508.png,16922 +images-27509.png,16923 +images-27510.png,16924 +images-27511.png,16925 +images-27512.png,16926 +images-27513.png,16927 +images-27514.png,16928 +images-27515.png,16929 +images-27516.png,16930 +images-27517.png,16931 +images-27518.png,16932 +images-27519.png,16933 +images-27520.png,16934 +images-27521.png,16935 +images-27522.png,16936 +images-27523.png,16937 +images-27524.png,16938 +images-27525.png,16939 +images-27526.png,16940 +images-27527.png,16941 +images-27528.png,16942 +images-27529.png,16943 +images-27530.png,16944 +images-27531.png,16945 +images-27532.png,16946 +images-27533.png,16947 +images-27534.png,16948 +images-27535.png,16949 +images-27536.png,16950 +images-27537.png,16951 +images-27538.png,16952 +images-27539.png,16953 +images-27540.png,16954 +images-27541.png,16955 +images-27542.png,16956 +images-27543.png,16957 +images-27544.png,16958 +images-27545.png,16959 +images-27546.png,16960 +images-27547.png,16961 +images-27548.png,16962 +images-27549.png,16963 +images-27550.png,16964 +images-27551.png,16965 +images-27552.png,16966 +images-27553.png,16967 +images-27554.png,16968 +images-27555.png,16969 +images-27556.png,16970 +images-27557.png,16971 +images-27558.png,16972 +images-27559.png,16973 +images-27560.png,16974 +images-27561.png,16975 +images-27562.png,16976 +images-27563.png,16977 +images-27564.png,16978 +images-27565.png,16979 +images-27566.png,16980 +images-27567.png,16981 +images-27568.png,16982 +images-27569.png,16983 +images-27570.png,16984 +images-27571.png,16985 +images-27572.png,16986 +images-27573.png,16987 +images-27574.png,16988 +images-27575.png,16989 +images-27576.png,16990 +images-27577.png,16991 +images-27578.png,16992 +images-27579.png,16993 +images-27580.png,16994 +images-27581.png,16995 +images-27582.png,16996 +images-27583.png,16997 +images-27584.png,16998 +images-27585.png,16999 +images-27586.png,17000 +images-27587.png,17001 +images-27588.png,17002 +images-27589.png,17003 +images-27590.png,17004 +images-27591.png,17005 +images-27592.png,17006 +images-27593.png,17007 +images-27594.png,17008 +images-27595.png,17009 +images-27596.png,17010 +images-27597.png,17011 +images-27598.png,17012 +images-27599.png,17013 +images-27600.png,17014 +images-27601.png,17015 +images-27602.png,17016 +images-27603.png,17017 +images-27604.png,17018 +images-27605.png,17019 +images-27606.png,17020 +images-27607.png,17021 +images-27608.png,17022 +images-27609.png,17023 +images-27610.png,17024 +images-27611.png,17025 +images-27612.png,17026 +images-27613.png,17027 +images-27614.png,17028 +images-27615.png,17029 +images-27616.png,17030 +images-27617.png,17031 +images-27618.png,17032 +images-27619.png,17033 +images-27620.png,17034 +images-27621.png,17035 +images-27622.png,17036 +images-27623.png,17037 +images-27624.png,17038 +images-27625.png,17039 +images-27626.png,17040 +images-27627.png,17041 +images-27628.png,17042 +images-27629.png,17043 +images-27630.png,17044 +images-27631.png,17045 +images-27632.png,17046 +images-27633.png,17047 +images-27634.png,17048 +images-27635.png,17049 +images-27636.png,17050 +images-27637.png,17051 +images-27638.png,17052 +images-27639.png,17053 +images-27640.png,17054 +images-27641.png,17055 +images-27642.png,17056 +images-27643.png,17057 +images-27644.png,17058 +images-27645.png,17059 +images-27646.png,17060 +images-27647.png,17061 +images-27648.png,17062 +images-27649.png,17063 +images-27650.png,17064 +images-27651.png,17065 +images-27652.png,17066 +images-27653.png,17067 +images-27654.png,17068 +images-27655.png,17069 +images-27656.png,17070 +images-27657.png,17071 +images-27658.png,17072 +images-27659.png,17073 +images-27660.png,17074 +images-27661.png,17075 +images-27662.png,17076 +images-27663.png,17077 +images-27664.png,17078 +images-27665.png,17079 +images-27666.png,17080 +images-27667.png,17081 +images-27668.png,17082 +images-27669.png,17083 +images-27670.png,17084 +images-27671.png,17085 +images-27672.png,17086 +images-27673.png,17087 +images-27674.png,17088 +images-27675.png,17089 +images-27676.png,17090 +images-27677.png,17091 +images-27678.png,17092 +images-27679.png,17093 +images-27680.png,17094 +images-27681.png,17095 +images-27682.png,17096 +images-27683.png,17097 +images-27684.png,17098 +images-27685.png,17099 +images-27686.png,17100 +images-27687.png,17101 +images-27688.png,17102 +images-27689.png,17103 +images-27690.png,17104 +images-27691.png,17105 +images-27692.png,17106 +images-27693.png,17107 +images-27694.png,17108 +images-27695.png,17109 +images-27696.png,17110 +images-27697.png,17111 +images-27698.png,17112 +images-27699.png,17113 +images-27700.png,17114 +images-27701.png,17115 +images-27702.png,17116 +images-27703.png,17117 +images-27704.png,17118 +images-27705.png,17119 +images-27706.png,17120 +images-27707.png,17121 +images-27708.png,17122 +images-27709.png,17123 +images-27710.png,17124 +images-27711.png,17125 +images-27712.png,17126 +images-27713.png,17127 +images-27714.png,17128 +images-27715.png,17129 +images-27716.png,17130 +images-27717.png,17131 +images-27718.png,17132 +images-27719.png,17133 +images-27720.png,17134 +images-27721.png,17135 +images-27722.png,17136 +images-27723.png,17137 +images-27724.png,17138 +images-27725.png,17139 +images-27726.png,17140 +images-27727.png,17141 +images-27728.png,17142 +images-27729.png,17143 +images-27730.png,17144 +images-27731.png,17145 +images-27732.png,17146 +images-27733.png,17147 +images-27734.png,17148 +images-27735.png,17149 +images-27736.png,17150 +images-27737.png,17151 +images-27738.png,17152 +images-27739.png,17153 +images-27740.png,17154 +images-27741.png,17155 +images-27742.png,17156 +images-27743.png,17157 +images-27744.png,17158 +images-27745.png,17159 +images-27746.png,17160 +images-27747.png,17161 +images-27748.png,17162 +images-27749.png,17163 +images-27750.png,17164 +images-27751.png,17165 +images-27752.png,17166 +images-27753.png,17167 +images-27754.png,17168 +images-27755.png,17169 +images-27756.png,17170 +images-27757.png,17171 +images-27758.png,17172 +images-27759.png,17173 +images-27760.png,17174 +images-27761.png,17175 +images-27762.png,17176 +images-27763.png,17177 +images-27764.png,17178 +images-27765.png,17179 +images-27766.png,17180 +images-27767.png,17181 +images-27768.png,17182 +images-27769.png,17183 +images-27770.png,17184 +images-27771.png,17185 +images-27772.png,17186 +images-27773.png,17187 +images-27774.png,17188 +images-27775.png,17189 +images-27776.png,17190 +images-27777.png,17191 +images-27778.png,17192 +images-27779.png,17193 +images-27780.png,17194 +images-27781.png,17195 +images-27782.png,17196 +images-27783.png,17197 +images-27784.png,17198 +images-27785.png,17199 +images-27786.png,17200 +images-27787.png,17201 +images-27788.png,17202 +images-27789.png,17203 +images-27790.png,17204 +images-27791.png,17205 +images-27792.png,17206 +images-27793.png,17207 +images-27794.png,17208 +images-27795.png,17209 +images-27796.png,17210 +images-27797.png,17211 +images-27798.png,17212 +images-27799.png,17213 +images-27800.png,17214 +images-27801.png,17215 +images-27802.png,17216 +images-27803.png,17217 +images-27804.png,17218 +images-27805.png,17219 +images-27806.png,17220 +images-27807.png,17221 +images-27808.png,17222 +images-27809.png,17223 +images-27810.png,17224 +images-27811.png,17225 +images-27812.png,17226 +images-27813.png,17227 +images-27814.png,17228 +images-27815.png,17229 +images-27816.png,17230 +images-27817.png,17231 +images-27818.png,17232 +images-27819.png,17233 +images-27820.png,17234 +images-27821.png,17235 +images-27822.png,17236 +images-27823.png,17237 +images-27824.png,17238 +images-27825.png,17239 +images-27826.png,17240 +images-27827.png,17241 +images-27828.png,17242 +images-27829.png,17243 +images-27830.png,17244 +images-27831.png,17245 +images-27832.png,17246 +images-27833.png,17247 +images-27834.png,17248 +images-27835.png,17249 +images-27836.png,17250 +images-27837.png,17251 +images-27838.png,17252 +images-27839.png,17253 +images-27840.png,17254 +images-27841.png,17255 +images-27842.png,17256 +images-27843.png,17257 +images-27844.png,17258 +images-27845.png,17259 +images-27846.png,17260 +images-27847.png,17261 +images-27848.png,17262 +images-27849.png,17263 +images-27850.png,17264 +images-27851.png,17265 +images-27852.png,17266 +images-27853.png,17267 +images-27854.png,17268 +images-27855.png,17269 +images-27856.png,17270 +images-27857.png,17271 +images-27858.png,17272 +images-27859.png,17273 +images-27860.png,17274 +images-27861.png,17275 +images-27862.png,17276 +images-27863.png,17277 +images-27864.png,17278 +images-27865.png,17279 +images-27866.png,17280 +images-27867.png,17281 +images-27868.png,17282 +images-27869.png,17283 +images-27870.png,17284 +images-27871.png,17285 +images-27872.png,17286 +images-27873.png,17287 +images-27874.png,17288 +images-27875.png,17289 +images-27876.png,17290 +images-27877.png,17291 +images-27878.png,17292 +images-27879.png,17293 +images-27880.png,17294 +images-27881.png,17295 +images-27882.png,17296 +images-27883.png,17297 +images-27884.png,17298 +images-27885.png,17299 +images-27886.png,17300 +images-27887.png,17301 +images-27888.png,17302 +images-27889.png,17303 +images-27890.png,17304 +images-27891.png,17305 +images-27892.png,17306 +images-27893.png,17307 +images-27894.png,17308 +images-27895.png,17309 +images-27896.png,17310 +images-27897.png,17311 +images-27898.png,17312 +images-27899.png,17313 +images-27900.png,17314 +images-27901.png,17315 +images-27902.png,17316 +images-27903.png,17317 +images-27904.png,17318 +images-27905.png,17319 +images-27906.png,17320 +images-27907.png,17321 +images-27908.png,17322 +images-27909.png,17323 +images-27910.png,17324 +images-27911.png,17325 +images-27912.png,17326 +images-27913.png,17327 +images-27914.png,17328 +images-27915.png,17329 +images-27916.png,17330 +images-27917.png,17331 +images-27918.png,17332 +images-27919.png,17333 +images-27920.png,17334 +images-27921.png,17335 +images-27922.png,17336 +images-27923.png,17337 +images-27924.png,17338 +images-27925.png,17339 +images-27943.png,17340 +images-27944.png,17341 +images-27945.png,17342 +images-27946.png,17343 +images-27947.png,17344 +images-27948.png,17345 +images-27949.png,17346 +images-27950.png,17347 +images-27951.png,17348 +images-27952.png,17349 +images-27953.png,17350 +images-27954.png,17351 +images-27955.png,17352 +images-27956.png,17353 +images-27957.png,17354 +images-27958.png,17355 +images-27959.png,17356 +images-27960.png,17357 +images-27961.png,17358 +images-27962.png,17359 +images-27963.png,17360 +images-27964.png,17361 +images-27965.png,17362 +images-27966.png,17363 +images-27967.png,17364 +images-27968.png,17365 +images-27969.png,17366 +images-27970.png,17367 +images-27971.png,17368 +images-27972.png,17369 +images-27973.png,17370 +images-27974.png,17371 +images-27975.png,17372 +images-27976.png,17373 +images-27977.png,17374 +images-27978.png,17375 +images-27979.png,17376 +images-27980.png,17377 +images-27981.png,17378 +images-27982.png,17379 +images-27983.png,17380 +images-27984.png,17381 +images-27985.png,17382 +images-27986.png,17383 +images-27987.png,17384 +images-27988.png,17385 +images-27989.png,17386 +images-27990.png,17387 +images-27991.png,17388 +images-27992.png,17389 +images-27993.png,17390 +images-27994.png,17391 +images-27995.png,17392 +images-27996.png,17393 +images-27997.png,17394 +images-27998.png,17395 +images-27999.png,17396 +images-28000.png,17397 +images-28001.png,17398 +images-28002.png,17399 +images-28003.png,17400 +images-28004.png,17401 +images-28005.png,17402 +images-28006.png,17403 +images-28007.png,17404 +images-28008.png,17405 +images-28009.png,17406 +images-28010.png,17407 +images-28011.png,17408 +images-28012.png,17409 +images-28013.png,17410 +images-28014.png,17411 +images-28015.png,17412 +images-28016.png,17413 +images-28017.png,17414 +images-28018.png,17415 +images-28019.png,17416 +images-28020.png,17417 +images-28021.png,17418 +images-28022.png,17419 +images-28023.png,17420 +images-28024.png,17421 +images-28025.png,17422 +images-28026.png,17423 +images-28027.png,17424 +images-28028.png,17425 +images-28029.png,17426 +images-28030.png,17427 +images-28031.png,17428 +images-28032.png,17429 +images-28033.png,17430 +images-28034.png,17431 +images-28035.png,17432 +images-28036.png,17433 +images-28037.png,17434 +images-28038.png,17435 +images-28039.png,17436 +images-28040.png,17437 +images-28041.png,17438 +images-28042.png,17439 +images-28043.png,17440 +images-28044.png,17441 +images-28045.png,17442 +images-28046.png,17443 +images-28047.png,17444 +images-28048.png,17445 +images-28049.png,17446 +images-28050.png,17447 +images-28051.png,17448 +images-28052.png,17449 +images-28053.png,17450 +images-28054.png,17451 +images-28055.png,17452 +images-28056.png,17453 +images-28057.png,17454 +images-28058.png,17455 +images-28059.png,17456 +images-28060.png,17457 +images-28061.png,17458 +images-28062.png,17459 +images-28063.png,17460 +images-28064.png,17461 +images-28065.png,17462 +images-28066.png,17463 +images-28067.png,17464 +images-28068.png,17465 +images-28069.png,17466 +images-28070.png,17467 +images-28071.png,17468 +images-28072.png,17469 +images-28073.png,17470 +images-28074.png,17471 +images-28075.png,17472 +images-28076.png,17473 +images-28077.png,17474 +images-28078.png,17475 +images-28079.png,17476 +images-28080.png,17477 +images-28081.png,17478 +images-28082.png,17479 +images-28083.png,17480 +images-28084.png,17481 +images-28085.png,17482 +images-28086.png,17483 +images-28087.png,17484 +images-28088.png,17485 +images-28089.png,17486 +images-28090.png,17487 +images-28091.png,17488 +images-28092.png,17489 +images-28093.png,17490 +images-28094.png,17491 +images-28095.png,17492 +images-28096.png,17493 +images-28097.png,17494 +images-28098.png,17495 +images-28099.png,17496 +images-28100.png,17497 +images-28101.png,17498 +images-28102.png,17499 +images-28103.png,17500 +images-28104.png,17501 +images-28105.png,17502 +images-28106.png,17503 +images-28107.png,17504 +images-28108.png,17505 +images-28109.png,17506 +images-28110.png,17507 +images-28111.png,17508 +images-28112.png,17509 +images-28113.png,17510 +images-28114.png,17511 +images-28115.png,17512 +images-28116.png,17513 +images-28117.png,17514 +images-28118.png,17515 +images-28119.png,17516 +images-28120.png,17517 +images-28121.png,17518 +images-28122.png,17519 +images-28123.png,17520 +images-28124.png,17521 +images-28125.png,17522 +images-28126.png,17523 +images-28127.png,17524 +images-28128.png,17525 +images-28129.png,17526 +images-28130.png,17527 +images-28131.png,17528 +images-28132.png,17529 +images-28133.png,17530 +images-28134.png,17531 +images-28135.png,17532 +images-28136.png,17533 +images-28137.png,17534 +images-28138.png,17535 +images-28139.png,17536 +images-28140.png,17537 +images-28141.png,17538 +images-28142.png,17539 +images-28143.png,17540 +images-28144.png,17541 +images-28145.png,17542 +images-28146.png,17543 +images-28147.png,17544 +images-28148.png,17545 +images-28149.png,17546 +images-28150.png,17547 +images-28151.png,17548 +images-28152.png,17549 +images-28153.png,17550 +images-28154.png,17551 +images-28155.png,17552 +images-28156.png,17553 +images-28157.png,17554 +images-28158.png,17555 +images-28159.png,17556 +images-28160.png,17557 +images-28161.png,17558 +images-28162.png,17559 +images-28163.png,17560 +images-28164.png,17561 +images-28165.png,17562 +images-28166.png,17563 +images-28167.png,17564 +images-28168.png,17565 +images-28169.png,17566 +images-28170.png,17567 +images-28171.png,17568 +images-28172.png,17569 +images-28173.png,17570 +images-28174.png,17571 +images-28175.png,17572 +images-28176.png,17573 +images-28177.png,17574 +images-28178.png,17575 +images-28179.png,17576 +images-28180.png,17577 +images-28181.png,17578 +images-28182.png,17579 +images-28183.png,17580 +images-28184.png,17581 +images-28185.png,17582 +images-28186.png,17583 +images-28187.png,17584 +images-28188.png,17585 +images-28189.png,17586 +images-28190.png,17587 +images-28191.png,17588 +images-28192.png,17589 +images-28193.png,17590 +images-28194.png,17591 +images-28195.png,17592 +images-28196.png,17593 +images-28197.png,17594 +images-28198.png,17595 +images-28199.png,17596 +images-28200.png,17597 +images-28201.png,17598 +images-28202.png,17599 +images-28203.png,17600 +images-28204.png,17601 +images-28205.png,17602 +images-28206.png,17603 +images-28207.png,17604 +images-28208.png,17605 +images-28209.png,17606 +images-28210.png,17607 +images-28211.png,17608 +images-28212.png,17609 +images-28213.png,17610 +images-28214.png,17611 +images-28215.png,17612 +images-28216.png,17613 +images-28217.png,17614 +images-28218.png,17615 +images-28219.png,17616 +images-28220.png,17617 +images-28221.png,17618 +images-28222.png,17619 +images-28223.png,17620 +images-28224.png,17621 +images-28225.png,17622 +images-28226.png,17623 +images-28227.png,17624 +images-28228.png,17625 +images-28229.png,17626 +images-28230.png,17627 +images-28231.png,17628 +images-28232.png,17629 +images-28233.png,17630 +images-28234.png,17631 +images-28235.png,17632 +images-28236.png,17633 +images-28237.png,17634 +images-28238.png,17635 +images-28239.png,17636 +images-28240.png,17637 +images-28241.png,17638 +images-28242.png,17639 +images-28243.png,17640 +images-28244.png,17641 +images-28245.png,17642 +images-28246.png,17643 +images-28247.png,17644 +images-28248.png,17645 +images-28249.png,17646 +images-28250.png,17647 +images-28251.png,17648 +images-28252.png,17649 +images-28253.png,17650 +images-28254.png,17651 +images-28255.png,17652 +images-28256.png,17653 +images-28257.png,17654 +images-28258.png,17655 +images-28259.png,17656 +images-28260.png,17657 +images-28261.png,17658 +images-28262.png,17659 +images-28263.png,17660 +images-28264.png,17661 +images-28265.png,17662 +images-28266.png,17663 +images-28267.png,17664 +images-28268.png,17665 +images-28269.png,17666 +images-28270.png,17667 +images-28271.png,17668 +images-28272.png,17669 +images-28273.png,17670 +images-28274.png,17671 +images-28275.png,17672 +images-28276.png,17673 +images-28277.png,17674 +images-28278.png,17675 +images-28279.png,17676 +images-28280.png,17677 +images-28281.png,17678 +images-28282.png,17679 +images-28283.png,17680 +images-28284.png,17681 +images-28285.png,17682 +images-28286.png,17683 +images-28287.png,17684 +images-28288.png,17685 +images-28289.png,17686 +images-28290.png,17687 +images-28291.png,17688 +images-28292.png,17689 +images-28293.png,17690 +images-28294.png,17691 +images-28295.png,17692 +images-28296.png,17693 +images-28297.png,17694 +images-28298.png,17695 +images-28299.png,17696 +images-28300.png,17697 +images-28301.png,17698 +images-28302.png,17699 +images-28303.png,17700 +images-28304.png,17701 +images-28305.png,17702 +images-28306.png,17703 +images-28307.png,17704 +images-28308.png,17705 +images-28309.png,17706 +images-28310.png,17707 +images-28311.png,17708 +images-28312.png,17709 +images-28313.png,17710 +images-28314.png,17711 +images-28315.png,17712 +images-28316.png,17713 +images-28317.png,17714 +images-28318.png,17715 +images-28319.png,17716 +images-28320.png,17717 +images-28321.png,17718 +images-28322.png,17719 +images-28323.png,17720 +images-28324.png,17721 +images-28325.png,17722 +images-28326.png,17723 +images-28327.png,17724 +images-28328.png,17725 +images-28329.png,17726 +images-28330.png,17727 +images-28331.png,17728 +images-28332.png,17729 +images-28333.png,17730 +images-28334.png,17731 +images-28335.png,17732 +images-28336.png,17733 +images-28337.png,17734 +images-28338.png,17735 +images-28339.png,17736 +images-28340.png,17737 +images-28341.png,17738 +images-28342.png,17739 +images-28343.png,17740 +images-28344.png,17741 +images-28345.png,17742 +images-28346.png,17743 +images-28347.png,17744 +images-28348.png,17745 +images-28349.png,17746 +images-28350.png,17747 +images-28351.png,17748 +images-28352.png,17749 +images-28353.png,17750 +images-28354.png,17751 +images-28355.png,17752 +images-28356.png,17753 +images-28357.png,17754 +images-28358.png,17755 +images-28359.png,17756 +images-28360.png,17757 +images-28361.png,17758 +images-28362.png,17759 +images-28363.png,17760 +images-28364.png,17761 +images-28365.png,17762 +images-28366.png,17763 +images-28367.png,17764 +images-28368.png,17765 +images-28369.png,17766 +images-28370.png,17767 +images-28371.png,17768 +images-28372.png,17769 +images-28373.png,17770 +images-28374.png,17771 +images-28375.png,17772 +images-28376.png,17773 +images-28377.png,17774 +images-28378.png,17775 +images-28379.png,17776 +images-28380.png,17777 +images-28381.png,17778 +images-28382.png,17779 +images-28383.png,17780 +images-28384.png,17781 +images-28385.png,17782 +images-28386.png,17783 +images-28387.png,17784 +images-28388.png,17785 +images-28389.png,17786 +images-28390.png,17787 +images-28391.png,17788 +images-28392.png,17789 +images-28393.png,17790 +images-28394.png,17791 +images-28395.png,17792 +images-28396.png,17793 +images-28397.png,17794 +images-28398.png,17795 +images-28399.png,17796 +images-28400.png,17797 +images-28401.png,17798 +images-28402.png,17799 +images-28403.png,17800 +images-28404.png,17801 +images-28405.png,17802 +images-28406.png,17803 +images-28407.png,17804 +images-28408.png,17805 +images-28409.png,17806 +images-28410.png,17807 +images-28411.png,17808 +images-28412.png,17809 +images-28413.png,17810 +images-28414.png,17811 +images-28415.png,17812 +images-28416.png,17813 +images-28417.png,17814 +images-28418.png,17815 +images-28419.png,17816 +images-28420.png,17817 +images-28421.png,17818 +images-28422.png,17819 +images-28423.png,17820 +images-28424.png,17821 +images-28425.png,17822 +images-28426.png,17823 +images-28427.png,17824 +images-28428.png,17825 +images-28429.png,17826 +images-28430.png,17827 +images-28431.png,17828 +images-28432.png,17829 +images-28433.png,17830 +images-28434.png,17831 +images-28435.png,17832 +images-28436.png,17833 +images-28437.png,17834 +images-28438.png,17835 +images-28439.png,17836 +images-28440.png,17837 +images-28441.png,17838 +images-28442.png,17839 +images-28443.png,17840 +images-28444.png,17841 +images-28445.png,17842 +images-28446.png,17843 +images-28447.png,17844 +images-28448.png,17845 +images-28449.png,17846 +images-28450.png,17847 +images-28451.png,17848 +images-28452.png,17849 +images-28453.png,17850 +images-28454.png,17851 +images-28455.png,17852 +images-28456.png,17853 +images-28457.png,17854 +images-28458.png,17855 +images-28459.png,17856 +images-28460.png,17857 +images-28461.png,17858 +images-28462.png,17859 +images-28463.png,17860 +images-28464.png,17861 +images-28465.png,17862 +images-28466.png,17863 +images-28467.png,17864 +images-28468.png,17865 +images-28469.png,17866 +images-28470.png,17867 +images-28471.png,17868 +images-28472.png,17869 +images-28473.png,17870 +images-28474.png,17871 +images-28475.png,17872 +images-28476.png,17873 +images-28477.png,17874 +images-28478.png,17875 +images-28479.png,17876 +images-28480.png,17877 +images-28481.png,17878 +images-28482.png,17879 +images-28483.png,17880 +images-28484.png,17881 +images-28485.png,17882 +images-28486.png,17883 +images-28487.png,17884 +images-28488.png,17885 +images-28489.png,17886 +images-28490.png,17887 +images-28491.png,17888 +images-28492.png,17889 +images-28493.png,17890 +images-28494.png,17891 +images-28495.png,17892 +images-28496.png,17893 +images-28497.png,17894 +images-28498.png,17895 +images-28499.png,17896 +images-28500.png,17897 +images-28501.png,17898 +images-28502.png,17899 +images-28503.png,17900 +images-28504.png,17901 +images-28505.png,17902 +images-28506.png,17903 +images-28507.png,17904 +images-28508.png,17905 +images-28509.png,17906 +images-28510.png,17907 +images-28511.png,17908 +images-28512.png,17909 +images-28513.png,17910 +images-28514.png,17911 +images-28515.png,17912 +images-28516.png,17913 +images-28517.png,17914 +images-28518.png,17915 +images-28519.png,17916 +images-28520.png,17917 +images-28521.png,17918 +images-28522.png,17919 +images-28523.png,17920 +images-28524.png,17921 +images-28525.png,17922 +images-28526.png,17923 +images-28527.png,17924 +images-28528.png,17925 +images-28529.png,17926 +images-28530.png,17927 +images-28531.png,17928 +images-28532.png,17929 +images-28533.png,17930 +images-28534.png,17931 +images-28535.png,17932 +images-28536.png,17933 +images-28537.png,17934 +images-28538.png,17935 +images-28539.png,17936 +images-28540.png,17937 +images-28541.png,17938 +images-28542.png,17939 +images-28543.png,17940 +images-28544.png,17941 +images-28545.png,17942 +images-28546.png,17943 +images-28547.png,17944 +images-28548.png,17945 +images-28549.png,17946 +images-28550.png,17947 +images-28551.png,17948 +images-28552.png,17949 +images-28553.png,17950 +images-28554.png,17951 +images-28555.png,17952 +images-28556.png,17953 +images-28557.png,17954 +images-28558.png,17955 +images-28559.png,17956 +images-28560.png,17957 +images-28561.png,17958 +images-28562.png,17959 +images-28563.png,17960 +images-28564.png,17961 +images-28565.png,17962 +images-28566.png,17963 +images-28567.png,17964 +images-28568.png,17965 +images-28569.png,17966 +images-28570.png,17967 +images-28571.png,17968 +images-28572.png,17969 +images-28573.png,17970 +images-28574.png,17971 +images-28575.png,17972 +images-28576.png,17973 +images-28577.png,17974 +images-28578.png,17975 +images-28579.png,17976 +images-28580.png,17977 +images-28581.png,17978 +images-28582.png,17979 +images-28583.png,17980 +images-28584.png,17981 +images-28585.png,17982 +images-28586.png,17983 +images-28587.png,17984 +images-28588.png,17985 +images-28589.png,17986 +images-28590.png,17987 +images-28591.png,17988 +images-28592.png,17989 +images-28593.png,17990 +images-28594.png,17991 +images-28595.png,17992 +images-28596.png,17993 +images-28597.png,17994 +images-28598.png,17995 +images-28599.png,17996 +images-28600.png,17997 +images-28601.png,17998 +images-28602.png,17999 +images-28603.png,18000 +images-28604.png,18001 +images-28605.png,18002 +images-28606.png,18003 +images-28607.png,18004 +images-28608.png,18005 +images-28609.png,18006 +images-28610.png,18007 +images-28611.png,18008 +images-28612.png,18009 +images-28613.png,18010 +images-28614.png,18011 +images-28615.png,18012 +images-28616.png,18013 +images-28617.png,18014 +images-28618.png,18015 +images-28619.png,18016 +images-28620.png,18017 +images-28621.png,18018 +images-28622.png,18019 +images-28623.png,18020 +images-28624.png,18021 +images-28625.png,18022 +images-28626.png,18023 +images-28627.png,18024 +images-28628.png,18025 +images-28629.png,18026 +images-28630.png,18027 +images-28631.png,18028 +images-28632.png,18029 +images-28633.png,18030 +images-28634.png,18031 +images-28635.png,18032 +images-28636.png,18033 +images-28637.png,18034 +images-28638.png,18035 +images-28639.png,18036 +images-28640.png,18037 +images-28641.png,18038 +images-28642.png,18039 +images-28643.png,18040 +images-28644.png,18041 +images-28645.png,18042 +images-28646.png,18043 +images-28647.png,18044 +images-28648.png,18045 +images-28649.png,18046 +images-28650.png,18047 +images-28651.png,18048 +images-28652.png,18049 +images-28653.png,18050 +images-28654.png,18051 +images-28655.png,18052 +images-28656.png,18053 +images-28657.png,18054 +images-28658.png,18055 +images-28659.png,18056 +images-28660.png,18057 +images-28661.png,18058 +images-28662.png,18059 +images-28663.png,18060 +images-28664.png,18061 +images-28665.png,18062 +images-28666.png,18063 +images-28667.png,18064 +images-28668.png,18065 +images-28669.png,18066 +images-28670.png,18067 +images-28671.png,18068 +images-28672.png,18069 +images-28673.png,18070 +images-28674.png,18071 +images-28675.png,18072 +images-28676.png,18073 +images-28677.png,18074 +images-28678.png,18075 +images-28679.png,18076 +images-28680.png,18077 +images-28681.png,18078 +images-28682.png,18079 +images-28683.png,18080 +images-28684.png,18081 +images-28685.png,18082 +images-28686.png,18083 +images-28693.png,18084 +images-28694.png,18085 +images-28695.png,18086 +images-28696.png,18087 +images-28697.png,18088 +images-28698.png,18089 +images-28699.png,18090 +images-28700.png,18091 +images-28701.png,18092 +images-28702.png,18093 +images-28703.png,18094 +images-28704.png,18095 +images-28705.png,18096 +images-28706.png,18097 +images-28707.png,18098 +images-28708.png,18099 +images-28709.png,18100 +images-28710.png,18101 +images-28711.png,18102 +images-28712.png,18103 +images-28713.png,18104 +images-28714.png,18105 +images-28715.png,18106 +images-28716.png,18107 +images-28717.png,18108 +images-28718.png,18109 +images-28719.png,18110 +images-28720.png,18111 +images-28721.png,18112 +images-28722.png,18113 +images-28723.png,18114 +images-28724.png,18115 +images-28725.png,18116 +images-28726.png,18117 +images-28727.png,18118 +images-28728.png,18119 +images-28729.png,18120 +images-28730.png,18121 +images-28731.png,18122 +images-28732.png,18123 +images-28733.png,18124 +images-28734.png,18125 +images-28735.png,18126 +images-28736.png,18127 +images-28737.png,18128 +images-28738.png,18129 +images-28739.png,18130 +images-28740.png,18131 +images-28741.png,18132 +images-28742.png,18133 +images-28743.png,18134 +images-28744.png,18135 +images-28745.png,18136 +images-28746.png,18137 +images-28747.png,18138 +images-28748.png,18139 +images-28749.png,18140 +images-28750.png,18141 +images-28751.png,18142 +images-28752.png,18143 +images-28753.png,18144 +images-28754.png,18145 +images-28755.png,18146 +images-28756.png,18147 +images-28757.png,18148 +images-28758.png,18149 +images-28759.png,18150 +images-28760.png,18151 +images-28761.png,18152 +images-28762.png,18153 +images-28763.png,18154 +images-28764.png,18155 +images-28765.png,18156 +images-28766.png,18157 +images-28767.png,18158 +images-28768.png,18159 +images-28769.png,18160 +images-28770.png,18161 +images-28771.png,18162 +images-28772.png,18163 +images-28773.png,18164 +images-28774.png,18165 +images-28775.png,18166 +images-28776.png,18167 +images-28777.png,18168 +images-28778.png,18169 +images-28779.png,18170 +images-28780.png,18171 +images-28781.png,18172 +images-28782.png,18173 +images-28783.png,18174 +images-28784.png,18175 +images-28785.png,18176 +images-28786.png,18177 +images-28787.png,18178 +images-28788.png,18179 +images-28789.png,18180 +images-28790.png,18181 +images-28791.png,18182 +images-28792.png,18183 +images-28793.png,18184 +images-28794.png,18185 +images-28795.png,18186 +images-28796.png,18187 +images-28797.png,18188 +images-28798.png,18189 +images-28799.png,18190 +images-28800.png,18191 +images-28801.png,18192 +images-28802.png,18193 +images-28803.png,18194 +images-28804.png,18195 +images-28805.png,18196 +images-28806.png,18197 +images-28807.png,18198 +images-28808.png,18199 +images-28809.png,18200 +images-28810.png,18201 +images-28811.png,18202 +images-28812.png,18203 +images-28813.png,18204 +images-28814.png,18205 +images-28815.png,18206 +images-28816.png,18207 +images-28817.png,18208 +images-28818.png,18209 +images-28819.png,18210 +images-28820.png,18211 +images-28821.png,18212 +images-28822.png,18213 +images-28823.png,18214 +images-28824.png,18215 +images-28825.png,18216 +images-28826.png,18217 +images-28827.png,18218 +images-28828.png,18219 +images-28829.png,18220 +images-28830.png,18221 +images-28831.png,18222 +images-28832.png,18223 +images-28833.png,18224 +images-28834.png,18225 +images-28835.png,18226 +images-28836.png,18227 +images-28837.png,18228 +images-28838.png,18229 +images-28839.png,18230 +images-28840.png,18231 +images-28841.png,18232 +images-28842.png,18233 +images-28843.png,18234 +images-28844.png,18235 +images-28845.png,18236 +images-28846.png,18237 +images-28847.png,18238 +images-28848.png,18239 +images-28849.png,18240 +images-28850.png,18241 +images-28851.png,18242 +images-28852.png,18243 +images-28853.png,18244 +images-28854.png,18245 +images-28855.png,18246 +images-28856.png,18247 +images-28857.png,18248 +images-28858.png,18249 +images-28859.png,18250 +images-28860.png,18251 +images-28861.png,18252 +images-28862.png,18253 +images-28863.png,18254 +images-28864.png,18255 +images-28865.png,18256 +images-28866.png,18257 +images-28867.png,18258 +images-28868.png,18259 +images-28869.png,18260 +images-28870.png,18261 +images-28871.png,18262 +images-28872.png,18263 +images-28873.png,18264 +images-28874.png,18265 +images-28875.png,18266 +images-28876.png,18267 +images-28877.png,18268 +images-28878.png,18269 +images-28879.png,18270 +images-28880.png,18271 +images-28881.png,18272 +images-28882.png,18273 +images-28883.png,18274 +images-28884.png,18275 +images-28885.png,18276 +images-28886.png,18277 +images-28887.png,18278 +images-28888.png,18279 +images-28889.png,18280 +images-28890.png,18281 +images-28891.png,18282 +images-28892.png,18283 +images-28893.png,18284 +images-28894.png,18285 +images-28895.png,18286 +images-28896.png,18287 +images-28897.png,18288 +images-28898.png,18289 +images-28899.png,18290 +images-28900.png,18291 +images-28901.png,18292 +images-28902.png,18293 +images-28903.png,18294 +images-28904.png,18295 +images-28905.png,18296 +images-28906.png,18297 +images-28907.png,18298 +images-28908.png,18299 +images-28909.png,18300 +images-28910.png,18301 +images-28911.png,18302 +images-28912.png,18303 +images-28913.png,18304 +images-28914.png,18305 +images-28915.png,18306 +images-28916.png,18307 +images-28923.png,18308 +images-28924.png,18309 +images-28925.png,18310 +images-28926.png,18311 +images-28927.png,18312 +images-28928.png,18313 +images-28929.png,18314 +images-28930.png,18315 +images-28931.png,18316 +images-28932.png,18317 +images-28933.png,18318 +images-28934.png,18319 +images-28935.png,18320 +images-28936.png,18321 +images-28937.png,18322 +images-28938.png,18323 +images-28939.png,18324 +images-28940.png,18325 +images-28941.png,18326 +images-28942.png,18327 +images-28943.png,18328 +images-28944.png,18329 +images-28945.png,18330 +images-28946.png,18331 +images-28947.png,18332 +images-28948.png,18333 +images-28949.png,18334 +images-28950.png,18335 +images-28951.png,18336 +images-29117.png,18337 +images-29118.png,18338 +images-29119.png,18339 +images-29120.png,18340 +images-29121.png,18341 +images-29122.png,18342 +images-29123.png,18343 +images-29124.png,18344 +images-29125.png,18345 +images-29126.png,18346 +images-29127.png,18347 +images-29128.png,18348 +images-29129.png,18349 +images-29130.png,18350 +images-29131.png,18351 +images-29132.png,18352 +images-29133.png,18353 +images-29134.png,18354 +images-29135.png,18355 +images-29136.png,18356 +images-29137.png,18357 +images-29138.png,18358 +images-29139.png,18359 +images-29140.png,18360 +images-29141.png,18361 +images-29142.png,18362 +images-29143.png,18363 +images-29144.png,18364 +images-29145.png,18365 +images-29146.png,18366 +images-29147.png,18367 +images-29148.png,18368 +images-29149.png,18369 +images-29150.png,18370 +images-29151.png,18371 +images-29152.png,18372 +images-29153.png,18373 +images-29154.png,18374 +images-29155.png,18375 +images-29156.png,18376 +images-29157.png,18377 +images-29158.png,18378 +images-29159.png,18379 +images-29160.png,18380 +images-29161.png,18381 +images-29162.png,18382 +images-29163.png,18383 +images-29164.png,18384 +images-29165.png,18385 +images-29166.png,18386 +images-29167.png,18387 +images-29168.png,18388 +images-29169.png,18389 +images-29170.png,18390 +images-29171.png,18391 +images-29172.png,18392 +images-29173.png,18393 +images-29174.png,18394 +images-29175.png,18395 +images-29176.png,18396 +images-29177.png,18397 +images-29178.png,18398 +images-29179.png,18399 +images-29180.png,18400 +images-29181.png,18401 +images-29182.png,18402 +images-29183.png,18403 +images-29184.png,18404 +images-29185.png,18405 +images-29186.png,18406 +images-29187.png,18407 +images-29188.png,18408 +images-29189.png,18409 +images-29190.png,18410 +images-29191.png,18411 +images-29192.png,18412 +images-29193.png,18413 +images-29194.png,18414 +images-29195.png,18415 +images-29196.png,18416 +images-29197.png,18417 +images-29198.png,18418 +images-29199.png,18419 +images-29200.png,18420 +images-29201.png,18421 +images-29202.png,18422 +images-29203.png,18423 +images-29204.png,18424 +images-29205.png,18425 +images-29206.png,18426 +images-29207.png,18427 +images-29208.png,18428 +images-29209.png,18429 +images-29210.png,18430 +images-29211.png,18431 +images-29212.png,18432 +images-29213.png,18433 +images-29214.png,18434 +images-29215.png,18435 +images-29216.png,18436 +images-29217.png,18437 +images-29218.png,18438 +images-29219.png,18439 +images-29220.png,18440 +images-29221.png,18441 +images-29222.png,18442 +images-29223.png,18443 +images-29224.png,18444 +images-29225.png,18445 +images-29226.png,18446 +images-29227.png,18447 +images-29228.png,18448 +images-29229.png,18449 +images-29230.png,18450 +images-29231.png,18451 +images-29232.png,18452 +images-29233.png,18453 +images-29234.png,18454 +images-29235.png,18455 +images-29236.png,18456 +images-29237.png,18457 +images-29238.png,18458 +images-29239.png,18459 +images-29240.png,18460 +images-29241.png,18461 +images-29242.png,18462 +images-29243.png,18463 +images-29244.png,18464 +images-29245.png,18465 +images-29246.png,18466 +images-29247.png,18467 +images-29248.png,18468 +images-29249.png,18469 +images-29250.png,18470 +images-29251.png,18471 +images-29252.png,18472 +images-29253.png,18473 +images-29254.png,18474 +images-29255.png,18475 +images-29256.png,18476 +images-29257.png,18477 +images-29258.png,18478 +images-29259.png,18479 +images-29260.png,18480 +images-29261.png,18481 +images-29262.png,18482 +images-29263.png,18483 +images-29264.png,18484 +images-29265.png,18485 +images-29266.png,18486 +images-29267.png,18487 +images-29268.png,18488 +images-29269.png,18489 +images-29270.png,18490 +images-29271.png,18491 +images-29272.png,18492 +images-29273.png,18493 +images-29274.png,18494 +images-29275.png,18495 +images-29276.png,18496 +images-29277.png,18497 +images-29278.png,18498 +images-29279.png,18499 +images-29280.png,18500 +images-29281.png,18501 +images-29282.png,18502 +images-29283.png,18503 +images-29284.png,18504 +images-29285.png,18505 +images-29286.png,18506 +images-29287.png,18507 +images-29288.png,18508 +images-29289.png,18509 +images-29290.png,18510 +images-29291.png,18511 +images-29292.png,18512 +images-29293.png,18513 +images-29294.png,18514 +images-29295.png,18515 +images-29296.png,18516 +images-29297.png,18517 +images-29298.png,18518 +images-29299.png,18519 +images-29300.png,18520 +images-29301.png,18521 +images-29302.png,18522 +images-29303.png,18523 +images-29304.png,18524 +images-29305.png,18525 +images-29306.png,18526 +images-29307.png,18527 +images-29308.png,18528 +images-29309.png,18529 +images-29310.png,18530 +images-29311.png,18531 +images-29312.png,18532 +images-29313.png,18533 +images-29314.png,18534 +images-29315.png,18535 +images-29316.png,18536 +images-29317.png,18537 +images-29318.png,18538 +images-29319.png,18539 +images-29320.png,18540 +images-29331.png,18541 +images-29332.png,18542 +images-29333.png,18543 +images-29334.png,18544 +images-29335.png,18545 +images-29336.png,18546 +images-29337.png,18547 +images-29338.png,18548 +images-29339.png,18549 +images-29340.png,18550 +images-29341.png,18551 +images-29342.png,18552 +images-29343.png,18553 +images-29344.png,18554 +images-29345.png,18555 +images-29346.png,18556 +images-29347.png,18557 +images-29348.png,18558 +images-29349.png,18559 +images-29350.png,18560 +images-29351.png,18561 +images-29352.png,18562 +images-29353.png,18563 +images-29354.png,18564 +images-29355.png,18565 +images-29356.png,18566 +images-29357.png,18567 +images-29358.png,18568 +images-29359.png,18569 +images-29360.png,18570 +images-29361.png,18571 +images-29362.png,18572 +images-29363.png,18573 +images-29364.png,18574 +images-29365.png,18575 +images-29366.png,18576 +images-29367.png,18577 +images-29368.png,18578 +images-29369.png,18579 +images-29370.png,18580 +images-29371.png,18581 +images-29372.png,18582 +images-29373.png,18583 +images-29374.png,18584 +images-29375.png,18585 +images-29376.png,18586 +images-29377.png,18587 +images-29378.png,18588 +images-29379.png,18589 +images-29380.png,18590 +images-29381.png,18591 +images-29382.png,18592 +images-29383.png,18593 +images-29421.png,18594 +images-29422.png,18595 +images-29423.png,18596 +images-29424.png,18597 +images-29425.png,18598 +images-29426.png,18599 +images-29427.png,18600 +images-29428.png,18601 +images-29429.png,18602 +images-29430.png,18603 +images-29431.png,18604 +images-29432.png,18605 +images-29433.png,18606 +images-29434.png,18607 +images-29435.png,18608 +images-29436.png,18609 +images-29437.png,18610 +images-29438.png,18611 +images-29439.png,18612 +images-29440.png,18613 +images-29441.png,18614 +images-29442.png,18615 +images-29443.png,18616 +images-29444.png,18617 +images-29445.png,18618 +images-29446.png,18619 +images-29447.png,18620 +images-29448.png,18621 +images-29449.png,18622 +images-29450.png,18623 +images-29451.png,18624 +images-29452.png,18625 +images-29453.png,18626 +images-29454.png,18627 +images-29455.png,18628 +images-29456.png,18629 +images-29457.png,18630 +images-29458.png,18631 +images-29459.png,18632 +images-29460.png,18633 +images-29461.png,18634 +images-29462.png,18635 +images-29463.png,18636 +images-29464.png,18637 +images-29465.png,18638 +images-29466.png,18639 +images-29467.png,18640 +images-29468.png,18641 +images-29469.png,18642 +images-29470.png,18643 +images-29471.png,18644 +images-29472.png,18645 +images-29473.png,18646 +images-29474.png,18647 +images-29475.png,18648 +images-29476.png,18649 +images-29477.png,18650 +images-29478.png,18651 +images-29479.png,18652 +images-29480.png,18653 +images-29481.png,18654 +images-29482.png,18655 +images-29483.png,18656 +images-29484.png,18657 +images-29485.png,18658 +images-29486.png,18659 +images-29487.png,18660 +images-29488.png,18661 +images-29489.png,18662 +images-29490.png,18663 +images-29491.png,18664 +images-29492.png,18665 +images-29493.png,18666 +images-29494.png,18667 +images-29495.png,18668 +images-29496.png,18669 +images-29497.png,18670 +images-29498.png,18671 +images-29499.png,18672 +images-29500.png,18673 +images-29501.png,18674 +images-29502.png,18675 +images-29503.png,18676 +images-29504.png,18677 +images-29505.png,18678 +images-29506.png,18679 +images-29507.png,18680 +images-29508.png,18681 +images-29509.png,18682 +images-29510.png,18683 +images-29511.png,18684 +images-29512.png,18685 +images-29513.png,18686 +images-29514.png,18687 +images-29515.png,18688 +images-29516.png,18689 +images-29517.png,18690 +images-29518.png,18691 +images-29519.png,18692 +images-29520.png,18693 +images-29521.png,18694 +images-29522.png,18695 +images-29523.png,18696 +images-29524.png,18697 +images-29532.png,18698 +images-29533.png,18699 +images-29534.png,18700 +images-29535.png,18701 +images-29536.png,18702 +images-29537.png,18703 +images-29538.png,18704 +images-29539.png,18705 +images-29540.png,18706 +images-29541.png,18707 +images-29542.png,18708 +images-29543.png,18709 +images-29544.png,18710 +images-29545.png,18711 +images-29546.png,18712 +images-29547.png,18713 +images-29548.png,18714 +images-29549.png,18715 +images-29550.png,18716 +images-29551.png,18717 +images-29552.png,18718 +images-29553.png,18719 +images-29554.png,18720 +images-29555.png,18721 +images-29556.png,18722 +images-29557.png,18723 +images-29558.png,18724 +images-29559.png,18725 +images-29560.png,18726 +images-29561.png,18727 +images-29562.png,18728 +images-29563.png,18729 +images-29564.png,18730 +images-29565.png,18731 +images-29566.png,18732 +images-29567.png,18733 +images-29568.png,18734 +images-29569.png,18735 +images-29570.png,18736 +images-29571.png,18737 +images-29572.png,18738 +images-29573.png,18739 +images-29574.png,18740 +images-29575.png,18741 +images-29576.png,18742 +images-29577.png,18743 +images-29578.png,18744 +images-29579.png,18745 +images-29580.png,18746 +images-29581.png,18747 +images-29582.png,18748 +images-29583.png,18749 +images-29584.png,18750 +images-29585.png,18751 +images-29586.png,18752 +images-29587.png,18753 +images-29588.png,18754 +images-29589.png,18755 +images-29590.png,18756 +images-29591.png,18757 +images-29592.png,18758 +images-29593.png,18759 +images-29594.png,18760 +images-29595.png,18761 +images-29596.png,18762 +images-29597.png,18763 +images-29598.png,18764 +images-29599.png,18765 +images-29600.png,18766 +images-29601.png,18767 +images-29602.png,18768 +images-29603.png,18769 +images-29604.png,18770 +images-29605.png,18771 +images-29606.png,18772 +images-29607.png,18773 +images-29608.png,18774 +images-29609.png,18775 +images-29610.png,18776 +images-29611.png,18777 +images-29612.png,18778 +images-29613.png,18779 +images-29614.png,18780 +images-29615.png,18781 +images-29616.png,18782 +images-29617.png,18783 +images-29618.png,18784 +images-29619.png,18785 +images-29620.png,18786 +images-29621.png,18787 +images-29622.png,18788 +images-29623.png,18789 +images-29624.png,18790 +images-29625.png,18791 +images-29626.png,18792 +images-29627.png,18793 +images-29628.png,18794 +images-29629.png,18795 +images-29630.png,18796 +images-29631.png,18797 +images-29632.png,18798 +images-29633.png,18799 +images-29634.png,18800 +images-29635.png,18801 +images-29636.png,18802 +images-29637.png,18803 +images-29638.png,18804 +images-29639.png,18805 +images-29640.png,18806 +images-29641.png,18807 +images-29642.png,18808 +images-29643.png,18809 +images-29644.png,18810 +images-29645.png,18811 +images-29646.png,18812 +images-29647.png,18813 +images-29648.png,18814 +images-29649.png,18815 +images-29650.png,18816 +images-29651.png,18817 +images-29652.png,18818 +images-29653.png,18819 +images-29654.png,18820 +images-29655.png,18821 +images-29656.png,18822 +images-29657.png,18823 +images-29658.png,18824 +images-29659.png,18825 +images-29660.png,18826 +images-29661.png,18827 +images-29662.png,18828 +images-29663.png,18829 +images-29664.png,18830 +images-29665.png,18831 +images-29666.png,18832 +images-29667.png,18833 +images-29668.png,18834 +images-29669.png,18835 +images-29670.png,18836 +images-29671.png,18837 +images-29672.png,18838 +images-29673.png,18839 +images-29674.png,18840 +images-29675.png,18841 +images-29676.png,18842 +images-29677.png,18843 +images-29678.png,18844 +images-29679.png,18845 +images-29680.png,18846 +images-29681.png,18847 +images-29682.png,18848 +images-29683.png,18849 +images-29684.png,18850 +images-29685.png,18851 +images-29686.png,18852 +images-29687.png,18853 +images-29688.png,18854 +images-29689.png,18855 +images-29690.png,18856 +images-29691.png,18857 +images-29692.png,18858 +images-29707.png,18859 +images-29708.png,18860 +images-29709.png,18861 +images-29710.png,18862 +images-29711.png,18863 +images-29712.png,18864 +images-29713.png,18865 +images-29714.png,18866 +images-29715.png,18867 +images-29716.png,18868 +images-29717.png,18869 +images-29718.png,18870 +images-29719.png,18871 +images-29720.png,18872 +images-29721.png,18873 +images-29722.png,18874 +images-29723.png,18875 +images-29724.png,18876 +images-29725.png,18877 +images-29726.png,18878 +images-29727.png,18879 +images-29728.png,18880 +images-29729.png,18881 +images-29730.png,18882 +images-29731.png,18883 +images-29732.png,18884 +images-29733.png,18885 +images-29734.png,18886 +images-29735.png,18887 +images-29736.png,18888 +images-29737.png,18889 +images-29738.png,18890 +images-29739.png,18891 +images-29740.png,18892 +images-29741.png,18893 +images-29742.png,18894 +images-29743.png,18895 +images-29744.png,18896 +images-29745.png,18897 +images-29746.png,18898 +images-29747.png,18899 +images-29748.png,18900 +images-29749.png,18901 +images-29750.png,18902 +images-29751.png,18903 +images-29752.png,18904 +images-29753.png,18905 +images-29754.png,18906 +images-29755.png,18907 +images-29756.png,18908 +images-29757.png,18909 +images-29758.png,18910 +images-29759.png,18911 +images-29760.png,18912 +images-29761.png,18913 +images-29762.png,18914 +images-29763.png,18915 +images-29764.png,18916 +images-29765.png,18917 +images-29766.png,18918 +images-29767.png,18919 +images-29768.png,18920 +images-29769.png,18921 +images-29770.png,18922 +images-29771.png,18923 +images-29772.png,18924 +images-29773.png,18925 +images-29774.png,18926 +images-29775.png,18927 +images-29776.png,18928 +images-29777.png,18929 +images-29778.png,18930 +images-29779.png,18931 +images-29780.png,18932 +images-29781.png,18933 +images-29782.png,18934 +images-29783.png,18935 +images-29784.png,18936 +images-29785.png,18937 +images-29786.png,18938 +images-29787.png,18939 +images-29788.png,18940 +images-29789.png,18941 +images-29790.png,18942 +images-29791.png,18943 +images-29792.png,18944 +images-29793.png,18945 +images-29794.png,18946 +images-29795.png,18947 +images-29796.png,18948 +images-29797.png,18949 +images-29798.png,18950 +images-29799.png,18951 +images-29800.png,18952 +images-29801.png,18953 +images-29802.png,18954 +images-29803.png,18955 +images-29804.png,18956 +images-29805.png,18957 +images-29806.png,18958 +images-29807.png,18959 +images-29808.png,18960 +images-29809.png,18961 +images-29810.png,18962 +images-29811.png,18963 +images-29812.png,18964 +images-29813.png,18965 +images-29814.png,18966 +images-29815.png,18967 +images-29816.png,18968 +images-29817.png,18969 +images-29818.png,18970 +images-29819.png,18971 +images-29820.png,18972 +images-29821.png,18973 +images-29822.png,18974 +images-29823.png,18975 +images-29824.png,18976 +images-29825.png,18977 +images-29826.png,18978 +images-29827.png,18979 +images-29828.png,18980 +images-29829.png,18981 +images-29830.png,18982 +images-29831.png,18983 +images-29832.png,18984 +images-29833.png,18985 +images-29834.png,18986 +images-29835.png,18987 +images-29836.png,18988 +images-29837.png,18989 +images-29838.png,18990 +images-29839.png,18991 +images-29840.png,18992 +images-29841.png,18993 +images-29842.png,18994 +images-29843.png,18995 +images-29844.png,18996 +images-29845.png,18997 +images-29846.png,18998 +images-29847.png,18999 +images-29848.png,19000 +images-29849.png,19001 +images-29850.png,19002 +images-29851.png,19003 +images-29852.png,19004 +images-29853.png,19005 +images-29854.png,19006 +images-29855.png,19007 +images-29856.png,19008 +images-29857.png,19009 +images-29858.png,19010 +images-29859.png,19011 +images-29860.png,19012 +images-29861.png,19013 +images-29862.png,19014 +images-29863.png,19015 +images-29864.png,19016 +images-29865.png,19017 +images-29866.png,19018 +images-29867.png,19019 +images-29868.png,19020 +images-29869.png,19021 +images-29870.png,19022 +images-29871.png,19023 +images-29872.png,19024 +images-29873.png,19025 +images-29874.png,19026 +images-29875.png,19027 +images-29876.png,19028 +images-29877.png,19029 +images-29878.png,19030 +images-29879.png,19031 +images-29880.png,19032 +images-29881.png,19033 +images-29882.png,19034 +images-29883.png,19035 +images-29884.png,19036 +images-29885.png,19037 +images-29886.png,19038 +images-29887.png,19039 +images-29888.png,19040 +images-29889.png,19041 +images-29890.png,19042 +images-29891.png,19043 +images-29892.png,19044 +images-29893.png,19045 +images-29894.png,19046 +images-29895.png,19047 +images-29896.png,19048 +images-29897.png,19049 +images-29898.png,19050 +images-29899.png,19051 +images-29900.png,19052 +images-29901.png,19053 +images-29902.png,19054 +images-29903.png,19055 +images-29904.png,19056 +images-29905.png,19057 +images-29906.png,19058 +images-29907.png,19059 +images-29908.png,19060 +images-29909.png,19061 +images-29910.png,19062 +images-29911.png,19063 +images-29912.png,19064 +images-29913.png,19065 +images-29914.png,19066 +images-29915.png,19067 +images-29916.png,19068 +images-29917.png,19069 +images-29918.png,19070 +images-29919.png,19071 +images-29920.png,19072 +images-29921.png,19073 +images-29922.png,19074 +images-29923.png,19075 +images-29924.png,19076 +images-29925.png,19077 +images-29926.png,19078 +images-29927.png,19079 +images-29928.png,19080 +images-29929.png,19081 +images-29930.png,19082 +images-29931.png,19083 +images-29932.png,19084 +images-29933.png,19085 +images-29934.png,19086 +images-29935.png,19087 +images-29936.png,19088 +images-29937.png,19089 +images-29938.png,19090 +images-29939.png,19091 +images-29940.png,19092 +images-29941.png,19093 +images-29942.png,19094 +images-29943.png,19095 +images-29944.png,19096 +images-29945.png,19097 +images-29946.png,19098 +images-29947.png,19099 +images-29948.png,19100 +images-29949.png,19101 +images-29950.png,19102 +images-29951.png,19103 +images-29952.png,19104 +images-29953.png,19105 +images-29954.png,19106 +images-29955.png,19107 +images-29956.png,19108 +images-29957.png,19109 +images-29958.png,19110 +images-29959.png,19111 +images-29960.png,19112 +images-29961.png,19113 +images-29962.png,19114 +images-29963.png,19115 +images-29964.png,19116 +images-29965.png,19117 +images-29966.png,19118 +images-29967.png,19119 +images-29968.png,19120 +images-29969.png,19121 +images-29970.png,19122 +images-29971.png,19123 +images-29972.png,19124 +images-29973.png,19125 +images-29981.png,19126 +images-29982.png,19127 +images-29983.png,19128 +images-29984.png,19129 +images-29985.png,19130 +images-29986.png,19131 +images-29987.png,19132 +images-29988.png,19133 +images-29989.png,19134 +images-29990.png,19135 +images-29991.png,19136 +images-29992.png,19137 +images-29993.png,19138 +images-30010.png,19139 +images-30011.png,19140 +images-30012.png,19141 +images-30013.png,19142 +images-30014.png,19143 +images-30015.png,19144 +images-30016.png,19145 +images-30017.png,19146 +images-30018.png,19147 +images-30019.png,19148 +images-30020.png,19149 +images-30021.png,19150 +images-30022.png,19151 +images-30023.png,19152 +images-30024.png,19153 +images-30025.png,19154 +images-30026.png,19155 +images-30027.png,19156 +images-30028.png,19157 +images-30029.png,19158 +images-30030.png,19159 +images-30031.png,19160 +images-30032.png,19161 +images-30033.png,19162 +images-30034.png,19163 +images-30035.png,19164 +images-30036.png,19165 +images-30037.png,19166 +images-30038.png,19167 +images-30039.png,19168 +images-30040.png,19169 +images-30041.png,19170 +images-30042.png,19171 +images-30043.png,19172 +images-30044.png,19173 +images-30045.png,19174 +images-30046.png,19175 +images-30047.png,19176 +images-30048.png,19177 +images-30049.png,19178 +images-30050.png,19179 +images-30051.png,19180 +images-30052.png,19181 +images-30053.png,19182 +images-30054.png,19183 +images-30055.png,19184 +images-30056.png,19185 +images-30057.png,19186 +images-30058.png,19187 +images-30059.png,19188 +images-30060.png,19189 +images-30061.png,19190 +images-30062.png,19191 +images-30063.png,19192 +images-30064.png,19193 +images-30065.png,19194 +images-30066.png,19195 +images-30067.png,19196 +images-30068.png,19197 +images-30069.png,19198 +images-30070.png,19199 +images-30071.png,19200 +images-30072.png,19201 +images-30091.png,19202 +images-30092.png,19203 +images-30093.png,19204 +images-30094.png,19205 +images-30095.png,19206 +images-30096.png,19207 +images-30097.png,19208 +images-30098.png,19209 +images-30099.png,19210 +images-30100.png,19211 +images-30101.png,19212 +images-30102.png,19213 +images-30106.png,19214 +images-30107.png,19215 +images-30108.png,19216 +images-30109.png,19217 +images-30110.png,19218 +images-30111.png,19219 +images-30112.png,19220 +images-30113.png,19221 +images-30114.png,19222 +images-30115.png,19223 +images-30116.png,19224 +images-30117.png,19225 +images-30118.png,19226 +images-30119.png,19227 +images-30120.png,19228 +images-30121.png,19229 +images-30122.png,19230 +images-30123.png,19231 +images-30124.png,19232 +images-30125.png,19233 +images-30126.png,19234 +images-30127.png,19235 +images-30128.png,19236 +images-30129.png,19237 +images-30130.png,19238 +images-30131.png,19239 +images-30132.png,19240 +images-30133.png,19241 +images-30134.png,19242 +images-30135.png,19243 +images-30136.png,19244 +images-30142.png,19245 +images-30143.png,19246 +images-30144.png,19247 +images-30145.png,19248 +images-30146.png,19249 +images-30147.png,19250 +images-30148.png,19251 +images-30149.png,19252 +images-30150.png,19253 +images-30151.png,19254 +images-30152.png,19255 +images-30153.png,19256 +images-30154.png,19257 +images-30155.png,19258 +images-30156.png,19259 +images-30157.png,19260 +images-30158.png,19261 +images-30159.png,19262 +images-30160.png,19263 +images-30161.png,19264 +images-30162.png,19265 +images-30163.png,19266 +images-30164.png,19267 +images-30165.png,19268 +images-30166.png,19269 +images-30167.png,19270 +images-30168.png,19271 +images-30169.png,19272 +images-30170.png,19273 +images-30171.png,19274 +images-30172.png,19275 +images-30173.png,19276 +images-30179.png,19277 +images-30180.png,19278 +images-30181.png,19279 +images-30182.png,19280 +images-30183.png,19281 +images-30184.png,19282 +images-30185.png,19283 +images-30186.png,19284 +images-30187.png,19285 +images-30188.png,19286 +images-30189.png,19287 +images-30190.png,19288 +images-30191.png,19289 +images-30192.png,19290 +images-30193.png,19291 +images-30194.png,19292 +images-30195.png,19293 +images-30196.png,19294 +images-30197.png,19295 +images-30198.png,19296 +images-30199.png,19297 +images-30200.png,19298 +images-30201.png,19299 +images-30202.png,19300 +images-30203.png,19301 +images-30211.png,19302 +images-30212.png,19303 +images-30213.png,19304 +images-30214.png,19305 +images-30215.png,19306 +images-30216.png,19307 +images-30217.png,19308 +images-30218.png,19309 +images-30219.png,19310 +images-30220.png,19311 +images-30221.png,19312 +images-30222.png,19313 +images-30223.png,19314 +images-30224.png,19315 +images-30225.png,19316 +images-30226.png,19317 +images-30227.png,19318 +images-30228.png,19319 +images-30229.png,19320 +images-30230.png,19321 +images-30231.png,19322 +images-30232.png,19323 +images-30233.png,19324 +images-30234.png,19325 +images-30235.png,19326 +images-30236.png,19327 +images-30237.png,19328 +images-30238.png,19329 +images-30239.png,19330 +images-30240.png,19331 +images-30241.png,19332 +images-30242.png,19333 +images-30243.png,19334 +images-30244.png,19335 +images-30245.png,19336 +images-30246.png,19337 +images-30247.png,19338 +images-30248.png,19339 +images-30249.png,19340 +images-30250.png,19341 +images-30251.png,19342 +images-30252.png,19343 +images-30253.png,19344 +images-30254.png,19345 +images-30255.png,19346 +images-30256.png,19347 +images-30257.png,19348 +images-30258.png,19349 +images-30259.png,19350 +images-30260.png,19351 +images-30261.png,19352 +images-30262.png,19353 +images-30263.png,19354 +images-30264.png,19355 +images-30265.png,19356 +images-30266.png,19357 +images-30267.png,19358 +images-30268.png,19359 +images-30269.png,19360 +images-30270.png,19361 +images-30271.png,19362 +images-30272.png,19363 +images-30273.png,19364 +images-30274.png,19365 +images-30275.png,19366 +images-30276.png,19367 +images-30277.png,19368 +images-30278.png,19369 +images-30279.png,19370 +images-30280.png,19371 +images-30281.png,19372 +images-30282.png,19373 +images-30283.png,19374 +images-30284.png,19375 +images-30285.png,19376 +images-30286.png,19377 +images-30287.png,19378 +images-30288.png,19379 +images-30289.png,19380 +images-30290.png,19381 +images-30291.png,19382 +images-30292.png,19383 +images-30293.png,19384 +images-30294.png,19385 +images-30295.png,19386 +images-30296.png,19387 +images-30297.png,19388 +images-30298.png,19389 +images-30299.png,19390 +images-30300.png,19391 +images-30301.png,19392 +images-30302.png,19393 +images-30303.png,19394 +images-30304.png,19395 +images-30305.png,19396 +images-30306.png,19397 +images-30307.png,19398 +images-30308.png,19399 +images-30309.png,19400 +images-30310.png,19401 +images-30311.png,19402 +images-30312.png,19403 +images-30313.png,19404 +images-30314.png,19405 +images-30315.png,19406 +images-30316.png,19407 +images-30317.png,19408 +images-30318.png,19409 +images-30319.png,19410 +images-30320.png,19411 +images-30321.png,19412 +images-30322.png,19413 +images-30323.png,19414 +images-30324.png,19415 +images-30325.png,19416 +images-30326.png,19417 +images-30327.png,19418 +images-30328.png,19419 +images-30329.png,19420 +images-30330.png,19421 +images-30331.png,19422 +images-30332.png,19423 +images-30333.png,19424 +images-30334.png,19425 +images-30335.png,19426 +images-30336.png,19427 +images-30337.png,19428 +images-30338.png,19429 +images-30339.png,19430 +images-30340.png,19431 +images-30341.png,19432 +images-30342.png,19433 +images-30343.png,19434 +images-30344.png,19435 +images-30345.png,19436 +images-30346.png,19437 +images-30347.png,19438 +images-30348.png,19439 +images-30349.png,19440 +images-30350.png,19441 +images-30351.png,19442 +images-30352.png,19443 +images-30353.png,19444 +images-30354.png,19445 +images-30355.png,19446 +images-30356.png,19447 +images-30357.png,19448 +images-30358.png,19449 +images-30359.png,19450 +images-30360.png,19451 +images-30361.png,19452 +images-30362.png,19453 +images-30363.png,19454 +images-30364.png,19455 +images-30365.png,19456 +images-30366.png,19457 +images-30367.png,19458 +images-30368.png,19459 +images-30369.png,19460 +images-30370.png,19461 +images-30371.png,19462 +images-30372.png,19463 +images-30373.png,19464 +images-30374.png,19465 +images-30375.png,19466 +images-30376.png,19467 +images-30377.png,19468 +images-30378.png,19469 +images-30379.png,19470 +images-30380.png,19471 +images-30381.png,19472 +images-30382.png,19473 +images-30383.png,19474 +images-30384.png,19475 +images-30385.png,19476 +images-30386.png,19477 +images-30387.png,19478 +images-30388.png,19479 +images-30389.png,19480 +images-30390.png,19481 +images-30391.png,19482 +images-30392.png,19483 +images-30393.png,19484 +images-30394.png,19485 +images-30395.png,19486 +images-30396.png,19487 +images-30397.png,19488 +images-30398.png,19489 +images-30399.png,19490 +images-30400.png,19491 +images-30401.png,19492 +images-30402.png,19493 +images-30403.png,19494 +images-30404.png,19495 +images-30405.png,19496 +images-30406.png,19497 +images-30407.png,19498 +images-30408.png,19499 +images-30409.png,19500 +images-30410.png,19501 +images-30411.png,19502 +images-30412.png,19503 +images-30516.png,19504 +images-30517.png,19505 +images-30518.png,19506 +images-30519.png,19507 +images-30520.png,19508 +images-30521.png,19509 +images-30522.png,19510 +images-30523.png,19511 +images-30524.png,19512 +images-30525.png,19513 +images-30526.png,19514 +images-30527.png,19515 +images-30528.png,19516 +images-30529.png,19517 +images-30530.png,19518 +images-30531.png,19519 +images-30532.png,19520 +images-30533.png,19521 +images-30534.png,19522 +images-30535.png,19523 +images-30536.png,19524 +images-30537.png,19525 +images-30538.png,19526 +images-30539.png,19527 +images-30540.png,19528 +images-30541.png,19529 +images-30542.png,19530 +images-30543.png,19531 +images-30544.png,19532 +images-30545.png,19533 +images-30546.png,19534 +images-30547.png,19535 +images-30548.png,19536 +images-30549.png,19537 +images-30550.png,19538 +images-30551.png,19539 +images-30552.png,19540 +images-30553.png,19541 +images-30554.png,19542 +images-30555.png,19543 +images-30556.png,19544 +images-30557.png,19545 +images-30558.png,19546 +images-30559.png,19547 +images-30560.png,19548 +images-30561.png,19549 +images-30562.png,19550 +images-30563.png,19551 +images-30564.png,19552 +images-30565.png,19553 +images-30566.png,19554 +images-30567.png,19555 +images-30568.png,19556 +images-30569.png,19557 +images-30570.png,19558 +images-30571.png,19559 +images-30572.png,19560 +images-30573.png,19561 +images-30574.png,19562 +images-30575.png,19563 +images-30576.png,19564 +images-30577.png,19565 +images-30578.png,19566 +images-30579.png,19567 +images-30580.png,19568 +images-30581.png,19569 +images-30582.png,19570 +images-30583.png,19571 +images-30584.png,19572 +images-30585.png,19573 +images-30586.png,19574 +images-30587.png,19575 +images-30588.png,19576 +images-30589.png,19577 +images-30590.png,19578 +images-30591.png,19579 +images-30592.png,19580 +images-30593.png,19581 +images-30594.png,19582 +images-30595.png,19583 +images-30596.png,19584 +images-30597.png,19585 +images-30598.png,19586 +images-30599.png,19587 +images-30600.png,19588 +images-30601.png,19589 +images-30602.png,19590 +images-30603.png,19591 +images-30604.png,19592 +images-30605.png,19593 +images-30606.png,19594 +images-30607.png,19595 +images-30608.png,19596 +images-30609.png,19597 +images-30610.png,19598 +images-30611.png,19599 +images-30612.png,19600 +images-30613.png,19601 +images-30614.png,19602 +images-30615.png,19603 +images-30616.png,19604 +images-30617.png,19605 +images-30618.png,19606 +images-30619.png,19607 +images-30620.png,19608 +images-30621.png,19609 +images-30622.png,19610 +images-30623.png,19611 +images-30624.png,19612 +images-30625.png,19613 +images-30626.png,19614 +images-30627.png,19615 +images-30628.png,19616 +images-30629.png,19617 +images-30630.png,19618 +images-30631.png,19619 +images-30632.png,19620 +images-30633.png,19621 +images-30634.png,19622 +images-30635.png,19623 +images-30636.png,19624 +images-30637.png,19625 +images-30638.png,19626 +images-30639.png,19627 +images-30640.png,19628 +images-30641.png,19629 +images-30642.png,19630 +images-30643.png,19631 +images-30644.png,19632 +images-30645.png,19633 +images-30646.png,19634 +images-30647.png,19635 +images-30648.png,19636 +images-30649.png,19637 +images-30650.png,19638 +images-30651.png,19639 +images-30652.png,19640 +images-30653.png,19641 +images-30654.png,19642 +images-30655.png,19643 +images-30656.png,19644 +images-30657.png,19645 +images-30658.png,19646 +images-30659.png,19647 +images-30660.png,19648 +images-30661.png,19649 +images-30662.png,19650 +images-30663.png,19651 +images-30664.png,19652 +images-30665.png,19653 +images-30666.png,19654 +images-30667.png,19655 +images-30668.png,19656 +images-30669.png,19657 +images-30670.png,19658 +images-30671.png,19659 +images-30672.png,19660 +images-30673.png,19661 +images-30674.png,19662 +images-30675.png,19663 +images-30676.png,19664 +images-30677.png,19665 +images-30678.png,19666 +images-30679.png,19667 +images-30680.png,19668 +images-30681.png,19669 +images-30682.png,19670 +images-30683.png,19671 +images-30684.png,19672 +images-30685.png,19673 +images-30686.png,19674 +images-30687.png,19675 +images-30688.png,19676 +images-30689.png,19677 +images-30690.png,19678 +images-30691.png,19679 +images-30692.png,19680 +images-30693.png,19681 +images-30694.png,19682 +images-30695.png,19683 +images-30696.png,19684 +images-30697.png,19685 +images-30698.png,19686 +images-30699.png,19687 +images-30700.png,19688 +images-30701.png,19689 +images-30702.png,19690 +images-30703.png,19691 +images-30704.png,19692 +images-30705.png,19693 +images-30706.png,19694 +images-30707.png,19695 +images-30708.png,19696 +images-30709.png,19697 +images-30710.png,19698 +images-30711.png,19699 +images-30712.png,19700 +images-30713.png,19701 +images-30714.png,19702 +images-30715.png,19703 +images-30716.png,19704 +images-30717.png,19705 +images-30718.png,19706 +images-30719.png,19707 +images-30720.png,19708 +images-30721.png,19709 +images-30722.png,19710 +images-30723.png,19711 +images-30724.png,19712 +images-30725.png,19713 +images-30726.png,19714 +images-30727.png,19715 +images-30728.png,19716 +images-30729.png,19717 +images-30730.png,19718 +images-30731.png,19719 +images-30732.png,19720 +images-30733.png,19721 +images-30734.png,19722 +images-30735.png,19723 +images-30736.png,19724 +images-30737.png,19725 +images-30738.png,19726 +images-30739.png,19727 +images-30740.png,19728 +images-30741.png,19729 +images-30742.png,19730 +images-30743.png,19731 +images-30744.png,19732 +images-30745.png,19733 +images-30746.png,19734 +images-30747.png,19735 +images-30748.png,19736 +images-30749.png,19737 +images-30750.png,19738 +images-30751.png,19739 +images-30752.png,19740 +images-30753.png,19741 +images-30754.png,19742 +images-30755.png,19743 +images-30756.png,19744 +images-30757.png,19745 +images-30758.png,19746 +images-30759.png,19747 +images-30760.png,19748 +images-30761.png,19749 +images-30762.png,19750 +images-30763.png,19751 +images-30764.png,19752 +images-30765.png,19753 +images-30766.png,19754 +images-30767.png,19755 +images-30768.png,19756 +images-30769.png,19757 +images-30770.png,19758 +images-30771.png,19759 +images-30772.png,19760 +images-30773.png,19761 +images-30774.png,19762 +images-30775.png,19763 +images-30776.png,19764 +images-30777.png,19765 +images-30778.png,19766 +images-30779.png,19767 +images-30780.png,19768 +images-30781.png,19769 +images-30782.png,19770 +images-30783.png,19771 +images-30784.png,19772 +images-30785.png,19773 +images-30786.png,19774 +images-30787.png,19775 +images-30788.png,19776 +images-30789.png,19777 +images-30790.png,19778 +images-30791.png,19779 +images-30792.png,19780 +images-30793.png,19781 +images-30794.png,19782 +images-30795.png,19783 +images-30796.png,19784 +images-30797.png,19785 +images-30798.png,19786 +images-30799.png,19787 +images-30800.png,19788 +images-30801.png,19789 +images-30802.png,19790 +images-30803.png,19791 +images-30804.png,19792 +images-30805.png,19793 +images-30806.png,19794 +images-30807.png,19795 +images-30808.png,19796 +images-30809.png,19797 +images-30810.png,19798 +images-30811.png,19799 +images-30812.png,19800 +images-30813.png,19801 +images-30814.png,19802 +images-30815.png,19803 +images-30816.png,19804 +images-30817.png,19805 +images-30818.png,19806 +images-30819.png,19807 +images-30820.png,19808 +images-30821.png,19809 +images-30822.png,19810 +images-30823.png,19811 +images-30824.png,19812 +images-30825.png,19813 +images-30826.png,19814 +images-30827.png,19815 +images-30828.png,19816 +images-30829.png,19817 +images-30830.png,19818 +images-30831.png,19819 +images-30832.png,19820 +images-30833.png,19821 +images-30834.png,19822 +images-30835.png,19823 +images-30836.png,19824 +images-30837.png,19825 +images-30838.png,19826 +images-30839.png,19827 +images-30840.png,19828 +images-30841.png,19829 +images-30842.png,19830 +images-30843.png,19831 +images-30844.png,19832 +images-30845.png,19833 +images-30846.png,19834 +images-30847.png,19835 +images-30848.png,19836 +images-30849.png,19837 +images-30850.png,19838 +images-30851.png,19839 +images-30852.png,19840 +images-30853.png,19841 +images-30854.png,19842 +images-30855.png,19843 +images-30856.png,19844 +images-30857.png,19845 +images-30858.png,19846 +images-30859.png,19847 +images-30860.png,19848 +images-30861.png,19849 +images-30862.png,19850 +images-30863.png,19851 +images-30864.png,19852 +images-30865.png,19853 +images-30866.png,19854 +images-30867.png,19855 +images-30868.png,19856 +images-30869.png,19857 +images-30870.png,19858 +images-30871.png,19859 +images-30872.png,19860 +images-30873.png,19861 +images-30874.png,19862 +images-30875.png,19863 +images-30876.png,19864 +images-30877.png,19865 +images-30878.png,19866 +images-30879.png,19867 +images-30880.png,19868 +images-30881.png,19869 +images-30882.png,19870 +images-30883.png,19871 +images-30884.png,19872 +images-30885.png,19873 +images-30886.png,19874 +images-30887.png,19875 +images-30888.png,19876 +images-30889.png,19877 +images-30890.png,19878 +images-30891.png,19879 +images-30892.png,19880 +images-30893.png,19881 +images-30894.png,19882 +images-30895.png,19883 +images-30896.png,19884 +images-30897.png,19885 +images-30898.png,19886 +images-30899.png,19887 +images-30900.png,19888 +images-30901.png,19889 +images-30902.png,19890 +images-30903.png,19891 +images-30904.png,19892 +images-30905.png,19893 +images-30906.png,19894 +images-30907.png,19895 +images-30908.png,19896 +images-30909.png,19897 +images-30910.png,19898 +images-30911.png,19899 +images-30912.png,19900 +images-30913.png,19901 +images-30914.png,19902 +images-30915.png,19903 +images-30916.png,19904 +images-30917.png,19905 +images-30918.png,19906 +images-30919.png,19907 +images-30920.png,19908 +images-30921.png,19909 +images-30922.png,19910 +images-30923.png,19911 +images-30924.png,19912 +images-30925.png,19913 +images-30926.png,19914 +images-30927.png,19915 +images-30928.png,19916 +images-30929.png,19917 +images-30930.png,19918 +images-30931.png,19919 +images-30932.png,19920 +images-30933.png,19921 +images-30934.png,19922 +images-30935.png,19923 +images-30936.png,19924 +images-30937.png,19925 +images-30938.png,19926 +images-30939.png,19927 +images-30940.png,19928 +images-30941.png,19929 +images-30942.png,19930 +images-30943.png,19931 +images-30944.png,19932 +images-30945.png,19933 +images-30946.png,19934 +images-30947.png,19935 +images-30948.png,19936 +images-30949.png,19937 +images-30950.png,19938 +images-30951.png,19939 +images-30952.png,19940 +images-30953.png,19941 +images-30954.png,19942 +images-30955.png,19943 +images-30956.png,19944 +images-30957.png,19945 +images-30958.png,19946 +images-30959.png,19947 +images-30960.png,19948 +images-30961.png,19949 +images-30962.png,19950 +images-30963.png,19951 +images-30964.png,19952 +images-30965.png,19953 +images-30966.png,19954 +images-30967.png,19955 +images-30968.png,19956 +images-30969.png,19957 +images-30970.png,19958 +images-30971.png,19959 +images-30972.png,19960 +images-30973.png,19961 +images-30974.png,19962 +images-30975.png,19963 +images-30976.png,19964 +images-30977.png,19965 +images-30978.png,19966 +images-30979.png,19967 +images-30980.png,19968 +images-30981.png,19969 +images-30982.png,19970 +images-30983.png,19971 +images-30984.png,19972 +images-30985.png,19973 +images-30986.png,19974 +images-30987.png,19975 +images-30988.png,19976 +images-30989.png,19977 +images-30990.png,19978 +images-30991.png,19979 +images-30992.png,19980 +images-30993.png,19981 +images-30994.png,19982 +images-30995.png,19983 +images-30996.png,19984 +images-30997.png,19985 +images-30998.png,19986 +images-30999.png,19987 +images-31000.png,19988 +images-31001.png,19989 +images-31002.png,19990 +images-31003.png,19991 +images-31004.png,19992 +images-31005.png,19993 +images-31006.png,19994 +images-31007.png,19995 +images-31008.png,19996 +images-31009.png,19997 +images-31010.png,19998 +images-31011.png,19999 +images-31012.png,20000 +images-31013.png,20001 +images-31014.png,20002 +images-31015.png,20003 +images-31016.png,20004 +images-31017.png,20005 +images-31018.png,20006 +images-31019.png,20007 +images-31020.png,20008 +images-31021.png,20009 +images-31022.png,20010 +images-31023.png,20011 +images-31024.png,20012 +images-31025.png,20013 +images-31026.png,20014 +images-31027.png,20015 +images-31028.png,20016 +images-31029.png,20017 +images-31030.png,20018 +images-31031.png,20019 +images-31032.png,20020 +images-31033.png,20021 +images-31034.png,20022 +images-31035.png,20023 +images-31036.png,20024 +images-31037.png,20025 +images-31038.png,20026 +images-31039.png,20027 +images-31040.png,20028 +images-31041.png,20029 +images-31042.png,20030 +images-31043.png,20031 +images-31044.png,20032 +images-31045.png,20033 +images-31046.png,20034 +images-31047.png,20035 +images-31048.png,20036 +images-31049.png,20037 +images-31050.png,20038 +images-31051.png,20039 +images-31052.png,20040 +images-31053.png,20041 +images-31054.png,20042 +images-31055.png,20043 +images-31056.png,20044 +images-31057.png,20045 +images-31058.png,20046 +images-31059.png,20047 +images-31060.png,20048 +images-31061.png,20049 +images-31062.png,20050 +images-31063.png,20051 +images-31208.png,20052 +images-31209.png,20053 +images-31210.png,20054 +images-31211.png,20055 +images-31212.png,20056 +images-31213.png,20057 +images-31214.png,20058 +images-31215.png,20059 +images-31216.png,20060 +images-31217.png,20061 +images-31218.png,20062 +images-31219.png,20063 +images-31220.png,20064 +images-31221.png,20065 +images-31222.png,20066 +images-31223.png,20067 +images-31224.png,20068 +images-31225.png,20069 +images-31226.png,20070 +images-31227.png,20071 +images-31228.png,20072 +images-31229.png,20073 +images-31230.png,20074 +images-31231.png,20075 +images-31232.png,20076 +images-31233.png,20077 +images-31234.png,20078 +images-31235.png,20079 +images-31236.png,20080 +images-31237.png,20081 +images-31238.png,20082 +images-31239.png,20083 +images-31240.png,20084 +images-31241.png,20085 +images-31242.png,20086 +images-31243.png,20087 +images-31244.png,20088 +images-31245.png,20089 +images-31246.png,20090 +images-31247.png,20091 +images-31248.png,20092 +images-31249.png,20093 +images-31250.png,20094 +images-31251.png,20095 +images-31252.png,20096 +images-31253.png,20097 +images-31254.png,20098 +images-31255.png,20099 +images-31256.png,20100 +images-31257.png,20101 +images-31258.png,20102 +images-31259.png,20103 +images-31260.png,20104 +images-31261.png,20105 +images-31262.png,20106 +images-31263.png,20107 +images-31264.png,20108 +images-31265.png,20109 +images-31266.png,20110 +images-31267.png,20111 +images-31268.png,20112 +images-31269.png,20113 +images-31270.png,20114 +images-31271.png,20115 +images-31272.png,20116 +images-31273.png,20117 +images-31274.png,20118 +images-31275.png,20119 +images-31276.png,20120 +images-31277.png,20121 +images-31278.png,20122 +images-31279.png,20123 +images-31280.png,20124 +images-31281.png,20125 +images-31282.png,20126 +images-31283.png,20127 +images-31284.png,20128 +images-31285.png,20129 +images-31286.png,20130 +images-31287.png,20131 +images-31288.png,20132 +images-31289.png,20133 +images-31290.png,20134 +images-31291.png,20135 +images-31292.png,20136 +images-31293.png,20137 +images-31294.png,20138 +images-31295.png,20139 +images-31296.png,20140 +images-31297.png,20141 +images-31298.png,20142 +images-31299.png,20143 +images-31300.png,20144 +images-31325.png,20145 +images-31326.png,20146 +images-31327.png,20147 +images-31328.png,20148 +images-31329.png,20149 +images-31330.png,20150 +images-31331.png,20151 +images-31340.png,20152 +images-31341.png,20153 +images-31342.png,20154 +images-31343.png,20155 +images-31344.png,20156 +images-31345.png,20157 +images-31346.png,20158 +images-31347.png,20159 +images-31348.png,20160 +images-31349.png,20161 +images-31350.png,20162 +images-31351.png,20163 +images-31352.png,20164 +images-31353.png,20165 +images-31354.png,20166 +images-31355.png,20167 +images-31356.png,20168 +images-31357.png,20169 +images-31358.png,20170 +images-31359.png,20171 +images-31360.png,20172 +images-31361.png,20173 +images-31362.png,20174 +images-31363.png,20175 +images-31364.png,20176 +images-31365.png,20177 +images-31366.png,20178 +images-31367.png,20179 +images-31368.png,20180 +images-31369.png,20181 +images-31370.png,20182 +images-31371.png,20183 +images-31372.png,20184 +images-31373.png,20185 +images-31374.png,20186 +images-31375.png,20187 +images-31376.png,20188 +images-31377.png,20189 +images-31378.png,20190 +images-31379.png,20191 +images-31380.png,20192 +images-31381.png,20193 +images-31382.png,20194 +images-31383.png,20195 +images-31384.png,20196 +images-31385.png,20197 +images-31386.png,20198 +images-31387.png,20199 +images-31388.png,20200 +images-31389.png,20201 +images-31390.png,20202 +images-31391.png,20203 +images-31392.png,20204 +images-31393.png,20205 +images-31394.png,20206 +images-31395.png,20207 +images-31410.png,20208 +images-31411.png,20209 +images-31412.png,20210 +images-31413.png,20211 +images-31414.png,20212 +images-31415.png,20213 +images-31416.png,20214 +images-31417.png,20215 +images-31418.png,20216 +images-31419.png,20217 +images-31420.png,20218 +images-31421.png,20219 +images-31422.png,20220 +images-31423.png,20221 +images-31424.png,20222 +images-31425.png,20223 +images-31426.png,20224 +images-31427.png,20225 +images-31428.png,20226 +images-31429.png,20227 +images-31430.png,20228 +images-31431.png,20229 +images-31432.png,20230 +images-31437.png,20231 +images-31438.png,20232 +images-31439.png,20233 +images-31440.png,20234 +images-31441.png,20235 +images-31442.png,20236 +images-31443.png,20237 +images-31444.png,20238 +images-31445.png,20239 +images-31446.png,20240 +images-31447.png,20241 +images-31482.png,20242 +images-31483.png,20243 +images-31484.png,20244 +images-31485.png,20245 +images-31486.png,20246 +images-31487.png,20247 +images-31488.png,20248 +images-31489.png,20249 +images-31490.png,20250 +images-31491.png,20251 +images-31551.png,20252 +images-31552.png,20253 +images-31553.png,20254 +images-31554.png,20255 +images-31555.png,20256 +images-31556.png,20257 +images-31557.png,20258 +images-31558.png,20259 +images-31559.png,20260 +images-31560.png,20261 +images-31561.png,20262 +images-31562.png,20263 +images-31563.png,20264 +images-31564.png,20265 +images-31565.png,20266 +images-31566.png,20267 +images-31567.png,20268 +images-31568.png,20269 +images-31569.png,20270 +images-31570.png,20271 +images-31571.png,20272 +images-31572.png,20273 +images-31573.png,20274 +images-31574.png,20275 +images-31575.png,20276 +images-31576.png,20277 +images-31577.png,20278 +images-31578.png,20279 +images-31579.png,20280 +images-31580.png,20281 +images-31581.png,20282 +images-31582.png,20283 +images-31583.png,20284 +images-31584.png,20285 +images-31585.png,20286 +images-31586.png,20287 +images-31587.png,20288 +images-31588.png,20289 +images-31589.png,20290 +images-31590.png,20291 +images-31591.png,20292 +images-31592.png,20293 +images-31593.png,20294 +images-31594.png,20295 +images-31595.png,20296 +images-31596.png,20297 +images-31597.png,20298 +images-31598.png,20299 +images-31599.png,20300 +images-31600.png,20301 +images-31601.png,20302 +images-31602.png,20303 +images-31603.png,20304 +images-31604.png,20305 +images-31605.png,20306 +images-31606.png,20307 +images-31607.png,20308 +images-31608.png,20309 +images-31609.png,20310 +images-31610.png,20311 +images-31628.png,20312 +images-31629.png,20313 +images-31630.png,20314 +images-31631.png,20315 +images-31632.png,20316 +images-31633.png,20317 +images-31634.png,20318 +images-31635.png,20319 +images-31636.png,20320 +images-31637.png,20321 +images-31638.png,20322 +images-31639.png,20323 +images-31640.png,20324 +images-31641.png,20325 +images-31642.png,20326 +images-31643.png,20327 +images-31644.png,20328 +images-31645.png,20329 +images-31646.png,20330 +images-31647.png,20331 +images-31648.png,20332 +images-31649.png,20333 +images-31650.png,20334 +images-31651.png,20335 +images-31652.png,20336 +images-31653.png,20337 +images-31654.png,20338 +images-31655.png,20339 +images-31656.png,20340 +images-31657.png,20341 +images-31658.png,20342 +images-31659.png,20343 +images-31660.png,20344 +images-31661.png,20345 +images-31662.png,20346 +images-31663.png,20347 +images-31664.png,20348 +images-31665.png,20349 +images-31712.png,20350 +images-31713.png,20351 +images-31714.png,20352 +images-31715.png,20353 +images-31716.png,20354 +images-31717.png,20355 +images-31718.png,20356 +images-31719.png,20357 +images-31720.png,20358 +images-31721.png,20359 +images-31722.png,20360 +images-31723.png,20361 +images-31724.png,20362 +images-31725.png,20363 +images-31726.png,20364 +images-31727.png,20365 +images-31728.png,20366 +images-31729.png,20367 +images-31730.png,20368 +images-31731.png,20369 +images-31732.png,20370 +images-31733.png,20371 +images-31734.png,20372 +images-31735.png,20373 +images-31736.png,20374 +images-31737.png,20375 +images-31738.png,20376 +images-31739.png,20377 +images-31740.png,20378 +images-31741.png,20379 +images-31742.png,20380 +images-31743.png,20381 +images-31744.png,20382 +images-31745.png,20383 +images-31746.png,20384 +images-31747.png,20385 +images-31796.png,20386 +images-31797.png,20387 +images-31798.png,20388 +images-31799.png,20389 +images-31800.png,20390 +images-31801.png,20391 +images-31802.png,20392 +images-31803.png,20393 +images-31804.png,20394 +images-31805.png,20395 +images-31806.png,20396 +images-31807.png,20397 +images-31808.png,20398 +images-31809.png,20399 +images-31810.png,20400 +images-31811.png,20401 +images-31812.png,20402 +images-31813.png,20403 +images-31814.png,20404 +images-31815.png,20405 +images-31816.png,20406 +images-31817.png,20407 +images-31818.png,20408 +images-31819.png,20409 +images-31820.png,20410 +images-31821.png,20411 +images-31822.png,20412 +images-31828.png,20413 +images-31829.png,20414 +images-31830.png,20415 +images-31836.png,20416 +images-31837.png,20417 +images-31838.png,20418 +images-31839.png,20419 +images-31840.png,20420 +images-31841.png,20421 +images-31842.png,20422 +images-31843.png,20423 +images-31844.png,20424 +images-31845.png,20425 +images-31846.png,20426 +images-31847.png,20427 +images-31865.png,20428 +images-31866.png,20429 +images-31867.png,20430 +images-31868.png,20431 +images-31869.png,20432 +images-31870.png,20433 +images-31871.png,20434 +images-31872.png,20435 +images-31873.png,20436 +images-31874.png,20437 +images-31875.png,20438 +images-31876.png,20439 +images-31877.png,20440 +images-31878.png,20441 +images-31879.png,20442 +images-31880.png,20443 +images-31881.png,20444 +images-31882.png,20445 +images-31883.png,20446 +images-31884.png,20447 +images-31885.png,20448 +images-31886.png,20449 +images-31887.png,20450 +images-31888.png,20451 +images-31889.png,20452 +images-31890.png,20453 +images-31891.png,20454 +images-31892.png,20455 +images-31893.png,20456 +images-31894.png,20457 +images-31895.png,20458 +images-31896.png,20459 +images-31897.png,20460 +images-31898.png,20461 +images-31899.png,20462 +images-31900.png,20463 +images-31901.png,20464 +images-31902.png,20465 +images-31965.png,20466 +images-31966.png,20467 +images-31967.png,20468 +images-31968.png,20469 +images-31969.png,20470 +images-31970.png,20471 +images-31971.png,20472 +images-31972.png,20473 +images-31973.png,20474 +images-31974.png,20475 +images-31975.png,20476 +images-31976.png,20477 +images-31977.png,20478 +images-31978.png,20479 +images-31979.png,20480 +images-31980.png,20481 +images-31981.png,20482 +images-31982.png,20483 +images-31983.png,20484 +images-31984.png,20485 +images-31985.png,20486 +images-31986.png,20487 +images-31987.png,20488 +images-31988.png,20489 +images-31989.png,20490 +images-31990.png,20491 +images-31991.png,20492 +images-31992.png,20493 +images-31993.png,20494 +images-31994.png,20495 +images-31995.png,20496 +images-31996.png,20497 +images-31997.png,20498 +images-32062.png,20499 +images-32063.png,20500 +images-32064.png,20501 +images-32065.png,20502 +images-32066.png,20503 +images-32067.png,20504 +images-32068.png,20505 +images-32069.png,20506 +images-32070.png,20507 +images-32071.png,20508 +images-32072.png,20509 +images-32073.png,20510 +images-32074.png,20511 +images-32075.png,20512 +images-32076.png,20513 +images-32077.png,20514 +images-32078.png,20515 +images-32079.png,20516 +images-32080.png,20517 +images-32081.png,20518 +images-32082.png,20519 +images-32083.png,20520 +images-32084.png,20521 +images-32085.png,20522 +images-32086.png,20523 +images-32087.png,20524 +images-32088.png,20525 +images-32089.png,20526 +images-32090.png,20527 +images-32091.png,20528 +images-32092.png,20529 +images-32093.png,20530 +images-32094.png,20531 +images-32095.png,20532 +images-32096.png,20533 +images-32097.png,20534 +images-32098.png,20535 +images-32099.png,20536 +images-32100.png,20537 +images-32101.png,20538 +images-32128.png,20539 +images-32129.png,20540 +images-32130.png,20541 +images-32131.png,20542 +images-32132.png,20543 +images-32133.png,20544 +images-32134.png,20545 +images-32135.png,20546 +images-32136.png,20547 +images-32137.png,20548 +images-32138.png,20549 +images-32139.png,20550 +images-32140.png,20551 +images-32141.png,20552 +images-32142.png,20553 +images-32165.png,20554 +images-32166.png,20555 +images-32167.png,20556 +images-32168.png,20557 +images-32169.png,20558 +images-32170.png,20559 +images-32171.png,20560 +images-32172.png,20561 +images-32173.png,20562 +images-32174.png,20563 +images-32175.png,20564 +images-32176.png,20565 +images-32177.png,20566 +images-32178.png,20567 +images-32179.png,20568 +images-32180.png,20569 +images-32181.png,20570 +images-32182.png,20571 +images-32183.png,20572 +images-32184.png,20573 +images-32185.png,20574 +images-32186.png,20575 +images-32187.png,20576 +images-32188.png,20577 +images-32189.png,20578 +images-32190.png,20579 +images-32191.png,20580 +images-32192.png,20581 +images-32193.png,20582 +images-32194.png,20583 +images-32195.png,20584 +images-32196.png,20585 +images-32197.png,20586 +images-32198.png,20587 +images-32199.png,20588 +images-32200.png,20589 +images-32201.png,20590 +images-32202.png,20591 +images-32203.png,20592 +images-32204.png,20593 +images-32205.png,20594 +images-32206.png,20595 +images-32207.png,20596 +images-32208.png,20597 +images-32209.png,20598 +images-32210.png,20599 +images-32211.png,20600 +images-32212.png,20601 +images-32213.png,20602 +images-32242.png,20603 +images-32243.png,20604 +images-32244.png,20605 +images-32245.png,20606 +images-32246.png,20607 +images-32247.png,20608 +images-32248.png,20609 +images-32249.png,20610 +images-32250.png,20611 +images-32251.png,20612 +images-32252.png,20613 +images-32253.png,20614 +images-32254.png,20615 +images-32255.png,20616 +images-32256.png,20617 +images-32257.png,20618 +images-32258.png,20619 +images-32259.png,20620 +images-32260.png,20621 +images-32261.png,20622 +images-32262.png,20623 +images-32263.png,20624 +images-32264.png,20625 +images-32265.png,20626 +images-32266.png,20627 +images-32267.png,20628 +images-32268.png,20629 +images-32269.png,20630 +images-32270.png,20631 +images-32271.png,20632 +images-32272.png,20633 +images-32273.png,20634 +images-32274.png,20635 +images-32275.png,20636 +images-32276.png,20637 +images-32277.png,20638 +images-32278.png,20639 +images-32279.png,20640 +images-32280.png,20641 +images-32281.png,20642 +images-32282.png,20643 +images-32283.png,20644 +images-32284.png,20645 +images-32285.png,20646 +images-32286.png,20647 +images-32287.png,20648 +images-32288.png,20649 +images-32289.png,20650 +images-32290.png,20651 +images-32291.png,20652 +images-32292.png,20653 +images-32293.png,20654 +images-32294.png,20655 +images-32295.png,20656 +images-32296.png,20657 +images-32297.png,20658 +images-32298.png,20659 +images-32299.png,20660 +images-32300.png,20661 +images-32301.png,20662 +images-32302.png,20663 +images-32303.png,20664 +images-32304.png,20665 +images-32305.png,20666 +images-32306.png,20667 +images-32307.png,20668 +images-32308.png,20669 +images-32309.png,20670 +images-32310.png,20671 +images-32311.png,20672 +images-32312.png,20673 +images-32313.png,20674 +images-32314.png,20675 +images-32315.png,20676 +images-32316.png,20677 +images-32317.png,20678 +images-32318.png,20679 +images-32319.png,20680 +images-32320.png,20681 +images-32321.png,20682 +images-32322.png,20683 +images-32323.png,20684 +images-32324.png,20685 +images-32325.png,20686 +images-32326.png,20687 +images-32327.png,20688 +images-32328.png,20689 +images-32329.png,20690 +images-32330.png,20691 +images-32331.png,20692 +images-32332.png,20693 +images-32333.png,20694 +images-32334.png,20695 +images-32335.png,20696 +images-32336.png,20697 +images-32337.png,20698 +images-32338.png,20699 +images-32339.png,20700 +images-32340.png,20701 +images-32341.png,20702 +images-32342.png,20703 +images-32343.png,20704 +images-32348.png,20705 +images-32349.png,20706 +images-32350.png,20707 +images-32351.png,20708 +images-32352.png,20709 +images-32353.png,20710 +images-32354.png,20711 +images-32355.png,20712 +images-32356.png,20713 +images-32357.png,20714 +images-32358.png,20715 +images-32359.png,20716 +images-32360.png,20717 +images-32361.png,20718 +images-32362.png,20719 +images-32363.png,20720 +images-32364.png,20721 +images-32365.png,20722 +images-32366.png,20723 +images-33063.png,20724 +images-33064.png,20725 +images-33065.png,20726 +images-33066.png,20727 +images-33067.png,20728 +images-33068.png,20729 +images-33069.png,20730 +images-33070.png,20731 +images-33071.png,20732 +images-33072.png,20733 +images-33073.png,20734 +images-33074.png,20735 +images-33075.png,20736 +images-33076.png,20737 +images-33077.png,20738 +images-33078.png,20739 +images-33079.png,20740 +images-33080.png,20741 +images-33081.png,20742 +images-33082.png,20743 +images-33083.png,20744 +images-33084.png,20745 +images-33085.png,20746 +images-33086.png,20747 +images-33087.png,20748 +images-33088.png,20749 +images-33089.png,20750 +images-33090.png,20751 +images-33091.png,20752 +images-33092.png,20753 +images-33093.png,20754 +images-33094.png,20755 +images-33095.png,20756 +images-33096.png,20757 +images-33097.png,20758 +images-33098.png,20759 +images-33099.png,20760 +images-33100.png,20761 +images-33101.png,20762 +images-33102.png,20763 +images-33103.png,20764 +images-33104.png,20765 +images-33105.png,20766 +images-33106.png,20767 +images-33107.png,20768 +images-33108.png,20769 +images-33109.png,20770 +images-33110.png,20771 +images-33111.png,20772 +images-33112.png,20773 +images-33113.png,20774 +images-33114.png,20775 +images-33115.png,20776 +images-33116.png,20777 +images-33117.png,20778 +images-33118.png,20779 +images-33119.png,20780 +images-33120.png,20781 +images-33121.png,20782 +images-33122.png,20783 +images-33123.png,20784 +images-33124.png,20785 +images-33125.png,20786 +images-33126.png,20787 +images-33127.png,20788 +images-33128.png,20789 +images-33129.png,20790 +images-33130.png,20791 +images-33131.png,20792 +images-33132.png,20793 +images-33133.png,20794 +images-33134.png,20795 +images-33135.png,20796 +images-33136.png,20797 +images-33137.png,20798 +images-33138.png,20799 +images-33139.png,20800 +images-33140.png,20801 +images-33141.png,20802 +images-33142.png,20803 +images-33143.png,20804 +images-33144.png,20805 +images-33145.png,20806 +images-33146.png,20807 +images-33147.png,20808 +images-33148.png,20809 +images-33149.png,20810 +images-33150.png,20811 +images-33151.png,20812 +images-33152.png,20813 +images-33153.png,20814 +images-33154.png,20815 +images-33155.png,20816 +images-33156.png,20817 +images-33157.png,20818 +images-33158.png,20819 +images-33159.png,20820 +images-33160.png,20821 +images-33161.png,20822 +images-33162.png,20823 +images-33163.png,20824 +images-33164.png,20825 +images-33165.png,20826 +images-33166.png,20827 +images-33167.png,20828 +images-33168.png,20829 +images-33169.png,20830 +images-33170.png,20831 +images-33171.png,20832 +images-33172.png,20833 +images-33173.png,20834 +images-33174.png,20835 +images-33175.png,20836 +images-33176.png,20837 +images-33177.png,20838 +images-33178.png,20839 +images-33179.png,20840 +images-33180.png,20841 +images-33181.png,20842 +images-33182.png,20843 +images-33183.png,20844 +images-33184.png,20845 +images-33185.png,20846 +images-33186.png,20847 +images-33187.png,20848 +images-33188.png,20849 +images-33189.png,20850 +images-33190.png,20851 +images-33191.png,20852 +images-33192.png,20853 +images-33193.png,20854 +images-33194.png,20855 +images-33195.png,20856 +images-33196.png,20857 +images-33197.png,20858 +images-33198.png,20859 +images-33199.png,20860 +images-33200.png,20861 +images-33201.png,20862 +images-33202.png,20863 +images-33203.png,20864 +images-33204.png,20865 +images-33205.png,20866 +images-33206.png,20867 +images-33207.png,20868 +images-33208.png,20869 +images-33209.png,20870 +images-33210.png,20871 +images-33211.png,20872 +images-33212.png,20873 +images-33213.png,20874 +images-33214.png,20875 +images-33215.png,20876 +images-33216.png,20877 +images-33217.png,20878 +images-33218.png,20879 +images-33219.png,20880 +images-33220.png,20881 +images-33221.png,20882 +images-33222.png,20883 +images-33223.png,20884 +images-33224.png,20885 +images-33225.png,20886 +images-33226.png,20887 +images-33227.png,20888 +images-33228.png,20889 +images-33229.png,20890 +images-33230.png,20891 +images-33231.png,20892 +images-33232.png,20893 +images-33233.png,20894 +images-33234.png,20895 +images-33235.png,20896 +images-33236.png,20897 +images-33237.png,20898 +images-33238.png,20899 +images-33239.png,20900 +images-33240.png,20901 +images-33241.png,20902 +images-33242.png,20903 +images-33243.png,20904 +images-33244.png,20905 +images-33245.png,20906 +images-33246.png,20907 +images-33247.png,20908 +images-33248.png,20909 +images-33249.png,20910 +images-33250.png,20911 +images-33251.png,20912 +images-33252.png,20913 +images-33253.png,20914 +images-33254.png,20915 +images-33255.png,20916 +images-33256.png,20917 +images-33257.png,20918 +images-33258.png,20919 +images-33259.png,20920 +images-33260.png,20921 +images-33261.png,20922 +images-33262.png,20923 +images-33263.png,20924 +images-33264.png,20925 +images-33265.png,20926 +images-33266.png,20927 +images-33267.png,20928 +images-33268.png,20929 +images-33269.png,20930 +images-33270.png,20931 +images-33271.png,20932 +images-33272.png,20933 +images-33273.png,20934 +images-33274.png,20935 +images-33275.png,20936 +images-33276.png,20937 +images-33277.png,20938 +images-33278.png,20939 +images-33279.png,20940 +images-33280.png,20941 +images-33281.png,20942 +images-33282.png,20943 +images-33283.png,20944 +images-33284.png,20945 +images-33285.png,20946 +images-33286.png,20947 +images-33287.png,20948 +images-33288.png,20949 +images-33289.png,20950 +images-33290.png,20951 +images-33291.png,20952 +images-33292.png,20953 +images-33293.png,20954 +images-33294.png,20955 +images-33295.png,20956 +images-33296.png,20957 +images-33297.png,20958 +images-33298.png,20959 +images-33299.png,20960 +images-33300.png,20961 +images-33301.png,20962 +images-33302.png,20963 +images-33303.png,20964 +images-33304.png,20965 +images-33305.png,20966 +images-33306.png,20967 +images-33307.png,20968 +images-33308.png,20969 +images-33309.png,20970 +images-33310.png,20971 +images-33311.png,20972 +images-33312.png,20973 +images-33313.png,20974 +images-33314.png,20975 +images-33315.png,20976 +images-33316.png,20977 +images-33328.png,20978 +images-33329.png,20979 +images-33330.png,20980 +images-33331.png,20981 +images-33332.png,20982 +images-33333.png,20983 +images-33334.png,20984 +images-33335.png,20985 +images-33336.png,20986 +images-33337.png,20987 +images-33338.png,20988 +images-33339.png,20989 +images-33340.png,20990 +images-33346.png,20991 +images-33347.png,20992 +images-33348.png,20993 +images-33349.png,20994 +images-33350.png,20995 +images-33351.png,20996 +images-33352.png,20997 +images-33353.png,20998 +images-33354.png,20999 +images-33355.png,21000 +images-33356.png,21001 +images-33357.png,21002 +images-33358.png,21003 +images-33359.png,21004 +images-33360.png,21005 +images-33361.png,21006 +images-33362.png,21007 +images-33363.png,21008 +images-33364.png,21009 +images-33365.png,21010 +images-33366.png,21011 +images-33367.png,21012 +images-33368.png,21013 +images-33369.png,21014 +images-33386.png,21015 +images-33387.png,21016 +images-33388.png,21017 +images-33389.png,21018 +images-33390.png,21019 +images-33391.png,21020 +images-33392.png,21021 +images-33393.png,21022 +images-33394.png,21023 +images-33395.png,21024 +images-33396.png,21025 +images-33397.png,21026 +images-33398.png,21027 +images-33399.png,21028 +images-33400.png,21029 +images-33401.png,21030 +images-33402.png,21031 +images-33403.png,21032 +images-33404.png,21033 +images-33405.png,21034 +images-33406.png,21035 +images-33407.png,21036 +images-33408.png,21037 +images-33409.png,21038 +images-33410.png,21039 +images-33411.png,21040 +images-33412.png,21041 +images-33413.png,21042 +images-33414.png,21043 +images-33415.png,21044 +images-33416.png,21045 +images-33417.png,21046 +images-33418.png,21047 +images-33419.png,21048 +images-33420.png,21049 +images-33421.png,21050 +images-33422.png,21051 +images-33423.png,21052 +images-33424.png,21053 +images-33425.png,21054 +images-33426.png,21055 +images-33427.png,21056 +images-33428.png,21057 +images-33429.png,21058 +images-33513.png,21059 +images-33514.png,21060 +images-33515.png,21061 +images-33516.png,21062 +images-33517.png,21063 +images-33518.png,21064 +images-33519.png,21065 +images-33520.png,21066 +images-33521.png,21067 +images-33522.png,21068 +images-33523.png,21069 +images-33524.png,21070 +images-33525.png,21071 +images-33526.png,21072 +images-33527.png,21073 +images-33528.png,21074 +images-33529.png,21075 +images-33530.png,21076 +images-33531.png,21077 +images-33532.png,21078 +images-33533.png,21079 +images-33534.png,21080 +images-33535.png,21081 +images-33536.png,21082 +images-33537.png,21083 +images-33538.png,21084 +images-33539.png,21085 +images-33540.png,21086 +images-33541.png,21087 +images-33542.png,21088 +images-33543.png,21089 +images-33544.png,21090 +images-33545.png,21091 +images-33546.png,21092 +images-33547.png,21093 +images-33548.png,21094 +images-33549.png,21095 +images-33550.png,21096 +images-33551.png,21097 +images-33552.png,21098 +images-33553.png,21099 +images-33554.png,21100 +images-33555.png,21101 +images-33556.png,21102 +images-33557.png,21103 +images-33558.png,21104 +images-33559.png,21105 +images-33560.png,21106 +images-33561.png,21107 +images-33562.png,21108 +images-33563.png,21109 +images-33564.png,21110 +images-33565.png,21111 +images-33566.png,21112 +images-33567.png,21113 +images-33568.png,21114 +images-33569.png,21115 +images-33570.png,21116 +images-33571.png,21117 +images-33572.png,21118 +images-33573.png,21119 +images-33574.png,21120 +images-33575.png,21121 +images-33576.png,21122 +images-33577.png,21123 +images-33578.png,21124 +images-33579.png,21125 +images-33580.png,21126 +images-33581.png,21127 +images-33582.png,21128 +images-33583.png,21129 +images-33584.png,21130 +images-33585.png,21131 +images-33586.png,21132 +images-33587.png,21133 +images-33588.png,21134 +images-33589.png,21135 +images-33590.png,21136 +images-33667.png,21137 +images-33668.png,21138 +images-33669.png,21139 +images-33670.png,21140 +images-33671.png,21141 +images-33672.png,21142 +images-33673.png,21143 +images-33674.png,21144 +images-33675.png,21145 +images-33676.png,21146 +images-33677.png,21147 +images-33678.png,21148 +images-33679.png,21149 +images-33680.png,21150 +images-33681.png,21151 +images-33682.png,21152 +images-33683.png,21153 +images-33684.png,21154 +images-33685.png,21155 +images-33686.png,21156 +images-33687.png,21157 +images-33688.png,21158 +images-33689.png,21159 +images-33690.png,21160 +images-33691.png,21161 +images-33692.png,21162 +images-33693.png,21163 +images-33694.png,21164 +images-33695.png,21165 +images-33696.png,21166 +images-33697.png,21167 +images-33698.png,21168 +images-33699.png,21169 +images-33700.png,21170 +images-33701.png,21171 +images-33702.png,21172 +images-33703.png,21173 +images-33704.png,21174 +images-33705.png,21175 +images-33706.png,21176 +images-33707.png,21177 +images-33708.png,21178 +images-33709.png,21179 +images-33710.png,21180 +images-33711.png,21181 +images-33712.png,21182 +images-33713.png,21183 +images-33714.png,21184 +images-33715.png,21185 +images-33716.png,21186 +images-33721.png,21187 +images-33722.png,21188 +images-33723.png,21189 +images-33724.png,21190 +images-33725.png,21191 +images-33726.png,21192 +images-33727.png,21193 +images-33728.png,21194 +images-33729.png,21195 +images-33730.png,21196 +images-33731.png,21197 +images-33732.png,21198 +images-33733.png,21199 +images-33734.png,21200 +images-33735.png,21201 +images-33736.png,21202 +images-33737.png,21203 +images-33738.png,21204 +images-33739.png,21205 +images-33740.png,21206 +images-33741.png,21207 +images-33742.png,21208 +images-33743.png,21209 +images-33744.png,21210 +images-33745.png,21211 +images-33746.png,21212 +images-33747.png,21213 +images-33748.png,21214 +images-33749.png,21215 +images-33750.png,21216 +images-33751.png,21217 +images-33752.png,21218 +images-33753.png,21219 +images-33781.png,21220 +images-33782.png,21221 +images-33783.png,21222 +images-33784.png,21223 +images-33785.png,21224 +images-33786.png,21225 +images-33787.png,21226 +images-33788.png,21227 +images-33789.png,21228 +images-33790.png,21229 +images-33791.png,21230 +images-33792.png,21231 +images-33793.png,21232 +images-33794.png,21233 +images-33795.png,21234 +images-33796.png,21235 +images-33797.png,21236 +images-33798.png,21237 +images-33799.png,21238 +images-33800.png,21239 +images-33801.png,21240 +images-33802.png,21241 +images-33803.png,21242 +images-33804.png,21243 +images-33805.png,21244 +images-33806.png,21245 +images-33807.png,21246 +images-33808.png,21247 +images-33809.png,21248 +images-33810.png,21249 +images-33811.png,21250 +images-33812.png,21251 +images-33813.png,21252 +images-33814.png,21253 +images-33815.png,21254 +images-33816.png,21255 +images-33817.png,21256 +images-33818.png,21257 +images-33819.png,21258 +images-33820.png,21259 +images-33821.png,21260 +images-33822.png,21261 +images-33823.png,21262 +images-33824.png,21263 +images-33825.png,21264 +images-33826.png,21265 +images-33827.png,21266 +images-33828.png,21267 +images-33829.png,21268 +images-33830.png,21269 +images-33831.png,21270 +images-33832.png,21271 +images-33833.png,21272 +images-33834.png,21273 +images-33835.png,21274 +images-33836.png,21275 +images-33837.png,21276 +images-33838.png,21277 +images-33839.png,21278 +images-33840.png,21279 +images-33841.png,21280 +images-33842.png,21281 +images-33843.png,21282 +images-33844.png,21283 +images-33845.png,21284 +images-33846.png,21285 +images-33847.png,21286 +images-33848.png,21287 +images-33849.png,21288 +images-33850.png,21289 +images-33851.png,21290 +images-33852.png,21291 +images-33853.png,21292 +images-33854.png,21293 +images-33855.png,21294 +images-33856.png,21295 +images-33857.png,21296 +images-33858.png,21297 +images-33859.png,21298 +images-33860.png,21299 +images-33861.png,21300 +images-33862.png,21301 +images-33863.png,21302 +images-33864.png,21303 +images-33865.png,21304 +images-33866.png,21305 +images-33867.png,21306 +images-33868.png,21307 +images-33869.png,21308 +images-33870.png,21309 +images-33871.png,21310 +images-33872.png,21311 +images-33873.png,21312 +images-33874.png,21313 +images-33875.png,21314 +images-33876.png,21315 +images-33877.png,21316 +images-33878.png,21317 +images-33879.png,21318 +images-33880.png,21319 +images-33881.png,21320 +images-33882.png,21321 +images-33883.png,21322 +images-33884.png,21323 +images-33885.png,21324 +images-33886.png,21325 +images-33887.png,21326 +images-33888.png,21327 +images-33889.png,21328 +images-33890.png,21329 +images-33891.png,21330 +images-33892.png,21331 +images-33893.png,21332 +images-33894.png,21333 +images-33895.png,21334 +images-33896.png,21335 +images-33897.png,21336 +images-33898.png,21337 +images-33899.png,21338 +images-33900.png,21339 +images-33901.png,21340 +images-33902.png,21341 +images-33903.png,21342 +images-33904.png,21343 +images-33905.png,21344 +images-33906.png,21345 +images-33907.png,21346 +images-33908.png,21347 +images-33909.png,21348 +images-33910.png,21349 +images-33911.png,21350 +images-33912.png,21351 +images-33913.png,21352 +images-33914.png,21353 +images-33915.png,21354 +images-33916.png,21355 +images-33923.png,21356 +images-33924.png,21357 +images-33925.png,21358 +images-33926.png,21359 +images-33927.png,21360 +images-33928.png,21361 +images-33929.png,21362 +images-33930.png,21363 +images-33931.png,21364 +images-33932.png,21365 +images-33933.png,21366 +images-33934.png,21367 +images-33935.png,21368 +images-33936.png,21369 +images-33937.png,21370 +images-33938.png,21371 +images-33939.png,21372 +images-33940.png,21373 +images-33941.png,21374 +images-33942.png,21375 +images-33943.png,21376 +images-33944.png,21377 +images-33945.png,21378 +images-33946.png,21379 +images-33947.png,21380 +images-33948.png,21381 +images-33949.png,21382 +images-33950.png,21383 +images-33951.png,21384 +images-33952.png,21385 +images-33953.png,21386 +images-33954.png,21387 +images-33955.png,21388 +images-33956.png,21389 +images-33957.png,21390 +images-33958.png,21391 +images-33959.png,21392 +images-33960.png,21393 +images-33961.png,21394 +images-33962.png,21395 +images-33963.png,21396 +images-33964.png,21397 +images-33965.png,21398 +images-33966.png,21399 +images-33967.png,21400 +images-33968.png,21401 +images-33969.png,21402 +images-33970.png,21403 +images-33971.png,21404 +images-33972.png,21405 +images-33973.png,21406 +images-33974.png,21407 +images-33975.png,21408 +images-33976.png,21409 +images-33977.png,21410 +images-33978.png,21411 +images-33979.png,21412 +images-33980.png,21413 +images-33981.png,21414 +images-33982.png,21415 +images-33983.png,21416 +images-33984.png,21417 +images-33985.png,21418 +images-33986.png,21419 +images-33987.png,21420 +images-33988.png,21421 +images-33989.png,21422 +images-33990.png,21423 +images-33991.png,21424 +images-33992.png,21425 +images-33993.png,21426 +images-33994.png,21427 +images-33995.png,21428 +images-33996.png,21429 +images-33997.png,21430 +images-33998.png,21431 +images-33999.png,21432 +images-34000.png,21433 +images-34001.png,21434 +images-34002.png,21435 +images-34003.png,21436 +images-34004.png,21437 +images-34005.png,21438 +images-34006.png,21439 +images-34007.png,21440 +images-34008.png,21441 +images-34009.png,21442 +images-34010.png,21443 +images-34011.png,21444 +images-34012.png,21445 +images-34013.png,21446 +images-34014.png,21447 +images-34015.png,21448 +images-34016.png,21449 +images-34017.png,21450 +images-34018.png,21451 +images-34019.png,21452 +images-34020.png,21453 +images-34021.png,21454 +images-34022.png,21455 +images-34023.png,21456 +images-34024.png,21457 +images-34025.png,21458 +images-34026.png,21459 +images-34027.png,21460 +images-34028.png,21461 +images-34029.png,21462 +images-34030.png,21463 +images-34031.png,21464 +images-34032.png,21465 +images-34033.png,21466 +images-34034.png,21467 +images-34035.png,21468 +images-34036.png,21469 +images-34037.png,21470 +images-34038.png,21471 +images-34039.png,21472 +images-34040.png,21473 +images-34041.png,21474 +images-34042.png,21475 +images-34043.png,21476 +images-34044.png,21477 +images-34045.png,21478 +images-34046.png,21479 +images-34047.png,21480 +images-34048.png,21481 +images-34049.png,21482 +images-34050.png,21483 +images-34051.png,21484 +images-34052.png,21485 +images-34053.png,21486 +images-34054.png,21487 +images-34055.png,21488 +images-34056.png,21489 +images-34057.png,21490 +images-34058.png,21491 +images-34059.png,21492 +images-34060.png,21493 +images-34061.png,21494 +images-34062.png,21495 +images-34063.png,21496 +images-34064.png,21497 +images-34065.png,21498 +images-34066.png,21499 +images-34067.png,21500 +images-34068.png,21501 +images-34069.png,21502 +images-34070.png,21503 +images-34071.png,21504 +images-34072.png,21505 +images-34073.png,21506 +images-34074.png,21507 +images-34075.png,21508 +images-34076.png,21509 +images-34077.png,21510 +images-34078.png,21511 +images-34079.png,21512 +images-34080.png,21513 +images-34081.png,21514 +images-34082.png,21515 +images-34083.png,21516 +images-34084.png,21517 +images-34085.png,21518 +images-34086.png,21519 +images-34087.png,21520 +images-34088.png,21521 +images-34089.png,21522 +images-34090.png,21523 +images-34091.png,21524 +images-34092.png,21525 +images-34093.png,21526 +images-34094.png,21527 +images-34095.png,21528 +images-34096.png,21529 +images-34097.png,21530 +images-34098.png,21531 +images-34099.png,21532 +images-34100.png,21533 +images-34101.png,21534 +images-34102.png,21535 +images-34103.png,21536 +images-34104.png,21537 +images-34105.png,21538 +images-34106.png,21539 +images-34107.png,21540 +images-34108.png,21541 +images-34109.png,21542 +images-34110.png,21543 +images-34111.png,21544 +images-34112.png,21545 +images-34113.png,21546 +images-34114.png,21547 +images-34115.png,21548 +images-34116.png,21549 +images-34117.png,21550 +images-34118.png,21551 +images-34119.png,21552 +images-34120.png,21553 +images-34121.png,21554 +images-34122.png,21555 +images-34123.png,21556 +images-34124.png,21557 +images-34125.png,21558 +images-34126.png,21559 +images-34127.png,21560 +images-34128.png,21561 +images-34129.png,21562 +images-34130.png,21563 +images-34131.png,21564 +images-34132.png,21565 +images-34133.png,21566 +images-34134.png,21567 +images-34135.png,21568 +images-34136.png,21569 +images-34137.png,21570 +images-34138.png,21571 +images-34139.png,21572 +images-34140.png,21573 +images-34141.png,21574 +images-34142.png,21575 +images-34143.png,21576 +images-34144.png,21577 +images-34145.png,21578 +images-34146.png,21579 +images-34147.png,21580 +images-34148.png,21581 +images-34149.png,21582 +images-34150.png,21583 +images-34151.png,21584 +images-34152.png,21585 +images-34153.png,21586 +images-34154.png,21587 +images-34155.png,21588 +images-34156.png,21589 +images-34157.png,21590 +images-34158.png,21591 +images-34159.png,21592 +images-34160.png,21593 +images-34161.png,21594 +images-34162.png,21595 +images-34163.png,21596 +images-34164.png,21597 +images-34165.png,21598 +images-34166.png,21599 +images-34167.png,21600 +images-34168.png,21601 +images-34169.png,21602 +images-34170.png,21603 +images-34171.png,21604 +images-34172.png,21605 +images-34173.png,21606 +images-34174.png,21607 +images-34175.png,21608 +images-34176.png,21609 +images-34177.png,21610 +images-34178.png,21611 +images-34179.png,21612 +images-34180.png,21613 +images-34181.png,21614 +images-34182.png,21615 +images-34183.png,21616 +images-34184.png,21617 +images-34185.png,21618 +images-34186.png,21619 +images-34187.png,21620 +images-34188.png,21621 +images-34189.png,21622 +images-34190.png,21623 +images-34191.png,21624 +images-34192.png,21625 +images-34193.png,21626 +images-34194.png,21627 +images-34195.png,21628 +images-34196.png,21629 +images-34197.png,21630 +images-34198.png,21631 +images-34199.png,21632 +images-34200.png,21633 +images-34201.png,21634 +images-34202.png,21635 +images-34203.png,21636 +images-34204.png,21637 +images-34205.png,21638 +images-34206.png,21639 +images-34207.png,21640 +images-34208.png,21641 +images-34209.png,21642 +images-34210.png,21643 +images-34211.png,21644 +images-34212.png,21645 +images-34213.png,21646 +images-34214.png,21647 +images-34215.png,21648 +images-34216.png,21649 +images-34217.png,21650 +images-34218.png,21651 +images-34219.png,21652 +images-34220.png,21653 +images-34221.png,21654 +images-34222.png,21655 +images-34223.png,21656 +images-34224.png,21657 +images-34225.png,21658 +images-34226.png,21659 +images-34227.png,21660 +images-34228.png,21661 +images-34229.png,21662 +images-34230.png,21663 +images-34231.png,21664 +images-34232.png,21665 +images-34233.png,21666 +images-34242.png,21667 +images-34243.png,21668 +images-34244.png,21669 +images-34245.png,21670 +images-34246.png,21671 +images-34247.png,21672 +images-34248.png,21673 +images-34249.png,21674 +images-34250.png,21675 +images-34251.png,21676 +images-34252.png,21677 +images-34253.png,21678 +images-34254.png,21679 +images-34255.png,21680 +images-34256.png,21681 +images-34257.png,21682 +images-34258.png,21683 +images-34259.png,21684 +images-34260.png,21685 +images-34261.png,21686 +images-34262.png,21687 +images-34263.png,21688 +images-34264.png,21689 +images-34265.png,21690 +images-34266.png,21691 +images-34267.png,21692 +images-34268.png,21693 +images-34269.png,21694 +images-34270.png,21695 +images-34271.png,21696 +images-34272.png,21697 +images-34273.png,21698 +images-34274.png,21699 +images-34275.png,21700 +images-34276.png,21701 +images-34277.png,21702 +images-34278.png,21703 +images-34279.png,21704 +images-34280.png,21705 +images-34281.png,21706 +images-34282.png,21707 +images-34283.png,21708 +images-34284.png,21709 +images-34285.png,21710 +images-34286.png,21711 +images-34287.png,21712 +images-34288.png,21713 +images-34289.png,21714 +images-34290.png,21715 +images-34291.png,21716 +images-34292.png,21717 +images-34293.png,21718 +images-34294.png,21719 +images-34295.png,21720 +images-34296.png,21721 +images-34297.png,21722 +images-34298.png,21723 +images-34299.png,21724 +images-34300.png,21725 +images-34301.png,21726 +images-34302.png,21727 +images-34303.png,21728 +images-34304.png,21729 +images-34305.png,21730 +images-34306.png,21731 +images-34307.png,21732 +images-34308.png,21733 +images-34309.png,21734 +images-34310.png,21735 +images-34311.png,21736 +images-34312.png,21737 +images-34313.png,21738 +images-34314.png,21739 +images-34315.png,21740 +images-34316.png,21741 +images-34317.png,21742 +images-34318.png,21743 +images-34319.png,21744 +images-34320.png,21745 +images-34321.png,21746 +images-34322.png,21747 +images-34323.png,21748 +images-34324.png,21749 +images-34325.png,21750 +images-34326.png,21751 +images-34327.png,21752 +images-34328.png,21753 +images-34329.png,21754 +images-34330.png,21755 +images-34331.png,21756 +images-34332.png,21757 +images-34333.png,21758 +images-34334.png,21759 +images-34335.png,21760 +images-34336.png,21761 +images-34337.png,21762 +images-34338.png,21763 +images-34339.png,21764 +images-34340.png,21765 +images-34341.png,21766 +images-34342.png,21767 +images-34343.png,21768 +images-34344.png,21769 +images-34345.png,21770 +images-34346.png,21771 +images-34347.png,21772 +images-34348.png,21773 +images-34349.png,21774 +images-34350.png,21775 +images-34351.png,21776 +images-34352.png,21777 +images-34353.png,21778 +images-34354.png,21779 +images-34355.png,21780 +images-34356.png,21781 +images-34357.png,21782 +images-34358.png,21783 +images-34359.png,21784 +images-34360.png,21785 +images-34361.png,21786 +images-34362.png,21787 +images-34363.png,21788 +images-34364.png,21789 +images-34365.png,21790 +images-34366.png,21791 +images-34367.png,21792 +images-34368.png,21793 +images-34369.png,21794 +images-34370.png,21795 +images-34371.png,21796 +images-34372.png,21797 +images-34373.png,21798 +images-34374.png,21799 +images-34375.png,21800 +images-34376.png,21801 +images-34377.png,21802 +images-34378.png,21803 +images-34379.png,21804 +images-34380.png,21805 +images-34381.png,21806 +images-34382.png,21807 +images-34383.png,21808 +images-34384.png,21809 +images-34385.png,21810 +images-34386.png,21811 +images-34387.png,21812 +images-34388.png,21813 +images-34389.png,21814 +images-34390.png,21815 +images-34391.png,21816 +images-34392.png,21817 +images-34393.png,21818 +images-34394.png,21819 +images-34395.png,21820 +images-34396.png,21821 +images-34397.png,21822 +images-34398.png,21823 +images-34399.png,21824 +images-34400.png,21825 +images-34401.png,21826 +images-34402.png,21827 +images-34403.png,21828 +images-34404.png,21829 +images-34405.png,21830 +images-34406.png,21831 +images-34407.png,21832 +images-34408.png,21833 +images-34409.png,21834 +images-34410.png,21835 +images-34411.png,21836 +images-34412.png,21837 +images-34413.png,21838 +images-34414.png,21839 +images-34415.png,21840 +images-34416.png,21841 +images-34417.png,21842 +images-34418.png,21843 +images-34419.png,21844 +images-34420.png,21845 +images-34421.png,21846 +images-34422.png,21847 +images-34423.png,21848 +images-34424.png,21849 +images-34425.png,21850 +images-34426.png,21851 +images-34427.png,21852 +images-34428.png,21853 +images-34429.png,21854 +images-34430.png,21855 +images-34431.png,21856 +images-34432.png,21857 +images-34433.png,21858 +images-34434.png,21859 +images-34435.png,21860 +images-34436.png,21861 +images-34437.png,21862 +images-34438.png,21863 +images-34439.png,21864 +images-34440.png,21865 +images-34441.png,21866 +images-34442.png,21867 +images-34443.png,21868 +images-34444.png,21869 +images-34445.png,21870 +images-34446.png,21871 +images-34447.png,21872 +images-34448.png,21873 +images-34449.png,21874 +images-34450.png,21875 +images-34451.png,21876 +images-34452.png,21877 +images-34453.png,21878 +images-34454.png,21879 +images-34455.png,21880 +images-34456.png,21881 +images-34457.png,21882 +images-34458.png,21883 +images-34459.png,21884 +images-34460.png,21885 +images-34461.png,21886 +images-34462.png,21887 +images-34463.png,21888 +images-34464.png,21889 +images-34465.png,21890 +images-34466.png,21891 +images-34467.png,21892 +images-34468.png,21893 +images-34469.png,21894 +images-34470.png,21895 +images-34471.png,21896 +images-34472.png,21897 +images-34473.png,21898 +images-34474.png,21899 +images-34475.png,21900 +images-34476.png,21901 +images-34477.png,21902 +images-34478.png,21903 +images-34479.png,21904 +images-34480.png,21905 +images-34481.png,21906 +images-34482.png,21907 +images-34483.png,21908 +images-34484.png,21909 +images-34485.png,21910 +images-34486.png,21911 +images-34487.png,21912 +images-34488.png,21913 +images-34489.png,21914 +images-34490.png,21915 +images-34491.png,21916 +images-34492.png,21917 +images-34493.png,21918 +images-34494.png,21919 +images-34495.png,21920 +images-34496.png,21921 +images-34497.png,21922 +images-34498.png,21923 +images-34499.png,21924 +images-34500.png,21925 +images-34501.png,21926 +images-34502.png,21927 +images-34503.png,21928 +images-34504.png,21929 +images-34505.png,21930 +images-34506.png,21931 +images-34507.png,21932 +images-34508.png,21933 +images-34509.png,21934 +images-34510.png,21935 +images-34511.png,21936 +images-34512.png,21937 +images-34513.png,21938 +images-34514.png,21939 +images-34515.png,21940 +images-34516.png,21941 +images-34517.png,21942 +images-34518.png,21943 +images-34519.png,21944 +images-34520.png,21945 +images-34521.png,21946 +images-34522.png,21947 +images-34523.png,21948 +images-34524.png,21949 +images-34525.png,21950 +images-34526.png,21951 +images-34527.png,21952 +images-34528.png,21953 +images-34529.png,21954 +images-34530.png,21955 +images-34531.png,21956 +images-34532.png,21957 +images-34533.png,21958 +images-34534.png,21959 +images-34535.png,21960 +images-34536.png,21961 +images-34537.png,21962 +images-34538.png,21963 +images-34539.png,21964 +images-34540.png,21965 +images-34541.png,21966 +images-34542.png,21967 +images-34543.png,21968 +images-34544.png,21969 +images-34545.png,21970 +images-34546.png,21971 +images-34547.png,21972 +images-34548.png,21973 +images-34549.png,21974 +images-34550.png,21975 +images-34551.png,21976 +images-34552.png,21977 +images-34553.png,21978 +images-34554.png,21979 +images-34555.png,21980 +images-34556.png,21981 +images-34557.png,21982 +images-34558.png,21983 +images-34559.png,21984 +images-34560.png,21985 +images-34561.png,21986 +images-34562.png,21987 +images-34563.png,21988 +images-34564.png,21989 +images-34565.png,21990 +images-34566.png,21991 +images-34567.png,21992 +images-34568.png,21993 +images-34569.png,21994 +images-34570.png,21995 +images-34571.png,21996 +images-34572.png,21997 +images-34573.png,21998 +images-34574.png,21999 +images-34575.png,22000 +images-34576.png,22001 +images-34577.png,22002 +images-34578.png,22003 +images-34579.png,22004 +images-34580.png,22005 +images-34581.png,22006 +images-34582.png,22007 +images-34583.png,22008 +images-34584.png,22009 +images-34585.png,22010 +images-34586.png,22011 +images-34587.png,22012 +images-34588.png,22013 +images-34589.png,22014 +images-34590.png,22015 +images-34591.png,22016 +images-34592.png,22017 +images-34593.png,22018 +images-34594.png,22019 +images-34595.png,22020 +images-34596.png,22021 +images-34597.png,22022 +images-34598.png,22023 +images-34599.png,22024 +images-34600.png,22025 +images-34601.png,22026 +images-34602.png,22027 +images-34603.png,22028 +images-34604.png,22029 +images-34605.png,22030 +images-34606.png,22031 +images-34607.png,22032 +images-34608.png,22033 +images-34609.png,22034 +images-34610.png,22035 +images-34611.png,22036 +images-34612.png,22037 +images-34613.png,22038 +images-34614.png,22039 +images-34615.png,22040 +images-34616.png,22041 +images-34617.png,22042 +images-34618.png,22043 +images-34619.png,22044 +images-34620.png,22045 +images-34621.png,22046 +images-34622.png,22047 +images-34623.png,22048 +images-34624.png,22049 +images-34625.png,22050 +images-34626.png,22051 +images-34627.png,22052 +images-34628.png,22053 +images-34629.png,22054 +images-34630.png,22055 +images-34655.png,22056 +images-34656.png,22057 +images-34657.png,22058 +images-34658.png,22059 +images-34659.png,22060 +images-34660.png,22061 +images-34661.png,22062 +images-34662.png,22063 +images-34663.png,22064 +images-34664.png,22065 +images-34665.png,22066 +images-34666.png,22067 +images-34667.png,22068 +images-34668.png,22069 +images-34669.png,22070 +images-34670.png,22071 +images-34671.png,22072 +images-34672.png,22073 +images-34673.png,22074 +images-34674.png,22075 +images-34675.png,22076 +images-34676.png,22077 +images-34677.png,22078 +images-34678.png,22079 +images-34679.png,22080 +images-34680.png,22081 +images-34681.png,22082 +images-34682.png,22083 +images-34683.png,22084 +images-34684.png,22085 +images-34685.png,22086 +images-34686.png,22087 +images-34687.png,22088 +images-34688.png,22089 +images-34689.png,22090 +images-34690.png,22091 +images-34691.png,22092 +images-34692.png,22093 +images-34693.png,22094 +images-34694.png,22095 +images-34695.png,22096 +images-34696.png,22097 +images-34697.png,22098 +images-34698.png,22099 +images-34699.png,22100 +images-34700.png,22101 +images-34701.png,22102 +images-34702.png,22103 +images-34703.png,22104 +images-34704.png,22105 +images-34705.png,22106 +images-34706.png,22107 +images-34707.png,22108 +images-34708.png,22109 +images-34709.png,22110 +images-34710.png,22111 +images-34711.png,22112 +images-34712.png,22113 +images-34713.png,22114 +images-34714.png,22115 +images-34715.png,22116 +images-34716.png,22117 +images-34717.png,22118 +images-34718.png,22119 +images-34719.png,22120 +images-34720.png,22121 +images-34721.png,22122 +images-34722.png,22123 +images-34723.png,22124 +images-34724.png,22125 +images-34725.png,22126 +images-34726.png,22127 +images-34727.png,22128 +images-34728.png,22129 +images-34729.png,22130 +images-34730.png,22131 +images-34731.png,22132 +images-34732.png,22133 +images-34733.png,22134 +images-34734.png,22135 +images-34735.png,22136 +images-34736.png,22137 +images-34737.png,22138 +images-34738.png,22139 +images-34739.png,22140 +images-34740.png,22141 +images-34741.png,22142 +images-34757.png,22143 +images-34758.png,22144 +images-34759.png,22145 +images-34760.png,22146 +images-34761.png,22147 +images-34762.png,22148 +images-34763.png,22149 +images-34764.png,22150 +images-34765.png,22151 +images-34766.png,22152 +images-34767.png,22153 +images-34768.png,22154 +images-34769.png,22155 +images-34770.png,22156 +images-34771.png,22157 +images-34772.png,22158 +images-34773.png,22159 +images-34774.png,22160 +images-34811.png,22161 +images-34812.png,22162 +images-34813.png,22163 +images-34814.png,22164 +images-34815.png,22165 +images-34816.png,22166 +images-34817.png,22167 +images-34818.png,22168 +images-34819.png,22169 +images-34820.png,22170 +images-34821.png,22171 +images-34822.png,22172 +images-34823.png,22173 +images-34824.png,22174 +images-34825.png,22175 +images-34826.png,22176 +images-34827.png,22177 +images-34828.png,22178 +images-34829.png,22179 +images-34830.png,22180 +images-34831.png,22181 +images-34832.png,22182 +images-34833.png,22183 +images-34834.png,22184 +images-34835.png,22185 +images-34836.png,22186 +images-34837.png,22187 +images-34838.png,22188 +images-34839.png,22189 +images-34840.png,22190 +images-34841.png,22191 +images-34842.png,22192 +images-34843.png,22193 +images-34844.png,22194 +images-34845.png,22195 +images-34846.png,22196 +images-34847.png,22197 +images-34848.png,22198 +images-34857.png,22199 +images-34858.png,22200 +images-34859.png,22201 +images-34860.png,22202 +images-34861.png,22203 +images-34862.png,22204 +images-34863.png,22205 +images-34864.png,22206 +images-34865.png,22207 +images-34866.png,22208 +images-34867.png,22209 +images-34868.png,22210 +images-34869.png,22211 +images-34870.png,22212 +images-34871.png,22213 +images-34872.png,22214 +images-34873.png,22215 +images-34874.png,22216 +images-34875.png,22217 +images-34876.png,22218 +images-34877.png,22219 +images-34878.png,22220 +images-34879.png,22221 +images-34880.png,22222 +images-34881.png,22223 +images-34882.png,22224 +images-34883.png,22225 +images-34884.png,22226 +images-34885.png,22227 +images-34886.png,22228 +images-34887.png,22229 +images-34888.png,22230 +images-34889.png,22231 +images-34890.png,22232 +images-34891.png,22233 +images-34892.png,22234 +images-34893.png,22235 +images-34894.png,22236 +images-34895.png,22237 +images-34896.png,22238 +images-34897.png,22239 +images-34898.png,22240 +images-34899.png,22241 +images-34900.png,22242 +images-34901.png,22243 +images-34902.png,22244 +images-34903.png,22245 +images-34904.png,22246 +images-34905.png,22247 +images-34906.png,22248 +images-34907.png,22249 +images-34908.png,22250 +images-34909.png,22251 +images-34910.png,22252 +images-34911.png,22253 +images-34912.png,22254 +images-34913.png,22255 +images-34914.png,22256 +images-34915.png,22257 +images-34916.png,22258 +images-34917.png,22259 +images-34918.png,22260 +images-34919.png,22261 +images-34920.png,22262 +images-34921.png,22263 +images-34922.png,22264 +images-34923.png,22265 +images-34924.png,22266 +images-34925.png,22267 +images-34926.png,22268 +images-34927.png,22269 +images-34928.png,22270 +images-34929.png,22271 +images-34930.png,22272 +images-34931.png,22273 +images-34932.png,22274 +images-34933.png,22275 +images-34934.png,22276 +images-34935.png,22277 +images-34936.png,22278 +images-34937.png,22279 +images-34938.png,22280 +images-34939.png,22281 +images-34940.png,22282 +images-34941.png,22283 +images-34942.png,22284 +images-34943.png,22285 +images-34944.png,22286 +images-34945.png,22287 +images-34946.png,22288 +images-34947.png,22289 +images-34948.png,22290 +images-34949.png,22291 +images-34950.png,22292 +images-34951.png,22293 +images-34952.png,22294 +images-34953.png,22295 +images-34954.png,22296 +images-34955.png,22297 +images-34956.png,22298 +images-34957.png,22299 +images-34958.png,22300 +images-34959.png,22301 +images-34960.png,22302 +images-34961.png,22303 +images-34962.png,22304 +images-34963.png,22305 +images-34964.png,22306 +images-34965.png,22307 +images-34966.png,22308 +images-34967.png,22309 +images-34968.png,22310 +images-34969.png,22311 +images-34970.png,22312 +images-34971.png,22313 +images-34972.png,22314 +images-34973.png,22315 +images-34974.png,22316 +images-34975.png,22317 +images-34976.png,22318 +images-34977.png,22319 +images-34992.png,22320 +images-34993.png,22321 +images-34994.png,22322 +images-34995.png,22323 +images-34996.png,22324 +images-34997.png,22325 +images-34998.png,22326 +images-34999.png,22327 +images-35000.png,22328 +images-35001.png,22329 +images-35002.png,22330 +images-35003.png,22331 +images-35004.png,22332 +images-35005.png,22333 +images-35006.png,22334 +images-35007.png,22335 +images-35008.png,22336 +images-35009.png,22337 +images-35010.png,22338 +images-35011.png,22339 +images-35012.png,22340 +images-35013.png,22341 +images-35014.png,22342 +images-35015.png,22343 +images-35016.png,22344 +images-35017.png,22345 +images-35018.png,22346 +images-35019.png,22347 +images-35020.png,22348 +images-35021.png,22349 +images-35022.png,22350 +images-35023.png,22351 +images-35024.png,22352 +images-35025.png,22353 +images-35026.png,22354 +images-35027.png,22355 +images-35028.png,22356 +images-35029.png,22357 +images-35030.png,22358 +images-35031.png,22359 +images-35032.png,22360 +images-35033.png,22361 +images-35034.png,22362 +images-35035.png,22363 +images-35036.png,22364 +images-35037.png,22365 +images-35038.png,22366 +images-35039.png,22367 +images-35040.png,22368 +images-35041.png,22369 +images-35042.png,22370 +images-35043.png,22371 +images-35044.png,22372 +images-35045.png,22373 +images-35046.png,22374 +images-35047.png,22375 +images-35048.png,22376 +images-35049.png,22377 +images-35050.png,22378 +images-35051.png,22379 +images-35052.png,22380 +images-35053.png,22381 +images-35054.png,22382 +images-35055.png,22383 +images-35056.png,22384 +images-35057.png,22385 +images-35058.png,22386 +images-35059.png,22387 +images-35060.png,22388 +images-35061.png,22389 +images-35062.png,22390 +images-35063.png,22391 +images-35064.png,22392 +images-35065.png,22393 +images-35066.png,22394 +images-35067.png,22395 +images-35068.png,22396 +images-35069.png,22397 +images-35070.png,22398 +images-35071.png,22399 +images-35072.png,22400 +images-35073.png,22401 +images-35074.png,22402 +images-35075.png,22403 +images-35076.png,22404 +images-35077.png,22405 +images-35078.png,22406 +images-35079.png,22407 +images-35080.png,22408 +images-35081.png,22409 +images-35082.png,22410 +images-35083.png,22411 +images-35084.png,22412 +images-35085.png,22413 +images-35086.png,22414 +images-35087.png,22415 +images-35088.png,22416 +images-35089.png,22417 +images-35090.png,22418 +images-35091.png,22419 +images-35092.png,22420 +images-35093.png,22421 +images-35094.png,22422 +images-35095.png,22423 +images-35096.png,22424 +images-35097.png,22425 +images-35098.png,22426 +images-35099.png,22427 +images-35100.png,22428 +images-35101.png,22429 +images-35102.png,22430 +images-35103.png,22431 +images-35104.png,22432 +images-35105.png,22433 +images-35106.png,22434 +images-35107.png,22435 +images-35108.png,22436 +images-35109.png,22437 +images-35110.png,22438 +images-35111.png,22439 +images-35112.png,22440 +images-35113.png,22441 +images-35114.png,22442 +images-35208.png,22443 +images-35209.png,22444 +images-35210.png,22445 +images-35211.png,22446 +images-35212.png,22447 +images-35213.png,22448 +images-35214.png,22449 +images-35215.png,22450 +images-35216.png,22451 +images-35217.png,22452 +images-35218.png,22453 +images-35219.png,22454 +images-35220.png,22455 +images-35221.png,22456 +images-35222.png,22457 +images-35223.png,22458 +images-35224.png,22459 +images-35225.png,22460 +images-35226.png,22461 +images-35227.png,22462 +images-35228.png,22463 +images-35229.png,22464 +images-35230.png,22465 +images-35231.png,22466 +images-35232.png,22467 +images-35233.png,22468 +images-35234.png,22469 +images-35235.png,22470 +images-35236.png,22471 +images-35237.png,22472 +images-35238.png,22473 +images-35239.png,22474 +images-35240.png,22475 +images-35241.png,22476 +images-35242.png,22477 +images-35243.png,22478 +images-35244.png,22479 +images-35245.png,22480 +images-35246.png,22481 +images-35247.png,22482 +images-35248.png,22483 +images-35249.png,22484 +images-35250.png,22485 +images-35251.png,22486 +images-35252.png,22487 +images-35253.png,22488 +images-35254.png,22489 +images-35255.png,22490 +images-35256.png,22491 +images-35257.png,22492 +images-35258.png,22493 +images-35259.png,22494 +images-35260.png,22495 +images-35261.png,22496 +images-35262.png,22497 +images-35263.png,22498 +images-35264.png,22499 +images-35265.png,22500 +images-35266.png,22501 +images-35267.png,22502 +images-35268.png,22503 +images-35269.png,22504 +images-35270.png,22505 +images-35271.png,22506 +images-35272.png,22507 +images-35273.png,22508 +images-35274.png,22509 +images-35275.png,22510 +images-35276.png,22511 +images-35277.png,22512 +images-35278.png,22513 +images-35279.png,22514 +images-35280.png,22515 +images-35281.png,22516 +images-35282.png,22517 +images-35283.png,22518 +images-35284.png,22519 +images-35285.png,22520 +images-35286.png,22521 +images-35287.png,22522 +images-35288.png,22523 +images-35289.png,22524 +images-35290.png,22525 +images-35291.png,22526 +images-35292.png,22527 +images-35293.png,22528 +images-35294.png,22529 +images-35295.png,22530 +images-35296.png,22531 +images-35297.png,22532 +images-35298.png,22533 +images-35299.png,22534 +images-35300.png,22535 +images-35301.png,22536 +images-35302.png,22537 +images-35303.png,22538 +images-35304.png,22539 +images-35305.png,22540 +images-35306.png,22541 +images-35307.png,22542 +images-35308.png,22543 +images-35309.png,22544 +images-35310.png,22545 +images-35311.png,22546 +images-35312.png,22547 +images-35313.png,22548 +images-35314.png,22549 +images-35315.png,22550 +images-35316.png,22551 +images-35317.png,22552 +images-35318.png,22553 +images-35319.png,22554 +images-35320.png,22555 +images-35321.png,22556 +images-35322.png,22557 +images-35323.png,22558 +images-35324.png,22559 +images-35325.png,22560 +images-35326.png,22561 +images-35327.png,22562 +images-35328.png,22563 +images-35329.png,22564 +images-35330.png,22565 +images-35331.png,22566 +images-35332.png,22567 +images-35333.png,22568 +images-35334.png,22569 +images-35335.png,22570 +images-35336.png,22571 +images-35337.png,22572 +images-35338.png,22573 +images-35339.png,22574 +images-35340.png,22575 +images-35341.png,22576 +images-35342.png,22577 +images-35343.png,22578 +images-35344.png,22579 +images-35345.png,22580 +images-35346.png,22581 +images-35347.png,22582 +images-35348.png,22583 +images-35349.png,22584 +images-35350.png,22585 +images-35351.png,22586 +images-35352.png,22587 +images-35353.png,22588 +images-35354.png,22589 +images-35355.png,22590 +images-35356.png,22591 +images-35357.png,22592 +images-35358.png,22593 +images-35359.png,22594 +images-35360.png,22595 +images-35361.png,22596 +images-35366.png,22597 +images-35367.png,22598 +images-35368.png,22599 +images-35369.png,22600 +images-35370.png,22601 +images-35371.png,22602 +images-35372.png,22603 +images-35373.png,22604 +images-35374.png,22605 +images-35375.png,22606 +images-35376.png,22607 +images-35377.png,22608 +images-35378.png,22609 +images-35379.png,22610 +images-35380.png,22611 +images-35381.png,22612 +images-35382.png,22613 +images-35383.png,22614 +images-35384.png,22615 +images-35385.png,22616 +images-35390.png,22617 +images-35391.png,22618 +images-35392.png,22619 +images-35393.png,22620 +images-35394.png,22621 +images-35400.png,22622 +images-35401.png,22623 +images-35402.png,22624 +images-35403.png,22625 +images-35404.png,22626 +images-35405.png,22627 +images-35406.png,22628 +images-35407.png,22629 +images-35408.png,22630 +images-35409.png,22631 +images-35410.png,22632 +images-35411.png,22633 +images-35412.png,22634 +images-35413.png,22635 +images-35414.png,22636 +images-35415.png,22637 +images-35416.png,22638 +images-35417.png,22639 +images-35418.png,22640 +images-35419.png,22641 +images-35420.png,22642 +images-35421.png,22643 +images-35422.png,22644 +images-35423.png,22645 +images-35424.png,22646 +images-35425.png,22647 +images-35426.png,22648 +images-35427.png,22649 +images-35428.png,22650 +images-35429.png,22651 +images-35440.png,22652 +images-35441.png,22653 +images-35442.png,22654 +images-35443.png,22655 +images-35444.png,22656 +images-35445.png,22657 +images-35446.png,22658 +images-35447.png,22659 +images-35448.png,22660 +images-35449.png,22661 +images-35450.png,22662 +images-35451.png,22663 +images-35452.png,22664 +images-35453.png,22665 +images-35454.png,22666 +images-35455.png,22667 +images-35456.png,22668 +images-35457.png,22669 +images-35458.png,22670 +images-35459.png,22671 +images-35460.png,22672 +images-35461.png,22673 +images-35462.png,22674 +images-35463.png,22675 +images-35466.png,22676 +images-35467.png,22677 +images-35468.png,22678 +images-35469.png,22679 +images-35470.png,22680 +images-35471.png,22681 +images-35472.png,22682 +images-35473.png,22683 +images-35474.png,22684 +images-35475.png,22685 +images-35476.png,22686 +images-35477.png,22687 +images-35478.png,22688 +images-35479.png,22689 +images-35480.png,22690 +images-35481.png,22691 +images-35482.png,22692 +images-35483.png,22693 +images-35484.png,22694 +images-35485.png,22695 +images-35486.png,22696 +images-35487.png,22697 +images-35488.png,22698 +images-35489.png,22699 +images-35490.png,22700 +images-35491.png,22701 +images-35492.png,22702 +images-35493.png,22703 +images-35494.png,22704 +images-35495.png,22705 +images-35496.png,22706 +images-35497.png,22707 +images-35498.png,22708 +images-35499.png,22709 +images-35500.png,22710 +images-35501.png,22711 +images-35502.png,22712 +images-35503.png,22713 +images-35504.png,22714 +images-35505.png,22715 +images-35506.png,22716 +images-35507.png,22717 +images-35508.png,22718 +images-35509.png,22719 +images-35510.png,22720 +images-35511.png,22721 +images-35512.png,22722 +images-35513.png,22723 +images-35514.png,22724 +images-35515.png,22725 +images-35516.png,22726 +images-35517.png,22727 +images-35518.png,22728 +images-35519.png,22729 +images-35520.png,22730 +images-35521.png,22731 +images-35522.png,22732 +images-35523.png,22733 +images-35524.png,22734 +images-35525.png,22735 +images-35526.png,22736 +images-35527.png,22737 +images-35528.png,22738 +images-35529.png,22739 +images-35530.png,22740 +images-35531.png,22741 +images-35532.png,22742 +images-35533.png,22743 +images-35534.png,22744 +images-35535.png,22745 +images-35536.png,22746 +images-35537.png,22747 +images-35538.png,22748 +images-35539.png,22749 +images-35540.png,22750 +images-35541.png,22751 +images-35542.png,22752 +images-35543.png,22753 +images-35544.png,22754 +images-35545.png,22755 +images-35546.png,22756 +images-35547.png,22757 +images-35548.png,22758 +images-35549.png,22759 +images-35550.png,22760 +images-35551.png,22761 +images-35552.png,22762 +images-35553.png,22763 +images-35554.png,22764 +images-35555.png,22765 +images-35556.png,22766 +images-35557.png,22767 +images-35558.png,22768 +images-35559.png,22769 +images-35560.png,22770 +images-35561.png,22771 +images-35562.png,22772 +images-35563.png,22773 +images-35564.png,22774 +images-35565.png,22775 +images-35566.png,22776 +images-35567.png,22777 +images-35568.png,22778 +images-35569.png,22779 +images-35570.png,22780 +images-35571.png,22781 +images-35572.png,22782 +images-35573.png,22783 +images-35574.png,22784 +images-35575.png,22785 +images-35576.png,22786 +images-35577.png,22787 +images-35578.png,22788 +images-35579.png,22789 +images-35580.png,22790 +images-35581.png,22791 +images-35582.png,22792 diff --git a/models/.gitkeep b/models/.gitkeep deleted file mode 100644 index e69de29..0000000 diff --git a/src/settings.py b/src/settings.py index 14b9912..843061c 100644 --- a/src/settings.py +++ b/src/settings.py @@ -72,7 +72,7 @@ def configure(model): torch.cuda.synchronize(device=model.device) # Determine the total number of timesteps across training images, modules, and location repeats - model.T = int((model.number_training_images / model.number_modules) * model.location_repeat) + model.T = int((model.number_training_images / model.number_modules) * model.location_repeat) * model.epoch def image_csv(model): diff --git a/tutorials/0_BasicDemo.ipynb b/tutorials/0_BasicDemo.ipynb new file mode 100644 index 0000000..0770532 --- /dev/null +++ b/tutorials/0_BasicDemo.ipynb @@ -0,0 +1,344 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "b34c7b8a-e7bb-47f4-b558-be1bde9a7b37", + "metadata": {}, + "source": [ + "## VPRTempo - Basic Demo\n", + "\n", + "### By Adam D Hines (https://research.qut.edu.au/qcr/people/adam-hines/)\n", + "\n", + "VPRTempo is based on the following paper, if you use or find this code helpful for your research please consider citing the source:\n", + " \n", + "[Adam D Hines, Peter G Stratton, Michael Milford, & Tobias Fischer. \"VPRTempo: A Fast Temporally Encoded Spiking Neural Network for Visual Place Recognition. arXiv September 2023](https://arxiv.org/abs/2309.10225)\n", + "\n", + "### Introduction\n", + "\n", + "This is a basic, extremely simplified version of VPRTempo that highlights how images are transformed, spikes and weights are used, and the readout for performance. Although the proper implementation is in [PyTorch](https://pytorch.org/), we present a simple NumPy example to get started. As in the paper, we will present a simple example using the [Nordland](https://webdiis.unizar.es/~jmfacil/pr-nordland/#download-dataset) dataset with a pre-trained model.\n", + "\n", + "Before starting, make sure the following packages are installed and imported:" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "c879cd02-82db-441d-9476-fff1925bf494", + "metadata": {}, + "outputs": [], + "source": [ + "# Imprt opencv-python, NumPy, and matplotlib.pyplot\n", + "try:\n", + " import cv2\n", + " import numpy as np\n", + " import matplotlib.pyplot as plt\n", + "except:\n", + " ! pip install numpy, opencv-python, matplotlib # pip install if modules not present\n", + " import cv2\n", + " import numpy as np\n", + " import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "markdown", + "id": "bb45df38-e333-46b2-9161-80e6ac367532", + "metadata": {}, + "source": [ + "### Image processing\n", + "\n", + "Let's have a look at how we process our images to run through VPRTempo. We utilize a technique called *patch normalization* to resize input images and normalize the pixel intensities. To start, let's see what the original image looks like before patch normalization." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "67f129b5-9a7a-4b50-9d94-b9bf512f8b70", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAFXCAYAAACIkbUMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9e9ClWVUfjn/W3s9zznlvfe/p7plhLhApBYkiGESDGCMiKohaMWJErFJLY6IhREEKEi/FD2SM14hWkZTXhApGLZOKKRWDWpZ+RZOAiAqDODdmpqd7unv67fdyznmevdbvj7XW3vs55/QwiDiMng097/ue81z2da3PupOICNZt3dZt3dZt3dZt3T6BWni8O7Bu67Zu67Zu67Zu67bY1gBl3dZt3dZt3dZt3T7h2hqgrNu6rdu6rdu6rdsnXFsDlHVbt3Vbt3Vbt3X7hGtrgLJu67Zu67Zu67Zun3BtDVDWbd3Wbd3Wbd3W7ROurQHKuq3buq3buq3bun3CtTVAWbd1W7d1W7d1W7dPuLYGKOu2buu2buu2buv2CdfWAGXd1u1vqP3Mz/wMiAiTyQT33HPP0vef93mfh0/91E/9G+nLb//2b4OI8Nu//dv5s6//+q/Hbbfd9jfy/sfSn+u1d73rXfjyL/9y3HLLLRiPxzhz5gye+9zn4t/8m3/z8e/ouq3buv2NtTVAWbd1+xtus9kMr3/96x/vbjwh26/+6q/isz/7s7G7u4s77rgDv/Ebv4Ef/dEfxed8zufg7W9/++PdvXVbt3X7a2zN492BdVu3v2vti77oi/C2t70N3/Ed34FP+7RP+7i95/DwEBsbGx+35z8e7Y477sDtt9+OX//1X0fTFPL11V/91bjjjjsex549fu3g4ACbm5uPdzfWbd3+2ttag7Ju6/Y33F796lfj5MmTeM1rXvMRr51Op3jta1+L22+/HaPRCDfddBP+xb/4F3jkkUcG191222340i/9UvzyL/8ynvnMZ2IymeB7v/d7AQDvf//78UVf9EXY3NzEqVOn8C3f8i24du3aY+rrW97yFnzu534ubrjhBmxtbeEZz3gG7rjjDnRdN7jOzVN/9Ed/hOc973nY3NzEk5/8ZHz/938/mHlw7cfSn0uXLuHUqVMDcOIthCE5IyJ8z/d8z9J1t912G77+678+/+2mt3e+8534pm/6Jpw8eRJHjhzB133d12F/fx/nz5/HV33VV+HYsWM4d+4cvuM7vmMw/rvvvhtEhB/4gR/Am9/8Ztx2223Y2NjA533e5+HOO+9E13X4ru/6Ltx44404evQovvzLvxwXLlxY6tfb3/52PPe5z8XW1ha2t7fxwhe+EO9+97sH13z91389tre38Sd/8if4wi/8Quzs7OAf/+N//Jjmbt3W7YnW1gBl3dbtb7jt7Ozg9a9/PX79138d73znO697nYjgpS99Kf79v//3ePnLX45f/dVfxate9Sr87M/+LD7/8z8fs9lscP3/+3//D9/5nd+Jb//2b8ev/dqv4Su/8ivx0EMP4fnPfz7e97734Sd+4ifw8z//89jb28O//Jf/8jH19UMf+hC+5mu+Bj//8z+P//k//ye+4Ru+AT/wAz+Ab/7mb1669vz58/hn/+yf4Wu/9mvxP/7H/8CLXvQivPa1r8V//s//OV/zsfbnuc99Lt71rnfh27/92/Gud71rCSh9LO0bv/EbcfToUfzX//pf8frXvx5ve9vb8E3f9E34ki/5Enzap30afvEXfxGveMUr8IM/+IP4D//hPyzd/5a3vAW/93u/h7e85S34T//pP+H9738/XvziF+MbvuEbcPHiRfzUT/0U7rjjDvzmb/4mvvEbv3Fw7xvf+Ea87GUvw9Oe9jT8wi/8An7+538e165dw/Oe9zz82Z/92eDa+XyOl7zkJfj8z/98/Pf//t8zEF23dftb12Td1m3d/kbaT//0TwsA+aM/+iOZzWby5Cc/WZ797GcLM4uIyPOf/3x5+tOfnq//tV/7NQEgd9xxx+A5b3/72wWAvPWtb82f3XrrrRJjlA984AODa1/zmtcIEcl73vOewecveMELBID81m/9Vv7sFa94hdx6663X7X9KSbquk5/7uZ+TGKNcvnw5f/f85z9fAMi73vWuwT1Pe9rT5IUvfOFfqT+r2sMPPyz/8B/+QwEgAKRtW/nsz/5sedOb3iTXrl0bXAtAvvu7v3vpGbfeequ84hWvyH/7unzbt33b4LqXvvSlAkB+6Id+aPD5p3/6p8tnfMZn5L/vuusuASCf9mmfJiml/PmP/MiPCAB5yUteMrj/la98pQCQq1eviojIvffeK03TLL3/2rVrcvbsWfmqr/qq/NkrXvEKASA/9VM/9SiztG7r9rejrTUo67Zuj0MbjUZ4wxvegP/zf/4PfuEXfmHlNa5dqc0RAPBP/sk/wdbWFv73//7fg8///t//+3jqU586+Oy3fuu38PSnP33J1+VrvuZrHlM/3/3ud+MlL3kJTp48iRgj2rbF133d1yGlhDvvvHNw7dmzZ/EP/sE/WOpTHbH0sfbn5MmT+N3f/V380R/9Eb7/+78fX/ZlX4Y777wTr33ta/GMZzwDDz/88GN6zqr2pV/6pYO/P+VTPgUA8CVf8iVLn6+KwvriL/7igZnp0e4HgHvvvRcA8Ou//uvo+x5f93Vfh77v87/JZILnP//5KyObvvIrv/KjHN26rdsTr60Byrqt2+PUvvqrvxqf8Rmfgde97nUrTRWXLl1C0zQ4ffr04HMiwtmzZ3Hp0qXB5+fOnVv5jLNnzy59vuqzxXbvvffiec97Hu6//3786I/+aAYGb3nLWwCoE27dTp48ufSM8Xg8uO5j6U/dnv3sZ+M1r3kN/tt/+2944IEH8K//9b/G3Xff/TE5yp44cWLw92g0uu7n0+n0Y7ofQH7GQw89BAD4zM/8TLRtO/j39re/fQl0bW5u4siRIx/V2NZt3Z6IbR3Fs27r9jg1IsKb3/xmvOAFL8Bb3/rWpe9PnjyJvu9x8eLFAUgREZw/fx6f+ZmfufS8Vc84f/780uerPltsv/Irv4L9/X388i//Mm699db8+Xve856PeO/12sfSn+u1tm3x3d/93fjhH/5hvO9978ufj8fjJT8dAEvA7vFup06dAgD84i/+4mCer9dWrfO6rdvfxrbWoKzbuj2O7Qu+4Avwghe8AN/3fd+Hvb29wXcenVE7mQLAL/3SL2F/f/8xRW/8o3/0j/Cnf/qn+OM//uPB529729s+4r3OCMfjcf5MRPAf/+N//Ij3fjz6AwAPPvjgys///M//HABw44035s9uu+02vPe97x1c9853vnNpnh/v9sIXvhBN0+BDH/oQnv3sZ6/8t27r9nexrTUo67Zuj3N785vfjGc961m4cOECnv70p+fPX/CCF+CFL3whXvOa12B3dxef8zmfg/e+97347u/+bjzzmc/Ey1/+8o/47Fe+8pX4qZ/6KXzJl3wJ3vCGN+DMmTP4L//lv+D973//R7z3BS94AUajEV72spfh1a9+NabTKX7yJ38SV65c+SuP9WPpD6DM/Oabb8aLX/xifPInfzKYGe95z3vwgz/4g9je3sa/+lf/Kl/78pe/HP/23/5b/Lt/9+/w/Oc/H3/2Z3+GH//xH8fRo0f/yv3/eLTbbrsN3/d934fXve51+Mu//Et80Rd9EY4fP46HHnoIf/iHf4itra11pM66/Z1saw3Kuq3b49ye+cxn4mUve9nS50SEX/mVX8GrXvUq/PRP/zS++Iu/OIccv/Od7xxoNq7Xzp49i9/5nd/B0572NPzzf/7P8bVf+7WYTCb48R//8Y947yd/8ifjl37pl3DlyhV8xVd8Bb7t274Nn/7pn44f+7Ef+yuN82PtDwC8/vWvx/Hjx/HDP/zDeMlLXoIXvehF+LEf+zF8wRd8Af7wD/8Qz3jGM/K13/md34nv/M7vxM/8zM/gxS9+MX7pl34Jv/ALv4Bjx479lfv/8Wqvfe1r8Yu/+Iu488478YpXvAIvfOEL8epXvxr33HMPPvdzP/fx7t66rdvj0khE5PHuxLqt27qt27qt27qtW93WGpR1W7d1W7d1W7d1+4Rra4Cybuu2buu2buu2bp9wbQ1Q1m3d1m3d1m3d1u0Trj2uAOUnfuIncPvtt2MymeBZz3oWfvd3f/fx7M66rdu6rdu6rdu6fYK0xw2gvP3tb8crX/lKvO51r8O73/1uPO95z8OLXvSinP553dZt3dZt3dZt3f7utsctiuc5z3kOPuMzPgM/+ZM/mT/7lE/5FLz0pS/Fm970psejS+u2buu2buu2buv2CdIel0Rt8/kc//f//l9813d91+DzL/zCL8Tv//7vf8T7mRkPPPAAdnZ21mmf123d1m3d1m3dniBNRHDt2jXceOONg+Kaq9rjAlAefvhhpJRw5syZwednzpxZWZNjNpsNamrcf//9eNrTnvZx7+e6rdu6rdu6rdu6/fW3++67DzfffPOjXvO4prpf1H6IyEqNyJve9KaVqZ5/4qd/CuPJBAF6D0PAIoBZrUQEKfVwK5awAIn1Gvve3xlDABEhhIDYNCAiPHbrF9m/Mg4f39Iz8rvrD5OO28ZORHkeYowI9ncIYdBPAAj2N5G9M5DdExDsHQF6PQEAM3avPoLzDz2E0EQ86fbb0LQNmBkiCSJARARExyUi+t4Y8zuJCNT6MwWBCKPRCG3bIDYRRECfOkhizLsOh3sdOPVISdCnBIhACEgpITGDhZF6xmw+x961a5jNpjh6/Bia0RicEkQEPQ/ntp5rTkmdqRb3DhE4pTyXBEBs7kIIIPsZ7Wc9zwBAIiABAmGA9FNK1SvKGtfXxBjzP3+/zyVCQAyE2DQIFCDC6FPS/WnPzNtJBIkZfd9jnnowMzglMAv6xDp+EaSU0KcE5jxRg/7W8yZ+Roh0Tux6AZCYV+57v0cW7s9rMLgv2nMFZOMDCCCGPsH2kM2X39cglvH7+rGAOUFsXFKdH64/E32fIOXPEhEClC6UIUneC5ECru5exXhjA+NWKwynjtF1HTY2xmD2dSVMp3Pcd9+9eOpTP2lIU6SsuX4mNt7yruG7Q/5dP5dyHTNEqHqW97TQK52aUL3DG1f0s9yz3AhEoTornLdaTXslEERYr2Up/SFASK8NRnmFpew7hPwcDgwI69ITASIIEhFigG9wvZQyzdPzRxCyswo9fwToi1eNiPQ/QmXU/lwfV8jzYqtAOkf1mCkQQCH3x3qGIECMAaAAyXvTp1hq0o/ypU/kMs0C6n1cnXkg86b6u9J8v9s7uH5G2S+FJpXPfC0plHPnPMN7zAv8lxAG6+7vFhFbd6XdEN3LUp0zZoawngWBgKt5mM9muON7vhs7OztL87LYHheAcurUKcQYl7QlFy5cWNKqAJoG+lWvelX+e3d3F0960pOwubGB8WicD1sSBR95UkXA3Orvdsic0PECwRswX2NSj2Y+qkGEE4XqtXC84cR5uNeMfGcCxYNn1b9HByUVM3Xi7v0MRCAo8dLvgx1AI8Qhog2UAdnO1hbO3HAD7n/gAfzlB/8Ct952K06ePG5EXgmPA5S6ZcIUAhBINzsBEgCKERIJTDb/QqAQMZk0aJuJbmAGemeyzEgpgUXQ9R3m0w6j8RhHdnYwnU5x+fJlbMcW29s7AAn6XnL/a4YqxpyXFIV+4Jmrj8qckAGHGCMaA1+BCMF/D0p+IwVA0mAmBsze/ktQKkpGIByYkD3Xv8tz52sXIzglBWsGfJqmGYAdsTmadR2SzVtKjK7rFXwYOOjtpwOG+v7Fv+s5qf9m5vxZTUT99xqI5PWozxwAIicrNZMF4OABUD5NxiztwygVQwlBT4aBMxGuzlfdX4HyajHww/q7iDJ7paQDdl2v5eFohCNmKiYhSMPoRi0mk0klwAQcHBzi1KnTmEw2wdzlucgMHwBzv9Q//X0RMNTCjPVdkAHRKhBeaILdIz7eAjCdga3gmPk9RADbXoTTDdDSXRL0vIbqqSFfRBDbwwQCmZBglDSfBQSBgDMWIpAKP1imcwJRocpBKwRCSl8ClR76+fI5CSHk39MCWCAKSodBmVa4EOKAyecAcGwS873BxhfgQgNBKAKkc+37zvsLcRoT7fMCAiuJY7AeIgWU1IJMWbf6dxXudL5CFmjq5wJKl2WFoKHzQQUwDr6zM0yAJAYCISDmp7oQ4OMSSH7HosCfhRkDLTXNWOabj94eF4AyGo3wrGc9C+94xzvw5V/+5fnzd7zjHfiyL/uypevH4/HKuiNNbBBjBBvzpSRZXFEEp0cr4+YF1LpK0+GbPUu71urFDguSnx4SXwQFK/4MJ/ilBUBUSmCwIdsKtfoB8r+rO5056+WpGpkdImOATYwGTBoEKPpvHNjAJAUIjh7bwY2XzuCuu+4CT6e44ewZbG1tq0QkDMXJDGYgpcIglCmWzhEIKSQ7uE4IBME0CDoPgs6YMIkRbFKRJ1KDtgUal6RbZdAPP3wFQMD2kR00TTLELmAJ+RBABNGIVEb2QF77Vc2/d+KWwSoR6iMdmkalOGmMkOu3ibka+3CVhFR7gvwsyVKXkBFQEQS4Bkk1J/4TALquA0WVch1w932vGhLTOqXeNSm8NPbBWDOTpcF+r9uihieEMADwNehZJKLDM6D7vzw+QPdpYV15TI7gUSSyGuAVwphQWKQDfpcOTagwZqqgmBYEBGdCy2AspaRnhgJYWN8dA7iTqk8qfR4cHOL48WNwYWJIH4Zz7Iyz1iqUa+p+UAEcAGJcEAjs+qItcUFIwReZZKrf9AtCkF8PuBDkv6mkoQxHtQ6rQYopGYbg30icr7FATFhpsNgBoqDCjs+XvcHXQruimg8QKRuv6Wz1vhQIAT5/Q+1x1sCRgVqjLQ5GbDJzp1VwICD5+wghZPgD/aPQVN0/9pcIWBIERds1XDNC2a9SaSkW56asbwCyhuHRheIIkD2bi6ZOtZTlPdyX56w88wYchv32s2K0vwdiIFC1I/x9zusKtzNBoQItWaCpBAvvz6PR5sX2uJl4XvWqV+HlL385nv3sZ+O5z30u3vrWt+Lee+/Ft3zLtzzmZ2RJ1Y8Y+QTr4XOAq/s/QIIRWVRbaIF4158tgwtf6KKiBHigQleiJYPNW2+SECgfukDl6C8S/xppXmf0mWmotEkZ8ZNJN02MaCKhCRGj2BjzIYRIJlkAx3a2cfr0cdx337247967cONNN+HEyZNITgi5RUqMEGJByixIomYGkAIeyn3SDZqY1XxTb8Y+ITDQthEhqKTCdm3PCalP4NSDE2F7exttO8Hly5exe+UR7Bw/otoICeDcN4YbWwbS/AJir38utuQmp2ofiAiaptFnBNtnJocxmRSqby2rwZlil7U0xsj2Dt0bypEYQ4K0qMVgTsaGFdz5uFgMmBhSvZ5svghI8ruWuVh1M2WC42DW1b4OslJlMlu+nQagXltY3Q8QiiXEJDcgawZV4tULlNkXBp8nWtT8Ari2u1qPFX1cPFN936vG0SVrDNfEf7oGZzxuwVxMSPXardJ6lOaMJCKEGnAUplK0sIuCkJvJivqcqACb4O8iGuzfIdSo5t4BQtYqwOZevxswyRWINwsGjlIIeLRsFYtzmZep2o8G1QAIEiGbph0E6j0KapXkSAWIh2sdiBR7VZqSTE/rPkn5GUKtMZfST9MEiYFEcvpGRfMRFvZZNovV81XNv//urgi+lj47Qz60ckbNdGJ/hTBYo1qbsQI+lWcKBvvXQX8W6kWAlCAU4Kba4ZOG79R9V8CJwM9FMl5ImafWJvKP1B43gPJP/+k/xaVLl/B93/d9ePDBB/Gpn/qp+F//63/h1ltv/aieQ0QgLtIOS5HUINXi2xoIbPNicYFWI9jVqNalNMrIsyZS15NWC6qUbAO97pgW/tXPUFWwPkNIF9vBDguDJaAJBAkMxIg4ChiFiKYJ6k/RRLg9kilhe7KFp+zcjmMPH8cH7vwLXNq9gifd+iTE2BgAUnONH2BmASNmlXQ9jyyEwAw2ohuktqsK2rZB06gZhSFAMtIoAEUyUhcAEmxsjHD6hpN4+OLDuHzxYZw8eRIUAwITKBKSCMhNHHluKnMZyuFZ7Oegz34o7QC5RsaviTFk+3YiAYfa9KDjcnW3LgIG71tcV9UwBQShIs3Z93kdTcYJRIjBCFpWYROIGX0vACJg2kKu9l4tieYxGiOr7dyDVn2eQUo1lzAizgtS0uIYa2luMO+o9oIooPZhZdW7vgYsReuQ5yb4efMJFlcEIESAmQZn0rUYi8wsn0NmNI1qYX2eEAlNk1kZiFSjpT5YESIOAso+WzQj1lqrVcLP6jl7dCBdN/FtkO8HRCJQmVPKa4am7PodpMuAcqXRUQND+T0ZyeQngFhUIxjMyyeDJ/vexr1s3HAPpcUxiQ8EjvUjikmiQqaD+a3HUzdXVlIGtWXMuT8ECAgcisl8MEcspjd10GJmNVleg1qjUIMPgSxdh2pPKJBwgFDvl+vtAyrYUKLJO4WvLF29MG/lT0Ltx+TAMwsoBhgVmAEsqwWTxXcOwUkFlo1OfjTaE+BxdpL91m/9Vnzrt37rX/n+VQc/hJClvGyfDCEzKhJV09UbfOjgV563SrrVv9UGvQo8+LsHxL2+JinCZtaNSaZadCIJ14RUe6HerkoMTfXr75CEZPpQYkLPjLZt9E5hNflE06g0AdQYOBHVXnRphnnqsbm9g0/5lKfjA3fehT/+4/fjSbfegiPbO+rsSUATqJLmTA3vwhYFKA8U1H4AzGKImQ21M4jMcQ6CEPUZkoAAAUIDDkDPDGKgbSI2bjqHy5euYO/qLk4cP45mNNK1JUJKjMQ9emYFTqlXAGjMSdKyxOt/+z8GBuZAEUEwpB9CwGEkNI0yAKejKTE4qTrU18NBiqs1i3Rkx74iJoECmhDN0bgA5hAjEPX6ELJ1fHCfhPJsZsr7zkFI3q9O8I34LALpgRRkIMc/87lyDQVAgIGgGGM2t2WtzIB4OcMS1BqUWktF5MRykagaAKcCGgthtZmigFpqd/65irevAgn+d0pp4MQ83BdJrbFCmM1mplHza/zfMvMfSMkV8HV1BHPdDyz8Xq5bfJ6PVI9XMYsU7THgDrvk8pmhv9VC1grxSIqEnX2tB9ebTwYpHXA/oqEAsCzsOf2q/eIymLdb3HnTffZqAdIZnI6raNjqaxZpdf2+urnWBIDKQe4wTzTY+/k5dn4eTXB1eFHAh9Mc/76AFBEBBhoEFUX0ebF6/nK/B2eXy2ZcBXqv1x5NcNY/SPtUIV2B7bcVQEhEijNsRQ/KXDZ5H36U2ATA4wxQPtbmzpb174tE2DdfIIKTX2HOERrXU9M+2u9OfFZpYLw5QMrRM/mLGsWT+mMER88hX+OniEUQjOEWYr2gbhM3uZhTmM8BA00QMM/QgDAeN4htgLQE5oQ+9eg5oU+CvhPM5owkhNuf/GRcfOgi7v3gPdg+cQxnz53FZGOCIEATImIgldiqs67jhYES6z8RIoCYIkRYmUFQoBRBKvbC9n2jEURsf7vpRddWcGRjC7u7uzg4PMDmxgQbm5tgAZIIunmHnhmp79H3ClB7YnDQNWJzxq3XiMTQ/ALzgq0tA6CUjCou+wkNpAMn3ZWktooQODEOQZ2JE3HZIwK15XMC9ZT3LIwoO6MJFDJRIgoIwR01I1Iq73JTBIAcbRGqOWAWsBOTxBq1ESLSQM2cYPpIsBSCBRFICAhOiCqC5G9cbAOflkUgVDGZzOREiXpjPkxFwh4SwKINwVKQx8o18D6IZA3KomOwq6H9s8PDA0wmGxXoWgYmi38vamwcxw3nyD+X/HuZYsm/l58Vw5eKyUM/GDD0POdh8A7/3mcwQwZ7Z4YYi0K80y2LcoE7yPv8SnVhdXMNhmMWqAbdrjQ5FlEJGpi/nV66NoWpvse7L3ANeZ5H783SWhjDrQZYr53Tiuj0iJBphV/rJp9aSlvkIUSysOb1/BT/w3qtyx5wmuPm7AporgT2MI1kdTbsoas1TVLt52HfJL/DwZfzoupukbxnap+U62oIAUBSBs+PtT2hAYo3ByZDiUVbqNTSwQ6mk5ha9bvYVqqz2Ld8Khv9egtSASU3KZUL6t8ZQLRFKxE/tXS2OJ4liYi0b4HU+xpg9EmQhNBEwpx79P0cKQqOjLYQhMCJAdZriFpQABJm6MGQAJw6cxI7R7bw0AMP4UN/fidue/JtOHLDKTQxoHYlTSKZUPiB0mVQs1CwzSks6FOPGIC2acyhzXcrZYbk0rcTaT+YLILtI1s4PDjAhYcfxngyws7ODvokmMWILiX0fcR8TpjOBC0R+gQwcWamPp9sDFLP+fBgxWpPKO0hsNRhxYATjfoz3WNDP5Yi8ZWlEoFJ7U6MKwktVRfl+XTHVd0jybRT2S/FGI/eUoPY+lEKbDycGuSgKmZmXKQ/zg57YlEprqlhUZ+fDDIWhIFV+7Vu+VMW9EthsvUeWm7sDMIII/L58DBiMgKa8hoPJOEFCbRoiMJS//2nP2c2m+LIkaPV57UEbER9EQAPaMMqSX74vvL7qntqcAwDC84U7V64tku1HAJBDDHL7oWm1BqlYpZYgFqLvTXGyLZvXWvjfjsOpBfNE8PnsEhxfMVwrR1IuBZytTnBbvYzS6uucy2P7otQdWFR6wEIwFK7YA/GOziOrOOu48EKg7cx+2JkQBgqEJJHWYFV35P+TqlSDeizRTxax89amVsHBbWmqAbuq4B5mcsVfEvybh4Aq3qVnFbWfn5OT5cEdQfaTuZd/v4oCuw8oQFKW9mPvS0ClQF6NOLG2WelOhQDJLvaHOAbrd5c/r02V7UOnbLsVZZ7YwWxgjlgYYUYCGRTg4/VtTIl1Nht+cVBWIgA1twjgGBGAft9j0v7B2hHhLZp0Eb1g2hCiz4poSEiNCEgNITRaBsnt3dwbXcPH77vfoy6OW65/RZIFAU4RACXiCYnTe4AazOiZomoExctyigGqQAKckibx+gDgHBRk4t5iY83RhhvTPDg+fNg9Dh27ASEIqRTgpBSQAxAX0V01aY810wMjmcNXqqPg+0ZErcSCyA0JL+1yFZLVOK+Rm6L1mspBIuAUkCQRIoWxMavvg4FBNcirQjng1+0Eu6YpxLz9aLPPMoqR3qFmM+DS0FsoFA1kkPJi8UwlDP6Kg/L0rvqecw5ZoJODRdH6iUAXp1Z9jEaCGGI+j4sgAhft8SCxEY8qzO9CqTUId2LAkX9d9d1SClhPG6r8flcu2w/jOBZrbnR9SuAtZgCFmYLhY7w4Lk+Zt0n9mx2xm+mQvJYGV1vJQdifQyZ8TiYyTyVBCIRAvVfytE1ACAOTMIqrDUEGgv9ra7yHa7AHdWaQOU0IgtSDtd7hp8BWf7YBp2ZP1m0mE5DZuLuZzPAghW/EJsLoPL7groFENSnTrJfqv2XJQNHAODEOVKSQBlgIK97ASKODikMGTvyr/oHS4aa+t/6DFTTcD1hob7uek0IULK5bBIlINMG15qsfEZ9hqo11p9x8POxtCc0QCEq+SbcxFN72S9Osv8cqkIXCcuylOWM32PFnXDne/NbPJSX83sClXC32hGrljb8WpLCsHO/o9u+y33BnuXJ0zL4Qkm0lcdvHtRJgP6ww2zWIzZB/8WAlhrEMFfTCxHa0KBtouZOiRGjpsXx48dx85NuwoP33YMH778fN9yoJh8l9IzEtSf3ojnKwZPmFHECWoZqmgahSmVqYw8YODAKGEkSdsIW4o034uLDF3HlkcvY3NqE2k0ZFARNG5FY/V5yEj8yadlNcysO7CqJe9CM2C/et0gk8vPy/jLgZZTRsCTITDxuEtMIr+JwWOdsoGqfiAgia34biJpb3FQSQgQooDJoFqZWASxmBpjVP4tIGZIAQQwoI4BIzSsUQ3ZojUakB/NRj9+AZO1jkDU3KA7BMJDgoNY1OIQhoGRRMMzCSMJqjsqE3MwxrNpACQJhNVUNoj8w9DMjIvRdh0i0Uota047Dw0OMRqNKCrZBZU1E+R0YAq4hrQGkskno53EFoS/wdwmc+BUNgbIZjTXCjICcgK0SmCqOjXzWqAgVLlABpInVALgba8EntCRY6diGu11EVEtNunfZgIFDuTos259enxvDBSuBnpLA1RrrVc2ZdR1pQxVwGVy7SO8teqo+zWTRl7kvSzonyZg1zy8v9FX8XTL4bPhd2X++N8Xy+Hi/M9iyv1f5yHhzrVXdk8X59bETYOasFecBLlgsj72mp0vmJCq/D8/PY2tPaIDiYaxuxxdRqS9GSwLGQyIxYNwAUB1Dj4wBgBCK06PPqqSkkQJCiH6oHdBk8KBMiCz2P2d5RelHTXSc+UZPrLbANIWQNQo5eRh5gi9V2SOPzzQRInlePGeGjx0wBpIYqQuITQQT0ERBbCJG4wajUYNRE9COWvMZEVBIGMWApzz9ybi2ew0He9fQ8xxHjx4BNQASgZggSTKxU0BW+iYi5giH8hllAQIgVk2Ldna40RW+25wDFIHN7QnOtWdx/qGHcPH8BRw9fhyjtsnOmy23+uBeQMIIECSpNCRGuFxduUrled1ol/yI1YShZrJUvWPVtWUvqvpWgaqAEJSBkgHRaEndbG2dqbPnQnCQEgoI5LwWztCV0KVK1e8Oe27DZ2dkgSAwfxflLgggtFSApO9nZrYEffW5cAkSOR8OfK3t3DTN0EE1UMj7wQlz3yf0Qe31KSUk4mJe8nEzg5gRADTqCAWA0VdnPWcttnv7lBBMuFlkUPUZ3dvbyzW/crZmCihRN4CCuUU2UO0HAzc1DSjvW9Z3Sz1/gz0jJVePrylR5vfux1Hov64F5X4WB2XDg8hAQSQLSJk62jxo5tehJJ2X0Z5NUDpmI1NByh6vY7bPAdWF+VxWWlTfU4O58Fn1caJcbn8hfyEFdKmganNYYwL73ZNOLs47EWUfqTq6TneUU/oqwmxJWinz7Psc+R6/b2h+hM/pAIyqqVywHMDxaBrLRdAhonSv/ts1Nov3ycL9w/Etay7zcPN9+q8Inlks8g7Zz6VuX7c9oQHKdDbFaDTKmgSPZwdghFMyYQCWF9QPK5t90RvlQ1WISUNkhB1Ab06cdvD0YOsG9MXxPgykYHtWWNB+xBDqY4asBq4AzfA+dUgNIeaoHl91MgADZnDFQAaHgU1VzgLEIgGnJoIFYCJwJHMyZXAMkIbQNAHHz5zEsRPH8dDFi/iLuz+EG28+g6bZApJmk+RkIc/GJ3LARVBH3sYyMYrNlUtwBI9oKk7AmgtEzV4OLTTtvB7epm1x+vRpyIWLuHzpMk6ePIlR06pGonXJtjAmYgYHMp+Far1jrBi1fWYbYRURcELtA3CwUH/vhzFf659XmgJfXwJyVt5goMSzarZti9g0OYMwEwMk+hNYGovFTw3zz5BFjhkBF1YAEkzVat5AC5Ih5yy4Ls3FGNGGaAClNo0CRNFAjpj2yjU3XHKbOEOsppQCLPMlNPycApiTmhAl5n4RRcTYqGN315lkaMJFUACawY8oU5qnfmhG6vt8HubzOdqmkL9VQAXQwqbb29uZADsgGYJTX+uYV2AlcCXKUVGFuS8AkJX0inLysQUDY0YHZe2G763B8rAvS58gmtBgHttLF2b6hQr82r0uIhXw5TTMnFoNYERAc2ssvF81aEvdzPmGSBwg+n5359/8hMGgqdIbMIsFxpGGpdsZXLXeQw3YQqSYrQ9kCOrLDBRGPUwo6M8bMv8MQxcE04UVrp77kdtSRI33jsz/MoOMoVZMLKdVxnoLmr0MSmi4A4f9WuCvNkLDbGV5V+zH67UnNECZz2eYzqZoYpPzGTQNZQamfDrlDZ2lRmtFLcsIwc03kq9zpuAq8iAausrRARBndZtKVB6y5tIBqroHFUCpftd3qgE2R3QQlRTp1nzD+fNzn3LGytJ/V22WMaLamDVQUafHYh7rMO1naJqIuKfZUCmo6SFGrR3TBKvxE0fYmwl+9w/eizNnbsCpUycRQ4PIzmCNSZsYlVP+R1GNTbS/MQRwNVEY5q/wDKcV86WEGANOnjoBxIiLFx/GkSM7mIxG6M2/QoRBvYEuUtMPofI58DmqHWf9/UAOt3NVcag0FORrWTbUIFolr5e/QxFIJtZVGlBI4Dz+CMp1fEIswJsMvCAs+0qwaVM0K6pALNOwvkoZWxMbVKVjsrTpySkrITXvS/dVSJYfJjSENkZoHhOAJKBtWrSjMSjodfP5DCl1OezZ6y3l9/rLYPs0SWUG8r6oUy4FTeynIaiEqPH0JdkT6dmLokCULLEUM4PEgLqtc50TZz6fY2MyziaIJXU3EabTqdGUZqH+Ui3AlPmyHYGh6QPVOg21Dj6AcjaxcN9gsYbPs4lcBjOrWJ3dY64zC91TZpWVGDUT0n0jNeAi0/AtSNqUtSf5U1sL89s3IOVJ1NQElMy0CyTTpGjcWKGf3gsfr/7g/M6ST6oaFAMInLGB5zCKQM6b42BMsOwonbW2eXzFDy5/vzDVA4HAHLWzqdOEME+q5zr3rHNY1FoAWNTSfGQPkgIilml9DXwp/y1JVox1tY9JyV8ktnbL/MRzpqDaK1gwA3607QkNUMSktUABKfUABE3TGqFjdRDNoIPN+bDeiI5q2X732g1qN4/GUFzaFwCpT0hGnNTk4vY5AVEcLLgzpppB1Qvoqv8EBTJewcELBIYVRNtGjgV8bUAMORdJLR3EOlSzmjsxQuNgq+sF09lcJdlYmPBgQDC7cghA3MTRnTO45y/vx313P4hzN92Io0d20FjtHwqeb0XpawgRTewgbQuiUm+mVnkPpT3XstSapPrg6AEgEpw4uoNRjLh06TImkzEmG1toIoFTADdQBsmExAqWnDAYD0VsQv4896Ua91AbVq3JIB10IRDukDvwO8JwLFKFNKTq+ZHUhJeZoIM4A62RAop9uvzr+17nmignu9I5i1Z8bUHikdXh8j5oEq7MdgBbzpbJZIyN0dgisfTMNU0DCsEASsR8PgcnDWXvuh59r3vTZ7jkUhWNpGBBn2lgkaY1DNg0RWYelE5yEckceZAYgQUSNB9MEvWN8tpFrkXU9PZQQhsK862JuoP+a9euYWtra7BH9fcSJQUbTe10WgPHPJfXCV0YAhz/bFlzF0xNIuao4YwP0D0IdgzzKBKtovGyWzON0D4CDiY088GiCcpzryAgO0uCkLO31nGoRRhTjWry9zjDJR1VLvBXC04gr+iDwprd+0vNnz7fy7TQxmXmfQiypiBVQCuIlFBm0y74nA7pbBFGl96BxTNTxqLaigQ1k4Yh44YDFXt99dOB7mJW1poSO0B1jSVsVgZavprWZxWbOe0aGMw+Uwh5Kh2crEzAZrwi1c9e0KD4Hiz7XSpgueqeR29PaIACFkgSMPWIcWQCqqnCKw/5kmm0ZNsk0hwdIpoptI7scVWsO9q5pCwAEAkUmhyamYssuem7lsPtHqp8RWpmMLDpcXYlKzU57PqGXJoy5Ksd0nGmVI6uWG2OavM7UV5l3gLYwoyduOoG7Ps0LKo10HLY3jbGORlNcPNNt+DS5Uu46y/vxfHjx3Hu7Fk0EaCgavksoVAH1f4LQtCaTCJSMqDCSK9ykHzGUirsLKU6i6keRjV7CY4fO4Jx2+LCxQs4ZMHm5hYaMq2XVDWFnOQJIAwkTkXCN4IWzOHQD3TWXhBXB27BHCXFSg3zQwIDtZ1dn2PklsVyDgiCmP9ScECLLH2QXa/1jYpPSq0JSikpQLDqohxavY+QnUyd2OXxM3KuFYjvcSf4hMBR7yu7Br306KVHs7GDjbYxZu9bVwGDhIAQGwhHdF2LGDp0sUNKxVlVVcpkYzIH3KAMy5XjMWjm43mnQCdBc7cEP3NcCrZlgY/VcTUloOOk5iLmwXnrug4xBLRNo+clLAIK1dAcHh7izJkzFSMvRHdwFjB0OvV19rNTzLAe/eNnsGZYPpFl39fggExTQNBaMCDSMGIpWgEhsvIeKb8771XJnnJLtKCY6SotSLBkgzBnbACCpPlyrGtZz0IEe0DucdbyOiCw4Q2Bcw3gKDPWomOo08+XcHyp5msxKLLWLBZhUZ8RvUQJVaYj63sN+BafZ5cOnu3fDT/zUPcVoAmozI01/arW2DQQRCZQ5SXU9RFxLaCbgu1zA0Nto1rXbt6VPpGZtH0LmqAeEJACW8SeB5bosxbB2GActQOtLw2g/M/THNQ80PotTmwBLf3xGNsTGqD45ncCUOcIERfbrbFYMTY/iEGzdjqyjbFCmaT2OakWIEvCFEBc14LwvAtD+17dx5UaghWSjL7MzDWezIqcOQImrmghuaCMVZLBk8zVhmGfXdeh7zWfxVAjo0i5Dj30e+ysWfiy+YfECE/cpdK1E6EeFAinTp7CkZ2jePD+B3HtyjXcdMs5TCYbaBpG27bGKBKojUZ6enASxEb9LaQxkwx53g9CTawHEkUmDAFtGzFqCUEIfd+jPdpia3uChx68gOnhHk4cPZk1Z16sMM+3HeIu9crEbUXatoVrvtSJplRgBfr8jKxZkITEgLB7c8BPOyT4Ya2pn4WVB6iI6fus4Ji8Bz0vlpEhBVo5K69eE6D7gSKDku0nc/omCEKISL2Z8iqJxt8jQR2/ff8LYNE4UBW8aYmEVGO5d3CAZtQCWxtqTrVonMaAE0gjf2Ib0DSEtm3QdS361OUzGSgiNg1aEgRq4H4tYgSVha2SNDCddziYTcEAeu4xm8/RRSO0Jr0nVvDagyE2B+5nJUbd/fx1XYfYNCieK0Vr4oT96tWrSCnlqsb1fNlvJsQMfbzqs67gpPYFWAYG5fqyzwE3O3hBuiE9iXAwUZiqpxeIRBqVBeg6oDBW3TPVy0yz432PsaIFRg/rywkhO+nWuZ1YpJiyRfI+ono/+xbP2ooCThwIEZwxG70T1aUIaGAi9OfVGgnYOCvWCDePwBM2kh03p6lR95f4majAXD7GCxWmF4Fs/d5MOwddK+DUQUYGqQ4u7A9OCRuTCW666UY0rQrB8/k8F8rd3zvAQxcexnTe4eTxo7jh9GkAwLzrsbu7i5OnTqCJEZcuXULbjrC1tQkh4NKVK7hw/mEIA6fPHMOJE8dBADoG7n/gPPb2DgZjKX8A2by3jLlKy2HXNPyZgcmy9v6xtr8VAAXQgl4FvSEz+N6kRxZFiySEEC3evtpMOUdDPj6UpTRNSU4ARZPYkdXGRTrKvRr0CxhubgDFOdYiG9y+7Z9lLQv08PcAyAEWQW3rwcxNqZLcBeajkey5jK6bWwVhZNMUYKpcCBAYMTYgKg6JKq2bmtWZYChKV6+l4RKXH9CN0RhPuf12XLhwAXf/xT04cfq4Fh7se8y7Tm3Om5uZ4Wm0TYMQlZCnwIhRs9/qHMHmi6C1RjRniIjnsglWLEsl94YEAkYrEzzp1ptx4eJFHMz3ceL4CbRxBEHRwCCTBSAl9+HQtVHH62JicaCkBKhH13U5nJYTY9516JMVR0xi/WMIp0LojIlWYpHuVyOYDkJ8rgEUYGBSJRx8SBWyWRFc1aDVGZVVm6JAh0ooNwqjEClRZCpMKoix9DYwy1ieB/XtEhweThFjg9iQzQcwahq0jdaBCmSO6zECEUjoIFDJ3h1/mRloGzRNCxJGTFQiJ0IAiWbYnfRjjGcterDOc0qgGNHN5nYeG4QkkK4DJYH0BSw44xOTlEMI6Pse4/F4CXjU//b29kzDl1CidgpYcK3DavCST759Xn9WmysBVz5kX5+BrwvlvVNrBYqQUegdxWA+BYCnUtR9VdT1i2N0kO+Mta7STgiqWaKaulH+bz2kgNI/dcyX7Fui79V973frKR22YEcywsOSXdiqSoesnONCf1yLU4OUzFwXxp4dRAkZ6A3ASA1WDEQhz7Z/Xph3xX6ruSrlMTxHUaY91klJlc+a0Ye2HWE8GSFxwnw+Q9uqZmQyaXE4n2F68WHEhrCxNQaEEbuIpj2GjQ0FMqdOn7DcPQ1E1PcMItja2sLp06cwGo0AAHtXdnFwcLgEHvL+9DnAwnxQqeTNLPD0XbXGbLA2okB5MaL0sbQnNEAJMViNDJVok6mBydVfEKSKYLu9GtCIgbr+TdnkqibXCrRs0r46BXrYrIhkvw4nMOU5S8B+AFBqCcv/9n7Uv+vTFGh1ooXpUmKMRyOENqLve/TzDl031wNtYaBIyoSLzV21A2QqdZhJJzkMI0IYB4xG7qAbkEgzMJI/1513q/wuQHEcLePU8Z++4TTGGxNcvnIJV69exekbboCI+kiEEBCbRm3TRtBibADSGkJ9YvRB56GJKqFGcrMPIYRmaU4B6NqGCIdPjQiedPNN2H1kF12nDpGjdgJOUibXfjDcfE5VEjP3RxKwqiXMl6kF8zgfPGZGN+8xm/eYzeaYd25WIEjlkZqsvgwPyqdlXJI/czABgTm8Fgc9BiNwQEIBPtn05GuAMi+Z4KbOiISrfcu9bh9gW1utz+RRNBq5pr5cQIjuFxUN/PYQadB3OheRVOshxgAiBSDqHp51M1w7mCJxj6aNgGi0zsbGJra2NtDEgI0wwqhplMmGkPsfQsA4jhATI3Q9JuMRBMAhCQ6nMyTuIAJ0qcumNgJyleIQgoaYO6FMCRsbGwOg4O+pz/fm5qbNZbVhMPx9SGyLpsQZm56XZf+T2tRbg55lvyyghDQHhICKCeha6o4qzvNRQlnvakyrfdqWtTjZCdxMbs6cl8eLany2VmQO8cb4B9qMDFEIdaou3eNl3FFv8BGuZHzeaq0JLYxN/eiUdgTz61qutl3N5Ypne1dkxfcuuCw/o17/ElrsKpSsVZOKd4jOW50VXZgxnU4xHrcIYQyiiI2NTYu+MyuB/Uy9Vg0mgp1LhkiTn0UEBSeWimHedXjggQfRdZ1qqZwu5GWqtB5C1X5lhZjOT2BCcdadDNcs/4SF+qeE6XS6ci1XtSc0QHGn1No/A0kPRwqek8SYFwJCJERRIhDNP6JEhOhJZFGCyknr9YAIPRKoD2hJTQ9MluWSgGSOXlxJKmHhQNWLVdv3csTOAmjx6xOUyM7THLPpVNPFCyN0BE49uj6pZsL8DwgEsiiXzLjtuQEwR14lXJ4EKxCZFiYhxlbV5sGkMHvuINFW3d8qAyNgTpCmrdrY3sCNWzfh8uXLuP/e+0EkGE/GaNqANkZwn9B1EWMmwP0vskTi4rtqu0R0vTwU1wmrnnc1d8RQpKBMGAU4c/w4ptNDzPsZmo0xqF2VxVATnhEKM4m2JygEs7tLAZ+m0WDoXPdtg3aU0MSAOE/oOjMDeQSJSU0hEJIEsEWOuSSV81cIzC/FzSypytyol5RkWr5tbdwrgHG9/8ofw+8UlCQvWZaTHbIIQlLCkokPBQgxUtIijR7l4vu2gzElIStC2YGhwLrvBSkJZvOE2TwBbPsfHYIETEYtNjeUHClIJ0hgdF2HzpKxzec9+r5H0wS0HMEYo+sTZvO5JQzkTIwDKXOOIgCrYywHTVjogsBKlmNnb3NzE5ubmygmUDZ6UzQeq7QntamHBkUNdSbL3zVQLfSiFlCMn1XAQdML1C2anxxTQBA2L/naJ6b0Sx2ldb/U2rRS90XyTwX6qmX20HX93s/B0FHcLDOoAU+lKKjo4XCeBABsDFnDbKCjDkV2fwqphKJFGlfmnUxjUvJQ5YSWxkKzhoBKvwdMuXqvn/3Fw1OnnR+OrUitQnUE0EIZj3ps0OrNXtLC+dls2mE26TEeb4BFMB5PMq33PqfEuHjxErp5QogBly5dwslTJ7CxUTRsR48exc7OjqVuIFx46GHs7+9b7ikeaEyGe9b7uOJvERPuip9aTidGBdD2fZ8zMn+07QkNUEIoGpQ6GsGdIgmUJSiXKNT/xCSqPldbAEwtmsTDEgu8ZVZCmTUnUTOSJne+BeBI3VWsdVul9qrDURclm/oaEcHhbIrZfKaJgq7NbGsKBKqu7pP6mHBiTcVsrws2/qapImZCsA2uacHdGTZxArNlmbUDojkq9KfeXqQcJxjJoqAgQJKEXhI6nkOSaqlOnjyJY5tHcffdd+HSQ5dx9NgxhNCgZwE6RkqHmHWayXbUNpi0lrXT614QAaS26OjrR05U3c5txF0AavQ6LysQwdjYOqK+E9cOMBqNEZqmONuShjUGENqwAF6c+dd5G5y4kOS6OJouvVEprenRdQl9r5oUf0/qe91frPeplqUzbxRkYOpmGgcGrgnJEktmBN7FkCWxmkjnNP22O1nECgEuKtedIcH2ul6j+Ingqy5EpsUBeuqBmSD1DZrWyk2ISkg9M2ax10iapJo/kALi1IlmemUn+oLZfI4mBIxHY/UJCwCZ06xYdlgwoe96zOdzdKnXOj4xgJI5DBPQVb5FKliatpMoJwSMFJBmM7SB0ARCtxB14vd7ocC2bfP8uMnRtaZ5M6xoRRNSMckqt4gX8ZNKMtV36GwraSiRHPqcor2sTcXByoEz6zyL0TpPYFkLPJmn2b4he4czxKFQ5QDK7hMBqvQGqDQXOZV7gSMApPjwiY79usns7PmmVMj1nsqlxRQ16KO/zfd9IGPwxUE5hmj3uol8mAYgJ2VbAD01YPK3FZ+9mlEvRBUiVAEPlQ+U/rUEgIbvXHYP6HvG9HCGIztHABJMRg0mTYPUK6H3Z+5d28PlS1fBVrX++OnTEKsFFJuIk6eOgyy1w7XdPVy6dCnnQVoGZaVQYZnpshdFzPEWJby63scCpR8pJfR9DxHBaDTCeDQGCJjPZktzcL32hAconhujlIUvuSlcMGXffKTuieo2kuBVajN4CWS+JRahg0JUNJNlb7kdlPgUpzp9b14kooF6U+8vJgG/NoeiUgkpbix5VB0WyV0PSYyeEySx1ZYIQEgGLJIRdGV3DBpsekCQQkBEQFP1hUi1Qb0kTT7HjBEnjEYjJbBkh4rT4JBlDQYKo9FtyeDUw7PyMhMIgti0+KRPeiouX76Evd1r2JhMcPLkSc36aWsEFnAScBBQVL+fGDWpW1lNMinKrNTkpp9qP5hfDEXKBJ+gkQhb2xuYzeYQJjRtzMTDq6eOQgCi+3Y4OCK4tCtkvjIpQd2BAigIfNaBBhQiRo0y5r7vTaoXcBvNT0UT1iUm9L2aHRclC2E1Tfa2rmTARIcvgzA/ylFFDk4KWAm+SqImnOwCk/ekTb4x9Py7mCak1ujpjOsTE6MXBV+dme2ItHRC1xlYFnMczwpKQWBSJ162DLgBMDSM8bgFE2GWEmapBwUFS6lXjcv0cIquU1+mxIyOBfO5OoDn3D8p5Wgt2BlIqq9S1kGavI2akH1/Vpks3Knc6/T43vLvay1Jfb5rHwcHKLW/iDf1b/I++jpwpmFE6hwrEgfvqsH44vtrcOoAq/68NoVYj3G9VubE9gRLPoFlunLOYZSYGB6cx+F7nMEvz3l9ZYHLC72ttUH2jScRVAxFec+GhU74yBfNcWXui6YkCyDXmZ8B4KuHB5+3oY/bwiUDlp8/e7Q5EcH+/j5ETgGke2cyGRl45awBck2RJNZAClG640ebjTfo9eZTNYjQK32ptfw1f3N6IfbfAXwz3pb6Hol7qHtZo7zEa+/Y3CY7X4+lPaEBSiEGwzwfVH1f29wdlSs/rHanXYukTNpjMQoDdHWV2Qd7KcmzAFVRLhAt1174e+tcDIsboAYoKSXEGAdAJqe4Z/cvcTOAQMyvIQOOpCm+YYyJQOCk7NMBkNbysf5RAPUpZyaddXOMupFJtEUCq81RHoKrUpKOrTPGkcfmUhxFkDm6HT99AkdxHJcvX8Z0PsMtt9ykqNoi6mJs0MQGMQaM2pHNQ0Jwp1oLKQ1UgMkAHObQ4EKUXAUOZrSjBhQJ08MZui5hMh6rEzQIoYkIo7ZE1aDsmwJSNf9TSGrnZQOKFIxKBHOgbghNL+CkYaB9Skh9wrzv0SdB3yuK4BhUXIwGSFEBWCO2umdQSaKAwAGjSVzZR2GRMCM7ghvpLIB8kShWRJfyiIdNgUXSh6ZCGBf3se//GGNhGkE1PSRAEPVCCArxANOkdNyBuUefUg5FFAHSXP1dmIHZvMNsPgczzC+rR9/1YHMY9wynRSAwQCdaUG/ed+pDwx4h48Mv9KObzzFq26VCpPXcLc6fj7EGNG7iGQIJZ7auFSir5dJ4AYZAcc4tzvhD8OEsvdCa6wGn+vm4DhMestUaJNSagIrGwiT5rNIv76hTzIvh/aV3ZZmOBvR42AwKuVnJwRaVSBwAw0Kj9t+6cnnNbOtnC5DnO98vw/HXGoLCE6hMhF3JK+rYDF839MtZXK9VbTqdZY0YCNjc2sDh/mFZIhuDZldm1TW7zwsB826O3Ud2sbO1DYqE7e1tnDx5Evc/dMFAZ9lXbvrPPap4VcmNIia86r2LkaJNMwJR0OhCn6oszC6DokdrT2iAggXiuGhzBXTCIpmKm1nDjfMUlQ1bF2IiagCI+ZKU+hL+roFt1O7x6qnOMDSCtFbpCoCUgUqdD0HVwKqu7vs+p8EvxCWiiY1KiKRF8RJ3uT/BQZdJ9n6AOc+DEzFVk3u6/CZqtth5JXkQEbq+x3zeVaHU+p62bTBqR7naKAAkMPquw3Q6zf4W5KpVVHMCoBfG5uYmzp07h0euXsEH/+IvcOstt+DYkWMYWYHCOHBk40zQfU1FbTLGEBaYcmbGgiiaI4GCFbeLBMSABg3Goxbz6Qx9N8XGxoY63rYjIDZAnrla1lE1OkGfExqtTZRSjz4xhAPAbFI/QAyE0MJdAiI3kFZA8xkwn6NPqp3zdXA7LZM7qnIGbTpuQOmNzQOXAbNrk/JeroldgWqozoUC7fqaIfPVnSqDv038GYh+CgozejIJjUp2XdYaTxoIrUyMYEDOo7QE6Poe1/b2QEFz8PQpISVdP5GkmjWLduiSYDbr4BmFVYNi5QwyKOGsVXETWUICQbU+bdsa8x9qNQGlF/sHB9je3h6YXRcFkEXtRS1kLGpTyvVDgQc5HbtkIFIDpcI0CTUDXdaODKXwReDkf0dLrOfbpGwXGuBxz1VC8HIChanUzKVmtIMP7LMMjitmPwABGF4vgJlHkPdSHqABWSyAQ9cKDN49mAPO48wawKpfi31wAFJAIjuRr67D0nXaGTJ6VdP2hYGiCE+DPQSqh4DqC0ynM8y7hI1WBfGNjQm66bziY35CBZ6XYBEEPHLlCi7v7GjWbQLOnD2Dy1ev4uDwEL6/sLD3DHvqWKX4s4go3VG/sHnOttw0TZ5jByW1pEMgQFY5Kl+/PaEBClUEAcCAINToVCfZ0tmDMsrN9tRqe0TzXSAQgjnGZYTuxNo3ZqCcCEyJtb9f08EHgoVloqB/R5HmJOmShUbLSkaknrq/SGQNmsaTlllESU4uJhlN58MiyjLyIQPyez2FueavqMMXtf+xj+iaDgNHOCKMucljdz8dEUHf9cpY+g6clKg1TeMitoLEGCDzOQjA5uYGTp8+jdlsC+fPn8f04BA333gOG5MxRBR4CLTwo47d7Ori6aIpz13dvxqggMSS9hmnD0HzxxgRGo9bNB5KPG6AUB+FGpwsghWo9NsCEgNCZ2GvpE5uYuMnUiZfE4/YBDTcoBUGxYCGYVEyCRIt6sK9Em1XMiGrat1eXjIiF6JSTG9OZDybbNkPq1XJpi0UuHgP0JCI1z8H8w3kfZyjvvydREikpkMJFQGN9poMPgmpU/+AxiLjuNc5mXPJW5OLJFK0ejxu3pS8NzwpWymHUAkIotrRvmeMRg4U7MzHYkpxLebOzs5SRM1AS7sgFPlZdSm01qjUgEWfU+a+7DfJ/akZV45ArHwfPpLUXYOj2tdNQ4Zp8Ga/vvicwBiTVEm5dHGl2hdZ87GwnZb6NdDglLnLoLe+10BNvjaPs/o7FNFOaa71l0UTBS7s8cJUy0ms80S52cn9Y5b7v2KC6zMxACBS/atB/8IcVb9JXqNCT8nzApH6FHXM2Ds8xMb2GMyCdjJBmEyRMobz9WMIERKSJjVUhA9hTVp43wP3Y2NnE5PJGGEEnDt3A+659z7M566t1EnyKMIawAknNTtXvl4hBGxONqqaPrQwX4t0c6hlfSztCQ1QYjSmk4qD7OJBAGyaXELJKLeIDKFiTnU9HP0bRRqDMRpzfAvmJ8HJbYEO5XWhA7kfRIR6v0djZpKBghcqFAlwhzpA/RLqfvjCNk2LlFR1LOaj4IciBNLcG9DPSs6PchidgXGSKsPucPOwmZIWpUBm9asYjUagELPvSx0KK6zRTV3XAZaRlQNBOIJCyoe773tMJhOcueEc9nZ38Zd33YObbroJx48e1QPLWk2m5PuoT/l14u0zteQSUk5qzoJF4oB77UMjiKMGJC2E5tBqIG1+fv2uQhILYBEDPmK5V8h8V4IAbDVgckp00xwoUCM0omHMzAL0ugCEFkwe3qtEgqHmJyGrFpylOil5WHwvV4CNqj2eia+BcQolOZV/F/IzjHHkvW5zDQX5XGXKHZ4x9TVaNPeIaMiyk7lsGczcTX2GNE2+vpuI0Fgkg8zVb0bnRPdEL30OuS8mHQ9hXMgBs6AdKmDCfUsknzkfTy0R1nt/sa3S1NbmndrxfdGktlj7ZaXJzdpiArlV1yz2qwZWtaNsMkC7OAZ9EWWtXQBUYs70rEjkukvcuVbPVRDLmYIChvT5QK0p8LHknBkoJ01NgIWZL451oG0QJecaJUcVUCmAAwv7FBD0rpUsLxk+d7CmfphKf/zcLJGH+s8VgGxVIwN75L/bo/qUsLe3h6axkH+jw7tXdzEeRQMxut+v7u4qCJ1bKgDTDqUkONg/tO5pziJhYDqd48EHzuP48WMOhzAajTCfH5Z+5TxE+ixOKnwKc5ZA2qYx03ZQj3TB9fQ/RhmG31/v2lXtCQ1QKARzCAq5sB+gm2TR8VAd0OrcJUUUiLHYihdDf9WkktB3PZybewr3xiIoYhUlVMi6qwDVkzqEIqm5ROgElUi1BaryV69zjxzSSIL6wFL23BfQQK0NlLEpgU4YeplXYAUoKbKrQ0Wm9XHJK2TPeKDrk+aaSQmj8VhBiDWX8kHV81nnD/ZTRJAa9xsYgbuEra0tnDxxClf3r+LOD92JM6dO4uzZs2iCitpxAWwiRhBMq7UovlmLgQp4jahMcpJDhj1kWZUxAYlnIOoR0DoVg0cn6Z2ewcR8A1iBCUvKhfoUpTaaWVEo178BCRIl1SQEAQW20NeIGCpNCTWQoKYfBXgxZ1VlLhlSlfGrNqxIOJV0rROW97MX9yJgiWmS+1H52tWmEV9HP1OcXP1RfGUUVcA8XDQqypIeFu172Vs5k6c7NIeiuQsxqqO36N6hBmhA6CtH9RmzRkhV0RjMGjW13Iw02jx4Hp66JteiVDedTrGzs5PP6qM5x9aSfshjcr+3oQZFz8hiBBUGz1k23RRAs5it9nqarVXPzs74inztd5S1hYC0wI5+amtMBlf0e90Lod4s5ntFXGuW/TlYijjLQMze4XsidyTzwKGj5mCM1r1K4aTrZNpeB+6rmohUfir1gzCgkw5GFu+tQe5HanWfF/NF1e8TqYUDwsF0hrvu/TCCaK6j3vjVlSuXsbv7iN1Nhd5Y7inuNXQ/kYKX+x94CF79mZlUaAJw8eIjuHz5WgZzLKv3k5pO2eaWEEejMu4KuwXPAI7Kv80PPwwk09APK4W/K6nuYU6K0QGINTYkWG0m5hLiRhQXGHdpQ+SualGPpNFCYwRqxBLCiSH4OgSRQCQV+KgXX0FKnYVWzNtaJR03B1WOSczZJ6Vu6jBFgCW/AcqZup7kVz4jk5Kro2zMqO8TQqgLyDmBC4iNSVVdB9fcZHWtmPmliMkDMFaPp+9V2qUAYEbouEPTNrjhzBlcunQRV6/t4uYbb8LGZEOlWWar6TOUIusREimLDEFNb8kkKq29o0AhZmkwqKMmBUASNJ12g+lsihB6tE2bibR2OuWIFIFLGQQEGLAwwbTSZAgAMVUpiPK6U3BArM7LKtHLYI/0ia1IXrJEgwZKEud9g4RsAgOQtUdkAMFr7GQtn1Qh2UbcS7E0Z0bFXFIT5Lx2pil0DY6H8ytTsFw2vsfyXhtKwRrBYiHgFiKc07ZnDYd+njURsZyXmBghqKMrBclOfMsAos5BkvGSJuHzz9yhtxJu9vf3ccMNN1SJGD1iDFAtJw2e6f9RQmyO5zlBmEv22rcQS74Pd5AdajiXfejqzx8NjDwa48wgy3xenFlm9uz/CdDzzQCT5P3shQoXXIZz/xMSXAWgek8Mnw//DnlfeNLLksl2mIujpk0eKl7mZZnhJ2asHn29J/W5sPPkyRizdqQGgCifFSD66NJ/Pf+LdKqupD1c4+HzWASceniWHjf7AEoXYOBXsgmTlA4Y/fF5416L5+qrQp4vQZW5HIBXnXeBWUwTGULAxmgEamLuVz02H0e9Dq658jphJppk3uwCT5P+jph4nOBmUugSdTQ1Kovh0uJAWA56kcqKitxOWTkaSCKYdx2kT9mkIsKIKapWxYkQisRUnPeGJhYFRk749R726rpGDH0fZBW5RfW42tkZnUtpAuRy8osErEQALG4u3TgaKlv5Lhix9wKCNUOLUcC9JnFjMPpefVRc+oVodEZoWpWEpWQOhCUm83HncMog6PoOo9EIk9EYGxsT3HzuJuztXcM999yDI0eP4vSp09gYTxCjST9efRoeQEzGGHW9PDMNs4bCemIqEOUoFsD9Q9T8EIOHxLaYzuaYhYS2LRJDrLZEMODDEHAPaMJhi8bI2SCdyRcCU3wJHFwamGDk+ff1iexr0VpWSMvFkxK6bp7HE9jX2OiW2eADhVymIMaYnZqzqYUop9QfqNFBYKGSKGuBcEssvkDCAmJC4AC2omPeuKI/7nitgMhMSlbwMIag0QZQbVSWiI1ZBtvbYKA3f5SUvKCaRmilsrwoQ3GfgiExTSmhbVvLnVQBAutjspwNk8lE+x5UM+vAi5NFklSak1iNLSCqRpcAikWKVFOEn78iXLCUqA83vzKXcdSMbBG8LGpdhud7FWBD9o1yPw/A8j75tf6snExJ4KGoZCC2pmfJSm+AhmxbFn5moAZ/BWWp28NynXm5U6aUyzIjrXNdLYGxuv/Xa9VeBmBmiyEgzG/3NYDOVyg6JCyIdkv9GT5rRTeWgOYik7fxiDspx0HJAan2TJ43B5hOpyzXlZ6TaFXrAc4mTWRtuPM0EBDbFk1bQuydfkYUgFHy3lifgyUJJXW70LxbZAIA+aKCWM2yaUVm5eu1JzRAAUwepoCa+PpPMRsGiVghrAIMtJnSvpZ8xaNsvAS8mnfIECpgIaZBE+AAw4NYO+B6nRzOCxozgNF3ldBZZvVNWdS6+O/O4GqHPmAo/dWtgKP6MFSHqPpsQAj1l0w0MoPJl0fNLslsRCsiNhFeOK0dtYhNi54TZjPVPLRtg9SnCrQRhOdg6S1yKUF6ZTyxCThy/DhGGxNcvHgRh9MD3HrLLdjcGhUnXkJmHP6vJtreN4jXBiGgTr9te8PnIJlRWySAMEaaJ8wPDzEat2haTQQYyByyibIaObEyFO5LFmFhD9UDIP67+paIlGyn7hNV9mtRPTcRkOC1h9wnSB1xwVqTNQFq95fCQEMkC28fminFsvsy1AnRQ+SDVcNVeqxOdmYAM4Ci3MwV/HlfMgMNIbBJ0ZVZiCzTsvOLYOfT/W883bg6lULrShkQYinOsO4flRKj7zS/Qp8S+lSusd1rQoqaMDz/iAMCIssHY1qE0WikAMXDT6l09nA+VwBjYf4K8CoHSvOxUO2sPq91Ick1J35tZUlIUOLsEYHZqZAdmPg5J4QgRhOGzrXXAx7+rwDgIYipz24AsjNv1kgZV0smyERjKKVQofj/SzoD03blIbL3xwAYOV2xcbDk7wxt2Noha+KCzVU2a1G+IgMjv6b+LFeixjLjDwtz95hb1Q9y3WLmHQKvbF/WIcL9cmotUEDhSwIMLNJlnVBE4orMFhBQzofAzSdVR7NgrWNtPKW/CY8Q54XlvZ7ZlZPWmWraJpuCHbyIpQZ2YcDnUUQqXz8bZ/DacqqxbTy4QwkAHGlSrztmMXz/0doTGqCwMJIkI01SAIlJiOQTw6X+gW80ZWRAYRIu/fo/tWsnBz5AJSlYRIlJEL5cfZ8Gh2FYUFDvG6DrCgjk1OdVq4mPS7u182yd3M2LJQKLtu5yEPzvVQfWnTg9b4C/v+4ruzNy0AidQBFN02IyGWslW5sPiqT+E9KgNkm79M2s/hxJEpqGM/Fpmog4U+XmZDLBbbffjr1rV/HhD98HIsGJEyeUWFAAomoJuFIpq3Of2EFW22jIY6VMDECC5BKcSWxljkh9jGSEw8MZxhA0MWhmW0kgipbOH5pfJqmDWkpu7kAOCXbTDJE5mAobUBF7WUBx5qylirIX1NFW/ZRCIDRNQIyAanAJIuqro7Wlyn5og4fLiDH2Th1WTSKOoS5KKQaYCohnFiCW86LPMlrp5olQS24ZEQzAb/Fx1rIFZS9pWm5wyQ2UoEmcPAOl7hFYEr9kYfQD5b+F+HuNGuSzHCzdOIWQJWURVmALZH8RX3giwmw2y9E7pT6WoGmUASXmSqOi8xeEs6ksVUC5lswDEWLb5nPrgotvFsEQSKxqi8DDP1s0Cflnq4oOLt7j2ljlISE7luuUO00q59aZnGoijeFyea8fJwcPztBtiktLfiGZv5FUtNXHUgGcCixkQcRoXJ1WwYFD/ZwsdPn4F+bjeqaxoSnP51tBewa19beyCB6G9xZ05i8u/fGfw0SKMhB4CZr2wudJhSm9PrqmpGmsLEnMgqY3huUa6uZGLzSJmmsiqTL3uvPx0nxlemH/ccGI/EwMTf6AQJiqTATVXnmM7QkNUHwDJqmcboxIgMtEBEeRgKm9fK6Kh3utbahTlPtGGUouJXyRPBFY7k9RWXq4YwEEkq+7zogKerXBLKLXEiFgRfaqlsNxVwAUcrWkAEVz5BKZES4oAq5Lm4f6KTZvCigKSNK6M4LGUbioBKkZaQndrNdsvjXAs9BPSQyZM6gHIkUganXc+XyOo0e3ccOZMzh1+hQuXriAw8MpTp86ia2NTS1lkBNdOVMoaw9ygiVYrJmhwCHPeJFgMiHS2PCmGeHwYIamCRiPx7af+gJwk74/mYYjMUNSAYkugWaAgoq5miamrPuqcObCiFQzwAihBTOjiY31w5yJY1TwEgJG4xEixWo/JPSpRW8q3eU9qWBpINXlMboaWYwRUKUtknyt7xTfT7D1yNnNyfedPrdPCYEZrobW/U3m0EdaYdpni7UfiR3g2pm1+QtEQAh5vvM8unOegRM9MwTAM61a50jM3NLj2M7xnOnVTWSu7fEYr/psmTHNxmWO1LXWIgaERsPznR44fdGq45IxMuW/hn4ni/Qnv52G2ahrLcqieacGJiXSqez64OttIN2/y74Hzmft3Syitcp8zeFrMayrA2BQJiIzZFsmfR1lH6myhxYEOTKAYp8lYRTTfdUnVDF3+ZkVQzTiv8gkFUCXtSwvh5lHqDo3snBWVkcDeR/qz1YLh8MuAhiYTfwqr4PkfMGfq4JJ1IrWsL0sRRPJSXMLgVTwWy5IWe2RoGYdqvqZx+OgxIR5p7mLnR8kq/PcRzaPACzc4LG1vxUAJasYhUrOhUqbEsyBz9X83mJ073hLsEW6IdxhlQgawoyygCJSHkGFWPv3HqLrDrAaJub9LSFwhUDUIayGOgebmODRR+57klJvjpb+TI/hl9I/9lTUyGg2g5R6Dn0esUBYoRvRNXSlsmkBdMwJ8/ncUDQhQpF5bBqEUcwOkckjL1wSK1QGDEEfCeg6YH8fnSRMJiMzB/UAM7Y2N3Dm3Dns7V7FfR/+MM6cuQHHjx3VrKYuzYEs+igBnNDGFm3bZp8RnXMjnubjIVBwkQMeyYoO2syEEDEeb2A2OwTzFOPJCCTmNGZaIJ1aXSMsEB/y7Jow3wWRku+GF4nVakmuZlChcvB0TM7iJhsz8RAQkIAguapwiILWateEntD3yhzzHiTJdIYy8SNIMq2HAAIt9jUQ8mLQKENx27SZ/Zz3uyqYlqbGBAslXgQZ+O3oWVTtCmyusk+PlXowgb0wXuYchl12NgCoENHN52jbxvyjOH+n6xTMxEoYT0a2bwvoK4T40YSLoAn6ZCF8lgiwEhp9n5DMzFmD0Awq9AXws7zYVgGVxT0zFLiwdN2q71yocaHKNXtKnbRviYf9Bdzfq5hAyICgzr4MAIV/FmxOXPPhUrhTv1iNL+8rBzIZ4Zj3imjW1AGYyW+khZ+mDYAzfyAf+6BmPDLn8mCaHe9DPYf1/CVh0+Q4DTFSIIUpe+Oq78O5t71VaWV0nY0HxSKYQgq/cQCtvibq+8RQIN/3nQUHaD+aJmI8arMQugioRMSyYds4g5diGLayLlgYi3+gVgkCle8trNxXIFRn6bG0JzxAgSxsIqaS6TQLVLZZKgmLFiS+TFhRQg5TWm3T9d+D5W4YZK3MzLuKuIATCIFIiSZaBCmFQNRjxOB6D5Vk7rOEEEKs7udsphlKIcvhxm5L9sZSpbSXoj0RA1SaL8a8xuFms5R9Q3oidMyIfYdGWqvNommQu77L0kb9PiKyrISKUdKh9r9tG8znM/TzDldHLTa2N7C9uYmdIzu4/4EHsLurkT6xRS4MKWImgm6OLvQYccLmZIwQlQ2qRoWAlNDn3DbidFLDroWrWEoBAmE8GqHrOsz2ZxiPN3SO8jrrvgoUwBTh9Z1AKBoSk3pgESF1ATG1iqncV++xvL/zxjZfCvtefTWt4FyoCyfCKqg6KJN8v97jZeh9T4S80ORaHdsqIWOugDoKTtxcimCgU9/LrFJaSprvZsCc7KxS8J1nxJ6K2Q/2PNg7630PkyZzyDS5w7R+52UZaiJuo0AgDTFu25GdnXpaXauQ0LYNGvOn8tpCwUB2cWSnwTklYy41j3ETQCbf7hxoWW/FQGV2VPH+igO84fqvksjr/j8aIKlbTZvqv2uA4vSoBgflvRV48XWqGJXUY66ZYKa77tA/TAmR6YwAPcrfAKps2Atjs0cuF+tb3VyIApBLfejnYbCuNWdepRXxuXKwjswPSj/ZxlBrY7hKWVA/M39UgxNA94YLDgaidK6qchImsPS9mkAL+FVzeRFqnPfIcF3qMWbat9qncXGPZVpZofEMYPJzbc/YPvHzcT2Iv6o94QGKOliFTPAAFAJrKl7Oh87BAqCrbhqFAJPUBCFaZIbZCerIHCcujr5zCGu18DXhcmIz3BiVBgH+PS3cU9RkuhddIwO4WQpAdpz0YolaQdf6maMBFgEPD34SNcMNKZJtilKFNjuqz8RXoPIRuVOVqVODgpu+69HN1VO873ur41KZwDw7qggkifozECHMgcSHaLqItomYzzs0MaDZ28PlUYPJZIyjW9s4OJzi/XfeiZtuPovNzU1wb3lbiEDUgCXgcNqBQBiPR4gNNEyaGUFYs9onJyIqrXjivNo8qDVnCG1s0UuHvb1dS48fcsVf9WVhhKAJ1QAPuXbGXIEgBIsyM01Bsu9yKOhQ0vV+xAq4AJ7rRfPhwEELFUe9LGEa2Mwe/TFonskQkbU+1BZGRVxyjAQUP40UQOLMvHLkZgK4BlZFcs76OlFp25M/wfbNQMUssGRTJtGKRh8wc/ZxEYhmogUjCoEiIBKz1Kz7XiNrapASSMsSeHROfq++DDEGHB5opWs16TT5vsVooHwW7BwrMRYI1OHQWY76wKHs+8TV/fntRrF9ppze6DlJ+Z4y7zmCL5/JSgNT7ZdFUFMDEH/GQFhYiDiErV9iN6V6pBbrOnowwGJkDdUAVvLvdRNKqJ3Ckwy/d2MnsZgveWGwmd+FkEFGDR7Lu+r1Kmvo/VJNodNSP2uhgKxKmLqe1moVsxexEOgM3lwcHu7J7ITsjqyo9lkGuC50DE19rgHyXFldp9q/pmkwsgi16kXlfPh48ChNlG7UoGNxb4m4SVoyBhk8k1TYWPKrFN1TnB7HPCjf8z3fg+/93u8dfHbmzBmcP38egA7ue7/3e/HWt74VV65cwXOe8xy85S1vwdOf/vSP+l3zvsNYhiaYQnwqr2MpNV1q7Yf2xx4mKtVl1aMQ3OmnoGyV6piTamrsTZLRKfIYF//2d+U++pdE8LwsIpJzYiyCWL98sT6IPjMhJSXQzFnZiMEpqfoxfO4QuYsoNCu+JG4LtYRaUCdShCExKJKYgCiC+2FhRAfU9bA8RZhnQ2XLOsqd+Rz0CU1jGTkPp4gxoG1b7F3dw5GdHXCX8Gd//iFsH9nBsWNH0EQ1K0UiTMZjjNoW01lC18+wsTkp2qEQ0FjssAWtFqbr0uBwliBCiM0IIwrY2z9A2zZoR5M8zyI8IATCrAPLzKgwqGgarxAEHAq4IwoFuA38REwCrGzHBM0jo/ZnryEEMBuRrSTb6OsJgsQASKvEispYtXIwo0t9YTSVr1IwXyuyxSxhn8hmq0FpAiCfC9heEjj4rvxtZMgclxopsw/QuVGllqm/pYQ9Z20cJRNaKD9AAFy9eg07O0dN26jXNjEimC8PC2Nra9Pq9LhGxH077FxROSchjw9qOa60tjUAB2QAKkAlFtTnUqQ+sx7+rZ8kA7A1oFiVE6l2kr/uXFbfLQKUxXscEGqexTS8hpeflZl4TfNk+DwAA5pRvlvWLvicDAxm9bMdGEn1XXVpQTLF7O+Mnyy6zr33PSeL0z6XWeu2CLKICNGBj/+TZTDmTHl5Teg6v/vca2OLplHNIYN7Rtd3BTxTwGg0yo6uiVOpiUa0PI5qqpY/tbXgMu+1VqlMrSDP70LTI+CJK8tdBunz+B5r+7hoUJ7+9KfjN3/zN/PfdVjRHXfcgR/6oR/Cz/zMz+CpT30q3vCGN+AFL3gBPvCBD2BnZ+ejes/eNc2INx6NcxE7kirMEsgbWBYOS0rFnCFSLiBBfobATTS16jWfkkxwgWrhB4havyn5JkLeNBTrkGMGo7YvC0Koww+XAQtgKnWUe5yQuaxeX+cAzZ+5So1Xf+e5NEIVGhlDVcm4slNmPwTrB2f/iiF6LgQH5jypfa5VvGqzFEA0+kJSNBMGkKKg7wXTwzn29+fY3thEu7GJR67s4fz5CzhydBtbW5toYsTmZIKtjU20jRZZTAKEZmKhd/rSaA59nJQwqcbDD2appgvLKQABmAjNeIKDwwPIdI6trS2bY4/8UuaU2ImuO7oNSwfkQ2qbKATzL/H6GaRRI6oRkuxj4nvN7eUeueNAPFr+jYy7HcDbYgUrJkbizuUmrTOjlx5JengKeqoyL1dO/oiNko0+kUr5xoyH6vjiwFjzKvGEd2KViliTbAEaWVXMD1yIo2tmgtZA9n1ODkxYEGDaVPYoGbhEgK7TcxJjMeFo1WwvOaDnfLIxMc26lqagqBopdSwWA+iu5XKhqOx/stDxXPqhAu21LEmh5A/yyLhyfupCjkHnSUrtLo9WKquhc9U0tcP/kC3VYGQRmOQnLWgJSvZZVLSuohmLj1jkemUbLAMhY9qD55nmpdzsmowI49HVMwBwoY+ugXPVR0DR6goSyAvUSXG8zsnqyLRBvs1IzystDVA7WdPQ7BFGapqqqniqFrYqsBep+MrwwL9oWUOnz9cJFQCSEuZJz2rXdTjYP8CRo0cxHmlkmBbC7XP/3HTrgGuwtiYswATvrIUyZFavT23e8x3v4MmoJBz7VZAbYmHqoAx7Mq0HBP11kqSuah8XgNI0Dc6ePbv0uYjgR37kR/C6170OX/EVXwEA+Nmf/VmcOXMGb3vb2/DN3/zNH9V7tjY20ZKqZw9kH6NGHSNH4xEoxryBllSM4pqR4eIRikmHLArD/TsCBKlPyEuV0XIBQBpZYtlMK7NNWThlunV6cbdDLjrilgRcMnhH+d0XnKvraoCi7xVJuZ/LUoAl0qnercUSS2yCx8bXDoMUCIienMyYQ6KSft0OiR/80mtkApB3by09ZeFKTHpXB1uX2CILPMtuH9RBbYMETdOCE+FDH7wHR4/u4MSJ45hOpthr9zAejUEh4HDeIeEIJpMWILbKmwEsdsCNCamQTtkLHiLoHHAZWGARILS4+sguzj98BUePHkGIKsX2HYOTqcbFmZXYvgiWJdWcVy3UNxChjSnn2hHAPPF1L8Wg8geJ7R0itJZd2DVb6lg6zC+gWp1K4waNVNFslQmdaQa4B/rUwR0jtQrQkMlR9PwPLs0VKS/Z87JdHoqzPKpCBQILC3VAnpmpMelA6LmYYbO2E4Q6OVqwsGEyjRCJABFW7l2vj7HkOQEIKc1x/PhRjNqIcdsCIeSIDZ8LgDAej/MzbKvmWiiaD8WyxcLWLwYweVpwP8VDZlyPdbg2y0zJc18I/DsDxq5dW2JiFV2p6JFHqZUsrYU2LAFklH7Uqvy6KrNrnTJbYsANJbkvNnqX1Ip5rz77WHpn+WDxc7/Y90OV2wY1qSjMk8XXrrBLTfRn0ZYq3ivjtuGQLOTREim1gqjsg8U+L2qxIjSreEaXYehoW5NlQhpWCSbkZAlFG8Xou3nWvijtaBCCnnvV9LHRXNt75E7KVMBlBcQ8HxGo7J0yoAIQyzxV80DD8gM+Fl5cx6x5gT4gu1kVa0bix9HEAwAf/OAHceONN2I8HuM5z3kO3vjGN+LJT34y7rrrLpw/fx5f+IVfmK8dj8d4/vOfj9///d+/LkCZzWaYzWb5793dXQBAbBu0kwnadgQYgOi7Dt1sBgqq+mos/8BiMS+gLEA+oEHt7HmTVCfCcYKYXT8DAWNcIoIgAcnCUHO0hgzV14JSCNCZv+bzWN2Gkg8GBDx3bkF1ljHuYPMU6X3YSlKvwRyBSrZP8ugcK5AYAtCErCnwekLEmkE3O65RDaRqacf6WR2CxfFWH+RfU8/ZSz5GqzGzt6/mFoq44eRpXL16FQ/uPYhTp0/iyM42uFfGPZ8p89va2jA/g7mVCNcKoYn1sKdOf3ZJ0CdNZtT1nCWKur8iwMF0jitXP4ytrS00TYPUu9qfIaLRIQpSOEfbeNr+HDLuDpmoCG9eK63yO24bxKAmwBjU4TUKQAwk9rVFeTdKmDtQQq77rkfipKHRpg4Gaz4ZZypBio07kDraxcwMVcJPvSVNSw7uiu8LoKBlII1VBKpm2MJS+TTUe738c6dNB9zLTKz8zpBB4jCdkx7Hj6gJkGJxbAeU8B8cHlpI/JDpLCY/i7HJ0XP6LhSwZOUtUI+TS5mCMi4vELp4PmFM1KOU1JQqQpmgL/qV5PsGn7vfmmlzuAYeFa0jN18tJ4YEhgw4OFh04cnDqKq+LGpD6tXxfSHV3x6mvOjDsfQQVD4QDiOM2aLaR3pHEar8OuGhhiqvpT46g86B5pgI7uxeikmWtyzOlRgIirRgIrbvmevRAxGNOodzytpNEktTwJ5PSetexaiJA2tNFNEYRZiofANRhBT1OVMfNdUImeAZ6n4V3qRJ2+xsOK9BmbN6jyhgMkFzgcfUgrDSlpq2P3bNibe/doDynOc8Bz/3cz+Hpz71qXjooYfwhje8AZ/92Z+NP/3TP81+KGfOnBncc+bMGdxzzz3Xfeab3vSmJb8WAOqcJ8WbuY1NJhos6sOQstd8sGRWTa5tcz1VJ6CIvc7IS6Se0cp0anMGVxuYwBLtQPtzYD+HUkqtQr0eg/Z3FHAig2cOrx8eQP3ENTNSpL/a8RW6oT1lfWGKav5oqxLysWnQRGVWTYwZoDSikUVuAyeiQYr7RaK/qGLW3Bc14bR/FfMZAC+7lVlzaXjSqIY0X8XpU6fRzztcu7ILnnU4efIEJDK6+RyEhG7e2/prVt7JZEOTygHoO9YQ3CToLfNr13cW5qqMuZO+DIYFTWiQqMXVy1dVezfZtK/ECI1riOyZEMQ4dCyMJhVFKokXkbV56mfSp4SWPP9NAM3Uh6LJkSbmY1Ix6GHehmLKSKlXYOnEyUCDhk4LImJ2UJUQtFqtEWYWAfeaV4E9k271rEVTwsBh0ohqBqiej0ZQ8sSsOJN5urMEt1ojkR1MQ5YbVCtKAc2oAYPBK8LB9/f2sL2zPVgTbTXzrJ3lPXW9g7ByRrUvmpDPgdiwIjEWnllpHuARcvoM1zQOTUD1mB/t7wKGFqe0FlRq5rNIoxbX0n+vU86vaotMrb6fg/m2odoDqJyxbd49TXotupnvvgIUXdk8v3Wr684MNAiVD1ddFLauPl006z5X2p8yD4W5r2pDk/wymIFBNesVWBidZUlmUeGjjRFh1JarzT8yWFCHjqOAdK+nA5GFPVxMOGodQAYhfjaZh/5FUgk1te9yPd6ynjWV1t4WQSLfiJz603/w9c/4YvtrBygvetGL8u/PeMYz8NznPhdPecpT8LM/+7P4rM/6LADL6qUlBL7QXvva1+JVr3pV/nt3dxdPetKTCiL39XLJo4lo46hkG7REWvN5h5SmuabNeNzCKwN7P3Kf4BOdPcLy86NVxFVJyF+sPzTvgYZ2cdJaMMWubuYWI6AsZivHcMGWiLwMP/PuDPvM+fMsBVUI3zU2ugDuBKtEsolVaJmKIBq2acxRcwP4NNmBc8ksEIJEzWaYPfb1GnfWzs8WKMExZgqyZcsZRj2ny5Bw1jk7XJXuWqygAjaoUUa/MZ5gvHMEOHoE13YfwSOXLuD4qZMYty2m0w59L1AY0CPEgKY5wGRjC23TIrH6uPSp9+XWnDaerEzEXESc0Wq/x6MR2qbBI488gr5jbO/sIJsJs9xnbpWaEUz3hSUPE9JU+olcLQsEBAXeJOgDYTbvcqpyTWWtScDaplUgCU2T7qA6AIVBVvtAJSTkhHL6WdA6U8kiTqCVl91ZVCtRu/ODXyO6CVCAQC1l+3kspR4ANjt8srjkbOaBrNjfyvi9Zh1BpV4zmC1J/aodMBNcdt5VYaIZNWhi1GRVthEdLDAzZvMZbti6QefN/EP0uYwQmgF9Wky+ODyj5qieGKmmJVxrPQs4CObU7Qc3a1bsIGqen9V0cRU4Kcn+HKDaIgwAnYWWo5yxutVagfx7QMkGzUBomhxmf70+LYM911aYU7zvl1hog4jksO58vwRL6uZaWYKnlh8yfX+I/swmwBjz9067VXtZtJgusBJWhzXX41s0j5Wx1fPhc5gG2hP3K0lJU8275pFi1BIL5uhaVhDZZ8b5TBDN3RSa1kBQNechLGwX50/mL0guONXFarVPEN2n4qkxiPKzFkerqQDInIul1HZKCWX3FnYhIiVnFABJjyNAWWxbW1t4xjOegQ9+8IN46UtfCgA4f/48zp07l6+5cOHCklalbuPx2OzDw8amoqYkhjApV0ElqIoUUMey0WiEyWQCMYm/6zocHs7ArJJ0M9IFj5WD7UqVVH0WROCGRmcskYI56sHUi8EcF40BF0Vl3ryrzkOtPVnsQCZGUrRArkStw/dcGsg7LUsFun30wGoUSIz2OSFrUjwfRJYojAj3KaExyYMt+ZwCvWQObTT4B+g0aeqH4ZajoDJSqW5KhfhkppAy0+sT56rStgsyB2uiJiTaGreYHN/Ebbefxe7VR/Dg+fPY2NzEaLQFENClDqlXZhWbHsIETDYQQqOgomd0bkozPxSXUnQ8VQ2mikmePn0Dru3u4nB/HxubWxi1TQVObfKikkGXZCCu6vVnEWB2aUkWYoviFU+minWJbxaSmnxIc2tEsn9VbpPYxCwxlb2r/WcP5RSAEABRU0/fJ3Mg1ZKKZLw9O7Rm0OjvMQIOglTJB13rIiLqt6Qo3zI1D8/Xkpagwv6+Z4sRCVmSXNSG1rmEUprrdTFmdb/ngQETprMZYtNgNGpz2L6eoaLiz+u30Gpgkk1fFZhdJXgtggIH3bnopn/OBtBIvYjc2bHui1TPgEvlleQeLKzbw7cFAKikZFjU1hYQXlikiDp1cqVVsAflNfdx1T8XNTLO2INHQqJ6Xn2/X4/qb10sFPpWpz+QPF748TF64CbV4kcUS6Rf1LTwAhcqdbCermDVvOh468AEn4wlFp6vUaG0ZD/urSAlc0IMwXLzRKg5hlFCpIr2JlgNAiICmFX725SZAcq1ruWrFkrnO5VxMLiUvRDofNp+A9yXx7MKr25JrFBm7m+oaFiZO33e0Ffl0bSki+3jDlBmsxn+/M//HM973vNw++234+zZs3jHO96BZz7zmQCA+XyO3/md38Gb3/zmj/rZ3Cek1GsVXSNCAPJmqlWqPikhaNry0WicN0zf9+hmM6scbJVWG683k7m6Prci9P78odSBbKMNMaAhFBOGhRN7JEUgT0NeBdMViqcECvnclX4wm2q0OJhmBkYlpBpEVa4AyeGQ3ortFVVK70rCC8vE2Z18IZYGnWoGAjhUJ0ImAGQfx1yzoWhQ3AFSo4SKqSJnHCRPzKXzn1JCN5+rCcmywA7U1QAmGy2OHtvGZNJisnka480NPHD/BRxevYKt7R20bQsSQt93Gg7d6DwGYiASRhRBvR0qq1ESPJ00+XoU0GkDBzNjdOI4rl3bw+xwH1tbWxi3DSpvOds7ZjIxjQo1TV5nMekkMwrSNUs5ukjMhGk/KSCFwgQCBDEEdWgG0MQA9G7oq5iOSUy16pYAtMHATJa8tdYQz/TvxAyYo7Cab0pKKpf+AgXLsjk8r8VxFcASUV9BuKjAUN+3Q1OA93q5+fnXOlYF0A32ShNwePUA29tbFSNJ+f76pzKVIkWnpKayGsBwWixtoeOsHVwdTPh+YXaH1PJsH29gyvstBNsfNof5X302K8HDfXUG9Km6pw7tXeyvpgIqURiJy3PcBElwzcT1zT3X085ECjBxJu/zgaYl7ycLICAgUDl7XuMXWYhb8V6irJ0arH9QwTVYYUdCKecAm1+7Kc+HriGqv93HkBbW1SYna7OLT57PX9O0AEh9TPyMmc8YWQHT/CwXilyj53skw7aa6WMwF9lBmotmzQE0Q/lmvtuFABQgoXjv+pYNn393hCckhOu4mEQMw7a7xxOgfMd3fAde/OIX45ZbbsGFCxfwhje8Abu7u3jFK14BIsIrX/lKvPGNb8QnfdIn4ZM+6ZPwxje+EZubm/iar/maj/pdklTa9Yq1evBWI/sVdwPQQmCjUZPNQJ5YrDucwu19bdOqs60zTfO5jiCQxExcMgPJoNq0AZDqsMUiFRChhzo7FhhSbPfsDrtOlBy4ZFITisSwoBjUwReix2ZWINHUx74rXRqPMWpVSwMMtTmIszRn/QlVSGMFgHJ1XFjGz+CHwzRTPiOVdmXRFkyhBhyhyhxqTIACSBg9ERL3arMnfS4Lo2dGD90THWs4eTvZwI23PAlXL1/FxcuXMJqMsbN1FE2M6hhrzKYdNWipQeQAz7Tuh9fNgl6E0sFFlqJZpZLIhCM72+i6GfauXcPGxga2t7Z0nqS+x9aYvABdtU8lZkKZNFOcmbRWUQBnnOa9D9ZkbBLReF9TUtOPlX8Q8x1Jph2q1wFAlQpczQEErzmUlHklUZOQVHvIzoYzlBoSFUnKzRhOQIfFNWvpr2gxhw7rTKsdK4cmH/tOAOm5yg5b/As8x9F8PsXRo0dU0IEloxPRatdaDU/f6xFPLFWdrgJQ3S+FFtZJ2J9TrZid90Hiw4XxhBBzLVzDHQoso4UA22QnLgC5UIAhsxRjIm4JZ0W9+lxJJnw5ySJ0qcO0O1SmGgjUGkNnZcoNuVm8oglUzuGi5miVJgnkYbpS9X6xqQCivhAETxjneW6W7rC59JH7ewtvYCQmSGA1HZGCNJG+hDKb+bEGHv5eF7wcBHr+KuYeIURzPFcH8q7rs3a+bYfaf9VikPpQakdBFND1Ha7uPoK96T5YGNtHtrF5dBMRLSCElhvbBIDMZyYwhVzUs5o2iDu9W6JAF3o8WWZJmU9+QxEEfearuUPmUZVw5gQSDnwXl8NXqABZpXs9Hmv7awcoH/7wh/Gyl70MDz/8ME6fPo3P+qzPwh/8wR/g1ltvBQC8+tWvxuHhIb71W781J2r7jd/4jY86BwrgksDyYSjMepmQaUhmWRxnMMqkA5gbjMclr0XXdZjNppjNppZHocGobfO9WguCIWCk5BJbSR7HQFaZqgbG0af2UB0fzUnQrlMbYNV7i3KQahN5xUodv4+1mgdW5uLRGzW6zvWBiEBVgjGNJokDZqXAA0ZE9T2EIv0U0KTz6YXWEEuUD5GaHVwCAJDV7JRzq1SMbSCtuNnHGRzbWgmAmDUuet4FPSfs7R1CAmFjY4IQojJFBOycOIE4meDChfO4+shlnDp9WgHpLOl8ERAadbgdifqkcCoMMwSgiUXTU+9BlbC1OixLBGSMlgR7e3uQyQibk00jhmTXcOVIC83fBYUDREHDtlNVEI2QxyokVTEv7Q8bQNI5Skh9AsdoJ1wJYbBJVppISrSqXZPPkoHQEEp5PJcWJedn8LpGukxskqAvW+LKzu2+YArVB3O2qDUZAA6o+SkXGcv8rCKu1dy4dJlNFKIAYjzaQKSAHgZ6zQcsJQ1NHo00CpDMn0pNapLNl8VePzQfFfqhnQgu4TtDy7SpokdB92K9r8uICjBjABxVV2B8NJ/TohFRbVntoGz8Lpu9cmkNkQxQyIiQAhDVOqeUcOnSJdxz/3148OJ5XLl8GYkFcdRg88g2nnTrLbjxxnPY2diBgNHIHC5yMJURRO2gAVx7x2CB9T+L4x62AroCVPPLFECeydvHmwU1bcFoGuckedUTzZxOpOH/ibmq0WbPsnkLFCDB97tXtfboGFTm3giQICVNMcBpjtSr39Lm5ggBpknMAkkxVQfdKBrQTwH71/Zw11/+JS5euogZzzHnOagNOH7mOM6cO4fjx09gTC1iCggcEEXAlCxApBlMcgElplmvz5kBSd83IdPbSjC065w2eFW3gjeKD57+FBDccTyvRl5hBXEpg3xNCfDYGslHYxD6BGm7u7s4evQo3vIf34rNrc3MVEteiGDqvaH6339eD+HXUphf64g59T3mXadETYaah2iOWMWBTjelamQ8o2oyQONUrBAVQAtPJUe3ZsIpuSKKStZ9AKTaIZK3UhmPcEJESeKV3FeGzK8E7nAZMWpbTNoRxpMJxqMRopkcarOKQNB7CJy4T4QxjoUwujzXUoX8eR+59MEd3zyzau6fSf7snNv7LIB4wUROSFaPyENVozmbtS1ln6MmKpDzCKbQRAgJ9nf3sLe3h62NDUxGGxiNWkw2R2iapjgvis9zkexHIeg1odjJHSg6uPS91PcaLTM9nGI27zCeTBCo0b5b9WO28OZsVBFlYOxhwMmK4LnzMJS4eaHEQAGxiUaMVHorJk7vHXKf3PY+FHcsFLmKcnBzn7eUVNKmoGGvqWdT/Ute2mQe+26GApe01rpdFdQkLJpBsPT39STwYrbQ7zShYLmnlnyZGXt7e9jZ3oGIoOt7xLbV2kwETKdTXLt2DadOnVSNCmJJ5y+2v6BaWSBa6HhhniqRSz7vPhc5cqYeE5V/Ia9l0RLpNhvonapU90Bgc/YvMREDgOfAxGmDP9Nph6h0A0EpZuoCxeUrj+CP3/Me/Mn7/hRXrjyiRRxTD4bSDQGhHTW44aZzePoznoan/L0n48jWNkKCJs7jpoyxWous+TKhQjWg3vmhSDXUsPDgs0WavOq7oe9FLSz59QGe2DLGmL/zvCDlnIScpNLHlLUMlUZgYNKzfd9YIkAidayWJJjOZ+pGoE6JxgdYQ/vNxyxSg/vuvg9/8ofvQ5fmCGOCjAFGQscdqI04d/ONuPFJN+Lo5lE0oUHLWsWcYkBoPJu0aT+Yc24frorVwveYC8xcazDdvB4govve/ZVUhTXU3mbTjgkByvc8VYFYtt46kzhlLeb0cIof+P+9CVevXsWRI0fwaO0JXYunMMhKLUzDMF5k1eAQEAzsvfZzVeiYH/rYRGyNGnhdjb4v2pWUEqbTGdq2xdbW5pLvxuCdmSiVkEsRBpKbpmwDBSVKRatiGqDoGQkLEZRKO0IEUytTPmREriatWqVZcYTtc6ImICf4ph1iRhKtktn3yjjrOkWq7h8yQ5VISvhyIADR+2UHXlQZGSvJmqRSy2q4ULYjE0WtaGvEhZnVDAKoRoBV4uq7HocyLYnnLElRiAGxCdjZPoJRM8G13WuYTq/h5KmTOdtnbYLS8QS4tqYN7lgMqB2+ALCBNkVEiU9ssTUeobt6DZd3d7E52cB4Mtax96X2R+IhQ3G/pWRMj4KrmN3XxPsG2xcBkYKZrZQYglzzNgx7TDmXD7KUr0tR1i8zTSCn3Y8xometylsywrqjnY451VFvWHSOUwffrP1ZEI1q7ZnJbBWDKK1E2ejZjlKdsQqQ1Tk+tIAmg6W3FPnAbDbFeDyqtByuwSAD8KqtEssQC4521grdicG1YPZmBiR4GKkfL+PG7kfi47A/WBIY5NaFMh+1wOQoLJMowmACbQ0JxhhqYGLLkfeWRXG0bYO77roLv/d7v4+7774bXa8auyACqG44m5kwT7hw14dx5cIFPHT/A3j2P/wHOHX0JCCExuhNnbxvkOOELOR9ecltwIS89FLGtghaPew+T0kVXqyaXjKH45D3u58ZZ6L5lUBl9jOBydffA6uS5MALEQDM6K1asF8bY0QzHiG2rQkFBO7VbCwEjFrVQmZBxNdEMa+Okxjnbj6HUT/CXR/6Szx84WHMux7txgibowk4Mnav7GLOHW49dwtOnTil82DjEJAJa6pzgojJfglkwRRFiSdlvqsFITP/QpIPVs3PiNWiOd+R7AvVC0MSI/W9VlOPoaJjgtg0aono+3wWpn3JafaR2hMcoGhzdAZU2hDk7Tm4VmzydYWvl2aY8iZSn4lyjlS9FxGbmD3/r127hsuXLuFgeoAbbjiDI9s7GI3Hake2dOoxKmPP7/J01CJKdCJrufZQ6nB4DQmiWktRbNw5U6t46JcSCE8SV7fKN3Yg5ccQS5ZFE2sCBVDQkD9mABTB817zZ2SAoupS7QfU7ECe2KoQiBBdsxWyEZwlmUZDD8pSLQ4x4iN6CH3+XcpEVG1KIwESBTGUNNJkgJQFQM+QCE2FbomXQopIPUGiYDQa4/jJU9jb28ODDz6EkyeP4sSJY7kPDFjkB2dwRIH1IAY71DCnNXJgAcx7RpcSDqaHCjxIqwEHanD5ylWEFtje3gYxabIzUX+jPqXsRJvtx55QDE5Eadmngd082BvRJAAmxZEMnLpz3RH4HDsztbHQ8BzVhb08f4prsByLuKaPF5mKgwv7LFiseqCq+ra4j0QBhIOxVb+XfeXflNM90J7YePuuz1cUISTlZ/R9j42Njfx9sP8VwBKKIGFFHuuWKpV9GTcNOp1BK0QBEhw8wEwW6nSssqvDMhUePAonrx1U8q6UEAVMGigWIhMokgH5hWuMSYYY8MCDD+LXfu3XceHCBQOSFgrv6o1qH/g6dgdz3Pm+D2COHp///H+EIztHkLJ63+CMFO1IIIvS87WhiiJTcYItK5rllrIuOZpwuD+KQKpZvx0oa7/9fBZwkklv9exFMJRNOdp53TMpIaXOOhiwMZmo1lwAiqHSLdhZJTOBk51Lsmgs1yKl3hXDcB8baiNOP/k0jp49ikcevIy777oXFy5ewJzmCDuE0DZI8y7zuZQYXdfjYP8A2AImGxuIscFIxlZ3y4TdnMq16qKtUf1h1oR6SLIQghCSqDmaTCsoAJKodg2kWngv6CiBMEs9ptMp5rO5ZdZOYEmaaNWWr5vP8VjbExqgtKMG43GDQNF8MrxWhSdAqnJzZmnYNoVrLpZaOQS57Mwi4fQ/A9BQg6NHj2Fzcwv9fIqDg0PEpjGtihW4a1pF2hMrTMaciZsmwyJExOJxLchaEQLMi3soMQl7qGf5OEcgKIQFDFyBLPeA2yaBnG7dHVEdRBCRhfECXu6bIpkzbFBzTyrEDoCaIQBQcNOCE7Wc8MUYuEbZKjNzZkVqCiCX8oONxaSdnCSsCjMMSsyDH7KmKVNDAgrVPNk1qSK0LEERvc3B9vYEW1sjXL58BdPZDKdPncLGxqgiKDqvTWxAKOavEMnWxqUP5CytXZ8wm2k4u85DxKhp0O5s4+DgAPtX9zDZGoPInK+F9DBGZXApMRLV4MelGoBFbfN1zREliRWprEolFNBOViXYNnbti6BoAnVkmJvTinZCbdqcVMpygpVNkvDnSa6/RU3JM6RX+5k08JWkqvmBpeaCMFVmkcVrXW4XA1ieuE5EsLm5iXbUalg5KZCOjfkKpYTJZJJ9CgLM/yDTBkZmtQSUpGE6tmg0xwFFBiveL/a9b0OvorOUB0RznrYSGuTauHpdbR6ICuCraIODFK8/JMJa6yQ779q+cVMUa1mB/b19/O/ffCcuXriAvJCoKIz7bFSCH6BbJs06fOh9H8SJnWN47ud8tuacSvrOgUCYQatGyBEASByETDs4JgtucADN0H0RgCpFu56NITl2R10dYyDV7DHMyR2lDpmDNReaQgyIbUSzlLzStG7QRJ9EmuqibRq0bQtQyGHyJZoNGTxmcC/Q+lbwmlc2u4HyIAhi86bCWLvV4vQnncUNt5zF+fvP496/uAvnL51HSlr363D3EAfNPhqJ+LM/+VOc//ADCGcCnvNZz8XW9g641whFYQdnks9HPWd5b/tc+3WSclSTJhtM6FMPNnOnasLUoXc+79B3HaazKfquA7OaUVPqEYOa0ZTfJexeuwZAcPTIUSyr86/fntAARevDWHRFztehBKUgQnfYciKj4WXJnIeA4oCql+nkhTBMgbxKunObXYzQuPRRg6Zp0SfGaDzWTco9Utcj9Z06zAbPgUigJhZmbn4H6qFfHEL13UN/ANh3iTtVBg00QVL9XsACSPOXpPx5kSwDqUd9ILVZJtJD2TFnwAd4EquARMUPpXYa5CQ5J4dGLhkT9bzSqE0JDOkJiXSFVGHiPj/lkLuzoeTxs27wUCTdPJas+ncyr7qHauIAUSaNqL4UmnAqoGlbHD9+Cru7V3H//Q/i6LFtbG1vWfZgJXpdEHSpxywGjNoWbasRIhQkM+w+Wa6WPoETIaDVcGvfayBsb29j3s0xO5gihD7nQnCVc2ZiPaGnYah8MrCkkWuwwBxTs1ZgwsfvM5/LKvRqwovqma3M1RmDOMMr4fRhYd+RCvzwukXeLzEiC2iV16wat0+L+VSdt1Ulb0uSmWMYEFNzqQUr9VftEFASn+nql4rQgRAt619sND345uYmBJLBBCdGaANmPEMTIsZNm+lDziGU/asERE3+vUCCYipwhuTXFKBSzKP604UMM0M485eQ066LcnIICJyCgfYapASEyLAs6DqPnDL4rIEaTEgp5mAFkQQAPeN9f/wneOC++01g8b4tN1lBL1gEMu3xp3/yp7j1ybfiSTffpvPPAkihVQalEMjyn5ipLNpzJCjQJniOJAOWKPvSkxNGS+AmWePngQxOJwqwGWQ1NkDnZkzjySCLfaVQOVXDHaeV1rVtRIwj5CSXAnP6130pZNpmiJn4jC67A7yWmAdYC3Mq6PJMsGR0zc3CAJhUO0EMioQTTzqJI6d38JT9p4CIMJq0eGR3F/d98C4czGa48NBD2NvfBy4n7O1ew3iyhZZ7AEEjP20/M1IWHCDOW9RfJPUpRzH2KaHru5wJnJkxm80wnU6z5pHNX46l9oc0obfaQ10/R98rYO66Hl03hwhwdXcXffc41+L5m2qzw6nV0NBaMW07GqgEZaBJ8MkrhB1wwUayujoYuiWUzZs3FIpEushwVX0e0LYN5v0hWBJG7QgtjUGjEUQE877PmUn7vgdEq8+ORiM0jdYMcrv+MGMlLThlukNuVDspKp+NAUgp9noAOTJhUW9EQGZOvZeGVz5iACSZw14VFgw3d1VSOpAlYhZCiACbPV5QIgzIxGInqmRMuLYpax0YU6sbE3MmF03LkJO+VbRVAWDxSRK3vwLITlxUiCebI2ffM8ABGxsb6PoGF84/jBAv4+TJ4+Y0bPWIWt0T89ihbTXBl/rH6FynTmupNLHB5mRk0mNxqHRzSNtsYNKMsb+/h/nBIcYbG6BoWjTrcAwRJCGvmQMUl4qdOPi/UjgMefy5Yjc56C5mIzENGQp9NuJrOWxYNTamQMh7z89B/R6TDtQ/JzMUZCaZ7J5heKP6VEHsqQK4hoVzCCPnjBskVUet2yEUUBMtoy4AMEpSNs3W6SGOgjY2mMkhdna2MB61eV8pudBzrJqPSgNbnT3J45fBmPJacH0OBU66vSxDbVpQ/wZ33DfHfrvNmbVHgjjQKO8qZyX7BUiJ1sn94qLxDES4tnsNH/zgXxQnXJt818oEu1d9dtw0oeffo/ESgL2ru7jzz96PG8/dbDQoZqDlmVktLZzVdCLUdjIBTKCRSotrWiSn20EjyrTIpmnRbL9oigDV5gVLKpgdlokyLS+ap9LYmXI3w5Td9041JOoEXwIMtAREaXUqfRICuKxB4mRazlrL7PMheUtkc1yVqkDhLIZrOQnY2tjJUTmnxifRz+e4+/+9B3u7e5AEzPdn2Nu9huOnTqGXLkeKsgj6fo75fIbOgEjfqe/kfD43c72m1RAAqe+zAOT7ipnR9Ul5bPS1Uw14EvP/c77TJ631lWrNvpg5qoNrVvv+7whA8fwGivTm6LoeXk24tVBgjbTxcMlig6/NydRQyS2AAKcQnpjLpU+p7nH07tksmRmIGnbcphZwYmTfE4A2EFpjzKWmh6LVEsasWiEHWAPVZPbZsPf3jUpFYgCgAgsAVFtAy5FJdXNw1Sd3jrLPUTNELu9MnMcjItnRL9tSs0jMcO4nmUwZ0g4qvvi7c/QIKsDDkp1fSShnw3TiHkBISMhKcdJCcENfBlP357HC+mQEwbMrJv8iAb0AJNja3sbu7i4+9KF7cMO5M9jc2ICS/tYkdgaIQdCMkKOGEJqINkR1cB4FyKS1uREr6sdIkgBWwpQSY3sywvTwEPvTA7TNBIjBkjqqhMkotYpEBByiAqrUw/NyaMSPmVwEmZk0TUCApcEnq/ljvLFnASzFfuACZpz4smcflSqLLiw8kQhtBsT2TjMPekSdRtHpM7zKrEaDLZgB7Fx5aL2+0x3cjQlblspamzDYv3UWVjsr8/kcbduqyYZksNdiDJDEOHnsGDa3NlRi7C1BGQvE8ut4/SV9T4lGSjBtHRH63rQk7tRsUR0CoAnBvYl0xxIGWUGdiAcGJFZCEKt2SQEtW8SWJdmqVPfDCtEFFBGqcOhKeFA1PuHSw5fwyJWrEDYfBQM1SQSNZSM+5JLIq3aENqMjGtIw1Xs+dDeuPusKTh0/jcYdKsmjwAAxLWxtQvZznNPNk+6rxgBmTjoJcpYNJhdgyCrNK92LQSPMKAaIAcsA1ar5hmBIjjBrozptagVqVlNEE9G2DWJsM911p9bsz1gJgDV7JRhAEY/E8wKqBRxCCJGa7FPY9b2l+0e15l6uky1JnkpyXO07hian3Dq+g52dHexeeQQkgvFohH7e48JDFyEdMJ/PkFKP+XyOw8MDJGY0UVm9n3XNIB0HY+v6Pju5+/jZTFnSp7KHRFclueOxEQFxwZts7WQYLUtEamLk5XN8vfaEBijREO/QvMOF+We18iwj4qYZmVmoqiRLxQ6nuSFK1INLj5moOlip8g8omBGIRDRNCxGg6zojhso8vStkqZ5DaFRDY8S16zqtz9BrTg539oxNoxoDV9GHouqUaOg+JfixSdnR0jQVVIgQULIq5ggHu7YNzQCgJGhOkZRKYqo6PbmeNdXBSsEiFQgopjGjWZlBhhjLjFJhqiwM8YAcB33iyxDN5yNAepOQQWbOrR0FOUtsOl7kfmShHEUDIAIFDQJz3swLhaNHjmLcjvDIhUuYbm7g+InjaLaU6Qeoz0gkc5hFMBV88TGg+nhJLXmbNqFXwr+9s4nNw01c27+G2BBGk7ECFGbNqQLt+3Q+R993kKDj4pTAHLNKWfmTAxbW7Js+SKFqLgnBHBvNcyTvEY3sNidNB8XWmhizxojcidnWSAWoZJI3IZcnsPOjifs0O6pNMAADvSYd1pEWJa1YmbNae1KmlSHJ9hlJ9m+YTqcYNSM141V3ulZ03s3RjhozbRGaVudYoy8iQtAsr5qYrYr4E0EURhIXEJNp4DRSoTY7pBjRmh1ewDkSJ9cu8T45KBRdU6/snMj2s4PcPA0VYMhTkkVWo2M1oJfcJwB46KHLmB7Oc6JAw+wIBLRtq4n9GufwVgvHnGsTc9aOEYDDvX1cu3oVTzpzE8CmxQqLQMTPoK67mnSD+Q5axm0zO2p0mDF7AQDfH0Z7/PwaMwdhIJhEq/zr1/Q9q7nBCovOoSITwcLzQwQHoJMEcEBkBmVAVWhHRdjyHA+AnziYtJVgyQKQrq39HggcLdRbLKurhbR3qdMzkDwNQULXJ0znM3TzOXpO6GYdulmHFARxHCHzHg0aXH34EezuHVT+J2pd6jo1WTEZ4KwASCfJ+iGgKqQ9CWfw6zWXfKw+F1KNafH72iVC6e5C0dg6YuMjtCc0QBFTHzUNwYv+qe2wTJIj5byJuEfXJfS9SVOG3L1mlUbeuAqvIHmYBiAn9Mrx83atmEKTgvWlN4alhFwPaYMs6GXNhh7EpmnQhKjqU9NapNSjn/eYix7H0KiPi0qGauoggiXJMnQvKZdnh4Mcy+kB0YNp20vBQXYEjAYi1PadPBNzxUgWnYodbLn63JkEpNqoQVW7AaRhizbnSq1TWRvT0rhzZxHfdP6bJuRN7n48ygAtmyIKaoeNsA4jDERaOEyQJTSQJ3dSJ1sycJqNLARsbm1iPJ7g8PAAVy5dgnDC0WNHStExgtYlikAIgqZVxs7cIyWVkmN0SSXPnA6t1XlgFmw1GxhvNAZUE0Zti0ANJAQ0TQtOgnDAmE0ZnLTStDtbl/2kn/V9j45TJqqkgwO4A6NorCJcqrYZy8ASA80hoJmAR22DzUmDdhRz9JcPiS2qoO8TOtacE0kSktW9oiCIZm5TG7ZpsfLaD3MmeKSXPX0wb4PzI3oynSE7/un7HuPxCF0/MydLi2oSxsHhAYQ14qnvuurZAgqqESEhi+ix0hEO8lMCC2mCQ5PikQTcMfp5h96Ya4x6loMEIKjqHyygGHMIrmuOVAsUFdj1JcKBQFkQyEIAAhJMe2ckSIE3gVjXgUTXS3UGZJpgm+NekKYzUGIEiyBys2fwrKRECJMNxKZB1/eQffUfINHznf3YmNB1goPZIdpRBPWMFo2GmoqaZjS1fGFWEHWIDaSauBj9GkBIQ1td05B98ECWB0bPbs4flFKmw36mmRRya4VgzrmE5t0Mlx6+hMuXL2Nvbw8pdYjjFttHdnD2xnM4cew4tje30MQGs8OpBlZGLQTakNF2qNYH1brV5j1PeelFNgUJiGRmlA7zvkfPCdN+is4cTOezGfq+0+/nnWosWCNnUtIyKFev7YKZMRptZK1lGDVoJiPMWJ395/O5muY8rQAInfmUIAsuviNq05L1uwIoGXBU2u26ZY20AQ9PfVFr6vOcuOnL8yFVvz+W9oQGKLPpHJNJb97C6lDGAghTKQRlycggJYqjzpTqdsa5qc1Vpe0VTTVTo0bh0AJRUSek2sTgNlL9uzjaOgsgykFfumGELVmO01eP2gDaNqJp1PSSIJjP55ju7+kVROr/YGYsJ9bu3OQbQL9TZxJXr4lJQCDVgpD5vbiYqUnSiiOa84ic8M2ARNYSVLVIFou2gZDnOztOmuaJLELF1YhF+jOluB8Q8+BvYlOYZWPVTKsaG/4u73Ox8w+6Y0qf6nPSwnpsqliQA1G39xPaNmI8PgYiwcHePq70Pc6duwGhASiK/mwIEgR33/9hXL38CD7lUz5ZcwjAmH+gwZx6qC2L2tmFBBRaNG1EmM6wt7eHdtRisrFtDsSC0bhRMwcXE2OSBDGCT9SARWsVzed9DuEFoaidbXl8/RK7k6KvZ5mnGH2ONdKhaQihJYwmxUav5pGkTDMaU+cuV5lGiGASoPckf2peShb5pf5ORYCo1cLJge6Ks79otvS/I9SJM8aINlBewyJ6E3avXsVoPEaf+ry/qNH+ktoSVAoNAHHI9MVDjsWYLJmWr+8Tencu7DVBFomAI6FHQrQcuiwAm8DkPcqEGwBiQEhs2quAKGRhuUGFAFYNS46uo0L3HJir360BwVQ0LF4AUYTBHSPjUd+fUPAx5x7jzQm2jm2rALi/D54mIAmia3SsvwEAWVFUNbcHNGzRW1bTDKadduALy58EA8Fertp9FOo94BlHY9Soq958JFLyKs9K3/JeZFYzRd9jZj4WRITD6SHe+8d/jPd/4APY39uz5zI4AE3b4tjJY7jt1ltx8003Y9yMsX9woLlNIuP0qZM4c/K0aiMt3TORZYOuZq/re3T9DPN+hjTX98/mM0z7OaaHU+zt7gOs/CQZKIcnMhOjN/mccvbj6Pse86kmCJ3ud8Z/BI2QgkdSB+Fr1/ZB7ayAfMBMxQKwAn7fV4U+2iwaH/C/s9AixW/Jr8/5j2gIIuvqyItAxc9neeffEQ3KdHYIXBXEGDDZmGA0GmUbuMQi4WV16oCo6aF1h6iUEhpuB4gvpV7DRecdgjHIXMfG2HgMjaFMVeGSJwQLqrKMDkyiJvLJz2bz8DZ06/4Z2k3BvOvhZhUm1T+M4ggCJYjTg0Pspf0MUNwfx+8HihZDiyBGs5UqoQxBCZ7uSzEp2+ycpukIISJmDQtA1AHSq1mluAwUjRLK+5XJWWSF+fIAReJQE0Aa5Nnw5FLlGaTq21BAJQVCE41Berp8qn1PlDPW/cnPq9SOeZ6cMTtylBoEwQiSztd4MsaJ48exv7eHS5cv4/SNxxFGAfMwB2KDCxcfxjve+Vs4deIE/t7TnoY4ahQEWgiuAz8RV1CLmf4I875HZw5mnABqx7hydRdx7xBb2ztavFJYIwsoZifqQbbi0Km5kgiN2LMtqqUJntPD58ocH8lLB4Ti/xTcDIk85zEIQiSIJM12KQRKmsdlPu/QdRpd0veMlDqzUQt695NJnCtRqxnSVqqSrMpiVRo4BDQwrZntAfastlAA4k6tIjqWbjoFes4ayzpD7rybY39/HzcdP4d53yGaGUySqa5tT0gqgBUAvEBj7hsM6FrWUWFLNkgKkLhnMEWEoGe454Q+dUhJU30rTdDaTmzAn0WA1OtZJgJCzOGi5P5BFTglquqbuHBhGlvVYKjPgUfKAar1EyOAnM+HnwfkLKR0oMm02rkgyVCHpWOHu0noHhfzY0kdEhiRzOcBlD3QCIRkUec5I3WveyP1vTleWsK/VPxECgMsalUy9ZFnkYaUPD2BAmJoQBDc/+H78a4/+gPcfffdOQu4rzEI6GdTPLj3IM7f9yC2trZw+tRpbG9vY7IxwWRLafbO9jbcpNH3hHnXaRbig33VgMw7TGczC7FNQF+yXFMI6FPCfDpF27YYj0dwz//EbOe+A7OCwORaURZLC8GasTaxVlq2/dcB8OK2zAwkzto+O0JGo81cq8zJuEyJUhPTUPvxc/rsWnxAAW+h9fYb+24Q9FJS19cal1XaF9d6Ptb2hAYoR48exWSyoerklDA9nOb5c+ChkReteZFHBBGt5CgBRM6MYxUxUyr7ijRZZebFBOfzrlJFA43lOAkU0LaaY0ElGXOMtegcVWWajXvem/ZdN0afJKsvMyjJJg9RRl6lJSYKaJsRRFSa6m2Tq3MhALizYklZ3lsmP0Iwh0m1wTaggeajTginxCxmAqF5QAiSgBBdAiomFJj2J/vAWPhnNqkAORzPc0IUZ+AChLyxsKrIUTNK7U+uvoyC0G1KQaHJ5oHa1r/Kacsd94IjEUElaRStgtrK1fkV44g/v/ND+P33XcaxE0exsT0BQsR8NseZG2/GzvZR3Hf+Co7tbKsJKIasgRuENIqGIkOU6HVz90NSAMehweFsit3DQ4zHE0zasdrqo5J92F5xosba+ezgpmvKIERNiW1RFu5oSRQsK66a0PTZjc0nQ6AAUnpoxeRAmM2BOIMVJAT6uZ8Jldi6ToG9h3tmO7UBkjp3j5+rIjgQhjRNfcE07wtlySs2TV5PiEULmYxABHMgTjp2MyuwLe+8m+Hg4MCi5gDPPjrru6zZiCGaQwjgor6nNBeRqpwAmR9Qyv5jbGYThKD+LxzBYMznc3TdLCdr1LBwzTZ6OJ9j79q+nmGemdQrkGhSMgij0QR/78lPwYgacK+mjcUw5DJnpZgnBUvbbtFJbqLWyJmFO0UgSTDbmwKHahqTZMzPTQF2rcN/DzlXB0sB9WTuTsq0mkYd/7UPClI8hULfJyv4qmCkF0ZvmuTe8tR41JprAuukg6omsL7n3EvqZBso4sqlK3jX//eHuOe+u3VtLYMwAS5PWiI5PUcHe1M81F1Ac1NU37IGuHrlKt63/+foug593+Pg8BB9YktzUISgUHxFTXPFOZHmbK5Jy2bTDvt7ByqqiEVnVYUnkR3dC/BUesvmOG20MBggDsFM1JLpL6Fo0zw6jF1Lb0BEI6NQaS59RQ2cLwi4gayIpguZDhDhZlbJFoqsWgMKwBHJ46k/fyztCQ1QPFonBI1V1wXWTd1zQj/vMJ/OkCA5yc5oNMJo1NqGF4v/5jzBruHQydTNl2trwBma/u6RCn03R+p7TI1p9n0PSYw2RIybYECBEJsAIkGfAISokrX98xTiSOokWxeqA3TTus2Tq8OqS+6Hs0T+dF1vwEZMUxTNS72EkUZmSKu2VhiYQFIrN4J7YjhAY5Cwqs1towrUh6PUQVLGyW4w9/usypurGWFEqKYwdiTKb9VaEAgpJNUcCOv+JwYFdUIMRMWpywlHZe7RNeR8UGqzlCerK9d6v9x/xcZKgmnfYX93jt/7/d/He/7kfZj3SnjGzRjjplXXWVZmcMstt+DJf+8paFrNdTPeHOPMmTPY3t5CiPpeEc1Lk0y7wJ2GO3NfiAyoQZc6XLt8FaPQYGNjAxSLZtAFEjYE4IDAtXUKshLAKc9vBigA3D8lMEAdKZgx7YRnJ/ZINX8mTCLvWdD1nWlBNANy36WsjUqWuMvPU11ywptLbyRUJVc2ya4iusnzO1A0Aqj91hTd5idi2XxT6hAjmW3fTAKiAPdwdoitozumF1QNT5eU8TArndgYmQ8HsWnUzCQcXLMiBg5Tdm7v5l2R4GMEtUAyvwMA6A3A9H2Pq1euYnY4zbWwDmdzPHzxEqaHhxDTQACCeeoyfZAAHN3cxtkbziD1CU2IQLMoofrelczkiAhN0HQECAEStJ5PklpnW5rXqwGrNpWIEMmxmjlSA5k+Kk3qMe2nICK0onGKwXzomqaYy3XJgtLcPimYzWukdFiM1vmeyaZM17JICUlWZ3tdyRCi5jYRAYmgmyW8+/++Bx++78PgRFWQQr3vtS6U6qfVF2w2m+GRq7s4cvQI2naC3b1DiBzofuaE/ekhhAVN2w5yn8BARAZeohrT5EU/qTjve90cZ/hGqXLeIfEaOLanNdeW0ko/uSIONG29WSDSq1Le8vj4USMzYUt+DyzaCbkfhKItdI13oRKAMHINMQEjUrTneCSP8ShogcnQxAIYuezFYHvwsbYnPEAJwcOBCRQBIgUhYAY29AD1STUMs+kc0+nUHGlbbGxMVGK0WFkniFl7YYu9EvGRe/eb93tsEJsGTWwwF01Uk7oOswNgHqAHddRCSBN5UVBfi2Jz1GRuZH4CkiQnpAKKJmLoUOoOboxhLgXdWtEOcNf16OYdBGXsTdOoo1oS9dwPwRiLaC2OpCXIvfwTMwN9V/x3fMPFkH1t3FwScqIR/RmiJZTKoY8GbzLw034PQUSxeyZOQK/3NE2jTrymVWxDi9F4YoRcGWU+dBYKmokpOxNnk6oFxFSkUHKNg4vk2rdESnzmneYMuHj+Ycwu7yMIoUmi9S5GhO0jR3Dm7GkcP30C524+hyNHthGaiHk3xyP7e3jve/8Mp06dwunTJ3OKDd8DAu0LswzrmIAQpMFGu4WDwwMcHD6Cja3NXI1UCUmZu0X96aqIvkHqewIInJ3MiTwVvACIqmUgKCB0sGE1iHIeCgCwRFSBKBfc8+RZkrU2KZ+xvBFQrnepzz8XUY2jazmEe1BgNGiqrMUAIWZ/LmVmPYgi9vb2DUBo7AYLY3dvD5ubm7h69SqaoAUwp/OZAlwijEYtxs1O9jthZqS+g0Vdo7GClJ7EygvBhUDqFJ21V+oD5/l8UkqYHc7w8IWLGI/GOH36Bq0kTITjApw6cQrTg0NMDw5xcLCPS5cvIR12GAWNUuRGsNFMsjZB/eWUMdemXS9cWuiAAKGYdvSnanpK8kOX2iup2EUfMc2HaVnJzqtk1gXMZ3McHk4RYkBKmv5hRB60oP0T0XPcdawRKWYGmc/nlpMjZS2oCyZZE2h+D13XqcN92xZtpwHMw/k++qhAIbDg4fsv4QMf+AD6vjPnUee/piXzsPigWchn/RzMPTgxLl16GE0MOHHjWfPxEIDV4bvv+wpkF0FHpAfB88WoJkLXHXauYHNrGpe8Zq4JVCFIYHyHTOvBJWFnDtoggvSaQt5zYOl0uAYFcKCa/fhINYC9gxH/Hkr2PBcYJ0YSzdEl9sbt7R2MmxZXrlzRdYoEkCCadjJCwX+ydA2j0GqGZANQnlXazecfRRDPExuglCyyQF4MC3/UejIWrRADJpMJjhwh9KJJY7zAn/AhPI1y27bZ1uuEFSjSvDeWVDYWs2oj7H09dAPHJmI8maAdNXlBuFf18zz12VQkIug7dbJzFTVZjoFiGqFMLMUk4OzICc4FzYYOc8iROJEawG2/zJhNZ5hhBuaEeTfHxuYGKATM5nO0TYOdrS2M29bUj1B1tUjJP+CHuykmlgzuZJjZMs+dXRNDOdRMYoK9gCSYVqFS4froXaI3hmgGGQiAOSHnj3FzVuljgDMmkBixKdoomI3XCxKSARRtRTrtpahCm6bFs5/1mThz7Czm+1MIC8btGLfeehs2tjbRS4+to1toJy1m3QyhIYzbMc5sTTAeNbjv/vtxZfcqbjhzBqPJCCyMed8hUERLUTNnkhMwY+6mHRqNNzCbzbB37UCdpMfjLMGKTiO8KJtrvjQXTplznU8rulYRMA3P1XsCGVZDqlS7Jr2JGPFUBqFSoqtyAbEQ5KyelsoJlwph1F0d1Jk2mLTs0qCUdSgJF40AiyChRyAxJ2R7rtnb5908F7Ocd/Ocgts1ft3hHFMKuHz5ChoK6Fj9zNQHp0GkRh1dxfR7STCdTtGzMvBR2yLECLbq5mpGjgik6Qvm86Dq/E7Pd9M2IAH2dvfw8P+fvD+Lte3L0vrA35hzrrV2d/rb/7toMiIzIjKTJIFKuoRsSHBSlMqyJR78ghAPSDwhQEiIF5AsLGPJtoTsB0uW0jKysVQS5aKwhJPCkEUljTOSSDKazIz2397+nn7vvdaaTT2MMdfeNyKBSAlXKcQO3bj/c+45u1lrzjHH+Mb3feP5Cw5WB5ycHIN4a4MZytkI86Ml85MVd90D3ti+xfXlpTrvhEBzuODw6FCvqRix0uD7HY2rvLY/dyga1hbQK9+2LSKW0E9V+M6XyDtHTJEaAHO2++7cZC5WW6LihGGI9H2POCEWaEtjVX+Ziq/azhusjVn5JeoyqihK5aDV+FarchGn+yi0uiYylJxIovfp/PyC9z/4kOW9Q+ZNS5OEb3zt6/T9FgwtwkERwRdH17bMZ3NCCMSYuL29IseIFFVGlZh59fKc4hyz+dzaOaoALVVfLuCk2SEy1hqtQ1312itXqvoLFZMWT8WIfd6JszclPPr7uaJgribieyKMei9KxuGV84She1lbh8WyMtcoBWGwGWrF3p/YxtLBpvJa4RKCcnjEe45XB8zbjs3tmjhGiiG4dWjqzvoiW0EIoxWBiTidlcKON/TdPr6nE5SubZV0ZB9Yq0A049+bM1KmO6zBeFaHPcE0iTFZJZTiwFD7nmIckxBec02dZt1Yxp9SAg8+pV3R4jXjVRdIU9AIII7Gt7ig0rCUo848SWVCFWLakpDJw2FyaDSYLteFtceargnVvm9FRYGmTHlqxQhSYEyZzc2aVy9ecn19yXsffkCMiQdnD/jsZ76fBw/u47wjmmlTRdaVmOh30zCnlsJOjVMhwlrQ/2bM7qocqYdPTlmlwDAlYDWATknQdB0yBUckMzgzXTLlgPd1/otuGkXaAvtvobLOY4rUKayVlLnPmanvVQ85DeInp6eslgeMg0r4QtOyWKwA2GxuOb+5YrzU9s+ds1O8U6+Spmt5++23ePLkCd/42tfxs4aLy0sur6+Zd3M+/X2f5PjwiKbaZ9crYYkG1Aq5JaXIzfXNtD61975zia3XvAbKHSdhV83pntHErOaD+nN1DSWUq/V6suiK9s93zq67RHriC+wlIjWJ2E0h3lmHY0Fa16cRVjXTYfK5wFnBISbBBF8qK8V4IEVnzGy3WzabDaXUeSl2AEuZZkYFF4hDZCzaWtXrpp9zHEe2m4GmU+VeioWxTqct1VG5HizVD4jJryg0DR99+CH/8stfpFA4Pj0hGbnxwd37LOYLiwm2Bie0wnhUImSfaecdd5cPlC8WPHit9n0BCbV1aiTKPeSxlD1Eebrmu0Nz/z7Wx25vWgsC2dvb9Wde2xC6Oqd7qKMdlLcaSeJILhKTGDcuTQhpLTJqa0xbPVFnY03vYufBU/CvY4JFTdum91YKJaWJM+RwbLcbrq4uUeXUzuelFGhnLQcHS4LzDMPA9dUlMSrChpicWVDZ73pLGxpco345XgLZ5dffjyX6lN11rMmYcj9kctPGOE4kmQbsicjkYi7GOnZm27CbC7WL8fo0GXKNr4U4jIwxKzHQPJGsWUbbtRwcn9Imz9PrJ0guiBd8U60CjNtlHLkM4Jy2BbMWv2NOjP0W6QK+MbK6/a/kOkdK9+/O6t/QUiu2FO2zBOw3MVz8Vz2+pxOUpg00TUCy9iGVNOQmiWjtX5YiRsiXaVHsCEfmy1F7ijnrTIIx0o89w3ZLBc9wjtDsJJZVIZNtk3jvprkmofbxsjqiKmlqD9ajmMupJzfZSJSaYY6DEuz6Pk2Ev2o0VHL1X9kFf2r6UIpBmfW02QtCYNdJH94JbdNy7+5dUopcvJpx/vwlHz79kG88uyaue168+Yh7j+6zOljSNGEawuZESW/ekA1qC8AqagEju7FngKdQfE1kKheGydNEA4Pa5FuS41S2OllcT/cOO+CKIRADqQRC8TRiPhGAMA0t2aE3drl28ddNrYEKQ+jL7wKRolNVsmrXr3X4dkbNybbjVg8N75gt5qTbzOXlK7zzrFar1yrZBw8e8v777/HPf/Gf8vjxE05PTslj4XS+4qBbmFeJrRVbe6+jeIL3mnCpHLllPq8eCbv3WCHtHXKizptiLcG6FneqpqzkXBSBdKUGE5m8LOymTv4cYjC+XTJKqW0Z+0Z9YScma9cEyVvRoG1Lm3cjChdTETjxk0tsRcSkaBLjvOA9e+9XfyalhPOeNO4OatA2Sxw3k2vphOiZp8nEoYmJm+2WlRNKcQyDrQM7SIYhTsTEyfq7MJG3QwlcvLrkW19/l27e8bVvfIM3H7zJD//wb2MxW1iLDPX8KHWd1mq6TMhIygM56Iwo5zzB6x9nXHJF1gopRiAy5MH2hqeUaK2Vvcm81MTwO6WgtaWjHkVepyBbUqNGjLZ+cp4UHfu8rQnZLOBEk/5+gNqSyLm2eQoxjmy3PYPx9rRlstfywBCSYjuwHsopT2qd3XuGHNVFfLvdkq+FPI6sz69Yr68tMc9UclPw0DTB2naR8WaNH0dzdbX2ir1AzoVYtGDKORP7ZGcANsG4UE3HdwnQDoHYt3ufbP73UA2wuT72eUlqGSDOGdq9U2Pl2n6TvddAOSBBPOOwZWPjMnzb4YpxWciE0NJ0DeSAXy3xSeXVvvU03muRYfVPQc+FCvmrlVJi02/JWR2UM9h+sQKz3hJX81Uj3yfb66/xpJyFj39HSLJtq7ItSQYjO493dkQWC17FyKaWzeUpGFsVXvY4FugBqwqXlvmsI1MN04wMt90yWv9WLHCMSce6eyc0LiCivXtxe9CdJSXTYe2UGS9FOSG51OAMbQj044D2/BtSLjSpWOI0alBPkXFiflVXxgoR1gX0+nz414KSQeIVSbp77y4/9eAnub6+IadC13b0/YC3BCKOmThG47BA2zUkcXrg4c2zQmE8PVSrsHbCVKZAqdVwfSOYFUL1RdnBzlrN7fnLVDSFMknINTnM5KLXJeZUtdOvPWovdEJh2FUm02TSicdCBcim/56OZ0ugFO2q1RITclAMNuq6lvv37nNtJkur1cGUZIgI9+8/4Pf93t/H5//ZL/Hut77FanHIsptTciFKwWdtZ1RJeIWjpvdfdKSDOEeMI7e3maZpzOVTvuOz13Ss2H1SAnVmHPOkeKsV7mvXyjyBqhlTXc4uF0qyNVTvg+bIuCzTIDzskNGJ3Tu4u3KFPIaUFF0Ibnc0GozNa4osMRcb9WixbS0OV3RNNKGhO14wbEfqHBlFGNTptSuKQmWD1X3jgKCxIxgUX1SVInhKUSsB7wrZVYWISrBL0feLZ7q33jecHJ/Sho62mfMj3/8ZPvn2x7Q6jYm4r8+327I/GDRY0gfa/klZKEXRGW9ye1+0HZtL1Gm55mRbCnivxY4aOrbTQakJdlTeQuWRGcooUtfWrhBoQmAiqUqVythbr/fj2/ZYTolI0n0RM2mMDH3UGOI07qW8EyHoWlT5lVbjelJOqIEuv92KKEz/VtVZAKFtkKBxlFJ0vlWJRJIe/mKptHPm+hsJMdMUENeQyjgN2ixVmFNgu+0Zh6jP64rGQyn4ttHCKu9QjTrNGWt1VM8cqZ/TCq3tZqDWQtlk/prwW+Pa2efxtUWuhUKKaromRh2gCCnpvUsxknLCB89sMd8hPCKIF65udGYPjVCCJTqNM8O9mpbpepBiCSI19pksviiqu0NBd6Wx3nBDMm1mWzGEdadm0r2ryOG/IwiKSntbcBGKohZNGwiNV+14rkzw2jMvJOoGEYplxzk7cqz6c8GXyoouOp7ee8I8MLMqNdZhS1FNsTbrWzabDYhwenLC4eGhJjDe4zy66cxBUj0cwJo3GuxRWRsTPJ5pfKA0hVLUWbJW0dWzhSbQsWtVaMtPIejR7LLbpp34AM4y8B1pajc3pUKFoW2592CJbxxDr0ZHbZip+RNKzNPqOBCzjnX3RYmVOedp4KE+ZyXp1Zul2bcSaH/zBapJppIm942DxLEXUKGIM8fQopS3lPHF5stEmQISe5toGkbmvvMAr7JufXILHrkmsUyJSP2tYvLQ/Qpn+gw1lmbt9Z+enrJer7m6umI+nzFfzAAdEHnv/j3O7pzxja9/nWBS2iB6YO/3aXfukHvPXwqSC/OusTWhZE6S04PW2RA+2UdI9Dkr0a8SEevhWL+uRGppW+3LZ6HZ8xIBa2EK5g4rVj7VbHP/6hqh246ZHSJSDzlbK5aA6f+b74MlgjXRleIIopBVysUIjm7yaynAcr6gaVrWbktKZSLYUjI31zfMZwslxqdkiKAmPE3QmSwiEK1giakgrtF1Z8MvvSinrN4HXyv8ksmis15ccORx5PY6cni4opt1qkDJUVEkMYi/oli2Tqd16cQM2thbc1idk23E/ZohamIyxQBbmykJIj27WWH13u+34OoT75KryhUD9n7PivmSp/Ve44dYkVeTvVIKOUWSU4QoFpBhRJzyxFRxqRX2ru242zuV9K0dub0mp1UI38FPE+1q+ODAwdXVFbPQ6FwxdiiMMwQip6RzaUphKJnshdw68lBRWysELIdMdm0riumdQ4r6lZSYlAhqn0EJ+KZUM1SvhjoJgeXhEbMw5+ntU8hup85xiqR77177/LULUIqiLimO9JsNrtHEsxLQU4okoJ3P8F1DaTTR0+WlCU8cNdnWlleE4pFY1DW4xpW9AkgoZtWfJl+ZxgmbXv1aaosS1HvGO4d3QhpUau67buKGSvFUry1s/39bgPjXPr6nE5TtZsNyMcN7hTbbrmG5mBOaQMqRHNNrVUqMo8l5zfhHhJL1T3JBOSgp4UqZsrySrSIoFQ0otK6jadQ4K+bM0fEB682G29tbgnekMbJJkaF3dF1L09Qb5pAQ1Awpmw/BXsemtjikOHyBEGqgjBTKZAxVEQQNRgZlUwNlIURNUEJQlUBKabepiyJ49XeradD+VFitXByNeBqD6JwIISg6FZoWsbk11ZJ5GAbLQKwdYQG2Tpid+BCqEbYjhykCOzuY7dO9Vs3VH5xg2L3OwQTMZrAxbnsVquy9tlCNrabntcO7ygX3DwkxXwXs4Hs9QdkdyKXknSV7PWSL2OEgiDSsVisb3LUhppGDg0NNDnGM48AnPv4JQlLEqPHaLhG9mYzfVm18x+GCBpcmeIKZNqUxUlzGN9+5vfflm7tBkGVKfOu1mqT2bUNJUWfQmCx2SlIctg5q0lEmjwaslYB5T+S6fl+7p7vrKsaVSDmZsk1bmvtgsIgDC4aSE6Qd0uOcYxxH5aSJ0LWBcah+IdmInjCbzaEUsjj2+VpqBaCITXDTKpwSmKoIq+hGVX45g3GceMQXGhx53PLGowe4LiCSzGujEvizyn1hj4et1SV1bdeAYIdySlUtVfSg6rf0/ZYYtTqv6gnE4PMilDIQY7ZZZXrtKlJWX1OX6g6JmNDdmnRllW87hPoSyk/Z7QX9vToDTBU06hDmrT1oawBVV6WEfR4jzloxWAehViWY4io7n5IKsu3cunfxI2dN2npJzJqW1iT/ToQkTCZ7mjyoSKLPyb6fJiM6JzJJcrF9FcfRshUtGlarOfNuxvnLc5UPOze55jprA2YnhMmOAaUFBE/xQpjPIBu51fhfE0JrMVIN/bSlpYWuUgGGYcClxGq5xDetEpTHgdAEQtsY/cArpcCuUS6ZEjPB7neKOv+nNA2tNDrEdIykrEiRJ+h9LupePubEnbM7LJqOzfUTYp/JooNKtSgoELTlDLpeGuetl1yLwX3ezutJ6b/p8T2doByuVszaFop6fsS4pR8zMenmmCzSUQvs0DTkHBjjyBhHtqOmyl48LkATHClViK4YNLoL3JroZOuRekoWggum2GlZzOd0XacyZ9BAmCND37OO0YKrxzlzuDSYWn8WtXw0cpECPg6adspqCZVnkqHaVvud9bNYS6dtymuVajUH03aB8XRKntCE6uOQs0LKY1/IY9LBh5Xv4Rytb6jtpKltIMrb6ZoWEd3cKVuQtM82jMPk+KhGYGZjbvJkbyx5J8HgfqDWjxakY6mkYKbqQezfnBPIhWSlaLIDRER2Bkqos6nhyvpvNjAywJQ87Ut8NRnK01spKAJUmfV6zcN0nujBx97a0W3pnWfmZ7Rtw+16zfn5OcvVkqZpGHPk8PSQuB7BJnG3osdjcgU/VVK71gelmHRbTa5wlaNhLQDv1XOjqkyaRsmXFZC1ykhiRiwZGDDZtVS+QAJ69b4JgdBEGudwJkdEpku5q4TFKq+iRoV7uIkmKa/BAd+ZbNVWRzVEs/zdqnZbw1kJl95aTjntJh8PQ89iPtNWZKOKKG3xOPq+Zz5rWK3mas2f1GsI6vrGpJG6j+pAPyc2XoDKISp7a1kbVNMBhRJwhcLJnWMjHhoi4MAXcAS9F3bdvA0TdJVEOpVBO+l93/c6z0jUW2U0U7mJFD3J+pnO7TzsFDJt20yJyiQkoLbC82uIZioFb+23nVRZp/5SDM0qmczO2TZ4p74YzukE58nErKI1ypWJe/d7Hw2ZOrgWC6Y9am0SSiVasqtO6vuNmTa0rGYrZj5ysjrk5fWGPEb19nFQW/7A1CZ3k4y8lj3G8So1EdX3k1OC0kzF1ny+YLVYsr7ZTGh8LgUJ2paBgqv8C9kltrebLeSthrTG9qEJJ3LZ2ckXoDiPBPV50d0jSPLMZnN9e94bb07tAfzCK3I+RHK8nawrCoXgA8dHR3QEzl+8pE+DJv5dYdHMJ7sDSsJLnUKur9p4ZYvM53PmzZzgGyKJIg5X2eEWq51r1N/EEvCUCzmPu6LOrnFd79/t43s6QVkdLDg5PsaLgsBOFJYaU1LpW8xsciZJxHm18dZdqnbgUtsQdggr4c8UN9ipZhl6tqm+qRhkiF50lVqpciSnovNTZjNbnNoj1N9N9L0Oh1LDG509Ifb7IXjLpO1/HgK6EMQ7QqOQoPZRzdEyj7apMmkK1BpAtNrdoR+ITZUUMYOjShYsjDFwcT6wmM9ZrVb0SSdmhhCqCQa5wJCTLsyiCVGFefVRr5/CuVP2XArt3oTRVLRnipGGE0IsES8aAIrb9abdNIHXNr7b9/uQqdJJSTX52VChrOQII3pW+FrzPw2advikahxklZn7dkLqt+8kURMlkQmqr+smlwqx27WYXqtMG9J5x2q1ZEyJ6+trQhMoKfPs2VMaCbukSTQJC8AomVzqCPp63AviFF2IQJ0bM8GoIjRmRqiJSsQFVcEEO3yqQqqUArlYDa9y42h+L8vlUmWJLuPFTZPDa19ZpzXoWkg2Cr5Y0rqX15k0dRekJv6A7IUvq6R3ypb6eWQK3vrZCt/RIrQqGYqqZFrlXQzDBh8aKMKrFz1HByvmy5nyqWJmHNUFtnJdVIq+W38ibu911XOpCEij3Ks2BDuQVZbpivryBPE6AiErD6KEajg2bQNd/2UnCU7Wv9ePnu3eVIXR3jiAYq7BJWsinpU3YH3YHaHV4Po+aewax8h229P4MMnCp4ymVvAVxaFYkr8DBWsc0Q6em3gUoNLdYOTa1/eMJfrfZcUs09915dS1ll9bK5UM7INntuoI3vMBmT6lSZEp2eGK17Z9TYgxXmKq6jB7Tu1FqDPvhESp3L9pWppWExQnQl8Sw/qGPFP5eMiecdD94tCZSYqQGUpiLbGU1MkWTIUj1f5AzBOLCU2SivzWScNF1/dquVLRQYxs+h7vHLOuZd7NlTsY1agNZNoiToTDw0OWdGzO1RcoiiZ8ofG4rATeJGaq5wMQEHFEXxDbH96I8dP6tSSuokTOOabRCU6QrGdjRQnrtdai9Ds5gv+qx/d0gqKmNAmb76VSPN/gSqBpW5PgFVVYFKvuixoG6XwErTAQSzS8DkXztQrYUxAU6327YnMNCgSpc3cMiQhxQi0qmXGSfDmhmzW0nbLIKZhFvS7uOI4aeLIGLe+cEd0cwTXTgVklr5r9B+rgQj0ky5S8OO+mgYm1uKK2OizpqDOEnPOK/sw62q5l3BZ8KCwWC4UgFb+xwwNri+RJeZCSJoaOnUROB9hhs4uYgn7joGnbqerdnwYKGDhpra06z6Leg2JNKHGqqKsJjD28iB3uylFJudg4eal5qF6NCXpWq+mYTMtfCXlTBbV/jipUmWVfzlnn22jVVwGaydtA9j6bWPUWE1e3Nzx99hTnHFc31zx44yHbm40aJEkxhYsmoy4rgS9Z0FHWvSPlURNFS4ymw8/edG0peG/3zqTsFYGrCE+2D1jZHpth4PLlOa0PLGczktncD3GkLd2kgKkJ/ARPW69SYOcvY6ebODHUrxjKZoT0b2v1VHv+utYnubJz9gHF2q9GKHUO8epzFCvUHTxNowlxaK11WACXWR0uVOViSjfntfKkMLm3TkmbQdGZHRkZ0cGSvvHKWfHqZNx1gcabGi1CyqNJsIVN7Hl6+RzvGxRA31NOOCW+l7w37XWag1eT76z3bVqMth/zTtVRcpmI5rp3DO2xvaKeI/qNbd4yDMNESN07caaXzWgiVhMZZ38Ke79S6p4QRaBxtndfv6e/aZJvCkukHqQ71BKLHZXzMqm+jPwdQiA06n/VNA3LdsY8NBw0HX1KtK360VTkZxf87LnZXTMfdvciVSP/2to1ZLbyW3TbiU1HVuWRZE3ugxPGLNpaHdSCwXlVE0pUFMN7r747Y6Q3l8kCk/cKlAkJ9z5MHLJaDDkXKKIWiTFGxu1Iu5wjCNttb0MqDS2yYjGjo1CU52jq1iymuFF/FFJBkiKFOtG+NXGHFvze7yTF9X/1WmYUFa3phitmQorygnb8vLKrM+E7bBz+dY/v6QRFjdr0sELQnqdgB2pB53QUWml0kzpo/WKywndisKklBjkmxjKSxqh8gNBMk3NzrVAF6hyUif8wHbK7vn6d2jtJqgrTQDJlzpfJ0XUKNKUQh0S/HRjjSIwbU7U4mjbQta3a5ZusumSZMv6Sd660OaskrsKY+4/XK0Knmy5mutmMWdfhRIjbns3NmqP5in0hUPKCCqJ2THWRoMqTmHT6asVVMVa3RTMloo40dcJpUdSjJlGVzKnybLeniql/zCXUuDtl8hnQz+eskhVhUr5IkCkYpTGp+iKovp8k032sO6dW+VKzk73rtasNi7aBciaP1bvBfqZef/PlqAGxEpNT0eFg7733Hv/4H/9j3nn7bYZxAO8YSmRrhLdUErebW2IuLOeNcayYksHaRsnZyH1lJyXev9vK6yk7BKIUBjPJqu+3AATlWVy8esWz5y84OT7i5OSYWHRWCkOmBGxkhK7ZyQa/aCKV9nwOpFROEFSzvMpRKabYqCMG/lVOzWX/ULFgiCUskguiFlAE0eU2pkTTtGxMeeadWGKk3I1CYTafkWKmKW5C3Yrt02I6yWoWmGxtBalzuZTf4b2z5MRBSdzcXvLhy0vuPbrPncURm37Lerjl8ePHJBFoPL/yhV/h/t37vPXwHQ4Xqwm4wDvEqVKoIkBTsLAEZZK/W4SvppK5qGW9WHKS6yFfauFWr2Q2wndNVDNDTHvrpOIguxaik9oOrTWxsz39Ohk8S55i1zCMFlNqgZKnm6ivv+M6bbYbdmNKdkjVZCi4E13qQdcowbZ+/qbxk99RN2txMdM5z7AZWW839FHfC2ImnpO02gifbUtjJp+5FHLfw94anGKOXfg0qiIsNEGDS9K16J3+/na7naT5JRvK7urco0KYeZZHc+Z+ycunLylj5bwJhaifpfGUMaqfTmisbcukqtm/V/XexpgYhl59drIa+mWpMd+RJJIlkBza/nberklSNMS4m2TBGV/T+2h+RDqeRT0sCyJZ99RegJF6rWBqT4nItJ/zNEOu8tV0NU3u09/F43s6QfFeBzrtDl1DBBB806IVeiZk7RfHMTKMPeMYdZ2laAY8nhB2ffwys4mYeJNwZfIwqjVz3+OMd+JEfVFECjkV4lhwuTC2ICnZYaeVSiUViW3oqYJAq2IN2tB2jrZrpgMnJrWpH4aR7a1uBGqv1lejnd01cJV5az83DfFDX1f77aa/l4JkU/k4j4gnZ+hmM9qm0U2TjeNgJLZq/ZCTUIpN5RTBh137wVUPmKmS0YCpHmIWEK1aHst+1Vwf8lqSgh2yTjzOqz4olzpdVxd87XGnnOi3PUMauVmvub655vDwiHGM3G42nJyc4JzjeHmArwZ49T0ZR0gMfh1GNXGTXFGKHcGrIgLOUJdgh3OGiZ+wk8Wa0Zg4fOOZu4btxTUfjt/EhcDR6oiUEuvrNZubLdtx4B/8b/+Ax08e8wd/4sd5cP+BBsfiJn5G/ZNthIDIXp/eApkzAmtFoSo/Mo4jm80G37YUKTx98oKbi2uCb3j44AHdvCETrWvUkIuQxsI2j8RQcE7l5gIE51WJIMaTskptP1Wq7UfJeWrReFH1Tcle1RTTYabBe0rs9w4uXcSa0I5jxqXE01fPuLm6wjWB+48est5GmuBpnEdyVGJuzuogGhqKL0gnhmZpwpOL+WKMIzkm2uAJXdBDTNS4T+F3RUt1eJ5yQb76L77C//T3/u/89B/7I/zs7/9xLl5esbm55fp6jXeB5y/Oubw+Z5Hn+IeONNokc0BGfe3MLlFTdA7qLJ2KdtmlUD+N6hpdv1kqWXfaPnbw6xdlmuxZuLq8ou83miiKVfBGBKYUGu8JzrNNA3WIKuy33ZjiVima+l3f3HB+fs7h4REhqOw9p0zXddPPe7erdLq2Q0TNwibK7lT01FikfAgX6tBTjZ3Bh4ns672SMb33NC6QbWp727XgHSXFqZARK4CatqFtWktOMsNma5OUd/wfvWpavHjRdmgcBrabLe1ixqpdsL66IZiTc4rZEuAWKZ7tdrDhip5CpG1b5ssFC5lx3QSGOCpPryreUiF4R0xiiqmCmONrTtX4TPdMEb2fs9lMCb1Fpfq+8Tjxryf7RT+z32+9FCg57wwtDT2eEnTrCtRWd0Wls8uELiA9up8qfQAIQdufoXUEaSnOEYsVyRMfyRYmTG7i383jezpBAa0mi91oqSknGWEvSzNocNrEtU0ihVjhJ302qwLV38SLwy1aq6CU59H3PXFrVs2lGOFuINm8H4liCYyzfhuG6ihxVLxTCDwDuZL/mIxuKiJS2xKNNAQfmM8Xmp0nQ1rGyHYcGZIysKUwoUl18+rz6WanFEpNWPagddAN4cWmuOqpg0gm5ai9ZbtCQTXTCo/ae7b0Y6p0ndRJs68bhIkt9IoRTw6GWEiYqhaYWgclkyfkZDT7ZUAcU/NKHE2jXBrlqBR67+n7njKOnF+vefLykvliiRPHi/cfc35xwdnpEXfO7rBaHuwFdqeHkvPEtKsKW+Ne4C14OqDa41P9Woyv4EH8rqc8fUqxcQgUHj14xKc+9Wk2mzUvXr7k8uKKeauOyJcXFww5sn51ye2Tl5zOjpn7uSZk9nkVLdQkaTQo2xmXKZviQxxGVjZY16ryYhwG5zX5fvXqFU/f/4Cjg0M+9tZDRdSGUYl0viCt8gvIlXBq1VJW2Hjn0VLlJ/Vg3b+fhlJJmqYn12pbgoPs9R6b/iClPM1AqW6Wux2v5ntZwI2JEgvXF1e8ePWK7e2W49Mzcwp1tCXStQ1D37NYzJk1zooa5fukWBVadlCjMlnvoO3anRGbLWJXdi7MWZSse/XhOf46Ey4SN9cbbm43bLYDn/jYxxn6yEfvPyNIy6OHb3K0OtTkK+cJBZNcFTH+teS3mKmM807vIzuElmLEymKtl2xJDpqsZ7FhoM5RnMN53Re3tze8/+4HbG5uFWWRKh1OFBweVZwIQKdD/8oYYYxaXRRFwXYbRpPgWTfn+PhsaoWJZJrW0Oc9JNJypEl1WdEXbWUo0qaHo7XO65wv+1vIzLqW4Budzu00ifFdo4fnZAaXgETOcWpDl1In3O+msw/joEmptckRqRxZkDK13hsXCCIkCsvlgsP5Af3tRvldKZmBne6P4IShj9aW1fcBiqriNcmQnNX9VuqZteNYabtu1/ISr+eRs2tUrBCZNcqvCd6RzJgv1snIhloLTnkvIoaGFSWyCtresWRlJ5jYFc9V2diGQOx7bhgoAdp5gyRMzVejtyXMjXE8K0pasKK/tvJ3HKfv9vE9nqC83s/eVZaa0e4OyCop1ErXNS25FNrWGwRli7OY0VjZ8QlAp1M6pyTH2axD2tmkNshAjlHNssqt9XcHUrRkyA6EqpjxqaIeqmappLySq0JEIdtKcJ0eRRAXpuDetZkuZ2IcGeNgvi9aLQz9SE699j2DMvi9EfomaRhMgU6zeTNYs0p7jEqU83vtjppE2EXVvyjqOGqky1oF7ipogwVlHyURg6Frr1wTSy0Ga4WI9UKVNCrBesu7p5iC3n6+JaImU6vVijtnZ9w7vcPN9S2bzZbLiwtKaGiPHbPFjPXtLcvFgrt37uJ9IE/qlF01Xwl5wIReiBPloljBlUW5TaVo0quVDZMPQkFNtjKa1xyenfC53/bDnF9ecPVLn+fFyxccHhzQtC3L5ZLx5orZYsHJ2ZmaNtXkEUt0DZfRwkTbdN57nTUSPG1pmfrvaJJaJo6FomHX19c8f/KMedPx2U9/P7PFnPl8QZ0nlcl4wqT62n/sLKshVtKyU8G6yi3ddE/0vYcpgQreTfdMr6sjT2MpdgP6XNHqsBRFZLJhKs74Rw5tRZyeHHG0WnDv5TklFS6fPaMpZ7zxxkPmMx3uN/aes7t3WK6WemNqchczdYx95ZNp5EjTe9xP5V1mKigKAUfg7r17/OAP/CAff/QxUzcJY47M5geAx/nAw0d3eefjH8cHbzFG7NMI4lXSqdvLEATbi3W7uGnf1RaZMkIqN6TeV6u+qBw0J45I4fb2ltvbG3LM3D09I94MfOge6xKpSp1S1IzPF2g9sztHCMLt+Q1cbchj2gfFFCsrmpi3bWuu2Hp/QvATL0/Xi0xfC9p2qzB/nadWkzPvvZK2LRfXZEa0R2DObcH8b3wIjHnk5ctnvLx8aWMOtubWWxegbURDBOr9UzfZXRFbC0IpWjxpwbhb9xWhnM9aDlYrbhfXNKFls93Qjz15LDr6onFMQ101aJBipL+9RbxllOZJosmxNXtEAE9BifiVi1fjTn3PIqaALPpZQtcxWOx3ovG6oOeKF2iCUFJkoOAWwqqZIU7pC+NmPc3vml5uqJLwNLWCX756RYzjlFTHoupCV5VaVpjU9SFOpqSazIQW1aK0fPcdnu/tBMV5N216sOwT7evWr6MRmnZ+UhakRe22XR1jPW2+PZzUAqYSQuu8CYdrBF/CpCIpjafNDWkYmHUN8/liOvC1vaGVz3q9YdhudRFaO6JOQEaUFBtMWeNdbXPUPq9tIqqDqqMl0TRCl3V8dw3uOnwwEa0PPAwDpe+1heG9DjyzxZVIRCKhbchBg5Dz+ieXSCnVoXaf6Li/0Sst67X4BdQx49D4iZ5K5UKIuEmCR93MWh9DEfKo9YcmIeq5IgjibZEbRL0/RXkir1qF7JzjwDnmC53+O45vcnF+weMnzwiN+uZcX99wfnXJnbt3OT461oDpvE5PdsnuoUHy1lIqlpTVZrk6GZcpIamDu1QGq+he9k75HLmAFy6vr/nyV77C1dUFP/77fj8XL85Z396SS+Hw8IjPfu6zmlB5p+op2VVVVvpMV1z2TtOCJkgehYOTyUgdTuFq4Pz8nFeXF9x5cI+jwyNi31tCXmibhgadGL0/KsHZ7wqY5NWBeChKDHfGhykFGquknYC4TGMHlhevrSq09ak9/DozpxCCVr8h7GaQ5GLXDCbIWKvqKlnMSIkcHS44WC3Z3Gx5dfGSF88e884nHrI8nCHSMZ+3psJR0mHwnpALxTm8D3iniigQdvOsdyta23j7SI6AE+68fY/f9eM/xhsfe4vtuGF7u+Xy5QVvfuKMfsjMlgtWh4e0XYNgM74ALIkT9ukPVVWYLd5r/Kjk7VKA7PDU363rk0mJJvbdlArrzS3rzS0hNJwcn7GYL9lutrx8emGvlSfFmNoaJGLxzOYLXNuShohH9LrUpLKug2LFiXHpmhAM3dnncigBvwk1PqmqRdDY7YL66ihqoqRQXwtNZ7waW3uT03FKZJdIKfKNb3yDf/nlX6Upwmw+o9nohPphvbYkztUqU4sGpzyqbBLdmqxL1b/XQ6CUvXtS/40pgalct7ZrSCURfCDnRNd2hODYMOzOJHSdt6FDRIdTKqJqnKyiyVAJ1CmhugbNp6WS0Z2viPxuEKQAE1mfTONbZt6BcxOp23nH9eU1lEJ0Bd/qkR/jyDDE19rF+raqAmmHROn7kF1bx/y11IvLBGQF9uuYYFxDXd+7naSozr8jJNnGBxofJlZwcftBXB8h74y4ahCuq23q41qvoh7AVNt4YfJbKKXQNEy/RwGxw0eHJCUWqxkiwqyb6cTTqjzQWMbh0UqNcrKaxumGLoxjMq+QgUydn1EMBq1BWd+j039U4x2cjSNXIlIuWW3GRXT6pwvq8FeSSnpTNEncaNLnyMtXL1TmO+t49vwpQz9w7/Qud05OCWZ6N8F4UhdamWY3FF9Tpn3LbE1XGueUD2QM/Cqhq4/Kmdjvbwc7GFP1hSj6dR0+5cxvos6SEXn9OSdo1JIf55VL5MQx7zoWqyV37t3l6vKK58+fK4dCPE8/esKzp0+5e+8up6endE2nH27vvU3vtRhHoqJuorbObk/iIMXMrUqZXBmntldy5CFy/uIFaYgcrg548eQ57733Hnfu3qVbzhXCDgrt9psNvmlou9au8WRzN3mL1DZaqe0UNPj6up4KbDYbLl9dkEvhnTffYjafWwLQWECKxJwITUNjB9H+hFP2v/aAoWWC4AmI7bNYEsEk8WrJna321zVaVW7JgRPzgHACXmiCU/fmYNC+F4JYy2LyJME8dqqqTdur3WzG6dkhb3/8IbfrNc+fP+Xm6pp7D+/oOIlpfyuiNfMNpZj6DUGnyKtdYK4Rd+JryWst0lwcY8xsc8/V+ppXlxdstmvOX15we3HLr33l64wps+63DONWJeVRyBJrTj7ds9cLJItHLmt8kYou1r3CtMbszhuq5ycb+X7bs9msCc5zfHzCYrFQvEZ0UGrTzoFg7yGRq6sratq1vb7FDYO+RJ+mBNFScy0UXNH37TJd1xhCbb4dxnEIQeWqOoE80zYtjqJEe1f5JSZ5tQQGytS+UV8UPx22fRwpJXO97bm8POfJ4w/4xNtv8Dt+8Ef56hd/nW89e0l/uyVnTQomVpxBnbVg1eIpGeFTY0r+NuKmz3VaryUGxTgxYrHIun9OIHghZa/FZhdo25Y4RkANAeOY2NxsCCES0wg+4VV2hbiKOHl1mba1kcTr8KA9DG9KJLQnqferRER09lVoHNntq7syYxrJw3ZKZKu/j5WXWAZoCZMVeLb0Q6PtJU2PzdfK9k5Fj6f3ZonUPuS460Tsr5/9r//Nj99ygvILv/AL/Gf/2X/G5z//eR4/fszf/tt/m3//3//3X3tTf/Wv/lX+m//mv+H8/Jwf+7Ef47/6r/4rPve5z00/0/c9f+Ev/AX+x//xf2Sz2fDTP/3T/Nf/9X/Nm2+++Vt6L86pYV3Yk5rsdSMQgRg1ccmozLNG9Aqz7hQ41bTHpKoiQDIClD23/Z2tsktFR117yyYlqJuga4QmeOpwvEoU6ozHotSAOAV70NdONkV5jMqMKRaNUk6mca/+BFr1BR9M/maHUBYdQmZTkL3oBvBFIX4nDW3TaZVfMsM4IqIs9Gcvn/HFz3+Rd7/5LseLE370R36QT336E/j7J8wWS2OWa4WXbYNUAZmu8TKxzTXw2nWxlpG4KnPL9t/qaAhWdDlHnaSaBZrGlBM2qC/tI1t551dSp1azvxFEg7ETB74h+GbvHgpt13L//j3Ozk5ZrzdcXFwh5RU362sef/AhV5cXHJ+ecffsDrOZBY1sRF8bQ19nbdRA4A1ByCI2g0INm6CQp6tUW1uZNx894pNvvcNXv/YbOBG6ruHevXucnBwRxRLnlJkv5qSc2Q4D69tbZvPZxC+qAtDdQbf7W2kn5hCb4fmTp/S3t9y5e4ejo6Op7BEEF/Rg8d6zvl3TdR0hNNPnhoJSH2wImVTujV5RVxsNpRqz2fgAS+LFDtvpPdbkSeyeezVJbLwN/xTbP95+zimcHNye0sMKCue9JT6RrtO+ugBHR4ccrpZ88MEHPP3wOVfna+7eu8tytQAyEhzdQi3Dt9sBiZWkWeffGHqBAUlFkQxVasDQR25vN5y/fEEatwz9LUVgdXzE0b07ZNcQY+bJR094cPcOwWkrqzhvGM2O+ybidnJ7e71cqpFa5THZ196KMQTJXjlapZD6ke1mQ8mF0DYcnxwxm881RhQdAleyoll3Tk6Z+Y7NmElGdi7VfTRD6iNE63fGYvNk9tAkK0CKQNM1nJ6eKgrs9f6O42AyYE2om0bl4bNuRk6F69truqbBeUfXBhqbgZSzDhxt2x0RtmQYx8h63dNvtyrB9Y6zsxPefPMB8/mMg3ZFG1pCUa5Ut5wxa+f025GdJF+zOx2hYK20ulorCrH3OQsqsQ0h0IUGLx2FQrCp6OK9SpMFQtuSXcY3ypvpuoauazQlF70O87YlknDBKToWNdZ7r6hwSsU4NDZE0swZKxcLQ27F1kNxmGp1x+dSs8G9QaBi68SStKryqijkLvH9zgRCt72bzqBpfwsWfy2a7fkp7Z+l+3/vyN8JJ34ySPxuHr/lBOX29pbf9tt+G3/yT/5J/sP/8D/8jn//63/9r/Of/+f/OT/3cz/Hpz/9af7j//g/5md+5mf49V//dQ4ODgD4s3/2z/J3/s7f4W/9rb/F2dkZf/7P/3n+2B/7Y3z+85+fhtd9d48yQY/21S6Jk5rgKexQobkMk1rOsQu23mnCWvuBekEri75azqdpGinFRs7nRKoZ/jDqwMDQ0HiFudSPRKYpkbkE44tUf4IMWdn8IQRKyXTeGTlKF100r4Yqq43VBTMPpCFpL10wNEVbOjFFVqsVHkdMOgPE+cYkZBlXNMFZLmb44Hj4xh2Olwd85Uu/znAVuXN4Siie85fnrGIitB0uNASTWIr1uNU4TsFxZ4TaiTTr9HhW+FavY8zRfGTKRCItBUhpN8hRVz/Z5cmnQMru7u7+sx6IVb1Sv21JjaluxNAn0N8BUSlgE1gdHbBcrTg5PeL84oJXL1+yuVnz4fX7XLx6xb2H97lzeneqwCfaa5G9jVj/WyjqLWqeNNpjjzFa8on9yZyenvAjP/qjPH35jPcff8jN7TXvLN7GeRivNqy6GSdvvo2EQINyULZDz3q9ZtZ1tG1H5UxNx77UI1XhexFhu93y5IOPmHUdb739Fm2ryoqJXG5IiXIHhNlsRgFVqbmdTN2n3QC0ZImKp67viu2WnZJIdoqnabeW3WyY6q6gTsIGVngdp1BnRFGUjC2iay7sDULUQtjQrKyE5tlMA6DyutQD4vj0mDN/xu3tmvfefY+DwwPefuOhtiQYSVlRyFSKuXMmM9SqZPS9lkXONo8qMW57+u3A3Auf/fT3sR0il+uNqgdD4BMf/zjnL1+xeeshP/LDn8OHQG4aStFCKUZtU1QSZ5ba0CiWsHuyy5PiR5Fasfa1/mSMmavLS7ZbTUwODw5ZHizoFrMJkaL4KVlP48B2vSH2N8wDJClsZTessap5ctz5MVXT//re1ACu7qHE2Z1T7pydGSqkJNCm6/De0c4sQfFCjpn5XF18+37NzOzfF4uOrtO2ak46FmA2Uxv3HBPbzchQlATezWaqDBJF2ppGk9gxjUR1TqSPIy4Is8Wcq6srXDEDMSsU9yv6Sngu0zkimjwUc3TuZpPqJ1iLqYjQj4PxryKIMJ/PaYoOZhjHwQi+yp+KBcY8krbJ1mUB73CuNYJ00cnOaTvxampiXuPc1FYzdKXgwO18mHSEh0Mk4MT4l4ZYV2n11AZ3mhrnXImre+W3ZstWSO6SjCneicYbKo5m52RFYUran/kGlRDujSaQc11n/we2eH72Z3+Wn/3Zn/1N/62Uwn/5X/6X/OW//Jf5D/6D/wCA/+6/+++4f/8+/8P/8D/wp//0n+by8pL/9r/9b/nv//v/nj/0h/4QAH/zb/5N3nrrLf7+3//7/JE/8ke++zezK56tkv22zKzCYarN1YPRjGvMfpHdkCc/BetaSYHHmbukq0TEXA3DtIIgyU7Z4FvdpN5pcmIwpRNwRpByQPFqtBR8o06dKUPDlPgAr1Xds6CZq83HnPrYzqvxjw4Ni2y2W+KoEr8UR8btmgEB0erUe532XJ1ki8F9oXE07ZLPfu4H+P7v/xSMXqsBgaEkUyolCtqK6oeRiC58hzBsB7q2pZvNLITt2g1KPMw7CwVb0AXN+tU2f0cI1DulGnpJZaoo6nWvP1FKMf6b222qvVsvWaF5HXZlmwhnYkKbnmqKKIfDtw137t7hzt07XF5e8uLFC9bbNV//2tf5pvsmDx8+5M6dM2bdzNaWmw7gYg6R+jI2d8WQIx+EplXreYWYsxo9AUdnxxwcrJjNWq6k8PjJE+7eu8tqteL47EhJjgVDnXRCcmgCm82WMY60TQvs7KmtmAEpDKO2kPrbNY8ePmKxXE6JX0ErSWeE1XrhxKktPmiS2zSNJhDeZO2yM48KQSvfrm3pWh2ol0qeDt79Axh25NI6JkFEW3+tDzSNInCNE1qndulNUBWdd16rQkMODUCjDqnL5jtUE90xGT8G/f5m2HJ8fML9xZIHd+9weX7OR++9x907ZxwcLihZKDEbnUgTorwng3S5KhKEUgZ8djqU0gfc3OOWBywPTxjGxMXVmufPLlhf3tI2nqPjA76veYf7D+9omytqghqTuvsOg/od5bIjVk77EpnMELMVRVU6nEtifXvDdrPFIxwvV/S3G1onpsaD0KqraRnh5uqKftOz2W5pQ8snP/E2Vy9f8qUvfpmIYxT7pWK7r9TKuCbkTPwl/aPxqGkDv+23/xDzNlCKWIGCzSmD1guhVYK+FOUWhQYO04LFYgEizJYt3czI/6g6LKdsFCtH6FpmzhPLFskJF3Qvbfotm6GQSkGicLm5ndpJTTPj4OiQZ8+e6dpwFX01BKJ6yxgnaR/5q62uru04WK1wztHHka0hx/m8n2TnmuDoc6k1gaLKHiWCTu7E7BRvhYJvtPVVkk60TwrNkvvIUCfIN1YIVhpNVbLZ/ZciVnR7xNkk9hSJOe+KJzHEyJRv3ojMIuh4hmyqTGs3VJTOhfr9bGvR0G8Rm7Ksw3kLGHEdJmjA0MZU8nQGlFyMt7a7xt/t498qB+Wb3/wmT5484Q//4T88fa/rOv7gH/yD/OIv/iJ/+k//aT7/+c8zjuNrP/Po0SN+8Ad/kF/8xV/8TROUvu/p+376+urqCjBZratMYmy6u23yjKpLCpMHhYhM5EWhSsqk1vyTKVKR3ZyGnG14W1XA7BkqVdlsJQe2Zgg0a9qp2tPXNsZ+3eKm9HDO6XwdLOO0Hn7lNlSiR1W55Jwo+Mn6Wczpry2ZlFuWyxnJuCWlqPtnNM6LS9U/IzGOWzWIQh0Ec9Sespicj0ZJqBn1uQiNwZoUFvpuGdNgE1ozjZgaKo1UkzYXauVWM3O7Ndbueq2KYXfA1Hvpqi10KZTiyG6Xb9aefUXI6qwaKpJWq0Fr05kWyBITSyiMOFrEWnu5TD3n09NTjo6P2azXPHnyhCcfPeabv/F1nj19ytnZGaenJ3TdzNxC2X0OsXtsvjZYgBIpeJP1NQVInkxhO6xpnOOz3/8DDOsNMY4cHx8TunZqd/mobaPiHCQlAIeDA/p+y2a9JZfCcrlE5ztpwnRzc8uLp89pm8Cbb73NwtpE9T4YZLKDHnPR1qAIySTL/TCQUzLkyO2gZFt3OjHWvDRsLdc5J+MY92zb7Z7Ul5OMNwOtpmlYdh3zeUPwQtv412T31ftCRFGOjEyzT3J9TktoOummgqAm3iLCbKbzsRqUE7W6d8YwrLi+vubViy3L5Yq2ndHMdA5UTNEQS8PKKrneDttQAiUmmtwRc2Y7ZlI/UoLj8PCQOAjztsPNPXlMNLOGw+OFBvnRhiGOkRQzwzAypmRE4TTFlQn+rShUUdJm3+vASXLhcLni7vExN1dXDJsNHUI7a8hly83lWgfO5UQcMoeHh9w5O2Q2e0DTtHRNi/eFx8/eJ724roFzeukaU6dDe9qnu8NcBD75iXf47Gc+zaxrAId3DVGMs2NIRI4JJ0YoVWdBUkk6p8g5xpRIm0gIgfnMBr1KnHhJeTMwbLasN2tu11s2gxZJkPTAl4AvQmg62lnHyEjbdRyfnXD47JCri0vGzGQMuBc4NO5/m0FbjcXNbAbeTbyXacaWXaSqtqpIn1lba1ubWg9py2ZCI3a3lWStYj2P9Pq2XTNNVi9R1/loqHltizqTj4s9oSsV4bI4IzqepNgh6OxMLGT1sLJ5QTUu1XtcUWixZGNyGsaQ+erTU1uPtcFfZJqxJEV2Ski9oPq5a+xhV7h+t49/qwnKkydPALh///5r379//z7vvvvu9DNt23JycvIdP1N//9sf/8l/8p/wV//qX/1N/qVMmaWz6tXXz25mM6XCkkZ2qtXjZLe719OeZFB7PbWUrR9XKcpeB6btHU0TvDl6hc9FbMKl9dn1Ziat0pzNPDEPAqkJVik7Tn4pU9av+0lskQGSEbMrmWxdis03cGr9HUpDQWhMliYCkvLUIhpjtDZRomStylLSilcfllC5aghXbAN4W7gF71tKowdpOTDvDVvYOatpXc6JcYymurD5P4360VSIUYyzgVVldTNqkFRvhlo1V7fCKvethMsqf6sXbCfbM9qeOE1GrA2j5M5dq8GJunJ6G85VSiF4z9HhIU0IHB8ccnNzw4uXL/jm177FN+VdTu+c8eDB3altCZhPhj6rs0QNqzOSAXfa9tP35CkT+382m3F2547C4BYCKBnnBYcNxnPF2lbQth3BB7bbDbe31yxXS0QKL1+8Yn274eHdBxwcH+z8UOqOMfQvFbvHZYodryWNTdMQ+3EynKvXtYj6wGhbwBHTwHo7mCOwKc4Sdojt2j9apel6DEEJlE0TCDPBzVWVEy2R3263xKEmPzKZKJayc9KFOrNIW2ZD3+ODKuFAJy/HOBiBs9hAO8HlzGze0c1aNkPP7bbnxdUlvmtYHa4sgchTYTPJipPJZUWIJdGPauS33Yxs+4GcIRDomobDgwO+/CtfZrPd8PGPvaXIgfP4trFArxXwOI6qlDDPE3WvNYkxBR/00Li9ueXi4gonmQf3j5nP5wjqHDpuBy5eXfCtb77HxcsLfQ4ii+Wco4M5qweHLFcHdLO57p0CPgTe+f43+ak/+gf4hb/zT3ny6iW+BPpQwNrWYsWChTiLsTsk4uGbd/jpn/wD3D05IueglbT3+BLVMyd55Wc0gaY175GoU3qHqB5OyRUYbQhf6xBR8uh2u9FpzePI7aYnZSFGyMXT96MeiBoISIyEAv2oRprbYUO+SoQcOL1/xpB64vVo8aUyf7D4oG7Xk4Gmrd+mbZkvZ9pmdwLicVnjjbYjTS4u9eCwtT3tL13HJSrXL6fqum1zl8yBV2O4ozo9+ww+1FicJqSSUp2jsxLZ0WvWhjBNhp4IxWgrpjgVYKQUrdTMFHReXKUvlFJrFpkQkUIVPZhisdRWk/oRadioMukyLQ43ycON8F52nBSxGFKSFj9VvvzdPP4PUfF8u5KmlO9U13z741/3M3/pL/0l/tyf+3PT11dXV7z11lt6iaq5kS3AmhWKi0z+J7YAFR6xxWQtAiHbhd1lqbkwEWjFoG2VXmWrqMQqrKlvoUSyoL+LA+/swCXZz9bfqwoM5UHkPGoFu5dVllJIFRAokLPYJ7QZJDYR2LnqEVHUiyMnPcCseqGYxLdYy8iylaZtcMnehfNmSFWmLDkb2z0nJU3EcVS4ec8krPIHEIV2XfVosaSm8jJSisQhMgwjQz8S0+6+6O95JY5RD7HXUr+JP6JeMrUyqC2qShhkInPqptod8JGdm2qx6ywl75X09VoVmJApu95Zk6Hj40Pu3D3j0aNHPH/+iidPn/L0g6d89MEHvPHWGzx4cJ/5fGatHvvdGtv3XkMPfiV7KlcjApnQOFzbUF0cC8pkKTaWXaokVdS1NWfzInCOrgncbje8fPmCi4uXHB8c8Yl33qSZz3chRHZ1Un1Pbu+9adRVPhZJA1TjA3mmyIWncrIs0Z44PnvKh2JIimB7TqfcNq0lpBZInRN0vEkhjgPX64FNr4hWHao5jGmSmIqooid4b0mmoY3FXgdNULbbDcU55nNNgLyD7bClm80YUtQg3AYtdEE9hVrPrOsYvedrX/s6FzeXPHzjIQ/uPNBrXgBDU3LJiqwA45jox8Q4RMZRDxPnnHLP2oBzhR9++/t4eX1JHNUjJzghOKEJyssQIKWGcVS4XERbP6WKm52w3m54+eIlJSYePDyjbVrEpLvihM3tlu16zbDZsGw8999+S704SEjrcfNAN+u4XV8zxgHfOrquY7Vc4Hzg9/y+38Wdcsjf/X/8PV69uOJlUDfmIo46VV3XS71mDkrm7M4pP/MzP8GnP/V9CMJ2G3n85CP6MbI6nnG4OmQe5hoPPIw5Qcr0/cB2HLlZb0moiZwecY7LeEMcRkpKpBypN1qCEpmjiQug2vArgkcRRtSWM4RAkwOztqO4wvHZMUjh8QeZ9e1ad2Y9RD0al+v+rPui8RydndAt5io6yJCKIQhFnZCd27k5T3tI9HNorEkT4qRIkJ4hNV4WYQ/tqxyPogkbGs9d0cnVucjeHtaCN6XImNUs1Ingctp1AsypWY0Ed0h8QYeA+r1ks1gMFEOz9kUbk+eMmGFfcYx5pLLeagJfzGWbMUFta4XKQ9N1PbUvk3KtXosb/4bHv9UE5cGDB4CiJA8fPpy+/+zZswlVefDgAcMwcH5+/hqK8uzZM37v7/29v+nzdl23s03ee0w+CXtfJ0M3xP6bXAPxDtrTH2ZCup3Bf84yZskFl43dXio0J2CqHMkKbVGNmu3Qa4syzlVCV6YqvVAmozjYJ5xlfQa3CwT14fek0ZVrsXs+faqYkxL8kqqNUrY/qR5MhZL9jq1uiQUoQrDjx+iGybWtkjIz0ettxzsxRoZxsFkuSZOrqAeJsyqAEFTW6hyerDbUztO2HUtReD6OSRGcGKdZEuJeH9BYbdSRCglqRVb9PnbJ3I5QnXNlv2MHxu7+7Ce+OReSz4oGGaJSsiM7g0MtQamDWf1kMgWzWcO9e6ccHx8Sh8iTJ0/48MMPefzBY+7cv8OjRw9YHaxwogmkJpbVBVM3ZYqR4gXJwpi0Mvra177K+fk5p0fHINaSLGUPnrVgbWvbeaej5IF+6Lm5vWa73fDo4UMW88U0ubiu90qjBUtz95JhlenmaV1IzhTJ2lKytZ1ysipvDwIuumb8HnHV12qwlGmYW9upQVsp6t1Tib11/6W+kBgU4cQxjuj9yJqQOymUQdGV8m2mW1ATvcxmO5LLms1mJDSOtgtcnp9zdHyCSD+1aZzDXDB3PKacC++8/WkOLy751rfe5ckHV9y9f5flak6oRUBKlkAARSyZ0sRWEyJNtocSyVI4+/RD4hPPq2cvdxWyF9om6NTYCv+gZ222ybU32y0XF9fc3OiB+uDsLsv5jMEI0pvthhQj19dXePEczg555wc+zcHBQhGVoefm8oJnz55xc3tDKY7ZYsnsYE5wmcVyDkSiZBbLJb/v3/tdPHh0h7//d/8B//vXvsrVZq0Tsr0droY8ihSWy453PvaIn/qpn+CTn/yYcWcgDQPP3n/G9c01i+MDutkL3vn4x1jMZ4jNQkpjpt9u6ceB2/XGVGH1c2N8DGhCg7MZN4lMSVtVTNqaqcTdXdwvtt4cs+DZbnWeWeU4HRweMN67y/Nnzxm3vXHpKgKzK1Kc97Rtw/xgyXy5MOeJHR1AxCPF6ayxGoXFTDdFwIo7V9u7ReMmRUdyaNFrv1a0uCq8Ppem1CLbWt4+NHiLZ9k4dc57QtepSs9QnThEcooMeUuYBdpZSx2vYgcBXjzqGKzvq7bFi7N5TnZKqJVNmT5iloGunROaltTr+0jjMM2vw/YD7BRI3oxBvfPq1LBnEvlapfRdPP6tJigf//jHefDgAT//8z/Pb//tvx2AYRj4R//oH/Gf/qf/KQC/43f8Dpqm4ed//uf543/8jwPw+PFjvvjFL/LX//pf/y29nimrXnvIVIS76ZpgjocTiGKtiOrjk00NUBQJU0Z/hdnhNf8OBWC8BXmZ2MzOecTrSO0mNEioUJfNGbHfj7UdUYq2H/yuxVT7zQbCMLWfvH1DLKPPiTykySckpzLZHFf/LmdVsjfoL9jhryiTtZVyIbsMRgT2YG0oQ4emzQldp5OYkyEsKRrcWC3/UyLHNPWZ854MF5en9ow4aLtA03iDMhumIXslU8Y0tX7qYTJZWtcWjB1M03lVIJldQ7ZK3leHTNHXdl5tnxUoSdQ5Iwq8lD0ynZBT1paYFELj7Z5YBeVQvxsnHB4veeONhzx7+oqPnn3Erz77Isd3jnn05hucHJ/qeyjWl5adjFGyvseStMU2jGVSh+0HNw2yXnvAlt/qUtJ7++rlSy4uzukWcz75yU/Sece27+mHgVjQya5u17ba7RHrvVtirJzxPCX2UkwKD6bSSpps1nvIDhXKJeveMvMqvS82o8hl4liolO+Sk619pj1TKmIl6gCszrmCr/4olkgooVTt5atSKZesIx/6jbZZimOz0dEPpWSG7YaUbCBdHUfj9hRXJVkrvUrx4e7ZI84vzvn6V98l5sjDN+5yfHSERyZDOV1yu7QvR11nQxm5XW/ZjpExZ4oTJAitD7RBJ6wX0cR9SCPBCYv5nNYLwzZydXlNGXvODua8/eAM17Xc3Nzw6uVLXj1/RfCe1XLB8Z0zDj79MTXVkwaHKpzaNuDcIaQTPvHJN9jc3HJxveHi8pJhHGgPZ6SSOb+94vGzp7RdR5gtcUct937oY5xevaDbzLi8uWYbVY3iEQ5Wcz7zmU/ziU+8xcc+8XGOT07ZX5DLgwU/9MOfY+xHnG/44PGHbNc9OqW5Vs9ZuTcp4nKBnKwAsIRD63QyyQqsAlZ9Z+tFqBGdtuwbEbWaNyRh268Z48DQ92RXaJqWXCK3NzfMFwtOT0+5Or+g+v0gGoddUGJ4N+tYLOaEpqGkPBks1gN+kvSaqF4QHQZp8ddNaIr6pOi6yuC8GTQmG2S2i8PTXmQXs8WQXu0IeFOAaqzs+y0pZkLIuK7R389GYM4w9olYook6sOQSxBeKUzQ7pYQzs0tq98CJemkZUuLQkRYlKy9x0SzoQsPmdmOOsrVtrPs2hGC+X2r8FmzWUUXbJ3VaPWf/jzRqu7m54Wtf+9r09Te/+U2+8IUvcHp6yttvv82f/bN/lr/21/4an/rUp/jUpz7FX/trf43FYsF/9B/9RwAcHR3xp/7Un+LP//k/b4TDU/7CX/gL/NAP/dCk6vnu33yh2xtCBTv4t5Q8IQdTr83gtQI6M6UGR0UuVf5b4nSwVmgNUJhMsAOm6mmKOTjqjXJtgzSeEPx0cApFiUzWeglo4KoZZ52DUYBYtK0wTYq191cH9YmDlGTHOakFgPmdpJhIZDprIXhhh5S4RlVIoBs/Z8Y8KBHTOSQXvOSdU6uaMUzmW1IyBI8PZgeehVJaizO6qaQIMWs/lFyIWQltQ1TyYS5lkjxrxamHow8OJ50lMYoAVWQox0RMIxK0uuqalmCGXo1Ux0QohojkkhmGHRzsox0qYm27+nlcJjim1o8Ot/JTC0EExClxLfaj8nOcENqgs3aUUMIszHnz8A0efvwh5+fnfPDue3zhl/4F9x8+4Ps++UlmbUcaR0XVnB4ktlLJRbken/mBz9CPPSUlTRR82TPHEpOXqgNqEWFIkZdPnnN+fsEbb77BwcGBJaSF5WzOvO3oYyJue3zX4kOjwVg0oU5WxgVb2hkxoqvsjJykVHwP8Vp9KaOnrklnQVDXk/IzNAnzzqb9ouROlVkr9yCrXGaCuNWQVrOHJhdCcCCJRgptE2i6liAN63HLpl8jvlUfkjGyHQa2/ZYcE33fM+sGBK9DPcee0Da46zWLTtcMopXsMOj93K435AzOFG5IIjSe47MDzu6ecHF+yfvfeJ+n7WPefOsN5osltX9f51ZFEilltpseKT3rzaAI4ZCJY2a7HTm/uGHWtVxxSybig6cfE03jWS7nxO0NQz8yny85u3dE4zzPPvyIr3/9W0gW7p3e4ROP3uDuvTvMVi0SVM7vUNKioL4xOkdKcL4hxoaDOwvuZU9/0/O1X/ka//yf/hrvfvQRT7eXvLq5YsiR4jyhODbXW+6/8waPHj7kG1/9Kk/OL8k5sZy3/J//6E/z8U98zAqRQiwqQKgHUoqZxWwG3ZwYo/JI1tek1JGLKbfMRVkQZk2r6Z2vaLJQWuOlWeJiKbBxxGyfs2vVrm+uefX8GTf9LUMaKQX1xE494+3AFj10x2GEojYPR8eHnJwc6ky1NDJEnWHTNHUUg6POvq6vVb9yReXXGju87cfC/qgVRIy8vStOJ2m97EZm1KI1FzNFQ9HuFC0pw1raJPxUGKsyL9b5YGWuZ6DXFn0Sla4XVwijFlfiss1WytNnUQGFmt8VtEWkSYNe79pCLgjeB0pwqtiMcUoSQxdMum2kXRtam5I3VEWsLVa7AHn6DMIeQvNdnfG/xccv/dIv8ZM/+ZPT15Ub8if+xJ/g537u5/iLf/Evstls+DN/5s9MRm3/6//6v75GJvwv/ov/ghACf/yP//HJqO3nfu7nfoseKNA2jsZbdlvx7FxhFTd9q9ovTwmK9U2UFGuL0VodxSRV+dtsvjXeqreG3pu96Gx/leIYh6iEOksugoBzRSs4r6VzEYe4QKntGSOWismgYypKRsQQDMoES6rzqUPEv9beygXzVCl4si7sPeWgAknZDOgMZfChvnWtWp1a7OvkYDuISkWUhBRscJ/1vfTwMUVNrYqzny5JKI42B2KCVHktUaGOkhI5aeJSohruYweWD54QHH7WEZzQ91u818o6JyXxkQp4CK7V9xkcLoi5SEZy1mpnO8pkAlUn5cZkGxO9jpTEMOgSql4lKlnMpAxt21AIej3FpMvOkVKZxgL44Lh7/5QH9+5we3PD+++9x6/+yhc4Ozvj3r07LFYr68eijrNOGGMk5UTbNYTQKkRs903RMqva9LYSS2Z9c8OrZy9Yzpd87jM/AG0DKaoUWeywalvauTD0PcN2IKWMN7txEW0RUfzOb6SxNoX3xHGc7v00Y9Dg4ZyzGqlZC65KQ3U9KaTuxWTCjSazgmccI5tNr4M5lZJFNJXC1fqa9WaL2HuZDgvyJG/uujlxGOk3PcMYubq+ph900FsIDYeHK/rNQIzgJRBTZLtdc3hywDCOePFEr8F1GAeub9eMw8g4RATlZbQLdQQt5pXkBA6Pjph3c548fsyv/epXuXPvPvce3GO26MgoOrwdInlIjNuBnGCz0YT8H/2Df8x6s+b0zilPX55rEWCIX0qZfjuy6deUkjg+XLFcLYkvbvgXX/w14vqWk+WcH/nU9/Pg4QO6eUt2MNr09eK0IGlcsPik6w8vZCdkEhHbIxSaVeCTP/wObXCEzS2zj2A5FC5vbxgC3MSBzc0NF21HiZFV2/LWG++Qy8DHP/GA3/k7f5gcE+vNqNPdow27K4NypHLW8Q4p0XnhsHPcefCAtpsRY6SkiGSZ1sYQR7xV3cOoBpR9gX4YpgGXE3Jin8+JxSBDb5++eMHLp89Yx4Fk5gH9djBE19DTokVnySqpD43j5PiIWdfR58zt7Yb1ZqNKwVzJo+qJUxWS2MkipeD2DEHrYbs/mTebYzI1XoPK4EWHczbO0W8GU8WUvfaOvp6iKx7fBBqT+0u24lSELgvb9RZxwswpiuOcgzFa+0fAOdpqhcBI9QMKvlWCrAv6Do2mUOwwKJWHGewcwegOpbDdbOgZFQ3yQjELAMEpIugqMXjvUfKOVL3vwzJdme/u8VtOUH7iJ37iNbj42x8iwl/5K3+Fv/JX/sq/8mdmsxl/42/8Df7G3/gbv9WXf/15OqHrzJAr5SlIO69SK+2pGUu+HrhgBmG1Ujb5caiqmgrpWzSxIF1PeiVH60Gq5mNuN2AqK3Er1BaFWI/eXPtqpiCCIjhOK1Fvm6g1eCd5R7YBb9PgQ31564EKIqlqbSgUDRBV9SFQYXVNrsw/AaiTOxVV0tdXS/48QdYFiIbY1I8PZUKVnBPL+TKiJJ/pOacnsd8JQVUruiFUBVSrozo1E30q7W8ak76auHkRig80nXIavMGt3gh7KatVt0KtwjgOjGNiNluYj4i2V1TaqgzytE24trF2T6Ek3dhSdMCWSJnIbXm0kQR2C7MRvGLS6kil3wUpnpIKm5Twnef7P/v9vNNvefHsBY8/esx8Pufk7JTlwRLnNPikEtn0Wz746EMuzy/pzo6VQJaq/E/rZKTQGxG2pKwJz3KFOPVEwFXytt6shMrMfeOZuRn9EOm3G0SEZtbukEN0v8Y00ogif13T0LSt5d4WZC1xWq/X5FJofVVE7YJSNTfT/pWidl3b0jQNt7eRfkjqTip6aCRDPX7ji1/l8ePHLJcrTs7OODo+0oSwRIa+59XLl7zx5ht0bQulELeJm5dXXF5c8OLVOT4E3vrkm9zcXHNyekqg0TUQB9pWJcGxGRT98oExjtxagpJztR5wJF9oaRhLoY9rvY5Rr2N3eMCdruPm6przX/sqy9WCo+ND3Sd2mcZhgEFdaWNKHN09IZ4XxpjYDsPEsYgpGY8k0TiBlHj87JxNv6WddZzePePuvYd86lMf496bZxQKWxnwOHDZkDAlXPa5+jUVQhFc0mjgGiMFFzC9NrJquPODD/kj3/9HoXRsz2/48N33ee9rH/LPf/VLbG5v1IbdqRPtQEJy4u137vPG3SPSODKMmpQNfU/qBwqBnCJd0+mftiO4wJ3DBXfu38U1rSHZhcb5iWcWY2Q+n+PFsekHNn3P1e3A9c1aeT3ovo4p6VrJO3NM7wMkx8X7H/EqCUkgmuoq+I6chRA8jXGj4pBVFZZGvSbBQ+PwUTdLitFUc2IxCArZkvOd23cpWvT5EAhBW29CnYODxWTRZM3I9QVtUeFgfrzkeHnE49vHpoQRM+Y0xaahm+KcKh2NzWpiO/1vGcmlENCht8E3OISxjPjgWS6X0HozYyyMljSSdb8puukMRdEkpJq1VdS+tnDFWaJS0LNVQJyazQWnPi5SsIRe225eHM68PUrwU0CaUGlr71ZDzu/m8T09i2frRg5avWFqlAG1tyIoCoErdtraSOli1EoRDaQmvBDMobH2iKY8b++gKGpNXJJ9W3aXT5yDNKKzmiyrdjWRqa8H2tdQljzkKQmoYygLCqTnBLkIOQt5QjRgzDtUxKUyEUOdZeGhGGIjWvlWZ89qJJTcLoO1lqluUGuD1E+rftsmPTPuRDYkxQAUlNuzg/qKVKRqTxJa8oQC6TXR589kG/ZWqxEhSKhXWhNKhbuYtcEOyyqyT9xuBvpxII4DbduCl2nQ2DBmhnjDmBKXF7fcrtdsN1ty8GxuN9xcXnFycqwoSK7OvDVBVf8NUCQr5UKJWqFUDkwumWjJlLalBLPNpUTjN+VCXwbu3b3LwzcfcPvymlcvXvL06RPmqxlvvf0OmFPoL/3SLzFuR+6eHpOTJki1bVccXLw859XzlxwfHHJ875ima012GCGpmsZ7z4gjF1VB1CRcE5bCWAa22x7ZqNoBUQSt5MLF5TmLxZL5rGPWtty9c5e2bSauSpUFikCOkaFkbWPa5/fe44pTxZiz5FHUWflmszW0Ik2JfjZSt2THJ9/6GA9P77NcrvBtUGhYwJVMdB15PnL35Ew9j7zDjcKje/cZ0sjVzZrLq0sQHSvgRoixJ8WIF0deq4FhlsQ2D+RSGMxLpB96UlRp+TCMJCJHJ8dgcmkR4zHZnjg5OeLug/uM/cDzp894//0PODk9YbFaMus6fZ1RdNZLKTx58py+39CenjCkkXe/9S0a8axmC0X0+oFhGLh89ZLj+YqTk2NoPJvtNVdX8O6777PZXrBYzAihQImaQOcdC+LJ05dEIscnRyxmc+aLGduhpwRHF1oaS2REaWa8OH+BD4GmnZHniaO3D/lk1/D4/AUffvAhr263XIwJf3pE6Trwmc245rY/53i14riZQ55TYibHRHX/9QSCb2icuk22Tebs3jE4LQCcxaHKQxvHnq5tiTmzKg3jOOPOZmSIB+hBrwfnOES224G+7/V5UMSi5Iav/9pi8iFppNFBlO2Mi+sLXBNozeF4cEmdZnPcI3XrQepcNQ1UyXrsBzbrXl2Ug7P4VRCv88BB0dTjw2Mj3EbjUYFzDcH7ifyPY2pZ44Sm6ShOmC0WO+WLFVu1PVT3K2CFD2omaeeSd2qM2LRBLf+NaC3e7a5NCOptVXbGaFU1I2IFqhWbYudEFVmAoepO30i24ljVSxAswSRFtSmwZKNybyRlctE2U0Xla2FH5egUVSd9t4/v6QTlb/6tv8fDR6ecnR5ycnrMndNjjuYzZl2nlbtkXAPSasJC0QtTTfl2cMbuIk5fvNa+qY6bAkWsVYMmP1hCI4nSOFyUqZKt1eT0OnUFSlavbuurTtove9liSYZLBZyovBfNtJ0RlJItNLH+oSDqvSLKz3DBDvVcyZdKCg2WkttHUdSp7JQ4BW3hVEVGKiorBcHlogfzlOEUk+sx2SlPWTPWLy5afewudYX66vh1Q6Ss4JO9dEbq/fB7Ezydql/6mw0vXr7g2eNn3Lt7j+26VxmoCOIDvmnpZh0lwcHigEUz53bda6+3bJklHUoXYyaIx/kGn2RKVIpL2uYTR9tpZRNjNYeCJIln2yt+4+u/wZMnz0gDLGZLPv3Ox3l45wFN8JR15lu//nXaWcujt9/k7OFdrq6v+dKXf5XP//Ivq1fMOHK0OuBVfwFZkDrd1xWurs55+sETurbj0cM3ODo9IOXM7WbN1atzcsym+DHzO4HbjZrLPXrjDa08DREqudB4T4rqg5NTYnV4QNe2zJsFLgp5m8mS2Gw2ZoaVLdlkh7j4oIG56JCzJjTMuo7FrGE2bxAH203P7Wbkdt3T98oP0Oq0kMbRklZt5R0dHXN8cqLBPWdiHFHptVDKnFRGVssZ4jxjTHrQCLRdx73VnLO7J0ogHAZdS9ER44gPjvlMhy6mkhmHxNXlJWlMNEEP0iiRJjSkYQTxnB6fUqRO7bbiIWdSjLx6+oLLFxe88847vP3xt1g+W/Deu+/xlV/9Cp/5oU9xcnYM2SEDuCywjSyajn695hd+4R8y9gP3T+9ym+HN+w/x/QAl8um33+Ls5JiBrC2XlHDjSIgR2WZcUDRv0S1ZLObqFIsmCP3Nhm3uOThYcH1+y9X1hphhsCniJ8dHHC9bmuAIPnDv/n1N9HJGxkKZrWhWLa8+POeXf/FfQBpYDwPL1Ypmrko2IbBaLWmC0BEJbcDNGkQ6jSNFOXbVvdclIbQZtzSbhTEZSbwBK1w22zWh0cm+Hk/XerrOG9Hf1Ikx4VtHaBsWSWjbhsYci8vg6RpPHhIlqMJKnCAz43mUYkaRQjsTxtKxjT2jFEayDQ12EzdEzKdGisbWrm0R78h90s9gYIDzHrxnG3tc55HSWJIhNFLtAcJu6i81KSuqfkwRaR2T62QN9lOjlKkBIubarF44llA0joOjQ01EROiHAXJhZlOhYxyn/TPGnpQHso1vyJJ3EmtrIWNFqfOQU30dMaWBnYNF+YJelIOT0kAmGXqsJGDBEXyrSJZkwswTLOnTSlaVG2JFdOT/zz4o/796fPVLH/LeV5/bYClP03XMFsLB0YJ79484PZlzcLDg8GjJ0XLFfDZjNp/RtcFM1GpiArvswGQwFfVwU7axl8AATntvmCup3myn8Iyzirr+rFQySB1HLvr7Irs20t5DzI/D3OeUT1LRFWVQoYlsZYDXeSb2c2IJEwV80ZeXqAuvGAcCQ0bINI3HBW+24Zg0W08VXzQJKaBDCSOKg05mXKhvApr1T11Y85WpyVOtRJ1tZNiTv075mc1ysHvipEwoT71UxUHnOx7df8Dd0zNOmyUnxyeErsPh2G4GNtuBzdgzpkgzazm7c89aWTqtddj2jHEAEWLJBBcgQYsSd0vJjAxTXz04R5i1jEXl1bSed58/5p/+7V/gn/yTf8b6ao0vnuAb3nvwHv/eH/4pfuonfpwuzNgOG548f8z7H3zE02cvcC6QR8cv/7MvcDA/YNbO+N2/88f48q//ml5vm5Hy4eMn/H/+yT/hnUf3+aEf+iH8zHF9fc3N7S0ueO7cuUvrgwWPAEkRwvVmy/rihjurU5Vn5jSpsXVGiG75lBPOO+aLOcE1NM7jRKejlqxJjK59Iy069thqswABAABJREFUpyTHInhpGHpNXIXEtmzJJdKngSZ4+m1isxnY9uoTUqzampJQEeWnOJWh+6AI3KxkSgnmjSVshxHfBCVA2zZyxuzNJU9VX8ra4gtNw5gTN9sbfOPY5C05K4m1IdC2npPTU1MsFCjq8XM9bzk4OeTo6Mgqyh2xWiz5Lne1F3/x4iXFQewjx4dHfPT+E/63f/gL/MTP/AHeuv8GvmxwDPy+3/M7+MY3v8X//ku/zMubF/zg5z7DO48ecnc+4/hgyb07x3zyE+/QtYESR26GyMXNhsvra9IwcLCcc9B1dM7TICxcgH4k+UKRQMkO5wJDv+XlqxsuXtyw3gzc3G65uLlESuL0ZMW940OODg84PT5mcdTR+JZF1+AbRfnibeLm9iUnB3OQOWNOrLqGREAkcXx4wEm3oJNMf33J5Thw/+FDXNMiKU/cDRFnKp2ROGyJo5K6hn5gyI7GzzRBcdgoBD1MiwtqZ2KLNCdVNzrnaDpBlp3O6TGzQ8Fxfbvm1fkrrq6uGFaexttsd+do21Yn+Eo2xZYRsp3ThqShvVVpmE0IgOgab+czfBOs+DJ/qApriBClcLW9JZofSvUoinXwqZFjQbl7Yv5MgioNJ5l9jfW7TTEVchiqTNF1rmeUrsngdFDsZrNhvVkzn3dIox5KOkZhYIzaehZn6kSpsvpoLrWa8ITGiudsbudTcl6MxK6tAjFnUB3j4qcExonsGco1lByJWfkura8eLIVSnClma0t+Qgj+jY/v6QQlA1k8Q1KkYMhbbtaFly9uee8bz/Beq7Sua5ktG1aHCw5PlhwdLzhYzTg7OObw8IDlsmMx7+jaVkmiBSpBFbB5Pd4q+nqxodRZ9wY/Fqdj2Ml7JjwlWTKqAbESIHdoStn7NPZ8rpK8rMdfk6WiA7Tqwxmkrkx+Jniw6u9rW6WkmsiUPRn26xtjZ01uiUWsxCs3tb0KCuuGoOPHxdRCiGgrIKkpVS6FaMlJFrs208eQKQmpRLO6R6kJjSt7ihL9gVw/g8HEOWd88Dx86xGNMdmlOBaLjpgLY4oMMZLGSElrxiGRRYNhaB34wONnT3l+cU7jGo4ODrh/fKKtDYGZ16F5cRwZ+54oI8Urg/9ye8v/7e/+Hf7JL/xzhs1Ik9RRlxE++OAj/vb//D8zX7T8oZ/+A6xmHW91D7hzfMLV1Q39duCf/4svILGwbOb0Q+Lq8ppm1pLTiAtQtgNf/sIXeP7BR/zYZ36YZ+8+Zb6c08waDo4OWRws6XwgTAo2QRr1oDkIgU996pMsFiucdwbRqvw7xqQoRdLAM4w9m5drSoazO2dKzEsauJxTvnnJ2gZRs6diSiRPsXaSIIRGZ1ANfaLfRnJyqGdQMlTO5sLkoiNfzHwOUbXQNF211ARbbLZIlVrrOnfiCMnZsE2T1tu6LinjGjO2ozCbzWibFm+Tmp0obyrnMq1Gr7Io7t49w7fNxJFQCBzb5JZQOY87PTYr8kLfD5y/OofyNb761W/wu37vj+m8owjFZeZHc1zjSRF8dJwdHvGTP/G7uHe84uhgxeHxAU1IlBwp/cByEI7HY/rxPjlFnezcBVM1KY/DNw29d5QE69s1br5g2czABe7cO0InM2958fIFwcObD+7xsfsnzMw8LktWBMo7rXQy5DZx/50zfuT3fI7lg2PefvNjfPFXvsKvfOkFg4fl4ZL5wRxfBsYBZm1DmOuBqLVZMXQs4VpHFkcz90ocR2jnC0X4StBrH4TUdniEWWjxYsWRXXsdKqeS1FQSqd4z8bikyFHwjoPVAQerA9ysIg5CGmz8RsoMY8aJV1+mWJAk1bCXKjio6y1ndWnOgiFBMhVZWl7pLzqU3K3ItewVcoJamMvk1j1RQs3ojwLBN4xxNFS62txbG1y0RVLqKSC7llg9AxwF8WFCnoNXqf36dm1IiSKvU1A11ZTzuzhBUek3qAeh1sCKHCsfy14uF5xoclOHOHrj2+QSTdCiFARN+mQqakF9a0pRMnWyFtHuTPt3JUEpFQVgB4PVOFcKOQpxTAzrDdcXt7x4fKl+Dl7U5bKZ0bYNs1nLbCUcHa84PJpxdveUR48ecrhc4kVovactdTZIIaLj53PezUTwYlJhG1Pui25eT0GKKSMagaYmNfZ/UzI99U2Y0mjq4rYfKjq5Uu/znmQrTxiPJgBmeoUR6LD2yA6KKBPRucpGi6EVRedK7QZLOWsfONHEob7VugmdmINgoQ1eDb5yngZ+lVSmDYdU9axu2LHs/Zu9l4p8ClAzGz0YtbWSK/piPyDzGXtvCew+uaahISAJ9TXIiREmslgcYHPxkqsnT9ne3HJzuOSd3/t/YrYIxJKVdR8COXpuJOJbHa8++MCv/vKX+Rf/7ItIL7Qp6NwRV8CpO/Dz56/4u//Pn+dHf+hzvPHmA2BESke3UNnlx85f8PbbD3EE+stbQuutbab97tB4Uj8wXq+5d3yX49NjXHAMbsQFRRPqZO0KI/sQNEnycHb31JK4YoeyowlCaSFWNZMyfklR5bZx6M2SZ2e8FkQofmf3rsTugvcomRxLVsWm/FZFVxbjwOwCUTWaem19W8Kfkt4TV+EyjNhc92pr1uIukAVyGXW/73Ge9NprgF4crlisliah1IXhBVzQoOmcGvBpDNfX9zY7at91t3q11OcR0c+bs3pptG1Hio6SAo6O4jztYoVrWj784DEffPghvnW888m3+Kk//JO884mPMW/1XuQOcgikmMl4XOMJfSG6TJCGNgRyI4wU+iESt5Gvfek3GF3g3l1Fz263iXU/qimkXeqxZOaLJbN5h1uuyEczZN5BTuQRxu0AZUZotYWQciR1c1LrOXnzmB/93T/C+YtXfOVL55SiCqdmtcKlgUObJIz3pBihFZxTomdOimBIDjAsKMu5cqNw5Ozw0pLHaH4cLdEHnG8oIZCAzdAzDj1OHCmP5AxjLETjdHmn1f2wHSnX2jpvmgZhmOI/CI0LlKwDC0WcFiQek5FnUyjqevHeE3wge/3vPNoYAlvvJSl/biLhWxxqmxnrfqMmcyI4MmHmcOIZ+2jPoXYMLmsCsjyYc7hc8ezpc1UuwZSgiEAXgl5ToJt15hbspniXS1a7/ZxV7aTzJEhRE5M4jppgmyhBR4loi0qN7TTZr2cmaFGZDa0K3k+CidqaF7c3oNUSphQj4qp8uCB4MzsteFEH9KxBRxET26u1kUDOyp37Lh/f0wmKyxlytCRhV2GLJQsKEpgmHRRuy4UcC2PJbOSGqmjIFChPJsnebD6jm3fMlx0npwe8/fAubz66x+nREW2n5j5ZdEKtGJGVoq6klIh3Dd6gR33YoQCWWTlDNCqaIuxQlBq8sYCw+1rISGTnlGrVLWapv4NSVF5GELOorlp3gSTquYFVACJ64IjgpVo82mvmCL4xr4q89xo12yh6cAXL2Is6pXofMKavrkxdnSYvLlPRUU23Jrv53QVDK5mye7kJh9GkZUq6qOiMXTOnULCUSpZWMyhfHNJY1Tcr/P7f/bsoOSEp8uLpM+6sFuTG45qOIkoAzh7mswOKOPqh5yLDV770ZdZXt7jicUVYoZ4hKcNNUHTovXc/5Gtf+SrvvPUmbdsYsqbIwSc/9yl+PG346L2n/MoXvsivfe03ePzinE+89QjvWuZd5v79Bzz56Bnt0jM/nBFTwudsxFmxmUcKe5dScCkZi14P+Jq44IQwzQ5RPwh16SzKMfANB7NAGkaiTdf1bqWQrWW9qahM09nh7UQJyYgmStc3twTf6swZk4jXOSY52YTjUdGblPUwU+UYFDJkUwLIrhp2Iow56p+Y2E32NVPAvAuSuWTdTpbftE1VIalXS+M9jjjtmUoyrXsxF4X/SzUVK2ra57wnx9GmXmvLERFubzdcX62JY+bBWw/5UflRWt/y3vtP2G561jHz9PFzhs3AcjbjrXfeYnFwwDfffQISmc1a5suOHCPr9Q1t27BaHZBTpt9GgvPM244RNQzrh4Gb8zUfvHtOv+75Wv4GH/v4xwitKq6IiTgktn1vB1FmMwyU61v6DzKzrsUXYXNzAxna2WwSB+Rh4IPnr2gODikyZ90XrreJwY/0eeDZ83OePL+g9ULbKOcil8hmc8s4jhbXnHHitPv7jW99i0fjW8zmC0U6ncfHDWmM9P3AxeUNPjQ410xxOpVKwsfacqZSnDykymTo2N+MPNleswlxQmIBSo6AmR4OxkdLQhw05njv8QgBR0T9cGKKRAqZQIwj4zhy1LSkcWTs1UNFhQgaX5dHK04PT4g3I9vYUyQRXWEeVgTfkvrCkHdFcyWYtl3HrJsje7FOI37CW7JVExTnvKHxO5Jqfk2S7AhBCE5RPxJsiyKNpdEYk9I4OWpPyb+hNdUTRWXHmsQ5J9biTyZeKJQSpp/V9lNFYownV88xTNnpCkRNpAQdC6DjU9RDJY5p8hv7bh/f0wlKKvm1QWhQz+f0WhUk1o7QFoIRNq3FsSMl1QpfyH1hHLbcXG3wIjz+xjN+LbzLbNZysFpwcNxweveE+eGcbtHShIbDxQHzbkHbBGazwGrmmTeeBphIt1nnFQAoFlyMZIQ5yopCYPX+eWH3Qeyg9rJHqt0RU0vxlvBUCM2+X5GYqYWjr/OaWqloNV2sci0lKQ8GdNpyAFxi9+bteTyatNQrX0nEdShLdlOXamo7eZ0rPJ1+SpDR6qomIxWZEShJpsFlaaL9mPoH8wop4OpnwaSCFlAq0VYENaETrCWW1XSuQHANi23H/GBOdFr3axtDiFnA64YcUyFtRy5enuOywxWhKcId7/FNy/V2yybpeyZlrl68pHMOkQY6x2hyvbYLPHvxnG++955u2DEhMZPXW9qc8Y3jt//wD3J0eMidu3cJJjsUi+bG3bVU1mDiXCait6u8KVHTNGd8pFJqUFJeU4XTcVZxotb5OatcvfGNBciKbhS9LSKTLLH6xozG68ilMAh4YxbmrH43iTKhajmXqcdeDJKTaWlV2LvQDyObzcBmPVDnoACvt2pkbw877Ym3bWuir6yDypzDEdRYzsZf7JaZEMScoS2hKmJE7aKxo5CU85I0Cbi5XbPejORUaBYNp/fvsu4Hts8iTx4/5cmHT/nBn/qDPHr0Jv/w//ULvPfeR3z4wVPW691Edu/1oM85EYKj7a7IKbPpe5azGceHhwSvs05STKRYeOPNd5AIz148IfZRfUS2vY71SLqHK6Tv8MTtwE3K3MotgvIh5l1HydGQgJZt8kQHqfOcrzc8Pj/n1eaW0UWGnHny8hVf/ub7XF1eMA6DupnmpN4YfU8phVS8tj6y0G97nj5/xur4iLv3H5BzYrWcs2gb4jAy9JHNdotvAmMUbXmkpHLfVKXFWeXMYyQN0dxL89SmLGNifbkmWqukIsK75DXjCASvIwg8nsHQGWcIoXNmgeCUf6HEU3UpnjWd2ghINocVoWRDKq2dHLzHR7QdKTorqmsaRh8NmdBiuGAjPILN2ipuinGFgt83P7R4nYzUriE1T3u6qkPFCc6sCJoQiEMmpIj3jpGeYdxqMhd1+vm8W0LJpDGBjYwYbSCklGIJoSXhhprkXEhpRJxYLMzkUuesaRJfcoacEK8eS0GcXgtrFWlcsqG0JVubXqYW03fz+J5OUH6zR847W3VnPJDJephddTbZyE8mbpU3ovpwJYMXUtJEJuWRYRi4ur5Bnjjcbzw2uNvjg2rP21nAB8fhwYzT4xVvPLjLGw8OODhasVjMmDXB/CK0R5+ToRxT62XneTJZ0k+IgoGCE0IiE7KQbPHoGe1RBYLxPLI66vrM1PfXU0YXlyY5xgeYuC9UdyRDU/YSE1+vXc2iilYXomRGfShaAMp6t1yQihCVZAmQr8mTIF2dv2PXoiJJUVEqV9RIC7Ta1bkoMs2k2cmQwaeKsmCVSOXgxHrVwENCdf3JgZt3yKzDFTVyi1OFbodWLjSuoWv18zoLXKPLvARaCltxUDKuQIMQYiJIIUqmkUwwgufQNDz51vt89O5jzlYH/Mwf+HH+9y/8Mo/f/RaXz59zeDJj0QYaKXSzhtlspohHHIhZod0S6/WvjpdK5hTZBRn1JhC7P5bQG0lbY4QlKDiy+dmEVt1AN0MkN2VyJwXjFhV1SNXfU/ddIZBzZn271TVmCXQ2gyznzP+m7CUmdfVk8+QRdv3/graJkhLBdeq2JV62NNRbZ/dZne3nalZXsiZiOSWi5c6ukslrsuzMH8euVTTTKeWrKH+Mos9Rss6Qur65Yb3t2Y6RnOH85pJtHBhTJCQPqTBrZ5w+OuPV01c479hsR66uN4hrFJi05F89TOzAcVsohZhG1ouBlIWu9VCyzcPyUyjYxoGWjhACbfC0TZ1fY0P1KDTB07WBtmu4vLq08QfmnruOOjpgjDx/9pKvffNb3Gw2hDbwpd/4Bi+fvmK0O/RrX/gK7339G7x48YK4sUF+lnhWJIvktOVtbR7vHdGs8gXlSjjvbLRFMQlvYoyJ6n9EiiaHLVSbdVsIFv52BVXTBA6OjmlnM3BuMnVTZCEgMetBXFSKr6TMSCmOIrrnK8KxCx3avnbmgpyd8qYkK6W1Dj+tzt7Om7WC0ydQc0lPcEI0xNoZcum98mzqcFRfnMXxnRkdGIphzsBSi1NR1U31HZK9Q987jwsBieZU7QOSB/MDy5pEIeRRi5Vi9v3eK8IpYkmDxceKzsa9wlUwJ3Lv1ZyPgnMqZa4ikVAHoNZCypdpOGjK9TUgpUIuMP67gqDklF9DQaqtcM3yip2MuQaCmrCAcjlg6q/XQUpguW31qsdY18bn0NkJNra6aM9YXGK7HhH0EHgqihSE8DW6mcpUl6sZp6eHnJwecHi4YLlaEJoZi9kBB4sDZjNHVcU40dkOXTYT/JoPZD0SKgErGXynSZR+5oj5cljf3FlgC66lqoiC6eYdgutqIqKVY0w2ALCAz1a1i7WTwn4LClPzJCX12ph7RS8ycWTqNYolhKWA1Gm5TdADb1R/B9d4Q4I0CKScLTbpgdVSh5cZqawUfFYPnLqxJASttDOTlK7YOim5JqMyGSkBhqw5lWf2g7kLA5N/C1RrapHCctWyOpiDJSixFC7IuDhYT9nROpAcmbWe1jwB2joMxkFbZvzk7/6d3Ly8wXnPfNUyDDd88uPv8Knv+wQF9X54/5uFlpFZ06mXCdAUrzCtw2DvZAiHJhnBC8FcU5vgaBu1cXfekUpkGDO3my03N722TtA5NWO00QKlsF5v2GzWLJYz2qZhMZvpdOO8M9DaBfdoYwsUoYhx1O6iCD6oeV0aI3tL0s6ZmgDaXrZkRnB2r+q8J62+anXpjfsigkLKpZDGwSTjoxp0UfNw3dtpHPV3vUOCEEQ5Dfo+dS/gE01TuLi55Gq74aBbEhIECQzbDe9/9CHRNVxeXRPaDu+V9JlKZhwHbje3zGcHNActqY184/1v8PzJSy77Kz7zuc8AcH19o9fN0EvnHCE0FnVGizXKs1ivtziZ0wSbI1SEru1wIjTzhtXJAauDFZ6iXKFSGMeIE22jjTlTYmY79PzNv/k/8eSjZ4xEJZ7aTJYYI2kojKPZpJeEbxreevttVss7lOJ5/u5jrq4uVHGXlKhpW2KKlmKxttgepQlst+uJgCnFUQY7b13SfZoz0QoGAUpWt2KNy3s+GrlM66YWF5pza5WvvECzSBDPmBJ9HJkPKFcmmZ9Rijoao2RVcYm2rIVEi/qcJEERXvNXoWRNPkRI9mWqCbIo38W1DoLKoNVozfhNhWn8hnOiykkp6lGFMwsAff+haZCmwcWIKxlXbIYRUFy2mV15pyizmOxRRGeQpOhPFvVgsYvkGvVhidIzjiNDGqbiV1FWHe8wtf+Lo2RD0FGepjqbDzDqXlP+ppq1ueqKLo6YeyqtYIy7gbDTnLVcSOiZ8O8MgiJuZ5xbDzZgr+1T4X2Z/q4/VwNs2stgd4/9C2gbYGoVGOJBmfit1cFW30ee3PZTzmz6wlbg8tkVH3z9YnofLhSatiU0LbP5jIOjA+bLGceHK05Pjzg6mnO4mLFazGiDSumCU4Kk96F2ZdT6HV3I2ZKn2lqRvU+SNTqACEO0TnwxVbRzZMQs9z1idvVqgKueKD5r2wIxclQRiqFBqspxli3XiZh1PiaK1phcTmNzIY4Z74Q2NPp7Q5o4DlkUXs+moS/A6FA3TSxuIARvxGNUEpi8Y9sPavltbQovQcm9xSaKmqLFiUrTE1BcoKdF2gXq3hvxdV2Uog6oriDB0YaWZh5IJHLWa6abPRNaPbQkKfN/tXB0QdtuuejAQsQxn8H/5d/7CUpJ/C9/9+/zj/7+3yOUxNnpHe49OCDngTzO+cnf/ztZHKxwTUNyQsxt7dzo+IGcTRKr69Q7aEI1xapSwd1eGbPj5mbL1eUNm14Js9rvdtPgx1Lg13/913n8+DE/+ZM/ye3tln4YmXczBEWuqhRRHfsdUiLCqGZXaWTYDmz6DYvVgtViyTiMqn5B39O2H7i5vqbrOpar1Y7YX3Ywc3JK/BvHke12q2iHQeuzeWcHmSYlN1dbghfOTk9YzWcU8eQsinIUeHVxjiPy5hsPOVi2NPTqi5jrDnaUsOD5y0v+t//lH3C+ueL/+kd/lqPjY9q2I6eR9999H1kscaFhzCppTimzWMxoO88YR7aXL9nc3tKvt/zqr3yZcYgsDxY8eusR62FDCO10z3Ic2Ww2LBYL5ZFYrHJOSOvMq5srzo5XnJ2ecLDsaBrHdtyy6Ucu17f4m5ZNXjPzntY70pjY9lu10c86r2l1dER8NfAbX/oGm4uNqkekUIq2h5IlqF07Iw+GVDUZ+kyaawIefIeMSqh0smu/Fad7sB54BkJMqC4pU2zGUgZc47X1IY7Gazu6Sn1FoDTN1GIpdX0VnTdUeTWKagSG0DD3AWxciPeKaBA8MmYOGsecKxoHWQYiiW426AiGYYuXDodnIRvCfKTxarY2xAhlZO63tK1+hn5IKrl2gSxOwcF61pgdvsp1FckuZvteKCYq0KGn6rit/+6cKpxC09F1DcEHQtPQ1PMjqxJNUc+i9g7OazGI8sw0vXeMUVs2WpAp+l8sbkpwU2Jf2/2lWHJXdjw2SrGnNoO5bGaVwVFyUqS/6D3UNs1IDmUPpS+YMkXPmpInsUjtWBSKcVPUCPG7fXxPJygl731Qq0z2bfh3SYNBc+yg5f0kZf/nAMueDY4WRVcqNK4XXbPUrLnwtEGndMA5lZuJTBJghbC1wi5ZyCP040jPyM3FLS8fvyQ4QVzANx7fCt2i5eBwyWLRsFjOOT454mDWsph3rJYLDg8OaLvOKuQGnEMml9sylTkaVFSeo47khiIVGMf6vmT6fPV6VhKqjPUDKCxYsMm3oq2qOvMjl6CfD3SEd1HDfmdGbJSML7sKKamGUNsWSZUzIhlfJd1Rprej0khNMpIN/yJAadRALeHpt4Xf+Or7xK0ebPfu3uXhWw93bYWiveRi8H5RfiaheC5ue46PFfos4mlcUWfUnBE34EgQYEgbNttbDULWrSuixDRV82n15JwjxR7nEvM2kGNGXJmg50U74xMff8gnH93lp3/sd/DFL/9Lbs8fU+K1yks7z3J+oqZ82svQ+rq+d8DSy2m9O5svVTNT9VxSNA6nJn7jGBn6kZSCzRZxRm62+CY672k5X+DQBFIQtptezxQUulYFkSXrRV8neKdEz37kgw8/YjNsePutdzg+OqZEVb+JZG5uNnzjm+/x8OFDQreYeARYW01VZWrWNaSRjQ1Icw7GOOKCMJtpFT7GgafPn3N8esBpe8rh2QFCw8X5FZevbhiGkadPn9GPt9x9eJeDVlsjq0VnSbaw2Qxc3EQ2m8wnPvYZHtw74Qc//VliXkOC9e2W7e2Gzc1AAoa8axvnVNuWmXGMnJ+fq2txKUps9p6vf/XratVvjcFh1Jk2/bDVOUBtu4PzRd1ovXf80A9/hsVqyWKmE3b/4T/8f/P4+Us2w4Y7d89YLRoOFjOaYDipqeaeXN3y7gcfcHh6ygkzbq5u8aZmSSmpW3HR9oV4jN8gZMIky663pJoglVILIDNFaxrEB12Tgt67VCjRyKkATUCCVtqCJSjjoPPADB0pZDNZCzovyqb/5jgixjchR12cIdAsZsS2xXUtuWRur6+JqdckZT5j1rYEV2jKOSH2iNzSUpgHOyJ6IHlKccyLowvaRvRNYN6BzxGXLyke2uWCW1fYDAeMqMS3CzqHicbjXKMxSdROH5SD4YOicrWtKCKkMbNmg2sDsyB2r3eKuZxsSK2eSLuTyn5fzyZt31ei65jHCaXOWRV9DttHDobUT8UkRVthteDOUZMIoVIhsvFRbNq0Dzp3LhdEPOJ0EKDzuobHrPtf0e40nRnO1HHitM2TjRSrBXUyVdwuZv2bHt/TCUrO2Wbt7HqJE1riXk9WgKnft+vZ78h++5rzWiXYF/ZzRpqTKr2qaE2VvOrBq635aHN4/HTz9alqqVj75bX9od+NuSDZKtlN4eZqy8un10Y61Z9XyZwwmzUcHMw5ODlgfrjgaHXAg/v3OVgt1LK8myEE9BT1hkjovB40+Ve6bHUO1HdkSYn2lJTPY+Cqk50ix96wGGnr9Y0lU1atw6S0FSbWMglBe6Buug9GFJv4KwoWu1IIzRQlESfkOKAVAlZdoBstC0POpBy4e+cR1y8vyX7goD0g9TINgAOzSKqQJjU5g74f6IeEawNFdGLrWD9c1sqNUlhvtlxfjVBaZCJeauWSao+XTCMFVJBOM59Na1RP82RcnsRnP/02P/7TvwfKNV/+ypdg3OKajoo/BV+vCOSKXsm+nsmRxZj+e1ykKgcvoOqxks1y3OvwxqSLQLLKbhU+1naZOsPOFD0z34UsiXEcibFXSNrafpXALDnbDlCOwXp9O7V4Nust3gViTrjgmc10iJxzSlLONhukcsZiVDQtxpGrq2vO7tzTHrjoRORhHNVcEFUevHxxTjuf88GHL7i82iLi6fuR9W3P2I/c3m45vzznw/ef8+LZOYslfOxjb9I2jpSE588vefXqljQWfuCzn+Wdt0+YLRq224AEHXb46tUlL296iji7xqmGB7vQem+G7RYRoWtmlLQh9gPXr16yDg06qE1eGxJ3s7mx1odKRIPXFp7zjo8+fMLQD4xvvIEb4Ev/8te57QdSKYybwltv3qWVxOxwweF8iZhZ4AcffpXnH1zw6uWWm9BSYo2Rul/VNsqk3V7fRynQtuq+jOgEXIoagykarMlEtkPJOY/r5pqsSsaLI223OkW6HryhxbUtubppF7MmiKNxKWrlr9W6axubBGzOqGVL6XvjAimXIzQBQkBcJo8j282GFHu8ZOJ2Szg+wjshMWr7sQglN5SpSCrmmqoFVsqJJ49vaDtFsZddtDiTaCVTXENpHL60JALbfmAcLxjiMM3NKjmRRKY956oHSF0bAptRpcFm6QKGAqtJnMVTjCRbD6xSh8jmqb1lAYmKTmjhrQ7LSJhUT8nidzIVldMR8oaOBOI46CuJ6PcpeG88HB/wzplySBPOMamzcmjtubKdHWACUkOMjHdTz4A4jtPxkkRomt0w2e/m8T2doAB7gR8qLCg1Q8t274UpkdmZ1uy1d74NeXktQYHpcNPJlWZpXN1TS3UTtOw2RcB6wjGq6Zvs3xFdYPU97idU2ZXXfmYq0cmTz0EFjTaMnD9fU+SFuSZC1zXMZoHZfM7B0RGLwwOWyxknxyccHqhr6axraTrlJVSGe23RgC6qYoqJinqIwh3U2St6NTByoeyUOnuVEWXHAUJARIPOOquiyKu2jUpurckKZtrlncP5onwcSx5L45EEPhaKCGOBcdTtmyxDXyzm2gdPkdliroddtcqvvW1776VeT+0rkbIa0BWUS1RbGZ4WSQViYu6XPLzziLZ5lyFqz7UmE6Xox2lS5mTe8aO//Ydpj1ZathWb9VQyOsNJyHlktig088TRg0Peun3E6mBF02i1ppmvrqddRqLXuGRNzkpKOHR2STI4PVVgw5IV/TVF7o6PD3l1ccV4oyZYTdOQcpokjtthy/Xmhsv1FVeb62mgWYqJlNVSfozRULtdksCoSZdWVxk/awne8+L6FXJtVZtVcMPYM7qRj15+xPOr54jN0arXPhsx9NX5OR+8/z79dmR1cGCBzdgOriJ88PL6mpdf/goHBwe0obWgLqSk5L5hGIhD5qtf/RYuOIIXvv715xRR461hGKEknINu1vD4YoXznu22J/iWb379PZ68usT5hqZx1qbcrwJ1z6QEXTcz91w15lIPD4eXgisZkQA+QFU3gHlXWOBOul5Lznz47ntcX1zy6P5Drl9caaIXAqVkDpcHHCxWBPGU5EhJ9/LN7YaPPniMK562aVnf3E7F+BiVMKqhzQjJlStfyiRNz1KLOSPmV2nqpKIqRspsSHhEVBGzzb3u+2yIrHMUp+ZtzpJm5xwxj+SkarEqcKxLWxEZ47LYNdafGyklAsrHGLeR2G8YY4+YxFlKIqCIZk4NF5cbtptEpKFY/BErdir6N6bIi9sl8Rq6W+HszpLVQliEDQ2R7BLrvqfPQiqOsdekexq4aQGlElzJ4Eq01pczvoUlYjY4tvLcnNtTOVaYvejgRzHUqmACj1L0s6Pn23SiiCpWvfG3dLiioty5YG37pGNfpvAccV7bPIrOqLXGVFBXP5RYC+tCkYyvSXYZoZQJOdkNVNT9RJZJTZWLTmH3zpu5m+N1CsW//vE9n6C8fvjXb2Ir3jbK3o/kVO17d/4o5DKRvurx+9qz1p4jRW9uHUBTNOOsxjylqK22M6KVIjqvozi7xKce9taGsV7g7qcn+lj9oIbcV/SmQNbA711AUmZcZ/rNwOV55NnjWplB2+r47qYLzOYzlgcLVqsVy+WSg8Ml/1/y/iTWui276wV/Y8651tr7FF9564gb11EZ2xkYSCCRUCophbGEHmAL855SeoBQ9hHQAQkJGggJGjSQoIUoJSA7iIdQPmR4kH4PY4owYPvZjsKO6t641Vedau+91ppzjmyMMdfa57v3RtGgEellhe93ztnFKmYxxn/8x/9/dnZq2gzDlu1ms4h+iRih0G+RxfHNlwfB9CvqsjEHR4fWR2JZV9tcq8lsAkZoa0ZYLdNYJmnFy0PQiGWENRZtZFdFvJvEzkcdZtKgHtW7lkD1wMeTleNsRb10YGcva0RLYGnt9mtJMXBnGPi///bfyr//Dz/L48M1pd0fjCMTVehy4bf+4A/ymR/4FJIPtrAuonmGaKgpUfHeo0dcXDzjG++8R5kz0neEbgYpy4Jt1yxLNGWieqbtItE+z5Ma69byCMX9C6kEb4dUTs877t0/ZXe4omZ1gbV5yerfeutNvvqlr3Dx7JIwBrYnJ4tnyTEtp/rK2gwUkXXaVZQ8Fw46E2QCrDtCxEoib771Jqqw+diGOVZHIIUg2e6n36Oz01M+8+nPkFLPPGaHHBs/wcizORemXeHJk8eEj3XE82FBYiK20KcY0dSZEVyMpBAYr5+QnfCbkpmr5WkGha8XSy4UpRs6Li6uOewLoQd1ZHS/35kce9dcsSuHg5XBSikcDntqyQiVceoYxwMxRh7cu7uMp1oL++lAR2fBmVrp6E5/zvXlHjqhnhZiSjx69D4LnyMIm5OBcZypWulKT6XQdz31oFxeXRJDoCdwcXlDrYbltYTekLW6bE5Nr8Puu1gJRldUyJ7oOn4ltPfZfA1qJYy15CiG2Gkx8a62DmModJ4zUgsSnDPhpQRq2zB9lQuRjJVGj11365wZdWaeDuSc6ZbxaWW1EAVq5Ppy5OpqZlbczyz5OuqtxRKY55mx9NSQOFzDbs68cL/j1Yc9ijKVQJWIhohIImmwXbMlnssS7qgGYVFeqI4it7xNW3DSKAX4WuBZhGknNn7fgpsuXB3bHyxobGuToG5TYeciEdKQmPJsL6uyWoYE3OqitSw3PpmV+9CKuhSDmSoaglM94ZSq1CmjIVs3qicCbY+ypje7+FKy77Wm8C1EKM6Z4Ts/vqcDlMN+ousG32DsRmmLyL2mbQOn7W4rTKa+STUoatEWaeQMP5rRGiG6cI75lTRkUnxCto26+KaLZ/7tKxcezHMBVZP9bgCCHv9ZjcR4fM6Kq6p6VL0IS7XzjWIlh9auVoX5kJn21smgPCWG4OJVpi7adYlh6Nlut9y7e5d7L97j/r0zHjy4x3bbEWNvbdThhJZ1hcYlkTUeVr8T61a1pP3rHKYuQYIdjUrr5YKal1JdEvUSuFJqXIKk9jxNvZD1xok7M4uVy0zjo4nwlSVbuX2ICU1pa0tsQZNvnNJGkNddZ+GHfugH+Y2/6XP8m5/8D9TZSYPebUCFszsn/Nj/9IfpXjrxwFNoVuMtExIBicorr77Cr/7SL/P2N97i4WaLtQpYBmbaOO59oSZ61xjxwf01zM7dljIrMbXFz4IvW84Sc8lexgwMQ8+w6ZhvDpSSmWdrBxTgwZ0HvPLiq6Qw8MYnP+PusWVBNhSbK8Fb4FWVlBLDMPj9qwQ13YRpnq17wktCrTSa+sTpySnnZ3fczNDPWUzH4p133+EwT7z88suu1WJtrdYWXTACsLkyBwmM92fu3L3Pxz72mvOYnGApsrQhN+K8hGAdSSXz6NH7bLcbTs/OePToXU7u3OX89Mzbta0bsOsj7733iLfe/KZxgUQ8ADkAyvn5HUqpHA7mFp2SzdecJ3dKzuhhYrc7MAwd2TU+YjQn7YKVx1BlnmeqZjbDlnEaSaEzbZTrG956623LkFUXWYOKPe7YRWIH3SZy89410zzRpY5QlTJNlo37WBeMq2Shr1jw2qKNhqJ4B6NKpUjxvJ0l8bD1ra7op09ocTl9pIklrMlYC15UhZKdMHm0Ubd/tUDExkOlhrKUg6Lzq2qeOYw31Dx5MOMyCaxBdAzKCy+ccu9877LrASUt6HjwdWo8KO89PnDIgW444+4J3N1WOjkg2qEGJ9m9cs6az64lkFivs9GGdbkua+91fkcQ6xLy0njDQVYKALQOG+PL+b0N0hgES+INdUkSgivOhqOHZCixf4daIifVysS1Nn+sNRlTrWQtxmGMwjD0hGAE7JyLd1VW5mkidG5JoIaGawsc/brt+sQFMo0uoLksz/bDMIWPOr6nA5S3332Hq5trNoN1wnSpM2EZki9MleenANhACHEV+WpsyWUR1SP4Dpbo3Aac/aqqcytalusDSvyhVbGsNcR2HgqylgIs8DjKUJaB51/Z4mNtZav1/OvzbVp+GSIrEgMgIbGc8lFUUIpaT7tWZBImZm5kD1zylryLxoAEZRjM2nvoe87Pz3nj9Vf4zKc/ycMH941fgBFWm6PycptblLigUh6BtwyMtVTWJmXDhohhuRdqDFQXXhIKrUgDTbbZw3ZQobSyW8G1TAzZQlizgOPn6vetqjkEj4cdIW5902TRJECqMfTVNv2791/g//k//o/EecvP/Mx/5Pp6TymFJMIrr73AH/yxH+G13/ZD7CjGuRHTRlmfhaE1c1LmcebuyR3u37kH+713DFlPo5a2kLRxIi6c5KRDS+NoC1Z02LYUvB3YdE2uLvbMpSCxYywzl9c7I/BF9xZR9QAAQhc4Od9yp5xy5/7pUuJp9ewpz4zjSC7ZPXEK+3HPXGZDU0RIyc63kMmaid5u2Z6bJEGjkpnJuS4LNtj53NzsgOJKpSzXHqMZ/onrayzCVS4YmMvMkMIyZ+dSuHr61J5NMhSxfd5ut+PZs2fcuXOHi4tL7t495/79+yz6Q35PM4VMIaTENO+RCjc3O+Z5Yp5n5tlVbX1xmOfW1SXM87wgKtFLy0+fXjCNRuo0lEDYs/pdSRAOh5GQLAgIojx+/32ePHli61C1Vv6rqxv6TtCrJnA2sdvN/MpXvkqphaSJaW8dWLi+SFsGFinzxooGK8G5PHlTADVSNq7kWo/ms/M5xKTSW0BoEuhWClZV81OtJoGujtrUPNp665OslQ/MZyebCGOx86hlpMnLizce1JyZ9yPTdKBqtRZrUdc28W4RFTRUhm1gO9hztGcyL8GADYTAPAfG3Y6Hw8D5fTg/qRAmVGaQ3rVc2mJm938pdXsn05pEHh8mSyAq1CA0rCG6OJwvhf7So4DG5wiKdwnaz8UXNrNqsDleVT057zCNJywQmFfJjJYrNnHEWg3JtnUlrt/nvlkxOhqVC1mMdiACMQnFpQi0BpwfjAbrZNS6JgHq3UvSAscApZmGAhzN9293fE8HKPM0c319zW4H3VW3cA26lKw+fuQxkKLZYFvrpRBKXGqBBpiEJfoVN7Nb25Pb3rtubo382pxaV5TmuWDIOR148GAT/cO7jdp3rZ/dmN6woD4CK1H3eIP3haeu0ThHvhKtLa5RgZsbgrgarRxBNy2w208jew4APHr7CV/98q/yX3/25/nE6x/n+z71Oq+8+iqnd87ZxOQZBUuEv7QPYvXQ2LKshduCaRIsNXE7R6uEWCDRSJcNOWlaC+t5NugT27Ad/s85L460Wop7+KzXpkfvV4yo9va77/Lqw4ek3rgfrUygy301sa7qAdarr7zCn/x//c9836c+wf/nn/8ku+sDJycn/Mbf+MOk01P+48/9HN//2Y9z59z8nGJs7ZDWqSQh8s3HO77xzlP+0A/8ML9ycc27X/hlNAaI2ZV/i03ydj4uamYx6Ow17vX+FfEFRIRDnpnmQl+MyxG7jjnfcDUWxrEwHqwcWWpdymANaSi1UKnMeaatpEXrksQ19/Cci3EKSma325Nz9gDFibXVuhvOz8+XjMu4IY5AOM/gluFkzrz40gtLoBCdn2HX7ryhUki+4Tc9jzafsvMs2ne/+957iAhnp6d0XbcENbUq9+8/5OzslIuLZ9y5c2/R8MHLR9aqntjvJhMYc62VkjPTlM18Me+x1k9r1Y4ipJhAMVGzCNNsrZrTpBwMdrKAu7j6rvtdCdYBMgw9m60Zl+Y8887b73KYJ+cXGSfh2bNnnJ5umaYJJbGbZ4Je8eY7jyxwF2G32xuE70jysTeRNFjF+T8NPZyn2Zj/2POwAKyVg3TZPMs0k/OVJw3VW0tnUlHAPKfm8WDlw4bI1AplJkh2iQhoAoHT7sB0GG3pDJUYoJYZQoZo837OI9PlZIrO2YTipOsIwcqhMQTvakkUtqhGYg0Q2hzJK8riAWWIwouvJIYh0ccCUqgaGUtPDGlBJIPrDnUSUKKRhd3JXh0VXYIYbVIWbW9g9YerbX20+y9tzLXFX1typEtyelwCMhQRQ4Sqr18LtGWvsz2mkeZZETG1rhoPVa2Eo+qIYbPDsP0xJtdbcp0lcysJBO/GKqV6x846puJiC2CJnKfDHoR6h6EeUwC+/fE9HaBYZtxEuGaYWzDaiJ5NNdYlin3hFId+G88ievASPahpJlK2EPtDcJXVxk4pSzbuD99Z7+1Xy1vaiGsPxT9nQWRYG0UVH7DrFrpIejdSrbrvTgtQjnks7WgDet2W/TXaKoQrmqLLvToCjDQupWR7tfq60XH1bOQXn/4KX/zCV3n4wn0+9vqrfOpTr/Gx115hO/Q2sVxG2VCT9eLMoE49kHDmeHOx9XNpwYnlQitcCSvBtaEeLeOzRaFiJBOf9XgHks+GlZolS1BzfP1g4kilmNFhC6JsoXC59pyXeykhsNlGfstv/Q08u7zky1/8Kq++8jFOTgfef/ddhJlXXnqRFLZr652wlCdynXn77SvqcM7XHj/jP/zcL3MyGRw9VTtjs33HJzyuaunwuQpU139wMmwspooLRlosMVFq4e7phpA6xly4vrmxNuzJlDzz7GJKAlOeefbsknfef4/r62s+dnPl+jnCdhgsC/Nadc7FFzvjF5gCp1ByYX8YCWIZ1zfefIs33viEBSgeaD999oyu7xkm68pqQY2JLFpLucTITGUcM5XK7uaGKIHdzY6ilYf3H7g6aeWw2/H0yRNUlbOzsyU4EhEePnhITMkUcaOhKG+99SbPnj3lhRdeoO8jL774wrKpxBiRUigqLhMQeOeb73BzecWwNUO3IXXocMIc8zqXPVkJIS0bRkq9BXXVkKIYhM1gztcBMcXe/Z7YR7quRzEezhATh5uR1CW6lHl/esycM3g5RitcXFyy2+2otXJ5eUXsov3+6po8F1LMTONIw4LWRAy7LjFSrgkJCxoD81TIdW/O0CFaUJoLhGQk/jbfihJ2M0UyKgFcgykghNixUErmGSmmtRI8slYtJtymXiZJHfi6q2oJilOlUbH24oWHBcylMjtCWLWSNJKI1qHmIXSpsKsDWiNRtki24DgkYeh6arb3Npde7ZUpCFksYMoVqiZ6LRbo1/X7tHq1RRq66iXhI+JnKyt+YE0Gal3LUc3MsK2/oXHotNEEPF7z78FVXdvnFe9+a3omVp6LaDXjzLZG2lvCeh7izBEv66kHIEFY1tNafQPwtRg1XkoMUDV6B60l3tUlIiplkdUAXzvdSDY2XqbEhVT7nRzf2wEK+CbiKq8OtWlDNDCY3iCusqjsLTVXOUIvlBVRcTXaGE0XwIIVm0TBgxdxbwTrhjFTsuCKhkhr111x/QW+ayZ/envR8JeBrq8Fh8R94LSyVSnHwckK2y7fqCwIQIuPWpq9BFseQDgX1NCatvlJ2/SXYU2lriiLCNNYefut93jv3cf80i/8n7z40gN+3fe/wWc++3Hu37uDqjO6FYSOUE0hsbryo4p1m9gl1OUZNOl/W2qOodPWfNcCRdyPpk28chRQVVATaqvaAhtfUNQWAisReSYZE5thcyvOqz7pTV01U3Jxsytvd+zNkG57OvDa6y/x5ptf57XXH/KpT75B1wXu3jnjpD9lPBQXaHM4NtizGeeZm/HAl7/0q/zj//c/Y79Tpgpvv39N31lWGVIixkzTaepiWNo+U63uImrENrD7XYtlRIOamN9cCufbBFHYhI7d7oz9fiYGpQTjM5BtkXr0/nv83M//IldXl4zjyGe///t55513uLq65nP/l8/R9/3RQmvjsLQA1wdtjBbc1mIIhoh5b4hbDlxfXfP+++8TY8f25IToG2WIwVykQyBXK8nkaeLJ+485Pz+j73tCgKdPntIPA7mUJXub9nv2+z0hBE5Ozui6SIy9lVFU6bp+aX9sc6jWwrNnT3jppYdOCLTW4aq2yOIIjs6V64srEyqLJi0epTo3pvcy10wtrgIarKVWPakoBU6HDbN3pQ3J1pgUhBoSSXu6viektPBxIpCIdGFgOmT2445cbEwr1vodJHrAYO66eZ6NJ1Bafgx1zq72yZIsqE0A0snGCJNVSJuOPgVCMVmAmAZyrux2e1KXOH/wABzR3N9cM+33JDIhRYbtCaXrbDMSsSDE21NDGkh9T/H1LkpAx4ky7m2OCqaT0vWULrrkgXFk5jJS8mFBfU33w0xezdzRv69t4QpazFiypI5DHhDZmkWGWmDI0EHXU3P2kq9x1pqqZXZEy8TWhFGFfd2RQ6Y1W0Rfa5dOUREM321rla82zzVHiG/SYJ01DTEj+nrkCeeCaPhaLHb33GBPFsSklkIphnCWYvsbru5ai32OedVZl4/tB+tepy3YZUVJzAHaXlBcBkCcgCwuZaA+5iyIMQuYZgMSY6QLxnexUpAj/JihrYi1wdfVeOvbHt/TAUpDQ7SupNFlkwrygdcfB7XaNqwlOtdFYltqYdYCOtsEETjevVIMXmapHrBEXxTNcC2EQJc6UjKBmxhN48D60QN4m9hxr1CDUJWjoAmOtEhYssJW427W2A221hZ02Ad+4HMsWZLlegS8ZdAjdPVuGD2K+D1osLWnnZ9FFlV9IuTAzfV7fO1X3+Gnf/pn+eQnX+fTn/0Yr7zyEtuTE/oO3FmQIMEXW+NZlLryK/zEl2uRI3NCpbVzt+DsuQdKyw4ayvJ8lL6WtyJ2D5KASkVjk6BeDfTENwsBtNSFKBeiBa7tJId+4M7dO8QU+MTrH+elFx9weXWxbMhSjCRHMOVW89KxUkoeM6EkUunoNXB1fc2jp3s2W7uIEGZSqgxDR4hCChDEM/FoHhhodZLmSM52XX0KdGkNwkNvpYHq7ZFBLNCZXF8hhUQEXn7xJT728hPeyoVYYXd5xcsPXuTjL36M035DrYUp27uKt5JWbCGMXqqrR+Ti3WHHxcVTlMonXn+dEAJnJ6d89rM/sHYPiCEy43jg+uaGJIl8mLjz8C4THfPJxGuvfMzmkiho4KUXX4QQmMbR3r85pXupY54nxnFaHZV15VioVuZ55vLygm984xvknHn48CEhdExTdv4MUOtCNjQ+yMR0GOm7iOaJOh2IwQIN3+G8/NhxfrYl58o4zYzzTIrKkODkZECkR7XSBefFidXoa+lp3CxVTK49H5a1pBQ7b1QpvnmFFNmcbKjTxDAMPHjwkMfvPub6cA3KYmVR5pGgVi5pZnelFlIQNtst0g1LAnT33h1UA4+fPObZ9TVhOvDk0WM2/YYUTSDv9O49EGG/PxjPLmVCL+SuW9qFkwr5sEcwXZM4bFw3Rompp2hEpxHzhzJelHQgMXKyPeH09Ixxd8N777/NVMzcTtyKI1ece1Gxrt1Anww5KWUmEaEInXQU977RYkaAZ3fvMU4Hnjy74PT0lJvrA4IwDAP7aeZkMzB0vZWNAlj3TCCE0QIarYsEfo9JypdiyGP19dk4w7qsPsdyFd2mI2hkt9sZSmEgLxpbMGtLSopGT1jQLkyTyRItCxRaImuNd0qXWGwd2mfUauiFITKwCnG2ErEvlL4ma8lId7v80lRmgwQL3JfSN4baOjdJvY0gpeEITVQX//MKR4Uqq+z9d3p8bwco1WEpvFOi1b0EWutwa6U7RhygZe63ORz2+yNUwsHR9pr2N+OoujZAycySORwaA90Oa2kNi227BSs2wJtfUGu9TDEdcWSiZ3Sr8VuMR+cXVvXBBtXBB/Zq3wBuX5tJTYsv3HajDA6364l0DZa4fZ8buhKOOOp+r61xpNW3AxeXE//lv32JX/rC13jw8C4vvfQCb3zyY7zyysvcvXNGFHMdpc424Z4jjC04kKqjI14/XgQTnIfgwVEzu7IrsMUsl+o+EOoiZctd8XtoUttGrrNa9rvvvMsr917m7v17rnFTvQXZSoMaICVZ6sVaqxnn1WK8AFVbLEXNiXXM1DOMBwRLibp69l6rUsbM97/xBj/ye34n/+u/+tfkJyNUJYqVdkSVWmAcDS2IwYKsIMLUQ5yM/zHtR0QCfYzEaDB4yerthdZVUVWY58o0qWsSVLommGe9JJydnPHaK6/yzTffQhVurq+4d/8usUtIbEhJU4i051JUPfgxKLnJ5ddaiTFxcnLKdrMlRnMMboHAzc0BRRnzvAiJbTcbUurYbgauLq5QlIcPHnJzdcV+v+elV140pAtTuO1TMsJuzo5wDgsZtdZM8rIOGN9jnjOHw2HhoYnIwptZeRberaQKQZjG0aD0UhjLRMkzKVlw0RZmrWbOaVC5fe5mM3DY71BRxkmN/yLm9BrE2n7nMpsjbzEdCkXpiEbwLgWt5qhNW3+qOsweyPOMzpkcAjc3V+ynkcM02gYrwqSTKbLSEBVZxBOtfAUhKiYXb/c/bXtC13FzOPDy3Ve46q9JQ8d4fc00TZRwQfJOKlsZvUNqIfmL+d0cteyHFEiAaHABtcapaGUJ83ehMzRhzhOlzIZ4Nw0PL5Fq9cROlRSEIUV6DyZa0GfIigV2tSU+1cpEm83A5eUV2+0JNdszv3PvLvPjTNf1hlAVNxSNVl7fH/YcDjMahNQlYgfbzQn7mwtDEfHv8USxccXWRdfW7CFuONtsmW9GNJgtSC6ZmsU1Umwt7LvBrtfRMnNjC8umviL+lc7/m1LPlEdHdTwBDtEwndocn5sm0iqZgVo3YRD1jkFQXbuMGjpatHrLfoAQF5VYmyORLvUQxa1O6jIGgydDRB8rFHKZKfm5Jo9vcXxvByg02mRj3rNuRo4maAtFnwdU2k4rH8y1Ww5+67WtZAKs3A7/s956NaouBq8VydZRMs23T2BRARTvaRELTlZbbftvywYdmnFXTBtEXbTaenDyEtJ8H1j/31Fp57hb4vjc29lXzXY3j14nDq7YmD56vzoGswR6dhOaZsacK+++e8F7713ypS99nXv3zvnYx17lk9/3Kh979WXOTnqLqrXeejZLqUpaMuJgp4ohEbhVAC5770JIZksOUs29M48FzZUSGvNkxVVEyqKAWlFmnfn617/Bp17+FPXjlUoTIDJIs7SxVPRovOiCYFnQUig6o1KYpgPj1DsU3Dgjtrn0Eiz7P0zUXLj/0hmvvvKAj7/xCu+/9yYnJx3bTVpgbdXgKp4r2qUIh515Bs25sttnv2cjQSwIOD/tONn0pBCQWJnGys2+MmXrsogJttG63uYxM88VyZXT01Pu3btHlMBLL7xgKMrLL3H37MwEzzqHxwnkouTigmPVNsNWDy++6eU7p9y9c9dVbBvR1YnMOZO6wPb8jE3juIiY/kXOpktSCkPq2Nwb2G5PiSkxbDbm54Kpn06HEUJgf9gjfaRkRbIQ5kyfksHKtbA/7AF48YWXePudd8g5M88mo3+cOooHHajJ0qvBWdQSCNH0MYiRoe/Jc2V/c2PP/HDF9uQUxNR4x3FinGcOu4n7904oc2HwEl/JM4+eXhJihxK5d89a0quaoFouam7fbQo7z0fEEECKolm52l9ahSIYylFrIWKEXVGH5T3Ub2Ne8dZ5CYijD0qlzOaRdH5+byEfv/TSixxC4t333uWk69yPC+OpETE+ppUsqmf6yuolY+PSAgvLnltnmgf6PgdLydxcX3BVrKxRKGYWqYbKBGmoRFvLbL3LPv+DCCQr0WWtFBWCRFJrhxd4+uwpuRihOufM+Z07ZOeVbU9O2O2uqGLlHDHnQAchha7v6YaBroukrqcfBoq7lTf/tS4mJz/nI3TfsNsUExWh226s9Fw8qFdZks4S1Im+zVZAl+CnBRkN9BcgJNNmaR5rEiPBO8bMTsC0X3LOqKvnGurS+HsWFFsJ1rR/yJVhGJAQWRlvqxRG6yBdlWMDqUtUzdSCo88rWtOS7OX9tS7aUd/J8T0doGwjDJ1QNDpnQXzBrGvpYtn9LLL02b5E8XiGghyjDW1TP/7pI6I+ff7Hhtzgtey1fHGr2+YI/gMxzYFS1m/xvy3dJOLk0bAOghTjIqoWsG6IrutIvdUDj/8XvJMpHAVGqzaFn0NQWzhcRwVcGMoHnDRoToRQ1KFNpXmuBWTVN1jIUspYR947TLz/7mN+4ed+kRdeuMdnPv0JPv2ZT3Hn/MwCsHjUyr3cn3Ybjp+jLgFh9XNpiM5CJLaQ1chY0vg2eFanptjrMagQmOdslvS7g6EDYkTA2jyYWrAXjYuzP9ywO1y7kqxwcf2YnK+4vHib7Vlht7+kS6YF4imfG60ZkY2Ci6Qp777/hCeXNx5wZYYhcLJpnA1Dwk1wzsZNjImcq8nVI2QgdINzZey5aYH9QTmMB5pOxDgXxqkyZfMQiljVPKZECoJiol937p1x/95dyjzz2ksvkUvmxRdeYHu25XA4WJCSrbMqZ2tZzzlbYIKpSxYnU+Y88fRZYXuyoR86Sp55dvGMi4sLTk/PuHP/HjHiCpWBqc7kOYNWNidbroshO9uzU9P3CSbTjXqNW71bQoSSJxMo6yJ937PdniC1UMJM6jJBhIuLS1coTssGPM+zIWXH2DbBmZBqPKngkgGdl13ybHV+V4zdT5mSQbqBkKxMMO0OhgKmZIhlhTwXcoQ4dIhEonRAR0gdh322YHicOORM6HrP/I/WFlVeeOFF15yBeph49OyJzYFSIBeohSCBebQWbfNQMe0Y0VYeseDZurRA1PQtxv1hcWk+TBP3Hj6EFKkE7tx9wN1751w9eerocsAc1IOTboUoAcmmQFq1EtWSsxo7O8daMEemVW4SjD9Ri3WNzXkmdNGQCb/+ipVzzF3AEq0CNDfv6Eh1K6+A8RFtY7TsanfYM08zMSSmOXN2fs4wDNzcXHNyavyzUisZb5H15othGAhdwusoVIH9PBL6iDTZ9qMcOEogVu9qRDxUs5LubtzbOteSzWABogJEMXSqOLlV144pbeKFqAPJrSzknVDFWvKj04slGCBSvSEjxY46G+qxrGUeTNiSYd9LS/Z0NH8obVwapUpZnJTtmahxmTpB3Y+uBjHxzWrdQjbXLEA0bRcjQodfKwHKeQebXlASuVb2uSChmCFdIyFjA9x4W/EWEmJLd9PjEN/LHAr11zXiLEcbeYtoxEtJt45WUnDo4Rbv5VYdxjN6xR5+Iy3J8StkIWvaQ/YuCo9rc1HyZBqRrdunoSuW43pba/QuCwlLq3WQQN/3ZhPugUvwiDjE1t4sxs6U5lh8BA+2YOv42tUCAosBrS1VBOfcKoRAnoVvvvWEb775hP/8+f+TV159mY+99iqvvvoq9x/cYxgSOGxqaqEtsDuKFhcNBZ9wDl0vmYVr0oQFX/PgztvqquiSHYC5kI7zyDzvUYpFBQISlCRQ1a9dYRxv+N/+13/G1772ZUKd0VrY7W4Y9xM/9ZPvsTm5gyjm0vv/+H188jOfAdYWWwuUArkq41x4dnHNv//8z/HlL/8qh7FyebkHBnvGC1N+5XqAq5XCgmQAVmYLeLdFYT8XJ7Ep0+TlrqrEZF45VkM2LZwYVrXLWiubk4E7984hCnfPz0mDUHVGQiX2bg5XTKmVACEloJj5WBFC8VbIWvnm229z7/59YhQuLy65vrrCiKsJEWXOE+Nk13SzP/DFX/4C8zjxg5/7IYpWNqfn1sI6zozTnpvrvWseJRp3ab/fk1Lk4tkFX/zlX+LOnTv88A//MIREybZ4juOBq6tr+qHnZHtiTz4kCzLBeV1tmjfRQGWeRtuwDxNVi3eoWRA250zXReZcCbFj2A6I2SQzHvaW3Xc9EiKXN9eEWhhSIiUbqKenJ+zGzDROjNVJsKVY4FkObCRYebG4P64q1zc7Zq3W/eOy5heXl+icHclSYsL8ihQrIdkkMr4EEFEolYKhCUmEw27P9Th7FxK8+823efjCQ57u9uyvD6QUefLoCYeba0emvWtRO0L24J9IbluuQplnK7eEbB1oat4sy5z2DTbnzKyVaZ6Y54leNhQP+oimBBzEuB61FEdzheylxSElJLrdQ8momtO44Jy7AFdXzyjTzN0793n86BHnp3e4vr5mHA90KXBzfe0SACYIGRDmVsKRTHXSKCn5emz3VDQu3WwxBiuLBFu9Cy3DUmq1JDR4y7SE1sFja75WXbo5LX5Zsj6OuYpLiUaXwcrKQ7R9Yc6zUfyiJQpzzu4ZZKXetne14EFroIjzm/xrS66kzp2TG0/QW6orbYsLi1GsYlxEJbgytCG1+H46e+u6NRv8GirxaKkmFlNs8YjaWlfXrdMeIBbpYRGs+oQP0ljJClW8f1vXrLu0SHVt2FMaIx4LUHyztonpLaUcowjPByf+loZkwIoWSJvsrMRfDwia7FzTaeEIJTqu3rgmmQ0azdTZEaEFAFkRnRTjEgCEgAcnLfqNRu4V61zq+sE6CGJc2rJjFGITmvIp1pAef0i3JhhSMQqIst+P/OqvfJ2vf/WbnJ6e8PLLL/Hx11/lxZcf8vDhfbrOFwOc9e51VLxL2DIkD978visVOgibwDbMkFxfwrtFWieAeh0eEboEXQcimT7hrZMGzzYFUy8qUeeZ999+k6/88pfQyTkLQSAm9uMVMr3J3ZPE3bMtl5/59Ww+/VkmxFUV7aEqjSMUePnFl/mVL/8q77/7iERgnCq7gwtrtUBaPHBdBMQ+WJZs4mLFtRGoQi62kVYMWg8STRbbdUca2bpkFtSq1szTZ094dnFB6gPn9849A7QygGmzmKBTcm5UCEKp0X1tTPdjnpWu783M7/Ej6zhwwvD+5gbUeBkxGRSdS2HaKzfvP2K8ekr99BuoROvW0eCBemaeTYUVxXkthf3hwJ3zuwQ65psdB4Tx+pownLj3lpLHiXG/Y7/fM44Th3FkWwpz42q5KJ+iywQKiqNBJt2/391Qa2a7NVXU+TAxz5GCcnLaU0qGipnXBbMnKkWZ55G+S3Sd8dCqKlMu7PYz41SYqxGgQem7yJTdYDHZfGu6LlULFxfPSIeBXDKSXaMEQ1DmpTvFgx2fLGu7vSUaNRfytZW7NAi5C3TnJ2yDdX7ZvFMePXrMdjuQ68yDuy9y+fQZ++sbkgBeChnHHTkHWzs9KOjcsbbuR8phQsO6Fmotjm/6eJ0yWoUsxcTvcqbrDTGIwQQjUUtuortle7y1lHrMBy2aunU1dDAFN0eVQEfg3tk5Nzd7hmHg4tkFz55dmMO0Kmf3zri4vDRiczL+GWKdM0ULUzn4HhJN1t/9kqIYKZRqa0xTGm97y6LDpJVu6EkSrLMq9ZR5puZK8VKOUr2knxbbCUGWEnKb36qNx1YXhdq+S55kKJKshFxrpmheUJcQ4lIusmXIv7fCcZrZ7i3ghpImwxGAY8FG/PtK1kWPpeRCjN41hhC9tNpIs2bSqAs/8js5vqcDFMDranUR5lrUwo48eATT3VwfhPjf24599N+jJ7RuAy7h7D+3AMEIYutDtyFUHW0wPkfRFgy002kBUGt/jb4w3jq75by1/carLhLW023iPy3IWcoaoX1WQ3pkyaJu7WxHUHmTeG/E1WWx9mAvAJKEGCLibHYTwHNzP+9uiRLo+s7cZn3CdX2/cGWON0Zom1vl8uqKq+trvvK1r3N6NvDaa6/w6U99H69//BVOTzaI5IXkp8VvpkARIyR3RemCIT9TTBxiR+izM88DKRjaENT8aopLNIv7/Lx8Z8udCOdJKeLy2QELZLQuN/1gPX/m3tvY6RXqJMy7DNNIBdIG7m8GzvuOKVhbZAtKqgYOVivgrV/5Cn/wf/iDvPnC2/zSL/wXhiQMXQtSvbTTAmrWQFbBNLbq+oxBbJFW6xjSYuTlkCJtyWvj2Xw4bPyMk7UsVhcoO9lsqVmttIFpQNjCqD7PHH/ysV0qLjpmJo9DCMQuso8jd87OmQ8HXn74SUQ6vj59g3CIDEOPBOH6sGPOmWmc6RjQ2LGrwubsDCVwenJCDCYaVWul63ouLi7YbrdEX8xbkL7dbtE0oKknnZxxcnqKiHBzc8P29JSslaurK549fUrfd6iLrtn8XIPopQVUgpNrZwJiStWS2PaYiNc8U2NnTq9VzLxRbCPb9D3jvCOofdZ2u2WIQghGkJ7nwmHM5BqQLrIdBroASSvXh4muS6Q+kcvaOowa2iAhmAO0r3sxhsWczQi0ZpVQj5541Upo2XOAnGeXZbBgQTrr5MqlUKRy9/zU+DeqdDFwc3XJNE8Mm558OCyl6FqN7BtD8nXK5rdgZokVqBKQGNwcUaBm463gCaF4d46jfLkWCELqI7XavC8UWiOEeBLZhNNCNLhcJbVF0ZNL/z7nYnTdQAyJk5MTagnkyVyVL6+uyaUwTzP7/WTlCudQlVKYdAQscGOaqVVIsSOrULMhEEt3pLhEQTES7DyPaC288PILbLdbrq+vQTLT4bAS+VFvnIj0KVENmrcAjJYcHyF8xQK4rMXnv5XxVFxkMnobdnU6QGkWIOKt940P1HadYui5qbERA2bZIJacLQ7Fvl5GkaXhw55X9vMwXaLWUt0CrHWd/M4Dk3Z8bwcoPm9ztVqx7ygcl2Es4MACAocGDZFgDRUVq0M8t4Efl6XD0kXC0fsxqWWWkvXqUeIDrxMWdb3WmaPtM5ykJB5osLRG20ZcRd0jBuOgqJLaSVSl+ncvp4WTxdReWxdophoDGzmKlFoXzhqtt4tq3+dwDiDm/Dwb5Hm8zYnf9iCeQSjLAgXelpsse4wpEKUjdR0pJfrBkJnoNvMhGk9mnA48fXrBF375V3jxwTmf+fQn+KEfet3beRNdCC5EVCjRhJlCjQxVrBMEmGYoTii1bquZWM0yPKDmFqwVCYW6H5lvLunzxEZmcphRjd4hZs8J3MhNOj798mvEN27IdaTUwvVux+5aKScbtl1PlEIpE6enp2yHSHI4XLGNcFZhPAjozA/9wGf4Lb/ph7n598+IOpOopJ5l82+LSfMKyiUjEr1kZ218+OJTayNFmrGhoWMW0daUPTOrZo5XA1TjjNTZWpf7FKFm9vsd0zgRVSz6aOrEFTMVO5pb1TPKtoCZ/kwgBWu9Pz/Z8uJLL/DiCy+wP8x86ctf4r3Hj5cyxzJvgRfvP+C1j71Gion9zUgIgc1mQoPP66o8ffyER08esz05gVI4jCPjYSTqFUOMfOITb1iZq1TfcPY8efqEBw8ekGulHwbmeaKFfLVk26hrQ/0U0Wz3LbCQZRV3a1YrGaWknJ333ExK9kCv+L2pVUlR6DYn5CpEndFaGbUYelgr41xJm411IlJJUa09vAp7wQJ6Vh2fJXlRMR/JGhwBdhfbWkADKXTMh/1CbLcnZZIIjZAqoUNSghRsB4hi3U2pJ3WBfkhs2CDhlJIrY94zjiN37m4Z95XL6WbpSpNkqEgJkZisnGWaHRXtAiF1EDo7/1KIOUMuy2oTxJBacnGZB0MtraupjQ0rj2htisErWts6dRSYayVUTwrVSpCd2Lwd82hdRDUzDANoYO4iOc/MZWLYbCilMhXj82kp5Dy74Z0Z8Kkap0bUPIyg84TB5nYUIYXAYTZtEFq+7AKEXZesVFWsXCqhemm/6Qc5WqGVLK7t5WtGWciprbvH+HCNpVRqIYbgAZq9NonZg8xHfC3jzhoa1eZs8+FSh6YlCbETIFkA4lyl4Npg1q5emWsxGQVtgplx2RtrtQ45o70Eji0GbtG9vs3xXQcoP/VTP8Vf+2t/jc9//vO8/fbb/NN/+k/5Q3/oDy1//+N//I/z9/7e37v1nt/2234bP/MzP7P8PI4jf/bP/ln+0T/6R+z3e37P7/k9/M2/+Tf5+Mc//l2dSzMosj3Us+u6bsDHh4i1lkpo0eiKWdzS4Qiwin95LaFFtD4Rbt3glsyrv6Y1EwUfoCEsE0+a3C8tE7bMPPjpHCsmgvoAM1JnVZNst2WLNj/RBZGxk1lt4A2i1uX6PIxyi1vxexS0oTe6XMzxgrhEIUtktQZF7c/BSy8W74sbzlbPviHPM9M42SKvsrR5muDEmj3EZC29FrR09Gngm998h1/4pS/xH/7LPT7xcWtX/v7XX+OVV15CQ13QhEzBRL8jE5X9nNkkQ7hKrWaqVgtdDHRiMuQNQdntDtYh4uWAIMH8JPz8cDXGqoU7pxt+7A/+D+yud+xz5s133uY///zP8ws/+wU++/qn+A2f+X6ePXufed7z8Tc+htbsHXyO2HhwdLaNDJ2SyyVvv/dlvvr1L1DrSAzqpNX27CyIbW635ifjQbE2jpQ9DSspu0fPUda1kKpT896wWrOqEgMMm440JOsgmUfe+MRrXDy95O555MHdnlICtQi1dMY7EWP8l2zBYQWyuiZOKb5hwjhG7t8/46UX7nOy7ej6nvPTE959732QjlIrIbm0dgycDInP/eD3M77xOqd3zlER+9xq3Q0pRu6cnhBFGbpIjB1DSpxvtuTRnIg/9X3fRxR3YY5w9ewZ0zTamAqR0MH52Rk3NzfUebZOjM6Esla7Bx+7vtF2fYQb0yOpZaL0PSGaezWjOSIXnSgKqYugZh4IwXg5FQ67g7XU9lZCGMfMWEZC6hg6I/cP3YDEsMzF6vyjlmCtCtH+q9o2HQ9WvMW5lmJBuCdk4u9vsvKq2fgWyYiNVSuPHj/xDSjw8MFD+tgzTzOH3cg+X1HqzH56Sh29RNkC+OpSA1q9VTZSyoRKQWJwby1PlqK1qqqLr7XSk1bbgNcOEEfF3b8lJkNmS0OQvb1bQjBDxFIsgMH35lqJkqz0r6A1M92MxGAigl3fUUZDi+aqIInZ1WWTNHduK+dUd6fvUmcbOImimVInbz5IhnAUV9UVMYRVbQbG5PwzjxalSRio8SWbnUVwsncI4mJ0TlhdOgWfayDwURBacttme63OybPfHMtjSCMEOhLaDjPEtc+pWsD9pEJoEh2syJWXaKY8U7QSSvBrWhNcy5+9S8g3zKPqEreIlt/m+K4DlJubG37Db/gN/Ik/8Sf48R//8Q99ze///b+fv/N3/s7yc9/3t/7+p/7Un+Kf//N/zj/+x/+Yhw8f8mf+zJ/hD/yBP8DnP//5RcfgOzlELEOX5cr9pmv793rjpCEkNAKsZ6kNYaENoKOtV+EWmeL21r0cy/4PR5GqLAPLvv9Dzr+9T25/ur3WNvNIJTpTfokVli2pHgUn9keDdW9DaeqvNQTHc26VZaBUXYM8VK1m3N57FOzpUfQiLWDxIFGOrvH2HdJlMTXpcGd608pmNkGybXPAuHxGCBGiEfLeevcR/+2/fZU+Rj724hl/7H/+n/i+73sZSTZJA4XSwT7OXNzMPL244b4MJo1dXaehFFIIDCnS/L1SgvEwc/fufWttrgqhgoTlOko40o7p4eSFM05fu8/bV5l//ZP/hi/80vvsDyeE9yc+9onCxz/76+g6eOn1F7C2ZEMhilYIgoRMZUJFOb9/l5/66f+Dl195kcv33+HOnYGzk2SoB5aVV03emdZQL114OFVZjGVVTTuiPbdqsRVPHl+YamvfO7TbBAbtgSUNpCCkFBhS5en7bzLtJj7+8oaXXz6llkypxgFKTqgtTuCdvNV4qpWaTZdGSIxzpY+Fp483vP7aQx4+PKNIz/17ZyQxyfFxmk2YLc/0fcf9u2d89jOvI5qZDtPi9ju71s3JZuBsEJ4969ienVvwWwp5msmpcalODG5vc17NxNE4M81nJHG4uSIG5XSIdH2iFvH3QeiC1/SF6zKhapn7nGcLDcWgA1VIqaOUkVxG8jxzGk7p+85KKFg5bOg2VmpTJYgJ9XVd4Ga/Q2YImhhONigJxXSJtNRlLfLi3ro2ScN/fHMqZe1moa0d1avcYVmDWhKD2JySoIjrV4xlNNubGCEow9Y0acb9xG6/sw05AWUNjs0h1/kFZHIdLTAQ03lJWJdNxue+2HUZIuVeY9VQXHGBPxVvfZ3zEoAhoMGQDbS1ujq64MqlFnxZ00MpGQ3G3SHGpS27SCENHcOwMWuHaTLxRK1Iir5jrFxDIYJ4aVqh7zsr7c7VOX/ZReQ80ZK2Mvvz8kCk+vqTSwEXm7TApBKcfGD6RhjKE4N1mItQxUqCvogue0qphuG0zsUmIlfV5PtLPUoaxYNBrGtPWinGy97i909RQjW+V8mKdLc7PcUF22o1PyhDU31ItvpWG7Fqwb2VyG8rxz7Px/xWx3cdoPzoj/4oP/qjP/otXzMMA6+88sqH/u3i4oK//bf/Nv/gH/wDfu/v/b0A/MN/+A95/fXX+Vf/6l/xIz/yI9/V+YgYKaqgC99jqZctG2BckQB0RUaW4GUlH9rRwkZXr/SMtBGzjm/wir60h3gUiRwtKMfH8fuNTOvEomAozBoR28AU7wayDGEV6zoeEG2AxAVeORoEHmSIX/9tfs4a2TaIe2ludOSk+TOwLBZ23s0+uzUyLRLNR/camkvFESFLrPTSojFZnsXRPcJ4DVYzclErCvsa2F/f8B8+/0sUEa6mHV/72lfZ9j2f/nWf5tGzJ/y7n/lZPv3x7+O3/Kb/K4f9gcat0VpJMTB1HSFZvb4vwu6Qubw+8Gx3YCwFguka2AQ0XwvLMFykSiApvPv4GV/40te4ehaIDDy7Hnnz0VPOXrhLyrboWQwsQFxQJVVlypWbufJT/+kXGceJs21Ppzt2eWIThJvdFaUU7t85N6QjFzKBacx0cThq3zMKbxvPTSGy+vfmojx5fGC7OaEfAs+e3XA4HDg9PyPGzoXMkom2iZDnPUEqSGW/u6LrXkaTUtSMCbP13VrmHYGqhKr0WaidQcy1gnSBbqNsT6HbKKlX0yvRwtD1dKlbDD27zgzIZh0JfeHO6ZakJ86/EZ5eXfPOO+/w/Z/9QeSNl/nKV76KaYfcI+fMk6fPuLy64eLympdeeoXr60u2JwOUxM3uGSWPbDc9T5/OzosSXn/jY3SbxOndnrOzU7bdhnkufPOttxGtnJ2dsdvd8OjxE3aHPRICXWriipFSBIk9XSduP6BodN2iGJmLhe39pmM7bK3FNs8ElJQCqevJk93PKImUegjBuh1CIPUNxV03h1KyZ9A2DrN3lhSfcAHrnAkoTa9HUBbvE/U5LiBSmaadbfwxQp29G6WiQYldIkiiEgnFxm+ts83xANLhbfdmBaEloCPI1iwgqpoTb5NI4Ghtbtn9UhVUrMQmJuZFwaT8pRJjpORCzYYogwXdi78Vsogxtk49VXufVjVYsahzMwzRCFHQ4AGacwsXTCI0nlULUqyVOnlJGDHTTwSqzrbeBue/NBqAGGl58e9RZSqFNJtOTdERpKCavZ04LfdDFEPzaru31Qni6lojLoSmLpZWK2kYPLCy+1pdME3C6lDdUOsUE0tTiMxtZV5QVxXj6ak2p3MzBewcZBBA1LrcwrLGr/vg6l3n464aordsCSvH4Ts6/rtwUP7tv/23vPTSS9y7d4/f8Tt+B3/5L/9lXnrpJQA+//nPM88zv+/3/b7l9a+99hqf+9zn+Omf/unvKkBZNlwxGlGtukSRFp2vGT8tCPVI8rmwYoVBpE3r9fPFN2n9KGhKDZ15PngxwKFtzP7SBWppX2uRprQJu5yLPeQFntPVmaZphNC6Z6S9VzF1jODng6saOhnUj0WuuH12XMAQJ2YdZWvH5S8/qgcaLQyKLZBqaMlzMdoSXC3Zp2UQxtFqE2NV8rTP9E23ytEHFkQKc438y//tf+en/tPnudkdKHNGauHkzh3mPHN9ecXXX32PR493PHr0Pp984xN85tOfZjsEKomZmTJnSs3EJLz/6BlPb0beu77hnWc7Yi+MamhL33VMWpf2xcN+omhlt9/z1vtX7HYTIluqKod55MnlBU8vr3h4/5wSe55eXvLN995jvCnM08j5yZaQAt989zGPnlzz3nuXoIFnT/dsJPN3/97/wksvbnn/vTd56cV7/Ngf+RGqKqdnp6S5MJY9sRMG8w/w4Nq6SjyP5LgVvO53bIfK0BVSmDndRKbdzCZGNn2b/jZeSi1mIjgpv/yLv8K9O2e88Zkf9MBYmKaZhkrm6nL3AlZWsnLMOE4c8khKPTf5wFyV3TjSHw7kyciupRTGeXSSXaZWYZonvvjlr3Hn7n/i//Zbf5iTmMhVefT0gjffeY9nT58xE7i4uOYrv/oVUkqcnZ2jCjc3O3aHA4fDiHzhi4x5ZHuy4dUXX4YYuL7Z8fM//3NcXl3ZuhAqd+/doZSJn/1vB+7cvcOdu+ccbg6888132G7PGIaBJ0+eUovQdz0Vb9mn+sI9+hxL9L150Qx9z+n2lHEaibGn1MI0j6agK1CniU1fSXEgVjg77ZmmQpbAYTqgYyEoVBFi15HbnGnZtJc9ShlNsyNXwOTg2wakeULU/VeQRaK8CZKbTqC1w06lQFH6IAhmyhjjAHgWLhDCalhZtVhAK1BCoYoFWKomDJZzpeZK0OAM7pXQGqg+p9ck0NM++tQxkym5UrKVdFLqmLB518icNTQJiHWMz7Uu5RRpfdS+cddSUImUUsmlEKMvXrVCLZQ8M88TNbrrcVYkBpNzCCApLsrAVWCeJ7Sa/UmtJiZndZwA2VbeFDtSMBTKSrPm4ybgpa9MLZlKodRMcOQyipe+DSKilplVNt4I7yYaqauFRi2+d9j6biUvzI/IxSNzKcxaGWIidZ1xF2t2UrXpOFUKrVnDGi6ioygZEWXY9HYv1IOTkO37VKxtWY+rEtZJ1Phx1YXoFnXd7yI4gf8OAcqP/uiP8kf+yB/hjTfe4Ctf+Qp/4S/8BX737/7dfP7zn2cYBt555x36vuf+/fu33vfyyy/zzjvvfOhnjuPIOI7Lz5eXl0DbqNfNNHimjBNM7UWANkdHG8RrA4+XSlonBNCUS0XWYMLACT1CXdZjlddvEUd7iQc62iLM9fVt0tpLWmRwTPBlPfePiIluvUCf/21xoMQ/c4nEjq7Hl4flOliXDI7+u2ZwngHVJj3UuofC8tHaArUPOTc5+h/amDNrOa91HCxlHxM+WC9NjxbroEy7kZubkSTm4QHCeJGRlBj6Mx69e8O/+7f/hcM88eUvfZMvfPEbvPTSGanvyFrZTxNXV1fUWpj2EzcXe37hy1/jEBPDduByv6PrIq+8/CJEdYKp8OzJFW+/9z7vPX7KPCpl7lB0yW7ffvcJ42HiE6+/xvd98Rv88i9/kX/7U/+O3UVGS+ak7yBEdoeZJ1eTKTyiECJjqfzv//5n2abC+WnivXce89rrv0il8rnf+DnOtgOh3zDVimCGejFEkMjNzYGZyunmxEey3ceCPZf9fkfXZR49fsxrr77K3TtnS7s3AEG5vjkQO+XmcODtd5/yzuMnlAD9EPnSF7/GW2+9w2c/++ssq0O5vL6iAPOcGceJp0+ueeub73LY77h7fpe3336HOVfu3H/I+d377A4HLq6uTQF4nH2zhBA625Dmwhe//DVeeu0Vfv3nPkvUyC/9x//CV776TdDIV7/2lJvr/SLgpfpo3Zh9IZ+mCQnK5cUNV0+v6KKpvc5lBI2UaabWmff37xlBugTG68p77zxzU9BT8izsdzeUbNyI7SaRx8zhsLfNoPYQXFQsdtSidP3gnlwd42FE1ILsWmC3v17HvURCLEZQLlCpHMYZrTOlzvQxkrqtbXDL2mEIXoyBiDCrCa+l1Gaik2Q9e26FnooVgUXkSK5JIEYn2MtC5lS1+SY+FtqaEUQgCCUrlYC6v0opE1oC82xodBVFYqRoJtZo9LJ5NnVTcL4J1pXjRHtr0S3WARXsmUb3NgNBS7WOpIb8eOcPzusrjjZH76o0TzHjinXJCKIajAch1cp80lRicUf74HIDLrHQ1Lvp2hir3tk0+7ppHVN5NkFHdY2qTYpsthtS7OlDz6IyHcTOKxhPKdeZwrysrdIp/ZBIoUdVmLI5aSNG2o5EK7tIMUHSbIlT7JT5yA28JZdWu3ZDzLmaFYisYym7zYZxv41VaRQJU9Q1dK6t5c3gUFYhOL+utqW0EYiu81DsZLz0twbP1cm6/11LPN/u+KN/9I8u//7c5z7Hb/ktv4U33niDf/Ev/gU/9mM/9pHvOw40nj/+yl/5K/ylv/SXPvD75q4YgkWpcy0uiWyoxK3PB+M/tCj+eOeDW7GFlQP81549NIvw9rvngBLjB+hxJ5Ac/fXoe4422uUIbUA05uuCN7Sw6SMOZTlrWX+3TP5GtV9DA0Ad/nvuc6V911GGo7ga6/F3HZ24Hn0/1o2wdEnRSkqyfBYOmTaH0lUnUxwdrUTsPki1OnUjANI+y4O6O+cnDJsTUGV7cso0zsR+QEJgrBbUxhh5ISbm+cCXf/mLfPGXvLtJjdw5l0wusxl/5cxXQuAXvvw1QgzMalnfMHReksnUCtOkzLnQdwMUJedCCiZzXXLm8aMLHr3/mF/56jf42Z//eeohc3N5Q1DTI7hSa+WrEqjBCIPVFz7TWFBynTikypML5R//s3+HIvzrn/kqp6eRV156SIpW83/55ZfZnGy4urrii1/8MoHID/y6H2C72SKi7kq8J8XAJz/1Sd5//+u8+eY3+cGxEuQtTs82Nm/miWme+MIXvsivfPmbfPVX3+PtRxd8/ue+wPk/+0m2J5H/4//7X5mnzIMXfsk8abRycbVjLpmD+9WULKCBfNiBmi7CsB1499Eld++ccvX4hnfefYQ2/xeHrjVaG3MMiaePD/zrn/yP/NIXvkZAePPrbzLuiwmluZJo62SIvqE00qCRaW0KVi3k8UDX9cTQOZG7IFXp9ECXhFz21HDO6cmZ2dSK6cXcXO+ttTiYGJyJtBnXJoZAwTJEkUqQ5JwVg87n2XgG2TsjYjCX3hij3aMi7PaZUlqbtoAE+q5nHDMn2y1KYnJTvDbPmqV97CN5GmmEfK3W2j3mbL9TWwEU4zSIeglVXVNEIGPGe7lWKMVcqYupQ5uadSspV9OemYqbXGZU3etIrKOsVkVDpFRbb+Zpoksb47FNMyomt1C1WAegRQuGUISOIhbcTyU7NyqgsSdPZm5ZvaVWS1hLCkF9LNiSmZLxTKJ6nujKtB5hLEkhC2nTfq+1epJlSWIjiTaNJNWZoua1lfNsJOmaUXc2b8yAipJjYZpnpmmmNQtUJ+fbsjWjMmM2GoZqe0WdaZ4ZFSARgz0vbVC0N+ZUMY5VE2M0D6O1pTwE95PCOsDUNUxCiCSsHXiaJx9O9nyNFM0qBqog2nqD1LSjVJingkTjA9aia9s77YYrIsUaVFTJsy57pNrStn4vrfPqOzv+u7cZv/rqq7zxxht86UtfAuCVV15hmiaePn16C0V57733+O2//bd/6Gf8uT/35/jTf/pPLz9fXl7y+uuv0zQlTF6XBZmoUk3psB2tWgG0Lha7uXkldvpkXso4S8nCR4iXYdoHrdt7WAc85Shy8VCnITFyHGrI8x+yIDHfZYnu6P0mALXEHQJNXfV5BVuLg9YXrpydFsgcISeBhYilWpbFz2/Deo84/sz1r63acBzgrAiLLp/drkG91qTHr7l19vbr+3fvc3bnDleXN1ZX7UE6Uwa17hZLJoY+ce/OPV568ZxF3wLQCnOuXO93vP322wjWYXDn3h36oWfME6ebLafbE64vL3h6cUk3bJnm1X9Hi+lqHOaJO+fn1JwpXeRw2FumMfZM+wI5UmUCDUTMs6RIJYuNKntGpnehxY3kJusienZ1jcjAo0fvEiNIeAvVwjTtEYGut3bjPibKXPgv/+Grdh/NJGUhD56d/SdKmYih46f+zS8w7jLd4MZ0VdhuTimlcn1zyThm5pJ4752Rf/6//HtXY+2IIfDOe2+CC4RNtdgm5UEfEYNz8wwqSEjMeeLm5m3mOhGz0nfbJRA39UvXMVGYp2xLY4k8/sY1h8OBuQbmqdjGKM3B2yDQUjPTPBsHwt16U+hs7AuEPi6w8263M2Sh1kXIUdU+7+bmxv1TbNznbNB09jJOKXuixMUIbppnZLaxXb31NceZ6N5GTe9DXfBNnLMQRMgFE6zzdtBSq3W7pMj29IwQO3Jh4Y0oVssPriNi7r7Y/ZVAcHfkoe8hW4IUQoeR4qtvjrZRhWQbXq7z0noafDMNCDH0iEai9st0rbWa+aQqUc0WAipaCyYVYslEAAso1AixmgJ59p02OQewKF210lBM0Zx8xXSKpJreRyVQ6wlVJ9BCkOxdMGuJPbTuJs/kxfshxOd1LWHhYbRNsZSCTLZjmpK2KWRXD0qaYOVUZnBCfy2TC40VymQ2DFXUZcnts0rOpH4gxN67vgIibjiILGXs0HyVGgKh9kyPFcubiu/tJBMn5Nr1p5SsFJszOTfyabBSnENN/dAjJRDEykSNC9PK5rOPI/sx0HXdMq9qhaCGpoSFG+Pt7N7VZOuzXX8T6LTuHo/YVD24rUhIVMryHNr1f6fHf/cA5fHjx3zjG9/g1VdfBeA3/+bfTNd1/ORP/iQ/8RM/AcDbb7/NL/zCL/BX/+pf/dDPGIbBetefO672Zkd/jFVYS+6KVhgkuCbgy4NvJZsGQCybqH3aSiitjryseMb6qqOAIliEvh42QFf6lb14+Ro/1DdTsGwyGIZgL9e1xHFLDcFRGgfo7LfNt8JiIUxdsd0EWe7JEhw4EuF9ezRRnTb4GgltFdc5bkc+Ov/lLz5Qj3ARuyz/3iX4uRXaLQN3/TSOXvPB97Tfj4cZ4khWEyOTzkWhVF2yv9J3HRozkxaiulqnPzANkAbh/vaM6/05eS7oXI30VgsnfUffB2JSupOOu3JOF3tEkolstQ4AlP2TRxBNHlq1UObJPDWGGQOiiyndqmX2S1SMeYioB8O5Og+ARK4JmSMyV5AJJJPVvGhCSqSSLGCs1pExqktxq6AlL3yDXDJzyejBnHSlWobXkygaGUcjZV6OB/rNAPQc9ntKVqa5Gvm1WvdXKdkUZUvTsRCXITfV2rkYF6hPW2Jy1+LdDVQoszn0ptTRx45cK50bBJrwoTCHzDxO7Hc76uDkPjW7gdQlkOibtRjyNR8ckg5Et2MQAt3QWR2cunjsGLlZkChMOjBXQRks8z9MXiJxumD1rggMKVBrr6At1mU+FneLPocrKRkKZBXjiATzpaEq2RklrbuzrTemNloZJ0gxULLxfBr8viiJuu6NfW9AtXgbqHWBEBu6H20tcCIlmjHSqFipBkVJ1v+vRhpPIZARZs0E7yCyuVRRzUishArUQNbWuWKblToSYPpLa3lWY+AwGfK0SYlOesqoMGfrulPItmSgWm1uuhptngKoPe/mRQbi3YIgost6XlRgnuhighAWfl0XE4h3ECnGHwr+XCW6qWZHkIyKEZ9j9CVcrPQWxcjN1eclaj5RIhBSu35LhiUZD6uJGAriEgCGmFTvmLEo3souRauVwkSWspyt677bONJRa6X5Di2pm5dpRKzshiMvIqZ9FFNCqpeeAyYYKIGSjf9SvePJBBC9shAwZXAZTNfKESxzLi9m+UFDRo7WaG3L/PFa7xSBWq006AjVd5t7f9cByvX1NV/+8peXn7/yla/wX//rf+XBgwc8ePCAv/gX/yI//uM/zquvvspXv/pV/vyf//O88MIL/OE//IcBuHv3Ln/yT/5J/syf+TM8fPiQBw8e8Gf/7J/l1//6X7909XynxzeePLMamZgscnQZ76UNV+0BNlLVmq37jfLNzfwajksSdohv3EuU2zZZMbnmtncu/z7eX1t0eVS2WtrmAJYHpkccGGOhLxZSR5HmwqHRtcm4lZ+ODxvvKw/Ezjss33M0dPw8rQwUxOu+3rP/YQNJF2SlnUy7lBbp2ausfLOeix3HuhwrIXYJvYQF8j5+DscDf/lXrTx6/Ai5umZ7uuUkBKYyM2crCR0OO3KeuI7+7F0xs2teE9LIZ/bF+/3EPGez4BFhGHp0mrm4mAkxkKv5gRxuntBUHYdhw2Z7ShSh6xIxRm7mkXxzY+JOqlzfXFh+KphQnuhSs2ZBpXR5uIoHIESKZ9FmrGULf0WgzugcFmJymZUs+Gali56BBuuMmYp5tORabfFaUDYjSWYtSIVuu2FzsiUEePL4Cbm0jg0rO0U/V8uKrGQhtvfSdx0dylALfddxcnIOVJ49e+pEPMuoipsvmtGYkT1BTBVVLZuOMVFz4cCerksMm56Oji513klhwnBPnj5mnrK7JAe6aCqcpIBGtVLIfqJi7cU2X+y/xWdbiBHRSp6y8zS8dRYTvjIjQgzqLi6qBbS2yTa3oGXuuhq7NS2KVl4otpE1ErPp2tSWMdnG4SqsMZh0O/gmRV3caNuG3tSf21FbUBUjWRViJNfiSYYjHASymjVI33fUYkFQ40vkWglamXGOgsBUp0XCvW1WZiS8bjZV1a4PQ0yKQpUAMVDLDKESQvRuo+O1xxCsrMXMDhGHC7xcFQNGow3LmoFY107jwEVYglBrrXfzylLN98XXElUWJKstXnnOhgglu7aSrQxlLf6VBT2vAdQ7uFoJqCrq3Ze5FHKdEUlUR+Fb0qHBkEylWGlEQZIFYlqAmIwnI4bGCRa8rQuezelFCsJXIGIi1qOAwLPTKoVpnMiYcaT/waTuq9+bloC6H1AtUMKK1gju7VOKJ3z2++rO5aKGPCHWOr9wQI/zc8TLTsdJrhO0W33uOzi+6wDlP//n/8zv+l2/a/m5lV7+2B/7Y/ytv/W3+Pmf/3n+/t//+zx79oxXX32V3/W7fhf/5J/8E87Pz5f3/PW//tdJKfETP/ETi1Db3/27f/e70kABmHL2yFAwud6ySi4vR7sZx5voeqxx4FqCaVvwggSEdcO2yVCP3i9H4msf5NEc/3yskQKeoUhdUB4UAvFWqWMRlvOPCS2QUSxQajUdTcuZt4kc0KXNzd6LB2RHXUfLVZhEv1Y1pnqwhcSk4k2jwBbXo7vlA1Ic9nPk+dbtX6+/0WBvR3E2IY6CQpseR/eroWG+8CsIgf3hwGl/Qup6Li4vefToEQ8evsAwbNjtDtzc3LgSZF30QETVWkX9vsSYeOmFlwiauH52gZZKkkAXEtM88fTZM5PoRjg92RKAMc/keabWCdWZcXdJjxCLwmykPk/zyOqy0NEWWRHIYmWMkBLi0ve3x0ewjbDaeYeut41Ns/nZBCf3uX9Nzkrqe2Lqye77YaZgmIEa1p9xM490MdHFREpGhCu1mnhWFLrBoOPq5VIyUGAeJ0Ni1NChjKFDWVezxZobMQ9bXec9437PfrcH6rIBer5p7H4iuZGgqzqiUAnB9COshl8Y5wMhJFenNZ7Pfr+nC4l0fs44HojVlHO3m45cRwSh18BVrswlQ5+87OH3uXogwWrEGZORETWqdx20BEFcybew3Zpr9OyLfLMZaBtkiGHR5KitgzDYcwiO2K6ZZ/X9OLDqROhSkhInItjUDS5T7wEoVrI5XlNs8ijNEqAFP4Fg5yNNAMzOIzRPpuJrqAqJaOuPrvMcsUY6szuwxCN6YG88BSvR1KaWXA39KToRo2ffzr1RHF0JwcmrluHnWpz3IGiZiZ2b81HRBTUSFgPTI8HHIXTmn1NbWaQeib7ZPbKW47Uss64/FnR4JmplJ9ZnqtqCnpac2bMQvNRBNtTHuTsxBksCAo6sFFRne5YmGWwtzNnAGFSIgwXeIoZcWbl81WBqJUIpssjJN32bPlrCEWO0MC4ER3F0WbstjugYhoGSC/Ocaca02RwF7Ns82CmqBHUCd1Ga2nnJ7VnatXH0XKxUa+t7S1ZbEC3eqFGXtfz2/vntju86QPmdv/N3fssa0r/8l//y237GZrPhb/yNv8Hf+Bt/47v9+ueOcFTKsAxctRGi7HfPix3dOo6Qgm91TbXBARg/4BbKYqdx/NPyrxbxip+HaptossB1t+MZcZj0+AF++MP0yupyfSLxFphicUI7g/Zz63FqqVhcAxQpRFdONVt0z8Sb0q0oS1YnHiSFdn98gW4BUgvYYEUKPDOhZY0iBI2uItsG+JIfsMgyL0jDKlwVRXn4wkPu3r9PDZX94UCeLcPFF+xpmpnH2b5KxWvkhcPB2ekIaZvY7/dcX16z3+0RAk95xuXlpelMlNmyDRGmq2sPniwjvebCNhaFs5M75i3iVuPtrq8UZSPw2b2yhTioQhBUE0tpUMQ4FUXcHgFkmi07C0Dxlkr1IefjNyYLymOXkM42DEI0ZKcLHA4H4xLkkVLViHCOTBnR1IJwVC2o8HsYQoBabQOQwDRPlDKTc2ZaSndtjlmWWYq5Gp9ut6TzwKOnhjrVUhGNNL5SyQX1BTQ6ARC1UlHFlFDrVF3cylCtYTDzvGE7ELvWYg9UJcVKl0xxt1S4uL4hj4qESM51IdOurte6iNbZORuKEiS4C6yP4Kzu11NIpxskQh/NbbpF40aurO5T1TaSFRkTzMBUNZIW/o3PKTUdjLUjMawbseDP2xb14Axg8Q0TxTdiP1dtpFLjN5jhZYVgpp+r6qi1KKdool1mAJpto0uBhBCltf4bUdKqN86sEEN/goQlwBOf07FpOTETUiFqseCkFHcZt/PTWqlRnM7RuCCVqjPDMDPptCy8yxqHPZ8+WkkPTM49+fADt6nx9T8ghkDlsnCP2sp0TAOwQMkaLiQFD9TXdbdUI8qa+0Fn9yNUFzvzMVCM+2iJj5NELSsypNHXe9vkLdCMIVkJpq16GpyY3crt7XmtQQet5Of7iHiJdQGl8G4kiaTOUDTae8URWtEFxRB86a11SWZVrK1aZEVmS8lHjSOypJvtW5fbqT7iHSEUUdOeUVf09uD4Oz2+t714uB1Y2AQvBsn60bwsPpC82x+XLHAp07RjCXKOo25u/7t9Vr39S2uftP57/IE3cTjlCN46Ms2zcz8+OT26vucCouUfjcB7BFtU371EjrI1loDDPrPRqpvSn5W6Shvlsg4046bYJo+sEbJNvBV/AtMB8ETYbrdYbb69xLJDH9a6FIFsQ10+x2y6270ItwKUJqsMZyVDsOApxcD9B/eJXaRoZRh6ttuNZybirXJmE3B2dkaUwPvvvMt4GJnmA+M403U9WiuHw2HNPhxpGVzQzMiifk5q6ERwg0IF6wSJrRVPCDExT7Ox6sWM3mLsKNlKE3jGs/AkEOMQBFtcVYE5++1eCXfaHF1DQJJvXgm6YUvXdfRdT+zSskeenp4sAdduv2c8HBAvq6AQu46hM7+U1JmO0DRPthl3lSFlplKo5UD2LGx9djbKqhgqU7UiWckxUnKFml3yXIlqGyJZqVO2ltWihAELrHxqFBTxYKyTRK4FzZXQ2yYzTiPTPC/y4AR3mpWIhM4M2tScjoMCJa8blzTkAd8wjhIANe6B5mUCIFUczRHm2XkD0cszHlQYDG6S5im0kLTSCA3i5TZDiOzvQXGOAgu34nguLUhrreZdE7wU3RBcZZmzxRGTqqs/T4yGBuRocH4VXNTP+S0hEoPdIzDOwjTvKbMuwUcLgMwN0rGFiK+NzlFjbcFv23+TaUfMJkCKl4/ntdMoqHvlJHPZDdU7fbTSBfP+so/1sqgaDaiLkT7KQnQOHmw2faum8FrrhBKhGgKgtboulpVbTNgzG8Fa7exzLYRswVILGEMIxNQxbM9sTSuFmgu1TtRqJbUmVifVxomWcoT4mIt6rfMSyKqX6RXQap1BItHUb708rL7eGmS27hHqnasi2ca+BqQPTrwOqD/LopmsmeYDN+Vj/RULL0zzaiVoiicK1cubNqec1xjauu0ptxFgHLECU6uNy32zZ9G851p21mwtfo0EKEtdkvUmxMV5cT10+X92LITQo/fdCmBYkp/bn6Xthe2HtfPm+LW2aZl4zqKeCksZ58O+Q6t6H39bMD0wUUMfPsBzgTXzbpvZ8Ycenc8KAXs0LEbiUqnL51UR69n3rLxF8EmhxSHBB7LjJMt3tQm+nvcaVLVzqC3hZFFOoWVHejQB1DfhJlazLHa0rNGe+W6/59mzC1Stq+L09NyzgibkpEzzAZyDcHZyxssvvEjfd+z3B6pUss4M0tumGi1jTDE6HCnMeWaeC3fO79GnxGF/YHu6BYTxcDCDrhjpNhuKgEYhpkidLcBKXc80ZSeMBso0kWLiMM8MpyfGMfEMr1kHdH1ndd2wPoc6V+Y5c5gmTjcDjWuCuMJtzczTgcvryyWAbO6l6zNhCfb6rvOsPCxPqxbriCk1k/OMUhi2HSdDoeOGw2HPdJiYa8/Kf6gLd6vUGVOutbF0fZ1d0G/dSKob9yhuhhcE+sowCBoyWoTg6pNtUd4OGwomLd6nxDTPIMFLFMGM/1SR0IMk76KZEA3Gm/EsPNe6ei0F27yP14DQCui6jm1V8wDS2swQhRSSybGrbcTFRa9CCMxUtiEu59ZKtbkUanFETszhu872ntQlo1G6PkXf9945ostiXhehNSsB2Ll64uPBQtRkCqzH2akompq9aNsSbc9r4zy0jceJlSVnGvl+RRnqggCkkKwdHgtetE1svx8ihojOCHMtFrNLte41dNGgqo44JrHviQhVAplEFzumMFOx4MEjc7tfAXMtb2iv3l5LbBpZOTKk6AFjcODWCKstARExMj3Jgtuq6hIwpqhKMEQhEJDoJUIvT9mJFeuuasN8ub8ujyCONjWvG0dALLoMKBnm5J/paIurzgWNa47sW4IWXzmP0MAggWETyGOmTtnRuEypo3NG1jXe4hmFbEG2BEeYqnFNYuqRmJA8e5AEFStZL7mzrHOzOrrZgpCuS9wuWfvarUZS3pxumKbpFjr17Y7v6QClkZhaX/cxv8MeoHgdTpc9UxqZApb33C6N+PvXMhvP/7U2tKPxI5bNuJVc3NWRoyChcUWOPvP5QKplc5ZZrTX+pWTl/2v10KVdWJ8PRtYAwa5FPxjcyHpPmgNzywjxRcRztQXdKUfn2zpwbm+BR/ei3eD2HUtg0+6iLRxt8Wn1/Fun+Xxk6RijhsjuZkfJVmIZNgN1U8nT5HwBe8/Z6Qmn21NOt6ecnZwwzSM3N1fsdjuiQJfi4urZOAgxRvoYKHmiFGXbdwxOghWpxK6zMoAqZbISUkIQrdZJEpKBIMFUKE9OtghCn4R4siGFSEznBMTKhccS4ApSlH7TLfchy0wOgTv373FWKvvr67X8kwOq0TeIys3Ns2UMGQWildd8bCCkrqPr7iAi1pHhwfo0zex2N+z3RlwNYpwPJLDbK4dZyVXI5YgCrWb5HlhbEV948JC7p+c8e3bB9dW18W0k2iLvdKqipldUa0brzBh6xnm21mrnsqRon3dzc0nooj2X3gi0+901Gi0ZSamz4KDYBi+q7K9vbs2xOltLskZFkhn4oWoO20EYusF4Sr5wBkfBmq6EqJCcjNvGPh4ctEAihIiQjkqS6/ph5HdDLnyGWxnB55zpo6xCa9lbSEUgpWQBTi22+cdECon9bmf8IV/z+s7KTkECNbfOneBWAmk5R1XcCdnJoGIuvLF0xClCb+3GudpnbLqO080ZQ5qorXQSbOxUAZNF8Q3Zy4ENJZJiCrMaoYRq5NBmO4JY6SU249BAlESMJkjXdR0hdMx5MtsAMd+j45jbYkbnrqgu6xQIeZqRUgnJ3NKr1mXdF0BKIe8OXF9cwCZxenrOzcWlqyW3ta16fN3ap33VEoMVYsTFxyoarOMMVeokjPNky1W0wLiWydDelJCg1FzMywrzZer6QK2zlapDQkg+JhScM+I5zDKfwbRQTk/O3RZE/NoNGYpd5+UYY7MHNcQlRk8qZvf7yk5+r4bUxdBR8rxYBbQtRZa7t9IWlhEurXmgXyTyDQxqI95Ro2rl3e/0+J4OUNqx8jDsAd0q+7QsboUKloDGIvB1Q71VYnHmeuvgOfrLWvs+ylLX+vHxmR2fxxpAfCjf5XgfPtZXe+5vfgYsSK+sLzt+7S3omiNg5rmPFGFFeo7Vd2G5/hYA3SL8ytFr9Pgc9Ln/2oubX4b6l8rSsrZunuvHH2Vv7Rz8zeLBU586hs78IbqYKHNmzjO5mMlYksD5nXO22y2qyqyZ3eGG/X7PeBjRPNMj6DQRBco0Ebuee3fvcHZ6wte+9hWYZ7rUs7t4SlVlmia61PPqax8jl8p733yT3e4GzRPnw31qzYzTRAiJfrNhu9lScubJ48eUfYZSyWrlEIkRuo4aAlXFexWUeRzJ+5vlfkYNbLdbXnntdVIU3vzKV7jZj0cZv/EOSlWzQg8FxJx27V6vqJMFEbbKGbSvKIF5ttbWXFrJQyi5cn29o243HA5b9jMUzWiZvVXaFp+Sq2s4WOY+DCecnJxxcXHl3x+QEE2rpgIEzs/OOBxuuL7eM04Hat77BprMudYVP2stTNOBTnoE5bDbU6xKgGDmhPPc0A31koWy3x/oe3N9RgydMIsbIWpknPa2BmTjdJzdP6Pve8ZponUqVechaDWUyjZQG4tVIBTfqMXUYiVGWmLdMsp6hLy0udSWGFUFD4DCEerbXm/3wxb14NLjLUv3hru1zTcIGjvPlqt3R0EiEYA8TRgCYVtLH3vybNofNYDGSFabP91moGh2Uq+dU0qJvrON3u43JIpZHXiSl/y5xWgljS4NxBj9d8nmt4rxqGYPxhULsrpI7Ox9weUahGhiinNn6COFvu9MiM+fd/PdMfSjcWFsnM/zRNQOCdESCmFx866OGuR5YjocCKEnnCqH3Y6cLVjU5Tu4tRbFlBj63r5HytLZgqohKxVqEXRuLsUmMFcyTKVQIqRgwSpFIAo1QJ4rzMo8zqCGPqqqtQ+LdXZ1XYfWypxnV4e1RGF/syEG5081HiaJFCISkzlDU72zzJCjtvbb8xWC8w6jmJHn1BL+aGjUur/JrcpFW58FcSXmZDpCtaF5rewD8zgSXR/pOz3+/yJAgQYurASi239Z/6nHPz8XABgRqa5g6PNloFuHHP1t/d8qQ9agsNvv/SBn5igAOkKAFvThubLQrS4Ztdfpwo7+8O9p5YLloxtnxmohDnp+yBV+AEKyrpPnf1+P3h3aaR+9ph5BseIDf9V1OUJcjnL9W6Wq9ruGHGFcgNLaPTPMxey/S1v0Y2J3GLm62S0Q/rjfUXImzzPT1bWz5oUqwqjGy8j5hGmKBkXOE3k8YGdrxLPd5SXj/ftkYHdzw3g4gCon5S55nhkPI11XqXOihsQ0HqjzzDiNUE33oCD02xM0raTZ4khYqQqjtxuKXUctmf3NFV3fWTt0i17tRpsfSjZC49qWbBtaVeseCNLKxqbw2jqbai3mxeQLYi152Thvbq6XLJsk3h00LwtOLerdE2r6h8EhcjHH4BCsU0k0usutaxZF73yYC3W2EWJoSGIYuiNVTOV0s6XUynyYkN4vS0HnakFZMqJh31t2XXM1xABxipchHdLmE6BqEvalmD/SZrNhe3bCNpmOhnmVuElbyUxjYDyMzCW7+mZH1xkilGs2x/GwjtF22AZeac2yqBCTLAt6lOAOKL7qBHlu4bdSlrVhN4KhLGU1dBkJTgJ2dLcl0wvhHJBswYhWCtnaUWuxe1QiOWe3dDKzwEaqtDFhrcksY6Yu3IZaqpUTgSBmI2HcavOaqUUosSAS2W5OGPPe5gFCbJtpseJL0Uo/DJSSiV0kVDNS3MYTFOskDNIMUe08Ej0icWm5FnGSvyRSP0CMKAG0MtZMzpl+AIlGKu/6nn67IYXAdhiYQ/DAtGX/Rn5tZb/YJdPkUut2LJSlTGblVuPJDN5VZ8iE0oWBPtrcaEavmnCzzta+r/R9XNBk9aRNxZ551/fm8qz2fKxTSJnLZB5KukAsK+oesHIVLaCxe44uo8PGfAy2dqojai3R98A4RuPdrU0eH1KmER+zzrtZNbFaec4cprU8v6989PE9HaAcE3K8seoWtLqqcRyRMI837rapS4Ot/ZOOPmRtAQz+mlYfcrza38MC3nJ0Tt/63D/0uL1v3/5de+/CVzl+jZ3zB0pKur53+YgjmfvWVnecfSxfuuiSHPNiVsb2BwOYla+yBh6Nff7hl9s+5+g0P/iZjbQn62fu93vG0YTawLI8VWXO5onT9Z1txEVpPiUpeOjpAlXm4srSBqu18N677y6Lf+p6W5GLItFq6znPfPUrv2J15+xkUdcxABNDC1XZX12xv7paeSbdOtUCEVIy3spCjU9Ljb7bmCOsqI2qOc+8985b9nOuSBeZshPuciHMviN5Wmq3yWE4r1WDLNLcec5Q25xQKgdKnq2LggkNmdgJUWbm6dqN5WbPLrPPF9NyaMS3WrxU6NBaih0mO+ibMwHUuBiH3Q11NGXZTUqkPpF6K9VUF6Tq+kiSjjIZD8hQoEZQhXkybYfNsLGSXYxMs5WnNpuBeZoWpLPr0rLZNIVLyyYN3UGtRCdiwY1VDpXUBdCNIURRibHnMI6AEpMlF3fvnDLPhRgteJRgZMuidYHG23wwNCS4OJdvVjFQF4XTuEjihxDMeC4lSrHv6lIiJLvfpbpgmLecWxmhEhULJmgaOm2G66LYW0Sss0eMB2HdhIImgRSN1FusLGAuw96SLEZ2FrG2esU2euaR5O3vIsnXC5ctcI4YNbMZTlDtMPE4ZXYCqGhASmWuM7HrGOeZPriImFqXXgjWnaKq9J15N41TJklDrALUYuULhEkLtWTv5LF9YSyTj12fhylam28XqJpJKdp6H63NvMzrJm96CLYOtPJ+qa1rq6KNdE4geEk4lEqeZuv2iYkuJetYXBAMgWAJSFR7PqkWH6uNJlBp/g0hRO8oMyR0SYY90Ktqc9AMTg0p0VLRuR4FFLYm1GpjRWTNgAUsiHaOkwWgZohoSLssaJ8ga9fPc3uZBTb+EWFFayQGQpPV/w6P7+kABY42+jZQrVPfN9uVYOmvZnnxd3w8/1pfbI9/49AauMy6Kqp56Vv/bo61fORn/Bzi8i1Ps/39FmikayD2QaCFD6BKxx/nfjjBO1rggzovH34qxyvz+nyWz/Xft2Y11XArdvzIMhjQeC8ChKKkNrnmjITI4FB3wEivnQTEa7F4BqO1Usb9IspVtZJib/Vy5wOkGFteuGTgAp5VF99sQENYujCsVr0+8eJy26aPkGzRtzXfFD11XTTEdRIqldm5FMv9KtncQWtd7lGhNKsO2mKCHAXQ/rAbX6a1OOYyM5xs6LqO9lT3845p2hNSIx8WI8yJtdiqrBm6SDOekwUpiWIW9q0NuGoLZDPmjFqJntmllOhiT5CRMPSEvocUmGv2LNK4CKjxgIYIhzKz3WyoWCdUVSO9DsOGcZ4Zp4mqmTlP9P2G1Fkn1DrOoO8jc87O5VBi8hZnnNDeslrUAy3Ti0gpUEsA7el7K1uYhsxMiLL4lcTULXpJeSxtsBKCcHpi5MB+SKQuUnJxcUgvAQSlj6b1EqILgslKQAbLtGNK1rIZ3PhOzBMoxUhCyNU0XBLWNRZjx1xGpsNI6oQk1iIboond5ZLpeucPaHUNlAh1lVQVmp5IKzbpssZqgCSG8OAddmHRkAlLcBzdeyeGSBQTEwNZ7pcFakIXEyFAisl4ND6KU2uR9o4xu/6EBOtmMamNAhHMKNBcfVWVeTKhOAsubNw2ufWqalpFTuY1YTkrP5mjspiWEhWC8T1iiqQumZ5UsDW+5GJBnz1y01PRgqRAJx1lN9rm3snSbWSvtZbk0AJOKjhFp3XPNMS6lWaCB4KGkpixYoo9QjJyPSZaKhXngIiXi9ayYfMgasGa+trVSLpNjFHdB0n8GcmyBh0h4r4OtIC7rd8tiWnaJ6pKzpNrtXyr1P328T0foBwfx8z89ZB1w/vO78vRZv48lHH0ELiN4hx943I+3/Zrjso7wFp++RbHMS/k+e9cTlM/+PtbPJLnv+bDghfBEYbjzFxp2eDx+X9H5/z813r2ffzdLaA6vne3rgHTFQhTYatixgDaulYi3TCQzs9Iw4a5FC6fXYKjJS2aJ3qGqJVhE5l3SuoSs1a6foPJxVvddbPZEAnkbFltpR5NVJvIXTIbBlGDQhULTkIwaem+G+i6Aa3mvFoF25C9rtuCa9Qy+KHrvZVY0TmTayWFwG6eTBW1qCN7gjZ1TAGClVvaXTvmM9hJmc9MUTWGSoPDcY0IDxJTiq4z4fwGwfREJFAk2sYbE7FLpBDMXl6aYJPzXLBztLKQErLQ9UIUM0OMUkEqVYshYbV60GTHfn8gaKY76ZlLhVwZSyGIETKrWtB0GM0vZy4mPz/PI12fWr+pL654sGBlhBSbA7dCTKCVXCbv2LGgI0laAm0JpqsTvfMohUBRMfl9hRCVec7EGAwtgOUetE6nlCJ937MZBq6urtiebBj6gWnKXF9fc3JyighkvwMNEVSFroukFBbExIawdYa10lVZMu/ba1NtPBE6pBovJxDI1dqDO90QnKuCtyHb/9l4DiHQpY7Gn5mqoxKps2cexTRWYqIiS2dPjJ2PAQu2rSPJ5OfbdLf5hJchrAxgwRmO1NmcCEFICEWLk/aBKgQValSUiVLzkv0HNRGylKyrpLZEK66Gr60TTgtMJRM88G2KBxqqB7kW3KiARvXylxlCSrTrVylLdcXlMU2yAUt0Qh8oYVpL3XokxGa7lqn+toaOho045SAuc7hbAoUg1uEVGlEaCy6Wfq9aUDWuW4jBkhwnJFcPINpca8lo1QbtrUu0iDzn3WbDWkKjva6vF2koWoAm7ik+jkx7w0nFv0ZIso1b0KBAWxSeRyyOAohl426g5/qaD/n0b/vdH4YmhAUBCUff98Hjo1CC4wClQa8f9t23TlHW34e4dm7cktaXNQpePuO5j15KR/7+tulZtmOKl9ru39G13QqUxIKLNgQ/ANgcX7O/9vkXHavfts87vo8BiLkQx0qHLcxJACJhLqShI2wG+pMN3WFkmicUQx9aQFnbYt/1SBqNrV7V/WKSOeDGQOx7pnE06ehSTM+gKnk2VdcYE0WFu9KyhEyXbCOotSlMGgkwhkjfdVSFq5sb6jwtREi7N7bADpthQVuyWvllLIVxnklxS60ZxIICjbaIhvZ89ciD6eiwBc42Jy1KZfaAxBn+zkNB3XiuQfveUqsqrjNqpL8kxtcQD0Ss80CZppF5HphdxTfG6AtU9RLObH49AtM4k7MivREAQzQIfHbXVWLPLANxKO7WKyjJCKxqqrPTtCOEwNAPhCBM02RBY+iYx5FFo8bXiubtUot3XVjdjN31BSkmNpuBakYCHpAb8XE8jGw3W1uAkaNWYllcrWOwgCGgRLEWzKpWomvIwjxnQjSNpMlJuakL9H305wc5R05PTwGcwGxaNi1gORx23L17TkodZTZzu3ok7oXYuBOsjbfbbCzISLbcRxRSR3AESWvxzLyRtR0vCQ3R8TGkVtYLKSHJ9YVUTYtHguuDqHfCbVjK3i379nw9xrhYkyw9DGKBbSQxT6PN+bBuoi3YbvNExdBG02cRQ+qcp1Nc5b0lJCqmFRPpEBo6VNBq/CCp1lVjs0ZdUdtRyuBrBsalSwvmwHpfQiAs4n5uZ4DNtywVGaJLXLrlgDadFJYN3ntcnMgMKqupYJvJBTU0KCmpi1ai9nvXKAprzSAsgUvf94QwWAm3FOaFnM2CyFpwamO+eNJieo9p7Vpti35LqJZk3dvGPXBKQSj+9+AIdIqJrusYx2kFeb+D43s6QFmOIxiqqTna8RzD1F9r+92RO/FHfOa3Oz4YYHgroQvXfKsYp7236u3zWHkxLLXTNUZZpuv6ow/upb001w9HQmDp+lkym5ZZH52Ter37OOjxBNQ4B+CQqi61yFvB9fP1SFpG1wLF9l/LNG4jOis69QFkyWikABRRblTJKdBpRx5HBpRUZ/QwcpFHxkePKcGJXw0Sj8kVVWeimoLqqNfeSWNdKuRCVkgh2giRyH7cm6R0gFhmUOhjz6yVWSfimXEvJERr2xw6Ej2KsjnZGBTvctzTOBI6q9MfyxW1sm2phXHOpGDwfQiJrt9w52TDeTnnZndDDRBDZwJRwVuFjxYNb2igdTmsA8rqxvM8IsWMwQC3qW8qwRa8NTOxoBGtAQmV0Pd0jj6YZUIj+QEBYhD2u2eMh2sjI3YeeARZAiGw8sJ4PSJF6LpADQENpjK73++Z58lKTVkYho6YgrlIg6FbWolJ6YeO7WbL7ubAqG7GVwr9ANuTLdP+QK4Z1AITi+Js/AURUmqk08o03zBl4TAbaXOzOWEzbAmpRxBOtmcMaSDnCY0VUZefb9krQkw9Vff0XeTB9grVjuubyr4EYhzMjVoyXYRSInky8muKyjjuQISu27BJAZ1N/bfmTBIlqgU2IpH5oPRd8qDFps7l5c1SAhDsHuVppsbEnTvntuaJowmlIFU5OR2QFBgn42ZYqSXeEtIKvvma63IyTlYsSNTbwUVINna0EDDn6zaPF+hf3VU4ehnE0bg2/atn3FVbu6sQpDc0g7aBGmqBKLnOFuiI4Rau62bkWTEScvENfl1PWgi2LDqO3Ng5Nm+2xplScWRBDO3U6L45NG6dkpJQ3IYBxMqZYoFU9t04SFo+K8XWTRMIoSPP2dPluqyR0tZW1u9LoSDR0DixdqaFZO8yt0ZwF5ZnKCIkcYOUCuodWro4nePt6BaUm+dTJaS1XT54ItPGl1+cPfqgoMKsTYfG1lqdrWxoTyUS1PzLokSur36NICjQkAAz3wq1kRWP/sa6wd/a9D4iePgoZORDv/foaDVsC37WNubnX/P853/od8mH/XPdyBevHtrk1g99r42jIw5KI7v6gP1W5aSGpnzgXn3I6TadlY++b+tz0OX823O5DQMtsLq0xeT2vRKgIsyxcKWZGiLSB+5lOC8zCZOtnnKmRFP3VLHFYNP5d03ZDNV8UQipt9JLziQnnt558AKbkxOubq6pB+s8iOrtkTFyfvcuu/HAbr+nGS2C26GXSi6zkSZ9wez3iRAi8zSz2W6WeCzIkdO0mkbA/mZvizPC6XbL9mzrpSU4Saa+GqP5BY3znlIKVQs1O5JyNFbWJ9DIkgW8RRQPxCIuRR9M+VKXTp1KceZ/h9f+nTEnAQhWQ0/RpPbb82xZfUqdSYRLQkJgdsJgzpmZAkHNe6Val8Jhf7DgBDPMFMycdNHyCMZxmKeJlAK73Z45Z2JK5iGk1m693+/d/VjoemtvtpKc9Zs0J2CCEhOOAskylmsp3NxccRh39N0JKQ0MvenbaFmTA4XF2kDCUWeDn4chu2uGYdllsDZzzL9mznnpbmhdFO35Ze84U4Wbcu1tm1bXr6Wy3++X5IGaicFVOtUQFRPiEvpN7xugPad5HJmnibOTE0rjVjg0n5u1AQqupdIPvSFiavokKUYkeMKg6n45oZn0EEI1Q0GFEB1p8lbpTdchyUoTFBszuZSFF9Haj7VUQzmjJzSeoasokpLx43wKmwYNxNAQ4Lo8z9ZSa+fhPm3i2lcVQw8R56HatQuRWowz0+yyVKyzJTj/pqpaN1IUzMdM0ai+glnCUqoStKyozFI/cnScpqmjSPRuOFqZ1nq/dEEvjDa7KM229XBJFEFcndqcmVdEzfhntkaoWIAYRKgtUFvG5xoMBUeu26qsWBB3jJYsi7gjsykZOBCIhOC6RB5gpT4iSQj1uOni2x/f2wHKEumCpwgLDPphEcgxYfRblk6e+/n5jL6RDj8cgVFfMRZ441sGJE61dBXG2yWYW/++9V1HCMqHfO5xnXWVkW/JiqlRLjyW48/7iPvSXrJ0Bj3/2m+BFC3f4NLYIseokHzgu40drsu/2304Pq+iypwLfeyRGMmlMlMoEuhTj7pkdtFG+jIItDi03OrFzfdlIxHmTJyztbgq3Htwn4cvv8Q3332Hm6tLZ+qbuJZW4fJww36eyVrZhOCmjjDlGby8MefZBL9yQeSUvo8U934JIaIlL/LwrRRiWimmlxJEODnZQBJyLtaWW9QF4ex+xmQwrxQMoWhDj6PAVb0VPEDfuTy9eoOreu4pkHPxNtFI9ZbMmAxp8kq4o0q2EWooVEzHBTHkpmpbZgNlsgy0UJlz4bA/0KS6rSBU6VKHIhx2B9+oPDAmWUdNzva6rveME2qNpGSdOvvdbtHaiCEQ1TqtwAIVMIXLrjONhqKVPBZqtmvKqqRkRM5mi2EE5sI0zoyHib7bsNmcEjo8jbfF3AL4YO3qsgZocy48uT5BRMi5EjvzjBGPJoxcrd6dYxtKihHm6lm4oafUo26JaqhvrdXEvrBNXLEyUHBkwYIXJc+T6Zp0HVdX11Y+STb+52wE36IFrbZ5R//MPGdymdikgUZE6XrTQDncZNBIH3tUV+QOXwtrnhi6hBHr1YmkRtpsInpdF0mDU9tbxh3M/ya6oN8m9W6TYWTVpevKXy8hUqmkkIi+zmqL+NXOJjiSXmpGMWSj1o7GE2nzJCzNgYpZWomPUQMlRMJi6SEheLnSeY1RPQBy4rUDQqrum6QK2UrtoZVhpBHX29Q0cqyIrdWGrKxGkOrIWbuutmY2QjnYWKyYbYaRcSM6ZZacOWZvDS8ghbUjvq2/FowGF1urzhPyRdkJu41o387Ar8fvu3gSWGtFI0jCbCLsHxAyNR8+QgD1o4/v6QDFIMbbKMmS2nA7sGg/f6uyzsJ3OPqob735fsiG3kaFw2Atgv3QQ4/+4+WcQuPS3D6XJSBqYIi0AfvBz16QGtYAp12Q+fDoeo/8w1oUfrzB3drslvr2R1z3829Yz2YNtD8icLTPb1fZSkBr67ed2/H7IiLKZnOKBJiqUvOescyUMlN6E3dqE64JDSnuqhlkUYYsXsNOfU/tImihTBNvv/UWT589Y2yyzwSyuJV8VS4vr5lzoet7yzq8lGTZZSAOcZF3N1dfXBq9uCeP8RqqjsTOVCNNiKnxByxru7y6pDskI+Sh5DwzAyFHsz7HeAaZplLabnttN3XNg0QX7oR5cBhbaG1EZRGpqtU8d7ZhQEJEgulNlHlGHcGxuj9Ms2V585zJs6EzZTZzsZACepi9g8ZawEMQk9SO1uFzmHaIBPq+d/6PE1yDi3xF00mxjNJM/aIrrHZdD1RKnalq0HbXB7okPLhzl8urS/KUySV7lulEvmgZbUXI3uaKVN9wXFMmKKgFwNfX1+wOezbbDQSh6/oFJVAtVgILFgD03cBu3FsuHEHnAsO6RjXunHlEqXfzRLoukvNhnb9BiKwla2tBbvwFIaXOUC7nObVOfK3V1Do9wDnsD4QY6TUyVzc2lMRhPBh+H2DKB7NcSIFaN3aeVdHStE9sDnYpOWIGudRba0xVJTlROucJiYFcMjUUkIhWC6aakmlLLtfyCtSSSSmRuuSBczwW5rZl1duoN9uN8ZpKQaqXjZrBoNsZ5LksVgRB6rKOKIa8dF2iAUbWYWLvT110HzG1kv1Ru2xw+fyqDa2x3wutUGNrdxRBknVtic83ESVK9NXcfmfmfib+ZuT0o6RbEtCC54gL7th6Uqtf77p2mo4QTPNIbHNb44ry+KsbZ83WJV0+QwLEGtaylp9plCP6fdvaJC6/S130Ui6EZEGp+t7nphPUbNyyfvjOO1u/pwOUJaBkhUXbcbzhLajJEXryUd0nz/NBWtdGy2SkRYs0tKYN+JWTsZok+Uk2UsBR8HQUDC+Bx6LFsoyAo9ceRTPqpY4WXNj1flgH020U6NbvjpEdn1wfSpt5/hfLadyKrrBAwHUNjurP63eud3X5l+hzf7t93m0htmtrNDIwUyvl6ZNnpBQ4O9mSqUyiFAnI0Fu3SzTiX5wzJWdKFVeU7Imd0Pt90VLBZcDzPJO6RD4ceHKzM9n8kKhq3iKwcny2mx4FLi+fESIM2y3D5gRR8/SJ0Z730CVytdbYzcnpknlm36hKKeRqC3OhMo4jqoXNZqBUqFMmdYGoJqJWEasVVxPF0hAQXV1LLb7T5RmpWtcBBApG1rXWS0sh1YWpJAY65ymEENFOzMDM5clrKUzFWqfH6XpRSm2bZnNhTcl8XSQYElFVnU8jNK2I4uooWjJ9l0hdZ3YDISxhdxCshLfIBihVvSVW3A+pVLouLg2wORdKHrngihdfeIGbwx5p5ZYmzoYhNalP9EPPSerRYEGZIRGdtyND1w2mjFmglJnD3oT7ctxR+o7QRWopRnwlLiXMJL45+/3f7w8M3bnd7yPemSzz0NCQEP1RocRqxFKJyZGlBvlb4B2CBYipi0uHhn2/ewupd6fl2Up5wY3tZsto1dee4CW+XDJ9HDhuJxUJ5FIYD4Z+daFnKnY/c86OJth3hBTd4wcowjR7O77MRC9/dFFAm4R7XIJGC67U+BgRYieoRue9yZFXl4IWa9vuOgqVmJqAWESqI5HSjPnWUpuEYkrLThAPwRHI6MJzdlc9xwzWFSdCCCtnr/Exai0L6XdZq3x1Cx64G4ur+hxTaK/rlFafEjEeVkumaMlcu24xL6jgr/WKKzhmomJ+adHfq3NGcybKgqkgVYzvE6xUo9rCME/WavFWZAtGqdGfjKI1W2kzODfH4paFg6M+hmMMa9mPtkfZGijVrBqCVzfCdx6ffI8HKLoOjrYwG5nnyFVRuBVY2Nu+DSwCRwP2dnDSVs+WkQOL1gSwPrZbX9GChPV1z2/84n+/9Yvjv98qp7Rv9oDA4Wbq7Wt7/no/MjBz4ENEoK5R9ocFN8+/Z/1hvebvtPUYgsOT9UPP+6M+yyaSLxLVsvcCjKIMmw5NwSP3QJTIXCdz560wDAM1BKQtakEo44QmQWoglMjDBw84PH1G3u1tIgd3EnJI1Pw0Apvtlt1ux35nonF37t3l5ZdeIcbIMPT0XSQlaxF9dnHN06cXxk1AmeeZvu/JORtnIiVarVgwXkCXktXsPRsrZUK0ErwEZGNQkGAW6nVZdqx8YDeTZbcXSaDqWg7rWIspYETSiJYmlmZqvbVayaLk2bguzTPJyaa3SJCyjrHqWWvXNGj8sM6m6kENDENn2bUquUxItfLR4kTttu0tEMqlZcTG9Wncrxi9Xdu/Z7fbmc5FKd5hYwHSMGwQArP71czjzNVcvWUTLwV1hNCbpkhI5PkA1EV/QtXKcKXM1L3db9PlsBKI2R0UIzy3rq6oSwmmNUBLsODAEKOmT7F62WhUb/EWNwIUl4/3jh9vK02pBSeyIAFWzoIUOtOc8excggfxQdYuP8XJlcahWrUq7H/WndOY1xY4Fr8PRa2UM08Tw2YD4g7VIZLn7JwYUy8Owf2YqMu8XRI3EX+uWJSGbWStM6c2SYK2cnhgX6U6ioaFvIE1eWwBRNtsnX+FmERAcCKumW6ue0S78mXdtq5Z754D1O5dYRUr62OrFdkOHkNcOC5RcKKvB1pHSL6IrOJvKKJCVCepR+McmTHjOrfttJrpYVjsK7TiSrPV+CCoo2B2bSlaAlRKcRE/z1FiC1xwn87jgNBIudrqQmo8vFBbkadxabzMJsstWoj0kuxeSG0O5b9G3Ixv7ZEGRayZ4xEcsCAGfLA7pB3Pd9Mcb4xVj8Tg6wc3/srx4NZlr5blLFvLV4MQ7TybUNjzHBX73OLvO2acV5A1m7RgLNwKZo6JuMf/btycxnl57ub59Xzw2tcP5hai03wd/EtZ0SpssjsM/FGBx/G9Pb7n34qgvCACzEAmJiV2QqWYPTsCKSHJdERyrozTSJ4zZTa0ofOsQbQyT1YuqJrR0ENKUDPX+z1TnqALnGw3qBi0Hier11eXQRethFroxcoZu2ePyWcnnL34It2mB1WKFkrOTPOErVkGmxvEHxnHERHh9OSUFA0M7bzltI+B6J04FV04Eqo47OxwsAM7QcMy/mOwzcMyIyPthRS8O9kbSUXdFM/G4jQdyGNdCKfGN8GzSHA3Q3sKIk4Obl0Q7rIrQinmAtx+dzxeQ4CUlJxtEyyWbnt2aOJcpRTooEv9rbExz1YqGvrBP3PVpAFd2ijBFvScMyfbLZfPLpidkFlyWTgcKURDskplHidUK/ul/JIWYTabs00d1q5bmv+L8weMtOmIggZqHW0eqFIzlACHeUefkm1wDUXwMlsIzT3peDL7BgJUsSAqJkGCt9NWvD3Y1GdVhWYUG6wX3PkLPk783FO3JjgpmZaLFsu4mxbJIvCnGciYELKYm3AXCQVqsXtfSyYIbIeeUmdymamiZkbZxomvFzlnwtB5iWGd03k25HDoB+bxACP0fe9t5zPTZG3cqUvuim0cr2HbIx7EBNcEUg9+RF2CIJowX4imEWIojEIw0bigeUFGLDppwb1r+oiRUWtVqnettICgjX983DbwhVb38U7gxolpyL401WWFUMXQGn9bWwdNoC4xFnMArr6nWcBuCGj0cnXQavMc6wQ0hNQCHcWgkWWtFaxLKFhJpyrUaGtIDEbgDsE6D1N/Quo6RNLiBi6s92maJg6HA6VkqrTSnVkZLEEXeJBmO6CkXyMByvGxxPv+AIEPbMANUrv1JvnghtyYyEsrsrbWs+df45n6MfKhH4E48Nz3KMvgP65xfDT6cPwaWxiXn+vtTPbDPsscWlmCiuUvt96yokK3jgW3ux1ENG+H9pY1kw4fuNb26etrfNM60l55/nrbHH8uDEVwcppaG+Y0jlRRtmcnVpPWbCJOpTBNI1rLAlmP80S36SCb+ZyghC5wcXGBhkAolZt6TaeVftNzdmfL5uSEkgvTeGAzDFxcXJBz5t4m8eC1j9Np5otf+CK/4Tf+Rq7nkUdXj4nFHIOjt9+WeWKeJqvbi2XC06SOtHTuOGs8g76LDkGr6YY0YmY0t1yrueflttS2qdJIi+B7Aqp2P3RBEIU8Fw57QyLmeV6zWSCKcUssy1MPAFoZx1CAGJPLq3fL4gwsGg7REYB1PIpn3vEI+Wqthv5EPYmwTpzCoRzQwUiVigmsNb5F3/dMk7XhWgDx3DD1MXp9c8356Rm7qxtCSs7xKcaj0Uqu1tUTUvQOhM6MFx2lub6+dlTDAmFTF+28K8yRywhN9TU2RWkFIS5BfJd6aqlcXV54t0ibizYvu26wDczFaEQEJHhW7wGbH63jpvr9UAKlZHKZ/T62pMRImwKOirTfW3dKUUN4Qg0uee8B3lLaaXPcReGCzSfEW7MlUkqiFKGQ2Z4MKJnD7oCKkl0sDDGeTBATczMfASs9WUktLOJu7UEGaQG8aaXk3d4Evsz+mXEaUa2cbE3fpdRMnifA0R+fD1DomnlyKz/7emWSCoU6G4k2OK+lHqGCIbRgxpgYje/Y1rYYnL+hhZwbiqxwhPa0Ft7YgkSwoPRobbNkZw3ibQ4lBBNBnL0rSNWSosYLAQvES5kIktbPDxWV7Pwom1dVobhTs2nueMKr3nQdFW3uzOIwSK2Usbp2T0eKR2ae2DxtweCSwNBiM0uAkEKMLM95Mb78Do/v6QDldneHC6eLbd1RxJjw4PLCTcLGW0KXe7RCgcuiqu3xr2zv9h20gdU2Alak4vicGoQKTmZqgYx6CLAMUL0VACzfc8Tkbr9rWc9HYQwfFmipR23tXFoAIm0Q6tH75JgItf59+WU9QqGkek18ecPCKgcW6/rjC7PrvX1dLTj58KDOe/yOr8lvVyIgqYlbVfq+M+5Izsz70ZRjUUSzQeG+UJWSubq8QrM995RsJ5/LjBDovLyQomWVdcyUNPnmZBP0ZHtCLYXYC0/3e/JUKcMDnh0ij28OFI1suxnFSjEFKPOI1EzCdQJESdEEjSQK6GSmehFSa5eUI+4SmBQ9Yk7IUWwza7VhEbRaVp9zsQ4aVStDqBnX2QbjnSPO6wjBHGJbuaYspLtAjLbAdr1J9QNrhu3ojQC5WE2/+uZsXRPmZCqipr6pzuPI2TdB5x0sGamPjSNUZ/JAYuVK2YYxDBsuL6+WibisAGIdHtRKTML+sOPhg/v0Qw9qgZOkzlqPPULIuVpb+pypdbZSTwh00Yi2tVoXUVXroppH864JwVU8G88pBufCNHE1IRcxkaptbwTB6ryPYJ5EVQuhBLJ7CIkYyTbE4IEcCzm4lMwcvcvC/VgM2fXnFX0jVbsjtVbTAakTIsXn5lEwqCxdYyoBIRFC9oC1QJCFFxFCoMyZUk0QsaJLySck6yDJJTPlmerlnKLmuBuwtVCCEJIQS1McbtusEKOQRRdl1NA0PEI7yUrXWydWKRlCZuh6ticDQQLjLLSybyN59x6UbYeBymACcjWgpUOkR2JejFdrKUvpFUeYA8HRPUO4RONyf23psvmptSEpK1kVba3n9hytbH60zqnPC3RBPbS2/cq/09dsXUqYHTjB+ThZFZ/7DV31CWgceaqfiyM2Uaiz8/lEFuKvBSOGYpoFRPUAHkpue4crSAcxde0QbT40/6MQgbyckzoqKh64SKjeEl2e2xu+9fE9HaAcE0OPg5Wq5sUinpHZtGys4rqgHK2ObjCUk/NUl9e0Ld2izDZ41sh1PRH/vP8feX8bsluWnQWj15hzrnU/z96167Or+iNp+215o3jswJEYlJygojEqBPEDI/grkB+CsSGkg6JBMKA2yQ/9pYIgERTNL/MmOYoYX950CDk/Do0HkWiQY6Kmu6uruqtqfz3Pc6815xznx3WNOde9q7q7Wjkfdbyb3bX389z3vdaaH2OOcY1rXAPiqqgu/Nl7DFISlG6J1xH6ox9BJ+RrIyKGY+qHRERcIjlx7R7POu/5WOVzSWS9/PsF8Tj2rq4fTSNMz6V9iYFTHt4a4/qss/Fsuu3d6NGxJFn3ION6fXWF6+sTksiB0Pyftw13d7comVUe63r5+9476k6KZtIG6gBWqK9Ibbi+vkYqHb5tuDqdcFpPaL1PDYwYWyQ8evQUyRZcv/gS/utXvoqt3eF0KrDbPiHjDlWxiFZXM8wKWu0oGWidBN6cclSxzgoCGUzT0qNScEZepBSiyoh923G3bUxnVWpImMo6cipyKhkVhhPeghmHmXLKpaDkRQJsRA/CyMBn+Sab0xmFy7qzrFDrMpmj9Vj7rLBovaJtEZ0XwvFOuJhEPRwqErQeOtGDUsqYv2RsBviVr76JdSkDFWJ6iWhGHzwHIqDXV9e4O9/JsbDpXKWEshAxgV8RUaoVrZK3wucJ4atwxjWH3tAq4LuPg2696rh3VbDvu3wnG+t12yoSuuTxDaUY3DnG81Cq2JuHnYe7Y9e+iYOX4npU8/VOAnJzOp4+1jkDqyUX4HxGMqaGWpvBVBc6w2jdUMoJwIqb8w3v/5rrpzs7Pw8L1ht63UmmdEdOhr0xXUrNEKE7vcMLOwFnOzTKVEq6D6RIpkVaN0nP5+58RjSmJhOf+fZ8h5QSrq5O3A8qzV2XEyw7m0QC6L3htK5Y1gXuGfu+4+684XzecHV9n9V4AJViZcM6Zipfx8LB9nDPcIlyU3d0OSfhKF9Es+N7gqfBf8smWJQo94l6yXGgpAHQ84KeAyFlBWHUubvtvDnrF8FDaF11cbd6n9dKSaR313uVKvRucvzi9uVo5IR1yXhw/3lc5edGCjUnprkfbY+JahX2PQu5fIvAhBAOy+n1zK0dg6Bv/PrAOyjxIirKnHZONipd6GzkwEeEsNBQssjCwd4IikJHVHIJa8T/D0fHnzGmPrkeCIRl+hOXhz1i4QfkeIQp4qoOU0mwyxMYhLbD9eJixywJfy4nSD8/wmoX9/oeY/nsy8wufItxKWk1jB/qepeOhw5AdQgdfRjGrybyMiI7zUV4N0dicVz7dFpx//794ZiGCb26Okk587Jrph2+D5q/4DU8eXJDnQ0Hznd3uP/cfeTieProIc5th+1UiWx1x7YZtu3Mr2lgWXFeUE5X8H1HxYbWKm5vKyMix2Xkk1jaarmj1X2QE03VKo4MK+pUW9TgDdPBrOLW7NuG29szW8O7qwrCdBgVFCOCxLLmnQeSmchuPOgWESKZb+bfs0otmVbog4RnFsRMGv9tb+jVEJHjbIpo6E6CHhKVcEc/mEKCKFMhh8hOz4eUpEtBhILO1UT1Us64umZk3FWWHYjHrByr6D1h23aSVLc7nK4X3Nze6P50qEVAIyPanfyfnDNw4gFZW0PfN0bmlT1EogdJUpNAaomQ79M2hy8+0lgpZ6ynlWTdWmHecL6rWvOuZ01YFt1XFqkwTe4Zv4tcs+CtWKJmRZJ+iO/ORoGZ5eOh2tsdTHdaxq3re8EUjcs+tNbgBTA18Nt3oShm7BnVduznM8eud7S6sRLGM9NllSTMkjMe3zzF3jql+08sRzIP/p0CJKcdMMH+DorOHXt9NfXFKdL/oNovsNUzmlc8d++alTW9YYejeWU5u1cgcd06gLttw+1m8J6wtw7LGWVl6ufYt2iiyqwQo6q0upA77W/qLL4gOsXy3R5O+7BXikbC/nUIeBA2o0qx3knQhR0S7nKAaPB0Fh3s/uBZ9crny+0Z1XTtETNyUHofUgpJom8pGdK6IKUeLajIj2rQeRnoiewyHOYNV9cLrpdF3CsDmuH29gz0J6RCDPsWvKWOXLLmk45Lc9oVrx2tfu2z5tnXB9pBOb6CcApguL1x4AnDgh8QE71RiyJBwOUwWOP3/KbjlcCJsCnY4wHXHQ78YMgjptovvubo9sz7Dj/ALn4ffx0bCTauly0WwnuOykRa3seaeDZVNS4dCJCIXNYBMcHGfQOAW3/XdYaTFDyZkQbyERU/y585AKLK4x+uEakqnyRhfr7Pr9X3XJazzXlNJSOlRSqgNIRmJIhdnU5KVzCyvz2fCZeXDJSEbaMDkhy4c0PKV0j5hOV0hbye0J9s2LczoqMvc9/hhKTxzLwj3jMjx4VPnBJSYZ72fG6oOwXMWu3Y913RHlNRy7KiXGe4qTvtdqbx7I7uk6OSErAsK3JeUErwJ2xcz/TfILa6U4OmqxL5SLgOMbUgcNPAT3i7u9IYElVLinyTKjNit8HarBToMpZOA29J4l5xQEioq+47Hjz3Arb9LEXMwvfmPKJEtp2nKFlrbMT3oVdeIcQ8SnjjFURbjLURUT3LjTPsdB9woNc6uCm11hGIDHVXd1ZBSYq/9YbWK0o22LKKkB2VDSQitkouznbexx5I6ridUkbJiw5nEVwTtSYipZeTsTIiVZSRHhBZUhU/g5/mG9Czyp4F7sDhzbB7U1omIS8JJRvcd8CaUJroQ9VQt4rWZ+DUXWLmVtATWzSspzw4HWhdRFQess0bUIE1rYh0nruj+8bV0fNAi87bHeDG3kwpwfuOZaGjVivtYA1Cd09A2gFxX4j+UKK/C8W4Wq5RFgCJqIMdDu7uk/8RJqw1OgWWjFU1RuXYnIg+Zos0MjTuR+NnUmuVrbIgnEOoXMhR6PxIgIWmSgaoiLWj+z6CqUCfYs0eg17GX6xu6+LMZCuovWG5fw/37nMdF4sgAOiVasRPnz5l36LkcLA1RGwUfq+jJ85J8ujATYQlyLddKdMh6uZ17AUzQwMrAB1tNm19H68PtIPyXryFBGP+TQzleWDaPLwucgaXv7887WmIx18HgBEIxNE4z3uiJxqHaGCF8ysdQmAMEK8ZI7S3uJvD4hunMy5/9jUdE76jLCsMIIHsIlfy3qmWuP/3fDmkqCiDFygTcdiJfrzX5z0cLptKgkI0IrX1LIJzdCSHWuXhLV2GB9KrCORlMPSP9xHDN+YwKleoDrsUQ8kkOfbsQN/Q1f3TO3uTiv0xuhzXRsP16qsfxnK6B8ucJbOKR++8jV53zSjRByRyR3JKoOYKRd3WUwHgaijH9MDTJ09QK6PlnIpIjhlXVyfyfuJeZMTJ1XBQXIxIQ0mFhzYwUAYIPRhN7nDQ7JFz3sS5CKIhq3kcaWBUXD85lYlAALo255nVDMKLnZUN2djhGQZYyuorozURc6wOzyFUGCiY9xCO23H/uWs8fvKUzeA6qzB6Z3XBqE1pUjGF4e72FmVZ1IJAayUZDAlJjhTNeVdESy4Ax4DvL6XA04rlAFm3Tm2d2vqQ74/xXJaVJbKBjhl5KtGSgA5NVD2p2knek3uHt45979hw5twoqjcQiSw5D94LS45XpCHzDkSKOBn3gQs98RHkhNhbnl149b0vvvAAa07oX3kTD995jO3c0bIjrwXFOmpLEj/bEUqzHYZmDcspIWc+e6sbD6bu2gsJCabnT7AGWM9jv5IrY+iV1TIww1a5PmrfhQIwpXXeG0qeDTkBwBpEvKZdJjcinOJG5mGyYWmJBDq5H6q6ieDQwPQEqTjcN/mAdpixAqyF0JoQl/BuWM4PAJmYqHoHQU5vCkn8CBLkvAwui0x77xWtVTkjgHtSt3QG3ECnxkkEzT3SSXnY1H2rsLzj6sTgsPVGxMRVlQSHZWeRV6JTE8KT7iZvycdzwzFKq7Ml7aUuW7GLFwVJEmCq7yaT84MLO/6NXh9oB+XZF880n2iZK183oiNcQHojc/BMSuIyHfNezkw4Ou8GJkaKZ5yT8Z3Hcl+/uI/3A29c3OPXefsRkTitJ7g3nG9vacAsFjcu0jwOaKFp/EQmGTAzDpHnJW9T0fR739DXShvNccFw/MbfD/c2PxDvmcjWvlfJkEdECaxlxd72yVsAZcsTuCBaJdmRBohlir02wCtqMxmc6RzF/fcOoKqfBsA0TW9YcqHwWl44l+6AxLpSJvk2ZcOyLnJKqAFSNwqn9e64eXrH0suU8NxzzyG0Ou7dCyIqDUmtO87ns8h8aTiF5I4sWFdKwecS0uFdZNMuEptGLgkyP1YUIKo3ZBzNDr04qADaLBSOIVY+13n3EGdi6WxK7F7ae2MEKvKhQw3nYOyumpchJx5RIQ8Yn+tO+XpW79AoXl/fx+uvv4kggpoxZRs8rougAIZt37DtO5578BzefONN9NMJpLR0ZBOnRygSmhZnkrS60iWtVzCvDsDoyCYYUxnuqBVolUZarg/2DqS8kNyIhHW5gucd3ZkqisoVIkMd3XeYqbRUKTcz9jeBs1XAvlfsW8PmdThbZqx0gfEgTGomx47B6s1j7FWWY8tpfFPKMJ8nxnp9D/dPCf/n3/m/4NtLxv/2f/3f8atfusXTB1fACw9w//qEbmd4dSIairaad6oyO5BAZ63V81ifZjZsMnVgCprVkcK2gfwo3eN8b/QzcndYT1KgpQPS2i7kBVqroKCZVFrjQM0SJ6NzzHVo9oz9dW6MQG5N35czK+t4DiccbTc/1+Z+ie3vJBwPTwiBdsSLv+AqIUo4urfr7Ag3qveO8+0NzMpIh5mcZA/+y9GBULCbJTp5vqvYz0wL9f0xapcOTJCJkbCeDOuJgRUbBprGCHKaOhWbVYllcgB7Y1p6dAS3hu6bUCdJETiGneHYgc1o29eNrC9e/3/loMQZkRUVTgnfiPxteIFAROaHH7wLkjikI+Jvh0OX7eY1AXDlFtNcbJiCR3b4jmPq55t62TP/xbsP84v7SxJCC4djfLTpb/niOydB/D28BtggXCHcnPGc9r6eJe71WZSFxLBnUmTPPJfJeYBHWZthWRNRj0Y43aV90XuFe1EJYLRPp/HrvqNFHlfVIkz/GVxKs5aSqktISO1wWCdpb1kX5FTQbaNEfW9jDQDOWv+yAN6QMrDXjrsnG/aNWijuwHoquL6+hlnC6VRwOp2Yggm+B0548uQJ7u6eypBEWoARTc6L+qNEGiXIonwWQCXsEvVK5d3jz3czIrWItAf+n+CYHmkcEghdE4V47iEqV7QUgsNQmRpokwzuMsQwOr61Nla9pDiAd7BySJUqksXv6mXkjb1XzA23N7cT3WkdydgxNSofBuHWM8wLHj98gm/5lg/jzTfe5Hw1jlloTyRFs27iB4SdAESzUi8V7e9ApqLio5SEUmwcdOvVFUz6Ka2xnPf27hbmjTomckRYOUO+zi6eUOi3xGGYc5JwHNdKSld0dCtTaV1aH7V27HtD32aa1SLCNZN8PImoUaqcU4jP0RFbkXFz8wT3nyt44aUF5bmGvd3g9qnhZmvwj7yM6/VE1MFmJQ8lBhPaRh2blBKQM9OM7uh9tmHggU/eSsoY6YFcjFVzcmcj5efelXo0RvhJajEGkXedkuvOLudmTs2SBAVdsdZ5iDq6xkRtDazJrmEEOpBFQznaprCedDBba2gbkBd2OGZzvkTSqNSTg/NIP+5gI1VmXHsf+4PiaaFbo0uZD75P2LJwiNivR01foesCADL2vePm9oxto26Q9Ya7uzOJsL2hBaKWDM8vJ6yyF+4UZ+T60QrPwSES9yoZ02ngeZGyOsH3mIsoDnBYllic0BqT9M9R++obvT7QDooRmVJTuIDLgOGCH0N9vVyzH6mF9zpWPQ7d9+E/TBRE94QDaXNEcpfOSXBWvhkH5WumXt7rnvzZe2I0QG/dRyTsQpv0ILoOPzEPliahpWiJEXlVbXsjVP7stb/W/Y7fH5CcwUkWsmJpokDjPa57M3rsKXV4r9g6yXLed9SdQlyOjlbJQTD3edgItp/zAgT3fqZ/AHiDt0T4vkqqPTFSbZUGLpWMXBbU3il4pPVU3XG7bTjf3KDtlQ6Q5P9TSlhPBaerlfnbVlGWBbU13J43rEvBdj7jyeMn6q+SyG3JWdFcqN+mwZuJFRjcnIHYHZC0PFQhA55tQzYdSndBYm50VF3VFJhVC884GqF+mqRq2ho5MuQNaH79+NE+DvheG7p37Bs7Ieesg9oivuQhYw7K8Dsh5/v377Mj8t6QFgM6HUs0Yxl5pxNhEp6jxg5bEXziE9+Ce/fu4bxth7Up1CWMsQU/aa5drvUOs5BNPxDMPZxY3bO6EpMgSGJscyI161JUsikehhsAKq0uy4KlLOKaNKFJKrXe9lH6axaoJtM7JS8oeSXXoRMd7N5Q94YQ3yOMD7hX7DtwZ2ceOiDB++rqCilRQG1Zr3CzOf75//Z/w/9+Mnzhi2c8Od1DWq7R4Pjq24/wkVdfgRsZljkrreaNJONUYOC6TShwp3NlWLFtFAC01Md+3FqDWR8On1s4IDwoDY4MzYfQkMTpHrsXB4eG2WaXxozIuB4ODccrL2xU2BsrPZMDNVaA4TL9EKjcQAEAqEgCjoFWKlojQRUT+YsvjcqcePDQ2iE5WBVi6KCCrpAGb4ADJRf0SuPHsyWJQE4bbDC0wYv0UbTQKvfNvXv3gcTy/m0D0EhudjiurhZqLoE2vrvDWmjBAGYNPbGNBGIco/O19kXvaQqZGiLzhLGTHVRLuLjX9//6QDsocbAQbdbEWhR72eGXsaInQxk4RuyHAzsEfSwWZBxmY1do8jBIt+FhBgw3rmBR+ntEJOKKWqze52Hy7HueQUaedYYiqo77ifc9+x1RdpgGk8DGH4uqmth8gfhIdevZEuC4T65BO3z2gETZkcD67mc5fg/3thAeVaLAY0Hzy3mnDVCFVU4J8Irz3VOOYesweeW1RS0+o9AEwKxLSChudh64MReTIMycOqwrX1ywlJUVBeBm3CvTS3V/jAcPXkR2D1BzrK/r63vI92x0G27eiKKcNzx9eot796/RvOH27oyb2ztYppAYUsLp6npG2Zq/JHEkwkfMMqckWfpDZBWVN3Ezlmw4G3DAa5TJqhSUK2nMWzRCYzQZpGbpaqSpFhvjBjf1atlYcuxAcI4ofNnHuAbiQT0WHlQ0WA1RKmnDW/SDaBjXy/X1NW5vz8NRGymEHGuuzXUEHgRw4Hze8PTxE7z4/PN4/Y03DrGsE4EAEAhnyRRtC6cIzvXQmb+YzoBSYmwzEYuLPImQGI32BWYJ9+7fR+/sFAwH+u7Y9o0l4vtO4btCVKxIiyetTIf1HpUtHd5EiN4rto3ieSVn9TEyHsKpjPv3HhUkbJAYAnnUfulw9aW5vb3B1ekeHAmvf/kd/KYDzU9oZWWjOO/w8xlPn97ghecfMM0ztnRH6w5bGjrqkDvwlHC13kPJ17g+ESW429jRtvXZbdzE4+CM8C/ZlARJdEx6A3U0NMrkQNA6mCuF5FFhCaoq90BoSMi+d+85PHf9Ih4/vMFXX38Lj588QUod5SqLb9aFvimoGQGAkj9x/diPw1Gls0BHiOgctT6mTQwyfxCtu4jhKXOPRPVaINQh+MfrMxiLKrRpusghiTS9xVwo/becVlw/dw/dG7Y7Bm/c7rQJ67ooBUivIlkHUh92zJCAbmjV0QpYJdtIeIbpvJMj7RE8Ytr65KwEizzDSFF9E07KB9pBkX3EmNfx42ej92cHpMfcS8TtGQfi+M9nEIbj+X90Ti65LeEiRTrjvR2P4UwcNuc0nYe/Bzx++Oz4PAPJCRbJacohQ17YNbZJddOiFAzkZsT2e1YpNyLyMOLxPLwHPLNRgOAAzMELV9oxsZejQxN/4YI1wZW0KvxxSTKCZqwQAsV+ltxh2Cj8pbdkixTeNJws2TwiYdOJYFMwPohZgamZmmXKabsOxbrTiXj09Iy7243kVd32/ecejL+znwUPzNN6JeXYHU+ePsVWd9R916HhsLzg+v4DlJzElyGHhN1qk9I/OlSi5BaG2mclCOelTofbAFhnZYeeO9RImxALCbzOpa1UT9eUjTLjHusuNBUOFQpmF+mVfd9xPm/wUV3JyojBbRIHZYIWWkc2G2rWWlFrxel0GgdMBw8xM1BvpBuur+7hnXeeIqVF6csmvoVMczrsNAUGvhsKFnz5za/gt/yW34LX3/gqtsr0wmJtBBBjtZuPVTuQQhkZc+61EAQDgJS6CJx0tADqPDCwZoTNrehYl4xUKXKFa8OVVJC3bRt6JvW84QymJS0F6bYgLWnskbSzZxQiBdaU2tF5aCLQpjyd/t5ZqeNi27I0O2M5rWi1IadFe55EyZQMXinv33euBXPH43ee4nq9Qt03IoLrgnBwc8mwRi2fLKl1tI7aHsPA7z+HLksqWO3Eclev4uDMmSB5GViyYckF3Zia8N7R00xjeQuuFHkgLRBLBQXhNeS84PnnXsB2U/Gbv/5FvP3VhzjXO6QFuO8LlgVYMhCQMlEYVXWyOQ7gvEbEnC4Nk1nNhlHZuXsl1GMN9L5MBNU20XuVmZOIG/YynH/ofCPXI7LyZpSyd1QEV6vJMTPwVpnmbiirWiM0or85M12d4RK+i95IM7AyM6bsjFa5e8PN7VP0nnC1ruxM3bZRkdN9R1frkZi9JG7KyBb0UILxw5/39/pgOyiHl/w+1aQjwrexYS8qVSDm80BKuJkiNTbSRPoP15MffoeL73qW/Go6+I/lmfyKy4m5dGjwrB8zrxHfebjG+HxsFEUSBuBZwTaiIRHh+fAfIgt26fQcrxtRicrtgr9gs6tnQtIGjENolpbN523wAYXbu2DUUJfl6dSQocZqKSKZRMjXXSWBPbwM2p9EVMHcMfqZ2Px6C2dNh2v0UkmpwN1Qu5M7UTvaueJ8foLz+Q5VTdK6Uh4pJyx5UQPAgvv3n1OkZwiJp7rvePjwHdw+vUHU6TLg4OdyysiSsm/dZ8+XkqWguY8SzSxkgPl+nY6EhOg8VZYEmtCTZFkOmRAIdagNhzm0gQASS32oZx7WqZwM1yEcZbWA0gpLxrou0mSpKrs+SJYf+BuxprXKmV7UOpmkQxFtZXiJ0JCYmxI7Be/bDksJp9MVbm/eREpgg7w0q5CAqVD6rBGsteLpzRNYAq6uVzy9uYPZSpsf+htSwqstEB2NFesmkfVQTbwBHvCE7vd9Y1BQVAqcTbyghKKu0b3v2Lyz+sS4B5aFa+J0fTXuM5y+1nZ0jf22bZLjZzpsWRestHSItgHuTNNEiW6tjSW+Q/FVqIwaaaJP21GWjGRXrNTxDd/1uz6Jj19X/N//H7+G//a24Sav6MmQjI0T63ZGsY67ux3nu52RuTHtaZawFpa+p8xUXEpAKg43x5oLLBWNU0IuGb1Vti6Q0nEWSpdLxv3TgpITet3Is6kVW62xtCjN7oBlY6WTvAc65JNYaiAZ+enbb+HJoye0BwrcnjzZkdBwdSq4d1pGxRXQ2cgvUdE3yuHhGOieLJ5UkaOiJl8EYyOjLB5LOpxH0UCRezgN++4yXok1+ghAhv6WbLnH2aEKHqd9yEvB0sF7h9xH1zkie+pKmwUxWIkDIGWEqFsyhzfg8aN38E59imS0f0mIfN0rNrB6y7IIJroOxANjjBn25cL9el+vb8pB+exnP4t//s//Of7jf/yPuL6+xnd913fhJ37iJ/Dbf/tvH+9xd/z4j/84/sE/+Ad4++238Xt+z+/B3/27fxe/83f+zvGe8/mMH/3RH8U/+2f/DLe3t/hDf+gP4e/9vb+Hb/3Wb/1mbkcXnCbpcBNKe8RwmJCS+SIpzscBR3KTI7TUL8AAHBfNe9yCTyb2kYPxbErm2c+EEzOdguPPLv/+7Fe9VyUQF9usgGi9oXjBpQMS1Tzh0ulnCEMPMePxLtTmgrTqz0ruj8E6vObMRJfp+V7X4WujzE98e8K62QCbqp3TOy+D3Byb1UwNs4wS8iHjnrOMelkwODPu6LXh9rZh25/ifCaRbA9tC8Rhb1jKgmWhwSqFBjUhUzOiN5zPd7i7u8N6ou9Qe8X55g7eO04nVdUIfg+Qk5UsDvSGkhLKsoyccm8Vte5orkNDolaIeRU6Vg9S0dQBSaOkMka3tyn7TYMoEvBYN1H22ke6jR/W+ulzPTeVHNbalJIgkkNFSVfjQow59UAOIz2jNRUGNS0JV1fXuL29HcJVeaFMf8kZ1LloQmkaGhquFurE7PUMqKwxpVhbsT7poHCdas1IKGxvG25ub/Dcgwd4enMDMangPY3eOuE5t6770Dq1JN95aKYIsWnzQOTQGavGcoEVGvJUO/b9rHGlbYnKp4GIqJ8QheIMKRf0dkKrO2rd0J2loVurMGtIaUMyQymLIuMFkNPkneJ8kYZKRs5Lbx3nduZhMRw7Q8lKExvDu2Qdv/N3/C/4v7yy4Z3//B/w6M0z7pLB04LltKBZwVZ3IGc0Z7DAdeTo2w5Dxp1Fl7LK9gy5Y1kp9AVkWG/oxmqO/Uxkcd+VoodjKTw8W21YkJBOGb0HSkDErDfORZFeDmQnUoriiINNbkSBe6WGERsrYqBJGSxBv73dsSZqBW13G2pryEvGel1gxWWnp6PCtc20c5hG6pU5icA6hygBG0jJSBgNO2Nx/2GfxvZOqD3DGwnkVCiX/Q6E2w+VR512aF1XlLJiU2uF6GF1wVQe9t4H4uo4vCWQ52TAnWO/27FtlW1A1oK6bQSX7iWYLfBeAWsKpEM4VMFTmHtjZPxskP/1Xt+Ug/K5z30OP/RDP4Tv/M7vRK0VP/ZjP4bv/d7vxa/+6q/i/v37AICf/MmfxN/+238b/+gf/SP8tt/22/A3/sbfwB/+w38Yv/Zrv4YHDx4AAH74h38YP//zP4+f/umfxiuvvILPfOYz+L7v+z58/vOfvzC03+hFElx4sZhG9l1HZ1SdzJ8YwJLZFJUb8bHImAUOcvmNyYn2AZdIRQA2h4sOZjTwbubyET2Jo/0CYfEgb+qdcj+/VsVOvEJqH4ZRvhoef3wmcrnu7XAou4zK3CzHZ5zXilx/muNtM28ZM8HvnPfF3hNSVw3EJQWqMTdpsQTLVAPu4rCQvCVHJjkrMA5zbPqOlBc6BaaGVqoWubndcHd3xna3scKksXSO6q08O1jemVWRUbCWRURQYG9kwNOZ6STKGnkav/Ff/jOWdUUzIC8L+lZpIHImi109TaL64/b2hj0s9g1XVyfl91n6t503NbJzhIQ1HYoQerORWjFFQCnF4YqBeoTGCxuV6Rn2iroTGShSjQ1kDgjtkihRnI5azCiddjmcigr3VoU6sqN0irLWHuXaRHOyGbwZgz5nzxXK/jPVsq5XSDmhyanorVINk7EpkID16jSIhaOSJtlIQ/EuZmQJyYYH4dW74cmTp3jw4AEMieTbRFG3sU8ViY89p7EJR62ruaA7pfvJyykU8vKGulFsrCTqUzTB29t2y3FfImU3U2TodGyGzL/bGMec2b8GTgXhfaf4Ve+dMl5tB7q4GpnrtpSCJS10hLQeUjiiiQ4f2z3Usb+ts1Lltj/EbW/4P375P+D/+YLhP7yV8HS9ZvUWHHUjUnR7e4ft4BTlvIzUIpz8C/JEO7a9wfeG7SxZdZ+BCSu2ynA62GU6odVAYDvuYEi2IBRonT0cYEqBlWwT5VTKhMhrwA1gcDqMEfeWq69Od/G0rMDR0LNhbw1VHctRqXmUAmlLgXwooFUkG6l86ti0gXIy+D3YQZ0rEJrLqhcaSzpdobhN5KftO0nrauJJ+x6pOj2L9GRS7GeX9lGryEio8IGYxV3QkWdlIvcJ+WaM0x0RAHK7d5Ryhbp3dtAGVXRLpk3qrZHdqOA+umJDwTerJ4OIbCMIej8v8/c65d7n680338Rrr72Gz33uc/h9v+/3wd3xsY99DD/8wz+Mv/yX/zIAoiUf/vCH8RM/8RP483/+z+Phw4d49dVX8Y//8T/Gn/2zfxYA8MUvfhEf//jH8S//5b/EH/kjf+QbXvfRo0d44YUX8JGPfytKCE3pKZIiZzLiD8ZLCAm5F1xn3gFkGwUMfaRPgiDKz3r3sTADE+C7kur128XvdEUdTCrfivfYNHrHV3jz49AYpwK9Tv0S3wzBaBG34fb2VsSpy9TTuPYzB9KF4zWM93RQDA6TaiajrzoM+oDMo9w1md6v74txlZEK7gsNC4+6ICxGV02mr0j8QwIWdQg1FB12JOU2latuZ3JFztuGem6ozakVUoRo5OmIROTQWkXzOrx9dvqtOhTZrdSsUKJbZNGUDkiWJVzfu4fTss4qKUDQLXvxOJzpgMoNG3oVBqB5Rd1VgWBOBCXZUMUcXYPllMRxTH6By0E5pBm1DwZq1Il0xJxyLYjoOdYbRjrQ+yybB4gqdCEyy7IQ+fBZSkztDsLDEaHDjAeoDnC0S4QxDike2DyAQ/0znATvju2849VXX8P963v4jd/4L1jWFctiyJIRT2m5WPcTyezSkKm4PZ9x7941/tff+lvxG7/+m9j2nR2KQ8wr1qGUWktZ3uP7fDiAtbHnkWGiV7W7Ik+hor1LhyOQLEnyh+PYMITGxhS4+FoXkTbnb9t3IlZCltwrx79jfr+RALksRXtvGaX0XfdP7oA6Qy8rzB11kw7LcsL95x7gfMfGibV2bHUjSVwER6aQOvZtH5H8mNd4RlMUbabiFHW/xRTeA+g4HjpSoPeOUjKWhfs90qmntagPlTONkWa6mUhYR2jVRHfufrg3y4YXP/QCnryz4UtfeAN9N+x1Y+BYDKZKmtPCfdUqe/okM6TFUBbqyqQUqViWwkdwYOP+Z0UQdX7SNATDU5lzHpohA8UP9NyBUF9Otiq11AFsQJpyFt472l4kVkg+0OlEQcfz+YyrqyvUtuHmya24aIAnR14Kru+z1NxSw5J9BOsDkQLQq+HuZkPfVpzPFa07ru4tlHIAqymXkpAVdAJaJoizxMAyaR3SxmaSv/Gf38TDhw/x/PPP4+u9/oc4KA8fPgQAvPzyywCAX//1X8frr7+O7/3e7x3vOZ1O+P2///fjV37lV/Dn//yfx+c//3ns+37xno997GP41Kc+hV/5lV95Xw7KeNlEMw4I7VwtIrcdYe2IAGON0BCGxocNj3j8vx8QGP1soB7pEhmJ38W/BrN8eNhf51FSHNTH9/nhoQ43ffGQmM7DBWJhqDsNWK+UaD46RdGPhB0zD5L4z7xiE2AcLJhJTXlxlpSeiVxqICMWvvoBBn/m++nAxUFuMFv080QnaA4Q56KzEd2+d7R2Zr8U5epr21H3ilrp0GURX5+7XnF1fW/0PImDmeqkjm0/K6KU8WzS0uBAwToNX8oZWU7OsjBqPJ/PzKMDA3EJToVJL8Ld0SpFjJiKyiTkhfyzd1WcTD6Jd0ftTUx/9u4YfXNyHgcmp6ZflBmHXsTI+xqEpB3c58Qqh2PTSRjkULBbci6MyrqrL8nhME/JkMuCVuMgSMPxzLkLjSraE0xwe3IJrnXkXIZz0oVGmBkFuZDRzYcT5N5wOq24uztr7XJfdw9n7XLfDbl+5xgTVUs4395h3yteePAAb775Fbiqdczm580xlIvD8Qr7QSErwNGQPcOWJD9cUbX2kZmIxRYKsKaS6YbuRAujLYTFnhr26NCrSvFJqNif1hVAEi9oBzxxTfU+HBcHUHc2PbQEJOws45bI2bKsCvx39EJOjB/0OPJS8Nzzz+O55zMSDNu24e233sbd3S1ybshyGJa8YpUYIhWZu5z8zrSU5tMRKaVw7MnR8bwgZZYBs/yaLhQ1iuQAdmBT48XHEPkb5ILlzDUe+zClNETuAO6xlKfVKSUPsbrn719hdeDx4zNu784494IXHjzAqWTcPHkkTQ+mi7sDaEQhqrHcvBS1vjgY3OFU2IGDFalrccqOkLJACiRb4GCaFmWmYMnB5uQHZ5LfIkS8cX/YONOY3xl0VI9y5hBgDMRF+xEdcCG0IrVbN7qx0WHZgbY7vKsxbCYZvJSC3oNrKNkG8R8tFq/sNYPWBGHVUZ7yvl//3Q6Ku+NHfuRH8N3f/d341Kc+BQB4/fXXAQAf/vCHL9774Q9/GP/lv/yX8Z51XfHSSy+96z3x+Wdf5/MZ5/N5/PvRo0dxF4f7wUiTsBmVVoDO0aGz0ydJk103oQPXpqc7rAX/86xvcUFSPYzH+OfRd3hmQkZJ8ddJ1cwoc37L4Rt0r5cL/gLaAQbUh+5q2a7FGU7FgJ18pITGQIJRNUlbhOI9Vn3Ag8lhHg3iIJ2PeZDmNElcHt4zgBApch2Oy0Kv30IAzJ3NpJycjoBam9CMvTa0fUc0oAt0x1JSpHWNqxXjIGeFh8OxY9sC9q6orWJXyiBE3GCNUKqpYkJpIiRGM3GoXp0WvPqhl2DtjCdPnqB7xtMzo8mGHe6NHWKVymgtxiXz72O+YiwLmtC+yOHScNCYZ0XEc4FwDbPPSESjNNzRpyXW0eQ4sbKkI4yoo/ksPYzUD1LHNDU+HFRG5lmrMRh1GdHtN7p0R+XRJbLTh6Pd1EJgao1ElBuoidJYUb7YuJ+vr67wlcdfHeuxuaOkzIOkH4OIOGy1tqOMNVFE7tGTh3jl5Vfw5Tdeh1dFeZEmQ0dX2/ue8uAGHfcYHSqt++4jbWUGJM/z7zlNxzz2gYIWHdty6GTL3VVtH86QaZsHqhYBDFBSkVIsEJoprREp7F3dmY3IS6sde93gO/d9SlHRQY2SpayAO0oqaN6xnBbs/Yw1nTiiGsukYKyed9zdOaJxXFHDxmVdUfK90ReKRN/GNgya3yBch/0dfYYcMGSUnLGUDE9MoRoSWnc5YY1rAY79XLEreDO741pDx5oXlGUB3HHvuee4GiqdqueWFQbqt7z6oZfxoXsZ/+2/Vrx++xRnA1556Tk8f1rx5naLJ7d3OMNQocZ7zWE59EoaWnecLKvLtvasNQVkc55CIqWH3ZSWCNCGsxCm4NlzOyGIulBVXeDKquqR8wwA1qhTxcuEY4jRN2w5GXKhRAITAZRM4HrLQDM6HNqzNBdCXpt0hcBUYjHDaTkRdWsNrZ+RzJEPHAcShie1YPIdZ6HH+339dzsof/Ev/kX8u3/37/DLv/zL7/rds2jBswfye72+3ns++9nP4sd//Mff83fzM0JKLizKMw4EQL0MOZO5sxKsBysUR4fi2e+a14t0zLOpkcg5AkA0C5xKrnjPybn4Dk0oIoqWsQtyaUTNBpNh1DPGbdozY6+/lpLhOFSkhHPiYTy79ssBRQk4N4isCNXOKGHk+3kgqYTZjtwGkQy9z58JQmTOn6NbW8NeWQmwbduoTEkpofmO1kgKdekgwIP8l7CsV7i6OqlEl+O17xvO2x2biCGh9fh5pZBbj3qbMCTkHC2r2ntCKcIQEMsZScaIKG3FKy8/j49/7GU8evM3cH/NeLIBN+edTtXeKYSUDF44t703QGjBkss4dD3k0+FKVWrtxMmlCCTJo0lQuajXwyFOPlBKGakbORRw5XyJbEQlT8lJ1Sg+iIRhehjwNM2NxPnwbmd67iuJoXkYWxnGYaQNIV0PmPgWPvgVs1sv5JBJo8OB0fVaz2hmFFk7f3HuA+fnUkqHpGeMd8iZax018l5q2/HOw3fw8Y99K5a1YGuANTpQZUnjebleduTsEkLLJD4aUTmecw4odRMwP44oVkTSOpyCSB8VDXaofmPMkESsxODDuXgDCQCSGHHmQr6iGoR/zzlhNVJ/g19CFJWE42Prg73u2Hfe9/W1HNYhJpgl2tWHyNvpiv11YJmo41bVz4UVR9t2hxsnaTqXgnVdcXW9Yigcm0lsjiq5dd/VHZpopYOcniY0agDZgmstsXokr+r6rKFmaXaljH1rsiXiBi0F20buWTLDk6fXeHF7Ea1WfOXpQzy+Lnhy3tDKCjTHl994G4+vFjRPSNf3cXJQIyp6ahkRVBL4MwnKFuKCdNZJyoXI29x/Ja9DNM1dNqxkpjzNsRjF/ereRPCPYDHJ6SCKMoJKAAkZKXGPePzPO1oTag9HT4Z9P6NWIOUVKResy4LeDa2xDBmNvD2eO0JNehDjtW8794/L9i4lS6iNFW+kMZAnN6pgnWuqCYaeRcY9tsj7fv13OSif/vSn8XM/93P4pV/6pYvKm4985CMAiJJ89KMfHT9/4403BqrykY98hLDh229foChvvPEGvuu7vus9r/dX/spfwY/8yI+Mfz969Agf//jHcQxvYqIg4aIjnBH5dshoJ3dkB9ySQAYbJZeeoRpuAJbfZaAZ4V4iL1S97CNyNTM1j9Oi6l8DJXEMh2b87PAKuD+cr/lMLhjuspz3WLUU3XjdOzoMJQdRNno4YHxfGn5Jw+ycStiPuj10TKwUtYSf+W7KnAvNcchJmR6TZVZ6VO9oG6tU9trYf6TWieIcosWuXiPxDCknpFyUNsrIFj1oMoCG27snTAdgcl26d+xnGqvWfSA2ZsYNbkqDiORYloKy5GkgbHKZvLN8PYECbN/y0dfw9MlX0f0OqRQ8fusG542R2r6zUgKlIGUhHHB4b1gSnbgRQcGHoiu7MQeMrdFTKo1rqKMGqqBDNKWMnNbDgpkVDN6DoKcGXWZz9bhP4ppB156wLvk8DSQwQpDzbL7G0nOtR4sDORxP3kjvbfCu2BvIgdbl6M2UX0T8PcpeYw9EpUzvOK0nnE4n7Ps+HpWloB1BaL+EOvpY68efGxJunt7h6c0tXn7lFXzp9TehOki4H1EdjgPLpyurbCpgqQ8yaqzb1mZA0Yba66wKmuRJAE3ph5zkwB/SOX067QEHB3yfUiJPrke6lehmazFWAHI4Po51LSPNVUqUi4dIWB9EWR5EHdtW0VuDlQRkw3UyGAptZepIqSClCtOes1TABsdNiNZs2rdvFefzWQgCGyeSM7TgdHXCCVdMRfSOXlmq3lpF65uW00EBV00ZeyPalworL5MlJGOpckmZTn/xi2dKqp5bC7ks2/mMbd/w/IMXURtws3cs1y/gXroC7s44nyu2vWFZChY1Y7wqK/kcZio3VtWNkCt0kyjetGXJDBkLgz5zeKPNInrG0mXoTDmdrnC13sfNzS22uxuww7fWcxLi5UWObVInZfUkcqWfzOGp4rae0VpGXk50DFKiQwWRVCs7rLdK5fWUEuwqhddEtEbLKTL6RyTfHSoLN8Aq78eVUvLg3Wg9Iw8QgDa9SfzSZTu+PlhxfH1TDoq749Of/jR+5md+Br/4i7+IT37ykxe//+QnP4mPfOQj+IVf+AX8rt/1uwAQZvrc5z6Hn/iJnwAAfMd3fAeWZcEv/MIv4Pu///sBAF/60pfw7//9v8dP/uRPvud1TycaqGdfF4RTDUj8m5Az8Gx5TRBko/8pixBIlCXBKYxd5P4mhwX6zCEAHz8zfc8cqz7Evo43MJwdx7tKnwfkJ6dELs7B67S4g8vvDPhP93WsEIJSXp5cjhWFg+I5Y9FHrwv6GlSo7N7RKiulcibTfVbeCFVImXobtQkqz5Tn3jbstYojIiKxS8/DwhCP/TGMS0oAUkJZVhDm5QEQCqQdDT0ZUJm6YuTvivik0tg4euzzohxoCWIrnZOUCSlHG3SiQknqEoBL7EpnB3ynLP2rr7yAhA13t29hPS14/HTDkxuRRfs2gI/WHeXgcHqHDtQ+dnyshVKKNFP8wigA+ozFgVmn42QiU4+6QLCDt/7ZMdc9iZvqR+TivPSmyqcs7kKE7or9uo97HQ7o8eXaPXbcClGZAX1/IlTMcJfOocbZtT5DaTZ4XayUwfhZ7x0Pnn9APRQ5KAauhwgubGS4+eRji/l0WAPB663jK29+Gd/ysW/Bl7/8JppKlk1pPLgL6SE+37yri/fl8w9Ois/dOPb2eHsELAmD1GRzjo42IyogjrbKgIFqaIbIXTH+1wFYJ1fLLLL7XM9dhz1TixQi6x3aq3Tcuw4qj5L03nE+b0gwXF1dYd8qHj99grrXg+OVsCR2Qc5JqAEiLQgSTxt5S94d57szbm/vYIkqvTmvdAKWTOfllNF7Rmvh9E0nmRoz4pcJ+eyyFd13uBosms2y6VjvJJ+vyNJY6t6xnk6DY7OkBQmGh2+/g/Memibs0txapd3ISc4n1LyRVVWZuTUkJHQdyjmvAGgny5LZT0mIUFTF0CmV0wk23Hvy+OkQfzRjFVOspXAy41VKIu/HO+q+YT2dUNaCPVWc77jOluUKvZIbcq3KtxRyDeK7RdCxbRvMFpax71GhFudmrN55/9RqIqLj2k8pzsKAmTArDWkHusrxDWzyfHkefqPXN+Wg/NAP/RD+6T/9p/jZn/1ZPHjwYHBGXnjhBalfGn74h38Yf+tv/S1827d9G77t274Nf+tv/S3cu3cPf+7P/bnx3h/8wR/EZz7zGbzyyit4+eWX8aM/+qP49m//dnzP93zPN3M770YcDj+/QD4MI+Kh+gFgbsiubre9DxGri0Zhh4H82nmzo6OAYVzjd0Gae5fPOCIk/fM9YPRoOAVM+Jnf+d73xZyxUBGllgbi40nOQcLV6cTcsZCDiHb2naqWlugoLJbRioTavBPWDEExSZy3fUfddtze3KLKyHXBg4NXghndRLlzQL/ZaICLegUBVIzszdGNvXRGKVyeqS4aW6fDEl1wE41AElmO6Zk0GgAuSZLgZkOpM3pe5JwYoUFoi5MrklJC27ZB5Hx8+xDvPL7FqTiqF7z11h3ME56/d4K7465PdUk6WJTxJkkRrALqiT18LNA9wsdBeDTNMZ8zOCLzoMrlmCI5lPBpYbmibqkmcAY6VD0RaQQ5m4mibN4Bb6AU5WExpwPC0zFTBz2if/071G1HFRHkeLqcjt6EwMk5EfrioGNFsTEfKES0S+i94qWXXsDN7Y16uWitq7Hc3rvk3ZPGqEyCpk8+ykjPOPD2O+/gf/22b8Nz1/fxdL+hzLwIyMED0UKjU40uZ1gmu0eKjPPyrAbSqLjiEA510XCCTWOO2JvgoepttgXgoi2Ambr6yhqN+CkcR8jx78OG9GGJYn54n2xGKZK1UDYY+UxFTu9yWnFaVlxdnQCofLpWRBM+9ypYv2Apy9jX01HIo/orOCddzgU1dJ7ifLbJVVNrAWp3LOrLJDvWu4KcjhZBiEifRIRcpfXcA96anFamnjzmLmeUtKADuD3faS472s6glGX3ABFk1zUovhiO1r5vOjhm1dsoa0ZCKetQNU61jhA3yP4kCdtYi4AQqFY5L+tprJfWQ52YvWsaHGvJWJcT+r6z9Ng61uWE0+kerkrBenoJoqLBvVOxd+2odZeAX0VI+NOusHdZKVHtys3aPY17DwHQOGJMonHdDPJTtEcAlWCKEydHs0dzRtkQve2i7vobvL4pB+Xv//2/DwD4A3/gD1z8/Kd+6qfwAz/wAwCAv/SX/hJub2/xF/7CXxhCbf/6X//roYECAH/n7/wdlFLw/d///UOo7R/9o3/0TWmgANMRiYfnscgBcxHY5nvlw9p0JFJzmLNWvFsOkFvlYRH9KC8dkPnXcFTCR4aiUZMyZRiguYl1LxbRwnSIjukaVkW817Wiv80lKjP4KvEbA4oO/tO6onUqUp7WFS+++CJgwLadx/PWXtEdWNaVrHj1mmiVVQGEgjdsT3bUxr93GVk7GOZRxSBiKw0nRvQ15/gQ8zalL5zGJ4nwmtNs3NZrR6tV7bx1yBrRh2VZeA2VOA5xNOYdxsZa0pQHT4hxDzIsoBaPaGD071Dpa29IpaC64ytffUSyWUqoe8XNk47nTiecyoK9MqJb10i7cA0kcW9YYtkGND9Qud7RDnPPcY35lANZSKa1iJ7Hhjeg9YFKuQPeDamQaNc91u+h5N6Sykb7OGjjTIxxofGh0UmW2C1a9xzORPwuq13yQBPcI0txcEpnG/ij0vAMAhK61+HJRwSZc8LLL7+C3/zNL1DI7VDZZRK/smPLeYtI2sb+MRGzofE5nyk69aFXXsbt63fIoHZOrMkZLAwPSuuU1xhtIbQPo+fNcU6P/41UF7QHkhk1WIZzqfJ/qiPKuRVCpsOQ3Lcm3ZQ5toheQn6wHUoHTW5M58GaoqcTeQzhnCSjDsv9+/exnk5IJWMTWvXyyy/DXjGt9w1f+uIX8Pjm6XAsQnslnLJlWS4ctaUsQjfp5EXJNQCgMkW23VY8xlPud1XIXZ1WnFbKJKyWhoMSvBU4bQzTFnWs7VA/zpZY6RT6MWbI64JlWWEpoarbdrzfEPIKhqR+NAmustt5rgTPJJDpaL651wgsAIhbZgYsC0nJoX+TpBdjFlWKRUiaz7M+0wmAMgHZGXD1ZtgrNXGqO9LdjoYN1qX0XCQJ0OgMtlrlGGd1fj460o5BxjemjzpcaCFUbTj39AxCOO6zei6p0s4BYzqdCA5bKZDbxOczOXWzjco3fv0P6aD8f+sVOiivfetH3+XUGMjuP+pGBA8kGVDUTyF1x7o1nNuOvmRsJ5ZEBln22ddAZKZ1fNcrZFdc3IEof2t9epWh+TChM33WAim5uCoG3na44CVCc1CFlMDYuixsq17id8DjR49xd3eGu+H6+jQiY4C5RSp6zgOSnnfDdt5HNGJJURdMGyx6ULDMMLxndx8RacpxHdPh1DB5FOQnJOSROhrGGIow+kRfAJXjaSxCKjunPIXRzJCXFHZ9RHXR1t5VjtcOxGVhTzLegUBMDZEJ4yuaqjtqa6hnSopfrYyeYKDEd0TIw2lgEjAiimR5Eof1fgBDYXQc2s5KHssGJEc2Rd/wmdoBc+5jSZrUSZWuo68T5YYxdzGORwfBDloX0DoIJ87R+q455BiwYigNA3hExoK8aw5F3+FsiDQZKIgQImqVtBHluaszrFKH3/3d341/+2//Ld556yFOpxNSSaqQYDVKbLw5llMgysPlbJz7fSff4hOf+C149ZUP4Vf/43+kM7+eRhAT32WCgUJsTx6aDhyiPK1Xwfnap8MZD+wQA+7m/le6TY6bQ313jLNhMJVxdqavjNUTfnCEwrFzqyMaeRaNDXt1gSQn3n+8p+Qyqq+8O567/wD3n3sAy0XpSJJ5TUrFvXe89eU38MUvfFFEy0o+hJkq3LL0QtR8DwfUzjDXiPah16g66qi9jr0WOiaWHaUsOJ1WcsRKYaoFXHc9EC45/PHveOZWG7yyWq95x/Vz93H/wfOyLR3b7RlPHz3B3dM7Os0p5kgl8ymCKzrzKYjKo/Y7QDYl+d0HahfyASbhJ9N5wBL7jGQFOS+wvGgtd3gKxC8OdSEZkXYRedzgKEvB6XSFZTkhOIfuVA+ve8XTR7esyloX8clYcVVrx/n2jhIU1nDv3r1R6EDeT6DIvPeu50xC211BYckZfa/obVP6viM4VXScud854VFNx+q3fd/xn//T2//v10H5/4XXJYnVBpx6jMTme2PwoD+EtaAKg6/lnFx8z3u8JeBq/toGBDgjuWEXML9kakxMIl1AcMfrpmFojg5NTuyLskQEkxPWhd1QeSBV3O0VUKoiZ8O96+sItodhaOqnwgPiAMkKokgGVbNImKwRUkU3HfKOoQxpmeJZwOCV7I16DQFRs0+JHCoZ+jj0Wlc3UW+EZqWQmRPlrEN/JLQOTNUgNJCGVGhYylLm5ogpM0OC5Pa7YW8YSICLe0T0YIpsdR3gBnVfbVTg3CsVcXNZcHXvWg3T2El515iHgxIGJybVHfA8ncwmwmKspKxoNDoNmwElkDcQxm6hJAseAFEmS9DQBYEb9WBcpbHOsc0SeRvCfe4iMy76DgnlxUGrNegWXX8Nnn0gXMHJOq7R40Fqxnljya4fqnyIpHS9v0n4Kf5XK2H60+mEnBNub26k2Nrhbe6Z1oBQkyaa4cipKF2mVNlhJYTz8NU3v4IPf/jDuLq+wtObp0DbR9UMkGY6Rl6G24waYUwdFJGeQ0soAsNYU2MMxX0BVOjjbdiILE5UOJkhUR8pKg4v9xiRuCwUgVHzAYgc1372xc8H6jNRroqKDBUCgKmk5lT+VTE8bZfsCdy53k8r6hZnpjRY2o5zP1MFOheUXLCsRTw1HvKDPAyKqvXE502ts0OuQ04po3G3hq1u2Op5rONcChZVCi0LHZclEw3q4vkEurgsGb0mnBLbGdDZOcEB3N7eAQBOpxVLWrBtG2DOVhOaK29NTkto90h2wHw45wMNAdeNo4z3szKG+6D1rqoWR+8VyYBaiapaUmuPPNN07BkWkyt0LBCk7vBkSJVoapS+e6vY9jPO500oL7V52D5hQc4LTktBsQU3T2+w9w1RJeRjafhARwGMM8q9Y5PUh50cxWzYxqR0NhDFGXK0kpadR8EIZtD0Pl8feAclDBVfIpa+p+gZLjayAkNCnOPwn6VWYVi+IcA0DAhGBUywl1t3MFA9VGfIYTCLmvggt03YjadYHA4UGbJESDWvmfBlr4R8fVdvGKBWkRDlALCAQ0x4pWpCYbVHvjbY58kGDLnkZTpVRln4XhtqEP1AZ6XkqPzggdy8jdr9aYwwyJjQZo5Xi/LHiECGc0lhrZLYmI6lpD5QosHdMAz+RbI0UAxCtdSCiHbzgEhvIM4YuFvvbRCqPQ5a6WyQ4FVJ1GuCka0o31ywLCelklTa2qRM6p1pIhdXxA0puzYmneguImb0ywlHu1iCoaCybAQG5tp77RgqCrXKAJkO/5PSuvP7utCa5567h2VdcfP0FvumbsgpyRGcyFD3PspXoUhvNvRzyo3DiebAJdi1iANQ1UVWawGBFhqocCkHHNG/KRwUH5txpjfppIfjcu/ePfQG7Lu6B+t9LB2OA2KuNbjWQCbiFynBse9lcG+3M27Ot3jhxefx9OkjtEpOEu+FKcdieVYEemf1StyzY5BMy7JQpbORe9AjCMLRBvEgOKKEcOPhniI4maTkOGTpHM3yZI/O4ikJ6/Php/Dtqkh0iJN1QKyOZqvTybpMK9NBcKuIVPIIVNK89+t7V6jFAJzQemOLBlUzdVWbtb1iO+8zaFC6ZuSnoPRFqCR3p/RDLlhXdiKubVew1EeA0PuGfdtwI4c1JwYt67rg6uoapSyDvNxaBTIDlueee4BlPSEvdFCurq6AF8AURDfc3t7g8aNHePKESHNHHwPWQ1oeOKxh4Njio9jC8U4MdKLaR5ONIieWSJgaHBorshgcHtaL/JJAKYfeSQJc1V7beUfdjraLDomDXauzFfJsemXbhd1RNa8dwHIqSE2y+a1RUT1ssfthT7kQL8e+n9G9MQhdF62PIvsA2as21nGs8Vj+TG0fA7Jv/PpAOyjTOXGEhkdEdO9COmyCJsEVyaBzguiI7Vp+dvie9/quZ76XZR78h42mdPx1bPDxezMMOXcXm1tvNg9HNCEnwqY8dFVFkxNLdvez8tqKZNXzBaYyv3pmd96d+dnWG/vHICJP5kITTKQ0OhxNJanuHbt0CtICOUtJ5XIdXGRArV2HrgifCLVTkcJERCWRkIfFXs9jTCKbcOSNFD1zRKvRLoDPJyPddZBlO0QvgIGHqkWu9UhmBOv/kxCuLvTHEp0hOmyOXUaRaJLk7iuN/bIWGUEhNyJd9s5qkpQXlMIU0Ko+P60DJRd4n12FzYpk2qMShBs25wXLckJzh/U08sBdTiH1FKSpgHCoZ3TO1IEgYbD67YUXXqSBr1SlZYReh2MYypdNIl8OlmiGoR2GWcTHmI+IlnoPUTAbXRm8KtILzMUITXP+5Dz3WVlgMCzLglYrqvYImgO+4/nnn8ftzS1aUwSbMVIsx55CnczmgXhExDbTKUJXckKtGb0DD995G6996FV8+YuvozYFBSmQjVl2rSBQ8yRnQunbmVJIw3kKdGQgKePF8QhOD+Q8DGnxHsGVXyCrvUdjxCgLxyGtAO0TP6Q4OB+x/8ZaD3sEOWqab6RJhIxnjmqs4yu6gS/LgiUz7dRaR0kLqrQ1at0HSb7Wil7p/O614+52Q8lMPeeSUBJ1hgxCDJCpZuokiaZigzvVekjkz0O0O1ODtVbc3t3i8ePHyJmctKurE2CmzsjAcrXg/oP7cM9oleXuXCW0CMvVCjdH7Rssa704kcxdFTkpiwOmgIxFAdybPQFe20AVZgVVGeMdGiXcPwpcJOA4xNxinZjBO7D3BqAORC3Wnmm/R8rbwdQ1t6bQ7TYwTzhUAWfxf0BwsyYKPYsQ6Gw5HUqdsWUhPYG9xhaY98GH673NVGWoojor447Jh9Yds2nsN359oB2UhAMhTkYpWZSGXUZpk+FOo5gdrBDhm2CdXmQ4EfEyx4BrcZjc+XsjAqMKiAF5H8mvcX0drPE/OsuEywgp58ndYKhL50IRo+wPN14u6J0phfPdLrGzPlI1ExHSAZDzEFkLLs2sPujY63SqTPnWDrATaKfcuLmBecZGh1CHVc5lklKBgUa03tAr1TljJIZ3rg6NoUGyrovSOXne42H+eDlFccN50Zz20KARzKs+Jt0P60DzQvl4B9BRloUOniXszp4toYBZW6OiLRKJeqeFDP/uOJ+rUhabxov6KSnPCprI73sDha9UqkruTz5EKgWtEdmwZOqVAkS9WTSzK7mQz98NZgs1OeQoMGI2kdX6+PReK95++y3ADPtW4T0NY9K9wkAj7U3CTMZnSUYya4xVqyT3LktBlkR2aw2tbyNXnpJJ70SHeQ+nK8q7o5oqIj4faaCxZsb2kgCXN1xdXeHp0ydEfg68p+AJzL3qY71YbLoLAnpwMnRY9I6333oHH//Yx3H//nP46sPHoC6tHYiMNvd+ICZRit07uoFj6K7eMAv2jVwdSz54QkEKjsCHh9GB2DsgkLlP6EwE2ODoPUq4ReAUStDljLPahJ/hPqJ+RjhQMziJoXIJHwIeeV8argv7505kgw09Me6161ZSTiinguwklfeqtVFnv5ijdk/dK/aND5YyHZVlUZBVuIdM/YiSB28NIEMw0nZ0qOse4pNtOGG11kHwrSLAPnj+AV548UXc3NwgpxU+mtXRo/YOoNMenE4L1jWqnDC6nPc2U5ZMazXUugwbasizeqVVptDd0A9d0j0FUdTkgwQpN+zZEekL54HOSlT3DW6Zs/P7Xinf4OKwZJfjpao/HBx1YBLW43wwrTvvGGhN3CNtkvqeWYf7adyvWYIVLgRHHxwv2o5AXmel4ih2cCIy7/f1gXZQLl7aX4AiDPWAv0jzGB2O7KBGhYh8gCH1RPgsXW5QAFNKxQ//CC9UsDgZ0HVE+h0dsJB812cS5ZChhZcXRgnZs6BJtQ43AJ6YZ2wJqIbaSVilA3IoHRvoSyz2PDzZUqL0UgvEHV3aJA7AjdH2jPjk2DgAqOMvJtxn4OGVM9GLnDMSiADwwJK+Qnd4j7GPjRA57XAADZaZF16vSH5zScLHQXJsdmci+EVTwa40nINefLzi/s1MaRwbTH14IuNfXv++V2x5Q0oJ27aDzbpk0J0EvXW9GtB2B0akUxuhzEQ/i+azzei6Sz+Dc0H4dT3lYaQjGo6KHXfJzmc50ZrXri7DrlThcPKcRoWkuCY9E6assjoze3fc3VaOo01hMHeg7R25RNnuVLTNMmpcX0RYuEVUNm0JSFkloyw/5bw61rJS4besaFYnf0mcIVdZc6tTKOw4byM6Fj8qpYSrqys8fOfRNHQWKN0hiDggqXyKqGBp8paEKGgrBgn75uYWT25u8KHXXsVX3nqHezg5HBzLbHEfhpIK4Ew9BM+tq8ttFpqQOstXLfqfXBingPxluKN6A1A6oY/Ayp1oSsoRjY5BQjQjjPYGQPAE7CKyjiAEpgDLPeKVi3E3ORpHnktKEa33YVtM/VpaZ6rXA62KPZ2YgCwpofeMmhssNzkYnIfQAgrSvTdgb7RrMKjceMGyLChaN0HyZvogI6kMnq0kuF6CNwejkmxyEjlr7ah3HTfLRmXpSuMfKsMX05MMlMdWs0aw6mldyC+jAzhTF67KKIdED3vsYek1aaxCMdcbkWfufwaBshoaw4Ru09aGz8ojxwcyMtZ753rK0xtHVZd5orrkurgf1tzB9kaLEtf5x+7bTR3FMVCwIEGzc/QMDlIOOoUItQlEow7ncJSFm4pW3J3tIN6zOvW9Xx9sB8U9hCBjL6J7R0ZGiI69+yOSdRdLORlBORot50YSTAcovskT/QiPNNryum18V8aQixqVBHAkaYpEJ8wQPbPR6yMhOY/SfZeIUuvYdqIjtUl1tUmZ06PaJQx21kIJCeZyONh1gLUdfQMCAu+jqkGRrDNy9mhyp3vPhyg1tAQImYrYWDv2VtHajliVdGTSeL4gYRYdmikOc3nip9NKh8OdFTDSLoFh9LLhKxqvueZNJbJdkWDm4eUW2ivcfPuZEVX0k2mtjTQUN7FQh0i3SOsj5YzTeoWr0zWqNlq6OCu6xoz8gIDpkyDX6CDrykNbyFgDyGVW1XA8kqLkplTGwvVjGBoCTY5KqL+G5syYPwgmDgPqPvRe+KxtdCPmTlE/Dp8RUe8NdzulyJlWLGgeBpNR3L41tiAYRE7azV47nt495VpZCxbxsYiwRdrJR2WNY0bVwwk1Ost739G7oZQTrq+v8IXf/BKOxL1Yk+F8x6+CEzJRM6Ib/Gdwo7gnmcZzfOGLX8D/6VO/E9e/8V9xt7PKLSQKamtC6UzpIY7rLlXdZIBlHQoAIhULQORdG/IEsR7j/h11PAM0j1n/bt5gea4pWv9OXVxRIy6LA6AS7vkzdwd6gmUJc6U0K3b8cC/TqsF6Ag5B2ggqPNJSElvcK5A695oZ3FwBIcb6LGtBkjIzzZYcz9pQSpJj3TU+mZo2e8W+b2B1ljqOLycspSDLAZp2uQ/Cd1bn6d47loX2ouQFS3H0BSiWEeoe8axHHkSM2SQzm84EKHCT7TcIxXWl5ugEluiT5QanXpsCloba94lCOrls9VAWTYdRKU8FhjGto4Fm/ElROZfk4FzWdiQFqVLGHyicO5AGf0qE162Ocy7Oq0A6Z6k+1woJuMC+Q+unD1QkPjPKiPNEZSzGXLo1rnWKcgkAfL3XB9pBSWZjg2mt8nDtwPiNRZQBGiuAUbKi3wSqRSZnhB0Nv+Jlksqz1AH0gycrzkWZkx9ltcOLNCP0mzBUSV0LrXfDvgfkeYu9VuxbZfnXED8aGAA3QjLA6f3mnFHyevCq21iR+76pTFEOCABI/tt7VyqAqYfY8paAnMroYRWQeCqHfGFoanjH3d3dIHoSEiwqUw12u8bRePAvIq8hB1HMsRQS3GrbkUCRqHVIoQOxQYZxaHymYpkHiWBdpqPmYQkA25lsfObG+4gox4aCor7u4hs4omrChsPa0H2nZkSScYvo1dpQSOzeh77EOP81c9D4B6zJaCghqXkX3KCWPYfKGnGiLCFIkYHsBFmRCO3kScASlkiDUWxg9MyISHhA7u7sAptVjm8sydz2HV2ERObowymnEXWhN63TQUOa/B/IieJKc6BkoGTk3sXZsUkI7lPNcvBDdLiSHMt1ezpdIVnG3e0dIOeMDc9mxdu4PJTvTjEPLkcb4xnmKxAX4J2Hb6PuZ3zopVfwhde/yCmzuY7CGYi/m/7n3dFTH7oR4YSkoaTbR3po8FKAw9qIvRkRdKCC6g57eN9FyuXwFLO1wMFexfWC/wWS7Me7DBIBm+9LQnbeVVRwuGikSIdp7A6gcaxCXErv6XK8A8mNKjJA+68kFO9YVjnqIloPvlATgX7vON9WOrlKAy1LGerXxzYhAO1XHoTjxKqVewXraQUUyF14OWMemLJue8WTxzdwr8ilY1lXPZvNa6klxRhyHeCjY3E2SVok5LIgi2xszUR29pF6Gl2oVRkZPW+OOkEheudO9DsccPdwLKDeXYd1EvZEKT6urbmmLTiNKR3mbToSYCtGAgBCVF3oKu9lSke0BtQadks6RtGpe9wXBtcmigbe7+sD7aCY8mQXu9ZBA5gj/6xmaFHPTfxUsKo8SE/ipABVaoIIL/QwyKMXg02+hUG6CImphxnBTS+8y4PetibovI+0Ax2SSWwzs2Fosw7qlJbh6YbnSkOURg629arNzsMEJtmxEaXSMeE9T9XNiHCD9yJ9ORiMZbN1I7myOkoueOnFBzhdZTy5Kbi9uRuRcc6Z0sul6ODnyJvyH9HdsiU6hesiPoY5ZehNeWgXFIquSEO8kyPRT62+R8fXQEwAOWg7troPMlJG07sAAQAASURBVG1Kc3POqN2EqmDAxi1aA4FGqzXD+SxjVwpgGd0rx1HfEXlnSmQ3mOVBzDM3quKaISfJijtGeiLnDO9CdbReOD+QQ+RCndLBMITOAvsaRcRTysJGgUFmHTouHUNobOSGZ4RMWHrD3d0dWmsopwVLpnPSRbIL0TpPWU6aet3oAO6qwOA+4TPUWocDya7SeZR1T1SjDxEvmE2oXMHtaT2RjL3V0QspHBqT0mxrOowxy/Fx4ayGkxUR4SzLBljZ9saX38Rrr76G17/8BrkTmfuRcukzFTAcXZsHdvdO29LDHpHMvqBgj0hZgUL8nqiBhs8PToxQXHdH1OiYxjuM0EXFzREF0IUcgbwojRGcmUhdCmGch1nMhUV2YGyCMZ4d6CEOaLz3SMcewAWOewa8OZWSJYGfsitd48yiGAM6T45SRHjtWW0q4uAOdJAo6rZVADtub6VyvajXzroemk+mMY4A0zwGiccN/SbuHRzWi3tnaXVt2O92bPUOZhVWbgZxP5c8EGo7aG9ZMnHzpoMd9jb4SmYAMsRvCiXuqBKcaE47OC6td6Q6WwYc91bwR6JZ50C+40KI8yFiaTmKcmyGqrecW4MdPq/zDQzOiayK19YranUFK9Pqhr3JOSrhZlFA7NfWuWZ4PuN9vz7QDgrRjLmZwzOjXXIgZHttNs7jIgLzqgmj0REdAOC0UnGwLOyPEtUOlssArXI2ec7H6CZywyKqVh6UaPSqa63YNqYTpqgVEAgAAEF4EhvLBUsJ+Eywc+dBuO9z8msNqfe5cAc8a2FrDCHRTENehMJQNyWzfg3eMSDIve3okOCaG9ac8dGPfAgvv/IC7j13hdvzjt/8zS/h5nZjJK4NHEgFwR+lHTyqhpg6CfiwVXFcEo0YUxYH50SbpjnY2l6DNpQ5O4Suz3RVb+yKzPG0C2898u29V3gnES4ZmeUpzbCZPZkY1fcom3MglQakKLlU19cQt3PeTPcqfoohQ/070oxSo2wypQS0MEoOVwfZWEd0UGeUw5U3dUN6j8Z7rBSweI/4GV0dj2feGYOwF+u0d1UptR1mZOkzfehDJC/novBe8wNWPiUPJz7xkO0+BMbiNTV1gKvTSZVcbVSNtEBSBK3TeE4H6ur6hG2/w953Ig0JMFvGwcIGhlJWHsRDC19kBrrjTDeUktE7kbN9pz1488tfwce+/WN48OA5vPOOlII9ozfREjCdk2PH2VASNTlxBhv7MuWM4upBZROFQY9Kn+k0hw8VOE0YdZhd/CxHSgWTXDwcm3Csg3jsfZSEs9qHh053J8/gWVAJwVvoiJTu8TUc+2dEylJi87nY99kUHLkP5KXVBityDgAga791kGTprJjJRXwsOSetNWzniiBYu0OlxsDdeQfOZ9zc3A7HoRQKVJZlQdLBmuRU9V5hfeouzUOcDpqD5cRWgAIR2XtD2yr1QmRGkxUs64qS5RyV4PgxBZVM/MPDuHEtEklttQ5yv8m2xh4nahlz0QeHo/fg7TSi4gpomTZLh6l0VeoFyim+VGjsWKSL0uCMhHc5nNewDUHc13qbjkweyCufZxscrL2yAjLWR1mK0GIiUKkU8pDqbJPxjV4faAfFJHgUZayH3wwPMOcg1umntbOPQAWsZSRTOZbz9+u6YL2+pneZAeuNecmoaXdQSMgdVZslFC+jX0uth3pyB8qSRwRDA8CFkTMlx2PBhpGzZIpWibTsWx0HShzE7kFmuiQ/jQV4hCUJ0I2FldTjA3C0fsZWO1zoAQ0DD+RQboQ7TqcTrp67RjPg5vaMrTvKacVJaEzzjoqkzd2IArkjw6X2KvQvJzl9OGijAPAux2M+40SpMKM1OSMkPHaiiQ46hJXQZO9N5Mw8iZfu8DbMPZrK4hxQMzQ6d1GKm5DR5UCaGbZ9R3ZWHOVU6BTrUA2HqywJvbHaxsC2CjmFwyhOkAS2whbxd/N5w7i11pByQYGQBe9s785ZH8JqgJyjES0ppRQHAOahf3RO9lpVeg6pgLLqozmdhmSJXISAlLWSTuuJhjHPVGgooh7LcMN56Q04n6nDU06SV0eQMAOBDAi7j8jS3UYH4947ZfhTEI7TuM5AK2WwgcOhEPvkcCBBLSRssEMNt7dnPHn6CB969RU6KE0OqnWwL1W++F7Lk+cz+SV+oRhrWUbZTRUvPqL4C1BnrPD4GddSV0XEuC6gNftMDYTjsF+ALtE6mpg+CNecQ4ViljU28yZmoOUX1wSH7MIhAuZ+pG5TzL8jmTpgy4mLz0T6D0jBQyXCoB6BLGlXczz5Rrk7SmbaMRzzfd+FzgEpL+gNqDub5wFEFNd1xb171xzDwuAniPHzuRrIGgxEnM7ouhb0YuitoindaWgsqXVH6xvarZoJJlMDxIx1PVFFd5FNCzTN0nz2Z51IYARvRwVnE6qdkRHVQeupMPV5UWqtrtCdZ0V3R682HLlpmxjU0XnwsfTiucMRsQi+iqFHo1WVtw8FY28UgBwoHOfMJF6Xy+xN1dqG6oBVXiQpm/E/TYqn5MRmRzA092GgzMj5yEWESufiS2bAkpF2wM91bKq2V3RkWDPAyRxvSg+w5XdH29rBm50e/ns1wYvFF9GzGTtBsvOlmuOVIhLjNHbBF9n3ir2diYwMwwZwhWdM5vf8/imdHvCcjcMFZnAvQnu7ypGVEnLKdCcj9yPyhIyiEvLClI2Vgq8+fIT8RKWpiAgqjWgpll13wnmjZ0loXmAS0KZhBEZ/juF8yQgebPk8ZElO7TE/fTpVI6VjCWtZ9P5pwMNC0KnLapoWB4/JcQnuz+Q5uPcR1fXWkbJq/g+QMqFroh650HkIhoY7EbWocCLMrM8lOS+A+B8N67oOiLv1PnpqdKsHqNoiwwK4eB8qsQ6ly3g5qJAZ97ptmzgfoecyIerlqPWgNdZF9MylXAjxDVRBk8VqDx+OUXMHJGxVvcJ3H80pp3N1kdiSE8r7WZcV25mk8UhLDMfAoq9TwCWYfx8HwWXbPH53aEko+u8NtTnefOsNfPjVj6IsCee2gShXQSqX5NPjazon5EaFPgt5NtN5iko47u8gk4KVdxrruMkRbOjngY4EQtF6PzyyDbg8nEIFwnL+gOjxYtJFNtmc4x585qnGsw7HJvhPz7TiiGca+9zorJScUHVgslfU3NdmTjJuwmg3YcDQ3gGSBOQSZSRyQXTfro3VaqU1oQkNPTlCQ7F3jtVeK7Ztx935ltdLhudeeI9nPTho7sY0cylISER0VP1EPZfJ3wNA7kinRP++7djOu5BgIgZlYQ+0siyTnyTZiEFjOUgieJQxJ+M5pIEZ2jrGoIbcOyLtMKD1Hd4X7VmmqVnp2UcQ25ojdaVqDEOkM/YZ3BQ41WHL+Fs5KQCDI/ENI401/vTQZwonduq1JAvWliqf4M+ACV//9YF2UNaTDIIF6S6PDaOsOw8Vo+NhRgjSVlonyx22U/WwekffK/a7Dbk79lpV616HNzpzatxYQ98A0OEuUQjIgKakBliGpWRgkQESbNCFzuzqONmbDyLgKDtEsKp1DQsiKnTdabjj38c+Lw5jc6na1T+jSVuDUYulZShKBkyaCyX0e3dYmWgMNz+jWzcxyh1wVPbCSVn19ERqcuYztqZ0jXLXCKKUg1GnHdnqQCiajs6oMEVxhn4wyHQQpyIrf85NXQrz3Pteqebb2Pk2Pms+I34TkS3gSUbsNoxbMkKrdGCd0C8CfTgiU2Szjz5QI6C+JKpC18o5o6pclJveYCjoTdVZGvNao1szDVVGQa1trj+VLHpKI4VAXq+UZeGjjUEQVU+nE6J6wKRJTYck+AJTOTQi7fhsONUteCgAllKAZGhmCtBp2K1ojXhHbwkVbfSI4lqOXkKuUnJVA8CwrAtun95IzyYc4nAegTjVj0FBICXDSI7f8/3uM2JMOSmybHjnnbfx0Y98DA9euIfbr9ypiqYi+hFlcRzCUYiI131WroQo33Si5h4k32caccN0CuPvAKZjE6jI0ScI/6v72CsEMAJh0fPqGY8OSE/R0I3pC0qSXzoccY2jPRnjJfKppxk0zA/Mf7XuyGLaW/SQOcxRcHa8yXnxOPDk+Iq/lrLSznqYgVR09oWqraL1jJYbzCiYlpLQVbUp8O6o+47bu/O7n/NyeGh3DchLgTubDUJOQylFRFb1ynKmrfa6T4c90Za0vaNVYL/bcbYzLDmKKAOLbGvOWc7bAfnvWs8OrQUJ08mRnL3TZCPl5WQr8KzKH2Mp8HoKbor4HzVKnpVyFXzb+zGlGvvjiISGsWXlZzqsl1gfydhoUKcJxuP0rrnl2TnS8t/k6wPtoKTkcKuw6B45/MLwTJN4HTYGr1uaG7wAkPH3TuLs7eOdPSIu4MDDa0S98mRFEKLs8hSlSoo44abN1LEu7Cp5e3se3YDD4QnVR94/hhOSM1MKZmzQlnMgJFwY3l2HlY9FPBjiPfrbMFdZlgUf+fBHcf+5E548eYKnj58MrYucE5BJ4DK1hC9CZPjYht52GBS5G6PllCXUlkziVQklzfbaSQdrvIhWHKLw1iQspQMSNvQyDFGplRD9JmBMt9RKBAzNLtCVOMCiCzFw0OLYWR7bLSp0HJRGj/XBUm7FDEijSy/vO+Us3sMkfI6OtCk4LQmjg7NWJLksNOvc10HQ6wPBCaQHULdgcPPXveH29gaOhjw6POsQiIhUVWIkrnI8Yk1c9vrBaPzmydh1NBlLRsfKm4dlcET0Sc6H5iHBkCKiB8i30rNExUWPUuzOxnKWieTURnQkxpZj8e7I/ep0hYdvvzOczumE+xiruDfmxC/3q4lbpW174dTEegmY/ObpDd559DY+/NFX8ZW3HsrBjvLvSHnOCh1EBduogJkNAIch17NZ/PfCkZqvd/3Mjj/j4dx6G+J3cZgA6lTrUbIe3JwqdJDjbzCgK+2NcETTAGKOCG4CdaJc6U86c4C6/VG4sTVqtBzIm5F6Mu9D9RcJAwmMwOn4rGNP+3xeF3+rtU1pSqWqzUfTzMUKiq/kzNWKmqvmcfKzzBOyZXgKJPe90KJn5iAcsWYKEKU/EmXPvTA46V2pEKC1eWi31lC9jjSXTmZsN7e403ui+/N6WlHWBdmWUSxg2QdCkdM6eCfzHuf6Pf4sqsVmNRYnzpxVpEuJKkUXh6eLinAQkXMfHDF36aeMHj2dxQtKk8GjKksBnihNIVeQhG4e1/sxHXxRZv0NXh9oB4WTkoYhgBZTIBRRLxgD3xobKvV9g7WGsuYBP0Y6wRA59ctIIiLlKGM8plZGr4QBz1LTotYNdXds24bWO04LZaIDhh+lvEnpFT2DmQl54XfnVOhwacMM6FitrnmodWzbmTX3o9cDhORkJDe89MKL+OQnPgFbHPlNipbte9diAjwZ3GwIkkX1TDKDt0Znw2yUjZJoReeuqrTOcCScOiD2fhcJFzq4YZcG7gijh35HGNBx0HpH7dQSCIMCTG89onzAVbbIN2xbl7NHB5HzF2jbPFzMMMoU44Di4U4i6KAz6EUdlg6vFe4V62lFikPMo8EaZn+cRqJZliPaXc8k+dWQ/eb7Oywn3N3eYq+KXtzhyZEzG3KFwm/K7HnDgyJjG1omJq7KJPKZ5hgAPFFgqeSCJt6OARLoiz1mqjSZsuGu8u0oiz4ecAAGsmUp00ExwWfow3DNveWDY+IKzd3J5ykl4XxmawQSPacjY0JeFglpkXMxHZxYHIFchMHwYYRj72UhSY433/gKfsfv+B24f+853NxIvTaxAtDNEW3m+f3iUYE24bguglg4UpWZ+j9xMISeETD3wEinuJMaEwEHnH2gfCK4wW+AHTloPnhy1qklFGvaDg6PyekK5KaP98zUlB8CimFogYF6ktTJA3xUJvHKY89Fb55AX+emmV859y0GOhROQqttVEYlJ6IXiHgEL5YzTuqg3HpF3aVJ1DuWvABX16h7wmm9Rq8OWw64jxCoS1J3w93tHW1CcqqBJzs4uVK6TWw/kLFeIF+11rG+5xrLTOX1KSrX9h3n81kpE0otLOpAHzIVHSTBt2bj2lN+Ita5HAaLw1/rQIMZiBnQECJ+JbFIwvvkNMXYR3uPWnchHzaQmLh/rhE5RiPQghTXAZYVNBhYNj5Qcdn9lA0FlwTsr/f6QDsoZTkxUvBZDtUa68yrSIBDC8PbgNFLayhw1ERNDb44USwnVaVCShcGlQZ+aj/E70JlsLVGhc26H/KAmAqEzgqg0yljWVbs0cvGg9hKeC86+Do4893brLMXRyb6XkSlBA+Lo6MUMuN8vpISzucb/Of//J+QToUGNS1IC6Fel+ENRCCUSM37qLzhAuN9OeqE8LocKh1CkRqZh0SGjXTCZZQcKqOId0dkrEOpa+OTjuMjWqRAWuDNsUN4wh0jjWmc0+B9xJ11d0aZCJE3EI5PTEGxyghaW4oSSnCKEqzHAaF89F5136r0GGW9dOYc1L3ZvA9HynV/ORUhPnHfiaReZ5fqIFCzZ4n6nHSqCnNN7nQelxXbtgPONE7JIX3NNdvhWocJPnpvEKWi4zjTIrHOlTlm08jm5EUdDCUwq7N6rEMH0Od6KRLuy0VyhjL6zSePyyWcB7CPEMyGgxL7MwGTQxH9Z+DUqjk4vXHaHVYWAumISBMIjQka1yePb3B3e4dXX/kQ/svTJxq3+YyRnuCairYKNgKUeY2jozQd8hFweB6VZvG+2Hvx3YevGw7PmMeANuK+OqPbaP0RKOtMjekQNo5Il7x7oChHfg/3xNd+hX1iaj0ibO07TG5VzMUki0p9OZyVA2oSTQ1bb8Mm9KRS4xaqteFQNLizIaelPn5ecpZYHeeyZHI/liWzbP5ITD2M+UibIMFrxc3Tp1zPFgKT5KVE5WYMZOJC5L+GbSealTQnrbEjOhEDOjxJlaM889lYcd932RRDpNpD86WURcFx8JV8OGHHAHqUwI9n67jw/g4VpxHcpUipwsRZLFiWFa2tw661HpWn1GEJgcmJ3HD8pEs510Igj+Zz/SFI+l9ngT3z+kA7KHtzwf10TFqrY2Fg5Nc6uow3F5KQD5ArEc2QOqiMmEuIAeVJcJWi6UAV9HJ3nM9M10S1AWGzIJtm5EQUISYuRG1OpytcXWUqfhwItmHMgjPAbd/gu4EN3aqIu7G5uBCntgO93pwpE54PzkXzhvN+xpJB8lnOJMGaSZuljvs4LQVrWQbM6cEAH5CdTJ33wSmYKcs+YMDeKRjGihmpJQYKZJBRnfY21FHP5zvsQj6OGiCA67A/HjqM0APxqHWWyM0DP6IajCh4EFZd32ZJ0RPTH4wSDElS9SUX2EJC2REpYqkrv3PbdoQuR84zgt8riXT7VgcLPqWMvCxgeolIjbuPDsmGhOvr68N6w3ieMACtU9sn+vLsck6ur0+IRoTLckL0DwlksIsrFOMXxGNWtdNgtaa5A3AWCpiQRaq+PLwBCO2TU4a4143VEcsq56MPA+UuA9gDfiby0hrF3eDkEDkckK5RR6yVWc0SjnlUOMT8kstxCTGb5Nxj7ols8M++VXzhC1/Eb/2t34YvfflLOJ+3cQAyTTNTXuPZDxA7EChJu+B3jK7CbmheLyp/RqSr5xoaJgDcZ1nx2DMhltg5BvE5B0TgZrAT+hmB5EwHJJyVrn2aRa42oDN947kjWQQ8QoMA9hoTJ4TfN3V5wlEhZ4tOKXkuHKRSFtkDH2W1fCwb9z95I1JzHpV7HdGAbsg+WFKrTLlYdhg/ow2yBCzrSvIyplMyoHLtJ9777MTeaqVsvDlsm8KYy7ooEIvKs1jjmofMKkaATkgqfbZK6MFNYuPO7uTBBYI/kdaObdvGfEUJ9bquKEthC4Asm3Pcexq76QxEWifGDwPRmA4E0fesakoA5HOm0PZyZD/87pBKDy2v2LcRKHIM+YFaFSQMUU0Fbd+Eh/KBdlDefvshI4U+Fx+jcG7kINxlkTYtkZm95sx0RS7MqSaDJ0M5rfB1VTSIcWpGPh8AtlZxPp8VvR6iP3Ba6BBcqqFCDsKSo3LAcXfesZ7YIZfldbEJpaxZmxr1UV48mlUNnZNEyeUwPqxaksaInSiatiwkBYNRVPa5MHprYDdeEcsMo9dCMWfkUULJ1tmwUE4afBpkEkRDqTIqWnTANtCyk2Gq8h6iUzG2Hpso/hzmMmey4d076s7DLaDCcTTKunlnNM57Ogo2ySiovHeKnikf2xxmIX/P90eKD/ARUeZUYJlidV1dTFOm0zJ6s2iNLPmE1hzbdqdWBXXA9OEQBHzfW2WX6qHFgtmhPBMt6SOVksRPofH16uPnKdGABvxNR2CiamGkSyI3IEt0bQ/NmMO+cvdRkh26LQLzcNgWGv4ZIcNZpzVaJOTpSJGzII0FZ3TmPqtsIgXGKyScTid0Oe8mflJDR/I0IvPj/c5KH4x5CEMcCEEgFDOyzDBr05Exw9tvP0RrDa+88gq+8IUvojXu2ZSIHPTD98W15410eHL0Lm2YuG4jCnlEVHLO2PYN4dUThUnqrQIMkm+c3kIkAp0L/lJ0o9bth7nh/4kDMu8PIwqPa8o60JXcNnLjritSYbsF07qBnuN83gZoCbBCJBchZrDB5Zt6LFzTtbLRZXgzUeExuzYLKRISGr1gINSLa1F9qVyBhRCKeLQUjqBNNCZ6BN3c3ABlwdV6wiCXewRKhlYrbm+eSscFaHIG4dTtqHvF+e6MkjNKyYPXxg7b7L4ezSRHqjqRx8bqH0PYr17aIK3mRB5X61UpJYnYKS2+7zvO2xk3N09Z/SknZV1XqXMfkP5iQrSD6E4UP0QyL9Kwg7RKR8V8OtQxFxCyMh0Tl1Iyg69It+3bhkC0p1o01aoJGIRuF53uaDvxfl4faAel7pRBDpVYQxhaQrdZoj1R5mdgA7lsPJBzYfdRXzNKWZGXFS0RWt9qZQlibWqu58PYjP4tFsY4jbJO9pwpitKEGKRwKKZ+h7sdqjNm/nff6QB5SB93EiwpDDYNf1oAU4PDkll/n0sGrDBpsSzUqrAEb10lcGSo0yFoKIaxibnjdbA7I4Be94kedWkCEKxAd5bajq6qnWWMWRovEmCguNTgdTAne4yvw9AxzxnpBenXLNzULUh5wTEwkBfgPp6HJZsRiTLV5N7lQK1IKY3W7JFGKCUfoqC5CQMCzZkidozKOprv6hYa46aoPYWOg1KK6jESFWBd/JxcssSLoqIhEDka4qSeInY03BHwWhgijkmtFU1aCTBWXSXly8fx7CG4lcbzpERHjqJrZP279dmoUWoFXamv1iuidLRByEtSdKvKg+BnRbS+rEWOAh34ZIxK2W+pg2QeTj5F3kDntU8uy2m9Rt2qHGnxkToj+NY6s9gHpyOQIR6SB+FCnwhLvAYqYpFaFUER3JNf+cqbePnFF/Hm62/KkNOpGxyqNOckvo+GJxxfoWgWis0qsdQ1uxohLhK2m05OeOn8+6UzNW0c0dJDn6oDwZhjIiQjuHG4rBLiYPIA5hHPud4r7dn5fMbbb7ypg80ZvZcFMI5tb2qroQPXnWKZHYc9Ki0kBfBoxCIZgzilHzg9M4ALdCf2Fu93OhFRnRSoDQ86BXXu6F08Kdjg4NRODRNUR4HhtjY8fPRwoOOxb1qr2LczStH1PY0qpN6zOBkMaLZWYVZHYJJzQRbq7jmQCoyxB9Ig28IglCsPsccmCkIgaiH2aW7U4uni+TjRpbpX3N3dIVtGToVtK5YyukKH0jiRkblujqq0gCpwUgTHHPujA24e153EoXB4p4MOpFyAoRqch7PDMWvD2e6dQUj9n0WoLYFlVpbFjxD8xk2MoW4aE0+Hwqge60BfymgB37rhbtux7Y29bA7s/1gcYdBKWTANiA1Fz9BmWKQdEukgHX/wPiNhdmytON/V0ZmYGzXSDZhaJs4ce0qZLPZ1wdX1FQ4ZZHQZiik6lMfiogGmiE7tnHSzTJKrDBoNKK/Fe3HQvb/0vKPTKUAvnJHKjMp6j3IzLsyUjvdhI3LxCPcC0j7AxCnReeheh4HiPMZCp4PZAXRTVZUaRHK+JmudkQ6h4pwdZsu4/+MmCzg0jH6SpgHXxtTh6PEccgbMyFWpvg+GvKu52ujgmULnIVGie8D/Ey5JKYVeIL9/VHjRCHMMeOg0zcnpdDqoMnbwXI5GXkHiVrlyb3CwJQIGqnYcA5UWgukV7wl7rchDbwQwIzSdoKZfmUaolDQcFsux7mUIrQHJ4WAbAPquHLsZ3cuIJld1jOH6dI19qyqdldhinu3gmfrgXDNYiIgPI98+2izQPB8IrhMF4p495MwdeOutt/DSiy/h3nNXePTwibqvRiQJWEkUROvBYQlEzxQluhxqVvsw4pwpWFaKkATpwCHqDJXpZ3gtQk8wruGj5DxSiyaORNipVrts1UR9AKFLHiiD0qWBWCbDemJKpLaKjAW1VpRlYYQ/bAwO+5k/a8O3imqduHEutOCkMbk+EZawP2GfiRxEpB6EWJsIiZnaGzAaD9tyUY1tBiShap6YHswFeV0APWurdMxO6wKkButdIm0JrZYx3oFgx7zaeD6u1e4drW7ARhpBkqp28EjoI0yEiJYmIStlHPObnHuD4pyVz9vTaNwIQHyQIKoSTWNX8X04ySWrSmhdsKx5pBoplplUjKXCBwT6XtA9uDIYgUaQmLg2OB+BEtFsm+wNz5OR/jfNtErzaVtZCOCrIx9RvW/w+kA7KGWh5DAEmUap74hEBM+5INEkomnk0NtWUWvDzc0ZtXd1iHVQrXJGHZYMJQlOy1JihRCBNPvyJEVLtENzEx27yHYnVLlvd9RaGSkicj1ySnRwzJH1/qQy25ILuoF19VdXJNKb2r47ofPQN0ngosq5DEiVZcFcPL03GjGOiMpr6RylHEgPhqPWemf0NNCJgzc+xl0RDjqCIXBEJQZ5y+bPe1SMxHlmNt7nPr8ziKqsBOG/iyXYOqOL4B9cOpWzl8RETA4HKGzc59ERTXJMujdqvCgaDiJrrbsqC4Au4x2RrbLaMmY8NAOKjfU6SGwWpcY6MeEkBAfx2QFLAZ1WGhOVIbvSJSnlwciPfHnkrlMy7LXCvWGWCUYegI/f25yrSHWRiQ/xhxRRjflpet5IZwq5MLnivY45RreLqK0H1NwNRzJo5MYjeFjXFecz00/BaU0eJdwaP0m5j4OfG244LUnaFCHgF++ZEeGzL4N3w83NDW7vbvHSSy/h4cOnCHhans9Frp+XnCjYTC1OJ2ocvgfIcKQtxIsK/kyXoxDrdpbOa40qtdVqNAc19WCaxMguWwPvaD3rmjbut4eip4IgipsEr0iVJeWKzoGTfDoPGY8vgTLSgWHoAM90PI/7WWM2S7JtbEEbTknXdfjKCio6MBzD1mazPGByyY4FBsOB0B7sTon7dUlI2hene9c435yx5EiJNnLx5PztuY6u26lzrYYieYseM53pWW0hzh1YAYdqI0gYHeYjLWSHyk8jshaOStxzLobSoqcOnbwmobpWKZXAOU04FsSwkpMVQjc3RGpKYVfoZSEKlpZoj6EqUe3thGlHYz5670OSI9bPOFsRlWqQYzyFOcdchI2BAUOuAqOK8f28PtgOymgSpTLW6qgAN1uKsleA+KyPviP0wClr77AhllVyAnIw/ecio2MyD7DQLIlIMcqP4ZED7yofZc18dKzc91m9gd4YeYncCT4FoBzicirU1gjPXSWiORekQtljE5IQUGwWlGiH6qNeG7y3i43dUTle5hwLGWb2LBIMK0cN0EHdGtyaehdJIXB0MaVBYPp4kqQAHCSuL6sbmjuVrSIffIBFafCnUQzv3HQtvg4HevfhhFC/ZF5/cCjGAXV0BuKAiYg7kAqhH7WN9usRuc4zRshVHJhyiEdVGeisjP5E8fwjsiRpGIH4eDwLu2rHodg6+4kAgI0miRk5d2zns9olmDgsBeuq/kqFzlCtO1EMO6BGinAmKoiL33UhfXkxZEtKTSZxKR2950si6pjfcf4efpZGlB2zxn4l0ynif2cJrlnGenXC4ydPpIBLZ6hVLnp2500jtRt7Zzqfx7mngx8oGRDk+WdSevq1OyHod955B6+99hq7be87vGEQQMPhnwBBtK+Ia8Q6VzDggO9tBFGGQOCAbj4adKYEIS421u0Fx0UXtJyG8igfKOYvHfbBtAtHBGamt+SIW4KDKcWcT4BnJAVj7o6y8ICtfWfqzJXOZNikgzl4PBGVaxzMRbrT4Stul1zdgTpZcqRGBCGpxQcl9BOSdfF4OzLKeL4Yf3JOuKbKsggN9oF0xr5b13XY8mVZcOd3yIXBRHOmqIoleALXfe4y0x3ppApFA3pfJK65oaYG7xxjN411TJfP5n/bdoZloKQFOZfRSTzWbYp0YArO5NS7gqThrTaNRTTyDKqBuB0dqFX7U860d8e+NdS94/Z2V5qZ45Rzpg6LKj2jMS1RIEM+tEPouoBr7kMbi7yTadOn6zI24LCpx/3f/X+SFA+hQZIvY8HSmeDgNpFbaxUpqfchPx4QKo2vw11eZdIkRvVLOohgQfoYqRBriBACjGaRaIxa3VFVctxaA/MvgPwgHWjURgjDxpTCgpJM5NCElJT35YfosKTZ/dIUAY3vMEgYDbDEfGWkAGZqxke001XtNMuAGV2beDIB77HcGDOKBsZJRPvXcVTVHaGR7jEOhJSiIickG6RrMZb0/HwE+iOK0O/ngebv+sx0JAyX1RozIuVnZ+768jvS+DujBxopsoBCm4UHf8nrgcDZBpM9IOicFvFFON4zZDyaZsGvmUqV2URaTIZWKTu/1wrvqs4AncjQ/lmvlqFiC49oberyDBE5m08aRiX+nczYf0frMsSWujuKLRLga1N8C0BKU2jv+HrXYYpIURoAwu09Qu+BdEx0UYODXAxX6wn7VoWi6dB2onzuCUghohUVSXJCIh2DGC+5kgGTjzLJmaKNw7grx9Y78PDhQ3z0ox/BSy+9iDe+/GWwuWTjPhwR5Xzed69HjN8HvyJ5mveUmM83I7JHIv4BWTk4J4EScG1jVPC4SNByu/Cu1yHwDSfau49lzkNFqbKcUa5OvNuFMgi3NzdYrhdyZc6VGkndRzARlY67SONzrx4I6uE8ISpyINt5dMwxyZjNxXHTvaqqhEiMqhWF8l3sYC3yZECFovmcAWdzv2hrYRC3QkTslIDbmw1IjpaoJssUEfVXkmWUw5TGGJYlo3aqbUfFaHBHosoF7sMRR0uoas55Pu9IKdCNTHl9OY1F/EUYLlKguRRkd7jTOWi5z5Sgs31Jq0yljjWjtirH9N6+N+x7cB9pe0rJKHmZlUpCk8woCpkQ6Uc5oVqbIbevCeB8CGGLuWF6UW0WorLzayKY7359oB2UVqsIQlmy1Y627TjXu5E6iYjWRwRtAyEBmNc+nU4A8oFkBFXEzHREHD7km3CymL7pIw+4N/aAaK0e1J/TjLpGkzLAkipHMgb8N0l3UHUJpDmQgJSZOPGKkrI22YjVEGmXDjbQo3IkowV3ykNH9GoA0jPu7iDzBfFNzsqxV4wBIzoJXs8sXcO7RJ8CHeq69rhXpw5DzIsBOsQOB9XBeZiHyfFQJEHW1P156Fm4o9ZONMgMYY3jdzOSvgj1McXabFyHDpkitXhOOU2hIkp0IA9hvcip08bFv/tQqI3DOCFy7/xucgVYHm5mbGWWC5YlD3QmyIK9kXVfxPjPKVC4iGbEJxqH9Pz55BKFs5GRUkf0bYr5m2hY6IZEuelRXfa9X1NJdVY2cbnI4XNOC/2/PErLvfO6S6GzFeWW83uJbg2hsngmOJgQTcMZ6K0jSXOF2i+BjAIhXx9CVNHsk06QwxpwPm94+PBtfPSjr+IrX3njECFOWXHvrsaBMfaXWhREWnggjz3SYg3TSDOSLki5a259QOsODEJ12KsY/AunDhhr14yoWxb5MZyAEcEmG6J4FGUjJ+l0YuVfaxTNW08rnjx+ArOE03pC3XeNUZONSLQppgBO1TeD74fpbEXPqngdOYGW8qjcu3DmuwtF8dhkI91wTDmMzzll7UO/KqWMXknkP52uiAI59+RaViy5oKSMsmacb27RaoXbDksFkC3okJBZOFGgA48l0b46g5FWO3LqSJ3XDi5H7Q7rRDSYDqXtM+c839Vt7Deqyya03Ngh2UwCjhjrJGeSaoe4n/E7aQeJrHp31LarKigpsFWqu7HCLNBKV5+5une43zIFXTJyWVgFmldqs6R5bk5H+RJ9zFrT3O8RQCekbhjFC5CD076RBZmvD7SDsqwr3B3nfUO9bSPiDQ8+pRjQSBXMg9ZgQKZvF9yUWjfUZgDaYSPM3ioGcl1YDUNS0Xbe5ZRMuM0ictSBEg2XuFDY2yEvJ3ETdDh2YEjnhyhPNlRBpnG4l0KP2GuX8Nwcj5Rkose1I6Jns7okZAXgz3NOaAf+AY7XMjuo1nLRxXvnIS5V3eNNaIBdEG/rJATG4V73OnPkAynhuIzo8nAozY0wf/7sIRv3MnRSDId594vviRYAx5RXcFP6MJSSsk5BwvNBlh3gkJCmcD5KkUZBCsHANoS94rBi2l+E4UQp7q70WcxXlkM6yN1DJZKVTdG3ZjRXc0Xj7mO9s4NvR0O0OpiRWGgcwASnO5QrLwfIuA9EKAiJlgLOd5au64BO4ieEgzj3gdZEx0DfOA/94H/KIUw+Km/MEq6ursmd2bZxPtFHjzk78GFAYuAFeINwrOOQjujuyBs52gkbqFRXJVlrDW+88SY+9KEP4/kHz+Oddx4D5shZ62lUw8RajvWm+1VgQ+55pIeVhtLhV1RhZXCUtGDvVY41hL4dUog+UdBjtcsxyoj3JMvjZ118O1h07da6zjMllVLG6bQiUrWwjHv37uHJ+pgBTVmwXF2j3VRYlGprnYWvNdJ2F9Gx0sfw+eyHwCActRlRa6+3CAwM8MTOGIPT5+j1sHbsUkdqIL7FNI7RmDUha5Fc37umjHxKyOsJ69U1zne3vNPe5TxzfokqT4w3G6genAH0guQdaUkjILbepYcCLKEg3WeFTKtAhoIOiU8CQXbtMHFdcs5MxSi1PwLlQJQ04dkM7lmaVgB6R/GwHUDoV/XeUb0dbJzsd6LOU2/8zLZV+FZxe3s3BENzKSiZardMlR2DQu0H2ZeEPGwI3XmlHN1JEUiG8gzy+vVeH2gH5cmTp0Phj1GfaSFPQwYo8krqwtujymFqgNReBV1hQIhHToL30KxwnM8bet/pzIRC4LgWc/aDxGWskSdnI8FyENEw+CRMEUwPNdQEQxChtlBXBGAsh/POMr1hKJQCyIVRASCkI3LtwECGDM/mtWW4A6VwTA0Meh+DNxOHPp/tiODwFcjKgBQPkZS7D3idLzuaKt3HJcmQnz3+PYzQ5E3MzYbxs3kYQsJ48Tsdbnb5xyOq9+ntH0XLgJnmirGFDs1jdVKw7BFYQ+uX98+Bm1UmyQaWE0iNrgBH5LDrGD/eV5OTcKmrIQuGkb6LssGuahkZlKKccxCqY7xDV+M4Mw5HHUia0K4cTdPn+MUhOnVG4nA+zLBDyqNUA4Yc+cAlBjmvd6nIdpz3bTiMvQNschnhfxBmD6R4BFoBME/ex3th/jXX1+yjo+qbxrVwc3OHx48f49VXP4THj55IjZoOxXCYzUbUGEHEGEUfC2ZGnuJhJCFerVcFFbHHhcYY1wn5Q8d7n87V9PSOz6BOwEp1N6WOYj7pAPho6YAOlKuCZV0Q5cpm5DUthRINbsByWrFty3CmY8+4B/9KTnjckwIzTga9VPYOuzwgEQRjj1V/3Cz96E2OvXtEhGK8u3epFdOJr3XHUlacTlfk7LmT7yNHKvafpYT1dEWBw94YdMBZEWz0t8IehsM+3SmLCv5R2TnKdbuj137hsNda4TY7IoeKa5CgA9WoTt7Idq6iHKQhg0+KwVQ/N+liBdLmGUjOMyWZCTGh40Q03+FeAMO068GHErExiXnrtWHHzrHBDajDslKwMlGi/3Q6MdUHpV5lL2Nv55IOqSiEocX7fX2gHRQRoUNxWJ13I1LiIixFlSyK8EYtvXFxFtWNB7FyBH5Ob7rWhr1WSddH1U3cgV0au4PRTpnN+ehtRnkf87its7bd4VjygiINiY4OF5xWUkDWzNu7i7kfP01AWYIQ2iUhzh3VO3ORDhpqkgpjgWBEyvNEnNEJx+DgdHVceMrxmRx54QvCoZyMqBkeLxrloZ4odKYP6Df+pHH9MaYW44yBaEwuybzfKfUs9n8PElk4G8+m9zDmanzXcIDCGeBYtTZJxhdN7QTBZslsm9lMf+kAS3JCaGsTDBlWZvSd5Igm5DFncYhFmmw4P22uPe9UnE3jgFbaAi60JU0tFbODgJSItgNxihTFHMs4QGcJs43xieflj+dn2qF08Fn49/LnGAeM7kZOlaB9N5S8wpsNB8/GXEdKUKgWjn2w4hqxbuba5r+lAdMaouy89yihNHQr6OCB0ERAbc3x+utfxm/95G/F9b1rPH7yUFWBSl/aIVq0xAaOYGqCgJDG1efzI1BH3R+rafi5lAzo0r4AQjZDgVMaGyI0luZa7fNaYz+4HAMogp4lu5w6ocopU/BLXdIXI4KbOxvxtZ7wQKXnpRQSMdNxD4ZjrYPJbEgDGKKCiE6dxT1aKMzKf4EOexz3ZQKQ0dpZe38GXlzG4ahEIjOECVXK3jpsAU73TkhlxV4ry+MzydYsoy7UMLlKON/eou5N6a8I2ESMTV3Ce7pXiZ8F6sbSSD5IVEJ5rSrlTSMlE1U9tJMhSeAImwXDwQGcjT5rBfZtJ9E20CAhG2zUmodPm0z9r2QDUw42FtBzQ1+njfVeZ9HGQPemwx+2J/aNO7DdbdhtH3u6rCcUqa+vp6JKJXa2j5Q/siPlSOP+T9Qs0IABN0ffhOhtYpBzomZgtA0zsu+to1d2f2OlBTfAvrMz5r5XdZNkKWxErckyvWYZmO5QfpvaEOtKKCyVkJB3MeA7WJ0BwAp1TSwzL2hVB1IjMStJ4cREFHOVDivnaAYsaxZEzzLqrpJhxKGb2EUW3mR8uEirqlLikGaE7hqj6WCVHHRil3DXpePQpQHBwD+MrQ8VVBwdnoFcJASJazIZwtCpiuHwCocn7jUi9OB5xKFF/ZHZzdlsktbmQWUXho5DFcJnHGtdFVNsikac3Ic8Igx2qU5IJc8eNL0fHD8icU053unEKdpKaTgh48B3Q7IydCkAoNuEiMP5dbAcsxQS/4iOXMLq0PM7Zsoi5fh8OE8xJiw5HzhMRKzdZ5WM6XvdgO6jyocPiqGSGvH8MRIOhMkdKtueCql05CJ1aMNBvHfvPu7Ou8h809GbDvXl/Pj8uJCEGMM+/hu8k5EGkNcYqbWUjWX93dAGVJbw+PFjnLczXn7lRTy9ecw1UHkmoTzT9CxQG3CMUlQZhvMORzIiHN4DMdHz+Pxvyazwmqk5fj5lShZwfc2UJi7Gm5PCZ9ReU5oiZSmsAgiFV1sLTldXmncDzEkCt4R1PeFuuxv7LGtP77Uq7WKj5D/WHWRnW2somfIFdKrCWQk77ByXsV6rnDAbEb33KoRA2jcwsA1PHynBIGpmzDRt3M96WtlIUGMbHIveOyAHnnuAqqetNrS+xy7S7Rqiqg7uQ79p1BIejVY8D/rg5aToJq1rdY9Uc6Vj3sJ2iMvYZ6AXVUfBz/MK7LWh+84CqUxxzvXEfkEpGZZUkEq0sPBhmcNOpz5RS1hCiTSxOVKKVhN17luEdIOjNyPxGAm9M3tQzxu2O14Liann0+mE03pFwm2OoMjkjBvswl59/dcH2kEZDZWyVPxg8sxF6Amv3DqCMsjjUqmduqN3plFub2c5rEPKl60hpzK6AevXI3IMyDw25VrIgC6F99Obw7zSWcqLSI0AQHVXGBAo5zjixZHY0IYHW5SHjGiceivRebajto0dTFMCwxeVqyqSoQHG2BxxCBPMOFYoXSIKvFYY/sPz43BoylBGD4xwVi4OofGzZ3PnPr77GGvHZ8dZOdJyM9oPnoTrfkh0pEbBiPAxD7dj3pTfK+0cvTXOiigN5FzwPpZlhZkxFYioXqBTEeV+oY8SOeRAQHpoR0TUb5B2CaOgQFpIYKPz0HodazUO9kDlvAaEXJGST+chxtVNPBgfRi6cDh7QMwV50WMKclo8HMPj90JrBbq2uhLrQDWYfBca6OZhGGOuDaG+PJzcca1LtMWS4969K0qu96g6c1goKcd96t4CJQpk7rh+g6B7ADkHV4YO6dQXiXvlOMf6b9j3jrfffhuvvPIK3nzzTdzd3Y1tMEmy2hPaexyUiRbaWNNA7HEiKHKoDy4du+VGQ1A9f+zZzuuYkT+27/3i3jkeHWZByI65kxPXj6Xl/PPg/nPq95RwfrrTFq0nWEq4vn8P277hvG0o5RpmhtNyxYPUI4pmdQY8WhjM8a9tj7dgEF75S44X6GwE4by2SjRAz+mq/oDrcPRIZfHvDh9sfz8uUBBdPl2d6Ci0jvP59oA+ZJyWFdse95don/OO2jet6dlb7ChqFnsonnGkQ7t0aQ5dpQFQoXjYTkNBpOJkGwtJ70EXCOTTo8zcHNZFJAYdP+JRtH1176j73XBmSi6UHigZqSRxWMbip5MMulih8N17R7aOUshDCrl87xJ2BNB6Gj3IwllLBlhZYKPHFitnb7Yb3KZbtV+RBktekJcFpaQBFLyfV/rGb5mvz372s/jO7/xOPHjwAK+99hr+xJ/4E/i1X/u1i/f8wA/8wMUGMDP83t/7ey/ecz6f8elPfxof+tCHcP/+ffzxP/7H8Zu/+ZvfzK3w5jMNY/M2NUecpb7bVnHeuLm2rWLf62jUhwFvdZzPZ9zdnbHv5JRUaV+YFvKRtRzREcC9UIrhtC64vn+Ne/fvYb0+IS9sXb9tZ+z1DDdHWVYspxPSsgA5M+FhiqhyUtdKOhjJpnhOlnNCkaDOzsIAAJZOb3tlKWaFNnGTzosOUpOybuKBfpR5j+g5jTAuCaXh90ffndZ9pJJZCi0xsFCIjUoUYEhDH4CWg6MRY2fz/WDqYZTXPvM6rqG452e5LMfImi5oVKcQUYtW5qXMfkFIhlRAcqYOVXfKYne4njvIe7N/DPUDgstExyEaRbqMcBjKUD6NeyCyltlY0QRKd6pGbtuG2jZs+xl351uc7+5EmqPK8GDtd78wjm1ovMyxGU6AO4DGCh2rCEG46bDF0X9ogHk4P+Igo3ptkHcxCaWI0l7HMZKPg/uYEgznjYCJPzOncWFJrifgdFpxe3uD6CUUhy2hy1ivNu7h+Ar9kODgjF07ouU0SrPTYX+Hk2F2PNT556233kIpBS+99NIBgTmUK8f9Xzh2qibqbXIWGlidIrSN5HVyEpo3NDT6TGYgopsOCMKB03JwAgAKq2GIGtphN0QqjvfEgyeEIQ2pFJzyguwJxSS73zuTyr3hal1w7/oK55tboHWsy4Lrq/usJNF6q7Wx+d0FUngkBcuR7BWt71SHDgRLj1PVq4WOfh3BGFMHy1B05lRNBzfK3iMV0jqJ6V3Puu1n7G2Ho0IKWUBzpAacyopWK/kVxhT5sl4NW2SasB56VYd5iBeLcljm6069KW/knqAf0+Zy2K2z1YMIhKaCiLJQv2g9LThdrbi+d8K9+1e4vn+N03pCLgZP1JsJBgzPCt5nMq6/3nacz3e4ubnBk8c3ePr4Drc3G853O+rW4NVY0OAGc6J4QJqE3JI1DgXLmrBcFSwnNinMZWG5tjo756XA1NSU05HEUVlUhcR52e52PH18g4dvP8Jbb72Ft99+G0+fPMX7fX1TCMrnPvc5/NAP/RC+8zu/E7VW/NiP/Ri+93u/F7/6q7+K+/fvj/f90T/6R/FTP/VT49/rul58zw//8A/j53/+5/HTP/3TeOWVV/CZz3wG3/d934fPf/7zF9HvN3qtyn9FzpL9KQhT5RJHYNRiO1qv2J7e6qCu6JiGMoixYeByKoAVwaSO04mE1uZMToTgT15XealCIoQ8QKWfuRRqr7jL+2X1ByXB6Xzk8LjVNK7rGvPQ1iJPQNSh17qjVx+/wyKvNvPQHykQZ+SVEtTkisY56vWj47PZjIiPDsZF+AkcUivybn2qfCQoUpJBHEbIDuW7wDNPBVSfv7/kn9jhQAjo8fj7CWUuSyi0Tq4KgIGYxH1Pwijg3sQNimg1kDcJaiUfBh3OcsIBIbsIZfmQH3en0dGhGc0Xwylo4lS0xuaB4XgEERZgmnBZ2JOnViIpxzGY14mIGWLyK7Xgk2wKm9VBo3TSmWpMps7HNpv7wWdjzGi46P5MNVN838EhAgI9Ye5/cFtANeALhOSI0D2j9cHeSQvW04r9rYcTOVP/IaQGU5VAKHEONE7LIvZO7MNIPcXamNePqph5Ukb35xSOq351e3uLt976Kl599VW88cYbqLWOOY7+QF3OIxG5OVZRsRUwPkBRLLb4aXLpqGUyBAI7vyOnjOZGlejOChxTejnKooNzAY04g4YOFVdPh8SPjiHH0zvRoUePHqOUlWmZpaA/2uCN62/bNzy9eYxkjtOqNEjbedBpLZtl7XEHepobPIJBRekOHMqfAyGkXRzOTactisankR7xZuguKXb13+rOvdaCD2PkuURp/s3Tp7i7PVObqnecU8V+uyEh4fbmFrdPnqLXDffu3xtNM49xkpmNCJ53cmEYhwPybOrbEc+hasyQlwgkbHz/dI5zycBB/NC0tqrtSu3TCcMiW3VRfVnG8w/eHaoC5Q2hDp2zZC2UcUi5IJuRywbT3g0OGmkBOevcSgAWXU9Bq7vDW8e+h60KTuEMHkwBcGsNaB1ba7h7/xmeb85B+Vf/6l9d/Punfuqn8Nprr+Hzn/88ft/v+33j56fTCR/5yEfe8zsePnyIf/gP/yH+8T/+x/ie7/keAMA/+Sf/BB//+Mfxb/7Nv8Ef+SN/5H3fTxjOsdgRBm0umDYE09hNtqt80t2H7DC0acNYRWO+lB05LzidVuRURnQ99AW0mBtDQ+SA0IHQZkNAzclMzlQcYId0h0WvB95KBqE5tqIXzDecp3bYAJdRaCzsrogmysh4Hcrnt1ZRK5Uaj5ClsgPDO7l0GOzikJ/5yWdSM+HdeBjOKDHD4V6nYTKDYPF0cc34+8zBq5y3RUXONLLz3xN6PVoZGsf5TMGbiXbhIbGdEo1sUinwcLYSHZ/W20ht5JRBUrqQsEO0PtZWmlUVDkffmRJjWmUeGH1UeMwy2kAm8sHxiUeKQ4ht36kCCm+jO+mxytOH45UnyVIO2exmOnlUka6KihCuyXl/w2Gc0zjmxg/rnTBxQ+g+xGWPnu90TPoIAqDxyTmj1spKk4Fq8KAKTYac0yAtxXog6jhW0DhAeMjRaYr1HJD44AYNByzBrCNZFn+Ie/krX/kqXnvtw3j55ZfxxhtvHPZBPmi91NlkTmmBZAbr5GK01qm/WgBPTPFGiXfiJsHo95MSzNNYh8E9m/twop/DAUkJySlUxrGiXk5A+TmH/ZqcGEolnJHzGWUt8L3ifL4BulIjd2c8ffoYS0mAX3G+rMNSVCMNwyE7p/FO0pxpTV16A/ywMe8xZ8kSqgcK6dj2MxYvc705YBCnTwGowaimm9pwZJoQhiHoB4BpWHWD7xXVn6oLMJBTx01UgsIZKHrXWgmZd924RX8gVpPxno7WD3OPhN3xNhyNHkrOoUZsDlgHPAuhPqgUQ2TbQn2UVpXS7lOczWW/am0z+BpVcxHwBR+vojXHvoOqvUp5L/mEZc1w0QMmL8zItVF5fEoJ3RqCJwc9uyuNmUpC2ctwwqOy67jnSzG4l685bl/r9T/EQXn48CEA4OWXX774+S/+4i/itddew4svvojf//t/P/7m3/ybeO211wAAn//857HvO773e793vP9jH/sYPvWpT+FXfuVX3tNBOZ/POJ/P49+PHj0af49DAAC6bwB88AiieRs6N3jS4oiIxrVhGBCL6JoLsgWvxZBLkAB1YCEawAlxiUMeGAa9DSPAP8WIjkRUGZY9HIQ43rpHLyBG27HAzQ2uzsqjGaC84q6DhYuY32NSUjz6L0GGndEin/2i+oI3NTbYcYzDePjxwPmaC41eNuDjgOnj+2RljURAHhfT6z46KTO6teEURUrn6LwEgjYqpiIlIqTpCOtD9xKk2iR2UvRwIpSL0SPlmKIazvAYWxuw+Hw2phxDLKwHV6ar/XikBg5OyhFFSBfRNl9RrUNgfh68zWk0Yt3EWIxxcxOMawOxOyIXR9XYQNKG43j4vvkKDkA/OCcyjCr3j+do2k+TXyFGmIGlyhfVcNNhD8eBZHUH6dQUXGt7A+Sg9N6Gg0KVXcyy/WN5MxefrjUJunBJjqnj8lzbctx1hsQ93tzc4OHDh3j11Vfx1ltvoTnVQh0kaAayJPsudDFKWidHotuo1UIwyqMKyLszzWOUK+ChqMAl5XGfoyot9kIcTqI7Ja3RCGZDzCu6TrgDzRzWGmX43eGosN3hKTheqrtJQEkUzcviS7hHBZkChUEwD4cykCDn3BkLDGJthNx/9M46Oou6wymwKYcXGs8ENjlNVsZaDBsz9xHYDLA5mpAHSuCLfZEca1kQomr7vhMx7A5vUfmntZLoLJZD5V8s9AtEM5zkMR6zDIApx7gxBlIk2Af6d9gjcZYAI6jNiQFV8ipuEuDZkD0hVZMuDOe71pniH87doUwd4FqpdUPLHXtLSGfu66jUMpRDGpfzkWS3ueRmcM70b0YXgh97lmTbNtLYtYbNiHTt+3v9dzso7o4f+ZEfwXd/93fjU5/61Pj5H/tjfwx/5s/8GXziE5/Ar//6r+Ov/bW/hj/4B/8gPv/5z+N0OuH111/Huq546aWXLr7vwx/+MF5//fX3vNZnP/tZ/PiP//i7fj7yg6qK2HdC5701ec8spySpmeS4Phbf0TsXz+MQkXXje/oO1OZIaeEiTDYaLvHNoNUdG/0I4YmEBEfqoCaKhQGkIW3qcZNg6ug7veGoowmCoUEbXZF+h19sjpF6kRMTOdpjWoYbORbJ5SH0rNMxS68jyoz3vIcTYWksPIsL6UCNEkgP1GN8eqIpl85OIDuXaYRJkuV99n782ZH31JBzEeIihVzNeyAHqeTx/daN6TJzTIZ5OEHzQOP7J3luICQHXk9K1JOgc1zH9YrE/XqdDupxHKHRie+kD8dxYwrmoIUy+BGHtJWMdDKiO9MhPGr6QEaMhD6WHiv9eUFgnmMfjvCYUi2UiNiP8zbGQ/N5RCZSHJiahy7OmHdjFOncwzmdkGzFvvPQNt1nSQlIE4I2uZZ8jmAfGZ15syFQdXzFGPAgnWMY6/CSj0LnL76jtYovf/l1fNu3fRsePHiAtx++w4N69Fqah1fS/UE+22y3gIFollIOjlHsIaWoPOlk4GGecKgEOsyTaS2kYoN0OTlFSQ5yPaTr0lhx3F8JxprgERSNstPDQUJVUUbaMJZlh3NC0mQbGjemOQHkhB9KbGNs3ZsqIUk0h7G9ARQEhrAdg8uYL94vwsE2ojUHozSI8KwPkMMYEg2dgQOEivAjDXu9w9254OpqRTZjcKnKN4+0FRqoVKz78MsALmxYoOpMlx9bLxCRCb/ZvbOhoE/BvN7UYFVT7/E+OCxlKrX2EHG0YQOy1lEXeX5ZE3pf0KsP1LeppQKRNI7XknlGtFqxD8cc+n52Qw4+CRFbm+PmEW5wZiyn6YS7g41Aq9LdQPMEt9mV/f8jVTx/8S/+Rfy7f/fv8Mu//MsXP/+zf/bPjr9/6lOfwu/+3b8bn/jEJ/Av/sW/wJ/6U3/qa37fPGjf/forf+Wv4Ed+5EfGvx89eoSPf/zjMIT0fMG5nlFrl/JlJrkbIhIxuCAc5koNgYdbLnlEl0Gugrdh8AA2ebKSABELIeQEADd3UsdiCngCOY2Dk13pg1jKz9TWkHqQ6Dq5DsBoABYRRuDV1mwgJ1EOSxugw1bdMG00EAvHhqspDqg+Iskx6heH93R0olLk3UjK15q76KmSwGgPckxoRDlmBm0QPNPUzOI7GFW20R14kkInz+ig35FAZnpwXCycz6loypx8VDD10RE12UH1VdUzVPac/I44wIi+kBzbO2HYLpQkXsf74xNSpC8mKypmmIKcmg7zxQiliRuUMg/lQL2OSpzRxdh7pEfU3yhlIRpN1RFEHnJKQHPUXuf8hxMOpRX6bPwVSFUI4k3n9pLb42Go5SSE1FtIbkdaxuECC+RQ7TSu5jEvkICXkX/jjn07XzgP7nTO2aAyEDM5p8nl+DxbgjvtyrQtccDzXynzOWdH5xgeOl/dO6w5cgEePXqMJ0+e4NVXX8WTp0/o1AlE8O6H8SMi0A/3ADN1KTdW8LWOOLFoUxpChCvm2VR1wftXE8gO5NTk+Ozs4aT1xPO7IxAHy3S+6TiviAjf0UbFXkTssT5rbUgmh0LDv65FCtYi7ibwkAm0LlR1D2vEzDhXQtui/cMxNTwdXgA+Wy2wQsWBZCwTbuxjlHPmvm50sHuKE5/FBC5b5q4GrTAYSOiFOVGp5Ohy+JAN9567h2jSF84FEsnaefCv0ggqjbeKtrcxJ7DZ922qWxuiqII/SzC0Q+DA5+57Q0zCQFZho4zdR3wnheAsEq+R/zPTSB11q4egjEFxa4AlVg0RGeWzp8NeD6YNbTK1vvZ9Q8kr1lNB6ISVZeEYiazuTtLts6h373xOSwbzBetSUMqJOk69o/f3zzP973JQPv3pT+Pnfu7n8Eu/9Ev41m/91q/73o9+9KP4xCc+gf/0n/4TAOAjH/kItm3D22+/fYGivPHGG/iu7/qu9/yO0+mkfjmXr6hBb21HbZs2XhzgM+JsoCE7Xa0jNRNKizmz90IHSbQujYeU8xDdsWRDQA048iEoqJa028qJKEtTc8JwdKzE4SbYy32kdYBZWhwLL3K4o6QL89B4ZgDUXVgHg5AMANqovMbRaAUSEq9xyAB4Nn1zgSBcvGYee+aJI3/Pd0hqbJZ6YjpM4cyYnDsc9F7Qp/7KeMyL65ODw3YAMsRQaW+fB/moADGV/Ko/YLLokizZ+0jdJENe0vgd02nhIMQT+FCBpD6AKkwigg4DJtZwzGcY76nTojGL+dV7+8GpmodsoBQxR1ynOMxbzBFLy1mtFY7dup5wdXWFm5sbEXy1ht2pOBkRruXh+HFsNI993vslj8gQLSFyEOF6C1uqOSEXBeGIGCvNeCCWcR0VnMKdaTAYcN5uD3wYY8qo48DLIQF3zg/GvQ8k8UB8jwixXziFQvVslmbHWCYLBHLC4601fOUrX8G3fMu34N71NZ48eYqGNub5qPAZ6zY6FQ8lTcwU7kTEeJhTB4nj13uFi+vUDSjxRdmQkksPZdqkXIQG+zT+CSzzDNvDpegDMTlysgTgDCeilEJ9mkBahA7F+2JN55zRomdNmkTL2JdIkqo/KlhHW4sMoF0GTQOtTDPg0C9GupTpHTl2YeMdqiKM9gvBp5hp24GQj30IXF8XOi/SFMqr0VmCxiQCK0CBzqWDS3RQ93vYXw5qnQCgY23SgjmgrXQugncy7QH5K47gvYw4yDmOPcQiowLSOmX7S0FT5V+rdHgDqTuide5AqyEVwS7JMfbHtFXvPvph5WzY9ypnpSCnIjE26aSEWFxK6DsrZGGqWEyU/kcpMDj1x97n65tyUNwdn/70p/EzP/Mz+MVf/EV88pOf/Iaf+epXv4r/9t/+Gz760Y8CAL7jO74Dy7LgF37hF/D93//9AIAvfelL+Pf//t/jJ3/yJ7+Z21FVR2gJaIBlZAb5TDnOKJOifkUINJEIB23cxdaDVsg8fPWPMQaEqCvWUtjpUpBZLoKWszZnHCq9ofYoEU6s5AEPlKQcJ1J8JjzpNozKUfkUiEOEPrnHBhpG+N3pm2EI+1yIU/zsMjcZiOnR8eDHDdHscKZcJknvSLLi5afhicUeztFMOcwxGkgL2qhUOL53akJo8g9Ktt0bDpxPTdVhLB1g99tCo4bOiEekV4t8fvAbakVHx5IlXw32TmGwGLlptk9ofWqxUNCTqAT03uM4Ytz6kd1v4g4cDTU/37qqhA7fQbJlhT3juBz/XsqCgGqvr68PlW5zPV+i48F9uUzZjPs9lBZPdG2iN6FHE3o43tqI6qPCAuF45axrB+dH6aZsSA1Y1wUw9iZJgTZZENrlzPhcO66UiCHm8LDOpVEUzjIVLmMN6J74n1HRE2vfxf/oOpQCqXj8+DFaq3j55Zfx6PHjKRSW1SzSA1mSIx0HPCAuDO+zmxRp567HSBHLcTOf8x4HQSAWI6Lv0zlG2ASte9O1Atnk3jg40xEMDU0kCMHp2kSuPW8X4wOE/YhvxYUgYdx3ssLvEcWIqEqsVOc+yMFpmmlDNk7lvNE8+0AXeO8RCMkW9mmz4iwoixRcQy8FGIgi0S2f17TJ/RrOkR82SZ9aQqE/clRf5j0KBcEkMycX6s2SwWmXNC9zzx7sg0tRvHegZtV3HQsiEqX3jevGUiJh2VWIoXLh1pruyVg00boUkhmU5dzQaoJ7YmDuQXs4BpJKDwESFkwUaut1pGzcfEhklLIgZcoqOCjox+8mSllUOn6BIn2D1zfloPzQD/0Q/uk//af42Z/9WTx48GBwRl544QVcX1/jyZMn+Ot//a/jT//pP42PfvSj+I3f+A381b/6V/GhD30If/JP/snx3h/8wR/EZz7zGbzyyit4+eWX8aM/+qP49m//9lHV8029InIxipelU5beBBGQ7j7KgGFMC/RGrZTulV04jRs7CGNNkUKU0umEG5fMcOboShoiRWYNte4jiiGDXQui6Vi0g7aK0Tmh4dcGDcQicaFEpANExBhOi43GfREZjnTGYfInRH4UY8uY3BIc3jujguM19VuEAxPk2qNDEvX446h0H5+5jGjjeSaCML5em3qGZy7PPfLFh1RPshEF0S4kdEzV0VGF0jsdOBnYnLJAF0ZiLe5T1+69jQNipIyOhiOim84mgM0O5ZHuugbXWe8QIW46SuzEe4jq1Q3bFS0dHbG9VnjvKF6QlqJDT+vSpMXiYbzSHLOkFEvrgDluzzewO84lnV0Mo3McZ46RD5SFcuqXjvqcO6JgkZOeTm6I1LECqbVKtfU0Sc2LOBtVOfOUJQzFR8OyFJH8EtOxmiNLIpyG0nLYa3B/jrTcccVe2MH33hsjusRMCw54AJyXqS1j2M4V77zzDl778Ifx/yLv70J23bKzYPAac97Pu373XnvXrqR+THXa/kwCScyJAS1PjPk1EBMQTECQBEUCQqAwoigIBjSJCgbJQR2J0XhQIiEHYhJ/DhKQQjD1GYih2/7oL0inrUpVUrVrr7/3fZ57ztEH17jGmPe7VlXt/TVN9yJ3smrt9b7Pz33PnzGvcY1rjPGZz3wa1+cLWB4/AIdTrM2MQtoN66EjgZwPwE+N3XaduqfUVok1i8yY1pDVS1fAbwEaB/YCOtq/C7Oi+SN7dRQJZxsGhTxCMwBf2xx4zhPL/IcDNGauEYGszCTTjTa1IiAw44laoTDdA7ZIPEDLUKOcLh/UYDBrRE7oZDNAhMFo6zolwErheqN9UvuP1ui0ziF2gqUD9svONR3h8hAERqgrxqlZNPpD2OscYIa53II99bJtuZYEniwcmLBTiBpBKDBl8Ki3hJBCeTQqNenCAyyBDHoAwuHVzJO9gTQNBkyL2k2XSJjY4Dt1YJfRUtBKm+sZ7vOIRDI0zuecIc6W03Le6YCbgUXZIlt16xu80xbOMXHZr3HZcdiHX+l6TwDl4x//OADg277t2w4//2f/7J/hR37kR9B7x2/+5m/iX/yLf4G3334bH/rQh/Cn//Sfxr/6V/8Kr732Wr7+Z37mZ7BtG37wB38Qz58/x3d8x3fg537u595TDRRe4UFbCOmutmBJDJLgN2ghEFkP9EhHo5q7xWa2aVnoR+VTJ3RoWnpbZsb+PWZBT0aRoYxhT5hFaqkrS6Vl2rL7BYBlGXGVrtbVIkxQjE390b9vAwl6N0tnSRc40MHClD8dotws82DwcjyVGowCEnqN3lvMShkGHQj18+Pv1znTOK2XWJb4V4Iufd8aYgjbzX+3sOlmMc7hNajYXrcAIFwr+2VEPRhSlK0ZRV7LYcXbbEnDZzl8VDVbA9ecd0TNBtYSQAuh6FDdCh4GSp+VB8Ofe2joDBLY9V7Fjzi3C72OqHPTeHjTCG9pA5tFA0xlZlk0m3RUsbcYt7V4GgHsYToSdOjPttly2NQaUd0gznOxmTMyl3o/1uQZiHoMzQIMxfsmx/l0OsVBigSJuQej8Fgxa9IkSYvVWLhxzsMaPWoDKu3/tqFU2ClDw7mGNu6fSXbm7bffxgc//CG89dVfhd/5f/6/IqRmBJMNkTk1S6Q+FDodMGy0EROh1xLY8sjiCSALheEQqbyLrxQHLnwuY8MJFwBq0st57b8exQqz3oVX2JF13mKt2UhWLytYB7vRoBD3TDBrZhRTzhP3jwWjEACPcybGJnQ9pmN5RsYUhaB7rC0Pm5CWKHSDmdCjTMVWvW4c2ufVSJMaI4IzZv8Y9jFivTvQPMrGb3BX5opCcACiAy9GyLJVkgE1vljss54rn7kfwyYalgp3IV/LgnABCYN5cahZK+Deorp5A9DDSfBskpv1pqyhqcVA7BF0oG0GjI3Vj0lbos2BNrZkhmMVsTxH2xNczEnbNcbMtaFicXNW1t647EBrySiq6vbp1HB1uocxxiEj9ytd7znE8+Wue/fu4d/9u3/3FT/n7t27+Nmf/Vn87M/+7Hv5+pdcjOv1vmURMm7iMJoeavNcDNWcrjV6Z9zQLfRqrMPgscjkMQKAsh1YzbVnyuacF/BAlYdfqZwGZou0/F2k1q3ejh29bFGqBUyOMdo6VOqgn8vhw0vaEeothHaVN78OyQok0rsSaLvlhb148X3qaZG7FX4Q2NJzb4f33AYvhwJwqbVR7PyYXjyXzAO9F+HZzPgfa2E0A5iNOVNEOUEm69TbLYNRLMZ+8QwBZesAB9x7gg0JIXu39MZUsXgNi/Rox8C0Z2XlIHVMaDxQVqZiXXu178i2xVsQspo4rBxLERC0rSWboQOfn8XYdLDOMf8VF+fczSWkozXhC6jxXJ9j7MvBXihHBoyHfLA6L6yzuAc53Ab0fsLlIhaLs2WRQaF1IMCqQ8KCcBjOOiMIL1uF+BgWWQw2Im0zxkGA0wMwMiPmqDXQGLZmePbsGd7+whfw/rfeh8/+7ucYp+/rHg7xuxH07PsuuVTE+z1ATF1i4tQGQXomzlCIcQUgGjKOr3RcpbHyc9h1WWGLlREcQ/U9WFyrWBQUeBK4QbEx/IwWB7oFq3HLJggoi3VQ7EVzZw1m0nDF/+pzzTHNMW2E80Zwfwp2nL2rdMAb1AW5tYbZyOaMfRHPT7JYHkwFnKznXPd5jJd1FgOcgwLm3tlvTeUBrMth9RAEx5gEy8JQW+wllOaFocHqc7VeyUDnfipNnrIzm1VNJOnaACTjh2BLknmNaICbRxKHzroWwnmv74ZR5+gbWmgqoaQAA7xv0c2aLO/5cmGB0zEZgkLY1EV0nvY42sRojMzYs2yLQoTb9u5hxyvdi+fq6ipDORK0AbFMfK20yE0450yEzkN6h8+KZ7feUvDn5myNPWlct60BPjD3neWMJ8tTt8T4vIqhCDHuVq8wixDAapXjEoOwUusCKDowxCpk51fUgjseZusB4EBs1JczJvFfLwEmx8+4DVBf/NltVqR+ru/SvQWqR42DNCeqibDeG2LuslbCC/fFcEkyOfLyp1fDO4CCQafBZ/hAvXQoLB2RHTD2gfPNHrHwwVBgHM7N2Gvp6uoqD4BtY3bJnIz1smrjhv1Co9Hj/vexC+5GgaVIZYUSIWjcTl293jku2RvIAdVvqSmolEEChqrSuY89gJRCLEtpeqX6ef38WIuCwrjsgmsCiw3AsRvpnEcWcAU69VlLiOO2oyPvDw1XVydcLucA3tS4TAdskvFk3Z6g8Y2eYzNHCy95QGmyyD1v4TUDOJbnty31PTUW65rlvbfW4H3yAHPHvk987rOfxdd//dfj0RuP8LnPfo4sSUesvgFmQ/Tw6lXMZGGaxG7k98U9ed1z3tdgE7ax7zTuYReouyFo9TFCAxPWRk6SlTDYR4SR1bE2nTmw1pP6JYWmYtuCnQvPvxl7f2XGn4nZ6FHaQaCmxR6NBzQvpkPrDJ5JCOl4BLMzjY5lb8y246GI3N9aMxNs9qrjP8eLhiTUfsWKek4s78sMiEIf7A5sDXtUq+3SqQC0La2liB3BJsEESBtOd9XXasI8atZkRo7l+LOaK4WrmrvqhaDnaAF1PKqNdxZ6c2miaNPbYge5P2PqQcfYwbIKI5t7etoUgSwDogBdnFsRm27NYJPavt43XFmHNYKUFgCKAK46G/d0QuPcGgPTDXSlBi65Xt799UoDlNY0KHEsOQ0dBWpMG21Bh9mY2Mdk0TQgDhOllw2M3dFOp9RFKXe8N3nMVKNzws/hEdBz1gZZ66gg7kqLgD+g56m6FS8LgUhMKmCSRZkSnKjWhPqjKHW3QEsdAKVLWX/GS5uBBtRuLfYvfRUwUQhmDekISR+ZgIrjE19ECqwh389n7FnuG0AW2psZ2y5aP3tvJDvQErLNSL/bti0ahnXslwvMyXiIku9tg7thjDMF16Ane7ns2C8AwM1nUfUTPnHakM/PdgoO2AabEtk1zOEY+76MSxVAs9Yw952p5k2NDS2yPfh5MuYSOPL7RlQWjlT4IFjYvlwQmHNwOm30ctzAc1Ox+fLSzcqzLbYuzqJI4SUwqTVU9j9CVTL8yzouY6k2CvyeFgdVaaj2+L4qksb+Kxb7y6EMnemDui7cEmxOh3Vm+cigA0jDTeMbrR3GyFALq3mW6eMhXiCLpe41DtqPoeuJffPOO4/x+PFjvP+Nt/CFz30R5/MFF7sQrHquRPhgFU3EATJBBlXMQlL8zeCjqsOOBaSYS+AZocsWGSHx3m07wcEyBrtTk6IaJAL+ubdDqKhK1FrzGgftR2uWIIprEbDIKrEmUW3YPZvRGBXRoE4h30ibhmPukQE3yZa03hZ9GXhOu4S26p4+4u8CAnqD5Q3Hesqkgh5iaAs2IBw7MUmOWidL2BgATtspHImR9n2uKdStAcqGkdPYyxnYto2gyB2+O5o3OBrPlA4M3zHmxHYCYC3WY4CUPMOQa1mF+3qTAzTJmBwc05hbFPPMon07q59Prm0mY/BR2BxUa5nz3AJcB31CMBRO0pxA24Crzt5BKSa+AnyeqOebO+aOGLeoOQOu29VGeISD3u31SgMUig4Dzc0oRgMeYlvvuZGEmrduaSTZb8fiQAWu7pxAw7BD5YTNLLqLIuhBTsC2bUnT96WN+MFQl+0BNz3LE1fn2zrA3VdgoeqkDkQoYvmKcA7idMrreEBpQ/eknUuhre/V/Yp6f1n47vbPfOEZV8DjrnsQODkCtfq53sv7yEyPKGG/CniVyr2Olb6bnYsvUKfgCqvFxrZSvWssaXTCQ4sKr7uN8LKizwUk6NLYtEhnVuZOi6yf2KSjKHY1YxR1rxYKc+6woX8D2PfUe2ieNG9KU9338AwdkaEQQs5MFVzWDgoUpNYIyPvw6SEGLvDLsQk9idarS1Owsli35/BYX0RrjYBhQDVu1mfTvTkMKuMuDYr6QeXnNwL+m+fXUOqnMgBqTfe6j7i1BoYyFRnUWnEfPAhmxcvXa9X2RD4P7QEsNVvrFshdNpns/tnf/T187f/pf8Hrrz/C7/3e7zEWP2aCDNmW6R7Mhg4d7QfthWIVp0906+F9SzBvqVvSGMLkCQPb6Qo+d4YKnYclFsdkdZKUUaInatajHk6AEKcj0DuZu0zJXXRKBiRzve8E9i2YEBVZszj4YIj037nchw4+D7PB52itYUYIU47nukdkC5Bvsbwvh4EMFdnRbmRPYNSObNvG+krCA8saYIrxwM24ycO3QvzH13qjftBy1cguOfbLDsAi7NnRN4rbZxR+6x3BvIdj4ksa9e3LIwtwOSe0rsnIFPDEwpjlfQ5FoxqaRO3q+gqLGoTSIs6MHMDLJvQtsugcYGIB52lQjBXrMEDg7Ngxgu2SbQm2ydazLhisd3m90gCFzKlKoLfcsBqIpNnmTKM7wUaB3GRbppn6PObw8/Ak3TXHBa1HJdfN0G1Lz3Md69bYuEp1IAACJymk2wIS9Eal9iaazRTeKjfMcNUxrMOf13+vFVZXFsPVzwfrohZ78nKm5Bi2EVWse5lpNNri4eu7M06eoIJVShvTS8JQa7yO4SQdlGzm6Amg9NysbaN6IWEaGrMmmm2F0iN1la3HmXKnSq6tU10OIA3+nA1XV6yzM4Zj6zvcBZbIkACkQk/b3Vvt0XvoTzxiq/zM1hk+uOycjxQozgk5PhZZPx4GoKkceBitEZkuBUxq7qSxOhovRMaMv+AFcz7WMM5xveVn4rYxefFixdEKldZnIZ9Nhd5m0MvM/EG+p0CtjGRkQXW2dd8vA/tlp9Auxn8MwF1rg/usOTUKzGMN39iR7ItHTxV+zgrmaj9UjRLTHcWaDICx6KPGGGidB/vjJ49xvjzHV73/Lbzz9hdw8RnglocR15t2hpyYmnv+O+Zi1ucfGNn4tdZw6yGcnNxTTFnngTPHZIVkH1mGHzqTNNweDSbi4GwSkcs2mPQ7OKwBhaC1Rlq65PEa/fcEPJIUxALwYRYg6GAtjxF20ixC7RtaI8hQmTWulyNQFMBxp6j4dkianx/2VVrE3tBUvdccFfKOzBsorBIoLT5IgMrjsxyI0NOaaOBQA845lVGWkDDGX8UnG8vwd4Tjg7x3wZ1mHd6i6rXTyVjyxBO0+IF5uZ3cIIaNINEnBfMsbJpLIebWyOsZ0l6YBY6LAoJ0uhtOraENtQ+YGKpg7FFCwKKMhp2y5czqAK+Vl9/N9WoDFET8LA9jT89jhFLbcsLkTdQC0oTMXWp4oHfF5ojOW3QkVqqk7LnnBihqw2Zk8wzG8HgPXCDtcJg0FO2/HuYAUKXFWeinsmcQHj6/bt2U5dnyZ6HhCAbCzMITOm6II5LVv5cDEACgOh9KtSwG5AiYignwOCDoPQzsznBGcwmEqbEQwanKue6Oy2Wkap2LeeMGjU21BzjpbQOiB0qBTN7DCKGhdCL0nkai+Rqj0IbsliC3d08AU0NzisOT2pLLThbNwe6vAKoZWKydFjHrbeupbZpe+hG+RmtBSJcZJuuoZtwbOmjq0JhxSG2bqtQ61LdG9wEYhu+oYluRQbGyMDFfWoIzDF7H0ZDokFLTxAq/SZC9Q7VRJpwiQhwF3wzvqNqv82BC7QuzhsvlEgfXMgUmNnEB2Tw1ooNwaL0sxIJZK9NzfZF+joMobMGudNrFkZ04hkaAYC07su4NtSg7fv/zv48Pf/DDeO21h/jcF95maAzUozh4uKyMHu/Il71fzCnDjr1+F8DB3ZOt2KIarTlyn7C8AYH9yTbcvXMPNzc3uIQjptAI5z0OoCYWY703yzNNlUBlMNQhW6+9XHakFinTX730q3gJO6D6IlDqri3rVGDGALBoWusrSDqGY5JBc9WTKh2F1irhEMOuY5Al0HdoXIGoIizWx7RuxTHOaEo4y/nNw1tMRLCEZhEiOUUGFse8WS2v3jrsxH3jIK7zA0AmQ9Nsi67D/JVSuA3O1GlszORLcMLwWs4TislO1tQrRMg1jTjPLMa75bYaAFO8DUCLqs8T0Vi1MSQ3HaOdMMaenebXMK+AiYAKmes6Y97N9UoDlBk0uKEU2T5n5oynC4SIu0NUG3slIN6T0KAB6XI4ov8HK/5hLxQ4XV4pgOnQ8aLy4+a2eKphZCAmQghyreWgT+B/l6ciloEblJ5LsTcZo59LlcYECa6jCscF8bLFsWzq5XPqcBHo4MFG4yJdyPoZtQkAMD7bGu8jPoDP3yLFtwokjUswTdEuwJphRn8WuQDHUvGerQMqDLOkvIIt7ee8pGGT7oUaFM/NQs+/wbAxy6KFB2ctPbwelT53ilPQtgCwthgACHg07GOn7kXhp15gFE7T6dGavkWc3p1sFyKDgyXjS4Mj8ErvyYGg/TN0Q4uezE+BAvXKKNEq507MmF5jbOlw61oBktg5HT6tFdjWIeuxJxWOmVP6kLmsqVo37hQmbw82tNYz5Hc6nVKLozWp77OYk2JnInU49xbBmLYV+6OEU2KlObkN0fV8+bNFh5JddKEmm4a33/4i3nrf+/G+938VvvDFxzwUwwGRlw0neKJmIWbSpB9b9WgtGSgxwLRVcRAhMm+COVGVXrFZfWOIunndnw7ycj9MQ5l/555/cerDuYl3Lch5dVasOxAHuA9WKV1FpLqUeXUcdNlo/ULANFjwDCkyTM2qpQszE5cAjex9OlXcaXCfuMgR1XPpENW3h8Oq+5gAK/dORFNYNXG0DJtqjQAFyNYwN2LuWoTvpk9AYeKxlx5qqrFkCOTz6PLDmtL0ZYsIfiOyJYYcRRUCXBxROUcKOU2s56Q0QgDkrMQ4zym7FQA9gKFZw3Z1QscWTD2/ew9tIJyhTWZUcl/vlx0viuq/9PVKAxRSZQ5oALEY5CZP2aD8cFFsmSI8tMNIa6qZ3+qhZiEuIBF0fFF6INNniLk48Wuse40D365pcfsq9Fn/1katj+TPxFC8TKyY4xMLlAXrAB0gJjcJOig83/+i7qQOE702N8FirFaPkzVhon9DeAG65Cz0TjR+ueyY+wxh6UC2NbfyEPX526b+ORUnhXtkzsS9ucf8Bl2e6bvIrtRwlbhvCH8X2Qwy0sPZSM006SkEYxaFJ6uTBwGktfDcgGsfD9Qw1z00Y3wYQG8UOgJhfDTTzSjunTMPqh70uisEGKmPaEqjpVepg1xrZfWU3SvcJGPdg42U8VOHYq3rVWPFYk8C2bZkngiwSOCsw4q9RGTEci25R30RAhJqU3aM7Ozdwgtj87HLRWMbTBx0eHnYUMu1YWz2A7EHufciHXPOAIvhieb+XJ7z9t8OhYS4zq6f3+DtL3wRX/VV78fD+/fw+OlTAI1dcVsVvKNA8cjKaC6O+406ixm3OS3e1yOrpVUPpBbhTUMDeni5ISzvvaM3smfZ/C6yhOoRLb8+rCf8+IOwH7Efwuka0WwShkOIk6eeHMVItbdW+sAXHt6hMgmy22R8C7O4nMgA0gKJOXqR1eDDmejQPe9dzKS10JVMZ5h58fIBhbxW4e8aCjfWEMkbUkFP3v/LwqEr8DFEGDca2/LQnlH/Rr26QvPlTIXX+yaqLLxpz4vRGgqdsh4K17MfAH3pxPh8QDhEkQbvmkY5ThoNsSyxzubSC0lj443raU9BHWCNc7G1jgHVSHIgWpt0C4rAlgPhK1yvNECBI1pNcyH2VrqGAzthiM0SdGIsVhk1y0JnyDXZQHo9dRJLiEQi2jkmpiEU8S0BTNV8kGHMAOLi5a+Lmze7UqhavNmx2eo55a2ycM5aQRX5PfpbB1AzRdbXaxUtOUThvxw8VQZGiNnzPnKkw2uh0q6HhmLgFCWvRT+SImzsMLpTWOgRM88DdrCaokeV3bYIVBV2ovFiGMxBz4O9lVDp46unPsU2Ae5sRKYsqRZG0W3JbMh7piCXguhQ8qPCZVpjvTW2tE9AXKm1LMNxBJoG5HMR7I4qDY8wFlOgNxgOHcCacxhmm3mwZj+gW0CTrEetSYFVflKFFXMtxWc4IuQxZXhnHow6XNZeLXMy8+KSWUwc2zlGBl2OfUEIeLfecTpRw0OxMcHftrWcIz1TZroM3t1BlN09u82qvxP3Z2U5uM0w6IDYTXjUEmmRdWEGhhDFRDgUToRSmY2A4vNv/z7e+qo38eZbj/Dk+VN4iDGTefQQmSZA0CzWWgh0BRVMMXnN06HOXeiBrcI2tB7p+ikiRgCIPYqYUdsx9gkYi+ALmC+neB5GCSAWRmOOCbSGLSq3Dp1qE0juwQUsCMhKO4EA7ISNW5NjOEL8uxaXrPC59gxtJ7WAHBZW31UfLN6r05EQCAigdDp17CMyIfdlbWN5Tsg2H9lF/T5t45I9lHVlUPvBb7GIOicyTBcFBG2X3VA4OgC1GPNemp5pMdcJFGaEJ7k2EM6QwrgJTITBtdZTPxVAHT10e0wG0PfBEQXcwKjB4mS2BvhO3dO29az/ovPO3cm2OIEpv5/OXzeDe4+1MtC3rcKq7+J6pQEKPYUNvTnUaru8g/LSRFiQRq+qqoWikS3JLTwWxHt1XszwRNTGXWKo3hpMvSMy9lcgY13sc+4veLElfq1wStL47lB6qGL9uiyEXkoJ1bVS7SpAlSEBoeQcnzUjQ/c4b23g8FJw3Nhr2EdzsY4nC9gZcFmo6sXwjXmJVgAxPc0QHGsyCD2MUn63OSSSzM+KlEsLAJqhtUaPfRVpEXgEDdtUi2XkvREchOGYxSRM9ZyZgEdRqNuFtlrXoTihMkpRnjMNhGZPwLTJi3LDPvYDYwQ49jggxP7kGp5kHRjukkfNw2/3S/2uVaG09cp9sdwLQADTmxog8vBV6LT2g6cx1pqh+LanZgro7LAtB8AM+yT1K8BQOExzVmuENSLUcbUcjpWF1H6vgyyKY1mBRakbmPJtkZYPIHoyzQjd6D5DuZUswm3Ar+8nYxkOhE88f/4Mb7/9BTx64w383u//fjRm1HMxNOgj0k7d0bcNh0nRwZag1XJ+SqiNzMhqLcY1prEcJ8DQYFEpGy4w6hjjws8SPXHbB7ECdQrrVEg7WI6JAIWaGQDDMHCpjBNsmXnEsIbDgknjvHSoaJhbNfSszcFnEMIRWzjV22hjaNTnDEegwFbufefknU4bzudF1JvDvawZSB8ij181Q9Zr5n1qPAWEjAMU+gBpL26HUsNeNQNm2IQ84RvQLfas3ha2Do7NqPm4RGhZ2aPeqvK1JAM+FqbUlyc7jC+Vf2Y9QpczAbB54+8csBwVAuHZKF8Y8CitL4e+bGYcNkLKB3aG5yRtWO/HOkpf7nqlAUpvDVenOsC0gBSTFzKxiBsimARAB+ykp+1g063b6xKkJ6ezBH5DsDAh1tOlgx1grC3M2QKCavFlh934ORmSojAFilIPkwdJgvjlZ6oJgXxNecUK7dCo2fJ4c7kvfcfLwjvrwbCWoSdGE7jBrfeV+Ey1G3THOfZ6o/4VB7vPSBHsPdoJaEzkGXi0I6AR23qHRzivOKrw060MbNLhZnAdcL0H4xHVZWOzUzhWYC7unOyLUwNwdbXlHK7Pve9k1ZJBQQFh2Nr/hodlVwhgTGplBBynwzFYEdLZo4QZZirutB6jnPexqyAZv+dYtn3mXGpftBCyhotfz5v58b4+WqW3olg2VaA9Znnx3put64x7Yg+AH10owEOB759zh0rpZ+2fqClhLcJEKGN/pNbr2dJrNbGlJdgbY0RpAv5OGWVyEWAGraRVA1bVcJlJBBSAVfjs93//83j06A28+eabuL6+JnswLSu8Eq/Jy/QI2fSsv6PDhLV5FqMPAQrNeIsMHsMYFzAkWaufayNSicLTVlgIIJMDVz4xUlyeDfICqOZajDEaUNO3Whbq+D6NwnKWSx9h7AIUzEn9RoLlKvLGvUJjpyQES8eNh3extNGnR+sYR/CPdEj58sv5HLqyJr8HZL7ESiHDvwnO5Fd42dy1CCZAYOCzhU4Nue6zxUbacizrLrRzeu4ZejkTMwp48+W7a38PF7hjFk1l7lGSIJ0apYER7ndkWEwm3sPxa6Hvc2jf11JLh9MK7M3B96hKNfvKMaOMawflOI1iRrtVFirDcGpvgEVT9pWvVxqgJCjWItNCyx+XmK8YlFgAi+dIgZI2Tr2fk8qfb22DxaG/HnwIv6eafYWn7lrgKzOi1FWFSVZDJENazyevqNLeKJzEkl6mxz8wDZDA7LabVJtjToEIjcMq8CrAt4KX9X7Xg0GXPMy40zpAjFksLBtfi5gH34zx4oZitky0LcjmdUgKUZsn2wcgxJFD863DhmWYK75d9+buuHN1laXmqalQVUo1JhthLAMsgDT2GANXd07RY0YgjRZgDEcVodOJiTgn5OUxDCUg69Phg0ULNP8ZBjSQh2WqU6Tx0TOVJ2+GrM+jRWONImLpY3TAZmx8RqsHCe9EOZs8O8+1r0yjgUh/ddZ2WVmYF5B9bDkxwQI3DJFswWjw3lIQLhZmOMaFxecUOt0S4PNzMjtOOjPQwSjWcNn30kSsoDxud0ZmgVlj9gZ4CMg4S3iYKcs65INhmJHJ0Ax49uwZnjx5gkePWBPl+maXooiZa4tz4YiS9v2KWWnTF1vmCRQI1qoycJw8cLBZHkGpo6skQez3rtog04Hu2LYT+hWfiVV6vaYuvoqVYCOENQH3yh5T5dcKYcR+bUhNh4S7KqngXmnOrXdY2A45OtwjMSdAsC9hu+aMFJqJ6R0JlLKOB20uWbtLLACHOjbwAFbIfON+Vto1VGNKtqOxxP70BeTWwByA9xqDMn1CrAcxT3mbxz1BeywIefjN4kgUSFI1XjkRMiV5PoVdlNM13emsGUNdeZvGWmFTTiAU0gTUSHGMJj+RzlWEilRkbc4RYxvnU5yzwfcBPnLtydYylFVr1ycBJ4Ac/3dzvdIAJafauGR5EERa7myH19QCO3ZC5cIoHYf+5uZybEZNg8k+LIvpcA/gwaJCTUk5p6ZD9yGPc0XqsenisGTBp0FPx41NnhYwkGnEfjuWp7BPHUZ1bjE0kmnK+Uf3tcRNUcaeh7IWmzKJJLKs8InqzGzbKQFTluhX+lpk2sCXA4MMJ07bFQ/WYCCm7/CdG6m1DW2jgr57owcTW01UtMNYrZGiJOECoDswo69G/HzOiefPn5d+p1XPkn1cYIZMXW7d4JeN4QkAd+7ewdXpCq0B+2B6p0+WGe/8QgKttTdLiNN0jTkwL+GhzxZAoDzBPOHDqFjrOPWtxHnGuedUNfiYTHsOMCivDRBArvXKPjM0rTLIzQE3pUAvoFeg2ow9CR1Lozmtf61FfT6/i0XWIjwZIGDrBngcrqMFU0iDuW0nXF2dWIRvDLjuM9Yhs6iq71Q2I4r9Y83QrQdmWcB7CDV1X6yFFHtvqty6aHke/mNsyz5bw24FMgGjBx4HxZwTn//85/E1X/M1eOONR/jdT/8eU1MBqJHnuteY+jp4by0KKaIlmD3qGeSVT4x5CS/0BLWSQjBrHqL/3ju1Wc2B2XLfpnopv2NmeqkHqOutRV+aasIIhNgVZTwMsqccizFG2gA5M9NZ26c3wzTL8KquHoJzhXQ1lwItBLfUzzBcuh7tXB/NTpge5Rh6MI3BUGn/LN/I3jgWYyEHFNmGksExgQTTGgWONl+/13BOzOh7ptAaF6j0LWHrBDJi7RloE+vytL+15vTz+tIRMgOt32aR1h+v5ZSQzWkBmtCADskgCEAY5jHAVdrBYG2DLSUTpNdKB4t3k1o+rq2WX8uCbzPD4+YKfU3s+1zW9ru7XmmAwpSzBoQRJi0cIZZ2+4DmLKVQbmpKOZBE9BxMxWqTAl/WZrIm8j6zZdviwS30s9rSFyDh90tHwc/J4xSpY5iG1p39Y+q4xQp2jhvWb/2N5dlZQGr68vPwFKi9GAdwwvtTOXTRffVdOiQqRZWCVjXQ0+/MWAGTHjPCtZjxGTJoG+Cx6fboL2HU64xBjdHWDJt1ZMdNm7Ux52QbeGdpJ9LT/AwyIzsAFkfKTJPK5QSAvG9VVGybjCzdIQPj2dKMqOrqHKq3MzB2HrRqk05xbQhwQ98k/ci+X3KWGtgdO9NxvQwHM2VUTdUXEeGMJoXy9OOAndKI6DBWrRKK29Z9A6O2xgPL996z2qbWcvatAdgTxdkHXPUsWoozdWNawzMO5RIDCniLbdw2w/ksTVbLedgH2ZXe2UvEWgm9lXXVouS2vPoWtRmkyRH4Ss872Smu4S00S2MRP1ZqMhLcKfijNG2Ni5ZOAQdeT58+xZMnT/DGG2/iC194Gzc31xBQ514LEBhhrWEDK8vbGrvGai3eDi9oHHn+KKyivk4Aq3oi7YnCXFle3AZ6M1yGiqBxf/pOAWYkbaXAtunYbvXcdNboDcuRU/jR4dRTROXScTH0O1dci2apQeL4eYZFtLDze5RNpTCa3KlgLVZbOcbluKcNSCm5HE2XzYrOyVwZMZ5t+WxUIUlXwkWcFWn3g1FUb6e2jEva+T3tp+bePYTmKJbh1tRCEW1xSbRp+VuIcVrDnACwixFxhPMHJuyEqJbkhzFleqn0LOBzdWfD5RI1UvJ8EdwJ4b2eM8ZShMCyMPP3ho1VicJR5QCM+OyXM/tf6nqlAYonYgWR+Ci6MH8HHLJ3+MbVA5RSWcWG4iXhAeSCSQi7GiqDB7LXglnj6LxWgCFjpNVUB/9KIVpr2GJRVJgF+T6FAlbjqM9XrJ3xV20uGqQ6ogxKW6keFryPlZlcGZ7VkK56H8+N3DK0Ia+dBXqoK5FGRwBFdCJmeMvx+7B9BwZAAlR57z2KJOrzhSExtAFmxqsBZccM7Bd6T721w0af7iyo1khHjzEw95qv7MXkjjnPmNMwJwHEmCOMycx1xHkFVLFKWQ29N1xcfT5aGmn36DJ7y/Dw+dtBZ6R5yZowjVqKrDrrqspaGRLqq6OwBSlcz8JxfVOK8fE76MF6CIory8w6495M7y8tU7GDvUDsYjgR3jDrWXS4U0jNIk/x3PFsaFqTE3O2AMFstNY6m3eO2C9qmaD/rr2ko0hZX0qt7gkYyzGtfZoZEAjWcsl+EntCsSjnmAcJC7e98847+PCHP4TXX38dn/vc9QIgkeNkcSBWjyk5C2QKLBwprvsy/A6HRTdtxN6zmKMdN9haB/qGOcgiCgAoHDgnBbptlI1gWGZGjx2UbZQzs9ggHaAeRRt7o1ZM5e4ZztowwbDD2JmS3LVeYkG4I7Upt71prV1+GmIuPPeSgKfGxNL2EGxOn2VyEayUAabeMF32qUWBNjK0+u5N2U5zsiIqDCPCeLAWwV7PMamrwCyicKYE+hU2j3teWAygwkR5LsxZKzOA8bGRZz7+wS3N8gAQEHnRqZ1agRYgOQX1PW3MQWoQgE/lHRgCqvC0rhW427LmyrEKkP8SJurLXa82QAkvpgBHTIQWbniKEQAICxWGMyasdR3y9RlzCmBYHhAVMimWQcBkPexW+luG8shOaLFoEayUIrBqSWQQy6Nb34f8Dr2e/1YoZ2QlUB028Gj2FbtFnUnruxcgLIrucFi+6M3pQC7wVAhdcV3tPQryWbdBRZeyL1KXt6dQ1oiQkQ471jRhBcOZHvl6qJRhLeChnh5sRLdhOvvyYBk3G+yBO5vjsl9YVrxdRVloS5bEbbKokpMFSZ2Dke5fhdMAmO4fHpiqva6ZXnUgl6pdbIA2Mb2yMh5VN6JaPOQY2Mp01XpV+KcYxaJne9/Q2ilAj+5DXo7r/yEvt4VRHWEIV8O07ov6mdbo0SiNnXUYlFrN++gYAxjDcLmwwRkM6FaZSK2NrGrJapx+SLUXYExjKmMMJOMyJwFoZrVAnmn1hPIY6zyoxSZpfSV9z3tpaJg28fjxYzx//gYePXqEt99+G+fzGbevtEfLGcd086qabChjb+D5vEXbh9ak9QC2U8edu2rgFvYrxsLB7DJ2OTb4heC4r2uxGbovdSkWpkTZYs0ymna4Z3nC3RoTr51AwuIw6ltkLjaj0FmIKvQxB01HvH8NASRoQ6TE5j3UgctiiZaddOVI5SviefoWmhdoTW2oAn+CqmWfJdptvTFUpu+LxSSwebx35GsEZMtECOwKdNVAquO66rGEZxCbjSF+dan+kr17UMLWY/i1QIpr/AWY4yw57wOOyF7yfAh+dxaxKoe0jMLybK3VfmnLWCUTszjVf3AYlPqvw0FttZBWT4MDXIOnAeSkL+laiXrb4sEKsLzYXG/1el9cQMEMaGJRE6fPXOnj8rYsvdb6HEd658uzr+XSI/uO92iVsjsj1AQgymnPwzOUhyfgV9+gn9ej1f2ucdZqhFjGRs/XrUVzxijWpfRCm7Bty8aNcHkUnqieNQIs75vVe0VhRyvyRiFca6xS69PZLlzzZhv6iQfYKYCHvAPIeJjYh46tn+gFXALsNYvKtZ7ry5q8vdDf9J6f1YJ1qK60jOm30KdkOOFSh+sKbI9rC5BBW9O5FWJQrQ6tL4asLA/H0gUt4jnNBSzbsRvicJ5q90VGy+dkeqvJSBX7sLYYOOxIHV79Rc9PANqaA5joRu3S6bTFeq3xYQ8nS6M6p9pIAHuUcpc4niG/CAE1Zn3s48KwW+ypvnWYAydV80Q9y4yKr6xbEudSboC4n/hu6isssy8UDr1cLvj85z+PD33oQ3j06BE+//ufT3tBwXcA1EotqX0SYy5ATQARTGiMIW3RkjrujqvTFfYA1loTHqfoGBNjnpGZPLE2Vdmz6qyEz+5IkOGhz9iz3sxE9cbiutj3Hc07DLSLI8Tl5tImTYxxrnYUy1oYezC9TeE77Ws+8x5iXQKGCnc1AXGrrEzEFulbh83VqSsmSQfrHDPaD6hn0uIAeoUhZ1MGTdi4sBfaA9Y8nS0J2+t2LED3wk67/mc5rwKNujMNPafAvYTVU2tcvz06QrpW5lQMtljIY5FQy49wqFqvxb5jsR13pvlrVYr5TydQNlBAxgwTFuxVjLdNYA9bdTgXX37/L7teaYBiJsMO6KBuCqTmBn7xPceDecJ9r4FuBmBbDlilLde/X3aAH40wb+C2hxCvfslzyINDeLWixwqg3A7nHL3SpXCZl+eQzImxd00dnBZZEnU7uv+kroF83vXffN2E+uAUqq9nAPQ9lWYmz7+1GYYzKlxadB41bg6L7JLWNgwBkQAn8hChOgtt4zOMiXFRB9dVpS9HJKpgGtNfW6swD8BDVL1l9jEw9oF9P4cXypCStA0zQmIZmw32ZLOIeweIBJAtERSSkagYWbgo0hj9xbEGkAwOw0wy0PQEKXY9FosTo7RmGGmO+HwN7hynvhH8JXVsMkagWHkixIcoMGj1LGKBHGytrvsnIFm94JV9RBjxyoRRRY3qPzXgc0dTbaNWGQarhwog+jpZirDlHvfW8NrDhxh+g7HvMJ8UizaVigvmySzZ0jtXJ9xcLrhcLgkS6uK8CijS7tTBzqU5EsA/fvwO3nrr/Xj06A08eec5nt88ybnOfTZV44Mnj2OyB5EJlJduLUOsomt0d14p31lhWYkAWMqrD3q2wz31OP10Aqxhv5zDZtTeHSE0FUNCT9up2Z8zu25nGBcFuqaNKLYI+Ijxno6JcRj/7G0WrIuy9yTsnLFeZoRtLdjX1EXFPWtRlL6M6zjDuPDsrWOhJyNTO6Ia6uoYhFYoBK753Jp3fggrIrucvnWt3D4nfFn/BArymxFsyQiRtcU+cDBElf1y3CKNWOLhYwh4vbheyglZixveZtozxOT67pIqHN67MEBZXC7smph4MSjNDRPj8F0WbUloK4i0vtT9v+x6pQHKeq0HYqXq4QU6aU2fq2ZzGobbr60JWcM3hQ0MRTfOW68vZH6cEH/J644hIqXp6SpgUO8TKCutS22UVbKou1s3zeVywb4PtKVU+Ppd+r5V+1DhFG5qMxxy4PWIxf4si33GQWAzvIIw7FEoq3XD6XSqMQYyY6XCGPRaBajo6SPTNKcTIKipVo9sDdLNEuyGMM/BlvRgx2N1oR774AGVc8HvOW3M5JpzZ12ZULxL3GpGY9XFdoQ4DaChmdn9N6oyxgaX96jiWDW3HB8yHxJz8+ChV2a4uTnnAbGu22RmhsI4NX+3mQxbxrIAtYWnO6MgE164BHpX0kSebttO0WSsKN3W2Kr9yNodQ6piK/dLAfIW6ZMTBkxgOx3vR6+x8Nryo+fEw/t34dPAZr2TFaeNYU0BXDfgcrNj33c8uHMF+MTl5gZYNTRW+1TzI1wxBvECwffI73/+/AZf/OLbeOutr8bDh68lQKleUrFnpsCOxRpmgTqJheHURnl6v8ukucKpjvP5nLav94Z9CDxWo1FmL7HYYAtg2Kxh66pxQhZZzSApUKfWpdmJoNVmMFNH8CYm2HNynFUWU1cVh6AO71ZZRQr1EChYskW+AGzZxGYt+ih5joWhQk0+Z6QzI9k+M0RmjoNFETWp7Zad5b0rpd2l1kjsG7Y+RVUWrNFt5xQLy8nPrWeLe0tAwMam3VJwAK5WOswJprCAA7x4pWuxsCzF0t92kl8GDuTw1R5KW8wJSaYHjgSBWovptBiZJ4STaC0YlYNW7eXO2Je6XmmAQofCl9i/12CBBsz4YyLp2ISLiir+XnUkNZD8Dr/1t7xWOxitNexz7H1yVE2L6gWOFWPlHQNiTWITLItA79fBk2HneHZ5zqUVsRTA8rCVkWQpaI3fiqot153eo6yk0qtwS6hS6IixFvuyjivyv9NTDq9bHnLfNhZlaxTbaaNZM9isA91zPJDGeMzL6rxgyDBE6qoMc7I6IIs0nFlFPb6XtQNYml2apG6nBCqtdYyo/dGssfEf1AclfJ9GkKrW7r48f4tqwNI8+OT3CCxprxeIoLfh0Heu41k1G1RluA4JhSnL8HK97bm2tu1EMBaeG9zRTCnka3ZT7ZVjOImfT4BbYIrnvrypKkNPZqFq78hwz/TGEOtMdS3Occ9MNTcAW2N4TrUz+L6Za9n38hdYuXSwtP6c2Pcz7t09sbuwsaO2NVYmPV/Y0PHmfMYpmDvLmjfaR44qSKfntfyz1hSSLsjd8cUvfhGPHr2J119/gLffOUWTyRVglUZIINXj/IujG/seKe8AYFHMzLmy9jGigrayhKL+TutMG/cJePQXi+J7m0UfmVyZjn5iJewZXcI9KrYqE0thWO2j3ihOlsjWAbixoJi5sVquZWAAExObbbH226H5n5mhbRUyl9Mgey32UdeMDC+4I/sCaQEdbDHvScUZOxjyWqG8EicbmK1JkXvHCAepWzkSnC7p+Lg3Db7sv6MDuK4T7RvA89lXjVA+MAyEUkzRtQAFchIaNPfB71msN0T4WNs2Pq/2bNkh7fHscB/z1K2xAF18gGy0QC7tUdndaXGP+gzXeonXENVn/SG5zj5e1DF+peuVBih79HSY+yKG8yiIY3q4CrXUYtK/+2JweDHG/WIzozoIVkZjRYPlIR5Bx/r+SGSIQ3Y1VuvrRMsfF3plvyh99eX3uLIY5XBpbPgMMrzlDXJRrxlHOpwLYB3FwsdxmZMwBFblyPOZBzUiOtA96O3TdoK1Rq92REw/7pPx/ToUWmtJ2zZrkTkQhkrdk4NhcKtCYmMO7PsIQGLoW6nLm3Vu9OZZOrtHNhLTnz0qCVdH4bZ4sy3KUFuCzZgbI0ARsJK411qF7NwrhTCcjhcu1sLZch7cEQcDw1sCK7UO+WfNgComy/P3RdFWeEeg1z2q9U5lalj6izJWqwMtY8YUb2oSgNC1LKD8COC1V3k/uR/QWY13TlbENZXIZhjHG8Wo5R3W2mAlYg9IxVYK3VmYrGGibxQL9+YY+xlz37F1w707nG+0ma3kZ+wLiL3iiZD3vhr+lnUjHAh629BwPl/wzjtv480338RrD1/DF97+AlaHQWPtHp4/slhn2hGJdbPC8dB3Etimc+aeh9p+uWBCBRhLOKosuba1lUQIWxL7dezwNlkv41btHnnj6qMSwRM6HgGqlJhAt8zYDBMN6EYnOhQ/BrxEy8cvUxn8rPZ76+C3BZzg1ppaMDzDL22Dzx4OgOiFWu+OqNuhLr7xeTPCLOMSY9Ybf5ZDQbC1dghfm2TWfqyxe9mVWS5QdhAfYYPAiyVQM2touRPD4VMblNzbuo5an7yLNDJVF0jMRgND6N1ir62aEQNWEbE+Whl7kKOF5fySUFb3FSwpX/vuQcqrDVAuFygOyU6fEbLRohaSSy8HeeDqqhLzq5EOeu+APlfDZMG0HFmOtcMqBWu1UCtGfxu41IFl2VtCV9QXCEO+0vRzvnzR1+f6rddoo/NzGdpadnSIb6vvDgEUaUwdihEqmfKMJYCq/igyQAcPPoSQJtRvyHjzvFyCUaFgkdkIlmmPY4yKhcdG2Pc9WaZ9XgI8Re5xHNoqV+9T4SR6h0rn3bYtKGxLo3vaTmG8JjxjqcrqihRlpTRCRpki1SRpRV8bsgiUmdXpQ+t90Igw/LSuOc+qu+NSa2PVI9X8rgZebFEBk8o+8Zw7LYSjmaiQi0cBKNe9RBrmPvY09HwuZQ6rW+tSsTI8UQn9GI5BaHHqO3VYqxYN+1V5iKZVf2YJDzV1VG3ovUJDWt8NDMU9v77ATRVpd/R9sgeIA/vkQUmNRoP5hjk868KwOF6AMo+6Kk1sCQ7jyWfimG/9lLV63JnR8+jR63j0xvvw+PEzAk7LW+X6OGRdIYptch7UZ2ksqeO0AzljuYbmnFHPKICv9eh7I5pVBwYHSaBlxhzUMqLeqxny8ypcV2GAUwqvRWD4ciiRjQptcrzGl79nzikCpKVQ1hqgcvh5S43VluP9uadwBPwFxmMvTFAfY2s2Ci9qsuRoNEwbsFmgZ1f5AtnbRi2LaZ4ww36qEvaLoOBlIGHd43yExTmOv5sv4MwQ4b8BN2MJIvdaD02WpxzPckY0fnJMVq1gAY1yYPg2WwTGfI5w4oNRacYaRQXILNuSrEyK6/HcoWrYjJK9TJv58uuVBigV+2K5YnOFb0rNPCYX3pwezcLasjDKuB/X0hHVr2yAPCX+Tor2Ahc0siUykgHW/RYIOLIiuTmXe9AhPJdQx3qJIRGwWu/1xbjokQEo+roMkGhOpataCqdaZLAI4NS4sC+RUgFHUn+lR2dcXAaijEULA8jDoLUQyLXqwTMiFXLOyTS7BaWzaiQNSo/eSD49tRcyUFmAbIxgQpg6uJ22aC6ImMcWoZwBn+XFqiKmHn7MEAGaASbhry3ZeRonFZUjeN62zhDURR2AI+77wtpiKO5Y96DEnGyoJ4MMrEamprzCMbfZPIuc0fSaofoJFbfWPhkBSOjFTViK3BBaAFWMnHC/0Af0uicxNQI+er4yjpbPQAejxdh0tE7Gq3XAen5grJcN8J77ZQ1j9tawtYab5ze4YOfBmYb5fDi03FoKSAFHP92Bm6qidrTtBHNPSnxOOiCteRQAxGGM42zFnAP7rvL3T/HG62/hwYP7ePz4MZ99VFh6hLYi7YGzqBrDgJXiue5mrf+VCSOHFcXuZFemqrlaORYT7OmCWfc+5VSEw9XK862CccI5EXJoLQ/L6cvrw6ZMrxYW630TuAa7FuuAy4Nrb+sdYzkwxaa0qLcy1Z6iFVu7Zk6qng4dq2LqqjXCjPlky5AKXao3FT+nWUcWhnePhALNg8dq9vy31iHXRO1HgvgaA7N6/Xo2xLcCcJ5lcwEOvO0sHJpZmnA6EStzBIKodsseldxATnVV/NXfuofVvsiJqD3rhxY+eR+6T/eSncQJIm1SHR1/QBgUApCZh+d0h49LIPIKMzQ/imi1cGrvlHhPi0vX+t9CoEot5bWUg26tNhy0GGduGgDLZi9jLU+3vsOQGR/Ls67XCk7WZ1qBSjapapb3VQco73n9PFYbFUNElkhexNjDIAe40Oem5gEO64xzhx8LeNDRreV8RNwGWJD2tjU06wkwRWvOFNlZeDXUibCjZ8/utNSQ0GSodxJABsbMMOaOsTSj2zaWb++9o28UzgkIMawiYxrzbZaHONcZ65qksQkjIYYIC8WqAnZzevQ7WedQXmAdEFynLDq4lFlJTYQZDnU/1vlDpIZKo1LGW0YpwjWRMTEWNsUjBOVQGJJsSDexUDNro+jZxiA7ZgFqSBAoFCSAUszM2nByvQR09J4xBljfglWGBSCmO2xESuOUB1f7J9nN1rDPAUMczuiAWjbQ90UsDritKffhCXayR8VQ6JCp+xd7wjmj5kaZWhJRu+94++238frrr+HRGw/w/PpJCFoNLoBljgsmuiGKpu3JBIstyIqmeWgcHafSiYX+dNQYt/SePT19/Tv1K74IN32P+xJIDgesRS2VWwbHzLA1y/GxpvTlGWspxJLCyPF3Mh95sPG5ptMOZfG3YFF7NPc8jx2X/ZLN6qy1YM10wEYMXdNldCTdQYbEwhmaeyrx3T2XmbRyHLs6hEVsjaU0/ZgN8MgwXMD26jCuZ4Fs6TJ8aYJNKCTGrPt6NoBVYBPgxbwu964Zb/ldxz12uy2KzgLVSNL4rczuer+917k1smYK6mfT2Y6C3ApaMO+2hHN82T/v9nqlAYqUwwMD88wD0RFgZJQBb9sGbso4TBcwwsuXxdCxGn5dGcLwCWRNVg10NGlyxRX1u/D4FmZERiYPUStDI9pemUblZRYdpx2+ppDVPR7H5vi7OPhmhRIU7SrgIuBRqXzug8bC6dkqaenw3RkWWoBY37CFNmBoToKeNmv0utqO07ahb6TY6RAWZassF5XSRnhqLAsf6ZNpiZbF7/UcI9KGEazE6eoOTtuSRu6GGULOfb/kQXUEh+XJpcOyeC5iVLZtywJuKT524HIeocyP+Y8US+Sh4UuIyGIdebJOczpBXFD2FV5gB+WYBJipFsM6HjPXdGvRvgGR+aDvn3XYyCOqA4QDMCkyyqyLXNMxLt1OkMDvAOg8AMViIAX+3BGaFQlUiyka0TNl6z11W4g6JZWCL/AzQbKBLEca3EjZJ7iJrC43Zk5sLQ5O6g16u0Lr6sHDexVYretFA7s6BCso1Z56/vwajx+/g9deew3379/H5XLJMTjsV9DA2yzwoIPcHDDbDu+T0Jq6EIGDtTqxI+t3JAO46AWswMEcg7WDUD21YGygWo/qmSZMhqJYDnn6Ywxc9Q70jv2y18EZwEAxjCxG1xbv38IL93gONW+M/QkH+tawYaMYN23UjLUb9aoQ4wOyUD6CbYH0hXy+MZ1hI/OoxDwiZCJbnTeWoFA1pZKwGCsYWO2FZ7kGAQz9fbTZi9A1QzXC5HTi4Jbj3uM+Ejg3g03HLqDijrnY9dvrshxzCdUrXL06zuvzlCMsu2jobkCvEK5A7MoMH+yn5nsBVe/2eqUBig4wdiOOkIQBzC9n3v2aDy/3UItYr2cxnaLEgUKv68WJOBaeqsZ9R9paqbR8X7EoL76uUPYY+wJw9Pn1+0LmR++afy9Idfn8FmIz947Ssa/PZssfjYNKzR9Tnr1NdmqH6EsJ6eo5dS/uE/uFB047bVVEynsYpomtqf4IUlzpwVjkrU0wlNOqpLlo6ZzX+KP3eRjWMZ3MSecmP502nLYN6nnjc5IOt2OKOAsclVEBaAxUiG2tA6I0ZXmcl10pJbzmHFFSm4eeKHeukHJ9HGuorRgQsWAs4X6MuRczESmhkNZm0Wy8ZI71DPndXk3zEozEYSWDMmM/RU5v3FPLOdc6sahpAQfcGhud9loTtcfKUPXes8Kx+0TrwDwDNgamsQmgBzhlaIlj03uMb+6FW0XhGpkQ1q2hwyxGodZrZJOpwjJQolszjHFhWA1iHgTwF6M9ywMWIzj2WL5zxxe/+A7efPP9ePT6m3j69DkzeoKhqWNJ867wIXL8Zwi4tU7UkE3FypSxwzPG0Pspxhf57KpNYg3UUjhg09HdsCOqppol6WBGBlKaomqyZ6yKHD+HVYjQHbi5uUHrPcfGYh5yz4YdFig3WB1eMQb7ZWexwLZhBp7afUdrV9iuNvRoQslWF9L6tQTZvPb6rmBeHY4xor7QNExXvyF1sq/3W6wb9QJSOHYGWladEgOA4dn93AyYULaS51jWnq3laXFWaT1qjbVW7TtI2HiuDdJFGkMcrgMju4znbWerQEQBpuOZFs8LBB8ih4L3N93jmV2dSxLEcaMBbFWB5Xu9mlG/h+uVBij0/ti7ohZWeVYNdeAg/jvBZRPAIZWnBVd1JY7ZKGt88YiW62AGpAPgAlNIQYZwBR+qT8DPmCn8LDAy8x5K2OtYe/ckpX0LxPA+F7CFhVExHS6loi+gZOHVjjzg6KGAxbB0v3EQZuPFSE/UAUPdj2FrJ2ynjSK/ldCxAAe7RKvGtMkAIEqF9GkZd962jbT7dPhifJj2B6i3DKcuvE/fAWM3YG0gNlZLFzKGZKYRrT+KUbOXkEKE1ditRYPEFqCqsUz+PtB6z+qVElzyu4u2bnFAKTTVrOf4ae1ofqq0+bGS7DpPZFzWnVGAWmvWvQ6D8HlogNsxHVsAVgcWjXtL9pyHitaX0lwtPUGtv94adigrQ2vsaDDZ56jnoewLgCNgDfADB5q0TXqmBtVZWS+BO49nUIjRO7NOZmifPF7clKlk/J2hnrsMqtY6/7tCoL6MeB0S1kY8D/Ds2TWePHmMBw/v48GD+3j77bc5x8gjPL9D+EnhHSDCS1YbfIAZRx5ZPL1v2MeFDSStAxhofeNelrAZgBIudKgIJDCFdWaq6ZgM6dZhH3VIIq1436uL+dpIkGHlkesBAg46gJux47I+VeGfGF6Dvp9ZNXMOVpDuBmXFpXZiWUcUsE+0uSEHLeenRNm0KRM3QxoUMlc0xctMhH0EqGvM8yT0TTOeBaPmyGetoW5Mb96j7YjOh9L9FQDiPPAeNwGZBmComSIqXGbFaKUeJX2OYtXrLHg5U1FrWmMYH4Ll/Ij7cmXeYNR6d+qOaEKriuyYI+rrBEjKMyPO03dPnOT1SgMUTKOXxOVLw2QN3o1uW1w1UR6eiQ5+pgRSUFnppNpgOjALLKgnSukitOAKmBS1PaOwz9EoC+jIC5jZ60WCe722mWHYzEZ2en+lZ+pPebKJfpvxHpb4ug4BiVZnfWEcXPT4dF8uyiYpay63FwWYAIveNTgoIr1//y5623C57OyjocWd3Yxn1HKoyqO8H8Q9Az6wlGsOb9lLI6JLxjA98ojti6oGgKvTFaw1jJ36Blcx9wAuRVtLkb7OFpafUci3baeotxJL0SezyozzJsOdEpD0wgrkZjGqgxctD7bEdSx7LkNWDea0FhGH7m1qVWLs9XMBzWE8L1VsCyMQTfnsuBYtQLe0RDRK/NC6D42R1iKANvMgPN5fMSlAsGPOUvEz4tlkEOhE9Gas6AskMAaqgiqwUtmJuLmPY141hWYsspZTahXauk3XW4Qm+XGrY7LYAJNWpFpOrOLNOQc+//nP4wMf+ABee+0hHj9+h45Q68lmQExIeNU+HedRJcrnqFokmA43zseYBjE3jkFQvrOIYd+i+OGcQKdOS/2h5pjL/SP3jwVw3seOsQ+cTlusxUng3Vpqw7R2DxVGQUal5UqbLHe+dbKyVt+zXlk51rR8HO47cIl2I9YTALuHnssZDuqIGkhQlo3HBzXAxuLggayYwqvOQ5T6pxmH/oYWDIgpTdoGJOIl8LYj0otnJXCaCRyYJVbZdjOFry+/EvDJ9xJosPqXu2U4dAUjbXEMVhD0MpAijVrNWUN1ruezZOPBEEkXaJ8YRq2O6p9Ya9g6682kAwdQs6S9J2fsDxSD4go1EED0rUeqHxfw7YvZKKuoTAfjnjHybDS1hDb43g7VT1F/lYCuURp9BHswYb6korYVJQdAsoY+PctQK3VxTm4seqiL+GmOWlCg55FVKVOAWvFjNh0z6jqsNC8MdQC9nyKVdMM0FgeiCDIOpSyoRYpcNRUkrqwxMWBYeeAAOpixcufOFfbLyNCOIzKqYl8r22bG98FQvUFSKEwR9NZZKK1LxQl54jPvSwDndGJfn30Rkm69Yzu1iDODWUeOAA8euomW1PkQNcxfV/gDFNixwiu7xhIwcLz2xev06cGU0LbNUfOl/hzuClfYQYC4apJkbNQDZmX0EsgmGyfqvwCCerqI6dA8ITxC8j8KlyE+R38KXKen5SDta439TDLkRy0Hz7u69zWbrfdWdTQC1NBYeoh2By7nCz0xpYVaMTw9YvFiJtd9rb9ZMr0luKvxRH6vu8ERIAxe47lQ+kyJLIqesfajI0Db09BatZoQQ7eGB90dz58/x7Nnz3D37j3cvXsPT58+SeDGUdfBKpE1D+3pMxvhrXS8xg2h8YrZCptBxpJrdSMoTzDI9+5jx7YxPKm+QA4e+MhQHAHake3NUeX/3mJFAO2X1UGs+jh5sMIjdOfLfmnHIouRSSMQZfHsSmPP7wubNOYe/bocaiexFkcEgL5twL7T8Yn9icX5sHq0cFqPLDN7ZdSz4/joxS7A0lGaODoWqgGjdaRLtVAApA4lyz5o1K3+FgvD9bDegoAmln1djomeR9lAyF5eq6Ndc+3uKTBevwPx2dlvLOwYf2/Upy21Yjh3a8bQV77aV35JXR//+MfxLd/yLXj99dfx+uuv46Mf/Sh++Zd/+XDTf/fv/l18+MMfxr179/Bt3/Zt+K3f+q3DZ9zc3ODHfuzH8P73vx8PHjzA93//9+N3fud33sttLN/HRzBjvYS+VQEfHdatRzv5zbCdKiyBoC0v+wU3+w32QcMolDjhYSAEhNgFd48uovtwnC8TN9cXXF9fcH1zxvXNBZfzwD4IVCZNeVTujL8HmYOb8xk35zNLtQNkKZplQarh9ed8mbg+D5x3x2V3XC4Uxu1j4uZ8wc3NGef9gst+wXm/4Ob6Bjc356rMCIChDov4MIDWsN25wunOhrbRk1ahJW8G2zr6acN2dUK/OuHqzhVOV1cxnhtBDhps21itsqsNPMHB43ee4vnza26gYRg7maL9wvHRphn7DI8RgFf/mTF3sALqjJ4XUQxtOfDktYwxwgCyxso+duz7Jf7ecblccH19Hamhok5ZW+AyzhiTQtrz+Yx9XGAWKaPW0FtHz4yBYKUGcL654Pmzazx/foOb8zmYHlKaygZyZ7n6Fka+wGR0EF52vJi7GdkmfH8YDpsY4wYAIqxE0Tc4jQm4FzMGQBllZWD1p4x7g1Llbxti0elip7Rn3AUikV43ECDBALe5fLcORTvcn4SBc1gKsAXox6zP13jE9oDCecPZ2mBOMUulk3EP9ZcRnO9z4nLhGjifd+zhTIx9j/3K/jtzzOxkrSwUxOFVIa1jKYA8xBOMHGsFrXqbfd/x+PFjmAGPHj3C1q7iFGrpLa9hC82iNA/VdX21fwFU4vTmIVytHTIscdoSYK7gVx57i15U27YlCOits/0EBIJbsmD6HIE01iy6HSJdXWUeVvS6Ua9RiHg65iADOS/7ioJS8DvHTKfzwAqsgCWYJ61LhkRxBBE6G3pHbxtaY7mBvm3YTtvhvvN7TBorF6J5YR6AxRGUk+J85g5Loa7G7nY2Z4VodN7Is7FigwD4BCQkv83oKROxWPyFqcrXBmM36B3a8v6jM+JAOK7uUaLBl89+YVg9mbU1dXlPXaWnyHiu8/cVrvfEoHzN13wNfvqnfxp/5I/8EQDAP//n/xw/8AM/gP/6X/8rvumbvgn/8B/+Q/zjf/yP8XM/93P4+q//evy9v/f38F3f9V347//9v+O1114DAHzsYx/Dv/k3/waf+MQn8NZbb+HHf/zH8X3f93341Kc+dfDO383FNFGKwsyM/TZQhbjMQtDjM1LgA3SEIfMwHG5C/dzsQu2r0YEHZeU0sA6q36sqaSslfkMecn7LkwNqUcqDcQT96h0IICPPkXFaCdyMC633XHCtsV4EEfOMzVrhgekUh1ZKrlXnWEyM3dDBA4/AdkazvmCZVF9kZ3Ot1CZogzR5+QwnjQtBAK8WxmKy6mrvydbw3sIziuZx9+49AABcXxv8Jg47MU7bRs9jsBS3jJDDk52YAM7nCy6XYDJMtDukUUXfKJQT28XzU+GlMBYhiLXGWitj7uje0lNjGCLmPcIh8vIBGrOtVZ2OmP004mNURc7WQmS5hOnKaHFs5hzYx06thbHKJ9MDByTGln6C7+spuDZDphICwNxDSNLXgz3uUCEQyNOKOiK2eEA+ALRINy9jnX2OTGszXU4Ax141LhYG8wjeDgc62bYGw9gdWzN4i8JiYptm7EtTi4IoDz8V2pOhBSzYj7QxFtxF7EmlqnvkW6teTpDTOT6HVNsaLRQQq4J0+axOlvbp0yd4+vQBHj58iCf3n+Pxk3e4jmekaxtj+dnTCeVB9t4wMhOq9D8IW7V1kBFdwgiqS0R8MJMlOYAoHZiqZcQFjHbqGDvCLi1A18tD13uaSTemdVjjHjMOpU4rIysZZrPI2Cl2iKBYKexHJkrlDuqTS6AdxiSAnhhxcqIpTA8WcesdUgEhgFMLvJ5VVOM+pGdaD++jdugImhg+FYJHMJUD021h+9aQYI2LzhwDzzcPDRcj2wvAX1jBNZTzshDSyppw7gHk+fASZuTWe3swRXkuCqxCoblwFqOqsY1iZPDCSL34HV/uMn8vr37J9b73vQ//6B/9I/ylv/SX8OEPfxgf+9jH8Df/5t8EQLbkAx/4AP7BP/gH+NEf/VF88YtfxFd91Vfh53/+5/FDP/RDAID/+T//Jz7ykY/gl37pl/A93/M97+o733nnHTx69Aj/l//lD2PbNgBatLWYLQ4NBM1n7uE97QsVirArtUiZAlsVFAGlUW5BjSORZMVitcGWstFeG05XbuzIXjGlfXoJFMdlJPps4bEpw0CpofPgFtTfaUiDslVY53Ta0E89SrNvOF1dAR7gDHqWWLApArXY7/KhvLzJ5WpZ1GvQKMRBRSq3jH/eo0S3xn/rWbbTCafTFZmMyxn7hWkQW6R+9r6R8bqc0zull4AK6cXkj0UYqAwbepOWYyr2hfMy63lRnqcMsCn8YwYfxTY0hQvFYmDNaJhgLY8wVRH35VcuBiYM1Bq2WMvXt8ZDV4d5mC7ocFr7I7EKK41gHvANaUAsan60bYv02xZreS7aGGlnHNOVXt5uHQ6Gvp0AR3lI00MwDNhUmiXHYd0DM1jEGSJpM8PV1RX+0B/6Q/jAV38I/9v//X/D73/+93EZTMvujSzW6Sr6uSgjxAU6AAPFogR/XDcEULHfFiAl+zBEWbdljccBLJYOAEqwC2BKMDmRHm0chgzhKk1avWrE8M1wDDY8evQ6PviBD+CdLz7D537vc9SidD8wCj0ZMTJJdDC2HEvBv5bP2LBt3G9Zd0Q7zgCJ9C3tybbc+8KQLGyFgP/clR2k18cKaCW0FyunNX6soh02FKUHS6YWovzj0Jfg1mut6OLPW96r7sVRGWiHENjybALc+iOblSGSHDPa12Sb5BCG8zMmG/shHFq9NjMKc53LGURkrtihyWHts1pa6ynsDjYbiO8CPApNosL+7odnkjMC2GHccuzWf8eXyI+wdA4qwWRdE3ELeW8C0+t98OJ6dJ9RDZfOA4z7zWJe5hj4v/3W/wNf/OIX8frrr+PLXf+HNShjDPzrf/2v8fTpU3z0ox/Fb//2b+Mzn/kMvvu7vztfc+fOHfypP/Wn8MlPfhI/+qM/ik996lO4XC6H13z4wx/GN3/zN+OTn/zklwQoNzc3uLm5yX+/88478V+ioVCsRQI3eTUBKEZlymTGBiSYCqEpgj5Tbxfj5yqWSFTPbAmGKZSyrElsQNBzOvg9EKpqZTSFDJBrH+xngNDBBNAxek3btuF0OgEQHU5DSEo4NsmcUDfZXDix2cQ07DubwvU+cHn2LJmdNTWTTe5aFAmrOLp1GleYYex7FEOrZncKqQChRO90RUp/QC8aRhCoUBdAL/Xunbs4na5ifgCfBkNDbyeo0d6cjvN5Pyj/6eF2YB+hxm+ZsZUgJveqrQ5/MCPBmpjnekB68cwuOrZ3jzUWa0Bp7oZbFWF9wucILw25nlxsUtQ8EBAVqFiL9WnsqysxBaMC02uYC/lZ6q00UVlWPCAJ5JGVJ/n+Yl+UMW62sRfPYuzXULtYq+YjgPWiX7Ho4WEGKf2k/BdztBrAZAlCX5I0OhwqHEBBN+I+HWanmKM6AFs8D6vRblFjhwAu+xEp2yh2hzWrhnHS5aAOs/VZtaZazLtKpFfpgNBCmed3rmfEygxdXz/D8+tr3H9wH3ef3MWTp08SpGIarFWBPEDtKHToVG0cfS4PvQn3MuXr4eVpA2T3AI9Oxdap01BoIBYIzHowZw2enY6X+feJhkYdkgscNgzsWf8jAZ9p71mtNQi25Iij9bI3ue6gjB19fzEX7shnx9aTZc7nX57ppSEnCLjJbvacb85GrN92ZIma9crAU8GyBvgIF9U9xo6gJh1l11os1mtdZ2umJkHTjHUcrJyx5cK0YCvFhOg70v68qO8QAOe96YThGSEmRGPE1P3FLugcDXW1AbH3EQ79jKKGxQ65ziUAKpxlDayOq5+/y+s9A5Tf/M3fxEc/+lFcX1/j4cOH+MVf/EV84zd+Iz75yU8CAD7wgQ8cXv+BD3wA/+N//A8AwGc+8xlcXV3hzTfffOE1n/nMZ77kd/7UT/0UfuInfuKFn9ODdYoR2zH7AqDuw2C4XCa9v/SUw6OUqg8rJVgeKYBwQYyFfVwLwQ6bL6YtqEoEOi0RJME/ETkXX3im3YDGFFPVa9F66NsW+oVjVVl6xbGpnZ4qSaBlA4bBxmT48nK5QIKrFimdqn4IQ6XFogVIUlv4FuGVzo6l45Igr/WeiniFuswMozla1mfgzawMxc15xwjdQd8aXn/9Ie7du4s5J25ubpj1MwFrpwRPPHyDpt1OOTutsWng0CDHOJhqGyAOdig0Nzhec0c2SWstMkZMyyI+JyjvKJbkazE6EDyqJLzQ5r6PfH9lfAESSDOdtpr+6XXsNxPPMgqcKNYs42m2fubKtqyMi2rFrLFkPxqd8MQShMLl6h08aJZ1j8yNfQ8QHynjt0S9QIDwtorIub0UW9ff+l3vPRsb5nf7MRVf7GEa434EZtr3M8oDWG/YTCnhe67B1hsw5dkLXDrcI7y6HGLyfksDUwcdn4lhLj2fmCksnqUYD4DhZompz2dqUb76q+/jtdce4tmzZxyvRY/BKJmEh3RexhgZxtLaFVgYM1pEdGWmhQefo2Qw22ipXMwA8pm6mngKfHZA6M0dmIN2kuXrORb72JO9mNGQj/ZOdljCft1PHFQxzx5hgK2TmZ5WHXYPIc5m2T4ACMBg/Lsl4LHy9jQp2qsxhurJpZ+7O9wG93VvmBbPFr4UvGrD6HvFmqABHpoxBIhovUVLlanoSR0hCz2S7J9pfBP6x/iwvg9MIWcjsGydiRvJcAdgmQ4MCqlnW5mU9Tpq9vLWzNKRUSqzQq46xxQSq0SocMBdTKKBzLqeL847OS/KlmwS1R8F7l/pes8A5Ru+4RvwG7/xG3j77bfxC7/wC/jhH/5h/Nqv/Vr+/jaddKSAXn59pdf8rb/1t/DX/tpfy3+/8847+MhHPsIW7OFQrDRfsgczOq/K+xU9HBtnVfq7YvkNMCjkwgNsj0672y0NQrII8dwTIzaUZZru6bTQqXEzamKIqBoJG3H/XAjWW2o25pzBWijFLTZiIFgi856bc23UluMw6A1tGxuIXV3RC51zsFpkAB62Mx+h/mcZ+N5Im1/OFwxcCnTMianxdokaR8asYVFrYqpmSsOYFML5Ml+XC0HPvg/c3NxE/5xt8Q4VmjGMeF5uLNG9hqur0yGzqaMqrq5AIXYdSLdbsgoIWlIHtoqGKZJMdmtmqGDbQhAc4MtdBuuCrV1hzIjNthqbXJvpbVcMvsIeI9eVMkbWQz1p7fCU1rAQ/9viYB75uQASGFVF2WgnYHYAxhJkIpsfrh4t9wMFherjEaDR9Bm8195aZPR4dOD1AAsGM08BcdY/QWUbKWyqZo7Z68hp9IJ7SudgDXfKS+xWDoeH82Gz0l91QKoI1pwzaqbE4QeLzcVDore2MEoCghZsQXnB8mQ5r6LL678BVvm8vr7G+XyDBw8e4N7de3j67DkJxtBArEzAbdu4hjFWZoOF9MoGIJwHXbaEN8X22QzGwAnsDFZtFCIjw8DQIYBgToO5nPXceo8gkV6n9S1zV60zil1WX6zLZaSwuW463t8KDK4Ak40dpW3S+lsrhStsNqNXF3J85pzUm5j2fxwUcgBugZ15EMHXnuPeLwDLbLRwGv0Yxsl1InZKpnx5Lq2dUIVjXdsMPzZ0RO0WB5k2SQVQJekPZ1swJ7k+6dGixc9bAIgZXeWxaR1b/h2flGvOwqFlKFs2S/ZuoDXZVq0TRToaTqd3n5vzngHK1dVVimS/9Vu/Ff/lv/wX/JN/8k9Sd/KZz3wGH/rQh/L1n/3sZ5NV+eAHP4jz+YwvfOELBxbls5/9LP7kn/yTX/I779y5gzt37rzw82Yi/Pi/1I4IDABwz3h3FuwzUAnNlQVfFgEg7YSMSQ8BZE+P5Xy5ZCw+szJIlLJWw7ahN/YlUQlxnzNKXIdhlQBWHkAjQOK6lBGe2C/VLA8ArHcmwQ4wtc/pgbeN5aWB2HxjAnMEJ+lRDOsOO5C2YDRi41vuDpVJF63Mhmj7pUrd++3NtngAlqNHDcgeHmNvDT56ZkeIfZnuGPvE0yfPoRLdU9Sz0UslI+Ho3oAmPYMOEHk29P6tn7BtzLTyeavB2XqHAYz4awsPXnoZibsYM5cXmml0xiqhvQvABjALIKYDPQuLoR8OrVg04ZX0DD8ANN6qncHKsJqDmZoBZSsJ5JxOLQ5zhg2rR49av/vCQFgCRVlFrX0zC5W+Az6Wsbp9WJb2Z8beIWvSEhgL5PQmz2nNTFBmhYrNicVBhvLqAI4w6pzYTqfD4cDQHjJjA4YMXRks50aardQhYT3QIwVV9V0gLUmFicUg8kDnuLDwW+2A9SDm9C6aCh2kcQ9z8GeXywVPnz7F+958C689eohnz5/n2iaZpfkBsNQB0vdobV/2oNoNsX+UhchaPenwNzVOnWhWmiLZyuETp63H/cd6cQEUMYTh/QZLbG2DhKAab61jOUgLrFoO6gIPtAE797O+BscryylEnRwWblRIssAgbf7InwE4aHFyjgLEtN6yvsgKAqDSFTFnHqBFe0mgyQO8oZF9mVPMcmnR4ltvPZHnuEFAUc6lGAuELRVGGtxTMwTcCTJcz9nQtQbiTz4zEDWLsDCFCwARDsdyH1GewvGipvKF8Vz2W4EZMYrHMaiswBc/60td7x7KfInL3XFzc4M//If/MD74wQ/iP/yH/5C/O5/P+LVf+7UEH3/sj/0xnE6nw2s+/elP47/9t//2ZQHKl/tuOdUASu08LQzcDseAQ4LBDnW55NhpEA0K5cjrUb0KxaDP5zOur69xOZ8TnXJTyMCV8Kq1jjt3r3D3/h0arKxoihSXtbahtyts7VQLA7ynMS+4XM5Me13SMA2OuTM1d4aGQwLN3rek4/vWcbo64XTnCnfu3sW9+/dw5+4VmkIZ8W2pPTHLA1YZH5fLDa6vn+P6+jrvgWZ87UlxNJw9Ml9kaFUEL8fq1sbRhpxx8JLZoBiWqbusM7KPSxRmIrj06QROlz1AnDZ9bMgWDQi3pYZLZCb1rWE70dBWY0FtoZ5ARMZh5hgps6meZfUY2OdDnyVhpryWuLcAsNbETrVDjZXVYzarFbGOb49iWQIeSqdX/x9VI36ZQUmPnqd1gi96QY5mDhj3y8FwuzROKOYHKH2HVfyZ9zAWPZXW2sw1l7Sy1rVSlN3Tnp9VWwh2zJ7z2OcogKKwW433i+sNfhS8Vol+zznyEAyv3rTF2DfZiGCpPD2e9XsrHJVMlXu+B6AXPwbw+PEznC9nvPbafdy9d6KDQHSSjrxY18yYW651/a3htLory3Cu0oB14IpZqR49jrnv8H2wP82kwBtOW6aMNhZMq5Cp1qVCztLeae2S9Y3jdmH4xFDyNTPstBz7417AspZ726D6Kp6ZO/7S12rO17CROzOD3Cx0E5yzttgoShQthcqyGyvbykO/5RwxLHNi9d4A0OkgLYJ3fceYHuUqBnyfSzbopFM5CTbnmDH/ZPJSD0KvKJ9NP7Nl/WuPWbDPPPmYdGkTQOgMJ5za4wVHmTGs1rTXDkL34zqsJp1+WOsWRUpha/ZQzMULMPRLX++JQfnbf/tv43u/93vxkY98BI8fP8YnPvEJ/Oqv/ip+5Vd+BWaGj33sY/jJn/xJfN3XfR2+7uu+Dj/5kz+J+/fv4y/8hb8AgPn/f/kv/2X8+I//ON566y28733vw1//638df/SP/lF853d+53u5FQDA5TJguxTyKpNOAzlmpaOt5ZiH70nrAYjCMnZgA8SMMJ4YhcZE22sFxOVei2+6Y54vmH1CFS4vZ6bFti5wxENii9RohYYkWJreWOrZj16HykvPaL7WUGGIOSdsKZYk8SacDbbMkDFGC6M+9gk3R28Uv5pNbBvved/PHJNp4SmF0V9AgAAG/y0DTI1CO53YpCsYi2Y9GpIxaEI9SovuxeGdRGaTAJGZYTudoPi/e5OLkwJbIAykOYafM+1UHrO5M+6ZBrVKWCOYIrONYSen2HLrrWL9selb79i6gtMtDvXFOETgOtPvFoNo5mgbgEmNwPAltJFsgUJMqvfSU+Ba60zVVTeMITAwlhowBODVdfRoFMq7CQAxxW440AXILDV2vRkqrVH3pFRR9b/h2jv1Hj29Z6bGj+HoMd9qH+EuCjqqGEMxd973WiAwu03H4RgII8AgAAs9j7JAAnhTYBos0TyaQoWH9C+xRGtX7oqKFBsGLCASgErur20n8l0mUOxgVo++kyE/oY/zzRmP33kH73vrfXjjjUc4n5mdplII6alD66Jq3Wi9NDuGcdbwoQ7sEnHH3MXrJnh+9ChayA7SBYogAW0wJ90E1i33T2bpDg8N1UyQDoAFLH0nmEZPm9SMKakmyZYviQmLrU7nUWPcqI8Zl9uHZK3xtEnL5xzAS1QQFgNozdAmz4HmDSOAZl8AiDvD1iqYp/5ANjwrW2Pj/iCON1iITZtHKLEfbpjPrEyyXI1gWQduJYyQFkwjSNlCLPsysMqP1ZkwlzEUyAbg3HeaB9MaMbIwTiolxxQianzJ1PJVqJ1uAaogW8yZ9ZjbFcS/e2Ci6z0BlN/93d/FX/yLfxGf/vSn8ejRI3zLt3wLfuVXfgXf9V3fBQD4G3/jb+D58+f4q3/1r+ILX/gC/vgf/+P49//+32cNFAD4mZ/5GWzbhh/8wR/E8+fP8R3f8R34uZ/7ufdcAwWIo8FYB4SL0AAw3fXQ5wEAgspMjyMO9zEUb9fBtng7+hL9RcidXtXR0zUYOuYcuETKrQ7tZi3K/np4JS10I0iUz34rodxGh4P1RDzACUBGotTqCzPQjYJbA8BuCIApTc0haJFi1jBcCAOnZm088Pb0Unr3ZeMDjC3GoLso4rgvYx1yt2gk1iwZFNYbskxny4WtrIIwyh4U9badKMxdMqJE1wPAjHo1PTUDiJDezLkbe/y3G9SSXXhilwaiEQymgFTpj3EAwAx3797H3bt3MMYF5/OZIltXuMOzNkrr28JErcDD0GLux75jeNTM8fL602OHjAxBj9JIxRzwsFPLhap3o7T11joQQkatKdkpMXsF8AKkSRTHkxfqBF00dqyB02lhXOK1UEp3dP8N0WDWGWLKC73GsR7k7bCu0nmQ1+iee0SGErmXFx1OArw4KwUMER19A7RkNhUaQXccQvz88PJe0tentYarqytcLtTPhN4PWsJH79yyEKDGW5+xep/TI/RqHU+ePsGDhw/x4MFD3L//FE+fPs3DtDUKs90BmzOq484IB8fzG9drgjJ4hlDTaCVTwHvqRl2PQ9mNHu9znLYtS8aPcU4hscY5AYADAO0EHTHO/7Yp7RsMyUrcGuMdCAhj2sIcrs6ehxan1sbq2Wscq6igJWjIdeIRFkJUwHUyRuyJ1XKPEo8bsrhbzjlDQKp7C9C5u8S+ba1FJmcAGLGWCCe5tyDmwxFxS51MOrJi3WWvBTzHzrDTuuY9xg7MN/Ixa0gqIh3rYcCXppfruJkyUZe5kHDYw/bm+3J/Fb7wpR1GAWY/3L+Z2g0g32hZpfbWPL/L6//jOij/v7hUB+WPfN3/mZsimiixx8rAZb8EQImMBrrT9Dqkd1BK4yx6ulLKerEna+8TFE1cXmktPI8XiiWRkZVB1fdv21a6i0X9n/T8mFA3TLiEbGknsNmW3uXptKFtjKfS4w8PGgo0kDpUZVLVVxFLVPVgSCtaHoBsCqaQwojN0zci7TlGhFsaWhQxo2chLYusCw+5GQBS4Ifj54tHvqYEtpiniZV2V78OdZflV8hrR25mGuCaHz4vPfLprCI6UyC456EcUg8a/N5w2k6Zp//s+TOMXaX7q4x+6+x7oi65UveXaLUaUBagLXFoaS6K8XNHUMqVwcUDpoS58ur3vVrIE7Ds8V0tdCxcDWRAFL67kALelFVU4S5lATQjUyTGy2JPZI+muPcxR9L+rAI746AOsOXI9acUYwEQ7YsHDx7gIx/5CHwa/vf//bfx7NlTshSRXcZxliB+5s/M1bCR3j6sxlNhr613PLh/D2O/oe5gxvg5vVVqKxZmIvRBOvDu3b2HL3zhHdycRzQ/05Dy83sDpPk5n28gJkwC3zFKRFpVPpUF1vHGG2/g/e//Kjx+/Bif+9xnl/o1caCDzofWcGtiIniQ6aA+bafQQs18zQoAeJgvDNgtMans5BgjWK6VkQgBKlANL42sDPfLCD/I4mCaUHopa/h4fDdyXShDKh29BHKNTQ0hZwHlbHpUGh4d6n+0HsZroUSx3epAXPqsCos6BxqWWkQ5eajXGkH25bIHcNwgvSGAcHr52LSVBoCgrXHrAWB6sD5Te0jju2ra1k7ECYYRf0tzFUOtelOweGbgULvJBOhEl+m5JKbOQ0WnBhKUpPYmx8MO9qHOvlUlIuC4gKQyQfm8Ywz81v/6f/3/bh2U/3+4DhvokDNvaXTkPjQY0JZum82A2Q4bUJ8JxLzJszXGP9fv1crJqoPxpjKQakevAwUhoA0jkYdupJOpWZOxUbhFalkLFsDnwOVyjgyXqGzYHdj4XDT+NCITMuAjDsxRFSARIrtmUcQp4p1R26A1i5omLY3kvl/iAKeRmYvOx+KmJySWm8E9RcXRMPw0WzpcGtxDXyAvhbMVmRZz0fkg0vaI3E/bKXUqcGS69PCB3k+xh3cCUrAvkufGl2aJ1PvwS4gGQ4Q2VY011o3veOeddwjOXLqHkUCztY01Y5yhHwC5gY+hAQujH8YgwcRKz6/ZGp5jviwtMHWz5+eSOSkv/aiwd7jLUCgNW+sOWC2H1qJi7xXT13hxPo81TPgdq4bGYicClsZzbVaJ/CyugRHF2HQpDq91CihkY7mO8ougw4aFCPcxMJyH85gjxNK8v1Pr2K42dLEdM1jQSKdlyjxoyT1SuiOr6GprOG3AzeUCA/VDYtHi1IB7pNy2zo/Q4Zh65Cp97wHYFLJ9+vQpXn/9ER4+fIDHj+/g8eMnEFjSAdVcIUcAPtG9LyG68OIbu4jrkG9gmAFwqKeMbWtYMkC1FZOn7Cr2v4p0fqvQ9mljSvDlskeYtu5R2XoKcexjD1sXSQSHdRP3YOoLhUiYipBoNp0zbNsVdoF341HKnmKl8Sg90SytzZLNKACUWo8EXOHttwYEaBUAEMNsZiVS3wc8Mi5XIapbMS9j0PFqZgnO3T1DNxUuQQD1mg995O2QoXCEugGbWdSso53ataca15pPR/OdgDpAGHDUVq2f38zB5rqeY4YA6Jb348LEBSqtql8f77uE2FjG4P/I9UoDlCqzG2mAsRGTi9UhB2bauujvBUGuHh3fD5TuAWCIRl5/fPFilNFbrLYXF5a8ODZD48E65o59XiptMbzt3tTwakL0cW+sheJjYHdluHQoV92Mr59TSWY6KOJ+MJZFwlcoy8jBPiUj6ogYiL6Z8rtTdNstFORIYZtYnvBx0BpLaukQK6fNDnvB3UMnVMYD7thRXiU3MOlS6QLo7YaBBUFSVX+sTshmnfqyoV3E32NGZ1I3wAd8Gkakl2bVUEQpf+e9mRmsE9jt+wWq0JodoEHDOHDJjexRC0BUKFDFl2iQZj7PGKtRKsNdXpVCJ0sVYWUzCHgnk7L235ABkeEgzezxMxgw9xnprATr23bKVcPnG4d7YbOzgeYdlQbdq6ZP7hercbfVBgZgaceOy9LOiKEz0h8HcAQgWAquVxEH6nYMME5/uewM1YFWXGEid8fYyfKcuuFyOUemB++vR5/jXKNjZzbEHLgMx3DDabuLU+9RIzPmaVYYbd93sGOumEdS/QKG0uqoWGF52LzHy+WMJ0/ewZtvvoUHD17LME/ZEt7hdO5Fnw5vkda57KPL7hWqmEwVpZ0q5mZk+vnQpjwKQE3zNDFsHAAG2YOOrXtqnrLwnSkr0nPdd7RI61UIUUy0QmydjSp1aAbLagHA3KmTaz3YjcUPRAuHQHY49tWcOGrx0tlU+YCePxe7ggmOJ2EUIikw7mvSqQJtJk7SODoQyQnNjLq+eJZ0Ohrr8bRtY90nsUDpCMvmaS6P58d6SdejyrJzOkw+UeihqkottU5KA8d0MuxfEiAE65F7GLf2bzntJSiXvIBreQ1Ra7wVBopPyO/i57zYyPdLXa80QFkvUuFsi50MWR6U4TGEBkK6A/aP8cyLl6ajvDoZlhCdwhnycc+0RraTR26g8mzDSDUi8N56IlOz2A5B522nU6DyYDFsKTq3eMXSGUi/4i1SkJ3mtsrTaxH4YWloQwHcaCN6dRhQQsVmrIkQm55NASPctSMXJaKKroLih4PRPTQWJV4zbXpfD9Ty7IFKjeX9IfLzEXFc4HR1FR7jCD2Lagnwnvd9J5PSGtP/goq1UKiNMSJlmKJXJkruOF8ucZixTHooh2iM9h37GDhtW06yT+qZ6CnEKLdiFbR+Wlu9jwALXsb6tmiswoazNCXwg3Gp/97TCyuQLSErx0Vr0NGDWZAwUPqRkeHGhjiYggEiS7SRMZpgIasUwSldmKAhQzeJSC25seXOc351+MCLCVpZkTV8Ko0B11hLvZJYL7jDLx59asgq+lTcO4zlmJjNcT6fY1zoVMiTbpEabXNin+wbRb0QcL6cg22V0e1QVWnZB2k6GKpV+nTcz8FbFWBVyId78OnTp7h//wEePLiPe/fu49mzZwvYrPEzCAgADRML/75k+lgASsBnA8sHHHU7K+vAkMNyYMQBNMdgiQXraYuo3Wg49Tvh4FyomQiN1VS4rBPMjHPYlqjuq3UqsB2rQgu71hBqL+nAl70GDOYT1pTizgJ0M5yOyrpTRuFYDu+oDA1PB8bdsx6O7GfeVyznuTJAM/kflMA7imGu+zRYLRWttMVZ05p3OZGTTQVfdmyL+ZXjwrpsM1OeYapvs7AUZoi84+WTIqSeEgAgC605ckxyEdy6xPxUXaJaQy+7Kiy96rT0+X9QAEocejM2IKYBoXS2oOG0qUlhs3QznCYUDWhuGJPaFROgSWAS8bRFbLsOtsdm5+fxM5nxEXVT4Oioiq3TjzSsNfaakcGEtAzGkJQOdLO1eJmAgcFB4ZN5FDzaeKBUoSSCrdZqc0w4fB8ETiG4NWNFx3z8OIQktkU6OWGU45+mOgF5KAdFj4jVZghDuz682kkNy7bJE+d7DaXbmT7g2NFsg7vhdOJhO/ad3Vfl3UVK383NDQ+QJoEhhckUws404K1RVN2NBzhbAAxMm7nx+DDUubAnEGtYtObhwc+DR+c+4f1YrlrF0dSdmP0dDWvK7moItJHnnAUs0nYXUziGMsRGvrY+Q8Yv7r9F8UDbsGbuECADa9t3rc8IEMbeoRZqjLHcTwtHILxyt8gAseXzKvSq8UjmaXEWVjdNYc/1Z82MHXXNqHNID08UO/f3HvooHrbyCBFZYI7dJ9pw7PuMBsIBbG52OgOto3XA5oRNR7uSRgyhyaCZnO5oM7ztOdE2rr+sYXIAk0evtWzGWimXh9zNzQ2ePHmCt956Hx4+fA3X1zcZ4nB57LDIAhOLEkg6+tP0YAK1ziuk5DED4H5csoGA5fDQfSp0NCfGbAm4kvWRP+S0Xef9HELrlgwOx4xjOqfKPPB7qANCPNuO9VAVi6E1VG0mAv6p35ZN2tWGEL/SXvfmuVcs9TbHceBc6KD1w/5yR7JTbVpu8YE97gUHIK1nXUOx/B3XNoH4HvbQUveWdiY+JzNygQRYt8O7a9hThRzTEV8P/0S2MenN1m0Y5wlB5yxKksjL62W3QUpJILSv5VSOw+9fftnyt3+F1x6vVxugoIyh8uuBmPQWR4yBHtYY2a5bHj0NnEXvGG1YLgBt4lWw9IJgMzYGDJVvHgdma/TAxxykSOP0b5EC6QiA0BrGPlKUK3A1PIRmU6jXSPOi2BWCD1ZipKiRVDd/1+LzZWxqg6rWSep1wuBWXDc8HFtQNhqNuFl0Dw5DCKRaPscWZDm4P6LaYDBR0iSwbkukVMeiZfXajaDAgd5OSx0BjsvpdEomTMWScv5bdcYdkxkLALtxWkd6ee4D+wD2ySqIqnILIMSYFqxNFXyzEIqOsS+HaEvQtpaSBzRuyEKB/LHAacVw14qyAOvtMWPDQ/DK79VnsRS+fr/28dGhQ59P4JG0OUESl3pbvkss1MRQ+wUZ8wCSBycsr5bMIxfJjKGIKptpf8gG6ZDVvfIjuCd7CIZZ9v66yuQbq3/2LTJFhgFW98eieRvtqw1Qm8CDQVoWC3A958Rshn0C6A0+4jDaxSJMuhFGTVObZN8cjjEv8VnI2jbNKOTUAUoRuSqa2vJnrQWzAs0CJ2K7nj17jtdf37P8/bNnzw4jLmfo1DcMY/0KuMPHYENN4/1MzNBzlB5Kx8laaE/3rcJ36v0zIgMSYRmUMUaQucMnwbFPaoOuthP2Qbu1+572gSxPhDQn0q41bEBTeKgHc8xUXTKMlVad6yjPQ0NmDCZbV6BXWhOuF75HoHnflwadEHhgEURHAFdTBorLA4v9xmBP2USNp8e4qP2ADm3q33YPxsUMuxfgHGMRzIdu0CWDeQlA0TXjeXiuVQqPsvvYpE/4hJpEMs1CxPH8ETbPzNIGYC5iV2NIvd2yTVozsmH58jwr1/uPemNQLEq26b1drzRAYbl15X4DopchNBxG1lz0utC6vBm8MGYqx63FVEZ7KQwEEKG3nt4ujVt4JLOQsLrGAiFmbEfPauw7LvueAGgP3F4CNgeMglNWtpWhLjO4O2D7hbSyevtE1oNo02BMA/NUhVotOgBLAadA+iZhJ0p8FptPHyYP1F3F4+TdWsWAEaWZrYVB7fkeMkgct6urKwLJEAiTQBrZqVZx43XDyLiZGdrGjrcFRAEVjpJh0CGSFGRoj7atw1QzZmHHWg/gqUqbaAznoD5LG3DbtMZqvbmjAGsCCqUAF0snDyvHPw5hrRvR8Nu2gTU2RoYSWVbaDu+t9Ws5XxJoe65N9otZGwNqX7kTHPM+SoNF263w3AAzklp+H9LDWljGWyjntkebdH5UjhUD4lG0sG9X6MFG9VYi1tPplCnjGRoKmn4E+Oi943zZsZ8ZqoI1zFg/Ez1F6ruzDP62NcwLw3oTjn0ngJu2tKxgTIDMjQ6pYDaqOm07PN9akdPDi/U8CBkiePbsOd544w08fPgQNzc3h8yTmh+lFJMNRWdtkDlmtrKYcSCpou2cbBZZQGUFTRM+DbMFYJ16n0VhSQBZ1h5wjDh1HQ7D1jp8WgAk1hIxNIZLW+gEx4BHSGaflwIr3cgELMsjwXYYt9TVODJbrDLmwiNfvX0vFqhCrsWuZE8tIMNCLNaWdATgSh2OUFzYCq3t1QnhUBbDyb2wQ/sxM4t0dtxa9zqnssijHf9+GQtXVbIF/i2/35c0eaa0Myyp8BawgLCw7RMkWnR++uTrFAJdnZ9qCbICJE8bB1T5A9VGaYtT9OXCQi+7XmmAArBCntgJDwPAkA4hdO8tjFsJ56YUzS6wEKliYP68fnb4nt4wZ0xCyvP1nyuFFWBmzNCKtCUHH0tzPb+lf7kFiLTtMvVZh3PkvgQim2MSWTsPdZXRl6OqVEfAozw+Pz/TrIFb38v7UppsXb6I8sKuhpEhY0IhrTtgtxoY9saOzNlV17Vwq8CeBGxZVXJWMTR5qgQUgHmELHzxlIMJgu59cg1ITKhMHAF5d8fWN8y5QwXODNF3aKeQkgDASlQ9qzuujE0JYe0AQq5CL9NXVi8PKmXeIA3cnPQqK0yEnJu1p45KaleX6wUcaAlGbYzyZhBi4DJ4TaAg5/64s/idwdZ4HYBmJciLSc7ibNbASqQCtQsLaYaYA4TBPB7cEHBObUR5/c2A0x2C17FHCBNKG/eIcmhdHnv8mDXsc8AvOxvTpb1v8KgqzTljhVEMrsERqcK7VR0iV80Hk0A5/lu6mBw9WXtP71VjkY0jmzLZkKmwT58+YX+ee3dx584dPH/+HErtln0Yg/1XLAqdJRDFAGwL4WfMKxbR9WTKNcLDHtMjDVVZdtw72reqB3S+oQant6qUXb8nG9k7e55xfEkFdBP9H0HgOcBOzTGSMe/c2/yu/XKJNSEwdTuEXOtpLUuQzJQAtK1Ki9p3ArZcnuVM8MyQNGBhAXJPaf+jnsEBCV1LuI7DfZkhxKq03VV+wZd1WJccgNsAHiihLNfAWMJTfE51du6RuWOqMbXY9rr02XSAW+wTLWBzATsB3cpSpKO8ZAThaKPWvS/wxc+iPbn9XF/peqUBihb5TAQbm+yWBz9954YUGpxYKC1NBgISiDLXtzi2jYf/1tjAzx3RWM/RN0OVyGcopWc4AwzRaLNHY7w5RhrTupbwUmhDdBOiLvlPCUvj/sP7bosfYQ6MHSFgDK90zgQWUNphi0M9AR6iM+oqlF0W4nq/cTjB+3KaIACCAZX3gJ5ZAvz9XMCJx2a16bi+nJPZMZQ3xT3ogBtO7QoAcDMi3DYnP9/K0HL8yJyNEBE72/dyiSBEwa2BKS4EH45oZBeA0oI5WT2XlSYHkCEnxtopVFXoDpO/5wYeARQ8s8LKCMxlM5e3UkZZnrDHYeUR3tCMz1w/KmjGzKMWhwaBmbK9tA885kvD+6W8NoWTxixgw9fE/AwHprLjuMgsmSWxRp6fdZsS1uGyOhGa+zkKwG89utJ6i3UULF9HhZziOa5OV+mtNTMM63BrKXhkZlCECa0BbQvAGxqeRodnRJM4sRHidjy6ArOeRsyl65Apka72bx2GYmEHHBP7PnF1xTV9fX2Dx48f44033sBrrz3E+XyT9YssD88Zqe6hE7IWvpRjjgtMHbOjAGVvDdhiThdHSuBvtZv5G6u1IL3VtInT1SlslJ6J+jHZTtVrGXNiDABzYV01X9E5WdZKFWQBMnpkomhbbq9HAVkCjZb3rNckKI1t5No+6rsj8GINzFxeDu8F0CPXY4ioXYYTDB0Fs+QucFmHeX0E72VECLnleDnMNjDcuwAZWFpZHfZyVtbqvAV0ZSNaOA3qoSUWx1AifMvPpY1kKncxIxHCUvYr/DC2XPvjcB/rpUKPh1oziE7XsTd8cn0eCxd+5euVBihoDd47MCZU4r4WKj2J4SNWUqtj1miAMKQ0bnEg88BKtI2ZbIk16hMkDrRGjcNKkbe+0pVhkCab+805s6cNw06xNCRajAW9KsmFtBXaUfXCtDOxSRmZDQOmBe7OcNJwKN061ehm2QgNEEJ2qMLi1je2IJeLvx4Yi/o/ab1kElpW5nU4haVKB13CSV0hjcXwjKFOttSFpNeSfZMGq7X2Hop5BLVsFaIKI4idnilj5ZbjpZBJbzRSk6IE+Nw5XtMytl4sFfLQQ3qlWgMN/bSlV5yYDey10U1F7mrNtEXYqDThukps3Fp5YzzY+YrUD01ljKy6jpZrhOEprtkZVVwrRAekN+9imuxQ06cOB/6Pam6wQJaDYruN2Qce1O+gUZ27FreMZn4qVGW2GMNxMJSx6jF2RzOm814uO7Ztj3nWIW9Q1V5rDRhsooh4jrmAPOdJEllMvAbGgXY3UQtxUDiYjr7vEjVWLF8MWh7qkUVhCSYFvqgf4npBzuXKwM05cLmQoR3D8fTpY9y/fw93797D6XSFm5szVFOiDr8Ipc6J1iZahG/kReuZV00enCxi204LMAlg2uRbxLPeYuSU9TNH6IVyHckp0Est2KENcO7HLbR4eeiagJ3lnuAa49xuqjcVkXECCc7LKsSlLfJwNuJ+wsmYNrFF5l7eo1Hv1lXfpA3MfebvG8goOXrOp1oJSEKQIWZYbVv5ZrMcOIVrW1MtnEXbtewvd4cN3qNZsd61EWjbM8y1hJjmLONEpldH+Yj9oaKOa2l6oDUC+eEjmrBGgrEytbwchZV10X8W687/aaGXM0PZFwf2KM1gZrDpuTPmnMBYbd6Xv15pgGKLQZ6j4vsAILGVLnlT4Uxyk8TC2LaNHYED5WaqbIxj1ViRV7r2/RHa7SjFO6CmaVKsq9S3NnQLZsCsHw0J7zL+3VJnoO6ws0q/ZplqOVE9i3hxq8x95KEzxSaAWoQ1LqhN4MChyi3EZLRK75SnsWY2yZNNYBTZH9zYDqU808gIkMTcmEUjwGUzxLOuKeMWtO/19TUPXN54hkqAEAk6hY1wZMaLjBAr0Ia3Y/UsHpkZY9CrlccviyG6dL8wi2BG6mDbVF11pDh0PXgZkmGnU/fBonGzvJQSz3JTM9wV3nkaBMV8I7tJYJK0EkS3Kw2zYfVKVwNT7A+8irP5XApXrV4kBDJqjaT3hpF7D0vdidRU5HcrDKCzXD8Tm1D6nDTgsS98OM5+IePUSiAtivzQD8Sjjk2wOMODBu9dpF3eFh3NSc2Bp78YdxZhFC9vU3V/mm2iR/IgAgiCU4eFGaJ24HZH12IBdMhIdySgQQfj5uaC58+v8ejRI9y7dw/Pnj6rvWHKPlF7jwBhcUdDouWojdNaFKATuIn5Vd2jbTvV/U2nt29Hx8Hy03m4SFgNAOZkxFxgI0qfuyPn2BrzGNNzVvkBFENAQB3OCOTwRBbaNqI3Wd3LYZ3Gs1V4OpwTN27xZhESRM5nC8aiRdhT9XxcGBXOcI4xjLiCoixAJhvtQPMg5L10X9zfC0BG/ZH8IPdnOg23QzEW4mVtsA5vcpIKsB6BT9y/hN0LY8E9RoEs5qRjMREVkmMH5DNWqJVvr8SMOXn2dFP4rO5DY7iCIp5bHk0/56F/1Fe6XmmA0sKbo/bHszwBU139kGIlz9YMmUGCyGywKKzETAcBgVkeLKRFjjbdiwHT5WWFMaPeBsGQFuvI1yfzkFRcsCfyzFD3vG2dFVLnTtGTjL7oxyw+VBk4Kq2ehercM71561uq/nmFyLfNrDkxdj2xxyFcRiFRsajBODBT4xHfJzGrOnSykuMebSr4OX3rSwaTxsBhHiGSBXACLL2PSYEh5IlFFgTB01pjhcZK9T1oG4zRAUyCOTPMi3oecTq6tRjnLYbA4EaV//SZAj+Vb5cxgHisZMJasCAec1Z/Knbdbo1rlMiOzV3MyW1PRh54zF9U0zWs81TFvCIftQCGjwyj5X5ZxjnvpzkByGF98hnUbmDE82cbgUEgVvcrkBKHQyuB8KFQmzxKMYVDPaM4v/u+A5Nl2PtG5kYaCv5uBkCVYa0CdwfQZC8zjoFUbtWlGZOAlMJKHpJak7QXO+Bs5pZgKBgHszLma6iChRZrrKUlUMq4u+PZs2e4f/8+Hjy4j2dPn+Hp0+cH54WHQIv3xsHSOrCrZYSF/Rpo6Pn4HsBUYZzMrlsw6UG7FOznqic4NCcEDnbQmrMVTWS1uBtGtGLQ5+xjx3TDVTvVGolx4zxQFM+u2sgwtClk7HlihmMUzJ9qc8zItjLPvU57zm8yR2rpBAr1ebn2luy11jf2RJpLSnTcV0SiotEgstJ/to+YVYNFn6+Ry3DV8nON8RGk5Jtz7sm4NFSDvsMLYx1THLs6fmsdIyC0z4lAev5ca7T6yRGIm8uxDqaKmoBY66XNEzDjdzqGzjhXiYQ/IAClBDjccELFrFtRugtpOCCQAqS3L9r4IpQbh86Yoso40qeN4YU5WEYbWIGGFs8MEZ88Fguvp4xmay0PVmW7rBQiL36e2KF97MHOiKWwaKWuQlYhYGssQjcQOhL3XI6V8aFy9aLxQm+hRnI7QRA1U6wD0kJTwWZ+i0c4aQB8HjfV0SCvgrolxNQa9sv+AprWoWJOZJ62c3IjLV0jEgyoGdice1KyAnvnyzliwC0yCgIIRN5/Fglz0c3MRODaig3tHLM72xUsQl81ftIGtQRlAo7sl6HP0laTp+JpkACJsKtexEyPctVwcD0mPW7I9dtivtSLB+Dc7GPS+4/5EPhRujGbNCKZthUoVHdhpHZA81X/La/Qlmfj3wIk2kPq6bPOtTzO6UzFtN6AmKNt61krx2IfmRmwT3jbA+TZ0mBQRRG5b1Tnh/oUBwXkCO+dwk6bDdPFahGkWhT5WutVaO4EsGbOvYByfB5V3LkmpL3Rs1YGht4/Ixul9sv19TWePn2KR48e4bXXH+LmfA2WAFmFh+XRt85spGokWmzq2jtF92mtmmRWqfXKMEqALFZwAcjab61ca2Q2y3TY6fjqNVzAMSEjuO8OV1HK1nNPxc5mwkPc11q6Hst8iBXhFwXjsY7vNIpUOzUWTWewA6ogXcyglmnMVd77jr6xxUE6mUbbxykO+wsJqRFrPITXjtgfZevF+KSHEHMJAa51/BodhTjf8/65lmRrl943IKg+8DByFCHgznXZ4nwYoHPH/cTPKNARY7KMt4lwiQwwTztkMX4znsvyPTGTPKNtZVe+/PVKA5RcuLGJrNchsWNAnc4FUDimHiLVOmh9TPgypbWpWn6Pwh4JiuTBRQGp4fxc9bMQJSaPBiz+HIuL9yONejUgrMXqHszATtp67eXCA2NB3XBYpPmqvXmuNqd6vqvmAsDnTRehDlUPGiECBQvSXQ8e8Q3y8AtgVIfmxQtrLI7HrCV+VoNFbZY4WLQRwliNKRpwLhtP3qKMwHLATXqLw6UUb3CjgYAtBwl0oLDQIsyhjp6wqBtyUKMfKUyxXs0n3Bpa9zjotwMAE2hAhM1UHn49CBb7voy/fj+hvi6rty29RongWAtkukBxeYY6bCwyXNzl8VbY89BPJA++BYDGeIcqoVgQY5PC6TMICWUotCxffgzt6DmPQXaOgdNDNWTYyQB464B1uDMji7ciBgfLPtvS8819bi0F4mbsej0gpwLhmBjMCSrStqZLG4xk74AtTOp09lRx6Wj0Wu5d2eWV3uYzj2TTNB4ryECrMIUA+tOnT3Hv3j3cu3cf9+8/iOqytX4SeDQmCQDRYNKLdZBwWOHY24cWHYHS0On302emc6+npcf4lB2oz/FYRMVMiDEUcybnkAcUQ6IT48BKcX2O4Yd6JgcWIhyl9To6PpYHeDK6I5zSOOgDu1G350gBraEqYa8VgW1Q6G8OsmWw48JeAUir9aFQj/ZVOSDlBHQZM7BuF3GeH6rXpn28tTerbYD2beyPiQiTCzCsodse8xxxclM16Ao7KVSz2p4OAzqF4wbPdG1Pln6tZOtobqHXDzZPrAssWK13d73SAGVN0RWb4bZUMrSlqZMpDOC1E4VWZRRdRnud8AIQYmS6qq76hIppzeHR2VKLYVXy14Z2n0T2iv8mLCYS1ut1YPVepcDZgwZhJGMM4lCVlgCd96mUOdjaP2bm5i3QxkXZmkRV++JRVPz5NpNYRdZksIzgxrw8kzgoVX+kYu01rixItzBRYfC1aafz8Kp0cgBWwIVgUmxXjEEg9tZ7ROwsjDZHLPuLAKnG5zIo4CCjol44Y1C4iRY9hYygS94knUMvICxdCkTH1uYvMEI6dNsqPTkzT1rDGJdlxC0/SyA12ZZF7MnOvnw1S9G3w0p0kFmYUQJcnzMmPVjWpEGAtwIxMlq8t86+NrFvii1QmGpPkaA0HLVOCtjKCG6to7ljXnb2forPrDLfx6ZqPBTXAwLQnhGOkcZD+i7sEc7lCECwC+H9qeT44RNjbCJJJu7bl7VTWiGFkgyWAJWdibWvXywUlmPiZF08sogA4ObmBk+fPsGbb74PDx+8hvP5jH3fYy2OSNlfQ2lhc0xdixvH1Gp/ikWB83CGVcimahYxRN2XMGPaA9mObsu6WOroTL43weLCpMXgwCFdRctaTz7ZL+Z02nC+OJDC+NifckLl1Tdkps+a1gsn83gbiCVgSVH5EjIKVo24pNh1A/fJeVwwzhdcIdaUdFzpHB3XdbEQHDCLBVlMSuwHD6AGwLxCm3CKdcOisvDasNCv0WYIVFX48AJAIH3RZi3nmDrUI0oQ6iUz5k3ACWihmXNkmYdmiFLYChaTrU/dJ7KUhcL/HG+LI40DPIL9n7cPky9zvdIARVX+gECdI3qptI4JzxbXXBukFhuQiB0oT2Z1FdbQThYGG1MnV3heM1Mg9Tm+gp/lMMrPtaigmofvXLCSxwFfm7OpKq15trLn3uh8Hg+BKVgMl6BpCRnpfz3Ky3tpQ9AMiNofWxSd23dmvSCoeO4X6kvEaWYRpGbwQTDSTFV8Q3EeRag8Ov32ztone36/+lAofTLGukkzodS1ClGxkKir6gcQeoMZ3ZrdB50Cd/Rt4qpfwRobxJH6RTBlk8FXeZVhVMZk/ZVuyjTxKCPfAohETHwamp/q3sbENArGsoeSE7DyUOqHom36WWsWtH2tnzxErKXwlriteg4hTRfX2Jwjm5uZMcQxp2MfF+pXzACfycBlLR0ZzBkVhLMS6hGowasmjku/EN8dCzfXa+lfKoQ1FvH6MTRhUc9B2TEq1MYy+miOviFZRoHM3F1xf9XzhqmtzRuurkIPslSW5SlFD7B3dqE2ANbCpxvLPOgQMVQrgfBgeQAjDygBogIoqygxPHCTN8q03OpnsowZCpAB/Lxnz57i4cPXcPfuPdy9ewePH19y/PhMPcWwyMJvjmETzVQ8q+d4p82zEDn2DTO6ZufvJkO2l/2SB6bAZ84tylpaa7AZ3cdN9mJA9YIK2xiqd5BlqJtjzj/9tKGPiaNug07Yyh7BgCwmGyFpzwWLAGlr2CO+fwpAU/vTYk9YsExrJo4ugteo8o0SvdZnq4BngLvIpFIIZjqWPaNbFCMZdZpyPYfAN851hUKy15MLYHuuTzlc5VSF5mbBAPzOtVjaUvn2Fs5fiaE6GykBMCWPYAao0R5cwEmOi+f/ynHXtTK3X+l6pQGKMht234HpaFNFukbEMIt6xAyjrM0aav/g1GpwJ7APzxoHKvo0L3tmntDIDByzhJZBb4ZiRkjx8l4pAoVhKS0egEPL2JHefuuG3um9S6haGgWKH8WuqPBZKbD5GRK9+VSYp2P2oNLngGFjxczzdWBtAzwKgi3eB/9DXoYqm9oicmwhDtdi5ViftiseEr4vBbT0PNEUb6H+yawrvBXfG8a9gWnT8pbGGBiXnYc0Ap3HXM4+CJAiVDT28Op7wwbWEPFgP8RCWGvYRxwovcM6PZwRu1HGYQaYSQp5RhWBbYPKh5t1vChgWzZpjFP1rxEVaxD7JhEfD6Q91pKo3QBYxvVtxjoh8QNY62BDOSSmkY8ssMPeLPxphRDBe5j0+rGAohmARXPferhgfKIMjebn+0r5NxQ7J8NoC/hBvjetsebFAIv002JMe2lSOBIBUhz7IACkJifuNzZXM4v4XgmKxUKmPmRq3Xjei76zis1x/KZZCroBeulT457wOsJOzRKMlUdN4lvPvYarbm4uePbsGd544w3cvXsPT548XZg21sQJ8xKhvtijk86ZsrYSQ672z8gude+3hK4M0ylMOOdEbxSLYoqxnFnbKD3/DCPEvM1oXhmdoHOuYrw9HD3EPlJPs8NuWTLjGnjYp80M9qp1evJLwlQmDuizAZqQEfvOgAiD6FWm5Rhz0GIfjlgvPfZ72FWTUBR5oid758tnuiPDyNbT1jhP9XiWRUSttx/sLq8xox9Q/h+SrWuNqeNzjmXOW66v3KGzAIzGZgWRKzOp9yPvLDQ2cbTpvcKwWU8oXm+tL9+p76CWr/1BASjEHQ6MKq/OWZ7MQJDIbUpPQgpLEyw2Bb2lIBAgA1Nt7gc9uzEz7t2aWofLwBRFGssmhEQBMWsFZJgpF0YCpgyEh9iPbISqZ1aaNGOGW+/E4T6DWfHw6ngPDsfqifTOdFvcWrxj7phjEV1GnQ0P4KY03RH0soqVzVnPAYQn6yUa1IbtreGyr50+42BtjuZbina16cl2kAXwLjo9KMrBcA7TvqMqr9JwtVHiuW9uzvl1BnryOWfxXOogndvQoxlZhL6S0jdjL5/whnzZtxV3LdaHwIMppCtzwCVQ3pTASXbJzY3sh/EqTRRDAL2foFoLbP1eeqkRRQB7M7j6qHgI81B+zQqwMj0yD87g3lono4Ewzq7+LXH4eaQur2MSn69wRqU5yjh2wAm6kXVCKmQlsGJxz3NO9K3F+OIwPsUMAECPejOs9zHcsEHjWyEwalv2BO8CQWt4JbMAXSny3KeHSqMCpwL/rTPbSwONJfSApcgiJlrzKDuwnKq5BuvAc3c8f/4suhzfw927d/H0yTOCcXOwTHx0oR6sICaQZglQkKGu3jeG0BYn13BkRLbWmb1jIaRXW5AlVLcyZbxXgpqFKIi9MbGpc7SeVazSLXZhzhkNP+v5pdlI0ObaxwVmeoioue57rNulhEIyQ64NzLUEMsDWKqUWyzPwbdQp0TahhLrx0ouDrK4Yj6gJomJ/7gOGjrke9hYCfonn43vkhJWzIoBmixMS6g1rWeVWQFfzXHNUUQAqPyTOXfdjjT2g0NTKDvUM044h+181XvQZmiOG1+L5kqGu+era4+s6+QrXKw1Qxj7i4AhjYoCFZ+5jMCNAgx3G8uqqp4JdaZhT5QHBl6unyqHqq0uYtk5IaU7yOInFZ62xKFB4ZzM3qeXhmJ/V6DVz3TgQB7QO1fQ+tM4dYThYNt/UIQoO9bcBjCxNLL7qJzHD8AuD12FoywJtRnX2nDN7jhgQwmCEJ4Tse8NLzE2xAns0adT4RF5FUt5dqX7xaAqR8MUNkG5F4mZIbCjtjTbbIopbjLxsWVLUqovgxk60Y6JtnZlS7thOV1gcwZhULDeIyHQ6fua2ccxVQI0H81ErwkfSJM5okEejsVaU1dqqAl3FnG3bhm0TtR+alfjdvs8ygMsDlC7HQtCp2jNl6NOzW58LniYugYsFKNbBP+mKyqB7gjbdtz5/6j8OWg9KphfxrFFJ1Dw8YxTzSXdNYIMMoi6xbiMcCfOGS2hsMmNF7I0yYiS+jedes6jWtaTxnytLMOVlav6iSV4+sJgnAYVVO8Qx1f4vZ+jF2Pz5fMHz58/x+uuP8PDhQ1w/O2PfL5zzSFEWU1TescCKM8siGF8DtU4qltf6svcWwLEeIAa8cG/r+OhFduvUqc8qpkZrYsafFuFiIDIVp0CgLeMf4k0HmrFe1T6ZjNDM0LaoY9XUBPII+AAEI91gmRwhBsRfWI/5PMZCk1YDFO9DnCUGYwXEmNuJJIE8tDChAwISrhYeyfCWviOcuzHUIzYyro7jLx5XQMHsGBrUZ8bQx9mkkOtMm8Q5bFCDw2pMenQ2ZGs1BAyP0fFRGG9tfkjLE+Asy0BEKDkAaf+DksUD3+FzlPhJmQ9m9ApHNMDaOra+ofWGy+Um2QBrij3bMsH0Svd9z7gylg1J4WU7omnE2dWq6JSKAR3BSwGTtoXvIk/qsCjk7ZdGIz3GSI9jFcTYEbNKwis8xJLtcW8Blic8bLzx4EeFgFpk78wx4OOCERtv3+nt9EitlI4FKDumRS00rxbjrNqoGKrj6uoqqpqSJeGhOlII7M6Os0qZXePByerkf/sikg5c1/OOuPFW5MPZ448a68HAAXYo5vi3jb1Kts5MImWPKBTyoqFm/H/btihUxxRfNYKraq86TMtDSoDlpaM6eqVAxU/q55WmGmNrxfaoV1DrG9x5iPXGeiM+PTu36j4qJl3zuF5ZsdXr0N73cXzv4X3l/ekqgBaMT6wRpupO9I0iYTiqtk9rOa9ijedgcTWybDLAhSCn00UT/exTGp5Ih3agnbZs+gggBKOxptuRbSk6vuYmK0YvWVS6yN4sYuj08gv8pKQDlmtWFUDzeyYD032Lg3tnmOfBg4d4+JDZPI/fCVYrxArTneG8Wi3oFlU+gzGhTROTaVkXSY04fTo/a84MvdwOFdCBqBBUvabqzawesod2S2HdDPelU8eeUmPMyICaoX9bnDIVfhsTExcW6/MOzMGmiMOr4/U87iHNm3mxuav+QU3vBPSgcvgo4LfaZTGkYuu3VjU9dmjcDFuwRFJsGZyS3GAW5hwpru+xdid2TR6UMu0OYHpmGU14FN7j3bV0wHQ+FWtisagMQIt1Qic3StpPOc8FlDk0LbWH1QwxdwwEQcppKSCkmj76Wa0PAK3HHN9W+Xz565UGKBnPDgaBDbvY4bj1lj1RttMGg+Hm+hqXy01szAabSj9lfJ26kr3qPwC5QJVqrDLPFbcNYWRrWZvEwkPXXCrkY6gUPFOqGQBV/LFWGo1014N21GZRSh89G4+skWCKHOj9xEWdWhB9BoVg9KBC4xIMBbOSuAnGrlz/AFq9Rb07vzX2Fc4BPASzBVpYpVHUc8+eNR5N2Oj1jQgHEZyo1H16rLOYF0gTAKb57Uqp7eU9V2VKXwBOjDlowBC9McwL6EyvrK/0mHN9sWQ3ENUQY0y0KbfOtUUhsTbrxL7rEF1FkxUyoFjvdlZPXUfGhf9OPVRkNciMrvuhtTr84o0RApQRWjVMel8BPmUhmXFP9Bal+lHMii9eozaJx9osir7WidZDnRs8nCAa2jqms2+JNUsDzb3Z0uOS0eRzVlhLZuAA8FoVMuPB2tC7wnoFsn1dy8FmVMXkeIYFyNT6Vp2UI6PwAguR05q7Nr5r5GsrLMhMQGbgVpjsfD7j+fNneO211/Dw4UM8f3adQFFsEKwOJzVFJOnU8hkKHFl1hY7/c9BmeDCsdDDWLCGtUWX81bMKVK4G4IWMqNawR4sKgtYIR00Wv7ShwxzJOBvW0Ln2qkJFI2qGrHvHDveknx+Ybw8HD9pfEV5XqNdrWTZExokV82FmaPPF/dlty2dWnowE3jqkWzg7NEMB5JfsNAFX6xbrbyn2aeWuhI8Vw+Jw7MhguFmwFRJwByiSbs3p3Cj9/bhIK8QcHw05R9XBuPbzqovU62uP99yvWkaujtK3bN2Xu15tgLIR7e1qlaeD3izU9xygy/kG+2AvHGZM9UNRoxmVNQVM1jhjxkCXA2w17hMR4w2hGBDGqwf9Hnnn0lcg/hsR/zTT71aPUA8YQIUrjx7sGGFgRI3LuExs2wlmhst+BpJWDg/d6TEMn0wx9GAdQOHugRkwsh/WDWxspY1WhscMCcg4XuwAbK2l4HJOsiOGjW3gR8VKxVD1bQstBQ94eksUFVuEPOghVnzLkEOdsfXV2NtSvMvjuQkMVAmYRkTMg5k0OoCKcDVYHkDDd0iY2reWNRoYPis0kN5z/ptZQMh6LscNHZNc434AK+W9KpNEtVEyZyAAid5bf0aCKfV/Kg1WvVb3Mec8pJuqKi+8wpPrQasx09ykUYtnPDIoAljSZNBA7vvCHBmidd6tQ34Z0xw/61Dum2W7gk4fxcHaFp0gUmOwOfU96v/k7qznEA+hMEMLu5HPHFemf1rpFVqKAEcekkdjHRsMxbRWXQwVwkKul9vUegFuslZPnjzF3bt3ce/eXVxd3cG+P8uQLPXhAmK22DZps9Q9eRFnJ7ti6xLMMdN/t+W+mrV8be778KME7vZDyLeuU4RO98vOuk4BauZgBeusULqkzNPx4hhp72dWlIAILDMLE6S5QCXCzi0MuJiWANViWKTnExjIOUTty/yd1e9yncZQzIVJmSb2JsBWfJaapQ5HMEwtnVM5oD3WfqygcCbjfnD8ftpdy9opDgXcYhVYgM8M78gJ5DyuTsUaSeAQt5jbo4MgMOJejhHPRr2/NFhiJcs+vhjK/FLXKw1Qet94GEYfjqUK8mFxqbIrD7LaaHPsmS5cGBJluBZwQk9y5ALSxu7WUzVu5plqyoO8QZ2MLQ8cAO6J3Gck7hNkxGI1Zr3ks8SenxHHawDFbmHAKsY4sN/sOQh5KLSGS7YyDxZmTFj3BAvQcxtYR6EpFbAne8Jn5z32TR4ujSOIY3C6OgGu+iB3orpmzyJcfevhiTQe9sZ4ZfIBYZCsRSobymtNXyo8zr51bAKHKHACVBo4tAEdaJuKrkVDsxgjdkMGlKLdEpgKXEQ/pF4pw3BEf7M6mCoj58h8KEY+oueQQkBm0dPGlBV1DBuum1k9h3i41hrid2j8wvOURmdEufN+IsAVS3bLuK7hS5WZF/NA4C5Do/BOvA9lzBD3JCAhQ6X7r38z3KdwxxoimHOp0RDrkTH4JcQFFl5rm4B/Xc0M3iK7yCzr06wCdHi1nNDazddZi27lnnC4RcEuNpFz9O0UjxoMi7zrvAcxlhbVim979zVmmtMK4Va4rvQ1/PTr62s8efIUb7zxBh6+dh/Pr58xld08QTWgmi3VxC2+OSvfZs0dFCg3WNopj5DCGsLTvCUgBNI5sgNARgEhU7Eyet1zTty5uhOghEX+tkZ7nGwQ6vAMnmA5CMMGjYnttLHGS4jkqXqrIpEas9Z6huLpfIQWxRjmmFD4uWo/SRSsZ88idqqng7KTa2KFpipME6bPTK/dekc3YEbYWfPRozQDQ1yWjggAzAhzNxRQEWsBENCb5q5WN9cVPDMjXXsxhkWgQj+oCtDSlRWQSIcw7HV29HaNg7Q0nvN/+/PlkHB4lfF5tD9f7nqlAUoMXywYW+jA+P3BC6qFwZbeZB3GIuDk2RjeA8BSwPFnrl6dFMrGkE+V+T0iQzPLKrd1x/VfFl7WwWz5YA2XhQHQ3fX83oT4GJEjf+rRuVgbzCscBIl9w6vYd7IdrQGYXPxJ5xKewxAhMov26WFE+haVOw3wOBAJaNRFV15MZVZJF8AwCu9ZwkB3xzB6vKVat8VQ6VH32ohtpgcmT0nMFsM5nSGhSCV2TGynjtMW9UuczA4vFnNbRWjyBltruFwYAtviuQ9CRtMhXSXkBUzWNXA6nSBPmWGdEV5UMFixfhTy0eeUEFZ0anxfenQg8xRjOxzwqf59omW31D1xvatuQyuwEZ+V+0dgA2SoBsayHov5O6CDMIL0yJYfL6xkxbSPJjXr27Cc7AL4WL+mWVWlFF3OedWhUjigbQr7aHyiwm3MC8d9Ede2AgIKC48wyvpOfV6uZVNNogqPqER5i9orDkR9jcoGPGb2aH0Aa/aQdEtcKy0PrTEGnj9/Hj16HuDp0yd4+uQ5jb/3cBz4OfsY2MyK7WzKHEFkrfHze4usk8U8JStiPKwjNl2MTHyuejdl2G86dt9x2tjQMTLR0VtlV5lRC7g7qB1MlhcVutH/OtmIhvLWdZNrOK1p7IJFySJusVccclBVYK0t6wthawGA2WLcdyHGdzE6C0vjyPdbt6yfw6q9ZPCSPYs/c4wMQ2cYcZIZUykLhd71jBWCrGddne5cPBCQ1vyFbrFKqrEO1kvqo3A+Y/xVniEyXislXnugw6wcSTlLVZBRdssOn1+20Q7P8G6vVxqg1APfjuMffe6+NmFIA0hE23A8ULQAKxNC3kExKgAy5AMg46U6uFWpVMZY4qH18PHpUYfF09Dz92FA1LE3vls6ClXGdPcQwqrzZxwOA0sdByRoEC3H6qJs1OegARcDtFKZKnQ0RoiFxWGG9ZI3fbo6QRVVAaQHp6ngWyy0JhKYeT4bC9AFhbmIrHzWWOmDsqJoxHvXGHNpE1gefduusO87xrzB1WnD6bTl7dOgh1EzraOJ1k8xhwRm9Ox06FaYRn9c5TUWAawO0DVdkkLglusUCE87PDuxB+sak8daIkWlJfKPMr/gHhlEQGtbMkcMM7b0HteaIRV2GblL1tBEelLBVkyboMItCs+1KgoW01hbTodcXMfMlEVw6YsuABFeMYu4P4DmyXxUyEs22YE5I0zTkQ5fXuUBarVx7HC4Dvfp9MaHVaVLZQ/5nIvhNQpwZSOs06bwmKDGwCv+b1DX4jqAV4Cyep0VIuJdj7Gjahs5bm5u8Pz5c/boee113Nzc4HIe6XBJJD4n6/5IO4Np8N5Dl2DHsVjOizXEmE5OqwaZdd9We0f2IOZzDDWAJPfZQ5snOwYgdXi+fHk+dR6+crAifLC+ThmIJs/cDuNnHdTEzRkZXLSr1hosOwmXjdE80KGhc1WP2hJ83l7XYplhBgvwP8MoGIBQ9sXnhNonfkDAMqOuTl8kCbJpAfiBQ9PGlU3CLHZ5Rnl9Ok0C7Z5jtl613gBEGL1H5TtfGLHcQ6pFZHVvysLUdwh0aR6KPYmxz71qt0DMl79ebYAC0FBJnOTMUVBeOqKQWQqu2obWtQg8qlyqEiUngor/atSX3wPR7IG+lw27mBt4TqomiQeKPF8HMF2MwczMhdtX6+FVuDzIY2VE6QYk1ssN7XXgAUdwJR3M2qehLaJIxN8CBWMfuLmciZ+3LaqtUmNCqvUEd1T3ZAETIYEm7iji93k4AR66DjhY1Gfx0lRvJo2iAYZ61l2Ft1xfGyzSxg6pHnHq3g19O2E7VdsDGeC5VDidDrRoMscxW8We0h14GmACRgNlcIjfH0t8Kz1SNRHIjiA/0/J9DQrbl6dI8GGL7rCMDw2dwDEbmbVYswa2cPUct9RVzSVjw5cwTYydwhr0kEEjHRS0QW5psBpdIalYixIsyzpCDNCL3tLKQuVaa40idQNLIs+BZgzhaA+YGbZNe4BgoFnLrBzR4HXIx/fFz9axWJ/b4l59zOhezHnhz62YQe3sYDnmnLDeYfJM5VzIC7YAFpOGvfe1CBYyO6kMuvRZQB07tFFi+8YYuL5+jgcPHmSfnn1/ymcZk42nw/hPm7BhabNyvd/yx8g4CGDVHKnuBSb7WpF5WN9Zuhm9V4XEZmS9BZfFImm+MGgxhXo916uEqvosgh6209iyMNvtFXXQ7sRn985U5Hy1Dv1BUJ5NW0FpaYtJ4XlQoHtl7V56LZuT54XDR50NWmsjncVg66OQ4LaFcxcMC8PAnh+NcHQspELUOopRZWhLW0yAMZ50aV2IdAJc/+2eSQJhJtCM3chfLEMvoFENBDU+vKeI7eub0yHR39H4CGR7W4rX3931SgOUy/lSk2IUCckwy+O2xjQrpl6WOGiOgh8yYj5Fa/daYLR69TMZpmXSeUW6YnzWQT0PRyS2U8flnqXz14NYcWDljivdr9lRBLqGMzbpBpYYYhZuCm+TC4xIv3WBAR10x9hqhl0u7Nrs67M76cpMuwXyoFJDrtWK+eCh6GH05xBNOiO11yKjx/MQYmavpaGhiDZK1Js2RnmB61gDiqGyouqm9GUs1L4zxFTelw6pLYFIa6qSuWxiW5kOvq81Cc94GMk7KG95NWz8tzt1LQKwayiLzyXwKKFjxaUlqBNDQANRWULAJIMXAtFmTLGvQn8N1pwi5NZh6Bj7nutwXcvp8VnD2nYdVkJTvdad2gCLTA4xUvlpB++53/pZsRzENww5uER/ETLcTrX+tU5TM7MAT76mQgf6PffGqNonQOot2gKe87BUt2mFthS5zNRz2pYsPuVY7i+GMGyCR92fOYsNASrrS4cPm4hyL8xxZL4kmL2+vsazZ0/x2muv4+HDB7i+vsb5fIYZyLhAAm7w2RhExLJEcor3fc3iCJHrvkd3ZMfWlAEZey/TRD0Ob44T50KZbci0boTXfVjfytCSMBnGjr1eQMM9hKG9MiYrtZtj0tcaV+ksypvv2HrH9fUN5zb61lD43ukALZ58VhH2NTsTuQfWrK/1Wte1mOfTSbaa97MylxSCS3xOB+ru3bs4n89R86rWeGstUrBZ88X4AWEXWzp3PpVJx+/siBBcW8KJhXePjGYAFbOG3cdhrnQdn+W2AJ6/qzCqxzqMsJhzL0prBQhw/gERyQKg0DSASV9ZhoB4Hq+hAQuPefCQkq8i1gSgx7RWQoXLSAJwerWtbFz+hzwoCWOVLcK3xSL2Vp4/VqPMCTUgv9untNi1aHVpkV2dGJIY0b/Eb2+wQ2KahmWiN1KvPmozyAgqdFRCOoIEoW9WjAWuTlcJhDJld5mX3NRzAQLNYJgRNmKVRZ/0/lrbonKpJ3XaN+on9pgfeXqiqc0sayCMqPi7GnMZfT4zKUyK6pZS3igdwlSoKca/QhEawwml6WoDmgx1FsmK7+6WsW0shes0H+l9Lgf5SqNLoNuaPFo990xx+FooUGtkDRHMW3UMPIwRmYhjxoZ76Qrcy2gnO9Ib2YHcXh6g2PLeJ0IHkNrQui8Zt8ul+snwYG8RdpUvUOEFrsVJViUuMgotPG4BhpgLvSZApApJcW5HHMiL5x9rX00vD1f4FBrTEVofh7J6CCKaHfdmpqvKfsBZLA1I4AtMzCkxbYXUuC7i9cthbVnIjeNxfX2N+/fv4erqDu7evYObmxtIXM+laTl3rL/SdWspVkhwuNx7W3RhZsrmKvu5R7YjDCXwB6u5ujNkbcGi0amo8KOuvnW5hBwnd3TrZaEmqKtzHuDt6gr7ZY+wpQHNQsiKqINUzp11MkXnmzPuP7iH0+mES/S3gVmUiejJOOpan1l7Pu42GZ3VtmmdYvlbWsSqW8UK33DPeansSY7TuDAcduo9C1qS4SAwHtjTFroH/+INHZ3O0RiheeI9JEN8i2daQz3NYk+Da6FchBIE375u7+XVZtg6cShbUCGiWFuNTLSjCpC+m6t95ZfU9fGPfxzf8i3fgtdffx2vv/46PvrRj+KXf/mX8/c/8iM/UmxA/PkTf+JPHD7j5uYGP/ZjP4b3v//9ePDgAb7/+78fv/M7v/NebiMvZldsVEn3hq11bNZwah39tEUvFT9qMpyFm6SziB+mISZiIDDIktdNsdQKp6yLtC4anHI2w5OMg0F4I2lQdyj7Rp60ytsXHX0EHSslv4+B8+WM65tnOJ/PmFExk3HQ4yLoVw39VJkoVR47DFAwDULsCQCUuTJFe3ds2ymzHfIgWVIzD+EZfgM9xzFxuVyySJQAFYDMfOqtRyEmw9wHLucLZhQac7CA3h70c/UBWrRBrWHMC3RIjzmKIUsQajkXqiMzR1SXdQsq2FGMWwGYYwhBTIYBFmzRwgwUaCl2a32f1kjG5P24pnTo8Lmol7IF3OR68CMTJ8OvEKKeQSG+3gkGly8K43U0PO7Oqrm3vCbtp1yTi95GqfhiBtb05rUx5AGICfjOEozPfSfzI8FjHM4Kv6mKMttQLLF7V/YSWboxKyQj8F3A8Dh2ratnkC/n1wosa8zzEAKWuZhgaG8ua27E99T4iSEDyCis+hQxFFxyfO2+F9Cck2Ge58+fo9uG+/cfhgi7DoY5ZrJc0z0r6c6ofLqCk3W9Sc9Gk7fWe6LdTBsmYGNHgO1K5zdUHarlLNA6OJ1OUGac1iaF6CdcXd1luYQmdQtf34P5bcYaLgWeCUhV7RoGXPYLnj17HuulAITFHFmOVYFQ7e0SrFeYXPOia0YlW62pLL65ZOEQ4B7HmJouarjk/I6dHby31rBZS+e3C6g4u6crE7ARGaM5w1NyYnqPhqgItnnZYx0sdiHpbBaocKQ90To/hEcXe7D+O9epI79/LmfsOtcrGOYaiRDyu7zeE0D5mq/5Gvz0T/80fv3Xfx2//uu/jm//9m/HD/zAD+C3fuu38jV/5s/8GXz605/OP7/0S790+IyPfexj+MVf/EV84hOfwH/6T/8JT548wfd93/cdYtrv9rLOZoGtd6YeaqEsAp50foEEAL0Z+sYY5z72BAS0hCPpXguxZFcBtWhHnb5ReKFkQmJjBkpX8yZ5IM06WovF6evBUsgzr1uHT/7Y1ZuHwlXRuzowMiXu1sfR8LIWSTMWTGLjvBPU7RQIcLJQymt6rOob9NZw2jaoiisCnCid74Vqsy2KY80d+zhnhVsfRsIzYpvKLuCbOC775YKxn7FtEQedMjYdV1dXcbDXgFGPUBtF8dSKZQsQyIsjJQp5ijqUx6U+MwXEL6YA17zM0EyEUGzxTGXkx1CJcc+1UcZ94WDXZeBS9guQKM7M5xmz6pdUeE6fF6X229HIrEBtfRITDeuWRhoIT3g69st+6/1HQLIyidqDFTJryzgGkJjO0W+OZrHvIjRg05f6LQT0AvUC0Dpw9/2SQu71QBjxu/1yweVy4efBF0F4sBMHIH17bgnm2JuLh6JSkoGlYFmIUWWXld1W86i/C9glmEhhYayjOHxNpc+t1p4M/+Uy8Pz5NcacuHfvHu7fv5/PIU917FVwEgKvreXeGmLfUAepNDgJHlHFuNhSIX6azU1jbaXYvNivdX0ASK0bbYQaB2rdzVwjrXVsJ9oqX8T3sqscH4ajVD+lCShpPmG4XC6sB6VaUjUbt4CkZ3gHEb5uxlIDa/mF1SFdgZrE6CqCuYI32Zgx/chOrE6I9tQsRljArrXIUhoTNidUVYnZnxOr1jQdFBWei88uprLGIbuuy1GTrWsNG476Sj4v7YWHo12hMbHtK+jV3rBIDODn0zlrudbf7fWeQjx/9s/+2cO///7f//v4+Mc/jv/8n/8zvumbvgkAcOfOHXzwgx986fu/+MUv4p/+03+Kn//5n8d3fud3AgD+5b/8l/jIRz6C//gf/yO+53u+573cTra4FwpM70ubCjo4VgNEIzXHjv2y58LITdmYp22mYmilUYm3RxVPLrq+1D1Q2us+drioR+Jmeqw+Mi2NH+XHRbR+DyrEI43Fvu/JbgASNk2Y8svdYkPWZ7Xe0foGA9KwN7QwvOWhz1H9LVbmZIyBs0pkL/eYhe0CnMQv0hQwTqyeRsGawFnTxUqcZWKsTGnK+wLenI3iUF79adsCnEh0KO9Ecx69lFDiadSt5ziKSREokReguWe4h97Syy/PDVsl4RcP2ACPoPGxaitQ7IO8S+ScHdkZZZ/VYabCWwAq9dEEYipr4EjzxmdMDw0tD5GjdyfdCvKeEjZ5pJPHihxzB7OlwkOL3kArfa0503JemZNkWNpMcaAwkwNZ7I+2c+YBMd25VKIYkNgcLrg46K3KCMCRobDWGk6nUz6zsvfSw4exyFaXI8LnVojCMTGHDuzSQMzJQmPF/fDKyqpjJPA4ZoIh/5t1cdRnSqymMUvMjDWBfLKJZrAG189vcHPvGg8e3mePnuvraJinaqsBJMJerXoBZdLddox8spxA9ehhWG8MRxHADJFbp+6AjTtndkpvrcJKORpOjZKq9O6Xc96PgcUjOzbuJWXcWIFrFWfTeM3JVgAsWDcixG0MJzcWFaNu3wnIQpxqvtQZWVkBOVRZOwRA45yMfQeyArFMFdeIJAXUMtEG8UY9h1dn08yssxcz+F4sTYCcGzlmCVDTnyqwob0GgI56PF/jL/g9OdXB+DgyO6kcOn9xbPKeWtosCnkLpJjVetI8lZ6lQtkC+ZVO/ZWv98SgrNcYA5/4xCfw9OlTfPSjH82f/+qv/iq++qu/Gl//9V+Pv/JX/go++9nP5u8+9alP4XK54Lu/+7vzZx/+8Ifxzd/8zfjkJz/53m8iGqxpkvY5okLpAMZE84ImPmdRv/vAJWjT1jce1jF4LCe+NvMrIyYqfqJYghZAJutkjCpsZSiEmnTw4uEnnagskWYZBxZ7o06zQ3qP5T642BYjmwuKn9uAFReHAAAg3UlEQVTbxj/W8/kNEhdaHMYEJ/sYqfvYIjNk33dc9j1Qn+efOeStyIA2xslfoHQJBvZ5CdrRKeBpHv0vSDjCevz+qKPRYbzvl/B+Wx4Yt4FDUsXBEgEIkEmPbEu9zsz4eEIBq2qJGtcMua3ezrKviqKeOQ66j8PfqI26UqmAsjbagaUB9HlHtuHw/R5jZ6tHX6DucN/h0dx+iAPD48X65HxmamelhsubF3V+MKy+Zs/J0zr6Pyvw7W3DflHWCzN5BPxd4NwBsy09doDGfdtOVQ26GbONpE0IHVHtEcuwZG/Rk2vRXCkUsW1bthLYNpYGaL2MbW8h6G4WGqBtsRHG4mHWYr9t+ZzJiIQdmHMv7z3mX6nEGrcFGiYgEfhG6Bj2MfD8+ikulwvu3LmD+/fvF/gK25Hs2UK/azWI8dAl5nP6jOcqBmem7fRiXsT+hD3I3mUx5tSu9fxChda0N6cXszji/XRiSidEMMTfEYgUWL+cz9j3HdpSClfATbxorm8BZT0f11E5ngXSkb/rIRsAyFhk6H0M+D6qDpP2U4bCkEC9ADv3bGaAebXNOLgRMSYz5LRY2CgAcQYEi+hzCeYc7U861wIgVuunw5ClNhYKRu8/rpLbwEmgyXM96waLXUKCk7JfCrnSZrc1vPwVrvcskv3N3/xNfPSjH8X19TUePnyIX/zFX8Q3fuM3AgC+93u/F3/+z/95fO3Xfi1++7d/G3/n7/wdfPu3fzs+9alP4c6dO/jMZz6Dq6srvPnmm4fP/MAHPoDPfOYzX/I7b25ucHNzk/9+5513AOjc9BQjZUwwKLcWVVAJ8r3EcO4BIvohAyS7L9pM45OlnsOID5/smmwWfWoi59/Wrr9qId9qxaImi0ZwC7CyE2nb6l1qsel2ufKPGRs6xOrgSmalsbOuGnshNpj+HTpQKMNlhL7kpK6gzs14CaZBVyJ+0MttrcM70MUgzFlFnwBWUgTQ2gkZG128fzSmAcMsWZgVzTefkUbHaoy6C2VprLHN1hmn3S+XNEK9LUYSFN/Rk2OWz0o/Mw1YWTVHgKB50X/L69fhRSMe2UwR4+a622HY4nUzPGU7HAyVjlvdQXUgZdXanG+yNXN3tB5i0XCpJjzfJ5Yuxd6L1651Qq3GOGbkeHxH6rWOGg3Ni+apRcNHUdpuzNhCZjrZYRzrYJuLcJSLf2aYNW8SJuAQYQAKom3RLlhUAVY4VxS3peconVlrxUY1M0wLXc+ii2kGsijWCyShxPXqUt10cIcXOuakfqBtyKq+roP6hAz33pqDcnwqhKf9JmPO7Ci+Z98vAWZnhnjv3Km04ydPnkQWDp9p61uwC/WdrXcYat460zgW8B0ALEK7Y+4LIxbp1VBGUrhcrrYRA11l3n1iaz1Dw2b8WbeoQaS1NQCm2g/SHsE6CFhyrdXa5prydFyOaa4CBWJ7AISToqKR2nPrPuDcl3Yr2fjWmbDrC7NlLddvO90q/eATLVlP3W9kkqL2su5L3zXGqESOOWEtmNxg37UeHAtIiDmdwdasWUaH/QZkGwS+tJjmhopCaL+6B+hJAKs6Pn7r88smmNV73dfPQs6XAIr7sUTBV7reM0D5hm/4BvzGb/wG3n77bfzCL/wCfviHfxi/9mu/hm/8xm/ED/3QD+Xrvvmbvxnf+q3fiq/92q/Fv/23/xZ/7s/9uS/5masBfNn1Uz/1U/iJn/iJF35ujtJCAMD08OKMHllOButUcNIb00yjtAM9Ditv1CpkVClqVbbYzLClYanS52N3SEim+GrA+nxGLfLWSwG/bVfYtoZ9vxxEplrkFrUtXKSeFhRQqu9bf7Q41kqA6s8hgNJ7B9ww5wVmcdgEuzPmjCJlovote5vogLkKj5PUZWw+1T1xbhwqxlVAyNBs2byN6n2mRE5A47ywBQqXrDRmpXJX6mseVEBoatrhQBCztQ/l4fM+2sK2HL2BGLOFyRBIUf0C0ba1fhnq42HtcX8r0FxrYfCQuc16rH1revQ54ndYGRss7JwHeIKyZOo5KZwkSMoTyugVpVYjnjwb6MnjjoNyjokxdNAbkhBcwDQCjqVRjwUwxMh1Fbw7Gjj3Fh2tLQtqCeiYocC0UdAnQNEbMOcl5noDTCnhpqWOZEdalUoHlA5ZGWYstljZUGa0J4hmlkIGNK5+ALseGgD118m6IfD8PgYwdGlu1fFa9s5iLRpYrVPZZJ1sYxr+SlnV91wuZzx79gx3797F3bt38PDhQzx58uT/3d61xVh1lf/fWnufc7iUjAUsM9NWRNvYIhfrjBewsVa0pmk1XuItXmr0BSOVxppo8QFedHjS1EQxoqkSTcYHWoNRaaexUI3RJlzCQA3FQAsidNILMIWBc/Ze3//h+7611p4LZfAfZk67fskJw9n7nLP3t9fl991DuQVIyXM/jtlNxJuimPptBhiOxVDioBYQI2QzPDMg83EEIRuK6+vwc+cYLMCUQEG8sdosLjDpog0avGZot2xVYKKtwNoaMqsEdKzGXpQtydAT8qzjTNZejXMyTmu5MPFVEq4djnXOxyTSGgNYScXXMRaRvXGJuwRIV3Yz0srbYf6CghUF1kay55P0806taDK/4t8zIM560jGtczH6dS9meXn3DQBTVn+PuWXwHIR9yADc8Amx1Se+f10PdK0L0533RC7JID9WsRtdHJN28dTrddxwww3o7e1FX18fli9fjgcffHDcc7u6urBw4UIcOnQIANDZ2Ylms4mXX365ct7Q0BAWLFgw4W8+8MADOH36tH8dO3YMgHTe1dLdynytYcaahc1JCy75wE15flme+TRadWt47s2rJJ9oIrNfLkG5EpgLBBNW7H7R+ifs/ywBUyLLudkcSSXQPM+QZXH9BonpIHlBffXkNcc8y5BLVLsuwt4qYsNA4W3GwVELjgrW/jIr5+SAL8kM0X5Yo24VbDpVHz7PH9ECLPgeJJtJrSI+iM8GUz0oHuAcL5PbOvKsBi6jL40GXSkkhrVMV2oJbN0oRful8J1qItXnq5Yq3eBKqfTpXSeyAYK03oTUyTAarV8AvhCc5fTGKEU1Jjpq+g0WlZBW6APGJCiOaxVE6eY+OK+MtM+q+V3dPGz4Kr1GXnU32sq/BJZjqT1Oojo9WaZdtkP6NctYmjvCgKIxz0HSwYVIqN4n/OYfNuMxqoWxfnNXuVUOGwOgQJYbEEppxljwRimFDTlOyYFc4QOp9Xrj9W30b8eapC/IFbmiwlwL18UBxyXfW5YDyACjBQyjxVdJoHdzyDGnUorlBQQ3YTwXorlOgcyEzyA86wzIchYlZ9WgMlbKsoVm8zzOnx+BtQazZs0UxQNyLlWUHiXcrNVLXImMQ29JEy3bZBz/pYHyVSWoShL0mXpXitNMK5LrFPLpyQMrf7oe8XM3fh0KRJXf02sY/dSpcm8WvuVktO7wmMgQqphqqGm4brWIkW9DOepY7DI08IQr3maDojG6RUeVzIyup+IMQJYtjxzfwq06nON56YiCO8dAV1wvB6+sAMGKqr8NhEJukGJ5Ij5jLbjfm1p+9dnDJzyAmMj54pQAu7uiV4xq0oLzLyv712QqyPrvnPQnRoGIKu6XGC+++CKOHTuGrq4uAEBPTw9qtRoGBgb8OSdOnMD+/fuxcuXKCX+j0Wj41GZ9AYCTxYt3Hp1QGW/8Vv+1npTHG05mDWp6ro8/4S7EJueYCgdeJbgCLR/L1PpguP5Iq9USE50OfuM3Uiojc7ssbEXZ8mbTkF6q5aqraW1MTkyoCxKZvLN40oAHImfbMCFxKEQDLjjt1jhkGXzwoSsLlCI/UjLjxPUF3sjzWujHE8zRFjY3gCGpLKtl5kkCtHi6OOfQbLU46A4SNW40hY98jQbuJM1xQ+zfZiLH5ncj2pGYC40Gizq5ruAya0laKvurC13COBhaCJeSDr+xSyZI6ENRoFqXhCdaljFpURO/WgSyTGOPbGXCsg7DOot3aZAWMAqBcc45P374mYd0WI2Q90RBFl0dx0oSYu1arRb1eqNClgH4TVp7woQ+VPxbTjJ1iqIV619McmyIZ4izKcI4jUgTwFqxxFWMTc32X+2JKMs6/IaBERM231dLmnpCFREAYKObt7QEuYQsCDXn+Qy9MLn8nNJrNvLM2KoDH8cRVxH2ZEWehKoBADxJ4efGG0XpNMU4kKLxUFEqdCOzgYRqhpg1EowcEZ1Wq4mRkbMoS4dGo4EZM2YwWS+lf1ZJlR8upTFqGFdRJ3enqjQkVdnBZBKXByXoFj7zz0haf1FyOjrg43i0UCS7Ygrp5QQfA1aUhSiVQQbq5rD6m9ZwR/VMm3XWvMtDN2eQBv+XXi5U2cRljMYKRySPSlVjUyU++jdbTfMoIy5WTGI6MJagACG+R0sx+EzHiHTFc9X/tqTdawPKQHbjOwXUYkEkJMVIUKzP0oFXuE3GextZoCSDgsSWm7HVW9ceV0alBIhgKJCjqrU+ELBqDS5dG2Iio+vEpdOOSbl41q1bhzvvvBPXX389hoeH0d/fjx07dmD79u145ZVXsGHDBnzqU59CV1cXnn32Waxbtw7z58/HJz7xCQBAR0cHvva1r+H+++/HvHnzMHfuXHz729/G0qVLfVbPZOCZbc7WkSxuz234wcZFmDTAS2uaeH+E/0LAGgey7P4gaUcea0AkGxu7dcRlIN2OgTAYSaL9YXigtYoWQBZcFVa0DDIwDmi1qiZwXqBqwe5GapXRgjfk04F1kLRautEGIhY0Xm5Yl9nMb3wkC3dJvKnlWcjECCmOxk9ub+UDmxJ9RpC13nIja54sVoRa1EDPQKwlEsNCAOqNhmfn2oLc5jXU8ly6IYfgyPhe1Y2lrh3taOqc8356zcAJxCG4v2y0WZMjT1CLImwk1sabb5iIbG0JJtCqiROR5SWQE/0/fwe7b4qi9MRFLT1x8DTXH8thjJMS3Op2gJwTLQ4l+7jZIqgLHY9d1aBUQ9S+THFaupJqbZ1A4LljbS0K0I3Gg9/8Q8yM1WdixY9uIM+kmk6tKbTkWlGgc7TUepLHZb+duspIuhdH9yPfKPOsovtG16v3HoLzKu44/+wIRVn4ecwbrKRHkqYnB8tZZROSOV7q+InSbUcv2IAu0PGct/6Z6PzWyrMhuDDcX+g4y67fZus8ms0RzJp1Fa66ajaGh4dRliUHlBMrHch0My8AkwvxseC0LibmfgMW0qoZgdYCJjNcLdoY+Cw8kZURa58VF1We5Wi1mr6buDWc2Zgj865YJjHOW7xJxoK60dRlDJDUJ4qsYLJJls5JthO78Ekt3z7lKNwPu2sIKKOu4FDre+bd+4TYGhLmR+lCVqCx8JZeLUERdzKPCT03wHQ+s0rnT2arm7QvKhkpqY7CGjiWEEGIpswJnQ/WIq/VPJFVwhGPQZ0Xap7Q+R4rQlod1pNTJUUGkDbu0L0zrIETk/DY4jhGWbkIJkVQnn/+eXzpS1/CiRMn0NHRgWXLlmH79u348Ic/jJGREQwODmLLli04deoUurq6cPvtt+N3v/sd5syZ47/jRz/6EfI8x2c+8xmMjIxg1apV+NWvfuUX6cnAs2oSXc+GAKqyxZq5RlcrannmWRyJ2Z/gAGm4B2t8xLbRyoukGhIXrjLGiYlSgvasdsGM0m2jURO0oswHexL4+srS+Qen8GyfVEMj//C50BkXqdKMFq0NAUjgnxRW08WhVmO3SrPZkoEiTAIUtGHeXyLOxoXgQEBua2Ir1IAx2VD0M8JMWmWTuyYb+JLbMPBsXJFnOWr1HDAcF8cp0vCZECoDAN7sq/emk1W/m33TYePOs9w33tIHr5sUoJuRMH0jGpqxUncj/JZzhDzXDBvjzdRhEwnElQmntk+PSGSplhbx50NN4Kz5cq0ZJUdqLTE+fko3Pm+ZE1moi8nHJFjDrjNPjihaiIKGF5pGxuMzTI48y/11MgHWGjlhXMtD8Ys1ESTdPlgiePiIizPSKFVOTlLODdQKBL+hy5VGG4g2iATUAqffRcQWKFYSqgufuiz170BQ9bPGp29qaXYiB7I8ttnqJl2njUVGmqxKkfdKCYfh5BoXCKsPmtaXtxZYvxkFwhOqOWvAdGzJgyFf3EqtdV4RIUKrVeDcuRHU6zNQr9el2/HZSLbg2hlCKrWZZCnWIYzaMFj2MoZInpS1HFStBFcsvpqFpoHEgIHNDOqm7jc+tag4ImSythjJwg6p8krowjWETDJ4d7snnciQyXgy6laWOEIQokBpLqtAnnCFdZKgJJAVT5BYLGQtD89N4v6s9TVcTGa51gxpbFTmS/OrNQjQmA8D46oJDn5NMxL9Q9pd2kTPxIgFhceN6BH8TEdZMvwci6ye6nKy0X2UID93mfzwsaJQhXdslo2J5yjflX8W/hwTx62Mp7yJwg72GFwqDI22R7UBzpw5g46ODtx08yJf48OICYvAm3VRtESOViYJAAvUaznIQQpnxWxUYiiMbkZaZjzz2qUuDFnOAZ/WZJVBwqbLspIFAQihtwbW5LBGYwAk5U0mW7gOyeawMZvmQc4DCX6ByXOpU9JqsSZuM+R5ZMq3GggXyJOBkeqqmoGkmz151q0VTDliP/Q7IWj3W2HQJgxS5xxaRQvOOeRqks1z0SyDK8Zai1o9h824mFJMPjI7mqTqfQM6Kaz42IEw8K21cFFfkXhylFLDw5ooK4DiCpC8gLaarYjQ8OcbjZoPtCzk3nSjs+JCZKJQIkT587GyLGTz5BRXJQNKDoqiEPeiauyBiGa1PMgFkYtLro0DYDmQmbtSE5RuhOu9wARMFxEhTLrBswWlquGrFQQAisLB2poUrXO+Ho2SZjXpqxVGCyXGhEQJdSDuVoJhAWMItVqOefPmoePqN6AoSxz/739x9uxZlK5Ejhprqo4bqeW1DLVaxhGBMN5SxM8/C/VUKhlScWNCdblVi6ipTInIb5YGBs1WU+qKSMyBMTCoyfwMKdfG5MG4EX1tXKKcXLTz6kigUq5nvJR5noe6eZZlKSQ/zBW2HlposPXMmbPQ0fEGzJw5E+fONnHq1Eso3QUQWU9mmN/peiVzjfSZE68XahWBnOvJk0WraHkZOU0b9soAhCjnoWS+C+NdLdkae8ZKlIyTaLMFGb8uyqDUP/hcR4CRejUwPovTRsqgXLonptbomuFZXrAeOPKW04qbR56RZuZoJdtWqyX3KmuqkDmNTTMWvtItEVA4LYoHIBoH3rUoVhsjY0bj1+KxEqwOYuXQMatCsoGgZLLeZ5rB6hyXhoiUE8BJzEtNxpkST3BqPbLKehPGZUw6VFkIZGU8KqFjlV29xpPVg/sO4vTp0z5cYyK0ZS8eFQT7U0NxsdIRWq0LnH4GHuzWAMitWAsJzVYhi7XzJlkmqAaOCq9ua4EnrZ3Ci6IG1BroHNIsFCZFZWUjVtICkkwJJxVFS4e4FL2vOCHaFEn/Gq2PApTSP8iBHBdZAyJ3jXNcFdbY0EfHGlBRcqkwY3jQgXxQKltNeOMrSo2e52uv1bjZmHMG5EoQcYaCzWR+Ubh+1qyAVtGEdrwky5Yt5xyXqi95AdTsF05hDhuZlXovGssTCEisUYkGXlb9nMYauILLnSsBiAQbXG5G04jjxdJW5KxVUbWdeFFUa7PIlciCESa9PleIrJ3TSqjydAnizhHNtXRyLVbiFciTMMPM0C9gWhhMm5x5Ily0QGDrlIFmBFhYMSeX2rvEzxlIPFTmSYS6Iq1s7nytDkUhsTBOVnFrUEbPy4j2yfEqfJ0lCHH9JY3fKGX+8HygiizznMdv0SpQOAdXlL6aMagULVfGZQkYU4JKcRERp/VqTE2W8fyMzdZZTMwNv6qtHOJr5YXaWi5+6MqiosAINeVU2UyNDhLIG2X4qX+9bBahZPuo9GnoJkFspRrbmyRom/73JV6nLCOt3gfYEy5caOLcuRFYyzVasjxH6/w5v0kbI3E9Rt0MkdsQIufShW7vMt9YsSLYjDj2yhMUiZkrQhdvOLEkltVAcrXcxM/eB+9KCrEmMgCoxO15S59YVFiEDtSSz2eWa5OYsG4ECxPHQJXE9VJMZWGB/32NGfKWrPAU+HGZkLbPhKaUnkLybErO4spziyyvEiVHIRPPUGi1YNToG5EiV5BXnHTEKEHhnjsGalnzrhhycDbE/2k/LXYRG7HyhAw//RwMcRp15ILVoGoTGVa95aWMY7EMjNHxKVYnqMVKPidjx/dKEq9FHKdyKbaRtiQow8PDAIBDzzw3xVeSkJDwv+Do0Rem+hJeQ3h+qi8gIeGSMTw8jI6Ojoue05YuHuccDh48iMWLF+PYsWOvaiZKYJw5cwbXX399ktkkkeQ2eSSZXR6S3CaPJLPLw1TJjYgwPDyM7u7uSibTeGhLC4q1Ftdeey0AVNKOEy4NSWaXhyS3ySPJ7PKQ5DZ5JJldHqZCbq9mOVH8z3VQEhISEhISEhL+v5EISkJCQkJCQsK0Q9sSlEajgfXr16PRaEz1pbQNkswuD0luk0eS2eUhyW3ySDK7PLSD3NoySDYhISEhISHhtY22taAkJCQkJCQkvHaRCEpCQkJCQkLCtEMiKAkJCQkJCQnTDomgJCQkJCQkJEw7tCVB+elPf4pFixZhxowZ6OnpwV//+tepvqQpw5NPPomPfvSj6O7uhjEGv//97yvHiQgbNmxAd3c3Zs6ciQ984AM4cOBA5ZwLFy7g3nvvxfz58zF79mx87GMfw3/+858reBdXFn19fXjXu96FOXPm4JprrsHHP/5xHDx4sHJOkttYbNq0CcuWLfOFnVasWIE///nP/niS2aujr68Pxhjcd999/r0kt7HYsGFDpRGrMQadnZ3+eJLZ+Dh+/Di++MUvYt68eZg1axbe8Y53YNeuXf5428mN2gz9/f1Uq9Vo8+bN9PTTT9PatWtp9uzZ9Nxzz031pU0J/vSnP9H3vvc92rp1KwGgRx55pHJ848aNNGfOHNq6dSsNDg7SZz/7Werq6qIzZ874c1avXk3XXnstDQwM0O7du+n222+n5cuXU1EUV/hurgw+8pGP0EMPPUT79++nvXv30l133UVvetOb6JVXXvHnJLmNxbZt2+iPf/wjHTx4kA4ePEjr1q2jWq1G+/fvJ6Iks1fDU089RW9+85tp2bJltHbtWv9+kttYrF+/nt7+9rfTiRMn/GtoaMgfTzIbi5deeokWLlxIX/nKV+if//wnHTlyhB5//HH697//7c9pN7m1HUF597vfTatXr668d9NNN9F3v/vdKbqi6YPRBMU5R52dnbRx40b/3vnz56mjo4N+9rOfERHRqVOnqFarUX9/vz/n+PHjZK2l7du3X7Frn0oMDQ0RANq5cycRJblNBldffTX94he/SDJ7FQwPD9ONN95IAwMDdNttt3mCkuQ2PtavX0/Lly8f91iS2fj4zne+Q7feeuuEx9tRbm3l4mk2m9i1axfuuOOOyvt33HEH/v73v0/RVU1fHDlyBCdPnqzIq9Fo4LbbbvPy2rVrF1qtVuWc7u5uLFmy5HUj09OnTwMA5s6dCyDJ7VJQliX6+/tx9uxZrFixIsnsVfCNb3wDd911Fz70oQ9V3k9ymxiHDh1Cd3c3Fi1ahM997nM4fPgwgCSzibBt2zb09vbi05/+NK655hrccsst2Lx5sz/ejnJrK4LywgsvoCxLLFiwoPL+ggULcPLkySm6qukLlcnF5HXy5EnU63VcffXVE57zWgYR4Vvf+hZuvfVWLFmyBECS28UwODiIq666Co1GA6tXr8YjjzyCxYsXJ5ldBP39/di9ezf6+vrGHEtyGx/vec97sGXLFjz66KPYvHkzTp48iZUrV+LFF19MMpsAhw8fxqZNm3DjjTfi0UcfxerVq/HNb34TW7ZsAdCeY60tuxkbYyr/J6Ix7yUEXI68Xi8yXbNmDfbt24e//e1vY44luY3F2972NuzduxenTp3C1q1bcc8992Dnzp3+eJJZFceOHcPatWvx2GOPYcaMGROel+RWxZ133un/Xrp0KVasWIG3vvWt+PWvf433vve9AJLMRsM5h97eXvzgBz8AANxyyy04cOAANm3ahC9/+cv+vHaSW1tZUObPn48sy8YwuaGhoTGsMAE+6v1i8urs7ESz2cTLL7884TmvVdx7773Ytm0bnnjiCVx33XX+/SS3iVGv13HDDTegt7cXfX19WL58OR588MEkswmwa9cuDA0NoaenB3meI89z7Ny5Ez/+8Y+R57m/7yS3i2P27NlYunQpDh06lMbaBOjq6sLixYsr79188804evQogPZc19qKoNTrdfT09GBgYKDy/sDAAFauXDlFVzV9sWjRInR2dlbk1Ww2sXPnTi+vnp4e1Gq1yjknTpzA/v37X7MyJSKsWbMGDz/8MP7yl79g0aJFleNJbpcOIsKFCxeSzCbAqlWrMDg4iL179/pXb28vvvCFL2Dv3r14y1vekuR2Cbhw4QL+9a9/oaurK421CfC+971vTLmEZ555BgsXLgTQpuvaFQ/L/R+haca//OUv6emnn6b77ruPZs+eTc8+++xUX9qUYHh4mPbs2UN79uwhAPTDH/6Q9uzZ49OuN27cSB0dHfTwww/T4OAgff7znx83rey6666jxx9/nHbv3k0f/OAHX9PpeF//+tepo6ODduzYUUljPHfunD8nyW0sHnjgAXryySfpyJEjtG/fPlq3bh1Za+mxxx4joiSzS0WcxUOU5DYe7r//ftqxYwcdPnyY/vGPf9Ddd99Nc+bM8et8ktlYPPXUU5TnOX3/+9+nQ4cO0W9/+1uaNWsW/eY3v/HntJvc2o6gEBH95Cc/oYULF1K9Xqd3vvOdPj309YgnnniCAIx53XPPPUTEqWXr16+nzs5OajQa9P73v58GBwcr3zEyMkJr1qyhuXPn0syZM+nuu++mo0ePTsHdXBmMJy8A9NBDD/lzktzG4qtf/aqfd2984xtp1apVnpwQJZldKkYTlCS3sdD6HLVajbq7u+mTn/wkHThwwB9PMhsff/jDH2jJkiXUaDTopptuop///OeV4+0mN0NEdOXtNgkJCQkJCQkJE6OtYlASEhISEhISXh9IBCUhISEhISFh2iERlISEhISEhIRph0RQEhISEhISEqYdEkFJSEhISEhImHZIBCUhISEhISFh2iERlISEhISEhIRph0RQEhISEhISEqYdEkFJSEhISEhImHZIBCUhISEhISFh2iERlISEhISEhIRph0RQEhISEhISEqYd/g/O1SM4ZKJkowAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Load the input image\n", + "raw_img = cv2.imread('./mats/0_basicdemo/summer.png')\n", + "rgb_img = cv2.cvtColor(raw_img, cv2.COLOR_BGR2RGB) # Convert to RGB\n", + "\n", + "# Plot the image\n", + "plt.imshow(rgb_img)\n", + "plt.title('Nordland Summer')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "b68cf25e-35ae-4885-9cf1-c1b09ce4ad42", + "metadata": {}, + "source": [ + "What we have here is a 360x640 RGB image, which for processing through neural networks is too big (230,400 total pixels). So instead, we'll use patch normalization to reduce the image size down to a grayscale 28x28 image to just 784 pixels in total." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "6f67656a-3ba4-4374-b780-4e8bac4ec2d2", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAa0AAAFuCAYAAAAyKkctAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABROElEQVR4nO3deVwV9foH8M9h31FRNkXE0jTBJXEBRbSrKKZl2k/LcsklyS1CM81K8paolVG5l0vezKy0rjcppVTU1NwwTU1NUVBBgoxN2c6Z3x/GySMozyDIHPi872teN+c85zvfOXPgYb7znWd0iqIoICIiMgMW1d0BIiIiKSYtIiIyG0xaRERkNpi0iIjIbDBpERGR2WDSIiIis8GkRUREZoNJi4iIzAaTFhERmQ3NJa3Vq1dDp9PBzs4OFy5cKPV69+7d4e/vf0/6smPHDuh0OuzYscO4buTIkWjSpMk92b6kP7fz888/4/HHH0fjxo1ha2sLDw8PBAUFYcqUKVXfUTNT8p0rWaysrNCoUSM8++yzuHTpkur2Fi9ejNWrV1eoL+fPn4dOp8M777xTofeXfEd0Oh327t1b6vWRI0fCycmpQm1rQXR0NHQ6ncm67t27o3v37ve8LzqdDtHR0fd8u7Wd5pJWiYKCArz66qvV3Q2ztHnzZgQHByM7Oxvz58/H1q1b8f7776NLly5Yv359dXdPs1atWoW9e/ciPj4eY8eOxbp16xASEoK8vDxV7dxN0qpM06ZNq+4u3BOLFy/G4sWLq7sbdI9YVXcHbqdPnz747LPPMHXqVLRp06bKtnP9+nXY29tXWfvVYf78+fDz88OWLVtgZfXPIX7yyScxf/78auxZ9bl27RocHBzuGOPv74/AwEAAQI8ePaDX6/Hvf/8b33zzDZ5++ul70c1K06dPH3z//ff43//+h/79+1fZdiSfa1V78MEHq3X7dG9p9kxr2rRpcHNzw8svv1xubH5+PmbMmAE/Pz/Y2NigYcOGmDBhAv766y+TuCZNmqBfv37YuHEj2rVrBzs7O7zxxhsAgN9++w19+vSBg4MD6tevj4iICOTk5Ij6umjRInTr1g3u7u5wdHREQEAA5s+fj6KiIpO4kqHNAwcOICQkBA4ODmjatCnmzp0Lg8FgEns3/cnMzET9+vVNElYJCwvTQ367IY4mTZpg5MiRxn+XDKFt27YNY8eOhZubG1xcXDB8+HDk5eUhLS0NgwcPRp06deDl5YWpU6ea7H/JsNfbb7+NefPmoUmTJrC3t0f37t1x+vRpFBUVYfr06fD29oarqysef/xxpKenl+rX+vXrERQUBEdHRzg5OaF3795ITEw0iSkZAjt27BjCwsLg7OyMf/3rX6LP7madO3cGAOMw9RtvvIFOnTqhXr16cHFxwUMPPYQVK1bg5prTTZo0wfHjx5GQkGAcprt5OPmvv/7ClClT0LRpU9ja2sLd3R19+/bFb7/9Vmr7CxYsgJ+fH5ycnBAUFIR9+/aJ+z5y5Eg8+OCDmDFjBvR6/R1jDQYD5s+fjxYtWhj7NHz4cFy8eNEkruT7u3PnTgQHB8PBwQGjRo2qlGO7fv16hIWFwcvLC/b29mjZsiWmT58uOsu9dXhw5MiRJsO9Ny83f9ezs7MxdepUk98bkZGRpbaZnZ1t/M47OTmhT58+OH36dLn9oqqh2TMtZ2dnvPrqq3jhhRewbds2PPzww2XGKYqCAQMG4Mcff8SMGTMQEhKCo0ePYtasWdi7dy/27t0LW1tbY/zhw4dx8uRJvPrqq/Dz84OjoyOuXLmC0NBQWFtbY/HixfDw8MDatWsxceJEUV/Pnj2LoUOHGr/8v/zyC9566y389ttvWLlypUlsWloann76aUyZMgWzZs3C119/jRkzZsDb2xvDhw8HgLvuT1BQED7++GNMnjwZTz/9NB566CFYW1uL3lueMWPGYODAgfj888+RmJiIV155BcXFxTh16hQGDhyI5557Dj/88APmzZsHb29vREVFmbx/0aJFaN26NRYtWmT8Bd6/f3906tQJ1tbWWLlyJS5cuICpU6dizJgx2LRpk/G9c+bMwauvvopnn30Wr776KgoLC/H2228jJCQE+/fvN/mLu7CwEI8++ijGjRuH6dOno7i4WPW+/v777wCABg0aALiReMeNG4fGjRsDAPbt24dJkybh0qVLeP311wEAX3/9NZ544gm4uroah6xKvn85OTno2rUrzp8/j5dffhmdOnVCbm4udu7cidTUVLRo0cLkc2rRogViY2MBAK+99hr69u2LpKQkuLq6ltt3S0tLxMTE4LHHHsMnn3yCUaNG3Tb2+eefx/LlyzFx4kT069cP58+fx2uvvYYdO3bg8OHDqF+/vjE2NTUVzzzzDKZNm4Y5c+aY/BF0N8f2zJkz6Nu3LyIjI+Ho6IjffvsN8+bNw/79+7Ft27Zy9/dmr732GiIiIkzWLVq0CJ9++qnxO3Lt2jWEhobi4sWLeOWVV9C6dWscP34cr7/+Oo4dO4YffvgBOp3O+Ptlz549eP3119GhQwf89NNPCA8PV9UnqkSKxqxatUoBoBw4cEApKChQmjZtqgQGBioGg0FRFEUJDQ1VWrVqZYz//vvvFQDK/PnzTdpZv369AkBZvny5cZ2vr69iaWmpnDp1yiT25ZdfVnQ6nXLkyBGT9b169VIAKNu3bzeuGzFihOLr63vb/uv1eqWoqEhZs2aNYmlpqfz555/G10JDQxUAys8//2zyngcffFDp3bt3hfpTloyMDKVr164KAAWAYm1trQQHBysxMTFKTk6OSSwAZdasWaXa8PX1VUaMGGH8d8lxmTRpkkncgAEDFADKggULTNa3bdtWeeihh4z/TkpKUgAobdq0UfR6vXF9bGysAkB59NFHTd4fGRmpAFCysrIURVGU5ORkxcrKqtT2c3JyFE9PT2Xw4MHGdSNGjFAAKCtXrrzDp/SPkn3bt2+fUlRUpOTk5Cjffvut0qBBA8XZ2VlJS0sr9Z6S4zx79mzFzc3N+P1UFEVp1aqVEhoaWuo9s2fPVgAo8fHxt+1LyecUEBCgFBcXG9fv379fAaCsW7fujvuyfft2BYDy5ZdfKoqiKF27dlUaNWqkXL9+XVGUG5+No6OjMf7kyZMKAGX8+PEm7fz8888KAOWVV14xriv5/v74449l9rmix/ZWBoNBKSoqUhISEhQAyi+//GJ8bdasWcqtv7ZCQ0PL/LxLfPHFF4pOpzPZl5iYGMXCwkI5cOCASexXX32lAFDi4uIURVGU7777TgGgvP/++yZxb7311m1/dqhqaXZ4EABsbGzw5ptv4uDBg/jiiy/KjCn5K+zmoSwA+L//+z84Ojrixx9/NFnfunVrNG/e3GTd9u3b0apVq1LXzoYOHSrqZ2JiIh599FG4ubnB0tIS1tbWGD58OPR6falhBE9PT3Ts2LFUn26eKXm3/XFzc8OuXbtw4MABzJ07F4899hhOnz6NGTNmICAgABkZGaJ2ytKvXz+Tf7ds2RIA8Mgjj5RaX9bsz759+5r8dX6n9wNAcnIyAGDLli0oLi7G8OHDUVxcbFzs7OwQGhpa5ozKQYMGqdq3zp07w9raGs7OzujXrx88PT3x3XffwcPDA8CN71rPnj3h6upqPM6vv/46MjMzyxzKvNV3332H5s2bo2fPnuXGPvLII7C0tDT+u3Xr1gBQ5md6J/PmzcPFixfx/vvvl/n69u3bAZT++enYsSNatmxZ6uenbt26tx31qOixBYBz585h6NCh8PT0NH62oaGhAICTJ0+Wt5u3lZCQgGHDhuGZZ57BW2+9ZVz/7bffwt/fH23btjX5PvXu3dtkhm7J53PrNU3pzyJVPs0OD5Z48skn8c4772DmzJkYOHBgqdczMzNhZWVlHMIpodPp4OnpiczMTJP1Xl5eZbbh5+dXar2np2e5/UtOTkZISAgeeOABvP/++2jSpAns7Oywf/9+TJgwAdevXzeJd3NzK9WGra2tSdzd9OdmgYGBxokFRUVFePnll/Hee+9h/vz5FZ6QUa9ePZN/29jY3HZ9fn7+Xb0fgLGNK1euAAA6dOhQZr9uvVbn4OAAFxeX2+9IGdasWYOWLVvCysoKHh4eJt+V/fv3IywsDN27d8dHH32ERo0awcbGBt988w3eeuutUse5LH/88YdxaLE8t35PSoYYJdu5WXBwMAYMGIC5c+fiueeeK/V6yc9HWT8X3t7epZJkWXElKnpsc3NzERISAjs7O7z55pto3rw5HBwckJKSgoEDB6re5xLHjx/HgAEDEBISghUrVpi8duXKFfz++++3HTYv+cOu5PfLrcdD7c8iVR7NJy2dTod58+ahV69eWL58eanX3dzcUFxcjD/++MMkcSmKgrS0tFK/5G69x6OkjbS0tFLry1p3q2+++QZ5eXnYuHEjfH19jeuPHDlS7ntv5276czvW1taYNWsW3nvvPfz666/G9ba2tigoKCgVf2uyr24l11W++uork8/5dso6zuVp2bKlMcnf6vPPP4e1tTW+/fZb2NnZGdd/88034vYbNGhQanLDvRATEwN/f3/MmTOn1Gslv4xTU1PRqFEjk9cuX75scj0LqNjnWp5t27bh8uXL2LFjh/HsCkCpiVRqXLx4EX369EHjxo2xYcOGUsmpfv36sLe3L3XN+ebXgX9+v2RmZpokrrv5WaS7o+nhwRI9e/ZEr169MHv2bOTm5pq8VjIr7NNPPzVZv2HDBuTl5YlmjfXo0QPHjx/HL7/8YrL+s88+K/e9JT/EN0/2UBQFH330UbnvrYr+ADd+AZWlZJjF29vbuK5JkyY4evSoSdy2bdtKfc7VrXfv3rCyssLZs2eNZ5C3LlWp5Kbjm4fsrl+/jv/85z+lYm89cy4RHh6O06dPq55YcLdatGiBUaNG4cMPPzQZkgNgHOq79efnwIEDOHnyZIVmXapV1s8QACxbtqxC7WVlZSE8PBw6nQ5xcXFlnnH369cPZ8+ehZubW5nfpZIZnz169AAArF271uT90p9FqnyaP9MqMW/ePLRv3x7p6elo1aqVcX2vXr3Qu3dvvPzyy8jOzkaXLl2MswfbtWuHYcOGldt2ZGQkVq5ciUceeQRvvvmmcbZeWdOQb9WrVy/Y2NjgqaeewrRp05Cfn48lS5bg6tWrFd7Xu+kPcOMXfKNGjdC/f3+0aNECBoMBR44cwbvvvgsnJye88MILxthhw4bhtddew+uvv47Q0FCcOHECCxcuFM1Qu5eaNGmC2bNnY+bMmTh37hz69OmDunXr4sqVK9i/fz8cHR2Nty9UhUceeQQLFizA0KFD8dxzzyEzMxPvvPNOqV+0ABAQEIDPP/8c69evR9OmTWFnZ4eAgABERkZi/fr1eOyxxzB9+nR07NgR169fR0JCAvr162f8BVkVoqOjsXbtWmzfvh2Ojo7G9Q888ACee+45fPjhh7CwsEB4eLhx9qCPjw9efPHFKutTieDgYNStWxcRERGYNWsWrK2tsXbt2lJ/tEkNHToUJ06cwPLly5GSkoKUlBTja40aNUKjRo0QGRmJDRs2oFu3bnjxxRfRunVrGAwGJCcnY+vWrZgyZQo6deqEsLAwdOvWDdOmTUNeXh4CAwPx008/lfnHCt0bZnGmBQDt2rXDU089VWq9TqfDN998g6ioKKxatQp9+/bFO++8g2HDhmHbtm1l/lK5laenJxISEvDggw/i+eefxzPPPAM7OzssXLiw3Pe2aNECGzZswNWrVzFw4EBMmjQJbdu2xQcffFCh/bzb/gDAq6++irp16+K9997Do48+ivDwcHzwwQfo2bMn9u/fj4CAAGPsSy+9hJdeegmrV69G//79sWHDBnzxxReoU6dOhftfVWbMmIGvvvoKp0+fxogRI9C7d29MmzYNFy5cQLdu3ap02w8//DBWrlyJY8eOoX///pg5cyaeeOIJTJ8+vVTsG2+8gdDQUIwdOxYdO3Y03tzr7OyM3bt3Y/To0Vi+fDkeeeQRjB07FqdOnTI5+60K3t7eiIyMLPO1JUuWYO7cuYiLi0O/fv0wc+ZMhIWFYc+ePWVeg61sbm5u2Lx5MxwcHPDMM89g1KhRcHJyqnD1luPHj8NgMGDMmDEICgoyWT7++GMAgKOjI3bt2oWRI0caj8XgwYPxwQcfoFGjRsYzLQsLC2zatAlPP/005s+fb5z+HhcXV1m7TyrpFOWmOyOJiIg0zGzOtIiIiJi0iIjIbDBpERGR2WDSIiIis8GkRUREZoNJi4iIzAaTFhERmQ0mLSIiMhtmkbQWL14MPz8/2NnZoX379ti1a1d1d+muREdHl3qiqrlVjd65cyf69+8Pb29vY1WSmymKgujoaHh7exufYnv8+PHq6axQeftU1hNxS55urEUxMTHo0KEDnJ2d4e7ujgEDBuDUqVMmMeZ4nCT7ZW7HiuQ0n7TWr1+PyMhIzJw5E4mJiQgJCUF4eHipwp/mplWrVkhNTTUux44dq+4uqZKXl4c2bdrctrTU/PnzsWDBAixcuBAHDhyAp6cnevXqhZycnHvcU7ny9gkA+vTpY3LctFzOJyEhARMmTMC+ffsQHx+P4uJihIWFmTxO3hyPk2S/APM6VqRCdT6BUqJjx45KRESEyboWLVoo06dPr6Ye3b1Zs2Ypbdq0qe5uVBoAytdff238t8FgUDw9PZW5c+ca1+Xn5yuurq7K0qVLq6GH6t26T4py46m/jz32WLX0pzKkp6crAJSEhARFUWrGcVKU0vulKOZ/rOj2NH2mVVhYiEOHDiEsLMxkfUkxT3N25swZeHt7w8/PD08++STOnTtX3V2qNElJSUhLSzM5bra2tggNDTX747Zjxw64u7ujefPmGDt2rOiJxVqRlZUF4J+HMtaU43TrfpUw52NFt6fppJWRkQG9Xm983HkJDw8Ps34IW6dOnbBmzRps2bIFH330EdLS0hAcHKy5By9WVMmxqWnHLTw8HGvXrsW2bdvw7rvv4sCBA3j44YfLfIim1iiKgqioKHTt2hX+/v4AasZxKmu/APM+VnRnZvE8rVuflqooSpU8QfVeCQ8PN/53QEAAgoKCcN999+GTTz5BVFRUNfasctW04zZkyBDjf/v7+yMwMBC+vr7YvHkzBg4cWI09K9/EiRNx9OhR7N69u9Rr5nycbrdf5nys6M40faZVv359WFpalvqrLz09vdRfh+bM0dERAQEBOHPmTHV3pVKUzISs6cfNy8sLvr6+mj9ukyZNwqZNm7B9+3Y0atTIuN7cj9Pt9qss5nKsqHyaTlo2NjZo37494uPjTdbHx8cjODi4mnpV+QoKCnDy5El4eXlVd1cqhZ+fHzw9PU2OW2FhIRISEmrUccvMzERKSopmj5uiKJg4cSI2btyIbdu2wc/Pz+R1cz1O5e1XWbR+rEiFapwEIvL5558r1tbWyooVK5QTJ04okZGRiqOjo3L+/Pnq7lqFTZkyRdmxY4dy7tw5Zd++fUq/fv0UZ2dns9qnnJwcJTExUUlMTFQAKAsWLFASExOVCxcuKIqiKHPnzlVcXV2VjRs3KseOHVOeeuopxcvLS8nOzq7mnt/enfYpJydHmTJlirJnzx4lKSlJ2b59uxIUFKQ0bNhQs/v0/PPPK66ursqOHTuU1NRU43Lt2jVjjDkep/L2yxyPFclpPmkpiqIsWrRI8fX1VWxsbJSHHnrIZGqrORoyZIji5eWlWFtbK97e3srAgQOV48ePV3e3VNm+fbsCoNQyYsQIRVFuTKeeNWuW4unpqdja2irdunVTjh07Vr2dLsed9unatWtKWFiY0qBBA8Xa2lpp3LixMmLECCU5Obm6u31bZe0LAGXVqlXGGHM8TuXtlzkeK5LTKYqi3LvzOiIioorT9DUtIiKimzFpERGR2WDSIiIis8GkRUREZoNJi4iIzAaTFhERmQ0mLSIiMhtmk7QKCgoQHR1do6o0c5/MA/fJfNTU/aJ/mM3NxdnZ2XB1dUVWVhZcXFyquzuVgvtkHrhP5qOm7hf9w2zOtIiIiJi0iIjIbGjuIZAGgwGXL1+Gs7OzyYPosrOzTf6/JuA+mQfuk/m4V/ulKApycnLg7e0NCwv+7X8vae6a1sWLF+Hj41Pd3SAiKldKSkq5D6CkylVlZ1qLFy/G22+/jdTUVLRq1QqxsbEICQkp933Ozs4AgOD1Y2DlYFNu/OW/ZBdbgxslieIAwFJX+Xm8yGApjs0uthPF/ZnvIG7zj1wncaxeL3vUupo/MPOvWYtjnQ7ai+LcTuSL27T+Sx5rOHZKFGfZrKm4TVyV/+Wvz8iQtytk4Sw7/snjW4nbXPz0MnFsBzv5919qbU59cWyWXvazsmpDmCjOUJCPc7Gzjb+v6N6pkqS1fv16REZGYvHixejSpQuWLVuG8PBwnDhxAo0bN77je0uGBK0cbGDlaFvutiwLZb/gbZzKT4DGNqsgaelUJC3rIllfrSzL/3xKWBrksdDLspGFhfxzsoCKz99WdkytVHx7rSzlfTXoZAnWUsXnDwv5/uuE21fDQifbvvSzBwBHZ/lfLS52lT+EZq/IvwAFelmsmv0HYHIJg+6NKhmMXbBgAUaPHo0xY8agZcuWiI2NhY+PD5YsWVIVmyMiolqi0pNWYWEhDh06hLAw09PssLAw7Nmzp1R8QUEBsrOzTRYiIqKyVHrSysjIgF6vh4eHh8l6Dw8PpKWllYqPiYmBq6urceEkDCKiyrdz5070798f3t7e0Ol0+Oabb8p9T0JCAtq3bw87Ozs0bdoUS5curfqOlqPK5mreOtarKEqZ478zZsxAVlaWcUlJSamqLhER1Vp5eXlo06YNFi5cKIpPSkpC3759ERISgsTERLzyyiuYPHkyNmzYUMU9vbNKn4hRv359WFpaljqrSk9PL3X2BQC2trawtVVxQZuIiFQLDw9HeHi4OH7p0qVo3LgxYmNjAQAtW7bEwYMH8c4772DQoEFV1MvyVXrSsrGxQfv27REfH4/HH3/cuD4+Ph6PPfZYZW+OiMjs5efno7CwUPX7yhrBqqwTgb1795aam9C7d2+sWLECRUVFsLau/FmuElUy5T0qKgrDhg1DYGAggoKCsHz5ciQnJyMiIqIqNkdEZLby8/Ph5+uEtHS96vc6OTkhNzfXZN2sWbMQHR191/1KS0src25CcXExMjIy4OXlddfbqIgqSVpDhgxBZmYmZs+ejdTUVPj7+yMuLg6+vr7iNrwdsmDjWP69JV3rnxW1V6TI75NSEyuVUSC/udfOskgUZ6HifrLiYvk+yW8ulm/fyUl+c2/jJ1JFcU1Hym/CbWEvaxMAPp/SVxRn98d1cZvF3vKK44rFne9lLKEzyD//KwGy+48sZF89AMCsJPnIyYpmn4vixic9IW7z+OEm4liDS7Eo7oHvZLOXi/X5+F289TsrLCxEWroeSYd84aLi3rfsHAP82l9ASkqKSUX7yrzcUtbchLLW30tVVhFj/PjxGD9+fFU1T0RUozg63Vik9H//zeLi4lIlj2Hx9PQsc26ClZUV3NzcKn17UpormEtEVBsZoMAAFZVbVMRWRFBQEP73v/+ZrNu6dSsCAwOr7XoWwEeTEBFpgqEC/1MjNzcXR44cwZEjRwDcmNJ+5MgRJCcnA7hx+9Hw4cON8REREbhw4QKioqJw8uRJrFy5EitWrMDUqVMrbZ8rgmdaREQaoFcU6FU8dENNLAAcPHgQPXr0MP47KioKADBixAisXr0aqampxgQGAH5+foiLi8OLL76IRYsWwdvbGx988EG1TncHmLSIiDShqocHu3fvjjs9iWr16tWl1oWGhuLw4cOqtlPVmLSIiDTAAAV6DV3T0ipe0yIiIrPBMy0iIg3Q2uxBrWLSIiLSgKqeiFFTaDZp5Rbbip7g+4el7HHXVhbyEimbdgeKY5u9sE8U1/hn+ResUPiU1WKDfHTX0lI+Pba4SHYPhpopt8XCpyEDQJ7wyc1/FsoeoQ4AFy3riWNtM2XVO848I78TtIn/ZXFs0glZeRxdsbwqgcFeVhHC8pr8ONlbyctn9Nz3vCjOoOJ7sm7Ah+LYYZ9NFsWdeVr2s2fItwIqeX6C4e9FTXxtpNmkRURUm+hVTsRQE1uTMGkREWmAXvmnNJM0vjZi0iIi0gAOD8owaRERaYABOuih4jqlitiahEmLiEgDDMqNRU18bcSkRUSkAXqVZ1pqYmsSJi0iIg1g0pJh0iIi0gCDooNBUXFNS0VsTcLag0REZDZ4pkVEpAEcHpTRbNKSnipnFDqK2rva5U/xtptBVppJjeROeSqihbHxshJWAKBXUR5HEQ47KCrKSBlUTHUq0luK4q4Vy8o9AUCBQf5V77lyjyiut4qKBLYW8pJHK67Zi+KuZsiPv7SrVm7XxU3mC8uNAUDbhpdEcZn5sp9nAHjt3OPi2K7/OiaK87LLEsUV5BZhgXjrMnpYQK9i8EtemK5m0WzSIiKqTRSV17Skf1zWNExaREQawOFBGSYtIiIN0CsW0Csqhgd5czEREVUXA3QwqLimxYdAEhFRteHwoAyTFhGRBqgfHuSZFhERVZMbw4Os8l4eJi0iIg0wqLxPi9e0iIio2nB4UIa1B4mIyGxo9kyrWLGETim/nE9GrpOovcwZLcTbbhQjK+OjRpP9stI8AJBTZCeKyy4qFLdpZyMvIyRVVCQrt6Q2NrdAVp7J3kr2OQHAJYs64tijEf6iuLbLZKWBAOA+u3RxbBv3y6K4tFcaitu8viBfFNfV/ay4zXYOF8SxHexk+7Q0M1jcZpjLr+LYzVltRHEe1tmiuHzrYvG2pQyw4JR3Ac0mLSKi2kSv6KBXUZpJTWxNwqRFRKQB6gvm8kyLiIiqiUGxgEHFRAxDLZ2IwaRFRKQBPNOSYdIiItIAA9RdpzJUXVc0jUmLiEgD1M8erJ13LDFpERFpgPqbi5m0iIiomrD2oAyTFhGRBvBMS8bsk1Zbt4uywEHCOAAFj8urV0glLm4rjm0x7rgozkonvxRrYVH5sRYW8r/0rKzk29cbZD+MWQXyihjWlnpx7AOLfxPFGVRcNC8SVHcpcTnPVRb4q6yfALCmxW5RXGMrWYUZAOjt3VYc++ilq6K4L7d2Ebf5y7Km4lhcuy4KO+56nyiuWF8AIEG+fQH1swdrZ9KqnXtNRERmqdKTVnR0NHQ6ncni6elZ2ZshIqpRDIpO9VIbVcnwYKtWrfDDDz8Y/21pKR8aISKqjdQ/T6t2DpRVSdKysrLi2RURkQrqyzjVzqRVJXt95swZeHt7w8/PD08++STOnTt329iCggJkZ2ebLEREtY0eOtVLbVTpSatTp05Ys2YNtmzZgo8++ghpaWkIDg5GZmZmmfExMTFwdXU1Lj4+PpXdJSIizSs501Kz1EaVvtfh4eEYNGgQAgIC0LNnT2zevBkA8Mknn5QZP2PGDGRlZRmXlJSUyu4SEZHm6aH2bKt2qvL7tBwdHREQEIAzZ86U+bqtrS1sbW2ruhtERJrGa1oyVb7XBQUFOHnyJLy8vKp6U0REZqukIoaaRa3FixfDz88PdnZ2aN++PXbt2nXH+LVr16JNmzZwcHCAl5cXnn322dte6rlXKj1pTZ06FQkJCUhKSsLPP/+MJ554AtnZ2RgxYkRlb4qIqMZQ/q49KF0UlRMx1q9fj8jISMycOROJiYkICQlBeHg4kpOTy4zfvXs3hg8fjtGjR+P48eP48ssvceDAAYwZM6YydrfCKn148OLFi3jqqaeQkZGBBg0aoHPnzti3bx98fX1VteNgVQhrQe9yimWlfIoM8nvFfjrSXBzb7NMCUVzzd06K2/ztTw9RnN4g/9LmF1qLY/V64d8yVXRzY1Gx7FjZWheL21RzI+bpbHdR3EN15ddf34t7RBxrsJM93K8Z5KXJ+h4cJ4pzdZCVOwIAJ9x+VvCt+jUKFMU1u/+KuE3lT1lpKADI6/qAKM4hWTZ7WdFX/hWlqq49uGDBAowePdqYdGJjY7FlyxYsWbIEMTExpeL37duHJk2aYPLkyQAAPz8/jBs3DvPnz1e13cpW6Unr888/r+wmiYhqPLVVLkpib71NqKx5AoWFhTh06BCmT59usj4sLAx79uwps/3g4GDMnDkTcXFxCA8PR3p6Or766is88oj8D7CqUDuv5BER1RA+Pj4mtw2VddaUkZEBvV4PDw/TURwPDw+kpaWV2W5wcDDWrl2LIUOGwMbGBp6enqhTpw4+/PDDKtkPKbOv8k5EVBNUtMp7SkoKXFxcjOvvNBtbpzM9k1MUpdS6EidOnMDkyZPx+uuvo3fv3khNTcVLL72EiIgIrFixQtzPysakRUSkARUdHnRxcTFJWmWpX78+LC0tS51Vpaenlzr7KhETE4MuXbrgpZdeAgC0bt0ajo6OCAkJwZtvvlltM8I5PEhEpAEGWKhepGxsbNC+fXvEx8ebrI+Pj0dwcHCZ77l27RosLEy3UVL8XFFkk4WqAs+0iIg0QK/ooFdxpqUmFgCioqIwbNgwBAYGIigoCMuXL0dycjIiIiIA3KhOdOnSJaxZswYA0L9/f4wdOxZLliwxDg9GRkaiY8eO8Pb2VrXtysSkRUSkARUdHpQaMmQIMjMzMXv2bKSmpsLf3x9xcXHG25FSU1NN7tkaOXIkcnJysHDhQkyZMgV16tTBww8/jHnz5qnabmVj0iIi0gBFZRknpQIVMcaPH4/x48eX+drq1atLrZs0aRImTZqkejtViUmLiEgD1D5upLY+mkSzSauh3V+wtZdXcShPgUG+q90fklevyAmQFfvNLZIXBbaxlN1tXwh5lY9Gg46LYy98ESCKazZNXoPsz+Xy/bfUyS7yutjmi9v0sM8Rx3rZZoni9mb4idtU80ex567K/2U0scUOUVxEnUviNnujrTg2c1RnUVydc7IKMwBwvW0DcWyel+xnJbtxPVGcvjAf+FW8eRGDom7Iz1B9cyGqlWaTFhFRbcIq7zJMWkREGlBSCFdNfG3EpEVEpAFVPeW9pmDSIiLSAA4PytTOvSYiIrPEMy0iIg0wQOXNxbymRURE1UVRORFD7ZOLawomLSIiDajqMk41BZMWEZEGcCKGDJMWEZEG8ExLRrNJq4NjEhycyi+9kq/ISj0VKfKSRzl6e3FscoGs7MufhY7iNq0sZGWcrhXbiNu8+t194tjC07K+pi+Rl9ypY3NdHGupM4jiXGzkZZwud5aXcbLYd+cH6pX4uPlacZt9/pgojt3z3mpRXOuGZRc+LUtEncXiWKnTyzqIYxtulR3TYjv5z2mhk/xMw/VcsShOmfSHKK44rwD4SLx5Ed5cLKPZpEVEVJvwTEuGSYuISAOYtGSYtIiINIBJS4ZJi4hIA5i0ZJi0iIg0QIG6yRW19HFarD1IRETmg2daREQawOFBGSYtIiINYNKSYdIiItIAJi0ZJi0iIg1g0pLRbNKK+WQILG3tyg8UTqHJayIrjQQAm/u9J449Zysr45RWVEfcZo5BsN8AcvWyOADIKHISx54MPyuKK9jaRNxmcP1z4lgL4UGtZ5UnbvOB3y+LY5tZXxXF9d4rL6P0VuDX4lipXBXf6b49nhDFFdeTlxtrFXNRHHvSwVMU53RIXkKtOCRLHFtv0HFRXOPXZPtfaFWIn8Vbl1EUHRQViUhNbE2i2aRFRFSbsPagDJMWEZEGcHhQhkmLiEgDODwow6RFRKQBPNOSYdIiItIAnmnJsIwTEZEGKH+faUkXrSetHTt2VEm7TFpERFTp+vTpg/vuuw9vvvkmUlJSKq1dJi0iIg1QACiKiqW6O1yOy5cv44UXXsDGjRvh5+eH3r1744svvkBhYeFdtcukRUSkASX3aalZtKxevXqYPHkyDh8+jIMHD+KBBx7AhAkT4OXlhcmTJ+OXX36pULuanYjhvTsHVpZF5cYZbCxF7f3e2Fa87b7fR4pjLfJled+iUP4F2zzkHVHcXwYbcZt/6uUVMTqfchDF2Vn8Lm7T01JevSD6/KOiuNT/+YrbvN5A/nfpwsEfi+Lun50vbvPjOgPEsSsLikVxnvfLv1PXmtYVxdmn5IjbPJfhJo61OymrdFEg6yYAQHfUVR4sdHK+vyiuuEh+7KVq8kSMtm3bYvr06ahXrx7mzp2LlStXYvHixQgKCsLSpUvRqlUrcVs80yIi0gA1kzDUTo+vLkVFRfjqq6/Qt29f+Pr6YsuWLVi4cCGuXLmCpKQk+Pj44P/+7/9Utak6ae3cuRP9+/eHt7c3dDodvvnmG5PXFUVBdHQ0vL29YW9vj+7du+P4cVndLyKi2krV9ay/Fy2bNGkSvLy8EBERgebNmyMxMRF79+7FmDFj4OjoCB8fH8ydOxe//fabqnZVJ628vDy0adMGCxcuLPP1+fPnY8GCBVi4cCEOHDgAT09P9OrVCzk58mEHIqLapmR4UM2iZSdOnMCHH36Iy5cvIzY2Fv7+pYdevb29sX37dlXtqr6mFR4ejvDw8DJfUxQFsbGxmDlzJgYOHAgA+OSTT+Dh4YHPPvsM48aNU7s5IqJaoaZd05o1axaCg4NhZWWaZoqLi7Fnzx5069YNVlZWCA0NVdVupV7TSkpKQlpaGsLCwozrbG1tERoaij179pT5noKCAmRnZ5ssRES1TU27ptWjRw/8+eefpdZnZWWhR48eFW63UpNWWloaAMDDw8NkvYeHh/G1W8XExMDV1dW4+Pj4VGaXiIjMQk27pqUoCnS60ok1MzMTjo7y57bdqkqmvN/a0dt1HgBmzJiBqKgo47+zs7OZuIio1rmRiNQMD1ZhZ+5CyaUhnU6HkSNHwtb2n9uN9Ho9jh49iuDg4Aq3X6lJy9PzxtNJ09LS4OXlZVyfnp5e6uyrhK2trclOERHVRjXlmpar64375xRFgbOzM+zt/7lHz8bGBp07d8bYsWMr3H6lJi0/Pz94enoiPj4e7dq1AwAUFhYiISEB8+bNq8xNERGRBq1atQoA0KRJE0ydOvWuhgLLojpp5ebm4vff/6mEkJSUhCNHjqBevXpo3LgxIiMjMWfOHDRr1gzNmjXDnDlz4ODggKFDh1Zqx4mIahIF6uoJanR00GjWrFlV0q7qpHXw4EGTmR8l16NGjBiB1atXY9q0abh+/TrGjx+Pq1evolOnTti6dSucnZ1VbSczwAmWNnZqu3db9Q/LYy0L5V8H62sGUZxNlqw0DwBM2DxRFBe/bpW4TaBAHPl5jqyMU7jDVXGbtjprcez3LTaL4vo+FVZ+0N/WHfqvOPZkoaw8luHMeXGbfw5vL45t8MWvori0F5qJ27xvuex7avGX/H7K6Na7xbHvbXxKFFfgouIhiDaVPzzmuOFnUVyxUn6JObXuxfDg4sWL8fbbbyM1NRWtWrVCbGwsQkJCbhtfUFCA2bNn49NPP0VaWhoaNWqEmTNnYtSoUWXGP/TQQ/jxxx9Rt25dtGvX7rZzGQDg8GEVv5Rvojppde/eHcodrgDqdDpER0cjOjq6Qh0iIqqVqvhUa/369YiMjMTixYvRpUsXLFu2DOHh4Thx4gQaN25c5nsGDx6MK1euYMWKFbj//vuRnp6O4uLb/wH+2GOPGecoDBgwQF0HhTRbMJeIqFZRW+VC5ZnWggULMHr0aIwZMwYAEBsbiy1btmDJkiWIiYkpFf/9998jISEB586dQ7169QDcuE51JzcPCVbV8CAL5hIRaUBF79O6tThDQUHpSwGFhYU4dOiQSeEHAAgLC7tt4YdNmzYhMDAQ8+fPR8OGDdG8eXNMnToV169fF+1PSkoKLl68aPz3/v37ERkZieXLlws/kbIxaRERaUBFaw/6+PiYFGgo66wpIyMDer1eVeGHc+fOYffu3fj111/x9ddfIzY2Fl999RUmTJgg2p+hQ4ca6wqmpaWhZ8+e2L9/P1555RXMnj1bzUdjgsODRERaoOjUDfn9HZuSkgIXFxfj6jvd96qm8IPBYIBOp8PatWuN914tWLAATzzxBBYtWmRy/1VZfv31V3Ts2BEA8MUXXyAgIAA//fQTtm7dioiICLz++uvl72MZmLSIiDRAbWmmklgXFxeTpFWW+vXrw9LSstRZ1Z0KP3h5eaFhw4bGhAUALVu2hKIouHjxIpo1u/Ps1aKiImMC/eGHH/Doozce7tqiRQukpqbe8b13wuFBIiItUCqwCNnY2KB9+/aIj483WR8fH3/bkkpdunTB5cuXkZuba1x3+vRpWFhYoFGjRuVus1WrVli6dCl27dqF+Ph49OnTBwBw+fJluLnJn3p9KyYtIiINqOrnaUVFReHjjz/GypUrcfLkSbz44otITk5GREQEgBt1YIcPH26MHzp0KNzc3PDss8/ixIkT2LlzJ1566SWMGjWq3KFBAJg3bx6WLVuG7t2746mnnkKbNm0A3JjgUTJsWBEcHiQi0ooqLHMxZMgQZGZmYvbs2UhNTYW/vz/i4uLg6+sLAEhNTUVycrIx3snJCfHx8Zg0aRICAwPh5uaGwYMH48033xRtr3v37sjIyEB2djbq1q1rXP/cc8/BwUFWwKAsTFpERLXE+PHjMX78+DJfW716dal1LVq0KDWkqIalpaVJwgLKv9erPJpNWq5nC2BlVf7pr0565VJWxUY1y3xheSY1V1jvUPrkZn6bnhM32Xx1vjjWMkt2H8YntvLSTGld6ohjPXeVfnBcWYpblD9EUaJv1IviWOezslJGlm4Z4jbtr8q/gLk9HxTFvd15nbjNj97vL4orvnhJ3OZgpyz59pNl3z9dQ3npNs8Jv5cf9Le8D8Sh1aamVHkvceXKFUydOhU//vgj0tPTS1VS0uv1FWpXs0mLiKhWqWEVc0eOHInk5GS89tpr8PLyumMdQjWYtIiINEH396ImXrt2796NXbt2oW3btpXaLpMWEZEW1LAzLR8fnzsWV68oTnknItKCKrxPqzrExsZi+vTpOH/+fKW2yzMtIiItqGAZJ60aMmQIrl27hvvuuw8ODg6wtjaduPXnn7IJV7di0iIi0oCKlnHSqtjY2Cppl0mLiEgLatg1rREjRlRJu7ymRUSkBSXDg2oWjTt79ixeffVVPPXUU0hPTwdw4+GSx48fr3CbTFpERBqgU9QvWpaQkICAgAD8/PPP2Lhxo7Hw7tGjR+/qqcaaHR4sqGMNvbW84kJlMqj5VHS3f3bNzayuyysi6Ayyb+MDH18Tt2mRI6+IYXCS7VO+h7x+mPuh3PKDStr1chLF2V2St1nYVF5pIaPtnR/zUCJztKO4TZ2Km/8VJ1mVlUFO2eI2l8+XVa/Ij1VTyPSIODI5XFa9xCZLfvaQdqypONZ+xp0fo1Gi0FX2s2fIzwdm/Ve8fZEaNjw4ffp0vPnmm4iKioKzs7NxfY8ePfD+++9XuF2eaRERUaU7duwYHn/88VLrGzRogMzMzAq3y6RFRKQFNeyaVp06dcp82GNiYiIaNmxY4XaZtIiItKCG3Vw8dOhQvPzyy0hLS4NOp4PBYMBPP/2EqVOnmjy3Sy0mLSIiLahhSeutt95C48aN0bBhQ+Tm5uLBBx9Et27dEBwcjFdffbXC7Wp2IgYRUa1SwyZiWFtbY+3atfj3v/+Nw4cPw2AwoF27dmjWTDYp5nZ4pkVEpAU17JrW7Nmzce3aNTRt2hRPPPEEBg8ejGbNmuH69euYPXt2hdtl0iIi0oCadp/WG2+8Ybw362bXrl3DG2+8UeF2OTxIRKQFNWx4UFGUMh/8+Msvv6BevXoVbpdJi4iIKk3dunWh0+mg0+nQvHlzk8Sl1+uRm5uLiIiICrfPpEVEpAE6qBvy0+oVrdjYWCiKglGjRuGNN96Aq6ur8TUbGxs0adIEQUFBFW5fs0nLYK2Dwbr8w2J1TVYeqdhefogti+TfnDx32WVBnauluE3paX/Wc7JyPwCQd6KBOLbuCVmc274r4javNXcTx2b5ysp3FbeWDzHUOyn/rC6HyI5V8/H7xW1aNpB//inPCmdX9RY3iaT9PqI4u2ZV86vQokDWbu59ReI2Hc7Ly7w16pks236RjSiuOK8A58VbF6ohz9Mqqe7u5+eH4ODgUs/RuluaTVpERLVKDbumFRoaCoPBgNOnTyM9PR0Gg+kJRrdu3SrULpMWERFVun379mHo0KG4cOEClFueWKnT6aDXq6gifRMmLSIiLahhZ1oREREIDAzE5s2b4eXlVeZMwopg0iIi0gC1915p/T6tM2fO4KuvvsL9999fqe3y5mIiIi2oYbUHO3XqhN9//73S2+WZFhGRFtSw4cFJkyZhypQpSEtLQ0BAQKlZhK1bt65Qu0xaREQaUNOGBwcNGgQAGDVqlHGdTqczVsrgRAwiInNWQ+7TKpGUlFQl7TJpERFpQQ0bHvT19a2Sdpm0iIg0oCYMD27atAnh4eGwtrbGpk2b7hj76KOPVmgbmk1a2U0sYGlb/uRGnUE2AdL2T/kRNqj4VGyzZO0WuMpP5T2HXBDFpWa7iNtstuySODb5PSdRnEuya/lBf7OOShPH6uNkJYdyHygUt2mXKS8lY3VddqyuD+gobvNqc/mXynv+HlFcuy5Pitv0m7FXFGfh4CBvM2C0ONa59BMqynZZfpzq/Sa/JrJl0reiOP8Pxovi9AX54m2L1YAzrQEDBiAtLQ3u7u4YMGDAbePu5pqW6invO3fuRP/+/eHt7Q2dTodvvvnG5PWRI0caK/yWLJ07d65Q54iIag21z9LSYNIyGAxwd3c3/vftloomLKACSSsvLw9t2rTBwoULbxvTp08fpKamGpe4uLgKd5CIqFaoYfdpVRXVw4Ph4eEIDw+/Y4ytrS08PT0r3CkiIqKyVElFjB07dsDd3R3NmzfH2LFjkZ6eftvYgoICZGdnmyxERLUOz7REKj1phYeHY+3atdi2bRveffddHDhwAA8//DAKCgrKjI+JiYGrq6tx8fGRXYQnIqpJ1FzPUjvTsCap9NmDQ4YMMf63v78/AgMD4evri82bN2PgwIGl4mfMmIGoqCjjv7Ozs5m4iIioTFU+5d3Lywu+vr44c+ZMma/b2trC1ta2qrtBRKRtNWDKu5rLOy4u8lt2blblSSszMxMpKSnw8vKq6k0REZmtmnBzcZ06dcp9btY9rz2Ym5trUm4+KSkJR44cQb169VCvXj1ER0dj0KBB8PLywvnz5/HKK6+gfv36ePzxxyvUQSKiWkODiUiN7du3V/k2VCetgwcPokePHsZ/l1yPGjFiBJYsWYJjx45hzZo1+Ouvv+Dl5YUePXpg/fr1cHZ2VrUd+z8UWNpU3hG83kBekeLXFxaLY3t7t61Ab+5Mv1QWN/HkYXGbzluvi2M/fFlWaeHq/fJ5PAdb/k8c+4WPrNJGL/tUcZtPjgkWxx64fEQUNzq5q7jNHXv9xbEpM2V9PdFBxfcUbUVxhmvXxG0m9V4h3/6zsu3rrG3EbSrtHpBvX/hz6vSMQRSnL5TFqVIDhgdDQ0OrfBuqk1b37t2hKLf/tLZs2XJXHSIiqo1qwvDgrXbt2oVly5bh3Llz+PLLL9GwYUP85z//gZ+fH7p2lf/RdzM+uZiISAtq2H1aGzZsQO/evWFvb4/Dhw8bb3vKycnBnDlzKtwukxYRkQbci/u0Fi9eDD8/P9jZ2aF9+/bYtWuX6H0//fQTrKys0LZtW/G23nzzTSxduhQfffSRyVOLg4ODcfiw/NLGrZi0iIi0oIrPtNavX4/IyEjMnDkTiYmJCAkJQXh4OJKTk+/4vqysLAwfPhz/+te/VG3v1KlT6NatW6n1Li4u+Ouvv1S1dTMmLSIiLajipLVgwQKMHj0aY8aMQcuWLREbGwsfHx8sWbLkju8bN24chg4diqCgIFXb8/LyMplpXmL37t1o2rSpqrZuxqRFRGTGbq3dWlbJvMLCQhw6dAhhYWEm68PCwrBnz+2f37Zq1SqcPXsWs2bNUt2vcePG4YUXXsDPP/8MnU6Hy5cvY+3atZg6dSrGj5c9t6wsmn0IJBFRbVLR2YO3lr2bNWsWoqOjTdZlZGRAr9fDw8PDZL2HhwfS0sp+QOuZM2cwffp07Nq1C1ZW6lPFtGnTkJWVhR49eiA/Px/dunWDra0tpk6diokTJ6purwSTFhGRFlTwPq2UlBSTkkh3Kot3a7WKkuoUt9Lr9Rg6dCjeeOMNNG/eXEWnTL311luYOXMmTpw4AYPBgAcffBBOTrIno98OhweJiLSggte0XFxcTJayklb9+vVhaWlZ6qwqPT291NkXcGNa+sGDBzFx4kRYWVnBysoKs2fPxi+//AIrKyts27at3N1ZseLGzecODg4IDAxEx44d4eTkhOLiYsyYMUP4oZTGpEVEpAFVOeXdxsYG7du3R3x8vMn6+Ph4BAeXrsDi4uKCY8eO4ciRI8YlIiICDzzwAI4cOYJOnTqVu80pU6Zg0KBB+PPPP43rfvvtN3Ts2BFffPGFvPO30OzwYI9x+2DrZF1u3KF2srx79m35zBc1pZksWrcQxV2eLS8jpTfI9mljT29xm8WXLotjP0z6QBQ3+tdh4jY7vxQhjrXKl/00rjqTJW4zv7+8onRv4cd6aaOvuE2Do7w4qPJX5f8teXGGrDSUbVCmilaPiCMLwjuI4h6cfUzc5vcnyv/9UKLZflmc66f7RHHFSpF422JVXMYpKioKw4YNQ2BgIIKCgrB8+XIkJycjIuLGz+aMGTNw6dIlrFmzBhYWFvD3Ny095u7uDjs7u1LrbycxMRHDhg1DQEAAVq9ejdOnT+Oll17CE088gUWLFqnr/E00m7SIiGqTqi7jNGTIEGRmZmL27NlITU2Fv78/4uLi4Ot744+v1NTUcu/ZUsPPzw87d+7Eiy++iD59+sDS0hJr1qzBk0/KapveDocHiYi04B6UcRo/fjzOnz+PgoICHDp0yOTm39WrV2PHjh23fW90dDSOHDmianvffvst1q1bh+DgYNSpUwcfffQRLl+Wj/qUhUmLiEgLaljtwXHjxmHw4MGYNm0adu7ciaNHj8LW1hYBAQE185oWEVFtovt7UROvZT/99BN+/vlntGnTBgDg6emJuLg4LFq0CKNGjcLgwYMr1C6TFhGRFlTxRIx77dChQ2VOv58wYQJ69uxZ4XaZtIiINKCmPU/rTjc5P/CA/AGet2LSIiKiSvHQQw/hxx9/RN26ddGuXbsyq22UqOjjSZi0iIi0oAYMDz722GPGM6zHHnvsjkmropi0iIi0QoOJSI2bq8HfWrS3snDKOxGRBtyLJxffC9euXcOECRPQsGFDuLu7Y+jQocjIyKi09jV7pnWkqwWsdOXn1AZ76sgaDN4r3vbk338Txz7icEQUt/manbjNt8/1EcWdeK2RuM32rQrFsc+++6IorqCOuEk8NPkXcewsry2iuPAPponbdDshL7uju8MF5Jvln5WXhrL0zpfH5svKE/Vt00vcZsF0gyjuekodcZsIlIemjiz9jKey2HaQf04NhsuOkxp1f6oniivKKwTkH79MDRgeBG6cba1evRpPP/007OzssG7dOjz//PP48ssvK6V9zSYtIqLapKbMHty4cSNWrFhhLNf0zDPPoEuXLtDr9bC0tLzr9jk8SESkBTWkIkZKSgpCQkKM/+7YsSOsrKzuunxTCZ5pERFpQE0509Lr9bCxsTFZZ2VlheLi4kppn0mLiEgLasg1LUVRMHLkSJObi/Pz8xEREQFHR0fjuo0bN1aofSYtIiItqCFJa8SIEaXWPfPMM5XWPpMWEZEG1JThwVWrVlVp+0xaRERaUEPOtKoaZw8SEZHZ4JkWEZEG6BQFOkV++qQmtiYx+6R16uOWorh//75S3Obrpx4Vx3ZovVoUt/ZKD3GbF843EMU1ue+KuM1nPPeJY9/oVV8Udz1VXhHix1PyRxFM8vhRFGchL3IBh72/i2Ov/au1KM5zn6zKBADMmLdOHDs9cZQo7uLwZuI27VNlcVbXxE3iXxtGi2OLBsp+1Vhu9xa3aT+/cqZQ3+xCdl1RnD5PVuFDFQ4Piph90iIiqglqykSMqsakRUSkBTzTEmHSIiLSAJ5pyTBpERFpAc+0RJi0iIg0gGdaMkxaRERawDMtESYtIiKNqK1nT2owaRERaYGi3FjUxNdCTFpERBrAa1oyrD1IRERmQ7NnWl+fPgYX5/JzatMfHhK118dBXnZlnk2hOPblS31EcYlbZOWmAGD0E9tEcbta24nbXIL7xbFe9f8Qxe375T/iNgP3l37Gzu20tpHtV27gdXGb2CorTQUAD75xTBR3tkO+uM2JvYaLY2075ojiii47lh/0t6e6/ySK+/zHLuI2LcJl/QSAtq5XRXGn/nAXt9n1jV/FsctWHBHF9RZWkSpWVNQQk+JEDBFVZ1oxMTHo0KEDnJ2d4e7ujgEDBuDUqVMmMYqiIDo6Gt7e3rC3t0f37t1x/PjxSu00EVFNozOoX2ojVUkrISEBEyZMwL59+xAfH4/i4mKEhYUhLy/PGDN//nwsWLAACxcuxIEDB+Dp6YlevXohJ0f+VxkRUa2jVGCphVQND37//fcm/161ahXc3d1x6NAhdOvWDYqiIDY2FjNnzsTAgQMBAJ988gk8PDzw2WefYdy4cZXXcyKiGoQTMWTuaiJGVlYWAKBevXoAgKSkJKSlpSEsLMwYY2tri9DQUOzZs6fMNgoKCpCdnW2yEBHVOiVT3tUstVCFk5aiKIiKikLXrl3h7+8PAEhLSwMAeHh4mMR6eHgYX7tVTEwMXF1djYuPj09Fu0REZLZKzrTULLVRhZPWxIkTcfToUaxbV/rhdjqdzuTfiqKUWldixowZyMrKMi4pKSkV7RIRkfniNS2RCk15nzRpEjZt2oSdO3eiUaNGxvWenp4AbpxxeXl5Gdenp6eXOvsqYWtrC1tb24p0g4ioxuA1LRlVZ1qKomDixInYuHEjtm3bBj8/P5PX/fz84Onpifj4eOO6wsJCJCQkIDg4uHJ6TERUE/GaloiqM60JEybgs88+w3//+184Ozsbr1O5urrC3t4eOp0OkZGRmDNnDpo1a4ZmzZphzpw5cHBwwNChQ6tkB4iIagKeacmoSlpLliwBAHTv3t1k/apVqzBy5EgAwLRp03D9+nWMHz8eV69eRadOnbB161Y4OztXSodvNbfzhkpv08ZCL4499EWAKK7BuWJxm2vse4jiipbI+3ms/wfi2IDvJoniOrz7grhN2ywVP2GdZGHN35ZXxDj5Yh1x7Kmf3ERx92OfuE3LXPmgxm+PyiqN+H03Rtzmm+6yKh/rLOQVMf5MdZXH/uEiivP2/lPcpq2F/Gfqw6u+orjTSzqK4gzX84EX/yvevggrYoioSlqK4HRUp9MhOjoa0dHRFe0TERFRmTRbe5CIqDbh8KAMkxYRkRYYlBuLmvhaiEmLiEgLeE1LhEmLiEgDdFA5PFhlPdE2PgSSiEgL7sF9WosXL4afnx/s7OzQvn177Nq167axGzduRK9evdCgQQO4uLggKCgIW7ZsuZs9rBRMWkREGlDVtQfXr1+PyMhIzJw5E4mJiQgJCUF4eDiSk5PLjN+5cyd69eqFuLg4HDp0CD169ED//v2RmJhYCXtbcUxaRERaUMW1BxcsWIDRo0djzJgxaNmyJWJjY+Hj42O8//ZWsbGxmDZtGjp06GAsFNGsWTP873//q+AOVg4mLSIiDdApiuoFQKlHOxUUFJRqu7CwEIcOHTJ5bBQAhIWF3faxUbcyGAzIyckxPoqqujBpERFpgaECCwAfHx+TxzvFxMSUajojIwN6vV7VY6Nu9e677yIvLw+DBw+u0O5VFs3OHgyZPxqWNnblxi1+aaGovX358m1nrWpUftDfDMLQP4fnids83XmtKO6Z893FbfY78aQ4NumRj0Rx3/eQV+efey5cHCtlOPqbOLb5ytbi2IsPO1WkO3d03xfy479voKw8V4cHksRttlw2XhR3dtxicZtqPDxSVnIqc7z8O/X91kBx7K5WV0VxDu6y46S/Vvps5m7dfPYkjQeAlJQUuLj8UybrTk/NUPPYqJutW7cO0dHR+O9//wt3d3dxH6uCZpMWEVGtUsH7tFxcXEySVlnq168PS0vLUmdVd3psVIn169dj9OjR+PLLL9GzZ08VHawaHB4kIqrhbGxs0L59e5PHRgFAfHz8HR8btW7dOowcORKfffYZHnnkkarupgjPtIiItEDtvVcq79OKiorCsGHDEBgYiKCgICxfvhzJycmIiIgAcOMp8pcuXcKaNWsA3EhYw4cPx/vvv4/OnTsbz9Ls7e3h6iqv8F/ZmLSIiDSgqgvmDhkyBJmZmZg9ezZSU1Ph7++PuLg4+PreeGxLamqqyT1by5YtQ3FxMSZMmIAJEyYY148YMQKrV69Wt/FKxKRFRKQFVXymBQDjx4/H+PFlT8q5NRHt2LFDdfv3ApMWEZEG6Aw3FjXxtRGTFhGRFtyDM62agEmLiEgL+GgSESYtIiINqOjNxbUNkxYRkRZweFBEs0mr8RPnYO1oU27crKbtK33bbk1ltbgAID3yzneTl7A5puK+hs6ysD+C/xI3adeuoTg2aM4gUdyDda+I20xJryuOHZ3cVRiZK27z3GT5ffTPtNohittxuIu4TZvvD4hjTxfKvlNfNP1R3GZz++aiuC4vjBO3ebWFpTi2y79/EcXdJ24R2LtP/p0q/klW5HXSyP+K4q7nFmOqeOtCCoz1BMXxtZBmkxYRUW3C4UEZJi0iIi1QoHJ4sMp6ommsPUhERGaDZ1pERFrAiRgiTFpERFpgAFD+o61M42shJi0iIg3gRAwZJi0iIi3g8KAIkxYRkRYwaYkwaRERaQGTlohmk9bFz5rC0sau3Dg3/CFq7/TyDuJtN/pOfieAZf0CUVzdveXvS4ne3m1FcdcGdhK36bDxZ3GsS7gs7vpP8ooEZx9eJY4N+HmoKM4bJ8RtNlkiv8LtsER2TFODrMVt/rbyiDi211PPiuLi5lwQt2lRINt/xVLF55Qq/6WZkldHFPdQ3RRxm79OXiyOHX9JVmbmIfvzori84iqYBcGJGCKaTVpERLUJJ2LIMGkREWkBhwdFmLSIiLTAoAA6FYnIwKRFRETVhWdaIqw9SEREZoNnWkREmqDyTKuWlnln0iIi0gIOD4owaRERaYFBgaqzJ07EICKiaqMYbixq4mshJi0iIi3g8KCIZpNWwqsr4OJc/uTGXqdGitpr/twB8bbPzQ8SxzrtcRDFKZaV/1eRmtJMako+5Y38SxR3Od1S3Cb85KEF+fLySFJ5DW3Fsbsym4nidA/miNuUluYCgAuf60Vx13PqiNv02XZdFGcdfUXcpoNVoTg2q9BeFHeonXxCc7uJ48WxOU1kP39+fWRl4fKvFQOQl5wS4fCgiGaTFhFRrcIzLRFV92nFxMSgQ4cOcHZ2hru7OwYMGIBTp06ZxIwcORI6nc5k6dxZVqySiKjWUvBP4hIt1d3h6qEqaSUkJGDChAnYt28f4uPjUVxcjLCwMOTl5ZnE9enTB6mpqcYlLi6uUjtNRFTjqEpYau/pqjlUDQ9+//33Jv9etWoV3N3dcejQIXTr1s243tbWFp6enpXTQyKi2sBggKrnjRhq5+zBuyrjlJWVBQCoV6+eyfodO3bA3d0dzZs3x9ixY5Genn7bNgoKCpCdnW2yEBHVOjzTEqlw0lIUBVFRUejatSv8/f2N68PDw7F27Vps27YN7777Lg4cOICHH34YBQVlP1gvJiYGrq6uxsXHx6eiXSIiMl9MWiIVnj04ceJEHD16FLt37zZZP2TIEON/+/v7IzAwEL6+vti8eTMGDhxYqp0ZM2YgKirK+O/s7GwmLiIiKlOFktakSZOwadMm7Ny5E40aNbpjrJeXF3x9fXHmzJkyX7e1tYWtrfweGiKiGon3aYmoSlqKomDSpEn4+uuvsWPHDvj5lX/HaGZmJlJSUuDl5VXhThIR1XSKYoCiojSTmtiaRNU1rQkTJuDTTz/FZ599BmdnZ6SlpSEtLQ3Xr9+42z43NxdTp07F3r17cf78eezYsQP9+/dH/fr18fjjj1fJDhAR1QiKcuPsSbrwmlb5lixZAgDo3r27yfpVq1Zh5MiRsLS0xLFjx7BmzRr89ddf8PLyQo8ePbB+/Xo4Ozur6libjaNgYWdXbtz9u/eJ2ru6WVaaBwCUk/Ivg/vCvaK4pM9bi9vM9gsWxfl9dFbcZtGYTHFs5wYXRXHdXE6VH1QB978mm0EqK3akXohb2UPZt/rjmmOVbN/vyaOiuKKwQHGb8es+FsWFPvecuE3s/E0cmvSa7OevmfNf4jbdF+4Rx+bOlZVm2xHeUhRXbCgA8KN4+yKKyuFBJq3yKeV8SPb29tiyZctddYiIqFYyGAAdq7yXh7UHiYi0gGdaIkxaREQaoBgMUFScadXWiRhMWkREWsAzLREmLSIiLTAogI5JqzxMWkREWqAoUFUwl0mLiIiqi2JQoKg40ypvNndNdVdV3omIyHwsXrwYfn5+sLOzQ/v27bFr1647xickJKB9+/aws7ND06ZNsXTp0nvU09tj0iIi0gLFoH5RYf369YiMjMTMmTORmJiIkJAQhIeHIzk5ucz4pKQk9O3bFyEhIUhMTMQrr7yCyZMnY8OGDZWxtxWm2eHBXwauhItz+Tl11sOtRO1NqLdavO1OaS+IY7dcPiKMlMYBDx4fL4rbfFh+I3ffU33FsT/EtxPFeTyi4tlnzlfFoaei64ji7n9GvnmdXj6U8lI9WaWRZUdDxG3WbdBAHKv/4w9R3NKP3he32XL5S6K4hrn54javb6grjr1/uuy7YlHHVdymISdHHNvgiOz4n5ose8KEIT8feFW8eZGqHh5csGABRo8ejTFjxgAAYmNjsWXLFixZsgQxMTGl4pcuXYrGjRsjNjYWANCyZUscPHgQ77zzDgYNGqRq25WJZ1pERBpQrBSg2KBiUW48o/DWh+iW9ezCwsJCHDp0CGFhYSbrw8LCsGdP2eWw9u7dWyq+d+/eOHjwIIqKiippr9XT7JkWEVFtYGNjA09PT+xOi1P9Xicnp1LPH5w1axaio6NN1mVkZECv18PDw8NkvYeHB9LS0spsOy0trcz44uJiZGRkVNuTO5i0iIiqkZ2dHZKSklBYWKj6vYqiQKfTmay70/MJb40t6/3lxZe1/l5i0iIiqmZ2dnawEzzVoqLq168PS0vLUmdV6enppc6mSnh6epYZb2VlBTc3tyrra3l4TYuIqIazsbFB+/btER8fb7I+Pj4ewcFlPwopKCioVPzWrVsRGBgIa2vrKutreZi0iIhqgaioKHz88cdYuXIlTp48iRdffBHJycmIiIgAAMyYMQPDhw83xkdERODChQuIiorCyZMnsXLlSqxYsQJTp06trl0AwOFBIqJaYciQIcjMzMTs2bORmpoKf39/xMXFwdfXFwCQmppqcs+Wn58f4uLi8OKLL2LRokXw9vbGBx98UK3T3QEmLSKiWmP8+PEYP77s+0BXr15dal1oaCgOHz5cxb1Sh8ODRERkNjR3plUypTI7V1aipCBXdpNbjrW85InhurwqQHZO5T+ITV8g276abRfnlb7h8HYM+bLtSz97AMi2U/H5X5Ntv1iRb7+4qPKPqbSfAFBskE9n1gv3K1fF8dcLj2lxsXyf9Cq+U5Z62YV7xSBvsyqOvyFfNpW75GekthatrU46RWOf+sWLF0vdLEdEpEUpKSlo1KhRdXejVtFc0jIYDLh8+TKcnZ1NbmDLzs6Gj48PUlJS4OLiUo09rDzcJ/PAfTIf92q/FEVBTk4OvL29YWHBqyz3kuaGBy0sLO74l4uLi0uN+iEDuE/mgvtkPu7Ffrm6yov7UuXhnwhERGQ2mLSIiMhsmE3SsrW1xaxZs+5YDNLccJ/MA/fJfNTU/aJ/aG4iBhER0e2YzZkWERERkxYREZkNJi0iIjIbTFpERGQ2mLSIiMhsMGkREZHZYNIiIiKzwaRFRERm4/8BurPb7F9e3DAAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Load the patch normalized image\n", + "patch_img = np.load('./mats/0_basicdemo/summer_patchnorm.npy', allow_pickle=True)\n", + "\n", + "# Plot the image\n", + "plt.matshow(patch_img)\n", + "plt.title('Nordland Summer Patch Normalized')\n", + "plt.colorbar(shrink=0.75, label=\"Pixel intensity\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "d404dfd2-10bd-4981-96ef-6092a9866fc6", + "metadata": {}, + "source": [ + "The reduced image dimensions with patch normalization allows for a decent representation of the full scene, despite the smaller size.\n", + "\n", + "### Convert images to spikes\n", + "\n", + "'Spikes' in the context of VPRTempo are a little different than conventional spiking neural networks. Typically, spikes from image datasets are converted into Poisson spike trains where the pixel intensity determines the number of spikes to propagate throughout a network. VPRTempo only considers each pixel as a single spike, but considers the *amplitude* of the spike to determine the timing within a single timestep - where large amplitudes (high pixel intensity) spike early in a timestep, and vice versa for small amplitudes. \n", + "\n", + "Let's flatten the patch normalized image into a 1D-array so we can apply our network weights." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "2bd6ae95-2a79-4b45-8a60-503079339739", + "metadata": {}, + "outputs": [], + "source": [ + "# Convert 2D image to a 1D-array\n", + "patch_1d = np.reshape(patch_img, (784,))" + ] + }, + { + "cell_type": "markdown", + "id": "9d9a5eaf-1de3-461f-b138-3ac820da8bae", + "metadata": {}, + "source": [ + "### Load the pre-trained network weights\n", + "\n", + "Our network consists of the following architecture:\n", + "\n", + " - An input layer sparsely connected to a feature layer, 784 input neurons to 1568 feature neurons\n", + " - The feature layer fully connected to a one-hot-encoded output layer, 1568 feature neurons to 500 output neurons\n", + "\n", + "Each layer connection is trained separately and stored in different weight matrices for excitatory (positive) and inhibitory (negative) connections. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "6d98749a-8f28-477b-871c-93626e96786c", + "metadata": {}, + "outputs": [], + "source": [ + "# Load the input to feature excitatory and inhibitory network weights\n", + "if_exc = np.load('./mats/0_basicdemo/if_exc.npy')\n", + "if_inh = np.load('./mats/0_basicdemo/if_inh.npy')\n", + "\n", + "# Create a figure and a set of subplots\n", + "fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(10, 5)) # Adjust the figure size as needed\n", + "\n", + "# Plot the excitatory weights\n", + "exc_plot = axes[0].matshow(if_exc.T)\n", + "axes[0].set_title('Input > Feature Excitatory Weights')\n", + "fig.colorbar(exc_plot, ax=axes[0], shrink=0.4, label=\"Weight strength\")\n", + "\n", + "# Plot the inhibitory weights\n", + "inh_plot = axes[1].matshow(if_inh.T, cmap='viridis_r')\n", + "axes[1].set_title('Input > Feature Inhibitory Weights')\n", + "fig.colorbar(inh_plot, ax=axes[1], shrink=0.4, label=\"Weight strength\")\n", + "\n", + "# Display the plots\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "826213d7-7721-440c-b1a8-47fb613339eb", + "metadata": {}, + "source": [ + "In this case, we have more inhibitory connections than we do excitatory for the input to feature layer. Let's load the feature to output layer spikes and visualise them." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "7609eae5-f584-4c98-9eb6-3c3cf1e2aa04", + "metadata": {}, + "outputs": [], + "source": [ + "# Load the input to feature excitatory and inhibitory network weights\n", + "fo_exc = np.load('./mats/0_basicdemo/fo_exc.npy')\n", + "fo_inh = np.load('./mats/0_basicdemo/fo_inh.npy')\n", + "\n", + "# Create a figure and a set of subplots\n", + "fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(10, 5)) # Adjust the figure size as needed\n", + "\n", + "# Plot the excitatory weights\n", + "exc_plot = axes[0].matshow(fo_exc)\n", + "axes[0].set_title('Feature > Output Excitatory Weights')\n", + "fig.colorbar(exc_plot, ax=axes[0], shrink=0.4, label=\"Weight strength\")\n", + "\n", + "# Plot the inhibitory weights\n", + "inh_plot = axes[1].matshow(fo_inh, cmap='viridis_r')\n", + "axes[1].set_title('Feature > Output Inhibitory Weights')\n", + "fig.colorbar(inh_plot, ax=axes[1], shrink=0.4, label=\"Weight strength\")\n", + "\n", + "# Display the plots\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "d591969a-e72e-43b2-8c89-16a13bb29fe6", + "metadata": {}, + "source": [ + "### Propagate network spikes\n", + "\n", + "Now we'll propagate the input spikes across the layers to get the output. All we have to do is multiply the input spikes by the Input > Feature weights for both excitatory and inhibitory matrices and add them, then take the feature spikes and multiply them by the Feature > Output weights and do the smae thing. We'll also clamp spikes in the range of [0, 0.9] to prevent negative spikes and spike explosions.\n", + "\n", + "Let's do that and visualize the spikes as they're going through, we'll start with the Input to Feature layer." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "f6c84239-c176-48c3-8954-25da5f989d61", + "metadata": {}, + "outputs": [], + "source": [ + "# Calculate feature spikes (positive and negative weights)\n", + "feature_spikes = np.matmul(if_exc,patch_1d) + np.matmul(if_inh,patch_1d)\n", + "feature_spikes = np.clip(feature_spikes, 0, 0.9)\n", + "\n", + "# Now create the line plot\n", + "plt.plot(np.arange(len(feature_spikes)), feature_spikes)\n", + "\n", + "# Add title and labels if you wish\n", + "plt.title('Feature Layer Spikes')\n", + "plt.xlabel('Neuron ID')\n", + "plt.ylabel('Spike Amplitude')\n", + "\n", + "# Show the plot\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "4ea0b0a3-66fc-4202-963c-cbd05114d283", + "metadata": {}, + "source": [ + "Now let's propagate the feature layer spikes through to the output layer." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "f5d4dc99-c7b9-4e9b-ba7c-58f6e30631cb", + "metadata": {}, + "outputs": [], + "source": [ + "# Calculate output spikes (positive and negative weights)\n", + "output_spikes = np.matmul(fo_exc,feature_spikes) + np.matmul(fo_inh,feature_spikes)\n", + "output_spikes = np.clip(output_spikes, 0, 0.9)\n", + "\n", + "# Now create the line plot\n", + "plt.plot(np.arange(len(output_spikes)), output_spikes)\n", + "\n", + "# Add title and labels if you wish\n", + "plt.title('Output Layer Spikes')\n", + "plt.xlabel('Neuron ID')\n", + "plt.ylabel('Spike Amplitude')\n", + "\n", + "# Show the plot\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "54b4f5f6-017b-4d7d-812a-c96baf9cb39f", + "metadata": {}, + "source": [ + "Success! We have propagated our input spikes across the layers to reach this output. Clearly, one of the output spikes has the highest amplitude. Our network weights were trained on 500 locations from a Fall and Spring traversal of Nordland. For this example, we passed the first location from the Summer traversal through the network to achieve this output - which clearly looks to have spikes Neuron ID '0' the highest!\n", + "\n", + "Let's prove that." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "780371ca-9dfe-4dd7-857d-e35be73ffd23", + "metadata": {}, + "outputs": [], + "source": [ + "# Output the argmax from the output spikes\n", + "prediction = np.argmax(output_spikes)\n", + "print(f\"Neuron ID with the highest output is {prediction}\")" + ] + }, + { + "cell_type": "markdown", + "id": "7bc8a7fb-66b4-455b-922e-b0fdc38b53c5", + "metadata": {}, + "source": [ + "### Conclusions\n", + "\n", + "We have gone through a very basic demo of how VPRTempo takes input images, patch normalizes them, and propagates the spikes throughout the weights to achieve the desired matching output. Although this demonstration was performed using NumPy, the torch implementation is virtually the same except we use tensors with or without quantization. \n", + "\n", + "The purpose of splitting up excitatory and inhibitory weights is to allow for extra hometostatic normalization of inhibitory connections, which has proven to be critical in regulating overall system activity.\n", + "\n", + "If you would like to go more in-depth with training and inferencing, checkout some of the [other tutorials](https://github.com/AdamDHines/VPRTempo-quant/tree/main/tutorials) which show you how to train your own model and goes through the more sophisticated implementation of VPRTempo." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.4" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/tutorials/mats/0_basicdemo/summer.png b/tutorials/mats/0_basicdemo/summer.png new file mode 100755 index 0000000000000000000000000000000000000000..f68674d1e36c9e0c9cce0fb40d102ff3b7c820c1 GIT binary patch literal 295003 zcmV)*K#9MJP)7KrL-PfS+z31Y%LKz9NkcBK{Aq!bZq6CQs6h#WO zphOCkgDm6<46^F>2uq1zGMOZkWd3sP*svGCMOqJ3BTrGcq+rjZRPFCRR=@EX*!1 z&#$gRb1N%sPz!5o6z{@jGfPWa(~HZ{%+iXZ>4lY<#nstmPt_Yh+#8k=H}Yg)_N$k5e`F}kw|cRI~0qBcXq-%+tI|%_HI0uOzfm~ce80Ikx5bMWNLbH z>haSj%d0E<#|L{y#e-6@cu?3s*xxJer3<;;d^(oi*-pi_#OiQ(dwY9lXJ>bJH#S_V$`0h>=irc@)c5E{kT3HJ$ zudYE$E31pkD_qXbFEqBbb@cWw;Hcv5FD+rYv{DvVLNkkt(DcH>)cibU+E&wxi<9&7 z6LWJ|vLV7vex^8>`0SPf0X)$>4(!Sbp1r2c;oYgn>D@g{{MsqcaU8|&+v z8<06f!7Uss3db#M|00nHj#w-f<6%J~8jVK$zmWaIfyLq7*w_dJ0(?du2fnt2rDbS- zaS6w5a&AtJ1{x67Ow7(g<1;g3_)1%i;_K~eWO9-ko|qUKAEyRJN1^_a5iVK+*A>hJF!80zXD?CcxRvTOSAnRZ}l)!E-K>cRu@C|{k}xPK52Y47P1 zwRQKlcJ*M%2Gr8oO*MCPHMMs(wRKUAt)2BP9gS^W4YuJ3D;wH6nmW3kHMjo$FP}HH zcVkUsd*_qJ=En^U4Q*|8&Fy8iw6%2g{GZ?d@!$XRFOBWE+2X4W4}aR!0-*ubx3;r^ zHP{vOtf}p3W2@b5lfP`lQ+!ib2chw(zMkv35;yho>u1kIUp;;L)zdoY%O}rlgJQ1FqF9ypejacHfVg0kO8=igBSod{9{Wpyblzpj=8YsLq zZ1AY5QS`XEi3dbW4i^p}goDOUq`srGp|h*8tFx)QtEH=}wY$5uyAx{b>4KyIwfA;+ z^!2p#c4@WtbyMvFy`s*ceyD4B0O}kXggOSjM)$~Y_sD41@CcVZqho0F42|@Sj17!U zVA(f5);l(erD{xQ^-oOpPmE(dmZE{liNUE!EFs=2d*~S*5n+wKX=>Br8I!MEJURt=+z7cddcAK!C{;MMZLqLdOuip^!95K6UG|D zKyPzT_;>?aE1lB^h$wpl})z;A2@nv28UmiWi_T({%Vvs-)*sblY-M#_J-Fu1wX zsHLj|+{Myq5W~$qolsME2OD58mSiw_+}7U%0mB`GeU`_D79a;@K{7%Bi|~~*=p7mB z9~~!|Kq-g2K6;JFEe&9S8Qa1z^3vbusKeu00485YI){d#j=>?hbWkd9Kmcb~P5=jYblY7{I%;O)6js;sOl2{vXJZPN%bbS@`BcaUUuc_76)3rzeLO z=O@=!=XbYPcefWe*JoFkCnv|nTt2;0%PDNyL)@uJ3ByJz-Dm` z4i#1y^j)Yr$VNO$rv25&6PGnOo|HMZ0lXw|b$!$SGcVZx zgE5sQe5&3C{uOVNQ2`B9au-K0WB;<*ES5No#4tY^+)Vj@*ci-a$N^3o7{-CZOXBs4 zy<}Ozdm(iB&7u9}`vq&Y115uoz63BeFoqKl&O{?zioBcF@=~NPF{}Yh+)^Gy(HOd?5E8e8!B(x-2O9u)_rjq<&7IxAEja1{ z*g7hn6nyA<=&kQ)hj60*^EY1u6*zZb8~9+jRS<2bg+wnK@~sm93&4cIXaK+v=xa={!mWc|HU=iAG>o~Pgwv|!JIgDD{pytrE3Y}? z)7Mq|z#tpkfJ?6A`|_Rr2=T9Buki1^264l(4VI3*rt7sDAbQDNK`(w>&)VAgEBg$V z7dDrar7L9{npj-m5)%4i2>{dkQUowgMp)7fL%^^;*K6tUrWRStCFv{6ni`*-SMsf! zGHvwY#)VsKELbZ{0BaM>STq1k2Ez)2!I5~(GqaWl3I4^llkuH&JianN|Mbb@p6;&b zP80x+B~0Wwx)X*3z@#shG;L%9IAIu)&w#Pes_3uq`j+sW`1TV zuu1?!f?l~akxyaF`n+oTLbQP6{swGdJ+EvS*w6r$;|XnS8R0MF|Iv?&*k>=dxib{{+>BBnKa`QXr!|l5pE`uySRP|#iIB$@v*Ll%*7U7 zCtfgKHiYj31MfT(`un5%R&KNDdO zaiC5bZui&Q@NVHWG$CE2wWLq_UP+tNT~wA;47txD{H_-p|Zv~ zQL35hxNRpAz$fJrJH&2DT(P|3dIi9Az4|iuv!(U*`PEgNQYCIYwY&u4GT_W51oTqy zxHt##lqB?(vyV_&8)6YpbNZ(4Zgk+P-L2iyA+FKb%$%>8iU_JN8u4lXYX__W%z!83 zpA;QfdN+|u0JS^2@W!!NCXv_cCQhx6c%WS@ohW3h?{ex^Cpvk9m`D`|4I-+-z3CI9=Ckln4 zp^e}M`%@uU;i;Kv_~6m;G2Da?URd=*{VD{l0qoFMqyel+%*V2GL7QM4Pq~^2;?f`z z4XHl>n7y-HYUs)aq^}Oq^G}YL=?H-J&1J!0(ifCvd_wLL;a;rAg%lW!k98v)B!G$D zIeSgUOA`mcY~XuKY2s=s3z(hDPznGhhBbh-i>(H*h#0mVy`JRsC)fKxFBuH<4#0(s zjuXJ0CU#u`V9H}~S6@q~FxWd;TL#k&ckui!!Wz*ZzW7^Hx9N8@VNY!)8 zbkY!>;@|%8r$7DeOYEO}5C&Tw+pxCZF$}I~3~L_y?G_c9_DD>65x}z4&Qfpi4c7Zs z*muJh=An55LU*pY*FKUh7YajPA+rZ1se z6TPG_p)2;+0C;t4OBl?UvjCX%C3oR^y`?(!=#x&h#5d@3nMfm9s3|wWRLkJG>XW0< z%mPFtJNp^;AtA{%vkJgC|FRo+b#onB+uDFP!r2+;Xy!}-z_GZom|&(CG~P|%}5{rblO=8z(aLegQotc|$ZfzSH8KpM` zgC!j8_qAIFtAr!*!5X)WzPcE;9|TRX4n#8wZR{`1ZZrxR21lZjJY~=u{-|)+w|8Q^ z;z2`#|7du}2Zz-9U31}L8}zu8=_9~4e%@R>o!m+7g1%yZ13?oTCwToXXH>nVn;y)7%Q^euqxK0)7p+X-iLVMfGQ z`{?cE`PZti?0`Fan>)Ae`ZdL@lT000mGNklaxPl|HnW7Zy?iBxr}pSLwjPPMf!;?Zy1^`fW6p$WoSVd zOaOR_$YC*8LOy`GluH)US2p9pj3#!VNIVAgLR--=K2{ri zHU|N(klt4S?7jVu1NgtfVEIKjo|r!hp1CLoz=pC0%;iKXLYhnFZSkf?FHbilx}mR4 zgn_t!K7|0-s@uw#V9J=_P6K0LQf!kZu?}Oh0jT`#(IYf)x`*g`1;B>Eb`2N_0An+a zUd`ajj$sGDw8gFL>EwF3i&(1cIWFfb`Mt=E0$`CMaUFB4K7!$j9%2a^YX)n?GR~|s zv7LJz&}wldi2J0a83JO_rf^eVd^iBs2aU&5hod3K`092?Umq{XbVsj_KhyPU0Cx@a z`Scxx`bLJxNH4l${Vuo*@#Nn-20{<%K2!(5iorGL>)dpL&&u`I0I+@8L)zL3Xc-OG z=;ciZz%_f0d6Yok=Dr?{cE?idXTh>&%-N#1&3=^aq%W3FT3R8K1xFwnabaPSK zi3B>^>*r=h4h}Mhhq?V?%BYYt0c0B%Wd|i-3}>87!Lr4T$xbFrg0+=d=`naamWX0$ z(QA}SCm7rY$g!(@F3X^FGGnZBEER_{h9M3{41?_ep78qSR!?7lZ~p-33o%z&x<7G1 zI4VhxO(KbP@=*3FTs`3BZEc63&1g`hO)w6=#Q!PY zq#-6{9XvY#CUg%&F; zA!wnmj!rwlY9??Aq^&<5wqAL_Uugi$;Iqj@t>|E8AiB?$gMS1t1JNM*U%!6zZ-4j`Hq(CB@xB_a5@i+E62KbF6+o(iUSz#bSB66ZW=NCp=3p??(V!VM&FKPLHgEVF9Yn(yEGJm##@7(LvaKEFMKUfy3kJe=O$9bexRudWLR2Wfbo?%tMYY@>LT**i$)^2z)j zd~kMuFJIW-!x9pFLYZuu4Kt!ClOl$9lK}HhGG(~SHUt1;O(vVPUBc;19`<|}0LDuN zeItqONGufI4sxh5F$_062+!2rwYa>5x49JX#tRWe(iN&vByLzUM(1Ja&H{-sP(04q zGXv2)l5p*&uX-mEjDNS` z#~;98z?iAgOtuncNJ^2Wua*F~a!s>(Y^&z3y4j>maC1!u?B{Li0ZY19_^E`THAKN( z0Wg=|NGJa$*Hoo(dD}=%mTp&vpd}CuNsl<*wFa<*VSF6y9Uy>ZNRo~}YXDOk#(HEq zN4UxNM>Fu^)$+3BVg zPb`^MP6*CPQE^bMgLr(nIAAAmEf}uM2AZGn^RQ}VQ=3d(nln9eMq}8R!oaFwlEp9> zEX5zpDc+6-PG%B@!TDtAa1Q{6@qK=M`r-!MJ%9cD^3{vWm(MTmAC5rZ(~I2EY5M3W zUn*snmKWL%wWQ+p|3(sbqKvwQn_*l4O)0E}}G{4rH1=JyMG*an8%D#P5XYz|0< z5#LRvcjAdiG8M~Y6L>vPCcg`%b8x^g?68_JoM9|Y4UlLk95D)ogTc_&^z?L3PtW4w zVlWuABZGkF@MbW?@x;su*1k}zunw(lFFFGGsO4kXU2LI#dpUasYcM-t!VZLt$n|s*-ECZ9OQR?LPGPbOHJ!O2bRkI3B zH%mXU-o_tZEcVwMefzk+*{C*y8}zuKs-eRbCfEV6X^_@+&vaL@ZP)$n>9dM7>;{|feS;O-zxf=J>aNBU|2OA@j+!P@)&T>v`?Sx%p> z1u%Pa%Jp#Y!*Kwt_wU$WJ?My*m-MB|0RC8wDrb;}oNXm9dUUQLQ0%0PiYKn-vD~X~ zI$2%Psmu{gH32M|v_9AwNi1D`P6%4Y1l#PPRk6ZOuP~ewqn*1+FfV&{Sh%}9eRFsI z_Wt7aOQRPrPamEi-`tnZul9~kvW0_PV@%;tbGc|V+5vOW(gM?#-p{7?GSJ?Bws^2t zI@pIi5+8UvDD4*y3Wef6F^nxKU>FRBz+Esnorwdzd->GQhuI0JO#rfIgMbVt;fnGvm#^i$G3TYn8*`);*58;TZS$~a4?m`3D=4BH?MNz_%r7p?Ei6K$^6dP=%-sC+?A+AMY-JYPG&DXl zWtZk~@wXu3hNX7LAimolmsIwU%2_g)ScVj{hnTguxV@D7=oJsGN^Z&E<1PzeeOmF2 zvU{=?2IDOMr@#G8n`4Hi!8|}hg3{pMKmF^!HMVzFjyS5wbJhTMh8{`EmDHeM!^xVq zmbzWn@u&&lM|DjegB6A~jM=X8#I7U*OVCS^zLlzjzI@gI`FYMwBrX7qw%l|~u$L^| z;suJzo9#tJoCV)+Uio&fJSxxTB z=&>$1HSDz2mIk_{uV0y~yqSzeuB^G?xn9T1R@+l23hnsant4^cRMkD@)uW86)1Jv) zC;duNuE=2a{(61DPN_(aN2*4zl(t}KTB>3Z!{Um>$X1WjAYYvhV~$+XV<=@*rHB#f zN(NNWcWS;|%7aBbOgSwTS_DxT9i`Y4tZHKg#0N{SFizPflW1p$eUO>-?#XfK#lz{F zSC_B9y?pWd?BV6f?Ze^KP3iO;0NyJcl*7VMI+>cAnXPMR9GjSoXHqF^Z4XMt!_wZ- z;XZYEv=46$p+TWtJjfBrQ0cH>*}Mmf4AvHk*@II4|CIr9%E-KUdt#@8_~qIv!t`p5EM8GedZ606d*e@9gZ*JJS%G=(MeKxv;b><*{my zN>U8=BLBWMeqywVJ&=Iw z|M1tp{@Wk^#390;9_cG3uH>fa@3c3aij~?!R|l(|VwO7WT&Ay;;jw?O=|664ebUhK zu>iGK)N#Hi`62b#Fz-uyg}UpuVh1?^~UwZfe#}{dp zvz`5zssmuDA%%t$6D|*dV=$%)t};}~88qzI()!p2-iThiL*Z_@lvVX`Ag9yU>A0<# z^Za)K?5x)gxDvoRb==#h!D}!?7^}Gc*B8f^7spqZCs&temlvnko{n)Bb$NDtae8!qatPr`Pmd0u!{Xk`@&Xu47mmMd zHVfCx6sJ%mEQO*>iD^F;?F3ylfOTe^Q%=h!G)+@uGgDZCONho#000mGNkl^u>~OrW#rx0+`a+<{({X6qAfF)}^(4=vvoXS8qo; zm3w(BbFVz~K5A;#JeGk;P9WMD2W;N2m%L+qFpaN79Y|s<8G@F9+8V~r@L!!$@Y2nFjyO3C+6&goptcpzgfPhGUI?(Ha8(t5qfP+hoGfQf!C|5N0Iu_WnZ9-6w*UD zwDia&rj6i4U^OaL3#5#ntdR)zsEU71s(>dY3D58!RtwI(5QxICvv8N?BRFyfVqFfe zn4({%!)yT0WMI6x9u5X~Be7f}QHUoGb_=Juz2i*rD0_6aUpg-C6>|XaZqD?}X7|z% z3~@1+DedJ#Yk`5zuFd6zyYrKqtD}pv;`wO-%hQts3M3Y(o266W6C6D|M&l4R_qc@i z_2nUUa&>ideSJ*bT%TQEo!;D>lw~VfURq9HoF75wXNM3>b8u^YWp#ePkU2U&fUC~r zGl`UmS%;$$-|DT=0qfN0>OsT8V}isPPh4%CoopuFtX`5s`r-N$*Ll|>Cf3=`1<$+! zrE)Dr`Vzp^HW%{04{H=N1EAIQ)wPW^R;bB7C^$r+z5p9Q(gI%NW2#}<>pQt=8)?SOUdNnM1J{?*}Sxr(y?<#8~q=W^io z%(9l7m31!56C_A65a%xSkcy68vAl+tb_pVCtm39bjH|~Z{Z~{SY8K;5*UNyj<9(&x zq~ts+`c~+(6~mYnR6poDgf2UV>@YBUKn4XH^s_U`Mpe`m@gLcaGB>vN0%ojcjp%uhew->b8E9x7bk`1 zw`U+IWQ?rk;@N3QV2n0liMGA#2m*kQ4vPfvcQcd&NxgFrUiq#*?OwW+)ok3U2{9OR&jHi#(^x6--U0e!{waqMVjI zw&s2`fW>@E!D@c`l3vH21?GHN)Gad>tpUtnhG3XC@_MYNromtUcxZgmi%zRSCd~Y*HpHKQ{dJofl|=hX2mDQ49UU-S?Em=Z zf5u9gdO-u&@7XO!q&0LkTpa-G?p|k3f||1il}9M~pw(uVYwDWYD;QiA!LF);>0#I} zKiTMrIaZb7Wy4h8+BQ?#1cSA*ruIrzEQ4G$xkJx z;Ot;E&KQ~=2{YjjeQ^fBh%4e`b0T97tV5F1v>0DK6;db`v$G+2;<**~GF69en1_W2 z$|m=21)`yiSOkxa#N*q$@pw9!$tFSHVj+8UxDN{p-+6g?2&;N~ef)5D_U7U0a4!|w zSUf(+yncE0;^F)b?7TXpRTYzJ9%Y>?gUpu~rx)iZ;4ZB&+P?R70W7Q)`rhANLTEtO zw(616Dy8E=L* zaWr(sHJA8e@Vg;ZuYF9KJu{n69%ZMVGyvCcTnpaSug6{%)UwnKUaxIsK66ubkMG9- zj8~;&>}Cc=`)bKuNsg@^bfkwK34fF`VzfNiv9$EMYyRmrJbT2&dsX183v^w zjAZ6l2b?Qu%CsrhWcxtvlc#X-UsbBQ23D)Bs@_2R;E#D+VXd>JLtl}T>imhUD@WA< zYA*|#7^W2lU{<$48mtKb!}F`|l2lYm+AaR2yt@8Y6#eS2(mcyo7j|Kj-J<;lxeXK%l~dVYJnpWRL; zgAaGdFJ2zsKbS4AZcIoSk0O9QT^?Uvom^d?LKjzuXBP)p0-{_4pi;25H#aADcW1Y^ zrxe>*LihLQXk&vb8?|PD8eGTz^SR{g%y>AmVFop2lW{YWI1-GQ>5A>_4yzIZ)w2jo zG*~({|0|BRCTkt;I-spNMMNco=Ou}n(=P(RoK%>el>?En^k!wYGeF?ok-jpDNh*O0 zdO7l#gO9~P(;u6qKM$24oJ&daG61$9_ezWSa}`JJpDBy2=8EP^B$q7I3ho`{9WwuJeFh4;FQv<`^F`O|mYKEz$=NR(lE%v*IahCt;$rBA=shI^B z&;g_UFaQ4UUp#(nM#ZQJ7&JTm5?AeBX0I~7x*UgWCS#c#{ap-mbcfC|6)DJ-hk`iq zZ6{NVywnp5ijmd6R>zRV=KB4+=H8kU3mVJrhb7VA8`RL{lo%Azs{za!SpKP>+@;7} z`m-7&micJC)aag`4nF~2_i<|e=_!&VF0F}MJsnV$BnW_%Jb?PnVi(` z(@Dr0mV(l1=c?BTO+S&?tf4Cs`a0u%6?)sMWTD&Psjjn=jn5_)=OAy|K1*WyU;=n) zeQhzYsxzgftz|L1q8ZFd6#UUao?B($nxmLth08^l6?Us;z_+(2_xHf73{JHhG$WOK~|-fnw?Uvgbvsro@C`$|1e{h{n$0j zhMV+w-wkUS7~7#xq&SB^aTuGBQVM}55=kf?--WifcdYEI^s0xM*|hLk812MFu|&+4 zDK%4X?WRq#JtyZdqt15C(*WKu)?$e92?~RCkFqX>O@GWm-u$_d!OWe8tuY*GXs8A- zS^M>~XN18&{>#5O<*rCj0jdL0a@VO$$#K9k8*w#*Reg`Px+;_HP_`PnHP<-T0nWvN zSCLA&VZVY^OHC2~8qDH-HGSnB>ApbkE&CHv>6xjR|Ljba;cwv0WM$Q6XJ}x5F!9hS zB7pU5@EouN0C!f_$x_oIxdpQXz0wn0ZFXyRC;Pp&+F0u(WY>0ACq3!FvZiBASc>u0 znaP4o%~4ruD)VMd-0HsGnlWc*Do+70ar@MY0H!`0o1Yn-n`R9u!LW6B#sqVihh^|G zg$*3~N(Qwvy$k_Nm+aLy@B`N}8xMPh$EGJorzZTf08ZuQ>cl$s$o{`_z}X+pE2&k2 zUIX1wXx*M$DMk(<7E0t$QC1K3eXv0<>lm{$7<*U?2EkxlbhXeY9r z+=*x6$$T=omrCuY(}h%~n9d!h_l~p0v%SO1;^}4a2E$hD&+EMoSC6yDh}-?O}R%f7(`(v5!lA_xSX}c5Tl_}rK%+zx;k%85{S4I zXXYd#F&D`&LzhpnAn|bGr#+j5DI0bs8f9t+mXbDwDy>bFs?_{5uGAKz=Ep64z=pCG zz#LdCacPp(th8>`bI%IEG9uZFU`IkAs41yt>xy$4tJH2Xo6hX#3&s6|Lg8R{#;323e4qV9pJ8$AT2|LSu(n_-vgnJ25Uzv^mV#v z9RTYXva~hYE6Z8*+BM~5V`ub~UG_WZ{e)`Hh~RKk=&O+|kE$M7R6VVN|6x^RUHRc< zH-;hJSDRoDz$3F$5E|_31up>@X8+O$6TqycP!qs*0P!LRidZd5&#|0FMRWdCtdg-c zIX5#kFXw9x?JcJIMG`wh1h}ro000mGNkls%ivw0=Umv_mKS>U9wrz@DTMV=IH4A%%Ug25(t zeRl^u=3LaWJl#xj6fP7S6&ko@K`17C5R1L}mdlTnX#FM>A3GEuUK(v3e!tcsV!-C=J z0JX}OZY72p*VX8i>Ic;rb_V98l~a;5|JiCY7}PJWigFtNvhXB>(K%GT`qbvk;T9%7B{ zYWlYJbz2d!eQK~!uXepUO^mP2-t2SYz@MO|(@k6LU&&*!zuFKx9lhdioglM(E(*GO z&{4S~-v_W(8N;9XLolZ~qSwwew+P%a<^~3{(1D#09ROHHLi(uA#lBdtCqFU#;U2mxG6GuTUP7gU?3V(%y80*}ZgbKO=>-&;W^nm>a_68U}IXf*K9~F)c z_lt$>UOtsc?HUIMO|Nhm}r(CIL9wbmLJ1fGc z&NjX}9HXoquoHa#WPTPW^3!83+hrVxMx*0^W%i-U$sx*Pj=e-{yNwjiG%us2!-%iP zr=~nRPtbCq;Jh`?#7rYa0P9n{c3K+AK7c(FtmD;+xE_EdGt2S85{}khQ-%d|7HWsP zPQNb)7ij=jXHMyuHUZqy+vQJ4taFunwcq8XfKw7xPY|MkYA5w72Z}Xc?b5zqRl0=t zastifj-ICW?#9lZrmo(`S^?^s8C7zbRXwIieevABe4_Vhdpq@{t&RGO)eo4Nj9(-0 z37P^V47l+k+5_;C$$Xh!nu8{n=Ao(Oh3S<=-x+(g250@Ug6yA@ftBJ{{D8I>wYJGz z3*w&r5=aYLoPd_>=U`>Y1@orZ^MsW^Ag&us0C~gDkfI-=ym@tYW829c056i*4(>!C zI9CYR7U)tOAuZ*yg}%J(@GmU9ipq-;p!UZ*agsiXR7+2xjc`V68n&4&04KhuO-26)c&_A~G!CCrV+-`qkX;hW(QSD6`ep zy2(`zZfwG|<4M9>p=gMqT29@#o8C?5(%C&+zT`!?iIs+RcBWy@%`B5ba>nKIq|4C| zmvqKng-Z*2GyRl(Qiw2?*Jgs@v0!vJn%dhvzC6TdbZ5E-&gB!qM}{@HggU=0;p2ed zhD!(gh5a1duuPnlGGXT3lniw^jkx;ilU zpZ@hJh6SL$6NV((~@=D6~eb--YaAnD`_n<$>~W-<~$pn$XKuPZ6QJ zgt0?CILhmL_PnxrcAUW>?}DQepU#QfznEx~s}TQKbvlmL?>;Q2&Jwf?FB98>*y?U$ ze~!XVF}@Cfb$_rIe^#Wd9uD+r`}?uHW$C-Mabxlo^zHI(ZaK|Z60^ncdL6($T@WV} zVZ&b%$!1DT;1l9>Al{7ET|GEN_{womJHN3qi3py;90&ifn=-%b4`Qm z6n3r%y7+u`8glb-Ypd30u)mN$x#<+(M<>T}jGRSB06Yzcx-bK=L=o!~34Q%e;w6^w zl`cBp_^trJW>Om8O-cnWK8oK;6$Aj2yG#hjuB1R1*)I&%0G5&q3x1EduC&DjY+be32XMKIaVr|dW1Cvq z+dF%3(PN_Gv1oKRp2(yiTq^*{$xI?^sz9d?kM@sG_fOA@OpP{)(8dRwoM&R#?+HGa z>}c`65C9Aj#_(j&#c2t;x+s;3>9ys#NH9>yri-~uA)CdC9_Rh^ZURWAQi(XU3-e{! z9P$5P*HoSn{?c)5n1IpDz-!XXN!BjRTqGLibP+l$in+@EUzypUFK!Fp%fg*jLSF`H z1;79**pfC4(IR+dgAsh{T`<1?_J=<}EE%mQiswzDLgq2l z8^}N!!;-d|VD|9r@u}>3%j04N+Y*SbjA?t}Yd%~&DDnKH%}6I(>3nQ`LEul4sJf!P zK3YzSKs!}-SAJNyqRk*PFHO`?BF~Bu!0i21*0vn^#7%lB3y*g7T`PS*g}`_-g0)B9w^n)g>OhZaA2%aWDA;G zU0mK=Ln9F0T;2%ujSTVF_6!XKI7q=nZMX0R22glP2d4(dM@`%@yom=c2RE8~I{9gK z5B1ql<=R>(uoel9&P`X36mp^((sm@CxEjDB2fZGESr^bthO%`5LBR#Uaw8zakgy~g zLEMS?>G3(^l_&kmx4LvbfAEA8%LLA^ug(Qlc$e2nrUo2~o74c7AhslJ$q;1efhG&t zP+N0xw8%XyBiC|qXe)xV7gwsNC?m3T?+UEpJaB2 z%1Hv&M0{;h?n4cK+GGx`M;d!JSHn?4X2fSOJTx@&tiEA$j3T?_-;ZvIzeQLN1==xZW;9iI5?@Zhv$N=zRX_xxT=PepjjTvp~eM*E;xI4m7NM~9`8<0I(! z=n%q95Cz6=FQ1{TRl|jliJk7meI(nlG+qy^oysW`3Rxb9tbs27G1JPMcrm;M_yK_w zXFsHQWxf)-O9@)IUWz=%Qs@g*b0%g8H{qK-`)@((Sz$|7j&Ab$T(=`pfw3L$go`T9 z%VeU~+o5nAS5e_ac4z-6Upgz6&i4x^xqK;GINm!xFM!JD0P~eeZa2LNx91#khO4X6 zQSR_Ke{xnJn@#rn?a}RXFPZNC`UJYWIk~?*eYiV=Ufx|jzqz=*IKxL)JlH!tD()ZT zV~Hq(SfDTa$Z_Zb8=K3kW+o^BFn;(0e&(|P*o0&n8^K_ip+SOyv=mr={p{KQ`w#!{ z`8VJ2MCo&-({h&#HhdM+tjDlQNksv$^3c_Ox>I7&8o=U`2}lB16|Cs0u$X@Mw<0#! z(xR(BlDm9rrjiMF^~(?sT3vyGD-CY_0H#wQsS?19i*|`B9j!&LcL`!%5&^7}u&N@@ z9ggeOgmwTdK3GQk)bzVf=dP5+(DbdY*Qle)PN3UoFp0~)+iuAYtEj1I-zm@#j++xT zPS^8mOACSJP&~X93kG*W04Mf?H`p`WkJC7=cSAd&&F#?4@;uM#Tmsv+9fAVUP*b=0 z5aFJ&Hxv8Z4&mNFG=i7SUIRg|ES*}C4tgv4IDFPR^o1U^v=F-AG&hSrV~KpfaFs_^ z)7QJU4AI)otS(J1&5tk4j?K>)`p%gtUnb{fKwlDwDp%8mV+OO=Rv|ogdc{Pf31Bl; z(zlpQFxCK;ShPm3AEx$(9h1RAUtu}Lj$4Z3bZw~(uUE`^%`lJ_+}+-cM>e9t)!_Qd zR=_O78>d<%Fz-V_3Mt{WLVW3$6d@%`EPxuuom)xbKtCr!~JLf7xP7;fb%0v1S+8NQ78-`sV!f z>h$>XZ`7<;g~}RSZ$z)omcnthmY3)yHHE=kLpMwqb0iP_ zE+|XxTJ-KP^33h^PRR1|O*>9EwqrV9O{CY<2@ji>N4)uCnV3xt21gQ+SSpq~$d%4Y zP`;GU7PD9$o)nJH4$dwPE=@I+69%Pk?oL76{bDM$A5ZS>WDjhz{` zaeoMb!7uD=m@gjAIW4A{AM@ej<-_&!yGxD~$Cn|$m%&@Z%Uju8TUuXP-3qLS@%;=i zK!tCwR1!54Ci?R?$b?JZJbTvK)g=yCPf*AXIRN}3bI5X9L#76yZ7R~E)*CxeEv zTjXo^$S?tHZi33OAj~dK-CkVNZnF?r#P*xp8(Xo>mCz;tjL#a^o!%tn(I7S(n4FOL zdUZ(I!L61}fG6PomuT$*Uio0v$79Q6$kKB{{< zJTZo&Ix;yvJ~Oq9D}=*fNcHn^^M3D zF3ADlWIhQ7gS+YdGz1189PJ&Q775_%>toYd@ciuR?ikKEvlox0qTzTjk_>LA!{J0I z6c5HTvAx6G;YH#2>frkN=)t1*^~{%j^Rm)T+2jG3Q!sJD1~8Zt9YS9{dD3CiVrhb_XL^6!(D2{?>7Oh!0IfFd z4(V$N6~?Q5w0Hqqg%bla4J1c&(iTEp;sq;Hy2=S$)zcN|aj||VxZN?_VtfT}+MC)A z#cqGM-F#CmT|GKi)+vhQWb{-Hdg*ik?5o>34id(90@u|46@c|+!9gI6)8g ztp>2FNL3ABcM2wfy%=s;&w?S&ajS?W*pG$)hED}b0bsBeG~I}95}YHmb1LFIrn8ah_9~`?TV7zMmC3rY^V0C% zS(D6Rg3l}VT*H$NwY0v*JgKSWrHRD_naYstq)9bl-cWEkxV5;sF&9{~MtOz6#zP?K z0Cpt#R!#vg4PfcP6(5X)ZZ0FNx1L{LUEB;TuCL6m8EXz(KRP!(JTr-<@%R3;JR?&R z5E^6ClYrmUjK^R!re|l+7@wSgfMJ?ooP15>G~x|*0(5y3ji|Ltf?g7aX}7YH^!0{s z+EPkz>a$A=&8=-sEv;=G?E^!D(~GlkFgWkCcM}*clnSNe(!mjy#lw>W=;ZY9?ELur z!q)4seZ%Y+mLW;9B$9zfoX6>+V4+~7-aK5szQ1^PfBEg*#r=8l@-X`nJT?Z))$0d9 z_xknS_1lNrH}^NtxA!;i9&W#Ve)sOh{kN}fp|>w@pl@Fpy?uENffIN-FdjY|_WJaw za8NAl`L#S_c{;s9%4HVKvu{r*0B|U z#boj`FGD#O6YjzW_>o6b}E+IPwyXOOUL`S*GKfepf3da;sd?)i=&;Mm5z=JrNg~KF`LP!5-F2FfLFrr zJbQV(*&+Sm+GcvC@v)Jy(c#gNp^;%zlX7V2QC(fPKRJ>!xh!iqd{bBVyFdOBZDrTm zwN2EeE47FaVuo2WzBta7obE0cK<+4a@%nM^E;<}dIO*R7uz|XMZ7PiH#gG{rSLGf4E{2^#95UiacluWM z`_`N|L4wcKG3SrbSM~Dts!>DcWyrB|@}6`TEI(Fwvoe5}7n?iV1K~~F1b|Jnd36mY z)d6tVKp(Cn7i{_tzOj8HL%3G}+|bzuD%o;}TUMdY{$77pW)Hp9HBB8V`!}2AQH(7U zwA5D(R*j8BFB*TVs{?d_-rs-u<)0rv#?8;fXxinxq*ifU5cmX5ELuZs?I0&T1$E4* zhLt5|Y&lCXwMgyz=+ex%v}7|b@Nd3ni+JWC(2NPMvL`)UB|C^s}0 zSi!p(nV*JC)e*cY8%PInf!@KX@xJkq{)y4vvElwvBQ&HvG(I{C>+1t}X3m72!C+7s z>#=5jaRC6v$rq=4T{}?X%mQ6W1YD75-ODTJhc~y-`?uH7&+l%(e|2$pR`~Ye{JU4z-@X8z&!N}Pjov=LhJJW) z`{Tv3;x zHK6ktHWr4Sik5xWUyKPNkHNK^c>PqyM0qhm~tQ^blJoZ(OQ_ z;rP$5E?ayOz{_MUEk7HZ}Z-P#=h~fjo3Ce zhL*P0yM_mFrrof?X9$k#S#zT^OuV|vic+(Zt$n5f%M}2&=!L$huLo}b@YPp9FQ5wt z4DsI2q+`{BO&8O!zfxPMQicY3Gb>0*$jaO(@uouG@ddBihB#VDCkA?9e}P_XEc6vQ z+jy&K;OT;egFL(^wW1YA~5**RT12M|Lr|63`oCyegPPN_u~5dmp4DZy!++V zJ@o7A2kMu%&!JzxeSm&?_X2wV?eibsK49n2ySF!%!6rcc;{M7o`1<1F{N(KPSb7BeW|;yjN77{s>6k zTBib=0q0TB^2VwOWTLbk?7T)$2zzn9IUmbhh2d^$(zP^0*<_dcL@*DuZx;Z{R-3NX1 zd#Q9Tk;=v`ePN~}ruWwZSjOBl^>WNcp@&UL_OU^)B>N~}+}hsO*w)fJWF|zC5VTjg z--p@1{>OiCD6kkrU9M7dPH!XhC1Sx{PQ0q5pUablv^P+dLr^GbxpHuehvg2VD7(E}^FQa+xPevb#-OxjioU~_3 zr#iC?BB-8J)m!ctu-b9=Jo*a(DVciG}SXSWG1DqZq9nW_%Pkd&h^mM+d0h;X!a0BqodvkB0~QN#d~)b8hmg zW=?tlR@vZ8Ny9mv0c59=gNQEHG z?;ry5$L|b-fBNAT`uY3Y_wTNuAHThNep7mRcl5*C>+fD)0?E+(S2xgyw+|n_d->r< z>bcSTmsV&$e0cu?`sI6I_<`QqF!=Q~Bhuo7q1&s|tMj9a)6)6L!RgU~_)YM>9wwR7T(mLP&EdsnCdBAgB4q%4d2`AE#Fw{6 z=hvl+n*-?Nq5vHn?O}sVK9$TQc6PUMy@Flgxp-;9k%YW_l+pkG451VK6Qj5i#h2V* zcw+2HV|{B^hZzLy1K6pJz&RKQBq@?5&Q)$|ODD#Z5<|``degbk*~!%RS08x-zS-qv{FmIhI#;B}?7K%azUy5H%CU9RNGyZl%0b zO$Q7B<6BAxY`THBBe>bw*W(4TtOEv;8%&K9Z@NjGy*ZEx+b@UKn|nJJ@$2+GG^k+; zj;hGB#Gg64hAulQ6-M<$liKe}7cWE2SpN0tQ*)O^FStv6QP%+anh+KUXv@y zMOsyoPr7V{&0Jdg&X+rq{g}24F)|&`7PLU`TwqPQfeB*~dwKnFw|2jg%m4ro07*na zR9@i@J^iqrgqU@w`D$g5G4}x81CwJjIMEmY1F_6BF%9_LvB9p9eh2{WF_-*(oUa3) zqP@22wWpyz2=|i2I7z`48)pm{&rC5#8Zy1b^Rqb9iTx_~2>SEnNL@pG{P<3Qy9b@YAeviUlo}>%z)Ni>6DynRcs+O)(}`Hhb5!fzejfBaJSv@>9-o~bgTD6>kmJ@{Q3L)AHOvw8&;d) z=r^x!Bv*^Q!gtqa(9Px9)%nTA>Cwqy5tbOHIG+Q7lOPbd5=)qw38Yt87;GZXmcfR& znvv_cGFze+1ItE!T{b;V-7wgOktu<$-sWQfmf*8rDQuO2Xd~Y)ll|I=ODG#JUQ)fH zJ5iI5&3TjjKeQvU5UxM6dr46C;B2pOlG{JdZQs0A~H?!EqA@@&Z5O<_h&u{WI7I`xEG|8GnA#*!chb=}%ar1HUSC z+$AAjy;2!duj(NX+dVj})iX3=8-sR0)QD2Wbj6%Wz8bNDUYTv)Cvl&=em%RQ_*&g* z`st)F=?T`5*3!AnHeb3NPuBa_sa}kDYl>IX*8#AYV7Zs^XS4qvFDg#^D-Kvf&_Y(h zaJ8!D2r4^W;#LD#?s7uV)%10`d#fud>(V7P0gSKZM#S?iTe0xe;%rB6clo?(0qoCv zVY1vE0M~Ui@K{xh7>MN^e$5AHbhKdj`Mz`!Bx)cRkB%dxC|# zo*F#*8URcE3a6Y!wRkVBDl1_zKu!9ZXtQ0iL1%2evVpFy;mmQgWVx_bFpTB=dSHHi zV=e&n!oO}(3v1x$sxji0zPNJdRlLcQGPOizIG==0y4Iz#>;q?pC&$4~)5|+N2%2Ik z>KX3u8uXysX-fa}Q2K|>nk*o3_h3Jq@xZ9pPwe>yOJ&nBZ1cmt!eO}VSeRp7FjKYI zpRvxI8Li(1dM6jW!Ce#wIPrlr);NI68v%T=!nV(Nbb7pRq%Rx~7Y~aNT<`HoiNla! zf8l+BThJGx1ICgKn~inp0QmLmn{VIT3V`8v0o~u;-$NgMyfgaw?!zzlAAWj3`^Puu zZ|+M!zq|VFhg)NCe*tLUe)#b2!-qG9xJGaMHr9V@g?qm_Ws3BKitD)|M>3t z_iyjFR3@o>SQ^!?4{-Sq_o3?Jb=7V@leO!G>^tPCk}i z4P>9e^Q((8a8B1rHhy>2sIqM8%EvZ#Fw8Z4x@vizyV8pbk^`FoGMHt&Op#}finf2= z>=Ch$8Ka!tN$u^X_mf!eWMZ-OHmi%rQf9z$BoPYjY{4sIV;Emvi100VRdnWNB*D=B z7RFisS&C404G(mW0CN3s!1$hb`Zcf|lw#$dzx?t)zxaaXv7C-ukzOg~{so^bR3tOH z+abt!8KZsX%6J4fZDWjUWPq|@SV&BlEVkI8Z#96m{jGMx;!`DeNh4E3kpOmr#vG?B z81}|u`Jv#l6;?gsl8+`UwTqQ_vgU5hJS^z|*28?A-d|^ckcvx}x$DfQtIBAUiR+Y- z)^ZqJb3TJl^H@zj(OEMDjU%?Qxe4@o7B;X9kK_PY%7a4=fE&76pEWn)r0PWRgylCJi!_g+rEcCUVzGkKE02X~FUQ^eW68k6< z0Gp-fQ%&;l)bfH)Ur*#N8O&HT!^oyGrKyeOm2Q@bQDp7xy3xYMx`l244QO$5V{vl} zTHe@N*$iR{0mcNd9kM*dlL*fvwqb&4G{km5^Nbi`J!vuSW!M>4Ksd|bW9tQmhX#6V zyW2bC^!Rc|U$l1PvbTff(CCb@6XTLClD&}i$k32=#&Uf?mprvFgA*bx+T!{OQ&LSP z_R`$g?Bvko=-|Z2pdaNPx8=#qa4(ybj*A!^Mx0DxprgC7-CSxdxCREVt}pK&{}1Tf5~&6YCu^r!Exe+6`Zy8ZC}=GXT(hQ1#j zK74ro;n#=Xu=4xcpWa-&e|`Spr{@;5!q>M-pzlk2?^~b8T>0w5uP=W2`QiPKw?F=H z_uV@<@0;(wy?y)k?$s+VJDS6ySR~};`t0)Jm?>I&``KJRoyn%NITLbE+G?3Hf=F9o z`e60}ON3cQr~^fu#88i4=gsnT1(mGT0Cw)J25@;Od=-GrUDkguuNkcbR-o1ORcLKv zZGCH<^}J|;D+WHrLbm7IEVttkU^tmcq_U=SH;SqJ6VN zTs{%8DtyIt0Ivr4k|4C@rY_Va^EEk!n6FlX)p`v(k9ozQFB+uBT0>V?tMGiJSB2R2 zuy%FSb(RMRIsM0eFS3`XZBn)U__NddtCu>^tsOH2#BxB6su0rV7qe`a+9T3WEOZnM z*PQ3T=@{1Cx;k&mNwdDeQuUyW5OM z0^31oCA`r$KC%|^`gGX`%*rYpT+}l zGnU5i(*EM!!EuxDHDL3u;iO4%!kek-b2#m9nI1$|$cr^dnHtJ@1(g~OCm;)KE8P+;qQ(GUR3kR*yB=x<-$0Ko5FUqc>%fnMPDms^j% zAK-wmfBW(B!~3fbKi_TA-*2{|Oaz{)_7MqM+uAo${sVwvwHA8T_ z?r)Z{zXIJ)iyJ#tA)Nvmp9Ziq;gUX{PJv7(EU&Y)1i%nD5{}1Bp{vC9>{@_%RYTJ= zTZyPCrnD1=#usJ*V9*qTT_%7{9q-nb$IVUMBZC_;Lu=f-9NZv)zixOoFg1$D2DUfX zq8ou|2%8bT+WYFZXJPB=KY#M{_g{VqRruYydPrz(Aguvxha}YiFoy#{;2(QTrND(V z|Bs%8fYTq5!Nf50pBea-&Q~c=#i@k}4uqr&CIWf*=Y%7 z8!MdH$>wuw>w%%sA)K<$&X3`MS(y^zP+-BD`6TWa6Xxs4xH_D~9};x|YQn2gAAVX(BT z87$~^Dpxz9>1q>9^lAX>wkc;_1rHr-tw`#o{1CJRjRnB8p>`ggZZlk}ic-~sm9@jx zpmMhVbXhS;B`bF}>$gy8WQC^Ota=d9-y2`lEf4>MG(9yiIfe~- z$3}tVZyFmo@E13+zJJ0jJBRuu@+{t$oxWc;HA(f1KYa1!UmiXF{Mj>OcI!L|bhU5( zy1q&DO+z#FsIf(>0>B(lD`RS<%rdF$yI8N%q?#dkiRGhh1;>D%lvjl7j>XLYi)wLu zGm}AJb#-&onfQ<5%zd22Z^MT51K!+->i{q*D;ZTxUG|OUIN&PjoxrV^ux%@iaQYYC zHEat24UUaz2FtJ4{y4kHSCIyAtCd~}i51p{*z0c|8R#1Yj0Z=i#=zZ?>G7e-Q7ob1 zsWAeW4p;;R6T@r(#^Z3qb2Fy?i5>D}=Gx0#oy!D;oRp9a?wn7gGqX&w4nN6D z&!}idep>+hQ%VHsdTD(9BGo(OZYFP1ozt1!WGcR!+)3=lVmp!Ob|@6y3`e%0ppC=N zuP)9k&f^P10OO}2AsJE+_02P~IgGcrCrq8&lA6M^9!plAO>K4B; zjy~Y;4wS_eGk%6l1oN(mYdK&iE?pg(*7VgrxF&$b_;RK6RXaVVE$4fkUjP6Q07*na zRQ`Ol9)ZX|ABR$oLxRSRd~Ej!fGbj#x?BdcL)z)S6>jOQat&aaTS?Y9gMdHgO&wJa zC928Vsto5&J?!|?WkB@7(KS!1rDuYYGRrb&vtReIJQj!oP`w`9#+JuTtxpiCOe)#bQg6sY9{oVVY?y`_qqkYJOqW$*c@WuNhJbTo1~Yaj5*9W)c3BFz%9w8rV7gwQ7lOy#O~;Ae zbS_C524|B{DxH9U;do-(mQxFZ#F1#wl)eghxmR!xe%4jl{!$D<>mF9L30HBhLSJ#N zfBM_szysw+2l?x>I~*n;1(Pgnsp*R!9W^rPO@wM1AhBI3zg#xNB0E%eGP9f)tka}* z9+s2TtxYh&<0LCp14*&RWEfRvQ%jGs(~(>OJU6sf-c0IM$x}rc)bZhRsrn}XTss?T4>`%-r>!>M)qe)+>{^-pq>96rBL^icUpzq^)&vg1& zZLn(6$yQo=xRHTzUBefTpML($W9aK=^{~`l*^SCENP=@cl32zKn~EZ>9aMdLS3^fP zgofxdcvFalAqn7>(547?Ep3&{+X@I-@k&Tc0Nb|iMfUE+#-OjMYH925jM@5*W+sEB z1x_f$j2PJoq05@gHRlN?fXxuzVF^7k-aD*2me@uE7uSqPYZFZ2M_!$T!XL1ouhHoM z*h`+oFAcwnjy8~(YPRB*6&UX6>g?<327?Ftdx!gBf(OTkAu@Q#id6u;Q<6Os(Iv2d zTEx_AQ<-aFW_EcVXIL1W4Va#IG?U+rC!_yAWAEV_=as(w`w#ejd3QI#aS7SR?k2&> zZb-$69g^54&BQ6Bl593?cC)j!+O{gMS5~`@8iYlr|BMEgRjf6CkP(>A4ws9q8 z!+u|0_+9t8&U4S1XOz6ZaPj2P%xE-{XP(cw?sJ#IlH7{wlF^BwsaXlw&dpCVGz|yL zSxJ|q;j^@#r2V~d!|K+pjc>nM|Mzzn|NY(i_y6Abj{46<=->ad`ThU7O`S1U+-||1ett4A*KsdpdhQV^zH~(J0^{q&_`}M|+TkFuZ z8$#bJ*Q8{b00w=f+I4+yd36R1UR<7h5}%3im)`Z?COBJd%EDExv$J(CrU>+=pY9bVb8~NkOQSHscDp>F-*^`%|N8- zinj->0EX)&eTPQ}gQEi@!G0X&WK4vAadz9laVUsaD73~mc67J5cS>6lygl&wvL@Ke zy;1<1V}TnJmXA+H=&v))z=CmnoK_ZkR>I6T~ix92WiW0lgW^TAR`bPJ6 z;cx9Lwfd3YF&esVF1K_3g8|lbDfBC1+%56Sr+1Yo$3eL&1%m?LP4_ z%^mI9Yn~(~V!65NSz+c;*Si5~>4Q;QRZ!`b|CV@L|UHI#o=z1%WQ)HKYdV_;HOt1FH#^vf&;&U~m#X zd&Uq0#tEh?J;X;Qd6DW1ndz3nd08;Q#4s!`87#u3sYI-;{2i*Ri}5>_mP(iomrIi@ z#vCyS7zTr3oeRs0ORLMP8fqGG4ew~f^?EE69G@7jt*gk)N$u!vr3nVTWYpc}B9M0F zl1yK){hv(_EYkPp&2`y@{d&!4poq@;v~18G?mbzD?PpBD|mRuEr8jcV}o` zZSR_*A~vDq0+(xCTN7{C$zEDYO+2iyxCrlULYL!A@b)$%#jHxrv@x#Bi@fgZyf|=N zv2Hoh#1q4A2->&n>@rx7E_B^nqI0Lc>ZTmqbt^0LM}o0#E|r?p9~l?u>sl2J;H|8- zzaUtTOc2vjU|)XI4>{m1fBKd$=7$~=*=Llqq5K)n?&E*R`?|$c(ZOdQfH@#ir!u>P zi8LYT>a85}00A#ZMnnT2Kc?BmkX@%$htxO?>6`QtIMw8%ON$z`hBt4r^7n`d!Z zz+y02&v|nmQ}RUY0GgJQmy(&y1~S`RziX4B9P~DI1t8wr6tI!u25Ij{5;H(8B&L5= z0BcuEy57R7aSs%^I{ZnG1*nz!kuIvW-12b&*1{4%CX4$FtK+|Q5Z zkC3nU#QKt@iD5h&A+70}YJYtIj_x8$082Jj+65QDkj!W^w}8!f0DN#-c4m5RCg_{V zShPuawwD{zzXR2=f{X%X!Ejo-y3kfW_XU$mjD(9-(30T>$R_MtwJ|%t&+z)!SU;F)*(7q zF|XgO*>f*|eB;K(#>VXC<~(i$Wxx4$_1o{(H2D1Q?=M22GQSt-y?TA+%C%)kp(|q1 zl%X%sOYgg|G&#Q*5(#T3X@3oaX9;6|sh*gTY7?3s;Vx-kzf8N3jZ&`_Xm7tYwJ^%C z%N$~lBjeb@U?v+6_Tt-zN8me$nE4e9N_WhWAifLV+i#wKfXt?3$gwy2kaG-mw6HUM z((Wa*2RM6RX(J9Z$+(Af_W>A3I$#jj^xS~!?Sy*zvAlqlZ)@vlVIG#)-v&GNNTSfD zb-85Mo0I}#(%o}qa2U(J#MIQ(tSlQ1#>dS_&+&lMv9Tx4o#WmOsjQxrjMvt!g=UwB z?`=*o39q)LxX#F&6Trn@PaC}dDHp&dy(8>{HOlSo0s8=~l}`H6c9T5ZYX!xHySb|5 z=)<(-lN9YZS<`OtIl^u_^ALSA1l@8YjVDL6&USL9H2Yf1h23XxCQ^j=gY^e(X*ZSq zTSk(99LbT{QW1?ryf$8LJ22bgTYa8R%Wx+&yJM_$+LfL990g!btWx@(PfU(9uL;Uv zqL(3M*jAm;<#rBdsu%1jo*9o+^vY(lhge@tl-ns&ZzOK@#EyJUvs?ZgHf5EcO98{F z*}0}ax%61wR@>HG*WMy=X6dFIV8WCFxVgJS)zTSI2D=z0fHefoQY9Vdz{&^E7ow3Z zbi}M87r=#Hn;t5%U@_0#tfIJ@FjYelonW<{tcIcR>0(5h%X7x1`3aX!Ku#=+6$`#1 zeII>&049UM+IWY-3{BGn;{ou&w6JV%i7Oy}eI_>7)z{Y6)zsA2)HO;p9@ov1s%8{u_v`S=#x!p*>}=>Od%bu`cwtx~K+F_dU0YyTvs5;Fk>|OE z2`iy5oNkC1CUnio6mN&P{~ekPLgN!bkP^fi9)Y#(hWgEa1HkL>Fsq7TlqaV`Gt*PE zGt&@Gq#O147(>|vEl$9474D)Lr5`1Uc?7Lpf#3ZDJrIWnQ$4-is%~chGUpZ>`u4HP zhzyqa^Z2m!zCj?rcW?v_yUT-a3&bK|CPFv1)HgIs%Mk#Wd%#LKGFTa@l;z$BPQc69 zq@>KeJpWFuw?PZ@3j2#shu&q5#rA`2ehLX{*4CzJyqRAj!_#W2bwMCaX6mY#r_Gng zJt=NW@kRl#$`7Ty-`+5yE4*GVt{b*AW_Etria9oJ`db z8Y;I>NO(?Sz1VE|Ys>Dt2oa+!Q!v1;PasuIums^z8Ybym9tKMr8ii!K7dZZ96))Zr3X3lITa zW?*U{+FdNWAG7eg&4>|ZegJq&GJcRqFzkh?Z3x;2V6fBO%4Gx|S0$hqs%@wh0GozQ zmG#x7)#3(t(Nq)6`r`{(X{p)i8CjXxxj6+zg}A`gx7M={Lq}i7(D=aY^7PWhxrw=8 zeRE~cK>PZ|`Ab)%ga0)%LDmOgLRSVNnNncWDpF1qz=G%Nt2ZM@IDorwu|TPc7`}LE zesz8N>WwAGC`-Q8jjva)-&)~bFX@X{wYD+G95K^NWNvABp2H+?4)ntNG6fovJS+oX z55smR*l5xf7(6vSCKG{#!NU;gC9oVG9x?xojp1InBXgm9#6}$IRx5)~Mx`!d z4S-8xlM?d0wr+;grAA?E`}whBM77LN@;<`s+Q#m0dP1O9*Vfe3)lys#=!5lP%mu*_ z(w3Qc!Th=Ug7X~!YpR#8M~9XqxrJ5wq1NEDuFl;YZ>6yE0cNKk?l2soWS#TU?t=e2gvU{R!I@|!So8_eA9NfGuH!ALnAx9S@S+qoUGKsP% zegOLvO=90}6t@wphiYpr(#is4>t&HMEE40jm|J z16HQ0sWm+#%XqHI7e(fFjX4)O*&>QwZ5!!UIB2-ZM2ZODG>Vy1PFiw?e)hZ;Jh>)q zq*#j)-9ke;;D`zV9EG(h^tcJBDeh7fcO`j^aG4iP=%%EKE~KTVrl+Nt-W~9->VVy3 zlhX3C^2!QW1YD$W>14|!I2c}ov~^di0WhA5O3M%i=j7!U78jM(Q~=v`Ep?6Uje*{_ zk1iuSSgvQ}|f!LYZNuYLlX?|sS zVRdDZ;!d79>R>O#SN83krt z&fO@pja}rXL+fS1*SAs=qm!s>6Bb#w@45BzcU#^ocx5%B8;N~a0wL`w9 zlAQRfw%C1gpXF74|381O+cnzPM|#UnmcDIZ09Yp@X(qXwzZNw6N&y{mZ0s8#w$(17kOi?UjCIy2F_9BwF2jCNaquWL697I$+W?J~J~RD@&D_ zosFa1=;79!q`Q-ko#vfcZYS;Nsmb_8alkaekXtyUZdftw0@%ecZuf6@a81~9wWxZSc8y>g;$v&;#j&=8A@Y>jVW0U%mjDuajFEekX)udT#oDAy!= zLySM$=SfQy8KTn%=N9J|SC-3Ph-GHq3y}owonha=yHZI!MU6gUav(XrK0Zh13(L4r# z^X@f4jCxT4P#TdnD#LuNZd6%5lBE)aU{yDyDMtv3)Ss zOiVgpHNF}c)2-hvyG&~XOC9lKGk%?x7hsj^DSZ_5%?*scOKr79Zhl;2+wb_HDIBk@A9FsYEu) z<}Goy@krR4;=6!b=2c1Zb8?FIrgj6!uE&jxBnxqUO3KMm9)rXN#*szd;eKH*mD9E2 z%jOf9mCd&5mPW{8II@a23c#!n4#%Gvj^-_zAWZ;kqe_0L6u{x}30`-nQZN4O?)%dF zDs)*&OA)~CyMbd82w-393{9SLm$7=T{i?JklGBhb;9f&tT3hwLn(AzHAs(MYBMmOG zY>5CSeQ{)H8qb-Ul?8$B=~#5JrL z#IVr!(#-1GIJ9wb`tp_eZ@ylUdZcgH|MT4jM-zVk@6B(%UW0FjdsYAoeWTi2!Wo-z zv;?Tv*Jn01X0KmgH(6S1=6faOibE3FCQ}<{G7wDz8ip|okW3vg0Zivgj~k6)1u*Z0 z7?+-(n_QTmT9}`KJ=dHnh{(5^8z1Ku8g; z(c|dtTOWXVBH)a&zvOOQMg~LxYqTILd)y6K`?K8n=iOG-+yH^WI4XeM<{NI84AUN~ zg;ESN5Y5>>5QpnkHP*7>B1eBS!Ac{{HXT|6(OzhpH|o3ub--RjTHEC@dKIPsCWCQQ z`f6O-3r(jxDO%yqkzz4(tdq7~u56_*W%HS_{HNlQ6XPY%S?<+GI{U%EWCo-sL@%Ta z27TR9OKnr2i+%8z1xR)-jc22o@Rj8Kg4|lR>0O1nxg`aK<%K0xC1o`wmG$Lt!}YDT zt=)}XgY7WH10!Aa%@sqV-Eh6o#^&7m#aSFh7pK=Zrhv@V)v2q(;I;3*UHksu8~;a& zdI8||Z@*c&adYL`^(A81;#L^EeCg5>r^Hhdpf)2PE?-^*fR~mg@c5fI*Ks7a?U2OF z%PjVV@5Iq9J)$L5*>JQM7B)pkVdJaGSw0@S8^enW)5}Y|ZHD@85 zL&Q9mCP44Xiq$f1S)2j3=Vn7V0^vBpktYyrG`LHt;f7#{Lz6)sb;H7YB^z1 zFOIUU8|)h#>7|(4jH3<~)cs&J#9G~?W1!kP+Q{I>mPVJs+q-&5G#f~fz4HT zFX3IcC4l)|C(fQ`)JpeyrQ@cdFE9-5Qe?0TVD-UDTq0TBFb5Sg>rer#StEtvu`4B- zjpdb8g^Po??B1o2aJlPNNw~&Nr#0wMMd3~`{UQ@3!t7cYd+4P&=LY~Tud6Dpu^G-BC!pbIUCi1L zlaqL*{d%?puxEv%gCUvT1O?lIO1o$Hc7?SGyV(^M>&)jg&7ae>&$Cn78wRjc894wp z3{G(%Z5eFxqAi1AeCd7ZdI4SKE}I)@8){l%lYMGyMY8c1Fv03*0Ba}eBx|q3a}v!c zh}^uAf`T$3F;rAh1Q=I0RyMWO3) zS<&!lKLiqQ1>0hPIwP$~c-tgGR`kLyx2mouQm2%gYb){)y1h6l0tk6p( z;Y!_2$ik8NQ$F<42Sf^dAZOZ7Q zFMqBJGyaGl2e2E0jvi{{_U3f^mi!QaqwA!jlc>pHb@_fPpPJ$VI4U9?(dk-WHlK|h zsm>**So4~Zi4%O676|!fAi7l6-Cv&@cIg|No~}pt#vcK&`Nh)}z|joemRVAeS6Nz8 zUtKPrnMUnnWB_DltL|}Nz zis6|T2FcbrzHT_$wZGmi;eN1e73s^~(mv0g>rGVvD}5c=C^R3&q-X&6LRxxidPZ7C zW_o58ju~0mSvlF+xjEUnc{zFcUS|W_Y*L3ZvEQV2pwvlCEI>-n#1p1Nsp)nPSV^2> zx^9V~H$_UUHfFDnoT8lE;#|VG7>l2((#EE`&aU>VhN|qs?B>q;!SUXKvF^d~9w<09 zFuxpH+XSEH;s1bP*w%l4&qCgf?@W7*Z@!hbStfgH{hF7Mb?M6TmSVseM>yT-*&r;Y z4M7_K8~V<#Z7!^A%q_3aF0M{9|Ji0luS`>Z27BAXZlszdR`im-5szG+CVe+ImpJT! zvLv?tdk(_ye(~bMrHc!fHy1BoTru;Bmp9j!HaBpi{jRmu1u)p_%oTErpnL&vp5SOQ zwrnyN0j#;%1Tg9AiauBa)IcwrislFAkHF$uSzLo*{2)59Px&Q~wagS$&>GxJN+vkQ~63)9nc zlT))H3g^>v6EpLnxy306kKqY~2jjT7GP|^D0ZfmJ8}TjXsU%~|B{$sd+8XF9aHU6w zW#8NcN*8cc;Y-q2Z=tgXvmvY%SU0u2I?dv!>Df^zdLNo~Q_$SP1Y3yU7nz(Ho0u9K zpBx}Z8}-V|tQY;Wc* zJck2Q}1Z>4UIC5FD?!4le)T6donH-$1l&E z{>N8eo{Ept*Y9SYdr|rnAA^0tZ8!1CS9)aaa$1BGz213hOq#C=sB5)Nnpj#`Tx2lV zz73#dmu9@7!Qiy~9Ka9DOu(`V>t&OorL0wH#Su=pAM65HC!cGsqb>WZuPyP~Zg8m^ zl?f8=d&LxG9kifjNa;~gTmsmYhO9L%?f77~RycyYDtGtSZ1is7eYqvT)6S= z3Uuw(8U*^n6c4cOMZEk*jW_ERI4!5k%_6Pghy4%KPMyD1h zL-P|j84isMjt>ot4fh2H`$vZQh6j6x`};-)`bPTj;GyxM;fdjq&`5AHI65^tJ~IwY z%nF-@wNCC8ust~=$C-KQ-C_20r%B({^*PcMN8PvfMb3GzPed}vy&{{$lM74IjZ0$7 z(<3S^c2WtIO+?z3FE31BWk3KceHFB1u#Q`Bvz@hxrkP9F$uWyKy4)pbA)N3=en}Wp zWH3%_f69h%-L3QStiwkM?;J3%zOkXMpYK?Uh@Y?!VX9*~P^+)shUHc1> z&|YzE(v~&Bx{K*KV9Q;Pz7bQRedbvHlG$0lsv8z@XoJege zZ>WXe#Ss_=bR}o1qD)8N0fe}PqXT^aR{5gPb!N_*&L`*RTqiCtCzGE#?VjUH2`Px| z8t*P(?Pn%3iAfmjx#TSw?B-{=^=h8N0Ct;f_yFwAU2v4DVdsb)-^?taH#;{E$}5l_ z^z4OOT3#k?`Mh6WQ(bsXQP&GnYV&7TOtvCcT|?}aIYk55{Vts37UUKb7ZjEkmsFLN zRhE@kl^2#2CL|}sC&gCPR#9j2S+A%|Osqpc{TaNuuIk8x0CzHN-3_b!4vci_ED_UxLUz=cM_I+`q`xE){ z=#sTJHFKVIE4tXpbJp0HFG8ku$!_$BT}0fHq#u$3Sg$AU97B)6yjFyhuzcu^Za$?E zXIbuzISc2Af!t*s&zU@)&(UL21(50Sg-bhYxz z&HeU;)}36l@Q!andKLuSCS_$)(ez~m+rEYi7tW@nKsW((ain;Qg{$MyeXth`&g3#f z-?J%6VE}`>mcDh>oQ0s#WBF{9mgE)46g)}CsH(ud(F}IS1uB3!^PCL!NkdQG?14(2 z=m)aM+uh-M)6XF{!swCNmyu(CGBU$mAFtEdbd+Is`}CGYZ5GbPo4*jr8LP1qOSd zrjFL4%F?>l#`fM$Hacb3@y5=M`anBmresP9Ty0ykbSdxdXzA&s+WNW!1HB!CeVs%7 zJwtsIOmh!>Gdwg1JvuNF8k(3LlaWv+C_TS4y|6O1EIC$lEcWH5ue88)3V)g8rLk*x zXmXV0M#Sy-)DRS$8XTD%fQCc;AnU|baCBm5EHn%fOXacoE&>}T_+H$F2QbvExb+qO zYV{G(8)<(7Ot#{tuh0IHyKc0ZA|M%gRz;TyX?hgiS8U(GZ?qoQs5#JvHz(e84e|kR z&>x{>rEtzyVuRke7eCRIMev6z?{(jo%TR`(b!Ruv3pFcrwG&8WcMhqZimnXS_IW-} z?30N|yHV&cfHg=KZHRsCX?@MA6vi&0UFidO9=4>B$y`cS;?uj)9l4Vj6`D@qUaya@ zJjNv_>wcLo1>6^=7d`%(?#N`Xg;BOU_*KIRZqJh+N;~&3Y@0x-74}K{XMul!76%i- z;4-<4&N3=9D_nT3^o{PmX(H-Q2dng~q|BV;Y!TZ-x{+rMN^1=KOfo!cG8ycOH`3Qe zb{|VU?;G2Yl0@#h^bG@;1Bfa?1x--od2@sKW7F1(X@~e!;M0Ozs-*s}(T84p?f^KN z!EPpqhM{yWN|~|X%+iWZhqnK~2EY(a@RlKHcQaT4%wdA=$H`gS%J_sW0Sx;~zsucL z9#hlPOiENH%`W67IfJ|Tg;=%}8}D0MT3!MAR#a7jzP0sr?jNDtYyG3GdO=5bKUn34 zk=^_(S4wDww6)7jAoonLJh{n~E-ou3fUEFN-O^N3Tb+@boST*2-csMw+1l3L*wR`b z=xXU5=o}dC864>y8tsO_BS=VG+T6?yb zKONAm0^=#K9f$DVi+H^$h0U~dwBWEf}^>sC%QeX`@!CYBHMMq zzP(I0Ys4)Mc8#)|EbWsocUo8&WuWOneWC0vx0a31OEFV-+`6U&>U>I~+vHLg2XSmy z;6?R(FHbLq_+8xo`5a~8On1(A|H4j$GCwnN9>)I@z)=hi|0VH~&cw+qBluk$@jLPr z#zhP? zr7iFk`>TyFwEYDWlD$xKSk_;f0KT30R8~s+tIa0CV8w7m7N|Ef&WBzqC(mYbsa!UP zALjjZf?PL}4SloC5mHRZ(xIjK!`<$Zna z-Q6uM?M?8(Ub#ziM|UgKH`o;%A2yqsW1|y-UbA;Q*f%nSW7j|*SlH3q4S|b1a_o;q zrV+lx?~dOZFmCVZY3=H=^SGqkysgnwLu)J4D1~s%n(@aDFdXMcwRPdiy&u=t1$Fdw zbq(~;ANP&)!5I&Y4`I0wnjVKHXN*OjAA?+E+JYkQOSo8#FoUn2mmSb7Wt^BC<^k{( z55R*Nf}WZig+enU#P(=Nvz;SMunS-i*K)VN8*1y8Xfso;)b(<^*B^6c&a){%vSmn) z52k!yYSj>JYnfCGmen`a%WMyasbDaK^>kcvBEBTxb<4RafS+z})17aYNsz*#D%Wgj>DJY8)imEx?Awd z0fla)no#liV7nMaHa_-r?DHu5Y1=M1}vYvRKaVGbK#FVhX6-BPC# z6M14{(L!SDfTK1e7@6<_8wsjy3_h3CR^dp|3Rjs1t%_1|lulQNE-ZwGBz?nI?Q0-?r(ISv-P|9gy6$q zr0-(_SSKCnL?f2lx&SsUsAQuzoZeiJuWwv%lvfG@nB&+gtKovHz~K7E246=?ou6wzT!uXy83$|p6HGGC9d!Iw{B{05A^hapx|h0XD8Is(a{_T;Aqs|+8Kbz zS{SnCKpSP|>B__KEr!9u^)^5Y^y&`aq#fqCud8#Qr)#jcXSlyt%&};2Y*2V?LdR}{ zNp-Ha)8uq`?!uUPJOK=pdSyaACOjZy#RJ3yn?6|@vZiAe(>!WrYJB?)hNaTiYcSbK zzboqR#_9n8hTMR>4nd6TlQOOu12FLeYJ^l9Iv`7L*mip#rh6x#YBcjM)IjTNIxH zyb|6>`Vzp9Z?l;Iu6Dey9eiYl4~83VM6%YcFH*TQyL?^Z)7S- zjw-UsF~i-nbnP#J!Tlx|A-sI!C@02pIdl5L0QSu&jE+n5G0|-|qB~}|0|E7Frm;P5 z>!m$6SJu}TRa9_f7(X`py(G8F^}z~YqSqDI>B-8)H2a(iI8)jkmDn~{}C0JD>`P93MfT}tUo5x~+L zA!_`KMxphB!V{)X>yOYMg(FuS_k_&C&!1E z7K0n>lNUEaON+ySw%U@S%$BCgp@9G}9O!7~xY@>*T3F$}{_fx?coUSqPGciO!J*!v zfu6zs?t#8;Gv|k+e)~5Clu)Hf^d6xZ%?4t#-(ut!{nTv7|v2WaZm4XFC@0uSlHnBphS|#`^Q6r zZ1N0g!)H!F;zV8@3mEQWHQYNmWa9I|KHLHk!+^ACybl^0?GbqezNXIxt#GfI=^K&o zjI|E_0{Y@z^b*D{L@DKNb6YbNoe8z&Zn6FLKud0MzGN@AHiDFjZBc78RyjFEd3Zo` zM>GAdGT6|!QB67TQUeX55& zLMzOo>pLR44|()W^oVQw{o#UU=nHwnX$p1zx+QT*0c1mK4uIVOIo@B=Ew;|`Eo=Bg znPiUF0BYh&doCdkGQ?$&JX~X9cLN=HGhX>8HCOWV6o|KLx^=YQ)!xfm4aNOn_UM4w z1vpP90iy9nLRRZ~o%C{Ltt%xl1JT^mwXurGJUbN_d?qf=)wY7lGDwFJ;azT1u^2Rt z%75OH!MXtqa^us2e?R_1O8CeW7Hh*xDK9q9tetd(!L^m)k0>2*bvXg7D7F#6VNp8!NbV*D3MJV7w=U#7@;OqtJKA*IW;nZ` z6$(~W+RSH9HV>;d+=*T{!gXr8FWb{ccOTU8BdThub?6)8+u8!j?S+JI!MB6E5bSSZ zNg)AT-%!`u)-p8EF+V%Dad8@2T?;KOkIl`E4-R%#RTNZL7IyWu_6`O*I@=^UtF5U$ z(9+Y}IXp7JR*UTJ1O^X|40`i?;PVDYCq@~ghJxck9zknpcyt)zXx(;rdY4<3ROF3dveU#%!_rMF_p{@+waNCPXj!VQ3k*!k6*wk2{#;@#jv zG(J8tHaZr>BZo(ZIBu_@v9_|RY-kt&^ZHbHgYIQ$!C)_JH(mf|>+%*zCi)G)Yr}E( z36BkcyQH+KORb~=7+@xV+i`nuXP`IG3HlFq1H)or#|B7NxM3(Zqmg+^$7}qc-80^z9w!H0oxavu*&h-y{>SI9`w)M7|ydQ9ayYON3;?;z!loThVCe*dSAJ;PwaXc`dmJ2JA7*Ed34mVSpn?^2!x10=0M+gzXP<~-SZocFwx!J;6 zN2^2ZBRf3Xum%@UCWRr%&1irj##_PHfl`Z+WY%v+nhf{N&H;e&8h}Q^RXwPrS$T8F zX?fM8x>cC&d~!_)*X=HrN&~mxE`9`)xqx26p7f0dFysR;9w5lCsRV9ID@tK}i%N?i zoa2^itb*|G*526L*AblP3(X8q&5cgZ21C=MlQUzJGZPb2V_m)NCFKQm^_BE|-97DH zo$UktJ)jP!1F;jbX@ES=hKr%eF-{QTFoVT~X_d}4;5>uLP%tzx0u2xK*4C7_w$zUd z_f1WXPK*yvj0eZZMs&ii!dPed;TG_FXjm8w0Mio_z)WSL6}HiAla|#z*ee+B?c^q_ ziBY$A^mPD)+?SPj@^G*ET^;Ldew^G+0J{w4Cb73$%&@#QxZY%iZr@-*ZMYFOzLMe5GOj+)C+*MzzHXCv?-Y>#^BaA zwAHE4HapGr#tn-nHuSA=3!Hp0Eq=Q2{x!kndw6(%n=BbO;fE<}~V(dczX>iT$WH*s}CO>Lj) zGZhY%JA>eC_NZmB*#P!6>y;33P9^}HQJAL;&MM5!EP(43F~`OJ4U3}Ep-nu}3t5-s zm)asy{Dtw%{9WkOS-ldmt?rGzktFS;WGL1+ADo;xb^4Eg`r!E&4?p$XfhV7R=Fx*s zKu^7K@SRWI|9kA`N7K)oym0PB%31PEE<4s70XTooKJL(n*SIp;|}xmi~} z+-lvnEya$DiBdS=Oz0jzck1Yw6JMP=aqP^gZ44LN*+iA)x(!SQt7naNz&Ga(AD;t;w0GlHg9UA$jRda} z316C3SYlF2a`J_g#AJU1EN%%iZxBBVKN_EZ&8{N+*oGHh5{>RCa+{FitutKdEv(Ij za6&PHP4x0EcG*?2{~yQTNdG^R0cT4&O$b`z-qlqw!Qd_g`%3@=%y@i5bB&BI>}dln zm?#9{1Rxom7z$1f4~-8rwboTsmvr^C38tb==nh~h06Pv-ZjCRv+t$&-BilPimmB#ij(piquGtKk`Pl#f z5CBO;K~&WUvl?ZFrb%4w8qF`UAj8`RCtxa0@JVcHw?7)I6B&zHl4pXoKo6XP!QAaQ~sFAAe^5gHJsQ?S1j-w?6*UCox|gzi{?M!Z`>G7IT>xC$(7kv!|!% zbOgz$hNcPZo2~PsEQU=j_34CI$Se9{$+fv1_B~k}fBGAf5y0HvJslfsBTU4J$(|~J#p>~9v}{waevxhn{8NK$!%aY!EWf-*Nu{;z&;-TP>+s= z*5)R!X(iYIzUow9HlD5bx@c*u3b$Zihof<|tLaEK3u7w)>ylRcL%AIs-If~aYq?a! z8-nzu+;$vpQZ(nMVtI(y1GWLQO)bq3=-b@d($dx{t??z{Fzui^`TPrM99p~a5ZRrA|PVip05 z?`f(ggIQ|?62tX&_XTN4tk6`X;7=xTT`9xUs1QC=%y4IRyJVw=l7=G%2(E z*6dVWoItF#1z9hy&t38+99+4y1j(oaBiy*TF;5Z9moG1GY|ID8`UZwNXXm8*BS#Ez zx*zdIpQ_^uw2}uLRi{h)3(y){Y~hMWdf{K$e(oEjX|~X%8C49Em+H2SdYE;k78wAx zQRs2ITg+R=Cr7Y$@rD|OTU^=K+22X}iuq>Pxub=hPjCd`2;k_3RzB|fHhQ=Gk_l5f zvw=q!z(u7+Hl*C#Aa5a1*b6~}yXm>MPE_{{b@cl~VV&f9kF+P?d)+jrf$eaBAdww-tU zY{&MW8vXZ<+kd)y$K8+r;hlf{`CLxonXLHpX^F8J$@I8eVi@O4kdA(gkG{SgXg4v~ zrXXpw*$#Y5(?M{&-6gapVQHZz?j?iW*{s6d;(Q1s#xb{~KsVRj2|CP)lO{sN_+w)E z0+45I4eJ2d@vlasWBmaIa$s$>Por=NKG=_d~!eDctN$De-k!Ke1_efFv6{`m5rkA8eK_Vmfb^9=2RooAEc z&)F?`+xHRDAr^+O@ou*hr{Om54FlNgDJIW+Dn3T&94(1f;jSz__&; zgaDTCj|!^AB*uf0_>xWA*}76!!P+?59haugIC`*wwvKWNVKcXEs;ryDwxMHMYD($_ z9w`^n{wQ=_4gic504@_Snt*Owpj|I>ychw%<+Xq){=B#@I9dMM-nP^x9CA6yb!8!A zad;m`c>>*9lZ%w0FPI7u!}b=_?1jGRgIxeK3e6*JF%}B&zB*FSnWoi)gW0|sur0$3i_9X8Ux^|zjj-F4f(mfi@5VV^$X8Gu%n(t)Bdsvd>I$)csSy94uD&$M=a!s(c z!sbTxzM9IL?gh*)WTho%fK@5kg}I*}`|9rd_uRH?$L+g!-oAS`w0-yP+dyKY+i|<6 z?Yo7?|Go3JyYBh*k-xotDmy+lC*^#Wmnf8G8a6rok`%@=*vF(mJ8gs`DvlUO)uy=- zE$gF3o@+>%G*zeTdzhP?tmM`Op9A8iWu|52 zX5qZJOpJsY3<8*WCmzCu!D509fPHgrxEsjvHpwxmpZ@PJUU~ZU$M4<$(1ZIQ-+S=M zgU>#D_{f1*UU=?}BM07k;m|vWKRa{mRFd6Q75XM8#H1yI!Dmz8S>tVcERzX!K2fNt zO*-9foknrA(R?cNV8Yb`SQs3Uz%1cqxLW`fG=;uAa}xUe_|Y#;90Pq%#+*4GYZP<# ztFxz$o;wYFcJkOikACs5lV3vrJn_Xpj(@(5?@P@#)Y-k-mQo{`E^cjcQBz$_bA&mr ziF%k?WO2Y)R^!rub-iIQG2GbJ0^vu1lt)jU_~OJ@iD}8;C|obw#%ijt?T+a=b?x5n zrq25+5H$b79XF)yDadB+8>NuW$jWs4I7%x=2iWAU;h2^-tH#rA)I+woSz368wMAdxEzENRvftjJzkzDGS~-T zx2K>Ck25)0dg0SuWCFOcr5>IJFPpDiNzD4x-o7r$kTPjj@S5<@FwL-f1TgzJg2D5P zp@pRoF}%7yyLoZ?%H_FhS4G#aEmAkGFWtDlaQ&K48TYPVoLyO)nwcA!nC!RBD?-7M zu^~VUFR7)gVQ{>cGy6RB_JO<701K@3I)1cwceZtPw03e^w_{5HD}(8wJ@xx$?vlPl zH5tqv&W64N&h~H^z-~q~&b3oV??5=X%`iCrl8W9igC+88MXGVoFMD7q+qRVJeYtb2 z`^P-l62MHH#_A9kO?9q-Wkp?um+IUA7{dX>2Lru0LTt#z#w>VaaMN1D=03Sghj6NP zYYWuW(##__Yh=I1jBwBvT@uHx!}}TU>T;;uv%f4{)cqQ1X>L9U3Siq`JrcmOD`_@3 zag_OQCI#B92Dag`OxVPf^xVv2XHNWf&pnD**k2dGx9{2o`wQs07&e^VdE4E0zV(j} z;&LyXrBS=MrzQ>>0fAH{g zPrvr;tABY5_7`Hv_p6g9KmO#Czn}W_i@4)Q6VDt^KIaw%x!iT6$O& zOnGxij{K{bQ#j%l@b#~s|Km^p{OFH=|I1r{ z`O_PJ{^RR^e)pw!UqABR8#q$i7bz8vcV_Q!F%$VTTtx-k>I z-OZ46IjvNdoO?UIH-{O3dY9HaG3lCg&o7ij=t`^>a2YX|6~+>AZNh~K*Q}bR8vKQ2 zFD>ea+U}M4*$`76vb{|gx?zb+8?VoeTbr51f3K=?^S&=NvfIYA!Xmc$H8U{O2Sa+j z!-<~Dmj=BqfEB~|U6>`*)g9>T?I%*@P(40k69;MsY*F$@f^ug`35 z&cgusH5}rv3a(m-o zuzO_O`qBR2AQ>#BN`w7f{k>!`04y@8RhsrJ{VBa5vvz#!8|+fK!C^j<=Zsgoj@bk7 zfMQrnlH58a*($a*zMTqS&2yGF23>DgE9eV14Dl{o2W(C_0f_?`bmH%pBv$XMxYc2W z(E!%x;g{U7V3SKSk`B1By%EsOFU>D3FT{&f0CU%z0CpD*>WTGSmkz$4i$$u60M@8A z{4p;(I?&KWbPR(%TO3`or~uYB9pS*3H{Mh?ebWnaCE+Nt4C#W_N@QF}%}$3Ed*q3| z@U?f`xy$40E=uTo#|{Yeb)^{o@7=fm{J!7*^URlEaBMozn-twuLuE!FSmdY=b^)wW zXjb=1^NI|S(l^y_o!3n52Zi{^R4v zAK&-z!;k*{&;uWx`rluroIHBrlx^M_S%w>RwAoV9iYp-&P8Xnscmm==$IhP-3w!?5 zmuF9WapvfkXOH3d`RT7dKYRSs(?>r(_Sr{Y{_D@5e*E^|K6vB9_g?k1!SO-(RM4Wdq8JaGm>y>T#hC?Z@hGX( zGh+ZV+%T;0#>VXB%ZpcGe{U>bySXU3z5rdiI=^;NyfSDFA2~SGqb0UFvK}XW{jh{} zJ$-H3Ns3&wJeJI+-mcy*xBmti%r8k|ubx-)IJHcKX4X+Pn zpY96dNa2=&!EU_l-o6e^0V91qgDa9{O>cxcd)hn&oLDkKy;yo0G|K= z5CBO;K~x^ypW@z25sl0~WB#*@8TM|(n?cUI+wd32%t^0rs^u0n*OcB+CK}%+Bl5M` zd68SV;piB(vte9^pTbDBot$P83B94hRVwqAuF`S|SGIPsqQqq|!_L~PQUUBQ0@itA z=@&AxGhTc9O`sP5R`lMs6W({X3t+LuQ4E%iVUwcu;In&ArN^AlN;#7*TavOdxdniM zm2is*-TL*y&IXno`0dpWiJi?7rDUb003FlA5iI;`71z$fo^%eB-(N918^kea|e|_)Gzr6d}pWl4>{nuW4@3j}- zdF9zR0NNLR}v>UU=)sfmfg3``nX{J-h#@BZm&XcKE<6 zFKlA~2X9|2Jj2&$U%xtUBpK&}QnG{F-b{B}-xkpbTK9n6u(N=+vu#V+E`yAiwYT6i z348*sV%OU2P8B|@_%zxOv^U34#)dmDn>(HA`NDIE>*}iN>wT)It+j)gDyyK1s%jj| zDk^=_UDDF>@cP=FVJt7kl;^U;1{n>8J1y6vq3}R$&Jmqi`=nmcyk zt=Q5Sz|yc0!U@#W(d>$#V(i_lIl5VV>=yERCp}vN81yB8dwMNIW$V}DBKOz5#OzMi z3gZ}w;eg9vhpFvRcr#!&^pz-acN?QG8qlWaCWG6gv8YT{GKt^axLn%eX|MGd{@sPm z{hfFu0L&jv(U%(s+-9B@hPZ{#rjOBGVOP4h4cXK!vjpVE2k2`~Bmm9?OwyOCYpgLI zs|xQif|-@{t|4ZkH5u%7%Q7jrHuA)jE6|q!rsva+@kAZyd+O||-`#WXt~>8?y)OZ5 zEGS?{-+4V5U2{02c0MrUJbbpePgv&Wo~h%JM;6uogBK z+|9_#z_GBru(Y}qR~69LC%M#co1nJboQDC-ibv+P;6-w|-~w2VURjE438xwcn@$Xj z8=p>$fw$fSPo6mP%F7S!-TUBUkKME9zPs<;vwP3(1Fs$U zXUykcBpru&g^|TKN{rg<{`t{6fBWFA zzrGK9$|y0M>kDta^6cv`J#*xRC!Ra7?}Y=;ybQ`77QOx=K>O_5uZZ4#`OrH@4!!jf zL?l1+%5(b<(8>Iim@)j8hw@tTBbu6=qz)B;C$zY5|-pKAh;Rg*bw!if1n3|8A> ze6xUn$zyvw=~{pnW?rOQXN(grAUIvz&9#oM+~u|?i+WwzkG)gBYfE^&?vG@!Jkmz* zu{gkaHP-B0p);r+U9ZezX0|BHguiq1rNgCW`OEm;@*)^b^}d{=K+*D&!Q6&X0BcGM zj(8p z2_y~;jE4rNW`dwBSPKjTy6YQL7dL0t)}~ihCRbKwmY1g&=O^Z8#}?+sA)L%k2dAb+ zpvlSMP-tj6G&VIc+TRlhv^Mnjb&d@8*|K2MORI0N4`O>PtpFAVvxBr#P-|NjB|Iii2wBX?EuU2s$wiJ zxa7jo{1#HOW&Y{gJG)wq+Ff;Y`bn&N84i8xiC#|)nyclGY%;c30Br1UjUw5tt(W2g zCn1Z)Fm5%lo12;GOkzm&N`6@rK@4C8{Pw%=?AWy%0FHFPJAbxg#~nL&LAPzc1NzDK z+rVI(3vEtz?Am$9&K(5sPwu*X@3Z?)r^TH~k7u7OjY4Z8bYvElowlSWTpY+{A+p7g z{nG4JaaYymY?|&mW|LJCN??Vv^RlyYvodosQ!`Ro&0z(HwQ{}uZM0DLs=lqmM(vA9!T z#UB6k%ol$@@sAHb|H}uT{N??B{`sB1y$>(@%KL8^dn!8k>Wk2`ZyY&j>?uHtBX4~A z$aBxU^1_oZJqzLFfDs;m+xH!L_VL39A3OXs^yrIEJ@Uenj~)VCAN#|TkNkfB!++TS z=bEWXT^q#iLV&bXMtQqXI#0$HQ8?wi;f+$WZ>qvA_;wciy7HRQV_{xFNiKec z9s0{TMRdBLEkqK_2>>k9gtIs-A^hnw0EXGszz!>j)bfTmU^GBoU24{+cApG?A7hBC z`P<c3_+V~u6qR!IBMe++~tSd7-$Q0wBso9z7dz#{G!~f+>E9`Q`dm(w!)r{ zjL9fmnbtQs!tPp&i=pM^sg1SiOBba)iA74LBuP@HH#cUXOY5_nYcp#rldH?2wWX=m z#mVLQ(8A2v;`G?`*kEsG(@g)PX?a+ZAGmYQh-LuMug}kgJqP zf#6u5=j?kW5@3EKSzC0sDU3ThTPVg4xX;bvCAW>G*Rq4lK`B7TYaoDS8`wmT_((`P za2X6UMax3ktd-eaj=R6yakS-p-gIp*&oM7z%yxdRMxNaw2)3Ke$jaRJ^j(F+JCB&DYi$zVAyL2$!G75FJdU~nN$DvJqYQW@f1 z`WOc4_zLNyb4&7aiY1v#0Bkm=-BJ`zWr$C|V5S?Hxj3-D3AQkoA!0^}Eq4>nolHD` zBJu38_|qrOpFVc>Ra{;gMV zJn-s^PrmZ}{+FM_5qy2(r9+Rs@XVvnKmEvaPd##QKg{bR2lhSu%o8xO(C?q#d;e39 z-S_09d-gwa|Gr10Ps`p1?|$U>1noVK{sGX%QH2}vfcqYM@cz9IZDaPDu}9(Ipr&q5 z;DIZ+UDVW;<4fF#4-Y;PpdbgOsrb>gUz%i8A9o?`Mx=cb7%lYr1%`Lv@Z_K=0BjJ> zPjY~OCtRDoon!t82)BT~Y{5fAENyH%1DqGDP5Ct|M^*sLm<_Z`J_xf(BdZvN%EYrL zR`)WElPM%T_a!uO+?%^L$JIf~)y;K5h9;TWf*NqP-Bt~Zng7LM2?Q|H`Wb4D*yS~{ zZ8{8<*=dp=MSdQ%8jtzX?AKwgbk=#$5bHi7FWGc{bYLWIB!K0j-`ds$wY9eb!2Cvr z8QTLb6_uqqxtTcP+i@Kq9vuvtHX5PH;Oy+!;^O4e5-hK@<^XrETmpLMuU=lfc4g`M zWvgqK7O5*2=T(>2<~Nq6FD}n)uFS41gvN%u2L{?gq5he<(W#jc&M%q>jgC(Q+2oQi zwv8|BFCwqp7V4O#Bo|@iF;{iOFy1yDy%x756W^$=8wQ6+UxU&J^a7;}o7>LPlR>Ex z9vw6qW>+s}nVBvhz1rD>v1^mJ6>uAaxU-UM8kaS=)&aX|P`)6r-3j)H$d8x=qWd}k zLc9UIMDZS%!T49Js4nXp2yj3JyK+K!!REK_roZp$4PZ&(xM9I?dnevYO)Z^GtzB5P zH#W8drMR$ERW(#p)|YD-6PJ|wCcGi5tgkg!9>$HlO&kMb8>SZeYGzio%x$aEL}&#t zKV=GF&D&5P=>ixSQ2Pt|f=p-6$Nl=Z_w3yDiyb?E&TMB^{Q|(S#lQUJFL&ZDa*iQOF+wZz#$1iri`|$^fxv9z78M15ZjoLNi3UWB&UgsI;z_%QM zu9VCcnr=n1M^;ni77el?k4?!mj-P!nywV^GV4F%(m7Ej z@(pWYm$_A(SCW@2(9O**%7L;9v$^|==a;}Z0}p2Xfz=7nYr1DhpKZJz=yYPt$wY}2 zpGp99Pg7sTp8WjWu}@Ba`SGz&KK$~3|M8O#-~Q-NuYK^&p~ElS`@rw-{_XGf+;i`} z58VCC^G|`VpzNX7Ut}m4M=*8&;X}|`JePd@hh{f`2%_ZvqG-T%bH_dWiQ?Tohf!FwKi;BMgdk>ATz;Vu9G z5CBO;K~&#u1nvT~bh>z$o~ZEc+iX6q*dx223Yqw`ELYiSoz)2Bv3_z0V=2tt` z%P;LP(KZ{X)Vd2#v=kk@OZpxRbV(;5Q?l97hqZYdBVzz0Ukq@|HM=&Z_wDDo#+r}8 zMHVQP%_LJ1i%%@DDu6L72DLJ_EwC}-Cdw_@QuuxGf#)T_-4Q31r5?sa(wbTuVD&VZ zX6q|jnp#?IY6-h~;ZLgc)k}k17tAzYm%%QK?H;fJFxHPyX+<&VYtkH8Wn}XmaEZk2 zxK}${>GD(ei5ZdB#vSaI<)&hJ+rYN&hyhamGqE>?YrH6fTM-?wl3Qws+nWPeHnlXC z6c-d0<$=fSvCOW~3v*-3iy@fW_0_41>oZa!e0c`Cc6ILRmD#IT=C53yyMATi#??g} zU0u68fA!MbmCacmVUb~==VpedLjCizBQVMmWG6=rJ=w=aj}MGyA@v~x26-asM0 zqsxo(s?0AdJ-=)hu$39O`T5zgnW>Sf$??h1m>udc+B-DT4Gj)=S+<#|uXYI03~GgI z^og#bd?9G}k%VyzFxk_NwKd-PYzD&pT_a(9|4?^PX&zn`pgTGa^!5_Ke1*`!P$w}= zD@-?xqh)YF^0Qh4jZkx&Ecj~b!OJq*CM*qUq3|{~o4eJfa84pLRgKlvCh8{JH!#Y^ zD~p=yDjRCFg_`r2j@fr8RzZz)Th9;1+h?(B?e2<;00Izx?HIckQ@q z=N)%)b9eg=tGj;j^I!bxmpgawy6xvXZ~w)v+kbiIZNJ!k`)=^q0@y7~`q^DOezJS} z;rCxnE=teH&rHirXNHFsLyEyQ0c4GG$x^$xhz&K_o=E1K)m25zb9CD0nG1{jCBZyi zC?H@jyD(eG2kaGQLpaII&vXGS#`i+v*@PJB(-e0GIvH~YKJv>`UmZPj?CALuXOm;% zGLsUrQ&Mu%GK+U>xSx{ziRyJ1GC02Q*xp}~Cnc$f=H{1KUSp`{8S^+4YDQVA8 zj@i04JJSq7!+a-Yr^RQd#AYU)O^rL95<_46#rdNWE9Y0OX`NwVH;zO$GeAV)yjjN8$)~QPyOm9pxM@V`ir%}T zwaLAv8y}9{gYd*1Mr_g7&3H1X8R+Y1_WIyQCp(A{SCj=oMLpMOiMI=EkO)lG1$qi2&eGXmECRba8&%G@hIk`fkpExHoUk zee=!YH@6mUT*H^Mmo}$N(eMImg|AcGn9F?Y$ea=7y83Hjd2s7Kwf*-fG)k`vJ(@21N zP%jl+*hBh4?w}<6#K}+)%L2S4ygdAxc(o8-Erc&O)+f1QSXh{tpC6x{9}^P~m#GXk zfoSfd>k2@3RW(=6u6QEToqXK&p_eDj)q-F~VNxM4?9s(Pg~SQk>PssMhlAbJ$Y_sY za4$~qr2<&3FoV*P^4;AA2Db++eOubG)PupT#yhs8T)H>VA(6q1%2YM5oI!GHE3wwE zx7#H+DXT3nsV*(Wy1${iw7!Y~Ic_)FWo4D9qO!c)q(ch8%*TyvgLJTuTV5z#Cr#OF znqe?8j9ZRWgzny7WKQoEYu+BfdIl27mOg zkDq_#@WcBayXS%Xe)s#k?|pF3{reu+fB5OQ|Nj1`=f8?ck4wr;0YT%^6VIf?oJ)<1 z$%skLPtGVv%`8mAF9m_Pd+uo5 zsV~kS|M>K$A0GYqgU>&LqkZe6cVGYTtylm2+L8BPKK#y+7vFyArMHiW-hJ8V)fe76 z^4POaJpTOtXI^svbD7 z_x`6I`NNY|_wRe?-hB`5+5eE@)@NjKfcmXlz_;2lsn86op7O-R$a{0@B?O z493+&a!iJRTX@ibQ77e+7@`9PfI(JnRUE8_V^mXXonbIxEY(vAV8{nx zriZWxmQLh_w2L*1owTpDsJMUtmdrzmJeO&TKLLyzO-@#kCol5seT=ouq_&J^A0nl% zlmBc>Su};m1+a!dqh(UDIz`?%0p%9QCE=os3v^RsO?6f2$Vm6%VrX$`ba`cbeJunI zU4rqwzOcA5Qc<1R9w@(Ya}fZ(d}*3Jv%Hoa^JMU?n@eBcTE_9_jb$*H?K|X2HfKQM z*_naSU|@c3Xl+gEogkbnE>8k%GczJ)a>;DLi2=^*4NZR#!orSL7Sh#k5{_>TXi<^^c z>ys<16Duo|OG^`TizBlO!?W|j>Dl4Q*^%)nnZg9q$!sjFM?3o3HEt|1Wb@wETwCRj<1)m^)9`{k}*KXC7__CNURCm-7V@V!61_ZPSSd^Z>je@q6;(L9*B zS_j{JA)^8wF&Ac$=;h~{A5XTPsotX?l{l$hQ(%kJnGS$y+7A?U2A<;PHldAMOJEY+T*+@ce8%FmGZ;&$KPJMfBn=q z=i@J)I0dHOICuKSg;UqhpVq{gYa;OYwR0!0o|Sz*ac2{vlBkb1_-KSFE&{UE6dUOu z6&4&585kMnq4UxO7>vPw0bzmQD^u1OY4VSP3{}AC7ZG9zQ?kKKQ$O(p4%Vqsvr6R( zFzYm5vMpglOvcb4Sy9E0M%VkM3XyJy=*9E%UNYnJHCHv$|b ziGg7%8xaapyN4>BEBI%LTOqCbElxXCSz8BXj|3ZWaAl^PB*7iV+Iec*A+AQXrwBKx zZZ7m!Cp3IUU)w6mtcciW9Y?j6c*6YWlc1hAYNFHf`yYJNT^ zc!4Vf?#Q6s*5=CM!nECPURjy_^{*F*Pk*le`p?Z@{{8aBho$_A^sBed_6*ej^MBs{ z_3zgR#UV>{3IF?FuQ~qn?>GOZ*5TKGiBJ9U=gUvOY<&2*0i6H*^BQ2bwY4xi>sVf% zeDj71t;J-BwbwtdzI{tu&a5?Gy;^<#oJdSCe!eLBqn@p7%mXk|&uKxzzXe#!V-WdQ z!wK*BYF(g#cA$6jIaQgxc=hbno0YfkmOp-4|Lu0Xr{6Z-e_DP0b{Wvc z%3$+376fx^8?&pM^Uv017S?9wSEpy6O=E>RF+V;A^iDe+lZyQXXK1u3D4B@jp@B3w zL6dvn1%&($WxmSmh5w7Opv2|C+WPYp^aS1~tsRY&%9?df&yUW|k0IukCJ?iW<1-6m ze8iHP8`4;;%ZwK%qQPM3V1ym(*TKG?-p=lxj!s;39ngYca8r9%E8eL54#!)%qpz*K zSLuFX#x!@ea5Qx`H*`@nb~LnfH{+QU{hbJ^2@)r*J&KL1DtW1ern$3O=t7D{O|K3< zq^?co~h&ZH4Om-HTbfyx_b@N@ z`_!LqKe_w$eX4#s``wjO-&{O->*)>7!t6L}F}cVoY#CRLHSNKsP8pJTNv?QJJAZ%s&pCd+NOn zCO?RHFqrk|XCc%o!Y@3?7#<7~E1?1yCz7}_W6VI6G-Y=3aXUf+DYTEMe3hi%A)V#B zd<~xf01yC4L_t&|U&tPI-~n%3(L+{)w=9-dcprd0GQ&Ki#;|(j+sCb3XE8eMWFgB6 zm8lHM3SEmw6dv=)ZrPb5#ifIC!c>PPjE$yemS%9mQ^E0|w0+Axn19>3_=!EtU~!+~9j^`cPs67%KjwGW?Ofpb0PwmxUu+~(Nw+o{#} zGYju#M%HcCIkSCX@cAzrzy3cT|N4JF{_(%x|M{P{fBgIB-~Ra$sQ&%07k~ci)gS+S zi4#2X>5r{XzrXtR&o}RXdH(v{+KV^K8!r~tpD%Ie@#4z##EgA>+6JBxU$+*)xz|6h zzj?a>@eKwufbsa+#{A009LR^ST3Vd}ediX&m6)HD4MnoXN@)Tn)k}5DJOOFz`Rel* zYY3cdy?BPecSdZzScIZ|@p=)U{rUa!yN|1HKdj&cN_X@50)F)BI<;m&L^8&v7RM$R zM#twz#^#*3ln_9#eZpoNw_3-Pg)gqVLFFwy$Xy9?6d+r^;9_LU6#1XHqi9Q;qQD9M zzwovJgK-_Bn@3D&N5~>B88^Mdjp9KKMi=4oVoOO)PIdMWq)iZ<}mvKGf zVx;EaaXWWxkBnLoHeB)py~5|FrL7(4ZD?+*2Umm$?i4=HWcAS44nC2Xt8T2u5yB4A z3ec_VYN}|dDXuTiuP)9h&(5vL$t%l7r(w3FjBEVEp( zxanvTd0GK8(Jafh6+BXF#~d^{}gpyB5GyadmuD+=jQP)z3*Ms{E-(aPVXYO)7naYMC zaNC-iAYmJ7>guZjUGCNeQ@K+XOl7P>&T>kbv&seK#R&csj?lXZew@Cfw79go^3H+s1M!-4^*rL#6 zN%4^<cxoLnsWPfd~b$_&zc| z7s@-JD^Db+zfg;+6f-OahOljF$D4rP!FVeZjD<4BjliO=#M!KluKY>6%#ukjo*f^G zQ0%VQU`xV@VazHM-;h(yw5dE|#a)AKc-d}uZEF#COx(F}Uy#dfT=`6Q=B^6(0j+nP zOa)7uG&Zi|A!uAoC|c;KU;!7W@Plk*+ZS0j!l@ypZhW9mOb{BB4vuOJ(#EhbFu@vv ze@*(^ijCMEh}|Axr1m0jj}0Ckz-Jkv{e!){-Mga=>F?GYj9~zn-C1`4n74bu+VLsj zsxdvuJGd;EcHma4ad-GQvPYvFSD+1Pj=@VM?f_nYwG3^SUs-VL!R^a;uU@%#?Yq=l zcXRID&$<6F|6zJjT53TG?jzlUePgrZ6Z4bMf~zl`F`W|$1M>XZ$53l`DOjp z$JH0_R-eCJ*?hCI`eJcuV-8Pd)i|{obtK zApP?C?EJHdnT1gjl#BEym6go6f)KWGyH(2EQLD^6A!yYrE}73=>V{<~yFy|=`2WUW zP?m$2t+;SHx?6^AW}bYdZDhi0gEp;etfF5Z^j(^uZ1d6t(CeJCBJdZ6GR8GHIqjgJ zPNWeD;E{2XyjI%)xXUNQmj2#8FsBhjX>6)%Xs&B&g}|l2MaTP~;39}y)lgMYS3ymv zRiy>RdD(fHnK|iCGE#2-ccpS@V09}1X0=7U+*6hXfPQ9LIbpV*DpNK7)HnhICa5B-ynms z7aQb{Py}m;AAbs=3-gj-Nt&=)$`*W}OP6X>T+K65h? zKcW@TU#N*zg}zh*Ez12l#R?+gvyfS>9nFGFbzD6`{R32WB}DL~1;PG7(lAyQZAqsN z29mV5l;zf3flLc|`w&^030aIIbSJ)lv4; zL1Eu^kRP)4Bb1g2mA+JDKG4G(T^hr-9^vdm`^pSR9vY}^w_rkRtDR+N2%`7Q>U(+J$Cj)!s(=>^Jg!Jf9KAeKb>^u%&D{Y?%c1etgfxC zudc1BtfqDd{8blL7oKfATi#j#l9!(^AQqp`&u`AotW8g?OiqbxEtep0_Jx~V@eaiM zcFNk!&g9ZU{6u^Q7PWMlkPnw*$O+Kms!<%}aFiD7eDaw|h`4Hotu#x6FC3M= z%4H=c{_-R%n~JLDJu z8v880<8x!v^CJjoUs~3TnEP!#gU){I_|W*YjXpK&oSe3U!BaC%UJ5hdS^hel!=Ufr zP;bAvtFx<((A!vBTUS+6Uj;45Xym&JmiQ!m>#D12tI8_NQZrKT-MjbX$&=L7)U2$m z^vtZg_kX%}?Z(B6moJ{j8|LhVi|5asKYQ}@$;4BMiAg7qpGb&Jh`;~j0r(1j*VNb4 zHqZh85cjKn`w%RA@gXlJSo>;qFl*(&a8uHSQxLU~wj3uep9Wlg7a$WJCRMPI4G#>63<6VwV!{!@u@Tzf$K?rv zAsrAE78tE4V>Y+|Xu($ourbK!AL0-05^;kAbwL3L$wgMK#MdAKuy1gHB5i~H3D27B zF(X#+`}5Q>q;p81x5>{lz~B*}^D-H{1B_n&25+O@Q}4@h#Mk?;{MiJ!%3G~72KE(eGDt+t`j5$pJveSF+HHRXUn!AhJ{b^!4765ZW!AH+|D zN}#gIA+?}Gop-AZ2`X8RNDXtE#FX435*-4~2p)3Dma2#v(VR~3?revEhL$Ba05LX- z1-)uoJHUO4+&n-9jcO&c+|9*{#NU%s*<2XKUIdCAfiR=zvMIJ&)nuW&v;gK+1=Cks z|I8=MU|uNjup`z63aADJ6<&W_-y08)%JkoEA~iUuV|Qy}|$@YZ4zsO{C^ z#0XCT5usR7iW ze+Re=;`R+-ZQ9z_*#sox*wWRMUz*$A+X@ofM$A@c|DdC;1d0vHgBJ##d-svxf>zo4#=H)SF5xk?#I zw`Z`cZ@8y>ptG}|vTHQwprwhE;T3gNKyQ9&VO~i=u1F&@dI`Eh>C&LttTaFuasSDq zN2$qpBsC`kNG1U1WFa1BraeeYzLW9fhqOm`o<2Zaz5dO?LmmJyDPWfayZ7!x2;ocl z^L^qUUb-t5Acu||AnQ#s{Q7eL?tkptwfEq@;HVI?d{QkbLXSrU#fP)slNzDiDJv?9 z1C6w+3ep4^aUK!KTde>v!Y?wI*eO&jQ#K?n62a(Y+_DZf#YFf=Dy+o`%S}U=vOB93 zLxlzs>im8Eg8cwsR=|{M4l#kj9E?~zNRJ2k8w7oo?c0z*&MGTM0bt-6l=TiYcm?Ra z19hJMKEN%I85tj|5A+9OJ#;=t489&losUuP>u12x+o03=8*%Oh4C{P+{jn4X`g>Bv zAtew101yC4L_t*AFCxSk9?bjDUr1M)0k!u|(w6}&dtSK%hpR4e4`SMh5qs2phLavq zS_}}%dTEOaU?~tKefvejAD-VQ@K0UE0!8={+{wfCu(*i;6;w<+KaOByKd2Dv=rGrI z4Lk9I2PAqKZ$e`BY0)cv(MbNP^yMyfEGEQ8QIotBKU+Af20F^Mp?2=eB15t)AL!*- zfjCjhxXj($n@fuTv9{%E3#ngO{_?LZU2wU)O9EIKo=P4C<{ftD{QXr7ckO6BlEE*4 z6Xv1{TFIH?e-QUaKzGOR08!J+(|#5gmlhbw5XT5v1HA1x$ZbeUl5=}_fNbuP*uy#A zS6La^j~_mHeCN@lA0Ixt{UGa6Mt4(pe_MZ7TlcsV|G)FIv$Ki|v8V$A-2qXEfXw{t zuHk;$)Tm{`X`ddm&5T&49G0mO>+~pli8JFrvpG`@tp;rto?&Mhv2E{wC@6K1fw?L% zHG?(rF0>=eR;xT0A?(fBX;sbZ2=i1fL2!y~bZUzlU>FQW;HT6!fRvRul3;D9&CJRC_V%~w8EF-j<#G-; zkBmi>2*3W4s*182pt&kLJNw~J4<0>unEdE*dU6UV#n&S(mussS!0h=T=K^VY%mC&O z`3}HUT4`w+?(T;nY$=DV(Y3o(&kf!*m1bDG_wLzlKw?iyWheLmz!rHjCbKLjqbxJ4 zB0Hz7u%N1x7~H4;7{V6}27M7=KVFQqZZ4~-0DW_ybPIAaMOOJU?q;Sw$w_RX6=-UiUH8| z^z_#0{Cs_l_#@zVz;B26YX9yp_w53P-8>HgB>uvQ!jGh9FtBO}^_Srn790=}%A2yR zO%V!fiJ$~vuo;kMOJq(j<5P;X70(gHP#mHX3cwBv()QXSw(FC{IWd(KurKHf1_Qth zTK`a!A2e}r0FDe@Ly*xJ>_=P0fU8ih9E?vdgO8`)+tc9Vq4z%Ij)&*l3Fq&bdU7_4~22TluLQ8xf`i8}Fle>Ob`GYmx{=(^Rj>FF_zOdwOiqn( zn-H5wsD_9O%PWhjL(`nI13)LtH*V5I7TTerK^8ntHGh>~O!N!5E z=AoW0=g`m?)@XKiJe8*6>C=8^RQRDQark>t zf;C;;yl#fr9Rnk098&(`Lxf{&sIj#gZ&9kSZKg2A*`VXvG(o4QEb7Gzm<6iZ@f+@U;wzUzZ22h z*8vQ-;p%Iu%PYyrD#$3QF0O8>f-ZcV_W0{>ZWI<3lvkCPl$VrMl$Vy%sP=-=Vr}G= zmlRf&E93KOA&#qYtZ!`KK>}D+H#9e}=>(^&5IpdQXAkg>60e^50_W7U1aL-1){!Hg z5WzbD%#wGX+W~~)L%C-+2T_W1)GqtJQkAg;a9VL@YH?b6X+~B_J{VkFRaSxZM@yaP zBcgKdww@NOX|Nz*;agHwR!q|fim{{sdYP|aEr^Q%deeYd4R@Kr+7I~=tV*tY^G$qW z;+4DK-F$ra$A|a6y>r_~XN2}u_N|5LWd^$*bocV{H5&Z`0!%ucfwb=){9?QJh<}V> zFnHfV7cdDJW91qc6&w&58cd|BqZ5ywymS^C z9U|Bm6le?$K?H_{QG^DY!a{<=LxUs2a75s%@EqQ0_6at42kB)!7w4kMh=bek)niaFvH-5{_NHZB%C22{~I=*HVK}O<}gBt>mj5 zoGE8`)qXzMiw6K}#{hG%Z$?FRMQ%avlaxp2FP#mF2*S!MC@AFO#mgn7#hqOpz#b)s zu?XmCQ~C|MDSCQ4`^`NAgMCB8=3&c#)iz|Y4q9mcct91z3V_+7ZwG+4&&@qzhEs1( zZ@09llygY56N0%LcyOp+{6zf4$Tnnbe3ZLdfnjLh9RTJN#LDWDJTjGmVX~CclxWG} z0a663-DsoQvG5e*EKebNC!7;gj`7Kn$w}+TNLPO^{=!8SC0*tosRb4BH)8AT@5asO zaZcL9tdvW)zdm*SV&bI>cT=8rTg+ysMULtszB0@l%3KgRMicZEgDHDxG_uNIEqB3M z?Lh0k;X!%?m~?DU_kw7a6G~XTik(*uEAOxW9|6qGyVBoSWRETK7u*pNz07zXPomDW zr|xrJBCAcngj>ZhN1V&yfMP*F{r61Y$!W*Ll%07zWb3VOuEgaD#DZ9&K~@w-wc=P; zQeIS6S;B2IcpP{JAURPix@elf41kti%;+F6j1$3H&iZtSw)M`Qew^SEz+1fw+(qET zJkX2i>+gR27Ng>xi%S~b^miw>4(SYeAn@eS1P+t^TBU&jEJbN95em@jrNw-g)0RG*cantu4O z2MELfmOH)-VAq3gv@^PQ&yG+Ei8(~RniIT{iP5Qr>B)sDU~ooJZgy!wQDtdqO+^*{ zl2qSHf6P`Y-fm>=j#r3FAg`n#yD%4Tc(4}4MQD{S132aLU^UF*7)MCqpPoFrcd)m-ocP_&(+Zzt{>}T1BqtPKpV*+C$WDZ&6lSBO?!em1ffX!9e zO6of(fHL8leP#YNS-XERK0C@m6(v&&;Yf6ncl?+%mXjD(Tz^%w_3g@+scjc{ppnc7 zA)0ZQv4D!5ZJjMLlw`GRu7wmH?&DS;FqpH-2D$-aMMISs zhc+|G8ruLBi`vXo4kOYAyiDO*ZlzLMvB2$<0fgh5;E0NTO(#YO+4BXI4wAX1N3%@oaT*ae1CMhDD?Hq_*yfZBjHFu_HTXUQvh%fO4{y zKqhYCpr(VuY3~^{msVBae*uD(M?Uk;I!(oKTEXBu5ATJ?MutX3T)KYs)S0tq&Yf@X z?FJ_M=xM_|Q-L|k!xaY92YKiMqNA^;uB8b-h_&wy?y4g+2INs`z!R|C_9a!ve`$Mx zc-5$m=W}XHj%iUVt{v`8=azAH9ar1Kl$u9M{HWheCY5 zZ}s}6HIVAKNd=5^3u7~2@QjlfEYz@hxU03Z9*aU;8Z-=zxCQx$lg8$@`ked>NMXTa z3L%1pnQ&7bH}i-}%+`KOFLW@1#`G$M7v1beu9~NI;7Wu77V@`Syj^=K2F!PU{2??f z-u0*S39tdAR-8o^*lpU5ax?q2(Ob9`}$&V7eg0Fhv)F=U?-KO0hOAtb3!>nJG`eb%+6sC_1X~<3TcJ|ln z0t{TAEDD(Yxjxy)WR%5CTtcM}HF*UZ^-!)RKVKhjtRe7A`RXBRjb3`_TBEnY05yyk z9G(!Ja4{+J_%TCBuwPJ+e=wzp1ESO_ut*A16a~;56dP$00pj{aQZ8L|LxmY5LiD1G zNoiyX6)O)>9nDDg$CD!{55L_prTT%0lMq((IQfE`H#j)c%LaSADah9F>QpsxNpruT zu&h#jtj3t%BU27m(tK-ROA2B(-FnE5ZV1pF=904R_^$i9Cdz_ud zH3?qU)N`?AMMZU4abf z!pm*l-Y)vX3+@2LCDkSjceM^-VY*wQhT8XTZGL}jXU0~eG;Rkeeh#$n}ugbJ$v2%|rmoDU`3Blme>Ddv) z+`@SOQ0IW9n-|Aik)T%gwPB^0Uz9CK+{ggNi5kry9OrU6`r3L1yR1&L#nG=89`>`V zv+zCT3V%=;-0k7O<<9`NS*+QaSurs&moHyFmXw&9ok^4OD$2{s%8HAN8M>c^pl@zb z0nl4mTvSw2%m9X1Ea8l9YopS^ua+NDZAVL^Y~#T*@qLObOYwZb7yxD;W?A+jHl*r- z;f#zdC}1@O%~J^X@z$@4yBiN2)b{>L5llQ*^VRHxB?0_6?+F;3l9x#gF31658N+xz zxcPv)xC=qzQ@s_mZ&4n!F9HnaAPkHB-IUC9kX5UR8NeL8E6ksLnx6XL>Ekn3uY@0s z2YoO8@XeXa=S>kId)@Z$a*@KF01O@6x_y)oENQOTl;$`C}<_X^N^`s=)dj9k_v6tK}R zIKa!(!&QvL@C)zt0aS4v4gf3E6maEIGLYCPa4SR7m&(LKs0s{!CDOs6e!d|}{+WxYeS=MiFXoo1 zjZz8G0jW6UvbCO=g^r-^NnygS6zn{k+3ulS!VOxn&Ew)v$w=wO4glLnhPgR``x8WK zU`I!1Gr_p6p{BOHq`aV_x&(q1-~@rlQ+m=y9S*|hT^)Qj!VWv+_C9HKj1BQO`})@R>Km&jm=GL z+KdxG9pAH~v$eYiaHaek8~w;KC{d-{f_oY62zU+L$V7csl$KYv12rMa;&_{USZQb$ z_0?=>r33>Q=w&6%Nol_EDf(EQpDGZ3(%ckoB)957suIbgf8J{Q&xLF1TiidQ8{JC+koFxxbCnl#$||Qt5~x(vRwv8 zS9g1FUsu1GqRZUTJs>D<+?WHFK5L=-5bZUQTpmR7gzo05=1`!lIJAEIOgNnTvSm62J`MOmwoVlFzb6L;3G#oIRy>+icpz)(3Jsvz|Gao{h&G+c<(lb zHNzMf&j4_0Vfxejr-I&3Wq(44&LSF0#YiyupuVucJ=zSDfHEUPfQ=5`4u8LT@reACC!-jPUmLkp)d&27`|ug+9Q~NFvw>1q`P8 zhXe+M1#ux2j(E`9=zG}5!_C9p%VYo-sR1{bo{u=b`%w0BOrwlz$(!?)Wq%|yh|;uC2=H=(f}Qn1qj}9K8#;E zzyN6u+;Y_w2ftb>y$%(7z!1TUYxB#SOUvtXiz~Dj$nHgN-#>rzcH{ZW<*gUb__+Ce zX=7_?ZDWD`gBF&j@O-w=n_HQhU7qCLM|Sg3J!b791!rSV9LZpYrQJ4&!0NcGyS1gg zp{O)3CqJXAwhSL)y=-?5fWcU^&(71mM$RAQg}*SsQqayxISFGD!S+F1@aCbO?!I=` z!MH317hA-P%zBw&QdB}&Mf z9o^%Gw;9YCcrLTzTcLUr9G0QQ{D93ODvUIHke~P4$W|HfRVg-}9OZCMjo~Oec?iHF zv~4`R!wU5B7A#>{MKZZ$V^yJMdX-QGD?b6}%^hvPFoxInoaQ9o(kH%M_V;W&pE44EO0VZnfjb*|dm# ziGg7(n?xDokbT^$H2L}?NA|%6sKe%ZEG5~s z3d>4xw-fK^t~RWg%>&)IrVxF@6cWI4UC6V0)r>lojA1p*%VPTeB4s@>K9Zf49vc~z z5P$So(lIiisY3&OQEcSpE#EP9@QrDn z5^^j&xghOn?vuyak659~d@{8RzIG`nHZt&NWO&liS5XKC0Q1(h zF${V-fR(G(`oljwgg1aG5iRPp$>qaDT}k-GBjaN5@;rQf5r=)e4taYX^7cOL1$4EoQ(Aw@FTg6$Yi!CUT5QJ`SEhjB7jM?ye|+)j*Vi9@ zeev$o*4y_R?>=mD{QPeHFR~7Tyn*I+&%fu%Z|9G%ZwCVyKd8H}leT8fJvh=fE$&$ZT@a??_GA(B z4XLFBH!o2-PQ}cMSC_e`L$o&as`8f=u(B&@-4?;1FK3l07j5M}5VQ6^$Q{Ov77B|Z zKnHdtT{VrTS|bSAhbndLb~~(wwUWVVXRYXM9ieSqiyERl%04Vk2+3;q>UM3s&B8Bi zNQE>43Kh4-ww?~9v}(kLmvr^|wR=C^e{}!hw>NIu#6M0UuzQK3eN_d_^zBp68M-nz zAPU^fT(d@1;%fd`0+=fVwL|n;yIYyNJkp0<^6?>_1FdYa4*)qz?Scwm)}w-^Q!0I@ z+3iwk!WP<8VwGl=sFaoHWf;o`@gXO-d5!Csuqm!M6Ur1`Wg^*(1A+CcW~RdQ%p4hL z%+8NeQN@H6fK)CVfyw%YDk@Xx?*@Z`UL4uO836#}s#NMNY*?KreMg@|SLtHlfhBZ% zaSroUN&D85RG2+8Ig*zA@aB!H1-V)AiLtfK)wQ*?RaI3LmE{n@R03UD#>y2(4w0&* zP@9qHvr0-?H1_aJp1Ky$w5qfk>N!8Zlmhh4Day+!D#$G^RJv&k^YLK;KweQMtE1V6 zl8dl}0(RfO-)*;xs|ckIYo8m@_kh@6)aIgD1atS1#tWJN9F`FII5!#eeU$Z()ha`m zjWYOL%mh@tH5BxUVBAu{vs!7zJeC{4+bv1ysVP|*YNT;IN_}$S>uaHL(IF>dk6t=` z_VW4A=x}~j)Y=Qa?pCBN9>i}1O@H9v0T(xy{jU4>LjUgBvrGJ=DlDV1K|_{3w;u`xb6U&vV;eN_p|-8hCofBsNy1R@n16cZYq7#DFYPShBO z1%!qMga(_!LrtQ180QGTU=tWjrN{!kdXpb-1M_~c%OTfYE_>WO4^g8LtJ~lJARq7} z>IWJjn$^^?$QbjaBk>(TP`ogb?*T>+e?9ok#HF^~K&Ac}>y@C$P(*N47+6jsKF}DI zchLYTq%$ z7MQsE%WtJ_CySPAmEtlz%NgK)0X&hIrR~@r%P^wXI@D)Vns9h`wrdCrq5&Kc-NQq; z%E|Zu01yC4L_t)&R!g7FYIfL_W*!ZOIsWctpBrqU&hTPIXU^}&6`}#%@!_-zbUnt53<6R@>)qPSO?k9MABEfov`aCTbrrb zf3KVcoa&m4;S}y3D0fEaJS2CCz zd}UAe=cqAh)OBQGCkirtZP{5Bx+$vwshQinm1tncUCjC519tk%_x&7fIl~dt}4aUbh3#eAGA_=*LYvP^hObo;{Xu zTfLFB%G;fSB^kiqA$(HAH9aZw3J!^0zeef1EmSWF!B z@dSp0BO^niqJkqL{DOk;D?opPyP+`=A<^MYBo9sWf4#l1{^o`FVwC45B4r1TdXFP=Srz53?u1|;u?4_oiw zZ+?2ej(Gd?@|)L7>l@Q6s}sx1lN4)Xs~Z!WuV!DpTYCNe+0P$WUVd2Fc(btbd|`QO z9=e%hWrNNIjCpL?B#wyrXUZHE<-RlHq}!9YAbCALw=jltP!kJto{GA(Jhe?GBJ}i*s~{o0PaEQBK3fkvnskpuOf!;F(KH zWdANsxT%qEI#}|vgylkOUicI69R0)gKCl@Y8mz?)XwYsZV>w7+b2s-l^SBFcvQk~I z2Zgo5kjl<&(V(5J#Ldtg#Ae$N`D%&R+&$3C2G`SF zIt2vqKwk-9RR@m)z?+-%tEKW>({ppq#l^8_xZ)NkMjYn;-WFVdpr+DaFx1bz zLt>kQ_B9y5YCc98@*!51Tt_D6WRFttLWF-W$Zq`T1uO#Q$2M0MGm;vaONTN8AaLYg;@+d zg}ViLnfb~wyC4sNb0}j@aRcXgkA1FyT|{iVB?G`zUFGV!&&>@%Cn5{IU;W1zR(u=* z;Do63LI5?DBO^Z@=>0o`{|;c`X_YBc(0C+W>K0>YHTL#GRi zk2!Po(#hjVfkqQVs+W)VA)PmVov@gwh`5;W$e7^J2on@|L~wXqSVVkycx-HBe0)UQ zQD1*D%!)gmc;(vls2Bn;0^bnd78v#vCk$Z!kPrpHLH=BxElREewA;X(l*V%8ix+QJ zw_Yv3db9TPyUlm+HUQvXK5hQ`%hssvD`>yyjt!0N>O zvoXZN+9YCbWoqWx1Y%K)3tia&gXeg3s5S(TNg0!Y^WvCrr5^!waam$j&O^U(l>(f& z87(bOYkci_2KY2n8Nstzz;80Za|{g)_i>FS)U(Cb2OdKK1Igt0GvOGe{z&D%Aa;vw z8oZg+%&pSJ#C1$mx;fm-B_s@5K2e}6Lg~m9R=Pd?9kmUWAT;iPwsCtunR=RSV-~&* zNrw~efgb#P>adtY-pj*!WzrZSF)W?PQmmQlp_@RL>755hDj7!2W0_N zpSo`fFn13C=lxygK42KZ=b&$Ae?Pb@0|4eDF<5N1Dq2&e9m4$iHZ~zpGy-Yccx0ut zz^&-Y<*j1PF16yJ#t0vG^jHUKI-0868$sXOKi>ZF`yal!@ihZj?Ni6m$r#q!H1a|O ztCIm6{h>fp)qh(X3WJ65r>Nr{?xTJ%)#inlWmHDc)+7N8`XWloOLFpaT02@r9-C|^ z@b<%6lgcA_XztR4x)VGhrVcB@_p>r-bw+~ZtE^;{t#|x{&wB7gsBdh`X9{@A#vWJ@ z!Mqw+SRzC9*?H&qG&_w82QCU~VVF`{p0KvYHI5bh+S<(K`s~`u)XTNy^v4hG-n(5` zloNR}vb?3dvaP11vAnpd1W{I5R$5WYQB+x6UI+OL7?%`PP$*?tYLyoGB#ZhiKC*G6 z;*(qm27d-!1lcs^W+Q;84B^^{Pq9xjz7{xt@Zb>?u#3w<31D?N!2v$OQ60u`K>8<3 z3IwC}3q+f(RzA7Q;A71-vbP)#Ni9Or~aKa6uMu z`#9|>(2F4G=4WRY=JJkmMRi4OL+#_okB=We9(U%%g>SDx0f&T#{Qm=(Z8f#k-Cyq8 z^^d(@;ke6X4_86&cX!hVD#cAKQWduiE&~<-4h#$N6A4}fyDl?tc)q=|{VA%T@l0~7 z;K71nCfQuX;bjtL%YjBRvJl^m124cJ^4mIpqAwWi=5ZLhTo+(4g$IYnMA3${uaDkn z@Y3tO4F+$6pO@a~sn;XIkHwt5e(7|==|Fv;mzNIV?(3xs3Wzus7k)H0GCC$SJR&&E z6c!m09&vwA}e_na>cJ1x^jkh1x-hEvE@XPwA-!?x1y}xX||F91F z;`rg?#?SAUU;VuJ>fQ3ox6huxUE6rQy!v8sVQqSHe%v`}w@(b)#)oipPFct2oYPC= zxb;v;*V>Fk^1|ATGC^T+Y*qvSys$LE00wCBAy+;t1He~jag+nVDVD^BnaFJ89DzFv zNQ^Z*OWq+%57mhbbPo>oLi^$lLM79DUlSfc)9?81`IojSult921WA-geyLMbC-Y>ZXyd%4j)igcU~F!h+ah86{3os#7#3shf^u zAC3FItaj#63RH{MbYgi z_rJOSeQss(i8CjuMl>t^%JnN2`w-b*j1hy!C&nfw$5|KRtw`_2(Ln_N#i+AO%p2(H zZPWUhsG~c2Sl&rCb62Z0m*AO?a)*Nb!>d~AQ}QyOq&&g>j(01>H}4*{_u-wU%vKWn zFNzh0;I16oKwVy97OxB*OC<`S9a<9050#QDA$cWzcf2PR42uQm#Ec!w+}XtuS}re- zKUY~LoGsOdtOwu_-pSf)?l=dM4WfAMy!@Z`bw_kOxnRFWNY zIwrd!`(DQVl%mw!^1Qr?d@N|lh(nZO6;_nU5kOqV4A4@jnefz>>ZcuC8K+!CpCffdQ;l zkPynd_wHi=XXHcCrXkXD(=$|G$sO94dCY~)vgAq&V5*1~ubEqt(#0k*E`)4S_Br@F z6qFZYy;4$LT2WtF*I0u$ZBcIS*^?(@PbXZubwdU4UWDvm-gffZyGQN^A8?~uGyW|Y zx?kZKPT- zJ>;eVQ1m|R?I})tMd*+C5NMAWe8Y~%oVju7^og_Jwx_2r01O3;?;oBJ8*w5oA~rTO zDk>~83=tj|6@5G|>R2ot<6{AJtT_PSYu9c>N5|?!MHvJ5u-E_weG$I?{s6E+XY}^; z;c{`_^z{z*^QM+%1Hv~%FXIcUvHD2WRUbY*|M=?`g6ONphhH{<eN0w@X_u zXP>{Cd-Znx<xX-3=poYpyclQ# z76&+L?F+Ou)eKs#Zq^9s?V@Y?k|`Pn#WI@urtp2n95uC-ogJ+cG}&!izCaLAnaqU4 zG3ivN;#lcK%t&TPSVo2*9i(R=_nXQd7uT-kXi?`=HFdV)ysftr4>tF9)O9pJ$xS!K zhGWSLfW-bc000mGNkl_pq$ZZrcKKb(&K^7D z?`MlbRSF9XlVkJbtYcvJ0$b6Z=)-Hpu|aB*XE3IKk#JT^Dy zL`+RNCMWF^;||35n0;(i(Zq7^nJhNNkH+KDu16_An|01o;}euOUOe8b9j%tCxtGq@ z@8&mOPA<$jf4cY0=`$y;UB4KY7<=uztNL(#?3vi_?%sNunVglIm64r+1y*KGCPZo$ zDcAgrygU-DGHBFK7We9;Nt)(lsm~{+o0^xMlA8tMGIY~~eB{8BIkvw_oP_#L?|m>i+iU!O9}!mk6Wy^wS7!rY_0t^!fjSl!rCk9Tr$R`&T5 ziQvk~E9cH!Iu{UX+P~L@Dy+mZg8P8MT^7MWubcZp_rr${9XWjPkUOW)8Nf22h5=yO zXAKDuBMRt*=MF*g8iNAaNeZk20zLJ<-eQy3Q|IHM(*diTs>S1wu>Mg&CoY|eKX$_C zZ}K+!dqJcc{BXjqkU%NITbM92)VY$GQ`P~ZKw1LW*WU;LANKL`)O)*o9X{wmf!_im zm};ZE0b^gpK_5>5I5;6D>FY~LC(Z^KgT1^BR7j=s!S{(wjE_z_7Jcj(#BM}%M0iwq zWPD_7LTpSzeC&y%vB!@>aN{>UdM5Ge)vNLG@p>PBUoS-g^ENQ(d(g*whXMxLc?zMI zN#_~pi@=HSq|~!HA7*P znVgxQz*ljfF;67rp{>dzJit{zokI&_PEhl{7mm==5XTlsp%XTbpZ}8*7>xq}gX(OM~bKYn0~rT+KxLsokCJJzbrBJ&5++ZUpW%rto0D zK)-Vr&qW`L{r1OO0PyLHXWKhFXh4v|R$5gNop|)bh12PUS+(sAo#w6%{9gUtpg4mZ zL~rhD&>>F@j2(j+}QNuBn?Ymo?Tj+Tv!-iTbWs$9~*J> zZLH0#E>EtlOyT%!acp*Wbb8v!NAP$QZ&8QYZtou%85|oMo*cK#PCFK6M&_m*GkB>J z*2!_}^rU@y+&VR8nVlM*95eTKH(tM-q>J_}Z7%?QXBGxWY`u4GUyX^4JbmV5R7`YO zM7XcPJ2=dA``!6?I(L71`uI_5GJY->E%VAi2HsaRQc&cgd4<8l z7!()_^g^tYCkeMTR}>WqH=(kcvWmJ29x%o8hPwy4%X14ZCZ2-kJ8|jEja%OYM~328 z!0TfNO09<%&4$=7s zdJ}zVumMd(0JQ`B1A|PydVoyNo{ozA4GN?x4(OJS8|^fd)~2Pm_N@RAPsc<^sQ zTd+F)4gh-?bzupyr*B+JI(aU@Kg8S10BD2Ucs-zR%&Frs$B#$E#YIF#A|m6XgK^{-GvgaDX!U zP~cXM2bOlwUx2$1xBxISSVQ7XmBG&uIN<<>-+x+r{cdgZ<>Kn*{My#S!WvjR!P~$y z&&Hu{@!|X`Fg&%iF^eZ`yjXhvdiCYc>(5`WtUq5|UZ2H!95)v#l5!3pz%#bB0@b){ zaB>Eeon_FeY^Ok%0Zc)nS#idYbC=mVLvApuVBQ`=%&BblIg+Z5g`FmPxNsLoE(kBL zEzQVF`{w%_mu_6Z-4ILc@iP8F6`msd5^a7R{cQv*O) zP+D44US3{PQ&nGISyzW+U2`*n=SnrUwKTQ2wzRc^ot>SX-Q9|9HH&hnVMI5e&RiEm z6#9k+Dyk}D;$j0#fzh!s!4YBK{&4&8(ec=_=We6Tf@F?{W*2Pbr zKCY=HDwCyJU0GE_MNLyxT}utu%(I^6g%Ovnmeh>yytnrnc5*H&M`;z<>Iv5OQh%$p2 zu9CRGFaZ41lSeq-fBf*?Rt}goy zx+(@8su72TF|(OHEW_iX9;H3idNn^td5j}BAaQ7GvRLo(9(HzNt^_crnsW;C8NEc` z^5UY(QmEe2nzFK*61@F*${}ZB5CCvPdBwG}=b(VkeRBnCRxDxn@86GKge#oC-1Qa9 zU%X(Y57^TK7(U?U%G<+u0=O%KNxaKt4}>X}!aAeQNAKn7bHqDP7j+^wA|e9+iF&=> z&(F_C=gSVvI)5WpSGa5y9QsmtKskp8ho6W6fKQz|6A}_;@bf3%X1!hp01R?dN0VO1 z+M16DPHsb7>VpC1AYDk1L9{L530N6W8iRt1%*V1CY(8O?#cyx7#0!f z7ZB)U)N_XwMUX#vh6I~Tcs<<5EC9?+Q@$ZaeVD&70?;++Lj7=#qai%t3#eO}XXX|o z^?VKS?&GQqdXSCgt*WHMR8KQ}wYn9jz6_64lgs zIX5{wGY+YNn-tVAn^t!BwfC6Y*rm_n=vQQ}rX1$)r7@g{1HC|8)-KK|huPL|bqtaZ zzOe3M0LumvEr5B?*e-U3tqO4^fGynC$^D(2nikKrP;kOog|VGa=vz5?at_zUh?4Jq zF0N(Ga@0pSi!c-`qbiI5=z>QaY4}5jdCoyPEDGv2)BdT#n&BJ0+_rUu{#m zp$42van^v%l3kdO8|C-+?*>JLMIVblbMEZL%a=O3AY)s>b;z0^|A6q|kcPT?b6-DR zM*o1BMm38Q`5{OzW+d~#05Q9wuNRzF=Sqp_>jkhi(;hq6!Uec}n)>+R{X1#Nj~i;M z+L{}hn(G_LwX_ld2CAD{8x#fH-z5ReYa?|G^LD3@TI#I0OEO0p!+3-%A*N@ceW`v} zluA&=18>3LZA|a0aVPsr6KK`{Ss6+Zp8&AUVYb-%oOW|fRZ)7%qoVw*#-)L<+zVWX&FMqgrF388L zp|p5r-ZEru9W=M!xOVp8gL?(}Inm)U0fxZ9px__w+$}0CDkv_67$iE(uOfOC}8s{-r+QNKSc*mDA&7iYF;g9zA{ZFy%46 zwfqU0~k^mFJ7VVm;d<3S6?Fj*RC)BYxh?Yz<``Fz-aI{=!`zzI!{BW|LLpeP9!D- z1o{UB1^N5?1DvF!y*;6TL&8J+O?X5P#B#CHVP8*RDL6Ld*xBPJPo4@54c8k3ynQJ_ ztp#vUNHD$%!9`4;&p8M&gaq>>B5rMB)B%Cy1+CXHfIYo^Q~*;P^7i)B>!E-F;Kalv zyyx(eVcw_!000mGNklRaXZ7A%O@#@d9}CA$Kt2RUz2F8bPClO*#<<9*cz72JqVtYg~lI zAvS$i5pUkDynefkzzII&r%}b$`wcJ{@#e$o>-Q_K-Yva+yU53vZ=WGv{Jix1%_8v3 zt{oup#>=_QSMzuT@%-ho@YPye-&|0R8*{6x)6_#qtlCbbNfjzVJiykc-odO}Qz;TixV8@9X2-UIBhwJ|R0R!o%HbAr8&5F`*0@`}n(1QPCsI^IVnoFoA8UfXSLeI7uYOa>#NhxH^(>DMt*)dwY)I&$8W3u`PcLR{I&J3KQ<75{kHboFRQ-wL+uZdXs>yK5AfBsJK?_XE`gKr`N0REppHvjthMNfUzkKbIGb`HaK2Ho*fATGgRsKXn#zPWSnF2xV`4;}P4;C5*LfrD!0 zv#4-(*>~u$yNjpW5u?|Uqd{H?q3$7mU-=&1FQhP6K5G-voa{Z8l#r(Jy{1Fm_Q2FA8`HH-^ zx15F~_MvI7H#{La@$zYiT5{MB5gHv1zJ|qwg~#F~EHpY)jc^3mY>Eg0M-4*YlG&EO zFG3ecyTD{y?XP3IO~tEA%!)t&w>SrVae@yO01Kl^egePpFMj>wrP$xy;w&_~Z4iS$ zY`*`v#R1m7{&|(-&D%9VcL#t)EWdvLOpTT8c(?ZEy`q&7Okx5stKrXlE*B8fla`q& z>+16K+RDu8>a2+AwY8b$<;lgxvB^n`)7cLg1Iac=|FE@Z*xm~&D>a|fBQ#7x;Fhbp z5M1Gf+nHj>r=35q)KQO#7?;)`vU!O&gUv(Kn8Z8B(&vb)PDZ9}!z1RQ5wmmJHa6!R zopm6r<3mHve%tsE7tv_DO_;&b+WP+jU>jEz;g-F_V_}EWf>xR<7D!`uhN85e1cN1X zITU*Yu{$WYB&DYqXB~K90St2^%D`Y>c|}=fRtB#By2cu4!Q6uE?85AZwgyhIDvVKn z?%)n%LTP*<=qq|jhs@N6J+vJigS{MW=5F3a?ilE6>!&^7ww^AW=aviLnvGLpC4aZn!<5;X&e{V{EYR*=Iq+y#MH=OS9_JYw_$5*^yA0H4{&H=Z|$6`11exYwMrCy;@xyt*XdhU!9$t8nQdOTN|rR9*@qEQ{C5m10M>X=aHcvfBOSr$P0dJ7%S=hhN=eNIgVOWx~sv?X0mVtp5MldJmtrvaS99{sTX~_nkYMRHYD6MHK`h zLK3AaRg=k#=1$Sv_s(dlW+p|cN(hK5s;Ht0Q-m?dGy%3{Q$#VyRj#rPh$^b60+J}1 zlHarUIzHjf{YHz`bUJ$K@hk8gbS z<)<+hPhb1|*1v!FChBA~rUn1_#|IRGrnKk3fAA01<>|;FXy4(3IHqb@WP*2#0?~f~ zuy24*_=&KOzr6L)t(%ci5$DdIy>Rh-cw_{ycf{vdP)O*>Q*jYdkp$qwzP{Xv9)%Z= zJ$Lfzt!rm4o`;p(4Pek0BfjH6Dc?a9OaLb0QriZI@|#3wOgUNPIPu;BLjr?Bf44#RNIe#khG^;uZxH84z-5d{(35UX>LD|rdsF2{uU>vYx_}b&%y4GO< zej$FoA$|ejfdDXLFefW0OXaU=qyw>g#Jh&a-k%Eh;j7wzTU_!$Vy2Y{AhF(P(3nj<4x4t&V|2On z;%>!Jk8W&K&o(SNhQMP`S+DQWYE?r+$^pQyyS=Nc31C)txApXO_6;b&RAMmO;KX+) zV>DO>spc1LaH4CONa$f*kGR8_)kYZ9Fh4!g&1!gYd;(pxT*~S#v^PPLy3)#;;zmV7 zi$-4FP+TD^Y3iu&>S@KapiAA{+uy~P@mQG!(K<5|O!imEbXBtmWS@!_fO(%so)pFz zDfGJGmsfFw#6tX{nWkr^O)RWoGYc;(c+b0bvGbtVjfc{6cE{BzuZL_sEl$(s7M|?Q zQ-pfeZSBpH>WZ}VZd?%H173SXoau~ap+j%aL? zQ+Y2|RHU^DBIvRlu0|=iTg_H&Su$6ROqQ0D6Mgnn7>{V-8vXd`lc?z9_a59YDk(0l zs;HLMJ$mvuAt|wm=?TNataX0IVlk?_Ix72nWus#~+dHnU4JY%m%NA&J*}Ao2d%0xWS+Hy`*mf2H zS34LCe+9}w*Ev?-aHN$Kgo{QThXA^#8dABL#lvjEpU z@9#gb?;nTv911*oFwFNr=&{4W{{J{~;Qjq#o?iDklKiK!d`+MKN{>cqi5`=Ft zqNFOYKbZ%dQ@QJ<&ATkNoRx~%Ek?{jz}IYsUQjl>pg1SLC_BG6lc^x9ppcz`N=oxf z%L>Y?ipwgCip%mbmQ|Ky=Vji1bo==;s7{K zU%!yB@Y5I0Ma9Mh28U2Q*)JfF)`o%D*t2o5XHJDiMc{6@14LaJZ~(6fE`}YCWNmt5 zS(Qq$+b#v7N$<|^ZVh2E;lWWMA>lzmp=^~p;&=pj%nDL+@kL^9N)-2?z$zX1bIgF(8RcLe9Qngsm6M!Rn0oig&(}V=eD>-od=TRkpUPxam=FvNb_{E~1_qRatP&6ljN>9pwGlA( zXjR=q@3wpH-tozb2vP|{UY?Lvuf<$5>T<(o3H@s7g!7joh2G~>iJhB;rbgc7MzN*c z?wzItU@yp3v`#7RgrUdw_Gw^<8=Itg`PnI{$(dQWT&Ca}7oYm9vc952!}nS7oFMPo zq)>EIs21t1>Lqs0fe+pdU{(pFNe1+C`ZhpS_4QD-RGL>@{Lw!@i98_y7!KytnbS!r z$v&73iFKIoJ@IBgSgw3ik}d1F~V(twYz%(i7ol44KoGXS*dCs01z8eQBNwd!y@4RrYthweE@D(;T$cp0= z?y9>nT@NwR&E}sd z2H=#m)YSAeN;|^%{{*n;fS-EX)IUymD!O69@Z*HX5V_Ag5AT2f%THhb`0Wq3f4ckl zeiAE4$r7DtOHU%-5d1toBQPLp?+3on2YU}dyNf*k zSR#PQH}Bd1KJ?Xh{{nz{F=_@~yb2{Y3W-#?nRxY#>@>JrQfhW;Rsr+4FtvrH*~R6# zC1ttAr8&6HU@WW1tCSQf+y>RyYB?jOiz6UorA_4%8Idw8P6nqUL z1%-#gkH*HGggFLfgMq;C-~i??nebD}V~UQ8jXrgf(U*}m63h$ZortK{J!^5#BhnzK z$VH-NXhd*uSRnaVf~c?x%R{~-v9&O(sKxDRXlz8-$;jQJUd0eU5V}0E1CD&LQYNeF z<>f1JS7-*c>m`Wy)IX8S-#0vftULhhT3&IJR#rWtR@X)$@py5`Nt#=PKeqligT>Wi z_n4jl>>js_PTB~o6o1|=+`-||TRl3nYnbO};XY=JMoX{7KH&6dCuhvlQ+FnW zVcx#D;8N zrXIaPqa9WZ4s}9Qeh;XIs0N6)-WJ0!709IGd9+`dRTCUk38`M3f|T>cwjB?tyL&tG z3)4Tkbt57&G%`5+bWGgSd$)^oG8^m5x|Q<&{!Z9*sH^|=3a_K=8&UUYg<96T zOC8ZVvCt2PFJ`l4Kc2!(d#k9kIz|dP5{AXLbSzz*U%06;ySV*{jo#*W6!sKXvPBZ} z2suFBOO5d8Ks+P1c^}gD4-EEpc6F4Nm855+Kxvst$!X7%vy!T15|Ex6MT?CK!5FUp zC?CNqIq-HAyx62r8>GEe)*|;ZSjHGEt%IuS>S`Jq@(T+-{OBgW{OMWgp#IexmtjL$ zajTZb>W13K4<9{$77qZ+Tbdi1aiy;=EGvN(ru=H}4rWNz}J}>!@`^ya9vukGR@oJbb(}y z0Pxh5ZftA-lwDrL9n8y%HfU|hu{>`zj&vA?+dEn-;fYsP9Gjb?05Dwa+dn*S-%kGV zX8gq#Os#us&4u%;i|n!dCGc9Nr6miruw+_XHZQK2mR8L;m|rwbObj`l-42VUu|6*+ z^RZl3(%4)fZ7i*qO0M6y^zg~Ug5rX>*ptyw$6-#f-V=$?MbP5( z-7i#BKJfm*V+Zd)dyvXjaD~btc&+%91j?e~Wv+AbOLOxIvzUJ^FU7BqPj!BgkkwpS zQ&e4FS|csP2;$b%m16oLZ>er>t!ZhiZEmiWN-N4Min4Rkva(Z)igQcKnIW#OEvb{1 zW0r$^Dw|uL-+yrC+{H^*u7CXXXBR)d>gyA*Zx1W-_5S<&L=!CTT86~^&0=0Rk(k}{ z{r~-+_x@-9(StCr$4?wTdHUq(GbiItoj7y;)U8i%UjO)d%;}gj=g*uzcRD&Y8tyYV zBJB9d6Q?emIeG3>^obY{mkL~ftS3&#ox5=U;^j+m7tTb*#ZXsZ-;e;GAV0s*Kn7G= z(~S|t+AS~}8b)ityG7lTSl$zJrD2Sh5y4Qzi3kYn6GDWUUXgOJSzBLT+=_KL-W7bNGMPkQQ9?N|PGWvD7*?B}jR9C>ut;C=rpV?6 zwjar{uRB zYT#wzbOB(hi@CVqT3K|m+4`yzTEQE}Y+%8T3H}VOJ1nGToE+1GzHD@ljJp_#na1^# z69y2PAPp)Lp2;g)%)JJ^8V+@U@l4svT10e0w7Lui5A%IZyofx5pH|lo2`SdzJ~jpu zTcyL5v9-A_DqoYF2l*_4aqbm-lM{V0FJv z1NHVRATf+A27$=~iM4#G+81$`vc}lRTO*5&+1V-}?KvJ)s0X@smn{@~&C-QltU$86 zD=mKdmsYjAcc%WOS`)-KI;+|{S}Lo`vM{MnPfkdVPfU59k)K{CuZ0!v;l-Z7V_Kj7 zOYP!a0bn2yPPDwN zw4%JMtf-jvM47xXFuYH}V=`O{_2oKW-k8&RtTQ+4h;lmiag^a5mZE}==gbU@K#=Eg+&5X-K+>UNo)g5 zNmzd=Aqj~-m}XtW!`*s)ALz?wr~t5=eUjfc}7zW2-Xgr_Ooac1VEr{<*KgGx4( z>PzD#5|R_{{d@-#XrH}4NB0~BX*qxiuB-$HbqW$N>}^U&{+RBwhqr=<{=Vn`i#i#R zk(WUonOLQ&tn{4x9K1RZOKZ2_B~((HUt3pMQ_E~qR#04)Us+w+Ag^p{t!{3w zmABOZy?}0)szITab#~RachojCR906P!vW*rbbsE`trYZ?$|_~eRd`felkEPlKLfz0 z&tACv>Gks;T@DS7*!#f&@D?J2OK+ZbEfau+ZB*VZ!tWY0y#K%Neej-7pl@XCac~r% zJ##kh)alsM7f)Zib?xHyivaM+b0?wLQ?XF=sT0wBg*6IOte7ZJ83MV5m@qG8MO}Uc zba@?ZU_^)jzvVpvqVl3|aw2=l_004HlN7#YF=90hq@Y$SDS00Ko= z(sPO=7CkFf>0;sqBmaU=a?&jSD~k0%q|%atGbWeJoiXdxctU7CK}K09KN%y;2I!Z9 z1OV^$!LYgFNfOR500VgQw%r+9v@wb8N}4fGO*6rmGJ7iEneAetR))J*i{X+z;|A7h zX;ep<(oVPD;nGny7A&dJ*yjX6C(S}t>N$8{H?AgZwQ0?o3$=2lT114*q**t)EZqW9dMh0yr zEo3wfjEwXQ@rF)(p}MtG)d;n#8#}w@>fTleq{s79I|^zTCAN(c>KBS3YhJfRybohD z-x9i8LX(_+VY4!;8M4cFQgB!-)F4KrNwf`y0@T88RN<#8NX)yY)N5W=LLo+*G1fKI z zm_{V0B-GYawYU8Tbj6ldaKIvf!B^ViMNK&9x1joHV(J_n;E#g&6Xt3r(~#9VLNZyj z_y|#p5sI(Syoy>E^n2GV#4bjlugNrMwe&#_Yaa{txQA!P4GWVdXl2^EHfvv*vn+`m?IqS-#erbGUZcIDl860!;jM}>=Tmz8D zKIpXcX$KX`E?Hf*3Wa^= zVu5J30X;V-CoeZECp$AcD;ndpFOyL@7wRb`QgX!6CXW&eEVLcZ>aB{Bm4Is z-nZ`%Relx#%yIj{z7H6KcXvbbmZB70^7{w>{>{(-%E`~j%t_78V_8%fX-|1!30txS zFKc8HiL_EuS6bg#Ro_qnb`}?BOQn@Hb!82Wk~T$Mmqw=OZcz5fI+aqOw?k3i-c{G$ zUf%-sjHA0#jovMkMhQrx z{kwu~CCE|!6k(N0TE<1=CIy_qKNhp)?G9Nvt*{Ux)_*Ui5;%#YWMLzYhcOe(HwE$d zvyibxdB~KCOinZ?8dwefOOW~9FTx2*uSg&l&eJ4-H$V(I839qli6D%ubwngYjTYz` zsAi|of6$v0Ei6JG5Bu9+BG0%fLYD;eVjhieGDg_Yl|`6Q7*H1v2s?2g3O5%Po%0Jo zwQFvkmGU63EIMPc;>WHt9N{yz$tervRJ$A_PW$l0xDoVSoO41;^RDFuH?AfdYi`h& z#7Ml#v^yDu@-tVwiJF+&<2^&G3(hsXZSNVnD$#EQe#10C)0itv8pbCKF1OZZ?}seb zUhQz_pcbaHYp}l)*N&lqE;f!Rm`&%KLrfL`c*tV!vpV{LVYm~cxgVm&jzYqhaS&Ht z>O4b<*@Gj1Xs4#9Ri$ah*9jI`t#0n?gE>|XYSkmgezxzK_pT9_pV| zvtdcJH~U!N000mGNklbEmX}voN$P7U zYZ@44&bU?9($!K{UGeDo6VMmtth1|)T<^QEGlwxP15;iVjv0D+LjsHqEe&*r{txLt zL`*ejr5Ohlm|$UYNlAqmd4n&OfzLxP3hK^D5YYp#_^t=rH(ZdGnCn%}IsUa|~l`_77Ud)2^danV zZcb+6(}zjV9zD7HE0mi2x(aENq)t`|0N2!&7L{blnk1kvYm44d-P%=4817Oxbtq-+ zol=FW2^S4^>F8<0tOd`2$wYc?dSQ8C2Jgd|mYbASn3h$TnOTsLUyyhA-knR=KRkWm z(v5$A`pFMp-MDe<=utnI;P>C#D{gV7?h9gFXwmi3vA7caKkvVH)ZbTFi-m2C3?=x9 zTUvc1gDEge!CuCmm`KqGGMJr==Fp1b{gI-=;$pyE98(Zjnv}A{3TCrbgnMBAV#lw$NGYEbIHB2?Acry#kjuYCao>I*H=92Yolwcp0(A{ zm1Xzp5)%$ciwh3$7y_6V7TpjIIHw)nm0czrFU;GgCs;grZrZXiYonhM@(Hm7-Su@l z1O{^qyEfN7q5x^U|Mhh@i7^`&qZK!Mdqn7E7e%ny!HNUdow)_e?7Vq~Gk6-FSg`U! za+xrW>2L*cIR~AN0fSzt*MY&xp^?tvVYOc0V=#8Jrj3?f=7Vkh5MXR|3|gE_X6vA^ zpM*)v_3jKV$|ED1;SuGKwyU?d9iF?lw{vh%rPXR69k)J|q0M(v^-}+d-F3cbX<1lZ z=DpTQ)Qny5)0BhlT~?%;pv)zEHzN_D-)(B*Az~5U{HF>pR}`X`1t7gS)jajON14-VCk|k-ixeafTG`R1 zXz%Rq$}Y+|f9WjTHjE2Mj7uAsN2Q*<>0QD`WFj%FFxAomae>~v;zGD#O3tEeXPDr$ z+{_0L9+Z}rvL)O07BQoW0F04ZNm35;?#>N3PbXPcS5v*WIc}TS`1|yY~U(Me*vJ8`iB&+ZNu*vUz#Y zvM^_)>}$+u&6XakdB9>~4Jkgo@nJ%4LUDcZxl1RjYD~Q>)StM&zq6;Ot+%^X zqmp-aHnz7nw6`_2G&jiQwMbv-MjP6&p&?o`4?Az`uU4{_kJiT$*!+2Z)}uE zB*hgK1+_I5lB&{@qO9|0WBd;t^F45sy8rGu$V80__Va)H_&@T&!tvg{Y&`J6kzW<&FDR?XD=p6jZsASKYm19vPb-Qbcvh&as-Q+%-XNFMHk8*%E2^rC^NP~zWEB!w zc}-JgO;dSwV_AK3Ws5>epBznJo3guE-Pa5x*GS7MssZ(!%=~m=89O_j^>pIBkdt#W z60_4Xvoh}8zkBuO&C?ey!2VwU^45)yKaPrxJ#^>@Y_Dj4S#|4O#1$Je>^{c$kNqD6 zMTB^>f5S;ZC&JhgDLal7+cS_aB)C#bL80N`DS^IXQ+k3T8Ci-C6SRn_t`?1#}OGyoW*x5RoYaW5Vg85R;A5)u`{wiWR#Xm7LOaK1aaA&YZaZ(IF6yfnE}8-vqHA2^bbh z%$ALLK%0JdFM#p&TX&Nfw>CUmm`yWzw%13!a_?+-UTluO+!}kaJ+{5+VSD!9$xTyl z9Bi(-@j${M&VYQxyxnQlfZ}ce-gJODJIl0MbijO*I|n_mL3@%>g=_wO5Ib|9f*Ly}s;FX=OVaV@w8bj!P2D;Tlqo=)2*$c{PS!vCIhX zG$#OWLnSB}eDMSf{vjjRszg(IQz zhs~`mor*3>uo9D*MGRAx7S+(ETAuVO)UuHGJ#3S~QMWaTg{U}#F{S7d4Kd3|@7@)o zra2HT#`8=%mUFi&h5-S+2GaoRn&8m6$41!aaM?V!VwqVo&97Rg7EG>*A%}a==^29D zW5Z)pBNH=vXna~XI-&E7k6;{|)br4e9&$JbY&H#yFQ7{!cf*FMsbN~&d9~$wz3u*E z%k}%Flk{fGxwC4SnH;nj+YH8*>6xLWRpac!@a*geX>LxpFsFxbz>XITi;G5#Q&U5u z<65ViMUr%SHowFy)1d3t4XcN`HJ@C+cI%@XUw-k=6DPwfB}G~T0Ng&JQ{js`{idp{`;$+zx^`);jh^lPf7|?Bvm&w_q#rjf7LwRL=5hSTDgTUju28pb>rm>|K0A^`cb)}`1 z`5E~s6?G*gbw!2M`6YG5^cLsFJs`BBI^9$26^3t*k+3Iy>UQTLu zW=d8@VpjU|j8v*>`7A9NN={Ar@#mi|T)i3{7Z-Q!+?fwAUbuGU{ME}Lk>UFe9~5h6 z?glW$oW&}Y?|tyz-~aJ<2nR<3j!Gn9h0wR=}}^i((aNJ zyiRhc*s71hxzsQ?B32N~aE9ULo?BeRrMzN-F>3}K6&e~H7IHi^C?W`g{f&$ja<~|4 zV}nCa1_#9i1RVGCi#!%^{8;b_|9}|Zz!QFfCjtUu{QaYu0;2<%jt4>h#{(f81Vsmv zZzj(zl(pgjW_*naryfV-eK7{bM$)fCQw?D)S?t3YD=a+YzYz!T08AoitupV(Ah)^h z*xGPzZ@PB2+}qpk7cWLhJ3F4OE!XCzlZo!L?%Z6pZ*%ReIWU#pT65sc28&i%xp{Sg zvgA97m&~fJ3Xx>0zq7%KNDu`$=`9I&-nG||gi8iy{fw`~U7k@w!n}TVkqPdW8C+bs z=BzVwCK7NY2-4Djq66o zn8qheQ`6R&Su5QQKgHds=bFPg=&<)&Ej@6|MuW;|(wNNMCTow;!bXd|j{?^==Md0q zcWEJ~M~myMusS}f!xg!GdiN(eeVs8mL2I0E8g(i0(Rz^XX3pdPqMYPDNWTr$~Q&3hEpYrtn z)4NrYa=hFBc*R{g&tlk_%36tiEC~5TWwFvH08Dkqb{B^9?)QDy&qGLpSp5OkdEHkwzH8C&oSwZsCvdpBs+~?(G831rr=97xb z?3~=^6*bxA)md%rHSHa>9f}%NcSCb=*{zeOL;ijw;(gykhkOnkII{oXA!dm82_~2k zm#1PKICSvf;Y0iO?>%z#@V~zKxItdo&{!drl>_Iw`Dss69z9Qgno*KeRGS0K3)TY6 zwG9>3vWl9Dy7Ma>aNN0bSKxrZ z_~`P-H?Dm0;l*oLz+k*{+FP|}-(F$$cklZUU@Rs`3jp5p-qC<#!gihGOhQE}Uhj$a z&Jv=;eY7On0z`SgIHqkvyQ@{~PF#XNhQM8n6z`?3_HW}VAoO%ETk_Q#|9Ugov z_?;nU0p1Wl|4@H07$!Ii<_eFGzXFhW65e!<86LFka! zAkaGaM37g35Eu;KET&|`i_>pPzX+LlVlzgzxEmhI#D8}di#{&oOA9{O8-j-ZCgfgu z%_2m{-T<#{W6e$>-;E6iM8~^@JAlCe@Xm${db#C!xibneW^cM)Y{ECYV3(oI%~8_U z*4WmDd$$04VSnMGeRkRF58yYoDdE`->Es{RxyDBvqfB~81n$g=^3%wwQ#`j!2s}}RtXaK4|WafG*qj>WEmjQA~Zi961OuDh6f>pYp0+e92kU+1B3FrD$cuKYpE*kwh5g^lc)rHQ}1sF7|X1T0DWT)KI9ayCW?p z<-(Oy@CwP9$s&NgYsN60K&Bk>GPqTgxGxA}iKO&V!ee-d%DVEV7HLa+Bej+iTRjqY zY10weVs8;EVGUU5Z`dmIh@_Y^nPagI$?ksA@bT|lZy#%yE3EPkFoCrO1Ds;N-NAw) zR_l=2(g#^AEKEXWXIOrpq1R~YF`0Y4RcJIUzmKo?;}691_}I*BSg(R`fR7439wZ#& zQ-M454zvMX;5T?YIysC_zQNQ9WWqGVI#15(rsoYa3;OwG)8eXSY0ZjpcF};FI5{(G z!6#p#t}n03Xjj%a$F!64M)#!FH8u#r>@w)uHB7c%Of+eV0PfOT(it_NufwJt?(hEO z!>iJ!s_y>I>(|d06=i|G9KZ^*rQ78kaJvS_JWQkR0gtO6-yMgw*J9L|4Qk9{VUbmu z=IYv_ii+H(rYi7QH=?A@OTC)L{vLT}o20lPF)#C3QEsBNB)_k%$<*879M;(S6*^^e zkE~LfpIVsmur%XoO<7h|ae6~tzO**4rZTlnUeqkhAM9;VcUSihHrR$#%Eqb(AAND* zXpsM*V?O&1A2@Ib+J9i*!9xcQ9z1yH5WstI@7}$*dEnsw&~V>}kAG=yscLPjZj>|C z*H!)e)3-N1yb68(&8J`g{IBG!=P<+-b;Xsi-O^I1vZlDGEGMTpBRwzqVf;f(Pm{A! z64DcC?=o#}ex8^BJ4+Qhh1P^=0B!u!w8Tfr@sE=eo}?r`O-+L6SU8jT{Pu%;pMLhw zv**u&yH`KGNdUg_=||_TUi1$MV)ZxpGPaPAwTElhdN6qW!M+a;`5k3TzdXfBz^8XV z58sdz91tA>@h*EI-28=7Xquhhg zK0zm#ISz>p2#F40XCeV<{M4T*GB7MAH1cFrXtXe;z#Cu_0-m!?IvU`2#NQV>DfwUs+=V}e zFl&akxX3HhF`P6TH$9xYEK@9MR%Rf+uy0*_hrd(k0yW&Yd21hcU7ycwFBHo??-#&sNcBe0wMhwy|N8Q)FTVaPDI=j)E@@Q>v1r;g z+otS*c3177a5Na4l9d#9CiauhZhiFGN9V7euc?V|62x?WZ-kyc_JAcU7WZg*pwkW6d91YpX7CUXoU4#O?dS}gTNkEI^H zLc0sz7+c)k+s7B_*^UD-zhf8A{?oWMk|4dYj|AE5?_U}6gzkB$=!6S^m?BBry z$9#@Pg!%sSldEOrnJ~}*a7(L1-csAtT+`B0Usjd}8YVq|oRgb*|G}Nx4}U3@u*KjK zNda7ML3vJYL1tENT1HM%a{9A7kM7{Z`8@S`d`dj^W1z-Rw7m)=YfzDv5YJi*KYg0~ zU%B90J_y&gJ54DJ5MMj$SF21@>-wg)V|nI&hz>;~Xz`FrCL6LwcS404K>>JJ)46^!%`;cIQ10s$>{^3UgA`e6U5eEVy5Bf$N zITn7{FYKsq=#gW=hmQsx^bI{4b|N_T+{uX8NU8-5*dOutIqdIqB;XjJ%R3SV_yz~# z;IQAZBSHRDt(pZ4q9Y*k!6eGi{u`l7TpFW17Hd4AS3H^;;dW{mUGLKS;3cxl1P?m%}2xjBj9jK|@6Jz9@*$n9VuYbTrR z_u0%nR%Vwq%m!JRH)5Ay#~=?vYB5rDkyex$WvyUj57}aJ#yHmMH9Au-6*j>oo8)wX z>mzR0FfOJLUGC{ggsO+Q%A5LOR;cE~?!0ci1RYSIdzjTH5we8Dy)?vNYBUM@0z4f` zRzRDr;|_E&^>ndb%ZjeH)|Tv?tZ%;k8W?_-{G_6xvPI3-Qz;0{Y+YmTdVxq)k{?kMl*eIkz&j7iH~v2qs<9P8A*xhiPVdbko+|1 z>664KjK0awo+dxzJ%*Vm>`W!5LFlK?pFVi@04)FM?oa>z;ol$L`Y`rX?5T@q&tJQA z@y3}(0#W(muFoOu<1pESpS0{R*D&K zCMpa74(BAs%;2!!QEIdRuk6d{&J-9D=ojdB9~Gs(l9+`oSim+ql}$%-lBago)z!7uw(;zDWFY_+g9hz zYYW0&$+bD_>a1mb#L8GaM-)+$C83y>LFtM00U=o09H#9Y+!*$# zPCPTCGS4`p%3_2E%E6{$CbXYbqiI(tnsJrq4Xip?R#!ihvcI#dx4m86)}d)v_A22i zOG*oG-}(9TfB!Q+HJMztLF?UY2;rQpqr z7*ko-WSR|-%_Y7PdZ~fqe}=o8=nmp;F8Ut;_Jl@WS{3E1Qx?6D!N<+(Ad5>YH9ahN zKs~3ur8(f6mAxZsXu!}jY#GqmdWYd$ts0B7&oMSIHlv%EHQ7CbgTo#DLv2GkR&WiE zQunsEshS$wSt3uJtg^PDLf%%7->9*+*;3ipFmx8s_rIGS!ZTpZQQ4@C?z{5zNw{5tLxMn6cELn@u6j(TZ0M| z@9$Tr)vev?wjND;qpThPuB+N4Z{pTmQu6%g?eC+w?lNVxQFP(_Ha`N2yxD&CFAOG{Cgyi`6XAdu4IDPW$=@X~p zPQ*ps_~=S=n*?vWrK3*PTqSL)YLH7B>wkNi#29Q$x2DiOa_c$e7%Z)p85=51W-94JuwkK zN>AhwX%@2n<>&9d`26FWpIpJr=F-jc*FL#?{o|`A&O}F@j5;279Aji`WMp)BcvNUu zWLU)Uh{$N%jEp@Q9nGoc&lgz*TS=YuqW`0X0MSwCK)|;NiJ@ST)3jxXDnxqAMTG>$ zghDJ?DKdyfr1|qui7VPAOa(52BEq0xJRGkQ7Qz%6<{K956B+MbyiwuR>9;C?NV-Z23C=KmzFScAvn{FmL-hGCz;F3VQoizva zazj|z-Pv?Pe|Z$0-`;Rg5|$|3e6itpx#{#$Q{egw4tvsz&CwT|<3KX`Z2aiuh6m7v z8~$U<_2;(x&u!=19oHW(Jb%6%efw(S&zIxBZF>M_;<4zAS(zT%5X=F*zHH}SnXPBT zZR7cA>lAIWA_+U2=N*f4cHnb;-nPDI-&k^Zs}10QZDFERZAv8*Mbiihm}7nb;XOmY zt-D|I5cp#V$_&$fgA3E3?nL|PHi%(fn`fcC+3UBe2m9`=Ap}2u|AEi<@xRqt4!` zv7xys0}T4yjDB(6w76)5Xul?v3?mE!$#zFS?TV&VJs=sPY;C-j!Kfw@3%+ew1tTT2 zpy*RT-Mt+wpKDM745$Y>HG^Hsz79oiyP~hXtGBJAyR}`@LOYUcYAc>6JpSS5ZxWK9 zf)nkECQzY8(MWC*m}I2vQ9OG7=<>CT;AN?#{L+mp6_v%B?k-ku1k$uA)k5G`+~9<< zx~3c#waSWOMOQ0znj&uv?m|jMn})TLRN#Sdw2e)5^47-x+)dO@iCw!&ceT?xF1;dU zXyXmQ?o*Bx4lp5L?YVe*IWL@|92i!M(&~FC+HW%Tv#QQ~3gvK&*zLmxL;vt_Hy%Q( z#k5a})l?biY*jTitL3fTEf`xg%`F;?@-{VCC07o#^o(>47&MxpPE2~>Yvr8{b#e(@ zW~H>Ow5F)Mu0+~WQ(jxliX}Bjq>Xi$i`3LtmXsINH&-`xNV}AB{ITG4Dc7%~tD&)_ zhV784FPGGm)YVtvf2O5F%DRkbWU5|ypSFWpWWK;WG@xve*JNcp%g;@M$!1F-mL7O$ z5E}RC9>T<{O{Hq-=#aIyGfAqeE?>Fy>F1w*_T^`>XJg^&@K$RY+2jBd0wFc2p{lsD zFg-sdIXj`KGP_MB>*|xYs-+e6xhXl1^0OZlGM$^=bX~ym@s_zc{5`oEcu8 z(=E*FmKF^g%f`(W)8>+Kd&T@>!}5CD{`#eZ%l2a1yuGg9*)Z&^nxHrM3fMI|NqO$K z|9AV+&F@ZKx*8UJJ>tZbxVR6`ojVhEA|@*Q!sT-}KDzeV&Fj#|{HnRGyO=X4Dfd{|!xJO6@nOriyW0tf6(R+W?qar3 z8!}2PBNZ$rYWYRL_y%EQMKHi!zRj0vZqVu}m(Nii)P=M3fujxgT5WIFKgREfutUB+ z@9q5n3_cd-?-S~GER0#|py0rOK>tIB53<6bNA~%L`ulNtW6noF-_V#qzp$f6gAV!x zA0mOoWQZX;<~%+~X9NI89`ld#4Txf?(Re?=r%=#}Y_7K&S7@wv&oNI`+g*7>XhcXg zsCk2jzy1Ew^~WnWc=r2_`_+~UfPA@Wf3abEx$XeiXj=k#P|_Q2Ng@2`)s_Q#z3qhX zaEOk7d%^T($H6}I{EVnKJM0NTV%l*iyyAxIoz~o&i?$a_wpS|-2mt$I)BSdP^z92b z(@PhZhw04()9Z1(`9EHafyA#ioaB;UtU72#nOr-$%~0-n*Nx39H~-xErN^vk3}*uWdK%JH{8=9*6+Exy7`x z!Rpt;3NJ3Qa)9&RAU2C#?>b<6lzI9X?NOd$(Q=`l7cA_==*ZNlZqhR{=G1!ZgD!B_ z*5?E-t$=R7+ch-i)>@3}QID3@;^*}U;pw57iQ(ySEf_pGIyf~oG&?)8u&AGz)sBw# zPEN8`IWXdGkJjZLV(cFq85`H(0A~PWhkJ;p)Urr8+_uruYc}-&?HEmb7Z#));hix0 zI|l~3s3k`4KwIBndylpY!sS>!(5@b8(`ehtpLO-LDOitZwldna*{@|GI<~NXpMFNM)##R#(?ml~ooMmgK?*`Y3k}}22=5O!~xLQs%&g$URhdMS&*Loys$8{UD435 zg=_EVR5dm$q%Fz@%n3mBCj7@X)|Hf$T)uqyhuc5>`ryu)%V!_NKdh)P#Vnz$x}>VU zqN1)mwCf^C(i95G)Rb;#+p)23Sz9%& zubDSDtQc2Uc)WVew6<>EShwLDhdbc>`kE2iSTk&{8@D!xH#f9fE85NFq0MF8){1^- zS-&w!Ma;|%z)#KDq?}nfkh$)QWmlTXk1+WoL6~Q(bOLeZI1#T-8)D*d?{} zx68^h>npQ|ds}){O-!A2eO>ihg=|FCWaw@-_O#&GKBVxBXzT-BTBUrTQ>JKbkkypc zRFz69imNLMCFKR>rMXa9NscIhys|tGf6wB)tgmi;bnEgZOc&0aKZVIn%;}ipCyql= zC!>#hJK&y(I|0`V`wN904}~+ncIyg^^0iynE?m2SJB03{Dci;q!`ktB_vZ3MDhd?y zOk-HUP`*tFt`w#)Fg#dnu0YGQzQO)99t-kg0oy=dm{;&J`dsYEv!{>v9Xsmp4}rCO z4V8s+DX`yTZo1(b=;WOk#mB?-&-t{u{%h!@^_2|MvE+>+M_T+uz6D{xh>O1Ft#uX3P28h6{SL1<;QExjp*Fmf%X??f{2lZ(rfzV{hMh z{(R-a$es-&^x7>PK(F9j0ed`y^S5mm1ZLxzDZGs5e7iG-=X||p`)%F+$0pG0e9NBS z#nB4@yWZ|N*@$=b+t}ORC*J-x{`NKAp6BfjAnjuBgt=t4k&!JSZ?ctR5RvhonQuF$ z3#?Vke~EojSHM)u=AvbL*|xo6-CQz5Tg#T6Roja-JNa6|IY7%hwK2cTYtuV$lX|x? z(y!T|t#$kMhGVxjH|)3~h)duA@X8YFYQD5&;k9{9B#vY-*a-1677@?$vutUZ3K)^# zSus)pPO-2NJJ0J5&Q2H^p~r`(CPtLyG2+%t{GcZ2U zW3zWnO!m*s>E`G4ul$u6XNUvMgrj|l2%DQGnZBu8pyi?lLQQy#7OYTSB zR^Qp((l??8x=hUelmGw_07*naREkTpxlKRm~6(!qzo4Ef8p0QC)XgeVsPDEi0+6VXfBzQQB9UnUVb9{;!Sl8dgE6wXUtBp|hp2wXwb)7wqixyLW#1 z<>wy~Q=dF~cIWG#zD&-FPfB~5mX+}E>FwvqkMavMic51UDhec$Vrl?@zXhe{7L;Ta z6z2fa#bt%%RizbmC9uo&?X{w$tu>^&W=TV9O`EEzy|b~bB0oOies*rMvu`&oPKLo$Brk4W?elVquSKpV(4i#_O_XN+YH?;T4m#4S3_UB zRMT9eYN=7kCCbJswY<8wMb=hb{?*N!A6>X`?#h|d7vsR-^Ow$Exq0p6xl@s+qt9Ny zaOuW{%O766bmL0w**I8XR#+o4_~f~hAAWir0)Q{wxCB%Od#hZ5B4RBnVe?FAAORHz z)Q&JHG$8IwY}}bRA3qNM#VN?Vpafzqy#+INA7z=g&7zfb)+RE)beA^%V)nuD7o}4AQ@O-u^zy zxJdeaoSoUNH*Nv*Z^jrkVPSz)!uD&9CKUjfh`8z$)>}R!q}7j|lvX$E(&2F51mZ8RlRi z#22lt%gbic%8CWzr3_5Gn9)1*lIHlfOG@<;Nh}ui#T}>_4%4g=TADLqT$nLHb2B3z zSGUR1sWY@{wT%`_r`4fwxYcft#xvS&cXnHBD!o~u)we6u^)h*hq&ByxG^MC2vsjW9 zpLjbV`EE&RI#gViURaWvQ=FPrm<(kWB;}MO7gVGdRHWvYr(_qW=9Hx67A55rCKeQ@ z6qTmo{uuL$lW{VuI3cGrDW^0A$}LT2_bg<}D@f1ENq&@YJ3TLV5t)_o|V^?l+_lOO9~X47S=0}g_PNz9}2=#AI#qV4oy#McW)aD z0}OT0Mp%~RG@>yY`>eJ;u-0bp2YsEcAsk>T!*bu?tvTI!cmNKPEikvWHz_(=TjjF0 zrY2QKM@M^0vs~8LByEzjl8r6R4GncwrA4_tJsm1lOHW^?y1T7g(cZ67^!9f3_bXNE zj>e`sX+w3Dq_i9;Eh{W8$So<%%gIc`SW{6Zt*&aQkHWt~?!`ZUbobuR|Ni#N_{7KYDNmtisgI$A^ruOg@kyD_64IaGV^GsrhBu69 zO?!Joc6QRe2S4WIr4*NEfy52+$~swDbxnC~U1dRG{^cu|E?m2E?bc2FHSa#YTU=lC z?fq}Q{O+@d3HOpypQdFze{}Dsgs1nO-1+X8Z$3-7{e5YALU#JI)WiqziNB<0Jt`?r zl{OYBHI;pX^*WPm*dQIzS3|~;YO}u9G+b*Qsq0gg7G(aUQWf;|m1zg7T#ir4GZN(;2z1!WoIzO~H-M2Y6ygmb<4y;cNuFVXr zb5{+x?#vio%o=}Rv`y+eS0;MjteSR~hPM`mb{0lnEb5?_OZpef`kf`++EnkWW!>h& z(8m1W=ECsm%)rWc-||@R!f5Z(c>mJG0JJbRFy+vAj7pof%`(tz9c*z7wK%n{qq=UR zrseBTKKbPG<%`$PL-4^@u3x(G3I3DM96x*F%(e3X^Mz~YE?&O~=u#UZSh17m;|Rbv zKDlw_=9QS!v7tP#7*L6fJr2+wI>vIHgyr7gpnxF3=>~@dhJ-T{3~XP$aWyy$XM#f` zLPMh1B5v66$f($uh?wJ{Q4vAmp-^x{1Xmao5_|mQ<@2!@&aw`J(NPdJ`hC~KfQ#Ma zu2(36L5&bNp5ZUyl@A;}41^QX2(&?=K@jys0>8s!j#HoDz(_y1SX$Hd4?hA7`-Tek zS7a>?4*Gqt&*%NUNB;pTivR|j0pKGc2M!1CKOB6>2UeJeqk|#?d2)3iW&o_iV1&2K zWN5H&a3EYh&d_;EL!;bpjBHC)L_lD;|KFY@-^(maE|;dsI*T;J)g$)isinS^9mDI_ z)<6GraevH_EFS#n`123@+uv<(G5$t!GZvBr(0bnKk5NH?j=g;gaB_S?^r%1ZgdQdw zkZ}Ck&cH89c>Yn2Uj96|&s)GA#@+QFFZ8=O58yBc!gpMJ%@|hOiKzqJ`R^}XAo0s> z=MImw@2p!vM`&lo4!v5nzg~0vxdrx*vN^#He7Tb^JbPfQ#qvN@AqaZC2_#!zuG?@x z!gE68?;X|rgHnHA=JX4qowyh%K!PH=xY z5Hx2JwLEWTweoqF^`%9F+ojg&AT;nd*7nxouYIFu;nUOxgpa;6;+f(shZ4WG?StP0)mhz4W)`e5D*Y0 zh$^Z88-X#xUz^WM>4NBbNfpL6Um{_X$XYp+$& z*)3Cd)OB>$cXi6!R5fyWS$%y;Nq%~6##?z+KB&4ZyQ(y+qAaJXBCo!@pr$0RswAhn zG`FfeyRr<9=YeX=^JP_qu!WakiyDwCDmLMMR&IJmR%%*yYI@Fx^xTvW*~uB%?{hw(gC8=IU%z{ilJ+*gFuSlMub?~&5ccsGP$g}L0;3;R0Ew1nXJ5^ zAQR_tg!iI1HrFYY^(`tHF|(^swKt;mU__?nMn#QWRtp!Ysw`<%$l6qj4z)ey8T4kV zs>|VP0S13ad-p!&_1kwzK;rbYzt^q1e}?@U>=rEfEBf~hgge*^r@r*wipR*|M~tSzYW}TheSUw6D#z0s_nP9)T^M znra&CtsLm7(CMr7JvCjr>h`X3eP7+gbjQLM_2PU7ybH7p+vV={#m<#4?Hkh_Ym@Ef zVa@hL&)Yk+;}iuWa$Na?jdl-RRz2>9DQpw%7FAYyBYG#(;UHXL_vO zwy9fP=~!RuGOu)7R<&Epx{dj+jrs2NFB)L{!c6JT8}yMo`fps)Wavg4+|g z`+0cydlDWLO&ep+Dv(N0HD3whD~2crEk1&a8Q|m_xa~+8{e2~a?-NQhCH6W<_FU7% z7ECjc7`h8YWHl4I2&fd2hzkNE4oBdbfss@W1w~pB1I`$?n6E?-*16+R=rb;?Q_jqj zXDKHEz{Du@+2grk`&2PpC{Hq)6(MPiZB%s0lZ zfWWv-k-qFy}(J-MAVrx1&G7@Yawd2$7cM11=KnOGSh(M+tz~e}mn&>*C$Iknh z_xt~RP4sqv_w>=x6uQXaac=;60PuDP!m;24*us5rS748LBgfWY^EneEoLl*|}av!k6~Cc5Xx zw3CBvL%QbP4wK0 z2Q(AC-BbO#sR8XopJt@5&8TlNXA}uPlg8Ai8tPLG52}r0UD`gyt!K9x zUd+>s(b3@>K|7$=^y|7*s`^i#(vsdhdXRAY=AGZ30Focw z}YFgYimTo-fB5W+0oF_*$7+QKx!vqwK^0n zDpZCNWyT;R~c9?9kUfS;pLq+;IHOA(iUy95Bfblo5Rp0^gd&0o5Xmb<_7S1yk??k;Qg z*Ly(+t3CTGdf0wl?>kx>*j>;aE%i@zS1rscw#~YYmA0iXin($5@~qPCl^2mF$LcH_ z-AjwA)fM&nGIR?%Ru(#!=R43S_hj4BWc%Vo+x&RT(p1~>j2ijl`Of7z_0pG4ka>Qf zwJtl%-OG!^m$-@Cy`;W=UVi@G;g=$VBSXbLQZxj8!9Va~K+vT?|0qBAKrgPFfG*(( zd|ZLPVOPT=E=M2-OaPecCK7r{0l>J@5zk!=9-8lA&kczOT6yk5kic8Q^AvFa&OkB0 z+yzWmE|CHnmC@yT2yp}Ff_5wpX1X3vg%Vk=>=~qwS?h4U_OcDcuA_lYkPt>$BtXz5 z1ZEnnHiO4GOL9I(cA~QBfL^gwD3k~pYzBo*rE+K_z$DWJjUhA75lls~SHM??fVgMy9a>*B z5{NafAGh)GjU~7ODn|oX!*kO3nj5PI`xyAjAZT@|e{Q60ZB}PpHf*oL^9*k-8qM>@ zjXA@YDecsVdZ<@1VNy?xYA1#@Q{(!X$==zCe$e=cZfd-@-=GFRhgS@b4|Go(d!|j@ zpvjT$aZ}fXv2$dgZKO{%+TS)htR6A7n?}?VQ`)Y{)+=!lXSq%%nP*N@&YdEkJx6f{ zxlmjvbjqE3zv_YOV|t@WGiYentmPaFViEC77G_74- zEt-y2eK(M_AuZ)iZB@ClN#3H6fxsr#%PXp?OM$^9+X zYp%1`l2XdSXWMz%*{C3D)Bs2AwIEv?ae^?|0s=cV-@>nmx%1Y3LmOUWtwsZ(2(Cu7{?aPXH#t3*qNh`D5(i3PA)Se%X5VS^V}b;#S)@J1QF0;Vsh zw!Ta*uWV_NH8#{173QX-zb-D%tEefeZ>(%+uEs<3$R#({${T9rja70Kw_FJVxPk!l z80wDx0T^^R2tAvo=9=c_+P1cajt)g@tE{G`xEzf1r_9XEWB{#*&*4g`>G^M4+G;?> zpFRfrd%%~R@iEz5>cQjion6jxxXg^q=XLe@ZH@W;nwrh|p1lpz_G*uHS!bK;w0`bb znb9sxbWRSdhI-|reGSvbmWA>5wb|~C&s~;zt!+sMzH?(uzrL#5SngR}&`yoE3=hi3 z#@a?lRfGM_{k=^(ZKJBSvaCEK|I@qr$`6{h(y1=le6MoZ(6TY2UY${bcGo+s%PQNV z(z?)Wn``S+W~9da_V&)zw+Xl2#Q&B2BqsKc%Qvq7dj0CPD}My`ji_wPo$H@ltTRmm z%GBAx(xVN{(U#$0qwni#@8L?%;Y#1ZaxVw~d@!#YX)pRbT4!D9+?ZFH7u(HWI>0e+ z&2?KoYc}V**5^8AhHE$G+ZLvp0L&{ht)SJ}j?MXQ^P zH<*6p`{(*}EhX23!-8Gi{Q`Xgg8c#leL*2nVF6)50AL`ldx$#-tguIrx75c2Wv=*V z0Q-mfgKfoW6mhY7Tt|WLA>n(83DDY8MH1_61b}2+lHs3p zT<_1GJwqzQh;;xM7t=)xXN5eR#e&LX<0ZBr+@^5Rv^0&w;t2TyS21Attcw%M8Nz3? zxGXl0O=r>JSH*?l>`Zq8L4(9R?@UL7$tbY~+X?ZNdg?404LF}6pE$=jgoz+n7#*aC^+n)XG;92X}V+{=Z+VnF|Z!ejz~DLkel1wU z(Wo_zOQrG9qGSZ%yRoR4XuXexCXA77B>=ooePXoG!sgcgf z(Js*Jr0&a1FKnmAG^T##$Y3k{_L)q|p%K;OtoG@L#B-ce&NOEys*^L>83gFX4G@WP zIwA3%VMskbp*I=T1N|+%I;FlF)qm_%H#~hF&t#K)+@;|`0q#<_^bcu86(zpG{+U_t z(VF9SS!UK-shiN(&m$)zBO@i{8!cS!tp8zL~syaX;Fhkv`0La-_Np&>?gS)#` z+O9SraaX6RL*1foSGKn`x2Y7cZC5K>iCRoVUJg{|p-x^^QC;#e>jPSROaQn^Q4hux z7Z7akQs8C2D1e#BMgr6%>Itfd)Sd{F{R8c2xzPwpbcIq`89H!+Nu1Hl@pweyPYmFC zViwuXV|WSoAsnTyuwWPXS5lS>CL2+?SE=b~#$_}y)KP#p;e!FdGFgRESr4EsDa(^9 zs`2V6yj2`KW_Xnd4u@@BtE#509aTPPZLP!UIPeTN7H;EoA|Sn91zVl2wZFe>Xh^5m zt6N*;nIFN|yJzi# z>+f!AY^$2Jxz??94LH<2i*{#Ib7<~e|Jx^X9L zW_j>vZ|G>(aAehPes0*`>^j=*JK7#Nvh{zpA{}k@?{DZqN7jKO>)_H@!}@CLwpFve zuHG|uZLf6gZ|HVcd$*VM`{w@Ljo$V7w(WK8wpqVp>477MTZ6mSfo)6Qo^5b{+W-xa z#nQX6p<7+mFE49XR&;A?JKjVD&up^f}6@Q!c-pCY?A(1<;dJNK$}5=Up6X-0p9>Txf6v%;n7hIC0xjXM+1?$KxHabKmpPD z0ASJ&_u>G+cfSWPZrqQLA#^`FAsRd5*f^xP`1?o?9}tR;PmGCAj8Ax!koY9wS<;iF z_YXhhy!ur6uBs_ZJy<=qq*>V>THP^j?wG6xWBa?Khx_Bm;~tLg9gOVknYOk^LALEt zt8HZ4HoChrzOy~HWieUI!`7|Qoy`%@{^l_Bg%3B3M`l3dFp8$e06rW>gVopvV-JmW zG;%y$J%Y|TFxh8|2@E4UyKMqY?rj-C1T2l;3jr9%U2hE|*#M%$DBNuO8<;V79WL2E zOud6mFuFLP7tz;x{1!%mb^rhX5CBO;K~xkPMp%Covo?yZW{+RPHyW{@wmS}6?8Of@ zhxa#32kY>`QTxzr{~kcQ>vqKA!E-zbjpD-Aj5}*X4sEX*2pK_J>jo^#+900u#z?kn zb;uz&ZeBHDoLd$K&GQ3m3;io!dY3-yK?_s5PGw1P&a3>4XK6|IGG0ZG_sdsjG>e}# zU#2_0%yus?^uqbeb3IcdZ2<4jvzp0?_VF*ej@~-4zu1Z6M4?e#$Rx50iRA18047mM z=PAx0C+D+biJ(bd@_Bl2VnSmwwG9rah$0s4J-w}kg&9#%{@1RAhX#9lxVz@&d@QUe z@e1^XUvQ#)Q&Uk{mWNa*74xc!i#n9eo$X4sN`aTwG^pyDP=vD#jPkLkL@?H9S~SPm zm_ePLN(X~MxY5$8P_{G?)f7-I3Q&W*rnaUW+#4VYz>LcMs+)-Ffw+7{Gad&f=5bL* z3zS}}M}-qp;M^wt1GwN1%FYP5LMft-VTpO^@WHtK{Sn74I*)T{p>$e0RdY*CSw(Ko zfLfz((e|pkd(diQqECRlIM5eSRwakWmNir&j|;%A$XB57ZyB-HOOE5rQS=tN5i-yn zo$}7E29Ty3x&`PUN`^(`%yJ0PS7*;VjnjDHd|oS(>Osw|6^%_L>W(^9N9FK%=hB+iY#X#%`+;hkYyHa$+U2Dl`28_k z4500;k+I?Cg7hb;FYcC>KU?4I*;^Y+e|i7Tr9W<8L;#*!GeTc~f7f`hJ@9qcaJVxF z+kIQ#p0)R2ci`*30kprx#z!MruNw5I>O&pZU@@`MG0sN;N#8GL5&6jH|{b z+fAb_14E4?eX7ppia(<+UGfVI46@r_#Ne>tu*fi1FE^hcKfkB|P(W0$Pnf@VfS*t* zVY+ffzEVWrYY~xGE(Ax0x_Ns7n7LB1$jco7j7N;Y3IlP`I@jaH!QZX@<%m5cQZEl2 zX>}ZL#pSv3QO*jH0DP)F!kNzj=ZY5ovQQwBcaV>NU;u-~B+=<;%$7k1ou|`4BnA!m z3iJi6LIbbo0np+(V7x2}4g!ENn5k^KGmV5-52K$Hm-FY&pC(hB$xIhKO6-Ds@L7~j z5=hN)A+yjf0Qd~)#7XC$0l>$g1qPo55`)tv!lCT|1}X!3F`loV4vC`fgc=@!DC~qWm5kL!d+R*jLLqS_F(Vjs%q2o3KwUqtWc) zz*au@C?-`GF40sIr2rsp=FJT%%xV2)95HbguQl<7#+8nzM2h3mLar&YIouregDQ_#})vO1+)epgJTASqaJ|WLmz_G zCX6*`Z=KLFkH2Yc$f2E818(fCfAhp!tAik-jl#AufbB1>8;GyngxCxuUNL~saxB7s zZ!IDogP^emjrjrVtbRgUXP)Y^Olvmhbz4iln@c?)XqXrDYxDZerM}gr-i5jDxiv#> z=^OYHbm2H-0JEK)IW8_tk_(GWA~7f^r5xGC$@zTp%fz|Kp{XhD=xE1~5m?pQZ|vwb zw5#<^DOpJcC0UoRhr4;Y!e8275AJ&e`lV&Q@6aIoSX*Bl7~t(D6_%Igb*dHZ?M*6G z1CEPUsO2EkAl50tK@f)VH*=|O0$||eA)OtqKw=PXs8OM(X0W{Wv{uA?s$5HA1(eqg&CbZSK-38=5PN%d-K!u#4lr;LMhGIbPokB9>{@*UHOr z1UPu#>iSYZF8~;)Mj`=QiSg}5;$dWHpu4jH9s{;$ zmzcfAoCX_RTVGmMUI@y{%)S_P>Bh~g1;x3Am3ig$#UHXh1Vsehy8VZLfR9MX3kvkR z74v&dW4V5yMbp!y?UxS>w~WnpOwD(XOt$tK>IaAAlb_o^FKQ8cCe_2^ZD_&zXYIsH z*Z6ej@VI)wsO;*j&(C}N?sYYW9#l=q0!a~QwQYYy1f*Q24 z(W~mn?-{9C-0GQG>zZEeoL%dlUg-k3&U{giPqhw@DLS+jJ%h47g91KLpRu{$r0g*@ z>x~MXQK2_AYloUNgAJXA292>vJJgJ1P;?JAX$Bg*`Wy6ptyQ)8S1&|{1^RyvU=#=) z86x#|_we%q2MqEE@^%aGlz6(M@F)pi;_DH9IV|d0c3f)B>{+Ml5H z8lu7mTsnl}&{=i=-dCJ93=jp#|{iTko?bVwo^GaA@)0gMUG8)1bB`~ zd=mHK)sv6e@5(Fl8kD&MrlzT7&6myI1=}EKeRpK*>*Utn6w>aPb#MIOa2j;DHv>94 zK>B(x0Ur8rADr~)*FDqWuJL$ynGgmro_O9R1oS=pXMc=CxWN`5nCyez_C-x&NO*)C zYv1$@-sof_T8o9Eu}1f|hw+f|k!^@LlUNO9Ul4_+jgJ8EXff5$@h$Mw_{eeG_~^IJ z0haxliRt7cqKC0-`nqF0+BTx=!v$^7T^KsrG8|bA=-_v#-Zu{+Z5j^DLm=QZ77+Si z(}=aRHVE3@Fc2~lju~0!@4fQ(NVcsET9*evs6iaxSu-Isy)sB}eQ=O6reZE4ChH{J7jN{>^27)Fpf2bIY=FVb?~`-OSIZ}-*TuZBcLc?Sk& zXQmGHcIyBVn#T0BzXlr0mC@QIDi%fdlNRj zwXGf*Wg-F`Bbneme3|tvs=8WvS!rc{{->P0{OtU~{0H$5p1*yOk(Zg4lb)IX@qT;^ zPa?Q;_pj`nOfL^_u~6b0;+dKMp-xd=-B427R94eiDr+fkY^$nO6jnEWs#6v;cUGwN za%E?Ay|P5!TGpkN>-(Cqv^@&wG2r6aZHl@sRbyd(N~5e8%x+spZA)vVqPa{aFRrZ0 zt*XweuF0>f|0HiHs%tKmwUjorRe+jW%N42$WlOobqgJPF(00pv`Wg(zmZ^zuMPorq za$I?7YEju+lm&CD|5@U#n>ViAxOO@0dVs9GYIvr@IMqHnqc%;d21lFvha0p5HELa1 zyS5azDqXo!Q_|d3+R|O#s4jV(9``Qqakc7G%b;AYt7_@1?jBWW4f3x3x^{g{le(m$ zAxF_!Ay-${smiKbOR8FmE0l$xGDSg=Jhw=elV6jWS@t2V_5m_$Bs_W(e=GiGP^e!(uunjsw|{__V+#_xiNOTB1$lUcc=-hTdIfrW`uXrBXt}DJ zuV=*Nu#4BDE?m0+|8oi5Tv1|3F_+_xTrWe!rLgI)z;7>4o&ZHbgD`;UOtdNqP#O>( z7!el9=L%RX7Msn+xj4igVgR#5>c$s}fWd5m059_e0D}PS0a2mB!J$m%Hvl_CWiuTB zwwFF6hMjRjM}RIWJIJ>uqecZAh&8nwJ_}{p1Y3*}agbPSI*yhiG0y{Q&$ygAM?M2c z=7rBacMa6Gnn8rPBc@9{PM0LUd7P<+U96E{W3>fB!IM4%N3aD^Ca>?w|AiVMz4|m%EeCPhH+xPy0 z?cek_7&|Zw`raIW@0GtJG$t|f#|iOq@o};7@$qqS_V6w^{_t^p;_JBQDUaV|KTFO_ z$}Uc=ZYpk4*R<&xdxl#_=kzP<28(U%a2Lfu9qgGvhucF3HiO+?S`7!50oWqW0h558 zV1oCDaY&Ti93PGT%OtUh(DxI@D5m=B*HN_W3Oi{>Z1y3-Ji4Y0Ebq6-EHvy4CfH&; z+A<=W3$I!X2ex4%!VAp=BjXDOdWR5(?w;Xje~6g09ytypA2|*qA3lBzB2e7E?rZ$J z)nB9Eo)-EOyTr5;?m)l?w+-0^ZMdDI1F=mQajOwM8xaV$zcsvPG3{84XpZd|zyy5< z5S~|oxP4no{g%Z(>r%gMdB9}r0zH1rU-W=TB7=*3> zG`80IHrJ6hR`e?inz`k^#OJ@+lc7_nz*-+?mkl~l#?lHDSC;sl?=O%RHyGg{aUOa!1^xVVK{l&v*ZCg{f zx~@mlP+wb;mHAGuZ^!P6L2Cd25CBO;K~&P|+E4}ztr83(s{fe%fwrBM9&Y9Rl?5+9vGXaiBHP zKR^$Ue6!uD!*kZ59G10(#pStqg&CQ7nIH2%e#lC{`up|xrwK3Lzk2=l&5M^wzP|nf zfd~w7oxJMm0MG``6slrsU$zII4{2>7p-(E$pYnoVds`)WfZ1m zmwv307dNZxQI41P8bwPvp~@y@MN>n0b5mt*&fDs$+}gT)nY>U||4G?g)}kzLQ&qL9 zYLqQiN>w#8@|geUqM$ zmiIh4|B0%<4v2m?`s(#xuUxx+Ipn(khr)MdjX95#??*rV z?p^)$?v<-|FI>JI8TCh0*p0B@t3d&m{QaZ6y~EtygQRYOuF?RB*jFg<;&I*CTvrxH z!UVC!3>K=CN971;A}Pn$&jS+|XQTA<_XHjXhxvm8cK7x43iI)a@C%9z24wn%1c*Fb z!Kb?Wc|=@^ym0*@IN*?|Fjp@Ro0p8}fZ-V^Ou7q=LKkq6@g)``;cQcmFfJlTCXw1g$Ycr_JP8lr#{*!a zdJJT)008KGo_flOcKRIUXv&gAm|X*W+-HV*)K-i3Mw7!3B87==cmSZ82MECL2$ z9-pOvGe$>%$Jif(f29z^&Ol$nOrIyy5zC!O=g2e{=y^b2hs|RWcAUl+vEiS_0bq`~54bR_4R>u}-Q_J>f zuec}C4<6ln^!(nNlt&+PU)0KT`v)s0r<+$dx~w~Whew8EVxfuN!vo{t{xAqJ5)VP| z+ffbribJWtIxq%y)^zyQNC+B4#P!km{?YjE;poo(`1anIZFigy+Qmn$tUpSqJeO4H3=%{_=F%e}=Ofw&Y5CeG6h=l#Louk9Yi@1i44hFw1nP0@IBZJL}%rg&D%z><^axZivhH|jsz|l z?CkFP0BC=uA9S!f0D^-%t6+cou`r<#q&Ej`8v|H-TZYBiHar);V>Y0J>w^wiHwL%X z2P`Xn=H=d1v+>!hKj>^15RFQqQs58OiOZnz8B7+L0{^+VxGee)LtGGX8QzP`_5))Kuf+<9heTWkq$Vx~WX7s%fYxe*G*? zuWcDI=?unhQ2#(Xk)I0{`N2^_I7A2s4dFRUaHxHKY7jIAdR2!0_Q9SOLoZ6K-G^#6 zH-q3J$O{r7$GGMMUgO)^sZ^>JAi1(0(1@axi3lkyJW70Q5M_jSRN#?nWvi@FQG-)p z;^-#;q#cB6qG%GqT}SjXO6GMun2bWDaPDg&atha3DyuBY%>DpJ0ILoF+L1D}I$O(eKRgWH|mjmQdX8#Ubx8Xdu4;!DE=(zOD6>_{hwRi>X>Y@>Mm|eUdY%66ZSuPh>1lu6z6HPLz){fU z%a?gP9{kWhdy|x&n*josoSO9kwkaP|vG6VkUWIF><$Nfp$gXKB!ztAo6eSqIAmFQ_ zxgsO;Wo=zSYkPHvMh1?yw?_g0l)c2fdzYrMLjxa50spLMJ=l0xS2uhKB~2~Gb;|r2 zMQ(XRdU0J!cFD`k!skh;F}LC_M*R^KcEd0Hrr+hep_l#)zi>13`fpdS-MA8QG0-PK z>K7)Jc(Wx^uGp0$cH>CgxemduSi%#DxdK3wkS`Joq08v*CK3rb0`O{lmWa<1@|b)M zoyVrJm=rdPDgYV(n4TL2jObQg>geK+5AvI8q-^6>YDe=?Co40z+B991aW29v`C)ZxM8sHiBB zNCf|sd_JEe;=u{-er`dLfnHu-VzC%ZFb_VP05KQ@hFIV&4Z0i=78b>UjsuMaqA<~9 zu)_fZfWat}=u{N9MN|_)!sQMnIN35PGmPs50Ze1k;5jL5XJ`6ZXZk6S z3*{ULz|7(@=qxg{&y!9f6HNG8aJm56(=I=sKBn(!>L~!^DawhHWOV!tF-8rZl`3!n z2TW$4rf|;CxL}2y7#tTuBqo>46S5?30)dzV=;cBWNzA~5&yF-(c#RWs*rZb@Tu%OQ z>+YXez*G!f*y3Hsl!$GrfmCD*1bvV-sslu$d=V;+Xm}AiWcwgArT9CO?!5YfOY`1yQ5p%AZJTUFP#8*HMz~?@T=zDR zzOEaNHiiy2hmI^J?C+74-y#OOZD@%5z=FoK(R?#;KF}JwWCUZPk_=q=%aqEt(z~

g6&qd1tqL*Yj4I2lbV`qalA3`Rn^{TFD5~pgN4zH8<>|Mhn>Y0qHx)z zlJbJI%=f@!?0Owo#i3Pbyj@k_)Lc_lQ>0MT)Yg{N)|WOPpNa1UC!kUKHZ+C|zQ3bW zuIZ}RcFVP0a(#EBUZd1?HN&o6*Qgr;^j6B$#m(Bv*0%B%Rau*=vO`^ylm9j=_w~nu z)TH;1U!*=u&3m7m{SK6r`a0tJh5L`9AH9D3BIQkTR@$Er{t|hMAHI!GcoXO9=eQ|wr1uD{@sz7R~ zRH^HLuki4>g~=`IYF&S`rl+yD*Df83g|6@FtW&9L+B@sox@x=h4L$wJyU|yC{UsoG zf4-X^PwLASdoe_wbiNyfFQ)NCR3;aGSV?sDc?QRcD`8yuJqir{AQFQ(Ld0M! zp_erH5&$@Y%jMJQYyhw$BQ%A@UC80D}A`Vr^wx^fk(1@CbETU2& z%0@mdbH~FBFGgfzFcc^S(Ib3Mfke7{x`O zrkpuNK7E4p%L%+r2?b;!H%uhMI^)bdN#>lP^Ut$HE?gl6{!TbzI{bO?Tv@kabAAqTU6VUg69EkoKbpKxm{~zPn0OotxBHw>- zJ397`eaM$-QSULG==>)^Uqv6a#qOJhiqtxxRt4u{j0WG*2U0CP8*2TPAEJi+aRl!@cqHfwjN5Dz z+qQAg&NcuT#fJllafBLPwTv@$AMT8y6d&I$qk>O|l6(<~Hi6$;=!j|8HsVMOvTHUT ztPg$NG$Gd7hVim4?5&Z#{yGlbi2XwZav(aq3k%*0*Rc^}*U*Lw?!bL_r@));Y?@Hc zFS7v;K_d(!2HUN(c};Iw@7X(=$tin6gbSV}lgZA`&R}_=L8g$XGz$KYO(Ijzo_l-m z%I-|RWnQ~J+qp5ydiv`Jh8p_^8#UT$b!R!KO;Zh0 z>1w+M8da+Lpdfb3+%-qzOCv(3wszuT1R_vBp@;Pb%~c7S0Vr;L+1dV4d$J3;r zP-GVK1jvPTipD?B5IQqOF0iEwoEUr;5S`}?qVb%`>~pxlgPp;|%42+AxZMe-pX>m3 zKosx(D@`4{*zY>-I+{KOWZt>T>m|K5y%#Km(<9M!nI5`&%rACU6iBCZE1qMHS z6bE_3r8Wk1w)|QmPuWJ9_I3V~UY!)xxTNeam3k z8rt0(Bd7*85kO@ERsk#lpJuBaz(8C~UxzS;0nA81XgJ4=v}qZ)SSKykX+Sct86PB$ z+c^y{ZP}(kmhFkHoyo1;G0V;hR}NsXY)A=csjov}kO;=5xus|gi4wT$59Pxu^MDH+F;<4%CRE|Uf2;6xL{d&qMi z?i%;^fx8p%RI>}+vrGE9m0sgS>%#hgWoLX7z8ou(d24LbGP=Gw41xyiu3IP9wk9mw zGlM3TWpiwAXVz>PhBI-t?XNqdXfgB#;_{Q^PF~LRr4IUNj@u4XJwu+cZ7RZ5{O`h9#XW9_?T*D zvSa?UHtoZ+nCM^Me|+;Y<=MkG4-?-e#=VS7c%2aUJU$`mA#6dn;_lvz{>wMSPv|a^ z01^VdT>adA!u;<(ychH2LCljl(7nW%zhdv)xO?-;pV#4+{l?wj;8oC_#Cx|N-o5qk z?#+gF({KGozlwU)Pafun`5IQvaz(#y1GcOL)oCi}(vyl3e}uRfK&&MSVI zUGO|T=TUmr&5PGN#86*8|}2?zRu!1DoY1auk*KnoHuNFca~2$jyG!+ZH0IvQbS(%}lg zW)B_*3^CYNBAGD*477mD5`m>;vjuD>aMVq}M_mCbvbG$`d3YEuhso!$!F2M3D7=Wp zMsMK|@a9k{9GWu-ja~Cuz$by57`t9CZ>gu3tCx@1KhQlO+y?{=zW}!g|Fe++=Pm^Q zBO>5G!u|g}%W35&cmfm_bRsnHmoWbyBZGdy zM*{p@JlswRMHGRM%oQ*>dTau%jfX~Xju{8RV;Fsf}~y^Ac=tbBmQ)o1ZmZ?h1Tsqm{k%f_Ve1*};}zly@(%U$4D<7j2=I#v z@{J7ijr0$`68a+jMMgD$;q6Dn}%Y>JzR z$7N6u^EgabSMKG@VTiuhFJFwhAeFfCX;dDSf(MO(mx#e!hFHKBig;+=Q_SOwxB?-U z3;v8j2fhM;k!=-lL}EU0NGuhLT_qxkSR@p%m<)G5PsC)Pv1O7om+Ayv0iKW}mI{Ha zA`e%ARKyYSL_!`LE<&fl|1vz96B3{4Di!cNC1O7hoCR7WFl-=ci}|0v&oi}3zm7ySOeO97}2y5RqhNZ^cK7p=`gp)c!wEg?Td4>jjl#3VDCHzJ#HcJ1 zfm>9MfvC!WIygKQAqFuJjj~RHpuyxbDJ%;7u&~&43fbOsMHpP~PJn)cIa>Mv*M zXqSkqBEp+Vrvb4)o%s>5_T0}Wi8cY?pMN}uNQ_8HIeC%{s7A3`#8~vnQO(8dR$O%VW$?Rlra_r532{|Htadu}^`fxEbY+m4B02ZR3x#MQMOMlW8I6n=a@YH{%YWfQG6E40Yc0c$KEA$-ys~pb*%fCyWh-lVl1I} zP~5`@*kL1k{qWAiC(+Me$EIXF&n$UUP@7(>Ea)~UMn88=F6fpv4IA5|o7?quNd1GRBX3#LGo*M36n;&*`IN)QhK=;CoKc@W?VK76d zp;ITHUob)kWyL&3Xk-oSvK3%Fvc7JF$3}w+mf>aF@PlX9s2r3TjzpmnB9o~U;4Y0$ zrPHW1Dn&pgb6lK~qob@79fw=JM>~T@wgIH={v%u8kwt&B)dL?n<@Im!+^0v|llx0O ziGTQ(rAKdn>B1@fz%=hHcJD4}_m*`#i@Mzl|&MwRyF#zfYxXu8=p>H8j@C8tddu-vA7(g*LGE(bIT97tmMMScA(# zKm&Hms!)wZ@V-d(80Wpg6arya-fKR!~$? zR7Mc@&wGC&2V7TGTvb+FRRqul;+7DNPi6T9W%+>Z)Q|6DAH@_`l@wJL7gQC3imE;p zR~M8MRRXK)fln1LUq5>F=5bA9X;EbkY|(0;riw~=X=!ya80ezX{8w+ECq8`uFs_jm z*UC$j>f-U)u9(()7To{<5CBO;K~!#XR;%rmp)3~7rAQo+^uY`BOn^Zgy%(QFd(H16Qd;=q2?C z^1Toi1aK8G$RIHr08D0s^`w&Q!A(pOk3|Lt4Bixcr<+9R?jgQ(IpWfL_3mlh0;SD6Rql1~526K(9b56}q`$xw^Wt zSS&Xl7XZv7y8wW(7w3w(&`l9|x`Kpm@V!aEVlr6_`+P9CWXgGgknQGHA}Z&ws;~&_6Et{}|=> z-=N5VpF_O=i%a@}5SA^HUd%M$oJm_#!sT=AXh!JJo zz`qi;|4@z&R4`b~!#)+I#}c9OXEc(GDh#3kE>yS|dN+97UqpylQ-sHpv2Zy;Jo}4f zUrCH6eOYiO1~B%%xWPi}kpRFX8lBAMFff2|Jo8ENFTc3_gd(b_U}u4;$oo3c&z_^4 zMYuitkDt%|H?bb+XK29ogwszbI@$%mc?KKh)1;r!C^Y2+T;~kqqzlhZToUUn&Z>dy z2c!9B)+s9Q9F2b-tgs8?tP|iL+_N*fAm}HjA5T+JUM+a49~|7p=>1;b0DSkayZ7u2 z#xMQrfb;*T@A>^5R)Mwmj-d;#_dc|vW20l@Vu!)sU^$tc4G=@eFn6&HvLWO_@xOD!LW(t&Cz2@ApyYF zEK{IkOFe}dyh=D`LImy1;~?;(X4^D&%$BVYG%}1ch@l9wVUWdUvTPfzyTd4X(BbI* z;qbxNZ;PG29+|$PG-UP+*t!ZsnqpNG< z7`nJ)v9Ue@+T0um*`LZX)1_^g`!ck?G4;=%aRiZgV{CnMd}Cu|ZOsH-nRjV%@P8dD z%1xyKfPuc>0~q#PNzM`%r;fs;Bis1VP9G91b^VdKkC2X#{%8}qXRM>mp2Kzh{;GC&K?meMSnAnZK#&G)E$J3IOYKtaDLDY?m@5BaH}_c_U_c`5Jnl9O}a#l4Jsn)38j=BuRiq*rOLUw(Ln!<1g7 zyiQ7f`Re_vm&q@I2Y|OnFCM)~eFMkggx9IB2)%fh{_0)&%has5k6y;ZANliliLX+h zzD-L?N=B6gU!^>M@%F__;yRC$9z$m$HT~U(?BukZ_nGT-xrfLmxpV0ct;=!H-qF;+-a2+;@( ziU`1n1@3|qf-Ue>=!Q&EV5oO+xNlf^U}#uCXjllLAe2Ti&<_NSu<+o}2tr{&;SnMD zErwEr;jHHeAvb7m!UI3I(EF^espV0PH3eiak6;?(TedH=(D8r=Jgv%>)2T_Rv!e9`mk)1iD(_Hcy zzK|hx=fer`p}f3AuC5$5o6Kao@EAx;`gtEOk&nO7%a+VSf5gVq0I z?A5;pPCGm+|P`7|-}@%8lb#N@(@_w(auKPWT4So7J2z~s7r$%umBam`zZs|FMk2><=(cJ9V!u=+n4xA+nQiK!u8 zU>FS1Pqp~*?W3MsZzqS*asEW0I7rNlFaTg^d2#I1^7wCmym{7tRcBRlB>~_q&kH0 z2C7QJpIzU}R4#i;^sAdF!a;8E`b=Wxn^*LLVIP+}zOM;O*OYFJHNK77qCOt*daiOajz7F!=DP z1BDg2(Q)B1@eyU^h4l?p^-Z<44b@e(6=jtq=u%W#gfS(v79gM2rJ=v!bixIljQsSp z+|-1v@msUDq-1a1lDT^Eb`Y; zh`%7`dP1Cxcf@sYHT+pIgIeZ9RPv8 zM7%&SSgQbD0;vPmn$^*Xkr?j8B*i2|N1L=-cwZP+8OI-j1E#aKI;~1&Fe&v$Dy_*R zkV-`yo<^on33-6DQX|(I)Cwa*XvP8KKLD6mUar3+&=(>mn9UL^#l!&{b&yQ2fixPR zTH+iiaJQi>$%3yYi)qfI`54?ZQQWl1OIz@Kwhj39C3ifyulId6K4A<)cT`J z%a*GGgldskD*+V0ReN69Wr1NQfGVfkIZ$UT)2LigWw>Mq?%Bp;LYihDe6`nC(-gaO#&4AR50|MG>XtS*-Vf`TB>H3d z3HrY*JpM9Ia=U(=?fzxvF=^*}KF>b>H2>t|To2t>XJK*h^_z$753XOodH&K>k~u}^ zch83{rDA%kBbct3(ZJN$8Rfsi7HFWYO1R1YwH^88=4!NT3cJ2o0}V$|IpvL zbLXBtdv-Jbp|gMQfwuhz_wL@ed*>bqoqc=uAK2H17RR@>Y)_0&s;jAIj<+4ycc^Xu zVQ7Eb0ciKZeLD~A*>zyo-a~u$93-7x2lnjTzkApIy*u~q*|Bfe_Psk>cQ9w%s@_GA0u4(-vw2W#NF~$kj%r!KQOW z2EqP3=X$W1&_t$A87Q2E1*dSXa3HU+e_XE%GzaWn9kBokT zxW513`TdW`Z*|~?|MFV9%4hwWbsIdP^&V?|1H6s8RSvtS!@S0B_(`qfLS(Zeo!sSC zUFKD!lR-kQlx$GAa*)=|AgE?4Tag&GLc&)&?Jp$M%4r7&ol-K%Y;*yVySJ8O6vO9A z1Q4D2Kf<@tjn%n=If~ z3V;b*b2D8GUg@M~=cLgi?ipSB?$jpdOdaBn-|4m~*}ZunWEJ!hMjSm!9cX z+8PhtSxZlI2k>{($=_11iT*-jhQZ``X<0!O zmu>)+@bz;y(XahG8xwo)?Rj>0_m$IiWjVo*es22uWth-+=^<%x&ZnmY;U9az?0+vl z{$sxD_qm7vn(h2!?(v`V-Spw_3tiB!b6vm8KKym=5%guQ3;MM1=;M6X^8C}esYi3n zl<@3q|HQ<@$31uN+`B|p0bM&wv#3s=JC63k#dAOuenl}%Jag_Wbn?`RqsNXMK60q- z-~oVjU)vra4X6Xp+K#mWYzK}WIDYo{iF0I@_wdQXM^7Au4xKoJ(?C!>i_;+5!3$wb z+YYxKICNmo!F_uV?ROXWnx2~pbKJ14VaL85+xKqYwr5B4&eoP)+n~nn%}qO6T6eeN zDc~7zjhEE7HkQ>?96E7i{}EiAybC2U-V2`r57CGA9NOD<{2-1%mG$LN^RA}7hxZg# z<`q{L?A*T{}T9XF=?>;7Id{Q*C(#X-XJH zgU(_#hlYhPD|x;x>2anXvjZrP>4G1%OhO#6SZGiyDS%@)#l$2>$HazfbqeSCTz@Js zSR&!*^>P|mhR20~PZE0Nuytw`U1Ibf0nF!%#Q}aK_)Ia(@&|z7fR%bBwZBrGn(UFF zRf(h`_*x;~Pr&tn0AQ_APD>DzrS<|}cL0k70WJVXTD>AHp5cZcp-}y*5ZzA>{dy=^ zw>C(-#-UvW1*_MXrT^e~{I}1lA3Qg#X8Cz4r0Y$3e|X<;`>Jr;Mu%ywQWdCBvcxLF zQNBtB@l+BB)TA9(e}$%EMoz3U>%9O`Ax9y?Ih4Mnq9ns<61aAgGZu}XS`CE5XG@qW z98#wKhI8tdFX!-NY`RI2NXa81Xc1Q=6*y}?Gda&7-$p-YwlmFh_6nqRDA$0gWEz;D zcLU_aFyn^T`LFTflB{WeKB*(^$MvK$$}}UIm}8+2M2s@q1M*;E-5XfzArEIY4^qm* z2hZZ|@Bzpgr;YTDfZ-qXCOyW3c85JIGAueSGHG+d*0jy38C$6{cCHL&0PJp&DS+u@ zuoJ`C=@il~$4rs@odd>^zob|bDyKV9otI6NL*6bUGu3qwm}BCPov6;tFL1`6oqqSP zBz6JV-5k?CrLTL(HGfQxkWR_BIJR49>jKyAPjp6^uz4j1`!6|PrKEC5L0MjYc}_`9 zVMPOsGHzaV`;P3qa`VLS_@l*7WcAL+&m_lc{^P_-1fB5=c-_-0VC<_LI zz8~gBsVI!8J`grPpI)B0)p7Cpc=ycgbJtVUG0!d#3_~*u!_f5NDC{+U%o}&lBqzm7 z!~!0l%jI#{tUxZC1Cx;)7xm!5xlf;7{qkGyKY#E4^N*f?|M}$W?^NAHe>_G1_uuBXzAXMLog)$R66S8x7& z>Dn0z;8SOhLFgPhx}W}596xpR^tqEXh3e#)<0noNzA}XvcQI((1{RVD+U<=XB6XP* z%n--s>{MJ90*0x8UOa_Y?QYvmg_l!R zH&z#x7ox-1-vj#@?K`r+Wp`_RYdzGoqltc62-mD@sl)Y4t4pgIs){R%s~anioC1|W z>o(Ar=+uEjC->7fDJ6--nInT7Q6$tX)5t(yu~I14f<`2Lm##vA;ML%O!4*7((?DYC z-e|&+)}WRtB?`4ft&`JMu2U#TvJWGYc54WUumU+|hdwC6QeIbF(_Ep|Y0MUr!D`kR z^~NAea@v-ynVUDIC2h_~D6Gh-ZZ2xvS+RX*Ls*1OsUa(29Kk^*qk(P*Lc`8X*aiG71;|DoI&{D3!pir7XU!BrScJx!5 zbY$mU4oj<&lcl{J7C>y!YcT8}OLTM?kzh!o#$SaKz>N15vHZxDwiUA{!f(U|B12vBi8<7jO~A-t^W<-A!)5^foF-&4`S~h^wPCKI-h9kx+u%q zaNB=J*#8k>_XshsQ)@V2Fx?P|&{yeXtrMlRUe$k)OspqyX;M6rna#zSGz3lJ&&-BP z-w6k4A{!ll&{sLPIArJx<13KE4RbhRHd`FPl?GzS!k6;#6^SJRHlLKcqWQ+|00v*z zdaa=(UgPx>gomp=R;~3~x6XS#vBEy9sY`~yTCbH_9Mt3ba+#Pma{^#Ymo}}`+3+A~ zTmkE-HWE&6pzEE;$AAlmz4l&D0Gia1P!Lrr$Az-hjs(73*k&BZH3m%oJCSJ6|bu>142b)Y^q%x&mrNx$ZTtX?-r5)wQxERPJB#OoSU8hUNqW$Ul5r~GDK}`tw>>X;Kc-#A7W@K`D z814I+VVB;{I`w8|=*HfDR?Kto`j&*VO!zxuqxb%TJd+ zb$|Tw10@dlzrqIe+EG&t%2U`IE4}uze@b90h|99NL3_T>KLs zIerMxrN@sk$;pRL9XY_bSfFlq+uj}fb^*P>FvTQT2pEHNIEWV5YuVM}q9#3vPF6t{ zPGeRB1ByGCi;&ndoNmLmCOBG}LPf#pD%|KS8byNAyC}|aDfIEC;3z(llk|u7?mfJ3 zSKDs*#jRN>Xu(>Nid9zu;^Iy58Hy@OV7_6w(7-jc?=Y?my6-{<4->W| zg+zsgL3raRtCn7csq%JE9Ud1Ai6Rr!Wh;B={0U3IQpE9_Xvr$Z38x zU8NT@SrchmWs&_OSiL&NycUWx{}^xiDcrgmim-Wwnl}Q#8Z8$CBbioC zHz=eLX0b*|Ql(aK%Mh15q@V?T$q_9PJxEav06V99bA&D^w$#HPZ!1LymWDuJAW*3`X_+%_B0quWC z)N+FP8-S^k27v$iawZ3a(aOo+fbDh;jB@6ROU`6OgVk9O;pO8s#`nFv1_HWdkGQB^_7xd`74_xJ5^R$1eKN*m6aFQHcwZ9B-m0?z01yC4L_t(u27t*t?lO6}yfnPDIJC4d%!thU zE-c`j(dET4hywfX0H&hhk=p`2L%>ebeONhzr1O+#Py7JqW#;B6>YD zy6@Pw?w*^IABJB~_Cs$z3_$2iyzhJUuJ`5JXD?qreKGN5{58>wiKpYQp1gX~|D^XG zzIKvp6A_i1ym|Acv)Fu$uyn5!`#S>@FA3J;DI4Db4`}6VLZ9B6HG9X~-=;_0UPaQgP`tZRMZEeSi zx!g+vzXX2Nv+iI-@mbf>P}5XbSznE|y0NyrwlX<&Gy3qac(!S0YwMmJt$Vg*`~m=93^gT5lE2+o)Z zJ_|TvK8w%dNyyY4B#{cGG7)a0Tpro5l8{?0B%AO^`DEErxLIpanjJcOxG5tqEi5Jk zR#Im%Xe|cVO}))zcGyB=A{i!f8@w&RE0*uB9te$nd*7b^w>-&tdxo zvV9>Q%O4(E!sXzaw5}E{?g1ndx6Sb*a{DAgP5{K?20~m8o5K#|^8ExN7KqCidGke{ zLWwsd5PJc@Y_4Yj$BVc<|Mi}}YXbs3V1oHVU!mB41;BDB$jY^u*$#66qd+2yZ-~_| z-0B}{_Ju-BKA|R`aEl+>Ftcx@)f)=8dWBg$ttLO4*&qE7(?*3dK&fI$)MBxUBr_8q ztd!6dx~`V16jE^%0=`eTwv*>wulY zuMjW{Q3p)d0ke7jz5$+ey9M_&D;Qj2d_7kKwCDrCYrWxvf5Z_w`|EPROs*E0C-!B6 z&x{*h#}Jq97VJU8(aZ^6Gzz^E*}&CWAeGfbpdO)|>P+98FXC zSB~o_fGLSxFs6`3i$0Yt*aAE|!h%5Pi0Cj1X%HH0PD$SaHq&w+?zz*nkRvwN^R~p=;jgSwpU1;Npn6|BGp+dRL*hPWujuH63EK4^d-)E znME%8{w2@L8Sy3wU(9ui^IQOSVwfo&QdU|}L5hSBm6ekSc6oKd?)@#d+fM>H%b!O+ zei>c-I5fXBu&_8tv@rBd%#p=~exjuz2rwo*UP*YSgeH(CF=uDk+1(<8!3#^{Xn}SZ z->JD_r)Ec?5A(y&)WS&b@ZE_wPiE%G2@IYohKXQ#Cji}PFnEY|-pr02`*}YA{C;w1 z;(b4(J}N@rcTdLObdSC48h+j}^1N$!?BUp}Zs_^TZalns|4Ko5Hb!sF+Zy-o-*)QE z;lszaUA=LlfB4?>SC3x2?tb<5$*Z^B_-3Hj@1MMx?3tYDef;cZc#NU3HE--?XWh0U zbBO%Rp~|mcp8vY=_{&_^KNlbW@#*QGU%LPJ{1`&#-=OlB$6voZ`ue%+>!+@-A0NUf zGj^Gzcl~>@^Ix;=FwLZ$eekcD`@c+ee0twL`QrBU#J#C^9q%UYbw9p#@9x>F*UwzI zbo}gvW2b*Ua^lRvlV=YdJ#(<__}-=+4cUd65piLW@!?H78@KIkEvzkW+}phO@SfcV z;br$S+RYeWGC>Pif~<`@T8Or_G_*E5ncCD)-B1^u7++CWgNGIM)#Z&fP+>(;SZsJ^ zaZXlAZcbTYUPW<1RcUE`RarxIRZD%%Hby%ds<+oywA7R|RFpPWZp}~6t0>GV%a7U= z8esOIXR9Ib-UskXsb8AFg1h86GQwBE-)i&4CHAqc6TByUu_+Zz8JqM2;#%al^ z$pAJC@%Fu~@V>CQuG!zi#|VR|2|jf6P)>dhoTbHXVeGHT?y%yXU^JVwdY#UwBjqM^ zN+mpvQ~<&ILbN&(SSV4-c@jyW0RDw7l1o);C8SZ4>J%`kWa|z-SF6*A6*8GxDVFg8 zct@B`sgat340tcF&|o8pT^f@P_7~EcjY_?ibQm5pd;VxZWrbc%5`Uy(iAsSRo`9MC z6$i2?@FXlE8hjS>IHWovnhvB}g3{tg~8GX0yUzkm|J}qh4av zip_ed)grT)r53Z;WEA2llSytfOY|D9SVamQGpWeVmAG_&K)OXBg)S9k?ceE3&!JCI z0J{>hNQWt?Sga!g^i7E1FzOX(k|Sh4;a&HQm^cy zFFA+W-<31npLJo_xu+A2S~G!Y*Txdev$?Ld$j%a7Wx2(rIi)4}R3I^_skx$(vaIUb z!V{-jd!AmMTj>7fpF^L28CqQKonLqcEiQn&gP-R5q2+~vkBejx5zspi41XjGkmea4 zLxj*P{lB7@otz$_ z?fWT)&5JM3Ts}-4unWL&y)e4~?dYqn;TN3)!w>of+j|G@p&cH7H2Si8^yTA$(T>}l zmr81~6E;Qd+}r%~rDHw4_pjYN`K`Xn9Dnl&diB2N?&Ax= zF`BsKpzMOAwnICUHbw1dDS9{Yl=48R5e!GLTw3K z5@_@oMic0TafF)$fLnHLYuMEaIT^f-sD4`$94+XZS6rBsvV{T|W*2+~XcJSCf+B)r zHzg#eZP}8Mwka)Tb4JS6thA(zt%>PdlCx9e(l#Y!rEJPci-?cbS&h+2afvCLQnFK% zQjuVac5FWhJ|EqE;MktF!+Rkbjy`hqaC%0XMyn2XkjlgMFe_bF zWDPQt!Mepn(xYIB^-85mqEL#pIu)%FrP3;tYEmeeY_mfGvShwfqX8Hsdacx`m+O>L zl~kxzNGy7_Rznue>U1)jO&9FIElGpB3I_ew5WAA8rUc2fO2S&J*=V=I1OvLJAX`{W zlqJ|69uuWD>O~5&GF4+T7}RP2RSI9r=1}xH0nGN5@>vR{lzc+DOr=yf?}|o)UZ=&+ z5}yG38yg%EVzHX>bKx*#vY0hGtr$4va%3ETIX8f*VJTBHIa7331B^NF5at*F21m)( zy3E#o5WWGmR1Rv;*Kj7z_BZ`CeSnMkGurEg{w*X4#lM%uef{KunDkvWo-$ z5i#7MGTZbJUV>p0-2{;0P^uvdb6r-I#ELbNm8>iAx0Gf#fwJJPP%EWjYChmfQl{lD zkr*|ZCzdi>9(@C_KqZ7kWX^&wkfRk+45Je$WCsdakU+*`3t6-f2U>3*j}3qy6KY=N z@jpLp{0H^E3~|>`t?^uocGbq!t2X{bFzopw959@&N5C374eYi%A=xyES-iA?Szkn_ zhdn4|@hY?oSvS%R9+-WFodBkpU(VvvY;S*_pD)Mf2Nz!%0PE1wSz*`Qusegl>$tPo zY%{xCXO~v4qj%>tL`^gO69u6e>l_>%7akWM2_+;(Cnd*jO-V|{Z6|$mdd8NF>=dSq zWqNKwrmJR_Yn3pa33m6y?&g>h_wTrM9sdU4mDn|9t;-_QgHAV0XMdT>T(oSp`w`dl zu_NrDa7WB{^kfdE0iBT)J|wf9T5GV(;>o!H>TT zEqxkZSRVYiJVcU~Ka&LJMfhDNyJ~J>2%4QAq@9(A!++BtbI!MbHcgCj$sNFbL$~38 zXXi(q0qWVIZzP@`fu?6hiDn0hmS3E^dZ_2gtq)TpuO|m6fZ=^#ym|V3qGx2h6W+If z=swU348s9a0FS+R3YM1n6xDtRHJ*%!v6L=yFE1A0gaA58X4`PzIkwjTx4LR z9cKFGgLA=A+Qh`L{QQ&?N81u&BkHR2Mg|`a58fFXxIH|4cVy(=^Re5nCmy_e_u&2e zj;YCq(;vF#rXDWLJo*faywvmSQs-|UyS^-U&QIT-dVlA`yW2DG?<~$d_&nbMeVV=h zdG5hSFnH?j{8T%h0)RW(&)>d%>Bf!o=P#f7`O?Yr7f<|r;rO|WCyt$JD=y35lA06+ zFBB0}QC-r!t-c^XZ^!m+`w#5d2aN6AwrytmY$cDlAWGgTo|`0skpMdw7PP0T1r%W zEa7((iENkGRwkuvLW_$OSC!?L6_wUh6jhW|)>q^D`K5)$m8F!y_+YI&nwz&Zq67O& zbGsnCQD}5%Oj1lxcn}5?G)a4GTl*3K01yC4L_t&~n;H*y??1SkgrFHuynp}x`1p9U z#Sj`692#k}2J7v?+Taj0-A z)Qq%HghLk=qzMmJM>sSPIymUCt1LFHJ=g&Hg28&LQNb*MrD;m=yZT^@Jt`ER+-NsO zCB$sWNC|;m4GV>Vrj`A{VVU;;A1T*QCKt*Xhld}^9AvYHI&eD`hy~8g^@JM&MH|ru z2-Y)GlIu1GlKK*!qz9)8H$jb(m>=E8LcGbHDXC@5LlU(Q6p*cu0wsKUBv8VoEj89FBKsh*r8tdC zuST!TlLEXPe_lWUp8%L63Zx-uE-%o}-wSsIUhn%8*)fUl4XsQGJ44XGv$No(A1MUw$Mpq< zf1u-2v__LbkHMosV=(H;$nHNm;J-WL|Nkfa?>5@#N&y3mU9--R)n>BU&A|>EMCYDk z;-hF}+m#wdr=Qc(x4P24zKcjR55GBS%29XLQmn2db7g)PvUahVnsWCOzVpY$MfoMg zv})#G-_2%KH{Wm@=^ez4R{Nu0V zi=Ro&joHO-hy_jmj@y~JA)s+~c5rTPh_*9x0|4-f{Uwm5uJ^<2z~oFn5IZ?D_7vA?e{NDO+SD0VUQ6s0sOZ2wRH8=v(3p*sIb*Ueo!>Z2lT6{Q&iz4wO(?n1!u$k5%9(c9xM+F!i9 z_iEz)o7WvguiD?g>6n}9Se)&eoob(+y!-CuZD@Mp-puRv`L~ST-&>e$UzohT_~FjN zhdXocZ_Q5Ldp~ib@9FKXj!Sp%Ub=bn=Zlw5UAT1e!i5vi&lgUdzj*T0>7#VKXtNuW zx5OVg-nR3=j(tanH3Xk1fSZ6=l68f)sk*hHqN%pBp{lB}8Y-(Thsx_Jz{sq^Tp%+d zE(-W`0T^ILTT)$4@L5w{Tw8(Dfa+BIk{9LWmlS2>W@i`VrDUcTl$B)W=N6WiCT`ta zP*w!KrsZUytsvyC0(5hW^E2|Y0PpI?T40#YJ;V6Iox`Iu^Td0o{RMqXtIKhIa71wY z=J=4P5cv3AEBRaufcKIlZD#g&&%s@U$9s0i#zfm~#^4~c)vh&~l~#+)5v&dgQaJ2# zhg}g8q{PFpP+fSq6~fo0C)v(Ql@>RAfk8($-m%*h!9l7JhbB6NC^Ae-6rl?ZQPJxJ z*=4~&^3Y&auuX0-$jxRI?hoJrtu{>UFGMDQfsH6q2E-g}#u#Et#+INk;N2!s%4ta^ zlie!jum!9D2|JK1Kw`5fgCPOSPbC(>^%CRDtSZKh2mlU`iwcembr5b!G{TEj{KWSvH9 zGUzmVK3Cv$;VdsOSgsVPG-A08&tQm^SOu-|SVd6nxq2hBNQp^ZCh}l!Tq&Wo!4*UH<$BQ~9-t{nsP-j!Tck=Q&y&s& z)4AT2BrK-S*k9KiF!Tcrq*%-bvq{g;SBo(ngmE8^(=2zHh_+JVuI{*edWgZC;L^EPdXx_0Aich8N--Pezu+54WJ{_w8?9-gw%5^WlR__wQf5efz?VTR&gFdG6}f)0Z!wynOX6 z0DR%%nfQdLO`GGxBZ9MXw(i)~xH&a`-@zRq)9!uSckOQ7v9o#G_U6`YO--#$jV+CJ zO#W1TQ+-`y9op);>Z;l*wBRCum$)?Of3C7(OfMu!`<2%5fNdv80|K* z*{U%Djb=rtLmwKVC35H;L0XeZZn41Z%B?uTq|xb>uv0ptN+e~hI7S2Ye;Zxaw6a)QOTkcV_{^$U_VZPHN;KSYiJN2C;S1uW{TJOb9hiurKY zfy6X9$TMJ_ci;vVdn1?cEfjb`e4YmwOku1x$+Z@ekSsBfg*_179Ycz!#7Ki(4-*`d z92*=Sif<`0J~k>L4wgMQA}k_0j07pIdW@L>Ulfhb$g|^Jrn0BVXY;ag)a71)S zWPEs3LPShbRNST*xR#XkO=+21(zCX%xaV|N-d1iwW?tbpm+Z>P`d^ionU|a4UL?dh zb6k*JRG8!LiJdTZu3vH%_aOT%R^$^^6_i&OR#caiR~465<^#r6b%kw5cHC}14O_Xi zJox1o5{q_bX01#BLkxNc=Sj@j>4vExo|+i|HK7kv!_fPw;ddW~-n{RJfLH~3r$Q7W)&sx+toDnZv54o-ifz;5IQ97`Bl&8%f}-x z9)Z5YV_lTKcnB8@07DeONt?s2-Z<6$?E2%U*A5+Ry?g&W01OR|l9=4_p0;Vs|UA5^QbnV^i2Nc8eGY_WT z-+48DZ?Nym<44yz9$dWt;9~pz3+){jJG!pG@!!04_R6)hm#&}c4%yE#8U{p!_o7cZVVd-mw5Q-_Wn+kfn6+lk|cjvPIF@KD=-@i zheZl&z}l8ol!L_Ol@&!L#mzgnlR$KHef_qk=AEsyA_oNO1NPuLaGqCHR9s(P(NxWd zT&i(L3(XP330pE!a6ZNa30smtFT5jNYTUBB)g>CKZrR?_x}&wJr8zP>3V(h0TQga8 z)*z$JMxxE3;ij0l;OOXJU{$Y|gPH<?m0BG^ zwvgbUV7o@ER;U$@FbAw2EE-9omXI=za;1WyZ-6ksACjHf+B?^JT_9Ml(9GfFe5QftCG_4 zkg&g`grs{2S}D=!RkRQX-L^rcQ1VF?4POdiQJ{}ZB~WNYQjJ8S7SpneA{Cz_VL6K$ z2CVg9I~T?{0nE%(!v2yOVlEMn<0<6(h($z7gOmbTYE&!DWPvgaXlQ(t*mMn5Jg0k+r_Y&O|6X1f-$1mPdojL`!~$rTBN8ihnpmg;KlCY{AZ z=hul8WKRW}#ta-{q(T>=(fMrI?9vAS01yC4L_t(~nnbHonGH&lo*gk_g>GycnxJRd@#lEDv$qJ?fD~J!VCJk08E)mk5f4fZs2+!zL&4S)05-e z>ByCY#hko>NtX7czL}mt_5%*VpN-WRYBPk{jSibW*s2S%8iL_3%{sG53nUx#n!h?x z_c>s_i_L%c$L_)8|A6hk9{*1Cx8Hp=luI-L`@6RQeO+=PnTi}?I%JDVo8Dq49oolV zbx?@K5oUwJ!h-^3w2T@O4Qe41Pq9%D;bPCzE*vZ{C@JA$U@!~fyB`Bch8bDBDObHO-_uyeEkgQeKqmy#mgtp znTcK|->REpc<9x`!Iz!A&+j}MxcXq=>cin1cb{A;s!vZ$wwyb^`(D?n2i<4e4maJt zcXn{B6aKh=v>h58y$21Cwo{G2e0c7{A&XtHtF`Ra*yF*G&Mm1CrG@b`WPjiL0O#CP z$IRsYnRgGS-`<~k^Wekl`;!yxv+o~%c=Hf!e({26bhLeF=+3~voxZ+XPoG|Y_UuOQ z(;I!yZjKDz9D~UoybcWy-5lt@*7Njw*W=3_otGYfyPcP4r|Z$xhh10iwV#I-zI^r6 zwHxR6>}yR=+q`9S!ttZ~P8{36Z%^~RJD2a=xp?i`nTr>XpF4N>%$Xw)Q`7M<#c=G36%r?Ap7FDMPuvx~?)cJGH8ziY`(D?P{88Hl=OK$jc}wD}r;aX{xGkt!>!e z2*X;vy|!jYU1clUhN{NetyyVB<)!I4S(SA)rBxNq#4g4|gTB;u!v~{NSzir`Z_P@{ ztH{qS&nvC3C~K%B6U_D1I3F);*xp=HT^_qB0Xzoy;qa^>RtyF3zV+K0=z=JG07hgQ z+c{ilZi$YKv)E0+p>~S{j?)5CTJ1U;yl=QUJkn0~=TV51Dha@&H)-)Fsnw}WMvXzQ z65+UB32z5OjE6WF7Ni1zqa$#ek;>#kjaIJKDaozIsD?l_4erGvKH1XFq$72;7zYf; zCex^3d{eU0BIBduHYLO-#D#=9z+FdVXi!LyTqP$3q;OxBO2uL^Kfs?U!4XJ0)Cc?f zN&I{TEI*})uL7kEDk=atB%GA6mTTp5m{_aT77>bDWO!msSVFYfYJ;7}Ti{KVDjAy- zAPZm24u~I0M z6YjEvejGVFP|BjWdm0g?*+8yJ5o9q8$HR~72_GED@c@7YJa4hUTPF5X7$jP&Qesrg z%v!Y-0M;n2dUHfD>@NVXHtFDogTh1MeZgJ0d~0YBehmO%z0IJvsZGH;iecPrRa%8u zDaBX^W*VYpGyqZeeH2`M*FL_q_%o^htWg5G05B%;f<4glsr8Nc-M z4Di_KN40?_MX&Z)#pGeF{%ON1MnC?zo-mk(j%gW7W@XV@T1uMkD9rp@tOb2(;Ynxt zNv`KcX7-n+Uy&V!ote)b{(Nr?1?V=2Bm^C6H^c=Q6GMzip{B$T3ltG-3bPx6EE=0h zWi=9^V>hdU!k9AqKVz7BXm`0Ue{#p|cXD}a z45ckrJ!P%SH&gmT^y96Zqeq9z{h`rBB4Z}A)@m~V%;2=mZVU=GgUz84L3H<(*tm%J zgs8-%n55*`&07*OGD&dzTedb0L>FZi7H2^O!^~P?nu_J3uM5ELNn0dWt0d30v9YTU z9z*4o`IXg$l~pC6GFiV=QPjMx{M6a~9bK1UH)-Xm>G=_6LKk%GgBX)aNck5R3#LvD zQQU&QuO|mwi+7<9QzMTa13w+pQzP#PgNG(pZwWjEaL^N9z?&omWRMio^=mXte6D?)PfOq(`K6XOJV*~YT6$hx}3 zg8ZxbR7H(kF*r!CA=IX zg{x>H^u+VKFGg;?9KHQw?9TY;?UCUdqa!x~)SeHuJpFFtk}`K-^0m4=;3fUF>{FNPPdn1+;hyh8O_8a_uw#ylqE) zOG{08dH&I(drzG@c;fi3+qcf%x_$2IwUd{x9KU$!=-Ho-o<4i{;21%TOjZV$7iYs{7v|z6nFTqiIT?Ox)a>+_q&VD{8I}{zT?bRn zM6DT-2zgy|V=dfvU2RlMG@WCj!(R$Zpi7~a7)(kC$ia>A1IIMD#auuo#2~y%uQma$og^)r?HrAC%1q$4PVP#b^r9ne>$%V~@ zbQ%fVrp*+Y5Cdap2@keA?C`z-FyXXbBbJFFo{*=I%g72~KN5KsumX7gE30n<{Dgi! z6u|g?+^91<0wF&WIkb{T#`8L90B_Df|V-0s0jA|Xeo zmML@!C9`24J}T_5N<#pQw~)w1ij@)*&W#GB5)L~M0459$@RD%+;DE`d0&)&l!lK)` zb0h({ebf3)>-^Vva!CCL0GN6yx*F9RFlMdy@mu2;u#V650)T}AFF0VSmanzSg*t_V zIAD#!q*hooBApDzTCS6sg01)r!4Y9byVVqA!qRsR`$CDXJ@iL1J#v#Q2QwP%Q8m=@?D^*8iNXAuutf`d8Y0<(K% zO6LYjD{^IDy9BGv;*(;x05Dg;_6_j%VSD>>eCW0cAmv)W)y}2BK5L=1zUv_85zqAy z#W0;MrY*A-(gtRg*V+xftI^_1X0{h3Wu@sZhjcJRTVj_3oX*&_sEJM|Gvg#?df0CR z{vCfva2TK@hdw#PkQ8Q42r)+34WSmT!=i>l%o;{2Du+pFH7Xe%1J6z*n~h4V`CFf~ zCO}$?!7Od5NS^_rGh}Vjx%%{c=c~-_`U{m^FIjn^(M?)F)On`+s^ygzx`Nows5Qm2 z*IU?%V>}ZL6a%r(a9&VX~DG>S??$MUcK&_c=Kf9-P2cZpS*nY7<%#M zDfH@f*TkDguV3G5X-SO=V@HQ`VnYI=gZ(0dd}Bjdk>MP>)!VA~3b6*@IMi5|1}8c+ z)(-Uc58t5x9vHgQKYVXwyz}^J09d|ze@oN0>dmQfk+H$~If()^~$p@Qo*Z*L!;5cdtT^pI+MDX1cpC_4HhR(sScs=cTLH&oB=7=laI-?A)#R=RS03$Mx%HZ{8xhe&gho ztH&;1J9hrkp>yYtKtEqNarWn9RA5CFV$_r9IA4b|pgGXM;m zTU1d%_W_GZiUEURSThT4lCW#AED&=NJ(LqI-JO*H^)vY3@>l~g7XOGHvRPotAc zWdf0y6mNnAG67JevuKQVy}_c=7-UMN0FuBKYrr;A1`DrJszm^>E8E#*Q3J`&I#41G zBo=W2VBB5<*Z}~ciitl1z;wr1P()+a>w_(1j+0coR0Eu(_$BW35+Up_0IXKPQL+JG zV3Hr;%k%efufhR3$^~4tN=}vu$;Du*S|hUuk%gKtRgrNqaNAz~{xY>1@2<0$I6|S` zVzJt7EOsE5!-6D%K12dPm5d`(kROT`6#;bRDk)9=67U0s0nw@Iv?L>1%x8=6n?}ZGJRty#Zwb3X$8QpzPqb-N43>va@uZkDIN9GG-rXNEil`RJ3_4C z5zGp!#Hhqg@kyH#Hm4*rl}WaeY38Dg{9>}|iMrm>GVs+YCiwhK41GyBno%Bva~M<; z67Sm6aPjhq?%rE4xJ(h|(W$vXh~_+#)a6;{QX(3TrgOu9>-_W}gwDcj|Eux)GZP)3 zXP$kUfA(du@1F|;zb_B}_Hp&&&AC$C&Te(}nYpD!L{=zH|Sg=6Q>AH8_-_~pwdFI_r;hj7LxPPH95w(sEK z-Fx=$s%xx)0}hQ21!YUBipr}>3rq6jlVVfSx6m>*c_lfd#&~4`yl-(uMRY=fguOw* z_bMnz&(BYTg)Jjax2m+dvb4Iqu)H`UFN>x_msFLJ$a7s)N_IMYZFx=2rqonmERf{` zuHY9B=!NhSw5b`X$y<^QHd91gls()5!Acgv;WyUM0wCz1C91C}t%JSBm1`=it0JNz z^+p46cw(VYB#_B?CX-4FDaA-^jXc`>p2nu(Q)y8Ty#uK=sDOBo^s4!b- z5ML&e>r~E?lX`rya=Pl5tANM%4U`6O%w`Pe`*Hkez!}^nv0{HBnvg}RMKWb6SLnNHB`s_s_0CnjqXkOtzLDu^CiUcB9&AR9Or#*=mPOe=cQb#=6GSV*`%EHXGUCKQB*hfYe4-I5ZYl9rg3k(`;m zC9fd8s3hCvhTV8vP+9%050zBpmR9CfHx%qW*mV8Y$>%S-=N5*RK8`Ie4a_g}EzA!r zE)3F4>4k+MlBl&X0DYV#`se&0^y|l=nfF~YlN}!yo=|;ReD>>d->=I9(C4MTj|LPc!t_%{J@ZrDb05$?A=?T~J(`?sZ)!>o zv-<^`y@GT;cCEKn=WWq?8PzO>$V1NlNh@3*rSV9%vQBI-SbWj(=2hq0iHENzI$ynf z@bbldXnefm)vK-}$95ad^2EsCd)Ll)J-C^+B`!N9^2Jc+%h9_pM(&J{-i5|SND4H? zHZ%-BJ#=eu@aDh}sC?4}U@8E(ukS{0@AW57uEFdAz>nZ}d#<9>@$drL?njpa;GUj~ zRNdVdy1FjjxpVUJwG$Vw90P{y8cM3Fit_W*kDb_i^Y-~`H&0)^aq8-g6V(2mJ%8Zb z&j)`#f9U6*kDNPqnCkTDHV7sd06u=~Aav;Pf##M549oEAv292F{q=f8Nl~yf)Z6y=8xaaHD^d>-W6np{PFi)n} zz%xlzDv8nwV4*?+1}pSxF@s(K!GMUAz?6&GLbCrfOfZ}<0PI2?5zCvHPG%znTH9H~ zWs|Lt1YC)bCsBzUkwG?iL@_@yISzE!=(J|5#na!{9BdckeKbmmOezowC3p?n59U?G z09Yzyaru5cfxk%16$sgU9$Tf90l;MK6I1<4$QOtNLXk+s=ko=89v8mc9l)XhC{XC< zOY(*Yfc=C%z5;JrM2P};r9kmUItNTTAaTHYzkm&Ft~Uj+NZ^lFs^pk#BqdvEwj%NjOF-Od0wml#vm%%o+kp2I1_TC|K zoZH&({`0%r7M3)_%ygh56}qVEKy{)c9ht~PMhQg}QAQEjlJRyxmTmTSz!66*2Q0}# z5d{m`l7%Cd1F~de1*3>$*?8}BKF+-t&VAOqs!Oery}!d99*XLo>fBww_gU|H*Yap? zr{ci#0fU2Kr#I9V&^=PvhXeeffLE3w+!YiIk$kvDlH7rS!|QEvw2yCV@yOn6C6_Ly zL(vfEu2SP-%AJN>K`$W9>z81`8+9mkUUqD+Kjtm2mt){@$Zy!|fJ1>$01j9StN32| z6dxxZgOL-xRz)hiCWhS{iE(Jx!xDgGBMY$Lc2l@J%Tvyr8ipOdh%F2>Wry|G2S>Yy zC-;s{8RXQkIrC>MSTbwz^0~`aEm*N;5u462OeJg`s1uODB!dHk1apWe9o$^UcZv;Y3}oB#gLuYbLC z^zy|czy9*cjT@G(Uq5m4+VNknfBft9W53-veiID7{>d*lKK%9Ou}hbZEL~cEYVEB5 z_xxx7yn6KaD@T62{Ne9cKKkdCkABC_{_wf8M_{I3 zcyUWEZ@l!6M=qT?dFq>E3+9e2p3(E;SBHN*z5j>rDR24Asr}ID@AjSgZtu6>?1sMj za>tiny#Mvd-5@bUB>r+2wyZC{*!lVAY;AYK<5Eu6XS*9n-Y#O!?|%9z*#SIT^Shs22n)}wk zJ+EH3a_a2q*>Zlt^2JNntXQ~u*_>qyho+8BnLT~s;zjco%&&HL>aoc1v`O=pE?l&7 zDZmUo_l^wUB6iB%wdwO_QPZJ;F4&_btCxbf0PxED*00*QfdRaB(>hT>`rZwH+qin| z8d$(oI+@9)&7=vp3YS=`Bx_}}T!_HeMq)}d9!;bZ+zKh0ibA|#31|64E~UjZyr^6$ zkuHG)56V2pP7*CsKNRnKZpANaBVZWlgWzD6A-Pg)~FQ(1Zc( z2?hb+HkYH-+2IfQXll8V!`osc^iWJ?cr%8v#a&?>MB!_Elo(nitvZxkB#UcRLW-$z zbq=2%bSYjpEObos;_*d<-*UkA${z|2PvF?H9eidI+a}m5h9x>9!3X0eV!095d>#v3 z=5c$lO@yFnBH8Y(M3i;h&7PQJ&P;uNAp6n(GE&Qc!4P)(E1BL>iUG_%*mA?x&Mna5 znx1lo|JB6N27txZ{_idH3RnGy3>M-Cq9c1NY5P9;fp`Xb48qw}cUlibmb$B)VQ<}8 z%8<%=26GuUx{!clu9wqLt&|eNP8z>zs8ULiiW%lN-9%uxVYstGd6F==ESucTcqS4z zqgVLgJKb~h(kTvQV@nsyVgw*A!hhq}Uan_LHDYt6UVv&{rFu^h>gp@^4%P-nI)^9s zOqnq_W6tQD1=Hp)rpWfv6$@9aoV|L@yr-UBbNJ}1r+(Ob<;IEs`u*g8-2CF^jpM&u zKX&=oW0!7zbnWVit5-h$&r8Su``54j`~N<9_2&aW|9k}8y>|VRtJh9kynYkgvwjW${2$jp{MWUk|GakeU)MkU-#3o_=k+81`^wS( zy80n@{(0rle_S|v;md7b?tJ>#TaO-o zl9}B+^4KeG%F! z1Re`3jO}wE?xT-AuxQEbWh>^x8NdGK^Dn>lJjPo%m59t+>e&}fM-usXBA-l%s+`3@N>gBT*&V@0Wzid(0Ko1;nt*^dd`9jcl z#eHj6ZCFPkZp%`06%ne^g*)l(@5|-WDKXm$&kFMj0K>@EE3r&229N;2_*XO;7mG~d zaHYviOw{6_-b6sGnT+znn_|w$XS8@cM1fv0L!8Kj<7uN<2-jf&zY4TDs!DJq_epU#z6esqG=o;shU?(D3nc2f^{zd9MoL_%^8fzp_C4I5dVU1 zYMm6(qA|lTP0%+KHF|Q;3;-r(8KQuGx#@~i)INp5^WG8L0!DaE?3X|Q+6T@5sgayVEfNcg3RI~pEz>r{} z1;3s$E~ad7-UeFhfK1c%DI2a0tXem3+)1+WC}R<8Uw@~Ewy)_a#Yx4ac>cF=&hy#q zr>n(yt(2h5vT~|v^k7B88Q%3mmQ+mJB0|$`N$}ZF1JZe@f)S+f*<`gXzBb~|rCR_d zHHD__1DaS)NG_L(LU~FJ<3IjyqYx_>WhIMT%h)UPXmMUW%L1N-Z>E+QJ;OC`XU)K-)>*`_XpI49k?_ZAHy!qMDqc1)6+=i($%Q%^?Sw4H) zvyYtn^x$ictvK-Jqu0(JxN-i__49{dny;VVf9>49Yv=Y}KfezngMZyTzWu$Y^4Y-O zA6>ldt<9SsS+sCL_mY{li{Ha2AN={p{TF^Bo%`wF*&h#Z?D~f@2k~;C)8Fs^?$q9I zzuWWmH$q?U{pOo}-+sOC>#z3MJQhfXMc&J97+WCub1O!@o7OCy*!juF@1Hon4Lte*E4S$KUeTsz3Z1OUEDX) z2Q6N?boRoz<*xGLm5YZb4RR&I`HSYR+^}lZy{lJmShx1R4Qn^97n#+o*24O3T#cR8 zYgP;n^(EEGE%3@LO|H{(Vk841T|O_34S zA+C^|Pe<}1L0Z%Ne#xuqaxAGqxm=`DNp@G#)x0T7!LXt8>@T*q{j~v%>$&I^w)n5C zhX7zr(;^W9u;jIt9vMFBdk^60K4-}1AOHtln(WadO2pK{Nds(5*2IvG$d}N7;p#vQs`qy1%EfRxr6&`5lIn+;*(6n$ z#84(4qc<=b4k~^i4WA2klxQ$y%6JESDn+3Qz%ap3NC~KNKnnVU0nUB%1^g_J&+GKN z+uR)i%?|))N*Ro?VwtEKRoFv=!CuvcZ;KM9sIpl|QWQF7XI*J9yAX$+d55<+*b~C2 zDj14};L+iLMG{uf8*nm!d77Mqz?NJh9lFVq!n5AfaThya(D$wuDj$tw8l@<$#AaU3 z%NKDc_qfK5bKY&^mc!RV)_nK<-<2G9lCMl!1c@ft&)%z z_g=fS@9O1!zui3Y;>!=#I>Ya8e`?|Uo+BT;_Q3sfmd~mFe(A(-mk&dDAUw*A%ZILC zI>;p_FP%RCT{w5}{MiE+emV%96S{DQbpFi#v)}Li;k!LQp4xjx=+t+6zx#I2fqgF> z|LEidve$5@AklRUpRa8l^5@O_NmnmY@B)W#LM)| zf8Krl!mg|5_Ffg^2I$6x{Sb{I&hEMJ!=7`ecl~f`=jm^EoIbhp)R#NH|7y>-pYQza z0l=wDI#zJ ze`V>)`44Z|_~7Py?|+blT3D0NCF*P|H$N`50)56K)a?xR&m! zXDX#QzOK05uLc2NSd*X@Oym+6Nkrp1AV;=19)+9CS*5Ge#cT}9!|o>lJ--?PhvamI z!dKO5w!4-q=i>lyBy5nG77T^}U=}bO&!o8OWGG@Vk^v7OAsjIvVUt{7Ehk=a@R?TM z;!2-e2{;Yar$qu`Q#O(zJ)z2`yuiH(f)u-r?S!p`Nbp&M@`6cY76w6n2sX zfI(kK#la!BKjiSi9UAVS83-i|kS_$Q7Ibk}C^>47%rImahAhhrV17!54kG)xzpu5- zS8Z<(PUJKqYtfNH40g+H5Z5SX*fay!7ibO29jf6;=YcvZDHYAZ`zG)y&`2m{Byb{~ z)YCn=w`Z`w+*!lBM^(d8arj^uP+*S-F&2Pj2^^(`wwjE0BbkhsmZ2IQcH(qXYeL?T7(sqRT&Y57#(TdxSaoB%!6C1!8QaKCV85rjs zJ5Rgb0P5{WvSZE)WtwH9*9I`Dl!tms`R-z_tB}Q(Z`(x&G*rz(^>VtilIg5uNwr+P zYHgufB~uZqSMs)MS!M4(nJ#~E>lK&jQw9}b|0AONpy#kd=sZE>Kz|x&Mb@d+@tc`@cVZ@P{+|FPuMe{NuMbZkqMjx;alzIYhAboJ1$|NQuaFShm1$d~HXLbY72*1NiT26~Dg9N7N&<`u8K^w7<# zN1$J>eQ^ECp&OSEU%zzd+QkFVm5cj-y>ayE7aq)&^?}LVrLOGcY2CH1)V!I6>z9uI zcJuJf8wbywdk?yCWe@4%t}ExZUpl|*?3wq#yh~^IU;Jqwbou+JHTOS;L`4jlslkcDWYS(w)?)&ze-GKCur}smr zzS;H6lPk8q{@}xZn|pNM<2QajaP7h_=<@l!7tihnZqJ|Deg4ON=YH7x(~mo$GpDzo z{(jr3Z?}E-&3oT{^ZvJA@A&rQ`(J;#{qs+EY=7?`n>R0cJoP%n2>c!Wd*uVd!efwTKwC`nT|K67m?tgXLj^{SqH*e3L7mpu@ zN8k3=TYrE2i4D7Uzxw{pmv_AX(krh&@%N`TJ@n{?)$12M{rqG9cxLnZO-r7A>Cva3 z-7;;)P_4T#Fw%AZBlj;{zOYy?Zg^nBj5(8*uU@!p?fm;5TK&u`o1cIEvDddg4ZZNn zlN&az-1N}O$DZ8u|G`kDVI~+dZAh?rP6Up4d7pX)sOR| zNQX|u5)q0#XA;SLx>PMusQ^*-r<60R#biyCkJPmgoUU$Yz_ZnWp^_=&Oid4&@fdqw z1~6M*Ry;$A%8H>uV1^pj;eY|)Xe1m`6*yG2De+44xQKZkSIF(ejv91E;B=!jeG49F zWZcwITn~#~8av>CnkKm!`kH=%}Ne!Njc->}oKcR+H) z4?7D0LjW*dEZxLU^mTfi?H(#Vg+U6912QJHGm0xx*dHW*JNzNHPdH$i))YwuU@>6< zPHQGPU}1tO5jqf-3A!Oa##2DATk<&lP6*#Lh?gM&z`h`b5Fn?&16zCEm$R!xg0v`9 z*{E6tpu*0QsdY@ayJI{zD73rzwz%)HhCW>D%G27?aJP*r)A!f_=HRw^qB26B;T)Ry?f85hwpR;)C>_t=hruN`e(mhn}94O9NK4WC|K)E|#>dM{s z@bc~ZUfc5YMx1j$`grHZpYHkilbrzYXJ64`+|R$+^ToG&zxsa9cRwB6z5nHfONTZr zo&4>IT^G*5AMZc&KkWYQ%&wE)z5n&8ou_`kA$?fmG^7xjOTi@7n{rX2YZXCOC`S7`m2hW}V;JZ`1t@eVKKe%@7 z!%dr4r%HykDzT7E=i=Q}^ZBP9*tPAkt*>rcy{z))E32+u-f{k?tyeDYfUcg0#eDgP zZ??ir!5orRO$I8Oc8S;G7FT9yTX>Fe#JlRHj+wf*E*Ao}~Cf3@w?FWx=z#rC(hJ-&I%vKL=| z;Lr!J@7(>|`#WD*wR$#qmdPgVRwcP2H7kQc(uivx?TC{xnjJbm&(|fxHOM_Fp z2c~qD2eMNZ46VLz$@F<6oxP=8DKRu`wE{(f~k)dD=ntRvw8P|_%0GNwk{sDmd3P}=JQcT|& z;AH^!l;XW*%NaKZer;M4usIv60brt66PW)1z$Ft0*pX*DrK@>C)SpfRiznGYZ`ua% zos75XE0naSy2t2Nz`1chtS0+DHcV|NrZsby_l3wJ6JMJxGLFZ+RnlT7%UfIEF(di* zYck?^T(t1ambzBURjXN;Y3$TsFJYjo1$&3D=Mveau4+-#%dPiz*=ZX z)S-G`ePr55xw`~C_VmNs_r87Tqj!#;*nZ@*_Ya-ew(I!Y?;d{j&ArdQd+4R7UV3QF zrUmO)&EB{3RZea?{`vO(M_&8<+^4SK!=XKv3>6|+Yh|7{-Fhr zz3@=6FJ11gWh(`EoP4EJEGHj%bmQt3Ghck};a_ficIo0r&%N=$ng?bsTRmgytnSro zr?0j!^6yZwt#Uij?e=f3{@wI5Htclq3buRnY9?DxAH6)q22I)C8Y4+PiOU%CIu z$2OF6+NOJ_|8ni~E0+&lx_AI~A0GGIPy5fGJ#g{d;h)bQ`ss(gKb+ou`t&ZEWj{mu z?BvdUhhN_M-lHF$*m~gT>rcOU-@W(Gd-?T8cI|oo*vIdF`q};s_b!YlqF_%VZ30@E zJhcy^a_!knJd0DLwsG^qgU7cXJMq?s$KTw4Wb4|Eb7w6Yox60(tc6n-ubNlwDT~>M z3hZpLUWQ<9#7?o?RZf>OlwVyk)3sF3NPW_*p`QLOs!l9A*TMtQIX4{(CnGRza5*?j z(tKf3#W@!z&3Mktmb2BKDkq5Hl%1~@F;IvlVi6NmQcW|I!eL3BItrwt@l*t7Lo*8wqlRc{A;a46tn`eG-f zxFbeDiTDGW8zhqq0x(>xTb}6G+9lJ|Ia(T;G6WM007uQFqWh$f$EUSJpmk7pfzvn= zj+qK#1lvHw4yg@i?NCgLrghclg<*q(hpks5ni39yYGg4DT`WVg=u2yn!DS;P=>eJs z76A4rj(`s2xWEt2suk0dL>FcZ2;>&UusVE{jpg>zdL*y6RhC^!$dycMi9FtS0{{-^ zOwJ`%l1ieQ=o#*Yx(B=Q^}r`$#Hj}nwQ@=&FgRcUtGbG}9nV&ySz#SpB`(oY;D`&} zH=tvj(dr6KaBCAmU$4>OSG|Fd4|f$#gn6lz9Fn1c=+L0Y4Sd10l&U6VURCTh+FYTD zz`1IAqp5HtY2cZNIC)$=9A%P=Ho$~o$p}LJ5JfYe~b3>E?v+CIIKyA9oeg%}BmIKFutwYxW0&36uTO`SVDYtfV$i>FMPKQcILpgLU1_vXrjrE-6< zK3whXEzX%Ux^nG;)$126Tsa#@u6tn76VKiM#0#6YJbUk!XEr|m-2L}Gyaw0zP4DZP z+|@bUlkX~(I&1lAIa?wI7mC@g?pkMOVZnkKufO%!yE~p99xA3&QZ^aRr6Q$-4i%G; zQYxCsrgQl$Y!=K`GM}bSHMvA89m^%<&T?$9Co(z^f8z1Qt5yy?`{JsT-);Z;o2{qM zZ2SJyyFdQ0yL$ELl`BW!uxWeg;F;6g zj~#vbvlB1=d~VN|pS}9x3(LMg_1^U>hltkK4?#C?9KLbw;4i-({OR1gpMLtrbI+|< zyJlWA;+;Ap|H04z6{AQcs10o{g^Sd3C!bCh zG7twLiL6v2F$Pa&=EAY8Q7C6pS+k69Nu`j=q|HR!j2jTyri6kgkSpc@-9oKU?yf+E zT8U$o@oW-?3H}u}Jsb}>c5mu=3v#Ex3Kai~IL7WQl5@3#LDSV}5#$)khf|P<~ z4l6i0YbvkPO(ykhHkwX{DZAM;5^<`8Md3uEIUEXWio|P;#2hf8S0rB9044_<@`j^w(C~Rx7sZ?b;F#YnwR(fC z0i}Zh%nrD_w=WVigR0vvJKb6vkRt=Yh8s4{OFeqqZExD*n*as}bgz*Ng+O1QHxvx& zvaBkyB1?oMIiN~jIpF5-xZ-um9;YHxX)Uh;khfbiyEGL|O=Kyn7Otz2VT-dr1DK{c z{jIzd7&r0y+dV$2$RVq4MRUYca;BW7551U#qPaL2Y~+k|XPN=rJJ4IMmCcNaaTV-o zET4#F5{4)xhR+%-BvC59pm;(DJEd4a3VZyT)2rY~PILsvQ=i08hf`^j3?Bv@REd*{ zi6%JR9pXV=B(3A!P!mBZ<_pH0fv6*3w0qQvzHqym^kR?~O-Jx8H4z% zxck=$j=P{nMl_{j-Q7wTCyEwH6FlQv?Tl#9*F7E|1U>?aMFZg-6DEp?G(gM8w|OVD zxbGR~pvsr6?lxku0I=x#Kn^%LQcI22;e*qYy7FM~U^xQ-W7}U$i3}!7w?nrHv6f5z zKl~TiZYK8~6z6QIL{~oE{Ghh(1n`~J6s1CI000mGNkl^DO1}?TxEmz>pOT~01l}N^MzK)qV*K3(vEEkW8QngW1JXTJaUwz=!tq(u>+`5M!TlCPDg`1yPwD0iq zdk;VR_|r=_J~;dB?T_u;_tfieKX~}qi-$gX;m}9VZQH$h`<_SddvNmHMcv&4(Nrd^ zggp6*F?Z4M%Wph*-{0m`>*>z!+`vd}bZSrcNU3*HCEuM**OKvy8O|Hwyk_J=v0^+` z%it}-nFxb@4Ef{vXt67Y;|HeJ%hgOe8->v~(@8#U!40R+;9amoC)v0Lg_9wiDDm-$g3K7%B$KHG0GUn% z3)xU6FPDixAa~S^=_a+- zY0kIea5PmS42KxN@NIfT_e*}DU6=9fyr8e@X{D#^I%K~CFoq=AAC!Dt#fht2d5s`EyTk7!W{}yk z<{I0b6GK*Cn z9q2BUa~##czW`t^!~qHt3&jFlEd^>SvMJF5B*WtlIYsY*)<$mjJybPQCe!bc-GHLV zuJTK|BpY&23qk>GbqPZpzvcmV{gDoTq#X(vZC>GkVW|ULuOzHWQG7E(R0c$(JvZin zDeH=7f*HWFofCtUgw;kvmX?WvixeMrQ+$|Z!O}TF)a4l8;u;4G z6N%fYEz;d>|JPlu|BLgYtx6rv@gTQlovE{-r54J@x?4n~$Klf%-&Dy`)b|)KW`)TI zGktlP6NR8T5t^)UJv&^>FnSroR@n_9I~sgzewXQ3G$CFH#QzO@jGeB0vN6T`r}ehRq=Wtc25a;mC=FOkGV&(ExYZgJP*Di+Eu3frj&63rtsJ-!m z#q%ajrS3Ofz4fl{&c6QMS#xL1o;P#Sj7g)@N0%;Jw0y;qg$rhPb(Tjaj|`0tbq@@5 z_4oG-_ILL6^z`+Xs}-CjtGM9+&SG8l&I-`Z2}eDh^?IdTOeFJWJRdipqG^`m@j~2$ z00v@1ntGUXf%_az>t-Yq3l@@Uy{Puq!W5@1B-4dTwp1%rtE5^XQ=+hKB4=hQiEK4l ztfo49i?v#=SWMPB^VNE;Qp;3mHCGBM)#F2xYrR9cp26(kq-xJ#p;Srb3T9_drd*2` zD#?5~(LdCUp-HA-rt?G>{MwV5Sfx&d0GB{$zge;cDwBkd68HYHUfqf7|2t- zm^}DL9o(pDL0mUYEfxz!qf`+vX0T(BBLPZv(E~VDg@8ONzbuEMN+hKLz^Ot4q7hX( z2G~bqMm8lCvT8c%NhRE7GD`hxQ!xmy6l8_HfH)utr~~tOsz9I|3PSL#Y+E@e3tKo~ zagzvjG0LVWSk2S7u_#aq#KH&bh6Y8VIz$DfqhT&=35WvH@uZ$eQ5#^0-vI_NFE`?v z8+bCJuqDx#2Os>fx5Fh*q;)uj2V(+A_IA)XK=G3y7VjkdE|nDaw>xE*N7tRI+U{|+x*Ximma}==9Hb6c zi^JUt(T-=LC(v#Kn4~ykF)5Z2eH28;AxM;wQZQ(S{p}m=?HlaF@EY{RFfNqPqPZ9^ zLt^;JaSftL->@$bp)m^A0|9Fxj5a`Dt_MP$2|~_*V66o1>Q=;9;zC+NQrL%)4ZJTb zFNQ3TUvCA2gJCBCEJbBJF+1D&PH`%hVj8>}7>xHS1X=;$pjA9vd;@9Sl;U&xDfx@L z5VnZ)s5Tm=Q2w)3yNVkCi!KYmFvL-14oCAWFXIzC9J`*-KrdL!;~|!yuhnB%%=L~N zM+=MZ5fj4##sa|HbLlTbl`J$|&9SgQP)b9+7&n#O;JM!0bjy<7TA}-I z#Pn^1vYU->Y7BszGqlHqtnJFxJaPN)0epLqndXe`x|p4ff*#FDShtHGE7i>4J0^ph zW9*qf1aJex&H2?STQ-32M6$S&xZXTB%yY@Nb2n$J0pQ%s$%Cs`EM2@{?)-T(moAyl zU67ZqSPB%+Te4u*f;rRYPG7iu;gaPGmakg8YR!T*>lUrsuw?zcOQE&v7jqv7YFB*U z3ahR1=wMH8=llh;=FFWwcL5c+UI|*?yL{QI1(T)?0LJjvOO`BIxNzaT1@mXmoilyT ztdXgcak?yb)_R8e>U~|fIrXPY#h||KE+`i_vu3Q22txp{EzmcWrUvFDiixF?@I_H0 z6_s-dtzL-YyO+T~Gs$c=4`ni$TrLOaUaC~FpH8Q9`E;>FN#?gIuH>`jT&9>wRSUUt zA)ObNx{#+binUUzo=-xxY^JM_uN8|0+(RY{W%IdGr7Uueq9I+QGK8@(aEt46g*+>h z2Wb-gy11VY1B|nOHB;9c#+2(rVTalhhzMKAkYWjgqRqlJis{t|=njy>K7z-TMjO@B z#cZiw&6SI|lEDm^h2wF^FiqOA9I6i1NIVAH6C3xRNDv9SA zOQoVo+Mzm*Mu-!Gd58CD2lNdoj8Dr|C!#byFfjm$*|n|!U~resJzg@N4*<+PXjwc; z0L~Rv#?uMm%@Dl^xh69JYyb*sK&NN!56B)aa^wxR!wqYZ0Cs%hBCydjQtzKM&^ywH zv7;U~Tp|;PyAlDzZl%Sewzm7nwYbM~$t0^;td{^BPHFJ9iW+oz+)lU4uTXb-Jf%R; zA96cYmqYb-U|684URi`v@nkpz4cALaMp6W7_juaeZVrwPsgwZiQP+~Ww2#|wwr0u#KtlYJ^oDwS>)$x})M13@d1 zN{abp(=VAGO4kZIAjU9u0#O1mo>-&7kyZ4{rf(=lwisxa!&WU0nhcg)psYutB}_EF z6!hg)<~R~V0a#(T&&i2eRy}P1*fsHP$6e!Kd0pcsIPV5`9b)8UPajy>(N^u~HU==0 zn?^s3+eTe2k~PIUVJv`K$Bl2SL1OgY)p9rV7txUMma@rkAr&pAWB3$=uoJ_@QpSYJ z*?1)vx2r;8i;Lx~*>q)`Rln7?!D`+h2-m!yYLu+HCA*H*ojZT1Ta~5DamcPR-Mr%H z--zdc|KR#Rd8{$jt-EiBXk+14Qut}&Wn*MO|Gg8vtY&zR@yAW*&5n^he>`S}cuWG< z7y-ajhI;1Dn>}atj9Ig%E?hJRpk25GyZ z&tAA<&eE0hmaks0d^NW7maUo#tyr@V*Ypl|4^JH&oif}v*aP}bn?5>w?vy$6rY>1F zXX)~}3zyECId{_RIn$=kz!ncTeQ0DDmbYhUXmIjmc)nU+SKsI$rGr&+=?qTG22@DL zYsGBVggJ~9Vx)XDOfn-mxJSSU_BWf33joKnNe)-ydkcQ$)AV)CCZbR#NxfE6N#ZeR z2oDOc44h>%@l2XJ*JaZYIL2b08k6HeX$Mf0lx?ZyYcp@N)X;O5W-b{ zx6}dbfw+q9)uTZ#)ls5VwqD&+AFknh3xQR5VmK1=$T*%>;sV0}Fi-?LMUJWgVC*x1 zgLo88ariuNv0fz*)D^t;pcDXriNWr6!|zfn6m6Y=OWhcBW(BcZX+C{=~o6ptlLby%_&bsNBk{!TT^)bD$2E>u0OMb+qI)1obop(^ z$0~R53Scf7&0g6mAI-D5qIrXz*bLS(h9M4ASU2wBng9S007*naR59m9*tuDM@k?G? z0oez`j?pWA37Sr=NT?vH5WcriB&!z`ZE$!DW~s6q~BNz)dtvG?&Wh!4xxtJ&w;>|b2MV4r9oD{{Slg%}y zYlReKRlEXj%NdAkRq{@?QG>cu2!jkJB_p2@*tGl!7Ph+)J^r5qxZ5fQVgb0>@7}&9 z>bBL%e+b||QLd{@>oPmLssQKgdEoBUp(#Tn(Z;Gh%Ak zfg7d{UECKWPez$b52jKnnCV(iSMSh3-(VjA>6ozQ)N~yH#y(yhTV7@@ds*6oWx8csx#K-?6u1=tZeW;99_Xut;5}7P z5HHFGFnCPCWCKW~ups~}=?eU`X6SUhKrgmJl zR@~xX09a-Ah7?H-ssW$u^GIF*7|&V4H2^RzfDyUP0maEv!X7HVPb+afhNn7Q?Hw5a zfboWlLjP8iS7DpRgTch1z&$ukTkB8UG&=~vqUmwXr{Mk-SJ2z)?f?~F&hQ5M13uVa z09f&~8$q|K_@$sHsJeZU0}t({yecOFMhbNVRYx!Y2Df`!TW`%l0wgWX0CspLx_s0V ziIyQr4pN{)(|q_AMcG7>r{o5IAsfI0LxZJC8N>}mDfS!5CO8Y4t59(WntT7LQ5_WI ziqPB;g6F)sNC*JjCQbC{K7SRPcq&9mCWBx2T6+8*C&n(`4u`Lu>@U~K z4pLJoo~flGR&HV{ePklLZGvY!G|@kyB|vir3}CLA1>?){4A7SrCW%aD?jMXD<}S7^ z!W>U*icvFwZSFF&$pJUhm&FWjeCh9$^lyZhZA%SF%{v;6^%UL_UB={Q8DS+HQMvpn zcA6E5hA0Sj`!&&+24TmD$*f3R)uR%&xISj;5FaM?X(a>Btq`~MPQ;_6gq}DN2W(S~(F2#t;|Kwt=y5{Fsl1d;<1|}HMM)VV0S^~|d}{H; z_-`~}v`SBxQXEC7<>GY;A((au;r1xPoi;sTHEeE*T8k+3t(8uV1x_j6ik&PyR<$x| zbY$k7=~HJ+W)e)9K4sd>X?-IDnNltX;4s^=NsND^qS6qUm&>QqnM5)}>A0nGamLK) z{R4gZLN1d^=d-zy;en}BMyF00uGfm-O{HD{5~@Abq0zqHflhF}STEvATpXP;*wtIb zz4i2V4h;_$O9i~W_B%{(vLGTj@ zkQ*OF1|~C?O^}^U8W_#RgjK#ulxq-`6NtVLpw3ZiT+esK^ko3!cs#BVA*o><1~(duP%GjnCBCvJ zX7R8?jSz$J^l)z&3P=idMuOBpK=OJezeiUkSS6C`4{8*p4{H8^k9_}U|&Rq74}DDkkudc`=Uxminj79R`-?$<6xC?zmlO;}BrXk&(F`?iicsGRBOIbkf~bMR%^`2*W7_*{%P64qCeCB z@xT8@_T&(6n@8gIFO!;2{o6bFBLzc-)KF-Qc%Z=J20I=Qrp0-RkPd})LzK4*N5hdg zbsY^;Vv0@+_#zZJka2#9MdTROx}i7$M9G^mJ&v=d5Qh^ue!w9F7K{Op60pO8)_7ba zC3T1_V~W5}5`Y13KpiOG=&8(Y9I=CKp^$(|`BYzbb=K^e(Db>}2PY5W3kpvL08gDU zwSRQb%usDVN@Jm_@=w7Has*~EadH%4AIL>g!!FGn_(ywGZGOk z9;Fikqnej7Q2ZG?@dy~4h(v&}xNbm+SQKaGu%Y0c7Y#${2a8{BQi%6002eYC2M~kd zY|}{?Ty7Rg{qnL2(3cs^{xy?NWeaKE!7-q3wWppdztn0a`0#EF5Xpz}ZxaIJ2%)mFndaQVa!_jt*7!FVjVn3cI2g%uI z%Th2H@XL}PKkYzB@~c4rm>d33zHZPQafW@4yeWYKLI9>~%pN$%CPcM{)W@iAt*5EY_`heI5XqL(l+lDBzM6pAVMT z=X7};oYl;gn|!Jt6mR#mi_EV!wrgS$Dy?&MdRyRnJ-#+tdgO1HWtS>D6sd!^xF!_x z^4EZCI)bcJ;xVpa=++294>bcgl1Yl(K$8{?3;I$BT5R#7@@fID$Ow5=7X}k}Ry_BN zcLQ>(9-r=a>j4Pd1$})HuQ%-RMjQaJFWTV=w|OG%E~C|{wRWg5nyv0ohcD_2#)FcO zY)WcEY2vPCrGtrPz&3ydg9U)2V78{4_;TtDV2n87En$Bt3a$Cvl;`I1guK)-BILvM zZJzd4U)u!tM9z!m)`SdBZi{5k?_!7NfH@wCPi4&YA%SJUnR- zW^QP7X!5klVDQMaNfoNJTg(*m*cNM*YQ0wLte4B>LZJYhl~ofTok`=?Bu3{9IpdFHHXQ>RUuJY}SRsJq%(!jZ$rgPz*aDtE@(Y zFuSz$C=~;JyL;+|Viv{%(qBHf8c`ov(WFhzrX4!y!3 z!xQJL#ayMp{uS4x#51Q1?V?#K#Y>e0gmD0#jFqkoqEmWym}Yzh6b-S$$10RTHq;tG z^Us8RDvN*4LCL46Q~{sjXB+`;jFo9*8nfug+28_@(Qt$GI6xeui%5W|eJFgkZQSke zKflt(ez>YPI9mc>v2&o|n-#Xclm9WCAWnfY< z7?PC${obQE$m>;{ZmA<^_yFL+Nh1TJ!}zg)*_5Iz+R9Rrj=u#w27}25TkY9Nz!C%i z0}O7tgO>B^9o|rzS9U`_zuW6`Q3jUFp?KOU2}|(@{4Q_6?eV+7V5g^pJv2Kbp?Y?Ip|Pt2XG+JK@J#$xkQ*795v$eYNnLx8|fLC)YmiE zPt6$OanYlR#=N5c0R^kcbebW!*kDXm5<2#MVF@Gy)wq8VUL670-9jUVU>g9;sB?t^ zPK+Bu9vEWCqx(FD#~b#-@;X8-KriG_+uG$80NABkbHIU!N61eT#+>IIRw2Kk*y2UN zcmm>SU?(8bt>J)4_&}+6OGKAc$sxJv0K<3C69)ceGdlZk8|T!xqoG z*`e~VvH9Yi{~dFs?Q6&SUGa0Z8O$?1W7J3@*X^7Cp@AM_zAbi&tkf~4{MG>)={6s% zSvRrrKD0le@9oaGNg9r(KXQtVU-hkgPH~I{SB&bvivR!+07*naR8ChB3oRgmZp5G~ zoBo)?*1kB=Slh-}o>p)Qm(XwqMl+|yMT^kQr!8#xl*E2_#_VZx7tEeLZ~EX!Z@s%d zZRWI*X(Q0+^wDY$)nP~%vrwj#gNworZZbS+c>aQUlc!9A{RL~u&cdx58bvsh2|R0F zIm(RZ$AYKK7byEFnScY%7VgfDr&}G0qF@@-z7iorog_ zHJ44N@R{HyiMYwmn`c1T{<65q9l)Hy<0NrECPwyQRR;BOcGXph*e?a*iev#;C*^Wx zwMx}L`ue*Ehx&#`1~3*G8XXuM>4%0!`=F62eWO$RyZbA}YMPh6z|&{4abT=>pu2yl zw{Nhgv!{l)*X?n++)kKg7~igHq_@*7myC2O2=5E-%3;4`_^^evh!0Yt0VzzK*I=i@ z5fvvypgoa{0Ki&U#*jZqw^EEm7;ggJPpkD_lorLZDTj}Nvjib~P?97LO|dJ5>7*jeA)3~82fgr%U>gk@Y!J8FEyxi7wkLq8#-WHwdSx$O zI|JCKwFZoKDdZu^elS>dw?iQS7$#WuL6YnZN}fQ_4N)GJw}mSkJDhDUcZb8>+S)O` zrTv~Z#{}$q{ElGI(d>FjO1mvZZo}40PzVh}AH%L*5|gvVc;9GO|D^8Tp#cDxt1ffz zChmN|iC2v|W12r!5@AS=8>ASOWyX-jP42uEw%)09;7xGI9qy1z6!|3IDagl#s|efN z$H}R-bjUPe3;;Vr?KB5$kOI0(3VXz4aFCO^{1nFyS)uH(YS)5>$@YqcWqu=o{a{3j zr10C3j0lN`gES6M+z!>zp>%XmVX}7qm|Fc4$GgW-?MXKUoLhVoIj&$8l61CBaJ2IB zA)pstxlPnO!3QepWC;v6Qkus#KzmOcEg)uu+toHiHWs;RtItx)J$FqUH@gxxr?AE> zf%pRe-{Fic5;s`OhmFDNot~RdVfNBPHX>ARO{`+%+gc&D27PZy{DnnF?&fRkq*FSh zH72wez&2tTz-%x0G=xDPFQXi*#xd|u-F;N@rn|2bPOfjTZ~Cn11Cs`Zrw)U`T?1X2 zQbzQkrG+u+Tp9<@o-=Fiyg4w_(3gQhg^e_&P|Vjm zYn5^d9PR9?LzQYdlcg@I05gnuPj5GTBpJ0l*lC5?vxO|Zkg(22N^&p@_W3yipt~fpau1jZJ}$Aa> zM`ikzhJ&i%4}}AIRMH|rTeyhRQ!*O?eY07Lt3!B*E{t3HIxF>3v69ER8)rke$5AL} zI(sSu-J$+2HJ|mF(Kbde6x6)|&4X;-^vW)V$ed~zg!=Rk^SATds_1mKtiFauOZ z+(;xaqA|H3WhxU%ro*LrJXemSOYvC7;JIpxzGf8fDwin97Lt{EA(2bqqXd29xfC#L z(u{sAT}+qCd02mZ^tob&*YaB9Lh*Bh1q9SVTv4?nB3NjMoYD~gxNiLrbd7thLl}Kx z42sVPvNEMbA3!y%LkwUK*rCZj#fOLB-o4n`y^Q!iajp!){Dma^f;b3=2j$c%w%WJ{ z4k_aft)G}lm6BBaG{mwl?1z(92W3tl;}ANhM)O>CL^R*!p99`-5rGeh5x-3DzerfY z?+D*>?9)ydPlM9pT)}pq>gpb<4NaNUH!=hO)iAL4u_B0^aYGaw#>WZP8B7P|r48~;1R5&9V&YKjaMZmNMsj<%3D(<1vN~c6Y zi)Qe<4w9lO23TAego)b_&l(Vbp%&i+z8;_EMCUkez|iJ*wRjyoPu!UOy{A=ttoXR? zrVHa5GrPRd=JE~x%5YiD1FtK45nI@7>u^LI{@GbaKK)_&u-Sp{Tlh2G1Rn4 zW|MUcYyZpykFm&ffCwE+iXibFH{nHucLJE7!@p7U{n%NW&1)E}e~G!w+xXoS(6-%k zGj9KoxHgFyuD6aCIhoDt8k<))S}<<%!Oi>40Jax+G|Tq5?4G&3nuTEzYWq_F3*n3d zOTk^=AXwYMk-?G4Bb?{lJKS6EtLG{(Ou1TD4UnEOecHUabEeOjGG*%M=%gW7#!MQ1 zHVGr1T881#h|#s~o8PB>tX*NrCtKiyT;>SZ;Z_C}*tb8MNJ)*%(b(DKgc^pb#{b+0!LaWsF8MG%214n+YYE*0L2dnpP=SE2{9c zD1IYwemvvF;b^$zT2~1p5fRSSIRp(JgT8RU+)t?tPmEKlAPsKIDGs>EZDbVcMIYkD zJXBiCwBjiCG9){y%op)h#6XjhibIMOwu#WR1bi?6>{9}w5uu+6N+7%)z}Vq?#!nL5 zWy&&u0a|_<@S30
YB#(XWcIF!R7ufi)*XjPAbUth%V1pPiW2#NJ7QYZ>$hwz}H zUbN0pF7bm>&15*9icr}TF+YlNq)^n1NAPBHM@YP};4~3BruGcc^0}Vj{%U6xFE${1 zs1jDd67b{X-tWG4UOd_+Dn!CL`Bg6lOrWo*<4;R>yov*&3FbhD?Cp>|?N&JsAut%U z4f@>F5-H$<8@7Vs0g}_x(b_Q)C-gRV8?X0OWh!LN-j}({0OoyJY6XU=jCM>3n~kaZ zl&*&ZxdH*We{xU%P=CIZ$FL(1^!ikPEQ7J3?veejpqJ$gcw9j@%i(vn2X4vfcXoI? zs2Fw7377Ar)jL!(84QLM#=#@VVN(PN+ldbod-@$rI0q^n_nC{CH{j-ui-` zHZLvebt(>yjdLMMURlJYBE>_C46Of;v^UvtUCq+=4qy-ds?5SUdq*JDf-TsBEl5g& zS|~b1i`X4blLwhq`J?cAtjT6b@^hX59**}?E(#uzTrZ)(Up_rTjY(qbtiXhT zZGRqL9@ijbRY-Qwylj(;<_)B6R|!i3v$c{iD^D=nO=3229_Sn2!+XRte*5|fPnJ7Y z;o4BZFwhtBa<#~zfYaO#<7u3luqd;8X41mcND6l@8E)lrnJ-rPa$T?}qj=6&m@-I( zdb*(TnxCE@f$G^TrTa@`sU*6lGdmiAzHVZ8sp%!o&C}H{fBEw8e8VuPAoB#PQv5dM zIw%0IGZJtv@MF^nChUdo_)h0=0z2o6ngcWlQ8r+3vfjx|MPdS~SljNVbkBk)k^-Pb zwOHw}3o`_L1K>)}Osp~|LS!-YMx8-1gWNzAmlz6-IplOu=61QPr{WfKFGinA$Z;wp zCMKtj6Qn8o1G0KEozL__Geip)6Wk?bZO`U5eLs}Zq6)=(jM;D2j()g4!wFQ>Pa|vO`V+^Kbzd!d1t~lPZec*L z=bmwcx9n03IMuVbS!MumUi!Ps+2gl6QNS-x%hkd(#>0WcB2}vrSNKmK!4+WUCu}G) z{!HHd>EoYx3-Kq72Q(6!HK+&HN1*iM3PLjD||;ozUneu7~eWCF(i`QtzR>El0r zkl-fG)EfNw)7hWsupL-GNotev@u%~D`f!f@|MKIEp=!_DC_ray>2$QV7W@o-~Dm?@xmTK ztxEeQT$1US$J499BT3e7!I;ay*pFF}I^;(`$=a|eT^hH~24^46KYTd*`0@Pg2MS*T zxMQ&6xkmu*+{H)RT|j?d(RTdnfc-rHp9|8NKTK0ZO7-T*34b+E^mdvN!+zy9*=*DpW+_Vr)?^IxAo z-)lu^NY_Ob2Sw;rp;uxsjHHceQRaZ+Uw{AgKh&H+L;wH~07*naRR8^NO)WiLGT*^5 zW$fmmt-*=zqN@J>`|tnuZ~ylD@4q*Big7IQZBYEv*Jq6BRBwO{)G%JsUw;3M>z#NY zh9TlJhIoy_x+)v|X9cC%3>)|}&r&I4BqNtB2{mz4g~9XFb!44X z(Reh(w*`Bam~qT!blbYIZTeHgpGt^I09i0%ZybmoD;z@)-9BFf!1qrOQejp`)Sdaf zkcM$}4hYEwdAbKX@hbp#O=s%Z1`NMc`C)0P0RRt7jbfMidwC%}Y9-JniTV>Vf>wg0 zAWC&M29*N<)6vT0KtFIg0K>!^tVxM@UKnQ{UBhWygvEL`Up3NVL5em@=A{JC>FeoY z4sc6Mf`}j`01P^I0A{9>m`2^VV@@I=*lG85n{g$RHNM_)v>LY5fYRjZBXS=o{BTQpaF( zTF01vF)*`CB8jUjq%1ajNx^1I(c+j1@xn4q%L?#ZHa>kx=1d$|99ys`7$?y*l?~~Q z7{^8o^akT7vhv)=_w8`P3_5ssy?FR~D**odh}p2~n8p;~nJ#ty)v2!DPYox>xJ( z>8}Tq(7iJpo$W-G5F5rm57_b6~0PA8&68SMKW+>{Jp=se0scr{FVHl(9Qy@2&~*Uf$BQ) zL0r|l&tSh4SC_<2_iD3xetB4L7B~Y#SeL8WcC);_xnv_Y!ka6&Ky01FRZ~md2FfPM zV3}3WyJ=Eja0`6N7>vSsnv{XRUCr-rE*~FmA(1oNhUx`(E61e^8lrsGx&Pt5G&U7+1rW4>tBee5sS!A;)u6!pp41Wal z3VpR#+Qb}8t)XF$OlOP%9q9e__peW%?l7?8RE!}2mPF!fitT*6lt|`0kqS++Iy8aO z^?Vc0r7uGk&Y2=#3|x)L$G9JW zoxro}N!<)i^%#!{5JE#>#Kdg)^8Rvrv%S9C$%O1~eR;duU9Gm4n2sz~TRdef{pk~i zRVTVsFAf9ziHQPH%1i)Otx9X@rodQSX7qApiYvQdq*Ttr%hTWn`7vsX1s>nZUlqGa z39NdiCtc#9wk6oA&P@nkpjQpsI0pJSE(!pcO2ZUEEEO~*QCQ>BwJ)9vB1+2y^+sTS zK97N9DdY(@1D1>E`t#+>FP|R2K0yKF9dW$Elq<;Eaf}lenAARWrxRy_*_bbCI7;fA z^{q^NEBq1HgMox>hKGCjl6aUl$kMMVX~_`ok@x~}LM}<*DcIdl>v+dH|DcJCj#3Zv z0L&7w0rq5tsApDLkP-_i@NCD4Cj}C8X`BF#E3aH8cb~5T;Fm8?+sifPVU|6`>zr>J zi7~X=gs91MJO+wJ0~qj0j*6K>yiF!ITkZs3Z{|$HCf50AI>0eF1B1HxKz;0RFdmGJ zF>Go~#EoQ%LH@}XUALujq%q_fFbTjzcsn%5z$8Ce{7Ig{AU(l9I~ql${RY6s0G|S{ z_B50QX((V_AOM30BA%JNeU!^?I+qmoR0r-2y%*+0s zu8IOC8mZNtZ?rRpSX(rA{%jRwtRaUik&X_#lNNtSaO ziZS~(i|4td233-$#o2uz@e^@yxm{t#4Iu?cG@5iIsYxB%U zC4ftarz~N%k_3xjRL>H*En+aK&eWnX_uSNR6Wa+bQ?#;bg*1120G_G|fFX!wPbGpF zD!HhF7G^XJn<|$nD4UkP8&0Rj2m=;Q2uP=;mx1t^<)s*8Rr31MyL%$t!etcWa0Y{- zy?eZY0{-;%5v=MyAiT$N-caR0?qK$V`AP(7=UQ*Q1b^YfLGRe{HECf6E;RTvYjDZV*C z@BVsyeZRSXzP!F)?{5|mPeS4wOzBpV-o26-?6Q$~W?4^Nq|Fjc?&@--n{b*OkZM%@D&uS8MgiWT7lc&67+56=nspm051J{Oc|q-H31UgAPU;j26)+}%-NFW;vsHTi z`Re)G^TX$d>)RWh@(3ddU~2Skd;^0)BQOc~YR*`SAD5R}n3=)sXo{KHL~34+(?;Cv zz)9eHzUM-pi-ElAX~V1ta;jXE4wQeDKt@YN#x$Hb2EJFgi>>KRf11xypc;Fi;GxLd zfl)zDWejyL?(SOZJ2F?>Nz7uIK7PBCIIPc)05Fjsm0q>VxQ0p>2)^X_s*guQv5D{) zj1+>}V+Am9IOT-n08Z%)0m_P~g_QIRToAcy0)(H7N7tCN5lEVM!`pT)rGdcQ$!F)c zvE5d+%?}sn2i|b28y}&t?P!8elOc5&9B>)=>=pnl`O2e_3R$(G#x{%I#hlyGoTiIarXPsUNzOC!BlnopJV}vtt2&6$}f(Lm5X_ZQO-Oz~xJBvMmC1&T45Mc-d zZh=7TNdpg-g}!*FBOg*{vtD4vz1l7y!l2AL27}E&J1dz8;4!EM;7U;B*(-f@`A|Z5 z>O!te9KbTQ!=qd=&D4iJhJcP8nymn~VQFqBnFa1yZ;Ae z;(|1wGK+!js4|nr&MMalhErqUdIlTChp7byN2Ti~MjycVtxBbM+fbWefWy%C@O<~} z*H53nJxOsQk%_VnN&vSZ>k?nKrBfY~l7&Q^2|-x~jwHsPuvHx`${-D`D)U9GS5Z*} zFsPp>b{SZNflj7{sZR~PTF;?}j!Mx1!{U+F?`pT+j6o2uIj>R(U$FM(VSD$qzkS^9 zuIHP}nf&>%yS`n|7TNA{4nj*esz7C2i7z?GDyiVbivs6DTAf+~z>3F~J2xkCU4+U+i`qHLL8f4X57_|^3#etjGPSpSlO z0T)oxi*+f@bfEmk0I&p>S2BYH|E$1ZvwDEj&_xPqilsW99fCuQy`GJk5a`S0E$Gp5 zk#muvEs3mgZFXooS`Qh9)7Gn!5o(~X78eS%$btMBr#5DjY{h|-xUtJLMF6;3=K!!Q z1M7qsZyeVI@4Z|}{2f3daaFEJSgDx^I+#LYG1awrUc48~QE-*$ekW)--2{oTp+5Nu zZl#`y4bYtdz!Td%tjFWUgWslp7Cwv)43X4<#V)_PVel9pk2enM=t#qy0M|;^5h(pJ zxCB0d&BB@NUNuk~O68DN#dheWQO*uk0b`QEX++m|d1#96XP8xYFag}Ig{up?RlvhR z=OphApu4+OzV?3*6?GW?qs-Dm1i^YQOR>&7Af~e&( z7DYajueK+(G9Y5ou*SHlwK70Z2v9+VcKw+Z8I0N#JFz`4Qy7lC+O6q=?y8GRl`$#S z8{yPAp=KME^SoFTQv0K>UePPLD|0D>jOUOhIU0A(%H&YMvF9{#u)=EtiG8OG?HtH) zwBf5`rkV-#UbM@=)b}_TxCMRj(L)MgD91~6+^OwM zB%-GXRV4(SGel3d+xVNk%gkGqGb%ggKK<<y9n)^~;J} zDoAUNZ@ro^r-*TCEEocsiu_F?HbJ5bngDKPbX9_Bp$40^Sr}ktnS)i(ksQrKEkmZ! zQU%vm0To~mGXQ)pUJ*u3io0%K?q0sUJb!+^zPZXZrW(dt*=?y^{OU2%Xm}<^GpcsJ zV4z*8DPk0|6%4jQTiQ_Sx;5l446jZ)LuiE%jvIU>3QFl2lcLt51)e%0et`E=C7TwrvLyD07*naRN?FG)29bqb17Br z7-nKfXUr-w0brd(60{nIEe)C`Y#0?z+V$+hg-O_dY%}_S*rq<_$}49Zpg3p;@{OGd zt^oE=g^oA?+Xg2Sy0f)I6tt-e>f`P_xNc7Dg1ACQPO1^|3;?cl?9@nU3A z*}mh2zUw=biEw+YJc{^`FL z#?=Svsa!sy?7M#H4#2JT$`l+9djsHiweKl_PlLAFJ;@#5Oxi>D5;iWv+d9Ak2Kp z_L-M>Ul>(2g`;3a!0m2zx!~CyuvSG4==cGfp&iA4yC`7WJf4Sc zljA`ks0-Q3>gZI!x^Qc;6|d_|G5f%uwqt<1K`3i}xLvK65K>T7uIB*2q_V6Wx8Ro$ zu)GW;F8ra@mu34*OxtU8lWKAs<(?v}xW|)-uyuZSC3Glvqyt;e5xw_rsqJhx3Yk$4n z-t6(%IX>?FdbU|$qpjvKE4z9fH~M zs;!1zx3!C51hBLw)FCsLW&19iMHl1BxLQ_xM+7iH-UqPsO;P~kM=s;A=Ab*t#ELZH zFPbo_AHdUY&@F&N@m$&Ux&na33;pRqg0Or~KoC!Z+SisxCgT{oC}MG&d!X-N9E>Jm z8{95pI{ot2l;E-)C4B?8d|N4047dFO`$Tw}F`r6w z?Nof!05B9VAlj_~gT5nc&^e#UYzpGea1#9FA@Kp=gZok3 z;)^Swr+^8?H|n;B*zXbXdjS59=lK=DTmvSq-t|BC@%c`$SZ{s0Umm27{Y!Pf9@Oy}CL zFAeL)cCRe&+V-!j^3!&6`*8dC^0?dWFs6Wci{+dO81h$}=t+_Wt7JfUH8T+<7$4af zKnhVUYW#*V+Oon!Z#CP%Jp<_AIVIFz8XD7B1xwaTIC@e9=`OH<` z(t;g@Vu|IpxSA)kRldvP$}u3^%g8@CpEJ#z zE^sBgsOIHrhHW+hWMDHkSWRiQZWz4|@0J}g$zl?1QY-#SV7M7PxNGy9^$8~Xfu<$*{4-kZwRI5b#@e#o7VzahT#Goxz!P^Km5!tK&0~XrR zG)OEz7B`Hx%S|xnz$8FU65GwDe)w|#`1OGR=Ar|b3X}$UNChka4%Cawm>Yz-uu17PVeoOV2?EG5q)8JKX0C{m#^Fp6MGlK-C}V2@E(%=UQBgM zS#>G*@A{tF?jF)X{d5(%@3rpJ{m7J~p{^gdwY~Jn*A?X>Du-{YcTsh-@@cbO;}-&=ES3$cRN@va0hq6@ zcd-3#eSNjNxxEyvtg*p;0JB;X+x$UlLw0W$3n)nlbjbA8To$ca*e}+FXADDH^hzpH z0l-;pL&YYAofQtO4`BQm##2eIO}rv=tHN(8u`+k+(yMA01`>AAQ zWb(HVX9=&;a$CU;4sAJ7`((_4=jEn3kp2<^8t2CWnAt!>-#%Q!R$ELpQoMj_RA4GsXjwM}GvD3L7`Og0Q^1q`v(9%S|{#%kB?S=I{?4x z;66lqFb;a@MqQ3F0eP&U-{Y&A*Oj+?*WP7tUnTeT@u|FiH@><9@PWa700(_l-51I| zk9648j;5wDBi~L!GfjuSpPFuN``h7UGZ;6vU15rBS<<6T!w&=3fk}0*B*xCbwqdei z8j)?`Dgv}jAzGso*Zy;;oa$WI*;V)Syo{Pg){ zy^%a%N@seonIVInAPs;7Du`>kDPXNzPh+8J0C1SMJ$7W-cvkI}%l&F~z2DqkNo3G! zQvqxci!2tMmcG`TbRw?9!a4xA{%29Zt{+YTFc37)3|N&Lbz#m*zs|v97cj2t zNP@XihX5ASAhmfFEg+h4KQ^G4fHYMAs!8%bRfz`)+q?G$!*mCVX+f_ zx0sw^R)O!pdRt2kvQ0T(7hGe8ZT1ULyq@RPEYmtx=BSZD3cod(23#Z}xJziu6*l^;S3!&y2^4BHu4xetrRcVb?cTQh{}zgTYY7 zn*1$IuJU;VD`x?$-CjWT0+u0FFB@2C!B?6z7io*&a&22RbXUt0Y{pI;#>g_(U+hZW zGCNDQ^AG^WT~p5x?{w;O=6%R0@pVnXlW_yH0j=6d2l#9|2Y{cxJwLuYVy1$5vt^r5 z&-py|GY{0H#)Ybu5Gti9kSS0MM@BrcGxkof#Bf+@`ni~w8FoB|Nm0poYDW`R0h@#a zwb3*hPvXfqg2o+41xf|5m%6fGOpUAD9eW=p{zq&mi3Q2yUgR%5`zR>1Q7dqRRQ1MT68JpG>JCg)uXVfZt zZzyhdy=|u^s>p@(iRXB(#8gejS}LFgFs>~>I7pPi@ZyJV>6aMht?fFl?{$bel9>HJ z-$m)s0e^s79x3(bjvk_`%coB4PO5U_djkDPhR2>)CJ6xyJi{Dw;)zq&1<(V0pByW*&1gE_&zgVz z_VxE)zin4@&HS+odrAX5jG~XKe52ytXBlEERxld@WA{BOiQ89Y{w9>ekhkn z0JEb`J!=Y#kX2dM6{{gi)efixRq7Dd_jlJ<*BfbJv}<4(#IX%E2BA~UldKBbn$M{z zj_BO(tP8)AKvYab7)#4$DPVCP(1Dw$m|+s<49l_cL89y7YCEgY(&pN7QzT9 zGVBqC=C13ux}c>nHN6Fp_;`i0#-7idy0I$-urRnZ(`=HY<2V^*nY~yf^Lci2v%bCG zg1$7mpn*WTpx3+Q{(3)KLP*A-=4R!=X0r(Ln#D3V+qpz_-K?*#4?URI4PHO?!w6$Q z9Xs)9!hn2w)NxJN$dZ!@?5C&|T`K_xWgAAfthzmT0kZO4#Q^#KW_fwL!iy9b-|i&9 ztxB)2gxnxKFwE#Pyq#uUefs73)7R&hFVNSQ8_e}~HKt9tjCm#fFq%aJU}I*WJu}LK z)f$lqy_-N2m&+7WE6leTw#FC>sX02Y+s4mYW>xw&vc;+1g`Mq~8M_(|ooLFF|2ouU zQMGJXcDt*U){T~3=Qjy%)g@%Megc4-&Flc+dr`pp-2gH%bqI1tL&T>N&!qqc-hfh& zMln1B1=%>k%WN3v3mqJkhF?s*eBz{SRcDr8#k~L|;VqIk5(dMp5a_x9&%j_Wair;! z%1|7m%25a_lPWjakWqfA{`okRQjRpw9u=cy!C=D9}~bQ~Ia>Xe05l{Sc_WDSc# zRPthx&6Xi-zD$>;!j)amz;*MTDF6&AU^;@S z3CwX#7-lNCK9YxBB+@%Cm5F}~q$b8Tj$dyUo^RutTlU!2UbDb33>&6124L_kQ$vag zLoVYC5{gv?n4koK0mJkHlZ?Eu>INT&0|3*C(#VS`EX~GIJeI3e2CG%EyPWN>=G&_| zs0L`=-0xuk8vzVxK}WJ?H78!2duc6FVK(IN)zuOP5_8T3YT~ogMdck7C$Wkd6^uni zV0g=P;IlXh>C1^1KX+0bGFqM64N%S6&cHAxJ-CHIUN5&5n_l2}dF*}xK(4Qr+ncp? zr38RC#lx4I&);6aV7wOzces*VEX*S@v#A?^f5E4lFKYGc$o6s}bz2!ySI(mOI;XAo z4fqXIgT%NR5{9;^!FYE4!c2ux7qG*U7~{{;+7^Fe zEDS*BGc>Mr3W;4H|Kan~^S4hA&kvXl;M*c!t<1`1A=_w%r4azAsVS`^Qfy3#LqHll zCV+*zg#+#?eaB+?NNwT*!|BM)uycwHD*}DbacjrYcL5R^c($=2wOVmPJj=8rv@~YW zv}u|d478prwx?X)260=DvCam7VLy{3W_H)+T08T;Xij3fsdbRf@)Wq$Il-&Do6`#~ zlplyjoVCU^=_6X}pXZ%{zL3-h-aC>{Wlxy;j}5~aSl$S_M=Hy@=4gEJ1Iupojg={> zfWL>>|ENFtT{d^yN7U>)lV3|+e(&iH@z`w$zgice{pL~q;+MTbm3`Uzj&43Vpxyc2 z8IJ6GAzG)7=+iae@J#{BK5m0h&6j*+^*zVK1_ET|Xx~5fMOklZT z=Q6hAJ0mV=kl2_`VECXwa{w3{U^8qqJfBX6P{5V+h6u|f$|KB|45;39SuAH&gF(Tw zQ^!mope-|0b8I2^V0eM~Ab1J%e);-&yW6nPKeIpEc5-D(w3JmF<;xm}kiz)Zdb)}O zV;3NtiuDTkfq-PvhM`Ucy^FlAG1CYoifW#MNo5^YO$5soz_0%2LmZaSH?v?+z+f=A z0``=-R~0^>D+a#83K6?eWX2Nz>;%EowFjvMA6GWL~Mq{t)RV6@$w< zB9O2_0Ppr|jmDCNUYyN#rF5_?8$-CK4wyHqQk>tFI+s#Xn8wg z7L!WI0Pr>!n*z4GUR>XAZtm7Ff(kGO((pk`FQ%E~AkDYSFpudU z#*4YWT?>6L7gyIC7$Dl|-OH=}Zoeg2K~n${Y}UnvT1qy~a&AaZErm3+GAPc&c#`$D z##7+o3`3KUw3*~$G4PF_4z8PQ%r)g&wJe}puX6^(Vf+5`H2@3+jMpO*g6$0N2)M;Z zuvp^cE4GeiKtmVVfX|D5@^Tgwjo&QeY92Pr6vk)4tV`FYX;o+J27xoPCFN}1u<;_Z z^ZUjQW-M&NP%low51r5wwk6dfJh86+O7^p#xb z>Ash{!)ohi)=JSw0RA48PrytG7`&^4!;{ty{g#X0i>5veijML;NK<|tfME>SfG8Ag zKAdEOapw3K1|pm?l7uB(p7!GT0d@wCn`s&;h=JQsqqHh;B+qbg3kl1Bfwj6w?1YvL zTHD6dF(UEW+We!f{ZX`M3C7-*C=V~wM}yxPJ#0B^OC;uad1 z5asQD&lU4)^gQv=1w&0ZbEM_MYmVloVk3ndGblWA&VAC)>X{*0A!4gN#{RQ#;*?8;Lu3%-Syy3H20H~-i@6;%3P9dEf*kxxk)xQ-HS1h=!zut zJZC!f#*@gj+8A%`S5wxNlphLx$*wa@5A!kK&+{BRvm)mzY#c^KmY0y6z88DWyv$c| zR9I$Y8WQKI&TVmhjs(3@&Cs0qpe8PkXLCgaUu#YMyu{Cby;)#*#mI~C_x|qk)64zs z-4({2vMIR$h7Cww%e7dhcx;TNZd8q*rmLlSCg7PArq;5NO%=_Xq$wR(U6`;kGmF$H zv#D$=M4@hzbgIOiM(G50*d7UhHBuTsX7FaVY;C>@a9fEd))kkmCMH2%OL%h~F_ucC zcAZLlLCje+B^Uey?Fc;5SCpuFlDp+w>H5ROf9VBw=tkw;Y%Z_hp5ByPdz^_E^?ywP@TC(Z45!dkppt z^le|{_vm{R8ckjJ2ma^Nbm0&JEsDmLGlDL4-J~pW%^0L76=-7&{}_Ek+(IbZK`@0} zolfu%I=QWqtznr#Ce31Tl_ct9R;O7~q|x)k?XD^^+hl6z`O*LY5CBO;K~(%Rt|Gqz zj%hgNDDo|g<_seO7{;TE$#?)T08YF8_Wt4S`SbHHfBEIFfBWs<{{Gj0|1ZD){ojB4 z^!aJCU1D&VuOt__oxEo;=?lXf#JDDTkkTMX!jv$oE@tVhj+adWn-xxz+q2Aom5Evg z7~8YPt4f=(&0sJripOCz3X?G`h;<{i#U1M(s-&U*CwFC3*o=91IxayBvroMlt|^y?pe# z60B>(c(^#Olc~Tm8Nh-RXP6MWP`xyPz0y}nZ{@Y8xq{*n*SU*CP)3{gaAiX1JNtC@Yo31GU%xz>Kr^cJsxywqfjAH@$uZy&%cgv~-6eJH{(_MNWa zo_dn|E@hmDiuRPRrw1H8_6V+l_91@lKupE#dq>9{Aj*CZ{T$-9pk{E$Fz%p!yU-~O66Wd##5jkxuE-DSx3=WZ#~#PEB|$+H@_1O{if4!zb?n=`td1-xgoLdvETYR zLO(8Z=-Sa}WK5<~geR3&15S{Li^mJ5jyEyP!Du|10NFO)IJ9q)#(_GZC74z_q_VCr zbgk5q^nqR@i@jMTg*BwOmGn$=vcyRu3%WP-AVUM+nHr;??CF^~JsS^yEE4zme*fv~ z(}jigQl)A>BLrZ}%8wCHMa9N080*~vU z$}Qlw&McrekIe!!O>GIG${cLqPZ%*=3L}Xn-BumW#H|!3N!m&pET+NLT(;NM zJrbEkWb&NU$DnT*TU^A&2rkN79hG!GYnZe{Z}Y?Bz300GFf?wr63j^efI698Fv`g^ zhIlWS4~bqkhPE}vyMr-wju`e_1IN%ojbpGumj>HxfZ0-$B$u(0Ng%jN&?2p;x`GIn zGGS%yxA|t^aoKqhA!wZWI^A4WS2qx>l15DN%9LVO-BO?~c^5Wt7X%{sx)cDH*noUo zZ!7Glk6IrHsIT`|*p^5x22{iFYM09bk{VYVFGec0ZEF~Fj_Gy=ao2kh*|@@>=@MtY zT|Rxg`}Fl00EV8%c{)D?3{sU(&D?HTlCKhcWcWlRW_witrTJWvgE0yNGk6y0IXn;~ z=E?%sp`m>js~qnI0LEu3)2}>~z_CrAGE6~|SIxvA4tILGw|@T9|cE_|il^@7R4BW(l`wq@E4eJrzqM4EOx@t9;~ z@f=(bnNF?J*|wN%o5g;at0I7pmXMF+_33(Zr^P!R+&^dc)Sdsi^DXyx{zm~kwhY6y{Uowo zXJSm_IF6#oPm;JOJU@XJhD073)^I$z7>)*`A#^Z46z~rKwrtZhBtV)y*PO_+0te%} zWlw!;;+f;7imopg_xC&4c3rKP#of(nIZxxzsLSAH9zE~M|KVRBZ?bVd{ICC;PwT&b z-9B!@?ali3`I`3h`R4h{EtDD9z(83TFq~I8-nBHb(cX4a!N1C&5%WY6aEr{Vf!@-G z&1XJjZe4mp;!;AFv&bNTNnZvtODa+B$ii^#)|JC@6YYv`&B9NSijtV36F@a>2^gle zh|?gE%Q07La+IJ>*Q1aYMoo^Q*X0N+DjCQPs98tk(q z1%@E$0-G>4b!i_whFR9Y^CnW26C(H^;xU1c+MKZ3DI3gY0$kO$cDJq~W0(VavoaDd zZsTK|#r&q8`-kfvH1h~>-Rx?xO?lj4yG?UyK?@A$;4T1+4ctpMlhdFt_HXx<+Dy{Y zwl!|6DqO9K?QT=mWmV@=`(;y61WPLRDlfHVJpoJ?G;}r<@aJzY0PyA27LSsU>19rp zj0f_C;XG8aEU|*8!(E(|Bof)=VO$1)n`Mg0iaHW1xlpB$SQEihOesKLY~WrNj{|gh zJ$d|cRbv}pIhH)bw@3m7W*hV6a*<+m;LzfCPszNbO*j zm`*-AcfHJSO5+v4rv?DOa`8zUZDEw?sTS;GObYr>gheh2*2-TY`pA&Fw#>z89RR+mUu2vpc2Sh&5E>$r9NVQaLU!G#IhCv(Ay^6 zHXaNBhAn0hZQjVe04*rXFlI^Bt$gf<0n)Wv8=NI6!nPk8P_CdXh}-#Q=`L<%s75VG z$dYX`1gy&oYL{|T2Lo7lbppeNsu>w*+O^@t7Sl7+$Y91Z zi%(c0q(pRL8+TzI(9FvHo_BrZ4XWJ0^-LGqnaz^LB3rM^`8t&!3(@KN7%r zRJR;168UNlW@Ce`7;($`D$q}95hi&cGCVJy@v!LRQ zU@Z>Qm#)cS&I%_|YfR*_(AtLB?K4>X&*cQuj;xvFGnv!Ki*Q9&G+I?MDJ_#ag zfqHN_AA$L3+4zXZ{Vb!_djC$P@R926J&{LR_tT9|*MsBZzQVzAVOErU?Jlf^ z6lz-Xd7i))6sOqZFZ#|>%Yl#?6@`ymx4W#wr^Xw*e5b$``V_+7cv85Cjc*I6XFE19?5*4Nj|%gbiJuP=Aa9z)?Whi=B0 ztK)3GT(+g{Wl2nh1&aw|144FQ1&hX?*B+hEG%$F%2p97JRznas9yYLNvrb?byK87r z&EgG$sppNMSw-OLVke0U2`iFLS2yVj2Ee)yV$z5zgte4kiCebKg|u>{#CQXTT%Bc@ z5*3dwm-;M|!nzRcDwjS{SJhce9nPIQnnpP*gw`ctb}y!a!OOe6TF>ScrczyHN-hIa zsY{_sU5dsqB$9D62Si!69w;(7*D&VL5%ewvelPw?# z(Poq1f4%~Mr4Yx>)nYj(fSCXWlCAgkVp9UBTt5c3rQ}QI1HJ5m)vgyN6DVK+SVFOu z*=pA+X0o4g(VQqy_~OMdEQ@|=oko=S=HtwgKsC?GQqByt;{cgKW=lf5O%l%rHS8WhiEIaqpGawUKC4>FqLhTHOKRW~7 zU^o(zSF(&G&G%gGOpV*;Duu-kYruTqSRJ!O@`Sv^ZIobgX)rQ_`3Ma6)FcAdZ!|Q4HCUtT&6@e$6C}{q>ejW;Xj3^ra?INTMN;kXNau{7W8%^y!TQHZ;^u zh;0Bi)EmZA%u;4eO}E&*i0<~w=lk8u1D>SWttu+u)hyjEi`#v*sJtfgFIUxSIh!@5 zE))9mMYvigtPizXB+GdWf;NZ2w5lSEGEhz!wW~^l$r4)ynlDP|;!VtjNVD+iS z>TV5{SfM5y#|(;Qkdzi57TMRW4ocFh>K^83vMUkviYO$Zug!d4Hn}5W`J^0HIKFV8 zi6x}d<+HN}HD2V)r+fOMd3-+#x_zt)XsCR=$WJf#;3()T09HLsV~j2nkQjKSOV=Lr zvoZ0qEeVzuz3Yp4-o$msFl_WSF?2S}bcf&pzC4o8?c!Om}u+6UAU5XzbC&3w_)VsXDeERxy^K>)c&KX@y z0DJklo1L|ms(4iZ2jw~JfGe6nOX>UZ9|2e#(Fgis0}mW(VDN=L=}@KW2&D9*p@dCE zLoXbFvPtGJ=}T(g0>G)Gt1yN{GV5!=qlDb*mu|EBblNID;dp`roKOHP4AwPc<`?0* ziEPcs@^;jT-5!<=X%1d67>sWVKC-KvRmX9=yIN^_`Wk~+pn#KsS5v2$sobU>X=pbT zu&-`>k-zmgDhA?UNCu*S$Cg3*!bJW`CuEylfja;TU*BrkE?=m8@vQ}uW$CSo7>B)+db|2?vloexU{2t zc^8=tR6{*W3dFpr8~ljF?M7O|id#7I_v`xhatVX#g>$JoBz7VFxt^8jq# zZls5xq>z?AM_V>Ln3X=5%4jL^8%rW@IGahW35?ooG=^W73`|WaHHNg@BlIqCyIN($ zEo`$XKwmr%{03J5iEhmj+;wzmlg*d7D&ij&v(*7VV)dx5fE1a>$PTG=q1^x_=ckTT z@@lCH^;;5JjHhL;Cxfcm*yh~B@dPl>!?_Oo0@24#<3xwhm2vz4;I`Vc?g1>Nc9kNN zYL)H*9PsJ$12D`+OszmyMJ`E7lFlnynVxpcGk*Q`C61+A6ecv%_(&T-;nKk*(p#?~ zvzw^hxlpY_BzVnPvc|w|2jJE=ZkGgtZ_!=j9gh?JqObw0Wh3I;Q zAee&6Sq3UQAg=bn5E5%yE}wX&(j|;xs+FfjX;h_A7Sk*p#nFWqp8L@S6Hy>^WWi5S zEirfTm@(VDCj7i;j7;uQa`E=V!o7UheE#+G^S9^y^**n1i0>I_tuw`D5iHhVc?xS9 zd}AYANnAHvdA#unrh2wS$Fe&0)9pak`7q7&LjdGdZf4Y78 z`al5FH67*`B7YUP#4zA049?FxDjy&^2HRYn-+;9MaK||{+3$qd`H>SKS7Nn<*7Dfw z+)F+lCPo*XyIU4(;~}+ayS^Jqcr#QxekM@B;)PBfe0yDgC^@y!Ib*6j0P|}v^c7F_ z1jpc2!8FTgC>1$iT6d2jTC(&T$&xUxq#iJGq2|*I&{s{0dHKb7eOuf-Y+!d!d)WQM z)$QGWF`s#^!+w{3W;6boUTe*?*7#>ln})3K;;@2vgt^5Jx?+4Dr;}rn@zP^ z6*x?WJOE76lO$vpD3zRJQ^J*_(35yw4RK;*?|~eWrrgE=tMeK14*IN%rR+kAx?a32 zwk72c=VY)?)!WhcP_`mqQFslriU?rFy5^$ek?E4KM;H^jL}`m*SuB@uFuC#xo^nLPer=MND~~mC%QJBjd{USj@e{PH zfnl7R=DFhxeSZ{1(>N9?)A`KBd-kVNHapEsx<||x9*pkmGy|Ru-8j^*&P|XTw}-n- zRwONJDUnt-61EL-tdU|qhJGoI9Xm>MPL+JQ8HD^l*Vq5Q$*+U^IvmVZ0&Yi3lCwx*)%LV{87|+~g-!3k* z$FH}~Ki}Uz-_N(pwo=n@Fgm3f0nTz@bjJK} zLV}ryCU^_!nA*qBLJV0*zW~` zy{mfv;DM(A_7YDDp!f29Pa~p_9&$7%=$z80?&x=;!;T`f3E(VGcl$NV48fRTd1^pu zR}7)u(7L`4&o{8U$E)>jKATtT&0@b>@3yPea<*A7WWj8i&oOG(@nV*MzJQ`|agoiN zcu@xP!k^dKelx$hzIuGPfBE$M`OBx<+YJVKaF-Pya68@{ z8u2D9cEJuyR4t4>KFFr1BOJx(fz~-*Dj!QiOZy{zpd8Nv8naiEIIJc;9N89RP*--| zCHr!`?f^_3EGx=6epVwU>P*dZdf`%?vIs%Tb`e^dB<3Qc>55-0vghY3TtjU>7_h*I z0JzELvjQToKFI4g^i}mQt_a9Py}Yy{Z|6XP&p5U5!Fz8q-djEV26u*$gNtKY6B<7_ z%$De!!0n+hh}7&9F|9$@uWk%a4ANOES4-bwd>^#=qYn)VCE5}iBDHcD;$CPJUKf!E zYb40a14mh;r4`n>1jd7`Nzx{_Y%Z&tht>Xmef_lCUal3uzM51(%#ksBiMu0@3 zh;s{yDo9Lq1>0dNtv&$YqLIMwHZr`Hd@WFuIY?aYg<&cHtLHuhZdZCt1Ir~54lI{& zDlH(xtRV>?Z#0&zbTN~VxHi?kNoi`@kHp{NmSEGcsfhwuqo7|NW}5}38e$5&?!G{bvD;8Q3N6S(;wJgGpeN z%qM1TuT1v)qJvu26tXstzXLG7`Qi#{J=OTr!tVlfY&OO6YPQt$A+?6K-q-kCAb(pw zxz0SGgLUR13OKAL0^p|wi~t6GZ|*h#a1;gvFtxAxpW8U<&g+hg!*|{J09pX|(~vp^ zY-uZ;H%{hWvE@F=zI*TYw)>|0-$nJSGr8wd?lkUEeXdRif6u*q>>}26zCVU23oYTp zX7;26yc|-Sjt=gx4Sx^h2cWt=XL4|KhGWtEcKbB?`UteAtIoP#6f*;Ph@#DQy}#VC zDiGm%bG^N~T<>?w%l!%)Fy2LjVpe9aStF2D4i-zP0=Qb0+f@VGtjhJW0BD!<6aa=T z=ka=(ZrAx{m96K=yb78ksB^!mi!Yy_fBEg#pMU-3+s|Kr`SoWAHHodjh*_}P0RZgD z!2ot6AYU(YJkfexF|D3e3-F0xn`uapN8|B_>GTW$#z2fwSSb=p^WEa`Lv7v5lWHF3A6FnE>lc7o2f@G=dGP+=u zaw1%or9Cr_Bw#yD9a&edLN$Rg6VJMqkuxn^+I0JCcQFszWHyG!SKj^O=J8>9e>eYa zQ?IQ-WKI$r($m3v$B~WH$HsdxBk^w!;#>@)t&X{(HKWp&+EQR%BHHc{^ee(n^KgWY z*nnbYy=dM-Rjc3F$jWJ2O!22=>}c39J+9awO_^5I7SL$Vsp&oXEPNCW0H^tI9v_sG z<+T9#`RBX)Pmcg_n79BiBb=#9xzT!_RjrEuS)og#a+Qaakkl4P1hpcE_1wSx&5ELU^NtwQc=XmjL6!fVJnr#Yg&t^Q-D@3^r z{6W4i-0$h&BLE*oBX_jR%51iralMM#sB=mmo!pIm zFX>L=_8|@9y)bE}{TfmAPH*Gy0r+TVx9Hnt1HTjJ^|sIl=_?%z;;?S2#d5yeE~Ih# zW)9rm-R^#Gg68Fd2mN&()@Qq=9T-mGWTxEzaR*;Ueb;?5Scs0}~X^d9^P z3~NLcs2pRMgSuTVnr~k}ef#C-uRni-VdLTP7GSH205TWcg#o(Tb-BSXr@@?3S2>TM ztMFN9UjdV%N(XL{#aSkc#PpZ4`$C$Eu%qj8YK-Vx?jo(E*1QT_b{%FhBL@1ij&v8v z%)*3SiAUzTQFNM1K;ED`cwy>4jWx)BqA4E~ulN8~HpaM{)r^i^f-N`2LoiOUZ3u{3|145jDC z#Yfn1a0VpfPu$Adzj2OtD#^-W+eHI!fpax{ZNOl`uqtNU&gU@`*ceE^-WE?U`=@K~ zfB)b9r~mtZ{cr!rol$-GG5hmBPmKYt@N%gQ#@Z66vJM?5!z7i!A_+3e#u$j1ngSZx z!3P*g=1E+VnhHvYBq=pjkg^jkf`Qu!19o7M=F;@VrLKJrD7YEpqx@rf&qQO3hPvOB zxMCr+h104>T92$Ii>u`E>($FIw~t?*oAsOkCJ{S<+gY2Bq_FH#fdNP&69<6J9kans zUIA9W;*5c3;4z)a2@fSc4$Ht7hp;TZI}MW3bR&LmB`F|vcv(PSVX(ru12E~!Z#zCC z%QlB2$*5!lKuzwDh56y+>|*rcVsti|%A&Qze`Ozn^4!DwEeCYJlf-^8nqS7d`vwZQ z1@PVe=5{x4W*V7|XG)_|3Re61NWJlAoxN4S7qU|BpF_L<&<}y`8@~9`lHsr-E4RLM z7^c(MJB?vJy|<6g?*aIv1PAkvTO@lu>c0i>Y0%U6ByYFp)U(|euN`+g+5y1J&63VB z$2YvtV#MZ=4()33-flM|`L^3;x1Md5^?FgQ<|PQKBUI3KILMv4u%*&+FI0-^ zfdd(&MlHjcw28$DVL&NHZ9MzuFVA1TeWiiHcaJyoRReb704V9zB8Te2u+FN{7;RZ* z5_>RwYkT03OQ+IlZYG{jOeXM5-qlU(U5RJ|)AGG7C)4*poK%f2DE3S6R#>Q)!_GKSSiMyxbtYC8%`3{+&nq`O0C zusI+*5#dNOxSoZYEbFz)wDW{PL!>XHzvS$yGxq0SJ~3HHoHvmH24l=(iHuG_P$ftJ zr)}V(;Vbd^^R4TSm|M)1WBLI400yowSD<&Hbu+w;>+arl_r?{^IqPreMv>(yzm51r zFdxDmQ+koNE@iw0Tm-oqs&~QHZe5vC>xWOdO*m%BOu!pF#@7Z90io4jJ>^0Jj+~6o zr6c5%^?&{^|Ih#N-~Z3QSlLhi zDf-iYb$<5o?BfSNHYJx=L$MgA-C|hPXM`cdyI|V@2`z?#j6aCAflF<)Ffa_7wpAKx zlZ7vsveIV~y}M2*;*#s5{fGoc}Ihm!3R4y zoE5POX}rzD8yp-`kVUVz^_&&GZG^J|I84u@?4nKNO$^EFZ2>GppX*tZ=@97saQ@-r z#mBS388&|W_~Va1{pqIX)INYz~HcuK96)V0FXd$zdN#o{1Z%OSJ{9$S`y2~$&-H$dsB+CTMWi6y8`z^ zqP~mRe+1xD$8}%t9x2+c0LaM-vDNPoe8lfl?fb`sJ{8KR!0Q8;8N-K3z-#%A16E%F z%p<)vUFx;=R(smSBY>5}z7rk4w(kM>UAT5I?&SNaQ@RbyYUwLWo9s>xXaT+JWudNP zS-6Elh4h441wQ9hw5Vg;!bn`;Rx3N2Rc>GdR%WK`VP!|wlTwFXnfry-aFAg-3o8|` zz$eSzg8k1g56@pezkK`h`K#E?(+z(10D}~3^kk9GG^SFadNdvlhR{8bHK2u-`wv*Q zSBmMgeWC8eAj`28qbdtOsc+eBlb-co2i>mD)L}b5vQD&-#MG=x%~)yYtF^Az4pD7{ zu=;@+W7WkZcPTww-ech;uHk`;xb4tO`m((eS2UrCc}#mfHSCD4)E2-x(GgF((iaBd zh2w&O^aY>O2j z+>3kEmB@%7LDETrgFEOPz!4ll#()?Rkr|1|%qrB-jjpaP^f}dy(|xY=ss{mj)`OrY zJ?R7VA9~YIX_+nC#!W_6-<#MV7?BJPPWQcRnJru90IW%PaRp(`+rkK7t-l9FDdx;Q z@gA&<4}@bOlP@p~xCQ0K9m-kpP2u-x*0lP)rl9eDL{Od95m&J}N(N*NIygi)GUUfX z-0K3R1Xq4uD!=g2*wf5EWOp+D1Wy~lSn}1S@>!vHf?KR|<+NHWHd-Yajohi>NaCm> zE@VY{dp-jI=dF|9e|z`$?{+uC)3o?6?ZSVlCOAbaZ;Ee*Y9y(qD=lB6spO3ZlQiv0 z_Eij?Xe?z?BQ-wMSv{S;7&%dDMAL@eywYDJ!&PmtthyIfPs|-dEA6Dxot5!0c9-H| zc<^wEKd<8V_*>lZ`xXk!;vS837e!JqBPQ zyY_w*6!l%0K zASMtyPGo7qA9sd8aW&RpBOmv@G;0@%XGMJ7NvTq+Bz1iEB_Q!x;q>(E1OWWz^vy~6 zq@LCJCP~Wa;l-LaA|zmHZ(iTtjc?vhWW@5Y$yzx6 zw%I!svP%K^*isjHzmj!JKwsQ`g$)mpCzkAdQ9lxX4*S~4V|fDs=NO=bB!IR-Rd#| zVCmO(*d_qKeyd+xNALEiFx)+~)7p0fYXj20cV(1=XkvlyN?}i{UqV=?KusWMk9TIH zw&;*2EgdM-;y@uT1>lC>Z~K}}!BE8pVLWcrG+2vv;v_sCbYwiyLj3czrSkIm!+QWQ z*7N6&fZ@CM55xJ`rqv4iR@fj!3tTbCRVM^szyOaLq~qDJKf>A2#z)4+EiLfcI}{J7 zSDI^%%G4FJf=gX7jdO$P<6sY;^vw`6-f@7*o)$OF1%#6#y83#L6fY%Q)1c18-LvjpC2rf4DrKvJdnp4Q%WqR(jjgU#r;i)wR&fD|1&o^&gm-*qeB(E_ z=e62drSi5~c~dF{!Kf{=pixyVj_ZV+*}6@? z$1e`UXHo>F65g2j1xt1S#x4JZ01WO+kmj%i zJdbL%np!8;3iPsZ{eJQC!#k||r~Bn*X~LzDYL+!FaS6!jdyuD{CSlT1r8BNXRMjxm zs=~(I%c{UK;v1{0$m{{Pt-R3e;8qg@njy$X1>kx_{fhwL@yuq31pux}lru|)(+UAt zES-nd0KhuRvy&D}g=)Pfg$lLKtv0H_<8q~h--G^w5SJUp7A`d9=nRh}e?BS%7#26p zd{W!pO|PGJSC3Ky1^~Z*zJGkWSuK{>Vp#zq02>4Dowd6Lz?5R;{Sp@<6$9Wn|6Ff2 zfW)}v9WY=AV5XpB!IXn8>%{g*UHFZx%yP*73mJpYqt z7Hp%T<|_yX1KwTkuxsPWH|V{8e)sY7 zC#>ghUOs&L5db`00}=-~)SLC};(SGqUk+ylFzaC2in!g5I%14I?ls!ATH5GMWU$?E z(x+XNPc`tt2Db03CB2P%Q$vg>7aA(Np~@>NCxuD3LsCjNh}uK@UULn}RjUpAa?s^d z`4i&F>77Xv4DrF>goXe-#D@LSIEE=%e0{)=SYM_Y{=s5_A0_$Bg@*x0KYxDOtQSBa zb^!r^`~9Xvm*BJlFbTJ}>Vg+O-tRuW+yQdL_L=Qc3c#VBEe8ST572kFn_?l1lO`or zxI+@2Em)?&(kJn7Bml6)L;MQpB80D=--QgHP-z&Lt0<_&Zn_cx)nw23y=I$p|3nBE z_*uy5!(T};Sdtr;I|n5v5kpnw_^7DK;Q8)A@GQ;(mXMLrD(-Y&a{^@S=Jbkh$spG01yC4L_t)% zylJ}P^ZeUCJ$?Vv_t%ft!{Hdjt5z@J2;jfeuec6W1EkrAFj-o24Xo4?%l`JLSdN?~ zN!)90lo4Q9tt+*8Nl+?3X=JBZ1Yl8b4bLdQ@>;S2a0L*{u$3uj5MmkNJu%fAq6F|u zEY1*H?tPJFapqijrtUGVi!=y$3T8m06x%H zM*z$cbqs<0F9PstyV6hBiXb+c)T9D5ulqUx2l$K}#Nx5X%6*Li2QQImoMIaC*y$J0 zHw+`vJDJYj$%(aMnWX+&Ae|G1a3^BDl%alyowm5P->L zxvjHDXuVm8^&_Xjs36Gdk*a4_Y#!SL`{0;ieLgNVvM~$?cNBs4i%8=Y;<)>W0%jT; z5q-B6o%yacOrhf=M5`5nHz^Lj&1!Y|^lTHbPrr)mzU01K90?pV*ABg_0>t9S1E$-}IK+^@arW$4>(}V(K>kHW>j~QP5FU78zaxJXgPEy3bO@_r!rV*{b^Y-V-)R#=lYccBNb-Yy zIKW^%B|4n7;210xRN@?2`QslygV*AI-fv63L2dtHi%ouTChBczYnCte2YVr$R--Z@ zZk&SQ$zTI335!GLVlCx-1XALLt!*KAfDH4|r($n0yQet3K@LLJu!M87Br12s<181m zB+jLtb@y|O}Baaa5?>a z*Wx7~Ekcir82 zf4l1;far9ARb5(w%h2ERsrY8kGoKg4C5Be3YpH-fmvVCQmi^1K@66M4I=Si)HL*s02q%a0JHQ9=*7Yvb;z>L zVBAvV#Y8j}YG&;@YKv!x5cCSrmkUTto5?mJQDsfI#U6sqq}^)|W&=7o1AxWfzE%~D zNxf7{Ypq@_8#V){*NnGzIh*O`T<&zn6&WefuVW1+;;(}5OG2eFcJp>UtGBu>T6UzP zQd{c2I*L)B%{rm+=@4G%9nC_Y9i*VieXFfT(ySW;J}lOL@khcfA`bb?+MS2(l3+~0 z=JSvr`*XfdK6ipQR$M2}y4eu`zfM+nddD^9*BNQY!q;{mN5JeahmD>9oCRM@PYW~s zt}~a80r)kce+|HNwh9&8j{bNIz>dCNZ#K~7zkt4b0A}1hYzo#+nwAsR#>COMfnSPr zIY2MbcLv;D$O6hL0E-;~Nign66XdFo#o;p#ck9Rd&He56`f|Bh&txVY!o7B#K2uoL z8aQi7fwPGFz+kXg8WE32{TW~q`|M)8S+8C`Jb&}eH^5+^@5k>y-#^{svj-QdntL*5 zofHd<8J`p%P`HH-mH_l}uK0SlUTqh+qS)dR*B#lD8aqZYBg#G;YYkFik>`hj(5&g2 zek!(k(!cf22PbxBEvdlZBY2s>RIlTv?73P|qvZt$5>VmHfq>zYwrB$)f2;F@fq#O* zncyzsDo>f>mjGivA@#br6(_~90+iv zT9TvYSSOk6H0t_DV=`lA-N~ox%_0`%R~#bAfsZmFaUs)ZaVS8?FRyl2^Wy*WfB&!l z-~ajJ|Mu{9cKR>lH~*G}JZ*N` zjXX;Ry+(gf71NJZM<-0n2~0auEMPE@7@Ir7AnCu*(R-s=2Wvdf7n|Yb)#&)dxLi(7N`=#Mu~03Y zl+R9z|5B>H&9ZX8U+?6lX6pni%?f07;x{r%d>B!uo0u&|Pi&m6DM((l$`|#)e~QyW z%3u3+m{u$Ja_|nQFcZ=JiR9I7%7T>4Gkx-!&2ADpUgBT|fKe-xk*O@t$$;HnyN3{Y zjNK#y%(1ymNN}Sp*r@<)I&FO|_BsQ12g}M}SsJd&gGIg7KT8^Ch052b#kZi&^;RXR z7nN_ECGA2ws0RZ}aSEgMN({oJN~`-l-PftL1r zlW}9AGh`HW+j>Vwyy=gNWk-HgIS&vQaC><>5YJm}!RMDWsXTwZJ+A0OYndw2i*2>Of7SB|jq3})0h zB9{xqNK;9vj4{xvAwnW>UoQLxaR7Z^U2n{~EEAzVq|f;)eK0&TOz4eTdwZd8wdbA{ zWViHQ=2$>(&^~S@C_b_<>93_2EXIobFLwSgv8lvY6j-uyD+9|Nt!x3I0l>6V22=n- zHtU5NLP>6!0NfiifxF8!SZ2x|Uy#4NCliRP^|R;q_m2V& z91iFG;e0q)5bfWKKGny{Nwv)$by41|2?Ibc z0GJre!4Iu=Rn$6ND|k~BO-Y2CR}+kz?J^z@46Zc_Sj1y2d>uF+7)YrUe6}8*{a^q4 z|NQ^{A3yvrcW)*q{{vRBbc$7PRU7RZc43*WLzvf~3MV|4MW~!4mQ<^igyoo|c8Zs4 zwoC1-!eN(^0_oa$#lSj@uG*hDJV~b043Y6}+oxg3LN8}ZuUTC}?_{5!jJ zfLKgHQ;U0fH~a9-^>{KWS4u$NVzKw_Gw)b{y;o}={`nW5hra~k&XzMQ!YbZF%+5Xd@Yv!tnLf&a=Y3CE z$Lgv$;oNaZb_~`#ZOI2l!`QXl#WAaDLOX7=5oj@Q=|mu4Y8%vcHgAS&vPqzg*Ag6e z-IeJ>7nAc#fbIfV3&h2`yj;?I8QTH&aZ$k}vgkBqEwl_9Jf&ggmW}rGjDgt*2)YDE6U{HggjqOmzy~V?qWTWDVqv%GHG1$%yVpo zq(r_$VbMUtyMR1VOpd7H$|zs`-v0svdRK%tk50PInb2>aRnj1yJ*p6j}*gkizaNWF!R<4BA}r_4Pk z?o^4y07XC}76>tpYO7w(TGc$Q4|{1dDQ*{&m&?((@pW20Y0J)A-~tSn$|sum5szzT zAP{ciThR1I8#`f|rZT#-nc_mg<&a?aR=IVMJDio1x0UJ%q9_Rk>QyDpz}+^(Zu;?Y z2IY91tyV*J=UZ$3+(s#f*gB;%SD573l1vzzqsI0lDEQU={Qaj(991b8X$=?*_)X!o zQ~?}U05iqP82}HfUOxf!Cdt>e+S^8Un)S)l~fTB|7vGuXBiv`ka5tdfAvbTQ@TJe&-NlP&jMtT=RI`kzZA3)$XPlKk7l6 z_pk@a8EOoH_>;WbIZAHtF<3#=F>DXa5%YEk1m~7KL+5a|lA~`V2YX!!K4QaMc-_$y zq4zY?@;2Up=heRmW4g;4{#i)P<1$D$E|GWVPnF75gyEL!lxamk%iZ8T_okTUVmil zF3DWS4xM8YRv$nk;m&;fEc@)2;$%&RjA5 znPtNT+O396Ba0XR$izp4Iv(4f|MVm972g_oGXa>R0$e`rCY_;~CsT@?AzA_gVe5Z+ zx%=?p7GHX=D|Ktjw`*kM!3_bJ(Cb+QGGI1h1s{Ct7@_x;+rV+$lc=23tBAe|{O(2w zn1JFk%*T!`m@#KH5`a0@Vm}x|KMnpobK$6Np26Wx~(QfX+(X%&)ov6`MWa(bi`7%PC*>niX-$?7IqUXhs);m%jpR!dhSZbotuRt&(F zTvbL(00!_m0F&1`d}g6ZDGMFLN46eEne903d<3pX72MZ2eYB2<>`~JDw*dHcMw*G= z-k|TE*bcy+Om<%Wis?q$u{`rdzz7;$nOeV^l5ID(1uG2AM44=+sM2-=Zi_@K|aPxeoHG z8HATBAO|21Ttu2TNKZq(7+~lu5M=!?>0D>@LDOZ)>5&2 z`gP^(O`&+AsdcGwf|qMb0Aayf1K`FOmTH-hVCu+X z=q1y&x;SNM-D;li0l4AI+3-;xu%~bZSqZC}Ne1rbps6jvU_$b~b@(?l&qu{$&)mlF z>0Fk8_ZlXT81vDe|5kSTU`3qxwJO`*mHuPELHP8S+dEZpc>9-(KDd~)_l&(+b7=F4 zbr21?$I0w7tnoCREwlM*pD1=%CGLjlr!ugGE&mK}>5aev2^UujEcO>-TW60ZJ@H8; zHBOgM8lcMz7@-$YFy+c1Pap@Y76oI8J$$SnoAicoi^Uj$x2uDyUwT{QUEGyY;Nou93$(308l~4okwER_pnE&+Svr z=F^!xEkQhH8sGEzjHt**+2|YtF!Ks=z{G&V0C?VYKYh!M2WM~jLruxJvzXXm>2zo5 zWeRm-mW{DE^;yrKj$f5bp2v15v*qaGdUJKH6G|>GmWz4X#*SITk#{{dyN!qHKSLGR zu$T5V*G*X#kQl2{KBZ!juxi#H8YKYiUAf)KTB55_^K-uEdP_`ivhS#jLkp4j;GU%V{Soe%*Nc zpHI&I3xe{;%f%L7U;Q*M|E^wniv<`iCvU*irGVW!tu{}R=GXP~q}e%>LHC1-_WPDO z5J_c6)^VgPIdOS5)yr&f;{S3;!yqi_ty+j-HEywV=0s?1qS+)JugIJ6T0NuVz_v6k znGtClfqu4FEjdUl?{yLONe#GB;lg1w03NhE!!)1Ndb5UUt!H!+ZE)e$vtF&$so?lG z(|WO1K1+)2UK4-V?$ojHUs!Z_Cf{W$o^yWa+G3HIyG#{ z2*6phB~C=C@cn;=zF(@s#$fDeWTI~jsIQsp5yyQ^pu_!^PbS8#t^>){>!-@xjZ6RK zx#Ws%ctcm|tm3PX*TdgsP@Fm;YAkDeIdk=S%)LHgEx73 z@ZO@P34C3cifWZRxPv#ZYXk;N>nlK}w3Y=^NdPUrAZ*sv>gnU-<;#ahd=~^@%}%%2 z2xM&18jwU6?U@xBr8i0ez@1LDB}LGa4BW*RDLrkog|*#FMO-=NiWAzJZ09(?oJn&w9u4OFjFRY0+gB)j zW7ClVTeCtQ8CydK-QU0p#>&xkeC+Jva*cJq+X8?&1R|7OfWc?tj#)di<|s{fBj#Mr zhPW^}sFCGokzuP@H(qfc2dh;z-KxW)rI+|?ntDJB8Q4-CM&Z=Wni`uSUaqvHs>iy*>TUoo@Zp z)8=+Jn5E@j@}`lT)+<7Si{;-HO0r7TH%a5PQpfFEfN|DKKu^U`bJUQf)*nnwTQia> zmc^S>RM|2@kqQPY9xDJdacwXh7_h7$+ZH?vZBE+Ml=w>!>APJ7TNMXjY%+`W0*Fvf zDpdeor=ItvVFx%`Yu2!mmbm%=N&&$1>y|X+B*SfY*uu&O%}&38)y}KUtYU&YwY2Qv z+)$M$Hg^0kmZ`gS{4nn`$e=w4CE}icZfB)E0Pnq^UjgtJ3^cU)sN2?sH&zz_1_^%6 zcVou+TbW*8#NfEB>)G9y*E+sBY{w~R|B(Q!=(}%Biu2yD>%MU**8zAi7;u`95m^%4 z0LfZrAm~a~*#TJ4*UU6j$*d_Rj)`VZWMC56d{&7+_;Z`!q z=Qfs3Cd#P*r`ax3_(LUaqn%V6CG7|*Gww#vjRnvZc}_oPYY@U=(M%0<`s-rLP~$_9 z0#QQcnrF*SSM50o-ZUzr*-#kpC(#KG+GsRV`{gkORzLso!@vFV&C5;x`M&@BIKSND z=(UKK!f}=TFitn1jr2ao-bP(9Q#2aa33=48M+fCC{hS3GbT|_BUs7t@g@+;xCOeUt zdWW{pen^?SCO~@SSP)3*m-A*Ot9?wbGvK|u7N4KYEb8R(7xnxty`60^yC#_tX6d&- zQ3foxI3JY$>Jgx+q_&>{fU!X%68iDSk9W5h_`1#ANrhdEHh8EBz=Gcb@G0vWI`tOu z7RX`)n^(Pg3KssCKY!ovx~sM%7_3ICFi99@?OfWgLqivH>14(+20KQ^75b@Ca9QT!RvlNcLy41f@zYB&Dgn1XPGf1VB+QAqXtYEg%Sth7g z+u8Zm`ut+G-7PlT^>VcskNOh4;y9~r4o8oz# zH0WTUOlLH5dPWBH@M6N8`6MQ*3C7Gb5lWe7V$U8$h_o`L0-tqCT>eSj6kcG)SiqiE z2JU>qgf>1SV&COv3hIv!KF7Y)t+kTVYT!w`3tQ=mCKFF9Qy@@oBLTWoS3_ zvAWpc5Og^^>^Ra>CnmB)N|st**M?t1Z!ED{txp=#86W#QtS%$CyNmhua=t#F zF1O>!LY?ZmO$N?DTxv#Sg|X+-lvX`SYKTlvlg1fGZZ+}6rs8YJ-9#n}4P|Em+={7? z8WHfcX7!6=9QL=-Qo})4X>MKQdTqqf>46W|s5_kW>5?&;j-+9CHl0nSvitts!~gW} zKR(^gKHjx|cP~3{ag-)bRVejq*ljOc? zQU<;_x`(Jk^{+4XO8L(Iic#$Wm@XVgDkKMBlTT~T+1pja2;ouOPaF`Ur(gHpCfbdr z3HB4!SgG6dfZ-R53xpGXA_-8`XhLYNs(D4MUN8Lm>rWTwD{RxWY_zKRu;WM1Q_vGJ zY1vB+n1Ut%H`}F7xAybT-{EyFG0VPKoz4_^YNp8>IU3}_wBullmzT8T{w{09K2&n~ zNXMAta<-BmFrxT8XZEG4or5&cbd$Mxu6ON^uAOd4a)u{WaOxNDb zICEY|7OHI7CfsH^~16d0!U2d%gQF<>*E z^xzEv*yedK8dt}Y+Mu7bTPF-w0KnLm=i6nwmlaE*D#dYNI#3f2)k;$4ga&M?k{%HH z+jbc&ZasAh^aY%O`x1a(P;sI*#{lB>%;&obU6#? z%U)qxq8|dVGvFiijR83RuNZ(8zf(7Z^jx$9a9mM70^pdbBLW~xW9r753UmeNZBd9T zVe-g`f(U}>fMYV2j&8CY$6YX5EZ^U8|NK$}$ynR-=?ed~8I5OsgkZR4aGi*yRHMW% zo(2wX?z5k^X2m1{OGLp^oKVRzRhN7)2eBbGm!?vUB5~f}RKPV1*v2KtjtIR<_dULJ zNTVDYCxUcA_rxYi42)(&n|y#f^U-WMVK>oOX10T2&u%YQ|M=_AKYX)&yzPJYGWh1X zw_0{OS%IH|djzh0aog7nvke+kryKJnIBY7F?NxEeM#M+x%h|4;b>tJ0QhWQ2jIf>b zV^6C%M;bF!HxaasFQsUjx9G-WfLVPc?($CT&bTigM*!@_W&$wJ0Vch5HgG4<-*L!@ z*r;Q6@p@OQ1F-Cp-Nt|X$G>6+X9`+k8Wr@JDlKBbKno?oDR)NQ4O15QGZ7D$8m;1o z_t)Ql`;I`)frbQNC8?RxUpr_XdC+%^Jec7l#}#|95+CHCMYm5a$61r)cxE|7Japl2 z9f18v5`g)2OMT%L+qNJ{rx*K|#i5V{;MlvHuTCcFhAQm&G2m2AJec(^@6WIAt}m`H zcDvnTv6xQA+>XuM%&<{Y+=$`GAJ^&UEV#+`{28P84f$4$P2{o=KkXH=5n!K zESB^0iye&>aj{pEijA4l7ow3To0Spq%Mg(vv$d((gJc9?e0}&%<$BTXbA%=o9PoVe z#cmEV*WsutYf@WoI;$1F)($>$mX!foy?$bgPF|X6AOM5-g2u2gCzD{Lx2hp-BqQup zZ#WwbBmpSXn+(!^r&?%`9 zD`E!*2Jss3Bcn3CD3aRl7NibzPh{&Y%R-uKQt;CT9)c+DgeJn0dd=IQa<*77{-rA!Q)+Iij9bRS ztPbM+BhqKfW2y2+mL{o^dfBT={?eZ2V%2sq1`+RalsfxEjGfG-WplZi&R1hB{MT&U z+pT9me*5&xPoE!e+AmMNZ$FOSKV&R7a#R5O8m*UChwgDBGcV$44^K-iG3hVi4V#p7 zLn$T^cMsTMXp54BbNF^-5qb&3!O_WQ3+{LA<^C0E!Qn}1<}kf!m|V?b0?jk?P7J^V zj0hEsfw=>hK|+|2!3_)a7jYP)G_}bTE^gKFX!em;=&_jsu>bLoUvS?67^s=|>JGpn zP0}>J8I&p!0RSrub0%>M-wUB)InV#?FW=Xe%MQS-{ksQQ90|o0UjncsJlJ|})2Q~0nc^(_UY2`9w0KIDd7^Q2aVX*Q zZCHQQup^gMtIC|yV4UAQUOm3Qzkj*~0C&4$y*}vo7|>8;P73R>k=uaKahg5H^qpqh zOeE$wMar)%O&vtbvyf(|Vs0wVvgrU+JIrKkr4{P4w0pQ@5)HlT`J> zDEiax_Ika(Trba;=T{P2oNsr7ULSiW*7We=p5qEQMC^u)__SzjdT;G|UQIxtcbmzu-%=xVTpD>-8(Dk9o=#g?3h=PP>&B_bF(v z0mlH`Oq)jnC4!>hqNbn$y;!qGYf@`uttL)YU^f10ZwejUuVSzaaNB+jz>O4`}7)c^vI@5v5wa3=BQLVm9YReV7lz3VXVsBksxS*QufgTYq2P& z3d}~pm>cdE9QSImy;!ccGd8*63J0k3ROY3^u34Nb9FYbHq^S5H72FUX47T~J`B;P2 zcYGv3RB%-1sd*r5?S>-7lJ0Z*EmN$aC8ZKiI0Sl3wupyn-b}?NqQl%W7WppDIkt!h z=UWeFAo1F@NnXfZm|ZB?DOQXA&GmG%?%rHv?;l1_57YUy+V9k-!)!h6FG9;K)u(Rm zC`-FP#TxA|(ov5C+%-bOF8WB4ck7S+cOtppWASVG4As z)zf$HuKxVz@7pc$lO+J#^u3TXWXCq=3Y(HkJvz7uz};@0O=WqW{PnMYxZEvsO|@ZJ zhwf4mGyL}B&lN1SCqAbkHt2|x%%1R%0hqO03e#lHaRl3OoD|a35)Z{+mW6<+`GaYO%z}qRNMIdeV3LnJ^Oo zEEk*igtqOczF7PU6uhPrLR(tG(CoA(>Z#tK!k?;sj-!yVQPYfOy4W|y`e0AYP&Xra zZ#C-%^PwJM3Wn2f4Eo7(k(rOs&E?hQ?qYY2NaB3A6-K{Wg445Cn>#9ZQ37ze%5?^U zOPw>gX-fe(pl>apZ`Dyb?Y98H`6wIC`vhRI0P7}Hhf!~pc5DG_TiIE=Bj}6!G~$pS zJHZLddywRg$m$J%;~X!MiNEP)EihmZUjXpD)|@8wtXAzdg$IN6dlS)-Z^ps1g%ou3 z8)3jsZ572^WWZQo>fde0Q2M(2NKv^R^WF5f_0qB8I(`7IvGGJYM!G$``}%0yzr5Pq z+@5obaT4RHw#BNq-VV3tg(EH_uo!@y`yQE;g-d1__f>0q@hGy^+J{Pd@N=fVy-s`( zGcnc)06d!IabDU5Tt`)Z`?7)q7Z!jPi>WD|?Yr&b`f7W9cMb;p@a_%__~!Qd>iQD5 zw|6)9ch~FHoZ=}?FLpEPeaU0eH&Uoz>?|2ylW<~fHRgz?7NAa-)OwS*wc2U3DdZU6 zGR|4dGp%HC?=n)M+(7+7 zZ4Q+vJ#oIdxe()Kj_TqGY0YUi=gJIcI7oXaMqndsFQY*Vbh({X@V}-%SkJJwo8|d# zjkVjZ=Ci5fH^bO5Y;?|Nu*a4XSpZ)e-1ihv5h9lX7nGvHd5 zSF^lAGfqIP;I7hKVz7X**{^1IjqE?24sL>jpn>+5WH{QWH1`h@s2IzvjU?0K7fHU4sQ?0Nv zhr{emm^xs(57s2u(nqGNa7+Fw1LyfX?5`y@*OF>du23z>(c(E`quioAs+XmUzjOxZ zWxkqA1k5JOlFBRDClD79Yx6yrSPrg`Qqw(jrHHNe>3_tgl$h~E0%P%m98RV0k^VvoS?myvbRn8-QK?&`LybyL#@v%b667;mwq4&$1i zzjJ53#*ZTa4zjPl8dFQs`ydOdZAb(g1JMv>xgDc7&%~mwNb_v;cdjGuz3+&i2*x8e z+6qNn)DZELYFW4GBp4eO)c}9}>z^(z78IrXBqgC`Hj*Lp^nfKZHDww`6EeRikH;3N zx}hTY#J~UbPvc>V9aBQ6XqJ>iuh+JH;G=*sbmyb@e%>hZnE0hgvzU%_4^OE?>^jP zJv~1>zQ2F>{^>oK@TU)-zWwwWamvT%;Q$<@iqN(ugLXu_l%`UcXTjdi%-95!-qb1q zGqBWTMxM&TH6k;6Sb+{A4;gQ)-M#qUrLQ+g-lY9HIu84bG&1GpMI@?}9Q3J9PZCh! z^=`hpSaB_O3v7MZ!?CfHi)QAm&=4{Mz0LC2=MfY2+ZX-hkJe9J# z=%u^0w37gCWhuJ_=r-FTw#o$5ajcTyKv|&wSEpC_3Rqid)V>J7WWdL|;>d(@(2@lJ z9+#_GxjbkzzKFX=nD-iV zcUO;3H&}O17dH>P%j@OE)xwPwup<+6H`}@IGD3QkjRDD+sdfrWKov<;lnQ2U8Tg8a zskP0iHRe{Oy8!2kq?7|2j%N*pdEkPkbcjsbp;cd*uC)wl>q1;1whmo=02Arntc*`I z9QCAANXZQiAZ3F6dP03Bi9WkgeK4QcAz2=&&wdYC2EYRs4-=TN*_jt(ui^3*DX^*E z0*x2wCc$Qpu)2CYTXe&BNOqiNbvE8!eSkbDue08x<@7YpLz1+)hlYZ^92PQcx7}d; z!34O_qqucA>OS(ZeSB~GBxmGV;lau@xM6T&psR{xt&I-)!K9l+Ex-vqONL|h@G_8Kv+Wy%)JjNbJSX!=UHua6U|Yxx7*azrnS_ij+OL_ zZnQwKDu5`)!9IVQb|^d{T@~me!8zgpw{RJCHs_1&^>%Z$nQw8~Pr5yj#8yKk!iXfQ zNhPW1*j&+MB}{8G8%NzW`C{1F>PjaLmXHD6>q6qU$W0Gyq+SQbKe4uH-S@;^qH7c0 z*n`U!Aa>$PnR(a}1GV4}Pmso!C?9__+nq15B=Xa%Y^sh3IE>7ni?F;a?bP_xy4Ov+ zgKoVJI$SAM&H%1KsM}NpR)ZMK8ZdB|Y*-ao4WKVwH~_$i1{8qndMGMb#(g`5W_oIM z-@L+GSw{eTguzTigZ=`5U*jcH#{gg~&|grRdD0jcle|Y5h^aFGW&oi;UcX`ftByq*5w9B|7eLrHgYwnFW&nF@G}_U#uDQ|E$3qI7p^CYm4csa>>xIvsAAkS* zkDQ0&CZMwD@T@}`98f*4?)hh)Jo=FbdP?--d}+*vm>q?sC4!5zXwdW_yOY3l%_&_BNxZPc@?jEn6K0aYRe6aQS^6v5Ddn`cm)5rJM zHy7d-px0)W$xKOa>Xk;`>Zyz$)*Q8Hh+Lu{>^Aorb!Em(P@4}Iwm1=a7zfq9qXJg7 zeu|aUPH>AK3C2E%dQXlu@^i0Hwh5ST=xTg44#k1IN=9lo!*6bBJX6) zM!jCE2JMLD@R(<2xtFL+lWHT!X^j^O{O75>Gg{I;E_aK{@9miG?T?N6tho!7>A>YT1u*w z9Y86*1FD=PeL;fDHhFC-Ae3^_8N~}GaWV_K5)qMbD_$*TPFrEFm_D&)6L?_f!qHZ*!!Thl~maT^{yyU~o@+k@abHdzI3=jgV@SF^4qW zSY09eu6o6L0AO6*tg%&@o#8~RstLn;_y4Ht21sm>10+@qc2f=qA?$q@SIf)m6_26& zM(yc%aD~)>hD|kn$6y9MUI1n>jPhn_AydH=cJ|$F_K&~+8#WpyKRM(_h6>xh)1uW0 zYi!uuB@3$ES(J3K!Go>998Jic8SvM?{r%_hxSi*T`8Lz0F@Ul9Qdv8%+iu67J^s{j z-`Bq7_tms!VmYhwo^@dBJkXR~)USoj`+}(T5O=@0-0s6u-%flTeSIJVpqGRg0Q~Uo z=KlHq@#PV?>lpl?7;Fsq=0f6fg--@IHnBJuP)h>YVqzg=w93L!rSq4zVCi-gU|6WI z*7!+?tzfKKUmv09Y`E4qBOc=p!5F8w?7~eD*ul+{s%*0YVt+4H?)4{b+ zWy+fA?!42^L(!A%9u_@l+h<5SmvI}bpy`iYsC>FS#6FBm0__mE?1>)pB~s^d{OK48vra_ zOmx1a=aea~HA@`#>9U+|SsHC$F~N~FG6?{)Ti47EHCJW{Ky{yCQk2yNQ^#yZG`nET ziz|@+CWwP-&4fxht<~eUgm5W1Owl~K>M{zlSn^jJFB&*5eWQ3a(h^dYQzuwr3@f(< zrNu=bpq6)RPMPZ%RyRTSo_yc14Y#D;i9!mS8fwu|LvzF05jt2tv;nb5BB4VD3+ zvRDqAGY=*W9R|Zb7Tt;c_lxCpy1>U9_D6jzsic^wcF(qzQdxQGF{`%wn?WU7f_-qVi7|pN^F9u-7XP$!AeSfBk zZu!*HFIiL`N!tjep>1z3H6WJ_&0u`RJ}pAoXv9P6kqsZi#m;+n;WI#F(lW$A#~=;R zWjL;xF!_qluhszIyZ3hhV36IT#dP%T-IZj>)a8ny!*I~;_d06n+_0Lf?hgbfnOu?- zXbQpcBqnyF@hS&PXskm*OeMCdot0^M3D#yWhD9*OEf&+%2-onzc_J~k!*=)Z{_5L5 ze*EF*Z$AC->E*i@tPkIQc=_(r$L~LX^WC>tPwyUA>m^Qp#{F_p>ktb-zD#JS7Th(= z`Z#K*_HrK1E9^N-u&g-U7RMnUtwGm6a#k!nOg@^DcmQxSt#V-p!)>dRwDT&TQ^|1^ z(2Lc~DnrD?V;yRzsKl^9YHjizRTXrl2Z7VRgYSY`QK}usS9R0E?w5@wx}{2d000mG zNkl;%n8>{L9=)b z8R=rMrjv9KCx$x3x5nJDNr%E6HLoDzhAO7}G+9l^il8IvnX!B#I?;Eww_~*7LgI@F zTBCo3!#LC-PM~FCq?J-CDHlV3)RBfIRZ!zr4LXKuZYA
Z{o|jCaVCgT7A?$~oSc zW{Ub6K#a$e(P%tWW6L}cc?jJx9hVdrwLz8~ zGz^+FeX?{V35Ja*gl4{h^AG%%4jaOTdnwKnnoxfC?F);J;+{dU)S@Fdbe0}tM-er{ z%6RKSXyw6@PZNS7GNRJEcNc&8^AG)QgU(Pk@xq+UJDfV@Ba#AfXBJw|lZ!dKY+0FO zQGiJNx+3dZaWB=!E!6IR;+|IQ7~XfLEe{+vymAcOWjEk>n$juaumBN3ZxD<5n_)Vd z4EXN-1L*I&PtQPHrk%MyeERV6`Q`5Z8sQ)-5ta;B{WAj{Y1-~J>2F0%6Tw*VScImM-$IRA7$a{3NEH(&HYM{xIjWoa?Gp=E>fI1>+{Lu^VPf0 z_b=bS1N1(BgAesymwdE$A3r?3JU=}@U0h#qqu@F3`f62HH}*184FWh$kuoa+Wbmo} zg3Yz;drDCNz=FXFeq^HT1hGnU)cxW2S@L7T&s}m4ymASUs=Tq3c;L!px;#EUkb}8# zj-_I{o0Vpp46AK;bS7|{X#56uBz3AeMQ$}5{!OQGsSx$*rG zb0qK=T^^6L%Ckl~t+!W|+N@BXmMU0Tqn5WCuLZ`Ut7^AiSBR~HD9h3`rGnai(}^%x zYrSE#AK|v?Rv4^WVavcq!{!raM7eMgiuu0EdZ|S4~`?F%_aX-7Q3Mplw2x%3Dq^&{?^13Nj6KG&+svt6Db`bfv`0 zVsMSC3T&3~qU=$o8Kg7a&>cHqeV3R=4l0X70;1$z5C*GuSBJY1eR-d3z>WC5MHS3O zl-@eqfWrYhT^*;YiJ)E|ELPwaN1o8w8}^i^N-q{riZDq?W)WIsUt7segGQ`3;!hH} zTTC2-^(?mpHAnm5c|563JsqE!0L;VUAJ&_fn9vSFFj)@LD(12dW1c5{ts9y0E0Sc( z!Q4#Q(k-XixbMY|N$^P)e-%}g^JC(8F4bz(o0RC%MH5XM9v4hWo&K`(mB1-Je_9E~ z!ZDXTWcBo?pT2$n?v52l@f@Z8S<}vhcEW(0kndf+%$Cx4uwtXM_^JJuPz<}5GoSIEB?k=awcFs%y69D9_ZcY*axZ@CRN$Eo)j<^%afzunn9Dtn! z$4P$YxCB=Myi^(XxSqcPV73~|OOOiht`^{n4<8=13@o6_8t}Uh@18$C1Awt^AFdbc z8FL{%kYoQT)Fmc{VQM(E4ppOK!!#nQ9Ogh`jzm1j6DW~z(SyW}(U>VW>~j-JCaVc` ztcjAp0z&TJUEY7Vet5aThkEx(0t=5V0KkI5&rf2K6=ZJII`{!+l<&R!?&ulz0oHw0 zgk^(D6_2rD+U9mj_by9Z2NyqXq#V@f^N-`=vHNxVFWKhgJyEjv*42yGGUVK!YwCo> z`D~3CkG-+ek)DiS)2L=z!fr|Vu*@D!qfWf}Kuil%M#s%CWQkhz%T$-&2Du;eM)=XD zArXM%ZeRj1T{uMUl{Jpos`LV>G3BD(!djK8v(wV7kYIJ{4KXVI4Q;aluvTY7jaDUB z?G!j0el)8oIfpv+G;c5rF|%cjEEuN`1`Y8~nYU$r-#lNf`rGYjvl-ev8FmwDA(LQ3 zGmSW%Yt7?Y!wCI3RVog!XuHTk^fZ^W68lEAKyn~d_R(M_TTsr*!Qe88 zv{Pkzne4e9T;%}ItON(*YvMz_Eo-DK?+q{4YBv#=5N||)5G1=&=hjhoHulaKr&YeW zHBiBOw6FQr=6O7`t=9potpD-&8J%iHNCi)|?p7(bL@oTE5BtsIO((+}oV| z*6glSeT@)-QYI6OupPyFOEfQS<6~vzbmsCg?|DDN9U#52^dn+b<5=m_Vj>xX0R8<&9*O4G%q*)09~>rYpg8>)V=xwGi&tw+v)Lkc>K;gaVR zb8;uaiowzk!yHT-=W1H{<(D5{UhXYDqjP6H3r%4*OF40A)|KA)Dz`iK=E)u3!C!ai z9%!VaJdHnokG{I`dBxWQwRk3R+zuBS!_0TuPk#1CIs7~H@|H<;{ucoF@%j4kN%kz9!0h(J))WvjtgISv=ngJb-m(P7 zyb+UytOtK(wi{sr(*BNlL9@^2SUE)lre&>xwJKNUg(3ksZ!`hGztuf#iRg4Mb+)Hf z@p?P2WcGpD)axLoX}Rk+Pe!6cyrbyA7`Z^8z4%_^57*)#5x{7a3Vyx^W~xS|xxn~uA@ z-WUw>Hq0z4k>K)H9hjvlK1>F+L)RY&Y%u#F(qbF)E{hiofP`~ud3gvJs7l2ayI;Zp zfY=g98?FYta@?|xy+cf}Fr5+{utlrPt%SeFi%J4nGt6Y7ZsnnOhV(MT_CzFhdk6lP z#|ohcY8bp9E*p(@=QY6O4*@tJF|c1Gj#@SrV(R5&ecP!%zL#}nat5>31YnV*>3m<` z%VZ*~j+JBz8jF#QaOep_ikyx@9sv-8_1T0OFgS2_uJCLJR)0o;Tp-KmPHT#e75wGyynx8gy(>Jm*qGV;m14$EH1| zktwvOGAM&Yj3 zm`ARTe$AEtNvGL?wrgqa?B1Xpu(=nLVDG)gvz=e8q&raxz)$gd|MLFj^9#@ycdl

(YtIEKC>CZ$>GG60~`iVn|NB6Lc{|AC42e0g2Khdz;bdAkm7 z@w9k;oV0h3R}R3QQ3tKx|M>EJ{cwlNVY!;QJJ=V|H$L)SJD4r@jpJ%&6M{1L;$=? zs_RmDUaZUt<$kk)bp*5=6&wL@jg@L@*d(RgtubA$zO_w#(@mXb)eaNIJ7HXIhPB+~ zo6G*@V!XYatj{N_ohYZqbLq!YxGnSBQUXeVjAjgIQkUspZ!p(xTG7SPS(l(|NuiKc z)`Kq6`Ev5MSpJ&1Wqxy|GK<9WT@uS}N=b;w1ikW9niE2`xKw=W?}W72JMM!=6^9?l zajOtdy;84hwKOVkqwR_ROU`HW zJ+$WMl4GyDy3R}6_4YLn%7W;_ph~ORd^M$&hvM;o(92}36a^MTX2l(Vx$qlFM{5q# zO9}4G5IYRStdxrGKn3h@d0qUFE9?QA#c4t&(*~h1+@;iupOd zGSC*0XSnLqUR|8Orvb3pjia|FWCH9B_r zh%-7q-fFQ5eX+~FF9z=3yzT>(_;MGQ>xai{0coBra(5fAe#oR&|oAN1cMMsFDuGrujo;L%{u|G3(khURLn)hC9L`=)li%+#o286 zbIsKUjW^lUslSR7WoZNr;$OC*x?ym@b$vgYbzr`eQZFDKF%Gv3qrY61#T!V-eT@yX!9&x|Sh)VFHpiWq0b`kpSjQo= z!>ANKQ`bI^O{gY8=Q||i+Z5XnxbP*SZ1Y4VHZwdM zKEA|`JsY>B;Mx(fhRQV9+05X80L*XA9-w{9RK2pVk&-}s9RT3-^EnphAT9N4@{Vf9 zUEii@)q>OS=6d(9fBC7KVaKk}hceIWB*ChUFv}G2e{dz*Q3lwG#F;Z-G6tPG000mG zNklE@oT<`UG&eLj*X#u+C?~ZO)uoG) zoPE+?k?)f78WJl2a}j#29jIeYjneMYZeq>rRRHj|lB|lQRiU~(OGdT&q|qe&FvlGa zPqqn;%5Ht4nGoD@TL*)8b-U>CYNwFRjR~`Zq!Zu#H1>NIO*4XiuNh=}EgGN)Us&Mr#bA$amsk=%X&0URIPJ()9X24rJjEnwiWPP^QfDa5NRzwBtixe! z??;GrPiFN&oHKhy0A@e2KDnZ)5_DF?%~eCsG#`h4b?n7AN5ZY>*LK%si8Bn)80%r0Wn)_z%wy zfBeIDX|vXn*imh;@;wO-vyT*FgWmXPqhzw01!Dp*r}xmExX~)^E@uDu^_SVOOP3EO zJWLDCTzz;>$4-Y*C&BIx5l;)AMJ^mshL!}~Oeo_lG4sRjt`!$hVi<^nfUtU$lv6uR zVUhe*7%1YccXYqveXfh^&BMDJ)_om-<<7H^U@Y9ZzB`u)Qa#VP4opRqGV(lk`+>M1 zJq;rl_wz_p)Fb6~?pHegNb3S+bKnWpO;6S0n`)(Hb^sd~hxD&c^Q2e-=l{+96&tHq z(l%=m>vEP)`u@Z7YO`+E8#u|#$v}IKIf>jSd>rK-4pPv;l$)*9&YO)Hhnj`wIo$5X zU3ZAb-1b>QcI)ZLfZDjSup^!AR!($<+~;2Fb68RSl7;nIfaj9WWA$7n@z|!?XsVpR zuNmyOiv4sEu6Ux?TA@PgwxDw8iviGlWn%;tfI)eiErVX%aRwaZQJfhkbheka0Kn6v zIxUU(JhsmVDQtV9Mg`abRV^wP3H*;2hH zs%e8zoVX97^Mc1Uu}vD=U^wR8WIO5u6}!9nL@=+y9<=&I0(YCZY2RYW2Nu!OF-*^H zaXJG29A5^O%^Io{8`bi1+Izg+y?nU%@rTEcA8%KyKAoYMYN4Qp6s40CgPyt3LCq~^+6Ub6GsKZtl9pj=vMx(Ri_Ml^Cct38`QLv1>FMF3 z-KdH|ziz%Fho%sBlsmmUqO+4|Mpo>V=seiZKm%_@Ag{>sP8g@%^@Kd-RB<}`w`N|& zk8!dU*Mq%5K;(*n(jBec?`~D7;ky&UX!3w~jzXHHSg)dfgpbdQnr&o&v{U zOWFrak~koYrr2|0)^s_XK))Bp?xEgU-6ub5VI)yqm=*{3Qb+BAHHN>q5)m=nJl)WL z1E1^u`H}7-ddDPY%gwUgYHCHS!n2DbjjPpDS1;o|uv}%y@VIuM$J5QlJR#2?5vpP!mx_e<#$Ld!F0{+cN2)TeG?HX%l$ym3LTs0~Vl{ivUboP3V<8q}t^S@y2%-wl3FJr78h<&}%H`z1Vn<(^p)DI8(Uw!RflYNiPiu7UTM$JuB06LK=ZA z=-8W4@Rpy=S|$RrYKn}5eI(;YXe2sPPDLp^7F%+U0N7+%8v9s)Sv|oq^|C*c>Nw%p z!5x5HCJuq`77Hh!yz;j7E37AlZq~TFS$}wc{qg1Uo6k4TFSpzCDSKoEYsYzi+8@k> z-O^2s?W78^*c4`l7Mpn}rjEF*zbGgzy{#p7`146S94s0Lu>?jM8wvFx=-NPO+B>LA z33;#+V(BihlcDL&=4=e*x5i`QJ=v0}9<_n5=59}Us@8#)o2k5c6H}ixXbK zde>{Q%_BL}_-vrjn}~@#?d(%&)n-flyjWD`6k+;l5YerhVmWrGcE2ijr_zqqsjjhm z9lLg#A1$c5x}?11wdA&J)y-~NB6&S2FxRgcoDQdwt3RgQYn>F z#9)3M)Rgkd{pFV*A095)7YBNzE*y2X7xRK0he3qC?=!~boMRnv$f1P$fek~Q!NB|w zZHzvCxc&8Cf8Xo0LA8BeJrmJpC%5km-nY%TmMWf-#F8)%yX&@0jjRXUb<6D8J<6Oj zc^31nBN0}d4keiBbMlc^OWr@y1XD~b4NW<9C=5KmTHieiUnDXa{nZpS(U$-$HmI6> zX4JUP18ZGo8b)Jz@76wKVOtAFK}4=zR#lz!e5?Yi#netS^W^Gc;bgT_ax5oyq$qd* zzAQs@ZLC_KPp|K{*N@lyPzu2JN`;@C3cr7OTJM(KJk2{nAQtpZf>PSMVae6#g(yd| zkayXqnV{#Z+15A?ZYQJAb#1vBM!kFYmG0{(ipPyzSRVbGk~gi1r$-w^vsiBy!a&9{ zl|T-nBuKuZlyV``RS^&qhh+9u(`>}Do0@rbn9%ZYP2WS=yT6!!7Jm}(^4bX&aY1s; zt>#zEMAJ}$_QDi>F{8~bmD;V*s3p1L8NS8VWYiiB8p}>|+N$mv^=-YjDp!`J@~~1J zSL>redpS3~;_JK+4>toD8G98pY!0rm7+nrZMbuLJ;6i)FJjqPEDCrT(#juSQ9DSLd zB(9!zx@hTF1;&=FcGC>rdV6@>1`tIgHKr60P7-o(Sop2r$ciAVc!1nygB7}m@#z3X zbGox?pUHA7-XMYU4y1WzB$Su;smSG;&Hxf~D@kgWT*VSRx${5DXsoWaO&$!0>O`-a|tS9$Pol5Fa#=aZVV@ zL|J8#u*lyjZh3NZ;mOuh#F^hheCycKXUU z>pLAI9(_)gcLg($m;vL&z|J5RF|Bf%CWzSn@sFRkt7)q)8A$0ziU2rXN4j5^-`R|XJ(y`p@ODPOh$?9D;Zi|j zFuQ)G=_p{NBC&PgU?akV#iLQP7mLmC=HUQfKX^v6| zR=Wk?S8X0tRu|f)h7~?$%JJAOl4vKurboH-_Jg1EBT-(wT@bK+NE)w>sP&eUAv`@` zRbeKpgYm;@fMHQVle02;i94dDqM6BFbe*`97Xs5znJy|z#%*YAr6W`IR2Ii(Xy$+^ zXmgKHhySm*`TCM3@koFpQbjCl zPtW?L%AlN#`q_Na4+%iC)fFacRV!9-Eob70>uo$oi+;%5;u&8M2CNS~nyjhqbd4~K z$lOY4f}x4!GeWGwWWiCHci2D~`r^%zN`evv6{d@6{Ki?5_HKas@w=Hyp! zAYxej8?YSr-?x!oih108X(~yGCD+F%q6K&4M8>XvHm&ay)b?Nc=Y(O(HC)HNhl z((Fx^j3+er)$8@Uw8J!UwJNBc-SP{iIXi#Jm_V&aI!t(&J}Wc?lPhOk8Tpc7%NSVx zKR!MLU@EZO`AAfw+R=_J07u~8|Mr*VVoZZW4vrlR8pC0et-wCza2)!D;$@w|(FE4m zmQu2vK?~ic)mh%LRbuZ*VR(qRVcoZ zJFF;&Lb6(H7I>jq6+qpEnV%|(5 z>R5wu9Z0Mg+@8+_gO}6JVv?Qr(`~o4X*Pyur`=LHFP5k=W-AK^LB~@enLYLfAy=|7 zrR=~Qaoh$wXlaFNv(*kkSAvmhF}N$A={oU`9c+_}df+H>wxi~*q`pK!Y7mqu000mG zNkl3%@g&`JD8NbBsbRnr`fn>GUh?FV4xCtj*u?H=TxD_YGg^8`azV1;uzHZtL zVr#a!o4Pn3dxH&e-lHi$&W+p$Drl1c0}&=;Lug`k3T938N0p>0Y=_6QW7sfTrs&W{ z%7innwi_J*Fey9BlT!Cp0Cp!D1xRz66jx^vgo~Y<=C^(2Ea^T ziz9~)W)L}adUkO+{@dUF2z2KtI-VG89SrTodtO-a{PNnXj z-x|BSG2XCS*8%2ONbEKHY2SNrz57{ksmF_x%0DBi$kM_Loyh%Bve$h9s9R zA^O^hs<)k^lf;86FG%@r$uMhw1%<42nD=^6M-SP8LU1Ft1baZJGqPJkY3!`&%`Ci9 zTwvP_#!UxV*a(}xVk#2sb}+0BMkY~~HEhZv^oC!GY0f0YS3l&K>HCWPq0Fi~YOE%~-8&8vY(E;(CG449I@79lJ1?ah~rj%OwwQ72g(f159bq|Cv;n zJec1j6^tx!@@oz58T&~%gkdp21``dfM|Kry5|3(Uk_oRB#Q-cOR+fJT*0mdHxz$NT z@6d0U7%G~ubWo%W4q4n;Y|6JYcy)y(rdsQ>!m2|ocO~MkNxK8Pb;iKmikH1xaM+!Z z>F@9=Y-A$4C7Z#a#=ac00S}Hrbhv%s^0~NN1AuYr+UQ9Rf!FI77>sYw0eCvi-P6MX z*!(>L`r?rkZQ&2S8A%!h>V;POwA-uv<=5|SAC@lgq312b0&OGQ!=!T&hK6h$iWAXZ zeUAb7XnT!;Y7&X1{g))uo|<+W4eso2=G|RP%hOTE zj+jP;6tr}>h14jM-d=$7)H+3`{$b-!JqhD79fZCZkx;Cp0Njs^bW~QU1r$d|Z|Px) z6qkTxO%w_8ar@@o#eWlkx7X)v*t5#c;c=65I}EiHEvgQ(q;j6dx|C}XgqnaT?8ddT zT5^);A{b{`Rrmn=$U_q#eYN~h&{UY&8vptnp*<)M+d}TYaR81pA94PS*Sil)blb}y z={k$-LDbliM#9xo`3Q=^G#IAGuzxO&o+QUJQ#s8OFxBef->)c99*t{*VM4gIr5EsM z(w@wyci8J@bzAHTdSTVfViO-GUE7fw)bN2^5t-EuW|VDWdC^v zUDCm`v{-SDv^)um_H)oU)irgG1o;#BcGWA*Jl7CMaKY7pIX-=`jgtlEDaBV7+jT<2 z3`WpDR?{InO!8NuPPNC*?#aR7>EY3a`$L`F#q+=kU^w?R zSxv^v>0~vNHCjy2(*>V-zM9MOzD}0N385KAxV3r|V_|eVLi(VxOuS-(0Uj>A3dqa^ zV1979YyiW!gMkMdVriJ(XQyWa^4)-8#74-2abbgTAOMUggvl|G4Ax+{gQ6vXnengf zp%YKsEuNt0gcnh*CzXh~-zc+Qml z&QwRx*T=g8O!`R}fJ!p6bJVSFf!r6hWvFlvgE8DJ3vUwVHeQ`|d%S1RwG7lprm~{_ zV8%%`UNN=q`i zEL+1KCW{O}OB7X5zbJf>OU#-F9?6&nK$4}J$fZZgm$EQ&dw#XKe|_`%-NW0jUT4K9 z7ma%NR@T+^xfWvrTo*|ko3lnw>&*Nw&q_Fi}WrA||H=d1TLpHV3*5PsE@JQh8@OkU##j1U<>z@b!O9njJ-xmOGpByv}U(&jnhzquQY~Swb zUEnsfiZo3zrU`nk$0rAvvsRt3qc7!49Z8lTziREDp1we=5gJkl09}kKvXTtTaToo- z`C%a&D%jmlQ?gi+r;_8)%aT3sA9apS&$pZVS2s7W&Ua@j%x1$RJqZ8OXLmRs4`w6G z?8+U1-pGBeD{0CP5P!gS$Sd;<1vTI`jhEbH3{a1Ej*}>&jeno7?eH`BWx5$YDdR1))CLHJ-6Xz%lE2$oa z2v^}+LoNp0?(p@6WJ<@(8BdK0&>-Df?nqpZFyG~KCB~HVyK~y=dUG1YF$8>w27>W4 zke_3m01}mOw(wJNUX(+S_#)+%`;Z&Vm1JTw_*PE2Vtf#FcrFTYn2^@MR91$A@t{BI zqe@Sz8p^o+ZeddipN-`B3)*X+#%Sy z5>5H)HT<&80#XdKS^KZQe%Wmo8rmBz5diE>tJn}>-GLW<3c#R1v+oW<7XMr8=6*Ka z;rX8{(l|t!z~$;I3AD&ODA{COUtWl^P?%N<;MEHN-#uPGzPGDDJqq-!D>01O(oLn4tq`cP}jHT z*ALfEdcc)zczL$QNGGDwr`vUyTH5)O@K4S?kcvPvLUOEWaW+phB$J%DVMr{Cd77Nw zppURSp1&!ot?{7MG&m=T?tt?=ca*u2f`W$-Ew?ikK^JA?3>+XW0pe2_F#<3w(SyU# zX)=0Bo)cxz#zKvwqc2WQp2I)>8HUp_eam1?-c2P62>T~xMV-8q^aB34je{=*gO{y+ z$$&Q}M*_ftzOq`U2c4$7J0ZKJp#ua z7cEp zY1PlN%tsbohy<2jht4E(j}&tY>>YL#Z*Y>jn ztjcf>A zfVG1#ZqH+y2;Et$5BF(Gk6pW%BUJ&I2@S3?*MG1OUjF;>& z6sJlFvi!|Ncd#3~0a3q(=0L+DPXOPR5n55ftie@TbcGK*MMijW@ON8(v!(Z+!EqWveQ&7Vf08uF1}6!Gq!BPc zK0G=&INaYm{Br;3xhw%-5T*ou+s7~0?c;6tbaQe%efgrd_fl57aoFz^l?ehZK$por z^L>cw!4psp{mZ?-zj*nDAg-~xi`S!yj2u6gFR9%=5Nw!C+H;68Sy3)a!{aakgUhr` z7X~k;Aai_lba)V}P_*EQglab67TL34n07dz0A;<#$!ey9L+kl$vyfXsTtQy|ut2Yz zwVSie=4`b+Uqc}hmob)4qpsbt4sNNO<+e+=%Fl{TdsSSD_OCqY52F zXgMX0To>9HCGGa!`T6ue|M^w^1f&fPO`y0!!D>E#HVlS#72y^UC$zE7FV+x60RSfs zPM0f-U)Cy$j7@X@&wKp77xy@Tlo=Jdnw|Mv$c=DqUS4f)?=J6O-@bYOC>Z?i>kz<7 zB90f=XDVx2mF3FsjZMucP%Ac{UoK2(q`#U7#=TKfHNZtQRyM04Vxgjj`~GFP4oeWa@IRA&%7-000mG zNkl#^qdvv;Y+}Ow5PQQ8BYaFb*C!5~s`s8@>@K>V;E=Q6` zD@V^*_GQ_=kqNoXq3pa9FS&U0&ziejp7JhSNkec~uEw*=?fKR2;&KC}Lq}N}g~n8d z@=)w2*o?R_Eki(K9n(b1bXnGy5tLv!ijipWhe3{jWwO^5QHUP2SqzARGa&XD(hbOf zyIs$2v8N;7b#)}0)WWY&ng#%qaez2LUBu@@w4f{tZ{<7&!IQ@OrdP#TL$v(Szkrra z5mIl+>3RwQ8nCY=YJ_RD)^bhG1nilpF}5#-JuN^Gn+FxF%2O7IC6Ub z^}j!^F1H{I>R7N97+eTC{BYPGt#hx69BhxdF8~-4S~iIkonW+hntKwT{r>w8Z{NNG zlf(N;unGw%sL4<_Qlgo^?uHG!>n`be8MhuR; z2OdXdmXyy%+~Ph`iqSo ztVuA)YB@18@@1B3tW*VhY$D+J1Q9(WUx~UFN$OHnZZ;|aCm&~Zz7h<+dweBJ!VBJ! zk0a~i`eHO4h3sX~QU)|a6H42lQsf(Z^qB4oWiBTbs@*qVk7=A*CXY(`aI^A3$-$c zxdM+NtA2X=!WR0+n)^LFJb8(QycR$!%cU^DLNdK+u#~}^>NJle#~pP}#@*B1u(KVs z7mefb;ohKeFzuc)YviyHhI#0xh_TLf24s0nMDOK#wZC3q$U|D5NU1rGqiAxNap5XQ+;?AvYh-RJ37XZt%J(lky7k zDg_^6SWqW)A+dzZRib8DatE^hMO!!~U%60JLG15NI7$W{!;oMd_=$V)Y@J|ay`}Ff%fuWSM#gC%!Syk5JF66Kqg$LR*hdJA zOuoOU#e(C2LNvZ0(x6JG;IXn+fLVWL3&xH^H!kf80Eek!0pMkLAfk9%a4s@n`z>nJMS(eIJeg+UJRUfU)D&Qf?{o@>*WinSOv7~qiC2O>b^eVQ#xV#N{GtLsXF1Q4;vS|FH zBrNw1(zY%QB9L)vEgqRJoLd;eYwv2%o(wyaL32LtoX-a9VSCm&owSa}z1B>2vGKrE zms^kvmzOZC{X!NSx>#AClPL~mmI2!sZfSKJW(d)M60g>lBko2Y(F$~GYbD>7ekG{6 z+qjkcV|ahpZ0+0ot=atoO%(v6oW+Jzf)d-j6 z`fR#6pKUMZI!a_@4P2$DIU{6FqQu2mf&d)V=7H@;rcPisIDlTcFAJSrLFIMT+%&g@ zgXY?U(3O+hr>)9Zr!61^5EM0JAT9w|P7w^E2%Jj_F8eYd*48n^8Gyw2VIg5@x_lgk z;3cj)upc?m6z164*AEelF2^dU&#q-^GXTadj1VxbD+_{=P=Qug zBGZpW)!NWkao1|sg@Qt28Rd@}ddVJCo@1%l3ewxp2sH};=! z-9`j9v1%j|#KKSZ@xMtkW{MgafH9jc(EHb)pJvm6?u;-X2>@nB5+w(WQ6h2d=j2k? z#7ia=;vk6{=Z5yWjC+D!mz*2_`qxkAXDgThsz6o0FKIu*DvD0^s7iAH{HWv%7$(h= zgGqEuqNH=qRNW=n>5;u`TkL*N8m%A|iy(mriAJ15Kz#SP&-hv?Pv_ z3BaPJ(LMni0Kqp3C!9Scnz{gW%%FpK$gDSE|cyiGPzn2d*O_&9+}=`rP-I; zV_PA!D;)JX*%&V>Kzn|*lQ)0bI>sI=9}T2YjV#e23Lgm8SHYv^bT95GZ$|!WGpNn* zrN-R9H(63CG#5m(`;%*XMT?3xYV?eu1er7AoE&4fCuV7>DS>hB2vpCjK06w-q{&6+ zu}tZD3ePoQ&a7;CY0OXRokUdw!2%8f&w{J$;j>@Eokn!>Y=gEP3cH>w^`H$iYE8%O z?Q*o94+M#)L!I_%t98}U{=ps)7vw3xJWZpLHRB%4?X%UQY?0VNxrZt{#vDANtUW-B z&Zw;o*0Djlmc$pVcdfa{{FZ8Go1zwqW`l7DL*=$qa0+xA7`aRC3-py+8-Saj2)R06 z2>QBp-T92r3-ufbLxM8n>8u*^C=x?|80EEEXDA8Y4v{@G_k|~2%oI7bs@h%}z}y1! zIc7PhYq{#EV(7eMs}~|iZ8Bq#%YqHAwF=v6F)fM*!_fs#8xA>bTP@RPXpy92Je?+` zJoHs8wF>L$HVqrxzR=ET;4a%g5LE|X4@^4EZmoY0DfxWf`<$PBckI#P>k|M*(>K`Z zL)r$*c>?1m5Uc!6>JIxeI*I@F~{h!kwk;d5tl3ciyVe+i-BAhe&tth$an$U z=!$_mt~z2CJ&Sc`zG`CuY`m^Gk#Fi$&{uAekNR|nNeA3qpZ)t^ze&8SVWnNXst~Dl zur~dG5#Xn0a39$=&9*_pvgPLhlVC`)Al?EM3!N^RBMN7im&rV@p$vJOq zVbxl32`{qWk&b|$NfIm=Jfl$(gH%$Pa7>84T>0Ap3^G3Y8u<*+5Z2 z4Q5u6;f%-h;a9=aH8+V}=`4MAR|K;+yt&+5++Ii$+!Z_+_2m=wh8<1u%|U@xZe{<4 zR3ZdQZJ71Yg!=a|dxA;dMuOp!Lr>w{6FsK;o&qpE&>*nGevoNT4i{;?0n2etel`HcK#^cD?qh8>W$3tcx>%^9K&M~vYJ-afI5OXcicstd*0&6xo3)&13IF#-U~?x#|hrAOeqO@^XD zzh(Lo4fDA1F2r~S;Pq(9haVYn7;JVVk6^!3~~fDoQP zS{rnY#-;!mx`tpyLVOGEL&$o;mkxK{7d4|m1TR>fZrj|2o0L9?w?4G&)&&+=a+EDq zQWk;j)5eLsmb?&VhYk<+l~6yc+>#hhFoP z4eL5AYv{tsXXQ(Uh|?GYjqT_g&nbx7ctG}0a~MvD3nL@nrftjiEo1J<3IWn(77AYW z_*>lPZQ*k*Df9@0&!2#t8oN`tlZrkwB z02`l@fG(HGvZlvfjCVly!>|YQEqvontFiA0wuy2i*J}-lFd-)YMPUPhROOr9$jKwy zK@YR|wz_P80)SIX{#3HhX4B>U-hcJ@^DiIe8l)H=S}G*PCq- zu{R+Jh8Pxk0G@O z60ZY>1*;T;&DduVgHHt4OuRzkOFimk7%%1~bS{ZAQlE!d{lVDsS02-Z+w!7C{S)Hpzv1Y-&@= zOgwb04~kWxX)O8YiEkn4T`jY;B&l{cPbqXaCPazqd(IU#eol zA5n|x#+a3b*;ydp{@!!A0HFXSkAzn)oHs1fb<$Q?nVMDU0e83(GvjDKxV~7P}1T_UPhFt#{~x;N?=W$}=xH{gvx8>xvi?Y-i7h zup?uG&NA++_*<`Q0Sjl{RW)-Z48wlT(6P@Xn0*LluBa^os^u9h`5qc<0L!~fspC(2 zUc*_z*I~$<&p*^^lvyD;d1W6L)Ff4kHVj5QoBO+nj_F2RiahbOGZTl=Cv;)R0UE#( zU8x0DhhAO|z{;;4w~%v_cqxCbWeK0Xo}OJu?lna+n*9K>as{L$$lM8IJGZ{jZPC66 ze0{s!7zZ<~ultos#%h=VcoY>y;*)VTLleU?+6G$npr#7|!+-S0pT7I{yZ3^B?%LTn zc71#cKq02Vjx5UwEOFav8Of_{Ws+_h*=*Kc6g!;@%$e4ppzqH=e>3QJE`L1H5Lh;JS-O40MOg_=aPLM!GI9FB_g*R$tR z_+9H-Y=(lt1Yp?*b{CtA>$A(Ni~EPW(PS)30C=_4+8At6rePg{WKO*kjC~F26TPJg z_RIAsXL~jCX>^hK8160LW>cmy^Kv7sVRhPT442m{Ig(lL6OWhAb$PQB^c4(#_4?KF zY>A?}pt4H3TIU-zA=m7)l*3=t%s??7f*vQ37zE5-=cwC0q~>DDN?}BgN#CO{w3{1g zF$J3Zl7~t}oHOY%^droS(@$(`gk?#CiZcYXGLlh*XT}GA2OjHaYxhuq2~8R7Y2@P7 z7zqqwSjmgOL_ zmmDmrMvjG9NdOPi_nN2qjp^?8M{UeU9i6)LM@;DY1kthNz;<8m=zr~XLD!<>q?X6= zV7;W39mJh1|th z*AfU?l3FfWl@WcJ1j|p5v)Z=q76tmu0;}?K0m9^WhK!cT8tG}j_HzO-e#l40dzM74 z6rb@10@0a9Yi7(893H(MA6RCL3DjZ}Yu^G6CM~f@=KD!FEa%*$I?OZ`ow4S&ErKMtM>!MjOp%sKI+P~v5%(w90_12|`qGsid z1HDj}lg)Z|wwD)_7KHW6yCJH)un?349gA1LD-dNaPsW&GuFQ>t$ zPam%?x5&H|gAMiFH{~-lmeQvrPFN)BTKvp_B_0ykfItu`(z&dP^qmB0ge;j90{||e zOzMU*173tgM$S{=m5V&sy@9vW<=On|{_6bIxxm%k+q>m@)f@B$fH!BG5Z|z##loeS zW3P+^4xuTjg%tSUYBUpb6%j*S7~^0eny zo2yq^f0lLkcqe;cx8IY%LVhT@hqqMl4z08fD_@_>vPt5+WQ$W62JgC}Gk6LawNe%~ z{eSrGgy(^2JXk=97N_gg*a#D4{;bYn6sLKSaL?smXDL~iy45^^@4LPta$jpmQ!tV5 zCnPfdrn9-nK2-&IYTYE0NHCGu0;4H>>Zmkc1LIm1I#=&98|E1(QR?^CI)#}JL4+#lQ{=AN*+FPAmM(qJ(I{{NO346G&%siCLsV=qr42U09`l9 zK~X6A3k5`(#gIui_%#z5YD^6=M;tIoWqmkfClgt~FdD$XznoWjboQhK&3rVcxpX8A zCt&=xYokj3>d1^!D;G8ALG=MW^p9&RwV#Jr2_zW7<&jvYWLdB16n1meLdC_+-GA8nh=sxEDIy>3SfaSc+rNR*3wxWm~ft^4I zLnt}DHv^(C062$M_)gLCUj-eHvKRnh1wv?uf`?(^C+Zq zxkdoMCI_v9WB_15pobu-0)}UczE-$ zyVwl|a@n1mp zY`MOg%{_>Ipg^0;)G*F@+PCJnGp(vp``A_RSC|Sv6Uc;mKI}y$l?22BdXeeEULJ$P zPIuaW0RUF%J14d@X(Qv}nHWoO^(7ap!@{P#EDPn(Cq`A$UN~Xat3u5%+;zT~ zzlwf0AmH=|^7Z>%%4ji=H4qG5O-2h{Q#ny~i|G4mPHe-SQ&(w@@)4jHdx88HdsfCs ztPH@JMv*JY?q3_l+i0VD*LEFCa#^|Eq=Z=hd@<`H&E3S4ME=@KC|I~Z#NemZX8sVH zY`llk%?&CRYR;vX4E7cV%xUm0uN$AspP5N8-iGJj*dP+=AhMG#L?=*kBpmx;!_s_#IKeiM#yKgS8+>r8#$eD8kHkqNO_t5Qoji^A*--S4+9JnlC|S6 z=(}YHVJ&C4mJ_zy5!%3+-;O?Utth=DO)1G@I0FUUajURl`;e_f9`M(npKh+t1b+d* za$O)%_TKHNf%*8tWlJJ-L`M{6VM<6QJcKxc_T|)TjG(yjuok-a&dw&EKK&@4U5%L9 z4Ol_=(0Po#$@3#5ikPed!0c0c?2Dk>Vlr2zJX<;jTga7%H7&O2kYrSY`IH$KO)h?| zNu|qYQ3_eidb&z}-i~LR$@RnK?VJ1ShgX;PH+SzIU){eNj0chgpIw|w?s##1fr7I) zCah=75^-wf_EYdt0Jz2k)+;43pX2;@MJLYkdKQ?K7i0I&27D~xBG8d*ZE5Pzay$in z?;fvT-CtkdUf#dHmk$Na14;BH)L8H2oedcXYE&Irot{EA-U>D^`1~$8V!=o5<^mLe z5wshEvpswgW!smtS0YF`dsUD>!SK<^bDcbHzHGMlJG~=|Cfh7!F$5_^_^PxV+~PG3 zu$&leFV?74D1u3F z<-PqqchzN`IeQi0KJLg>hb}K>rEx%Ey?{w-EP3li6%vX_qn?T2AIgCaA&!^9-hwvd z0dBn^eS9R}6YT%oRWMkrR%x{9&%t0g99HCtRuiPWa!1x|Gn30nLRwO;kQ~FZSMG3x z7wlyu!93k*ug!fE+pcS7;R|rn`=Je)j9I+RDWg|+s|!Gz|H~pXdcAW2PDQ?6kv>oL zWR{Vc>DCs0h+I5Zm`Sb5{H(xl?8T)Jim?{XDZwaEhwc2C@u??h1_O-ssiyicy;kQV z@Rg9eu<8i#%ZWlQSMW?1bhi1BB1bECQgZ2RWJqL(637Aei1rqdYX(=Y&`OaHRm;=^ zl<%NmoBj$d(OMUaG}N-JClh0582k?wQTS^*L>M61#0=3#t;q#~3XYw$OW=@jK^3|TgK8DJu@{}-19?k7 z{`leT+gEa7>a0P>=@+V-HuCnfZawBs!49-l!jyWJm7?)&Qmn=zq^TD9^E5%EeT$IG z=Vt-P6^COd02ei26150{v(TTCTQ_S#zHS-tM7~f7&MxP7@2&-aFYm4|?yd!ZA6`GM zx0}JRe|dHB>h+xfv%nRoSduZLXAHx6=1k}}CvHJeerDO6-wXeQWPA3rONii^mIn~? zFhFD@EDfqUD-9>JMx2}3)%EV~@zw3a&Go~zrS9HS76)b5u7|_b}Y!d%q#ZT6oQ>UggrkPMNZvcNUMxdE)O+grT9%i?t#-&tucxHgniKaJ0KBdyzF2~? zg0FImJGc)F=1=%@>K1Xvl&c21xknpa-eImVC+_qBA0b+RMI8y#!-2kC#t@o_M--e1 zSxm&8Wo?gl&s|NA7z8BG~XJ-Psy@u!@?6|+Fhbf*=?9~%hvc&jJ=Py=VR4%e(W3_jiD(>&M%Nuim_V{d%=p_4?iO zi?f^8ceigJpk<*g(qK(vZvj>FGcjcn>zGyCoccUPb2EkAoNA(9k!PBRK`)O9LPe#X zqW}O907*naRL{9N5a)nW(D&XXpkKXyC0MIcly4rd?p_J{&R6rx`>R)PZg1{xl$Q#a zH-+=@yo=&I09XsumIu2T1Mq&?N98~{To{br_%xUPJlM;um0~afIa`d(6h#VPFm2-@ z*`#0`iqIH&CtI^NWQ^d9I6VnnFcXYyLAxHbLG-F|_F}rnMZS)_^h-kpx#$iL|1JyD zO#pAzf9*B}i5APEH0-`R(L{&_N|v71(z+{Q;S(YX2)U^8CeUXE%h9!jOl= zLMU2bK|KRSc{G)2sRW=U=%NFUl>u1szJ)roL`+>yA#1bQG-z7wra*FU*qh8JXy^*o z%0jXWt+>^8C1;huup#jT^eb2dYQDRj=|t~tvb~s}T`hH8DE*S&P@3x?`o>(Z)1U^q z=bGEAEb|5qRS=Hp?`Ea7O1UKl17-iOMfn=vx?Rzf&2n;qYr2j}V*ry&yzPtw~M5@iE``z+=IRKW1U8HJ`k`B`iR z^W5Ni3c$!{%@^SSIz)1LUSIA0``15B2J6@|V3Rb5sH%&JHaUhg5A(qcz$j5FEcsWd zX9a~>41+t=^cW7>%CrhDw7!KuZ0oSTk9K);( zz^?tdEsKh+xl)pMv{?}dq~2tyLMP&M#VMAlNoM>x%?E$Dlni+E>h-k%@ZH;ohxe~v zy}5t<`t7@S@8-%+bUGKUL9SgpV8oW-w8T*kQy%26YBt z)x=#)7*>*(OSVLjeehtn!(##p&h6vHo3Cykzj`B4#m(c5z_5HY$>YIDMV9~g_HlQy z^Q_uZl#zrl3x`+%nC02f!(yI1HNH=CQo)$@9QUS36ci zdQ)PTH?NXD_-dZ`yJr<9oMX@2_5g{tJ)>M#I&NeIdYB)8SOHoS%Pwgrgokvv7nL@AhzstoV}lf8_%nFU7lB}~!@$0tYQ zmPs%nmP1GO@eBJp2O_|1X22*?t>m!Joo2;Z&y2nVQ5N4wzp5#SamE_o7kB5(QD=`3 z*P)>G?rcfZ3oe$Uv9PZ#R>MqVApiqM2^DUHZncnHgyT#Nsqt;5)QA$%E z_c{2_;xqI&Y!*oAPT-Hcd42n@fBr64qM`4xmxXOJA^@i`q%Qd^xddIyfU!5#j!>m(QBk;4DVbB<|`nw{06anW*OWkN$7+qqnkBW%P# z$bgd=OCyve1gZMebX4!PWx-U@Qn0WtS?7MwN1L*s-8M4fG}GVr&VcM8HM= zm5E+qqKRkS#P~5#&L5n8c80o@4 zc$iOzhQZ3W5*U_Sh!l=zW2j4V;s~m(>)l+?_v~`LIa}Z&VYH(3E9>w%xgRvY^?19T z0(HoRHaz2)Y~dBJ0$iU0unz)F+5)!(;FV3>=9MtGWVhrYQ`w3ca4uk$GUlw*ib?DO ztC<4PIN@lTjd2(1_)|ua6>J<0W+WP&*b4IYI3uncF(*ZvgdTPZ*+Vg*0d6@%RBR%% z&}C(C?J7B$B@5wx+l$GVWqzELG<3t7gmEmI&3U9RFu0htF}1SWY#1;`78|0?Azl`I z_}ofI8@QAiT;+R=40yLI32{(l2OQL90*cKD=i`oo(w8)d5u$>1{Cm&+qswB9nhFM^BUie(hj2A@_EH__gkf>3hhHp2>(kMPF)9CcbdZ4Gq%mq2g?Cxz|2Hj$q zwO}eeisS`=<;0sT>ZNJiL7!N+#D2%}%qA+;rMlBOL-D>Em67{OFdp;=eZ^yiVWUq& zMXTLuoid;74hsA|AGGNRc%aZIC5Idao!AzDVAPUe0tV#;2nvqjo zn)r?sfCXj8OI?!wY6d(hOJI01FYX`uvF(!BoC*4FVIL-^f}A%j1c5QD=PP*jL8oG` zE(2a|=UpYZMW(w>KU~%c&!e?Gd7@uEg<_hfi1z}PO4?!RvY;=NtC`clAYu-uWsQ;|YQ0$i zfZ-Ai3kL?8j2Os}V)48NvGd}0G{Dyf>eej8OmZ1N&&9g3W45nY3Ml&XZ+4@H*XQrQ zxqtihtwa@PH`}wDGYKHxe|Z1+_VMQKX0=_-HjCF^zkPV~aCviid#BWBlAAP7MIdDu zj63?Hx<`een<&5>MP9duBo(|}4is_f z7q$?J#FOaL#qr^};Wp$k-o{}epWlr^d}VL-j-fjZ|9Eq`eGZJnyL>q}=IGM!oS+&{r~X0bngGZ)Vf= zR4`aM&of_Y&8yQv6(W@v<;`_V0A5+pcGmicOX?gT+he}Vj%l7Ak%i*3YB5@28I!w7 zoVh-^w2HE`q3<9wpPwedH5q4sF3DN=t6KZ8l72<{8`6>_Hhb;bGb9s}BlP0qq%yl< za9Df;KbXdGgqK_x;Z9D>K6KK{#*vCq~%?#c&EFtW;lhqdMk)<79>! zH4i_5Ngia?1OV*rgv~v$MuEY*-R$50{zZ~tpf5VX@F*;uLfgIrfV+ae!)Z$p!e@Sr zGf#uWoM^%eib;caN{Gu6OU=KU`g(uh#R} ze>7{PuuN__R~c}h>5IpC+offsyes=$NTY|iE|yhKQg8hRhl^h^4z(AD*S+24^!Dxf zn+Xd1 z(UaXhF*yH_zk)XaM+>|CRZjNNUtzZg=PvWtT{9@@q zkwGAbS552U6lt;Xx2?vLq&)JQcX7s`E}9!RhFx9sLMN%9_GJlovvI8SDS07!?#0_s zLbbPwUznJc`Xiu5{ftw*^b8+Q1`uARK|;+eK^aw6A9rj|bgIxdIY4XK09ffE7-7Qf zAgT($du$f?I^|Rr^u_55d3{U}fzK>>xmeFIJ~Wz+koa0{8LkOsY2zWj$YQ~}@`f(R zJ0L$pcN(WrM5#Uwp(l4JSXn$iy(2JNgs@=Dx^8HU$ zFF?q0QgkXZ=X@onyqWx!i;DEUVXKcct7NO-DKAUP;A-Z4F$!gFsfHL__rz$0DvGak?`Cc)8%v=H>VH=8lPP!>5jzzwn$;g%D?n@!2N*|3awt5;eB<5s43_J@tgI~9Oc zhw}JKf#m=E=a={I9xT|`9xxai?e3vkb4FW1mn+D3X+g++tv08DLNv$KAQDah=2$SM zp(Gb)3EKRTjz4~U|IIhAA;qP1XcJPv&{9!kji-EBsj^V!+eQZd++Vlnl>0_H3ne{pP`VwQC9S#N~cA^MI! z-(__IQz>Y%pzR}PXN&WzjoiwM-rQZty1u!%xZItc??z)u5gM|YoL{U_-GSxqG-Rb_+E`x;($Ux)Ago$?4K<$Tka!O%&3zy^p_h+c|xpJb~_Kp*L5m^|#BO z>1>aY1lw`|4r6uqLO{RS%i0le>lrm@fv$zYV$B|nkx*MM1bygI798pk(#=t zq_#T0YeE@rdcT$US8cIj9IfkY3P)azi){|CGL@AyVz}=YI)+^^S=$Jac%H14U|a(H z?N;{IA?*rQ)qEEK%z@e(0A~%XJjO!+HhdLumDE_fr>%B7Y>Q#X>1Z)`N^kdW^0tFer|f=oNKV!O*h|)FpJ~3oKs0nCL!fd&H*WP)I+76CCb{ULQ_#lE^xu%tE=^=Pe01Vf^He+ z{yB_94Wpcy3Hn+m7zv*~2Gti9rEw1Ecek4WfOT9D^vSb@nvxj?<7A*N_cRO#DRaT$ z9NJN1GxZwd!~+!6dod-&im`s<23mssIvMO5@8fo-v48Y@Fz#fEzUNOCWH9qC({Vni z)7K9klR_K}%{*;+5Ar?s1}E}`;ud1XdCJ*8otHN}fZ(U|xM$juC4r8bOze8=^TFAL z7IlDsZoIhgu>#o)!Q*j1D9FrNR6%7Jy@R53a@GRxEJql%{643%3`gQyv*Tv!)4`qg zJ~7%8+`XY9kd>r-qN&$(lkAXbV-YwnHfT{aR)J{aRmrI<@F`H5choH0OAOZYXQq^I zlb{d9kEkI@tl4RwU`#)c5oH+WEl9`DFcZxM)e^|%)AC93eaV*vaaA$nPz5vd@Um-C z`YhK0^WetmiPfvMn=O~FLYirI8?m_`kl)v(M!W;Cmm!XUpA2RLu$omv!!lhLj7<5i z8z-F4pq#E>p>=#=L&Vk#0>)gN%nbF~0y0r#F`N=c(c$Z%%$T#xnyBQ{A7-ZO{{_JF zsjkIDSDyNf+*g5_3}-T;pB9|)+uXX#B33cc%Y?Z5bdriEA6egV_EXE=b7G>DF2|S= zIBV8324!gsXB$!vvMn96oLpo^2oLraf0C+m1%Qdld1Z_z-zupr4WBw4!50W3g-m}j zH_3`IMHBNut{wj@Cc52DG64Gt6SB_$;K{5crn+qG$DIV}{#FOzeYpnZi~H|?f4_Zo zflY^;WXXVKzov>LB_W+`6@#$sez6RWW=ht0F+UGag{jLSxj4141ZCBG+e+WEi^-e+ z`R8xnzrS-TRtzJd6UVGOEC@NO>u)gLBaI?n;r zU0hW${AY+vwL&zGf50>7;-0-JZ#hnK+J-JyvtGX~yQ1V_Gk1FE5Fj0XKv^;{_QB%N zRi4GbTdh};I;njGy8^2Lu1!2S&z4$XF`jmEu^mq3O)+Q|JTQj?ZWo1m?FExY6kD9G)~(4D8@Y3)Tv~ zDQaK~8ntDueFp%;j6qhXEm^rvD-8!-cSkY$bWplF7+aETTYwh1FI*Fpcr|nMbxQMM z#Mv?euv~kn3uz#1=<5KSNA5xw!b%EeGae)b#>=eumsmK^HgRPX8i~liel#NRVIT*sOhqNz8%F{65BnxyBT3X9+1Du6vdCsJB zcESlf!asEzsFZ~4r^Zzd*=J{p@gQdg+#&?Pv36B!XO^t1#z&aG07=S9h?co#07gI9 zGfu7g?gN13Aph@wpDr(Upnk~eG>>}i6M!GA5pew@n09yJX`33z-00^^_9?nK(b4k+ zRjU!Gp_oN>0L})55HXPdK0aRk_S;7}2UNGxb`n?SigJ1d|7HqHBZ~>N;%ZwPN{%k( z5ZRA@iGjY_3APzR`L9IY__U?C9bn%cn_+XO=PK zLya)D+ikU{%MP5U;ev&*4Ae7JI|O|tiRukoiYq8?PdqLJu|UsH$T22`YM%g3?D|>K zfuARJ?pp1g6?hP&a|4k8oVlC~mSlb19HjNw`4+@>{C%ar!dGsFXhT3_4a2xIjM` z@?caR(Oa`^YDl&&Z|>;jDMhRI_hf-u1?DrHl!6!C$XMp+vcnib^@h2hA3`~rM&JA}43lug2n7}( zsN9F40*cQ*cVzdO66K5&N0RkwfNm1J9KsJ#mvKR<@rzu6i^9&+WWG%W|0i|1N?mIi zlDW*4V{CVp1)?dM5x|3igpO>csIQ{@SQI6Venl(tC_WF_zV%veXq=I+l%0+Mz}VDs z&lpb?99?WfE##&OkVypv*_fIrE9vP7h6hFgRZ_)nyZV3s`*XM57z0a{>AJ1sLANm! zfYgTZ39OSmWf^;t&4_``-KPc{vqUoBCX)P-S}_oO!VS(!(EGCFOaJxP?*)c+PRZhU z4kJ;NBXi|EJ4{7s^n)`ieig2?0<=hsIgd)i}eSm#(zb@{&b4*u5c9AnUE z8q-;b3u*6xVJe2sxuY=)1v>tOBfp@ek&(a<2VMEO={KmR*lKEQ+)+(c8$oc^L~{}V z2A|@k!Jv*ofF=vntPBHXL615;elEDyJbihpDpy~?i2-*6^)PPW>Z*R;cBvm;v9U_# zG5*0#bcjmSauqk*2dZuz{a`IYg9!yI1xZPJ{WhAopjL(cv!=WaTLQiNdtbbK@de!) z+?64r?`i9ptIPSj%(2LX-c`ep(F&eKX;4rJo`LNd=_o-S1Wh)44px}%~FK)e8 zVI>QeBAKpv0W&3tp~z^^Xcp+C=aBkeqcXAD%psFne>a{SaMjNnT&^}hm4nXXyc0`# ztm zX{%)0!*D6q%#dtq>j$uAL_YV9XssauPa}MRL;e z=`aI83y|EXHp+|~A_Diy(qGfbYeI)o0T?n^tK|&y5As6+;C|@^dv%(;0M{PLifq17NMKbx!H|8dH)-Z{NQ9>8EexPmumX7=dvW_FV4NUWi7e z7hOP;Eo46>;2$mpQ0Sls-%rw@z#WnBg((o8#qf> z!l~D)eaJ~c(Z?YMyjEO-u}T2i;b; z1>99%bO}8|Ktt_`ESGiAHOdth^dseVpeoJEZN`GUGscr3Es2yD5nrAgbM4kNS_gq_ zkCI9ax$v1S1D4CIi>X1kuuhfX$Y{F+-C9+dJ8y0TW=`^FE&OV!M$S_Kx_JaM9@)?K zIP6b&RF1Nt38SOkTLWMwJ-(TyShbev0^NzkFj`;^B)5n_y@zVjl7g>L=tSyF{u+J) z0In#bI+PZlZCZNK#icga%j=vN?1@4uK+TfmMVJ(g!WpS_e4XwT^=JLbRNzE4E38oO z6U?XwP}&SvRJBcBv4gBtMC7c%+>yC2=y3o5qd*N*_H%4KLiZ70B_?42!~LN$jZyEl zA>d;Gu!&GAm-7DZ>aRaPNepBZ4<&T88;63y-S*)~6W?ZtShY~?aOO_%yz=S6Q!XOK zcAP?O-1iJMYU3W%_fJDJNQW_Cq$(SnoKcbl-`<`<7n;LJSwo*K1J4dEYw;qa=_O^K zE;{^_cD~8St}m9$v$?Fzu?L=oQxj~O^f8hk8ZE{p z#umj(k#>r{%%_MwODxKhA&tfZz)nXmfUWDvg6L9s8#(9m*@OUKLh?MO`IX6)D&52~ z)c^nx07*naR0>|k&-JaO;YBdLsI69*-k{f6@!97IgU+1AFXaKxasyaW zVeR9dzBoEj{f@)qFLMSQ=DR2Tp3VWQUe!o@)MouFC)0E~o2VwnYz$Vj&x(cVkW#C{ z7eQ_XYdfP(TVC2GfT0j6Y3}x1E}=CfIPg4j$LLpcRwu$baAJX{eOq?g;Y_V*v(3}C zSTjOrS<)su3%40)6t_iMA?HK2f^)*%(xZLawJj(ZJTLs$JBZ*pCt!~5Z#NpZ#S}rG z6U|Eq6&YE8`zFR(($bv9t=AKqDO0Yv2*7YqK&C5iKzGAHGRqy!fNwj+5~RT&A`eDc z8`w;6tqE@Ap)V={l@KcV)v(uF8GKBYu4Pz}b5fb(wi07O3n}R$r8Sky0O+e^wCn55 zn>RNSHzYTUfcya96le5m;Tjgw-w>X}LGbxtcbVj5ZBlUp?sD}8n)?d+0!LLLr+tF4 z9~7_Nzk3h>mY>_@sdI;&)`6}4u@RMBg=5ro_B-fTaT4Yj0@*oZHGnS9B|SvQQS9_! z9!ym%#PXO1#yrx84-X$dzLUpj<-B)H(R?TAB(VrrH#Fge%#QS+GmQ4={p{_0`Eq3o z4gg-AYeGzIJ2oJ4^hTUuVmgf(wiwf@M({}%tpJRjMXr<==D4N&=!N2*wTg$O9!@s` zG`82CJmekBO&7ugQK34kI$M><`=Do2Ahhmy(J^I*4mj$<%ke`m6CzhJtuEv+?ii7N zi%PZrYS{bgk_+_DN4gAt5DNJF zH$cT^w>zIf`T%ucR1}ijM4?CdC6Rnv@jPz)lDMFm8p>8~u0@xNHpU@HU?vR9e?c}0 z?r6(ahxap+S;7d(+hnN(#1m(y+*7DIDCFE11!pR61U;=sfetbfrZIeimN0O4Y?>SB z3L}5TegVocYP_gCef#a3fB*ZJj_N?aL=PAwtU>R1tZbNd^?n3#gTi`@)$Nbo{9&$dWfrwsTiB+Y~qxqHe`Z?zfc+6>O3 z+AJK!VVD71m8f_{U~q-{+1|ptTt>d6oO}=>V3@gNs3h0Stf>kO?$(5Va&5 zn93g(U4+n_0&X#Z2C)XEY%;e2x=4a?zhu?PaW5Ny=3~fkCm-h=+>}BzMDfy9pKAjX zj&9GouId$W3`*-Bb6CST>u)cEufB5MGpn6I+rUx_SvtsT^l6Y5$yG*;+U^MGz5on^ zHGN{M)!0M4+v^;4+lO5}?FEmI2Bre*7L8WIk;qam0fFIW`v49Ta5fU`mzVY)aL94A z!9kbR>8cPk*k6c2KpEgiweQK9Q&wK?4d?wVqamrSa+t07tPdDFpBaT{bRAq8)UcMq z2#d&Nvt}XtG^PUl{z*k&?$}1b?NL4mq}QpSptAL-5ZH@C-`C&o)U8uAM{6{hQv zia)PsRK)`P6M)??&MLjwjPMhBTT9Q$ zt1Ld_bo!hjoogqNR_eStB+y2fVx(0Il1O!~bs~6&-CxOoEeVE%c!}6@-i)tC(0Zz) z6is~HW+T|-nZuqdOJ|b)3fzAD`2N$UAG?CO;mqA`?)SUL{l4r1o;uei&=>`B@`}Ci z7{n@S^`z=BILJy^V0clMve9tSAB;lD`TrdjKvAeV)Xb$>DPPkDYZ9{3Y6^M~8i! z{0I~*u;^l3t)$LY(e<9IEp*U;k)~+jI?2p65ncd06(j9EfYtBLLMfw--FQIeZ~**> z*`dR5Jbxav)pCLzJ-#BcWP{#>(S#(CpdPVt4EgS0r!!dyXFE8#YE( zKvutbJ?1zoj~Hd%P!)8sMwuR!Q%{hm>;X@$`g$n`^2cWdVA5Z!nQP&>JZ%P7%fbf# zaQyXfsar!|E^0wP?JI}2GZ4#q(SP;C91QGGi^us#?dM^qK!@C3!W~FUZtL zV7K7MAx`T>avirbepKTO=Mg48Y+w24^TFulkn6En4Rc+t+K7UG@Q7lW ztBuZ$aBIjdz49JHp>w(PZJG?M+~YUsa=oey#!qPhEJ3^VLKsMACk)cySyM@d2Rdj= z47M-VD`sFFo7#?w>izP|cfbDny#O%$Lp1|#9rR<65zi3li{e|G1!n*Tjf0R4=MiBr z!Z>mY01jeT%i7Wn3kyzRj${?NLyRQpn`|H4-JN~<*N?mN8Ij^Z!G62^t|I%`k14CTi8nVu; z&1Vp`cJV2`6QALX;UDm{@kl(t67)VqL;2^q<(C^ttX#5+J`M9Ll#x{zI_r3c)^v6< zW^X<-LQo;_T0-h!%SW?pa8Qsqm}rae@TR;E?$Fv28-hwKSSpgM)3}c03q98Is}M)4eH_laEmOa8S3zs; z4#-d-@m=F1<4gg1Jyt^Hc`{a?BBZ=CAMgduD$sg}qn0};x%-&y<$eCl&Sv(FrlGye zk(*_a%NXWC%mkLD938kjpp{D+yMGshlfB{z6 zMU>>*H_({mUauousK;jmQwDA0Hp=^zq6J5K@IzFgH=7}w9XM^WapcpI2>}>YELr#- z5n3TO2LLxt54xSx-+%k@$A5e)NNjXSb2Don4$NA^;_hZTc?tjnkXRdF)(eVnM&+tz zmZ^n=M^W3i|c;@4xzRFSsj7aAhFal>d+rI~Ur?S&3t;`jma# zIzcjqVy)sbLDfW0s9(04gSKAMZGC>O)C90h8x5yI3js>iO~7Y9I z;-*mpVAoFZ^P$H+G^*lR1S3XRJuX2Bod8VprPa)Gj z*w}CNJExuIQS)TKalEG!xi-ag5_M_daSfZD)zx?@k*GFLv}!^Ld=Okz2nJQ zp)_ZA)%AK{%b}O~F%wqsiUG;BO)$39PTFJ#oN%oXo0;8mmIKgBOZFO6*9wnM>Ch}D z*Pt|xPl4x*$9P!YaI=^ZlX%^NgQPd3U`+&ACCuXNR+T$S3KhI)iYiT@uaX{ZTtUzp z7g7;YHyt8O1G}Z`b|OzA%V2ec5;5=<7%Z;>c*aZ6?iVmmfqwcL*_viCOV};sVmNIN zydfQx5B;V*UstHk=qqrGo&|d9PYG_hqdyBPDxQsY+h_MzzMy;(<`V$FwbfzEKLkWw z10e%&zt{Zq$FJXi_dx*I7+9(^fH9;fd^H(|1<$1o&VMcIMY2no4t9b;3d?zLz_6TY z%!82u>y(tYfsgl0QRqmL;J0tDe*5iP`KDy+5diM?Pmlo@izj&h&3l+oinJS}J6%l0 zsCb1Js9hP#(%E6zMopp;qbZ8PmkXXMJO^^;g)T!z&r|=OJ3@Zu%r^(C;%h za1kEWnRZm6aT#o6t3Hk!DPX`b29f2u7zZIM1>MY<;Xy&dAQp0cbUl$PvoWkLs~ZhX zlt^V6Ftqf8#Oifgq>RX$J#~&)!AsL;Q-CE&7)+WAV5j~o|Eq5%X}>$eV^t9aD==)x zl3j99NWfr{91S@QaP+h_p2`W#gM+TyXGfgH21YZu#q79yF;(4Jvd5*qE89XbnKB)> zB|n}|`m=FQU|8jD8i%b=_Ne8=NPjg0KK$b7;O~HB6t4FVzND!lGUI0gx;jE`D|^&9 z11&1RY>cDJ8$ua9ZT;Fb_dwp6VX*ubjz(D1^;mEhgGP(pY^mmZ zERNH~$HrrpdZ~FCHgGjM6`p??qI%QdbLPfaPE82FDQz8)^&0zTu{0ov&eJ^7(*pHp zE7iH?9O*>`fH59J?W&p*RvzL^8Fs(Iq6#`dt;0H@DO-r?fNhvTx}FDwFfT{_C~qWt zYpZ=MOCq^$ujQP+_JL+Uof9?48@stLPO~ISsrwziSqcsSO8KSZ6>Cfx(rS<^n^WNo zpzaDf94r6;5CBO;K~%*$lhI(25EI@2NYJC$`xo3baO%n(iQbIA1|-%qVY%uomTg(H zc{4D$WW7wF*&fEw5i0fsVA29=(EFt6&`I-VEjAZC1GZ^kx#lP1-k<;Zy{l z6y%2zn=1xKcQ!a&tTKnEPa|{C@#3F*sx?Rg^=H z9? zF&HOU9!Lv0u!c3`kv1yhk$gpWWX`$1pL-n9arsLzyeMdU>l8I??$K0n{+UF5;>R% zEO@B>k;?fs6Xm=V7=h{e+)7m3+_7lazPTd{Ioj!^xvb2sJ zJ>&US`HD(ew9*Gf=_aHIdDm^kAr`-1WjO2d(bak%E|-W2y~roXV$E4&V5gUV6FRnO z1z3f&jGYdIPn&{I0k~Fm%*E>9As4@dOiN~Nof6`14S*R#Cb^*)a z2<)hpgYA#`_ady;utBH!;6AH=sAD6gMs^M+HZ!N<-INL*R1>qFXy5etbW_Fw3?UBV zkk6a*Ma!47%Hg*dQr=Ywj<}Bjq!C@S$g9ddhWP>Zc8c8WA^(k&%rB+yy`~A!cdXIphYwvM@hwJS<;X7uw#* z;fD`*Km72Oe4^7673q~c*qUK*_>nX1BqWYqcscn3bz^FdBP-67#<`K10VtWUx96%@ zhCt>fIRlx1CLDPTJy~M(aN45`lZTgTq@j5jXtFW~`4>v9Ax9@`!6Df!fV{J7)m_IY zs{*U6c{jB+%{M|c1eXn-ZGYXHOOkrNSX9aA5IGBCcl zT3ueRndO&blDJ)&2E{xW?^A6vE*DTM)7&~9DYr*d)J08H67Y?JOKHbIi?QqoUw;BKJzX^J6QW*>*qF~njnT5>7Q*=z| z+l#_@rCvR&>M(zHrDA4*ZDzV@%BVDMpH2@y{dtYv#oP;&AG}?svY6>qua1FAB%-&c_MFW_L0kx^sS(zRDy~6GTy7;TE|!-gcYMRH zr=`g7c9K0RTrZ)Ux4PZ_=}ikFi~oOfSv{vzYvW{hw#Rr!VCy z`18--9v&`{ccS?UO=d|(O|Z9BqPOHill#6nEE(j;h0dCbknN;;FacN=l3*A!KLRq&qY>(y>#sAo@Y!oJHoCLHD*I_Hk0F zJ-zePwiK43>ct^U-C#Yzm5(svNAQxN4KHau+5VgWoT*pxml^lL>&sjJ-fFj*hD}>BV2I{T2hC3iQr~m|;z_2`;erq!{QhOqNrv zWSuJHb>qJp$12lvGFns8FVmX|z+|gN-T3pfPk1(L@gdG-TxDo`g}z|at_!T9BrA{j2dyF$326hsj-7k*nA|)bgC~JfF{~<&js=D#*=@Ev4IO%G?SprK*>jA# znJa*wGj35A?*YXam4&hQM#EZ0cuc|VL~X;u1w$!dVWEoM+YYEE5<8DAy6`bjk=}Xtx1b4|)>Ig(+~$va`GQhM&SSRux!m zf7G;hiUW3ifyH4yw>z_8=bTngq_<&jK*e*UJwjjO%9ME#OJ!ei|Ncs!KzN@SCZ@+!KyE$(+ z4x6nLSpvh_k_eAmi2D7O%k`f7(tw*6C#u)LEw7Eu#Wnrc^J+cGhQ16N7_|sVAo}*U5|5?72aSn1Oz_< z1R3<_uzUIj3KkWr&1U3I?lJS)tk6W0fNEk|^kb={5&2)qP%{9t2b^fbrO2#a2(kkT zm`&Qb-pf4r|5!fJi)boD641@wHw6;F*;Y`FXZQ%Yv>*7f|{mj}&_) zC{(n#XW@=BAuI~zZXbvF;z}4%%#zIQ>HPEPtA}ygA?Pj^UGkF&#;AFu=&D1`GlQ)f ziwbE|wfj4w{n6ZPwK(!`5;-uOMseFt1LGT`*Q?U9=Aa@gnz%YOD3`R&*B-*r?D~51 z*I&P#oz3LJmdM)eQVf70j5kz21~*B?MB{kWMG%G=T-qRFvG$uw&?qywP17_ts#U)e zDxRa!DFE0oSl=G>gPO|olqC32&i0QV-+%n}{bbmIS820#q`bVanrF+I08HBkN_A2v zi$tfG0vcsDGT2xkWXWC(9@E*C&Iek`@Q# z0E1-_cRw2h2)@cn1%EbrE{l#v^AM%+Msw4Aeoty@goJ1l!gp*FJ zALIk54Rv6@)2#Xs3;_}=W-p3pHd*Mz@=VLhEbdYO*o^3oOgxr%MKze!a<-UHX4BDR zJQxnz;fL75a&O>(XC%kSj2(b6TApXpqsrIeX3a$w;xt)brIt*gA>i5E635sOTlLKz zQK7JC(||b@DHkLXX#teygM-gp1Olrz@?^;4C9(Q7WVZi3b@z{60dI4gD|u?6aZvB&>|-y?m2W zVd`namxb%@HHk#;#FmFNl%Tr|H&zY^adh3)SrcP$nykm5-y3A8e1Z+=k-)7Du!^#Z zkA27Xns0HsW0oldM1mH@mA_rRK{Sr(g&S@4eaeGA(;djEFrQJ85n zdNK=F`tf=6DCN*C)^DQlYu1D|&kZoJ=UF%2Aw90#FUU;L3?z1sc!)AyGbn`Yy<)jUBV zI!e$dNP=l{SM69s1+$aCQ0kiH0mWsS4hNkzkDU;)QaFCsc_zZV;^gfH{F?N4P*%>i-bGDMjx^7KsgNj#_#3D6`LX{3Y0l*o; zv-2+RWMY@gY#E3GP=Tqq?=WURbdGTVEgoN6_<2F!O(A&emvTOpHQSCRYoC*bq5!99 z)C$isP9J?tz3t4h&YIO|6$5~se~wB!AeM$vtHR38lhAxBrqtBIUM4vgmm9+%*?KMu zRdmH&DEr7o-mouhl45MzQ%n0odRf7SKg0BKl0+Yixf(G-Fr331|d)M?VN# z@37gBTYxTHOF0*xNdH}0eA9V`u^tlQTyq0m0;5Em?b6h_$Jtd4sH}tlQ(VfWyznWa zw%?FdW$H?1{&NO+kAfjlw3(fqucDe#{JKHaVJ4TA2rG1Gszyh)$}={fGqL)ay-enF zgpw9$qM!0P0L~L)nFB~_9*%!hgRRvagWWdm<65;a-#tE3gVJ~JZvXS2U*uKXSj{eG zP@m9w#h5?J+8huk*}mFPw{JhSW1`m54-3{!=$`G9@db<+OTGXcF!c!!&7 zAiGq|1+QeGQK~n{qf|Pi0jlonv+U^rUGXTr-w`2(}vgG-8KHJO) z*o5Jy`7z7jC0u~^_1Q!L*j^fJ?T9TrBEiupTEk%qexxiGFXCP>RbnRso zI()Hu1Yn3*QOc3b=Meh9OOJ~SMRh#A2Hq83I$FHrQ&~&|wcruwqyd}GAYt54(Cg^% zg+SNWUqAfwpFhbt35o~CkdO*X4r_G*CAyGN) zFd4|*->e1F%_ zTXliKBZ$Cw-J4ZtQ;i^%2||w?!kLF10vNdVL)Q!>^?2LMHX@Hc6 zbOWOLruE^HlbDpvOU0zDwyf&Hfx9`i1(YJ|MZsLqce++WmRFm1vz!6rk^DoQN3~Cv z!JdC&S@n#;2cDT7?h;ah zklZ=WvrieSnayfO6g<{WOwT`aA^QMbEmYEOHhQiZX0rYi@<<0HjCoYcHM$?!Ugm$2 zi_ei&j6)U&%nK|4ZB}%O?r$0CL3uDX$|9ptt21W~b0Tnc$rgqeY@#JsO2JS<@h8XC z9srzFGePO92xw$PC)V;l^PAejAc~UOO|B1+lRLElJoNuvzCcoHU^Xm)M_tIfvu=UE z^4bU`R+0z9G!)X&cd5)pSR#v;!=FO|9}kmvq6Svmc~*#IIU4&ZAh`(9rR6p4P`1j< zEbT;uGFN%L^#~=TY zZ%_bufA0$bFfbT~fWS87!GLfI;AxO&n2K8huxU^?sG=nRJeo8(DMSEv6Z;r)BZWJR z8IBm;HySUY5iLuO+Ydi{_2$iuyfL!1;pT?-rr7VT=rT9O;yl5aNjb^wEOjIdws|BQ zLInUD`p%;4IW(HFw__=_2%;GQnC4okr#8&zQVd6p$eCcU$nrQPF955AL+;lQi||%! zb&Q9JFCQO0N)gk}@AvsogeJf=AYy7{3`+4^~Dk%R=K^+BwKHhQ*Jb|o(cfl9bHLpD^tvfyCv_Z)<;qRttoPI zu3CQ;WNB6@nD|2W63?m6V7o3h)trCl;I;vl;mR&?Pl}y>$C|SJuB>i2*aUcLcEjY8~#zioua!>}~Y*vFHAmu13yN~WYrl?&L6#$HW zQi`p-M=*ASNde;;6RPxjDd=q{0V}-~rk??P9*rP!11SNzz(VLs(h()leWbN+?4d9k zqv&_MB^RHw;&TOL3i49iLK!w>I&|NRF! z$0W-T+j-B3^^%pyY_uEIot01T4` z9lY_;Sg1|;eN~)xMWsuZg|zjMMrb(9im@W5rxh-7jLJaBNznJ~ zay_q(v}TzLqKoy96=j*hmzf*~fPN@hR{Fd6tpp-xS4#{QSD4aik~m7rh2#tn<*E^{ z@+fdFWdnn26>P6snfVtCmaUH^fOJA%Z>m-d*sCWTRXj|Ge>H%`n$z$!Wn?9x2^=J0AP6}t-?_v zHk2J12BYxO2ld)aBu6KHHaZkk5DUY~RDzbTJ^`@JeT_`ga-v#SKBr!$2{Ijl;LUSB65^H_ z-8-te8L*+9KvAc6)ao2yj0Zd>m(@!6M`QVl1KvnAie3y(S{u5H{E`GQyuHk^;8~rj&^izdQ&lI31ro1TBT0hq?#?0Efd#K| z`MmO}k!Qm^7=(P1v9UAIyaDNNB)*EBi)3T!E?ehQZTcF^7odXs%n{uJXg!QGtplxW zo*uZ9IRtsXVyjpa;wV!w)&yaYJZJQ42~K!ROoH`FG-)a(a4ZXFROU|zJY+s+kxQsX z>#EMk0whopFLn-ToGDYF3Bcp!5DWJ+9%~9~YrdVUxPa$jz{g%J z6VMpjD6s9Wv}r`7s`lKatUR34k-%Dz~Kxz`$VM z&w?8)FSA%j0M5`GU~H{8%Vhz;**S_0Q50#xv{GrRUQ+;gI_bOih%FUu328Sy8!T7G z?%*M$Z5-~Y9E)Zqa=M`446K!PezCr~-r+HjBe-R8I)(W;%> zl*Br*f#72*asYr&Ob-Y$nS(*&-Md>!g5?0pdzN^j({6y>?FDm1UoXXD-d7GLg)u3Nm1C*&2u6X?tB4dA5E(q9y_qkeu5^DrW$2q5Z{ z0ALDkWEEx4G85M3DsHVZO!Hupk2rvo|Bx`82}_}5nRMgiCl%xf@XM|NhMpd=-c!3+b1-ZiPZ6g2FMEkm3CQ`FaoC$g(6!J6~WiT>_a@AVVM|LJ^c8 zQy?X>s;f}dJ&m638O+X)!R)^OBm92+bGPgFM%DrcL@*c(dE?qKcXKmEgWY7QKWyAEe2v3% zVHFFFd#cRnz1#5kZ9nf1EuuK<#vDtu70?7VsLRBgQkLAPGg8eK;I-`S1eQ85-1Mpe zCp@?fq;02nH>uc4==J-w=Q+QBvJ(trB*SgDxxd&4$xQo>x#7lvx_?TBtNX~RaE)3cSgSnrNw4pqUeR{=}{f8u+-=e zDUG-5F6z8HZ530=HW9QM316%BN@E)W;7!_n0RJtDa^DR+NG;qy0eMg$WjA*ytrjID z`^wQm?k%n%O6w@5ioFmgUl_K}ZD*I`ydX5xxk|KDRaQ)bo~>Q!0S|4hH^!v*50BSA zm=sPg;ownBj_S+Q{nRUC-uHUriN&N0MGqnkmJLPhgSg1{hab1$@zRW=5n=5;OD9Ew z3qd%CR_J^8ZDpsk2f(+j;_ak4g$_Q5GP8$xc-j~S-`+260l>LI91YA<8KT9`LQ?=t zC7*DP^AKTqx8C4ZlLe>>6s2`t zOpgItv|V<=J{`yPkYCjVi_Td(!{<4q+oPnJL*>Dd4e(HmqWS;~mWbo394)3>I+Pnt z$_juzZsE{0!^w#|49@>8jBuNDupek&h-04tcYL&Vh^yXecfYb#S!^<6O3EF6cLT>N z3x5mL0bNwq1)J?o_EkHr>H;FN`shiTH^&`oJqJnQGTmW=cXU_$r+`;t9(pF#Ifm5b z%asYE5bG33218#|RI4MWab}5uij@F353e#Xml|N`p!&6O5{#(o;nc5icUMd$dqz|p zT1Pk_G^Gk#_UY|hyVRf;bFpj)^cwr<`;AyY^^%L_)=YZoGN&|(gh(%XcTW22K?yo^ z(ZXi&43?d(G^wc4_lJ#iGsLY&9?YYG5THTcq>O6DyvM|8BX18?(eth)8voB zNCVN?X$;O>I6dY%5w2@GJ=eDL%_yDVup@Qa-KNy<9}e5K94<`nbGQV=*vjHgfJ)g&!!4Q+>_Kh$yC-ilC zZJ@q{0h3Qm!qRp>Zj&=vrzuLn5yX)OiVq`=6qn1qpg1J}+*a~P1K^*&elP$&KYL{u zj0npx&$o02W&vrqYFFZ0{j{^|>FrPd9@SoT)H9CEWGYn4kdoJ851qD@0l+GugR-{l z$^YxW{`~gs-2j_w>$=Idmlwu^Wf7x-9x)-Z$sE{y=R|uGGusE@n;};@;Hv0@XOGW& zzp$y+E^YaYhU|FbtCxPOeB-1uttv44$KW*kuFn#qN{P4)h9B4a2iJTZng-PpDNUqiT=2cCTxF{s_wh#Wi)!_N7&`T`FHI5LKsL z-_q#TBic%}R}Y)_i=LvzCsV4i3`f_Cs$tIIwxuLgO!}rbq=ys4DN?G0sQ}n*_F_&~ zqe`J6tT11T-UWb#kpn9aiN8u)dS0Ud2c_)Lyik%Y0xkh|9b5W?N_aPRb+9Yl5^I~* z9AUQX1|1aQIO+EXipB#GmKwkXsz+JPo9v5~W^8o)o+A#SxcJJy9$=Q)3S1w~O}Ee9 zBK!CZYYD#1%!aiLB053Y(ZFQ@-g-J;jK-5@U4)?rIY=x;m!oXb6t9lCp&}IMbyH04 zihQK1w30fSd*g0(`U|zZZ}R#&fH!s$Mh*VWUYZTQ^%KHdRoB?m#VX;9C2JCC(hR;__3WW^bFB@XnM@c!?79HP* zhwXp=_dmXTd1Ih;e)011>g4?Lhs)7RFf7^}^EOZ(8U^3G=u_@YPNGCVYtmoeaPU?@ zf<^wY>DZL%e5yVIV5JipWtS@!BT3*Znk+EbUXGFA-+udScY=bfDx$@M5oCe8X-?_g zeI$f=78+P*)Uq)9AZgt~2Pes>u0KlumqS9hmF958;;;QGWs2>=dAl<>z0dskoTA2Vnd)>U2_ z03104ebc_y|9}~!=s>;OezH(4BQq})Rt8=h?69_$l*LxXKPoX*)3;Whna%__%Y%+< z>9`x8*!C*P1Q8A%<(r&XC-Jq18BlVRAC@i3&ea<$M~`{{eB|r_74G~uDw*iNdy&JK z#?E6P5TIg$n`9vYB>Lwj*Yc8}{TJsiv_eGEN;FjMnS$Bxd*~~w!NJkmkVd~IZMD3@ z=>=d+pp89~)_V?Su(Ibvq7lzZCraTuif9551Av{M^`|@;pj?Vuh>pt_Nt18&)0F2_ zqG?w};5Jm4*%XTMs;R%r)G4~N*hF{nM=tL&^fe^Dxoc;3J5%GUTC7#)zLo&6mnEmv zy&J+68&sLP=y=G|$SAO<4DTYOYL#b0-}9HJr~hK>@p1n@|MTykKEAOld%4Sz2i*D^ zsNy4+GfQ4tY;gv5+493;U&uErZ8yTnoM(=GriPR>Tqk`4&jA3A;<=|KQj~svzBUs4 z=FKh6ntueqG{t?5+@`}NV}4wvAaPNLff4R=1>H~FJheL$hkfvN4n!Iy{oGC@>~-;Nk_2VnEQUe(>-Z; zsW&>@N5MMjRR4P1Dju|rH5VZ*be&`7g!@MrTpyQ?G9hb?1c>q)NUTQdW%~&d!+oo` zRQ<4OyHNpnXbRn-?@T6N3V$XGuVL^u!izd@dS|^#!fLiG3?gT@o9Dy5F``3QA@8a( z4MY8&JN@cF1Y3%%!1V|}OGC}8QHzrk0KX2KSi zBPOpz&Q-Ta&Y?2&=mZKyGq0no0Pu9+5H86s5Nlfy4yr@n9|MH;!*52xSpbatk}bN( zM0nLe5obaj0P7lqYCGMxGH>sYqe(v*%z^{JiZDtq$!0u>Lg;3~MK0Ub<=MsgiLGV??bT*T@XtTLx90``Q-VGQ;56a7B1B8{ zG@G>@{=se`xNLx!&@~ifx1{J7=78hI&Ul{R-L?qfyER~(4d9t7IRM%LGZF}+XWD}%?@oen^e2P0${*Wm1hBP1@g)@18(n@+q-40{YI(zX?u9w z=sy1lfU(d@^xft)Yk7>+|K&Z5Kiw__{P}iahdFdB8wlCzXV;B6U9SrdRz*52pI_v; zuWp1pA2`wC&JL!Bj*H@wF;_?Sx>IHq^rLB zx~F#jCYHx^qrvC$(s8$4Sm(g52h>cm1UISZTLHK>ec=ryr%3J`olr|I(^h_-T@uPwh?U#?+}?r->sd#!ue684=z z7>L@Fad9cJzVKtYtZ-#?BAq2`tWzQ^po>EeQj)<83yBFtbA_FHU2==m_Dk<4H?|{? z9A$B6O}=SdJCDX`r-k-jsrVLE$MhiFq!er6I;@pEw&2S4(@W63^k|;^0Dw87fFC5m zjPzjcXe9XT>^saI-@kwOKmX@HUOzvLt}YFIZ5jHWU%b3>)s_7VT4<~#?cU_FMzM?_Z1x zQ=n$wP|Ybrv>0ApF_om_L6MYlq(4ON);1DO@57tS0QmLWn?^>Jz1E_3d#UxL77Bos zIHLNEMvt=Wywa92H4rf@CmSrpS+_UaTMrUY)^9EUD&kkh$Qn5vNQ6|H76Z=vQ44dY z$>2J96;{}8MIvC9)g|!X05~y^31cM|58!-A`{0qyJtHCQZb{cxz23@JRU#hvLRWrS z!Cu#Nm0sqLADeOXAa-fMh5=m);9&5|&Y7(uy{uHY6K1CyS7Gp>yOuTPacf|pVAt~( zFn6u!1Yq%CetnU8=FZHSGiG&u>AApsLzBGpp5;jM8v|GccS}5j#y5Li*ke2vsQcaa zRMUqpuVz+mGjZ1~vKBhFcf7udE604b4kJH1;wgvXY%Cc+h z_P_k{@u#2OZPqiXyTN89G_>zj1{7ig(jM1&Lu!@dL&=iEQn;%Ug?&J8-`_pGK6JY! z2RsH<@>c)=5CBO;K~!)TUq)pi*fos``=1VXA(_c-A{1rbsT6ZyosFjIG#aAYD>vz| zwiO;#%<&&KZ4wWzoUyn7aJ7%%Y%XG|3w5%{Z_{|{HvyP`0f5zV9^A&)fnM*yV;gE{ z@gVYVAZro>Hi(5g?jME}vyS!x#?1rk@!HU_7t9d5ja}JQ4D*@-_U>1Dls_s#r&uf& z80@R(?Nv7fW&CL?(p>*k>jwg0Ep2Z2j4HWrH_pLMA+Z3st26IQ$Y8JR{09JBu``3) zBKxl?PE+tw)v84TBO_(mcMNSW6BmaX>DmQM5bbJ)*J;433ih`ExbwzJTgr~728DI* zJK(ZB)plOPDst7e?gp0k6-^5dZUYma;&%OH4nTyba_yM1_AV||K%pLy}SyN1M@#^>0hbm4%!d$8v$ zQ!l-8$R05O7%qGNxMs=-rbV@r#$nod*4d;b=qmtbd?j_!)jxcUO_lHJIFJ~tJ;&V9 zN$`)h45$pEK74rmpa1#yhx;1?;M4Q(40jEEFD~0;t*xx(o&mts|Cx%hul8}IBP2)5tnPX!&%efAv^lg$hg1 zzDEEoJhsos(AP+?dIy0$nUtVWT~5bXBw}5uf)Gc(8gpu|G|)}k8BOBJt4n?z(F(bq zH5W;LVqprK<)3ccF8Py6nw{B`|Lmb)m+P=sa`2(pNmjckSyjlAvysS$buBduT&q;L z@jrrl^A6REjpD6KrR+^(FzL9)JK&}XX}b=9Go{$JAhc`~w;B=$tM1^k;o2H=5l zhn`YZZgYM0^AZ3xV( z*LWwTNfwrn%8>bg7nu_{edX|s3Wi$vRf$-Cb7V-{@YI)f{JWxfZ8MAdRMJ^=%e`EL zLVw|}(d%k_!d0d^!NGtBMdrQ(CFj{IS#5-Sb5Tlj8);2360zF|(lk{jCtkxC;sipk zUOb<3{&g*`5SA48d*U|jHp+MgIJ+^mO_)*{NY^Ry@IuOD%O8Rb3{<~a;!9Unb{`J>SU%!0ZtQVBl)5+@$ z0G2tWVAwB@RHX4arD=7G)SIvIFf|KW^3~JMmP)VgkJ0jxnn%ZTB-*A$;&ofTPt|dl zreIf?Wrnm3Q`lW(ZmKlhl{%6)r!h#2f?#VqK;H_$Rh^`%q$>ZZeMe;nRSc-5-NBzC z9oYd`iAE7>blu~K{6wO~W~GXfDgYlZcLM2N z{dTPKZ>-<##xH@^oqlZ)~1gO+G{hZR=Ei!j` zrQpKqViBWdg|nj21At@LsiaY*UchJ9Ff!fGG(t-8nF&kPoXdaBvCwKTpU;^>VmE;r zHIIn2YIqrw$~@K3yr>dWQw1Xkp+8X6)?svaKfk@3-P}&S0F#+T{xgO5%VK?sFIB6o zYR;RFLq}1F*GdLXLhQypm0-X-6+G)1UzeMi7wHZ@7F;(mGF{>5av?F|=d;i;xvLc5 zbawWg;g*5ZPd~l;@BjYi?ajV1;IkjJ=(8f6#u>(B3Y zZyy(5-!6aqy#Moujj!FO=f%$-cVFLc-aXH4-5xIYo74Nl)h}P}u6I}a%>`SQ3>yyr z6YMycU1st8nVxEvnP-0jfNdF-fB*jBw_m?LK3s=)w2veu13vd&bp#-C{Adryq?{o% zb?G`3#0SwkU~^TA{sCaVGW2vZ$J)QGcb)UY@g!0$d)BE_PVs|O!Q+1vTHu__>&3_-hlLs_#=Vs+ zLVl`SJOJQWX}<9Xa2xklA@dj!{brQ`w9x6qibycK{GfsS%=Q4gUgYIl=BJG&LcOgRqb3KthWci z#mBKHWfCzRU~r|O>T&k}F*1wr9!laX01kK-UZ(ZOv^<}0w0rkCg_70aNv-%P!l=(g zLnKwjQ$ki<;G~8VkdH$4y18|3vLqwQIG&(4E{58T<|aOY)<@92s7UA~RA|Mgv+q-*Xox>M1BY%e`4H zP!R*bwgkWsN4vqFfBy9U{ntOQ58KO&(;r`cXY1tj$5$sm7!_{nbfnJS1i{BD1zA_j z2+iG=(g1k5c=glQhp+E;uWu(G9w&yuKfPQ0@^Ss^r=4B?`OWh4MgJF`d5ZDng4Z?+e!^_l#z(vgEnq>~6z^p|jP@x2(Zy)OGKe*N|1=g-fK zS^>ba&t&9%ky5NEN@WqnB?XsC1+KL^nK>g$R}v*Yl+hV|GzPpe0FKOt$1sc}sE52f zJS;=2SPPmwV6ER%;a{4bZd>y43pT(8IZZ zg8_152_gfK)~$4~0j_dtc11&1&d*>B&$H$WiI}#P)nIJkKCty zrU1Bhg{y+Pd!yJ!__EzIbU57Xu!)-fq@XQQ55`@QfQ7{+~@j)oXH+Moi z_mn0M$JPs`OEmzhUSmCV3V<2&V7Feov&R@b=)4}6g{zrHy@4o*=%&ICYD}*p7IZSL zR(}QT;~4_IYPnVJn<3<*+5;Xi;5y5zMz1ys7!hPHVK-$2i`ABb_y@g*sh9ToUAGP4 zr(Rm!D*(Ve2himvg_`Nnh1zbXJYl(DM`gTFCrv})%X z&W2lgN{8TcRvOGJ#S3ex4vgyaS7aO%m-cWEZLuO0|OTo2l+-oJL^Lyfy+f0yk-2fd zO423$Um??)&Tg;?dZef?DOmC&+nIi{;>M`cK+#k^6_c>;d%Vi zhvoa%Gh0T5KfY~EVh3RN_S#*x<)$LC#4;FmPs;FxHl~XjOFN00Tm1h0yx0RtT25z%O3Wc@`x&dCktBUsz#e)lp|5!G-J8Sh>;3)P zYx~(+q|duZ+VMNdN9oMD_zo&}OXGamH<|NI)btVByq{sl0~k)vBh9 zENabjU@F-Gwm*~W3;}F??r3oCd|2o}S(q7I`}jm$c1tqv=>cJMx=UaV($DTl8j z^6I#LudDs7jnrUQ^umsHO(xX2%sL+ur`i%&Rzv#sX{qr|nQ_I}HdYQ<=0pRx4D@GhZS7z(J^d9g_2%;S}fBF6A|M>U6*#Tp4b$Zr@fX^>pw)t!~ ze4frvW{XqT`d!v7WB>4O$FpJN!^8UdZf5ZJc({7H9=*P~cyoJcVEp>#>gndPt-I0l z{rK@_{BS+8^?WzIznks07ZG|97Tn#$aN1HT9=Mgn5pp+;l}{zHlR%keZ}M-yefs?A z{cZ%Ut4+h;s5!ZmEP_o#64A{u*R38~LneT0`2?s-74(W)v}16) z#&Fj#_~G4+LGLjDOWUlrOBz*T9JVUTM|5F684QFt0JBA_>S6(KHLktt^*Zob=h24Jx8ml0y{+ceE0l>Iv78UefTIgd{7v=5> z?HX7b^5A}tnNoHD@NrCvNU)|;)(K!LlMdXHYd3cQz;$AzbaOiaSFS1b!`s`QQo7RU z0a>Z&tC7&!_f4nBR+Tijp=#6-Cp9h4li! zcG;*fR~i5}&~+HL3kL`0HkOkEa(wz_K(1uR<+nqdvm(NfTb3J=7u>DZ98r|^e^Ft1 zpAo`?2~??p#7cF>ufW^~;I=gC(=J5#F2&&?Xaz==LbrSt8vq}M3-pb0v71F#+YJHm zAm8wtv{(!^cyQ_d?u$cpot%zGDGQgbV*u{wGz3~#3@-jzTVj`ZCe`}Gi{wogJ=i+v z`SYABGp_Y;KB*VlY-UVKsQl9KI5E?wo0bXAqUKx7T*TYUaH*dDlxyWn|2lQoaG z7?1Ws^l${O4l?P0slUng%(DYW&Kd*Newq$%E0G5ek zMc>KfL}3QrL;b-Hq<{VEFUEk^tNGe|3Xxt6mPxY>{AF=jY$K zr{@VSxGsYH1?M8M9M^|SfnJSBam(2 z)x*<(%?$Y3CFM0=TbRi91p5=0`j$2nAEH+Fz z8kDM7D*&$0TQT^Lz?eS`46`J{iaY07@vDO_>zjq{!KzkSLgKn=ncCJs>0OK4-Sa8C z4Q^RwWzi$21YHBmIM7*fIa`2XY_x5C%0}U(2n8`*!V9&@zJD;Y%75fAG z#MzUfy%P0wcOgT^g8?w;tA>SKw1mDnn-mqont9F{ih^yK-CW5cze=v;!ohREnfws$ z5KAedH5{BBTn3|q_$oX&VLK*$IUtp6C^n4#*`96jn^ZA;DZb8|AOMyxbi-YSfNy4K zh7~Prk0O_2Fu1+dqyXjYudh=dqJ4#s7{sz;&lvDO|MAz=a&~t5^5pb;CV(3TPfo53 zx10wXSQ6d5d^Ih#a~B^h%nEnLvBzTB)Xuz`!5E|-k0HkXT4Lq1K{gbQ?9QR>@4 z>6@=lYN1a(py|x#sa`^V?X~c7kUf9;^zh3s@9YC&T$r&dk5oDZfT_~C5aC?DUCfu; zbKCC60{~WQMw=(U(DIRt>F#a27G>u(>)K~b+o%sBtk(v>hwG=!<~9lT=Z)6nr@HbFQ@G7&VX1iQ?9i3~3n+I(CD9uXXQ!^|*F< zd%+3SMNfrgT{-BSRS{N7rhEUTx+U_cd_Il)M#N3(hxHz6yr(+e5k=6dn(mmWidH+t zUq_&?+tAPKRAL;_i=S(ixpY}mi8aXpXy0bQY6-?d)iTjDw9mSI?%ww$iX6U6mD|wK zFfyZx$YkxgNwYu~2m7f;r&w~ac>VTYxt<*xCswuMbWky6G`NiAq^;^b zUSk;i_Ot2)A`57?P|EVEE|}Ut2!OBqx5@p%)B%{r{Dd$D8X{=%1ir#4d5mVr|0U17)=Icm(^qq=#2q0k1C4oX+#s+>T~)a!C-J3Njm-E z{4Ao7>|68u@1H+@e6nu}^>$pb#DL)g%>KfFrNCo8baYkI&E!*ld9G#CnPSN2L8E%Zg` zBnCWa54WT|yPP%51~AvN=9cUey|RGldZJ!%md%B-5fi7|U%8C<%l^?om+~^;I$w>2 zwf(F;!{C+Y7_Jt(nXTo1ZVSvC)RqN@+@QkJ;5O>W?$UXRvTY~q>h-XXA|?Ft;NiZ> zxsP`P!q;!EZ}q1eBnyCfZhCaxrc+iQ0WgQ3$gH0Raa4t7ZR?}CnI-t}agqV`xLbPJ&tOJL@89jsF7b0C07fS!K*00E{m*f5nIj?rT5S+bewp z!eIW98)Tt~VWi7ig>LXaK5y9!qi~%>3vCOsYq$L6mk+=F`t|;9A7W|uwGIrPGZuU< zM~-?_@H|se9-&DbJlZ)Cq|wm#etG}Adw9LSZ|bT|1T%yXIz(7EZ8oWCq;X_~lIDJE zS=&8SKB|`yeP6y8J^xgHySk&7){nz#m{8tCEH|`Rpj&T1r8>rqyu(V>mv91^b?iO; z*BiqNq6RxDkl#b)uk?>?(I>Wl;lHZhs=993pVqqwF{CIR_mEK6=x?b}CoDBy2uQ0! zTcNjdVzE`t+N#D|neMT)xI&(6w}DXzjHTu^5rM~0)<7*akcPDf zjq}B%_GQ&T(uvG37!kShGu zXV{_jlCdZmeQY93cdRm!9a;v!wgkYSFE&{2;25bv_AUG8KmPi+fBn@C$kEj)08A($ zhLjgqKen3f^c5{zUzcf3)dS%8LM4)^q^#7VrnE``_Jea=s}cD@kD5ezdvy%J%hK33 z0Jf#*1-Wwoz+@Eu{`(h5aFa=o8U{y7l20uoN02Qg9cTd957)7dWC^m=zo!##+g2mN zcTekw*W0JJ*LQ|nMUX`#1GwuGO5qp<@?jRu@ldn5w0l-sLmK+_a^%uxzh5WU^pSH@ z%sOP*!ID#S$CXPg0aHMP6KH-(x}?Q=LhfNFBz7PN<{`WMv|HLT=v{6aY&*UNJPUx6 zC2t_UV6gwXM3B{hvv6hI#%>SW7AvhR`HujS0{bpghX-wJNv;O1<=R&s{7HyAxSaL; zZ!8Tag&I7n)18z|uU$oQ@SB$z8x((tO4chIet~dfJh`+507H36pwrL6LJ-01Y+$PE zeigMQ#@UxdO^VTRCu2?!?Tz0s@zZkw$uB zRe+Tf+&Z{fw`e8ha(epaYJ8U-uurBI^okqT6xZ>kw2JDBZ>{pWxD-N>Tt zfDM3OoqXqE3@5fA!Q<)6CWM}yEEZ=1V78|!LGx1^&{|lkQp#3O-d+X1Iso%YDGWF# zf}9@*o5vFCs_MV^R%#%4+>rGZnlf9AB-y`w{`~ysKfkw~3a_{O3TFx0r3_a&$JKd6 zyJ1#nvKGnd^SFwTk9L6FO>ZB92S2_!7!Ni8RzDbDj)&KWFp6^Y1$O~LXQBqi3yeJT z>pWpApqX_kv8y)-S61Sl0ZMaqe8EL^f`js=6LNE8%rZ4ST0zkvqm2fAU#RV%SIRVS zd#oy?@)oi|?_xazgZbZ;ZOHarYx$6|Nc%7b30YPLhoxIAoE8kLGF;aH7mop0#IXZl z3h8D3_*mXGsB#|@-}<=auc)A_Lc7O_Yn+4rS50wcIrrZO8t`OC4n0y{(D4O;^YS?- z?i%2#W^m-Wy1Q(_o;j}0D&Y=_z*+C2Og#r;2WLj)QJCl1nWza;W>?M$E;OEjqLRy; zJAhuk+i|M0${?x$01yC4L_t*Y@Kgf8J&v?}=i$WF;SY_a@<%g;rY&BSF?$8wBcbBe zMTydOfBnhb>f{v+K=#O4e=Y%{SzE@`f{bxzOYc71e)x3%`t6O^GnYwuyR9_37y!6V zVn|X8`r1Y+JT%tRioObk)hH?p1kE9|R+P5K!e@~a8GY!egnN<_5+u5|%J+ap)zUW? z41FJ;4*+oF2>CrD&Qi||BWQR(&&1DVQ>|b&{e%yhYN`GV8$K?a_|~m`j(vqeSgUGC zDU@`D0h7mYNXLJw&DR+KEc!bD;3Ax!=R4DoECJY#w{t8k#8dN-K7j$tB8nsi!zTma zuV3CzCl?pzFNs1j^u>r{G;S8k4UiUR@}*janE5hyqTN6p?}>_4Rmq5)!d{DaSjU)X z!t6V)?EYxLb8c9J0c-Jcv_B@BL6gnr=idXs_G0Z*`}ya0Z{Ob8w=!piUkQMjg)=&C z8v=WQq$^T?meY8;nq2uaoEE1VuSMTZY*EQDxHSwm=mmf=g|?rMZ?4J5C8~ic^uC)O zZnw8%yBT?g<>V~v0<+YtG$b~cLSMCJYWt}j-u8al1tDu;z^XhGO<#di+;q?lEe6pW z^>ih_ilQh@=rX{=Ee(U`tFis;O49{^_r-sz!aRS9@t!iXs{%E}a9dpCwdm!1JGG_e zv0bR>JE#wLyf%l7WdJh3+ClrdUULk<+7Jj(xw8LX>#UzI2{eSz*X=^B=htquHX>v; zGlwk|8*ku?j99-MjV~xTqq{*Xg#MW&XNE?qx;*(P8Ych{d3J@t);#yx%F~53H`Do2 z{Im;pOC#b}cDfn8ytw+Yg_|n=-R0Ti>B(pke~tc-b9erQ9GHvCSIw3F{N(cDl%Kg? zkx1Gs@%+O1*^j3u-`me@&`ceySqVJ4&6Yx(Xv=m>Uth zeVT2zl*aJ_;B?uIF-k=5uvPn+rqJ!-?jBa;`FINrlDDoZ>!Ja!`Kc5$r=?8S{5l?= z?(XiddDRkF$-1Z-U0rA9IhA?8l5qP}V7V2gLbW$YMe z246ygF~L9|z<^l;lD-5|Rp^vMqlLCD1r_!02}hDChXJ$Q{?n(YuV3HVa}x<30PuWy zW&m8`jZbNp2!M4K%Gsny=k;T0LKA_~^yBm1Fqk1=e!4T|E-b5@1Y<=RK9Mb_uT3$b zc%Y|yC|0TZ76|wU3|P-cg9FMjlxwtnE8)9fbJ#uRV3M%2rWW>3`b&Xs+(Ur3mxYf2 z81D`+*ifW1n&uy?{bW9F$M9;rZl7xFA;g0nx}qNp2G0x&yfJ(%;{t$tb!o<&(i$27 z9>DE@Mt8s3LmUuN3XnZxEjNnWvV=8?;JR(YBUH#sYV`|?Ggc9sV`L_7<9_zA;&V{HsqEq6w$2GXM zGl-o>Smc}f&fpxNWyAsira#2x_|?(+VsvtT_3HBK%-F!$x!v0M%2O0=JDwUiKBh7eRUob`clc= zCbC34YxDMD&tRW|Il~AZ2b}b@qVL-RfXhxrecXnW-nHfZqy&wMl|d9YMQQ^Zl0=F4 z0>HL%{`&%G=NkXh1p^*-=0zGNdYY}-(SQN4T~KnWSbjSzIm^Gk+3oi0IIe;pcc&*A zd&xN=v9`1RkjHO3**Uwdih8N}8XLZA*$mkyj{If^9%N862?lG}rO2PSwP>!t{B3bK z>SWI~cqexi9t664h$n)qKYHQQU&11LGmr*t5^T)?Cd)O;K#@P|NhT^GXS>h z+dlH_r61d^4a}}IDn{NJMNF3lTTCTI)ULe=!NvX4%$DtCMtfx~D*CUdw(_XxD!|eE zF92MdM1276+(lr(U~pE~WAN8@PCxzh?%lil`Rod3%GNy2611OTPQ`$2*`aO+JQWw! zazd3I#bJs!OKtV^skJ7E7orV!4OR_+{qjC6tK0}$&0u~~verhkhRCrYtMi0n-U48S zy$%$S-LI*F)?~23C#cMy8b2h=U0=9wnpc|T?1o47xd+N{-k9O3VyfeU}Spqvf1(YG9Lt0!5O=pcgZ=IoXDz&rK;;ym@4Iwx4R-9 z6#(Xi$nA^Q*!fCksw?A3co)cZsM2dcpDtv?actm>E0&?}c6S*;ht~@U00+^QD!rm4 zNR!cSiam5*sj-sAwE}RW?@|H4FkoOfi<3+B!c&OXP0&gh5g74u~sru)4<-qwI=+c`Ld@3T9ZfuV3n!WZma`B1HfxyU_ZZmXSb_bOLaBCgT8BY z@ysgcD@xFPF!ogv4tiSO(gX!`HN4b#@XdUAn2L!G_-oS5PEl;=>l&!l=15mHfY{^f zbqzdtkri*ryR=ym{8xPCvi(bRm;I&HvU#%ndAGCS4T(1)O7Rty^;x`N+-Sa-Etd1d z-4=thSWf-t_=x*XnQgT%YO!qX>|5I|H37KZfa|5BHt2=>8USm2qE(VnKc+W`(02g9 zZ1&sPVcFJXe#tT4Nl;uw zo(Yn%)N*bDaEWs$W#@q_3&TY%@L+#MI8s|-aoP)<-gi#p4Q?q=s}`+ftzg5xOUTI+ z>>avQ(({V} z=di#;GRy(}jiH@H-gbU$7<|o|Tm%EVUFBvV z-xV0U7nS>Dm9V1$09WSi&|54mOH=l^aclPs-&Gejy)!o=;(w&58r<_A^?miY^{Lh; zQ&GHXyXyN~pLt&HEIU#u9a1&DGXm^Zf(C94fNePv2lUqZGxRrNI30b_H1+`4wbNiK z!fB{25X&t&We5Fr0N^$(;omo*R~NWJo;$8)tIM{Qqv_&mz8V__Uyje)ay|{e_e?$8 zVNC0I71A@uNnnp>OP5{N{|p`3;?v>7;!TbseAXTuj01qF zUPv3yrx22#3{Iysty2uxuic6L)bwx-HgKGtw!W!5Tgf^@wk-yt=~3DtC@N?Pp=C=+ zN{<0>t3qc$p{mMdYWzyh7$}k?%krFHuX1M&5&*2kVkw^$wsW|h>~F@*n*zXE4$SiV z94SOk3^=>9r1)J_>kL(E4WdS)SB9)_-`@S_fBgOZyC*wJTM61NrI0d_b?7EoJy&VXn!p0@iD<&d}F> zWkSh5k5%uYKmBl&UY4TLjb3ouJ}9&sl5PTNoM z+74^|U!pEOX!IsFFkllr+jhbBRa{Mdjaw}`3)(H3ZPqX&2VobyM)B|Q>}oV^@^9zF zCwjtx#4e%^J$BC28j4Vy_q&=Jt^@6>wPEej9)him{$$td;I1-0_aTQg{A2YOBEK`cP-_f) znru@5;HX{CLMqQ^ibu4n(989Ow~d)j8CQ!<@c6iRD{DzAx0q=R5;dHLdZ2xoTLXGM z^mio_N;ol58S>VsvB9o93cb3*5iFU7aWN7|!++ z{fzoEQ{CPSPQOo=3(-DTM?ckJ)SoXjhJ;|4LbRc*fs-AI@83WC$G`v02qFylj9DaK@rXHew9a7NIub*dL0R3qT@;o@)adbR zzFF`C=|omWIw8YIuxf87hcOoFZd)olGv&-ou)PEW>Bq<2&p&+>3FiF3FmXLg=~fyD-68D6V4cZTdeS*;K98{gI~u zMMjWS>(wfTuhYo78a@;4pg2MY;Daq0QhLDvpXaUqN`!;haQ7NZro{_pMnm4LI`dxT zl&NMqW4Oh+FMXyca4kkUS@R_U!#WwWUuicRP-Iw?pf^Bw(w6SQfDoOhI<>k_(oaXT zQ(M!;c(I-t2^IiD?8M`%oSQN@nCj1#s&)5-qZsb0>4-A*+BJv{m;u0suLimXcm{Rb z-Db630>Jh9=5>Cv1$~XF+oCa}5qP@>05(t*0JH4h4N8e&5cap%wI10y;^XJ1PhXzj ze|)r41~pzD*Kv1kkG|clfMf_dm)VXe@t4nnPmoPdV;gDA(x$_mbLeBuoz`Vay1Htl z&cgU=sh_RnU?tMvLzzl%PUTIZs?lELJk?c=Yp56-=)Qh^t@wm0gvJSVU`Srze5Uca zOt0!dof32kwc_F0qhz!kUA?SG2mP&{NBk+R7*JY`#C~{x+Qe6C&O=fc9n*6yFv&{24$ZYNa`lw3Bf$~LK`ic$ey)(JDx5Ye+| z&w+tVNcJ)-$>*R#*p)#~Jpj&x;0C}%B-sTv9QNp6zP$PAr+1KGcE)j%iH^y6`fqeL zUh>~Ss;$vm2I^D|&dAGE#o$9GT;XyR1M9Cl3>E{{uQ3ilnpt%B$7(TjW4<>r$bidw z%APw#v^;rglxG`XcGq`=BRGLn&nzyi_mj;bc(D4ia7`782Sir5>nEkPL_>nxP+S8- zKK{fMvZyU}yLNkzEVMgu0NxG;cJ(V`NKFX+EypVX?I1t6W(&4e46wL{XA6Q>f9!Zg zem~#r4R1WB0SsQ|4XRCMWxYcp?mGi};lwy9RjKf1oTB#z!1>a4@|WI}@CNSiMW5!5 zwWrM&&2{tLcdWD%W(Htb*vG zs&W1Fr2WhEa<*(p);hsa3~waW(8y@0QGD5Z5ifzU*J3_u?mYes^)z^_<|vf0;Y|hO z?PMmTJ_Fv=itlZD6}zrYQCt?8CBigwbF3vRJpuGvi?ny4*u<3l;+muIYye(W@qoPc2c| z0oXqm-W=Y6c=uM_yjc?KaTULm&0N?x1HI{M(fX!F6M@gLO(?0!)dy{$bH;X~im)op zEz)RA#d|5#j=R{W^zPqBXf8`sSLZd|3ySb(PJl$x-myISspRjH&2>FS%! z0Gqm}kVPK?{()EmD$E9BA3i+(^B;eGe!8`Tv)L(URV*u8R)zbKK-7Qu5J@72(rKdyQm;FSCl`7~J zkbL8w&sfkfJvD0M^H07l>eygmZwtp-;Y^4FDL^L}BfK zFBbG&52!6Ax<<}?!Y5FN%bxNZu(4mria7w%yR-EUHQgl4W{5VuELPi6XHHtVscE~a zP6yUL?6i&OvUUBk(7H;%C`}(v19yW%8JD!uyi@kz+Z%hk=_aJz1!X|Z>*~?;Bz5R|df2*_DxCkj&tgqPo#R3hb1`4ME#8L4O4Kv+wix zoF=jTV_P{BrNLsRFztWsHU^5eB19o}cC#*?I%)|GK`9+a|JAQI^sNBQ%sc4YF5oZb z1U=qoG&0MvY^}srVfF&l+Iv>9-Am$gN@Rj(!MXcY`N!=@&qIh_JH}6V8-0ZVi~Wqj zr=pYBL{k}hp2~58M@cLEjigMOs@r;{P+m@3Kxs9Fs8gzH3|A9MucnR_h?%j_Esju5 z%gn{X>Wr4j?y6R~9dfQ};To8~P1cK#rZx~rvFPt=CRhNhldmeY>e+81H-28eZc}m7 z?3gw!6;feacEJO5f3Vl``SWW7;HSr%=E8A;i^VIH(wb#=)xu@^M_vI!VY$^+Yp2Jp z+<2;+4oCBHXGK?+-8sDj@!(LOZCXX${t+K8Uso_-nR3YH8lf3dEWHYQ|G$2H^YzR7 z>%-dR&}TW4l%p28IMVtq(2UqlG-suO^6C;g@T-CW(^jCo5n0!FtH(FjhP!lyQDfbB zBtzFn*iDx9K+Z?2$wob?hFB!s*L8TvN?KQPp9G(Tf-jdaxLyte%YfT(is- zoGB%+(hM;SSO6TC{pUIzkNIEj5Yd*`p939n#8j1)8>4DYXUASP5z;LR+5$5r0|I04 z-2w2&3+Y3zNdIxz!#54HhV}5iRb+clC;%kE9YAlr(7l{?%?`M&G`ezMUexvD{>5Op zMbI0?u`J$-9;GpQgRu&_T_xF}mlCl7aH_0FoWAKhhG}gAaC96~j!T3Nv&i)cFeao< zFsq^O{LJWMgI>oo0fy7=P(DL*8_>FBjOcIXed&J_sA-hc;E+;wRMZ#e2Amj_b7Vsz zLpWQP367EfJRo>aKxPI;7P>pjs+d0h|^%jRWe^K(aia<3Sx1IX6jr zCG|)2tGrGQN3XKGtk_RGWdNEoVve$&F96m=iX8^fg^$eQq0nw^+w>V0AC4w9*l0>>xf#o@GW-IOYYfIqiNVQ7qyO4axZz%tKbWDA5wwnns+-*|Ftep0m1 zxMCSue}%*h3l4eM*(-w0+e>)&?!L*P-`?4m6sw%p5AtzG8FARkmPc2D22fQE79o}) zbJowJkY0m8Bu$`NbM3WX)uIi9+vUe=5;Hv*)X$%xNwy1NWRbf4F6z5q8Jd*grH+Va z;UrGQ?TNYhWsOA|Bq`w&()z(W#T@l~FseYha^Jc%4@qDH7MQF?f{Pn-?F!d^Fu0o+ zq93fTtwHZ%w@5Roq23BYU#rkn16B78wGbVzu4E1AwWypvK-_iOTULXP%9RJ*?y7bc z2CFcx%lcKXD?xhiNIZO9LT+RBFRF*I)B!T<5BlYZs~G@*K~-h(-C9pp+va%U2;&~w zx)4p(q8r0ogcX+z`t7phTEh6Y4@fj>_~Zc0;;Ck_`iwCoN8gU%%A&HJt(+@kL=G;p zK*}(tDTi{9NY@j_LBCu0do`!_>oW3@I6ZhNxJ9iE*b9$AH~^b}Q~(C}T8jai<^mci zEzpZXZxxm5rP{P3RoyFjwF_0q9lz$*$8U*_Y^w30m;g?YRyQ5`t1Z0F>ET)xLp$pd zm^c%2l4qpiq<}#15{qO(hLLS4oKZr+w1mT}q{hD2VCaL8-Yi)Czb4;BB$}5>rpnQy1-b zyei|YP(64<>Oj%JPNZHQU~sQRUFbVXX+vKYMQpn1l{d3qFgdC&Amc{uJWHqcXvS9# zO5uQ!OcbzD50##7h>epU%WZ=N`Z`o&M%@5LFfXU#fJ~o5&>cENNxVIc;&UQgQ*vd` z7={h@yQIrqbF-_|<|F-nq@#wO0+6k|oI?N3PzIAuXUq|bxuxFQq)&-S6TD5R<@)`P z;no8N%w+>_gF1Txwh5>#nd`HM?daQD-4g+@aFm%MwlYCa0pMCLF1=nV-fA(h1CU5W z`AA@Po4?B3h(<`ssn5a}h_yGW%by|a*AAw=u$DZm>KfU|6zyA&Z z`y4P~3{5J*;2iFZ^W_ zJCKYCccsnN6W;ank7ONg?xfBIfV-3Hy1K3^!$s0d+p^OW zl{%;0O-@Bu3BSpxjXUVF>WI3&R9$En{4Z{~kk2Pyv*KYgWkN|?1R<*!cGExm&B!5{ zZD#ZBe7YV=JX3Pm*o&!i*@gaCT=~Wb; z?;ckEl7lF#%nl6OX}5NNZ7Y-WtnOpH?6L?miyn^nN&)rugbjfI{ic?%0n>aa2!S1k;PASqwg9kEJ1b{V7L|;H-U5c*&iG{m%JymFx-*Lr~6Ls~Z z6ad=}L-7nwg@4R>q?f#8+k_#9whdM$De+eLasXB&gLW0Q50b7}e}us+TKjf^j<322 zYA9spRa}-Dpw5L?V%plk*Rv?A2F+c_nJ15gNNth@x=64cIob^E3bFQS;3dK#87KspyrbjRRh02cSaf!DE ztkE$k0NC5N0l>1BJiq+GRx~?G>Kw8nE1!ICou?yZL+A^?w z^X~4`m*+R{ZmHTyU?M|&kSVA}H@qv6^IRq9qN|!`ff{}COi6;OUCWfC&LGucBs`}g zyL#UeH6-!^_`zVO&QW|uu62{$K}L@<{dcaES(Tvu*J@DODWZ|%($bEpdiU;*sn)dM zP!3W})x;SF0RGp%{$fx5;`}85ti9|2fQ z``oU)o!atU(Y)p;+p;U)zP;`~uiT2YpYEC$E^=ODNT075R;Ca=0AOM#=nc>37thbv zfBy4_ckk{Oi%Tli4$lp_@jRy`EFYL^hNbMOdIauEOmB{stY>tYV)`jb)umFjn6zNfcaWw~ zMOYP>nTn*yH>_Hx-&2Rmx1Dr31V`!J=%7wQ@S>&wxmn}VE3plmnTVw@8xpNj&Q(XY z)S@?ThBb^0t{Z~5ao>+qkQp9fiMt&YPHYyng|*iLxZbzg3Eu40GiKO#J)r3V-~kVg zO7+9KEs44xc9f%Em99OG*6-?y3bP8o!Dve%x*9e2p_dzv@to>huF`Nykeu_T z@sCwdU6^!}aS@nU(bq9%3Ib8uWtb-#y^}LzdzA-Q<(EM(=(|}j2v?{@X0kihJ3Fd0 zU)yQHsMbbbCkPX#ngDRp?uh()B(;u;|DN5^~mPqLwWegbkT3IMKfdp^;n} zonk4;O27{WI{>fm@3#iPbdFmsIwzP9CAwInN1Ue9pK`6&uBE~+stW;d=P8lNeE@J~ z_WelIrh$|FGywkj=l8$=_LBgZ93<^%-8hAH(qXV`&_bkEl+S4m(Vo@a-SYkW+sB95 zo7by1uQ$(6tEb1Mt=G?MTThR3zkc=l*{)gg>$|rbTW{a2fBxz5;eJljHvxWv?zfHA zvEA{0yn4XKebwzo4$bSO+l?GLjj^VmKfg8}Y@Y~2N?^0bnP>*f6>H$k1;_!nU1PQL z!&<2`Vx-mpm;tlOgVV1q=&XcaImJ6tDp;jutAtDpTlJBY+jU}1 z!ZGRiVq(}a-n}!!t5USvMOXyybXDl;kR>7^ct*tn0jsc`RCQqO)R8|!4kCe*a4(y; z^RA0&s$qg1X5X$Ws#OxXDN%s>uj8V01>;TUwA}TKYtdMU-aUt6pIKkdfPz;^R|Wg} zl(w2VKDwWQzU-(Fy_I4s7;w`ct-}SnmY^%atpKbZu>9dPK3iF=*Ez>BeXRaU6>)1% zR{&h^t=!KgR2W(*?rY#QnUCZJ?PExe`qOhmoe*dFe=%5`&!O>Y!z7Ly9h&&aEOx8q zejS&+S*tc`=QQc19*$s$rbcw|$pXMsj%Hek+XpWCv%-bD0x;&9^nhbX$>*Et5Cf1E zfPv=(>8Vy;8I|Yew3W%*t$XcVTQ**0h&goNQ5g4QBPJc=walio3E6NgOfFLkeTDyq zpI;RFV<$mlCw6kYa15SGBO|S{%a}W|Tivf9TVl7O!W2SP5gp)ht&0k?y_me9wM;}3 z`e#-daB2X2cegPBwp*gF27raE!d-O-(`R^|d4)Z7YfV?A1T6q=!>p@eVnLczGz6MX z&u~r_0RQ&uSL5zPY6^haSu&^K^{N11TPU#TXG@MGd;+v?uV-IAJ-mHhet5gF_5RKJ z{qxG!hd0Yl@7C{MFFwEDeEP8Y@NQ+leta9(^QT{beti49TCLBvyUQF&n&P(R0L+Iw zrk8As*N9mMFih?ff-G4>`-t<8cH`HtZ|qfn`0!xwkIXt`=#icTN*`$?*x7KG!U>GY zBU*}j1z)-vYoj^uUSLDnPSHTgTLuFTWtPV%Da$B=SZ=*#iywRQ*jd4SYa60!#PW0L zB(a)OQ4EPOY&@&$Fp^>l2Q_CwR5u`7Oei4_8jO^=<6vf{6A34B+&vz^VD4~G(5~oP zOSLNesst_Qsy0;v^c|RK==w^0tA@GXMcybtFlAYIVsubi5i|y@i_-hJ>^yi~+oK`o z-dxk&2C_S_?9f)`Mf3pBKrg>6t2=}vjnJ{GdG%{`XRR(7f>@lEowJ_RS);*S4c0LL zL$m1n8WIBuBDfQ7u7m z;l4Oq!7l+|y8(~FE&&A=ejpsF*{F85>VOCI)-p2uSQ0JBy`yHJFH7}jmhD2gpjNTo zqRa8AJwsk5yWO@M$h>FYPpp=!Mcyp}G=CsJHaHRF%b8B5W8?x6=a33*Yyw?9hbr~l z>DOiEr3XP#sjyl2hE|qn`Y|%yVz@EY689}Duoj?|G*{O^py9zXj@Be`4Q42Ymy6a* zb_9(n6d*s?d1AyDk+w9;D-#c7XzkpP?Lo+r>ITX1HfRgF<^xO z+r9w+-fb7n2J6*#l%R?74CP}egimb2fRRD*+9}UU3ZzeDza4%4cyG9C82sjO%6k1U zdG|cGWhiTiYq)EdKRi!AzMj2*8ohhGvfDi0kAMDj^ZDIwyE)%G05^XXk0^~fbv~NS z`DS~e^d~3fmyW@W^jFhO3eg6@9?$TD{mGvBmoJS3+x{aZX)omw#@JPkN1hj#$_N_w zZQ@8NiZL!9DOC%Vf0^V~<(Z!~Xj1kaGR*SkaYOOP=fm@xo12G?G11zcZQ;Rgl+iHK zo#f%Z3@%o)BYCw}V@q&X(PxpWVh7S;W{*`LsMBOsHw-MJzZC;hV|k={={19kU2`o> zGZ%{>iwUSrx<^%561G)1l-IPB%z~>9WpC#AaD6jPp^CQZZbO@lI(pP0WhURW7m^dY z13(o3x7F8Cf3sIz2a~eQ-fKD6okz9$s&H;UUxb!8jhQsY^G87o!B+E6Roh(5pUD^o zo6r4nkWOD01Fk$-oVQutVz(sv+pLP_ zKnuo@9GjoymX@`U^ShGvE$@L0=p;n&I=S?*L%q3WO!}aLtcEWo5G&7X7pCEC&a6fwgFt+vP z_VR9jX*ah2`t*LcTc6vqx82@nW-Efp#V}G#G`UA~pf8?Za>W9J<5fEezPJzxzW)04 z?VC5Zc3Bt<4CDNTGBn-kb5E0j4f#qh%QQS{tf@PBVU-oRTdE18T4#?{lYLVRzi}y6 z+kP1UzkYigvaI_xQY`NTFT2PDI}&^w$6!+W&aR}-viC{~`4U?h#S;E%i)cdnzCGni zX%a^}mK&51q>eK7BWwk|1M}w!MVq3Lu3G5IJAtB`r-S_zPzg#U+ETpI0NdJ)uV)Q| zZ`bRiAfw8XRVWT|R^PpH0Iofy6(Xt9pzRS>(x|Gd*SFN#!uY{R((xVEB7Eh+dXgOj z764b!)fBIsm}06m8^CmSacs6dcvTu#4Kt)uvMgaRRMpTI`^h@L6f)gaSS1%+j4Ez8 zKTpr?0!Nq#YiqdXtg8QnyB$Zlj%AzkD_jNf9Fy}%XESYvx0r3Z*rbJ7N-=} z+Lhd!c+`pXWrT6GA-M2ttaz(=?VkAjrm6%;6BsbE$*o5(3X5HPTlg#QIT=&9ZHEn~pI*@i&|Ie?BAK2Y6{Ix>^x~P| z0Ur1jW7t%)-(hJ~q0&Nz zL|8g=8aZ6ATZT%8G0-?a24F>;g)hQBD764M@HMj;fRLKLP}I>YVgrs637hN`Tps|i z#)>L?6ZGnqLYg*u^td++MqO1cFLZ}HIcXfXPH&wA6KVVhVS-BGrQAJ8F{+*zm2O5a zyfEN>@zv5b?KZWv(7&I`_3d#7toNH-Im++7LUdv`W0l;m=aM2byUl>ewc?l`D60&m7_2E>PCVWt{OddJleSj{Y6>AeQSyQ=FJ9Ra0RQsK$6tT>vRTitq6C2D(cKC#5m0uDPlbG= z=)B6ukxI2)hzO0<#hW*WH&4r({pEglesg_wcRRkl8QttJY{7INZ?6oApAHw#*A0N* z-i-~XZ9PBC41jO;qs{UZ2TH?Bc2txZHktUupflW;4S@i-h_JqAot^y&^tGQvBz^t* z#z?RoHk1b_)aS@nOD*dSOxh-69o_)EMo53!rj8wG`Mjo@2-=r?Uzo0%2ntt7Y+gGC zQ={G(2?lzBRRdbe(Uk;q&2_7kMEEy}4hrs6v_lvXrcplt%oagdE`fB^>bBt;M3zxc zNt9A7`8MlB*8||)yv_#;gDE@9TZ%%ot>a#)@Q<8^BAz0cFD1&#ZtCah!mu03E&x2p zG7_k#{A!&JmpxKDAfRH*QYlLmW^YK#%i(E5%?kj3Q?4bxo>y)qTl*sbuHIPqLh~G6 zM2|Czw}_ZDDk>|bHnZsURb>Ts9#~jHM#_C1F1l3NS?DWWbjXrNC*W?N@9ctZZYMK# zfOJ@zlrn5EMZ26*DL^YGZ5XUVRz`}g6uhmDx=Nk!cD~px&|$>^k=&O5iMDrTl3C?xE>snW19aXe=8AqPrBqf|l1 zLKST9*!}(X_us$#^5@Ts`6yJ-7vI~K*WP(0rf{D!ifY`~9~#_MC*BqS9OF6x!0Se2 zcbA9jajfn6ZhdM$ZQX3o4T0$ig-RkymwOPJOcMf@*%rfX= zBty!9JG3mZ2xibS`m2Fp7og3I0e|`O#z-*7lE$M+p#Xy$3@}YhunJ%*-W<8=N zG0_m6Mug?cIS8ZVsE~UzVF_vyx6%mtMf+vLVAn{a$udv`8XH?Rs@-UGINsob*;HB% z+e92jnJqE6+E}*sa1J0Tlu+lZ_8rGO>nLs^5`3@8PS~KIlK5EwtXbhIZUSy4Vmek4 z3ymuNiIsNcWkA%`+L2212bPe6fawD2QSD*EY=+}2F zPX5lwYu9!Ft`&d>W$nBsAitPXcAJ0~8lR0Bp2d|clPZ0zL9m_Js*vD50H0%SCH1nV zcqPkAyREmQYkewQU{buEDLospblep%$^B=0~FB< z>>WGpM7bTKSeC+&J_?@CDnVC6M`7@K)5-cph3nVDE(mA^kTsY=8w>S-9ZlP-w&!mz z3Ywb~dBnfladvaRgX!{c+&^1^fk`X?%rdOCm0!Yz|1apfq(Du$x2(Z|b6Heind@csSj;dZuLpHozb z^8WT>vp(By&f8j@*w##teaFflDa=X4Qe-n%Wx3KWVg&fCv z0W+AY787aNL*gVOpyiO@qt}$P{naS1Ejuc7U{E!|Y7{qVyKFGrhIDrmnZ>qFR*_ak z+1Vvp2E)Q&8P8Q84*)oZT+^dN5~@1pJ8+XofZ00X+XAs7!P$MAYpke3wd%$&PA8pY z3e6#`3Qel`B!DEiUU18{UiD<9@DB14DgY0-Z^husCKKt`HHEhmkwHHaBUKQt(Az6S z`bI_v86#sf znCSs)cvq2s5=9&CI#{+ACPouLOLQL*Ns;*zHQ_n7Q&8SIYy&T}d$XUH<8uRbTXrEI zLU=q;w^bG9hE?0?Y!ko_0IQXP!JE_yHLE~De)3ojN2(&5s^#daf=1_Tk7ZxWst)t&rsM9St|<5f%U|R`;R;ADDzM%( zGi5Pl%jbE&i|e3#(u#q~ugnXacI{_1DFj~~fbof(qy_P$W&@*<7UHUjD*#Tb=c%My z&|gDe4K)?7i75cA`63u?h2E59?WBg~Ho!1K9+^$nBnBD(E;nbZ?YV+61e4LKOaLB0 zk#txSnb;C-d)*GyQV3h-8DK}yzcms15P{#hyM%8;Qm>k zD{@iW4!v-q39l|s@Y-y)lv!%Ny=In4;VWR6yk?WdoeG*wEZ<2a~{XpSc1{N;Il4 zw!7YK58Esq2L>yS7tpQzSS{WG0H+{pBlfw8dE%8;W#Jk!u1#4DM+txtZHWi7;i&gB zkb2ea0u+CnUX{qmbq|jEdxC^J0FFTTG&O81)wZ?BNnE__e9p@snD*gPDwz>emQsG)^HULIIAs5W-#E;b>wx8r?XI4afG*pcF z{%`;dfE@O$C%`K@TyNXRZ)tK%2B}Rp-;#pS7>(zRgNWGh(L(uX&!=X<(_1 z+IfF|K_DRKTnMh*iIvskxVZGO;NZJ(UkB!?CVFfAnb{!$u;5wC?>}0o(=}UUp~K^PA-}R`sDlb%kQtoFR3=$!zmB3dQ74us+>=>4=~o4>}qkb%N-9f z6>7=j;oMMmdA?m=ZvDb)akfv_==uD#y^0tCih8>?9O3!(4FK+f8SDi@cH02b#jDZP zsa+7$wF|a0d;R+6>({sT(=O|J=fP3BZwHufGNS$DM`Ig?-dt9%@~*Syhb{$P09Y;I zep+w`z_m;wBz9fiI%k=r4`2`H%fm^rR;|ZL#zlmCNy%keD~*Py7aC~>creXKr+R&V zBa5j&nX^kbX5}ahLV^X-6usDg3xm16+PB3M%CX0bv;zuT+NIl?0qg(_vy4JWXzN!WtB-l`&lIr$H~EUR$t(Qh8;-RnfigXHJOS7IMESewoA2!%`bx=lg&UcJOum zS2AFX39)%fr7p~p5^k3tfbJ$U;luAD2aVvhl>tM4vjlyC0@;KAn#q){#To@ru(YZW zP6j+fv8=K){ov8`oSrf2t*YU21FT*ZTH0X2l7bcj7yY9W%>|IOF_g=dl7B+#l4S#? zgni>Op_0$t_Hr>s1f`-i=W`wDtHV@p3#LS&UT2#jd}N#S(I01W+A z-H_y-42Ed;`y`7BDPhNf3#*;38 za5?(vX!6P)NUk6pps>a-<4^Sl(7==Y%p2`l}hU zrSojbopR>t3a;-j7CY#RnvA4jB)Y%sIk4k^?BYpchsUQ+&$f&WGp|+0g3;JV?&0D> zJ3{86wMhb=bqsSk+@{jfT-^i>1eZDBZX}6?7l(4A9Xq?`G1uHZY`I3+WDd=)LdF|)Cw;C1}08RtQYT)dNgbc=zFXUxp zNG&yI*1$+d_4sepS_RhDlpAbhZ<-!5_c2UF!7395(?8?tt zQQ*1R?)&lS#(p+O$#{n+nh4a0g8D$^-=`{#XbhSzI9c~=+dtVc=8+C%>OYf-@fY zJYRBxB?|2pd4w5OyztZ0Kb@TX3t-IXk=^+D`S9h-8%S^&NkSLhEGijHa!P%gGgob+ zV{eG(Gm?@t(vXij!L@lWL*{CHCJRypTJtY2{k?iYR5E&C5zu1t;Fqgib06Cp=B2B%I|)yu{;iP!k^GZ?6}{u654Qt* zsxOslzZ$s#Wes!(0F2U#=~y+bnO=qag7HozXWh{7Zl>b1Iv;=#k}Jgl$zw|ed67%$ zmhI7f_BZx}jaYZ{NZoMoJmU^IaQPQI#I^0vl(4@WODWE%GGW0gP}gWvKzq1obu&&h zhKWwYauRA=P1wb!q166iO?U$Bt@H6Mp|2EY7-%%~onG3RPBe~+Sx!)l899|Jf}QMS zKP0S@X(a%RNo29InjYIvYOa@HU~&R9n3R&~xi8r8NX{M+BybZ-8I=}q@0Slx8|hkW z4;cFEXU3_xZ$)1&=tUK$m(5lJThNve2zr+ek%W%k8;F~wM6@Xv8 z{F7mDn@2i_3ZK}UoYil8V=tA;tPlu&9JLuNo5l#Y$4=F;Q%W%fb!UrVB(n=JZ(&=; zc|f(gzZ3&_H@LFhKON;F%c{+9LtkgW?Weu)SFiq;!7yqp$J&>6BtU}gAhGMOE>Bv# zcOtR3gwNDax6AE;R_C+Dsa~~rzDJt1jm?4g!j+e-Tm%k}a5~ErhX_GRz(%siMy*V# z#RR#1`}hLh-S0Wx(y(P&rk>{BIqs~dBRSh;S@x3wC;LhIkgCTqDdb;asf{RT)jBh9 z6>6hm2O)aeMtJ>hbz1iF8_2q0cu7_6Z%I3c>4(PvT&bi0c(6DF$Na_3QIq&6^SDns zS7jur7JEaewMkJJ*TgQQpZm1!dso$$P@jLVa?bnEcbXiq;kvyL=dtyI7cAq2%7Z&Q z!(!kJ&dKYMu_Xlr<-|_RzgB&3*fP6)gm-fr2Z zLs2wU!JP^k*l7M6t@`?%PsD~dvhmBeZ}0x{m#-f`ylwz|_QT6pe=-aE<9XJwUX3Ja`Up%Nq$EkJrHz^Zm@ECp zp7(IGxxL#VlZG_Q%f%m}1K>Jt9)0DTjR5%W@zAW8-3D@3f_>Cc5;v`Nuzp1y2ZV==vqbQV=Yx)cK(_L@U}9fL8}k* zp;E37{66S?szzOJ8J2?ePi$!swP}Nk>BFqMW z?Wb$3&Y-+tA>o5!>bY+i)$m={2X5fL6?%ClrSH4aUPPl%Oc}MP-9%q0n-UkJGp(kt z_$amL`j)C>T>-fMwbN$>{*Co;a=PYim$wG*k8eJ%^pAB|ixq(o3BVKsBq^^=Xto+M z2GLBmnu5)ZHZ7cdh7~ufR$fNZY@B$#no`5$WXGvozJTh9st~F)7$q)L4-F}*xSUnx zE4fR;fVrFkqL^7yGZA#0G}a9A-oS>O*E!a)^m7;NwJyLb10{p(Nf-#twy7iZ@` zo}7M9C)m*U;_AnichU;EuhatarmWuIaMPmWQ;eCvVq2ewSB3-3W=*OdKA&2+!4YU z=mZ0_>|%AF46vd6s&#A$xFpMJ>*etN!yW*ZqH3U!DzZudSna9+;O8BKLx#aJiBvIJ zMjZO}{qsEl%t-?^H4%hp%SU8B=ODeGU1t3g# zuWnH9N5O&|L+l}|BN()G2*bRC^l^K-k;)H6Sv}8!K|5%*o{z_MpLI@Op6=8We$KNp zP~@|i+eK>+@8>OOAzc`iTIh6%Di@7FbdJi~@(iER@^#Z!Yq$6*`-+f8Iq=?RkYxRIMMVS%I zpo%e|t29QR#cDIqm~nDUG!y*g%j56Af3cs2`VE_BH;ehL;wzkp$FV(n@~(VH(t}ej zm2=g`Rj$`%5!_mB7HZbS$y%Cb(^lHaVR|(J;FSe+YvIaZUZOM(&y`tQ=2e3&D=HbB0nxxzQDoFM&?8E8l zUW~S2@V;7ET>|iBFZq;#5T|g3JPLzVa4ySF30Tf)^PNl*$PjObY2wnj-m@-;dNHHc9&zAwQm)}n$cF>EP+jo|5rrIk>Aq7i$dIl35-Fzv;R}gNt6PQUYnvbBl<-h;$?@vEH+xEx+_~!P__08M6$+i5*mZ@f{?*+PL-k`Xg0HZ8CVKDMB zsH(pl_pkPLjNr;|GwAdSytB(d4ZLC-mYnTw(-C@BpA{q+02US2=7W*|BT4);?rRMA zx8FV+8@%-)yqbIy)i5{jG0F598==f z9I#HIb^;MC4y-CkN|zqdRi7*XMq1?;?3x%K68cishGh!2!v)&t?90J0mHFe&o&zRN zvU^l9+3D{YMRXsCa$5{dMXNSYx$LNK-7b{gbCrBo<#WZ|sHpH|VINMB8+wP#+gaQ-V;Tu)R!ODRM29ry6|F znQpru4^+qk{zAUZI<`9UJhZGRhkKDl%vI-WM>~x~uHpA?vfQS6e0#mx-5B~d7oi~l zH?y9UHOZ?1?H=`{mb9|NDRceER%kh)ed#&Fwo|4E{xyiQk*v z5pW%-y^-Lbelk|FkjWZ9AVXxuEq*;~ARpw1uh%s(O z7P>`wlS8+uq!O7>nQk4YK6{tH@dLteKAcB$f;}*>8*On+AG5j@Y1}xM9I1MGB=q)Sp44P*idbyZf!s^zp)o$jYBkuRv>HwEGFa98Mc*Igj;XEU zE^~a<*5%ICVXXi>8e7`tT(2UBt0xA>_OhU@w_~}Vw_18Y{#wsLg$;F)0pNIu!*qLW zq~ETL8oozj0KlGLzfO1yuZ&7%yrX%mAcXyH+16pz#wW5T3V%9fHf?BlSIYy}>uN5J+7EYTp1*c<(9%IV4SovWn~Zv?<;P~25@$cdxZ z3*T*%KXX*sxMlIC<4>s_i4H~0L<#`DduOk=HpS@#+xz?V>&x%I{rvQ3r|^kPp{YWr z{uvDJPo_3^1-c4a5TIV7udexbBzOeC8Zm-x+ksL;SN>LB(&xE_?X&Mz*Zxf0Bl>as z@$-GYQyT#=chX~k6EZo=4~apa8mgQ)6e=#xf&_yot+kvOEP$^B*U3X`9g3$`^sTZi z`0Fu)0&6i=446}{Eu^xla)%K5{=3PE2b$1`dvKQSaY^sjZA(#1FsfbU(35#!+B_O4 zQpa~dzVki>!`!F-8uKq{=0$`?Y4Irv&=Aa7wJ*Zo2tF{a`hKWjq;9Sm|Jeg+GCB3Q2jFaV<}qL2T^ zXsLqmgo3I?LwPj<%NVPJ(6vY~ebAem9}Hs*fdBV@|9pNrPbXKXlaODjUaeW!5dc?0 z%oDI<^<+fqeyv=3(t$+i(=wtb0i?y_Y*f(|0Mlx944zaB27ud@5e7V0^CA_|O_t@3 z91%n@N<=0P3N5s*x7YIN)BPX6|MJt95B7QEpeZZKNU&{mdfZd70IP8eiFN~#Gk@j3 zxG?}+b^BZ?0Ont+u$j(_^k_J3rF=R7*lXY%$@Yzq5l4m-Z`^dc4KFbnJOW^uLMxtu zpW4UoheklP1RVfej2=PChmXhmmxSTeQq@@v2@FA_O17XkW z^=b7g%bw0A{d`@WB0_?D3{-Agm885<`mlcy@p8ObGqWp}7Gfw*Yr#uvyIZX{ivj2^ zZu?3e?3(A!gY8N^0TsH7h-pxl!M{mmcIA#TeF0!Ma1P0+UBG8JyJd@QI!A`_0#3i1JDuEhvSwI?l?J@s3bCD- zycCK16|=vYGq{mmvjAB3&M+RlQ0MS&@7xt%c4NERq>#^Pxp!*ozN?WO5pGnpZ-0E!w zZ+zP4E+&o+6D+7ylomF_hOy%SfDMVg77Y~+n@QL|M*uCfq*(S>8DrrNjRaa3nn$#Y z@TCaTN3jZ^a^nT^Z4of@@-?Kc5;QMUEpy}xHAYDcm=BfgNcD*R5c{lwFJxSkX4DO6 zxdFYKkDni2KAizzsj70DnNZU(yd-a8x8BmwZC1U*zE8zwz{Jb}If;9N%mUbPE6 zrVD1pX<_hp+M#Mu%alsuhF9*9E|3-_Xm{^)@-s+-*0i??-LuR-29rz*TaU zHSLG^?k(YYF5<;t%zV-Er0wWzk$(kA?bb1=X-Ha3f zm78j}Nc}nFClR!;QlB`mt?0axe;br;hsE&mu0^x9#iL^*`$;YX?ErI?Mgzcb-_ba7 z8@M6>96}r|mL|Q+{DvNsM6zVWIs0L^3#fRoHuMRTo7v(jhFctiu_L8_8KlZjYVZu{ zW3#rls61&n?lOZB8b;#0LBTm?QyW=d!DUfk0irV2=$=+7!UA!fOwSb_tSdXQ_F{4( z>p^~4a)frx^Pb+YCj{?_8m#VDYLrUItsY@lT^(bHHjaZApH-`mk=#M+_ljJBNCBGP z5=d}+)5zc9un+_80PH3e*f-iw=&t~{a&9^W;=yi*xhV6>3k~lQpac<2TgpCDRHu6h zG_1qE+^qR)#-v%sFCHe+c2xjYHn8>wP+m~^Vvtw}#=wRk4B zWK_xZJWp0&Vdexwg4;&?I42ie>_X71mSmj>I%jUu$QxMz%(#(Gt+mt4^=`u4ExKY- z$Zq2e*E*0B0Bo04D_BeA^$64pU`}H|{Ll0OmPuXOBT%-3E0B>Wec&9RQT5QhQI_L@1fubyZ_aF-Hfx<<7 z+SQm-ootoU2^8_u*iN5YxmI;r& zE=~I&cMKZQQQ20U5BgZ+gv&r}pY7oe0bnqgWf;r@r7xHtx8t3y1mLzcNgZD^bx|bL zWb#@7j2v1a!Ss6Hzu$fP_Q_V0L(gyR$Y5hhIa<#U=xuV7baZbgw{RB$M|WtWXv8|y zNkz55nnTTU09X=2HIn%x)SC%(#kRSC&Ol5$k8=+wq~J^oKu^s5DL2A$&pkXK?5Z(^ zEpphKxGl*$hg?P;Qs=axt)%mu$-#9vXOx&bx`%4nVW*n)vELhA(lVUWK~CbPGASDp zt)hYI9?_?V0j_HgA^23)_X2AN1UIvrx_9(wl30{|C}uw79^x>pFz-jeT#c!5fzEm2 zj=}QUwDk%dlRlJw0N96P66H zC_&eOtE?DPKiSCvgJY{+_^?eL9p#~INc6A?sNkqdt_6$L3#nC_s%zIi)Bu>7vmzId zaLHC(@WZ}X8Qi{$Es^6cK-*)U7gxm1l6^ zoj}CG^a;-mSIeN|D@6(g0@Jc0U7V79MQ_s_RV`=F7Y$vJrTf4xcWQ^cOd>5IO z#*@6x%%8TnbD(xEfrIlA03*Uu0E2ps)C>Z#vi}-x7})?$1ASRwwrno^*BiI`n(F@3jdB7NW*Qhp^r%Q)0T^p&O+~8>TzllUw}1ry z^wZOJGj9Ows{*is8EQg9y9~kb&RDd7?H)`{UdjK|cq za+v^NiQNkhMiPR1RHyJx6BL$0WxchBfu-0PLeg@?J2o47gp}CedwvmlKi%(LJF)*L-lT zsjkyQc$2P*3>39KZe}F`w1&R;YN_VzA%<5W<22MC1PCq!8-sKv@^m4obvC!C4 zEq{_Yu&`%8;A?h2Mb6!mhHH+mp|3{kYIj+Mg!ZO5=)!TM5S<*i$+8@A!`lH5aKApR z3f=vRQ!pO)ustR1jGQK=LW=lX@58k-Q6w(Ju#gL>=mD=}Kbhs|b+||-NaH$L0a!NC za-GC2%h1=L7n4h!`&1q@_VE020)WMXeLM**bdyQj^^Eqq`xQaIb7`KF3C%J39~n@j ziDL&~O>I>Y3;-(^D8_#$S55tU_s%fbem$L5fBp4~0r2Ddqh0Sqzzu^N3?~3jy$9@f zd*vj!h2GZ^w7R+CueJ#TKJ5aR1vx5>>K&xTE8NwcxK`k%{z-(mehjJywR8YQ9Tp)C z_RQ0l<4Wyt9f~H3b__;(W+-d#tZhvUgP)!b+|rh@;pO6vErqrS{4jW6c^F~!m z;9wmwx&+`-wLZ94-i@8}ac2=jw3*50xsFRU%p*%N;4=!yrMKEA zn8ky;B+5-Tl2e8VxfKWQ5Bo#2Z&V~AQ0?g3%tioU5D}j#CS`fH_RQ^75Gut~uIlGQ zzS}J)EBcay#0(Pm0LoIMMtuMPGa7`}TB5B+c~6_h&QBZr#B0b3zvw<@?L}smoo)bK z&Q1R7ZFdV|+8Zza!ve2CTbyuHYcmr7YaUc5-&&wX5mVy`!OJv~oELEIOgH^Bpv#L9 z0AtF5JG5q*xGQ7K)Sr=+k}y-*3C_=wT)licQf0`u0En{nx|&zGdaQ6=k!7zWxy&Ouv9O z@M7`SYtelMDg3aqO$%g-(E`9omZ~G8yu0f=sJ)a*)+$g7?Q$MzUP>c9o1u#XiXc4I zSdow91^FAPv1t0HFUM=d(q1aKIv$rl|NQ*tpFjWd%Lm&UvT?y6nipk^TniqYw0>5d zuH}uzHS8O-t*mgH`><7$5eG1&24qV|SCTh8~v|AH6IWE>Xc;M{`hBDQ&lG zVMorW==??3U;e+~YadE2pcdk{nY+kwV(DCXr5UE;%uw=Y- zQh6MfZ`Zt%tf`%v_mkyey4cNTn}AisN44f@=W#;?gi*D)Dnn-dmCT|N5`2yJ3S_1D zT=Rp`ImZk!*-Dgywq6epb=X`)HfXE+b0zWZSz5y2eYc-niL3|fE%qAxl?k)tzAK-V zT5=HV!)@s6!?nxBE)tgPHn!_jMi8&7)wR4$o~q_Wso^gbjHu_fNnfx!5XEe+Pa9fVSS>06Fe-}0)KH9}5rQ%VEWwnAD9nnU84a_BgO>teQQm5FCGck1pE9PfwUbAs zKUwN$^g=LT=x+gF(i&D3fNj-MYMy_m6sUI@V32*&32N|83bO~S0VDyiWLaqibtN-o z10EysfByCLzyAAAJCE2qcsF?m3AUexzV<7{Bw0Bs99KFl(wA!+exK>Z8sSyzR{%WJ zl=bk80g)}FxxVSuU@Me&dAD)EJEmy2Ka+;Xlz%G#3-c~Xq+jre*c`T@lZxqMn-5M1uZ+1u_{fK= zvg8!0$RMF}S&bD1+?Ir;+7(WZ=spd68RRf}Q4YiLzm0a6=_YYmV3Nz1PQ_qh zr80E|;L5*cjTuP{-z$v20?*LP8T#6)Hix2UDx4Zj8db$Aa@5om@nyBdz(vB|ka_9}A@Mc*|Pgtl2G9_n|3Sp`6v9Xc2=XMc&t0pMDKCd@!?lx-~7B}KSB!+`(z z`|Cgd{fC`m?3;xVN3(-=3^o9cJuaZ--2~etITpGU*-OwleLJNbeQCAG30;uDHMJrw z?5PT2;ZW5g0W*3Cf$p(bPg8c*a1=e@z{^!Anbq+X1EwS(W^6ax@8_RCzc&*6(@#(9 z)wGqM8%y*x)d{e?*t}4HD@LTgWNpK7bXW6+nP|Fa}V5FxLxaX+TcHhdO z=wvh{JmR=rWlh>%xvY|SlbWW*Rf+yp@<9ll>T}jyQ=k1E+Ivw#?+~7-Pr{M_c!c7* z&wmfV-Eq1g?x4FY{Z|!m6~R{>P;MRWSNjtG*R7F;J`Ytrn=V&#g&%~dXLYB7Gl4}a zK9A6sF(lzMlfI~~@Xu<%@4yy%#r;Zl88zvagjzXOiRSW(jM~aYQoUY^>LGw6TVj{c zWnakqRUJA4P{DW#=2Ai;*~cQqDJ z01O7V_iLCuKQdxeExJy!0z65!bUpSRScR`fR8JhPwlg~h7XVJOeg^>i;(**p_KYeG zZ!C>UgVXo-n{VGfF%#UH=+o;~i}oh5XC_{wY{(>FB`^wHm%1MB5dip@23V@7?@Qiu zZd~Sy<;Y?2-UCiQwHSD-A%=K6Kfj#XG?Ba9Fb(XZP<4bUeAe*HO2e#8eFtT~)sC(G z^xY0K?(wnS5%v|0N^0OIdp`e8uTq*SCK2c zDY>?5Pv8O1n7;k4=Q9ATF`-&#hC$+@T=x^}T|h63hhRSunLq4;cR?1ZmN(W26!})e zUew*J>BYD!Zd0AH<@m_QI%j!T0!}_6S@aH#qIwug32gX%I_{4xpvi@E4BqW}T1eW4 zjMU&&Tqf?@o}RPYs!~?kYh%E^cj4meHAAHy)uP}5KG z3r2h0XJaG5bIj3Z%J0Z35&*WJpFZ7x{CNKG;V89p3)eeO-#<1CetzCbjg{tE@}6AM z5~le4@X*z#ggtoqpwPsjFswu)+$ZwKg6N+YFv(wG!_=31eg%g0i!Koz& zN=+is+MG@!0T&f?^nm~Q&6e#5i9!ezUCIAgzq;Mk5pSEugD2crA^NU}hKw z(6%NOcyd5%qX8aGOEb77id-!|0@#`{)-;9CcUWbK1ZOR}1F#*9o9ow5VP3MD#EM8V z61>?=Xan0aLJah>+93O>3+2iT?m``3abid1rDP2{jCD+_Y(W+-5g0ds`Bmwb;=ZSh zA@M(*nDJ#FfKs8lb5{VCCtckHNbq&a{3VfKTO$DOl4(HNEeGPnQvDR)uZbRl{8`B21Rm;2*9$(6uiZE(mgB6Hd(f|QqIcE(v z8Se+pW(_{6!pw811!`GQj-EpW zjR{ID7F!2@rLD2Oyp2MAwzS27*)+7=f`=&VU~(e#1%TP^@Yz)@S`O6$Z1?m~fFNy> zog@jDMjZQ+by4lNzRP!kUQoG>?H;$g{o3uxW^@M(Ff@k2sRy=dr^SZ2_lp)O?*m0Z zDRL(aqDzp`rrJ?Ol#qiZa4SZu%XU96FDF|*KD6#Ydq2B>n4^VO385EyGes%3W9yiKX+U#y!c7zl4jO@r(naIMa#6+X{ z8L`z7POHr+$4aI5XoA+=nxbmzn6$1{?n><1LmZ~|u3=@G5sDM+u{6+(xs|;-Y$*l6 zmZ4_1LI%3x`SS5NOY8 zO;Ie8dcAh}!^acX@N4xwtvL;>+!O}x>Zgj;0I(K!D_wM7_F?{T2!oEHw|_f(c)gl4 z6%Zv%YEFO2`8v#mh0!3hNA=E`s7Ef`nv#(7W(1k0k@C_z_KzKkzIjeRreGl zh{dS;TUT+Byd8}p6|0TA(O8bsezxu!-D=Clq(YrqNuVXdQqeddkZHe!PY_fv8M!WL zFzJ7qH@y{%&{0{+BW{3p%+_>q=ibz}RB^Eu5&CM`o%2B#AKmpB25QTV=(AxQskJXU z)9uLXJ>mlm1|x5#G%dMVtw`@P`T}OJs+zz!Mj?G9qnSr~>Jb=hCoH>OXC>9&bOv`h zkDZV1s3@w2?DglCfJ9_r%`$?jmZoortyH6~URQRF(O*aO?zS-+{1x}*Hp8i;&bbx$ zoAX66S)^ugw(jDx^jQF~usP>|7bPiZ>4+O=XU3B%0CRF5jqU_9PMwk4Pu>Z7afFt) zGd@svcdtR0fBydMzy9-&^QooK14UR-D!9-w_*NabG3#*8iEB6;MLC0bl zu^+}8q!0E|{YZ)d{3*qE(Z8%zxZS_^DePlF_g4VSJW@P=->F0o*e$@aGXKML`lhP1 z_WQY!;6MKO>6c%OwawcmW_sQHOuRU6A8C07*naR8Qlf$n_rvc}g=KZCXW$Hby<^(p~NV zEPJen=e?$ebUHNvcJI7xX_WTTF=gQ%g8SIruLO0q0j#btMp`msxIDkr;bXxVsNb>% z&THZ8KzmGa`y!n;*lG!%h(=_XW*ii&Fk--$;%5N6q!AxRW$@biE!4RWB9HiY{a^mt zoGd@yKfD+fKD~;=oeg01N*BACoA@te5FwdQ4YvncWLc#tms*Gx0ILuU0FP#JE(dc5 z+?Q^yeP<3cxhS`Hw6tu2&kI5CU1)vtW&m&-7Rt_aEj~x1v{qu}ky$3M*lJLquFru8 z2b$9y5PP=vR5?CUV%s(L0aZO`^y$2`4H?Z=4Jmbg+Dh>mOf>)95!B1^VvAu+rC7}zFdBf_e zpOmhVZN+lkoIVA>&Q>RmB3Ctp01TD{+A!w%`S|xgzy0%{zuP;D3fdSj+AG80Nvm4F z^$>zvr4Z6s1xPfjeF?xk$y4SNNNub72d~bh!UOK;J1|kSF2%wNj1WLMW>=i+q|;Re zPJ(Bd7Ul5_huhu$hMx$s@F#)$mU*N%I##yU>pSDVbb{@0H4^Lt!Ld6T%-w~FX1K+wx z?lYtT05- zKXRz3ACd4ibr|Na;Hav;fM1CXpKH1X(51r6WxE*!m;Y^laz+?ayotN?L2*lN6U-%D zQDQO5+7;S)8e-m%QH3J&8r36#r+%lFUi#Tp3$Su6Ec&EF~+Z2&O# zRmhmjH1JA!3{~@$D&^ME}SGTWkr|+5~ zdh+^i`Uad9^h#GOx+(Tq$4OO%=2agv_DATu%UnePu&lBax`5eay}jS;R`?`56SOA) zdqL$iIp5Df-|(+?^ktD2?EWNgIXIwijb}*94kN*{&!68L0RQ~+vuyzt64iRfi+A(o z6~~{QP`(_de%YQ5Y-BW2WlvSFn)&HGp7WvuSV+uO4JoC)r_eH*306Lma*&|H^2r)8 zU>+sSLly#H0l$`F3IX7cKfQnYXc)X!$&+)t<1y}gTg~iJB1RHbSEsG%yiuo{Dlm_b zSmx5_5=(68YZxq;G)8E=kXrOe>TH+ouOM`t{RQx<>5$?8q=Ee|aPEtPG(%8o@I{F+ zCD|pu7fJRQ%d4tc<3^(I_!73L;~|r7^IaeIujC>L^b#VgB)jT*VXulBy1&9k%j$${ zSWaeq0@5l0mFQ-NrIbO*=urY}`98`^5>b_m#iNMfII7OBSZsvo#ZbWvXhAG3Z)cu{ z{Z|kD^&1Zcl)bMe0B$_kw-kic3wl*{7RH0(6ule3`%9>WdOL1ztg+l4dh1$?8hCWL z6M&lp+I{Ju^>%~yh{`~8!F<=1r`tHrUn;#8;C-du@yC1J_e=rzccn~3XD_wC#T(t~EMvp@q zCc$T|xC%S9x7cO)V6i#F=<%+Ky>}%$sI1QCNRp;Nq6PDM3daBIxgo3Rydie9vqIxK-c;>^W;5P18_! z9x0EC@WD$*4r#B31|55<(E2INKBe`k%HzJBT9$o7ygR3~+=@;-;OCP_$A|Uvr}LLz zpB`Th8R{41H-Z+xDgm&H!_=Y`VOwjwBknuYUiCSpn(i~!DUd1fW&u8X+JL2YYrRuH%t(dfU@Q~vMShfJ0;m*TvfEm_^+V&cx>c|SXOMqQXOO9Vl;t)cijOLv~pbO<4M=1b20ZZ7iR!j6UXKdKEwhy{} z&d$rq5dq*@stvNZm)oBV5C$Z#UFoH1iMA9kcsg%wsS<0emYoH_4TFnt%$}Y-H!9Ua zN}#J|7Xr_A)iiUhV^>-Ah*i`3p^p_FVa;W5c08(2mi_&gV{ zC>da>jau(bj!xBBu3so+YKfn_AN8`e(6F0eN($)JYJajX|u)3eQO9qtJ><{x=l z0^7_WNvbLU#)%%N=1-$h2dxBPznN`^y@6*ZO?wWuK;PQ^75$}o4EOB<>4*8_Q%I=j z;L3HI57Aeh6XiWu;vVctc=YFfK|$)QTOucj4fp~;t(5_ zft1dV6@95cJNh;TObJw{{!}bOf^Vplim{0V+cJ##@O*Co{Kuca+WTvtQUl<(*Ug90 z7KW5|Ggk%Q$O$V_kHQh9Wg>|U3t2T(Bl4#RznXEhA6iJt+*?4ae-r?VJBnDdciA0p z59bM5Hp{s=zavA+3gJ~k1$c|8gUV=|4ZV;r1<1uc9JFbu zj$LdW)Hy~?eQ5{QUvj!V^TJ2ioF4m~Jy!wOMI`XpLArE;dma1L>R=o<yIB z>a4nYS3o4+l}MWgxt?lg)$R@-F$pdZ%Q^TdfM~sj+!*qdLTXq@km0i#15f~}@3jlM297AGScMSj=9?Rc~QKG8t zQulXsO(DU^wYI8Vhoe@Mm&rI4yRM@9_TZZHC1xnFUTmF=SXg;oEY4d82Z z(Ezae!8x#d;{bE5Ix6~SpcjByt!`gl&VT>?>z{xAY;UoBdT(yu81BA#`yZgMt(&_a zXC7!sh>-o%K(N@bTCk$6HBV5ZQ+0YuC1`CaC^#$3pjvNM;&^FD86#WATU*i5Y(v0z znGM`Si!-B>5~R^jgz)N+5m<-fx|-_xH8CEw2dw<*ys!g$;lWsQ80flBY8z5w zP6=g(?`Fb|gN-uZXav;_{{74Yd%=^kNuAvmFy@ZlZ-xLo$W;T?x`3G&`9s91DFEiX zH|DRGQHDxb5?%gxh3o32B^bUOIIe%HC|;qx_IklZO)6I}OnC5kEST3dl%dtjqru-1 z9#;jmG}y{qV%TZ#dBDrkd=7X!XQ*-}%eE3Um1jg)%A>V^2Yu@VaP&$uH?SIO1Zrjj zSUTbM*1G#~aNo1noQn#Y{zSZaIj!4>;}C!=@$IxY3%S&dQG|J^`L2aPcsydA7#@64 zjjZe@gED)J6feE%+Zk%DJhw?CuWvWCSJ{Hp;c~Vz>yjJY;-~N_q>uh5f=bpsh}$WS9^papWfpm zC=nLWE9HwsI%*uU*HJlFM$nwoMZ6jkCjif8uWQ7f02mRLvEj{T^6AsVKmUCF?e{17e&9B&fgN4L04GLpmc?yeL^6`8CB^o&wu2?m@=g~%?m_) zaKRxyO+=UVk73?&xM?IfdNXYA-~a#+07*naRKPKP1OQVo2Yo%Y;-*G4Y9Yk}eHlr@ zkWxDs`*u7%p1ytk^6gtA!ORLrjlqx1Z1D~?mcQzWDra?ItfFr?!Ic-tDM)dFa*ZB{ z6PxqQPEIdCGM_X)ew1hQAp}9a>k$HJ1LK!Z_s<{hAD>QckF_~wPDZaw<^I@iZ<|F= zaqw(or!j#vk1ZcCn3X$4Q4OMSb57`LbHfFaD{#uABeNfR5&Kvy zBhD3$K>u%WF+nj`o^D#M(~A?RrOXJm@hiW z0W%}|TlLQ*`AFw%7b5FWK)aZ<5QurZpsC-6&*j9jhKcl%Zi$6_a_B2Z@J89NBBWUJG2=VPB$5DF^T8E{DNs93 z9~&V~0KR{}9gXIXYE+sk#?zy#U%^e|e8rLrdzIzVF z;9Pq7ZL3UrRwE-fTr2Eg#z8Yf&PhW8+J2)5tH5c8|!!|HIqR7agd(0i_M$9Pw^J!!}DZgEA% z$vKm8+kotP5F;OoWl^+{LAf#ugpOwC{fdtT&>JZc9e{g79$-^o17928aWAUFVv}N( zqW4IN9o6QXPUa59G8NnuOnp7A=v!saLRm?%kQ2+vQYb5GTWv!I!_dVevvS`6;Ps6y z0GPWK{Hr9OvONC7svpuZQgKzPkYidPaSqky`dpI3InQ#^i8F7p(a0d9#YiSyVHjqE zXc-S@@&{S;eWAaGzQ@xfQx>ALOI=!_N$8xFhJ>XhvS;~O%36zA;Z~Xsf2)l~k4pP( zkk6{}fLw~?AYGytLTrVBr5K*(efg_0{^a?d;$9fv1zJt9L)FSJO`) z9}R&2`14l*@VlEImB(;5c{iC}sexhuqp=wt{ktlvT5}fqvQ$E^1Pd2v2i<6a%W5ON zIamAdWj4?O&Hdb5w#gJx2*Lt@4RLYd0D#?#%h}*LhK856M|npZzL4NMcI|mUFcFJdH0a9)#b4lJw9!|i2am1N^JXGr zUgyiRs(jG#WRq8^uz&n$6*Yl0iz#86L~_wVLFuifO?jt)>XiUk?owCq7ZWxTO$tv3s|s5BXzk9a zIdf%l;<>M>IIc8S?SSys|3;=_{{1<*(G2P@6XcY!)&3P2p3LTO8Vlf4rV|^tS znBzuw^{|WYf@GY;V*rWM`tqG32Py+r6}lCoZ{HdK8=QRk(g66k-+#7`hZrz!lt3@a zhE}#&4`figVO-$IYeMzRIu_i$njJiJKy)1ByXlT#8zx`xOZJiIvKZSrBjsgL*^ar3 z34mcCE=yDxUlA~vvH|4*J2KZ-KVDz|i%Bgo7%7%_i(4o7)29amU?aiy`J__K7#Q1* zEC2+OQCGhJ*B)_ge{Ib2e#e=oEW~RuOfm9&%~|}uk0I+<-!JT-M>|4$l(xEPV|(9| zMK)lta?C0K`@v^^!Ka}BV81s`P)sH1%+JYxl%`OdsiQKrbUA{FYCli`*zafO4wpsr z2^aOyb{oFK+`c-5DBGA<8i&iZX<7!unqcPnG?i8@V*3fDB0)XL>O2ej zYTQr*5~mEb;d-e{G}V(J2LP`qK8MKm(2LJNCQV`{gXzkU7o#lAQK zV3L5FOU&}FnI6w?K^Ma3DW%FPWYp$A4*jsIG1j@q04!^Q9*$rbUpoVikrAn>G_{GYMIZGBlf{PKOLoYjQAxtOm3X zdwZY&&Kz3+j2pfhAxvq2U`0`N{e zcx3TWXN!yenFjE|F?a_L27Ma<2gotCQu?*wXyLECnjp#}8Xl||!5m3im%yUXtnW)i zPos4Exeqlh#eF#znnje=#aB!^C$$${%6=qN>%e4Fh8 zW1t4ThvSW7@HENp0*guo0KhPc`po_TLCy4z}K&5)0P(e z@#Fm;fBpRHw~zK2m@cobCqG`@HS-O5K}R%@_jHM2FaWj-8jeyqM2INr-~9{Iy+mbp znGzqu?{LNDqZ(Msfkf?3m@Wls?coxV=j2cUz?%Iv0Cuu_BMh!#g^FvGhqm0I4S;2u zEgAWA`r~5p*6#W9=ZA0Kj08WO&ug^M8F4+~r)1m59)7&gCOhpOmjYmhf{IO54=h0) zt$9eeX>C#*GW4Pj2g{tY%C7{&@Ze0j*l?Na8wYR$A^~unLgtpSf$-NN0M@K+uEYJ~ zN!VHasz&l46{0Kp4*Y_KlfffV)g>ZU$lqr^l3b{&!}Bp6szU-+W`r)MhPdXkE4)un zX;s>zLap|{T+asLcHUCsoLw9w@SyXvB)>tEIGqkXYk`41=B;yyvjiZO28k{CNpr1m1$j85 zf_5*CMO2mVqY5pNRFNyMAi>?G@;p5p@316H{9Y)7L6_Z7n#Y<6nDOp-e%{r>b@zf! z^tBxT0S|auX*<$$X`WY4FN1+4#p+4_tXeLI%Ps)J*ty`cB*s}hlY2m+gte0Px%%`764376zl=um8#po%)65Hnd?kF`WR?_=9KZhD$A?tPAfN0 z?!9NsC#{OJ)X^wK@0dig3(*pet=l3Eu%-Yo3n|tJfN7k|6)UVud@zY)#W6Ghp3Pp{ z5wLC9ufKly`t`*~u;kE^R>&7xBg_867us40eJQPZSg+Sb?DO`t730@eOa@hu0Uddr zpg89Gaw!u@4Payk5y|lW(0H&<0K2u;4ux~mRXyz6tkGd527K<}4HPHV0^n*fdrE_< z(jRRAEG(=o+so0Q3a&a!S1^;7sGjOChmPvq3J$9VN+3E?gfSKiLRYRl(rgRPF9CQ& zTU)1=LidFac0&8!$?ICcDFE&pg$s+yq0`pR_0KUG3>9t+n5rf%5ZIM0klH)#ZlX%f z>$>P*z+rT}&y=1t1M4py#+}$4jFy*LWp!0qR{^^{RvKg3LZZcUwoe`aY|m30b`js& z{fe(pLLKB4`dC}1tsL#;srYgtmJav!+kKkM33{sz0vOh!C>^#VqyY{$ND?pF&pd0q;D5!7I&0Xo*CBdD;nS5n_deq}3-qZ#=Pdo27q+^@e4(g3=E zJ=JXPGcy~yJ2U`n#255!W$H&_i{{e5q&LDg+rw+9u*%UT5q(~)81N(9aBAkg*z9^p z&b}BUm+4Z{K_)er!4^X@Y6I6aB>TDDP66PrzkRZAfdCjY3%GXMY#&PhZ;R8p%WH8M~4qbapozLxxo&C1BGgz`f* zH+A&At0m~vLN`||do4IZ8~wGTp%~!V^xDvub#wEBE3ME=zlH?cXUUDRKH(0{vE`@T zNt@`)LiD!Vc6QvY-CRLkTTffVU>%ubH~8$u=LF**zN!;cZDSPx$}if%cn<)-e>`%` z?L?>0q)-KCbGPAfDM3pG*1G`M6?jEc5X*_(eo87e!rEF-9<_nF&B(02f^;QOqk`}y zYRcB5_FO@)T9gi@^!)&Xhi;LZ>fyW_1Pksi(N|I_*^a~t~Ff(OUoQ~Dt|0B__^3H^Qiuzq-w zvUedjd;u_A*0(I~XX5W&s!|tXkaeI|C;F1sbxSm%0gONwcxdP{YhgZ&0viZ@{CK7W zZQr1~`P*Q?-UG%9+I|ASVvr!Q{qOyK=SF34XstG+J`$>q)-nk&qb0IciJiV9{xw;Q zmNv(-D~YmpOow*>W?ngq&o?}OpQO5W48FzT%P+JoOK73J8EglNDzvXA#hNdE-0rSF zeAs{e`uy8(pN$0Dzt|yVqht4AoVX7AYRgX9w#h8Ypb-EZ5+~c+H4NUI-gl*UnR^Dj zdDVB6;`#b)+V^*@87)b~C40OtxzvK*9#;6gZ|7vA$j^Ja(frK0qm`Zsl?GOvlkZm) zS_Qz|8(Fz=`sJ3%Wh;HGKqxr4jBXoE2klQC@++cO{j-o;c*c}Y1z_D?V0q~oIZ9B# zT>AWcteWIY45rk)dstNyEAFkDF&|2LlAu(U8sBXOi$>#REjFxdhF9^yI<7TB0~mz* z&KvdhSleQF7w+2*O%V_=D;%9;j!vZcVxF~t(YBSwQWbscd()Hkh#<`WYTho0jZ6ED znopGl*1{3bt=El97=xTCr?XpInm+13H+Pf-x%*KWbqCFW&+sI7bA{oI#5!uO)7lHd(;kBzMB<;%XD~W zW3^AIsc3@?|K|G8FkDwq+$K}F6Nbs{@M7huL-Zq+rX{5P8HgY z&-L}cS~T+YYs@LB#)oUi{DR}b89O=W{F_^fd9N29n*l#(avzj3u36Cr8LZ~#cQb&?5 z?W-<%t$=Np(F@E4RoX2ET&=09SB7}A=Q^j+6t)lzHi*J#P}%5q-XgJN8=U#L%p{S1cQ`z!EGsT41m++Y7Y0Mr3$#J zz{p8+FjJJz1gRI}`R#0*!@(+9*U<%~Ht{^YgBY%O3_QTLYgyYK%Ue);)vg)AsujgL ziXbQFQ_l(S=hp7dlNm(ac`6B9JzooYqjYI3+|Qd@4EtiQLBLTa0WXxDKr>h+Xi;Pc zF{)PpyG|e3a$)LYGE8XgQxqFZL%CU@*e20RZ!LF7`pSUM1%*)$nzE4v`gjm*<@B=Xx$#f!gcn zi&hH~RTh_PCk)12>(ZXWfU`leFNjm5|KwgZong-gUYu;|uZ3s$)DIv@%0U zlu5sG&KD;}5q-{7#P=T#I6@E70EfNXiUOxJx~ly9Qo1GHT=B0C8evII8iWkFj&)p$ ziL6vOcjretP(^-KA7WI>&Z(r`CH<{)N+Q;qQ?!Kb=l21)?L>Se7hOrUq>zlL@hx`% z9{F3b3F;xidjr~@gNs8}W6!B)9vw}|p{u%`2n6LLDF&qHAPvLh3joh_A_$wnm_C~M zjPDYAEO(>4TP&xwAI#~pO0ihc6;465O3ivQ!qkEN2ms9UtTTdy6R&Uar}dGQI}%3Q z*~$S}9$WVA82Y9Id!H|?grIHh`Gj%@q6K)+-NoB`MMaXuW{j5aD zO*N~wq@9QAi~o1r(!TJ3|7B<)RM2eWWoyZp=1G;Fjs+!_TJ#IYd=(y&N36EPz*#&a(M|)ng`A#IlsuF$E{CSWw&#vuQyr9+h1?nmWcaw@x0^67BmaRHnUOQLftcw- zw*rg~(;d(}V(CcruWp@fh%f4}uBi52?8MX1O1i3l2f#W7A4~kpF(Xi)1#Db3kKRq3u?OW#Wq8vLpvN_RXiiG*^_(ghrq1;DMA%LX^H?(Z0al4eaF(K6}$E&%&6nYa#X0tv2` zVF0irD05tG@4_}k0BnmgewuPz*?rnR?3Z6Y{QAq6r^kCT9wL!x?sRN yvH`P(TqR@sp$}Iau^t%Q0N4YMAIL7WpZ_0pvv4PZ=^U{D0000 Date: Mon, 6 Nov 2023 13:02:40 +1000 Subject: [PATCH 24/69] Split out quantized and non-quantized versions of software, split out training and inference models --- VPRTempo.py | 234 ++++++----------------------- VPRTempoQuant.py | 250 +++++++++++++++++++++++++++++++ VPRTempoQuant_Train.py | 288 ++++++++++++++++++++++++++++++++++++ VPRTempo_Train.py | 268 +++++++++++++++++++++++++++++++++ src/blitnet.py | 18 +-- src/metrics.py | 2 - src/settings.py | 64 +++----- tutorials/0_BasicDemo.ipynb | 34 +---- 8 files changed, 888 insertions(+), 270 deletions(-) create mode 100644 VPRTempoQuant.py create mode 100644 VPRTempoQuant_Train.py create mode 100644 VPRTempo_Train.py diff --git a/VPRTempo.py b/VPRTempo.py index ab49e54..97a80a1 100644 --- a/VPRTempo.py +++ b/VPRTempo.py @@ -36,13 +36,13 @@ import blitnet as bn import numpy as np import torch.nn as nn -import torch.quantization as quantization -from settings import configure, image_csv, model_logger +from settings import configure, model_logger from dataset import CustomImageDataset, ProcessImage from torch.utils.data import DataLoader -from torch.ao.quantization import QuantStub, DeQuantStub from tqdm import tqdm +from prettytable import PrettyTable +from metrics import recallAtK class VPRTempo(nn.Module): def __init__(self): @@ -50,16 +50,8 @@ def __init__(self): # Configure the network configure(self) - - # Define the images to load (both training and inference) - image_csv(self) - # Add quantization stubs for Quantization Aware Training (QAT) - self.quant = QuantStub() - self.dequant = DeQuantStub() - - # Define the add function for quantized addition - self.add = nn.quantized.FloatFunctional() + model_logger(self) # Layer dict to keep track of layer names and their order self.layer_dict = {} @@ -71,18 +63,12 @@ def __init__(self): self.add_layer( 'feature_layer', dims=[self.input, self.feature], - thr_range=[0, 0.5], - fire_rate=[0.2, 0.9], - ip_rate=0.15, - stdp_rate=0.005, - p=[0.1, 0.5] + device=self.device ) self.add_layer( 'output_layer', dims=[self.feature, self.output], - ip_rate=0.15, - stdp_rate=0.005, - spk_force=True + device=self.device ) def add_layer(self, name, **kwargs): @@ -103,77 +89,6 @@ def add_layer(self, name, **kwargs): # Add layer name and index to the layer_dict self.layer_dict[name] = self.layer_counter self.layer_counter += 1 - - def model_logger(self): - """ - Log the model configuration to the console. - """ - model_logger(self) - - def _anneal_learning_rate(self, layer, mod, itp, stdp): - """ - Anneal the learning rate for the current layer. - """ - if np.mod(mod, 100) == 0: # Modify learning rate every 100 timesteps - pt = pow(float(self.T - mod) / self.T, self.annl_pow) - layer.eta_ip = torch.mul(itp, pt) # Anneal intrinsic threshold plasticity learning rate - layer.eta_stdp = torch.mul(stdp, pt) # Anneal STDP learning rate - - return layer - - def train_model(self, train_loader, layer, prev_layers=None): - """ - Train a layer of the network model. - - :param train_loader: Training data loader - :param layer: Layer to train - :param prev_layers: Previous layers to pass data through - """ - - # Initialize the tqdm progress bar - pbar = tqdm(total=int(self.T), - desc="Training ", - position=0) - - # Initialize the learning rates for each layer (used for annealment) - init_itp = layer.eta_ip.detach() - init_stdp = layer.eta_stdp.detach() - mod = 0 # Used to determine the learning rate annealment, resets at each epoch - # Run training for the specified number of epochs - for epoch in range(self.epoch): - # Run training for the specified number of timesteps - for spikes, labels in train_loader: - spikes, labels = spikes.to(self.device), labels.to(self.device) - idx = labels / self.filter # Set output index for spike forcing - # Pass through previous layers if they exist - if prev_layers: - with torch.no_grad(): - for prev_layer_name in prev_layers: - prev_layer = getattr(self, prev_layer_name) # Get the previous layer object - spikes = self.forward(spikes, prev_layer) # Pass spikes through the previous layer - spikes = bn.clamp_spikes(spikes, prev_layer) # Clamp spikes [0, 0.9] - else: - prev_layer = None - # Get the output spikes from the current layer - pre_spike = spikes.detach() # Previous layer spikes for STDP - spikes = self.forward(spikes, layer) # Current layer spikes - spikes_noclp = spikes.detach() # Used for inhibitory homeostasis - spikes = bn.clamp_spikes(spikes, layer) # Clamp spikes [0, 0.9] - # Calculate STDP - layer = bn.calc_stdp(pre_spike,spikes,spikes_noclp,layer, idx, prev_layer=prev_layer) - # Adjust learning rates - layer = self._anneal_learning_rate(layer, mod, init_itp, init_stdp) - # Update the annealing mod & progress bar - mod += 1 - pbar.update(1) - - # Close the tqdm progress bar - pbar.close() - - # Free up memory - if self.device.type == "cuda": - torch.cuda.empty_cache() - gc.collect() def evaluate(self, model, test_loader, layers=None): """ @@ -182,16 +97,12 @@ def evaluate(self, model, test_loader, layers=None): :param test_loader: Testing data loader :param layers: Layers to pass data through """ - - # Initialize the number of correct predictions - numcorr = 0 - idx = 0 - # Initialize the tqdm progress bar pbar = tqdm(total=self.number_testing_images, desc="Running the test network", position=0) - + # Initiliaze the output spikes variable + out = [] # Run inference for the specified number of timesteps for spikes, labels in test_loader: # Set device @@ -203,19 +114,29 @@ def evaluate(self, model, test_loader, layers=None): spikes = self.forward(spikes, layer) spikes = bn.clamp_spikes(spikes, layer) - # Evaluate if the prediction is correct - if torch.argmax(spikes.reshape(1, self.number_training_images)) == idx: - numcorr += 1 - - # Update the index and progress bar - idx += 1 + # Add output spikes to list + out.append(spikes.detach().cpu().tolist()) pbar.update(1) # Close the tqdm progress bar pbar.close() - # Calculate and record the accuracy - accuracy = round((numcorr/self.number_testing_images)*100,2) - model.logger.info("P@100R: "+ str(accuracy) + '%') + + # Rehsape output spikes into a similarity matrix + out = np.reshape(np.array(out),(model.number_training_images,model.number_testing_images)) + # Calculate and print the Recall@N + N = [1,5,10,15,20,25] + R = [] + # Create GT matrix + GT = np.zeros((model.number_testing_images,model.number_training_images), dtype=int) + for n in range(len(GT)): + GT[n,n] = 1 + for n in N: + R.append(round(recallAtK(out,GThard=GT,K=n),2)) + # Print the results + table = PrettyTable() + table.field_names = ["N", "1", "5", "10", "15", "20", "25"] + table.add_row(["Recall", R[0], R[1], R[2], R[3], R[4], R[5]]) + model.logger.info(table) def forward(self, spikes, layer): """ @@ -228,17 +149,9 @@ def forward(self, spikes, layer): - Tensor: Output after processing. """ - spikes = self.quant(spikes) - spikes = self.add.add(layer.exc(spikes), layer.inh(spikes)) - spikes = self.dequant(spikes) + spikes = layer.exc(spikes) + layer.inh(spikes) return spikes - - def save_model(self, model_out): - """ - Save the trained model to models output folder. - """ - torch.save(self.state_dict(), model_out) def load_model(self, model_path): """ @@ -251,7 +164,7 @@ def generate_model_name(model): """ Generate the model name based on its parameters. """ - return ("VPRTempoQuant" + + return ("VPRTempo" + str(model.input) + str(model.feature) + str(model.output) + @@ -260,63 +173,16 @@ def generate_model_name(model): def check_pretrained_model(model_name): """ - Check if a pre-trained model exists and prompt the user to retrain if desired. - """ - if os.path.exists(os.path.join('./models', model_name)): - prompt = "A network with these parameters exists, re-train network? (y/n):\n" - retrain = input(prompt).strip().lower() - return retrain == 'n' - return False - -def train_new_model(model, model_name, qconfig): + Check if a pre-trained model exists and tell user if it does not. """ - Train a new model. - - :param model: Model to train - :param model_name: Name of the model to save after training - :param qconfig: Quantization configuration - """ - # Initialize the image transforms and datasets - image_transform = ProcessImage(model.dims, model.patches) - train_dataset = CustomImageDataset(annotations_file=model.dataset_file, - img_dirs=model.training_dirs, - transform=image_transform, - skip=model.filter, - max_samples=model.number_training_images, - test=False) - # Initialize the data loader - train_loader = DataLoader(train_dataset, - batch_size=1, - shuffle=True, - num_workers=8, - persistent_workers=True) - # Set the model to training mode and move to device - model.train() - model.to('cpu') - model.qconfig = qconfig - - # Apply quantization configurations to the model - model = quantization.prepare_qat(model, inplace=False) - - # Keep track of trained layers to pass data through them - trained_layers = [] - - # Training each layer - for layer_name, _ in sorted(model.layer_dict.items(), key=lambda item: item[1]): - print(f"Training layer: {layer_name}") - # Retrieve the layer object - layer = getattr(model, layer_name) - # Train the layer - model.train_model(train_loader, layer, prev_layers=trained_layers) - # After training the current layer, add it to the list of trained layers - trained_layers.append(layer_name) - # Convert the model to a quantized model - model = quantization.convert(model, inplace=False) - model.eval() - # Save the model - model.save_model(os.path.join('./models', model_name)) - -def run_inference(model, model_name, qconfig): + if not os.path.exists(os.path.join('./models', model_name)): + model.logger.info("A pre-trained network does not exist: please train one using VPRTempoQuant_Trainer") + pretrain = 'n' + else: + pretrain = 'y' + return pretrain + +def run_inference(model, model_name): """ Run inference on a pre-trained model. @@ -338,17 +204,8 @@ def run_inference(model, model_name, qconfig): num_workers=8, persistent_workers=True) # Set the model to evaluation mode and set configuration - model = VPRTempo() - model.model_logger() model.eval() - model.qconfig = qconfig - # Apply quantization configurations to all layers in layer_dict - for layer_name, _ in model.layer_dict.items(): - getattr(model, layer_name).qconfig = qconfig - # Prepare and convert the model to a quantized model - model = quantization.prepare(model, inplace=False) - model = quantization.convert(model, inplace=False) # Load the model model.load_model(os.path.join('./models', model_name)) @@ -363,16 +220,13 @@ def run_inference(model, model_name, qconfig): #torch.set_num_threads(8) # Initialize the model model = VPRTempo() - # Initialize the logger - model.model_logger() - # Set the quantization configuration - qconfig = quantization.get_default_qat_qconfig('fbgemm') + if model.quantize: + raise ValueError("Please disable quantization to run inference.") # Generate the model name model_name = generate_model_name(model) # Check if a pre-trained model exists use_pretrained = check_pretrained_model(model_name) - # Train or run inference based on the user's input - if not use_pretrained: - train_new_model(model, model_name, qconfig) # Training - with torch.no_grad(): - run_inference(model, model_name, qconfig) # Inference \ No newline at end of file + if not use_pretrained == 'n': + # Run inference based on the user's input + with torch.no_grad(): + run_inference(model, model_name) # Inference \ No newline at end of file diff --git a/VPRTempoQuant.py b/VPRTempoQuant.py new file mode 100644 index 0000000..e2ef724 --- /dev/null +++ b/VPRTempoQuant.py @@ -0,0 +1,250 @@ +#MIT License + +#Copyright (c) 2023 Adam Hines, Peter G Stratton, Michael Milford, Tobias Fischer + +#Permission is hereby granted, free of charge, to any person obtaining a copy +#of this software and associated documentation files (the "Software"), to deal +#in the Software without restriction, including without limitation the rights +#to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +#copies of the Software, and to permit persons to whom the Software is +#furnished to do so, subject to the following conditions: + +#The above copyright notice and this permission notice shall be included in all +#copies or substantial portions of the Software. + +#THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +#IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +#FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +#AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +#LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +#OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +#SOFTWARE. + +''' +Imports +''' + +import os +import torch +import gc +import sys +sys.path.append('./src') +sys.path.append('./models') +sys.path.append('./output') +sys.path.append('./dataset') + +import blitnet as bn +import numpy as np +import torch.nn as nn +import torch.quantization as quantization + +from settings import configure, model_logger +from dataset import CustomImageDataset, ProcessImage +from torch.utils.data import DataLoader +from torch.ao.quantization import QuantStub, DeQuantStub +from tqdm import tqdm +from prettytable import PrettyTable +from metrics import recallAtK + +class VPRTempo(nn.Module): + def __init__(self): + super(VPRTempo, self).__init__() + + # Configure the network + configure(self) + + model_logger(self) + + # Add quantization stubs for Quantization Aware Training (QAT) + self.quant = QuantStub() + self.dequant = DeQuantStub() + + # Define the add function for quantized addition + self.add = nn.quantized.FloatFunctional() + + # Layer dict to keep track of layer names and their order + self.layer_dict = {} + self.layer_counter = 0 + + """ + Define trainable layers here + """ + self.add_layer( + 'feature_layer', + dims=[self.input, self.feature], + device=self.device + ) + self.add_layer( + 'output_layer', + dims=[self.feature, self.output], + device=self.device + ) + + def add_layer(self, name, **kwargs): + """ + Dynamically add a layer with given name and keyword arguments. + + :param name: Name of the layer to be added + :type name: str + :param kwargs: Hyperparameters for the layer + """ + # Check for layer name duplicates + if name in self.layer_dict: + raise ValueError(f"Layer with name {name} already exists.") + + # Add a new SNNLayer with provided kwargs + setattr(self, name, bn.SNNLayer(**kwargs)) + + # Add layer name and index to the layer_dict + self.layer_dict[name] = self.layer_counter + self.layer_counter += 1 + + def evaluate(self, model, test_loader, layers=None): + """ + Run the inferencing model and calculate the accuracy. + + :param test_loader: Testing data loader + :param layers: Layers to pass data through + """ + # Initialize the tqdm progress bar + pbar = tqdm(total=self.number_testing_images, + desc="Running the test network", + position=0) + # Initiliaze the output spikes variable + out = [] + # Run inference for the specified number of timesteps + for spikes, labels in test_loader: + # Set device + spikes, labels = spikes.to(self.device), labels.to(self.device) + # Pass through previous layers if they exist + if layers: + for layer_name in layers: + layer = getattr(self, layer_name) + spikes = self.forward(spikes, layer) + spikes = bn.clamp_spikes(spikes, layer) + + # Add output spikes to list + out.append(spikes.detach().cpu().tolist()) + pbar.update(1) + + # Close the tqdm progress bar + pbar.close() + + # Rehsape output spikes into a similarity matrix + out = np.reshape(np.array(out),(model.number_training_images,model.number_testing_images)) + # Calculate and print the Recall@N + N = [1,5,10,15,20,25] + R = [] + # Create GT matrix + GT = np.zeros((model.number_testing_images,model.number_training_images), dtype=int) + for n in range(len(GT)): + GT[n,n] = 1 + for n in N: + R.append(recallAtK(out,GThard=GT,K=n)) + # Print the results + table = PrettyTable() + table.field_names = ["N", "1", "5", "10", "15", "20", "25"] + table.add_row(["Recall", R[0], R[1], R[2], R[3], R[4], R[5]]) + model.logger.info(table) + + def forward(self, spikes, layer): + """ + Compute the forward pass of the model. + + Parameters: + - spikes (Tensor): Input spikes. + + Returns: + - Tensor: Output after processing. + """ + + spikes = self.quant(spikes) + spikes = self.add.add(layer.exc(spikes), layer.inh(spikes)) + spikes = self.dequant(spikes) + + return spikes + + def load_model(self, model_path): + """ + Load pre-trained model and set the state dictionary keys. + """ + self.load_state_dict(torch.load(model_path, map_location=self.device), + strict=True) + +def generate_model_name(model): + """ + Generate the model name based on its parameters. + """ + return ("VPRTempoQuant" + + str(model.input) + + str(model.feature) + + str(model.output) + + str(model.number_modules) + + '.pth') + +def check_pretrained_model(model_name): + """ + Check if a pre-trained model exists and tell user if it does not. + """ + if not os.path.exists(os.path.join('./models', model_name)): + model.logger.info("A pre-trained network does not exist: please train one using VPRTempoQuant_Trainer") + pretrain = 'n' + else: + pretrain = 'y' + return pretrain + +def run_inference(model, model_name, qconfig): + """ + Run inference on a pre-trained model. + + :param model: Model to run inference on + :param model_name: Name of the model to load + :param qconfig: Quantization configuration + """ + # Initialize the image transforms and datasets + image_transform = ProcessImage(model.dims, model.patches) + test_dataset = CustomImageDataset(annotations_file=model.dataset_file, + img_dirs=model.testing_dirs, + transform=image_transform, + skip=model.filter, + max_samples=model.number_testing_images) + # Initialize the data loader + test_loader = DataLoader(test_dataset, + batch_size=1, + shuffle=False, + num_workers=8, + persistent_workers=True) + # Set the model to evaluation mode and set configuration + model.eval() + model.qconfig = qconfig + + # Apply quantization configurations to all layers in layer_dict + for layer_name, _ in model.layer_dict.items(): + getattr(model, layer_name).qconfig = qconfig + # Prepare and convert the model to a quantized model + model = quantization.prepare(model, inplace=False) + model = quantization.convert(model, inplace=False) + # Load the model + model.load_model(os.path.join('./models', model_name)) + + # Retrieve layer names for inference + layer_names = list(model.layer_dict.keys()) + + # Use evaluate method for inference accuracy + model.evaluate(model, test_loader, layers=layer_names) + +if __name__ == "__main__": + # Set the number of threads for PyTorch + #torch.set_num_threads(8) + # Initialize the model + model = VPRTempo() + # Set the quantization configuration + qconfig = quantization.get_default_qat_qconfig('fbgemm') + # Generate the model name + model_name = generate_model_name(model) + # Check if a pre-trained model exists + use_pretrained = check_pretrained_model(model_name) + if not use_pretrained == 'n': + # Run inference based on the user's input + with torch.no_grad(): + run_inference(model, model_name, qconfig) # Inference \ No newline at end of file diff --git a/VPRTempoQuant_Train.py b/VPRTempoQuant_Train.py new file mode 100644 index 0000000..7e02bf2 --- /dev/null +++ b/VPRTempoQuant_Train.py @@ -0,0 +1,288 @@ +#MIT License + +#Copyright (c) 2023 Adam Hines, Peter G Stratton, Michael Milford, Tobias Fischer + +#Permission is hereby granted, free of charge, to any person obtaining a copy +#of this software and associated documentation files (the "Software"), to deal +#in the Software without restriction, including without limitation the rights +#to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +#copies of the Software, and to permit persons to whom the Software is +#furnished to do so, subject to the following conditions: + +#The above copyright notice and this permission notice shall be included in all +#copies or substantial portions of the Software. + +#THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +#IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +#FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +#AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +#LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +#OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +#SOFTWARE. + +''' +Imports +''' + +import os +import torch +import gc +import sys +sys.path.append('./src') +sys.path.append('./models') +sys.path.append('./output') +sys.path.append('./dataset') + +import blitnet as bn +import numpy as np +import torch.nn as nn +import torch.quantization as quantization + +from settings import configure, model_logger +from dataset import CustomImageDataset, ProcessImage +from torch.utils.data import DataLoader +from torch.ao.quantization import QuantStub, DeQuantStub +from tqdm import tqdm + +class VPRTempo(nn.Module): + def __init__(self): + super(VPRTempo, self).__init__() + + # Configure the network + configure(self) + + # Add quantization stubs for Quantization Aware Training (QAT) + self.quant = QuantStub() + self.dequant = DeQuantStub() + + # Define the add function for quantized addition + self.add = nn.quantized.FloatFunctional() + + # Layer dict to keep track of layer names and their order + self.layer_dict = {} + self.layer_counter = 0 + + """ + Define trainable layers here + """ + self.add_layer( + 'feature_layer', + dims=[self.input, self.feature], + thr_range=[0, 0.5], + fire_rate=[0.2, 0.9], + ip_rate=0.15, + stdp_rate=0.005, + p=[0.1, 0.5], + device=self.device + ) + self.add_layer( + 'output_layer', + dims=[self.feature, self.output], + ip_rate=0.15, + stdp_rate=0.005, + spk_force=True, + device=self.device + ) + + def add_layer(self, name, **kwargs): + """ + Dynamically add a layer with given name and keyword arguments. + + :param name: Name of the layer to be added + :type name: str + :param kwargs: Hyperparameters for the layer + """ + # Check for layer name duplicates + if name in self.layer_dict: + raise ValueError(f"Layer with name {name} already exists.") + + # Add a new SNNLayer with provided kwargs + setattr(self, name, bn.SNNLayer(**kwargs)) + + # Add layer name and index to the layer_dict + self.layer_dict[name] = self.layer_counter + self.layer_counter += 1 + + def model_logger(self): + """ + Log the model configuration to the console. + """ + model_logger(self) + + def _anneal_learning_rate(self, layer, mod, itp, stdp): + """ + Anneal the learning rate for the current layer. + """ + if np.mod(mod, 100) == 0: # Modify learning rate every 100 timesteps + pt = pow(float(self.T - mod) / self.T, self.annl_pow) + layer.eta_ip = torch.mul(itp, pt) # Anneal intrinsic threshold plasticity learning rate + layer.eta_stdp = torch.mul(stdp, pt) # Anneal STDP learning rate + + return layer + + def train_model(self, train_loader, layer, prev_layers=None): + """ + Train a layer of the network model. + + :param train_loader: Training data loader + :param layer: Layer to train + :param prev_layers: Previous layers to pass data through + """ + + # Initialize the tqdm progress bar + pbar = tqdm(total=int(self.T), + desc="Training ", + position=0) + + # Initialize the learning rates for each layer (used for annealment) + init_itp = layer.eta_ip.detach() + init_stdp = layer.eta_stdp.detach() + mod = 0 # Used to determine the learning rate annealment, resets at each epoch + # Run training for the specified number of epochs + for epoch in range(self.epoch): + # Run training for the specified number of timesteps + for spikes, labels in train_loader: + spikes, labels = spikes.to(self.device), labels.to(self.device) + idx = labels / self.filter # Set output index for spike forcing + # Pass through previous layers if they exist + if prev_layers: + with torch.no_grad(): + for prev_layer_name in prev_layers: + prev_layer = getattr(self, prev_layer_name) # Get the previous layer object + spikes = self.forward(spikes, prev_layer) # Pass spikes through the previous layer + spikes = bn.clamp_spikes(spikes, prev_layer) # Clamp spikes [0, 0.9] + else: + prev_layer = None + # Get the output spikes from the current layer + pre_spike = spikes.detach() # Previous layer spikes for STDP + spikes = self.forward(spikes, layer) # Current layer spikes + spikes_noclp = spikes.detach() # Used for inhibitory homeostasis + spikes = bn.clamp_spikes(spikes, layer) # Clamp spikes [0, 0.9] + # Calculate STDP + layer = bn.calc_stdp(pre_spike,spikes,spikes_noclp,layer, idx, prev_layer=prev_layer) + # Adjust learning rates + layer = self._anneal_learning_rate(layer, mod, init_itp, init_stdp) + # Update the annealing mod & progress bar + mod += 1 + pbar.update(1) + + # Close the tqdm progress bar + pbar.close() + + # Free up memory + if self.device.type == "cuda": + torch.cuda.empty_cache() + gc.collect() + + def forward(self, spikes, layer): + """ + Compute the forward pass of the model. + + Parameters: + - spikes (Tensor): Input spikes. + + Returns: + - Tensor: Output after processing. + """ + + spikes = self.quant(spikes) + spikes = self.add.add(layer.exc(spikes), layer.inh(spikes)) + spikes = self.dequant(spikes) + + return spikes + + def save_model(self, model_out): + """ + Save the trained model to models output folder. + """ + torch.save(self.state_dict(), model_out) + +def generate_model_name(model): + """ + Generate the model name based on its parameters. + """ + return ("VPRTempoQuant" + + str(model.input) + + str(model.feature) + + str(model.output) + + str(model.number_modules) + + '.pth') + +def check_pretrained_model(model_name): + """ + Check if a pre-trained model exists and prompt the user to retrain if desired. + """ + if os.path.exists(os.path.join('./models', model_name)): + prompt = "A network with these parameters exists, re-train network? (y/n):\n" + retrain = input(prompt).strip().lower() + return retrain == 'n' + return False + +def train_new_model(model, model_name, qconfig): + """ + Train a new model. + + :param model: Model to train + :param model_name: Name of the model to save after training + :param qconfig: Quantization configuration + """ + # Initialize the image transforms and datasets + image_transform = ProcessImage(model.dims, model.patches) + train_dataset = CustomImageDataset(annotations_file=model.dataset_file, + img_dirs=model.training_dirs, + transform=image_transform, + skip=model.filter, + max_samples=model.number_training_images, + test=False) + # Initialize the data loader + train_loader = DataLoader(train_dataset, + batch_size=1, + shuffle=True, + num_workers=8, + persistent_workers=True) + # Set the model to training mode and move to device + model.train() + model.to('cpu') + model.qconfig = qconfig + + # Apply quantization configurations to the model + model = quantization.prepare_qat(model, inplace=False) + + # Keep track of trained layers to pass data through them + trained_layers = [] + + # Training each layer + for layer_name, _ in sorted(model.layer_dict.items(), key=lambda item: item[1]): + print(f"Training layer: {layer_name}") + # Retrieve the layer object + layer = getattr(model, layer_name) + # Train the layer + model.train_model(train_loader, layer, prev_layers=trained_layers) + # After training the current layer, add it to the list of trained layers + trained_layers.append(layer_name) + # Convert the model to a quantized model + model = quantization.convert(model, inplace=False) + model.eval() + # Save the model + model.save_model(os.path.join('./models', model_name)) + +if __name__ == "__main__": + # Set the number of threads for PyTorch + #torch.set_num_threads(8) + # Initialize the model + model = VPRTempo() + # Initialize the logger + model.model_logger() + # Set the quantization configuration + if model.quantize: + qconfig = quantization.get_default_qat_qconfig('fbgemm') + else: + raise ValueError("Quantization must be enabled for training.") + # Generate the model name + model_name = generate_model_name(model) + # Check if a pre-trained model exists + use_pretrained = check_pretrained_model(model_name) + # Train or run inference based on the user's input + if not use_pretrained: + train_new_model(model, model_name, qconfig) # Training + model.logger.info('Training complete.') \ No newline at end of file diff --git a/VPRTempo_Train.py b/VPRTempo_Train.py new file mode 100644 index 0000000..4eebfb9 --- /dev/null +++ b/VPRTempo_Train.py @@ -0,0 +1,268 @@ +#MIT License + +#Copyright (c) 2023 Adam Hines, Peter G Stratton, Michael Milford, Tobias Fischer + +#Permission is hereby granted, free of charge, to any person obtaining a copy +#of this software and associated documentation files (the "Software"), to deal +#in the Software without restriction, including without limitation the rights +#to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +#copies of the Software, and to permit persons to whom the Software is +#furnished to do so, subject to the following conditions: + +#The above copyright notice and this permission notice shall be included in all +#copies or substantial portions of the Software. + +#THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +#IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +#FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +#AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +#LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +#OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +#SOFTWARE. + +''' +Imports +''' + +import os +import torch +import gc +import sys +sys.path.append('./src') +sys.path.append('./models') +sys.path.append('./output') +sys.path.append('./dataset') + +import blitnet as bn +import numpy as np +import torch.nn as nn + +from settings import configure, model_logger +from dataset import CustomImageDataset, ProcessImage +from torch.utils.data import DataLoader +from tqdm import tqdm + +class VPRTempo(nn.Module): + def __init__(self): + super(VPRTempo, self).__init__() + + # Configure the network + configure(self) + + # Layer dict to keep track of layer names and their order + self.layer_dict = {} + self.layer_counter = 0 + + """ + Define trainable layers here + """ + self.add_layer( + 'feature_layer', + dims=[self.input, self.feature], + thr_range=[0, 0.5], + fire_rate=[0.2, 0.9], + ip_rate=0.15, + stdp_rate=0.005, + p=[0.1, 0.5], + device=self.device + ) + self.add_layer( + 'output_layer', + dims=[self.feature, self.output], + ip_rate=0.15, + stdp_rate=0.005, + spk_force=True, + device=self.device + ) + + def add_layer(self, name, **kwargs): + """ + Dynamically add a layer with given name and keyword arguments. + + :param name: Name of the layer to be added + :type name: str + :param kwargs: Hyperparameters for the layer + """ + # Check for layer name duplicates + if name in self.layer_dict: + raise ValueError(f"Layer with name {name} already exists.") + + # Add a new SNNLayer with provided kwargs + setattr(self, name, bn.SNNLayer(**kwargs)) + + # Add layer name and index to the layer_dict + self.layer_dict[name] = self.layer_counter + self.layer_counter += 1 + + def model_logger(self): + """ + Log the model configuration to the console. + """ + model_logger(self) + + def _anneal_learning_rate(self, layer, mod, itp, stdp): + """ + Anneal the learning rate for the current layer. + """ + if np.mod(mod, 100) == 0: # Modify learning rate every 100 timesteps + pt = pow(float(self.T - mod) / self.T, self.annl_pow) + layer.eta_ip = torch.mul(itp, pt) # Anneal intrinsic threshold plasticity learning rate + layer.eta_stdp = torch.mul(stdp, pt) # Anneal STDP learning rate + + return layer + + def train_model(self, train_loader, layer, prev_layers=None): + """ + Train a layer of the network model. + + :param train_loader: Training data loader + :param layer: Layer to train + :param prev_layers: Previous layers to pass data through + """ + + # Initialize the tqdm progress bar + pbar = tqdm(total=int(self.T), + desc="Training ", + position=0) + + # Initialize the learning rates for each layer (used for annealment) + init_itp = layer.eta_ip.detach() + init_stdp = layer.eta_stdp.detach() + mod = 0 # Used to determine the learning rate annealment, resets at each epoch + # Run training for the specified number of epochs + for _ in range(self.epoch): + # Run training for the specified number of timesteps + for spikes, labels in train_loader: + spikes, labels = spikes.to(self.device), labels.to(self.device) + idx = labels / self.filter # Set output index for spike forcing + # Pass through previous layers if they exist + if prev_layers: + with torch.no_grad(): + for prev_layer_name in prev_layers: + prev_layer = getattr(self, prev_layer_name) # Get the previous layer object + spikes = self.forward(spikes, prev_layer) # Pass spikes through the previous layer + spikes = bn.clamp_spikes(spikes, prev_layer) # Clamp spikes [0, 0.9] + else: + prev_layer = None + # Get the output spikes from the current layer + pre_spike = spikes.detach() # Previous layer spikes for STDP + spikes = self.forward(spikes, layer) # Current layer spikes + spikes_noclp = spikes.detach() # Used for inhibitory homeostasis + spikes = bn.clamp_spikes(spikes, layer) # Clamp spikes [0, 0.9] + # Calculate STDP + layer = bn.calc_stdp(pre_spike,spikes,spikes_noclp,layer, idx, prev_layer=prev_layer) + # Adjust learning rates + layer = self._anneal_learning_rate(layer, mod, init_itp, init_stdp) + # Update the annealing mod & progress bar + mod += 1 + pbar.update(1) + + # Close the tqdm progress bar + pbar.close() + + # Free up memory + if self.device.type == "cuda": + torch.cuda.empty_cache() + gc.collect() + + def forward(self, spikes, layer): + """ + Compute the forward pass of the model. + + Parameters: + - spikes (Tensor): Input spikes. + + Returns: + - Tensor: Output after processing. + """ + + spikes = layer.exc(spikes) + layer.inh(spikes) + + return spikes + + def save_model(self, model_out): + """ + Save the trained model to models output folder. + """ + torch.save(self.state_dict(), model_out) + +def generate_model_name(model): + """ + Generate the model name based on its parameters. + """ + return ("VPRTempo" + + str(model.input) + + str(model.feature) + + str(model.output) + + str(model.number_modules) + + '.pth') + +def check_pretrained_model(model_name): + """ + Check if a pre-trained model exists and prompt the user to retrain if desired. + """ + if os.path.exists(os.path.join('./models', model_name)): + prompt = "A network with these parameters exists, re-train network? (y/n):\n" + retrain = input(prompt).strip().lower() + return retrain == 'n' + return False + +def train_new_model(model, model_name): + """ + Train a new model. + + :param model: Model to train + :param model_name: Name of the model to save after training + :param qconfig: Quantization configuration + """ + # Initialize the image transforms and datasets + image_transform = ProcessImage(model.dims, model.patches) + train_dataset = CustomImageDataset(annotations_file=model.dataset_file, + img_dirs=model.training_dirs, + transform=image_transform, + skip=model.filter, + max_samples=model.number_training_images, + test=False) + # Initialize the data loader + train_loader = DataLoader(train_dataset, + batch_size=1, + shuffle=True, + num_workers=8, + persistent_workers=True) + # Set the model to training mode and move to device + model.train() + + # Keep track of trained layers to pass data through them + trained_layers = [] + + # Training each layer + for layer_name, _ in sorted(model.layer_dict.items(), key=lambda item: item[1]): + print(f"Training layer: {layer_name}") + # Retrieve the layer object + layer = getattr(model, layer_name) + # Train the layer + model.train_model(train_loader, layer, prev_layers=trained_layers) + # After training the current layer, add it to the list of trained layers + trained_layers.append(layer_name) + # Convert the model to a quantized model + model.eval() + # Save the model + model.save_model(os.path.join('./models', model_name)) + +if __name__ == "__main__": + # Set the number of threads for PyTorch + #torch.set_num_threads(8) + # Initialize the model + model = VPRTempo() + if model.quantize: + raise ValueError("Quantization enabled, please disable.") + # Initialize the logger + model.model_logger() + # Generate the model name + model_name = generate_model_name(model) + # Check if a pre-trained model exists + use_pretrained = check_pretrained_model(model_name) + # Train or run inference based on the user's input + if not use_pretrained: + train_new_model(model, model_name) # Training + model.logger.info('Training complete.') \ No newline at end of file diff --git a/src/blitnet.py b/src/blitnet.py index b6823e3..1b83e36 100644 --- a/src/blitnet.py +++ b/src/blitnet.py @@ -33,7 +33,7 @@ class SNNLayer(nn.Module): def __init__(self, dims=[0,0],thr_range=[0,0],fire_rate=[0,0],ip_rate=0, - stdp_rate=0,const_inp=[0,0],p=[1,1],spk_force=False): + stdp_rate=0,const_inp=[0,0],p=[1,1],spk_force=False,device=None): super(SNNLayer, self).__init__() """ dims: [input, output] dimensions of the layer @@ -49,8 +49,7 @@ def __init__(self, dims=[0,0],thr_range=[0,0],fire_rate=[0,0],ip_rate=0, # Configure the network configure(self) # Sets the testing configuration # Device - #self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") - self.device = torch.device("cpu") + self.device = device # Check constraints etc if np.isscalar(thr_range): thr_range = [thr_range, thr_range] @@ -90,23 +89,24 @@ def __init__(self, dims=[0,0],thr_range=[0,0],fire_rate=[0,0],ip_rate=0, self.exc = nn.Linear(dims[0], dims[1], bias=False) self.exc.weight = self.addWeights(dims=dims, W_range=[0,1], - p=p[0]) + p=p[0], + device=device) # Create the inhibitory weights self.inh = nn.Linear(dims[0], dims[1], bias=False) self.inh.weight = self.addWeights(dims=dims, W_range=[-1,0], - p=p[-1]) + p=p[-1], + device=device) # Output boolean reference of which neurons have connection weights self.havconnExc = self.exc.weight > 0 self.havconnInh = self.inh.weight < 0 - def addWeights(self,W_range=[0,0],p=[0,0],dims=[0,0]): + def addWeights(self,W_range=[0,0],p=[0,0],dims=[0,0],device=None): - # Get torch device - #device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") - device = torch.device("cpu") + # Get torch device + device = device # Check constraints etc if np.isscalar(W_range): W_range = [W_range,W_range] diff --git a/src/metrics.py b/src/metrics.py index 11c4ef3..9a85b84 100644 --- a/src/metrics.py +++ b/src/metrics.py @@ -149,11 +149,9 @@ def recallAtK(S_in, GThard, GTsoft=None, K=1): # ensure logical datatype in GT and GTsoft GT = GThard.astype('bool') - GTsoft = GTsoft.astype('bool') # copy S and set elements that are only true in GTsoft to min(S) to ignore them during evaluation S = S_in.copy() - S[GTsoft & ~GT] = S.min() # discard all query images without an actually matching database image j = GT.sum(0) > 0 # columns with matches diff --git a/src/settings.py b/src/settings.py index 843061c..75f7771 100644 --- a/src/settings.py +++ b/src/settings.py @@ -1,7 +1,6 @@ import os import torch import logging -import csv from datetime import datetime @@ -10,17 +9,18 @@ def configure(model): Configure the model """ model.dataset = 'nordland' # Dataset name - model.dataset_file = './dataset/'+model.dataset+'.csv' # Dataset file (must be PyTorch Dataset ) + model.dataset_file = './dataset/'+model.dataset+'.csv' # Dataset file (must be PyTorch Dataset) model.trainingPath = './dataset/' # Path to training images model.testPath = './dataset/' # Path to testing images model.number_modules = 1 # Number of expert modules (currently not implemented) model.number_training_images = 500 # Number of training images model.number_testing_images = 500 # Number of testing images model.locations = ["spring","fall"] # Locations to train on (location repeats for training datasets) - model.test_locations = ["summer"] # Location to query with + model.test_locations = ["winter"] # Location to query with model.filter = 8 # Filter for training images model.validation = True # Validation (maybe deprecated for now?) model.log = True # Log to console + model.quantize = False # Quantize the network # Set default paths if the provided paths are not valid directories if not os.path.isdir(getattr(model, 'trainingPath', '')): @@ -52,8 +52,8 @@ def configure(model): # Set the model parameters model.epoch = 4 # Number of epochs - model.patches = 7 # Number of patches - model.dims = [28,28] # Dimensions of the input image + model.patches = 15 # Number of patches + model.dims = [56,56] # Dimensions of the input image model.location_repeat = len(model.locations) # Number of times to repeat the locations model.annl_pow = 2 # Power of the annealmeant function @@ -65,8 +65,10 @@ def configure(model): model.output = int(model.number_training_images/model.number_modules) # Number of output neurons # Set the torch device - #model.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") - model.device = torch.device("cpu") + if not model.quantize: + model.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") + else: + model.device = torch.device("cpu") if model.device.type == "cuda": torch.cuda.init() torch.cuda.synchronize(device=model.device) @@ -74,43 +76,18 @@ def configure(model): # Determine the total number of timesteps across training images, modules, and location repeats model.T = int((model.number_training_images / model.number_modules) * model.location_repeat) * model.epoch - -def image_csv(model): - """ - Load the image names from the CSV file and filter them - """ - - # Load the image names from the CSV file - with open(model.dataset_file, mode='r', newline='', encoding='utf-8') as file: - reader = csv.reader(file) - model.imageNames = [row[0] for row in reader] - # Remove the header - del model.imageNames[0] - # Filter the image names - model.filteredNames = [] - for n in range(0, len(model.imageNames), model.filter): - model.filteredNames.append(model.imageNames[n]) - # Remove the training images from the filtered names - del model.filteredNames[model.number_training_images:len(model.filteredNames)] - # Store the full training paths - model.fullTrainPaths = [] - for n in model.locations: - model.fullTrainPaths.append(model.trainingPath + n + '/') - def model_logger(model): """ Configure the model logger """ - try: - # Create the output folder + if os.path.isdir('../output'): now = datetime.now() model.output_folder = '../output/' + now.strftime("%d%m%y-%H-%M-%S") - os.mkdir(model.output_folder) - except: - # Create the output folder + else: now = datetime.now() model.output_folder = './output/' + now.strftime("%d%m%y-%H-%M-%S") - os.mkdir(model.output_folder) + + os.mkdir(model.output_folder) # Create the logger model.logger = logging.getLogger("VPRTempo") if (model.logger.hasHandlers()): @@ -139,10 +116,15 @@ def model_logger(model): model.logger.info('MIT license - https://github.com/QVPR/VPRTempo') model.logger.info('\\\\\\\\\\\\\\\\\\\\\\\\') model.logger.info('') - model.logger.info('CUDA available: ' + str(torch.cuda.is_available())) - if torch.cuda.is_available(): - current_device = torch.cuda.current_device() - model.logger.info('Current device is: ' + str(torch.cuda.get_device_name(current_device))) - else: + if model.quantize: + model.logger.info('Quantization enabled') model.logger.info('Current device is: CPU') + else: + if torch.cuda.is_available(): + model.logger.info('CUDA available: ' + str(torch.cuda.is_available())) + current_device = torch.cuda.current_device() + model.logger.info('Current device is: ' + str(torch.cuda.get_device_name(current_device))) + else: + model.logger.info('CUDA available: ' + str(torch.cuda.is_available())) + model.logger.info('Current device is: CPU') model.logger.info('') \ No newline at end of file diff --git a/tutorials/0_BasicDemo.ipynb b/tutorials/0_BasicDemo.ipynb index 0770532..6db59e2 100644 --- a/tutorials/0_BasicDemo.ipynb +++ b/tutorials/0_BasicDemo.ipynb @@ -22,7 +22,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "id": "c879cd02-82db-441d-9476-fff1925bf494", "metadata": {}, "outputs": [], @@ -51,21 +51,10 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "id": "67f129b5-9a7a-4b50-9d94-b9bf512f8b70", "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAFXCAYAAACIkbUMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9e9ClWVUfjn/W3s9zznlvfe/p7plhLhApBYkiGESDGCMiKohaMWJErFJLY6IhREEKEi/FD2SM14hWkZTXhApGLZOKKRWDWpZ+RZOAiAqDODdmpqd7unv67fdyznmevdbvj7XW3vs55/QwiDiMng097/ue81z2da3PupOICNZt3dZt3dZt3dZt3T6BWni8O7Bu67Zu67Zu67Zu67bY1gBl3dZt3dZt3dZt3T7h2hqgrNu6rdu6rdu6rdsnXFsDlHVbt3Vbt3Vbt3X7hGtrgLJu67Zu67Zu67Zun3BtDVDWbd3Wbd3Wbd3W7ROurQHKuq3buq3buq3bun3CtTVAWbd1W7d1W7d1W7dPuLYGKOu2buu2buu2buv2CdfWAGXd1u1vqP3Mz/wMiAiTyQT33HPP0vef93mfh0/91E/9G+nLb//2b4OI8Nu//dv5s6//+q/Hbbfd9jfy/sfSn+u1d73rXfjyL/9y3HLLLRiPxzhz5gye+9zn4t/8m3/z8e/ouq3buv2NtTVAWbd1+xtus9kMr3/96x/vbjwh26/+6q/isz/7s7G7u4s77rgDv/Ebv4Ef/dEfxed8zufg7W9/++PdvXVbt3X7a2zN492BdVu3v2vti77oi/C2t70N3/Ed34FP+7RP+7i95/DwEBsbGx+35z8e7Y477sDtt9+OX//1X0fTFPL11V/91bjjjjsex549fu3g4ACbm5uPdzfWbd3+2ttag7Ju6/Y33F796lfj5MmTeM1rXvMRr51Op3jta1+L22+/HaPRCDfddBP+xb/4F3jkkUcG191222340i/9UvzyL/8ynvnMZ2IymeB7v/d7AQDvf//78UVf9EXY3NzEqVOn8C3f8i24du3aY+rrW97yFnzu534ubrjhBmxtbeEZz3gG7rjjDnRdN7jOzVN/9Ed/hOc973nY3NzEk5/8ZHz/938/mHlw7cfSn0uXLuHUqVMDcOIthCE5IyJ8z/d8z9J1t912G77+678+/+2mt3e+8534pm/6Jpw8eRJHjhzB133d12F/fx/nz5/HV33VV+HYsWM4d+4cvuM7vmMw/rvvvhtEhB/4gR/Am9/8Ztx2223Y2NjA533e5+HOO+9E13X4ru/6Ltx44404evQovvzLvxwXLlxY6tfb3/52PPe5z8XW1ha2t7fxwhe+EO9+97sH13z91389tre38Sd/8if4wi/8Quzs7OAf/+N//Jjmbt3W7YnW1gBl3dbtb7jt7Ozg9a9/PX79138d73znO697nYjgpS99Kf79v//3ePnLX45f/dVfxate9Sr87M/+LD7/8z8fs9lscP3/+3//D9/5nd+Jb//2b8ev/dqv4Su/8ivx0EMP4fnPfz7e97734Sd+4ifw8z//89jb28O//Jf/8jH19UMf+hC+5mu+Bj//8z+P//k//ye+4Ru+AT/wAz+Ab/7mb1669vz58/hn/+yf4Wu/9mvxP/7H/8CLXvQivPa1r8V//s//OV/zsfbnuc99Lt71rnfh27/92/Gud71rCSh9LO0bv/EbcfToUfzX//pf8frXvx5ve9vb8E3f9E34ki/5Enzap30afvEXfxGveMUr8IM/+IP4D//hPyzd/5a3vAW/93u/h7e85S34T//pP+H9738/XvziF+MbvuEbcPHiRfzUT/0U7rjjDvzmb/4mvvEbv3Fw7xvf+Ea87GUvw9Oe9jT8wi/8An7+538e165dw/Oe9zz82Z/92eDa+XyOl7zkJfj8z/98/Pf//t8zEF23dftb12Td1m3d/kbaT//0TwsA+aM/+iOZzWby5Cc/WZ797GcLM4uIyPOf/3x5+tOfnq//tV/7NQEgd9xxx+A5b3/72wWAvPWtb82f3XrrrRJjlA984AODa1/zmtcIEcl73vOewecveMELBID81m/9Vv7sFa94hdx6663X7X9KSbquk5/7uZ+TGKNcvnw5f/f85z9fAMi73vWuwT1Pe9rT5IUvfOFfqT+r2sMPPyz/8B/+QwEgAKRtW/nsz/5sedOb3iTXrl0bXAtAvvu7v3vpGbfeequ84hWvyH/7unzbt33b4LqXvvSlAkB+6Id+aPD5p3/6p8tnfMZn5L/vuusuASCf9mmfJiml/PmP/MiPCAB5yUteMrj/la98pQCQq1eviojIvffeK03TLL3/2rVrcvbsWfmqr/qq/NkrXvEKASA/9VM/9SiztG7r9rejrTUo67Zuj0MbjUZ4wxvegP/zf/4PfuEXfmHlNa5dqc0RAPBP/sk/wdbWFv73//7fg8///t//+3jqU586+Oy3fuu38PSnP33J1+VrvuZrHlM/3/3ud+MlL3kJTp48iRgj2rbF133d1yGlhDvvvHNw7dmzZ/EP/sE/WOpTHbH0sfbn5MmT+N3f/V380R/9Eb7/+78fX/ZlX4Y777wTr33ta/GMZzwDDz/88GN6zqr2pV/6pYO/P+VTPgUA8CVf8iVLn6+KwvriL/7igZnp0e4HgHvvvRcA8Ou//uvo+x5f93Vfh77v87/JZILnP//5KyObvvIrv/KjHN26rdsTr60Byrqt2+PUvvqrvxqf8Rmfgde97nUrTRWXLl1C0zQ4ffr04HMiwtmzZ3Hp0qXB5+fOnVv5jLNnzy59vuqzxXbvvffiec97Hu6//3786I/+aAYGb3nLWwCoE27dTp48ufSM8Xg8uO5j6U/dnv3sZ+M1r3kN/tt/+2944IEH8K//9b/G3Xff/TE5yp44cWLw92g0uu7n0+n0Y7ofQH7GQw89BAD4zM/8TLRtO/j39re/fQl0bW5u4siRIx/V2NZt3Z6IbR3Fs27r9jg1IsKb3/xmvOAFL8Bb3/rWpe9PnjyJvu9x8eLFAUgREZw/fx6f+ZmfufS8Vc84f/780uerPltsv/Irv4L9/X388i//Mm699db8+Xve856PeO/12sfSn+u1tm3x3d/93fjhH/5hvO9978ufj8fjJT8dAEvA7vFup06dAgD84i/+4mCer9dWrfO6rdvfxrbWoKzbuj2O7Qu+4Avwghe8AN/3fd+Hvb29wXcenVE7mQLAL/3SL2F/f/8xRW/8o3/0j/Cnf/qn+OM//uPB529729s+4r3OCMfjcf5MRPAf/+N//Ij3fjz6AwAPPvjgys///M//HABw44035s9uu+02vPe97x1c9853vnNpnh/v9sIXvhBN0+BDH/oQnv3sZ6/8t27r9nexrTUo67Zuj3N785vfjGc961m4cOECnv70p+fPX/CCF+CFL3whXvOa12B3dxef8zmfg/e+97347u/+bjzzmc/Ey1/+8o/47Fe+8pX4qZ/6KXzJl3wJ3vCGN+DMmTP4L//lv+D973//R7z3BS94AUajEV72spfh1a9+NabTKX7yJ38SV65c+SuP9WPpD6DM/Oabb8aLX/xifPInfzKYGe95z3vwgz/4g9je3sa/+lf/Kl/78pe/HP/23/5b/Lt/9+/w/Oc/H3/2Z3+GH//xH8fRo0f/yv3/eLTbbrsN3/d934fXve51+Mu//Et80Rd9EY4fP46HHnoIf/iHf4itra11pM66/Z1saw3Kuq3b49ye+cxn4mUve9nS50SEX/mVX8GrXvUq/PRP/zS++Iu/OIccv/Od7xxoNq7Xzp49i9/5nd/B0572NPzzf/7P8bVf+7WYTCb48R//8Y947yd/8ifjl37pl3DlyhV8xVd8Bb7t274Nn/7pn44f+7Ef+yuN82PtDwC8/vWvx/Hjx/HDP/zDeMlLXoIXvehF+LEf+zF8wRd8Af7wD/8Qz3jGM/K13/md34nv/M7vxM/8zM/gxS9+MX7pl34Jv/ALv4Bjx479lfv/8Wqvfe1r8Yu/+Iu488478YpXvAIvfOEL8epXvxr33HMPPvdzP/fx7t66rdvj0khE5PHuxLqt27qt27qt27qtW93WGpR1W7d1W7d1W7d1+4Rra4Cybuu2buu2buu2bp9wbQ1Q1m3d1m3d1m3d1u0Trj2uAOUnfuIncPvtt2MymeBZz3oWfvd3f/fx7M66rdu6rdu6rdu6fYK0xw2gvP3tb8crX/lKvO51r8O73/1uPO95z8OLXvSinP553dZt3dZt3dZt3f7utsctiuc5z3kOPuMzPgM/+ZM/mT/7lE/5FLz0pS/Fm970psejS+u2buu2buu2buv2CdIel0Rt8/kc//f//l9813d91+DzL/zCL8Tv//7vf8T7mRkPPPAAdnZ21mmf123d1m3d1m3dniBNRHDt2jXceOONg+Kaq9rjAlAefvhhpJRw5syZwednzpxZWZNjNpsNamrcf//9eNrTnvZx7+e6rdu6rdu6rdu6/fW3++67DzfffPOjXvO4prpf1H6IyEqNyJve9KaVqZ5/4qd/CuPJBAF6D0PAIoBZrUQEKfVwK5awAIn1Gvve3xlDABEhhIDYNCAiPHbrF9m/Mg4f39Iz8rvrD5OO28ZORHkeYowI9ncIYdBPAAj2N5G9M5DdExDsHQF6PQEAM3avPoLzDz2E0EQ86fbb0LQNmBkiCSJARARExyUi+t4Y8zuJCNT6MwWBCKPRCG3bIDYRRECfOkhizLsOh3sdOPVISdCnBIhACEgpITGDhZF6xmw+x961a5jNpjh6/Bia0RicEkQEPQ/ntp5rTkmdqRb3DhE4pTyXBEBs7kIIIPsZ7Wc9zwBAIiABAmGA9FNK1SvKGtfXxBjzP3+/zyVCQAyE2DQIFCDC6FPS/WnPzNtJBIkZfd9jnnowMzglMAv6xDp+EaSU0KcE5jxRg/7W8yZ+Roh0Tux6AZCYV+57v0cW7s9rMLgv2nMFZOMDCCCGPsH2kM2X39cglvH7+rGAOUFsXFKdH64/E32fIOXPEhEClC6UIUneC5ECru5exXhjA+NWKwynjtF1HTY2xmD2dSVMp3Pcd9+9eOpTP2lIU6SsuX4mNt7yruG7Q/5dP5dyHTNEqHqW97TQK52aUL3DG1f0s9yz3AhEoTornLdaTXslEERYr2Up/SFASK8NRnmFpew7hPwcDgwI69ITASIIEhFigG9wvZQyzdPzRxCyswo9fwToi1eNiPQ/QmXU/lwfV8jzYqtAOkf1mCkQQCH3x3qGIECMAaAAyXvTp1hq0o/ypU/kMs0C6n1cnXkg86b6u9J8v9s7uH5G2S+FJpXPfC0plHPnPMN7zAv8lxAG6+7vFhFbd6XdEN3LUp0zZoawngWBgKt5mM9muON7vhs7OztL87LYHheAcurUKcQYl7QlFy5cWNKqAJoG+lWvelX+e3d3F0960pOwubGB8WicD1sSBR95UkXA3Orvdsic0PECwRswX2NSj2Y+qkGEE4XqtXC84cR5uNeMfGcCxYNn1b9HByUVM3Xi7v0MRCAo8dLvgx1AI8Qhog2UAdnO1hbO3HAD7n/gAfzlB/8Ct952K06ePG5EXgmPA5S6ZcIUAhBINzsBEgCKERIJTDb/QqAQMZk0aJuJbmAGemeyzEgpgUXQ9R3m0w6j8RhHdnYwnU5x+fJlbMcW29s7AAn6XnL/a4YqxpyXFIV+4Jmrj8qckAGHGCMaA1+BCMF/D0p+IwVA0mAmBsze/ktQKkpGIByYkD3Xv8tz52sXIzglBWsGfJqmGYAdsTmadR2SzVtKjK7rFXwYOOjtpwOG+v7Fv+s5qf9m5vxZTUT99xqI5PWozxwAIicrNZMF4OABUD5NxiztwygVQwlBT4aBMxGuzlfdX4HyajHww/q7iDJ7paQDdl2v5eFohCNmKiYhSMPoRi0mk0klwAQcHBzi1KnTmEw2wdzlucgMHwBzv9Q//X0RMNTCjPVdkAHRKhBeaILdIz7eAjCdga3gmPk9RADbXoTTDdDSXRL0vIbqqSFfRBDbwwQCmZBglDSfBQSBgDMWIpAKP1imcwJRocpBKwRCSl8ClR76+fI5CSHk39MCWCAKSodBmVa4EOKAyecAcGwS873BxhfgQgNBKAKkc+37zvsLcRoT7fMCAiuJY7AeIgWU1IJMWbf6dxXudL5CFmjq5wJKl2WFoKHzQQUwDr6zM0yAJAYCISDmp7oQ4OMSSH7HosCfhRkDLTXNWOabj94eF4AyGo3wrGc9C+94xzvw5V/+5fnzd7zjHfiyL/uypevH4/HKuiNNbBBjBBvzpSRZXFEEp0cr4+YF1LpK0+GbPUu71urFDguSnx4SXwQFK/4MJ/ilBUBUSmCwIdsKtfoB8r+rO5056+WpGpkdImOATYwGTBoEKPpvHNjAJAUIjh7bwY2XzuCuu+4CT6e44ewZbG1tq0QkDMXJDGYgpcIglCmWzhEIKSQ7uE4IBME0CDoPgs6YMIkRbFKRJ1KDtgUal6RbZdAPP3wFQMD2kR00TTLELmAJ+RBABNGIVEb2QF77Vc2/d+KWwSoR6iMdmkalOGmMkOu3ibka+3CVhFR7gvwsyVKXkBFQEQS4Bkk1J/4TALquA0WVch1w932vGhLTOqXeNSm8NPbBWDOTpcF+r9uihieEMADwNehZJKLDM6D7vzw+QPdpYV15TI7gUSSyGuAVwphQWKQDfpcOTagwZqqgmBYEBGdCy2AspaRnhgJYWN8dA7iTqk8qfR4cHOL48WNwYWJIH4Zz7Iyz1iqUa+p+UAEcAGJcEAjs+qItcUFIwReZZKrf9AtCkF8PuBDkv6mkoQxHtQ6rQYopGYbg30icr7FATFhpsNgBoqDCjs+XvcHXQruimg8QKRuv6Wz1vhQIAT5/Q+1x1sCRgVqjLQ5GbDJzp1VwICD5+wghZPgD/aPQVN0/9pcIWBIERds1XDNC2a9SaSkW56asbwCyhuHRheIIkD2bi6ZOtZTlPdyX56w88wYchv32s2K0vwdiIFC1I/x9zusKtzNBoQItWaCpBAvvz6PR5sX2uJl4XvWqV+HlL385nv3sZ+O5z30u3vrWt+Lee+/Ft3zLtzzmZ2RJ1Y8Y+QTr4XOAq/s/QIIRWVRbaIF4158tgwtf6KKiBHigQleiJYPNW2+SECgfukDl6C8S/xppXmf0mWmotEkZ8ZNJN02MaCKhCRGj2BjzIYRIJlkAx3a2cfr0cdx337247967cONNN+HEyZNITgi5RUqMEGJByixIomYGkAIeyn3SDZqY1XxTb8Y+ITDQthEhqKTCdm3PCalP4NSDE2F7exttO8Hly5exe+UR7Bw/otoICeDcN4YbWwbS/AJir38utuQmp2ofiAiaptFnBNtnJocxmRSqby2rwZlil7U0xsj2Dt0bypEYQ4K0qMVgTsaGFdz5uFgMmBhSvZ5svghI8ruWuVh1M2WC42DW1b4OslJlMlu+nQagXltY3Q8QiiXEJDcgawZV4tULlNkXBp8nWtT8Ari2u1qPFX1cPFN936vG0SVrDNfEf7oGZzxuwVxMSPXardJ6lOaMJCKEGnAUplK0sIuCkJvJivqcqACb4O8iGuzfIdSo5t4BQtYqwOZevxswyRWINwsGjlIIeLRsFYtzmZep2o8G1QAIEiGbph0E6j0KapXkSAWIh2sdiBR7VZqSTE/rPkn5GUKtMZfST9MEiYFEcvpGRfMRFvZZNovV81XNv//urgi+lj47Qz60ckbNdGJ/hTBYo1qbsQI+lWcKBvvXQX8W6kWAlCAU4Kba4ZOG79R9V8CJwM9FMl5ImafWJvKP1B43gPJP/+k/xaVLl/B93/d9ePDBB/Gpn/qp+F//63/h1ltv/aieQ0QgLtIOS5HUINXi2xoIbPNicYFWI9jVqNalNMrIsyZS15NWC6qUbAO97pgW/tXPUFWwPkNIF9vBDguDJaAJBAkMxIg4ChiFiKYJ6k/RRLg9kilhe7KFp+zcjmMPH8cH7vwLXNq9gifd+iTE2BgAUnONH2BmASNmlXQ9jyyEwAw2ohuktqsK2rZB06gZhSFAMtIoAEUyUhcAEmxsjHD6hpN4+OLDuHzxYZw8eRIUAwITKBKSCMhNHHluKnMZyuFZ7Oegz34o7QC5RsaviTFk+3YiAYfa9KDjcnW3LgIG71tcV9UwBQShIs3Z93kdTcYJRIjBCFpWYROIGX0vACJg2kKu9l4tieYxGiOr7dyDVn2eQUo1lzAizgtS0uIYa2luMO+o9oIooPZhZdW7vgYsReuQ5yb4efMJFlcEIESAmQZn0rUYi8wsn0NmNI1qYX2eEAlNk1kZiFSjpT5YESIOAso+WzQj1lqrVcLP6jl7dCBdN/FtkO8HRCJQmVPKa4am7PodpMuAcqXRUQND+T0ZyeQngFhUIxjMyyeDJ/vexr1s3HAPpcUxiQ8EjvUjikmiQqaD+a3HUzdXVlIGtWXMuT8ECAgcisl8MEcspjd10GJmNVleg1qjUIMPgSxdh2pPKJBwgFDvl+vtAyrYUKLJO4WvLF29MG/lT0Ltx+TAMwsoBhgVmAEsqwWTxXcOwUkFlo1OfjTaE+BxdpL91m/9Vnzrt37rX/n+VQc/hJClvGyfDCEzKhJV09UbfOjgV563SrrVv9UGvQo8+LsHxL2+JinCZtaNSaZadCIJ14RUe6HerkoMTfXr75CEZPpQYkLPjLZt9E5hNflE06g0AdQYOBHVXnRphnnqsbm9g0/5lKfjA3fehT/+4/fjSbfegiPbO+rsSUATqJLmTA3vwhYFKA8U1H4AzGKImQ21M4jMcQ6CEPUZkoAAAUIDDkDPDGKgbSI2bjqHy5euYO/qLk4cP45mNNK1JUJKjMQ9emYFTqlXAGjMSdKyxOt/+z8GBuZAEUEwpB9CwGEkNI0yAKejKTE4qTrU18NBiqs1i3Rkx74iJoECmhDN0bgA5hAjEPX6ELJ1fHCfhPJsZsr7zkFI3q9O8I34LALpgRRkIMc/87lyDQVAgIGgGGM2t2WtzIB4OcMS1BqUWktF5MRykagaAKcCGgthtZmigFpqd/65irevAgn+d0pp4MQ83BdJrbFCmM1mplHza/zfMvMfSMkV8HV1BHPdDyz8Xq5bfJ6PVI9XMYsU7THgDrvk8pmhv9VC1grxSIqEnX2tB9ebTwYpHXA/oqEAsCzsOf2q/eIymLdb3HnTffZqAdIZnI6raNjqaxZpdf2+urnWBIDKQe4wTzTY+/k5dn4eTXB1eFHAh9Mc/76AFBEBBhoEFUX0ebF6/nK/B2eXy2ZcBXqv1x5NcNY/SPtUIV2B7bcVQEhEijNsRQ/KXDZ5H36U2ATA4wxQPtbmzpb174tE2DdfIIKTX2HOERrXU9M+2u9OfFZpYLw5QMrRM/mLGsWT+mMER88hX+OniEUQjOEWYr2gbhM3uZhTmM8BA00QMM/QgDAeN4htgLQE5oQ+9eg5oU+CvhPM5owkhNuf/GRcfOgi7v3gPdg+cQxnz53FZGOCIEATImIgldiqs67jhYES6z8RIoCYIkRYmUFQoBRBKvbC9n2jEURsf7vpRddWcGRjC7u7uzg4PMDmxgQbm5tgAZIIunmHnhmp79H3ClB7YnDQNWJzxq3XiMTQ/ALzgq0tA6CUjCou+wkNpAMn3ZWktooQODEOQZ2JE3HZIwK15XMC9ZT3LIwoO6MJFDJRIgoIwR01I1Iq73JTBIAcbRGqOWAWsBOTxBq1ESLSQM2cYPpIsBSCBRFICAhOiCqC5G9cbAOflkUgVDGZzOREiXpjPkxFwh4SwKINwVKQx8o18D6IZA3KomOwq6H9s8PDA0wmGxXoWgYmi38vamwcxw3nyD+X/HuZYsm/l58Vw5eKyUM/GDD0POdh8A7/3mcwQwZ7Z4YYi0K80y2LcoE7yPv8SnVhdXMNhmMWqAbdrjQ5FlEJGpi/nV66NoWpvse7L3ANeZ5H783SWhjDrQZYr53Tiuj0iJBphV/rJp9aSlvkIUSysOb1/BT/w3qtyx5wmuPm7AporgT2MI1kdTbsoas1TVLt52HfJL/DwZfzoupukbxnap+U62oIAUBSBs+PtT2hAYo3ByZDiUVbqNTSwQ6mk5ha9bvYVqqz2Ld8Khv9egtSASU3KZUL6t8ZQLRFKxE/tXS2OJ4liYi0b4HU+xpg9EmQhNBEwpx79P0cKQqOjLYQhMCJAdZriFpQABJm6MGQAJw6cxI7R7bw0AMP4UN/fidue/JtOHLDKTQxoHYlTSKZUPiB0mVQs1CwzSks6FOPGIC2acyhzXcrZYbk0rcTaT+YLILtI1s4PDjAhYcfxngyws7ODvokmMWILiX0fcR8TpjOBC0R+gQwcWamPp9sDFLP+fBgxWpPKO0hsNRhxYATjfoz3WNDP5Yi8ZWlEoFJ7U6MKwktVRfl+XTHVd0jybRT2S/FGI/eUoPY+lEKbDycGuSgKmZmXKQ/zg57YlEprqlhUZ+fDDIWhIFV+7Vu+VMW9EthsvUeWm7sDMIII/L58DBiMgKa8hoPJOEFCbRoiMJS//2nP2c2m+LIkaPV57UEbER9EQAPaMMqSX74vvL7qntqcAwDC84U7V64tku1HAJBDDHL7oWm1BqlYpZYgFqLvTXGyLZvXWvjfjsOpBfNE8PnsEhxfMVwrR1IuBZytTnBbvYzS6uucy2P7otQdWFR6wEIwFK7YA/GOziOrOOu48EKg7cx+2JkQBgqEJJHWYFV35P+TqlSDeizRTxax89amVsHBbWmqAbuq4B5mcsVfEvybh4Aq3qVnFbWfn5OT5cEdQfaTuZd/v4oCuw8oQFKW9mPvS0ClQF6NOLG2WelOhQDJLvaHOAbrd5c/r02V7UOnbLsVZZ7YwWxgjlgYYUYCGRTg4/VtTIl1Nht+cVBWIgA1twjgGBGAft9j0v7B2hHhLZp0Eb1g2hCiz4poSEiNCEgNITRaBsnt3dwbXcPH77vfoy6OW65/RZIFAU4RACXiCYnTe4AazOiZomoExctyigGqQAKckibx+gDgHBRk4t5iY83RhhvTPDg+fNg9Dh27ASEIqRTgpBSQAxAX0V01aY810wMjmcNXqqPg+0ZErcSCyA0JL+1yFZLVOK+Rm6L1mspBIuAUkCQRIoWxMavvg4FBNcirQjng1+0Eu6YpxLz9aLPPMoqR3qFmM+DS0FsoFA1kkPJi8UwlDP6Kg/L0rvqecw5ZoJODRdH6iUAXp1Z9jEaCGGI+j4sgAhft8SCxEY8qzO9CqTUId2LAkX9d9d1SClhPG6r8flcu2w/jOBZrbnR9SuAtZgCFmYLhY7w4Lk+Zt0n9mx2xm+mQvJYGV1vJQdifQyZ8TiYyTyVBCIRAvVfytE1ACAOTMIqrDUEGgv9ra7yHa7AHdWaQOU0IgtSDtd7hp8BWf7YBp2ZP1m0mE5DZuLuZzPAghW/EJsLoPL7groFENSnTrJfqv2XJQNHAODEOVKSQBlgIK97ASKODikMGTvyr/oHS4aa+t/6DFTTcD1hob7uek0IULK5bBIlINMG15qsfEZ9hqo11p9x8POxtCc0QCEq+SbcxFN72S9Osv8cqkIXCcuylOWM32PFnXDne/NbPJSX83sClXC32hGrljb8WpLCsHO/o9u+y33BnuXJ0zL4Qkm0lcdvHtRJgP6ww2zWIzZB/8WAlhrEMFfTCxHa0KBtouZOiRGjpsXx48dx85NuwoP33YMH778fN9yoJh8l9IzEtSf3ojnKwZPmFHECWoZqmgahSmVqYw8YODAKGEkSdsIW4o034uLDF3HlkcvY3NqE2k0ZFARNG5FY/V5yEj8yadlNcysO7CqJe9CM2C/et0gk8vPy/jLgZZTRsCTITDxuEtMIr+JwWOdsoGqfiAgia34biJpb3FQSQgQooDJoFqZWASxmBpjVP4tIGZIAQQwoI4BIzSsUQ3ZojUakB/NRj9+AZO1jkDU3KA7BMJDgoNY1OIQhoGRRMMzCSMJqjsqE3MwxrNpACQJhNVUNoj8w9DMjIvRdh0i0Uota047Dw0OMRqNKCrZBZU1E+R0YAq4hrQGkskno53EFoS/wdwmc+BUNgbIZjTXCjICcgK0SmCqOjXzWqAgVLlABpInVALgba8EntCRY6diGu11EVEtNunfZgIFDuTos259enxvDBSuBnpLA1RrrVc2ZdR1pQxVwGVy7SO8teqo+zWTRl7kvSzonyZg1zy8v9FX8XTL4bPhd2X++N8Xy+Hi/M9iyv1f5yHhzrVXdk8X59bETYOasFecBLlgsj72mp0vmJCq/D8/PY2tPaIDiYaxuxxdRqS9GSwLGQyIxYNwAUB1Dj4wBgBCK06PPqqSkkQJCiH6oHdBk8KBMiCz2P2d5RelHTXSc+UZPrLbANIWQNQo5eRh5gi9V2SOPzzQRInlePGeGjx0wBpIYqQuITQQT0ERBbCJG4wajUYNRE9COWvMZEVBIGMWApzz9ybi2ew0He9fQ8xxHjx4BNQASgZggSTKxU0BW+iYi5giH8hllAQIgVk2Ldna40RW+25wDFIHN7QnOtWdx/qGHcPH8BRw9fhyjtsnOmy23+uBeQMIIECSpNCRGuFxduUrled1ol/yI1YShZrJUvWPVtWUvqvpWgaqAEJSBkgHRaEndbG2dqbPnQnCQEgoI5LwWztCV0KVK1e8Oe27DZ2dkgSAwfxflLgggtFSApO9nZrYEffW5cAkSOR8OfK3t3DTN0EE1UMj7wQlz3yf0Qe31KSUk4mJe8nEzg5gRADTqCAWA0VdnPWcttnv7lBBMuFlkUPUZ3dvbyzW/crZmCihRN4CCuUU2UO0HAzc1DSjvW9Z3Sz1/gz0jJVePrylR5vfux1Hov64F5X4WB2XDg8hAQSQLSJk62jxo5tehJJ2X0Z5NUDpmI1NByh6vY7bPAdWF+VxWWlTfU4O58Fn1caJcbn8hfyEFdKmganNYYwL73ZNOLs47EWUfqTq6TneUU/oqwmxJWinz7Psc+R6/b2h+hM/pAIyqqVywHMDxaBrLRdAhonSv/ts1Nov3ycL9w/Etay7zcPN9+q8Inlks8g7Zz6VuX7c9oQHKdDbFaDTKmgSPZwdghFMyYQCWF9QPK5t90RvlQ1WISUNkhB1Ab06cdvD0YOsG9MXxPgykYHtWWNB+xBDqY4asBq4AzfA+dUgNIeaoHl91MgADZnDFQAaHgU1VzgLEIgGnJoIFYCJwJHMyZXAMkIbQNAHHz5zEsRPH8dDFi/iLuz+EG28+g6bZApJmk+RkIc/GJ3LARVBH3sYyMYrNlUtwBI9oKk7AmgtEzV4OLTTtvB7epm1x+vRpyIWLuHzpMk6ePIlR06pGonXJtjAmYgYHMp+Far1jrBi1fWYbYRURcELtA3CwUH/vhzFf659XmgJfXwJyVt5goMSzarZti9g0OYMwEwMk+hNYGovFTw3zz5BFjhkBF1YAEkzVat5AC5Ih5yy4Ls3FGNGGaAClNo0CRNFAjpj2yjU3XHKbOEOsppQCLPMlNPycApiTmhAl5n4RRcTYqGN315lkaMJFUACawY8oU5qnfmhG6vt8HubzOdqmkL9VQAXQwqbb29uZADsgGYJTX+uYV2AlcCXKUVGFuS8AkJX0inLysQUDY0YHZe2G763B8rAvS58gmtBgHttLF2b6hQr82r0uIhXw5TTMnFoNYERAc2ssvF81aEvdzPmGSBwg+n5359/8hMGgqdIbMIsFxpGGpdsZXLXeQw3YQqSYrQ9kCOrLDBRGPUwo6M8bMv8MQxcE04UVrp77kdtSRI33jsz/MoOMoVZMLKdVxnoLmr0MSmi4A4f9WuCvNkLDbGV5V+zH67UnNECZz2eYzqZoYpPzGTQNZQamfDrlDZ2lRmtFLcsIwc03kq9zpuAq8iAausrRARBndZtKVB6y5tIBqroHFUCpftd3qgE2R3QQlRTp1nzD+fNzn3LGytJ/V22WMaLamDVQUafHYh7rMO1naJqIuKfZUCmo6SFGrR3TBKvxE0fYmwl+9w/eizNnbsCpUycRQ4PIzmCNSZsYlVP+R1GNTbS/MQRwNVEY5q/wDKcV86WEGANOnjoBxIiLFx/GkSM7mIxG6M2/QoRBvYEuUtMPofI58DmqHWf9/UAOt3NVcag0FORrWTbUIFolr5e/QxFIJtZVGlBI4Dz+CMp1fEIswJsMvCAs+0qwaVM0K6pALNOwvkoZWxMbVKVjsrTpySkrITXvS/dVSJYfJjSENkZoHhOAJKBtWrSjMSjodfP5DCl1OezZ6y3l9/rLYPs0SWUG8r6oUy4FTeynIaiEqPH0JdkT6dmLokCULLEUM4PEgLqtc50TZz6fY2MyziaIJXU3EabTqdGUZqH+Ui3AlPmyHYGh6QPVOg21Dj6AcjaxcN9gsYbPs4lcBjOrWJ3dY64zC91TZpWVGDUT0n0jNeAi0/AtSNqUtSf5U1sL89s3IOVJ1NQElMy0CyTTpGjcWKGf3gsfr/7g/M6ST6oaFAMInLGB5zCKQM6b42BMsOwonbW2eXzFDy5/vzDVA4HAHLWzqdOEME+q5zr3rHNY1FoAWNTSfGQPkgIilml9DXwp/y1JVox1tY9JyV8ktnbL/MRzpqDaK1gwA3607QkNUMSktUABKfUABE3TGqFjdRDNoIPN+bDeiI5q2X732g1qN4/GUFzaFwCpT0hGnNTk4vY5AVEcLLgzpppB1Qvoqv8EBTJewcELBIYVRNtGjgV8bUAMORdJLR3EOlSzmjsxQuNgq+sF09lcJdlYmPBgQDC7cghA3MTRnTO45y/vx313P4hzN92Io0d20FjtHwqeb0XpawgRTewgbQuiUm+mVnkPpT3XstSapPrg6AEgEpw4uoNRjLh06TImkzEmG1toIoFTADdQBsmExAqWnDAYD0VsQv4896Ua91AbVq3JIB10IRDukDvwO8JwLFKFNKTq+ZHUhJeZoIM4A62RAop9uvzr+17nmignu9I5i1Z8bUHikdXh8j5oEq7MdgBbzpbJZIyN0dgisfTMNU0DCsEASsR8PgcnDWXvuh59r3vTZ7jkUhWNpGBBn2lgkaY1DNg0RWYelE5yEckceZAYgQUSNB9MEvWN8tpFrkXU9PZQQhsK862JuoP+a9euYWtra7BH9fcSJQUbTe10WgPHPJfXCV0YAhz/bFlzF0xNIuao4YwP0D0IdgzzKBKtovGyWzON0D4CDiY088GiCcpzryAgO0uCkLO31nGoRRhTjWry9zjDJR1VLvBXC04gr+iDwprd+0vNnz7fy7TQxmXmfQiypiBVQCuIlFBm0y74nA7pbBFGl96BxTNTxqLaigQ1k4Yh44YDFXt99dOB7mJW1poSO0B1jSVsVgZavprWZxWbOe0aGMw+Uwh5Kh2crEzAZrwi1c9e0KD4Hiz7XSpgueqeR29PaIACFkgSMPWIcWQCqqnCKw/5kmm0ZNsk0hwdIpoptI7scVWsO9q5pCwAEAkUmhyamYssuem7lsPtHqp8RWpmMLDpcXYlKzU57PqGXJoy5Ksd0nGmVI6uWG2OavM7UV5l3gLYwoyduOoG7Ps0LKo10HLY3jbGORlNcPNNt+DS5Uu46y/vxfHjx3Hu7Fk0EaCgavksoVAH1f4LQtCaTCJSMqDCSK9ykHzGUirsLKU6i6keRjV7CY4fO4Jx2+LCxQs4ZMHm5hYaMq2XVDWFnOQJIAwkTkXCN4IWzOHQD3TWXhBXB27BHCXFSg3zQwIDtZ1dn2PklsVyDgiCmP9ScECLLH2QXa/1jYpPSq0JSikpQLDqohxavY+QnUyd2OXxM3KuFYjvcSf4hMBR7yu7Br306KVHs7GDjbYxZu9bVwGDhIAQGwhHdF2LGDp0sUNKxVlVVcpkYzIH3KAMy5XjMWjm43mnQCdBc7cEP3NcCrZlgY/VcTUloOOk5iLmwXnrug4xBLRNo+clLAIK1dAcHh7izJkzFSMvRHdwFjB0OvV19rNTzLAe/eNnsGZYPpFl39fggExTQNBaMCDSMGIpWgEhsvIeKb8771XJnnJLtKCY6SotSLBkgzBnbACCpPlyrGtZz0IEe0DucdbyOiCw4Q2Bcw3gKDPWomOo08+XcHyp5msxKLLWLBZhUZ8RvUQJVaYj63sN+BafZ5cOnu3fDT/zUPcVoAmozI01/arW2DQQRCZQ5SXU9RFxLaCbgu1zA0Nto1rXbt6VPpGZtH0LmqAeEJACW8SeB5bosxbB2GActQOtLw2g/M/THNQ80PotTmwBLf3xGNsTGqD45ncCUOcIERfbrbFYMTY/iEGzdjqyjbFCmaT2OakWIEvCFEBc14LwvAtD+17dx5UaghWSjL7MzDWezIqcOQImrmghuaCMVZLBk8zVhmGfXdeh7zWfxVAjo0i5Dj30e+ysWfiy+YfECE/cpdK1E6EeFAinTp7CkZ2jePD+B3HtyjXcdMs5TCYbaBpG27bGKBKojUZ6enASxEb9LaQxkwx53g9CTawHEkUmDAFtGzFqCUEIfd+jPdpia3uChx68gOnhHk4cPZk1Z16sMM+3HeIu9crEbUXatoVrvtSJplRgBfr8jKxZkITEgLB7c8BPOyT4Ya2pn4WVB6iI6fus4Ji8Bz0vlpEhBVo5K69eE6D7gSKDku0nc/omCEKISL2Z8iqJxt8jQR2/ff8LYNE4UBW8aYmEVGO5d3CAZtQCWxtqTrVonMaAE0gjf2Ib0DSEtm3QdS361OUzGSgiNg1aEgRq4H4tYgSVha2SNDCddziYTcEAeu4xm8/RRSO0Jr0nVvDagyE2B+5nJUbd/fx1XYfYNCieK0Vr4oT96tWrSCnlqsb1fNlvJsQMfbzqs67gpPYFWAYG5fqyzwE3O3hBuiE9iXAwUZiqpxeIRBqVBeg6oDBW3TPVy0yz432PsaIFRg/rywkhO+nWuZ1YpJiyRfI+ono/+xbP2ooCThwIEZwxG70T1aUIaGAi9OfVGgnYOCvWCDePwBM2kh03p6lR95f4majAXD7GCxWmF4Fs/d5MOwddK+DUQUYGqQ4u7A9OCRuTCW666UY0rQrB8/k8F8rd3zvAQxcexnTe4eTxo7jh9GkAwLzrsbu7i5OnTqCJEZcuXULbjrC1tQkh4NKVK7hw/mEIA6fPHMOJE8dBADoG7n/gPPb2DgZjKX8A2by3jLlKy2HXNPyZgcmy9v6xtr8VAAXQgl4FvSEz+N6kRxZFiySEEC3evtpMOUdDPj6UpTRNSU4ARZPYkdXGRTrKvRr0CxhubgDFOdYiG9y+7Z9lLQv08PcAyAEWQW3rwcxNqZLcBeajkey5jK6bWwVhZNMUYKpcCBAYMTYgKg6JKq2bmtWZYChKV6+l4RKXH9CN0RhPuf12XLhwAXf/xT04cfq4Fh7se8y7Tm3Om5uZ4Wm0TYMQlZCnwIhRs9/qHMHmi6C1RjRniIjnsglWLEsl94YEAkYrEzzp1ptx4eJFHMz3ceL4CbRxBEHRwCCTBSAl9+HQtVHH62JicaCkBKhH13U5nJYTY9516JMVR0xi/WMIp0LojIlWYpHuVyOYDkJ8rgEUYGBSJRx8SBWyWRFc1aDVGZVVm6JAh0ooNwqjEClRZCpMKoix9DYwy1ieB/XtEhweThFjg9iQzQcwahq0jdaBCmSO6zECEUjoIFDJ3h1/mRloGzRNCxJGTFQiJ0IAiWbYnfRjjGcterDOc0qgGNHN5nYeG4QkkK4DJYH0BSw44xOTlEMI6Pse4/F4CXjU//b29kzDl1CidgpYcK3DavCST759Xn9WmysBVz5kX5+BrwvlvVNrBYqQUegdxWA+BYCnUtR9VdT1i2N0kO+Mta7STgiqWaKaulH+bz2kgNI/dcyX7Fui79V973frKR22YEcywsOSXdiqSoesnONCf1yLU4OUzFwXxp4dRAkZ6A3ASA1WDEQhz7Z/Xph3xX6ruSrlMTxHUaY91klJlc+a0Ye2HWE8GSFxwnw+Q9uqZmQyaXE4n2F68WHEhrCxNQaEEbuIpj2GjQ0FMqdOn7DcPQ1E1PcMItja2sLp06cwGo0AAHtXdnFwcLgEHvL+9DnAwnxQqeTNLPD0XbXGbLA2okB5MaL0sbQnNEAJMViNDJVok6mBydVfEKSKYLu9GtCIgbr+TdnkqibXCrRs0r46BXrYrIhkvw4nMOU5S8B+AFBqCcv/9n7Uv+vTFGh1ooXpUmKMRyOENqLve/TzDl031wNtYaBIyoSLzV21A2QqdZhJJzkMI0IYB4xG7qAbkEgzMJI/1513q/wuQHEcLePU8Z++4TTGGxNcvnIJV69exekbboCI+kiEEBCbRm3TRtBibADSGkJ9YvRB56GJKqFGcrMPIYRmaU4B6NqGCIdPjQiedPNN2H1kF12nDpGjdgJOUibXfjDcfE5VEjP3RxKwqiXMl6kF8zgfPGZGN+8xm/eYzeaYd25WIEjlkZqsvgwPyqdlXJI/czABgTm8Fgc9BiNwQEIBPtn05GuAMi+Z4KbOiISrfcu9bh9gW1utz+RRNBq5pr5cQIjuFxUN/PYQadB3OheRVOshxgAiBSDqHp51M1w7mCJxj6aNgGi0zsbGJra2NtDEgI0wwqhplMmGkPsfQsA4jhATI3Q9JuMRBMAhCQ6nMyTuIAJ0qcumNgJyleIQgoaYO6FMCRsbGwOg4O+pz/fm5qbNZbVhMPx9SGyLpsQZm56XZf+T2tRbg55lvyyghDQHhICKCeha6o4qzvNRQlnvakyrfdqWtTjZCdxMbs6cl8eLany2VmQO8cb4B9qMDFEIdaou3eNl3FFv8BGuZHzeaq0JLYxN/eiUdgTz61qutl3N5Ypne1dkxfcuuCw/o17/ElrsKpSsVZOKd4jOW50VXZgxnU4xHrcIYQyiiI2NTYu+MyuB/Uy9Vg0mgp1LhkiTn0UEBSeWimHedXjggQfRdZ1qqZwu5GWqtB5C1X5lhZjOT2BCcdadDNcs/4SF+qeE6XS6ci1XtSc0QHGn1No/A0kPRwqek8SYFwJCJERRIhDNP6JEhOhJZFGCyknr9YAIPRKoD2hJTQ9MluWSgGSOXlxJKmHhQNWLVdv3csTOAmjx6xOUyM7THLPpVNPFCyN0BE49uj6pZsL8DwgEsiiXzLjtuQEwR14lXJ4EKxCZFiYhxlbV5sGkMHvuINFW3d8qAyNgTpCmrdrY3sCNWzfh8uXLuP/e+0EkGE/GaNqANkZwn9B1EWMmwP0vskTi4rtqu0R0vTwU1wmrnnc1d8RQpKBMGAU4c/w4ptNDzPsZmo0xqF2VxVATnhEKM4m2JygEs7tLAZ+m0WDoXPdtg3aU0MSAOE/oOjMDeQSJSU0hEJIEsEWOuSSV81cIzC/FzSypytyol5RkWr5tbdwrgHG9/8ofw+8UlCQvWZaTHbIIQlLCkokPBQgxUtIijR7l4vu2gzElIStC2YGhwLrvBSkJZvOE2TwBbPsfHYIETEYtNjeUHClIJ0hgdF2HzpKxzec9+r5H0wS0HMEYo+sTZvO5JQzkTIwDKXOOIgCrYywHTVjogsBKlmNnb3NzE5ubmygmUDZ6UzQeq7QntamHBkUNdSbL3zVQLfSiFlCMn1XAQdML1C2anxxTQBA2L/naJ6b0Sx2ldb/U2rRS90XyTwX6qmX20HX93s/B0FHcLDOoAU+lKKjo4XCeBABsDFnDbKCjDkV2fwqphKJFGlfmnUxjUvJQ5YSWxkKzhoBKvwdMuXqvn/3Fw1OnnR+OrUitQnUE0EIZj3ps0OrNXtLC+dls2mE26TEeb4BFMB5PMq33PqfEuHjxErp5QogBly5dwslTJ7CxUTRsR48exc7OjqVuIFx46GHs7+9b7ikeaEyGe9b7uOJvERPuip9aTidGBdD2fZ8zMn+07QkNUEIoGpQ6GsGdIgmUJSiXKNT/xCSqPldbAEwtmsTDEgu8ZVZCmTUnUTOSJne+BeBI3VWsdVul9qrDURclm/oaEcHhbIrZfKaJgq7NbGsKBKqu7pP6mHBiTcVsrws2/qapImZCsA2uacHdGTZxArNlmbUDojkq9KfeXqQcJxjJoqAgQJKEXhI6nkOSaqlOnjyJY5tHcffdd+HSQ5dx9NgxhNCgZwE6RkqHmHWayXbUNpi0lrXT614QAaS26OjrR05U3c5txF0AavQ6LysQwdjYOqK+E9cOMBqNEZqmONuShjUGENqwAF6c+dd5G5y4kOS6OJouvVEprenRdQl9r5oUf0/qe91frPeplqUzbxRkYOpmGgcGrgnJEktmBN7FkCWxmkjnNP22O1nECgEuKtedIcH2ul6j+Ingqy5EpsUBeuqBmSD1DZrWyk2ISkg9M2ax10iapJo/kALi1IlmemUn+oLZfI4mBIxHY/UJCwCZ06xYdlgwoe96zOdzdKnXOj4xgJI5DBPQVb5FKliatpMoJwSMFJBmM7SB0ARCtxB14vd7ocC2bfP8uMnRtaZ5M6xoRRNSMckqt4gX8ZNKMtV36GwraSiRHPqcor2sTcXByoEz6zyL0TpPYFkLPJmn2b4he4czxKFQ5QDK7hMBqvQGqDQXOZV7gSMApPjwiY79usns7PmmVMj1nsqlxRQ16KO/zfd9IGPwxUE5hmj3uol8mAYgJ2VbAD01YPK3FZ+9mlEvRBUiVAEPlQ+U/rUEgIbvXHYP6HvG9HCGIztHABJMRg0mTYPUK6H3Z+5d28PlS1fBVrX++OnTEKsFFJuIk6eOgyy1w7XdPVy6dCnnQVoGZaVQYZnpshdFzPEWJby63scCpR8pJfR9DxHBaDTCeDQGCJjPZktzcL32hAconhujlIUvuSlcMGXffKTuieo2kuBVajN4CWS+JRahg0JUNJNlb7kdlPgUpzp9b14kooF6U+8vJgG/NoeiUgkpbix5VB0WyV0PSYyeEySx1ZYIQEgGLJIRdGV3DBpsekCQQkBEQFP1hUi1Qb0kTT7HjBEnjEYjJbBkh4rT4JBlDQYKo9FtyeDUw7PyMhMIgti0+KRPeiouX76Evd1r2JhMcPLkSc36aWsEFnAScBBQVL+fGDWpW1lNMinKrNTkpp9qP5hfDEXKBJ+gkQhb2xuYzeYQJjRtzMTDq6eOQgCi+3Y4OCK4tCtkvjIpQd2BAigIfNaBBhQiRo0y5r7vTaoXcBvNT0UT1iUm9L2aHRclC2E1Tfa2rmTARIcvgzA/ylFFDk4KWAm+SqImnOwCk/ekTb4x9Py7mCak1ujpjOsTE6MXBV+dme2ItHRC1xlYFnMczwpKQWBSJ162DLgBMDSM8bgFE2GWEmapBwUFS6lXjcv0cIquU1+mxIyOBfO5OoDn3D8p5Wgt2BlIqq9S1kGavI2akH1/Vpks3Knc6/T43vLvay1Jfb5rHwcHKLW/iDf1b/I++jpwpmFE6hwrEgfvqsH44vtrcOoAq/68NoVYj3G9VubE9gRLPoFlunLOYZSYGB6cx+F7nMEvz3l9ZYHLC72ttUH2jScRVAxFec+GhU74yBfNcWXui6YkCyDXmZ8B4KuHB5+3oY/bwiUDlp8/e7Q5EcH+/j5ETgGke2cyGRl45awBck2RJNZAClG640ebjTfo9eZTNYjQK32ptfw1f3N6IfbfAXwz3pb6Hol7qHtZo7zEa+/Y3CY7X4+lPaEBSiEGwzwfVH1f29wdlSs/rHanXYukTNpjMQoDdHWV2Qd7KcmzAFVRLhAt1174e+tcDIsboAYoKSXEGAdAJqe4Z/cvcTOAQMyvIQOOpCm+YYyJQOCk7NMBkNbysf5RAPUpZyaddXOMupFJtEUCq81RHoKrUpKOrTPGkcfmUhxFkDm6HT99AkdxHJcvX8Z0PsMtt9ykqNoi6mJs0MQGMQaM2pHNQ0Jwp1oLKQ1UgMkAHObQ4EKUXAUOZrSjBhQJ08MZui5hMh6rEzQIoYkIo7ZE1aDsmwJSNf9TSGrnZQOKFIxKBHOgbghNL+CkYaB9Skh9wrzv0SdB3yuK4BhUXIwGSFEBWCO2umdQSaKAwAGjSVzZR2GRMCM7ghvpLIB8kShWRJfyiIdNgUXSh6ZCGBf3se//GGNhGkE1PSRAEPVCCArxANOkdNyBuUefUg5FFAHSXP1dmIHZvMNsPgczzC+rR9/1YHMY9wynRSAwQCdaUG/ed+pDwx4h48Mv9KObzzFq26VCpPXcLc6fj7EGNG7iGQIJZ7auFSir5dJ4AYZAcc4tzvhD8OEsvdCa6wGn+vm4DhMestUaJNSagIrGwiT5rNIv76hTzIvh/aV3ZZmOBvR42AwKuVnJwRaVSBwAw0Kj9t+6cnnNbOtnC5DnO98vw/HXGoLCE6hMhF3JK+rYDF839MtZXK9VbTqdZY0YCNjc2sDh/mFZIhuDZldm1TW7zwsB826O3Ud2sbO1DYqE7e1tnDx5Evc/dMFAZ9lXbvrPPap4VcmNIia86r2LkaJNMwJR0OhCn6oszC6DokdrT2iAggXiuGhzBXTCIpmKm1nDjfMUlQ1bF2IiagCI+ZKU+hL+roFt1O7x6qnOMDSCtFbpCoCUgUqdD0HVwKqu7vs+p8EvxCWiiY1KiKRF8RJ3uT/BQZdJ9n6AOc+DEzFVk3u6/CZqtth5JXkQEbq+x3zeVaHU+p62bTBqR7naKAAkMPquw3Q6zf4W5KpVVHMCoBfG5uYmzp07h0euXsEH/+IvcOstt+DYkWMYWYHCOHBk40zQfU1FbTLGEBaYcmbGgiiaI4GCFbeLBMSABg3Goxbz6Qx9N8XGxoY63rYjIDZAnrla1lE1OkGfExqtTZRSjz4xhAPAbFI/QAyE0MJdAiI3kFZA8xkwn6NPqp3zdXA7LZM7qnIGbTpuQOmNzQOXAbNrk/JeroldgWqozoUC7fqaIfPVnSqDv038GYh+CgozejIJjUp2XdYaTxoIrUyMYEDOo7QE6Poe1/b2QEFz8PQpISVdP5GkmjWLduiSYDbr4BmFVYNi5QwyKOGsVXETWUICQbU+bdsa8x9qNQGlF/sHB9je3h6YXRcFkEXtRS1kLGpTyvVDgQc5HbtkIFIDpcI0CTUDXdaODKXwReDkf0dLrOfbpGwXGuBxz1VC8HIChanUzKVmtIMP7LMMjitmPwABGF4vgJlHkPdSHqABWSyAQ9cKDN49mAPO48wawKpfi31wAFJAIjuRr67D0nXaGTJ6VdP2hYGiCE+DPQSqh4DqC0ynM8y7hI1WBfGNjQm66bziY35CBZ6XYBEEPHLlCi7v7GjWbQLOnD2Dy1ev4uDwEL6/sLD3DHvqWKX4s4go3VG/sHnOttw0TZ5jByW1pEMgQFY5Kl+/PaEBClUEAcCAINToVCfZ0tmDMsrN9tRqe0TzXSAQgjnGZYTuxNo3ZqCcCEyJtb9f08EHgoVloqB/R5HmJOmShUbLSkaknrq/SGQNmsaTlllESU4uJhlN58MiyjLyIQPyez2FueavqMMXtf+xj+iaDgNHOCKMucljdz8dEUHf9cpY+g6clKg1TeMitoLEGCDzOQjA5uYGTp8+jdlsC+fPn8f04BA333gOG5MxRBR4CLTwo47d7Ori6aIpz13dvxqggMSS9hmnD0HzxxgRGo9bNB5KPG6AUB+FGpwsghWo9NsCEgNCZ2GvpE5uYuMnUiZfE4/YBDTcoBUGxYCGYVEyCRIt6sK9Em1XMiGrat1eXjIiF6JSTG9OZDybbNkPq1XJpi0UuHgP0JCI1z8H8w3kfZyjvvydREikpkMJFQGN9poMPgmpU/+AxiLjuNc5mXPJW5OLJFK0ejxu3pS8NzwpWymHUAkIotrRvmeMRg4U7MzHYkpxLebOzs5SRM1AS7sgFPlZdSm01qjUgEWfU+a+7DfJ/akZV45ArHwfPpLUXYOj2tdNQ4Zp8Ga/vvicwBiTVEm5dHGl2hdZ87GwnZb6NdDglLnLoLe+10BNvjaPs/o7FNFOaa71l0UTBS7s8cJUy0ms80S52cn9Y5b7v2KC6zMxACBS/atB/8IcVb9JXqNCT8nzApH6FHXM2Ds8xMb2GMyCdjJBmEyRMobz9WMIERKSJjVUhA9hTVp43wP3Y2NnE5PJGGEEnDt3A+659z7M566t1EnyKMIawAknNTtXvl4hBGxONqqaPrQwX4t0c6hlfSztCQ1QYjSmk4qD7OJBAGyaXELJKLeIDKFiTnU9HP0bRRqDMRpzfAvmJ8HJbYEO5XWhA7kfRIR6v0djZpKBghcqFAlwhzpA/RLqfvjCNk2LlFR1LOaj4IciBNLcG9DPSs6PchidgXGSKsPucPOwmZIWpUBm9asYjUagELPvSx0KK6zRTV3XAZaRlQNBOIJCyoe773tMJhOcueEc9nZ38Zd33YObbroJx48e1QPLWk2m5PuoT/l14u0zteQSUk5qzoJF4oB77UMjiKMGJC2E5tBqIG1+fv2uQhILYBEDPmK5V8h8V4IAbDVgckp00xwoUCM0omHMzAL0ugCEFkwe3qtEgqHmJyGrFpylOil5WHwvV4CNqj2eia+BcQolOZV/F/IzjHHkvW5zDQX5XGXKHZ4x9TVaNPeIaMiyk7lsGczcTX2GNE2+vpuI0Fgkg8zVb0bnRPdEL30OuS8mHQ9hXMgBs6AdKmDCfUsknzkfTy0R1nt/sa3S1NbmndrxfdGktlj7ZaXJzdpiArlV1yz2qwZWtaNsMkC7OAZ9EWWtXQBUYs70rEjkukvcuVbPVRDLmYIChvT5QK0p8LHknBkoJ01NgIWZL451oG0QJecaJUcVUCmAAwv7FBD0rpUsLxk+d7CmfphKf/zcLJGH+s8VgGxVIwN75L/bo/qUsLe3h6axkH+jw7tXdzEeRQMxut+v7u4qCJ1bKgDTDqUkONg/tO5pziJhYDqd48EHzuP48WMOhzAajTCfH5Z+5TxE+ixOKnwKc5ZA2qYx03ZQj3TB9fQ/RhmG31/v2lXtCQ1QKARzCAq5sB+gm2TR8VAd0OrcJUUUiLHYihdDf9WkktB3PZybewr3xiIoYhUlVMi6qwDVkzqEIqm5ROgElUi1BaryV69zjxzSSIL6wFL23BfQQK0NlLEpgU4YeplXYAUoKbKrQ0Wm9XHJK2TPeKDrk+aaSQmj8VhBiDWX8kHV81nnD/ZTRJAa9xsYgbuEra0tnDxxClf3r+LOD92JM6dO4uzZs2iCitpxAWwiRhBMq7UovlmLgQp4jahMcpJDhj1kWZUxAYlnIOoR0DoVg0cn6Z2ewcR8A1iBCUvKhfoUpTaaWVEo178BCRIl1SQEAQW20NeIGCpNCTWQoKYfBXgxZ1VlLhlSlfGrNqxIOJV0rROW97MX9yJgiWmS+1H52tWmEV9HP1OcXP1RfGUUVcA8XDQqypIeFu172Vs5k6c7NIeiuQsxqqO36N6hBmhA6CtH9RmzRkhV0RjMGjW13Iw02jx4Hp66JteiVDedTrGzs5PP6qM5x9aSfshjcr+3oQZFz8hiBBUGz1k23RRAs5it9nqarVXPzs74inztd5S1hYC0wI5+amtMBlf0e90Lod4s5ntFXGuW/TlYijjLQMze4XsidyTzwKGj5mCM1r1K4aTrZNpeB+6rmohUfir1gzCgkw5GFu+tQe5HanWfF/NF1e8TqYUDwsF0hrvu/TCCaK6j3vjVlSuXsbv7iN1Nhd5Y7inuNXQ/kYKX+x94CF79mZlUaAJw8eIjuHz5WgZzLKv3k5pO2eaWEEejMu4KuwXPAI7Kv80PPwwk09APK4W/K6nuYU6K0QGINTYkWG0m5hLiRhQXGHdpQ+SualGPpNFCYwRqxBLCiSH4OgSRQCQV+KgXX0FKnYVWzNtaJR03B1WOSczZJ6Vu6jBFgCW/AcqZup7kVz4jk5Kro2zMqO8TQqgLyDmBC4iNSVVdB9fcZHWtmPmliMkDMFaPp+9V2qUAYEbouEPTNrjhzBlcunQRV6/t4uYbb8LGZEOlWWar6TOUIusREimLDEFNb8kkKq29o0AhZmkwqKMmBUASNJ12g+lsihB6tE2bibR2OuWIFIFLGQQEGLAwwbTSZAgAMVUpiPK6U3BArM7LKtHLYI/0ia1IXrJEgwZKEud9g4RsAgOQtUdkAMFr7GQtn1Qh2UbcS7E0Z0bFXFIT5Lx2pil0DY6H8ytTsFw2vsfyXhtKwRrBYiHgFiKc07ZnDYd+njURsZyXmBghqKMrBclOfMsAos5BkvGSJuHzz9yhtxJu9vf3ccMNN1SJGD1iDFAtJw2e6f9RQmyO5zlBmEv22rcQS74Pd5AdajiXfejqzx8NjDwa48wgy3xenFlm9uz/CdDzzQCT5P3shQoXXIZz/xMSXAWgek8Mnw//DnlfeNLLksl2mIujpk0eKl7mZZnhJ2asHn29J/W5sPPkyRizdqQGgCifFSD66NJ/Pf+LdKqupD1c4+HzWASceniWHjf7AEoXYOBXsgmTlA4Y/fF5416L5+qrQp4vQZW5HIBXnXeBWUwTGULAxmgEamLuVz02H0e9Dq658jphJppk3uwCT5P+jph4nOBmUugSdTQ1Kovh0uJAWA56kcqKitxOWTkaSCKYdx2kT9mkIsKIKapWxYkQisRUnPeGJhYFRk749R726rpGDH0fZBW5RfW42tkZnUtpAuRy8osErEQALG4u3TgaKlv5Lhix9wKCNUOLUcC9JnFjMPpefVRc+oVodEZoWpWEpWQOhCUm83HncMog6PoOo9EIk9EYGxsT3HzuJuztXcM999yDI0eP4vSp09gYTxCjST9efRoeQEzGGHW9PDMNs4bCemIqEOUoFsD9Q9T8EIOHxLaYzuaYhYS2LRJDrLZEMODDEHAPaMJhi8bI2SCdyRcCU3wJHFwamGDk+ff1iexr0VpWSMvFkxK6bp7HE9jX2OiW2eADhVymIMaYnZqzqYUop9QfqNFBYKGSKGuBcEssvkDCAmJC4AC2omPeuKI/7nitgMhMSlbwMIag0QZQbVSWiI1ZBtvbYKA3f5SUvKCaRmilsrwoQ3GfgiExTSmhbVvLnVQBAutjspwNk8lE+x5UM+vAi5NFklSak1iNLSCqRpcAikWKVFOEn78iXLCUqA83vzKXcdSMbBG8LGpdhud7FWBD9o1yPw/A8j75tf6snExJ4KGoZCC2pmfJSm+AhmxbFn5moAZ/BWWp28NynXm5U6aUyzIjrXNdLYGxuv/Xa9VeBmBmiyEgzG/3NYDOVyg6JCyIdkv9GT5rRTeWgOYik7fxiDspx0HJAan2TJ43B5hOpyzXlZ6TaFXrAc4mTWRtuPM0EBDbFk1bQuydfkYUgFHy3lifgyUJJXW70LxbZAIA+aKCWM2yaUVm5eu1JzRAAUwepoCa+PpPMRsGiVghrAIMtJnSvpZ8xaNsvAS8mnfIECpgIaZBE+AAw4NYO+B6nRzOCxozgNF3ldBZZvVNWdS6+O/O4GqHPmAo/dWtgKP6MFSHqPpsQAj1l0w0MoPJl0fNLslsRCsiNhFeOK0dtYhNi54TZjPVPLRtg9SnCrQRhOdg6S1yKUF6ZTyxCThy/DhGGxNcvHgRh9MD3HrLLdjcGhUnXkJmHP6vJtreN4jXBiGgTr9te8PnIJlRWySAMEaaJ8wPDzEat2haTQQYyByyibIaObEyFO5LFmFhD9UDIP67+paIlGyn7hNV9mtRPTcRkOC1h9wnSB1xwVqTNQFq95fCQEMkC28fminFsvsy1AnRQ+SDVcNVeqxOdmYAM4Ci3MwV/HlfMgMNIbBJ0ZVZiCzTsvOLYOfT/W883bg6lULrShkQYinOsO4flRKj7zS/Qp8S+lSusd1rQoqaMDz/iAMCIssHY1qE0WikAMXDT6l09nA+VwBjYf4K8CoHSvOxUO2sPq91Ick1J35tZUlIUOLsEYHZqZAdmPg5J4QgRhOGzrXXAx7+rwDgIYipz24AsjNv1kgZV0smyERjKKVQofj/SzoD03blIbL3xwAYOV2xcbDk7wxt2Noha+KCzVU2a1G+IgMjv6b+LFeixjLjDwtz95hb1Q9y3WLmHQKvbF/WIcL9cmotUEDhSwIMLNJlnVBE4orMFhBQzofAzSdVR7NgrWNtPKW/CY8Q54XlvZ7ZlZPWmWraJpuCHbyIpQZ2YcDnUUQqXz8bZ/DacqqxbTy4QwkAHGlSrztmMXz/0doTGqCwMJIkI01SAIlJiOQTw6X+gW80ZWRAYRIu/fo/tWsnBz5AJSlYRIlJEL5cfZ8Gh2FYUFDvG6DrCgjk1OdVq4mPS7u182yd3M2LJQKLtu5yEPzvVQfWnTg9b4C/v+4ruzNy0AidQBFN02IyGWslW5sPiqT+E9KgNkm79M2s/hxJEpqGM/Fpmog4U+XmZDLBbbffjr1rV/HhD98HIsGJEyeUWFAAomoJuFIpq3Of2EFW22jIY6VMDECC5BKcSWxljkh9jGSEw8MZxhA0MWhmW0kgipbOH5pfJqmDWkpu7kAOCXbTDJE5mAobUBF7WUBx5qylirIX1NFW/ZRCIDRNQIyAanAJIuqro7Wlyn5og4fLiDH2Th1WTSKOoS5KKQaYCohnFiCW86LPMlrp5olQS24ZEQzAb/Fx1rIFZS9pWm5wyQ2UoEmcPAOl7hFYEr9kYfQD5b+F+HuNGuSzHCzdOIWQJWURVmALZH8RX3giwmw2y9E7pT6WoGmUASXmSqOi8xeEs6ksVUC5lswDEWLb5nPrgotvFsEQSKxqi8DDP1s0Cflnq4oOLt7j2ljlISE7luuUO00q59aZnGoijeFyea8fJwcPztBtiktLfiGZv5FUtNXHUgGcCixkQcRoXJ1WwYFD/ZwsdPn4F+bjeqaxoSnP51tBewa19beyCB6G9xZ05i8u/fGfw0SKMhB4CZr2wudJhSm9PrqmpGmsLEnMgqY3huUa6uZGLzSJmmsiqTL3uvPx0nxlemH/ccGI/EwMTf6AQJiqTATVXnmM7QkNUHwDJqmcboxIgMtEBEeRgKm9fK6Kh3utbahTlPtGGUouJXyRPBFY7k9RWXq4YwEEkq+7zogKerXBLKLXEiFgRfaqlsNxVwAUcrWkAEVz5BKZES4oAq5Lm4f6KTZvCigKSNK6M4LGUbioBKkZaQndrNdsvjXAs9BPSQyZM6gHIkUganXc+XyOo0e3ccOZMzh1+hQuXriAw8MpTp86ia2NTS1lkBNdOVMoaw9ygiVYrJmhwCHPeJFgMiHS2PCmGeHwYIamCRiPx7af+gJwk74/mYYjMUNSAYkugWaAgoq5miamrPuqcObCiFQzwAihBTOjiY31w5yJY1TwEgJG4xEixWo/JPSpRW8q3eU9qWBpINXlMboaWYwRUKUtknyt7xTfT7D1yNnNyfedPrdPCYEZrobW/U3m0EdaYdpni7UfiR3g2pm1+QtEQAh5vvM8unOegRM9MwTAM61a50jM3NLj2M7xnOnVTWSu7fEYr/psmTHNxmWO1LXWIgaERsPznR44fdGq45IxMuW/hn4ni/Qnv52G2ahrLcqieacGJiXSqez64OttIN2/y74Hzmft3Syitcp8zeFrMayrA2BQJiIzZFsmfR1lH6myhxYEOTKAYp8lYRTTfdUnVDF3+ZkVQzTiv8gkFUCXtSwvh5lHqDo3snBWVkcDeR/qz1YLh8MuAhiYTfwqr4PkfMGfq4JJ1IrWsL0sRRPJSXMLgVTwWy5IWe2RoGYdqvqZx+OgxIR5p7mLnR8kq/PcRzaPACzc4LG1vxUAJasYhUrOhUqbEsyBz9X83mJ073hLsEW6IdxhlQgawoyygCJSHkGFWPv3HqLrDrAaJub9LSFwhUDUIayGOgebmODRR+57klJvjpb+TI/hl9I/9lTUyGg2g5R6Dn0esUBYoRvRNXSlsmkBdMwJ8/ncUDQhQpF5bBqEUcwOkckjL1wSK1QGDEEfCeg6YH8fnSRMJiMzB/UAM7Y2N3Dm3Dns7V7FfR/+MM6cuQHHjx3VrKYuzYEs+igBnNDGFm3bZp8RnXMjnubjIVBwkQMeyYoO2syEEDEeb2A2OwTzFOPJCCTmNGZaIJ1aXSMsEB/y7Jow3wWRku+GF4nVakmuZlChcvB0TM7iJhsz8RAQkIAguapwiILWateEntD3yhzzHiTJdIYy8SNIMq2HAAIt9jUQ8mLQKENx27SZ/Zz3uyqYlqbGBAslXgQZ+O3oWVTtCmyusk+PlXowgb0wXuYchl12NgCoENHN52jbxvyjOH+n6xTMxEoYT0a2bwvoK4T40YSLoAn6ZCF8lgiwEhp9n5DMzFmD0Awq9AXws7zYVgGVxT0zFLiwdN2q71yocaHKNXtKnbRviYf9Bdzfq5hAyICgzr4MAIV/FmxOXPPhUrhTv1iNL+8rBzIZ4Zj3imjW1AGYyW+khZ+mDYAzfyAf+6BmPDLn8mCaHe9DPYf1/CVh0+Q4DTFSIIUpe+Oq78O5t71VaWV0nY0HxSKYQgq/cQCtvibq+8RQIN/3nQUHaD+aJmI8arMQugioRMSyYds4g5diGLayLlgYi3+gVgkCle8trNxXIFRn6bG0JzxAgSxsIqaS6TQLVLZZKgmLFiS+TFhRQg5TWm3T9d+D5W4YZK3MzLuKuIATCIFIiSZaBCmFQNRjxOB6D5Vk7rOEEEKs7udsphlKIcvhxm5L9sZSpbSXoj0RA1SaL8a8xuFms5R9Q3oidMyIfYdGWqvNommQu77L0kb9PiKyrISKUdKh9r9tG8znM/TzDldHLTa2N7C9uYmdIzu4/4EHsLurkT6xRS4MKWImgm6OLvQYccLmZIwQlQ2qRoWAlNDn3DbidFLDroWrWEoBAmE8GqHrOsz2ZxiPN3SO8jrrvgoUwBTh9Z1AKBoSk3pgESF1ATG1iqncV++xvL/zxjZfCvtefTWt4FyoCyfCKqg6KJN8v97jZeh9T4S80ORaHdsqIWOugDoKTtxcimCgU9/LrFJaSprvZsCc7KxS8J1nxJ6K2Q/2PNg7630PkyZzyDS5w7R+52UZaiJuo0AgDTFu25GdnXpaXauQ0LYNGvOn8tpCwUB2cWSnwTklYy41j3ETQCbf7hxoWW/FQGV2VPH+igO84fqvksjr/j8aIKlbTZvqv2uA4vSoBgflvRV48XWqGJXUY66ZYKa77tA/TAmR6YwAPcrfAKps2Atjs0cuF+tb3VyIApBLfejnYbCuNWdepRXxuXKwjswPSj/ZxlBrY7hKWVA/M39UgxNA94YLDgaidK6qchImsPS9mkAL+FVzeRFqnPfIcF3qMWbat9qncXGPZVpZofEMYPJzbc/YPvHzcT2Iv6o94QGKOliFTPAAFAJrKl7Oh87BAqCrbhqFAJPUBCFaZIbZCerIHCcujr5zCGu18DXhcmIz3BiVBgH+PS3cU9RkuhddIwO4WQpAdpz0YolaQdf6maMBFgEPD34SNcMNKZJtilKFNjuqz8RXoPIRuVOVqVODgpu+69HN1VO873ur41KZwDw7qggkifozECHMgcSHaLqItomYzzs0MaDZ28PlUYPJZIyjW9s4OJzi/XfeiZtuPovNzU1wb3lbiEDUgCXgcNqBQBiPR4gNNEyaGUFYs9onJyIqrXjivNo8qDVnCG1s0UuHvb1dS48fcsVf9WVhhKAJ1QAPuXbGXIEgBIsyM01Bsu9yKOhQ0vV+xAq4AJ7rRfPhwEELFUe9LGEa2Mwe/TFonskQkbU+1BZGRVxyjAQUP40UQOLMvHLkZgK4BlZFcs76OlFp25M/wfbNQMUssGRTJtGKRh8wc/ZxEYhmogUjCoEiIBKz1Kz7XiNrapASSMsSeHROfq++DDEGHB5opWs16TT5vsVooHwW7BwrMRYI1OHQWY76wKHs+8TV/fntRrF9ppze6DlJ+Z4y7zmCL5/JSgNT7ZdFUFMDEH/GQFhYiDiErV9iN6V6pBbrOnowwGJkDdUAVvLvdRNKqJ3Ckwy/d2MnsZgveWGwmd+FkEFGDR7Lu+r1Kmvo/VJNodNSP2uhgKxKmLqe1moVsxexEOgM3lwcHu7J7ITsjqyo9lkGuC50DE19rgHyXFldp9q/pmkwsgi16kXlfPh48ChNlG7UoGNxb4m4SVoyBhk8k1TYWPKrFN1TnB7HPCjf8z3fg+/93u8dfHbmzBmcP38egA7ue7/3e/HWt74VV65cwXOe8xy85S1vwdOf/vSP+l3zvsNYhiaYQnwqr2MpNV1q7Yf2xx4mKtVl1aMQ3OmnoGyV6piTamrsTZLRKfIYF//2d+U++pdE8LwsIpJzYiyCWL98sT6IPjMhJSXQzFnZiMEpqfoxfO4QuYsoNCu+JG4LtYRaUCdShCExKJKYgCiC+2FhRAfU9bA8RZhnQ2XLOsqd+Rz0CU1jGTkPp4gxoG1b7F3dw5GdHXCX8Gd//iFsH9nBsWNH0EQ1K0UiTMZjjNoW01lC18+wsTkp2qEQ0FjssAWtFqbr0uBwliBCiM0IIwrY2z9A2zZoR5M8zyI8IATCrAPLzKgwqGgarxAEHAq4IwoFuA38REwCrGzHBM0jo/ZnryEEMBuRrSTb6OsJgsQASKvEispYtXIwo0t9YTSVr1IwXyuyxSxhn8hmq0FpAiCfC9heEjj4rvxtZMgclxopsw/QuVGllqm/pYQ9Z20cJRNaKD9AAFy9eg07O0dN26jXNjEimC8PC2Nra9Pq9LhGxH077FxROSchjw9qOa60tjUAB2QAKkAlFtTnUqQ+sx7+rZ8kA7A1oFiVE6l2kr/uXFbfLQKUxXscEGqexTS8hpeflZl4TfNk+DwAA5pRvlvWLvicDAxm9bMdGEn1XXVpQTLF7O+Mnyy6zr33PSeL0z6XWeu2CLKICNGBj/+TZTDmTHl5Teg6v/vca2OLplHNIYN7Rtd3BTxTwGg0yo6uiVOpiUa0PI5qqpY/tbXgMu+1VqlMrSDP70LTI+CJK8tdBunz+B5r+7hoUJ7+9KfjN3/zN/PfdVjRHXfcgR/6oR/Cz/zMz+CpT30q3vCGN+AFL3gBPvCBD2BnZ+ejes/eNc2INx6NcxE7kirMEsgbWBYOS0rFnCFSLiBBfobATTS16jWfkkxwgWrhB4havyn5JkLeNBTrkGMGo7YvC0Koww+XAQtgKnWUe5yQuaxeX+cAzZ+5So1Xf+e5NEIVGhlDVcm4slNmPwTrB2f/iiF6LgQH5jypfa5VvGqzFEA0+kJSNBMGkKKg7wXTwzn29+fY3thEu7GJR67s4fz5CzhydBtbW5toYsTmZIKtjU20jRZZTAKEZmKhd/rSaA59nJQwqcbDD2appgvLKQABmAjNeIKDwwPIdI6trS2bY4/8UuaU2ImuO7oNSwfkQ2qbKATzL/H6GaRRI6oRkuxj4nvN7eUeueNAPFr+jYy7HcDbYgUrJkbizuUmrTOjlx5JengKeqoyL1dO/oiNko0+kUr5xoyH6vjiwFjzKvGEd2KViliTbAEaWVXMD1yIo2tmgtZA9n1ODkxYEGDaVPYoGbhEgK7TcxJjMeFo1WwvOaDnfLIxMc26lqagqBopdSwWA+iu5XKhqOx/stDxXPqhAu21LEmh5A/yyLhyfupCjkHnSUrtLo9WKquhc9U0tcP/kC3VYGQRmOQnLWgJSvZZVLSuohmLj1jkemUbLAMhY9qD55nmpdzsmowI49HVMwBwoY+ugXPVR0DR6goSyAvUSXG8zsnqyLRBvs1IzystDVA7WdPQ7BFGapqqqniqFrYqsBep+MrwwL9oWUOnz9cJFQCSEuZJz2rXdTjYP8CRo0cxHmlkmBbC7XP/3HTrgGuwtiYswATvrIUyZFavT23e8x3v4MmoJBz7VZAbYmHqoAx7Mq0HBP11kqSuah8XgNI0Dc6ePbv0uYjgR37kR/C6170OX/EVXwEA+Nmf/VmcOXMGb3vb2/DN3/zNH9V7tjY20ZKqZw9kH6NGHSNH4xEoxryBllSM4pqR4eIRikmHLArD/TsCBKlPyEuV0XIBQBpZYtlMK7NNWThlunV6cbdDLjrilgRcMnhH+d0XnKvraoCi7xVJuZ/LUoAl0qnercUSS2yCx8bXDoMUCIienMyYQ6KSft0OiR/80mtkApB3by09ZeFKTHpXB1uX2CILPMtuH9RBbYMETdOCE+FDH7wHR4/u4MSJ45hOpthr9zAejUEh4HDeIeEIJpMWILbKmwEsdsCNCamQTtkLHiLoHHAZWGARILS4+sguzj98BUePHkGIKsX2HYOTqcbFmZXYvgiWJdWcVy3UNxChjSnn2hHAPPF1L8Wg8geJ7R0itJZd2DVb6lg6zC+gWp1K4waNVNFslQmdaQa4B/rUwR0jtQrQkMlR9PwPLs0VKS/Z87JdHoqzPKpCBQILC3VAnpmpMelA6LmYYbO2E4Q6OVqwsGEyjRCJABFW7l2vj7HkOQEIKc1x/PhRjNqIcdsCIeSIDZ8LgDAej/MzbKvmWiiaD8WyxcLWLwYweVpwP8VDZlyPdbg2y0zJc18I/DsDxq5dW2JiFV2p6JFHqZUsrYU2LAFklH7Uqvy6KrNrnTJbYsANJbkvNnqX1Ip5rz77WHpn+WDxc7/Y90OV2wY1qSjMk8XXrrBLTfRn0ZYq3ivjtuGQLOTREim1gqjsg8U+L2qxIjSreEaXYehoW5NlQhpWCSbkZAlFG8Xou3nWvijtaBCCnnvV9LHRXNt75E7KVMBlBcQ8HxGo7J0yoAIQyzxV80DD8gM+Fl5cx6x5gT4gu1kVa0bix9HEAwAf/OAHceONN2I8HuM5z3kO3vjGN+LJT34y7rrrLpw/fx5f+IVfmK8dj8d4/vOfj9///d+/LkCZzWaYzWb5793dXQBAbBu0kwnadgQYgOi7Dt1sBgqq+mos/8BiMS+gLEA+oEHt7HmTVCfCcYKYXT8DAWNcIoIgAcnCUHO0hgzV14JSCNCZv+bzWN2Gkg8GBDx3bkF1ljHuYPMU6X3YSlKvwRyBSrZP8ugcK5AYAtCErCnwekLEmkE3O65RDaRqacf6WR2CxfFWH+RfU8/ZSz5GqzGzt6/mFoq44eRpXL16FQ/uPYhTp0/iyM42uFfGPZ8p89va2jA/g7mVCNcKoYn1sKdOf3ZJ0CdNZtT1nCWKur8iwMF0jitXP4ytrS00TYPUu9qfIaLRIQpSOEfbeNr+HDLuDpmoCG9eK63yO24bxKAmwBjU4TUKQAwk9rVFeTdKmDtQQq77rkfipKHRpg4Gaz4ZZypBio07kDraxcwMVcJPvSVNSw7uiu8LoKBlII1VBKpm2MJS+TTUe738c6dNB9zLTKz8zpBB4jCdkx7Hj6gJkGJxbAeU8B8cHlpI/JDpLCY/i7HJ0XP6LhSwZOUtUI+TS5mCMi4vELp4PmFM1KOU1JQqQpmgL/qV5PsGn7vfmmlzuAYeFa0jN18tJ4YEhgw4OFh04cnDqKq+LGpD6tXxfSHV3x6mvOjDsfQQVD4QDiOM2aLaR3pHEar8OuGhhiqvpT46g86B5pgI7uxeikmWtyzOlRgIirRgIrbvmevRAxGNOodzytpNEktTwJ5PSetexaiJA2tNFNEYRZiofANRhBT1OVMfNdUImeAZ6n4V3qRJ2+xsOK9BmbN6jyhgMkFzgcfUgrDSlpq2P3bNibe/doDynOc8Bz/3cz+Hpz71qXjooYfwhje8AZ/92Z+NP/3TP81+KGfOnBncc+bMGdxzzz3Xfeab3vSmJb8WAOqcJ8WbuY1NJhos6sOQstd8sGRWTa5tcz1VJ6CIvc7IS6Se0cp0anMGVxuYwBLtQPtzYD+HUkqtQr0eg/Z3FHAig2cOrx8eQP3ENTNSpL/a8RW6oT1lfWGKav5oqxLysWnQRGVWTYwZoDSikUVuAyeiQYr7RaK/qGLW3Bc14bR/FfMZAC+7lVlzaXjSqIY0X8XpU6fRzztcu7ILnnU4efIEJDK6+RyEhG7e2/prVt7JZEOTygHoO9YQ3CToLfNr13cW5qqMuZO+DIYFTWiQqMXVy1dVezfZtK/ECI1riOyZEMQ4dCyMJhVFKokXkbV56mfSp4SWPP9NAM3Uh6LJkSbmY1Ix6GHehmLKSKlXYOnEyUCDhk4LImJ2UJUQtFqtEWYWAfeaV4E9k271rEVTwsBh0ohqBqiej0ZQ8sSsOJN5urMEt1ojkR1MQ5YbVCtKAc2oAYPBK8LB9/f2sL2zPVgTbTXzrJ3lPXW9g7ByRrUvmpDPgdiwIjEWnllpHuARcvoM1zQOTUD1mB/t7wKGFqe0FlRq5rNIoxbX0n+vU86vaotMrb6fg/m2odoDqJyxbd49TXotupnvvgIUXdk8v3Wr684MNAiVD1ddFLauPl006z5X2p8yD4W5r2pDk/wymIFBNesVWBidZUlmUeGjjRFh1JarzT8yWFCHjqOAdK+nA5GFPVxMOGodQAYhfjaZh/5FUgk1te9yPd6ynjWV1t4WQSLfiJz603/w9c/4YvtrBygvetGL8u/PeMYz8NznPhdPecpT8LM/+7P4rM/6LADL6qUlBL7QXvva1+JVr3pV/nt3dxdPetKTCiL39XLJo4lo46hkG7REWvN5h5SmuabNeNzCKwN7P3Kf4BOdPcLy86NVxFVJyF+sPzTvgYZ2cdJaMMWubuYWI6AsZivHcMGWiLwMP/PuDPvM+fMsBVUI3zU2ugDuBKtEsolVaJmKIBq2acxRcwP4NNmBc8ksEIJEzWaYPfb1GnfWzs8WKMExZgqyZcsZRj2ny5Bw1jk7XJXuWqygAjaoUUa/MZ5gvHMEOHoE13YfwSOXLuD4qZMYty2m0w59L1AY0CPEgKY5wGRjC23TIrH6uPSp9+XWnDaerEzEXESc0Wq/x6MR2qbBI488gr5jbO/sIJsJs9xnbpWaEUz3hSUPE9JU+olcLQsEBAXeJOgDYTbvcqpyTWWtScDaplUgCU2T7qA6AIVBVvtAJSTkhHL6WdA6U8kiTqCVl91ZVCtRu/ODXyO6CVCAQC1l+3kspR4ANjt8srjkbOaBrNjfyvi9Zh1BpV4zmC1J/aodMBNcdt5VYaIZNWhi1GRVthEdLDAzZvMZbti6QefN/EP0uYwQmgF9Wky+ODyj5qieGKmmJVxrPQs4CObU7Qc3a1bsIGqen9V0cRU4Kcn+HKDaIgwAnYWWo5yxutVagfx7QMkGzUBomhxmf70+LYM911aYU7zvl1hog4jksO58vwRL6uZaWYKnlh8yfX+I/swmwBjz9067VXtZtJgusBJWhzXX41s0j5Wx1fPhc5gG2hP3K0lJU8275pFi1BIL5uhaVhDZZ8b5TBDN3RSa1kBQNechLGwX50/mL0guONXFarVPEN2n4qkxiPKzFkerqQDInIul1HZKCWX3FnYhIiVnFABJjyNAWWxbW1t4xjOegQ9+8IN46UtfCgA4f/48zp07l6+5cOHCklalbuPx2OzDw8amoqYkhjApV0ElqIoUUMey0WiEyWQCMYm/6zocHs7ArJJ0M9IFj5WD7UqVVH0WROCGRmcskYI56sHUi8EcF40BF0Vl3ryrzkOtPVnsQCZGUrRArkStw/dcGsg7LUsFun30wGoUSIz2OSFrUjwfRJYojAj3KaExyYMt+ZwCvWQObTT4B+g0aeqH4ZajoDJSqW5KhfhkppAy0+sT56rStgsyB2uiJiTaGreYHN/Ebbefxe7VR/Dg+fPY2NzEaLQFENClDqlXZhWbHsIETDYQQqOgomd0bkozPxSXUnQ8VQ2mikmePn0Dru3u4nB/HxubWxi1TQVObfKikkGXZCCu6vVnEWB2aUkWYoviFU+minWJbxaSmnxIc2tEsn9VbpPYxCwxlb2r/WcP5RSAEABRU0/fJ3Mg1ZKKZLw9O7Rm0OjvMQIOglTJB13rIiLqt6Qo3zI1D8/Xkpagwv6+Z4sRCVmSXNSG1rmEUprrdTFmdb/ngQETprMZYtNgNGpz2L6eoaLiz+u30Gpgkk1fFZhdJXgtggIH3bnopn/OBtBIvYjc2bHui1TPgEvlleQeLKzbw7cFAKikZFjU1hYQXlikiDp1cqVVsAflNfdx1T8XNTLO2INHQqJ6Xn2/X4/qb10sFPpWpz+QPF748TF64CbV4kcUS6Rf1LTwAhcqdbCermDVvOh468AEn4wlFp6vUaG0ZD/urSAlc0IMwXLzRKg5hlFCpIr2JlgNAiICmFX725SZAcq1ruWrFkrnO5VxMLiUvRDofNp+A9yXx7MKr25JrFBm7m+oaFiZO33e0Ffl0bSki+3jDlBmsxn+/M//HM973vNw++234+zZs3jHO96BZz7zmQCA+XyO3/md38Gb3/zmj/rZ3Cek1GsVXSNCAPJmqlWqPikhaNry0WicN0zf9+hmM6scbJVWG683k7m6Prci9P78odSBbKMNMaAhFBOGhRN7JEUgT0NeBdMViqcECvnclX4wm2q0OJhmBkYlpBpEVa4AyeGQ3ortFVVK70rCC8vE2Z18IZYGnWoGAjhUJ0ImAGQfx1yzoWhQ3AFSo4SKqSJnHCRPzKXzn1JCN5+rCcmywA7U1QAmGy2OHtvGZNJisnka480NPHD/BRxevYKt7R20bQsSQt93Gg7d6DwGYiASRhRBvR0qq1ESPJ00+XoU0GkDBzNjdOI4rl3bw+xwH1tbWxi3DSpvOds7ZjIxjQo1TV5nMekkMwrSNUs5ukjMhGk/KSCFwgQCBDEEdWgG0MQA9G7oq5iOSUy16pYAtMHATJa8tdYQz/TvxAyYo7Cab0pKKpf+AgXLsjk8r8VxFcASUV9BuKjAUN+3Q1OA93q5+fnXOlYF0A32ShNwePUA29tbFSNJ+f76pzKVIkWnpKayGsBwWixtoeOsHVwdTPh+YXaH1PJsH29gyvstBNsfNof5X302K8HDfXUG9Km6pw7tXeyvpgIqURiJy3PcBElwzcT1zT3X085ECjBxJu/zgaYl7ycLICAgUDl7XuMXWYhb8V6irJ0arH9QwTVYYUdCKecAm1+7Kc+HriGqv93HkBbW1SYna7OLT57PX9O0AEh9TPyMmc8YWQHT/CwXilyj53skw7aa6WMwF9lBmotmzQE0Q/lmvtuFABQgoXjv+pYNn393hCckhOu4mEQMw7a7xxOgfMd3fAde/OIX45ZbbsGFCxfwhje8Abu7u3jFK14BIsIrX/lKvPGNb8QnfdIn4ZM+6ZPwxje+EZubm/iar/maj/pdklTa9Yq1evBWI/sVdwPQQmCjUZPNQJ5YrDucwu19bdOqs60zTfO5jiCQxExcMgPJoNq0AZDqsMUiFRChhzo7FhhSbPfsDrtOlBy4ZFITisSwoBjUwReix2ZWINHUx74rXRqPMWpVSwMMtTmIszRn/QlVSGMFgHJ1XFjGz+CHwzRTPiOVdmXRFkyhBhyhyhxqTIACSBg9ERL3arMnfS4Lo2dGD90THWs4eTvZwI23PAlXL1/FxcuXMJqMsbN1FE2M6hhrzKYdNWipQeQAz7Tuh9fNgl6E0sFFlqJZpZLIhCM72+i6GfauXcPGxga2t7Z0nqS+x9aYvABdtU8lZkKZNFOcmbRWUQBnnOa9D9ZkbBLReF9TUtOPlX8Q8x1Jph2q1wFAlQpczQEErzmUlHklUZOQVHvIzoYzlBoSFUnKzRhOQIfFNWvpr2gxhw7rTKsdK4cmH/tOAOm5yg5b/As8x9F8PsXRo0dU0IEloxPRatdaDU/f6xFPLFWdrgJQ3S+FFtZJ2J9TrZid90Hiw4XxhBBzLVzDHQoso4UA22QnLgC5UIAhsxRjIm4JZ0W9+lxJJnw5ySJ0qcO0O1SmGgjUGkNnZcoNuVm8oglUzuGi5miVJgnkYbpS9X6xqQCivhAETxjneW6W7rC59JH7ewtvYCQmSGA1HZGCNJG+hDKb+bEGHv5eF7wcBHr+KuYeIURzPFcH8q7rs3a+bYfaf9VikPpQakdBFND1Ha7uPoK96T5YGNtHtrF5dBMRLSCElhvbBIDMZyYwhVzUs5o2iDu9W6JAF3o8WWZJmU9+QxEEfearuUPmUZVw5gQSDnwXl8NXqABZpXs9Hmv7awcoH/7wh/Gyl70MDz/8ME6fPo3P+qzPwh/8wR/g1ltvBQC8+tWvxuHhIb71W781J2r7jd/4jY86BwrgksDyYSjMepmQaUhmWRxnMMqkA5gbjMclr0XXdZjNppjNppZHocGobfO9WguCIWCk5BJbSR7HQFaZqgbG0af2UB0fzUnQrlMbYNV7i3KQahN5xUodv4+1mgdW5uLRGzW6zvWBiEBVgjGNJokDZqXAA0ZE9T2EIv0U0KTz6YXWEEuUD5GaHVwCAJDV7JRzq1SMbSCtuNnHGRzbWgmAmDUuet4FPSfs7R1CAmFjY4IQojJFBOycOIE4meDChfO4+shlnDp9WgHpLOl8ERAadbgdifqkcCoMMwSgiUXTU+9BlbC1OixLBGSMlgR7e3uQyQibk00jhmTXcOVIC83fBYUDREHDtlNVEI2QxyokVTEv7Q8bQNI5Skh9AsdoJ1wJYbBJVppISrSqXZPPkoHQEEp5PJcWJedn8LpGukxskqAvW+LKzu2+YArVB3O2qDUZAA6o+SkXGcv8rCKu1dy4dJlNFKIAYjzaQKSAHgZ6zQcsJQ1NHo00CpDMn0pNapLNl8VePzQfFfqhnQgu4TtDy7SpokdB92K9r8uICjBjABxVV2B8NJ/TohFRbVntoGz8Lpu9cmkNkQxQyIiQAhDVOqeUcOnSJdxz/3148OJ5XLl8GYkFcdRg88g2nnTrLbjxxnPY2diBgNHIHC5yMJURRO2gAVx7x2CB9T+L4x62AroCVPPLFECeydvHmwU1bcFoGuckedUTzZxOpOH/ibmq0WbPsnkLFCDB97tXtfboGFTm3giQICVNMcBpjtSr39Lm5ggBpknMAkkxVQfdKBrQTwH71/Zw11/+JS5euogZzzHnOagNOH7mOM6cO4fjx09gTC1iCggcEEXAlCxApBlMcgElplmvz5kBSd83IdPbSjC065w2eFW3gjeKD57+FBDccTyvRl5hBXEpg3xNCfDYGslHYxD6BGm7u7s4evQo3vIf34rNrc3MVEteiGDqvaH6339eD+HXUphf64g59T3mXadETYaah2iOWMWBTjelamQ8o2oyQONUrBAVQAtPJUe3ZsIpuSKKStZ9AKTaIZK3UhmPcEJESeKV3FeGzK8E7nAZMWpbTNoRxpMJxqMRopkcarOKQNB7CJy4T4QxjoUwujzXUoX8eR+59MEd3zyzau6fSf7snNv7LIB4wUROSFaPyENVozmbtS1ln6MmKpDzCKbQRAgJ9nf3sLe3h62NDUxGGxiNWkw2R2iapjgvis9zkexHIeg1odjJHSg6uPS91PcaLTM9nGI27zCeTBCo0b5b9WO28OZsVBFlYOxhwMmK4LnzMJS4eaHEQAGxiUaMVHorJk7vHXKf3PY+FHcsFLmKcnBzn7eUVNKmoGGvqWdT/Ute2mQe+26GApe01rpdFdQkLJpBsPT39STwYrbQ7zShYLmnlnyZGXt7e9jZ3oGIoOt7xLbV2kwETKdTXLt2DadOnVSNCmJJ5y+2v6BaWSBa6HhhniqRSz7vPhc5cqYeE5V/Ia9l0RLpNhvonapU90Bgc/YvMREDgOfAxGmDP9Nph6h0A0EpZuoCxeUrj+CP3/Me/Mn7/hRXrjyiRRxTD4bSDQGhHTW44aZzePoznoan/L0n48jWNkKCJs7jpoyxWous+TKhQjWg3vmhSDXUsPDgs0WavOq7oe9FLSz59QGe2DLGmL/zvCDlnIScpNLHlLUMlUZgYNKzfd9YIkAidayWJJjOZ+pGoE6JxgdYQ/vNxyxSg/vuvg9/8ofvQ5fmCGOCjAFGQscdqI04d/ONuPFJN+Lo5lE0oUHLWsWcYkBoPJu0aT+Yc24frorVwveYC8xcazDdvB4govve/ZVUhTXU3mbTjgkByvc8VYFYtt46kzhlLeb0cIof+P+9CVevXsWRI0fwaO0JXYunMMhKLUzDMF5k1eAQEAzsvfZzVeiYH/rYRGyNGnhdjb4v2pWUEqbTGdq2xdbW5pLvxuCdmSiVkEsRBpKbpmwDBSVKRatiGqDoGQkLEZRKO0IEUytTPmREriatWqVZcYTtc6ImICf4ph1iRhKtktn3yjjrOkWq7h8yQ5VISvhyIADR+2UHXlQZGSvJmqRSy2q4ULYjE0WtaGvEhZnVDAKoRoBV4uq7HocyLYnnLElRiAGxCdjZPoJRM8G13WuYTq/h5KmTOdtnbYLS8QS4tqYN7lgMqB2+ALCBNkVEiU9ssTUeobt6DZd3d7E52cB4Mtax96X2R+IhQ3G/pWRMj4KrmN3XxPsG2xcBkYKZrZQYglzzNgx7TDmXD7KUr0tR1i8zTSCn3Y8xometylsywrqjnY451VFvWHSOUwffrP1ZEI1q7ZnJbBWDKK1E2ejZjlKdsQqQ1Tk+tIAmg6W3FPnAbDbFeDyqtByuwSAD8KqtEssQC4521grdicG1YPZmBiR4GKkfL+PG7kfi47A/WBIY5NaFMh+1wOQoLJMowmACbQ0JxhhqYGLLkfeWRXG0bYO77roLv/d7v4+7774bXa8auyACqG44m5kwT7hw14dx5cIFPHT/A3j2P/wHOHX0JCCExuhNnbxvkOOELOR9ecltwIS89FLGtghaPew+T0kVXqyaXjKH45D3u58ZZ6L5lUBl9jOBydffA6uS5MALEQDM6K1asF8bY0QzHiG2rQkFBO7VbCwEjFrVQmZBxNdEMa+Okxjnbj6HUT/CXR/6Szx84WHMux7txgibowk4Mnav7GLOHW49dwtOnTil82DjEJAJa6pzgojJfglkwRRFiSdlvqsFITP/QpIPVs3PiNWiOd+R7AvVC0MSI/W9VlOPoaJjgtg0aono+3wWpn3JafaR2hMcoGhzdAZU2hDk7Tm4VmzydYWvl2aY8iZSn4lyjlS9FxGbmD3/r127hsuXLuFgeoAbbjiDI9s7GI3Hake2dOoxKmPP7/J01CJKdCJrufZQ6nB4DQmiWktRbNw5U6t46JcSCE8SV7fKN3Yg5ccQS5ZFE2sCBVDQkD9mABTB817zZ2SAoupS7QfU7ECe2KoQiBBdsxWyEZwlmUZDD8pSLQ4x4iN6CH3+XcpEVG1KIwESBTGUNNJkgJQFQM+QCE2FbomXQopIPUGiYDQa4/jJU9jb28ODDz6EkyeP4sSJY7kPDFjkB2dwRIH1IAY71DCnNXJgAcx7RpcSDqaHCjxIqwEHanD5ylWEFtje3gYxabIzUX+jPqXsRJvtx55QDE5Eadmngd082BvRJAAmxZEMnLpz3RH4HDsztbHQ8BzVhb08f4prsByLuKaPF5mKgwv7LFiseqCq+ra4j0QBhIOxVb+XfeXflNM90J7YePuuz1cUISTlZ/R9j42Njfx9sP8VwBKKIGFFHuuWKpV9GTcNOp1BK0QBEhw8wEwW6nSssqvDMhUePAonrx1U8q6UEAVMGigWIhMokgH5hWuMSYYY8MCDD+LXfu3XceHCBQOSFgrv6o1qH/g6dgdz3Pm+D2COHp///H+EIztHkLJ63+CMFO1IIIvS87WhiiJTcYItK5rllrIuOZpwuD+KQKpZvx0oa7/9fBZwkklv9exFMJRNOdp53TMpIaXOOhiwMZmo1lwAiqHSLdhZJTOBk51Lsmgs1yKl3hXDcB8baiNOP/k0jp49ikcevIy777oXFy5ewJzmCDuE0DZI8y7zuZQYXdfjYP8A2AImGxuIscFIxlZ3y4TdnMq16qKtUf1h1oR6SLIQghCSqDmaTCsoAJKodg2kWngv6CiBMEs9ptMp5rO5ZdZOYEmaaNWWr5vP8VjbExqgtKMG43GDQNF8MrxWhSdAqnJzZmnYNoVrLpZaOQS57Mwi4fQ/A9BQg6NHj2Fzcwv9fIqDg0PEpjGtihW4a1pF2hMrTMaciZsmwyJExOJxLchaEQLMi3soMQl7qGf5OEcgKIQFDFyBLPeA2yaBnG7dHVEdRBCRhfECXu6bIpkzbFBzTyrEDoCaIQBQcNOCE7Wc8MUYuEbZKjNzZkVqCiCX8oONxaSdnCSsCjMMSsyDH7KmKVNDAgrVPNk1qSK0LEERvc3B9vYEW1sjXL58BdPZDKdPncLGxqgiKDqvTWxAKOavEMnWxqUP5CytXZ8wm2k4u85DxKhp0O5s4+DgAPtX9zDZGoPInK+F9DBGZXApMRLV4MelGoBFbfN1zREliRWprEolFNBOViXYNnbti6BoAnVkmJvTinZCbdqcVMpygpVNkvDnSa6/RU3JM6RX+5k08JWkqvmBpeaCMFVmkcVrXW4XA1ieuE5EsLm5iXbUalg5KZCOjfkKpYTJZJJ9CgLM/yDTBkZmtQSUpGE6tmg0xwFFBiveL/a9b0OvorOUB0RznrYSGuTauHpdbR6ICuCraIODFK8/JMJa6yQ779q+cVMUa1mB/b19/O/ffCcuXriAvJCoKIz7bFSCH6BbJs06fOh9H8SJnWN47ud8tuacSvrOgUCYQatGyBEASByETDs4JgtucADN0H0RgCpFu56NITl2R10dYyDV7DHMyR2lDpmDNReaQgyIbUSzlLzStG7QRJ9EmuqibRq0bQtQyGHyJZoNGTxmcC/Q+lbwmlc2u4HyIAhi86bCWLvV4vQnncUNt5zF+fvP496/uAvnL51HSlr363D3EAfNPhqJ+LM/+VOc//ADCGcCnvNZz8XW9g641whFYQdnks9HPWd5b/tc+3WSclSTJhtM6FMPNnOnasLUoXc+79B3HaazKfquA7OaUVPqEYOa0ZTfJexeuwZAcPTIUSyr86/fntAARevDWHRFztehBKUgQnfYciKj4WXJnIeA4oCql+nkhTBMgbxKunObXYzQuPRRg6Zp0SfGaDzWTco9Utcj9Z06zAbPgUigJhZmbn4H6qFfHEL13UN/ANh3iTtVBg00QVL9XsACSPOXpPx5kSwDqUd9ILVZJtJD2TFnwAd4EquARMUPpXYa5CQ5J4dGLhkT9bzSqE0JDOkJiXSFVGHiPj/lkLuzoeTxs27wUCTdPJas+ncyr7qHauIAUSaNqL4UmnAqoGlbHD9+Cru7V3H//Q/i6LFtbG1vWfZgJXpdEHSpxywGjNoWbasRIhQkM+w+Wa6WPoETIaDVcGvfayBsb29j3s0xO5gihD7nQnCVc2ZiPaGnYah8MrCkkWuwwBxTs1ZgwsfvM5/LKvRqwovqma3M1RmDOMMr4fRhYd+RCvzwukXeLzEiC2iV16wat0+L+VSdt1Ulb0uSmWMYEFNzqQUr9VftEFASn+nql4rQgRAt619sND345uYmBJLBBCdGaANmPEMTIsZNm+lDziGU/asERE3+vUCCYipwhuTXFKBSzKP604UMM0M485eQ066LcnIICJyCgfYapASEyLAs6DqPnDL4rIEaTEgp5mAFkQQAPeN9f/wneOC++01g8b4tN1lBL1gEMu3xp3/yp7j1ybfiSTffpvPPAkihVQalEMjyn5ipLNpzJCjQJniOJAOWKPvSkxNGS+AmWePngQxOJwqwGWQ1NkDnZkzjySCLfaVQOVXDHaeV1rVtRIwj5CSXAnP6130pZNpmiJn4jC67A7yWmAdYC3Mq6PJMsGR0zc3CAJhUO0EMioQTTzqJI6d38JT9p4CIMJq0eGR3F/d98C4czGa48NBD2NvfBy4n7O1ew3iyhZZ7AEEjP20/M1IWHCDOW9RfJPUpRzH2KaHru5wJnJkxm80wnU6z5pHNX46l9oc0obfaQ10/R98rYO66Hl03hwhwdXcXffc41+L5m2qzw6nV0NBaMW07GqgEZaBJ8MkrhB1wwUayujoYuiWUzZs3FIpEushwVX0e0LYN5v0hWBJG7QgtjUGjEUQE877PmUn7vgdEq8+ORiM0jdYMcrv+MGMlLThlukNuVDspKp+NAUgp9noAOTJhUW9EQGZOvZeGVz5iACSZw14VFgw3d1VSOpAlYhZCiACbPV5QIgzIxGInqmRMuLYpax0YU6sbE3MmF03LkJO+VbRVAWDxSRK3vwLITlxUiCebI2ffM8ABGxsb6PoGF84/jBAv4+TJ4+Y0bPWIWt0T89ihbTXBl/rH6FynTmupNLHB5mRk0mNxqHRzSNtsYNKMsb+/h/nBIcYbG6BoWjTrcAwRJCGvmQMUl4qdOPi/UjgMefy5Yjc56C5mIzENGQp9NuJrOWxYNTamQMh7z89B/R6TDtQ/JzMUZCaZ7J5heKP6VEHsqQK4hoVzCCPnjBskVUet2yEUUBMtoy4AMEpSNs3W6SGOgjY2mMkhdna2MB61eV8pudBzrJqPSgNbnT3J45fBmPJacH0OBU66vSxDbVpQ/wZ33DfHfrvNmbVHgjjQKO8qZyX7BUiJ1sn94qLxDES4tnsNH/zgXxQnXJt818oEu1d9dtw0oeffo/ESgL2ru7jzz96PG8/dbDQoZqDlmVktLZzVdCLUdjIBTKCRSotrWiSn20EjyrTIpmnRbL9oigDV5gVLKpgdlokyLS+ap9LYmXI3w5Td9041JOoEXwIMtAREaXUqfRICuKxB4mRazlrL7PMheUtkc1yVqkDhLIZrOQnY2tjJUTmnxifRz+e4+/+9B3u7e5AEzPdn2Nu9huOnTqGXLkeKsgj6fo75fIbOgEjfqe/kfD43c72m1RAAqe+zAOT7ipnR9Ul5bPS1Uw14EvP/c77TJ631lWrNvpg5qoNrVvv+7whA8fwGivTm6LoeXk24tVBgjbTxcMlig6/NydRQyS2AAKcQnpjLpU+p7nH07tksmRmIGnbcphZwYmTfE4A2EFpjzKWmh6LVEsasWiEHWAPVZPbZsPf3jUpFYgCgAgsAVFtAy5FJdXNw1Sd3jrLPUTNELu9MnMcjItnRL9tSs0jMcO4nmUwZ0g4qvvi7c/QIKsDDkp1fSShnw3TiHkBISMhKcdJCcENfBlP357HC+mQEwbMrJv8iAb0AJNja3sbu7i4+9KF7cMO5M9jc2ICS/tYkdgaIQdCMkKOGEJqINkR1cB4FyKS1uREr6sdIkgBWwpQSY3sywvTwEPvTA7TNBIjBkjqqhMkotYpEBByiAqrUw/NyaMSPmVwEmZk0TUCApcEnq/ljvLFnASzFfuACZpz4smcflSqLLiw8kQhtBsT2TjMPekSdRtHpM7zKrEaDLZgB7Fx5aL2+0x3cjQlblspamzDYv3UWVjsr8/kcbduqyYZksNdiDJDEOHnsGDa3NlRi7C1BGQvE8ut4/SV9T4lGSjBtHRH63rQk7tRsUR0CoAnBvYl0xxIGWUGdiAcGJFZCEKt2SQEtW8SWJdmqVPfDCtEFFBGqcOhKeFA1PuHSw5fwyJWrEDYfBQM1SQSNZSM+5JLIq3aENqMjGtIw1Xs+dDeuPusKTh0/jcYdKsmjwAAxLWxtQvZznNPNk+6rxgBmTjoJcpYNJhdgyCrNK92LQSPMKAaIAcsA1ar5hmBIjjBrozptagVqVlNEE9G2DWJsM911p9bsz1gJgDV7JRhAEY/E8wKqBRxCCJGa7FPY9b2l+0e15l6uky1JnkpyXO07hian3Dq+g52dHexeeQQkgvFohH7e48JDFyEdMJ/PkFKP+XyOw8MDJGY0UVm9n3XNIB0HY+v6Pju5+/jZTFnSp7KHRFclueOxEQFxwZts7WQYLUtEamLk5XN8vfaEBijREO/QvMOF+We18iwj4qYZmVmoqiRLxQ6nuSFK1INLj5moOlip8g8omBGIRDRNCxGg6zojhso8vStkqZ5DaFRDY8S16zqtz9BrTg539oxNoxoDV9GHouqUaOg+JfixSdnR0jQVVIgQULIq5ggHu7YNzQCgJGhOkZRKYqo6PbmeNdXBSsEiFQgopjGjWZlBhhjLjFJhqiwM8YAcB33iyxDN5yNAepOQQWbOrR0FOUtsOl7kfmShHEUDIAIFDQJz3swLhaNHjmLcjvDIhUuYbm7g+InjaLaU6Qeoz0gkc5hFMBV88TGg+nhJLXmbNqFXwr+9s4nNw01c27+G2BBGk7ECFGbNqQLt+3Q+R993kKDj4pTAHLNKWfmTAxbW7Js+SKFqLgnBHBvNcyTvEY3sNidNB8XWmhizxojcidnWSAWoZJI3IZcnsPOjifs0O6pNMAADvSYd1pEWJa1YmbNae1KmlSHJ9hlJ9m+YTqcYNSM141V3ulZ03s3RjhozbRGaVudYoy8iQtAsr5qYrYr4E0EURhIXEJNp4DRSoTY7pBjRmh1ewDkSJ9cu8T45KBRdU6/snMj2s4PcPA0VYMhTkkVWo2M1oJfcJwB46KHLmB7Oc6JAw+wIBLRtq4n9GufwVgvHnGsTc9aOEYDDvX1cu3oVTzpzE8CmxQqLQMTPoK67mnSD+Q5axm0zO2p0mDF7AQDfH0Z7/PwaMwdhIJhEq/zr1/Q9q7nBCovOoSITwcLzQwQHoJMEcEBkBmVAVWhHRdjyHA+AnziYtJVgyQKQrq39HggcLdRbLKurhbR3qdMzkDwNQULXJ0znM3TzOXpO6GYdulmHFARxHCHzHg0aXH34EezuHVT+J2pd6jo1WTEZ4KwASCfJ+iGgKqQ9CWfw6zWXfKw+F1KNafH72iVC6e5C0dg6YuMjtCc0QBFTHzUNwYv+qe2wTJIj5byJuEfXJfS9SVOG3L1mlUbeuAqvIHmYBiAn9Mrx83atmEKTgvWlN4alhFwPaYMs6GXNhh7EpmnQhKjqU9NapNSjn/eYix7H0KiPi0qGauoggiXJMnQvKZdnh4Mcy+kB0YNp20vBQXYEjAYi1PadPBNzxUgWnYodbLn63JkEpNqoQVW7AaRhizbnSq1TWRvT0rhzZxHfdP6bJuRN7n48ygAtmyIKaoeNsA4jDERaOEyQJTSQJ3dSJ1sycJqNLARsbm1iPJ7g8PAAVy5dgnDC0WNHStExgtYlikAIgqZVxs7cIyWVkmN0SSXPnA6t1XlgFmw1GxhvNAZUE0Zti0ANJAQ0TQtOgnDAmE0ZnLTStDtbl/2kn/V9j45TJqqkgwO4A6NorCJcqrYZy8ASA80hoJmAR22DzUmDdhRz9JcPiS2qoO8TOtacE0kSktW9oiCIZm5TG7ZpsfLaD3MmeKSXPX0wb4PzI3oynSE7/un7HuPxCF0/MydLi2oSxsHhAYQ14qnvuurZAgqqESEhi+ix0hEO8lMCC2mCQ5PikQTcMfp5h96Ya4x6loMEIKjqHyygGHMIrmuOVAsUFdj1JcKBQFkQyEIAAhJMe2ckSIE3gVjXgUTXS3UGZJpgm+NekKYzUGIEiyBys2fwrKRECJMNxKZB1/eQffUfINHznf3YmNB1goPZIdpRBPWMFo2GmoqaZjS1fGFWEHWIDaSauBj9GkBIQ1td05B98ECWB0bPbs4flFKmw36mmRRya4VgzrmE5t0Mlx6+hMuXL2Nvbw8pdYjjFttHdnD2xnM4cew4tje30MQGs8OpBlZGLQTakNF2qNYH1brV5j1PeelFNgUJiGRmlA7zvkfPCdN+is4cTOezGfq+0+/nnWosWCNnUtIyKFev7YKZMRptZK1lGDVoJiPMWJ395/O5muY8rQAInfmUIAsuviNq05L1uwIoGXBU2u26ZY20AQ9PfVFr6vOcuOnL8yFVvz+W9oQGKLPpHJNJb97C6lDGAghTKQRlycggJYqjzpTqdsa5qc1Vpe0VTTVTo0bh0AJRUSek2sTgNlL9uzjaOgsgykFfumGELVmO01eP2gDaNqJp1PSSIJjP55ju7+kVROr/YGYsJ9bu3OQbQL9TZxJXr4lJQCDVgpD5vbiYqUnSiiOa84ic8M2ARNYSVLVIFou2gZDnOztOmuaJLELF1YhF+jOluB8Q8+BvYlOYZWPVTKsaG/4u73Ox8w+6Y0qf6nPSwnpsqliQA1G39xPaNmI8PgYiwcHePq70Pc6duwGhASiK/mwIEgR33/9hXL38CD7lUz5ZcwjAmH+gwZx6qC2L2tmFBBRaNG1EmM6wt7eHdtRisrFtDsSC0bhRMwcXE2OSBDGCT9SARWsVzed9DuEFoaidbXl8/RK7k6KvZ5mnGH2ONdKhaQihJYwmxUav5pGkTDMaU+cuV5lGiGASoPckf2peShb5pf5ORYCo1cLJge6Ks79otvS/I9SJM8aINlBewyJ6E3avXsVoPEaf+ry/qNH+ktoSVAoNAHHI9MVDjsWYLJmWr+8Tencu7DVBFomAI6FHQrQcuiwAm8DkPcqEGwBiQEhs2quAKGRhuUGFAFYNS46uo0L3HJir360BwVQ0LF4AUYTBHSPjUd+fUPAx5x7jzQm2jm2rALi/D54mIAmia3SsvwEAWVFUNbcHNGzRW1bTDKadduALy58EA8Fertp9FOo94BlHY9Soq958JFLyKs9K3/JeZFYzRd9jZj4WRITD6SHe+8d/jPd/4APY39uz5zI4AE3b4tjJY7jt1ltx8003Y9yMsX9woLlNIuP0qZM4c/K0aiMt3TORZYOuZq/re3T9DPN+hjTX98/mM0z7OaaHU+zt7gOs/CQZKIcnMhOjN/mccvbj6Pse86kmCJ3ud8Z/BI2QgkdSB+Fr1/ZB7ayAfMBMxQKwAn7fV4U+2iwaH/C/s9AixW/Jr8/5j2gIIuvqyItAxc9neeffEQ3KdHYIXBXEGDDZmGA0GmUbuMQi4WV16oCo6aF1h6iUEhpuB4gvpV7DRecdgjHIXMfG2HgMjaFMVeGSJwQLqrKMDkyiJvLJz2bz8DZ06/4Z2k3BvOvhZhUm1T+M4ggCJYjTg0Pspf0MUNwfx+8HihZDiyBGs5UqoQxBCZ7uSzEp2+ycpukIISJmDQtA1AHSq1mluAwUjRLK+5XJWWSF+fIAReJQE0Aa5Nnw5FLlGaTq21BAJQVCE41Berp8qn1PlDPW/cnPq9SOeZ6cMTtylBoEwQiSztd4MsaJ48exv7eHS5cv4/SNxxFGAfMwB2KDCxcfxjve+Vs4deIE/t7TnoY4ahQEWgiuAz8RV1CLmf4I875HZw5mnABqx7hydRdx7xBb2ztavFJYIwsoZifqQbbi0Km5kgiN2LMtqqUJntPD58ocH8lLB4Ti/xTcDIk85zEIQiSIJM12KQRKmsdlPu/QdRpd0veMlDqzUQt695NJnCtRqxnSVqqSrMpiVRo4BDQwrZntAfastlAA4k6tIjqWbjoFes4ayzpD7rybY39/HzcdP4d53yGaGUySqa5tT0gqgBUAvEBj7hsM6FrWUWFLNkgKkLhnMEWEoGe454Q+dUhJU30rTdDaTmzAn0WA1OtZJgJCzOGi5P5BFTglquqbuHBhGlvVYKjPgUfKAar1EyOAnM+HnwfkLKR0oMm02rkgyVCHpWOHu0noHhfzY0kdEhiRzOcBlD3QCIRkUec5I3WveyP1vTleWsK/VPxECgMsalUy9ZFnkYaUPD2BAmJoQBDc/+H78a4/+gPcfffdOQu4rzEI6GdTPLj3IM7f9yC2trZw+tRpbG9vY7IxwWRLafbO9jbcpNH3hHnXaRbig33VgMw7TGczC7FNQF+yXFMI6FPCfDpF27YYj0dwz//EbOe+A7OCwORaURZLC8GasTaxVlq2/dcB8OK2zAwkzto+O0JGo81cq8zJuEyJUhPTUPvxc/rsWnxAAW+h9fYb+24Q9FJS19cal1XaF9d6Ptb2hAYoR48exWSyoerklDA9nOb5c+ChkReteZFHBBGt5CgBRM6MYxUxUyr7ijRZZebFBOfzrlJFA43lOAkU0LaaY0ElGXOMtegcVWWajXvem/ZdN0afJKsvMyjJJg9RRl6lJSYKaJsRRFSa6m2Tq3MhALizYklZ3lsmP0Iwh0m1wTaggeajTginxCxmAqF5QAiSgBBdAiomFJj2J/vAWPhnNqkAORzPc0IUZ+AChLyxsKrIUTNK7U+uvoyC0G1KQaHJ5oHa1r/Kacsd94IjEUElaRStgtrK1fkV44g/v/ND+P33XcaxE0exsT0BQsR8NseZG2/GzvZR3Hf+Co7tbKsJKIasgRuENIqGIkOU6HVz90NSAMehweFsit3DQ4zHE0zasdrqo5J92F5xosba+ezgpmvKIERNiW1RFu5oSRQsK66a0PTZjc0nQ6AAUnpoxeRAmM2BOIMVJAT6uZ8Jldi6ToG9h3tmO7UBkjp3j5+rIjgQhjRNfcE07wtlySs2TV5PiEULmYxABHMgTjp2MyuwLe+8m+Hg4MCi5gDPPjrru6zZiCGaQwjgor6nNBeRqpwAmR9Qyv5jbGYThKD+LxzBYMznc3TdLCdr1LBwzTZ6OJ9j79q+nmGemdQrkGhSMgij0QR/78lPwYgacK+mjcUw5DJnpZgnBUvbbtFJbqLWyJmFO0UgSTDbmwKHahqTZMzPTQF2rcN/DzlXB0sB9WTuTsq0mkYd/7UPClI8hULfJyv4qmCkF0ZvmuTe8tR41JprAuukg6omsL7n3EvqZBso4sqlK3jX//eHuOe+u3VtLYMwAS5PWiI5PUcHe1M81F1Ac1NU37IGuHrlKt63/+foug593+Pg8BB9YktzUISgUHxFTXPFOZHmbK5Jy2bTDvt7ByqqiEVnVYUnkR3dC/BUesvmOG20MBggDsFM1JLpL6Fo0zw6jF1Lb0BEI6NQaS59RQ2cLwi4gayIpguZDhDhZlbJFoqsWgMKwBHJ46k/fyztCQ1QPFonBI1V1wXWTd1zQj/vMJ/OkCA5yc5oNMJo1NqGF4v/5jzBruHQydTNl2trwBma/u6RCn03R+p7TI1p9n0PSYw2RIybYECBEJsAIkGfAISokrX98xTiSOokWxeqA3TTus2Tq8OqS+6Hs0T+dF1vwEZMUxTNS72EkUZmSKu2VhiYQFIrN4J7YjhAY5Cwqs1towrUh6PUQVLGyW4w9/usypurGWFEqKYwdiTKb9VaEAgpJNUcCOv+JwYFdUIMRMWpywlHZe7RNeR8UGqzlCerK9d6v9x/xcZKgmnfYX93jt/7/d/He/7kfZj3SnjGzRjjplXXWVZmcMstt+DJf+8paFrNdTPeHOPMmTPY3t5CiPpeEc1Lk0y7wJ2GO3NfiAyoQZc6XLt8FaPQYGNjAxSLZtAFEjYE4IDAtXUKshLAKc9vBigA3D8lMEAdKZgx7YRnJ/ZINX8mTCLvWdD1nWlBNANy36WsjUqWuMvPU11ywptLbyRUJVc2ya4iusnzO1A0Aqj91hTd5idi2XxT6hAjmW3fTAKiAPdwdoitozumF1QNT5eU8TArndgYmQ8HsWnUzCQcXLMiBg5Tdm7v5l2R4GMEtUAyvwMA6A3A9H2Pq1euYnY4zbWwDmdzPHzxEqaHhxDTQACCeeoyfZAAHN3cxtkbziD1CU2IQLMoofrelczkiAhN0HQECAEStJ5PklpnW5rXqwGrNpWIEMmxmjlSA5k+Kk3qMe2nICK0onGKwXzomqaYy3XJgtLcPimYzWukdFiM1vmeyaZM17JICUlWZ3tdyRCi5jYRAYmgmyW8+/++Bx++78PgRFWQQr3vtS6U6qfVF2w2m+GRq7s4cvQI2naC3b1DiBzofuaE/ekhhAVN2w5yn8BARAZeohrT5EU/qTjve90cZ/hGqXLeIfEaOLanNdeW0ko/uSIONG29WSDSq1Le8vj4USMzYUt+DyzaCbkfhKItdI13oRKAMHINMQEjUrTneCSP8ShogcnQxAIYuezFYHvwsbYnPEAJwcOBCRQBIgUhYAY29AD1STUMs+kc0+nUHGlbbGxMVGK0WFkniFl7YYu9EvGRe/eb93tsEJsGTWwwF01Uk7oOswNgHqAHddRCSBN5UVBfi2Jz1GRuZH4CkiQnpAKKJmLoUOoOboxhLgXdWtEOcNf16OYdBGXsTdOoo1oS9dwPwRiLaC2OpCXIvfwTMwN9V/x3fMPFkH1t3FwScqIR/RmiJZTKoY8GbzLw034PQUSxeyZOQK/3NE2jTrymVWxDi9F4YoRcGWU+dBYKmokpOxNnk6oFxFSkUHKNg4vk2rdESnzmneYMuHj+Ycwu7yMIoUmi9S5GhO0jR3Dm7GkcP30C524+hyNHthGaiHk3xyP7e3jve/8Mp06dwunTJ3OKDd8DAu0LswzrmIAQpMFGu4WDwwMcHD6Cja3NXI1UCUmZu0X96aqIvkHqewIInJ3MiTwVvACIqmUgKCB0sGE1iHIeCgCwRFSBKBfc8+RZkrU2KZ+xvBFQrnepzz8XUY2jazmEe1BgNGiqrMUAIWZ/LmVmPYgi9vb2DUBo7AYLY3dvD5ubm7h69SqaoAUwp/OZAlwijEYtxs1O9jthZqS+g0Vdo7GClJ7EygvBhUDqFJ21V+oD5/l8UkqYHc7w8IWLGI/GOH36Bq0kTITjApw6cQrTg0NMDw5xcLCPS5cvIR12GAWNUuRGsNFMsjZB/eWUMdemXS9cWuiAAKGYdvSnanpK8kOX2iup2EUfMc2HaVnJzqtk1gXMZ3McHk4RYkBKmv5hRB60oP0T0XPcdawRKWYGmc/nlpMjZS2oCyZZE2h+D13XqcN92xZtpwHMw/k++qhAIbDg4fsv4QMf+AD6vjPnUee/piXzsPigWchn/RzMPTgxLl16GE0MOHHjWfPxEIDV4bvv+wpkF0FHpAfB88WoJkLXHXauYHNrGpe8Zq4JVCFIYHyHTOvBJWFnDtoggvSaQt5zYOl0uAYFcKCa/fhINYC9gxH/Hkr2PBcYJ0YSzdEl9sbt7R2MmxZXrlzRdYoEkCCadjJCwX+ydA2j0GqGZANQnlXazecfRRDPExuglCyyQF4MC3/UejIWrRADJpMJjhwh9KJJY7zAn/AhPI1y27bZ1uuEFSjSvDeWVDYWs2oj7H09dAPHJmI8maAdNXlBuFf18zz12VQkIug7dbJzFTVZjoFiGqFMLMUk4OzICc4FzYYOc8iROJEawG2/zJhNZ5hhBuaEeTfHxuYGKATM5nO0TYOdrS2M29bUj1B1tUjJP+CHuykmlgzuZJjZMs+dXRNDOdRMYoK9gCSYVqFS4froXaI3hmgGGQiAOSHnj3FzVuljgDMmkBixKdoomI3XCxKSARRtRTrtpahCm6bFs5/1mThz7Czm+1MIC8btGLfeehs2tjbRS4+to1toJy1m3QyhIYzbMc5sTTAeNbjv/vtxZfcqbjhzBqPJCCyMed8hUERLUTNnkhMwY+6mHRqNNzCbzbB37UCdpMfjLMGKTiO8KJtrvjQXTplznU8rulYRMA3P1XsCGVZDqlS7Jr2JGPFUBqFSoqtyAbEQ5KyelsoJlwph1F0d1Jk2mLTs0qCUdSgJF40AiyChRyAxJ2R7rtnb5908F7Ocd/Ocgts1ft3hHFMKuHz5ChoK6Fj9zNQHp0GkRh1dxfR7STCdTtGzMvBR2yLECLbq5mpGjgik6Qvm86Dq/E7Pd9M2IAH2dvfw8P+fvD+Lte3L0vrA35hzrrV2d/rb/7toMiIzIjKTJIFKuoRsSHBSlMqyJR78ghAPSDwhQEiIF5AsLGPJtoTsB0uW0jKysVQS5aKwhJPCkEUljTOSSDKazIz2397+nn7vvdaaTT2MMdfeNyKBSAlXKcQO3bj/c+45u1lrzjHH+Mb3feP5Cw5WB5ycHIN4a4MZytkI86Ml85MVd90D3ti+xfXlpTrvhEBzuODw6FCvqRix0uD7HY2rvLY/dyga1hbQK9+2LSKW0E9V+M6XyDtHTJEaAHO2++7cZC5WW6LihGGI9H2POCEWaEtjVX+Ziq/azhusjVn5JeoyqihK5aDV+FarchGn+yi0uiYylJxIovfp/PyC9z/4kOW9Q+ZNS5OEb3zt6/T9FgwtwkERwRdH17bMZ3NCCMSYuL29IseIFFVGlZh59fKc4hyz+dzaOaoALVVfLuCk2SEy1hqtQ1312itXqvoLFZMWT8WIfd6JszclPPr7uaJgribieyKMei9KxuGV84She1lbh8WyMtcoBWGwGWrF3p/YxtLBpvJa4RKCcnjEe45XB8zbjs3tmjhGiiG4dWjqzvoiW0EIoxWBiTidlcKON/TdPr6nE5SubZV0ZB9Yq0A049+bM1KmO6zBeFaHPcE0iTFZJZTiwFD7nmIckxBec02dZt1Yxp9SAg8+pV3R4jXjVRdIU9AIII7Gt7ig0rCUo848SWVCFWLakpDJw2FyaDSYLteFtceargnVvm9FRYGmTHlqxQhSYEyZzc2aVy9ecn19yXsffkCMiQdnD/jsZ76fBw/u47wjmmlTRdaVmOh30zCnlsJOjVMhwlrQ/2bM7qocqYdPTlmlwDAlYDWATknQdB0yBUckMzgzXTLlgPd1/otuGkXaAvtvobLOY4rUKayVlLnPmanvVQ85DeInp6eslgeMg0r4QtOyWKwA2GxuOb+5YrzU9s+ds1O8U6+Spmt5++23ePLkCd/42tfxs4aLy0sur6+Zd3M+/X2f5PjwiKbaZ9crYYkG1Aq5JaXIzfXNtD61975zia3XvAbKHSdhV83pntHErOaD+nN1DSWUq/V6suiK9s93zq67RHriC+wlIjWJ2E0h3lmHY0Fa16cRVjXTYfK5wFnBISbBBF8qK8V4IEVnzGy3WzabDaXUeSl2AEuZZkYFF4hDZCzaWtXrpp9zHEe2m4GmU+VeioWxTqct1VG5HizVD4jJryg0DR99+CH/8stfpFA4Pj0hGbnxwd37LOYLiwm2Bie0wnhUImSfaecdd5cPlC8WPHit9n0BCbV1aiTKPeSxlD1Eebrmu0Nz/z7Wx25vWgsC2dvb9Wde2xC6Oqd7qKMdlLcaSeJILhKTGDcuTQhpLTJqa0xbPVFnY03vYufBU/CvY4JFTdum91YKJaWJM+RwbLcbrq4uUeXUzuelFGhnLQcHS4LzDMPA9dUlMSrChpicWVDZ73pLGxpco345XgLZ5dffjyX6lN11rMmYcj9kctPGOE4kmQbsicjkYi7GOnZm27CbC7WL8fo0GXKNr4U4jIwxKzHQPJGsWUbbtRwcn9Imz9PrJ0guiBd8U60CjNtlHLkM4Jy2BbMWv2NOjP0W6QK+MbK6/a/kOkdK9+/O6t/QUiu2FO2zBOw3MVz8Vz2+pxOUpg00TUCy9iGVNOQmiWjtX5YiRsiXaVHsCEfmy1F7ijnrTIIx0o89w3ZLBc9wjtDsJJZVIZNtk3jvprkmofbxsjqiKmlqD9ajmMupJzfZSJSaYY6DEuz6Pk2Ev2o0VHL1X9kFf2r6UIpBmfW02QtCYNdJH94JbdNy7+5dUopcvJpx/vwlHz79kG88uyaue168+Yh7j+6zOljSNGEawuZESW/ekA1qC8AqagEju7FngKdQfE1kKheGydNEA4Pa5FuS41S2OllcT/cOO+CKIRADqQRC8TRiPhGAMA0t2aE3drl28ddNrYEKQ+jL7wKRolNVsmrXr3X4dkbNybbjVg8N75gt5qTbzOXlK7zzrFar1yrZBw8e8v777/HPf/Gf8vjxE05PTslj4XS+4qBbmFeJrRVbe6+jeIL3mnCpHLllPq8eCbv3WCHtHXKizptiLcG6FneqpqzkXBSBdKUGE5m8LOymTv4cYjC+XTJKqW0Z+0Z9YScma9cEyVvRoG1Lm3cjChdTETjxk0tsRcSkaBLjvOA9e+9XfyalhPOeNO4OatA2Sxw3k2vphOiZp8nEoYmJm+2WlRNKcQyDrQM7SIYhTsTEyfq7MJG3QwlcvLrkW19/l27e8bVvfIM3H7zJD//wb2MxW1iLDPX8KHWd1mq6TMhIygM56Iwo5zzB6x9nXHJF1gopRiAy5MH2hqeUaK2Vvcm81MTwO6WgtaWjHkVepyBbUqNGjLZ+cp4UHfu8rQnZLOBEk/5+gNqSyLm2eQoxjmy3PYPx9rRlstfywBCSYjuwHsopT2qd3XuGHNVFfLvdkq+FPI6sz69Yr68tMc9UclPw0DTB2naR8WaNH0dzdbX2ir1AzoVYtGDKORP7ZGcANsG4UE3HdwnQDoHYt3ufbP73UA2wuT72eUlqGSDOGdq9U2Pl2n6TvddAOSBBPOOwZWPjMnzb4YpxWciE0NJ0DeSAXy3xSeXVvvU03muRYfVPQc+FCvmrlVJi02/JWR2UM9h+sQKz3hJX81Uj3yfb66/xpJyFj39HSLJtq7ItSQYjO493dkQWC17FyKaWzeUpGFsVXvY4FugBqwqXlvmsI1MN04wMt90yWv9WLHCMSce6eyc0LiCivXtxe9CdJSXTYe2UGS9FOSG51OAMbQj044D2/BtSLjSpWOI0alBPkXFiflVXxgoR1gX0+nz414KSQeIVSbp77y4/9eAnub6+IadC13b0/YC3BCKOmThG47BA2zUkcXrg4c2zQmE8PVSrsHbCVKZAqdVwfSOYFUL1RdnBzlrN7fnLVDSFMknINTnM5KLXJeZUtdOvPWovdEJh2FUm02TSicdCBcim/56OZ0ugFO2q1RITclAMNuq6lvv37nNtJkur1cGUZIgI9+8/4Pf93t/H5//ZL/Hut77FanHIsptTciFKwWdtZ1RJeIWjpvdfdKSDOEeMI7e3maZpzOVTvuOz13Ss2H1SAnVmHPOkeKsV7mvXyjyBqhlTXc4uF0qyNVTvg+bIuCzTIDzskNGJ3Tu4u3KFPIaUFF0Ibnc0GozNa4osMRcb9WixbS0OV3RNNKGhO14wbEfqHBlFGNTptSuKQmWD1X3jgKCxIxgUX1SVInhKUSsB7wrZVYWISrBL0feLZ7q33jecHJ/Sho62mfMj3/8ZPvn2x7Q6jYm4r8+327I/GDRY0gfa/klZKEXRGW9ye1+0HZtL1Gm55mRbCnivxY4aOrbTQakJdlTeQuWRGcooUtfWrhBoQmAiqUqVythbr/fj2/ZYTolI0n0RM2mMDH3UGOI07qW8EyHoWlT5lVbjelJOqIEuv92KKEz/VtVZAKFtkKBxlFJ0vlWJRJIe/mKptHPm+hsJMdMUENeQyjgN2ixVmFNgu+0Zh6jP64rGQyn4ttHCKu9QjTrNGWt1VM8cqZ/TCq3tZqDWQtlk/prwW+Pa2efxtUWuhUKKaromRh2gCCnpvUsxknLCB89sMd8hPCKIF65udGYPjVCCJTqNM8O9mpbpepBiCSI19pksviiqu0NBd6Wx3nBDMm1mWzGEdadm0r2ryOG/IwiKSntbcBGKohZNGwiNV+14rkzw2jMvJOoGEYplxzk7cqz6c8GXyoouOp7ee8I8MLMqNdZhS1FNsTbrWzabDYhwenLC4eGhJjDe4zy66cxBUj0cwJo3GuxRWRsTPJ5pfKA0hVLUWbJW0dWzhSbQsWtVaMtPIejR7LLbpp34AM4y8B1pajc3pUKFoW2592CJbxxDr0ZHbZip+RNKzNPqOBCzjnX3RYmVOedp4KE+ZyXp1Zul2bcSaH/zBapJppIm942DxLEXUKGIM8fQopS3lPHF5stEmQISe5toGkbmvvMAr7JufXILHrkmsUyJSP2tYvLQ/Qpn+gw1lmbt9Z+enrJer7m6umI+nzFfzAAdEHnv/j3O7pzxja9/nWBS2iB6YO/3aXfukHvPXwqSC/OusTWhZE6S04PW2RA+2UdI9Dkr0a8SEevhWL+uRGppW+3LZ6HZ8xIBa2EK5g4rVj7VbHP/6hqh246ZHSJSDzlbK5aA6f+b74MlgjXRleIIopBVysUIjm7yaynAcr6gaVrWbktKZSLYUjI31zfMZwslxqdkiKAmPE3QmSwiEK1giakgrtF1Z8MvvSinrN4HXyv8ksmis15ccORx5PY6cni4opt1qkDJUVEkMYi/oli2Tqd16cQM2thbc1idk23E/ZohamIyxQBbmykJIj27WWH13u+34OoT75KryhUD9n7PivmSp/Ve44dYkVeTvVIKOUWSU4QoFpBhRJzyxFRxqRX2ru242zuV9K0dub0mp1UI38FPE+1q+ODAwdXVFbPQ6FwxdiiMMwQip6RzaUphKJnshdw68lBRWysELIdMdm0riumdQ4r6lZSYlAhqn0EJ+KZUM1SvhjoJgeXhEbMw5+ntU8hup85xiqR77177/LULUIqiLimO9JsNrtHEsxLQU4okoJ3P8F1DaTTR0+WlCU8cNdnWlleE4pFY1DW4xpW9AkgoZtWfJl+ZxgmbXv1aaosS1HvGO4d3QhpUau67buKGSvFUry1s/39bgPjXPr6nE5TtZsNyMcN7hTbbrmG5mBOaQMqRHNNrVUqMo8l5zfhHhJL1T3JBOSgp4UqZsrySrSIoFQ0otK6jadQ4K+bM0fEB682G29tbgnekMbJJkaF3dF1L09Qb5pAQ1Awpmw/BXsemtjikOHyBEGqgjBTKZAxVEQQNRgZlUwNlIURNUEJQlUBKabepiyJ49XeradD+VFitXByNeBqD6JwIISg6FZoWsbk11ZJ5GAbLQKwdYQG2Tpid+BCqEbYjhykCOzuY7dO9Vs3VH5xg2L3OwQTMZrAxbnsVquy9tlCNrabntcO7ygX3DwkxXwXs4Hs9QdkdyKXknSV7PWSL2OEgiDSsVisb3LUhppGDg0NNDnGM48AnPv4JQlLEqPHaLhG9mYzfVm18x+GCBpcmeIKZNqUxUlzGN9+5vfflm7tBkGVKfOu1mqT2bUNJUWfQmCx2SlIctg5q0lEmjwaslYB5T+S6fl+7p7vrKsaVSDmZsk1bmvtgsIgDC4aSE6Qd0uOcYxxH5aSJ0LWBcah+IdmInjCbzaEUsjj2+VpqBaCITXDTKpwSmKoIq+hGVX45g3GceMQXGhx53PLGowe4LiCSzGujEvizyn1hj4et1SV1bdeAYIdySlUtVfSg6rf0/ZYYtTqv6gnE4PMilDIQY7ZZZXrtKlJWX1OX6g6JmNDdmnRllW87hPoSyk/Z7QX9vToDTBU06hDmrT1oawBVV6WEfR4jzloxWAehViWY4io7n5IKsu3cunfxI2dN2npJzJqW1iT/ToQkTCZ7mjyoSKLPyb6fJiM6JzJJcrF9FcfRshUtGlarOfNuxvnLc5UPOze55jprA2YnhMmOAaUFBE/xQpjPIBu51fhfE0JrMVIN/bSlpYWuUgGGYcClxGq5xDetEpTHgdAEQtsY/cArpcCuUS6ZEjPB7neKOv+nNA2tNDrEdIykrEiRJ+h9LupePubEnbM7LJqOzfUTYp/JooNKtSgoELTlDLpeGuetl1yLwX3ezutJ6b/p8T2doByuVszaFop6fsS4pR8zMenmmCzSUQvs0DTkHBjjyBhHtqOmyl48LkATHClViK4YNLoL3JroZOuRekoWggum2GlZzOd0XacyZ9BAmCND37OO0YKrxzlzuDSYWn8WtXw0cpECPg6adspqCZVnkqHaVvud9bNYS6dtymuVajUH03aB8XRKntCE6uOQs0LKY1/IY9LBh5Xv4Rytb6jtpKltIMrb6ZoWEd3cKVuQtM82jMPk+KhGYGZjbvJkbyx5J8HgfqDWjxakY6mkYKbqQezfnBPIhWSlaLIDRER2Bkqos6nhyvpvNjAywJQ87Ut8NRnK01spKAJUmfV6zcN0nujBx97a0W3pnWfmZ7Rtw+16zfn5OcvVkqZpGHPk8PSQuB7BJnG3osdjcgU/VVK71gelmHRbTa5wlaNhLQDv1XOjqkyaRsmXFZC1ykhiRiwZGDDZtVS+QAJ69b4JgdBEGudwJkdEpku5q4TFKq+iRoV7uIkmKa/BAd+ZbNVWRzVEs/zdqnZbw1kJl95aTjntJh8PQ89iPtNWZKOKKG3xOPq+Zz5rWK3mas2f1GsI6vrGpJG6j+pAPyc2XoDKISp7a1kbVNMBhRJwhcLJnWMjHhoi4MAXcAS9F3bdvA0TdJVEOpVBO+l93/c6z0jUW2U0U7mJFD3J+pnO7TzsFDJt20yJyiQkoLbC82uIZioFb+23nVRZp/5SDM0qmczO2TZ4p74YzukE58nErKI1ypWJe/d7Hw2ZOrgWC6Y9am0SSiVasqtO6vuNmTa0rGYrZj5ysjrk5fWGPEb19nFQW/7A1CZ3k4y8lj3G8So1EdX3k1OC0kzF1ny+YLVYsr7ZTGh8LgUJ2paBgqv8C9kltrebLeSthrTG9qEJJ3LZ2ckXoDiPBPV50d0jSPLMZnN9e94bb07tAfzCK3I+RHK8nawrCoXgA8dHR3QEzl+8pE+DJv5dYdHMJ7sDSsJLnUKur9p4ZYvM53PmzZzgGyKJIg5X2eEWq51r1N/EEvCUCzmPu6LOrnFd79/t43s6QVkdLDg5PsaLgsBOFJYaU1LpW8xsciZJxHm18dZdqnbgUtsQdggr4c8UN9ipZhl6tqm+qRhkiF50lVqpciSnovNTZjNbnNoj1N9N9L0Oh1LDG509Ifb7IXjLpO1/HgK6EMQ7QqOQoPZRzdEyj7apMmkK1BpAtNrdoR+ITZUUMYOjShYsjDFwcT6wmM9ZrVb0SSdmhhCqCQa5wJCTLsyiCVGFefVRr5/CuVP2XArt3oTRVLRnipGGE0IsES8aAIrb9abdNIHXNr7b9/uQqdJJSTX52VChrOQII3pW+FrzPw2advikahxklZn7dkLqt+8kURMlkQmqr+smlwqx27WYXqtMG9J5x2q1ZEyJ6+trQhMoKfPs2VMaCbukSTQJC8AomVzqCPp63AviFF2IQJ0bM8GoIjRmRqiJSsQFVcEEO3yqQqqUArlYDa9y42h+L8vlUmWJLuPFTZPDa19ZpzXoWkg2Cr5Y0rqX15k0dRekJv6A7IUvq6R3ypb6eWQK3vrZCt/RIrQqGYqqZFrlXQzDBh8aKMKrFz1HByvmy5nyqWJmHNUFtnJdVIq+W38ibu911XOpCEij3Ks2BDuQVZbpivryBPE6AiErD6KEajg2bQNd/2UnCU7Wv9ePnu3eVIXR3jiAYq7BJWsinpU3YH3YHaHV4Po+aewax8h229P4MMnCp4ymVvAVxaFYkr8DBWsc0Q6em3gUoNLdYOTa1/eMJfrfZcUs09915dS1ll9bK5UM7INntuoI3vMBmT6lSZEp2eGK17Z9TYgxXmKq6jB7Tu1FqDPvhESp3L9pWppWExQnQl8Sw/qGPFP5eMiecdD94tCZSYqQGUpiLbGU1MkWTIUj1f5AzBOLCU2SivzWScNF1/dquVLRQYxs+h7vHLOuZd7NlTsY1agNZNoiToTDw0OWdGzO1RcoiiZ8ofG4rATeJGaq5wMQEHFEXxDbH96I8dP6tSSuokTOOabRCU6QrGdjRQnrtdai9Ds5gv+qx/d0gqKmNAmb76VSPN/gSqBpW5PgFVVYFKvuixoG6XwErTAQSzS8DkXztQrYUxAU6327YnMNCgSpc3cMiQhxQi0qmXGSfDmhmzW0nbLIKZhFvS7uOI4aeLIGLe+cEd0cwTXTgVklr5r9B+rgQj0ky5S8OO+mgYm1uKK2OizpqDOEnPOK/sw62q5l3BZ8KCwWC4UgFb+xwwNri+RJeZCSJoaOnUROB9hhs4uYgn7joGnbqerdnwYKGDhpra06z6Leg2JNKHGqqKsJjD28iB3uylFJudg4eal5qF6NCXpWq+mYTMtfCXlTBbV/jipUmWVfzlnn22jVVwGaydtA9j6bWPUWE1e3Nzx99hTnHFc31zx44yHbm40aJEkxhYsmoy4rgS9Z0FHWvSPlURNFS4ymw8/edG0peG/3zqTsFYGrCE+2D1jZHpth4PLlOa0PLGczktncD3GkLd2kgKkJ/ARPW69SYOcvY6ebODHUrxjKZoT0b2v1VHv+utYnubJz9gHF2q9GKHUO8epzFCvUHTxNowlxaK11WACXWR0uVOViSjfntfKkMLm3TkmbQdGZHRkZ0cGSvvHKWfHqZNx1gcabGi1CyqNJsIVN7Hl6+RzvGxRA31NOOCW+l7w37XWag1eT76z3bVqMth/zTtVRcpmI5rp3DO2xvaKeI/qNbd4yDMNESN07caaXzWgiVhMZZ38Ke79S6p4QRaBxtndfv6e/aZJvCkukHqQ71BKLHZXzMqm+jPwdQiA06n/VNA3LdsY8NBw0HX1KtK360VTkZxf87LnZXTMfdvciVSP/2to1ZLbyW3TbiU1HVuWRZE3ugxPGLNpaHdSCwXlVE0pUFMN7r747Y6Q3l8kCk/cKlAkJ9z5MHLJaDDkXKKIWiTFGxu1Iu5wjCNttb0MqDS2yYjGjo1CU52jq1iymuFF/FFJBkiKFOtG+NXGHFvze7yTF9X/1WmYUFa3phitmQorygnb8vLKrM+E7bBz+dY/v6QRFjdr0sELQnqdgB2pB53QUWml0kzpo/WKywndisKklBjkmxjKSxqh8gNBMk3NzrVAF6hyUif8wHbK7vn6d2jtJqgrTQDJlzpfJ0XUKNKUQh0S/HRjjSIwbU7U4mjbQta3a5ZusumSZMv6Sd660OaskrsKY+4/XK0Knmy5mutmMWdfhRIjbns3NmqP5in0hUPKCCqJ2THWRoMqTmHT6asVVMVa3RTMloo40dcJpUdSjJlGVzKnybLeniql/zCXUuDtl8hnQz+eskhVhUr5IkCkYpTGp+iKovp8k032sO6dW+VKzk73rtasNi7aBciaP1bvBfqZef/PlqAGxEpNT0eFg7733Hv/4H/9j3nn7bYZxAO8YSmRrhLdUErebW2IuLOeNcayYksHaRsnZyH1lJyXev9vK6yk7BKIUBjPJqu+3AATlWVy8esWz5y84OT7i5OSYWHRWCkOmBGxkhK7ZyQa/aCKV9nwOpFROEFSzvMpRKabYqCMG/lVOzWX/ULFgiCUskguiFlAE0eU2pkTTtGxMeeadWGKk3I1CYTafkWKmKW5C3Yrt02I6yWoWmGxtBalzuZTf4b2z5MRBSdzcXvLhy0vuPbrPncURm37Lerjl8ePHJBFoPL/yhV/h/t37vPXwHQ4Xqwm4wDvEqVKoIkBTsLAEZZK/W4SvppK5qGW9WHKS6yFfauFWr2Q2wndNVDNDTHvrpOIguxaik9oOrTWxsz39Ohk8S55i1zCMFlNqgZKnm6ivv+M6bbYbdmNKdkjVZCi4E13qQdcowbZ+/qbxk99RN2txMdM5z7AZWW839FHfC2ImnpO02gifbUtjJp+5FHLfw94anGKOXfg0qiIsNEGDS9K16J3+/na7naT5JRvK7urco0KYeZZHc+Z+ycunLylj5bwJhaifpfGUMaqfTmisbcukqtm/V/XexpgYhl59drIa+mWpMd+RJJIlkBza/nberklSNMS4m2TBGV/T+2h+RDqeRT0sCyJZ99RegJF6rWBqT4nItJ/zNEOu8tV0NU3u09/F43s6QfFeBzrtDl1DBBB806IVeiZk7RfHMTKMPeMYdZ2laAY8nhB2ffwys4mYeJNwZfIwqjVz3+OMd+JEfVFECjkV4lhwuTC2ICnZYaeVSiUViW3oqYJAq2IN2tB2jrZrpgMnJrWpH4aR7a1uBGqv1lejnd01cJV5az83DfFDX1f77aa/l4JkU/k4j4gnZ+hmM9qm0U2TjeNgJLZq/ZCTUIpN5RTBh137wVUPmKmS0YCpHmIWEK1aHst+1Vwf8lqSgh2yTjzOqz4olzpdVxd87XGnnOi3PUMauVmvub655vDwiHGM3G42nJyc4JzjeHmArwZ49T0ZR0gMfh1GNXGTXFGKHcGrIgLOUJdgh3OGiZ+wk8Wa0Zg4fOOZu4btxTUfjt/EhcDR6oiUEuvrNZubLdtx4B/8b/+Ax08e8wd/4sd5cP+BBsfiJn5G/ZNthIDIXp/eApkzAmtFoSo/Mo4jm80G37YUKTx98oKbi2uCb3j44AHdvCETrWvUkIuQxsI2j8RQcE7l5gIE51WJIMaTskptP1Wq7UfJeWrReFH1Tcle1RTTYabBe0rs9w4uXcSa0I5jxqXE01fPuLm6wjWB+48est5GmuBpnEdyVGJuzuogGhqKL0gnhmZpwpOL+WKMIzkm2uAJXdBDTNS4T+F3RUt1eJ5yQb76L77C//T3/u/89B/7I/zs7/9xLl5esbm55fp6jXeB5y/Oubw+Z5Hn+IeONNokc0BGfe3MLlFTdA7qLJ2KdtmlUD+N6hpdv1kqWXfaPnbw6xdlmuxZuLq8ou83miiKVfBGBKYUGu8JzrNNA3WIKuy33ZjiVima+l3f3HB+fs7h4REhqOw9p0zXddPPe7erdLq2Q0TNwibK7lT01FikfAgX6tBTjZ3Bh4ns672SMb33NC6QbWp727XgHSXFqZARK4CatqFtWktOMsNma5OUd/wfvWpavHjRdmgcBrabLe1ixqpdsL66IZiTc4rZEuAWKZ7tdrDhip5CpG1b5ssFC5lx3QSGOCpPryreUiF4R0xiiqmCmONrTtX4TPdMEb2fs9lMCb1Fpfq+8Tjxryf7RT+z32+9FCg57wwtDT2eEnTrCtRWd0Wls8uELiA9up8qfQAIQdufoXUEaSnOEYsVyRMfyRYmTG7i383jezpBAa0mi91oqSknGWEvSzNocNrEtU0ihVjhJ302qwLV38SLwy1aq6CU59H3PXFrVs2lGOFuINm8H4liCYyzfhuG6ihxVLxTCDwDuZL/mIxuKiJS2xKNNAQfmM8Xmp0nQ1rGyHYcGZIysKUwoUl18+rz6WanFEpNWPagddAN4cWmuOqpg0gm5ai9ZbtCQTXTCo/ae7b0Y6p0ndRJs68bhIkt9IoRTw6GWEiYqhaYWgclkyfkZDT7ZUAcU/NKHE2jXBrlqBR67+n7njKOnF+vefLykvliiRPHi/cfc35xwdnpEXfO7rBaHuwFdqeHkvPEtKsKW+Ne4C14OqDa41P9Woyv4EH8rqc8fUqxcQgUHj14xKc+9Wk2mzUvXr7k8uKKeauOyJcXFww5sn51ye2Tl5zOjpn7uSZk9nkVLdQkaTQo2xmXKZviQxxGVjZY16ryYhwG5zX5fvXqFU/f/4Cjg0M+9tZDRdSGUYl0viCt8gvIlXBq1VJW2Hjn0VLlJ/Vg3b+fhlJJmqYn12pbgoPs9R6b/iClPM1AqW6Wux2v5ntZwI2JEgvXF1e8ePWK7e2W49Mzcwp1tCXStQ1D37NYzJk1zooa5fukWBVadlCjMlnvoO3anRGbLWJXdi7MWZSse/XhOf46Ey4SN9cbbm43bLYDn/jYxxn6yEfvPyNIy6OHb3K0OtTkK+cJBZNcFTH+teS3mKmM807vIzuElmLEymKtl2xJDpqsZ7FhoM5RnMN53Re3tze8/+4HbG5uFWWRKh1OFBweVZwIQKdD/8oYYYxaXRRFwXYbRpPgWTfn+PhsaoWJZJrW0Oc9JNJypEl1WdEXbWUo0qaHo7XO65wv+1vIzLqW4Budzu00ifFdo4fnZAaXgETOcWpDl1In3O+msw/joEmptckRqRxZkDK13hsXCCIkCsvlgsP5Af3tRvldKZmBne6P4IShj9aW1fcBiqriNcmQnNX9VuqZteNYabtu1/ISr+eRs2tUrBCZNcqvCd6RzJgv1snIhloLTnkvIoaGFSWyCtresWRlJ5jYFc9V2diGQOx7bhgoAdp5gyRMzVejtyXMjXE8K0pasKK/tvJ3HKfv9vE9nqC83s/eVZaa0e4OyCop1ErXNS25FNrWGwRli7OY0VjZ8QlAp1M6pyTH2axD2tmkNshAjlHNssqt9XcHUrRkyA6EqpjxqaIeqmappLySq0JEIdtKcJ0eRRAXpuDetZkuZ2IcGeNgvi9aLQz9SE699j2DMvi9EfomaRhMgU6zeTNYs0p7jEqU83vtjppE2EXVvyjqOGqky1oF7ipogwVlHyURg6Frr1wTSy0Ga4WI9UKVNCrBesu7p5iC3n6+JaImU6vVijtnZ9w7vcPN9S2bzZbLiwtKaGiPHbPFjPXtLcvFgrt37uJ9IE/qlF01Xwl5wIReiBPloljBlUW5TaVo0quVDZMPQkFNtjKa1xyenfC53/bDnF9ecPVLn+fFyxccHhzQtC3L5ZLx5orZYsHJ2ZmaNtXkEUt0DZfRwkTbdN57nTUSPG1pmfrvaJJaJo6FomHX19c8f/KMedPx2U9/P7PFnPl8QZ0nlcl4wqT62n/sLKshVtKyU8G6yi3ddE/0vYcpgQreTfdMr6sjT2MpdgP6XNHqsBRFZLJhKs74Rw5tRZyeHHG0WnDv5TklFS6fPaMpZ7zxxkPmMx3uN/aes7t3WK6WemNqchczdYx95ZNp5EjTe9xP5V1mKigKAUfg7r17/OAP/CAff/QxUzcJY47M5geAx/nAw0d3eefjH8cHbzFG7NMI4lXSqdvLEATbi3W7uGnf1RaZMkIqN6TeV6u+qBw0J45I4fb2ltvbG3LM3D09I94MfOge6xKpSp1S1IzPF2g9sztHCMLt+Q1cbchj2gfFFCsrmpi3bWuu2Hp/QvATL0/Xi0xfC9p2qzB/nadWkzPvvZK2LRfXZEa0R2DObcH8b3wIjHnk5ctnvLx8aWMOtubWWxegbURDBOr9UzfZXRFbC0IpWjxpwbhb9xWhnM9aDlYrbhfXNKFls93Qjz15LDr6onFMQ101aJBipL+9RbxllOZJosmxNXtEAE9BifiVi1fjTn3PIqaALPpZQtcxWOx3ovG6oOeKF2iCUFJkoOAWwqqZIU7pC+NmPc3vml5uqJLwNLWCX756RYzjlFTHoupCV5VaVpjU9SFOpqSazIQW1aK0fPcdnu/tBMV5N216sOwT7evWr6MRmnZ+UhakRe22XR1jPW2+PZzUAqYSQuu8CYdrBF/CpCIpjafNDWkYmHUN8/liOvC1vaGVz3q9YdhudRFaO6JOQEaUFBtMWeNdbXPUPq9tIqqDqqMl0TRCl3V8dw3uOnwwEa0PPAwDpe+1heG9DjyzxZVIRCKhbchBg5Dz+ieXSCnVoXaf6Li/0Sst67X4BdQx49D4iZ5K5UKIuEmCR93MWh9DEfKo9YcmIeq5IgjibZEbRL0/RXkir1qF7JzjwDnmC53+O45vcnF+weMnzwiN+uZcX99wfnXJnbt3OT461oDpvE5PdsnuoUHy1lIqlpTVZrk6GZcpIamDu1QGq+he9k75HLmAFy6vr/nyV77C1dUFP/77fj8XL85Z396SS+Hw8IjPfu6zmlB5p+op2VVVVvpMV1z2TtOCJkgehYOTyUgdTuFq4Pz8nFeXF9x5cI+jwyNi31tCXmibhgadGL0/KsHZ7wqY5NWBeChKDHfGhykFGquknYC4TGMHlhevrSq09ak9/DozpxCCVr8h7GaQ5GLXDCbIWKvqKlnMSIkcHS44WC3Z3Gx5dfGSF88e884nHrI8nCHSMZ+3psJR0mHwnpALxTm8D3iniigQdvOsdyta23j7SI6AE+68fY/f9eM/xhsfe4vtuGF7u+Xy5QVvfuKMfsjMlgtWh4e0XYNgM74ALIkT9ukPVVWYLd5r/Kjk7VKA7PDU363rk0mJJvbdlArrzS3rzS0hNJwcn7GYL9lutrx8emGvlSfFmNoaJGLxzOYLXNuShohH9LrUpLKug2LFiXHpmhAM3dnncigBvwk1PqmqRdDY7YL66ihqoqRQXwtNZ7waW3uT03FKZJdIKfKNb3yDf/nlX6Upwmw+o9nohPphvbYkztUqU4sGpzyqbBLdmqxL1b/XQ6CUvXtS/40pgalct7ZrSCURfCDnRNd2hODYMOzOJHSdt6FDRIdTKqJqnKyiyVAJ1CmhugbNp6WS0Z2viPxuEKQAE1mfTONbZt6BcxOp23nH9eU1lEJ0Bd/qkR/jyDDE19rF+raqAmmHROn7kF1bx/y11IvLBGQF9uuYYFxDXd+7naSozr8jJNnGBxofJlZwcftBXB8h74y4ahCuq23q41qvoh7AVNt4YfJbKKXQNEy/RwGxw0eHJCUWqxkiwqyb6cTTqjzQWMbh0UqNcrKaxumGLoxjMq+QgUydn1EMBq1BWd+j039U4x2cjSNXIlIuWW3GRXT6pwvq8FeSSnpTNEncaNLnyMtXL1TmO+t49vwpQz9w7/Qud05OCWZ6N8F4UhdamWY3FF9Tpn3LbE1XGueUD2QM/Cqhq4/Kmdjvbwc7GFP1hSj6dR0+5cxvos6SEXn9OSdo1JIf55VL5MQx7zoWqyV37t3l6vKK58+fK4dCPE8/esKzp0+5e+8up6endE2nH27vvU3vtRhHoqJuorbObk/iIMXMrUqZXBmntldy5CFy/uIFaYgcrg548eQ57733Hnfu3qVbzhXCDgrt9psNvmlou9au8WRzN3mL1DZaqe0UNPj6up4KbDYbLl9dkEvhnTffYjafWwLQWECKxJwITUNjB9H+hFP2v/aAoWWC4AmI7bNYEsEk8WrJna321zVaVW7JgRPzgHACXmiCU/fmYNC+F4JYy2LyJME8dqqqTdur3WzG6dkhb3/8IbfrNc+fP+Xm6pp7D+/oOIlpfyuiNfMNpZj6DUGnyKtdYK4Rd+JryWst0lwcY8xsc8/V+ppXlxdstmvOX15we3HLr33l64wps+63DONWJeVRyBJrTj7ds9cLJItHLmt8kYou1r3CtMbszhuq5ycb+X7bs9msCc5zfHzCYrFQvEZ0UGrTzoFg7yGRq6sratq1vb7FDYO+RJ+mBNFScy0UXNH37TJd1xhCbb4dxnEIQeWqOoE80zYtjqJEe1f5JSZ5tQQGytS+UV8UPx22fRwpJXO97bm8POfJ4w/4xNtv8Dt+8Ef56hd/nW89e0l/uyVnTQomVpxBnbVg1eIpGeFTY0r+NuKmz3VaryUGxTgxYrHIun9OIHghZa/FZhdo25Y4RkANAeOY2NxsCCES0wg+4VV2hbiKOHl1mba1kcTr8KA9DG9KJLQnqferRER09lVoHNntq7syYxrJw3ZKZKu/j5WXWAZoCZMVeLb0Q6PtJU2PzdfK9k5Fj6f3ZonUPuS460Tsr5/9r//Nj99ygvILv/AL/Gf/2X/G5z//eR4/fszf/tt/m3//3//3X3tTf/Wv/lX+m//mv+H8/Jwf+7Ef47/6r/4rPve5z00/0/c9f+Ev/AX+x//xf2Sz2fDTP/3T/Nf/9X/Nm2+++Vt6L86pYV3Yk5rsdSMQgRg1ccmozLNG9Aqz7hQ41bTHpKoiQDIClD23/Z2tsktFR117yyYlqJuga4QmeOpwvEoU6ozHotSAOAV70NdONkV5jMqMKRaNUk6mca/+BFr1BR9M/maHUBYdQmZTkL3oBvBFIX4nDW3TaZVfMsM4IqIs9Gcvn/HFz3+Rd7/5LseLE370R36QT336E/j7J8wWS2OWa4WXbYNUAZmu8TKxzTXw2nWxlpG4KnPL9t/qaAhWdDlHnaSaBZrGlBM2qC/tI1t551dSp1azvxFEg7ETB74h+GbvHgpt13L//j3Ozk5ZrzdcXFwh5RU362sef/AhV5cXHJ+ecffsDrOZBY1sRF8bQ19nbdRA4A1ByCI2g0INm6CQp6tUW1uZNx894pNvvcNXv/YbOBG6ruHevXucnBwRxRLnlJkv5qSc2Q4D69tbZvPZxC+qAtDdQbf7W2kn5hCb4fmTp/S3t9y5e4ejo6Op7BEEF/Rg8d6zvl3TdR0hNNPnhoJSH2wImVTujV5RVxsNpRqz2fgAS+LFDtvpPdbkSeyeezVJbLwN/xTbP95+zimcHNye0sMKCue9JT6RrtO+ugBHR4ccrpZ88MEHPP3wOVfna+7eu8tytQAyEhzdQi3Dt9sBiZWkWeffGHqBAUlFkQxVasDQR25vN5y/fEEatwz9LUVgdXzE0b07ZNcQY+bJR094cPcOwWkrqzhvGM2O+ybidnJ7e71cqpFa5THZ196KMQTJXjlapZD6ke1mQ8mF0DYcnxwxm881RhQdAleyoll3Tk6Z+Y7NmElGdi7VfTRD6iNE63fGYvNk9tAkK0CKQNM1nJ6eKgrs9f6O42AyYE2om0bl4bNuRk6F69truqbBeUfXBhqbgZSzDhxt2x0RtmQYx8h63dNvtyrB9Y6zsxPefPMB8/mMg3ZFG1pCUa5Ut5wxa+f025GdJF+zOx2hYK20ulorCrH3OQsqsQ0h0IUGLx2FQrCp6OK9SpMFQtuSXcY3ypvpuoauazQlF70O87YlknDBKToWNdZ7r6hwSsU4NDZE0swZKxcLQ27F1kNxmGp1x+dSs8G9QaBi68SStKryqijkLvH9zgRCt72bzqBpfwsWfy2a7fkp7Z+l+3/vyN8JJ34ySPxuHr/lBOX29pbf9tt+G3/yT/5J/sP/8D/8jn//63/9r/Of/+f/OT/3cz/Hpz/9af7j//g/5md+5mf49V//dQ4ODgD4s3/2z/J3/s7f4W/9rb/F2dkZf/7P/3n+2B/7Y3z+85+fhtd9d48yQY/21S6Jk5rgKexQobkMk1rOsQu23mnCWvuBekEri75azqdpGinFRs7nRKoZ/jDqwMDQ0HiFudSPRKYpkbkE44tUf4IMWdn8IQRKyXTeGTlKF100r4Yqq43VBTMPpCFpL10wNEVbOjFFVqsVHkdMOgPE+cYkZBlXNMFZLmb44Hj4xh2Olwd85Uu/znAVuXN4Siie85fnrGIitB0uNASTWIr1uNU4TsFxZ4TaiTTr9HhW+FavY8zRfGTKRCItBUhpN8hRVz/Z5cmnQMru7u7+sx6IVb1Sv21JjaluxNAn0N8BUSlgE1gdHbBcrTg5PeL84oJXL1+yuVnz4fX7XLx6xb2H97lzeneqwCfaa5G9jVj/WyjqLWqeNNpjjzFa8on9yZyenvAjP/qjPH35jPcff8jN7TXvLN7GeRivNqy6GSdvvo2EQINyULZDz3q9ZtZ1tG1H5UxNx77UI1XhexFhu93y5IOPmHUdb739Fm2ryoqJXG5IiXIHhNlsRgFVqbmdTN2n3QC0ZImKp67viu2WnZJIdoqnabeW3WyY6q6gTsIGVngdp1BnRFGUjC2iay7sDULUQtjQrKyE5tlMA6DyutQD4vj0mDN/xu3tmvfefY+DwwPefuOhtiQYSVlRyFSKuXMmM9SqZPS9lkXONo8qMW57+u3A3Auf/fT3sR0il+uNqgdD4BMf/zjnL1+xeeshP/LDn8OHQG4aStFCKUZtU1QSZ5ba0CiWsHuyy5PiR5Fasfa1/mSMmavLS7ZbTUwODw5ZHizoFrMJkaL4KVlP48B2vSH2N8wDJClsZTessap5ctz5MVXT//re1ACu7qHE2Z1T7pydGSqkJNCm6/De0c4sQfFCjpn5XF18+37NzOzfF4uOrtO2ak46FmA2Uxv3HBPbzchQlATezWaqDBJF2ppGk9gxjUR1TqSPIy4Is8Wcq6srXDEDMSsU9yv6Sngu0zkimjwUc3TuZpPqJ1iLqYjQj4PxryKIMJ/PaYoOZhjHwQi+yp+KBcY8krbJ1mUB73CuNYJ00cnOaTvxampiXuPc1FYzdKXgwO18mHSEh0Mk4MT4l4ZYV2n11AZ3mhrnXImre+W3ZstWSO6SjCneicYbKo5m52RFYUran/kGlRDujSaQc11n/we2eH72Z3+Wn/3Zn/1N/62Uwn/5X/6X/OW//Jf5D/6D/wCA/+6/+++4f/8+/8P/8D/wp//0n+by8pL/9r/9b/nv//v/nj/0h/4QAH/zb/5N3nrrLf7+3//7/JE/8ke++zezK56tkv22zKzCYarN1YPRjGvMfpHdkCc/BetaSYHHmbukq0TEXA3DtIIgyU7Z4FvdpN5pcmIwpRNwRpByQPFqtBR8o06dKUPDlPgAr1Xds6CZq83HnPrYzqvxjw4Ni2y2W+KoEr8UR8btmgEB0erUe532XJ1ki8F9oXE07ZLPfu4H+P7v/xSMXqsBgaEkUyolCtqK6oeRiC58hzBsB7q2pZvNLITt2g1KPMw7CwVb0AXN+tU2f0cI1DulGnpJZaoo6nWvP1FKMf6b222qvVsvWaF5HXZlmwhnYkKbnmqKKIfDtw137t7hzt07XF5e8uLFC9bbNV//2tf5pvsmDx8+5M6dM2bdzNaWmw7gYg6R+jI2d8WQIx+EplXreYWYsxo9AUdnxxwcrJjNWq6k8PjJE+7eu8tqteL47EhJjgVDnXRCcmgCm82WMY60TQvs7KmtmAEpDKO2kPrbNY8ePmKxXE6JX0ErSWeE1XrhxKktPmiS2zSNJhDeZO2yM48KQSvfrm3pWh2ol0qeDt79Axh25NI6JkFEW3+tDzSNInCNE1qndulNUBWdd16rQkMODUCjDqnL5jtUE90xGT8G/f5m2HJ8fML9xZIHd+9weX7OR++9x907ZxwcLihZKDEbnUgTorwng3S5KhKEUgZ8djqU0gfc3OOWBywPTxjGxMXVmufPLlhf3tI2nqPjA76veYf7D+9omytqghqTuvsOg/od5bIjVk77EpnMELMVRVU6nEtifXvDdrPFIxwvV/S3G1onpsaD0KqraRnh5uqKftOz2W5pQ8snP/E2Vy9f8qUvfpmIYxT7pWK7r9TKuCbkTPwl/aPxqGkDv+23/xDzNlCKWIGCzSmD1guhVYK+FOUWhQYO04LFYgEizJYt3czI/6g6LKdsFCtH6FpmzhPLFskJF3Qvbfotm6GQSkGicLm5ndpJTTPj4OiQZ8+e6dpwFX01BKJ6yxgnaR/5q62uru04WK1wztHHka0hx/m8n2TnmuDoc6k1gaLKHiWCTu7E7BRvhYJvtPVVkk60TwrNkvvIUCfIN1YIVhpNVbLZ/ZciVnR7xNkk9hSJOe+KJzHEyJRv3ojMIuh4hmyqTGs3VJTOhfr9bGvR0G8Rm7Ksw3kLGHEdJmjA0MZU8nQGlFyMt7a7xt/t498qB+Wb3/wmT5484Q//4T88fa/rOv7gH/yD/OIv/iJ/+k//aT7/+c8zjuNrP/Po0SN+8Ad/kF/8xV/8TROUvu/p+376+urqCjBZratMYmy6u23yjKpLCpMHhYhM5EWhSsqk1vyTKVKR3ZyGnG14W1XA7BkqVdlsJQe2Zgg0a9qp2tPXNsZ+3eKm9HDO6XwdLOO0Hn7lNlSiR1W55Jwo+Mn6Wczpry2ZlFuWyxnJuCWlqPtnNM6LS9U/IzGOWzWIQh0Ec9Sespicj0ZJqBn1uQiNwZoUFvpuGdNgE1ozjZgaKo1UkzYXauVWM3O7Ndbueq2KYXfA1Hvpqi10KZTiyG6Xb9aefUXI6qwaKpJWq0Fr05kWyBITSyiMOFrEWnu5TD3n09NTjo6P2azXPHnyhCcfPeabv/F1nj19ytnZGaenJ3TdzNxC2X0OsXtsvjZYgBIpeJP1NQVInkxhO6xpnOOz3/8DDOsNMY4cHx8TunZqd/mobaPiHCQlAIeDA/p+y2a9JZfCcrlE5ztpwnRzc8uLp89pm8Cbb73NwtpE9T4YZLKDHnPR1qAIySTL/TCQUzLkyO2gZFt3OjHWvDRsLdc5J+MY92zb7Z7Ul5OMNwOtpmlYdh3zeUPwQtv412T31ftCRFGOjEyzT3J9TktoOummgqAm3iLCbKbzsRqUE7W6d8YwrLi+vubViy3L5Yq2ndHMdA5UTNEQS8PKKrneDttQAiUmmtwRc2Y7ZlI/UoLj8PCQOAjztsPNPXlMNLOGw+OFBvnRhiGOkRQzwzAypmRE4TTFlQn+rShUUdJm3+vASXLhcLni7vExN1dXDJsNHUI7a8hly83lWgfO5UQcMoeHh9w5O2Q2e0DTtHRNi/eFx8/eJ724roFzeukaU6dDe9qnu8NcBD75iXf47Gc+zaxrAId3DVGMs2NIRI4JJ0YoVWdBUkk6p8g5xpRIm0gIgfnMBr1KnHhJeTMwbLasN2tu11s2gxZJkPTAl4AvQmg62lnHyEjbdRyfnXD47JCri0vGzGQMuBc4NO5/m0FbjcXNbAbeTbyXacaWXaSqtqpIn1lba1ubWg9py2ZCI3a3lWStYj2P9Pq2XTNNVi9R1/loqHltizqTj4s9oSsV4bI4IzqepNgh6OxMLGT1sLJ5QTUu1XtcUWixZGNyGsaQ+erTU1uPtcFfZJqxJEV2Ski9oPq5a+xhV7h+t49/qwnKkydPALh///5r379//z7vvvvu9DNt23JycvIdP1N//9sf/8l/8p/wV//qX/1N/qVMmaWz6tXXz25mM6XCkkZ2qtXjZLe719OeZFB7PbWUrR9XKcpeB6btHU0TvDl6hc9FbMKl9dn1Ziat0pzNPDEPAqkJVik7Tn4pU9av+0lskQGSEbMrmWxdis03cGr9HUpDQWhMliYCkvLUIhpjtDZRomStylLSilcfllC5aghXbAN4W7gF71tKowdpOTDvDVvYOatpXc6JcYymurD5P4360VSIUYyzgVVldTNqkFRvhlo1V7fCKvethMsqf6sXbCfbM9qeOE1GrA2j5M5dq8GJunJ6G85VSiF4z9HhIU0IHB8ccnNzw4uXL/jm177FN+VdTu+c8eDB3altCZhPhj6rs0QNqzOSAXfa9tP35CkT+382m3F2547C4BYCKBnnBYcNxnPF2lbQth3BB7bbDbe31yxXS0QKL1+8Yn274eHdBxwcH+z8UOqOMfQvFbvHZYodryWNTdMQ+3EynKvXtYj6wGhbwBHTwHo7mCOwKc4Sdojt2j9apel6DEEJlE0TCDPBzVWVEy2R3263xKEmPzKZKJayc9KFOrNIW2ZD3+ODKuFAJy/HOBiBs9hAO8HlzGze0c1aNkPP7bbnxdUlvmtYHa4sgchTYTPJipPJZUWIJdGPauS33Yxs+4GcIRDomobDgwO+/CtfZrPd8PGPvaXIgfP4trFArxXwOI6qlDDPE3WvNYkxBR/00Li9ueXi4gonmQf3j5nP5wjqHDpuBy5eXfCtb77HxcsLfQ4ii+Wco4M5qweHLFcHdLO57p0CPgTe+f43+ak/+gf4hb/zT3ny6iW+BPpQwNrWYsWChTiLsTsk4uGbd/jpn/wD3D05IueglbT3+BLVMyd55Wc0gaY175GoU3qHqB5OyRUYbQhf6xBR8uh2u9FpzePI7aYnZSFGyMXT96MeiBoISIyEAv2oRprbYUO+SoQcOL1/xpB64vVo8aUyf7D4oG7Xk4Gmrd+mbZkvZ9pmdwLicVnjjbYjTS4u9eCwtT3tL13HJSrXL6fqum1zl8yBV2O4ozo9+ww+1FicJqSSUp2jsxLZ0WvWhjBNhp4IxWgrpjgVYKQUrdTMFHReXKUvlFJrFpkQkUIVPZhisdRWk/oRadioMukyLQ43ycON8F52nBSxGFKSFj9VvvzdPP4PUfF8u5KmlO9U13z741/3M3/pL/0l/tyf+3PT11dXV7z11lt6iaq5kS3AmhWKi0z+J7YAFR6xxWQtAiHbhd1lqbkwEWjFoG2VXmWrqMQqrKlvoUSyoL+LA+/swCXZz9bfqwoM5UHkPGoFu5dVllJIFRAokLPYJ7QZJDYR2LnqEVHUiyMnPcCseqGYxLdYy8iylaZtcMnehfNmSFWmLDkb2z0nJU3EcVS4ec8krPIHEIV2XfVosaSm8jJSisQhMgwjQz8S0+6+6O95JY5RD7HXUr+JP6JeMrUyqC2qShhkInPqptod8JGdm2qx6ywl75X09VoVmJApu95Zk6Hj40Pu3D3j0aNHPH/+iidPn/L0g6d89MEHvPHWGzx4cJ/5fGatHvvdGtv3XkMPfiV7KlcjApnQOFzbUF0cC8pkKTaWXaokVdS1NWfzInCOrgncbje8fPmCi4uXHB8c8Yl33qSZz3chRHZ1Un1Pbu+9adRVPhZJA1TjA3mmyIWncrIs0Z44PnvKh2JIimB7TqfcNq0lpBZInRN0vEkhjgPX64FNr4hWHao5jGmSmIqooid4b0mmoY3FXgdNULbbDcU55nNNgLyD7bClm80YUtQg3AYtdEE9hVrPrOsYvedrX/s6FzeXPHzjIQ/uPNBrXgBDU3LJiqwA45jox8Q4RMZRDxPnnHLP2oBzhR9++/t4eX1JHNUjJzghOKEJyssQIKWGcVS4XERbP6WKm52w3m54+eIlJSYePDyjbVrEpLvihM3tlu16zbDZsGw8999+S704SEjrcfNAN+u4XV8zxgHfOrquY7Vc4Hzg9/y+38Wdcsjf/X/8PV69uOJlUDfmIo46VV3XS71mDkrm7M4pP/MzP8GnP/V9CMJ2G3n85CP6MbI6nnG4OmQe5hoPPIw5Qcr0/cB2HLlZb0moiZwecY7LeEMcRkpKpBypN1qCEpmjiQug2vArgkcRRtSWM4RAkwOztqO4wvHZMUjh8QeZ9e1ad2Y9RD0al+v+rPui8RydndAt5io6yJCKIQhFnZCd27k5T3tI9HNorEkT4qRIkJ4hNV4WYQ/tqxyPogkbGs9d0cnVucjeHtaCN6XImNUs1Ingctp1AsypWY0Ed0h8QYeA+r1ks1gMFEOz9kUbk+eMmGFfcYx5pLLeagJfzGWbMUFta4XKQ9N1PbUvk3KtXosb/4bHv9UE5cGDB4CiJA8fPpy+/+zZswlVefDgAcMwcH5+/hqK8uzZM37v7/29v+nzdl23s03ee0w+CXtfJ0M3xP6bXAPxDtrTH2ZCup3Bf84yZskFl43dXio0J2CqHMkKbVGNmu3Qa4syzlVCV6YqvVAmozjYJ5xlfQa3CwT14fek0ZVrsXs+faqYkxL8kqqNUrY/qR5MhZL9jq1uiQUoQrDjx+iGybWtkjIz0ettxzsxRoZxsFkuSZOrqAeJsyqAEFTW6hyerDbUztO2HUtReD6OSRGcGKdZEuJeH9BYbdSRCglqRVb9PnbJ3I5QnXNlv2MHxu7+7Ce+OReSz4oGGaJSsiM7g0MtQamDWf1kMgWzWcO9e6ccHx8Sh8iTJ0/48MMPefzBY+7cv8OjRw9YHaxwogmkJpbVBVM3ZYqR4gXJwpi0Mvra177K+fk5p0fHINaSLGUPnrVgbWvbeaej5IF+6Lm5vWa73fDo4UMW88U0ubiu90qjBUtz95JhlenmaV1IzhTJ2lKytZ1ysipvDwIuumb8HnHV12qwlGmYW9upQVsp6t1Tib11/6W+kBgU4cQxjuj9yJqQOymUQdGV8m2mW1ATvcxmO5LLms1mJDSOtgtcnp9zdHyCSD+1aZzDXDB3PKacC++8/WkOLy751rfe5ckHV9y9f5flak6oRUBKlkAARSyZ0sRWEyJNtocSyVI4+/RD4hPPq2cvdxWyF9om6NTYCv+gZ222ybU32y0XF9fc3OiB+uDsLsv5jMEI0pvthhQj19dXePEczg555wc+zcHBQhGVoefm8oJnz55xc3tDKY7ZYsnsYE5wmcVyDkSiZBbLJb/v3/tdPHh0h7//d/8B//vXvsrVZq0Tsr0droY8ihSWy453PvaIn/qpn+CTn/yYcWcgDQPP3n/G9c01i+MDutkL3vn4x1jMZ4jNQkpjpt9u6ceB2/XGVGH1c2N8DGhCg7MZN4lMSVtVTNqaqcTdXdwvtt4cs+DZbnWeWeU4HRweMN67y/Nnzxm3vXHpKgKzK1Kc97Rtw/xgyXy5MOeJHR1AxCPF6ayxGoXFTDdFwIo7V9u7ReMmRUdyaNFrv1a0uCq8Ppem1CLbWt4+NHiLZ9k4dc57QtepSs9QnThEcooMeUuYBdpZSx2vYgcBXjzqGKzvq7bFi7N5TnZKqJVNmT5iloGunROaltTr+0jjMM2vw/YD7BRI3oxBvfPq1LBnEvlapfRdPP6tJigf//jHefDgAT//8z/Pb//tvx2AYRj4R//oH/Gf/qf/KQC/43f8Dpqm4ed//uf543/8jwPw+PFjvvjFL/LX//pf/y29nimrXnvIVIS76ZpgjocTiGKtiOrjk00NUBQJU0Z/hdnhNf8OBWC8BXmZ2MzOecTrSO0mNEioUJfNGbHfj7UdUYq2H/yuxVT7zQbCMLWfvH1DLKPPiTykySckpzLZHFf/LmdVsjfoL9jhryiTtZVyIbsMRgT2YG0oQ4emzQldp5OYkyEsKRrcWC3/UyLHNPWZ854MF5en9ow4aLtA03iDMhumIXslU8Y0tX7qYTJZWtcWjB1M03lVIJldQ7ZK3leHTNHXdl5tnxUoSdQ5Iwq8lD0ynZBT1paYFELj7Z5YBeVQvxsnHB4veeONhzx7+oqPnn3Erz77Isd3jnn05hucHJ/qeyjWl5adjFGyvseStMU2jGVSh+0HNw2yXnvAlt/qUtJ7++rlSy4uzukWcz75yU/Sece27+mHgVjQya5u17ba7RHrvVtirJzxPCX2UkwKD6bSSpps1nvIDhXKJeveMvMqvS82o8hl4liolO+Sk619pj1TKmIl6gCszrmCr/4olkgooVTt5atSKZesIx/6jbZZimOz0dEPpWSG7YaUbCBdHUfj9hRXJVkrvUrx4e7ZI84vzvn6V98l5sjDN+5yfHSERyZDOV1yu7QvR11nQxm5XW/ZjpExZ4oTJAitD7RBJ6wX0cR9SCPBCYv5nNYLwzZydXlNGXvODua8/eAM17Xc3Nzw6uVLXj1/RfCe1XLB8Z0zDj79MTXVkwaHKpzaNuDcIaQTPvHJN9jc3HJxveHi8pJhHGgPZ6SSOb+94vGzp7RdR5gtcUct937oY5xevaDbzLi8uWYbVY3iEQ5Wcz7zmU/ziU+8xcc+8XGOT07ZX5DLgwU/9MOfY+xHnG/44PGHbNc9OqW5Vs9ZuTcp4nKBnKwAsIRD63QyyQqsAlZ9Z+tFqBGdtuwbEbWaNyRh268Z48DQ92RXaJqWXCK3NzfMFwtOT0+5Or+g+v0gGoddUGJ4N+tYLOaEpqGkPBks1gN+kvSaqF4QHQZp8ddNaIr6pOi6yuC8GTQmG2S2i8PTXmQXs8WQXu0IeFOAaqzs+y0pZkLIuK7R389GYM4w9olYook6sOQSxBeKUzQ7pYQzs0tq98CJemkZUuLQkRYlKy9x0SzoQsPmdmOOsrVtrPs2hGC+X2r8FmzWUUXbJ3VaPWf/jzRqu7m54Wtf+9r09Te/+U2+8IUvcHp6yttvv82f/bN/lr/21/4an/rUp/jUpz7FX/trf43FYsF/9B/9RwAcHR3xp/7Un+LP//k/b4TDU/7CX/gL/NAP/dCk6vnu33yh2xtCBTv4t5Q8IQdTr83gtQI6M6UGR0UuVf5b4nSwVmgNUJhMsAOm6mmKOTjqjXJtgzSeEPx0cApFiUzWeglo4KoZZ52DUYBYtK0wTYq191cH9YmDlGTHOakFgPmdpJhIZDprIXhhh5S4RlVIoBs/Z8Y8KBHTOSQXvOSdU6uaMUzmW1IyBI8PZgeehVJaizO6qaQIMWs/lFyIWQltQ1TyYS5lkjxrxamHow8OJ50lMYoAVWQox0RMIxK0uuqalmCGXo1Ux0QohojkkhmGHRzsox0qYm27+nlcJjim1o8Ot/JTC0EExClxLfaj8nOcENqgs3aUUMIszHnz8A0efvwh5+fnfPDue3zhl/4F9x8+4Ps++UlmbUcaR0XVnB4ktlLJRbken/mBz9CPPSUlTRR82TPHEpOXqgNqEWFIkZdPnnN+fsEbb77BwcGBJaSF5WzOvO3oYyJue3zX4kOjwVg0oU5WxgVb2hkxoqvsjJykVHwP8Vp9KaOnrklnQVDXk/IzNAnzzqb9ouROlVkr9yCrXGaCuNWQVrOHJhdCcCCJRgptE2i6liAN63HLpl8jvlUfkjGyHQa2/ZYcE33fM+sGBK9DPcee0Da46zWLTtcMopXsMOj93K435AzOFG5IIjSe47MDzu6ecHF+yfvfeJ+n7WPefOsN5osltX9f51ZFEilltpseKT3rzaAI4ZCJY2a7HTm/uGHWtVxxSybig6cfE03jWS7nxO0NQz8yny85u3dE4zzPPvyIr3/9W0gW7p3e4ROP3uDuvTvMVi0SVM7vUNKioL4xOkdKcL4hxoaDOwvuZU9/0/O1X/ka//yf/hrvfvQRT7eXvLq5YsiR4jyhODbXW+6/8waPHj7kG1/9Kk/OL8k5sZy3/J//6E/z8U98zAqRQiwqQKgHUoqZxWwG3ZwYo/JI1tek1JGLKbfMRVkQZk2r6Z2vaLJQWuOlWeJiKbBxxGyfs2vVrm+uefX8GTf9LUMaKQX1xE494+3AFj10x2GEojYPR8eHnJwc6ky1NDJEnWHTNHUUg6POvq6vVb9yReXXGju87cfC/qgVRIy8vStOJ2m97EZm1KI1FzNFQ9HuFC0pw1raJPxUGKsyL9b5YGWuZ6DXFn0Sla4XVwijFlfiss1WytNnUQGFmt8VtEWkSYNe79pCLgjeB0pwqtiMcUoSQxdMum2kXRtam5I3VEWsLVa7AHn6DMIeQvNdnfG/xccv/dIv8ZM/+ZPT15Ub8if+xJ/g537u5/iLf/Evstls+DN/5s9MRm3/6//6v75GJvwv/ov/ghACf/yP//HJqO3nfu7nfoseKNA2jsZbdlvx7FxhFTd9q9ovTwmK9U2UFGuL0VodxSRV+dtsvjXeqreG3pu96Gx/leIYh6iEOksugoBzRSs4r6VzEYe4QKntGSOWismgYypKRsQQDMoES6rzqUPEv9beygXzVCl4si7sPeWgAknZDOgMZfChvnWtWp1a7OvkYDuISkWUhBRscJ/1vfTwMUVNrYqzny5JKI42B2KCVHktUaGOkhI5aeJSohruYweWD54QHH7WEZzQ91u818o6JyXxkQp4CK7V9xkcLoi5SEZy1mpnO8pkAlUn5cZkGxO9jpTEMOgSql4lKlnMpAxt21AIej3FpMvOkVKZxgL44Lh7/5QH9+5we3PD+++9x6/+yhc4Ozvj3r07LFYr68eijrNOGGMk5UTbNYTQKkRs903RMqva9LYSS2Z9c8OrZy9Yzpd87jM/AG0DKaoUWeywalvauTD0PcN2IKWMN7txEW0RUfzOb6SxNoX3xHGc7v00Y9Dg4ZyzGqlZC65KQ3U9KaTuxWTCjSazgmccI5tNr4M5lZJFNJXC1fqa9WaL2HuZDgvyJG/uujlxGOk3PcMYubq+ph900FsIDYeHK/rNQIzgJRBTZLtdc3hywDCOePFEr8F1GAeub9eMw8g4RATlZbQLdQQt5pXkBA6Pjph3c548fsyv/epXuXPvPvce3GO26MgoOrwdInlIjNuBnGCz0YT8H/2Df8x6s+b0zilPX55rEWCIX0qZfjuy6deUkjg+XLFcLYkvbvgXX/w14vqWk+WcH/nU9/Pg4QO6eUt2MNr09eK0IGlcsPik6w8vZCdkEhHbIxSaVeCTP/wObXCEzS2zj2A5FC5vbxgC3MSBzc0NF21HiZFV2/LWG++Qy8DHP/GA3/k7f5gcE+vNqNPdow27K4NypHLW8Q4p0XnhsHPcefCAtpsRY6SkiGSZ1sYQR7xV3cOoBpR9gX4YpgGXE3Jin8+JxSBDb5++eMHLp89Yx4Fk5gH9djBE19DTokVnySqpD43j5PiIWdfR58zt7Yb1ZqNKwVzJo+qJUxWS2MkipeD2DEHrYbs/mTebYzI1XoPK4EWHczbO0W8GU8WUvfaOvp6iKx7fBBqT+0u24lSELgvb9RZxwswpiuOcgzFa+0fAOdpqhcBI9QMKvlWCrAv6Do2mUOwwKJWHGewcwegOpbDdbOgZFQ3yQjELAMEpIugqMXjvUfKOVL3vwzJdme/u8VtOUH7iJ37iNbj42x8iwl/5K3+Fv/JX/sq/8mdmsxl/42/8Df7G3/gbv9WXf/15OqHrzJAr5SlIO69SK+2pGUu+HrhgBmG1Ujb5caiqmgrpWzSxIF1PeiVH60Gq5mNuN2AqK3Er1BaFWI/eXPtqpiCCIjhOK1Fvm6g1eCd5R7YBb9PgQ31564EKIqlqbSgUDRBV9SFQYXVNrsw/AaiTOxVV0tdXS/48QdYFiIbY1I8PZUKVnBPL+TKiJJ/pOacnsd8JQVUruiFUBVSrozo1E30q7W8ak76auHkRig80nXIavMGt3gh7KatVt0KtwjgOjGNiNluYj4i2V1TaqgzytE24trF2T6Ek3dhSdMCWSJnIbXm0kQR2C7MRvGLS6kil3wUpnpIKm5Twnef7P/v9vNNvefHsBY8/esx8Pufk7JTlwRLnNPikEtn0Wz746EMuzy/pzo6VQJaq/E/rZKTQGxG2pKwJz3KFOPVEwFXytt6shMrMfeOZuRn9EOm3G0SEZtbukEN0v8Y00ogif13T0LSt5d4WZC1xWq/X5FJofVVE7YJSNTfT/pWidl3b0jQNt7eRfkjqTip6aCRDPX7ji1/l8ePHLJcrTs7OODo+0oSwRIa+59XLl7zx5ht0bQulELeJm5dXXF5c8OLVOT4E3vrkm9zcXHNyekqg0TUQB9pWJcGxGRT98oExjtxagpJztR5wJF9oaRhLoY9rvY5Rr2N3eMCdruPm6przX/sqy9WCo+ND3Sd2mcZhgEFdaWNKHN09IZ4XxpjYDsPEsYgpGY8k0TiBlHj87JxNv6WddZzePePuvYd86lMf496bZxQKWxnwOHDZkDAlXPa5+jUVQhFc0mjgGiMFFzC9NrJquPODD/kj3/9HoXRsz2/48N33ee9rH/LPf/VLbG5v1IbdqRPtQEJy4u137vPG3SPSODKMmpQNfU/qBwqBnCJd0+mftiO4wJ3DBXfu38U1rSHZhcb5iWcWY2Q+n+PFsekHNn3P1e3A9c1aeT3ovo4p6VrJO3NM7wMkx8X7H/EqCUkgmuoq+I6chRA8jXGj4pBVFZZGvSbBQ+PwUTdLitFUc2IxCArZkvOd23cpWvT5EAhBW29CnYODxWTRZM3I9QVtUeFgfrzkeHnE49vHpoQRM+Y0xaahm+KcKh2NzWpiO/1vGcmlENCht8E3OISxjPjgWS6X0HozYyyMljSSdb8puukMRdEkpJq1VdS+tnDFWaJS0LNVQJyazQWnPi5SsIRe225eHM68PUrwU0CaUGlr71ZDzu/m8T09i2frRg5avWFqlAG1tyIoCoErdtraSOli1EoRDaQmvBDMobH2iKY8b++gKGpNXJJ9W3aXT5yDNKKzmiyrdjWRqa8H2tdQljzkKQmoYygLCqTnBLkIOQt5QjRgzDtUxKUyEUOdZeGhGGIjWvlWZ89qJJTcLoO1lqluUGuD1E+rftsmPTPuRDYkxQAUlNuzg/qKVKRqTxJa8oQC6TXR589kG/ZWqxEhSKhXWhNKhbuYtcEOyyqyT9xuBvpxII4DbduCl2nQ2DBmhnjDmBKXF7fcrtdsN1ty8GxuN9xcXnFycqwoSK7OvDVBVf8NUCQr5UKJWqFUDkwumWjJlLalBLPNpUTjN+VCXwbu3b3LwzcfcPvymlcvXvL06RPmqxlvvf0OmFPoL/3SLzFuR+6eHpOTJki1bVccXLw859XzlxwfHHJ875ima012GCGpmsZ7z4gjF1VB1CRcE5bCWAa22x7ZqNoBUQSt5MLF5TmLxZL5rGPWtty9c5e2bSauSpUFikCOkaFkbWPa5/fe44pTxZiz5FHUWflmszW0Ik2JfjZSt2THJ9/6GA9P77NcrvBtUGhYwJVMdB15PnL35Ew9j7zDjcKje/cZ0sjVzZrLq0sQHSvgRoixJ8WIF0deq4FhlsQ2D+RSGMxLpB96UlRp+TCMJCJHJ8dgcmkR4zHZnjg5OeLug/uM/cDzp894//0PODk9YbFaMus6fZ1RdNZLKTx58py+39CenjCkkXe/9S0a8axmC0X0+oFhGLh89ZLj+YqTk2NoPJvtNVdX8O6777PZXrBYzAihQImaQOcdC+LJ05dEIscnRyxmc+aLGduhpwRHF1oaS2REaWa8OH+BD4GmnZHniaO3D/lk1/D4/AUffvAhr263XIwJf3pE6Trwmc245rY/53i14riZQ55TYibHRHX/9QSCb2icuk22Tebs3jE4LQCcxaHKQxvHnq5tiTmzKg3jOOPOZmSIB+hBrwfnOES224G+7/V5UMSi5Iav/9pi8iFppNFBlO2Mi+sLXBNozeF4cEmdZnPcI3XrQepcNQ1UyXrsBzbrXl2Ug7P4VRCv88BB0dTjw2Mj3EbjUYFzDcH7ifyPY2pZ44Sm6ShOmC0WO+WLFVu1PVT3K2CFD2omaeeSd2qM2LRBLf+NaC3e7a5NCOptVXbGaFU1I2IFqhWbYudEFVmAoepO30i24ljVSxAswSRFtSmwZKNybyRlctE2U0Xla2FH5egUVSd9t4/v6QTlb/6tv8fDR6ecnR5ycnrMndNjjuYzZl2nlbtkXAPSasJC0QtTTfl2cMbuIk5fvNa+qY6bAkWsVYMmP1hCI4nSOFyUqZKt1eT0OnUFSlavbuurTtove9liSYZLBZyovBfNtJ0RlJItNLH+oSDqvSLKz3DBDvVcyZdKCg2WkttHUdSp7JQ4BW3hVEVGKiorBcHlogfzlOEUk+sx2SlPWTPWLy5afewudYX66vh1Q6Ss4JO9dEbq/fB7Ezydql/6mw0vXr7g2eNn3Lt7j+26VxmoCOIDvmnpZh0lwcHigEUz53bda6+3bJklHUoXYyaIx/kGn2RKVIpL2uYTR9tpZRNjNYeCJIln2yt+4+u/wZMnz0gDLGZLPv3Ox3l45wFN8JR15lu//nXaWcujt9/k7OFdrq6v+dKXf5XP//Ivq1fMOHK0OuBVfwFZkDrd1xWurs55+sETurbj0cM3ODo9IOXM7WbN1atzcsym+DHzO4HbjZrLPXrjDa08DREqudB4T4rqg5NTYnV4QNe2zJsFLgp5m8mS2Gw2ZoaVLdlkh7j4oIG56JCzJjTMuo7FrGE2bxAH203P7Wbkdt3T98oP0Oq0kMbRklZt5R0dHXN8cqLBPWdiHFHptVDKnFRGVssZ4jxjTHrQCLRdx73VnLO7J0ogHAZdS9ER44gPjvlMhy6mkhmHxNXlJWlMNEEP0iiRJjSkYQTxnB6fUqRO7bbiIWdSjLx6+oLLFxe88847vP3xt1g+W/Deu+/xlV/9Cp/5oU9xcnYM2SEDuCywjSyajn695hd+4R8y9gP3T+9ym+HN+w/x/QAl8um33+Ls5JiBrC2XlHDjSIgR2WZcUDRv0S1ZLObqFIsmCP3Nhm3uOThYcH1+y9X1hphhsCniJ8dHHC9bmuAIPnDv/n1N9HJGxkKZrWhWLa8+POeXf/FfQBpYDwPL1Ypmrko2IbBaLWmC0BEJbcDNGkQ6jSNFOXbVvdclIbQZtzSbhTEZSbwBK1w22zWh0cm+Hk/XerrOG9Hf1Ikx4VtHaBsWSWjbhsYci8vg6RpPHhIlqMJKnCAz43mUYkaRQjsTxtKxjT2jFEayDQ12EzdEzKdGisbWrm0R78h90s9gYIDzHrxnG3tc55HSWJIhNFLtAcJu6i81KSuqfkwRaR2T62QN9lOjlKkBIubarF44llA0joOjQ01EROiHAXJhZlOhYxyn/TPGnpQHso1vyJJ3EmtrIWNFqfOQU30dMaWBnYNF+YJelIOT0kAmGXqsJGDBEXyrSJZkwswTLOnTSlaVG2JFdOT/zz4o/796fPVLH/LeV5/bYClP03XMFsLB0YJ79484PZlzcLDg8GjJ0XLFfDZjNp/RtcFM1GpiArvswGQwFfVwU7axl8AATntvmCup3myn8Iyzirr+rFQySB1HLvr7Irs20t5DzI/D3OeUT1LRFWVQoYlsZYDXeSb2c2IJEwV80ZeXqAuvGAcCQ0bINI3HBW+24Zg0W08VXzQJKaBDCSOKg05mXKhvApr1T11Y85WpyVOtRJ1tZNiTv075mc1ysHvipEwoT71UxUHnOx7df8Dd0zNOmyUnxyeErsPh2G4GNtuBzdgzpkgzazm7c89aWTqtddj2jHEAEWLJBBcgQYsSd0vJjAxTXz04R5i1jEXl1bSed58/5p/+7V/gn/yTf8b6ao0vnuAb3nvwHv/eH/4pfuonfpwuzNgOG548f8z7H3zE02cvcC6QR8cv/7MvcDA/YNbO+N2/88f48q//ml5vm5Hy4eMn/H/+yT/hnUf3+aEf+iH8zHF9fc3N7S0ueO7cuUvrgwWPAEkRwvVmy/rihjurU5Vn5jSpsXVGiG75lBPOO+aLOcE1NM7jRKejlqxJjK59Iy069thqswABAABJREFUpyTHInhpGHpNXIXEtmzJJdKngSZ4+m1isxnY9uoTUqzampJQEeWnOJWh+6AI3KxkSgnmjSVshxHfBCVA2zZyxuzNJU9VX8ra4gtNw5gTN9sbfOPY5C05K4m1IdC2npPTU1MsFCjq8XM9bzk4OeTo6Mgqyh2xWiz5Lne1F3/x4iXFQewjx4dHfPT+E/63f/gL/MTP/AHeuv8GvmxwDPy+3/M7+MY3v8X//ku/zMubF/zg5z7DO48ecnc+4/hgyb07x3zyE+/QtYESR26GyMXNhsvra9IwcLCcc9B1dM7TICxcgH4k+UKRQMkO5wJDv+XlqxsuXtyw3gzc3G65uLlESuL0ZMW940OODg84PT5mcdTR+JZF1+AbRfnibeLm9iUnB3OQOWNOrLqGREAkcXx4wEm3oJNMf33J5Thw/+FDXNMiKU/cDRFnKp2ROGyJo5K6hn5gyI7GzzRBcdgoBD1MiwtqZ2KLNCdVNzrnaDpBlp3O6TGzQ8Fxfbvm1fkrrq6uGFaexttsd+do21Yn+Eo2xZYRsp3ThqShvVVpmE0IgOgab+czfBOs+DJ/qApriBClcLW9JZofSvUoinXwqZFjQbl7Yv5MgioNJ5l9jfW7TTEVchiqTNF1rmeUrsngdFDsZrNhvVkzn3dIox5KOkZhYIzaehZn6kSpsvpoLrWa8ITGiudsbudTcl6MxK6tAjFnUB3j4qcExonsGco1lByJWfkura8eLIVSnClma0t+Qgj+jY/v6QQlA1k8Q1KkYMhbbtaFly9uee8bz/Beq7Sua5ktG1aHCw5PlhwdLzhYzTg7OObw8IDlsmMx7+jaVkmiBSpBFbB5Pd4q+nqxodRZ9wY/Fqdj2Ml7JjwlWTKqAbESIHdoStn7NPZ8rpK8rMdfk6WiA7Tqwxmkrkx+Jniw6u9rW6WkmsiUPRn26xtjZ01uiUWsxCs3tb0KCuuGoOPHxdRCiGgrIKkpVS6FaMlJFrs208eQKQmpRLO6R6kJjSt7ihL9gVw/g8HEOWd88Dx86xGNMdmlOBaLjpgLY4oMMZLGSElrxiGRRYNhaB34wONnT3l+cU7jGo4ODrh/fKKtDYGZ16F5cRwZ+54oI8Urg/9ye8v/7e/+Hf7JL/xzhs1Ik9RRlxE++OAj/vb//D8zX7T8oZ/+A6xmHW91D7hzfMLV1Q39duCf/4svILGwbOb0Q+Lq8ppm1pLTiAtQtgNf/sIXeP7BR/zYZ36YZ+8+Zb6c08waDo4OWRws6XwgTAo2QRr1oDkIgU996pMsFiucdwbRqvw7xqQoRdLAM4w9m5drSoazO2dKzEsauJxTvnnJ2gZRs6diSiRPsXaSIIRGZ1ANfaLfRnJyqGdQMlTO5sLkoiNfzHwOUbXQNF211ARbbLZIlVrrOnfiCMnZsE2T1tu6LinjGjO2ozCbzWibFm+Tmp0obyrnMq1Gr7Io7t49w7fNxJFQCBzb5JZQOY87PTYr8kLfD5y/OofyNb761W/wu37vj+m8owjFZeZHc1zjSRF8dJwdHvGTP/G7uHe84uhgxeHxAU1IlBwp/cByEI7HY/rxPjlFnezcBVM1KY/DNw29d5QE69s1br5g2czABe7cO0InM2958fIFwcObD+7xsfsnzMw8LktWBMo7rXQy5DZx/50zfuT3fI7lg2PefvNjfPFXvsKvfOkFg4fl4ZL5wRxfBsYBZm1DmOuBqLVZMXQs4VpHFkcz90ocR2jnC0X4StBrH4TUdniEWWjxYsWRXXsdKqeS1FQSqd4z8bikyFHwjoPVAQerA9ysIg5CGmz8RsoMY8aJV1+mWJAk1bCXKjio6y1ndWnOgiFBMhVZWl7pLzqU3K3ItewVcoJamMvk1j1RQs3ojwLBN4xxNFS62txbG1y0RVLqKSC7llg9AxwF8WFCnoNXqf36dm1IiSKvU1A11ZTzuzhBUek3qAeh1sCKHCsfy14uF5xoclOHOHrj2+QSTdCiFARN+mQqakF9a0pRMnWyFtHuTPt3JUEpFQVgB4PVOFcKOQpxTAzrDdcXt7x4fKl+Dl7U5bKZ0bYNs1nLbCUcHa84PJpxdveUR48ecrhc4kVovactdTZIIaLj53PezUTwYlJhG1Pui25eT0GKKSMagaYmNfZ/UzI99U2Y0mjq4rYfKjq5Uu/znmQrTxiPJgBmeoUR6LD2yA6KKBPRucpGi6EVRedK7QZLOWsfONHEob7VugmdmINgoQ1eDb5yngZ+lVSmDYdU9axu2LHs/Zu9l4p8ClAzGz0YtbWSK/piPyDzGXtvCew+uaahISAJ9TXIiREmslgcYHPxkqsnT9ne3HJzuOSd3/t/YrYIxJKVdR8COXpuJOJbHa8++MCv/vKX+Rf/7ItIL7Qp6NwRV8CpO/Dz56/4u//Pn+dHf+hzvPHmA2BESke3UNnlx85f8PbbD3EE+stbQuutbab97tB4Uj8wXq+5d3yX49NjXHAMbsQFRRPqZO0KI/sQNEnycHb31JK4YoeyowlCaSFWNZMyfklR5bZx6M2SZ2e8FkQofmf3rsTugvcomRxLVsWm/FZFVxbjwOwCUTWaem19W8Kfkt4TV+EyjNhc92pr1uIukAVyGXW/73Ge9NprgF4crlisliah1IXhBVzQoOmcGvBpDNfX9zY7at91t3q11OcR0c+bs3pptG1Hio6SAo6O4jztYoVrWj784DEffPghvnW888m3+Kk//JO884mPMW/1XuQOcgikmMl4XOMJfSG6TJCGNgRyI4wU+iESt5Gvfek3GF3g3l1Fz263iXU/qimkXeqxZOaLJbN5h1uuyEczZN5BTuQRxu0AZUZotYWQciR1c1LrOXnzmB/93T/C+YtXfOVL55SiCqdmtcKlgUObJIz3pBihFZxTomdOimBIDjAsKMu5cqNw5Ozw0pLHaH4cLdEHnG8oIZCAzdAzDj1OHCmP5AxjLETjdHmn1f2wHSnX2jpvmgZhmOI/CI0LlKwDC0WcFiQek5FnUyjqevHeE3wge/3vPNoYAlvvJSl/biLhWxxqmxnrfqMmcyI4MmHmcOIZ+2jPoXYMLmsCsjyYc7hc8ezpc1UuwZSgiEAXgl5ToJt15hbspniXS1a7/ZxV7aTzJEhRE5M4jppgmyhBR4loi0qN7TTZr2cmaFGZDa0K3k+CidqaF7c3oNUSphQj4qp8uCB4MzsteFEH9KxBRxET26u1kUDOyp37Lh/f0wmKyxlytCRhV2GLJQsKEpgmHRRuy4UcC2PJbOSGqmjIFChPJsnebD6jm3fMlx0npwe8/fAubz66x+nREW2n5j5ZdEKtGJGVoq6klIh3Dd6gR33YoQCWWTlDNCqaIuxQlBq8sYCw+1rISGTnlGrVLWapv4NSVF5GELOorlp3gSTquYFVACJ64IjgpVo82mvmCL4xr4q89xo12yh6cAXL2Is6pXofMKavrkxdnSYvLlPRUU23Jrv53QVDK5mye7kJh9GkZUq6qOiMXTOnULCUSpZWMyhfHNJY1Tcr/P7f/bsoOSEp8uLpM+6sFuTG45qOIkoAzh7mswOKOPqh5yLDV770ZdZXt7jicUVYoZ4hKcNNUHTovXc/5Gtf+SrvvPUmbdsYsqbIwSc/9yl+PG346L2n/MoXvsivfe03ePzinE+89QjvWuZd5v79Bzz56Bnt0jM/nBFTwudsxFmxmUcKe5dScCkZi14P+Jq44IQwzQ5RPwh16SzKMfANB7NAGkaiTdf1bqWQrWW9qahM09nh7UQJyYgmStc3twTf6swZk4jXOSY52YTjUdGblPUwU+UYFDJkUwLIrhp2Iow56p+Y2E32NVPAvAuSuWTdTpbftE1VIalXS+M9jjjtmUoyrXsxF4X/SzUVK2ra57wnx9GmXmvLERFubzdcX62JY+bBWw/5UflRWt/y3vtP2G561jHz9PFzhs3AcjbjrXfeYnFwwDfffQISmc1a5suOHCPr9Q1t27BaHZBTpt9GgvPM244RNQzrh4Gb8zUfvHtOv+75Wv4GH/v4xwitKq6IiTgktn1vB1FmMwyU61v6DzKzrsUXYXNzAxna2WwSB+Rh4IPnr2gODikyZ90XrreJwY/0eeDZ83OePL+g9ULbKOcil8hmc8s4jhbXnHHitPv7jW99i0fjW8zmC0U6ncfHDWmM9P3AxeUNPjQ410xxOpVKwsfacqZSnDykymTo2N+MPNleswlxQmIBSo6AmR4OxkdLQhw05njv8QgBR0T9cGKKRAqZQIwj4zhy1LSkcWTs1UNFhQgaX5dHK04PT4g3I9vYUyQRXWEeVgTfkvrCkHdFcyWYtl3HrJsje7FOI37CW7JVExTnvKHxO5Jqfk2S7AhBCE5RPxJsiyKNpdEYk9I4OWpPyb+hNdUTRWXHmsQ5J9biTyZeKJQSpp/V9lNFYownV88xTNnpCkRNpAQdC6DjU9RDJY5p8hv7bh/f0wlKKvm1QWhQz+f0WhUk1o7QFoIRNq3FsSMl1QpfyH1hHLbcXG3wIjz+xjN+LbzLbNZysFpwcNxweveE+eGcbtHShIbDxQHzbkHbBGazwGrmmTeeBphIt1nnFQAoFlyMZIQ5yopCYPX+eWH3Qeyg9rJHqt0RU0vxlvBUCM2+X5GYqYWjr/OaWqloNV2sci0lKQ8GdNpyAFxi9+bteTyatNQrX0nEdShLdlOXamo7eZ0rPJ1+SpDR6qomIxWZEShJpsFlaaL9mPoH8wop4OpnwaSCFlAq0VYENaETrCWW1XSuQHANi23H/GBOdFr3axtDiFnA64YcUyFtRy5enuOywxWhKcId7/FNy/V2yybpeyZlrl68pHMOkQY6x2hyvbYLPHvxnG++955u2DEhMZPXW9qc8Y3jt//wD3J0eMidu3cJJjsUi+bG3bVU1mDiXCait6u8KVHTNGd8pFJqUFJeU4XTcVZxotb5OatcvfGNBciKbhS9LSKTLLH6xozG68ilMAh4YxbmrH43iTKhajmXqcdeDJKTaWlV2LvQDyObzcBmPVDnoACvt2pkbw877Ym3bWuir6yDypzDEdRYzsZf7JaZEMScoS2hKmJE7aKxo5CU85I0Cbi5XbPejORUaBYNp/fvsu4Hts8iTx4/5cmHT/nBn/qDPHr0Jv/w//ULvPfeR3z4wVPW691Edu/1oM85EYKj7a7IKbPpe5azGceHhwSvs05STKRYeOPNd5AIz148IfZRfUS2vY71SLqHK6Tv8MTtwE3K3MotgvIh5l1HydGQgJZt8kQHqfOcrzc8Pj/n1eaW0UWGnHny8hVf/ub7XF1eMA6DupnmpN4YfU8phVS8tj6y0G97nj5/xur4iLv3H5BzYrWcs2gb4jAy9JHNdotvAmMUbXmkpHLfVKXFWeXMYyQN0dxL89SmLGNifbkmWqukIsK75DXjCASvIwg8nsHQGWcIoXNmgeCUf6HEU3UpnjWd2ghINocVoWRDKq2dHLzHR7QdKTorqmsaRh8NmdBiuGAjPILN2ipuinGFgt83P7R4nYzUriE1T3u6qkPFCc6sCJoQiEMmpIj3jpGeYdxqMhd1+vm8W0LJpDGBjYwYbSCklGIJoSXhhprkXEhpRJxYLMzkUuesaRJfcoacEK8eS0GcXgtrFWlcsqG0JVubXqYW03fz+J5OUH6zR847W3VnPJDJephddTbZyE8mbpU3ovpwJYMXUtJEJuWRYRi4ur5Bnjjcbzw2uNvjg2rP21nAB8fhwYzT4xVvPLjLGw8OODhasVjMmDXB/CK0R5+ToRxT62XneTJZ0k+IgoGCE0IiE7KQbPHoGe1RBYLxPLI66vrM1PfXU0YXlyY5xgeYuC9UdyRDU/YSE1+vXc2iilYXomRGfShaAMp6t1yQihCVZAmQr8mTIF2dv2PXoiJJUVEqV9RIC7Ta1bkoMs2k2cmQwaeKsmCVSOXgxHrVwENCdf3JgZt3yKzDFTVyi1OFbodWLjSuoWv18zoLXKPLvARaCltxUDKuQIMQYiJIIUqmkUwwgufQNDz51vt89O5jzlYH/Mwf+HH+9y/8Mo/f/RaXz59zeDJj0QYaKXSzhtlspohHHIhZod0S6/WvjpdK5hTZBRn1JhC7P5bQG0lbY4QlKDiy+dmEVt1AN0MkN2VyJwXjFhV1SNXfU/ddIZBzZn271TVmCXQ2gyznzP+m7CUmdfVk8+QRdv3/graJkhLBdeq2JV62NNRbZ/dZne3nalZXsiZiOSWi5c6ukslrsuzMH8euVTTTKeWrKH+Mos9Rss6Qur65Yb3t2Y6RnOH85pJtHBhTJCQPqTBrZ5w+OuPV01c479hsR66uN4hrFJi05F89TOzAcVsohZhG1ouBlIWu9VCyzcPyUyjYxoGWjhACbfC0TZ1fY0P1KDTB07WBtmu4vLq08QfmnruOOjpgjDx/9pKvffNb3Gw2hDbwpd/4Bi+fvmK0O/RrX/gK7339G7x48YK4sUF+lnhWJIvktOVtbR7vHdGs8gXlSjjvbLRFMQlvYoyJ6n9EiiaHLVSbdVsIFv52BVXTBA6OjmlnM3BuMnVTZCEgMetBXFSKr6TMSCmOIrrnK8KxCx3avnbmgpyd8qYkK6W1Dj+tzt7Om7WC0ydQc0lPcEI0xNoZcum98mzqcFRfnMXxnRkdGIphzsBSi1NR1U31HZK9Q987jwsBieZU7QOSB/MDy5pEIeRRi5Vi9v3eK8IpYkmDxceKzsa9wlUwJ3Lv1ZyPgnMqZa4ikVAHoNZCypdpOGjK9TUgpUIuMP67gqDklF9DQaqtcM3yip2MuQaCmrCAcjlg6q/XQUpguW31qsdY18bn0NkJNra6aM9YXGK7HhH0EHgqihSE8DW6mcpUl6sZp6eHnJwecHi4YLlaEJoZi9kBB4sDZjNHVcU40dkOXTYT/JoPZD0SKgErGXynSZR+5oj5cljf3FlgC66lqoiC6eYdgutqIqKVY0w2ALCAz1a1i7WTwn4LClPzJCX12ph7RS8ycWTqNYolhKWA1Gm5TdADb1R/B9d4Q4I0CKScLTbpgdVSh5cZqawUfFYPnLqxJASttDOTlK7YOim5JqMyGSkBhqw5lWf2g7kLA5N/C1RrapHCctWyOpiDJSixFC7IuDhYT9nROpAcmbWe1jwB2joMxkFbZvzk7/6d3Ly8wXnPfNUyDDd88uPv8Knv+wQF9X54/5uFlpFZ06mXCdAUrzCtw2DvZAiHJhnBC8FcU5vgaBu1cXfekUpkGDO3my03N722TtA5NWO00QKlsF5v2GzWLJYz2qZhMZvpdOO8M9DaBfdoYwsUoYhx1O6iCD6oeV0aI3tL0s6ZmgDaXrZkRnB2r+q8J62+anXpjfsigkLKpZDGwSTjoxp0UfNw3dtpHPV3vUOCEEQ5Dfo+dS/gE01TuLi55Gq74aBbEhIECQzbDe9/9CHRNVxeXRPaDu+V9JlKZhwHbje3zGcHNActqY184/1v8PzJSy77Kz7zuc8AcH19o9fN0EvnHCE0FnVGizXKs1ivtziZ0wSbI1SEru1wIjTzhtXJAauDFZ6iXKFSGMeIE22jjTlTYmY79PzNv/k/8eSjZ4xEJZ7aTJYYI2kojKPZpJeEbxreevttVss7lOJ5/u5jrq4uVHGXlKhpW2KKlmKxttgepQlst+uJgCnFUQY7b13SfZoz0QoGAUpWt2KNy3s+GrlM66YWF5pza5WvvECzSBDPmBJ9HJkPKFcmmZ9Rijoao2RVcYm2rIVEi/qcJEERXvNXoWRNPkRI9mWqCbIo38W1DoLKoNVozfhNhWn8hnOiykkp6lGFMwsAff+haZCmwcWIKxlXbIYRUFy2mV15pyizmOxRRGeQpOhPFvVgsYvkGvVhidIzjiNDGqbiV1FWHe8wtf+Lo2RD0FGepjqbDzDqXlP+ppq1ueqKLo6YeyqtYIy7gbDTnLVcSOiZ8O8MgiJuZ5xbDzZgr+1T4X2Z/q4/VwNs2stgd4/9C2gbYGoVGOJBmfit1cFW30ee3PZTzmz6wlbg8tkVH3z9YnofLhSatiU0LbP5jIOjA+bLGceHK05Pjzg6mnO4mLFazGiDSumCU4Kk96F2ZdT6HV3I2ZKn2lqRvU+SNTqACEO0TnwxVbRzZMQs9z1idvVqgKueKD5r2wIxclQRiqFBqspxli3XiZh1PiaK1phcTmNzIY4Z74Q2NPp7Q5o4DlkUXs+moS/A6FA3TSxuIARvxGNUEpi8Y9sPavltbQovQcm9xSaKmqLFiUrTE1BcoKdF2gXq3hvxdV2Uog6oriDB0YaWZh5IJHLWa6abPRNaPbQkKfN/tXB0QdtuuejAQsQxn8H/5d/7CUpJ/C9/9+/zj/7+3yOUxNnpHe49OCDngTzO+cnf/ztZHKxwTUNyQsxt7dzo+IGcTRKr69Q7aEI1xapSwd1eGbPj5mbL1eUNm14Js9rvdtPgx1Lg13/913n8+DE/+ZM/ye3tln4YmXczBEWuqhRRHfsdUiLCqGZXaWTYDmz6DYvVgtViyTiMqn5B39O2H7i5vqbrOpar1Y7YX3Ywc3JK/BvHke12q2iHQeuzeWcHmSYlN1dbghfOTk9YzWcU8eQsinIUeHVxjiPy5hsPOVi2NPTqi5jrDnaUsOD5y0v+t//lH3C+ueL/+kd/lqPjY9q2I6eR9999H1kscaFhzCppTimzWMxoO88YR7aXL9nc3tKvt/zqr3yZcYgsDxY8eusR62FDCO10z3Ic2Ww2LBYL5ZFYrHJOSOvMq5srzo5XnJ2ecLDsaBrHdtyy6Ucu17f4m5ZNXjPzntY70pjY9lu10c86r2l1dER8NfAbX/oGm4uNqkekUIq2h5IlqF07Iw+GVDUZ+kyaawIefIeMSqh0smu/Fad7sB54BkJMqC4pU2zGUgZc47X1IY7Gazu6Sn1FoDTN1GIpdX0VnTdUeTWKagSG0DD3AWxciPeKaBA8MmYOGsecKxoHWQYiiW426AiGYYuXDodnIRvCfKTxarY2xAhlZO63tK1+hn5IKrl2gSxOwcF61pgdvsp1FckuZvteKCYq0KGn6rit/+6cKpxC09F1DcEHQtPQ1PMjqxJNUc+i9g7OazGI8sw0vXeMUVs2WpAp+l8sbkpwU2Jf2/2lWHJXdjw2SrGnNoO5bGaVwVFyUqS/6D3UNs1IDmUPpS+YMkXPmpInsUjtWBSKcVPUCPG7fXxPJygl731Qq0z2bfh3SYNBc+yg5f0kZf/nAMueDY4WRVcqNK4XXbPUrLnwtEGndMA5lZuJTBJghbC1wi5ZyCP040jPyM3FLS8fvyQ4QVzANx7fCt2i5eBwyWLRsFjOOT454mDWsph3rJYLDg8OaLvOKuQGnEMml9sylTkaVFSeo47khiIVGMf6vmT6fPV6VhKqjPUDKCxYsMm3oq2qOvMjl6CfD3SEd1HDfmdGbJSML7sKKamGUNsWSZUzIhlfJd1Rprej0khNMpIN/yJAadRALeHpt4Xf+Or7xK0ebPfu3uXhWw93bYWiveRi8H5RfiaheC5ue46PFfos4mlcUWfUnBE34EgQYEgbNttbDULWrSuixDRV82n15JwjxR7nEvM2kGNGXJmg50U74xMff8gnH93lp3/sd/DFL/9Lbs8fU+K1yks7z3J+oqZ82svQ+rq+d8DSy2m9O5svVTNT9VxSNA6nJn7jGBn6kZSCzRZxRm62+CY672k5X+DQBFIQtptezxQUulYFkSXrRV8neKdEz37kgw8/YjNsePutdzg+OqZEVb+JZG5uNnzjm+/x8OFDQreYeARYW01VZWrWNaSRjQ1Icw7GOOKCMJtpFT7GgafPn3N8esBpe8rh2QFCw8X5FZevbhiGkadPn9GPt9x9eJeDVlsjq0VnSbaw2Qxc3EQ2m8wnPvYZHtw74Qc//VliXkOC9e2W7e2Gzc1AAoa8axvnVNuWmXGMnJ+fq2txKUps9p6vf/XratVvjcFh1Jk2/bDVOUBtu4PzRd1ovXf80A9/hsVqyWKmE3b/4T/8f/P4+Us2w4Y7d89YLRoOFjOaYDipqeaeXN3y7gcfcHh6ygkzbq5u8aZmSSmpW3HR9oV4jN8gZMIky663pJoglVILIDNFaxrEB12Tgt67VCjRyKkATUCCVtqCJSjjoPPADB0pZDNZCzovyqb/5jgixjchR12cIdAsZsS2xXUtuWRur6+JqdckZT5j1rYEV2jKOSH2iNzSUpgHOyJ6IHlKccyLowvaRvRNYN6BzxGXLyke2uWCW1fYDAeMqMS3CzqHicbjXKMxSdROH5SD4YOicrWtKCKkMbNmg2sDsyB2r3eKuZxsSK2eSLuTyn5fzyZt31ei65jHCaXOWRV9DttHDobUT8UkRVthteDOUZMIoVIhsvFRbNq0Dzp3LhdEPOJ0EKDzuobHrPtf0e40nRnO1HHitM2TjRSrBXUyVdwuZv2bHt/TCUrO2Wbt7HqJE1riXk9WgKnft+vZ78h++5rzWiXYF/ZzRpqTKr2qaE2VvOrBq635aHN4/HTz9alqqVj75bX9od+NuSDZKtlN4eZqy8un10Y61Z9XyZwwmzUcHMw5ODlgfrjgaHXAg/v3OVgt1LK8myEE9BT1hkjovB40+Ve6bHUO1HdkSYn2lJTPY+Cqk50ix96wGGnr9Y0lU1atw6S0FSbWMglBe6Buug9GFJv4KwoWu1IIzRQlESfkOKAVAlZdoBstC0POpBy4e+cR1y8vyX7goD0g9TINgAOzSKqQJjU5g74f6IeEawNFdGLrWD9c1sqNUlhvtlxfjVBaZCJeauWSao+XTCMFVJBOM59Na1RP82RcnsRnP/02P/7TvwfKNV/+ypdg3OKajoo/BV+vCOSKXsm+nsmRxZj+e1ykKgcvoOqxks1y3OvwxqSLQLLKbhU+1naZOsPOFD0z34UsiXEcibFXSNrafpXALDnbDlCOwXp9O7V4Nust3gViTrjgmc10iJxzSlLONhukcsZiVDQtxpGrq2vO7tzTHrjoRORhHNVcEFUevHxxTjuf88GHL7i82iLi6fuR9W3P2I/c3m45vzznw/ef8+LZOYslfOxjb9I2jpSE588vefXqljQWfuCzn+Wdt0+YLRq224AEHXb46tUlL296iji7xqmGB7vQem+G7RYRoWtmlLQh9gPXr16yDg06qE1eGxJ3s7mx1odKRIPXFp7zjo8+fMLQD4xvvIEb4Ev/8te57QdSKYybwltv3qWVxOxwweF8iZhZ4AcffpXnH1zw6uWWm9BSYo2Rul/VNsqk3V7fRynQtuq+jOgEXIoagykarMlEtkPJOY/r5pqsSsaLI223OkW6HryhxbUtubppF7MmiKNxKWrlr9W6axubBGzOqGVL6XvjAimXIzQBQkBcJo8j282GFHu8ZOJ2Szg+wjshMWr7sQglN5SpSCrmmqoFVsqJJ49vaDtFsZddtDiTaCVTXENpHL60JALbfmAcLxjiMM3NKjmRRKY956oHSF0bAptRpcFm6QKGAqtJnMVTjCRbD6xSh8jmqb1lAYmKTmjhrQ7LSJhUT8nidzIVldMR8oaOBOI46CuJ6PcpeG88HB/wzplySBPOMamzcmjtubKdHWACUkOMjHdTz4A4jtPxkkRomt0w2e/m8T2doAB7gR8qLCg1Q8t274UpkdmZ1uy1d74NeXktQYHpcNPJlWZpXN1TS3UTtOw2RcB6wjGq6Zvs3xFdYPU97idU2ZXXfmYq0cmTz0EFjTaMnD9fU+SFuSZC1zXMZoHZfM7B0RGLwwOWyxknxyccHqhr6axraTrlJVSGe23RgC6qYoqJinqIwh3U2St6NTByoeyUOnuVEWXHAUJARIPOOquiyKu2jUpurckKZtrlncP5onwcSx5L45EEPhaKCGOBcdTtmyxDXyzm2gdPkdliroddtcqvvW1776VeT+0rkbIa0BWUS1RbGZ4WSQViYu6XPLzziLZ5lyFqz7UmE6Xox2lS5mTe8aO//Ydpj1ZathWb9VQyOsNJyHlktig088TRg0Peun3E6mBF02i1ppmvrqddRqLXuGRNzkpKOHR2STI4PVVgw5IV/TVF7o6PD3l1ccV4oyZYTdOQcpokjtthy/Xmhsv1FVeb62mgWYqJlNVSfozRULtdksCoSZdWVxk/awne8+L6FXJtVZtVcMPYM7qRj15+xPOr54jN0arXPhsx9NX5OR+8/z79dmR1cGCBzdgOriJ88PL6mpdf/goHBwe0obWgLqSk5L5hGIhD5qtf/RYuOIIXvv715xRR461hGKEknINu1vD4YoXznu22J/iWb379PZ68usT5hqZx1qbcrwJ1z6QEXTcz91w15lIPD4eXgisZkQA+QFU3gHlXWOBOul5Lznz47ntcX1zy6P5Drl9caaIXAqVkDpcHHCxWBPGU5EhJ9/LN7YaPPniMK562aVnf3E7F+BiVMKqhzQjJlStfyiRNz1KLOSPmV2nqpKIqRspsSHhEVBGzzb3u+2yIrHMUp+ZtzpJm5xwxj+SkarEqcKxLWxEZ47LYNdafGyklAsrHGLeR2G8YY4+YxFlKIqCIZk4NF5cbtptEpKFY/BErdir6N6bIi9sl8Rq6W+HszpLVQliEDQ2R7BLrvqfPQiqOsdekexq4aQGlElzJ4Eq01pczvoUlYjY4tvLcnNtTOVaYvejgRzHUqmACj1L0s6Pn23SiiCpWvfG3dLiioty5YG37pGNfpvAccV7bPIrOqLXGVFBXP5RYC+tCkYyvSXYZoZQJOdkNVNT9RJZJTZWLTmH3zpu5m+N1CsW//vE9n6C8fvjXb2Ir3jbK3o/kVO17d/4o5DKRvurx+9qz1p4jRW9uHUBTNOOsxjylqK22M6KVIjqvozi7xKce9taGsV7g7qcn+lj9oIbcV/SmQNbA711AUmZcZ/rNwOV55NnjWplB2+r47qYLzOYzlgcLVqsVy+WSg8Ml/1/y/iTWui276wV/Y8651tr7FF9564gb11EZ2xkYSCCRUCophbGEHmAL855SeoBQ9hHQAQkJGggJGjSQoIUoJSA7iIdQPmR4kH4PY4owYPvZjsKO6t641Vedau+91ppzjmyMMdfa57v3RtGgEellhe93ztnFKmYxxn/8x/9/dnZq2gzDlu1ms4h+iRih0G+RxfHNlwfB9CvqsjEHR4fWR2JZV9tcq8lsAkZoa0ZYLdNYJmnFy0PQiGWENRZtZFdFvJvEzkcdZtKgHtW7lkD1wMeTleNsRb10YGcva0RLYGnt9mtJMXBnGPi///bfyr//Dz/L48M1pd0fjCMTVehy4bf+4A/ymR/4FJIPtrAuonmGaKgpUfHeo0dcXDzjG++8R5kz0neEbgYpy4Jt1yxLNGWieqbtItE+z5Ma69byCMX9C6kEb4dUTs877t0/ZXe4omZ1gbV5yerfeutNvvqlr3Dx7JIwBrYnJ4tnyTEtp/rK2gwUkXXaVZQ8Fw46E2QCrDtCxEoib771Jqqw+diGOVZHIIUg2e6n36Oz01M+8+nPkFLPPGaHHBs/wcizORemXeHJk8eEj3XE82FBYiK20KcY0dSZEVyMpBAYr5+QnfCbkpmr5WkGha8XSy4UpRs6Li6uOewLoQd1ZHS/35kce9dcsSuHg5XBSikcDntqyQiVceoYxwMxRh7cu7uMp1oL++lAR2fBmVrp6E5/zvXlHjqhnhZiSjx69D4LnyMIm5OBcZypWulKT6XQdz31oFxeXRJDoCdwcXlDrYbltYTekLW6bE5Nr8Puu1gJRldUyJ7oOn4ltPfZfA1qJYy15CiG2Gkx8a62DmModJ4zUgsSnDPhpQRq2zB9lQuRjJVGj11365wZdWaeDuSc6ZbxaWW1EAVq5Ppy5OpqZlbczyz5OuqtxRKY55mx9NSQOFzDbs68cL/j1Yc9ijKVQJWIhohIImmwXbMlnssS7qgGYVFeqI4it7xNW3DSKAX4WuBZhGknNn7fgpsuXB3bHyxobGuToG5TYeciEdKQmPJsL6uyWoYE3OqitSw3PpmV+9CKuhSDmSoaglM94ZSq1CmjIVs3qicCbY+ypje7+FKy77Wm8C1EKM6Z4Ts/vqcDlMN+ousG32DsRmmLyL2mbQOn7W4rTKa+STUoatEWaeQMP5rRGiG6cI75lTRkUnxCto26+KaLZ/7tKxcezHMBVZP9bgCCHv9ZjcR4fM6Kq6p6VL0IS7XzjWIlh9auVoX5kJn21smgPCWG4OJVpi7adYlh6Nlut9y7e5d7L97j/r0zHjy4x3bbEWNvbdThhJZ1hcYlkTUeVr8T61a1pP3rHKYuQYIdjUrr5YKal1JdEvUSuFJqXIKk9jxNvZD1xok7M4uVy0zjo4nwlSVbuX2ICU1pa0tsQZNvnNJGkNddZ+GHfugH+Y2/6XP8m5/8D9TZSYPebUCFszsn/Nj/9IfpXjrxwFNoVuMtExIBicorr77Cr/7SL/P2N97i4WaLtQpYBmbaOO59oSZ61xjxwf01zM7dljIrMbXFz4IvW84Sc8lexgwMQ8+w6ZhvDpSSmWdrBxTgwZ0HvPLiq6Qw8MYnP+PusWVBNhSbK8Fb4FWVlBLDMPj9qwQ13YRpnq17wktCrTSa+sTpySnnZ3fczNDPWUzH4p133+EwT7z88suu1WJtrdYWXTACsLkyBwmM92fu3L3Pxz72mvOYnGApsrQhN+K8hGAdSSXz6NH7bLcbTs/OePToXU7u3OX89Mzbta0bsOsj7733iLfe/KZxgUQ8ADkAyvn5HUqpHA7mFp2SzdecJ3dKzuhhYrc7MAwd2TU+YjQn7YKVx1BlnmeqZjbDlnEaSaEzbZTrG956623LkFUXWYOKPe7YRWIH3SZy89410zzRpY5QlTJNlo37WBeMq2Shr1jw2qKNhqJ4B6NKpUjxvJ0l8bD1ra7op09ocTl9pIklrMlYC15UhZKdMHm0Ubd/tUDExkOlhrKUg6Lzq2qeOYw31Dx5MOMyCaxBdAzKCy+ccu9877LrASUt6HjwdWo8KO89PnDIgW444+4J3N1WOjkg2qEGJ9m9cs6az64lkFivs9GGdbkua+91fkcQ6xLy0njDQVYKALQOG+PL+b0N0hgES+INdUkSgivOhqOHZCixf4daIifVysS1Nn+sNRlTrWQtxmGMwjD0hGAE7JyLd1VW5mkidG5JoIaGawsc/brt+sQFMo0uoLksz/bDMIWPOr6nA5S3332Hq5trNoN1wnSpM2EZki9MleenANhACHEV+WpsyWUR1SP4Dpbo3Aac/aqqcytalusDSvyhVbGsNcR2HgqylgIs8DjKUJaB51/Z4mNtZav1/OvzbVp+GSIrEgMgIbGc8lFUUIpaT7tWZBImZm5kD1zylryLxoAEZRjM2nvoe87Pz3nj9Vf4zKc/ycMH941fgBFWm6PycptblLigUh6BtwyMtVTWJmXDhohhuRdqDFQXXhIKrUgDTbbZw3ZQobSyW8G1TAzZQlizgOPn6vetqjkEj4cdIW5902TRJECqMfTVNv2791/g//k//o/EecvP/Mx/5Pp6TymFJMIrr73AH/yxH+G13/ZD7CjGuRHTRlmfhaE1c1LmcebuyR3u37kH+713DFlPo5a2kLRxIi6c5KRDS+NoC1Z02LYUvB3YdE2uLvbMpSCxYywzl9c7I/BF9xZR9QAAQhc4Od9yp5xy5/7pUuJp9ewpz4zjSC7ZPXEK+3HPXGZDU0RIyc63kMmaid5u2Z6bJEGjkpnJuS4LNtj53NzsgOJKpSzXHqMZ/onrayzCVS4YmMvMkMIyZ+dSuHr61J5NMhSxfd5ut+PZs2fcuXOHi4tL7t495/79+yz6Q35PM4VMIaTENO+RCjc3O+Z5Yp5n5tlVbX1xmOfW1SXM87wgKtFLy0+fXjCNRuo0lEDYs/pdSRAOh5GQLAgIojx+/32ePHli61C1Vv6rqxv6TtCrJnA2sdvN/MpXvkqphaSJaW8dWLi+SFsGFinzxooGK8G5PHlTADVSNq7kWo/ms/M5xKTSW0BoEuhWClZV81OtJoGujtrUPNp665OslQ/MZyebCGOx86hlpMnLizce1JyZ9yPTdKBqtRZrUdc28W4RFTRUhm1gO9hztGcyL8GADYTAPAfG3Y6Hw8D5fTg/qRAmVGaQ3rVc2mJm938pdXsn05pEHh8mSyAq1CA0rCG6OJwvhf7So4DG5wiKdwnaz8UXNrNqsDleVT057zCNJywQmFfJjJYrNnHEWg3JtnUlrt/nvlkxOhqVC1mMdiACMQnFpQi0BpwfjAbrZNS6JgHq3UvSAscApZmGAhzN9293fE8HKPM0c319zW4H3VW3cA26lKw+fuQxkKLZYFvrpRBKXGqBBpiEJfoVN7Nb25Pb3rtubo382pxaV5TmuWDIOR148GAT/cO7jdp3rZ/dmN6woD4CK1H3eIP3haeu0ThHvhKtLa5RgZsbgrgarRxBNy2w208jew4APHr7CV/98q/yX3/25/nE6x/n+z71Oq+8+iqnd87ZxOQZBUuEv7QPYvXQ2LKshduCaRIsNXE7R6uEWCDRSJcNOWlaC+t5NugT27Ad/s85L460Wop7+KzXpkfvV4yo9va77/Lqw4ek3rgfrUygy301sa7qAdarr7zCn/x//c9836c+wf/nn/8ku+sDJycn/Mbf+MOk01P+48/9HN//2Y9z59z8nGJs7ZDWqSQh8s3HO77xzlP+0A/8ML9ycc27X/hlNAaI2ZV/i03ydj4uamYx6Ow17vX+FfEFRIRDnpnmQl+MyxG7jjnfcDUWxrEwHqwcWWpdymANaSi1UKnMeaatpEXrksQ19/Cci3EKSma325Nz9gDFibXVuhvOz8+XjMu4IY5AOM/gluFkzrz40gtLoBCdn2HX7ryhUki+4Tc9jzafsvMs2ne/+957iAhnp6d0XbcENbUq9+8/5OzslIuLZ9y5c2/R8MHLR9aqntjvJhMYc62VkjPTlM18Me+x1k9r1Y4ipJhAMVGzCNNsrZrTpBwMdrKAu7j6rvtdCdYBMgw9m60Zl+Y8887b73KYJ+cXGSfh2bNnnJ5umaYJJbGbZ4Je8eY7jyxwF2G32xuE70jysTeRNFjF+T8NPZyn2Zj/2POwAKyVg3TZPMs0k/OVJw3VW0tnUlHAPKfm8WDlw4bI1AplJkh2iQhoAoHT7sB0GG3pDJUYoJYZQoZo837OI9PlZIrO2YTipOsIwcqhMQTvakkUtqhGYg0Q2hzJK8riAWWIwouvJIYh0ccCUqgaGUtPDGlBJIPrDnUSUKKRhd3JXh0VXYIYbVIWbW9g9YerbX20+y9tzLXFX1typEtyelwCMhQRQ4Sqr18LtGWvsz2mkeZZETG1rhoPVa2Eo+qIYbPDsP0xJtdbcp0lcysJBO/GKqV6x846puJiC2CJnKfDHoR6h6EeUwC+/fE9HaBYZtxEuGaYWzDaiJ5NNdYlin3hFId+G88ievASPahpJlK2EPtDcJXVxk4pSzbuD99Z7+1Xy1vaiGsPxT9nQWRYG0UVH7DrFrpIejdSrbrvTgtQjnks7WgDet2W/TXaKoQrmqLLvToCjDQupWR7tfq60XH1bOQXn/4KX/zCV3n4wn0+9vqrfOpTr/Gx115hO/Q2sVxG2VCT9eLMoE49kHDmeHOx9XNpwYnlQitcCSvBtaEeLeOzRaFiJBOf9XgHks+GlZolS1BzfP1g4kilmNFhC6JsoXC59pyXeykhsNlGfstv/Q08u7zky1/8Kq++8jFOTgfef/ddhJlXXnqRFLZr652wlCdynXn77SvqcM7XHj/jP/zcL3MyGRw9VTtjs33HJzyuaunwuQpU139wMmwspooLRlosMVFq4e7phpA6xly4vrmxNuzJlDzz7GJKAlOeefbsknfef4/r62s+dnPl+jnCdhgsC/Nadc7FFzvjF5gCp1ByYX8YCWIZ1zfefIs33viEBSgeaD999oyu7xkm68pqQY2JLFpLucTITGUcM5XK7uaGKIHdzY6ilYf3H7g6aeWw2/H0yRNUlbOzsyU4EhEePnhITMkUcaOhKG+99SbPnj3lhRdeoO8jL774wrKpxBiRUigqLhMQeOeb73BzecWwNUO3IXXocMIc8zqXPVkJIS0bRkq9BXXVkKIYhM1gztcBMcXe/Z7YR7quRzEezhATh5uR1CW6lHl/esycM3g5RitcXFyy2+2otXJ5eUXsov3+6po8F1LMTONIw4LWRAy7LjFSrgkJCxoD81TIdW/O0CFaUJoLhGQk/jbfihJ2M0UyKgFcgykghNixUErmGSmmtRI8slYtJtymXiZJHfi6q2oJilOlUbH24oWHBcylMjtCWLWSNJKI1qHmIXSpsKsDWiNRtki24DgkYeh6arb3Npde7ZUpCFksYMoVqiZ6LRbo1/X7tHq1RRq66iXhI+JnKyt+YE0Gal3LUc3MsK2/oXHotNEEPF7z78FVXdvnFe9+a3omVp6LaDXjzLZG2lvCeh7izBEv66kHIEFY1tNafQPwtRg1XkoMUDV6B60l3tUlIiplkdUAXzvdSDY2XqbEhVT7nRzf2wEK+CbiKq8OtWlDNDCY3iCusqjsLTVXOUIvlBVRcTXaGE0XwIIVm0TBgxdxbwTrhjFTsuCKhkhr111x/QW+ayZ/envR8JeBrq8Fh8R94LSyVSnHwckK2y7fqCwIQIuPWpq9BFseQDgX1NCatvlJ2/SXYU2lriiLCNNYefut93jv3cf80i/8n7z40gN+3fe/wWc++3Hu37uDqjO6FYSOUE0hsbryo4p1m9gl1OUZNOl/W2qOodPWfNcCRdyPpk28chRQVVATaqvaAhtfUNQWAisReSYZE5thcyvOqz7pTV01U3Jxsytvd+zNkG57OvDa6y/x5ptf57XXH/KpT75B1wXu3jnjpD9lPBQXaHM4NtizGeeZm/HAl7/0q/zj//c/Y79Tpgpvv39N31lWGVIixkzTaepiWNo+U63uImrENrD7XYtlRIOamN9cCufbBFHYhI7d7oz9fiYGpQTjM5BtkXr0/nv83M//IldXl4zjyGe///t55513uLq65nP/l8/R9/3RQmvjsLQA1wdtjBbc1mIIhoh5b4hbDlxfXfP+++8TY8f25IToG2WIwVykQyBXK8nkaeLJ+485Pz+j73tCgKdPntIPA7mUJXub9nv2+z0hBE5Ozui6SIy9lVFU6bp+aX9sc6jWwrNnT3jppYdOCLTW4aq2yOIIjs6V64srEyqLJi0epTo3pvcy10wtrgIarKVWPakoBU6HDbN3pQ3J1pgUhBoSSXu6viektPBxIpCIdGFgOmT2445cbEwr1vodJHrAYO66eZ6NJ1Bafgx1zq72yZIsqE0A0snGCJNVSJuOPgVCMVmAmAZyrux2e1KXOH/wABzR3N9cM+33JDIhRYbtCaXrbDMSsSDE21NDGkh9T/H1LkpAx4ky7m2OCqaT0vWULrrkgXFk5jJS8mFBfU33w0xezdzRv69t4QpazFiypI5DHhDZmkWGWmDI0EHXU3P2kq9x1pqqZXZEy8TWhFGFfd2RQ6Y1W0Rfa5dOUREM321rla82zzVHiG/SYJ01DTEj+nrkCeeCaPhaLHb33GBPFsSklkIphnCWYvsbru5ai32OedVZl4/tB+tepy3YZUVJzAHaXlBcBkCcgCwuZaA+5iyIMQuYZgMSY6QLxnexUpAj/JihrYi1wdfVeOvbHt/TAUpDQ7SupNFlkwrygdcfB7XaNqwlOtdFYltqYdYCOtsEETjevVIMXmapHrBEXxTNcC2EQJc6UjKBmxhN48D60QN4m9hxr1CDUJWjoAmOtEhYssJW427W2A221hZ02Ad+4HMsWZLlegS8ZdAjdPVuGD2K+D1osLWnnZ9FFlV9IuTAzfV7fO1X3+Gnf/pn+eQnX+fTn/0Yr7zyEtuTE/oO3FmQIMEXW+NZlLryK/zEl2uRI3NCpbVzt+DsuQdKyw4ayvJ8lL6WtyJ2D5KASkVjk6BeDfTENwsBtNSFKBeiBa7tJId+4M7dO8QU+MTrH+elFx9weXWxbMhSjCRHMOVW89KxUkoeM6EkUunoNXB1fc2jp3s2W7uIEGZSqgxDR4hCChDEM/FoHhhodZLmSM52XX0KdGkNwkNvpYHq7ZFBLNCZXF8hhUQEXn7xJT728hPeyoVYYXd5xcsPXuTjL36M035DrYUp27uKt5JWbCGMXqqrR+Ti3WHHxcVTlMonXn+dEAJnJ6d89rM/sHYPiCEy43jg+uaGJIl8mLjz8C4THfPJxGuvfMzmkiho4KUXX4QQmMbR3r85pXupY54nxnFaHZV15VioVuZ55vLygm984xvknHn48CEhdExTdv4MUOtCNjQ+yMR0GOm7iOaJOh2IwQIN3+G8/NhxfrYl58o4zYzzTIrKkODkZECkR7XSBefFidXoa+lp3CxVTK49H5a1pBQ7b1QpvnmFFNmcbKjTxDAMPHjwkMfvPub6cA3KYmVR5pGgVi5pZnelFlIQNtst0g1LAnT33h1UA4+fPObZ9TVhOvDk0WM2/YYUTSDv9O49EGG/PxjPLmVCL+SuW9qFkwr5sEcwXZM4bFw3Rompp2hEpxHzhzJelHQgMXKyPeH09Ixxd8N777/NVMzcTtyKI1ece1Gxrt1Anww5KWUmEaEInXQU977RYkaAZ3fvMU4Hnjy74PT0lJvrA4IwDAP7aeZkMzB0vZWNAlj3TCCE0QIarYsEfo9JypdiyGP19dk4w7qsPsdyFd2mI2hkt9sZSmEgLxpbMGtLSopGT1jQLkyTyRItCxRaImuNd0qXWGwd2mfUauiFITKwCnG2ErEvlL4ma8lId7v80lRmgwQL3JfSN4baOjdJvY0gpeEITVQX//MKR4Uqq+z9d3p8bwco1WEpvFOi1b0EWutwa6U7RhygZe63ORz2+yNUwsHR9pr2N+OoujZAycySORwaA90Oa2kNi227BSs2wJtfUGu9TDEdcWSiZ3Sr8VuMR+cXVvXBBtXBB/Zq3wBuX5tJTYsv3HajDA6364l0DZa4fZ8buhKOOOp+r61xpNW3AxeXE//lv32JX/rC13jw8C4vvfQCb3zyY7zyysvcvXNGFHMdpc424Z4jjC04kKqjI14/XgQTnIfgwVEzu7IrsMUsl+o+EOoiZctd8XtoUttGrrNa9rvvvMsr917m7v17rnFTvQXZSoMaICVZ6sVaqxnn1WK8AFVbLEXNiXXM1DOMBwRLibp69l6rUsbM97/xBj/ye34n/+u/+tfkJyNUJYqVdkSVWmAcDS2IwYKsIMLUQ5yM/zHtR0QCfYzEaDB4yerthdZVUVWY58o0qWsSVLommGe9JJydnPHaK6/yzTffQhVurq+4d/8usUtIbEhJU4i051JUPfgxKLnJ5ddaiTFxcnLKdrMlRnMMboHAzc0BRRnzvAiJbTcbUurYbgauLq5QlIcPHnJzdcV+v+elV140pAtTuO1TMsJuzo5wDgsZtdZM8rIOGN9jnjOHw2HhoYnIwptZeRberaQKQZjG0aD0UhjLRMkzKVlw0RZmrWbOaVC5fe5mM3DY71BRxkmN/yLm9BrE2n7nMpsjbzEdCkXpiEbwLgWt5qhNW3+qOsweyPOMzpkcAjc3V+ynkcM02gYrwqSTKbLSEBVZxBOtfAUhKiYXb/c/bXtC13FzOPDy3Ve46q9JQ8d4fc00TZRwQfJOKlsZvUNqIfmL+d0cteyHFEiAaHABtcapaGUJ83ehMzRhzhOlzIZ4Nw0PL5Fq9cROlRSEIUV6DyZa0GfIigV2tSU+1cpEm83A5eUV2+0JNdszv3PvLvPjTNf1hlAVNxSNVl7fH/YcDjMahNQlYgfbzQn7mwtDEfHv8USxccXWRdfW7CFuONtsmW9GNJgtSC6ZmsU1Umwt7LvBrtfRMnNjC8umviL+lc7/m1LPlEdHdTwBDtEwndocn5sm0iqZgVo3YRD1jkFQXbuMGjpatHrLfoAQF5VYmyORLvUQxa1O6jIGgydDRB8rFHKZKfm5Jo9vcXxvByg02mRj3rNuRo4maAtFnwdU2k4rH8y1Ww5+67WtZAKs3A7/s956NaouBq8VydZRMs23T2BRARTvaRELTlZbbftvywYdmnFXTBtEXbTaenDyEtJ8H1j/31Fp57hb4vjc29lXzXY3j14nDq7YmD56vzoGswR6dhOaZsacK+++e8F7713ypS99nXv3zvnYx17lk9/3Kh979WXOTnqLqrXeejZLqUpaMuJgp4ohEbhVAC5770JIZksOUs29M48FzZUSGvNkxVVEyqKAWlFmnfn617/Bp17+FPXjlUoTIDJIs7SxVPRovOiCYFnQUig6o1KYpgPj1DsU3Dgjtrn0Eiz7P0zUXLj/0hmvvvKAj7/xCu+/9yYnJx3bTVpgbdXgKp4r2qUIh515Bs25sttnv2cjQSwIOD/tONn0pBCQWJnGys2+MmXrsogJttG63uYxM88VyZXT01Pu3btHlMBLL7xgKMrLL3H37MwEzzqHxwnkouTigmPVNsNWDy++6eU7p9y9c9dVbBvR1YnMOZO6wPb8jE3juIiY/kXOpktSCkPq2Nwb2G5PiSkxbDbm54Kpn06HEUJgf9gjfaRkRbIQ5kyfksHKtbA/7AF48YWXePudd8g5M88mo3+cOooHHajJ0qvBWdQSCNH0MYiRoe/Jc2V/c2PP/HDF9uQUxNR4x3FinGcOu4n7904oc2HwEl/JM4+eXhJihxK5d89a0quaoFouam7fbQo7z0fEEECKolm52l9ahSIYylFrIWKEXVGH5T3Ub2Ne8dZ5CYijD0qlzOaRdH5+byEfv/TSixxC4t333uWk69yPC+OpETE+ppUsqmf6yuolY+PSAgvLnltnmgf6PgdLydxcX3BVrKxRKGYWqYbKBGmoRFvLbL3LPv+DCCQr0WWtFBWCRFJrhxd4+uwpuRihOufM+Z07ZOeVbU9O2O2uqGLlHDHnQAchha7v6YaBroukrqcfBoq7lTf/tS4mJz/nI3TfsNsUExWh226s9Fw8qFdZks4S1Im+zVZAl+CnBRkN9BcgJNNmaR5rEiPBO8bMTsC0X3LOqKvnGurS+HsWFFsJ1rR/yJVhGJAQWRlvqxRG6yBdlWMDqUtUzdSCo88rWtOS7OX9tS7aUd/J8T0doGwjDJ1QNDpnQXzBrGvpYtn9LLL02b5E8XiGghyjDW1TP/7pI6I+ff7Hhtzgtey1fHGr2+YI/gMxzYFS1m/xvy3dJOLk0bAOghTjIqoWsG6IrutIvdUDj/8XvJMpHAVGqzaFn0NQWzhcRwVcGMoHnDRoToRQ1KFNpXmuBWTVN1jIUspYR947TLz/7mN+4ed+kRdeuMdnPv0JPv2ZT3Hn/MwCsHjUyr3cn3Ybjp+jLgFh9XNpiM5CJLaQ1chY0vg2eFanptjrMagQmOdslvS7g6EDYkTA2jyYWrAXjYuzP9ywO1y7kqxwcf2YnK+4vHib7Vlht7+kS6YF4imfG60ZkY2Ci6Qp777/hCeXNx5wZYYhcLJpnA1Dwk1wzsZNjImcq8nVI2QgdINzZey5aYH9QTmMB5pOxDgXxqkyZfMQiljVPKZECoJiol937p1x/95dyjzz2ksvkUvmxRdeYHu25XA4WJCSrbMqZ2tZzzlbYIKpSxYnU+Y88fRZYXuyoR86Sp55dvGMi4sLTk/PuHP/HjHiCpWBqc7kOYNWNidbroshO9uzU9P3CSbTjXqNW71bQoSSJxMo6yJ937PdniC1UMJM6jJBhIuLS1coTssGPM+zIWXH2DbBmZBqPKngkgGdl13ybHV+V4zdT5mSQbqBkKxMMO0OhgKmZIhlhTwXcoQ4dIhEonRAR0gdh322YHicOORM6HrP/I/WFlVeeOFF15yBeph49OyJzYFSIBeohSCBebQWbfNQMe0Y0VYeseDZurRA1PQtxv1hcWk+TBP3Hj6EFKkE7tx9wN1751w9eerocsAc1IOTboUoAcmmQFq1EtWSsxo7O8daMEemVW4SjD9Ri3WNzXkmdNGQCb/+ipVzzF3AEq0CNDfv6Eh1K6+A8RFtY7TsanfYM08zMSSmOXN2fs4wDNzcXHNyavyzUisZb5H15othGAhdwusoVIH9PBL6iDTZ9qMcOEogVu9qRDxUs5LubtzbOteSzWABogJEMXSqOLlV144pbeKFqAPJrSzknVDFWvKj04slGCBSvSEjxY46G+qxrGUeTNiSYd9LS/Z0NH8obVwapUpZnJTtmahxmTpB3Y+uBjHxzWrdQjbXLEA0bRcjQodfKwHKeQebXlASuVb2uSChmCFdIyFjA9x4W/EWEmJLd9PjEN/LHAr11zXiLEcbeYtoxEtJt45WUnDo4Rbv5VYdxjN6xR5+Iy3J8StkIWvaQ/YuCo9rc1HyZBqRrdunoSuW43pba/QuCwlLq3WQQN/3ZhPugUvwiDjE1t4sxs6U5lh8BA+2YOv42tUCAosBrS1VBOfcKoRAnoVvvvWEb775hP/8+f+TV159mY+99iqvvvoq9x/cYxgSOGxqaqEtsDuKFhcNBZ9wDl0vmYVr0oQFX/PgztvqquiSHYC5kI7zyDzvUYpFBQISlCRQ1a9dYRxv+N/+13/G1772ZUKd0VrY7W4Y9xM/9ZPvsTm5gyjm0vv/+H188jOfAdYWWwuUArkq41x4dnHNv//8z/HlL/8qh7FyebkHBnvGC1N+5XqAq5XCgmQAVmYLeLdFYT8XJ7Ep0+TlrqrEZF45VkM2LZwYVrXLWiubk4E7984hCnfPz0mDUHVGQiX2bg5XTKmVACEloJj5WBFC8VbIWvnm229z7/59YhQuLy65vrrCiKsJEWXOE+Nk13SzP/DFX/4C8zjxg5/7IYpWNqfn1sI6zozTnpvrvWseJRp3ab/fk1Lk4tkFX/zlX+LOnTv88A//MIREybZ4juOBq6tr+qHnZHtiTz4kCzLBeV1tmjfRQGWeRtuwDxNVi3eoWRA250zXReZcCbFj2A6I2SQzHvaW3Xc9EiKXN9eEWhhSIiUbqKenJ+zGzDROjNVJsKVY4FkObCRYebG4P64q1zc7Zq3W/eOy5heXl+icHclSYsL8ihQrIdkkMr4EEFEolYKhCUmEw27P9Th7FxK8+823efjCQ57u9uyvD6QUefLoCYeba0emvWtRO0L24J9IbluuQplnK7eEbB1oat4sy5z2DTbnzKyVaZ6Y54leNhQP+oimBBzEuB61FEdzheylxSElJLrdQ8momtO44Jy7AFdXzyjTzN0793n86BHnp3e4vr5mHA90KXBzfe0SACYIGRDmVsKRTHXSKCn5emz3VDQu3WwxBiuLBFu9Cy3DUmq1JDR4y7SE1sFja75WXbo5LX5Zsj6OuYpLiUaXwcrKQ7R9Yc6zUfyiJQpzzu4ZZKXetne14EFroIjzm/xrS66kzp2TG0/QW6orbYsLi1GsYlxEJbgytCG1+H46e+u6NRv8GirxaKkmFlNs8YjaWlfXrdMeIBbpYRGs+oQP0ljJClW8f1vXrLu0SHVt2FMaIx4LUHyztonpLaUcowjPByf+loZkwIoWSJvsrMRfDwia7FzTaeEIJTqu3rgmmQ0azdTZEaEFAFkRnRTjEgCEgAcnLfqNRu4V61zq+sE6CGJc2rJjFGITmvIp1pAef0i3JhhSMQqIst+P/OqvfJ2vf/WbnJ6e8PLLL/Hx11/lxZcf8vDhfbrOFwOc9e51VLxL2DIkD978visVOgibwDbMkFxfwrtFWieAeh0eEboEXQcimT7hrZMGzzYFUy8qUeeZ999+k6/88pfQyTkLQSAm9uMVMr3J3ZPE3bMtl5/59Ww+/VkmxFUV7aEqjSMUePnFl/mVL/8q77/7iERgnCq7gwtrtUBaPHBdBMQ+WJZs4mLFtRGoQi62kVYMWg8STRbbdUca2bpkFtSq1szTZ094dnFB6gPn9849A7QygGmzmKBTcm5UCEKp0X1tTPdjnpWu783M7/Ej6zhwwvD+5gbUeBkxGRSdS2HaKzfvP2K8ekr99BuoROvW0eCBemaeTYUVxXkthf3hwJ3zuwQ65psdB4Tx+pownLj3lpLHiXG/Y7/fM44Th3FkWwpz42q5KJ+iywQKiqNBJt2/391Qa2a7NVXU+TAxz5GCcnLaU0qGipnXBbMnKkWZ55G+S3Sd8dCqKlMu7PYz41SYqxGgQem7yJTdYDHZfGu6LlULFxfPSIeBXDKSXaMEQ1DmpTvFgx2fLGu7vSUaNRfytZW7NAi5C3TnJ2yDdX7ZvFMePXrMdjuQ68yDuy9y+fQZ++sbkgBeChnHHTkHWzs9KOjcsbbuR8phQsO6Fmotjm/6eJ0yWoUsxcTvcqbrDTGIwQQjUUtuortle7y1lHrMBy2aunU1dDAFN0eVQEfg3tk5Nzd7hmHg4tkFz55dmMO0Kmf3zri4vDRiczL+GWKdM0ULUzn4HhJN1t/9kqIYKZRqa0xTGm97y6LDpJVu6EkSrLMq9ZR5puZK8VKOUr2knxbbCUGWEnKb36qNx1YXhdq+S55kKJKshFxrpmheUJcQ4lIusmXIv7fCcZrZ7i3ghpImwxGAY8FG/PtK1kWPpeRCjN41hhC9tNpIs2bSqAs/8js5vqcDFMDranUR5lrUwo48eATT3VwfhPjf24599N+jJ7RuAy7h7D+3AMEIYutDtyFUHW0wPkfRFgy002kBUGt/jb4w3jq75by1/carLhLW023iPy3IWcoaoX1WQ3pkyaJu7WxHUHmTeG/E1WWx9mAvAJKEGCLibHYTwHNzP+9uiRLo+s7cZn3CdX2/cGWON0Zom1vl8uqKq+trvvK1r3N6NvDaa6/w6U99H69//BVOTzaI5IXkp8VvpkARIyR3RemCIT9TTBxiR+izM88DKRjaENT8aopLNIv7/Lx8Z8udCOdJKeLy2QELZLQuN/1gPX/m3tvY6RXqJMy7DNNIBdIG7m8GzvuOKVhbZAtKqgYOVivgrV/5Cn/wf/iDvPnC2/zSL/wXhiQMXQtSvbTTAmrWQFbBNLbq+oxBbJFW6xjSYuTlkCJtyWvj2Xw4bPyMk7UsVhcoO9lsqVmttIFpQNjCqD7PHH/ysV0qLjpmJo9DCMQuso8jd87OmQ8HXn74SUQ6vj59g3CIDEOPBOH6sGPOmWmc6RjQ2LGrwubsDCVwenJCDCYaVWul63ouLi7YbrdEX8xbkL7dbtE0oKknnZxxcnqKiHBzc8P29JSslaurK549fUrfd6iLrtn8XIPopQVUgpNrZwJiStWS2PaYiNc8U2NnTq9VzLxRbCPb9D3jvCOofdZ2u2WIQghGkJ7nwmHM5BqQLrIdBroASSvXh4muS6Q+kcvaOowa2iAhmAO0r3sxhsWczQi0ZpVQj5541Upo2XOAnGeXZbBgQTrr5MqlUKRy9/zU+DeqdDFwc3XJNE8Mm558OCyl6FqN7BtD8nXK5rdgZokVqBKQGNwcUaBm463gCaF4d46jfLkWCELqI7XavC8UWiOEeBLZhNNCNLhcJbVF0ZNL/z7nYnTdQAyJk5MTagnkyVyVL6+uyaUwTzP7/WTlCudQlVKYdAQscGOaqVVIsSOrULMhEEt3pLhEQTES7DyPaC288PILbLdbrq+vQTLT4bAS+VFvnIj0KVENmrcAjJYcHyF8xQK4rMXnv5XxVFxkMnobdnU6QGkWIOKt940P1HadYui5qbERA2bZIJacLQ7Fvl5GkaXhw55X9vMwXaLWUt0CrHWd/M4Dk3Z8bwcoPm9ztVqx7ygcl2Es4MACAocGDZFgDRUVq0M8t4Efl6XD0kXC0fsxqWWWkvXqUeIDrxMWdb3WmaPtM5ykJB5osLRG20ZcRd0jBuOgqJLaSVSl+ncvp4WTxdReWxdophoDGzmKlFoXzhqtt4tq3+dwDiDm/Dwb5Hm8zYnf9iCeQSjLAgXelpsse4wpEKUjdR0pJfrBkJnoNvMhGk9mnA48fXrBF375V3jxwTmf+fQn+KEfet3beRNdCC5EVCjRhJlCjQxVrBMEmGYoTii1bquZWM0yPKDmFqwVCYW6H5lvLunzxEZmcphRjd4hZs8J3MhNOj798mvEN27IdaTUwvVux+5aKScbtl1PlEIpE6enp2yHSHI4XLGNcFZhPAjozA/9wGf4Lb/ph7n598+IOpOopJ5l82+LSfMKyiUjEr1kZ218+OJTayNFmrGhoWMW0daUPTOrZo5XA1TjjNTZWpf7FKFm9vsd0zgRVSz6aOrEFTMVO5pb1TPKtoCZ/kwgBWu9Pz/Z8uJLL/DiCy+wP8x86ctf4r3Hj5cyxzJvgRfvP+C1j71Gion9zUgIgc1mQoPP66o8ffyER08esz05gVI4jCPjYSTqFUOMfOITb1iZq1TfcPY8efqEBw8ekGulHwbmeaKFfLVk26hrQ/0U0Wz3LbCQZRV3a1YrGaWknJ333ExK9kCv+L2pVUlR6DYn5CpEndFaGbUYelgr41xJm411IlJJUa09vAp7wQJ6Vh2fJXlRMR/JGhwBdhfbWkADKXTMh/1CbLcnZZIIjZAqoUNSghRsB4hi3U2pJ3WBfkhs2CDhlJIrY94zjiN37m4Z95XL6WbpSpNkqEgJkZisnGWaHRXtAiF1EDo7/1KIOUMuy2oTxJBacnGZB0MtraupjQ0rj2htisErWts6dRSYayVUTwrVSpCd2Lwd82hdRDUzDANoYO4iOc/MZWLYbCilMhXj82kp5Dy74Z0Z8Kkap0bUPIyg84TB5nYUIYXAYTZtEFq+7AKEXZesVFWsXCqhemm/6Qc5WqGVLK7t5WtGWciprbvH+HCNpVRqIYbgAZq9NonZg8xHfC3jzhoa1eZs8+FSh6YlCbETIFkA4lyl4Npg1q5emWsxGQVtgplx2RtrtQ45o70Eji0GbtG9vs3xXQcoP/VTP8Vf+2t/jc9//vO8/fbb/NN/+k/5Q3/oDy1//+N//I/z9/7e37v1nt/2234bP/MzP7P8PI4jf/bP/ln+0T/6R+z3e37P7/k9/M2/+Tf5+Mc//l2dSzMosj3Us+u6bsDHh4i1lkpo0eiKWdzS4Qiwin95LaFFtD4Rbt3glsyrv6Y1EwUfoCEsE0+a3C8tE7bMPPjpHCsmgvoAM1JnVZNst2WLNj/RBZGxk1lt4A2i1uX6PIxyi1vxexS0oTe6XMzxgrhEIUtktQZF7c/BSy8W74sbzlbPviHPM9M42SKvsrR5muDEmj3EZC29FrR09Gngm998h1/4pS/xH/7LPT7xcWtX/v7XX+OVV15CQ13QhEzBRL8jE5X9nNkkQ7hKrWaqVgtdDHRiMuQNQdntDtYh4uWAIMH8JPz8cDXGqoU7pxt+7A/+D+yud+xz5s133uY///zP8ws/+wU++/qn+A2f+X6ePXufed7z8Tc+htbsHXyO2HhwdLaNDJ2SyyVvv/dlvvr1L1DrSAzqpNX27CyIbW635ifjQbE2jpQ9DSspu0fPUda1kKpT896wWrOqEgMMm440JOsgmUfe+MRrXDy95O555MHdnlICtQi1dMY7EWP8l2zBYQWyuiZOKb5hwjhG7t8/46UX7nOy7ej6nvPTE959732QjlIrIbm0dgycDInP/eD3M77xOqd3zlER+9xq3Q0pRu6cnhBFGbpIjB1DSpxvtuTRnIg/9X3fRxR3YY5w9ewZ0zTamAqR0MH52Rk3NzfUebZOjM6Esla7Bx+7vtF2fYQb0yOpZaL0PSGaezWjOSIXnSgKqYugZh4IwXg5FQ67g7XU9lZCGMfMWEZC6hg6I/cP3YDEsMzF6vyjlmCtCtH+q9o2HQ9WvMW5lmJBuCdk4u9vsvKq2fgWyYiNVSuPHj/xDSjw8MFD+tgzTzOH3cg+X1HqzH56Sh29RNkC+OpSA1q9VTZSyoRKQWJwby1PlqK1qqqLr7XSk1bbgNcOEEfF3b8lJkNmS0OQvb1bQjBDxFIsgMH35lqJkqz0r6A1M92MxGAigl3fUUZDi+aqIInZ1WWTNHduK+dUd6fvUmcbOImimVInbz5IhnAUV9UVMYRVbQbG5PwzjxalSRio8SWbnUVwsncI4mJ0TlhdOgWfayDwURBacttme63OybPfHMtjSCMEOhLaDjPEtc+pWsD9pEJoEh2syJWXaKY8U7QSSvBrWhNcy5+9S8g3zKPqEreIlt/m+K4DlJubG37Db/gN/Ik/8Sf48R//8Q99ze///b+fv/N3/s7yc9/3t/7+p/7Un+Kf//N/zj/+x/+Yhw8f8mf+zJ/hD/yBP8DnP//5RcfgOzlELEOX5cr9pmv793rjpCEkNAKsZ6kNYaENoKOtV+EWmeL21r0cy/4PR5GqLAPLvv9Dzr+9T25/ur3WNvNIJTpTfokVli2pHgUn9keDdW9DaeqvNQTHc26VZaBUXYM8VK1m3N57FOzpUfQiLWDxIFGOrvH2HdJlMTXpcGd608pmNkGybXPAuHxGCBGiEfLeevcR/+2/fZU+Rj724hl/7H/+n/i+73sZSTZJA4XSwT7OXNzMPL244b4MJo1dXaehFFIIDCnS/L1SgvEwc/fufWttrgqhgoTlOko40o7p4eSFM05fu8/bV5l//ZP/hi/80vvsDyeE9yc+9onCxz/76+g6eOn1F7C2ZEMhilYIgoRMZUJFOb9/l5/66f+Dl195kcv33+HOnYGzk2SoB5aVV03emdZQL114OFVZjGVVTTuiPbdqsRVPHl+YamvfO7TbBAbtgSUNpCCkFBhS5en7bzLtJj7+8oaXXz6llkypxgFKTqgtTuCdvNV4qpWaTZdGSIxzpY+Fp483vP7aQx4+PKNIz/17ZyQxyfFxmk2YLc/0fcf9u2d89jOvI5qZDtPi9ju71s3JZuBsEJ4969ienVvwWwp5msmpcalODG5vc17NxNE4M81nJHG4uSIG5XSIdH2iFvH3QeiC1/SF6zKhapn7nGcLDcWgA1VIqaOUkVxG8jxzGk7p+85KKFg5bOg2VmpTJYgJ9XVd4Ga/Q2YImhhONigJxXSJtNRlLfLi3ro2ScN/fHMqZe1moa0d1avcYVmDWhKD2JySoIjrV4xlNNubGCEow9Y0acb9xG6/sw05AWUNjs0h1/kFZHIdLTAQ03lJWJdNxue+2HUZIuVeY9VQXHGBPxVvfZ3zEoAhoMGQDbS1ujq64MqlFnxZ00MpGQ3G3SHGpS27SCENHcOwMWuHaTLxRK1Iir5jrFxDIYJ4aVqh7zsr7c7VOX/ZReQ80ZK2Mvvz8kCk+vqTSwEXm7TApBKcfGD6RhjKE4N1mItQxUqCvogue0qphuG0zsUmIlfV5PtLPUoaxYNBrGtPWinGy97i909RQjW+V8mKdLc7PcUF22o1PyhDU31ItvpWG7Fqwb2VyG8rxz7Px/xWx3cdoPzoj/4oP/qjP/otXzMMA6+88sqH/u3i4oK//bf/Nv/gH/wDfu/v/b0A/MN/+A95/fXX+Vf/6l/xIz/yI9/V+YgYKaqgC99jqZctG2BckQB0RUaW4GUlH9rRwkZXr/SMtBGzjm/wir60h3gUiRwtKMfH8fuNTOvEomAozBoR28AU7wayDGEV6zoeEG2AxAVeORoEHmSIX/9tfs4a2TaIe2ludOSk+TOwLBZ23s0+uzUyLRLNR/camkvFESFLrPTSojFZnsXRPcJ4DVYzclErCvsa2F/f8B8+/0sUEa6mHV/72lfZ9j2f/nWf5tGzJ/y7n/lZPv3x7+O3/Kb/K4f9gcat0VpJMTB1HSFZvb4vwu6Qubw+8Gx3YCwFguka2AQ0XwvLMFykSiApvPv4GV/40te4ehaIDDy7Hnnz0VPOXrhLyrboWQwsQFxQJVVlypWbufJT/+kXGceJs21Ppzt2eWIThJvdFaUU7t85N6QjFzKBacx0cThq3zMKbxvPTSGy+vfmojx5fGC7OaEfAs+e3XA4HDg9PyPGzoXMkom2iZDnPUEqSGW/u6LrXkaTUtSMCbP13VrmHYGqhKr0WaidQcy1gnSBbqNsT6HbKKlX0yvRwtD1dKlbDD27zgzIZh0JfeHO6ZakJ86/EZ5eXfPOO+/w/Z/9QeSNl/nKV76KaYfcI+fMk6fPuLy64eLympdeeoXr60u2JwOUxM3uGSWPbDc9T5/OzosSXn/jY3SbxOndnrOzU7bdhnkufPOttxGtnJ2dsdvd8OjxE3aHPRICXWriipFSBIk9XSduP6BodN2iGJmLhe39pmM7bK3FNs8ElJQCqevJk93PKImUegjBuh1CIPUNxV03h1KyZ9A2DrN3lhSfcAHrnAkoTa9HUBbvE/U5LiBSmaadbfwxQp29G6WiQYldIkiiEgnFxm+ts83xANLhbfdmBaEloCPI1iwgqpoTb5NI4Ghtbtn9UhVUrMQmJuZFwaT8pRJjpORCzYYogwXdi78Vsogxtk49VXufVjVYsahzMwzRCFHQ4AGacwsXTCI0nlULUqyVOnlJGDHTTwSqzrbeBue/NBqAGGl58e9RZSqFNJtOTdERpKCavZ04LfdDFEPzaru31Qni6lojLoSmLpZWK2kYPLCy+1pdME3C6lDdUOsUE0tTiMxtZV5QVxXj6ak2p3MzBewcZBBA1LrcwrLGr/vg6l3n464aordsCSvH4Ts6/rtwUP7tv/23vPTSS9y7d4/f8Tt+B3/5L/9lXnrpJQA+//nPM88zv+/3/b7l9a+99hqf+9zn+Omf/unvKkBZNlwxGlGtukSRFp2vGT8tCPVI8rmwYoVBpE3r9fPFN2n9KGhKDZ15PngxwKFtzP7SBWppX2uRprQJu5yLPeQFntPVmaZphNC6Z6S9VzF1jODng6saOhnUj0WuuH12XMAQJ2YdZWvH5S8/qgcaLQyKLZBqaMlzMdoSXC3Zp2UQxtFqE2NV8rTP9E23ytEHFkQKc438y//tf+en/tPnudkdKHNGauHkzh3mPHN9ecXXX32PR493PHr0Pp984xN85tOfZjsEKomZmTJnSs3EJLz/6BlPb0beu77hnWc7Yi+MamhL33VMWpf2xcN+omhlt9/z1vtX7HYTIluqKod55MnlBU8vr3h4/5wSe55eXvLN995jvCnM08j5yZaQAt989zGPnlzz3nuXoIFnT/dsJPN3/97/wksvbnn/vTd56cV7/Ngf+RGqKqdnp6S5MJY9sRMG8w/w4Nq6SjyP5LgVvO53bIfK0BVSmDndRKbdzCZGNn2b/jZeSi1mIjgpv/yLv8K9O2e88Zkf9MBYmKaZhkrm6nL3AlZWsnLMOE4c8khKPTf5wFyV3TjSHw7kyciupRTGeXSSXaZWYZonvvjlr3Hn7n/i//Zbf5iTmMhVefT0gjffeY9nT58xE7i4uOYrv/oVUkqcnZ2jCjc3O3aHA4fDiHzhi4x5ZHuy4dUXX4YYuL7Z8fM//3NcXl3ZuhAqd+/doZSJn/1vB+7cvcOdu+ccbg6888132G7PGIaBJ0+eUovQdz0Vb9mn+sI9+hxL9L150Qx9z+n2lHEaibGn1MI0j6agK1CniU1fSXEgVjg77ZmmQpbAYTqgYyEoVBFi15HbnGnZtJc9ShlNsyNXwOTg2wakeULU/VeQRaK8CZKbTqC1w06lQFH6IAhmyhjjAHgWLhDCalhZtVhAK1BCoYoFWKomDJZzpeZK0OAM7pXQGqg+p9ck0NM++tQxkym5UrKVdFLqmLB518icNTQJiHWMz7Uu5RRpfdS+cddSUImUUsmlEKMvXrVCLZQ8M88TNbrrcVYkBpNzCCApLsrAVWCeJ7Sa/UmtJiZndZwA2VbeFDtSMBTKSrPm4ybgpa9MLZlKodRMcOQyipe+DSKilplVNt4I7yYaqauFRi2+d9j6biUvzI/IxSNzKcxaGWIidZ1xF2t2UrXpOFUKrVnDGi6ioygZEWXY9HYv1IOTkO37VKxtWY+rEtZJ1Phx1YXoFnXd7yI4gf8OAcqP/uiP8kf+yB/hjTfe4Ctf+Qp/4S/8BX737/7dfP7zn2cYBt555x36vuf+/fu33vfyyy/zzjvvfOhnjuPIOI7Lz5eXl0DbqNfNNHimjBNM7UWANkdHG8RrA4+XSlonBNCUS0XWYMLACT1CXdZjlddvEUd7iQc62iLM9fVt0tpLWmRwTPBlPfePiIluvUCf/21xoMQ/c4nEjq7Hl4flOliXDI7+u2ZwngHVJj3UuofC8tHaArUPOTc5+h/amDNrOa91HCxlHxM+WC9NjxbroEy7kZubkSTm4QHCeJGRlBj6Mx69e8O/+7f/hcM88eUvfZMvfPEbvPTSGanvyFrZTxNXV1fUWpj2EzcXe37hy1/jEBPDduByv6PrIq+8/CJEdYKp8OzJFW+/9z7vPX7KPCpl7lB0yW7ffvcJ42HiE6+/xvd98Rv88i9/kX/7U/+O3UVGS+ak7yBEdoeZJ1eTKTyiECJjqfzv//5n2abC+WnivXce89rrv0il8rnf+DnOtgOh3zDVimCGejFEkMjNzYGZyunmxEey3ceCPZf9fkfXZR49fsxrr77K3TtnS7s3AEG5vjkQO+XmcODtd5/yzuMnlAD9EPnSF7/GW2+9w2c/++ssq0O5vL6iAPOcGceJp0+ueeub73LY77h7fpe3336HOVfu3H/I+d377A4HLq6uTQF4nH2zhBA625Dmwhe//DVeeu0Vfv3nPkvUyC/9x//CV776TdDIV7/2lJvr/SLgpfpo3Zh9IZ+mCQnK5cUNV0+v6KKpvc5lBI2UaabWmff37xlBugTG68p77zxzU9BT8izsdzeUbNyI7SaRx8zhsLfNoPYQXFQsdtSidP3gnlwd42FE1ILsWmC3v17HvURCLEZQLlCpHMYZrTOlzvQxkrqtbXDL2mEIXoyBiDCrCa+l1Gaik2Q9e26FnooVgUXkSK5JIEYn2MtC5lS1+SY+FtqaEUQgCCUrlYC6v0opE1oC82xodBVFYqRoJtZo9LJ5NnVTcL4J1pXjRHtr0S3WARXsmUb3NgNBS7WOpIb8eOcPzusrjjZH76o0TzHjinXJCKIajAch1cp80lRicUf74HIDLrHQ1Lvp2hir3tk0+7ppHVN5NkFHdY2qTYpsthtS7OlDz6IyHcTOKxhPKdeZwrysrdIp/ZBIoUdVmLI5aSNG2o5EK7tIMUHSbIlT7JT5yA28JZdWu3ZDzLmaFYisYym7zYZxv41VaRQJU9Q1dK6t5c3gUFYhOL+utqW0EYiu81DsZLz0twbP1cm6/11LPN/u+KN/9I8u//7c5z7Hb/ktv4U33niDf/Ev/gU/9mM/9pHvOw40nj/+yl/5K/ylv/SXPvD75q4YgkWpcy0uiWyoxK3PB+M/tCj+eOeDW7GFlQP81549NIvw9rvngBLjB+hxJ5Ac/fXoe4422uUIbUA05uuCN7Sw6SMOZTlrWX+3TP5GtV9DA0Ad/nvuc6V911GGo7ga6/F3HZ24Hn0/1o2wdEnRSkqyfBYOmTaH0lUnUxwdrUTsPki1OnUjANI+y4O6O+cnDJsTUGV7cso0zsR+QEJgrBbUxhh5ISbm+cCXf/mLfPGXvLtJjdw5l0wusxl/5cxXQuAXvvw1QgzMalnfMHReksnUCtOkzLnQdwMUJedCCiZzXXLm8aMLHr3/mF/56jf42Z//eeohc3N5Q1DTI7hSa+WrEqjBCIPVFz7TWFBynTikypML5R//s3+HIvzrn/kqp6eRV156SIpW83/55ZfZnGy4urrii1/8MoHID/y6H2C72SKi7kq8J8XAJz/1Sd5//+u8+eY3+cGxEuQtTs82Nm/miWme+MIXvsivfPmbfPVX3+PtRxd8/ue+wPk/+0m2J5H/4//7X5mnzIMXfsk8abRycbVjLpmD+9WULKCBfNiBmi7CsB1499Eld++ccvX4hnfefYQ2/xeHrjVaG3MMiaePD/zrn/yP/NIXvkZAePPrbzLuiwmluZJo62SIvqE00qCRaW0KVi3k8UDX9cTQOZG7IFXp9ECXhFz21HDO6cmZ2dSK6cXcXO+ttTiYGJyJtBnXJoZAwTJEkUqQ5JwVg87n2XgG2TsjYjCX3hij3aMi7PaZUlqbtoAE+q5nHDMn2y1KYnJTvDbPmqV97CN5GmmEfK3W2j3mbL9TWwEU4zSIeglVXVNEIGPGe7lWKMVcqYupQ5uadSspV9OemYqbXGZU3etIrKOsVkVDpFRbb+Zpoksb47FNMyomt1C1WAegRQuGUISOIhbcTyU7NyqgsSdPZm5ZvaVWS1hLCkF9LNiSmZLxTKJ6nujKtB5hLEkhC2nTfq+1epJlSWIjiTaNJNWZoua1lfNsJOmaUXc2b8yAipJjYZpnpmmmNQtUJ+fbsjWjMmM2GoZqe0WdaZ4ZFSARgz0vbVC0N+ZUMY5VE2M0D6O1pTwE95PCOsDUNUxCiCSsHXiaJx9O9nyNFM0qBqog2nqD1LSjVJingkTjA9aia9s77YYrIsUaVFTJsy57pNrStn4vrfPqOzv+u7cZv/rqq7zxxht86UtfAuCVV15hmiaePn16C0V57733+O2//bd/6Gf8uT/35/jTf/pPLz9fXl7y+uuv0zQlTF6XBZmoUk3psB2tWgG0Lha7uXkldvpkXso4S8nCR4iXYdoHrdt7WAc85Shy8VCnITFyHGrI8x+yIDHfZYnu6P0mALXEHQJNXfV5BVuLg9YXrpydFsgcISeBhYilWpbFz2/Deo84/sz1r63acBzgrAiLLp/drkG91qTHr7l19vbr+3fvc3bnDleXN1ZX7UE6Uwa17hZLJoY+ce/OPV568ZxF3wLQCnOuXO93vP322wjWYXDn3h36oWfME6ebLafbE64vL3h6cUk3bJnm1X9Hi+lqHOaJO+fn1JwpXeRw2FumMfZM+wI5UmUCDUTMs6RIJYuNKntGpnehxY3kJusienZ1jcjAo0fvEiNIeAvVwjTtEYGut3bjPibKXPgv/+Grdh/NJGUhD56d/SdKmYih46f+zS8w7jLd4MZ0VdhuTimlcn1zyThm5pJ4752Rf/6//HtXY+2IIfDOe2+CC4RNtdgm5UEfEYNz8wwqSEjMeeLm5m3mOhGz0nfbJRA39UvXMVGYp2xLY4k8/sY1h8OBuQbmqdjGKM3B2yDQUjPTPBsHwt16U+hs7AuEPi6w8263M2Sh1kXIUdU+7+bmxv1TbNznbNB09jJOKXuixMUIbppnZLaxXb31NceZ6N5GTe9DXfBNnLMQRMgFE6zzdtBSq3W7pMj29IwQO3Jh4Y0oVssPriNi7r7Y/ZVAcHfkoe8hW4IUQoeR4qtvjrZRhWQbXq7z0noafDMNCDH0iEai9st0rbWa+aQqUc0WAipaCyYVYslEAAso1AixmgJ59p02OQewKF210lBM0Zx8xXSKpJreRyVQ6wlVJ9BCkOxdMGuJPbTuJs/kxfshxOd1LWHhYbRNsZSCTLZjmpK2KWRXD0qaYOVUZnBCfy2TC40VymQ2DFXUZcnts0rOpH4gxN67vgIibjiILGXs0HyVGgKh9kyPFcubiu/tJBMn5Nr1p5SsFJszOTfyabBSnENN/dAjJRDEykSNC9PK5rOPI/sx0HXdMq9qhaCGpoSFG+Pt7N7VZOuzXX8T6LTuHo/YVD24rUhIVMryHNr1f6fHf/cA5fHjx3zjG9/g1VdfBeA3/+bfTNd1/ORP/iQ/8RM/AcDbb7/NL/zCL/BX/+pf/dDPGIbBetefO672Zkd/jFVYS+6KVhgkuCbgy4NvJZsGQCybqH3aSiitjryseMb6qqOAIliEvh42QFf6lb14+Ro/1DdTsGwyGIZgL9e1xHFLDcFRGgfo7LfNt8JiIUxdsd0EWe7JEhw4EuF9ezRRnTb4GgltFdc5bkc+Ov/lLz5Qj3ARuyz/3iX4uRXaLQN3/TSOXvPB97Tfj4cZ4khWEyOTzkWhVF2yv9J3HRozkxaiulqnPzANkAbh/vaM6/05eS7oXI30VgsnfUffB2JSupOOu3JOF3tEkolstQ4AlP2TRxBNHlq1UObJPDWGGQOiiyndqmX2S1SMeYioB8O5Og+ARK4JmSMyV5AJJJPVvGhCSqSSLGCs1pExqktxq6AlL3yDXDJzyejBnHSlWobXkygaGUcjZV6OB/rNAPQc9ntKVqa5Gvm1WvdXKdkUZUvTsRCXITfV2rkYF6hPW2Jy1+LdDVQoszn0ptTRx45cK50bBJrwoTCHzDxO7Hc76uDkPjW7gdQlkOibtRjyNR8ckg5Et2MQAt3QWR2cunjsGLlZkChMOjBXQRks8z9MXiJxumD1rggMKVBrr6At1mU+FneLPocrKRkKZBXjiATzpaEq2RklrbuzrTemNloZJ0gxULLxfBr8viiJuu6NfW9AtXgbqHWBEBu6H20tcCIlmjHSqFipBkVJ1v+vRhpPIZARZs0E7yCyuVRRzUishArUQNbWuWKblToSYPpLa3lWY+AwGfK0SYlOesqoMGfrulPItmSgWm1uuhptngKoPe/mRQbi3YIgost6XlRgnuhighAWfl0XE4h3ECnGHwr+XCW6qWZHkIyKEZ9j9CVcrPQWxcjN1eclaj5RIhBSu35LhiUZD6uJGAriEgCGmFTvmLEo3souRauVwkSWspyt677bONJRa6X5Di2pm5dpRKzshiMvIqZ9FFNCqpeeAyYYKIGSjf9SvePJBBC9shAwZXAZTNfKESxzLi9m+UFDRo7WaG3L/PFa7xSBWq006AjVd5t7f9cByvX1NV/+8peXn7/yla/wX//rf+XBgwc8ePCAv/gX/yI//uM/zquvvspXv/pV/vyf//O88MIL/OE//IcBuHv3Ln/yT/5J/syf+TM8fPiQBw8e8Gf/7J/l1//6X7909XynxzeePLMamZgscnQZ76UNV+0BNlLVmq37jfLNzfwajksSdohv3EuU2zZZMbnmtncu/z7eX1t0eVS2WtrmAJYHpkccGGOhLxZSR5HmwqHRtcm4lZ+ODxvvKw/Ezjss33M0dPw8rQwUxOu+3rP/YQNJF2SlnUy7lBbp2ausfLOeix3HuhwrIXYJvYQF8j5+DscDf/lXrTx6/Ai5umZ7uuUkBKYyM2crCR0OO3KeuI7+7F0xs2teE9LIZ/bF+/3EPGez4BFhGHp0mrm4mAkxkKv5gRxuntBUHYdhw2Z7ShSh6xIxRm7mkXxzY+JOqlzfXFh+KphQnuhSs2ZBpXR5uIoHIESKZ9FmrGULf0WgzugcFmJymZUs+Gali56BBuuMmYp5tORabfFaUDYjSWYtSIVuu2FzsiUEePL4Cbm0jg0rO0U/V8uKrGQhtvfSdx0dylALfddxcnIOVJ49e+pEPMuoipsvmtGYkT1BTBVVLZuOMVFz4cCerksMm56Oji513klhwnBPnj5mnrK7JAe6aCqcpIBGtVLIfqJi7cU2X+y/xWdbiBHRSp6y8zS8dRYTvjIjQgzqLi6qBbS2yTa3oGXuuhq7NS2KVl4otpE1ErPp2tSWMdnG4SqsMZh0O/gmRV3caNuG3tSf21FbUBUjWRViJNfiSYYjHASymjVI33fUYkFQ40vkWglamXGOgsBUp0XCvW1WZiS8bjZV1a4PQ0yKQpUAMVDLDKESQvRuo+O1xxCsrMXMDhGHC7xcFQNGow3LmoFY107jwEVYglBrrXfzylLN98XXElUWJKstXnnOhgglu7aSrQxlLf6VBT2vAdQ7uFoJqCrq3Ze5FHKdEUlUR+Fb0qHBkEylWGlEQZIFYlqAmIwnI4bGCRa8rQuezelFCsJXIGIi1qOAwLPTKoVpnMiYcaT/waTuq9+bloC6H1AtUMKK1gju7VOKJ3z2++rO5aKGPCHWOr9wQI/zc8TLTsdJrhO0W33uOzi+6wDlP//n/8zv+l2/a/m5lV7+2B/7Y/ytv/W3+Pmf/3n+/t//+zx79oxXX32V3/W7fhf/5J/8E87Pz5f3/PW//tdJKfETP/ETi1Db3/27f/e70kABmHL2yFAwud6ySi4vR7sZx5voeqxx4FqCaVvwggSEdcO2yVCP3i9H4msf5NEc/3yskQKeoUhdUB4UAvFWqWMRlvOPCS2QUSxQajUdTcuZt4kc0KXNzd6LB2RHXUfLVZhEv1Y1pnqwhcSk4k2jwBbXo7vlA1Ic9nPk+dbtX6+/0WBvR3E2IY6CQpseR/eroWG+8CsIgf3hwGl/Qup6Li4vefToEQ8evsAwbNjtDtzc3LgSZF30QETVWkX9vsSYeOmFlwiauH52gZZKkkAXEtM88fTZM5PoRjg92RKAMc/keabWCdWZcXdJjxCLwmykPk/zyOqy0NEWWRHIYmWMkBLi0ve3x0ewjbDaeYeut41Ns/nZBCf3uX9Nzkrqe2Lqye77YaZgmIEa1p9xM490MdHFREpGhCu1mnhWFLrBoOPq5VIyUGAeJ0Ni1NChjKFDWVezxZobMQ9bXec9437PfrcH6rIBer5p7H4iuZGgqzqiUAnB9COshl8Y5wMhJFenNZ7Pfr+nC4l0fs44HojVlHO3m45cRwSh18BVrswlQ5+87OH3uXogwWrEGZORETWqdx20BEFcybew3Zpr9OyLfLMZaBtkiGHR5KitgzDYcwiO2K6ZZ/X9OLDqROhSkhInItjUDS5T7wEoVrI5XlNs8ijNEqAFP4Fg5yNNAMzOIzRPpuJrqAqJaOuPrvMcsUY6szuwxCN6YG88BSvR1KaWXA39KToRo2ffzr1RHF0JwcmrluHnWpz3IGiZiZ2b81HRBTUSFgPTI8HHIXTmn1NbWaQeib7ZPbKW47Uss64/FnR4JmplJ9ZnqtqCnpac2bMQvNRBNtTHuTsxBksCAo6sFFRne5YmGWwtzNnAGFSIgwXeIoZcWbl81WBqJUIpssjJN32bPlrCEWO0MC4ER3F0WbstjugYhoGSC/Ocaca02RwF7Ns82CmqBHUCd1Ga2nnJ7VnatXH0XKxUa+t7S1ZbEC3eqFGXtfz2/vntju86QPmdv/N3fssa0r/8l//y237GZrPhb/yNv8Hf+Bt/47v9+ueOcFTKsAxctRGi7HfPix3dOo6Qgm91TbXBARg/4BbKYqdx/NPyrxbxip+HaptossB1t+MZcZj0+AF++MP0yupyfSLxFphicUI7g/Zz63FqqVhcAxQpRFdONVt0z8Sb0q0oS1YnHiSFdn98gW4BUgvYYEUKPDOhZY0iBI2uItsG+JIfsMgyL0jDKlwVRXn4wkPu3r9PDZX94UCeLcPFF+xpmpnH2b5KxWvkhcPB2ekIaZvY7/dcX16z3+0RAk95xuXlpelMlNmyDRGmq2sPniwjvebCNhaFs5M75i3iVuPtrq8UZSPw2b2yhTioQhBUE0tpUMQ4FUXcHgFkmi07C0Dxlkr1IefjNyYLymOXkM42DEI0ZKcLHA4H4xLkkVLViHCOTBnR1IJwVC2o8HsYQoBabQOQwDRPlDKTc2ZaSndtjlmWWYq5Gp9ut6TzwKOnhjrVUhGNNL5SyQX1BTQ6ARC1UlHFlFDrVF3cylCtYTDzvGE7ELvWYg9UJcVKl0xxt1S4uL4hj4qESM51IdOurte6iNbZORuKEiS4C6yP4Kzu11NIpxskQh/NbbpF40aurO5T1TaSFRkTzMBUNZIW/o3PKTUdjLUjMawbseDP2xb14Axg8Q0TxTdiP1dtpFLjN5jhZYVgpp+r6qi1KKdool1mAJpto0uBhBCltf4bUdKqN86sEEN/goQlwBOf07FpOTETUiFqseCkFHcZt/PTWqlRnM7RuCCVqjPDMDPptCy8yxqHPZ8+WkkPTM49+fADt6nx9T8ghkDlsnCP2sp0TAOwQMkaLiQFD9TXdbdUI8qa+0Fn9yNUFzvzMVCM+2iJj5NELSsypNHXe9vkLdCMIVkJpq16GpyY3crt7XmtQQet5Of7iHiJdQGl8G4kiaTOUDTae8URWtEFxRB86a11SWZVrK1aZEVmS8lHjSOypJvtW5fbqT7iHSEUUdOeUVf09uD4Oz2+t714uB1Y2AQvBsn60bwsPpC82x+XLHAp07RjCXKOo25u/7t9Vr39S2uftP57/IE3cTjlCN46Ms2zcz8+OT26vucCouUfjcB7BFtU371EjrI1loDDPrPRqpvSn5W6Shvlsg4046bYJo+sEbJNvBV/AtMB8ETYbrdYbb69xLJDH9a6FIFsQ10+x2y6270ItwKUJqsMZyVDsOApxcD9B/eJXaRoZRh6ttuNZybirXJmE3B2dkaUwPvvvMt4GJnmA+M403U9WiuHw2HNPhxpGVzQzMiifk5q6ERwg0IF6wSJrRVPCDExT7Ox6sWM3mLsKNlKE3jGs/AkEOMQBFtcVYE5++1eCXfaHF1DQJJvXgm6YUvXdfRdT+zSskeenp4sAdduv2c8HBAvq6AQu46hM7+U1JmO0DRPthl3lSFlplKo5UD2LGx9djbKqhgqU7UiWckxUnKFml3yXIlqGyJZqVO2ltWihAELrHxqFBTxYKyTRK4FzZXQ2yYzTiPTPC/y4AR3mpWIhM4M2tScjoMCJa8blzTkAd8wjhIANe6B5mUCIFUczRHm2XkD0cszHlQYDG6S5im0kLTSCA3i5TZDiOzvQXGOAgu34nguLUhrreZdE7wU3RBcZZmzxRGTqqs/T4yGBuRocH4VXNTP+S0hEoPdIzDOwjTvKbMuwUcLgMwN0rGFiK+NzlFjbcFv23+TaUfMJkCKl4/ntdMoqHvlJHPZDdU7fbTSBfP+so/1sqgaDaiLkT7KQnQOHmw2faum8FrrhBKhGgKgtboulpVbTNgzG8Fa7exzLYRswVILGEMIxNQxbM9sTSuFmgu1TtRqJbUmVifVxomWcoT4mIt6rfMSyKqX6RXQap1BItHUb708rL7eGmS27hHqnasi2ca+BqQPTrwOqD/LopmsmeYDN+Vj/RULL0zzaiVoiicK1cubNqec1xjauu0ptxFgHLECU6uNy32zZ9G851p21mwtfo0EKEtdkvUmxMV5cT10+X92LITQo/fdCmBYkp/bn6Xthe2HtfPm+LW2aZl4zqKeCksZ58O+Q6t6H39bMD0wUUMfPsBzgTXzbpvZ8Ycenc8KAXs0LEbiUqnL51UR69n3rLxF8EmhxSHBB7LjJMt3tQm+nvcaVLVzqC3hZFFOoWVHejQB1DfhJlazLHa0rNGe+W6/59mzC1Stq+L09NyzgibkpEzzAZyDcHZyxssvvEjfd+z3B6pUss4M0tumGi1jTDE6HCnMeWaeC3fO79GnxGF/YHu6BYTxcDCDrhjpNhuKgEYhpkidLcBKXc80ZSeMBso0kWLiMM8MpyfGMfEMr1kHdH1ndd2wPoc6V+Y5c5gmTjcDjWuCuMJtzczTgcvryyWAbO6l6zNhCfb6rvOsPCxPqxbriCk1k/OMUhi2HSdDoeOGw2HPdJiYa8/Kf6gLd6vUGVOutbF0fZ1d0G/dSKob9yhuhhcE+sowCBoyWoTg6pNtUd4OGwomLd6nxDTPIMFLFMGM/1SR0IMk76KZEA3Gm/EsPNe6ei0F27yP14DQCui6jm1V8wDS2swQhRSSybGrbcTFRa9CCMxUtiEu59ZKtbkUanFETszhu872ntQlo1G6PkXf9945ostiXhehNSsB2Ll64uPBQtRkCqzH2akompq9aNsSbc9r4zy0jceJlSVnGvl+RRnqggCkkKwdHgtetE1svx8ihojOCHMtFrNLte41dNGgqo44JrHviQhVAplEFzumMFOx4MEjc7tfAXMtb2iv3l5LbBpZOTKk6AFjcODWCKstARExMj3Jgtuq6hIwpqhKMEQhEJDoJUIvT9mJFeuuasN8ub8ujyCONjWvG0dALLoMKBnm5J/paIurzgWNa47sW4IWXzmP0MAggWETyGOmTtnRuEypo3NG1jXe4hmFbEG2BEeYqnFNYuqRmJA8e5AEFStZL7mzrHOzOrrZgpCuS9wuWfvarUZS3pxumKbpFjr17Y7v6QClkZhaX/cxv8MeoHgdTpc9UxqZApb33C6N+PvXMhvP/7U2tKPxI5bNuJVc3NWRoyChcUWOPvP5QKplc5ZZrTX+pWTl/2v10KVdWJ8PRtYAwa5FPxjcyHpPmgNzywjxRcRztQXdKUfn2zpwbm+BR/ei3eD2HUtg0+6iLRxt8Wn1/Fun+Xxk6RijhsjuZkfJVmIZNgN1U8nT5HwBe8/Z6Qmn21NOt6ecnZwwzSM3N1fsdjuiQJfi4urZOAgxRvoYKHmiFGXbdwxOghWpxK6zMoAqZbISUkIQrdZJEpKBIMFUKE9OtghCn4R4siGFSEznBMTKhccS4ApSlH7TLfchy0wOgTv373FWKvvr67X8kwOq0TeIys3Ns2UMGQWildd8bCCkrqPr7iAi1pHhwfo0zex2N+z3RlwNYpwPJLDbK4dZyVXI5YgCrWb5HlhbEV948JC7p+c8e3bB9dW18W0k2iLvdKqipldUa0brzBh6xnm21mrnsqRon3dzc0nooj2X3gi0+901Gi0ZSamz4KDYBi+q7K9vbs2xOltLskZFkhn4oWoO20EYusF4Sr5wBkfBmq6EqJCcjNvGPh4ctEAihIiQjkqS6/ph5HdDLnyGWxnB55zpo6xCa9lbSEUgpWQBTi22+cdECon9bmf8IV/z+s7KTkECNbfOneBWAmk5R1XcCdnJoGIuvLF0xClCb+3GudpnbLqO080ZQ5qorXQSbOxUAZNF8Q3Zy4ENJZJiCrMaoYRq5NBmO4JY6SU249BAlESMJkjXdR0hdMx5MtsAMd+j45jbYkbnrqgu6xQIeZqRUgnJ3NKr1mXdF0BKIe8OXF9cwCZxenrOzcWlqyW3ta16fN3ap33VEoMVYsTFxyoarOMMVeokjPNky1W0wLiWydDelJCg1FzMywrzZer6QK2zlapDQkg+JhScM+I5zDKfwbRQTk/O3RZE/NoNGYpd5+UYY7MHNcQlRk8qZvf7yk5+r4bUxdBR8rxYBbQtRZa7t9IWlhEurXmgXyTyDQxqI95Ro2rl3e/0+J4OUNqx8jDsAd0q+7QsboUKloDGIvB1Q71VYnHmeuvgOfrLWvs+ylLX+vHxmR2fxxpAfCjf5XgfPtZXe+5vfgYsSK+sLzt+7S3omiNg5rmPFGFFeo7Vd2G5/hYA3SL8ytFr9Pgc9Ln/2oubX4b6l8rSsrZunuvHH2Vv7Rz8zeLBU586hs78IbqYKHNmzjO5mMlYksD5nXO22y2qyqyZ3eGG/X7PeBjRPNMj6DQRBco0Ebuee3fvcHZ6wte+9hWYZ7rUs7t4SlVlmia61PPqax8jl8p733yT3e4GzRPnw31qzYzTRAiJfrNhu9lScubJ48eUfYZSyWrlEIkRuo4aAlXFexWUeRzJ+5vlfkYNbLdbXnntdVIU3vzKV7jZj0cZv/EOSlWzQg8FxJx27V6vqJMFEbbKGbSvKIF5ttbWXFrJQyi5cn29o243HA5b9jMUzWiZvVXaFp+Sq2s4WOY+DCecnJxxcXHl3x+QEE2rpgIEzs/OOBxuuL7eM04Hat77BprMudYVP2stTNOBTnoE5bDbU6xKgGDmhPPc0A31koWy3x/oe3N9RgydMIsbIWpknPa2BmTjdJzdP6Pve8ZponUqVechaDWUyjZQG4tVIBTfqMXUYiVGWmLdMsp6hLy0udSWGFUFD4DCEerbXm/3wxb14NLjLUv3hru1zTcIGjvPlqt3R0EiEYA8TRgCYVtLH3vybNofNYDGSFabP91moGh2Uq+dU0qJvrON3u43JIpZHXiSl/y5xWgljS4NxBj9d8nmt4rxqGYPxhULsrpI7Ox9weUahGhiinNn6COFvu9MiM+fd/PdMfSjcWFsnM/zRNQOCdESCmFx866OGuR5YjocCKEnnCqH3Y6cLVjU5Tu4tRbFlBj63r5HytLZgqohKxVqEXRuLsUmMFcyTKVQIqRgwSpFIAo1QJ4rzMo8zqCGPqqqtQ+LdXZ1XYfWypxnV4e1RGF/syEG5081HiaJFCISkzlDU72zzJCjtvbb8xWC8w6jmJHn1BL+aGjUur/JrcpFW58FcSXmZDpCtaF5rewD8zgSXR/pOz3+/yJAgQYurASi239Z/6nHPz8XABgRqa5g6PNloFuHHP1t/d8qQ9agsNvv/SBn5igAOkKAFvThubLQrS4Ztdfpwo7+8O9p5YLloxtnxmohDnp+yBV+AEKyrpPnf1+P3h3aaR+9ph5BseIDf9V1OUJcjnL9W6Wq9ruGHGFcgNLaPTPMxey/S1v0Y2J3GLm62S0Q/rjfUXImzzPT1bWz5oUqwqjGy8j5hGmKBkXOE3k8YGdrxLPd5SXj/ftkYHdzw3g4gCon5S55nhkPI11XqXOihsQ0HqjzzDiNUE33oCD02xM0raTZ4khYqQqjtxuKXUctmf3NFV3fWTt0i17tRpsfSjZC49qWbBtaVeseCNLKxqbw2jqbai3mxeQLYi152Thvbq6XLJsk3h00LwtOLerdE2r6h8EhcjHH4BCsU0k0usutaxZF73yYC3W2EWJoSGIYuiNVTOV0s6XUynyYkN4vS0HnakFZMqJh31t2XXM1xABxipchHdLmE6BqEvalmD/SZrNhe3bCNpmOhnmVuElbyUxjYDyMzCW7+mZH1xkilGs2x/GwjtF22AZeac2yqBCTLAt6lOAOKL7qBHlu4bdSlrVhN4KhLGU1dBkJTgJ2dLcl0wvhHJBswYhWCtnaUWuxe1QiOWe3dDKzwEaqtDFhrcksY6Yu3IZaqpUTgSBmI2HcavOaqUUosSAS2W5OGPPe5gFCbJtpseJL0Uo/DJSSiV0kVDNS3MYTFOskDNIMUe08Ej0icWm5FnGSvyRSP0CMKAG0MtZMzpl+AIlGKu/6nn67IYXAdhiYQ/DAtGX/Rn5tZb/YJdPkUut2LJSlTGblVuPJDN5VZ8iE0oWBPtrcaEavmnCzzta+r/R9XNBk9aRNxZ551/fm8qz2fKxTSJnLZB5KukAsK+oesHIVLaCxe44uo8PGfAy2dqojai3R98A4RuPdrU0eH1KmER+zzrtZNbFaec4cprU8v6989PE9HaAcE3K8seoWtLqqcRyRMI837rapS4Ot/ZOOPmRtAQz+mlYfcrza38MC3nJ0Tt/63D/0uL1v3/5de+/CVzl+jZ3zB0pKur53+YgjmfvWVnecfSxfuuiSHPNiVsb2BwOYla+yBh6Nff7hl9s+5+g0P/iZjbQn62fu93vG0YTawLI8VWXO5onT9Z1txEVpPiUpeOjpAlXm4srSBqu18N677y6Lf+p6W5GLItFq6znPfPUrv2J15+xkUdcxABNDC1XZX12xv7paeSbdOtUCEVIy3spCjU9Ljb7bmCOsqI2qOc+8985b9nOuSBeZshPuciHMviN5Wmq3yWE4r1WDLNLcec5Q25xQKgdKnq2LggkNmdgJUWbm6dqN5WbPLrPPF9NyaMS3WrxU6NBaih0mO+ibMwHUuBiH3Q11NGXZTUqkPpF6K9VUF6Tq+kiSjjIZD8hQoEZQhXkybYfNsLGSXYxMs5WnNpuBeZoWpLPr0rLZNIVLyyYN3UGtRCdiwY1VDpXUBdCNIURRibHnMI6AEpMlF3fvnDLPhRgteJRgZMuidYHG23wwNCS4OJdvVjFQF4XTuEjihxDMeC4lSrHv6lIiJLvfpbpgmLecWxmhEhULJmgaOm2G66LYW0Sss0eMB2HdhIImgRSN1FusLGAuw96SLEZ2FrG2esU2euaR5O3vIsnXC5ctcI4YNbMZTlDtMPE4ZXYCqGhASmWuM7HrGOeZPriImFqXXgjWnaKq9J15N41TJklDrALUYuULhEkLtWTv5LF9YSyTj12fhylam28XqJpJKdp6H63NvMzrJm96CLYOtPJ+qa1rq6KNdE4geEk4lEqeZuv2iYkuJetYXBAMgWAJSFR7PqkWH6uNJlBp/g0hRO8oMyR0SYY90Ktqc9AMTg0p0VLRuR4FFLYm1GpjRWTNgAUsiHaOkwWgZohoSLssaJ8ga9fPc3uZBTb+EWFFayQGQpPV/w6P7+kABY42+jZQrVPfN9uVYOmvZnnxd3w8/1pfbI9/49AauMy6Kqp56Vv/bo61fORn/Bzi8i1Ps/39FmikayD2QaCFD6BKxx/nfjjBO1rggzovH34qxyvz+nyWz/Xft2Y11XArdvzIMhjQeC8ChKKkNrnmjITI4FB3wEivnQTEa7F4BqO1Usb9IspVtZJib/Vy5wOkGFteuGTgAp5VF99sQENYujCsVr0+8eJy26aPkGzRtzXfFD11XTTEdRIqldm5FMv9KtncQWtd7lGhNKsO2mKCHAXQ/rAbX6a1OOYyM5xs6LqO9lT3845p2hNSIx8WI8yJtdiqrBm6SDOekwUpiWIW9q0NuGoLZDPmjFqJntmllOhiT5CRMPSEvocUmGv2LNK4CKjxgIYIhzKz3WyoWCdUVSO9DsOGcZ4Zp4mqmTlP9P2G1Fkn1DrOoO8jc87O5VBi8hZnnNDeslrUAy3Ti0gpUEsA7el7K1uYhsxMiLL4lcTULXpJeSxtsBKCcHpi5MB+SKQuUnJxcUgvAQSlj6b1EqILgslKQAbLtGNK1rIZ3PhOzBMoxUhCyNU0XBLWNRZjx1xGpsNI6oQk1iIboond5ZLpeucPaHUNlAh1lVQVmp5IKzbpssZqgCSG8OAddmHRkAlLcBzdeyeGSBQTEwNZ7pcFakIXEyFAisl4ND6KU2uR9o4xu/6EBOtmMamNAhHMKNBcfVWVeTKhOAsubNw2ufWqalpFTuY1YTkrP5mjspiWEhWC8T1iiqQumZ5UsDW+5GJBnz1y01PRgqRAJx1lN9rm3snSbWSvtZbk0AJOKjhFp3XPNMS6lWaCB4KGkpixYoo9QjJyPSZaKhXngIiXi9ayYfMgasGa+trVSLpNjFHdB0n8GcmyBh0h4r4OtIC7rd8tiWnaJ6pKzpNrtXyr1P328T0foBwfx8z89ZB1w/vO78vRZv48lHH0ELiN4hx943I+3/Zrjso7wFp++RbHMS/k+e9cTlM/+PtbPJLnv+bDghfBEYbjzFxp2eDx+X9H5/z813r2ffzdLaA6vne3rgHTFQhTYatixgDaulYi3TCQzs9Iw4a5FC6fXYKjJS2aJ3qGqJVhE5l3SuoSs1a6foPJxVvddbPZEAnkbFltpR5NVJvIXTIbBlGDQhULTkIwaem+G+i6Aa3mvFoF25C9rtuCa9Qy+KHrvZVY0TmTayWFwG6eTBW1qCN7gjZ1TAGClVvaXTvmM9hJmc9MUTWGSoPDcY0IDxJTiq4z4fwGwfREJFAk2sYbE7FLpBDMXl6aYJPzXLBztLKQErLQ9UIUM0OMUkEqVYshYbV60GTHfn8gaKY76ZlLhVwZSyGIETKrWtB0GM0vZy4mPz/PI12fWr+pL654sGBlhBSbA7dCTKCVXCbv2LGgI0laAm0JpqsTvfMohUBRMfl9hRCVec7EGAwtgOUetE6nlCJ937MZBq6urtiebBj6gWnKXF9fc3JyighkvwMNEVSFroukFBbExIawdYa10lVZMu/ba1NtPBE6pBovJxDI1dqDO90QnKuCtyHb/9l4DiHQpY7Gn5mqoxKps2cexTRWYqIiS2dPjJ2PAQu2rSPJ5OfbdLf5hJchrAxgwRmO1NmcCEFICEWLk/aBKgQValSUiVLzkv0HNRGylKyrpLZEK66Gr60TTgtMJRM88G2KBxqqB7kW3KiARvXylxlCSrTrVylLdcXlMU2yAUt0Qh8oYVpL3XokxGa7lqn+toaOho045SAuc7hbAoUg1uEVGlEaCy6Wfq9aUDWuW4jBkhwnJFcPINpca8lo1QbtrUu0iDzn3WbDWkKjva6vF2koWoAm7ik+jkx7w0nFv0ZIso1b0KBAWxSeRyyOAohl426g5/qaD/n0b/vdH4YmhAUBCUff98Hjo1CC4wClQa8f9t23TlHW34e4dm7cktaXNQpePuO5j15KR/7+tulZtmOKl9ru39G13QqUxIKLNgQ/ANgcX7O/9vkXHavfts87vo8BiLkQx0qHLcxJACJhLqShI2wG+pMN3WFkmicUQx9aQFnbYt/1SBqNrV7V/WKSOeDGQOx7pnE06ehSTM+gKnk2VdcYE0WFu9KyhEyXbCOotSlMGgkwhkjfdVSFq5sb6jwtREi7N7bADpthQVuyWvllLIVxnklxS60ZxIICjbaIhvZ89ciD6eiwBc42Jy1KZfaAxBn+zkNB3XiuQfveUqsqrjNqpL8kxtcQD0Ss80CZppF5HphdxTfG6AtU9RLObH49AtM4k7MivREAQzQIfHbXVWLPLANxKO7WKyjJCKxqqrPTtCOEwNAPhCBM02RBY+iYx5FFo8bXiubtUot3XVjdjN31BSkmNpuBakYCHpAb8XE8jGw3W1uAkaNWYllcrWOwgCGgRLEWzKpWomvIwjxnQjSNpMlJuakL9H305wc5R05PTwGcwGxaNi1gORx23L17TkodZTZzu3ok7oXYuBOsjbfbbCzISLbcRxRSR3AESWvxzLyRtR0vCQ3R8TGkVtYLKSHJ9YVUTYtHguuDqHfCbVjK3i379nw9xrhYkyw9DGKBbSQxT6PN+bBuoi3YbvNExdBG02cRQ+qcp1Nc5b0lJCqmFRPpEBo6VNBq/CCp1lVjs0ZdUdtRyuBrBsalSwvmwHpfQiAs4n5uZ4DNtywVGaJLXLrlgDadFJYN3ntcnMgMKqupYJvJBTU0KCmpi1ai9nvXKAprzSAsgUvf94QwWAm3FOaFnM2CyFpwamO+eNJieo9p7Vpti35LqJZk3dvGPXBKQSj+9+AIdIqJrusYx2kFeb+D43s6QFmOIxiqqTna8RzD1F9r+92RO/FHfOa3Oz4YYHgroQvXfKsYp7236u3zWHkxLLXTNUZZpuv6ow/upb001w9HQmDp+lkym5ZZH52Ter37OOjxBNQ4B+CQqi61yFvB9fP1SFpG1wLF9l/LNG4jOis69QFkyWikABRRblTJKdBpRx5HBpRUZ/QwcpFHxkePKcGJXw0Sj8kVVWeimoLqqNfeSWNdKuRCVkgh2giRyH7cm6R0gFhmUOhjz6yVWSfimXEvJERr2xw6Ej2KsjnZGBTvctzTOBI6q9MfyxW1sm2phXHOpGDwfQiJrt9w52TDeTnnZndDDRBDZwJRwVuFjxYNb2igdTmsA8rqxvM8IsWMwQC3qW8qwRa8NTOxoBGtAQmV0Pd0jj6YZUIj+QEBYhD2u2eMh2sjI3YeeARZAiGw8sJ4PSJF6LpADQENpjK73++Z58lKTVkYho6YgrlIg6FbWolJ6YeO7WbL7ubAqG7GVwr9ANuTLdP+QK4Z1AITi+Js/AURUmqk08o03zBl4TAbaXOzOWEzbAmpRxBOtmcMaSDnCY0VUZefb9krQkw9Vff0XeTB9grVjuubyr4EYhzMjVoyXYRSInky8muKyjjuQISu27BJAZ1N/bfmTBIlqgU2IpH5oPRd8qDFps7l5c1SAhDsHuVppsbEnTvntuaJowmlIFU5OR2QFBgn42ZYqSXeEtIKvvma63IyTlYsSNTbwUVINna0EDDn6zaPF+hf3VU4ehnE0bg2/atn3FVbu6sQpDc0g7aBGmqBKLnOFuiI4Rau62bkWTEScvENfl1PWgi2LDqO3Ng5Nm+2xplScWRBDO3U6L45NG6dkpJQ3IYBxMqZYoFU9t04SFo+K8XWTRMIoSPP2dPluqyR0tZW1u9LoSDR0DixdqaFZO8yt0ZwF5ZnKCIkcYOUCuodWro4nePt6BaUm+dTJaS1XT54ItPGl1+cPfqgoMKsTYfG1lqdrWxoTyUS1PzLokSur36NICjQkAAz3wq1kRWP/sa6wd/a9D4iePgoZORDv/foaDVsC37WNubnX/P853/od8mH/XPdyBevHtrk1g99r42jIw5KI7v6gP1W5aSGpnzgXn3I6TadlY++b+tz0OX823O5DQMtsLq0xeT2vRKgIsyxcKWZGiLSB+5lOC8zCZOtnnKmRFP3VLHFYNP5d03ZDNV8UQipt9JLziQnnt558AKbkxOubq6pB+s8iOrtkTFyfvcuu/HAbr+nGS2C26GXSi6zkSZ9wez3iRAi8zSz2W6WeCzIkdO0mkbA/mZvizPC6XbL9mzrpSU4Saa+GqP5BY3znlIKVQs1O5JyNFbWJ9DIkgW8RRQPxCIuRR9M+VKXTp1KceZ/h9f+nTEnAQhWQ0/RpPbb82xZfUqdSYRLQkJgdsJgzpmZAkHNe6Val8Jhf7DgBDPMFMycdNHyCMZxmKeJlAK73Z45Z2JK5iGk1m693+/d/VjoemtvtpKc9Zs0J2CCEhOOAskylmsp3NxccRh39N0JKQ0MvenbaFmTA4XF2kDCUWeDn4chu2uGYdllsDZzzL9mznnpbmhdFO35Ze84U4Wbcu1tm1bXr6Wy3++X5IGaicFVOtUQFRPiEvpN7xugPad5HJmnibOTE0rjVjg0n5u1AQqupdIPvSFiavokKUYkeMKg6n45oZn0EEI1Q0GFEB1p8lbpTdchyUoTFBszuZSFF9Haj7VUQzmjJzSeoasokpLx43wKmwYNxNAQ4Lo8z9ZSa+fhPm3i2lcVQw8R56HatQuRWowz0+yyVKyzJTj/pqpaN1IUzMdM0ai+glnCUqoStKyozFI/cnScpqmjSPRuOFqZ1nq/dEEvjDa7KM229XBJFEFcndqcmVdEzfhntkaoWIAYRKgtUFvG5xoMBUeu26qsWBB3jJYsi7gjsykZOBCIhOC6RB5gpT4iSQj1uOni2x/f2wHKEumCpwgLDPphEcgxYfRblk6e+/n5jL6RDj8cgVFfMRZ441sGJE61dBXG2yWYW/++9V1HCMqHfO5xnXWVkW/JiqlRLjyW48/7iPvSXrJ0Bj3/2m+BFC3f4NLYIseokHzgu40drsu/2304Pq+iypwLfeyRGMmlMlMoEuhTj7pkdtFG+jIItDi03OrFzfdlIxHmTJyztbgq3Htwn4cvv8Q3332Hm6tLZ+qbuJZW4fJww36eyVrZhOCmjjDlGby8MefZBL9yQeSUvo8U934JIaIlL/LwrRRiWimmlxJEODnZQBJyLtaWW9QF4ex+xmQwrxQMoWhDj6PAVb0VPEDfuTy9eoOreu4pkHPxNtFI9ZbMmAxp8kq4o0q2EWooVEzHBTHkpmpbZgNlsgy0UJlz4bA/0KS6rSBU6VKHIhx2B9+oPDAmWUdNzva6rveME2qNpGSdOvvdbtHaiCEQ1TqtwAIVMIXLrjONhqKVPBZqtmvKqqRkRM5mi2EE5sI0zoyHib7bsNmcEjo8jbfF3AL4YO3qsgZocy48uT5BRMi5EjvzjBGPJoxcrd6dYxtKihHm6lm4oafUo26JaqhvrdXEvrBNXLEyUHBkwYIXJc+T6Zp0HVdX11Y+STb+52wE36IFrbZ5R//MPGdymdikgUZE6XrTQDncZNBIH3tUV+QOXwtrnhi6hBHr1YmkRtpsInpdF0mDU9tbxh3M/ya6oN8m9W6TYWTVpevKXy8hUqmkkIi+zmqL+NXOJjiSXmpGMWSj1o7GE2nzJCzNgYpZWomPUQMlRMJi6SEheLnSeY1RPQBy4rUDQqrum6QK2UrtoZVhpBHX29Q0cqyIrdWGrKxGkOrIWbuutmY2QjnYWKyYbYaRcSM6ZZacOWZvDS8ghbUjvq2/FowGF1urzhPyRdkJu41o387Ar8fvu3gSWGtFI0jCbCLsHxAyNR8+QgD1o4/v6QDFIMbbKMmS2nA7sGg/f6uyzsJ3OPqob735fsiG3kaFw2Atgv3QQ4/+4+WcQuPS3D6XJSBqYIi0AfvBz16QGtYAp12Q+fDoeo/8w1oUfrzB3drslvr2R1z3829Yz2YNtD8icLTPb1fZSkBr67ed2/H7IiLKZnOKBJiqUvOescyUMlN6E3dqE64JDSnuqhlkUYYsXsNOfU/tImihTBNvv/UWT589Y2yyzwSyuJV8VS4vr5lzoet7yzq8lGTZZSAOcZF3N1dfXBq9uCeP8RqqjsTOVCNNiKnxByxru7y6pDskI+Sh5DwzAyFHsz7HeAaZplLabnttN3XNg0QX7oR5cBhbaG1EZRGpqtU8d7ZhQEJEgulNlHlGHcGxuj9Ms2V585zJs6EzZTZzsZACepi9g8ZawEMQk9SO1uFzmHaIBPq+d/6PE1yDi3xF00mxjNJM/aIrrHZdD1RKnalq0HbXB7okPLhzl8urS/KUySV7lulEvmgZbUXI3uaKVN9wXFMmKKgFwNfX1+wOezbbDQSh6/oFJVAtVgILFgD03cBu3FsuHEHnAsO6RjXunHlEqXfzRLoukvNhnb9BiKwla2tBbvwFIaXOUC7nObVOfK3V1Do9wDnsD4QY6TUyVzc2lMRhPBh+H2DKB7NcSIFaN3aeVdHStE9sDnYpOWIGudRba0xVJTlROucJiYFcMjUUkIhWC6aakmlLLtfyCtSSSSmRuuSBczwW5rZl1duoN9uN8ZpKQaqXjZrBoNsZ5LksVgRB6rKOKIa8dF2iAUbWYWLvT110HzG1kv1Ru2xw+fyqDa2x3wutUGNrdxRBknVtic83ESVK9NXcfmfmfib+ZuT0o6RbEtCC54gL7th6Uqtf77p2mo4QTPNIbHNb44ry+KsbZ83WJV0+QwLEGtaylp9plCP6fdvaJC6/S130Ui6EZEGp+t7nphPUbNyyfvjOO1u/pwOUJaBkhUXbcbzhLajJEXryUd0nz/NBWtdGy2SkRYs0tKYN+JWTsZok+Uk2UsBR8HQUDC+Bx6LFsoyAo9ceRTPqpY4WXNj1flgH020U6NbvjpEdn1wfSpt5/hfLadyKrrBAwHUNjurP63eud3X5l+hzf7t93m0htmtrNDIwUyvl6ZNnpBQ4O9mSqUyiFAnI0Fu3SzTiX5wzJWdKFVeU7Imd0Pt90VLBZcDzPJO6RD4ceHKzM9n8kKhq3iKwcny2mx4FLi+fESIM2y3D5gRR8/SJ0Z730CVytdbYzcnpknlm36hKKeRqC3OhMo4jqoXNZqBUqFMmdYGoJqJWEasVVxPF0hAQXV1LLb7T5RmpWtcBBApG1rXWS0sh1YWpJAY65ymEENFOzMDM5clrKUzFWqfH6XpRSm2bZnNhTcl8XSQYElFVnU8jNK2I4uooWjJ9l0hdZ3YDISxhdxCshLfIBihVvSVW3A+pVLouLg2wORdKHrngihdfeIGbwx5p5ZYmzoYhNalP9EPPSerRYEGZIRGdtyND1w2mjFmglJnD3oT7ctxR+o7QRWopRnwlLiXMJL45+/3f7w8M3bnd7yPemSzz0NCQEP1RocRqxFKJyZGlBvlb4B2CBYipi0uHhn2/ewupd6fl2Up5wY3tZsto1dee4CW+XDJ9HDhuJxUJ5FIYD4Z+daFnKnY/c86OJth3hBTd4wcowjR7O77MRC9/dFFAm4R7XIJGC67U+BgRYieoRue9yZFXl4IWa9vuOgqVmJqAWESqI5HSjPnWUpuEYkrLThAPwRHI6MJzdlc9xwzWFSdCCCtnr/Exai0L6XdZq3x1Cx64G4ur+hxTaK/rlFafEjEeVkumaMlcu24xL6jgr/WKKzhmomJ+adHfq3NGcybKgqkgVYzvE6xUo9rCME/WavFWZAtGqdGfjKI1W2kzODfH4paFg6M+hmMMa9mPtkfZGijVrBqCVzfCdx6ffI8HKLoOjrYwG5nnyFVRuBVY2Nu+DSwCRwP2dnDSVs+WkQOL1gSwPrZbX9GChPV1z2/84n+/9Yvjv98qp7Rv9oDA4Wbq7Wt7/no/MjBz4ENEoK5R9ocFN8+/Z/1hvebvtPUYgsOT9UPP+6M+yyaSLxLVsvcCjKIMmw5NwSP3QJTIXCdz560wDAM1BKQtakEo44QmQWoglMjDBw84PH1G3u1tIgd3EnJI1Pw0Apvtlt1ux35nonF37t3l5ZdeIcbIMPT0XSQlaxF9dnHN06cXxk1AmeeZvu/JORtnIiVarVgwXkCXktXsPRsrZUK0ErwEZGNQkGAW6nVZdqx8YDeTZbcXSaDqWg7rWIspYETSiJYmlmZqvbVayaLk2bguzTPJyaa3SJCyjrHqWWvXNGj8sM6m6kENDENn2bUquUxItfLR4kTttu0tEMqlZcTG9Wncrxi9Xdu/Z7fbmc5FKd5hYwHSMGwQArP71czjzNVcvWUTLwV1hNCbpkhI5PkA1EV/QtXKcKXM1L3db9PlsBKI2R0UIzy3rq6oSwmmNUBLsODAEKOmT7F62WhUb/EWNwIUl4/3jh9vK02pBSeyIAFWzoIUOtOc8excggfxQdYuP8XJlcahWrUq7H/WndOY1xY4Fr8PRa2UM08Tw2YD4g7VIZLn7JwYUy8Owf2YqMu8XRI3EX+uWJSGbWStM6c2SYK2cnhgX6U6ioaFvIE1eWwBRNtsnX+FmERAcCKumW6ue0S78mXdtq5Z754D1O5dYRUr62OrFdkOHkNcOC5RcKKvB1pHSL6IrOJvKKJCVCepR+McmTHjOrfttJrpYVjsK7TiSrPV+CCoo2B2bSlaAlRKcRE/z1FiC1xwn87jgNBIudrqQmo8vFBbkadxabzMJsstWoj0kuxeSG0O5b9G3Ixv7ZEGRayZ4xEcsCAGfLA7pB3Pd9Mcb4xVj8Tg6wc3/srx4NZlr5blLFvLV4MQ7TybUNjzHBX73OLvO2acV5A1m7RgLNwKZo6JuMf/btycxnl57ub59Xzw2tcP5hai03wd/EtZ0SpssjsM/FGBx/G9Pb7n34qgvCACzEAmJiV2QqWYPTsCKSHJdERyrozTSJ4zZTa0ofOsQbQyT1YuqJrR0ENKUDPX+z1TnqALnGw3qBi0Hier11eXQRethFroxcoZu2ePyWcnnL34It2mB1WKFkrOTPOErVkGmxvEHxnHERHh9OSUFA0M7bzltI+B6J04FV04Eqo47OxwsAM7QcMy/mOwzcMyIyPthRS8O9kbSUXdFM/G4jQdyGNdCKfGN8GzSHA3Q3sKIk4Obl0Q7rIrQinmAtx+dzxeQ4CUlJxtEyyWbnt2aOJcpRTooEv9rbExz1YqGvrBP3PVpAFd2ijBFvScMyfbLZfPLpidkFlyWTgcKURDskplHidUK/ul/JIWYTabs00d1q5bmv+L8weMtOmIggZqHW0eqFIzlACHeUefkm1wDUXwMlsIzT3peDL7BgJUsSAqJkGCt9NWvD3Y1GdVhWYUG6wX3PkLPk783FO3JjgpmZaLFsu4mxbJIvCnGciYELKYm3AXCQVqsXtfSyYIbIeeUmdymamiZkbZxomvFzlnwtB5iWGd03k25HDoB+bxACP0fe9t5zPTZG3cqUvuim0cr2HbIx7EBNcEUg9+RF2CIJowX4imEWIojEIw0bigeUFGLDppwb1r+oiRUWtVqnettICgjX983DbwhVb38U7gxolpyL401WWFUMXQGn9bWwdNoC4xFnMArr6nWcBuCGj0cnXQavMc6wQ0hNQCHcWgkWWtFaxLKFhJpyrUaGtIDEbgDsE6D1N/Quo6RNLiBi6s92maJg6HA6VkqrTSnVkZLEEXeJBmO6CkXyMByvGxxPv+AIEPbMANUrv1JvnghtyYyEsrsrbWs+df45n6MfKhH4E48Nz3KMvgP65xfDT6cPwaWxiXn+vtTPbDPsscWlmCiuUvt96yokK3jgW3ux1ENG+H9pY1kw4fuNb26etrfNM60l55/nrbHH8uDEVwcppaG+Y0jlRRtmcnVpPWbCJOpTBNI1rLAlmP80S36SCb+ZyghC5wcXGBhkAolZt6TaeVftNzdmfL5uSEkgvTeGAzDFxcXJBz5t4m8eC1j9Np5otf+CK/4Tf+Rq7nkUdXj4nFHIOjt9+WeWKeJqvbi2XC06SOtHTuOGs8g76LDkGr6YY0YmY0t1yrueflttS2qdJIi+B7Aqp2P3RBEIU8Fw57QyLmeV6zWSCKcUssy1MPAFoZx1CAGJPLq3fL4gwsGg7REYB1PIpn3vEI+Wqthv5EPYmwTpzCoRzQwUiVigmsNb5F3/dMk7XhWgDx3DD1MXp9c8356Rm7qxtCSs7xKcaj0Uqu1tUTUvQOhM6MFx2lub6+dlTDAmFTF+28K8yRywhN9TU2RWkFIS5BfJd6aqlcXV54t0ibizYvu26wDczFaEQEJHhW7wGbH63jpvr9UAKlZHKZ/T62pMRImwKOirTfW3dKUUN4Qg0uee8B3lLaaXPcReGCzSfEW7MlUkqiFKGQ2Z4MKJnD7oCKkl0sDDGeTBATczMfASs9WUktLOJu7UEGaQG8aaXk3d4Evsz+mXEaUa2cbE3fpdRMnifA0R+fD1DomnlyKz/7emWSCoU6G4k2OK+lHqGCIbRgxpgYje/Y1rYYnL+hhZwbiqxwhPa0Ft7YgkSwoPRobbNkZw3ibQ4lBBNBnL0rSNWSosYLAQvES5kIktbPDxWV7Pwom1dVobhTs2nueMKr3nQdFW3uzOIwSK2Usbp2T0eKR2ae2DxtweCSwNBiM0uAkEKMLM95Mb78Do/v6QDldneHC6eLbd1RxJjw4PLCTcLGW0KXe7RCgcuiqu3xr2zv9h20gdU2Alak4vicGoQKTmZqgYx6CLAMUL0VACzfc8Tkbr9rWc9HYQwfFmipR23tXFoAIm0Q6tH75JgItf59+WU9QqGkek18ecPCKgcW6/rjC7PrvX1dLTj58KDOe/yOr8lvVyIgqYlbVfq+M+5Izsz70ZRjUUSzQeG+UJWSubq8QrM995RsJ5/LjBDovLyQomWVdcyUNPnmZBP0ZHtCLYXYC0/3e/JUKcMDnh0ij28OFI1suxnFSjEFKPOI1EzCdQJESdEEjSQK6GSmehFSa5eUI+4SmBQ9Yk7IUWwza7VhEbRaVp9zsQ4aVStDqBnX2QbjnSPO6wjBHGJbuaYspLtAjLbAdr1J9QNrhu3ojQC5WE2/+uZsXRPmZCqipr6pzuPI2TdB5x0sGamPjSNUZ/JAYuVK2YYxDBsuL6+WibisAGIdHtRKTML+sOPhg/v0Qw9qgZOkzlqPPULIuVpb+pypdbZSTwh00Yi2tVoXUVXroppH864JwVU8G88pBufCNHE1IRcxkaptbwTB6ryPYJ5EVQuhBLJ7CIkYyTbE4IEcCzm4lMwcvcvC/VgM2fXnFX0jVbsjtVbTAakTIsXn5lEwqCxdYyoBIRFC9oC1QJCFFxFCoMyZUk0QsaJLySck6yDJJTPlmerlnKLmuBuwtVCCEJIQS1McbtusEKOQRRdl1NA0PEI7yUrXWydWKRlCZuh6ticDQQLjLLSybyN59x6UbYeBymACcjWgpUOkR2JejFdrKUvpFUeYA8HRPUO4RONyf23psvmptSEpK1kVba3n9hytbH60zqnPC3RBPbS2/cq/09dsXUqYHTjB+ThZFZ/7DV31CWgceaqfiyM2Uaiz8/lEFuKvBSOGYpoFRPUAHkpue4crSAcxde0QbT40/6MQgbyckzoqKh64SKjeEl2e2xu+9fE9HaAcE0OPg5Wq5sUinpHZtGys4rqgHK2ObjCUk/NUl9e0Ld2izDZ41sh1PRH/vP8feX8bsluWnQWj15hzrnU/z96167Or+iNp+215o3jswJEYlJygojEqBPEDI/grkB+CsSGkg6JBMKA2yQ/9pYIgERTNL/MmOYoYX950CDk/Do0HkWiQY6Kmu6uruqtqfz3Pc6815xznx3WNOde9q7q7Wjkfdbyb3bX389z3vdaaH2OOcY1rXAPiqqgu/Nl7DFISlG6J1xH6ox9BJ+RrIyKGY+qHRERcIjlx7R7POu/5WOVzSWS9/PsF8Tj2rq4fTSNMz6V9iYFTHt4a4/qss/Fsuu3d6NGxJFn3ION6fXWF6+sTksiB0Pyftw13d7comVUe63r5+9476k6KZtIG6gBWqK9Ibbi+vkYqHb5tuDqdcFpPaL1PDYwYWyQ8evQUyRZcv/gS/utXvoqt3eF0KrDbPiHjDlWxiFZXM8wKWu0oGWidBN6cclSxzgoCGUzT0qNScEZepBSiyoh923G3bUxnVWpImMo6cipyKhkVhhPeghmHmXLKpaDkRQJsRA/CyMBn+Sab0xmFy7qzrFDrMpmj9Vj7rLBovaJtEZ0XwvFOuJhEPRwqErQeOtGDUsqYv2RsBviVr76JdSkDFWJ6iWhGHzwHIqDXV9e4O9/JsbDpXKWEshAxgV8RUaoVrZK3wucJ4atwxjWH3tAq4LuPg2696rh3VbDvu3wnG+t12yoSuuTxDaUY3DnG81Cq2JuHnYe7Y9e+iYOX4npU8/VOAnJzOp4+1jkDqyUX4HxGMqaGWpvBVBc6w2jdUMoJwIqb8w3v/5rrpzs7Pw8L1ht63UmmdEdOhr0xXUrNEKE7vcMLOwFnOzTKVEq6D6RIpkVaN0nP5+58RjSmJhOf+fZ8h5QSrq5O3A8qzV2XEyw7m0QC6L3htK5Y1gXuGfu+4+684XzecHV9n9V4AJViZcM6Zipfx8LB9nDPcIlyU3d0OSfhKF9Es+N7gqfBf8smWJQo94l6yXGgpAHQ84KeAyFlBWHUubvtvDnrF8FDaF11cbd6n9dKSaR313uVKvRucvzi9uVo5IR1yXhw/3lc5edGCjUnprkfbY+JahX2PQu5fIvAhBAOy+n1zK0dg6Bv/PrAOyjxIirKnHZONipd6GzkwEeEsNBQssjCwd4IikJHVHIJa8T/D0fHnzGmPrkeCIRl+hOXhz1i4QfkeIQp4qoOU0mwyxMYhLbD9eJixywJfy4nSD8/wmoX9/oeY/nsy8wufItxKWk1jB/qepeOhw5AdQgdfRjGrybyMiI7zUV4N0dicVz7dFpx//794ZiGCb26Okk587Jrph2+D5q/4DU8eXJDnQ0Hznd3uP/cfeTieProIc5th+1UiWx1x7YZtu3Mr2lgWXFeUE5X8H1HxYbWKm5vKyMix2Xkk1jaarmj1X2QE03VKo4MK+pUW9TgDdPBrOLW7NuG29szW8O7qwrCdBgVFCOCxLLmnQeSmchuPOgWESKZb+bfs0otmVbog4RnFsRMGv9tb+jVEJHjbIpo6E6CHhKVcEc/mEKCKFMhh8hOz4eUpEtBhILO1UT1Us64umZk3FWWHYjHrByr6D1h23aSVLc7nK4X3Nze6P50qEVAIyPanfyfnDNw4gFZW0PfN0bmlT1EogdJUpNAaomQ79M2hy8+0lgpZ6ynlWTdWmHecL6rWvOuZ01YFt1XFqkwTe4Zv4tcs+CtWKJmRZJ+iO/ORoGZ5eOh2tsdTHdaxq3re8EUjcs+tNbgBTA18Nt3oShm7BnVduznM8eud7S6sRLGM9NllSTMkjMe3zzF3jql+08sRzIP/p0CJKcdMMH+DorOHXt9NfXFKdL/oNovsNUzmlc8d++alTW9YYejeWU5u1cgcd06gLttw+1m8J6wtw7LGWVl6ufYt2iiyqwQo6q0upA77W/qLL4gOsXy3R5O+7BXikbC/nUIeBA2o0qx3knQhR0S7nKAaPB0Fh3s/uBZ9crny+0Z1XTtETNyUHofUgpJom8pGdK6IKUeLajIj2rQeRnoiewyHOYNV9cLrpdF3CsDmuH29gz0J6RCDPsWvKWOXLLmk45Lc9oVrx2tfu2z5tnXB9pBOb6CcApguL1x4AnDgh8QE71RiyJBwOUwWOP3/KbjlcCJsCnY4wHXHQ78YMgjptovvubo9sz7Dj/ALn4ffx0bCTauly0WwnuOykRa3seaeDZVNS4dCJCIXNYBMcHGfQOAW3/XdYaTFDyZkQbyERU/y585AKLK4x+uEakqnyRhfr7Pr9X3XJazzXlNJSOlRSqgNIRmJIhdnU5KVzCyvz2fCZeXDJSEbaMDkhy4c0PKV0j5hOV0hbye0J9s2LczoqMvc9/hhKTxzLwj3jMjx4VPnBJSYZ72fG6oOwXMWu3Y913RHlNRy7KiXGe4qTvtdqbx7I7uk6OSErAsK3JeUErwJ2xcz/TfILa6U4OmqxL5SLgOMbUgcNPAT3i7u9IYElVLinyTKjNit8HarBToMpZOA29J4l5xQEioq+47Hjz3Arb9LEXMwvfmPKJEtp2nKFlrbMT3oVdeIcQ8SnjjFURbjLURUT3LjTPsdB9woNc6uCm11hGIDHVXd1ZBSYq/9YbWK0o22LKKkB2VDSQitkouznbexx5I6ridUkbJiw5nEVwTtSYipZeTsTIiVZSRHhBZUhU/g5/mG9Czyp4F7sDhzbB7U1omIS8JJRvcd8CaUJroQ9VQt4rWZ+DUXWLmVtATWzSspzw4HWhdRFQess0bUIE1rYh0nruj+8bV0fNAi87bHeDG3kwpwfuOZaGjVivtYA1Cd09A2gFxX4j+UKK/C8W4Wq5RFgCJqIMdDu7uk/8RJqw1OgWWjFU1RuXYnIg+Zos0MjTuR+NnUmuVrbIgnEOoXMhR6PxIgIWmSgaoiLWj+z6CqUCfYs0eg17GX6xu6+LMZCuovWG5fw/37nMdF4sgAOiVasRPnz5l36LkcLA1RGwUfq+jJ85J8ujATYQlyLddKdMh6uZ17AUzQwMrAB1tNm19H68PtIPyXryFBGP+TQzleWDaPLwucgaXv7887WmIx18HgBEIxNE4z3uiJxqHaGCF8ysdQmAMEK8ZI7S3uJvD4hunMy5/9jUdE76jLCsMIIHsIlfy3qmWuP/3fDmkqCiDFygTcdiJfrzX5z0cLptKgkI0IrX1LIJzdCSHWuXhLV2GB9KrCORlMPSP9xHDN+YwKleoDrsUQ8kkOfbsQN/Q1f3TO3uTiv0xuhzXRsP16qsfxnK6B8ucJbOKR++8jV53zSjRByRyR3JKoOYKRd3WUwHgaijH9MDTJ09QK6PlnIpIjhlXVyfyfuJeZMTJ1XBQXIxIQ0mFhzYwUAYIPRhN7nDQ7JFz3sS5CKIhq3kcaWBUXD85lYlAALo255nVDMKLnZUN2djhGQZYyuorozURc6wOzyFUGCiY9xCO23H/uWs8fvKUzeA6qzB6Z3XBqE1pUjGF4e72FmVZ1IJAayUZDAlJjhTNeVdESy4Ax4DvL6XA04rlAFm3Tm2d2vqQ74/xXJaVJbKBjhl5KtGSgA5NVD2p2knek3uHt45979hw5twoqjcQiSw5D94LS45XpCHzDkSKOBn3gQs98RHkhNhbnl149b0vvvAAa07oX3kTD995jO3c0bIjrwXFOmpLEj/bEUqzHYZmDcspIWc+e6sbD6bu2gsJCabnT7AGWM9jv5IrY+iV1TIww1a5PmrfhQIwpXXeG0qeDTkBwBpEvKZdJjcinOJG5mGyYWmJBDq5H6q6ieDQwPQEqTjcN/mAdpixAqyF0JoQl/BuWM4PAJmYqHoHQU5vCkn8CBLkvAwui0x77xWtVTkjgHtSt3QG3ECnxkkEzT3SSXnY1H2rsLzj6sTgsPVGxMRVlQSHZWeRV6JTE8KT7iZvycdzwzFKq7Ml7aUuW7GLFwVJEmCq7yaT84MLO/6NXh9oB+XZF880n2iZK183oiNcQHojc/BMSuIyHfNezkw4Ou8GJkaKZ5yT8Z3Hcl+/uI/3A29c3OPXefsRkTitJ7g3nG9vacAsFjcu0jwOaKFp/EQmGTAzDpHnJW9T0fR739DXShvNccFw/MbfD/c2PxDvmcjWvlfJkEdECaxlxd72yVsAZcsTuCBaJdmRBohlir02wCtqMxmc6RzF/fcOoKqfBsA0TW9YcqHwWl44l+6AxLpSJvk2ZcOyLnJKqAFSNwqn9e64eXrH0suU8NxzzyG0Ou7dCyIqDUmtO87ns8h8aTiF5I4sWFdKwecS0uFdZNMuEptGLgkyP1YUIKo3ZBzNDr04qADaLBSOIVY+13n3EGdi6WxK7F7ae2MEKvKhQw3nYOyumpchJx5RIQ8Yn+tO+XpW79AoXl/fx+uvv4kggpoxZRs8rougAIZt37DtO5578BzefONN9NMJpLR0ZBOnRygSmhZnkrS60iWtVzCvDsDoyCYYUxnuqBVolUZarg/2DqS8kNyIhHW5gucd3ZkqisoVIkMd3XeYqbRUKTcz9jeBs1XAvlfsW8PmdThbZqx0gfEgTGomx47B6s1j7FWWY8tpfFPKMJ8nxnp9D/dPCf/n3/m/4NtLxv/2f/3f8atfusXTB1fACw9w//qEbmd4dSIairaad6oyO5BAZ63V81ifZjZsMnVgCprVkcK2gfwo3eN8b/QzcndYT1KgpQPS2i7kBVqroKCZVFrjQM0SJ6NzzHVo9oz9dW6MQG5N35czK+t4DiccbTc/1+Z+ie3vJBwPTwiBdsSLv+AqIUo4urfr7Ag3qveO8+0NzMpIh5mcZA/+y9GBULCbJTp5vqvYz0wL9f0xapcOTJCJkbCeDOuJgRUbBprGCHKaOhWbVYllcgB7Y1p6dAS3hu6bUCdJETiGneHYgc1o29eNrC9e/3/loMQZkRUVTgnfiPxteIFAROaHH7wLkjikI+Jvh0OX7eY1AXDlFtNcbJiCR3b4jmPq55t62TP/xbsP84v7SxJCC4djfLTpb/niOydB/D28BtggXCHcnPGc9r6eJe71WZSFxLBnUmTPPJfJeYBHWZthWRNRj0Y43aV90XuFe1EJYLRPp/HrvqNFHlfVIkz/GVxKs5aSqktISO1wWCdpb1kX5FTQbaNEfW9jDQDOWv+yAN6QMrDXjrsnG/aNWijuwHoquL6+hlnC6VRwOp2Yggm+B0548uQJ7u6eypBEWoARTc6L+qNEGiXIonwWQCXsEvVK5d3jz3czIrWItAf+n+CYHmkcEghdE4V47iEqV7QUgsNQmRpokwzuMsQwOr61Nla9pDiAd7BySJUqksXv6mXkjb1XzA23N7cT3WkdydgxNSofBuHWM8wLHj98gm/5lg/jzTfe5Hw1jlloTyRFs27iB4SdAESzUi8V7e9ApqLio5SEUmwcdOvVFUz6Ka2xnPf27hbmjTomckRYOUO+zi6eUOi3xGGYc5JwHNdKSld0dCtTaV1aH7V27HtD32aa1SLCNZN8PImoUaqcU4jP0RFbkXFz8wT3nyt44aUF5bmGvd3g9qnhZmvwj7yM6/VE1MFmJQ8lBhPaRh2blBKQM9OM7uh9tmHggU/eSsoY6YFcjFVzcmcj5efelXo0RvhJajEGkXedkuvOLudmTs2SBAVdsdZ5iDq6xkRtDazJrmEEOpBFQznaprCedDBba2gbkBd2OGZzvkTSqNSTg/NIP+5gI1VmXHsf+4PiaaFbo0uZD75P2LJwiNivR01foesCADL2vePm9oxto26Q9Ya7uzOJsL2hBaKWDM8vJ6yyF+4UZ+T60QrPwSES9yoZ02ngeZGyOsH3mIsoDnBYllic0BqT9M9R++obvT7QDooRmVJTuIDLgOGCH0N9vVyzH6mF9zpWPQ7d9+E/TBRE94QDaXNEcpfOSXBWvhkH5WumXt7rnvzZe2I0QG/dRyTsQpv0ILoOPzEPliahpWiJEXlVbXsjVP7stb/W/Y7fH5CcwUkWsmJpokDjPa57M3rsKXV4r9g6yXLed9SdQlyOjlbJQTD3edgItp/zAgT3fqZ/AHiDt0T4vkqqPTFSbZUGLpWMXBbU3il4pPVU3XG7bTjf3KDtlQ6Q5P9TSlhPBaerlfnbVlGWBbU13J43rEvBdj7jyeMn6q+SyG3JWdFcqN+mwZuJFRjcnIHYHZC0PFQhA55tQzYdSndBYm50VF3VFJhVC884GqF+mqRq2ho5MuQNaH79+NE+DvheG7p37Bs7Ieesg9oivuQhYw7K8Dsh5/v377Mj8t6QFgM6HUs0Yxl5pxNhEp6jxg5bEXziE9+Ce/fu4bxth7Up1CWMsQU/aa5drvUOs5BNPxDMPZxY3bO6EpMgSGJscyI161JUsikehhsAKq0uy4KlLOKaNKFJKrXe9lH6axaoJtM7JS8oeSXXoRMd7N5Q94YQ3yOMD7hX7DtwZ2ceOiDB++rqCilRQG1Zr3CzOf75//Z/w/9+Mnzhi2c8Od1DWq7R4Pjq24/wkVdfgRsZljkrreaNJONUYOC6TShwp3NlWLFtFAC01Md+3FqDWR8On1s4IDwoDY4MzYfQkMTpHrsXB4eG2WaXxozIuB4ODccrL2xU2BsrPZMDNVaA4TL9EKjcQAEAqEgCjoFWKlojQRUT+YsvjcqcePDQ2iE5WBVi6KCCrpAGb4ADJRf0SuPHsyWJQE4bbDC0wYv0UbTQKvfNvXv3gcTy/m0D0EhudjiurhZqLoE2vrvDWmjBAGYNPbGNBGIco/O19kXvaQqZGiLzhLGTHVRLuLjX9//6QDsocbAQbdbEWhR72eGXsaInQxk4RuyHAzsEfSwWZBxmY1do8jBIt+FhBgw3rmBR+ntEJOKKWqze52Hy7HueQUaedYYiqo77ifc9+x1RdpgGk8DGH4uqmth8gfhIdevZEuC4T65BO3z2gETZkcD67mc5fg/3thAeVaLAY0Hzy3mnDVCFVU4J8Irz3VOOYesweeW1RS0+o9AEwKxLSChudh64MReTIMycOqwrX1ywlJUVBeBm3CvTS3V/jAcPXkR2D1BzrK/r63vI92x0G27eiKKcNzx9eot796/RvOH27oyb2ztYppAYUsLp6npG2Zq/JHEkwkfMMqckWfpDZBWVN3Ezlmw4G3DAa5TJqhSUK2nMWzRCYzQZpGbpaqSpFhvjBjf1atlYcuxAcI4ofNnHuAbiQT0WHlQ0WA1RKmnDW/SDaBjXy/X1NW5vz8NRGymEHGuuzXUEHgRw4Hze8PTxE7z4/PN4/Y03DrGsE4EAEAhnyRRtC6cIzvXQmb+YzoBSYmwzEYuLPImQGI32BWYJ9+7fR+/sFAwH+u7Y9o0l4vtO4btCVKxIiyetTIf1HpUtHd5EiN4rto3ieSVn9TEyHsKpjPv3HhUkbJAYAnnUfulw9aW5vb3B1ekeHAmvf/kd/KYDzU9oZWWjOO/w8xlPn97ghecfMM0ztnRH6w5bGjrqkDvwlHC13kPJ17g+ESW429jRtvXZbdzE4+CM8C/ZlARJdEx6A3U0NMrkQNA6mCuF5FFhCaoq90BoSMi+d+85PHf9Ih4/vMFXX38Lj588QUod5SqLb9aFvimoGQGAkj9x/diPw1Gls0BHiOgctT6mTQwyfxCtu4jhKXOPRPVaINQh+MfrMxiLKrRpusghiTS9xVwo/becVlw/dw/dG7Y7Bm/c7rQJ67ooBUivIlkHUh92zJCAbmjV0QpYJdtIeIbpvJMj7RE8Ytr65KwEizzDSFF9E07KB9pBkX3EmNfx42ej92cHpMfcS8TtGQfi+M9nEIbj+X90Ti65LeEiRTrjvR2P4UwcNuc0nYe/Bzx++Oz4PAPJCRbJacohQ17YNbZJddOiFAzkZsT2e1YpNyLyMOLxPLwHPLNRgOAAzMELV9oxsZejQxN/4YI1wZW0KvxxSTKCZqwQAsV+ltxh2Cj8pbdkixTeNJws2TwiYdOJYFMwPohZgamZmmXKabsOxbrTiXj09Iy7243kVd32/ecejL+znwUPzNN6JeXYHU+ePsVWd9R916HhsLzg+v4DlJzElyGHhN1qk9I/OlSi5BaG2mclCOelTofbAFhnZYeeO9RImxALCbzOpa1UT9eUjTLjHusuNBUOFQpmF+mVfd9xPm/wUV3JyojBbRIHZYIWWkc2G2rWWlFrxel0GgdMBw8xM1BvpBuur+7hnXeeIqVF6csmvoVMczrsNAUGvhsKFnz5za/gt/yW34LX3/gqtsr0wmJtBBBjtZuPVTuQQhkZc+61EAQDgJS6CJx0tADqPDCwZoTNrehYl4xUKXKFa8OVVJC3bRt6JvW84QymJS0F6bYgLWnskbSzZxQiBdaU2tF5aCLQpjyd/t5ZqeNi27I0O2M5rWi1IadFe55EyZQMXinv33euBXPH43ee4nq9Qt03IoLrgnBwc8mwRi2fLKl1tI7aHsPA7z+HLksqWO3Eclev4uDMmSB5GViyYckF3Zia8N7R00xjeQuuFHkgLRBLBQXhNeS84PnnXsB2U/Gbv/5FvP3VhzjXO6QFuO8LlgVYMhCQMlEYVXWyOQ7gvEbEnC4Nk1nNhlHZuXsl1GMN9L5MBNU20XuVmZOIG/YynH/ofCPXI7LyZpSyd1QEV6vJMTPwVpnmbiirWiM0or85M12d4RK+i95IM7AyM6bsjFa5e8PN7VP0nnC1ruxM3bZRkdN9R1frkZi9JG7KyBb0UILxw5/39/pgOyiHl/w+1aQjwrexYS8qVSDm80BKuJkiNTbSRPoP15MffoeL73qW/Go6+I/lmfyKy4m5dGjwrB8zrxHfebjG+HxsFEUSBuBZwTaiIRHh+fAfIgt26fQcrxtRicrtgr9gs6tnQtIGjENolpbN523wAYXbu2DUUJfl6dSQocZqKSKZRMjXXSWBPbwM2p9EVMHcMfqZ2Px6C2dNh2v0UkmpwN1Qu5M7UTvaueJ8foLz+Q5VTdK6Uh4pJyx5UQPAgvv3n1OkZwiJp7rvePjwHdw+vUHU6TLg4OdyysiSsm/dZ8+XkqWguY8SzSxkgPl+nY6EhOg8VZYEmtCTZFkOmRAIdagNhzm0gQASS32oZx7WqZwM1yEcZbWA0gpLxrou0mSpKrs+SJYf+BuxprXKmV7UOpmkQxFtZXiJ0JCYmxI7Be/bDksJp9MVbm/eREpgg7w0q5CAqVD6rBGsteLpzRNYAq6uVzy9uYPZSpsf+htSwqstEB2NFesmkfVQTbwBHvCE7vd9Y1BQVAqcTbyghKKu0b3v2Lyz+sS4B5aFa+J0fTXuM5y+1nZ0jf22bZLjZzpsWRestHSItgHuTNNEiW6tjSW+Q/FVqIwaaaJP21GWjGRXrNTxDd/1uz6Jj19X/N//H7+G//a24Sav6MmQjI0T63ZGsY67ux3nu52RuTHtaZawFpa+p8xUXEpAKg43x5oLLBWNU0IuGb1Vti6Q0nEWSpdLxv3TgpITet3Is6kVW62xtCjN7oBlY6WTvAc65JNYaiAZ+enbb+HJoye0BwrcnjzZkdBwdSq4d1pGxRXQ2cgvUdE3yuHhGOieLJ5UkaOiJl8EYyOjLB5LOpxH0UCRezgN++4yXok1+ghAhv6WbLnH2aEKHqd9yEvB0sF7h9xH1zkie+pKmwUxWIkDIGWEqFsyhzfg8aN38E59imS0f0mIfN0rNrB6y7IIJroOxANjjBn25cL9el+vb8pB+exnP4t//s//Of7jf/yPuL6+xnd913fhJ37iJ/Dbf/tvH+9xd/z4j/84/sE/+Ad4++238Xt+z+/B3/27fxe/83f+zvGe8/mMH/3RH8U/+2f/DLe3t/hDf+gP4e/9vb+Hb/3Wb/1mbkcXnCbpcBNKe8RwmJCS+SIpzscBR3KTI7TUL8AAHBfNe9yCTyb2kYPxbErm2c+EEzOdguPPLv/+7Fe9VyUQF9usgGi9oXjBpQMS1Tzh0ulnCEMPMePxLtTmgrTqz0ruj8E6vObMRJfp+V7X4WujzE98e8K62QCbqp3TOy+D3Byb1UwNs4wS8iHjnrOMelkwODPu6LXh9rZh25/ifCaRbA9tC8Rhb1jKgmWhwSqFBjUhUzOiN5zPd7i7u8N6ou9Qe8X55g7eO04nVdUIfg+Qk5UsDvSGkhLKsoyccm8Vte5orkNDolaIeRU6Vg9S0dQBSaOkMka3tyn7TYMoEvBYN1H22ke6jR/W+ulzPTeVHNbalJIgkkNFSVfjQow59UAOIz2jNRUGNS0JV1fXuL29HcJVeaFMf8kZ1LloQmkaGhquFurE7PUMqKwxpVhbsT7poHCdas1IKGxvG25ub/Dcgwd4enMDMangPY3eOuE5t6770Dq1JN95aKYIsWnzQOTQGavGcoEVGvJUO/b9rHGlbYnKp4GIqJ8QheIMKRf0dkKrO2rd0J2loVurMGtIaUMyQymLIuMFkNPkneJ8kYZKRs5Lbx3nduZhMRw7Q8lKExvDu2Qdv/N3/C/4v7yy4Z3//B/w6M0z7pLB04LltKBZwVZ3IGc0Z7DAdeTo2w5Dxp1Fl7LK9gy5Y1kp9AVkWG/oxmqO/Uxkcd+VoodjKTw8W21YkJBOGb0HSkDErDfORZFeDmQnUoriiINNbkSBe6WGERsrYqBJGSxBv73dsSZqBW13G2pryEvGel1gxWWnp6PCtc20c5hG6pU5icA6hygBG0jJSBgNO2Nx/2GfxvZOqD3DGwnkVCiX/Q6E2w+VR512aF1XlLJiU2uF6GF1wVQe9t4H4uo4vCWQ52TAnWO/27FtlW1A1oK6bQSX7iWYLfBeAWsKpEM4VMFTmHtjZPxskP/1Xt+Ug/K5z30OP/RDP4Tv/M7vRK0VP/ZjP4bv/d7vxa/+6q/i/v37AICf/MmfxN/+238b/+gf/SP8tt/22/A3/sbfwB/+w38Yv/Zrv4YHDx4AAH74h38YP//zP4+f/umfxiuvvILPfOYz+L7v+z58/vOfvzC03+hFElx4sZhG9l1HZ1SdzJ8YwJLZFJUb8bHImAUOcvmNyYn2AZdIRQA2h4sOZjTwbubyET2Jo/0CYfEgb+qdcj+/VsVOvEJqH4ZRvhoef3wmcrnu7XAou4zK3CzHZ5zXilx/muNtM28ZM8HvnPfF3hNSVw3EJQWqMTdpsQTLVAPu4rCQvCVHJjkrMA5zbPqOlBc6BaaGVqoWubndcHd3xna3scKksXSO6q08O1jemVWRUbCWRURQYG9kwNOZ6STKGnkav/Ff/jOWdUUzIC8L+lZpIHImi109TaL64/b2hj0s9g1XVyfl91n6t503NbJzhIQ1HYoQerORWjFFQCnF4YqBeoTGCxuV6Rn2iroTGShSjQ1kDgjtkihRnI5azCiddjmcigr3VoU6sqN0irLWHuXaRHOyGbwZgz5nzxXK/jPVsq5XSDmhyanorVINk7EpkID16jSIhaOSJtlIQ/EuZmQJyYYH4dW74cmTp3jw4AEMieTbRFG3sU8ViY89p7EJR62ruaA7pfvJyykU8vKGulFsrCTqUzTB29t2y3FfImU3U2TodGyGzL/bGMec2b8GTgXhfaf4Ve+dMl5tB7q4GpnrtpSCJS10hLQeUjiiiQ4f2z3Usb+ts1Lltj/EbW/4P375P+D/+YLhP7yV8HS9ZvUWHHUjUnR7e4ft4BTlvIzUIpz8C/JEO7a9wfeG7SxZdZ+BCSu2ynA62GU6odVAYDvuYEi2IBRonT0cYEqBlWwT5VTKhMhrwA1gcDqMEfeWq69Od/G0rMDR0LNhbw1VHctRqXmUAmlLgXwooFUkG6l86ti0gXIy+D3YQZ0rEJrLqhcaSzpdobhN5KftO0nrauJJ+x6pOj2L9GRS7GeX9lGryEio8IGYxV3QkWdlIvcJ+WaM0x0RAHK7d5Ryhbp3dtAGVXRLpk3qrZHdqOA+umJDwTerJ4OIbCMIej8v8/c65d7n680338Rrr72Gz33uc/h9v+/3wd3xsY99DD/8wz+Mv/yX/zIAoiUf/vCH8RM/8RP483/+z+Phw4d49dVX8Y//8T/Gn/2zfxYA8MUvfhEf//jH8S//5b/EH/kjf+QbXvfRo0d44YUX8JGPfytKCE3pKZIiZzLiD8ZLCAm5F1xn3gFkGwUMfaRPgiDKz3r3sTADE+C7kur128XvdEUdTCrfivfYNHrHV3jz49AYpwK9Tv0S3wzBaBG34fb2VsSpy9TTuPYzB9KF4zWM93RQDA6TaiajrzoM+oDMo9w1md6v74txlZEK7gsNC4+6ICxGV02mr0j8QwIWdQg1FB12JOU2latuZ3JFztuGem6ozakVUoRo5OmIROTQWkXzOrx9dvqtOhTZrdSsUKJbZNGUDkiWJVzfu4fTss4qKUDQLXvxOJzpgMoNG3oVBqB5Rd1VgWBOBCXZUMUcXYPllMRxTH6By0E5pBm1DwZq1Il0xJxyLYjoOdYbRjrQ+yybB4gqdCEyy7IQ+fBZSkztDsLDEaHDjAeoDnC0S4QxDike2DyAQ/0znATvju2849VXX8P963v4jd/4L1jWFctiyJIRT2m5WPcTyezSkKm4PZ9x7941/tff+lvxG7/+m9j2nR2KQ8wr1qGUWktZ3uP7fDiAtbHnkWGiV7W7Ik+hor1LhyOQLEnyh+PYMITGxhS4+FoXkTbnb9t3IlZCltwrx79jfr+RALksRXtvGaX0XfdP7oA6Qy8rzB11kw7LcsL95x7gfMfGibV2bHUjSVwER6aQOvZtH5H8mNd4RlMUbabiFHW/xRTeA+g4HjpSoPeOUjKWhfs90qmntagPlTONkWa6mUhYR2jVRHfufrg3y4YXP/QCnryz4UtfeAN9N+x1Y+BYDKZKmtPCfdUqe/okM6TFUBbqyqQUqViWwkdwYOP+Z0UQdX7SNATDU5lzHpohA8UP9NyBUF9Otiq11AFsQJpyFt472l4kVkg+0OlEQcfz+YyrqyvUtuHmya24aIAnR14Kru+z1NxSw5J9BOsDkQLQq+HuZkPfVpzPFa07ru4tlHIAqymXkpAVdAJaJoizxMAyaR3SxmaSv/Gf38TDhw/x/PPP4+u9/oc4KA8fPgQAvPzyywCAX//1X8frr7+O7/3e7x3vOZ1O+P2///fjV37lV/Dn//yfx+c//3ns+37xno997GP41Kc+hV/5lV95Xw7KeNlEMw4I7VwtIrcdYe2IAGON0BCGxocNj3j8vx8QGP1soB7pEhmJ38W/BrN8eNhf51FSHNTH9/nhoQ43ffGQmM7DBWJhqDsNWK+UaD46RdGPhB0zD5L4z7xiE2AcLJhJTXlxlpSeiVxqICMWvvoBBn/m++nAxUFuMFv080QnaA4Q56KzEd2+d7R2Zr8U5epr21H3ilrp0GURX5+7XnF1fW/0PImDmeqkjm0/K6KU8WzS0uBAwToNX8oZWU7OsjBqPJ/PzKMDA3EJToVJL8Ld0SpFjJiKyiTkhfyzd1WcTD6Jd0ftTUx/9u4YfXNyHgcmp6ZflBmHXsTI+xqEpB3c58Qqh2PTSRjkULBbci6MyrqrL8nhME/JkMuCVuMgSMPxzLkLjSraE0xwe3IJrnXkXIZz0oVGmBkFuZDRzYcT5N5wOq24uztr7XJfdw9n7XLfDbl+5xgTVUs4395h3yteePAAb775Fbiqdczm580xlIvD8Qr7QSErwNGQPcOWJD9cUbX2kZmIxRYKsKaS6YbuRAujLYTFnhr26NCrSvFJqNif1hVAEi9oBzxxTfU+HBcHUHc2PbQEJOws45bI2bKsCvx39EJOjB/0OPJS8Nzzz+O55zMSDNu24e233sbd3S1ybshyGJa8YpUYIhWZu5z8zrSU5tMRKaVw7MnR8bwgZZYBs/yaLhQ1iuQAdmBT48XHEPkb5ILlzDUe+zClNETuAO6xlKfVKSUPsbrn719hdeDx4zNu784494IXHjzAqWTcPHkkTQ+mi7sDaEQhqrHcvBS1vjgY3OFU2IGDFalrccqOkLJACiRb4GCaFmWmYMnB5uQHZ5LfIkS8cX/YONOY3xl0VI9y5hBgDMRF+xEdcCG0IrVbN7qx0WHZgbY7vKsxbCYZvJSC3oNrKNkG8R8tFq/sNYPWBGHVUZ7yvl//3Q6Ku+NHfuRH8N3f/d341Kc+BQB4/fXXAQAf/vCHL9774Q9/GP/lv/yX8Z51XfHSSy+96z3x+Wdf5/MZ5/N5/PvRo0dxF4f7wUiTsBmVVoDO0aGz0ydJk103oQPXpqc7rAX/86xvcUFSPYzH+OfRd3hmQkZJ8ddJ1cwoc37L4Rt0r5cL/gLaAQbUh+5q2a7FGU7FgJ18pITGQIJRNUlbhOI9Vn3Ag8lhHg3iIJ2PeZDmNElcHt4zgBApch2Oy0Kv30IAzJ3NpJycjoBam9CMvTa0fUc0oAt0x1JSpHWNqxXjIGeFh8OxY9sC9q6orWJXyiBE3GCNUKqpYkJpIiRGM3GoXp0WvPqhl2DtjCdPnqB7xtMzo8mGHe6NHWKVymgtxiXz72O+YiwLmtC+yOHScNCYZ0XEc4FwDbPPSESjNNzRpyXW0eQ4sbKkI4yoo/ksPYzUD1LHNDU+HFRG5lmrMRh1GdHtN7p0R+XRJbLTh6Pd1EJgao1ElBuoidJYUb7YuJ+vr67wlcdfHeuxuaOkzIOkH4OIOGy1tqOMNVFE7tGTh3jl5Vfw5Tdeh1dFeZEmQ0dX2/ue8uAGHfcYHSqt++4jbWUGJM/z7zlNxzz2gYIWHdty6GTL3VVtH86QaZsHqhYBDFBSkVIsEJoprREp7F3dmY3IS6sde93gO/d9SlHRQY2SpayAO0oqaN6xnBbs/Yw1nTiiGsukYKyed9zdOaJxXFHDxmVdUfK90ReKRN/GNgya3yBch/0dfYYcMGSUnLGUDE9MoRoSWnc5YY1rAY79XLEreDO741pDx5oXlGUB3HHvuee4GiqdqueWFQbqt7z6oZfxoXsZ/+2/Vrx++xRnA1556Tk8f1rx5naLJ7d3OMNQocZ7zWE59EoaWnecLKvLtvasNQVkc55CIqWH3ZSWCNCGsxCm4NlzOyGIulBVXeDKquqR8wwA1qhTxcuEY4jRN2w5GXKhRAITAZRM4HrLQDM6HNqzNBdCXpt0hcBUYjHDaTkRdWsNrZ+RzJEPHAcShie1YPIdZ6HH+339dzsof/Ev/kX8u3/37/DLv/zL7/rds2jBswfye72+3ns++9nP4sd//Mff83fzM0JKLizKMw4EQL0MOZO5sxKsBysUR4fi2e+a14t0zLOpkcg5AkA0C5xKrnjPybn4Dk0oIoqWsQtyaUTNBpNh1DPGbdozY6+/lpLhOFSkhHPiYTy79ssBRQk4N4isCNXOKGHk+3kgqYTZjtwGkQy9z58JQmTOn6NbW8NeWQmwbduoTEkpofmO1kgKdekgwIP8l7CsV7i6OqlEl+O17xvO2x2biCGh9fh5pZBbj3qbMCTkHC2r2ntCKcIQEMsZScaIKG3FKy8/j49/7GU8evM3cH/NeLIBN+edTtXeKYSUDF44t703QGjBkss4dD3k0+FKVWrtxMmlCCTJo0lQuajXwyFOPlBKGakbORRw5XyJbEQlT8lJ1Sg+iIRhehjwNM2NxPnwbmd67iuJoXkYWxnGYaQNIV0PmPgWPvgVs1sv5JBJo8OB0fVaz2hmFFk7f3HuA+fnUkqHpGeMd8iZax018l5q2/HOw3fw8Y99K5a1YGuANTpQZUnjebleduTsEkLLJD4aUTmecw4odRMwP44oVkTSOpyCSB8VDXaofmPMkESsxODDuXgDCQCSGHHmQr6iGoR/zzlhNVJ/g19CFJWE42Prg73u2Hfe9/W1HNYhJpgl2tWHyNvpiv11YJmo41bVz4UVR9t2hxsnaTqXgnVdcXW9Yigcm0lsjiq5dd/VHZpopYOcniY0agDZgmstsXokr+r6rKFmaXaljH1rsiXiBi0F20buWTLDk6fXeHF7Ea1WfOXpQzy+Lnhy3tDKCjTHl994G4+vFjRPSNf3cXJQIyp6ahkRVBL4MwnKFuKCdNZJyoXI29x/Ja9DNM1dNqxkpjzNsRjF/ereRPCPYDHJ6SCKMoJKAAkZKXGPePzPO1oTag9HT4Z9P6NWIOUVKResy4LeDa2xDBmNvD2eO0JNehDjtW8794/L9i4lS6iNFW+kMZAnN6pgnWuqCYaeRcY9tsj7fv13OSif/vSn8XM/93P4pV/6pYvKm4985CMAiJJ89KMfHT9/4403BqrykY98hLDh229foChvvPEGvuu7vus9r/dX/spfwY/8yI+Mfz969Agf//jHcQxvYqIg4aIjnBH5dshoJ3dkB9ySQAYbJZeeoRpuAJbfZaAZ4V4iL1S97CNyNTM1j9Oi6l8DJXEMh2b87PAKuD+cr/lMLhjuspz3WLUU3XjdOzoMJQdRNno4YHxfGn5Jw+ycStiPuj10TKwUtYSf+W7KnAvNcchJmR6TZVZ6VO9oG6tU9trYf6TWieIcosWuXiPxDCknpFyUNsrIFj1oMoCG27snTAdgcl26d+xnGqvWfSA2ZsYNbkqDiORYloKy5GkgbHKZvLN8PYECbN/y0dfw9MlX0f0OqRQ8fusG542R2r6zUgKlIGUhHHB4b1gSnbgRQcGHoiu7MQeMrdFTKo1rqKMGqqBDNKWMnNbDgpkVDN6DoKcGXWZz9bhP4ppB156wLvk8DSQwQpDzbL7G0nOtR4sDORxP3kjvbfCu2BvIgdbl6M2UX0T8PcpeYw9EpUzvOK0nnE4n7Ps+HpWloB1BaL+EOvpY68efGxJunt7h6c0tXn7lFXzp9TehOki4H1EdjgPLpyurbCpgqQ8yaqzb1mZA0Yba66wKmuRJAE3ph5zkwB/SOX067QEHB3yfUiJPrke6lehmazFWAHI4Po51LSPNVUqUi4dIWB9EWR5EHdtW0VuDlQRkw3UyGAptZepIqSClCtOes1TABsdNiNZs2rdvFefzWQgCGyeSM7TgdHXCCVdMRfSOXlmq3lpF65uW00EBV00ZeyPalworL5MlJGOpckmZTn/xi2dKqp5bC7ks2/mMbd/w/IMXURtws3cs1y/gXroC7s44nyu2vWFZChY1Y7wqK/kcZio3VtWNkCt0kyjetGXJDBkLgz5zeKPNInrG0mXoTDmdrnC13sfNzS22uxuww7fWcxLi5UWObVInZfUkcqWfzOGp4rae0VpGXk50DFKiQwWRVCs7rLdK5fWUEuwqhddEtEbLKTL6RyTfHSoLN8Aq78eVUvLg3Wg9Iw8QgDa9SfzSZTu+PlhxfH1TDoq749Of/jR+5md+Br/4i7+IT37ykxe//+QnP4mPfOQj+IVf+AX8rt/1uwAQZvrc5z6Hn/iJnwAAfMd3fAeWZcEv/MIv4Pu///sBAF/60pfw7//9v8dP/uRPvud1TycaqGdfF4RTDUj8m5Az8Gx5TRBko/8pixBIlCXBKYxd5P4mhwX6zCEAHz8zfc8cqz7Evo43MJwdx7tKnwfkJ6dELs7B67S4g8vvDPhP93WsEIJSXp5cjhWFg+I5Y9FHrwv6GlSo7N7RKiulcibTfVbeCFVImXobtQkqz5Tn3jbstYojIiKxS8/DwhCP/TGMS0oAUkJZVhDm5QEQCqQdDT0ZUJm6YuTvivik0tg4euzzohxoCWIrnZOUCSlHG3SiQknqEoBL7EpnB3ynLP2rr7yAhA13t29hPS14/HTDkxuRRfs2gI/WHeXgcHqHDtQ+dnyshVKKNFP8wigA+ozFgVmn42QiU4+6QLCDt/7ZMdc9iZvqR+TivPSmyqcs7kKE7or9uo97HQ7o8eXaPXbcClGZAX1/IlTMcJfOocbZtT5DaTZ4XayUwfhZ7x0Pnn9APRQ5KAauhwgubGS4+eRji/l0WAPB663jK29+Gd/ysW/Bl7/8JppKlk1pPLgL6SE+37yri/fl8w9Ois/dOPb2eHsELAmD1GRzjo42IyogjrbKgIFqaIbIXTH+1wFYJ1fLLLL7XM9dhz1TixQi6x3aq3Tcuw4qj5L03nE+b0gwXF1dYd8qHj99grrXg+OVsCR2Qc5JqAEiLQgSTxt5S94d57szbm/vYIkqvTmvdAKWTOfllNF7Rmvh9E0nmRoz4pcJ+eyyFd13uBosms2y6VjvJJ+vyNJY6t6xnk6DY7OkBQmGh2+/g/Memibs0txapd3ISc4n1LyRVVWZuTUkJHQdyjmvAGgny5LZT0mIUFTF0CmV0wk23Hvy+OkQfzRjFVOspXAy41VKIu/HO+q+YT2dUNaCPVWc77jOluUKvZIbcq3KtxRyDeK7RdCxbRvMFpax71GhFudmrN55/9RqIqLj2k8pzsKAmTArDWkHusrxDWzyfHkefqPXN+Wg/NAP/RD+6T/9p/jZn/1ZPHjwYHBGXnjhBalfGn74h38Yf+tv/S1827d9G77t274Nf+tv/S3cu3cPf+7P/bnx3h/8wR/EZz7zGbzyyit4+eWX8aM/+qP49m//dnzP93zPN3M770YcDj+/QD4MI+Kh+gFgbsiubre9DxGri0Zhh4H82nmzo6OAYVzjd0Gae5fPOCIk/fM9YPRoOAVM+Jnf+d73xZyxUBGllgbi40nOQcLV6cTcsZCDiHb2naqWlugoLJbRioTavBPWDEExSZy3fUfddtze3KLKyHXBg4NXghndRLlzQL/ZaICLegUBVIzszdGNvXRGKVyeqS4aW6fDEl1wE41AElmO6Zk0GgAuSZLgZkOpM3pe5JwYoUFoi5MrklJC27ZB5Hx8+xDvPL7FqTiqF7z11h3ME56/d4K7465PdUk6WJTxJkkRrALqiT18LNA9wsdBeDTNMZ8zOCLzoMrlmCI5lPBpYbmibqkmcAY6VD0RaQQ5m4mibN4Bb6AU5WExpwPC0zFTBz2if/071G1HFRHkeLqcjt6EwMk5EfrioGNFsTEfKES0S+i94qWXXsDN7Y16uWitq7Hc3rvk3ZPGqEyCpk8+ykjPOPD2O+/gf/22b8Nz1/fxdL+hzLwIyMED0UKjU40uZ1gmu0eKjPPyrAbSqLjiEA510XCCTWOO2JvgoepttgXgoi2Ambr6yhqN+CkcR8jx78OG9GGJYn54n2xGKZK1UDYY+UxFTu9yWnFaVlxdnQCofLpWRBM+9ypYv2Apy9jX01HIo/orOCddzgU1dJ7ifLbJVVNrAWp3LOrLJDvWu4KcjhZBiEifRIRcpfXcA96anFamnjzmLmeUtKADuD3faS472s6glGX3ABFk1zUovhiO1r5vOjhm1dsoa0ZCKetQNU61jhA3yP4kCdtYi4AQqFY5L+tprJfWQ52YvWsaHGvJWJcT+r6z9Ng61uWE0+kerkrBenoJoqLBvVOxd+2odZeAX0VI+NOusHdZKVHtys3aPY17DwHQOGJMonHdDPJTtEcAlWCKEydHs0dzRtkQve2i7vobvL4pB+Xv//2/DwD4A3/gD1z8/Kd+6qfwAz/wAwCAv/SX/hJub2/xF/7CXxhCbf/6X//roYECAH/n7/wdlFLw/d///UOo7R/9o3/0TWmgANMRiYfnscgBcxHY5nvlw9p0JFJzmLNWvFsOkFvlYRH9KC8dkPnXcFTCR4aiUZMyZRiguYl1LxbRwnSIjukaVkW817Wiv80lKjP4KvEbA4oO/tO6onUqUp7WFS+++CJgwLadx/PWXtEdWNaVrHj1mmiVVQGEgjdsT3bUxr93GVk7GOZRxSBiKw0nRvQ15/gQ8zalL5zGJ4nwmtNs3NZrR6tV7bx1yBrRh2VZeA2VOA5xNOYdxsZa0pQHT4hxDzIsoBaPaGD071Dpa29IpaC64ytffUSyWUqoe8XNk47nTiecyoK9MqJb10i7cA0kcW9YYtkGND9Qud7RDnPPcY35lANZSKa1iJ7Hhjeg9YFKuQPeDamQaNc91u+h5N6Sykb7OGjjTIxxofGh0UmW2C1a9xzORPwuq13yQBPcI0txcEpnG/ij0vAMAhK61+HJRwSZc8LLL7+C3/zNL1DI7VDZZRK/smPLeYtI2sb+MRGzofE5nyk69aFXXsbt63fIoHZOrMkZLAwPSuuU1xhtIbQPo+fNcU6P/41UF7QHkhk1WIZzqfJ/qiPKuRVCpsOQ3Lcm3ZQ5toheQn6wHUoHTW5M58GaoqcTeQzhnCSjDsv9+/exnk5IJWMTWvXyyy/DXjGt9w1f+uIX8Pjm6XAsQnslnLJlWS4ctaUsQjfp5EXJNQCgMkW23VY8xlPud1XIXZ1WnFbKJKyWhoMSvBU4bQzTFnWs7VA/zpZY6RT6MWbI64JlWWEpoarbdrzfEPIKhqR+NAmustt5rgTPJJDpaL651wgsAIhbZgYsC0nJoX+TpBdjFlWKRUiaz7M+0wmAMgHZGXD1ZtgrNXGqO9LdjoYN1qX0XCQJ0OgMtlrlGGd1fj460o5BxjemjzpcaCFUbTj39AxCOO6zei6p0s4BYzqdCA5bKZDbxOczOXWzjco3fv0P6aD8f+sVOiivfetH3+XUGMjuP+pGBA8kGVDUTyF1x7o1nNuOvmRsJ5ZEBln22ddAZKZ1fNcrZFdc3IEof2t9epWh+TChM33WAim5uCoG3na44CVCc1CFlMDYuixsq17id8DjR49xd3eGu+H6+jQiY4C5RSp6zgOSnnfDdt5HNGJJURdMGyx6ULDMMLxndx8RacpxHdPh1DB5FOQnJOSROhrGGIow+kRfAJXjaSxCKjunPIXRzJCXFHZ9RHXR1t5VjtcOxGVhTzLegUBMDZEJ4yuaqjtqa6hnSopfrYyeYKDEd0TIw2lgEjAiimR5Eof1fgBDYXQc2s5KHssGJEc2Rd/wmdoBc+5jSZrUSZWuo68T5YYxdzGORwfBDloX0DoIJ87R+q455BiwYigNA3hExoK8aw5F3+FsiDQZKIgQImqVtBHluaszrFKH3/3d341/+2//Ld556yFOpxNSSaqQYDVKbLw5llMgysPlbJz7fSff4hOf+C149ZUP4Vf/43+kM7+eRhAT32WCgUJsTx6aDhyiPK1Xwfnap8MZD+wQA+7m/le6TY6bQ313jLNhMJVxdqavjNUTfnCEwrFzqyMaeRaNDXt1gSQn3n+8p+Qyqq+8O567/wD3n3sAy0XpSJJ5TUrFvXe89eU38MUvfFFEy0o+hJkq3LL0QtR8DwfUzjDXiPah16g66qi9jr0WOiaWHaUsOJ1WcsRKYaoFXHc9EC45/PHveOZWG7yyWq95x/Vz93H/wfOyLR3b7RlPHz3B3dM7Os0p5kgl8ymCKzrzKYjKo/Y7QDYl+d0HahfyASbhJ9N5wBL7jGQFOS+wvGgtd3gKxC8OdSEZkXYRedzgKEvB6XSFZTkhOIfuVA+ve8XTR7esyloX8clYcVVrx/n2jhIU1nDv3r1R6EDeT6DIvPeu50xC211BYckZfa/obVP6viM4VXScud854VFNx+q3fd/xn//T2//v10H5/4XXJYnVBpx6jMTme2PwoD+EtaAKg6/lnFx8z3u8JeBq/toGBDgjuWEXML9kakxMIl1AcMfrpmFojg5NTuyLskQEkxPWhd1QeSBV3O0VUKoiZ8O96+sItodhaOqnwgPiAMkKokgGVbNImKwRUkU3HfKOoQxpmeJZwOCV7I16DQFRs0+JHCoZ+jj0Wlc3UW+EZqWQmRPlrEN/JLQOTNUgNJCGVGhYylLm5ogpM0OC5Pa7YW8YSICLe0T0YIpsdR3gBnVfbVTg3CsVcXNZcHXvWg3T2El515iHgxIGJybVHfA8ncwmwmKspKxoNDoNmwElkDcQxm6hJAseAFEmS9DQBYEb9WBcpbHOsc0SeRvCfe4iMy76DgnlxUGrNegWXX8Nnn0gXMHJOq7R40Fqxnljya4fqnyIpHS9v0n4Kf5XK2H60+mEnBNub26k2Nrhbe6Z1oBQkyaa4cipKF2mVNlhJYTz8NU3v4IPf/jDuLq+wtObp0DbR9UMkGY6Rl6G24waYUwdFJGeQ0soAsNYU2MMxX0BVOjjbdiILE5UOJkhUR8pKg4v9xiRuCwUgVHzAYgc1372xc8H6jNRroqKDBUCgKmk5lT+VTE8bZfsCdy53k8r6hZnpjRY2o5zP1MFOheUXLCsRTw1HvKDPAyKqvXE502ts0OuQ04po3G3hq1u2Op5rONcChZVCi0LHZclEw3q4vkEurgsGb0mnBLbGdDZOcEB3N7eAQBOpxVLWrBtG2DOVhOaK29NTkto90h2wHw45wMNAdeNo4z3szKG+6D1rqoWR+8VyYBaiapaUmuPPNN07BkWkyt0LBCk7vBkSJVoapS+e6vY9jPO500oL7V52D5hQc4LTktBsQU3T2+w9w1RJeRjafhARwGMM8q9Y5PUh50cxWzYxqR0NhDFGXK0kpadR8EIZtD0Pl8feAclDBVfIpa+p+gZLjayAkNCnOPwn6VWYVi+IcA0DAhGBUywl1t3MFA9VGfIYTCLmvggt03YjadYHA4UGbJESDWvmfBlr4R8fVdvGKBWkRDlALCAQ0x4pWpCYbVHvjbY58kGDLnkZTpVRln4XhtqEP1AZ6XkqPzggdy8jdr9aYwwyJjQZo5Xi/LHiECGc0lhrZLYmI6lpD5QosHdMAz+RbI0UAxCtdSCiHbzgEhvIM4YuFvvbRCqPQ5a6WyQ4FVJ1GuCka0o31ywLCelklTa2qRM6p1pIhdXxA0puzYmneguImb0ywlHu1iCoaCybAQG5tp77RgqCrXKAJkO/5PSuvP7utCa5567h2VdcfP0FvumbsgpyRGcyFD3PspXoUhvNvRzyo3DiebAJdi1iANQ1UVWawGBFhqocCkHHNG/KRwUH5txpjfppIfjcu/ePfQG7Lu6B+t9LB2OA2KuNbjWQCbiFynBse9lcG+3M27Ot3jhxefx9OkjtEpOEu+FKcdieVYEemf1StyzY5BMy7JQpbORe9AjCMLRBvEgOKKEcOPhniI4maTkOGTpHM3yZI/O4ikJ6/Php/Dtqkh0iJN1QKyOZqvTybpMK9NBcKuIVPIIVNK89+t7V6jFAJzQemOLBlUzdVWbtb1iO+8zaFC6ZuSnoPRFqCR3p/RDLlhXdiKubVew1EeA0PuGfdtwI4c1JwYt67rg6uoapSyDvNxaBTIDlueee4BlPSEvdFCurq6AF8AURDfc3t7g8aNHePKESHNHHwPWQ1oeOKxh4Njio9jC8U4MdKLaR5ONIieWSJgaHBorshgcHtaL/JJAKYfeSQJc1V7beUfdjraLDomDXauzFfJsemXbhd1RNa8dwHIqSE2y+a1RUT1ssfthT7kQL8e+n9G9MQhdF62PIvsA2as21nGs8Vj+TG0fA7Jv/PpAOyjTOXGEhkdEdO9COmyCJsEVyaBzguiI7Vp+dvie9/quZ76XZR78h42mdPx1bPDxezMMOXcXm1tvNg9HNCEnwqY8dFVFkxNLdvez8tqKZNXzBaYyv3pmd96d+dnWG/vHICJP5kITTKQ0OhxNJanuHbt0CtICOUtJ5XIdXGRArV2HrgifCLVTkcJERCWRkIfFXs9jTCKbcOSNFD1zRKvRLoDPJyPddZBlO0QvgIGHqkWu9UhmBOv/kxCuLvTHEp0hOmyOXUaRaJLk7iuN/bIWGUEhNyJd9s5qkpQXlMIU0Ko+P60DJRd4n12FzYpk2qMShBs25wXLckJzh/U08sBdTiH1FKSpgHCoZ3TO1IEgYbD67YUXXqSBr1SlZYReh2MYypdNIl8OlmiGoR2GWcTHmI+IlnoPUTAbXRm8KtILzMUITXP+5Dz3WVlgMCzLglYrqvYImgO+4/nnn8ftzS1aUwSbMVIsx55CnczmgXhExDbTKUJXckKtGb0DD995G6996FV8+YuvozYFBSmQjVl2rSBQ8yRnQunbmVJIw3kKdGQgKePF8QhOD+Q8DGnxHsGVXyCrvUdjxCgLxyGtAO0TP6Q4OB+x/8ZaD3sEOWqab6RJhIxnjmqs4yu6gS/LgiUz7dRaR0kLqrQ1at0HSb7Wil7p/O614+52Q8lMPeeSUBJ1hgxCDJCpZuokiaZigzvVekjkz0O0O1ODtVbc3t3i8ePHyJmctKurE2CmzsjAcrXg/oP7cM9oleXuXCW0CMvVCjdH7Rssa704kcxdFTkpiwOmgIxFAdybPQFe20AVZgVVGeMdGiXcPwpcJOA4xNxinZjBO7D3BqAORC3Wnmm/R8rbwdQ1t6bQ7TYwTzhUAWfxf0BwsyYKPYsQ6Gw5HUqdsWUhPYG9xhaY98GH673NVGWoojor447Jh9Yds2nsN359oB2UhAMhTkYpWZSGXUZpk+FOo5gdrBDhm2CdXmQ4EfEyx4BrcZjc+XsjAqMKiAF5H8mvcX0drPE/OsuEywgp58ndYKhL50IRo+wPN14u6J0phfPdLrGzPlI1ExHSAZDzEFkLLs2sPujY63SqTPnWDrATaKfcuLmBecZGh1CHVc5lklKBgUa03tAr1TljJIZ3rg6NoUGyrovSOXne42H+eDlFccN50Zz20KARzKs+Jt0P60DzQvl4B9BRloUOniXszp4toYBZW6OiLRKJeqeFDP/uOJ+rUhabxov6KSnPCprI73sDha9UqkruTz5EKgWtEdmwZOqVAkS9WTSzK7mQz98NZgs1OeQoMGI2kdX6+PReK95++y3ADPtW4T0NY9K9wkAj7U3CTMZnSUYya4xVqyT3LktBlkR2aw2tbyNXnpJJ70SHeQ+nK8q7o5oqIj4faaCxZsb2kgCXN1xdXeHp0ydEfg68p+AJzL3qY71YbLoLAnpwMnRY9I6333oHH//Yx3H//nP46sPHoC6tHYiMNvd+ICZRit07uoFj6K7eMAv2jVwdSz54QkEKjsCHh9GB2DsgkLlP6EwE2ODoPUq4ReAUStDljLPahJ/hPqJ+RjhQMziJoXIJHwIeeV8argv7505kgw09Me6161ZSTiinguwklfeqtVFnv5ijdk/dK/aND5YyHZVlUZBVuIdM/YiSB28NIEMw0nZ0qOse4pNtOGG11kHwrSLAPnj+AV548UXc3NwgpxU+mtXRo/YOoNMenE4L1jWqnDC6nPc2U5ZMazXUugwbasizeqVVptDd0A9d0j0FUdTkgwQpN+zZEekL54HOSlT3DW6Zs/P7Xinf4OKwZJfjpao/HBx1YBLW43wwrTvvGGhN3CNtkvqeWYf7adyvWYIVLgRHHxwv2o5AXmel4ih2cCIy7/f1gXZQLl7aX4AiDPWAv0jzGB2O7KBGhYh8gCH1RPgsXW5QAFNKxQ//CC9UsDgZ0HVE+h0dsJB812cS5ZChhZcXRgnZs6BJtQ43AJ6YZ2wJqIbaSVilA3IoHRvoSyz2PDzZUqL0UgvEHV3aJA7AjdH2jPjk2DgAqOMvJtxn4OGVM9GLnDMSiADwwJK+Qnd4j7GPjRA57XAADZaZF16vSH5zScLHQXJsdmci+EVTwa40nINefLzi/s1MaRwbTH14IuNfXv++V2x5Q0oJ27aDzbpk0J0EvXW9GtB2B0akUxuhzEQ/i+azzei6Sz+Dc0H4dT3lYaQjGo6KHXfJzmc50ZrXri7DrlThcPKcRoWkuCY9E6assjoze3fc3VaOo01hMHeg7R25RNnuVLTNMmpcX0RYuEVUNm0JSFkloyw/5bw61rJS4besaFYnf0mcIVdZc6tTKOw4byM6Fj8qpYSrqys8fOfRNHQWKN0hiDggqXyKqGBp8paEKGgrBgn75uYWT25u8KHXXsVX3nqHezg5HBzLbHEfhpIK4Ew9BM+tq8ttFpqQOstXLfqfXBingPxluKN6A1A6oY/Ayp1oSsoRjY5BQjQjjPYGQPAE7CKyjiAEpgDLPeKVi3E3ORpHnktKEa33YVtM/VpaZ6rXA62KPZ2YgCwpofeMmhssNzkYnIfQAgrSvTdgb7RrMKjceMGyLChaN0HyZvogI6kMnq0kuF6CNwejkmxyEjlr7ah3HTfLRmXpSuMfKsMX05MMlMdWs0aw6mldyC+jAzhTF67KKIdED3vsYek1aaxCMdcbkWfufwaBshoaw4Ru09aGz8ojxwcyMtZ753rK0xtHVZd5orrkurgf1tzB9kaLEtf5x+7bTR3FMVCwIEGzc/QMDlIOOoUItQlEow7ncJSFm4pW3J3tIN6zOvW9Xx9sB8U9hCBjL6J7R0ZGiI69+yOSdRdLORlBORot50YSTAcovskT/QiPNNryum18V8aQixqVBHAkaYpEJ8wQPbPR6yMhOY/SfZeIUuvYdqIjtUl1tUmZ06PaJQx21kIJCeZyONh1gLUdfQMCAu+jqkGRrDNy9mhyp3vPhyg1tAQImYrYWDv2VtHajliVdGTSeL4gYRYdmikOc3nip9NKh8OdFTDSLoFh9LLhKxqvueZNJbJdkWDm4eUW2ivcfPuZEVX0k2mtjTQUN7FQh0i3SOsj5YzTeoWr0zWqNlq6OCu6xoz8gIDpkyDX6CDrykNbyFgDyGVW1XA8kqLkplTGwvVjGBoCTY5KqL+G5syYPwgmDgPqPvRe+KxtdCPmTlE/Dp8RUe8NdzulyJlWLGgeBpNR3L41tiAYRE7azV47nt495VpZCxbxsYiwRdrJR2WNY0bVwwk1Ost739G7oZQTrq+v8IXf/BKOxL1Yk+F8x6+CEzJRM6Ib/Gdwo7gnmcZzfOGLX8D/6VO/E9e/8V9xt7PKLSQKamtC6UzpIY7rLlXdZIBlHQoAIhULQORdG/IEsR7j/h11PAM0j1n/bt5gea4pWv9OXVxRIy6LA6AS7vkzdwd6gmUJc6U0K3b8cC/TqsF6Ag5B2ggqPNJSElvcK5A695oZ3FwBIcb6LGtBkjIzzZYcz9pQSpJj3TU+mZo2e8W+b2B1ljqOLycspSDLAZp2uQ/Cd1bn6d47loX2ouQFS3H0BSiWEeoe8axHHkSM2SQzm84EKHCT7TcIxXWl5ugEluiT5QanXpsCloba94lCOrls9VAWTYdRKU8FhjGto4Fm/ElROZfk4FzWdiQFqVLGHyicO5AGf0qE162Ocy7Oq0A6Z6k+1woJuMC+Q+unD1QkPjPKiPNEZSzGXLo1rnWKcgkAfL3XB9pBSWZjg2mt8nDtwPiNRZQBGiuAUbKi3wSqRSZnhB0Nv+Jlksqz1AH0gycrzkWZkx9ltcOLNCP0mzBUSV0LrXfDvgfkeYu9VuxbZfnXED8aGAA3QjLA6f3mnFHyevCq21iR+76pTFEOCABI/tt7VyqAqYfY8paAnMroYRWQeCqHfGFoanjH3d3dIHoSEiwqUw12u8bRePAvIq8hB1HMsRQS3GrbkUCRqHVIoQOxQYZxaHymYpkHiWBdpqPmYQkA25lsfObG+4gox4aCor7u4hs4omrChsPa0H2nZkSScYvo1dpQSOzeh77EOP81c9D4B6zJaCghqXkX3KCWPYfKGnGiLCFIkYHsBFmRCO3kScASlkiDUWxg9MyISHhA7u7sAptVjm8sydz2HV2ERObowymnEXWhN63TQUOa/B/IieJKc6BkoGTk3sXZsUkI7lPNcvBDdLiSHMt1ezpdIVnG3e0dIOeMDc9mxdu4PJTvTjEPLkcb4xnmKxAX4J2Hb6PuZ3zopVfwhde/yCmzuY7CGYi/m/7n3dFTH7oR4YSkoaTbR3po8FKAw9qIvRkRdKCC6g57eN9FyuXwFLO1wMFexfWC/wWS7Me7DBIBm+9LQnbeVVRwuGikSIdp7A6gcaxCXErv6XK8A8mNKjJA+68kFO9YVjnqIloPvlATgX7vON9WOrlKAy1LGerXxzYhAO1XHoTjxKqVewXraQUUyF14OWMemLJue8WTxzdwr8ilY1lXPZvNa6klxRhyHeCjY3E2SVok5LIgi2xszUR29pF6Gl2oVRkZPW+OOkEheudO9DsccPdwLKDeXYd1EvZEKT6urbmmLTiNKR3mbToSYCtGAgBCVF3oKu9lSke0BtQadks6RtGpe9wXBtcmigbe7+sD7aCY8mQXu9ZBA5gj/6xmaFHPTfxUsKo8SE/ipABVaoIIL/QwyKMXg02+hUG6CImphxnBTS+8y4PetibovI+0Ax2SSWwzs2Fosw7qlJbh6YbnSkOURg629arNzsMEJtmxEaXSMeE9T9XNiHCD9yJ9ORiMZbN1I7myOkoueOnFBzhdZTy5Kbi9uRuRcc6Z0sul6ODnyJvyH9HdsiU6hesiPoY5ZehNeWgXFIquSEO8kyPRT62+R8fXQEwAOWg7troPMlJG07sAAQAASURBVG1Kc3POqN2EqmDAxi1aA4FGqzXD+SxjVwpgGd0rx1HfEXlnSmQ3mOVBzDM3quKaISfJijtGeiLnDO9CdbReOD+QQ+RCndLBMITOAvsaRcRTysJGgUFmHTouHUNobOSGZ4RMWHrD3d0dWmsopwVLpnPSRbIL0TpPWU6aet3oAO6qwOA+4TPUWocDya7SeZR1T1SjDxEvmE2oXMHtaT2RjL3V0QspHBqT0mxrOowxy/Fx4ayGkxUR4SzLBljZ9saX38Rrr76G17/8BrkTmfuRcukzFTAcXZsHdvdO29LDHpHMvqBgj0hZgUL8nqiBhs8PToxQXHdH1OiYxjuM0EXFzREF0IUcgbwojRGcmUhdCmGch1nMhUV2YGyCMZ4d6CEOaLz3SMcewAWOewa8OZWSJYGfsitd48yiGAM6T45SRHjtWW0q4uAOdJAo6rZVADtub6VyvajXzroemk+mMY4A0zwGiccN/SbuHRzWi3tnaXVt2O92bPUOZhVWbgZxP5c8EGo7aG9ZMnHzpoMd9jb4SmYAMsRvCiXuqBKcaE47OC6td6Q6WwYc91bwR6JZ50C+40KI8yFiaTmKcmyGqrecW4MdPq/zDQzOiayK19YranUFK9Pqhr3JOSrhZlFA7NfWuWZ4PuN9vz7QDgrRjLmZwzOjXXIgZHttNs7jIgLzqgmj0REdAOC0UnGwLOyPEtUOlssArXI2ec7H6CZywyKqVh6UaPSqa63YNqYTpqgVEAgAAEF4EhvLBUsJ+Eywc+dBuO9z8msNqfe5cAc8a2FrDCHRTENehMJQNyWzfg3eMSDIve3okOCaG9ac8dGPfAgvv/IC7j13hdvzjt/8zS/h5nZjJK4NHEgFwR+lHTyqhpg6CfiwVXFcEo0YUxYH50SbpjnY2l6DNpQ5O4Suz3RVb+yKzPG0C2898u29V3gnES4ZmeUpzbCZPZkY1fcom3MglQakKLlU19cQt3PeTPcqfoohQ/070oxSo2wypQS0MEoOVwfZWEd0UGeUw5U3dUN6j8Z7rBSweI/4GV0dj2feGYOwF+u0d1UptR1mZOkzfehDJC/novBe8wNWPiUPJz7xkO0+BMbiNTV1gKvTSZVcbVSNtEBSBK3TeE4H6ur6hG2/w953Ig0JMFvGwcIGhlJWHsRDC19kBrrjTDeUktE7kbN9pz1488tfwce+/WN48OA5vPOOlII9ozfREjCdk2PH2VASNTlxBhv7MuWM4upBZROFQY9Kn+k0hw8VOE0YdZhd/CxHSgWTXDwcm3Csg3jsfZSEs9qHh053J8/gWVAJwVvoiJTu8TUc+2dEylJi87nY99kUHLkP5KXVBityDgAga791kGTprJjJRXwsOSetNWzniiBYu0OlxsDdeQfOZ9zc3A7HoRQKVJZlQdLBmuRU9V5hfeouzUOcDpqD5cRWgAIR2XtD2yr1QmRGkxUs64qS5RyV4PgxBZVM/MPDuHEtEklttQ5yv8m2xh4nahlz0QeHo/fg7TSi4gpomTZLh6l0VeoFyim+VGjsWKSL0uCMhHc5nNewDUHc13qbjkweyCufZxscrL2yAjLWR1mK0GIiUKkU8pDqbJPxjV4faAfFJHgUZayH3wwPMOcg1umntbOPQAWsZSRTOZbz9+u6YL2+pneZAeuNecmoaXdQSMgdVZslFC+jX0uth3pyB8qSRwRDA8CFkTMlx2PBhpGzZIpWibTsWx0HShzE7kFmuiQ/jQV4hCUJ0I2FldTjA3C0fsZWO1zoAQ0DD+RQboQ7TqcTrp67RjPg5vaMrTvKacVJaEzzjoqkzd2IArkjw6X2KvQvJzl9OGijAPAux2M+40SpMKM1OSMkPHaiiQ46hJXQZO9N5Mw8iZfu8DbMPZrK4hxQMzQ6d1GKm5DR5UCaGbZ9R3ZWHOVU6BTrUA2HqywJvbHaxsC2CjmFwyhOkAS2whbxd/N5w7i11pByQYGQBe9s785ZH8JqgJyjES0ppRQHAOahf3RO9lpVeg6pgLLqozmdhmSJXISAlLWSTuuJhjHPVGgooh7LcMN56Q04n6nDU06SV0eQMAOBDAi7j8jS3UYH4947ZfhTEI7TuM5AK2WwgcOhEPvkcCBBLSRssEMNt7dnPHn6CB969RU6KE0OqnWwL1W++F7Lk+cz+SV+oRhrWUbZTRUvPqL4C1BnrPD4GddSV0XEuC6gNftMDYTjsF+ALtE6mpg+CNecQ4ViljU28yZmoOUX1wSH7MIhAuZ+pG5TzL8jmTpgy4mLz0T6D0jBQyXCoB6BLGlXczz5Rrk7SmbaMRzzfd+FzgEpL+gNqDub5wFEFNd1xb171xzDwuAniPHzuRrIGgxEnM7ouhb0YuitoindaWgsqXVH6xvarZoJJlMDxIx1PVFFd5FNCzTN0nz2Z51IYARvRwVnE6qdkRHVQeupMPV5UWqtrtCdZ0V3R682HLlpmxjU0XnwsfTiucMRsQi+iqFHo1WVtw8FY28UgBwoHOfMJF6Xy+xN1dqG6oBVXiQpm/E/TYqn5MRmRzA092GgzMj5yEWESufiS2bAkpF2wM91bKq2V3RkWDPAyRxvSg+w5XdH29rBm50e/ns1wYvFF9GzGTtBsvOlmuOVIhLjNHbBF9n3ir2diYwMwwZwhWdM5vf8/imdHvCcjcMFZnAvQnu7ypGVEnLKdCcj9yPyhIyiEvLClI2Vgq8+fIT8RKWpiAgqjWgpll13wnmjZ0loXmAS0KZhBEZ/juF8yQgebPk8ZElO7TE/fTpVI6VjCWtZ9P5pwMNC0KnLapoWB4/JcQnuz+Q5uPcR1fXWkbJq/g+QMqFroh650HkIhoY7EbWocCLMrM8lOS+A+B8N67oOiLv1PnpqdKsHqNoiwwK4eB8qsQ6ly3g5qJAZ97ptmzgfoecyIerlqPWgNdZF9MylXAjxDVRBk8VqDx+OUXMHJGxVvcJ3H80pp3N1kdiSE8r7WZcV25mk8UhLDMfAoq9TwCWYfx8HwWXbPH53aEko+u8NtTnefOsNfPjVj6IsCee2gShXQSqX5NPjazon5EaFPgt5NtN5iko47u8gk4KVdxrruMkRbOjngY4EQtF6PzyyDbg8nEIFwnL+gOjxYtJFNtmc4x585qnGsw7HJvhPz7TiiGca+9zorJScUHVgslfU3NdmTjJuwmg3YcDQ3gGSBOQSZSRyQXTfro3VaqU1oQkNPTlCQ7F3jtVeK7Ztx935ltdLhudeeI9nPTho7sY0cylISER0VP1EPZfJ3wNA7kinRP++7djOu5BgIgZlYQ+0siyTnyTZiEFjOUgieJQxJ+M5pIEZ2jrGoIbcOyLtMKD1Hd4X7VmmqVnp2UcQ25ojdaVqDEOkM/YZ3BQ41WHL+Fs5KQCDI/ENI401/vTQZwonduq1JAvWliqf4M+ACV//9YF2UNaTDIIF6S6PDaOsOw8Vo+NhRgjSVlonyx22U/WwekffK/a7Dbk79lpV616HNzpzatxYQ98A0OEuUQjIgKakBliGpWRgkQESbNCFzuzqONmbDyLgKDtEsKp1DQsiKnTdabjj38c+Lw5jc6na1T+jSVuDUYulZShKBkyaCyX0e3dYmWgMNz+jWzcxyh1wVPbCSVn19ERqcuYztqZ0jXLXCKKUg1GnHdnqQCiajs6oMEVxhn4wyHQQpyIrf85NXQrz3Pteqebb2Pk2Pms+I34TkS3gSUbsNoxbMkKrdGCd0C8CfTgiU2Szjz5QI6C+JKpC18o5o6pclJveYCjoTdVZGvNao1szDVVGQa1trj+VLHpKI4VAXq+UZeGjjUEQVU+nE6J6wKRJTYck+AJTOTQi7fhsONUteCgAllKAZGhmCtBp2K1ojXhHbwkVbfSI4lqOXkKuUnJVA8CwrAtun95IzyYc4nAegTjVj0FBICXDSI7f8/3uM2JMOSmybHjnnbfx0Y98DA9euIfbr9ypiqYi+hFlcRzCUYiI131WroQo33Si5h4k32caccN0CuPvAKZjE6jI0ScI/6v72CsEMAJh0fPqGY8OSE/R0I3pC0qSXzoccY2jPRnjJfKppxk0zA/Mf7XuyGLaW/SQOcxRcHa8yXnxOPDk+Iq/lrLSznqYgVR09oWqraL1jJYbzCiYlpLQVbUp8O6o+47bu/O7n/NyeGh3DchLgTubDUJOQylFRFb1ynKmrfa6T4c90Za0vaNVYL/bcbYzLDmKKAOLbGvOWc7bAfnvWs8OrQUJ08mRnL3TZCPl5WQr8KzKH2Mp8HoKbor4HzVKnpVyFXzb+zGlGvvjiISGsWXlZzqsl1gfydhoUKcJxuP0rrnl2TnS8t/k6wPtoKTkcKuw6B45/MLwTJN4HTYGr1uaG7wAkPH3TuLs7eOdPSIu4MDDa0S98mRFEKLs8hSlSoo44abN1LEu7Cp5e3se3YDD4QnVR94/hhOSM1MKZmzQlnMgJFwY3l2HlY9FPBjiPfrbMFdZlgUf+fBHcf+5E548eYKnj58MrYucE5BJ4DK1hC9CZPjYht52GBS5G6PllCXUlkziVQklzfbaSQdrvIhWHKLw1iQspQMSNvQyDFGplRD9JmBMt9RKBAzNLtCVOMCiCzFw0OLYWR7bLSp0HJRGj/XBUm7FDEijSy/vO+Us3sMkfI6OtCk4LQmjg7NWJLksNOvc10HQ6wPBCaQHULdgcPPXveH29gaOhjw6POsQiIhUVWIkrnI8Yk1c9vrBaPzmydh1NBlLRsfKm4dlcET0Sc6H5iHBkCKiB8i30rNExUWPUuzOxnKWieTURnQkxpZj8e7I/ep0hYdvvzOczumE+xiruDfmxC/3q4lbpW174dTEegmY/ObpDd559DY+/NFX8ZW3HsrBjvLvSHnOCh1EBduogJkNAIch17NZ/PfCkZqvd/3Mjj/j4dx6G+J3cZgA6lTrUbIe3JwqdJDjbzCgK+2NcETTAGKOCG4CdaJc6U86c4C6/VG4sTVqtBzIm5F6Mu9D9RcJAwmMwOn4rGNP+3xeF3+rtU1pSqWqzUfTzMUKiq/kzNWKmqvmcfKzzBOyZXgKJPe90KJn5iAcsWYKEKU/EmXPvTA46V2pEKC1eWi31lC9jjSXTmZsN7e403ui+/N6WlHWBdmWUSxg2QdCkdM6eCfzHuf6Pf4sqsVmNRYnzpxVpEuJKkUXh6eLinAQkXMfHDF36aeMHj2dxQtKk8GjKksBnihNIVeQhG4e1/sxHXxRZv0NXh9oB4WTkoYhgBZTIBRRLxgD3xobKvV9g7WGsuYBP0Y6wRA59ctIIiLlKGM8plZGr4QBz1LTotYNdXds24bWO04LZaIDhh+lvEnpFT2DmQl54XfnVOhwacMM6FitrnmodWzbmTX3o9cDhORkJDe89MKL+OQnPgFbHPlNipbte9diAjwZ3GwIkkX1TDKDt0Znw2yUjZJoReeuqrTOcCScOiD2fhcJFzq4YZcG7gijh35HGNBx0HpH7dQSCIMCTG89onzAVbbIN2xbl7NHB5HzF2jbPFzMMMoU44Di4U4i6KAz6EUdlg6vFe4V62lFikPMo8EaZn+cRqJZliPaXc8k+dWQ/eb7Oywn3N3eYq+KXtzhyZEzG3KFwm/K7HnDgyJjG1omJq7KJPKZ5hgAPFFgqeSCJt6OARLoiz1mqjSZsuGu8u0oiz4ecAAGsmUp00ExwWfow3DNveWDY+IKzd3J5ykl4XxmawQSPacjY0JeFglpkXMxHZxYHIFchMHwYYRj72UhSY433/gKfsfv+B24f+853NxIvTaxAtDNEW3m+f3iUYE24bguglg4UpWZ+j9xMISeETD3wEinuJMaEwEHnH2gfCK4wW+AHTloPnhy1qklFGvaDg6PyekK5KaP98zUlB8CimFogYF6ktTJA3xUJvHKY89Fb55AX+emmV859y0GOhROQqttVEYlJ6IXiHgEL5YzTuqg3HpF3aVJ1DuWvABX16h7wmm9Rq8OWw64jxCoS1J3w93tHW1CcqqBJzs4uVK6TWw/kLFeIF+11rG+5xrLTOX1KSrX9h3n81kpE0otLOpAHzIVHSTBt2bj2lN+Ita5HAaLw1/rQIMZiBnQECJ+JbFIwvvkNMXYR3uPWnchHzaQmLh/rhE5RiPQghTXAZYVNBhYNj5Qcdn9lA0FlwTsr/f6QDsoZTkxUvBZDtUa68yrSIBDC8PbgNFLayhw1ERNDb44USwnVaVCShcGlQZ+aj/E70JlsLVGhc26H/KAmAqEzgqg0yljWVbs0cvGg9hKeC86+Do4893brLMXRyb6XkSlBA+Lo6MUMuN8vpISzucb/Of//J+QToUGNS1IC6Fel+ENRCCUSM37qLzhAuN9OeqE8LocKh1CkRqZh0SGjXTCZZQcKqOId0dkrEOpa+OTjuMjWqRAWuDNsUN4wh0jjWmc0+B9xJ11d0aZCJE3EI5PTEGxyghaW4oSSnCKEqzHAaF89F5136r0GGW9dOYc1L3ZvA9HynV/ORUhPnHfiaReZ5fqIFCzZ4n6nHSqCnNN7nQelxXbtgPONE7JIX3NNdvhWocJPnpvEKWi4zjTIrHOlTlm08jm5EUdDCUwq7N6rEMH0Od6KRLuy0VyhjL6zSePyyWcB7CPEMyGgxL7MwGTQxH9Z+DUqjk4vXHaHVYWAumISBMIjQka1yePb3B3e4dXX/kQ/svTJxq3+YyRnuCairYKNgKUeY2jozQd8hFweB6VZvG+2Hvx3YevGw7PmMeANuK+OqPbaP0RKOtMjekQNo5Il7x7oChHfg/3xNd+hX1iaj0ibO07TG5VzMUki0p9OZyVA2oSTQ1bb8Mm9KRS4xaqteFQNLizIaelPn5ecpZYHeeyZHI/liWzbP5ITD2M+UibIMFrxc3Tp1zPFgKT5KVE5WYMZOJC5L+GbSealTQnrbEjOhEDOjxJlaM889lYcd932RRDpNpD86WURcFx8JV8OGHHAHqUwI9n67jw/g4VpxHcpUipwsRZLFiWFa2tw661HpWn1GEJgcmJ3HD8pEs510Igj+Zz/SFI+l9ngT3z+kA7KHtzwf10TFqrY2Fg5Nc6uow3F5KQD5ArEc2QOqiMmEuIAeVJcJWi6UAV9HJ3nM9M10S1AWGzIJtm5EQUISYuRG1OpytcXWUqfhwItmHMgjPAbd/gu4EN3aqIu7G5uBCntgO93pwpE54PzkXzhvN+xpJB8lnOJMGaSZuljvs4LQVrWQbM6cEAH5CdTJ33wSmYKcs+YMDeKRjGihmpJQYKZJBRnfY21FHP5zvsQj6OGiCA67A/HjqM0APxqHWWyM0DP6IajCh4EFZd32ZJ0RPTH4wSDElS9SUX2EJC2REpYqkrv3PbdoQuR84zgt8riXT7VgcLPqWMvCxgeolIjbuPDsmGhOvr68N6w3ieMACtU9sn+vLsck6ur0+IRoTLckL0DwlksIsrFOMXxGNWtdNgtaa5A3AWCpiQRaq+PLwBCO2TU4a4143VEcsq56MPA+UuA9gDfiby0hrF3eDkEDkckK5RR6yVWc0SjnlUOMT8kstxCTGb5Nxj7ols8M++VXzhC1/Eb/2t34YvfflLOJ+3cQAyTTNTXuPZDxA7EChJu+B3jK7CbmheLyp/RqSr5xoaJgDcZ1nx2DMhltg5BvE5B0TgZrAT+hmB5EwHJJyVrn2aRa42oDN947kjWQQ8QoMA9hoTJ4TfN3V5wlEhZ4tOKXkuHKRSFtkDH2W1fCwb9z95I1JzHpV7HdGAbsg+WFKrTLlYdhg/ow2yBCzrSvIyplMyoHLtJ9777MTeaqVsvDlsm8KYy7ooEIvKs1jjmofMKkaATkgqfbZK6MFNYuPO7uTBBYI/kdaObdvGfEUJ9bquKEthC4Asm3Pcexq76QxEWifGDwPRmA4E0fesakoA5HOm0PZyZD/87pBKDy2v2LcRKHIM+YFaFSQMUU0Fbd+Eh/KBdlDefvshI4U+Fx+jcG7kINxlkTYtkZm95sx0RS7MqSaDJ0M5rfB1VTSIcWpGPh8AtlZxPp8VvR6iP3Ba6BBcqqFCDsKSo3LAcXfesZ7YIZfldbEJpaxZmxr1UV48mlUNnZNEyeUwPqxaksaInSiatiwkBYNRVPa5MHprYDdeEcsMo9dCMWfkUULJ1tmwUE4afBpkEkRDqTIqWnTANtCyk2Gq8h6iUzG2Hpso/hzmMmey4d076s7DLaDCcTTKunlnNM57Ogo2ySiovHeKnikf2xxmIX/P90eKD/ARUeZUYJlidV1dTFOm0zJ6s2iNLPmE1hzbdqdWBXXA9OEQBHzfW2WX6qHFgtmhPBMt6SOVksRPofH16uPnKdGABvxNR2CiamGkSyI3IEt0bQ/NmMO+cvdRkh26LQLzcNgWGv4ZIcNZpzVaJOTpSJGzII0FZ3TmPqtsIgXGKyScTid0Oe8mflJDR/I0IvPj/c5KH4x5CEMcCEEgFDOyzDBr05Exw9tvP0RrDa+88gq+8IUvojXu2ZSIHPTD98W15410eHL0Lm2YuG4jCnlEVHLO2PYN4dUThUnqrQIMkm+c3kIkAp0L/lJ0o9bth7nh/4kDMu8PIwqPa8o60JXcNnLjritSYbsF07qBnuN83gZoCbBCJBchZrDB5Zt6LFzTtbLRZXgzUeExuzYLKRISGr1gINSLa1F9qVyBhRCKeLQUjqBNNCZ6BN3c3ABlwdV6wiCXewRKhlYrbm+eSscFaHIG4dTtqHvF+e6MkjNKyYPXxg7b7L4ezSRHqjqRx8bqH0PYr17aIK3mRB5X61UpJYnYKS2+7zvO2xk3N09Z/SknZV1XqXMfkP5iQrSD6E4UP0QyL9Kwg7RKR8V8OtQxFxCyMh0Tl1Iyg69It+3bhkC0p1o01aoJGIRuF53uaDvxfl4faAel7pRBDpVYQxhaQrdZoj1R5mdgA7lsPJBzYfdRXzNKWZGXFS0RWt9qZQlibWqu58PYjP4tFsY4jbJO9pwpitKEGKRwKKZ+h7sdqjNm/nff6QB5SB93EiwpDDYNf1oAU4PDkll/n0sGrDBpsSzUqrAEb10lcGSo0yFoKIaxibnjdbA7I4Be94kedWkCEKxAd5bajq6qnWWMWRovEmCguNTgdTAne4yvw9AxzxnpBenXLNzULUh5wTEwkBfgPp6HJZsRiTLV5N7lQK1IKY3W7JFGKCUfoqC5CQMCzZkidozKOprv6hYa46aoPYWOg1KK6jESFWBd/JxcssSLoqIhEDka4qSeInY03BHwWhgijkmtFU1aCTBWXSXly8fx7CG4lcbzpERHjqJrZP279dmoUWoFXamv1iuidLRByEtSdKvKg+BnRbS+rEWOAh34ZIxK2W+pg2QeTj5F3kDntU8uy2m9Rt2qHGnxkToj+NY6s9gHpyOQIR6SB+FCnwhLvAYqYpFaFUER3JNf+cqbePnFF/Hm62/KkNOpGxyqNOckvo+GJxxfoWgWis0qsdQ1uxohLhK2m05OeOn8+6UzNW0c0dJDn6oDwZhjIiQjuHG4rBLiYPIA5hHPud4r7dn5fMbbb7ypg80ZvZcFMI5tb2qroQPXnWKZHYc9Ki0kBfBoxCIZgzilHzg9M4ALdCf2Fu93OhFRnRSoDQ86BXXu6F08Kdjg4NRODRNUR4HhtjY8fPRwoOOxb1qr2LczStH1PY0qpN6zOBkMaLZWYVZHYJJzQRbq7jmQCoyxB9Ig28IglCsPsccmCkIgaiH2aW7U4uni+TjRpbpX3N3dIVtGToVtK5YyukKH0jiRkblujqq0gCpwUgTHHPujA24e153EoXB4p4MOpFyAoRqch7PDMWvD2e6dQUj9n0WoLYFlVpbFjxD8xk2MoW4aE0+Hwqge60BfymgB37rhbtux7Y29bA7s/1gcYdBKWTANiA1Fz9BmWKQdEukgHX/wPiNhdmytON/V0ZmYGzXSDZhaJs4ce0qZLPZ1wdX1FQ4ZZHQZiik6lMfiogGmiE7tnHSzTJKrDBoNKK/Fe3HQvb/0vKPTKUAvnJHKjMp6j3IzLsyUjvdhI3LxCPcC0j7AxCnReeheh4HiPMZCp4PZAXRTVZUaRHK+JmudkQ6h4pwdZsu4/+MmCzg0jH6SpgHXxtTh6PEccgbMyFWpvg+GvKu52ujgmULnIVGie8D/Ey5JKYVeIL9/VHjRCHMMeOg0zcnpdDqoMnbwXI5GXkHiVrlyb3CwJQIGqnYcA5UWgukV7wl7rchDbwQwIzSdoKZfmUaolDQcFsux7mUIrQHJ4WAbAPquHLsZ3cuIJld1jOH6dI19qyqdldhinu3gmfrgXDNYiIgPI98+2izQPB8IrhMF4p495MwdeOutt/DSiy/h3nNXePTwibqvRiQJWEkUROvBYQlEzxQluhxqVvsw4pwpWFaKkATpwCHqDJXpZ3gtQk8wruGj5DxSiyaORNipVrts1UR9AKFLHiiD0qWBWCbDemJKpLaKjAW1VpRlYYQ/bAwO+5k/a8O3imqduHEutOCkMbk+EZawP2GfiRxEpB6EWJsIiZnaGzAaD9tyUY1tBiShap6YHswFeV0APWurdMxO6wKkButdIm0JrZYx3oFgx7zaeD6u1e4drW7ARhpBkqp28EjoI0yEiJYmIStlHPObnHuD4pyVz9vTaNwIQHyQIKoSTWNX8X04ySWrSmhdsKx5pBoplplUjKXCBwT6XtA9uDIYgUaQmLg2OB+BEtFsm+wNz5OR/jfNtErzaVtZCOCrIx9RvW/w+kA7KGWh5DAEmUap74hEBM+5INEkomnk0NtWUWvDzc0ZtXd1iHVQrXJGHZYMJQlOy1JihRCBNPvyJEVLtENzEx27yHYnVLlvd9RaGSkicj1ySnRwzJH1/qQy25ILuoF19VdXJNKb2r47ofPQN0ngosq5DEiVZcFcPL03GjGOiMpr6RylHEgPhqPWemf0NNCJgzc+xl0RDjqCIXBEJQZ5y+bPe1SMxHlmNt7nPr8ziKqsBOG/iyXYOqOL4B9cOpWzl8RETA4HKGzc59ERTXJMujdqvCgaDiJrrbsqC4Au4x2RrbLaMmY8NAOKjfU6SGwWpcY6MeEkBAfx2QFLAZ1WGhOVIbvSJSnlwciPfHnkrlMy7LXCvWGWCUYegI/f25yrSHWRiQ/xhxRRjflpet5IZwq5MLnivY45RreLqK0H1NwNRzJo5MYjeFjXFecz00/BaU0eJdwaP0m5j4OfG244LUnaFCHgF++ZEeGzL4N3w83NDW7vbvHSSy/h4cOnCHhans9Frp+XnCjYTC1OJ2ocvgfIcKQtxIsK/kyXoxDrdpbOa40qtdVqNAc19WCaxMguWwPvaD3rmjbut4eip4IgipsEr0iVJeWKzoGTfDoPGY8vgTLSgWHoAM90PI/7WWM2S7JtbEEbTknXdfjKCio6MBzD1mazPGByyY4FBsOB0B7sTon7dUlI2hene9c435yx5EiJNnLx5PztuY6u26lzrYYieYseM53pWW0hzh1YAYdqI0gYHeYjLWSHyk8jshaOStxzLobSoqcOnbwmobpWKZXAOU04FsSwkpMVQjc3RGpKYVfoZSEKlpZoj6EqUe3thGlHYz5670OSI9bPOFsRlWqQYzyFOcdchI2BAUOuAqOK8f28PtgOymgSpTLW6qgAN1uKsleA+KyPviP0wClr77AhllVyAnIw/ecio2MyD7DQLIlIMcqP4ZED7yofZc18dKzc91m9gd4YeYncCT4FoBzicirU1gjPXSWiORekQtljE5IQUGwWlGiH6qNeG7y3i43dUTle5hwLGWb2LBIMK0cN0EHdGtyaehdJIXB0MaVBYPp4kqQAHCSuL6sbmjuVrSIffIBFafCnUQzv3HQtvg4HevfhhFC/ZF5/cCjGAXV0BuKAiYg7kAqhH7WN9usRuc4zRshVHJhyiEdVGeisjP5E8fwjsiRpGIH4eDwLu2rHodg6+4kAgI0miRk5d2zns9olmDgsBeuq/kqFzlCtO1EMO6BGinAmKoiL33UhfXkxZEtKTSZxKR2950si6pjfcf4efpZGlB2zxn4l0ynif2cJrlnGenXC4ydPpIBLZ6hVLnp2500jtRt7Zzqfx7mngx8oGRDk+WdSevq1OyHod955B6+99hq7be87vGEQQMPhnwBBtK+Ia8Q6VzDggO9tBFGGQOCAbj4adKYEIS421u0Fx0UXtJyG8igfKOYvHfbBtAtHBGamt+SIW4KDKcWcT4BnJAVj7o6y8ICtfWfqzJXOZNikgzl4PBGVaxzMRbrT4Stul1zdgTpZcqRGBCGpxQcl9BOSdfF4OzLKeL4Yf3JOuKbKsggN9oF0xr5b13XY8mVZcOd3yIXBRHOmqIoleALXfe4y0x3ppApFA3pfJK65oaYG7xxjN411TJfP5n/bdoZloKQFOZfRSTzWbYp0YArO5NS7gqThrTaNRTTyDKqBuB0dqFX7U860d8e+NdS94/Z2V5qZ45Rzpg6LKj2jMS1RIEM+tEPouoBr7kMbi7yTadOn6zI24LCpx/3f/X+SFA+hQZIvY8HSmeDgNpFbaxUpqfchPx4QKo2vw11eZdIkRvVLOohgQfoYqRBriBACjGaRaIxa3VFVctxaA/MvgPwgHWjURgjDxpTCgpJM5NCElJT35YfosKTZ/dIUAY3vMEgYDbDEfGWkAGZqxke001XtNMuAGV2beDIB77HcGDOKBsZJRPvXcVTVHaGR7jEOhJSiIickG6RrMZb0/HwE+iOK0O/ngebv+sx0JAyX1RozIuVnZ+768jvS+DujBxopsoBCm4UHf8nrgcDZBpM9IOicFvFFON4zZDyaZsGvmUqV2URaTIZWKTu/1wrvqs4AncjQ/lmvlqFiC49oberyDBE5m08aRiX+nczYf0frMsSWujuKLRLga1N8C0BKU2jv+HrXYYpIURoAwu09Qu+BdEx0UYODXAxX6wn7VoWi6dB2onzuCUghohUVSXJCIh2DGC+5kgGTjzLJmaKNw7grx9Y78PDhQ3z0ox/BSy+9iDe+/GWwuWTjPhwR5Xzed69HjN8HvyJ5mveUmM83I7JHIv4BWTk4J4EScG1jVPC4SNByu/Cu1yHwDSfau49lzkNFqbKcUa5OvNuFMgi3NzdYrhdyZc6VGkndRzARlY67SONzrx4I6uE8ISpyINt5dMwxyZjNxXHTvaqqhEiMqhWF8l3sYC3yZECFovmcAWdzv2hrYRC3QkTslIDbmw1IjpaoJssUEfVXkmWUw5TGGJYlo3aqbUfFaHBHosoF7sMRR0uoas55Pu9IKdCNTHl9OY1F/EUYLlKguRRkd7jTOWi5z5Sgs31Jq0yljjWjtirH9N6+N+x7cB9pe0rJKHmZlUpCk8woCpkQ6Uc5oVqbIbevCeB8CGGLuWF6UW0WorLzayKY7359oB2UVqsIQlmy1Y627TjXu5E6iYjWRwRtAyEBmNc+nU4A8oFkBFXEzHREHD7km3CymL7pIw+4N/aAaK0e1J/TjLpGkzLAkipHMgb8N0l3UHUJpDmQgJSZOPGKkrI22YjVEGmXDjbQo3IkowV3ykNH9GoA0jPu7iDzBfFNzsqxV4wBIzoJXs8sXcO7RJ8CHeq69rhXpw5DzIsBOsQOB9XBeZiHyfFQJEHW1P156Fm4o9ZONMgMYY3jdzOSvgj1McXabFyHDpkitXhOOU2hIkp0IA9hvcip08bFv/tQqI3DOCFy7/xucgVYHm5mbGWWC5YlD3QmyIK9kXVfxPjPKVC4iGbEJxqH9Pz55BKFs5GRUkf0bYr5m2hY6IZEuelRXfa9X1NJdVY2cbnI4XNOC/2/PErLvfO6S6GzFeWW83uJbg2hsngmOJgQTcMZ6K0jSXOF2i+BjAIhXx9CVNHsk06QwxpwPm94+PBtfPSjr+IrX3njECFOWXHvrsaBMfaXWhREWnggjz3SYg3TSDOSLki5a259QOsODEJ12KsY/AunDhhr14yoWxb5MZyAEcEmG6J4FGUjJ+l0YuVfaxTNW08rnjx+ArOE03pC3XeNUZONSLQppgBO1TeD74fpbEXPqngdOYGW8qjcu3DmuwtF8dhkI91wTDmMzzll7UO/KqWMXknkP52uiAI59+RaViy5oKSMsmacb27RaoXbDksFkC3okJBZOFGgA48l0b46g5FWO3LqSJ3XDi5H7Q7rRDSYDqXtM+c839Vt7Deqyya03Ngh2UwCjhjrJGeSaoe4n/E7aQeJrHp31LarKigpsFWqu7HCLNBKV5+5une43zIFXTJyWVgFmldqs6R5bk5H+RJ9zFrT3O8RQCekbhjFC5CD076RBZmvD7SDsqwr3B3nfUO9bSPiDQ8+pRjQSBXMg9ZgQKZvF9yUWjfUZgDaYSPM3ioGcl1YDUNS0Xbe5ZRMuM0ictSBEg2XuFDY2yEvJ3ETdDh2YEjnhyhPNlRBpnG4l0KP2GuX8Nwcj5Rkose1I6Jns7okZAXgz3NOaAf+AY7XMjuo1nLRxXvnIS5V3eNNaIBdEG/rJATG4V73OnPkAynhuIzo8nAozY0wf/7sIRv3MnRSDId594vviRYAx5RXcFP6MJSSsk5BwvNBlh3gkJCmcD5KkUZBCsHANoS94rBi2l+E4UQp7q70WcxXlkM6yN1DJZKVTdG3ZjRXc0Xj7mO9s4NvR0O0OpiRWGgcwASnO5QrLwfIuA9EKAiJlgLOd5au64BO4ieEgzj3gdZEx0DfOA/94H/KIUw+Km/MEq6ursmd2bZxPtFHjzk78GFAYuAFeINwrOOQjujuyBs52gkbqFRXJVlrDW+88SY+9KEP4/kHz+Oddx4D5shZ62lUw8RajvWm+1VgQ+55pIeVhtLhV1RhZXCUtGDvVY41hL4dUog+UdBjtcsxyoj3JMvjZ118O1h07da6zjMllVLG6bQiUrWwjHv37uHJ+pgBTVmwXF2j3VRYlGprnYWvNdJ2F9Gx0sfw+eyHwCActRlRa6+3CAwM8MTOGIPT5+j1sHbsUkdqIL7FNI7RmDUha5Fc37umjHxKyOsJ69U1zne3vNPe5TxzfokqT4w3G6genAH0guQdaUkjILbepYcCLKEg3WeFTKtAhoIOiU8CQXbtMHFdcs5MxSi1PwLlQJQ04dkM7lmaVgB6R/GwHUDoV/XeUb0dbJzsd6LOU2/8zLZV+FZxe3s3BENzKSiZardMlR2DQu0H2ZeEPGwI3XmlHN1JEUiG8gzy+vVeH2gH5cmTp0Phj1GfaSFPQwYo8krqwtujymFqgNReBV1hQIhHToL30KxwnM8bet/pzIRC4LgWc/aDxGWskSdnI8FyENEw+CRMEUwPNdQEQxChtlBXBGAsh/POMr1hKJQCyIVRASCkI3LtwECGDM/mtWW4A6VwTA0Meh+DNxOHPp/tiODwFcjKgBQPkZS7D3idLzuaKt3HJcmQnz3+PYzQ5E3MzYbxs3kYQsJ48Tsdbnb5xyOq9+ntH0XLgJnmirGFDs1jdVKw7BFYQ+uX98+Bm1UmyQaWE0iNrgBH5LDrGD/eV5OTcKmrIQuGkb6LssGuahkZlKKccxCqY7xDV+M4Mw5HHUia0K4cTdPn+MUhOnVG4nA+zLBDyqNUA4Yc+cAlBjmvd6nIdpz3bTiMvQNschnhfxBmD6R4BFoBME/ex3th/jXX1+yjo+qbxrVwc3OHx48f49VXP4THj55IjZoOxXCYzUbUGEHEGEUfC2ZGnuJhJCFerVcFFbHHhcYY1wn5Q8d7n87V9PSOz6BOwEp1N6WOYj7pAPho6YAOlKuCZV0Q5cpm5DUthRINbsByWrFty3CmY8+4B/9KTnjckwIzTga9VPYOuzwgEQRjj1V/3Cz96E2OvXtEhGK8u3epFdOJr3XHUlacTlfk7LmT7yNHKvafpYT1dEWBw94YdMBZEWz0t8IehsM+3SmLCv5R2TnKdbuj137hsNda4TY7IoeKa5CgA9WoTt7Idq6iHKQhg0+KwVQ/N+liBdLmGUjOMyWZCTGh40Q03+FeAMO068GHErExiXnrtWHHzrHBDajDslKwMlGi/3Q6MdUHpV5lL2Nv55IOqSiEocX7fX2gHRQRoUNxWJ13I1LiIixFlSyK8EYtvXFxFtWNB7FyBH5Ob7rWhr1WSddH1U3cgV0au4PRTpnN+ehtRnkf87its7bd4VjygiINiY4OF5xWUkDWzNu7i7kfP01AWYIQ2iUhzh3VO3ORDhpqkgpjgWBEyvNEnNEJx+DgdHVceMrxmRx54QvCoZyMqBkeLxrloZ4odKYP6Df+pHH9MaYW44yBaEwuybzfKfUs9n8PElk4G8+m9zDmanzXcIDCGeBYtTZJxhdN7QTBZslsm9lMf+kAS3JCaGsTDBlWZvSd5Igm5DFncYhFmmw4P22uPe9UnE3jgFbaAi60JU0tFbODgJSItgNxihTFHMs4QGcJs43xieflj+dn2qF08Fn49/LnGAeM7kZOlaB9N5S8wpsNB8/GXEdKUKgWjn2w4hqxbuba5r+lAdMaouy89yihNHQr6OCB0ERAbc3x+utfxm/95G/F9b1rPH7yUFWBSl/aIVq0xAaOYGqCgJDG1efzI1BH3R+rafi5lAzo0r4AQjZDgVMaGyI0luZa7fNaYz+4HAMogp4lu5w6ocopU/BLXdIXI4KbOxvxtZ7wQKXnpRQSMdNxD4ZjrYPJbEgDGKKCiE6dxT1aKMzKf4EOexz3ZQKQ0dpZe38GXlzG4ahEIjOECVXK3jpsAU73TkhlxV4ry+MzydYsoy7UMLlKON/eou5N6a8I2ESMTV3Ce7pXiZ8F6sbSSD5IVEJ5rSrlTSMlE1U9tJMhSeAImwXDwQGcjT5rBfZtJ9E20CAhG2zUmodPm0z9r2QDUw42FtBzQ1+njfVeZ9HGQPemwx+2J/aNO7DdbdhtH3u6rCcUqa+vp6JKJXa2j5Q/siPlSOP+T9Qs0IABN0ffhOhtYpBzomZgtA0zsu+to1d2f2OlBTfAvrMz5r5XdZNkKWxErckyvWYZmO5QfpvaEOtKKCyVkJB3MeA7WJ0BwAp1TSwzL2hVB1IjMStJ4cREFHOVDivnaAYsaxZEzzLqrpJhxKGb2EUW3mR8uEirqlLikGaE7hqj6WCVHHRil3DXpePQpQHBwD+MrQ8VVBwdnoFcJASJazIZwtCpiuHwCocn7jUi9OB5xKFF/ZHZzdlsktbmQWUXho5DFcJnHGtdFVNsikac3Ic8Igx2qU5IJc8eNL0fHD8icU053unEKdpKaTgh48B3Q7IydCkAoNuEiMP5dbAcsxQS/4iOXMLq0PM7Zsoi5fh8OE8xJiw5HzhMRKzdZ5WM6XvdgO6jyocPiqGSGvH8MRIOhMkdKtueCql05CJ1aMNBvHfvPu7Ou8h809GbDvXl/Pj8uJCEGMM+/hu8k5EGkNcYqbWUjWX93dAGVJbw+PFjnLczXn7lRTy9ecw1UHkmoTzT9CxQG3CMUlQZhvMORzIiHN4DMdHz+Pxvyazwmqk5fj5lShZwfc2UJi7Gm5PCZ9ReU5oiZSmsAgiFV1sLTldXmncDzEkCt4R1PeFuuxv7LGtP77Uq7WKj5D/WHWRnW2somfIFdKrCWQk77ByXsV6rnDAbEb33KoRA2jcwsA1PHynBIGpmzDRt3M96WtlIUGMbHIveOyAHnnuAqqetNrS+xy7S7Rqiqg7uQ79p1BIejVY8D/rg5aToJq1rdY9Uc6Vj3sJ2iMvYZ6AXVUfBz/MK7LWh+84CqUxxzvXEfkEpGZZUkEq0sPBhmcNOpz5RS1hCiTSxOVKKVhN17luEdIOjNyPxGAm9M3tQzxu2O14Liann0+mE03pFwm2OoMjkjBvswl59/dcH2kEZDZWyVPxg8sxF6Amv3DqCMsjjUqmduqN3plFub2c5rEPKl60hpzK6AevXI3IMyDw25VrIgC6F99Obw7zSWcqLSI0AQHVXGBAo5zjixZHY0IYHW5SHjGiceivRebajto0dTFMCwxeVqyqSoQHG2BxxCBPMOFYoXSIKvFYY/sPz43BoylBGD4xwVi4OofGzZ3PnPr77GGvHZ8dZOdJyM9oPnoTrfkh0pEbBiPAxD7dj3pTfK+0cvTXOiigN5FzwPpZlhZkxFYioXqBTEeV+oY8SOeRAQHpoR0TUb5B2CaOgQFpIYKPz0HodazUO9kDlvAaEXJGST+chxtVNPBgfRi6cDh7QMwV50WMKclo8HMPj90JrBbq2uhLrQDWYfBca6OZhGGOuDaG+PJzcca1LtMWS4969K0qu96g6c1goKcd96t4CJQpk7rh+g6B7ADkHV4YO6dQXiXvlOMf6b9j3jrfffhuvvPIK3nzzTdzd3Y1tMEmy2hPaexyUiRbaWNNA7HEiKHKoDy4du+VGQ1A9f+zZzuuYkT+27/3i3jkeHWZByI65kxPXj6Xl/PPg/nPq95RwfrrTFq0nWEq4vn8P277hvG0o5RpmhtNyxYPUI4pmdQY8WhjM8a9tj7dgEF75S44X6GwE4by2SjRAz+mq/oDrcPRIZfHvDh9sfz8uUBBdPl2d6Ci0jvP59oA+ZJyWFdse95don/OO2jet6dlb7ChqFnsonnGkQ7t0aQ5dpQFQoXjYTkNBpOJkGwtJ70EXCOTTo8zcHNZFJAYdP+JRtH1176j73XBmSi6UHigZqSRxWMbip5MMulih8N17R7aOUshDCrl87xJ2BNB6Gj3IwllLBlhZYKPHFitnb7Yb3KZbtV+RBktekJcFpaQBFLyfV/rGb5mvz372s/jO7/xOPHjwAK+99hr+xJ/4E/i1X/u1i/f8wA/8wMUGMDP83t/7ey/ecz6f8elPfxof+tCHcP/+ffzxP/7H8Zu/+ZvfzK3w5jMNY/M2NUecpb7bVnHeuLm2rWLf62jUhwFvdZzPZ9zdnbHv5JRUaV+YFvKRtRzREcC9UIrhtC64vn+Ne/fvYb0+IS9sXb9tZ+z1DDdHWVYspxPSsgA5M+FhiqhyUtdKOhjJpnhOlnNCkaDOzsIAAJZOb3tlKWaFNnGTzosOUpOybuKBfpR5j+g5jTAuCaXh90ffndZ9pJJZCi0xsFCIjUoUYEhDH4CWg6MRY2fz/WDqYZTXPvM6rqG452e5LMfImi5oVKcQUYtW5qXMfkFIhlRAcqYOVXfKYne4njvIe7N/DPUDgstExyEaRbqMcBjKUD6NeyCyltlY0QRKd6pGbtuG2jZs+xl351uc7+5EmqPK8GDtd78wjm1ovMyxGU6AO4DGCh2rCEG46bDF0X9ogHk4P+Igo3ptkHcxCaWI0l7HMZKPg/uYEgznjYCJPzOncWFJrifgdFpxe3uD6CUUhy2hy1ivNu7h+Ar9kODgjF07ouU0SrPTYX+Hk2F2PNT556233kIpBS+99NIBgTmUK8f9Xzh2qibqbXIWGlidIrSN5HVyEpo3NDT6TGYgopsOCMKB03JwAgAKq2GIGtphN0QqjvfEgyeEIQ2pFJzyguwJxSS73zuTyr3hal1w7/oK55tboHWsy4Lrq/usJNF6q7Wx+d0FUngkBcuR7BWt71SHDgRLj1PVq4WOfh3BGFMHy1B05lRNBzfK3iMV0jqJ6V3Puu1n7G2Ho0IKWUBzpAacyopWK/kVxhT5sl4NW2SasB56VYd5iBeLcljm6069KW/knqAf0+Zy2K2z1YMIhKaCiLJQv2g9LThdrbi+d8K9+1e4vn+N03pCLgZP1JsJBgzPCt5nMq6/3nacz3e4ubnBk8c3ePr4Drc3G853O+rW4NVY0OAGc6J4QJqE3JI1DgXLmrBcFSwnNinMZWG5tjo756XA1NSU05HEUVlUhcR52e52PH18g4dvP8Jbb72Ft99+G0+fPMX7fX1TCMrnPvc5/NAP/RC+8zu/E7VW/NiP/Ri+93u/F7/6q7+K+/fvj/f90T/6R/FTP/VT49/rul58zw//8A/j53/+5/HTP/3TeOWVV/CZz3wG3/d934fPf/7zF9HvN3qtyn9FzpL9KQhT5RJHYNRiO1qv2J7e6qCu6JiGMoixYeByKoAVwaSO04mE1uZMToTgT15XealCIoQ8QKWfuRRqr7jL+2X1ByXB6Xzk8LjVNK7rGvPQ1iJPQNSh17qjVx+/wyKvNvPQHykQZ+SVEtTkisY56vWj47PZjIiPDsZF+AkcUivybn2qfCQoUpJBHEbIDuW7wDNPBVSfv7/kn9jhQAjo8fj7CWUuSyi0Tq4KgIGYxH1Pwijg3sQNimg1kDcJaiUfBh3OcsIBIbsIZfmQH3en0dGhGc0Xwylo4lS0xuaB4XgEERZgmnBZ2JOnViIpxzGY14mIGWLyK7Xgk2wKm9VBo3TSmWpMps7HNpv7wWdjzGi46P5MNVN838EhAgI9Ye5/cFtANeALhOSI0D2j9cHeSQvW04r9rYcTOVP/IaQGU5VAKHEONE7LIvZO7MNIPcXamNePqph5Ukb35xSOq351e3uLt976Kl599VW88cYbqLWOOY7+QF3OIxG5OVZRsRUwPkBRLLb4aXLpqGUyBAI7vyOnjOZGlejOChxTejnKooNzAY04g4YOFVdPh8SPjiHH0zvRoUePHqOUlWmZpaA/2uCN62/bNzy9eYxkjtOqNEjbedBpLZtl7XEHepobPIJBRekOHMqfAyGkXRzOTactisankR7xZuguKXb13+rOvdaCD2PkuURp/s3Tp7i7PVObqnecU8V+uyEh4fbmFrdPnqLXDffu3xtNM49xkpmNCJ53cmEYhwPybOrbEc+hasyQlwgkbHz/dI5zycBB/NC0tqrtSu3TCcMiW3VRfVnG8w/eHaoC5Q2hDp2zZC2UcUi5IJuRywbT3g0OGmkBOevcSgAWXU9Bq7vDW8e+h60KTuEMHkwBcGsNaB1ba7h7/xmeb85B+Vf/6l9d/Punfuqn8Nprr+Hzn/88ft/v+33j56fTCR/5yEfe8zsePnyIf/gP/yH+8T/+x/ie7/keAMA/+Sf/BB//+Mfxb/7Nv8Ef+SN/5H3fTxjOsdgRBm0umDYE09hNtqt80t2H7DC0acNYRWO+lB05LzidVuRURnQ99AW0mBtDQ+SA0IHQZkNAzclMzlQcYId0h0WvB95KBqE5tqIXzDecp3bYAJdRaCzsrogmysh4Hcrnt1ZRK5Uaj5ClsgPDO7l0GOzikJ/5yWdSM+HdeBjOKDHD4V6nYTKDYPF0cc34+8zBq5y3RUXONLLz3xN6PVoZGsf5TMGbiXbhIbGdEo1sUinwcLYSHZ/W20ht5JRBUrqQsEO0PtZWmlUVDkffmRJjWmUeGH1UeMwy2kAm8sHxiUeKQ4ht36kCCm+jO+mxytOH45UnyVIO2exmOnlUka6KihCuyXl/w2Gc0zjmxg/rnTBxQ+g+xGWPnu90TPoIAqDxyTmj1spKk4Fq8KAKTYac0yAtxXog6jhW0DhAeMjRaYr1HJD44AYNByzBrCNZFn+Ie/krX/kqXnvtw3j55ZfxxhtvHPZBPmi91NlkTmmBZAbr5GK01qm/WgBPTPFGiXfiJsHo95MSzNNYh8E9m/twop/DAUkJySlUxrGiXk5A+TmH/ZqcGEolnJHzGWUt8L3ifL4BulIjd2c8ffoYS0mAX3G+rMNSVCMNwyE7p/FO0pxpTV16A/ywMe8xZ8kSqgcK6dj2MxYvc705YBCnTwGowaimm9pwZJoQhiHoB4BpWHWD7xXVn6oLMJBTx01UgsIZKHrXWgmZd924RX8gVpPxno7WD3OPhN3xNhyNHkrOoUZsDlgHPAuhPqgUQ2TbQn2UVpXS7lOczWW/am0z+BpVcxHwBR+vojXHvoOqvUp5L/mEZc1w0QMmL8zItVF5fEoJ3RqCJwc9uyuNmUpC2ctwwqOy67jnSzG4l685bl/r9T/EQXn48CEA4OWXX774+S/+4i/itddew4svvojf//t/P/7m3/ybeO211wAAn//857HvO773e793vP9jH/sYPvWpT+FXfuVX3tNBOZ/POJ/P49+PHj0af49DAAC6bwB88AiieRs6N3jS4oiIxrVhGBCL6JoLsgWvxZBLkAB1YCEawAlxiUMeGAa9DSPAP8WIjkRUGZY9HIQ43rpHLyBG27HAzQ2uzsqjGaC84q6DhYuY32NSUjz6L0GGndEin/2i+oI3NTbYcYzDePjxwPmaC41eNuDjgOnj+2RljURAHhfT6z46KTO6teEURUrn6LwEgjYqpiIlIqTpCOtD9xKk2iR2UvRwIpSL0SPlmKIazvAYWxuw+Hw2phxDLKwHV6ar/XikBg5OyhFFSBfRNl9RrUNgfh68zWk0Yt3EWIxxcxOMawOxOyIXR9XYQNKG43j4vvkKDkA/OCcyjCr3j+do2k+TXyFGmIGlyhfVcNNhD8eBZHUH6dQUXGt7A+Sg9N6Gg0KVXcyy/WN5MxefrjUJunBJjqnj8lzbctx1hsQ93tzc4OHDh3j11Vfx1ltvoTnVQh0kaAayJPsudDFKWidHotuo1UIwyqMKyLszzWOUK+ChqMAl5XGfoyot9kIcTqI7Ja3RCGZDzCu6TrgDzRzWGmX43eGosN3hKTheqrtJQEkUzcviS7hHBZkChUEwD4cykCDn3BkLDGJthNx/9M46Oou6wymwKYcXGs8ENjlNVsZaDBsz9xHYDLA5mpAHSuCLfZEca1kQomr7vhMx7A5vUfmntZLoLJZD5V8s9AtEM5zkMR6zDIApx7gxBlIk2Af6d9gjcZYAI6jNiQFV8ipuEuDZkD0hVZMuDOe71pniH87doUwd4FqpdUPLHXtLSGfu66jUMpRDGpfzkWS3ueRmcM70b0YXgh97lmTbNtLYtYbNiHTt+3v9dzso7o4f+ZEfwXd/93fjU5/61Pj5H/tjfwx/5s/8GXziE5/Ar//6r+Ov/bW/hj/4B/8gPv/5z+N0OuH111/Huq546aWXLr7vwx/+MF5//fX3vNZnP/tZ/PiP//i7fj7yg6qK2HdC5701ec8spySpmeS4Phbf0TsXz+MQkXXje/oO1OZIaeEiTDYaLvHNoNUdG/0I4YmEBEfqoCaKhQGkIW3qcZNg6ug7veGoowmCoUEbXZF+h19sjpF6kRMTOdpjWoYbORbJ5SH0rNMxS68jyoz3vIcTYWksPIsL6UCNEkgP1GN8eqIpl85OIDuXaYRJkuV99n782ZH31JBzEeIihVzNeyAHqeTx/daN6TJzTIZ5OEHzQOP7J3luICQHXk9K1JOgc1zH9YrE/XqdDupxHKHRie+kD8dxYwrmoIUy+BGHtJWMdDKiO9MhPGr6QEaMhD6WHiv9eUFgnmMfjvCYUi2UiNiP8zbGQ/N5RCZSHJiahy7OmHdjFOncwzmdkGzFvvPQNt1nSQlIE4I2uZZ8jmAfGZ15syFQdXzFGPAgnWMY6/CSj0LnL76jtYovf/l1fNu3fRsePHiAtx++w4N69Fqah1fS/UE+22y3gIFollIOjlHsIaWoPOlk4GGecKgEOsyTaS2kYoN0OTlFSQ5yPaTr0lhx3F8JxprgERSNstPDQUJVUUbaMJZlh3NC0mQbGjemOQHkhB9KbGNs3ZsqIUk0h7G9ARQEhrAdg8uYL94vwsE2ojUHozSI8KwPkMMYEg2dgQOEivAjDXu9w9254OpqRTZjcKnKN4+0FRqoVKz78MsALmxYoOpMlx9bLxCRCb/ZvbOhoE/BvN7UYFVT7/E+OCxlKrX2EHG0YQOy1lEXeX5ZE3pf0KsP1LeppQKRNI7XknlGtFqxD8cc+n52Qw4+CRFbm+PmEW5wZiyn6YS7g41Aq9LdQPMEt9mV/f8jVTx/8S/+Rfy7f/fv8Mu//MsXP/+zf/bPjr9/6lOfwu/+3b8bn/jEJ/Av/sW/wJ/6U3/qa37fPGjf/forf+Wv4Ed+5EfGvx89eoSPf/zjMIT0fMG5nlFrl/JlJrkbIhIxuCAc5koNgYdbLnlEl0Gugrdh8AA2ebKSABELIeQEADd3UsdiCngCOY2Dk13pg1jKz9TWkHqQ6Dq5DsBoABYRRuDV1mwgJ1EOSxugw1bdMG00EAvHhqspDqg+Iskx6heH93R0olLk3UjK15q76KmSwGgPckxoRDlmBm0QPNPUzOI7GFW20R14kkInz+ig35FAZnpwXCycz6loypx8VDD10RE12UH1VdUzVPac/I44wIi+kBzbO2HYLpQkXsf74xNSpC8mKypmmIKcmg7zxQiliRuUMg/lQL2OSpzRxdh7pEfU3yhlIRpN1RFEHnJKQHPUXuf8hxMOpRX6bPwVSFUI4k3n9pLb42Go5SSE1FtIbkdaxuECC+RQ7TSu5jEvkICXkX/jjn07XzgP7nTO2aAyEDM5p8nl+DxbgjvtyrQtccDzXynzOWdH5xgeOl/dO6w5cgEePXqMJ0+e4NVXX8WTp0/o1AlE8O6H8SMi0A/3ADN1KTdW8LWOOLFoUxpChCvm2VR1wftXE8gO5NTk+Ozs4aT1xPO7IxAHy3S+6TiviAjf0UbFXkTssT5rbUgmh0LDv65FCtYi7ibwkAm0LlR1D2vEzDhXQtui/cMxNTwdXgA+Wy2wQsWBZCwTbuxjlHPmvm50sHuKE5/FBC5b5q4GrTAYSOiFOVGp5Ohy+JAN9567h2jSF84FEsnaefCv0ggqjbeKtrcxJ7DZ922qWxuiqII/SzC0Q+DA5+57Q0zCQFZho4zdR3wnheAsEq+R/zPTSB11q4egjEFxa4AlVg0RGeWzp8NeD6YNbTK1vvZ9Q8kr1lNB6ISVZeEYiazuTtLts6h373xOSwbzBetSUMqJOk69o/f3zzP973JQPv3pT+Pnfu7n8Eu/9Ev41m/91q/73o9+9KP4xCc+gf/0n/4TAOAjH/kItm3D22+/fYGivPHGG/iu7/qu9/yO0+mkfjmXr6hBb21HbZs2XhzgM+JsoCE7Xa0jNRNKizmz90IHSbQujYeU8xDdsWRDQA048iEoqJa028qJKEtTc8JwdKzE4SbYy32kdYBZWhwLL3K4o6QL89B4ZgDUXVgHg5AMANqovMbRaAUSEq9xyAB4Nn1zgSBcvGYee+aJI3/Pd0hqbJZ6YjpM4cyYnDsc9F7Qp/7KeMyL65ODw3YAMsRQaW+fB/moADGV/Ko/YLLokizZ+0jdJENe0vgd02nhIMQT+FCBpD6AKkwigg4DJtZwzGcY76nTojGL+dV7+8GpmodsoBQxR1ynOMxbzBFLy1mtFY7dup5wdXWFm5sbEXy1ht2pOBkRruXh+HFsNI993vslj8gQLSFyEOF6C1uqOSEXBeGIGCvNeCCWcR0VnMKdaTAYcN5uD3wYY8qo48DLIQF3zg/GvQ8k8UB8jwixXziFQvVslmbHWCYLBHLC4601fOUrX8G3fMu34N71NZ48eYqGNub5qPAZ6zY6FQ8lTcwU7kTEeJhTB4nj13uFi+vUDSjxRdmQkksPZdqkXIQG+zT+CSzzDNvDpegDMTlysgTgDCeilEJ9mkBahA7F+2JN55zRomdNmkTL2JdIkqo/KlhHW4sMoF0GTQOtTDPg0C9GupTpHTl2YeMdqiKM9gvBp5hp24GQj30IXF8XOi/SFMqr0VmCxiQCK0CBzqWDS3RQ93vYXw5qnQCgY23SgjmgrXQugncy7QH5K47gvYw4yDmOPcQiowLSOmX7S0FT5V+rdHgDqTuide5AqyEVwS7JMfbHtFXvPvph5WzY9ypnpSCnIjE26aSEWFxK6DsrZGGqWEyU/kcpMDj1x97n65tyUNwdn/70p/EzP/Mz+MVf/EV88pOf/Iaf+epXv4r/9t/+Gz760Y8CAL7jO74Dy7LgF37hF/D93//9AIAvfelL+Pf//t/jJ3/yJ7+Z21FVR2gJaIBlZAb5TDnOKJOifkUINJEIB23cxdaDVsg8fPWPMQaEqCvWUtjpUpBZLoKWszZnHCq9ofYoEU6s5AEPlKQcJ1J8JjzpNozKUfkUiEOEPrnHBhpG+N3pm2EI+1yIU/zsMjcZiOnR8eDHDdHscKZcJknvSLLi5afhicUeztFMOcwxGkgL2qhUOL53akJo8g9Ktt0bDpxPTdVhLB1g99tCo4bOiEekV4t8fvAbakVHx5IlXw32TmGwGLlptk9ofWqxUNCTqAT03uM4Ytz6kd1v4g4cDTU/37qqhA7fQbJlhT3juBz/XsqCgGqvr68PlW5zPV+i48F9uUzZjPs9lBZPdG2iN6FHE3o43tqI6qPCAuF45axrB+dH6aZsSA1Y1wUw9iZJgTZZENrlzPhcO66UiCHm8LDOpVEUzjIVLmMN6J74n1HRE2vfxf/oOpQCqXj8+DFaq3j55Zfx6PHjKRSW1SzSA1mSIx0HPCAuDO+zmxRp567HSBHLcTOf8x4HQSAWI6Lv0zlG2ASte9O1Atnk3jg40xEMDU0kCMHp2kSuPW8X4wOE/YhvxYUgYdx3ssLvEcWIqEqsVOc+yMFpmmlDNk7lvNE8+0AXeO8RCMkW9mmz4iwoixRcQy8FGIgi0S2f17TJ/RrOkR82SZ9aQqE/clRf5j0KBcEkMycX6s2SwWmXNC9zzx7sg0tRvHegZtV3HQsiEqX3jevGUiJh2VWIoXLh1pruyVg00boUkhmU5dzQaoJ7YmDuQXs4BpJKDwESFkwUaut1pGzcfEhklLIgZcoqOCjox+8mSllUOn6BIn2D1zfloPzQD/0Q/uk//af42Z/9WTx48GBwRl544QVcX1/jyZMn+Ot//a/jT//pP42PfvSj+I3f+A381b/6V/GhD30If/JP/snx3h/8wR/EZz7zGbzyyit4+eWX8aM/+qP49m//9lHV8029InIxipelU5beBBGQ7j7KgGFMC/RGrZTulV04jRs7CGNNkUKU0umEG5fMcOboShoiRWYNte4jiiGDXQui6Vi0g7aK0Tmh4dcGDcQicaFEpANExBhOi43GfREZjnTGYfInRH4UY8uY3BIc3jujguM19VuEAxPk2qNDEvX446h0H5+5jGjjeSaCML5em3qGZy7PPfLFh1RPshEF0S4kdEzV0VGF0jsdOBnYnLJAF0ZiLe5T1+69jQNipIyOhiOim84mgM0O5ZHuugbXWe8QIW46SuzEe4jq1Q3bFS0dHbG9VnjvKF6QlqJDT+vSpMXiYbzSHLOkFEvrgDluzzewO84lnV0Mo3McZ46RD5SFcuqXjvqcO6JgkZOeTm6I1LECqbVKtfU0Sc2LOBtVOfOUJQzFR8OyFJH8EtOxmiNLIpyG0nLYa3B/jrTcccVe2MH33hsjusRMCw54AJyXqS1j2M4V77zzDl778Ifx/yLv70J23bKzYPAac97Pu373XnvXrqR+THXa/kwCScyJAS1PjPk1EBMQTECQBEUCQqAwoigIBjSJCgbJQR2J0XhQIiEHYhJ/DhKQQjD1GYih2/7oL0inrUpVUrVrr7/3fZ57ztEH17jGmPe7VlXt/TVN9yJ3smrt9b7Pz33PnzGvcY1rjPGZz3wa1+cLWB4/AIdTrM2MQtoN66EjgZwPwE+N3XaduqfUVok1i8yY1pDVS1fAbwEaB/YCOtq/C7Oi+SN7dRQJZxsGhTxCMwBf2xx4zhPL/IcDNGauEYGszCTTjTa1IiAw44laoTDdA7ZIPEDLUKOcLh/UYDBrRE7oZDNAhMFo6zolwErheqN9UvuP1ui0ziF2gqUD9svONR3h8hAERqgrxqlZNPpD2OscYIa53II99bJtuZYEniwcmLBTiBpBKDBl8Ki3hJBCeTQqNenCAyyBDHoAwuHVzJO9gTQNBkyL2k2XSJjY4Dt1YJfRUtBKm+sZ7vOIRDI0zuecIc6W03Le6YCbgUXZIlt16xu80xbOMXHZr3HZcdiHX+l6TwDl4x//OADg277t2w4//2f/7J/hR37kR9B7x2/+5m/iX/yLf4G3334bH/rQh/Cn//Sfxr/6V/8Kr732Wr7+Z37mZ7BtG37wB38Qz58/x3d8x3fg537u595TDRRe4UFbCOmutmBJDJLgN2ghEFkP9EhHo5q7xWa2aVnoR+VTJ3RoWnpbZsb+PWZBT0aRoYxhT5hFaqkrS6Vl2rL7BYBlGXGVrtbVIkxQjE390b9vAwl6N0tnSRc40MHClD8dotws82DwcjyVGowCEnqN3lvMShkGHQj18+Pv1znTOK2XWJb4V4Iufd8aYgjbzX+3sOlmMc7hNajYXrcAIFwr+2VEPRhSlK0ZRV7LYcXbbEnDZzl8VDVbA9ecd0TNBtYSQAuh6FDdCh4GSp+VB8Ofe2joDBLY9V7Fjzi3C72OqHPTeHjTCG9pA5tFA0xlZlk0m3RUsbcYt7V4GgHsYToSdOjPttly2NQaUd0gznOxmTMyl3o/1uQZiHoMzQIMxfsmx/l0OsVBigSJuQej8Fgxa9IkSYvVWLhxzsMaPWoDKu3/tqFU2ClDw7mGNu6fSXbm7bffxgc//CG89dVfhd/5f/6/IqRmBJMNkTk1S6Q+FDodMGy0EROh1xLY8sjiCSALheEQqbyLrxQHLnwuY8MJFwBq0st57b8exQqz3oVX2JF13mKt2UhWLytYB7vRoBD3TDBrZhRTzhP3jwWjEACPcybGJnQ9pmN5RsYUhaB7rC0Pm5CWKHSDmdCjTMVWvW4c2ufVSJMaI4IzZv8Y9jFivTvQPMrGb3BX5opCcACiAy9GyLJVkgE1vljss54rn7kfwyYalgp3IV/LgnABCYN5cahZK+Deorp5A9DDSfBskpv1pqyhqcVA7BF0oG0GjI3Vj0lbos2BNrZkhmMVsTxH2xNczEnbNcbMtaFicXNW1t647EBrySiq6vbp1HB1uocxxiEj9ytd7znE8+Wue/fu4d/9u3/3FT/n7t27+Nmf/Vn87M/+7Hv5+pdcjOv1vmURMm7iMJoeavNcDNWcrjV6Z9zQLfRqrMPgscjkMQKAsh1YzbVnyuacF/BAlYdfqZwGZou0/F2k1q3ejh29bFGqBUyOMdo6VOqgn8vhw0vaEeothHaVN78OyQok0rsSaLvlhb148X3qaZG7FX4Q2NJzb4f33AYvhwJwqbVR7PyYXjyXzAO9F+HZzPgfa2E0A5iNOVNEOUEm69TbLYNRLMZ+8QwBZesAB9x7gg0JIXu39MZUsXgNi/Rox8C0Z2XlIHVMaDxQVqZiXXu178i2xVsQspo4rBxLERC0rSWboQOfn8XYdLDOMf8VF+fczSWkozXhC6jxXJ9j7MvBXihHBoyHfLA6L6yzuAc53Ab0fsLlIhaLs2WRQaF1IMCqQ8KCcBjOOiMIL1uF+BgWWQw2Im0zxkGA0wMwMiPmqDXQGLZmePbsGd7+whfw/rfeh8/+7ucYp+/rHg7xuxH07PsuuVTE+z1ATF1i4tQGQXomzlCIcQUgGjKOr3RcpbHyc9h1WWGLlREcQ/U9WFyrWBQUeBK4QbEx/IwWB7oFq3HLJggoi3VQ7EVzZw1m0nDF/+pzzTHNMW2E80Zwfwp2nL2rdMAb1AW5tYbZyOaMfRHPT7JYHkwFnKznXPd5jJd1FgOcgwLm3tlvTeUBrMth9RAEx5gEy8JQW+wllOaFocHqc7VeyUDnfipNnrIzm1VNJOnaACTjh2BLknmNaICbRxKHzroWwnmv74ZR5+gbWmgqoaQAA7xv0c2aLO/5cmGB0zEZgkLY1EV0nvY42sRojMzYs2yLQoTb9u5hxyvdi+fq6ipDORK0AbFMfK20yE0450yEzkN6h8+KZ7feUvDn5myNPWlct60BPjD3neWMJ8tTt8T4vIqhCDHuVq8wixDAapXjEoOwUusCKDowxCpk51fUgjseZusB4EBs1JczJvFfLwEmx8+4DVBf/NltVqR+ru/SvQWqR42DNCeqibDeG2LuslbCC/fFcEkyOfLyp1fDO4CCQafBZ/hAvXQoLB2RHTD2gfPNHrHwwVBgHM7N2Gvp6uoqD4BtY3bJnIz1smrjhv1Co9Hj/vexC+5GgaVIZYUSIWjcTl293jku2RvIAdVvqSmolEEChqrSuY89gJRCLEtpeqX6ef38WIuCwrjsgmsCiw3AsRvpnEcWcAU69VlLiOO2oyPvDw1XVydcLucA3tS4TAdskvFk3Z6g8Y2eYzNHCy95QGmyyD1v4TUDOJbnty31PTUW65rlvbfW4H3yAHPHvk987rOfxdd//dfj0RuP8LnPfo4sSUesvgFmQ/Tw6lXMZGGaxG7k98U9ed1z3tdgE7ax7zTuYReouyFo9TFCAxPWRk6SlTDYR4SR1bE2nTmw1pP6JYWmYtuCnQvPvxl7f2XGn4nZ6FHaQaCmxR6NBzQvpkPrDJ5JCOl4BLMzjY5lb8y246GI3N9aMxNs9qrjP8eLhiTUfsWKek4s78sMiEIf7A5sDXtUq+3SqQC0La2liB3BJsEESBtOd9XXasI8atZkRo7l+LOaK4WrmrvqhaDnaAF1PKqNdxZ6c2miaNPbYge5P2PqQcfYwbIKI5t7etoUgSwDogBdnFsRm27NYJPavt43XFmHNYKUFgCKAK46G/d0QuPcGgPTDXSlBi65Xt799UoDlNY0KHEsOQ0dBWpMG21Bh9mY2Mdk0TQgDhOllw2M3dFOp9RFKXe8N3nMVKNzws/hEdBz1gZZ66gg7kqLgD+g56m6FS8LgUhMKmCSRZkSnKjWhPqjKHW3QEsdAKVLWX/GS5uBBtRuLfYvfRUwUQhmDekISR+ZgIrjE19ECqwh389n7FnuG0AW2psZ2y5aP3tvJDvQErLNSL/bti0ahnXslwvMyXiIku9tg7thjDMF16Ane7ns2C8AwM1nUfUTPnHakM/PdgoO2AabEtk1zOEY+76MSxVAs9Yw952p5k2NDS2yPfh5MuYSOPL7RlQWjlT4IFjYvlwQmHNwOm30ctzAc1Ox+fLSzcqzLbYuzqJI4SUwqTVU9j9CVTL8yzouY6k2CvyeFgdVaaj2+L4qksb+Kxb7y6EMnemDui7cEmxOh3Vm+cigA0jDTeMbrR3GyFALq3mW6eMhXiCLpe41DtqPoeuJffPOO4/x+PFjvP+Nt/CFz30R5/MFF7sQrHquRPhgFU3EATJBBlXMQlL8zeCjqsOOBaSYS+AZocsWGSHx3m07wcEyBrtTk6IaJAL+ubdDqKhK1FrzGgftR2uWIIprEbDIKrEmUW3YPZvRGBXRoE4h30ibhmPukQE3yZa03hZ9GXhOu4S26p4+4u8CAnqD5Q3Hesqkgh5iaAs2IBw7MUmOWidL2BgATtspHImR9n2uKdStAcqGkdPYyxnYto2gyB2+O5o3OBrPlA4M3zHmxHYCYC3WY4CUPMOQa1mF+3qTAzTJmBwc05hbFPPMon07q59Prm0mY/BR2BxUa5nz3AJcB31CMBRO0pxA24Crzt5BKSa+AnyeqOebO+aOGLeoOQOu29VGeISD3u31SgMUig4Dzc0oRgMeYlvvuZGEmrduaSTZb8fiQAWu7pxAw7BD5YTNLLqLIuhBTsC2bUnT96WN+MFQl+0BNz3LE1fn2zrA3VdgoeqkDkQoYvmKcA7idMrreEBpQ/eknUuhre/V/Yp6f1n47vbPfOEZV8DjrnsQODkCtfq53sv7yEyPKGG/CniVyr2Olb6bnYsvUKfgCqvFxrZSvWssaXTCQ4sKr7uN8LKizwUk6NLYtEhnVuZOi6yf2KSjKHY1YxR1rxYKc+6woX8D2PfUe2ieNG9KU9338AwdkaEQQs5MFVzWDgoUpNYIyPvw6SEGLvDLsQk9idarS1Owsli35/BYX0RrjYBhQDVu1mfTvTkMKuMuDYr6QeXnNwL+m+fXUOqnMgBqTfe6j7i1BoYyFRnUWnEfPAhmxcvXa9X2RD4P7QEsNVvrFshdNpns/tnf/T187f/pf8Hrrz/C7/3e7zEWP2aCDNmW6R7Mhg4d7QfthWIVp0906+F9SzBvqVvSGMLkCQPb6Qo+d4YKnYclFsdkdZKUUaInatajHk6AEKcj0DuZu0zJXXRKBiRzve8E9i2YEBVZszj4YIj037nchw4+D7PB52itYUYIU47nukdkC5Bvsbwvh4EMFdnRbmRPYNSObNvG+krCA8saYIrxwM24ycO3QvzH13qjftBy1cguOfbLDsAi7NnRN4rbZxR+6x3BvIdj4ksa9e3LIwtwOSe0rsnIFPDEwpjlfQ5FoxqaRO3q+gqLGoTSIs6MHMDLJvQtsugcYGIB52lQjBXrMEDg7Ngxgu2SbQm2ydazLhisd3m90gCFzKlKoLfcsBqIpNnmTKM7wUaB3GRbppn6PObw8/Ak3TXHBa1HJdfN0G1Lz3Md69bYuEp1IAACJymk2wIS9Eal9iaazRTeKjfMcNUxrMOf13+vFVZXFsPVzwfrohZ78nKm5Bi2EVWse5lpNNri4eu7M06eoIJVShvTS8JQa7yO4SQdlGzm6Amg9NysbaN6IWEaGrMmmm2F0iN1la3HmXKnSq6tU10OIA3+nA1XV6yzM4Zj6zvcBZbIkACkQk/b3Vvt0XvoTzxiq/zM1hk+uOycjxQozgk5PhZZPx4GoKkceBitEZkuBUxq7qSxOhovRMaMv+AFcz7WMM5xveVn4rYxefFixdEKldZnIZ9Nhd5m0MvM/EG+p0CtjGRkQXW2dd8vA/tlp9Auxn8MwF1rg/usOTUKzGMN39iR7ItHTxV+zgrmaj9UjRLTHcWaDICx6KPGGGidB/vjJ49xvjzHV73/Lbzz9hdw8RnglocR15t2hpyYmnv+O+Zi1ucfGNn4tdZw6yGcnNxTTFnngTPHZIVkH1mGHzqTNNweDSbi4GwSkcs2mPQ7OKwBhaC1Rlq65PEa/fcEPJIUxALwYRYg6GAtjxF20ixC7RtaI8hQmTWulyNQFMBxp6j4dkianx/2VVrE3tBUvdccFfKOzBsorBIoLT5IgMrjsxyI0NOaaOBQA845lVGWkDDGX8UnG8vwd4Tjg7x3wZ1mHd6i6rXTyVjyxBO0+IF5uZ3cIIaNINEnBfMsbJpLIebWyOsZ0l6YBY6LAoJ0uhtOraENtQ+YGKpg7FFCwKKMhp2y5czqAK+Vl9/N9WoDFET8LA9jT89jhFLbcsLkTdQC0oTMXWp4oHfF5ojOW3QkVqqk7LnnBihqw2Zk8wzG8HgPXCDtcJg0FO2/HuYAUKXFWeinsmcQHj6/bt2U5dnyZ6HhCAbCzMITOm6II5LVv5cDEACgOh9KtSwG5AiYignwOCDoPQzsznBGcwmEqbEQwanKue6Oy2Wkap2LeeMGjU21BzjpbQOiB0qBTN7DCKGhdCL0nkai+Rqj0IbsliC3d08AU0NzisOT2pLLThbNwe6vAKoZWKydFjHrbeupbZpe+hG+RmtBSJcZJuuoZtwbOmjq0JhxSG2bqtQ61LdG9wEYhu+oYluRQbGyMDFfWoIzDF7H0ZDokFLTxAq/SZC9Q7VRJpwiQhwF3wzvqNqv82BC7QuzhsvlEgfXMgUmNnEB2Tw1ooNwaL0sxIJZK9NzfZF+joMobMGudNrFkZ04hkaAYC07su4NtSg7fv/zv48Pf/DDeO21h/jcF95maAzUozh4uKyMHu/Il71fzCnDjr1+F8DB3ZOt2KIarTlyn7C8AYH9yTbcvXMPNzc3uIQjptAI5z0OoCYWY703yzNNlUBlMNQhW6+9XHakFinTX730q3gJO6D6IlDqri3rVGDGALBoWusrSDqGY5JBc9WTKh2F1irhEMOuY5Al0HdoXIGoIizWx7RuxTHOaEo4y/nNw1tMRLCEZhEiOUUGFse8WS2v3jrsxH3jIK7zA0AmQ9Nsi67D/JVSuA3O1GlszORLcMLwWs4TislO1tQrRMg1jTjPLMa75bYaAFO8DUCLqs8T0Vi1MSQ3HaOdMMaenebXMK+AiYAKmes6Y97N9UoDlBk0uKEU2T5n5oynC4SIu0NUG3slIN6T0KAB6XI4ov8HK/5hLxQ4XV4pgOnQ8aLy4+a2eKphZCAmQghyreWgT+B/l6ciloEblJ5LsTcZo59LlcYECa6jCscF8bLFsWzq5XPqcBHo4MFG4yJdyPoZtQkAMD7bGu8jPoDP3yLFtwokjUswTdEuwJphRn8WuQDHUvGerQMqDLOkvIIt7ee8pGGT7oUaFM/NQs+/wbAxy6KFB2ctPbwelT53ilPQtgCwthgACHg07GOn7kXhp15gFE7T6dGavkWc3p1sFyKDgyXjS4Mj8ErvyYGg/TN0Q4uezE+BAvXKKNEq507MmF5jbOlw61oBktg5HT6tFdjWIeuxJxWOmVP6kLmsqVo37hQmbw82tNYz5Hc6nVKLozWp77OYk2JnInU49xbBmLYV+6OEU2KlObkN0fV8+bNFh5JddKEmm4a33/4i3nrf+/G+938VvvDFxzwUwwGRlw0neKJmIWbSpB9b9WgtGSgxwLRVcRAhMm+COVGVXrFZfWOIunndnw7ycj9MQ5l/555/cerDuYl3Lch5dVasOxAHuA9WKV1FpLqUeXUcdNlo/ULANFjwDCkyTM2qpQszE5cAjex9OlXcaXCfuMgR1XPpENW3h8Oq+5gAK/dORFNYNXG0DJtqjQAFyNYwN2LuWoTvpk9AYeKxlx5qqrFkCOTz6PLDmtL0ZYsIfiOyJYYcRRUCXBxROUcKOU2s56Q0QgDkrMQ4zym7FQA9gKFZw3Z1QscWTD2/ew9tIJyhTWZUcl/vlx0viuq/9PVKAxRSZQ5oALEY5CZP2aD8cFFsmSI8tMNIa6qZ3+qhZiEuIBF0fFF6INNniLk48Wuse40D365pcfsq9Fn/1katj+TPxFC8TKyY4xMLlAXrAB0gJjcJOig83/+i7qQOE702N8FirFaPkzVhon9DeAG65Cz0TjR+ueyY+wxh6UC2NbfyEPX526b+ORUnhXtkzsS9ucf8Bl2e6bvIrtRwlbhvCH8X2Qwy0sPZSM006SkEYxaFJ6uTBwGktfDcgGsfD9Qw1z00Y3wYQG8UOgJhfDTTzSjunTMPqh70uisEGKmPaEqjpVepg1xrZfWU3SvcJGPdg42U8VOHYq3rVWPFYk8C2bZkngiwSOCsw4q9RGTEci25R30RAhJqU3aM7Ozdwgtj87HLRWMbTBx0eHnYUMu1YWz2A7EHufciHXPOAIvhieb+XJ7z9t8OhYS4zq6f3+DtL3wRX/VV78fD+/fw+OlTAI1dcVsVvKNA8cjKaC6O+406ixm3OS3e1yOrpVUPpBbhTUMDeni5ISzvvaM3smfZ/C6yhOoRLb8+rCf8+IOwH7Efwuka0WwShkOIk6eeHMVItbdW+sAXHt6hMgmy22R8C7O4nMgA0gKJOXqR1eDDmejQPe9dzKS10JVMZ5h58fIBhbxW4e8aCjfWEMkbUkFP3v/LwqEr8DFEGDca2/LQnlH/Rr26QvPlTIXX+yaqLLxpz4vRGgqdsh4K17MfAH3pxPh8QDhEkQbvmkY5ThoNsSyxzubSC0lj443raU9BHWCNc7G1jgHVSHIgWpt0C4rAlgPhK1yvNECBI1pNcyH2VrqGAzthiM0SdGIsVhk1y0JnyDXZQHo9dRJLiEQi2jkmpiEU8S0BTNV8kGHMAOLi5a+Lmze7UqhavNmx2eo55a2ycM5aQRX5PfpbB1AzRdbXaxUtOUThvxw8VQZGiNnzPnKkw2uh0q6HhmLgFCWvRT+SImzsMLpTWOgRM88DdrCaokeV3bYIVBV2ovFiGMxBz4O9lVDp46unPsU2Ae5sRKYsqRZG0W3JbMh7piCXguhQ8qPCZVpjvTW2tE9AXKm1LMNxBJoG5HMR7I4qDY8wFlOgNxgOHcCacxhmm3mwZj+gW0CTrEetSYFVflKFFXMtxWc4IuQxZXhnHow6XNZeLXMy8+KSWUwc2zlGBl2OfUEIeLfecTpRw0OxMcHftrWcIz1TZroM3t1BlN09u82qvxP3Z2U5uM0w6IDYTXjUEmmRdWEGhhDFRDgUToRSmY2A4vNv/z7e+qo38eZbj/Dk+VN4iDGTefQQmSZA0CzWWgh0BRVMMXnN06HOXeiBrcI2tB7p+ikiRgCIPYqYUdsx9gkYi+ALmC+neB5GCSAWRmOOCbSGLSq3Dp1qE0juwQUsCMhKO4EA7ISNW5NjOEL8uxaXrPC59gxtJ7WAHBZW31UfLN6r05EQCAigdDp17CMyIfdlbWN5Tsg2H9lF/T5t45I9lHVlUPvBb7GIOicyTBcFBG2X3VA4OgC1GPNemp5pMdcJFGaEJ7k2EM6QwrgJTITBtdZTPxVAHT10e0wG0PfBEQXcwKjB4mS2BvhO3dO29az/ovPO3cm2OIEpv5/OXzeDe4+1MtC3rcKq7+J6pQEKPYUNvTnUaru8g/LSRFiQRq+qqoWikS3JLTwWxHt1XszwRNTGXWKo3hpMvSMy9lcgY13sc+4veLElfq1wStL47lB6qGL9uiyEXkoJ1bVS7SpAlSEBoeQcnzUjQ/c4b23g8FJw3Nhr2EdzsY4nC9gZcFmo6sXwjXmJVgAxPc0QHGsyCD2MUn63OSSSzM+KlEsLAJqhtUaPfRVpEXgEDdtUi2XkvREchOGYxSRM9ZyZgEdRqNuFtlrXoTihMkpRnjMNhGZPwLTJi3LDPvYDYwQ49jggxP7kGp5kHRjukkfNw2/3S/2uVaG09cp9sdwLQADTmxog8vBV6LT2g6cx1pqh+LanZgro7LAtB8AM+yT1K8BQOExzVmuENSLUcbUcjpWF1H6vgyyKY1mBRakbmPJtkZYPIHoyzQjd6D5DuZUswm3Ar+8nYxkOhE88f/4Mb7/9BTx64w383u//fjRm1HMxNOgj0k7d0bcNh0nRwZag1XJ+SqiNzMhqLcY1prEcJ8DQYFEpGy4w6hjjws8SPXHbB7ECdQrrVEg7WI6JAIWaGQDDMHCpjBNsmXnEsIbDgknjvHSoaJhbNfSszcFnEMIRWzjV22hjaNTnDEegwFbufefknU4bzudF1JvDvawZSB8ij181Q9Zr5n1qPAWEjAMU+gBpL26HUsNeNQNm2IQ84RvQLfas3ha2Do7NqPm4RGhZ2aPeqvK1JAM+FqbUlyc7jC+Vf2Y9QpczAbB54+8csBwVAuHZKF8Y8CitL4e+bGYcNkLKB3aG5yRtWO/HOkpf7nqlAUpvDVenOsC0gBSTFzKxiBsimARAB+ykp+1g063b6xKkJ6ezBH5DsDAh1tOlgx1grC3M2QKCavFlh934ORmSojAFilIPkwdJgvjlZ6oJgXxNecUK7dCo2fJ4c7kvfcfLwjvrwbCWoSdGE7jBrfeV+Ey1G3THOfZ6o/4VB7vPSBHsPdoJaEzkGXi0I6AR23qHRzivOKrw060MbNLhZnAdcL0H4xHVZWOzUzhWYC7unOyLUwNwdbXlHK7Pve9k1ZJBQQFh2Nr/hodlVwhgTGplBBynwzFYEdLZo4QZZirutB6jnPexqyAZv+dYtn3mXGpftBCyhotfz5v58b4+WqW3olg2VaA9Znnx3put64x7Yg+AH10owEOB759zh0rpZ+2fqClhLcJEKGN/pNbr2dJrNbGlJdgbY0RpAv5OGWVyEWAGraRVA1bVcJlJBBSAVfjs93//83j06A28+eabuL6+JnswLSu8Eq/Jy/QI2fSsv6PDhLV5FqMPAQrNeIsMHsMYFzAkWaufayNSicLTVlgIIJMDVz4xUlyeDfICqOZajDEaUNO3Whbq+D6NwnKWSx9h7AIUzEn9RoLlKvLGvUJjpyQES8eNh3extNGnR+sYR/CPdEj58sv5HLqyJr8HZL7ESiHDvwnO5Fd42dy1CCZAYOCzhU4Nue6zxUbacizrLrRzeu4ZejkTMwp48+W7a38PF7hjFk1l7lGSIJ0apYER7ndkWEwm3sPxa6Hvc2jf11JLh9MK7M3B96hKNfvKMaOMawflOI1iRrtVFirDcGpvgEVT9pWvVxqgJCjWItNCyx+XmK8YlFgAi+dIgZI2Tr2fk8qfb22DxaG/HnwIv6eafYWn7lrgKzOi1FWFSVZDJENazyevqNLeKJzEkl6mxz8wDZDA7LabVJtjToEIjcMq8CrAt4KX9X7Xg0GXPMy40zpAjFksLBtfi5gH34zx4oZitky0LcjmdUgKUZsn2wcgxJFD863DhmWYK75d9+buuHN1laXmqalQVUo1JhthLAMsgDT2GANXd07RY0YgjRZgDEcVodOJiTgn5OUxDCUg69Phg0ULNP8ZBjSQh2WqU6Tx0TOVJ2+GrM+jRWONImLpY3TAZmx8RqsHCe9EOZs8O8+1r0yjgUh/ddZ2WVmYF5B9bDkxwQI3DJFswWjw3lIQLhZmOMaFxecUOt0S4PNzMjtOOjPQwSjWcNn30kSsoDxud0ZmgVlj9gZ4CMg4S3iYKcs65INhmJHJ0Ax49uwZnjx5gkePWBPl+maXooiZa4tz4YiS9v2KWWnTF1vmCRQI1qoycJw8cLBZHkGpo6skQez3rtog04Hu2LYT+hWfiVV6vaYuvoqVYCOENQH3yh5T5dcKYcR+bUhNh4S7KqngXmnOrXdY2A45OtwjMSdAsC9hu+aMFJqJ6R0JlLKOB20uWbtLLACHOjbwAFbIfON+Vto1VGNKtqOxxP70BeTWwByA9xqDMn1CrAcxT3mbxz1BeywIefjN4kgUSFI1XjkRMiV5PoVdlNM13emsGUNdeZvGWmFTTiAU0gTUSHGMJj+RzlWEilRkbc4RYxvnU5yzwfcBPnLtydYylFVr1ycBJ4Ac/3dzvdIAJafauGR5EERa7myH19QCO3ZC5cIoHYf+5uZybEZNg8k+LIvpcA/gwaJCTUk5p6ZD9yGPc0XqsenisGTBp0FPx41NnhYwkGnEfjuWp7BPHUZ1bjE0kmnK+Uf3tcRNUcaeh7IWmzKJJLKs8InqzGzbKQFTluhX+lpk2sCXA4MMJ07bFQ/WYCCm7/CdG6m1DW2jgr57owcTW01UtMNYrZGiJOECoDswo69G/HzOiefPn5d+p1XPkn1cYIZMXW7d4JeN4QkAd+7ewdXpCq0B+2B6p0+WGe/8QgKttTdLiNN0jTkwL+GhzxZAoDzBPOHDqFjrOPWtxHnGuedUNfiYTHsOMCivDRBArvXKPjM0rTLIzQE3pUAvoFeg2ow9CR1Lozmtf61FfT6/i0XWIjwZIGDrBngcrqMFU0iDuW0nXF2dWIRvDLjuM9Yhs6iq71Q2I4r9Y83QrQdmWcB7CDV1X6yFFHtvqty6aHke/mNsyz5bw24FMgGjBx4HxZwTn//85/E1X/M1eOONR/jdT/8eU1MBqJHnuteY+jp4by0KKaIlmD3qGeSVT4x5CS/0BLWSQjBrHqL/3ju1Wc2B2XLfpnopv2NmeqkHqOutRV+aasIIhNgVZTwMsqccizFG2gA5M9NZ26c3wzTL8KquHoJzhXQ1lwItBLfUzzBcuh7tXB/NTpge5Rh6MI3BUGn/LN/I3jgWYyEHFNmGksExgQTTGgWONl+/13BOzOh7ptAaF6j0LWHrBDJi7RloE+vytL+15vTz+tIRMgOt32aR1h+v5ZSQzWkBmtCADskgCEAY5jHAVdrBYG2DLSUTpNdKB4t3k1o+rq2WX8uCbzPD4+YKfU3s+1zW9ru7XmmAwpSzBoQRJi0cIZZ2+4DmLKVQbmpKOZBE9BxMxWqTAl/WZrIm8j6zZdviwS30s9rSFyDh90tHwc/J4xSpY5iG1p39Y+q4xQp2jhvWb/2N5dlZQGr68vPwFKi9GAdwwvtTOXTRffVdOiQqRZWCVjXQ0+/MWAGTHjPCtZjxGTJoG+Cx6fboL2HU64xBjdHWDJt1ZMdNm7Ux52QbeGdpJ9LT/AwyIzsAFkfKTJPK5QSAvG9VVGybjCzdIQPj2dKMqOrqHKq3MzB2HrRqk05xbQhwQ98k/ci+X3KWGtgdO9NxvQwHM2VUTdUXEeGMJoXy9OOAndKI6DBWrRKK29Z9A6O2xgPL996z2qbWcvatAdgTxdkHXPUsWoozdWNawzMO5RIDCniLbdw2w/ksTVbLedgH2ZXe2UvEWgm9lXXVouS2vPoWtRmkyRH4Ss872Smu4S00S2MRP1ZqMhLcKfijNG2Ni5ZOAQdeT58+xZMnT/DGG2/iC194Gzc31xBQ514LEBhhrWEDK8vbGrvGai3eDi9oHHn+KKyivk4Aq3oi7YnCXFle3AZ6M1yGiqBxf/pOAWYkbaXAtunYbvXcdNboDcuRU/jR4dRTROXScTH0O1dci2apQeL4eYZFtLDze5RNpTCa3KlgLVZbOcbluKcNSCm5HE2XzYrOyVwZMZ5t+WxUIUlXwkWcFWn3g1FUb6e2jEva+T3tp+bePYTmKJbh1tRCEW1xSbRp+VuIcVrDnACwixFxhPMHJuyEqJbkhzFleqn0LOBzdWfD5RI1UvJ8EdwJ4b2eM8ZShMCyMPP3ho1VicJR5QCM+OyXM/tf6nqlAYonYgWR+Ci6MH8HHLJ3+MbVA5RSWcWG4iXhAeSCSQi7GiqDB7LXglnj6LxWgCFjpNVUB/9KIVpr2GJRVJgF+T6FAlbjqM9XrJ3xV20uGqQ6ogxKW6keFryPlZlcGZ7VkK56H8+N3DK0Ia+dBXqoK5FGRwBFdCJmeMvx+7B9BwZAAlR57z2KJOrzhSExtAFmxqsBZccM7Bd6T721w0af7iyo1khHjzEw95qv7MXkjjnPmNMwJwHEmCOMycx1xHkFVLFKWQ29N1xcfT5aGmn36DJ7y/Dw+dtBZ6R5yZowjVqKrDrrqspaGRLqq6OwBSlcz8JxfVOK8fE76MF6CIory8w6495M7y8tU7GDvUDsYjgR3jDrWXS4U0jNIk/x3PFsaFqTE3O2AMFstNY6m3eO2C9qmaD/rr2ko0hZX0qt7gkYyzGtfZoZEAjWcsl+EntCsSjnmAcJC7e98847+PCHP4TXX38dn/vc9QIgkeNkcSBWjyk5C2QKLBwprvsy/A6HRTdtxN6zmKMdN9haB/qGOcgiCgAoHDgnBbptlI1gWGZGjx2UbZQzs9ggHaAeRRt7o1ZM5e4ZztowwbDD2JmS3LVeYkG4I7Upt71prV1+GmIuPPeSgKfGxNL2EGxOn2VyEayUAabeMF32qUWBNjK0+u5N2U5zsiIqDCPCeLAWwV7PMamrwCyicKYE+hU2j3teWAygwkR5LsxZKzOA8bGRZz7+wS3N8gAQEHnRqZ1agRYgOQX1PW3MQWoQgE/lHRgCqvC0rhW427LmyrEKkP8SJurLXa82QAkvpgBHTIQWbniKEQAICxWGMyasdR3y9RlzCmBYHhAVMimWQcBkPexW+luG8shOaLFoEayUIrBqSWQQy6Nb34f8Dr2e/1YoZ2QlUB028Gj2FbtFnUnruxcgLIrucFi+6M3pQC7wVAhdcV3tPQryWbdBRZeyL1KXt6dQ1oiQkQ471jRhBcOZHvl6qJRhLeChnh5sRLdhOvvyYBk3G+yBO5vjsl9YVrxdRVloS5bEbbKokpMFSZ2Dke5fhdMAmO4fHpiqva6ZXnUgl6pdbIA2Mb2yMh5VN6JaPOQY2Mp01XpV+KcYxaJne9/Q2ilAj+5DXo7r/yEvt4VRHWEIV8O07ov6mdbo0SiNnXUYlFrN++gYAxjDcLmwwRkM6FaZSK2NrGrJapx+SLUXYExjKmMMJOMyJwFoZrVAnmn1hPIY6zyoxSZpfSV9z3tpaJg28fjxYzx//gYePXqEt99+G+fzGbevtEfLGcd086qabChjb+D5vEXbh9ak9QC2U8edu2rgFvYrxsLB7DJ2OTb4heC4r2uxGbovdSkWpkTZYs0ymna4Z3nC3RoTr51AwuIw6ltkLjaj0FmIKvQxB01HvH8NASRoQ6TE5j3UgctiiZaddOVI5SviefoWmhdoTW2oAn+CqmWfJdptvTFUpu+LxSSwebx35GsEZMtECOwKdNVAquO66rGEZxCbjSF+dan+kr17UMLWY/i1QIpr/AWY4yw57wOOyF7yfAh+dxaxKoe0jMLybK3VfmnLWCUTszjVf3AYlPqvw0FttZBWT4MDXIOnAeSkL+laiXrb4sEKsLzYXG/1el9cQMEMaGJRE6fPXOnj8rYsvdb6HEd658uzr+XSI/uO92iVsjsj1AQgymnPwzOUhyfgV9+gn9ej1f2ucdZqhFjGRs/XrUVzxijWpfRCm7Bty8aNcHkUnqieNQIs75vVe0VhRyvyRiFca6xS69PZLlzzZhv6iQfYKYCHvAPIeJjYh46tn+gFXALsNYvKtZ7ry5q8vdDf9J6f1YJ1qK60jOm30KdkOOFSh+sKbI9rC5BBW9O5FWJQrQ6tL4asLA/H0gUt4jnNBSzbsRvicJ5q90VGy+dkeqvJSBX7sLYYOOxIHV79Rc9PANqaA5joRu3S6bTFeq3xYQ8nS6M6p9pIAHuUcpc4niG/CAE1Zn3s48KwW+ypvnWYAydV80Q9y4yKr6xbEudSboC4n/hu6isssy8UDr1cLvj85z+PD33oQ3j06BE+//ufT3tBwXcA1EotqX0SYy5ATQARTGiMIW3RkjrujqvTFfYA1loTHqfoGBNjnpGZPLE2Vdmz6qyEz+5IkOGhz9iz3sxE9cbiutj3Hc07DLSLI8Tl5tImTYxxrnYUy1oYezC9TeE77Ws+8x5iXQKGCnc1AXGrrEzEFulbh83VqSsmSQfrHDPaD6hn0uIAeoUhZ1MGTdi4sBfaA9Y8nS0J2+t2LED3wk67/mc5rwKNujMNPafAvYTVU2tcvz06QrpW5lQMtljIY5FQy49wqFqvxb5jsR13pvlrVYr5TydQNlBAxgwTFuxVjLdNYA9bdTgXX37/L7teaYBiJsMO6KBuCqTmBn7xPceDecJ9r4FuBmBbDlilLde/X3aAH40wb+C2hxCvfslzyINDeLWixwqg3A7nHL3SpXCZl+eQzImxd00dnBZZEnU7uv+kroF83vXffN2E+uAUqq9nAPQ9lWYmz7+1GYYzKlxadB41bg6L7JLWNgwBkQAn8hChOgtt4zOMiXFRB9dVpS9HJKpgGtNfW6swD8BDVL1l9jEw9oF9P4cXypCStA0zQmIZmw32ZLOIeweIBJAtERSSkagYWbgo0hj9xbEGkAwOw0wy0PQEKXY9FosTo7RmGGmO+HwN7hynvhH8JXVsMkagWHkixIcoMGj1LGKBHGytrvsnIFm94JV9RBjxyoRRRY3qPzXgc0dTbaNWGQarhwog+jpZirDlHvfW8NrDhxh+g7HvMJ8UizaVigvmySzZ0jtXJ9xcLrhcLgkS6uK8CijS7tTBzqU5EsA/fvwO3nrr/Xj06A08eec5nt88ybnOfTZV44Mnj2OyB5EJlJduLUOsomt0d14p31lhWYkAWMqrD3q2wz31OP10Aqxhv5zDZtTeHSE0FUNCT9up2Z8zu25nGBcFuqaNKLYI+Ijxno6JcRj/7G0WrIuy9yTsnLFeZoRtLdjX1EXFPWtRlL6M6zjDuPDsrWOhJyNTO6Ia6uoYhFYoBK753Jp3fggrIrucvnWt3D4nfFn/BArymxFsyQiRtcU+cDBElf1y3CKNWOLhYwh4vbheyglZixveZtozxOT67pIqHN67MEBZXC7smph4MSjNDRPj8F0WbUloK4i0vtT9v+x6pQHKeq0HYqXq4QU6aU2fq2ZzGobbr60JWcM3hQ0MRTfOW68vZH6cEH/J644hIqXp6SpgUO8TKCutS22UVbKou1s3zeVywb4PtKVU+Ppd+r5V+1DhFG5qMxxy4PWIxf4si33GQWAzvIIw7FEoq3XD6XSqMQYyY6XCGPRaBajo6SPTNKcTIKipVo9sDdLNEuyGMM/BlvRgx2N1oR774AGVc8HvOW3M5JpzZ12ZULxL3GpGY9XFdoQ4DaChmdn9N6oyxgaX96jiWDW3HB8yHxJz8+ChV2a4uTnnAbGu22RmhsI4NX+3mQxbxrIAtYWnO6MgE164BHpX0kSebttO0WSsKN3W2Kr9yNodQ6piK/dLAfIW6ZMTBkxgOx3vR6+x8Nryo+fEw/t34dPAZr2TFaeNYU0BXDfgcrNj33c8uHMF+MTl5gZYNTRW+1TzI1wxBvECwffI73/+/AZf/OLbeOutr8bDh68lQKleUrFnpsCOxRpmgTqJheHURnl6v8ukucKpjvP5nLav94Z9CDxWo1FmL7HYYAtg2Kxh66pxQhZZzSApUKfWpdmJoNVmMFNH8CYm2HNynFUWU1cVh6AO71ZZRQr1EChYskW+AGzZxGYt+ih5joWhQk0+Z6QzI9k+M0RmjoNFETWp7Zad5b0rpd2l1kjsG7Y+RVUWrNFt5xQLy8nPrWeLe0tAwMam3VJwAK5WOswJprCAA7x4pWuxsCzF0t92kl8GDuTw1R5KW8wJSaYHjgSBWovptBiZJ4STaC0YlYNW7eXO2Je6XmmAQofCl9i/12CBBsz4YyLp2ISLiir+XnUkNZD8Dr/1t7xWOxitNexz7H1yVE2L6gWOFWPlHQNiTWITLItA79fBk2HneHZ5zqUVsRTA8rCVkWQpaI3fiqot153eo6yk0qtwS6hS6IixFvuyjivyv9NTDq9bHnLfNhZlaxTbaaNZM9isA91zPJDGeMzL6rxgyDBE6qoMc7I6IIs0nFlFPb6XtQNYml2apG6nBCqtdYyo/dGssfEf1AclfJ9GkKrW7r48f4tqwNI8+OT3CCxprxeIoLfh0Heu41k1G1RluA4JhSnL8HK97bm2tu1EMBaeG9zRTCnka3ZT7ZVjOImfT4BbYIrnvrypKkNPZqFq78hwz/TGEOtMdS3Occ9MNTcAW2N4TrUz+L6Za9n38hdYuXSwtP6c2Pcz7t09sbuwsaO2NVYmPV/Y0PHmfMYpmDvLmjfaR44qSKfntfyz1hSSLsjd8cUvfhGPHr2J119/gLffOUWTyRVglUZIINXj/IujG/seKe8AYFHMzLmy9jGigrayhKL+TutMG/cJePQXi+J7m0UfmVyZjn5iJewZXcI9KrYqE0thWO2j3ihOlsjWAbixoJi5sVquZWAAExObbbH226H5n5mhbRUyl9Mgey32UdeMDC+4I/sCaQEdbDHvScUZOxjyWqG8EicbmK1JkXvHCAepWzkSnC7p+Lg3Db7sv6MDuK4T7RvA89lXjVA+MAyEUkzRtQAFchIaNPfB71msN0T4WNs2Pq/2bNkh7fHscB/z1K2xAF18gGy0QC7tUdndaXGP+gzXeonXENVn/SG5zj5e1DF+peuVBih79HSY+yKG8yiIY3q4CrXUYtK/+2JweDHG/WIzozoIVkZjRYPlIR5Bx/r+SGSIQ3Y1VuvrRMsfF3plvyh99eX3uLIY5XBpbPgMMrzlDXJRrxlHOpwLYB3FwsdxmZMwBFblyPOZBzUiOtA96O3TdoK1Rq92REw/7pPx/ToUWmtJ2zZrkTkQhkrdk4NhcKtCYmMO7PsIQGLoW6nLm3Vu9OZZOrtHNhLTnz0qCVdH4bZ4sy3KUFuCzZgbI0ARsJK411qF7NwrhTCcjhcu1sLZch7cEQcDw1sCK7UO+WfNgComy/P3RdFWeEeg1z2q9U5lalj6izJWqwMtY8YUb2oSgNC1LKD8COC1V3k/uR/QWY13TlbENZXIZhjHG8Wo5R3W2mAlYg9IxVYK3VmYrGGibxQL9+YY+xlz37F1w707nG+0ma3kZ+wLiL3iiZD3vhr+lnUjHAh629BwPl/wzjtv480338RrD1/DF97+AlaHQWPtHp4/slhn2hGJdbPC8dB3Etimc+aeh9p+uWBCBRhLOKosuba1lUQIWxL7dezwNlkv41btHnnj6qMSwRM6HgGqlJhAt8zYDBMN6EYnOhQ/BrxEy8cvUxn8rPZ76+C3BZzg1ppaMDzDL22Dzx4OgOiFWu+OqNuhLr7xeTPCLOMSY9Ybf5ZDQbC1dghfm2TWfqyxe9mVWS5QdhAfYYPAiyVQM2touRPD4VMblNzbuo5an7yLNDJVF0jMRgND6N1ir62aEQNWEbE+Whl7kKOF5fySUFb3FSwpX/vuQcqrDVAuFygOyU6fEbLRohaSSy8HeeDqqhLzq5EOeu+APlfDZMG0HFmOtcMqBWu1UCtGfxu41IFl2VtCV9QXCEO+0vRzvnzR1+f6rddoo/NzGdpadnSIb6vvDgEUaUwdihEqmfKMJYCq/igyQAcPPoSQJtRvyHjzvFyCUaFgkdkIlmmPY4yKhcdG2Pc9WaZ9XgI8Re5xHNoqV+9T4SR6h0rn3bYtKGxLo3vaTmG8JjxjqcrqihRlpTRCRpki1SRpRV8bsgiUmdXpQ+t90Igw/LSuOc+qu+NSa2PVI9X8rgZebFEBk8o+8Zw7LYSjmaiQi0cBKNe9RBrmPvY09HwuZQ6rW+tSsTI8UQn9GI5BaHHqO3VYqxYN+1V5iKZVf2YJDzV1VG3ovUJDWt8NDMU9v77ATRVpd/R9sgeIA/vkQUmNRoP5hjk868KwOF6AMo+6Kk1sCQ7jyWfimG/9lLV63JnR8+jR63j0xvvw+PEzAk7LW+X6OGRdIYptch7UZ2ksqeO0AzljuYbmnFHPKICv9eh7I5pVBwYHSaBlxhzUMqLeqxny8ypcV2GAUwqvRWD4ciiRjQptcrzGl79nzikCpKVQ1hqgcvh5S43VluP9uadwBPwFxmMvTFAfY2s2Ci9qsuRoNEwbsFmgZ1f5AtnbRi2LaZ4ww36qEvaLoOBlIGHd43yExTmOv5sv4MwQ4b8BN2MJIvdaD02WpxzPckY0fnJMVq1gAY1yYPg2WwTGfI5w4oNRacYaRQXILNuSrEyK6/HcoWrYjJK9TJv58uuVBigV+2K5YnOFb0rNPCYX3pwezcLasjDKuB/X0hHVr2yAPCX+Tor2Ahc0siUykgHW/RYIOLIiuTmXe9AhPJdQx3qJIRGwWu/1xbjokQEo+roMkGhOpataCqdaZLAI4NS4sC+RUgFHUn+lR2dcXAaijEULA8jDoLUQyLXqwTMiFXLOyTS7BaWzaiQNSo/eSD49tRcyUFmAbIxgQpg6uJ22aC6ImMcWoZwBn+XFqiKmHn7MEAGaASbhry3ZeRonFZUjeN62zhDURR2AI+77wtpiKO5Y96DEnGyoJ4MMrEamprzCMbfZPIuc0fSaofoJFbfWPhkBSOjFTViK3BBaAFWMnHC/0Af0uicxNQI+er4yjpbPQAejxdh0tE7Gq3XAen5grJcN8J77ZQ1j9tawtYab5ze4YOfBmYb5fDi03FoKSAFHP92Bm6qidrTtBHNPSnxOOiCteRQAxGGM42zFnAP7rvL3T/HG62/hwYP7ePz4MZ99VFh6hLYi7YGzqBrDgJXiue5mrf+VCSOHFcXuZFemqrlaORYT7OmCWfc+5VSEw9XK862CccI5EXJoLQ/L6cvrw6ZMrxYW630TuAa7FuuAy4Nrb+sdYzkwxaa0qLcy1Z6iFVu7Zk6qng4dq2LqqjXCjPlky5AKXao3FT+nWUcWhnePhALNg8dq9vy31iHXRO1HgvgaA7N6/Xo2xLcCcJ5lcwEOvO0sHJpZmnA6EStzBIKodsseldxATnVV/NXfuofVvsiJqD3rhxY+eR+6T/eSncQJIm1SHR1/QBgUApCZh+d0h49LIPIKMzQ/imi1cGrvlHhPi0vX+t9CoEot5bWUg26tNhy0GGduGgDLZi9jLU+3vsOQGR/Ls67XCk7WZ1qBSjapapb3VQco73n9PFYbFUNElkhexNjDIAe40Oem5gEO64xzhx8LeNDRreV8RNwGWJD2tjU06wkwRWvOFNlZeDXUibCjZ8/utNSQ0GSodxJABsbMMOaOsTSj2zaWb++9o28UzgkIMawiYxrzbZaHONcZ65qksQkjIYYIC8WqAnZzevQ7WedQXmAdEFynLDq4lFlJTYQZDnU/1vlDpIZKo1LGW0YpwjWRMTEWNsUjBOVQGJJsSDexUDNro+jZxiA7ZgFqSBAoFCSAUszM2nByvQR09J4xBljfglWGBSCmO2xESuOUB1f7J9nN1rDPAUMczuiAWjbQ90UsDritKffhCXayR8VQ6JCp+xd7wjmj5kaZWhJRu+94++238frrr+HRGw/w/PpJCFoNLoBljgsmuiGKpu3JBIstyIqmeWgcHafSiYX+dNQYt/SePT19/Tv1K74IN32P+xJIDgesRS2VWwbHzLA1y/GxpvTlGWspxJLCyPF3Mh95sPG5ptMOZfG3YFF7NPc8jx2X/ZLN6qy1YM10wEYMXdNldCTdQYbEwhmaeyrx3T2XmbRyHLs6hEVsjaU0/ZgN8MgwXMD26jCuZ4Fs6TJ8aYJNKCTGrPt6NoBVYBPgxbwu964Zb/ldxz12uy2KzgLVSNL4rczuer+917k1smYK6mfT2Y6C3ApaMO+2hHN82T/v9nqlAYqUwwMD88wD0RFgZJQBb9sGbso4TBcwwsuXxdCxGn5dGcLwCWRNVg10NGlyxRX1u/D4FmZERiYPUStDI9pemUblZRYdpx2+ppDVPR7H5vi7OPhmhRIU7SrgIuBRqXzug8bC6dkqaenw3RkWWoBY37CFNmBoToKeNmv0utqO07ahb6TY6RAWZassF5XSRnhqLAsf6ZNpiZbF7/UcI9KGEazE6eoOTtuSRu6GGULOfb/kQXUEh+XJpcOyeC5iVLZtywJuKT524HIeocyP+Y8US+Sh4UuIyGIdebJOczpBXFD2FV5gB+WYBJipFsM6HjPXdGvRvgGR+aDvn3XYyCOqA4QDMCkyyqyLXNMxLt1OkMDvAOg8AMViIAX+3BGaFQlUiyka0TNl6z11W4g6JZWCL/AzQbKBLEca3EjZJ7iJrC43Zk5sLQ5O6g16u0Lr6sHDexVYretFA7s6BCso1Z56/vwajx+/g9deew3379/H5XLJMTjsV9DA2yzwoIPcHDDbDu+T0Jq6EIGDtTqxI+t3JAO46AWswMEcg7WDUD21YGygWo/qmSZMhqJYDnn6Ywxc9Q70jv2y18EZwEAxjCxG1xbv38IL93gONW+M/QkH+tawYaMYN23UjLUb9aoQ4wOyUD6CbYH0hXy+MZ1hI/OoxDwiZCJbnTeWoFA1pZKwGCsYWO2FZ7kGAQz9fbTZi9A1QzXC5HTi4Jbj3uM+Ejg3g03HLqDijrnY9dvrshxzCdUrXL06zuvzlCMsu2jobkCvEK5A7MoMH+yn5nsBVe/2eqUBig4wdiOOkIQBzC9n3v2aDy/3UItYr2cxnaLEgUKv68WJOBaeqsZ9R9paqbR8X7EoL76uUPYY+wJw9Pn1+0LmR++afy9Idfn8FmIz947Ssa/PZssfjYNKzR9Tnr1NdmqH6EsJ6eo5dS/uE/uFB047bVVEynsYpomtqf4IUlzpwVjkrU0wlNOqpLlo6ZzX+KP3eRjWMZ3MSecmP502nLYN6nnjc5IOt2OKOAsclVEBaAxUiG2tA6I0ZXmcl10pJbzmHFFSm4eeKHeukHJ9HGuorRgQsWAs4X6MuRczESmhkNZm0Wy8ZI71DPndXk3zEozEYSWDMmM/RU5v3FPLOdc6sahpAQfcGhud9loTtcfKUPXes8Kx+0TrwDwDNgamsQmgBzhlaIlj03uMb+6FW0XhGpkQ1q2hwyxGodZrZJOpwjJQolszjHFhWA1iHgTwF6M9ywMWIzj2WL5zxxe/+A7efPP9ePT6m3j69DkzeoKhqWNJ867wIXL8Zwi4tU7UkE3FypSxwzPG0Pspxhf57KpNYg3UUjhg09HdsCOqppol6WBGBlKaomqyZ6yKHD+HVYjQHbi5uUHrPcfGYh5yz4YdFig3WB1eMQb7ZWexwLZhBp7afUdrV9iuNvRoQslWF9L6tQTZvPb6rmBeHY4xor7QNExXvyF1sq/3W6wb9QJSOHYGWladEgOA4dn93AyYULaS51jWnq3laXFWaT1qjbVW7TtI2HiuDdJFGkMcrgMju4znbWerQEQBpuOZFs8LBB8ih4L3N93jmV2dSxLEcaMBbFWB5Xu9mlG/h+uVBij0/ti7ohZWeVYNdeAg/jvBZRPAIZWnBVd1JY7ZKGt88YiW62AGpAPgAlNIQYZwBR+qT8DPmCn8LDAy8x5K2OtYe/ckpX0LxPA+F7CFhVExHS6loi+gZOHVjjzg6KGAxbB0v3EQZuPFSE/UAUPdj2FrJ2ynjSK/ldCxAAe7RKvGtMkAIEqF9GkZd962jbT7dPhifJj2B6i3DKcuvE/fAWM3YG0gNlZLFzKGZKYRrT+KUbOXkEKE1ditRYPEFqCqsUz+PtB6z+qVElzyu4u2bnFAKTTVrOf4ae1ofqq0+bGS7DpPZFzWnVGAWmvWvQ6D8HlogNsxHVsAVgcWjXtL9pyHitaX0lwtPUGtv94adigrQ2vsaDDZ56jnoewLgCNgDfADB5q0TXqmBtVZWS+BO49nUIjRO7NOZmifPF7clKlk/J2hnrsMqtY6/7tCoL6MeB0S1kY8D/Ds2TWePHmMBw/v48GD+3j77bc5x8gjPL9D+EnhHSDCS1YbfIAZRx5ZPL1v2MeFDSStAxhofeNelrAZgBIudKgIJDCFdWaq6ZgM6dZhH3VIIq1436uL+dpIkGHlkesBAg46gJux47I+VeGfGF6Dvp9ZNXMOVpDuBmXFpXZiWUcUsE+0uSEHLeenRNm0KRM3QxoUMlc0xctMhH0EqGvM8yT0TTOeBaPmyGetoW5Mb96j7YjOh9L9FQDiPPAeNwGZBmComSIqXGbFaKUeJX2OYtXrLHg5U1FrWmMYH4Ll/Ij7cmXeYNR6d+qOaEKriuyYI+rrBEjKMyPO03dPnOT1SgMUTKOXxOVLw2QN3o1uW1w1UR6eiQ5+pgRSUFnppNpgOjALLKgnSukitOAKmBS1PaOwz9EoC+jIC5jZ60WCe722mWHYzEZ2en+lZ+pPebKJfpvxHpb4ug4BiVZnfWEcXPT4dF8uyiYpay63FwWYAIveNTgoIr1//y5623C57OyjocWd3Yxn1HKoyqO8H8Q9Az6wlGsOb9lLI6JLxjA98ojti6oGgKvTFaw1jJ36Blcx9wAuRVtLkb7OFpafUci3baeotxJL0SezyozzJsOdEpD0wgrkZjGqgxctD7bEdSx7LkNWDea0FhGH7m1qVWLs9XMBzWE8L1VsCyMQTfnsuBYtQLe0RDRK/NC6D42R1iKANvMgPN5fMSlAsGPOUvEz4tlkEOhE9Gas6AskMAaqgiqwUtmJuLmPY141hWYsspZTahXauk3XW4Qm+XGrY7LYAJNWpFpOrOLNOQc+//nP4wMf+ABee+0hHj9+h45Q68lmQExIeNU+HedRJcrnqFokmA43zseYBjE3jkFQvrOIYd+i+OGcQKdOS/2h5pjL/SP3jwVw3seOsQ+cTlusxUng3Vpqw7R2DxVGQUal5UqbLHe+dbKyVt+zXlk51rR8HO47cIl2I9YTALuHnssZDuqIGkhQlo3HBzXAxuLggayYwqvOQ5T6pxmH/oYWDIgpTdoGJOIl8LYj0otnJXCaCRyYJVbZdjOFry+/EvDJ9xJosPqXu2U4dAUjbXEMVhD0MpAijVrNWUN1ruezZOPBEEkXaJ8YRq2O6p9Ya9g6682kAwdQs6S9J2fsDxSD4go1EED0rUeqHxfw7YvZKKuoTAfjnjHybDS1hDb43g7VT1F/lYCuURp9BHswYb6korYVJQdAsoY+PctQK3VxTm4seqiL+GmOWlCg55FVKVOAWvFjNh0z6jqsNC8MdQC9nyKVdMM0FgeiCDIOpSyoRYpcNRUkrqwxMWBYeeAAOpixcufOFfbLyNCOIzKqYl8r22bG98FQvUFSKEwR9NZZKK1LxQl54jPvSwDndGJfn30Rkm69Yzu1iDODWUeOAA8euomW1PkQNcxfV/gDFNixwiu7xhIwcLz2xev06cGU0LbNUfOl/hzuClfYQYC4apJkbNQDZmX0EsgmGyfqvwCCerqI6dA8ITxC8j8KlyE+R38KXKen5SDta439TDLkRy0Hz7u69zWbrfdWdTQC1NBYeoh2By7nCz0xpYVaMTw9YvFiJtd9rb9ZMr0luKvxRH6vu8ERIAxe47lQ+kyJLIqesfajI0Db09BatZoQQ7eGB90dz58/x7Nnz3D37j3cvXsPT58+SeDGUdfBKpE1D+3pMxvhrXS8xg2h8YrZCptBxpJrdSMoTzDI9+5jx7YxPKm+QA4e+MhQHAHake3NUeX/3mJFAO2X1UGs+jh5sMIjdOfLfmnHIouRSSMQZfHsSmPP7wubNOYe/bocaiexFkcEgL5twL7T8Yn9icX5sHq0cFqPLDN7ZdSz4/joxS7A0lGaODoWqgGjdaRLtVAApA4lyz5o1K3+FgvD9bDegoAmln1djomeR9lAyF5eq6Ndc+3uKTBevwPx2dlvLOwYf2/Upy21Yjh3a8bQV77aV35JXR//+MfxLd/yLXj99dfx+uuv46Mf/Sh++Zd/+XDTf/fv/l18+MMfxr179/Bt3/Zt+K3f+q3DZ9zc3ODHfuzH8P73vx8PHjzA93//9+N3fud33sttLN/HRzBjvYS+VQEfHdatRzv5zbCdKiyBoC0v+wU3+w32QcMolDjhYSAEhNgFd48uovtwnC8TN9cXXF9fcH1zxvXNBZfzwD4IVCZNeVTujL8HmYOb8xk35zNLtQNkKZplQarh9ed8mbg+D5x3x2V3XC4Uxu1j4uZ8wc3NGef9gst+wXm/4Ob6Bjc356rMCIChDov4MIDWsN25wunOhrbRk1ahJW8G2zr6acN2dUK/OuHqzhVOV1cxnhtBDhps21itsqsNPMHB43ee4vnza26gYRg7maL9wvHRphn7DI8RgFf/mTF3sALqjJ4XUQxtOfDktYwxwgCyxso+duz7Jf7ecblccH19Hamhok5ZW+AyzhiTQtrz+Yx9XGAWKaPW0FtHz4yBYKUGcL654Pmzazx/foOb8zmYHlKaygZyZ7n6Fka+wGR0EF52vJi7GdkmfH8YDpsY4wYAIqxE0Tc4jQm4FzMGQBllZWD1p4x7g1Llbxti0elip7Rn3AUikV43ECDBALe5fLcORTvcn4SBc1gKsAXox6zP13jE9oDCecPZ2mBOMUulk3EP9ZcRnO9z4nLhGjifd+zhTIx9j/3K/jtzzOxkrSwUxOFVIa1jKYA8xBOMHGsFrXqbfd/x+PFjmAGPHj3C1q7iFGrpLa9hC82iNA/VdX21fwFU4vTmIVytHTIscdoSYK7gVx57i15U27YlCOits/0EBIJbsmD6HIE01iy6HSJdXWUeVvS6Ua9RiHg65iADOS/7ioJS8DvHTKfzwAqsgCWYJ61LhkRxBBE6G3pHbxtaY7mBvm3YTtvhvvN7TBorF6J5YR6AxRGUk+J85g5Loa7G7nY2Z4VodN7Is7FigwD4BCQkv83oKROxWPyFqcrXBmM36B3a8v6jM+JAOK7uUaLBl89+YVg9mbU1dXlPXaWnyHiu8/cVrvfEoHzN13wNfvqnfxp/5I/8EQDAP//n/xw/8AM/gP/6X/8rvumbvgn/8B/+Q/zjf/yP8XM/93P4+q//evy9v/f38F3f9V347//9v+O1114DAHzsYx/Dv/k3/waf+MQn8NZbb+HHf/zH8X3f93341Kc+dfDO383FNFGKwsyM/TZQhbjMQtDjM1LgA3SEIfMwHG5C/dzsQu2r0YEHZeU0sA6q36sqaSslfkMecn7LkwNqUcqDcQT96h0IICPPkXFaCdyMC633XHCtsV4EEfOMzVrhgekUh1ZKrlXnWEyM3dDBA4/AdkazvmCZVF9kZ3Ot1CZogzR5+QwnjQtBAK8WxmKy6mrvydbw3sIziuZx9+49AABcXxv8Jg47MU7bRs9jsBS3jJDDk52YAM7nCy6XYDJMtDukUUXfKJQT28XzU+GlMBYhiLXGWitj7uje0lNjGCLmPcIh8vIBGrOtVZ2OmP004mNURc7WQmS5hOnKaHFs5hzYx06thbHKJ9MDByTGln6C7+spuDZDphICwNxDSNLXgz3uUCEQyNOKOiK2eEA+ALRINy9jnX2OTGszXU4Ax141LhYG8wjeDgc62bYGw9gdWzN4i8JiYptm7EtTi4IoDz8V2pOhBSzYj7QxFtxF7EmlqnvkW6teTpDTOT6HVNsaLRQQq4J0+axOlvbp0yd4+vQBHj58iCf3n+Pxk3e4jmekaxtj+dnTCeVB9t4wMhOq9D8IW7V1kBFdwgiqS0R8MJMlOYAoHZiqZcQFjHbqGDvCLi1A18tD13uaSTemdVjjHjMOpU4rIysZZrPI2Cl2iKBYKexHJkrlDuqTS6AdxiSAnhhxcqIpTA8WcesdUgEhgFMLvJ5VVOM+pGdaD++jdugImhg+FYJHMJUD021h+9aQYI2LzhwDzzcPDRcj2wvAX1jBNZTzshDSyppw7gHk+fASZuTWe3swRXkuCqxCoblwFqOqsY1iZPDCSL34HV/uMn8vr37J9b73vQ//6B/9I/ylv/SX8OEPfxgf+9jH8Df/5t8EQLbkAx/4AP7BP/gH+NEf/VF88YtfxFd91Vfh53/+5/FDP/RDAID/+T//Jz7ykY/gl37pl/A93/M97+o733nnHTx69Aj/l//lD2PbNgBatLWYLQ4NBM1n7uE97QsVirArtUiZAlsVFAGlUW5BjSORZMVitcGWstFeG05XbuzIXjGlfXoJFMdlJPps4bEpw0CpofPgFtTfaUiDslVY53Ta0E89SrNvOF1dAR7gDHqWWLApArXY7/KhvLzJ5WpZ1GvQKMRBRSq3jH/eo0S3xn/rWbbTCafTFZmMyxn7hWkQW6R+9r6R8bqc0zull4AK6cXkj0UYqAwbepOWYyr2hfMy63lRnqcMsCn8YwYfxTY0hQvFYmDNaJhgLY8wVRH35VcuBiYM1Bq2WMvXt8ZDV4d5mC7ocFr7I7EKK41gHvANaUAsan60bYv02xZreS7aGGlnHNOVXt5uHQ6Gvp0AR3lI00MwDNhUmiXHYd0DM1jEGSJpM8PV1RX+0B/6Q/jAV38I/9v//X/D73/+93EZTMvujSzW6Sr6uSgjxAU6AAPFogR/XDcEULHfFiAl+zBEWbdljccBLJYOAEqwC2BKMDmRHm0chgzhKk1avWrE8M1wDDY8evQ6PviBD+CdLz7D537vc9SidD8wCj0ZMTJJdDC2HEvBv5bP2LBt3G9Zd0Q7zgCJ9C3tybbc+8KQLGyFgP/clR2k18cKaCW0FyunNX6soh02FKUHS6YWovzj0Jfg1mut6OLPW96r7sVRGWiHENjybALc+iOblSGSHDPa12Sb5BCG8zMmG/shHFq9NjMKc53LGURkrtihyWHts1pa6ynsDjYbiO8CPApNosL+7odnkjMC2GHccuzWf8eXyI+wdA4qwWRdE3ELeW8C0+t98OJ6dJ9RDZfOA4z7zWJe5hj4v/3W/wNf/OIX8frrr+PLXf+HNShjDPzrf/2v8fTpU3z0ox/Fb//2b+Mzn/kMvvu7vztfc+fOHfypP/Wn8MlPfhI/+qM/ik996lO4XC6H13z4wx/GN3/zN+OTn/zklwQoNzc3uLm5yX+/88478V+ioVCsRQI3eTUBKEZlymTGBiSYCqEpgj5Tbxfj5yqWSFTPbAmGKZSyrElsQNBzOvg9EKpqZTSFDJBrH+xngNDBBNAxek3btuF0OgEQHU5DSEo4NsmcUDfZXDix2cQ07DubwvU+cHn2LJmdNTWTTe5aFAmrOLp1GleYYex7FEOrZncKqQChRO90RUp/QC8aRhCoUBdAL/Xunbs4na5ifgCfBkNDbyeo0d6cjvN5Pyj/6eF2YB+hxm+ZsZUgJveqrQ5/MCPBmpjnekB68cwuOrZ3jzUWa0Bp7oZbFWF9wucILw25nlxsUtQ8EBAVqFiL9WnsqysxBaMC02uYC/lZ6q00UVlWPCAJ5JGVJ/n+Yl+UMW62sRfPYuzXULtYq+YjgPWiX7Ho4WEGKf2k/BdztBrAZAlCX5I0OhwqHEBBN+I+HWanmKM6AFs8D6vRblFjhwAu+xEp2yh2hzWrhnHS5aAOs/VZtaZazLtKpFfpgNBCmed3rmfEygxdXz/D8+tr3H9wH3ef3MWTp08SpGIarFWBPEDtKHToVG0cfS4PvQn3MuXr4eVpA2T3AI9Oxdap01BoIBYIzHowZw2enY6X+feJhkYdkgscNgzsWf8jAZ9p71mtNQi25Iij9bI3ue6gjB19fzEX7shnx9aTZc7nX57ppSEnCLjJbvacb85GrN92ZIma9crAU8GyBvgIF9U9xo6gJh1l11os1mtdZ2umJkHTjHUcrJyx5cK0YCvFhOg70v68qO8QAOe96YThGSEmRGPE1P3FLugcDXW1AbH3EQ79jKKGxQ65ziUAKpxlDayOq5+/y+s9A5Tf/M3fxEc/+lFcX1/j4cOH+MVf/EV84zd+Iz75yU8CAD7wgQ8cXv+BD3wA/+N//A8AwGc+8xlcXV3hzTfffOE1n/nMZ77kd/7UT/0UfuInfuKFn9ODdYoR2zH7AqDuw2C4XCa9v/SUw6OUqg8rJVgeKYBwQYyFfVwLwQ6bL6YtqEoEOi0RJME/ETkXX3im3YDGFFPVa9F66NsW+oVjVVl6xbGpnZ4qSaBlA4bBxmT48nK5QIKrFimdqn4IQ6XFogVIUlv4FuGVzo6l45Igr/WeiniFuswMozla1mfgzawMxc15xwjdQd8aXn/9Ie7du4s5J25ubpj1MwFrpwRPPHyDpt1OOTutsWng0CDHOJhqGyAOdig0Nzhec0c2SWstMkZMyyI+JyjvKJbkazE6EDyqJLzQ5r6PfH9lfAESSDOdtpr+6XXsNxPPMgqcKNYs42m2fubKtqyMi2rFrLFkPxqd8MQShMLl6h08aJZ1j8yNfQ8QHynjt0S9QIDwtorIub0UW9ff+l3vPRsb5nf7MRVf7GEa434EZtr3M8oDWG/YTCnhe67B1hsw5dkLXDrcI7y6HGLyfksDUwcdn4lhLj2fmCksnqUYD4DhZompz2dqUb76q+/jtdce4tmzZxyvRY/BKJmEh3RexhgZxtLaFVgYM1pEdGWmhQefo2Qw22ipXMwA8pm6mngKfHZA6M0dmIN2kuXrORb72JO9mNGQj/ZOdljCft1PHFQxzx5hgK2TmZ5WHXYPIc5m2T4ACMBg/Lsl4LHy9jQp2qsxhurJpZ+7O9wG93VvmBbPFr4UvGrD6HvFmqABHpoxBIhovUVLlanoSR0hCz2S7J9pfBP6x/iwvg9MIWcjsGydiRvJcAdgmQ4MCqlnW5mU9Tpq9vLWzNKRUSqzQq46xxQSq0SocMBdTKKBzLqeL847OS/KlmwS1R8F7l/pes8A5Ru+4RvwG7/xG3j77bfxC7/wC/jhH/5h/Nqv/Vr+/jaddKSAXn59pdf8rb/1t/DX/tpfy3+/8847+MhHPsIW7OFQrDRfsgczOq/K+xU9HBtnVfq7YvkNMCjkwgNsj0672y0NQrII8dwTIzaUZZru6bTQqXEzamKIqBoJG3H/XAjWW2o25pzBWijFLTZiIFgi856bc23UluMw6A1tGxuIXV3RC51zsFpkAB62Mx+h/mcZ+N5Im1/OFwxcCnTMianxdokaR8asYVFrYqpmSsOYFML5Ml+XC0HPvg/c3NxE/5xt8Q4VmjGMeF5uLNG9hqur0yGzqaMqrq5AIXYdSLdbsgoIWlIHtoqGKZJMdmtmqGDbQhAc4MtdBuuCrV1hzIjNthqbXJvpbVcMvsIeI9eVMkbWQz1p7fCU1rAQ/9viYB75uQASGFVF2WgnYHYAxhJkIpsfrh4t9wMFherjEaDR9Bm8195aZPR4dOD1AAsGM08BcdY/QWUbKWyqZo7Z68hp9IJ7SudgDXfKS+xWDoeH82Gz0l91QKoI1pwzaqbE4QeLzcVDore2MEoCghZsQXnB8mQ5r6LL678BVvm8vr7G+XyDBw8e4N7de3j67DkJxtBArEzAbdu4hjFWZoOF9MoGIJwHXbaEN8X22QzGwAnsDFZtFCIjw8DQIYBgToO5nPXceo8gkV6n9S1zV60zil1WX6zLZaSwuW463t8KDK4Ak40dpW3S+lsrhStsNqNXF3J85pzUm5j2fxwUcgBugZ15EMHXnuPeLwDLbLRwGv0Yxsl1InZKpnx5Lq2dUIVjXdsMPzZ0RO0WB5k2SQVQJekPZ1swJ7k+6dGixc9bAIgZXeWxaR1b/h2flGvOwqFlKFs2S/ZuoDXZVq0TRToaTqd3n5vzngHK1dVVimS/9Vu/Ff/lv/wX/JN/8k9Sd/KZz3wGH/rQh/L1n/3sZ5NV+eAHP4jz+YwvfOELBxbls5/9LP7kn/yTX/I779y5gzt37rzw82Yi/Pi/1I4IDABwz3h3FuwzUAnNlQVfFgEg7YSMSQ8BZE+P5Xy5ZCw+szJIlLJWw7ahN/YlUQlxnzNKXIdhlQBWHkAjQOK6lBGe2C/VLA8ArHcmwQ4wtc/pgbeN5aWB2HxjAnMEJ+lRDOsOO5C2YDRi41vuDpVJF63Mhmj7pUrd++3NtngAlqNHDcgeHmNvDT56ZkeIfZnuGPvE0yfPoRLdU9Sz0UslI+Ho3oAmPYMOEHk29P6tn7BtzLTyeavB2XqHAYz4awsPXnoZibsYM5cXmml0xiqhvQvABjALIKYDPQuLoR8OrVg04ZX0DD8ANN6qncHKsJqDmZoBZSsJ5JxOLQ5zhg2rR49av/vCQFgCRVlFrX0zC5W+Az6Wsbp9WJb2Z8beIWvSEhgL5PQmz2nNTFBmhYrNicVBhvLqAI4w6pzYTqfD4cDQHjJjA4YMXRks50aardQhYT3QIwVV9V0gLUmFicUg8kDnuLDwW+2A9SDm9C6aCh2kcQ9z8GeXywVPnz7F+958C689eohnz5/n2iaZpfkBsNQB0vdobV/2oNoNsX+UhchaPenwNzVOnWhWmiLZyuETp63H/cd6cQEUMYTh/QZLbG2DhKAab61jOUgLrFoO6gIPtAE797O+BscryylEnRwWblRIssAgbf7InwE4aHFyjgLEtN6yvsgKAqDSFTFnHqBFe0mgyQO8oZF9mVPMcmnR4ltvPZHnuEFAUc6lGAuELRVGGtxTMwTcCTJcz9nQtQbiTz4zEDWLsDCFCwARDsdyH1GewvGipvKF8Vz2W4EZMYrHMaiswBc/60td7x7KfInL3XFzc4M//If/MD74wQ/iP/yH/5C/O5/P+LVf+7UEH3/sj/0xnE6nw2s+/elP47/9t//2ZQHKl/tuOdUASu08LQzcDseAQ4LBDnW55NhpEA0K5cjrUb0KxaDP5zOur69xOZ8TnXJTyMCV8Kq1jjt3r3D3/h0arKxoihSXtbahtyts7VQLA7ynMS+4XM5Me13SMA2OuTM1d4aGQwLN3rek4/vWcbo64XTnCnfu3sW9+/dw5+4VmkIZ8W2pPTHLA1YZH5fLDa6vn+P6+jrvgWZ87UlxNJw9Ml9kaFUEL8fq1sbRhpxx8JLZoBiWqbusM7KPSxRmIrj06QROlz1AnDZ9bMgWDQi3pYZLZCb1rWE70dBWY0FtoZ5ARMZh5hgps6meZfUY2OdDnyVhpryWuLcAsNbETrVDjZXVYzarFbGOb49iWQIeSqdX/x9VI36ZQUmPnqd1gi96QY5mDhj3y8FwuzROKOYHKH2HVfyZ9zAWPZXW2sw1l7Sy1rVSlN3Tnp9VWwh2zJ7z2OcogKKwW433i+sNfhS8Vol+zznyEAyv3rTF2DfZiGCpPD2e9XsrHJVMlXu+B6AXPwbw+PEznC9nvPbafdy9d6KDQHSSjrxY18yYW651/a3htLory3Cu0oB14IpZqR49jrnv8H2wP82kwBtOW6aMNhZMq5Cp1qVCztLeae2S9Y3jdmH4xFDyNTPstBz7417AspZ726D6Kp6ZO/7S12rO17CROzOD3Cx0E5yzttgoShQthcqyGyvbykO/5RwxLHNi9d4A0OkgLYJ3fceYHuUqBnyfSzbopFM5CTbnmDH/ZPJSD0KvKJ9NP7Nl/WuPWbDPPPmYdGkTQOgMJ5za4wVHmTGs1rTXDkL34zqsJp1+WOsWRUpha/ZQzMULMPRLX++JQfnbf/tv43u/93vxkY98BI8fP8YnPvEJ/Oqv/ip+5Vd+BWaGj33sY/jJn/xJfN3XfR2+7uu+Dj/5kz+J+/fv4y/8hb8AgPn/f/kv/2X8+I//ON566y28733vw1//638df/SP/lF853d+53u5FQDA5TJguxTyKpNOAzlmpaOt5ZiH70nrAYjCMnZgA8SMMJ4YhcZE22sFxOVei2+6Y54vmH1CFS4vZ6bFti5wxENii9RohYYkWJreWOrZj16HykvPaL7WUGGIOSdsKZYk8SacDbbMkDFGC6M+9gk3R28Uv5pNbBvved/PHJNp4SmF0V9AgAAG/y0DTI1CO53YpCsYi2Y9GpIxaEI9SovuxeGdRGaTAJGZYTudoPi/e5OLkwJbIAykOYafM+1UHrO5M+6ZBrVKWCOYIrONYSen2HLrrWL9selb79i6gtMtDvXFOETgOtPvFoNo5mgbgEmNwPAltJFsgUJMqvfSU+Ba60zVVTeMITAwlhowBODVdfRoFMq7CQAxxW440AXILDV2vRkqrVH3pFRR9b/h2jv1Hj29Z6bGj+HoMd9qH+EuCjqqGEMxd973WiAwu03H4RgII8AgAAs9j7JAAnhTYBos0TyaQoWH9C+xRGtX7oqKFBsGLCASgErur20n8l0mUOxgVo++kyE/oY/zzRmP33kH73vrfXjjjUc4n5mdplII6alD66Jq3Wi9NDuGcdbwoQ7sEnHH3MXrJnh+9ChayA7SBYogAW0wJ90E1i33T2bpDg8N1UyQDoAFLH0nmEZPm9SMKakmyZYviQmLrU7nUWPcqI8Zl9uHZK3xtEnL5xzAS1QQFgNozdAmz4HmDSOAZl8AiDvD1iqYp/5ANjwrW2Pj/iCON1iITZtHKLEfbpjPrEyyXI1gWQduJYyQFkwjSNlCLPsysMqP1ZkwlzEUyAbg3HeaB9MaMbIwTiolxxQianzJ1PJVqJ1uAaogW8yZ9ZjbFcS/e2Ci6z0BlN/93d/FX/yLfxGf/vSn8ejRI3zLt3wLfuVXfgXf9V3fBQD4G3/jb+D58+f4q3/1r+ILX/gC/vgf/+P49//+32cNFAD4mZ/5GWzbhh/8wR/E8+fP8R3f8R34uZ/7ufdcAwWIo8FYB4SL0AAw3fXQ5wEAgspMjyMO9zEUb9fBtng7+hL9RcidXtXR0zUYOuYcuETKrQ7tZi3K/np4JS10I0iUz34rodxGh4P1RDzACUBGotTqCzPQjYJbA8BuCIApTc0haJFi1jBcCAOnZm088Pb0Unr3ZeMDjC3GoLso4rgvYx1yt2gk1iwZFNYbskxny4WtrIIwyh4U9badKMxdMqJE1wPAjHo1PTUDiJDezLkbe/y3G9SSXXhilwaiEQymgFTpj3EAwAx3797H3bt3MMYF5/OZIltXuMOzNkrr28JErcDD0GLux75jeNTM8fL602OHjAxBj9JIxRzwsFPLhap3o7T11joQQkatKdkpMXsF8AKkSRTHkxfqBF00dqyB02lhXOK1UEp3dP8N0WDWGWLKC73GsR7k7bCu0nmQ1+iee0SGErmXFx1OArw4KwUMER19A7RkNhUaQXccQvz88PJe0tentYarqytcLtTPhN4PWsJH79yyEKDGW5+xep/TI/RqHU+ePsGDhw/x4MFD3L//FE+fPs3DtDUKs90BmzOq484IB8fzG9drgjJ4hlDTaCVTwHvqRl2PQ9mNHu9znLYtS8aPcU4hscY5AYADAO0EHTHO/7Yp7RsMyUrcGuMdCAhj2sIcrs6ehxan1sbq2Wscq6igJWjIdeIRFkJUwHUyRuyJ1XKPEo8bsrhbzjlDQKp7C9C5u8S+ba1FJmcAGLGWCCe5tyDmwxFxS51MOrJi3WWvBTzHzrDTuuY9xg7MN/Ixa0gqIh3rYcCXppfruJkyUZe5kHDYw/bm+3J/Fb7wpR1GAWY/3L+Z2g0g32hZpfbWPL/L6//jOij/v7hUB+WPfN3/mZsimiixx8rAZb8EQImMBrrT9Dqkd1BK4yx6ulLKerEna+8TFE1cXmktPI8XiiWRkZVB1fdv21a6i0X9n/T8mFA3TLiEbGknsNmW3uXptKFtjKfS4w8PGgo0kDpUZVLVVxFLVPVgSCtaHoBsCqaQwojN0zci7TlGhFsaWhQxo2chLYusCw+5GQBS4Ifj54tHvqYEtpiniZV2V78OdZflV8hrR25mGuCaHz4vPfLprCI6UyC456EcUg8a/N5w2k6Zp//s+TOMXaX7q4x+6+x7oi65UveXaLUaUBagLXFoaS6K8XNHUMqVwcUDpoS58ur3vVrIE7Ds8V0tdCxcDWRAFL67kALelFVU4S5lATQjUyTGy2JPZI+muPcxR9L+rAI746AOsOXI9acUYwEQ7YsHDx7gIx/5CHwa/vf//bfx7NlTshSRXcZxliB+5s/M1bCR3j6sxlNhr613PLh/D2O/oe5gxvg5vVVqKxZmIvRBOvDu3b2HL3zhHdycRzQ/05Dy83sDpPk5n28gJkwC3zFKRFpVPpUF1vHGG2/g/e//Kjx+/Bif+9xnl/o1caCDzofWcGtiIniQ6aA+bafQQs18zQoAeJgvDNgtMans5BgjWK6VkQgBKlANL42sDPfLCD/I4mCaUHopa/h4fDdyXShDKh29BHKNTQ0hZwHlbHpUGh4d6n+0HsZroUSx3epAXPqsCos6BxqWWkQ5eajXGkH25bIHcNwgvSGAcHr52LSVBoCgrXHrAWB6sD5Te0jju2ra1k7ECYYRf0tzFUOtelOweGbgULvJBOhEl+m5JKbOQ0WnBhKUpPYmx8MO9qHOvlUlIuC4gKQyQfm8Ywz81v/6f/3/bh2U/3+4DhvokDNvaXTkPjQY0JZum82A2Q4bUJ8JxLzJszXGP9fv1crJqoPxpjKQakevAwUhoA0jkYdupJOpWZOxUbhFalkLFsDnwOVyjgyXqGzYHdj4XDT+NCITMuAjDsxRFSARIrtmUcQp4p1R26A1i5omLY3kvl/iAKeRmYvOx+KmJySWm8E9RcXRMPw0WzpcGtxDXyAvhbMVmRZz0fkg0vaI3E/bKXUqcGS69PCB3k+xh3cCUrAvkufGl2aJ1PvwS4gGQ4Q2VY011o3veOeddwjOXLqHkUCztY01Y5yhHwC5gY+hAQujH8YgwcRKz6/ZGp5jviwtMHWz5+eSOSkv/aiwd7jLUCgNW+sOWC2H1qJi7xXT13hxPo81TPgdq4bGYicClsZzbVaJ/CyugRHF2HQpDq91CihkY7mO8ougw4aFCPcxMJyH85gjxNK8v1Pr2K42dLEdM1jQSKdlyjxoyT1SuiOr6GprOG3AzeUCA/VDYtHi1IB7pNy2zo/Q4Zh65Cp97wHYFLJ9+vQpXn/9ER4+fIDHj+/g8eMnEFjSAdVcIUcAPtG9LyG68OIbu4jrkG9gmAFwqKeMbWtYMkC1FZOn7Cr2v4p0fqvQ9mljSvDlskeYtu5R2XoKcexjD1sXSQSHdRP3YOoLhUiYipBoNp0zbNsVdoF341HKnmKl8Sg90SytzZLNKACUWo8EXOHttwYEaBUAEMNsZiVS3wc8Mi5XIapbMS9j0PFqZgnO3T1DNxUuQQD1mg995O2QoXCEugGbWdSso53ataca15pPR/OdgDpAGHDUVq2f38zB5rqeY4YA6Jb348LEBSqtql8f77uE2FjG4P/I9UoDlCqzG2mAsRGTi9UhB2bauujvBUGuHh3fD5TuAWCIRl5/fPFilNFbrLYXF5a8ODZD48E65o59XiptMbzt3tTwakL0cW+sheJjYHdluHQoV92Mr59TSWY6KOJ+MJZFwlcoy8jBPiUj6ogYiL6Z8rtTdNstFORIYZtYnvBx0BpLaukQK6fNDnvB3UMnVMYD7thRXiU3MOlS6QLo7YaBBUFSVX+sTshmnfqyoV3E32NGZ1I3wAd8Gkakl2bVUEQpf+e9mRmsE9jt+wWq0JodoEHDOHDJjexRC0BUKFDFl2iQZj7PGKtRKsNdXpVCJ0sVYWUzCHgnk7L235ABkeEgzezxMxgw9xnprATr23bKVcPnG4d7YbOzgeYdlQbdq6ZP7hercbfVBgZgaceOy9LOiKEz0h8HcAQgWAquVxEH6nYMME5/uewM1YFWXGEid8fYyfKcuuFyOUemB++vR5/jXKNjZzbEHLgMx3DDabuLU+9RIzPmaVYYbd93sGOumEdS/QKG0uqoWGF52LzHy+WMJ0/ewZtvvoUHD17LME/ZEt7hdO5Fnw5vkda57KPL7hWqmEwVpZ0q5mZk+vnQpjwKQE3zNDFsHAAG2YOOrXtqnrLwnSkr0nPdd7RI61UIUUy0QmydjSp1aAbLagHA3KmTaz3YjcUPRAuHQHY49tWcOGrx0tlU+YCePxe7ggmOJ2EUIikw7mvSqQJtJk7SODoQyQnNjLq+eJZ0Ohrr8bRtY90nsUDpCMvmaS6P58d6SdejyrJzOkw+UeihqkottU5KA8d0MuxfEiAE65F7GLf2bzntJSiXvIBreQ1Ra7wVBopPyO/i57zYyPdLXa80QFkvUuFsi50MWR6U4TGEBkK6A/aP8cyLl6ajvDoZlhCdwhnycc+0RraTR26g8mzDSDUi8N56IlOz2A5B522nU6DyYDFsKTq3eMXSGUi/4i1SkJ3mtsrTaxH4YWloQwHcaCN6dRhQQsVmrIkQm55NASPctSMXJaKKroLih4PRPTQWJV4zbXpfD9Ty7IFKjeX9IfLzEXFc4HR1FR7jCD2Lagnwnvd9J5PSGtP/goq1UKiNMSJlmKJXJkruOF8ucZixTHooh2iM9h37GDhtW06yT+qZ6CnEKLdiFbR+Wlu9jwALXsb6tmiswoazNCXwg3Gp/97TCyuQLSErx0Vr0NGDWZAwUPqRkeHGhjiYggEiS7SRMZpgIasUwSldmKAhQzeJSC25seXOc351+MCLCVpZkTV8Ko0B11hLvZJYL7jDLx59asgq+lTcO4zlmJjNcT6fY1zoVMiTbpEabXNin+wbRb0QcL6cg22V0e1QVWnZB2k6GKpV+nTcz8FbFWBVyId78OnTp7h//wEePLiPe/fu49mzZwvYrPEzCAgADRML/75k+lgASsBnA8sHHHU7K+vAkMNyYMQBNMdgiQXraYuo3Wg49Tvh4FyomQiN1VS4rBPMjHPYlqjuq3UqsB2rQgu71hBqL+nAl70GDOYT1pTizgJ0M5yOyrpTRuFYDu+oDA1PB8bdsx6O7GfeVyznuTJAM/kflMA7imGu+zRYLRWttMVZ05p3OZGTTQVfdmyL+ZXjwrpsM1OeYapvs7AUZoi84+WTIqSeEgAgC605ckxyEdy6xPxUXaJaQy+7Kiy96rT0+X9QAEocejM2IKYBoXS2oOG0qUlhs3QznCYUDWhuGJPaFROgSWAS8bRFbLsOtsdm5+fxM5nxEXVT4Oioiq3TjzSsNfaakcGEtAzGkJQOdLO1eJmAgcFB4ZN5FDzaeKBUoSSCrdZqc0w4fB8ETiG4NWNFx3z8OIQktkU6OWGU45+mOgF5KAdFj4jVZghDuz682kkNy7bJE+d7DaXbmT7g2NFsg7vhdOJhO/ad3Vfl3UVK383NDQ+QJoEhhckUws404K1RVN2NBzhbAAxMm7nx+DDUubAnEGtYtObhwc+DR+c+4f1YrlrF0dSdmP0dDWvK7moItJHnnAUs0nYXUziGMsRGvrY+Q8Yv7r9F8UDbsGbuECADa9t3rc8IEMbeoRZqjLHcTwtHILxyt8gAseXzKvSq8UjmaXEWVjdNYc/1Z82MHXXNqHNID08UO/f3HvooHrbyCBFZYI7dJ9pw7PuMBsIBbG52OgOto3XA5oRNR7uSRgyhyaCZnO5oM7ztOdE2rr+sYXIAk0evtWzGWimXh9zNzQ2ePHmCt956Hx4+fA3X1zcZ4nB57LDIAhOLEkg6+tP0YAK1ziuk5DED4H5csoGA5fDQfSp0NCfGbAm4kvWRP+S0Xef9HELrlgwOx4xjOqfKPPB7qANCPNuO9VAVi6E1VG0mAv6p35ZN2tWGEL/SXvfmuVcs9TbHceBc6KD1w/5yR7JTbVpu8YE97gUHIK1nXUOx/B3XNoH4HvbQUveWdiY+JzNygQRYt8O7a9hThRzTEV8P/0S2MenN1m0Y5wlB5yxKksjL62W3QUpJILSv5VSOw+9fftnyt3+F1x6vVxugoIyh8uuBmPQWR4yBHtYY2a5bHj0NnEXvGG1YLgBt4lWw9IJgMzYGDJVvHgdma/TAxxykSOP0b5EC6QiA0BrGPlKUK3A1PIRmU6jXSPOi2BWCD1ZipKiRVDd/1+LzZWxqg6rWSep1wuBWXDc8HFtQNhqNuFl0Dw5DCKRaPscWZDm4P6LaYDBR0iSwbkukVMeiZfXajaDAgd5OSx0BjsvpdEomTMWScv5bdcYdkxkLALtxWkd6ee4D+wD2ySqIqnILIMSYFqxNFXyzEIqOsS+HaEvQtpaSBzRuyEKB/LHAacVw14qyAOvtMWPDQ/DK79VnsRS+fr/28dGhQ59P4JG0OUESl3pbvkss1MRQ+wUZ8wCSBycsr5bMIxfJjKGIKptpf8gG6ZDVvfIjuCd7CIZZ9v66yuQbq3/2LTJFhgFW98eieRvtqw1Qm8CDQVoWC3A958Rshn0C6A0+4jDaxSJMuhFGTVObZN8cjjEv8VnI2jbNKOTUAUoRuSqa2vJnrQWzAs0CJ2K7nj17jtdf37P8/bNnzw4jLmfo1DcMY/0KuMPHYENN4/1MzNBzlB5Kx8laaE/3rcJ36v0zIgMSYRmUMUaQucMnwbFPaoOuthP2Qbu1+572gSxPhDQn0q41bEBTeKgHc8xUXTKMlVad6yjPQ0NmDCZbV6BXWhOuF75HoHnflwadEHhgEURHAFdTBorLA4v9xmBP2USNp8e4qP2ADm3q33YPxsUMuxfgHGMRzIdu0CWDeQlA0TXjeXiuVQqPsvvYpE/4hJpEMs1CxPH8ETbPzNIGYC5iV2NIvd2yTVozsmH58jwr1/uPemNQLEq26b1drzRAYbl15X4DopchNBxG1lz0utC6vBm8MGYqx63FVEZ7KQwEEKG3nt4ujVt4JLOQsLrGAiFmbEfPauw7LvueAGgP3F4CNgeMglNWtpWhLjO4O2D7hbSyevtE1oNo02BMA/NUhVotOgBLAadA+iZhJ0p8FptPHyYP1F3F4+TdWsWAEaWZrYVB7fkeMkgct6urKwLJEAiTQBrZqVZx43XDyLiZGdrGjrcFRAEVjpJh0CGSFGRoj7atw1QzZmHHWg/gqUqbaAznoD5LG3DbtMZqvbmjAGsCCqUAF0snDyvHPw5hrRvR8Nu2gTU2RoYSWVbaDu+t9Ws5XxJoe65N9otZGwNqX7kTHPM+SoNF263w3AAzklp+H9LDWljGWyjntkebdH5UjhUD4lG0sG9X6MFG9VYi1tPplCnjGRoKmn4E+Oi943zZsZ8ZqoI1zFg/Ez1F6ruzDP62NcwLw3oTjn0ngJu2tKxgTIDMjQ6pYDaqOm07PN9akdPDi/U8CBkiePbsOd544w08fPgQNzc3h8yTmh+lFJMNRWdtkDlmtrKYcSCpou2cbBZZQGUFTRM+DbMFYJ16n0VhSQBZ1h5wjDh1HQ7D1jp8WgAk1hIxNIZLW+gEx4BHSGaflwIr3cgELMsjwXYYt9TVODJbrDLmwiNfvX0vFqhCrsWuZE8tIMNCLNaWdATgSh2OUFzYCq3t1QnhUBbDyb2wQ/sxM4t0dtxa9zqnssijHf9+GQtXVbIF/i2/35c0eaa0Myyp8BawgLCw7RMkWnR++uTrFAJdnZ9qCbICJE8bB1T5A9VGaYtT9OXCQi+7XmmAArBCntgJDwPAkA4hdO8tjFsJ56YUzS6wEKliYP68fnb4nt4wZ0xCyvP1nyuFFWBmzNCKtCUHH0tzPb+lf7kFiLTtMvVZh3PkvgQim2MSWTsPdZXRl6OqVEfAozw+Pz/TrIFb38v7UppsXb6I8sKuhpEhY0IhrTtgtxoY9saOzNlV17Vwq8CeBGxZVXJWMTR5qgQUgHmELHzxlIMJgu59cg1ITKhMHAF5d8fWN8y5QwXODNF3aKeQkgDASlQ9qzuujE0JYe0AQq5CL9NXVi8PKmXeIA3cnPQqK0yEnJu1p45KaleX6wUcaAlGbYzyZhBi4DJ4TaAg5/64s/idwdZ4HYBmJciLSc7ibNbASqQCtQsLaYaYA4TBPB7cEHBObUR5/c2A0x2C17FHCBNKG/eIcmhdHnv8mDXsc8AvOxvTpb1v8KgqzTljhVEMrsERqcK7VR0iV80Hk0A5/lu6mBw9WXtP71VjkY0jmzLZkKmwT58+YX+ee3dx584dPH/+HErtln0Yg/1XLAqdJRDFAGwL4WfMKxbR9WTKNcLDHtMjDVVZdtw72reqB3S+oQant6qUXb8nG9k7e55xfEkFdBP9H0HgOcBOzTGSMe/c2/yu/XKJNSEwdTuEXOtpLUuQzJQAtK1Ki9p3ArZcnuVM8MyQNGBhAXJPaf+jnsEBCV1LuI7DfZkhxKq03VV+wZd1WJccgNsAHiihLNfAWMJTfE51du6RuWOqMbXY9rr02XSAW+wTLWBzATsB3cpSpKO8ZAThaKPWvS/wxc+iPbn9XF/peqUBihb5TAQbm+yWBz9954YUGpxYKC1NBgISiDLXtzi2jYf/1tjAzx3RWM/RN0OVyGcopWc4AwzRaLNHY7w5RhrTupbwUmhDdBOiLvlPCUvj/sP7bosfYQ6MHSFgDK90zgQWUNphi0M9AR6iM+oqlF0W4nq/cTjB+3KaIACCAZX3gJ5ZAvz9XMCJx2a16bi+nJPZMZQ3xT3ogBtO7QoAcDMi3DYnP9/K0HL8yJyNEBE72/dyiSBEwa2BKS4EH45oZBeA0oI5WT2XlSYHkCEnxtopVFXoDpO/5wYeARQ8s8LKCMxlM5e3UkZZnrDHYeUR3tCMz1w/KmjGzKMWhwaBmbK9tA885kvD+6W8NoWTxixgw9fE/AwHprLjuMgsmSWxRp6fdZsS1uGyOhGa+zkKwG89utJ6i3UULF9HhZziOa5OV+mtNTMM63BrKXhkZlCECa0BbQvAGxqeRodnRJM4sRHidjy6ArOeRsyl65Apka72bx2GYmEHHBP7PnF1xTV9fX2Dx48f44033sBrrz3E+XyT9YssD88Zqe6hE7IWvpRjjgtMHbOjAGVvDdhiThdHSuBvtZv5G6u1IL3VtInT1SlslJ6J+jHZTtVrGXNiDABzYV01X9E5WdZKFWQBMnpkomhbbq9HAVkCjZb3rNckKI1t5No+6rsj8GINzFxeDu8F0CPXY4ioXYYTDB0Fs+QucFmHeX0E72VECLnleDnMNjDcuwAZWFpZHfZyVtbqvAV0ZSNaOA3qoSUWx1AifMvPpY1kKncxIxHCUvYr/DC2XPvjcB/rpUKPh1oziE7XsTd8cn0eCxd+5euVBihoDd47MCZU4r4WKj2J4SNWUqtj1miAMKQ0bnEg88BKtI2ZbIk16hMkDrRGjcNKkbe+0pVhkCab+805s6cNw06xNCRajAW9KsmFtBXaUfXCtDOxSRmZDQOmBe7OcNJwKN061ehm2QgNEEJ2qMLi1je2IJeLvx4Yi/o/ab1kElpW5nU4haVKB13CSV0hjcXwjKFOttSFpNeSfZMGq7X2Hop5BLVsFaIKI4idnilj5ZbjpZBJbzRSk6IE+Nw5XtMytl4sFfLQQ3qlWgMN/bSlV5yYDey10U1F7mrNtEXYqDThukps3Fp5YzzY+YrUD01ljKy6jpZrhOEprtkZVVwrRAekN+9imuxQ06cOB/6Pam6wQJaDYruN2Qce1O+gUZ27FreMZn4qVGW2GMNxMJSx6jF2RzOm814uO7Ztj3nWIW9Q1V5rDRhsooh4jrmAPOdJEllMvAbGgXY3UQtxUDiYjr7vEjVWLF8MWh7qkUVhCSYFvqgf4npBzuXKwM05cLmQoR3D8fTpY9y/fw93797D6XSFm5szVFOiDr8Ipc6J1iZahG/kReuZV00enCxi204LMAlg2uRbxLPeYuSU9TNH6IVyHckp0Est2KENcO7HLbR4eeiagJ3lnuAa49xuqjcVkXECCc7LKsSlLfJwNuJ+wsmYNrFF5l7eo1Hv1lXfpA3MfebvG8goOXrOp1oJSEKQIWZYbVv5ZrMcOIVrW1MtnEXbtewvd4cN3qNZsd61EWjbM8y1hJjmLONEpldH+Yj9oaKOa2l6oDUC+eEjmrBGgrEytbwchZV10X8W687/aaGXM0PZFwf2KM1gZrDpuTPmnMBYbd6Xv15pgGKLQZ6j4vsAILGVLnlT4Uxyk8TC2LaNHYED5WaqbIxj1ViRV7r2/RHa7SjFO6CmaVKsq9S3NnQLZsCsHw0J7zL+3VJnoO6ws0q/ZplqOVE9i3hxq8x95KEzxSaAWoQ1LqhN4MChyi3EZLRK75SnsWY2yZNNYBTZH9zYDqU808gIkMTcmEUjwGUzxLOuKeMWtO/19TUPXN54hkqAEAk6hY1wZMaLjBAr0Ia3Y/UsHpkZY9CrlccviyG6dL8wi2BG6mDbVF11pDh0PXgZkmGnU/fBonGzvJQSz3JTM9wV3nkaBMV8I7tJYJK0EkS3Kw2zYfVKVwNT7A+8irP5XApXrV4kBDJqjaT3hpF7D0vdidRU5HcrDKCzXD8Tm1D6nDTgsS98OM5+IePUSiAtivzQD8Sjjk2wOMODBu9dpF3eFh3NSc2Bp78YdxZhFC9vU3V/mm2iR/IgAgiCU4eFGaJ24HZH12IBdMhIdySgQQfj5uaC58+v8ejRI9y7dw/Pnj6rvWHKPlF7jwBhcUdDouWojdNaFKATuIn5Vd2jbTvV/U2nt29Hx8Hy03m4SFgNAOZkxFxgI0qfuyPn2BrzGNNzVvkBFENAQB3OCOTwRBbaNqI3Wd3LYZ3Gs1V4OpwTN27xZhESRM5nC8aiRdhT9XxcGBXOcI4xjLiCoixAJhvtQPMg5L10X9zfC0BG/ZH8IPdnOg23QzEW4mVtsA5vcpIKsB6BT9y/hN0LY8E9RoEs5qRjMREVkmMH5DNWqJVvr8SMOXn2dFP4rO5DY7iCIp5bHk0/56F/1Fe6XmmA0sKbo/bHszwBU139kGIlz9YMmUGCyGywKKzETAcBgVkeLKRFjjbdiwHT5WWFMaPeBsGQFuvI1yfzkFRcsCfyzFD3vG2dFVLnTtGTjL7oxyw+VBk4Kq2ehercM71561uq/nmFyLfNrDkxdj2xxyFcRiFRsajBODBT4xHfJzGrOnSykuMebSr4OX3rSwaTxsBhHiGSBXACLL2PSYEh5IlFFgTB01pjhcZK9T1oG4zRAUyCOTPMi3oecTq6tRjnLYbA4EaV//SZAj+Vb5cxgHisZMJasCAec1Z/Knbdbo1rlMiOzV3MyW1PRh54zF9U0zWs81TFvCIftQCGjwyj5X5ZxjnvpzkByGF98hnUbmDE82cbgUEgVvcrkBKHQyuB8KFQmzxKMYVDPaM4v/u+A5Nl2PtG5kYaCv5uBkCVYa0CdwfQZC8zjoFUbtWlGZOAlMJKHpJak7QXO+Bs5pZgKBgHszLma6iChRZrrKUlUMq4u+PZs2e4f/8+Hjy4j2dPn+Hp0+cH54WHQIv3xsHSOrCrZYSF/Rpo6Pn4HsBUYZzMrlsw6UG7FOznqic4NCcEDnbQmrMVTWS1uBtGtGLQ5+xjx3TDVTvVGolx4zxQFM+u2sgwtClk7HlihmMUzJ9qc8zItjLPvU57zm8yR2rpBAr1ebn2luy11jf2RJpLSnTcV0SiotEgstJ/to+YVYNFn6+Ry3DV8nON8RGk5Jtz7sm4NFSDvsMLYx1THLs6fmsdIyC0z4lAev5ca7T6yRGIm8uxDqaKmoBY66XNEzDjdzqGzjhXiYQ/IAClBDjccELFrFtRugtpOCCQAqS3L9r4IpQbh86Yoso40qeN4YU5WEYbWIGGFs8MEZ88Fguvp4xmay0PVmW7rBQiL36e2KF97MHOiKWwaKWuQlYhYGssQjcQOhL3XI6V8aFy9aLxQm+hRnI7QRA1U6wD0kJTwWZ+i0c4aQB8HjfV0SCvgrolxNQa9sv+AprWoWJOZJ62c3IjLV0jEgyoGdice1KyAnvnyzliwC0yCgIIRN5/Fglz0c3MRODaig3tHLM72xUsQl81ftIGtQRlAo7sl6HP0laTp+JpkACJsKtexEyPctVwcD0mPW7I9dtivtSLB+Dc7GPS+4/5EPhRujGbNCKZthUoVHdhpHZA81X/La/Qlmfj3wIk2kPq6bPOtTzO6UzFtN6AmKNt61krx2IfmRmwT3jbA+TZ0mBQRRG5b1Tnh/oUBwXkCO+dwk6bDdPFahGkWhT5WutVaO4EsGbOvYByfB5V3LkmpL3Rs1YGht4/Ixul9sv19TWePn2KR48e4bXXH+LmfA2WAFmFh+XRt85spGokWmzq2jtF92mtmmRWqfXKMEqALFZwAcjab61ca2Q2y3TY6fjqNVzAMSEjuO8OV1HK1nNPxc5mwkPc11q6Hst8iBXhFwXjsY7vNIpUOzUWTWewA6ogXcyglmnMVd77jr6xxUE6mUbbxykO+wsJqRFrPITXjtgfZevF+KSHEHMJAa51/BodhTjf8/65lmRrl943IKg+8DByFCHgznXZ4nwYoHPH/cTPKNARY7KMt4lwiQwwTztkMX4znsvyPTGTPKNtZVe+/PVKA5RcuLGJrNchsWNAnc4FUDimHiLVOmh9TPgypbWpWn6Pwh4JiuTBRQGp4fxc9bMQJSaPBiz+HIuL9yONejUgrMXqHszATtp67eXCA2NB3XBYpPmqvXmuNqd6vqvmAsDnTRehDlUPGiECBQvSXQ8e8Q3y8AtgVIfmxQtrLI7HrCV+VoNFbZY4WLQRwliNKRpwLhtP3qKMwHLATXqLw6UUb3CjgYAtBwl0oLDQIsyhjp6wqBtyUKMfKUyxXs0n3Bpa9zjotwMAE2hAhM1UHn49CBb7voy/fj+hvi6rty29RongWAtkukBxeYY6bCwyXNzl8VbY89BPJA++BYDGeIcqoVgQY5PC6TMICWUotCxffgzt6DmPQXaOgdNDNWTYyQB464B1uDMji7ciBgfLPtvS8819bi0F4mbsej0gpwLhmBjMCSrStqZLG4xk74AtTOp09lRx6Wj0Wu5d2eWV3uYzj2TTNB4ryECrMIUA+tOnT3Hv3j3cu3cf9+8/iOqytX4SeDQmCQDRYNKLdZBwWOHY24cWHYHS0On302emc6+npcf4lB2oz/FYRMVMiDEUcybnkAcUQ6IT48BKcX2O4Yd6JgcWIhyl9To6PpYHeDK6I5zSOOgDu1G350gBraEqYa8VgW1Q6G8OsmWw48JeAUir9aFQj/ZVOSDlBHQZM7BuF3GeH6rXpn28tTerbYD2beyPiQiTCzCsodse8xxxclM16Ao7KVSz2p4OAzqF4wbPdG1Pln6tZOtobqHXDzZPrAssWK13d73SAGVN0RWb4bZUMrSlqZMpDOC1E4VWZRRdRnud8AIQYmS6qq76hIppzeHR2VKLYVXy14Z2n0T2iv8mLCYS1ut1YPVepcDZgwZhJGMM4lCVlgCd96mUOdjaP2bm5i3QxkXZmkRV++JRVPz5NpNYRdZksIzgxrw8kzgoVX+kYu01rixItzBRYfC1aafz8Kp0cgBWwIVgUmxXjEEg9tZ7ROwsjDZHLPuLAKnG5zIo4CCjol44Y1C4iRY9hYygS94knUMvICxdCkTH1uYvMEI6dNsqPTkzT1rDGJdlxC0/SyA12ZZF7MnOvnw1S9G3w0p0kFmYUQJcnzMmPVjWpEGAtwIxMlq8t86+NrFvii1QmGpPkaA0HLVOCtjKCG6to7ljXnb2forPrDLfx6ZqPBTXAwLQnhGOkcZD+i7sEc7lCECwC+H9qeT44RNjbCJJJu7bl7VTWiGFkgyWAJWdibWvXywUlmPiZF08sogA4ObmBk+fPsGbb74PDx+8hvP5jH3fYy2OSNlfQ2lhc0xdixvH1Gp/ikWB83CGVcimahYxRN2XMGPaA9mObsu6WOroTL43weLCpMXgwCFdRctaTz7ZL+Z02nC+OJDC+NifckLl1Tdkps+a1gsn83gbiCVgSVH5EjIKVo24pNh1A/fJeVwwzhdcIdaUdFzpHB3XdbEQHDCLBVlMSuwHD6AGwLxCm3CKdcOisvDasNCv0WYIVFX48AJAIH3RZi3nmDrUI0oQ6iUz5k3ACWihmXNkmYdmiFLYChaTrU/dJ7KUhcL/HG+LI40DPIL9n7cPky9zvdIARVX+gECdI3qptI4JzxbXXBukFhuQiB0oT2Z1FdbQThYGG1MnV3heM1Mg9Tm+gp/lMMrPtaigmofvXLCSxwFfm7OpKq15trLn3uh8Hg+BKVgMl6BpCRnpfz3Ky3tpQ9AMiNofWxSd23dmvSCoeO4X6kvEaWYRpGbwQTDSTFV8Q3EeRag8Ov32ztone36/+lAofTLGukkzodS1ClGxkKir6gcQeoMZ3ZrdB50Cd/Rt4qpfwRobxJH6RTBlk8FXeZVhVMZk/ZVuyjTxKCPfAohETHwamp/q3sbENArGsoeSE7DyUOqHom36WWsWtH2tnzxErKXwlriteg4hTRfX2Jwjm5uZMcQxp2MfF+pXzACfycBlLR0ZzBkVhLMS6hGowasmjku/EN8dCzfXa+lfKoQ1FvH6MTRhUc9B2TEq1MYy+miOviFZRoHM3F1xf9XzhqmtzRuurkIPslSW5SlFD7B3dqE2ANbCpxvLPOgQMVQrgfBgeQAjDygBogIoqygxPHCTN8q03OpnsowZCpAB/Lxnz57i4cPXcPfuPdy9ewePH19y/PhMPcWwyMJvjmETzVQ8q+d4p82zEDn2DTO6ZufvJkO2l/2SB6bAZ84tylpaa7AZ3cdN9mJA9YIK2xiqd5BlqJtjzj/9tKGPiaNug07Yyh7BgCwmGyFpzwWLAGlr2CO+fwpAU/vTYk9YsExrJo4ugteo8o0SvdZnq4BngLvIpFIIZjqWPaNbFCMZdZpyPYfAN851hUKy15MLYHuuTzlc5VSF5mbBAPzOtVjaUvn2Fs5fiaE6GykBMCWPYAao0R5cwEmOi+f/ynHXtTK3X+l6pQGKMht234HpaFNFukbEMIt6xAyjrM0aav/g1GpwJ7APzxoHKvo0L3tmntDIDByzhJZBb4ZiRkjx8l4pAoVhKS0egEPL2JHefuuG3um9S6haGgWKH8WuqPBZKbD5GRK9+VSYp2P2oNLngGFjxczzdWBtAzwKgi3eB/9DXoYqm9oicmwhDtdi5ViftiseEr4vBbT0PNEUb6H+yawrvBXfG8a9gWnT8pbGGBiXnYc0Ap3HXM4+CJAiVDT28Op7wwbWEPFgP8RCWGvYRxwovcM6PZwRu1HGYQaYSQp5RhWBbYPKh5t1vChgWzZpjFP1rxEVaxD7JhEfD6Q91pKo3QBYxvVtxjoh8QNY62BDOSSmkY8ssMPeLPxphRDBe5j0+rGAohmARXPferhgfKIMjebn+0r5NxQ7J8NoC/hBvjetsebFAIv002JMe2lSOBIBUhz7IACkJifuNzZXM4v4XgmKxUKmPmRq3Xjei76zis1x/KZZCroBeulT457wOsJOzRKMlUdN4lvPvYarbm4uePbsGd544w3cvXsPT548XZg21sQJ8xKhvtijk86ZsrYSQ672z8gude+3hK4M0ylMOOdEbxSLYoqxnFnbKD3/DCPEvM1oXhmdoHOuYrw9HD3EPlJPs8NuWTLjGnjYp80M9qp1evJLwlQmDuizAZqQEfvOgAiD6FWm5Rhz0GIfjlgvPfZ72FWTUBR5oid758tnuiPDyNbT1jhP9XiWRUSttx/sLq8xox9Q/h+SrWuNqeNzjmXOW66v3KGzAIzGZgWRKzOp9yPvLDQ2cbTpvcKwWU8oXm+tL9+p76CWr/1BASjEHQ6MKq/OWZ7MQJDIbUpPQgpLEyw2Bb2lIBAgA1Nt7gc9uzEz7t2aWofLwBRFGssmhEQBMWsFZJgpF0YCpgyEh9iPbISqZ1aaNGOGW+/E4T6DWfHw6ngPDsfqifTOdFvcWrxj7phjEV1GnQ0P4KY03RH0soqVzVnPAYQn6yUa1IbtreGyr50+42BtjuZbina16cl2kAXwLjo9KMrBcA7TvqMqr9JwtVHiuW9uzvl1BnryOWfxXOogndvQoxlZhL6S0jdjL5/whnzZtxV3LdaHwIMppCtzwCVQ3pTASXbJzY3sh/EqTRRDAL2foFoLbP1eeqkRRQB7M7j6qHgI81B+zQqwMj0yD87g3lono4Ewzq7+LXH4eaQur2MSn69wRqU5yjh2wAm6kXVCKmQlsGJxz3NO9K3F+OIwPsUMAECPejOs9zHcsEHjWyEwalv2BO8CQWt4JbMAXSny3KeHSqMCpwL/rTPbSwONJfSApcgiJlrzKDuwnKq5BuvAc3c8f/4suhzfw927d/H0yTOCcXOwTHx0oR6sICaQZglQkKGu3jeG0BYn13BkRLbWmb1jIaRXW5AlVLcyZbxXgpqFKIi9MbGpc7SeVazSLXZhzhkNP+v5pdlI0ObaxwVmeoioue57rNulhEIyQ64NzLUEMsDWKqUWyzPwbdQp0TahhLrx0ouDrK4Yj6gJomJ/7gOGjrke9hYCfonn43vkhJWzIoBmixMS6g1rWeVWQFfzXHNUUQAqPyTOXfdjjT2g0NTKDvUM044h+181XvQZmiOG1+L5kqGu+era4+s6+QrXKw1Qxj7i4AhjYoCFZ+5jMCNAgx3G8uqqp4JdaZhT5QHBl6unyqHqq0uYtk5IaU7yOInFZ62xKFB4ZzM3qeXhmJ/V6DVz3TgQB7QO1fQ+tM4dYThYNt/UIQoO9bcBjCxNLL7qJzHD8AuD12FoywJtRnX2nDN7jhgQwmCEJ4Tse8NLzE2xAns0adT4RF5FUt5dqX7xaAqR8MUNkG5F4mZIbCjtjTbbIopbjLxsWVLUqovgxk60Y6JtnZlS7thOV1gcwZhULDeIyHQ6fua2ccxVQI0H81ErwkfSJM5okEejsVaU1dqqAl3FnG3bhm0TtR+alfjdvs8ygMsDlC7HQtCp2jNl6NOzW58LniYugYsFKNbBP+mKyqB7gjbdtz5/6j8OWg9KphfxrFFJ1Dw8YxTzSXdNYIMMoi6xbiMcCfOGS2hsMmNF7I0yYiS+jedes6jWtaTxnytLMOVlav6iSV4+sJgnAYVVO8Qx1f4vZ+jF2Pz5fMHz58/x+uuP8PDhQ1w/O2PfL5zzSFEWU1TescCKM8siGF8DtU4qltf6svcWwLEeIAa8cG/r+OhFduvUqc8qpkZrYsafFuFiIDIVp0CgLeMf4k0HmrFe1T6ZjNDM0LaoY9XUBPII+AAEI91gmRwhBsRfWI/5PMZCk1YDFO9DnCUGYwXEmNuJJIE8tDChAwISrhYeyfCWviOcuzHUIzYyro7jLx5XQMHsGBrUZ8bQx9mkkOtMm8Q5bFCDw2pMenQ2ZGs1BAyP0fFRGG9tfkjLE+Asy0BEKDkAaf+DksUD3+FzlPhJmQ9m9ApHNMDaOra+ofWGy+Um2QBrij3bMsH0Svd9z7gylg1J4WU7omnE2dWq6JSKAR3BSwGTtoXvIk/qsCjk7ZdGIz3GSI9jFcTYEbNKwis8xJLtcW8Blic8bLzx4EeFgFpk78wx4OOCERtv3+nt9EitlI4FKDumRS00rxbjrNqoGKrj6uoqqpqSJeGhOlII7M6Os0qZXePByerkf/sikg5c1/OOuPFW5MPZ448a68HAAXYo5vi3jb1Kts5MImWPKBTyoqFm/H/btihUxxRfNYKraq86TMtDSoDlpaM6eqVAxU/q55WmGmNrxfaoV1DrG9x5iPXGeiM+PTu36j4qJl3zuF5ZsdXr0N73cXzv4X3l/ekqgBaMT6wRpupO9I0iYTiqtk9rOa9ijedgcTWybDLAhSCn00UT/exTGp5Ih3agnbZs+gggBKOxptuRbSk6vuYmK0YvWVS6yN4sYuj08gv8pKQDlmtWFUDzeyYD032Lg3tnmOfBg4d4+JDZPI/fCVYrxArTneG8Wi3oFlU+gzGhTROTaVkXSY04fTo/a84MvdwOFdCBqBBUvabqzawesod2S2HdDPelU8eeUmPMyICaoX9bnDIVfhsTExcW6/MOzMGmiMOr4/U87iHNm3mxuav+QU3vBPSgcvgo4LfaZTGkYuu3VjU9dmjcDFuwRFJsGZyS3GAW5hwpru+xdid2TR6UMu0OYHpmGU14FN7j3bV0wHQ+FWtisagMQIt1Qic3StpPOc8FlDk0LbWH1QwxdwwEQcppKSCkmj76Wa0PAK3HHN9W+Xz565UGKBnPDgaBDbvY4bj1lj1RttMGg+Hm+hqXy01szAabSj9lfJ26kr3qPwC5QJVqrDLPFbcNYWRrWZvEwkPXXCrkY6gUPFOqGQBV/LFWGo1014N21GZRSh89G4+skWCKHOj9xEWdWhB9BoVg9KBC4xIMBbOSuAnGrlz/AFq9Rb07vzX2Fc4BPASzBVpYpVHUc8+eNR5N2Oj1jQgHEZyo1H16rLOYF0gTAKb57Uqp7eU9V2VKXwBOjDlowBC9McwL6EyvrK/0mHN9sWQ3ENUQY0y0KbfOtUUhsTbrxL7rEF1FkxUyoFjvdlZPXUfGhf9OPVRkNciMrvuhtTr84o0RApQRWjVMel8BPmUhmXFP9Bal+lHMii9eozaJx9osir7WidZDnRs8nCAa2jqms2+JNUsDzb3Z0uOS0eRzVlhLZuAA8FoVMuPB2tC7wnoFsn1dy8FmVMXkeIYFyNT6Vp2UI6PwAguR05q7Nr5r5GsrLMhMQGbgVpjsfD7j+fNneO211/Dw4UM8f3adQFFsEKwOJzVFJOnU8hkKHFl1hY7/c9BmeDCsdDDWLCGtUWX81bMKVK4G4IWMqNawR4sKgtYIR00Wv7ShwxzJOBvW0Ln2qkJFI2qGrHvHDveknx+Ybw8HD9pfEV5XqNdrWTZExokV82FmaPPF/dlty2dWnowE3jqkWzg7NEMB5JfsNAFX6xbrbyn2aeWuhI8Vw+Jw7MhguFmwFRJwByiSbs3p3Cj9/bhIK8QcHw05R9XBuPbzqovU62uP99yvWkaujtK3bN2Xu15tgLIR7e1qlaeD3izU9xygy/kG+2AvHGZM9UNRoxmVNQVM1jhjxkCXA2w17hMR4w2hGBDGqwf9Hnnn0lcg/hsR/zTT71aPUA8YQIUrjx7sGGFgRI3LuExs2wlmhst+BpJWDg/d6TEMn0wx9GAdQOHugRkwsh/WDWxspY1WhscMCcg4XuwAbK2l4HJOsiOGjW3gR8VKxVD1bQstBQ94eksUFVuEPOghVnzLkEOdsfXV2NtSvMvjuQkMVAmYRkTMg5k0OoCKcDVYHkDDd0iY2reWNRoYPis0kN5z/ptZQMh6LscNHZNc434AK+W9KpNEtVEyZyAAid5bf0aCKfV/Kg1WvVb3Mec8pJuqKi+8wpPrQasx09ykUYtnPDIoAljSZNBA7vvCHBmidd6tQ34Z0xw/61Dum2W7gk4fxcHaFp0gUmOwOfU96v/k7qznEA+hMEMLu5HPHFemf1rpFVqKAEcekkdjHRsMxbRWXQwVwkKul9vUegFuslZPnjzF3bt3ce/eXVxd3cG+P8uQLPXhAmK22DZps9Q9eRFnJ7ti6xLMMdN/t+W+mrV8be778KME7vZDyLeuU4RO98vOuk4BauZgBeusULqkzNPx4hhp72dWlIAILDMLE6S5QCXCzi0MuJiWANViWKTnExjIOUTty/yd1e9yncZQzIVJmSb2JsBWfJaapQ5HMEwtnVM5oD3WfqygcCbjfnD8ftpdy9opDgXcYhVYgM8M78gJ5DyuTsUaSeAQt5jbo4MgMOJejhHPRr2/NFhiJcs+vhjK/FLXKw1Qet94GEYfjqUK8mFxqbIrD7LaaHPsmS5cGBJluBZwQk9y5ALSxu7WUzVu5plqyoO8QZ2MLQ8cAO6J3Gck7hNkxGI1Zr3ks8SenxHHawDFbmHAKsY4sN/sOQh5KLSGS7YyDxZmTFj3BAvQcxtYR6EpFbAne8Jn5z32TR4ujSOIY3C6OgGu+iB3orpmzyJcfevhiTQe9sZ4ZfIBYZCsRSobymtNXyo8zr51bAKHKHACVBo4tAEdaJuKrkVDsxgjdkMGlKLdEpgKXEQ/pF4pw3BEf7M6mCoj58h8KEY+oueQQkBm0dPGlBV1DBuum1k9h3i41hrid2j8wvOURmdEufN+IsAVS3bLuK7hS5WZF/NA4C5Do/BOvA9lzBD3JCAhQ6X7r38z3KdwxxoimHOp0RDrkTH4JcQFFl5rm4B/Xc0M3iK7yCzr06wCdHi1nNDazddZi27lnnC4RcEuNpFz9O0UjxoMi7zrvAcxlhbVim979zVmmtMK4Va4rvQ1/PTr62s8efIUb7zxBh6+dh/Pr58xld08QTWgmi3VxC2+OSvfZs0dFCg3WNopj5DCGsLTvCUgBNI5sgNARgEhU7Eyet1zTty5uhOghEX+tkZ7nGwQ6vAMnmA5CMMGjYnttLHGS4jkqXqrIpEas9Z6huLpfIQWxRjmmFD4uWo/SRSsZ88idqqng7KTa2KFpipME6bPTK/dekc3YEbYWfPRozQDQ1yWjggAzAhzNxRQEWsBENCb5q5WN9cVPDMjXXsxhkWgQj+oCtDSlRWQSIcw7HV29HaNg7Q0nvN/+/PlkHB4lfF5tD9f7nqlAUoMXywYW+jA+P3BC6qFwZbeZB3GIuDk2RjeA8BSwPFnrl6dFMrGkE+V+T0iQzPLKrd1x/VfFl7WwWz5YA2XhQHQ3fX83oT4GJEjf+rRuVgbzCscBIl9w6vYd7IdrQGYXPxJ5xKewxAhMov26WFE+haVOw3wOBAJaNRFV15MZVZJF8AwCu9ZwkB3xzB6vKVat8VQ6VH32ohtpgcmT0nMFsM5nSGhSCV2TGynjtMW9UuczA4vFnNbRWjyBltruFwYAtviuQ9CRtMhXSXkBUzWNXA6nSBPmWGdEV5UMFixfhTy0eeUEFZ0anxfenQg8xRjOxzwqf59omW31D1xvatuQyuwEZ+V+0dgA2SoBsayHov5O6CDMIL0yJYfL6xkxbSPJjXr27Cc7AL4WL+mWVWlFF3OedWhUjigbQr7aHyiwm3MC8d9Ede2AgIKC48wyvpOfV6uZVNNogqPqER5i9orDkR9jcoGPGb2aH0Aa/aQdEtcKy0PrTEGnj9/Hj16HuDp0yd4+uQ5jb/3cBz4OfsY2MyK7WzKHEFkrfHze4usk8U8JStiPKwjNl2MTHyuejdl2G86dt9x2tjQMTLR0VtlV5lRC7g7qB1MlhcVutH/OtmIhvLWdZNrOK1p7IJFySJusVccclBVYK0t6wthawGA2WLcdyHGdzE6C0vjyPdbt6yfw6q9ZPCSPYs/c4wMQ2cYcZIZUykLhd71jBWCrGddne5cPBCQ1vyFbrFKqrEO1kvqo3A+Y/xVniEyXislXnugw6wcSTlLVZBRdssOn1+20Q7P8G6vVxqg1APfjuMffe6+NmFIA0hE23A8ULQAKxNC3kExKgAy5AMg46U6uFWpVMZY4qH18PHpUYfF09Dz92FA1LE3vls6ClXGdPcQwqrzZxwOA0sdByRoEC3H6qJs1OegARcDtFKZKnQ0RoiFxWGG9ZI3fbo6QRVVAaQHp6ngWyy0JhKYeT4bC9AFhbmIrHzWWOmDsqJoxHvXGHNpE1gefduusO87xrzB1WnD6bTl7dOgh1EzraOJ1k8xhwRm9Ox06FaYRn9c5TUWAawO0DVdkkLglusUCE87PDuxB+sak8daIkWlJfKPMr/gHhlEQGtbMkcMM7b0HteaIRV2GblL1tBEelLBVkyboMItCs+1KgoW01hbTodcXMfMlEVw6YsuABFeMYu4P4DmyXxUyEs22YE5I0zTkQ5fXuUBarVx7HC4Dvfp9MaHVaVLZQ/5nIvhNQpwZSOs06bwmKDGwCv+b1DX4jqAV4Cyep0VIuJdj7Gjahs5bm5u8Pz5c/boee113Nzc4HIe6XBJJD4n6/5IO4Np8N5Dl2DHsVjOizXEmE5OqwaZdd9We0f2IOZzDDWAJPfZQ5snOwYgdXi+fHk+dR6+crAifLC+ThmIJs/cDuNnHdTEzRkZXLSr1hosOwmXjdE80KGhc1WP2hJ83l7XYplhBgvwP8MoGIBQ9sXnhNonfkDAMqOuTl8kCbJpAfiBQ9PGlU3CLHZ5Rnl9Ok0C7Z5jtl613gBEGL1H5TtfGLHcQ6pFZHVvysLUdwh0aR6KPYmxz71qt0DMl79ebYAC0FBJnOTMUVBeOqKQWQqu2obWtQg8qlyqEiUngor/atSX3wPR7IG+lw27mBt4TqomiQeKPF8HMF2MwczMhdtX6+FVuDzIY2VE6QYk1ssN7XXgAUdwJR3M2qehLaJIxN8CBWMfuLmciZ+3LaqtUmNCqvUEd1T3ZAETIYEm7iji93k4AR66DjhY1Gfx0lRvJo2iAYZ61l2Ft1xfGyzSxg6pHnHq3g19O2E7VdsDGeC5VDidDrRoMscxW8We0h14GmACRgNlcIjfH0t8Kz1SNRHIjiA/0/J9DQrbl6dI8GGL7rCMDw2dwDEbmbVYswa2cPUct9RVzSVjw5cwTYydwhr0kEEjHRS0QW5psBpdIalYixIsyzpCDNCL3tLKQuVaa40idQNLIs+BZgzhaA+YGbZNe4BgoFnLrBzR4HXIx/fFz9axWJ/b4l59zOhezHnhz62YQe3sYDnmnLDeYfJM5VzIC7YAFpOGvfe1CBYyO6kMuvRZQB07tFFi+8YYuL5+jgcPHmSfnn1/ymcZk42nw/hPm7BhabNyvd/yx8g4CGDVHKnuBSb7WpF5WN9Zuhm9V4XEZmS9BZfFImm+MGgxhXo916uEqvosgh6209iyMNvtFXXQ7sRn985U5Hy1Dv1BUJ5NW0FpaYtJ4XlQoHtl7V56LZuT54XDR50NWmsjncVg66OQ4LaFcxcMC8PAnh+NcHQspELUOopRZWhLW0yAMZ50aV2IdAJc/+2eSQJhJtCM3chfLEMvoFENBDU+vKeI7eub0yHR39H4CGR7W4rX3931SgOUy/lSk2IUCckwy+O2xjQrpl6WOGiOgh8yYj5Fa/daYLR69TMZpmXSeUW6YnzWQT0PRyS2U8flnqXz14NYcWDljivdr9lRBLqGMzbpBpYYYhZuCm+TC4xIv3WBAR10x9hqhl0u7Nrs67M76cpMuwXyoFJDrtWK+eCh6GH05xBNOiO11yKjx/MQYmavpaGhiDZK1Js2RnmB61gDiqGyouqm9GUs1L4zxFTelw6pLYFIa6qSuWxiW5kOvq81Cc94GMk7KG95NWz8tzt1LQKwayiLzyXwKKFjxaUlqBNDQANRWULAJIMXAtFmTLGvQn8N1pwi5NZh6Bj7nutwXcvp8VnD2nYdVkJTvdad2gCLTA4xUvlpB++53/pZsRzENww5uER/ETLcTrX+tU5TM7MAT76mQgf6PffGqNonQOot2gKe87BUt2mFthS5zNRz2pYsPuVY7i+GMGyCR92fOYsNASrrS4cPm4hyL8xxZL4kmL2+vsazZ0/x2muv4+HDB7i+vsb5fIYZyLhAAm7w2RhExLJEcor3fc3iCJHrvkd3ZMfWlAEZey/TRD0Ob44T50KZbci0boTXfVjfytCSMBnGjr1eQMM9hKG9MiYrtZtj0tcaV+ksypvv2HrH9fUN5zb61lD43ukALZ58VhH2NTsTuQfWrK/1Wte1mOfTSbaa97MylxSCS3xOB+ru3bs4n89R86rWeGstUrBZ88X4AWEXWzp3PpVJx+/siBBcW8KJhXePjGYAFbOG3cdhrnQdn+W2AJ6/qzCqxzqMsJhzL0prBQhw/gERyQKg0DSASV9ZhoB4Hq+hAQuPefCQkq8i1gSgx7RWQoXLSAJwerWtbFz+hzwoCWOVLcK3xSL2Vp4/VqPMCTUgv9untNi1aHVpkV2dGJIY0b/Eb2+wQ2KahmWiN1KvPmozyAgqdFRCOoIEoW9WjAWuTlcJhDJld5mX3NRzAQLNYJgRNmKVRZ/0/lrbonKpJ3XaN+on9pgfeXqiqc0sayCMqPi7GnMZfT4zKUyK6pZS3igdwlSoKca/QhEawwml6WoDmgx1FsmK7+6WsW0shes0H+l9Lgf5SqNLoNuaPFo990xx+FooUGtkDRHMW3UMPIwRmYhjxoZ76Qrcy2gnO9Ib2YHcXh6g2PLeJ0IHkNrQui8Zt8ul+snwYG8RdpUvUOEFrsVJViUuMgotPG4BhpgLvSZApApJcW5HHMiL5x9rX00vD1f4FBrTEVofh7J6CCKaHfdmpqvKfsBZLA1I4AtMzCkxbYXUuC7i9cthbVnIjeNxfX2N+/fv4erqDu7evYObmxtIXM+laTl3rL/SdWspVkhwuNx7W3RhZsrmKvu5R7YjDCXwB6u5ujNkbcGi0amo8KOuvnW5hBwnd3TrZaEmqKtzHuDt6gr7ZY+wpQHNQsiKqINUzp11MkXnmzPuP7iH0+mES/S3gVmUiejJOOpan1l7Pu42GZ3VtmmdYvlbWsSqW8UK33DPeansSY7TuDAcduo9C1qS4SAwHtjTFroH/+INHZ3O0RiheeI9JEN8i2daQz3NYk+Da6FchBIE375u7+XVZtg6cShbUCGiWFuNTLSjCpC+m6t95ZfU9fGPfxzf8i3fgtdffx2vv/46PvrRj+KXf/mX8/c/8iM/UmxA/PkTf+JPHD7j5uYGP/ZjP4b3v//9ePDgAb7/+78fv/M7v/NebiMvZldsVEn3hq11bNZwah39tEUvFT9qMpyFm6SziB+mISZiIDDIktdNsdQKp6yLtC4anHI2w5OMg0F4I2lQdyj7Rp60ytsXHX0EHSslv4+B8+WM65tnOJ/PmFExk3HQ4yLoVw39VJkoVR47DFAwDULsCQCUuTJFe3ds2ymzHfIgWVIzD+EZfgM9xzFxuVyySJQAFYDMfOqtRyEmw9wHLucLZhQac7CA3h70c/UBWrRBrWHMC3RIjzmKIUsQajkXqiMzR1SXdQsq2FGMWwGYYwhBTIYBFmzRwgwUaCl2a32f1kjG5P24pnTo8Lmol7IF3OR68CMTJ8OvEKKeQSG+3gkGly8K43U0PO7Oqrm3vCbtp1yTi95GqfhiBtb05rUx5AGICfjOEozPfSfzI8FjHM4Kv6mKMttQLLF7V/YSWboxKyQj8F3A8Dh2ratnkC/n1wosa8zzEAKWuZhgaG8ua27E99T4iSEDyCis+hQxFFxyfO2+F9Cck2Ge58+fo9uG+/cfhgi7DoY5ZrJc0z0r6c6ofLqCk3W9Sc9Gk7fWe6LdTBsmYGNHgO1K5zdUHarlLNA6OJ1OUGac1iaF6CdcXd1luYQmdQtf34P5bcYaLgWeCUhV7RoGXPYLnj17HuulAITFHFmOVYFQ7e0SrFeYXPOia0YlW62pLL65ZOEQ4B7HmJouarjk/I6dHby31rBZS+e3C6g4u6crE7ARGaM5w1NyYnqPhqgItnnZYx0sdiHpbBaocKQ90To/hEcXe7D+O9epI79/LmfsOtcrGOYaiRDyu7zeE0D5mq/5Gvz0T/80fv3Xfx2//uu/jm//9m/HD/zAD+C3fuu38jV/5s/8GXz605/OP7/0S790+IyPfexj+MVf/EV84hOfwH/6T/8JT548wfd93/cdYtrv9rLOZoGtd6YeaqEsAp50foEEAL0Z+sYY5z72BAS0hCPpXguxZFcBtWhHnb5ReKFkQmJjBkpX8yZ5IM06WovF6evBUsgzr1uHT/7Y1ZuHwlXRuzowMiXu1sfR8LIWSTMWTGLjvBPU7RQIcLJQymt6rOob9NZw2jaoiisCnCid74Vqsy2KY80d+zhnhVsfRsIzYpvKLuCbOC775YKxn7FtEQedMjYdV1dXcbDXgFGPUBtF8dSKZQsQyIsjJQp5ijqUx6U+MwXEL6YA17zM0EyEUGzxTGXkx1CJcc+1UcZ94WDXZeBS9guQKM7M5xmz6pdUeE6fF6X229HIrEBtfRITDeuWRhoIT3g69st+6/1HQLIyidqDFTJryzgGkJjO0W+OZrHvIjRg05f6LQT0AvUC0Dpw9/2SQu71QBjxu/1yweVy4efBF0F4sBMHIH17bgnm2JuLh6JSkoGlYFmIUWWXld1W86i/C9glmEhhYayjOHxNpc+t1p4M/+Uy8Pz5NcacuHfvHu7fv5/PIU917FVwEgKvreXeGmLfUAepNDgJHlHFuNhSIX6azU1jbaXYvNivdX0ASK0bbYQaB2rdzVwjrXVsJ9oqX8T3sqscH4ajVD+lCShpPmG4XC6sB6VaUjUbt4CkZ3gHEb5uxlIDa/mF1SFdgZrE6CqCuYI32Zgx/chOrE6I9tQsRljArrXIUhoTNidUVYnZnxOr1jQdFBWei88uprLGIbuuy1GTrWsNG476Sj4v7YWHo12hMbHtK+jV3rBIDODn0zlrudbf7fWeQjx/9s/+2cO///7f//v4+Mc/jv/8n/8zvumbvgkAcOfOHXzwgx986fu/+MUv4p/+03+Kn//5n8d3fud3AgD+5b/8l/jIRz6C//gf/yO+53u+573cTra4FwpM70ubCjo4VgNEIzXHjv2y58LITdmYp22mYmilUYm3RxVPLrq+1D1Q2us+drioR+Jmeqw+Mi2NH+XHRbR+DyrEI43Fvu/JbgASNk2Y8svdYkPWZ7Xe0foGA9KwN7QwvOWhz1H9LVbmZIyBs0pkL/eYhe0CnMQv0hQwTqyeRsGawFnTxUqcZWKsTGnK+wLenI3iUF79adsCnEh0KO9Ecx69lFDiadSt5ziKSREokReguWe4h97Syy/PDVsl4RcP2ACPoPGxaitQ7IO8S+ScHdkZZZ/VYabCWwAq9dEEYipr4EjzxmdMDw0tD5GjdyfdCvKeEjZ5pJPHihxzB7OlwkOL3kArfa0503JemZNkWNpMcaAwkwNZ7I+2c+YBMd25VKIYkNgcLrg46K3KCMCRobDWGk6nUz6zsvfSw4exyFaXI8LnVojCMTGHDuzSQMzJQmPF/fDKyqpjJPA4ZoIh/5t1cdRnSqymMUvMjDWBfLKJZrAG189vcHPvGg8e3mePnuvraJinaqsBJMJerXoBZdLddox8spxA9ehhWG8MRxHADJFbp+6AjTtndkpvrcJKORpOjZKq9O6Xc96PgcUjOzbuJWXcWIFrFWfTeM3JVgAsWDcixG0MJzcWFaNu3wnIQpxqvtQZWVkBOVRZOwRA45yMfQeyArFMFdeIJAXUMtEG8UY9h1dn08yssxcz+F4sTYCcGzlmCVDTnyqwob0GgI56PF/jL/g9OdXB+DgyO6kcOn9xbPKeWtosCnkLpJjVetI8lZ6lQtkC+ZVO/ZWv98SgrNcYA5/4xCfw9OlTfPSjH82f/+qv/iq++qu/Gl//9V+Pv/JX/go++9nP5u8+9alP4XK54Lu/+7vzZx/+8Ifxzd/8zfjkJz/53m8iGqxpkvY5okLpAMZE84ImPmdRv/vAJWjT1jce1jF4LCe+NvMrIyYqfqJYghZAJutkjCpsZSiEmnTw4uEnnagskWYZBxZ7o06zQ3qP5T642BYjmwuKn9uAFReHAAAg3UlEQVTbxj/W8/kNEhdaHMYEJ/sYqfvYIjNk33dc9j1Qn+efOeStyIA2xslfoHQJBvZ5CdrRKeBpHv0vSDjCevz+qKPRYbzvl/B+Wx4Yt4FDUsXBEgEIkEmPbEu9zsz4eEIBq2qJGtcMua3ezrKviqKeOQ66j8PfqI26UqmAsjbagaUB9HlHtuHw/R5jZ6tHX6DucN/h0dx+iAPD48X65HxmamelhsubF3V+MKy+Zs/J0zr6Pyvw7W3DflHWCzN5BPxd4NwBsy09doDGfdtOVQ26GbONpE0IHVHtEcuwZG/Rk2vRXCkUsW1bthLYNpYGaL2MbW8h6G4WGqBtsRHG4mHWYr9t+ZzJiIQdmHMv7z3mX6nEGrcFGiYgEfhG6Bj2MfD8+ikulwvu3LmD+/fvF/gK25Hs2UK/azWI8dAl5nP6jOcqBmem7fRiXsT+hD3I3mUx5tSu9fxChda0N6cXszji/XRiSidEMMTfEYgUWL+cz9j3HdpSClfATbxorm8BZT0f11E5ngXSkb/rIRsAyFhk6H0M+D6qDpP2U4bCkEC9ADv3bGaAebXNOLgRMSYz5LRY2CgAcQYEi+hzCeYc7U861wIgVuunw5ClNhYKRu8/rpLbwEmgyXM96waLXUKCk7JfCrnSZrc1vPwVrvcskv3N3/xNfPSjH8X19TUePnyIX/zFX8Q3fuM3AgC+93u/F3/+z/95fO3Xfi1++7d/G3/n7/wdfPu3fzs+9alP4c6dO/jMZz6Dq6srvPnmm4fP/MAHPoDPfOYzX/I7b25ucHNzk/9+5513AOjc9BQjZUwwKLcWVVAJ8r3EcO4BIvohAyS7L9pM45OlnsOID5/smmwWfWoi59/Wrr9qId9qxaImi0ZwC7CyE2nb6l1qsel2ufKPGRs6xOrgSmalsbOuGnshNpj+HTpQKMNlhL7kpK6gzs14CaZBVyJ+0MttrcM70MUgzFlFnwBWUgTQ2gkZG128fzSmAcMsWZgVzTefkUbHaoy6C2VprLHN1hmn3S+XNEK9LUYSFN/Rk2OWz0o/Mw1YWTVHgKB50X/L69fhRSMe2UwR4+a622HY4nUzPGU7HAyVjlvdQXUgZdXanG+yNXN3tB5i0XCpJjzfJ5Yuxd6L1651Qq3GOGbkeHxH6rWOGg3Ni+apRcNHUdpuzNhCZjrZYRzrYJuLcJSLf2aYNW8SJuAQYQAKom3RLlhUAVY4VxS3peconVlrxUY1M0wLXc+ii2kGsijWCyShxPXqUt10cIcXOuakfqBtyKq+roP6hAz33pqDcnwqhKf9JmPO7Ci+Z98vAWZnhnjv3Km04ydPnkQWDp9p61uwC/WdrXcYat460zgW8B0ALEK7Y+4LIxbp1VBGUrhcrrYRA11l3n1iaz1Dw2b8WbeoQaS1NQCm2g/SHsE6CFhyrdXa5prydFyOaa4CBWJ7AISToqKR2nPrPuDcl3Yr2fjWmbDrC7NlLddvO90q/eATLVlP3W9kkqL2su5L3zXGqESOOWEtmNxg37UeHAtIiDmdwdasWUaH/QZkGwS+tJjmhopCaL+6B+hJAKs6Pn7r88smmNV73dfPQs6XAIr7sUTBV7reM0D5hm/4BvzGb/wG3n77bfzCL/wCfviHfxi/9mu/hm/8xm/ED/3QD+Xrvvmbvxnf+q3fiq/92q/Fv/23/xZ/7s/9uS/5masBfNn1Uz/1U/iJn/iJF35ujtJCAMD08OKMHllOButUcNIb00yjtAM9Ditv1CpkVClqVbbYzLClYanS52N3SEim+GrA+nxGLfLWSwG/bVfYtoZ9vxxEplrkFrUtXKSeFhRQqu9bf7Q41kqA6s8hgNJ7B9ww5wVmcdgEuzPmjCJlovote5vogLkKj5PUZWw+1T1xbhwqxlVAyNBs2byN6n2mRE5A47ywBQqXrDRmpXJX6mseVEBoatrhQBCztQ/l4fM+2sK2HL2BGLOFyRBIUf0C0ba1fhnq42HtcX8r0FxrYfCQuc16rH1revQ54ndYGRss7JwHeIKyZOo5KZwkSMoTyugVpVYjnjwb6MnjjoNyjokxdNAbkhBcwDQCjqVRjwUwxMh1Fbw7Gjj3Fh2tLQtqCeiYocC0UdAnQNEbMOcl5noDTCnhpqWOZEdalUoHlA5ZGWYstljZUGa0J4hmlkIGNK5+ALseGgD118m6IfD8PgYwdGlu1fFa9s5iLRpYrVPZZJ1sYxr+SlnV91wuZzx79gx3797F3bt38PDhQzx58uT/3d61xVh1lf/fWnufc7iUjAUsM9NWRNvYIhfrjBewsVa0pmk1XuItXmr0BSOVxppo8QFedHjS1EQxoqkSTcYHWoNRaaexUI3RJlzCQA3FQAsidNILMIWBc/Ze3//h+7611p4LZfAfZk67fskJw9n7nLP3t9fl991DuQVIyXM/jtlNxJuimPptBhiOxVDioBYQI2QzPDMg83EEIRuK6+vwc+cYLMCUQEG8sdosLjDpog0avGZot2xVYKKtwNoaMqsEdKzGXpQtydAT8qzjTNZejXMyTmu5MPFVEq4djnXOxyTSGgNYScXXMRaRvXGJuwRIV3Yz0srbYf6CghUF1kay55P0806taDK/4t8zIM560jGtczH6dS9meXn3DQBTVn+PuWXwHIR9yADc8Amx1Se+f10PdK0L0533RC7JID9WsRtdHJN28dTrddxwww3o7e1FX18fli9fjgcffHDcc7u6urBw4UIcOnQIANDZ2Ylms4mXX365ct7Q0BAWLFgw4W8+8MADOH36tH8dO3YMgHTe1dLdynytYcaahc1JCy75wE15flme+TRadWt47s2rJJ9oIrNfLkG5EpgLBBNW7H7R+ifs/ywBUyLLudkcSSXQPM+QZXH9BonpIHlBffXkNcc8y5BLVLsuwt4qYsNA4W3GwVELjgrW/jIr5+SAL8kM0X5Yo24VbDpVHz7PH9ECLPgeJJtJrSI+iM8GUz0oHuAcL5PbOvKsBi6jL40GXSkkhrVMV2oJbN0oRful8J1qItXnq5Yq3eBKqfTpXSeyAYK03oTUyTAarV8AvhCc5fTGKEU1Jjpq+g0WlZBW6APGJCiOaxVE6eY+OK+MtM+q+V3dPGz4Kr1GXnU32sq/BJZjqT1Oojo9WaZdtkP6NctYmjvCgKIxz0HSwYVIqN4n/OYfNuMxqoWxfnNXuVUOGwOgQJYbEEppxljwRimFDTlOyYFc4QOp9Xrj9W30b8eapC/IFbmiwlwL18UBxyXfW5YDyACjBQyjxVdJoHdzyDGnUorlBQQ3YTwXorlOgcyEzyA86wzIchYlZ9WgMlbKsoVm8zzOnx+BtQazZs0UxQNyLlWUHiXcrNVLXImMQ29JEy3bZBz/pYHyVSWoShL0mXpXitNMK5LrFPLpyQMrf7oe8XM3fh0KRJXf02sY/dSpcm8WvuVktO7wmMgQqphqqGm4brWIkW9DOepY7DI08IQr3maDojG6RUeVzIyup+IMQJYtjxzfwq06nON56YiCO8dAV1wvB6+sAMGKqr8NhEJukGJ5Ij5jLbjfm1p+9dnDJzyAmMj54pQAu7uiV4xq0oLzLyv712QqyPrvnPQnRoGIKu6XGC+++CKOHTuGrq4uAEBPTw9qtRoGBgb8OSdOnMD+/fuxcuXKCX+j0Wj41GZ9AYCTxYt3Hp1QGW/8Vv+1npTHG05mDWp6ro8/4S7EJueYCgdeJbgCLR/L1PpguP5Iq9USE50OfuM3Uiojc7ssbEXZ8mbTkF6q5aqraW1MTkyoCxKZvLN40oAHImfbMCFxKEQDLjjt1jhkGXzwoSsLlCI/UjLjxPUF3sjzWujHE8zRFjY3gCGpLKtl5kkCtHi6OOfQbLU46A4SNW40hY98jQbuJM1xQ+zfZiLH5ncj2pGYC40Gizq5ruAya0laKvurC13COBhaCJeSDr+xSyZI6ENRoFqXhCdaljFpURO/WgSyTGOPbGXCsg7DOot3aZAWMAqBcc45P374mYd0WI2Q90RBFl0dx0oSYu1arRb1eqNClgH4TVp7woQ+VPxbTjJ1iqIV619McmyIZ4izKcI4jUgTwFqxxFWMTc32X+2JKMs6/IaBERM231dLmnpCFREAYKObt7QEuYQsCDXn+Qy9MLn8nNJrNvLM2KoDH8cRVxH2ZEWehKoBADxJ4efGG0XpNMU4kKLxUFEqdCOzgYRqhpg1EowcEZ1Wq4mRkbMoS4dGo4EZM2YwWS+lf1ZJlR8upTFqGFdRJ3enqjQkVdnBZBKXByXoFj7zz0haf1FyOjrg43i0UCS7Ygrp5QQfA1aUhSiVQQbq5rD6m9ZwR/VMm3XWvMtDN2eQBv+XXi5U2cRljMYKRySPSlVjUyU++jdbTfMoIy5WTGI6MJagACG+R0sx+EzHiHTFc9X/tqTdawPKQHbjOwXUYkEkJMVIUKzP0oFXuE3GextZoCSDgsSWm7HVW9ceV0alBIhgKJCjqrU+ELBqDS5dG2Iio+vEpdOOSbl41q1bhzvvvBPXX389hoeH0d/fjx07dmD79u145ZVXsGHDBnzqU59CV1cXnn32Waxbtw7z58/HJz7xCQBAR0cHvva1r+H+++/HvHnzMHfuXHz729/G0qVLfVbPZOCZbc7WkSxuz234wcZFmDTAS2uaeH+E/0LAGgey7P4gaUcea0AkGxu7dcRlIN2OgTAYSaL9YXigtYoWQBZcFVa0DDIwDmi1qiZwXqBqwe5GapXRgjfk04F1kLRautEGIhY0Xm5Yl9nMb3wkC3dJvKnlWcjECCmOxk9ub+UDmxJ9RpC13nIja54sVoRa1EDPQKwlEsNCAOqNhmfn2oLc5jXU8ly6IYfgyPhe1Y2lrh3taOqc8356zcAJxCG4v2y0WZMjT1CLImwk1sabb5iIbG0JJtCqiROR5SWQE/0/fwe7b4qi9MRFLT1x8DTXH8thjJMS3Op2gJwTLQ4l+7jZIqgLHY9d1aBUQ9S+THFaupJqbZ1A4LljbS0K0I3Gg9/8Q8yM1WdixY9uIM+kmk6tKbTkWlGgc7TUepLHZb+duspIuhdH9yPfKPOsovtG16v3HoLzKu44/+wIRVn4ecwbrKRHkqYnB8tZZROSOV7q+InSbUcv2IAu0PGct/6Z6PzWyrMhuDDcX+g4y67fZus8ms0RzJp1Fa66ajaGh4dRliUHlBMrHch0My8AkwvxseC0LibmfgMW0qoZgdYCJjNcLdoY+Cw8kZURa58VF1We5Wi1mr6buDWc2Zgj865YJjHOW7xJxoK60dRlDJDUJ4qsYLJJls5JthO78Ekt3z7lKNwPu2sIKKOu4FDre+bd+4TYGhLmR+lCVqCx8JZeLUERdzKPCT03wHQ+s0rnT2arm7QvKhkpqY7CGjiWEEGIpswJnQ/WIq/VPJFVwhGPQZ0Xap7Q+R4rQlod1pNTJUUGkDbu0L0zrIETk/DY4jhGWbkIJkVQnn/+eXzpS1/CiRMn0NHRgWXLlmH79u348Ic/jJGREQwODmLLli04deoUurq6cPvtt+N3v/sd5syZ47/jRz/6EfI8x2c+8xmMjIxg1apV+NWvfuUX6cnAs2oSXc+GAKqyxZq5RlcrannmWRyJ2Z/gAGm4B2t8xLbRyoukGhIXrjLGiYlSgvasdsGM0m2jURO0oswHexL4+srS+Qen8GyfVEMj//C50BkXqdKMFq0NAUjgnxRW08WhVmO3SrPZkoEiTAIUtGHeXyLOxoXgQEBua2Ir1IAx2VD0M8JMWmWTuyYb+JLbMPBsXJFnOWr1HDAcF8cp0vCZECoDAN7sq/emk1W/m33TYePOs9w33tIHr5sUoJuRMH0jGpqxUncj/JZzhDzXDBvjzdRhEwnElQmntk+PSGSplhbx50NN4Kz5cq0ZJUdqLTE+fko3Pm+ZE1moi8nHJFjDrjNPjihaiIKGF5pGxuMzTI48y/11MgHWGjlhXMtD8Ys1ESTdPlgiePiIizPSKFVOTlLODdQKBL+hy5VGG4g2iATUAqffRcQWKFYSqgufuiz170BQ9bPGp29qaXYiB7I8ttnqJl2njUVGmqxKkfdKCYfh5BoXCKsPmtaXtxZYvxkFwhOqOWvAdGzJgyFf3EqtdV4RIUKrVeDcuRHU6zNQr9el2/HZSLbg2hlCKrWZZCnWIYzaMFj2MoZInpS1HFStBFcsvpqFpoHEgIHNDOqm7jc+tag4ImSythjJwg6p8krowjWETDJ4d7snnciQyXgy6laWOEIQokBpLqtAnnCFdZKgJJAVT5BYLGQtD89N4v6s9TVcTGa51gxpbFTmS/OrNQjQmA8D46oJDn5NMxL9Q9pd2kTPxIgFhceN6BH8TEdZMvwci6ye6nKy0X2UID93mfzwsaJQhXdslo2J5yjflX8W/hwTx62Mp7yJwg72GFwqDI22R7UBzpw5g46ODtx08yJf48OICYvAm3VRtESOViYJAAvUaznIQQpnxWxUYiiMbkZaZjzz2qUuDFnOAZ/WZJVBwqbLspIFAQihtwbW5LBGYwAk5U0mW7gOyeawMZvmQc4DCX6ByXOpU9JqsSZuM+R5ZMq3GggXyJOBkeqqmoGkmz151q0VTDliP/Q7IWj3W2HQJgxS5xxaRQvOOeRqks1z0SyDK8Zai1o9h824mFJMPjI7mqTqfQM6Kaz42IEw8K21cFFfkXhylFLDw5ooK4DiCpC8gLaarYjQ8OcbjZoPtCzk3nSjs+JCZKJQIkT587GyLGTz5BRXJQNKDoqiEPeiauyBiGa1PMgFkYtLro0DYDmQmbtSE5RuhOu9wARMFxEhTLrBswWlquGrFQQAisLB2poUrXO+Ho2SZjXpqxVGCyXGhEQJdSDuVoJhAWMItVqOefPmoePqN6AoSxz/739x9uxZlK5Ejhprqo4bqeW1DLVaxhGBMN5SxM8/C/VUKhlScWNCdblVi6ipTInIb5YGBs1WU+qKSMyBMTCoyfwMKdfG5MG4EX1tXKKcXLTz6kigUq5nvJR5noe6eZZlKSQ/zBW2HlposPXMmbPQ0fEGzJw5E+fONnHq1Eso3QUQWU9mmN/peiVzjfSZE68XahWBnOvJk0WraHkZOU0b9soAhCjnoWS+C+NdLdkae8ZKlIyTaLMFGb8uyqDUP/hcR4CRejUwPovTRsqgXLonptbomuFZXrAeOPKW04qbR56RZuZoJdtWqyX3KmuqkDmNTTMWvtItEVA4LYoHIBoH3rUoVhsjY0bj1+KxEqwOYuXQMatCsoGgZLLeZ5rB6hyXhoiUE8BJzEtNxpkST3BqPbLKehPGZUw6VFkIZGU8KqFjlV29xpPVg/sO4vTp0z5cYyK0ZS8eFQT7U0NxsdIRWq0LnH4GHuzWAMitWAsJzVYhi7XzJlkmqAaOCq9ua4EnrZ3Ci6IG1BroHNIsFCZFZWUjVtICkkwJJxVFS4e4FL2vOCHaFEn/Gq2PApTSP8iBHBdZAyJ3jXNcFdbY0EfHGlBRcqkwY3jQgXxQKltNeOMrSo2e52uv1bjZmHMG5EoQcYaCzWR+Ubh+1qyAVtGEdrwky5Yt5xyXqi95AdTsF05hDhuZlXovGssTCEisUYkGXlb9nMYauILLnSsBiAQbXG5G04jjxdJW5KxVUbWdeFFUa7PIlciCESa9PleIrJ3TSqjydAnizhHNtXRyLVbiFciTMMPM0C9gWhhMm5x5Ily0QGDrlIFmBFhYMSeX2rvEzxlIPFTmSYS6Iq1s7nytDkUhsTBOVnFrUEbPy4j2yfEqfJ0lCHH9JY3fKGX+8HygiizznMdv0SpQOAdXlL6aMagULVfGZQkYU4JKcRERp/VqTE2W8fyMzdZZTMwNv6qtHOJr5YXaWi5+6MqiosAINeVU2UyNDhLIG2X4qX+9bBahZPuo9GnoJkFspRrbmyRom/73JV6nLCOt3gfYEy5caOLcuRFYyzVasjxH6/w5v0kbI3E9Rt0MkdsQIufShW7vMt9YsSLYjDj2yhMUiZkrQhdvOLEkltVAcrXcxM/eB+9KCrEmMgCoxO15S59YVFiEDtSSz2eWa5OYsG4ECxPHQJXE9VJMZWGB/32NGfKWrPAU+HGZkLbPhKaUnkLybErO4spziyyvEiVHIRPPUGi1YNToG5EiV5BXnHTEKEHhnjsGalnzrhhycDbE/2k/LXYRG7HyhAw//RwMcRp15ILVoGoTGVa95aWMY7EMjNHxKVYnqMVKPidjx/dKEq9FHKdyKbaRtiQow8PDAIBDzzw3xVeSkJDwv+Do0Rem+hJeQ3h+qi8gIeGSMTw8jI6Ojoue05YuHuccDh48iMWLF+PYsWOvaiZKYJw5cwbXX399ktkkkeQ2eSSZXR6S3CaPJLPLw1TJjYgwPDyM7u7uSibTeGhLC4q1Ftdeey0AVNKOEy4NSWaXhyS3ySPJ7PKQ5DZ5JJldHqZCbq9mOVH8z3VQEhISEhISEhL+v5EISkJCQkJCQsK0Q9sSlEajgfXr16PRaEz1pbQNkswuD0luk0eS2eUhyW3ySDK7PLSD3NoySDYhISEhISHhtY22taAkJCQkJCQkvHaRCEpCQkJCQkLCtEMiKAkJCQkJCQnTDomgJCQkJCQkJEw7tCVB+elPf4pFixZhxowZ6OnpwV//+tepvqQpw5NPPomPfvSj6O7uhjEGv//97yvHiQgbNmxAd3c3Zs6ciQ984AM4cOBA5ZwLFy7g3nvvxfz58zF79mx87GMfw3/+858reBdXFn19fXjXu96FOXPm4JprrsHHP/5xHDx4sHJOkttYbNq0CcuWLfOFnVasWIE///nP/niS2aujr68Pxhjcd999/r0kt7HYsGFDpRGrMQadnZ3+eJLZ+Dh+/Di++MUvYt68eZg1axbe8Y53YNeuXf5428mN2gz9/f1Uq9Vo8+bN9PTTT9PatWtp9uzZ9Nxzz031pU0J/vSnP9H3vvc92rp1KwGgRx55pHJ848aNNGfOHNq6dSsNDg7SZz/7Werq6qIzZ874c1avXk3XXnstDQwM0O7du+n222+n5cuXU1EUV/hurgw+8pGP0EMPPUT79++nvXv30l133UVvetOb6JVXXvHnJLmNxbZt2+iPf/wjHTx4kA4ePEjr1q2jWq1G+/fvJ6Iks1fDU089RW9+85tp2bJltHbtWv9+kttYrF+/nt7+9rfTiRMn/GtoaMgfTzIbi5deeokWLlxIX/nKV+if//wnHTlyhB5//HH697//7c9pN7m1HUF597vfTatXr668d9NNN9F3v/vdKbqi6YPRBMU5R52dnbRx40b/3vnz56mjo4N+9rOfERHRqVOnqFarUX9/vz/n+PHjZK2l7du3X7Frn0oMDQ0RANq5cycRJblNBldffTX94he/SDJ7FQwPD9ONN95IAwMDdNttt3mCkuQ2PtavX0/Lly8f91iS2fj4zne+Q7feeuuEx9tRbm3l4mk2m9i1axfuuOOOyvt33HEH/v73v0/RVU1fHDlyBCdPnqzIq9Fo4LbbbvPy2rVrF1qtVuWc7u5uLFmy5HUj09OnTwMA5s6dCyDJ7VJQliX6+/tx9uxZrFixIsnsVfCNb3wDd911Fz70oQ9V3k9ymxiHDh1Cd3c3Fi1ahM997nM4fPgwgCSzibBt2zb09vbi05/+NK655hrccsst2Lx5sz/ejnJrK4LywgsvoCxLLFiwoPL+ggULcPLkySm6qukLlcnF5HXy5EnU63VcffXVE57zWgYR4Vvf+hZuvfVWLFmyBECS28UwODiIq666Co1GA6tXr8YjjzyCxYsXJ5ldBP39/di9ezf6+vrGHEtyGx/vec97sGXLFjz66KPYvHkzTp48iZUrV+LFF19MMpsAhw8fxqZNm3DjjTfi0UcfxerVq/HNb34TW7ZsAdCeY60tuxkbYyr/J6Ix7yUEXI68Xi8yXbNmDfbt24e//e1vY44luY3F2972NuzduxenTp3C1q1bcc8992Dnzp3+eJJZFceOHcPatWvx2GOPYcaMGROel+RWxZ133un/Xrp0KVasWIG3vvWt+PWvf433vve9AJLMRsM5h97eXvzgBz8AANxyyy04cOAANm3ahC9/+cv+vHaSW1tZUObPn48sy8YwuaGhoTGsMAE+6v1i8urs7ESz2cTLL7884TmvVdx7773Ytm0bnnjiCVx33XX+/SS3iVGv13HDDTegt7cXfX19WL58OR588MEkswmwa9cuDA0NoaenB3meI89z7Ny5Ez/+8Y+R57m/7yS3i2P27NlYunQpDh06lMbaBOjq6sLixYsr79188804evQogPZc19qKoNTrdfT09GBgYKDy/sDAAFauXDlFVzV9sWjRInR2dlbk1Ww2sXPnTi+vnp4e1Gq1yjknTpzA/v37X7MyJSKsWbMGDz/8MP7yl79g0aJFleNJbpcOIsKFCxeSzCbAqlWrMDg4iL179/pXb28vvvCFL2Dv3r14y1vekuR2Cbhw4QL+9a9/oaurK421CfC+971vTLmEZ555BgsXLgTQpuvaFQ/L/R+haca//OUv6emnn6b77ruPZs+eTc8+++xUX9qUYHh4mPbs2UN79uwhAPTDH/6Q9uzZ49OuN27cSB0dHfTwww/T4OAgff7znx83rey6666jxx9/nHbv3k0f/OAHX9PpeF//+tepo6ODduzYUUljPHfunD8nyW0sHnjgAXryySfpyJEjtG/fPlq3bh1Za+mxxx4joiSzS0WcxUOU5DYe7r//ftqxYwcdPnyY/vGPf9Ddd99Nc+bM8et8ktlYPPXUU5TnOX3/+9+nQ4cO0W9/+1uaNWsW/eY3v/HntJvc2o6gEBH95Cc/oYULF1K9Xqd3vvOdPj309YgnnniCAIx53XPPPUTEqWXr16+nzs5OajQa9P73v58GBwcr3zEyMkJr1qyhuXPn0syZM+nuu++mo0ePTsHdXBmMJy8A9NBDD/lzktzG4qtf/aqfd2984xtp1apVnpwQJZldKkYTlCS3sdD6HLVajbq7u+mTn/wkHThwwB9PMhsff/jDH2jJkiXUaDTopptuop///OeV4+0mN0NEdOXtNgkJCQkJCQkJE6OtYlASEhISEhISXh9IBCUhISEhISFh2iERlISEhISEhIRph0RQEhISEhISEqYdEkFJSEhISEhImHZIBCUhISEhISFh2iERlISEhISEhIRph0RQEhISEhISEqYdEkFJSEhISEhImHZIBCUhISEhISFh2iERlISEhISEhIRph0RQEhISEhISEqYd/g/O1SM4ZKJkowAAAABJRU5ErkJggg==", - "text/plain": [ - "

" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "# Load the input image\n", "raw_img = cv2.imread('./mats/0_basicdemo/summer.png')\n", @@ -87,21 +76,10 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "id": "6f67656a-3ba4-4374-b780-4e8bac4ec2d2", "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAa0AAAFuCAYAAAAyKkctAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABROElEQVR4nO3deVwV9foH8M9h31FRNkXE0jTBJXEBRbSrKKZl2k/LcsklyS1CM81K8paolVG5l0vezKy0rjcppVTU1NwwTU1NUVBBgoxN2c6Z3x/GySMozyDIHPi872teN+c85zvfOXPgYb7znWd0iqIoICIiMgMW1d0BIiIiKSYtIiIyG0xaRERkNpi0iIjIbDBpERGR2WDSIiIis8GkRUREZoNJi4iIzAaTFhERmQ3NJa3Vq1dDp9PBzs4OFy5cKPV69+7d4e/vf0/6smPHDuh0OuzYscO4buTIkWjSpMk92b6kP7fz888/4/HHH0fjxo1ha2sLDw8PBAUFYcqUKVXfUTNT8p0rWaysrNCoUSM8++yzuHTpkur2Fi9ejNWrV1eoL+fPn4dOp8M777xTofeXfEd0Oh327t1b6vWRI0fCycmpQm1rQXR0NHQ6ncm67t27o3v37ve8LzqdDtHR0fd8u7Wd5pJWiYKCArz66qvV3Q2ztHnzZgQHByM7Oxvz58/H1q1b8f7776NLly5Yv359dXdPs1atWoW9e/ciPj4eY8eOxbp16xASEoK8vDxV7dxN0qpM06ZNq+4u3BOLFy/G4sWLq7sbdI9YVXcHbqdPnz747LPPMHXqVLRp06bKtnP9+nXY29tXWfvVYf78+fDz88OWLVtgZfXPIX7yyScxf/78auxZ9bl27RocHBzuGOPv74/AwEAAQI8ePaDX6/Hvf/8b33zzDZ5++ul70c1K06dPH3z//ff43//+h/79+1fZdiSfa1V78MEHq3X7dG9p9kxr2rRpcHNzw8svv1xubH5+PmbMmAE/Pz/Y2NigYcOGmDBhAv766y+TuCZNmqBfv37YuHEj2rVrBzs7O7zxxhsAgN9++w19+vSBg4MD6tevj4iICOTk5Ij6umjRInTr1g3u7u5wdHREQEAA5s+fj6KiIpO4kqHNAwcOICQkBA4ODmjatCnmzp0Lg8FgEns3/cnMzET9+vVNElYJCwvTQ367IY4mTZpg5MiRxn+XDKFt27YNY8eOhZubG1xcXDB8+HDk5eUhLS0NgwcPRp06deDl5YWpU6ea7H/JsNfbb7+NefPmoUmTJrC3t0f37t1x+vRpFBUVYfr06fD29oarqysef/xxpKenl+rX+vXrERQUBEdHRzg5OaF3795ITEw0iSkZAjt27BjCwsLg7OyMf/3rX6LP7madO3cGAOMw9RtvvIFOnTqhXr16cHFxwUMPPYQVK1bg5prTTZo0wfHjx5GQkGAcprt5OPmvv/7ClClT0LRpU9ja2sLd3R19+/bFb7/9Vmr7CxYsgJ+fH5ycnBAUFIR9+/aJ+z5y5Eg8+OCDmDFjBvR6/R1jDQYD5s+fjxYtWhj7NHz4cFy8eNEkruT7u3PnTgQHB8PBwQGjRo2qlGO7fv16hIWFwcvLC/b29mjZsiWmT58uOsu9dXhw5MiRJsO9Ny83f9ezs7MxdepUk98bkZGRpbaZnZ1t/M47OTmhT58+OH36dLn9oqqh2TMtZ2dnvPrqq3jhhRewbds2PPzww2XGKYqCAQMG4Mcff8SMGTMQEhKCo0ePYtasWdi7dy/27t0LW1tbY/zhw4dx8uRJvPrqq/Dz84OjoyOuXLmC0NBQWFtbY/HixfDw8MDatWsxceJEUV/Pnj2LoUOHGr/8v/zyC9566y389ttvWLlypUlsWloann76aUyZMgWzZs3C119/jRkzZsDb2xvDhw8HgLvuT1BQED7++GNMnjwZTz/9NB566CFYW1uL3lueMWPGYODAgfj888+RmJiIV155BcXFxTh16hQGDhyI5557Dj/88APmzZsHb29vREVFmbx/0aJFaN26NRYtWmT8Bd6/f3906tQJ1tbWWLlyJS5cuICpU6dizJgx2LRpk/G9c+bMwauvvopnn30Wr776KgoLC/H2228jJCQE+/fvN/mLu7CwEI8++ijGjRuH6dOno7i4WPW+/v777wCABg0aALiReMeNG4fGjRsDAPbt24dJkybh0qVLeP311wEAX3/9NZ544gm4uroah6xKvn85OTno2rUrzp8/j5dffhmdOnVCbm4udu7cidTUVLRo0cLkc2rRogViY2MBAK+99hr69u2LpKQkuLq6ltt3S0tLxMTE4LHHHsMnn3yCUaNG3Tb2+eefx/LlyzFx4kT069cP58+fx2uvvYYdO3bg8OHDqF+/vjE2NTUVzzzzDKZNm4Y5c+aY/BF0N8f2zJkz6Nu3LyIjI+Ho6IjffvsN8+bNw/79+7Ft27Zy9/dmr732GiIiIkzWLVq0CJ9++qnxO3Lt2jWEhobi4sWLeOWVV9C6dWscP34cr7/+Oo4dO4YffvgBOp3O+Ptlz549eP3119GhQwf89NNPCA8PV9UnqkSKxqxatUoBoBw4cEApKChQmjZtqgQGBioGg0FRFEUJDQ1VWrVqZYz//vvvFQDK/PnzTdpZv369AkBZvny5cZ2vr69iaWmpnDp1yiT25ZdfVnQ6nXLkyBGT9b169VIAKNu3bzeuGzFihOLr63vb/uv1eqWoqEhZs2aNYmlpqfz555/G10JDQxUAys8//2zyngcffFDp3bt3hfpTloyMDKVr164KAAWAYm1trQQHBysxMTFKTk6OSSwAZdasWaXa8PX1VUaMGGH8d8lxmTRpkkncgAEDFADKggULTNa3bdtWeeihh4z/TkpKUgAobdq0UfR6vXF9bGysAkB59NFHTd4fGRmpAFCysrIURVGU5ORkxcrKqtT2c3JyFE9PT2Xw4MHGdSNGjFAAKCtXrrzDp/SPkn3bt2+fUlRUpOTk5Cjffvut0qBBA8XZ2VlJS0sr9Z6S4zx79mzFzc3N+P1UFEVp1aqVEhoaWuo9s2fPVgAo8fHxt+1LyecUEBCgFBcXG9fv379fAaCsW7fujvuyfft2BYDy5ZdfKoqiKF27dlUaNWqkXL9+XVGUG5+No6OjMf7kyZMKAGX8+PEm7fz8888KAOWVV14xriv5/v74449l9rmix/ZWBoNBKSoqUhISEhQAyi+//GJ8bdasWcqtv7ZCQ0PL/LxLfPHFF4pOpzPZl5iYGMXCwkI5cOCASexXX32lAFDi4uIURVGU7777TgGgvP/++yZxb7311m1/dqhqaXZ4EABsbGzw5ptv4uDBg/jiiy/KjCn5K+zmoSwA+L//+z84Ojrixx9/NFnfunVrNG/e3GTd9u3b0apVq1LXzoYOHSrqZ2JiIh599FG4ubnB0tIS1tbWGD58OPR6falhBE9PT3Ts2LFUn26eKXm3/XFzc8OuXbtw4MABzJ07F4899hhOnz6NGTNmICAgABkZGaJ2ytKvXz+Tf7ds2RIA8Mgjj5RaX9bsz759+5r8dX6n9wNAcnIyAGDLli0oLi7G8OHDUVxcbFzs7OwQGhpa5ozKQYMGqdq3zp07w9raGs7OzujXrx88PT3x3XffwcPDA8CN71rPnj3h6upqPM6vv/46MjMzyxzKvNV3332H5s2bo2fPnuXGPvLII7C0tDT+u3Xr1gBQ5md6J/PmzcPFixfx/vvvl/n69u3bAZT++enYsSNatmxZ6uenbt26tx31qOixBYBz585h6NCh8PT0NH62oaGhAICTJ0+Wt5u3lZCQgGHDhuGZZ57BW2+9ZVz/7bffwt/fH23btjX5PvXu3dtkhm7J53PrNU3pzyJVPs0OD5Z48skn8c4772DmzJkYOHBgqdczMzNhZWVlHMIpodPp4OnpiczMTJP1Xl5eZbbh5+dXar2np2e5/UtOTkZISAgeeOABvP/++2jSpAns7Oywf/9+TJgwAdevXzeJd3NzK9WGra2tSdzd9OdmgYGBxokFRUVFePnll/Hee+9h/vz5FZ6QUa9ePZN/29jY3HZ9fn7+Xb0fgLGNK1euAAA6dOhQZr9uvVbn4OAAFxeX2+9IGdasWYOWLVvCysoKHh4eJt+V/fv3IywsDN27d8dHH32ERo0awcbGBt988w3eeuutUse5LH/88YdxaLE8t35PSoYYJdu5WXBwMAYMGIC5c+fiueeeK/V6yc9HWT8X3t7epZJkWXElKnpsc3NzERISAjs7O7z55pto3rw5HBwckJKSgoEDB6re5xLHjx/HgAEDEBISghUrVpi8duXKFfz++++3HTYv+cOu5PfLrcdD7c8iVR7NJy2dTod58+ahV69eWL58eanX3dzcUFxcjD/++MMkcSmKgrS0tFK/5G69x6OkjbS0tFLry1p3q2+++QZ5eXnYuHEjfH19jeuPHDlS7ntv5276czvW1taYNWsW3nvvPfz666/G9ba2tigoKCgVf2uyr24l11W++uork8/5dso6zuVp2bKlMcnf6vPPP4e1tTW+/fZb2NnZGdd/88034vYbNGhQanLDvRATEwN/f3/MmTOn1Gslv4xTU1PRqFEjk9cuX75scj0LqNjnWp5t27bh8uXL2LFjh/HsCkCpiVRqXLx4EX369EHjxo2xYcOGUsmpfv36sLe3L3XN+ebXgX9+v2RmZpokrrv5WaS7o+nhwRI9e/ZEr169MHv2bOTm5pq8VjIr7NNPPzVZv2HDBuTl5YlmjfXo0QPHjx/HL7/8YrL+s88+K/e9JT/EN0/2UBQFH330UbnvrYr+ADd+AZWlZJjF29vbuK5JkyY4evSoSdy2bdtKfc7VrXfv3rCyssLZs2eNZ5C3LlWp5Kbjm4fsrl+/jv/85z+lYm89cy4RHh6O06dPq55YcLdatGiBUaNG4cMPPzQZkgNgHOq79efnwIEDOHnyZIVmXapV1s8QACxbtqxC7WVlZSE8PBw6nQ5xcXFlnnH369cPZ8+ehZubW5nfpZIZnz169AAArF271uT90p9FqnyaP9MqMW/ePLRv3x7p6elo1aqVcX2vXr3Qu3dvvPzyy8jOzkaXLl2MswfbtWuHYcOGldt2ZGQkVq5ciUceeQRvvvmmcbZeWdOQb9WrVy/Y2NjgqaeewrRp05Cfn48lS5bg6tWrFd7Xu+kPcOMXfKNGjdC/f3+0aNECBoMBR44cwbvvvgsnJye88MILxthhw4bhtddew+uvv47Q0FCcOHECCxcuFM1Qu5eaNGmC2bNnY+bMmTh37hz69OmDunXr4sqVK9i/fz8cHR2Nty9UhUceeQQLFizA0KFD8dxzzyEzMxPvvPNOqV+0ABAQEIDPP/8c69evR9OmTWFnZ4eAgABERkZi/fr1eOyxxzB9+nR07NgR169fR0JCAvr162f8BVkVoqOjsXbtWmzfvh2Ojo7G9Q888ACee+45fPjhh7CwsEB4eLhx9qCPjw9efPHFKutTieDgYNStWxcRERGYNWsWrK2tsXbt2lJ/tEkNHToUJ06cwPLly5GSkoKUlBTja40aNUKjRo0QGRmJDRs2oFu3bnjxxRfRunVrGAwGJCcnY+vWrZgyZQo6deqEsLAwdOvWDdOmTUNeXh4CAwPx008/lfnHCt0bZnGmBQDt2rXDU089VWq9TqfDN998g6ioKKxatQp9+/bFO++8g2HDhmHbtm1l/lK5laenJxISEvDggw/i+eefxzPPPAM7OzssXLiw3Pe2aNECGzZswNWrVzFw4EBMmjQJbdu2xQcffFCh/bzb/gDAq6++irp16+K9997Do48+ivDwcHzwwQfo2bMn9u/fj4CAAGPsSy+9hJdeegmrV69G//79sWHDBnzxxReoU6dOhftfVWbMmIGvvvoKp0+fxogRI9C7d29MmzYNFy5cQLdu3ap02w8//DBWrlyJY8eOoX///pg5cyaeeOIJTJ8+vVTsG2+8gdDQUIwdOxYdO3Y03tzr7OyM3bt3Y/To0Vi+fDkeeeQRjB07FqdOnTI5+60K3t7eiIyMLPO1JUuWYO7cuYiLi0O/fv0wc+ZMhIWFYc+ePWVeg61sbm5u2Lx5MxwcHPDMM89g1KhRcHJyqnD1luPHj8NgMGDMmDEICgoyWT7++GMAgKOjI3bt2oWRI0caj8XgwYPxwQcfoFGjRsYzLQsLC2zatAlPP/005s+fb5z+HhcXV1m7TyrpFOWmOyOJiIg0zGzOtIiIiJi0iIjIbDBpERGR2WDSIiIis8GkRUREZoNJi4iIzAaTFhERmQ0mLSIiMhtmkbQWL14MPz8/2NnZoX379ti1a1d1d+muREdHl3qiqrlVjd65cyf69+8Pb29vY1WSmymKgujoaHh7exufYnv8+PHq6axQeftU1hNxS55urEUxMTHo0KEDnJ2d4e7ujgEDBuDUqVMmMeZ4nCT7ZW7HiuQ0n7TWr1+PyMhIzJw5E4mJiQgJCUF4eHipwp/mplWrVkhNTTUux44dq+4uqZKXl4c2bdrctrTU/PnzsWDBAixcuBAHDhyAp6cnevXqhZycnHvcU7ny9gkA+vTpY3LctFzOJyEhARMmTMC+ffsQHx+P4uJihIWFmTxO3hyPk2S/APM6VqRCdT6BUqJjx45KRESEyboWLVoo06dPr6Ye3b1Zs2Ypbdq0qe5uVBoAytdff238t8FgUDw9PZW5c+ca1+Xn5yuurq7K0qVLq6GH6t26T4py46m/jz32WLX0pzKkp6crAJSEhARFUWrGcVKU0vulKOZ/rOj2NH2mVVhYiEOHDiEsLMxkfUkxT3N25swZeHt7w8/PD08++STOnTtX3V2qNElJSUhLSzM5bra2tggNDTX747Zjxw64u7ujefPmGDt2rOiJxVqRlZUF4J+HMtaU43TrfpUw52NFt6fppJWRkQG9Xm983HkJDw8Ps34IW6dOnbBmzRps2bIFH330EdLS0hAcHKy5By9WVMmxqWnHLTw8HGvXrsW2bdvw7rvv4sCBA3j44YfLfIim1iiKgqioKHTt2hX+/v4AasZxKmu/APM+VnRnZvE8rVuflqooSpU8QfVeCQ8PN/53QEAAgoKCcN999+GTTz5BVFRUNfasctW04zZkyBDjf/v7+yMwMBC+vr7YvHkzBg4cWI09K9/EiRNx9OhR7N69u9Rr5nycbrdf5nys6M40faZVv359WFpalvqrLz09vdRfh+bM0dERAQEBOHPmTHV3pVKUzISs6cfNy8sLvr6+mj9ukyZNwqZNm7B9+3Y0atTIuN7cj9Pt9qss5nKsqHyaTlo2NjZo37494uPjTdbHx8cjODi4mnpV+QoKCnDy5El4eXlVd1cqhZ+fHzw9PU2OW2FhIRISEmrUccvMzERKSopmj5uiKJg4cSI2btyIbdu2wc/Pz+R1cz1O5e1XWbR+rEiFapwEIvL5558r1tbWyooVK5QTJ04okZGRiqOjo3L+/Pnq7lqFTZkyRdmxY4dy7tw5Zd++fUq/fv0UZ2dns9qnnJwcJTExUUlMTFQAKAsWLFASExOVCxcuKIqiKHPnzlVcXV2VjRs3KseOHVOeeuopxcvLS8nOzq7mnt/enfYpJydHmTJlirJnzx4lKSlJ2b59uxIUFKQ0bNhQs/v0/PPPK66ursqOHTuU1NRU43Lt2jVjjDkep/L2yxyPFclpPmkpiqIsWrRI8fX1VWxsbJSHHnrIZGqrORoyZIji5eWlWFtbK97e3srAgQOV48ePV3e3VNm+fbsCoNQyYsQIRVFuTKeeNWuW4unpqdja2irdunVTjh07Vr2dLsed9unatWtKWFiY0qBBA8Xa2lpp3LixMmLECCU5Obm6u31bZe0LAGXVqlXGGHM8TuXtlzkeK5LTKYqi3LvzOiIioorT9DUtIiKimzFpERGR2WDSIiIis8GkRUREZoNJi4iIzAaTFhERmQ0mLSIiMhtmk7QKCgoQHR1do6o0c5/MA/fJfNTU/aJ/mM3NxdnZ2XB1dUVWVhZcXFyquzuVgvtkHrhP5qOm7hf9w2zOtIiIiJi0iIjIbGjuIZAGgwGXL1+Gs7OzyYPosrOzTf6/JuA+mQfuk/m4V/ulKApycnLg7e0NCwv+7X8vae6a1sWLF+Hj41Pd3SAiKldKSkq5D6CkylVlZ1qLFy/G22+/jdTUVLRq1QqxsbEICQkp933Ozs4AgOD1Y2DlYFNu/OW/ZBdbgxslieIAwFJX+Xm8yGApjs0uthPF/ZnvIG7zj1wncaxeL3vUupo/MPOvWYtjnQ7ai+LcTuSL27T+Sx5rOHZKFGfZrKm4TVyV/+Wvz8iQtytk4Sw7/snjW4nbXPz0MnFsBzv5919qbU59cWyWXvazsmpDmCjOUJCPc7Gzjb+v6N6pkqS1fv16REZGYvHixejSpQuWLVuG8PBwnDhxAo0bN77je0uGBK0cbGDlaFvutiwLZb/gbZzKT4DGNqsgaelUJC3rIllfrSzL/3xKWBrksdDLspGFhfxzsoCKz99WdkytVHx7rSzlfTXoZAnWUsXnDwv5/uuE21fDQifbvvSzBwBHZ/lfLS52lT+EZq/IvwAFelmsmv0HYHIJg+6NKhmMXbBgAUaPHo0xY8agZcuWiI2NhY+PD5YsWVIVmyMiolqi0pNWYWEhDh06hLAw09PssLAw7Nmzp1R8QUEBsrOzTRYiIqKyVHrSysjIgF6vh4eHh8l6Dw8PpKWllYqPiYmBq6urceEkDCKiyrdz5070798f3t7e0Ol0+Oabb8p9T0JCAtq3bw87Ozs0bdoUS5curfqOlqPK5mreOtarKEqZ478zZsxAVlaWcUlJSamqLhER1Vp5eXlo06YNFi5cKIpPSkpC3759ERISgsTERLzyyiuYPHkyNmzYUMU9vbNKn4hRv359WFpaljqrSk9PL3X2BQC2trawtVVxQZuIiFQLDw9HeHi4OH7p0qVo3LgxYmNjAQAtW7bEwYMH8c4772DQoEFV1MvyVXrSsrGxQfv27REfH4/HH3/cuD4+Ph6PPfZYZW+OiMjs5efno7CwUPX7yhrBqqwTgb1795aam9C7d2+sWLECRUVFsLau/FmuElUy5T0qKgrDhg1DYGAggoKCsHz5ciQnJyMiIqIqNkdEZLby8/Ph5+uEtHS96vc6OTkhNzfXZN2sWbMQHR191/1KS0src25CcXExMjIy4OXlddfbqIgqSVpDhgxBZmYmZs+ejdTUVPj7+yMuLg6+vr7iNrwdsmDjWP69JV3rnxW1V6TI75NSEyuVUSC/udfOskgUZ6HifrLiYvk+yW8ulm/fyUl+c2/jJ1JFcU1Hym/CbWEvaxMAPp/SVxRn98d1cZvF3vKK44rFne9lLKEzyD//KwGy+48sZF89AMCsJPnIyYpmn4vixic9IW7z+OEm4liDS7Eo7oHvZLOXi/X5+F289TsrLCxEWroeSYd84aLi3rfsHAP82l9ASkqKSUX7yrzcUtbchLLW30tVVhFj/PjxGD9+fFU1T0RUozg63Vik9H//zeLi4lIlj2Hx9PQsc26ClZUV3NzcKn17UpormEtEVBsZoMAAFZVbVMRWRFBQEP73v/+ZrNu6dSsCAwOr7XoWwEeTEBFpgqEC/1MjNzcXR44cwZEjRwDcmNJ+5MgRJCcnA7hx+9Hw4cON8REREbhw4QKioqJw8uRJrFy5EitWrMDUqVMrbZ8rgmdaREQaoFcU6FU8dENNLAAcPHgQPXr0MP47KioKADBixAisXr0aqampxgQGAH5+foiLi8OLL76IRYsWwdvbGx988EG1TncHmLSIiDShqocHu3fvjjs9iWr16tWl1oWGhuLw4cOqtlPVmLSIiDTAAAV6DV3T0ipe0yIiIrPBMy0iIg3Q2uxBrWLSIiLSgKqeiFFTaDZp5Rbbip7g+4el7HHXVhbyEimbdgeKY5u9sE8U1/hn+ResUPiU1WKDfHTX0lI+Pba4SHYPhpopt8XCpyEDQJ7wyc1/FsoeoQ4AFy3riWNtM2XVO848I78TtIn/ZXFs0glZeRxdsbwqgcFeVhHC8pr8ONlbyctn9Nz3vCjOoOJ7sm7Ah+LYYZ9NFsWdeVr2s2fItwIqeX6C4e9FTXxtpNmkRURUm+hVTsRQE1uTMGkREWmAXvmnNJM0vjZi0iIi0gAOD8owaRERaYABOuih4jqlitiahEmLiEgDDMqNRU18bcSkRUSkAXqVZ1pqYmsSJi0iIg1g0pJh0iIi0gCDooNBUXFNS0VsTcLag0REZDZ4pkVEpAEcHpTRbNKSnipnFDqK2rva5U/xtptBVppJjeROeSqihbHxshJWAKBXUR5HEQ47KCrKSBlUTHUq0luK4q4Vy8o9AUCBQf5V77lyjyiut4qKBLYW8pJHK67Zi+KuZsiPv7SrVm7XxU3mC8uNAUDbhpdEcZn5sp9nAHjt3OPi2K7/OiaK87LLEsUV5BZhgXjrMnpYQK9i8EtemK5m0WzSIiKqTRSV17Skf1zWNExaREQawOFBGSYtIiIN0CsW0Csqhgd5czEREVUXA3QwqLimxYdAEhFRteHwoAyTFhGRBqgfHuSZFhERVZMbw4Os8l4eJi0iIg0wqLxPi9e0iIio2nB4UIa1B4mIyGxo9kyrWLGETim/nE9GrpOovcwZLcTbbhQjK+OjRpP9stI8AJBTZCeKyy4qFLdpZyMvIyRVVCQrt6Q2NrdAVp7J3kr2OQHAJYs64tijEf6iuLbLZKWBAOA+u3RxbBv3y6K4tFcaitu8viBfFNfV/ay4zXYOF8SxHexk+7Q0M1jcZpjLr+LYzVltRHEe1tmiuHzrYvG2pQyw4JR3Ac0mLSKi2kSv6KBXUZpJTWxNwqRFRKQB6gvm8kyLiIiqiUGxgEHFRAxDLZ2IwaRFRKQBPNOSYdIiItIAA9RdpzJUXVc0jUmLiEgD1M8erJ13LDFpERFpgPqbi5m0iIiomrD2oAyTFhGRBvBMS8bsk1Zbt4uywEHCOAAFj8urV0glLm4rjm0x7rgozkonvxRrYVH5sRYW8r/0rKzk29cbZD+MWQXyihjWlnpx7AOLfxPFGVRcNC8SVHcpcTnPVRb4q6yfALCmxW5RXGMrWYUZAOjt3VYc++ilq6K4L7d2Ebf5y7Km4lhcuy4KO+56nyiuWF8AIEG+fQH1swdrZ9KqnXtNRERmqdKTVnR0NHQ6ncni6elZ2ZshIqpRDIpO9VIbVcnwYKtWrfDDDz8Y/21pKR8aISKqjdQ/T6t2DpRVSdKysrLi2RURkQrqyzjVzqRVJXt95swZeHt7w8/PD08++STOnTt329iCggJkZ2ebLEREtY0eOtVLbVTpSatTp05Ys2YNtmzZgo8++ghpaWkIDg5GZmZmmfExMTFwdXU1Lj4+PpXdJSIizSs501Kz1EaVvtfh4eEYNGgQAgIC0LNnT2zevBkA8Mknn5QZP2PGDGRlZRmXlJSUyu4SEZHm6aH2bKt2qvL7tBwdHREQEIAzZ86U+bqtrS1sbW2ruhtERJrGa1oyVb7XBQUFOHnyJLy8vKp6U0REZqukIoaaRa3FixfDz88PdnZ2aN++PXbt2nXH+LVr16JNmzZwcHCAl5cXnn322dte6rlXKj1pTZ06FQkJCUhKSsLPP/+MJ554AtnZ2RgxYkRlb4qIqMZQ/q49KF0UlRMx1q9fj8jISMycOROJiYkICQlBeHg4kpOTy4zfvXs3hg8fjtGjR+P48eP48ssvceDAAYwZM6YydrfCKn148OLFi3jqqaeQkZGBBg0aoHPnzti3bx98fX1VteNgVQhrQe9yimWlfIoM8nvFfjrSXBzb7NMCUVzzd06K2/ztTw9RnN4g/9LmF1qLY/V64d8yVXRzY1Gx7FjZWheL21RzI+bpbHdR3EN15ddf34t7RBxrsJM93K8Z5KXJ+h4cJ4pzdZCVOwIAJ9x+VvCt+jUKFMU1u/+KuE3lT1lpKADI6/qAKM4hWTZ7WdFX/hWlqq49uGDBAowePdqYdGJjY7FlyxYsWbIEMTExpeL37duHJk2aYPLkyQAAPz8/jBs3DvPnz1e13cpW6Unr888/r+wmiYhqPLVVLkpib71NqKx5AoWFhTh06BCmT59usj4sLAx79uwps/3g4GDMnDkTcXFxCA8PR3p6Or766is88oj8D7CqUDuv5BER1RA+Pj4mtw2VddaUkZEBvV4PDw/TURwPDw+kpaWV2W5wcDDWrl2LIUOGwMbGBp6enqhTpw4+/PDDKtkPKbOv8k5EVBNUtMp7SkoKXFxcjOvvNBtbpzM9k1MUpdS6EidOnMDkyZPx+uuvo3fv3khNTcVLL72EiIgIrFixQtzPysakRUSkARUdHnRxcTFJWmWpX78+LC0tS51Vpaenlzr7KhETE4MuXbrgpZdeAgC0bt0ajo6OCAkJwZtvvlltM8I5PEhEpAEGWKhepGxsbNC+fXvEx8ebrI+Pj0dwcHCZ77l27RosLEy3UVL8XFFkk4WqAs+0iIg0QK/ooFdxpqUmFgCioqIwbNgwBAYGIigoCMuXL0dycjIiIiIA3KhOdOnSJaxZswYA0L9/f4wdOxZLliwxDg9GRkaiY8eO8Pb2VrXtysSkRUSkARUdHpQaMmQIMjMzMXv2bKSmpsLf3x9xcXHG25FSU1NN7tkaOXIkcnJysHDhQkyZMgV16tTBww8/jHnz5qnabmVj0iIi0gBFZRknpQIVMcaPH4/x48eX+drq1atLrZs0aRImTZqkejtViUmLiEgD1D5upLY+mkSzSauh3V+wtZdXcShPgUG+q90fklevyAmQFfvNLZIXBbaxlN1tXwh5lY9Gg46LYy98ESCKazZNXoPsz+Xy/bfUyS7yutjmi9v0sM8Rx3rZZoni9mb4idtU80ex567K/2U0scUOUVxEnUviNnujrTg2c1RnUVydc7IKMwBwvW0DcWyel+xnJbtxPVGcvjAf+FW8eRGDom7Iz1B9cyGqlWaTFhFRbcIq7zJMWkREGlBSCFdNfG3EpEVEpAFVPeW9pmDSIiLSAA4PytTOvSYiIrPEMy0iIg0wQOXNxbymRURE1UVRORFD7ZOLawomLSIiDajqMk41BZMWEZEGcCKGDJMWEZEG8ExLRrNJq4NjEhycyi+9kq/ISj0VKfKSRzl6e3FscoGs7MufhY7iNq0sZGWcrhXbiNu8+t194tjC07K+pi+Rl9ypY3NdHGupM4jiXGzkZZwud5aXcbLYd+cH6pX4uPlacZt9/pgojt3z3mpRXOuGZRc+LUtEncXiWKnTyzqIYxtulR3TYjv5z2mhk/xMw/VcsShOmfSHKK44rwD4SLx5Ed5cLKPZpEVEVJvwTEuGSYuISAOYtGSYtIiINIBJS4ZJi4hIA5i0ZJi0iIg0QIG6yRW19HFarD1IRETmg2daREQawOFBGSYtIiINYNKSYdIiItIAJi0ZJi0iIg1g0pLRbNKK+WQILG3tyg8UTqHJayIrjQQAm/u9J449Zysr45RWVEfcZo5BsN8AcvWyOADIKHISx54MPyuKK9jaRNxmcP1z4lgL4UGtZ5UnbvOB3y+LY5tZXxXF9d4rL6P0VuDX4lipXBXf6b49nhDFFdeTlxtrFXNRHHvSwVMU53RIXkKtOCRLHFtv0HFRXOPXZPtfaFWIn8Vbl1EUHRQViUhNbE2i2aRFRFSbsPagDJMWEZEGcHhQhkmLiEgDODwow6RFRKQBPNOSYdIiItIAnmnJsIwTEZEGKH+faUkXrSetHTt2VEm7TFpERFTp+vTpg/vuuw9vvvkmUlJSKq1dJi0iIg1QACiKiqW6O1yOy5cv44UXXsDGjRvh5+eH3r1744svvkBhYeFdtcukRUSkASX3aalZtKxevXqYPHkyDh8+jIMHD+KBBx7AhAkT4OXlhcmTJ+OXX36pULuanYjhvTsHVpZF5cYZbCxF7f3e2Fa87b7fR4pjLfJled+iUP4F2zzkHVHcXwYbcZt/6uUVMTqfchDF2Vn8Lm7T01JevSD6/KOiuNT/+YrbvN5A/nfpwsEfi+Lun50vbvPjOgPEsSsLikVxnvfLv1PXmtYVxdmn5IjbPJfhJo61OymrdFEg6yYAQHfUVR4sdHK+vyiuuEh+7KVq8kSMtm3bYvr06ahXrx7mzp2LlStXYvHixQgKCsLSpUvRqlUrcVs80yIi0gA1kzDUTo+vLkVFRfjqq6/Qt29f+Pr6YsuWLVi4cCGuXLmCpKQk+Pj44P/+7/9Utak6ae3cuRP9+/eHt7c3dDodvvnmG5PXFUVBdHQ0vL29YW9vj+7du+P4cVndLyKi2krV9ay/Fy2bNGkSvLy8EBERgebNmyMxMRF79+7FmDFj4OjoCB8fH8ydOxe//fabqnZVJ628vDy0adMGCxcuLPP1+fPnY8GCBVi4cCEOHDgAT09P9OrVCzk58mEHIqLapmR4UM2iZSdOnMCHH36Iy5cvIzY2Fv7+pYdevb29sX37dlXtqr6mFR4ejvDw8DJfUxQFsbGxmDlzJgYOHAgA+OSTT+Dh4YHPPvsM48aNU7s5IqJaoaZd05o1axaCg4NhZWWaZoqLi7Fnzx5069YNVlZWCA0NVdVupV7TSkpKQlpaGsLCwozrbG1tERoaij179pT5noKCAmRnZ5ssRES1TU27ptWjRw/8+eefpdZnZWWhR48eFW63UpNWWloaAMDDw8NkvYeHh/G1W8XExMDV1dW4+Pj4VGaXiIjMQk27pqUoCnS60ok1MzMTjo7y57bdqkqmvN/a0dt1HgBmzJiBqKgo47+zs7OZuIio1rmRiNQMD1ZhZ+5CyaUhnU6HkSNHwtb2n9uN9Ho9jh49iuDg4Aq3X6lJy9PzxtNJ09LS4OXlZVyfnp5e6uyrhK2trclOERHVRjXlmpar64375xRFgbOzM+zt/7lHz8bGBp07d8bYsWMr3H6lJi0/Pz94enoiPj4e7dq1AwAUFhYiISEB8+bNq8xNERGRBq1atQoA0KRJE0ydOvWuhgLLojpp5ebm4vff/6mEkJSUhCNHjqBevXpo3LgxIiMjMWfOHDRr1gzNmjXDnDlz4ODggKFDh1Zqx4mIahIF6uoJanR00GjWrFlV0q7qpHXw4EGTmR8l16NGjBiB1atXY9q0abh+/TrGjx+Pq1evolOnTti6dSucnZ1VbSczwAmWNnZqu3db9Q/LYy0L5V8H62sGUZxNlqw0DwBM2DxRFBe/bpW4TaBAHPl5jqyMU7jDVXGbtjprcez3LTaL4vo+FVZ+0N/WHfqvOPZkoaw8luHMeXGbfw5vL45t8MWvori0F5qJ27xvuex7avGX/H7K6Na7xbHvbXxKFFfgouIhiDaVPzzmuOFnUVyxUn6JObXuxfDg4sWL8fbbbyM1NRWtWrVCbGwsQkJCbhtfUFCA2bNn49NPP0VaWhoaNWqEmTNnYtSoUWXGP/TQQ/jxxx9Rt25dtGvX7rZzGQDg8GEVv5Rvojppde/eHcodrgDqdDpER0cjOjq6Qh0iIqqVqvhUa/369YiMjMTixYvRpUsXLFu2DOHh4Thx4gQaN25c5nsGDx6MK1euYMWKFbj//vuRnp6O4uLb/wH+2GOPGecoDBgwQF0HhTRbMJeIqFZRW+VC5ZnWggULMHr0aIwZMwYAEBsbiy1btmDJkiWIiYkpFf/9998jISEB586dQ7169QDcuE51JzcPCVbV8CAL5hIRaUBF79O6tThDQUHpSwGFhYU4dOiQSeEHAAgLC7tt4YdNmzYhMDAQ8+fPR8OGDdG8eXNMnToV169fF+1PSkoKLl68aPz3/v37ERkZieXLlws/kbIxaRERaUBFaw/6+PiYFGgo66wpIyMDer1eVeGHc+fOYffu3fj111/x9ddfIzY2Fl999RUmTJgg2p+hQ4ca6wqmpaWhZ8+e2L9/P1555RXMnj1bzUdjgsODRERaoOjUDfn9HZuSkgIXFxfj6jvd96qm8IPBYIBOp8PatWuN914tWLAATzzxBBYtWmRy/1VZfv31V3Ts2BEA8MUXXyAgIAA//fQTtm7dioiICLz++uvl72MZmLSIiDRAbWmmklgXFxeTpFWW+vXrw9LSstRZ1Z0KP3h5eaFhw4bGhAUALVu2hKIouHjxIpo1u/Ps1aKiImMC/eGHH/Doozce7tqiRQukpqbe8b13wuFBIiItUCqwCNnY2KB9+/aIj483WR8fH3/bkkpdunTB5cuXkZuba1x3+vRpWFhYoFGjRuVus1WrVli6dCl27dqF+Ph49OnTBwBw+fJluLnJn3p9KyYtIiINqOrnaUVFReHjjz/GypUrcfLkSbz44otITk5GREQEgBt1YIcPH26MHzp0KNzc3PDss8/ixIkT2LlzJ1566SWMGjWq3KFBAJg3bx6WLVuG7t2746mnnkKbNm0A3JjgUTJsWBEcHiQi0ooqLHMxZMgQZGZmYvbs2UhNTYW/vz/i4uLg6+sLAEhNTUVycrIx3snJCfHx8Zg0aRICAwPh5uaGwYMH48033xRtr3v37sjIyEB2djbq1q1rXP/cc8/BwUFWwKAsTFpERLXE+PHjMX78+DJfW716dal1LVq0KDWkqIalpaVJwgLKv9erPJpNWq5nC2BlVf7pr0565VJWxUY1y3xheSY1V1jvUPrkZn6bnhM32Xx1vjjWMkt2H8YntvLSTGld6ohjPXeVfnBcWYpblD9EUaJv1IviWOezslJGlm4Z4jbtr8q/gLk9HxTFvd15nbjNj97vL4orvnhJ3OZgpyz59pNl3z9dQ3npNs8Jv5cf9Le8D8Sh1aamVHkvceXKFUydOhU//vgj0tPTS1VS0uv1FWpXs0mLiKhWqWEVc0eOHInk5GS89tpr8PLyumMdQjWYtIiINEH396ImXrt2796NXbt2oW3btpXaLpMWEZEW1LAzLR8fnzsWV68oTnknItKCKrxPqzrExsZi+vTpOH/+fKW2yzMtIiItqGAZJ60aMmQIrl27hvvuuw8ODg6wtjaduPXnn7IJV7di0iIi0oCKlnHSqtjY2Cppl0mLiEgLatg1rREjRlRJu7ymRUSkBSXDg2oWjTt79ixeffVVPPXUU0hPTwdw4+GSx48fr3CbTFpERBqgU9QvWpaQkICAgAD8/PPP2Lhxo7Hw7tGjR+/qqcaaHR4sqGMNvbW84kJlMqj5VHS3f3bNzayuyysi6Ayyb+MDH18Tt2mRI6+IYXCS7VO+h7x+mPuh3PKDStr1chLF2V2St1nYVF5pIaPtnR/zUCJztKO4TZ2Km/8VJ1mVlUFO2eI2l8+XVa/Ij1VTyPSIODI5XFa9xCZLfvaQdqypONZ+xp0fo1Gi0FX2s2fIzwdm/Ve8fZEaNjw4ffp0vPnmm4iKioKzs7NxfY8ePfD+++9XuF2eaRERUaU7duwYHn/88VLrGzRogMzMzAq3y6RFRKQFNeyaVp06dcp82GNiYiIaNmxY4XaZtIiItKCG3Vw8dOhQvPzyy0hLS4NOp4PBYMBPP/2EqVOnmjy3Sy0mLSIiLahhSeutt95C48aN0bBhQ+Tm5uLBBx9Et27dEBwcjFdffbXC7Wp2IgYRUa1SwyZiWFtbY+3atfj3v/+Nw4cPw2AwoF27dmjWTDYp5nZ4pkVEpAU17JrW7Nmzce3aNTRt2hRPPPEEBg8ejGbNmuH69euYPXt2hdtl0iIi0oCadp/WG2+8Ybw362bXrl3DG2+8UeF2OTxIRKQFNWx4UFGUMh/8+Msvv6BevXoVbpdJi4iIKk3dunWh0+mg0+nQvHlzk8Sl1+uRm5uLiIiICrfPpEVEpAE6qBvy0+oVrdjYWCiKglGjRuGNN96Aq6ur8TUbGxs0adIEQUFBFW5fs0nLYK2Dwbr8w2J1TVYeqdhefogti+TfnDx32WVBnauluE3paX/Wc7JyPwCQd6KBOLbuCVmc274r4javNXcTx2b5ysp3FbeWDzHUOyn/rC6HyI5V8/H7xW1aNpB//inPCmdX9RY3iaT9PqI4u2ZV86vQokDWbu59ReI2Hc7Ly7w16pks236RjSiuOK8A58VbF6ohz9Mqqe7u5+eH4ODgUs/RuluaTVpERLVKDbumFRoaCoPBgNOnTyM9PR0Gg+kJRrdu3SrULpMWERFVun379mHo0KG4cOEClFueWKnT6aDXq6gifRMmLSIiLahhZ1oREREIDAzE5s2b4eXlVeZMwopg0iIi0gC1915p/T6tM2fO4KuvvsL9999fqe3y5mIiIi2oYbUHO3XqhN9//73S2+WZFhGRFtSw4cFJkyZhypQpSEtLQ0BAQKlZhK1bt65Qu0xaREQaUNOGBwcNGgQAGDVqlHGdTqczVsrgRAwiInNWQ+7TKpGUlFQl7TJpERFpQQ0bHvT19a2Sdpm0iIg0oCYMD27atAnh4eGwtrbGpk2b7hj76KOPVmgbmk1a2U0sYGlb/uRGnUE2AdL2T/kRNqj4VGyzZO0WuMpP5T2HXBDFpWa7iNtstuySODb5PSdRnEuya/lBf7OOShPH6uNkJYdyHygUt2mXKS8lY3VddqyuD+gobvNqc/mXynv+HlFcuy5Pitv0m7FXFGfh4CBvM2C0ONa59BMqynZZfpzq/Sa/JrJl0reiOP8Pxovi9AX54m2L1YAzrQEDBiAtLQ3u7u4YMGDAbePu5pqW6invO3fuRP/+/eHt7Q2dTodvvvnG5PWRI0caK/yWLJ07d65Q54iIag21z9LSYNIyGAxwd3c3/vftloomLKACSSsvLw9t2rTBwoULbxvTp08fpKamGpe4uLgKd5CIqFaoYfdpVRXVw4Ph4eEIDw+/Y4ytrS08PT0r3CkiIqKyVElFjB07dsDd3R3NmzfH2LFjkZ6eftvYgoICZGdnmyxERLUOz7REKj1phYeHY+3atdi2bRveffddHDhwAA8//DAKCgrKjI+JiYGrq6tx8fGRXYQnIqpJ1FzPUjvTsCap9NmDQ4YMMf63v78/AgMD4evri82bN2PgwIGl4mfMmIGoqCjjv7Ozs5m4iIioTFU+5d3Lywu+vr44c+ZMma/b2trC1ta2qrtBRKRtNWDKu5rLOy4u8lt2blblSSszMxMpKSnw8vKq6k0REZmtmnBzcZ06dcp9btY9rz2Ym5trUm4+KSkJR44cQb169VCvXj1ER0dj0KBB8PLywvnz5/HKK6+gfv36ePzxxyvUQSKiWkODiUiN7du3V/k2VCetgwcPokePHsZ/l1yPGjFiBJYsWYJjx45hzZo1+Ouvv+Dl5YUePXpg/fr1cHZ2VrUd+z8UWNpU3hG83kBekeLXFxaLY3t7t61Ab+5Mv1QWN/HkYXGbzluvi2M/fFlWaeHq/fJ5PAdb/k8c+4WPrNJGL/tUcZtPjgkWxx64fEQUNzq5q7jNHXv9xbEpM2V9PdFBxfcUbUVxhmvXxG0m9V4h3/6zsu3rrG3EbSrtHpBvX/hz6vSMQRSnL5TFqVIDhgdDQ0OrfBuqk1b37t2hKLf/tLZs2XJXHSIiqo1qwvDgrXbt2oVly5bh3Llz+PLLL9GwYUP85z//gZ+fH7p2lf/RdzM+uZiISAtq2H1aGzZsQO/evWFvb4/Dhw8bb3vKycnBnDlzKtwukxYRkQbci/u0Fi9eDD8/P9jZ2aF9+/bYtWuX6H0//fQTrKys0LZtW/G23nzzTSxduhQfffSRyVOLg4ODcfiw/NLGrZi0iIi0oIrPtNavX4/IyEjMnDkTiYmJCAkJQXh4OJKTk+/4vqysLAwfPhz/+te/VG3v1KlT6NatW6n1Li4u+Ouvv1S1dTMmLSIiLajipLVgwQKMHj0aY8aMQcuWLREbGwsfHx8sWbLkju8bN24chg4diqCgIFXb8/LyMplpXmL37t1o2rSpqrZuxqRFRGTGbq3dWlbJvMLCQhw6dAhhYWEm68PCwrBnz+2f37Zq1SqcPXsWs2bNUt2vcePG4YUXXsDPP/8MnU6Hy5cvY+3atZg6dSrGj5c9t6wsmn0IJBFRbVLR2YO3lr2bNWsWoqOjTdZlZGRAr9fDw8PDZL2HhwfS0sp+QOuZM2cwffp07Nq1C1ZW6lPFtGnTkJWVhR49eiA/Px/dunWDra0tpk6diokTJ6purwSTFhGRFlTwPq2UlBSTkkh3Kot3a7WKkuoUt9Lr9Rg6dCjeeOMNNG/eXEWnTL311luYOXMmTpw4AYPBgAcffBBOTrIno98OhweJiLSggte0XFxcTJayklb9+vVhaWlZ6qwqPT291NkXcGNa+sGDBzFx4kRYWVnBysoKs2fPxi+//AIrKyts27at3N1ZseLGzecODg4IDAxEx44d4eTkhOLiYsyYMUP4oZTGpEVEpAFVOeXdxsYG7du3R3x8vMn6+Ph4BAeXrsDi4uKCY8eO4ciRI8YlIiICDzzwAI4cOYJOnTqVu80pU6Zg0KBB+PPPP43rfvvtN3Ts2BFffPGFvPO30OzwYI9x+2DrZF1u3KF2srx79m35zBc1pZksWrcQxV2eLS8jpTfI9mljT29xm8WXLotjP0z6QBQ3+tdh4jY7vxQhjrXKl/00rjqTJW4zv7+8onRv4cd6aaOvuE2Do7w4qPJX5f8teXGGrDSUbVCmilaPiCMLwjuI4h6cfUzc5vcnyv/9UKLZflmc66f7RHHFSpF422JVXMYpKioKw4YNQ2BgIIKCgrB8+XIkJycjIuLGz+aMGTNw6dIlrFmzBhYWFvD3Ny095u7uDjs7u1LrbycxMRHDhg1DQEAAVq9ejdOnT+Oll17CE088gUWLFqnr/E00m7SIiGqTqi7jNGTIEGRmZmL27NlITU2Fv78/4uLi4Ot744+v1NTUcu/ZUsPPzw87d+7Eiy++iD59+sDS0hJr1qzBk0/KapveDocHiYi04B6UcRo/fjzOnz+PgoICHDp0yOTm39WrV2PHjh23fW90dDSOHDmianvffvst1q1bh+DgYNSpUwcfffQRLl+Wj/qUhUmLiEgLaljtwXHjxmHw4MGYNm0adu7ciaNHj8LW1hYBAQE185oWEVFtovt7UROvZT/99BN+/vlntGnTBgDg6emJuLg4LFq0CKNGjcLgwYMr1C6TFhGRFlTxRIx77dChQ2VOv58wYQJ69uxZ4XaZtIiINKCmPU/rTjc5P/CA/AGet2LSIiKiSvHQQw/hxx9/RN26ddGuXbsyq22UqOjjSZi0iIi0oAYMDz722GPGM6zHHnvsjkmropi0iIi0QoOJSI2bq8HfWrS3snDKOxGRBtyLJxffC9euXcOECRPQsGFDuLu7Y+jQocjIyKi09jV7pnWkqwWsdOXn1AZ76sgaDN4r3vbk338Txz7icEQUt/manbjNt8/1EcWdeK2RuM32rQrFsc+++6IorqCOuEk8NPkXcewsry2iuPAPponbdDshL7uju8MF5Jvln5WXhrL0zpfH5svKE/Vt00vcZsF0gyjuekodcZsIlIemjiz9jKey2HaQf04NhsuOkxp1f6oniivKKwTkH79MDRgeBG6cba1evRpPP/007OzssG7dOjz//PP48ssvK6V9zSYtIqLapKbMHty4cSNWrFhhLNf0zDPPoEuXLtDr9bC0tLzr9jk8SESkBTWkIkZKSgpCQkKM/+7YsSOsrKzuunxTCZ5pERFpQE0509Lr9bCxsTFZZ2VlheLi4kppn0mLiEgLasg1LUVRMHLkSJObi/Pz8xEREQFHR0fjuo0bN1aofSYtIiItqCFJa8SIEaXWPfPMM5XWPpMWEZEG1JThwVWrVlVp+0xaRERaUEPOtKoaZw8SEZHZ4JkWEZEG6BQFOkV++qQmtiYx+6R16uOWorh//75S3Obrpx4Vx3ZovVoUt/ZKD3GbF843EMU1ue+KuM1nPPeJY9/oVV8Udz1VXhHix1PyRxFM8vhRFGchL3IBh72/i2Ov/au1KM5zn6zKBADMmLdOHDs9cZQo7uLwZuI27VNlcVbXxE3iXxtGi2OLBsp+1Vhu9xa3aT+/cqZQ3+xCdl1RnD5PVuFDFQ4Piph90iIiqglqykSMqsakRUSkBTzTEmHSIiLSAJ5pyTBpERFpAc+0RJi0iIg0gGdaMkxaRERawDMtESYtIiKNqK1nT2owaRERaYGi3FjUxNdCTFpERBrAa1oyrD1IRERmQ7NnWl+fPgYX5/JzatMfHhK118dBXnZlnk2hOPblS31EcYlbZOWmAGD0E9tEcbta24nbXIL7xbFe9f8Qxe375T/iNgP3l37Gzu20tpHtV27gdXGb2CorTQUAD75xTBR3tkO+uM2JvYaLY2075ojiii47lh/0t6e6/ySK+/zHLuI2LcJl/QSAtq5XRXGn/nAXt9n1jV/FsctWHBHF9RZWkSpWVNQQk+JEDBFVZ1oxMTHo0KEDnJ2d4e7ujgEDBuDUqVMmMYqiIDo6Gt7e3rC3t0f37t1x/PjxSu00EVFNozOoX2ojVUkrISEBEyZMwL59+xAfH4/i4mKEhYUhLy/PGDN//nwsWLAACxcuxIEDB+Dp6YlevXohJ0f+VxkRUa2jVGCphVQND37//fcm/161ahXc3d1x6NAhdOvWDYqiIDY2FjNnzsTAgQMBAJ988gk8PDzw2WefYdy4cZXXcyKiGoQTMWTuaiJGVlYWAKBevXoAgKSkJKSlpSEsLMwYY2tri9DQUOzZs6fMNgoKCpCdnW2yEBHVOiVT3tUstVCFk5aiKIiKikLXrl3h7+8PAEhLSwMAeHh4mMR6eHgYX7tVTEwMXF1djYuPj09Fu0REZLZKzrTULLVRhZPWxIkTcfToUaxbV/rhdjqdzuTfiqKUWldixowZyMrKMi4pKSkV7RIRkfniNS2RCk15nzRpEjZt2oSdO3eiUaNGxvWenp4AbpxxeXl5Gdenp6eXOvsqYWtrC1tb24p0g4ioxuA1LRlVZ1qKomDixInYuHEjtm3bBj8/P5PX/fz84Onpifj4eOO6wsJCJCQkIDg4uHJ6TERUE/GaloiqM60JEybgs88+w3//+184Ozsbr1O5urrC3t4eOp0OkZGRmDNnDpo1a4ZmzZphzpw5cHBwwNChQ6tkB4iIagKeacmoSlpLliwBAHTv3t1k/apVqzBy5EgAwLRp03D9+nWMHz8eV69eRadOnbB161Y4OztXSodvNbfzhkpv08ZCL4499EWAKK7BuWJxm2vse4jiipbI+3ms/wfi2IDvJoniOrz7grhN2ywVP2GdZGHN35ZXxDj5Yh1x7Kmf3ERx92OfuE3LXPmgxm+PyiqN+H03Rtzmm+6yKh/rLOQVMf5MdZXH/uEiivP2/lPcpq2F/Gfqw6u+orjTSzqK4gzX84EX/yvevggrYoioSlqK4HRUp9MhOjoa0dHRFe0TERFRmTRbe5CIqDbh8KAMkxYRkRYYlBuLmvhaiEmLiEgLeE1LhEmLiEgDdFA5PFhlPdE2PgSSiEgL7sF9WosXL4afnx/s7OzQvn177Nq167axGzduRK9evdCgQQO4uLggKCgIW7ZsuZs9rBRMWkREGlDVtQfXr1+PyMhIzJw5E4mJiQgJCUF4eDiSk5PLjN+5cyd69eqFuLg4HDp0CD169ED//v2RmJhYCXtbcUxaRERaUMW1BxcsWIDRo0djzJgxaNmyJWJjY+Hj42O8//ZWsbGxmDZtGjp06GAsFNGsWTP873//q+AOVg4mLSIiDdApiuoFQKlHOxUUFJRqu7CwEIcOHTJ5bBQAhIWF3faxUbcyGAzIyckxPoqqujBpERFpgaECCwAfHx+TxzvFxMSUajojIwN6vV7VY6Nu9e677yIvLw+DBw+u0O5VFs3OHgyZPxqWNnblxi1+aaGovX358m1nrWpUftDfDMLQP4fnids83XmtKO6Z893FbfY78aQ4NumRj0Rx3/eQV+efey5cHCtlOPqbOLb5ytbi2IsPO1WkO3d03xfy479voKw8V4cHksRttlw2XhR3dtxicZtqPDxSVnIqc7z8O/X91kBx7K5WV0VxDu6y46S/Vvps5m7dfPYkjQeAlJQUuLj8UybrTk/NUPPYqJutW7cO0dHR+O9//wt3d3dxH6uCZpMWEVGtUsH7tFxcXEySVlnq168PS0vLUmdVd3psVIn169dj9OjR+PLLL9GzZ08VHawaHB4kIqrhbGxs0L59e5PHRgFAfHz8HR8btW7dOowcORKfffYZHnnkkarupgjPtIiItEDtvVcq79OKiorCsGHDEBgYiKCgICxfvhzJycmIiIgAcOMp8pcuXcKaNWsA3EhYw4cPx/vvv4/OnTsbz9Ls7e3h6iqv8F/ZmLSIiDSgqgvmDhkyBJmZmZg9ezZSU1Ph7++PuLg4+PreeGxLamqqyT1by5YtQ3FxMSZMmIAJEyYY148YMQKrV69Wt/FKxKRFRKQFVXymBQDjx4/H+PFlT8q5NRHt2LFDdfv3ApMWEZEG6Aw3FjXxtRGTFhGRFtyDM62agEmLiEgL+GgSESYtIiINqOjNxbUNkxYRkRZweFBEs0mr8RPnYO1oU27crKbtK33bbk1ltbgAID3yzneTl7A5puK+hs6ysD+C/xI3adeuoTg2aM4gUdyDda+I20xJryuOHZ3cVRiZK27z3GT5ffTPtNohittxuIu4TZvvD4hjTxfKvlNfNP1R3GZz++aiuC4vjBO3ebWFpTi2y79/EcXdJ24R2LtP/p0q/klW5HXSyP+K4q7nFmOqeOtCCoz1BMXxtZBmkxYRUW3C4UEZJi0iIi1QoHJ4sMp6ommsPUhERGaDZ1pERFrAiRgiTFpERFpgAFD+o61M42shJi0iIg3gRAwZJi0iIi3g8KAIkxYRkRYwaYkwaRERaQGTlohmk9bFz5rC0sau3Dg3/CFq7/TyDuJtN/pOfieAZf0CUVzdveXvS4ne3m1FcdcGdhK36bDxZ3GsS7gs7vpP8ooEZx9eJY4N+HmoKM4bJ8RtNlkiv8LtsER2TFODrMVt/rbyiDi211PPiuLi5lwQt2lRINt/xVLF55Qq/6WZkldHFPdQ3RRxm79OXiyOHX9JVmbmIfvzori84iqYBcGJGCKaTVpERLUJJ2LIMGkREWkBhwdFmLSIiLTAoAA6FYnIwKRFRETVhWdaIqw9SEREZoNnWkREmqDyTKuWlnln0iIi0gIOD4owaRERaYFBgaqzJ07EICKiaqMYbixq4mshJi0iIi3g8KCIZpNWwqsr4OJc/uTGXqdGitpr/twB8bbPzQ8SxzrtcRDFKZaV/1eRmtJMako+5Y38SxR3Od1S3Cb85KEF+fLySFJ5DW3Fsbsym4nidA/miNuUluYCgAuf60Vx13PqiNv02XZdFGcdfUXcpoNVoTg2q9BeFHeonXxCc7uJ48WxOU1kP39+fWRl4fKvFQOQl5wS4fCgiGaTFhFRrcIzLRFV92nFxMSgQ4cOcHZ2hru7OwYMGIBTp06ZxIwcORI6nc5k6dxZVqySiKjWUvBP4hIt1d3h6qEqaSUkJGDChAnYt28f4uPjUVxcjLCwMOTl5ZnE9enTB6mpqcYlLi6uUjtNRFTjqEpYau/pqjlUDQ9+//33Jv9etWoV3N3dcejQIXTr1s243tbWFp6enpXTQyKi2sBggKrnjRhq5+zBuyrjlJWVBQCoV6+eyfodO3bA3d0dzZs3x9ixY5Genn7bNgoKCpCdnW2yEBHVOjzTEqlw0lIUBVFRUejatSv8/f2N68PDw7F27Vps27YN7777Lg4cOICHH34YBQVlP1gvJiYGrq6uxsXHx6eiXSIiMl9MWiIVnj04ceJEHD16FLt37zZZP2TIEON/+/v7IzAwEL6+vti8eTMGDhxYqp0ZM2YgKirK+O/s7GwmLiIiKlOFktakSZOwadMm7Ny5E40aNbpjrJeXF3x9fXHmzJkyX7e1tYWtrfweGiKiGon3aYmoSlqKomDSpEn4+uuvsWPHDvj5lX/HaGZmJlJSUuDl5VXhThIR1XSKYoCiojSTmtiaRNU1rQkTJuDTTz/FZ599BmdnZ6SlpSEtLQ3Xr9+42z43NxdTp07F3r17cf78eezYsQP9+/dH/fr18fjjj1fJDhAR1QiKcuPsSbrwmlb5lixZAgDo3r27yfpVq1Zh5MiRsLS0xLFjx7BmzRr89ddf8PLyQo8ePbB+/Xo4Ozur6libjaNgYWdXbtz9u/eJ2ru6WVaaBwCUk/Ivg/vCvaK4pM9bi9vM9gsWxfl9dFbcZtGYTHFs5wYXRXHdXE6VH1QB978mm0EqK3akXohb2UPZt/rjmmOVbN/vyaOiuKKwQHGb8es+FsWFPvecuE3s/E0cmvSa7OevmfNf4jbdF+4Rx+bOlZVm2xHeUhRXbCgA8KN4+yKKyuFBJq3yKeV8SPb29tiyZctddYiIqFYyGAAdq7yXh7UHiYi0gGdaIkxaREQaoBgMUFScadXWiRhMWkREWsAzLREmLSIiLTAogI5JqzxMWkREWqAoUFUwl0mLiIiqi2JQoKg40ypvNndNdVdV3omIyHwsXrwYfn5+sLOzQ/v27bFr1647xickJKB9+/aws7ND06ZNsXTp0nvU09tj0iIi0gLFoH5RYf369YiMjMTMmTORmJiIkJAQhIeHIzk5ucz4pKQk9O3bFyEhIUhMTMQrr7yCyZMnY8OGDZWxtxWm2eHBXwauhItz+Tl11sOtRO1NqLdavO1OaS+IY7dcPiKMlMYBDx4fL4rbfFh+I3ffU33FsT/EtxPFeTyi4tlnzlfFoaei64ji7n9GvnmdXj6U8lI9WaWRZUdDxG3WbdBAHKv/4w9R3NKP3he32XL5S6K4hrn54javb6grjr1/uuy7YlHHVdymISdHHNvgiOz4n5ose8KEIT8feFW8eZGqHh5csGABRo8ejTFjxgAAYmNjsWXLFixZsgQxMTGl4pcuXYrGjRsjNjYWANCyZUscPHgQ77zzDgYNGqRq25WJZ1pERBpQrBSg2KBiUW48o/DWh+iW9ezCwsJCHDp0CGFhYSbrw8LCsGdP2eWw9u7dWyq+d+/eOHjwIIqKiippr9XT7JkWEVFtYGNjA09PT+xOi1P9Xicnp1LPH5w1axaio6NN1mVkZECv18PDw8NkvYeHB9LS0spsOy0trcz44uJiZGRkVNuTO5i0iIiqkZ2dHZKSklBYWKj6vYqiQKfTmay70/MJb40t6/3lxZe1/l5i0iIiqmZ2dnawEzzVoqLq168PS0vLUmdV6enppc6mSnh6epYZb2VlBTc3tyrra3l4TYuIqIazsbFB+/btER8fb7I+Pj4ewcFlPwopKCioVPzWrVsRGBgIa2vrKutreZi0iIhqgaioKHz88cdYuXIlTp48iRdffBHJycmIiIgAAMyYMQPDhw83xkdERODChQuIiorCyZMnsXLlSqxYsQJTp06trl0AwOFBIqJaYciQIcjMzMTs2bORmpoKf39/xMXFwdfXFwCQmppqcs+Wn58f4uLi8OKLL2LRokXw9vbGBx98UK3T3QEmLSKiWmP8+PEYP77s+0BXr15dal1oaCgOHz5cxb1Sh8ODRERkNjR3plUypTI7V1aipCBXdpNbjrW85InhurwqQHZO5T+ITV8g276abRfnlb7h8HYM+bLtSz97AMi2U/H5X5Ntv1iRb7+4qPKPqbSfAFBskE9n1gv3K1fF8dcLj2lxsXyf9Cq+U5Z62YV7xSBvsyqOvyFfNpW75GekthatrU46RWOf+sWLF0vdLEdEpEUpKSlo1KhRdXejVtFc0jIYDLh8+TKcnZ1NbmDLzs6Gj48PUlJS4OLiUo09rDzcJ/PAfTIf92q/FEVBTk4OvL29YWHBqyz3kuaGBy0sLO74l4uLi0uN+iEDuE/mgvtkPu7Ffrm6yov7UuXhnwhERGQ2mLSIiMhsmE3SsrW1xaxZs+5YDNLccJ/MA/fJfNTU/aJ/aG4iBhER0e2YzZkWERERkxYREZkNJi0iIjIbTFpERGQ2mLSIiMhsMGkREZHZYNIiIiKzwaRFRERm4/8BurPb7F9e3DAAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "# Load the patch normalized image\n", "patch_img = np.load('./mats/0_basicdemo/summer_patchnorm.npy', allow_pickle=True)\n", @@ -336,7 +314,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.4" + "version": "3.10.10" } }, "nbformat": 4, From 7e52eee3fd985f3e2a0d4b6e0decbeb4fb377f15 Mon Sep 17 00:00:00 2001 From: Adam Hines Date: Mon, 6 Nov 2023 15:47:49 +1000 Subject: [PATCH 25/69] Combined the inh and exc weights for inferencing in non-quantized version --- VPRTempo.py | 20 +++++---- VPRTempo_Train.py | 23 +++++++++- src/blitnet.py | 111 ++++++++++++++++++++++++---------------------- src/settings.py | 10 ++--- 4 files changed, 98 insertions(+), 66 deletions(-) diff --git a/VPRTempo.py b/VPRTempo.py index 97a80a1..ac82f33 100644 --- a/VPRTempo.py +++ b/VPRTempo.py @@ -63,12 +63,14 @@ def __init__(self): self.add_layer( 'feature_layer', dims=[self.input, self.feature], - device=self.device + device=self.device, + inference=True ) self.add_layer( 'output_layer', dims=[self.feature, self.output], - device=self.device + device=self.device, + inference=True ) def add_layer(self, name, **kwargs): @@ -123,13 +125,15 @@ def evaluate(self, model, test_loader, layers=None): # Rehsape output spikes into a similarity matrix out = np.reshape(np.array(out),(model.number_training_images,model.number_testing_images)) - # Calculate and print the Recall@N - N = [1,5,10,15,20,25] - R = [] + + # Recall@N + N = [1,5,10,15,20,25] # N values to calculate + R = [] # Recall@N values # Create GT matrix GT = np.zeros((model.number_testing_images,model.number_training_images), dtype=int) for n in range(len(GT)): GT[n,n] = 1 + # Calculate Recall@N for n in N: R.append(round(recallAtK(out,GThard=GT,K=n),2)) # Print the results @@ -149,7 +153,7 @@ def forward(self, spikes, layer): - Tensor: Output after processing. """ - spikes = layer.exc(spikes) + layer.inh(spikes) + spikes = layer.w(spikes) return spikes @@ -158,7 +162,7 @@ def load_model(self, model_path): Load pre-trained model and set the state dictionary keys. """ self.load_state_dict(torch.load(model_path, map_location=self.device), - strict=True) + strict=False) def generate_model_name(model): """ @@ -176,7 +180,7 @@ def check_pretrained_model(model_name): Check if a pre-trained model exists and tell user if it does not. """ if not os.path.exists(os.path.join('./models', model_name)): - model.logger.info("A pre-trained network does not exist: please train one using VPRTempoQuant_Trainer") + model.logger.info("A pre-trained network does not exist: please train one using VPRTempo_Trainer") pretrain = 'n' else: pretrain = 'y' diff --git a/VPRTempo_Train.py b/VPRTempo_Train.py index 4eebfb9..4bdb1fc 100644 --- a/VPRTempo_Train.py +++ b/VPRTempo_Train.py @@ -36,6 +36,7 @@ import blitnet as bn import numpy as np import torch.nn as nn +import torchvision.transforms as transforms from settings import configure, model_logger from dataset import CustomImageDataset, ProcessImage @@ -179,6 +180,22 @@ def forward(self, spikes, layer): spikes = layer.exc(spikes) + layer.inh(spikes) return spikes + + def combine_weights(self, model): + for layer_name, _ in sorted(model.layer_dict.items(), key=lambda item: item[1]): + # Retrieve the layer object + layer = getattr(model, layer_name) + dims = layer.dims + # Define weight variable in layer + layer.w = nn.Linear(dims[0],dims[1],bias=False) + # Send to model device + layer.x.to(model.device) + # Replace weights with combined weights + layer.w.weight = nn.Parameter(layer.exc.weight + layer.inh.weight) + # Delete original weights + del layer.exc, layer.inh + + return model def save_model(self, model_out): """ @@ -216,7 +233,9 @@ def train_new_model(model, model_name): :param qconfig: Quantization configuration """ # Initialize the image transforms and datasets - image_transform = ProcessImage(model.dims, model.patches) + image_transform = transforms.Compose([ + ProcessImage(model.dims, model.patches) + ]) train_dataset = CustomImageDataset(annotations_file=model.dataset_file, img_dirs=model.training_dirs, transform=image_transform, @@ -244,6 +263,8 @@ def train_new_model(model, model_name): model.train_model(train_loader, layer, prev_layers=trained_layers) # After training the current layer, add it to the list of trained layers trained_layers.append(layer_name) + # Combine excitatory and inhibitory weights + model = model.combine_weights(model) # Convert the model to a quantized model model.eval() # Save the model diff --git a/src/blitnet.py b/src/blitnet.py index 1b83e36..19a7531 100644 --- a/src/blitnet.py +++ b/src/blitnet.py @@ -33,7 +33,7 @@ class SNNLayer(nn.Module): def __init__(self, dims=[0,0],thr_range=[0,0],fire_rate=[0,0],ip_rate=0, - stdp_rate=0,const_inp=[0,0],p=[1,1],spk_force=False,device=None): + stdp_rate=0,const_inp=[0,0],p=[1,1],spk_force=False,device=None,inference=False): super(SNNLayer, self).__init__() """ dims: [input, output] dimensions of the layer @@ -50,58 +50,65 @@ def __init__(self, dims=[0,0],thr_range=[0,0],fire_rate=[0,0],ip_rate=0, configure(self) # Sets the testing configuration # Device self.device = device - - # Check constraints etc - if np.isscalar(thr_range): thr_range = [thr_range, thr_range] - if np.isscalar(fire_rate): fire_rate = [fire_rate, fire_rate] - if np.isscalar(const_inp): const_inp = [const_inp, const_inp] - - # Initialize Tensors - self.x = torch.zeros([1, dims[-1]], device=self.device) - self.eta_ip = torch.tensor(ip_rate, device=self.device) - self.eta_stdp = torch.tensor(stdp_rate, device=self.device) - - # Initialize Parameters - self.thr = nn.Parameter(torch.zeros([1, dims[-1]], - device=self.device).uniform_(thr_range[0], - thr_range[1])) - self.fire_rate = torch.zeros([1,dims[-1]], device=self.device).uniform_(fire_rate[0], fire_rate[1]) - - # Sequentially set the feature firing rates (if any) - if not torch.all(self.fire_rate==0).item(): - fstep = (fire_rate[1]-fire_rate[0])/dims[-1] + # Add different parameters depending if trainnig or running inference model + if inference: # If running inference model + self.w = nn.Linear(dims[0], dims[1], bias=False) # Combined weight tensors + self.w.to(device) + self.thr = nn.Parameter(torch.zeros([1, dims[-1]], + device=self.device).uniform_(thr_range[0], + thr_range[1])) + else: # If training new model + # Check constraints etc + if np.isscalar(thr_range): thr_range = [thr_range, thr_range] + if np.isscalar(fire_rate): fire_rate = [fire_rate, fire_rate] + if np.isscalar(const_inp): const_inp = [const_inp, const_inp] - for i in range(dims[-1]): - self.fire_rate[:,i] = fire_rate[0]+fstep*(i+1) - - self.have_rate = torch.any(self.fire_rate[:,0] > 0.0).to(self.device) - self.const_inp = torch.zeros([1, dims[-1]], device=self.device).uniform_(const_inp[0], const_inp[1]) - self.p = p - self.dims = dims - - # Additional State Variables - self.set_spks = [] - self.sspk_idx = 0 - self.spikes = torch.empty([], dtype=torch.float64) - self.spk_force = spk_force - - # Create the excitatory weights - self.exc = nn.Linear(dims[0], dims[1], bias=False) - self.exc.weight = self.addWeights(dims=dims, - W_range=[0,1], - p=p[0], - device=device) - - # Create the inhibitory weights - self.inh = nn.Linear(dims[0], dims[1], bias=False) - self.inh.weight = self.addWeights(dims=dims, - W_range=[-1,0], - p=p[-1], - device=device) - - # Output boolean reference of which neurons have connection weights - self.havconnExc = self.exc.weight > 0 - self.havconnInh = self.inh.weight < 0 + # Initialize Tensors + self.x = torch.zeros([1, dims[-1]], device=self.device) + self.eta_ip = torch.tensor(ip_rate, device=self.device) + self.eta_stdp = torch.tensor(stdp_rate, device=self.device) + + # Initialize Parameters + self.thr = nn.Parameter(torch.zeros([1, dims[-1]], + device=self.device).uniform_(thr_range[0], + thr_range[1])) + self.fire_rate = torch.zeros([1,dims[-1]], device=self.device).uniform_(fire_rate[0], fire_rate[1]) + + # Sequentially set the feature firing rates (if any) + if not torch.all(self.fire_rate==0).item(): + fstep = (fire_rate[1]-fire_rate[0])/dims[-1] + + for i in range(dims[-1]): + self.fire_rate[:,i] = fire_rate[0]+fstep*(i+1) + + self.have_rate = torch.any(self.fire_rate[:,0] > 0.0).to(self.device) + self.const_inp = torch.zeros([1, dims[-1]], device=self.device).uniform_(const_inp[0], const_inp[1]) + self.p = p + self.dims = dims + + # Additional State Variables + self.set_spks = [] + self.sspk_idx = 0 + self.spikes = torch.empty([], dtype=torch.float64) + self.spk_force = spk_force + + # Create the excitatory weights + self.exc = nn.Linear(dims[0], dims[1], bias=False) + self.exc.weight = self.addWeights(dims=dims, + W_range=[0,1], + p=p[0], + device=device) + + # Create the inhibitory weights + self.inh = nn.Linear(dims[0], dims[1], bias=False) + self.inh.weight = self.addWeights(dims=dims, + W_range=[-1,0], + p=p[-1], + device=device) + + # Output boolean reference of which neurons have connection weights + self.havconnExc = self.exc.weight > 0 + self.havconnInh = self.inh.weight < 0 def addWeights(self,W_range=[0,0],p=[0,0],dims=[0,0],device=None): diff --git a/src/settings.py b/src/settings.py index 75f7771..d1b648b 100644 --- a/src/settings.py +++ b/src/settings.py @@ -9,13 +9,13 @@ def configure(model): Configure the model """ model.dataset = 'nordland' # Dataset name - model.dataset_file = './dataset/'+model.dataset+'.csv' # Dataset file (must be PyTorch Dataset) + model.dataset_file = os.path.join('./dataset',model.dataset+'.csv') # Dataset file (must be PyTorch Dataset) model.trainingPath = './dataset/' # Path to training images model.testPath = './dataset/' # Path to testing images model.number_modules = 1 # Number of expert modules (currently not implemented) - model.number_training_images = 500 # Number of training images - model.number_testing_images = 500 # Number of testing images - model.locations = ["spring","fall"] # Locations to train on (location repeats for training datasets) + model.number_training_images = 250 # Number of training images + model.number_testing_images = model.number_training_images # Number of testing images + model.locations = ["spring"] # Locations to train on (location repeats for training datasets) model.test_locations = ["winter"] # Location to query with model.filter = 8 # Filter for training images model.validation = True # Validation (maybe deprecated for now?) @@ -51,7 +51,7 @@ def configure(model): model.testing_dirs.append(os.path.join(model.testPath,n)) # Set the model parameters - model.epoch = 4 # Number of epochs + model.epoch = 8 # Number of epochs model.patches = 15 # Number of patches model.dims = [56,56] # Dimensions of the input image model.location_repeat = len(model.locations) # Number of times to repeat the locations From 3e8990315cd0433bb6a7c3f369982af66e621e3e Mon Sep 17 00:00:00 2001 From: Adam Hines Date: Thu, 9 Nov 2023 12:26:00 +1000 Subject: [PATCH 26/69] Fixed and finalized basic quantized tutorial --- VPRTempo.py | 2 +- notebook_testing.py | 58 +++ src/settings.py | 12 +- tutorials/0_BasicDemo.ipynb | 2 +- tutorials/1_BasicDemo-Quantized.ipynb | 490 ++++++++++++++++++ ...ntroduction.ipynb => 2_Introduction.ipynb} | 0 ...uantization.ipynb => 3_Quantization.ipynb} | 0 tutorials/mats/0_basicdemo/summer.png | Bin 295003 -> 309004 bytes tutorials/mats/1_basicdemoquant/summer.png | Bin 0 -> 309004 bytes 9 files changed, 556 insertions(+), 8 deletions(-) create mode 100644 notebook_testing.py create mode 100644 tutorials/1_BasicDemo-Quantized.ipynb rename tutorials/{1_Introduction.ipynb => 2_Introduction.ipynb} (100%) rename tutorials/{2_Quantization.ipynb => 3_Quantization.ipynb} (100%) mode change 100755 => 100644 tutorials/mats/0_basicdemo/summer.png create mode 100644 tutorials/mats/1_basicdemoquant/summer.png diff --git a/VPRTempo.py b/VPRTempo.py index ac82f33..3ea1409 100644 --- a/VPRTempo.py +++ b/VPRTempo.py @@ -204,7 +204,7 @@ def run_inference(model, model_name): # Initialize the data loader test_loader = DataLoader(test_dataset, batch_size=1, - shuffle=False, + shuffle=True, num_workers=8, persistent_workers=True) # Set the model to evaluation mode and set configuration diff --git a/notebook_testing.py b/notebook_testing.py new file mode 100644 index 0000000..cf6e162 --- /dev/null +++ b/notebook_testing.py @@ -0,0 +1,58 @@ +import cv2 +import numpy as np +import matplotlib.pyplot as plt + +# Load network scale factor +scale_factors = np.load('./tutorials/mats/1_basicdemoquant/if_scales.npy',allow_pickle=True) +# Load the patch normalized image +patch_img = np.load('./tutorials/mats/1_basicdemoquant/summer_patchnorm.npy', allow_pickle=True) +# Divide the patch image by the QAT scale factor for input spikes +spike_scale = scale_factors[4] +patch_img_int = np.round(patch_img*spike_scale).astype(np.int32) + +# Find the maximum quantized pixel intensity and print it +max_int = np.max(patch_img_int) + + +# Convert 2D image to a 1D-array +patch_1d = np.reshape(patch_img_int, (784,)) + +# Load network scale factor +scale_factors = np.load('./tutorials/mats/1_basicdemoquant/if_scales.npy',allow_pickle=True) + +# Divide the patch image by the QAT scale factor for input spikes +spike_scale = scale_factors[4] +patch_img_int = np.round(patch_img*spike_scale).astype(np.int32) + +# Find the maximum quantized pixel intensity and print it +max_int = np.max(patch_img_int) + +# Load the input to feature excitatory and inhibitory network weights +if_exc = np.load('./tutorials/mats/1_basicdemoquant/if_exc.npy') +if_inh = np.load('./tutorials/mats/1_basicdemoquant/if_inh.npy') + +if_exc = if_exc.astype(np.int32) + +zeropoint_inh = 127 + +# Calculate feature spikes for the positive weight calculation +exc_feature_spikes = (np.matmul(if_exc,patch_1d)) + +# Get the required scale factors to transform the feature spikes +perslice_scale_exc = scale_factors[0] +perchannel_scale_exc = scale_factors[2] + +# Transform the feature layer spikes based on the scale factors +scaled_exc_feature_spikes = np.round(exc_feature_spikes/(perslice_scale_exc*spike_scale))*perchannel_scale_exc +scaled_exc_feature_spikes = scaled_exc_feature_spikes.astype(np.int32) + +# Calculate feature spikes for the negative weight calculation +inh_feature_spikes = (np.matmul(if_inh,patch_1d)) + +# Get the required scale factors to transform the feature spikes +perslice_scale_inh = scale_factors[1] +perchannel_scale_inh = scale_factors[3] + +# Transform the feature layer spikes based on the scale factors +scaled_inh_feature_spikes = (np.round(inh_feature_spikes/(perslice_scale_inh*spike_scale))*perchannel_scale_inh) + zeropoint_inh +scaled_inh_feature_spikes = scaled_inh_feature_spikes.astype(np.int32) \ No newline at end of file diff --git a/src/settings.py b/src/settings.py index d1b648b..07dd23f 100644 --- a/src/settings.py +++ b/src/settings.py @@ -13,14 +13,14 @@ def configure(model): model.trainingPath = './dataset/' # Path to training images model.testPath = './dataset/' # Path to testing images model.number_modules = 1 # Number of expert modules (currently not implemented) - model.number_training_images = 250 # Number of training images + model.number_training_images = 500 # Number of training images model.number_testing_images = model.number_training_images # Number of testing images - model.locations = ["spring"] # Locations to train on (location repeats for training datasets) - model.test_locations = ["winter"] # Location to query with + model.locations = ["winter"] # Locations to train on (location repeats for training datasets) + model.test_locations = ["summer"] # Location to query with model.filter = 8 # Filter for training images model.validation = True # Validation (maybe deprecated for now?) model.log = True # Log to console - model.quantize = False # Quantize the network + model.quantize = True # Quantize the network # Set default paths if the provided paths are not valid directories if not os.path.isdir(getattr(model, 'trainingPath', '')): @@ -52,8 +52,8 @@ def configure(model): # Set the model parameters model.epoch = 8 # Number of epochs - model.patches = 15 # Number of patches - model.dims = [56,56] # Dimensions of the input image + model.patches = 7 # Number of patches + model.dims = [28,28] # Dimensions of the input image model.location_repeat = len(model.locations) # Number of times to repeat the locations model.annl_pow = 2 # Power of the annealmeant function diff --git a/tutorials/0_BasicDemo.ipynb b/tutorials/0_BasicDemo.ipynb index 6db59e2..97d7cc9 100644 --- a/tutorials/0_BasicDemo.ipynb +++ b/tutorials/0_BasicDemo.ipynb @@ -314,7 +314,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.10" + "version": "3.11.4" } }, "nbformat": 4, diff --git a/tutorials/1_BasicDemo-Quantized.ipynb b/tutorials/1_BasicDemo-Quantized.ipynb new file mode 100644 index 0000000..2d87f15 --- /dev/null +++ b/tutorials/1_BasicDemo-Quantized.ipynb @@ -0,0 +1,490 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "b34c7b8a-e7bb-47f4-b558-be1bde9a7b37", + "metadata": {}, + "source": [ + "## VPRTempoQuant - Basic Demo for a quantized version of VPRTempo\n", + "\n", + "### By Adam D Hines (https://research.qut.edu.au/qcr/people/adam-hines/)\n", + "\n", + "VPRTempo is based on the following paper, if you use or find this code helpful for your research please consider citing the source:\n", + " \n", + "[Adam D Hines, Peter G Stratton, Michael Milford, & Tobias Fischer. \"VPRTempo: A Fast Temporally Encoded Spiking Neural Network for Visual Place Recognition. arXiv September 2023](https://arxiv.org/abs/2309.10225)\n", + "\n", + "### Introduction\n", + "\n", + "This is a basic, extremely simplified version of VPRTempo that highlights how images are transformed, spikes and weights are used, and the readout for performance using a model trained using Quantized Aware Training (QAT). We will view the system through the lens of integer based weights and spikes to see how a quantized version of VPRTempo operates under the hood.\n", + "\n", + "*Note: In this example, we will lose some amount of precision because we are only using integers for all calculations. In the deployed version, PyTorch quantizes and dequantizes spikes and weights so that some calculations are performed in the floating point domain. As such, this tutorial should be taken purely for conceptual understanding of a quantized version of VPRTempo and not for implementation purposes.*\n", + "\n", + "Before starting, make sure the following packages are installed and imported:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "c879cd02-82db-441d-9476-fff1925bf494", + "metadata": {}, + "outputs": [], + "source": [ + "# Imprt opencv-python, NumPy, and matplotlib.pyplot\n", + "try:\n", + " import cv2\n", + " import numpy as np\n", + " import matplotlib.pyplot as plt\n", + "except:\n", + " ! pip install numpy, opencv-python, matplotlib # pip install if modules not present\n", + " import cv2\n", + " import numpy as np\n", + " import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "markdown", + "id": "bb45df38-e333-46b2-9161-80e6ac367532", + "metadata": {}, + "source": [ + "### Image processing\n", + "\n", + "As in the previous tutorial, we will load in a 360x640 image and show the patch-normalized version. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "67f129b5-9a7a-4b50-9d94-b9bf512f8b70", + "metadata": {}, + "outputs": [], + "source": [ + "# Load the input image\n", + "raw_img = cv2.imread('./mats/1_basicdemoquant/summer.png')\n", + "rgb_img = cv2.cvtColor(raw_img, cv2.COLOR_BGR2RGB) # Convert to RGB\n", + "\n", + "# Load the patch normalized image\n", + "patch_img = np.load('./mats/1_basicdemoquant/summer_patchnorm.npy', allow_pickle=True)\n", + "patch_img = patch_img.astype(np.int32)\n", + "# Create a figure to hold the subplots\n", + "plt.figure(figsize=(10, 4))\n", + "\n", + "# Plot the first image\n", + "plt.subplot(1, 2, 1) # 1 row, 2 columns, 1st subplot\n", + "plt.imshow(rgb_img)\n", + "plt.title('Nordland Summer')\n", + "\n", + "# Plot the second image\n", + "plt.subplot(1, 2, 2) # 1 row, 2 columns, 2nd subplot\n", + "plt.matshow(patch_img, fignum=False)\n", + "plt.title('Nordland Summer Patch Normalized')\n", + "plt.colorbar(shrink=0.75, label=\"Pixel intensity\")\n", + "\n", + "# Show the plot\n", + "plt.show()\n", + "max_int = np.max(patch_img)\n", + "print(f\"The maximum integer pixel value is {max_int}\")" + ] + }, + { + "cell_type": "markdown", + "id": "b68cf25e-35ae-4885-9cf1-c1b09ce4ad42", + "metadata": {}, + "source": [ + "The patch normalized image here are floating point values in the range [0, 1]. For the base VPRTempo system, this is fine because the entire system works using floating points. However, in our quantized model we will be using integers. To demonstrate the conversion from floating point to integer, we'll manually quantize our input spikes by dividing using the `scale_factor` determined from the QAT.\n", + "\n", + "Let's load in some model scale factors, we'll use some of these later for the weight calculations." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "6f67656a-3ba4-4374-b780-4e8bac4ec2d2", + "metadata": {}, + "outputs": [], + "source": [ + "# Load network scale factor\n", + "scale_factors = np.load('./mats/1_basicdemoquant/if_scales.npy',allow_pickle=True)" + ] + }, + { + "cell_type": "markdown", + "id": "82691809-7b06-4f0b-aca0-e19d293355b3", + "metadata": {}, + "source": [ + "Like in the previous tutorial, we will convert this to a 1D-array to pass through the layers." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "2bd6ae95-2a79-4b45-8a60-503079339739", + "metadata": {}, + "outputs": [], + "source": [ + "# Convert 2D image to a 1D-array\n", + "patch_1d = np.reshape(patch_img, (784,))" + ] + }, + { + "cell_type": "markdown", + "id": "9d9a5eaf-1de3-461f-b138-3ac820da8bae", + "metadata": {}, + "source": [ + "### Load the pre-trained network weights\n", + "\n", + "Our network consists of the same architecture as in the previous tutorial. The excitatory and inhibitory weights have been converted to the integer representations from the QAT and will be applied directly to the quantized input spikes." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "6d98749a-8f28-477b-871c-93626e96786c", + "metadata": {}, + "outputs": [], + "source": [ + "# Load the input to feature excitatory and inhibitory network weights\n", + "if_exc = np.load('./mats/1_basicdemoquant/if_exc.npy')\n", + "if_inh = np.load('./mats/1_basicdemoquant/if_inh.npy')\n", + "\n", + "# Create a figure and a set of subplots\n", + "fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(10, 5)) # Adjust the figure size as needed\n", + "\n", + "# Plot the excitatory weights\n", + "exc_plot = axes[0].matshow(if_exc.T)\n", + "axes[0].set_title('Input > Feature Excitatory Weights')\n", + "fig.colorbar(exc_plot, ax=axes[0], shrink=0.4, label=\"Weight strength\")\n", + "\n", + "# Plot the inhibitory weights\n", + "inh_plot = axes[1].matshow(if_inh.T, cmap='viridis_r')\n", + "axes[1].set_title('Input > Feature Inhibitory Weights')\n", + "fig.colorbar(inh_plot, ax=axes[1], shrink=0.4, label=\"Weight strength\")\n", + "\n", + "# Display the plots\n", + "plt.show()\n", + "\n", + "# Print dtype\n", + "print(f\"Excitatory weights integer type is {if_exc.dtype}\")\n", + "print(f\"Inhibitory weights integer type is {if_inh.dtype}\")" + ] + }, + { + "cell_type": "markdown", + "id": "6de0fada-374c-4289-8042-5347b6b2ba21", + "metadata": {}, + "source": [ + "In addition to this, we will set the zero points for these weights. From the QAT, the zero point for the excitatory weights was 0 and 127 for the inhibitory weights." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "b0405142-f8bd-4d83-a78e-d078f911d649", + "metadata": {}, + "outputs": [], + "source": [ + "# Set the zero point for the inhibitory weights\n", + "zeropoint_inh = 127" + ] + }, + { + "cell_type": "markdown", + "id": "d591969a-e72e-43b2-8c89-16a13bb29fe6", + "metadata": {}, + "source": [ + "### Propagate network spikes\n", + "\n", + "Now we'll propagate the input spikes across the feature to get the output, like in the previous tutorial. Let's start with the excitatory weights though first, since we will need to use different scaling of the output based on the zero point." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "f6c84239-c176-48c3-8954-25da5f989d61", + "metadata": {}, + "outputs": [], + "source": [ + "# Calculate feature spikes for the positive weight calculation\n", + "exc_feature_spikes = (np.matmul(if_exc,patch_1d))\n", + "\n", + "# Now create the line plot\n", + "plt.plot(np.arange(len(exc_feature_spikes)), exc_feature_spikes)\n", + "\n", + "# Add title and labels if you wish\n", + "plt.title('Excitatory Feature Layer Spikes')\n", + "plt.xlabel('Neuron ID')\n", + "plt.ylabel('Spike Amplitude')\n", + "# Show the plot\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "4ea0b0a3-66fc-4202-963c-cbd05114d283", + "metadata": {}, + "source": [ + "We can see here that the spike values calculated for the feature layer are huge. That is because they need to be properly re-scaled after calculation. To do this, we need to take a couple of the scaling factors we imported earlier to transform the output to a reasonable range." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "1bd2b7f6-c698-4a7d-9099-da9cc59ed007", + "metadata": {}, + "outputs": [], + "source": [ + "# Get the required scale factors to transform the feature spikes\n", + "perslice_scale_exc = scale_factors[0]\n", + "perchannel_scale_exc = scale_factors[2]\n", + "\n", + "# Transform the feature layer spikes based on the scale factors\n", + "scaled_exc_feature_spikes = (exc_feature_spikes//(perslice_scale_exc*perchannel_scale_exc))//perchannel_scale_exc\n", + "scaled_exc_feature_spikes = scaled_exc_feature_spikes.astype(np.int32)\n", + "# Plot out the scaled feature layer spikes\n", + "# Now create the line plot\n", + "plt.plot(np.arange(len(scaled_exc_feature_spikes)), scaled_exc_feature_spikes)\n", + "\n", + "# Add title and labels if you wish\n", + "plt.title('Excitatory Feature Layer Spikes')\n", + "plt.xlabel('Neuron ID')\n", + "plt.ylabel('Spike Amplitude')\n", + "# Show the plot\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "4d9d5a9e-05d3-475f-beec-1c6d29923cd5", + "metadata": {}, + "source": [ + "Now let's do the same thing for our inhibitory weights." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "e1059733-2b2b-4c49-8ba2-2a52531f483c", + "metadata": {}, + "outputs": [], + "source": [ + "# Calculate feature spikes for the negative weight calculation\n", + "inh_feature_spikes = (np.matmul(if_inh, patch_1d))\n", + "\n", + "# Get the required scale factors to transform the feature spikes\n", + "perslice_scale_inh = scale_factors[1]\n", + "perchannel_scale_inh = scale_factors[3]\n", + "\n", + "# Transform the feature layer spikes based on the scale factors\n", + "scaled_inh_feature_spikes = ((inh_feature_spikes - zeropoint_inh) // (perslice_scale_inh * perchannel_scale_inh)) // perchannel_scale_inh + zeropoint_inh\n", + "scaled_inh_feature_spikes = scaled_inh_feature_spikes.astype(np.int32)\n", + "\n", + "# Create a figure and a set of subplots\n", + "fig, axs = plt.subplots(1, 2, figsize=(10, 5)) # 'figsize' can be adjusted as needed\n", + "\n", + "# First subplot\n", + "axs[0].plot(np.arange(len(inh_feature_spikes)), inh_feature_spikes)\n", + "axs[0].set_title('Inhibitory Feature Layer Spikes')\n", + "axs[0].set_xlabel('Neuron ID')\n", + "axs[0].set_ylabel('Spike Amplitude')\n", + "\n", + "# Second subplot\n", + "axs[1].plot(np.arange(len(scaled_inh_feature_spikes)), scaled_inh_feature_spikes)\n", + "axs[1].set_title('Scaled Inhibitory Feature Layer Spikes')\n", + "axs[1].set_xlabel('Neuron ID')\n", + "axs[1].set_ylabel('Spike Amplitude')\n", + "\n", + "# Adjust the layout\n", + "plt.tight_layout()\n", + "# Show the plot\n", + "plt.show()\n" + ] + }, + { + "cell_type": "markdown", + "id": "8e8e56a1-591c-4617-b3f0-2b41082b9a31", + "metadata": {}, + "source": [ + "One thing you may notice is that although we used negative weights, we output positive spikes from in this operation. That is because of the `zeropoint_inh` of 127, which we add to the final spike calculation.\n", + "\n", + "Now that we separately calculated our positive and negative feature layer spikes, we need to add them together to get the final feature spikes. However, we'll note that because the scales and zero points for the two operations are different they will require to undergo additional transformation to match the scales. In the VPRTempoQuant model, we derive this addition scale and zero point from the `nn.quantized.FloatFunctional.add` function which learns these values during QAT. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "274df441-3015-4bab-a3bb-1498a2a7837a", + "metadata": {}, + "outputs": [], + "source": [ + "# Combined scale factors\n", + "combined_scale = 58\n", + "combined_zeropoint = 61\n", + "\n", + "# Remove zeropoint from inhibitory spikes\n", + "scaled_inh_feature_spikes_zero = scaled_inh_feature_spikes - zeropoint_inh\n", + "\n", + "# Combine the excitiatory and inhibitory feature spikes\n", + "exc_rescaled = (scaled_exc_feature_spikes/perchannel_scale_exc) * combined_scale\n", + "inh_rescaled = (scaled_inh_feature_spikes_zero/perchannel_scale_exc) * combined_scale\n", + "print(perchannel_scale_inh.dtype)\n", + "combined = (exc_rescaled.astype(np.int32) + inh_rescaled.astype(np.int32)) + combined_zeropoint\n", + "combined = np.clip(combined,0,max_int)\n", + "\n", + "# Plot the combined spikes\n", + "plt.plot(np.arange(len(combined)), combined)\n", + "\n", + "# Add title and labels if you wish\n", + "plt.title('Combined Feature Layer Spikes')\n", + "plt.xlabel('Neuron ID')\n", + "plt.ylabel('Spike Amplitude')\n", + "# Show the plot\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "e557a0ee-5202-45ac-af53-c49ccc65b4aa", + "metadata": {}, + "source": [ + "Now we will apply the same process for the output layer to get the output spikes." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "f5d4dc99-c7b9-4e9b-ba7c-58f6e30631cb", + "metadata": {}, + "outputs": [], + "source": [ + "# Load the input to feature excitatory and inhibitory network weights\n", + "fo_exc = np.load('./mats/1_basicdemoquant/fo_exc.npy')\n", + "fo_inh = np.load('./mats/1_basicdemoquant/fo_inh.npy')\n", + "\n", + "# Create a figure and a set of subplots\n", + "fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(10, 5)) # Adjust the figure size as needed\n", + "\n", + "# Plot the excitatory weights\n", + "exc_plot = axes[0].matshow(fo_exc)\n", + "axes[0].set_title('Feature > Output Excitatory Weights')\n", + "fig.colorbar(exc_plot, ax=axes[0], shrink=0.4, label=\"Weight strength\")\n", + "\n", + "# Plot the inhibitory weights\n", + "inh_plot = axes[1].matshow(fo_inh, cmap='viridis_r')\n", + "axes[1].set_title('Feature > Output Inhibitory Weights')\n", + "fig.colorbar(inh_plot, ax=axes[1], shrink=0.4, label=\"Weight strength\")\n", + "\n", + "# Display the plots\n", + "plt.show()\n", + "\n", + "# Print dtype\n", + "print(f\"Excitatory weights integer type is {if_exc.dtype}\")\n", + "print(f\"Inhibitory weights integer type is {if_inh.dtype}\")" + ] + }, + { + "cell_type": "markdown", + "id": "54b4f5f6-017b-4d7d-812a-c96baf9cb39f", + "metadata": {}, + "source": [ + "We'll get our excitatory and inhibitory spikes for the output and scale them." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "780371ca-9dfe-4dd7-857d-e35be73ffd23", + "metadata": {}, + "outputs": [], + "source": [ + "# Load the output layer scales\n", + "fo_scales = np.load('./mats/1_basicdemoquant/fo_scales.npy',allow_pickle=True)\n", + "\n", + "# Calculate the excitatory and inhibitory spikes and scale them\n", + "exc_output_spikes = np.round(np.matmul(fo_exc,combined))\n", + "scaled_exc_output_spikes = exc_output_spikes // (fo_scales[0]) \n", + "\n", + "inh_output_spikes = (np.matmul(fo_inh,combined.astype(np.int32)))\n", + "scaled_inh_output_spikes = (inh_output_spikes - zeropoint_inh) // fo_scales[1]\n", + "\n", + "# Combine the excitiatory and inhibitory feature spikes\n", + "exc_rescaled = (scaled_exc_output_spikes/fo_scales[2]) * combined_scale\n", + "inh_rescaled = ((scaled_inh_output_spikes - zeropoint_inh)/fo_scales[3]) * combined_scale\n", + "\n", + "output_spikes = (exc_rescaled.astype(np.int32) + inh_rescaled.astype(np.int32)) + combined_zeropoint\n", + "output_spikes = np.clip(output_spikes,0,max_int)\n", + "\n", + "# Plot the combined spikes\n", + "plt.plot(np.arange(len(output_spikes)), output_spikes)\n", + "\n", + "# Add title and labels if you wish\n", + "plt.title('Combined Output Layer Spikes')\n", + "plt.xlabel('Neuron ID')\n", + "plt.ylabel('Spike Amplitude')\n", + "# Show the plot\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "fcd7e8f1-d9fc-48cc-82f6-6ca17c478c37", + "metadata": {}, + "source": [ + "And now, as in the previous tutorial, we can clearly see that Neuron ID has the highest output spike amplitude corresponding to our first learned location.\n", + "\n", + "Let's quickly prove it." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "f2cf56e4-1bb8-47fd-869f-91e96c35f480", + "metadata": {}, + "outputs": [], + "source": [ + "# Output the argmax from the output spikes\n", + "prediction = np.argmax(output_spikes)\n", + "print(f\"Neuron ID with the highest output is {prediction}\")" + ] + }, + { + "cell_type": "markdown", + "id": "7bc8a7fb-66b4-455b-922e-b0fdc38b53c5", + "metadata": {}, + "source": [ + "### Conclusions\n", + "\n", + "We have gone through a very basic demo of how VPRTempoQuant works and the operations involved for quantizing floating points spikes and weights into the integer domain. Although this is isn't exactly how PyTorch performs these tasks (a lot of them are done in the FP space, especially with regards to rescaling for addition) - it should give you a good idea as to how we can perform these kinds of operations in whole integers. This is particularly useful for implementation on hardware such as neuromorphic processors.\n", + "\n", + "If you would like to go more in-depth with training and inferencing, checkout some of the [other tutorials](https://github.com/AdamDHines/VPRTempo-quant/tree/main/tutorials) which show you how to train your own model and goes through the more sophisticated implementation of VPRTempo." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "b780c62e-53da-46c4-b882-f2dac2ca75ea", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.4" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/tutorials/1_Introduction.ipynb b/tutorials/2_Introduction.ipynb similarity index 100% rename from tutorials/1_Introduction.ipynb rename to tutorials/2_Introduction.ipynb diff --git a/tutorials/2_Quantization.ipynb b/tutorials/3_Quantization.ipynb similarity index 100% rename from tutorials/2_Quantization.ipynb rename to tutorials/3_Quantization.ipynb diff --git a/tutorials/mats/0_basicdemo/summer.png b/tutorials/mats/0_basicdemo/summer.png old mode 100755 new mode 100644 index f68674d1e36c9e0c9cce0fb40d102ff3b7c820c1..72f953c56a133de6c6c65c6ff4259b9fc22bf6cd GIT binary patch literal 309004 zcmV*6Ky$x|P)H0c z57o^dzqWvAqx{=Qil7WnKH{`VP>ShE7yfW0#@ortYuJKShC+d?DZ-9Pva-)y^Aba6aAbcT9_zmlC55HB|=o}j8 z`Zd_~>lf(9uOX=cU+Ny}M|BPMiOXL?@C@w(eIVF?pAEdq_nsl~uDXZd>w+IM{^qM1 z;Rpc70XQbKf2wUoRo1n^RS;}c)O;u5t$a`Uw-($F_k?2$3XU_MYumrnbr`Cu@2slt zsBY-2ZtB8+I#){naxPh-iFAW=S#k1AHJxTCDd`@~c*m(NB>dCt=4_|+J z@Tvmz_sjD8FUs#d|9JP=hucry-Fp1?=A$<^9==9h`}-y6>irj}%YVPPbpJW%%7d4n zs}EmYd-Ur1*cTS(PaL(do zn|AHpuxH2m-P?DbJiO`9-X+^Mt=_wH?VjCBw``t0e_>(i#GJzX+@gZw$;F`YlL{wJ zFU`zP^(IGpQ^R6XLOsa=5lQ}$X+bH4-i+eZ_-t={R$NM6a$ZSRYIZ_wYFJcakSE?R zB5rJWR6wZ5FDz?>CI&kJ zj0`3biIKtoR{#@hjk_85L;!>6ph?G2eqbd4BZE<}-3-S;v44of0St$DCx8tS6M*s9 z^#5l7`=YFG`ubMiAjr5gfEK}kkWg>W0pN~-A#tl_21l;}V50Bv04BaV0qja*{<}f| z^B)X}!nvpji{_C+h#DB z01Sr|>j2Ww^|i4Z^{wd#siygd_$QM8P4u5-{+H>K16Kem3`+nLERnthImE3&Uld;D z42Eq)uOKdbO!=HB{M2xg0s08{6wlN629CgA8ee^?BV;0Rfu_J(6utz9?(hIcY{OF# zfRVuj;74yNk--RH5CHhj)As;iWbpL|uZX@^?mb5U19}m4xB-`!{{|Sp09}3f5@8A8 z$RI(BjW z=H1IyZCbs4^O_A?R&U?9c>T(G>z0CMty}P%1unojI#lllh|;>AT+@o!%hc0ybpE- zFo*!GWgQS*MaNUlT|AP~KN~)Y31cm^IOLD{QME~`1z4-q42KvJv%h$V|K9)@Huw?Y z|2qH!dQojX{r^h?~ zg#k$X>j>G;*bD&EuZ4avxZifR*V#+YiNbC5Ytg|Kc9u3k7{*Tum?Tm<0nFKKN3R87 zdUg3u;QjRKTYEtGKFi>g$OtN6nvp4Q-J#cj0w!N!1?OeHb3#Zz}6KdT|4Y>l&2iR+s}AWdN9K7zTd>{7Cd-I2wX+9Ru}(YW>dVQ3q?OdT|xNJP2y;9s)IW4K;QSqUcbF^d$%EZI^NXkLw`2fVsvo3d9s`oWmec)D03L#8 zK>E_Vh4-Mo6aC-Bzg4FhrT+{1r@%b~MT6P;A4mN~;Gd$YV*oCjI|p03hJ?BYzW*4M zKRk5`0$)BqMHYV`dA5yzcRVdH&H(78fsV*a1RIbK5s07#s&SDqrJK;C5)L_l1$P@d z&|yfm+T%WL3uzavKtOAYS_gwMl8bSJZp@0l~0=xe|j0Q~svXJ&#c9=!Sl z00yB6#wau}*ub!~yf1XH_leYFjPwexsf9>Jb4)OH+F}FAL|+s>5ChH#V6wj=1};ws znDKpr=skPuA?VEQho^5nIC1Uv-c#o{?kQWp>%h)^M^~-izIf@1nX~_zIDKOAwO zO{n zM~!&>sSd?S%!AUjVZ@~g!vx^}C5D|@Vax}koX5vu7|dhT%-?XF_c|Ol-eewsHSEP5 zfYuDy{q#Wfa){oxA0TJm*Y1FY;FGcsXdR4@xE#PlUrXBlB5@rgRsc50hw!5?uP^#? zr^`((_qfh%u3)f5T+#p!gBu}n#4U#_(wCn)ke&5~TTUj*$2-w$0ND7=xB}QUNw02d z`vHGzRIOAU{Pi`GnK3mmY@JUSl;tLv6I#l7wlQEZxS{i>oxc6fr}dQsMgS`}JkSpe zCTT-FWQ3q)4p?L;@Odayt^*H!6ilM8n#U5HL4IeX%1LPcCxHJo`fgi)4z>0Cf?rNY z->=U8AxroZ#Zv?w7^gr5zC-@f$Y6v$y&U2h_M-_#`^()e2Q5+A05DuqYL*hf1mG%o zU8yhH_oKcv!k(_r4e-((lqyE(qKM_3zVL)-*(qku;cfU}!wq8y8Ug(14P1VH__`7R zjDcumu#pT#3{wu6C0rHufWe4i+#n>AIYwJdIb9A~61(-ywMVZ}Jmbq9FxX#oz@Uq_ zpPaw>=+w=>Ph7u;06u-=@8ehQ96Wt-!|sDy_m&+wb8+{9!wZ(KES)$hzpyAPKP#sw z2lKn*3eywPy;%jx*+r=(lX9lc9G_Q`5uX+b==COtqjLoTI3uF{L1EsppwQ?5pf6b7 z*p$eG^cVmzdSXvp5IhR(a(JvC+)Z3Yjs>S15gioj@rR9&h|$1ZP*~JR!1IV#6}2Fa zVJ=^BX|lp-g2@NF#-fKe#8i`o8~oha$w;?~g48URK=`p3Ut^F@H{G7YSnStv~uwl2n80R;gu2GugnwKT?nt=-YFURT93}?oI z7V16-;2QX&g9Md(xh>{a*eKD`e~2Lizy^a6!+2-JoBdp5kbT}>?tq5}Fn7a-G>p*` z%iORgu^|jTBY>&=ja4bi_tw=9r-{y>l!`sDfC1;U`Y&$nHKany?LF|EaDFMy-uedG z`v*G)hB^m-VGdhXlL^r&Mf<=|D>z{IK6^#!MnhLm1N>3w42GSoQ`E{T+tk07npW}u z3v{HMv`p5jq#ISF!ljH6!hx}#U-Hl~3X{ReVBl^w92VgDb-4SJu)l2;4eg&AJ3cpe zRW^0Pc6ogp$FLE0=E8>?No&01J{ZMA&;Vd$Fb1N5#N>lPlnh1;gUAg7gMp(6R3Izm zTse1F_2pYrSAbNFR@bN2mcOO50_`;2|ckiFRefP+v>)?I& z96PoD{^QDOMqSuW)3H#I@+$EPV`blkvuB_n2M{N4w$^Jlkr;a@HUW1+{LqLtTfT56kQ}8 z;1VAbZpETAkcROOPG8Deq4#wHm}jij5n0#kV(qSonX{B69{N>~S(eZ6QYI{w;!;Ov zR`JAR(Hgy~>=`T+ZeSkQiZeUBxFKY)f-c)uXAeIH<%va~0-pw%000mGNklpNI^@LQX#_3B8Hq0@X&h+;qh6%&Et1M z$@0do9x3_PVP$ULJNrp(-Gl8vhUi31n%zO}afJZ7@Mfgi!SaGHhx41>!N%@h5J0!F zyT87(w^p7oVZ@?dCnLm$4o$|yGcpX**!*1q~u|E9X}?boLFH7!6^04*T)V_oZq+VAha zHG|+LxP)6_5A25x*n>Ms#vWdHMHU%1a1Y%2x~c(QngbZ?pA7+qfxZM_txuE>MiP@7 z1^@#-k--wc3a%9RB?fa6i-7RW2Urh9ZW!yfC_v4xG7<~=UVZomg#ecR`zaC~E-&AG zdPO9FAMZbXdDqF)r*7RjapOkW#f$sToZoxu?Diu^51u=J>gwgPGp81=T3$M1YGzS( zPHBGe^a+#aP8(O4otTl7m>L60O82B@MJHu>fW&YalN^NJ7ue~E2>|;G7>-Q}@g@d? zfVI(aV2i_ny9~hops2(kAa`V9kT*3fKEneW$?4Jg1ft0Y6NzzyXNZmX zGi7;+l!o7R#GlFRx_D~?+Z@1jmcUb1RN+bgsO0aBZThhE>GY|F6TkzeR1(@MB10Kf z;&>CLu0h&?i9<7S7ca%Zy2q@XQW)kX$GT;RnP5d<6arXk2mwqRZeeOGSgqgz^zF7~ zJ=JmCsxva>3%~?jJiMwZXekPc`byRN!Z4NXsH!4qUl7CU%t;5RePLKKm_xJ|v!|@y z-U(*Q1k+Wm z`L*srdaYfr6?TSaK6U;6kt^4>96q|~@PX|oj%+)Ac-QIUyHB0kbNckEo!eIL+P-1W zwq={vOr0}r%IvB6r3HB<`6W|J;W8;RIXNpOJ~cKj#T%Ov5t9^#_>4&w_BSRW2tW&# zH!Ny&c=Q;!gzd;!|EPqJ__WBR%s6jyWHfLW6ep6q2;hi#zp&Ubo`k^k{P==NnK>n? ziOslY@bk)iMqXrp? ztvY93sKpzsod8xf-apKWBs!W8C8 z9K$RkZHuKdvumR-WmpXW^Rz1=jd#tF{k0r0D<*f=lM|#}7(6uO1h8%kmM|V1;!Qi+K%{)te-P(%ge$XA$oaLMT2h|B8C@u^ROFLzN-ik9t<2?hhLPSC!wbsDAnB zE9v#;8X~lC;qn!EGME~Z2*3t|b#Kzgd(XiHzb6w+nP3DkGMGZp$X!IQ6Trk^3QbE4 zV=(!dQAACKSc3Tl6<)!k;CW77z5_ab@z&AvH})Jmvvk9@sf!m)oIh{c@`dv^u3ocu z_v$^nR_)%tx*0f52y zCT2yY=ETRRM|t9cM7=aBDj+y~Oi0A&;P6p_p+X~`fA|XG0CvUjTkBL#w5%C5St2h2 zB>wgtRPLybHq7xbCYaOLnLy>aSPBqN3rT#O3 zeSKKN5Z8({SfAN$!QPKiQbc=r-vwFWmLI=#V%X-ToHh$3Le_o495@+FZA+}2#|hwm zf-W9d71SAw`Rnr7vZ9NuGBW_o?UcN9Y38;X$@C>s(8vMvZW&%c$18C-gQ;lNo>Q=@ zcm$`vcljbQ%MJG#VdP={3dS556g|oSx#5F(uNQ7J`kJUF^rE$;ZNMt?!Tk=wO)3kk zPR08B+WUG{z(fCv=o8uEF3hGQZm}&2MDIaFl|{MrK&!o9i>E5U#Ug#t>>_%rnma&Z zTgEC7!$4n=GLZCbfYa8_0RXTx!F{cL15N-_839#P;HQ8;B8_&zp9h?WVJer`B$u;s zB4CawL#%iVEClYB!@>63^AFW11G>k}fGq%%3C2vY0bmf(_rk5mDDzIITj6LGRB3o) zAKZam!ta5^lELN73Ufp3S|-hVleon+WPnN^H!Z)*6024g*_j5eZ|^sZqqD1+BaNJs z25?Vx(@%21JiN?#Y-h83-I*(co&AnR37Bg=ngJO6EJjw?>A;LbJb@W4G7nd}hBvLj zRrY2i-reg=GaCTLH(*Z>50YF>Fb6P~QG`W?m_pD-`H!;>%W%dt(aG7hg6CVrX5_Rg zsg)!~7#kRNOz;>k+U(@3vnk6}hDGL>C$tk3-IKw3GMWv*zxsr5HkK-YQnRt>RE$W^ ze>0-m!2bM*Tf|=H;4ckeE3AS5#&RknDj+|UnupUM6TQOze((AU#@)cAOf&Zg=MT!*onmD24Jfq+HQhB7`;i< zm2~;;vrBiLk}lqULIMV#yYUb&&t883muP}XoW#18it4to!V81jkI&wE1WyRhf8wgB zv?@D)>A=|wyN@2yLUJc? z6pV68c0y8C96W8&)bVNg>A^7}L7uUo;ONmIF=N6Lf+Lf|q7uWgML0OhKOlTGSme;? zz`%&H!D0TONN-3~Y-o5?U`T|Y0`POjU|()nV^~OG7ywK@n3-Tu1p~0rD-4&MOitE1 zd~g@9h>^DAhe25bz|Kl8M1!0zQLcezN6;m|2{8adH_S2Y+O}kzj?i~vd~jz47Jdo3vZ+U3<)k+Y zwfMJ67TGwR;^_vgizYx4bh+estX}6Z7GAe3?6S1fR7ge5Q8Xk(R#XX!%W)qf#fuJD zW7zhC!RqTKDz?%Lrf-|i52)+-QQ!Hq5xyVzHY9rSN#IR(_7CA_#C$n?Cvvul{LRPdyW5ewR+?h{AO?rCk^&O24lq*k{I=-Qcb@C&x#n9u>3~S z7_NHw4j2q~sL_^5q8BCU`?R9UQu$Yd-^g`p2zJo-Gtrkq&`to;kSr|7QjJM>pJ7Wb z_62baqZJ1FIsptdtydHSWGC;H!xyMVC2Z4s8JDdAu)1nRzz%YxHkxH z@(Udml@JaJjui9_3iS&PABzeM9c=;lxf_NF##VJSV=y`3cap?pf>FZ&mU0Jf*4VU#DKd9uJO3$3H zqEEtj4BRT5=C+kjK%*&I)cNBRz^sWJ6A(b$AHV+n^WPZF79^%Pvrz?x^~^Mmw4E{7 zlI?dQLOU3RrgI(M@5Czd1XCq_f#vYDzwiVR-l{PADv&NZ@pMmiKLfB3Y=gi$gMqG* z_7@w{u)GTksxhUFGqLOBNKP8Y$!Be%8zyIr6QNc0R#k%x6xYgul$K!6i}D&EF&w3V zz6jvwbd<(;vUI>4!04xmz7OAh#-<|_)jw0%*_r)CVF;QgWPzwXNs{>WjfbzUKL8TH zAVbVOF)|8|&R#rv;mV55+o%1tVA;BjtG8^Py?D{& zdDE9|TD4>U&MC8}0&CNA)3Qs)>hIzM261?0vPt zU=jlOmHd4WfZu`-rgmW1pDq%?ROsZ-RgQ=7;H>Dc7z9A zhE8xW8%0L0+%@c)vjj<2%Jdk;w7wWDz5!XVW+cmbU9@XkuzB3 zz@k=THg_7Usrhh9GCUwS_R0ktgwPl9g%+F+n1~Ck<<-u71{N2g7r2YULCtqwd<5MV zS3lykEZr#l4j2pq245AUsh-iqN{UV^Hw+lofoKp=`N+8&tGDi7x8vaUgC`H1y#xS0 zaq0H43paNiKeg$=p zufSbYT&f3n9G4U>dVJ#o!0#e}fw&ZZ4vz{5i5QD}un-#8QAp16CT2v(Bu7RiMtI^v zLZbtMBgY6ujRJ+nj0uSz9TYhdw&CHy;bX$10#h>L5>sPD%ozb3I65$BjDOfD(1<7R z;O|rg7$*6`u!=}m)Y561ZC(d6!T9TO4y|#;geGm+9|{^`=0xaJOXtO zW4;y(rr1pBJ_Imke~ny&ef=fO?<(}#xvN)#f**_ylNbQTh_o=on!Z>nCHjR}-w|~j z)wWv>Rn}W^`zr+W?T|rlR42T>U%$Th^$~YLjXnLS=DtDfGj8qug;D4R`yf)e_Q{Yc zFqE|m&E3BmI|uo3qlV4LcAm_AV)LSD;uV{3r4FaWW33|Wy&#vA#87we->+yw~k5F(G7`$cQF`)16BWD4+$1mPG zaPrcjGgptEzfpGf?6$J9bqBW0-?((`p>4a)AKHE4`1Ui0w;wM%bouOw%jZ{YUO#RA z?2;Li^CuM*PoFSx_LOnOxf!_`rBl_KMX6wICuZjr=M+xJhy9@V)Y#bMnCQfCF)%Vd z7z9>W%&UqI5kn#qf&jo6XU6dwxNH&j?26QH#OR>#KSDesRe&1nv*JTzQ=`1e9s|HY zU)(?d$0kP1oI82JlGz#KQo=kzp5@+){zGRVgh2j10ETuv80! zG||t6*GM}TG~{4*ZBlYH(OUJWu7z5@oTxGF(ltHIlf+!inD*8hD;hN`aR58(#hmze zosP-U(q?AbnWY})4mRmY2n1l7ljTdkVxcT#ZQ<6rr^Vi!>gt~9KECS04ExI;ZqJeq zx~6_@K}fd+7+jFkz@)%)BxJAAiphfX#;BFhY zzsh=GYRGX$zd4edd@Lq`&JW?o$FtZmi~tssUJT3Fs_OVuTagMc+ZMB8H2sN;9FPfG zF;#4kX@8FE;lnfFDo&_o1U9AVaE8$ zvr9{+7Uve{fC?uTfCG+AiHc4PjYM&26abq%C#`cA4El<2!6&a0XypBF#D2i?iRk)P&(~t-*Nz zN2$hN2Y&c@y8TdV#+f)p3+;tl6 zYK@;Sa8)u1_(YD7Po)quq2$~s4Zk5OIN|_S7r&AoOE@-MiiO@*nqJr z!g?lz*K1y?*!f z)tf-yEqnLPT)1e$v`L`SnG;H8lunvAb>`AJOSY}qb-HZJ;oWQYY@RlMCIEQij7gxJ zqP(>1jKb35arwC^=}F0HiE&Ah8QDn_XB1AGTRLf0N%r`RywY*wibSF}CMhf~IaJQE z3XD$)!K5#a&VW5|>G6(%OSn%$YItl?2!a_Trc1{9d*TDcD!*|-q0wNAMI$d_I5>P1 z2(JnQ9X%!(9B}mLkZ8Z~*ucb$*sOxIv*e?LDz{{X*$K!32pX_-mjiGjol zzzV}!#9-J)D{Pi!v0?!N@Eb?3uyca6>l(v6K z4evU=(q)DN(zmvyhhovjoDEK2-dk)Cm-K(at+6fVUJV*(G+JXh-q^Z5zu2k0S@Oe+ zY-yCBVLDx(-|)m(y+sb#M|qJ|txa9L4D;+HKnf4pIA`A`jNGzzBVS`jo#o}e?!yDo z068aR$qHi{n857HV2)u<3+ElU&2>h$@txpKo8gwviBF5qj5DE7Kw@MtVpx5RayA7m z!3h+U!e(6XxW9D$omG6N1ISiQG7ryE&_!lpdk|MrYKc!=_Y;R$foMz>`e1m)jzJ-n zvK<&g05|KoSJb2+tfY3moW6Me!KZUjjGE?Q;Tup-sNaA(Bf;OH0&pLG6%-5y5rA8V z2HSoOfxZt8fUyR94ZgYlM=$zm`g$=o4)5X1_s-8P9hJ@PAM0CyyMS9jFX+wJ`q$NU zud5npNEU2>)S?cx%^z!;u#WmorJRq%CT$txK6qT3U_6W)X0hmUG`?~i^m~d$6M%0% zeTSu3gkcV2il6A6$0q+}^U22Tz%$hNI#j6MW^JZio)#tyx`D~z_CFA zV*&&G`~&?1!XradGm;ZiV#6bYN09w>1uzPr``qXiwgZ^S8pCF+s>J(-X_zISqD5BN z6~MNjwAN?11MJsVU0Z#8&31Ooi{@obR`A(q4YCg0xD0qp4>H(F2|MO!>N2Z7$}1ZH zriB)a6^l8T`Gk#OsLY9IbRQX4$!HqwvvL~WPeW98%h%aemR&neBNwX=#HOF-GlBK< zTZ{eix@G>^d0lHgQ-fo;zcajSjD4RLd! z&12EF@U;~3l9=jhn)zd$QEuC*fP6L*`d}Q*NCO(t6N_b?y86g{(z@3g!#1nhVuc_2 z*dk8IMRV0AesV@}T?{oF+@%qc=+W{0z^f|&52)Fb62OS_0qev|F5aNZo#aO|+&@mm z!igNzGDH(OKx$jQ8KSba^0)HJHUMMD8jU+#HvF_y*WClE?dk>9cm4!Xff#(}@P6Qp zeQIh0%M0`c^uGPp08;3!u6y~VhL6q=!4i5>^-&E5xN5NHnODM2k1z2G&bc(H7{Q)SV}9&tAKK>fFt< z7w??8e0T5Rvm19FSg>M!@x-Y)1;r&3CeNNbf7Yxy>FJrN>1oBKC9~$wpEhSsc42-- zZgx&#{-o(sm#$i|X5;#~3m2A5o}8YYm6@BJk(-f_mJpv56BFl&PK@v-M*@t!2@x?# zuq{?o0EzVk4Xq5Co3)}IC2bdR~AJFB7H+5 z#zw`4coV{Lok34rNK`@?IC43RS;R9#TPon4Fkr`+_2LP^9fT`482YO8?8PF zKj$h*u06rVV5|l5UihMO4>J5(z~mI1mp?x z>Yl9nW|)d`XDXMkeqqp;r-z55ug(EGy)V%hxyw~i+YCY&^ZN@(*MF~o{S3oArtNgw zE}?H+R#ra*pR-b<9Yi$ZxnY#k4I|z(hcHAuK%xp^ZSO!orIgzvE6GFLKqhpAG7;Nv zaF+t(v;numYhfVT)(|XPk9gz**G*D?Vm%y#R{cZn@{w3Lk%NSjDVw^**#>=HmC3f1 z0b0#ka%6O`j=`wqAL#Qco7?g8Ydf6Zz==*LS#Y%G_~#a0Rs!{1bv?~+e*L-TRpmE4 zaw19p1KjD03?L;U#d7dCuD2)1Dl><1#?t>nRhxEBm^ypbyd~3T&zm@P=8Rc$ z3yMmLib@L$OD0U3oL^W3J`$8SzHs@PRXg|ZU9xJ$yu}Nr&zS{C1_sBaBzTkJViKd` zQoI?tX~~(1@ySs!@!`>lLRf4C0G6yBi}VE&gBwN+BY-1f#=;&jzPKMYgydR;azS6D zY%thgS*sO_Wzs<3_~ZysYNj_OBPK2}Iwd_JF*zwGFL&jpjT?6Em@sozT3&uiW_o07 zOi*Y*m?tE{8xflv8=D#(5HZ#kf=1l(f-IL3E$ka+t>Osd7s?i^Ux3)qolBCzmJAqE zXxb>$qQtP#M*Kx{x3a#YlJG1s>@2x522%2|l)B={T+~u;gh^vPc~`hPduNSO9perb7xhwZu32Z- zJ?f?9VaxW$9Oo7^P?Kl43El)?vaPPoS_V*EW6r+puYq0?0ng&71G>ar678plh@J9? z{E1VOKVfaF=vqOn+8>LzqC|6x{r%A0kjgwiN;OL45h*my*-5ceE_8>KE|nbpA*~)= zwU#}wnAG(XM7JWPcmXrMG;XsHaUbPe!Gksn?5Rv`9i6U82VAG8Q+?AI=5jh-~C zCICB^Amk*5gE>Fi;}ISY=2p9@>~Ntb7n-?*OEkiMxC7cPcocB~*V)78C&U1Z|9)Bi z=uPDV@X%njpMSh^_u1*ow>IrMxMIWRO}qB~wP@MA#mkqhSo7DyrBkQP9+zEEm|t8} zP%?Gu^y$-Q&R#Hg*_svemo1tyd-}|IvnS7-IxasqDLobF8xL}dcnkuywbFisl^kfmnLOo6qJ^(+_ZW5hK(iDr=;a&$EU?b#D;sK zL&GD3!#qK;2~m;pVPk^-9KpXGWqF4MFfkZ0th&NwtN3%>7_L$gvQ`Vnt-Y$Kp&4wr zx&wE{JXP#m;DI*yx`)om(vg20YW@YSG9$FWbpb(Ar2=;KY>XR|z zXNS6x+jjm%C{$R_%B+SLosRf2%EMGX^Wo1l_lh@k8t6sJa@;xr%t=i5FP8!mS4d>i z9m>D8V5_JAtrO~c%94O1PvX3Z zr=p#Y#rqhq&h0XXx4HxSD;xjjF4H2}sthPvp#gn4&=dhIs<^f7790Kjt<*Y&?d)P9 zCS9wgf57l-Bmh%AwgPZNhwdqA#<3f`Vg}HQ07eNOf2O&=^>}CQbPeM2OM||K@g?+% zNtSe!mS%~%n_kOfGA(vTIYFyaRCM2UV2ptlHl_uMu}n<8XKB{q;QvAf!0|<~Wm%pF zR6UoO&D)RP?mu=G9Prv5+g5JbG;P7W#p~AmwQTv^rOPHxpPoB@{QQLrmaSO6a?Q%+ ztClZXv1I?Dj-B(CX+;!1G)}JM z+GhZmM`c|zrWQi%`B%h)foJZmHF}2-@Rqej0JC#&*VT>cWY>S~uywq3dPqo()G)Qy zMtc$g7)zXJu_b0PDQJ4n9MG%sK}DpxSnXDWi+{~<}EjBkt^l8)ItLZyLbC9D|4`6-va^9s!uXSlEC^mFsaLG)v^Ij+U#z*A+FGs2161IdStDywA$I z+fUx@I(&A?nvK)`S~Pe0;>GJ$&0Vo*{qC)6w{4%jcuDc(i4&$x*|m4a`AcVypE`Qt z^s$ZGH*Vj%eRtWOeMj~mI$5@0`TTKtNr|bEMU%639|9M>dB^^ZTX(G*m!Gh3>C8O` zHt#LlG=0wayzwcpbK|yUn|G{Ozhy~6YB(6*@aR#1XV?jXop6U4bBk&0MrhCxyi%hsUIZrsu~O&nlewSINxPa~Eu0GHvekjJ(Xq zxXADr(Si);2TAE3*~sJ{96ko@@2J4v)hJ38d64;C4q(n;1I84uaFrFKR{3KS!>?2; z8!fn0XONgDiIKt1W@5hVlG(OoPX$p73Pk{J?*8R0P-^Y9?Q{*pQuB`)ZdH^uy)_50 zQ3leeZ{pafCHgV|Qw;~d z;($c@qNOH#%>(J5^vm&VG}VPsVAj|}Z-8&pYJ-N2=4S)eiiCO{BwVTpQSqg*lM2FV ztt7Yuot^7qv|fyRV_Psy@X)r{Z8(>nZ4N(L_~EI-Y-}E5z2h_&8vbfPCL=qGwaU*b zgfN0g@#oh%*NgNr>YQ!iM%EBa-WQ)-d)zuXW2+gr^iQxT>jJCjP9+A;eu0T6_ZV+t0SLT$*|<7i(>3&nl%DpvP_fMEQd-4oX>b!8x ziY*6sAHHyE_rXJ@Q>T|qpE7gdyxnEnPhC8A#)aC5KKP1zo&x<>ZAk znK?-S#lnd>WheF?Jicq+k?p$=Z1`)@$F*fB)ev0BO+nJ!=xvB7ms^kWp4sFK#1}Rh_f!2?lHv@V5~* zYDxz4J+2sbMyKhX#BvM6tbof{@*EAjA1C1 z3er9p0BMAsdB;7aEuC{7sOs1NuxpjFAp)>vf*oOJqHm48j+c8iozWD~{n`R2{y&|K zRR(~0p1a9x=jG!Gt;tiv0NALt_9c6OLHca0wsmy<`jW0nwJLS-5Xs*Ix63?;O_6q9 z=4O4>n!(@LS4ztf8jBJVi8+HghKaaDU%U#p5-bhh>?-AqnFDsZUWHzYQETFIkLx0P zjWk!Kqk`I%kxIH=?2|O^L|pXoJh45@Q_)rKo+)@s)JMb3oiTOy@`P)ZZtFtyR?1ZZ zaf1rN#p~+uyER!)b|}@hcT=OVC~xlS!MbQ_1x9m>b2&N&|3@`Rt2GnF4_hqIBwTnG zt;;xPPe>L@rL16H~Dc6AEgwM_06%8Hb^=%(&&Doi-0WtvWH101dYmvUsOZ)0VB?xNQBpMXOhB*tKWh@sk^O?kk=;3jjQM&di+$H=nq02>5#F z1;hp=+wr}0JX4$I0_8#1V z4j8m_)okGF&VB1(d)w~Su}L97!IH`2_8r;`J9qEj1hk$stso>~w3>${XKv^MX~6Jk zgsxf{Ne8HLg<#PloD>|H7!;lu7@O&d$%qEUW_aT=W20h2L6P2&P>)y>NhstGzo6d& z!bb*qM*D@16ac14-%kI^G3*P#zIe>}?P81VUB%8N9}vAp1+~K>1B}1hJTZ{C7S8wK z9Ic)H{pc*1W0-8Bu)>aIYT&nMbtzyC6kA$Ol`_f0w@O&@@*+FueAO_UfoR9PNn1|K zZq8`IHN7p+>o#lJCxG!iH?ttHD}eu_31%byT|)Op*OT7v_XS{Qmz2q1i@t+cv&!wV z@gBqn)GH!8lL!WY`H7Bm9JDVt%o$81CO>M~UkzYoTanO`o%}u=y~+e@vT_qlzLw-% z7J~LvvGo&G1(|OfTIs0nw#vL6qP8om0GkTA?XH)*TW2`hH44pdA`;u~k8?=meq#iO z^&aZ2gMcjiDH7ZtdqbV0UBN= zNX+U9zUVay-^pPbF94Pjz?7He$y&bRFF9RBVhLcI7_D&|ut%}w&ti=bs}3A5^-yao z6o&^r*i+Nl^R@j)RcjYWbuBk_Ry4GKtZN1IqR99nhDD>4sq}?+000mGNklfMPMfw7IpM0#o_p1EzU9q@t*{RFRH|*TH>%h9rJ7>+AH-F)hxl5NVUAKM!=s*|0 z>H3W`7A_uFoS#vcvth@oBWL!Po!EW!%>E5K*34Wm_4MWAr!E~kbh2#!(S3g{m=l{2 zGjU4kv6DykmF?JjaQluu>w%_l2>=FzyJ73niPLhy77NxM*syiiDgbbNN*ItBu7V*3 zRIgsY2;D8x7jcWOH!99g#;etSl!`w`{D}@YHZ3$U%i~E16js<96cXhh5gQzp5C%jK z^^6G&{nJ1A_pyQh8WZqOkk|J;r8h*$w62$~l7qBxLY4~Ts#$;nhqf{e76Il{{ft%_tYoI; z-<=&bF6CP6wW!Y7NJ(NL30nqAZ{vPNVyE}DdY5_4CkL>Clg#6CH2$9e%mdL*nvx}T z4(MbUek-qGF^qJ5a-tW0g5z z?vg)B88y=Gsa$4lzpynBX`3?Ebh=q(U(m@}&P@fnm5!DwUm_SA9m&+V?2`9o-OPN( zh%N8S$7-@YwoxP;z4mD&#_Mt)tSg4h_kc6S)KaH%5*Yv(L{(r`CzTvTW3;myvsy8U z1NW@&5VJom0OK=j3?qZ#=kcMs=?!2>Cgvzy%nPP4WsCGR62@GwD!+-+Ef(g*|3q z@_gCpi|cpp-+S!L#hZ7w?Abqm$+9IYS1;eNe#OQOtG8`huzLBp;@r55#1$Ks96GiC z@Tmhw&y;Q6wQlmPk`ot>9zTENz_C61kM3T(ad~W_r+8xCp<{aw9@zyB7`U5~5tEe{ zzj(#WMayTTWJcwUPeHT0YybK!J66ZUhy1l@GKQl;yY_9&%1y-PB3gM6;2ISEM_}0R zWOjKhI>a*)ZbblxdB?^iheRa?MJ5Eo20Ten*hqjb2+S^^cXZIdKz>1gkVXf=&fkH) zBLn_5!li6V%3v^Im@jKJ41jr~n6El&BS4MgKDbdvBy$GyZ2&NsU@DR4h4O@9%u?Vu zH!{c4A1fGF87nWz^F%sHl#xjxqi58$Y1KNK4_^ai4>%iz%KYe0|F_)x;x?}@)79NR z#u~H#I;#1ih!eJU*cs`veC+UI_p}YCv;xAm=yAW4EssmMx>5rVmXo>-N1aFKCgx5mXs1>tkrfF5;%Dh7q9Zc*ECtv8oi0dR{AEymH1y1 zQ*M6p1t<7aP8;(1lrcAN{nb9slP`mT&rIt|u_dJVD$CY3k+{XNY9tPsk*h=Y(6SjK ze#>I!;(OM~iw|2q@zSX(3V4?^xD zdcpW2ec#u#=+T(6*b1&PLyWgljW>E?EFuHrD+A8ev@*n_w-x7Z-am5g(z+dcwv-(@ zcjxYzQ*W;BYIr#KNl(&mTeIzriJl{4Q)n#`lq2c4Y&g~ zG6Ay#LVpVg`2*04mKRv-A2up1#y>c643KzK;6H)8NZ&vG|7igjr)qHe4g+AEr80~O zCW{OJMh3h3V?K9UG1%T){DK9jjchTE-$Dk%CGS_Gb(v^=;_{kyDFI_-Fp>BRjjO?@;G$wq4*k23c2tBqD=wZ-@*xlAku(R*A~uIE9mbC4Kp}Eq{#3U0Xr5c(^n2OrF@nu+FnkFDyTe zF#4OV&w@i7-IjGS%&QtP?EosKW1SV$s%AsxoFBQlc!6iqo|BH@5dT*qg;I zu<3OvjMbm0Cd(Q&g8N&$>*dP9d}%4pU3_&`%4fqZY#5f8u5xpXw5G)(>vXdgP3gkm zL4`cQ`Y3Tl717Rsvns8U!CR6nU#fli*)qFk)K_;j!N&Wq4RCs=(g97KKwN|_=u@N0 z=Ax-pnR^*Bg#Ex>LhswJO>e3j-+gOFQ;X4N0x;}{Z33`rl+pt=Ma-Ek3xTt@?!SD0 z>F%R5*KQrZc=hfYBeLIfkc2H%wj`E7iN}qXrBssSe{G#^gfh6bL7MjUHd;PL5>fp`UNltMH0$)!k@B%PFAEkW))mk8;m? z{*i%00>DtX3-)1H#`#bkTMLWOC6)nT$za0)TXq4LUT4CoMmP%z2Qr}ENxiSGM}7F(0HUin zkO7x)$LHj#kZgv-`e*5Qc$Y{OGsoNzQ#f6%GlALGruMIn@UJO7R~hXc8egMH$yEeq z>M*8AFBRllCGkH7Te{7>hDa-P^*43)ff_q{Q4Q@qsQNZ@-A3n1j&=4HCSpGyO2g|R zXzT{9-_Ya+V7lrAFwvJ!!oqVeq$buV8H*aZ0$A4%n*c@ztEZBqJb=D9LaSU3dl7Z% zjU6CWk|xVy;Lt~*W0X27O8OFm0kJrhn)ffko#CFm6btvm8^gCJ-mo5li36x<>BGCv za3SFr`;MPov1!MmHJb`1P0lDN%$+oT$%a)+)-4@ZoE?)G6&V*1=?#gB4PCZ&(S9K7 z;hk`~a_!=@tb}DN7o9$L{P?NECr%$ZdG^rExs!4W0kPW!efMwKwSPT0U;rcrlL3wS z#i?M6x9wiNbKknHJJ%$oMQzx!9K0{^7{I)0-QtMoK(w=xxFaRGMFc{ zgU9G0>`|XNkBu4B$Y3K6P3Ht;e_z=B`g6Crm_%ZdBrzD`?>a_}rbNZ1EA11f$rDTN zc5%BPkHWTNC=f##IuW>^F4`IBl_E$hcQ_hEJXMtkbwP7>o{BT(X%* zyjchtY^(riENbMstZ$2oF!vKOX_x~dU-Vq*_%P*V;e+$3x%?Q-r$CTj=QH%JPEZY6 zqOYFGAd?6>RKP~ExDUf}e)-PCFt5hqeI__;0V_h)(M=A}rwF0gU?Y%d{*kaOQm^6Y z$+qb#dKzlqR7ONz;*a?gI|;DWA7LL3i&XQJwjt$`^}0+>S?f4SPs}T=u*}#hMP|!F z2=+9!RW!E3Wo2`FRcn_V)~Gsq>-8XUe%gl(7DjKl)p``)MM@=)= zKs0iTCXLX*FZvbP7Gq$`B{ee!<8Uq-n?>D9_?`_1Tr1B-@CyM7Qow^ITd5(G8o;h5 z7@=zj@WzwAWPhnd3!WKX2&bH?^0$_5FuvHAOnqn-jy@uBwXPMoi-K)%w?JQpj-g9K};`I|I%t=en zPS40m$x6#E%*`&$%E(Pi%!md13jp@S1TR=VXWx;XsFiD$W@e{OpEdQ^$s;FDA3JsS z#Hn+KSFBkGws_}W04i!@`nWh1Quc_^&H3Zg0kp7x_x?@WcCC$y4MI7J&IsXhJUy^CYr5_n`PTp9uQ*%L?bCXx1oq!Kp080g|+Q+0$56}mde6zE%pU^iM}M-!cl(8vL4mN$3ZbYM z<&?2O*p_A7gI$$a{rG`#CXsR*M`ppJeb*EzLp}fnXg@_*DO&0#;+0nF6eqG;KAo!VF?uUw*vx?A_J-F95wqF5cRA>hi&pm-Ze# zw|#5b(#0D}N~dJ!6sBipB&8&0WF=^#-&Di6Cxyl=k7bQ3v}Svo;4emu zpA9A$6T>_9tdC0$4h;JjKo`)9!mHfu;x=9acPZ?Q4E789ZET>RFGy#9g%t)cBZEm; zmZbnpFmnwiJHd(UGyqKFy!mn&bd|ttkeKFugM4)>J$G~uzpy8#dDWOsE+%45T)v)AiJsW+hCW-3vB%l$IiP~_LyVcw^dXYbh1#5+D^F|yh*WA@> z+%|sDaZ&6Qrlw)wF#r;vh_li-@UZn(M_i;c{;AZ~)8Ezu|3m|D350Ibjk&G%1|j&T zfNukXz<9FqxupY)IIX`#D}2yAYRTgslh<>Ht$`#X4|A`vvLZ=vc8$Q*(n*ZV)k-UM0{FwY@#P3I%vVN zdHW9UIdt^k;bUbRwyeq@pOu}Tx@p_$W2X)rI=1KV@!k6mZJRi?5YW4O{}vH~-nTI& zBL=uAdWWL?B!IK_m2C$+?>Vp)`+&ixCZvXg8x{cGzkdJWE%TR5g`Eggs;+`QZAYK}RJIJGnII^hociAk28B>)dWg{l|;xoFms+UGR z+j6~Rd8sxShj6LYPc6%9q;=7Pw2SfdgB^OAbd*}DMz09ltTVFkwA`MeSu|!NAS~%p zsvS;)?6N9~dCs0!v*V+%unuePD7=B^RqW1f)E7>&+I4v4u)V^ZSFzFg1UX=G5^B^D zOR8aV?mhSkVJTE9mq`3pQ`T~~EG3LNV1k_B+&63W1)90>$r`Yr)=Hv9f_cOkF|48^ z`W&&IEk=Y%N-SMAMp+qSzbyQ-!Pk7{W9N#+MuU?z=~{YadLcAw(g%x${P-X$=L#xH>l{pi5vV0b@d%IPgx z#1LL#3 z_$>7DOU)5O0la9%f=_lH{b6VMBS_kgXyvMtyzC~UOoP4fQ-2Bj?kJLR0e;o4=yGsM0^*1n?9PNIugv_>h$ zoQ)A$P5>L;*O?DCV$o=VE&HpNT|x)U=}W0T-U6hTb6|bIcJx|d+a460r1t}HJNt)} z1_rsh28TeffnbI^O9sn~mt!;|FI?j5(kR68wQ_As7YuNbrPlS&R{Jkc=-PtMaxqj~ zAiZs10E829^~x~)RQiPIaB94g-E8Urv7TY^P5+^gN!nG z_OvQd>ee7`V!6FJ z82f;+^4XZep?<4&?5Rdu-R(+&Wvc^+twh8H)S(%ZYB(jE{AGJl_A2y3_*!-L+GZLK zh35nom~jRc>r+x@U5=xo&Yu) zFjlv{{nqfIuDQJ7`=_QhV}1x_uW1Gd6(tzX7zFPY2#u;~>jIJeg^z|qNrnBD!H?IK z-<)GK_zFneeJUJE0F$16_{&FjhtN^UAL%!0?-|_3vw&)PyqDs!sJ&lsu+9 zG(4>W?T4x-AFFXB2o_R3d?$qa;qqy@IPk(j`^Nnj7p^}zaB%OMwJUcX+jQbu*@fqK zuD^S9=k4noFQ4Cd^5)v3R|w#1;DB#E-d%R?*x6e<4<28ldw9RWe~>eqm8^ zW^zJWLTsWKwj7%h0Rk)Ri3uv4n6q%j+@&iPf@aR03;+g~oL7_q44$`W+S~2}S@TTzyTi#ExM#MGH}_E25nMCK<_KIy&=p z9r&OF0x)LLc!dtn;L?J-_L!|)LlpgPzY?;xd*~MtSE^rX5bx98*N+TF3>)o0yw%58 z*qkpdZk7Z)0Bp4ai%EM!C|+G9le@YES`Maf?(1*qA3!zr3gHUmvl}!|~u~W(lG4WvS0}n zVVR?$<@75gs~UY}A0+uf6PlMdquF&Gab?Jwr-%a|SWgbM-_UF(1cP%4-Wt}f$^+4A z+@r3{qEf`KGH#ER!-QBOE}z?~d^Wx=>$^32hp4RxuL3Wdf7m*4sddddMfgx)e=){@p$LQ%Fc_>bU>HOR>iHJ_Q)^7)@x}}{it()Yj z1_Jn_D0r?D^aVg_pdvUe2D|n93L+wOrJlU61o6cLaX&trB6LO7vrhuUV1nT@zN=}( zUUOq&GsT=SjEwna>=%0UrV?|v4_;MZ2^F>v;rhXkK2$#b`1#@cPh#Wk=ld@{o;Y)5 z=iVb5*DhPSaQ4bgvvwR@aqRA?OE0cnd;U=9(JRpP2XAgXe0%l&tMfOX9J_F9-|>r^ z_8i!-Yu}npTNW-~IliPcD?2AMJ3V7unm0Mz6BiWb9Se#|3<3c!)3d$FS#b&JF=<)x z>Ei&>g3VxLJzhVY5D8!dg+&U&;WE7#Mn=$LK^E9h+y-b7U>0uWf zb$m+33pHUd zSXid&`wtK=^dR(7q>I|~sU+C0M(Q8aa=FhN`M2iz1r%af?!@ZQ24fvlDj4P%=5AQ` zq_sOE)lS(4ojMF64d|fZk@UN=O{~<*D$tLRR%_rtLaM9cr3pq`5jVITY}9&dNiQhm z3SbPw^1;i_<&&|--npK%F@{Wx@@EY>T)uW{tO^F(B#Q*GkV;kLaW^kNqfX@t^a26_ zhgHpOAlv|73lK8Tj)|gI~j=AM?Bi#BOH{^@5V7?5wm)F3L z5RO7{WD^j5{O;4Ew-s-_-hF-L?(2)UUL3!2cgegnkGA_vzpB4=mhCN`E<5R+75`y5Kk={T+ zFFXnyC$3y177EmB8371Eupfzt8CgvCB5o11NMF0V{SAw-sM;Bet?*J6Tge(Ll!!lv zh(I*(7!(lk2Lc#}a$xp%Y~b%8bigCW{ugM3o+@R{TSjRZt95*FRVfm#@<_`U%7q-N zt?}aAF}w8&`)Ug|#!x?Zm|(tU17Az{-4}TCbzH8)v*e?M;QpALGZ^eV{BZ|NuGd(` zKsU}x`pUu(!O?yZbM6}W#nDUlmxOr6;4^w(QA^TecKA4lUGQ!kcc;rMJRQqF&@2uW ziD0xIZtY7THh-dMlf{K8fYYIw*r{bPCFNSAzjjYN(*L3g;T*yxxR|G>jmJ zaqdOSy7AT>-f`g?j`qc13Q!vs8QYMY;uA9nrN(N8ip^LVgua$_?&`@_)({M5VY5n( z*yGGb&#QC#1kGup&Rsr{ia(Dte2tEi=!>x*xpW8b*|j=iow(&Y0k=e4J<740?;#9h zuA0A3ig?%SVTxdO!F>V+zcjUi2#tVM?Ej%MC}J>B8HE+vz5q4ue$z4qM5_*Z*58hRP^;DtYx27Jw{{lh) z1AQ?K3_=X6-Y4yPdG8ZOm=V2be385No`1OW;=}Fd??G5ab@}h-mmfU5{^aS+7cXwT zdt1P`f7LkC!tq4V2>p#br!BS z_@5xm^S)-&`IKmgiNPaq)kf-+;9V0WxC3q2d0b1b6p^f# z9c0#-jnN?Y{M2oMVLqagCwG-cSLhWYf>P8DHjHX-(GKvYyL>o#4u%Kaa7VW_eFGF<6tbme-j2Jpcd@07*na zRI}D~hC?X{TrW*08}8RuGtt$S}qiJB7@)t?j6nFu@`|9W=(^ z^G{h13=gqQ#UkheWjSayZn2d>+=TQc0K+}0RQn4X>Fu)yykcLBPfiaG#lqm-I| zf)&Wrhi#D9no7nnOb!^fZEn&|ZgadSqE{Ay!}GtY{01~d)&g{q!KA-meE{ZxaK6H$ z50xOn+V`Ijz4)lV-x_bN2*~^E{pFDZ(!j-@8Tz_=`#-nHFZ{6FudF$+{)Bl=YuxL)n zyt#!7=8c~|JA2)xIY(|BK6&@ViM!W8XKp^&dGzd-y+?N(6e}IgTDYuq`kcR(u3ETk z#q9YDr_GsBIAMHZdVG9pY(h#Dm|br|cywGSxM7qhCP*&F8w$krCWnJmk~k?0kSs#h z=yav)1@uP5jFw9n*@jh#bpT~I5f3$E1RF!j*v>0J8}SFHF9`O4unx=aeg6~;4){$< zt+jx{LC|oCf^881m*YWXEc&<6{{I4vFi`Y?>NZ&mBhrotO(qi84b-Mt0E%<3E zwrYa94^7fgEx!&?pqr**Spdc)u7oJQA5Be>!R66B5Zp>96Z`~%m*_wHVjOr&}b05{bSq)uV0+<1qx{MH< z2v?(*hBvwLhu}TA+2xj(i^{CHJH+OF?tPsACj0A1+v7puKa1)W2(-TH?+EY)gSi_v z(!lgth7UyZ(yeOEU{Q^QB|L70^i(Qk%zEU@1ITUFre%%JurEJQ&E_x@jCswoF`BVf z4@4y6i`f3gW=6sWPtY3n*YKLeU|NC`0Ex9u5~#8@P9j#&_j?De8(3qdifyi!(!B&= zcp%(CclD^JLTk%cZNhJo24vC<5OSXqhYbK=EWbhr%zJ@&_m>JvYZ4pDV0c<*5Zm=h zkjmDajn8TUK@lI;VPq7NSkPAj7_g_T=j#umfk%o%8u#CORet}q!Z2)*h{sq$C5ogf zO+EWm{iOVh(#LAynCJ8|UV;bWK196onx1u(<6+w zLS8mv&b_N@`tZeKGjSSM>MgGpci@6M%llia`67w=(njQ=?Pl5@bH*eet_}RTK|DE2 zo9X(gwo3c@tnhwNAFG&D^tYOid?`WA_He(h`ti@qYw=J4-1d7S#Qdce?7iD0WHVn`j{jbL03u2YAOgF3b zXvW$oBl1l2C7KSi9+z`bOJnYeF97T9T0XCUFii8R*ih2p62Q)za1URYh}YAqd?8z~ zh}wksLITzz2dbCXG}*3;4plkEMml*+)KsZcdjZt9@3!T24FEeUr?|0hU}aE}xXPrW z(8AV=dSG}|C!&{+e&qi|_BoDyGD0pM1($WYgov$$N^JE*T9cUOfuL2T z;ZxlEssUtdcrr4W3^BK}__VN-L-&=eYR2+os%plYU;|^wbSb)tWIUNmmj&nr{V^J8A*)g%D`X{;`Z@Jksb!(;;pcOz8UBX z=tZ-O#J%zK73u2z=a=q0xpe2@!BZDDZ`-_P{hB4qr*GQ2r0m4*;YSu-+cEy`cJZO-oFyAEGCbl}tp(9yG(4xhdN7@jg` zLCNIF>Dk%IY4Pb<$*DO>DcOn1S@8hi%$(%Z%y{^2pEh(X)wg1A4$*8QgvY-RS1R{9$~C7${A+rYYQQbpS_P4;Tq)*?z zqr_F&=L0JL_WeUOaJ^Zt<}2LuyGkb9U)k{XQ$1c%iub+1IlPv5b$sT^npTkHW&4-9 zj;ea0FLkipjvI(lxDVZ5y&v`_=}G8;pz4Osum3M)@8KFp*0k~Zf4GfJA(7w><4`QbOvtB=3G{`AM2&)<~f8#m9x2>A2w z|NQdp-*OZ8FTN8@tw&$~C4yj`zW?SU|2S(+Gg#uYY~Owriv*UIiO_3~V$F6F9L9>b z6q|VX8+WnbQ5w}-QOOmx7|E?)p3w4wW(!e9f5*>pe6&|5E?`03C8Mbiu%Xb-oN?osey@dfLro_zZ9=tF!f7tjk4 z?cEn|xcdh;-s0I{@_kgG%ekwB!hD@DAf_AAWmv>4+^wYRIat36U0a|H{FD#O*y<)yVT;BF}9sje?Y00Vl1QCA@1^ak^Ry8vKNfipv^ zv62aA0vj|TqbXxRN&Gw;VAgxu}KNS;z62$yK(QzTu34yt>X%g1Y^*H=bsS3ggS(u7EMaF z@!4%!oNWx35$clbA9SKaME;5R4KG1(a}G=7rO>-CB*Z72BqS4$RlWWMdh+J;)3-mN zh`z{Op-;bpUVr}W%}>8;w(o5BORqYS?Y|Phnj??w0M@FYC4jX~Ukrt1$rXA9ke8nH z!1|LKFetxARi@~EWgg^UwwzSrS|y6*MiXWcdbvXd;g$-KIGm`8*x2XrftrN|$T`3I zzcV&svN`TEcQ1);$U{6~=V{Y~?3l;6vPcOM_V{{+YTZ$IExE~2;p`D@gj zXRow*6-JTaC5^k_+r7%xuL59Zj`0Ew%kHopVkM-;JMcG}qhV^#RVtY=_641}-VXt; z!0JU!$1dDN0SifV5`<}CE;xfbwM1e-EXOSpmj}&&ZMYua2zS6{Aw=(ivsd?>zI^aB z#J-nTt=~Lj?!qY(dMAzRo;9^+;+U46-i8@7N6(otZd6xeS8MUup6ZF?o5qc)@9Aoo zIKFe*{|(XgB;C01nScO{5wPBsG<=X@JIdJV@Ki~EF;G2v^%3>(g0efjr=_lJAF z{P+u^7wL-tCI*W!EIJzBv60=1hZIJ`U;q5i&wu@|Ar6)s!xSZB*81}w-_T}HpKJDK zT+DuQpfQL_krW$6@H-hVCk$Oo|@1xO8YPK{?VHcnwjF;k5Arx!e4T&SCtK}=LJ@ZsK=MujR?Tpd0UxlglEt{ znFe^gW_DV9)B)dnmQ(J3ktF`@&CkES|Lu>j|N76*|NdVzazT>~z%z{udhqV^{kNa) zy?KB4^}GI8Z|}S`K=<}jh*MvHZa#hvM|i1JGAq*_Y3u=|mvNhxlG1b%X_~-@TfR~2 zre(1;kFY6vjvH$*&kYEIoCup)_hKuiV9ctl7ecR6w4Q_!sdy}OQ|-+ki3z7rSs96P^e?WQSHXHD#B zozUGfeRS)LF>Ry!>ZeZWm^Hm`bZ=vCYx(GrRik>Urc7!b)z>t3T-($s1eO% z?QWbpee{%ReSLi+r%xY0ch1alWBdBX_BFONhD)M>SSVB+3YUbVC4g9GsKg5ZF0CnP zXs<6Wi+TJmx4)pMEC`{nCs2qb&-JWDFTZ z+ePuZN^LZKd}B$g6Jg{dXaU1GJ`uoLkji+bjPH&=%fCq=jza-&Jc;oxgD#g+qJmxU zJWx<9@&5j^<7avC;b+7!0+=vN3>GudG)DeGNn<{t%!pw_Pq0|%k+GsaLps)97oQ^z!EGAAbX2qA&54$F5VKl-}6^1Fxe9ncR1V?;hVOo529)RwB% z53?hQH~wCOa37^ z?mwdmU!)JCK zJ-z$bnKi37j~hF6YHue*!IQe{XO3+fGrD2&r1m+p$4;Cua&%|Sn6BCh;~FPVgvhvV z%-H4$6S}&)8ylO7dPmidpVTpWT+% z^8W-~GTbms2v?@H7|XBtOECoVo~nz&8!zt7LYAo9uq7dwS%|DgztCBrNNTvNXL>eSygME7mrnQ3l_# zz426Z(Oi4{LijrAhKsnLO7>4EGLtfwA}eh|{GkVbKGe%gV|wrD6C>i18^FreGOz8T zBsQWKj{Hl-Vk?S$MYfru-g8$DoxKe7-FNal;uhjg(B9)0Ao@h@Jq~9sp>Pf1DUcG5 z7^=cLA%>B-7~R5=!dwCGlb7V3FYG>g4(@=r0_{9@ZpV=`oAw>su;<9O14nipJ-L3v z);V(*&6+f3QeS6Rb978+d0$WMl!@)LruX!8R&|do1C1NqII6p*qqAo8n3mq&)~2S) zy82jGcU|A;<}qVi$BpY6KfZh3qUoTiGbWFnFuJX$y`sLdxVFp{@w$UfZ`kb&6x6m< z!ugWw(nwJ#5cYY4c8GmFfdW~LCCjg*=@qZH;?N}+WAq7F#oA+xgXI*2Bo18^CW^Jb z-W*L>0xioH^$*V7_$XrL&+y#1eVbtClGQMqA;Ht3JTFRYAb+d)@E<+ltoUiL21JAD zDc=Al03&ok7y6%`zw-oS9+YXAC(ZiE6KxW|RCosF%66oxtH`43Zjd@<%r1u){?ochle>wxsx3fd|j9VFq0f zY2TC!ouuGMCQ!KfO5^BxG>j09ry1lAM0s4$1~f^bf20OuW4z0InUriZ?f5F_#qC~B zUkZHppSl3_-FxC3hb~BTsZDM zby+GN-R?SmVdt^)J0ZY5a#q~r&}p~>+zJHf-G2D=)`KTE?>V}1^X@gRCbK47&ESG+Kln-ZH+b6WwrIi zqsO+-nloY2l-};%meFH7#!v1ZHMXs_qpr5GEK=rg>uGH6st=ZUgHg9XEEwE0vY}&a zXGK$GQAIRV9Pmb*uAl(0+n)~rrbI5E2}lqngGmf<0e*m6JmP}(WeL5+W-6qjRI@;= zw3b8z4Xmre^LRtLEk)S)_3%Ao?GBRVJW}UhfV}z8L0EyQv=}P+XET7gh{Svwl`g{| zQeiL%Yd#Iq_k$n2cpuMc%agP~H1c<8DLCV;IC1&DFQ3Okf4pd}3+_oHl0{(g`V%sk zzDJDa4WV!%qaVdikD_525NjK~Sbn8XYtYive3F_T2mgzE`%xBJ^WdcswhX#7G#-1X zcn+D{Fj2vg64WXKx}|XbL3}QPF~)tX*lX~AG8v$w^GWRfuKNKf-dRYZG&qm zt11&_qFzO z);x^#xr9Iz)*MKHQL?Ob(p(tK*_<#9uCR(fZE$~yep3MyemYv;lcRqD+j8pPALuCg zMvO*)p!pM8WZZrI?#|1294RoSj|33qyLTQ4_X)+b;>KNal0p&-4EI09@j>FBSTY!7 zHo7wVY$*LplvltwxZgNKkRsh{x~nsHY1Z5vl?Goa(L{9R7N8gRZV#QgDw4@MefJzc zi_kR!_&m}Vg#g}p_$=TPgwzClVjK*J#f&tP7!%98Ph6D5JtyHRwBz7u(6;?2LE8@q z0dY}V4xHG$|2SyN-eU_^ZJxhs)vB#qSFc?HSRLC_IjW;{%*beOOK@a!psmr@Sm$hR zaF1*WceTeL_U-9ym_2Xyw3*ZDYHNy%VimQa?$M1Cr*w@P)7;(L)HbrFx-L{w?heNa zf{{FbB)7h$s9|JztkN4P_5p)KrT)f_y5`=d;<}=es-kd7Fj(yIgzXUi7P_)D7fI^j z(H)*SQ*lk6&q!Qp0GY%wjGM1$44IV&H?c^E$PpaC@l-QwF~X)J5;9xdR;I5p#f|hu zp>HKhuvxYjiw$6z7`NqHGV)T>a*{1sBL)$}_yjR!16619Po(D`zwno!r|&<5lnN=@ zMkN3fw)Liq_-{O-7X`ol@u{LO-V=k&%v66Xfv%unqpeL9+IuEf5y2duOt87D6#FpiF|jS(bGo6)8OGG}RX-kxXg zm4Ord$4jQ!32d8m7~f$QPMm_g!bqt?;!IKmA2PF?tdfOoGP@G7#OsRbE9B1s@RND= z@n_sQ#tb&_Sb9Ug;~_7f!FLUQPxPq(Xb^GsdjC0qu2JWS!M6nY_`ka{UzwXfD-S5# zwMyTE|3Co7sgX*BGqn{VXi@NWg0Q!THwd9{I~EhdKu16$Wt&B<)A6&rkDVdz%Ebkg z%sHbjQ5=i_rYKef#Ck4Tgu+@9Tf10Z50UN}5TbX>-s7A19D^fh)9$0Fjr$IQHtjjE zYU_{7)@__NZ{g&bQzy-sG9C!pQPtNG9n)3R+aB&{@-^4FLA4b*&2{#+=0JBxZ0xwU zNt3&#&zjyly0^NrDjW0oF&R)j}QWw zHw%$7hAdZ3#kysTbTyY|oxT8L?M&w2)Qs=ph$fW6vO`9$8r^e;i#B4J?k37ojkMVuGlLPmJT*^wp}Ll?K9i> zk^cai)H4hFKgr>lNSshcgN}cGFnZrpp%(5Co72<~8FLJ4zAMJ4mxZ?RK|_4Vfzd2p zi)8`8+WbmGVj*4S z(H{}5iQ~kTimw@fk-^$Oz3jeK=lw~U9~YD-68g)40|ak8e9j|Xw39r0zAacCIWJ5=5tgR{B(d-6wHo8XEJ6h{p4V49TmAQ>I1+_K#-Cf}c6Wbt0bXRYCb5mnkX-TZaQC#M#Y;ac8J4&k^#g&EOk{o~3<_+82!E}c=4V3Rm&vjV~ zy;;KBSuofWEcQmq0^Vpopw}DCaRf4Q-AS4Dp=d3M7{(4-Tu?a`ZMY(XIdpL!7fm7w zy%_rYLZ^$o8 zsDxoL^-76Qm{nHuyuC7KjVju>w;vhV^JZe>OheU^Qn8{m+GG9oH`3<8QKPVAu$Gs8 z`;|}4L-g|bpa@+u&_Fv2?##?>BdHRK@7)@c$&bk=kLE*@bgT*ycTuOV->1bX;nD}e z&;yK$Fy=tf+vUxLo38Q~IX>R}zacrHXBLu}KdG2^h!wsnoaWF~+O$}C+AGS{YZ-es z=as@QUS7*RAIuliekA7y4Z`F1p@Jr5`mA{Q@EOhq5HogY=AC{kWy0g9wg3PS07*na zR2&|zIqCW4E5+8_qY)pKXz)9afXSoyf}pG_0IE&o10x@-_y( zaIu_UMD0UZ!+i3}E%e0D%9v$$5T=y(Ng+OWpSUQc1*W(KD>q!v?K~#-V&S9vPhJLL z%u2=20>g6GcK?~H`+2!C;hEvqECMhIg5a(DPJl2VhBNE;9Ne`3$nve*7Ovm0Y}1DM zt5;56I0v*~*}Pc`X3SqWW7>@IV@5S}wpWbmEb3|tx7OR6YVzA^^E(?I?TyZcs@&?b ztg6z?(vpnos@%4bMPtX;clOjZwv;wCmDkk703bo%zRD{+v7*9~%DiZ4mM@aw4q82- zG&nka>2{A5U7E3$%Hg%S{8*n4Nx9&r zJYVoK7BPP%0OPDK1(0+^0N;D2>F(1vn0e#EeHv|VOkdM`@3QI@PHR%XzPomZW%lS@ zW`6V1Q?oPCQ==Jz*&~n-iQ_X(&E|aE6^k2VkwZOhGn19B&UHS=P1`M|s%b4j{qZ+s z@T1p15rfGF9OtFbIKRIKFyFpSxPz;tkuiz|Nsej@S_44|x=7rU*X|jPSMHv^dJk>u zl|gA|bv&aWa?*V58IK9c6e8378NOSr1joc+o~0+mlI@paLl<`(ja|`dX_b+_^iw4U zcy zS1j}V0nez5i{YD+g;c_aS=wc2ox2x=Ju;vdTZ1G!FU$Jmi&~YF6tH%OsFo5(I)j4C z_R4n=fQh~$($xU0H5%bdiklMxm};jnFUg${^p=a{szG>4(jTzh8(iCcK4tKTrJ6nBi4TX)>IiU7NI{>(@ zBD*Y>RvNVy7iE-|WY*R>n_K+VwZ5_nXIZ(YqS9Ac;faKEBSp4wEW_)!x;!aPzt!Qh z6uK=1uG9iYYQ8pLQFg{Keia!k{?TPR8n=XLl*Qe6N%MO? zvj~f-cr6v~=F-k9Rzf8tE(z1f#7GoSlLT-*ex-jP9ldn>_{G~NF5N+$yxfmRTmYL9 z&nO-u>nZDpIBDFBWcH^&!9H=qF-i$Lujopi#8$R=<2$>C)-3hMOOtBEuo{M2Dyik- z)k$dbfZ{LFQW&IsluRM$Lv$scL0@9f>6>@WqB5xXxOj$PU>MK(iip!t5C1}uhQr4% z?~o_66#TEeDMr>mM_m&s>n9|dWlKRb0hqoX{5mu=j>{>NQQ*KeFUd*+x)6S{jkCQceRW=!X#NqrN>b&cw2=^a(q z+E&`w;AyCLH#ZixHal7x3L0v1YAdtrs&X1@^I=g@oKX_7#KNh?QEO>gPH{y<~vgy?lf;8D-d!-i@b%dEN`%|y1ulb zrK+Sn>J2#UuDk+AjvVf5)3VJt<46ZEC7*f86#ge0UdmRSLP zfx+nEjN^U|5V)hBbb6nz(?~)bOsP^dW%W zVV3Vf$r(W9VS^|>Gk9(=472d=vzfvCCHe9sn)<@g3zrESfrqc-o3&={5+D@-eIwtc@EeglP@0-olPQ&AglGD(@Si#7u}ml!PzgEeK|~2{Bl|e>^@$QK*gE#?-<@p)iH` z<~fE`0gmG9gniG-cCyivL><4VVAud)%)~PE8mfZLBh&SbNg?Sij60MdTnk;fB_z#< z=^9)M(c7gI7z203Lc0HJ&o{U3Bi<+)Mz(2=%1qj02Xlm1X!p z5&zpFjA^ExM&H|yl^g(xNUY@H&8cY);7j@tU-5u)_3kP7K}nqi7+<(~?CkX;rv-x# zh!FNNGMJio@g=nq5t8-tW;J_^+q&k~pe+ZFfv946+o4n24;}}JKBB{C)@+|R+KQaI%G|0lTS+t( z09+KYl$7KY6=lVW3ae`Z6_tTNFfSU(kA(C5L5OkFT;6nt+iLfu$r-&Vz+kt}76|A1 zgLbdKAm5Q0h`8Fj8hgi#9NE1S4yI0gjYabQ!72u=E*1-yZk-kV=q%R;D1Z$c_DDEb! zw=j1N00#69P5o}T^#=ejXb>e%dEl#T11AJ9a?~V4_bruJ8%?R;uz3wR(U)@FxHi_f(Swc_2lJ*4e( zbrybBm-|n{Z!g5e=dMFQd`KjvH61*C^^jn5{0tBpw}*Mb6mk~}n*p~7T|g{Ipm*Pq zbwBP~y=~|EoqM%;K2}Zzpw~adwt=+b7&cfxR#!Z>OaKYO3>lQAW)7{hF-PhbVuDx%3Ywy_R-k#c~ z##mjoqo%SDg5CP+-1=&Wdb40%U7lH9lwKOOmX~BzmgQ8I*kBzErIf_dYHMB1&4Gsc zSbbfzx;zvO+QWgoqKG{Z$nbitPM6i;wBUeV5Rlm8&vbgyU9KFjH^0!8T~roq?`&=z z+1SwB5Q>I?zIJzx!;=dnhJZD_64C%*Kraf`A_5+O zqbg7dz;F^5Xho|V(u#$YYIc#(L>}#+Ieqz#Y&@l`16ZK<@hgy-yTn&c<%E3YOdW{6 z@c$VXoWvk}=*G{YB(VodRwpb3+jcr%zXI95sTCwx0MIWij|Y5zLd7OYQJ zK)z?5jnSi{8_1XCQ0k|d7f2iI^CzA%nn>Kn$%!6F3>^nLVN8(zt}k|^Zm+rT)2g4Z)E zCL|OJE2d!FpM)b>VQ^f!y#vqj3Y+pYI6ZW$;G6 zxyy~Hgt4M*EkhaFz2punSz%z$4>k7i=TQxx*cQe9zZ;%t8GZ4WS@+708)YDX`Cxg2 zSlZdVAFPyRQ8bJUR({%)$G!}Y8oI8)GY2egJ-!IP?eJrS2R?YX!LV3nr=_k--2}m} zDD>{QCmx_w%S`?RZv@zS5uJ% z(1l}dWp+)u$T^qAGD;$8#Zg;PBm)%=q!dNcswxXc^_F&Zl)-x&YQrTld(f8^4dnrV zU9J?nBNbHWw79$(fL>oPI})`+lpG2*FEW9{mIvN2?x#fWXjL^mOFEtub@)-nyEYdgG3fvtA0LCmdRYW6tMIDx4?GKXB z;$m1xeUBT!7&L>Fq%=jqI*GLuGzgQ=X*tQZe9PYf74yif-7BVrY!9<5ratz>CJ|*JZEmM=h8N_pTDJVIbqgXsqj*s zV90Mo`3dtoB=q-JoR7#j;^C{$-2IBTAt5L95KSB6`(NqH0eoKkReHdMXU+f@0lRmp>eB5e*YCf$Awery z`$kHnK;eidAsVBZ(>O62_sIG5XfoWOLE2cwCQ_;LR%YRc%oilI3{#XaU(M^K1zO~0 zHZL^Ouw<;;if3pwRy}2s`{Ht=)Lf&ai9Jd1d^>)WEHB7#3ZEmD-*Eiz&nw-YLGJ(n z5CBO;K~yNIz`}41bIc&!m-K~q!T-nW4-6&lR85WFIL74(tFiFAQ%cIIP>VW!afh3p zNbn@tZV2}e*)%1}wr@W^505X`?_-);!?65CJ#_xo!E+*`b3hDNxQ?~W`nK@}+|30H zZ`pfn%bug44Z98iGB@ttzh?WcwcEDOU$L^YZ)Df#j;^t-qbGMwTR3Imn)!29&Y!z# z!IF)u7jIZKZNcomDdR_u>z%oD{@T5}HyqfvY5yV7*Sr7FmV-xDZP~VD-G)s&cC6d7 zW%;V*(`QYeFt)e5qou96q_HkiQ|)i457*U)YwJSwwcg5ddwrF?raZr@G*hU|R#}<> zv2R%n(3=jpjfK;rp)^n=X!ZM&LqSVvNoHHCzoE`kTkY&_uPBSz1K!MVASdL{^10Jp zPOH;lak|n1!JN`EcSWVItlS3-uBeDqRz?G14*)n;5&`-;J$5(-qYhuFfRA3F=?l~f zJP?4n&lCo}h(^psXXROt!AM`pS1If8WXmuJaAhbwgq1)KqvSK<83YS}F-qb&UY3PP zY>a)eGZ<^IS>4vq5ov<~z?Q5LnFZEdr>)SNGl*DgPA?;X*#Lu&lsd+#EL{2-10m2d zo=3(B!{4~+3`-Y_#UmjzgZWFmM&T~ORpBT{wL;&70LGW_pPcTd#M4S_Z4R{+V8=JM zSt|Q)x{&!%2_snV)>|p@!&Iyo!~&D0W-}nk5~WEdzEz1dO4RimcVL#f3~?m<;f8=x z3SZL6%eS6fz4PoUyro|pL2wc%c%Bg&qvUf}@1MDR7bF%CF>AF{YO%CvRnimM80k`0 z8AYJQn&4(ho#fmeL_LPyXRsk-*aX7*cM;pP(Y$icy^-L~fxPz{k zP{L0Y?~Hddi#}089wUIYq9mQfR1`*0HRm)eG=4De5x$>oo{p#27~_>MnSZBzBij?@ zqYkv+F8P#3$p9P|!A&R?8)`m(#f)LvwSkvpC`%hygke5A;g0@?0{@4a8_eKHPaz2b ztT;((z_vuxhd z`O8-?oHcLCsGgSA=Bnm~XhUtNwk7}!uCDfg%1iB~#Rb*ng_WiG_re+RJ&rK@uWIOzM+4gh@Iy16U(zBASwhHj4KZH!_+aQY&Qm6J-yO90ld)ILO+C?)*G2$*oF!AvsPs28Z)kDd$qK2!r%g}AgH zDEZ9kn-IWw(tH6wsYpRSf3{G9=7haf2|JtlNu{XUY?x=xf@*(5<)2P1yfb+--DA>v zle7|FsmE_gcOJdH{qW7L2e08sf|H>B$M5t3SXbV6EzJAbWOMk)v*dXoe zk-_Uj-NXtx3UK8@&;oSLW}if2SfC*&EU?YmFiV@6MdPQ&lklnW3E&P(QxkyA%~8r^ zi@1T55x~mmCuP`eT-r5!KGjPEFfR{Q-75Hwxaq+Tt*6N#>~X>^6886jmqhSg6~kk? zaSCtzmt0tAJ>%goDGp#v1~9nt+_KWp#T&P%-tEk-ds^Mu4Y4ndXF%s}Ke~8VE1|!9 z=LrB9f?&k(*=zS82tFZ-2XDxRC6TScng$)lV(=et@ZEFl{EvrD|9JTL_Jc=PZQZC(xw#&z_y^o?!l>1%9kC=y$?H6alM zH$+;Ri|XqGRaNe?lER8IM|p8>X)L=qYLmjK*BT93Fzs9%$t()n0KfrXs^4n~`qKhF zD=6%@mPE5kW4V5Js@GxlyV4;D4*Ie@?lgxzrO=+@a9WCr9px2Xh=YTnT#qNm<;n_2 z-Q|@Lr#IK_&ksbLpjeqZTJb-1-IRqO2LoAc0}68+Zifs3lghsA?$C8fhvwgGJzrh^1^ceux8DkFZ7b4A8~C zBapuP`$LLt2s{~N6%LSsrrfe>*DRh%4dE}Y>7?2B5zjw(^-jv*xj~rW$=kmPTV+x@ zj^0}jpGmzS4FuqU#P@x9u$z#qcm`ptoKbW`4>dIN9TV(1iFu%GZiPyi+~$qTw~f6M z#y_lyTUt4Q$q$PxBN8?@3o#2Vd>2k`e)2-->C2yf`S(-v0{MJbm+3OqhQD z>Cv-~51+kz@bvAyM{n;+go7}y1=jXUQ$t;A=qZN_hI=oxuP?q$vUtw*YRz zL(kLqSQ!UveOF#<8m2ZXC0|VdRu~))b9rkJ`e3jQX~njJY_p8P@hjBb7jHoKUcS8# z|JmVh0{n@PqmUHANhu7GKRtQ>8TItTPftH+zj*QRSEnzHKv2g2#q;o{&0wVO#oH=w zc`X}7y0qYR=AxwhM*oRxw?W6R-a2;WCLD3%{h6C02qyE8Yr2Qm#aoZhUK3fIlVZo@ z7Pc*c^t!@pawO5!Jtr^eV~zxX*YDiFaLuMA>(?(>y?V~lMRS)eo;Z8T?4|P-E?L+* zvbCZjT3uaS*BGg)4OBOTYMUaJP2q-)(s9!}yT>R8F2fe$}RBbJi>!J9pZQ z#S2$#-Z*c`64106(|bnsjv3e0)zi|^Ro~iP4fL(6jWpF4HPl8cD?F_&#Z67Ysw$_T zZ>b$P3W&vc7k7Ly;T#R7$3ht(SO9l{z963`6$Fcr&jRP8L7M=uGd18z3;HrWPOGyp z)lrb*u&275R-ZpB5-lhxb@>C?Zck>R-D-EG2O|Z(K)%b~qU^v%l!y+tTs>Es%M#Hec?6fT> z6)u1?GCPea<)M?#+0Eq}x-7#S zkAMlc11L^kz1m2;<^IdJ0ANg(CQLq4m6H-&@-0{ao+mGj;qP-T1r79lpw>^B15ibr zuL?nxljdtQy8yi<5f=PBx8R}gB4Kcxa05Fbl?Qr^NZ<}Qfb}u=b)qm=&ei!$(~!({ zUff!QJ4?gj)#pFn|D@^T*FQgg{o})z-$7#Wix>knkUstP7al=B{rXJ`7Vz?4AAkKP z9C0C__4A)VFJKsu8?8)%?!fq`uRc9~@!`Sqk01=zF>n0r?a#n$^d85t84234^iY*x zjBzbaw%`rZSTqhl5acB}sGylBI+vlhDDSk!zB0Y5`x~=Z(R@P@+i-#AN~SZID!DW( zO6{LaK)3(dhr7?=Q3)QBeu4!yYRlrd_-1gzsf!%IiV3B*cgsU+xDU(U3cAQ&WAeJ< zd!_7G?&*z3@VNQx=HutLp1c6{KYvXy1`?xy$G9LoqZpgzs6_eKhL>mFVF@0NVFWN` z*RSY3!Bhy17^W6*nvtM%MZ+0_E;U1A|CN}aaOLLF%QsL2;8WKj0)Bik-n}OO-o(r%vyiFlolT8KAz2qsC1g zJATsGwvLwi+S11Q^2Vm3n%YoBji@v^ShHg8%B3^r&z`?*(Ui#(Mz*(fceITg-P_sG($n4E+uPdH)6&*lR$k&MD|Ob_ zg{o?t#ihBJf-Z?=%3wF1a0aqQ0%<6Sbb+-oeqn~o$mEygn~JtaGu9&b2!uU3sUp#7T~TokmL4cq3ljueqoxv>6-%5 z0h}sk?#f{dI9W)Wf{*~fT7$3dE}10lms4{b83mqf2!*o>(?GB&aAxJ%Z3tbAXmOov z9Wp%Sd)(rcRMz~W$z6-4Bw>;n7U*h8+r7AL48iWu)b9o-{{w^!MgRktQ!|A}w1|Ky zpG^C^N?c3&uK=cOGanufXJot4J0^o6Gj;Ux+Ni|guLLkjCvoDPU^*)M%KTGsrlRML z!cm2_bOEioApo7cX6*DI2=L~*YtCjRf6n)(6{06_D^#`s*(M@k7*Md=KK%B_yI+0-z5n%h(A%FyBn=@oPW5>9?(@^PpR|;w%WRe)J8iLEmoEj?6naZde97a)-2)V zUMUr#QxP0)9H1XHJ|R)h7)H#zd>W(G|LPje=M!+tYmNOtYe{t6Mn!-DhVf`l@M^I# z^RvWXd-C6){bTdc2tJ*OPejm$H8GnV?pduETvIm@eBR4RSptwHOWRv1r> z(byYJMe=l>!q%grBkl$bx<7v9&WWp94>auoV+Hs%`a=OfI-vfI2dA&}bLXtXXRjYT zeO2!jj$1mzV(Y%+OIB}PxnbwD=?f-Jo-=di?4?VWPo6dzV&CpjBRhNAx;vYCx|-`7 ziYh7tK;LjtZYXApmSjiEvx_QoBb7NtHTk7Y{`PS-eKYzxCU#6+G;7{!h=Lc)Sv-66 znC_n5k-c4=ptk0wu95A%eeDw_jq2*CD~`E~i|iHUo{9>4ES6nboL5$oUmPWqk3awb z5CBO;K~znTg{`_|$&~~!qBr2PQsC?JSl!MPyM2Vql>&ipz+(w`QUJg~uN4!~9zov} zklSGqa#_8ebeB8b?y#Vot~9StbR~ft?le$=!wM>NTJr5F2w*Mkj6J?=1~31Brorz(2RYz~RZogfk|eGjlD#;3Ui7VaeYCh9MM2 zFk=%D_sP;hD>{_m?dWPrg<6Z5 zPbMTTF8BpJ)r_TE{4M;WJPzh1&`Ka^u!?;0^6t}DC?knqVYd=sSm8GTIAQXcN3lvQ zn~<^u+N+}I^f4EHR9o=BN5-2BM0#_CO=sxqOc-a=pTGFuL6iG274=Y38mo=8vLpFd z82G7nB*8}&vDgBRK8EF4JUej{=Bk{1ai z982(fp@cJY3H_A}$dHt96YRZ)g^tzV$O;sW+@6eV&p~*-JRcv(fw3=$oL{L!jAj+^ zQ4sKtBD%%ie-X2IC4k{M3I4IP;SG9Dm_kxAT>KjV8>SKPSxgeZi1Pv4dvuFtk=kX2 zPQ2rm45w%#hO*X56rOOB#7*P>(*)&XdaW|;>Eb4?(tL#uXbOFiujnNy46P(+d9L_) zeDC)95z&c$9q9`?cKJ3i_~dnwmp*gro-pIQ{{&sK>3^R#C<#94wR<>%5N`zlhS-<5 zi!*&u!d_$d(ak##Z`iPV@#6J!XDyyTXK7DYcUw#Aq$#8O#&mRc);Bj-R8)G4OB}#m zpszoi7K~;DBI%LhtWa@gq%=ENmRr%}tM9F78eQEzxoh@{S<Ao-}jxlo{hzty{8q z$)Yi1NB52D?e6MqsIO{msqgD;E-&>L3F9hHESwh&<(3rX7RPd8(X?p93gK@wWQhc= zLXy66(>Dd8UJ$08Vc~Hldt9l2VK@Sh0lgt#8Uk30eG5}u_EavnD-8t!vD=dY47R(h zfL^;R9R%n_`U(ISCg&C;(GILPacfBzgVuNr=-!Jr$Y3*i%~Zx5a>BP5&vOF`Gul5WMOg7%lhTG{+VUj& zat2czoDjf&v-?X7RuIcYKC~pnExklT+Dl?0sp%Rltu%640ro(jR9Ps`0ZJ{2Dy0JD zZUUz#-UfpthHy&$#gE&GaQ_fuFyal6gZR;>Ieh~GcM-sX!IHQLV1>aD=~BoGFKPHO zguG~W{rc-~F9ER_xdOnx{0c`9d2_;NM<{9xh9fW!$S3(nmSHbH0|LLiFz9Ez)k__U zM)byKIrC2h_XNxnfR$m-^jN@6L*YurES+Lv;O@BysirQyyVoy(>aV z<;l`qIYk!M%J!{r*`%gtMqdhZId@4s{6z+11WW)%9lt6B7zPHPy?q}<-#A&Lz$b;z z2mlr{8#Dl4J1Cogcb~Y3URS~^Lmqb=IkWHN`5zCT+_C%Ex=nlL%w9Zo%A8SM-JNai z&COLUE!7Q;#Z}dz(sDhL{jQd1TZ(Mlq3fFj*xxBqG}o&nGnM|fQO*~ zt^i<+eFcL@d@7k6QDg~)fIv-P zCkXS#?|=QB^2Q+gkXib95k@0=kz@qdIKz;#dKjvVqb6%G9Q6@*6O%}e6IX{iNPOs% z%3uzAyoP@n_+87)v-YKGlB4FeU|l~Cphd*eoDy*>8Kc7y1X25w_h0xlc$x_h(khA( z!>kX74-(c&ko1v9Xvz`qf5idy_n#&xeg{YD5!k4>G zT-bU1%#X)T?>Kr2jvMzKT(x7@sx3QKY}&SR^}1Pe=J$4u>}+qTs)#faO`fP&1 zZmR^aKyQJ=ns2uNcR`qZ=D1Zd&kBrzvb0%Cg77z|z=Bm&*g%Y}!+G|!0%vA!VLFgi zcJ~ejxMpOhfTS~}p?_B|auzU7u?C@h6Mqbvd}tue~@<2 zVm*i`%L7?1JcEes*UKGI+8KsS9h`CFMx!AV-rO)i(9~KJXFT1XK8ph2IEjrW9()`4 z|56LhbG!-Zi=agzL5aRJ7LDeW@-uW^8K%a0%6kq3S_FLgHs+H#fDy@Xo`?&= znZ5u{RD96y`75MD7p@+@cnw$!M_d4UVFBk4oV&c|Fvi(tlqhO<&Le3)~;Q+X3dIKs~0RYQ`)lI?{SkkgR{0v6T?a^=+T5x`g! zjZ8)K>fJ=RA1vJ~4FDdDZqji52vPQ|VHg1n*8qCO)^94+LW^Bt9L4}2g)@VUyR-2m zGl{d10DSxD%iB6`(R&#e9KZ>CY0R??xP7BM4)A&L&NAfvzW_L4^UvQim{(Ep324Mc zj#xe({G7;l^^?wAy8}l$N#n!^f;68uPVZ7i*3i>EH{$1_G$2PZp1G)xY@?c*D>ACQCa8(Kq_{1%M73yudH-4Okok!HGw^Nx{WpRDCeg!$mP@A$w)ROir*5P#0XSZH zr1#q>6KZ)IE*3Q5ygc%epyDIs7VgfXrxjUDP!?C%N#1{wSTfQj5qc?*Mfw6<;fNA& zm88_-Z}~=IFbJn$;f$>F5azOCE=q307tFaEchEG(wW5GodU^wQAyh?C{S+^)BIxpR zD%|nK(3WSFc@`Sc3z05L?;5&7!vRTvQV@*`gbV0OqBXt?xVvfJv30u+Z9jY(xGUq` z!>S~DC(A1644=z_8RkN}H7`HKUa0jTxm{^+1bIE_;ZTk*km2@P z-J&Kd4IF{?aWUt^3*JHbR^#4w&8r1)F$ z-CuLsnV`tyT|WOnKWW&wHP22!?3t(eDiJUTF#n|ge*w%xVRK|mXLyM+1;LbmR(Q$9 z(W{6fnbxPT-sT@w-i{3t^ej((5gL;D^*W*Pj}&fzB@UW-Kr9n_S0Ox-A`&O`54oem zKx438vWFG#oWwNkNSN70a-Mt0~RPM0g{+=HD##y61ppV9qyu`(N^PYj8RexJ z6=gOQo+&BKtgOnbt8-UZJF2SOpo$7-S(&{gno|_ciiI-6{&b%&#p_K5c|1uN_2Nb^ zpx1660RsBs!f784NY;bkB)>N$=(mJ}Y0+?Yz?bf@TR{-`78a!1^OHfqW1rXNL1#*L zsy}G+_|jY+i$*g6x=nKY={7NI0m=~T}j;Gv=%$W62QP+We*tX%NvJy z7q2Y`;$TtmOkU9X{_b$*D=9FH6;*J=;YHFS8m!Kl$H4;u7->q}1;ip{4P=!kPhGi%3r$!0g>)pJk?7T?#o@>r znhK}i(+v2tlF$U>1Sx9`zz=A@84YZS!2n?HNs^!qOon25-XdOw$A4$|Zw@WU)|57D zWiIy@1;B7b0E1{l*F1C!?}Mpt9* z%yRSkEKH|!06+iqi&o66S6u;s(OZ#1TkLto3MqW(!Q2D6BEw4rFrSylBVaysfqoeT z=lIM9plts`5V|UAV~%7!5rUJ8Sj!W?7=xa?c8_LWi75^MT6rHl;z&xaQzCmT&Y!)d zIfom@5=*%9{aQXe5lO5>z?d->$z(}iL@W{akZ$^jzK^)TAe9Rpsd(^8#3lL?P?4!P zqj%>qZP4$o;}_(JUvUyY3MY3QIlFoP@%6h8FWIzp^1>yvR;`-1ZrzH_TNkZe-#KAI z*TjjF=gpe4eDSQsi>Az-Gilna$qSh{k?+=UY-Pa89C;^;Bm%`J6R)q&D7cX4rc zG-``P)5DQ8oU`i>rvZ9hzGOHC!q!+xR(XXG5LeK*B)t-j#hIXzSY~n57K>&S#o(A$ zQf#ZN$gip_s3^-XE6GLMjYuFP=(T!0DQ97R+Spk2h+a=~BdAu1A_<{h&5C_Zrb85alB`06o z=ruMP4aaP=B<_gp0!I1IyL zk~X{u0Bjqk&oYW57EPgtr+hDD0hTj-3N+*MUj`}?%xAgF}O%r8m*rJ;yzWnfRsifGMPIs9`+L_ zp9!&M;fGF%0dP#0?*MwW*`hcnj&T=t;_^){IYRE1!gzXlM*fB3ndjBK{@Vng(+xx@l$=9_OW!KQ9^mX6Rf;^VXX7QI2d<@;fP-t zeO1cVFPR(jy`7IGl8 zmNBNZGYYGvNN|lgZ;Wt7*JY3}ePkglVU>;?xA>CQ487V|-ye^jBjL;KhtJR)-wk_? z%v!N}`PLmPwr`ubVE&BdOJ=WHzHHN`g=^PNoj13or@OwZb<(^U%QmiGv3cX7RqGe8 z-mr4rmKk#wx3sl`8k?)iE2CxQ9sqExI5!x!`GZzaAe072U%=vlfYqNW&V;SONLq1; zt-K#9CgQR#s#!FS3=zGEhYkOE{1e2__dut))daP*EhKv?vRWu0p=FfX9M~ zWtR&mJ3<4npt8l~jLYLrvlk{8<_`k~gIo@6_cs)Dny3#-nrv=X7?yvCNC@>UT>FeQ=zQc3vNw_zRXOO`pc&W7^p>zOS zGKLU|@hD9zQ*rDPH^gugoYc@S&_ zaC{yx4}}x%4aw^ornBMz<f=OW!Srt zpw&Edq-YHbd^>)Ylkz16*73b(Df50aFT>^-Mh4?|O|8a?O_-9M=C0lJ{KR2QzZ>^u zQWwL@$1;j#JI4Sp;2EF}FbN<1fFZB$!uII_bKyr;k<~E3jEz11LL4QtLyTy--4dA{ z;&v~sF+6?6+J`9Q<>_wTe5}R37zZ1hjETfl%tgD)NKi7MP{w8`68Q!RV7&@mh^7%> zpp0)v7{?oR^nRiEEa5wGizo%aINz5dU22)-Jv>4*U< zUW02M>2mZEePz^pP9pXkYR3_c#5e>H&WQd}CKzU29|S_|dbMEm^xm3@n6 z!l|%Em#aun_-sVNX` zmR4`2OKkD-iw7tFKSNXhXGGffz+Fq$u++?*i`O}c>7M-lL}g?!J|E!MsgzsC zE3W0fpa||Ij0f@w;e}}+z_4OtLa0_U83q??_y>Z2FT^n0KYsic*6;8M4|iVmr@gpO z3ul#*kHyX?*+;7p7llrTluSnY5|a6O+UP}WfK!(OBep~v~ zfKT!?=9Y?xQeI|7XV{#Bx6<749S1i3aJU~hIaBfpeYoI_ydVx>9yBW*v}Z(gdygVc zW0CMp)RBv~2*x6Km2d^70$&NV@Df;yLgK>W;Ds9p&R<9EKXVm@6AN%HNB9X5VsXvF z+^Zy+Hg`3Q>}&0v+%sxQZ&OEO z*O<;RlgER)Cyt#kd;0iU(|RV2n=yZOM_+eCQ)Ov+I96m2NAiQ=EV*L}@vg-iOalRl z{lRohL<4t$zJOjh0!pKibcl3ueo-`(5)D~M`a~mGi`HIwCLI_Y^jmPOf&j291(VFM z0Lr>uR*kz59D6Jf4TF3>@e;V}v?qZ)uGB~*8|3q)fN(s6&z}W|1pvF8>BwNa2Hh|)A6t2;xLmQu989FR=2;b91&|;~xC1ZG6 zCfsBM#mB(fVU~XokL3pN{|je;wLo8Mj-YR9)?iDvh=T#fgS2{PY%9`9+;5Co34th% zRo46ahT}P*omN6@E0i^7o)yK@o;rY~-Xef8p60@$FmraAxjDw^d*$xKxa2M=#=aMC zKTs;46P8w)!(RoxDD5TDSN8;<`Vm25iC!*xdmQ16=$yey?902GF6ajIhWVy<9wxN< z;=AA&E~}24?0SllIf=Ca8~S*5693ny>UwD)tnmhCzOvH1xB$$|Y5bEcw)#vPC43Y5 zslI(nwbRtOgyQDsilbgQ;Fx z689k=I@+XJky?$VD8Y~c;f~jzShY+9_jznLvYYPFfOBO$SL<(B4*_lEL1k!>*h=5bY ztvpu0H_hwIw#&fR?aHthTEu2BymX4RGmscfHVPamh0fFh7ZyLG1Oetsy*XPRDYz};l6ODi$ zj}7R(3qj!n?sY{KSbx)clrZ@`5P-!(r!VT5UWZ8`FQNB194}luE*HloiHW;(LtfiO zy-(*7C8Bw&l0KOIp<*_on0zUQAsopZ%n2EMTc6X8$x_|^kQeC5-z%-djrj%}2Qt!3 zMmX}B({k96MpkN(qRnP(-o@TxE?&t@&K`!IW0ufn1AMet7Pw0#(*RczP&V)EyW#)< z5CBO;K~xUfC(mhd_0iKS51(9q@c7bwQG%|xDk6j7yXN@h_Kh-D#{ZbA!7`DUc8>XQ zj;n065x174PH~B0tsaUNShS2?L+3@l`Y9Z-q6$b%yS6f8e2XM!&fi2NAG&y(bQtJ+ zxgXaWXwP2Xd*<4n(^q$&x&p_zPF~r4;xY=>NMCvKB89WK=Fu$?7dZ+7vH~wj7_DwO z5GN=KIf@Ix&V9$$?>)M1@6q-9j&0BdXSDU6qp0<}kF48u7=$l3?mY&A%hv8bykhI# zX^YoPTeN7_vSs5ZjB9RbYHO-!t}m^u@{1t~6`|5ne_2JiyfRYLP}x+UCSzn6_^0btDrf6Id>@w zO#nX5q(!~JT`56g7WE#za1C@!*KrmHEBEI$S<2?L8NiCC$Hhc48-^tG@WNo4`c1Ey zrcDr!$@}n5JUh+)p$#qO@rrB2FuJGFj7v5p;wQdkt27H?bu{nIMdM7}KJzbJV+%4l zMB~jwwC|+Q-qRcR zoZ7GlBGlvScOL_-+jVs9&LgXL9tN%Y@xY4h`<8D%Kw6<`-^v~P;iF84#PvH5ul(`Q ziX8{Var@!r+YT*QyKTnOb@NxQZ5=hXzO}ituXj{$S6gdST}^RyWwfF)P*)#=pthmQE1TPEK#h$RrKLf@n8z!9Dnzl86&C)W zR5;BS(yFn5zQrZBSkw{@B@5%KpeTk4`o&bDNFWVIDPX*d7={G^7>y)>!Cto@tH+aq zkuJ#R&A?q=ZR;04Buk?q2-bR#3X=tZT_R{kFl$9y64hD^?S|)u?4p>%>&bLEMORXO zL8=UbtsrbV0s!j{l$!CRhFD45oP41?`_O#Humb0BIOaP>fbt5HbMi;%yT2NMk--wf z!-&CLxWB9K2WwN3EW#^8<1Q?;Jzd){Yql8S057pw2+4{;u)b9+gymNwQol#Z%f3rV z`$5}3mZ@yG72Fdmu;5k*V6hFHH8>?xOa&fp{cg~ed+>+gAshk2c+_~z1OXxn*UA~a zi0P@B)8gf$N2u!$A6~ov@cM&CbPZx#VJ)X7tvUGVyz$|HPx^bt-$h@ZQskU)k5fsy zN>u(Tg#z8L?U@eBl~giRaA#rXctP?FzGoB{PGSP}uCT zrI_fNZAK`Mt&mvzX~-~ICyMw*Lg6nGF8IG4#J=Q3$~)N%TOs_JOhOK~b>ms$ctQ0~ zFF${wg6em_{Pyv;-#`5N+xuUBg(Iwm6ZN-mKmGL==*vI`Lywqbe#sB_8o9+#DajFrZf&Q=o+f>LPn;xqAPpY&X*O$c2pNtoXBv z|HN?Gu5lj+6Hd79*G+N&)iSNch8*bQusDeYjHTBVciTV<4gfId;{E3r;Omz<*Z<_q z?MJB7w;rCl`QXI$dq=O_QHYD#X3{~%U`jZf0SwxC;u4oeW&JWZv*XwW)Q?9m>^O2> z33eg6-E`m-Xyd-qs118ht>1HU-R={hwY!c3J68fVcN|2%F59|q>6X2q#hdpm+O&Jo z#=Q$S>{+;B--7jf7p~upTD)=Z;!XR6Ht!MIv~S7g{isD-gy77A^}A;-ST$|#@@X?> zH#WDGm6z7kR=2b_v~@Jq)mK*6l-1Q%G}Ko$G*-8@H@3FdHMiDO)kMoGf~8fSqH<@n ztRP&HS5oDyX$m&ARW`O(bad1e6?p=|JOD6+i~wMW9U&kNgfcQe>j?01^sCOpVj9PVXh!?z#8_agJ_sw(5rbk`@N#<8B4AZpSag6IO-HJvE1~9 zlPQQ;pl?CJu)=~Q0I-HzY0UxW3k!!A+EeTfplqtgn*o7uFq9vQ7RWH#W-qi9T1N zqp=EDV}*6dm@Wo_V)>O=OCIAMFkXW@zQ9y0yh0=BB+Fm|uw<|RFqT%~{%%UVb4dsr zkVFZz?fayR??$A3F93WI!aJ!;{SWY{Bx5Nkgd-0V=_T%-B9D0y6JB}w?%lZh?_Ifj zpWcOZhriBxg!+__&kLhC?CC=&cAhuS7#;}NL&HCU;g!P(9i!C`sF|W0e$_~zmUOjF@X8wAAiu$L%5aJv-|1m6B+x$ zC)EqE-(szz)LVtV0|6N5Dtt#m6sYsk8X*Fwu?8S8$|opGIQfh)?r| zj?#~SSp*%xFGv(*$EQbQG^~Gx+;9UOtVE=HQwWKBLhmdh4Fq5<_Lb4F;O_aGn)C=5 z$%=5LHAgRBqky~HkDlLl9tY@>fV*pU9$U5J$Vv!R zw;o)!F1JTZ^8MkAK*Sa+%`2;N)Hg+&+e#{H0wv|{U?>M?70A{dF~!g0OB4PT zK5L;X+3rqq`vri7MEIMG0LF4EpD!g4u;9KdoB<>Y5(m=&$$oDN&M$(?+|DEfFs7HW z(FpCX;3e`{R%Q*i+lL9t77hpciWpaxYax2`3Wnw855>|d_#(xFLNKSe#0fF9+(=Hh z7pCOpCjEbuz4wn?Ww!pye{k>j%*eRAOBGeARZ*2%-4)bP-ECX8v1Mah#(+p80|O#z zNCFQdqKG02gOQDGIm(^XQJvLMZU;Fb6D%+wU}kjYgkSEJ?z7&t_o}z{F8iE2dbIV{ zu3R4av!C^@KutLmq1p9{{bd2byfI8O7>K?kEFf@KVc5gF!n_}>#h(rIa^h7q>8*gV zF+I?u^>cQy_ch7tF!yea0I~qsWN^8)r0$6g0Q**Z{cL~1?>Y!r4~rn~`I0WeB<=x!MHqaAi`MZiRIQTUrk3Juk~GhiomqB)98k0LK4e)W189 z{O`iq(VXQjld>2m=V<0@MOQUxw8He&TW(3pF?rt~ez|)6x9@-b=Z}A1%em`a!|Ie32nv+%lP42e9^$wA@MaCP%`} zkED%ZFlQXet}wjs_~}a~bj$U=Mse-*Qt!-i-|PyjXL{ML6O)T4DC?@s;EGHu5O;JQ zI;y-c$Di2&>+Tjh&_8JbFwXEv1~BOR#i>ycmvIZ$mZ5v3|D(fw(1(Y50bS-U>-_`0 z0^m1cUOzkj`lrWUC7XNXH9+*^LpZ(ytbTY10&y*R<%2`es~;X@fw<5cpB!PmxA*9q zAAR-wD{sH}+Pe?j|L`M!e)9QeUwGoNC%38p{rS`_4N+U%2758;a{T zmey^|cdgBJu1$8VNicwMZ10ZWao5_d+uK3qjx|*HTWnUjSA_sYZfP5s1p2}z;#h30 zZ|e-VvS&9=A2WAJ)N_N5co;y-`@0Z3 zU1__)pv9SN)&UGNs)1ya%1+QXnRaBdUS)!5#BXa$vZFo2G3|U)D3|r6Q|?UK!)3vo z2yFzMb6$4CinU%fg3z0yx?a@}i!rS21cSaRJK7@*j$}ObX?Hk93C7{12a*gdO2SIf zFknzwCiqI{NWm?$Spdu<1vNsKn>@RMH8^PwBCK`!ZgqK9xxKgY6S>-$YmHb8U@_Ai z<(A+!?5`_$>n$Vm%c9Zw<*|j+EUd@D=K0ei!LW!qjfdg!vS#rsjMB@_mo>Mb7;LfWjV z26{zu^Hik>!;0VKD71=ZOPh|WJwPlB*1K2gO)jP97_0dc|&XKBGzBOJ+3QIyKTVvR>tfUy~M?=4A@5KdxQ8hD#9q z8b7FdEo)CY0Wdz5?sp{%Z0^$6GZ!waJ>3Yea>%lM71X zcK)vb01yC4L_t)GTt{?bVgceLXI@hs5z8d*F%z_`Ltw2bJ>|+yUjeWVV=VYFSO|b& zd6~GtEsh@?G+LUalGv;fx>xk}7d@N9-+cSM zzy9sDM;>`%_wGOcjITypl_iR;QVLymn@FcHWmXV0966FqchyvM&o#?aaBG{V|QU*o2lOg9?xi`B3;T= z4pBV0!A+vbGligWp4)5i{;u?!BnE@2IbSa8&1O{mIp;PTQn~8L3)gzh1zU*7&*7Z8m(k7X>J+l#gP_^D-)(m)^V#dTV9GZvq+kqgN9~j zq2XC#u>MB8&|kTd@z%7U$~+*0e9D@aTRT;apX!y>B83x;FZf}j~9~}XRXt>zJnM%!rgNFi(g2fFOCf0AAbKA z0~q3ohX#ZH`@dzQ7tn=phV?Tn@4x;9fxh4U{<}`x%h!K~F8*-+0%&*bM=UB^Ltj@; z*VtH9hO%O+ywX+4UKIN30G1)`vh}M2STXoJ`DOTb0D1x4E7$RB{QUJ#zg+#9^18ub z!~1gNz|2|02aw!J2;7Av?|Sm=1@8Q;kMh;W)H8RvwT0GU!yHRs0$8L2xLm?JHmAE= z;i~}ElJKmDpmhN2mRBb+-(&!PesYAP&>VTzNo?rQz{iINc>`GXfF&rs_xSj}Q&R`} zroZZ+IXEzTXmAd~0>T*)9>9+|JTP~te^%17MVz61WN3Qd$>9(89ewGI5BI$K_Ge!n ze*688pLyZ0&%f~U-(Gq1l~>=|{oteb-+%w^-Me?}xNXy>Zg^h+7=E|8y&lH5tt-~r zk!)^@vr4To2r!1bmFlC$e8r9_)L01Rn?rb*(T<}nR4jT;#~Gw3v1&L)O{U-}GhRTk zy*&cZvL|lHIw7!=H+Mm00GQCL#AQgv&aR1GrY~e-m;jt>bY~k}nVcKKyFl3-JbFDR zQS*nPt{q@%iXM;yjB|c*y}TK$1GtP{)rvBaCQ)iM$-~UP34jg$B^*>}3ksS5das?7XiHE zE0s<{U)8CDi-uRRC&%wWR`FD|p-Weq7jkIpVYBQx`S9G;#VnwrHC zYZgC1-MctEy#Qf>cZc*V08p8Etd12E{dDi8kjxg`So2L4BEF~!W-4qnGg1$sb83~P z@TSsX>j1ta30eA!SRw&RXUA+kqU~|%!O8}c9W$J`Qy!qxA%C6#em3naa zTk2K$E5x~15bmP3(*OL|k09~C{_|&ZCm2%P{qLXttFqs%=y73=^D_qgRVFJ)j)JkJVu;2Cn)TM__!>nv#VaZT)Gs6Lwbed137;01 z1^AGZacy1)h}#zA<0zj^rX=YNpY=gQI(i4@miuRybmPk-Z%qI%+9f?SPKQuG=)Z~F4dIc(Q8k%Pv8D2O#vPeg*I7-$cvrHM+4b#w(ks1Aw z>dFIno}_xDgU1i{41Kik;NRZ<;H~#Qf?j^*^(UTs=B~T$+PQP*`i&iH*0px7X>4gv zx3nkQI@2(_4BhswbaPv(wIkEsm1%BE;AEkhx+PQAQj-q?sPwH<+*@b~lLPLELZy~a zQ^5yLL&Q#aR-lwJo~U>UYgl1Gx>Z&E778AsZ^n_$Isj3sJ~FeHxx}c@7=)S{ybW15 z=$lEq8Ng5`<75DXy9&KdDBIwHQfUtZxS=sz$io3gdG=9LV>p)$BvW1*O{hMP(3kr^ zGkRG9U}FG7$^!s%AX-^rssons3`USy(HG1EYq`ZE7JQTHZj~Z2cQo#a#(m+4;di-M zh}&ba8`d2#^U~PyH8Q1X515h6Iab`&lE*Yfv+h{V6UpErzyLo!0C&71X#lPmk>sm| zZqey004|ew*5IpQf{DRPy2j=f1-;B&p)Vxd)d6f0ni$LgmUoAE&Bj`XnI$RL-e1C2 zHgi_rueI-9YiI1$t`%iSk_BBAx)lKfQk5x5H*40R%q5v)Jy}}w#Jbb1p0uUa3fptF zBtR{)fVS7%Z)Tkwofe7V)?Z|>TFI0AyU>rOoZoyUgZ0f_W%4M*dj9(#E|AsZHqk#b zfFW*C$$Vu7^BL+`39G82vZ{p^*+epkzx)Ql*M9f=Kd$}rpFhIv{>Oj(NPd^N3+O_o z<^4@JxUz@3tYv}eySV~gZ9|umy;+P>oxbv|=T%*wf+Eq8ACId#Nl@V2!-}gD&iAfp zCr7{1*>CX)DL0MWt$IOuS;;v!YZ)$AG=*M1KeBXoc<~I5)bLqrZbj{#&9;#|L*5*I zu+l%d%<7pe_lB$zc2=(U_~@K!h%u|x?21!lm4bCwU`A8ZuEHz=+ ztV&`Gv->0|f*u=P;^XnLW$EuB0dT%DkV^zwXt>pNXb3ia3W&w=;NYYjdGXc21f-wg z#i8NpgVd`M7YAeej`klPocd({!Ixft>#Ywy+Vk2QdtQF^nde@->+UCEDo4G zZZd=OJ|4Z0XbeO$9&Th|WLmNPO}Lr95Y`-aHZ!nX;BI}?6N!04^)5XXO90IEMdc=x zWnR{r^}%j6g|JR-1J@8`)s8PW-eT_y%S(!Tq`{Wi+=D+DJ76`TA>eTO>l{8uowx25 z3wNz1cy`IcU=UZQF9CRNeq?rzk3cUpIyE;kIg8`ibOm?$@xpATH5SGm^TG;VpFab` zOo(eSTQ`wTWodeBA+arbe8CphUV$VY&OTeou(^U>OTa)~I#@e(@b2l2#v%!TEd|8= zT69{FY`LkkmJ+8;$E;i7s#Q;nRmSa!ktyi-@T5gJDHx_*XES}QuQCx#Co#Sz{pR># zO*mP6unu5A^t_UpaCDtbuvlSP{xkQjWG0>a_Im^2>UFf}@lTiWM1^GVn9VNE zD8CC6`Gb`3>Z!td0NEBpE+frwu`0V;|BiaKUPb!-g)4e2dS0u(GlzyeJ6Yx%=SOIu^tn$m{bI!Z0+HS0=H zzL;3MzWIUOJG<62H@7wvn&Exp#g=HkRBw!_&-)sS0jzaV3kx;KkLrzhi7(`MQf zWhSTGsiX@GrciK+I(Trq3@Iz(;ImZsg4sYXZv*Q9&ZRw>Bqccmx*1M*PP<8J-2?l`kg=mg4tpaAsRUng91XaOg#w|zD`AUKXTa0@XX=CoM-fWV0f*HW^2EP&M zO*(mhm+Wtx#|&d9Sm9PGgE{`Js*hZ%rxlG9bca@R zl@agtGJ3hP2uEpYDV;s|vVh-$dt)j3)`GrHzw;JL;*}l176;4#o>;(o3D7mTJ2T6B zy}Sl`iM}&)!dgxeB zz{cN7qfkl?+Bv|wSd zIN<)-B>>o*W>4sa4~BTnEhkmi$$4(k%wcB(y(2R!Fgt76(8Yoru&UYpvUi-crz z&~#tVFzMtF^?B~mq|UIuI5D{QSpVn82e4onclC}yc<|>Z2fsMh`_`vl!uUS-*T22= z#;c@PUjEacA9~=y`?hZ1+`YD?wY_QQu1&XX?rQ7EZ{4=Odwok&Db?E9wDYdbxGP^w z=SwlDsR;Vk15wOcz?fpr%@G61=GG~Ztl;N)x_B5@?t-tB8KIIC zD9)_V>sQ9t*wW@N$lnp)h3s$2#rBsQQZj?N5j1B$^HwV-SVhu4gTYA;ABDK$ea$&Y z9&SR(8CW9WE^h#nDl34sR#{Gme|3%LkG0-a&cG^8b>@UG>Mp5zTKPgXREZQbdQ2MJ z#m)LUf4J5kc6x(#@V@S#(;alX0xnO;01yC4L_t*0WdXg=^ulS-cWP+`M_r1_XZS7XXh6=I?_+VmmH`8ntz0TXJwr*k zdR?+!g{)UJnR6G)L1sPFEDqR`fM!ojGpVm{JR6@!N{1^Z2lL2r(qu2n}jl5~^H#zV;GkK;Gvl_EZpoJU$ih->@VX@FDT*=vC-4Y z%wA>;V~uC=#c`o9@y|KPJPzxvb*&ph|?i;w>0u}7YM^p1P)*mmc(&D+-9wslQQ zM{eD1tuVXyJ+OV_rcP+hhSrvj#^&~h_U=McAq4>E8Y2x&(L!^yr9BBmF?w-iR&mdY zY-2!emr_d#&J8w@*5qq$jdXNGTU*0mDwPtc1m;Z6*<{oj`J0==d2^rGR8Tc-R#NRX zn7#~P-U-fRoEcSX1o2)kGdPiS#uE-^Fxgz#ZrbPtfWzP}9!V)z8Gkb6P3Hoch9Hi) zrZ9~^%K2m)n2Uh%T{z`R(KjI7p|#mZL}G?6u{Q0CX8aJ}q`aqu8F1F-{u+T|<%!t= zi#;uu28Fnv#;xAqYH4eQqdB`*dD)P|x2UvaL&LN4EUZW87g=KqOM2GT=)wXtHow61wE%c* zW@dbL7Mhrwo19;qT3CXn7m2%~nZ*^B<&01n3zi_QYI8(AXw0!?gRd*#?&bNjSClSs zNepD!tJAxBnO3+;m9vDYB@Me0%oQb7)79FTFyI-$_B3fd#;%V~sM;7(o^A$?~cTCR{v0Q%h&3myI7`?#y|}=(3_D*05ao zOP2I&WAhb@%dm-8`N*|NID)}ChK0nsExvH=N0YwS*zZCL?cef|0lat#c)JA6ox?v$ zc@M&xNw)-Ct+1;86XRcV@%*JTSH8LU-4Cow-y2EG5;NymI_=;}gR0Bl=-t`$4l{bt zTXvWAW;OF>r&!BIwdQ><@Wq6>VmLEwUf2z5Bck;^U}LPk8brLI6E?j zN1nq180Ja6eG^MPV+*H7=TDBzofw`yJ~VS|aO&v5@#5IvH148%l~1L( zbl)U|HK03$>wx8pGz@Y1qMATl9`?X99zbO#F_4clI6ty{act%C_?at{=dN;RE}R*d zKg**GWkXtvFmtCZc=3rB-hKc6zdZZkU!T46=|{Fd_RxzTzqfy21SI|frj~rIF-PH3 zp!YEN+WX1j9;IH3xaTtf%u*Qcm#GXN9XR^V-UH9>*>lhC-G6%Y-p8N)^ApcKvi$#XFeO{$Od9(p#I5OXkcoNH8?#Fah9B(C?|Us zU=!&nt8 zea{%yw}j6r;);M_Q2DHO^7Pj*kyjb;cxAlH{CWJO7xW7+{R&JEq|5J5*Ao{muUx)* z_UmuK-EV*X?fYN<{{3&ifBVa?U;q3wboG~CaJ+o|`o$k`L4fzA&x}v5@A%4(p#2~6 z5`P$678vPNwhK6e$7)|0kCClt>142K)uxx^Dv#255#g8G!tW66B zjA?J!!0;S&a%A?zFb%!O5o?^GX(HNauYMK5=6E$0L-S`RRxWd&PH5uHMZHHDBN@J& z6R>-ymarb2J2SL+Ze;laG`w`)TwEAjIL8BqWzZp$m~xVbW+)fBZ~V}}xXT9?Bsk;a#{7nT z#|9xa<6-EFll>naJoeHXuRr|sQ+MBY$L8BNY~Q*5!H4gB?5PKC-?{GYd$-d43ypU7?iS<%uNFs}6k z{|LGK|F_fke>uqt*LwU8x3A9S4mq3whuh%|c=h^V0N4|9akCDi+q1SC&9QFKHyHCr z)AgywM4`Q*rMuABoWspq`X;8J-tkFZ^iNJh15-0YGjouTSj_S892NC~wS!aBtbxfX z7S==4Q&3e5Gl^-T0?|xm1~BMLhIskR%;~d?US69z&%z&f{`<}gi_E|K^oP}^Dh;cv zHoF$c>HRMSdwQoQ-SS$Rhp4}sxEB`?XH-6yQPXUxdeR-0{GqoOw8&M0d}e(Eo8M6| zJYs8xHC(A7t&XT1?w(oXY&%_A-n+2@L3;$s4(eAM{LAYyqYjtAD&xbmfz!r#=)XUE zI6z3JZ&erzi6utOJZ8wLRN-&HT5y-QgvAXDiSb~LY(sc8h2hH#IXypFYJ|+;o8R*j zVQQ~l{{`Ir?$_VI-D|)9{fEE*1Hw&k_sUN{34JeI!xaENgS_4M(hE%MKq5mnzu_wb zx;WrXVg+n`68Tp)E)W%Z8MhoTXNhZ99d%Z?*sP*Sxao!~0IZdL%fq->oSU@JUh?U) z<16R5oN0XVf=ZtzPt5Ka2Wwab%!^ra&nWOU<#*U6uhAjNVDOTP49T z#m1E=PCmENHw(}jZMh&GGt5JUB`aH13e8f`TU9IVKR)>0-b0(V?TDr_^$pQbw%*qi z?zm&^x(9Y`didV=kDU6vkNQaK!;y%=N13~Qx(xarACUQj5I3Oy^7zSD-~aI8Cm!5( z=hn?z+ShL=ZP-}YyrpH^PB>kxi)+?4wzVf)TI0q3R${c|%uWm>jLjg3iMh=e@Z` z5+jytd^w#;%6z%i1|1cW*+cU&k#vE+T+vING%_A=7xazBY8lMx0aR`Ti6LeHb0#wn z{RMp+@>Js7m@m&kqGBXn+~L{nU+r+YYw8?zUR5vTU#&3gg1iBDu-@;Fx}`~$j}oWd##kg3 zwU+v0yfyci4#fkRd@5T^rt@(YNK60*dZC`N35x(@V3?(wKmV6^^T20 zSPV=~3{FiBPfm_ZO_|~7dD#!V70hp<|Rwd)gsfZBE}cK zy>|Ya@6TQR?#z|)&NL^8LFcaGUZWe=*FXOJ%}>9wh`Yc1{@w4tU;D>De)#7oiL z{-2=tBGtpuOkX1wZ8km==<;r{OzEJMu9XYrV&Vlu9LFZsR`w$0r^uK~qZDfKJdE$~ z!nyI&mvk{`*4u#^*^Y?fID2+mbh- zDfPOShBUzbzQ6C#V=w%zbN$*-JX)U%hqECU{&p9l!RG8ke|z?$Q>UQMPY!)?${1N_ z#G*~sD)jb3I0ND4-V=jtmrV>)TGqRtefs2!FFde&=Z4$b)~?TWug!F=Nq2UqIyy5@ zYa7s;=omxF!0{9S?3PN|gvy5k6tfMk29@3nvx^0*k=8ybRbm0yKyM;dM?1S2C-a+xcT5|g z<=o~>+5?xYws?(tUlnsE0K*moz&M&)!cN`^RshDm&UoBQ4mjmcrtz_XTbN_NYHdwb z&gP{?KmpjNlC9VZQ_iz&11ko*rMELgZLQSM1-7}7m=|IUiw`FHCVll$mp@qJ3#^8) z;BFhz2wLlmL2aMS5ev0W@2w8^YNw~B&UY*5%K$be5{Aq381$ip`p^a5Y36imE;0_s zyqU&WJXc?z3IyX`D3S`-CquWK8Xboiy1bS%%x0GO1k+ehH|n-r)Mok-ZLJZn`aUej42&@8AxU-1HEE&b|@))=JRD_c*(l4f4ovrg+9=W5NB%`5ur z=m56#$JRSvTE31Lap^t6H{~QdkUHtC)rSE@&xYsmy;{tS{ zZ+`v-`u3M!alHD=Pv89d^S8hK^4;&he*gF1AfoRtaA;wL zL({x}%&&$gN`aP0Pa21Y7thdh7tc^FvI=GEO{b|7$n47C{AsR+($zb?aB6byQd^ z`^6_7e09%zCy#t`tbgxGV_L8gi#`Uw+h@4p!#$rK={21(NNk+>{P=)M!s>bR<1g;} z(|udEZMkhzsjEA?W=*oQGY053x4`cvOU(&(y+AU++}a)~wS-`Q0btM<5NgPifZq1b zMyRO}H}*%#1P6t|yh{q`a^b8|FPk!?a+g42;$KSnV8GSnuDhYh#Z8+HxT>06QBv*f za&{HvIdjY9EYR)%J3&x(y~I&PR^~AS7{rx4EG%$F?Fze8I}U2U#Q=s0jwjrVVVGdr z32q3e0gF5tDadhkd?~ZTGdJQelAoE%3}#}mndD4`Mmz+G+f2qikyttZnIE9`eZ9eO z9Sig&g(+Q`k;!>jmbt$abM~zksp_NEEVyBk?^c{-`X(}A9C?-lH`(BqV!$(iL&gYU z7do5+giu`$xfC6GvS?vanZP{1Bsp1newKu(B~opKuU7ybN}`cORy||c-aAt-E0Vfiy{ksGDkI|o z_L^z^WzDBAYPoC`{W=7eI#cC>Krd6SnkXcg$M>~>+0yOHzBw)3u;y&GVn@pD-KvrmgiC0=2YS_ zASeK7HtSHqXLEO1cg*?|rP(+=Q304ptSXN|-*W#;7~H9O7H}&9cTbGZ93PuLI>Ou? zJJ8P>Hwti7kuI0yLi>6~U}rx$c53g*zV{D&b?*~T7T0tn3JrxdrFbD3$^^Y}k3Z?d zG1L@m+uFVJnTH>Jd(W$1e)<0KSr}YaTWg}FIaVx1z}jMSxYSbL-Wls!lWgydG`CWVW@<2* z4@23;5F8=b{&sXXAp8kx^AH{TVicYwixP%Q_FSprMJFt>*UcisLP z+Vu6-GJpZyTJI_xYdn91aK>BjgqMwF!$7ITqTTeGMz1T6(QM1`!NG_d%!aqdD~A$3 zJU0;a`6J$2jt`AMz%Yw%>f)37z2(K=$jPBmKAs#NfrP;#cw%LXjZI=4`^PIZFflzi zIm6;LchS;2SxOTRvu;?E@|t2aaipmdfFBrX1LuusS}{FBYfHjC!Xyz%Z`;X9NtTMGF)uTT10jsl{dC zuG!D|>$6{fYmQ7%`uc0u@|7#*$#QOym{gs(mYbE*6V%IK)(x?~LoAW!a(49h-;*ke zgE`o%PJa8{xo^J3@xpiCU;O?WgayfjF))1j+I5I=OO*ZLN7j`euhZiCbxE+g^3zYe z*NY?0lYaaOuGhj{J)|uAyOriueVxmf@f(`1_j~c{x{24lvVmS>yx>(!H%c>)`jT|y z;I_}>l?;~2SJwP2bL-bKAdAD-l-s2erw68%Wz$zjIKQ$iWVQ!OJT8|V^MXAtqnB}u z;|c2WF>`cy`pD4Kk)i3sgHwkFCcf$$JJ36-H1<_r1%Mg7`;HB~{pnW^z3|e*FYej% z{(Bv_Z%yaY;b=IJQN}ms^F+O_dbcCw3}x$6&6&j7Vth?u_bV^_ZU3ix-v8`_gC{;X zc=G+PPJD2{P$hjyxcTvclb?Kb>aznU_q_h$)6e|nslPn^$Yb|!+S1+D5pQmdG?yYR z&Cyo4-sUI+*l2>$5>h=Q>q{*G1~5-I;>sLA2n1^DOg9zl%`Q=DMt!44&0U~z^fUxF zd-FwqbBhlErsmHL)XgfDs^ffS>Fvxjj&eCC z_q5`OG^5u{U@ij~=;b|NMPj!AIFobcV6vM$IU13qs)|)TaRv`i*9YoD;)=n;B}s|2 zOSOXzG#0`T)0b>LjX832@R>G)Rc02BlA^@`R-3^NYS5to44W(EzW^{XSnd8A*&A`tLnWXpqB*ziwTA;)^~+_$42|c%V$WV z6HwpSBqR&{CNK;!n;FB@+tSPklk{w91GG`YDXBHq{TiR{vvXnvVKxOoD zGBCu6!Hi)!smqRMenES;Ed6SrsxuZU>z%n|cUibgNwYLx`Mm6TOF(}9>;*6t()Ysg zu&Vp4g5jkLms!gfuYkKNm#;zq?U`@BS-ET@*@f$6fycn@ zH^2V+?Qg%~2n^%M3xmhkf98B_&F_{kR`8kS*U*E;#xHa6;^L)C{O$BK@5++sYkJa_ zUP)~0gvGJ~SReVUPrX>%9|fP_4JbuKD7J3`?qe|+*UG)iz6^xRD%#$?1O=4V7S;E#DX0#b!l!2 ztHfY}?rmF|+q=?ccSaxQUQu;#!JEr_04)j&Cw-7$nCUBm-ORy9sxl$2J0kmApb#`D zn@rX+dcj?;?iBzxn2nt|v6;$tGk(sc;?yb@1K7OjlwKSR-~y#s(~zZxtdr}Mi~zL) zFrW_MV=KD5q#GsYlo`(6G`lM7T;{G0U~U1;8POHJu9P_QSq2=bJ{vTn7u*#9OOp*1 za3%nok95jdBnB`@$pGeWMKFP7S@hidB9NRv-FxA3wHr#%PULKjy~U_qP>Y3qqYaYg~|+I4j>C? z8KM>otNnc^cCwLWh^jo~OZE^h|HT)o8M~?%F6#h3bLAU|0Ss9HY|vK;2(cSn`wni^ zLL()8ck^rER@rb@W?JbxzJ_bm0DS4kAInnhEdgB!9F<72F5cPY94prMzy1Eh-~YkI zMFxp~`9-(ChVi|A9dE&~XZp&=(=6}TdPcY9CIgtH`FqP3mv1eB>%~gf%jlJoB<|Z~ zZ-&MA)S+nMZg~==EpwikYCm69@)j0vT>)dQAvu@BNvk#L4>LR?IyN|cl!h^kEA)l>n}&SJ8o@VAfmes-ew^CSJbzBoGYkipGlXrniib8}vFp~){@u8gUIja~{S8#}vRPG)8YEYe||OgPfu zXj)Y$(L4qh09-23fMNA^Bp7Z`pAEX|L+NJ#C-Lz>-$E#@+E11zG35NJ1xHY;N-_o? z@sS1ZYm8xtS1_Ek_4NbOx)N!;D@#gDqe_K2X76 z-3PN3RvJ+n6M@rJ(JOdXK6tu!bV~d&8Ddo&Wy#96Cuv&%%(5FUKWIoaEfOQ62 z0K9bhG5~Bruk7GjQmgE~)>36uReFZA4&d?z@VDO@QE1HvgN~Pf{0R~-3z~BI5LXc4 zh?@{VOXrAccr0p2ihjB?^y7U+a zhN=IWsx4-zULVtk`^FFTj+qP|kt(45Cx*bt{U--LI&k!fm;Uy`8}GdJ{)hMc>A_4> zQ#c-X#{-Zjs^ZTf7ZgqeL-7FU3;7d)U@Da9EWGgUD<2&>vah%IaNmUJX#d2KzVYK& zA%j@}01yC4L_t(T6RI!G#HrEAzKI$2rvq2m%j46FdtP~K$Bx@JZ0K0Oq0rh!`BrW1 znby{9p^)GND-f6Je~R^Ni?MX1WPzp72bx^ThO{b@nCC;%jX8tGuryJaA?ynCr z+ePtQARik_(3eBIY(|ZJStA!(^=Ho3DmhY_x>U{uoO5<`p@{^yns4+-M`$1uhE<8u zrjiLK1hjMdm4;qApGrD;N)nGI#48kwULN)U>f<~$?ojzz_=FHHGO~>!wSn#9Ty6lE ztBkZXE065;8q<)}krz6E6@#5-ze$fubkYG_$KrNWpf9iarp4^~&8%hkOv5`bmOe*$LKlYGhbxly`_p?3L{p=9I2sX7E(c$fUWZkToY`bD6S{kF653 zd0k0mh1i(|F~LGjy~~7dcI`C%|0MyieV(HXShUEV2yJOq%^9uu%UiYfMvrjncQG=F znwJb1%ir-Tv^E2z#z~XD3}DCtU_JQE+$DHiyf}Zsn!U_soj0M`wO56)1vypCpUz-C zRamDo0DSJd?}WjOVIr{#L389;956$dF$}~S68rmW8NEzjm3VdCBG6p`%!Nkfa%A%} z--y9_nEfVU1N}Ni{g~yH_{z2$r&aAQn70I}J(p!m?XP*)vZX#)2ciAEUL0(fj%xe< zE{o6Ww%7t-+|&Wg3^rPyj?J^E-N*0@)C)Y1OaY3}iJ|G9QS!~lh>fKD`whir{9RA|%&p+7q@cnP? z|BNH#Y|4!`t5fqdJ5^mz+w*PhDcIk(&h&;&rH<}~VoL&` zmEB)4!2mEY+}f6a8^(FKVQSG_2sbnaR9_2!%^DqovQdJ=J0JXV*8 zJGjpV?*vmWRosz?*MYvgmz>ME$VMvw7mDs;$wLwECI|az-aN)fXahg}$5}CTsq7RkFY;5oNLF`qhR#C{0%Qn{T-7 zlulwSWDQu7A-;Z{^QUxiY+2S4ZMFoQIi_9SV^(4YGwh|shYnyI?OxXG`Fv>(h}C8b zN*0wqXHaae3EgsRS*M!GHooXw)Cp(txHkf@;CY~OQZ=6!pwiqV)8>}POKbbP+*#UA z;);Z?fvx}VikLdITqWkO_JZxxq zX7iRiy}4MrtMtG#kEJ_`-cZ0D@YM#~HGY@F?{o%?qciNHY^-|M)_b?T^Z9$N8{7R& z(U(7cbM(UU;F)>O-!%W@OtW=wBaPn9~ylJBvg#;Dzo_wQ=8eOHGio4Ei z#+w1c6K(()^i>X+04(%X*;sY70jw&Qc%m>n>0-fM$h(^Ibr5yfXz)Z6j&QUFM`;^U z0btd?n)^-auGc6oQoFoH$19%rt3=7qDl{EQI?Rq&#$Z8S>+xqjwya8oec_ll5)XzV zK2^NS#+No|)zPra0I)B7t2eX?40iihDN-5$=4Kt-wF6eT&iw~)ceQI319-Lj4-8RS|d#r{^3b#Pd}$@D$kHy{pJ0L=7d4C82Ma0t>FtixEd z$Q4m*2Cym3D347@X|isAnY%c{5ou+D=XG{k(xY@YY(H<=Emn(i@|UF-qZAtPf2a_r zWOL4xh_jdZUOCC>R62bLT?%GKsMchmV2{PDr5=YWG0GAjE^pilfOXs|aLPhn-%4NY z?HITE(<_Ycg$uLi&dr=XYq@|B^y<=tuQNS5F96j`q@AWzT10POx@Uc60S@U1@Y> z2`}q$W5rPez~WrZRK#Vw{T;NmDYc)GaW9(=e#On=kx+&m`TjfGNvu5Vk8!B zjx3$!S;buMt3Q!HJUl(VuVsSryxI7gL+;!H3;-USS{@mlyJOd%e32j&%+|Z(K6l9H z@VjfhPN>e5!{_2uth%tXsjJY~(NGtv4dlZ+AG>qk=&_*-Gvnt@kDXl}TRA;`W@X~+ z>5=7yvD0Tqm(NV#KU@4ayK;7PVd?P6<4?cv+?GvUEu{?4?rmvLbaZE0JCZazp%CVr zEC3kXRUX%eBW(tkBE{w)!~ix$#*_yHakmY|XCmVu2CHU`2^x#5rZ1=-9qNpmiA(9w zaYrOt8;;hg(6rGWD`J>eC+M4Pa&u*{8E|&1Ks4CtB>E=nRBLD#12`UYLS%Ny__7Hm z^x`cbZo84mICHe4Od|T`efhkblCbhl2;T?}7$2ZMR?A(wxMGT}a07l8O8oXK22&mu z?+tUX+UR(dpi#RD5bE*xgGnWM)JefL-2-^Iy9CX{W8#Zo~qIF*eh z(vd*e;}5xUgaBZGSz^~z!h{!(QR)^1B&#;jHFz}%WkcXJ`D6ELsLo4KXf98x2soS4 zV$rM13|7yo05ITcVX*xsKSqyH8_CiG!yJ(oF@}!~3_>>ouzk;%iHoBob}@jZ99b|d z0Jb>b8|5d1ow|ROxG{ig$&s$SxgZU(tL^44+d5vImULxZ7W4{zK`$257d&J8dlMoG zX)FxZt+0U8?ru5r_C_c9Svq&+E?%(l1$yNJ)8{umuFhTgnmU8+5ot^Gm2V2b?9SK% zW@2#Vg$UDEekES8ITnsGjAfylT03zqu9}H1V#f0u=^xJ$SXO}nVz8bzC8kQcOO{L6 zD|dFyIP+<{g%tqnxrdbeKW8BMe~DZB8N9MsTixACsFsI(==HlS!^@i4&cb8jw_>nS z7OcvPncwpI_?iq?JqAF(!|Agu;E;prQ2*2%z94>|FApBybo;JA(CZI)+##1U;HdMt zh`w%ToySGoH5pv%g(LBJqF#R@;DDQfZOZy$#mEDD{`_hGm;H<5r)GzbPYs-$89F$0 z;@EiK=$WOFmBo>Tg}$k&p3#v{zdG>z%P(%dV_QdCuDO`x1S?hSo8Sa1mf7(t$PC7U z#{w2gKB%F|m2Gh38r@X7qW}zhN^xe@dy)anaOIl-aC!Pd1I3ncCYq>YfpekA>iQVG zrr#(L<_?jmI!e4UNw3nfXv>y^#<0JQIR^loNjYGDlL@2whN5hpxgV_daTR^T(bae_ zdtFZ^%W0@;}jeCvKUL2h=*;fN_4L95fMcwI!NLyFFsg#N)aqSX=V1m5?Cj&SX z^+XbWY4L$0qc-l zpaECWO-QVJ;;H~X+BXOp>;3^qtZ>!Pv_azGF+HUVM}41I@7Sex>5>q%hT%C~_SmwX zDka%cRr_ynNLl7VS+;MLR_wA+M`&cBufZe}z#y3cGqnccm~%KGWl1Y$*`3 zdsdyGb}!4SdKYKv5*^Jmj9&i0(`U|DzNvoAVg0_kLt5bFNl7c}jD!mMvsqtwp-Aw!Aq1?3T(d*~c}b0;;K*DShstZga;fCo*wRRNu$7 zw|cIO9+&rDOe8PL5Dq=Ud=oKT@tWnxuwrDHsphEZo^k4!adKkTF0L6hMp;jbV4_5DNdAD+bO^N&3J=-v14Xzwnzw#1>9mVin= z3N|-OoeXAhQSRdUC2l#HRrN(pO_ZWsEP4UR#zrRu;|uiiF_&>cu)pybaTg4( zkJJFSTxi7O7TC+y$7=8vMw?8P&68LL1YDAnFDb6Nn*48~FKa>W4Vfxh5wE*}Sm>*HS7 zUjP_ZnA=JE6};6(vQfxHd%&SpfNm&Og9`|J41fJK2;gH-X_M;t9E{VH zLvOu%_xCW8usHu&0?T&F-Uz*VqL%ex3d5i;959EYS?r1B zCc)U`uAWwHEpV!AlWAdaWkS}Rox%1>Bt2)UYMzvtsBDChHGJxws;Zb>;mu7W9 zIU@`JyWwUy!Y15M;<&l(sy!Z?8{R}J~{kl&*bpL$~^ub zIC=W??#G{c`K@=~+52g}tHT%Zx`Ixw@c?ll*x%L8x>}C|Yhak7&}t_b74~;2rC>bne)>wtG#}hP91rIx`&|^{uTzp0>-WRWgen7*-4psbNH6t^>{&;Y3|J zfFW=z)96Y!I5Ul8a2dCt5%q;u+rT&ps&N#W?~SBtVwt*BgEyJ;usP;1wd!%Ey zmn>;Rg989A6etDSu)nHW*OZ$9oKpGEvA8P~uBngIanKm_t&gmRy$(lfAdonofd{4e z4FEihFT@GejXCwQ4X#Y44$hmzV+z%%M82@#&!$>s`K1fAjF(^^9Elr(p(h5%VWXW~ z^-HZK6`pY~7|boMbO4L%l_)gm3p7R&zCf!0#oHa&~>Vz8%4kvx}DH_kQJ*sR?Fiz`HWeYs?Od|acs}9tv1k!hZEk4*DrxgG*gBim* z7bQfj@8HS<1O_@^C1@=ERn}D{kEf4eYxiM%eMR5Nl@(}W+0eN8)5*_RwS|b~$JArd zmYrZ}SaB0o4b+!+%_|F;IBAQeU&Pq?ZAo*pL>FYSfGZXHxj3on;_SH#GxXz-rt$xf z%3>j5?I?}bUJ~dsYxSEtfF;RU2e1xZi*qfHn>58kpdmS9A#v3+@xNcJs>e`fsw%ptH$P2r^ z>i_ECz`;-UfB4o%ukU_nS4&&AyDQVy8t?2(w6#TB+he7cdJaT$2P>ZNqh=}?!;9c? zRX?mivDps*GZ!!Q1mLWbdSj_xR~+U|H+dSH zgW#?*!Q`01yiC@s>Vo{>F6av>drA>wV3Gy&n#lA})sO;kGUbgY-1YTN$Ot>vuMUP* z1;Su(Eu<=sYk}cZ&XuJMYM0tbrkBlS9CXB2$T+#hG(=M$6lj^jyce#lxrZ@q^uRLh zFZayio$LrXZzt~xtNbj=f94Ss_!#&w;b3jn+Qt9W2AUKx+!U20q$sHE#!#yq#glE^dX zUg?R@eB^~QP{Z+RqZK8$eYW(ZtWtNR*o=GiyNsIPp%F{4+5%t})3*#@$=Is&zCvFe zz|V(+=S6$|l*Q2+%+O-RLSG3o%NPcWghrMZx7q6o zPt5Pd5$PMnhmAaBCCfIgMLKu&XUTcX+EPuVZ}iHCA75T3;ae+>XN<;i7ynxhSa!k1JK#@V4zA>!nSW9B-Y(mc+LkWuh7X3KuWVQ8L;EK`*#Fh5tX$ zwUjX{P_G&?wKOunsJBgJ$pf_Ug3DTSH)}PK9lgR%ouJ&~LYiIhkr%>d9n!Mqr-*+Q z+p0TPHm?R~N2fqg5i=D6YY+C1Ltpg~ZV&g3e{$sbs~>;1_xP#9L!(Cq#*Pgck32Ry zacXjAaAxj`{G__*yV|O-4PGutM>$=zQ$s_ zy}N1chWxsXg|6;gTYIX#JKD7_v2I)AeUIMu{+DmQ{ND4=?0M|z7aw`#(OvX_wrERB zJy#P+l@ZXwC9 zkO|;AxMYyEwKWV!3$NLj_qVh~0pLiy)<9#@*^u+$F{M%f0M6y=ATU@=sw|3mAH;pK z7{FXO1o}oIt_aW-u7QG~)qzkgyr$thRq-*qaBkwkI0t}nvxtZz8Gxd| zl7|CAJRJc(6*iikt`Vaq$6Q;k8;;a~xV|vZTf+_*$6$1|ab7)M-9;%{co^kjdH#(z zeWfF`9(mTfL)UOBH809#NIG$w;1UC zUozOlu$8|02C&RX5CF?Yubq@uA8gW*qOYc_lWb?aPUQ@SB@2mpQ(54oyKUpWR#uq7 zw6|IbV+$tbIzWFwMRkx3uDZL`@3m8zUi=1mReE+eh-;d;Wrm9V>syl4s$Se!LetiP zk|uZcudGK1I8bl7D6uq=wx(5AhVGfWdPLzyF?`E4(Cqp1GxVw0@1A4&PMZJ6&~vHS z$Z~qr@Z17quDO1lRigs1R4ziIFM&rjBPF+ad-n6IYKO%YwY` z@FY-rba0%H5PRH10}~8j=*Ymx!QR1l_U?V+rI%j&=!1iOJ%?~DJ~n=AeERsr%&Ez# z-szbm1AWiD@^aUPb?dimN@POq-Gw{vXy37|dB@hmw#`jjw-xTXr}NS0?tbX$J0AMW z?gyX#Q#>1wq#}TBozKO%b%%Vo2>=J8p&E~)R_*?R!Hy7#F&vD0!b#ZEWOHk#xh>V+ zm22-vx3(o)JELt~v5t+&+jbW2{L^ha?_0lVYs-#Z-P?DzQ`_feia8tQyeiWQNBB9T z9+&$%@rb~z2ke21Ew+XVB_Fs8`oaenN&(4@%H@3&VOC*e$#ce$M*_2VHX0GyURAv$YdpTy zzJM`nfgLJO38a|~VR||cjtdK{xnDHafeNdO9C%;OBLjok8OuZmh$@u4e*k@< zTJI{U`qfjQWv%?KQO=~7A>sTj7P8)CDuWJVd%tJ_u-s+T6Zac+O2(G3DILI4NleEZ z09ZoM_CT}_U@bFiR^J2Wq9ZoJlG_Y1FL9K>DeFd7n4|!Se5d`Jd)SlvA4d5@AjmU*WDL=T7}%)ZI+zD?rs* zYq@EWmP<9yNxwHro3aFxbuX){R%`Q10)KeT`UK+lQE$>S3fCnm-Z^!GjY>YlqEx_{I5 zjm7qSp*ecnmX;mc3!67(H?2)Un>RFU+1R*!SKDn{^XWpkb7LVA4+g>>chKt!ctBsS z`h|Q!k3ZzC^*CzWb-=L0?^X%Y_|xq2)_WMhna28tLM&g3wX~;OJ5r_Ac&RPY+8J+K zA8+4~=vWtry4NPwZ_I4CE!*B1$9c6MV)2XBSyB^H!Kp9|B>S4O4iblsD*>FMnTABiSj^-1uLga?VMn;WHmVAf z%mitp2_>FO%DAYODP0RkE>jL;i5f0g;;mnN9kRkrL5h&4-882m?NRMVe5%7&d2hP{ zy-LQwiKL76gJXs$_#COFtzy6xMAZ6Q(PnU<7668faSIXJWnibvv2@whrsOg%I#O8m z1&GSD)s5=_nhaqy{eTr#qDVE5HT3vaK^&R}P?_{9wdz)Jx5f}d-zp8ge{=>`adQvu zoOO#%U$&SQ21~&CCY_>%%J!(W-ZQIAUkOTA)-37aXiF5@QkA6VMeB2ms{$D4)jBrM z+s8QwB*dFmN3RKB76Eu^iKGEZr|*c3MtBULugc~M7%wm5^&weUcx+i%@GP-w=F?5U ztQQpN=+z_S`qc@q<&*PQ8#Xnh`f}@IGvo{E*58g{dtBO%Uiqf_WrxmStD85otgB8! zw7252%#g6OqqCY(1YF#U^rmLFk4|}@Zo+6GGlSzRR3S!`QWvWK046T^V&OaJ@V8O zkN)Mc$DVoonK$=5`26D^9NG8P@TmhmM<0LbncH@(@7&n7d0TgTcT>lj)Y^>=pzp>F zMBk0wiH&PBx2?-=+?3n2r4h))pUYqbe_@^8fY%@LdqN%u%&yPj3b;IeS0L=G^VT^P zk5zQq?eODor4tLTZ;7OR>3pQA7;Wvyv~{MN+Y-gL7}VSuDRtDhbcR~H!foC4q>g&v zlXo#W@(k`4@?jP?l{6Yg=Dca6w}y`i!~y4g(Mtes3l~~~0B}R0V%`xCDv+tbCVgv} z7I45|Ie-eaH2Ydx{2(p>436U1-WG&fOP=O}tF77F-s0$!CHz)M;-A5b)!`6ILK%7<7Kvz@gipMITE`S zipIET*hyjetd|>-WU^jqnVHQQ^rdbgW}!3JK}Di9>glTZSS4f`X<5-aeN9$aSyI!O z5`F!_I>?;SOY+u(jx{*q-&znZ``PSqx#);Xp(L3+sk&})F%pY|&o~;_0m?md+7}!! z=T%8VN?!0q0C(4N2LAv7!w|q+0bn~PEDqR`)l4T96j@`7i;$38UY4w(`Qln1j|G|CBwNu{ zDMg=w(Y~}K@5R!Qtb^Geul`>e;)*TpGuHiV;jV7z^)Dq~gc96l=LfYR8C8E_%h$9g zYU%Xlm8h*A000mGNklsKK<7D*ZPL`HJOgCcxQKF!@3l7+q(3+u6S2Rth+P5W=(SA#@wdO z&BanA67z=YT`;?_yzU_N$A_@+hupz>FX#&@yYW}D-U&H_wY9!mJ(Mh6hd;{6oIl?Z zFSN#5yVBfGqtuR@(L!52sU-+rwseF`ZB$UC`Ybx&Ut3#Zg?y-3s0VtR8iNhoQ8MdO z7S;p$W>oT#WdHJrKxKaeJYoUfH{IYgyIdKGNHUxt(-2H%eA2~&*bH`-f~AtL2w&Um zZf*0mHV2A%+Jyy)JK6*7ZT>c#FS%NZZY3`S02iBFATGFDXmI6o&c;k#E>+Wzb#n!< z8mjLL59;Hsj;-UN6PqAg*r4^F12F9!?U<#7vGzohSG_eSd=7Fgz>ZR z_(h(Q!~o|0)lyr<)k@^}Qvh%cTW#2Gu%Bo8$_}*TNb3P%7PzZYvGmCbB=)ADU@%S- zg6RcKe$(ryU0wi~qTF1~Wwh{gsp-fL+F$3CE7;%q)erz2O}QyGEa9bqw#uWX#Cx;l zq}~)-_L!N$FwGo-uJ!)$h5+V-EPeOaJ__l717JIkDK6bRpr>V(Rk=@06-pX?#TJuB zDw3l0qb&L+W-L+Yp-MLB2rOG+2CBlIg>Xzhfg+B0p0a6N-o-|OWC->bJ%)k&=L7?N@$U7%^t__XNM7>EciPB0Wjz$8Dw1n{i9Ccgro zmwWX_AJQ0v?JwSf-^C*Q$B6&x-`o4y=Z6oy^6p!E-hA!7y`Mbu@=H%X|I`!DJ$dg# z_iWv@<(`M`+_-(+rk!hd+`D`Zx>?LXBA90^&$rGlv0x-`!D3&}e zFu2VD?t_6vYm2wJccopQ%wo@ms~!x(s2p)rUMepkh=L0@jI#WR=q6;vx}XAH*#o{OI)$fa4J zFQZqDDI~Tr@bC+mZLaAp*!wboiNP^Wu(gRr(IG z4rzNi6Z_pN7}m42IO*DKZz&6XKUhaEug$nL=V6r#lLj?5+{mR_0IZu%p)cQS&{x~* zwXnP@dUfdP;}ju#$XYNgpGq)n@x&T{R}^&5&R;lZ>ViEfTF)rf1H5#dp(S$LznXjt z`zR_I2Pro#7aTW=Hy93hWrefK%e6_SJGbPTRSmOO1@Qd2^PsN|U`DT@%6w+McB{-_ zEf-AB2CvxbH68FoWxRl@P-v-LoSzTf^jAg_4(?3V6ZFTQh{jL6bBDfPh*(6^=F%Qw_EW>;rYtF!4Et^-!KwT|~?X=_%Q zU^rkfSZxf`_#^3xrTRiU*u3T%{4|51;42h7JOPP3F~}OLCHh7k@whjU@FkKS9%~4S zvxim_56eoaJ#PvFWXsuP271k!VEzRNy=;G@F1Eh{U@k*4e6ZnwjYe7uehzMl1)oZ0 zS~*}lfJIW{6s)IIXYPch_Im$V=lg>*u*w&qjvRPpo|xqJ*ARD&GG7PJO;YqV=0I?L z6kY`Mb$b86!Dom7Y~T0Q%aAM%*aBnAc}p3w{up~uT5_Z%=4`1LrlR4>sl(+))7p+T zO9!xC9Bcuwu)#7;xNJig7OVi~Fs$i%tq%Bq0 z%FJg7pVks%mrAXQBrFAB9L4@JdY3O<*2QN|U%tX?cF8O}3s0XvdjXm|a~{$=U0dp# zr>wzeYfZUiv1tK@(-!FsP|Y8(N~7`{P37Wv53W9;9#9Z01b{W21cOI-${y*|C_M}h zwnU69!oB7mDWKl0SWJMX=H+g+RQ|MT5XKL6;` zFFuaN_FbFS-PW;oeKXX(rlGSd+uoIK>rAzGq*~h&E$s=cJGzpc-6;r*?ygK%XIf1F zj1`)rjfHSBN3-gJ3AYabuJ`dSuUm~thj?T0lQAwFth(ift5g z25SM}Tp^e#2GfN=vdNdq`?L7~pQM%-8i1*N6&2O^v&#OGR8B8XQ{aA2>{;P`A-+)H zS%jch((L4HX8(G)$d#1vic4c)L{;n*2yDtzHg&#ebaIA;RrNo0`9@c<;B0C3G?%<^ zz1(wyW&$Q^vT0{igBK1M$~QP5;%>T*(VNN`lND0DiED1_!V}9bFHiPm`m$&nIP1+d zawBWiRx{(GfOg!Oh}MC=kjmRC=T6h4CIw*X&XF;2D{B_-4dY=(@Hy_3na3<6Zme2x zFoU^@mvgd=ptNEh)lJ3RylcxC=4c1Uv31;<-j@@;TzDyvQt`4Z9#F{1Q=HWWQ9+S+ zl>+c;dW>qp0RVF*Hh1Hap-h~cP4f*se`NID>iR#>Etaic9l%xTYcEN%TuhJB$tHsgSZA!1}(gxM4D;T7=dTg|>&F zE&kg=DGRQQ9c4w|n*f+?tF{kH-WT*;x_r@Oa777?g}!<>De0g*T%whvwSl1M3N8mewNnx@RV+9()$)0=E{O`TD8=n2-EK1~Ajt zVDQR0`%bx?zIsxQ0dFqk-cJErhsdM|T+jiZv_1-`2 zyyt-(JMP@P>z>=U+`g`RZA)i&zH3bZt{3!$dOM8-Twk4sK z_H<(*lFkJ(4ZjX$!!sLLO7`=dUluUkQv#S>VmC^P6*v1kfJ2V%~6E|_nL0=@Zm zQe$f**9;zqKwL&|vWZ0Piwo+c31FC7Dy>l|MF22NFg}Kokvzo%70A^!y10yhnYT}+mR*m>-+{yct%oqjtg_e#40Vz$1wwl_l9|rF=er(+`?K#R@I6t;-m^9RX&7;FqjgX zqviZ8vaJyZHLV0|lU{Dw!HqRkWs!@a&Ov^muhI5P^`pk)-TqZP6<7^E0yt}Vj3At= zkx`{6s{jlKyqW{f?$ByaxCWv{;8yNl$qdGk=_|$;=w0O`-EwMd46^uOOB7lMaCx5K z(5R&}NPmT@F>QM-lO_3Cg3^Ww9v+4m#zsjJ`(P8g^7?vxu%$U=)tSLJ0Wb(>i9B24 zy^@?vZg_raVqqD_u{kSg>>I#UEjYVj-7)KsyAgopGe~)o8G|+KuiXLb&9HP&DalR7 zm(uE~Bq98Nyu8p^t8ekzWnt2kjD)I;AzO^Qe(7LoNMe~MQPHzg^SHYAUAgi#3(#fp zP5qI=V6xFVeJeYl+1skfgoMDpmTHGof`K%uE#wS87(I zdtVt(B2CfRk?TGiH@PFajMS9DByz7) z(b>U|NPD2eB4qW)Eub%quV8Jf%ij!vzRn;`uEj}6SnVcYSWFRUWe*1c2Lo+hUz^+0 zq7)IS%&<38_1@IvlCdP9uRS@hTE&!_z{bFU&Mv9m0=nR;7}d#Q?@*!Cig^-WcXa91LL9 z3M+vG4L{er000mGNklw)pzN%ig zvqrb0x=HcA8vy>|>{-UJA~}HQWF=6EbDE!O^Pc`agSGK(t;w#8Eo<_hX{`cyL)unZ zCo8kDD#kN>UkJJaz%qiW-3gZatXd3fbB`Io=SD~XFiVT!t@d{-dMlE`D#FeZz06$+ zVC|dP0^kjLRrHmtoL{shwOG5=T~T_pVTjedGr8D`;cYgpx2pr@xI)F7S0Fl@kQz(E zw!)Ia!p=Z^W_&I=k(!%Kr=)O`&)|rkLVP#z@D0n$3(4K7Om-@hX7TgzWBGyNMMWTb zdUhiUtqC4zuU(W7!sh;?@^jNBdxO3*z^-ldE#Dz&HZ_`<8<|PcOY=^)aNhmnQ(EpDZH&H_B-Ywo2D1z-Yg@%_ZH>->ap{b42hg{7e0p^y2Ku&8?W}N7c6SR&jM#Iyb<~S7Xrytx0i$TmNJg3WdX?Ees+l9` zs<3Hpt;J3L5j#Jif;}Sdk_wVFa=S->mV(KmkQX!sfSJ4OhIv1j>wv*sh?{bFT=ifu z`(QkeQ%o3CQ<~N0lz0_uy`{a@W>sEMvA+SMpnemJqS;~#8E?QQN{_^juTBgSZej;4 zQmOTzFV0}WCYWQ++`vShv5P*GaJ|57b6Yi}ZJNPXDik45<^eY-O{~ny070Xrw%J<8 z!Dq8wNC`4GvY*CHn^TXQe2K$VUigIZLi*O75XYPwHBtdg<-D9o)o7?{6w`ls$RIml z25@6b6$4mR4d`3fw4=81PC?&0s~UDl-SOqQa}XH3u{eEBY7>|Rs##y1J@@6AvlV$y zTLCPM_4k_N&267I_oC_WSC6D{`8& z{Mfjp*j(=okBSrk84xvRyYTu-ECC)3HP%p5eG zO+hocv=nZNAEhOg+35<_X89zJxWjZd!|26AN{e&xx*{k&lVlc>)KM0kzgEFu?F=Y( zz)W9Rv&3dscDGhLdnd=!8@?PGPm&Z2%dKct98u@|G6o*hKQRd&Q{}Pvcc>k#x%Gk% zNB(~y|98kp4BqqBfg-$PEw7(&UVF{7>32!ul4WK*k(ijBolGW1rY3&*>lY6m+JFDU zhwgpwuDcHHI&fDvh|Ah{pmXou=)L#uz3X7CyURnd<+wc(2XrmqE(16iY4?Xnfsh08 z`)z@ModMk0;R1v0&StCKV0JdQyIMe2(GH1*G4Qw>o1?`Su(@2V?IJCfw&F~+7I(8R zZ1P9U-VoevE8xmD7e^<>pW%I5A(y|^9cW|8hQ{0?gW79|LBE_o%=S)c8DZDcVx5?Jsq7;zsz1bA6FWX0B&P%kz=g z1as+;(uC5_BY|n&19g`aIb3)kj`&z;Yuu@00Gr!uMEaGEyIl%H%<0gSoF%r0b=&|% z&4RAOLpb2f05+PaEwj~W#KjE{4Rm_jJb`vOF=<1ht24OU?x2BDv}+(fHwJKX+s+nK zl>%dN(Zc}72X1Jl){LYpq+~E{o@pr0RGhDH zy<2mhTUFO6o23;+l=C#uE zT&?~Z6dg~+1gg1-ObWt68;}^C!>2Seo|-w{cjm44{_y0pKRR;X{<{zFhUJC!?2F^L z|6s@Ny^)?>{sRYN`}PL9yIftJ&JF-LY7GQU;fMt==AnMxfXNp$`-66%)aSE8p^!Zm zbH`(jP_P}qBQxYMnw-tB!X~R8=xrA5326?UuPqp|`1~e^lg8=LG#ifr2A82L-7N>1 zv9|k3HeWN2P9MqTZ4sNzM(tD|1~50QAfKlU(No$Mf~=gq>`{Ah@Dw1INOflViWU$Q zDOE-eXr=&hmM^v)95;#=rED)OK>apiaJ3Q@5bjnx5122Eln}I~ zQHnceSe%X2JKEhO08G`!JT(PKC zhff%>99~u%eNe|~^-+?(Aao4?T&t_rqIYNgo!a#sTC5UTdwY-f_I-1{7a|6q-y+^s zJ#!w?CLUL~;fm0-7RH-)j@8B*#9-}g;8Uk7Zt@w4WZeAX^cgAGank8?{Kjy7AjJSy z=qnbG_QGG%R{~fGmVQqw3~i4p2oTcx;H_V9THC?Y-*{=s=0Wi`l&(_BTiQxr?S62@ zC4#m+h19lZD!5w#TCLfYh8stI-L3D0FCF*|D=BH4LkRLYw|%!FdwE)JT{C(mfTa^< z@t3=#@3sKeFj%?6W*GDRa|~b{XA5~=v!oT)FgU5*8?I;sU6IkYX{fWhTdYN|>;$rT zf@D$xSPi77HQUk&j=eL9dCk(E;h6d0)Fj(t4p7T5HI7fzy9fe-+k?muRrtL<3}Di*x4Q2y*I|{ z*&PwbP*+c&tJ}M0Z)jJK2k7nWuy=Jjpjgy`^{yT_U@Uq#m;%9euV2V(@p#(7UD)4_ zs3YhzfxgYAI=#8UNG*T$Bs0E^xDx;a1v7axoJ7JPBYiW8bY4$YnbYV@l7hHI~$0K@D zike_i7EEz$Cay?t=Jr@LF3F~1o_}`+u%ItBz#;&fsv!=)b0QUYz~Es-+(MGY(|qBK z>1s^0jbs4B0h0-K)mt33W?Qw%TE%s}>LjHN2h6+0%48%l6gWZep2ZBFvP zk?bo;o60I^39j;_B(&zIOkV}MLfV^K0nE_d7Qm$b{u2WOn;fvZ->D_Xw!6X#z1Rc` z0BhsV6_q(#lfO2Sp9RCTYc25PC4&5smc&}lX?Ll&)-i8|t~Ri|DZ;Etr{XhPuLHDi zX=~c^R-#wXS0-6N)A;3xFS!xvc;I1 zOQoIlw9$S`H^sF<0=Yr1T`TEhV&9s>)Le^InaC|j%zMeW z$>%vyTpDrh=OAB#f2w}?^Z_P|1&9}^avsL_rQf}D_Yd#B_mM;QKY9;v3;IIcyTUkj zbOpM0hr9Pgx_UxbcXoNeVA$Vy%m(Q8bi2B{?a-b*?!9|GJw1-jPHQOK9t@d%0SkcY z^MS$UV9-VmIP47hEU>vEu&hj4HHuI(tgzG5Ox9T$%4?=-RF4tg-L00Ic1MHLXN0(4 zm4`NZ0b`soFmxTBR*2VbU$f|{(W2yD`Hbq+1PUh0=7=JhnZC_|Pn%t* z9BB%MnqWx<1t~FV!wvfySz-^E%a$5N6k5*=#u00{VVkwC9TyPh8j?U1b-=J2lq(D? zcZkHh((%LvF-wtlj%gR!UMr&0bwXlaS&Vi7eVq=q{8#jdma^Dt*zauFnVchuv4e4EaF}tR%ad5Zm%H*TWW+jznU|%>Qn~T@E8U$ zsjyK_M&j;QG$fd-ip5Do+YU%)s%mQ6$=S{@#Ef21Xrzd;t^{|bB!HR0n*a>@Zdl>- zeH>wy4VJg&TW!U#JpXU#D^0LArK=LR+evO1Gk`02EE!y3g4qE}Y4^Q=UZ(E`)iyW5 z&?Z1>6N@S}L}{OA21j@gcx%s!@5{U1whT!@+IG;DKhmD8c#~SkS@Ax%Zsk_Qy0z$) zA$0Yg147Ds;17-7!+=o#kkskHA^J47bHH17f4N;3l};r#;?HXG)J7C~G7bAnyT82k zyY238#ZK_|iIFU0(VOp|`5pi($y{0={C(|Bwzl~koTr zr?tNoS1J|PD-}s(vZh%|ZBa5gG(9CZm6^UGNi9{eHLmWgE8^=OINh0II<;6xEfkZb zJg=wIQ}6uw?IRE0weN7x;Ul{b-rc2eww?!lEp|BNR7AS>+Axk)7i-hc< zfYs}_nk{5}fnIKg07nA<%E`>!BE#b`S*`kZtHEk-#y70ZZEy$L2(;d2L0N*aJ7{qF zl?EDaUn}^{;yzYV0IE8}+nfYZ(U6h@p&Uk5>s}f}C#+4j zn8;zNHMiG*PvBfA+!%`+Vo@VaUl8+)!a=>DDT^wAqY;|805|OOHLy1&E(#wk^Q2Ut zs+9S1#F)yB98D~z2>>xixMG7=fz8%F5}PB#8_rc5Z5|vv zJ}{u|7*(rHX|%Vk{pbpK}w@w>0olAHEHM>HNSTh^t^& z70y&-jcMY~qrDSjeUsz;QxgneFkpCQTEPnFWPWZaIf>&ZC%^2S930O~ z|L=$Yef0UK4jt*0l!Px!-(eB;;j&4t+!wvLy^!Ra%cKRY6UfADA%mXj$_gkVd zYge}m^aX>vI!vAMw(fX)XVlc)X@OvZY5uP8!L%jpYf%^+v_bx$-RU-&oh_|4gU(dn z)K=-46_%?DwO2)R@c7xW6>lO5slYbb%WDV`r zzJNX+(~%;2i26#Z0*s?!qte^i-^jsdu#jtcxm6^W2`O34T=gq12tUKvxZ}(c9$|NPO z0OpZ}+~^7n7KXTyaVrw7$q@73QJHw5Og*A8z`W}$CjpBcU#j%QCk7+X>*u2pa>93iTdD=zd7;I*T+9Oe)1CyFDu45 zY?~UrQQD-UT{i3Z`0L{zef7;hzWD0HFTchD;vSaT5r^7}VI^~abHDlwtPY@yuS~<+X7fCoROX$ch=r#+xu4l zSh>Tdrd?uug>r{}0C?-eiM4|YhSkLYq(lWaCu9lx`@I0J@Nf(gM(=bgIW;$nBcx@p zmap65mhUVdqJ6CPq;%NgsCB)w8uT)^M7q;<{Y*65z|<2|N-%gvb`jZ(XU4XYh9;BI zv<%)_hy`ii-sTT&PJV9k+J)DQWE??UDLx~wZ{(*ZWBXt&Bp1nIZmyIAdNYgpGsEZq zb>@rz{`fC{{NTMOfBwuH@BjXH@4fz$qmMlH#6A1=2lws^?A_zvz02F(LpC=OcSJj! z9bLZ8ZhyR!>@NTujeA2Odmvy1fIB)JU0oJfULJM}`gTOxpm?}78Zt+Mrf|p<@V9t9 z)TTHbvV?-|LB9p^`6w>!@U&VShGq*Ka4je1a5siFGY|p>8?E*h92vk)cPsN%746Y# z0qhI5aaRqJ-{_`x9L+qRj)K)nJh_o;d1*6J1T$f0DdkGc<72t~dTQ%0wt=1!&^fx4_>0q?yPl)DTDwpo}V1B z@V=n0sjbS~R&Q#hSUTr$@wTp9gLZVm;iwe=)`{@@hW%v#x3tufl%CJ^JWNp32g4Ir zDI*1KB&(~@=`%RIdfN0=fGUcBMWGSzBJ-!p)1?^3!V1^mJiB2$p*jPY0vp^_g9X-# z5k?{lx~+y2o<+qGO&hG&?SQ~wDmM}i7|;cS>zZ(WXPv$V;w3n{Ep zW5OKrC5iRc4p|C%fm=b`Z5w(htur(u1+{H7wBDNO3+{rxS}}?F`0E3D%4V{{C4k8t ziu_)NN=3G_q{2*kP7B})X*sF@Tcxj-;@Y(ax3d+Ll5DF;bi$hy0oy4~bgC!;VyR~) z`X|P56dDtnkkYbQHV{=OXKXa_mLyg@@s@31nRvCu1kY}JwIP35Nn-hFNa#v~%dBPG zCg-ydpv&k@FXU$O$xl!I^Vsix`Rq$SdGcpZ{O~6a-~YtDKYaH7dmcNm?_julx3{y~ z-m}{UQ!6@3x~OKi!x`&ziGjOra2MVeVgN&ts0DZ4z1!B^-M(j+4cgsh+1rDo4Gazk z+Cu);NZ1SjLm+W9VxbYd0>ECc+2b+6)B>w*cA7BA-;dOJ-(~=PA#fJ}hAg&bo5P5E zvb%-TpMLEh%!f@cmBiN;oZbhyqpmst&kTRF{hR3J&5Ne6Yu> zM4ox3f*d#~$1TWVw~*S2iD%^1;ZgpeArfn&0Y`Bo>~Ckx$ob4+Sm6i-oJH1^Uc{D_ zY9dgOVaeXqNu4I^8J74F-AB+@iH(bTAqBvWCaySwe+4o*^~u;;1%Tmt1@_eKG4kFs z@B6wubxuNly)p)v7)-g-yzdLXQvOt1V@peYb2H5}Y%|qDOja0Nh<|0a)ck&=1LnK& zLkPoywb}{6ykDzy$P)AgdU*?2V2!(gBHLL{~Mc)SgqPM_l+Q6(`WeDiKD2b{le z5~6G$&E8jvZLu8WAghuf4n#A6CD+LWtK6j{zvs>LmG`d*p>Nw)MC;wPTj2i}v$r+^ zJhyptai6vkpsGqY{Jj9yrh2J}{Xb!>HPhOst)Ra2zJk7kXGe#LpyOk`V{`;&crA5) zbmaUfpgV{~1%TDYnTq|Db0f6$m31s)7j}-(o5-XfEF^#{P%7!75_ChG$+{7h-71YQ zOl+?FQKX`mq~&hk_yp8DhL2)GCGogMqe2^J`1*sTmT^x=0B;UZZx3K?=CjrZ%a2av zmu-`nRuM3eo8nB|4d~A2p;W1mE*CS4#p&GKaAGXCTuha-Fuqf%>5o4D_=RIf?|bO3 zd+*-|-Fqva}fk5|e4~_GSnd6<-&Ms=&4D`bOg1ewE7Emna26Tf#M>y>A z1EQ2sW!|;RdDq>ZJ$r3?_t^IBwX^o`cI@f4#-rv~#6(f(5YZQkgxeXwey`c>ZiAf8 z7OPdy`K#QOmy3~FL0^hL8=!V8?61-8Y!(1E0*Y|D-axCm?<)rJ`i-LHq)z0}HrYW? z(bEb?d^O`cn)9k~(1LyUkDiAuO81vN%bw&%vS}m8Ue$Q`lD)!JU8ut zz}hBbjXIv8M${lxGk_a(HT8yCXd3{Z>F+-~FmP^gP^cg39UAHz9_||+h5ARvSXiGM z96mcRg!_Zg3~3Phgs8aXvS6wV<}@hLrbFf@vwMcVJaOiWcsbV*pEOsl4?^+XR+3Z7K`&3Y4nc zWvGn8+YOG74~&hmR2UBn1}hGjw5b4TY?J*JwZH6oW%iRaWH(cm=km7VTewU%ET3B+oQ(E+Hk#cpS5O;h`D|`Y%+Ns796%5uo z;H{x%?KZhKRZW&!Nt9~Ekz|Ikw7DCBWkFm%va+ROt~_5@Dh*DIy#2R#2NRgjPDIN(2cz_ojqWmmTa4j35Tv)j6>r@g1!+|^-%I^s5%;83{T>ucfM zW&k+gYj?R?AuzSws^cMaJQz+%$ZBh7w>P(%8r#fGW{ckLr0gnD*GqLo{*XyBn0il& zE|L(Z^FSPv6g4ePWPe2p5@3vz+=ZCMyO`2bdSDq{dTK)FG{ zBZR$1+>IvU*{JIz3~nse5{v4?p~jHEF$}-!YjitnT#jlS*>`fnGq=v*K}Nj&Y!}U~ zc&45*{*S}Rg1cNp%&jxnJ#!Z=1~3TPZmu?iZB&C>-Q2bl&p>mZf(Ad;HF2>M*w4nd z7To3XUrNP-xugdQ|Jqg$wY1bSfU!^jY^sF=RvkZGYT!-ctt#o?nh8ZpSXh)}X>*k& zfO*#ze+yh8Ik?u#qn7~YzLjz(m;sDGBA9Kq<56l_mdK877gWX*HjAugU2_!!m=mnj zzE=cYp5qJj)}c83?EnA}07*naREZj24mESM82}bNEUS6^5!V5;_x)Z6+&?k|4U7&$ zay>LY3Jp(;jZRHKBa@TR@Wcc(G=cBj(Y}$PvjZC#K7RK6H)qa4U!Oh;Y1hzKr_Lxk zc^2rEf}fTac_Yv*^ySIZU!2(JzoBIyFy=l zk7VkWc6WShp4vuAmj=LJ0>DCF2mpT}Mzejc0(kSN)U!g$O*yfZMyQ_MG^O=x@K~Ka z_tp76sABwI#Xhtaz;c^ef?4}hZA4m4q3V}AxN71R0r(95;-f@X@O5BZ5x$xweIy4_uzj2o?VX4xVaK- z?;G&9ilZqQFnfJ%G;uay0@6U)=GJv0PEbMOsH%kGwv0xHYCY?n|vF2=NV_U6Y zaE+v|G_}lB-tpzgGwt#!_P3fw5Q;Q0PM_vG*XXLNn+Vlf`fem)jVC52W~Xq3#%3l) zrWELoO;196vO=TN<0I4K!&75}VfYW^bi_@o6`kvOBZ=45u1$|Ff z0Qif|a8(k}gnfs;K6hRzhVJbJu~=K}BTmvCxNiw3Vd0+r{a*phy~-{xqmTFx_P28-G08l1Dt>WpAxR7l8Icxo9?sMuQsiWLT#a^X4MfebgnI@!#UKZr5J6hWYIfG)Ed|4^ zq)-#hAr9-P^_8zdG~9swt=XIfO%ZI)wBlqdFu0|)np3*Cv9sLJ6`QZ*J9&3pZtjA+ zyzeX8U{zN@m$|EK0E?}6e4Y}(0=;!=t%^sR5IZqU_e@oZ?T5?Rw#Le)moP98o8`c?tDjkMUB2z^IpJ_V%;$(i)j zbZUBPZfYhyo5&=m=4PPj*-2<7IR)WILgIWX0Zk^SiQm%`<5S}xcZFb}VWREEBRe0IV`w(w6~zytfZJ(bq4f zqO0%ZU_bAgD>=Xe!&C^nxjlv0mmNB;X}!y5r0^rHD0f;2HkY0BSE3+W?lD(%P5HXF zw<4{YZfY(XDpYX+ak77a%XURB)zF4p6#-;rOJaBs>K_Gh$8hZhO(iBaG&4OpJq1ln zO^!}Yk*23v!)oAUWO5u5i^>6MUJZF*sHXg3kL~?o(xY8<#f1KMen1vrr%~7Y~v6(3dZwVTinqc8=%gYF9g{2$T zMwJ=5+8uEXcNNwG?QF7zW;B}BOey9#^QJc`bE#nZ+5JN@FrXEmoXcm^#eAxegRoFg zI-lp@GdtjI1^Q-6%KejN(rhVX+@wq^m~CP0*Td|e@G`wZ7Bw|Lq6a`2f0#Y{@>kp!Ih{H?K2OC(@aASd>K0a4&Q z95m9bAurJ}>^FpbN`RMMj%NNC#i#}yx9p%MS=1!CL7|lBOAKGmU;*GYHO0BTKIkm)U*+HD9@ka#U9rbrs zZO(#LI$!_Vl(X4c zFgr0f4LmcdCuhc46VqdpGsI@bGlZKEuUTW0V-Oa6H#`bo=rhTQ=~-If=J?d;*yPCQ z#PIOg;NS?@+{a>6GpEn?_mT$AL#O-BpXxow9$InIy&&lMug{%@zBzx6C8&IkB`q&= zm(k16tw1kWrNyw|ZvUo|8*aogJjgmVq?|uJG@>mO7Tumlq)t-rNkx3-^a$zf*w`6O zBjt)d%v;-0ZSB;dx?4)2Qj+X8H`t=)kpjKIEmMR;rh`-CjGSRmQ?PSvdU7h6NTlcH zGP9{{GLxOn=8~*Tc1|dr0v=Mc5bg<0&dy9Erh#WtVoLsFz(pG_-4dAuh|82!iJMFp z=OA1T;$NUpS}2<$B${+6YtmaisYpuCVALCRhMz3UTGM9lEx>7g; z05g4AoVv{PWmN>9*%0#rnk{BXr7SBkPv>!E^To-}-+b>6_dj@G&%WrcE_Y|l4%`Bq zU0pW#(T)xaN1h>^kH)OLr_1z>MeRUoFleJZ=a?%RcgMTjVR{A^OmJ7HqqD;f0K@op zbyz9#j2}g;c!&gWz~AB%0}nXH8w$2T!9c6eOLDoJoh~EG<~Go1KSwi9MryV+fxa!G z`G&=2wAl=HyOD?DF@Ql|yWhxdpBccMb;aF=Z4RT^(xlFkk9V5FLC)yUI)0b{eJ%4(;=B$}__(Xpu6 zq^q6;TWq5WU?7>(rp`4P+m*#Tw$@Kgzlqx3X3Nwl9 ziZM3wWY?2<<;JSi>WvbP1;-r zEyNhsE-D225>PcIyjwSb`Qf-*qL7}+r*LEpV=_s>3f;+aPtd-B192RpmF z12nKGMq9iBwCzwNW{!1O0Ar{lZU;5PAqy-l(91?P6l@O%ZLx@Ah@&w_C`^!!#hsup zHGdYaw!iDj@k zoABxZ;6FsUQ7+3g3;+NS07*naR9<(J!&VD`fn?wraI1>iRE0uDYC+{S3Nxy6I`mxR z!}(Thg4xE2+8D~r;?g6hM<4HK>FzPdW6c1tVt>UeGXKHr-|>+of_5Vm-V8Rv?9DT0L%>bc$n7{Gj9-S(z^WopZ8+1c8@1FtLStL()}^b%qLb&(Dxx^_^5 z4&E3xw(e*K>^JPMj=Q7Cd}dB>7F9-d+Adcb|5_ytZZowI*Xd2QqO`Y`Gp)pgK^iQ` z$HvwjhIZ}&LVTrGl&v+)X12(@;3sc1?5Nf6pozcQo*SD1yy1XXFBR7=&nvoETv^L6 ztz@MZRx*pLIOd?zQl_{--;xrI;9@c}DZX2$08}uTkBmtOFrG{d1Dqf<2%1Qa&CZR_ zr6<$b>2z*ZHQZ_b+6DWe@^YFrzc^Q1OcWMo@})#>ekNO-PUk06xd~EcaxOiQN=-s@ za}&wrcw%;9CPDZY>?hw$G4RRJ;j!VN(IE(nk?|20ZZf3%2M0t9d=TpGA2{DfcFv7o8p5qqYdkGgM%P3#ja(OZM8=xC6H@8 zH(w2$Jm1IH1ZVmOIYAwa>>VEN8yOlH8|fP#=^Y#9Ok*zi(dHW~7#`k`0$?G|sNyGN z@pA&bB-6IDR|bIg%E#MD_E4FgF zSV|S<=ki76Ux=bSuCZo0nnKrD;;ERjv;f8FY7fV>`fnh|*Mg+QytrE)DwJ|~Cz<&S zq>?zbRq0|HgyuU)v4NI0TC1e6)H5QuO;QuB8OiL7VUd+R+KqVfCSR*Al{`Tny zFaPcs^zaW49k{D=&u&5A4p$^v^BJv$a+$lsc04H@HSIZXt&<%(pkNF_+U}yYg9{*#IPMPg%`l) zd}%NkIPv zWt!SnP}3HXaiD5Z8}6sHYa3>AJNr@80$paw3K*kr#)txlptWq4p{4S8NGP8 znW~dTN|(sW=8=NDmyBm4`|E48yX#Z{D<)fR6>~Q$2C#}rO0ZJhZDT7nF|8H2-2kv0 z?ptpJP=6o{F}2+QUzxIOpf}LlvZJZ_PH??m_k-#t;PyXu2<}36*8PAxKLfoRSEQaZnw$}Oa_WkM-^ z&*o?5vQtE570k2g37i3{@uN&`2I$2R-_iK8##cGMbIZ&4!o^o@2G9lUmo8)$*U}5C zsq)I){L-w#;PP~?G?gh%qzmJu{3MjiO|i1s$t<2WGleGy-SN@{dvPhiR|8=4Y;rO= zHwC5AGjpkF)@*V*F*`Mzn1PbB(@-is3nk{JVb-T-#=v!4H1Kr;T{{OQ+nOKXMY z3q=+OW|me8(Bg7_VF`w~AV^H`h9_nTXPky|$Im$*> zF0>?O25Sv;1%M$=c}rvxZ@&BHkp~VOzHi_Dec|1^{5{=X#$+hm9*VSuqbBZM6^*x( zgdq+EO;9joVFAOupjOYF?v73;01U(mzFI(EsVF_OU5Mu{m_T0|olCRs+dP7=qDuoc z4fX}VU@EZ{qv^@}dc3VTGJs9iCXqzbAm%YpOZ_%;6UkId2z2S;ePMi=z6@Xob-8L` z0E<0fa?)mto-2kOt`=p2udN>V4~CoR3cv@@HZzuD@TUGopR3O6tmT|3*jC!C^|w$- zl1uNV94P9uD5lUib8`=yyUA>?;{+m55a^9W4Y0rQ4r45Cz%z$}P3&B`Nd@;_7KXA$ znMdTP6XXAs=|fJZ;*7x|o2%C8ZE*XWxNnBi2}?{R;%R_N2WEGpLSIW2`%xUhFuV{x zVfNp+4xqM|u;XF9nB_ntj~tGgc58K;d52P}#7&z;r7r`Ri=fC@+v(*@&+BYL)1j#qUhBnZ8_iRHM5Srj{FVa4!xXIH>F;w{DC9 z2AJ!b{sRE6YWx8oL1Gr4snPA=PSKp1b;qsmR;6yl=1a(-zkx44*FSjd*kbI|-kqO>?$Tu2tmvxQViBOGcr}0cI0HN{uNGD>%&%T5X;g$(F6Gv)&~vi**@Whym9_ch)gnj?3@g$2bR@t070$xX3+?`soe^LYXE?4zGjO@89Qk68N^Po5g6tyXbE5l55be*E1u+R zqW)HX1NB&THw68nA7q5`q{OUyN{nJ#%<|&`!lmk3`9I2K)^!M?IvS5yX3+3@5w2Ry28TP#aOzvbE)!T0E^c$bB=EkqK5y zotgSuaa9jBoq!t#M?qf(Ff$kqlB{#c$PF(e;U-ZBr4ttfjUHFM+u7i-5mR}rFBZn; zod)9$gMk>VOb!Njt<{WALEkDGYSgkrq(G}1w88;%uCgjkniXFth=C34gYgWlZB-n~ z=BMQu!#tM>zb^m`ob$K^p?al?%u=hSN7ZtSgaIsao2wbXG-R-~PEeWR(tJ}b`4tn5 z1UTyqpfC015cR=3$^N!gv8!hEHt6rH*X^in`~kC;#T}s~eKmuUs66QohOQRC3|$4i zS{Q%3D6|ZheD%fxq++tLVOy0iYuZuf-R0$rS$wwwv=^=xFI}C#a=i?zjVFlVgZrm(izfrnzbK%N{m)9~Y7t*U2Gi#T!7cS>mmo8>6U&>v&oWFdffQLgDFXb*= z%tC7yGKwzcwE}){#0&9H@q~C<{sc;^x%riBVJV#|&de1^sp1@zoW~a;z8qnOlK6_x zlyIN?{7P|tHD6rG74eYeOnEI2@kfURo~N{yhcZja^y2Iso{*jsNSGR%8;1rGqx~}@ zy~)w@vmQ?te7Tq%`a$P||a+mScA<3?~6qM8~+km;^9U9 z*s+jLh#&EDGT>Dnmq21+!Qqct1^&3$G0SWQKDlyn9s=WWl*U@xYyO7{I}TvOCBqr> zo^%?2uY!`2oy;X?vs4r?qlTtgGAn8$6*;HSiwP(9SvT=m1K@4jFK>-DYYTZd-0&6$ zTp@r~wvf~o_zGnqH3KUJ;h&}Wmzfp;YJ38@&p!X>&z?Ve-+c%6@9*4yAS(K1m>IxY z0hTyVo;chd2%5aU7AO#Gm-bhNqp9jwG~x)y?6M~%cjt(AsKz=>bcg*_)2t}#%I9sS z(i%71a0?@u(``g!DJdfa*4i9K4nenBbQVW5vD4M!aJ2!z78}vjN!3RtCN8I6VF3n9 zA55FU?iQLU+pc5l3=DJ6CMTsd(-i>u;9zqg0Gn%!hAIEq?^TA_E9pyO3a`@ULhFFV z)FYy=tC2&mV1_541At@k=6Hub8f)UozMObPDay_U&ST=-V2E;##Iy!VTBby3MJ|`J z@yUg-4iAY37U2l9izngHe%uvVw!LHowwQJrTkmW({Qv;-_!l!5*V?udFF_7iSb6?^6#$FI8rEvZODa6baItlcn~atY!vNYsu!CIx*!}s7ll(De-4vd`Y#9cS6cuuOKcS zg(rcBX0eSXSFI=Ap@NXn%i0FODt#CECa5V+E)#~YmBp2{+-74aNc=+w_mZ5LyA&`SC*FJ&3rpItMgfypk6x3jDJc@J{$L;_9{X zwd-^fC;2=c4j%9?wRU;_!j%$^^m~E0m-5n_QQTErUhwrtc`XZpSn~wbTz)B&EX^j0 zGvHaGFgsmHPUUAOa?{XcerCEjn<&lAmQyp!bBUGI)Z#2Ok{*G^vSa;;ek{gwiztS{^OtZe*NXZiH}cz_V&l`zxm;Ne>wT_Z$EhFx!)iA*;}t1 zc=DkKpMU0oqfg%bkc6fjMo&&)H-Cg$`yywY>e){T5U5EDk z@q_n2{Q93SzxnDLe|hJhr@k0WO$=wI-v8u(hLWRmE4jYe;jjCSC(EhDRe+74MKBW= zQuu4qpH%~3MkYQk31BrStt1oRCjWb2=;9B7PoA&j@PUiJ#k}|{(}$0r@)N3rR!lYv z>&sUcE?g?FT~ypN8EF28r>>d1(AwoPi*GWLSt^DV02dZ>9Lkmq)?hf56t&1QAz7v$ zYXQuCEwrMrc5y>;rjT}YM8#Z1Z8t&0&FFNFBOh5JP*YwpGx# zjp!?g%l)Jv9(s=>1p0!q{MCssS(?OPZ^BPqu2#x_wo@Xs%iH4dw=r~?yL@DE9v01S zur#)s8fEh=S!v1xk(?eqx1Wu#Z6AS|#2sA|^xVA9L?CVfK2jSNQgM|sMlL=g6ykH|ad#j!r zOl}6SNu4gtzLpcLxW$#B8K%&>;ilg=#qotPJD%dHEZ>@F{mn1^U_*aBG$Yzsu>ZrjcV~tARYO#e} z%f(1obIvoNmyK^D&0|nHLN_a2ExCuKY-w3*sHz08*6*rP*-Tr-i&6@}uFbET?7A{}0 z*A!IWbn&5>@+J8T;?3h%xN>6&TD@9Yx>Q)XT3EYIBrY$f#dcpM<7!v(OZ9TSz44lh9;2IX<5lDozg;ruwqu$ESKf8$bQt@qfJd?yJB0 z^Y0#g>BkQ~|HLEDKY7nH4?Xt6Ge>{>!cSiL*&{!D;?R#D+V`U)dw+On-=l{Q{^-F2 zk3VqVPaZ$`_yeG6$C3T}9=&hZLx+P0dwlyk-90g9SH#sBad$;M-7ze@opE1R2iA0^ z12>~MiJO6*j-JB@AOGo(|MTS+ci(&9?jPR!^skLYUM*j`QU(rjgxIPsUx53}@lhMHW=G3R#b+zi4*0r9 zUj1CXfuDlV^TH4pCEe+PR~P8Dt}Wm%f+Jr2;?+fH_38q&a;3~#zFdOj&6O()QmdCh z;_}Kxkhp}a3S3(Nz@?=ue!*NhqtI6kM6*Pqb($s1pA^5VDF@Pam6Gw^irlDe2Nl!F ze0rvkffB{+EFNCU&y@?T)Iw3NabA7qG;6Mu*(%x1O42vGRDkj;^Q_!*F~3q^<(Bh> zC00qO2qX`Vo_q6;uibO+o&$Gvc6RzgA$vGvjz%o8xQ)Fp=u5o`1Fh_U`3z?!1G+H2 zJh<2AH{l3=L%x8;AG9)nvG)4gy@A$n%o>YYKwkzhs0Qx~2E+Sua|y4<=o3%NrL+`} z6}Tnhic(#|u;}gFZa11}Bygj_Oidz9)~0rRFMADQ)`D8F#6uB8sM+G74PdL!(C*Q- zdvG*x3l1=eIwFaEK>)bjYTzk4z$X9}TSui*IRLhx^5Ht&~)zr4Lv2_QII#ZR{+@+FVrEPdi zbwx5Wl@h6&#Eo*Gg34X?zTA0(+delMlnF>O;7lRwMjCixr6_oP05-d=?+-CVkGec{5*^5xr07jKrAujJ=fbA{zhZY>9;S29p$C6ii8O)e(J z%hRVaW5@pb=83^GFup^jnZEqQr!(jNc>1F^zxeA*fBD_d-g)`xo5vo1<>);>eRSWG z_s1VR5IVdoc&I0Mu*csc6EmLbo;yG{;m$l*BN(3!>(A2gas++iHF^>2*l^z@u(|CJnlHSx8tro(fvJv zJzbFlyYb|qeLcawySzR0oJSsi++2tUE|*l5S&Nrwy>M|JDqkorTqu@S^YhCEHolaxwUE!Kd%zr$h2*XQgayM` z9wFwmw4R_Hcd^haF`t1r$5`$JZ-kn8vsT;_kDXh{rxpw8r6QzVu;>ozJR%mnEXc}7 z78_jcNf5WVRxYfTR28)UM z*tyAbFkH5A<+dASWC-wsxXp#j*GBE==_xu^>$?_kJ?8?9?~!Xfy8s zfMI_D;AqU~^HbK96fjJC+XBG&1?_eU6yxFm2A%T4Y197N3Gy1ZR^TjSK6k~Dx1|-lmftvUfwW@J=bvSFZ11 zjNMuXS(jLfl_XHD-CVx}-B@3{zP@^Wefh@v%GLG7Yjn4@+v^u_yv01D^D9@@m)E{4 z7cR|ZmJ{=rGM8?ZNVkiZ$;d81*VY$rtiz0wZhyA|U0I(`tqs5P>92nCm*?L2{f|HU z*BfU(`|q=#zn{zXUca7RzBQd$?awdve!HIgc0F@*J#}k61KqftC*8_HH`iyctxxxl z{Q0YszsqM%t>d2GE!?JGXCo-BiXHGO+g}nh_~r^p7_zJ1EeO%?$oIVZ-SU;&OIL2M zLKoH-FRm}G;n!SWUbwwnyiv|woljrNXRpquF6F1!(y6P(iR-zu3*#^R?GLVddw%== zn}7c7gI7NJ)6;ML^5An1#~wM*dGDU+q3+n--Qfcr-aTQ@?hwf8+Z_$>?F#Mb4DId+ z@97Neiu<~wp3X3iI0N}%WaA;o*Ae!1#60n+llU6(b_m77zIY_i8N6Et&=niNMh-!9O9w^^PZnYT1HHn@HMUUOXA-_!TdcZvkk8lR z^cmcNW>3iI4bzZ85v8QZN&wr0{WZIrKwpzf$3qvW2$<@L8`%kg>q_q`5$h(>iv}H_ zGCN%kJM$m}uAl`<9S*WI*c9`F#Xn_M^O`%wy_#4N=ody0cMj57|JoiMXkx zn??(Jd^99D80KU`?f?J~07*naRMb&J3}+35*Ai*T)IM67axW6Bc%PW_q__*T(rLN9 zk?GsqS}WtOREpD9hu=#r^wNbQ#z@ov0Qww!CeM0AkBTLxUoi4Yc)0TZg0S!n7d8_y$XFr7iiG~t40KwcXCda_>>sQ)LN4J zTk%3W16Tr>B{H_EIAd#LaG|kEPFUi_9hYyH!BocT@~u+t!d!ACnOI6pl&6Psqu&gl z{-Xc*H-q1NJ@ECJ@l&TpPyFSx_ul!(A3i-HEH^Y+9GxmpO)pFjWQM;QIsWcP z@4fu?D=+-^*z528;r$Q)=O15u{P*J@{_X1zJ~;mACuhDqKY4B3v>92 zoWGs^a_p0%zj@#%zrOe7S04ZHqt{M;`QH2Qyf8TQL8;vPuike)IPrS#=--wu4;7Y9 z&SXAK=DxhSo=D|RK$owMt*i|!t({oCbo%Di^9#j)r4t{oEuOx9efsw8xo^KK-d>;o z_PY{vYkh$vJpH$~mw4k@ES7~<;r@9$`P+3|i{L^54j$fm;o|!I<@F`#;`++!cZ&<_ zrTmTT#KoC^O?>&zXYc>{_}@P|`}t=B$N$y;&9C2m?TKF>ef!hDymj(_pLyq{z>!_e zaaYgb{d?}ctLGm0%Z}*2cnrrqu~1K#73_`#y29Shu%{yw=!!yE`??|!7V0_%Uki^5 z3(IlvezK$+$ywe+tKKsHi{(18A^in>voP)BeR~G27oyjHh_+ius#@Q z40!8o}{6NBIi#X_`)`@>o_b zX(kF|UCYi`Bve=5@#(p*|8e49pPc*Ze~-?PX5^JlNWboA9B@r{_M&mA)CC{-3YTyf!@k z{_3T(lhc1oraroMd2s#P$?v`^LU6;-t@RS?_WHv5`r_^N@~zu~&194p$&OQ8eepYT z_6yME_2Sa)x#Nj1-v0de!-f97^x1bl|I-_vy!orY{MV0OdFJk;4}|XTf`9ezi+0?# z=dMTY+x@_y(Ejew?pXXlclY7$=>Dj`JM5181F=xFJKnRur+Z&_$L@~!u6V2`7U_ya zyQ5I3BNU7WL0`r#7K+HKDssg_EJq{&IVFHY0r1j>qY#r=AUWcW1K6Fgxz13S0gOBQ zJK{jECmI5VVVVJQZzmWWc7+3c(j5s}13o;tLu}dELu7&-A!4v6-suE};~l}S?mhP& z`uO;l!*dgJi#aAxelf=)k};FO<`quu&cSq2$QLg8(mbRI4lBY*=}=hv01*8VO`SesS1!2LO zozKzMEN4Y2d#lX6ED?Pr5Aj7wW*JsB%X_ifm(Xt6Zp9}(WFbrBE@$Lowv>hv^C@2N zN##D`Nwm*aL0>?Zg*Bi%f2mx$ynti*%3}V?{8Ty7KR5KjiH{CHdBon~^c)Dp?(h2f zAAkLeKfV0$fBx{;+rNI}-Pd0E{jt|xd+E_f@9B!$^W< z>@U>?8N|FJg|alE$l3(-a(I@Lu*8e%W%6*lm^cJj!n1mOODN1CFM#&D=U&+%A$)(!gmMSa&Ib3x)Tqa{neM_sZwN1|s8?OZ$%4Szp zt(*^tg_zB-Q)mYOEH{Hi3&{rIfE##5p}D=5tDn{J$qm9NZ#ZDaFh@j`TX-~QycuOI!d-#!g+{``fb$A107tFJ!) z$}5jQ_vF2gJ@DXD4?OVX{f8bteE5-j?t1X>kw@=;@aZ4k|K!6@{o?4ON1wj;v4AUZL z98b09!N+zz`qcjWAM8AIPx#3v_dWaUp`$;)=jGr2=&kpTzWT-!FTVQ7vDY7a;+dYe z-#xlC-}~*g#O-xB;35O{)_NJoo9l}UmlK7R(QE4kVEE>GaqV{Q>U#O&dU5`0Vrp@4 zIDhtd;;Rq)|NiFZZ#?(rPxe2)r{|&0Lr)#v{qP>wuArma@5ZsqXA3)Baj&l{MCu6o zJ3~--SFCeS9O~W`>De9a?1{#^!m-W>1O|8R=>~m)UI4gjZx?R%?BCtBw+BCh@%6-l zZb4!kAy`r{lIR-^!k99K-71Wo!tyeP1uuhkjcfpC1dokFK&Ceq7qMiVtoau&e|Y$ISn%K}=G@EYVx5MYo^ zkYTYfwq+ZGFhOe@%V1mM@mMpqM^1<+7WVG%`@Bze&4InY(O0FK4%OA+)aU)a?-P7I z@XaWMU}V`zF@fhOu*G9k4`}y=Tp`*AgF#|5ik-9td)?XCxc-*++;P`eKl6pp zKX?8t+~nB{FP?e*1(H}1Kl8>}ViJtzYcH}BWjD+^_gm8W-@U}bK6CfnZ}H!AFaQ2L zG@mypLE(ry93xDiC$ zZGxHBLZ^9*BDQ}wdrT*JAydv{M(=KB^Ih|}ccb|Lp^w%D| z=k7ed4aqo_g=qJJ%g{N50iI&6c63hL-4%8f$7GhXeo08&16MpWpL= z559dc^x=KudA_d*d#-}JFu@RY(uL8qN_kTR;-Z!X05gLr6w9l6^UNh`my~Axj^dyZ zxK-CGnZgB%yk2U|&hgbatRPd7Ybk3K3r%eVb;?94GJs{Zi0f=tc(SolY_2kZ3-D5~ zlHR)J7qnnq_1E;ENc*DN28dhJmL;o5X-HC1`tow`%KD|tt9zi8 zHISHi3@U?{vbN40mKebE;?FqRK@2b8vvJHOE&WpQjbdeQp?n#hh3~?0ar+6Mou(u$~))r0T#|gXs@Vg#cRNeIe`BzqG}Fc3IfnpMN7vOo^57{m18RK$$h0* zJbs!7RW0NJRy?Shul`bxqg=b9nzN){u?Cz8|K(1=*j}7Q7EK9Zc16LBx9wlKba(nM zKc2IGnaUg&&G+tKy=>pgo=a|g-$$TpZ~O3-@A<%~cfaeJ_uYEkd)~Qm;>eNXN3Oa4 znwxKX&owt)w{v1+`}l0<=;Y|h&BLd*us=IA8E*||heyygZ@&UJj<$N^?fzu5J>F;y zHq!nq0fVQ9Cf&{1v1_kBcH<3)uDxdK^25{PTRT@C-M-?;Xv4J+nWsM>7}N*a>!yCdV)D^~Xl9r;J9% zdu~4R`8#gA=R2SN?tP!T|FOIN_Cm`H9KRJs z-8AeZaW9Fwv6}?AC2S>erB39rUORXG_4C-i z^x9eI#W&7m<%QQyL;L{V=h^%GuKd4vUGVbRSDuG{^D?aS zZ=ig{fC0pFFFy}><1wt~FTC&^crWxk*#Fwu(-;H@oq6;8`9Hk&%!Oy)_vsG?8?ir& zoJr6*Hn4iW92;t+YO$tAni1=IXsEuXI+|=LhTpU!C2r|Qj*qUsW?N+F*7K}ikcN08 z9I#;*O(%;_)(tAltm_p`E9c!2EV~K-)7Go_Q6q>deprr@8We_A>T4wE>zGALUl$oi z>)blmb}HnjMN*TVmBCu!GFUl)ISmQ0#8tk~SX!?yuGJQ>U9Buolui9W8Q?KjC2LJ` zmKASRc2=9#a>H1us*7cL0Sx9KES`J@eF?z&Dg{Ez>+GC>VXg(ur6|E#ykFZVaphq^ zf^P9J7AbRoq%1p@g0~A?tBcEMa1jr#;l&J|*Vdp84f$j66oy|Cm(rx1CdDK!gu%LF zFL3}=6ymNz;IDY@lJBkZ?VhtLLX;^=Syvaxe2b)H7O0s67_0*G7=CNT%Y^-96TBA! zgJF^JPPy2p>#lOoL5N#5NYVj_r=Y37LMTRZ*PW@j>M zVY_)~xUn;sZge61ce>HuI@I0RZck?kG@b;bvELuLy`ckqb|+ENkGqpjZ>tLpHe20k z+#1DU*K^u7B_s3~_6t#vSwop3opt$D*Z8L4#-M-)JyWO7C z?ik!3t=qG>J$TyEa7)_LhcmxB^S4h9j$F5O=$eh`RWoPoYN-TyLkrTnx;3=*zOD5v zvme^SI2a^eF9PaC?*9+552t(ZJCTS-QS{?)|9JB&I4Pk;ile9Z+^*1^YU~ELD z*9p^c$Ll3_JM`K~&}{|n7>oq_{chy81IX_tI7z@5B<5}Ij3w7@Iu^DxN9{SPXKOyT zF3@X6K2JE~umC*J9(E#(3DSO?^rE00x{2qu;B+Hw@fdz2Pf!zm!$|idFjyDiG@9jo z;KLt%`OORG-+1-u*Pi|5xu?$j@ue63aQ4}^PCxVdv!~xW4*{z$|KZiw|8n8AKhyTD zzrFG1|9$f;Ozodv5jy|!pU$0m>-2^HeB~D}J^9#kkALg2dms7rW4C?g1Gj(kb9X&> z_b<;q`Sh#5e(0%3e)IZsXMTV7!e3r~_0Q+wbpQ0~zw!J3 zy72m+UV7zsFM#f6UVrZSSD$_1wdc>g2`m4?={HV4eg5g6z3|Ily!gc9FFf(9SD$<4 z)#smm{mkh%UO10q{^eDiKaPCiPv>9x#$8UPmJTbQ`dVte6*-@Hb`$w0q(<1FjhH($c`xwp>!`nTtv z{r$_&|MAuDKk=iR|M}gpwiqd5yl6zW9$H#J#8o^MvQx*5E!ou|09dhA!>PL=)up2F zs6-Z}Hfp)D8dYKqn8CvU=2}$jN;#0qwkobuW8sOSewF}mRDpt^;`?RasStfdEHQ^5 zQK>1rG(RSZ5==#EDTuy%3R;vDCRl=$K<`TB0JK`=3W5uT`eIdCt7*hw_+SY1t*8fz z(t)zF&@|UHuMGM&j8)LLqEO^B5CS(0aUUcy)>Tkpg;JOV^6_RJzv@L*0TK@8hk^xPF}EpvgZQsKc9$Z`wL#;F0jpp z{|-vjbAswzF5_rfZ)2633WLG*`d&`Mr3xWbWa9w73(crQ)mjMvE|eA_9FP}-S@>`E ziiJH4U_6ludr232C*%zTWqpZLnYmD<$W5YY|0;Nl$B53p7wc9E08`)Rbk z`I=2ci>3=XfOAjGc6oQBBo4x2@B9A(u&7B{AO_DDfQ3YvNoH-n?#s$oh_S-}CI`HE z;_#8HPEL*it%J@+JDnumVFV{Sg$;$aNwclicoq-G@n95bcZ7k^lkUd-Vlb>Zw>vV??yc*B6iwNtec^xd9vC}x~*0_>v%b59?N$r# z*B|;-yIPRfp^8!jdh0@xQpOmt-}Q$5U_5eX(_lJ_Cex5Us7X2+rTu<19H;p7#?#Jl z-0JmH93Q5+Gl=@L)?lOE8MiTB0bj#@0@i}WI4fbDF^);w;{>Qq$C(7JZ77d|#@2}f z2+);mLv~Ey79JNCT=%T`p|W*oA0vQP5Vm~`2;!a}bv-w>oyc-wi(?;ygRmWA8?>UN z+YZv$OA;rFYz#4cxa0ta*l@%CWb^)?KJx4HFWmmEJKyoq_uTi(AA*{n{Q9Rq__+^# z<{O{?moI$sb9aCK-bcTC_IJ;|_SctAzxLG6pMB()FZ}qc|9iyBIJvp`2J2tuggYUfU(;qr{^VRS8$a_EW z)!QFG{qt`;c+a;Uxa-j;e)#>LeDl$#esIU#AHVy7FFg9I@Bix;Klr74|Lw7-e|YB2 zr_TNU*BActEMDY>ly`^C@Pea8py{P^2HcI%BFyY1L}uiLr# znrl9C3-r!UfB5E4f9PMn_HSQ(_?{oV@U!0o;s5={8~^pntABY3J{|(dVcB2((^*g% zc*Z`L`*`Dz=U@Hpi_j}?o#8?y7v6dfdgZsL&%gQHxi_B0_SH9^KmXcqIHm3B*Umio z%JV-z``Z+`KcKe_+z#~=9iFCY2NFCH3SdsK3pYM=y>5vO*TxTd2jmZCX?Tgjxq zLB*C;SHj;Twu;j<+^QWkI59V?wgEFlDwFpWsl6O*1s@EF`WO{>U$VaHoi>=KWw>XK|1sOqF!0)}haazkCN(>y2jUEl>^ z9Ft?azzp0j=GE8nekt?HuUcMFx3k%Djtj#{!o_m09-b-9!i7ZP2yVqg@lf&-7fl3) zsRDCWCW6yu4pK*fc~OoqEc(HU<1YH%V&E?Uz^=0h+`{rQePMiIi~lY`2v*o$;#$pu zmrL{d&omt^i}t{ImwP4_w%}i(ybrE47j6N@3~L1@*r7JV+2k|3Y7Pw}OWoXGYwWAm z_re4Nz;L(3zk0DLRRG{Zah1B$U!2x+)+$YEzRMM!;d=84=iMv5^J>ov{{Z0K>A$-z^6sWad2MGg`OM0SSgn)~ za$FVfaJ8)Yif=|=+&F(&mU^_Xz9*lHrYUO}<+Z(+fCrOVXR_H9q6y^DBCjJa&<7me$wv;!(lYtOyPY;(+HsL^Z{KPTW}WuhCpIyFb0NQI9Dr_F~k-F zZCx_erXk6elHUU1x&VR1*wVEiP@TkZQ`1Q_D^jdT^V>G4i7N&09Ciq?UZk3CL$j)` zFH^(OmYv}C9*E+(iJ{o_rdl>#dA2p$Iy8;Oq184s=(g>k1H&Z1$wF%w8C0r9V#^nHKkHjDrKoumy3!~>$lxu z*B|sPs5dbBLvt{6Mq_U>_NS8o!Vb*wXdDg(A-r^aU{G@Ge$;q@b2l!+3@J-#5IRDjt+-MdePXAMhP_D=^wl5&@CUn_G7o- z@~&HtU2)y$+8Z~IU*6j}+Pd+bM{d6D@?%#F4qrJqe(j`(!OhV@Z`vJg4cntmI%tK% zv^DF+laA93-Ch)qS|9)7r;puqdFOC{aD3d^Nk+$e!^6quss5qMhr{h?vK1XYHGJ3m zPrdg;SAFRATR-)cf7uub?8*QD5CBO;K~%o(7DU?eA$K&uel#5=8Gl77>9xO{z3|ubum9I8ul?=ibALSZ z%o|TX_WY0T{^^7N_V0Ip?CW3sr!U_5p3i>jouB;p^&k7l760`9qqn^K*sbq5b?bYt zc;Bs8zW=t%Z@cBhd*6NJUGF&jjvJ4>^QPnPynb}*NOyZQJGnDBJjG7D(UBtE3>3d* z@hlMrtd1u&v_>w~X=<({{%NPH#!|6KBo<9<7J2O!*Ju?Em6{z~g6c{W345{XdVk~o?AC4===~ZhBdH$;ikmg9J6<)j)>B}PBNYun&XUqj7 zxd|W`jQu&Dmu*;2dr>zI0Kj3e3;_Ecwriq2@ETwY5>p_wXb+qvBUwaf(>Ms1Y#DIF zt6ZsyJu9C{v9u53Q(~m;4oJ=?gaKyVTn2!7^;fj}Js>p~ME~Oz(HDX0Pr+C>gLascD^wo+aY zSlzoj?}*VW+BwkE!S91>7gvaRjvBgTHX}QG_)rIeW1|V=e$efDeW6azYj@pFFM!%z z5-<$m_HN%F&LXHc_S*v|=>UFq+I2`B6C|Dxb-dvOJhtI_8%DKhC_t}lVf3wH0GR%imrx-Y9vLo%zll$e1Uv>iA(__?GX zSa?Of(vT}nrK&j!`0Djtr)%3S-Dw+6M}xec5e%%L?}5rrLbf<*2LMvLm!_S#+XW+& z>Cm1Gtj&=_B^|fY{sh;j=DJD%UahYc>cz5DspE2{H|uJ(q1BQ|?{(Z>*XVZiR!?pB zHDGu!vPKhUGV>-AXFRrtLvu8;FgocEoG3BUw%r=SgW9-O0>f}Bam&Y#{ZY3yX}71H@kVDfYtN=3Bql||wCyD=SJ-{XooxoQnKhXh z)3LR+;cblVabF)#?b)U`-3lg~K8A64)@am%`n|MAGxjuAh`O;8yFm|j-#v8IiNT?n z*>WI^pTe%&?t8;>I0SQy;%H43CCWYcMgpGp{ps+tWd7(ocpM9(Ii|@H=fQZEIny zM6s5nj`(HcJC26KWIPN9J-3s1T}s97ZjJj}qxQ7d-53nE$Jk;&9kV*gs2vZwP_#Li zU3Ki1&wlvM@89*&Pviy!i*e_~E@j{@(phJo@;VC!udW_WipbyZ^o?fAW=wzxUxU-+t4-e&ob$@7}!e zUDNB{KDzd%!PPemueyG8^$nvduODA^1B9L7scWIh$!kW(uNodY28|By3=eJhrhS?t z!C&q$YPX#Rs6ORbkw+|Mk%%R z6`d6b!{9FH3xZO(uSI8~DwT%rpTw(JQG?lSDmBv3|)b%_0YB-Ezy6 zOf2eHac5r)4k!<&vREz?fNM1v&1G&Hfe#8+p2Ms}bt(!jWAqY(&DAWDYu*tE?9r@c zs*`0d84e{4E7}3D7WCy#MBI`H|8?vI*IA}1Xfff;Vjm0=Ys!9jR$*Hgx$iG611l?{ zG}VIW7)Wck#Iwf5${1{pxydffF;xW-orYC$97S2+f>sRgN_AhkvX>{%ImM_@-CvcK zg2>d(1_OAt2q(InJ75kWCNzpQ;N1?G0nF)P`JhCY-~&PndBX-SnF-Ph-XEOXUt%!( zU~Y<#Pa|^(74wxRnc4ehn$!3Huc0sNB8Isuut+23WsWRZdS0%Q9WVj7v~Lv-yGG5F z7~8yxoE54RHKJ*bdMyizzGSwQjA!A_q4xGp3q}@yq7lvFIuOiROIWm4$4lETtKId9 z#{<7R47ww)Go*`PtLKItnqdx8u)&HGrQ5T{V_?Q;53I1IG>ryqA}9sp%jlic*MMMu z!DbA}Wm8sdnkAD=JhDM^(ZpH}0&4|>L1I<+6)|bnREWN{rcsrxIy0CbY)3SqEg6l9 zR4O-%6}c>1k`ZfWqU&)}32JIs)uNh_NM9lcr85HAr2%)iwc0 zC)Vp`qbQeF>xGrtI#iI#RlU))F=A-qG(5j4n!Tt{+?K+$5vR>=UxyVI(t87~+gG7p z-)gnBq^)(}mB%hVDDDpvhFYryNGD+4=JsG?t3Mp4{b9^QpWY}Y)QKhe!6X%tYe`q! zi-%1&dXrhV)p7@e_{ibz_EtKcM6^7=)d8sb8|~p%cjL%-wAJg(y2X?@f|1M`L0tp+<5fpvC(zcAHC_uW#MAvyB)-H+V&8a~eUjNje$D<54gicvAp)Mq3O!CLe z8`Bn^HS9-Fr{m*8Xbs!2@?fXeZuwmb8g~;1!q1E*JX#jUg1wn>+I0}Y=*LCcc>0_wZ^MgSImmf}By(8nD>yET`x^_?R9d30dPH*Oo zcaqtW_QvI#o$apMx8rHJbN$J~H(q|^=C@z|zW1Jb-z^(AUbk`M4M*O6^Ypr#dY4~4 zyaI^5adgGoN!Ypa#_5&soLupa@#Sx4VSjeTP0;q`S9dmc@X7RNgTaJWF#uisW?*yi zEnu975l?^QM5&ylD)k_0NoiY-TS}{|d$DY|RSveY6B+cilcwKMTLY;xQZQJg_JRVy zJVngqAw{LhqGqlec2Ok$Qq?LEy9?*K&QZ`jEzEN4GSJJ>&e#TijX|DGYl~XSTzq3b z^IYWGjRL?W(3b`J3IH>`)`$TZ{pwZD2m*kq{gJd%k*TM8v9SU>0su?;y5-j`uShe- zBL11^>ttI7FqfhPr)8tS9gr%GRnWKET%)8E(X>ENVU25G8O}N-GHGjKVp#;-iePCj z?#R7oKqj80E>Kx!JxdV6e>H^yl_?8ZI)EKsyX79hTtB%|B?fb)3%m)cn}&ym>RJqrluL@!P~%F1Ag>F8`3SVU&Q@(S)Q3S9*79K%$~icKYBC%!}YEB zb}_?Dj{JW{U=g{i`?(DRgj3~3UmSrEo=*FjL#mJLrM1u7h>Au=U+6}buY3i^V|?HvUG#uk>eDwl!b8t@NJ z+YQBUH0(;lDM?;Ma%*bP!~vm(U9Vd;aGF-dY#HEpJeES0^Mr6f+=T~#=uF?`>KaH~ zlq)rZ=!?@Z?YbXQ!2z*2UH78~E`05t5qIUV-Awzq(rHjGje zBey@WdwqKVcx3Yjp_tP5U=Uf8t$5>5Yhydbun7Yu2={jSPPgw!WjFKcVcXkHX zU%PqJ4LjG}c=-C8jvTpiJlu|2(**GFV5z6Q)}*V4mgJgh;AC;sjtOb5Zul5#*yHW~ zi7U3Y4i7LCn{M^C4-Jl=+_>_Zty5Rd4jmg$HrxG;v@?m|K5sMeu{cFK}nOH5$78o;4icfUu?!FoR)1 z(2nC?E9?Y*%X1SG11vZ^k7B~W6}{EgG2p`}hXy)5v)j=lyv;~;L2bD6!?Pn-9mo3( zda=`W`iJ`c!-Hg&hGXC9SysouR!{Z1TW>lI`WZMi$#2SGQwkbdESoLONL9#e8Kgut zV#P`|r%k~G;Bh>O!DhGTI<&N*g~Ex3EUC3yNCCPzrl8D zCHRYrjZVw%_jMY7;D{Li~tpo-`6?vUXK)Yqm119=< zWQA2~x3H!VcR}CPhOtuD3Ds2kN?8}7vnyPokg7ma%b*nwzv76htgVn3E;N-@1~8|Y zVu!P&=E=$hbN(#OFXBR1+)N2)&I`kNCn9)00pL|C6{1s5Jw+4qz|IQ9fmh66(APBf z8~OpNPBk~ULI-)JRu!!MDrW!y5CBO;K~%hKNC&tg2UYwK5ETqQ(2(|Vqre=%7-y`P z_CTO70~mfZn<_U~xnZzGB_|hzZ$2m%kEzHM0~o>%94&4HHT+PQ7`}{?fU_QjyW+6s^(M38lyzlEFgUBBu^YoM!3R7r^59ti3eFT|FqKoyEfN>Ru{W zxw8Mj;$_hOg+2S0F5ADn7h722OF9F+H!?9^28nxvAZ^=GVnK5NySV;>zHy3eCc-dJ zH48;u7uFEhM8j8HUkxIICtbTk1xkjN=2rk(*k2&FrhviNm#cCU;>lakw<+$etAMTq z9s`6B01TR{jzWQ2k!GbPEG%FNtE#$EO)FQ`QifHhA=`DuX%dpf^cn~XUIOGbwOW=+ zKxRd&){MIB;W}Fddc{s%avQSO#I|Nut45`&*BVxnUmgBi6)?sD>uMEScJMNd4=^|{ ztyb37s_WQdzoyo+*EQ?-5Wrx^lQ;u1Y{_v)^;(i0*ZsB}c2x*FPSW&Ra@1F#bR@UN zN^fHHr{-W{g2&yl-Wh2ibkfzj16u@^+nv6d;#vvXO`ZPO>JCUS(Cr>Yh6}my%A4Cg z!1B~p<14S79loMJJDRj+ZZfe!2tCpLP6~OQSPSf?V<?w-X zN_{)>{8rQ+wg>QAo89iT6%Ks2V}n3$$HV}uGr=#%==9+1b!IJ`=wL#^AOq(Q~L@6Nq`;x@Ai@5#!jy@ZnuUh$7$o&2;+-!o)xNYs6pJ` z4g)?Mu+`SY!~=D>vpiYHU??!sLDJhEOpk9kJy%O~t8Ip(z-(JhUy=eDl7%E+sylW3 z1}b{FY?QGN9@m^&!;vIU;m0VUY@|8>Y`1i;YXyDBYZ)Ro&=t`Mx|^C&kA%0DqzXnJ z5N_0cJY9m6P|;$|>4vnh-ET$HL2Kvm@B}b?Jv2OdBgE*<_jghG9nkc|we8L0y$S4X z5XL$cD2t6K(&I>JrFyTYfx+#**6OJk_62b>X{%{R!xsPblP124sBd{~&1>NYsk$vV z;D(bl;=Z1C8*#gq7u=u(U!wpA>Y^G@qSS>+35lxM6)m1zZJj<4Zo2!yi$nrt;^^Bk@MP1dk z0#sF~1T@K6)7^DgUh=+Vb}ts86!Fi?RdtD<&Sf{aq$Nkv!u8^v+HR5Ttf)=xI0b7C zV7yZ<{vhfd9_0269J7rx(6##g>c(77iVKf%1d&Mj<)xOAU zL30AJKz`PaP%I}eaHuoah!*r+%yW=<(i`;U4o-6hFU}{WX@~7E3;R^XOcuqxMc)NM z-=%!5_o4|FzWjd%Kj*X17uS_*`&TM^=kd=}lw((O-@WsK8ySOh2fVO?0Reg6y$9a5 z@8D(7-bG?Crzc&4zsas={7W}rhvf>>@a}AEtq4X7p(AZ6Ku;g3oVd_ea%(X zKoMz+>v0oX*{`Zz6`za|)^L}VRPD6pwi|v|f+K-1anh!pG+@K z09^@)ZMt&ZZdT2DRd1Bl8dNiyHLHPJ>ZT;rz_3gU75x14RI)m%)6?BPjXy97u~Gwf zLD<2YawEy{Ykt&(HHSgRPYXY}s#V1+iWjW|_Q0^wG9fto+2O72Q`c{uyl#5=^^;TA z<-&ibmt%X~@YFTE<5%`iTno*PooY=syMr`LT>PQYKsh$3cxcdQx9D@gFbJcxD3vkt z!)XMmEPf#hhI)R2Ph0jos+}}-zo|Gi*{(LtvhI}dL!w3EHr1#CeJRwLW|gV%1=z_B zn8KiJ3U$tFQE|*LcdZwV>x*2A1CQaRM!sJLfVrx(pf6Dh#@F-f*m4CZMmsx2cEFrf z%sl3RCQ;FX=u48;WVOg?NSOr}KA5+lDK5vLtYENky<+B>7K7=(q85jZQTsY4AThJK zmR7kA?@QT7aJ2A$j#u(29d@1TSWzh}b5)#V*5+M=?^0u3nxkegOY5-g^LHTtEaq}e z8*Xxmt2%>Qc|j;f3%fmD@63!~b1$%JSt~e!&@XUXKuR05G>J07R)OR%s7#$Xo;wtD+Q_0PrHyogUxVM`6zb zpFC*bw=WDdE$HG+fxeniD->5(Ru@Z^rD}bZSC@H>mfb2Bp3M6(;0U5AGA-xl&5P#K z0}I^Ih#Aa%lOzgRUt#+4k}xZyEHk*Wk4jtDvue+L7sp5o`Yz=yDDstQo~HhX1f*SU z80diP;MeO10ALQSg7WoU&KS3lMfFc6xR1{>8Ulw*OLS?}0s}#modBSlM?8 z{`TnVIk3a7;m3v(s1C+5p`OM2L_}i2W0Ti+0br6qZ`g4lH!HCRv#S270SkrTGz8P(KE9y&Xz!n{}$@S9Khf)9#40vW!0>ku4GVBN7)JMSr~{{R@{;j)PUZ) zRfcfwgJg$gwmm55g}Bjaxp)9>#16Jx zB!qI7IuV?o5i62kZ@5)#<)8rp#yDZz?xczfYt`1UwOWdiNEmHk%i?=MESN|))kSKV z3<1v=Qm}$9o=cDjK{))hI&@+3NJdZRkmt%twbj#)ADDK5`FRMac5uCsZ#4)i^87sDQGH9 zC1y~wiP?ESBB&`-Mi6envjm|_JmJiZ>qTmB24K!I;!+!&#={PHp3=i5DK6f~IjkD> zv|r&B;-k)U@6W@pvSN_TRA3lZm?~RU_Hy-Uc|M_CZSJc{893(^n|FKJefZuxy#SV@hD+l5 zB6l6;2XLa%Jlcz@PU0o-EP9&?t$9PDPDti@d54RK%!_F9?NkN}0A|nvt6V;XyBbqr z=la1s4>(sAy4B#`i=t`AJSFL3DzE_X|4agAxUQA=a;pZeUJ1bCmfSJ(c6abs*4IIz za%`*BeM_Z1OKbb~E&T62``#w#yZ5sFmtD316TFu(dr>* zBnAgWVk1aQh_ZbWg9EjKj_bE6TZYQ$z^YnseiCdn#TKPX5KE95$_=B$=mK%e5{L_S zX5N(PJNLnOOcP)h4}jgQ)50wnY*PM`>?#mvE3z@g14_+eu>ts%n3OmUfl#hO9MUBg zn<-|hAQjh}1?+&bG}VktpP4YP{ z^R#jx(Hg24*6>V&M-7@*s!_Uj3ui@gQxhi; zf}jb|t6<0&bTG)kjtbk2p>lXxK;|8*POjllG3hAYN} zTA7G0K+Z1;KMl_f`KBB>TECUdhW%u=5lyDanB)%n-f-ae`*yo+C$PF;f>=V$`Y0E}2~}o6Hp)0bTCA%Z`>4mKeRe0nCWyQX6@H z1yq${m+{=hs3UY)qPd?MA*DZ0|!G^h7H&z-# z+=ihB3~N~c7q@f3^%~-7B69!$5CBO;K~!cMFo6TkdlFFeFRY>Eta(9+ z`yCm^5_kVqlmpxyh?jUlUtv|r`!VERUA`XiKq1o3mU$b6G^9S&(H9v*7`MucktK*hAfcNfO_+PNU`wjxV`}Q2% zd+C8o_Z%c23=@0_M#pX{v1f8q`inJi1^0nrVz3`rkQ-_+$8JJmHw*>?v;eT1T82-N zJ34qnrTev3hpKSIIAEe+WUYk?kw#4FGJt96S0w=F=;hlBQWaWnR91}>mLF9R4(mjNv3RiJ<@TP*%*@H*w)!b{NP zGY)IO7~!mnxE$kDaU)JZwi_jB9rT5O;X*yTSmT7jU|fZP3W|d1t5#B#-L<-1Y`SGZ zR-hLqxW@ZD4#;^7zTz&pB_1@8Dc4F>wL}ZvMupE)`1mqz=X>*aB%WRd>cBj_uY8&v zF9c42dAYY1>)#D=4zz=h6dx?FQ-b0(yP8eZdo>tbJcX$0+3YA zdRecQ4Lqv}V^??TFnQ$jjK7n3%Y4`dy_N?zsVF|hzTrluHIFUC0ztMkKoVyKX44$6 z$VO9w8b%dPD!IZybMg#^dVV5>0y(;0qiF+BCj#kZQ%oCxkzlYY!UD42Pd3b|vG}Jb zgr6KOD2N|e1u8Ym^b5?+kYWXD#NY;hbb3(7a0gq}tLkK;nlO$b91KgrN5nbn3~=En7^Sy7BKhL43h(YLA=y|7LT z#$hv<9}SR(clW&-1Vbz$uu5F1N*A6F66L5?S=guASi;vrTmE{!W zt~Y0J?tuCFJ6{W=9tjPZ3pJBugW4G>CU#aE%>`<9DjHPg*`WN`s&M|FZUv>s7qyewIl(+i*%W8E&}JCR|vy$A-ArSi_!S_V>|%Ub1V`* z0a!!RrAESd7G77pG)*9Lc?xVLZ4p)&FF|oq&HWtV%pHn2-AELx%39fT2ch{o?n3Tj zxtT5%nQ9zlhl&8CKwH1Z)5L?im>Fw|!y;2IY;>L)Bo=E$zur=PKfaXCAo64Q5_pmI zQe{C@f!?1x;JgbV$9%y7^V?(wb7VOCUB+!b9W7?~DQ#NPiNSScNr+r8zV2dkfhUJ^ z<4Zd{L9MRvPl6->jPI9AaO|#9xf{UjZV9pF1G}??cLO*_FLRgCOYvm_y8K_-=W1Nl zgS-;FZ~1Ne4qm!{VGq17&ZcU%_B{ zOojv|UqOJXfm;BxqEf&PO%)2LGk{rqvBp_J6$OSBUb6`onAm3q)eIO3sYm zj=av#Wf(&|!7eCX<&Ywl;9TaO*?;Fx$q~-aDr>lfj>B7F@ zuv5}1>v9pQ7&V4*Q7spg5>NPNlM3P`u$_-Q>KEsJ=Y-Cd0K{YPUw#bza^_2?4VoKh z;>*Ivh?CL$8YQsCs+Z~*=Xo(rw}QdAkzx)6yajg~3}X(^txidL-^3dg196NM)!}HxB^atZX zltzZBdOiWz@?;~ZYhKl~>$+J5|ESAQ+=N05L=p@~ns!jdutTERX0Fs$QuV5=SA)dz z636f~-EQDeA{ve+pQ+WLBN(j5c`;{ZYMHwW0HrkJN&sFLiJMt@UIwthEgWGr z2QZv&4sX$eZ&kFZpC=IS>IKBD2D#gyh`7m=vx*~ea3KbLReM#jh|@R+3>Or$Sl8EZ zsl{cNYCGdG4kaL|-nwLy@og9^LT@JgcMjl+vIYQGn=5sBP0R_e0>Hjs^zBt!U(}Tq zi2Doi6m-@dPd;c^Yp!2(ysYvwCsWmG%Mf?(VQ{MYLCsj;PQXmNtdyphKbQ|V2*8!* z0r*SysgkjT_Xs}04dXF*r#wwv6N{--A_^GZ1z^tB1%^d6u0^rGj{wa5ba&NNW(PdC zrw4fAmvU{zR5ROU4&Y)8b2$!K-Y-e}vIHSfK9gNF&KciGZ7FoT)6oCM6`;TNB3Ui?|oR~zawSK-J33}sGtzUWIBo&%T}j4>Gi%nV+y{f`K& zIe_ytBrupUoFxkHGPvAVc(rudN^wtyYGHYE&&>}LeT6CIX{Eftc}moJL4-Z?AX#+^yxw`~}vs#W3DHR7%!!Tu71h1-W;r7>}O3{-e!J|K2@h9GBc zPT%ZBvuXKC?yAN7B=MdTw_vP+J+Y-wHDTkj6;piR;K~}zB0eR(jxFfR0Ny>RKrbXl z9ykpqclMF0m3#n!^QQ;Q9W(EP>tH;#HLHOq(woA_fMyG-;4us_Y;iVljGAWH;MgJ_ zXXMd&L|RNRjFTujsCn6Qf4UJ}}ac)j*bjHcn z_GCEfY;6q>9hw|HIy-)R6T0Gx!|hhwN~u8Gc+zXP{U9)GUvdH&j8yEZZq|WSH>gFa z9JQKWRQ2KpWW^25ugG4VCjYHk)2LAJuv)|?FxcpHCTTLj_&7-VKCH875!moBrm^af zZZ|cn!2wgeo}D#F5Z-sU1LhjMpd&2+i`IL2cS6xPfm$S)qE#?Ip7UiHyvu$b z4A;0I1MCzowH)kPlU6TE)VIQwn%EC3X)fzd5rYf>IM3x31+Z}0T?BwZU(thMO#pbM zX|9s-6$L4&A(Bv4TLyqj@KS>AWaZ6eT731^#p>^xp)IQ5D3y9%QnSXoSzCBcA0qlX zYgy_MhKBM=xx7#;Qi7}~VNJ`}aFCj@#LwkvXYS>YPr&Al2XX+@@!9iQl_Uzj zb5Jqm9Vv}cy$qqVgT>r0t>H1Tr1fGG z1MT&?UgqUkyy8M>nE{N8H2}O`U56_2xj9W4u?*e?bwyl+ToROn9o9J#9VGZkg z1@9EZ63dn)d=zu9-)PXdK@3^cig;FyCsZl44Fis5c|N(yH(oqA&rjsy(-5=hBG5^I znO9hGBR`Q>NppBJqc2&#F3kouK zD@{RPUV+v^3H(#trfk>iauMPHJ=>OLxh$*HLbWNEEJqGgt3OW0v;JV*naz3t@YY6e zbJjg_Xn5?%_|WEH(4od28ymgRAPzh#ziK#jd@r=*Z#Fce4ge=@HB8}X%a&hpqq^6U z?YMzq0c86M95cMKW>i4p{;U-Z1G`1J`v7pOtw*sO$8|0e>DU=WTTu-PBZ+3AMec9z zeZ`_3dAM4GN>erQYuB=zqWQFQ)iBE(mc_NBGXSfwm@C|Qm*b@=lv-WODqGC~EQ#;SH#<_?HOXE9fSXkJYE6`bUIv>XFqmeZ zmBmcLO97CMTj9ok-1OcumUWe?FdBL`rOe4N^TZfxvB2e>d1;)=X~`5vy;j&)DDG`a zD{!S?75m_kBapcdXgBTEJYt!r z$Kic}UWiPv0B|h}LOzg}zG87Z1jawRUdDNr;3QfQX3ZEhDg>QPM2k!(t_zJ318hcj z7~{81IY@<--BZwcrmr~p1G)K3#9cK201yC4L_t)ZSAkv30z$vql~ZEi7+FV&Q$cr$V;ATVI6V&D?Em0rUlfiNsk=N@_mH0M4si{B#n$9MJ;dnG04*IjnbO)pK(RgcPb2^@2XLGhS z=nW^6S+6%pS}EiOe!JTV<3!aB#ncR5j7IDQ?D13>W6aHIK*0{NMMJWKZj3QPJVC?g3?NViRvAnWe!iyHz->g+upd7%E z>Xr4N+H}ih9V2l-j#$1v=Cgy1XrW2KlGW$_r{0*hj;y#y>7KCBf! z@FL7yT`OUHraBE=wefV4RuiXM7eVY*k}z|ueAvW3a+iw#ARaF8yQ|Q6BCDs(|K-mi z%ifl=XgHEy5hq{ZuLd6`PLkro{W@$A1DG8uf6jHG22gEKu~Mih2*j$z$G4kT?Jn`7a0d^(hA=K#34Cs z#QCgn1O=l6F-_gHmPzI+RMS?OwIyk>Bpt+a;eg2sYpYe7US9M3I^H`N47v6S_Y_ia zZtBW>eR`G68P#uUEKrdRtH87IT;Gb^o3us~uvGVvbAc9MjzM=(NckXcq>|BWYUjNN zsQw0q;@`(s%7#=)i#&KBQD)N%k|ZpI*b5z-X2 zNHTugdg;I8Zheyx`hpYei};oOeCSYh6`E8LZp~Q}c}ZZ(|6w)i+ccIkQnBe3uavsb?vZYakIZP3Io@f4JIcJ9XqtS^NElC z>vzBP?YqAG75uyN&O7hA>l@$x_Puv}{tI9J>euhQ^Gjd)(%0_(#&KUc>LNcidq9I>rEoD1ozX-;*Eh`P2w8MO{LxtQ`4OAQx)-9 zxM<=M36*QbVr9JogWV|Bnk9&qfu#zEL@^%VAccusucAJ0%E5AgTB;t1PaSji-a|I20c2giTzmRhSsRu9`L7Za}zQ zqnXKuZpoS{$y!rV8?siXL-Bw>uCQ<#EF2Ky1|B-(JLNi68mcyN%Nkc5s!6!EVqj5X z;jQI6`Ca_RaRN9Wx=YM7N;=gM4eBOwZmc3@5h}^&~E#!mWO>Rh&}5Jr|sS# z?hljEq#dV@7wBPZwc8$^)$Mxiw!;~~aiVp54i}!Jc0DeYxrh^)>x*&mmfnDB;|$04 zWabU}cCTx8+WK(d^hOji-5$zOrxvs-VY`~P>p@fs{IzbUe)-YbsUy|RiRBnewg;2l z#PI=OUZZ6kHdXv==&QsxMXA7g873QJ0@1~<%vniUs{=jjAvljbDsVh7UxGQgh-aZ0 zz?qj7odM@Flgoe{H6f-!fSBwBtE3F5xEA9~I5}7`*C_GVSy8N|hACu_E#_dWqO@3O zE)<#vV1jWw+%V?^V8!} zsGEzTeDs0{ieAoRo*BR_e*8QKmupe&6(HOLhniKPQm8B!=&PH{@WHZ}a|VE!zC0a0 zuMSNM%=y{kD+Yk^_X68hsTLW)BFT7f9`+37?8pA{+S`c1wI!Y~SX#Lh4Ca=I^urMC z7Uo*Y^Nx5Kf`1!X_R;^N(eJ`4P5g3G1d)|1nlY56wW?D1p8)21&dlIE%!<}}xdew` zZN6Zf*T%w2)9+vOWtx}Cz=QF{pDMneds#K}YE$i+&WP~L% zqLo^&C2^So#Vt{gq_wR21(;W%I!Ofe$WBp+CM5AEovV(&L#GVC3)XsVIqK`tKuyO+ zI@Xer3biJBJk)Sw*jIv{>~|%|ZApx0Gpe(AfBw2vU>k!2hzlvewU}N7vivH;63D^j z-iuTsN+NMh3>Fn(NF*tgSz1mmN*1yxTpZ8E(Xs>{zs~8ixEFlI z7B7Jp;$*p~t%|pUSFHPK9p{<$)x5fAd#LC8aaV?-jszt=1;V}EvB~8>vCq{&2Q#NL zwMY}EJ9VM{hCkeJh3vu18f`k`Ew?{4{j}=F<<>yyj`3UtPsfo}x5StAhEXztde}Ak zBX_b9O*X>O)Sqs~Leb8V&e5ak@#F37?Pxl6$CIExaKPFmaeCckIA{aIoet3#0*Slb za5!#(yVSFC5JUM6+2wA~?+0w7p~*Df*lgj2I(>^PUbWg9C*qIB-e}@Lv&~>*E8NoLp4{#$+gpu8JJN8dhhf4UH6~3BEen2^$SVjEgD$tQ@aI)vv5I09X?9(u`i_E=LRJZj8<|ixOJS0gPMn#ZLB@ zoXpBk=Sf!vIe^C#(b%ErDrrBjhKdr+S<)@9lJaMsE!m13Bre2Z7z>uQ#NCrPB?;7Q z2-~Wv2RTZa-7sUAZSj0^m;elW3IOwjHpe7`zPecS<=86`esz$=r7mffyOE_Dld5>p zB8IJ(_tzIsa7K8&nz%`!>WpcNo2@)e80N%^QU0vV5RyeS-wr_EH&+_V?^&-{G z5?||LuDsS&p7qP?z8smHhcxdhaYdaHxLgK1;H=|slYT1m#)Smn-R%OG%a^TG_U;b0 z%0smBlwSrggPF$!IeM$}YSnlldYIt)BJA%)0PlhJFYmo<;nKZ}dk?J85P<+3_YKhq zMUQ&sY}R}CyKlJVeK-HpKfmu|pZ&D-iIFe z+7G_-rSIKy=eO^=EAy6fzN*OqhI*k$G-UakAMD-&wTldpZU@k z?)=7GU;fTL_uT*QU%T(#dmg;++mHP4n-Bfq8$Z17JC8o}orfOy?jsL9^oyU~|I;6R z?`MzP{m6Y^y#MZ7Z~y0Ht6j3I4Uzn+*j0+d^eC~CFTt6!30PG#tl5-gOp9TvS>a1O zj4W<}FTq`WFWfCn0=pILJBdu?_fpA8nr^!x%1+gwsNaCXzQl}dPmN@x1CU|A(VD37 zRBml*?M$_oCqQ8%#M58mq*an zDcs`YztHrUJ3Z#p!;VL@V+k!T#on5IcviNLf3l((RMU)`^(K2cex4A%thqR@{#5?nm;Cv!lVru^8Gqf#b9` zkK+O9?&I*Q&!3p$k(}*ueoqJ{muMdIUEn{CI4~heA9O zFC^{?A^aDQ+&R_8dx7w#@S?1(lL54YkMvZS@8rTQnRo@-e%5{>w!?Ow zQwKJ+L=FZbvJ-F+y-s-Eje84wiFYX-(gV~*h zJqrwO&Bcvqd26li?D?IAojB)URWZEFk|_zmfK#ho=?|>Q)D!GYJk=Q6S9EM{uDVxO z&AYqqdKt{8&T`f1_AJ|~H0ln_?rhcrP2p&}Z3pVK>}K7751vlD>>CXeJRG;^hOxiZ za+*yG8173arv^K7&*z=Vq>1;B&&bFC01yC4L_t&%Z#{N<-5P8z2IG-E89TG7x0nae zeCDqfKCWRlF&8ttKddy{Io_tY%}mXeDOKFx;66rfS$g?yzkm+~0qV@sQWYmo;NeKq zQYE1p=t?W0eDNGV#B{)F>NiE`vej4|jQfEPzty2KFV4XlRwq}^WMK@$r%~M~UH@4ZTvToN z)C6!G#*wRkXQox}|ufpY{f zQ?4{w6H`#MZ5xmV|`Nhu8qNnfRHI^gZ2KR@sP2@K=mY3lHg#h2#v zCKzq}@fCjk+gDG6&13)Od35zW`SNS|__v3z|MC9$KYe@rk6)kv^Yh>S{cnH$_kVi% zZ{J`3>&w%Bd3yZMj}QOyaPv<$o1dHOzg}Z|^KT=e5x;>{PlBv^{s(12Ah}0`o-CNcQ@aC zX#L`0d-WrLZoW5ee>87iM7Q5t*UycsAC2puO>8&c>)7%k_rxD+-TZ23-Tt)=-TZ3l z0i<7b|EqoX1MkxK^0P(p;q7-%^uvMfe)vlDn3~aHp>AI4d=-xT@-u++!C!tha4^p- z`rZ<$J$QHhz8FJa|Ec}>&mC+Z{@Qx@Ye#ne>^%JHKK$xK_dk0a=!bY#6u!1g;f4CO zTG1Od?teA)`>Ge>N*b@1r!I^~sw?;7;zzsxRi~nda)#UQ!Oe?*_w0Xp2{4A#m+P*7 zxXTxN_1(ch9)@4KyZmZQ@5;05>f+W|UYm<60~p@iyU_gFfPL%@ic`4Eu{jyqAtgPuF=d&`CD^|@|;x#{2E4z5LL|tktsdTAWjQDo&c$B_!a zu)>!GQM!DTSIdhbd22PNtFnO(Rne#&HSc>wrSQwHd|o;$)iL99*!ZyGUsVDT=Zu+Y z94~*tz&m|yp>hcO3#Icrc)3h4=lILMmB{YUU4=Q!d07P%R>CUmsLq4?U@!m-6N~{E zoXviQipA}6dADNhm&F;wF-J4O`E7{p2w5D1%bBQfWwU)|DZm53`8;sW7w&TQH_Vh) zGt-<=&g4#T3eYW3HDb^uF^o0&D!cGjNuNsIBQy9rL_Lu+x+Nnehk;&2dkIv;#(V9K6fz2cKOnV zHZLs-3|oB*Ae?9Qg7Y^-Ph?wj^{usf?rgsI)M*EsALHv^)2o-!^0BvuZ-d==YFvG5 z>a#)M93Xe|(!TxP!9d2(ja#)70x6-Z?@cYuIZedtA1y6H6u+|&$2dkQiC1}eN~C_cwZfB#f_G=etN21SuK!jy0LJ$a70_G0)`{M@ zzPxz%-`~*aHumzH7ni`k`{_~|-iqaNevnBk{*FYQ;$kyo+h6@Jzr5(#);m;dTI&H3 z7@eURG4)m4qfV&r5B#?`7V-Ou*K5PYD@@h|odbp7H(7^pAZUw-$f#f!W8?m_%l z0j-|x`4_XlDs;xV?j+CVB9lpVHZvwOV?3?RW|s7Qn!A&UH3fQm2COHr2l{q91_8X7 z2G{Ej0K8c?Z#Lc8*t4vn& z_Xc$W7=jNbhI_pLZkT;DaR$dJxNZ^N7u*GgA<%a^@wny9!MJBm2ljm8L4%5EGU*$i3?`nHIX>r1DgmtWrO%n!q$R1{t^k;23%L$T@}A5@p?c1>o{7RqHUcp1 zY^HJq<&2|DHB7bwWkKJw>>fxA1}A}S6`Cf1VV%M9eC1eFI#R2HBv71AA7!)Bd5{y9 z7(lAGJba$iJgS(8u)6%0r8{)*WyQm3^+qWuN); z)D|!tHk?;E!<;i_hay;8F~JJGHDezG+d0Mn=q;7N=6&heP~C+H;Bb*rF0`|$%vL%h z#AStQE?X)Tk6`^x^F&wOD!}qa-dDB7!LdBY#U-knr$9V zF7^&j!{&pWfmTz?5{_0agb&ZsN4OZg`&s%BNZvcykxE#r@4@;z~2ZuQ~*BkYwT-e~92Ml)dmbKZDKB2HtV=qX~h> zFr%=flRJO}Mm6E};>wN^vXxlgf8_3q0>5{M1#+o)C}^q}>3G=2CXy8m8>F!(Ayz8+p` zblDMi)&8F@a2|Uqi1vq4e~svlLoWL(sjhtUMMx**{)?Tgp*!FsEyKU9$W~=3Nf!>DI zZraVd+3)(Jfuw6qr=8)r*&76sEZy_F{h-xxF#wf8Vqm!4c3roU&tDV@m+e*+Zv+Md zy0fVdO~(Fo65wKFf8W9ds|L(2XQM|$i*O}nrJti}>d@{;pGRhF^?GG!Fp!2z-Cm87 zmR9YObRF)L)%0_jON#5QQcy3sUfywYo?n0)W|d0G%u)+~xdJ#GtL$iY6Jqb6N~m+% zP$piP4j6pSj=4@CtCJ<7t9l=uXOAHOI8(Vum4&hZaJG7qDjlTDhxzJZw!DuqV4Ntx z=xhPNkQ^oeJ_U&>&T3~%hg^xvdQ1dxE_bTC|H?Ldg5TUk=HxOB5+9{9r(qaY%2vw) zUqz+^HMf1lYEyK;Djdyb!(nY?;5J;06t4Uci^=(5Jaw7cB7l_@-irXdS19eUxJM22 zwGKg9VA!&O&;4p`55fQ{NzafU;*&ua+J)a z7|a>*VtGF*jI{$tp3H86YQ?Iorpp%-$47@J$47}2{!k}OC1d;<^gX-Sp$`@wUwmfR z8Qg{aJv#Yxd@9Rox#maD^3w8#GqO?1i`O;`YVB{7ge6~!EPpujUf(yy$V00 z&=S9-KdcqTvJ*e7rhZEF!`=M!u%-0)4S7g3QxRbvUbZM}=lL-yN0*qbdO08u5CtDX!UT;2>Wc?4`*5~iM5(5P>Anx$^L2z5HecDn!uce|40rN#Q&?S8pCtYQnX z7dV*RsKX@}dwmmI*ULhlYBMb5Ev+=K6OGh9yXBp2^pD)r|0I-V5gFRaSFnn#XvI78zA!ucV zBke*s24cq~AXe%&Cq6?LK;6ao1DzfK01yC4L_t(109bMN7|Iupq@ghn z563lm-&HgF^MZ-n5G4)Y<6?beT9wXD)D4a+%x@p?k3-8P4h^ z22|Fbm?rq>{LkZyPoyuCocS%Vn;~m2)Ah3QhR(*qLuvXOtAQ1tBo=t*;A;=!3wgQt z=RC5x5`vBaI4VN9A6Gc(3(AH7-c{X#cQk{E>ci75wfuKSiw>AuvDBG^1n#a%VDQ03 zZU=97bh-V<{D(&^ehPqrMo0!fMa%DjSYevo&?1Y|C7vNgYo0-{jpL#4gfA|%R9d{) z(DcO_J{tW8WAN1+elZ7kM*qreFDvbZ(VEwqvuZFd+5MC=NH^z&@tqAq!vx1YG=51} z3bdjhE<^`2`))(?pBA+IVM2@VCaJtsE=M29@hZk_g8U2gX-$YU3FTb#LJ_e2HiR0$)`o)bK!MH)ZRRGpO+S|xdb7$OMztcw~$05qA z3b!%*GYqcBuQvpmzWR^A>x}(1u7CPBzk;}n4FmP+FByI#5pLB#28GY)OUK|NeW~zY zjyit%-GHKjJiB=|uU@R%ZyxmJYyI}#Utc@ZMRh!_4ab$y#F#Cd$;@H5ys~BF%v#oQO5Lsp;|l;|I~)d$Mhy-) z@I`RIZCK%k)or_Aa0i~a>kS6=@w6?AgJ)f}eko{z&Ak9p)4&cKu*Pt+ZZv`#tahVb zYBeiRvtDgCjc(iOcj16VDo$=N!D>8mlu`EJiK*GlS*?QQEEsfagI;Aekx6bv-$J{c zlWF6oY+InRLhoQ`0lM(bYzRG`+7icZmz%AU>d;(fgJiWw#6Hk0oay)(Sv|#O4^c}7 zR=tpQw^2U^;Moh3wtHdwm$1U6>Y2byn%f*P#0Q4~H;i9f{O01=UZ`AV3a2_xM{;~J z`-SqEZU9`8>FtwfqW3IbWCKuFvDrO|%&S^g^yomET7Y{}EFS{25|jpnvb!o#`SWSw z&$HwwTv*wZOf(^MX$QWx46_RdEOjmqV)WfN%sl~cZLd__B`lc>ok(tjzL$wD4A`oH z^rg7uNoP|R%dg9sV49QZ&v4JM(TsshZkH;{g+D^6mc$)l&CI7$$;9Oa0G!EQrZOj| z=ex{yCV&~k2an-*Ifp8PQzwAGm7~wfWBwR&=!-pY7y`;zuB-LWfYN)w+iOm zFl%7R1TgcZiBIK6!+GB@_li;CJ+he&SaX+2Rgl<5{?a|0-C= zLwXU4c2q*vXN*r$pU<;9&}n*$%?kgReRnA!lk}bba3|lL=?@%@6xp8E!qh4A6?c+Z3?D zn}hHQc`>m!<=q1gi%Xr^;alkO|9`y+t%uk7dNw|cpZRSx9+zju8M*#$YVlLxd%^wF zn_DQgXZ}*tT7aE$n`OKktbbZ@YYW6KaIn(+xe9TBEx5aQF{rC=?)9^G_Yhp&I=45$ z-EIAPa_K^#?|3T21$_YE}nuv26Ta5a2LX0JZ_IhEet^1x?c{wlJ6Grra*G5VM=;e%fx$iI|f7t z4+g^r_XlRLZ}664F>~>uuGeia7-RW#Giy3EN26-5R|I;4Mz+~5bo&+ggNzK|c{r@K zyCu+fI2K_iV2nM0v~apxlF8=CG1uGqpe3nZelyE0+%TjWthQ3ev1*)xN!Zp*X$_6XD#u(I%nWKU`%Jp} z?BRG89A*wPXKERFzDVrJBAN7|^t7;&FltP#VqbcU#imOUF?@tGfDO!+YfJ1&)LJd_ zVVadnKbGWSvBj!=6PE%5d$Rb)Jj3UWW`z&f1TcwfOKqKA`~|=MxI!>nvZG6~?x<>t z=yZWwj4Q@2RI~P>im?v>hvDMPE-Ww53#HOhI68!G*h5LJQO-+tRk3uUfN%SS4IJ2=&99em6b>m@Yj0Sy#XH??_B($NY}IVwF^) ztcJwucQMa+x>jhN-*Q?<&VO?xeRd3)Le>{^^=vaINCs+82;CP`OJi6rTRn`Q_8ooy zr{ZfR7!V7mbKX?{S>BAJ%hq~lJ@rFi68I!C=P#m=h~KKq=NfT1kAyD^-zGIxFPuGB zDKeN_Jy^yJu9jl0I_-09_6-cKY2o4GTW$VSUENq$U)Tj#GyH#li5t&}h)`oN}jS3vOF>zaPw}oyDw+?R4Dg zcl~DFWbKaOunFkG7ULvg2KBf#><7Rw80-AKt1=!~>4q6$vo@Da_ z%Z6i?x#V2_Smip&3Sd@*&R5RZ@jeU!*AkiXd04o=bPT`C#ta2hGPbgni=^seotQDms=q0Wq&>oY%D*h}|=6H`x z4cA_?NJ|uj)&P!ls+$DA1F%ZD+SkMdebpl1J)JY9Gp9J+bKywtnHXf9YJm~w`Vr89OzMO-2W~oG>Wi0NK5B0%N zh~5{Q78!$RLRuomak7T^d~taha&qN&`KtIC;@rir_DqGNm4ABuSq}}?Yh=<=muJUM z6<*KZ(R()kPWst5HaZs8jDA4`1Ejxf0_gs#4&5w8*Yn0^8q9{ysB5%>s$I)iMjir6LEp`4 zxLyu8`#YO72R#?|6o>^rEvty*+w~gu*k*n_Y$_60@j^IP&~!X(0KgE=GlkiO{q1_N zw%x7|3`5{?&@cnF2UZw{ShBQm@;XRd0f{M?V^Cka;a*ooq?I975-Yq~Hs&)wTtGaR zV8CkSfWeD}HJ_Uh26(t$yI0rV=E_|x&DGkTFRHV7Wiqb~C*{tdB+ZEj<*uwMmK3&n z8A}K+Gv; z?&s2BxvNkB=9#%FNlUL&dIhkSiYLA z@nNA^{D9jyAn8y+-1RpDB7J4gyIio?8I&?@0p5A z(!`BPUv?bH@6bEb=Ok_wdbJi$=H|(Pzzpbi(^^cNanD?gz4ffVnK!N$O>99RplC3( zdwml&5$LTq%FR}F&^5*b`)1wza^1OG*Kbz=w}AK6+{X)XlF86%H%j1WF@KTEUDRs1 zUN4xtnKA29| z_iOOJT&jd^8|Q48_)Ww+N@2@!dmzn)U7#8`$0a#d0Ry~?ic1?pV&#Sj;9j?eI}DXR z?S^y1Q+qaZNZjSh(gJ-6;G5ebJ&T|K01yC4L_t*G`o@LU8*8;TXUp1TUg?j^y-|s) zrMp7Ve4~>CfI(ac=!Me-M;omyo>Ft|RT^jv#^cIh083rPo65ScNfmeol3{{v{}P^9 z(Yg{evarr=Nez=5qo7$-7*1NQ@YoG`AeB5th+V0M2I5QmNxa;xL^)!NIAN zRHBeFPv?iCi@ikZ2xntZnmWJSWw$;6xL7?hoD&GvvsgXIR}XWQ1J;3}OICGf&)9^3 zE1KY>h0~RNFc@3dRxsGGa7nv`^0wq>$N0V8MhDC(Qi(9DrUhY-Kj|ifJ%574EcYm$ z_~O&y*F2>6gyIM{hGM&ccoC1F2ckt)Zl>tqRx)r`I__swp>uT6ZTvQ{dF{2Kt1 zwM3(qrmti&tI{9wWb7~zEV@^~jRKbr^Y$XFhZUh$Ll;|~6DR+JKef{rPsw=~OlH`b zh$R}y(I{`rRVForrH=Z>L(uQ&tHaTgXA_DTEU$`^q$KT&2fw55YZy6(-q|YHh?K=PqnIhrPThTeGO4f?iJqUg!&DG=BQDsYXX zzO|gy?{B)$mrY|cbD-74nhtDGd^U8Ue%o&P71u1*N@=r_Y5Fz5Qi9Jy-ySot08s*1 z;>iuyGRttl-6o8w0~1^+B|+#$V893Cty_&6)$7>fVE_gb!;0b(j`lsX(+>KB)?nD~ z_JexU0+{Rd&<*3T$*4I3q?KugA@4o`YL0qHX2H5 zG)N30QZU4uO|V*dVDR;IaC=t=hC?^JHm8d!d@ux>4n~qg4uP65vb{mI(<_s~jYhg7 zi@U_>0=f`aT0!!E&T50f!_YG#%X4ZaW>o};SLD^_Ud`Irob2g4hyFG z*je%Xg6(7-H;1idXLQpDi7HnTm0C)gD_a>51;6b083l&R)g%B6;==m^s9bQ8%bk|X ziK=;_)<@wC7liaB%&utf;zBAc;`rl}JqSMdB5}wxF6>nG7k5-)3h7S((^)Z34fnWe zAC`@SVs(!bz+viERFWdzaTfH#3k&5FU|0%C=69r{gG%F4mUmnFC`g}%T_#JbJ>r9j zPi1*`ITOtIGaay$gH`~B_oe;SXVW6W!z$2sTqc9r=RjFZS$vf(;o~1%X2O~z80(2%VwiDe-Hw;D z443)i3$@snsm`*^>{6%cu*)wO8ZjIlpYhcIpFm*0#y19Fsg@0+>Zi zFLJvowQ3JDtU>rr~LR>{Y+ z1Zq5(4ADkQ$`u2@QF!^?WH9&Ru<^GLz|>pX#gDhh-DvVSoJbBmuEH&^{~dsNLK(!6 zK&bE}agQ6mN|7d(?_+2$xR8LeyNFO7M_TClV$+J`?pxIq7vIo#`TS~dHFq_AS5GyG zjsntQq}qs!Cwx^br}wRcz|_L16*LV&UG_q#Kt-WDwr0HV~nm=05@~g9Ybgv)1np4zo zJZ^!MaKK6WJrx@&C zUpK&Gdg9g6S}x4x+*&W;n;liIL^NA?6TEgFjK-4o)ohhIonjv}?H7ha{1GbH_WLEC zd^D;~CZKPPYp-E{>rJ7r^pNORWU+Fu*6SNgw{Et|jb_QK=ln)KXcp9<0I5RaWxr8s z_smAK;s?c`F3XhbjWUEi*mB9T8%XglmJoqCmSAs5BGq8CWP7R5B3Hbyb%bdpEIaAe z(@v18)-EJ@yLbT%LrMI&pYD^s(D~(lIt!zGlFl81!P2ZSu_q2Yy)6rls|Ph(09>&S zO11q$MWV_g1>mp-me{PVOb znd21hCNbn>~H9qD*Nr+lM%gLt0DY^CNLTy5Wz%^*kOH7ATcT z!MDd~s~6{l=J6sX9btZ@Z#1o_HGirszJ=*U+7OezAElpST97uW>b+v=yXu6I+pCBo z3p;%s#~{ZU(C61lRw^Q&jFs^X6V-Yi?=f!ptx>9<TucH!ce@ZTzYjh8S{OXAy&G639eRVm<>0EP(`26vr7&xI|9IR70k!D5wZ zV08jR9L(n~*a_k;X7+mNZB{t(Q72&W+&Fdm!Zi94P7kR+38lM2$VFO63WwGiLHfY8v>n)OI$Gs@93=oz$EoIACRhr7#wo{zg))O^_dZ zTmu6ecbPttX;e1y%kKifpsy;>Az9GzWk^N#QBaxBT#?M8n5xR=9xH7z35)hOO2XR9 z6}GbZZ88`Lm&mi~!5~Rk3c!rYswQj&!>r^Bnajk9FjzHOV58rt3)7D3j3nI&31GHr zpa5WDFpFWSCc9jW1oSfRj77>+rIdqr0H)|f$yyCyS&2k2XZIxCJ*u{$djMaik1tY3 z=gGsfgl^9ePs@^44aw|Lws;oBA@+4_{0#0~0T^2Xm=nOPQhAv>A%hunX5$CGugo+j zK0_gZ2}Nl5Xvi9&R{#@xwgxTGOZsZ)!ZC|!jsUFnj>OSPY@Rb>q)o-rp*<*mygo+B zd>0~)Kcpenzy4a`FFui`ezJwT%*y#@#{KKx)4S~1*Jv{_5FNv;S}g)H4&acl@8Z>O zxz1Bfo+^-L>MJ-^#5F`O`Sf@7`WFCwHGtpZwyed6gKs4$+9^CHhCc#Whm_ytRlWPm zYs~Yr#CHCp@#{6mpc|t1Yi0RZ~5kwk{S@m z6!?X@TLKze^)mL%hVEkQ&qwZZ;$O|`i=i`Y86Cew@7wT1br;^ZBApd_{&d_RDc8&1 zQZldxi$!-bkqVTJhFPm+0btjyRI6FnEHq{Lug$IumXT`&#(dg!?ULj?D*!{dApkYO zMVuL@1yh-vCE3yaI{dC}RqBD=>ox}c7MCi)0k;~K%D}3Q2K69f|1w`hqb`~)HG)ko9mY#&=*^vcRH1-TRrL2WDG~n zc;b!5aM&hx((F#u)Nij>1azem$VkqQXIZ7I)hPyzY`b6X45S7KjBmSBRjY~%Y!qQT zDa%X1kAlGp!zFMxUY|>g<`_F6Jr=u+^9Z@cL#yK0A`Ikg?VQ)jy3GvaHBwHHXtc7p zA!zjq?S8S@Ey`l5K=>V2@~WjWxf6KbROSTql^zwQl>GwsxN=DqM*a-vDrSgh>i zOIxaK@Ifw5$@DFt8#P=KF0y8%s@NsVkjho+kgI`X@n>OtG=IDcNulP9R6>RW_8LZ` z<6T_d*lG58CDu%^XNul?Z?#Q(xC<;WM z=xz<+O5X^y5Lbk=4keeO$x5^QK{z+8;u(=-S|MEW8%3dGL20qAtPrBR6thCe8Ezvo z+dw{ja0vdCMBU-z@j;S>GuZ3>v+doJa52)`Jglu(2Ml3A5qmJE(B!d30c;_p6>f>) z@r$kW3g8d+H_qMA`!Z-8VfYPPHIn163ZI2h7O!l+v%d^ELIPC$a4R#U^(Hu}9>#Zy z(R{4voY;3-J=GWrey5O~k;fG(#26Vj!Fc$Z+#B<(Z=L9Cey`>tr(=OYeb{^d8l6Y) z=LJl@6{+cSDLmB^B`_mp3C<9%-^#l6s-R0U{U-?&8_0`JTEWEp`=KW3g?y9|+H&)YNISJrgSM$crrh9YUy}jw( z-S(j=crdW~o!YQxwi}g(U+gris%C}78k2P|*9;2XR;Aaj^gGr0*j~-N#n_wlt!dAi z082rw<5d)Qg>c=r<2p6dDEV#$t`wXDBf-4QYN+T-`|Gz_b`aDmmCShDcARppmUE0e z0L;!v?WP@g)k-n5Sxy?h6}S?b))~+kzXe2Sxf|F}|v(HAu`R6U>^Xn6w3m0;?=z$?}|1 z&134Z9yQBhvLrR!b62vZz|KmquNGCSDwtgU1VTeN10D*MMK()VciI)aMH|MqE9uaj z_icAe&2|A)mSnCV2M6pmG7=MRqybCzW>)sMq(SRR{c47$^X$Lr)N^dMh=cuB(Qg%? zdaFp9!VU9m1Ta@ELz2JU&O*&@9sq_UwOcuFm}8X%Ch%q*Y@pY$lh|1`!!F1Yi%#vr z1p-L<@xn}EE1=@?0K$6P zYV};d;a1Hu1JQ}pk!nh~qtP2@Owl@ERjl|rB0OY~mgqb?s#5o7 z2;NuC0q<+HgU83oPluPEPEy;K=_8ztO^_6WWj=W4_|N^bEzS6F4wwKYXo=q60oYK% z>bMWK-w77>ouiG@H#|QrX*hkW4pw}fJeu*he#_=4RZ68ng@y^IdaR8fD%9j_b@Eu& ze2u$O?8H-X;dfmBpuW9MaFb&t(O6p18rs=wzsRs<8AM5(*=NMV~;UsXtwa6&AK(8`JnG|767+6 z01O6k2VG+_bS6U^xCM7X-%hhMgy$O?qd^S-o(|1X*XRSu^-8}{?fTWWTlU>DET&=P zi^XKVkjmx~)k+>VbUJRY7K2qp-}zkDAocqmFbNQrN-0nfp0!pj*fjvy=(QZE-LwL) zV%3Vxz+OxTwo!r`29>)_v(qpnLhe@>iyjXfvq_utyWsI;RA+D-t{Pm2Ay#da*iJZL z?P%;b%>v#X=$+4TL(m(Iq*D`)!3iZTs{tb(&Vn=TYc{P<#y+#OI7!UuVJ=~UKuQL# zaTpFBNf!r;Jt0(+D9Nt|N}G)$q?lR*R>c!{Dw^EjuCm28U%~+nhVT|DhpRlDnzNZ0 z?ryi#YUQCuJzo!Ujb;&IeGeMkMzaJ3b-3ibYH2LE%?E|!fWwfgpe zb(^K?g>sEt2pcZoQ7|~U*gZJ;ynp=p=xis<=2f+#Wcs#x8WpkH)kP@TJt>vhlAa1G zg$lf3FGUpw-%|a0KOLX_2cQV0B`^=B1==5pBBwyYA+PA~WI9qk@(?;LGyAN>gogT7!e?60gXR^jeH6mg9(cpGBR zojy6hp%5`1P7EhpJ!0|Bm>N93j^kAR0N@bA+QD58Qb-&0s9L)tXG}&raha7t9vJ7M@mnO z-NjVuA+z?=Y+^4b5@DW}_-!6l%Y7*KEoHDpu zE~Kwk)4FGRPPr+SIt&816;$hf8G>Dg$&S_sx8i|im}c87;Ds>alTk}-u9_HTeijH# z48tX>&cwoCi8l9KxZ$33DYm+jfF_}D&H*dqYts{pE$+FjHLa$HUyDwIz63D4GXbUI zeVZkqSIR^Od5kqy0bu%Ix?TlxORq~Nwqbw8WUEr3oN1m-%wZp&z1ZvERAq=Pm&zWU z0vknyWiNxg0NBq_fvQuDJ*-eoIc^4902l&Ry+(=vhS|jld!rgCOTO}jK_lI4=Qsz9 z1GGS58gT%aAP=j3MGWSajh=wsig{YI&!v)v5f+s!mX5Pww}!A11=rCsa|b^7=u7~t z7`%OvlBK9BHB9PG)3XA@HS9gKH%@s0WO&BwQc^gLpz^cEpw64mP zq`_3Cu*(W%DRl+~VDY$N=}MKk%^-xLuY{o0`|fL-&gzoN{>tp~!TIOilTRwhyvsJg zx)EVKxJ`Q*ED)A?n^R65v!uw!||;Z&cA(<^K4y1DsPPeJlN^qB@}Tj=sNTur|c%DY>Nn*8-$X zt@gfg2h2D#xx4&o0I`evDg?_bU)G}u?n3OyySy{kU!2)hZM3ZQrlrBG+MATe(;5Ub z3QIcg8=|2J^va@Mz<6XW)fmq%XZ7jGB^%nE%4qD&=JgS{3ldM<`PA90>Ni)dyPMAS z3d|0^T({P9?6*dP3K)!^cvxWw=D1Za0=-bv!?xTBY7M7Uw~LTt)a}W% zzgkZr4PZFn>9jMMG~s|@L!oT;e7PK&MhO5`YnHOig$97@t~lUgF4^#{^>R-mcSNwNcgg3S+HsvA=%N2_w?K$`x~L)m9cfbjPGRv zU&>*6eikkklDsN4(d#$UfGBX@>XlTFWbw)XuxTY7FBvq%0W$>M8AwwK9ERgTU)z@i zY1{$O77Mu<9uHEK;anKbS*jAL`~sw6o+WXMgGWn2^j6G#=tj!;Z_U`>(V=Qe6mD^0Q<< z%M@~YSD9B(Y8&{0PX&NMU(3no3mNGLe0dB2gT7LVjHR_@OZRT8!&scp1ib{IxWFkksYH zy*0V1&Tne#d;9v)gMi!lwShgL@8Zf>UYqM{Z?U$+1_`rTZ&aGjO+1881wof!@X(~| zT}^|rv17w_*nQhRdgUa!0_*9~l!QyA+i zyl=aiR};XXZ@J+Ysld(Gy#nbQSOv(pORiafm$j{mto-Q(i^TwNg@E4m8UP-$p~7fX z?{*#AE}CXOm%G?(CU{k)oCAQ3a;EN<2;hcSb*+k7EtK*pnBbOg+tp&jE5jdyz9N;4 zRrjl4aJy;6W6@k9JnRRcDInSi4DcJgXLSw&SYw!T#<&>Is{q4ti!g$LcEMLVX`F$c zm@vkBv9czf0^ni6!(g?7E&$AGm)J60ixAZg7y!l=^yRkIEJB<}=A&5_IpPGG;2?z;V464#Ou_y6uq8+xFCL4SD{fab}P_?%( zmhg2Wi*37IfC%PhS89g9;NmbcwJALo^Q>9TfVS%<>h(;cm1XHJsT0yK1Jdxj0$`?Y zsrhF5W@V|9>}_ni=aA){LAHD5c<0!<{)OXR3XH9Uv{X{f5E=FqN+rTl{zQ&$2oFQd zUJxNb3b~nqg;7$})x=jkn+eS&CB6{<3_B3OjE>Oo8T0 zRNNTO^%F2`;{QV1Fs*7XpH3uCg~0&N*%onoawb(dVS-cH1GN%K3^CYzd@8*NaWldD z3AOzb*o)dNu=T>R&VObIx>!2}fOWkNLxS=;000mGNklS<`lH~2gL6mbYHwSE$7#8AC^|1J*aFw%O<8+eRW`;A!S&YomEP{5-^}B5Ooh^^&-{U-Nj1TkZ)D#^53U_IlnJ z;`l>>ee7c5=nZlERDj0nA*bp`ca`y%>ipiCeKA4b@pWZ!V_rRYw@>xutu@^k^J{Cq zF(IHATCQCXcQ7iCCRHi1G%io)_HbMq^@X*typw^koO=>Oo_hGP<}WV*EK|Aa2c1z( z{^&Ejxmq?L{A%O38}!AG_^>AbgC4d=_j67=1S=1Z}^(0JTvx52z3l*^sp-p=7ctJN&%iyyJT z36~MK0;BGkU~r|B3cM;9TrFkQ!eS|M2@S>~~DIXk>$A zidp5jgTWsy{L}gJXO!EBW(fjrAq{MNU+q?j;DqRa!wj#96s!h-8Qy?q6BA+@SD25j z4#rnM9pP^RuWSjkWq!e&jBwLd!56()Skq~Zz=lR6gSlP3QLQ_y!qoQ1)poZ4%CFI3){VL z{e%}J{d$TGCrtaou+Gc1P^y=(%-6ziNf1>vH{{CTY+f1_=Zois(gnP!>KrAdBD48j zsoPvSsMJpMOt4_Mc$CZT>6Q$vD5(dD%x5sESXC>djKi8K9-75B(iu4{k=&+8P@tCr zfNM^=J+OkNmoH^G2Yh}hRYzC_n$;*T5__x#MmG#FA0B@`IQq1A^l5wlKkOd<1pwYV z`t#^)JE}8vz*-!s{9d}an@+#d<1EHw1wLOd;~UTI6TF}&rv(VZD~lXrhda-!fBS6eyt3Us968dtfnv<2axN@M?#)D=H3+U|+OK`xwVPU?qmTMmj?zJoJMsYN#;YXG;xD&O&R8K47 zhZy#YKkhJCpzl!H@X1d(L(t=)p7!1((4cB9m)i|YkE zAlJ$`W*P!_n{Js57Wx|bYB2>lR&me^=JP&GFt#%LyB^LKJ=kCROOVX>tFBuv6fW=X z77Rg)Nwtaqx$4TmiC#mUwouGoT(4)~v0cll10)Hn5ro|aG4LE=Ff8e0)C7PPgQaLC z-b>*#04&u?q%sf-&~`fBWYWjB(#C;8R5FkIO=0e4A>0ky_&`O$?bSjd2$w9+=R0Y)Uf+WMasgsF`%1 zWX}lzSfyU8%9r)$`eF0+aVJ0*8i-={_^ob;u*Aj)Z^)%v9rgfV0VNyEE@0Am

kbt_Hs2VWtb`3$+Dp` ztaG_?3S4$!32lUP3v#2a+7-CxFc)?Cx z9+G{Ncwy37ICm^Xo1<6)2HR7R?YatyOcj*0%-Bd?v+=j3E`aZtOog74VP(T%b)knX}x8_rC zCw(hA5BYU!_JcDPxDujDabWA%bsVU1{T{%2C+Yh&3;K4xWC><&@xcf8`N2K5*dvPn zn~A?;_!j_uzZJvp=)N+#D^2fUd5z^)2d)>m9j~gRWeJ+BYoetw-`KOYCEJxdoEpn3 zZ*yCx_XT~$`woiGWM*95)UR&Zi&fBVl_#n+1W>wM)M0r$%FE zKJ#y`yZEKXPv>}8#Sb^O!+yEfDL~ye@L6G=GlU-&02m^ADc{UP;4T0h`QWlsl`yhz zmznvzTn?hrSK)X(ZjGgYGXQ3RnsBbQO8Wk8VbsdylJslYKd?M44#e~5ZrJdpl!P_(;$7Vl4;gW zR*D9F!DB6{pXHgBSq6!vMMT5G3yEO}1K48DF)NGg#{oR-*?I{z4Y9Vx5LbECy+Xfj zGn-5*j&=D3m79$s0L-4jY}3?embk!4RoArQ?PleIzM{1ct>^AyqWerpsV`Q??DxUfJp3`<6c^z6*?K)AuD4SJcX8V{ z?1y3PPOm7{LfUyHshY{GY0x+5u~uu8rDjN!M3yGAu{A*G+PP(&o9yl&6|!V05gafWoX_n; z97pSe4?+fKWZ9CcMtOvr00@J8co_R835Hob^5XKd%nBC{adY6ds`KkXs~Z%`nM^uy zaei`ox_ff6L+=|F4>{RVmRCgYi^2Zkr-Q?7FjxjhpSipW%u^9#7Fd>yXqez!S%S}y zqVLh$vXn=Kz>v~!T`Etbs0 zg{h@qduI}$KDbC7C9@~#{24n;N4=GlRG(m=_ab}970D;5&&SD6r|B(KxI+L;{V{$7 z7|LKRp^GhkTd^H~EotdI)yYFir>E)#JmIR@M5KNY3WAHOldvIMI*e<_Ev`}fA|OKov) zK=V6mat+*8hqF?DQW!5P^Nl%}7W9Y%9D3ius0{Dh?H6Ez z;eA(|fB=R)VpS$dr&=@yLum*P`ogtHmw46kmOt@b_@|K__VgVY%calQqpAX7^!uf5 zw=n3HI;~v0neTVYy=J)`6nf1H)M-`$58ug&_pN3;BNtc&K)2r-P2S zn02Mt#cBZ8i|u^bpD(-9d7B^vsBl8AxCMY8zAS6iQmL3Ts#!2N49qIQDdHiFwN=d) z(#bDZ>xOSxHMr!Gv`$i`Gw2{$su~P-tX!*6!@F=f&|==4&!iFv-dfq&px5z$Uc3<) zY}+L^5@sM;xnWr`OgHTNHPb9qDj96?66ruJ%Z2@6zm8Llhrqn7KUQp(%q(EF*RsNj z)>MRH(09~#u%#^?bev(=g>Z~K>{@idATH<|)C=&zU@!)B!(6bW^581nZi%Hoq)Wum zne?R@GhiI2FSS(3@Q}1;UV5vA3-1g1Vt|KNYZ0h?wGNh35WO~E7_)h8u{5W%Dgiv~ z7yI4(Xi$;p$O!*PD$Kjay&Cr5y~aahGBTlf-zSh5zF8VTH8aF2Got-=4m_qO=JH}f z8nlMM-DVrdr#KJ{w^9&rE)_pia+ws+ZsoaBIV>B}$U@+>U(eJV1=w`YOS*2t_fw8@ zS*;$I%ZJ!PwdxsEDW6m;rr!6(Oi$49%-M70zQIXo81?t!}?@#&WE>?9PtGUtgo zs|_LodtC67%wf9=`wQZxB(YhgO`WE9 zWY#u?hr3+qOXy~cd%4m+*JtB>VZM1Qz%rBPNuc)-#y3+q4@+^WmeNOw&o~tm?;zN$S%doZlsb^+3idLv<{JFqX>|v;^n!vC4u(Brday zS+;_?%CF-5ZUkm2PZ5>Km`3x;;i8&nS&sZ#xC$hW0hmP}by*3GJx$!#feN~QoQaH2 z@xG&=1f^fXZUox(egyFAsUF^+U;F7O4N9@_DbJbO-vapWdRzkdDIZ!}2{@NNC=5Zz z?gonStmgPF0_mtR%yY&;t3B@96NWRv`XcoW3eTy}{5m84{F>Cwovfg_dbB~`>5Vbk zRKQ(q2dm0h@~Yg?yh`YT!2~b`2KR@e$;=v#YYaOx=Na}FFkY;@>D*pz8UQf3D>io| zZHqQnU2Gf8qUr!ImKOlVp25)V_N?x}=nYMwGPpZ3MpD8_>I}2$VH-c1?HqnvoAoSQ zHGb$@^`d8|n?V8I7rcaTYX&83L0^dW7wGMH6>bAN*Kj4KI_i00ag5b~^aX~6zVkMW zDJ&zsAgI}>mnx;?x5q0(wKE5d4ba`n->vo6000mGNklE}HSIi`u zo^^M%XiB_J}h+* z7 zArrh1@10~p4U*fu%^u2kk?CrQ2baeTJfE;LkH8U8-ZF9V5f`vN4! zAn>!Vg17dPrhQR0PPz8CR5>DgZCBF4psIBS2uV)}nI+v*QjL}iN9-jGu{KuO$@XRq zzwPEKnL;s}$tKUwj^TsZl!5@}(kTG=@N}E~bXl%4s_-R>CQA3XY*&KJ(bR9*I*kKZ z$DfrBxK2rCiwk)9E)&G!^wn#Mq$5*mThmuEq%u+}3q}@hUZ&WI-r`QCu#K$@N_)Vt zs=u+tB(JC+gGvD_>;tRdE4Hc9A#i(g`6rHyiem1lYFRsp!XAb3Sq9JI-9P^k!L{@{ zWBO(SwHmJ;r3MvUk@zES#@k#6K=NQz9Zi5wwIp=mEf;k-;9lSE51iY(;b`pQhZ{fN?T!IWrgiM^^$k$D z-7oh>H8!xrNdWjxFAt)#4^Ok1f#7`uFV(6S8h$QtvsUfWcQRmb!!JtM*~tlp)ub;S zaNARI%T2rJn4onDMi7)`!@>D_0D->3;8`1c#^Xl6?{Q8PrW_8qn7?>_x~^7=1h84l z!t#bwylSFUg`kUeEpL=^rEK!+m#bFY0gs!0EnKjq958EElfi)}O@DDE@WJ3cu4gf8 zua~{mqPv`TKuT3cG*mjK|&s09FH zs|FI3o{bulLC|YCorZOv4)lxQO-~zn>Fz#vaN09uimIW(}zlq%CaH*1V zy+OU?dU?+Wl8d+*>NLyk1_p&zvse#sw^Wem#n>724X}AUus~mk-j~UD@W+d>C-hYU zk4FPZn3y z41vuR#$ugSpGWpu7Q5Wa%D-fFLrGx|)am5;5Cc4{$I`xlUXWPwznnAEJ;zQwMF6uN zH5ja{umqgJ-9qtLCZvnUT$q%vC7J^#XgU?6kj0a-vjW+R4ig9z5qAQ^|;%68^Qj4YLbrP{$6q1M&r1< z?L8E__jxEz(D?CW_PZHhCQ`ivtzL1&P=V}JLFVw;r<@LbkG_|{V2ZwcsMb4$Gx4fo zSG3ldtsqLWY+6M)77sO9#d~Kg?ycFCxwx@s8>c-ibjOv}porg#@!XoPo!+Pf0Jr*C zFc<^S7d{xac)X~o9(Ltujfc2ipclrsuNvcED-0ePQssXhzyZVW!USJk_xb~i^^ZW` zPS+gI>Z57U?bZAs*Bw^-V*|f;8o)q%PxYOJIvvTZ!SB28q(R@hm&L%UT>!&%FUNjC zftwcwM`_O>aW^P;{1Ra7R5Pxb14vYNgzkLaTdyVYN`lYQf3ODtPbN(OxYr9|gA)?K zPhU6XQodM#8BJM6P6Jp9Te>9`g)XZ_#)V2D*=zbwU#>aR9D2=`oJ#kN&^{PjfOayf z%MF1_$kMaIDzO3|hz9@+M-JhhK+0!!!k9C+A{CB?GZq-D6~ow$M^3M6GD;7za7P=^Y8E@~ zvXrH4m7=A?l5odbT2fX;krg~1^#OYe7I``GA*M_Nz%siZtsCaj;eNOL|MB%6JaU^$ zx2}J{z4-RF4a=4UO+rU7f)QksjgIJu4l|etjRGWFhVA|BjdMPnzkgTNBH!UiJ{Kqu z95y>l;=@&M)v5*lB$UCD-(I++sn$y;T0SkEP7t_%>PKuSO*zHXCod^|3{) z*DeC`cd@V#%t(X5(7`m$G-X@}h*XGCX(^TpYAD(+0n8{S7sFY5wCG99`UGt;?r&yG+rb;UbBpx%ey-4~L7lB8TrUA&9jeH|O)uE5 ztoB=y^yWB1R$wvn46%#A4uZ-UcL1;3PXPY=s8HJQpK1<2Z+a8b@#^q2MWAAE)2Y8H ze4iSN>yy8Ncay=5cye8CI!qbReq~|N1hBX>{_cHC=;qSzxB2030sM6(RAb@UES(aT zby!L`DOsx0zs-`U=j}j$8#R5cij=xz#I7lg7UD98Tvt&^A=PvAHt9>*EeG|?`KO+8 z7Xa=9!v?@O&Ga90R0DpD`#=2M@6P@Yw^{Ga^vUkM^cU^lhTD4|=)HVM_t)|5V|jT$ zSRcdHA)2h@lCjwM>wT~}K=K9@!LzkB-`FCB58-@G%U_`{FuB|YI3GK^Ln5u2b9=pw zcZZBM%s1C#T_B9aaQILzmhp5J0lm<~>&;-ZA8Zc=&lhnJzXhauOGNQ0=P(RsSO@Q%s=Bx0Jum+2giQTw_Cq` zykAW6G_-I6tB9qDiR;0Wm<(nj8t_xcj3F7!;w(yG2v&9pBLLT2tD{L)jxSu+=rtr( zzvyx{$p&Q@r%n*{6Woh%r*v)L*zokijvx|TW3kiuLoCV-c755b)F zVj5`p8*$T2gzIy8B804Fo|({2*uNy1YMoNd(GlC7x7oVbu5oj@umIiF%3~~-E(6DB zvtG5PtEE*48RRgvnM)sPr4_(TvVy_7ZBqveQ|Da-)orDuCv6-z3|0Xx0A>Lf0t}Yv zjS67CwX7@8yI?Tr%b3k8*b}$u@B)#I&eP!;z8s9&%HT6G>e3MNkW2<42k{w5Og|~? z<6w}s$BSq*%i`P(Lbum%x4UnIzB;mr;}agq<{M;iMaUKL(D&PWrs(q zc!Du2jjMX&Dhcc`<{#~^!W`#w=N~N%d-lOX;342slE%NOY$ZzTPmA}RzVFRG0KkrV zYdBxg*R&@Q!19?t_wiDj-zAp6_CR6=1uvD`{|lz0m25#SjofWe?IxGS1?8{nEk?;&jE z{56h<(-58x?s6RLW|v%Ejkde|=6VA3>Oya(Mb4szu?2t+$MNxc3;@rT;b`j4SJ7fE z^|SymUPNC?s%AJ257%5=dFK;A(HiA8usY0o5`%t`b%&)TovGsh$TSL=B6wN|EM?lD zP9o?f9D<|{oYtSeJqE57ND8`_L{=8{R0K;Oa5dmz5CFhg zBwm#OFzEaFTWE7VJ z9}M<9X``A?bF&g`0KC?iEsD`3&2Vzm2e!d%opo5S$O|u}7_KU%@h*IQne;FUO(i+L zciip(f$N1db3>{gcLM^r0<)S();6|)F-Q;4g1Cry zbQTRy+N0CA)A!jDebM=M7L9T{se3WG#E;QCgp zXPqIWOUF8aT6LrIC~pVpg%@A2iCI#?Iyi`?B5Y3riGgPtFXP2UaI0&T*kwn8Ug%&U zaU@mBedi@tg1-f@wC8rK3M~3*5Vr=vq;EiV000mGNklsUO9({PXvY4jL)v|jhMYwq?Lpt}i@o2%o;-@@C!vYRg%pbOQD*gr<=J8yIABX(E8 z=I9-+!t1;A>Ly=pgmar+wBDrP-)!Ms-3<3v$@Umw`|i^m+r>uw{GfEFbC=~R;y^U_ zK}~FdPe62cES9TS2e3<5DCoOC6vxXEVzo}8eYFHSlA4{RECBEJ!^72RwaxGf&=x?L8B z&E#r7r_ChjO9t=vvn$C(itMOKcU7_0+~B`FOBoTnC~Cmw|q=J-NvuZ}Yc zVh&Iuh7p`Y3>A)B0elk3Vse*>Xl$W?MFcMj#AKG2qqr!-D6&Goo5uD?W+~<@&f=Nu zB&I?wC+z*TCer-2TgjK#TS8qP-^={p%Z%3!$R~Rh&%40#Y6ilfj2bC^}3+__a zmh<*-(J|`QKzBH4A;!S-q*abDp3uAK%$8jucDA+%U`b```Z1SX=1W_MKI;pBCshEw zVR;r5rzvg=aDOnDzA3;sAGfiMi!(M&r9}$?BnQa}SSb60PMEc_(v5Qq4EE!mAGRgp z4kWJ|o%qRFG&uFs*Fk!&HX0`gfEgq^J^xXcfyMZOtHQJ#p#lba9bfD)rBW=aTqLoT zOt|-o+rBTkV%A|*mRQ|t<{;@SI<@msiCdXcsnJzE{^&x=n<2Yx@5FN7v_aF>KTpm? zl&k;7kF^o>kD7v(-XwaH$wIOQ2OxsSuUh|nc_FtHd|zT%o0onP48Qs3PcQ%9?|=En zKY#u&#E-AO|E_NNWiu41`E)h3UTc(jJC$}+FQmV7?Z8frRo`^SeuZ0cGp=6W zH^tb`Jh|#K%{lThfV~gh+4~N)Cbn#zX^PQi>*`m1HGH(n&{pfIlHgr_@DRkL;h*eO z=&eF24A0VgmVzXhc-jL)aUY9DwOM=)o+y4 z?y^o(o6csfsg^&9{f7Y1z4{Q}d`e}B_g!VC0q%;Q#!Yy*iw{@v_7EVhZnMkF1eYf; zRcenn>3k7FdLFNe^}&~#=R|CsLXZCavfV-2qOidpFy6Z&7 z-3+ba$mU2pFqp!3y%|hr5rpq#>KCO2&;r0x{Jc)43%r7lm*NNjwLnV0cRZ0}bFd=? zs56J_f3*S*%iKzn4kAh0S>7Fv9K7Hl?;==)#lk3PQxH^2e>cPJcA~glVT(8(7eKER zVJUs7fcN{!R{b{!;N?u1I89 z|LzX(F4CtDBNfryY8HAvO+*T75*u5{bm(AmmpYg`Ocd*Ig%Q1@A%zE-hc|+{4a0s3 zb-Nt0Mw+f2pznNHBCs=^=A%)9^Ap9e+(4vYXR+Df`<-$v844Ium@QcQ_3*G6u>om1 z@)1Cwm`%vm=3C z%`;bG7jMKVljN};lsB!`n6=xR$q77)liAdybyYrlpYW%mE*$m(cW+Rcke=iA6kODN zGCei%7qwjaRWf`T=rXfAp8~)Z$2Z|j?8`Fnq(2?^rekX|>eGm0qWNl~*R1SHHI}Mg z>ROPM+%*6mPR=LuHqkqo1I8EFS*-i>O@FfNfW8va(bUB&fWfncrEercyqxtA#k32` z0+Wcr1V=0Y7{@_hJVbMB8jQ%0C^fq_Fir=ZR79|o6#XFSg1b@LN%9`RENsrtg6uTR zPl8Nx$P($fM11b}Z*(%mFFosx!u5tqu=KU)2t==p^c5H5CPN%*yduFjfHAvb)5 zkjV<#F2&@tIB)b{)u8=}&K~v5!52UyHL*?tR(-4n9V{`UDfH`;A6~r?X^y8*F-td; zi0qfz94x8ks<5l7c76c>zixjo{Yd9O@GTf@Uec9sW$^1Cet7v$#EUmSerIeq*nots zX>`#-B*7l8zowX|)|$_3hviFh_Z!##re`4mZ(Kf1JPF+A82)y(81HT*=2w+XjgnxO z{)on{iCcn}wZ0X4LEQH)qvB;l(Nf@oreDPqafPGqf4|^UWTK&KUoH| zb;NfEdcp6pMlt9zV>z2jf6G$m^Wd7EX1y%$r&$M)4|)U9Rqn8?OepERLFTO%1r+2C z3Qtyf=VEkqxnSDa#1V4yQU)+=HbVlK1;BtSfSQFa0PNX405}PtaVrJPsLHIy0Yo`C zn#cVtaXhEx*_|(+-;K*O^!kHDmW`={*_gyGAoAFFPGJW~#vOx6L<7KFtmO_Etk#uM z9X%ZE6hW4GqK3o1G%OY1P`O^qC}Nsc zu9qcOh|TiwYLW9ULGBo|#S4MEoGJ>NK@ww!1=Ykb5X<0P2M#&}gL$ijquN&0LIbaoJL?#-U5apbG`61 zOxk#25VvGZZ#4%=3ZYd5SEB=aw#Iiv?ET^evOEke?nkGhhMm{IIaAOiF6oP4 zBX5(7!sE)FLu#qmYDE`o&=&#a+UmWo*Ogyz)ma@pWKIM1G`*c!Q~m1V2YPXk&D_UB zwtt=s>@e+N=k?i7KfnGbLEFX(Gc%*`^j)E}q*8uo=)p0d@=Shp#?K(|nFeq>lHGqXTi}yZa{?3~{x)qIT+1enk zJALakgSZ9!G~CgHGrreQRSNDRaGU`I;-S%X7#>GZQwbay$@#Z!uk7%`yj3n#MNie?dqN12z=?%<%;_NFk<~a z*n9|?WCnL7?jwoY`0_3}+@<^5zOS?C3Ng}#@Gcvl^Q&EDT^Z~>~EgC^kI zLahEayJWd>a2?s~qTBlsj%=YV)QlGZ7PoR`+~48-9HE;5!0rVfMfVNDP3* zrh^lc8vVpNyD(iZ2jCyk%XBpJ(m=8nFc0Z5Ih&-TGJ>=PP(80hDGc0#!L@s3!C>n! zwv$PQa|VMTmP%=;=U$$BcnW?>2##>TPe4eo3HkLJFCxX#obe#`UWKn(Uv4QX*Uwyn z>)Cl~34=!xY*=D&C3rCpDTQ$aCrJ9b^1pN`f4SVdnpYiAxL?5!jdL~l>ju9?SeH0x z(jVX8>sqoCh3|IG;l7+Ik=0 z;<DS zrG?0b{lVB)3$Px2u*33h0pK`4uWGhkk<_HG&`}f4)o7!7zCx`^UvR8~=@sUz;y0&1iu_fz`uglgt=v9^ zp5~OK%1%;!wW`cH&y)$-TC=TgWwN=Bq!32m*Bz3>Td6a{vGk07*naR5lwAYWV7A2p+FC zqJZ%Vbom)g0bm!z1%RP_LEk~?m7`!h0bf0E5iy@dP(qWjpC%mu`09E_0FTBF-)N{- z_~W@lyL`Ol7peF@+yN^7duZs;fIp%Rj7=;B?1pp8fpJJX53;Gg#YM0x5W zz!e$cr*+Po-DH29BiQvz`XXd0`Z&f`nw4nqcz`82gJ8B7clZ0t<}0y$rS30VY3U%aFLx?xipjec{OIDOlV;$kT?{O`ui!Ve-xTyLTTFe*Xf}wCiaxv4 zimX%0!bA^GLFkgUh4X=byp9=r3?u`b8`} zTmx1kYgs4Gq*=Mc!s&|2;-lH4_ci`=(?Lha9`{rb_r(xf0i2J!05IimgTZIfuq9D; zB=VM@oFT&OLbw~B0>IcuV8;tZ=3)z_3k56aj>)0oX8@ zfiJmKY{c=K^B=T4TNZA`JM;7hHbix-*OItaBQ1Jq)z6Z^e%F2j0RMbil~%nt`R9+X z{|j3ki}YhZIM0V(oLhJuyal-a;?;lAkmS4ZLr3DiXBIEbLgur)>+{u3?wI^7RVH?n zf+92_K#6LRQ}6B7J4@odt^2C9-g|=lw>CoP_+TMs_kG6nuE(tgj@#z=xAozaD9e|Hm!7zhkE(3Z_bz4 zwd4h_dW`I{ix-LaErh(_9&gc&_nq`uJ%pWT*EUD^l;XxJ0qh%VaE+~#Us>3K^ms4* z02g>WxmURD4{mz+E)c`ZesSpLyKc7a4EO!<(OzErE48NDKO_L{?yZzlt!~}TU9fwI zcK6}_0g^Y7mED^J0peoIZr$xs;_9wk?J6q+dH_N7u2wQAMzU>X-^@$j?FXPE{{I1B z`cK{5KtX29by$sYU3j(jbtm&+GLOcya5xS@-@I^(puXT71DGSVi+2C zHXAen46GV8%%n7k3pI>qiGX%{h$IG<;_0MVEhn`5fC2`9>nCQ@X~MTQ$#ePrDtc)x zVsx-bVHK~`vP>g0!_1^KQ_YmQ^HDGx`m>?S)-r5IxsAXpWN`;i9Hc$`Imx>W>@;fQ zAfS%t?$!gT1slmyF*LEVw!-bGun1j7p0o#PNB8?uDnE3g+Bx>P7T*pLE(}%}L--Dh z4z~CbP)Fd;Pw39nwA#W{tetfLQNofd#Iuz>S@g$qT`JbK;juvaxpJ^LSIfn z)*7w~z`2A7-(f2po(C$3HS|c)4hF4S6L$o|*(sTgZIoWH4+_B)G$4(WL0>LNOO=-U z%Jp9N>{snxweHJp6TMWx2(Xi*8hC;MFarz*UoX0^@CtYe`=Q$T`3vn!`icl13xlbBD|aMmjdcfccbHj;e>RBQn`L}+DU%q0 zd5*C&tVOVXl?!t05XA=;XI;)_=W3!{VS5nMf?mDQv#vOdEidSLe&2DsmfdwdD~f$T za5~+yUjJgTDp#8k=u7V2+-+(8e0{wHgRgJqpzn59LjG>H#d;%l6U>W>>(d~B-c4is zKmYx!({BO5NhA!W@#HA;r$s~vF^$aX>oW5Yc$Vk1T&w%rr}yjG$hSI7P;*K#h)eEL z1k+HOPnUu$?NGwE2Gr3b+Ax@9SsY?WKMly!^>VmSGc4woDQd9;#Ii;j0qD{{OY5a` zWw1o`tjNVJ3o#r9P?_;;S^~pdA*Oofvnavw;mt}mO+}2u7tjkqoF#q9s1H2OT;lpM zO+y)wzglS}KW6|KVd#tC8Z+lI;U^}8tu(ofBXMv+M>D!~u~%C<)0DUXEuMm)D>$I5 zM_LH%YxJbMtaJciJY_Kr2yg7;<1vU~@E8J`=*1tN=DqRjlWevuh;T&l!qHASn>ACc zf~FK^HJ0}K>YB0gl`0mxSxTVw9Qt0-1B+|SEcL2zTa#G!ReW=?*>oWj!^N~h?^7=N zIe`tnQJayBI}ACYxCn~#Ncxi7s+do!xs5=0 z302*r!gj+~w5(!-GHb!GpXOrh<@qOl?FQxqUj^j%O#qX@cnAPSwEM5jX`FhbgO9#v z0kiZko&UrdX5f>EeRT?n3@ZP?9mMOipYSCfW%m(iEnQXW>czGzAo<0s|L28HVEp;j z4=3j@ziSSkuhwXF`L@|U^sRAKvvb$<>^40no2AZAmCS!LdpP7ECIfHtg0jpub85n7?@Am!oFlEh$6&n==4*%6^ZR`Y$Q=&AYJ`yS2AWl- z_GQ)a&Fyrl)8%wZV9vJA!@gLpQ&Fy(b{E>q z3YxmA$i2|-B#}h`2W~G8!DC4>gTY1Ws+*%n`qG(FIqHMlgUk!Oj??d`2!0QEgV`dE z(;fkAg3G`r5seq5FBKRTco)lg#zJVImkhqXnjRt952GFK7*?4y|LCf)p()2R2!kUx z&%#>K4vl9P&YVm#en|{d3O6x~ow7(+T#Z<*Modj_w?bv;V8O6XSVFL<8w!{on}ItC zNzSYG)lzDYJ6!Q4`G{xJ*CZzwHiFgc{B>hrBrkIeN@e^d;AHw`)&q=1_=2x#bdiKD z1cyq zF{4&r5uA)5hCxkmw3zl0q%Q%?hzD(oU)wR#Q z+yCYszIaU+-{=NO+z+B>t5%5?XBW%z6WEONQgiDZ_9IajAy7p>do{Dc3? zYH@vXBi!cH1P!-YfNcuCs#Ro7lGh)gIbl$X!c^az1#I&%0Dcw;Yq(n;G}D3VTZgAN z)q4xxK;Z3`l91VllHKz#Ux?@al(L-Z~(@y3eSJs@?~P z{iB5R4n0QK5We^E@j5z4^|I!cwR9Q8QU@O}HNL(}cSnD3ortLl-iaRjGh3j`IljM?+gmUYTqhSh$#CI~%&-?&ZEX0P3q`w~5!w;QF$-Jmkl1 zxLbMqwXZu7LdG1;J*K0X8)sQoWizQOi`0wbVVtLK-|D1U1n72qEywP;PT%Txx}A$O z@z<*}5L6hD)`l@88bK4k1aMLO#fO()7U~KgTaI@ zj^IlKaZWJvI9{B;Xc^#9^*vL0cL`$vm};2X7XYU18n*09#{Ht)HL623`;P(3#mb>3 zmW5$m8=febWx;sXD@QG`R)nt_cGj8aF6*?(U;rc|DF6Tv07*naR4LNdNlkRZ;`oOO zz*_%IrkV;Y17KyU%u)n0S$jou%|R)X6A5MlRZbXpNngWYfRlw+RZ4k4T1%K(Yw_e_ zYZJ#c>IyVJRaF%BB&ln(YXY2xnh5L!(HqB;2~O?aPf`@!eZdu9C|wg=`ZdAcAoQOZP3 zao^ZJ*XGYnu0MUwrY)s8V)iSe#LBPu**V8A^-V_o?c+yr{N2^Sj(_!gbXmVRZ8&Mt zxvQN!}Tm&PGmBxjHcPwS4xXNOI+UHaRl3kGkO%3w7CrUUR&TSe=#URGXcoyi3pCm90HH?F+`DnYEuJQU)=~*(~AncFA=Rru1kh)&8YFZq= zG^J0aYeo*sy06~lRGPS6PR6&-YH${;(U6POqypxzob{N z!?uXpy4^_8STPu?*Yq7pH*nc8K_v581Y}*SC0e-&;Gj4UYOTyPHJ&AP*E&~`d2H5I zvEi6=CaBt_7K~zA<*y{D)xR1am~tH71sLpyV%DKvU9Wq#q@y{)sOO5$W#2vR+HacW zSM;DJAnBV?c}YqZTB@;VFlqAAI1QAA!0lKkI_{}b*x;_^pSaOE!%raedqLWE!ZS0$ zNyjMtg3|zC2T{BGdUUxm=8m-gtxTpGp1?GHb|8OqHs-88;TLEBn|=J^Xvp~6(id? z6VHatbu06e#}>tL(`n0KTc4;230<29cR}CF_sP|V)Swq}d7bSJ(f$aQB*$Y4+=8I^ z*JbD8YUKdNfbQjujN_GQfI2m3w|BQYxd+F;I_;WgkdjMr1={G`K%JcsA1<>46!0e9 z?FZ1l91BPQvv&w&#q|_d)%7aFk#Ri>79nlEqcBgcQ7Mz>aka&EG;|fi?rxjWPk+CT zIh7q)#g>y_v2$3atFeEzE03Va2C6qe?APIX?&HkEPP$6ykp%kUGDiSYGXaf7(i^6Z z#4rv+sNDDgI&;IoB-EO;(LML5CHaKDKT1c!cp${`xf=OQpO3rKmWw{c}U{5gHg%PaA0`s<# zAC@Mi%}Q7+7|ufGmcdjY87f%|q)S#~u^@}-WgdYPMu50!B1vh$8yJQl#w*~ZW>eg$ zj5aI0OG!-(_RDJYI!9oKCDRnd*umcqj#on+bif0CytBl@AwoK*6)t4=3j`5aP|*KbVdtYiTEG7K~}%LDx); zA6X`i;97F4`(vm7qVK#$$V7)&YPo~-JRY>uvde-pKRpTaGuo1{eC#{pmfW0H%c;6z z{9AckR8xJ-*xj$D{^>xvNEl4Ms*e1dCMQop?z8lZ|+aOs@5WQdF zwt0m3BxQBS7W)3#2#{F9dkVv2y=!3rmIt{rkl6p~96n3zKHJ#egS)?42LM$;ThkYm zwMgHZ!6qE#ZeL#Wi$iS7Q|h@)W>6p}`%+1>FRPh6uO>Htj&HtXx1Y1?kIC(a?CMdH z$+r*r{X=nkmm{ukKwNRj0C%shasXK9tL+dR(8fD!0Ql-Qqu#|ozl2)P%W~AX&Bh^` zGlRRJFK`a}?hYA5@OGCYl)hq0wb>R3h+U{#Yyn_nE(icmbQY}EFuTIzVE_PEGHwz} z1+4lD$_QAz_$mZPuMZjHa+h4~Q*1f+W;qJxrMF)sm+Snn2~_*~n}xTUd0;S9GKDf? zEnW?QG3B3)y)v=0pj#&HAhLmk*2SB%^H=8=uP<7sh$Qwl>)GM3(16CBa?Mgk{~i}q zz%0LF4-x>p-%n)zAcD5WD$!&iRvU_Z`(ipO{`~UU>Yhs>v^q&a2P3isbo96yErLwj ziU?p$AWI554qTAivb&S%@Q>er4Sc7vkc|6$qWl0yRa6y8lh8EzuraBckuZrlI*Hz1 z3;^%?a{h3))1kj(7EUYw#5N1xxGLQYcPeRY zSf)_JW^EWGX0h~Wm@OA$f*fjCk)N@BnWbTyRds}aKQz{00Kim}kdjOkvtF91U_3Pr4{r^(V|&HbIyGC959akHs}i^gQj3Gw!&lY3~$ZXH_+wN zP2L;9BzC<>Y&8K~uU-p=$zaZX64P?YGx;0s;sbrbSK47tbtzYBq!-p=CH`*EyEv}X znSA!*v-&}&Fv&_V6>~m3AB-;8iBy+abxoUZl}}daVq1>ws@*7SCuu9s+Jn3^D0&FW z<$98ms#4ZYE02@%G##ELV`&BU2NKZ$gl@CQi`cGKl&e?kH0g^N&n;<&orlm?5m29;a)rbkX?dT!(A zpg#(^HTkY`ZPc-JUs))BJF~qx`RA)I8N`es>sQHb?i*wp29v(jtcG^VMLx?ln5@Gi z$qa|;H>KiqYkB%Cns3^8sVXYmR@&Fl_j%N6*nF58s8p`{?f+`%OM=Qr0#o@Ro9EZK zwas&zN6Za}d5G!g=3>0@@jjU8RrM%91fYBWX>k93aQm3)M1&O3y}KVEZf-M(+T%4; zZwv<0ZXOJlf9z!->QKvu=Sz3F_HiZvyuXZeZCDlX)?3VF(%Di^KuqVhI4W;~%`Sr8 zh3Zw}ra&*Yi)D=9Y$7I^Cu3ix_e?{`7iOVpE(iuw3JZ_5>xLOr2w!c`l#xXHJw9`W z%h2H<6VY`jdWL}Tg&^Jny4zwkiswZD5qw-_hfRWqHj7|6b!S5dv7Uv;P0j)AkkPEn zlFksd1>4rDYIE{z>Pq3S8+^N?lG1jv{L?2#DdDzVxtsvg}|UdpaqI;Xxi5HH@D& zw!knTy;{nwL#W}ob|`5{whVXTje=y(wYiJEwyeDZfVlw9CiZl0szKN6ac^yk=McRg*+yhjrOG$mk$$m z<-Vt;G7ri-GViTQ-BbeV9e}6KAt5cSCHNOx4TO;TEQnpLz3P}MXaE>@!~Dm@qgucv zC5P;W=RUo_hD{S^I<30no{?y#&E}@+C zRU%uo6RF(6CU|Zu&QHDQrR8e)B2N)cNP{iuRsw@TUoSlOqYK+R!4b$}2x4rxT1=X`p+HrvKlTw{VWx?_CX$;+%<)>DRsjB%kwUUBcz4U77y6HH zN-ay;J#oD$vY(LbG=;B*g#cf{UG5{eud>+vyQer5soO8EnQrtISq+sdFgL#0=I1f{ zUp@3ZNnop7mT$S4gl`Uxy#5>_Za$@myN~(9=i=c*arZ8Nd{;ia9YFiu+-IaOweQt+ zg1Ej)Zm!eoOE4_q#8b{vh5TL0|Ejy*hFAAFLL4P8qr)MR2{0>nK9#2ag-$Yq4b;#TzU-Q zq5}Z$w-L}wh=Q+|yKKKoH;_S-V7E+nvwS&>#sdpH-Y(+ZGJ*C*%z@a#nvd=6(u_}+ zfC!#S6|^kQfxczhXAv@F83I%g7)(+GORlhm_ANkr5&!@Y07*naR5kmE>+3b^un?@e z0(Tkfbt&{+m%DATn9DR=W4H*ug0hS0cw_aUv?2+wI{V)`M(Wn~a! zQbwg1HTR+b3eSlH+p&9K@OV`G_rLz&2L>ttcxpS&{-c;FqJM8u$ zfJwNkXr#r`%W_p)TGrE+Bpr?08tJaq1T}LEVC{O5Zk7pf z3&JrKtalzk-OgK;I{|*wse)%+9dByT%A%4*c>^0~f~g>@Eo+86YlnE6p7VL#_a(AmQY-(ZJB6+z`r|EHe)iyxhZ$%Pl5f~I1J z*?j@A%avo=PjXnHJTa93iJkd?-RtsyTRj!^4^A;-DT_>N9j1%Z zW(xxY&t1 zQfc8)-1tNL0-wiyvfG5ZlS$b#B=yi`S=M%%ZNSUIRl})3!R%uT7*9)kI_v|+)kt<- z23Gp^DgZN87|ZA(uq}%{006>wvl)XQL;Dau9 zEY(bw)$bsF|MK~;U-f$zfZ31i&WXo5ldi8T{$5yRBP_;twIs*Y`7Sr*%n zKxI005Wq%{)={c^Wj3sBvv4zkZIU>XNw%1e5cH0&-J}a8cVPlB9u8wjXBtWeK@TJr z47+W$--?!MB|RM{lToY~u0DXcTknUg+}`g>wodIg1r4-WDn-8z)=0C`SSy|^%@g!B z(<{k|vaqwXn#X$9? z?v8pSw*naZUH*3Xm&Ob^-a@o>UFwA`6BziA_`m?L4s;4xrXcQ^s)L!120=OCK@!Wl z2ukz<%%XkO2(zwoc#6u-dg9{I>D--&Hx{05Lu)GeboG}ib07@P0ot?$$t#)Xylv(Z zW_cGu*L0kT^9_IzRYTE0+JC7InN=o$Yj6tqISrzog{(U|tC8!oy`0#{&S`$B5?m6(kg9(CMn)^DHjT0~T1m^7c{@rkh+&B1PG2OiX02b^ z!Rrd!GzQ7fSsiAUqVeLo?0w37zL~NN+=9Da^fSVbe*uZ{B~HtRr(p1RtaCPV=B23W zH-|F!Nd#-vk0}TeuGGK~8OloCPnJPZQ}F$r$g{r$J$R76GKFm&=x`XoFTwx0 zHUWDw-~Lcc7a{d4pgSCSB6e%{44`*3_Q&IBIu)1yVG#^6x5zzQ?qznK7CDzg8_&g= z?Du6}8YGUR7IwxX8y5=#n8VTmU}^B(=HTcYZ#S?OV<|A652M8hto3F?mPtpzFz9>O zBHo@F2s z&bhnW?e`M`Sa$Zq)jFq2!zG@&O0tVXp8&QxZ}ywzU%&s_xp<>%z#Vo5gTB~FV_f|` zok&PWj*#@lj*L+XdXaBI1c!mGdGhXhHUH1Q{}8hah_J+FHkDe6g~7}yur0WLHAzRa z#g>7)A`TTcbdTFMn zabw3p4*2T=fHgvB%E{1C5o{aCu{>>%_krFdZWF*+(r2wW7j8jNFcnG{aCPl-gkzmi z@=9nH8h!3a^igun~ zWRi0h3|AzUoi;-mENU1~L~veVm4L0z1g$$vU(-^fZYFLwxhuJ79m{CCkU1+tveR0v zJ)E@Yj|~840}1M5<0~TVRWf3^>S-o`i*ZYY>EJZU-bC360>ZTFUmCVp_03xieA+NN zV+A#!3&rflueE;aDF9I*cDi)%2}yD4T8LU;wU}IRibgq=E-z?b*Z;}!ezg4;Ui8vW zUk2GLlDGnJRfMHsK)CwcV{(!gaL3>m(+kR73WuY<3Ur1R4tmS z_+O_Z<5>mWS$YXuKIquchQ>a<7er2y7|q${o>tz!H$3TDZKp{+tMGpD1X^RL@#Baw-JC(yxMQE3`&{Nvy%7`0TD#rC_v&^cV$dwBTZUDSq%Jm4>6kb)QMKH?T zaqh{$qJaY*AHY8WuwWPr28jXSGHX?{ev7`!i;%(y2bmt^iXd3B-#)2Zq8C90%;^Q3 zwZO$-w*Rv4XtNm#hShvyvrc7byfz?lA(jJip!lp>*K=C9 zxJQB93V@WP=6sy0HAes>;|?ZI9o!^RK^t->etD4ejL^0IN%si0{=b zGb0Oi%y8wj1?ZY3VVXVyZ(u50lE605cfaM%&$|%B&Rn7{5yA0zvdvN?I+qAka;Mntyx1KZ1BB_{XKKi^0{v zF8sBx7Cr#XiHEy&%94H=XuS^c|2Ug^!d;#HwOU3H!PT=g`2S)^jKBZQIuRW_wZ#c* z+#l<-#Ckr2Wm=fZvNOm#1aO>GSWS~w5?>(b;X25>1TfRrNp>EmXT&z~T$FuTMK1di zRbNw^>b4wJ<{kv0lC@Qjg3ualP#I($UkHF_VEH*4f0_5@twS~6Nx0iFZeRLD>9)#? zGXNM*!Hcs@j7eh_f8o(MeH|sILG;E8#d?~vo9Kl}OOR;rCd^;QgV!QqRq0map~_Qy z9@3WpHkR5rGmKvXz?S!e?f++Q}bSoUC)-*M@5V$NX+Sj>O zlWu)hOvI>KhBOGCMwlw%Z%V74GQ-rnRJSGt-ON18O7QR2{*S6)>grFQ+^y;Bew9pa zsO@GpxT$MxqnMit^*JnElQ1{m?+!b4)s=qBwtjb>sl=|ju)gN*Q$@5<|5fIIeaYHS zToIkiz1nI_)qD3bzWoqAJf?`p`wa2np?G(fzq`X0^0$0^EA)MMTVCDd`(wO=WZcJ_ zU9^;v4U5APSkf%B6Ld9{1x>qMB*jga2~_g&I=a3~mA)R6&vfL0ME>K;@$r6v|9swG zi<{%bU9J+)7x;vbrHuxN3-pr21TgJ=(=``cTq5yAb|MYcHFqf(mL_0a ziPno0^u={Y#@O!;hc&XsMHdRV zcGB;u$Z%L_!;B@aePG^Vl7YTg$0b*Mfmr$`QtYbUl?rD<_wsV7LU{(3u>BV-!L~A? zT&FrfUTV#lY^T2x;EL<`&E@`&-#!t*pedOO5e)hw28lxjtdW4e1n?Mq%Dqw@IXFew zvpc@i-K`h@{_FS1?Pnq9MtHo4)7+S8SfZ%ulhv&A0(gKNu!lv_3fdVNj2$N4n^T0j zC4jl0Kq7**GE6BAAk#yyk1akVJ}}^F+LLN4Y3yV&7HN^!`*eqvLM>o8%RC*g)N`Dc zZC_xEeY`j@jNg$8>r}xnJ|6gBk|#fokB8BElOfpZMiSGngLTNJ1e$#1+PoS`TE(DO zO<~e`h+G)vnlUH~xVrr_MQn$u2$0x!TNQmhfizAC{T9@7JN!ZO8yzJ|ClYvs=uq|93z^|x-a5+TKK78 z%5b+qP|K|BGMW{|MwiRS_`{N@*LP{b@g$T@Bl53)v-qp3|N3MhjP^AO_}fbFuWnYF zeMC<`XI(xgXs)y8AL;C>sZrt~DXU~>$ijOTLQ7qLBfyS+~UFPHAe z_p1-@maAnv*OnpEyvwCuCY+gku4b&NtrbE%oOAj=SPVsoOjclzFRpqJz8o+&8QSU) zB!w_(bg^E+A;bl- zju6U{dERV`Y6y}}%G<2-#XMFo5m}2h3i$2a^_R~d0ASaW9;7^VL0=8&N0NJ#GBh3< zW;haV5oA5MjMxw?LxOcaQX2XH^Phk1S2N%0q|%RMbB-Y}V`_RU6{sydgfO!rZhq%5gHCCEWrg67OUZ=reRls3zo+h2Z#c%dC zw&I_qaE-!?z&~T6n|0LKBG{SD6KLzfL^N*@@$Z1Ya~gEeMy6J@@phFO27|Ra$|2xL8`rDEh+txy^gV3z}*$ZowaTC%_EU}H}`cK~gm>F6!n20q9Cy6P_5vE}3n^Gw< z_zAsriul_R z)wBCe-kx^`HGl=W*BTJJi2HXE?;Zz;k8ejG9){GrDtz;|Hxdsw#oOER;jX;98C+jy zG7xa%FSo&Zmn}Dtr@?BSux1JmEtmFq+?~xVkQn>gt5CNR9U}T(t+rzRtkze7^!_ir z^*X%0nJgEQXD&)>FtjG3fZfT|r^5zS>}(#h-`Av|A%D|MmeZ1`%RW~C209ob0~eZN zU||RU!?a}{sX;ETHJr?vCv99%z+GH)7Bk3bNgd1DmEOfe;|{Z4k@S|6h-Uhg>rm2x z>RpT>f4$lPxJSobDZ|mp?W~f8Qo*OH9EP=kMF2}*~QDATJ{82E9JwgOt;aD zBrs+&e;~!oY7K3j`%eG3TmR30{}s7*=z_tOIi=}vBuxTTI6(?-KCc`I4knzmd!vk5e;ANim!< zrqhHq=Q_2ps+}H<653D$!{9FH3n?sW7`or<=ebWmOZE*LK@6g=Rt0kvX7w81g;xA| zTpn%~JQK9_k*9UyY9f=~qA?K-^Z@ff48PJbR6NDPKBO=Ji~xOgN4kWA@FI%aV69`n z_S_TjIF4F?D}wuAZ5VcZ{qy652>=+!@f2+Ff5H1g`gw5;n5pBsB04gnRvDaeJ-A-g zmZ21cC^^c6Gc`2juh?v9NVaL_NSCk}0La+T#WKPbV>DwiMr;8rvF$2KFEf`EGEIY+XoV|+DmjrMazl7w4@U^_3oZx5dHxw`n zn8AjRPi?H4U+p9IzxFgN4W|Lx$^^PPY`>XWsGGT2q+lruKrDkdy zDpQm7R>sle9|@qPV>8f80ON@G<}4i6Pp-7h9}E`T=e>Wp3L%AYM4aEJ_Euj<|9`9; z_rfC?UWETl{C{%ww}x@DTxIGj>Er_o=*@6zuO%(G-)G%Q6sYwvu4qvk|HGQ}>&irQ zy@Q4V#)W25SPM^Lhp>ZyHVa-&%)JI7|beG zru8U!CCis~p$?@+#&1b7FzQR;QV~eYjV7E4U&jvj=Ok@6J%m5EkG4&6__RoDpN_01g5

Y_*n+_|NQ6A?P}`u&XPcMHc&wmkIIZfZ9SG#nfiw7U9Gq z3?`$PNnK``Nne8Y>T+^(J;M&Z1c1qD`chSWK~=BtknWP>VT`+kNIIB1#BieR!W?Tj z9w+pUR{0xGrMo^N&q|0y)1KqVKBJ4FpR*LP{TM47=|DQfT!aGp*3FvDs^Vd z0pO}?Ocw>fU|IUDr$w;>fMXsQ!d)G~)NJ16k}dnWrJ^d5KWspk;kYM2F9S3MeZgSY zd4q@W$41pl;p;~iUU*)~U(Hnj&%Sp`^$dwDt20_OU`nVoq#tRsOu$|2EN4$T80X;r zQboMXH{=Xs?$CFd>1cKpOVj@$ADrVRUfX@+3JB#EkPtxL4V(`WQ*b83x;m=+qOTS(q5k#-B{jN$Ei(Io! zH1uxo@LT@~ssVBgb$ViB4C%{#LigJh)@Sa@6_P7vA5@h}8der`o&6uKY@Y#W2J%y5L6^?Yjq35* z(Yh+LYOEz|&(de{umpM$x9{TXx8d#E2m$m8eIL?yZw0^-cjddA!NYZOe-(3kdzoGB z#mN~_xmIZaz#uDU|FOGQWbVoXfU(6*;#@s6a1PDcCkuPNmhoqcl>^BO5q!K(fMK>M zaEcMNuh6%&hWO7ML*3e1c;%_~4awluIt73Sg$)2FX*Z60v1Zr|fTdd_>~R*&AnizB zX4)ozb%d%TE4%8O!TWmLo=eTw#4EB6fjTK%kSvcnS=a{8rlpq#t0Sw6tM9G{%`vQD|a4ghy zQmdsxwhS5iO6hE3bAXb}P*S{E-E+ilJ^RnUzJ#9CXVE!}bRo!TPD$==7K7C+BaEL$ z@Mf||5Am&4a#-)KyE>;?y3eKmt?-1DuJ}J2W6P?2OQY)Rg?Lr6;)(d1 zFNbcNbV5kppz2w2tP>ZqI1ts#z&_|J;hzE3RnJn?0)Q!k!C+|zr~oY71$1fqWf+XD z89M<6<2V)PsOYoQUq%t@_+c*VFmF^jqOU{ooz+$)uy!5fRK4;$(0VWv{8E5u$yg zSBxlmgYQn`4Zi%Y0@bIUirsGkY$;p?y+#2y^UTK@w9jEl1~*oJ8^uju0oe5ZvgGP3 z&OLW(w7y+$W;`pIuKgXG8Eg&9q}HEAe`6umXjY?T_fOxZ)41W#gQ`|dhFQFtb-GdQ z!~CR%p8>covm$O0l5+Uu8V9S(4Z+MZSH8%NB>S@qZON zdL60S7Ntsa;zPnh_|7J__E(7H<=Atv5F*BcR^nd(!(yNjbz<*4k6Pn_CC$Fea4~Vp ztW~9a_0k48A_~I?050$`q!_ylRlF{4Z+Em^lp^O^_;L-n@_atdH#@PuVp*1Waa=7C zS^{nCvGC9o^j)s9rPy3Y(gU+dINpvIQ+#sVG(Z8{-IG7R{PzCs0|Cs{U%GH;{@D{R z4lTUWMPHZtj78em%C%m6tYoeOPR4T`>)h_21#a)(fBkmcEnTafMRpom>@)>j%~&Ls z1h3~gNz4wV+M`31HyMoJhzL4$(2)wn1-$@T`My>ezC>JKO`(ZzZ{~;nkYHxk9YMzx zCWk47+32j@R=7D66KUWUH$7sirTJ&GHq0#nypXAg9JOlt{;2=}5CBO;K~$9Dw>B8~ ztk0^}hV71+S$ZAzA5W+GVl`Z-XEmO}{5CO65sVKh#nMcnZwn~{ENn23cZZ%Me;)Yu z@fQMo_Pej}2ZJ913kkV4%(f-^h=J1_Bh5;3!FJN|gLB6@^SlcL=EN6h8dhafh_if*11FeGVLcuDgZXzwHZyr{Ze*p`Xj(BC|3?(TfUZpG zX8Z5NmCz<&8E{m?Y_gCBhtbrP-XTa{6}x~g*MNDuJjU&~!WaxTC1X|2c~G@c830Sn ze3prsA}>&oKs5{oYeC;2JPV_9M3T1Sq@_D8R&rrG(7>}~9Mhz)bD6Y`T3-z^7hIRM zsuCC$DJ=Qt;$k@H4bnEC?guAvdIp47mYkzD0w*A70Y(c+2w&|sKFbDDFdW*c>rl$}G_`K>(Ax>yO>lhaSSzOd-Dg zPQkyOmY9*L2W_>I9o93~AJTm6DtlbpFN3&TM`zD;&2oMW`ztkEiC}EyO|kX%AHBmT z|L`$H+`Nyk-&M8EmFm6E9&Qt$7u)+AFj(rGL0{_K;~_M`qAEg{3|_8Xal_GOeBA2d zhIhY>mUD*#x&htE%);L*gztJA%V>JNi=3@o0C={t7aNzaHl4fT3|HcI)tTZRR;8^p z?9PMPG8)hPLetTLK&af{BqxM7#|E!ttO zLNTV+m0&vOO=O0e{2SvQmV?ki+(Fz0eF0rySS%!?j(SP9i=;Ch_ND8$uts?gnosqj zOu+RVDNn@}R>JS#I*v;`hzt7e_j8u}a+UY;Fu&32DlixTMgYJFkie`BueamHO2A<3 zI4b`Qb^Zc|Co*$F%2P9Z!%c@r^yPUg+=W=ub(aUj3oEOBOl>snb zQ>GkB;kt~hpN=DJIi?UH72T77dKV17JWQ`I=h&M0MeKoQbu?FnvDFf8ndVewr2TFf z_SJ18R>#T`l&v$;X>*W6!$K>^36Rc+q6nCjX4^3_T(uxa_-jl!Z`cfnnCrMhc2BXH ziUTKPsawAze5b5bpu-0KP9RfN}L1 zh;6P4tG@>gKv=ZJBr{$a0UZnsvm6XyPSZ0g>?k`)i*t4>K_!FJP|4+hu9;_Q*Cn1- zl1$e1V8GR+otd)cmQ~Q;E`k8gOIZMxhU4T_&0uM5^266M9KwG?1|z;}uI&EbO0K?I z@f9p7sG4Sw2E95#$UlBV->0hM=PgN%_26elk4?~;Xtql+v{|`}Ey4g;==-6!eAgiw zn|ilu93pXREz5=YI9I$why14b&lU_cE`r z5enVo`v9u<@_mH3d5G^GMenk+2m$oo-^6#f@$F3{ju~Q_k<)?^G~MlGE&_BaV!8F^ zYX`EmnpU=UIVBXh{r~7X58p`E>&nkRuvqK8!JEJV*#Vsj6;V}PjgIJuj_5=%f?)>l zSrW9CY*@jN9AH~A?ES0v+tedqChimzHNq|<7l zMmbva^`+x6XPbWL^HcL>NH1Bsyt43v5E84#1$rm*1Q_m*d<$R}gJ00Af$NB91#OH{ z17vedqmo`P0^L9^jZrLdZC3GiEl2z@B+;2T2B?EP_n6{uc-YIgm$w|~$TTPdW(b^v zzAB5MhHK#N1XqD}W7u)nvV;q(Somszjoqqg>fnM7rY_gR+uI#PuqowkCkF-aw|xS5F;DFpU@0rMUEDX|`tH=v z|L*_%;{NU$00t~g?^V=@{c0N4v)G}-Fo;Nb%KY#PfVBn*I&y$mPwG&>o{MWx^2gu* z;{rclylm)cG1#LY6KlYBD3;z>wkON1d{6*WTa&@;(PcZ*eA<$tuPR*`v7Kk+F~^qJ z>x9n&$%p+=wDNkOLrQJ7D63~yOU+n9DP5}tG%Y)rKxX3=5eo(r#wR|~T|R+K)xC$Z zqL^J;aoi9SuAo6HZ@elG9GD*^|T|oXbmzOC&olm)5|!r`x*dNle>nFJXE{wa;L@VrZP1y z74T$GAN8sRz+F6{z#6dCvH&nZJDE8az!HOsNN08C8V)OiL3uDN4M%cBbUGJVcGhm6 zccllr*lriV{wymrn-_AT6Vh)^Cs~ayRQ+e^Yk@>YUg}aHD&W^sJ!%P=w_Lq=Lj5%W zTb5e@f9te-vc}*gPV&hw0Jikq{34LOijwt}!K%%V?rU|f&W=p{YFhZTdYzwpC&Je~ z{?eAZP4(IWm~Ne`d;_30*mj?{7fg&fRSW^j_a&mse>%xog&fu5|klG%kK8Bo?kT3ruR`xg(2EmZqs{ zE(PG^^V96h^L)3-_S+T>+-b`W=*n!;)Mt*G=IpYkY~msC$0_sgxQiT!3G*1F)Xrgc zS`8;57z_Xp#sTX?_^aSl(kXqrlB5d3V2*Hb(H@&lbsKre8Wk@S^!MR_F993{A7toA z`!o4&=hFa>u*d|mwiC$TLKYPXU&#p92N_cfY*5y=qiTV#E>DfL=uCio=827UCx+RYsMq&0#m@nnE+P+wydy zQN)=gkh0SXqM+(JQWkx76i*r(kR_$sPbwUkj*x^?(;DrwwLrFh)( zS!TA4>-38Tgv9r1)&yTKkFq>ihHjyQSADy);r3>ZNATI>VT7ZsEmH0h!z&OJGFKc$ z5=dd(H;}=gCf6F$B#Wz-bg#pUgETcUXR=Q{rDe-uFTvM}7pCr3B7kX%nP%Q_+~N#3 zjkkc|32qB;PoU1y2wH4%=@ZYHJm)`|8D`wZMM236ijH?t_s$#s1;P!BRKtn36tLsL zAT}(yegRL$5rHqnlf6iI3~~o)DQuRh?YK*r=*^|DsLWow-pQ)$UFTnu?bf!NhV8y# zX?Kv9Dl>y^bJ3K=?Eh~|8dknzZ`6<_Li+b^M{)^Z{ZIyb)a(eE1ux4`c<8C(K@L0`6i0@v*DSMhF_N{G&Veo6$C%dialygQ_<^VqFqWUY_6iyS}Oh?--LpIa9f9*^4 z3je0B`=vT-zFodF@Kshkf0M6r0KW)T-3ox0Kgw!eZsY}h)r_;T`DVQ!zAtwZU46+e zKQ}?#!&9=qO}5w3@h-V}YTZ0!i07vs;{FcAZ4EY6 zbG{CMTQ<yUzJ^)@=E6a`Um;kD#Pynu&^I?50-N(l zQuw>)9LG$pTPaK7TO!^MbvGNdrRoJnZ`u%g`$s|Y*@ ztxPu+{8!?2D6*N~Uf~8pd+Ru3h7SR04iFDDy$oHOWsc_+8t!@B`Glx7&bTwj2?{|X z#06#XS%Gd`a+5Nm5f$;wYW*Vu&nK|`xGc}to$YB$0ssRz^C6$QCZbJl79bI8bTx93 z(J3&v?^F2FJe4aSxPPhLgdQzXNy{CxwnO)2=&sVutustIS2qmeJ{vNZzES3SG8Ovf z%aN+hPKmR*cqiICK@l)V;@TOG*Lf=(+H4Td`x1hA$R#jumDTSDKFRD!vnNixzy6D0AlUk1)0 zf?KT%Fqo6golY6wmxIx7PG)Jo_BYlC-L2|Q>rQn#FPm#Y7GGsGP+kCj^*VNseeRIu zor>Ut*#;;ZkSu_Wi^c0*!ux#9@GCD14))~t5HEvIzeq|V?HT|85CBO;K~yA|4A1W* zwy%e7^XjboRiT#v&KuB94K?LkGwZ(i;?16&`J=OVa#zoiZ9Yv+zXouIxcl4zZm%C& zw@;m$`_|QM6Jqz_vGZ`>MzFW};kI{o-MPJza_`MGv~PBKY>Hj;v31;w$(-ykftFfk z^HsK3x0c&PZd8Y|7-Tqhsc2>07@jE(k+O*lJcFRTzU)K$f^f5m54Hiivr!!}AG_RC zzga}fX*eJI9Q7GZL;PB|p?ybrZ?pK-wYHniLWg}VfY+POcGshK6`Qbd&WQ!mw=WY5 z9`BUZ`au5V^1U=JXDZ~TSdBH5yJD}Q?-Q&IaHA?i6l#e#95%#eZ|qD)4K|e+Q{Rp= zz=ft+2hy5xISzoXLhP4PzuJx+Eu*?w>~yn$`j0~<0M)RY;OY+s><;sz=-1_bKNs$5 zgB3fl z(+G6z;s_}WnXC3#LQQsQorWw{nsmtEUN7drlGu0T7`A~Ir^wdYa1XDH=Z{7i)7s#! z+(>EQ9Q2hY`DqKsUN3C5+#o0!^eR&kmD-0=?Y&^wyTFHB?Ot}zYQY7f>Yvx#Pxx%P zDm(1(DSXIJ)xuA1T8x{eri{AEZUfxrva?B6>G?nrER+i^;bN zm_IQpVAg<%IzYD>OR5Yym;lxZsH!lyYo1JhE+(jrAGPs_E_D0icr}{TY0}97Dh@jt z(IQ(S8sIUh%;R)iXLh>RE33Ayh@ZA%SUg5r#W$}^GhSObS*>|GHG7JdybTIq4(Ma` zty;|y`!f7$0sNBheU*7WSxa#0LX~$g+0FANjm!$`sR0Pv#AG?{3w?7`p4FnAIHz1hmTKPiH9EI z>Av^;(Enm$hyZ{Qw^!|(%NDdR!Y)fV>{71dmaTT`FuYuKKw0+OOE2HV19y$@tF9XZ zWsm#T?KR{`mjZXQNf!s6?hP1U67`= zocA}Y(cyBrKQ69sw|lMi0;^yud#?np$N6G4u-lOESsenN+g*efz&HZHlW7X{0>j+H zs5Rgwg$p-K;G8b}z@+CCfB%QyZFieSwIItFf*L1xL0>L-r&=Y3Iei5B&LP^A!LvcS z7>Pe6Bt8L*dyakv82h1H25GvT^bf!N`^|C|G%6OrW`0K161}llS+uP^I9X2H0C2D4 zgR;F&IP50~?Fu$K8#t20&60~*o4b;je`bHvR26q_a22qVT_o|6H7OyFnP1>-Do*?PH_y33?X+1{X?i zEsQ}~2KBKBU-ulJy(oTvUU*w9zvpvG?)z$R<|Ln@PB{YxpbqneU_Et`vN&NEr1ff* zzfG0GY;v@|m6B>wfDu%=;f$n+B}*I^LEj`UaQhwsEDMWtdjZ!lsP$u++mK|WN1L4U zHBA-##o;w|^r$8|bNwylO#uD?@f@?|DXUrf=51wlb<487S5hRFt<1*ILl|ru%eyi< zVUo`(*6S<@GjLaVQ?1Dq@dGxN;mEbG7}(Z(%88DZ!vcLR=qSyiuDq)3lU{;S1Y z+F@pqBnE4Bm>58nRf+P1fyii@W)FvEqA9n|mUB=Uc*ckFC3sorY0<%wjwXrU7))vg zIN!qi%3xC4i5=}`s~4x#Tsy z%BQ;!zG@#koop8Es{=pgLj~}Q14f=6KXqm%fGv7O__Exqi;(A^T>U)dOT zeo1zp-x~S+P4qe-qm6F{CqqfXUnB@kxaw^!{b!kWa7z+&}CCb`qb=Zvx=`TyI02^ zxJwTyF5tVp>>an+VU--$>E#B;n6X`^i;46};+Im2LpeUB?RjA)S#bgYZ`N&^8?Tnx z)%9e)XtFJf0A>vsU(SUJxMc8#7f1XBLiLL9RYNOa7;i~Dt!?5>orJHfDW##b{SI&rm)>N`k)NkR)~0VTv=FP;%1Wn*{*yeBOr!y1ZU* z6||SvD>9W0Ryg7+Y!@)FKMRku1)7BBBdq?C!Q0(nw;vvkV;Muzjk!?3bbFYLg>BHC ze7Cf7`qLl(X}wwkz@QG^YC9EcL(Pyoba>!gP%hj>{;sDTa2F?&UJMvZf0-`Q(JyHL z#=TYuG3`2)H1Qwru7CFrzm9_j0(1wPnbx*jk{CRv#8 znGDt@=N9K{Sx<%by}Mc2y!6#^c6D4p0pp0^{szrLx7ZpD9ZdUZSt_jSC5TBYg}E3Q zf)ytU;0`w_*<3WU)3!UB0ic54LSo$v!Okq>q7_zysD>AZ8kSzX-4xtq>$Od8FP8(| zI4RDf94(v8GZ`%#rT7W>e$jExg~1IG#6WMQ^1fRA0HrI+*g3Nd#%DEUeF5}-y7(SZ ztbVAu7sBA$`?B`~7~JaD2e|v30I{;XL@eaGAep45>Gh~iQZM5MJmKv!6TfCmnN?UE z`|_NobVvz(A&XW1iV-b90O!%yPbPusgfpKIZ4c{fDQ`RsCs!E4RKBLDTNsXGXZSqJ8DeF4r^!J zKfxYsh6S+qvXW1C6P*syFx|TRTw6R>^QI?PiR*GB!pVZ(z`9vkBgSu)tBlF!N#GN6 zW_CNjxKMFGma+bVFT{g*DM;ZMNA@j$rFz+Wh1mV*Z9W^TNE4rhzC7l}7w+ET_QWN_ zZt%4gV$v7?>iL%jRId$im-N-y-$34;LjCYly#FyeewOy;tEcSxx%Kead3x>{rF+-= z>0$8G6ZCGM=)J#c-(9whk>pJm^kv*$b`-r5m%Gk!+up9)$6f#F>40nfeAOP$QvL;U zgbu$ApznH>iJi^B1Aw_-0fd`Pe4R!Y`MBF;$9+fC@FH5z!^0{9gDHZU_+^zBzxpG! zuTu}jR7W`z5|<(vC*Uzi4EoCKuX@zk86=gzjx1wQJ&oUZoJ__6?&awWKmaeN;c6C1 zWA@Bf?ly1~>$suxMDR8O&&Rzgx504Uku#259muV1>_)+bAdN~~HPejhx`!ZwpoE;_ zdR-hjRl;*9EnM+etI>8l1%P*l`OV!H0H)^yuC_p_b$&h_{AEKH(0hHoW-eNb!7Ca; z<4R30=&P#*#1mKMEha6nlUr%oheZoa?iKjwfBDmLwWwAuJXOF@>Hshsuh_H3v0cs% z$)wOA-9oN)qe07`_7j{8+d;1>bz=HRs6$gAK9^n@^cwcs5W&mYSiGjA1^`T=kGlSB z7+ZsAPPxd^i>0hCX02Ks5L5gsz}lAyoR&++i7c(-ar^^i##j5Ox68i7dcamD0GJI~ z2X%r(0K-tg`|ZSTFyuXo_Bxr8Fr=_BIC1cQ7wcYOGB{QPONw9sSevB>%pn7l2sTbz zQ!Tslfy&sJSvJEsa`Bq3TVhq%z}T+6 zO{8k01x~TAksPeHMyq417*2^BMqb>pg&wJfYU2_CMg>eW5QyMNY-fthAp^kp5Wyjz zAT1bNNj;FsxJoxag`!iU#h|3D0S)(S`*AfFT?I% z>aZ!=(AQLp)1-jVrtUKLHRTFelFxk;HS$&VRcIL-BEeo)8M*0)!+C3I6jcDT=?q`e z&&RhA&9uk`6>q+3FeYnpq|807@|wOU)wriyiR}6ASGJMrYoEn$0nFy9R}Ne{k870f zs|a^LMJMw-(O=cO7Qoxj{^r?xp|1kizM7qE-scMbwL8^ITNcA=U*MJ%UmTaurt{fA z{foZIFTwuDP-cogC$x}cl^3i9asT$N|I=;n#~U1>eFt=M26V4?&8uyCd(41gu=cP? za0Gp!fF+J?1n4UT+KE`UHpLow>f}gU8N@j{#+`+tw&5sGqFtLbzTb? zxP{+raq$XplZgAi#UjF;fz+{dB9QhP^RbWjuvsL)Fk7pLVf^|I`*q@$&NToqgztKh zv6)kZuex7x?uZ*^*jij#X|-0XQh& zx*vwMfBmvvW-*v)XK)uM%V}HF=|&dj+~FO0OrypdOpa>9P-5RDe(XR5CBO;K~yvYed!U+ zLLJ=`#VmR?Sj{?kZ*=LJjihauS!fo6aRiBhUYtM{;{-@1dg&T%hJSR2(qaZR+?6#- zYC@8#-z2>?Y(|>99GHk^s1)v7*N)S|u+2_G4Rghzcz2`$FwDIU1TaF7>_ejjAns-} z#xI6`7vdaZI+;u|wrB~DwR(;JUj&_{`#lfXh-0Arf@-)}eTM*I8~%kKmK^WG^GdE; ztk=)WIEflZgJIpCHyDOE0y)HO8&`8Rz_9>k zl2#p6>vX$p;XkYGHKmMNwX2G7!d_xAW^Xqn3*D+fc?*E?t#KUIZ2-Vfz-g;2Yw8t* zfSi6uvA45}Oz;OtXH7_I5!Ojr0Iz0q)V0lKLm15RZC(;)k2h1`>nXVl=vMd1RQO2Fsdb*p_mn>w;ny*Y#YZ`s9F-=6U zWSCjL&7D0UcDWl$r#7?-=90eZ_|ag-4kx_i%C%RYMga5snhjBHDG9$(w+b^ai{s+C zPO*Dx0GXRi`MJyuzTFjgYT#_!qpU5Ib!xO;Q7=0Q$lWhK0Ji(`!rhZ%YNSR{uK+A5 zWyS5w#1V-8qlxVo_w=*)Ub66i1L)TENEsWZ(?D;-P`>C_c}53YrR- zz0=UX-DaH)&uqMs3qf3CCKmVsb%0o0z9DnfPC26gFgK`!#A9uK#)TMHbMb!|WsB8t zf1EGZLjrhrm@L<(@e1^1{+X?_Cw1Q$)6v=&4H4F3y^z-b)JdFU0hVO!N4FGEZsOfW zUXcp*-~RnyN8=#@%$6}O*x{5BJ(V~EBaO#{*cwLS1Xq7(P?>A$xHb{32G>$Z4&Aa- zJ&yyo-^u>;$KTH(g1vGg=>b>v54Ob16967{LXNoP&Pq+X|Gy-t_4k20gVlIT_Eqp4 z?+5gS>V-zYu{Sir=B;q%T|3OG$?Vn0Gsx*aw2EPrAd)koIvLt41SuM0u)`q!W3D9+%BI(Pb z05J@0z2DE*>oMEDv_hQWf0@4_%u!PZ<9~KB&k$lcG6U%oAjkKMz%ZmR0@{}V2AjhW zq%T$~A4{e8I93{;iq#KA_lH_^7G8Pg=4O%&Z-ja083DZV^3n}isRM5k-livj^e-36>%xH%&7*ncn`|k z6WBK^tyGFW_+_h=Xc?Zv&GtsO4 z&o7B++%d>~L$k`;5goX2@FuNo7R@?rk+_?8S1Evv^#_yEU?IPSedQLuO8QUhxNxbZ zr8G}z$+idpOW#<dZ@;8oH&CLWqx05wUZHGnSl1=F_woT;XfJnSHL#ztm`^k-JsA zYy;#u0eq5e_P$lX)<5#Z2J*ymnMq(k>kCNC6MtpoqrsSv?8{f^H30rf0b8+aHLd}0 zZl9_4UhX#c3Bk!rn%eO7)g~g_V#Xr(>1v8R4KD9?1!4W!q_QD-MfiTkO@mdv61UG8 z;_0#b{A6mqKffRR;$isZPUs8O`*_p6zaHEiyT@%N9mtF5YMV(>b^`z>`*q5?FOER( z*2zV|P9exu6@|-EUg}n@~-G$6hD8zp|1_yGPCU z))zB>vx-S;)_Tp_TCKd&byny*%v(PcvC`fwz8ubE9I$B<0LIn9tOOo5#MWc#<5zY( zZs@9|NZy`~LV>=Ud6V?z`()UCy&&;o9M6X0xgo#DgMc9$jaqe1_j2w?d?>XFrJDm1 zT(Z0EfJVx)az}j}byHB4yB6@-H7=~%DY%PkZoLjsQXWEkLF_{QO0$(wu{bdq=EHoi zX-W1!TX$$CpJ~m3D>Ac`0&lGZ<1&rwH3xgxdM#TBaSiSHx(QgsIxh5J$-n={zYRx& zO7+6?C3&ve*H;m&G*vT5Yjy~nGaXIeB?w39L!M}TK`n?-c`eo zZuBW`m8BiJ4f<9xQEAf5DD@z@-;Mi&fZnbg!eRB-9NP`BO`I=-3ji2=B7j*5CVkn6 za9XS-!07x;Lq~Qq(d>dE60a{+0@swnOIt)>bTL-5LNe%}nwkrJD8VpiKt>OiU8M zco3hmx>*>ECwJ={ZDJzY>>=)yseq;HiZZ%u7|abE$N{0q{%v6(6^4UoTsDPu3HeZAIT~g|Z24mF8joCiC;>2tgmK z>*wap=j`sOjUalzJPi>)Jq&)l?<2n4ne_?KzKEO4(QzkJx&3Z+Jal%OOl+;z0A#|v z@nHwm3-q>t-t{_Oufxftj{i#tTy7bHZqUYB8K+}?f?iR^NowBQuiD#1wirk3F6Qc7 zAQtB|cjQ8E$lv+Yqw^HlEDz38yZe(4t~#n4n-(fX2>Yto5;7Ezj*vAW{xNeI1AfmY z6OXe)>}^Kq1e7v(7LmBjKjVZL#yJ=~8+kYaz##6VZ|KXBU&H{n^Q}5fD1i{cu&!(a zqSU7eKh+2#Z!~BEz|g)ETy6UhQV?(nQat>0k zTmZc{S1SZvI9T_k2*%0n?G~Xhmi#lm3PE^77y*{tGDN?AT>BtI(x}8{F#s4BdH~?h zfB8=UxK=HAZj}q(nMp=~XSBj#<1r|1=X3#M(Z0%H)|lBZEvs1j-l&(b3>>;8uTf4T zeCzhV{>vYC>qY1_*r+vVyOKyq9T_ZEYZUIvWfRtV(Z+{tkY+D5`>k+}@5sh0&=)F) z&K`J6VDM_v)~;;9@NAN?{faJ+6vTEUiOpH~l=Xwe>$5EjC+w^SjMc0orDs-CNy(rT zX8#mtlQ^e@|3{oNIJ~4LSqXPMXroqF$Aw$m>i`UQI>4}(rcS8!VEk5C43o9cLZ_Kj|vEY z%3#3MG8@)l&Mx=V>@i!AGMw~(4?lCb9uDtG|6ZEeWn6t(Cw85ocMQ%Aa0g})WDdPi>8Wo}amU~sO%0E9902jmPg8w2mX91W{V zx^CIjIsuGVGYVKC&AzSN*i!qqjlZVD>X;aMsO1P7%Eb3W1+fLN&4gP34+gUJfvx6m zC~A$dqV_W*a6%PJ=u#Te@p1LHb-S1yrtf*ql&pO`Zw-guw>A#t&Jl zr-;K((P=gJRj`Zdv$K9~;3$#9_1hg1{~s8Cy_eT!#U(LrG`dpx1i-r|Z~yEAw8~nD z-EjXLAP!IBAIZfDw~sBNS2y))-1QirZ@Wx8KU{a9eIKs}4_E!m<8Zs_42E7?MhiS? zo?1pUpdg09;Qc<^Y!dG175O`=%YN)>#QSR|Gr2lf2LycxUkNU#pEp6@)ijw3L4D~Q z*8DT1=VavK_XZ-EtIdE$K#{gnwBwLMuLdM9x0>J_3}&+;9iee8;N7>}n`<{9-@{PW zBH?Zw`WSE65%*>VFuny%Kltqg!;_ec0(pXWi}#Fk+%Yipv&noE0lm<{I01T)xE!EnpN6~CP}#Ai|cA|QO{(=IpkfxCb)NDKx;80~g|=mtlKCtO~u)laz2;tDRa zD7%RQc*?@zUi)=-n=yxH>{eiQN9W#?GLoc^3@L(f!3BMn+F>N}XxfGdW`P!v>$M$R zuw-B(7AtJWDOvzS0XuGmN}cp&`pztEY`Fxm9Z4Ec)+h)$B@E0%h~TIem4Oa2xe&o_ zU96$w$bGoK`u#utrWpr#kdZ}ummatz+^BDEOA2f4Psc^q~mTkYBpWgoALViuaPB7 z+5*N3G1TxxyY_G^mK$kxS#(&fyNBbL44zC=VXy)izXmk%z=sgT2#yiAbuXt3h0mH0 z%`&H_9$Pd()(onFE94+MnKj`QFz64ZK2Rny=|a+t1qxuUb^w66hg)7mZ~pL&D1X`I zWY;d?%Vn=9moW_LT$C&NkL18Nl1}Ujw}(j|fc~vf_0rjfHDLU%>N@0N;1v*Z5*L}5 zmZNrl8T=E#+Q-L@WCSg58t{gtKAnn~=KV?-6(#hg;${f}27{NGP&RkVf>w?$NNW%` z(=EcHjGM(Ids*awYm{Yh>valR#+`9zBMi>RoD{uz`?Stb8KX_wTWTw4z7d%KHtrvN zhc4V8F|*b^e z>JF(;t7oUd>~#-V9|) zutd{kECD1Lc=(F$Jx*e-kEs1hDT*rYUGkU>pM5;G|cZ7qf^$Ay}bilOv$Dy3h#e*?xc z|IJ6VT8wj|mygH*A?}&_kt9g86AeF7e8?ZBbWyeH3SEzVQY_Zu*y=jnfzSG@L4_u$ z`;b|Zak754IiD{GrLPhGwCO*hJdG3#Vmf-qSz?i_3>@XUdH&8@+DBCZARQ z)@hM)mVW1@YnM$@MRrH^0iRe$_nwBFQZ{{z@9z=9#U) z-TvgAs@SiB8uul=oTK+7^Q;AF&4-K3{rn=zrNsN}BX*DB{wX>1fi8eKRKphS)8 zT?8vtz&cXqNa8}JC-cL`4_5W)d=?`hH^Jb;E|YxnQi4N1to1?xzx3m&0tRIfOhlWy ztO9tm%w!9%Y_OL_p0ee8ZHmp)NyxcgDqyC7@b@XJRC31|{^sHLwcoFaZC#1u*dNm;d^6uivfK3IH%SB?G+)uKv2UJ`5rCbgn}Mu|T&Q z0QCo5SA( zE;?j+i1`n?O!IM^&_auMX|sHONgKbL{2B5-hLwIM7zkQw;xubCTMmw`j>p6)Z+|hBZ-4-1+cx-$H+c$RDquYB2Nx`C^Er90 zzDO?-Au$&hDuBb_LY6t|zlaz%>1)k1N(vY1E zEj5>J)znP8Ve`+YE&%jE3%}MUBG@>M7_*=*1Vh6nwB;xcCl$zFF!)Wr%)ljm6~Jcn z$gcJ~tptCy9YM!_Z-9c*&y8#f;z5HdWbG@?MKA+S5D^40;C6?K? zeJW(x-u0Tnf>_Jrbv{-6y7tUQs_^nl#1Fw;c~H@N`6$7OUO@MjYkHx2@7woxE$%G3 zziHoIW%pOv<4s%g%r{-27Xh&g+#U}p;&5mpE)UsZm*O57e=6*_>-K9y5x8O~DtiOh zF_#f7RuL31NIV?YSWy6L4gaJaT2{=e{0+HGdp3iTOS$ieo>nxKWC7T;TKU; za3IrG7oGxGWGh!c#YHc?AVf`Hw3dM-&#ax>IP(@X&474TK305&Iynt7R(g_5J@ z%>*?)6)i`w_>Ya7l_bjti1Q&RjvxcTL3oaTzWMH2SH@ikLe@ZaN;H>N&!75f3Yq|x z0&t6Nnzj<`s5(;P>z+Gkzp?@05{TZQjChj^U)FkGdV_6k_*H+_>(1faI^$)T60MT$ zetT=IVJwuDg4UDyt3>fDhv(cg>ubrYahgE>{{fhlW`=#jI`3ZIKL?Uqehd##w@fKN zhX}Ct_z?2(t0!Gm^eAz2-@3jtdiUu;!z>N#>f(g%?N$5!O6aQ}w)qISyWc^TrpJAg z0S52)>3r4h^u4UpX!p!UUI2JDbJp7ws&}&Rr^{fz3};&Xl`(Lwu+AWqWrwyXU>=79 z4@c0K_LBfGZ5`EAIi$a%X~NQqF9G~g0M@1VIAPiu=oL*ogHV%M+hGsa-%v8u>hD31 zE$ITA;$GWl&Y6}yeJyfGg(J6F7X{p{p6&pDc_$MIQkIC7LUrHc5qFCU-AH*HYQ*DS z0PYHXb^jXIzsN2>zX09Vj_WvrXE>473t|EljQeRC))4rRscBr%aP5Y`U2R6Z1n)NE zjrP;NNQ2u{(=6D~ubC=`fQ$ z4ch!nBP|47z*q_P>*d&!JqM2u*MIo!uc3fbA3rxSj&8>eeuf~insxh-yt=EZ!4533 zrPRfR_}1(xL*PWtwHwQ>3BrY#sZ`!50Kog@fcp*cR%H-t+5%HA57VuBEOTq}b~hk& zp?6s!rtoDEovmBevICD0z>vk0QLC>@7nm!iTBU0T7z{SECyTz&-EIUD%i;~`qB15~ zHVdtDN-ZTQ?X=pgALC0Pi1BK%jw3S*&8jfJ5iyKsQVr`(8^8~doyriJ4yUmUj9`nv zKoiajO+<@Y@ zK?IeIr-9itz94`((i6lNesqq&iJhs%Nlvx%P->_bdCs=PCz#P&mA`f!0;uNuMIhD+ zUt2oKv(U0ZnM)YGxPb7JB93lw4xqB8OQ70wHcs3AZL$*p#+RImU>p2Glc~->q+-sq z%2mFIgyyU5D3qOsYHAvQD@rNNo86iWgY_#C-7*(Zq~g?3;W#xb!SvDOVseJXuyy+y zs^IB&Y%`Y-+Bj$qDu_3E@|o)P1&VgR%cECzr<^%+GpCZrX1FR z@+E%qtg8O1r<&ULG~4`Du+mHWc*!3ZuU!jY>(&C{k4zAr_vNNqK@!p$9T2=K^q`5R|^g@7~JLJUK~eVmt9v7#|WHE2N3{_0D!sZ+qh1KrP#ZG zZbPJgnI{07t^l5yl^<`_V-o5XV8*BR$2kCOH{3xP zO;IE_oTB&d&bJpcN72>?UPfx!r99qKlwpaEdXKTlFN7?ZxzSKNzny8z%N zUa3|)pU?XMaJ$n2fE!L(<*)dJ0Kg`6Qkejj)?(!u?X2-3LT7?OxD*VA`lnws{>eD! z3W{DU#0g;RH;Q<{@i6=MfBD09HDx6j^aX=KU$N%U-LCYZEkQ@T}8s1sm{fHwd zWu&1#?)aaGM&db47$(!JT2nNonHthpW3v^|OYV}vCn8w;umIz*>P8oh;FDo+cp=|N zTeWfYv}No?*D6rScy>W^nIoTh%3w=whLzELS#5{5CLTiQD3g%RuY3rKvYxeVHltA` zr=9Az0H(>M1+eCyO$wTZxZE_Q8yMwrn%+anK=Ta5^RlMKTTD~yxjGoWIh}$vGBmf& zuzkWLrE%(ba_C3F+Uki~eP!BwI^J{2X1Y zMl*LJI{`f!d2aoneXo_6|*e=8- zYnhG)eSus3tT9{GAz*Q}#5ZD@S%R;l>0*8f%fsE=_gs9qh8`4fuTx=x*=lj|-&n-! zxiEM+4W&e_rC&Bx0k?y;0r0rzAtrsHFOH;dzvZycsFT%OX*CIpaZmtyfiVP5j1Ep+ zuqV?cNF1mok|(1KSN8d`4+RYFZgLgNFwIuVU^*Id<@v)6qSg;5pQohTfm5&a0PRE(V#!>;y2`EZo z`|X&N#^ZP=o6UryZu!=x%x0%)(z4n15%~3xPH*N*CYiRIwJCh@A&oz6iJcASQBcaa zEqyH4&q~fGMA`dL4bI%O7_=%;vleG~KQd|@1SLE2#JVXc2yzqNcpb2f8;e0iAQ=G+ zJN`$BP@)lhaHBInIY&fkA<0U{F-p_605F2CTO3H^3=$PE0USlr#NdSIb^ojpU&x!( zL^KsGVfmG`B_nxfU;)hg13vRqF`E>(0+}rl`oZ|4sNxpZ%)(2q$Vw&=8uipLmh#W z`BP1Rr`p$AS-mLZQ{0}+_E=Pth+J83xoeuCa<#3?4NuhbYq`v?vLOFf?{0sJzN!A2 zimxhQe9BrP$-9y0G-us99=<+e)DAB`1>;7Kodwbu!zmr1m)E*&@Ob0OlSm zJOKe1562Azbp@jVYQgIWR?8#V|=s ztTI6j`pzLtCo)dTv@kb!TE#41GJrM>wyTyj*>eq1{@)Tcrnx{qB4-;4a&< z)oMekzujilj`xNz^arc0+ul32}zd%9CW=SN^2J|Pyw@_i0&LL10%$dqwTXV8d7*RNLjFlAjTtHkwlwl)_Sim z=g*J(r-$9m)q?jlU@(W5NMGikSxD9ary&I~Vh%ol7RVF~>z8Vc z^J@JQqSBD4I%jq79KlV9JV!V|0YO<@b>G#z_jUJO!+T%zaQ?3Dzqbqy(hKNpZY~l- z>F}HYwvJbv<;90lP&rY+f`1EOuPKwk?8X9yt*$*~FuSzKR8i+aQT8kQ7kHm4&I_#2ey}&_#f_le_BlzJ{;>#^Wzb z6i!wwSe0zQ+`{{m-~5z(Rt+y-vGW^c%okKg%(?;giK1OTzZ7@#K4(8K{l2;b$j@;< zAzuahE+3rrlSl1)e26tdk-zup)q~*n?lwc*-ZXjSiFy3Gg}A@T5O%Cch|2~mrk6G0 zyxE3`?K;}5Lay3HY(=Naen56OPoa9H$+@`(Qx^eP3*zDgFrMnR=Yj6A!ZWRhGc~Ra z;?^o%nf=`~@d%f4&;(j=tSQRoYyQlpzk$c8HCkVB4jA<9w`%mF0x8*| zJd^CS$5i%E_ly$2Og>Ww<3n5bnkHyAh!>IDM$zyIgInpp}3%r59=(g22W6@&cE5?@5HR|7RO-Ozx03#Ogzh6Yai z7!OGOhjSnp|8@=<4O(G83jkUm->;Xm$ZN*lFMfLZ<8Ob{ihcY5A;-bRVLKqysn zaeuqMyIFB6>8K6T%s-RXJfW=wHz_e_n?;XF&I+?_ic*+9(i|5)ZHK0L7F{Y&CxiJ} z20qle@E$R2`>P3iVA!f*TN}1XX||83B--(B1^#j##9>DE+-MIjOOO+3ZLghUIPa}r8nu+uUi5o7S zY#y&T?^PTNdaK^|HUDij{GlGdZzLbw=2@7X$L#_UB3(=VnF!pVl$_W;1HgDB?_&@* zN&?u63t%t-Oj8avMFW$Ldv=;$#?hjb0G2QJ3gY7F7xE;z!aFER=!d8MSr)*W+?HH4 zj(+fo05)Z2Hh*c_ndlYw67Lf&Jflt}?uzyWdLe?de&yR5Fblv;K2y{(^Gs_FUKKg> z$(>7F>fCDAIBiS-1IcfoZl@0wK$l_BOK_e}%6?_wOnYYwS3;LxWzSDvb7}# zliu7U64xoX`xT6Nf=>~{OgMA6=x}K6b_rO!UIs$kbp#R%eHRkoE|(6iW&u;p;H&E0 z+I;SAHpzCI&K8ioH7WNBeW8XuYFy@TUwW5jq4B!Xpt9un5C?g8yB1WknHbIi%%h~K zSJI`055*WV2Qaxyt5Tg1_tf`Fynh$tbT*8K9j6%g z2w>=7eACdWMs5vU9}n7p{`Wua*0azpCxK+|`7qla3bSc||1K81c}rolDV&PtN@=KJ zFr!|3S1J8aF221ezdJAefFl@Ob@Pw6YL;Y*6a3SD+nf7_WQucM!}FNNbN z;8}9!8@6LhKrh16TLGbdtE?f58ab536-I2cGPAsGBX&EWa^8fcJ<>GjFba66K4NxI zn5}SBz-%>tL#b-H3kuo^+E=5ruhDBj$XcwXrme;$WvN_WlFzw{J*BU0V792%aKFN; z9VI&X!jmWD!SP}QxI6#s&7OS3@-YN@m-o@?AqIDMkLGxFmm+R%n^)J# z+~cmjd@ZxAbRG>Vi`VmK* zgT5fKQ$KIiJ|S=d`hvmiy@L2-jv6>wPP>T1ZnoP9Wv{Q-#4U|AICQjLk8W-@1S)qN z(G?4!xE+DJTviB8jB@~ZcbG5*jf*A$OfcYbnNMl^V%n#JJ)jp&vh6hh01yC4L_t(e zSg)N8Qpn9_Py-HKr*d<>|I2^hb-<+2GWxZ zws9sHFrykKec3IA2l3O8w(zFULN8=@tdT}8;+KE>{Exr+Wg0lKSI@$FPuCR6muspV z^kpR&BnEfai?&%3Jd`nX)+rH8KI4eDZI>0|L)*tIGfUd7E&mte7NqbJ`cjuCilc}+ zOM^G0IDUp)%)lD(^W)yG6Q-pldCZ?P3#EJ~%v1xwtO_$7on=0yur?xa0!B?<&FjYWSfZ|KPXI!p^xwauLMmj{lJWj*{vr zfDy8p(Y^4TbGPwH=9HoeBy1!2WC08XOaNOn+7m-uQe2TKo>p32HVi(2tNALgfX8iK z`n0-i0SqJ5CP(XzMH2I0fD=E2=OVZUeFiZRrDr^-DA3c zYF<8S+@!}Gy;s-3a1$RQt}bK2?MP z-zC7fV^T1dr<7&uky=Y0_Z61tOCa0kGte+XZMSO0|IIfO6hTd$wH;=EG~yb_QD*_Yuu z>sQjSHXpZFv)*Pgpph@lob6UYuy(s0=@jqe?rwKH&TenlP{4~t-`09@T&xDm_3-}j z08NZXNM&il(jj1O``PaXhy9S%UtS`+Q2E1<{m=N3BDkt=(o0)Wg8+sCzQ4N!fFlTA z+)TJd3t$l0cT0#k6kiT{TG^&5#jx;_S|386`;jCOjr*rA{);1kGj@xRwm>hwV;ip! z*70M}oPn%_nos%=!TZfT4jNh5=%&7GWzfw?#`-Gn-)8$5LUPf1V*&DUlGXO;l7(#F z26*d6(A=Oko?s;`Fbv^K7=yUL?Q-5h(5XX~3LnSE!^jlc zbxEQvqssKK_A#yS-zP#dv#ravZ}~+H2aQ%HmK~>ilk&pw%NAiPg}+)eY(K>`b*~qz zr*veg&!J)JZ|iMI-!8nd&1P~qEavl`Wv@=1c| zv>Q;F4wzbfU#)+1{gN;15M*BkFpOU(h+qj|xcKh8@D^$qnz&qr0>*Dz!SRYX@*Ko1 zH{KO%Z$$?;-U*Kz--E#==wSa{CH$e0eguPq_NOrY?2#7tD-Ckj_BNB>Cbyh>W?APcE2FnRMVt#_ zud?zu)JOc&1%;gD{VHCe7i@lVR}cRBG034CAcVUQ;pQ%qxDOE|?%_T`9PgW#583`P z-904x>kM&um1@L@!&NGA)7)Jphhqrn=8^0V(QY4acMo^ozX^i{(zApd7*dP-O^xGAC4QHUb)%2$l8T2MDWCc{GHF;)g}?= z4J9QlA?*S|@p06F9}aX&caI_&dR|;K?|UZt8IeWa7663V1vU(xe!;pJdN=SoI+;Ywz(Po?y+#Wz*I;V9zt1 z$GMRZUyfh9eyf&61sZV}0E?lO&{tjA1icKVpaEJu2>PBxz|=IoC&6I$Udh%oTw>e; z1Tk}5o>%gH{Bc%;prY<~#n2T7s|%xyMnDoB_p`g34b82%J&-Pv*27udtmgOkdjRQWpeYzmqHo{VFrZ7C(0&INVwgM}Cc zgQ0+LZw>@-1ybHE0+7z*Z1*L=8vF<6IxNnEgIYfb)B?P1^1rCWh&33MniSToVZ#3ue<9)6t8iau@WS zwPnY{IHpb55Vx(mAQC@Y?RzT8pMZ~V2jt5?6THWbsf5;p3zZKSWhn-iY9A|-qZS=3 zON*WNHSZ%7DuRjVQvLfv^=B9Lw?*e&5jxm^Uk=`a!ESUGq%tKOM(0$JG>N4Bq*8F(!cU+t%W+e77vek;>ql|fY~lB$<#Ja90qnSE+$xcz2J@7& zrff{yGBwTGuxebWXJ}bVTw4-$Aj(|>;~+d2|7Uh%#Z^dl=yj;}P`{i2ZnmqPzHVk5 z7}sdyht)3kI^uJHAc+BB(6^bgMO*-^hFOlKujZoNd|C+@E@d)fE%D|Qx~DBs)-J;; z-SwCH=0^)!m);truNB00REgEx)9P$aT)U1iAb=ImW?`_3V55D%%0)BQPZFDZfBO(9 zWesjO_c3C36Yp=6<3ozLylWzEZd06H^E}p&R1OAfnizio1h?Rpw+W|DITfPoxa@*IpDE|tW| zaP0CNAtG4Yte}Gz3zmlib<&7!Q#8dcJCJ41!NBFhK?YYZFe5#ly5R0&6#>9d((|SH ztfjBEM%TnqOE+g30IN`DLp4Z@o4YVLQzvmZ3eUa9M*z4T*CVIUDF5KqK4eLeHkLyv z_xf}j7hjIC85-u~5`GaoX&C?pZs((r`xRz5ANYugxUxA`1XJd642kHa=fg2Oa3SUr1-e<`Vh8z~yGV+m zl^Pg{nLYu`MTGd2h~w*(k-5kD?fniU<`@#xFi3oTy*wPIBFK~q05GV)Edp$QW}cQ! zSj^~37ja)aBk@z!!Q~nl?77vO>;0eq@}F@MnHsRLw${yLUjjrbv~N=^y&Ui|(+;fZ zFk4Q$+Fj+b&6rMD%s^6SxvfN z@D@_C7t21xftb4yr34RKlc;@hb8~mQAefz%R=Zu6H=JtMt03GVf?xy+T^7l)`lXAdKzG;YOoi zJEd)x7Jhs2%4XH{yu-T|7T1}R->9{?blR(<)_T)ht~$8$fYzrD=8^5__!4}%csi;m z1Z-H}1!bX+3#Iqxg&!`85|F|O_EDE=@5}WM3@G4274-f7qVnCR>UUu9MdN#o?+{h@ z2Pga(#L%E;oU-L+C(iz|3!3vtWH4nh=o_as@!wDdYyk}JLJHHGBZf5WIbzz?dRY+x z0E44YrR+>5)Y*__gseiB|59euO&(ioy2gh~m9Ejj`iO0i2GqN18HRTYz0RDuSs=k_ zC}6Tv1AS#ja!=Zr+wBs9o(JqUrTH_C(6yW@rUzL*3hb!!pvSdxoLOSZ8W;wBA%fpn zpfYvLg}5tat<}5v08(R}Yu|i#{VPiiDG8r6WZ6cl(`2&kv9cd3S+xxOP+#UXV1DhZ zRxC|B=fk_g-R*sh*xyMUZW6@RZR`53ee>A9erVm?O8~tL0QmZ@yFHjy2OJy%diR$J z=)2wp2+$YD<;KfH(90At$A@$?V7yyJhmGtF+^k}5(AzDN?OZnd?zBB>G>}yULv=P6 z216qbJ-VE?I_0cgLiD8^D-0%v5#%l&BrMsttoF+xb*e?LZN)OVWwr7EcX90FYsb2X zcMcc_6U{

30D6TjkIZK9mhb3u&ANLCJXB*?I2!mXsxGQajNEFD~D$s0IK#m3IX2 zc<6AS5`sQi%UMd{%jFG8c+pNu5W#f0qSeN<=g!sDnblv)Uk)ANq?gt3AV+>#c+R3S zBk>E7d!7bGB7w%UY=oxI0FIHQxo}033xRC>)g=TtU(C8USF5Lo18916wc@N1j({-% zEY6WKbTm*KjfFm8{P3{j)+5?(;K;bTS#uhAyA=mYK$mU0HaiOXf(kgA@n5ag;UwSA z>r?7Ui*o7!z@RKZ2mn7l-u%aZ{yPB7F(f>Qpm!CBOZkgW#v!h54x6wjf@yli{%3F( z(B*g%G0zRepl`3~W?=&W)-8t~8SK?cL8H=)Juvt;|L1T2>36^Bq+#e(32C*JZg4{| z%gnfqzzrFWx-eMxWzEf4Fc`dD56A!(eW`%iki{*E+Lk2%9`*1(qfX*ZdMW6;pZB)o z_M(^2YlS9XOf2K42bqgtGw|^+y1icFXU;}wu2DMdrrWhlb*m{ym(9}n)|}+QF8~>= z3k{o{R?yCTYGOk1v@?q)(f}|q41&@}nnOqG;PI7h)=Qe2eO1gtYuEH?i}C~!v{(L01yC4L_t)1 zhvQk{XP=7SU6kJYOJ&;4q%Q;M?- z96?`QJW{9E75lTeAyPwBvaZXhk0zc#bRH^GWq4`6jAzibApKI-B~5g07)QK4JON*b zSBBcg7vf7s`Oq-ipw_Dl#MKwCa}aqr@_V}D2){$F^Ik01^%vc5oYzY4BCm*Rakccb zM)hr$Ua%UC+lx-KI2kyLNg($h(?kZ7w3G{)Hp9Z8UFXb_n01UJpce{wDLf84X$8R! zEL|xGjawDboK=~jW%-$F&JcJ5ki4{2k_9Z9)ArnqKMX(P+CD0B_Yn zf-sQIpu>pyXIv8zfG)0sT4Z?;#5tX-H934?GtvgbQ4RMfyUpad zpRX2!`Ls&_vt5gewm2yV5xm*<@e9Txu>e?Snbsjc6sXrQ+qo!6r?N2ZE} z!G2Z@+vT+HWJ59VYPQ9GGSvLDq>-JEIAJZBLru+meUpSfV$e&)uSO!wJUi|gf@4K5 zUL3h$7I!sDkE8;a4kyMt)4eddSvMKy8-g3Mp&!WPbLUYDTc)yL$-s0PtOMxRt>nRktlb_vRWXZ6a=OWJX9VGVZ(gcO5F=oBJN( z_O2^&-MzkS@3$?40r0VT*e9E9IA1tA7Zj~F(P9-$m)>~pj3)KrxJG?B)AdAi|p7QA$T=Av9Y0#^6I^}k|L;!O+F40T+B4~gm$FZwq1uPvVtGNygM*xypYd};H2;42=!1#WMn!b>Exo8L42~f;Q_eE``$6x*Oo)*y~E`FBpk`5veBAL6AhM zfC=EAeti6wfBokm^lOa^$15=fO(PCy-$w1+cT3z$i1W}bF}tqANMbf}I{wQhFHZ5Y zMQb){sV#OLWCi~59yl8fu?q(KPA!f6G;$$=|M>gA$4TttwxERXqL}w+umxZb+U{%^ z)0R@{+gvZ&Vi2uuy6l+(XlZCHlfl}CW&x~;XzA<5KMf2XcN1l>BRd<$t;3?fgIet; zoJGb@Ol&%It{Oi~{A@vA$UB^a#H^3vhmRw^5ybcH^;&BDny|Hwm68V6BsrU#be(XU zYFL&E=Y3M9F)DHczm5n4v9)To0zev4m_qi{lhW3MSsNxDS;XZylQpwk>gEp|xnYUH zb}(|6iD(O8_VClsaV6x zE*3tXe|iT1zkm0$_aDCd@bUW(XFmgae|Yyd-@pA|Z-4mT@816m3`V^F^f#aWA6;+W z<2rU-ecvze{P7xr-F^Gw)*xsiNQwdn5gbHN6Es3op+?m0w$X`WB%WZ$ZNzpA$BB{W zTR&^>b$CjBofp_3SSpoDrIPqNYoEQ>zWImi-WST?fB5412mkQ#|9pA-gRAb3+TMqr zBdxp}r+6|m%@wIP@mA7LV! z!F+CJ}x(gsdP;rk#d*wcTZmrfm@nYvCL{OIp=`Y%SP<#45G)o zC2Ig(|O+p1hGx+vg5X{`|1|i2YrjIm8Lfc09b0K76U*uucVee&Thb9oQ$V}TdPo+ znr7fzlZ9W++;Y;#5$9r+wGP>&L@A7;Rl_*q_Q}Gn=gxFFn5_cBnB+!)uK=)=NiT=M zCjm^-PnX_m7vg8r@|NBmY1WmFb@vK{bGsh_U=RABch$Q7|9b5o=IN~zV^45V?oG%2 z&j1X{&P#VzI8eI#MN9xg_~Le)@0Q7NldWeF$NJK5k`5bCz$_pf>&$R^wBmyy?E(6! z19z*!v!3akNGdB|oi?gn|0aseqfL@{9G;dB58IcQBU_Ac4zau4R)DVR-8IcO#G!YS zzr1b_$9ldy*(1FzHjNB~2@XEAiVV|6f?F)qTPc343{BIfmI zw<<5YesKcQOV5wid~q9?N7haw#1%^c3?BRa8?WCQxYCleT}}V*fB*ToTjF+|T`29; zX1wFD%Z=nojs=!e=N?ng9GZ04mf}*Wh8PgO05H??Oi(lb+%PymFm28}IUW-)#k?5q zW*Gpy2VlmLzse)7$k?X&ch#!sB0ZfCf>-HBohYkjhd)~*s ze+2-${`IBTBl~Ki@H!IPDQzOs;%5LDC)_GBQy)eWL~jJ)o42E^ZEUB?9yym6{VazL zhGxBHH}Jr_4g41UwrF2v0UYUcVX2yqj8(OoUcEK`60{sGOa*MNAzE&22562PJTi;0 z41jTM8OY!YjgPd&jz%DHTS9Fqxr2K-+QCkD5D}bOV=U9QRGC4-td4f<6o+>kv$@;j zaNpgx{k=>Wbef^RZ^I94R@rJ?QWgNV4F2p6mo6OK8@5&(ro#Cmj5D*2Co)5dG~rD2 zLimdIeUKg@@Kq4|FhYFBV0`)Xm_I&b5V#U|83VWleGzxZ@o8V2cFElVD|e_^$p9}z zT>8611O~6S0RRm2j_bB6U?DNib$nwFYLy5iJ7uG{>d`H7QUf79Q?OokNLjED0k~#G z8#fYu1SIajY%_w826Vwu9HEZ^V_=x*t*2154&mA;V>Rw*0IcCdSW`peZgbfimM>>B zj~m8#s$jW*e>uRN0pQIcUTlJLf^|j@ILG_G?|jkkzQ?=J>3nQm{Rl_5d)2x5VfXe& z#prfcIfyFn;0O}0=Ybul0MLTIfG+5}n@0%Q^ex@B()YB@0bq9e(q4lO8>Sq(kRd!Q z8|JWXoXgx5_12;GWoH6=2Bfr7m#bV9H;(Xae2{QCriTOgdVjz9^yv&0GM#6Tvn*!8 z@$qp39&_9;u8$xtR4={qA(Zh`yB%&>bJKURDv#&oVwEF6Ux;7?{hzt-%S@mK=$qIv zz;6s_x_3n4YdYFYViVoTiu(QjRjc(SQ`3;eB7Zf2;rAbYaDDql*S+d_*B$4hI$6F4eQAObgzYdE zL8+EfV)Xb~;6~Dy3OJ5?qmk_I%4|d^&fGE6cE=J)(Gd)nT?9@>r7e1L6vHy|fkT#9 z9*EDltiLbJBXO0GLMok(3<<#wpI|7}(Xs;25y)UL77C`csHuIFymSUKuk~$lznXC9#hn2JupY;tFZ*Ey; zh#`*esCRcwm(gBZcx@sYC)^bl!>kK`N|RVtk7x^Erl3D_#kvIWrPtLZdZ~T2u-QL; z3T+U&2yu&iO71n`jG!ac!+rAi07l^U`@5KR&fuZ7^BM@Fm=cw^XnHqh9Aryb=5D5AEwOIyYZ-Z{N4C|Do6VB2R80 zd?9}U;Cbyr0TaMr?OFkB#O^%85w`%qYxU3CF5>-aq()jpT26A<5sy-hr4t4@NIZ#e z^Q=qvRJzVe<~eF}?}zVi=|<43lvxyq9V}y6JG$43Du`6b4xkhYSSY)xz)_(0c$`55 zKRm3D5EdKBGpixxV%bdQv7(tpSnN9z@96FLc%GBKIJtjZa}N@vp^Xu!V-+xyfzW>l zx%w|tmJmyCkM_cH4pPv+K>)!2^0ROM{O3OphhoIhcUqSKhW5=yJ{SxVLjjkPa|U7~ z$>NUV$2VI7pj=3wp`&@~#w#h=e@NCwTDq)%xYlF-fY#E2!_ zc+MQo2ptUcvMg&2TxHV2gdbr_pDLD#efmRzwU75JRzxG79@ZR*fpdbEWnBDm3PIT- z)g~oCOZ%omc}bf-B^j|W=!3xsQNv!B7zPvpXMs{f;YTHIBs$rbt2@t~^kx4bo@^5;faDl>YV4QGRIA3|Z z0-sfE$=V1jq1*=-0Z70e`0uo@u0DPN7$ZJj|FGTtz~&{#xyG}SSq@D(73dp}Oj36k zN>@@C0mE-YlMq%13w`r`S~yuLW16Zu7*~U$a?9GwYX>o^`$^SffX6b>Ndb&Vi!PJf zR;Sv6K2~WlfKpr&aJirn5N)SMiCF=#g^8|P%v~F|%fS_uG*jFxfyR+Tj%inkKO~5* z0bm3GtWwzgnL5_6rLG!gsxgJNH6+OrFt}@H6xxYNOj&apF;V^QGlvZxK~}<*hRgu) z;!|h-+D2T$_5TmIm&CRHR#N$V;a3IXO2S!7tC(#*J_m@y>k#NYze)=)6V4)eU(%Q7 zRQ#FmW5nmgJ;xv}0w;*OvrI%d9V2mRJ|*Y#=tF2;u3jkC5g1)$g0Hy-gZXzjZ27rk=-U6kI6KY(_UzSAK+NfH0VeO5= z;BgmBg)l`x#a6REpevbb5yT$Oi@JjwfmkvacgEci(64}Kz4XU(SAWnYp_%BW@+N?{ z+gN(|+)G)qf*^t0& z4{yQ85?9sN=iR55J!_tE1!Ni-Di-n=BA6AVVDtUGF~Gv*OglhifUDA1+JYaOj$zRE z_3QKF^PW?W9-p_=z63n3XlzKu1&$~C9l#)p4S@?Elple_3M{E03))i6G;+b4(7o|G z9}&3L|MD0A{HOo;qvyLl=i2T8OApde<^dzvj3n|mmm!0kaRlxzrz0iVfYT;4HEj~z z{6(ybW+oZWfzSoual%qH=wR{kbZ?=6^U)9@_z(Z~t1645fjD1sPB3CT5+g~_m&ZjN zO3#=UOaaE?@TG$brQ};ZIJpN2`AZTQ8%35z(`icqjOWIjIZnp0Gglofx#(pH*t23B zKhAAtVi@N*!HVbZJe3XjhqZOcqW0wgCE!`q;VK1t__Nf_n^nPXC7r)iYKc=uX*(Xr z>1a3%9MA3ax;NS*WGb^lod^l;;-1z>@&dORLu;qg%cf!8fjMe`lj&&dx@CPla%Ev; z%7)+Cg)N3fo%?O95{Tj5X0l!yyGnLmne&SmivJ7z3-E{IMbHIeW*t0;XRt6YTnKSQ z5)ZK8==W~Bo$GG*Bcjv!fFp!5RtBsz4#Ms*>H)w>>LghQa!|M{3>GPD;e^}cw3}o- z1n4XMMHO)C789?Y1(W%(nhprya_S*ugrW{oD<_6nY7&r zrU=Hju-;WST(fp(v6bDZwg9$2#X@WGz;Zq!aNT1caG>^EDs3gR4epY`ieZ`07(}-+ zwNPujSl$2yLHfS+JyqSLxJO!EdZB|2fY~ej24GreSnn#jO9Ho-bCAp}8lU+*|K0xX zoAIQb&2YKaPa2Cn?lyT1PXXv#6wsC(l^N0Xo#PKK$ zCWZmv<8idx#CA+xV|n4xG-Ik`h^k2s00wKzrYsrgMWp$SDRIIIZtMWPNqPg~Qrd#4 z_%a?{1HiJwsshwvm0i=bVHrQH)0S|u-o~p<1Q|Wbu16`}QrAr9 z62MTv1n|(gE=Qd@H|RC_=S7S-EE5FN&WtttjLG9 z#bTAOadn1Z(t>9us5yz2Yel>_KO? zfF%eN!So2Tp3-Eq+E)iK(1g;s zQPTfXJAm;7@H7ZuFZc?G~s`s<>@@FS+QW*EtSbr^DMq(TJ;%}e5{Y$WW9vq$qrkxe+W-ipB_GlQxZ&}GOVUNMXe2;k!(-0wp$7~DM^62xvNy+eR5gs+`bJD)lL zuxY@(U@+6mfZ3=Jr3=>5eWED)ITmP%Olig)SU-gm-p5uT6TLS7%-e;&MSD66&UZCn z%oH@4s&EytYXQs~d6dMmGMFlv0EYag$ZucZUfv{OOxJb)Z~s z_cf`EI|JDJL$z9G2%I2*VaVUZ-jx4vU>|fINW=L>G@zJ|BPhseF-!)a@2%U#a=ZWA z-~9aF|L}VP*wyN2(2>=`P`y(B?Dvw;gASfl38Egy_|~M9$JbvW0ItfAwMAtvkgjyF zp!KTck!?sEQz)weZP^lIEL_>08!#Tf<>x>9_7C6vdYneWV6P4N%Tb2okp~9XxrYFK zs|*XQXfq$-D1#&Gp;Tk(7$^{z*LoRQsBR?m&%#s1ih<9B@|OVSjxYVO@iqhCp@U^h zSamSIB{Q8gonTa~qLg0}uK2&-YgwEfB}7+Cd=~&_b-Ha5v+iB=(X7W3Y`wLUlvtbv z3PJ)px=4aDCWdi4?ncqf8fgSh8h=Wukh+}WV3W_1I&K)upqG{=t0MrI493C{m}i?Z zR{+dH^W5pTAX2G@7mHHVuuKpsxHoM6@P@L~yZjg6#4bc+N1W3g!0B}c3{S9NDxrgY z_8;Q~!FrA@a0Bla;WZ(4H`-PN4AWsF9`$XNll0DNKSGl9@n|d-EASaF2Lv$Cs}TbH zkirN880bYn76ZWf*n#|&jaAv%?J0n7hZkPcthy5DGB2&08a#650gp5TF)mth+cqN+ z-qg+ZJQ!F9X*J2x%4afo7++s7_=D~We{TXY74Rj1ErXfT<8_SrJdR}G<{JN;ca3>u zzv)NnT*_It6}>U|a<<_2v(2VP`fYBY(ZSo7K4SOkNGN*2-R+aVe+&@EhY)cVE9L}x z_wgyE2{VhW*kZ)eDsya_ju*Q4SlEpLfoGLPlWtdyqqwcEfXG48xvhlf+n zj4^0BS%9N`%`JBoz42Iz^SRG9 zBpP0>x6(SiS`9WTg(ow!8x00i+1Fxm<>Jo_{adH=zIzK1{KJ0hhe>b?h(fbM$X?PH zv0Fvj2_2Blo5hep4=e&0+@-rDPq+=NhR;KYU}#^wL1}27#;qv0Vt~i^7Q0IkxVX?} zmPJ@xtFog2>;!}9CVZN7A#;B)JI_q$(x_xs;@zRO_@G#fD(*6t(UX+s2aG7>GZ@Lh17 zMOEw@7U7!*P{3*jb|b4O&3iNDI~|8gGM5gW2=+1&z<&P*!9L^lqW;@o|8#%a%5U`A zBL#4k21G9%%J5&q`JxU1;MFw7mu2QGXE7KoUA(&Uim)OK0LJa0FWoV%RR}dYQ}jiK zb#TH8ZM;6q8alWN@b)0MB-(;lScHe19vLtcw+YbkEd7Eo- zmRLz|3mIs*MsXK0%3M%3%RC)hBoW5_1UM{*S%KAzgMbvSCkDW*PRB1bfATb}H6LD%eFRRJ z8&8_X9y_*(O4p*76%{PAm-hNxN=azCj_V2DNcbFa9)sq0$7O~2!joM0}8?UEC7IM^jK9r>DDb;RoSk`9qDi# zx5t8BQM91%D7%i*j|dB3aUIiCZJYtUZO}Ixw^+k$EhlX+(4`@UE!x6^6P);Qkd=y- zI+*!q^JtaUBPd*TyEmM#ht$3ZmQ34nEkas$e|2$CjvYa%mSWA9K2+~^AA`92eM~3L z-A>ZZTG8z>7cJRowb`0r9hyUaId1nW02ncFKY)cCTSS9Nrj!v!Sy)0JJlDD&+i^qY$o3A$D(?1O&9c5$^$8cW+_=U_St|$@=5n?+!bd{^;m`y z73{gUP#Czf|NgsQfA`&Yp69U$Yv|pm=a&>Jn{HrN!|!=+$LnK(A`DIwZ=3}nC@_o@ zTsm3cs>6@{NfpxciU7tl!4X1yInBUb{0QAVn5<^&5q=Q@+=U4K{lEP(O9HQV9jSeE znTRF*feFOF2}j! zInSXf^C5mC7`!$NE_btxzk)+1L{cwDY`>xV7^evVu}_anj-_J8mDvbdRp7fUj$_jf z;mzH8)<{cTQW-Hg;0R)u(lZJ@?hQ+sv;vr;g>g5y<6aq5RfwO`Y%oVVh=(Op;^3L?!nSN#mgjd}uhVm`+uaXXAK-3SG;B6PbiC*B z3UL2hGSb?WXH2&B1zE2WEs%aI+TxOts7cWf73gEp&?xu+=4l1dSbHJF(Uyd4# zqAtWPSX)*RBOZA}+->BgSPo_bED<6+2p*wuN!AM25X}!UrW#~0j||*1(v`)eAg z;x_BftfLkSwb#w*RskOXd>B=DY8VhsIC(t8X2;SnS#pK;4UkZ5gb`X-D&+aY%}g;Dh1Lsq-3)Yc$tkw z=}PCWmR6Cbl)U+*m(|^T+%Ie9rA6t2zLS;EH=lG65WC}v$6w8qHPh5wD44Bc9l^9* z`s+0oA`yF9z(DW3@~5S{s0ZBH zC5esMWbG~{9>)eVY{9c|xAyJWB|Zp84YEmwrvI~g0Q&AX88B?h^fOOCV4+?S;%PnN zg#aJCOqbQTY(Z_PQ|=g7A6(sLI+cB?@>c+?i9We1X?2yFa?I6>qdK2gIC47S^Yej2 z8gS9vY{tOt{o@({uBS1R*i1*`c7Pc_KA)!mFzAcpPD#KbTU=TA2?U14$Z1)KPh>U_ z)jKxJbD1#}^<<`#CVnBRpn!k(-M_h>)9c@|4GHp8=&O=fRIeIF#*vRZgT6%?az-Io z)yyT#8W*Y%ug_wZiQNR)rf!sM`{8s#HP-Mcf@S1`dTE7zCvaO_5Dfj^Vp{&!U;glT zw;%LncY-h|% zr;dJd@edUr=}8I(v&w8n22Zo&yx1?&#aP;_@EYO*ieJQZH}J`s_MFxy+*Jz>;}5Df zmh4C-u&K!H)t?$&Ag#5;RJ2SlPcQ7F)6o#?B&Xl%cCKlgB_-3%EC;~VRybewAmOM+ z93`-tWs+M4ZV6z}S{s6$q8MsHwE!D$D$tr~TLh@gpOOlx#HIZ0_pcG`P_p$|xP{Xl zfZ^kD$v1Xm!zl&Ncwxn-OtFVQp9Z2frO$i-i)fUW$Mdz!Z9 z+s`6Q+6eYCVa0EZy1qYwn0v_xF!(bCEPa(p7td`mHMaTUMp^We*cfsNfK3OH(w6|X zy7n{G`}g%$p9Ry@i`V}ArMGx?mM@^MhX8R!@}2|4Ndp8$$R_UJ>D|kQBCCKe0o-7C zr05M0o2`#nZGCZ+)LV!d@`eCj$lLG6^>P}v@F9FQZd4+PqkqJ6HEr<#9B@Q&tk`+(|ozbYv?-}aCk82 zi=Z_*R)Vu}08N9XD1s%>fG$Naf?CJS&&h{cd=$(kDJ}}Q5o>c$eDCGMG7M&h7<$A;JJ)z?kkF^meAE#05nSeH;W{BE$qrPFO3+4DJVWKr*K~ z`u%IW*$k!IYkk%4ew1pgp_|5ofBET;|NVEr0_h=$(+FBQVE&w0XaxRuoS8xGi;&8! zN`^_Z?|HY*w=1lrV%~^=3SZ4qieLbkVoQ>T&Ddbjg3}0qVUh1aZ;}S50Q=36LzX?Vi@U1~nF{W%-0)hmi!+RQ~a63{3=?vD~e#8NYcND8ExhUKm> z01Od~{}dRE0F2qN+tf(+($wcj29{zm_@x#W$orG;Ri>jk#Q_+$9ZF11tA$p^py!6x zXGJ>bFwll2CZ(?s6yhuy;}dhd+W`NjDuEh49TuBar6$<1oen9j*kBu!sJ=__=YO^_ zYy>fotSwuzDWFSUrlvu0{CBv`LEkRm8L}7}7cW8>JJ7q(z6b)??xrU)-OJ;1u+M~9 zB4U_DVYYQ@-e_Wa18_V86tML0XnEJT!WGpwe~2cc@j;U-hVE-SJus;n9dUe0{ z?i?{11}B`$dx>6xmbcuUhxd1(j4(PUoMLo1$D4gX=q`8ueB&;*-fAy9of`|t{i<$(UXJQ3it9A}00xi8f-V5qpm%hgYjY6*9A`HGEqiSN zU{KSNPs)$A1DN~4)@no4aP3h6OZAq5lU=+BHXTVNvm(>#Y1UOyE(?|CebAS?zoSVz zop#u3#D-wDA<;i8&aRjh#{<&0i$f1VT&_rPvXbeCrs`X!BCZCDg(v5g1QjsWXrB9J zzw@KO`xpgRG7mWGjnl3Lu-Z@h)oa%aiL!qtC9ew6vow1 zE1zeYf|iMdKrclwP5@nK-0i+Tp65?5JA4TMZ+4UEd<6QgHs$l{UI@Lbzxi~OvRh4N z5(9QR5I$_&2Bu=8Y6Lb|Xhr}l3%dhHOc4L@@4x-+zx@UP?z=a*hT^&g!giaZFUknO#C7+*v=ltBhwxF>HZ*dfR#3BXUPC z-&Ah^?fEoew=4Ia@lbf2-Ddpsuzq}4;6~e{Ovc!M9B$;s@LUtHoC(NWLM1)E2Ed3> zBE33vtYok7rHQodQ&Pvu(M9=Hs$J$2tOY55sf?MeVLKDy-K-!X#8X;MQU` zO5yHc04aRM-Xx~P9k(qT!|qL|Cmlq%r5?xIb$vcA_uHuydzT>>J>n8N6>lt#%8-Ka zMg&_oX;v4~cbbU`{&)Dw;2f(x$X~aAh2Yy2R0f7wEUmKG1A1|kkU0$wi--A;000mG zNkl7;MV0wdl+aKxF>erl2qPfX#RY zEhID(wF?iI0+WKCf73GyS@De)lVx@(3K>fP{D);6+XFeGfB{Z7^hTCi=pkEACU!WZbR z)*hl*^bzIE$!cx(m0e*cpO~Fs060oNio4{rH(LSWeVTcJyW(HH8ZbEf0m}|rT1x*F zo@XghmNIn<0QSB2zVlT$xK6_BGV7MP48r7qEvtYvnQTIH)ZE;aJoEPf?8&$!ZC~L4 zV8B=tGGgh#6f|LMrubK%kUbv z$O&M9v5E}fle@)Gy>~jT0o?uc=?n(T%m#%n_j)0M_s6NaaMU>2>?#Q2`$yS1KIr%( zu{P9(OHQI?cL&$<;=-64)eBb17N(}4#gr-({sD)?9;DTu{`k9J|K?XzzyL6`1%$

g6&qd1tqL*Yj4I2lbV`qalA3`Rn^{TFD5~pgN4zH8<>|Mhn>Y0qHx)z zlJbJI%=f@!?0Owo#i3Pbyj@k_)Lc_lQ>0MT)Yg{N)|WOPpNa1UC!kUKHZ+C|zQ3bW zuIZ}RcFVP0a(#EBUZd1?HN&o6*Qgr;^j6B$#m(Bv*0%B%Rau*=vO`^ylm9j=_w~nu z)TH;1U!*=u&3m7m{SK6r`a0tJh5L`9AH9D3BIQkTR@$Er{t|hMAHI!GcoXO9=eQ|wr1uD{@sz7R~ zRH^HLuki4>g~=`IYF&S`rl+yD*Df83g|6@FtW&9L+B@sox@x=h4L$wJyU|yC{UsoG zf4-X^PwLASdoe_wbiNyfFQ)NCR3;aGSV?sDc?QRcD`8yuJqir{AQFQ(Ld0M! zp_erH5&$@Y%jMJQYyhw$BQ%A@UC80D}A`Vr^wx^fk(1@CbETU2& z%0@mdbH~FBFGgfzFcc^S(Ib3Mfke7{x`O zrkpuNK7E4p%L%+r2?b;!H%uhMI^)bdN#>lP^Ut$HE?gl6{!TbzI{bO?Tv@kabAAqTU6VUg69EkoKbpKxm{~zPn0OotxBHw>- zJ397`eaM$-QSULG==>)^Uqv6a#qOJhiqtxxRt4u{j0WG*2U0CP8*2TPAEJi+aRl!@cqHfwjN5Dz z+qQAg&NcuT#fJllafBLPwTv@$AMT8y6d&I$qk>O|l6(<~Hi6$;=!j|8HsVMOvTHUT ztPg$NG$Gd7hVim4?5&Z#{yGlbi2XwZav(aq3k%*0*Rc^}*U*Lw?!bL_r@));Y?@Hc zFS7v;K_d(!2HUN(c};Iw@7X(=$tin6gbSV}lgZA`&R}_=L8g$XGz$KYO(Ijzo_l-m z%I-|RWnQ~J+qp5ydiv`Jh8p_^8#UT$b!R!KO;Zh0 z>1w+M8da+Lpdfb3+%-qzOCv(3wszuT1R_vBp@;Pb%~c7S0Vr;L+1dV4d$J3;r zP-GVK1jvPTipD?B5IQqOF0iEwoEUr;5S`}?qVb%`>~pxlgPp;|%42+AxZMe-pX>m3 zKosx(D@`4{*zY>-I+{KOWZt>T>m|K5y%#Km(<9M!nI5`&%rACU6iBCZE1qMHS z6bE_3r8Wk1w)|QmPuWJ9_I3V~UY!)xxTNeam3k z8rt0(Bd7*85kO@ERsk#lpJuBaz(8C~UxzS;0nA81XgJ4=v}qZ)SSKykX+Sct86PB$ z+c^y{ZP}(kmhFkHoyo1;G0V;hR}NsXY)A=csjov}kO;=5xus|gi4wT$59Pxu^MDH+F;<4%CRE|Uf2;6xL{d&qMi z?i%;^fx8p%RI>}+vrGE9m0sgS>%#hgWoLX7z8ou(d24LbGP=Gw41xyiu3IP9wk9mw zGlM3TWpiwAXVz>PhBI-t?XNqdXfgB#;_{Q^PF~LRr4IUNj@u4XJwu+cZ7RZ5{O`h9#XW9_?T*D zvSa?UHtoZ+nCM^Me|+;Y<=MkG4-?-e#=VS7c%2aUJU$`mA#6dn;_lvz{>wMSPv|a^ z01^VdT>adA!u;<(ychH2LCljl(7nW%zhdv)xO?-;pV#4+{l?wj;8oC_#Cx|N-o5qk z?#+gF({KGozlwU)Pafun`5IQvaz(#y1GcOL)oCi}(vyl3e}uRfK&&MSVI zUGO|T=TUmr&5PGN#86*8|}2?zRu!1DoY1auk*KnoHuNFca~2$jyG!+ZH0IvQbS(%}lg zW)B_*3^CYNBAGD*477mD5`m>;vjuD>aMVq}M_mCbvbG$`d3YEuhso!$!F2M3D7=Wp zMsMK|@a9k{9GWu-ja~Cuz$by57`t9CZ>gu3tCx@1KhQlO+y?{=zW}!g|Fe++=Pm^Q zBO>5G!u|g}%W35&cmfm_bRsnHmoWbyBZGdy zM*{p@JlswRMHGRM%oQ*>dTau%jfX~Xju{8RV;Fsf}~y^Ac=tbBmQ)o1ZmZ?h1Tsqm{k%f_Ve1*};}zly@(%U$4D<7j2=I#v z@{J7ijr0$`68a+jMMgD$;q6Dn}%Y>JzR z$7N6u^EgabSMKG@VTiuhFJFwhAeFfCX;dDSf(MO(mx#e!hFHKBig;+=Q_SOwxB?-U z3;v8j2fhM;k!=-lL}EU0NGuhLT_qxkSR@p%m<)G5PsC)Pv1O7om+Ayv0iKW}mI{Ha zA`e%ARKyYSL_!`LE<&fl|1vz96B3{4Di!cNC1O7hoCR7WFl-=ci}|0v&oi}3zm7ySOeO97}2y5RqhNZ^cK7p=`gp)c!wEg?Td4>jjl#3VDCHzJ#HcJ1 zfm>9MfvC!WIygKQAqFuJjj~RHpuyxbDJ%;7u&~&43fbOsMHpP~PJn)cIa>Mv*M zXqSkqBEp+Vrvb4)o%s>5_T0}Wi8cY?pMN}uNQ_8HIeC%{s7A3`#8~vnQO(8dR$O%VW$?Rlra_r532{|Htadu}^`fxEbY+m4B02ZR3x#MQMOMlW8I6n=a@YH{%YWfQG6E40Yc0c$KEA$-ys~pb*%fCyWh-lVl1I} zP~5`@*kL1k{qWAiC(+Me$EIXF&n$UUP@7(>Ea)~UMn88=F6fpv4IA5|o7?quNd1GRBX3#LGo*M36n;&*`IN)QhK=;CoKc@W?VK76d zp;ITHUob)kWyL&3Xk-oSvK3%Fvc7JF$3}w+mf>aF@PlX9s2r3TjzpmnB9o~U;4Y0$ zrPHW1Dn&pgb6lK~qob@79fw=JM>~T@wgIH={v%u8kwt&B)dL?n<@Im!+^0v|llx0O ziGTQ(rAKdn>B1@fz%=hHcJD4}_m*`#i@Mzl|&MwRyF#zfYxXu8=p>H8j@C8tddu-vA7(g*LGE(bIT97tmMMScA(# zKm&Hms!)wZ@V-d(80Wpg6arya-fKR!~$? zR7Mc@&wGC&2V7TGTvb+FRRqul;+7DNPi6T9W%+>Z)Q|6DAH@_`l@wJL7gQC3imE;p zR~M8MRRXK)fln1LUq5>F=5bA9X;EbkY|(0;riw~=X=!ya80ezX{8w+ECq8`uFs_jm z*UC$j>f-U)u9(()7To{<5CBO;K~!#XR;%rmp)3~7rAQo+^uY`BOn^Zgy%(QFd(H16Qd;=q2?C z^1Toi1aK8G$RIHr08D0s^`w&Q!A(pOk3|Lt4Bixcr<+9R?jgQ(IpWfL_3mlh0;SD6Rql1~526K(9b56}q`$xw^Wt zSS&Xl7XZv7y8wW(7w3w(&`l9|x`Kpm@V!aEVlr6_`+P9CWXgGgknQGHA}Z&ws;~&_6Et{}|=> z-=N5VpF_O=i%a@}5SA^HUd%M$oJm_#!sT=AXh!JJo zz`qi;|4@z&R4`b~!#)+I#}c9OXEc(GDh#3kE>yS|dN+97UqpylQ-sHpv2Zy;Jo}4f zUrCH6eOYiO1~B%%xWPi}kpRFX8lBAMFff2|Jo8ENFTc3_gd(b_U}u4;$oo3c&z_^4 zMYuitkDt%|H?bb+XK29ogwszbI@$%mc?KKh)1;r!C^Y2+T;~kqqzlhZToUUn&Z>dy z2c!9B)+s9Q9F2b-tgs8?tP|iL+_N*fAm}HjA5T+JUM+a49~|7p=>1;b0DSkayZ7u2 z#xMQrfb;*T@A>^5R)Mwmj-d;#_dc|vW20l@Vu!)sU^$tc4G=@eFn6&HvLWO_@xOD!LW(t&Cz2@ApyYF zEK{IkOFe}dyh=D`LImy1;~?;(X4^D&%$BVYG%}1ch@l9wVUWdUvTPfzyTd4X(BbI* z;qbxNZ;PG29+|$PG-UP+*t!ZsnqpNG< z7`nJ)v9Ue@+T0um*`LZX)1_^g`!ck?G4;=%aRiZgV{CnMd}Cu|ZOsH-nRjV%@P8dD z%1xyKfPuc>0~q#PNzM`%r;fs;Bis1VP9G91b^VdKkC2X#{%8}qXRM>mp2Kzh{;GC&K?meMSnAnZK#&G)E$J3IOYKtaDLDY?m@5BaH}_c_U_c`5Jnl9O}a#l4Jsn)38j=BuRiq*rOLUw(Ln!<1g7 zyiQ7f`Re_vm&q@I2Y|OnFCM)~eFMkggx9IB2)%fh{_0)&%has5k6y;ZANliliLX+h zzD-L?N=B6gU!^>M@%F__;yRC$9z$m$HT~U(?BukZ_nGT-xrfLmxpV0ct;=!H-qF;+-a2+;@( ziU`1n1@3|qf-Ue>=!Q&EV5oO+xNlf^U}#uCXjllLAe2Ti&<_NSu<+o}2tr{&;SnMD zErwEr;jHHeAvb7m!UI3I(EF^espV0PH3eiak6;?(TedH=(D8r=Jgv%>)2T_Rv!e9`mk)1iD(_Hcy zzK|hx=fer`p}f3AuC5$5o6Kao@EAx;`gtEOk&nO7%a+VSf5gVq0I z?A5;pPCGm+|P`7|-}@%8lb#N@(@_w(auKPWT4So7J2z~s7r$%umBam`zZs|FMk2><=(cJ9V!u=+n4xA+nQiK!u8 zU>FS1Pqp~*?W3MsZzqS*asEW0I7rNlFaTg^d2#I1^7wCmym{7tRcBRlB>~_q&kH0 z2C7QJpIzU}R4#i;^sAdF!a;8E`b=Wxn^*LLVIP+}zOM;O*OYFJHNK77qCOt*daiOajz7F!=DP z1BDg2(Q)B1@eyU^h4l?p^-Z<44b@e(6=jtq=u%W#gfS(v79gM2rJ=v!bixIljQsSp z+|-1v@msUDq-1a1lDT^Eb`Y; zh`%7`dP1Cxcf@sYHT+pIgIeZ9RPv8 zM7%&SSgQbD0;vPmn$^*Xkr?j8B*i2|N1L=-cwZP+8OI-j1E#aKI;~1&Fe&v$Dy_*R zkV-`yo<^on33-6DQX|(I)Cwa*XvP8KKLD6mUar3+&=(>mn9UL^#l!&{b&yQ2fixPR zTH+iiaJQi>$%3yYi)qfI`54?ZQQWl1OIz@Kwhj39C3ifyulId6K4A<)cT`J z%a*GGgldskD*+V0ReN69Wr1NQfGVfkIZ$UT)2LigWw>Mq?%Bp;LYihDe6`nC(-gaO#&4AR50|MG>XtS*-Vf`TB>H3d z3HrY*JpM9Ia=U(=?fzxvF=^*}KF>b>H2>t|To2t>XJK*h^_z$753XOodH&K>k~u}^ zch83{rDA%kBbct3(ZJN$8Rfsi7HFWYO1R1YwH^88=4!NT3cJ2o0}V$|IpvL zbLXBtdv-Jbp|gMQfwuhz_wL@ed*>bqoqc=uAK2H17RR@>Y)_0&s;jAIj<+4ycc^Xu zVQ7Eb0ciKZeLD~A*>zyo-a~u$93-7x2lnjTzkApIy*u~q*|Bfe_Psk>cQ9w%s@_GA0u4(-vw2W#NF~$kj%r!KQOW z2EqP3=X$W1&_t$A87Q2E1*dSXa3HU+e_XE%GzaWn9kBokT zxW513`TdW`Z*|~?|MFV9%4hwWbsIdP^&V?|1H6s8RSvtS!@S0B_(`qfLS(Zeo!sSC zUFKD!lR-kQlx$GAa*)=|AgE?4Tag&GLc&)&?Jp$M%4r7&ol-K%Y;*yVySJ8O6vO9A z1Q4D2Kf<@tjn%n=If~ z3V;b*b2D8GUg@M~=cLgi?ipSB?$jpdOdaBn-|4m~*}ZunWEJ!hMjSm!9cX z+8PhtSxZlI2k>{($=_11iT*-jhQZ``X<0!O zmu>)+@bz;y(XahG8xwo)?Rj>0_m$IiWjVo*es22uWth-+=^<%x&ZnmY;U9az?0+vl z{$sxD_qm7vn(h2!?(v`V-Spw_3tiB!b6vm8KKym=5%guQ3;MM1=;M6X^8C}esYi3n zl<@3q|HQ<@$31uN+`B|p0bM&wv#3s=JC63k#dAOuenl}%Jag_Wbn?`RqsNXMK60q- z-~oVjU)vra4X6Xp+K#mWYzK}WIDYo{iF0I@_wdQXM^7Au4xKoJ(?C!>i_;+5!3$wb z+YYxKICNmo!F_uV?ROXWnx2~pbKJ14VaL85+xKqYwr5B4&eoP)+n~nn%}qO6T6eeN zDc~7zjhEE7HkQ>?96E7i{}EiAybC2U-V2`r57CGA9NOD<{2-1%mG$LN^RA}7hxZg# z<`q{L?A*T{}T9XF=?>;7Id{Q*C(#X-XJH zgU(_#hlYhPD|x;x>2anXvjZrP>4G1%OhO#6SZGiyDS%@)#l$2>$HazfbqeSCTz@Js zSR&!*^>P|mhR20~PZE0Nuytw`U1Ibf0nF!%#Q}aK_)Ia(@&|z7fR%bBwZBrGn(UFF zRf(h`_*x;~Pr&tn0AQ_APD>DzrS<|}cL0k70WJVXTD>AHp5cZcp-}y*5ZzA>{dy=^ zw>C(-#-UvW1*_MXrT^e~{I}1lA3Qg#X8Cz4r0Y$3e|X<;`>Jr;Mu%ywQWdCBvcxLF zQNBtB@l+BB)TA9(e}$%EMoz3U>%9O`Ax9y?Ih4Mnq9ns<61aAgGZu}XS`CE5XG@qW z98#wKhI8tdFX!-NY`RI2NXa81Xc1Q=6*y}?Gda&7-$p-YwlmFh_6nqRDA$0gWEz;D zcLU_aFyn^T`LFTflB{WeKB*(^$MvK$$}}UIm}8+2M2s@q1M*;E-5XfzArEIY4^qm* z2hZZ|@Bzpgr;YTDfZ-qXCOyW3c85JIGAueSGHG+d*0jy38C$6{cCHL&0PJp&DS+u@ zuoJ`C=@il~$4rs@odd>^zob|bDyKV9otI6NL*6bUGu3qwm}BCPov6;tFL1`6oqqSP zBz6JV-5k?CrLTL(HGfQxkWR_BIJR49>jKyAPjp6^uz4j1`!6|PrKEC5L0MjYc}_`9 zVMPOsGHzaV`;P3qa`VLS_@l*7WcAL+&m_lc{^P_-1fB5=c-_-0VC<_LI zz8~gBsVI!8J`grPpI)B0)p7Cpc=ycgbJtVUG0!d#3_~*u!_f5NDC{+U%o}&lBqzm7 z!~!0l%jI#{tUxZC1Cx;)7xm!5xlf;7{qkGyKY#E4^N*f?|M}$W?^NAHe>_G1_uuBXzAXMLog)$R66S8x7& z>Dn0z;8SOhLFgPhx}W}596xpR^tqEXh3e#)<0noNzA}XvcQI((1{RVD+U<=XB6XP* z%n--s>{MJ90*0x8UOa_Y?QYvmg_l!R zH&z#x7ox-1-vj#@?K`r+Wp`_RYdzGoqltc62-mD@sl)Y4t4pgIs){R%s~anioC1|W z>o(Ar=+uEjC->7fDJ6--nInT7Q6$tX)5t(yu~I14f<`2Lm##vA;ML%O!4*7((?DYC z-e|&+)}WRtB?`4ft&`JMu2U#TvJWGYc54WUumU+|hdwC6QeIbF(_Ep|Y0MUr!D`kR z^~NAea@v-ynVUDIC2h_~D6Gh-ZZ2xvS+RX*Ls*1OsUa(29Kk^*qk(P*Lc`8X*aiG71;|DoI&{D3!pir7XU!BrScJx!5 zbY$mU4oj<&lcl{J7C>y!YcT8}OLTM?kzh!o#$SaKz>N15vHZxDwiUA{!f(U|B12vBi8<7jO~A-t^W<-A!)5^foF-&4`S~h^wPCKI-h9kx+u%q zaNB=J*#8k>_XshsQ)@V2Fx?P|&{yeXtrMlRUe$k)OspqyX;M6rna#zSGz3lJ&&-BP z-w6k4A{!ll&{sLPIArJx<13KE4RbhRHd`FPl?GzS!k6;#6^SJRHlLKcqWQ+|00v*z zdaa=(UgPx>gomp=R;~3~x6XS#vBEy9sY`~yTCbH_9Mt3ba+#Pma{^#Ymo}}`+3+A~ zTmkE-HWE&6pzEE;$AAlmz4l&D0Gia1P!Lrr$Az-hjs(73*k&BZH3m%oJCSJ6|bu>142b)Y^q%x&mrNx$ZTtX?-r5)wQxERPJB#OoSU8hUNqW$Ul5r~GDK}`tw>>X;Kc-#A7W@K`D z814I+VVB;{I`w8|=*HfDR?Kto`j&*VO!zxuqxb%TJd+ zb$|Tw10@dlzrqIe+EG&t%2U`IE4}uze@b90h|99NL3_T>KLs zIerMxrN@sk$;pRL9XY_bSfFlq+uj}fb^*P>FvTQT2pEHNIEWV5YuVM}q9#3vPF6t{ zPGeRB1ByGCi;&ndoNmLmCOBG}LPf#pD%|KS8byNAyC}|aDfIEC;3z(llk|u7?mfJ3 zSKDs*#jRN>Xu(>Nid9zu;^Iy58Hy@OV7_6w(7-jc?=Y?my6-{<4->W| zg+zsgL3raRtCn7csq%JE9Ud1Ai6Rr!Wh;B={0U3IQpE9_Xvr$Z38x zU8NT@SrchmWs&_OSiL&NycUWx{}^xiDcrgmim-Wwnl}Q#8Z8$CBbioC zHz=eLX0b*|Ql(aK%Mh15q@V?T$q_9PJxEav06V99bA&D^w$#HPZ!1LymWDuJAW*3`X_+%_B0quWC z)N+FP8-S^k27v$iawZ3a(aOo+fbDh;jB@6ROU`6OgVk9O;pO8s#`nFv1_HWdkGQB^_7xd`74_xJ5^R$1eKN*m6aFQHcwZ9B-m0?z01yC4L_t(u27t*t?lO6}yfnPDIJC4d%!thU zE-c`j(dET4hywfX0H&hhk=p`2L%>ebeONhzr1O+#Py7JqW#;B6>YD zy6@Pw?w*^IABJB~_Cs$z3_$2iyzhJUuJ`5JXD?qreKGN5{58>wiKpYQp1gX~|D^XG zzIKvp6A_i1ym|Acv)Fu$uyn5!`#S>@FA3J;DI4Db4`}6VLZ9B6HG9X~-=;_0UPaQgP`tZRMZEeSi zx!g+vzXX2Nv+iI-@mbf>P}5XbSznE|y0NyrwlX<&Gy3qac(!S0YwMmJt$Vg*`~m=93^gT5lE2+o)Z zJ_|TvK8w%dNyyY4B#{cGG7)a0Tpro5l8{?0B%AO^`DEErxLIpanjJcOxG5tqEi5Jk zR#Im%Xe|cVO}))zcGyB=A{i!f8@w&RE0*uB9te$nd*7b^w>-&tdxo zvV9>Q%O4(E!sXzaw5}E{?g1ndx6Sb*a{DAgP5{K?20~m8o5K#|^8ExN7KqCidGke{ zLWwsd5PJc@Y_4Yj$BVc<|Mi}}YXbs3V1oHVU!mB41;BDB$jY^u*$#66qd+2yZ-~_| z-0B}{_Ju-BKA|R`aEl+>Ftcx@)f)=8dWBg$ttLO4*&qE7(?*3dK&fI$)MBxUBr_8q ztd!6dx~`V16jE^%0=`eTwv*>wulY zuMjW{Q3p)d0ke7jz5$+ey9M_&D;Qj2d_7kKwCDrCYrWxvf5Z_w`|EPROs*E0C-!B6 z&x{*h#}Jq97VJU8(aZ^6Gzz^E*}&CWAeGfbpdO)|>P+98FXC zSB~o_fGLSxFs6`3i$0Yt*aAE|!h%5Pi0Cj1X%HH0PD$SaHq&w+?zz*nkRvwN^R~p=;jgSwpU1;Npn6|BGp+dRL*hPWujuH63EK4^d-)E znME%8{w2@L8Sy3wU(9ui^IQOSVwfo&QdU|}L5hSBm6ekSc6oKd?)@#d+fM>H%b!O+ zei>c-I5fXBu&_8tv@rBd%#p=~exjuz2rwo*UP*YSgeH(CF=uDk+1(<8!3#^{Xn}SZ z->JD_r)Ec?5A(y&)WS&b@ZE_wPiE%G2@IYohKXQ#Cji}PFnEY|-pr02`*}YA{C;w1 z;(b4(J}N@rcTdLObdSC48h+j}^1N$!?BUp}Zs_^TZalns|4Ko5Hb!sF+Zy-o-*)QE z;lszaUA=LlfB4?>SC3x2?tb<5$*Z^B_-3Hj@1MMx?3tYDef;cZc#NU3HE--?XWh0U zbBO%Rp~|mcp8vY=_{&_^KNlbW@#*QGU%LPJ{1`&#-=OlB$6voZ`ue%+>!+@-A0NUf zGj^Gzcl~>@^Ix;=FwLZ$eekcD`@c+ee0twL`QrBU#J#C^9q%UYbw9p#@9x>F*UwzI zbo}gvW2b*Ua^lRvlV=YdJ#(<__}-=+4cUd65piLW@!?H78@KIkEvzkW+}phO@SfcV z;br$S+RYeWGC>Pif~<`@T8Or_G_*E5ncCD)-B1^u7++CWgNGIM)#Z&fP+>(;SZsJ^ zaZXlAZcbTYUPW<1RcUE`RarxIRZD%%Hby%ds<+oywA7R|RFpPWZp}~6t0>GV%a7U= z8esOIXR9Ib-UskXsb8AFg1h86GQwBE-)i&4CHAqc6TByUu_+Zz8JqM2;#%al^ z$pAJC@%Fu~@V>CQuG!zi#|VR|2|jf6P)>dhoTbHXVeGHT?y%yXU^JVwdY#UwBjqM^ zN+mpvQ~<&ILbN&(SSV4-c@jyW0RDw7l1o);C8SZ4>J%`kWa|z-SF6*A6*8GxDVFg8 zct@B`sgat340tcF&|o8pT^f@P_7~EcjY_?ibQm5pd;VxZWrbc%5`Uy(iAsSRo`9MC z6$i2?@FXlE8hjS>IHWovnhvB}g3{tg~8GX0yUzkm|J}qh4av zip_ed)grT)r53Z;WEA2llSytfOY|D9SVamQGpWeVmAG_&K)OXBg)S9k?ceE3&!JCI z0J{>hNQWt?Sga!g^i7E1FzOX(k|Sh4;a&HQm^cy zFFA+W-<31npLJo_xu+A2S~G!Y*Txdev$?Ld$j%a7Wx2(rIi)4}R3I^_skx$(vaIUb z!V{-jd!AmMTj>7fpF^L28CqQKonLqcEiQn&gP-R5q2+~vkBejx5zspi41XjGkmea4 zLxj*P{lB7@otz$_ z?fWT)&5JM3Ts}-4unWL&y)e4~?dYqn;TN3)!w>of+j|G@p&cH7H2Si8^yTA$(T>}l zmr81~6E;Qd+}r%~rDHw4_pjYN`K`Xn9Dnl&diB2N?&Ax= zF`BsKpzMOAwnICUHbw1dDS9{Yl=48R5e!GLTw3K z5@_@oMic0TafF)$fLnHLYuMEaIT^f-sD4`$94+XZS6rBsvV{T|W*2+~XcJSCf+B)r zHzg#eZP}8Mwka)Tb4JS6thA(zt%>PdlCx9e(l#Y!rEJPci-?cbS&h+2afvCLQnFK% zQjuVac5FWhJ|EqE;MktF!+Rkbjy`hqaC%0XMyn2XkjlgMFe_bF zWDPQt!Mepn(xYIB^-85mqEL#pIu)%FrP3;tYEmeeY_mfGvShwfqX8Hsdacx`m+O>L zl~kxzNGy7_Rznue>U1)jO&9FIElGpB3I_ew5WAA8rUc2fO2S&J*=V=I1OvLJAX`{W zlqJ|69uuWD>O~5&GF4+T7}RP2RSI9r=1}xH0nGN5@>vR{lzc+DOr=yf?}|o)UZ=&+ z5}yG38yg%EVzHX>bKx*#vY0hGtr$4va%3ETIX8f*VJTBHIa7331B^NF5at*F21m)( zy3E#o5WWGmR1Rv;*Kj7z_BZ`CeSnMkGurEg{w*X4#lM%uef{KunDkvWo-$ z5i#7MGTZbJUV>p0-2{;0P^uvdb6r-I#ELbNm8>iAx0Gf#fwJJPP%EWjYChmfQl{lD zkr*|ZCzdi>9(@C_KqZ7kWX^&wkfRk+45Je$WCsdakU+*`3t6-f2U>3*j}3qy6KY=N z@jpLp{0H^E3~|>`t?^uocGbq!t2X{bFzopw959@&N5C374eYi%A=xyES-iA?Szkn_ zhdn4|@hY?oSvS%R9+-WFodBkpU(VvvY;S*_pD)Mf2Nz!%0PE1wSz*`Qusegl>$tPo zY%{xCXO~v4qj%>tL`^gO69u6e>l_>%7akWM2_+;(Cnd*jO-V|{Z6|$mdd8NF>=dSq zWqNKwrmJR_Yn3pa33m6y?&g>h_wTrM9sdU4mDn|9t;-_QgHAV0XMdT>T(oSp`w`dl zu_NrDa7WB{^kfdE0iBT)J|wf9T5GV(;>o!H>TT zEqxkZSRVYiJVcU~Ka&LJMfhDNyJ~J>2%4QAq@9(A!++BtbI!MbHcgCj$sNFbL$~38 zXXi(q0qWVIZzP@`fu?6hiDn0hmS3E^dZ_2gtq)TpuO|m6fZ=^#ym|V3qGx2h6W+If z=swU348s9a0FS+R3YM1n6xDtRHJ*%!v6L=yFE1A0gaA58X4`PzIkwjTx4LR z9cKFGgLA=A+Qh`L{QQ&?N81u&BkHR2Mg|`a58fFXxIH|4cVy(=^Re5nCmy_e_u&2e zj;YCq(;vF#rXDWLJo*faywvmSQs-|UyS^-U&QIT-dVlA`yW2DG?<~$d_&nbMeVV=h zdG5hSFnH?j{8T%h0)RW(&)>d%>Bf!o=P#f7`O?Yr7f<|r;rO|WCyt$JD=y35lA06+ zFBB0}QC-r!t-c^XZ^!m+`w#5d2aN6AwrytmY$cDlAWGgTo|`0skpMdw7PP0T1r%W zEa7((iENkGRwkuvLW_$OSC!?L6_wUh6jhW|)>q^D`K5)$m8F!y_+YI&nwz&Zq67O& zbGsnCQD}5%Oj1lxcn}5?G)a4GTl*3K01yC4L_t&~n;H*y??1SkgrFHuynp}x`1p9U z#Sj`692#k}2J7v?+Taj0-A z)Qq%HghLk=qzMmJM>sSPIymUCt1LFHJ=g&Hg28&LQNb*MrD;m=yZT^@Jt`ER+-NsO zCB$sWNC|;m4GV>Vrj`A{VVU;;A1T*QCKt*Xhld}^9AvYHI&eD`hy~8g^@JM&MH|ru z2-Y)GlIu1GlKK*!qz9)8H$jb(m>=E8LcGbHDXC@5LlU(Q6p*cu0wsKUBv8VoEj89FBKsh*r8tdC zuST!TlLEXPe_lWUp8%L63Zx-uE-%o}-wSsIUhn%8*)fUl4XsQGJ44XGv$No(A1MUw$Mpq< zf1u-2v__LbkHMosV=(H;$nHNm;J-WL|Nkfa?>5@#N&y3mU9--R)n>BU&A|>EMCYDk z;-hF}+m#wdr=Qc(x4P24zKcjR55GBS%29XLQmn2db7g)PvUahVnsWCOzVpY$MfoMg zv})#G-_2%KH{Wm@=^ez4R{Nu0V zi=Ro&joHO-hy_jmj@y~JA)s+~c5rTPh_*9x0|4-f{Uwm5uJ^<2z~oFn5IZ?D_7vA?e{NDO+SD0VUQ6s0sOZ2wRH8=v(3p*sIb*Ueo!>Z2lT6{Q&iz4wO(?n1!u$k5%9(c9xM+F!i9 z_iEz)o7WvguiD?g>6n}9Se)&eoob(+y!-CuZD@Mp-puRv`L~ST-&>e$UzohT_~FjN zhdXocZ_Q5Ldp~ib@9FKXj!Sp%Ub=bn=Zlw5UAT1e!i5vi&lgUdzj*T0>7#VKXtNuW zx5OVg-nR3=j(tanH3Xk1fSZ6=l68f)sk*hHqN%pBp{lB}8Y-(Thsx_Jz{sq^Tp%+d zE(-W`0T^ILTT)$4@L5w{Tw8(Dfa+BIk{9LWmlS2>W@i`VrDUcTl$B)W=N6WiCT`ta zP*w!KrsZUytsvyC0(5hW^E2|Y0PpI?T40#YJ;V6Iox`Iu^Td0o{RMqXtIKhIa71wY z=J=4P5cv3AEBRaufcKIlZD#g&&%s@U$9s0i#zfm~#^4~c)vh&~l~#+)5v&dgQaJ2# zhg}g8q{PFpP+fSq6~fo0C)v(Ql@>RAfk8($-m%*h!9l7JhbB6NC^Ae-6rl?ZQPJxJ z*=4~&^3Y&auuX0-$jxRI?hoJrtu{>UFGMDQfsH6q2E-g}#u#Et#+INk;N2!s%4ta^ zlie!jum!9D2|JK1Kw`5fgCPOSPbC(>^%CRDtSZKh2mlU`iwcembr5b!G{TEj{KWSvH9 zGUzmVK3Cv$;VdsOSgsVPG-A08&tQm^SOu-|SVd6nxq2hBNQp^ZCh}l!Tq&Wo!4*UH<$BQ~9-t{nsP-j!Tck=Q&y&s& z)4AT2BrK-S*k9KiF!Tcrq*%-bvq{g;SBo(ngmE8^(=2zHh_+JVuI{*edWgZC;L^EPdXx_0Aich8N--Pezu+54WJ{_w8?9-gw%5^WlR__wQf5efz?VTR&gFdG6}f)0Z!wynOX6 z0DR%%nfQdLO`GGxBZ9MXw(i)~xH&a`-@zRq)9!uSckOQ7v9o#G_U6`YO--#$jV+CJ zO#W1TQ+-`y9op);>Z;l*wBRCum$)?Of3C7(OfMu!`<2%5fNdv80|K* z*{U%Djb=rtLmwKVC35H;L0XeZZn41Z%B?uTq|xb>uv0ptN+e~hI7S2Ye;Zxaw6a)QOTkcV_{^$U_VZPHN;KSYiJN2C;S1uW{TJOb9hiurKY zfy6X9$TMJ_ci;vVdn1?cEfjb`e4YmwOku1x$+Z@ekSsBfg*_179Ycz!#7Ki(4-*`d z92*=Sif<`0J~k>L4wgMQA}k_0j07pIdW@L>Ulfhb$g|^Jrn0BVXY;ag)a71)S zWPEs3LPShbRNST*xR#XkO=+21(zCX%xaV|N-d1iwW?tbpm+Z>P`d^ionU|a4UL?dh zb6k*JRG8!LiJdTZu3vH%_aOT%R^$^^6_i&OR#caiR~465<^#r6b%kw5cHC}14O_Xi zJox1o5{q_bX01#BLkxNc=Sj@j>4vExo|+i|HK7kv!_fPw;ddW~-n{RJfLH~3r$Q7W)&sx+toDnZv54o-ifz;5IQ97`Bl&8%f}-x z9)Z5YV_lTKcnB8@07DeONt?s2-Z<6$?E2%U*A5+Ry?g&W01OR|l9=4_p0;Vs|UA5^QbnV^i2Nc8eGY_WT z-+48DZ?Nym<44yz9$dWt;9~pz3+){jJG!pG@!!04_R6)hm#&}c4%yE#8U{p!_o7cZVVd-mw5Q-_Wn+kfn6+lk|cjvPIF@KD=-@i zheZl&z}l8ol!L_Ol@&!L#mzgnlR$KHef_qk=AEsyA_oNO1NPuLaGqCHR9s(P(NxWd zT&i(L3(XP330pE!a6ZNa30smtFT5jNYTUBB)g>CKZrR?_x}&wJr8zP>3V(h0TQga8 z)*z$JMxxE3;ij0l;OOXJU{$Y|gPH<?m0BG^ zwvgbUV7o@ER;U$@FbAw2EE-9omXI=za;1WyZ-6ksACjHf+B?^JT_9Ml(9GfFe5QftCG_4 zkg&g`grs{2S}D=!RkRQX-L^rcQ1VF?4POdiQJ{}ZB~WNYQjJ8S7SpneA{Cz_VL6K$ z2CVg9I~T?{0nE%(!v2yOVlEMn<0<6(h($z7gOmbTYE&!DWPvgaXlQ(t*mMn5Jg0k+r_Y&O|6X1f-$1mPdojL`!~$rTBN8ihnpmg;KlCY{AZ z=hul8WKRW}#ta-{q(T>=(fMrI?9vAS01yC4L_t(~nnbHonGH&lo*gk_g>GycnxJRd@#lEDv$qJ?fD~J!VCJk08E)mk5f4fZs2+!zL&4S)05-e z>ByCY#hko>NtX7czL}mt_5%*VpN-WRYBPk{jSibW*s2S%8iL_3%{sG53nUx#n!h?x z_c>s_i_L%c$L_)8|A6hk9{*1Cx8Hp=luI-L`@6RQeO+=PnTi}?I%JDVo8Dq49oolV zbx?@K5oUwJ!h-^3w2T@O4Qe41Pq9%D;bPCzE*vZ{C@JA$U@!~fyB`Bch8bDBDObHO-_uyeEkgQeKqmy#mgtp znTcK|->REpc<9x`!Iz!A&+j}MxcXq=>cin1cb{A;s!vZ$wwyb^`(D?n2i<4e4maJt zcXn{B6aKh=v>h58y$21Cwo{G2e0c7{A&XtHtF`Ra*yF*G&Mm1CrG@b`WPjiL0O#CP z$IRsYnRgGS-`<~k^Wekl`;!yxv+o~%c=Hf!e({26bhLeF=+3~voxZ+XPoG|Y_UuOQ z(;I!yZjKDz9D~UoybcWy-5lt@*7Njw*W=3_otGYfyPcP4r|Z$xhh10iwV#I-zI^r6 zwHxR6>}yR=+q`9S!ttZ~P8{36Z%^~RJD2a=xp?i`nTr>XpF4N>%$Xw)Q`7M<#c=G36%r?Ap7FDMPuvx~?)cJGH8ziY`(D?P{88Hl=OK$jc}wD}r;aX{xGkt!>!e z2*X;vy|!jYU1clUhN{NetyyVB<)!I4S(SA)rBxNq#4g4|gTB;u!v~{NSzir`Z_P@{ ztH{qS&nvC3C~K%B6U_D1I3F);*xp=HT^_qB0Xzoy;qa^>RtyF3zV+K0=z=JG07hgQ z+c{ilZi$YKv)E0+p>~S{j?)5CTJ1U;yl=QUJkn0~=TV51Dha@&H)-)Fsnw}WMvXzQ z65+UB32z5OjE6WF7Ni1zqa$#ek;>#kjaIJKDaozIsD?l_4erGvKH1XFq$72;7zYf; zCex^3d{eU0BIBduHYLO-#D#=9z+FdVXi!LyTqP$3q;OxBO2uL^Kfs?U!4XJ0)Cc?f zN&I{TEI*})uL7kEDk=atB%GA6mTTp5m{_aT77>bDWO!msSVFYfYJ;7}Ti{KVDjAy- zAPZm24u~I0M z6YjEvejGVFP|BjWdm0g?*+8yJ5o9q8$HR~72_GED@c@7YJa4hUTPF5X7$jP&Qesrg z%v!Y-0M;n2dUHfD>@NVXHtFDogTh1MeZgJ0d~0YBehmO%z0IJvsZGH;iecPrRa%8u zDaBX^W*VYpGyqZeeH2`M*FL_q_%o^htWg5G05B%;f<4glsr8Nc-M z4Di_KN40?_MX&Z)#pGeF{%ON1MnC?zo-mk(j%gW7W@XV@T1uMkD9rp@tOb2(;Ynxt zNv`KcX7-n+Uy&V!ote)b{(Nr?1?V=2Bm^C6H^c=Q6GMzip{B$T3ltG-3bPx6EE=0h zWi=9^V>hdU!k9AqKVz7BXm`0Ue{#p|cXD}a z45ckrJ!P%SH&gmT^y96Zqeq9z{h`rBB4Z}A)@m~V%;2=mZVU=GgUz84L3H<(*tm%J zgs8-%n55*`&07*OGD&dzTedb0L>FZi7H2^O!^~P?nu_J3uM5ELNn0dWt0d30v9YTU z9z*4o`IXg$l~pC6GFiV=QPjMx{M6a~9bK1UH)-Xm>G=_6LKk%GgBX)aNck5R3#LvD zQQU&QuO|mwi+7<9QzMTa13w+pQzP#PgNG(pZwWjEaL^N9z?&omWRMio^=mXte6D?)PfOq(`K6XOJV*~YT6$hx}3 zg8ZxbR7H(kF*r!CA=IX zg{x>H^u+VKFGg;?9KHQw?9TY;?UCUdqa!x~)SeHuJpFFtk}`K-^0m4=;3fUF>{FNPPdn1+;hyh8O_8a_uw#ylqE) zOG{08dH&I(drzG@c;fi3+qcf%x_$2IwUd{x9KU$!=-Ho-o<4i{;21%TOjZV$7iYs{7v|z6nFTqiIT?Ox)a>+_q&VD{8I}{zT?bRn zM6DT-2zgy|V=dfvU2RlMG@WCj!(R$Zpi7~a7)(kC$ia>A1IIMD#auuo#2~y%uQma$og^)r?HrAC%1q$4PVP#b^r9ne>$%V~@ zbQ%fVrp*+Y5Cdap2@keA?C`z-FyXXbBbJFFo{*=I%g72~KN5KsumX7gE30n<{Dgi! z6u|g?+^91<0wF&WIkb{T#`8L90B_Df|V-0s0jA|Xeo zmML@!C9`24J}T_5N<#pQw~)w1ij@)*&W#GB5)L~M0459$@RD%+;DE`d0&)&l!lK)` zb0h({ebf3)>-^Vva!CCL0GN6yx*F9RFlMdy@mu2;u#V650)T}AFF0VSmanzSg*t_V zIAD#!q*hooBApDzTCS6sg01)r!4Y9byVVqA!qRsR`$CDXJ@iL1J#v#Q2QwP%Q8m=@?D^*8iNXAuutf`d8Y0<(K% zO6LYjD{^IDy9BGv;*(;x05Dg;_6_j%VSD>>eCW0cAmv)W)y}2BK5L=1zUv_85zqAy z#W0;MrY*A-(gtRg*V+xftI^_1X0{h3Wu@sZhjcJRTVj_3oX*&_sEJM|Gvg#?df0CR z{vCfva2TK@hdw#PkQ8Q42r)+34WSmT!=i>l%o;{2Du+pFH7Xe%1J6z*n~h4V`CFf~ zCO}$?!7Od5NS^_rGh}Vjx%%{c=c~-_`U{m^FIjn^(M?)F)On`+s^ygzx`Nows5Qm2 z*IU?%V>}ZL6a%r(a9&VX~DG>S??$MUcK&_c=Kf9-P2cZpS*nY7<%#M zDfH@f*TkDguV3G5X-SO=V@HQ`VnYI=gZ(0dd}Bjdk>MP>)!VA~3b6*@IMi5|1}8c+ z)(-Uc58t5x9vHgQKYVXwyz}^J09d|ze@oN0>dmQfk+H$~If()^~$p@Qo*Z*L!;5cdtT^pI+MDX1cpC_4HhR(sScs=cTLH&oB=7=laI-?A)#R=RS03$Mx%HZ{8xhe&gho ztH&;1J9hrkp>yYtKtEqNarWn9RA5CFV$_r9IA4b|pgGXM;m zTU1d%_W_GZiUEURSThT4lCW#AED&=NJ(LqI-JO*H^)vY3@>l~g7XOGHvRPotAc zWdf0y6mNnAG67JevuKQVy}_c=7-UMN0FuBKYrr;A1`DrJszm^>E8E#*Q3J`&I#41G zBo=W2VBB5<*Z}~ciitl1z;wr1P()+a>w_(1j+0coR0Eu(_$BW35+Up_0IXKPQL+JG zV3Hr;%k%efufhR3$^~4tN=}vu$;Du*S|hUuk%gKtRgrNqaNAz~{xY>1@2<0$I6|S` zVzJt7EOsE5!-6D%K12dPm5d`(kROT`6#;bRDk)9=67U0s0nw@Iv?L>1%x8=6n?}ZGJRty#Zwb3X$8QpzPqb-N43>va@uZkDIN9GG-rXNEil`RJ3_4C z5zGp!#Hhqg@kyH#Hm4*rl}WaeY38Dg{9>}|iMrm>GVs+YCiwhK41GyBno%Bva~M<; z67Sm6aPjhq?%rE4xJ(h|(W$vXh~_+#)a6;{QX(3TrgOu9>-_W}gwDcj|Eux)GZP)3 zXP$kUfA(du@1F|;zb_B}_Hp&&&AC$C&Te(}nYpD!L{=zH|Sg=6Q>AH8_-_~pwdFI_r;hj7LxPPH95w(sEK z-Fx=$s%xx)0}hQ21!YUBipr}>3rq6jlVVfSx6m>*c_lfd#&~4`yl-(uMRY=fguOw* z_bMnz&(BYTg)Jjax2m+dvb4Iqu)H`UFN>x_msFLJ$a7s)N_IMYZFx=2rqonmERf{` zuHY9B=!NhSw5b`X$y<^QHd91gls()5!Acgv;WyUM0wCz1C91C}t%JSBm1`=it0JNz z^+p46cw(VYB#_B?CX-4FDaA-^jXc`>p2nu(Q)y8Ty#uK=sDOBo^s4!b- z5ML&e>r~E?lX`rya=Pl5tANM%4U`6O%w`Pe`*Hkez!}^nv0{HBnvg}RMKWb6SLnNHB`s_s_0CnjqXkOtzLDu^CiUcB9&AR9Or#*=mPOe=cQb#=6GSV*`%EHXGUCKQB*hfYe4-I5ZYl9rg3k(`;m zC9fd8s3hCvhTV8vP+9%050zBpmR9CfHx%qW*mV8Y$>%S-=N5*RK8`Ie4a_g}EzA!r zE)3F4>4k+MlBl&X0DYV#`se&0^y|l=nfF~YlN}!yo=|;ReD>>d->=I9(C4MTj|LPc!t_%{J@ZrDb05$?A=?T~J(`?sZ)!>o zv-<^`y@GT;cCEKn=WWq?8PzO>$V1NlNh@3*rSV9%vQBI-SbWj(=2hq0iHENzI$ynf z@bbldXnefm)vK-}$95ad^2EsCd)Ll)J-C^+B`!N9^2Jc+%h9_pM(&J{-i5|SND4H? zHZ%-BJ#=eu@aDh}sC?4}U@8E(ukS{0@AW57uEFdAz>nZ}d#<9>@$drL?njpa;GUj~ zRNdVdy1FjjxpVUJwG$Vw90P{y8cM3Fit_W*kDb_i^Y-~`H&0)^aq8-g6V(2mJ%8Zb z&j)`#f9U6*kDNPqnCkTDHV7sd06u=~Aav;Pf##M549oEAv292F{q=f8Nl~yf)Z6y=8xaaHD^d>-W6np{PFi)n} zz%xlzDv8nwV4*?+1}pSxF@s(K!GMUAz?6&GLbCrfOfZ}<0PI2?5zCvHPG%znTH9H~ zWs|Lt1YC)bCsBzUkwG?iL@_@yISzE!=(J|5#na!{9BdckeKbmmOezowC3p?n59U?G z09Yzyaru5cfxk%16$sgU9$Tf90l;MK6I1<4$QOtNLXk+s=ko=89v8mc9l)XhC{XC< zOY(*Yfc=C%z5;JrM2P};r9kmUItNTTAaTHYzkm&Ft~Uj+NZ^lFs^pk#BqdvEwj%NjOF-Od0wml#vm%%o+kp2I1_TC|K zoZH&({`0%r7M3)_%ygh56}qVEKy{)c9ht~PMhQg}QAQEjlJRyxmTmTSz!66*2Q0}# z5d{m`l7%Cd1F~de1*3>$*?8}BKF+-t&VAOqs!Oery}!d99*XLo>fBww_gU|H*Yap? zr{ci#0fU2Kr#I9V&^=PvhXeeffLE3w+!YiIk$kvDlH7rS!|QEvw2yCV@yOn6C6_Ly zL(vfEu2SP-%AJN>K`$W9>z81`8+9mkUUqD+Kjtm2mt){@$Zy!|fJ1>$01j9StN32| z6dxxZgOL-xRz)hiCWhS{iE(Jx!xDgGBMY$Lc2l@J%Tvyr8ipOdh%F2>Wry|G2S>Yy zC-;s{8RXQkIrC>MSTbwz^0~`aEm*N;5u462OeJg`s1uODB!dHk1apWe9o$^UcZv;Y3}oB#gLuYbLC z^zy|czy9*cjT@G(Uq5m4+VNknfBft9W53-veiID7{>d*lKK%9Ou}hbZEL~cEYVEB5 z_xxx7yn6KaD@T62{Ne9cKKkdCkABC_{_wf8M_{I3 zcyUWEZ@l!6M=qT?dFq>E3+9e2p3(E;SBHN*z5j>rDR24Asr}ID@AjSgZtu6>?1sMj za>tiny#Mvd-5@bUB>r+2wyZC{*!lVAY;AYK<5Eu6XS*9n-Y#O!?|%9z*#SIT^Shs22n)}wk zJ+EH3a_a2q*>Zlt^2JNntXQ~u*_>qyho+8BnLT~s;zjco%&&HL>aoc1v`O=pE?l&7 zDZmUo_l^wUB6iB%wdwO_QPZJ;F4&_btCxbf0PxED*00*QfdRaB(>hT>`rZwH+qin| z8d$(oI+@9)&7=vp3YS=`Bx_}}T!_HeMq)}d9!;bZ+zKh0ibA|#31|64E~UjZyr^6$ zkuHG)56V2pP7*CsKNRnKZpANaBVZWlgWzD6A-Pg)~FQ(1Zc( z2?hb+HkYH-+2IfQXll8V!`osc^iWJ?cr%8v#a&?>MB!_Elo(nitvZxkB#UcRLW-$z zbq=2%bSYjpEObos;_*d<-*UkA${z|2PvF?H9eidI+a}m5h9x>9!3X0eV!095d>#v3 z=5c$lO@yFnBH8Y(M3i;h&7PQJ&P;uNAp6n(GE&Qc!4P)(E1BL>iUG_%*mA?x&Mna5 znx1lo|JB6N27txZ{_idH3RnGy3>M-Cq9c1NY5P9;fp`Xb48qw}cUlibmb$B)VQ<}8 z%8<%=26GuUx{!clu9wqLt&|eNP8z>zs8ULiiW%lN-9%uxVYstGd6F==ESucTcqS4z zqgVLgJKb~h(kTvQV@nsyVgw*A!hhq}Uan_LHDYt6UVv&{rFu^h>gp@^4%P-nI)^9s zOqnq_W6tQD1=Hp)rpWfv6$@9aoV|L@yr-UBbNJ}1r+(Ob<;IEs`u*g8-2CF^jpM&u zKX&=oW0!7zbnWVit5-h$&r8Su``54j`~N<9_2&aW|9k}8y>|VRtJh9kynYkgvwjW${2$jp{MWUk|GakeU)MkU-#3o_=k+81`^wS( zy80n@{(0rle_S|v;md7b?tJ>#TaO-o zl9}B+^4KeG%F! z1Re`3jO}wE?xT-AuxQEbWh>^x8NdGK^Dn>lJjPo%m59t+>e&}fM-usXBA-l%s+`3@N>gBT*&V@0Wzid(0Ko1;nt*^dd`9jcl z#eHj6ZCFPkZp%`06%ne^g*)l(@5|-WDKXm$&kFMj0K>@EE3r&229N;2_*XO;7mG~d zaHYviOw{6_-b6sGnT+znn_|w$XS8@cM1fv0L!8Kj<7uN<2-jf&zY4TDs!DJq_epU#z6esqG=o;shU?(D3nc2f^{zd9MoL_%^8fzp_C4I5dVU1 zYMm6(qA|lTP0%+KHF|Q;3;-r(8KQuGx#@~i)INp5^WG8L0!DaE?3X|Q+6T@5sgayVEfNcg3RI~pEz>r{} z1;3s$E~ad7-UeFhfK1c%DI2a0tXem3+)1+WC}R<8Uw@~Ewy)_a#Yx4ac>cF=&hy#q zr>n(yt(2h5vT~|v^k7B88Q%3mmQ+mJB0|$`N$}ZF1JZe@f)S+f*<`gXzBb~|rCR_d zHHD__1DaS)NG_L(LU~FJ<3IjyqYx_>WhIMT%h)UPXmMUW%L1N-Z>E+QJ;OC`XU)K-)>*`_XpI49k?_ZAHy!qMDqc1)6+=i($%Q%^?Sw4H) zvyYtn^x$ictvK-Jqu0(JxN-i__49{dny;VVf9>49Yv=Y}KfezngMZyTzWu$Y^4Y-O zA6>ldt<9SsS+sCL_mY{li{Ha2AN={p{TF^Bo%`wF*&h#Z?D~f@2k~;C)8Fs^?$q9I zzuWWmH$q?U{pOo}-+sOC>#z3MJQhfXMc&J97+WCub1O!@o7OCy*!juF@1Hon4Lte*E4S$KUeTsz3Z1OUEDX) z2Q6N?boRoz<*xGLm5YZb4RR&I`HSYR+^}lZy{lJmShx1R4Qn^97n#+o*24O3T#cR8 zYgP;n^(EEGE%3@LO|H{(Vk841T|O_34S zA+C^|Pe<}1L0Z%Ne#xuqaxAGqxm=`DNp@G#)x0T7!LXt8>@T*q{j~v%>$&I^w)n5C zhX7zr(;^W9u;jIt9vMFBdk^60K4-}1AOHtln(WadO2pK{Nds(5*2IvG$d}N7;p#vQs`qy1%EfRxr6&`5lIn+;*(6n$ z#84(4qc<=b4k~^i4WA2klxQ$y%6JESDn+3Qz%ap3NC~KNKnnVU0nUB%1^g_J&+GKN z+uR)i%?|))N*Ro?VwtEKRoFv=!CuvcZ;KM9sIpl|QWQF7XI*J9yAX$+d55<+*b~C2 zDj14};L+iLMG{uf8*nm!d77Mqz?NJh9lFVq!n5AfaThya(D$wuDj$tw8l@<$#AaU3 z%NKDc_qfK5bKY&^mc!RV)_nK<-<2G9lCMl!1c@ft&)%z z_g=fS@9O1!zui3Y;>!=#I>Ya8e`?|Uo+BT;_Q3sfmd~mFe(A(-mk&dDAUw*A%ZILC zI>;p_FP%RCT{w5}{MiE+emV%96S{DQbpFi#v)}Li;k!LQp4xjx=+t+6zx#I2fqgF> z|LEidve$5@AklRUpRa8l^5@O_NmnmY@B)W#LM)| zf8Krl!mg|5_Ffg^2I$6x{Sb{I&hEMJ!=7`ecl~f`=jm^EoIbhp)R#NH|7y>-pYQza z0l=wDI#zJ ze`V>)`44Z|_~7Py?|+blT3D0NCF*P|H$N`50)56K)a?xR&m! zXDX#QzOK05uLc2NSd*X@Oym+6Nkrp1AV;=19)+9CS*5Ge#cT}9!|o>lJ--?PhvamI z!dKO5w!4-q=i>lyBy5nG77T^}U=}bO&!o8OWGG@Vk^v7OAsjIvVUt{7Ehk=a@R?TM z;!2-e2{;Yar$qu`Q#O(zJ)z2`yuiH(f)u-r?S!p`Nbp&M@`6cY76w6n2sX zfI(kK#la!BKjiSi9UAVS83-i|kS_$Q7Ibk}C^>47%rImahAhhrV17!54kG)xzpu5- zS8Z<(PUJKqYtfNH40g+H5Z5SX*fay!7ibO29jf6;=YcvZDHYAZ`zG)y&`2m{Byb{~ z)YCn=w`Z`w+*!lBM^(d8arj^uP+*S-F&2Pj2^^(`wwjE0BbkhsmZ2IQcH(qXYeL?T7(sqRT&Y57#(TdxSaoB%!6C1!8QaKCV85rjs zJ5Rgb0P5{WvSZE)WtwH9*9I`Dl!tms`R-z_tB}Q(Z`(x&G*rz(^>VtilIg5uNwr+P zYHgufB~uZqSMs)MS!M4(nJ#~E>lK&jQw9}b|0AONpy#kd=sZE>Kz|x&Mb@d+@tc`@cVZ@P{+|FPuMe{NuMbZkqMjx;alzIYhAboJ1$|NQuaFShm1$d~HXLbY72*1NiT26~Dg9N7N&<`u8K^w7<# zN1$J>eQ^ECp&OSEU%zzd+QkFVm5cj-y>ayE7aq)&^?}LVrLOGcY2CH1)V!I6>z9uI zcJuJf8wbywdk?yCWe@4%t}ExZUpl|*?3wq#yh~^IU;Jqwbou+JHTOS;L`4jlslkcDWYS(w)?)&ze-GKCur}smr zzS;H6lPk8q{@}xZn|pNM<2QajaP7h_=<@l!7tihnZqJ|Deg4ON=YH7x(~mo$GpDzo z{(jr3Z?}E-&3oT{^ZvJA@A&rQ`(J;#{qs+EY=7?`n>R0cJoP%n2>c!Wd*uVd!efwTKwC`nT|K67m?tgXLj^{SqH*e3L7mpu@ zN8k3=TYrE2i4D7Uzxw{pmv_AX(krh&@%N`TJ@n{?)$12M{rqG9cxLnZO-r7A>Cva3 z-7;;)P_4T#Fw%AZBlj;{zOYy?Zg^nBj5(8*uU@!p?fm;5TK&u`o1cIEvDddg4ZZNn zlN&az-1N}O$DZ8u|G`kDVI~+dZAh?rP6Up4d7pX)sOR| zNQX|u5)q0#XA;SLx>PMusQ^*-r<60R#biyCkJPmgoUU$Yz_ZnWp^_=&Oid4&@fdqw z1~6M*Ry;$A%8H>uV1^pj;eY|)Xe1m`6*yG2De+44xQKZkSIF(ejv91E;B=!jeG49F zWZcwITn~#~8av>CnkKm!`kH=%}Ne!Njc->}oKcR+H) z4?7D0LjW*dEZxLU^mTfi?H(#Vg+U6912QJHGm0xx*dHW*JNzNHPdH$i))YwuU@>6< zPHQGPU}1tO5jqf-3A!Oa##2DATk<&lP6*#Lh?gM&z`h`b5Fn?&16zCEm$R!xg0v`9 z*{E6tpu*0QsdY@ayJI{zD73rzwz%)HhCW>D%G27?aJP*r)A!f_=HRw^qB26B;T)Ry?f85hwpR;)C>_t=hruN`e(mhn}94O9NK4WC|K)E|#>dM{s z@bc~ZUfc5YMx1j$`grHZpYHkilbrzYXJ64`+|R$+^ToG&zxsa9cRwB6z5nHfONTZr zo&4>IT^G*5AMZc&KkWYQ%&wE)z5n&8ou_`kA$?fmG^7xjOTi@7n{rX2YZXCOC`S7`m2hW}V;JZ`1t@eVKKe%@7 z!%dr4r%HykDzT7E=i=Q}^ZBP9*tPAkt*>rcy{z))E32+u-f{k?tyeDYfUcg0#eDgP zZ??ir!5orRO$I8Oc8S;G7FT9yTX>Fe#JlRHj+wf*E*Ao}~Cf3@w?FWx=z#rC(hJ-&I%vKL=| z;Lr!J@7(>|`#WD*wR$#qmdPgVRwcP2H7kQc(uivx?TC{xnjJbm&(|fxHOM_Fp z2c~qD2eMNZ46VLz$@F<6oxP=8DKRu`wE{(f~k)dD=ntRvw8P|_%0GNwk{sDmd3P}=JQcT|& z;AH^!l;XW*%NaKZer;M4usIv60brt66PW)1z$Ft0*pX*DrK@>C)SpfRiznGYZ`ua% zos75XE0naSy2t2Nz`1chtS0+DHcV|NrZsby_l3wJ6JMJxGLFZ+RnlT7%UfIEF(di* zYck?^T(t1ambzBURjXN;Y3$TsFJYjo1$&3D=Mveau4+-#%dPiz*=ZX z)S-G`ePr55xw`~C_VmNs_r87Tqj!#;*nZ@*_Ya-ew(I!Y?;d{j&ArdQd+4R7UV3QF zrUmO)&EB{3RZea?{`vO(M_&8<+^4SK!=XKv3>6|+Yh|7{-Fhr zz3@=6FJ11gWh(`EoP4EJEGHj%bmQt3Ghck};a_ficIo0r&%N=$ng?bsTRmgytnSro zr?0j!^6yZwt#Uij?e=f3{@wI5Htclq3buRnY9?DxAH6)q22I)C8Y4+PiOU%CIu z$2OF6+NOJ_|8ni~E0+&lx_AI~A0GGIPy5fGJ#g{d;h)bQ`ss(gKb+ou`t&ZEWj{mu z?BvdUhhN_M-lHF$*m~gT>rcOU-@W(Gd-?T8cI|oo*vIdF`q};s_b!YlqF_%VZ30@E zJhcy^a_!knJd0DLwsG^qgU7cXJMq?s$KTw4Wb4|Eb7w6Yox60(tc6n-ubNlwDT~>M z3hZpLUWQ<9#7?o?RZf>OlwVyk)3sF3NPW_*p`QLOs!l9A*TMtQIX4{(CnGRza5*?j z(tKf3#W@!z&3Mktmb2BKDkq5Hl%1~@F;IvlVi6NmQcW|I!eL3BItrwt@l*t7Lo*8wqlRc{A;a46tn`eG-f zxFbeDiTDGW8zhqq0x(>xTb}6G+9lJ|Ia(T;G6WM007uQFqWh$f$EUSJpmk7pfzvn= zj+qK#1lvHw4yg@i?NCgLrghclg<*q(hpks5ni39yYGg4DT`WVg=u2yn!DS;P=>eJs z76A4rj(`s2xWEt2suk0dL>FcZ2;>&UusVE{jpg>zdL*y6RhC^!$dycMi9FtS0{{-^ zOwJ`%l1ieQ=o#*Yx(B=Q^}r`$#Hj}nwQ@=&FgRcUtGbG}9nV&ySz#SpB`(oY;D`&} zH=tvj(dr6KaBCAmU$4>OSG|Fd4|f$#gn6lz9Fn1c=+L0Y4Sd10l&U6VURCTh+FYTD zz`1IAqp5HtY2cZNIC)$=9A%P=Ho$~o$p}LJ5JfYe~b3>E?v+CIIKyA9oeg%}BmIKFutwYxW0&36uTO`SVDYtfV$i>FMPKQcILpgLU1_vXrjrE-6< zK3whXEzX%Ux^nG;)$126Tsa#@u6tn76VKiM#0#6YJbUk!XEr|m-2L}Gyaw0zP4DZP z+|@bUlkX~(I&1lAIa?wI7mC@g?pkMOVZnkKufO%!yE~p99xA3&QZ^aRr6Q$-4i%G; zQYxCsrgQl$Y!=K`GM}bSHMvA89m^%<&T?$9Co(z^f8z1Qt5yy?`{JsT-);Z;o2{qM zZ2SJyyFdQ0yL$ELl`BW!uxWeg;F;6g zj~#vbvlB1=d~VN|pS}9x3(LMg_1^U>hltkK4?#C?9KLbw;4i-({OR1gpMLtrbI+|< zyJlWA;+;Ap|H04z6{AQcs10o{g^Sd3C!bCh zG7twLiL6v2F$Pa&=EAY8Q7C6pS+k69Nu`j=q|HR!j2jTyri6kgkSpc@-9oKU?yf+E zT8U$o@oW-?3H}u}Jsb}>c5mu=3v#Ex3Kai~IL7WQl5@3#LDSV}5#$)khf|P<~ z4l6i0YbvkPO(ykhHkwX{DZAM;5^<`8Md3uEIUEXWio|P;#2hf8S0rB9044_<@`j^w(C~Rx7sZ?b;F#YnwR(fC z0i}Zh%nrD_w=WVigR0vvJKb6vkRt=Yh8s4{OFeqqZExD*n*as}bgz*Ng+O1QHxvx& zvaBkyB1?oMIiN~jIpF5-xZ-um9;YHxX)Uh;khfbiyEGL|O=Kyn7Otz2VT-dr1DK{c z{jIzd7&r0y+dV$2$RVq4MRUYca;BW7551U#qPaL2Y~+k|XPN=rJJ4IMmCcNaaTV-o zET4#F5{4)xhR+%-BvC59pm;(DJEd4a3VZyT)2rY~PILsvQ=i08hf`^j3?Bv@REd*{ zi6%JR9pXV=B(3A!P!mBZ<_pH0fv6*3w0qQvzHqym^kR?~O-Jx8H4z% zxck=$j=P{nMl_{j-Q7wTCyEwH6FlQv?Tl#9*F7E|1U>?aMFZg-6DEp?G(gM8w|OVD zxbGR~pvsr6?lxku0I=x#Kn^%LQcI22;e*qYy7FM~U^xQ-W7}U$i3}!7w?nrHv6f5z zKl~TiZYK8~6z6QIL{~oE{Ghh(1n`~J6s1CI000mGNkl^DO1}?TxEmz>pOT~01l}N^MzK)qV*K3(vEEkW8QngW1JXTJaUwz=!tq(u>+`5M!TlCPDg`1yPwD0iq zdk;VR_|r=_J~;dB?T_u;_tfieKX~}qi-$gX;m}9VZQH$h`<_SddvNmHMcv&4(Nrd^ zggp6*F?Z4M%Wph*-{0m`>*>z!+`vd}bZSrcNU3*HCEuM**OKvy8O|Hwyk_J=v0^+` z%it}-nFxb@4Ef{vXt67Y;|HeJ%hgOe8->v~(@8#U!40R+;9amoC)v0Lg_9wiDDm-$g3K7%B$KHG0GUn% z3)xU6FPDixAa~S^=_a+- zY0kIea5PmS42KxN@NIfT_e*}DU6=9fyr8e@X{D#^I%K~CFoq=AAC!Dt#fht2d5s`EyTk7!W{}yk z<{I0b6GK*Cn z9q2BUa~##czW`t^!~qHt3&jFlEd^>SvMJF5B*WtlIYsY*)<$mjJybPQCe!bc-GHLV zuJTK|BpY&23qk>GbqPZpzvcmV{gDoTq#X(vZC>GkVW|ULuOzHWQG7E(R0c$(JvZin zDeH=7f*HWFofCtUgw;kvmX?WvixeMrQ+$|Z!O}TF)a4l8;u;4G z6N%fYEz;d>|JPlu|BLgYtx6rv@gTQlovE{-r54J@x?4n~$Klf%-&Dy`)b|)KW`)TI zGktlP6NR8T5t^)UJv&^>FnSroR@n_9I~sgzewXQ3G$CFH#QzO@jGeB0vN6T`r}ehRq=Wtc25a;mC=FOkGV&(ExYZgJP*Di+Eu3frj&63rtsJ-!m z#q%ajrS3Ofz4fl{&c6QMS#xL1o;P#Sj7g)@N0%;Jw0y;qg$rhPb(Tjaj|`0tbq@@5 z_4oG-_ILL6^z`+Xs}-CjtGM9+&SG8l&I-`Z2}eDh^?IdTOeFJWJRdipqG^`m@j~2$ z00v@1ntGUXf%_az>t-Yq3l@@Uy{Puq!W5@1B-4dTwp1%rtE5^XQ=+hKB4=hQiEK4l ztfo49i?v#=SWMPB^VNE;Qp;3mHCGBM)#F2xYrR9cp26(kq-xJ#p;Srb3T9_drd*2` zD#?5~(LdCUp-HA-rt?G>{MwV5Sfx&d0GB{$zge;cDwBkd68HYHUfqf7|2t- zm^}DL9o(pDL0mUYEfxz!qf`+vX0T(BBLPZv(E~VDg@8ONzbuEMN+hKLz^Ot4q7hX( z2G~bqMm8lCvT8c%NhRE7GD`hxQ!xmy6l8_HfH)utr~~tOsz9I|3PSL#Y+E@e3tKo~ zagzvjG0LVWSk2S7u_#aq#KH&bh6Y8VIz$DfqhT&=35WvH@uZ$eQ5#^0-vI_NFE`?v z8+bCJuqDx#2Os>fx5Fh*q;)uj2V(+A_IA)XK=G3y7VjkdE|nDaw>xE*N7tRI+U{|+x*Ximma}==9Hb6c zi^JUt(T-=LC(v#Kn4~ykF)5Z2eH28;AxM;wQZQ(S{p}m=?HlaF@EY{RFfNqPqPZ9^ zLt^;JaSftL->@$bp)m^A0|9Fxj5a`Dt_MP$2|~_*V66o1>Q=;9;zC+NQrL%)4ZJTb zFNQ3TUvCA2gJCBCEJbBJF+1D&PH`%hVj8>}7>xHS1X=;$pjA9vd;@9Sl;U&xDfx@L z5VnZ)s5Tm=Q2w)3yNVkCi!KYmFvL-14oCAWFXIzC9J`*-KrdL!;~|!yuhnB%%=L~N zM+=MZ5fj4##sa|HbLlTbl`J$|&9SgQP)b9+7&n#O;JM!0bjy<7TA}-I z#Pn^1vYU->Y7BszGqlHqtnJFxJaPN)0epLqndXe`x|p4ff*#FDShtHGE7i>4J0^ph zW9*qf1aJex&H2?STQ-32M6$S&xZXTB%yY@Nb2n$J0pQ%s$%Cs`EM2@{?)-T(moAyl zU67ZqSPB%+Te4u*f;rRYPG7iu;gaPGmakg8YR!T*>lUrsuw?zcOQE&v7jqv7YFB*U z3ahR1=wMH8=llh;=FFWwcL5c+UI|*?yL{QI1(T)?0LJjvOO`BIxNzaT1@mXmoilyT ztdXgcak?yb)_R8e>U~|fIrXPY#h||KE+`i_vu3Q22txp{EzmcWrUvFDiixF?@I_H0 z6_s-dtzL-YyO+T~Gs$c=4`ni$TrLOaUaC~FpH8Q9`E;>FN#?gIuH>`jT&9>wRSUUt zA)ObNx{#+binUUzo=-xxY^JM_uN8|0+(RY{W%IdGr7Uueq9I+QGK8@(aEt46g*+>h z2Wb-gy11VY1B|nOHB;9c#+2(rVTalhhzMKAkYWjgqRqlJis{t|=njy>K7z-TMjO@B z#cZiw&6SI|lEDm^h2wF^FiqOA9I6i1NIVAH6C3xRNDv9SA zOQoVo+Mzm*Mu-!Gd58CD2lNdoj8Dr|C!#byFfjm$*|n|!U~resJzg@N4*<+PXjwc; z0L~Rv#?uMm%@Dl^xh69JYyb*sK&NN!56B)aa^wxR!wqYZ0Cs%hBCydjQtzKM&^ywH zv7;U~Tp|;PyAlDzZl%Sewzm7nwYbM~$t0^;td{^BPHFJ9iW+oz+)lU4uTXb-Jf%R; zA96cYmqYb-U|684URi`v@nkpz4cALaMp6W7_juaeZVrwPsgwZiQP+~Ww2#|wwr0u#KtlYJ^oDwS>)$x})M13@d1 zN{abp(=VAGO4kZIAjU9u0#O1mo>-&7kyZ4{rf(=lwisxa!&WU0nhcg)psYutB}_EF z6!hg)<~R~V0a#(T&&i2eRy}P1*fsHP$6e!Kd0pcsIPV5`9b)8UPajy>(N^u~HU==0 zn?^s3+eTe2k~PIUVJv`K$Bl2SL1OgY)p9rV7txUMma@rkAr&pAWB3$=uoJ_@QpSYJ z*?1)vx2r;8i;Lx~*>q)`Rln7?!D`+h2-m!yYLu+HCA*H*ojZT1Ta~5DamcPR-Mr%H z--zdc|KR#Rd8{$jt-EiBXk+14Qut}&Wn*MO|Gg8vtY&zR@yAW*&5n^he>`S}cuWG< z7y-ajhI;1Dn>}atj9Ig%E?hJRpk25GyZ z&tAA<&eE0hmaks0d^NW7maUo#tyr@V*Ypl|4^JH&oif}v*aP}bn?5>w?vy$6rY>1F zXX)~}3zyECId{_RIn$=kz!ncTeQ0DDmbYhUXmIjmc)nU+SKsI$rGr&+=?qTG22@DL zYsGBVggJ~9Vx)XDOfn-mxJSSU_BWf33joKnNe)-ydkcQ$)AV)CCZbR#NxfE6N#ZeR z2oDOc44h>%@l2XJ*JaZYIL2b08k6HeX$Mf0lx?ZyYcp@N)X;O5W-b{ zx6}dbfw+q9)uTZ#)ls5VwqD&+AFknh3xQR5VmK1=$T*%>;sV0}Fi-?LMUJWgVC*x1 zgLo88ariuNv0fz*)D^t;pcDXriNWr6!|zfn6m6Y=OWhcBW(BcZX+C{=~o6ptlLby%_&bsNBk{!TT^)bD$2E>u0OMb+qI)1obop(^ z$0~R53Scf7&0g6mAI-D5qIrXz*bLS(h9M4ASU2wBng9S007*naR59m9*tuDM@k?G? z0oez`j?pWA37Sr=NT?vH5WcriB&!z`ZE$!DW~s6q~BNz)dtvG?&Wh!4xxtJ&w;>|b2MV4r9oD{{Slg%}y zYlReKRlEXj%NdAkRq{@?QG>cu2!jkJB_p2@*tGl!7Ph+)J^r5qxZ5fQVgb0>@7}&9 z>bBL%e+b||QLd{@>oPmLssQKgdEoBUp(#Tn(Z;Gh%Ak zfg7d{UECKWPez$b52jKnnCV(iSMSh3-(VjA>6ozQ)N~yH#y(yhTV7@@ds*6oWx8csx#K-?6u1=tZeW;99_Xut;5}7P z5HHFGFnCPCWCKW~ups~}=?eU`X6SUhKrgmJl zR@~xX09a-Ah7?H-ssW$u^GIF*7|&V4H2^RzfDyUP0maEv!X7HVPb+afhNn7Q?Hw5a zfboWlLjP8iS7DpRgTch1z&$ukTkB8UG&=~vqUmwXr{Mk-SJ2z)?f?~F&hQ5M13uVa z09f&~8$q|K_@$sHsJeZU0}t({yecOFMhbNVRYx!Y2Df`!TW`%l0wgWX0CspLx_s0V ziIyQr4pN{)(|q_AMcG7>r{o5IAsfI0LxZJC8N>}mDfS!5CO8Y4t59(WntT7LQ5_WI ziqPB;g6F)sNC*JjCQbC{K7SRPcq&9mCWBx2T6+8*C&n(`4u`Lu>@U~K z4pLJoo~flGR&HV{ePklLZGvY!G|@kyB|vir3}CLA1>?){4A7SrCW%aD?jMXD<}S7^ z!W>U*icvFwZSFF&$pJUhm&FWjeCh9$^lyZhZA%SF%{v;6^%UL_UB={Q8DS+HQMvpn zcA6E5hA0Sj`!&&+24TmD$*f3R)uR%&xISj;5FaM?X(a>Btq`~MPQ;_6gq}DN2W(S~(F2#t;|Kwt=y5{Fsl1d;<1|}HMM)VV0S^~|d}{H; z_-`~}v`SBxQXEC7<>GY;A((au;r1xPoi;sTHEeE*T8k+3t(8uV1x_j6ik&PyR<$x| zbY$k7=~HJ+W)e)9K4sd>X?-IDnNltX;4s^=NsND^qS6qUm&>QqnM5)}>A0nGamLK) z{R4gZLN1d^=d-zy;en}BMyF00uGfm-O{HD{5~@Abq0zqHflhF}STEvATpXP;*wtIb zz4i2V4h;_$O9i~W_B%{(vLGTj@ zkQ*OF1|~C?O^}^U8W_#RgjK#ulxq-`6NtVLpw3ZiT+esK^ko3!cs#BVA*o><1~(duP%GjnCBCvJ zX7R8?jSz$J^l)z&3P=idMuOBpK=OJezeiUkSS6C`4{8*p4{H8^k9_}U|&Rq74}DDkkudc`=Uxminj79R`-?$<6xC?zmlO;}BrXk&(F`?iicsGRBOIbkf~bMR%^`2*W7_*{%P64qCeCB z@xT8@_T&(6n@8gIFO!;2{o6bFBLzc-)KF-Qc%Z=J20I=Qrp0-RkPd})LzK4*N5hdg zbsY^;Vv0@+_#zZJka2#9MdTROx}i7$M9G^mJ&v=d5Qh^ue!w9F7K{Op60pO8)_7ba zC3T1_V~W5}5`Y13KpiOG=&8(Y9I=CKp^$(|`BYzbb=K^e(Db>}2PY5W3kpvL08gDU zwSRQb%usDVN@Jm_@=w7Has*~EadH%4AIL>g!!FGn_(ywGZGOk z9;Fikqnej7Q2ZG?@dy~4h(v&}xNbm+SQKaGu%Y0c7Y#${2a8{BQi%6002eYC2M~kd zY|}{?Ty7Rg{qnL2(3cs^{xy?NWeaKE!7-q3wWppdztn0a`0#EF5Xpz}ZxaIJ2%)mFndaQVa!_jt*7!FVjVn3cI2g%uI z%Th2H@XL}PKkYzB@~c4rm>d33zHZPQafW@4yeWYKLI9>~%pN$%CPcM{)W@iAt*5EY_`heI5XqL(l+lDBzM6pAVMT z=X7};oYl;gn|!Jt6mR#mi_EV!wrgS$Dy?&MdRyRnJ-#+tdgO1HWtS>D6sd!^xF!_x z^4EZCI)bcJ;xVpa=++294>bcgl1Yl(K$8{?3;I$BT5R#7@@fID$Ow5=7X}k}Ry_BN zcLQ>(9-r=a>j4Pd1$})HuQ%-RMjQaJFWTV=w|OG%E~C|{wRWg5nyv0ohcD_2#)FcO zY)WcEY2vPCrGtrPz&3ydg9U)2V78{4_;TtDV2n87En$Bt3a$Cvl;`I1guK)-BILvM zZJzd4U)u!tM9z!m)`SdBZi{5k?_!7NfH@wCPi4&YA%SJUnR- zW^QP7X!5klVDQMaNfoNJTg(*m*cNM*YQ0wLte4B>LZJYhl~ofTok`=?Bu3{9IpdFHHXQ>RUuJY}SRsJq%(!jZ$rgPz*aDtE@(Y zFuSz$C=~;JyL;+|Viv{%(qBHf8c`ov(WFhzrX4!y!3 z!xQJL#ayMp{uS4x#51Q1?V?#K#Y>e0gmD0#jFqkoqEmWym}Yzh6b-S$$10RTHq;tG z^Us8RDvN*4LCL46Q~{sjXB+`;jFo9*8nfug+28_@(Qt$GI6xeui%5W|eJFgkZQSke zKflt(ez>YPI9mc>v2&o|n-#Xclm9WCAWnfY< z7?PC${obQE$m>;{ZmA<^_yFL+Nh1TJ!}zg)*_5Iz+R9Rrj=u#w27}25TkY9Nz!C%i z0}O7tgO>B^9o|rzS9U`_zuW6`Q3jUFp?KOU2}|(@{4Q_6?eV+7V5g^pJv2Kbp?Y?Ip|Pt2XG+JK@J#$xkQ*795v$eYNnLx8|fLC)YmiE zPt6$OanYlR#=N5c0R^kcbebW!*kDXm5<2#MVF@Gy)wq8VUL670-9jUVU>g9;sB?t^ zPK+Bu9vEWCqx(FD#~b#-@;X8-KriG_+uG$80NABkbHIU!N61eT#+>IIRw2Kk*y2UN zcmm>SU?(8bt>J)4_&}+6OGKAc$sxJv0K<3C69)ceGdlZk8|T!xqoG z*`e~VvH9Yi{~dFs?Q6&SUGa0Z8O$?1W7J3@*X^7Cp@AM_zAbi&tkf~4{MG>)={6s% zSvRrrKD0le@9oaGNg9r(KXQtVU-hkgPH~I{SB&bvivR!+07*naR8ChB3oRgmZp5G~ zoBo)?*1kB=Slh-}o>p)Qm(XwqMl+|yMT^kQr!8#xl*E2_#_VZx7tEeLZ~EX!Z@s%d zZRWI*X(Q0+^wDY$)nP~%vrwj#gNworZZbS+c>aQUlc!9A{RL~u&cdx58bvsh2|R0F zIm(RZ$AYKK7byEFnScY%7VgfDr&}G0qF@@-z7iorog_ zHJ44N@R{HyiMYwmn`c1T{<65q9l)Hy<0NrECPwyQRR;BOcGXph*e?a*iev#;C*^Wx zwMx}L`ue*Ehx&#`1~3*G8XXuM>4%0!`=F62eWO$RyZbA}YMPh6z|&{4abT=>pu2yl zw{Nhgv!{l)*X?n++)kKg7~igHq_@*7myC2O2=5E-%3;4`_^^evh!0Yt0VzzK*I=i@ z5fvvypgoa{0Ki&U#*jZqw^EEm7;ggJPpkD_lorLZDTj}Nvjib~P?97LO|dJ5>7*jeA)3~82fgr%U>gk@Y!J8FEyxi7wkLq8#-WHwdSx$O zI|JCKwFZoKDdZu^elS>dw?iQS7$#WuL6YnZN}fQ_4N)GJw}mSkJDhDUcZb8>+S)O` zrTv~Z#{}$q{ElGI(d>FjO1mvZZo}40PzVh}AH%L*5|gvVc;9GO|D^8Tp#cDxt1ffz zChmN|iC2v|W12r!5@AS=8>ASOWyX-jP42uEw%)09;7xGI9qy1z6!|3IDagl#s|efN z$H}R-bjUPe3;;Vr?KB5$kOI0(3VXz4aFCO^{1nFyS)uH(YS)5>$@YqcWqu=o{a{3j zr10C3j0lN`gES6M+z!>zp>%XmVX}7qm|Fc4$GgW-?MXKUoLhVoIj&$8l61CBaJ2IB zA)pstxlPnO!3QepWC;v6Qkus#KzmOcEg)uu+toHiHWs;RtItx)J$FqUH@gxxr?AE> zf%pRe-{Fic5;s`OhmFDNot~RdVfNBPHX>ARO{`+%+gc&D27PZy{DnnF?&fRkq*FSh zH72wez&2tTz-%x0G=xDPFQXi*#xd|u-F;N@rn|2bPOfjTZ~Cn11Cs`Zrw)U`T?1X2 zQbzQkrG+u+Tp9<@o-=Fiyg4w_(3gQhg^e_&P|Vjm zYn5^d9PR9?LzQYdlcg@I05gnuPj5GTBpJ0l*lC5?vxO|Zkg(22N^&p@_W3yipt~fpau1jZJ}$Aa> zM`ikzhJ&i%4}}AIRMH|rTeyhRQ!*O?eY07Lt3!B*E{t3HIxF>3v69ER8)rke$5AL} zI(sSu-J$+2HJ|mF(Kbde6x6)|&4X;-^vW)V$ed~zg!=Rk^SATds_1mKtiFauOZ z+(;xaqA|H3WhxU%ro*LrJXemSOYvC7;JIpxzGf8fDwin97Lt{EA(2bqqXd29xfC#L z(u{sAT}+qCd02mZ^tob&*YaB9Lh*Bh1q9SVTv4?nB3NjMoYD~gxNiLrbd7thLl}Kx z42sVPvNEMbA3!y%LkwUK*rCZj#fOLB-o4n`y^Q!iajp!){Dma^f;b3=2j$c%w%WJ{ z4k_aft)G}lm6BBaG{mwl?1z(92W3tl;}ANhM)O>CL^R*!p99`-5rGeh5x-3DzerfY z?+D*>?9)ydPlM9pT)}pq>gpb<4NaNUH!=hO)iAL4u_B0^aYGaw#>WZP8B7P|r48~;1R5&9V&YKjaMZmNMsj<%3D(<1vN~c6Y zi)Qe<4w9lO23TAego)b_&l(Vbp%&i+z8;_EMCUkez|iJ*wRjyoPu!UOy{A=ttoXR? zrVHa5GrPRd=JE~x%5YiD1FtK45nI@7>u^LI{@GbaKK)_&u-Sp{Tlh2G1Rn4 zW|MUcYyZpykFm&ffCwE+iXibFH{nHucLJE7!@p7U{n%NW&1)E}e~G!w+xXoS(6-%k zGj9KoxHgFyuD6aCIhoDt8k<))S}<<%!Oi>40Jax+G|Tq5?4G&3nuTEzYWq_F3*n3d zOTk^=AXwYMk-?G4Bb?{lJKS6EtLG{(Ou1TD4UnEOecHUabEeOjGG*%M=%gW7#!MQ1 zHVGr1T881#h|#s~o8PB>tX*NrCtKiyT;>SZ;Z_C}*tb8MNJ)*%(b(DKgc^pb#{b+0!LaWsF8MG%214n+YYE*0L2dnpP=SE2{9c zD1IYwemvvF;b^$zT2~1p5fRSSIRp(JgT8RU+)t?tPmEKlAPsKIDGs>EZDbVcMIYkD zJXBiCwBjiCG9){y%op)h#6XjhibIMOwu#WR1bi?6>{9}w5uu+6N+7%)z}Vq?#!nL5 zWy&&u0a|_<@S30
YB#(XWcIF!R7ufi)*XjPAbUth%V1pPiW2#NJ7QYZ>$hwz}H zUbN0pF7bm>&15*9icr}TF+YlNq)^n1NAPBHM@YP};4~3BruGcc^0}Vj{%U6xFE${1 zs1jDd67b{X-tWG4UOd_+Dn!CL`Bg6lOrWo*<4;R>yov*&3FbhD?Cp>|?N&JsAut%U z4f@>F5-H$<8@7Vs0g}_x(b_Q)C-gRV8?X0OWh!LN-j}({0OoyJY6XU=jCM>3n~kaZ zl&*&ZxdH*We{xU%P=CIZ$FL(1^!ikPEQ7J3?veejpqJ$gcw9j@%i(vn2X4vfcXoI? zs2Fw7377Ar)jL!(84QLM#=#@VVN(PN+ldbod-@$rI0q^n_nC{CH{j-ui-` zHZLvebt(>yjdLMMURlJYBE>_C46Of;v^UvtUCq+=4qy-ds?5SUdq*JDf-TsBEl5g& zS|~b1i`X4blLwhq`J?cAtjT6b@^hX59**}?E(#uzTrZ)(Up_rTjY(qbtiXhT zZGRqL9@ijbRY-Qwylj(;<_)B6R|!i3v$c{iD^D=nO=3229_Sn2!+XRte*5|fPnJ7Y z;o4BZFwhtBa<#~zfYaO#<7u3luqd;8X41mcND6l@8E)lrnJ-rPa$T?}qj=6&m@-I( zdb*(TnxCE@f$G^TrTa@`sU*6lGdmiAzHVZ8sp%!o&C}H{fBEw8e8VuPAoB#PQv5dM zIw%0IGZJtv@MF^nChUdo_)h0=0z2o6ngcWlQ8r+3vfjx|MPdS~SljNVbkBk)k^-Pb zwOHw}3o`_L1K>)}Osp~|LS!-YMx8-1gWNzAmlz6-IplOu=61QPr{WfKFGinA$Z;wp zCMKtj6Qn8o1G0KEozL__Geip)6Wk?bZO`U5eLs}Zq6)=(jM;D2j()g4!wFQ>Pa|vO`V+^Kbzd!d1t~lPZec*L z=bmwcx9n03IMuVbS!MumUi!Ps+2gl6QNS-x%hkd(#>0WcB2}vrSNKmK!4+WUCu}G) z{!HHd>EoYx3-Kq72Q(6!HK+&HN1*iM3PLjD||;ozUneu7~eWCF(i`QtzR>El0r zkl-fG)EfNw)7hWsupL-GNotev@u%~D`f!f@|MKIEp=!_DC_ray>2$QV7W@o-~Dm?@xmTK ztxEeQT$1US$J499BT3e7!I;ay*pFF}I^;(`$=a|eT^hH~24^46KYTd*`0@Pg2MS*T zxMQ&6xkmu*+{H)RT|j?d(RTdnfc-rHp9|8NKTK0ZO7-T*34b+E^mdvN!+zy9*=*DpW+_Vr)?^IxAo z-)lu^NY_Ob2Sw;rp;uxsjHHceQRaZ+Uw{AgKh&H+L;wH~07*naRR8^NO)WiLGT*^5 zW$fmmt-*=zqN@J>`|tnuZ~ylD@4q*Big7IQZBYEv*Jq6BRBwO{)G%JsUw;3M>z#NY zh9TlJhIoy_x+)v|X9cC%3>)|}&r&I4BqNtB2{mz4g~9XFb!44X z(Reh(w*`Bam~qT!blbYIZTeHgpGt^I09i0%ZybmoD;z@)-9BFf!1qrOQejp`)Sdaf zkcM$}4hYEwdAbKX@hbp#O=s%Z1`NMc`C)0P0RRt7jbfMidwC%}Y9-JniTV>Vf>wg0 zAWC&M29*N<)6vT0KtFIg0K>!^tVxM@UKnQ{UBhWygvEL`Up3NVL5em@=A{JC>FeoY z4sc6Mf`}j`01P^I0A{9>m`2^VV@@I=*lG85n{g$RHNM_)v>LY5fYRjZBXS=o{BTQpaF( zTF01vF)*`CB8jUjq%1ajNx^1I(c+j1@xn4q%L?#ZHa>kx=1d$|99ys`7$?y*l?~~Q z7{^8o^akT7vhv)=_w8`P3_5ssy?FR~D**odh}p2~n8p;~nJ#ty)v2!DPYox>xJ( z>8}Tq(7iJpo$W-G5F5rm57_b6~0PA8&68SMKW+>{Jp=se0scr{FVHl(9Qy@2&~*Uf$BQ) zL0r|l&tSh4SC_<2_iD3xetB4L7B~Y#SeL8WcC);_xnv_Y!ka6&Ky01FRZ~md2FfPM zV3}3WyJ=Eja0`6N7>vSsnv{XRUCr-rE*~FmA(1oNhUx`(E61e^8lrsGx&Pt5G&U7+1rW4>tBee5sS!A;)u6!pp41Wal z3VpR#+Qb}8t)XF$OlOP%9q9e__peW%?l7?8RE!}2mPF!fitT*6lt|`0kqS++Iy8aO z^?Vc0r7uGk&Y2=#3|x)L$G9JW zoxro}N!<)i^%#!{5JE#>#Kdg)^8Rvrv%S9C$%O1~eR;duU9Gm4n2sz~TRdef{pk~i zRVTVsFAf9ziHQPH%1i)Otx9X@rodQSX7qApiYvQdq*Ttr%hTWn`7vsX1s>nZUlqGa z39NdiCtc#9wk6oA&P@nkpjQpsI0pJSE(!pcO2ZUEEEO~*QCQ>BwJ)9vB1+2y^+sTS zK97N9DdY(@1D1>E`t#+>FP|R2K0yKF9dW$Elq<;Eaf}lenAARWrxRy_*_bbCI7;fA z^{q^NEBq1HgMox>hKGCjl6aUl$kMMVX~_`ok@x~}LM}<*DcIdl>v+dH|DcJCj#3Zv z0L&7w0rq5tsApDLkP-_i@NCD4Cj}C8X`BF#E3aH8cb~5T;Fm8?+sifPVU|6`>zr>J zi7~X=gs91MJO+wJ0~qj0j*6K>yiF!ITkZs3Z{|$HCf50AI>0eF1B1HxKz;0RFdmGJ zF>Go~#EoQ%LH@}XUALujq%q_fFbTjzcsn%5z$8Ce{7Ig{AU(l9I~ql${RY6s0G|S{ z_B50QX((V_AOM30BA%JNeU!^?I+qmoR0r-2y%*+0s zu8IOC8mZNtZ?rRpSX(rA{%jRwtRaUik&X_#lNNtSaO ziZS~(i|4td233-$#o2uz@e^@yxm{t#4Iu?cG@5iIsYxB%U zC4ftarz~N%k_3xjRL>H*En+aK&eWnX_uSNR6Wa+bQ?#;bg*1120G_G|fFX!wPbGpF zD!HhF7G^XJn<|$nD4UkP8&0Rj2m=;Q2uP=;mx1t^<)s*8Rr31MyL%$t!etcWa0Y{- zy?eZY0{-;%5v=MyAiT$N-caR0?qK$V`AP(7=UQ*Q1b^YfLGRe{HECf6E;RTvYjDZV*C z@BVsyeZRSXzP!F)?{5|mPeS4wOzBpV-o26-?6Q$~W?4^Nq|Fjc?&@--n{b*OkZM%@D&uS8MgiWT7lc&67+56=nspm051J{Oc|q-H31UgAPU;j26)+}%-NFW;vsHTi z`Re)G^TX$d>)RWh@(3ddU~2Skd;^0)BQOc~YR*`SAD5R}n3=)sXo{KHL~34+(?;Cv zz)9eHzUM-pi-ElAX~V1ta;jXE4wQeDKt@YN#x$Hb2EJFgi>>KRf11xypc;Fi;GxLd zfl)zDWejyL?(SOZJ2F?>Nz7uIK7PBCIIPc)05Fjsm0q>VxQ0p>2)^X_s*guQv5D{) zj1+>}V+Am9IOT-n08Z%)0m_P~g_QIRToAcy0)(H7N7tCN5lEVM!`pT)rGdcQ$!F)c zvE5d+%?}sn2i|b28y}&t?P!8elOc5&9B>)=>=pnl`O2e_3R$(G#x{%I#hlyGoTiIarXPsUNzOC!BlnopJV}vtt2&6$}f(Lm5X_ZQO-Oz~xJBvMmC1&T45Mc-d zZh=7TNdpg-g}!*FBOg*{vtD4vz1l7y!l2AL27}E&J1dz8;4!EM;7U;B*(-f@`A|Z5 z>O!te9KbTQ!=qd=&D4iJhJcP8nymn~VQFqBnFa1yZ;Ae z;(|1wGK+!js4|nr&MMalhErqUdIlTChp7byN2Ti~MjycVtxBbM+fbWefWy%C@O<~} z*H53nJxOsQk%_VnN&vSZ>k?nKrBfY~l7&Q^2|-x~jwHsPuvHx`${-D`D)U9GS5Z*} zFsPp>b{SZNflj7{sZR~PTF;?}j!Mx1!{U+F?`pT+j6o2uIj>R(U$FM(VSD$qzkS^9 zuIHP}nf&>%yS`n|7TNA{4nj*esz7C2i7z?GDyiVbivs6DTAf+~z>3F~J2xkCU4+U+i`qHLL8f4X57_|^3#etjGPSpSlO z0T)oxi*+f@bfEmk0I&p>S2BYH|E$1ZvwDEj&_xPqilsW99fCuQy`GJk5a`S0E$Gp5 zk#muvEs3mgZFXooS`Qh9)7Gn!5o(~X78eS%$btMBr#5DjY{h|-xUtJLMF6;3=K!!Q z1M7qsZyeVI@4Z|}{2f3daaFEJSgDx^I+#LYG1awrUc48~QE-*$ekW)--2{oTp+5Nu zZl#`y4bYtdz!Td%tjFWUgWslp7Cwv)43X4<#V)_PVel9pk2enM=t#qy0M|;^5h(pJ zxCB0d&BB@NUNuk~O68DN#dheWQO*uk0b`QEX++m|d1#96XP8xYFag}Ig{up?RlvhR z=OphApu4+OzV?3*6?GW?qs-Dm1i^YQOR>&7Af~e&( z7DYajueK+(G9Y5ou*SHlwK70Z2v9+VcKw+Z8I0N#JFz`4Qy7lC+O6q=?y8GRl`$#S z8{yPAp=KME^SoFTQv0K>UePPLD|0D>jOUOhIU0A(%H&YMvF9{#u)=EtiG8OG?HtH) zwBf5`rkV-#UbM@=)b}_TxCMRj(L)MgD91~6+^OwM zB%-GXRV4(SGel3d+xVNk%gkGqGb%ggKK<<y9n)^~;J} zDoAUNZ@ro^r-*TCEEocsiu_F?HbJ5bngDKPbX9_Bp$40^Sr}ktnS)i(ksQrKEkmZ! zQU%vm0To~mGXQ)pUJ*u3io0%K?q0sUJb!+^zPZXZrW(dt*=?y^{OU2%Xm}<^GpcsJ zV4z*8DPk0|6%4jQTiQ_Sx;5l446jZ)LuiE%jvIU>3QFl2lcLt51)e%0et`E=C7TwrvLyD07*naRN?FG)29bqb17Br z7-nKfXUr-w0brd(60{nIEe)C`Y#0?z+V$+hg-O_dY%}_S*rq<_$}49Zpg3p;@{OGd zt^oE=g^oA?+Xg2Sy0f)I6tt-e>f`P_xNc7Dg1ACQPO1^|3;?cl?9@nU3A z*}mh2zUw=biEw+YJc{^`FL z#?=Svsa!sy?7M#H4#2JT$`l+9djsHiweKl_PlLAFJ;@#5Oxi>D5;iWv+d9Ak2Kp z_L-M>Ul>(2g`;3a!0m2zx!~CyuvSG4==cGfp&iA4yC`7WJf4Sc zljA`ks0-Q3>gZI!x^Qc;6|d_|G5f%uwqt<1K`3i}xLvK65K>T7uIB*2q_V6Wx8Ro$ zu)GW;F8ra@mu34*OxtU8lWKAs<(?v}xW|)-uyuZSC3Glvqyt;e5xw_rsqJhx3Yk$4n z-t6(%IX>?FdbU|$qpjvKE4z9fH~M zs;!1zx3!C51hBLw)FCsLW&19iMHl1BxLQ_xM+7iH-UqPsO;P~kM=s;A=Ab*t#ELZH zFPbo_AHdUY&@F&N@m$&Ux&na33;pRqg0Or~KoC!Z+SisxCgT{oC}MG&d!X-N9E>Jm z8{95pI{ot2l;E-)C4B?8d|N4047dFO`$Tw}F`r6w z?Nof!05B9VAlj_~gT5nc&^e#UYzpGea1#9FA@Kp=gZok3 z;)^Swr+^8?H|n;B*zXbXdjS59=lK=DTmvSq-t|BC@%c`$SZ{s0Umm27{Y!Pf9@Oy}CL zFAeL)cCRe&+V-!j^3!&6`*8dC^0?dWFs6Wci{+dO81h$}=t+_Wt7JfUH8T+<7$4af zKnhVUYW#*V+Oon!Z#CP%Jp<_AIVIFz8XD7B1xwaTIC@e9=`OH<` z(t;g@Vu|IpxSA)kRldvP$}u3^%g8@CpEJ#z zE^sBgsOIHrhHW+hWMDHkSWRiQZWz4|@0J}g$zl?1QY-#SV7M7PxNGy9^$8~Xfu<$*{4-kZwRI5b#@e#o7VzahT#Goxz!P^Km5!tK&0~XrR zG)OEz7B`Hx%S|xnz$8FU65GwDe)w|#`1OGR=Ar|b3X}$UNChka4%Cawm>Yz-uu17PVeoOV2?EG5q)8JKX0C{m#^Fp6MGlK-C}V2@E(%=UQBgM zS#>G*@A{tF?jF)X{d5(%@3rpJ{m7J~p{^gdwY~Jn*A?X>Du-{YcTsh-@@cbO;}-&=ES3$cRN@va0hq6@ zcd-3#eSNjNxxEyvtg*p;0JB;X+x$UlLw0W$3n)nlbjbA8To$ca*e}+FXADDH^hzpH z0l-;pL&YYAofQtO4`BQm##2eIO}rv=tHN(8u`+k+(yMA01`>AAQ zWb(HVX9=&;a$CU;4sAJ7`((_4=jEn3kp2<^8t2CWnAt!>-#%Q!R$ELpQoMj_RA4GsXjwM}GvD3L7`Og0Q^1q`v(9%S|{#%kB?S=I{?4x z;66lqFb;a@MqQ3F0eP&U-{Y&A*Oj+?*WP7tUnTeT@u|FiH@><9@PWa700(_l-51I| zk9648j;5wDBi~L!GfjuSpPFuN``h7UGZ;6vU15rBS<<6T!w&=3fk}0*B*xCbwqdei z8j)?`Dgv}jAzGso*Zy;;oa$WI*;V)Syo{Pg){ zy^%a%N@seonIVInAPs;7Du`>kDPXNzPh+8J0C1SMJ$7W-cvkI}%l&F~z2DqkNo3G! zQvqxci!2tMmcG`TbRw?9!a4xA{%29Zt{+YTFc37)3|N&Lbz#m*zs|v97cj2t zNP@XihX5ASAhmfFEg+h4KQ^G4fHYMAs!8%bRfz`)+q?G$!*mCVX+f_ zx0sw^R)O!pdRt2kvQ0T(7hGe8ZT1ULyq@RPEYmtx=BSZD3cod(23#Z}xJziu6*l^;S3!&y2^4BHu4xetrRcVb?cTQh{}zgTYY7 zn*1$IuJU;VD`x?$-CjWT0+u0FFB@2C!B?6z7io*&a&22RbXUt0Y{pI;#>g_(U+hZW zGCNDQ^AG^WT~p5x?{w;O=6%R0@pVnXlW_yH0j=6d2l#9|2Y{cxJwLuYVy1$5vt^r5 z&-py|GY{0H#)Ybu5Gti9kSS0MM@BrcGxkof#Bf+@`ni~w8FoB|Nm0poYDW`R0h@#a zwb3*hPvXfqg2o+41xf|5m%6fGOpUAD9eW=p{zq&mi3Q2yUgR%5`zR>1Q7dqRRQ1MT68JpG>JCg)uXVfZt zZzyhdy=|u^s>p@(iRXB(#8gejS}LFgFs>~>I7pPi@ZyJV>6aMht?fFl?{$bel9>HJ z-$m)s0e^s79x3(bjvk_`%coB4PO5U_djkDPhR2>)CJ6xyJi{Dw;)zq&1<(V0pByW*&1gE_&zgVz z_VxE)zin4@&HS+odrAX5jG~XKe52ytXBlEERxld@WA{BOiQ89Y{w9>ekhkn z0JEb`J!=Y#kX2dM6{{gi)efixRq7Dd_jlJ<*BfbJv}<4(#IX%E2BA~UldKBbn$M{z zj_BO(tP8)AKvYab7)#4$DPVCP(1Dw$m|+s<49l_cL89y7YCEgY(&pN7QzT9 zGVBqC=C13ux}c>nHN6Fp_;`i0#-7idy0I$-urRnZ(`=HY<2V^*nY~yf^Lci2v%bCG zg1$7mpn*WTpx3+Q{(3)KLP*A-=4R!=X0r(Ln#D3V+qpz_-K?*#4?URI4PHO?!w6$Q z9Xs)9!hn2w)NxJN$dZ!@?5C&|T`K_xWgAAfthzmT0kZO4#Q^#KW_fwL!iy9b-|i&9 ztxB)2gxnxKFwE#Pyq#uUefs73)7R&hFVNSQ8_e}~HKt9tjCm#fFq%aJU}I*WJu}LK z)f$lqy_-N2m&+7WE6leTw#FC>sX02Y+s4mYW>xw&vc;+1g`Mq~8M_(|ooLFF|2ouU zQMGJXcDt*U){T~3=Qjy%)g@%Megc4-&Flc+dr`pp-2gH%bqI1tL&T>N&!qqc-hfh& zMln1B1=%>k%WN3v3mqJkhF?s*eBz{SRcDr8#k~L|;VqIk5(dMp5a_x9&%j_Wair;! z%1|7m%25a_lPWjakWqfA{`okRQjRpw9u=cy!C=D9}~bQ~Ia>Xe05l{Sc_WDSc# zRPthx&6Xi-zD$>;!j)amz;*MTDF6&AU^;@S z3CwX#7-lNCK9YxBB+@%Cm5F}~q$b8Tj$dyUo^RutTlU!2UbDb33>&6124L_kQ$vag zLoVYC5{gv?n4koK0mJkHlZ?Eu>INT&0|3*C(#VS`EX~GIJeI3e2CG%EyPWN>=G&_| zs0L`=-0xuk8vzVxK}WJ?H78!2duc6FVK(IN)zuOP5_8T3YT~ogMdck7C$Wkd6^uni zV0g=P;IlXh>C1^1KX+0bGFqM64N%S6&cHAxJ-CHIUN5&5n_l2}dF*}xK(4Qr+ncp? zr38RC#lx4I&);6aV7wOzces*VEX*S@v#A?^f5E4lFKYGc$o6s}bz2!ySI(mOI;XAo z4fqXIgT%NR5{9;^!FYE4!c2ux7qG*U7~{{;+7^Fe zEDS*BGc>Mr3W;4H|Kan~^S4hA&kvXl;M*c!t<1`1A=_w%r4azAsVS`^Qfy3#LqHll zCV+*zg#+#?eaB+?NNwT*!|BM)uycwHD*}DbacjrYcL5R^c($=2wOVmPJj=8rv@~YW zv}u|d478prwx?X)260=DvCam7VLy{3W_H)+T08T;Xij3fsdbRf@)Wq$Il-&Do6`#~ zlplyjoVCU^=_6X}pXZ%{zL3-h-aC>{Wlxy;j}5~aSl$S_M=Hy@=4gEJ1Iupojg={> zfWL>>|ENFtT{d^yN7U>)lV3|+e(&iH@z`w$zgice{pL~q;+MTbm3`Uzj&43Vpxyc2 z8IJ6GAzG)7=+iae@J#{BK5m0h&6j*+^*zVK1_ET|Xx~5fMOklZT z=Q6hAJ0mV=kl2_`VECXwa{w3{U^8qqJfBX6P{5V+h6u|f$|KB|45;39SuAH&gF(Tw zQ^!mope-|0b8I2^V0eM~Ab1J%e);-&yW6nPKeIpEc5-D(w3JmF<;xm}kiz)Zdb)}O zV;3NtiuDTkfq-PvhM`Ucy^FlAG1CYoifW#MNo5^YO$5soz_0%2LmZaSH?v?+z+f=A z0``=-R~0^>D+a#83K6?eWX2Nz>;%EowFjvMA6GWL~Mq{t)RV6@$w< zB9O2_0Ppr|jmDCNUYyN#rF5_?8$-CK4wyHqQk>tFI+s#Xn8wg z7L!WI0Pr>!n*z4GUR>XAZtm7Ff(kGO((pk`FQ%E~AkDYSFpudU z#*4YWT?>6L7gyIC7$Dl|-OH=}Zoeg2K~n${Y}UnvT1qy~a&AaZErm3+GAPc&c#`$D z##7+o3`3KUw3*~$G4PF_4z8PQ%r)g&wJe}puX6^(Vf+5`H2@3+jMpO*g6$0N2)M;Z zuvp^cE4GeiKtmVVfX|D5@^Tgwjo&QeY92Pr6vk)4tV`FYX;o+J27xoPCFN}1u<;_Z z^ZUjQW-M&NP%low51r5wwk6dfJh86+O7^p#xb z>Ash{!)ohi)=JSw0RA48PrytG7`&^4!;{ty{g#X0i>5veijML;NK<|tfME>SfG8Ag zKAdEOapw3K1|pm?l7uB(p7!GT0d@wCn`s&;h=JQsqqHh;B+qbg3kl1Bfwj6w?1YvL zTHD6dF(UEW+We!f{ZX`M3C7-*C=V~wM}yxPJ#0B^OC;uad1 z5asQD&lU4)^gQv=1w&0ZbEM_MYmVloVk3ndGblWA&VAC)>X{*0A!4gN#{RQ#;*?8;Lu3%-Syy3H20H~-i@6;%3P9dEf*kxxk)xQ-HS1h=!zut zJZC!f#*@gj+8A%`S5wxNlphLx$*wa@5A!kK&+{BRvm)mzY#c^KmY0y6z88DWyv$c| zR9I$Y8WQKI&TVmhjs(3@&Cs0qpe8PkXLCgaUu#YMyu{Cby;)#*#mI~C_x|qk)64zs z-4({2vMIR$h7Cww%e7dhcx;TNZd8q*rmLlSCg7PArq;5NO%=_Xq$wR(U6`;kGmF$H zv#D$=M4@hzbgIOiM(G50*d7UhHBuTsX7FaVY;C>@a9fEd))kkmCMH2%OL%h~F_ucC zcAZLlLCje+B^Uey?Fc;5SCpuFlDp+w>H5ROf9VBw=tkw;Y%Z_hp5ByPdz^_E^?ywP@TC(Z45!dkppt z^le|{_vm{R8ckjJ2ma^Nbm0&JEsDmLGlDL4-J~pW%^0L76=-7&{}_Ek+(IbZK`@0} zolfu%I=QWqtznr#Ce31Tl_ct9R;O7~q|x)k?XD^^+hl6z`O*LY5CBO;K~(%Rt|Gqz zj%hgNDDo|g<_seO7{;TE$#?)T08YF8_Wt4S`SbHHfBEIFfBWs<{{Gj0|1ZD){ojB4 z^!aJCU1D&VuOt__oxEo;=?lXf#JDDTkkTMX!jv$oE@tVhj+adWn-xxz+q2Aom5Evg z7~8YPt4f=(&0sJripOCz3X?G`h;<{i#U1M(s-&U*CwFC3*o=91IxayBvroMlt|^y?pe# z60B>(c(^#Olc~Tm8Nh-RXP6MWP`xyPz0y}nZ{@Y8xq{*n*SU*CP)3{gaAiX1JNtC@Yo31GU%xz>Kr^cJsxywqfjAH@$uZy&%cgv~-6eJH{(_MNWa zo_dn|E@hmDiuRPRrw1H8_6V+l_91@lKupE#dq>9{Aj*CZ{T$-9pk{E$Fz%p!yU-~O66Wd##5jkxuE-DSx3=WZ#~#PEB|$+H@_1O{if4!zb?n=`td1-xgoLdvETYR zLO(8Z=-Sa}WK5<~geR3&15S{Li^mJ5jyEyP!Du|10NFO)IJ9q)#(_GZC74z_q_VCr zbgk5q^nqR@i@jMTg*BwOmGn$=vcyRu3%WP-AVUM+nHr;??CF^~JsS^yEE4zme*fv~ z(}jigQl)A>BLrZ}%8wCHMa9N080*~vU z$}Qlw&McrekIe!!O>GIG${cLqPZ%*=3L}Xn-BumW#H|!3N!m&pET+NLT(;NM zJrbEkWb&NU$DnT*TU^A&2rkN79hG!GYnZe{Z}Y?Bz300GFf?wr63j^efI698Fv`g^ zhIlWS4~bqkhPE}vyMr-wju`e_1IN%ojbpGumj>HxfZ0-$B$u(0Ng%jN&?2p;x`GIn zGGS%yxA|t^aoKqhA!wZWI^A4WS2qx>l15DN%9LVO-BO?~c^5Wt7X%{sx)cDH*noUo zZ!7Glk6IrHsIT`|*p^5x22{iFYM09bk{VYVFGec0ZEF~Fj_Gy=ao2kh*|@@>=@MtY zT|Rxg`}Fl00EV8%c{)D?3{sU(&D?HTlCKhcWcWlRW_witrTJWvgE0yNGk6y0IXn;~ z=E?%sp`m>js~qnI0LEu3)2}>~z_CrAGE6~|SIxvA4tILGw|@T9|cE_|il^@7R4BW(l`wq@E4eJrzqM4EOx@t9;~ z@f=(bnNF?J*|wN%o5g;at0I7pmXMF+_33(Zr^P!R+&^dc)Sdsi^DXyx{zm~kwhY6y{Uowo zXJSm_IF6#oPm;JOJU@XJhD073)^I$z7>)*`A#^Z46z~rKwrtZhBtV)y*PO_+0te%} zWlw!;;+f;7imopg_xC&4c3rKP#of(nIZxxzsLSAH9zE~M|KVRBZ?bVd{ICC;PwT&b z-9B!@?ali3`I`3h`R4h{EtDD9z(83TFq~I8-nBHb(cX4a!N1C&5%WY6aEr{Vf!@-G z&1XJjZe4mp;!;AFv&bNTNnZvtODa+B$ii^#)|JC@6YYv`&B9NSijtV36F@a>2^gle zh|?gE%Q07La+IJ>*Q1aYMoo^Q*X0N+DjCQPs98tk(q z1%@E$0-G>4b!i_whFR9Y^CnW26C(H^;xU1c+MKZ3DI3gY0$kO$cDJq~W0(VavoaDd zZsTK|#r&q8`-kfvH1h~>-Rx?xO?lj4yG?UyK?@A$;4T1+4ctpMlhdFt_HXx<+Dy{Y zwl!|6DqO9K?QT=mWmV@=`(;y61WPLRDlfHVJpoJ?G;}r<@aJzY0PyA27LSsU>19rp zj0f_C;XG8aEU|*8!(E(|Bof)=VO$1)n`Mg0iaHW1xlpB$SQEihOesKLY~WrNj{|gh zJ$d|cRbv}pIhH)bw@3m7W*hV6a*<+m;LzfCPszNbO*j zm`*-AcfHJSO5+v4rv?DOa`8zUZDEw?sTS;GObYr>gheh2*2-TY`pA&Fw#>z89RR+mUu2vpc2Sh&5E>$r9NVQaLU!G#IhCv(Ay^6 zHXaNBhAn0hZQjVe04*rXFlI^Bt$gf<0n)Wv8=NI6!nPk8P_CdXh}-#Q=`L<%s75VG z$dYX`1gy&oYL{|T2Lo7lbppeNsu>w*+O^@t7Sl7+$Y91Z zi%(c0q(pRL8+TzI(9FvHo_BrZ4XWJ0^-LGqnaz^LB3rM^`8t&!3(@KN7%r zRJR;168UNlW@Ce`7;($`D$q}95hi&cGCVJy@v!LRQ zU@Z>Qm#)cS&I%_|YfR*_(AtLB?K4>X&*cQuj;xvFGnv!Ki*Q9&G+I?MDJ_#ag zfqHN_AA$L3+4zXZ{Vb!_djC$P@R926J&{LR_tT9|*MsBZzQVzAVOErU?Jlf^ z6lz-Xd7i))6sOqZFZ#|>%Yl#?6@`ymx4W#wr^Xw*e5b$``V_+7cv85Cjc*I6XFE19?5*4Nj|%gbiJuP=Aa9z)?Whi=B0 ztK)3GT(+g{Wl2nh1&aw|144FQ1&hX?*B+hEG%$F%2p97JRznas9yYLNvrb?byK87r z&EgG$sppNMSw-OLVke0U2`iFLS2yVj2Ee)yV$z5zgte4kiCebKg|u>{#CQXTT%Bc@ z5*3dwm-;M|!nzRcDwjS{SJhce9nPIQnnpP*gw`ctb}y!a!OOe6TF>ScrczyHN-hIa zsY{_sU5dsqB$9D62Si!69w;(7*D&VL5%ewvelPw?# z(Poq1f4%~Mr4Yx>)nYj(fSCXWlCAgkVp9UBTt5c3rQ}QI1HJ5m)vgyN6DVK+SVFOu z*=pA+X0o4g(VQqy_~OMdEQ@|=oko=S=HtwgKsC?GQqByt;{cgKW=lf5O%l%rHS8WhiEIaqpGawUKC4>FqLhTHOKRW~7 zU^o(zSF(&G&G%gGOpV*;Duu-kYruTqSRJ!O@`Sv^ZIobgX)rQ_`3Ma6)FcAdZ!|Q4HCUtT&6@e$6C}{q>ejW;Xj3^ra?INTMN;kXNau{7W8%^y!TQHZ;^u zh;0Bi)EmZA%u;4eO}E&*i0<~w=lk8u1D>SWttu+u)hyjEi`#v*sJtfgFIUxSIh!@5 zE))9mMYvigtPizXB+GdWf;NZ2w5lSEGEhz!wW~^l$r4)ynlDP|;!VtjNVD+iS z>TV5{SfM5y#|(;Qkdzi57TMRW4ocFh>K^83vMUkviYO$Zug!d4Hn}5W`J^0HIKFV8 zi6x}d<+HN}HD2V)r+fOMd3-+#x_zt)XsCR=$WJf#;3()T09HLsV~j2nkQjKSOV=Lr zvoZ0qEeVzuz3Yp4-o$msFl_WSF?2S}bcf&pzC4o8?c!Om}u+6UAU5XzbC&3w_)VsXDeERxy^K>)c&KX@y z0DJklo1L|ms(4iZ2jw~JfGe6nOX>UZ9|2e#(Fgis0}mW(VDN=L=}@KW2&D9*p@dCE zLoXbFvPtGJ=}T(g0>G)Gt1yN{GV5!=qlDb*mu|EBblNID;dp`roKOHP4AwPc<`?0* ziEPcs@^;jT-5!<=X%1d67>sWVKC-KvRmX9=yIN^_`Wk~+pn#KsS5v2$sobU>X=pbT zu&-`>k-zmgDhA?UNCu*S$Cg3*!bJW`CuEylfja;TU*BrkE?=m8@vQ}uW$CSo7>B)+db|2?vloexU{2t zc^8=tR6{*W3dFpr8~ljF?M7O|id#7I_v`xhatVX#g>$JoBz7VFxt^8jq# zZls5xq>z?AM_V>Ln3X=5%4jL^8%rW@IGahW35?ooG=^W73`|WaHHNg@BlIqCyIN($ zEo`$XKwmr%{03J5iEhmj+;wzmlg*d7D&ij&v(*7VV)dx5fE1a>$PTG=q1^x_=ckTT z@@lCH^;;5JjHhL;Cxfcm*yh~B@dPl>!?_Oo0@24#<3xwhm2vz4;I`Vc?g1>Nc9kNN zYL)H*9PsJ$12D`+OszmyMJ`E7lFlnynVxpcGk*Q`C61+A6ecv%_(&T-;nKk*(p#?~ zvzw^hxlpY_BzVnPvc|w|2jJE=ZkGgtZ_!=j9gh?JqObw0Wh3I;Q zAee&6Sq3UQAg=bn5E5%yE}wX&(j|;xs+FfjX;h_A7Sk*p#nFWqp8L@S6Hy>^WWi5S zEirfTm@(VDCj7i;j7;uQa`E=V!o7UheE#+G^S9^y^**n1i0>I_tuw`D5iHhVc?xS9 zd}AYANnAHvdA#unrh2wS$Fe&0)9pak`7q7&LjdGdZf4Y78 z`al5FH67*`B7YUP#4zA049?FxDjy&^2HRYn-+;9MaK||{+3$qd`H>SKS7Nn<*7Dfw z+)F+lCPo*XyIU4(;~}+ayS^Jqcr#QxekM@B;)PBfe0yDgC^@y!Ib*6j0P|}v^c7F_ z1jpc2!8FTgC>1$iT6d2jTC(&T$&xUxq#iJGq2|*I&{s{0dHKb7eOuf-Y+!d!d)WQM z)$QGWF`s#^!+w{3W;6boUTe*?*7#>ln})3K;;@2vgt^5Jx?+4Dr;}rn@zP^ z6*x?WJOE76lO$vpD3zRJQ^J*_(35yw4RK;*?|~eWrrgE=tMeK14*IN%rR+kAx?a32 zwk72c=VY)?)!WhcP_`mqQFslriU?rFy5^$ek?E4KM;H^jL}`m*SuB@uFuC#xo^nLPer=MND~~mC%QJBjd{USj@e{PH zfnl7R=DFhxeSZ{1(>N9?)A`KBd-kVNHapEsx<||x9*pkmGy|Ru-8j^*&P|XTw}-n- zRwONJDUnt-61EL-tdU|qhJGoI9Xm>MPL+JQ8HD^l*Vq5Q$*+U^IvmVZ0&Yi3lCwx*)%LV{87|+~g-!3k* z$FH}~Ki}Uz-_N(pwo=n@Fgm3f0nTz@bjJK} zLV}ryCU^_!nA*qBLJV0*zW~` zy{mfv;DM(A_7YDDp!f29Pa~p_9&$7%=$z80?&x=;!;T`f3E(VGcl$NV48fRTd1^pu zR}7)u(7L`4&o{8U$E)>jKATtT&0@b>@3yPea<*A7WWj8i&oOG(@nV*MzJQ`|agoiN zcu@xP!k^dKelx$hzIuGPfBE$M`OBx<+YJVKaF-Pya68@{ z8u2D9cEJuyR4t4>KFFr1BOJx(fz~-*Dj!QiOZy{zpd8Nv8naiEIIJc;9N89RP*--| zCHr!`?f^_3EGx=6epVwU>P*dZdf`%?vIs%Tb`e^dB<3Qc>55-0vghY3TtjU>7_h*I z0JzELvjQToKFI4g^i}mQt_a9Py}Yy{Z|6XP&p5U5!Fz8q-djEV26u*$gNtKY6B<7_ z%$De!!0n+hh}7&9F|9$@uWk%a4ANOES4-bwd>^#=qYn)VCE5}iBDHcD;$CPJUKf!E zYb40a14mh;r4`n>1jd7`Nzx{_Y%Z&tht>Xmef_lCUal3uzM51(%#ksBiMu0@3 zh;s{yDo9Lq1>0dNtv&$YqLIMwHZr`Hd@WFuIY?aYg<&cHtLHuhZdZCt1Ir~54lI{& zDlH(xtRV>?Z#0&zbTN~VxHi?kNoi`@kHp{NmSEGcsfhwuqo7|NW}5}38e$5&?!G{bvD;8Q3N6S(;wJgGpeN z%qM1TuT1v)qJvu26tXstzXLG7`Qi#{J=OTr!tVlfY&OO6YPQt$A+?6K-q-kCAb(pw zxz0SGgLUR13OKAL0^p|wi~t6GZ|*h#a1;gvFtxAxpW8U<&g+hg!*|{J09pX|(~vp^ zY-uZ;H%{hWvE@F=zI*TYw)>|0-$nJSGr8wd?lkUEeXdRif6u*q>>}26zCVU23oYTp zX7;26yc|-Sjt=gx4Sx^h2cWt=XL4|KhGWtEcKbB?`UteAtIoP#6f*;Ph@#DQy}#VC zDiGm%bG^N~T<>?w%l!%)Fy2LjVpe9aStF2D4i-zP0=Qb0+f@VGtjhJW0BD!<6aa=T z=ka=(ZrAx{m96K=yb78ksB^!mi!Yy_fBEg#pMU-3+s|Kr`SoWAHHodjh*_}P0RZgD z!2ot6AYU(YJkfexF|D3e3-F0xn`uapN8|B_>GTW$#z2fwSSb=p^WEa`Lv7v5lWHF3A6FnE>lc7o2f@G=dGP+=u zaw1%or9Cr_Bw#yD9a&edLN$Rg6VJMqkuxn^+I0JCcQFszWHyG!SKj^O=J8>9e>eYa zQ?IQ-WKI$r($m3v$B~WH$HsdxBk^w!;#>@)t&X{(HKWp&+EQR%BHHc{^ee(n^KgWY z*nnbYy=dM-Rjc3F$jWJ2O!22=>}c39J+9awO_^5I7SL$Vsp&oXEPNCW0H^tI9v_sG z<+T9#`RBX)Pmcg_n79BiBb=#9xzT!_RjrEuS)og#a+Qaakkl4P1hpcE_1wSx&5ELU^NtwQc=XmjL6!fVJnr#Yg&t^Q-D@3^r z{6W4i-0$h&BLE*oBX_jR%51iralMM#sB=mmo!pIm zFX>L=_8|@9y)bE}{TfmAPH*Gy0r+TVx9Hnt1HTjJ^|sIl=_?%z;;?S2#d5yeE~Ih# zW)9rm-R^#Gg68Fd2mN&()@Qq=9T-mGWTxEzaR*;Ueb;?5Scs0}~X^d9^P z3~NLcs2pRMgSuTVnr~k}ef#C-uRni-VdLTP7GSH205TWcg#o(Tb-BSXr@@?3S2>TM ztMFN9UjdV%N(XL{#aSkc#PpZ4`$C$Eu%qj8YK-Vx?jo(E*1QT_b{%FhBL@1ij&v8v z%)*3SiAUzTQFNM1K;ED`cwy>4jWx)BqA4E~ulN8~HpaM{)r^i^f-N`2LoiOUZ3u{3|145jDC z#Yfn1a0VpfPu$Adzj2OtD#^-W+eHI!fpax{ZNOl`uqtNU&gU@`*ceE^-WE?U`=@K~ zfB)b9r~mtZ{cr!rol$-GG5hmBPmKYt@N%gQ#@Z66vJM?5!z7i!A_+3e#u$j1ngSZx z!3P*g=1E+VnhHvYBq=pjkg^jkf`Qu!19o7M=F;@VrLKJrD7YEpqx@rf&qQO3hPvOB zxMCr+h104>T92$Ii>u`E>($FIw~t?*oAsOkCJ{S<+gY2Bq_FH#fdNP&69<6J9kans zUIA9W;*5c3;4z)a2@fSc4$Ht7hp;TZI}MW3bR&LmB`F|vcv(PSVX(ru12E~!Z#zCC z%QlB2$*5!lKuzwDh56y+>|*rcVsti|%A&Qze`Ozn^4!DwEeCYJlf-^8nqS7d`vwZQ z1@PVe=5{x4W*V7|XG)_|3Re61NWJlAoxN4S7qU|BpF_L<&<}y`8@~9`lHsr-E4RLM z7^c(MJB?vJy|<6g?*aIv1PAkvTO@lu>c0i>Y0%U6ByYFp)U(|euN`+g+5y1J&63VB z$2YvtV#MZ=4()33-flM|`L^3;x1Md5^?FgQ<|PQKBUI3KILMv4u%*&+FI0-^ zfdd(&MlHjcw28$DVL&NHZ9MzuFVA1TeWiiHcaJyoRReb704V9zB8Te2u+FN{7;RZ* z5_>RwYkT03OQ+IlZYG{jOeXM5-qlU(U5RJ|)AGG7C)4*poK%f2DE3S6R#>Q)!_GKSSiMyxbtYC8%`3{+&nq`O0C zusI+*5#dNOxSoZYEbFz)wDW{PL!>XHzvS$yGxq0SJ~3HHoHvmH24l=(iHuG_P$ftJ zr)}V(;Vbd^^R4TSm|M)1WBLI400yowSD<&Hbu+w;>+arl_r?{^IqPreMv>(yzm51r zFdxDmQ+koNE@iw0Tm-oqs&~QHZe5vC>xWOdO*m%BOu!pF#@7Z90io4jJ>^0Jj+~6o zr6c5%^?&{^|Ih#N-~Z3QSlLhi zDf-iYb$<5o?BfSNHYJx=L$MgA-C|hPXM`cdyI|V@2`z?#j6aCAflF<)Ffa_7wpAKx zlZ7vsveIV~y}M2*;*#s5{fGoc}Ihm!3R4y zoE5POX}rzD8yp-`kVUVz^_&&GZG^J|I84u@?4nKNO$^EFZ2>GppX*tZ=@97saQ@-r z#mBS388&|W_~Va1{pqIX)INYz~HcuK96)V0FXd$zdN#o{1Z%OSJ{9$S`y2~$&-H$dsB+CTMWi6y8`z^ zqP~mRe+1xD$8}%t9x2+c0LaM-vDNPoe8lfl?fb`sJ{8KR!0Q8;8N-K3z-#%A16E%F z%p<)vUFx;=R(smSBY>5}z7rk4w(kM>UAT5I?&SNaQ@RbyYUwLWo9s>xXaT+JWudNP zS-6Elh4h441wQ9hw5Vg;!bn`;Rx3N2Rc>GdR%WK`VP!|wlTwFXnfry-aFAg-3o8|` zz$eSzg8k1g56@pezkK`h`K#E?(+z(10D}~3^kk9GG^SFadNdvlhR{8bHK2u-`wv*Q zSBmMgeWC8eAj`28qbdtOsc+eBlb-co2i>mD)L}b5vQD&-#MG=x%~)yYtF^Az4pD7{ zu=;@+W7WkZcPTww-ech;uHk`;xb4tO`m((eS2UrCc}#mfHSCD4)E2-x(GgF((iaBd zh2w&O^aY>O2j z+>3kEmB@%7LDETrgFEOPz!4ll#()?Rkr|1|%qrB-jjpaP^f}dy(|xY=ss{mj)`OrY zJ?R7VA9~YIX_+nC#!W_6-<#MV7?BJPPWQcRnJru90IW%PaRp(`+rkK7t-l9FDdx;Q z@gA&<4}@bOlP@p~xCQ0K9m-kpP2u-x*0lP)rl9eDL{Od95m&J}N(N*NIygi)GUUfX z-0K3R1Xq4uD!=g2*wf5EWOp+D1Wy~lSn}1S@>!vHf?KR|<+NHWHd-Yajohi>NaCm> zE@VY{dp-jI=dF|9e|z`$?{+uC)3o?6?ZSVlCOAbaZ;Ee*Y9y(qD=lB6spO3ZlQiv0 z_Eij?Xe?z?BQ-wMSv{S;7&%dDMAL@eywYDJ!&PmtthyIfPs|-dEA6Dxot5!0c9-H| zc<^wEKd<8V_*>lZ`xXk!;vS837e!JqBPQ zyY_w*6!l%0K zASMtyPGo7qA9sd8aW&RpBOmv@G;0@%XGMJ7NvTq+Bz1iEB_Q!x;q>(E1OWWz^vy~6 zq@LCJCP~Wa;l-LaA|zmHZ(iTtjc?vhWW@5Y$yzx6 zw%I!svP%K^*isjHzmj!JKwsQ`g$)mpCzkAdQ9lxX4*S~4V|fDs=NO=bB!IR-Rd#| zVCmO(*d_qKeyd+xNALEiFx)+~)7p0fYXj20cV(1=XkvlyN?}i{UqV=?KusWMk9TIH zw&;*2EgdM-;y@uT1>lC>Z~K}}!BE8pVLWcrG+2vv;v_sCbYwiyLj3czrSkIm!+QWQ z*7N6&fZ@CM55xJ`rqv4iR@fj!3tTbCRVM^szyOaLq~qDJKf>A2#z)4+EiLfcI}{J7 zSDI^%%G4FJf=gX7jdO$P<6sY;^vw`6-f@7*o)$OF1%#6#y83#L6fY%Q)1c18-LvjpC2rf4DrKvJdnp4Q%WqR(jjgU#r;i)wR&fD|1&o^&gm-*qeB(E_ z=e62drSi5~c~dF{!Kf{=pixyVj_ZV+*}6@? z$1e`UXHo>F65g2j1xt1S#x4JZ01WO+kmj%i zJdbL%np!8;3iPsZ{eJQC!#k||r~Bn*X~LzDYL+!FaS6!jdyuD{CSlT1r8BNXRMjxm zs=~(I%c{UK;v1{0$m{{Pt-R3e;8qg@njy$X1>kx_{fhwL@yuq31pux}lru|)(+UAt zES-nd0KhuRvy&D}g=)Pfg$lLKtv0H_<8q~h--G^w5SJUp7A`d9=nRh}e?BS%7#26p zd{W!pO|PGJSC3Ky1^~Z*zJGkWSuK{>Vp#zq02>4Dowd6Lz?5R;{Sp@<6$9Wn|6Ff2 zfW)}v9WY=AV5XpB!IXn8>%{g*UHFZx%yP*73mJpYqt z7Hp%T<|_yX1KwTkuxsPWH|V{8e)sY7 zC#>ghUOs&L5db`00}=-~)SLC};(SGqUk+ylFzaC2in!g5I%14I?ls!ATH5GMWU$?E z(x+XNPc`tt2Db03CB2P%Q$vg>7aA(Np~@>NCxuD3LsCjNh}uK@UULn}RjUpAa?s^d z`4i&F>77Xv4DrF>goXe-#D@LSIEE=%e0{)=SYM_Y{=s5_A0_$Bg@*x0KYxDOtQSBa zb^!r^`~9Xvm*BJlFbTJ}>Vg+O-tRuW+yQdL_L=Qc3c#VBEe8ST572kFn_?l1lO`or zxI+@2Em)?&(kJn7Bml6)L;MQpB80D=--QgHP-z&Lt0<_&Zn_cx)nw23y=I$p|3nBE z_*uy5!(T};Sdtr;I|n5v5kpnw_^7DK;Q8)A@GQ;(mXMLrD(-Y&a{^@S=Jbkh$spG01yC4L_t)% zylJ}P^ZeUCJ$?Vv_t%ft!{Hdjt5z@J2;jfeuec6W1EkrAFj-o24Xo4?%l`JLSdN?~ zN!)90lo4Q9tt+*8Nl+?3X=JBZ1Yl8b4bLdQ@>;S2a0L*{u$3uj5MmkNJu%fAq6F|u zEY1*H?tPJFapqijrtUGVi!=y$3T8m06x%H zM*z$cbqs<0F9PstyV6hBiXb+c)T9D5ulqUx2l$K}#Nx5X%6*Li2QQImoMIaC*y$J0 zHw+`vJDJYj$%(aMnWX+&Ae|G1a3^BDl%alyowm5P->L zxvjHDXuVm8^&_Xjs36Gdk*a4_Y#!SL`{0;ieLgNVvM~$?cNBs4i%8=Y;<)>W0%jT; z5q-B6o%yacOrhf=M5`5nHz^Lj&1!Y|^lTHbPrr)mzU01K90?pV*ABg_0>t9S1E$-}IK+^@arW$4>(}V(K>kHW>j~QP5FU78zaxJXgPEy3bO@_r!rV*{b^Y-V-)R#=lYccBNb-Yy zIKW^%B|4n7;210xRN@?2`QslygV*AI-fv63L2dtHi%ouTChBczYnCte2YVr$R--Z@ zZk&SQ$zTI335!GLVlCx-1XALLt!*KAfDH4|r($n0yQet3K@LLJu!M87Br12s<181m zB+jLtb@y|O}Baaa5?>a z*Wx7~Ekcir82 zf4l1;far9ARb5(w%h2ERsrY8kGoKg4C5Be3YpH-fmvVCQmi^1K@66M4I=Si)HL*s02q%a0JHQ9=*7Yvb;z>L zVBAvV#Y8j}YG&;@YKv!x5cCSrmkUTto5?mJQDsfI#U6sqq}^)|W&=7o1AxWfzE%~D zNxf7{Ypq@_8#V){*NnGzIh*O`T<&zn6&WefuVW1+;;(}5OG2eFcJp>UtGBu>T6UzP zQd{c2I*L)B%{rm+=@4G%9nC_Y9i*VieXFfT(ySW;J}lOL@khcfA`bb?+MS2(l3+~0 z=JSvr`*XfdK6ipQR$M2}y4eu`zfM+nddD^9*BNQY!q;{mN5JeahmD>9oCRM@PYW~s zt}~a80r)kce+|HNwh9&8j{bNIz>dCNZ#K~7zkt4b0A}1hYzo#+nwAsR#>COMfnSPr zIY2MbcLv;D$O6hL0E-;~Nign66XdFo#o;p#ck9Rd&He56`f|Bh&txVY!o7B#K2uoL z8aQi7fwPGFz+kXg8WE32{TW~q`|M)8S+8C`Jb&}eH^5+^@5k>y-#^{svj-QdntL*5 zofHd<8J`p%P`HH-mH_l}uK0SlUTqh+qS)dR*B#lD8aqZYBg#G;YYkFik>`hj(5&g2 zek!(k(!cf22PbxBEvdlZBY2s>RIlTv?73P|qvZt$5>VmHfq>zYwrB$)f2;F@fq#O* zncyzsDo>f>mjGivA@#br6(_~90+iv zT9TvYSSOk6H0t_DV=`lA-N~ox%_0`%R~#bAfsZmFaUs)ZaVS8?FRyl2^Wy*WfB&!l z-~ajJ|Mu{9cKR>lH~*G}JZ*N` zjXX;Ry+(gf71NJZM<-0n2~0auEMPE@7@Ir7AnCu*(R-s=2Wvdf7n|Yb)#&)dxLi(7N`=#Mu~03Y zl+R9z|5B>H&9ZX8U+?6lX6pni%?f07;x{r%d>B!uo0u&|Pi&m6DM((l$`|#)e~QyW z%3u3+m{u$Ja_|nQFcZ=JiR9I7%7T>4Gkx-!&2ADpUgBT|fKe-xk*O@t$$;HnyN3{Y zjNK#y%(1ymNN}Sp*r@<)I&FO|_BsQ12g}M}SsJd&gGIg7KT8^Ch052b#kZi&^;RXR z7nN_ECGA2ws0RZ}aSEgMN({oJN~`-l-PftL1r zlW}9AGh`HW+j>Vwyy=gNWk-HgIS&vQaC><>5YJm}!RMDWsXTwZJ+A0OYndw2i*2>Of7SB|jq3})0h zB9{xqNK;9vj4{xvAwnW>UoQLxaR7Z^U2n{~EEAzVq|f;)eK0&TOz4eTdwZd8wdbA{ zWViHQ=2$>(&^~S@C_b_<>93_2EXIobFLwSgv8lvY6j-uyD+9|Nt!x3I0l>6V22=n- zHtU5NLP>6!0NfiifxF8!SZ2x|Uy#4NCliRP^|R;q_m2V& z91iFG;e0q)5bfWKKGny{Nwv)$by41|2?Ibc z0GJre!4Iu=Rn$6ND|k~BO-Y2CR}+kz?J^z@46Zc_Sj1y2d>uF+7)YrUe6}8*{a^q4 z|NQ^{A3yvrcW)*q{{vRBbc$7PRU7RZc43*WLzvf~3MV|4MW~!4mQ<^igyoo|c8Zs4 zwoC1-!eN(^0_oa$#lSj@uG*hDJV~b043Y6}+oxg3LN8}ZuUTC}?_{5!jJ zfLKgHQ;U0fH~a9-^>{KWS4u$NVzKw_Gw)b{y;o}={`nW5hra~k&XzMQ!YbZF%+5Xd@Yv!tnLf&a=Y3CE z$Lgv$;oNaZb_~`#ZOI2l!`QXl#WAaDLOX7=5oj@Q=|mu4Y8%vcHgAS&vPqzg*Ag6e z-IeJ>7nAc#fbIfV3&h2`yj;?I8QTH&aZ$k}vgkBqEwl_9Jf&ggmW}rGjDgt*2)YDE6U{HggjqOmzy~V?qWTWDVqv%GHG1$%yVpo zq(r_$VbMUtyMR1VOpd7H$|zs`-v0svdRK%tk50PInb2>aRnj1yJ*p6j}*gkizaNWF!R<4BA}r_4Pk z?o^4y07XC}76>tpYO7w(TGc$Q4|{1dDQ*{&m&?((@pW20Y0J)A-~tSn$|sum5szzT zAP{ciThR1I8#`f|rZT#-nc_mg<&a?aR=IVMJDio1x0UJ%q9_Rk>QyDpz}+^(Zu;?Y z2IY91tyV*J=UZ$3+(s#f*gB;%SD573l1vzzqsI0lDEQU={Qaj(991b8X$=?*_)X!o zQ~?}U05iqP82}HfUOxf!Cdt>e+S^8Un)S)l~fTB|7vGuXBiv`ka5tdfAvbTQ@TJe&-NlP&jMtT=RI`kzZA3)$XPlKk7l6 z_pk@a8EOoH_>;WbIZAHtF<3#=F>DXa5%YEk1m~7KL+5a|lA~`V2YX!!K4QaMc-_$y zq4zY?@;2Up=heRmW4g;4{#i)P<1$D$E|GWVPnF75gyEL!lxamk%iZ8T_okTUVmil zF3DWS4xM8YRv$nk;m&;fEc@)2;$%&RjA5 znPtNT+O396Ba0XR$izp4Iv(4f|MVm972g_oGXa>R0$e`rCY_;~CsT@?AzA_gVe5Z+ zx%=?p7GHX=D|Ktjw`*kM!3_bJ(Cb+QGGI1h1s{Ct7@_x;+rV+$lc=23tBAe|{O(2w zn1JFk%*T!`m@#KH5`a0@Vm}x|KMnpobK$6Np26Wx~(QfX+(X%&)ov6`MWa(bi`7%PC*>niX-$?7IqUXhs);m%jpR!dhSZbotuRt&(F zTvbL(00!_m0F&1`d}g6ZDGMFLN46eEne903d<3pX72MZ2eYB2<>`~JDw*dHcMw*G= z-k|TE*bcy+Om<%Wis?q$u{`rdzz7;$nOeV^l5ID(1uG2AM44=+sM2-=Zi_@K|aPxeoHG z8HATBAO|21Ttu2TNKZq(7+~lu5M=!?>0D>@LDOZ)>5&2 z`gP^(O`&+AsdcGwf|qMb0Aayf1K`FOmTH-hVCu+X z=q1y&x;SNM-D;li0l4AI+3-;xu%~bZSqZC}Ne1rbps6jvU_$b~b@(?l&qu{$&)mlF z>0Fk8_ZlXT81vDe|5kSTU`3qxwJO`*mHuPELHP8S+dEZpc>9-(KDd~)_l&(+b7=F4 zbr21?$I0w7tnoCREwlM*pD1=%CGLjlr!ugGE&mK}>5aev2^UujEcO>-TW60ZJ@H8; zHBOgM8lcMz7@-$YFy+c1Pap@Y76oI8J$$SnoAicoi^Uj$x2uDyUwT{QUEGyY;Nou93$(308l~4okwER_pnE&+Svr z=F^!xEkQhH8sGEzjHt**+2|YtF!Ks=z{G&V0C?VYKYh!M2WM~jLruxJvzXXm>2zo5 zWeRm-mW{DE^;yrKj$f5bp2v15v*qaGdUJKH6G|>GmWz4X#*SITk#{{dyN!qHKSLGR zu$T5V*G*X#kQl2{KBZ!juxi#H8YKYiUAf)KTB55_^K-uEdP_`ivhS#jLkp4j;GU%V{Soe%*Nc zpHI&I3xe{;%f%L7U;Q*M|E^wniv<`iCvU*irGVW!tu{}R=GXP~q}e%>LHC1-_WPDO z5J_c6)^VgPIdOS5)yr&f;{S3;!yqi_ty+j-HEywV=0s?1qS+)JugIJ6T0NuVz_v6k znGtClfqu4FEjdUl?{yLONe#GB;lg1w03NhE!!)1Ndb5UUt!H!+ZE)e$vtF&$so?lG z(|WO1K1+)2UK4-V?$ojHUs!Z_Cf{W$o^yWa+G3HIyG#{ z2*6phB~C=C@cn;=zF(@s#$fDeWTI~jsIQsp5yyQ^pu_!^PbS8#t^>){>!-@xjZ6RK zx#Ws%ctcm|tm3PX*TdgsP@Fm;YAkDeIdk=S%)LHgEx73 z@ZO@P34C3cifWZRxPv#ZYXk;N>nlK}w3Y=^NdPUrAZ*sv>gnU-<;#ahd=~^@%}%%2 z2xM&18jwU6?U@xBr8i0ez@1LDB}LGa4BW*RDLrkog|*#FMO-=NiWAzJZ09(?oJn&w9u4OFjFRY0+gB)j zW7ClVTeCtQ8CydK-QU0p#>&xkeC+Jva*cJq+X8?&1R|7OfWc?tj#)di<|s{fBj#Mr zhPW^}sFCGokzuP@H(qfc2dh;z-KxW)rI+|?ntDJB8Q4-CM&Z=Wni`uSUaqvHs>iy*>TUoo@Zp z)8=+Jn5E@j@}`lT)+<7Si{;-HO0r7TH%a5PQpfFEfN|DKKu^U`bJUQf)*nnwTQia> zmc^S>RM|2@kqQPY9xDJdacwXh7_h7$+ZH?vZBE+Ml=w>!>APJ7TNMXjY%+`W0*Fvf zDpdeor=ItvVFx%`Yu2!mmbm%=N&&$1>y|X+B*SfY*uu&O%}&38)y}KUtYU&YwY2Qv z+)$M$Hg^0kmZ`gS{4nn`$e=w4CE}icZfB)E0Pnq^UjgtJ3^cU)sN2?sH&zz_1_^%6 zcVou+TbW*8#NfEB>)G9y*E+sBY{w~R|B(Q!=(}%Biu2yD>%MU**8zAi7;u`95m^%4 z0LfZrAm~a~*#TJ4*UU6j$*d_Rj)`VZWMC56d{&7+_;Z`!q z=Qfs3Cd#P*r`ax3_(LUaqn%V6CG7|*Gww#vjRnvZc}_oPYY@U=(M%0<`s-rLP~$_9 z0#QQcnrF*SSM50o-ZUzr*-#kpC(#KG+GsRV`{gkORzLso!@vFV&C5;x`M&@BIKSND z=(UKK!f}=TFitn1jr2ao-bP(9Q#2aa33=48M+fCC{hS3GbT|_BUs7t@g@+;xCOeUt zdWW{pen^?SCO~@SSP)3*m-A*Ot9?wbGvK|u7N4KYEb8R(7xnxty`60^yC#_tX6d&- zQ3foxI3JY$>Jgx+q_&>{fU!X%68iDSk9W5h_`1#ANrhdEHh8EBz=Gcb@G0vWI`tOu z7RX`)n^(Pg3KssCKY!ovx~sM%7_3ICFi99@?OfWgLqivH>14(+20KQ^75b@Ca9QT!RvlNcLy41f@zYB&Dgn1XPGf1VB+QAqXtYEg%Sth7g z+u8Zm`ut+G-7PlT^>VcskNOh4;y9~r4o8oz# zH0WTUOlLH5dPWBH@M6N8`6MQ*3C7Gb5lWe7V$U8$h_o`L0-tqCT>eSj6kcG)SiqiE z2JU>qgf>1SV&COv3hIv!KF7Y)t+kTVYT!w`3tQ=mCKFF9Qy@@oBLTWoS3_ zvAWpc5Og^^>^Ra>CnmB)N|st**M?t1Z!ED{txp=#86W#QtS%$CyNmhua=t#F zF1O>!LY?ZmO$N?DTxv#Sg|X+-lvX`SYKTlvlg1fGZZ+}6rs8YJ-9#n}4P|Em+={7? z8WHfcX7!6=9QL=-Qo})4X>MKQdTqqf>46W|s5_kW>5?&;j-+9CHl0nSvitts!~gW} zKR(^gKHjx|cP~3{ag-)bRVejq*ljOc? zQU<;_x`(Jk^{+4XO8L(Iic#$Wm@XVgDkKMBlTT~T+1pja2;ouOPaF`Ur(gHpCfbdr z3HB4!SgG6dfZ-R53xpGXA_-8`XhLYNs(D4MUN8Lm>rWTwD{RxWY_zKRu;WM1Q_vGJ zY1vB+n1Ut%H`}F7xAybT-{EyFG0VPKoz4_^YNp8>IU3}_wBullmzT8T{w{09K2&n~ zNXMAta<-BmFrxT8XZEG4or5&cbd$Mxu6ON^uAOd4a)u{WaOxNDb zICEY|7OHI7CfsH^~16d0!U2d%gQF<>*E z^xzEv*yedK8dt}Y+Mu7bTPF-w0KnLm=i6nwmlaE*D#dYNI#3f2)k;$4ga&M?k{%HH z+jbc&ZasAh^aY%O`x1a(P;sI*#{lB>%;&obU6#? z%U)qxq8|dVGvFiijR83RuNZ(8zf(7Z^jx$9a9mM70^pdbBLW~xW9r753UmeNZBd9T zVe-g`f(U}>fMYV2j&8CY$6YX5EZ^U8|NK$}$ynR-=?ed~8I5OsgkZR4aGi*yRHMW% zo(2wX?z5k^X2m1{OGLp^oKVRzRhN7)2eBbGm!?vUB5~f}RKPV1*v2KtjtIR<_dULJ zNTVDYCxUcA_rxYi42)(&n|y#f^U-WMVK>oOX10T2&u%YQ|M=_AKYX)&yzPJYGWh1X zw_0{OS%IH|djzh0aog7nvke+kryKJnIBY7F?NxEeM#M+x%h|4;b>tJ0QhWQ2jIf>b zV^6C%M;bF!HxaasFQsUjx9G-WfLVPc?($CT&bTigM*!@_W&$wJ0Vch5HgG4<-*L!@ z*r;Q6@p@OQ1F-Cp-Nt|X$G>6+X9`+k8Wr@JDlKBbKno?oDR)NQ4O15QGZ7D$8m;1o z_t)Ql`;I`)frbQNC8?RxUpr_XdC+%^Jec7l#}#|95+CHCMYm5a$61r)cxE|7Japl2 z9f18v5`g)2OMT%L+qNJ{rx*K|#i5V{;MlvHuTCcFhAQm&G2m2AJec(^@6WIAt}m`H zcDvnTv6xQA+>XuM%&<{Y+=$`GAJ^&UEV#+`{28P84f$4$P2{o=KkXH=5n!K zESB^0iye&>aj{pEijA4l7ow3To0Spq%Mg(vv$d((gJc9?e0}&%<$BTXbA%=o9PoVe z#cmEV*WsutYf@WoI;$1F)($>$mX!foy?$bgPF|X6AOM5-g2u2gCzD{Lx2hp-BqQup zZ#WwbBmpSXn+(!^r&?%`9 zD`E!*2Jss3Bcn3CD3aRl7NibzPh{&Y%R-uKQt;CT9)c+DgeJn0dd=IQa<*77{-rA!Q)+Iij9bRS ztPbM+BhqKfW2y2+mL{o^dfBT={?eZ2V%2sq1`+RalsfxEjGfG-WplZi&R1hB{MT&U z+pT9me*5&xPoE!e+AmMNZ$FOSKV&R7a#R5O8m*UChwgDBGcV$44^K-iG3hVi4V#p7 zLn$T^cMsTMXp54BbNF^-5qb&3!O_WQ3+{LA<^C0E!Qn}1<}kf!m|V?b0?jk?P7J^V zj0hEsfw=>hK|+|2!3_)a7jYP)G_}bTE^gKFX!em;=&_jsu>bLoUvS?67^s=|>JGpn zP0}>J8I&p!0RSrub0%>M-wUB)InV#?FW=Xe%MQS-{ksQQ90|o0UjncsJlJ|})2Q~0nc^(_UY2`9w0KIDd7^Q2aVX*Q zZCHQQup^gMtIC|yV4UAQUOm3Qzkj*~0C&4$y*}vo7|>8;P73R>k=uaKahg5H^qpqh zOeE$wMar)%O&vtbvyf(|Vs0wVvgrU+JIrKkr4{P4w0pQ@5)HlT`J> zDEiax_Ika(Trba;=T{P2oNsr7ULSiW*7We=p5qEQMC^u)__SzjdT;G|UQIxtcbmzu-%=xVTpD>-8(Dk9o=#g?3h=PP>&B_bF(v z0mlH`Oq)jnC4!>hqNbn$y;!qGYf@`uttL)YU^f10ZwejUuVSzaaNB+jz>O4`}7)c^vI@5v5wa3=BQLVm9YReV7lz3VXVsBksxS*QufgTYq2P& z3d}~pm>cdE9QSImy;!ccGd8*63J0k3ROY3^u34Nb9FYbHq^S5H72FUX47T~J`B;P2 zcYGv3RB%-1sd*r5?S>-7lJ0Z*EmN$aC8ZKiI0Sl3wupyn-b}?NqQl%W7WppDIkt!h z=UWeFAo1F@NnXfZm|ZB?DOQXA&GmG%?%rHv?;l1_57YUy+V9k-!)!h6FG9;K)u(Rm zC`-FP#TxA|(ov5C+%-bOF8WB4ck7S+cOtppWASVG4As z)zf$HuKxVz@7pc$lO+J#^u3TXWXCq=3Y(HkJvz7uz};@0O=WqW{PnMYxZEvsO|@ZJ zhwf4mGyL}B&lN1SCqAbkHt2|x%%1R%0hqO03e#lHaRl3OoD|a35)Z{+mW6<+`GaYO%z}qRNMIdeV3LnJ^Oo zEEk*igtqOczF7PU6uhPrLR(tG(CoA(>Z#tK!k?;sj-!yVQPYfOy4W|y`e0AYP&Xra zZ#C-%^PwJM3Wn2f4Eo7(k(rOs&E?hQ?qYY2NaB3A6-K{Wg445Cn>#9ZQ37ze%5?^U zOPw>gX-fe(pl>apZ`Dyb?Y98H`6wIC`vhRI0P7}Hhf!~pc5DG_TiIE=Bj}6!G~$pS zJHZLddywRg$m$J%;~X!MiNEP)EihmZUjXpD)|@8wtXAzdg$IN6dlS)-Z^ps1g%ou3 z8)3jsZ572^WWZQo>fde0Q2M(2NKv^R^WF5f_0qB8I(`7IvGGJYM!G$``}%0yzr5Pq z+@5obaT4RHw#BNq-VV3tg(EH_uo!@y`yQE;g-d1__f>0q@hGy^+J{Pd@N=fVy-s`( zGcnc)06d!IabDU5Tt`)Z`?7)q7Z!jPi>WD|?Yr&b`f7W9cMb;p@a_%__~!Qd>iQD5 zw|6)9ch~FHoZ=}?FLpEPeaU0eH&Uoz>?|2ylW<~fHRgz?7NAa-)OwS*wc2U3DdZU6 zGR|4dGp%HC?=n)M+(7+7 zZ4Q+vJ#oIdxe()Kj_TqGY0YUi=gJIcI7oXaMqndsFQY*Vbh({X@V}-%SkJJwo8|d# zjkVjZ=Ci5fH^bO5Y;?|Nu*a4XSpZ)e-1ihv5h9lX7nGvHd5 zSF^lAGfqIP;I7hKVz7X**{^1IjqE?24sL>jpn>+5WH{QWH1`h@s2IzvjU?0K7fHU4sQ?0Nv zhr{emm^xs(57s2u(nqGNa7+Fw1LyfX?5`y@*OF>du23z>(c(E`quioAs+XmUzjOxZ zWxkqA1k5JOlFBRDClD79Yx6yrSPrg`Qqw(jrHHNe>3_tgl$h~E0%P%m98RV0k^VvoS?myvbRn8-QK?&`LybyL#@v%b667;mwq4&$1i zzjJ53#*ZTa4zjPl8dFQs`ydOdZAb(g1JMv>xgDc7&%~mwNb_v;cdjGuz3+&i2*x8e z+6qNn)DZELYFW4GBp4eO)c}9}>z^(z78IrXBqgC`Hj*Lp^nfKZHDww`6EeRikH;3N zx}hTY#J~UbPvc>V9aBQ6XqJ>iuh+JH;G=*sbmyb@e%>hZnE0hgvzU%_4^OE?>^jP zJv~1>zQ2F>{^>oK@TU)-zWwwWamvT%;Q$<@iqN(ugLXu_l%`UcXTjdi%-95!-qb1q zGqBWTMxM&TH6k;6Sb+{A4;gQ)-M#qUrLQ+g-lY9HIu84bG&1GpMI@?}9Q3J9PZCh! z^=`hpSaB_O3v7MZ!?CfHi)QAm&=4{Mz0LC2=MfY2+ZX-hkJe9J# z=%u^0w37gCWhuJ_=r-FTw#o$5ajcTyKv|&wSEpC_3Rqid)V>J7WWdL|;>d(@(2@lJ z9+#_GxjbkzzKFX=nD-iV zcUO;3H&}O17dH>P%j@OE)xwPwup<+6H`}@IGD3QkjRDD+sdfrWKov<;lnQ2U8Tg8a zskP0iHRe{Oy8!2kq?7|2j%N*pdEkPkbcjsbp;cd*uC)wl>q1;1whmo=02Arntc*`I z9QCAANXZQiAZ3F6dP03Bi9WkgeK4QcAz2=&&wdYC2EYRs4-=TN*_jt(ui^3*DX^*E z0*x2wCc$Qpu)2CYTXe&BNOqiNbvE8!eSkbDue08x<@7YpLz1+)hlYZ^92PQcx7}d; z!34O_qqucA>OS(ZeSB~GBxmGV;lau@xM6T&psR{xt&I-)!K9l+Ex-vqONL|h@G_8Kv+Wy%)JjNbJSX!=UHua6U|Yxx7*azrnS_ij+OL_ zZnQwKDu5`)!9IVQb|^d{T@~me!8zgpw{RJCHs_1&^>%Z$nQw8~Pr5yj#8yKk!iXfQ zNhPW1*j&+MB}{8G8%NzW`C{1F>PjaLmXHD6>q6qU$W0Gyq+SQbKe4uH-S@;^qH7c0 z*n`U!Aa>$PnR(a}1GV4}Pmso!C?9__+nq15B=Xa%Y^sh3IE>7ni?F;a?bP_xy4Ov+ zgKoVJI$SAM&H%1KsM}NpR)ZMK8ZdB|Y*-ao4WKVwH~_$i1{8qndMGMb#(g`5W_oIM z-@L+GSw{eTguzTigZ=`5U*jcH#{gg~&|grRdD0jcle|Y5h^aFGW&oi;UcX`ftByq*5w9B|7eLrHgYwnFW&nF@G}_U#uDQ|E$3qI7p^CYm4csa>>xIvsAAkS* zkDQ0&CZMwD@T@}`98f*4?)hh)Jo=FbdP?--d}+*vm>q?sC4!5zXwdW_yOY3l%_&_BNxZPc@?jEn6K0aYRe6aQS^6v5Ddn`cm)5rJM zHy7d-px0)W$xKOa>Xk;`>Zyz$)*Q8Hh+Lu{>^Aorb!Em(P@4}Iwm1=a7zfq9qXJg7 zeu|aUPH>AK3C2E%dQXlu@^i0Hwh5ST=xTg44#k1IN=9lo!*6bBJX6) zM!jCE2JMLD@R(<2xtFL+lWHT!X^j^O{O75>Gg{I;E_aK{@9miG?T?N6tho!7>A>YT1u*w z9Y86*1FD=PeL;fDHhFC-Ae3^_8N~}GaWV_K5)qMbD_$*TPFrEFm_D&)6L?_f!qHZ*!!Thl~maT^{yyU~o@+k@abHdzI3=jgV@SF^4qW zSY09eu6o6L0AO6*tg%&@o#8~RstLn;_y4Ht21sm>10+@qc2f=qA?$q@SIf)m6_26& zM(yc%aD~)>hD|kn$6y9MUI1n>jPhn_AydH=cJ|$F_K&~+8#WpyKRM(_h6>xh)1uW0 zYi!uuB@3$ES(J3K!Go>998Jic8SvM?{r%_hxSi*T`8Lz0F@Ul9Qdv8%+iu67J^s{j z-`Bq7_tms!VmYhwo^@dBJkXR~)USoj`+}(T5O=@0-0s6u-%flTeSIJVpqGRg0Q~Uo z=KlHq@#PV?>lpl?7;Fsq=0f6fg--@IHnBJuP)h>YVqzg=w93L!rSq4zVCi-gU|6WI z*7!+?tzfKKUmv09Y`E4qBOc=p!5F8w?7~eD*ul+{s%*0YVt+4H?)4{b+ zWy+fA?!42^L(!A%9u_@l+h<5SmvI}bpy`iYsC>FS#6FBm0__mE?1>)pB~s^d{OK48vra_ zOmx1a=aea~HA@`#>9U+|SsHC$F~N~FG6?{)Ti47EHCJW{Ky{yCQk2yNQ^#yZG`nET ziz|@+CWwP-&4fxht<~eUgm5W1Owl~K>M{zlSn^jJFB&*5eWQ3a(h^dYQzuwr3@f(< zrNu=bpq6)RPMPZ%RyRTSo_yc14Y#D;i9!mS8fwu|LvzF05jt2tv;nb5BB4VD3+ zvRDqAGY=*W9R|Zb7Tt;c_lxCpy1>U9_D6jzsic^wcF(qzQdxQGF{`%wn?WU7f_-qVi7|pN^F9u-7XP$!AeSfBk zZu!*HFIiL`N!tjep>1z3H6WJ_&0u`RJ}pAoXv9P6kqsZi#m;+n;WI#F(lW$A#~=;R zWjL;xF!_qluhszIyZ3hhV36IT#dP%T-IZj>)a8ny!*I~;_d06n+_0Lf?hgbfnOu?- zXbQpcBqnyF@hS&PXskm*OeMCdot0^M3D#yWhD9*OEf&+%2-onzc_J~k!*=)Z{_5L5 ze*EF*Z$AC->E*i@tPkIQc=_(r$L~LX^WC>tPwyUA>m^Qp#{F_p>ktb-zD#JS7Th(= z`Z#K*_HrK1E9^N-u&g-U7RMnUtwGm6a#k!nOg@^DcmQxSt#V-p!)>dRwDT&TQ^|1^ z(2Lc~DnrD?V;yRzsKl^9YHjizRTXrl2Z7VRgYSY`QK}usS9R0E?w5@wx}{2d000mG zNkl;%n8>{L9=)b z8R=rMrjv9KCx$x3x5nJDNr%E6HLoDzhAO7}G+9l^il8IvnX!B#I?;Eww_~*7LgI@F zTBCo3!#LC-PM~FCq?J-CDHlV3)RBfIRZ!zr4LXKuZYA
Z{o|jCaVCgT7A?$~oSc zW{Ub6K#a$e(P%tWW6L}cc?jJx9hVdrwLz8~ zGz^+FeX?{V35Ja*gl4{h^AG%%4jaOTdnwKnnoxfC?F);J;+{dU)S@Fdbe0}tM-er{ z%6RKSXyw6@PZNS7GNRJEcNc&8^AG)QgU(Pk@xq+UJDfV@Ba#AfXBJw|lZ!dKY+0FO zQGiJNx+3dZaWB=!E!6IR;+|IQ7~XfLEe{+vymAcOWjEk>n$juaumBN3ZxD<5n_)Vd z4EXN-1L*I&PtQPHrk%MyeERV6`Q`5Z8sQ)-5ta;B{WAj{Y1-~J>2F0%6Tw*VScImM-$IRA7$a{3NEH(&HYM{xIjWoa?Gp=E>fI1>+{Lu^VPf0 z_b=bS1N1(BgAesymwdE$A3r?3JU=}@U0h#qqu@F3`f62HH}*184FWh$kuoa+Wbmo} zg3Yz;drDCNz=FXFeq^HT1hGnU)cxW2S@L7T&s}m4ymASUs=Tq3c;L!px;#EUkb}8# zj-_I{o0Vpp46AK;bS7|{X#56uBz3AeMQ$}5{!OQGsSx$*rG zb0qK=T^^6L%Ckl~t+!W|+N@BXmMU0Tqn5WCuLZ`Ut7^AiSBR~HD9h3`rGnai(}^%x zYrSE#AK|v?Rv4^WVavcq!{!raM7eMgiuu0EdZ|S4~`?F%_aX-7Q3Mplw2x%3Dq^&{?^13Nj6KG&+svt6Db`bfv`0 zVsMSC3T&3~qU=$o8Kg7a&>cHqeV3R=4l0X70;1$z5C*GuSBJY1eR-d3z>WC5MHS3O zl-@eqfWrYhT^*;YiJ)E|ELPwaN1o8w8}^i^N-q{riZDq?W)WIsUt7segGQ`3;!hH} zTTC2-^(?mpHAnm5c|563JsqE!0L;VUAJ&_fn9vSFFj)@LD(12dW1c5{ts9y0E0Sc( z!Q4#Q(k-XixbMY|N$^P)e-%}g^JC(8F4bz(o0RC%MH5XM9v4hWo&K`(mB1-Je_9E~ z!ZDXTWcBo?pT2$n?v52l@f@Z8S<}vhcEW(0kndf+%$Cx4uwtXM_^JJuPz<}5GoSIEB?k=awcFs%y69D9_ZcY*axZ@CRN$Eo)j<^%afzunn9Dtn! z$4P$YxCB=Myi^(XxSqcPV73~|OOOiht`^{n4<8=13@o6_8t}Uh@18$C1Awt^AFdbc z8FL{%kYoQT)Fmc{VQM(E4ppOK!!#nQ9Ogh`jzm1j6DW~z(SyW}(U>VW>~j-JCaVc` ztcjAp0z&TJUEY7Vet5aThkEx(0t=5V0KkI5&rf2K6=ZJII`{!+l<&R!?&ulz0oHw0 zgk^(D6_2rD+U9mj_by9Z2NyqXq#V@f^N-`=vHNxVFWKhgJyEjv*42yGGUVK!YwCo> z`D~3CkG-+ek)DiS)2L=z!fr|Vu*@D!qfWf}Kuil%M#s%CWQkhz%T$-&2Du;eM)=XD zArXM%ZeRj1T{uMUl{Jpos`LV>G3BD(!djK8v(wV7kYIJ{4KXVI4Q;aluvTY7jaDUB z?G!j0el)8oIfpv+G;c5rF|%cjEEuN`1`Y8~nYU$r-#lNf`rGYjvl-ev8FmwDA(LQ3 zGmSW%Yt7?Y!wCI3RVog!XuHTk^fZ^W68lEAKyn~d_R(M_TTsr*!Qe88 zv{Pkzne4e9T;%}ItON(*YvMz_Eo-DK?+q{4YBv#=5N||)5G1=&=hjhoHulaKr&YeW zHBiBOw6FQr=6O7`t=9potpD-&8J%iHNCi)|?p7(bL@oTE5BtsIO((+}oV| z*6glSeT@)-QYI6OupPyFOEfQS<6~vzbmsCg?|DDN9U#52^dn+b<5=m_Vj>xX0R8<&9*O4G%q*)09~>rYpg8>)V=xwGi&tw+v)Lkc>K;gaVR zb8;uaiowzk!yHT-=W1H{<(D5{UhXYDqjP6H3r%4*OF40A)|KA)Dz`iK=E)u3!C!ai z9%!VaJdHnokG{I`dBxWQwRk3R+zuBS!_0TuPk#1CIs7~H@|H<;{ucoF@%j4kN%kz9!0h(J))WvjtgISv=ngJb-m(P7 zyb+UytOtK(wi{sr(*BNlL9@^2SUE)lre&>xwJKNUg(3ksZ!`hGztuf#iRg4Mb+)Hf z@p?P2WcGpD)axLoX}Rk+Pe!6cyrbyA7`Z^8z4%_^57*)#5x{7a3Vyx^W~xS|xxn~uA@ z-WUw>Hq0z4k>K)H9hjvlK1>F+L)RY&Y%u#F(qbF)E{hiofP`~ud3gvJs7l2ayI;Zp zfY=g98?FYta@?|xy+cf}Fr5+{utlrPt%SeFi%J4nGt6Y7ZsnnOhV(MT_CzFhdk6lP z#|ohcY8bp9E*p(@=QY6O4*@tJF|c1Gj#@SrV(R5&ecP!%zL#}nat5>31YnV*>3m<` z%VZ*~j+JBz8jF#QaOep_ikyx@9sv-8_1T0OFgS2_uJCLJR)0o;Tp-KmPHT#e75wGyynx8gy(>Jm*qGV;m14$EH1| zktwvOGAM&Yj3 zm`ARTe$AEtNvGL?wrgqa?B1Xpu(=nLVDG)gvz=e8q&raxz)$gd|MLFj^9#@ycdl

(YtIEKC>CZ$>GG60~`iVn|NB6Lc{|AC42e0g2Khdz;bdAkm7 z@w9k;oV0h3R}R3QQ3tKx|M>EJ{cwlNVY!;QJJ=V|H$L)SJD4r@jpJ%&6M{1L;$=? zs_RmDUaZUt<$kk)bp*5=6&wL@jg@L@*d(RgtubA$zO_w#(@mXb)eaNIJ7HXIhPB+~ zo6G*@V!XYatj{N_ohYZqbLq!YxGnSBQUXeVjAjgIQkUspZ!p(xTG7SPS(l(|NuiKc z)`Kq6`Ev5MSpJ&1Wqxy|GK<9WT@uS}N=b;w1ikW9niE2`xKw=W?}W72JMM!=6^9?l zajOtdy;84hwKOVkqwR_ROU`HW zJ+$WMl4GyDy3R}6_4YLn%7W;_ph~ORd^M$&hvM;o(92}36a^MTX2l(Vx$qlFM{5q# zO9}4G5IYRStdxrGKn3h@d0qUFE9?QA#c4t&(*~h1+@;iupOd zGSC*0XSnLqUR|8Orvb3pjia|FWCH9B_r zh%-7q-fFQ5eX+~FF9z=3yzT>(_;MGQ>xai{0coBra(5fAe#oR&|oAN1cMMsFDuGrujo;L%{u|G3(khURLn)hC9L`=)li%+#o286 zbIsKUjW^lUslSR7WoZNr;$OC*x?ym@b$vgYbzr`eQZFDKF%Gv3qrY61#T!V-eT@yX!9&x|Sh)VFHpiWq0b`kpSjQo= z!>ANKQ`bI^O{gY8=Q||i+Z5XnxbP*SZ1Y4VHZwdM zKEA|`JsY>B;Mx(fhRQV9+05X80L*XA9-w{9RK2pVk&-}s9RT3-^EnphAT9N4@{Vf9 zUEii@)q>OS=6d(9fBC7KVaKk}hceIWB*ChUFv}G2e{dz*Q3lwG#F;Z-G6tPG000mG zNklE@oT<`UG&eLj*X#u+C?~ZO)uoG) zoPE+?k?)f78WJl2a}j#29jIeYjneMYZeq>rRRHj|lB|lQRiU~(OGdT&q|qe&FvlGa zPqqn;%5Ht4nGoD@TL*)8b-U>CYNwFRjR~`Zq!Zu#H1>NIO*4XiuNh=}EgGN)Us&Mr#bA$amsk=%X&0URIPJ()9X24rJjEnwiWPP^QfDa5NRzwBtixe! z??;GrPiFN&oHKhy0A@e2KDnZ)5_DF?%~eCsG#`h4b?n7AN5ZY>*LK%si8Bn)80%r0Wn)_z%wy zfBeIDX|vXn*imh;@;wO-vyT*FgWmXPqhzw01!Dp*r}xmExX~)^E@uDu^_SVOOP3EO zJWLDCTzz;>$4-Y*C&BIx5l;)AMJ^mshL!}~Oeo_lG4sRjt`!$hVi<^nfUtU$lv6uR zVUhe*7%1YccXYqveXfh^&BMDJ)_om-<<7H^U@Y9ZzB`u)Qa#VP4opRqGV(lk`+>M1 zJq;rl_wz_p)Fb6~?pHegNb3S+bKnWpO;6S0n`)(Hb^sd~hxD&c^Q2e-=l{+96&tHq z(l%=m>vEP)`u@Z7YO`+E8#u|#$v}IKIf>jSd>rK-4pPv;l$)*9&YO)Hhnj`wIo$5X zU3ZAb-1b>QcI)ZLfZDjSup^!AR!($<+~;2Fb68RSl7;nIfaj9WWA$7n@z|!?XsVpR zuNmyOiv4sEu6Ux?TA@PgwxDw8iviGlWn%;tfI)eiErVX%aRwaZQJfhkbheka0Kn6v zIxUU(JhsmVDQtV9Mg`abRV^wP3H*;2hH zs%e8zoVX97^Mc1Uu}vD=U^wR8WIO5u6}!9nL@=+y9<=&I0(YCZY2RYW2Nu!OF-*^H zaXJG29A5^O%^Io{8`bi1+Izg+y?nU%@rTEcA8%KyKAoYMYN4Qp6s40CgPyt3LCq~^+6Ub6GsKZtl9pj=vMx(Ri_Ml^Cct38`QLv1>FMF3 z-KdH|ziz%Fho%sBlsmmUqO+4|Mpo>V=seiZKm%_@Ag{>sP8g@%^@Kd-RB<}`w`N|& zk8!dU*Mq%5K;(*n(jBec?`~D7;ky&UX!3w~jzXHHSg)dfgpbdQnr&o&v{U zOWFrak~koYrr2|0)^s_XK))Bp?xEgU-6ub5VI)yqm=*{3Qb+BAHHN>q5)m=nJl)WL z1E1^u`H}7-ddDPY%gwUgYHCHS!n2DbjjPpDS1;o|uv}%y@VIuM$J5QlJR#2?5vpP!mx_e<#$Ld!F0{+cN2)TeG?HX%l$ym3LTs0~Vl{ivUboP3V<8q}t^S@y2%-wl3FJr78h<&}%H`z1Vn<(^p)DI8(Uw!RflYNiPiu7UTM$JuB06LK=ZA z=-8W4@Rpy=S|$RrYKn}5eI(;YXe2sPPDLp^7F%+U0N7+%8v9s)Sv|oq^|C*c>Nw%p z!5x5HCJuq`77Hh!yz;j7E37AlZq~TFS$}wc{qg1Uo6k4TFSpzCDSKoEYsYzi+8@k> z-O^2s?W78^*c4`l7Mpn}rjEF*zbGgzy{#p7`146S94s0Lu>?jM8wvFx=-NPO+B>LA z33;#+V(BihlcDL&=4=e*x5i`QJ=v0}9<_n5=59}Us@8#)o2k5c6H}ixXbK zde>{Q%_BL}_-vrjn}~@#?d(%&)n-flyjWD`6k+;l5YerhVmWrGcE2ijr_zqqsjjhm z9lLg#A1$c5x}?11wdA&J)y-~NB6&S2FxRgcoDQdwt3RgQYn>F z#9)3M)Rgkd{pFV*A095)7YBNzE*y2X7xRK0he3qC?=!~boMRnv$f1P$fek~Q!NB|w zZHzvCxc&8Cf8Xo0LA8BeJrmJpC%5km-nY%TmMWf-#F8)%yX&@0jjRXUb<6D8J<6Oj zc^31nBN0}d4keiBbMlc^OWr@y1XD~b4NW<9C=5KmTHieiUnDXa{nZpS(U$-$HmI6> zX4JUP18ZGo8b)Jz@76wKVOtAFK}4=zR#lz!e5?Yi#netS^W^Gc;bgT_ax5oyq$qd* zzAQs@ZLC_KPp|K{*N@lyPzu2JN`;@C3cr7OTJM(KJk2{nAQtpZf>PSMVae6#g(yd| zkayXqnV{#Z+15A?ZYQJAb#1vBM!kFYmG0{(ipPyzSRVbGk~gi1r$-w^vsiBy!a&9{ zl|T-nBuKuZlyV``RS^&qhh+9u(`>}Do0@rbn9%ZYP2WS=yT6!!7Jm}(^4bX&aY1s; zt>#zEMAJ}$_QDi>F{8~bmD;V*s3p1L8NS8VWYiiB8p}>|+N$mv^=-YjDp!`J@~~1J zSL>redpS3~;_JK+4>toD8G98pY!0rm7+nrZMbuLJ;6i)FJjqPEDCrT(#juSQ9DSLd zB(9!zx@hTF1;&=FcGC>rdV6@>1`tIgHKr60P7-o(Sop2r$ciAVc!1nygB7}m@#z3X zbGox?pUHA7-XMYU4y1WzB$Su;smSG;&Hxf~D@kgWT*VSRx${5DXsoWaO&$!0>O`-a|tS9$Pol5Fa#=aZVV@ zL|J8#u*lyjZh3NZ;mOuh#F^hheCycKXUU z>pLAI9(_)gcLg($m;vL&z|J5RF|Bf%CWzSn@sFRkt7)q)8A$0ziU2rXN4j5^-`R|XJ(y`p@ODPOh$?9D;Zi|j zFuQ)G=_p{NBC&PgU?akV#iLQP7mLmC=HUQfKX^v6| zR=Wk?S8X0tRu|f)h7~?$%JJAOl4vKurboH-_Jg1EBT-(wT@bK+NE)w>sP&eUAv`@` zRbeKpgYm;@fMHQVle02;i94dDqM6BFbe*`97Xs5znJy|z#%*YAr6W`IR2Ii(Xy$+^ zXmgKHhySm*`TCM3@koFpQbjCl zPtW?L%AlN#`q_Na4+%iC)fFacRV!9-Eob70>uo$oi+;%5;u&8M2CNS~nyjhqbd4~K z$lOY4f}x4!GeWGwWWiCHci2D~`r^%zN`evv6{d@6{Ki?5_HKas@w=Hyp! zAYxej8?YSr-?x!oih108X(~yGCD+F%q6K&4M8>XvHm&ay)b?Nc=Y(O(HC)HNhl z((Fx^j3+er)$8@Uw8J!UwJNBc-SP{iIXi#Jm_V&aI!t(&J}Wc?lPhOk8Tpc7%NSVx zKR!MLU@EZO`AAfw+R=_J07u~8|Mr*VVoZZW4vrlR8pC0et-wCza2)!D;$@w|(FE4m zmQu2vK?~ic)mh%LRbuZ*VR(qRVcoZ zJFF;&Lb6(H7I>jq6+qpEnV%|(5 z>R5wu9Z0Mg+@8+_gO}6JVv?Qr(`~o4X*Pyur`=LHFP5k=W-AK^LB~@enLYLfAy=|7 zrR=~Qaoh$wXlaFNv(*kkSAvmhF}N$A={oU`9c+_}df+H>wxi~*q`pK!Y7mqu000mG zNkl3%@g&`JD8NbBsbRnr`fn>GUh?FV4xCtj*u?H=TxD_YGg^8`azV1;uzHZtL zVr#a!o4Pn3dxH&e-lHi$&W+p$Drl1c0}&=;Lug`k3T938N0p>0Y=_6QW7sfTrs&W{ z%7innwi_J*Fey9BlT!Cp0Cp!D1xRz66jx^vgo~Y<=C^(2Ea^T ziz9~)W)L}adUkO+{@dUF2z2KtI-VG89SrTodtO-a{PNnXj z-x|BSG2XCS*8%2ONbEKHY2SNrz57{ksmF_x%0DBi$kM_Loyh%Bve$h9s9R zA^O^hs<)k^lf;86FG%@r$uMhw1%<42nD=^6M-SP8LU1Ft1baZJGqPJkY3!`&%`Ci9 zTwvP_#!UxV*a(}xVk#2sb}+0BMkY~~HEhZv^oC!GY0f0YS3l&K>HCWPq0Fi~YOE%~-8&8vY(E;(CG449I@79lJ1?ah~rj%OwwQ72g(f159bq|Cv;n zJec1j6^tx!@@oz58T&~%gkdp21``dfM|Kry5|3(Uk_oRB#Q-cOR+fJT*0mdHxz$NT z@6d0U7%G~ubWo%W4q4n;Y|6JYcy)y(rdsQ>!m2|ocO~MkNxK8Pb;iKmikH1xaM+!Z z>F@9=Y-A$4C7Z#a#=ac00S}Hrbhv%s^0~NN1AuYr+UQ9Rf!FI77>sYw0eCvi-P6MX z*!(>L`r?rkZQ&2S8A%!h>V;POwA-uv<=5|SAC@lgq312b0&OGQ!=!T&hK6h$iWAXZ zeUAb7XnT!;Y7&X1{g))uo|<+W4eso2=G|RP%hOTE zj+jP;6tr}>h14jM-d=$7)H+3`{$b-!JqhD79fZCZkx;Cp0Njs^bW~QU1r$d|Z|Px) z6qkTxO%w_8ar@@o#eWlkx7X)v*t5#c;c=65I}EiHEvgQ(q;j6dx|C}XgqnaT?8ddT zT5^);A{b{`Rrmn=$U_q#eYN~h&{UY&8vptnp*<)M+d}TYaR81pA94PS*Sil)blb}y z={k$-LDbliM#9xo`3Q=^G#IAGuzxO&o+QUJQ#s8OFxBef->)c99*t{*VM4gIr5EsM z(w@wyci8J@bzAHTdSTVfViO-GUE7fw)bN2^5t-EuW|VDWdC^v zUDCm`v{-SDv^)um_H)oU)irgG1o;#BcGWA*Jl7CMaKY7pIX-=`jgtlEDaBV7+jT<2 z3`WpDR?{InO!8NuPPNC*?#aR7>EY3a`$L`F#q+=kU^w?R zSxv^v>0~vNHCjy2(*>V-zM9MOzD}0N385KAxV3r|V_|eVLi(VxOuS-(0Uj>A3dqa^ zV1979YyiW!gMkMdVriJ(XQyWa^4)-8#74-2abbgTAOMUggvl|G4Ax+{gQ6vXnengf zp%YKsEuNt0gcnh*CzXh~-zc+Qml z&QwRx*T=g8O!`R}fJ!p6bJVSFf!r6hWvFlvgE8DJ3vUwVHeQ`|d%S1RwG7lprm~{_ zV8%%`UNN=q`i zEL+1KCW{O}OB7X5zbJf>OU#-F9?6&nK$4}J$fZZgm$EQ&dw#XKe|_`%-NW0jUT4K9 z7ma%NR@T+^xfWvrTo*|ko3lnw>&*Nw&q_Fi}WrA||H=d1TLpHV3*5PsE@JQh8@OkU##j1U<>z@b!O9njJ-xmOGpByv}U(&jnhzquQY~Swb zUEnsfiZo3zrU`nk$0rAvvsRt3qc7!49Z8lTziREDp1we=5gJkl09}kKvXTtTaToo- z`C%a&D%jmlQ?gi+r;_8)%aT3sA9apS&$pZVS2s7W&Ua@j%x1$RJqZ8OXLmRs4`w6G z?8+U1-pGBeD{0CP5P!gS$Sd;<1vTI`jhEbH3{a1Ej*}>&jeno7?eH`BWx5$YDdR1))CLHJ-6Xz%lE2$oa z2v^}+LoNp0?(p@6WJ<@(8BdK0&>-Df?nqpZFyG~KCB~HVyK~y=dUG1YF$8>w27>W4 zke_3m01}mOw(wJNUX(+S_#)+%`;Z&Vm1JTw_*PE2Vtf#FcrFTYn2^@MR91$A@t{BI zqe@Sz8p^o+ZeddipN-`B3)*X+#%Sy z5>5H)HT<&80#XdKS^KZQe%Wmo8rmBz5diE>tJn}>-GLW<3c#R1v+oW<7XMr8=6*Ka z;rX8{(l|t!z~$;I3AD&ODA{COUtWl^P?%N<;MEHN-#uPGzPGDDJqq-!D>01O(oLn4tq`cP}jHT z*ALfEdcc)zczL$QNGGDwr`vUyTH5)O@K4S?kcvPvLUOEWaW+phB$J%DVMr{Cd77Nw zppURSp1&!ot?{7MG&m=T?tt?=ca*u2f`W$-Ew?ikK^JA?3>+XW0pe2_F#<3w(SyU# zX)=0Bo)cxz#zKvwqc2WQp2I)>8HUp_eam1?-c2P62>T~xMV-8q^aB34je{=*gO{y+ z$$&Q}M*_ftzOq`U2c4$7J0ZKJp#ua z7cEp zY1PlN%tsbohy<2jht4E(j}&tY>>YL#Z*Y>jn ztjcf>A zfVG1#ZqH+y2;Et$5BF(Gk6pW%BUJ&I2@S3?*MG1OUjF;>& z6sJlFvi!|Ncd#3~0a3q(=0L+DPXOPR5n55ftie@TbcGK*MMijW@ON8(v!(Z+!EqWveQ&7Vf08uF1}6!Gq!BPc zK0G=&INaYm{Br;3xhw%-5T*ou+s7~0?c;6tbaQe%efgrd_fl57aoFz^l?ehZK$por z^L>cw!4psp{mZ?-zj*nDAg-~xi`S!yj2u6gFR9%=5Nw!C+H;68Sy3)a!{aakgUhr` z7X~k;Aai_lba)V}P_*EQglab67TL34n07dz0A;<#$!ey9L+kl$vyfXsTtQy|ut2Yz zwVSie=4`b+Uqc}hmob)4qpsbt4sNNO<+e+=%Fl{TdsSSD_OCqY52F zXgMX0To>9HCGGa!`T6ue|M^w^1f&fPO`y0!!D>E#HVlS#72y^UC$zE7FV+x60RSfs zPM0f-U)Cy$j7@X@&wKp77xy@Tlo=Jdnw|Mv$c=DqUS4f)?=J6O-@bYOC>Z?i>kz<7 zB90f=XDVx2mF3FsjZMucP%Ac{UoK2(q`#U7#=TKfHNZtQRyM04Vxgjj`~GFP4oeWa@IRA&%7-000mG zNkl#^qdvv;Y+}Ow5PQQ8BYaFb*C!5~s`s8@>@K>V;E=Q6` zD@V^*_GQ_=kqNoXq3pa9FS&U0&ziejp7JhSNkec~uEw*=?fKR2;&KC}Lq}N}g~n8d z@=)w2*o?R_Eki(K9n(b1bXnGy5tLv!ijipWhe3{jWwO^5QHUP2SqzARGa&XD(hbOf zyIs$2v8N;7b#)}0)WWY&ng#%qaez2LUBu@@w4f{tZ{<7&!IQ@OrdP#TL$v(Szkrra z5mIl+>3RwQ8nCY=YJ_RD)^bhG1nilpF}5#-JuN^Gn+FxF%2O7IC6Ub z^}j!^F1H{I>R7N97+eTC{BYPGt#hx69BhxdF8~-4S~iIkonW+hntKwT{r>w8Z{NNG zlf(N;unGw%sL4<_Qlgo^?uHG!>n`be8MhuR; z2OdXdmXyy%+~Ph`iqSo ztVuA)YB@18@@1B3tW*VhY$D+J1Q9(WUx~UFN$OHnZZ;|aCm&~Zz7h<+dweBJ!VBJ! zk0a~i`eHO4h3sX~QU)|a6H42lQsf(Z^qB4oWiBTbs@*qVk7=A*CXY(`aI^A3$-$c zxdM+NtA2X=!WR0+n)^LFJb8(QycR$!%cU^DLNdK+u#~}^>NJle#~pP}#@*B1u(KVs z7mefb;ohKeFzuc)YviyHhI#0xh_TLf24s0nMDOK#wZC3q$U|D5NU1rGqiAxNap5XQ+;?AvYh-RJ37XZt%J(lky7k zDg_^6SWqW)A+dzZRib8DatE^hMO!!~U%60JLG15NI7$W{!;oMd_=$V)Y@J|ay`}Ff%fuWSM#gC%!Syk5JF66Kqg$LR*hdJA zOuoOU#e(C2LNvZ0(x6JG;IXn+fLVWL3&xH^H!kf80Eek!0pMkLAfk9%a4s@n`z>nJMS(eIJeg+UJRUfU)D&Qf?{o@>*WinSOv7~qiC2O>b^eVQ#xV#N{GtLsXF1Q4;vS|FH zBrNw1(zY%QB9L)vEgqRJoLd;eYwv2%o(wyaL32LtoX-a9VSCm&owSa}z1B>2vGKrE zms^kvmzOZC{X!NSx>#AClPL~mmI2!sZfSKJW(d)M60g>lBko2Y(F$~GYbD>7ekG{6 z+qjkcV|ahpZ0+0ot=atoO%(v6oW+Jzf)d-j6 z`fR#6pKUMZI!a_@4P2$DIU{6FqQu2mf&d)V=7H@;rcPisIDlTcFAJSrLFIMT+%&g@ zgXY?U(3O+hr>)9Zr!61^5EM0JAT9w|P7w^E2%Jj_F8eYd*48n^8Gyw2VIg5@x_lgk z;3cj)upc?m6z164*AEelF2^dU&#q-^GXTadj1VxbD+_{=P=Qug zBGZpW)!NWkao1|sg@Qt28Rd@}ddVJCo@1%l3ewxp2sH};=! z-9`j9v1%j|#KKSZ@xMtkW{MgafH9jc(EHb)pJvm6?u;-X2>@nB5+w(WQ6h2d=j2k? z#7ia=;vk6{=Z5yWjC+D!mz*2_`qxkAXDgThsz6o0FKIu*DvD0^s7iAH{HWv%7$(h= zgGqEuqNH=qRNW=n>5;u`TkL*N8m%A|iy(mriAJ15Kz#SP&-hv?Pv_ z3BaPJ(LMni0Kqp3C!9Scnz{gW%%FpK$gDSE|cyiGPzn2d*O_&9+}=`rP-I; zV_PA!D;)JX*%&V>Kzn|*lQ)0bI>sI=9}T2YjV#e23Lgm8SHYv^bT95GZ$|!WGpNn* zrN-R9H(63CG#5m(`;%*XMT?3xYV?eu1er7AoE&4fCuV7>DS>hB2vpCjK06w-q{&6+ zu}tZD3ePoQ&a7;CY0OXRokUdw!2%8f&w{J$;j>@Eokn!>Y=gEP3cH>w^`H$iYE8%O z?Q*o94+M#)L!I_%t98}U{=ps)7vw3xJWZpLHRB%4?X%UQY?0VNxrZt{#vDANtUW-B z&Zw;o*0Djlmc$pVcdfa{{FZ8Go1zwqW`l7DL*=$qa0+xA7`aRC3-py+8-Saj2)R06 z2>QBp-T92r3-ufbLxM8n>8u*^C=x?|80EEEXDA8Y4v{@G_k|~2%oI7bs@h%}z}y1! zIc7PhYq{#EV(7eMs}~|iZ8Bq#%YqHAwF=v6F)fM*!_fs#8xA>bTP@RPXpy92Je?+` zJoHs8wF>L$HVqrxzR=ET;4a%g5LE|X4@^4EZmoY0DfxWf`<$PBckI#P>k|M*(>K`Z zL)r$*c>?1m5Uc!6>JIxeI*I@F~{h!kwk;d5tl3ciyVe+i-BAhe&tth$an$U z=!$_mt~z2CJ&Sc`zG`CuY`m^Gk#Fi$&{uAekNR|nNeA3qpZ)t^ze&8SVWnNXst~Dl zur~dG5#Xn0a39$=&9*_pvgPLhlVC`)Al?EM3!N^RBMN7im&rV@p$vJOq zVbxl32`{qWk&b|$NfIm=Jfl$(gH%$Pa7>84T>0Ap3^G3Y8u<*+5Z2 z4Q5u6;f%-h;a9=aH8+V}=`4MAR|K;+yt&+5++Ii$+!Z_+_2m=wh8<1u%|U@xZe{<4 zR3ZdQZJ71Yg!=a|dxA;dMuOp!Lr>w{6FsK;o&qpE&>*nGevoNT4i{;?0n2etel`HcK#^cD?qh8>W$3tcx>%^9K&M~vYJ-afI5OXcicstd*0&6xo3)&13IF#-U~?x#|hrAOeqO@^XD zzh(Lo4fDA1F2r~S;Pq(9haVYn7;JVVk6^!3~~fDoQP zS{rnY#-;!mx`tpyLVOGEL&$o;mkxK{7d4|m1TR>fZrj|2o0L9?w?4G&)&&+=a+EDq zQWk;j)5eLsmb?&VhYk<+l~6yc+>#hhFoP z4eL5AYv{tsXXQ(Uh|?GYjqT_g&nbx7ctG}0a~MvD3nL@nrftjiEo1J<3IWn(77AYW z_*>lPZQ*k*Df9@0&!2#t8oN`tlZrkwB z02`l@fG(HGvZlvfjCVly!>|YQEqvontFiA0wuy2i*J}-lFd-)YMPUPhROOr9$jKwy zK@YR|wz_P80)SIX{#3HhX4B>U-hcJ@^DiIe8l)H=S}G*PCq- zu{R+Jh8Pxk0G@O z60ZY>1*;T;&DduVgHHt4OuRzkOFimk7%%1~bS{ZAQlE!d{lVDsS02-Z+w!7C{S)Hpzv1Y-&@= zOgwb04~kWxX)O8YiEkn4T`jY;B&l{cPbqXaCPazqd(IU#eol zA5n|x#+a3b*;ydp{@!!A0HFXSkAzn)oHs1fb<$Q?nVMDU0e83(GvjDKxV~7P}1T_UPhFt#{~x;N?=W$}=xH{gvx8>xvi?Y-i7h zup?uG&NA++_*<`Q0Sjl{RW)-Z48wlT(6P@Xn0*LluBa^os^u9h`5qc<0L!~fspC(2 zUc*_z*I~$<&p*^^lvyD;d1W6L)Ff4kHVj5QoBO+nj_F2RiahbOGZTl=Cv;)R0UE#( zU8x0DhhAO|z{;;4w~%v_cqxCbWeK0Xo}OJu?lna+n*9K>as{L$$lM8IJGZ{jZPC66 ze0{s!7zZ<~ultos#%h=VcoY>y;*)VTLleU?+6G$npr#7|!+-S0pT7I{yZ3^B?%LTn zc71#cKq02Vjx5UwEOFav8Of_{Ws+_h*=*Kc6g!;@%$e4ppzqH=e>3QJE`L1H5Lh;JS-O40MOg_=aPLM!GI9FB_g*R$tR z_+9H-Y=(lt1Yp?*b{CtA>$A(Ni~EPW(PS)30C=_4+8At6rePg{WKO*kjC~F26TPJg z_RIAsXL~jCX>^hK8160LW>cmy^Kv7sVRhPT442m{Ig(lL6OWhAb$PQB^c4(#_4?KF zY>A?}pt4H3TIU-zA=m7)l*3=t%s??7f*vQ37zE5-=cwC0q~>DDN?}BgN#CO{w3{1g zF$J3Zl7~t}oHOY%^droS(@$(`gk?#CiZcYXGLlh*XT}GA2OjHaYxhuq2~8R7Y2@P7 z7zqqwSjmgOL_ zmmDmrMvjG9NdOPi_nN2qjp^?8M{UeU9i6)LM@;DY1kthNz;<8m=zr~XLD!<>q?X6= zV7;W39mJh1|th z*AfU?l3FfWl@WcJ1j|p5v)Z=q76tmu0;}?K0m9^WhK!cT8tG}j_HzO-e#l40dzM74 z6rb@10@0a9Yi7(893H(MA6RCL3DjZ}Yu^G6CM~f@=KD!FEa%*$I?OZ`ow4S&ErKMtM>!MjOp%sKI+P~v5%(w90_12|`qGsid z1HDj}lg)Z|wwD)_7KHW6yCJH)un?349gA1LD-dNaPsW&GuFQ>t$ zPam%?x5&H|gAMiFH{~-lmeQvrPFN)BTKvp_B_0ykfItu`(z&dP^qmB0ge;j90{||e zOzMU*173tgM$S{=m5V&sy@9vW<=On|{_6bIxxm%k+q>m@)f@B$fH!BG5Z|z##loeS zW3P+^4xuTjg%tSUYBUpb6%j*S7~^0eny zo2yq^f0lLkcqe;cx8IY%LVhT@hqqMl4z08fD_@_>vPt5+WQ$W62JgC}Gk6LawNe%~ z{eSrGgy(^2JXk=97N_gg*a#D4{;bYn6sLKSaL?smXDL~iy45^^@4LPta$jpmQ!tV5 zCnPfdrn9-nK2-&IYTYE0NHCGu0;4H>>Zmkc1LIm1I#=&98|E1(QR?^CI)#}JL4+#lQ{=AN*+FPAmM(qJ(I{{NO346G&%siCLsV=qr42U09`l9 zK~X6A3k5`(#gIui_%#z5YD^6=M;tIoWqmkfClgt~FdD$XznoWjboQhK&3rVcxpX8A zCt&=xYokj3>d1^!D;G8ALG=MW^p9&RwV#Jr2_zW7<&jvYWLdB16n1meLdC_+-GA8nh=sxEDIy>3SfaSc+rNR*3wxWm~ft^4I zLnt}DHv^(C062$M_)gLCUj-eHvKRnh1wv?uf`?(^C+Zq zxkdoMCI_v9WB_15pobu-0)}UczE-$ zyVwl|a@n1mp zY`MOg%{_>Ipg^0;)G*F@+PCJnGp(vp``A_RSC|Sv6Uc;mKI}y$l?22BdXeeEULJ$P zPIuaW0RUF%J14d@X(Qv}nHWoO^(7ap!@{P#EDPn(Cq`A$UN~Xat3u5%+;zT~ zzlwf0AmH=|^7Z>%%4ji=H4qG5O-2h{Q#ny~i|G4mPHe-SQ&(w@@)4jHdx88HdsfCs ztPH@JMv*JY?q3_l+i0VD*LEFCa#^|Eq=Z=hd@<`H&E3S4ME=@KC|I~Z#NemZX8sVH zY`llk%?&CRYR;vX4E7cV%xUm0uN$AspP5N8-iGJj*dP+=AhMG#L?=*kBpmx;!_s_#IKeiM#yKgS8+>r8#$eD8kHkqNO_t5Qoji^A*--S4+9JnlC|S6 z=(}YHVJ&C4mJ_zy5!%3+-;O?Utth=DO)1G@I0FUUajURl`;e_f9`M(npKh+t1b+d* za$O)%_TKHNf%*8tWlJJ-L`M{6VM<6QJcKxc_T|)TjG(yjuok-a&dw&EKK&@4U5%L9 z4Ol_=(0Po#$@3#5ikPed!0c0c?2Dk>Vlr2zJX<;jTga7%H7&O2kYrSY`IH$KO)h?| zNu|qYQ3_eidb&z}-i~LR$@RnK?VJ1ShgX;PH+SzIU){eNj0chgpIw|w?s##1fr7I) zCah=75^-wf_EYdt0Jz2k)+;43pX2;@MJLYkdKQ?K7i0I&27D~xBG8d*ZE5Pzay$in z?;fvT-CtkdUf#dHmk$Na14;BH)L8H2oedcXYE&Irot{EA-U>D^`1~$8V!=o5<^mLe z5wshEvpswgW!smtS0YF`dsUD>!SK<^bDcbHzHGMlJG~=|Cfh7!F$5_^_^PxV+~PG3 zu$&leFV?74D1u3F z<-PqqchzN`IeQi0KJLg>hb}K>rEx%Ey?{w-EP3li6%vX_qn?T2AIgCaA&!^9-hwvd z0dBn^eS9R}6YT%oRWMkrR%x{9&%t0g99HCtRuiPWa!1x|Gn30nLRwO;kQ~FZSMG3x z7wlyu!93k*ug!fE+pcS7;R|rn`=Je)j9I+RDWg|+s|!Gz|H~pXdcAW2PDQ?6kv>oL zWR{Vc>DCs0h+I5Zm`Sb5{H(xl?8T)Jim?{XDZwaEhwc2C@u??h1_O-ssiyicy;kQV z@Rg9eu<8i#%ZWlQSMW?1bhi1BB1bECQgZ2RWJqL(637Aei1rqdYX(=Y&`OaHRm;=^ zl<%NmoBj$d(OMUaG}N-JClh0582k?wQTS^*L>M61#0=3#t;q#~3XYw$OW=@jK^3|TgK8DJu@{}-19?k7 z{`leT+gEa7>a0P>=@+V-HuCnfZawBs!49-l!jyWJm7?)&Qmn=zq^TD9^E5%EeT$IG z=Vt-P6^COd02ei26150{v(TTCTQ_S#zHS-tM7~f7&MxP7@2&-aFYm4|?yd!ZA6`GM zx0}JRe|dHB>h+xfv%nRoSduZLXAHx6=1k}}CvHJeerDO6-wXeQWPA3rONii^mIn~? zFhFD@EDfqUD-9>JMx2}3)%EV~@zw3a&Go~zrS9HS76)b5u7|_b}Y!d%q#ZT6oQ>UggrkPMNZvcNUMxdE)O+grT9%i?t#-&tucxHgniKaJ0KBdyzF2~? zg0FImJGc)F=1=%@>K1Xvl&c21xknpa-eImVC+_qBA0b+RMI8y#!-2kC#t@o_M--e1 zSxm&8Wo?gl&s|NA7z8BG~XJ-Psy@u!@?6|+Fhbf*=?9~%hvc&jJ=Py=VR4%e(W3_jiD(>&M%Nuim_V{d%=p_4?iO zi?f^8ceigJpk<*g(qK(vZvj>FGcjcn>zGyCoccUPb2EkAoNA(9k!PBRK`)O9LPe#X zqW}O907*naRL{9N5a)nW(D&XXpkKXyC0MIcly4rd?p_J{&R6rx`>R)PZg1{xl$Q#a zH-+=@yo=&I09XsumIu2T1Mq&?N98~{To{br_%xUPJlM;um0~afIa`d(6h#VPFm2-@ z*`#0`iqIH&CtI^NWQ^d9I6VnnFcXYyLAxHbLG-F|_F}rnMZS)_^h-kpx#$iL|1JyD zO#pAzf9*B}i5APEH0-`R(L{&_N|v71(z+{Q;S(YX2)U^8CeUXE%h9!jOl= zLMU2bK|KRSc{G)2sRW=U=%NFUl>u1szJ)roL`+>yA#1bQG-z7wra*FU*qh8JXy^*o z%0jXWt+>^8C1;huup#jT^eb2dYQDRj=|t~tvb~s}T`hH8DE*S&P@3x?`o>(Z)1U^q z=bGEAEb|5qRS=Hp?`Ea7O1UKl17-iOMfn=vx?Rzf&2n;qYr2j}V*ry&yzPtw~M5@iE``z+=IRKW1U8HJ`k`B`iR z^W5Ni3c$!{%@^SSIz)1LUSIA0``15B2J6@|V3Rb5sH%&JHaUhg5A(qcz$j5FEcsWd zX9a~>41+t=^cW7>%CrhDw7!KuZ0oSTk9K);( zz^?tdEsKh+xl)pMv{?}dq~2tyLMP&M#VMAlNoM>x%?E$Dlni+E>h-k%@ZH;ohxe~v zy}5t<`t7@S@8-%+bUGKUL9SgpV8oW-w8T*kQy%26YBt z)x=#)7*>*(OSVLjeehtn!(##p&h6vHo3Cykzj`B4#m(c5z_5HY$>YIDMV9~g_HlQy z^Q_uZl#zrl3x`+%nC02f!(yI1HNH=CQo)$@9QUS36ci zdQ)PTH?NXD_-dZ`yJr<9oMX@2_5g{tJ)>M#I&NeIdYB)8SOHoS%Pwgrgokvv7nL@AhzstoV}lf8_%nFU7lB}~!@$0tYQ zmPs%nmP1GO@eBJp2O_|1X22*?t>m!Joo2;Z&y2nVQ5N4wzp5#SamE_o7kB5(QD=`3 z*P)>G?rcfZ3oe$Uv9PZ#R>MqVApiqM2^DUHZncnHgyT#Nsqt;5)QA$%E z_c{2_;xqI&Y!*oAPT-Hcd42n@fBr64qM`4xmxXOJA^@i`q%Qd^xddIyfU!5#j!>m(QBk;4DVbB<|`nw{06anW*OWkN$7+qqnkBW%P# z$bgd=OCyve1gZMebX4!PWx-U@Qn0WtS?7MwN1L*s-8M4fG}GVr&VcM8HM= zm5E+qqKRkS#P~5#&L5n8c80o@4 zc$iOzhQZ3W5*U_Sh!l=zW2j4V;s~m(>)l+?_v~`LIa}Z&VYH(3E9>w%xgRvY^?19T z0(HoRHaz2)Y~dBJ0$iU0unz)F+5)!(;FV3>=9MtGWVhrYQ`w3ca4uk$GUlw*ib?DO ztC<4PIN@lTjd2(1_)|ua6>J<0W+WP&*b4IYI3uncF(*ZvgdTPZ*+Vg*0d6@%RBR%% z&}C(C?J7B$B@5wx+l$GVWqzELG<3t7gmEmI&3U9RFu0htF}1SWY#1;`78|0?Azl`I z_}ofI8@QAiT;+R=40yLI32{(l2OQL90*cKD=i`oo(w8)d5u$>1{Cm&+qswB9nhFM^BUie(hj2A@_EH__gkf>3hhHp2>(kMPF)9CcbdZ4Gq%mq2g?Cxz|2Hj$q zwO}eeisS`=<;0sT>ZNJiL7!N+#D2%}%qA+;rMlBOL-D>Em67{OFdp;=eZ^yiVWUq& zMXTLuoid;74hsA|AGGNRc%aZIC5Idao!AzDVAPUe0tV#;2nvqjo zn)r?sfCXj8OI?!wY6d(hOJI01FYX`uvF(!BoC*4FVIL-^f}A%j1c5QD=PP*jL8oG` zE(2a|=UpYZMW(w>KU~%c&!e?Gd7@uEg<_hfi1z}PO4?!RvY;=NtC`clAYu-uWsQ;|YQ0$i zfZ-Ai3kL?8j2Os}V)48NvGd}0G{Dyf>eej8OmZ1N&&9g3W45nY3Ml&XZ+4@H*XQrQ zxqtihtwa@PH`}wDGYKHxe|Z1+_VMQKX0=_-HjCF^zkPV~aCviid#BWBlAAP7MIdDu zj63?Hx<`een<&5>MP9duBo(|}4is_f z7q$?J#FOaL#qr^};Wp$k-o{}epWlr^d}VL-j-fjZ|9Eq`eGZJnyL>q}=IGM!oS+&{r~X0bngGZ)Vf= zR4`aM&of_Y&8yQv6(W@v<;`_V0A5+pcGmicOX?gT+he}Vj%l7Ak%i*3YB5@28I!w7 zoVh-^w2HE`q3<9wpPwedH5q4sF3DN=t6KZ8l72<{8`6>_Hhb;bGb9s}BlP0qq%yl< za9Df;KbXdGgqK_x;Z9D>K6KK{#*vCq~%?#c&EFtW;lhqdMk)<79>! zH4i_5Ngia?1OV*rgv~v$MuEY*-R$50{zZ~tpf5VX@F*;uLfgIrfV+ae!)Z$p!e@Sr zGf#uWoM^%eib;caN{Gu6OU=KU`g(uh#R} ze>7{PuuN__R~c}h>5IpC+offsyes=$NTY|iE|yhKQg8hRhl^h^4z(AD*S+24^!Dxf zn+Xd1 z(UaXhF*yH_zk)XaM+>|CRZjNNUtzZg=PvWtT{9@@q zkwGAbS552U6lt;Xx2?vLq&)JQcX7s`E}9!RhFx9sLMN%9_GJlovvI8SDS07!?#0_s zLbbPwUznJc`Xiu5{ftw*^b8+Q1`uARK|;+eK^aw6A9rj|bgIxdIY4XK09ffE7-7Qf zAgT($du$f?I^|Rr^u_55d3{U}fzK>>xmeFIJ~Wz+koa0{8LkOsY2zWj$YQ~}@`f(R zJ0L$pcN(WrM5#Uwp(l4JSXn$iy(2JNgs@=Dx^8HU$ zFF?q0QgkXZ=X@onyqWx!i;DEUVXKcct7NO-DKAUP;A-Z4F$!gFsfHL__rz$0DvGak?`Cc)8%v=H>VH=8lPP!>5jzzwn$;g%D?n@!2N*|3awt5;eB<5s43_J@tgI~9Oc zhw}JKf#m=E=a={I9xT|`9xxai?e3vkb4FW1mn+D3X+g++tv08DLNv$KAQDah=2$SM zp(Gb)3EKRTjz4~U|IIhAA;qP1XcJPv&{9!kji-EBsj^V!+eQZd++Vlnl>0_H3ne{pP`VwQC9S#N~cA^MI! z-(__IQz>Y%pzR}PXN&WzjoiwM-rQZty1u!%xZItc??z)u5gM|YoL{U_-GSxqG-Rb_+E`x;($Ux)Ago$?4K<$Tka!O%&3zy^p_h+c|xpJb~_Kp*L5m^|#BO z>1>aY1lw`|4r6uqLO{RS%i0le>lrm@fv$zYV$B|nkx*MM1bygI798pk(#=t zq_#T0YeE@rdcT$US8cIj9IfkY3P)azi){|CGL@AyVz}=YI)+^^S=$Jac%H14U|a(H z?N;{IA?*rQ)qEEK%z@e(0A~%XJjO!+HhdLumDE_fr>%B7Y>Q#X>1Z)`N^kdW^0tFer|f=oNKV!O*h|)FpJ~3oKs0nCL!fd&H*WP)I+76CCb{ULQ_#lE^xu%tE=^=Pe01Vf^He+ z{yB_94Wpcy3Hn+m7zv*~2Gti9rEw1Ecek4WfOT9D^vSb@nvxj?<7A*N_cRO#DRaT$ z9NJN1GxZwd!~+!6dod-&im`s<23mssIvMO5@8fo-v48Y@Fz#fEzUNOCWH9qC({Vni z)7K9klR_K}%{*;+5Ar?s1}E}`;ud1XdCJ*8otHN}fZ(U|xM$juC4r8bOze8=^TFAL z7IlDsZoIhgu>#o)!Q*j1D9FrNR6%7Jy@R53a@GRxEJql%{643%3`gQyv*Tv!)4`qg zJ~7%8+`XY9kd>r-qN&$(lkAXbV-YwnHfT{aR)J{aRmrI<@F`H5choH0OAOZYXQq^I zlb{d9kEkI@tl4RwU`#)c5oH+WEl9`DFcZxM)e^|%)AC93eaV*vaaA$nPz5vd@Um-C z`YhK0^WetmiPfvMn=O~FLYirI8?m_`kl)v(M!W;Cmm!XUpA2RLu$omv!!lhLj7<5i z8z-F4pq#E>p>=#=L&Vk#0>)gN%nbF~0y0r#F`N=c(c$Z%%$T#xnyBQ{A7-ZO{{_JF zsjkIDSDyNf+*g5_3}-T;pB9|)+uXX#B33cc%Y?Z5bdriEA6egV_EXE=b7G>DF2|S= zIBV8324!gsXB$!vvMn96oLpo^2oLraf0C+m1%Qdld1Z_z-zupr4WBw4!50W3g-m}j zH_3`IMHBNut{wj@Cc52DG64Gt6SB_$;K{5crn+qG$DIV}{#FOzeYpnZi~H|?f4_Zo zflY^;WXXVKzov>LB_W+`6@#$sez6RWW=ht0F+UGag{jLSxj4141ZCBG+e+WEi^-e+ z`R8xnzrS-TRtzJd6UVGOEC@NO>u)gLBaI?n;r zU0hW${AY+vwL&zGf50>7;-0-JZ#hnK+J-JyvtGX~yQ1V_Gk1FE5Fj0XKv^;{_QB%N zRi4GbTdh};I;njGy8^2Lu1!2S&z4$XF`jmEu^mq3O)+Q|JTQj?ZWo1m?FExY6kD9G)~(4D8@Y3)Tv~ zDQaK~8ntDueFp%;j6qhXEm^rvD-8!-cSkY$bWplF7+aETTYwh1FI*Fpcr|nMbxQMM z#Mv?euv~kn3uz#1=<5KSNA5xw!b%EeGae)b#>=eumsmK^HgRPX8i~liel#NRVIT*sOhqNz8%F{65BnxyBT3X9+1Du6vdCsJB zcESlf!asEzsFZ~4r^Zzd*=J{p@gQdg+#&?Pv36B!XO^t1#z&aG07=S9h?co#07gI9 zGfu7g?gN13Aph@wpDr(Upnk~eG>>}i6M!GA5pew@n09yJX`33z-00^^_9?nK(b4k+ zRjU!Gp_oN>0L})55HXPdK0aRk_S;7}2UNGxb`n?SigJ1d|7HqHBZ~>N;%ZwPN{%k( z5ZRA@iGjY_3APzR`L9IY__U?C9bn%cn_+XO=PK zLya)D+ikU{%MP5U;ev&*4Ae7JI|O|tiRukoiYq8?PdqLJu|UsH$T22`YM%g3?D|>K zfuARJ?pp1g6?hP&a|4k8oVlC~mSlb19HjNw`4+@>{C%ar!dGsFXhT3_4a2xIjM` z@?caR(Oa`^YDl&&Z|>;jDMhRI_hf-u1?DrHl!6!C$XMp+vcnib^@h2hA3`~rM&JA}43lug2n7}( zsN9F40*cQ*cVzdO66K5&N0RkwfNm1J9KsJ#mvKR<@rzu6i^9&+WWG%W|0i|1N?mIi zlDW*4V{CVp1)?dM5x|3igpO>csIQ{@SQI6Venl(tC_WF_zV%veXq=I+l%0+Mz}VDs z&lpb?99?WfE##&OkVypv*_fIrE9vP7h6hFgRZ_)nyZV3s`*XM57z0a{>AJ1sLANm! zfYgTZ39OSmWf^;t&4_``-KPc{vqUoBCX)P-S}_oO!VS(!(EGCFOaJxP?*)c+PRZhU z4kJ;NBXi|EJ4{7s^n)`ieig2?0<=hsIgd)i}eSm#(zb@{&b4*u5c9AnUE z8q-;b3u*6xVJe2sxuY=)1v>tOBfp@ek&(a<2VMEO={KmR*lKEQ+)+(c8$oc^L~{}V z2A|@k!Jv*ofF=vntPBHXL615;elEDyJbihpDpy~?i2-*6^)PPW>Z*R;cBvm;v9U_# zG5*0#bcjmSauqk*2dZuz{a`IYg9!yI1xZPJ{WhAopjL(cv!=WaTLQiNdtbbK@de!) z+?64r?`i9ptIPSj%(2LX-c`ep(F&eKX;4rJo`LNd=_o-S1Wh)44px}%~FK)e8 zVI>QeBAKpv0W&3tp~z^^Xcp+C=aBkeqcXAD%psFne>a{SaMjNnT&^}hm4nXXyc0`# ztm zX{%)0!*D6q%#dtq>j$uAL_YV9XssauPa}MRL;e z=`aI83y|EXHp+|~A_Diy(qGfbYeI)o0T?n^tK|&y5As6+;C|@^dv%(;0M{PLifq17NMKbx!H|8dH)-Z{NQ9>8EexPmumX7=dvW_FV4NUWi7e z7hOP;Eo46>;2$mpQ0Sls-%rw@z#WnBg((o8#qf> z!l~D)eaJ~c(Z?YMyjEO-u}T2i;b; z1>99%bO}8|Ktt_`ESGiAHOdth^dseVpeoJEZN`GUGscr3Es2yD5nrAgbM4kNS_gq_ zkCI9ax$v1S1D4CIi>X1kuuhfX$Y{F+-C9+dJ8y0TW=`^FE&OV!M$S_Kx_JaM9@)?K zIP6b&RF1Nt38SOkTLWMwJ-(TyShbev0^NzkFj`;^B)5n_y@zVjl7g>L=tSyF{u+J) z0In#bI+PZlZCZNK#icga%j=vN?1@4uK+TfmMVJ(g!WpS_e4XwT^=JLbRNzE4E38oO z6U?XwP}&SvRJBcBv4gBtMC7c%+>yC2=y3o5qd*N*_H%4KLiZ70B_?42!~LN$jZyEl zA>d;Gu!&GAm-7DZ>aRaPNepBZ4<&T88;63y-S*)~6W?ZtShY~?aOO_%yz=S6Q!XOK zcAP?O-1iJMYU3W%_fJDJNQW_Cq$(SnoKcbl-`<`<7n;LJSwo*K1J4dEYw;qa=_O^K zE;{^_cD~8St}m9$v$?Fzu?L=oQxj~O^f8hk8ZE{p z#umj(k#>r{%%_MwODxKhA&tfZz)nXmfUWDvg6L9s8#(9m*@OUKLh?MO`IX6)D&52~ z)c^nx07*naR0>|k&-JaO;YBdLsI69*-k{f6@!97IgU+1AFXaKxasyaW zVeR9dzBoEj{f@)qFLMSQ=DR2Tp3VWQUe!o@)MouFC)0E~o2VwnYz$Vj&x(cVkW#C{ z7eQ_XYdfP(TVC2GfT0j6Y3}x1E}=CfIPg4j$LLpcRwu$baAJX{eOq?g;Y_V*v(3}C zSTjOrS<)su3%40)6t_iMA?HK2f^)*%(xZLawJj(ZJTLs$JBZ*pCt!~5Z#NpZ#S}rG z6U|Eq6&YE8`zFR(($bv9t=AKqDO0Yv2*7YqK&C5iKzGAHGRqy!fNwj+5~RT&A`eDc z8`w;6tqE@Ap)V={l@KcV)v(uF8GKBYu4Pz}b5fb(wi07O3n}R$r8Sky0O+e^wCn55 zn>RNSHzYTUfcya96le5m;Tjgw-w>X}LGbxtcbVj5ZBlUp?sD}8n)?d+0!LLLr+tF4 z9~7_Nzk3h>mY>_@sdI;&)`6}4u@RMBg=5ro_B-fTaT4Yj0@*oZHGnS9B|SvQQS9_! z9!ym%#PXO1#yrx84-X$dzLUpj<-B)H(R?TAB(VrrH#Fge%#QS+GmQ4={p{_0`Eq3o z4gg-AYeGzIJ2oJ4^hTUuVmgf(wiwf@M({}%tpJRjMXr<==D4N&=!N2*wTg$O9!@s` zG`82CJmekBO&7ugQK34kI$M><`=Do2Ahhmy(J^I*4mj$<%ke`m6CzhJtuEv+?ii7N zi%PZrYS{bgk_+_DN4gAt5DNJF zH$cT^w>zIf`T%ucR1}ijM4?CdC6Rnv@jPz)lDMFm8p>8~u0@xNHpU@HU?vR9e?c}0 z?r6(ahxap+S;7d(+hnN(#1m(y+*7DIDCFE11!pR61U;=sfetbfrZIeimN0O4Y?>SB z3L}5TegVocYP_gCef#a3fB*ZJj_N?aL=PAwtU>R1tZbNd^?n3#gTi`@)$Nbo{9&$dWfrwsTiB+Y~qxqHe`Z?zfc+6>O3 z+AJK!VVD71m8f_{U~q-{+1|ptTt>d6oO}=>V3@gNs3h0Stf>kO?$(5Va&5 zn93g(U4+n_0&X#Z2C)XEY%;e2x=4a?zhu?PaW5Ny=3~fkCm-h=+>}BzMDfy9pKAjX zj&9GouId$W3`*-Bb6CST>u)cEufB5MGpn6I+rUx_SvtsT^l6Y5$yG*;+U^MGz5on^ zHGN{M)!0M4+v^;4+lO5}?FEmI2Bre*7L8WIk;qam0fFIW`v49Ta5fU`mzVY)aL94A z!9kbR>8cPk*k6c2KpEgiweQK9Q&wK?4d?wVqamrSa+t07tPdDFpBaT{bRAq8)UcMq z2#d&Nvt}XtG^PUl{z*k&?$}1b?NL4mq}QpSptAL-5ZH@C-`C&o)U8uAM{6{hQv zia)PsRK)`P6M)??&MLjwjPMhBTT9Q$ zt1Ld_bo!hjoogqNR_eStB+y2fVx(0Il1O!~bs~6&-CxOoEeVE%c!}6@-i)tC(0Zz) z6is~HW+T|-nZuqdOJ|b)3fzAD`2N$UAG?CO;mqA`?)SUL{l4r1o;uei&=>`B@`}Ci z7{n@S^`z=BILJy^V0clMve9tSAB;lD`TrdjKvAeV)Xb$>DPPkDYZ9{3Y6^M~8i! z{0I~*u;^l3t)$LY(e<9IEp*U;k)~+jI?2p65ncd06(j9EfYtBLLMfw--FQIeZ~**> z*`dR5Jbxav)pCLzJ-#BcWP{#>(S#(CpdPVt4EgS0r!!dyXFE8#YE( zKvutbJ?1zoj~Hd%P!)8sMwuR!Q%{hm>;X@$`g$n`^2cWdVA5Z!nQP&>JZ%P7%fbf# zaQyXfsar!|E^0wP?JI}2GZ4#q(SP;C91QGGi^us#?dM^qK!@C3!W~FUZtL zV7K7MAx`T>avirbepKTO=Mg48Y+w24^TFulkn6En4Rc+t+K7UG@Q7lW ztBuZ$aBIjdz49JHp>w(PZJG?M+~YUsa=oey#!qPhEJ3^VLKsMACk)cySyM@d2Rdj= z47M-VD`sFFo7#?w>izP|cfbDny#O%$Lp1|#9rR<65zi3li{e|G1!n*Tjf0R4=MiBr z!Z>mY01jeT%i7Wn3kyzRj${?NLyRQpn`|H4-JN~<*N?mN8Ij^Z!G62^t|I%`k14CTi8nVu; z&1Vp`cJV2`6QALX;UDm{@kl(t67)VqL;2^q<(C^ttX#5+J`M9Ll#x{zI_r3c)^v6< zW^X<-LQo;_T0-h!%SW?pa8Qsqm}rae@TR;E?$Fv28-hwKSSpgM)3}c03q98Is}M)4eH_laEmOa8S3zs; z4#-d-@m=F1<4gg1Jyt^Hc`{a?BBZ=CAMgduD$sg}qn0};x%-&y<$eCl&Sv(FrlGye zk(*_a%NXWC%mkLD938kjpp{D+yMGshlfB{z6 zMU>>*H_({mUauousK;jmQwDA0Hp=^zq6J5K@IzFgH=7}w9XM^WapcpI2>}>YELr#- z5n3TO2LLxt54xSx-+%k@$A5e)NNjXSb2Don4$NA^;_hZTc?tjnkXRdF)(eVnM&+tz zmZ^n=M^W3i|c;@4xzRFSsj7aAhFal>d+rI~Ur?S&3t;`jma# zIzcjqVy)sbLDfW0s9(04gSKAMZGC>O)C90h8x5yI3js>iO~7Y9I z;-*mpVAoFZ^P$H+G^*lR1S3XRJuX2Bod8VprPa)Gj z*w}CNJExuIQS)TKalEG!xi-ag5_M_daSfZD)zx?@k*GFLv}!^Ld=Okz2nJQ zp)_ZA)%AK{%b}O~F%wqsiUG;BO)$39PTFJ#oN%oXo0;8mmIKgBOZFO6*9wnM>Ch}D z*Pt|xPl4x*$9P!YaI=^ZlX%^NgQPd3U`+&ACCuXNR+T$S3KhI)iYiT@uaX{ZTtUzp z7g7;YHyt8O1G}Z`b|OzA%V2ec5;5=<7%Z;>c*aZ6?iVmmfqwcL*_viCOV};sVmNIN zydfQx5B;V*UstHk=qqrGo&|d9PYG_hqdyBPDxQsY+h_MzzMy;(<`V$FwbfzEKLkWw z10e%&zt{Zq$FJXi_dx*I7+9(^fH9;fd^H(|1<$1o&VMcIMY2no4t9b;3d?zLz_6TY z%!82u>y(tYfsgl0QRqmL;J0tDe*5iP`KDy+5diM?Pmlo@izj&h&3l+oinJS}J6%l0 zsCb1Js9hP#(%E6zMopp;qbZ8PmkXXMJO^^;g)T!z&r|=OJ3@Zu%r^(C;%h za1kEWnRZm6aT#o6t3Hk!DPX`b29f2u7zZIM1>MY<;Xy&dAQp0cbUl$PvoWkLs~ZhX zlt^V6Ftqf8#Oifgq>RX$J#~&)!AsL;Q-CE&7)+WAV5j~o|Eq5%X}>$eV^t9aD==)x zl3j99NWfr{91S@QaP+h_p2`W#gM+TyXGfgH21YZu#q79yF;(4Jvd5*qE89XbnKB)> zB|n}|`m=FQU|8jD8i%b=_Ne8=NPjg0KK$b7;O~HB6t4FVzND!lGUI0gx;jE`D|^&9 z11&1RY>cDJ8$ua9ZT;Fb_dwp6VX*ubjz(D1^;mEhgGP(pY^mmZ zERNH~$HrrpdZ~FCHgGjM6`p??qI%QdbLPfaPE82FDQz8)^&0zTu{0ov&eJ^7(*pHp zE7iH?9O*>`fH59J?W&p*RvzL^8Fs(Iq6#`dt;0H@DO-r?fNhvTx}FDwFfT{_C~qWt zYpZ=MOCq^$ujQP+_JL+Uof9?48@stLPO~ISsrwziSqcsSO8KSZ6>Cfx(rS<^n^WNo zpzaDf94r6;5CBO;K~%*$lhI(25EI@2NYJC$`xo3baO%n(iQbIA1|-%qVY%uomTg(H zc{4D$WW7wF*&fEw5i0fsVA29=(EFt6&`I-VEjAZC1GZ^kx#lP1-k<;Zy{l z6y%2zn=1xKcQ!a&tTKnEPa|{C@#3F*sx?Rg^=H z9? zF&HOU9!Lv0u!c3`kv1yhk$gpWWX`$1pL-n9arsLzyeMdU>l8I??$K0n{+UF5;>R% zEO@B>k;?fs6Xm=V7=h{e+)7m3+_7lazPTd{Ioj!^xvb2sJ zJ>&US`HD(ew9*Gf=_aHIdDm^kAr`-1WjO2d(bak%E|-W2y~roXV$E4&V5gUV6FRnO z1z3f&jGYdIPn&{I0k~Fm%*E>9As4@dOiN~Nof6`14S*R#Cb^*)a z2<)hpgYA#`_ady;utBH!;6AH=sAD6gMs^M+HZ!N<-INL*R1>qFXy5etbW_Fw3?UBV zkk6a*Ma!47%Hg*dQr=Ywj<}Bjq!C@S$g9ddhWP>Zc8c8WA^(k&%rB+yy`~A!cdXIphYwvM@hwJS<;X7uw#* z;fD`*Km72Oe4^7673q~c*qUK*_>nX1BqWYqcscn3bz^FdBP-67#<`K10VtWUx96%@ zhCt>fIRlx1CLDPTJy~M(aN45`lZTgTq@j5jXtFW~`4>v9Ax9@`!6Df!fV{J7)m_IY zs{*U6c{jB+%{M|c1eXn-ZGYXHOOkrNSX9aA5IGBCcl zT3ueRndO&blDJ)&2E{xW?^A6vE*DTM)7&~9DYr*d)J08H67Y?JOKHbIi?QqoUw;BKJzX^J6QW*>*qF~njnT5>7Q*=z| z+l#_@rCvR&>M(zHrDA4*ZDzV@%BVDMpH2@y{dtYv#oP;&AG}?svY6>qua1FAB%-&c_MFW_L0kx^sS(zRDy~6GTy7;TE|!-gcYMRH zr=`g7c9K0RTrZ)Ux4PZ_=}ikFi~oOfSv{vzYvW{hw#Rr!VCy z`18--9v&`{ccS?UO=d|(O|Z9BqPOHill#6nEE(j;h0dCbknN;;FacN=l3*A!KLRq&qY>(y>#sAo@Y!oJHoCLHD*I_Hk0F zJ-zePwiK43>ct^U-C#Yzm5(svNAQxN4KHau+5VgWoT*pxml^lL>&sjJ-fFj*hD}>BV2I{T2hC3iQr~m|;z_2`;erq!{QhOqNrv zWSuJHb>qJp$12lvGFns8FVmX|z+|gN-T3pfPk1(L@gdG-TxDo`g}z|at_!T9BrA{j2dyF$326hsj-7k*nA|)bgC~JfF{~<&js=D#*=@Ev4IO%G?SprK*>jA# znJa*wGj35A?*YXam4&hQM#EZ0cuc|VL~X;u1w$!dVWEoM+YYEE5<8DAy6`bjk=}Xtx1b4|)>Ig(+~$va`GQhM&SSRux!m zf7G;hiUW3ifyH4yw>z_8=bTngq_<&jK*e*UJwjjO%9ME#OJ!ei|Ncs!KzN@SCZ@+!KyE$(+ z4x6nLSpvh_k_eAmi2D7O%k`f7(tw*6C#u)LEw7Eu#Wnrc^J+cGhQ16N7_|sVAo}*U5|5?72aSn1Oz_< z1R3<_uzUIj3KkWr&1U3I?lJS)tk6W0fNEk|^kb={5&2)qP%{9t2b^fbrO2#a2(kkT zm`&Qb-pf4r|5!fJi)boD641@wHw6;F*;Y`FXZQ%Yv>*7f|{mj}&_) zC{(n#XW@=BAuI~zZXbvF;z}4%%#zIQ>HPEPtA}ygA?Pj^UGkF&#;AFu=&D1`GlQ)f ziwbE|wfj4w{n6ZPwK(!`5;-uOMseFt1LGT`*Q?U9=Aa@gnz%YOD3`R&*B-*r?D~51 z*I&P#oz3LJmdM)eQVf70j5kz21~*B?MB{kWMG%G=T-qRFvG$uw&?qywP17_ts#U)e zDxRa!DFE0oSl=G>gPO|olqC32&i0QV-+%n}{bbmIS820#q`bVanrF+I08HBkN_A2v zi$tfG0vcsDGT2xkWXWC(9@E*C&Iek`@Q# z0E1-_cRw2h2)@cn1%EbrE{l#v^AM%+Msw4Aeoty@goJ1l!gp*FJ zALIk54Rv6@)2#Xs3;_}=W-p3pHd*Mz@=VLhEbdYO*o^3oOgxr%MKze!a<-UHX4BDR zJQxnz;fL75a&O>(XC%kSj2(b6TApXpqsrIeX3a$w;xt)brIt*gA>i5E635sOTlLKz zQK7JC(||b@DHkLXX#teygM-gp1Olrz@?^;4C9(Q7WVZi3b@z{60dI4gD|u?6aZvB&>|-y?m2W zVd`namxb%@HHk#;#FmFNl%Tr|H&zY^adh3)SrcP$nykm5-y3A8e1Z+=k-)7Du!^#Z zkA27Xns0HsW0oldM1mH@mA_rRK{Sr(g&S@4eaeGA(;djEFrQJ85n zdNK=F`tf=6DCN*C)^DQlYu1D|&kZoJ=UF%2Aw90#FUU;L3?z1sc!)AyGbn`Yy<)jUBV zI!e$dNP=l{SM69s1+$aCQ0kiH0mWsS4hNkzkDU;)QaFCsc_zZV;^gfH{F?N4P*%>i-bGDMjx^7KsgNj#_#3D6`LX{3Y0l*o; zv-2+RWMY@gY#E3GP=Tqq?=WURbdGTVEgoN6_<2F!O(A&emvTOpHQSCRYoC*bq5!99 z)C$isP9J?tz3t4h&YIO|6$5~se~wB!AeM$vtHR38lhAxBrqtBIUM4vgmm9+%*?KMu zRdmH&DEr7o-mouhl45MzQ%n0odRf7SKg0BKl0+Yixf(G-Fr331|d)M?VN# z@37gBTYxTHOF0*xNdH}0eA9V`u^tlQTyq0m0;5Em?b6h_$Jtd4sH}tlQ(VfWyznWa zw%?FdW$H?1{&NO+kAfjlw3(fqucDe#{JKHaVJ4TA2rG1Gszyh)$}={fGqL)ay-enF zgpw9$qM!0P0L~L)nFB~_9*%!hgRRvagWWdm<65;a-#tE3gVJ~JZvXS2U*uKXSj{eG zP@m9w#h5?J+8huk*}mFPw{JhSW1`m54-3{!=$`G9@db<+OTGXcF!c!!&7 zAiGq|1+QeGQK~n{qf|Pi0jlonv+U^rUGXTr-w`2(}vgG-8KHJO) z*o5Jy`7z7jC0u~^_1Q!L*j^fJ?T9TrBEiupTEk%qexxiGFXCP>RbnRso zI()Hu1Yn3*QOc3b=Meh9OOJ~SMRh#A2Hq83I$FHrQ&~&|wcruwqyd}GAYt54(Cg^% zg+SNWUqAfwpFhbt35o~CkdO*X4r_G*CAyGN) zFd4|*->e1F%_ zTXliKBZ$Cw-J4ZtQ;i^%2||w?!kLF10vNdVL)Q!>^?2LMHX@Hc6 zbOWOLruE^HlbDpvOU0zDwyf&Hfx9`i1(YJ|MZsLqce++WmRFm1vz!6rk^DoQN3~Cv z!JdC&S@n#;2cDT7?h;ah zklZ=WvrieSnayfO6g<{WOwT`aA^QMbEmYEOHhQiZX0rYi@<<0HjCoYcHM$?!Ugm$2 zi_ei&j6)U&%nK|4ZB}%O?r$0CL3uDX$|9ptt21W~b0Tnc$rgqeY@#JsO2JS<@h8XC z9srzFGePO92xw$PC)V;l^PAejAc~UOO|B1+lRLElJoNuvzCcoHU^Xm)M_tIfvu=UE z^4bU`R+0z9G!)X&cd5)pSR#v;!=FO|9}kmvq6Svmc~*#IIU4&ZAh`(9rR6p4P`1j< zEbT;uGFN%L^#~=TY zZ%_bufA0$bFfbT~fWS87!GLfI;AxO&n2K8huxU^?sG=nRJeo8(DMSEv6Z;r)BZWJR z8IBm;HySUY5iLuO+Ydi{_2$iuyfL!1;pT?-rr7VT=rT9O;yl5aNjb^wEOjIdws|BQ zLInUD`p%;4IW(HFw__=_2%;GQnC4okr#8&zQVd6p$eCcU$nrQPF955AL+;lQi||%! zb&Q9JFCQO0N)gk}@AvsogeJf=AYy7{3`+4^~Dk%R=K^+BwKHhQ*Jb|o(cfl9bHLpD^tvfyCv_Z)<;qRttoPI zu3CQ;WNB6@nD|2W63?m6V7o3h)trCl;I;vl;mR&?Pl}y>$C|SJuB>i2*aUcLcEjY8~#zioua!>}~Y*vFHAmu13yN~WYrl?&L6#$HW zQi`p-M=*ASNde;;6RPxjDd=q{0V}-~rk??P9*rP!11SNzz(VLs(h()leWbN+?4d9k zqv&_MB^RHw;&TOL3i49iLK!w>I&|NRF! z$0W-T+j-B3^^%pyY_uEIot01T4` z9lY_;Sg1|;eN~)xMWsuZg|zjMMrb(9im@W5rxh-7jLJaBNznJ~ zay_q(v}TzLqKoy96=j*hmzf*~fPN@hR{Fd6tpp-xS4#{QSD4aik~m7rh2#tn<*E^{ z@+fdFWdnn26>P6snfVtCmaUH^fOJA%Z>m-d*sCWTRXj|Ge>H%`n$z$!Wn?9x2^=J0AP6}t-?_v zHk2J12BYxO2ld)aBu6KHHaZkk5DUY~RDzbTJ^`@JeT_`ga-v#SKBr!$2{Ijl;LUSB65^H_ z-8-te8L*+9KvAc6)ao2yj0Zd>m(@!6M`QVl1KvnAie3y(S{u5H{E`GQyuHk^;8~rj&^izdQ&lI31ro1TBT0hq?#?0Efd#K| z`MmO}k!Qm^7=(P1v9UAIyaDNNB)*EBi)3T!E?ehQZTcF^7odXs%n{uJXg!QGtplxW zo*uZ9IRtsXVyjpa;wV!w)&yaYJZJQ42~K!ROoH`FG-)a(a4ZXFROU|zJY+s+kxQsX z>#EMk0whopFLn-ToGDYF3Bcp!5DWJ+9%~9~YrdVUxPa$jz{g%J z6VMpjD6s9Wv}r`7s`lKatUR34k-%Dz~Kxz`$VM z&w?8)FSA%j0M5`GU~H{8%Vhz;**S_0Q50#xv{GrRUQ+;gI_bOih%FUu328Sy8!T7G z?%*M$Z5-~Y9E)Zqa=M`446K!PezCr~-r+HjBe-R8I)(W;%> zl*Br*f#72*asYr&Ob-Y$nS(*&-Md>!g5?0pdzN^j({6y>?FDm1UoXXD-d7GLg)u3Nm1C*&2u6X?tB4dA5E(q9y_qkeu5^DrW$2q5Z{ z0ALDkWEEx4G85M3DsHVZO!Hupk2rvo|Bx`82}_}5nRMgiCl%xf@XM|NhMpd=-c!3+b1-ZiPZ6g2FMEkm3CQ`FaoC$g(6!J6~WiT>_a@AVVM|LJ^c8 zQy?X>s;f}dJ&m638O+X)!R)^OBm92+bGPgFM%DrcL@*c(dE?qKcXKmEgWY7QKWyAEe2v3% zVHFFFd#cRnz1#5kZ9nf1EuuK<#vDtu70?7VsLRBgQkLAPGg8eK;I-`S1eQ85-1Mpe zCp@?fq;02nH>uc4==J-w=Q+QBvJ(trB*SgDxxd&4$xQo>x#7lvx_?TBtNX~RaE)3cSgSnrNw4pqUeR{=}{f8u+-=e zDUG-5F6z8HZ530=HW9QM316%BN@E)W;7!_n0RJtDa^DR+NG;qy0eMg$WjA*ytrjID z`^wQm?k%n%O6w@5ioFmgUl_K}ZD*I`ydX5xxk|KDRaQ)bo~>Q!0S|4hH^!v*50BSA zm=sPg;ownBj_S+Q{nRUC-uHUriN&N0MGqnkmJLPhgSg1{hab1$@zRW=5n=5;OD9Ew z3qd%CR_J^8ZDpsk2f(+j;_ak4g$_Q5GP8$xc-j~S-`+260l>LI91YA<8KT9`LQ?=t zC7*DP^AKTqx8C4ZlLe>>6s2`t zOpgItv|V<=J{`yPkYCjVi_Td(!{<4q+oPnJL*>Dd4e(HmqWS;~mWbo394)3>I+Pnt z$_juzZsE{0!^w#|49@>8jBuNDupek&h-04tcYL&Vh^yXecfYb#S!^<6O3EF6cLT>N z3x5mL0bNwq1)J?o_EkHr>H;FN`shiTH^&`oJqJnQGTmW=cXU_$r+`;t9(pF#Ifm5b z%asYE5bG33218#|RI4MWab}5uij@F353e#Xml|N`p!&6O5{#(o;nc5icUMd$dqz|p zT1Pk_G^Gk#_UY|hyVRf;bFpj)^cwr<`;AyY^^%L_)=YZoGN&|(gh(%XcTW22K?yo^ z(ZXi&43?d(G^wc4_lJ#iGsLY&9?YYG5THTcq>O6DyvM|8BX18?(eth)8voB zNCVN?X$;O>I6dY%5w2@GJ=eDL%_yDVup@Qa-KNy<9}e5K94<`nbGQV=*vjHgfJ)g&!!4Q+>_Kh$yC-ilC zZJ@q{0h3Qm!qRp>Zj&=vrzuLn5yX)OiVq`=6qn1qpg1J}+*a~P1K^*&elP$&KYL{u zj0npx&$o02W&vrqYFFZ0{j{^|>FrPd9@SoT)H9CEWGYn4kdoJ851qD@0l+GugR-{l z$^YxW{`~gs-2j_w>$=Idmlwu^Wf7x-9x)-Z$sE{y=R|uGGusE@n;};@;Hv0@XOGW& zzp$y+E^YaYhU|FbtCxPOeB-1uttv44$KW*kuFn#qN{P4)h9B4a2iJTZng-PpDNUqiT=2cCTxF{s_wh#Wi)!_N7&`T`FHI5LKsL z-_q#TBic%}R}Y)_i=LvzCsV4i3`f_Cs$tIIwxuLgO!}rbq=ys4DN?G0sQ}n*_F_&~ zqe`J6tT11T-UWb#kpn9aiN8u)dS0Ud2c_)Lyik%Y0xkh|9b5W?N_aPRb+9Yl5^I~* z9AUQX1|1aQIO+EXipB#GmKwkXsz+JPo9v5~W^8o)o+A#SxcJJy9$=Q)3S1w~O}Ee9 zBK!CZYYD#1%!aiLB053Y(ZFQ@-g-J;jK-5@U4)?rIY=x;m!oXb6t9lCp&}IMbyH04 zihQK1w30fSd*g0(`U|zZZ}R#&fH!s$Mh*VWUYZTQ^%KHdRoB?m#VX;9C2JCC(hR;__3WW^bFB@XnM@c!?79HP* zhwXp=_dmXTd1Ih;e)011>g4?Lhs)7RFf7^}^EOZ(8U^3G=u_@YPNGCVYtmoeaPU?@ zf<^wY>DZL%e5yVIV5JipWtS@!BT3*Znk+EbUXGFA-+udScY=bfDx$@M5oCe8X-?_g zeI$f=78+P*)Uq)9AZgt~2Pes>u0KlumqS9hmF958;;;QGWs2>=dAl<>z0dskoTA2Vnd)>U2_ z03104ebc_y|9}~!=s>;OezH(4BQq})Rt8=h?69_$l*LxXKPoX*)3;Whna%__%Y%+< z>9`x8*!C*P1Q8A%<(r&XC-Jq18BlVRAC@i3&ea<$M~`{{eB|r_74G~uDw*iNdy&JK z#?E6P5TIg$n`9vYB>Lwj*Yc8}{TJsiv_eGEN;FjMnS$Bxd*~~w!NJkmkVd~IZMD3@ z=>=d+pp89~)_V?Su(Ibvq7lzZCraTuif9551Av{M^`|@;pj?Vuh>pt_Nt18&)0F2_ zqG?w};5Jm4*%XTMs;R%r)G4~N*hF{nM=tL&^fe^Dxoc;3J5%GUTC7#)zLo&6mnEmv zy&J+68&sLP=y=G|$SAO<4DTYOYL#b0-}9HJr~hK>@p1n@|MTykKEAOld%4Sz2i*D^ zsNy4+GfQ4tY;gv5+493;U&uErZ8yTnoM(=GriPR>Tqk`4&jA3A;<=|KQj~svzBUs4 z=FKh6ntueqG{t?5+@`}NV}4wvAaPNLff4R=1>H~FJheL$hkfvN4n!Iy{oGC@>~-;Nk_2VnEQUe(>-Z; zsW&>@N5MMjRR4P1Dju|rH5VZ*be&`7g!@MrTpyQ?G9hb?1c>q)NUTQdW%~&d!+oo` zRQ<4OyHNpnXbRn-?@T6N3V$XGuVL^u!izd@dS|^#!fLiG3?gT@o9Dy5F``3QA@8a( z4MY8&JN@cF1Y3%%!1V|}OGC}8QHzrk0KX2KSi zBPOpz&Q-Ta&Y?2&=mZKyGq0no0Pu9+5H86s5Nlfy4yr@n9|MH;!*52xSpbatk}bN( zM0nLe5obaj0P7lqYCGMxGH>sYqe(v*%z^{JiZDtq$!0u>Lg;3~MK0Ub<=MsgiLGV??bT*T@XtTLx90``Q-VGQ;56a7B1B8{ zG@G>@{=se`xNLx!&@~ifx1{J7=78hI&Ul{R-L?qfyER~(4d9t7IRM%LGZF}+XWD}%?@oen^e2P0${*Wm1hBP1@g)@18(n@+q-40{YI(zX?u9w z=sy1lfU(d@^xft)Yk7>+|K&Z5Kiw__{P}iahdFdB8wlCzXV;B6U9SrdRz*52pI_v; zuWp1pA2`wC&JL!Bj*H@wF;_?Sx>IHq^rLB zx~F#jCYHx^qrvC$(s8$4Sm(g52h>cm1UISZTLHK>ec=ryr%3J`olr|I(^h_-T@uPwh?U#?+}?r->sd#!ue684=z z7>L@Fad9cJzVKtYtZ-#?BAq2`tWzQ^po>EeQj)<83yBFtbA_FHU2==m_Dk<4H?|{? z9A$B6O}=SdJCDX`r-k-jsrVLE$MhiFq!er6I;@pEw&2S4(@W63^k|;^0Dw87fFC5m zjPzjcXe9XT>^saI-@kwOKmX@HUOzvLt}YFIZ5jHWU%b3>)s_7VT4<~#?cU_FMzM?_Z1x zQ=n$wP|Ybrv>0ApF_om_L6MYlq(4ON);1DO@57tS0QmLWn?^>Jz1E_3d#UxL77Bos zIHLNEMvt=Wywa92H4rf@CmSrpS+_UaTMrUY)^9EUD&kkh$Qn5vNQ6|H76Z=vQ44dY z$>2J96;{}8MIvC9)g|!X05~y^31cM|58!-A`{0qyJtHCQZb{cxz23@JRU#hvLRWrS z!Cu#Nm0sqLADeOXAa-fMh5=m);9&5|&Y7(uy{uHY6K1CyS7Gp>yOuTPacf|pVAt~( zFn6u!1Yq%CetnU8=FZHSGiG&u>AApsLzBGpp5;jM8v|GccS}5j#y5Li*ke2vsQcaa zRMUqpuVz+mGjZ1~vKBhFcf7udE604b4kJH1;wgvXY%Cc+h z_P_k{@u#2OZPqiXyTN89G_>zj1{7ig(jM1&Lu!@dL&=iEQn;%Ug?&J8-`_pGK6JY! z2RsH<@>c)=5CBO;K~!)TUq)pi*fos``=1VXA(_c-A{1rbsT6ZyosFjIG#aAYD>vz| zwiO;#%<&&KZ4wWzoUyn7aJ7%%Y%XG|3w5%{Z_{|{HvyP`0f5zV9^A&)fnM*yV;gE{ z@gVYVAZro>Hi(5g?jME}vyS!x#?1rk@!HU_7t9d5ja}JQ4D*@-_U>1Dls_s#r&uf& z80@R(?Nv7fW&CL?(p>*k>jwg0Ep2Z2j4HWrH_pLMA+Z3st26IQ$Y8JR{09JBu``3) zBKxl?PE+tw)v84TBO_(mcMNSW6BmaX>DmQM5bbJ)*J;433ih`ExbwzJTgr~728DI* zJK(ZB)plOPDst7e?gp0k6-^5dZUYma;&%OH4nTyba_yM1_AV||K%pLy}SyN1M@#^>0hbm4%!d$8v$ zQ!l-8$R05O7%qGNxMs=-rbV@r#$nod*4d;b=qmtbd?j_!)jxcUO_lHJIFJ~tJ;&V9 zN$`)h45$pEK74rmpa1#yhx;1?;M4Q(40jEEFD~0;t*xx(o&mts|Cx%hul8}IBP2)5tnPX!&%efAv^lg$hg1 zzDEEoJhsos(AP+?dIy0$nUtVWT~5bXBw}5uf)Gc(8gpu|G|)}k8BOBJt4n?z(F(bq zH5W;LVqprK<)3ccF8Py6nw{B`|Lmb)m+P=sa`2(pNmjckSyjlAvysS$buBduT&q;L z@jrrl^A6REjpD6KrR+^(FzL9)JK&}XX}b=9Go{$JAhc`~w;B=$tM1^k;o2H=5l zhn`YZZgYM0^AZ3xV( z*LWwTNfwrn%8>bg7nu_{edX|s3Wi$vRf$-Cb7V-{@YI)f{JWxfZ8MAdRMJ^=%e`EL zLVw|}(d%k_!d0d^!NGtBMdrQ(CFj{IS#5-Sb5Tlj8);2360zF|(lk{jCtkxC;sipk zUOb<3{&g*`5SA48d*U|jHp+MgIJ+^mO_)*{NY^Ry@IuOD%O8Rb3{<~a;!9Unb{`J>SU%!0ZtQVBl)5+@$ z0G2tWVAwB@RHX4arD=7G)SIvIFf|KW^3~JMmP)VgkJ0jxnn%ZTB-*A$;&ofTPt|dl zreIf?Wrnm3Q`lW(ZmKlhl{%6)r!h#2f?#VqK;H_$Rh^`%q$>ZZeMe;nRSc-5-NBzC z9oYd`iAE7>blu~K{6wO~W~GXfDgYlZcLM2N z{dTPKZ>-<##xH@^oqlZ)~1gO+G{hZR=Ei!j` zrQpKqViBWdg|nj21At@LsiaY*UchJ9Ff!fGG(t-8nF&kPoXdaBvCwKTpU;^>VmE;r zHIIn2YIqrw$~@K3yr>dWQw1Xkp+8X6)?svaKfk@3-P}&S0F#+T{xgO5%VK?sFIB6o zYR;RFLq}1F*GdLXLhQypm0-X-6+G)1UzeMi7wHZ@7F;(mGF{>5av?F|=d;i;xvLc5 zbawWg;g*5ZPd~l;@BjYi?ajV1;IkjJ=(8f6#u>(B3Y zZyy(5-!6aqy#Moujj!FO=f%$-cVFLc-aXH4-5xIYo74Nl)h}P}u6I}a%>`SQ3>yyr z6YMycU1st8nVxEvnP-0jfNdF-fB*jBw_m?LK3s=)w2veu13vd&bp#-C{Adryq?{o% zb?G`3#0SwkU~^TA{sCaVGW2vZ$J)QGcb)UY@g!0$d)BE_PVs|O!Q+1vTHu__>&3_-hlLs_#=Vs+ zLVl`SJOJQWX}<9Xa2xklA@dj!{brQ`w9x6qibycK{GfsS%=Q4gUgYIl=BJG&LcOgRqb3KthWci z#mBKHWfCzRU~r|O>T&k}F*1wr9!laX01kK-UZ(ZOv^<}0w0rkCg_70aNv-%P!l=(g zLnKwjQ$ki<;G~8VkdH$4y18|3vLqwQIG&(4E{58T<|aOY)<@92s7UA~RA|Mgv+q-*Xox>M1BY%e`4H zP!R*bwgkWsN4vqFfBy9U{ntOQ58KO&(;r`cXY1tj$5$sm7!_{nbfnJS1i{BD1zA_j z2+iG=(g1k5c=glQhp+E;uWu(G9w&yuKfPQ0@^Ss^r=4B?`OWh4MgJF`d5ZDng4Z?+e!^_l#z(vgEnq>~6z^p|jP@x2(Zy)OGKe*N|1=g-fK zS^>ba&t&9%ky5NEN@WqnB?XsC1+KL^nK>g$R}v*Yl+hV|GzPpe0FKOt$1sc}sE52f zJS;=2SPPmwV6ER%;a{4bZd>y43pT(8IZZ zg8_152_gfK)~$4~0j_dtc11&1&d*>B&$H$WiI}#P)nIJkKCty zrU1Bhg{y+Pd!yJ!__EzIbU57Xu!)-fq@XQQ55`@QfQ7{+~@j)oXH+Moi z_mn0M$JPs`OEmzhUSmCV3V<2&V7Feov&R@b=)4}6g{zrHy@4o*=%&ICYD}*p7IZSL zR(}QT;~4_IYPnVJn<3<*+5;Xi;5y5zMz1ys7!hPHVK-$2i`ABb_y@g*sh9ToUAGP4 zr(Rm!D*(Ve2himvg_`Nnh1zbXJYl(DM`gTFCrv})%X z&W2lgN{8TcRvOGJ#S3ex4vgyaS7aO%m-cWEZLuO0|OTo2l+-oJL^Lyfy+f0yk-2fd zO423$Um??)&Tg;?dZef?DOmC&+nIi{;>M`cK+#k^6_c>;d%Vi zhvoa%Gh0T5KfY~EVh3RN_S#*x<)$LC#4;FmPs;FxHl~XjOFN00Tm1h0yx0RtT25z%O3Wc@`x&dCktBUsz#e)lp|5!G-J8Sh>;3)P zYx~(+q|duZ+VMNdN9oMD_zo&}OXGamH<|NI)btVByq{sl0~k)vBh9 zENabjU@F-Gwm*~W3;}F??r3oCd|2o}S(q7I`}jm$c1tqv=>cJMx=UaV($DTl8j z^6I#LudDs7jnrUQ^umsHO(xX2%sL+ur`i%&Rzv#sX{qr|nQ_I}HdYQ<=0pRx4D@GhZS7z(J^d9g_2%;S}fBF6A|M>U6*#Tp4b$Zr@fX^>pw)t!~ ze4frvW{XqT`d!v7WB>4O$FpJN!^8UdZf5ZJc({7H9=*P~cyoJcVEp>#>gndPt-I0l z{rK@_{BS+8^?WzIznks07ZG|97Tn#$aN1HT9=Mgn5pp+;l}{zHlR%keZ}M-yefs?A z{cZ%Ut4+h;s5!ZmEP_o#64A{u*R38~LneT0`2?s-74(W)v}16) z#&Fj#_~G4+LGLjDOWUlrOBz*T9JVUTM|5F684QFt0JBA_>S6(KHLktt^*Zob=h24Jx8ml0y{+ceE0l>Iv78UefTIgd{7v=5> z?HX7b^5A}tnNoHD@NrCvNU)|;)(K!LlMdXHYd3cQz;$AzbaOiaSFS1b!`s`QQo7RU z0a>Z&tC7&!_f4nBR+Tijp=#6-Cp9h4li! zcG;*fR~i5}&~+HL3kL`0HkOkEa(wz_K(1uR<+nqdvm(NfTb3J=7u>DZ98r|^e^Ft1 zpAo`?2~??p#7cF>ufW^~;I=gC(=J5#F2&&?Xaz==LbrSt8vq}M3-pb0v71F#+YJHm zAm8wtv{(!^cyQ_d?u$cpot%zGDGQgbV*u{wGz3~#3@-jzTVj`ZCe`}Gi{wogJ=i+v z`SYABGp_Y;KB*VlY-UVKsQl9KI5E?wo0bXAqUKx7T*TYUaH*dDlxyWn|2lQoaG z7?1Ws^l${O4l?P0slUng%(DYW&Kd*Newq$%E0G5ek zMc>KfL}3QrL;b-Hq<{VEFUEk^tNGe|3Xxt6mPxY>{AF=jY$K zr{@VSxGsYH1?M8M9M^|SfnJSBam(2 z)x*<(%?$Y3CFM0=TbRi91p5=0`j$2nAEH+Fz z8kDM7D*&$0TQT^Lz?eS`46`J{iaY07@vDO_>zjq{!KzkSLgKn=ncCJs>0OK4-Sa8C z4Q^RwWzi$21YHBmIM7*fIa`2XY_x5C%0}U(2n8`*!V9&@zJD;Y%75fAG z#MzUfy%P0wcOgT^g8?w;tA>SKw1mDnn-mqont9F{ih^yK-CW5cze=v;!ohREnfws$ z5KAedH5{BBTn3|q_$oX&VLK*$IUtp6C^n4#*`96jn^ZA;DZb8|AOMyxbi-YSfNy4K zh7~Prk0O_2Fu1+dqyXjYudh=dqJ4#s7{sz;&lvDO|MAz=a&~t5^5pb;CV(3TPfo53 zx10wXSQ6d5d^Ih#a~B^h%nEnLvBzTB)Xuz`!5E|-k0HkXT4Lq1K{gbQ?9QR>@4 z>6@=lYN1a(py|x#sa`^V?X~c7kUf9;^zh3s@9YC&T$r&dk5oDZfT_~C5aC?DUCfu; zbKCC60{~WQMw=(U(DIRt>F#a27G>u(>)K~b+o%sBtk(v>hwG=!<~9lT=Z)6nr@HbFQ@G7&VX1iQ?9i3~3n+I(CD9uXXQ!^|*F< zd%+3SMNfrgT{-BSRS{N7rhEUTx+U_cd_Il)M#N3(hxHz6yr(+e5k=6dn(mmWidH+t zUq_&?+tAPKRAL;_i=S(ixpY}mi8aXpXy0bQY6-?d)iTjDw9mSI?%ww$iX6U6mD|wK zFfyZx$YkxgNwYu~2m7f;r&w~ac>VTYxt<*xCswuMbWky6G`NiAq^;^b zUSk;i_Ot2)A`57?P|EVEE|}Ut2!OBqx5@p%)B%{r{Dd$D8X{=%1ir#4d5mVr|0U17)=Icm(^qq=#2q0k1C4oX+#s+>T~)a!C-J3Njm-E z{4Ao7>|68u@1H+@e6nu}^>$pb#DL)g%>KfFrNCo8baYkI&E!*ld9G#CnPSN2L8E%Zg` zBnCWa54WT|yPP%51~AvN=9cUey|RGldZJ!%md%B-5fi7|U%8C<%l^?om+~^;I$w>2 zwf(F;!{C+Y7_Jt(nXTo1ZVSvC)RqN@+@QkJ;5O>W?$UXRvTY~q>h-XXA|?Ft;NiZ> zxsP`P!q;!EZ}q1eBnyCfZhCaxrc+iQ0WgQ3$gH0Raa4t7ZR?}CnI-t}agqV`xLbPJ&tOJL@89jsF7b0C07fS!K*00E{m*f5nIj?rT5S+bewp z!eIW98)Tt~VWi7ig>LXaK5y9!qi~%>3vCOsYq$L6mk+=F`t|;9A7W|uwGIrPGZuU< zM~-?_@H|se9-&DbJlZ)Cq|wm#etG}Adw9LSZ|bT|1T%yXIz(7EZ8oWCq;X_~lIDJE zS=&8SKB|`yeP6y8J^xgHySk&7){nz#m{8tCEH|`Rpj&T1r8>rqyu(V>mv91^b?iO; z*BiqNq6RxDkl#b)uk?>?(I>Wl;lHZhs=993pVqqwF{CIR_mEK6=x?b}CoDBy2uQ0! zTcNjdVzE`t+N#D|neMT)xI&(6w}DXzjHTu^5rM~0)<7*akcPDf zjq}B%_GQ&T(uvG37!kShGu zXV{_jlCdZmeQY93cdRm!9a;v!wgkYSFE&{2;25bv_AUG8KmPi+fBn@C$kEj)08A($ zhLjgqKen3f^c5{zUzcf3)dS%8LM4)^q^#7VrnE``_Jea=s}cD@kD5ezdvy%J%hK33 z0Jf#*1-Wwoz+@Eu{`(h5aFa=o8U{y7l20uoN02Qg9cTd957)7dWC^m=zo!##+g2mN zcTekw*W0JJ*LQ|nMUX`#1GwuGO5qp<@?jRu@ldn5w0l-sLmK+_a^%uxzh5WU^pSH@ z%sOP*!ID#S$CXPg0aHMP6KH-(x}?Q=LhfNFBz7PN<{`WMv|HLT=v{6aY&*UNJPUx6 zC2t_UV6gwXM3B{hvv6hI#%>SW7AvhR`HujS0{bpghX-wJNv;O1<=R&s{7HyAxSaL; zZ!8Tag&I7n)18z|uU$oQ@SB$z8x((tO4chIet~dfJh`+507H36pwrL6LJ-01Y+$PE zeigMQ#@UxdO^VTRCu2?!?Tz0s@zZkw$uB zRe+Tf+&Z{fw`e8ha(epaYJ8U-uurBI^okqT6xZ>kw2JDBZ>{pWxD-N>Tt zfDM3OoqXqE3@5fA!Q<)6CWM}yEEZ=1V78|!LGx1^&{|lkQp#3O-d+X1Iso%YDGWF# zf}9@*o5vFCs_MV^R%#%4+>rGZnlf9AB-y`w{`~ysKfkw~3a_{O3TFx0r3_a&$JKd6 zyJ1#nvKGnd^SFwTk9L6FO>ZB92S2_!7!Ni8RzDbDj)&KWFp6^Y1$O~LXQBqi3yeJT z>pWpApqX_kv8y)-S61Sl0ZMaqe8EL^f`js=6LNE8%rZ4ST0zkvqm2fAU#RV%SIRVS zd#oy?@)oi|?_xazgZbZ;ZOHarYx$6|Nc%7b30YPLhoxIAoE8kLGF;aH7mop0#IXZl z3h8D3_*mXGsB#|@-}<=auc)A_Lc7O_Yn+4rS50wcIrrZO8t`OC4n0y{(D4O;^YS?- z?i%2#W^m-Wy1Q(_o;j}0D&Y=_z*+C2Og#r;2WLj)QJCl1nWza;W>?M$E;OEjqLRy; zJAhuk+i|M0${?x$01yC4L_t*Y@Kgf8J&v?}=i$WF;SY_a@<%g;rY&BSF?$8wBcbBe zMTydOfBnhb>f{v+K=#O4e=Y%{SzE@`f{bxzOYc71e)x3%`t6O^GnYwuyR9_37y!6V zVn|X8`r1Y+JT%tRioObk)hH?p1kE9|R+P5K!e@~a8GY!egnN<_5+u5|%J+ap)zUW? z41FJ;4*+oF2>CrD&Qi||BWQR(&&1DVQ>|b&{e%yhYN`GV8$K?a_|~m`j(vqeSgUGC zDU@`D0h7mYNXLJw&DR+KEc!bD;3Ax!=R4DoECJY#w{t8k#8dN-K7j$tB8nsi!zTma zuV3CzCl?pzFNs1j^u>r{G;S8k4UiUR@}*janE5hyqTN6p?}>_4Rmq5)!d{DaSjU)X z!t6V)?EYxLb8c9J0c-Jcv_B@BL6gnr=idXs_G0Z*`}ya0Z{Ob8w=!piUkQMjg)=&C z8v=WQq$^T?meY8;nq2uaoEE1VuSMTZY*EQDxHSwm=mmf=g|?rMZ?4J5C8~ic^uC)O zZnw8%yBT?g<>V~v0<+YtG$b~cLSMCJYWt}j-u8al1tDu;z^XhGO<#di+;q?lEe6pW z^>ih_ilQh@=rX{=Ee(U`tFis;O49{^_r-sz!aRS9@t!iXs{%E}a9dpCwdm!1JGG_e zv0bR>JE#wLyf%l7WdJh3+ClrdUULk<+7Jj(xw8LX>#UzI2{eSz*X=^B=htquHX>v; zGlwk|8*ku?j99-MjV~xTqq{*Xg#MW&XNE?qx;*(P8Ych{d3J@t);#yx%F~53H`Do2 z{Im;pOC#b}cDfn8ytw+Yg_|n=-R0Ti>B(pke~tc-b9erQ9GHvCSIw3F{N(cDl%Kg? zkx1Gs@%+O1*^j3u-`me@&`ceySqVJ4&6Yx(Xv=m>Uth zeVT2zl*aJ_;B?uIF-k=5uvPn+rqJ!-?jBa;`FINrlDDoZ>!Ja!`Kc5$r=?8S{5l?= z?(XiddDRkF$-1Z-U0rA9IhA?8l5qP}V7V2gLbW$YMe z246ygF~L9|z<^l;lD-5|Rp^vMqlLCD1r_!02}hDChXJ$Q{?n(YuV3HVa}x<30PuWy zW&m8`jZbNp2!M4K%Gsny=k;T0LKA_~^yBm1Fqk1=e!4T|E-b5@1Y<=RK9Mb_uT3$b zc%Y|yC|0TZ76|wU3|P-cg9FMjlxwtnE8)9fbJ#uRV3M%2rWW>3`b&Xs+(Ur3mxYf2 z81D`+*ifW1n&uy?{bW9F$M9;rZl7xFA;g0nx}qNp2G0x&yfJ(%;{t$tb!o<&(i$27 z9>DE@Mt8s3LmUuN3XnZxEjNnWvV=8?;JR(YBUH#sYV`|?Ggc9sV`L_7<9_zA;&V{HsqEq6w$2GXM zGl-o>Smc}f&fpxNWyAsira#2x_|?(+VsvtT_3HBK%-F!$x!v0M%2O0=JDwUiKBh7eRUob`clc= zCbC34YxDMD&tRW|Il~AZ2b}b@qVL-RfXhxrecXnW-nHfZqy&wMl|d9YMQQ^Zl0=F4 z0>HL%{`&%G=NkXh1p^*-=0zGNdYY}-(SQN4T~KnWSbjSzIm^Gk+3oi0IIe;pcc&*A zd&xN=v9`1RkjHO3**Uwdih8N}8XLZA*$mkyj{If^9%N862?lG}rO2PSwP>!t{B3bK z>SWI~cqexi9t664h$n)qKYHQQU&11LGmr*t5^T)?Cd)O;K#@P|NhT^GXS>h z+dlH_r61d^4a}}IDn{NJMNF3lTTCTI)ULe=!NvX4%$DtCMtfx~D*CUdw(_XxD!|eE zF92MdM1276+(lr(U~pE~WAN8@PCxzh?%lil`Rod3%GNy2611OTPQ`$2*`aO+JQWw! zazd3I#bJs!OKtV^skJ7E7orV!4OR_+{qjC6tK0}$&0u~~verhkhRCrYtMi0n-U48S zy$%$S-LI*F)?~23C#cMy8b2h=U0=9wnpc|T?1o47xd+N{-k9O3VyfeU}Spqvf1(YG9Lt0!5O=pcgZ=IoXDz&rK;;ym@4Iwx4R-9 z6#(Xi$nA^Q*!fCksw?A3co)cZsM2dcpDtv?actm>E0&?}c6S*;ht~@U00+^QD!rm4 zNR!cSiam5*sj-sAwE}RW?@|H4FkoOfi<3+B!c&OXP0&gh5g74u~sru)4<-qwI=+c`Ld@3T9ZfuV3n!WZma`B1HfxyU_ZZmXSb_bOLaBCgT8BY z@ysgcD@xFPF!ogv4tiSO(gX!`HN4b#@XdUAn2L!G_-oS5PEl;=>l&!l=15mHfY{^f zbqzdtkri*ryR=ym{8xPCvi(bRm;I&HvU#%ndAGCS4T(1)O7Rty^;x`N+-Sa-Etd1d z-4=thSWf-t_=x*XnQgT%YO!qX>|5I|H37KZfa|5BHt2=>8USm2qE(VnKc+W`(02g9 zZ1&sPVcFJXe#tT4Nl;uw zo(Yn%)N*bDaEWs$W#@q_3&TY%@L+#MI8s|-aoP)<-gi#p4Q?q=s}`+ftzg5xOUTI+ z>>avQ(({V} z=di#;GRy(}jiH@H-gbU$7<|o|Tm%EVUFBvV z-xV0U7nS>Dm9V1$09WSi&|54mOH=l^aclPs-&Gejy)!o=;(w&58r<_A^?miY^{Lh; zQ&GHXyXyN~pLt&HEIU#u9a1&DGXm^Zf(C94fNePv2lUqZGxRrNI30b_H1+`4wbNiK z!fB{25X&t&We5Fr0N^$(;omo*R~NWJo;$8)tIM{Qqv_&mz8V__Uyje)ay|{e_e?$8 zVNC0I71A@uNnnp>OP5{N{|p`3;?v>7;!TbseAXTuj01qF zUPv3yrx22#3{Iysty2uxuic6L)bwx-HgKGtw!W!5Tgf^@wk-yt=~3DtC@N?Pp=C=+ zN{<0>t3qc$p{mMdYWzyh7$}k?%krFHuX1M&5&*2kVkw^$wsW|h>~F@*n*zXE4$SiV z94SOk3^=>9r1)J_>kL(E4WdS)SB9)_-`@S_fBgOZyC*wJTM61NrI0d_b?7EoJy&VXn!p0@iD<&d}F> zWkSh5k5%uYKmBl&UY4TLjb3ouJ}9&sl5PTNoM z+74^|U!pEOX!IsFFkllr+jhbBRa{Mdjaw}`3)(H3ZPqX&2VobyM)B|Q>}oV^@^9zF zCwjtx#4e%^J$BC28j4Vy_q&=Jt^@6>wPEej9)him{$$td;I1-0_aTQg{A2YOBEK`cP-_f) znru@5;HX{CLMqQ^ibu4n(989Ow~d)j8CQ!<@c6iRD{DzAx0q=R5;dHLdZ2xoTLXGM z^mio_N;ol58S>VsvB9o93cb3*5iFU7aWN7|!++ z{fzoEQ{CPSPQOo=3(-DTM?ckJ)SoXjhJ;|4LbRc*fs-AI@83WC$G`v02qFylj9DaK@rXHew9a7NIub*dL0R3qT@;o@)adbR zzFF`C=|omWIw8YIuxf87hcOoFZd)olGv&-ou)PEW>Bq<2&p&+>3FiF3FmXLg=~fyD-68D6V4cZTdeS*;K98{gI~u zMMjWS>(wfTuhYo78a@;4pg2MY;Daq0QhLDvpXaUqN`!;haQ7NZro{_pMnm4LI`dxT zl&NMqW4Oh+FMXyca4kkUS@R_U!#WwWUuicRP-Iw?pf^Bw(w6SQfDoOhI<>k_(oaXT zQ(M!;c(I-t2^IiD?8M`%oSQN@nCj1#s&)5-qZsb0>4-A*+BJv{m;u0suLimXcm{Rb z-Db630>Jh9=5>Cv1$~XF+oCa}5qP@>05(t*0JH4h4N8e&5cap%wI10y;^XJ1PhXzj ze|)r41~pzD*Kv1kkG|clfMf_dm)VXe@t4nnPmoPdV;gDA(x$_mbLeBuoz`Vay1Htl z&cgU=sh_RnU?tMvLzzl%PUTIZs?lELJk?c=Yp56-=)Qh^t@wm0gvJSVU`Srze5Uca zOt0!dof32kwc_F0qhz!kUA?SG2mP&{NBk+R7*JY`#C~{x+Qe6C&O=fc9n*6yFv&{24$ZYNa`lw3Bf$~LK`ic$ey)(JDx5Ye+| z&w+tVNcJ)-$>*R#*p)#~Jpj&x;0C}%B-sTv9QNp6zP$PAr+1KGcE)j%iH^y6`fqeL zUh>~Ss;$vm2I^D|&dAGE#o$9GT;XyR1M9Cl3>E{{uQ3ilnpt%B$7(TjW4<>r$bidw z%APw#v^;rglxG`XcGq`=BRGLn&nzyi_mj;bc(D4ia7`782Sir5>nEkPL_>nxP+S8- zKK{fMvZyU}yLNkzEVMgu0NxG;cJ(V`NKFX+EypVX?I1t6W(&4e46wL{XA6Q>f9!Zg zem~#r4R1WB0SsQ|4XRCMWxYcp?mGi};lwy9RjKf1oTB#z!1>a4@|WI}@CNSiMW5!5 zwWrM&&2{tLcdWD%W(Htb*vG zs&W1Fr2WhEa<*(p);hsa3~waW(8y@0QGD5Z5ifzU*J3_u?mYes^)z^_<|vf0;Y|hO z?PMmTJ_Fv=itlZD6}zrYQCt?8CBigwbF3vRJpuGvi?ny4*u<3l;+muIYye(W@qoPc2c| z0oXqm-W=Y6c=uM_yjc?KaTULm&0N?x1HI{M(fX!F6M@gLO(?0!)dy{$bH;X~im)op zEz)RA#d|5#j=R{W^zPqBXf8`sSLZd|3ySb(PJl$x-myISspRjH&2>FS%! z0Gqm}kVPK?{()EmD$E9BA3i+(^B;eGe!8`Tv)L(URV*u8R)zbKK-7Qu5J@72(rKdyQm;FSCl`7~J zkbL8w&sfkfJvD0M^H07l>eygmZwtp-;Y^4FDL^L}BfK zFBbG&52!6Ax<<}?!Y5FN%bxNZu(4mria7w%yR-EUHQgl4W{5VuELPi6XHHtVscE~a zP6yUL?6i&OvUUBk(7H;%C`}(v19yW%8JD!uyi@kz+Z%hk=_aJz1!X|Z>*~?;Bz5R|df2*_DxCkj&tgqPo#R3hb1`4ME#8L4O4Kv+wix zoF=jTV_P{BrNLsRFztWsHU^5eB19o}cC#*?I%)|GK`9+a|JAQI^sNBQ%sc4YF5oZb z1U=qoG&0MvY^}srVfF&l+Iv>9-Am$gN@Rj(!MXcY`N!=@&qIh_JH}6V8-0ZVi~Wqj zr=pYBL{k}hp2~58M@cLEjigMOs@r;{P+m@3Kxs9Fs8gzH3|A9MucnR_h?%j_Esju5 z%gn{X>Wr4j?y6R~9dfQ};To8~P1cK#rZx~rvFPt=CRhNhldmeY>e+81H-28eZc}m7 z?3gw!6;feacEJO5f3Vl``SWW7;HSr%=E8A;i^VIH(wb#=)xu@^M_vI!VY$^+Yp2Jp z+<2;+4oCBHXGK?+-8sDj@!(LOZCXX${t+K8Uso_-nR3YH8lf3dEWHYQ|G$2H^YzR7 z>%-dR&}TW4l%p28IMVtq(2UqlG-suO^6C;g@T-CW(^jCo5n0!FtH(FjhP!lyQDfbB zBtzFn*iDx9K+Z?2$wob?hFB!s*L8TvN?KQPp9G(Tf-jdaxLyte%YfT(is- zoGB%+(hM;SSO6TC{pUIzkNIEj5Yd*`p939n#8j1)8>4DYXUASP5z;LR+5$5r0|I04 z-2w2&3+Y3zNdIxz!#54HhV}5iRb+clC;%kE9YAlr(7l{?%?`M&G`ezMUexvD{>5Op zMbI0?u`J$-9;GpQgRu&_T_xF}mlCl7aH_0FoWAKhhG}gAaC96~j!T3Nv&i)cFeao< zFsq^O{LJWMgI>oo0fy7=P(DL*8_>FBjOcIXed&J_sA-hc;E+;wRMZ#e2Amj_b7Vsz zLpWQP367EfJRo>aKxPI;7P>pjs+d0h|^%jRWe^K(aia<3Sx1IX6jr zCG|)2tGrGQN3XKGtk_RGWdNEoVve$&F96m=iX8^fg^$eQq0nw^+w>V0AC4w9*l0>>xf#o@GW-IOYYfIqiNVQ7qyO4axZz%tKbWDA5wwnns+-*|Ftep0m1 zxMCSue}%*h3l4eM*(-w0+e>)&?!L*P-`?4m6sw%p5AtzG8FARkmPc2D22fQE79o}) zbJowJkY0m8Bu$`NbM3WX)uIi9+vUe=5;Hv*)X$%xNwy1NWRbf4F6z5q8Jd*grH+Va z;UrGQ?TNYhWsOA|Bq`w&()z(W#T@l~FseYha^Jc%4@qDH7MQF?f{Pn-?F!d^Fu0o+ zq93fTtwHZ%w@5Roq23BYU#rkn16B78wGbVzu4E1AwWypvK-_iOTULXP%9RJ*?y7bc z2CFcx%lcKXD?xhiNIZO9LT+RBFRF*I)B!T<5BlYZs~G@*K~-h(-C9pp+va%U2;&~w zx)4p(q8r0ogcX+z`t7phTEh6Y4@fj>_~Zc0;;Ck_`iwCoN8gU%%A&HJt(+@kL=G;p zK*}(tDTi{9NY@j_LBCu0do`!_>oW3@I6ZhNxJ9iE*b9$AH~^b}Q~(C}T8jai<^mci zEzpZXZxxm5rP{P3RoyFjwF_0q9lz$*$8U*_Y^w30m;g?YRyQ5`t1Z0F>ET)xLp$pd zm^c%2l4qpiq<}#15{qO(hLLS4oKZr+w1mT}q{hD2VCaL8-Yi)Czb4;BB$}5>rpnQy1-b zyei|YP(64<>Oj%JPNZHQU~sQRUFbVXX+vKYMQpn1l{d3qFgdC&Amc{uJWHqcXvS9# zO5uQ!OcbzD50##7h>epU%WZ=N`Z`o&M%@5LFfXU#fJ~o5&>cENNxVIc;&UQgQ*vd` z7={h@yQIrqbF-_|<|F-nq@#wO0+6k|oI?N3PzIAuXUq|bxuxFQq)&-S6TD5R<@)`P z;no8N%w+>_gF1Txwh5>#nd`HM?daQD-4g+@aFm%MwlYCa0pMCLF1=nV-fA(h1CU5W z`AA@Po4?B3h(<`ssn5a}h_yGW%by|a*AAw=u$DZm>KfU|6zyA&Z z`y4P~3{5J*;2iFZ^W_ zJCKYCccsnN6W;ank7ONg?xfBIfV-3Hy1K3^!$s0d+p^OW zl{%;0O-@Bu3BSpxjXUVF>WI3&R9$En{4Z{~kk2Pyv*KYgWkN|?1R<*!cGExm&B!5{ zZD#ZBe7YV=JX3Pm*o&!i*@gaCT=~Wb; z?;ckEl7lF#%nl6OX}5NNZ7Y-WtnOpH?6L?miyn^nN&)rugbjfI{ic?%0n>aa2!S1k;PASqwg9kEJ1b{V7L|;H-U5c*&iG{m%JymFx-*Lr~6Ls~Z z6ad=}L-7nwg@4R>q?f#8+k_#9whdM$De+eLasXB&gLW0Q50b7}e}us+TKjf^j<322 zYA9spRa}-Dpw5L?V%plk*Rv?A2F+c_nJ15gNNth@x=64cIob^E3bFQS;3dK#87KspyrbjRRh02cSaf!DE ztkE$k0NC5N0l>1BJiq+GRx~?G>Kw8nE1!ICou?yZL+A^?w z^X~4`m*+R{ZmHTyU?M|&kSVA}H@qv6^IRq9qN|!`ff{}COi6;OUCWfC&LGucBs`}g zyL#UeH6-!^_`zVO&QW|uu62{$K}L@<{dcaES(Tvu*J@DODWZ|%($bEpdiU;*sn)dM zP!3W})x;SF0RGp%{$fx5;`}85ti9|2fQ z``oU)o!atU(Y)p;+p;U)zP;`~uiT2YpYEC$E^=ODNT075R;Ca=0AOM#=nc>37thbv zfBy4_ckk{Oi%Tli4$lp_@jRy`EFYL^hNbMOdIauEOmB{stY>tYV)`jb)umFjn6zNfcaWw~ zMOYP>nTn*yH>_Hx-&2Rmx1Dr31V`!J=%7wQ@S>&wxmn}VE3plmnTVw@8xpNj&Q(XY z)S@?ThBb^0t{Z~5ao>+qkQp9fiMt&YPHYyng|*iLxZbzg3Eu40GiKO#J)r3V-~kVg zO7+9KEs44xc9f%Em99OG*6-?y3bP8o!Dve%x*9e2p_dzv@to>huF`Nykeu_T z@sCwdU6^!}aS@nU(bq9%3Ib8uWtb-#y^}LzdzA-Q<(EM(=(|}j2v?{@X0kihJ3Fd0 zU)yQHsMbbbCkPX#ngDRp?uh()B(;u;|DN5^~mPqLwWegbkT3IMKfdp^;n} zonk4;O27{WI{>fm@3#iPbdFmsIwzP9CAwInN1Ue9pK`6&uBE~+stW;d=P8lNeE@J~ z_WelIrh$|FGywkj=l8$=_LBgZ93<^%-8hAH(qXV`&_bkEl+S4m(Vo@a-SYkW+sB95 zo7by1uQ$(6tEb1Mt=G?MTThR3zkc=l*{)gg>$|rbTW{a2fBxz5;eJljHvxWv?zfHA zvEA{0yn4XKebwzo4$bSO+l?GLjj^VmKfg8}Y@Y~2N?^0bnP>*f6>H$k1;_!nU1PQL z!&<2`Vx-mpm;tlOgVV1q=&XcaImJ6tDp;jutAtDpTlJBY+jU}1 z!ZGRiVq(}a-n}!!t5USvMOXyybXDl;kR>7^ct*tn0jsc`RCQqO)R8|!4kCe*a4(y; z^RA0&s$qg1X5X$Ws#OxXDN%s>uj8V01>;TUwA}TKYtdMU-aUt6pIKkdfPz;^R|Wg} zl(w2VKDwWQzU-(Fy_I4s7;w`ct-}SnmY^%atpKbZu>9dPK3iF=*Ez>BeXRaU6>)1% zR{&h^t=!KgR2W(*?rY#QnUCZJ?PExe`qOhmoe*dFe=%5`&!O>Y!z7Ly9h&&aEOx8q zejS&+S*tc`=QQc19*$s$rbcw|$pXMsj%Hek+XpWCv%-bD0x;&9^nhbX$>*Et5Cf1E zfPv=(>8Vy;8I|Yew3W%*t$XcVTQ**0h&goNQ5g4QBPJc=walio3E6NgOfFLkeTDyq zpI;RFV<$mlCw6kYa15SGBO|S{%a}W|Tivf9TVl7O!W2SP5gp)ht&0k?y_me9wM;}3 z`e#-daB2X2cegPBwp*gF27raE!d-O-(`R^|d4)Z7YfV?A1T6q=!>p@eVnLczGz6MX z&u~r_0RQ&uSL5zPY6^haSu&^K^{N11TPU#TXG@MGd;+v?uV-IAJ-mHhet5gF_5RKJ z{qxG!hd0Yl@7C{MFFwEDeEP8Y@NQ+leta9(^QT{beti49TCLBvyUQF&n&P(R0L+Iw zrk8As*N9mMFih?ff-G4>`-t<8cH`HtZ|qfn`0!xwkIXt`=#icTN*`$?*x7KG!U>GY zBU*}j1z)-vYoj^uUSLDnPSHTgTLuFTWtPV%Da$B=SZ=*#iywRQ*jd4SYa60!#PW0L zB(a)OQ4EPOY&@&$Fp^>l2Q_CwR5u`7Oei4_8jO^=<6vf{6A34B+&vz^VD4~G(5~oP zOSLNesst_Qsy0;v^c|RK==w^0tA@GXMcybtFlAYIVsubi5i|y@i_-hJ>^yi~+oK`o z-dxk&2C_S_?9f)`Mf3pBKrg>6t2=}vjnJ{GdG%{`XRR(7f>@lEowJ_RS);*S4c0LL zL$m1n8WIBuBDfQ7u7m z;l4Oq!7l+|y8(~FE&&A=ejpsF*{F85>VOCI)-p2uSQ0JBy`yHJFH7}jmhD2gpjNTo zqRa8AJwsk5yWO@M$h>FYPpp=!Mcyp}G=CsJHaHRF%b8B5W8?x6=a33*Yyw?9hbr~l z>DOiEr3XP#sjyl2hE|qn`Y|%yVz@EY689}Duoj?|G*{O^py9zXj@Be`4Q42Ymy6a* zb_9(n6d*s?d1AyDk+w9;D-#c7XzkpP?Lo+r>ITX1HfRgF<^xO z+r9w+-fb7n2J6*#l%R?74CP}egimb2fRRD*+9}UU3ZzeDza4%4cyG9C82sjO%6k1U zdG|cGWhiTiYq)EdKRi!AzMj2*8ohhGvfDi0kAMDj^ZDIwyE)%G05^XXk0^~fbv~NS z`DS~e^d~3fmyW@W^jFhO3eg6@9?$TD{mGvBmoJS3+x{aZX)omw#@JPkN1hj#$_N_w zZQ@8NiZL!9DOC%Vf0^V~<(Z!~Xj1kaGR*SkaYOOP=fm@xo12G?G11zcZQ;Rgl+iHK zo#f%Z3@%o)BYCw}V@q&X(PxpWVh7S;W{*`LsMBOsHw-MJzZC;hV|k={={19kU2`o> zGZ%{>iwUSrx<^%561G)1l-IPB%z~>9WpC#AaD6jPp^CQZZbO@lI(pP0WhURW7m^dY z13(o3x7F8Cf3sIz2a~eQ-fKD6okz9$s&H;UUxb!8jhQsY^G87o!B+E6Roh(5pUD^o zo6r4nkWOD01Fk$-oVQutVz(sv+pLP_ zKnuo@9GjoymX@`U^ShGvE$@L0=p;n&I=S?*L%q3WO!}aLtcEWo5G&7X7pCEC&a6fwgFt+vP z_VR9jX*ah2`t*LcTc6vqx82@nW-Efp#V}G#G`UA~pf8?Za>W9J<5fEezPJzxzW)04 z?VC5Zc3Bt<4CDNTGBn-kb5E0j4f#qh%QQS{tf@PBVU-oRTdE18T4#?{lYLVRzi}y6 z+kP1UzkYigvaI_xQY`NTFT2PDI}&^w$6!+W&aR}-viC{~`4U?h#S;E%i)cdnzCGni zX%a^}mK&51q>eK7BWwk|1M}w!MVq3Lu3G5IJAtB`r-S_zPzg#U+ETpI0NdJ)uV)Q| zZ`bRiAfw8XRVWT|R^PpH0Iofy6(Xt9pzRS>(x|Gd*SFN#!uY{R((xVEB7Eh+dXgOj z764b!)fBIsm}06m8^CmSacs6dcvTu#4Kt)uvMgaRRMpTI`^h@L6f)gaSS1%+j4Ez8 zKTpr?0!Nq#YiqdXtg8QnyB$Zlj%AzkD_jNf9Fy}%XESYvx0r3Z*rbJ7N-=} z+Lhd!c+`pXWrT6GA-M2ttaz(=?VkAjrm6%;6BsbE$*o5(3X5HPTlg#QIT=&9ZHEn~pI*@i&|Ie?BAK2Y6{Ix>^x~P| z0Ur1jW7t%)-(hJ~q0&Nz zL|8g=8aZ6ATZT%8G0-?a24F>;g)hQBD764M@HMj;fRLKLP}I>YVgrs637hN`Tps|i z#)>L?6ZGnqLYg*u^td++MqO1cFLZ}HIcXfXPH&wA6KVVhVS-BGrQAJ8F{+*zm2O5a zyfEN>@zv5b?KZWv(7&I`_3d#7toNH-Im++7LUdv`W0l;m=aM2byUl>ewc?l`D60&m7_2E>PCVWt{OddJleSj{Y6>AeQSyQ=FJ9Ra0RQsK$6tT>vRTitq6C2D(cKC#5m0uDPlbG= z=)B6ukxI2)hzO0<#hW*WH&4r({pEglesg_wcRRkl8QttJY{7INZ?6oApAHw#*A0N* z-i-~XZ9PBC41jO;qs{UZ2TH?Bc2txZHktUupflW;4S@i-h_JqAot^y&^tGQvBz^t* z#z?RoHk1b_)aS@nOD*dSOxh-69o_)EMo53!rj8wG`Mjo@2-=r?Uzo0%2ntt7Y+gGC zQ={G(2?lzBRRdbe(Uk;q&2_7kMEEy}4hrs6v_lvXrcplt%oagdE`fB^>bBt;M3zxc zNt9A7`8MlB*8||)yv_#;gDE@9TZ%%ot>a#)@Q<8^BAz0cFD1&#ZtCah!mu03E&x2p zG7_k#{A!&JmpxKDAfRH*QYlLmW^YK#%i(E5%?kj3Q?4bxo>y)qTl*sbuHIPqLh~G6 zM2|Czw}_ZDDk>|bHnZsURb>Ts9#~jHM#_C1F1l3NS?DWWbjXrNC*W?N@9ctZZYMK# zfOJ@zlrn5EMZ26*DL^YGZ5XUVRz`}g6uhmDx=Nk!cD~px&|$>^k=&O5iMDrTl3C?xE>snW19aXe=8AqPrBqf|l1 zLKST9*!}(X_us$#^5@Ts`6yJ-7vI~K*WP(0rf{D!ifY`~9~#_MC*BqS9OF6x!0Se2 zcbA9jajfn6ZhdM$ZQX3o4T0$ig-RkymwOPJOcMf@*%rfX= zBty!9JG3mZ2xibS`m2Fp7og3I0e|`O#z-*7lE$M+p#Xy$3@}YhunJ%*-W<8=N zG0_m6Mug?cIS8ZVsE~UzVF_vyx6%mtMf+vLVAn{a$udv`8XH?Rs@-UGINsob*;HB% z+e92jnJqE6+E}*sa1J0Tlu+lZ_8rGO>nLs^5`3@8PS~KIlK5EwtXbhIZUSy4Vmek4 z3ymuNiIsNcWkA%`+L2212bPe6fawD2QSD*EY=+}2F zPX5lwYu9!Ft`&d>W$nBsAitPXcAJ0~8lR0Bp2d|clPZ0zL9m_Js*vD50H0%SCH1nV zcqPkAyREmQYkewQU{buEDLospblep%$^B=0~FB< z>>WGpM7bTKSeC+&J_?@CDnVC6M`7@K)5-cph3nVDE(mA^kTsY=8w>S-9ZlP-w&!mz z3Ywb~dBnfladvaRgX!{c+&^1^fk`X?%rdOCm0!Yz|1apfq(Du$x2(Z|b6Heind@csSj;dZuLpHozb z^8WT>vp(By&f8j@*w##teaFflDa=X4Qe-n%Wx3KWVg&fCv z0W+AY787aNL*gVOpyiO@qt}$P{naS1Ejuc7U{E!|Y7{qVyKFGrhIDrmnZ>qFR*_ak z+1Vvp2E)Q&8P8Q84*)oZT+^dN5~@1pJ8+XofZ00X+XAs7!P$MAYpke3wd%$&PA8pY z3e6#`3Qel`B!DEiUU18{UiD<9@DB14DgY0-Z^husCKKt`HHEhmkwHHaBUKQt(Az6S z`bI_v86#sf znCSs)cvq2s5=9&CI#{+ACPouLOLQL*Ns;*zHQ_n7Q&8SIYy&T}d$XUH<8uRbTXrEI zLU=q;w^bG9hE?0?Y!ko_0IQXP!JE_yHLE~De)3ojN2(&5s^#daf=1_Tk7ZxWst)t&rsM9St|<5f%U|R`;R;ADDzM%( zGi5Pl%jbE&i|e3#(u#q~ugnXacI{_1DFj~~fbof(qy_P$W&@*<7UHUjD*#Tb=c%My z&|gDe4K)?7i75cA`63u?h2E59?WBg~Ho!1K9+^$nBnBD(E;nbZ?YV+61e4LKOaLB0 zk#txSnb;C-d)*GyQV3h-8DK}yzcms15P{#hyM%8;Qm>k zD{@iW4!v-q39l|s@Y-y)lv!%Ny=In4;VWR6yk?WdoeG*wEZ<2a~{XpSc1{N;Il4 zw!7YK58Esq2L>yS7tpQzSS{WG0H+{pBlfw8dE%8;W#Jk!u1#4DM+txtZHWi7;i&gB zkb2ea0u+CnUX{qmbq|jEdxC^J0FFTTG&O81)wZ?BNnE__e9p@snD*gPDwz>emQsG)^HULIIAs5W-#E;b>wx8r?XI4afG*pcF z{%`;dfE@O$C%`K@TyNXRZ)tK%2B}Rp-;#pS7>(zRgNWGh(L(uX&!=X<(_1 z+IfF|K_DRKTnMh*iIvskxVZGO;NZJ(UkB!?CVFfAnb{!$u;5wC?>}0o(=}UUp~K^PA-}R`sDlb%kQtoFR3=$!zmB3dQ74us+>=>4=~o4>}qkb%N-9f z6>7=j;oMMmdA?m=ZvDb)akfv_==uD#y^0tCih8>?9O3!(4FK+f8SDi@cH02b#jDZP zsa+7$wF|a0d;R+6>({sT(=O|J=fP3BZwHufGNS$DM`Ig?-dt9%@~*Syhb{$P09Y;I zep+w`z_m;wBz9fiI%k=r4`2`H%fm^rR;|ZL#zlmCNy%keD~*Py7aC~>creXKr+R&V zBa5j&nX^kbX5}ahLV^X-6usDg3xm16+PB3M%CX0bv;zuT+NIl?0qg(_vy4JWXzN!WtB-l`&lIr$H~EUR$t(Qh8;-RnfigXHJOS7IMESewoA2!%`bx=lg&UcJOum zS2AFX39)%fr7p~p5^k3tfbJ$U;luAD2aVvhl>tM4vjlyC0@;KAn#q){#To@ru(YZW zP6j+fv8=K){ov8`oSrf2t*YU21FT*ZTH0X2l7bcj7yY9W%>|IOF_g=dl7B+#l4S#? zgni>Op_0$t_Hr>s1f`-i=W`wDtHV@p3#LS&UT2#jd}N#S(I01W+A z-H_y-42Ed;`y`7BDPhNf3#*;38 za5?(vX!6P)NUk6pps>a-<4^Sl(7==Y%p2`l}hU zrSojbopR>t3a;-j7CY#RnvA4jB)Y%sIk4k^?BYpchsUQ+&$f&WGp|+0g3;JV?&0D> zJ3{86wMhb=bqsSk+@{jfT-^i>1eZDBZX}6?7l(4A9Xq?`G1uHZY`I3+WDd=)LdF|)Cw;C1}08RtQYT)dNgbc=zFXUxp zNG&yI*1$+d_4sepS_RhDlpAbhZ<-!5_c2UF!7395(?8?tt zQQ*1R?)&lS#(p+O$#{n+nh4a0g8D$^-=`{#XbhSzI9c~=+dtVc=8+C%>OYf-@fY zJYRBxB?|2pd4w5OyztZ0Kb@TX3t-IXk=^+D`S9h-8%S^&NkSLhEGijHa!P%gGgob+ zV{eG(Gm?@t(vXij!L@lWL*{CHCJRypTJtY2{k?iYR5E&C5zu1t;Fqgib06Cp=B2B%I|)yu{;iP!k^GZ?6}{u654Qt* zsxOslzZ$s#Wes!(0F2U#=~y+bnO=qag7HozXWh{7Zl>b1Iv;=#k}Jgl$zw|ed67%$ zmhI7f_BZx}jaYZ{NZoMoJmU^IaQPQI#I^0vl(4@WODWE%GGW0gP}gWvKzq1obu&&h zhKWwYauRA=P1wb!q166iO?U$Bt@H6Mp|2EY7-%%~onG3RPBe~+Sx!)l899|Jf}QMS zKP0S@X(a%RNo29InjYIvYOa@HU~&R9n3R&~xi8r8NX{M+BybZ-8I=}q@0Slx8|hkW z4;cFEXU3_xZ$)1&=tUK$m(5lJThNve2zr+ek%W%k8;F~wM6@Xv8 z{F7mDn@2i_3ZK}UoYil8V=tA;tPlu&9JLuNo5l#Y$4=F;Q%W%fb!UrVB(n=JZ(&=; zc|f(gzZ3&_H@LFhKON;F%c{+9LtkgW?Weu)SFiq;!7yqp$J&>6BtU}gAhGMOE>Bv# zcOtR3gwNDax6AE;R_C+Dsa~~rzDJt1jm?4g!j+e-Tm%k}a5~ErhX_GRz(%siMy*V# z#RR#1`}hLh-S0Wx(y(P&rk>{BIqs~dBRSh;S@x3wC;LhIkgCTqDdb;asf{RT)jBh9 z6>6hm2O)aeMtJ>hbz1iF8_2q0cu7_6Z%I3c>4(PvT&bi0c(6DF$Na_3QIq&6^SDns zS7jur7JEaewMkJJ*TgQQpZm1!dso$$P@jLVa?bnEcbXiq;kvyL=dtyI7cAq2%7Z&Q z!(!kJ&dKYMu_Xlr<-|_RzgB&3*fP6)gm-fr2Z zLs2wU!JP^k*l7M6t@`?%PsD~dvhmBeZ}0x{m#-f`ylwz|_QT6pe=-aE<9XJwUX3Ja`Up%Nq$EkJrHz^Zm@ECp zp7(IGxxL#VlZG_Q%f%m}1K>Jt9)0DTjR5%W@zAW8-3D@3f_>Cc5;v`Nuzp1y2ZV==vqbQV=Yx)cK(_L@U}9fL8}k* zp;E37{66S?szzOJ8J2?ePi$!swP}Nk>BFqMW z?Wb$3&Y-+tA>o5!>bY+i)$m={2X5fL6?%ClrSH4aUPPl%Oc}MP-9%q0n-UkJGp(kt z_$amL`j)C>T>-fMwbN$>{*Co;a=PYim$wG*k8eJ%^pAB|ixq(o3BVKsBq^^=Xto+M z2GLBmnu5)ZHZ7cdh7~ufR$fNZY@B$#no`5$WXGvozJTh9st~F)7$q)L4-F}*xSUnx zE4fR;fVrFkqL^7yGZA#0G}a9A-oS>O*E!a)^m7;NwJyLb10{p(Nf-#twy7iZ@` zo}7M9C)m*U;_AnichU;EuhatarmWuIaMPmWQ;eCvVq2ewSB3-3W=*OdKA&2+!4YU z=mZ0_>|%AF46vd6s&#A$xFpMJ>*etN!yW*ZqH3U!DzZudSna9+;O8BKLx#aJiBvIJ zMjZO}{qsEl%t-?^H4%hp%SU8B=ODeGU1t3g# zuWnH9N5O&|L+l}|BN()G2*bRC^l^K-k;)H6Sv}8!K|5%*o{z_MpLI@Op6=8We$KNp zP~@|i+eK>+@8>OOAzc`iTIh6%Di@7FbdJi~@(iER@^#Z!Yq$6*`-+f8Iq=?RkYxRIMMVS%I zpo%e|t29QR#cDIqm~nDUG!y*g%j56Af3cs2`VE_BH;ehL;wzkp$FV(n@~(VH(t}ej zm2=g`Rj$`%5!_mB7HZbS$y%Cb(^lHaVR|(J;FSe+YvIaZUZOM(&y`tQ=2e3&D=HbB0nxxzQDoFM&?8E8l zUW~S2@V;7ET>|iBFZq;#5T|g3JPLzVa4ySF30Tf)^PNl*$PjObY2wnj-m@-;dNHHc9&zAwQm)}n$cF>EP+jo|5rrIk>Aq7i$dIl35-Fzv;R}gNt6PQUYnvbBl<-h;$?@vEH+xEx+_~!P__08M6$+i5*mZ@f{?*+PL-k`Xg0HZ8CVKDMB zsH(pl_pkPLjNr;|GwAdSytB(d4ZLC-mYnTw(-C@BpA{q+02US2=7W*|BT4);?rRMA zx8FV+8@%-)yqbIy)i5{jG0F598==f z9I#HIb^;MC4y-CkN|zqdRi7*XMq1?;?3x%K68cishGh!2!v)&t?90J0mHFe&o&zRN zvU^l9+3D{YMRXsCa$5{dMXNSYx$LNK-7b{gbCrBo<#WZ|sHpH|VINMB8+wP#+gaQ-V;Tu)R!ODRM29ry6|F znQpru4^+qk{zAUZI<`9UJhZGRhkKDl%vI-WM>~x~uHpA?vfQS6e0#mx-5B~d7oi~l zH?y9UHOZ?1?H=`{mb9|NDRceER%kh)ed#&Fwo|4E{xyiQk*v z5pW%-y^-Lbelk|FkjWZ9AVXxuEq*;~ARpw1uh%s(O z7P>`wlS8+uq!O7>nQk4YK6{tH@dLteKAcB$f;}*>8*On+AG5j@Y1}xM9I1MGB=q)Sp44P*idbyZf!s^zp)o$jYBkuRv>HwEGFa98Mc*Igj;XEU zE^~a<*5%ICVXXi>8e7`tT(2UBt0xA>_OhU@w_~}Vw_18Y{#wsLg$;F)0pNIu!*qLW zq~ETL8oozj0KlGLzfO1yuZ&7%yrX%mAcXyH+16pz#wW5T3V%9fHf?BlSIYy}>uN5J+7EYTp1*c<(9%IV4SovWn~Zv?<;P~25@$cdxZ z3*T*%KXX*sxMlIC<4>s_i4H~0L<#`DduOk=HpS@#+xz?V>&x%I{rvQ3r|^kPp{YWr z{uvDJPo_3^1-c4a5TIV7udexbBzOeC8Zm-x+ksL;SN>LB(&xE_?X&Mz*Zxf0Bl>as z@$-GYQyT#=chX~k6EZo=4~apa8mgQ)6e=#xf&_yot+kvOEP$^B*U3X`9g3$`^sTZi z`0Fu)0&6i=446}{Eu^xla)%K5{=3PE2b$1`dvKQSaY^sjZA(#1FsfbU(35#!+B_O4 zQpa~dzVki>!`!F-8uKq{=0$`?Y4Irv&=Aa7wJ*Zo2tF{a`hKWjq;9Sm|Jeg+GCB3Q2jFaV<}qL2T^ zXsLqmgo3I?LwPj<%NVPJ(6vY~ebAem9}Hs*fdBV@|9pNrPbXKXlaODjUaeW!5dc?0 z%oDI<^<+fqeyv=3(t$+i(=wtb0i?y_Y*f(|0Mlx944zaB27ud@5e7V0^CA_|O_t@3 z91%n@N<=0P3N5s*x7YIN)BPX6|MJt95B7QEpeZZKNU&{mdfZd70IP8eiFN~#Gk@j3 zxG?}+b^BZ?0Ont+u$j(_^k_J3rF=R7*lXY%$@Yzq5l4m-Z`^dc4KFbnJOW^uLMxtu zpW4UoheklP1RVfej2=PChmXhmmxSTeQq@@v2@FA_O17XkW z^=b7g%bw0A{d`@WB0_?D3{-Agm885<`mlcy@p8ObGqWp}7Gfw*Yr#uvyIZX{ivj2^ zZu?3e?3(A!gY8N^0TsH7h-pxl!M{mmcIA#TeF0!Ma1P0+UBG8JyJd@QI!A`_0#3i1JDuEhvSwI?l?J@s3bCD- zycCK16|=vYGq{mmvjAB3&M+RlQ0MS&@7xt%c4NERq>#^Pxp!*ozN?WO5pGnpZ-0E!w zZ+zP4E+&o+6D+7ylomF_hOy%SfDMVg77Y~+n@QL|M*uCfq*(S>8DrrNjRaa3nn$#Y z@TCaTN3jZ^a^nT^Z4of@@-?Kc5;QMUEpy}xHAYDcm=BfgNcD*R5c{lwFJxSkX4DO6 zxdFYKkDni2KAizzsj70DnNZU(yd-a8x8BmwZC1U*zE8zwz{Jb}If;9N%mUbPE6 zrVD1pX<_hp+M#Mu%alsuhF9*9E|3-_Xm{^)@-s+-*0i??-LuR-29rz*TaU zHSLG^?k(YYF5<;t%zV-Er0wWzk$(kA?bb1=X-Ha3f zm78j}Nc}nFClR!;QlB`mt?0axe;br;hsE&mu0^x9#iL^*`$;YX?ErI?Mgzcb-_ba7 z8@M6>96}r|mL|Q+{DvNsM6zVWIs0L^3#fRoHuMRTo7v(jhFctiu_L8_8KlZjYVZu{ zW3#rls61&n?lOZB8b;#0LBTm?QyW=d!DUfk0irV2=$=+7!UA!fOwSb_tSdXQ_F{4( z>p^~4a)frx^Pb+YCj{?_8m#VDYLrUItsY@lT^(bHHjaZApH-`mk=#M+_ljJBNCBGP z5=d}+)5zc9un+_80PH3e*f-iw=&t~{a&9^W;=yi*xhV6>3k~lQpac<2TgpCDRHu6h zG_1qE+^qR)#-v%sFCHe+c2xjYHn8>wP+m~^Vvtw}#=wRk4B zWK_xZJWp0&Vdexwg4;&?I42ie>_X71mSmj>I%jUu$QxMz%(#(Gt+mt4^=`u4ExKY- z$Zq2e*E*0B0Bo04D_BeA^$64pU`}H|{Ll0OmPuXOBT%-3E0B>Wec&9RQT5QhQI_L@1fubyZ_aF-Hfx<<7 z+SQm-ootoU2^8_u*iN5YxmI;r& zE=~I&cMKZQQQ20U5BgZ+gv&r}pY7oe0bnqgWf;r@r7xHtx8t3y1mLzcNgZD^bx|bL zWb#@7j2v1a!Ss6Hzu$fP_Q_V0L(gyR$Y5hhIa<#U=xuV7baZbgw{RB$M|WtWXv8|y zNkz55nnTTU09X=2HIn%x)SC%(#kRSC&Ol5$k8=+wq~J^oKu^s5DL2A$&pkXK?5Z(^ zEpphKxGl*$hg?P;Qs=axt)%mu$-#9vXOx&bx`%4nVW*n)vELhA(lVUWK~CbPGASDp zt)hYI9?_?V0j_HgA^23)_X2AN1UIvrx_9(wl30{|C}uw79^x>pFz-jeT#c!5fzEm2 zj=}QUwDk%dlRlJw0N96P66H zC_&eOtE?DPKiSCvgJY{+_^?eL9p#~INc6A?sNkqdt_6$L3#nC_s%zIi)Bu>7vmzId zaLHC(@WZ}X8Qi{$Es^6cK-*)U7gxm1l6^ zoj}CG^a;-mSIeN|D@6(g0@Jc0U7V79MQ_s_RV`=F7Y$vJrTf4xcWQ^cOd>5IO z#*@6x%%8TnbD(xEfrIlA03*Uu0E2ps)C>Z#vi}-x7})?$1ASRwwrno^*BiI`n(F@3jdB7NW*Qhp^r%Q)0T^p&O+~8>TzllUw}1ry z^wZOJGj9Ows{*is8EQg9y9~kb&RDd7?H)`{UdjK|cq za+v^NiQNkhMiPR1RHyJx6BL$0WxchBfu-0PLeg@?J2o47gp}CedwvmlKi%(LJF)*L-lT zsjkyQc$2P*3>39KZe}F`w1&R;YN_VzA%<5W<22MC1PCq!8-sKv@^m4obvC!C4 zEq{_Yu&`%8;A?h2Mb6!mhHH+mp|3{kYIj+Mg!ZO5=)!TM5S<*i$+8@A!`lH5aKApR z3f=vRQ!pO)ustR1jGQK=LW=lX@58k-Q6w(Ju#gL>=mD=}Kbhs|b+||-NaH$L0a!NC za-GC2%h1=L7n4h!`&1q@_VE020)WMXeLM**bdyQj^^Eqq`xQaIb7`KF3C%J39~n@j ziDL&~O>I>Y3;-(^D8_#$S55tU_s%fbem$L5fBp4~0r2Ddqh0Sqzzu^N3?~3jy$9@f zd*vj!h2GZ^w7R+CueJ#TKJ5aR1vx5>>K&xTE8NwcxK`k%{z-(mehjJywR8YQ9Tp)C z_RQ0l<4Wyt9f~H3b__;(W+-d#tZhvUgP)!b+|rh@;pO6vErqrS{4jW6c^F~!m z;9wmwx&+`-wLZ94-i@8}ac2=jw3*50xsFRU%p*%N;4=!yrMKEA zn8ky;B+5-Tl2e8VxfKWQ5Bo#2Z&V~AQ0?g3%tioU5D}j#CS`fH_RQ^75Gut~uIlGQ zzS}J)EBcay#0(Pm0LoIMMtuMPGa7`}TB5B+c~6_h&QBZr#B0b3zvw<@?L}smoo)bK z&Q1R7ZFdV|+8Zza!ve2CTbyuHYcmr7YaUc5-&&wX5mVy`!OJv~oELEIOgH^Bpv#L9 z0AtF5JG5q*xGQ7K)Sr=+k}y-*3C_=wT)licQf0`u0En{nx|&zGdaQ6=k!7zWxy&Ouv9O z@M7`SYtelMDg3aqO$%g-(E`9omZ~G8yu0f=sJ)a*)+$g7?Q$MzUP>c9o1u#XiXc4I zSdow91^FAPv1t0HFUM=d(q1aKIv$rl|NQ*tpFjWd%Lm&UvT?y6nipk^TniqYw0>5d zuH}uzHS8O-t*mgH`><7$5eG1&24qV|SCTh8~v|AH6IWE>Xc;M{`hBDQ&lG zVMorW==??3U;e+~YadE2pcdk{nY+kwV(DCXr5UE;%uw=Y- zQh6MfZ`Zt%tf`%v_mkyey4cNTn}AisN44f@=W#;?gi*D)Dnn-dmCT|N5`2yJ3S_1D zT=Rp`ImZk!*-Dgywq6epb=X`)HfXE+b0zWZSz5y2eYc-niL3|fE%qAxl?k)tzAK-V zT5=HV!)@s6!?nxBE)tgPHn!_jMi8&7)wR4$o~q_Wso^gbjHu_fNnfx!5XEe+Pa9fVSS>06Fe-}0)KH9}5rQ%VEWwnAD9nnU84a_BgO>teQQm5FCGck1pE9PfwUbAs zKUwN$^g=LT=x+gF(i&D3fNj-MYMy_m6sUI@V32*&32N|83bO~S0VDyiWLaqibtN-o z10EysfByCLzyAAAJCE2qcsF?m3AUexzV<7{Bw0Bs99KFl(wA!+exK>Z8sSyzR{%WJ zl=bk80g)}FxxVSuU@Me&dAD)EJEmy2Ka+;Xlz%G#3-c~Xq+jre*c`T@lZxqMn-5M1uZ+1u_{fK= zvg8!0$RMF}S&bD1+?Ir;+7(WZ=spd68RRf}Q4YiLzm0a6=_YYmV3Nz1PQ_qh zr80E|;L5*cjTuP{-z$v20?*LP8T#6)Hix2UDx4Zj8db$Aa@5om@nyBdz(vB|ka_9}A@Mc*|Pgtl2G9_n|3Sp`6v9Xc2=XMc&t0pMDKCd@!?lx-~7B}KSB!+`(z z`|Cgd{fC`m?3;xVN3(-=3^o9cJuaZ--2~etITpGU*-OwleLJNbeQCAG30;uDHMJrw z?5PT2;ZW5g0W*3Cf$p(bPg8c*a1=e@z{^!Anbq+X1EwS(W^6ax@8_RCzc&*6(@#(9 z)wGqM8%y*x)d{e?*t}4HD@LTgWNpK7bXW6+nP|Fa}V5FxLxaX+TcHhdO z=wvh{JmR=rWlh>%xvY|SlbWW*Rf+yp@<9ll>T}jyQ=k1E+Ivw#?+~7-Pr{M_c!c7* z&wmfV-Eq1g?x4FY{Z|!m6~R{>P;MRWSNjtG*R7F;J`Ytrn=V&#g&%~dXLYB7Gl4}a zK9A6sF(lzMlfI~~@Xu<%@4yy%#r;Zl88zvagjzXOiRSW(jM~aYQoUY^>LGw6TVj{c zWnakqRUJA4P{DW#=2Ai;*~cQqDJ z01O7V_iLCuKQdxeExJy!0z65!bUpSRScR`fR8JhPwlg~h7XVJOeg^>i;(**p_KYeG zZ!C>UgVXo-n{VGfF%#UH=+o;~i}oh5XC_{wY{(>FB`^wHm%1MB5dip@23V@7?@Qiu zZd~Sy<;Y?2-UCiQwHSD-A%=K6Kfj#XG?Ba9Fb(XZP<4bUeAe*HO2e#8eFtT~)sC(G z^xY0K?(wnS5%v|0N^0OIdp`e8uTq*SCK2c zDY>?5Pv8O1n7;k4=Q9ATF`-&#hC$+@T=x^}T|h63hhRSunLq4;cR?1ZmN(W26!})e zUew*J>BYD!Zd0AH<@m_QI%j!T0!}_6S@aH#qIwug32gX%I_{4xpvi@E4BqW}T1eW4 zjMU&&Tqf?@o}RPYs!~?kYh%E^cj4meHAAHy)uP}5KG z3r2h0XJaG5bIj3Z%J0Z35&*WJpFZ7x{CNKG;V89p3)eeO-#<1CetzCbjg{tE@}6AM z5~le4@X*z#ggtoqpwPsjFswu)+$ZwKg6N+YFv(wG!_=31eg%g0i!Koz& zN=+is+MG@!0T&f?^nm~Q&6e#5i9!ezUCIAgzq;Mk5pSEugD2crA^NU}hKw z(6%NOcyd5%qX8aGOEb77id-!|0@#`{)-;9CcUWbK1ZOR}1F#*9o9ow5VP3MD#EM8V z61>?=Xan0aLJah>+93O>3+2iT?m``3abid1rDP2{jCD+_Y(W+-5g0ds`Bmwb;=ZSh zA@M(*nDJ#FfKs8lb5{VCCtckHNbq&a{3VfKTO$DOl4(HNEeGPnQvDR)uZbRl{8`B21Rm;2*9$(6uiZE(mgB6Hd(f|QqIcE(v z8Se+pW(_{6!pw811!`GQj-EpW zjR{ID7F!2@rLD2Oyp2MAwzS27*)+7=f`=&VU~(e#1%TP^@Yz)@S`O6$Z1?m~fFNy> zog@jDMjZQ+by4lNzRP!kUQoG>?H;$g{o3uxW^@M(Ff@k2sRy=dr^SZ2_lp)O?*m0Z zDRL(aqDzp`rrJ?Ol#qiZa4SZu%XU96FDF|*KD6#Ydq2B>n4^VO385EyGes%3W9yiKX+U#y!c7zl4jO@r(naIMa#6+X{ z8L`z7POHr+$4aI5XoA+=nxbmzn6$1{?n><1LmZ~|u3=@G5sDM+u{6+(xs|;-Y$*l6 zmZ4_1LI%3x`SS5NOY8 zO;Ie8dcAh}!^acX@N4xwtvL;>+!O}x>Zgj;0I(K!D_wM7_F?{T2!oEHw|_f(c)gl4 z6%Zv%YEFO2`8v#mh0!3hNA=E`s7Ef`nv#(7W(1k0k@C_z_KzKkzIjeRreGl zh{dS;TUT+Byd8}p6|0TA(O8bsezxu!-D=Clq(YrqNuVXdQqeddkZHe!PY_fv8M!WL zFzJ7qH@y{%&{0{+BW{3p%+_>q=ibz}RB^Eu5&CM`o%2B#AKmpB25QTV=(AxQskJXU z)9uLXJ>mlm1|x5#G%dMVtw`@P`T}OJs+zz!Mj?G9qnSr~>Jb=hCoH>OXC>9&bOv`h zkDZV1s3@w2?DglCfJ9_r%`$?jmZoortyH6~URQRF(O*aO?zS-+{1x}*Hp8i;&bbx$ zoAX66S)^ugw(jDx^jQF~usP>|7bPiZ>4+O=XU3B%0CRF5jqU_9PMwk4Pu>Z7afFt) zGd@svcdtR0fBydMzy9-&^QooK14UR-D!9-w_*NabG3#*8iEB6;MLC0bl zu^+}8q!0E|{YZ)d{3*qE(Z8%zxZS_^DePlF_g4VSJW@P=->F0o*e$@aGXKML`lhP1 z_WQY!;6MKO>6c%OwawcmW_sQHOuRU6A8C07*naR8Qlf$n_rvc}g=KZCXW$Hby<^(p~NV zEPJen=e?$ebUHNvcJI7xX_WTTF=gQ%g8SIruLO0q0j#btMp`msxIDkr;bXxVsNb>% z&THZ8KzmGa`y!n;*lG!%h(=_XW*ii&Fk--$;%5N6q!AxRW$@biE!4RWB9HiY{a^mt zoGd@yKfD+fKD~;=oeg01N*BACoA@te5FwdQ4YvncWLc#tms*Gx0ILuU0FP#JE(dc5 z+?Q^yeP<3cxhS`Hw6tu2&kI5CU1)vtW&m&-7Rt_aEj~x1v{qu}ky$3M*lJLquFru8 z2b$9y5PP=vR5?CUV%s(L0aZO`^y$2`4H?Z=4Jmbg+Dh>mOf>)95!B1^VvAu+rC7}zFdBf_e zpOmhVZN+lkoIVA>&Q>RmB3Ctp01TD{+A!w%`S|xgzy0%{zuP;D3fdSj+AG80Nvm4F z^$>zvr4Z6s1xPfjeF?xk$y4SNNNub72d~bh!UOK;J1|kSF2%wNj1WLMW>=i+q|;Re zPJ(Bd7Ul5_huhu$hMx$s@F#)$mU*N%I##yU>pSDVbb{@0H4^Lt!Ld6T%-w~FX1K+wx z?lYtT05- zKXRz3ACd4ibr|Na;Hav;fM1CXpKH1X(51r6WxE*!m;Y^laz+?ayotN?L2*lN6U-%D zQDQO5+7;S)8e-m%QH3J&8r36#r+%lFUi#Tp3$Su6Ec&EF~+Z2&O# zRmhmjH1JA!3{~@$D&^ME}SGTWkr|+5~ zdh+^i`Uad9^h#GOx+(Tq$4OO%=2agv_DATu%UnePu&lBax`5eay}jS;R`?`56SOA) zdqL$iIp5Df-|(+?^ktD2?EWNgIXIwijb}*94kN*{&!68L0RQ~+vuyzt64iRfi+A(o z6~~{QP`(_de%YQ5Y-BW2WlvSFn)&HGp7WvuSV+uO4JoC)r_eH*306Lma*&|H^2r)8 zU>+sSLly#H0l$`F3IX7cKfQnYXc)X!$&+)t<1y}gTg~iJB1RHbSEsG%yiuo{Dlm_b zSmx5_5=(68YZxq;G)8E=kXrOe>TH+ouOM`t{RQx<>5$?8q=Ee|aPEtPG(%8o@I{F+ zCD|pu7fJRQ%d4tc<3^(I_!73L;~|r7^IaeIujC>L^b#VgB)jT*VXulBy1&9k%j$${ zSWaeq0@5l0mFQ-NrIbO*=urY}`98`^5>b_m#iNMfII7OBSZsvo#ZbWvXhAG3Z)cu{ z{Z|kD^&1Zcl)bMe0B$_kw-kic3wl*{7RH0(6ule3`%9>WdOL1ztg+l4dh1$?8hCWL z6M&lp+I{Ju^>%~yh{`~8!F<=1r`tHrUn;#8;C-du@yC1J_e=rzccn~3XD_wC#T(t~EMvp@q zCc$T|xC%S9x7cO)V6i#F=<%+Ky>}%$sI1QCNRp;Nq6PDM3daBIxgo3Rydie9vqIxK-c;>^W;5P18_! z9x0EC@WD$*4r#B31|55<(E2INKBe`k%HzJBT9$o7ygR3~+=@;-;OCP_$A|Uvr}LLz zpB`Th8R{41H-Z+xDgm&H!_=Y`VOwjwBknuYUiCSpn(i~!DUd1fW&u8X+JL2YYrRuH%t(dfU@Q~vMShfJ0;m*TvfEm_^+V&cx>c|SXOMqQXOO9Vl;t)cijOLv~pbO<4M=1b20ZZ7iR!j6UXKdKEwhy{} z&d$rq5dq*@stvNZm)oBV5C$Z#UFoH1iMA9kcsg%wsS<0emYoH_4TFnt%$}Y-H!9Ua zN}#J|7Xr_A)iiUhV^>-Ah*i`3p^p_FVa;W5c08(2mi_&gV{ zC>da>jau(bj!xBBu3so+YKfn_AN8`e(6F0eN($)JYJajX|u)3eQO9qtJ><{x=l z0^7_WNvbLU#)%%N=1-$h2dxBPznN`^y@6*ZO?wWuK;PQ^75$}o4EOB<>4*8_Q%I=j z;L3HI57Aeh6XiWu;vVctc=YFfK|$)QTOucj4fp~;t(5_ zft1dV6@95cJNh;TObJw{{!}bOf^Vplim{0V+cJ##@O*Co{Kuca+WTvtQUl<(*Ug90 z7KW5|Ggk%Q$O$V_kHQh9Wg>|U3t2T(Bl4#RznXEhA6iJt+*?4ae-r?VJBnDdciA0p z59bM5Hp{s=zavA+3gJ~k1$c|8gUV=|4ZV;r1<1uc9JFbu zj$LdW)Hy~?eQ5{QUvj!V^TJ2ioF4m~Jy!wOMI`XpLArE;dma1L>R=o<yIB z>a4nYS3o4+l}MWgxt?lg)$R@-F$pdZ%Q^TdfM~sj+!*qdLTXq@km0i#15f~}@3jlM297AGScMSj=9?Rc~QKG8t zQulXsO(DU^wYI8Vhoe@Mm&rI4yRM@9_TZZHC1xnFUTmF=SXg;oEY4d82Z z(Ezae!8x#d;{bE5Ix6~SpcjByt!`gl&VT>?>z{xAY;UoBdT(yu81BA#`yZgMt(&_a zXC7!sh>-o%K(N@bTCk$6HBV5ZQ+0YuC1`CaC^#$3pjvNM;&^FD86#WATU*i5Y(v0z znGM`Si!-B>5~R^jgz)N+5m<-fx|-_xH8CEw2dw<*ys!g$;lWsQ80flBY8z5w zP6=g(?`Fb|gN-uZXav;_{{74Yd%=^kNuAvmFy@ZlZ-xLo$W;T?x`3G&`9s91DFEiX zH|DRGQHDxb5?%gxh3o32B^bUOIIe%HC|;qx_IklZO)6I}OnC5kEST3dl%dtjqru-1 z9#;jmG}y{qV%TZ#dBDrkd=7X!XQ*-}%eE3Um1jg)%A>V^2Yu@VaP&$uH?SIO1Zrjj zSUTbM*1G#~aNo1noQn#Y{zSZaIj!4>;}C!=@$IxY3%S&dQG|J^`L2aPcsydA7#@64 zjjZe@gED)J6feE%+Zk%DJhw?CuWvWCSJ{Hp;c~Vz>yjJY;-~N_q>uh5f=bpsh}$WS9^papWfpm zC=nLWE9HwsI%*uU*HJlFM$nwoMZ6jkCjif8uWQ7f02mRLvEj{T^6AsVKmUCF?e{17e&9B&fgN4L04GLpmc?yeL^6`8CB^o&wu2?m@=g~%?m_) zaKRxyO+=UVk73?&xM?IfdNXYA-~a#+07*naRKPKP1OQVo2Yo%Y;-*G4Y9Yk}eHlr@ zkWxDs`*u7%p1ytk^6gtA!ORLrjlqx1Z1D~?mcQzWDra?ItfFr?!Ic-tDM)dFa*ZB{ z6PxqQPEIdCGM_X)ew1hQAp}9a>k$HJ1LK!Z_s<{hAD>QckF_~wPDZaw<^I@iZ<|F= zaqw(or!j#vk1ZcCn3X$4Q4OMSb57`LbHfFaD{#uABeNfR5&Kvy zBhD3$K>u%WF+nj`o^D#M(~A?RrOXJm@hiW z0W%}|TlLQ*`AFw%7b5FWK)aZ<5QurZpsC-6&*j9jhKcl%Zi$6_a_B2Z@J89NBBWUJG2=VPB$5DF^T8E{DNs93 z9~&V~0KR{}9gXIXYE+sk#?zy#U%^e|e8rLrdzIzVF z;9Pq7ZL3UrRwE-fTr2Eg#z8Yf&PhW8+J2)5tH5c8|!!|HIqR7agd(0i_M$9Pw^J!!}DZgEA% z$vKm8+kotP5F;OoWl^+{LAf#ugpOwC{fdtT&>JZc9e{g79$-^o17928aWAUFVv}N( zqW4IN9o6QXPUa59G8NnuOnp7A=v!saLRm?%kQ2+vQYb5GTWv!I!_dVevvS`6;Ps6y z0GPWK{Hr9OvONC7svpuZQgKzPkYidPaSqky`dpI3InQ#^i8F7p(a0d9#YiSyVHjqE zXc-S@@&{S;eWAaGzQ@xfQx>ALOI=!_N$8xFhJ>XhvS;~O%36zA;Z~Xsf2)l~k4pP( zkk6{}fLw~?AYGytLTrVBr5K*(efg_0{^a?d;$9fv1zJt9L)FSJO`) z9}R&2`14l*@VlEImB(;5c{iC}sexhuqp=wt{ktlvT5}fqvQ$E^1Pd2v2i<6a%W5ON zIamAdWj4?O&Hdb5w#gJx2*Lt@4RLYd0D#?#%h}*LhK856M|npZzL4NMcI|mUFcFJdH0a9)#b4lJw9!|i2am1N^JXGr zUgyiRs(jG#WRq8^uz&n$6*Yl0iz#86L~_wVLFuifO?jt)>XiUk?owCq7ZWxTO$tv3s|s5BXzk9a zIdf%l;<>M>IIc8S?SSys|3;=_{{1<*(G2P@6XcY!)&3P2p3LTO8Vlf4rV|^tS znBzuw^{|WYf@GY;V*rWM`tqG32Py+r6}lCoZ{HdK8=QRk(g66k-+#7`hZrz!lt3@a zhE}#&4`figVO-$IYeMzRIu_i$njJiJKy)1ByXlT#8zx`xOZJiIvKZSrBjsgL*^ar3 z34mcCE=yDxUlA~vvH|4*J2KZ-KVDz|i%Bgo7%7%_i(4o7)29amU?aiy`J__K7#Q1* zEC2+OQCGhJ*B)_ge{Ib2e#e=oEW~RuOfm9&%~|}uk0I+<-!JT-M>|4$l(xEPV|(9| zMK)lta?C0K`@v^^!Ka}BV81s`P)sH1%+JYxl%`OdsiQKrbUA{FYCli`*zafO4wpsr z2^aOyb{oFK+`c-5DBGA<8i&iZX<7!unqcPnG?i8@V*3fDB0)XL>O2ej zYTQr*5~mEb;d-e{G}V(J2LP`qK8MKm(2LJNCQV`{gXzkU7o#lAQK zV3L5FOU&}FnI6w?K^Ma3DW%FPWYp$A4*jsIG1j@q04!^Q9*$rbUpoVikrAn>G_{GYMIZGBlf{PKOLoYjQAxtOm3X zdwZY&&Kz3+j2pfhAxvq2U`0`N{e zcx3TWXN!yenFjE|F?a_L27Ma<2gotCQu?*wXyLECnjp#}8Xl||!5m3im%yUXtnW)i zPos4Exeqlh#eF#znnje=#aB!^C$$${%6=qN>%e4Fh8 zW1t4ThvSW7@HENp0*guo0KhPc`po_TLCy4z}K&5)0P(e z@#Fm;fBpRHw~zK2m@cobCqG`@HS-O5K}R%@_jHM2FaWj-8jeyqM2INr-~9{Iy+mbp znGzqu?{LNDqZ(Msfkf?3m@Wls?coxV=j2cUz?%Iv0Cuu_BMh!#g^FvGhqm0I4S;2u zEgAWA`r~5p*6#W9=ZA0Kj08WO&ug^M8F4+~r)1m59)7&gCOhpOmjYmhf{IO54=h0) zt$9eeX>C#*GW4Pj2g{tY%C7{&@Ze0j*l?Na8wYR$A^~unLgtpSf$-NN0M@K+uEYJ~ zN!VHasz&l46{0Kp4*Y_KlfffV)g>ZU$lqr^l3b{&!}Bp6szU-+W`r)MhPdXkE4)un zX;s>zLap|{T+asLcHUCsoLw9w@SyXvB)>tEIGqkXYk`41=B;yyvjiZO28k{CNpr1m1$j85 zf_5*CMO2mVqY5pNRFNyMAi>?G@;p5p@316H{9Y)7L6_Z7n#Y<6nDOp-e%{r>b@zf! z^tBxT0S|auX*<$$X`WY4FN1+4#p+4_tXeLI%Ps)J*ty`cB*s}hlY2m+gte0Px%%`764376zl=um8#po%)65Hnd?kF`WR?_=9KZhD$A?tPAfN0 z?!9NsC#{OJ)X^wK@0dig3(*pet=l3Eu%-Yo3n|tJfN7k|6)UVud@zY)#W6Ghp3Pp{ z5wLC9ufKly`t`*~u;kE^R>&7xBg_867us40eJQPZSg+Sb?DO`t730@eOa@hu0Uddr zpg89Gaw!u@4Payk5y|lW(0H&<0K2u;4ux~mRXyz6tkGd527K<}4HPHV0^n*fdrE_< z(jRRAEG(=o+so0Q3a&a!S1^;7sGjOChmPvq3J$9VN+3E?gfSKiLRYRl(rgRPF9CQ& zTU)1=LidFac0&8!$?ICcDFE&pg$s+yq0`pR_0KUG3>9t+n5rf%5ZIM0klH)#ZlX%f z>$>P*z+rT}&y=1t1M4py#+}$4jFy*LWp!0qR{^^{RvKg3LZZcUwoe`aY|m30b`js& z{fe(pLLKB4`dC}1tsL#;srYgtmJav!+kKkM33{sz0vOh!C>^#VqyY{$ND?pF&pd0q;D5!7I&0Xo*CBdD;nS5n_deq}3-qZ#=Pdo27q+^@e4(g3=E zJ=JXPGcy~yJ2U`n#255!W$H&_i{{e5q&LDg+rw+9u*%UT5q(~)81N(9aBAkg*z9^p z&b}BUm+4Z{K_)er!4^X@Y6I6aB>TDDP66PrzkRZAfdCjY3%GXMY#&PhZ;R8p%WH8M~4qbapozLxxo&C1BGgz`f* zH+A&At0m~vLN`||do4IZ8~wGTp%~!V^xDvub#wEBE3ME=zlH?cXUUDRKH(0{vE`@T zNt@`)LiD!Vc6QvY-CRLkTTffVU>%ubH~8$u=LF**zN!;cZDSPx$}if%cn<)-e>`%` z?L?>0q)-KCbGPAfDM3pG*1G`M6?jEc5X*_(eo87e!rEF-9<_nF&B(02f^;QOqk`}y zYRcB5_FO@)T9gi@^!)&Xhi;LZ>fyW_1Pksi(N|I_*^a~t~Ff(OUoQ~Dt|0B__^3H^Qiuzq-w zvUedjd;u_A*0(I~XX5W&s!|tXkaeI|C;F1sbxSm%0gONwcxdP{YhgZ&0viZ@{CK7W zZQr1~`P*Q?-UG%9+I|ASVvr!Q{qOyK=SF34XstG+J`$>q)-nk&qb0IciJiV9{xw;Q zmNv(-D~YmpOow*>W?ngq&o?}OpQO5W48FzT%P+JoOK73J8EglNDzvXA#hNdE-0rSF zeAs{e`uy8(pN$0Dzt|yVqht4AoVX7AYRgX9w#h8Ypb-EZ5+~c+H4NUI-gl*UnR^Dj zdDVB6;`#b)+V^*@87)b~C40OtxzvK*9#;6gZ|7vA$j^Ja(frK0qm`Zsl?GOvlkZm) zS_Qz|8(Fz=`sJ3%Wh;HGKqxr4jBXoE2klQC@++cO{j-o;c*c}Y1z_D?V0q~oIZ9B# zT>AWcteWIY45rk)dstNyEAFkDF&|2LlAu(U8sBXOi$>#REjFxdhF9^yI<7TB0~mz* z&KvdhSleQF7w+2*O%V_=D;%9;j!vZcVxF~t(YBSwQWbscd()Hkh#<`WYTho0jZ6ED znopGl*1{3bt=El97=xTCr?XpInm+13H+Pf-x%*KWbqCFW&+sI7bA{oI#5!uO)7lHd(;kBzMB<;%XD~W zW3^AIsc3@?|K|G8FkDwq+$K}F6Nbs{@M7huL-Zq+rX{5P8HgY z&-L}cS~T+YYs@LB#)oUi{DR}b89O=W{F_^fd9N29n*l#(avzj3u36Cr8LZ~#cQb&?5 z?W-<%t$=Np(F@E4RoX2ET&=09SB7}A=Q^j+6t)lzHi*J#P}%5q-XgJN8=U#L%p{S1cQ`z!EGsT41m++Y7Y0Mr3$#J zz{p8+FjJJz1gRI}`R#0*!@(+9*U<%~Ht{^YgBY%O3_QTLYgyYK%Ue);)vg)AsujgL ziXbQFQ_l(S=hp7dlNm(ac`6B9JzooYqjYI3+|Qd@4EtiQLBLTa0WXxDKr>h+Xi;Pc zF{)PpyG|e3a$)LYGE8XgQxqFZL%CU@*e20RZ!LF7`pSUM1%*)$nzE4v`gjm*<@B=Xx$#f!gcn zi&hH~RTh_PCk)12>(ZXWfU`leFNjm5|KwgZong-gUYu;|uZ3s$)DIv@%0U zlu5sG&KD;}5q-{7#P=T#I6@E70EfNXiUOxJx~ly9Qo1GHT=B0C8evII8iWkFj&)p$ ziL6vOcjretP(^-KA7WI>&Z(r`CH<{)N+Q;qQ?!Kb=l21)?L>Se7hOrUq>zlL@hx`% z9{F3b3F;xidjr~@gNs8}W6!B)9vw}|p{u%`2n6LLDF&qHAPvLh3joh_A_$wnm_C~M zjPDYAEO(>4TP&xwAI#~pO0ihc6;465O3ivQ!qkEN2ms9UtTTdy6R&Uar}dGQI}%3Q z*~$S}9$WVA82Y9Id!H|?grIHh`Gj%@q6K)+-NoB`MMaXuW{j5aD zO*N~wq@9QAi~o1r(!TJ3|7B<)RM2eWWoyZp=1G;Fjs+!_TJ#IYd=(y&N36EPz*#&a(M|)ng`A#IlsuF$E{CSWw&#vuQyr9+h1?nmWcaw@x0^67BmaRHnUOQLftcw- zw*rg~(;d(}V(CcruWp@fh%f4}uBi52?8MX1O1i3l2f#W7A4~kpF(Xi)1#Db3kKRq3u?OW#Wq8vLpvN_RXiiG*^_(ghrq1;DMA%LX^H?(Z0al4eaF(K6}$E&%&6nYa#X0tv2` zVF0irD05tG@4_}k0BnmgewuPz*?rnR?3Z6Y{QAq6r^kCT9wL!x?sRN yvH`P(TqR@sp$}Iau^t%Q0N4YMAIL7WpZ_0pvv4PZ=^U{D0000H0c z57o^dzqWvAqx{=Qil7WnKH{`VP>ShE7yfW0#@ortYuJKShC+d?DZ-9Pva-)y^Aba6aAbcT9_zmlC55HB|=o}j8 z`Zd_~>lf(9uOX=cU+Ny}M|BPMiOXL?@C@w(eIVF?pAEdq_nsl~uDXZd>w+IM{^qM1 z;Rpc70XQbKf2wUoRo1n^RS;}c)O;u5t$a`Uw-($F_k?2$3XU_MYumrnbr`Cu@2slt zsBY-2ZtB8+I#){naxPh-iFAW=S#k1AHJxTCDd`@~c*m(NB>dCt=4_|+J z@Tvmz_sjD8FUs#d|9JP=hucry-Fp1?=A$<^9==9h`}-y6>irj}%YVPPbpJW%%7d4n zs}EmYd-Ur1*cTS(PaL(do zn|AHpuxH2m-P?DbJiO`9-X+^Mt=_wH?VjCBw``t0e_>(i#GJzX+@gZw$;F`YlL{wJ zFU`zP^(IGpQ^R6XLOsa=5lQ}$X+bH4-i+eZ_-t={R$NM6a$ZSRYIZ_wYFJcakSE?R zB5rJWR6wZ5FDz?>CI&kJ zj0`3biIKtoR{#@hjk_85L;!>6ph?G2eqbd4BZE<}-3-S;v44of0St$DCx8tS6M*s9 z^#5l7`=YFG`ubMiAjr5gfEK}kkWg>W0pN~-A#tl_21l;}V50Bv04BaV0qja*{<}f| z^B)X}!nvpji{_C+h#DB z01Sr|>j2Ww^|i4Z^{wd#siygd_$QM8P4u5-{+H>K16Kem3`+nLERnthImE3&Uld;D z42Eq)uOKdbO!=HB{M2xg0s08{6wlN629CgA8ee^?BV;0Rfu_J(6utz9?(hIcY{OF# zfRVuj;74yNk--RH5CHhj)As;iWbpL|uZX@^?mb5U19}m4xB-`!{{|Sp09}3f5@8A8 z$RI(BjW z=H1IyZCbs4^O_A?R&U?9c>T(G>z0CMty}P%1unojI#lllh|;>AT+@o!%hc0ybpE- zFo*!GWgQS*MaNUlT|AP~KN~)Y31cm^IOLD{QME~`1z4-q42KvJv%h$V|K9)@Huw?Y z|2qH!dQojX{r^h?~ zg#k$X>j>G;*bD&EuZ4avxZifR*V#+YiNbC5Ytg|Kc9u3k7{*Tum?Tm<0nFKKN3R87 zdUg3u;QjRKTYEtGKFi>g$OtN6nvp4Q-J#cj0w!N!1?OeHb3#Zz}6KdT|4Y>l&2iR+s}AWdN9K7zTd>{7Cd-I2wX+9Ru}(YW>dVQ3q?OdT|xNJP2y;9s)IW4K;QSqUcbF^d$%EZI^NXkLw`2fVsvo3d9s`oWmec)D03L#8 zK>E_Vh4-Mo6aC-Bzg4FhrT+{1r@%b~MT6P;A4mN~;Gd$YV*oCjI|p03hJ?BYzW*4M zKRk5`0$)BqMHYV`dA5yzcRVdH&H(78fsV*a1RIbK5s07#s&SDqrJK;C5)L_l1$P@d z&|yfm+T%WL3uzavKtOAYS_gwMl8bSJZp@0l~0=xe|j0Q~svXJ&#c9=!Sl z00yB6#wau}*ub!~yf1XH_leYFjPwexsf9>Jb4)OH+F}FAL|+s>5ChH#V6wj=1};ws znDKpr=skPuA?VEQho^5nIC1Uv-c#o{?kQWp>%h)^M^~-izIf@1nX~_zIDKOAwO zO{n zM~!&>sSd?S%!AUjVZ@~g!vx^}C5D|@Vax}koX5vu7|dhT%-?XF_c|Ol-eewsHSEP5 zfYuDy{q#Wfa){oxA0TJm*Y1FY;FGcsXdR4@xE#PlUrXBlB5@rgRsc50hw!5?uP^#? zr^`((_qfh%u3)f5T+#p!gBu}n#4U#_(wCn)ke&5~TTUj*$2-w$0ND7=xB}QUNw02d z`vHGzRIOAU{Pi`GnK3mmY@JUSl;tLv6I#l7wlQEZxS{i>oxc6fr}dQsMgS`}JkSpe zCTT-FWQ3q)4p?L;@Odayt^*H!6ilM8n#U5HL4IeX%1LPcCxHJo`fgi)4z>0Cf?rNY z->=U8AxroZ#Zv?w7^gr5zC-@f$Y6v$y&U2h_M-_#`^()e2Q5+A05DuqYL*hf1mG%o zU8yhH_oKcv!k(_r4e-((lqyE(qKM_3zVL)-*(qku;cfU}!wq8y8Ug(14P1VH__`7R zjDcumu#pT#3{wu6C0rHufWe4i+#n>AIYwJdIb9A~61(-ywMVZ}Jmbq9FxX#oz@Uq_ zpPaw>=+w=>Ph7u;06u-=@8ehQ96Wt-!|sDy_m&+wb8+{9!wZ(KES)$hzpyAPKP#sw z2lKn*3eywPy;%jx*+r=(lX9lc9G_Q`5uX+b==COtqjLoTI3uF{L1EsppwQ?5pf6b7 z*p$eG^cVmzdSXvp5IhR(a(JvC+)Z3Yjs>S15gioj@rR9&h|$1ZP*~JR!1IV#6}2Fa zVJ=^BX|lp-g2@NF#-fKe#8i`o8~oha$w;?~g48URK=`p3Ut^F@H{G7YSnStv~uwl2n80R;gu2GugnwKT?nt=-YFURT93}?oI z7V16-;2QX&g9Md(xh>{a*eKD`e~2Lizy^a6!+2-JoBdp5kbT}>?tq5}Fn7a-G>p*` z%iORgu^|jTBY>&=ja4bi_tw=9r-{y>l!`sDfC1;U`Y&$nHKany?LF|EaDFMy-uedG z`v*G)hB^m-VGdhXlL^r&Mf<=|D>z{IK6^#!MnhLm1N>3w42GSoQ`E{T+tk07npW}u z3v{HMv`p5jq#ISF!ljH6!hx}#U-Hl~3X{ReVBl^w92VgDb-4SJu)l2;4eg&AJ3cpe zRW^0Pc6ogp$FLE0=E8>?No&01J{ZMA&;Vd$Fb1N5#N>lPlnh1;gUAg7gMp(6R3Izm zTse1F_2pYrSAbNFR@bN2mcOO50_`;2|ckiFRefP+v>)?I& z96PoD{^QDOMqSuW)3H#I@+$EPV`blkvuB_n2M{N4w$^Jlkr;a@HUW1+{LqLtTfT56kQ}8 z;1VAbZpETAkcROOPG8Deq4#wHm}jij5n0#kV(qSonX{B69{N>~S(eZ6QYI{w;!;Ov zR`JAR(Hgy~>=`T+ZeSkQiZeUBxFKY)f-c)uXAeIH<%va~0-pw%000mGNklpNI^@LQX#_3B8Hq0@X&h+;qh6%&Et1M z$@0do9x3_PVP$ULJNrp(-Gl8vhUi31n%zO}afJZ7@Mfgi!SaGHhx41>!N%@h5J0!F zyT87(w^p7oVZ@?dCnLm$4o$|yGcpX**!*1q~u|E9X}?boLFH7!6^04*T)V_oZq+VAha zHG|+LxP)6_5A25x*n>Ms#vWdHMHU%1a1Y%2x~c(QngbZ?pA7+qfxZM_txuE>MiP@7 z1^@#-k--wc3a%9RB?fa6i-7RW2Urh9ZW!yfC_v4xG7<~=UVZomg#ecR`zaC~E-&AG zdPO9FAMZbXdDqF)r*7RjapOkW#f$sToZoxu?Diu^51u=J>gwgPGp81=T3$M1YGzS( zPHBGe^a+#aP8(O4otTl7m>L60O82B@MJHu>fW&YalN^NJ7ue~E2>|;G7>-Q}@g@d? zfVI(aV2i_ny9~hops2(kAa`V9kT*3fKEneW$?4Jg1ft0Y6NzzyXNZmX zGi7;+l!o7R#GlFRx_D~?+Z@1jmcUb1RN+bgsO0aBZThhE>GY|F6TkzeR1(@MB10Kf z;&>CLu0h&?i9<7S7ca%Zy2q@XQW)kX$GT;RnP5d<6arXk2mwqRZeeOGSgqgz^zF7~ zJ=JmCsxva>3%~?jJiMwZXekPc`byRN!Z4NXsH!4qUl7CU%t;5RePLKKm_xJ|v!|@y z-U(*Q1k+Wm z`L*srdaYfr6?TSaK6U;6kt^4>96q|~@PX|oj%+)Ac-QIUyHB0kbNckEo!eIL+P-1W zwq={vOr0}r%IvB6r3HB<`6W|J;W8;RIXNpOJ~cKj#T%Ov5t9^#_>4&w_BSRW2tW&# zH!Ny&c=Q;!gzd;!|EPqJ__WBR%s6jyWHfLW6ep6q2;hi#zp&Ubo`k^k{P==NnK>n? ziOslY@bk)iMqXrp? ztvY93sKpzsod8xf-apKWBs!W8C8 z9K$RkZHuKdvumR-WmpXW^Rz1=jd#tF{k0r0D<*f=lM|#}7(6uO1h8%kmM|V1;!Qi+K%{)te-P(%ge$XA$oaLMT2h|B8C@u^ROFLzN-ik9t<2?hhLPSC!wbsDAnB zE9v#;8X~lC;qn!EGME~Z2*3t|b#Kzgd(XiHzb6w+nP3DkGMGZp$X!IQ6Trk^3QbE4 zV=(!dQAACKSc3Tl6<)!k;CW77z5_ab@z&AvH})Jmvvk9@sf!m)oIh{c@`dv^u3ocu z_v$^nR_)%tx*0f52y zCT2yY=ETRRM|t9cM7=aBDj+y~Oi0A&;P6p_p+X~`fA|XG0CvUjTkBL#w5%C5St2h2 zB>wgtRPLybHq7xbCYaOLnLy>aSPBqN3rT#O3 zeSKKN5Z8({SfAN$!QPKiQbc=r-vwFWmLI=#V%X-ToHh$3Le_o495@+FZA+}2#|hwm zf-W9d71SAw`Rnr7vZ9NuGBW_o?UcN9Y38;X$@C>s(8vMvZW&%c$18C-gQ;lNo>Q=@ zcm$`vcljbQ%MJG#VdP={3dS556g|oSx#5F(uNQ7J`kJUF^rE$;ZNMt?!Tk=wO)3kk zPR08B+WUG{z(fCv=o8uEF3hGQZm}&2MDIaFl|{MrK&!o9i>E5U#Ug#t>>_%rnma&Z zTgEC7!$4n=GLZCbfYa8_0RXTx!F{cL15N-_839#P;HQ8;B8_&zp9h?WVJer`B$u;s zB4CawL#%iVEClYB!@>63^AFW11G>k}fGq%%3C2vY0bmf(_rk5mDDzIITj6LGRB3o) zAKZam!ta5^lELN73Ufp3S|-hVleon+WPnN^H!Z)*6024g*_j5eZ|^sZqqD1+BaNJs z25?Vx(@%21JiN?#Y-h83-I*(co&AnR37Bg=ngJO6EJjw?>A;LbJb@W4G7nd}hBvLj zRrY2i-reg=GaCTLH(*Z>50YF>Fb6P~QG`W?m_pD-`H!;>%W%dt(aG7hg6CVrX5_Rg zsg)!~7#kRNOz;>k+U(@3vnk6}hDGL>C$tk3-IKw3GMWv*zxsr5HkK-YQnRt>RE$W^ ze>0-m!2bM*Tf|=H;4ckeE3AS5#&RknDj+|UnupUM6TQOze((AU#@)cAOf&Zg=MT!*onmD24Jfq+HQhB7`;i< zm2~;;vrBiLk}lqULIMV#yYUb&&t883muP}XoW#18it4to!V81jkI&wE1WyRhf8wgB zv?@D)>A=|wyN@2yLUJc? z6pV68c0y8C96W8&)bVNg>A^7}L7uUo;ONmIF=N6Lf+Lf|q7uWgML0OhKOlTGSme;? zz`%&H!D0TONN-3~Y-o5?U`T|Y0`POjU|()nV^~OG7ywK@n3-Tu1p~0rD-4&MOitE1 zd~g@9h>^DAhe25bz|Kl8M1!0zQLcezN6;m|2{8adH_S2Y+O}kzj?i~vd~jz47Jdo3vZ+U3<)k+Y zwfMJ67TGwR;^_vgizYx4bh+estX}6Z7GAe3?6S1fR7ge5Q8Xk(R#XX!%W)qf#fuJD zW7zhC!RqTKDz?%Lrf-|i52)+-QQ!Hq5xyVzHY9rSN#IR(_7CA_#C$n?Cvvul{LRPdyW5ewR+?h{AO?rCk^&O24lq*k{I=-Qcb@C&x#n9u>3~S z7_NHw4j2q~sL_^5q8BCU`?R9UQu$Yd-^g`p2zJo-Gtrkq&`to;kSr|7QjJM>pJ7Wb z_62baqZJ1FIsptdtydHSWGC;H!xyMVC2Z4s8JDdAu)1nRzz%YxHkxH z@(Udml@JaJjui9_3iS&PABzeM9c=;lxf_NF##VJSV=y`3cap?pf>FZ&mU0Jf*4VU#DKd9uJO3$3H zqEEtj4BRT5=C+kjK%*&I)cNBRz^sWJ6A(b$AHV+n^WPZF79^%Pvrz?x^~^Mmw4E{7 zlI?dQLOU3RrgI(M@5Czd1XCq_f#vYDzwiVR-l{PADv&NZ@pMmiKLfB3Y=gi$gMqG* z_7@w{u)GTksxhUFGqLOBNKP8Y$!Be%8zyIr6QNc0R#k%x6xYgul$K!6i}D&EF&w3V zz6jvwbd<(;vUI>4!04xmz7OAh#-<|_)jw0%*_r)CVF;QgWPzwXNs{>WjfbzUKL8TH zAVbVOF)|8|&R#rv;mV55+o%1tVA;BjtG8^Py?D{& zdDE9|TD4>U&MC8}0&CNA)3Qs)>hIzM261?0vPt zU=jlOmHd4WfZu`-rgmW1pDq%?ROsZ-RgQ=7;H>Dc7z9A zhE8xW8%0L0+%@c)vjj<2%Jdk;w7wWDz5!XVW+cmbU9@XkuzB3 zz@k=THg_7Usrhh9GCUwS_R0ktgwPl9g%+F+n1~Ck<<-u71{N2g7r2YULCtqwd<5MV zS3lykEZr#l4j2pq245AUsh-iqN{UV^Hw+lofoKp=`N+8&tGDi7x8vaUgC`H1y#xS0 zaq0H43paNiKeg$=p zufSbYT&f3n9G4U>dVJ#o!0#e}fw&ZZ4vz{5i5QD}un-#8QAp16CT2v(Bu7RiMtI^v zLZbtMBgY6ujRJ+nj0uSz9TYhdw&CHy;bX$10#h>L5>sPD%ozb3I65$BjDOfD(1<7R z;O|rg7$*6`u!=}m)Y561ZC(d6!T9TO4y|#;geGm+9|{^`=0xaJOXtO zW4;y(rr1pBJ_Imke~ny&ef=fO?<(}#xvN)#f**_ylNbQTh_o=on!Z>nCHjR}-w|~j z)wWv>Rn}W^`zr+W?T|rlR42T>U%$Th^$~YLjXnLS=DtDfGj8qug;D4R`yf)e_Q{Yc zFqE|m&E3BmI|uo3qlV4LcAm_AV)LSD;uV{3r4FaWW33|Wy&#vA#87we->+yw~k5F(G7`$cQF`)16BWD4+$1mPG zaPrcjGgptEzfpGf?6$J9bqBW0-?((`p>4a)AKHE4`1Ui0w;wM%bouOw%jZ{YUO#RA z?2;Li^CuM*PoFSx_LOnOxf!_`rBl_KMX6wICuZjr=M+xJhy9@V)Y#bMnCQfCF)%Vd z7z9>W%&UqI5kn#qf&jo6XU6dwxNH&j?26QH#OR>#KSDesRe&1nv*JTzQ=`1e9s|HY zU)(?d$0kP1oI82JlGz#KQo=kzp5@+){zGRVgh2j10ETuv80! zG||t6*GM}TG~{4*ZBlYH(OUJWu7z5@oTxGF(ltHIlf+!inD*8hD;hN`aR58(#hmze zosP-U(q?AbnWY})4mRmY2n1l7ljTdkVxcT#ZQ<6rr^Vi!>gt~9KECS04ExI;ZqJeq zx~6_@K}fd+7+jFkz@)%)BxJAAiphfX#;BFhY zzsh=GYRGX$zd4edd@Lq`&JW?o$FtZmi~tssUJT3Fs_OVuTagMc+ZMB8H2sN;9FPfG zF;#4kX@8FE;lnfFDo&_o1U9AVaE8$ zvr9{+7Uve{fC?uTfCG+AiHc4PjYM&26abq%C#`cA4El<2!6&a0XypBF#D2i?iRk)P&(~t-*Nz zN2$hN2Y&c@y8TdV#+f)p3+;tl6 zYK@;Sa8)u1_(YD7Po)quq2$~s4Zk5OIN|_S7r&AoOE@-MiiO@*nqJr z!g?lz*K1y?*!f z)tf-yEqnLPT)1e$v`L`SnG;H8lunvAb>`AJOSY}qb-HZJ;oWQYY@RlMCIEQij7gxJ zqP(>1jKb35arwC^=}F0HiE&Ah8QDn_XB1AGTRLf0N%r`RywY*wibSF}CMhf~IaJQE z3XD$)!K5#a&VW5|>G6(%OSn%$YItl?2!a_Trc1{9d*TDcD!*|-q0wNAMI$d_I5>P1 z2(JnQ9X%!(9B}mLkZ8Z~*ucb$*sOxIv*e?LDz{{X*$K!32pX_-mjiGjol zzzV}!#9-J)D{Pi!v0?!N@Eb?3uyca6>l(v6K z4evU=(q)DN(zmvyhhovjoDEK2-dk)Cm-K(at+6fVUJV*(G+JXh-q^Z5zu2k0S@Oe+ zY-yCBVLDx(-|)m(y+sb#M|qJ|txa9L4D;+HKnf4pIA`A`jNGzzBVS`jo#o}e?!yDo z068aR$qHi{n857HV2)u<3+ElU&2>h$@txpKo8gwviBF5qj5DE7Kw@MtVpx5RayA7m z!3h+U!e(6XxW9D$omG6N1ISiQG7ryE&_!lpdk|MrYKc!=_Y;R$foMz>`e1m)jzJ-n zvK<&g05|KoSJb2+tfY3moW6Me!KZUjjGE?Q;Tup-sNaA(Bf;OH0&pLG6%-5y5rA8V z2HSoOfxZt8fUyR94ZgYlM=$zm`g$=o4)5X1_s-8P9hJ@PAM0CyyMS9jFX+wJ`q$NU zud5npNEU2>)S?cx%^z!;u#WmorJRq%CT$txK6qT3U_6W)X0hmUG`?~i^m~d$6M%0% zeTSu3gkcV2il6A6$0q+}^U22Tz%$hNI#j6MW^JZio)#tyx`D~z_CFA zV*&&G`~&?1!XradGm;ZiV#6bYN09w>1uzPr``qXiwgZ^S8pCF+s>J(-X_zISqD5BN z6~MNjwAN?11MJsVU0Z#8&31Ooi{@obR`A(q4YCg0xD0qp4>H(F2|MO!>N2Z7$}1ZH zriB)a6^l8T`Gk#OsLY9IbRQX4$!HqwvvL~WPeW98%h%aemR&neBNwX=#HOF-GlBK< zTZ{eix@G>^d0lHgQ-fo;zcajSjD4RLd! z&12EF@U;~3l9=jhn)zd$QEuC*fP6L*`d}Q*NCO(t6N_b?y86g{(z@3g!#1nhVuc_2 z*dk8IMRV0AesV@}T?{oF+@%qc=+W{0z^f|&52)Fb62OS_0qev|F5aNZo#aO|+&@mm z!igNzGDH(OKx$jQ8KSba^0)HJHUMMD8jU+#HvF_y*WClE?dk>9cm4!Xff#(}@P6Qp zeQIh0%M0`c^uGPp08;3!u6y~VhL6q=!4i5>^-&E5xN5NHnODM2k1z2G&bc(H7{Q)SV}9&tAKK>fFt< z7w??8e0T5Rvm19FSg>M!@x-Y)1;r&3CeNNbf7Yxy>FJrN>1oBKC9~$wpEhSsc42-- zZgx&#{-o(sm#$i|X5;#~3m2A5o}8YYm6@BJk(-f_mJpv56BFl&PK@v-M*@t!2@x?# zuq{?o0EzVk4Xq5Co3)}IC2bdR~AJFB7H+5 z#zw`4coV{Lok34rNK`@?IC43RS;R9#TPon4Fkr`+_2LP^9fT`482YO8?8PF zKj$h*u06rVV5|l5UihMO4>J5(z~mI1mp?x z>Yl9nW|)d`XDXMkeqqp;r-z55ug(EGy)V%hxyw~i+YCY&^ZN@(*MF~o{S3oArtNgw zE}?H+R#ra*pR-b<9Yi$ZxnY#k4I|z(hcHAuK%xp^ZSO!orIgzvE6GFLKqhpAG7;Nv zaF+t(v;numYhfVT)(|XPk9gz**G*D?Vm%y#R{cZn@{w3Lk%NSjDVw^**#>=HmC3f1 z0b0#ka%6O`j=`wqAL#Qco7?g8Ydf6Zz==*LS#Y%G_~#a0Rs!{1bv?~+e*L-TRpmE4 zaw19p1KjD03?L;U#d7dCuD2)1Dl><1#?t>nRhxEBm^ypbyd~3T&zm@P=8Rc$ z3yMmLib@L$OD0U3oL^W3J`$8SzHs@PRXg|ZU9xJ$yu}Nr&zS{C1_sBaBzTkJViKd` zQoI?tX~~(1@ySs!@!`>lLRf4C0G6yBi}VE&gBwN+BY-1f#=;&jzPKMYgydR;azS6D zY%thgS*sO_Wzs<3_~ZysYNj_OBPK2}Iwd_JF*zwGFL&jpjT?6Em@sozT3&uiW_o07 zOi*Y*m?tE{8xflv8=D#(5HZ#kf=1l(f-IL3E$ka+t>Osd7s?i^Ux3)qolBCzmJAqE zXxb>$qQtP#M*Kx{x3a#YlJG1s>@2x522%2|l)B={T+~u;gh^vPc~`hPduNSO9perb7xhwZu32Z- zJ?f?9VaxW$9Oo7^P?Kl43El)?vaPPoS_V*EW6r+puYq0?0ng&71G>ar678plh@J9? z{E1VOKVfaF=vqOn+8>LzqC|6x{r%A0kjgwiN;OL45h*my*-5ceE_8>KE|nbpA*~)= zwU#}wnAG(XM7JWPcmXrMG;XsHaUbPe!Gksn?5Rv`9i6U82VAG8Q+?AI=5jh-~C zCICB^Amk*5gE>Fi;}ISY=2p9@>~Ntb7n-?*OEkiMxC7cPcocB~*V)78C&U1Z|9)Bi z=uPDV@X%njpMSh^_u1*ow>IrMxMIWRO}qB~wP@MA#mkqhSo7DyrBkQP9+zEEm|t8} zP%?Gu^y$-Q&R#Hg*_svemo1tyd-}|IvnS7-IxasqDLobF8xL}dcnkuywbFisl^kfmnLOo6qJ^(+_ZW5hK(iDr=;a&$EU?b#D;sK zL&GD3!#qK;2~m;pVPk^-9KpXGWqF4MFfkZ0th&NwtN3%>7_L$gvQ`Vnt-Y$Kp&4wr zx&wE{JXP#m;DI*yx`)om(vg20YW@YSG9$FWbpb(Ar2=;KY>XR|z zXNS6x+jjm%C{$R_%B+SLosRf2%EMGX^Wo1l_lh@k8t6sJa@;xr%t=i5FP8!mS4d>i z9m>D8V5_JAtrO~c%94O1PvX3Z zr=p#Y#rqhq&h0XXx4HxSD;xjjF4H2}sthPvp#gn4&=dhIs<^f7790Kjt<*Y&?d)P9 zCS9wgf57l-Bmh%AwgPZNhwdqA#<3f`Vg}HQ07eNOf2O&=^>}CQbPeM2OM||K@g?+% zNtSe!mS%~%n_kOfGA(vTIYFyaRCM2UV2ptlHl_uMu}n<8XKB{q;QvAf!0|<~Wm%pF zR6UoO&D)RP?mu=G9Prv5+g5JbG;P7W#p~AmwQTv^rOPHxpPoB@{QQLrmaSO6a?Q%+ ztClZXv1I?Dj-B(CX+;!1G)}JM z+GhZmM`c|zrWQi%`B%h)foJZmHF}2-@Rqej0JC#&*VT>cWY>S~uywq3dPqo()G)Qy zMtc$g7)zXJu_b0PDQJ4n9MG%sK}DpxSnXDWi+{~<}EjBkt^l8)ItLZyLbC9D|4`6-va^9s!uXSlEC^mFsaLG)v^Ij+U#z*A+FGs2161IdStDywA$I z+fUx@I(&A?nvK)`S~Pe0;>GJ$&0Vo*{qC)6w{4%jcuDc(i4&$x*|m4a`AcVypE`Qt z^s$ZGH*Vj%eRtWOeMj~mI$5@0`TTKtNr|bEMU%639|9M>dB^^ZTX(G*m!Gh3>C8O` zHt#LlG=0wayzwcpbK|yUn|G{Ozhy~6YB(6*@aR#1XV?jXop6U4bBk&0MrhCxyi%hsUIZrsu~O&nlewSINxPa~Eu0GHvekjJ(Xq zxXADr(Si);2TAE3*~sJ{96ko@@2J4v)hJ38d64;C4q(n;1I84uaFrFKR{3KS!>?2; z8!fn0XONgDiIKt1W@5hVlG(OoPX$p73Pk{J?*8R0P-^Y9?Q{*pQuB`)ZdH^uy)_50 zQ3leeZ{pafCHgV|Qw;~d z;($c@qNOH#%>(J5^vm&VG}VPsVAj|}Z-8&pYJ-N2=4S)eiiCO{BwVTpQSqg*lM2FV ztt7Yuot^7qv|fyRV_Psy@X)r{Z8(>nZ4N(L_~EI-Y-}E5z2h_&8vbfPCL=qGwaU*b zgfN0g@#oh%*NgNr>YQ!iM%EBa-WQ)-d)zuXW2+gr^iQxT>jJCjP9+A;eu0T6_ZV+t0SLT$*|<7i(>3&nl%DpvP_fMEQd-4oX>b!8x ziY*6sAHHyE_rXJ@Q>T|qpE7gdyxnEnPhC8A#)aC5KKP1zo&x<>ZAk znK?-S#lnd>WheF?Jicq+k?p$=Z1`)@$F*fB)ev0BO+nJ!=xvB7ms^kWp4sFK#1}Rh_f!2?lHv@V5~* zYDxz4J+2sbMyKhX#BvM6tbof{@*EAjA1C1 z3er9p0BMAsdB;7aEuC{7sOs1NuxpjFAp)>vf*oOJqHm48j+c8iozWD~{n`R2{y&|K zRR(~0p1a9x=jG!Gt;tiv0NALt_9c6OLHca0wsmy<`jW0nwJLS-5Xs*Ix63?;O_6q9 z=4O4>n!(@LS4ztf8jBJVi8+HghKaaDU%U#p5-bhh>?-AqnFDsZUWHzYQETFIkLx0P zjWk!Kqk`I%kxIH=?2|O^L|pXoJh45@Q_)rKo+)@s)JMb3oiTOy@`P)ZZtFtyR?1ZZ zaf1rN#p~+uyER!)b|}@hcT=OVC~xlS!MbQ_1x9m>b2&N&|3@`Rt2GnF4_hqIBwTnG zt;;xPPe>L@rL16H~Dc6AEgwM_06%8Hb^=%(&&Doi-0WtvWH101dYmvUsOZ)0VB?xNQBpMXOhB*tKWh@sk^O?kk=;3jjQM&di+$H=nq02>5#F z1;hp=+wr}0JX4$I0_8#1V z4j8m_)okGF&VB1(d)w~Su}L97!IH`2_8r;`J9qEj1hk$stso>~w3>${XKv^MX~6Jk zgsxf{Ne8HLg<#PloD>|H7!;lu7@O&d$%qEUW_aT=W20h2L6P2&P>)y>NhstGzo6d& z!bb*qM*D@16ac14-%kI^G3*P#zIe>}?P81VUB%8N9}vAp1+~K>1B}1hJTZ{C7S8wK z9Ic)H{pc*1W0-8Bu)>aIYT&nMbtzyC6kA$Ol`_f0w@O&@@*+FueAO_UfoR9PNn1|K zZq8`IHN7p+>o#lJCxG!iH?ttHD}eu_31%byT|)Op*OT7v_XS{Qmz2q1i@t+cv&!wV z@gBqn)GH!8lL!WY`H7Bm9JDVt%o$81CO>M~UkzYoTanO`o%}u=y~+e@vT_qlzLw-% z7J~LvvGo&G1(|OfTIs0nw#vL6qP8om0GkTA?XH)*TW2`hH44pdA`;u~k8?=meq#iO z^&aZ2gMcjiDH7ZtdqbV0UBN= zNX+U9zUVay-^pPbF94Pjz?7He$y&bRFF9RBVhLcI7_D&|ut%}w&ti=bs}3A5^-yao z6o&^r*i+Nl^R@j)RcjYWbuBk_Ry4GKtZN1IqR99nhDD>4sq}?+000mGNklfMPMfw7IpM0#o_p1EzU9q@t*{RFRH|*TH>%h9rJ7>+AH-F)hxl5NVUAKM!=s*|0 z>H3W`7A_uFoS#vcvth@oBWL!Po!EW!%>E5K*34Wm_4MWAr!E~kbh2#!(S3g{m=l{2 zGjU4kv6DykmF?JjaQluu>w%_l2>=FzyJ73niPLhy77NxM*syiiDgbbNN*ItBu7V*3 zRIgsY2;D8x7jcWOH!99g#;etSl!`w`{D}@YHZ3$U%i~E16js<96cXhh5gQzp5C%jK z^^6G&{nJ1A_pyQh8WZqOkk|J;r8h*$w62$~l7qBxLY4~Ts#$;nhqf{e76Il{{ft%_tYoI; z-<=&bF6CP6wW!Y7NJ(NL30nqAZ{vPNVyE}DdY5_4CkL>Clg#6CH2$9e%mdL*nvx}T z4(MbUek-qGF^qJ5a-tW0g5z z?vg)B88y=Gsa$4lzpynBX`3?Ebh=q(U(m@}&P@fnm5!DwUm_SA9m&+V?2`9o-OPN( zh%N8S$7-@YwoxP;z4mD&#_Mt)tSg4h_kc6S)KaH%5*Yv(L{(r`CzTvTW3;myvsy8U z1NW@&5VJom0OK=j3?qZ#=kcMs=?!2>Cgvzy%nPP4WsCGR62@GwD!+-+Ef(g*|3q z@_gCpi|cpp-+S!L#hZ7w?Abqm$+9IYS1;eNe#OQOtG8`huzLBp;@r55#1$Ks96GiC z@Tmhw&y;Q6wQlmPk`ot>9zTENz_C61kM3T(ad~W_r+8xCp<{aw9@zyB7`U5~5tEe{ zzj(#WMayTTWJcwUPeHT0YybK!J66ZUhy1l@GKQl;yY_9&%1y-PB3gM6;2ISEM_}0R zWOjKhI>a*)ZbblxdB?^iheRa?MJ5Eo20Ten*hqjb2+S^^cXZIdKz>1gkVXf=&fkH) zBLn_5!li6V%3v^Im@jKJ41jr~n6El&BS4MgKDbdvBy$GyZ2&NsU@DR4h4O@9%u?Vu zH!{c4A1fGF87nWz^F%sHl#xjxqi58$Y1KNK4_^ai4>%iz%KYe0|F_)x;x?}@)79NR z#u~H#I;#1ih!eJU*cs`veC+UI_p}YCv;xAm=yAW4EssmMx>5rVmXo>-N1aFKCgx5mXs1>tkrfF5;%Dh7q9Zc*ECtv8oi0dR{AEymH1y1 zQ*M6p1t<7aP8;(1lrcAN{nb9slP`mT&rIt|u_dJVD$CY3k+{XNY9tPsk*h=Y(6SjK ze#>I!;(OM~iw|2q@zSX(3V4?^xD zdcpW2ec#u#=+T(6*b1&PLyWgljW>E?EFuHrD+A8ev@*n_w-x7Z-am5g(z+dcwv-(@ zcjxYzQ*W;BYIr#KNl(&mTeIzriJl{4Q)n#`lq2c4Y&g~ zG6Ay#LVpVg`2*04mKRv-A2up1#y>c643KzK;6H)8NZ&vG|7igjr)qHe4g+AEr80~O zCW{OJMh3h3V?K9UG1%T){DK9jjchTE-$Dk%CGS_Gb(v^=;_{kyDFI_-Fp>BRjjO?@;G$wq4*k23c2tBqD=wZ-@*xlAku(R*A~uIE9mbC4Kp}Eq{#3U0Xr5c(^n2OrF@nu+FnkFDyTe zF#4OV&w@i7-IjGS%&QtP?EosKW1SV$s%AsxoFBQlc!6iqo|BH@5dT*qg;I zu<3OvjMbm0Cd(Q&g8N&$>*dP9d}%4pU3_&`%4fqZY#5f8u5xpXw5G)(>vXdgP3gkm zL4`cQ`Y3Tl717Rsvns8U!CR6nU#fli*)qFk)K_;j!N&Wq4RCs=(g97KKwN|_=u@N0 z=Ax-pnR^*Bg#Ex>LhswJO>e3j-+gOFQ;X4N0x;}{Z33`rl+pt=Ma-Ek3xTt@?!SD0 z>F%R5*KQrZc=hfYBeLIfkc2H%wj`E7iN}qXrBssSe{G#^gfh6bL7MjUHd;PL5>fp`UNltMH0$)!k@B%PFAEkW))mk8;m? z{*i%00>DtX3-)1H#`#bkTMLWOC6)nT$za0)TXq4LUT4CoMmP%z2Qr}ENxiSGM}7F(0HUin zkO7x)$LHj#kZgv-`e*5Qc$Y{OGsoNzQ#f6%GlALGruMIn@UJO7R~hXc8egMH$yEeq z>M*8AFBRllCGkH7Te{7>hDa-P^*43)ff_q{Q4Q@qsQNZ@-A3n1j&=4HCSpGyO2g|R zXzT{9-_Ya+V7lrAFwvJ!!oqVeq$buV8H*aZ0$A4%n*c@ztEZBqJb=D9LaSU3dl7Z% zjU6CWk|xVy;Lt~*W0X27O8OFm0kJrhn)ffko#CFm6btvm8^gCJ-mo5li36x<>BGCv za3SFr`;MPov1!MmHJb`1P0lDN%$+oT$%a)+)-4@ZoE?)G6&V*1=?#gB4PCZ&(S9K7 z;hk`~a_!=@tb}DN7o9$L{P?NECr%$ZdG^rExs!4W0kPW!efMwKwSPT0U;rcrlL3wS z#i?M6x9wiNbKknHJJ%$oMQzx!9K0{^7{I)0-QtMoK(w=xxFaRGMFc{ zgU9G0>`|XNkBu4B$Y3K6P3Ht;e_z=B`g6Crm_%ZdBrzD`?>a_}rbNZ1EA11f$rDTN zc5%BPkHWTNC=f##IuW>^F4`IBl_E$hcQ_hEJXMtkbwP7>o{BT(X%* zyjchtY^(riENbMstZ$2oF!vKOX_x~dU-Vq*_%P*V;e+$3x%?Q-r$CTj=QH%JPEZY6 zqOYFGAd?6>RKP~ExDUf}e)-PCFt5hqeI__;0V_h)(M=A}rwF0gU?Y%d{*kaOQm^6Y z$+qb#dKzlqR7ONz;*a?gI|;DWA7LL3i&XQJwjt$`^}0+>S?f4SPs}T=u*}#hMP|!F z2=+9!RW!E3Wo2`FRcn_V)~Gsq>-8XUe%gl(7DjKl)p``)MM@=)= zKs0iTCXLX*FZvbP7Gq$`B{ee!<8Uq-n?>D9_?`_1Tr1B-@CyM7Qow^ITd5(G8o;h5 z7@=zj@WzwAWPhnd3!WKX2&bH?^0$_5FuvHAOnqn-jy@uBwXPMoi-K)%w?JQpj-g9K};`I|I%t=en zPS40m$x6#E%*`&$%E(Pi%!md13jp@S1TR=VXWx;XsFiD$W@e{OpEdQ^$s;FDA3JsS z#Hn+KSFBkGws_}W04i!@`nWh1Quc_^&H3Zg0kp7x_x?@WcCC$y4MI7J&IsXhJUy^CYr5_n`PTp9uQ*%L?bCXx1oq!Kp080g|+Q+0$56}mde6zE%pU^iM}M-!cl(8vL4mN$3ZbYM z<&?2O*p_A7gI$$a{rG`#CXsR*M`ppJeb*EzLp}fnXg@_*DO&0#;+0nF6eqG;KAo!VF?uUw*vx?A_J-F95wqF5cRA>hi&pm-Ze# zw|#5b(#0D}N~dJ!6sBipB&8&0WF=^#-&Di6Cxyl=k7bQ3v}Svo;4emu zpA9A$6T>_9tdC0$4h;JjKo`)9!mHfu;x=9acPZ?Q4E789ZET>RFGy#9g%t)cBZEm; zmZbnpFmnwiJHd(UGyqKFy!mn&bd|ttkeKFugM4)>J$G~uzpy8#dDWOsE+%45T)v)AiJsW+hCW-3vB%l$IiP~_LyVcw^dXYbh1#5+D^F|yh*WA@> z+%|sDaZ&6Qrlw)wF#r;vh_li-@UZn(M_i;c{;AZ~)8Ezu|3m|D350Ibjk&G%1|j&T zfNukXz<9FqxupY)IIX`#D}2yAYRTgslh<>Ht$`#X4|A`vvLZ=vc8$Q*(n*ZV)k-UM0{FwY@#P3I%vVN zdHW9UIdt^k;bUbRwyeq@pOu}Tx@p_$W2X)rI=1KV@!k6mZJRi?5YW4O{}vH~-nTI& zBL=uAdWWL?B!IK_m2C$+?>Vp)`+&ixCZvXg8x{cGzkdJWE%TR5g`Eggs;+`QZAYK}RJIJGnII^hociAk28B>)dWg{l|;xoFms+UGR z+j6~Rd8sxShj6LYPc6%9q;=7Pw2SfdgB^OAbd*}DMz09ltTVFkwA`MeSu|!NAS~%p zsvS;)?6N9~dCs0!v*V+%unuePD7=B^RqW1f)E7>&+I4v4u)V^ZSFzFg1UX=G5^B^D zOR8aV?mhSkVJTE9mq`3pQ`T~~EG3LNV1k_B+&63W1)90>$r`Yr)=Hv9f_cOkF|48^ z`W&&IEk=Y%N-SMAMp+qSzbyQ-!Pk7{W9N#+MuU?z=~{YadLcAw(g%x${P-X$=L#xH>l{pi5vV0b@d%IPgx z#1LL#3 z_$>7DOU)5O0la9%f=_lH{b6VMBS_kgXyvMtyzC~UOoP4fQ-2Bj?kJLR0e;o4=yGsM0^*1n?9PNIugv_>h$ zoQ)A$P5>L;*O?DCV$o=VE&HpNT|x)U=}W0T-U6hTb6|bIcJx|d+a460r1t}HJNt)} z1_rsh28TeffnbI^O9sn~mt!;|FI?j5(kR68wQ_As7YuNbrPlS&R{Jkc=-PtMaxqj~ zAiZs10E829^~x~)RQiPIaB94g-E8Urv7TY^P5+^gN!nG z_OvQd>ee7`V!6FJ z82f;+^4XZep?<4&?5Rdu-R(+&Wvc^+twh8H)S(%ZYB(jE{AGJl_A2y3_*!-L+GZLK zh35nom~jRc>r+x@U5=xo&Yu) zFjlv{{nqfIuDQJ7`=_QhV}1x_uW1Gd6(tzX7zFPY2#u;~>jIJeg^z|qNrnBD!H?IK z-<)GK_zFneeJUJE0F$16_{&FjhtN^UAL%!0?-|_3vw&)PyqDs!sJ&lsu+9 zG(4>W?T4x-AFFXB2o_R3d?$qa;qqy@IPk(j`^Nnj7p^}zaB%OMwJUcX+jQbu*@fqK zuD^S9=k4noFQ4Cd^5)v3R|w#1;DB#E-d%R?*x6e<4<28ldw9RWe~>eqm8^ zW^zJWLTsWKwj7%h0Rk)Ri3uv4n6q%j+@&iPf@aR03;+g~oL7_q44$`W+S~2}S@TTzyTi#ExM#MGH}_E25nMCK<_KIy&=p z9r&OF0x)LLc!dtn;L?J-_L!|)LlpgPzY?;xd*~MtSE^rX5bx98*N+TF3>)o0yw%58 z*qkpdZk7Z)0Bp4ai%EM!C|+G9le@YES`Maf?(1*qA3!zr3gHUmvl}!|~u~W(lG4WvS0}n zVVR?$<@75gs~UY}A0+uf6PlMdquF&Gab?Jwr-%a|SWgbM-_UF(1cP%4-Wt}f$^+4A z+@r3{qEf`KGH#ER!-QBOE}z?~d^Wx=>$^32hp4RxuL3Wdf7m*4sddddMfgx)e=){@p$LQ%Fc_>bU>HOR>iHJ_Q)^7)@x}}{it()Yj z1_Jn_D0r?D^aVg_pdvUe2D|n93L+wOrJlU61o6cLaX&trB6LO7vrhuUV1nT@zN=}( zUUOq&GsT=SjEwna>=%0UrV?|v4_;MZ2^F>v;rhXkK2$#b`1#@cPh#Wk=ld@{o;Y)5 z=iVb5*DhPSaQ4bgvvwR@aqRA?OE0cnd;U=9(JRpP2XAgXe0%l&tMfOX9J_F9-|>r^ z_8i!-Yu}npTNW-~IliPcD?2AMJ3V7unm0Mz6BiWb9Se#|3<3c!)3d$FS#b&JF=<)x z>Ei&>g3VxLJzhVY5D8!dg+&U&;WE7#Mn=$LK^E9h+y-b7U>0uWf zb$m+33pHUd zSXid&`wtK=^dR(7q>I|~sU+C0M(Q8aa=FhN`M2iz1r%af?!@ZQ24fvlDj4P%=5AQ` zq_sOE)lS(4ojMF64d|fZk@UN=O{~<*D$tLRR%_rtLaM9cr3pq`5jVITY}9&dNiQhm z3SbPw^1;i_<&&|--npK%F@{Wx@@EY>T)uW{tO^F(B#Q*GkV;kLaW^kNqfX@t^a26_ zhgHpOAlv|73lK8Tj)|gI~j=AM?Bi#BOH{^@5V7?5wm)F3L z5RO7{WD^j5{O;4Ew-s-_-hF-L?(2)UUL3!2cgegnkGA_vzpB4=mhCN`E<5R+75`y5Kk={T+ zFFXnyC$3y177EmB8371Eupfzt8CgvCB5o11NMF0V{SAw-sM;Bet?*J6Tge(Ll!!lv zh(I*(7!(lk2Lc#}a$xp%Y~b%8bigCW{ugM3o+@R{TSjRZt95*FRVfm#@<_`U%7q-N zt?}aAF}w8&`)Ug|#!x?Zm|(tU17Az{-4}TCbzH8)v*e?M;QpALGZ^eV{BZ|NuGd(` zKsU}x`pUu(!O?yZbM6}W#nDUlmxOr6;4^w(QA^TecKA4lUGQ!kcc;rMJRQqF&@2uW ziD0xIZtY7THh-dMlf{K8fYYIw*r{bPCFNSAzjjYN(*L3g;T*yxxR|G>jmJ zaqdOSy7AT>-f`g?j`qc13Q!vs8QYMY;uA9nrN(N8ip^LVgua$_?&`@_)({M5VY5n( z*yGGb&#QC#1kGup&Rsr{ia(Dte2tEi=!>x*xpW8b*|j=iow(&Y0k=e4J<740?;#9h zuA0A3ig?%SVTxdO!F>V+zcjUi2#tVM?Ej%MC}J>B8HE+vz5q4ue$z4qM5_*Z*58hRP^;DtYx27Jw{{lh) z1AQ?K3_=X6-Y4yPdG8ZOm=V2be385No`1OW;=}Fd??G5ab@}h-mmfU5{^aS+7cXwT zdt1P`f7LkC!tq4V2>p#br!BS z_@5xm^S)-&`IKmgiNPaq)kf-+;9V0WxC3q2d0b1b6p^f# z9c0#-jnN?Y{M2oMVLqagCwG-cSLhWYf>P8DHjHX-(GKvYyL>o#4u%Kaa7VW_eFGF<6tbme-j2Jpcd@07*na zRI}D~hC?X{TrW*08}8RuGtt$S}qiJB7@)t?j6nFu@`|9W=(^ z^G{h13=gqQ#UkheWjSayZn2d>+=TQc0K+}0RQn4X>Fu)yykcLBPfiaG#lqm-I| zf)&Wrhi#D9no7nnOb!^fZEn&|ZgadSqE{Ay!}GtY{01~d)&g{q!KA-meE{ZxaK6H$ z50xOn+V`Ijz4)lV-x_bN2*~^E{pFDZ(!j-@8Tz_=`#-nHFZ{6FudF$+{)Bl=YuxL)n zyt#!7=8c~|JA2)xIY(|BK6&@ViM!W8XKp^&dGzd-y+?N(6e}IgTDYuq`kcR(u3ETk z#q9YDr_GsBIAMHZdVG9pY(h#Dm|br|cywGSxM7qhCP*&F8w$krCWnJmk~k?0kSs#h z=yav)1@uP5jFw9n*@jh#bpT~I5f3$E1RF!j*v>0J8}SFHF9`O4unx=aeg6~;4){$< zt+jx{LC|oCf^881m*YWXEc&<6{{I4vFi`Y?>NZ&mBhrotO(qi84b-Mt0E%<3E zwrYa94^7fgEx!&?pqr**Spdc)u7oJQA5Be>!R66B5Zp>96Z`~%m*_wHVjOr&}b05{bSq)uV0+<1qx{MH< z2v?(*hBvwLhu}TA+2xj(i^{CHJH+OF?tPsACj0A1+v7puKa1)W2(-TH?+EY)gSi_v z(!lgth7UyZ(yeOEU{Q^QB|L70^i(Qk%zEU@1ITUFre%%JurEJQ&E_x@jCswoF`BVf z4@4y6i`f3gW=6sWPtY3n*YKLeU|NC`0Ex9u5~#8@P9j#&_j?De8(3qdifyi!(!B&= zcp%(CclD^JLTk%cZNhJo24vC<5OSXqhYbK=EWbhr%zJ@&_m>JvYZ4pDV0c<*5Zm=h zkjmDajn8TUK@lI;VPq7NSkPAj7_g_T=j#umfk%o%8u#CORet}q!Z2)*h{sq$C5ogf zO+EWm{iOVh(#LAynCJ8|UV;bWK196onx1u(<6+w zLS8mv&b_N@`tZeKGjSSM>MgGpci@6M%llia`67w=(njQ=?Pl5@bH*eet_}RTK|DE2 zo9X(gwo3c@tnhwNAFG&D^tYOid?`WA_He(h`ti@qYw=J4-1d7S#Qdce?7iD0WHVn`j{jbL03u2YAOgF3b zXvW$oBl1l2C7KSi9+z`bOJnYeF97T9T0XCUFii8R*ih2p62Q)za1URYh}YAqd?8z~ zh}wksLITzz2dbCXG}*3;4plkEMml*+)KsZcdjZt9@3!T24FEeUr?|0hU}aE}xXPrW z(8AV=dSG}|C!&{+e&qi|_BoDyGD0pM1($WYgov$$N^JE*T9cUOfuL2T z;ZxlEssUtdcrr4W3^BK}__VN-L-&=eYR2+os%plYU;|^wbSb)tWIUNmmj&nr{V^J8A*)g%D`X{;`Z@Jksb!(;;pcOz8UBX z=tZ-O#J%zK73u2z=a=q0xpe2@!BZDDZ`-_P{hB4qr*GQ2r0m4*;YSu-+cEy`cJZO-oFyAEGCbl}tp(9yG(4xhdN7@jg` zLCNIF>Dk%IY4Pb<$*DO>DcOn1S@8hi%$(%Z%y{^2pEh(X)wg1A4$*8QgvY-RS1R{9$~C7${A+rYYQQbpS_P4;Tq)*?z zqr_F&=L0JL_WeUOaJ^Zt<}2LuyGkb9U)k{XQ$1c%iub+1IlPv5b$sT^npTkHW&4-9 zj;ea0FLkipjvI(lxDVZ5y&v`_=}G8;pz4Osum3M)@8KFp*0k~Zf4GfJA(7w><4`QbOvtB=3G{`AM2&)<~f8#m9x2>A2w z|NQdp-*OZ8FTN8@tw&$~C4yj`zW?SU|2S(+Gg#uYY~Owriv*UIiO_3~V$F6F9L9>b z6q|VX8+WnbQ5w}-QOOmx7|E?)p3w4wW(!e9f5*>pe6&|5E?`03C8Mbiu%Xb-oN?osey@dfLro_zZ9=tF!f7tjk4 z?cEn|xcdh;-s0I{@_kgG%ekwB!hD@DAf_AAWmv>4+^wYRIat36U0a|H{FD#O*y<)yVT;BF}9sje?Y00Vl1QCA@1^ak^Ry8vKNfipv^ zv62aA0vj|TqbXxRN&Gw;VAgxu}KNS;z62$yK(QzTu34yt>X%g1Y^*H=bsS3ggS(u7EMaF z@!4%!oNWx35$clbA9SKaME;5R4KG1(a}G=7rO>-CB*Z72BqS4$RlWWMdh+J;)3-mN zh`z{Op-;bpUVr}W%}>8;w(o5BORqYS?Y|Phnj??w0M@FYC4jX~Ukrt1$rXA9ke8nH z!1|LKFetxARi@~EWgg^UwwzSrS|y6*MiXWcdbvXd;g$-KIGm`8*x2XrftrN|$T`3I zzcV&svN`TEcQ1);$U{6~=V{Y~?3l;6vPcOM_V{{+YTZ$IExE~2;p`D@gj zXRow*6-JTaC5^k_+r7%xuL59Zj`0Ew%kHopVkM-;JMcG}qhV^#RVtY=_641}-VXt; z!0JU!$1dDN0SifV5`<}CE;xfbwM1e-EXOSpmj}&&ZMYua2zS6{Aw=(ivsd?>zI^aB z#J-nTt=~Lj?!qY(dMAzRo;9^+;+U46-i8@7N6(otZd6xeS8MUup6ZF?o5qc)@9Aoo zIKFe*{|(XgB;C01nScO{5wPBsG<=X@JIdJV@Ki~EF;G2v^%3>(g0efjr=_lJAF z{P+u^7wL-tCI*W!EIJzBv60=1hZIJ`U;q5i&wu@|Ar6)s!xSZB*81}w-_T}HpKJDK zT+DuQpfQL_krW$6@H-hVCk$Oo|@1xO8YPK{?VHcnwjF;k5Arx!e4T&SCtK}=LJ@ZsK=MujR?Tpd0UxlglEt{ znFe^gW_DV9)B)dnmQ(J3ktF`@&CkES|Lu>j|N76*|NdVzazT>~z%z{udhqV^{kNa) zy?KB4^}GI8Z|}S`K=<}jh*MvHZa#hvM|i1JGAq*_Y3u=|mvNhxlG1b%X_~-@TfR~2 zre(1;kFY6vjvH$*&kYEIoCup)_hKuiV9ctl7ecR6w4Q_!sdy}OQ|-+ki3z7rSs96P^e?WQSHXHD#B zozUGfeRS)LF>Ry!>ZeZWm^Hm`bZ=vCYx(GrRik>Urc7!b)z>t3T-($s1eO% z?QWbpee{%ReSLi+r%xY0ch1alWBdBX_BFONhD)M>SSVB+3YUbVC4g9GsKg5ZF0CnP zXs<6Wi+TJmx4)pMEC`{nCs2qb&-JWDFTZ z+ePuZN^LZKd}B$g6Jg{dXaU1GJ`uoLkji+bjPH&=%fCq=jza-&Jc;oxgD#g+qJmxU zJWx<9@&5j^<7avC;b+7!0+=vN3>GudG)DeGNn<{t%!pw_Pq0|%k+GsaLps)97oQ^z!EGAAbX2qA&54$F5VKl-}6^1Fxe9ncR1V?;hVOo529)RwB% z53?hQH~wCOa37^ z?mwdmU!)JCK zJ-z$bnKi37j~hF6YHue*!IQe{XO3+fGrD2&r1m+p$4;Cua&%|Sn6BCh;~FPVgvhvV z%-H4$6S}&)8ylO7dPmidpVTpWT+% z^8W-~GTbms2v?@H7|XBtOECoVo~nz&8!zt7LYAo9uq7dwS%|DgztCBrNNTvNXL>eSygME7mrnQ3l_# zz426Z(Oi4{LijrAhKsnLO7>4EGLtfwA}eh|{GkVbKGe%gV|wrD6C>i18^FreGOz8T zBsQWKj{Hl-Vk?S$MYfru-g8$DoxKe7-FNal;uhjg(B9)0Ao@h@Jq~9sp>Pf1DUcG5 z7^=cLA%>B-7~R5=!dwCGlb7V3FYG>g4(@=r0_{9@ZpV=`oAw>su;<9O14nipJ-L3v z);V(*&6+f3QeS6Rb978+d0$WMl!@)LruX!8R&|do1C1NqII6p*qqAo8n3mq&)~2S) zy82jGcU|A;<}qVi$BpY6KfZh3qUoTiGbWFnFuJX$y`sLdxVFp{@w$UfZ`kb&6x6m< z!ugWw(nwJ#5cYY4c8GmFfdW~LCCjg*=@qZH;?N}+WAq7F#oA+xgXI*2Bo18^CW^Jb z-W*L>0xioH^$*V7_$XrL&+y#1eVbtClGQMqA;Ht3JTFRYAb+d)@E<+ltoUiL21JAD zDc=Al03&ok7y6%`zw-oS9+YXAC(ZiE6KxW|RCosF%66oxtH`43Zjd@<%r1u){?ochle>wxsx3fd|j9VFq0f zY2TC!ouuGMCQ!KfO5^BxG>j09ry1lAM0s4$1~f^bf20OuW4z0InUriZ?f5F_#qC~B zUkZHppSl3_-FxC3hb~BTsZDM zby+GN-R?SmVdt^)J0ZY5a#q~r&}p~>+zJHf-G2D=)`KTE?>V}1^X@gRCbK47&ESG+Kln-ZH+b6WwrIi zqsO+-nloY2l-};%meFH7#!v1ZHMXs_qpr5GEK=rg>uGH6st=ZUgHg9XEEwE0vY}&a zXGK$GQAIRV9Pmb*uAl(0+n)~rrbI5E2}lqngGmf<0e*m6JmP}(WeL5+W-6qjRI@;= zw3b8z4Xmre^LRtLEk)S)_3%Ao?GBRVJW}UhfV}z8L0EyQv=}P+XET7gh{Svwl`g{| zQeiL%Yd#Iq_k$n2cpuMc%agP~H1c<8DLCV;IC1&DFQ3Okf4pd}3+_oHl0{(g`V%sk zzDJDa4WV!%qaVdikD_525NjK~Sbn8XYtYive3F_T2mgzE`%xBJ^WdcswhX#7G#-1X zcn+D{Fj2vg64WXKx}|XbL3}QPF~)tX*lX~AG8v$w^GWRfuKNKf-dRYZG&qm zt11&_qFzO z);x^#xr9Iz)*MKHQL?Ob(p(tK*_<#9uCR(fZE$~yep3MyemYv;lcRqD+j8pPALuCg zMvO*)p!pM8WZZrI?#|1294RoSj|33qyLTQ4_X)+b;>KNal0p&-4EI09@j>FBSTY!7 zHo7wVY$*LplvltwxZgNKkRsh{x~nsHY1Z5vl?Goa(L{9R7N8gRZV#QgDw4@MefJzc zi_kR!_&m}Vg#g}p_$=TPgwzClVjK*J#f&tP7!%98Ph6D5JtyHRwBz7u(6;?2LE8@q z0dY}V4xHG$|2SyN-eU_^ZJxhs)vB#qSFc?HSRLC_IjW;{%*beOOK@a!psmr@Sm$hR zaF1*WceTeL_U-9ym_2Xyw3*ZDYHNy%VimQa?$M1Cr*w@P)7;(L)HbrFx-L{w?heNa zf{{FbB)7h$s9|JztkN4P_5p)KrT)f_y5`=d;<}=es-kd7Fj(yIgzXUi7P_)D7fI^j z(H)*SQ*lk6&q!Qp0GY%wjGM1$44IV&H?c^E$PpaC@l-QwF~X)J5;9xdR;I5p#f|hu zp>HKhuvxYjiw$6z7`NqHGV)T>a*{1sBL)$}_yjR!16619Po(D`zwno!r|&<5lnN=@ zMkN3fw)Liq_-{O-7X`ol@u{LO-V=k&%v66Xfv%unqpeL9+IuEf5y2duOt87D6#FpiF|jS(bGo6)8OGG}RX-kxXg zm4Ord$4jQ!32d8m7~f$QPMm_g!bqt?;!IKmA2PF?tdfOoGP@G7#OsRbE9B1s@RND= z@n_sQ#tb&_Sb9Ug;~_7f!FLUQPxPq(Xb^GsdjC0qu2JWS!M6nY_`ka{UzwXfD-S5# zwMyTE|3Co7sgX*BGqn{VXi@NWg0Q!THwd9{I~EhdKu16$Wt&B<)A6&rkDVdz%Ebkg z%sHbjQ5=i_rYKef#Ck4Tgu+@9Tf10Z50UN}5TbX>-s7A19D^fh)9$0Fjr$IQHtjjE zYU_{7)@__NZ{g&bQzy-sG9C!pQPtNG9n)3R+aB&{@-^4FLA4b*&2{#+=0JBxZ0xwU zNt3&#&zjyly0^NrDjW0oF&R)j}QWw zHw%$7hAdZ3#kysTbTyY|oxT8L?M&w2)Qs=ph$fW6vO`9$8r^e;i#B4J?k37ojkMVuGlLPmJT*^wp}Ll?K9i> zk^cai)H4hFKgr>lNSshcgN}cGFnZrpp%(5Co72<~8FLJ4zAMJ4mxZ?RK|_4Vfzd2p zi)8`8+WbmGVj*4S z(H{}5iQ~kTimw@fk-^$Oz3jeK=lw~U9~YD-68g)40|ak8e9j|Xw39r0zAacCIWJ5=5tgR{B(d-6wHo8XEJ6h{p4V49TmAQ>I1+_K#-Cf}c6Wbt0bXRYCb5mnkX-TZaQC#M#Y;ac8J4&k^#g&EOk{o~3<_+82!E}c=4V3Rm&vjV~ zy;;KBSuofWEcQmq0^Vpopw}DCaRf4Q-AS4Dp=d3M7{(4-Tu?a`ZMY(XIdpL!7fm7w zy%_rYLZ^$o8 zsDxoL^-76Qm{nHuyuC7KjVju>w;vhV^JZe>OheU^Qn8{m+GG9oH`3<8QKPVAu$Gs8 z`;|}4L-g|bpa@+u&_Fv2?##?>BdHRK@7)@c$&bk=kLE*@bgT*ycTuOV->1bX;nD}e z&;yK$Fy=tf+vUxLo38Q~IX>R}zacrHXBLu}KdG2^h!wsnoaWF~+O$}C+AGS{YZ-es z=as@QUS7*RAIuliekA7y4Z`F1p@Jr5`mA{Q@EOhq5HogY=AC{kWy0g9wg3PS07*na zR2&|zIqCW4E5+8_qY)pKXz)9afXSoyf}pG_0IE&o10x@-_y( zaIu_UMD0UZ!+i3}E%e0D%9v$$5T=y(Ng+OWpSUQc1*W(KD>q!v?K~#-V&S9vPhJLL z%u2=20>g6GcK?~H`+2!C;hEvqECMhIg5a(DPJl2VhBNE;9Ne`3$nve*7Ovm0Y}1DM zt5;56I0v*~*}Pc`X3SqWW7>@IV@5S}wpWbmEb3|tx7OR6YVzA^^E(?I?TyZcs@&?b ztg6z?(vpnos@%4bMPtX;clOjZwv;wCmDkk703bo%zRD{+v7*9~%DiZ4mM@aw4q82- zG&nka>2{A5U7E3$%Hg%S{8*n4Nx9&r zJYVoK7BPP%0OPDK1(0+^0N;D2>F(1vn0e#EeHv|VOkdM`@3QI@PHR%XzPomZW%lS@ zW`6V1Q?oPCQ==Jz*&~n-iQ_X(&E|aE6^k2VkwZOhGn19B&UHS=P1`M|s%b4j{qZ+s z@T1p15rfGF9OtFbIKRIKFyFpSxPz;tkuiz|Nsej@S_44|x=7rU*X|jPSMHv^dJk>u zl|gA|bv&aWa?*V58IK9c6e8378NOSr1joc+o~0+mlI@paLl<`(ja|`dX_b+_^iw4U zcy zS1j}V0nez5i{YD+g;c_aS=wc2ox2x=Ju;vdTZ1G!FU$Jmi&~YF6tH%OsFo5(I)j4C z_R4n=fQh~$($xU0H5%bdiklMxm};jnFUg${^p=a{szG>4(jTzh8(iCcK4tKTrJ6nBi4TX)>IiU7NI{>(@ zBD*Y>RvNVy7iE-|WY*R>n_K+VwZ5_nXIZ(YqS9Ac;faKEBSp4wEW_)!x;!aPzt!Qh z6uK=1uG9iYYQ8pLQFg{Keia!k{?TPR8n=XLl*Qe6N%MO? zvj~f-cr6v~=F-k9Rzf8tE(z1f#7GoSlLT-*ex-jP9ldn>_{G~NF5N+$yxfmRTmYL9 z&nO-u>nZDpIBDFBWcH^&!9H=qF-i$Lujopi#8$R=<2$>C)-3hMOOtBEuo{M2Dyik- z)k$dbfZ{LFQW&IsluRM$Lv$scL0@9f>6>@WqB5xXxOj$PU>MK(iip!t5C1}uhQr4% z?~o_66#TEeDMr>mM_m&s>n9|dWlKRb0hqoX{5mu=j>{>NQQ*KeFUd*+x)6S{jkCQceRW=!X#NqrN>b&cw2=^a(q z+E&`w;AyCLH#ZixHal7x3L0v1YAdtrs&X1@^I=g@oKX_7#KNh?QEO>gPH{y<~vgy?lf;8D-d!-i@b%dEN`%|y1ulb zrK+Sn>J2#UuDk+AjvVf5)3VJt<46ZEC7*f86#ge0UdmRSLP zfx+nEjN^U|5V)hBbb6nz(?~)bOsP^dW%W zVV3Vf$r(W9VS^|>Gk9(=472d=vzfvCCHe9sn)<@g3zrESfrqc-o3&={5+D@-eIwtc@EeglP@0-olPQ&AglGD(@Si#7u}ml!PzgEeK|~2{Bl|e>^@$QK*gE#?-<@p)iH` z<~fE`0gmG9gniG-cCyivL><4VVAud)%)~PE8mfZLBh&SbNg?Sij60MdTnk;fB_z#< z=^9)M(c7gI7z203Lc0HJ&o{U3Bi<+)Mz(2=%1qj02Xlm1X!p z5&zpFjA^ExM&H|yl^g(xNUY@H&8cY);7j@tU-5u)_3kP7K}nqi7+<(~?CkX;rv-x# zh!FNNGMJio@g=nq5t8-tW;J_^+q&k~pe+ZFfv946+o4n24;}}JKBB{C)@+|R+KQaI%G|0lTS+t( z09+KYl$7KY6=lVW3ae`Z6_tTNFfSU(kA(C5L5OkFT;6nt+iLfu$r-&Vz+kt}76|A1 zgLbdKAm5Q0h`8Fj8hgi#9NE1S4yI0gjYabQ!72u=E*1-yZk-kV=q%R;D1Z$c_DDEb! zw=j1N00#69P5o}T^#=ejXb>e%dEl#T11AJ9a?~V4_bruJ8%?R;uz3wR(U)@FxHi_f(Swc_2lJ*4e( zbrybBm-|n{Z!g5e=dMFQd`KjvH61*C^^jn5{0tBpw}*Mb6mk~}n*p~7T|g{Ipm*Pq zbwBP~y=~|EoqM%;K2}Zzpw~adwt=+b7&cfxR#!Z>OaKYO3>lQAW)7{hF-PhbVuDx%3Ywy_R-k#c~ z##mjoqo%SDg5CP+-1=&Wdb40%U7lH9lwKOOmX~BzmgQ8I*kBzErIf_dYHMB1&4Gsc zSbbfzx;zvO+QWgoqKG{Z$nbitPM6i;wBUeV5Rlm8&vbgyU9KFjH^0!8T~roq?`&=z z+1SwB5Q>I?zIJzx!;=dnhJZD_64C%*Kraf`A_5+O zqbg7dz;F^5Xho|V(u#$YYIc#(L>}#+Ieqz#Y&@l`16ZK<@hgy-yTn&c<%E3YOdW{6 z@c$VXoWvk}=*G{YB(VodRwpb3+jcr%zXI95sTCwx0MIWij|Y5zLd7OYQJ zK)z?5jnSi{8_1XCQ0k|d7f2iI^CzA%nn>Kn$%!6F3>^nLVN8(zt}k|^Zm+rT)2g4Z)E zCL|OJE2d!FpM)b>VQ^f!y#vqj3Y+pYI6ZW$;G6 zxyy~Hgt4M*EkhaFz2punSz%z$4>k7i=TQxx*cQe9zZ;%t8GZ4WS@+708)YDX`Cxg2 zSlZdVAFPyRQ8bJUR({%)$G!}Y8oI8)GY2egJ-!IP?eJrS2R?YX!LV3nr=_k--2}m} zDD>{QCmx_w%S`?RZv@zS5uJ% z(1l}dWp+)u$T^qAGD;$8#Zg;PBm)%=q!dNcswxXc^_F&Zl)-x&YQrTld(f8^4dnrV zU9J?nBNbHWw79$(fL>oPI})`+lpG2*FEW9{mIvN2?x#fWXjL^mOFEtub@)-nyEYdgG3fvtA0LCmdRYW6tMIDx4?GKXB z;$m1xeUBT!7&L>Fq%=jqI*GLuGzgQ=X*tQZe9PYf74yif-7BVrY!9<5ratz>CJ|*JZEmM=h8N_pTDJVIbqgXsqj*s zV90Mo`3dtoB=q-JoR7#j;^C{$-2IBTAt5L95KSB6`(NqH0eoKkReHdMXU+f@0lRmp>eB5e*YCf$Awery z`$kHnK;eidAsVBZ(>O62_sIG5XfoWOLE2cwCQ_;LR%YRc%oilI3{#XaU(M^K1zO~0 zHZL^Ouw<;;if3pwRy}2s`{Ht=)Lf&ai9Jd1d^>)WEHB7#3ZEmD-*Eiz&nw-YLGJ(n z5CBO;K~yNIz`}41bIc&!m-K~q!T-nW4-6&lR85WFIL74(tFiFAQ%cIIP>VW!afh3p zNbn@tZV2}e*)%1}wr@W^505X`?_-);!?65CJ#_xo!E+*`b3hDNxQ?~W`nK@}+|30H zZ`pfn%bug44Z98iGB@ttzh?WcwcEDOU$L^YZ)Df#j;^t-qbGMwTR3Imn)!29&Y!z# z!IF)u7jIZKZNcomDdR_u>z%oD{@T5}HyqfvY5yV7*Sr7FmV-xDZP~VD-G)s&cC6d7 zW%;V*(`QYeFt)e5qou96q_HkiQ|)i457*U)YwJSwwcg5ddwrF?raZr@G*hU|R#}<> zv2R%n(3=jpjfK;rp)^n=X!ZM&LqSVvNoHHCzoE`kTkY&_uPBSz1K!MVASdL{^10Jp zPOH;lak|n1!JN`EcSWVItlS3-uBeDqRz?G14*)n;5&`-;J$5(-qYhuFfRA3F=?l~f zJP?4n&lCo}h(^psXXROt!AM`pS1If8WXmuJaAhbwgq1)KqvSK<83YS}F-qb&UY3PP zY>a)eGZ<^IS>4vq5ov<~z?Q5LnFZEdr>)SNGl*DgPA?;X*#Lu&lsd+#EL{2-10m2d zo=3(B!{4~+3`-Y_#UmjzgZWFmM&T~ORpBT{wL;&70LGW_pPcTd#M4S_Z4R{+V8=JM zSt|Q)x{&!%2_snV)>|p@!&Iyo!~&D0W-}nk5~WEdzEz1dO4RimcVL#f3~?m<;f8=x z3SZL6%eS6fz4PoUyro|pL2wc%c%Bg&qvUf}@1MDR7bF%CF>AF{YO%CvRnimM80k`0 z8AYJQn&4(ho#fmeL_LPyXRsk-*aX7*cM;pP(Y$icy^-L~fxPz{k zP{L0Y?~Hddi#}089wUIYq9mQfR1`*0HRm)eG=4De5x$>oo{p#27~_>MnSZBzBij?@ zqYkv+F8P#3$p9P|!A&R?8)`m(#f)LvwSkvpC`%hygke5A;g0@?0{@4a8_eKHPaz2b ztT;((z_vuxhd z`O8-?oHcLCsGgSA=Bnm~XhUtNwk7}!uCDfg%1iB~#Rb*ng_WiG_re+RJ&rK@uWIOzM+4gh@Iy16U(zBASwhHj4KZH!_+aQY&Qm6J-yO90ld)ILO+C?)*G2$*oF!AvsPs28Z)kDd$qK2!r%g}AgH zDEZ9kn-IWw(tH6wsYpRSf3{G9=7haf2|JtlNu{XUY?x=xf@*(5<)2P1yfb+--DA>v zle7|FsmE_gcOJdH{qW7L2e08sf|H>B$M5t3SXbV6EzJAbWOMk)v*dXoe zk-_Uj-NXtx3UK8@&;oSLW}if2SfC*&EU?YmFiV@6MdPQ&lklnW3E&P(QxkyA%~8r^ zi@1T55x~mmCuP`eT-r5!KGjPEFfR{Q-75Hwxaq+Tt*6N#>~X>^6886jmqhSg6~kk? zaSCtzmt0tAJ>%goDGp#v1~9nt+_KWp#T&P%-tEk-ds^Mu4Y4ndXF%s}Ke~8VE1|!9 z=LrB9f?&k(*=zS82tFZ-2XDxRC6TScng$)lV(=et@ZEFl{EvrD|9JTL_Jc=PZQZC(xw#&z_y^o?!l>1%9kC=y$?H6alM zH$+;Ri|XqGRaNe?lER8IM|p8>X)L=qYLmjK*BT93Fzs9%$t()n0KfrXs^4n~`qKhF zD=6%@mPE5kW4V5Js@GxlyV4;D4*Ie@?lgxzrO=+@a9WCr9px2Xh=YTnT#qNm<;n_2 z-Q|@Lr#IK_&ksbLpjeqZTJb-1-IRqO2LoAc0}68+Zifs3lghsA?$C8fhvwgGJzrh^1^ceux8DkFZ7b4A8~C zBapuP`$LLt2s{~N6%LSsrrfe>*DRh%4dE}Y>7?2B5zjw(^-jv*xj~rW$=kmPTV+x@ zj^0}jpGmzS4FuqU#P@x9u$z#qcm`ptoKbW`4>dIN9TV(1iFu%GZiPyi+~$qTw~f6M z#y_lyTUt4Q$q$PxBN8?@3o#2Vd>2k`e)2-->C2yf`S(-v0{MJbm+3OqhQD z>Cv-~51+kz@bvAyM{n;+go7}y1=jXUQ$t;A=qZN_hI=oxuP?q$vUtw*YRz zL(kLqSQ!UveOF#<8m2ZXC0|VdRu~))b9rkJ`e3jQX~njJY_p8P@hjBb7jHoKUcS8# z|JmVh0{n@PqmUHANhu7GKRtQ>8TItTPftH+zj*QRSEnzHKv2g2#q;o{&0wVO#oH=w zc`X}7y0qYR=AxwhM*oRxw?W6R-a2;WCLD3%{h6C02qyE8Yr2Qm#aoZhUK3fIlVZo@ z7Pc*c^t!@pawO5!Jtr^eV~zxX*YDiFaLuMA>(?(>y?V~lMRS)eo;Z8T?4|P-E?L+* zvbCZjT3uaS*BGg)4OBOTYMUaJP2q-)(s9!}yT>R8F2fe$}RBbJi>!J9pZQ z#S2$#-Z*c`64106(|bnsjv3e0)zi|^Ro~iP4fL(6jWpF4HPl8cD?F_&#Z67Ysw$_T zZ>b$P3W&vc7k7Ly;T#R7$3ht(SO9l{z963`6$Fcr&jRP8L7M=uGd18z3;HrWPOGyp z)lrb*u&275R-ZpB5-lhxb@>C?Zck>R-D-EG2O|Z(K)%b~qU^v%l!y+tTs>Es%M#Hec?6fT> z6)u1?GCPea<)M?#+0Eq}x-7#S zkAMlc11L^kz1m2;<^IdJ0ANg(CQLq4m6H-&@-0{ao+mGj;qP-T1r79lpw>^B15ibr zuL?nxljdtQy8yi<5f=PBx8R}gB4Kcxa05Fbl?Qr^NZ<}Qfb}u=b)qm=&ei!$(~!({ zUff!QJ4?gj)#pFn|D@^T*FQgg{o})z-$7#Wix>knkUstP7al=B{rXJ`7Vz?4AAkKP z9C0C__4A)VFJKsu8?8)%?!fq`uRc9~@!`Sqk01=zF>n0r?a#n$^d85t84234^iY*x zjBzbaw%`rZSTqhl5acB}sGylBI+vlhDDSk!zB0Y5`x~=Z(R@P@+i-#AN~SZID!DW( zO6{LaK)3(dhr7?=Q3)QBeu4!yYRlrd_-1gzsf!%IiV3B*cgsU+xDU(U3cAQ&WAeJ< zd!_7G?&*z3@VNQx=HutLp1c6{KYvXy1`?xy$G9LoqZpgzs6_eKhL>mFVF@0NVFWN` z*RSY3!Bhy17^W6*nvtM%MZ+0_E;U1A|CN}aaOLLF%QsL2;8WKj0)Bik-n}OO-o(r%vyiFlolT8KAz2qsC1g zJATsGwvLwi+S11Q^2Vm3n%YoBji@v^ShHg8%B3^r&z`?*(Ui#(Mz*(fceITg-P_sG($n4E+uPdH)6&*lR$k&MD|Ob_ zg{o?t#ihBJf-Z?=%3wF1a0aqQ0%<6Sbb+-oeqn~o$mEygn~JtaGu9&b2!uU3sUp#7T~TokmL4cq3ljueqoxv>6-%5 z0h}sk?#f{dI9W)Wf{*~fT7$3dE}10lms4{b83mqf2!*o>(?GB&aAxJ%Z3tbAXmOov z9Wp%Sd)(rcRMz~W$z6-4Bw>;n7U*h8+r7AL48iWu)b9o-{{w^!MgRktQ!|A}w1|Ky zpG^C^N?c3&uK=cOGanufXJot4J0^o6Gj;Ux+Ni|guLLkjCvoDPU^*)M%KTGsrlRML z!cm2_bOEioApo7cX6*DI2=L~*YtCjRf6n)(6{06_D^#`s*(M@k7*Md=KK%B_yI+0-z5n%h(A%FyBn=@oPW5>9?(@^PpR|;w%WRe)J8iLEmoEj?6naZde97a)-2)V zUMUr#QxP0)9H1XHJ|R)h7)H#zd>W(G|LPje=M!+tYmNOtYe{t6Mn!-DhVf`l@M^I# z^RvWXd-C6){bTdc2tJ*OPejm$H8GnV?pduETvIm@eBR4RSptwHOWRv1r> z(byYJMe=l>!q%grBkl$bx<7v9&WWp94>auoV+Hs%`a=OfI-vfI2dA&}bLXtXXRjYT zeO2!jj$1mzV(Y%+OIB}PxnbwD=?f-Jo-=di?4?VWPo6dzV&CpjBRhNAx;vYCx|-`7 ziYh7tK;LjtZYXApmSjiEvx_QoBb7NtHTk7Y{`PS-eKYzxCU#6+G;7{!h=Lc)Sv-66 znC_n5k-c4=ptk0wu95A%eeDw_jq2*CD~`E~i|iHUo{9>4ES6nboL5$oUmPWqk3awb z5CBO;K~znTg{`_|$&~~!qBr2PQsC?JSl!MPyM2Vql>&ipz+(w`QUJg~uN4!~9zov} zklSGqa#_8ebeB8b?y#Vot~9StbR~ft?le$=!wM>NTJr5F2w*Mkj6J?=1~31Brorz(2RYz~RZogfk|eGjlD#;3Ui7VaeYCh9MM2 zFk=%D_sP;hD>{_m?dWPrg<6Z5 zPbMTTF8BpJ)r_TE{4M;WJPzh1&`Ka^u!?;0^6t}DC?knqVYd=sSm8GTIAQXcN3lvQ zn~<^u+N+}I^f4EHR9o=BN5-2BM0#_CO=sxqOc-a=pTGFuL6iG274=Y38mo=8vLpFd z82G7nB*8}&vDgBRK8EF4JUej{=Bk{1ai z982(fp@cJY3H_A}$dHt96YRZ)g^tzV$O;sW+@6eV&p~*-JRcv(fw3=$oL{L!jAj+^ zQ4sKtBD%%ie-X2IC4k{M3I4IP;SG9Dm_kxAT>KjV8>SKPSxgeZi1Pv4dvuFtk=kX2 zPQ2rm45w%#hO*X56rOOB#7*P>(*)&XdaW|;>Eb4?(tL#uXbOFiujnNy46P(+d9L_) zeDC)95z&c$9q9`?cKJ3i_~dnwmp*gro-pIQ{{&sK>3^R#C<#94wR<>%5N`zlhS-<5 zi!*&u!d_$d(ak##Z`iPV@#6J!XDyyTXK7DYcUw#Aq$#8O#&mRc);Bj-R8)G4OB}#m zpszoi7K~;DBI%LhtWa@gq%=ENmRr%}tM9F78eQEzxoh@{S<Ao-}jxlo{hzty{8q z$)Yi1NB52D?e6MqsIO{msqgD;E-&>L3F9hHESwh&<(3rX7RPd8(X?p93gK@wWQhc= zLXy66(>Dd8UJ$08Vc~Hldt9l2VK@Sh0lgt#8Uk30eG5}u_EavnD-8t!vD=dY47R(h zfL^;R9R%n_`U(ISCg&C;(GILPacfBzgVuNr=-!Jr$Y3*i%~Zx5a>BP5&vOF`Gul5WMOg7%lhTG{+VUj& zat2czoDjf&v-?X7RuIcYKC~pnExklT+Dl?0sp%Rltu%640ro(jR9Ps`0ZJ{2Dy0JD zZUUz#-UfpthHy&$#gE&GaQ_fuFyal6gZR;>Ieh~GcM-sX!IHQLV1>aD=~BoGFKPHO zguG~W{rc-~F9ER_xdOnx{0c`9d2_;NM<{9xh9fW!$S3(nmSHbH0|LLiFz9Ez)k__U zM)byKIrC2h_XNxnfR$m-^jN@6L*YurES+Lv;O@BysirQyyVoy(>aV z<;l`qIYk!M%J!{r*`%gtMqdhZId@4s{6z+11WW)%9lt6B7zPHPy?q}<-#A&Lz$b;z z2mlr{8#Dl4J1Cogcb~Y3URS~^Lmqb=IkWHN`5zCT+_C%Ex=nlL%w9Zo%A8SM-JNai z&COLUE!7Q;#Z}dz(sDhL{jQd1TZ(Mlq3fFj*xxBqG}o&nGnM|fQO*~ zt^i<+eFcL@d@7k6QDg~)fIv-P zCkXS#?|=QB^2Q+gkXib95k@0=kz@qdIKz;#dKjvVqb6%G9Q6@*6O%}e6IX{iNPOs% z%3uzAyoP@n_+87)v-YKGlB4FeU|l~Cphd*eoDy*>8Kc7y1X25w_h0xlc$x_h(khA( z!>kX74-(c&ko1v9Xvz`qf5idy_n#&xeg{YD5!k4>G zT-bU1%#X)T?>Kr2jvMzKT(x7@sx3QKY}&SR^}1Pe=J$4u>}+qTs)#faO`fP&1 zZmR^aKyQJ=ns2uNcR`qZ=D1Zd&kBrzvb0%Cg77z|z=Bm&*g%Y}!+G|!0%vA!VLFgi zcJ~ejxMpOhfTS~}p?_B|auzU7u?C@h6Mqbvd}tue~@<2 zVm*i`%L7?1JcEes*UKGI+8KsS9h`CFMx!AV-rO)i(9~KJXFT1XK8ph2IEjrW9()`4 z|56LhbG!-Zi=agzL5aRJ7LDeW@-uW^8K%a0%6kq3S_FLgHs+H#fDy@Xo`?&= znZ5u{RD96y`75MD7p@+@cnw$!M_d4UVFBk4oV&c|Fvi(tlqhO<&Le3)~;Q+X3dIKs~0RYQ`)lI?{SkkgR{0v6T?a^=+T5x`g! zjZ8)K>fJ=RA1vJ~4FDdDZqji52vPQ|VHg1n*8qCO)^94+LW^Bt9L4}2g)@VUyR-2m zGl{d10DSxD%iB6`(R&#e9KZ>CY0R??xP7BM4)A&L&NAfvzW_L4^UvQim{(Ep324Mc zj#xe({G7;l^^?wAy8}l$N#n!^f;68uPVZ7i*3i>EH{$1_G$2PZp1G)xY@?c*D>ACQCa8(Kq_{1%M73yudH-4Okok!HGw^Nx{WpRDCeg!$mP@A$w)ROir*5P#0XSZH zr1#q>6KZ)IE*3Q5ygc%epyDIs7VgfXrxjUDP!?C%N#1{wSTfQj5qc?*Mfw6<;fNA& zm88_-Z}~=IFbJn$;f$>F5azOCE=q307tFaEchEG(wW5GodU^wQAyh?C{S+^)BIxpR zD%|nK(3WSFc@`Sc3z05L?;5&7!vRTvQV@*`gbV0OqBXt?xVvfJv30u+Z9jY(xGUq` z!>S~DC(A1644=z_8RkN}H7`HKUa0jTxm{^+1bIE_;ZTk*km2@P z-J&Kd4IF{?aWUt^3*JHbR^#4w&8r1)F$ z-CuLsnV`tyT|WOnKWW&wHP22!?3t(eDiJUTF#n|ge*w%xVRK|mXLyM+1;LbmR(Q$9 z(W{6fnbxPT-sT@w-i{3t^ej((5gL;D^*W*Pj}&fzB@UW-Kr9n_S0Ox-A`&O`54oem zKx438vWFG#oWwNkNSN70a-Mt0~RPM0g{+=HD##y61ppV9qyu`(N^PYj8RexJ z6=gOQo+&BKtgOnbt8-UZJF2SOpo$7-S(&{gno|_ciiI-6{&b%&#p_K5c|1uN_2Nb^ zpx1660RsBs!f784NY;bkB)>N$=(mJ}Y0+?Yz?bf@TR{-`78a!1^OHfqW1rXNL1#*L zsy}G+_|jY+i$*g6x=nKY={7NI0m=~T}j;Gv=%$W62QP+We*tX%NvJy z7q2Y`;$TtmOkU9X{_b$*D=9FH6;*J=;YHFS8m!Kl$H4;u7->q}1;ip{4P=!kPhGi%3r$!0g>)pJk?7T?#o@>r znhK}i(+v2tlF$U>1Sx9`zz=A@84YZS!2n?HNs^!qOon25-XdOw$A4$|Zw@WU)|57D zWiIy@1;B7b0E1{l*F1C!?}Mpt9* z%yRSkEKH|!06+iqi&o66S6u;s(OZ#1TkLto3MqW(!Q2D6BEw4rFrSylBVaysfqoeT z=lIM9plts`5V|UAV~%7!5rUJ8Sj!W?7=xa?c8_LWi75^MT6rHl;z&xaQzCmT&Y!)d zIfom@5=*%9{aQXe5lO5>z?d->$z(}iL@W{akZ$^jzK^)TAe9Rpsd(^8#3lL?P?4!P zqj%>qZP4$o;}_(JUvUyY3MY3QIlFoP@%6h8FWIzp^1>yvR;`-1ZrzH_TNkZe-#KAI z*TjjF=gpe4eDSQsi>Az-Gilna$qSh{k?+=UY-Pa89C;^;Bm%`J6R)q&D7cX4rc zG-``P)5DQ8oU`i>rvZ9hzGOHC!q!+xR(XXG5LeK*B)t-j#hIXzSY~n57K>&S#o(A$ zQf#ZN$gip_s3^-XE6GLMjYuFP=(T!0DQ97R+Spk2h+a=~BdAu1A_<{h&5C_Zrb85alB`06o z=ruMP4aaP=B<_gp0!I1IyL zk~X{u0Bjqk&oYW57EPgtr+hDD0hTj-3N+*MUj`}?%xAgF}O%r8m*rJ;yzWnfRsifGMPIs9`+L_ zp9!&M;fGF%0dP#0?*MwW*`hcnj&T=t;_^){IYRE1!gzXlM*fB3ndjBK{@Vng(+xx@l$=9_OW!KQ9^mX6Rf;^VXX7QI2d<@;fP-t zeO1cVFPR(jy`7IGl8 zmNBNZGYYGvNN|lgZ;Wt7*JY3}ePkglVU>;?xA>CQ487V|-ye^jBjL;KhtJR)-wk_? z%v!N}`PLmPwr`ubVE&BdOJ=WHzHHN`g=^PNoj13or@OwZb<(^U%QmiGv3cX7RqGe8 z-mr4rmKk#wx3sl`8k?)iE2CxQ9sqExI5!x!`GZzaAe072U%=vlfYqNW&V;SONLq1; zt-K#9CgQR#s#!FS3=zGEhYkOE{1e2__dut))daP*EhKv?vRWu0p=FfX9M~ zWtR&mJ3<4npt8l~jLYLrvlk{8<_`k~gIo@6_cs)Dny3#-nrv=X7?yvCNC@>UT>FeQ=zQc3vNw_zRXOO`pc&W7^p>zOS zGKLU|@hD9zQ*rDPH^gugoYc@S&_ zaC{yx4}}x%4aw^ornBMz<f=OW!Srt zpw&Edq-YHbd^>)Ylkz16*73b(Df50aFT>^-Mh4?|O|8a?O_-9M=C0lJ{KR2QzZ>^u zQWwL@$1;j#JI4Sp;2EF}FbN<1fFZB$!uII_bKyr;k<~E3jEz11LL4QtLyTy--4dA{ z;&v~sF+6?6+J`9Q<>_wTe5}R37zZ1hjETfl%tgD)NKi7MP{w8`68Q!RV7&@mh^7%> zpp0)v7{?oR^nRiEEa5wGizo%aINz5dU22)-Jv>4*U< zUW02M>2mZEePz^pP9pXkYR3_c#5e>H&WQd}CKzU29|S_|dbMEm^xm3@n6 z!l|%Em#aun_-sVNX` zmR4`2OKkD-iw7tFKSNXhXGGffz+Fq$u++?*i`O}c>7M-lL}g?!J|E!MsgzsC zE3W0fpa||Ij0f@w;e}}+z_4OtLa0_U83q??_y>Z2FT^n0KYsic*6;8M4|iVmr@gpO z3ul#*kHyX?*+;7p7llrTluSnY5|a6O+UP}WfK!(OBep~v~ zfKT!?=9Y?xQeI|7XV{#Bx6<749S1i3aJU~hIaBfpeYoI_ydVx>9yBW*v}Z(gdygVc zW0CMp)RBv~2*x6Km2d^70$&NV@Df;yLgK>W;Ds9p&R<9EKXVm@6AN%HNB9X5VsXvF z+^Zy+Hg`3Q>}&0v+%sxQZ&OEO z*O<;RlgER)Cyt#kd;0iU(|RV2n=yZOM_+eCQ)Ov+I96m2NAiQ=EV*L}@vg-iOalRl z{lRohL<4t$zJOjh0!pKibcl3ueo-`(5)D~M`a~mGi`HIwCLI_Y^jmPOf&j291(VFM z0Lr>uR*kz59D6Jf4TF3>@e;V}v?qZ)uGB~*8|3q)fN(s6&z}W|1pvF8>BwNa2Hh|)A6t2;xLmQu989FR=2;b91&|;~xC1ZG6 zCfsBM#mB(fVU~XokL3pN{|je;wLo8Mj-YR9)?iDvh=T#fgS2{PY%9`9+;5Co34th% zRo46ahT}P*omN6@E0i^7o)yK@o;rY~-Xef8p60@$FmraAxjDw^d*$xKxa2M=#=aMC zKTs;46P8w)!(RoxDD5TDSN8;<`Vm25iC!*xdmQ16=$yey?902GF6ajIhWVy<9wxN< z;=AA&E~}24?0SllIf=Ca8~S*5693ny>UwD)tnmhCzOvH1xB$$|Y5bEcw)#vPC43Y5 zslI(nwbRtOgyQDsilbgQ;Fx z689k=I@+XJky?$VD8Y~c;f~jzShY+9_jznLvYYPFfOBO$SL<(B4*_lEL1k!>*h=5bY ztvpu0H_hwIw#&fR?aHthTEu2BymX4RGmscfHVPamh0fFh7ZyLG1Oetsy*XPRDYz};l6ODi$ zj}7R(3qj!n?sY{KSbx)clrZ@`5P-!(r!VT5UWZ8`FQNB194}luE*HloiHW;(LtfiO zy-(*7C8Bw&l0KOIp<*_on0zUQAsopZ%n2EMTc6X8$x_|^kQeC5-z%-djrj%}2Qt!3 zMmX}B({k96MpkN(qRnP(-o@TxE?&t@&K`!IW0ufn1AMet7Pw0#(*RczP&V)EyW#)< z5CBO;K~xUfC(mhd_0iKS51(9q@c7bwQG%|xDk6j7yXN@h_Kh-D#{ZbA!7`DUc8>XQ zj;n065x174PH~B0tsaUNShS2?L+3@l`Y9Z-q6$b%yS6f8e2XM!&fi2NAG&y(bQtJ+ zxgXaWXwP2Xd*<4n(^q$&x&p_zPF~r4;xY=>NMCvKB89WK=Fu$?7dZ+7vH~wj7_DwO z5GN=KIf@Ix&V9$$?>)M1@6q-9j&0BdXSDU6qp0<}kF48u7=$l3?mY&A%hv8bykhI# zX^YoPTeN7_vSs5ZjB9RbYHO-!t}m^u@{1t~6`|5ne_2JiyfRYLP}x+UCSzn6_^0btDrf6Id>@w zO#nX5q(!~JT`56g7WE#za1C@!*KrmHEBEI$S<2?L8NiCC$Hhc48-^tG@WNo4`c1Ey zrcDr!$@}n5JUh+)p$#qO@rrB2FuJGFj7v5p;wQdkt27H?bu{nIMdM7}KJzbJV+%4l zMB~jwwC|+Q-qRcR zoZ7GlBGlvScOL_-+jVs9&LgXL9tN%Y@xY4h`<8D%Kw6<`-^v~P;iF84#PvH5ul(`Q ziX8{Var@!r+YT*QyKTnOb@NxQZ5=hXzO}ituXj{$S6gdST}^RyWwfF)P*)#=pthmQE1TPEK#h$RrKLf@n8z!9Dnzl86&C)W zR5;BS(yFn5zQrZBSkw{@B@5%KpeTk4`o&bDNFWVIDPX*d7={G^7>y)>!Cto@tH+aq zkuJ#R&A?q=ZR;04Buk?q2-bR#3X=tZT_R{kFl$9y64hD^?S|)u?4p>%>&bLEMORXO zL8=UbtsrbV0s!j{l$!CRhFD45oP41?`_O#Humb0BIOaP>fbt5HbMi;%yT2NMk--wf z!-&CLxWB9K2WwN3EW#^8<1Q?;Jzd){Yql8S057pw2+4{;u)b9+gymNwQol#Z%f3rV z`$5}3mZ@yG72Fdmu;5k*V6hFHH8>?xOa&fp{cg~ed+>+gAshk2c+_~z1OXxn*UA~a zi0P@B)8gf$N2u!$A6~ov@cM&CbPZx#VJ)X7tvUGVyz$|HPx^bt-$h@ZQskU)k5fsy zN>u(Tg#z8L?U@eBl~giRaA#rXctP?FzGoB{PGSP}uCT zrI_fNZAK`Mt&mvzX~-~ICyMw*Lg6nGF8IG4#J=Q3$~)N%TOs_JOhOK~b>ms$ctQ0~ zFF${wg6em_{Pyv;-#`5N+xuUBg(Iwm6ZN-mKmGL==*vI`Lywqbe#sB_8o9+#DajFrZf&Q=o+f>LPn;xqAPpY&X*O$c2pNtoXBv z|HN?Gu5lj+6Hd79*G+N&)iSNch8*bQusDeYjHTBVciTV<4gfId;{E3r;Omz<*Z<_q z?MJB7w;rCl`QXI$dq=O_QHYD#X3{~%U`jZf0SwxC;u4oeW&JWZv*XwW)Q?9m>^O2> z33eg6-E`m-Xyd-qs118ht>1HU-R={hwY!c3J68fVcN|2%F59|q>6X2q#hdpm+O&Jo z#=Q$S>{+;B--7jf7p~upTD)=Z;!XR6Ht!MIv~S7g{isD-gy77A^}A;-ST$|#@@X?> zH#WDGm6z7kR=2b_v~@Jq)mK*6l-1Q%G}Ko$G*-8@H@3FdHMiDO)kMoGf~8fSqH<@n ztRP&HS5oDyX$m&ARW`O(bad1e6?p=|JOD6+i~wMW9U&kNgfcQe>j?01^sCOpVj9PVXh!?z#8_agJ_sw(5rbk`@N#<8B4AZpSag6IO-HJvE1~9 zlPQQ;pl?CJu)=~Q0I-HzY0UxW3k!!A+EeTfplqtgn*o7uFq9vQ7RWH#W-qi9T1N zqp=EDV}*6dm@Wo_V)>O=OCIAMFkXW@zQ9y0yh0=BB+Fm|uw<|RFqT%~{%%UVb4dsr zkVFZz?fayR??$A3F93WI!aJ!;{SWY{Bx5Nkgd-0V=_T%-B9D0y6JB}w?%lZh?_Ifj zpWcOZhriBxg!+__&kLhC?CC=&cAhuS7#;}NL&HCU;g!P(9i!C`sF|W0e$_~zmUOjF@X8wAAiu$L%5aJv-|1m6B+x$ zC)EqE-(szz)LVtV0|6N5Dtt#m6sYsk8X*Fwu?8S8$|opGIQfh)?r| zj?#~SSp*%xFGv(*$EQbQG^~Gx+;9UOtVE=HQwWKBLhmdh4Fq5<_Lb4F;O_aGn)C=5 z$%=5LHAgRBqky~HkDlLl9tY@>fV*pU9$U5J$Vv!R zw;o)!F1JTZ^8MkAK*Sa+%`2;N)Hg+&+e#{H0wv|{U?>M?70A{dF~!g0OB4PT zK5L;X+3rqq`vri7MEIMG0LF4EpD!g4u;9KdoB<>Y5(m=&$$oDN&M$(?+|DEfFs7HW z(FpCX;3e`{R%Q*i+lL9t77hpciWpaxYax2`3Wnw855>|d_#(xFLNKSe#0fF9+(=Hh z7pCOpCjEbuz4wn?Ww!pye{k>j%*eRAOBGeARZ*2%-4)bP-ECX8v1Mah#(+p80|O#z zNCFQdqKG02gOQDGIm(^XQJvLMZU;Fb6D%+wU}kjYgkSEJ?z7&t_o}z{F8iE2dbIV{ zu3R4av!C^@KutLmq1p9{{bd2byfI8O7>K?kEFf@KVc5gF!n_}>#h(rIa^h7q>8*gV zF+I?u^>cQy_ch7tF!yea0I~qsWN^8)r0$6g0Q**Z{cL~1?>Y!r4~rn~`I0WeB<=x!MHqaAi`MZiRIQTUrk3Juk~GhiomqB)98k0LK4e)W189 z{O`iq(VXQjld>2m=V<0@MOQUxw8He&TW(3pF?rt~ez|)6x9@-b=Z}A1%em`a!|Ie32nv+%lP42e9^$wA@MaCP%`} zkED%ZFlQXet}wjs_~}a~bj$U=Mse-*Qt!-i-|PyjXL{ML6O)T4DC?@s;EGHu5O;JQ zI;y-c$Di2&>+Tjh&_8JbFwXEv1~BOR#i>ycmvIZ$mZ5v3|D(fw(1(Y50bS-U>-_`0 z0^m1cUOzkj`lrWUC7XNXH9+*^LpZ(ytbTY10&y*R<%2`es~;X@fw<5cpB!PmxA*9q zAAR-wD{sH}+Pe?j|L`M!e)9QeUwGoNC%38p{rS`_4N+U%2758;a{T zmey^|cdgBJu1$8VNicwMZ10ZWao5_d+uK3qjx|*HTWnUjSA_sYZfP5s1p2}z;#h30 zZ|e-VvS&9=A2WAJ)N_N5co;y-`@0Z3 zU1__)pv9SN)&UGNs)1ya%1+QXnRaBdUS)!5#BXa$vZFo2G3|U)D3|r6Q|?UK!)3vo z2yFzMb6$4CinU%fg3z0yx?a@}i!rS21cSaRJK7@*j$}ObX?Hk93C7{12a*gdO2SIf zFknzwCiqI{NWm?$Spdu<1vNsKn>@RMH8^PwBCK`!ZgqK9xxKgY6S>-$YmHb8U@_Ai z<(A+!?5`_$>n$Vm%c9Zw<*|j+EUd@D=K0ei!LW!qjfdg!vS#rsjMB@_mo>Mb7;LfWjV z26{zu^Hik>!;0VKD71=ZOPh|WJwPlB*1K2gO)jP97_0dc|&XKBGzBOJ+3QIyKTVvR>tfUy~M?=4A@5KdxQ8hD#9q z8b7FdEo)CY0Wdz5?sp{%Z0^$6GZ!waJ>3Yea>%lM71X zcK)vb01yC4L_t)GTt{?bVgceLXI@hs5z8d*F%z_`Ltw2bJ>|+yUjeWVV=VYFSO|b& zd6~GtEsh@?G+LUalGv;fx>xk}7d@N9-+cSM zzy9sDM;>`%_wGOcjITypl_iR;QVLymn@FcHWmXV0966FqchyvM&o#?aaBG{V|QU*o2lOg9?xi`B3;T= z4pBV0!A+vbGligWp4)5i{;u?!BnE@2IbSa8&1O{mIp;PTQn~8L3)gzh1zU*7&*7Z8m(k7X>J+l#gP_^D-)(m)^V#dTV9GZvq+kqgN9~j zq2XC#u>MB8&|kTd@z%7U$~+*0e9D@aTRT;apX!y>B83x;FZf}j~9~}XRXt>zJnM%!rgNFi(g2fFOCf0AAbKA z0~q3ohX#ZH`@dzQ7tn=phV?Tn@4x;9fxh4U{<}`x%h!K~F8*-+0%&*bM=UB^Ltj@; z*VtH9hO%O+ywX+4UKIN30G1)`vh}M2STXoJ`DOTb0D1x4E7$RB{QUJ#zg+#9^18ub z!~1gNz|2|02aw!J2;7Av?|Sm=1@8Q;kMh;W)H8RvwT0GU!yHRs0$8L2xLm?JHmAE= z;i~}ElJKmDpmhN2mRBb+-(&!PesYAP&>VTzNo?rQz{iINc>`GXfF&rs_xSj}Q&R`} zroZZ+IXEzTXmAd~0>T*)9>9+|JTP~te^%17MVz61WN3Qd$>9(89ewGI5BI$K_Ge!n ze*688pLyZ0&%f~U-(Gq1l~>=|{oteb-+%w^-Me?}xNXy>Zg^h+7=E|8y&lH5tt-~r zk!)^@vr4To2r!1bmFlC$e8r9_)L01Rn?rb*(T<}nR4jT;#~Gw3v1&L)O{U-}GhRTk zy*&cZvL|lHIw7!=H+Mm00GQCL#AQgv&aR1GrY~e-m;jt>bY~k}nVcKKyFl3-JbFDR zQS*nPt{q@%iXM;yjB|c*y}TK$1GtP{)rvBaCQ)iM$-~UP34jg$B^*>}3ksS5das?7XiHE zE0s<{U)8CDi-uRRC&%wWR`FD|p-Weq7jkIpVYBQx`S9G;#VnwrHC zYZgC1-MctEy#Qf>cZc*V08p8Etd12E{dDi8kjxg`So2L4BEF~!W-4qnGg1$sb83~P z@TSsX>j1ta30eA!SRw&RXUA+kqU~|%!O8}c9W$J`Qy!qxA%C6#em3naa zTk2K$E5x~15bmP3(*OL|k09~C{_|&ZCm2%P{qLXttFqs%=y73=^D_qgRVFJ)j)JkJVu;2Cn)TM__!>nv#VaZT)Gs6Lwbed137;01 z1^AGZacy1)h}#zA<0zj^rX=YNpY=gQI(i4@miuRybmPk-Z%qI%+9f?SPKQuG=)Z~F4dIc(Q8k%Pv8D2O#vPeg*I7-$cvrHM+4b#w(ks1Aw z>dFIno}_xDgU1i{41Kik;NRZ<;H~#Qf?j^*^(UTs=B~T$+PQP*`i&iH*0px7X>4gv zx3nkQI@2(_4BhswbaPv(wIkEsm1%BE;AEkhx+PQAQj-q?sPwH<+*@b~lLPLELZy~a zQ^5yLL&Q#aR-lwJo~U>UYgl1Gx>Z&E778AsZ^n_$Isj3sJ~FeHxx}c@7=)S{ybW15 z=$lEq8Ng5`<75DXy9&KdDBIwHQfUtZxS=sz$io3gdG=9LV>p)$BvW1*O{hMP(3kr^ zGkRG9U}FG7$^!s%AX-^rssons3`USy(HG1EYq`ZE7JQTHZj~Z2cQo#a#(m+4;di-M zh}&ba8`d2#^U~PyH8Q1X515h6Iab`&lE*Yfv+h{V6UpErzyLo!0C&71X#lPmk>sm| zZqey004|ew*5IpQf{DRPy2j=f1-;B&p)Vxd)d6f0ni$LgmUoAE&Bj`XnI$RL-e1C2 zHgi_rueI-9YiI1$t`%iSk_BBAx)lKfQk5x5H*40R%q5v)Jy}}w#Jbb1p0uUa3fptF zBtR{)fVS7%Z)Tkwofe7V)?Z|>TFI0AyU>rOoZoyUgZ0f_W%4M*dj9(#E|AsZHqk#b zfFW*C$$Vu7^BL+`39G82vZ{p^*+epkzx)Ql*M9f=Kd$}rpFhIv{>Oj(NPd^N3+O_o z<^4@JxUz@3tYv}eySV~gZ9|umy;+P>oxbv|=T%*wf+Eq8ACId#Nl@V2!-}gD&iAfp zCr7{1*>CX)DL0MWt$IOuS;;v!YZ)$AG=*M1KeBXoc<~I5)bLqrZbj{#&9;#|L*5*I zu+l%d%<7pe_lB$zc2=(U_~@K!h%u|x?21!lm4bCwU`A8ZuEHz=+ ztV&`Gv->0|f*u=P;^XnLW$EuB0dT%DkV^zwXt>pNXb3ia3W&w=;NYYjdGXc21f-wg z#i8NpgVd`M7YAeej`klPocd({!Ixft>#Ywy+Vk2QdtQF^nde@->+UCEDo4G zZZd=OJ|4Z0XbeO$9&Th|WLmNPO}Lr95Y`-aHZ!nX;BI}?6N!04^)5XXO90IEMdc=x zWnR{r^}%j6g|JR-1J@8`)s8PW-eT_y%S(!Tq`{Wi+=D+DJ76`TA>eTO>l{8uowx25 z3wNz1cy`IcU=UZQF9CRNeq?rzk3cUpIyE;kIg8`ibOm?$@xpATH5SGm^TG;VpFab` zOo(eSTQ`wTWodeBA+arbe8CphUV$VY&OTeou(^U>OTa)~I#@e(@b2l2#v%!TEd|8= zT69{FY`LkkmJ+8;$E;i7s#Q;nRmSa!ktyi-@T5gJDHx_*XES}QuQCx#Co#Sz{pR># zO*mP6unu5A^t_UpaCDtbuvlSP{xkQjWG0>a_Im^2>UFf}@lTiWM1^GVn9VNE zD8CC6`Gb`3>Z!td0NEBpE+frwu`0V;|BiaKUPb!-g)4e2dS0u(GlzyeJ6Yx%=SOIu^tn$m{bI!Z0+HS0=H zzL;3MzWIUOJG<62H@7wvn&Exp#g=HkRBw!_&-)sS0jzaV3kx;KkLrzhi7(`MQf zWhSTGsiX@GrciK+I(Trq3@Iz(;ImZsg4sYXZv*Q9&ZRw>Bqccmx*1M*PP<8J-2?l`kg=mg4tpaAsRUng91XaOg#w|zD`AUKXTa0@XX=CoM-fWV0f*HW^2EP&M zO*(mhm+Wtx#|&d9Sm9PGgE{`Js*hZ%rxlG9bca@R zl@agtGJ3hP2uEpYDV;s|vVh-$dt)j3)`GrHzw;JL;*}l176;4#o>;(o3D7mTJ2T6B zy}Sl`iM}&)!dgxeB zz{cN7qfkl?+Bv|wSd zIN<)-B>>o*W>4sa4~BTnEhkmi$$4(k%wcB(y(2R!Fgt76(8Yoru&UYpvUi-crz z&~#tVFzMtF^?B~mq|UIuI5D{QSpVn82e4onclC}yc<|>Z2fsMh`_`vl!uUS-*T22= z#;c@PUjEacA9~=y`?hZ1+`YD?wY_QQu1&XX?rQ7EZ{4=Odwok&Db?E9wDYdbxGP^w z=SwlDsR;Vk15wOcz?fpr%@G61=GG~Ztl;N)x_B5@?t-tB8KIIC zD9)_V>sQ9t*wW@N$lnp)h3s$2#rBsQQZj?N5j1B$^HwV-SVhu4gTYA;ABDK$ea$&Y z9&SR(8CW9WE^h#nDl34sR#{Gme|3%LkG0-a&cG^8b>@UG>Mp5zTKPgXREZQbdQ2MJ z#m)LUf4J5kc6x(#@V@S#(;alX0xnO;01yC4L_t*0WdXg=^ulS-cWP+`M_r1_XZS7XXh6=I?_+VmmH`8ntz0TXJwr*k zdR?+!g{)UJnR6G)L1sPFEDqR`fM!ojGpVm{JR6@!N{1^Z2lL2r(qu2n}jl5~^H#zV;GkK;Gvl_EZpoJU$ih->@VX@FDT*=vC-4Y z%wA>;V~uC=#c`o9@y|KPJPzxvb*&ph|?i;w>0u}7YM^p1P)*mmc(&D+-9wslQQ zM{eD1tuVXyJ+OV_rcP+hhSrvj#^&~h_U=McAq4>E8Y2x&(L!^yr9BBmF?w-iR&mdY zY-2!emr_d#&J8w@*5qq$jdXNGTU*0mDwPtc1m;Z6*<{oj`J0==d2^rGR8Tc-R#NRX zn7#~P-U-fRoEcSX1o2)kGdPiS#uE-^Fxgz#ZrbPtfWzP}9!V)z8Gkb6P3Hoch9Hi) zrZ9~^%K2m)n2Uh%T{z`R(KjI7p|#mZL}G?6u{Q0CX8aJ}q`aqu8F1F-{u+T|<%!t= zi#;uu28Fnv#;xAqYH4eQqdB`*dD)P|x2UvaL&LN4EUZW87g=KqOM2GT=)wXtHow61wE%c* zW@dbL7Mhrwo19;qT3CXn7m2%~nZ*^B<&01n3zi_QYI8(AXw0!?gRd*#?&bNjSClSs zNepD!tJAxBnO3+;m9vDYB@Me0%oQb7)79FTFyI-$_B3fd#;%V~sM;7(o^A$?~cTCR{v0Q%h&3myI7`?#y|}=(3_D*05ao zOP2I&WAhb@%dm-8`N*|NID)}ChK0nsExvH=N0YwS*zZCL?cef|0lat#c)JA6ox?v$ zc@M&xNw)-Ct+1;86XRcV@%*JTSH8LU-4Cow-y2EG5;NymI_=;}gR0Bl=-t`$4l{bt zTXvWAW;OF>r&!BIwdQ><@Wq6>VmLEwUf2z5Bck;^U}LPk8brLI6E?j zN1nq180Ja6eG^MPV+*H7=TDBzofw`yJ~VS|aO&v5@#5IvH148%l~1L( zbl)U|HK03$>wx8pGz@Y1qMATl9`?X99zbO#F_4clI6ty{act%C_?at{=dN;RE}R*d zKg**GWkXtvFmtCZc=3rB-hKc6zdZZkU!T46=|{Fd_RxzTzqfy21SI|frj~rIF-PH3 zp!YEN+WX1j9;IH3xaTtf%u*Qcm#GXN9XR^V-UH9>*>lhC-G6%Y-p8N)^ApcKvi$#XFeO{$Od9(p#I5OXkcoNH8?#Fah9B(C?|Us zU=!&nt8 zea{%yw}j6r;);M_Q2DHO^7Pj*kyjb;cxAlH{CWJO7xW7+{R&JEq|5J5*Ao{muUx)* z_UmuK-EV*X?fYN<{{3&ifBVa?U;q3wboG~CaJ+o|`o$k`L4fzA&x}v5@A%4(p#2~6 z5`P$678vPNwhK6e$7)|0kCClt>142K)uxx^Dv#255#g8G!tW66B zjA?J!!0;S&a%A?zFb%!O5o?^GX(HNauYMK5=6E$0L-S`RRxWd&PH5uHMZHHDBN@J& z6R>-ymarb2J2SL+Ze;laG`w`)TwEAjIL8BqWzZp$m~xVbW+)fBZ~V}}xXT9?Bsk;a#{7nT z#|9xa<6-EFll>naJoeHXuRr|sQ+MBY$L8BNY~Q*5!H4gB?5PKC-?{GYd$-d43ypU7?iS<%uNFs}6k z{|LGK|F_fke>uqt*LwU8x3A9S4mq3whuh%|c=h^V0N4|9akCDi+q1SC&9QFKHyHCr z)AgywM4`Q*rMuABoWspq`X;8J-tkFZ^iNJh15-0YGjouTSj_S892NC~wS!aBtbxfX z7S==4Q&3e5Gl^-T0?|xm1~BMLhIskR%;~d?US69z&%z&f{`<}gi_E|K^oP}^Dh;cv zHoF$c>HRMSdwQoQ-SS$Rhp4}sxEB`?XH-6yQPXUxdeR-0{GqoOw8&M0d}e(Eo8M6| zJYs8xHC(A7t&XT1?w(oXY&%_A-n+2@L3;$s4(eAM{LAYyqYjtAD&xbmfz!r#=)XUE zI6z3JZ&erzi6utOJZ8wLRN-&HT5y-QgvAXDiSb~LY(sc8h2hH#IXypFYJ|+;o8R*j zVQQ~l{{`Ir?$_VI-D|)9{fEE*1Hw&k_sUN{34JeI!xaENgS_4M(hE%MKq5mnzu_wb zx;WrXVg+n`68Tp)E)W%Z8MhoTXNhZ99d%Z?*sP*Sxao!~0IZdL%fq->oSU@JUh?U) z<16R5oN0XVf=ZtzPt5Ka2Wwab%!^ra&nWOU<#*U6uhAjNVDOTP49T z#m1E=PCmENHw(}jZMh&GGt5JUB`aH13e8f`TU9IVKR)>0-b0(V?TDr_^$pQbw%*qi z?zm&^x(9Y`didV=kDU6vkNQaK!;y%=N13~Qx(xarACUQj5I3Oy^7zSD-~aI8Cm!5( z=hn?z+ShL=ZP-}YyrpH^PB>kxi)+?4wzVf)TI0q3R${c|%uWm>jLjg3iMh=e@Z` z5+jytd^w#;%6z%i1|1cW*+cU&k#vE+T+vING%_A=7xazBY8lMx0aR`Ti6LeHb0#wn z{RMp+@>Js7m@m&kqGBXn+~L{nU+r+YYw8?zUR5vTU#&3gg1iBDu-@;Fx}`~$j}oWd##kg3 zwU+v0yfyci4#fkRd@5T^rt@(YNK60*dZC`N35x(@V3?(wKmV6^^T20 zSPV=~3{FiBPfm_ZO_|~7dD#!V70hp<|Rwd)gsfZBE}cK zy>|Ya@6TQR?#z|)&NL^8LFcaGUZWe=*FXOJ%}>9wh`Yc1{@w4tU;D>De)#7oiL z{-2=tBGtpuOkX1wZ8km==<;r{OzEJMu9XYrV&Vlu9LFZsR`w$0r^uK~qZDfKJdE$~ z!nyI&mvk{`*4u#^*^Y?fID2+mbh- zDfPOShBUzbzQ6C#V=w%zbN$*-JX)U%hqECU{&p9l!RG8ke|z?$Q>UQMPY!)?${1N_ z#G*~sD)jb3I0ND4-V=jtmrV>)TGqRtefs2!FFde&=Z4$b)~?TWug!F=Nq2UqIyy5@ zYa7s;=omxF!0{9S?3PN|gvy5k6tfMk29@3nvx^0*k=8ybRbm0yKyM;dM?1S2C-a+xcT5|g z<=o~>+5?xYws?(tUlnsE0K*moz&M&)!cN`^RshDm&UoBQ4mjmcrtz_XTbN_NYHdwb z&gP{?KmpjNlC9VZQ_iz&11ko*rMELgZLQSM1-7}7m=|IUiw`FHCVll$mp@qJ3#^8) z;BFhz2wLlmL2aMS5ev0W@2w8^YNw~B&UY*5%K$be5{Aq381$ip`p^a5Y36imE;0_s zyqU&WJXc?z3IyX`D3S`-CquWK8Xboiy1bS%%x0GO1k+ehH|n-r)Mok-ZLJZn`aUej42&@8AxU-1HEE&b|@))=JRD_c*(l4f4ovrg+9=W5NB%`5ur z=m56#$JRSvTE31Lap^t6H{~QdkUHtC)rSE@&xYsmy;{tS{ zZ+`v-`u3M!alHD=Pv89d^S8hK^4;&he*gF1AfoRtaA;wL zL({x}%&&$gN`aP0Pa21Y7thdh7tc^FvI=GEO{b|7$n47C{AsR+($zb?aB6byQd^ z`^6_7e09%zCy#t`tbgxGV_L8gi#`Uw+h@4p!#$rK={21(NNk+>{P=)M!s>bR<1g;} z(|udEZMkhzsjEA?W=*oQGY053x4`cvOU(&(y+AU++}a)~wS-`Q0btM<5NgPifZq1b zMyRO}H}*%#1P6t|yh{q`a^b8|FPk!?a+g42;$KSnV8GSnuDhYh#Z8+HxT>06QBv*f za&{HvIdjY9EYR)%J3&x(y~I&PR^~AS7{rx4EG%$F?Fze8I}U2U#Q=s0jwjrVVVGdr z32q3e0gF5tDadhkd?~ZTGdJQelAoE%3}#}mndD4`Mmz+G+f2qikyttZnIE9`eZ9eO z9Sig&g(+Q`k;!>jmbt$abM~zksp_NEEVyBk?^c{-`X(}A9C?-lH`(BqV!$(iL&gYU z7do5+giu`$xfC6GvS?vanZP{1Bsp1newKu(B~opKuU7ybN}`cORy||c-aAt-E0Vfiy{ksGDkI|o z_L^z^WzDBAYPoC`{W=7eI#cC>Krd6SnkXcg$M>~>+0yOHzBw)3u;y&GVn@pD-KvrmgiC0=2YS_ zASeK7HtSHqXLEO1cg*?|rP(+=Q304ptSXN|-*W#;7~H9O7H}&9cTbGZ93PuLI>Ou? zJJ8P>Hwti7kuI0yLi>6~U}rx$c53g*zV{D&b?*~T7T0tn3JrxdrFbD3$^^Y}k3Z?d zG1L@m+uFVJnTH>Jd(W$1e)<0KSr}YaTWg}FIaVx1z}jMSxYSbL-Wls!lWgydG`CWVW@<2* z4@23;5F8=b{&sXXAp8kx^AH{TVicYwixP%Q_FSprMJFt>*UcisLP z+Vu6-GJpZyTJI_xYdn91aK>BjgqMwF!$7ITqTTeGMz1T6(QM1`!NG_d%!aqdD~A$3 zJU0;a`6J$2jt`AMz%Yw%>f)37z2(K=$jPBmKAs#NfrP;#cw%LXjZI=4`^PIZFflzi zIm6;LchS;2SxOTRvu;?E@|t2aaipmdfFBrX1LuusS}{FBYfHjC!Xyz%Z`;X9NtTMGF)uTT10jsl{dC zuG!D|>$6{fYmQ7%`uc0u@|7#*$#QOym{gs(mYbE*6V%IK)(x?~LoAW!a(49h-;*ke zgE`o%PJa8{xo^J3@xpiCU;O?WgayfjF))1j+I5I=OO*ZLN7j`euhZiCbxE+g^3zYe z*NY?0lYaaOuGhj{J)|uAyOriueVxmf@f(`1_j~c{x{24lvVmS>yx>(!H%c>)`jT|y z;I_}>l?;~2SJwP2bL-bKAdAD-l-s2erw68%Wz$zjIKQ$iWVQ!OJT8|V^MXAtqnB}u z;|c2WF>`cy`pD4Kk)i3sgHwkFCcf$$JJ36-H1<_r1%Mg7`;HB~{pnW^z3|e*FYej% z{(Bv_Z%yaY;b=IJQN}ms^F+O_dbcCw3}x$6&6&j7Vth?u_bV^_ZU3ix-v8`_gC{;X zc=G+PPJD2{P$hjyxcTvclb?Kb>aznU_q_h$)6e|nslPn^$Yb|!+S1+D5pQmdG?yYR z&Cyo4-sUI+*l2>$5>h=Q>q{*G1~5-I;>sLA2n1^DOg9zl%`Q=DMt!44&0U~z^fUxF zd-FwqbBhlErsmHL)XgfDs^ffS>Fvxjj&eCC z_q5`OG^5u{U@ij~=;b|NMPj!AIFobcV6vM$IU13qs)|)TaRv`i*9YoD;)=n;B}s|2 zOSOXzG#0`T)0b>LjX832@R>G)Rc02BlA^@`R-3^NYS5to44W(EzW^{XSnd8A*&A`tLnWXpqB*ziwTA;)^~+_$42|c%V$WV z6HwpSBqR&{CNK;!n;FB@+tSPklk{w91GG`YDXBHq{TiR{vvXnvVKxOoD zGBCu6!Hi)!smqRMenES;Ed6SrsxuZU>z%n|cUibgNwYLx`Mm6TOF(}9>;*6t()Ysg zu&Vp4g5jkLms!gfuYkKNm#;zq?U`@BS-ET@*@f$6fycn@ zH^2V+?Qg%~2n^%M3xmhkf98B_&F_{kR`8kS*U*E;#xHa6;^L)C{O$BK@5++sYkJa_ zUP)~0gvGJ~SReVUPrX>%9|fP_4JbuKD7J3`?qe|+*UG)iz6^xRD%#$?1O=4V7S;E#DX0#b!l!2 ztHfY}?rmF|+q=?ccSaxQUQu;#!JEr_04)j&Cw-7$nCUBm-ORy9sxl$2J0kmApb#`D zn@rX+dcj?;?iBzxn2nt|v6;$tGk(sc;?yb@1K7OjlwKSR-~y#s(~zZxtdr}Mi~zL) zFrW_MV=KD5q#GsYlo`(6G`lM7T;{G0U~U1;8POHJu9P_QSq2=bJ{vTn7u*#9OOp*1 za3%nok95jdBnB`@$pGeWMKFP7S@hidB9NRv-FxA3wHr#%PULKjy~U_qP>Y3qqYaYg~|+I4j>C? z8KM>otNnc^cCwLWh^jo~OZE^h|HT)o8M~?%F6#h3bLAU|0Ss9HY|vK;2(cSn`wni^ zLL()8ck^rER@rb@W?JbxzJ_bm0DS4kAInnhEdgB!9F<72F5cPY94prMzy1Eh-~YkI zMFxp~`9-(ChVi|A9dE&~XZp&=(=6}TdPcY9CIgtH`FqP3mv1eB>%~gf%jlJoB<|Z~ zZ-&MA)S+nMZg~==EpwikYCm69@)j0vT>)dQAvu@BNvk#L4>LR?IyN|cl!h^kEA)l>n}&SJ8o@VAfmes-ew^CSJbzBoGYkipGlXrniib8}vFp~){@u8gUIja~{S8#}vRPG)8YEYe||OgPfu zXj)Y$(L4qh09-23fMNA^Bp7Z`pAEX|L+NJ#C-Lz>-$E#@+E11zG35NJ1xHY;N-_o? z@sS1ZYm8xtS1_Ek_4NbOx)N!;D@#gDqe_K2X76 z-3PN3RvJ+n6M@rJ(JOdXK6tu!bV~d&8Ddo&Wy#96Cuv&%%(5FUKWIoaEfOQ62 z0K9bhG5~Bruk7GjQmgE~)>36uReFZA4&d?z@VDO@QE1HvgN~Pf{0R~-3z~BI5LXc4 zh?@{VOXrAccr0p2ihjB?^y7U+a zhN=IWsx4-zULVtk`^FFTj+qP|kt(45Cx*bt{U--LI&k!fm;Uy`8}GdJ{)hMc>A_4> zQ#c-X#{-Zjs^ZTf7ZgqeL-7FU3;7d)U@Da9EWGgUD<2&>vah%IaNmUJX#d2KzVYK& zA%j@}01yC4L_t(T6RI!G#HrEAzKI$2rvq2m%j46FdtP~K$Bx@JZ0K0Oq0rh!`BrW1 znby{9p^)GND-f6Je~R^Ni?MX1WPzp72bx^ThO{b@nCC;%jX8tGuryJaA?ynCr z+ePtQARik_(3eBIY(|ZJStA!(^=Ho3DmhY_x>U{uoO5<`p@{^yns4+-M`$1uhE<8u zrjiLK1hjMdm4;qApGrD;N)nGI#48kwULN)U>f<~$?ojzz_=FHHGO~>!wSn#9Ty6lE ztBkZXE065;8q<)}krz6E6@#5-ze$fubkYG_$KrNWpf9iarp4^~&8%hkOv5`bmOe*$LKlYGhbxly`_p?3L{p=9I2sX7E(c$fUWZkToY`bD6S{kF653 zd0k0mh1i(|F~LGjy~~7dcI`C%|0MyieV(HXShUEV2yJOq%^9uu%UiYfMvrjncQG=F znwJb1%ir-Tv^E2z#z~XD3}DCtU_JQE+$DHiyf}Zsn!U_soj0M`wO56)1vypCpUz-C zRamDo0DSJd?}WjOVIr{#L389;956$dF$}~S68rmW8NEzjm3VdCBG6p`%!Nkfa%A%} z--y9_nEfVU1N}Ni{g~yH_{z2$r&aAQn70I}J(p!m?XP*)vZX#)2ciAEUL0(fj%xe< zE{o6Ww%7t-+|&Wg3^rPyj?J^E-N*0@)C)Y1OaY3}iJ|G9QS!~lh>fKD`whir{9RA|%&p+7q@cnP? z|BNH#Y|4!`t5fqdJ5^mz+w*PhDcIk(&h&;&rH<}~VoL&` zmEB)4!2mEY+}f6a8^(FKVQSG_2sbnaR9_2!%^DqovQdJ=J0JXV*8 zJGjpV?*vmWRosz?*MYvgmz>ME$VMvw7mDs;$wLwECI|az-aN)fXahg}$5}CTsq7RkFY;5oNLF`qhR#C{0%Qn{T-7 zlulwSWDQu7A-;Z{^QUxiY+2S4ZMFoQIi_9SV^(4YGwh|shYnyI?OxXG`Fv>(h}C8b zN*0wqXHaae3EgsRS*M!GHooXw)Cp(txHkf@;CY~OQZ=6!pwiqV)8>}POKbbP+*#UA z;);Z?fvx}VikLdITqWkO_JZxxq zX7iRiy}4MrtMtG#kEJ_`-cZ0D@YM#~HGY@F?{o%?qciNHY^-|M)_b?T^Z9$N8{7R& z(U(7cbM(UU;F)>O-!%W@OtW=wBaPn9~ylJBvg#;Dzo_wQ=8eOHGio4Ei z#+w1c6K(()^i>X+04(%X*;sY70jw&Qc%m>n>0-fM$h(^Ibr5yfXz)Z6j&QUFM`;^U z0btd?n)^-auGc6oQoFoH$19%rt3=7qDl{EQI?Rq&#$Z8S>+xqjwya8oec_ll5)XzV zK2^NS#+No|)zPra0I)B7t2eX?40iihDN-5$=4Kt-wF6eT&iw~)ceQI319-Lj4-8RS|d#r{^3b#Pd}$@D$kHy{pJ0L=7d4C82Ma0t>FtixEd z$Q4m*2Cym3D347@X|isAnY%c{5ou+D=XG{k(xY@YY(H<=Emn(i@|UF-qZAtPf2a_r zWOL4xh_jdZUOCC>R62bLT?%GKsMchmV2{PDr5=YWG0GAjE^pilfOXs|aLPhn-%4NY z?HITE(<_Ycg$uLi&dr=XYq@|B^y<=tuQNS5F96j`q@AWzT10POx@Uc60S@U1@Y> z2`}q$W5rPez~WrZRK#Vw{T;NmDYc)GaW9(=e#On=kx+&m`TjfGNvu5Vk8!B zjx3$!S;buMt3Q!HJUl(VuVsSryxI7gL+;!H3;-USS{@mlyJOd%e32j&%+|Z(K6l9H z@VjfhPN>e5!{_2uth%tXsjJY~(NGtv4dlZ+AG>qk=&_*-Gvnt@kDXl}TRA;`W@X~+ z>5=7yvD0Tqm(NV#KU@4ayK;7PVd?P6<4?cv+?GvUEu{?4?rmvLbaZE0JCZazp%CVr zEC3kXRUX%eBW(tkBE{w)!~ix$#*_yHakmY|XCmVu2CHU`2^x#5rZ1=-9qNpmiA(9w zaYrOt8;;hg(6rGWD`J>eC+M4Pa&u*{8E|&1Ks4CtB>E=nRBLD#12`UYLS%Ny__7Hm z^x`cbZo84mICHe4Od|T`efhkblCbhl2;T?}7$2ZMR?A(wxMGT}a07l8O8oXK22&mu z?+tUX+UR(dpi#RD5bE*xgGnWM)JefL-2-^Iy9CX{W8#Zo~qIF*eh z(vd*e;}5xUgaBZGSz^~z!h{!(QR)^1B&#;jHFz}%WkcXJ`D6ELsLo4KXf98x2soS4 zV$rM13|7yo05ITcVX*xsKSqyH8_CiG!yJ(oF@}!~3_>>ouzk;%iHoBob}@jZ99b|d z0Jb>b8|5d1ow|ROxG{ig$&s$SxgZU(tL^44+d5vImULxZ7W4{zK`$257d&J8dlMoG zX)FxZt+0U8?ru5r_C_c9Svq&+E?%(l1$yNJ)8{umuFhTgnmU8+5ot^Gm2V2b?9SK% zW@2#Vg$UDEekES8ITnsGjAfylT03zqu9}H1V#f0u=^xJ$SXO}nVz8bzC8kQcOO{L6 zD|dFyIP+<{g%tqnxrdbeKW8BMe~DZB8N9MsTixACsFsI(==HlS!^@i4&cb8jw_>nS z7OcvPncwpI_?iq?JqAF(!|Agu;E;prQ2*2%z94>|FApBybo;JA(CZI)+##1U;HdMt zh`w%ToySGoH5pv%g(LBJqF#R@;DDQfZOZy$#mEDD{`_hGm;H<5r)GzbPYs-$89F$0 z;@EiK=$WOFmBo>Tg}$k&p3#v{zdG>z%P(%dV_QdCuDO`x1S?hSo8Sa1mf7(t$PC7U z#{w2gKB%F|m2Gh38r@X7qW}zhN^xe@dy)anaOIl-aC!Pd1I3ncCYq>YfpekA>iQVG zrr#(L<_?jmI!e4UNw3nfXv>y^#<0JQIR^loNjYGDlL@2whN5hpxgV_daTR^T(bae_ zdtFZ^%W0@;}jeCvKUL2h=*;fN_4L95fMcwI!NLyFFsg#N)aqSX=V1m5?Cj&SX z^+XbWY4L$0qc-l zpaECWO-QVJ;;H~X+BXOp>;3^qtZ>!Pv_azGF+HUVM}41I@7Sex>5>q%hT%C~_SmwX zDka%cRr_ynNLl7VS+;MLR_wA+M`&cBufZe}z#y3cGqnccm~%KGWl1Y$*`3 zdsdyGb}!4SdKYKv5*^Jmj9&i0(`U|DzNvoAVg0_kLt5bFNl7c}jD!mMvsqtwp-Aw!Aq1?3T(d*~c}b0;;K*DShstZga;fCo*wRRNu$7 zw|cIO9+&rDOe8PL5Dq=Ud=oKT@tWnxuwrDHsphEZo^k4!adKkTF0L6hMp;jbV4_5DNdAD+bO^N&3J=-v14Xzwnzw#1>9mVin= z3N|-OoeXAhQSRdUC2l#HRrN(pO_ZWsEP4UR#zrRu;|uiiF_&>cu)pybaTg4( zkJJFSTxi7O7TC+y$7=8vMw?8P&68LL1YDAnFDb6Nn*48~FKa>W4Vfxh5wE*}Sm>*HS7 zUjP_ZnA=JE6};6(vQfxHd%&SpfNm&Og9`|J41fJK2;gH-X_M;t9E{VH zLvOu%_xCW8usHu&0?T&F-Uz*VqL%ex3d5i;959EYS?r1B zCc)U`uAWwHEpV!AlWAdaWkS}Rox%1>Bt2)UYMzvtsBDChHGJxws;Zb>;mu7W9 zIU@`JyWwUy!Y15M;<&l(sy!Z?8{R}J~{kl&*bpL$~^ub zIC=W??#G{c`K@=~+52g}tHT%Zx`Ixw@c?ll*x%L8x>}C|Yhak7&}t_b74~;2rC>bne)>wtG#}hP91rIx`&|^{uTzp0>-WRWgen7*-4psbNH6t^>{&;Y3|J zfFW=z)96Y!I5Ul8a2dCt5%q;u+rT&ps&N#W?~SBtVwt*BgEyJ;usP;1wd!%Ey zmn>;Rg989A6etDSu)nHW*OZ$9oKpGEvA8P~uBngIanKm_t&gmRy$(lfAdonofd{4e z4FEihFT@GejXCwQ4X#Y44$hmzV+z%%M82@#&!$>s`K1fAjF(^^9Elr(p(h5%VWXW~ z^-HZK6`pY~7|boMbO4L%l_)gm3p7R&zCf!0#oHa&~>Vz8%4kvx}DH_kQJ*sR?Fiz`HWeYs?Od|acs}9tv1k!hZEk4*DrxgG*gBim* z7bQfj@8HS<1O_@^C1@=ERn}D{kEf4eYxiM%eMR5Nl@(}W+0eN8)5*_RwS|b~$JArd zmYrZ}SaB0o4b+!+%_|F;IBAQeU&Pq?ZAo*pL>FYSfGZXHxj3on;_SH#GxXz-rt$xf z%3>j5?I?}bUJ~dsYxSEtfF;RU2e1xZi*qfHn>58kpdmS9A#v3+@xNcJs>e`fsw%ptH$P2r^ z>i_ECz`;-UfB4o%ukU_nS4&&AyDQVy8t?2(w6#TB+he7cdJaT$2P>ZNqh=}?!;9c? zRX?mivDps*GZ!!Q1mLWbdSj_xR~+U|H+dSH zgW#?*!Q`01yiC@s>Vo{>F6av>drA>wV3Gy&n#lA})sO;kGUbgY-1YTN$Ot>vuMUP* z1;Su(Eu<=sYk}cZ&XuJMYM0tbrkBlS9CXB2$T+#hG(=M$6lj^jyce#lxrZ@q^uRLh zFZayio$LrXZzt~xtNbj=f94Ss_!#&w;b3jn+Qt9W2AUKx+!U20q$sHE#!#yq#glE^dX zUg?R@eB^~QP{Z+RqZK8$eYW(ZtWtNR*o=GiyNsIPp%F{4+5%t})3*#@$=Is&zCvFe zz|V(+=S6$|l*Q2+%+O-RLSG3o%NPcWghrMZx7q6o zPt5Pd5$PMnhmAaBCCfIgMLKu&XUTcX+EPuVZ}iHCA75T3;ae+>XN<;i7ynxhSa!k1JK#@V4zA>!nSW9B-Y(mc+LkWuh7X3KuWVQ8L;EK`*#Fh5tX$ zwUjX{P_G&?wKOunsJBgJ$pf_Ug3DTSH)}PK9lgR%ouJ&~LYiIhkr%>d9n!Mqr-*+Q z+p0TPHm?R~N2fqg5i=D6YY+C1Ltpg~ZV&g3e{$sbs~>;1_xP#9L!(Cq#*Pgck32Ry zacXjAaAxj`{G__*yV|O-4PGutM>$=zQ$s_ zy}N1chWxsXg|6;gTYIX#JKD7_v2I)AeUIMu{+DmQ{ND4=?0M|z7aw`#(OvX_wrERB zJy#P+l@ZXwC9 zkO|;AxMYyEwKWV!3$NLj_qVh~0pLiy)<9#@*^u+$F{M%f0M6y=ATU@=sw|3mAH;pK z7{FXO1o}oIt_aW-u7QG~)qzkgyr$thRq-*qaBkwkI0t}nvxtZz8Gxd| zl7|CAJRJc(6*iikt`Vaq$6Q;k8;;a~xV|vZTf+_*$6$1|ab7)M-9;%{co^kjdH#(z zeWfF`9(mTfL)UOBH809#NIG$w;1UC zUozOlu$8|02C&RX5CF?Yubq@uA8gW*qOYc_lWb?aPUQ@SB@2mpQ(54oyKUpWR#uq7 zw6|IbV+$tbIzWFwMRkx3uDZL`@3m8zUi=1mReE+eh-;d;Wrm9V>syl4s$Se!LetiP zk|uZcudGK1I8bl7D6uq=wx(5AhVGfWdPLzyF?`E4(Cqp1GxVw0@1A4&PMZJ6&~vHS z$Z~qr@Z17quDO1lRigs1R4ziIFM&rjBPF+ad-n6IYKO%YwY` z@FY-rba0%H5PRH10}~8j=*Ymx!QR1l_U?V+rI%j&=!1iOJ%?~DJ~n=AeERsr%&Ez# z-szbm1AWiD@^aUPb?dimN@POq-Gw{vXy37|dB@hmw#`jjw-xTXr}NS0?tbX$J0AMW z?gyX#Q#>1wq#}TBozKO%b%%Vo2>=J8p&E~)R_*?R!Hy7#F&vD0!b#ZEWOHk#xh>V+ zm22-vx3(o)JELt~v5t+&+jbW2{L^ha?_0lVYs-#Z-P?DzQ`_feia8tQyeiWQNBB9T z9+&$%@rb~z2ke21Ew+XVB_Fs8`oaenN&(4@%H@3&VOC*e$#ce$M*_2VHX0GyURAv$YdpTy zzJM`nfgLJO38a|~VR||cjtdK{xnDHafeNdO9C%;OBLjok8OuZmh$@u4e*k@< zTJI{U`qfjQWv%?KQO=~7A>sTj7P8)CDuWJVd%tJ_u-s+T6Zac+O2(G3DILI4NleEZ z09ZoM_CT}_U@bFiR^J2Wq9ZoJlG_Y1FL9K>DeFd7n4|!Se5d`Jd)SlvA4d5@AjmU*WDL=T7}%)ZI+zD?rs* zYq@EWmP<9yNxwHro3aFxbuX){R%`Q10)KeT`UK+lQE$>S3fCnm-Z^!GjY>YlqEx_{I5 zjm7qSp*ecnmX;mc3!67(H?2)Un>RFU+1R*!SKDn{^XWpkb7LVA4+g>>chKt!ctBsS z`h|Q!k3ZzC^*CzWb-=L0?^X%Y_|xq2)_WMhna28tLM&g3wX~;OJ5r_Ac&RPY+8J+K zA8+4~=vWtry4NPwZ_I4CE!*B1$9c6MV)2XBSyB^H!Kp9|B>S4O4iblsD*>FMnTABiSj^-1uLga?VMn;WHmVAf z%mitp2_>FO%DAYODP0RkE>jL;i5f0g;;mnN9kRkrL5h&4-882m?NRMVe5%7&d2hP{ zy-LQwiKL76gJXs$_#COFtzy6xMAZ6Q(PnU<7668faSIXJWnibvv2@whrsOg%I#O8m z1&GSD)s5=_nhaqy{eTr#qDVE5HT3vaK^&R}P?_{9wdz)Jx5f}d-zp8ge{=>`adQvu zoOO#%U$&SQ21~&CCY_>%%J!(W-ZQIAUkOTA)-37aXiF5@QkA6VMeB2ms{$D4)jBrM z+s8QwB*dFmN3RKB76Eu^iKGEZr|*c3MtBULugc~M7%wm5^&weUcx+i%@GP-w=F?5U ztQQpN=+z_S`qc@q<&*PQ8#Xnh`f}@IGvo{E*58g{dtBO%Uiqf_WrxmStD85otgB8! zw7252%#g6OqqCY(1YF#U^rmLFk4|}@Zo+6GGlSzRR3S!`QWvWK046T^V&OaJ@V8O zkN)Mc$DVoonK$=5`26D^9NG8P@TmhmM<0LbncH@(@7&n7d0TgTcT>lj)Y^>=pzp>F zMBk0wiH&PBx2?-=+?3n2r4h))pUYqbe_@^8fY%@LdqN%u%&yPj3b;IeS0L=G^VT^P zk5zQq?eODor4tLTZ;7OR>3pQA7;Wvyv~{MN+Y-gL7}VSuDRtDhbcR~H!foC4q>g&v zlXo#W@(k`4@?jP?l{6Yg=Dca6w}y`i!~y4g(Mtes3l~~~0B}R0V%`xCDv+tbCVgv} z7I45|Ie-eaH2Ydx{2(p>436U1-WG&fOP=O}tF77F-s0$!CHz)M;-A5b)!`6ILK%7<7Kvz@gipMITE`S zipIET*hyjetd|>-WU^jqnVHQQ^rdbgW}!3JK}Di9>glTZSS4f`X<5-aeN9$aSyI!O z5`F!_I>?;SOY+u(jx{*q-&znZ``PSqx#);Xp(L3+sk&})F%pY|&o~;_0m?md+7}!! z=T%8VN?!0q0C(4N2LAv7!w|q+0bn~PEDqR`)l4T96j@`7i;$38UY4w(`Qln1j|G|CBwNu{ zDMg=w(Y~}K@5R!Qtb^Geul`>e;)*TpGuHiV;jV7z^)Dq~gc96l=LfYR8C8E_%h$9g zYU%Xlm8h*A000mGNklsKK<7D*ZPL`HJOgCcxQKF!@3l7+q(3+u6S2Rth+P5W=(SA#@wdO z&BanA67z=YT`;?_yzU_N$A_@+hupz>FX#&@yYW}D-U&H_wY9!mJ(Mh6hd;{6oIl?Z zFSN#5yVBfGqtuR@(L!52sU-+rwseF`ZB$UC`Ybx&Ut3#Zg?y-3s0VtR8iNhoQ8MdO z7S;p$W>oT#WdHJrKxKaeJYoUfH{IYgyIdKGNHUxt(-2H%eA2~&*bH`-f~AtL2w&Um zZf*0mHV2A%+Jyy)JK6*7ZT>c#FS%NZZY3`S02iBFATGFDXmI6o&c;k#E>+Wzb#n!< z8mjLL59;Hsj;-UN6PqAg*r4^F12F9!?U<#7vGzohSG_eSd=7Fgz>ZR z_(h(Q!~o|0)lyr<)k@^}Qvh%cTW#2Gu%Bo8$_}*TNb3P%7PzZYvGmCbB=)ADU@%S- zg6RcKe$(ryU0wi~qTF1~Wwh{gsp-fL+F$3CE7;%q)erz2O}QyGEa9bqw#uWX#Cx;l zq}~)-_L!N$FwGo-uJ!)$h5+V-EPeOaJ__l717JIkDK6bRpr>V(Rk=@06-pX?#TJuB zDw3l0qb&L+W-L+Yp-MLB2rOG+2CBlIg>Xzhfg+B0p0a6N-o-|OWC->bJ%)k&=L7?N@$U7%^t__XNM7>EciPB0Wjz$8Dw1n{i9Ccgro zmwWX_AJQ0v?JwSf-^C*Q$B6&x-`o4y=Z6oy^6p!E-hA!7y`Mbu@=H%X|I`!DJ$dg# z_iWv@<(`M`+_-(+rk!hd+`D`Zx>?LXBA90^&$rGlv0x-`!D3&}e zFu2VD?t_6vYm2wJccopQ%wo@ms~!x(s2p)rUMepkh=L0@jI#WR=q6;vx}XAH*#o{OI)$fa4J zFQZqDDI~Tr@bC+mZLaAp*!wboiNP^Wu(gRr(IG z4rzNi6Z_pN7}m42IO*DKZz&6XKUhaEug$nL=V6r#lLj?5+{mR_0IZu%p)cQS&{x~* zwXnP@dUfdP;}ju#$XYNgpGq)n@x&T{R}^&5&R;lZ>ViEfTF)rf1H5#dp(S$LznXjt z`zR_I2Pro#7aTW=Hy93hWrefK%e6_SJGbPTRSmOO1@Qd2^PsN|U`DT@%6w+McB{-_ zEf-AB2CvxbH68FoWxRl@P-v-LoSzTf^jAg_4(?3V6ZFTQh{jL6bBDfPh*(6^=F%Qw_EW>;rYtF!4Et^-!KwT|~?X=_%Q zU^rkfSZxf`_#^3xrTRiU*u3T%{4|51;42h7JOPP3F~}OLCHh7k@whjU@FkKS9%~4S zvxim_56eoaJ#PvFWXsuP271k!VEzRNy=;G@F1Eh{U@k*4e6ZnwjYe7uehzMl1)oZ0 zS~*}lfJIW{6s)IIXYPch_Im$V=lg>*u*w&qjvRPpo|xqJ*ARD&GG7PJO;YqV=0I?L z6kY`Mb$b86!Dom7Y~T0Q%aAM%*aBnAc}p3w{up~uT5_Z%=4`1LrlR4>sl(+))7p+T zO9!xC9Bcuwu)#7;xNJig7OVi~Fs$i%tq%Bq0 z%FJg7pVks%mrAXQBrFAB9L4@JdY3O<*2QN|U%tX?cF8O}3s0XvdjXm|a~{$=U0dp# zr>wzeYfZUiv1tK@(-!FsP|Y8(N~7`{P37Wv53W9;9#9Z01b{W21cOI-${y*|C_M}h zwnU69!oB7mDWKl0SWJMX=H+g+RQ|MT5XKL6;` zFFuaN_FbFS-PW;oeKXX(rlGSd+uoIK>rAzGq*~h&E$s=cJGzpc-6;r*?ygK%XIf1F zj1`)rjfHSBN3-gJ3AYabuJ`dSuUm~thj?T0lQAwFth(ift5g z25SM}Tp^e#2GfN=vdNdq`?L7~pQM%-8i1*N6&2O^v&#OGR8B8XQ{aA2>{;P`A-+)H zS%jch((L4HX8(G)$d#1vic4c)L{;n*2yDtzHg&#ebaIA;RrNo0`9@c<;B0C3G?%<^ zz1(wyW&$Q^vT0{igBK1M$~QP5;%>T*(VNN`lND0DiED1_!V}9bFHiPm`m$&nIP1+d zawBWiRx{(GfOg!Oh}MC=kjmRC=T6h4CIw*X&XF;2D{B_-4dY=(@Hy_3na3<6Zme2x zFoU^@mvgd=ptNEh)lJ3RylcxC=4c1Uv31;<-j@@;TzDyvQt`4Z9#F{1Q=HWWQ9+S+ zl>+c;dW>qp0RVF*Hh1Hap-h~cP4f*se`NID>iR#>Etaic9l%xTYcEN%TuhJB$tHsgSZA!1}(gxM4D;T7=dTg|>&F zE&kg=DGRQQ9c4w|n*f+?tF{kH-WT*;x_r@Oa777?g}!<>De0g*T%whvwSl1M3N8mewNnx@RV+9()$)0=E{O`TD8=n2-EK1~Ajt zVDQR0`%bx?zIsxQ0dFqk-cJErhsdM|T+jiZv_1-`2 zyyt-(JMP@P>z>=U+`g`RZA)i&zH3bZt{3!$dOM8-Twk4sK z_H<(*lFkJ(4ZjX$!!sLLO7`=dUluUkQv#S>VmC^P6*v1kfJ2V%~6E|_nL0=@Zm zQe$f**9;zqKwL&|vWZ0Piwo+c31FC7Dy>l|MF22NFg}Kokvzo%70A^!y10yhnYT}+mR*m>-+{yct%oqjtg_e#40Vz$1wwl_l9|rF=er(+`?K#R@I6t;-m^9RX&7;FqjgX zqviZ8vaJyZHLV0|lU{Dw!HqRkWs!@a&Ov^muhI5P^`pk)-TqZP6<7^E0yt}Vj3At= zkx`{6s{jlKyqW{f?$ByaxCWv{;8yNl$qdGk=_|$;=w0O`-EwMd46^uOOB7lMaCx5K z(5R&}NPmT@F>QM-lO_3Cg3^Ww9v+4m#zsjJ`(P8g^7?vxu%$U=)tSLJ0Wb(>i9B24 zy^@?vZg_raVqqD_u{kSg>>I#UEjYVj-7)KsyAgopGe~)o8G|+KuiXLb&9HP&DalR7 zm(uE~Bq98Nyu8p^t8ekzWnt2kjD)I;AzO^Qe(7LoNMe~MQPHzg^SHYAUAgi#3(#fp zP5qI=V6xFVeJeYl+1skfgoMDpmTHGof`K%uE#wS87(I zdtVt(B2CfRk?TGiH@PFajMS9DByz7) z(b>U|NPD2eB4qW)Eub%quV8Jf%ij!vzRn;`uEj}6SnVcYSWFRUWe*1c2Lo+hUz^+0 zq7)IS%&<38_1@IvlCdP9uRS@hTE&!_z{bFU&Mv9m0=nR;7}d#Q?@*!Cig^-WcXa91LL9 z3M+vG4L{er000mGNklw)pzN%ig zvqrb0x=HcA8vy>|>{-UJA~}HQWF=6EbDE!O^Pc`agSGK(t;w#8Eo<_hX{`cyL)unZ zCo8kDD#kN>UkJJaz%qiW-3gZatXd3fbB`Io=SD~XFiVT!t@d{-dMlE`D#FeZz06$+ zVC|dP0^kjLRrHmtoL{shwOG5=T~T_pVTjedGr8D`;cYgpx2pr@xI)F7S0Fl@kQz(E zw!)Ia!p=Z^W_&I=k(!%Kr=)O`&)|rkLVP#z@D0n$3(4K7Om-@hX7TgzWBGyNMMWTb zdUhiUtqC4zuU(W7!sh;?@^jNBdxO3*z^-ldE#Dz&HZ_`<8<|PcOY=^)aNhmnQ(EpDZH&H_B-Ywo2D1z-Yg@%_ZH>->ap{b42hg{7e0p^y2Ku&8?W}N7c6SR&jM#Iyb<~S7Xrytx0i$TmNJg3WdX?Ees+l9` zs<3Hpt;J3L5j#Jif;}Sdk_wVFa=S->mV(KmkQX!sfSJ4OhIv1j>wv*sh?{bFT=ifu z`(QkeQ%o3CQ<~N0lz0_uy`{a@W>sEMvA+SMpnemJqS;~#8E?QQN{_^juTBgSZej;4 zQmOTzFV0}WCYWQ++`vShv5P*GaJ|57b6Yi}ZJNPXDik45<^eY-O{~ny070Xrw%J<8 z!Dq8wNC`4GvY*CHn^TXQe2K$VUigIZLi*O75XYPwHBtdg<-D9o)o7?{6w`ls$RIml z25@6b6$4mR4d`3fw4=81PC?&0s~UDl-SOqQa}XH3u{eEBY7>|Rs##y1J@@6AvlV$y zTLCPM_4k_N&267I_oC_WSC6D{`8& z{Mfjp*j(=okBSrk84xvRyYTu-ECC)3HP%p5eG zO+hocv=nZNAEhOg+35<_X89zJxWjZd!|26AN{e&xx*{k&lVlc>)KM0kzgEFu?F=Y( zz)W9Rv&3dscDGhLdnd=!8@?PGPm&Z2%dKct98u@|G6o*hKQRd&Q{}Pvcc>k#x%Gk% zNB(~y|98kp4BqqBfg-$PEw7(&UVF{7>32!ul4WK*k(ijBolGW1rY3&*>lY6m+JFDU zhwgpwuDcHHI&fDvh|Ah{pmXou=)L#uz3X7CyURnd<+wc(2XrmqE(16iY4?Xnfsh08 z`)z@ModMk0;R1v0&StCKV0JdQyIMe2(GH1*G4Qw>o1?`Su(@2V?IJCfw&F~+7I(8R zZ1P9U-VoevE8xmD7e^<>pW%I5A(y|^9cW|8hQ{0?gW79|LBE_o%=S)c8DZDcVx5?Jsq7;zsz1bA6FWX0B&P%kz=g z1as+;(uC5_BY|n&19g`aIb3)kj`&z;Yuu@00Gr!uMEaGEyIl%H%<0gSoF%r0b=&|% z&4RAOLpb2f05+PaEwj~W#KjE{4Rm_jJb`vOF=<1ht24OU?x2BDv}+(fHwJKX+s+nK zl>%dN(Zc}72X1Jl){LYpq+~E{o@pr0RGhDH zy<2mhTUFO6o23;+l=C#uE zT&?~Z6dg~+1gg1-ObWt68;}^C!>2Seo|-w{cjm44{_y0pKRR;X{<{zFhUJC!?2F^L z|6s@Ny^)?>{sRYN`}PL9yIftJ&JF-LY7GQU;fMt==AnMxfXNp$`-66%)aSE8p^!Zm zbH`(jP_P}qBQxYMnw-tB!X~R8=xrA5326?UuPqp|`1~e^lg8=LG#ifr2A82L-7N>1 zv9|k3HeWN2P9MqTZ4sNzM(tD|1~50QAfKlU(No$Mf~=gq>`{Ah@Dw1INOflViWU$Q zDOE-eXr=&hmM^v)95;#=rED)OK>apiaJ3Q@5bjnx5122Eln}I~ zQHnceSe%X2JKEhO08G`!JT(PKC zhff%>99~u%eNe|~^-+?(Aao4?T&t_rqIYNgo!a#sTC5UTdwY-f_I-1{7a|6q-y+^s zJ#!w?CLUL~;fm0-7RH-)j@8B*#9-}g;8Uk7Zt@w4WZeAX^cgAGank8?{Kjy7AjJSy z=qnbG_QGG%R{~fGmVQqw3~i4p2oTcx;H_V9THC?Y-*{=s=0Wi`l&(_BTiQxr?S62@ zC4#m+h19lZD!5w#TCLfYh8stI-L3D0FCF*|D=BH4LkRLYw|%!FdwE)JT{C(mfTa^< z@t3=#@3sKeFj%?6W*GDRa|~b{XA5~=v!oT)FgU5*8?I;sU6IkYX{fWhTdYN|>;$rT zf@D$xSPi77HQUk&j=eL9dCk(E;h6d0)Fj(t4p7T5HI7fzy9fe-+k?muRrtL<3}Di*x4Q2y*I|{ z*&PwbP*+c&tJ}M0Z)jJK2k7nWuy=Jjpjgy`^{yT_U@Uq#m;%9euV2V(@p#(7UD)4_ zs3YhzfxgYAI=#8UNG*T$Bs0E^xDx;a1v7axoJ7JPBYiW8bY4$YnbYV@l7hHI~$0K@D zike_i7EEz$Cay?t=Jr@LF3F~1o_}`+u%ItBz#;&fsv!=)b0QUYz~Es-+(MGY(|qBK z>1s^0jbs4B0h0-K)mt33W?Qw%TE%s}>LjHN2h6+0%48%l6gWZep2ZBFvP zk?bo;o60I^39j;_B(&zIOkV}MLfV^K0nE_d7Qm$b{u2WOn;fvZ->D_Xw!6X#z1Rc` z0BhsV6_q(#lfO2Sp9RCTYc25PC4&5smc&}lX?Ll&)-i8|t~Ri|DZ;Etr{XhPuLHDi zX=~c^R-#wXS0-6N)A;3xFS!xvc;I1 zOQoIlw9$S`H^sF<0=Yr1T`TEhV&9s>)Le^InaC|j%zMeW z$>%vyTpDrh=OAB#f2w}?^Z_P|1&9}^avsL_rQf}D_Yd#B_mM;QKY9;v3;IIcyTUkj zbOpM0hr9Pgx_UxbcXoNeVA$Vy%m(Q8bi2B{?a-b*?!9|GJw1-jPHQOK9t@d%0SkcY z^MS$UV9-VmIP47hEU>vEu&hj4HHuI(tgzG5Ox9T$%4?=-RF4tg-L00Ic1MHLXN0(4 zm4`NZ0b`soFmxTBR*2VbU$f|{(W2yD`Hbq+1PUh0=7=JhnZC_|Pn%t* z9BB%MnqWx<1t~FV!wvfySz-^E%a$5N6k5*=#u00{VVkwC9TyPh8j?U1b-=J2lq(D? zcZkHh((%LvF-wtlj%gR!UMr&0bwXlaS&Vi7eVq=q{8#jdma^Dt*zauFnVchuv4e4EaF}tR%ad5Zm%H*TWW+jznU|%>Qn~T@E8U$ zsjyK_M&j;QG$fd-ip5Do+YU%)s%mQ6$=S{@#Ef21Xrzd;t^{|bB!HR0n*a>@Zdl>- zeH>wy4VJg&TW!U#JpXU#D^0LArK=LR+evO1Gk`02EE!y3g4qE}Y4^Q=UZ(E`)iyW5 z&?Z1>6N@S}L}{OA21j@gcx%s!@5{U1whT!@+IG;DKhmD8c#~SkS@Ax%Zsk_Qy0z$) zA$0Yg147Ds;17-7!+=o#kkskHA^J47bHH17f4N;3l};r#;?HXG)J7C~G7bAnyT82k zyY238#ZK_|iIFU0(VOp|`5pi($y{0={C(|Bwzl~koTr zr?tNoS1J|PD-}s(vZh%|ZBa5gG(9CZm6^UGNi9{eHLmWgE8^=OINh0II<;6xEfkZb zJg=wIQ}6uw?IRE0weN7x;Ul{b-rc2eww?!lEp|BNR7AS>+Axk)7i-hc< zfYs}_nk{5}fnIKg07nA<%E`>!BE#b`S*`kZtHEk-#y70ZZEy$L2(;d2L0N*aJ7{qF zl?EDaUn}^{;yzYV0IE8}+nfYZ(U6h@p&Uk5>s}f}C#+4j zn8;zNHMiG*PvBfA+!%`+Vo@VaUl8+)!a=>DDT^wAqY;|805|OOHLy1&E(#wk^Q2Ut zs+9S1#F)yB98D~z2>>xixMG7=fz8%F5}PB#8_rc5Z5|vv zJ}{u|7*(rHX|%Vk{pbpK}w@w>0olAHEHM>HNSTh^t^& z70y&-jcMY~qrDSjeUsz;QxgneFkpCQTEPnFWPWZaIf>&ZC%^2S930O~ z|L=$Yef0UK4jt*0l!Px!-(eB;;j&4t+!wvLy^!Ra%cKRY6UfADA%mXj$_gkVd zYge}m^aX>vI!vAMw(fX)XVlc)X@OvZY5uP8!L%jpYf%^+v_bx$-RU-&oh_|4gU(dn z)K=-46_%?DwO2)R@c7xW6>lO5slYbb%WDV`r zzJNX+(~%;2i26#Z0*s?!qte^i-^jsdu#jtcxm6^W2`O34T=gq12tUKvxZ}(c9$|NPO z0OpZ}+~^7n7KXTyaVrw7$q@73QJHw5Og*A8z`W}$CjpBcU#j%QCk7+X>*u2pa>93iTdD=zd7;I*T+9Oe)1CyFDu45 zY?~UrQQD-UT{i3Z`0L{zef7;hzWD0HFTchD;vSaT5r^7}VI^~abHDlwtPY@yuS~<+X7fCoROX$ch=r#+xu4l zSh>Tdrd?uug>r{}0C?-eiM4|YhSkLYq(lWaCu9lx`@I0J@Nf(gM(=bgIW;$nBcx@p zmap65mhUVdqJ6CPq;%NgsCB)w8uT)^M7q;<{Y*65z|<2|N-%gvb`jZ(XU4XYh9;BI zv<%)_hy`ii-sTT&PJV9k+J)DQWE??UDLx~wZ{(*ZWBXt&Bp1nIZmyIAdNYgpGsEZq zb>@rz{`fC{{NTMOfBwuH@BjXH@4fz$qmMlH#6A1=2lws^?A_zvz02F(LpC=OcSJj! z9bLZ8ZhyR!>@NTujeA2Odmvy1fIB)JU0oJfULJM}`gTOxpm?}78Zt+Mrf|p<@V9t9 z)TTHbvV?-|LB9p^`6w>!@U&VShGq*Ka4je1a5siFGY|p>8?E*h92vk)cPsN%746Y# z0qhI5aaRqJ-{_`x9L+qRj)K)nJh_o;d1*6J1T$f0DdkGc<72t~dTQ%0wt=1!&^fx4_>0q?yPl)DTDwpo}V1B z@V=n0sjbS~R&Q#hSUTr$@wTp9gLZVm;iwe=)`{@@hW%v#x3tufl%CJ^JWNp32g4Ir zDI*1KB&(~@=`%RIdfN0=fGUcBMWGSzBJ-!p)1?^3!V1^mJiB2$p*jPY0vp^_g9X-# z5k?{lx~+y2o<+qGO&hG&?SQ~wDmM}i7|;cS>zZ(WXPv$V;w3n{Ep zW5OKrC5iRc4p|C%fm=b`Z5w(htur(u1+{H7wBDNO3+{rxS}}?F`0E3D%4V{{C4k8t ziu_)NN=3G_q{2*kP7B})X*sF@Tcxj-;@Y(ax3d+Ll5DF;bi$hy0oy4~bgC!;VyR~) z`X|P56dDtnkkYbQHV{=OXKXa_mLyg@@s@31nRvCu1kY}JwIP35Nn-hFNa#v~%dBPG zCg-ydpv&k@FXU$O$xl!I^Vsix`Rq$SdGcpZ{O~6a-~YtDKYaH7dmcNm?_julx3{y~ z-m}{UQ!6@3x~OKi!x`&ziGjOra2MVeVgN&ts0DZ4z1!B^-M(j+4cgsh+1rDo4Gazk z+Cu);NZ1SjLm+W9VxbYd0>ECc+2b+6)B>w*cA7BA-;dOJ-(~=PA#fJ}hAg&bo5P5E zvb%-TpMLEh%!f@cmBiN;oZbhyqpmst&kTRF{hR3J&5Ne6Yu> zM4ox3f*d#~$1TWVw~*S2iD%^1;ZgpeArfn&0Y`Bo>~Ckx$ob4+Sm6i-oJH1^Uc{D_ zY9dgOVaeXqNu4I^8J74F-AB+@iH(bTAqBvWCaySwe+4o*^~u;;1%Tmt1@_eKG4kFs z@B6wubxuNly)p)v7)-g-yzdLXQvOt1V@peYb2H5}Y%|qDOja0Nh<|0a)ck&=1LnK& zLkPoywb}{6ykDzy$P)AgdU*?2V2!(gBHLL{~Mc)SgqPM_l+Q6(`WeDiKD2b{le z5~6G$&E8jvZLu8WAghuf4n#A6CD+LWtK6j{zvs>LmG`d*p>Nw)MC;wPTj2i}v$r+^ zJhyptai6vkpsGqY{Jj9yrh2J}{Xb!>HPhOst)Ra2zJk7kXGe#LpyOk`V{`;&crA5) zbmaUfpgV{~1%TDYnTq|Db0f6$m31s)7j}-(o5-XfEF^#{P%7!75_ChG$+{7h-71YQ zOl+?FQKX`mq~&hk_yp8DhL2)GCGogMqe2^J`1*sTmT^x=0B;UZZx3K?=CjrZ%a2av zmu-`nRuM3eo8nB|4d~A2p;W1mE*CS4#p&GKaAGXCTuha-Fuqf%>5o4D_=RIf?|bO3 zd+*-|-Fqva}fk5|e4~_GSnd6<-&Ms=&4D`bOg1ewE7Emna26Tf#M>y>A z1EQ2sW!|;RdDq>ZJ$r3?_t^IBwX^o`cI@f4#-rv~#6(f(5YZQkgxeXwey`c>ZiAf8 z7OPdy`K#QOmy3~FL0^hL8=!V8?61-8Y!(1E0*Y|D-axCm?<)rJ`i-LHq)z0}HrYW? z(bEb?d^O`cn)9k~(1LyUkDiAuO81vN%bw&%vS}m8Ue$Q`lD)!JU8ut zz}hBbjXIv8M${lxGk_a(HT8yCXd3{Z>F+-~FmP^gP^cg39UAHz9_||+h5ARvSXiGM z96mcRg!_Zg3~3Phgs8aXvS6wV<}@hLrbFf@vwMcVJaOiWcsbV*pEOsl4?^+XR+3Z7K`&3Y4nc zWvGn8+YOG74~&hmR2UBn1}hGjw5b4TY?J*JwZH6oW%iRaWH(cm=km7VTewU%ET3B+oQ(E+Hk#cpS5O;h`D|`Y%+Ns796%5uo z;H{x%?KZhKRZW&!Nt9~Ekz|Ikw7DCBWkFm%va+ROt~_5@Dh*DIy#2R#2NRgjPDIN(2cz_ojqWmmTa4j35Tv)j6>r@g1!+|^-%I^s5%;83{T>ucfM zW&k+gYj?R?AuzSws^cMaJQz+%$ZBh7w>P(%8r#fGW{ckLr0gnD*GqLo{*XyBn0il& zE|L(Z^FSPv6g4ePWPe2p5@3vz+=ZCMyO`2bdSDq{dTK)FG{ zBZR$1+>IvU*{JIz3~nse5{v4?p~jHEF$}-!YjitnT#jlS*>`fnGq=v*K}Nj&Y!}U~ zc&45*{*S}Rg1cNp%&jxnJ#!Z=1~3TPZmu?iZB&C>-Q2bl&p>mZf(Ad;HF2>M*w4nd z7To3XUrNP-xugdQ|Jqg$wY1bSfU!^jY^sF=RvkZGYT!-ctt#o?nh8ZpSXh)}X>*k& zfO*#ze+yh8Ik?u#qn7~YzLjz(m;sDGBA9Kq<56l_mdK877gWX*HjAugU2_!!m=mnj zzE=cYp5qJj)}c83?EnA}07*naREZj24mESM82}bNEUS6^5!V5;_x)Z6+&?k|4U7&$ zay>LY3Jp(;jZRHKBa@TR@Wcc(G=cBj(Y}$PvjZC#K7RK6H)qa4U!Oh;Y1hzKr_Lxk zc^2rEf}fTac_Yv*^ySIZU!2(JzoBIyFy=l zk7VkWc6WShp4vuAmj=LJ0>DCF2mpT}Mzejc0(kSN)U!g$O*yfZMyQ_MG^O=x@K~Ka z_tp76sABwI#Xhtaz;c^ef?4}hZA4m4q3V}AxN71R0r(95;-f@X@O5BZ5x$xweIy4_uzj2o?VX4xVaK- z?;G&9ilZqQFnfJ%G;uay0@6U)=GJv0PEbMOsH%kGwv0xHYCY?n|vF2=NV_U6Y zaE+v|G_}lB-tpzgGwt#!_P3fw5Q;Q0PM_vG*XXLNn+Vlf`fem)jVC52W~Xq3#%3l) zrWELoO;196vO=TN<0I4K!&75}VfYW^bi_@o6`kvOBZ=45u1$|Ff z0Qif|a8(k}gnfs;K6hRzhVJbJu~=K}BTmvCxNiw3Vd0+r{a*phy~-{xqmTFx_P28-G08l1Dt>WpAxR7l8Icxo9?sMuQsiWLT#a^X4MfebgnI@!#UKZr5J6hWYIfG)Ed|4^ zq)-#hAr9-P^_8zdG~9swt=XIfO%ZI)wBlqdFu0|)np3*Cv9sLJ6`QZ*J9&3pZtjA+ zyzeX8U{zN@m$|EK0E?}6e4Y}(0=;!=t%^sR5IZqU_e@oZ?T5?Rw#Le)moP98o8`c?tDjkMUB2z^IpJ_V%;$(i)j zbZUBPZfYhyo5&=m=4PPj*-2<7IR)WILgIWX0Zk^SiQm%`<5S}xcZFb}VWREEBRe0IV`w(w6~zytfZJ(bq4f zqO0%ZU_bAgD>=Xe!&C^nxjlv0mmNB;X}!y5r0^rHD0f;2HkY0BSE3+W?lD(%P5HXF zw<4{YZfY(XDpYX+ak77a%XURB)zF4p6#-;rOJaBs>K_Gh$8hZhO(iBaG&4OpJq1ln zO^!}Yk*23v!)oAUWO5u5i^>6MUJZF*sHXg3kL~?o(xY8<#f1KMen1vrr%~7Y~v6(3dZwVTinqc8=%gYF9g{2$T zMwJ=5+8uEXcNNwG?QF7zW;B}BOey9#^QJc`bE#nZ+5JN@FrXEmoXcm^#eAxegRoFg zI-lp@GdtjI1^Q-6%KejN(rhVX+@wq^m~CP0*Td|e@G`wZ7Bw|Lq6a`2f0#Y{@>kp!Ih{H?K2OC(@aASd>K0a4&Q z95m9bAurJ}>^FpbN`RMMj%NNC#i#}yx9p%MS=1!CL7|lBOAKGmU;*GYHO0BTKIkm)U*+HD9@ka#U9rbrs zZO(#LI$!_Vl(X4c zFgr0f4LmcdCuhc46VqdpGsI@bGlZKEuUTW0V-Oa6H#`bo=rhTQ=~-If=J?d;*yPCQ z#PIOg;NS?@+{a>6GpEn?_mT$AL#O-BpXxow9$InIy&&lMug{%@zBzx6C8&IkB`q&= zm(k16tw1kWrNyw|ZvUo|8*aogJjgmVq?|uJG@>mO7Tumlq)t-rNkx3-^a$zf*w`6O zBjt)d%v;-0ZSB;dx?4)2Qj+X8H`t=)kpjKIEmMR;rh`-CjGSRmQ?PSvdU7h6NTlcH zGP9{{GLxOn=8~*Tc1|dr0v=Mc5bg<0&dy9Erh#WtVoLsFz(pG_-4dAuh|82!iJMFp z=OA1T;$NUpS}2<$B${+6YtmaisYpuCVALCRhMz3UTGM9lEx>7g; z05g4AoVv{PWmN>9*%0#rnk{BXr7SBkPv>!E^To-}-+b>6_dj@G&%WrcE_Y|l4%`Bq zU0pW#(T)xaN1h>^kH)OLr_1z>MeRUoFleJZ=a?%RcgMTjVR{A^OmJ7HqqD;f0K@op zbyz9#j2}g;c!&gWz~AB%0}nXH8w$2T!9c6eOLDoJoh~EG<~Go1KSwi9MryV+fxa!G z`G&=2wAl=HyOD?DF@Ql|yWhxdpBccMb;aF=Z4RT^(xlFkk9V5FLC)yUI)0b{eJ%4(;=B$}__(Xpu6 zq^q6;TWq5WU?7>(rp`4P+m*#Tw$@Kgzlqx3X3Nwl9 ziZM3wWY?2<<;JSi>WvbP1;-r zEyNhsE-D225>PcIyjwSb`Qf-*qL7}+r*LEpV=_s>3f;+aPtd-B192RpmF z12nKGMq9iBwCzwNW{!1O0Ar{lZU;5PAqy-l(91?P6l@O%ZLx@Ah@&w_C`^!!#hsup zHGdYaw!iDj@k zoABxZ;6FsUQ7+3g3;+NS07*naR9<(J!&VD`fn?wraI1>iRE0uDYC+{S3Nxy6I`mxR z!}(Thg4xE2+8D~r;?g6hM<4HK>FzPdW6c1tVt>UeGXKHr-|>+of_5Vm-V8Rv?9DT0L%>bc$n7{Gj9-S(z^WopZ8+1c8@1FtLStL()}^b%qLb&(Dxx^_^5 z4&E3xw(e*K>^JPMj=Q7Cd}dB>7F9-d+Adcb|5_ytZZowI*Xd2QqO`Y`Gp)pgK^iQ` z$HvwjhIZ}&LVTrGl&v+)X12(@;3sc1?5Nf6pozcQo*SD1yy1XXFBR7=&nvoETv^L6 ztz@MZRx*pLIOd?zQl_{--;xrI;9@c}DZX2$08}uTkBmtOFrG{d1Dqf<2%1Qa&CZR_ zr6<$b>2z*ZHQZ_b+6DWe@^YFrzc^Q1OcWMo@})#>ekNO-PUk06xd~EcaxOiQN=-s@ za}&wrcw%;9CPDZY>?hw$G4RRJ;j!VN(IE(nk?|20ZZf3%2M0t9d=TpGA2{DfcFv7o8p5qqYdkGgM%P3#ja(OZM8=xC6H@8 zH(w2$Jm1IH1ZVmOIYAwa>>VEN8yOlH8|fP#=^Y#9Ok*zi(dHW~7#`k`0$?G|sNyGN z@pA&bB-6IDR|bIg%E#MD_E4FgF zSV|S<=ki76Ux=bSuCZo0nnKrD;;ERjv;f8FY7fV>`fnh|*Mg+QytrE)DwJ|~Cz<&S zq>?zbRq0|HgyuU)v4NI0TC1e6)H5QuO;QuB8OiL7VUd+R+KqVfCSR*Al{`Tny zFaPcs^zaW49k{D=&u&5A4p$^v^BJv$a+$lsc04H@HSIZXt&<%(pkNF_+U}yYg9{*#IPMPg%`l) zd}%NkIPv zWt!SnP}3HXaiD5Z8}6sHYa3>AJNr@80$paw3K*kr#)txlptWq4p{4S8NGP8 znW~dTN|(sW=8=NDmyBm4`|E48yX#Z{D<)fR6>~Q$2C#}rO0ZJhZDT7nF|8H2-2kv0 z?ptpJP=6o{F}2+QUzxIOpf}LlvZJZ_PH??m_k-#t;PyXu2<}36*8PAxKLfoRSEQaZnw$}Oa_WkM-^ z&*o?5vQtE570k2g37i3{@uN&`2I$2R-_iK8##cGMbIZ&4!o^o@2G9lUmo8)$*U}5C zsq)I){L-w#;PP~?G?gh%qzmJu{3MjiO|i1s$t<2WGleGy-SN@{dvPhiR|8=4Y;rO= zHwC5AGjpkF)@*V*F*`Mzn1PbB(@-is3nk{JVb-T-#=v!4H1Kr;T{{OQ+nOKXMY z3q=+OW|me8(Bg7_VF`w~AV^H`h9_nTXPky|$Im$*> zF0>?O25Sv;1%M$=c}rvxZ@&BHkp~VOzHi_Dec|1^{5{=X#$+hm9*VSuqbBZM6^*x( zgdq+EO;9joVFAOupjOYF?v73;01U(mzFI(EsVF_OU5Mu{m_T0|olCRs+dP7=qDuoc z4fX}VU@EZ{qv^@}dc3VTGJs9iCXqzbAm%YpOZ_%;6UkId2z2S;ePMi=z6@Xob-8L` z0E<0fa?)mto-2kOt`=p2udN>V4~CoR3cv@@HZzuD@TUGopR3O6tmT|3*jC!C^|w$- zl1uNV94P9uD5lUib8`=yyUA>?;{+m55a^9W4Y0rQ4r45Cz%z$}P3&B`Nd@;_7KXA$ znMdTP6XXAs=|fJZ;*7x|o2%C8ZE*XWxNnBi2}?{R;%R_N2WEGpLSIW2`%xUhFuV{x zVfNp+4xqM|u;XF9nB_ntj~tGgc58K;d52P}#7&z;r7r`Ri=fC@+v(*@&+BYL)1j#qUhBnZ8_iRHM5Srj{FVa4!xXIH>F;w{DC9 z2AJ!b{sRE6YWx8oL1Gr4snPA=PSKp1b;qsmR;6yl=1a(-zkx44*FSjd*kbI|-kqO>?$Tu2tmvxQViBOGcr}0cI0HN{uNGD>%&%T5X;g$(F6Gv)&~vi**@Whym9_ch)gnj?3@g$2bR@t070$xX3+?`soe^LYXE?4zGjO@89Qk68N^Po5g6tyXbE5l55be*E1u+R zqW)HX1NB&THw68nA7q5`q{OUyN{nJ#%<|&`!lmk3`9I2K)^!M?IvS5yX3+3@5w2Ry28TP#aOzvbE)!T0E^c$bB=EkqK5y zotgSuaa9jBoq!t#M?qf(Ff$kqlB{#c$PF(e;U-ZBr4ttfjUHFM+u7i-5mR}rFBZn; zod)9$gMk>VOb!Njt<{WALEkDGYSgkrq(G}1w88;%uCgjkniXFth=C34gYgWlZB-n~ z=BMQu!#tM>zb^m`ob$K^p?al?%u=hSN7ZtSgaIsao2wbXG-R-~PEeWR(tJ}b`4tn5 z1UTyqpfC015cR=3$^N!gv8!hEHt6rH*X^in`~kC;#T}s~eKmuUs66QohOQRC3|$4i zS{Q%3D6|ZheD%fxq++tLVOy0iYuZuf-R0$rS$wwwv=^=xFI}C#a=i?zjVFlVgZrm(izfrnzbK%N{m)9~Y7t*U2Gi#T!7cS>mmo8>6U&>v&oWFdffQLgDFXb*= z%tC7yGKwzcwE}){#0&9H@q~C<{sc;^x%riBVJV#|&de1^sp1@zoW~a;z8qnOlK6_x zlyIN?{7P|tHD6rG74eYeOnEI2@kfURo~N{yhcZja^y2Iso{*jsNSGR%8;1rGqx~}@ zy~)w@vmQ?te7Tq%`a$P||a+mScA<3?~6qM8~+km;^9U9 z*s+jLh#&EDGT>Dnmq21+!Qqct1^&3$G0SWQKDlyn9s=WWl*U@xYyO7{I}TvOCBqr> zo^%?2uY!`2oy;X?vs4r?qlTtgGAn8$6*;HSiwP(9SvT=m1K@4jFK>-DYYTZd-0&6$ zTp@r~wvf~o_zGnqH3KUJ;h&}Wmzfp;YJ38@&p!X>&z?Ve-+c%6@9*4yAS(K1m>IxY z0hTyVo;chd2%5aU7AO#Gm-bhNqp9jwG~x)y?6M~%cjt(AsKz=>bcg*_)2t}#%I9sS z(i%71a0?@u(``g!DJdfa*4i9K4nenBbQVW5vD4M!aJ2!z78}vjN!3RtCN8I6VF3n9 zA55FU?iQLU+pc5l3=DJ6CMTsd(-i>u;9zqg0Gn%!hAIEq?^TA_E9pyO3a`@ULhFFV z)FYy=tC2&mV1_541At@k=6Hub8f)UozMObPDay_U&ST=-V2E;##Iy!VTBby3MJ|`J z@yUg-4iAY37U2l9izngHe%uvVw!LHowwQJrTkmW({Qv;-_!l!5*V?udFF_7iSb6?^6#$FI8rEvZODa6baItlcn~atY!vNYsu!CIx*!}s7ll(De-4vd`Y#9cS6cuuOKcS zg(rcBX0eSXSFI=Ap@NXn%i0FODt#CECa5V+E)#~YmBp2{+-74aNc=+w_mZ5LyA&`SC*FJ&3rpItMgfypk6x3jDJc@J{$L;_9{X zwd-^fC;2=c4j%9?wRU;_!j%$^^m~E0m-5n_QQTErUhwrtc`XZpSn~wbTz)B&EX^j0 zGvHaGFgsmHPUUAOa?{XcerCEjn<&lAmQyp!bBUGI)Z#2Ok{*G^vSa;;ek{gwiztS{^OtZe*NXZiH}cz_V&l`zxm;Ne>wT_Z$EhFx!)iA*;}t1 zc=DkKpMU0oqfg%bkc6fjMo&&)H-Cg$`yywY>e){T5U5EDk z@q_n2{Q93SzxnDLe|hJhr@k0WO$=wI-v8u(hLWRmE4jYe;jjCSC(EhDRe+74MKBW= zQuu4qpH%~3MkYQk31BrStt1oRCjWb2=;9B7PoA&j@PUiJ#k}|{(}$0r@)N3rR!lYv z>&sUcE?g?FT~ypN8EF28r>>d1(AwoPi*GWLSt^DV02dZ>9Lkmq)?hf56t&1QAz7v$ zYXQuCEwrMrc5y>;rjT}YM8#Z1Z8t&0&FFNFBOh5JP*YwpGx# zjp!?g%l)Jv9(s=>1p0!q{MCssS(?OPZ^BPqu2#x_wo@Xs%iH4dw=r~?yL@DE9v01S zur#)s8fEh=S!v1xk(?eqx1Wu#Z6AS|#2sA|^xVA9L?CVfK2jSNQgM|sMlL=g6ykH|ad#j!r zOl}6SNu4gtzLpcLxW$#B8K%&>;ilg=#qotPJD%dHEZ>@F{mn1^U_*aBG$Yzsu>ZrjcV~tARYO#e} z%f(1obIvoNmyK^D&0|nHLN_a2ExCuKY-w3*sHz08*6*rP*-Tr-i&6@}uFbET?7A{}0 z*A!IWbn&5>@+J8T;?3h%xN>6&TD@9Yx>Q)XT3EYIBrY$f#dcpM<7!v(OZ9TSz44lh9;2IX<5lDozg;ruwqu$ESKf8$bQt@qfJd?yJB0 z^Y0#g>BkQ~|HLEDKY7nH4?Xt6Ge>{>!cSiL*&{!D;?R#D+V`U)dw+On-=l{Q{^-F2 zk3VqVPaZ$`_yeG6$C3T}9=&hZLx+P0dwlyk-90g9SH#sBad$;M-7ze@opE1R2iA0^ z12>~MiJO6*j-JB@AOGo(|MTS+ci(&9?jPR!^skLYUM*j`QU(rjgxIPsUx53}@lhMHW=G3R#b+zi4*0r9 zUj1CXfuDlV^TH4pCEe+PR~P8Dt}Wm%f+Jr2;?+fH_38q&a;3~#zFdOj&6O()QmdCh z;_}Kxkhp}a3S3(Nz@?=ue!*NhqtI6kM6*Pqb($s1pA^5VDF@Pam6Gw^irlDe2Nl!F ze0rvkffB{+EFNCU&y@?T)Iw3NabA7qG;6Mu*(%x1O42vGRDkj;^Q_!*F~3q^<(Bh> zC00qO2qX`Vo_q6;uibO+o&$Gvc6RzgA$vGvjz%o8xQ)Fp=u5o`1Fh_U`3z?!1G+H2 zJh<2AH{l3=L%x8;AG9)nvG)4gy@A$n%o>YYKwkzhs0Qx~2E+Sua|y4<=o3%NrL+`} z6}Tnhic(#|u;}gFZa11}Bygj_Oidz9)~0rRFMADQ)`D8F#6uB8sM+G74PdL!(C*Q- zdvG*x3l1=eIwFaEK>)bjYTzk4z$X9}TSui*IRLhx^5Ht&~)zr4Lv2_QII#ZR{+@+FVrEPdi zbwx5Wl@h6&#Eo*Gg34X?zTA0(+delMlnF>O;7lRwMjCixr6_oP05-d=?+-CVkGec{5*^5xr07jKrAujJ=fbA{zhZY>9;S29p$C6ii8O)e(J z%hRVaW5@pb=83^GFup^jnZEqQr!(jNc>1F^zxeA*fBD_d-g)`xo5vo1<>);>eRSWG z_s1VR5IVdoc&I0Mu*csc6EmLbo;yG{;m$l*BN(3!>(A2gas++iHF^>2*l^z@u(|CJnlHSx8tro(fvJv zJzbFlyYb|qeLcawySzR0oJSsi++2tUE|*l5S&Nrwy>M|JDqkorTqu@S^YhCEHolaxwUE!Kd%zr$h2*XQgayM` z9wFwmw4R_Hcd^haF`t1r$5`$JZ-kn8vsT;_kDXh{rxpw8r6QzVu;>ozJR%mnEXc}7 z78_jcNf5WVRxYfTR28)UM z*tyAbFkH5A<+dASWC-wsxXp#j*GBE==_xu^>$?_kJ?8?9?~!Xfy8s zfMI_D;AqU~^HbK96fjJC+XBG&1?_eU6yxFm2A%T4Y197N3Gy1ZR^TjSK6k~Dx1|-lmftvUfwW@J=bvSFZ11 zjNMuXS(jLfl_XHD-CVx}-B@3{zP@^Wefh@v%GLG7Yjn4@+v^u_yv01D^D9@@m)E{4 z7cR|ZmJ{=rGM8?ZNVkiZ$;d81*VY$rtiz0wZhyA|U0I(`tqs5P>92nCm*?L2{f|HU z*BfU(`|q=#zn{zXUca7RzBQd$?awdve!HIgc0F@*J#}k61KqftC*8_HH`iyctxxxl z{Q0YszsqM%t>d2GE!?JGXCo-BiXHGO+g}nh_~r^p7_zJ1EeO%?$oIVZ-SU;&OIL2M zLKoH-FRm}G;n!SWUbwwnyiv|woljrNXRpquF6F1!(y6P(iR-zu3*#^R?GLVddw%== zn}7c7gI7NJ)6;ML^5An1#~wM*dGDU+q3+n--Qfcr-aTQ@?hwf8+Z_$>?F#Mb4DId+ z@97Neiu<~wp3X3iI0N}%WaA;o*Ae!1#60n+llU6(b_m77zIY_i8N6Et&=niNMh-!9O9w^^PZnYT1HHn@HMUUOXA-_!TdcZvkk8lR z^cmcNW>3iI4bzZ85v8QZN&wr0{WZIrKwpzf$3qvW2$<@L8`%kg>q_q`5$h(>iv}H_ zGCN%kJM$m}uAl`<9S*WI*c9`F#Xn_M^O`%wy_#4N=ody0cMj57|JoiMXkx zn??(Jd^99D80KU`?f?J~07*naRMb&J3}+35*Ai*T)IM67axW6Bc%PW_q__*T(rLN9 zk?GsqS}WtOREpD9hu=#r^wNbQ#z@ov0Qww!CeM0AkBTLxUoi4Yc)0TZg0S!n7d8_y$XFr7iiG~t40KwcXCda_>>sQ)LN4J zTk%3W16Tr>B{H_EIAd#LaG|kEPFUi_9hYyH!BocT@~u+t!d!ACnOI6pl&6Psqu&gl z{-Xc*H-q1NJ@ECJ@l&TpPyFSx_ul!(A3i-HEH^Y+9GxmpO)pFjWQM;QIsWcP z@4fu?D=+-^*z528;r$Q)=O15u{P*J@{_X1zJ~;mACuhDqKY4B3v>92 zoWGs^a_p0%zj@#%zrOe7S04ZHqt{M;`QH2Qyf8TQL8;vPuike)IPrS#=--wu4;7Y9 z&SXAK=DxhSo=D|RK$owMt*i|!t({oCbo%Di^9#j)r4t{oEuOx9efsw8xo^KK-d>;o z_PY{vYkh$vJpH$~mw4k@ES7~<;r@9$`P+3|i{L^54j$fm;o|!I<@F`#;`++!cZ&<_ zrTmTT#KoC^O?>&zXYc>{_}@P|`}t=B$N$y;&9C2m?TKF>ef!hDymj(_pLyq{z>!_e zaaYgb{d?}ctLGm0%Z}*2cnrrqu~1K#73_`#y29Shu%{yw=!!yE`??|!7V0_%Uki^5 z3(IlvezK$+$ywe+tKKsHi{(18A^in>voP)BeR~G27oyjHh_+ius#@Q z40!8o}{6NBIi#X_`)`@>o_b zX(kF|UCYi`Bve=5@#(p*|8e49pPc*Ze~-?PX5^JlNWboA9B@r{_M&mA)CC{-3YTyf!@k z{_3T(lhc1oraroMd2s#P$?v`^LU6;-t@RS?_WHv5`r_^N@~zu~&194p$&OQ8eepYT z_6yME_2Sa)x#Nj1-v0de!-f97^x1bl|I-_vy!orY{MV0OdFJk;4}|XTf`9ezi+0?# z=dMTY+x@_y(Ejew?pXXlclY7$=>Dj`JM5181F=xFJKnRur+Z&_$L@~!u6V2`7U_ya zyQ5I3BNU7WL0`r#7K+HKDssg_EJq{&IVFHY0r1j>qY#r=AUWcW1K6Fgxz13S0gOBQ zJK{jECmI5VVVVJQZzmWWc7+3c(j5s}13o;tLu}dELu7&-A!4v6-suE};~l}S?mhP& z`uO;l!*dgJi#aAxelf=)k};FO<`quu&cSq2$QLg8(mbRI4lBY*=}=hv01*8VO`SesS1!2LO zozKzMEN4Y2d#lX6ED?Pr5Aj7wW*JsB%X_ifm(Xt6Zp9}(WFbrBE@$Lowv>hv^C@2N zN##D`Nwm*aL0>?Zg*Bi%f2mx$ynti*%3}V?{8Ty7KR5KjiH{CHdBon~^c)Dp?(h2f zAAkLeKfV0$fBx{;+rNI}-Pd0E{jt|xd+E_f@9B!$^W< z>@U>?8N|FJg|alE$l3(-a(I@Lu*8e%W%6*lm^cJj!n1mOODN1CFM#&D=U&+%A$)(!gmMSa&Ib3x)Tqa{neM_sZwN1|s8?OZ$%4Szp zt(*^tg_zB-Q)mYOEH{Hi3&{rIfE##5p}D=5tDn{J$qm9NZ#ZDaFh@j`TX-~QycuOI!d-#!g+{``fb$A107tFJ!) z$}5jQ_vF2gJ@DXD4?OVX{f8bteE5-j?t1X>kw@=;@aZ4k|K!6@{o?4ON1wj;v4AUZL z98b09!N+zz`qcjWAM8AIPx#3v_dWaUp`$;)=jGr2=&kpTzWT-!FTVQ7vDY7a;+dYe z-#xlC-}~*g#O-xB;35O{)_NJoo9l}UmlK7R(QE4kVEE>GaqV{Q>U#O&dU5`0Vrp@4 zIDhtd;;Rq)|NiFZZ#?(rPxe2)r{|&0Lr)#v{qP>wuArma@5ZsqXA3)Baj&l{MCu6o zJ3~--SFCeS9O~W`>De9a?1{#^!m-W>1O|8R=>~m)UI4gjZx?R%?BCtBw+BCh@%6-l zZb4!kAy`r{lIR-^!k99K-71Wo!tyeP1uuhkjcfpC1dokFK&Ceq7qMiVtoau&e|Y$ISn%K}=G@EYVx5MYo^ zkYTYfwq+ZGFhOe@%V1mM@mMpqM^1<+7WVG%`@Bze&4InY(O0FK4%OA+)aU)a?-P7I z@XaWMU}V`zF@fhOu*G9k4`}y=Tp`*AgF#|5ik-9td)?XCxc-*++;P`eKl6pp zKX?8t+~nB{FP?e*1(H}1Kl8>}ViJtzYcH}BWjD+^_gm8W-@U}bK6CfnZ}H!AFaQ2L zG@mypLE(ry93xDiC$ zZGxHBLZ^9*BDQ}wdrT*JAydv{M(=KB^Ih|}ccb|Lp^w%D| z=k7ed4aqo_g=qJJ%g{N50iI&6c63hL-4%8f$7GhXeo08&16MpWpL= z559dc^x=KudA_d*d#-}JFu@RY(uL8qN_kTR;-Z!X05gLr6w9l6^UNh`my~Axj^dyZ zxK-CGnZgB%yk2U|&hgbatRPd7Ybk3K3r%eVb;?94GJs{Zi0f=tc(SolY_2kZ3-D5~ zlHR)J7qnnq_1E;ENc*DN28dhJmL;o5X-HC1`tow`%KD|tt9zi8 zHISHi3@U?{vbN40mKebE;?FqRK@2b8vvJHOE&WpQjbdeQp?n#hh3~?0ar+6Mou(u$~))r0T#|gXs@Vg#cRNeIe`BzqG}Fc3IfnpMN7vOo^57{m18RK$$h0* zJbs!7RW0NJRy?Shul`bxqg=b9nzN){u?Cz8|K(1=*j}7Q7EK9Zc16LBx9wlKba(nM zKc2IGnaUg&&G+tKy=>pgo=a|g-$$TpZ~O3-@A<%~cfaeJ_uYEkd)~Qm;>eNXN3Oa4 znwxKX&owt)w{v1+`}l0<=;Y|h&BLd*us=IA8E*||heyygZ@&UJj<$N^?fzu5J>F;y zHq!nq0fVQ9Cf&{1v1_kBcH<3)uDxdK^25{PTRT@C-M-?;Xv4J+nWsM>7}N*a>!yCdV)D^~Xl9r;J9% zdu~4R`8#gA=R2SN?tP!T|FOIN_Cm`H9KRJs z-8AeZaW9Fwv6}?AC2S>erB39rUORXG_4C-i z^x9eI#W&7m<%QQyL;L{V=h^%GuKd4vUGVbRSDuG{^D?aS zZ=ig{fC0pFFFy}><1wt~FTC&^crWxk*#Fwu(-;H@oq6;8`9Hk&%!Oy)_vsG?8?ir& zoJr6*Hn4iW92;t+YO$tAni1=IXsEuXI+|=LhTpU!C2r|Qj*qUsW?N+F*7K}ikcN08 z9I#;*O(%;_)(tAltm_p`E9c!2EV~K-)7Go_Q6q>deprr@8We_A>T4wE>zGALUl$oi z>)blmb}HnjMN*TVmBCu!GFUl)ISmQ0#8tk~SX!?yuGJQ>U9Buolui9W8Q?KjC2LJ` zmKASRc2=9#a>H1us*7cL0Sx9KES`J@eF?z&Dg{Ez>+GC>VXg(ur6|E#ykFZVaphq^ zf^P9J7AbRoq%1p@g0~A?tBcEMa1jr#;l&J|*Vdp84f$j66oy|Cm(rx1CdDK!gu%LF zFL3}=6ymNz;IDY@lJBkZ?VhtLLX;^=Syvaxe2b)H7O0s67_0*G7=CNT%Y^-96TBA! zgJF^JPPy2p>#lOoL5N#5NYVj_r=Y37LMTRZ*PW@j>M zVY_)~xUn;sZge61ce>HuI@I0RZck?kG@b;bvELuLy`ckqb|+ENkGqpjZ>tLpHe20k z+#1DU*K^u7B_s3~_6t#vSwop3opt$D*Z8L4#-M-)JyWO7C z?ik!3t=qG>J$TyEa7)_LhcmxB^S4h9j$F5O=$eh`RWoPoYN-TyLkrTnx;3=*zOD5v zvme^SI2a^eF9PaC?*9+552t(ZJCTS-QS{?)|9JB&I4Pk;ile9Z+^*1^YU~ELD z*9p^c$Ll3_JM`K~&}{|n7>oq_{chy81IX_tI7z@5B<5}Ij3w7@Iu^DxN9{SPXKOyT zF3@X6K2JE~umC*J9(E#(3DSO?^rE00x{2qu;B+Hw@fdz2Pf!zm!$|idFjyDiG@9jo z;KLt%`OORG-+1-u*Pi|5xu?$j@ue63aQ4}^PCxVdv!~xW4*{z$|KZiw|8n8AKhyTD zzrFG1|9$f;Ozodv5jy|!pU$0m>-2^HeB~D}J^9#kkALg2dms7rW4C?g1Gj(kb9X&> z_b<;q`Sh#5e(0%3e)IZsXMTV7!e3r~_0Q+wbpQ0~zw!J3 zy72m+UV7zsFM#f6UVrZSSD$_1wdc>g2`m4?={HV4eg5g6z3|Ily!gc9FFf(9SD$<4 z)#smm{mkh%UO10q{^eDiKaPCiPv>9x#$8UPmJTbQ`dVte6*-@Hb`$w0q(<1FjhH($c`xwp>!`nTtv z{r$_&|MAuDKk=iR|M}gpwiqd5yl6zW9$H#J#8o^MvQx*5E!ou|09dhA!>PL=)up2F zs6-Z}Hfp)D8dYKqn8CvU=2}$jN;#0qwkobuW8sOSewF}mRDpt^;`?RasStfdEHQ^5 zQK>1rG(RSZ5==#EDTuy%3R;vDCRl=$K<`TB0JK`=3W5uT`eIdCt7*hw_+SY1t*8fz z(t)zF&@|UHuMGM&j8)LLqEO^B5CS(0aUUcy)>Tkpg;JOV^6_RJzv@L*0TK@8hk^xPF}EpvgZQsKc9$Z`wL#;F0jpp z{|-vjbAswzF5_rfZ)2633WLG*`d&`Mr3xWbWa9w73(crQ)mjMvE|eA_9FP}-S@>`E ziiJH4U_6ludr232C*%zTWqpZLnYmD<$W5YY|0;Nl$B53p7wc9E08`)Rbk z`I=2ci>3=XfOAjGc6oQBBo4x2@B9A(u&7B{AO_DDfQ3YvNoH-n?#s$oh_S-}CI`HE z;_#8HPEL*it%J@+JDnumVFV{Sg$;$aNwclicoq-G@n95bcZ7k^lkUd-Vlb>Zw>vV??yc*B6iwNtec^xd9vC}x~*0_>v%b59?N$r# z*B|;-yIPRfp^8!jdh0@xQpOmt-}Q$5U_5eX(_lJ_Cex5Us7X2+rTu<19H;p7#?#Jl z-0JmH93Q5+Gl=@L)?lOE8MiTB0bj#@0@i}WI4fbDF^);w;{>Qq$C(7JZ77d|#@2}f z2+);mLv~Ey79JNCT=%T`p|W*oA0vQP5Vm~`2;!a}bv-w>oyc-wi(?;ygRmWA8?>UN z+YZv$OA;rFYz#4cxa0ta*l@%CWb^)?KJx4HFWmmEJKyoq_uTi(AA*{n{Q9Rq__+^# z<{O{?moI$sb9aCK-bcTC_IJ;|_SctAzxLG6pMB()FZ}qc|9iyBIJvp`2J2tuggYUfU(;qr{^VRS8$a_EW z)!QFG{qt`;c+a;Uxa-j;e)#>LeDl$#esIU#AHVy7FFg9I@Bix;Klr74|Lw7-e|YB2 zr_TNU*BActEMDY>ly`^C@Pea8py{P^2HcI%BFyY1L}uiLr# znrl9C3-r!UfB5E4f9PMn_HSQ(_?{oV@U!0o;s5={8~^pntABY3J{|(dVcB2((^*g% zc*Z`L`*`Dz=U@Hpi_j}?o#8?y7v6dfdgZsL&%gQHxi_B0_SH9^KmXcqIHm3B*Umio z%JV-z``Z+`KcKe_+z#~=9iFCY2NFCH3SdsK3pYM=y>5vO*TxTd2jmZCX?Tgjxq zLB*C;SHj;Twu;j<+^QWkI59V?wgEFlDwFpWsl6O*1s@EF`WO{>U$VaHoi>=KWw>XK|1sOqF!0)}haazkCN(>y2jUEl>^ z9Ft?azzp0j=GE8nekt?HuUcMFx3k%Djtj#{!o_m09-b-9!i7ZP2yVqg@lf&-7fl3) zsRDCWCW6yu4pK*fc~OoqEc(HU<1YH%V&E?Uz^=0h+`{rQePMiIi~lY`2v*o$;#$pu zmrL{d&omt^i}t{ImwP4_w%}i(ybrE47j6N@3~L1@*r7JV+2k|3Y7Pw}OWoXGYwWAm z_re4Nz;L(3zk0DLRRG{Zah1B$U!2x+)+$YEzRMM!;d=84=iMv5^J>ov{{Z0K>A$-z^6sWad2MGg`OM0SSgn)~ za$FVfaJ8)Yif=|=+&F(&mU^_Xz9*lHrYUO}<+Z(+fCrOVXR_H9q6y^DBCjJa&<7me$wv;!(lYtOyPY;(+HsL^Z{KPTW}WuhCpIyFb0NQI9Dr_F~k-F zZCx_erXk6elHUU1x&VR1*wVEiP@TkZQ`1Q_D^jdT^V>G4i7N&09Ciq?UZk3CL$j)` zFH^(OmYv}C9*E+(iJ{o_rdl>#dA2p$Iy8;Oq184s=(g>k1H&Z1$wF%w8C0r9V#^nHKkHjDrKoumy3!~>$lxu z*B|sPs5dbBLvt{6Mq_U>_NS8o!Vb*wXdDg(A-r^aU{G@Ge$;q@b2l!+3@J-#5IRDjt+-MdePXAMhP_D=^wl5&@CUn_G7o- z@~&HtU2)y$+8Z~IU*6j}+Pd+bM{d6D@?%#F4qrJqe(j`(!OhV@Z`vJg4cntmI%tK% zv^DF+laA93-Ch)qS|9)7r;puqdFOC{aD3d^Nk+$e!^6quss5qMhr{h?vK1XYHGJ3m zPrdg;SAFRATR-)cf7uub?8*QD5CBO;K~%o(7DU?eA$K&uel#5=8Gl77>9xO{z3|ubum9I8ul?=ibALSZ z%o|TX_WY0T{^^7N_V0Ip?CW3sr!U_5p3i>jouB;p^&k7l760`9qqn^K*sbq5b?bYt zc;Bs8zW=t%Z@cBhd*6NJUGF&jjvJ4>^QPnPynb}*NOyZQJGnDBJjG7D(UBtE3>3d* z@hlMrtd1u&v_>w~X=<({{%NPH#!|6KBo<9<7J2O!*Ju?Em6{z~g6c{W345{XdVk~o?AC4===~ZhBdH$;ikmg9J6<)j)>B}PBNYun&XUqj7 zxd|W`jQu&Dmu*;2dr>zI0Kj3e3;_Ecwriq2@ETwY5>p_wXb+qvBUwaf(>Ms1Y#DIF zt6ZsyJu9C{v9u53Q(~m;4oJ=?gaKyVTn2!7^;fj}Js>p~ME~Oz(HDX0Pr+C>gLascD^wo+aY zSlzoj?}*VW+BwkE!S91>7gvaRjvBgTHX}QG_)rIeW1|V=e$efDeW6azYj@pFFM!%z z5-<$m_HN%F&LXHc_S*v|=>UFq+I2`B6C|Dxb-dvOJhtI_8%DKhC_t}lVf3wH0GR%imrx-Y9vLo%zll$e1Uv>iA(__?GX zSa?Of(vT}nrK&j!`0Djtr)%3S-Dw+6M}xec5e%%L?}5rrLbf<*2LMvLm!_S#+XW+& z>Cm1Gtj&=_B^|fY{sh;j=DJD%UahYc>cz5DspE2{H|uJ(q1BQ|?{(Z>*XVZiR!?pB zHDGu!vPKhUGV>-AXFRrtLvu8;FgocEoG3BUw%r=SgW9-O0>f}Bam&Y#{ZY3yX}71H@kVDfYtN=3Bql||wCyD=SJ-{XooxoQnKhXh z)3LR+;cblVabF)#?b)U`-3lg~K8A64)@am%`n|MAGxjuAh`O;8yFm|j-#v8IiNT?n z*>WI^pTe%&?t8;>I0SQy;%H43CCWYcMgpGp{ps+tWd7(ocpM9(Ii|@H=fQZEIny zM6s5nj`(HcJC26KWIPN9J-3s1T}s97ZjJj}qxQ7d-53nE$Jk;&9kV*gs2vZwP_#Li zU3Ki1&wlvM@89*&Pviy!i*e_~E@j{@(phJo@;VC!udW_WipbyZ^o?fAW=wzxUxU-+t4-e&ob$@7}!e zUDNB{KDzd%!PPemueyG8^$nvduODA^1B9L7scWIh$!kW(uNodY28|By3=eJhrhS?t z!C&q$YPX#Rs6ORbkw+|Mk%%R z6`d6b!{9FH3xZO(uSI8~DwT%rpTw(JQG?lSDmBv3|)b%_0YB-Ezy6 zOf2eHac5r)4k!<&vREz?fNM1v&1G&Hfe#8+p2Ms}bt(!jWAqY(&DAWDYu*tE?9r@c zs*`0d84e{4E7}3D7WCy#MBI`H|8?vI*IA}1Xfff;Vjm0=Ys!9jR$*Hgx$iG611l?{ zG}VIW7)Wck#Iwf5${1{pxydffF;xW-orYC$97S2+f>sRgN_AhkvX>{%ImM_@-CvcK zg2>d(1_OAt2q(InJ75kWCNzpQ;N1?G0nF)P`JhCY-~&PndBX-SnF-Ph-XEOXUt%!( zU~Y<#Pa|^(74wxRnc4ehn$!3Huc0sNB8Isuut+23WsWRZdS0%Q9WVj7v~Lv-yGG5F z7~8yxoE54RHKJ*bdMyizzGSwQjA!A_q4xGp3q}@yq7lvFIuOiROIWm4$4lETtKId9 z#{<7R47ww)Go*`PtLKItnqdx8u)&HGrQ5T{V_?Q;53I1IG>ryqA}9sp%jlic*MMMu z!DbA}Wm8sdnkAD=JhDM^(ZpH}0&4|>L1I<+6)|bnREWN{rcsrxIy0CbY)3SqEg6l9 zR4O-%6}c>1k`ZfWqU&)}32JIs)uNh_NM9lcr85HAr2%)iwc0 zC)Vp`qbQeF>xGrtI#iI#RlU))F=A-qG(5j4n!Tt{+?K+$5vR>=UxyVI(t87~+gG7p z-)gnBq^)(}mB%hVDDDpvhFYryNGD+4=JsG?t3Mp4{b9^QpWY}Y)QKhe!6X%tYe`q! zi-%1&dXrhV)p7@e_{ibz_EtKcM6^7=)d8sb8|~p%cjL%-wAJg(y2X?@f|1M`L0tp+<5fpvC(zcAHC_uW#MAvyB)-H+V&8a~eUjNje$D<54gicvAp)Mq3O!CLe z8`Bn^HS9-Fr{m*8Xbs!2@?fXeZuwmb8g~;1!q1E*JX#jUg1wn>+I0}Y=*LCcc>0_wZ^MgSImmf}By(8nD>yET`x^_?R9d30dPH*Oo zcaqtW_QvI#o$apMx8rHJbN$J~H(q|^=C@z|zW1Jb-z^(AUbk`M4M*O6^Ypr#dY4~4 zyaI^5adgGoN!Ypa#_5&soLupa@#Sx4VSjeTP0;q`S9dmc@X7RNgTaJWF#uisW?*yi zEnu975l?^QM5&ylD)k_0NoiY-TS}{|d$DY|RSveY6B+cilcwKMTLY;xQZQJg_JRVy zJVngqAw{LhqGqlec2Ok$Qq?LEy9?*K&QZ`jEzEN4GSJJ>&e#TijX|DGYl~XSTzq3b z^IYWGjRL?W(3b`J3IH>`)`$TZ{pwZD2m*kq{gJd%k*TM8v9SU>0su?;y5-j`uShe- zBL11^>ttI7FqfhPr)8tS9gr%GRnWKET%)8E(X>ENVU25G8O}N-GHGjKVp#;-iePCj z?#R7oKqj80E>Kx!JxdV6e>H^yl_?8ZI)EKsyX79hTtB%|B?fb)3%m)cn}&ym>RJqrluL@!P~%F1Ag>F8`3SVU&Q@(S)Q3S9*79K%$~icKYBC%!}YEB zb}_?Dj{JW{U=g{i`?(DRgj3~3UmSrEo=*FjL#mJLrM1u7h>Au=U+6}buY3i^V|?HvUG#uk>eDwl!b8t@NJ z+YQBUH0(;lDM?;Ma%*bP!~vm(U9Vd;aGF-dY#HEpJeES0^Mr6f+=T~#=uF?`>KaH~ zlq)rZ=!?@Z?YbXQ!2z*2UH78~E`05t5qIUV-Awzq(rHjGje zBey@WdwqKVcx3Yjp_tP5U=Uf8t$5>5Yhydbun7Yu2={jSPPgw!WjFKcVcXkHX zU%PqJ4LjG}c=-C8jvTpiJlu|2(**GFV5z6Q)}*V4mgJgh;AC;sjtOb5Zul5#*yHW~ zi7U3Y4i7LCn{M^C4-Jl=+_>_Zty5Rd4jmg$HrxG;v@?m|K5sMeu{cFK}nOH5$78o;4icfUu?!FoR)1 z(2nC?E9?Y*%X1SG11vZ^k7B~W6}{EgG2p`}hXy)5v)j=lyv;~;L2bD6!?Pn-9mo3( zda=`W`iJ`c!-Hg&hGXC9SysouR!{Z1TW>lI`WZMi$#2SGQwkbdESoLONL9#e8Kgut zV#P`|r%k~G;Bh>O!DhGTI<&N*g~Ex3EUC3yNCCPzrl8D zCHRYrjZVw%_jMY7;D{Li~tpo-`6?vUXK)Yqm119=< zWQA2~x3H!VcR}CPhOtuD3Ds2kN?8}7vnyPokg7ma%b*nwzv76htgVn3E;N-@1~8|Y zVu!P&=E=$hbN(#OFXBR1+)N2)&I`kNCn9)00pL|C6{1s5Jw+4qz|IQ9fmh66(APBf z8~OpNPBk~ULI-)JRu!!MDrW!y5CBO;K~%hKNC&tg2UYwK5ETqQ(2(|Vqre=%7-y`P z_CTO70~mfZn<_U~xnZzGB_|hzZ$2m%kEzHM0~o>%94&4HHT+PQ7`}{?fU_QjyW+6s^(M38lyzlEFgUBBu^YoM!3R7r^59ti3eFT|FqKoyEfN>Ru{W zxw8Mj;$_hOg+2S0F5ADn7h722OF9F+H!?9^28nxvAZ^=GVnK5NySV;>zHy3eCc-dJ zH48;u7uFEhM8j8HUkxIICtbTk1xkjN=2rk(*k2&FrhviNm#cCU;>lakw<+$etAMTq z9s`6B01TR{jzWQ2k!GbPEG%FNtE#$EO)FQ`QifHhA=`DuX%dpf^cn~XUIOGbwOW=+ zKxRd&){MIB;W}Fddc{s%avQSO#I|Nut45`&*BVxnUmgBi6)?sD>uMEScJMNd4=^|{ ztyb37s_WQdzoyo+*EQ?-5Wrx^lQ;u1Y{_v)^;(i0*ZsB}c2x*FPSW&Ra@1F#bR@UN zN^fHHr{-W{g2&yl-Wh2ibkfzj16u@^+nv6d;#vvXO`ZPO>JCUS(Cr>Yh6}my%A4Cg z!1B~p<14S79loMJJDRj+ZZfe!2tCpLP6~OQSPSf?V<?w-X zN_{)>{8rQ+wg>QAo89iT6%Ks2V}n3$$HV}uGr=#%==9+1b!IJ`=wL#^AOq(Q~L@6Nq`;x@Ai@5#!jy@ZnuUh$7$o&2;+-!o)xNYs6pJ` z4g)?Mu+`SY!~=D>vpiYHU??!sLDJhEOpk9kJy%O~t8Ip(z-(JhUy=eDl7%E+sylW3 z1}b{FY?QGN9@m^&!;vIU;m0VUY@|8>Y`1i;YXyDBYZ)Ro&=t`Mx|^C&kA%0DqzXnJ z5N_0cJY9m6P|;$|>4vnh-ET$HL2Kvm@B}b?Jv2OdBgE*<_jghG9nkc|we8L0y$S4X z5XL$cD2t6K(&I>JrFyTYfx+#**6OJk_62b>X{%{R!xsPblP124sBd{~&1>NYsk$vV z;D(bl;=Z1C8*#gq7u=u(U!wpA>Y^G@qSS>+35lxM6)m1zZJj<4Zo2!yi$nrt;^^Bk@MP1dk z0#sF~1T@K6)7^DgUh=+Vb}ts86!Fi?RdtD<&Sf{aq$Nkv!u8^v+HR5Ttf)=xI0b7C zV7yZ<{vhfd9_0269J7rx(6##g>c(77iVKf%1d&Mj<)xOAU zL30AJKz`PaP%I}eaHuoah!*r+%yW=<(i`;U4o-6hFU}{WX@~7E3;R^XOcuqxMc)NM z-=%!5_o4|FzWjd%Kj*X17uS_*`&TM^=kd=}lw((O-@WsK8ySOh2fVO?0Reg6y$9a5 z@8D(7-bG?Crzc&4zsas={7W}rhvf>>@a}AEtq4X7p(AZ6Ku;g3oVd_ea%(X zKoMz+>v0oX*{`Zz6`za|)^L}VRPD6pwi|v|f+K-1anh!pG+@K z09^@)ZMt&ZZdT2DRd1Bl8dNiyHLHPJ>ZT;rz_3gU75x14RI)m%)6?BPjXy97u~Gwf zLD<2YawEy{Ykt&(HHSgRPYXY}s#V1+iWjW|_Q0^wG9fto+2O72Q`c{uyl#5=^^;TA z<-&ibmt%X~@YFTE<5%`iTno*PooY=syMr`LT>PQYKsh$3cxcdQx9D@gFbJcxD3vkt z!)XMmEPf#hhI)R2Ph0jos+}}-zo|Gi*{(LtvhI}dL!w3EHr1#CeJRwLW|gV%1=z_B zn8KiJ3U$tFQE|*LcdZwV>x*2A1CQaRM!sJLfVrx(pf6Dh#@F-f*m4CZMmsx2cEFrf z%sl3RCQ;FX=u48;WVOg?NSOr}KA5+lDK5vLtYENky<+B>7K7=(q85jZQTsY4AThJK zmR7kA?@QT7aJ2A$j#u(29d@1TSWzh}b5)#V*5+M=?^0u3nxkegOY5-g^LHTtEaq}e z8*Xxmt2%>Qc|j;f3%fmD@63!~b1$%JSt~e!&@XUXKuR05G>J07R)OR%s7#$Xo;wtD+Q_0PrHyogUxVM`6zb zpFC*bw=WDdE$HG+fxeniD->5(Ru@Z^rD}bZSC@H>mfb2Bp3M6(;0U5AGA-xl&5P#K z0}I^Ih#Aa%lOzgRUt#+4k}xZyEHk*Wk4jtDvue+L7sp5o`Yz=yDDstQo~HhX1f*SU z80diP;MeO10ALQSg7WoU&KS3lMfFc6xR1{>8Ulw*OLS?}0s}#modBSlM?8 z{`TnVIk3a7;m3v(s1C+5p`OM2L_}i2W0Ti+0br6qZ`g4lH!HCRv#S270SkrTGz8P(KE9y&Xz!n{}$@S9Khf)9#40vW!0>ku4GVBN7)JMSr~{{R@{;j)PUZ) zRfcfwgJg$gwmm55g}Bjaxp)9>#16Jx zB!qI7IuV?o5i62kZ@5)#<)8rp#yDZz?xczfYt`1UwOWdiNEmHk%i?=MESN|))kSKV z3<1v=Qm}$9o=cDjK{))hI&@+3NJdZRkmt%twbj#)ADDK5`FRMac5uCsZ#4)i^87sDQGH9 zC1y~wiP?ESBB&`-Mi6envjm|_JmJiZ>qTmB24K!I;!+!&#={PHp3=i5DK6f~IjkD> zv|r&B;-k)U@6W@pvSN_TRA3lZm?~RU_Hy-Uc|M_CZSJc{893(^n|FKJefZuxy#SV@hD+l5 zB6l6;2XLa%Jlcz@PU0o-EP9&?t$9PDPDti@d54RK%!_F9?NkN}0A|nvt6V;XyBbqr z=la1s4>(sAy4B#`i=t`AJSFL3DzE_X|4agAxUQA=a;pZeUJ1bCmfSJ(c6abs*4IIz za%`*BeM_Z1OKbb~E&T62``#w#yZ5sFmtD316TFu(dr>* zBnAgWVk1aQh_ZbWg9EjKj_bE6TZYQ$z^YnseiCdn#TKPX5KE95$_=B$=mK%e5{L_S zX5N(PJNLnOOcP)h4}jgQ)50wnY*PM`>?#mvE3z@g14_+eu>ts%n3OmUfl#hO9MUBg zn<-|hAQjh}1?+&bG}VktpP4YP{ z^R#jx(Hg24*6>V&M-7@*s!_Uj3ui@gQxhi; zf}jb|t6<0&bTG)kjtbk2p>lXxK;|8*POjllG3hAYN} zTA7G0K+Z1;KMl_f`KBB>TECUdhW%u=5lyDanB)%n-f-ae`*yo+C$PF;f>=V$`Y0E}2~}o6Hp)0bTCA%Z`>4mKeRe0nCWyQX6@H z1yq${m+{=hs3UY)qPd?MA*DZ0|!G^h7H&z-# z+=ihB3~N~c7q@f3^%~-7B69!$5CBO;K~!cMFo6TkdlFFeFRY>Eta(9+ z`yCm^5_kVqlmpxyh?jUlUtv|r`!VERUA`XiKq1o3mU$b6G^9S&(H9v*7`MucktK*hAfcNfO_+PNU`wjxV`}Q2% zd+C8o_Z%c23=@0_M#pX{v1f8q`inJi1^0nrVz3`rkQ-_+$8JJmHw*>?v;eT1T82-N zJ34qnrTev3hpKSIIAEe+WUYk?kw#4FGJt96S0w=F=;hlBQWaWnR91}>mLF9R4(mjNv3RiJ<@TP*%*@H*w)!b{NP zGY)IO7~!mnxE$kDaU)JZwi_jB9rT5O;X*yTSmT7jU|fZP3W|d1t5#B#-L<-1Y`SGZ zR-hLqxW@ZD4#;^7zTz&pB_1@8Dc4F>wL}ZvMupE)`1mqz=X>*aB%WRd>cBj_uY8&v zF9c42dAYY1>)#D=4zz=h6dx?FQ-b0(yP8eZdo>tbJcX$0+3YA zdRecQ4Lqv}V^??TFnQ$jjK7n3%Y4`dy_N?zsVF|hzTrluHIFUC0ztMkKoVyKX44$6 z$VO9w8b%dPD!IZybMg#^dVV5>0y(;0qiF+BCj#kZQ%oCxkzlYY!UD42Pd3b|vG}Jb zgr6KOD2N|e1u8Ym^b5?+kYWXD#NY;hbb3(7a0gq}tLkK;nlO$b91KgrN5nbn3~=En7^Sy7BKhL43h(YLA=y|7LT z#$hv<9}SR(clW&-1Vbz$uu5F1N*A6F66L5?S=guASi;vrTmE{!W zt~Y0J?tuCFJ6{W=9tjPZ3pJBugW4G>CU#aE%>`<9DjHPg*`WN`s&M|FZUv>s7qyewIl(+i*%W8E&}JCR|vy$A-ArSi_!S_V>|%Ub1V`* z0a!!RrAESd7G77pG)*9Lc?xVLZ4p)&FF|oq&HWtV%pHn2-AELx%39fT2ch{o?n3Tj zxtT5%nQ9zlhl&8CKwH1Z)5L?im>Fw|!y;2IY;>L)Bo=E$zur=PKfaXCAo64Q5_pmI zQe{C@f!?1x;JgbV$9%y7^V?(wb7VOCUB+!b9W7?~DQ#NPiNSScNr+r8zV2dkfhUJ^ z<4Zd{L9MRvPl6->jPI9AaO|#9xf{UjZV9pF1G}??cLO*_FLRgCOYvm_y8K_-=W1Nl zgS-;FZ~1Ne4qm!{VGq17&ZcU%_B{ zOojv|UqOJXfm;BxqEf&PO%)2LGk{rqvBp_J6$OSBUb6`onAm3q)eIO3sYm zj=av#Wf(&|!7eCX<&Ywl;9TaO*?;Fx$q~-aDr>lfj>B7F@ zuv5}1>v9pQ7&V4*Q7spg5>NPNlM3P`u$_-Q>KEsJ=Y-Cd0K{YPUw#bza^_2?4VoKh z;>*Ivh?CL$8YQsCs+Z~*=Xo(rw}QdAkzx)6yajg~3}X(^txidL-^3dg196NM)!}HxB^atZX zltzZBdOiWz@?;~ZYhKl~>$+J5|ESAQ+=N05L=p@~ns!jdutTERX0Fs$QuV5=SA)dz z636f~-EQDeA{ve+pQ+WLBN(j5c`;{ZYMHwW0HrkJN&sFLiJMt@UIwthEgWGr z2QZv&4sX$eZ&kFZpC=IS>IKBD2D#gyh`7m=vx*~ea3KbLReM#jh|@R+3>Or$Sl8EZ zsl{cNYCGdG4kaL|-nwLy@og9^LT@JgcMjl+vIYQGn=5sBP0R_e0>Hjs^zBt!U(}Tq zi2Doi6m-@dPd;c^Yp!2(ysYvwCsWmG%Mf?(VQ{MYLCsj;PQXmNtdyphKbQ|V2*8!* z0r*SysgkjT_Xs}04dXF*r#wwv6N{--A_^GZ1z^tB1%^d6u0^rGj{wa5ba&NNW(PdC zrw4fAmvU{zR5ROU4&Y)8b2$!K-Y-e}vIHSfK9gNF&KciGZ7FoT)6oCM6`;TNB3Ui?|oR~zawSK-J33}sGtzUWIBo&%T}j4>Gi%nV+y{f`K& zIe_ytBrupUoFxkHGPvAVc(rudN^wtyYGHYE&&>}LeT6CIX{Eftc}moJL4-Z?AX#+^yxw`~}vs#W3DHR7%!!Tu71h1-W;r7>}O3{-e!J|K2@h9GBc zPT%ZBvuXKC?yAN7B=MdTw_vP+J+Y-wHDTkj6;piR;K~}zB0eR(jxFfR0Ny>RKrbXl z9ykpqclMF0m3#n!^QQ;Q9W(EP>tH;#HLHOq(woA_fMyG-;4us_Y;iVljGAWH;MgJ_ zXXMd&L|RNRjFTujsCn6Qf4UJ}}ac)j*bjHcn z_GCEfY;6q>9hw|HIy-)R6T0Gx!|hhwN~u8Gc+zXP{U9)GUvdH&j8yEZZq|WSH>gFa z9JQKWRQ2KpWW^25ugG4VCjYHk)2LAJuv)|?FxcpHCTTLj_&7-VKCH875!moBrm^af zZZ|cn!2wgeo}D#F5Z-sU1LhjMpd&2+i`IL2cS6xPfm$S)qE#?Ip7UiHyvu$b z4A;0I1MCzowH)kPlU6TE)VIQwn%EC3X)fzd5rYf>IM3x31+Z}0T?BwZU(thMO#pbM zX|9s-6$L4&A(Bv4TLyqj@KS>AWaZ6eT731^#p>^xp)IQ5D3y9%QnSXoSzCBcA0qlX zYgy_MhKBM=xx7#;Qi7}~VNJ`}aFCj@#LwkvXYS>YPr&Al2XX+@@!9iQl_Uzj zb5Jqm9Vv}cy$qqVgT>r0t>H1Tr1fGG z1MT&?UgqUkyy8M>nE{N8H2}O`U56_2xj9W4u?*e?bwyl+ToROn9o9J#9VGZkg z1@9EZ63dn)d=zu9-)PXdK@3^cig;FyCsZl44Fis5c|N(yH(oqA&rjsy(-5=hBG5^I znO9hGBR`Q>NppBJqc2&#F3kouK zD@{RPUV+v^3H(#trfk>iauMPHJ=>OLxh$*HLbWNEEJqGgt3OW0v;JV*naz3t@YY6e zbJjg_Xn5?%_|WEH(4od28ymgRAPzh#ziK#jd@r=*Z#Fce4ge=@HB8}X%a&hpqq^6U z?YMzq0c86M95cMKW>i4p{;U-Z1G`1J`v7pOtw*sO$8|0e>DU=WTTu-PBZ+3AMec9z zeZ`_3dAM4GN>erQYuB=zqWQFQ)iBE(mc_NBGXSfwm@C|Qm*b@=lv-WODqGC~EQ#;SH#<_?HOXE9fSXkJYE6`bUIv>XFqmeZ zmBmcLO97CMTj9ok-1OcumUWe?FdBL`rOe4N^TZfxvB2e>d1;)=X~`5vy;j&)DDG`a zD{!S?75m_kBapcdXgBTEJYt!r z$Kic}UWiPv0B|h}LOzg}zG87Z1jawRUdDNr;3QfQX3ZEhDg>QPM2k!(t_zJ318hcj z7~{81IY@<--BZwcrmr~p1G)K3#9cK201yC4L_t)ZSAkv30z$vql~ZEi7+FV&Q$cr$V;ATVI6V&D?Em0rUlfiNsk=N@_mH0M4si{B#n$9MJ;dnG04*IjnbO)pK(RgcPb2^@2XLGhS z=nW^6S+6%pS}EiOe!JTV<3!aB#ncR5j7IDQ?D13>W6aHIK*0{NMMJWKZj3QPJVC?g3?NViRvAnWe!iyHz->g+upd7%E z>Xr4N+H}ih9V2l-j#$1v=Cgy1XrW2KlGW$_r{0*hj;y#y>7KCBf! z@FL7yT`OUHraBE=wefV4RuiXM7eVY*k}z|ueAvW3a+iw#ARaF8yQ|Q6BCDs(|K-mi z%ifl=XgHEy5hq{ZuLd6`PLkro{W@$A1DG8uf6jHG22gEKu~Mih2*j$z$G4kT?Jn`7a0d^(hA=K#34Cs z#QCgn1O=l6F-_gHmPzI+RMS?OwIyk>Bpt+a;eg2sYpYe7US9M3I^H`N47v6S_Y_ia zZtBW>eR`G68P#uUEKrdRtH87IT;Gb^o3us~uvGVvbAc9MjzM=(NckXcq>|BWYUjNN zsQw0q;@`(s%7#=)i#&KBQD)N%k|ZpI*b5z-X2 zNHTugdg;I8Zheyx`hpYei};oOeCSYh6`E8LZp~Q}c}ZZ(|6w)i+ccIkQnBe3uavsb?vZYakIZP3Io@f4JIcJ9XqtS^NElC z>vzBP?YqAG75uyN&O7hA>l@$x_Puv}{tI9J>euhQ^Gjd)(%0_(#&KUc>LNcidq9I>rEoD1ozX-;*Eh`P2w8MO{LxtQ`4OAQx)-9 zxM<=M36*QbVr9JogWV|Bnk9&qfu#zEL@^%VAccusucAJ0%E5AgTB;t1PaSji-a|I20c2giTzmRhSsRu9`L7Za}zQ zqnXKuZpoS{$y!rV8?siXL-Bw>uCQ<#EF2Ky1|B-(JLNi68mcyN%Nkc5s!6!EVqj5X z;jQI6`Ca_RaRN9Wx=YM7N;=gM4eBOwZmc3@5h}^&~E#!mWO>Rh&}5Jr|sS# z?hljEq#dV@7wBPZwc8$^)$Mxiw!;~~aiVp54i}!Jc0DeYxrh^)>x*&mmfnDB;|$04 zWabU}cCTx8+WK(d^hOji-5$zOrxvs-VY`~P>p@fs{IzbUe)-YbsUy|RiRBnewg;2l z#PI=OUZZ6kHdXv==&QsxMXA7g873QJ0@1~<%vniUs{=jjAvljbDsVh7UxGQgh-aZ0 zz?qj7odM@Flgoe{H6f-!fSBwBtE3F5xEA9~I5}7`*C_GVSy8N|hACu_E#_dWqO@3O zE)<#vV1jWw+%V?^V8!} zsGEzTeDs0{ieAoRo*BR_e*8QKmupe&6(HOLhniKPQm8B!=&PH{@WHZ}a|VE!zC0a0 zuMSNM%=y{kD+Yk^_X68hsTLW)BFT7f9`+37?8pA{+S`c1wI!Y~SX#Lh4Ca=I^urMC z7Uo*Y^Nx5Kf`1!X_R;^N(eJ`4P5g3G1d)|1nlY56wW?D1p8)21&dlIE%!<}}xdew` zZN6Zf*T%w2)9+vOWtx}Cz=QF{pDMneds#K}YE$i+&WP~L% zqLo^&C2^So#Vt{gq_wR21(;W%I!Ofe$WBp+CM5AEovV(&L#GVC3)XsVIqK`tKuyO+ zI@Xer3biJBJk)Sw*jIv{>~|%|ZApx0Gpe(AfBw2vU>k!2hzlvewU}N7vivH;63D^j z-iuTsN+NMh3>Fn(NF*tgSz1mmN*1yxTpZ8E(Xs>{zs~8ixEFlI z7B7Jp;$*p~t%|pUSFHPK9p{<$)x5fAd#LC8aaV?-jszt=1;V}EvB~8>vCq{&2Q#NL zwMY}EJ9VM{hCkeJh3vu18f`k`Ew?{4{j}=F<<>yyj`3UtPsfo}x5StAhEXztde}Ak zBX_b9O*X>O)Sqs~Leb8V&e5ak@#F37?Pxl6$CIExaKPFmaeCckIA{aIoet3#0*Slb za5!#(yVSFC5JUM6+2wA~?+0w7p~*Df*lgj2I(>^PUbWg9C*qIB-e}@Lv&~>*E8NoLp4{#$+gpu8JJN8dhhf4UH6~3BEen2^$SVjEgD$tQ@aI)vv5I09X?9(u`i_E=LRJZj8<|ixOJS0gPMn#ZLB@ zoXpBk=Sf!vIe^C#(b%ErDrrBjhKdr+S<)@9lJaMsE!m13Bre2Z7z>uQ#NCrPB?;7Q z2-~Wv2RTZa-7sUAZSj0^m;elW3IOwjHpe7`zPecS<=86`esz$=r7mffyOE_Dld5>p zB8IJ(_tzIsa7K8&nz%`!>WpcNo2@)e80N%^QU0vV5RyeS-wr_EH&+_V?^&-{G z5?||LuDsS&p7qP?z8smHhcxdhaYdaHxLgK1;H=|slYT1m#)Smn-R%OG%a^TG_U;b0 z%0smBlwSrggPF$!IeM$}YSnlldYIt)BJA%)0PlhJFYmo<;nKZ}dk?J85P<+3_YKhq zMUQ&sY}R}CyKlJVeK-HpKfmu|pZ&D-iIFe z+7G_-rSIKy=eO^=EAy6fzN*OqhI*k$G-UakAMD-&wTldpZU@k z?)=7GU;fTL_uT*QU%T(#dmg;++mHP4n-Bfq8$Z17JC8o}orfOy?jsL9^oyU~|I;6R z?`MzP{m6Y^y#MZ7Z~y0Ht6j3I4Uzn+*j0+d^eC~CFTt6!30PG#tl5-gOp9TvS>a1O zj4W<}FTq`WFWfCn0=pILJBdu?_fpA8nr^!x%1+gwsNaCXzQl}dPmN@x1CU|A(VD37 zRBml*?M$_oCqQ8%#M58mq*an zDcs`YztHrUJ3Z#p!;VL@V+k!T#on5IcviNLf3l((RMU)`^(K2cex4A%thqR@{#5?nm;Cv!lVru^8Gqf#b9` zkK+O9?&I*Q&!3p$k(}*ueoqJ{muMdIUEn{CI4~heA9O zFC^{?A^aDQ+&R_8dx7w#@S?1(lL54YkMvZS@8rTQnRo@-e%5{>w!?Ow zQwKJ+L=FZbvJ-F+y-s-Eje84wiFYX-(gV~*h zJqrwO&Bcvqd26li?D?IAojB)URWZEFk|_zmfK#ho=?|>Q)D!GYJk=Q6S9EM{uDVxO z&AYqqdKt{8&T`f1_AJ|~H0ln_?rhcrP2p&}Z3pVK>}K7751vlD>>CXeJRG;^hOxiZ za+*yG8173arv^K7&*z=Vq>1;B&&bFC01yC4L_t&%Z#{N<-5P8z2IG-E89TG7x0nae zeCDqfKCWRlF&8ttKddy{Io_tY%}mXeDOKFx;66rfS$g?yzkm+~0qV@sQWYmo;NeKq zQYE1p=t?W0eDNGV#B{)F>NiE`vej4|jQfEPzty2KFV4XlRwq}^WMK@$r%~M~UH@4ZTvToN z)C6!G#*wRkXQox}|ufpY{f zQ?4{w6H`#MZ5xmV|`Nhu8qNnfRHI^gZ2KR@sP2@K=mY3lHg#h2#v zCKzq}@fCjk+gDG6&13)Od35zW`SNS|__v3z|MC9$KYe@rk6)kv^Yh>S{cnH$_kVi% zZ{J`3>&w%Bd3yZMj}QOyaPv<$o1dHOzg}Z|^KT=e5x;>{PlBv^{s(12Ah}0`o-CNcQ@aC zX#L`0d-WrLZoW5ee>87iM7Q5t*UycsAC2puO>8&c>)7%k_rxD+-TZ23-Tt)=-TZ3l z0i<7b|EqoX1MkxK^0P(p;q7-%^uvMfe)vlDn3~aHp>AI4d=-xT@-u++!C!tha4^p- z`rZ<$J$QHhz8FJa|Ec}>&mC+Z{@Qx@Ye#ne>^%JHKK$xK_dk0a=!bY#6u!1g;f4CO zTG1Od?teA)`>Ge>N*b@1r!I^~sw?;7;zzsxRi~nda)#UQ!Oe?*_w0Xp2{4A#m+P*7 zxXTxN_1(ch9)@4KyZmZQ@5;05>f+W|UYm<60~p@iyU_gFfPL%@ic`4Eu{jyqAtgPuF=d&`CD^|@|;x#{2E4z5LL|tktsdTAWjQDo&c$B_!a zu)>!GQM!DTSIdhbd22PNtFnO(Rne#&HSc>wrSQwHd|o;$)iL99*!ZyGUsVDT=Zu+Y z94~*tz&m|yp>hcO3#Icrc)3h4=lILMmB{YUU4=Q!d07P%R>CUmsLq4?U@!m-6N~{E zoXviQipA}6dADNhm&F;wF-J4O`E7{p2w5D1%bBQfWwU)|DZm53`8;sW7w&TQH_Vh) zGt-<=&g4#T3eYW3HDb^uF^o0&D!cGjNuNsIBQy9rL_Lu+x+Nnehk;&2dkIv;#(V9K6fz2cKOnV zHZLs-3|oB*Ae?9Qg7Y^-Ph?wj^{usf?rgsI)M*EsALHv^)2o-!^0BvuZ-d==YFvG5 z>a#)M93Xe|(!TxP!9d2(ja#)70x6-Z?@cYuIZedtA1y6H6u+|&$2dkQiC1}eN~C_cwZfB#f_G=etN21SuK!jy0LJ$a70_G0)`{M@ zzPxz%-`~*aHumzH7ni`k`{_~|-iqaNevnBk{*FYQ;$kyo+h6@Jzr5(#);m;dTI&H3 z7@eURG4)m4qfV&r5B#?`7V-Ou*K5PYD@@h|odbp7H(7^pAZUw-$f#f!W8?m_%l z0j-|x`4_XlDs;xV?j+CVB9lpVHZvwOV?3?RW|s7Qn!A&UH3fQm2COHr2l{q91_8X7 z2G{Ej0K8c?Z#Lc8*t4vn& z_Xc$W7=jNbhI_pLZkT;DaR$dJxNZ^N7u*GgA<%a^@wny9!MJBm2ljm8L4%5EGU*$i3?`nHIX>r1DgmtWrO%n!q$R1{t^k;23%L$T@}A5@p?c1>o{7RqHUcp1 zY^HJq<&2|DHB7bwWkKJw>>fxA1}A}S6`Cf1VV%M9eC1eFI#R2HBv71AA7!)Bd5{y9 z7(lAGJba$iJgS(8u)6%0r8{)*WyQm3^+qWuN); z)D|!tHk?;E!<;i_hay;8F~JJGHDezG+d0Mn=q;7N=6&heP~C+H;Bb*rF0`|$%vL%h z#AStQE?X)Tk6`^x^F&wOD!}qa-dDB7!LdBY#U-knr$9V zF7^&j!{&pWfmTz?5{_0agb&ZsN4OZg`&s%BNZvcykxE#r@4@;z~2ZuQ~*BkYwT-e~92Ml)dmbKZDKB2HtV=qX~h> zFr%=flRJO}Mm6E};>wN^vXxlgf8_3q0>5{M1#+o)C}^q}>3G=2CXy8m8>F!(Ayz8+p` zblDMi)&8F@a2|Uqi1vq4e~svlLoWL(sjhtUMMx**{)?Tgp*!FsEyKU9$W~=3Nf!>DI zZraVd+3)(Jfuw6qr=8)r*&76sEZy_F{h-xxF#wf8Vqm!4c3roU&tDV@m+e*+Zv+Md zy0fVdO~(Fo65wKFf8W9ds|L(2XQM|$i*O}nrJti}>d@{;pGRhF^?GG!Fp!2z-Cm87 zmR9YObRF)L)%0_jON#5QQcy3sUfywYo?n0)W|d0G%u)+~xdJ#GtL$iY6Jqb6N~m+% zP$piP4j6pSj=4@CtCJ<7t9l=uXOAHOI8(Vum4&hZaJG7qDjlTDhxzJZw!DuqV4Ntx z=xhPNkQ^oeJ_U&>&T3~%hg^xvdQ1dxE_bTC|H?Ldg5TUk=HxOB5+9{9r(qaY%2vw) zUqz+^HMf1lYEyK;Djdyb!(nY?;5J;06t4Uci^=(5Jaw7cB7l_@-irXdS19eUxJM22 zwGKg9VA!&O&;4p`55fQ{NzafU;*&ua+J)a z7|a>*VtGF*jI{$tp3H86YQ?Iorpp%-$47@J$47}2{!k}OC1d;<^gX-Sp$`@wUwmfR z8Qg{aJv#Yxd@9Rox#maD^3w8#GqO?1i`O;`YVB{7ge6~!EPpujUf(yy$V00 z&=S9-KdcqTvJ*e7rhZEF!`=M!u%-0)4S7g3QxRbvUbZM}=lL-yN0*qbdO08u5CtDX!UT;2>Wc?4`*5~iM5(5P>Anx$^L2z5HecDn!uce|40rN#Q&?S8pCtYQnX z7dV*RsKX@}dwmmI*ULhlYBMb5Ev+=K6OGh9yXBp2^pD)r|0I-V5gFRaSFnn#XvI78zA!ucV zBke*s24cq~AXe%&Cq6?LK;6ao1DzfK01yC4L_t(109bMN7|Iupq@ghn z563lm-&HgF^MZ-n5G4)Y<6?beT9wXD)D4a+%x@p?k3-8P4h^ z22|Fbm?rq>{LkZyPoyuCocS%Vn;~m2)Ah3QhR(*qLuvXOtAQ1tBo=t*;A;=!3wgQt z=RC5x5`vBaI4VN9A6Gc(3(AH7-c{X#cQk{E>ci75wfuKSiw>AuvDBG^1n#a%VDQ03 zZU=97bh-V<{D(&^ehPqrMo0!fMa%DjSYevo&?1Y|C7vNgYo0-{jpL#4gfA|%R9d{) z(DcO_J{tW8WAN1+elZ7kM*qreFDvbZ(VEwqvuZFd+5MC=NH^z&@tqAq!vx1YG=51} z3bdjhE<^`2`))(?pBA+IVM2@VCaJtsE=M29@hZk_g8U2gX-$YU3FTb#LJ_e2HiR0$)`o)bK!MH)ZRRGpO+S|xdb7$OMztcw~$05qA z3b!%*GYqcBuQvpmzWR^A>x}(1u7CPBzk;}n4FmP+FByI#5pLB#28GY)OUK|NeW~zY zjyit%-GHKjJiB=|uU@R%ZyxmJYyI}#Utc@ZMRh!_4ab$y#F#Cd$;@H5ys~BF%v#oQO5Lsp;|l;|I~)d$Mhy-) z@I`RIZCK%k)or_Aa0i~a>kS6=@w6?AgJ)f}eko{z&Ak9p)4&cKu*Pt+ZZv`#tahVb zYBeiRvtDgCjc(iOcj16VDo$=N!D>8mlu`EJiK*GlS*?QQEEsfagI;Aekx6bv-$J{c zlWF6oY+InRLhoQ`0lM(bYzRG`+7icZmz%AU>d;(fgJiWw#6Hk0oay)(Sv|#O4^c}7 zR=tpQw^2U^;Moh3wtHdwm$1U6>Y2byn%f*P#0Q4~H;i9f{O01=UZ`AV3a2_xM{;~J z`-SqEZU9`8>FtwfqW3IbWCKuFvDrO|%&S^g^yomET7Y{}EFS{25|jpnvb!o#`SWSw z&$HwwTv*wZOf(^MX$QWx46_RdEOjmqV)WfN%sl~cZLd__B`lc>ok(tjzL$wD4A`oH z^rg7uNoP|R%dg9sV49QZ&v4JM(TsshZkH;{g+D^6mc$)l&CI7$$;9Oa0G!EQrZOj| z=ex{yCV&~k2an-*Ifp8PQzwAGm7~wfWBwR&=!-pY7y`;zuB-LWfYN)w+iOm zFl%7R1TgcZiBIK6!+GB@_li;CJ+he&SaX+2Rgl<5{?a|0-C= zLwXU4c2q*vXN*r$pU<;9&}n*$%?kgReRnA!lk}bba3|lL=?@%@6xp8E!qh4A6?c+Z3?D zn}hHQc`>m!<=q1gi%Xr^;alkO|9`y+t%uk7dNw|cpZRSx9+zju8M*#$YVlLxd%^wF zn_DQgXZ}*tT7aE$n`OKktbbZ@YYW6KaIn(+xe9TBEx5aQF{rC=?)9^G_Yhp&I=45$ z-EIAPa_K^#?|3T21$_YE}nuv26Ta5a2LX0JZ_IhEet^1x?c{wlJ6Grra*G5VM=;e%fx$iI|f7t z4+g^r_XlRLZ}664F>~>uuGeia7-RW#Giy3EN26-5R|I;4Mz+~5bo&+ggNzK|c{r@K zyCu+fI2K_iV2nM0v~apxlF8=CG1uGqpe3nZelyE0+%TjWthQ3ev1*)xN!Zp*X$_6XD#u(I%nWKU`%Jp} z?BRG89A*wPXKERFzDVrJBAN7|^t7;&FltP#VqbcU#imOUF?@tGfDO!+YfJ1&)LJd_ zVVadnKbGWSvBj!=6PE%5d$Rb)Jj3UWW`z&f1TcwfOKqKA`~|=MxI!>nvZG6~?x<>t z=yZWwj4Q@2RI~P>im?v>hvDMPE-Ww53#HOhI68!G*h5LJQO-+tRk3uUfN%SS4IJ2=&99em6b>m@Yj0Sy#XH??_B($NY}IVwF^) ztcJwucQMa+x>jhN-*Q?<&VO?xeRd3)Le>{^^=vaINCs+82;CP`OJi6rTRn`Q_8ooy zr{ZfR7!V7mbKX?{S>BAJ%hq~lJ@rFi68I!C=P#m=h~KKq=NfT1kAyD^-zGIxFPuGB zDKeN_Jy^yJu9jl0I_-09_6-cKY2o4GTW$VSUENq$U)Tj#GyH#li5t&}h)`oN}jS3vOF>zaPw}oyDw+?R4Dg zcl~DFWbKaOunFkG7ULvg2KBf#><7Rw80-AKt1=!~>4q6$vo@Da_ z%Z6i?x#V2_Smip&3Sd@*&R5RZ@jeU!*AkiXd04o=bPT`C#ta2hGPbgni=^seotQDms=q0Wq&>oY%D*h}|=6H`x z4cA_?NJ|uj)&P!ls+$DA1F%ZD+SkMdebpl1J)JY9Gp9J+bKywtnHXf9YJm~w`Vr89OzMO-2W~oG>Wi0NK5B0%N zh~5{Q78!$RLRuomak7T^d~taha&qN&`KtIC;@rir_DqGNm4ABuSq}}?Yh=<=muJUM z6<*KZ(R()kPWst5HaZs8jDA4`1Ejxf0_gs#4&5w8*Yn0^8q9{ysB5%>s$I)iMjir6LEp`4 zxLyu8`#YO72R#?|6o>^rEvty*+w~gu*k*n_Y$_60@j^IP&~!X(0KgE=GlkiO{q1_N zw%x7|3`5{?&@cnF2UZw{ShBQm@;XRd0f{M?V^Cka;a*ooq?I975-Yq~Hs&)wTtGaR zV8CkSfWeD}HJ_Uh26(t$yI0rV=E_|x&DGkTFRHV7Wiqb~C*{tdB+ZEj<*uwMmK3&n z8A}K+Gv; z?&s2BxvNkB=9#%FNlUL&dIhkSiYLA z@nNA^{D9jyAn8y+-1RpDB7J4gyIio?8I&?@0p5A z(!`BPUv?bH@6bEb=Ok_wdbJi$=H|(Pzzpbi(^^cNanD?gz4ffVnK!N$O>99RplC3( zdwml&5$LTq%FR}F&^5*b`)1wza^1OG*Kbz=w}AK6+{X)XlF86%H%j1WF@KTEUDRs1 zUN4xtnKA29| z_iOOJT&jd^8|Q48_)Ww+N@2@!dmzn)U7#8`$0a#d0Ry~?ic1?pV&#Sj;9j?eI}DXR z?S^y1Q+qaZNZjSh(gJ-6;G5ebJ&T|K01yC4L_t*G`o@LU8*8;TXUp1TUg?j^y-|s) zrMp7Ve4~>CfI(ac=!Me-M;omyo>Ft|RT^jv#^cIh083rPo65ScNfmeol3{{v{}P^9 z(Yg{evarr=Nez=5qo7$-7*1NQ@YoG`AeB5th+V0M2I5QmNxa;xL^)!NIAN zRHBeFPv?iCi@ikZ2xntZnmWJSWw$;6xL7?hoD&GvvsgXIR}XWQ1J;3}OICGf&)9^3 zE1KY>h0~RNFc@3dRxsGGa7nv`^0wq>$N0V8MhDC(Qi(9DrUhY-Kj|ifJ%574EcYm$ z_~O&y*F2>6gyIM{hGM&ccoC1F2ckt)Zl>tqRx)r`I__swp>uT6ZTvQ{dF{2Kt1 zwM3(qrmti&tI{9wWb7~zEV@^~jRKbr^Y$XFhZUh$Ll;|~6DR+JKef{rPsw=~OlH`b zh$R}y(I{`rRVForrH=Z>L(uQ&tHaTgXA_DTEU$`^q$KT&2fw55YZy6(-q|YHh?K=PqnIhrPThTeGO4f?iJqUg!&DG=BQDsYXX zzO|gy?{B)$mrY|cbD-74nhtDGd^U8Ue%o&P71u1*N@=r_Y5Fz5Qi9Jy-ySot08s*1 z;>iuyGRttl-6o8w0~1^+B|+#$V893Cty_&6)$7>fVE_gb!;0b(j`lsX(+>KB)?nD~ z_JexU0+{Rd&<*3T$*4I3q?KugA@4o`YL0qHX2H5 zG)N30QZU4uO|V*dVDR;IaC=t=hC?^JHm8d!d@ux>4n~qg4uP65vb{mI(<_s~jYhg7 zi@U_>0=f`aT0!!E&T50f!_YG#%X4ZaW>o};SLD^_Ud`Irob2g4hyFG z*je%Xg6(7-H;1idXLQpDi7HnTm0C)gD_a>51;6b083l&R)g%B6;==m^s9bQ8%bk|X ziK=;_)<@wC7liaB%&utf;zBAc;`rl}JqSMdB5}wxF6>nG7k5-)3h7S((^)Z34fnWe zAC`@SVs(!bz+viERFWdzaTfH#3k&5FU|0%C=69r{gG%F4mUmnFC`g}%T_#JbJ>r9j zPi1*`ITOtIGaay$gH`~B_oe;SXVW6W!z$2sTqc9r=RjFZS$vf(;o~1%X2O~z80(2%VwiDe-Hw;D z443)i3$@snsm`*^>{6%cu*)wO8ZjIlpYhcIpFm*0#y19Fsg@0+>Zi zFLJvowQ3JDtU>rr~LR>{Y+ z1Zq5(4ADkQ$`u2@QF!^?WH9&Ru<^GLz|>pX#gDhh-DvVSoJbBmuEH&^{~dsNLK(!6 zK&bE}agQ6mN|7d(?_+2$xR8LeyNFO7M_TClV$+J`?pxIq7vIo#`TS~dHFq_AS5GyG zjsntQq}qs!Cwx^br}wRcz|_L16*LV&UG_q#Kt-WDwr0HV~nm=05@~g9Ybgv)1np4zo zJZ^!MaKK6WJrx@&C zUpK&Gdg9g6S}x4x+*&W;n;liIL^NA?6TEgFjK-4o)ohhIonjv}?H7ha{1GbH_WLEC zd^D;~CZKPPYp-E{>rJ7r^pNORWU+Fu*6SNgw{Et|jb_QK=ln)KXcp9<0I5RaWxr8s z_smAK;s?c`F3XhbjWUEi*mB9T8%XglmJoqCmSAs5BGq8CWP7R5B3Hbyb%bdpEIaAe z(@v18)-EJ@yLbT%LrMI&pYD^s(D~(lIt!zGlFl81!P2ZSu_q2Yy)6rls|Ph(09>&S zO11q$MWV_g1>mp-me{PVOb znd21hCNbn>~H9qD*Nr+lM%gLt0DY^CNLTy5Wz%^*kOH7ATcT z!MDd~s~6{l=J6sX9btZ@Z#1o_HGirszJ=*U+7OezAElpST97uW>b+v=yXu6I+pCBo z3p;%s#~{ZU(C61lRw^Q&jFs^X6V-Yi?=f!ptx>9<TucH!ce@ZTzYjh8S{OXAy&G639eRVm<>0EP(`26vr7&xI|9IR70k!D5wZ zV08jR9L(n~*a_k;X7+mNZB{t(Q72&W+&Fdm!Zi94P7kR+38lM2$VFO63WwGiLHfY8v>n)OI$Gs@93=oz$EoIACRhr7#wo{zg))O^_dZ zTmu6ecbPttX;e1y%kKifpsy;>Az9GzWk^N#QBaxBT#?M8n5xR=9xH7z35)hOO2XR9 z6}GbZZ88`Lm&mi~!5~Rk3c!rYswQj&!>r^Bnajk9FjzHOV58rt3)7D3j3nI&31GHr zpa5WDFpFWSCc9jW1oSfRj77>+rIdqr0H)|f$yyCyS&2k2XZIxCJ*u{$djMaik1tY3 z=gGsfgl^9ePs@^44aw|Lws;oBA@+4_{0#0~0T^2Xm=nOPQhAv>A%hunX5$CGugo+j zK0_gZ2}Nl5Xvi9&R{#@xwgxTGOZsZ)!ZC|!jsUFnj>OSPY@Rb>q)o-rp*<*mygo+B zd>0~)Kcpenzy4a`FFui`ezJwT%*y#@#{KKx)4S~1*Jv{_5FNv;S}g)H4&acl@8Z>O zxz1Bfo+^-L>MJ-^#5F`O`Sf@7`WFCwHGtpZwyed6gKs4$+9^CHhCc#Whm_ytRlWPm zYs~Yr#CHCp@#{6mpc|t1Yi0RZ~5kwk{S@m z6!?X@TLKze^)mL%hVEkQ&qwZZ;$O|`i=i`Y86Cew@7wT1br;^ZBApd_{&d_RDc8&1 zQZldxi$!-bkqVTJhFPm+0btjyRI6FnEHq{Lug$IumXT`&#(dg!?ULj?D*!{dApkYO zMVuL@1yh-vCE3yaI{dC}RqBD=>ox}c7MCi)0k;~K%D}3Q2K69f|1w`hqb`~)HG)ko9mY#&=*^vcRH1-TRrL2WDG~n zc;b!5aM&hx((F#u)Nij>1azem$VkqQXIZ7I)hPyzY`b6X45S7KjBmSBRjY~%Y!qQT zDa%X1kAlGp!zFMxUY|>g<`_F6Jr=u+^9Z@cL#yK0A`Ikg?VQ)jy3GvaHBwHHXtc7p zA!zjq?S8S@Ey`l5K=>V2@~WjWxf6KbROSTql^zwQl>GwsxN=DqM*a-vDrSgh>i zOIxaK@Ifw5$@DFt8#P=KF0y8%s@NsVkjho+kgI`X@n>OtG=IDcNulP9R6>RW_8LZ` z<6T_d*lG58CDu%^XNul?Z?#Q(xC<;WM z=xz<+O5X^y5Lbk=4keeO$x5^QK{z+8;u(=-S|MEW8%3dGL20qAtPrBR6thCe8Ezvo z+dw{ja0vdCMBU-z@j;S>GuZ3>v+doJa52)`Jglu(2Ml3A5qmJE(B!d30c;_p6>f>) z@r$kW3g8d+H_qMA`!Z-8VfYPPHIn163ZI2h7O!l+v%d^ELIPC$a4R#U^(Hu}9>#Zy z(R{4voY;3-J=GWrey5O~k;fG(#26Vj!Fc$Z+#B<(Z=L9Cey`>tr(=OYeb{^d8l6Y) z=LJl@6{+cSDLmB^B`_mp3C<9%-^#l6s-R0U{U-?&8_0`JTEWEp`=KW3g?y9|+H&)YNISJrgSM$crrh9YUy}jw( z-S(j=crdW~o!YQxwi}g(U+gris%C}78k2P|*9;2XR;Aaj^gGr0*j~-N#n_wlt!dAi z082rw<5d)Qg>c=r<2p6dDEV#$t`wXDBf-4QYN+T-`|Gz_b`aDmmCShDcARppmUE0e z0L;!v?WP@g)k-n5Sxy?h6}S?b))~+kzXe2Sxf|F}|v(HAu`R6U>^Xn6w3m0;?=z$?}|1 z&134Z9yQBhvLrR!b62vZz|KmquNGCSDwtgU1VTeN10D*MMK()VciI)aMH|MqE9uaj z_icAe&2|A)mSnCV2M6pmG7=MRqybCzW>)sMq(SRR{c47$^X$Lr)N^dMh=cuB(Qg%? zdaFp9!VU9m1Ta@ELz2JU&O*&@9sq_UwOcuFm}8X%Ch%q*Y@pY$lh|1`!!F1Yi%#vr z1p-L<@xn}EE1=@?0K$6P zYV};d;a1Hu1JQ}pk!nh~qtP2@Owl@ERjl|rB0OY~mgqb?s#5o7 z2;NuC0q<+HgU83oPluPEPEy;K=_8ztO^_6WWj=W4_|N^bEzS6F4wwKYXo=q60oYK% z>bMWK-w77>ouiG@H#|QrX*hkW4pw}fJeu*he#_=4RZ68ng@y^IdaR8fD%9j_b@Eu& ze2u$O?8H-X;dfmBpuW9MaFb&t(O6p18rs=wzsRs<8AM5(*=NMV~;UsXtwa6&AK(8`JnG|767+6 z01O6k2VG+_bS6U^xCM7X-%hhMgy$O?qd^S-o(|1X*XRSu^-8}{?fTWWTlU>DET&=P zi^XKVkjmx~)k+>VbUJRY7K2qp-}zkDAocqmFbNQrN-0nfp0!pj*fjvy=(QZE-LwL) zV%3Vxz+OxTwo!r`29>)_v(qpnLhe@>iyjXfvq_utyWsI;RA+D-t{Pm2Ay#da*iJZL z?P%;b%>v#X=$+4TL(m(Iq*D`)!3iZTs{tb(&Vn=TYc{P<#y+#OI7!UuVJ=~UKuQL# zaTpFBNf!r;Jt0(+D9Nt|N}G)$q?lR*R>c!{Dw^EjuCm28U%~+nhVT|DhpRlDnzNZ0 z?ryi#YUQCuJzo!Ujb;&IeGeMkMzaJ3b-3ibYH2LE%?E|!fWwfgpe zb(^K?g>sEt2pcZoQ7|~U*gZJ;ynp=p=xis<=2f+#Wcs#x8WpkH)kP@TJt>vhlAa1G zg$lf3FGUpw-%|a0KOLX_2cQV0B`^=B1==5pBBwyYA+PA~WI9qk@(?;LGyAN>gogT7!e?60gXR^jeH6mg9(cpGBR zojy6hp%5`1P7EhpJ!0|Bm>N93j^kAR0N@bA+QD58Qb-&0s9L)tXG}&raha7t9vJ7M@mnO z-NjVuA+z?=Y+^4b5@DW}_-!6l%Y7*KEoHDpu zE~Kwk)4FGRPPr+SIt&816;$hf8G>Dg$&S_sx8i|im}c87;Ds>alTk}-u9_HTeijH# z48tX>&cwoCi8l9KxZ$33DYm+jfF_}D&H*dqYts{pE$+FjHLa$HUyDwIz63D4GXbUI zeVZkqSIR^Od5kqy0bu%Ix?TlxORq~Nwqbw8WUEr3oN1m-%wZp&z1ZvERAq=Pm&zWU z0vknyWiNxg0NBq_fvQuDJ*-eoIc^4902l&Ry+(=vhS|jld!rgCOTO}jK_lI4=Qsz9 z1GGS58gT%aAP=j3MGWSajh=wsig{YI&!v)v5f+s!mX5Pww}!A11=rCsa|b^7=u7~t z7`%OvlBK9BHB9PG)3XA@HS9gKH%@s0WO&BwQc^gLpz^cEpw64mP zq`_3Cu*(W%DRl+~VDY$N=}MKk%^-xLuY{o0`|fL-&gzoN{>tp~!TIOilTRwhyvsJg zx)EVKxJ`Q*ED)A?n^R65v!uw!||;Z&cA(<^K4y1DsPPeJlN^qB@}Tj=sNTur|c%DY>Nn*8-$X zt@gfg2h2D#xx4&o0I`evDg?_bU)G}u?n3OyySy{kU!2)hZM3ZQrlrBG+MATe(;5Ub z3QIcg8=|2J^va@Mz<6XW)fmq%XZ7jGB^%nE%4qD&=JgS{3ldM<`PA90>Ni)dyPMAS z3d|0^T({P9?6*dP3K)!^cvxWw=D1Za0=-bv!?xTBY7M7Uw~LTt)a}W% zzgkZr4PZFn>9jMMG~s|@L!oT;e7PK&MhO5`YnHOig$97@t~lUgF4^#{^>R-mcSNwNcgg3S+HsvA=%N2_w?K$`x~L)m9cfbjPGRv zU&>*6eikkklDsN4(d#$UfGBX@>XlTFWbw)XuxTY7FBvq%0W$>M8AwwK9ERgTU)z@i zY1{$O77Mu<9uHEK;anKbS*jAL`~sw6o+WXMgGWn2^j6G#=tj!;Z_U`>(V=Qe6mD^0Q<< z%M@~YSD9B(Y8&{0PX&NMU(3no3mNGLe0dB2gT7LVjHR_@OZRT8!&scp1ib{IxWFkksYH zy*0V1&Tne#d;9v)gMi!lwShgL@8Zf>UYqM{Z?U$+1_`rTZ&aGjO+1881wof!@X(~| zT}^|rv17w_*nQhRdgUa!0_*9~l!QyA+i zyl=aiR};XXZ@J+Ysld(Gy#nbQSOv(pORiafm$j{mto-Q(i^TwNg@E4m8UP-$p~7fX z?{*#AE}CXOm%G?(CU{k)oCAQ3a;EN<2;hcSb*+k7EtK*pnBbOg+tp&jE5jdyz9N;4 zRrjl4aJy;6W6@k9JnRRcDInSi4DcJgXLSw&SYw!T#<&>Is{q4ti!g$LcEMLVX`F$c zm@vkBv9czf0^ni6!(g?7E&$AGm)J60ixAZg7y!l=^yRkIEJB<}=A&5_IpPGG;2?z;V464#Ou_y6uq8+xFCL4SD{fab}P_?%( zmhg2Wi*37IfC%PhS89g9;NmbcwJALo^Q>9TfVS%<>h(;cm1XHJsT0yK1Jdxj0$`?Y zsrhF5W@V|9>}_ni=aA){LAHD5c<0!<{)OXR3XH9Uv{X{f5E=FqN+rTl{zQ&$2oFQd zUJxNb3b~nqg;7$})x=jkn+eS&CB6{<3_B3OjE>Oo8T0 zRNNTO^%F2`;{QV1Fs*7XpH3uCg~0&N*%onoawb(dVS-cH1GN%K3^CYzd@8*NaWldD z3AOzb*o)dNu=T>R&VObIx>!2}fOWkNLxS=;000mGNklS<`lH~2gL6mbYHwSE$7#8AC^|1J*aFw%O<8+eRW`;A!S&YomEP{5-^}B5Ooh^^&-{U-Nj1TkZ)D#^53U_IlnJ z;`l>>ee7c5=nZlERDj0nA*bp`ca`y%>ipiCeKA4b@pWZ!V_rRYw@>xutu@^k^J{Cq zF(IHATCQCXcQ7iCCRHi1G%io)_HbMq^@X*typw^koO=>Oo_hGP<}WV*EK|Aa2c1z( z{^&Ejxmq?L{A%O38}!AG_^>AbgC4d=_j67=1S=1Z}^(0JTvx52z3l*^sp-p=7ctJN&%iyyJT z36~MK0;BGkU~r|B3cM;9TrFkQ!eS|M2@S>~~DIXk>$A zidp5jgTWsy{L}gJXO!EBW(fjrAq{MNU+q?j;DqRa!wj#96s!h-8Qy?q6BA+@SD25j z4#rnM9pP^RuWSjkWq!e&jBwLd!56()Skq~Zz=lR6gSlP3QLQ_y!qoQ1)poZ4%CFI3){VL z{e%}J{d$TGCrtaou+Gc1P^y=(%-6ziNf1>vH{{CTY+f1_=Zois(gnP!>KrAdBD48j zsoPvSsMJpMOt4_Mc$CZT>6Q$vD5(dD%x5sESXC>djKi8K9-75B(iu4{k=&+8P@tCr zfNM^=J+OkNmoH^G2Yh}hRYzC_n$;*T5__x#MmG#FA0B@`IQq1A^l5wlKkOd<1pwYV z`t#^)JE}8vz*-!s{9d}an@+#d<1EHw1wLOd;~UTI6TF}&rv(VZD~lXrhda-!fBS6eyt3Us968dtfnv<2axN@M?#)D=H3+U|+OK`xwVPU?qmTMmj?zJoJMsYN#;YXG;xD&O&R8K47 zhZy#YKkhJCpzl!H@X1d(L(t=)p7!1((4cB9m)i|YkE zAlJ$`W*P!_n{Js57Wx|bYB2>lR&me^=JP&GFt#%LyB^LKJ=kCROOVX>tFBuv6fW=X z77Rg)Nwtaqx$4TmiC#mUwouGoT(4)~v0cll10)Hn5ro|aG4LE=Ff8e0)C7PPgQaLC z-b>*#04&u?q%sf-&~`fBWYWjB(#C;8R5FkIO=0e4A>0ky_&`O$?bSjd2$w9+=R0Y)Uf+WMasgsF`%1 zWX}lzSfyU8%9r)$`eF0+aVJ0*8i-={_^ob;u*Aj)Z^)%v9rgfV0VNyEE@0Am

kbt_Hs2VWtb`3$+Dp` ztaG_?3S4$!32lUP3v#2a+7-CxFc)?Cx z9+G{Ncwy37ICm^Xo1<6)2HR7R?YatyOcj*0%-Bd?v+=j3E`aZtOog74VP(T%b)knX}x8_rC zCw(hA5BYU!_JcDPxDujDabWA%bsVU1{T{%2C+Yh&3;K4xWC><&@xcf8`N2K5*dvPn zn~A?;_!j_uzZJvp=)N+#D^2fUd5z^)2d)>m9j~gRWeJ+BYoetw-`KOYCEJxdoEpn3 zZ*yCx_XT~$`woiGWM*95)UR&Zi&fBVl_#n+1W>wM)M0r$%FE zKJ#y`yZEKXPv>}8#Sb^O!+yEfDL~ye@L6G=GlU-&02m^ADc{UP;4T0h`QWlsl`yhz zmznvzTn?hrSK)X(ZjGgYGXQ3RnsBbQO8Wk8VbsdylJslYKd?M44#e~5ZrJdpl!P_(;$7Vl4;gW zR*D9F!DB6{pXHgBSq6!vMMT5G3yEO}1K48DF)NGg#{oR-*?I{z4Y9Vx5LbECy+Xfj zGn-5*j&=D3m79$s0L-4jY}3?embk!4RoArQ?PleIzM{1ct>^AyqWerpsV`Q??DxUfJp3`<6c^z6*?K)AuD4SJcX8V{ z?1y3PPOm7{LfUyHshY{GY0x+5u~uu8rDjN!M3yGAu{A*G+PP(&o9yl&6|!V05gafWoX_n; z97pSe4?+fKWZ9CcMtOvr00@J8co_R835Hob^5XKd%nBC{adY6ds`KkXs~Z%`nM^uy zaei`ox_ff6L+=|F4>{RVmRCgYi^2Zkr-Q?7FjxjhpSipW%u^9#7Fd>yXqez!S%S}y zqVLh$vXn=Kz>v~!T`Etbs0 zg{h@qduI}$KDbC7C9@~#{24n;N4=GlRG(m=_ab}970D;5&&SD6r|B(KxI+L;{V{$7 z7|LKRp^GhkTd^H~EotdI)yYFir>E)#JmIR@M5KNY3WAHOldvIMI*e<_Ev`}fA|OKov) zK=V6mat+*8hqF?DQW!5P^Nl%}7W9Y%9D3ius0{Dh?H6Ez z;eA(|fB=R)VpS$dr&=@yLum*P`ogtHmw46kmOt@b_@|K__VgVY%calQqpAX7^!uf5 zw=n3HI;~v0neTVYy=J)`6nf1H)M-`$58ug&_pN3;BNtc&K)2r-P2S zn02Mt#cBZ8i|u^bpD(-9d7B^vsBl8AxCMY8zAS6iQmL3Ts#!2N49qIQDdHiFwN=d) z(#bDZ>xOSxHMr!Gv`$i`Gw2{$su~P-tX!*6!@F=f&|==4&!iFv-dfq&px5z$Uc3<) zY}+L^5@sM;xnWr`OgHTNHPb9qDj96?66ruJ%Z2@6zm8Llhrqn7KUQp(%q(EF*RsNj z)>MRH(09~#u%#^?bev(=g>Z~K>{@idATH<|)C=&zU@!)B!(6bW^581nZi%Hoq)Wum zne?R@GhiI2FSS(3@Q}1;UV5vA3-1g1Vt|KNYZ0h?wGNh35WO~E7_)h8u{5W%Dgiv~ z7yI4(Xi$;p$O!*PD$Kjay&Cr5y~aahGBTlf-zSh5zF8VTH8aF2Got-=4m_qO=JH}f z8nlMM-DVrdr#KJ{w^9&rE)_pia+ws+ZsoaBIV>B}$U@+>U(eJV1=w`YOS*2t_fw8@ zS*;$I%ZJ!PwdxsEDW6m;rr!6(Oi$49%-M70zQIXo81?t!}?@#&WE>?9PtGUtgo zs|_LodtC67%wf9=`wQZxB(YhgO`WE9 zWY#u?hr3+qOXy~cd%4m+*JtB>VZM1Qz%rBPNuc)-#y3+q4@+^WmeNOw&o~tm?;zN$S%doZlsb^+3idLv<{JFqX>|v;^n!vC4u(Brday zS+;_?%CF-5ZUkm2PZ5>Km`3x;;i8&nS&sZ#xC$hW0hmP}by*3GJx$!#feN~QoQaH2 z@xG&=1f^fXZUox(egyFAsUF^+U;F7O4N9@_DbJbO-vapWdRzkdDIZ!}2{@NNC=5Zz z?gonStmgPF0_mtR%yY&;t3B@96NWRv`XcoW3eTy}{5m84{F>Cwovfg_dbB~`>5Vbk zRKQ(q2dm0h@~Yg?yh`YT!2~b`2KR@e$;=v#YYaOx=Na}FFkY;@>D*pz8UQf3D>io| zZHqQnU2Gf8qUr!ImKOlVp25)V_N?x}=nYMwGPpZ3MpD8_>I}2$VH-c1?HqnvoAoSQ zHGb$@^`d8|n?V8I7rcaTYX&83L0^dW7wGMH6>bAN*Kj4KI_i00ag5b~^aX~6zVkMW zDJ&zsAgI}>mnx;?x5q0(wKE5d4ba`n->vo6000mGNklE}HSIi`u zo^^M%XiB_J}h+* z7 zArrh1@10~p4U*fu%^u2kk?CrQ2baeTJfE;LkH8U8-ZF9V5f`vN4! zAn>!Vg17dPrhQR0PPz8CR5>DgZCBF4psIBS2uV)}nI+v*QjL}iN9-jGu{KuO$@XRq zzwPEKnL;s}$tKUwj^TsZl!5@}(kTG=@N}E~bXl%4s_-R>CQA3XY*&KJ(bR9*I*kKZ z$DfrBxK2rCiwk)9E)&G!^wn#Mq$5*mThmuEq%u+}3q}@hUZ&WI-r`QCu#K$@N_)Vt zs=u+tB(JC+gGvD_>;tRdE4Hc9A#i(g`6rHyiem1lYFRsp!XAb3Sq9JI-9P^k!L{@{ zWBO(SwHmJ;r3MvUk@zES#@k#6K=NQz9Zi5wwIp=mEf;k-;9lSE51iY(;b`pQhZ{fN?T!IWrgiM^^$k$D z-7oh>H8!xrNdWjxFAt)#4^Ok1f#7`uFV(6S8h$QtvsUfWcQRmb!!JtM*~tlp)ub;S zaNARI%T2rJn4onDMi7)`!@>D_0D->3;8`1c#^Xl6?{Q8PrW_8qn7?>_x~^7=1h84l z!t#bwylSFUg`kUeEpL=^rEK!+m#bFY0gs!0EnKjq958EElfi)}O@DDE@WJ3cu4gf8 zua~{mqPv`TKuT3cG*mjK|&s09FH zs|FI3o{bulLC|YCorZOv4)lxQO-~zn>Fz#vaN09uimIW(}zlq%CaH*1V zy+OU?dU?+Wl8d+*>NLyk1_p&zvse#sw^Wem#n>724X}AUus~mk-j~UD@W+d>C-hYU zk4FPZn3y z41vuR#$ugSpGWpu7Q5Wa%D-fFLrGx|)am5;5Cc4{$I`xlUXWPwznnAEJ;zQwMF6uN zH5ja{umqgJ-9qtLCZvnUT$q%vC7J^#XgU?6kj0a-vjW+R4ig9z5qAQ^|;%68^Qj4YLbrP{$6q1M&r1< z?L8E__jxEz(D?CW_PZHhCQ`ivtzL1&P=V}JLFVw;r<@LbkG_|{V2ZwcsMb4$Gx4fo zSG3ldtsqLWY+6M)77sO9#d~Kg?ycFCxwx@s8>c-ibjOv}porg#@!XoPo!+Pf0Jr*C zFc<^S7d{xac)X~o9(Ltujfc2ipclrsuNvcED-0ePQssXhzyZVW!USJk_xb~i^^ZW` zPS+gI>Z57U?bZAs*Bw^-V*|f;8o)q%PxYOJIvvTZ!SB28q(R@hm&L%UT>!&%FUNjC zftwcwM`_O>aW^P;{1Ra7R5Pxb14vYNgzkLaTdyVYN`lYQf3ODtPbN(OxYr9|gA)?K zPhU6XQodM#8BJM6P6Jp9Te>9`g)XZ_#)V2D*=zbwU#>aR9D2=`oJ#kN&^{PjfOayf z%MF1_$kMaIDzO3|hz9@+M-JhhK+0!!!k9C+A{CB?GZq-D6~ow$M^3M6GD;7za7P=^Y8E@~ zvXrH4m7=A?l5odbT2fX;krg~1^#OYe7I``GA*M_Nz%siZtsCaj;eNOL|MB%6JaU^$ zx2}J{z4-RF4a=4UO+rU7f)QksjgIJu4l|etjRGWFhVA|BjdMPnzkgTNBH!UiJ{Kqu z95y>l;=@&M)v5*lB$UCD-(I++sn$y;T0SkEP7t_%>PKuSO*zHXCod^|3{) z*DeC`cd@V#%t(X5(7`m$G-X@}h*XGCX(^TpYAD(+0n8{S7sFY5wCG99`UGt;?r&yG+rb;UbBpx%ey-4~L7lB8TrUA&9jeH|O)uE5 ztoB=y^yWB1R$wvn46%#A4uZ-UcL1;3PXPY=s8HJQpK1<2Z+a8b@#^q2MWAAE)2Y8H ze4iSN>yy8Ncay=5cye8CI!qbReq~|N1hBX>{_cHC=;qSzxB2030sM6(RAb@UES(aT zby!L`DOsx0zs-`U=j}j$8#R5cij=xz#I7lg7UD98Tvt&^A=PvAHt9>*EeG|?`KO+8 z7Xa=9!v?@O&Ga90R0DpD`#=2M@6P@Yw^{Ga^vUkM^cU^lhTD4|=)HVM_t)|5V|jT$ zSRcdHA)2h@lCjwM>wT~}K=K9@!LzkB-`FCB58-@G%U_`{FuB|YI3GK^Ln5u2b9=pw zcZZBM%s1C#T_B9aaQILzmhp5J0lm<~>&;-ZA8Zc=&lhnJzXhauOGNQ0=P(RsSO@Q%s=Bx0Jum+2giQTw_Cq` zykAW6G_-I6tB9qDiR;0Wm<(nj8t_xcj3F7!;w(yG2v&9pBLLT2tD{L)jxSu+=rtr( zzvyx{$p&Q@r%n*{6Woh%r*v)L*zokijvx|TW3kiuLoCV-c755b)F zVj5`p8*$T2gzIy8B804Fo|({2*uNy1YMoNd(GlC7x7oVbu5oj@umIiF%3~~-E(6DB zvtG5PtEE*48RRgvnM)sPr4_(TvVy_7ZBqveQ|Da-)orDuCv6-z3|0Xx0A>Lf0t}Yv zjS67CwX7@8yI?Tr%b3k8*b}$u@B)#I&eP!;z8s9&%HT6G>e3MNkW2<42k{w5Og|~? z<6w}s$BSq*%i`P(Lbum%x4UnIzB;mr;}agq<{M;iMaUKL(D&PWrs(q zc!Du2jjMX&Dhcc`<{#~^!W`#w=N~N%d-lOX;342slE%NOY$ZzTPmA}RzVFRG0KkrV zYdBxg*R&@Q!19?t_wiDj-zAp6_CR6=1uvD`{|lz0m25#SjofWe?IxGS1?8{nEk?;&jE z{56h<(-58x?s6RLW|v%Ejkde|=6VA3>Oya(Mb4szu?2t+$MNxc3;@rT;b`j4SJ7fE z^|SymUPNC?s%AJ257%5=dFK;A(HiA8usY0o5`%t`b%&)TovGsh$TSL=B6wN|EM?lD zP9o?f9D<|{oYtSeJqE57ND8`_L{=8{R0K;Oa5dmz5CFhg zBwm#OFzEaFTWE7VJ z9}M<9X``A?bF&g`0KC?iEsD`3&2Vzm2e!d%opo5S$O|u}7_KU%@h*IQne;FUO(i+L zciip(f$N1db3>{gcLM^r0<)S();6|)F-Q;4g1Cry zbQTRy+N0CA)A!jDebM=M7L9T{se3WG#E;QCgp zXPqIWOUF8aT6LrIC~pVpg%@A2iCI#?Iyi`?B5Y3riGgPtFXP2UaI0&T*kwn8Ug%&U zaU@mBedi@tg1-f@wC8rK3M~3*5Vr=vq;EiV000mGNklsUO9({PXvY4jL)v|jhMYwq?Lpt}i@o2%o;-@@C!vYRg%pbOQD*gr<=J8yIABX(E8 z=I9-+!t1;A>Ly=pgmar+wBDrP-)!Ms-3<3v$@Umw`|i^m+r>uw{GfEFbC=~R;y^U_ zK}~FdPe62cES9TS2e3<5DCoOC6vxXEVzo}8eYFHSlA4{RECBEJ!^72RwaxGf&=x?L8B z&E#r7r_ChjO9t=vvn$C(itMOKcU7_0+~B`FOBoTnC~Cmw|q=J-NvuZ}Yc zVh&Iuh7p`Y3>A)B0elk3Vse*>Xl$W?MFcMj#AKG2qqr!-D6&Goo5uD?W+~<@&f=Nu zB&I?wC+z*TCer-2TgjK#TS8qP-^={p%Z%3!$R~Rh&%40#Y6ilfj2bC^}3+__a zmh<*-(J|`QKzBH4A;!S-q*abDp3uAK%$8jucDA+%U`b```Z1SX=1W_MKI;pBCshEw zVR;r5rzvg=aDOnDzA3;sAGfiMi!(M&r9}$?BnQa}SSb60PMEc_(v5Qq4EE!mAGRgp z4kWJ|o%qRFG&uFs*Fk!&HX0`gfEgq^J^xXcfyMZOtHQJ#p#lba9bfD)rBW=aTqLoT zOt|-o+rBTkV%A|*mRQ|t<{;@SI<@msiCdXcsnJzE{^&x=n<2Yx@5FN7v_aF>KTpm? zl&k;7kF^o>kD7v(-XwaH$wIOQ2OxsSuUh|nc_FtHd|zT%o0onP48Qs3PcQ%9?|=En zKY#u&#E-AO|E_NNWiu41`E)h3UTc(jJC$}+FQmV7?Z8frRo`^SeuZ0cGp=6W zH^tb`Jh|#K%{lThfV~gh+4~N)Cbn#zX^PQi>*`m1HGH(n&{pfIlHgr_@DRkL;h*eO z=&eF24A0VgmVzXhc-jL)aUY9DwOM=)o+y4 z?y^o(o6csfsg^&9{f7Y1z4{Q}d`e}B_g!VC0q%;Q#!Yy*iw{@v_7EVhZnMkF1eYf; zRcenn>3k7FdLFNe^}&~#=R|CsLXZCavfV-2qOidpFy6Z&7 z-3+ba$mU2pFqp!3y%|hr5rpq#>KCO2&;r0x{Jc)43%r7lm*NNjwLnV0cRZ0}bFd=? zs56J_f3*S*%iKzn4kAh0S>7Fv9K7Hl?;==)#lk3PQxH^2e>cPJcA~glVT(8(7eKER zVJUs7fcN{!R{b{!;N?u1I89 z|LzX(F4CtDBNfryY8HAvO+*T75*u5{bm(AmmpYg`Ocd*Ig%Q1@A%zE-hc|+{4a0s3 zb-Nt0Mw+f2pznNHBCs=^=A%)9^Ap9e+(4vYXR+Df`<-$v844Ium@QcQ_3*G6u>om1 z@)1Cwm`%vm=3C z%`;bG7jMKVljN};lsB!`n6=xR$q77)liAdybyYrlpYW%mE*$m(cW+Rcke=iA6kODN zGCei%7qwjaRWf`T=rXfAp8~)Z$2Z|j?8`Fnq(2?^rekX|>eGm0qWNl~*R1SHHI}Mg z>ROPM+%*6mPR=LuHqkqo1I8EFS*-i>O@FfNfW8va(bUB&fWfncrEercyqxtA#k32` z0+Wcr1V=0Y7{@_hJVbMB8jQ%0C^fq_Fir=ZR79|o6#XFSg1b@LN%9`RENsrtg6uTR zPl8Nx$P($fM11b}Z*(%mFFosx!u5tqu=KU)2t==p^c5H5CPN%*yduFjfHAvb)5 zkjV<#F2&@tIB)b{)u8=}&K~v5!52UyHL*?tR(-4n9V{`UDfH`;A6~r?X^y8*F-td; zi0qfz94x8ks<5l7c76c>zixjo{Yd9O@GTf@Uec9sW$^1Cet7v$#EUmSerIeq*nots zX>`#-B*7l8zowX|)|$_3hviFh_Z!##re`4mZ(Kf1JPF+A82)y(81HT*=2w+XjgnxO z{)on{iCcn}wZ0X4LEQH)qvB;l(Nf@oreDPqafPGqf4|^UWTK&KUoH| zb;NfEdcp6pMlt9zV>z2jf6G$m^Wd7EX1y%$r&$M)4|)U9Rqn8?OepERLFTO%1r+2C z3Qtyf=VEkqxnSDa#1V4yQU)+=HbVlK1;BtSfSQFa0PNX405}PtaVrJPsLHIy0Yo`C zn#cVtaXhEx*_|(+-;K*O^!kHDmW`={*_gyGAoAFFPGJW~#vOx6L<7KFtmO_Etk#uM z9X%ZE6hW4GqK3o1G%OY1P`O^qC}Nsc zu9qcOh|TiwYLW9ULGBo|#S4MEoGJ>NK@ww!1=Ykb5X<0P2M#&}gL$ijquN&0LIbaoJL?#-U5apbG`61 zOxk#25VvGZZ#4%=3ZYd5SEB=aw#Iiv?ET^evOEke?nkGhhMm{IIaAOiF6oP4 zBX5(7!sE)FLu#qmYDE`o&=&#a+UmWo*Ogyz)ma@pWKIM1G`*c!Q~m1V2YPXk&D_UB zwtt=s>@e+N=k?i7KfnGbLEFX(Gc%*`^j)E}q*8uo=)p0d@=Shp#?K(|nFeq>lHGqXTi}yZa{?3~{x)qIT+1enk zJALakgSZ9!G~CgHGrreQRSNDRaGU`I;-S%X7#>GZQwbay$@#Z!uk7%`yj3n#MNie?dqN12z=?%<%;_NFk<~a z*n9|?WCnL7?jwoY`0_3}+@<^5zOS?C3Ng}#@Gcvl^Q&EDT^Z~>~EgC^kI zLahEayJWd>a2?s~qTBlsj%=YV)QlGZ7PoR`+~48-9HE;5!0rVfMfVNDP3* zrh^lc8vVpNyD(iZ2jCyk%XBpJ(m=8nFc0Z5Ih&-TGJ>=PP(80hDGc0#!L@s3!C>n! zwv$PQa|VMTmP%=;=U$$BcnW?>2##>TPe4eo3HkLJFCxX#obe#`UWKn(Uv4QX*Uwyn z>)Cl~34=!xY*=D&C3rCpDTQ$aCrJ9b^1pN`f4SVdnpYiAxL?5!jdL~l>ju9?SeH0x z(jVX8>sqoCh3|IG;l7+Ik=0 z;<DS zrG?0b{lVB)3$Px2u*33h0pK`4uWGhkk<_HG&`}f4)o7!7zCx`^UvR8~=@sUz;y0&1iu_fz`uglgt=v9^ zp5~OK%1%;!wW`cH&y)$-TC=TgWwN=Bq!32m*Bz3>Td6a{vGk07*naR5lwAYWV7A2p+FC zqJZ%Vbom)g0bm!z1%RP_LEk~?m7`!h0bf0E5iy@dP(qWjpC%mu`09E_0FTBF-)N{- z_~W@lyL`Ol7peF@+yN^7duZs;fIp%Rj7=;B?1pp8fpJJX53;Gg#YM0x5W zz!e$cr*+Po-DH29BiQvz`XXd0`Z&f`nw4nqcz`82gJ8B7clZ0t<}0y$rS30VY3U%aFLx?xipjec{OIDOlV;$kT?{O`ui!Ve-xTyLTTFe*Xf}wCiaxv4 zimX%0!bA^GLFkgUh4X=byp9=r3?u`b8`} zTmx1kYgs4Gq*=Mc!s&|2;-lH4_ci`=(?Lha9`{rb_r(xf0i2J!05IimgTZIfuq9D; zB=VM@oFT&OLbw~B0>IcuV8;tZ=3)z_3k56aj>)0oX8@ zfiJmKY{c=K^B=T4TNZA`JM;7hHbix-*OItaBQ1Jq)z6Z^e%F2j0RMbil~%nt`R9+X z{|j3ki}YhZIM0V(oLhJuyal-a;?;lAkmS4ZLr3DiXBIEbLgur)>+{u3?wI^7RVH?n zf+92_K#6LRQ}6B7J4@odt^2C9-g|=lw>CoP_+TMs_kG6nuE(tgj@#z=xAozaD9e|Hm!7zhkE(3Z_bz4 zwd4h_dW`I{ix-LaErh(_9&gc&_nq`uJ%pWT*EUD^l;XxJ0qh%VaE+~#Us>3K^ms4* z02g>WxmURD4{mz+E)c`ZesSpLyKc7a4EO!<(OzErE48NDKO_L{?yZzlt!~}TU9fwI zcK6}_0g^Y7mED^J0peoIZr$xs;_9wk?J6q+dH_N7u2wQAMzU>X-^@$j?FXPE{{I1B z`cK{5KtX29by$sYU3j(jbtm&+GLOcya5xS@-@I^(puXT71DGSVi+2C zHXAen46GV8%%n7k3pI>qiGX%{h$IG<;_0MVEhn`5fC2`9>nCQ@X~MTQ$#ePrDtc)x zVsx-bVHK~`vP>g0!_1^KQ_YmQ^HDGx`m>?S)-r5IxsAXpWN`;i9Hc$`Imx>W>@;fQ zAfS%t?$!gT1slmyF*LEVw!-bGun1j7p0o#PNB8?uDnE3g+Bx>P7T*pLE(}%}L--Dh z4z~CbP)Fd;Pw39nwA#W{tetfLQNofd#Iuz>S@g$qT`JbK;juvaxpJ^LSIfn z)*7w~z`2A7-(f2po(C$3HS|c)4hF4S6L$o|*(sTgZIoWH4+_B)G$4(WL0>LNOO=-U z%Jp9N>{snxweHJp6TMWx2(Xi*8hC;MFarz*UoX0^@CtYe`=Q$T`3vn!`icl13xlbBD|aMmjdcfccbHj;e>RBQn`L}+DU%q0 zd5*C&tVOVXl?!t05XA=;XI;)_=W3!{VS5nMf?mDQv#vOdEidSLe&2DsmfdwdD~f$T za5~+yUjJgTDp#8k=u7V2+-+(8e0{wHgRgJqpzn59LjG>H#d;%l6U>W>>(d~B-c4is zKmYx!({BO5NhA!W@#HA;r$s~vF^$aX>oW5Yc$Vk1T&w%rr}yjG$hSI7P;*K#h)eEL z1k+HOPnUu$?NGwE2Gr3b+Ax@9SsY?WKMly!^>VmSGc4woDQd9;#Ii;j0qD{{OY5a` zWw1o`tjNVJ3o#r9P?_;;S^~pdA*Oofvnavw;mt}mO+}2u7tjkqoF#q9s1H2OT;lpM zO+y)wzglS}KW6|KVd#tC8Z+lI;U^}8tu(ofBXMv+M>D!~u~%C<)0DUXEuMm)D>$I5 zM_LH%YxJbMtaJciJY_Kr2yg7;<1vU~@E8J`=*1tN=DqRjlWevuh;T&l!qHASn>ACc zf~FK^HJ0}K>YB0gl`0mxSxTVw9Qt0-1B+|SEcL2zTa#G!ReW=?*>oWj!^N~h?^7=N zIe`tnQJayBI}ACYxCn~#Ncxi7s+do!xs5=0 z302*r!gj+~w5(!-GHb!GpXOrh<@qOl?FQxqUj^j%O#qX@cnAPSwEM5jX`FhbgO9#v z0kiZko&UrdX5f>EeRT?n3@ZP?9mMOipYSCfW%m(iEnQXW>czGzAo<0s|L28HVEp;j z4=3j@ziSSkuhwXF`L@|U^sRAKvvb$<>^40no2AZAmCS!LdpP7ECIfHtg0jpub85n7?@Am!oFlEh$6&n==4*%6^ZR`Y$Q=&AYJ`yS2AWl- z_GQ)a&Fyrl)8%wZV9vJA!@gLpQ&Fy(b{E>q z3YxmA$i2|-B#}h`2W~G8!DC4>gTY1Ws+*%n`qG(FIqHMlgUk!Oj??d`2!0QEgV`dE z(;fkAg3G`r5seq5FBKRTco)lg#zJVImkhqXnjRt952GFK7*?4y|LCf)p()2R2!kUx z&%#>K4vl9P&YVm#en|{d3O6x~ow7(+T#Z<*Modj_w?bv;V8O6XSVFL<8w!{on}ItC zNzSYG)lzDYJ6!Q4`G{xJ*CZzwHiFgc{B>hrBrkIeN@e^d;AHw`)&q=1_=2x#bdiKD z1cyq zF{4&r5uA)5hCxkmw3zl0q%Q%?hzD(oU)wR#Q z+yCYszIaU+-{=NO+z+B>t5%5?XBW%z6WEONQgiDZ_9IajAy7p>do{Dc3? zYH@vXBi!cH1P!-YfNcuCs#Ro7lGh)gIbl$X!c^az1#I&%0Dcw;Yq(n;G}D3VTZgAN z)q4xxK;Z3`l91VllHKz#Ux?@al(L-Z~(@y3eSJs@?~P z{iB5R4n0QK5We^E@j5z4^|I!cwR9Q8QU@O}HNL(}cSnD3ortLl-iaRjGh3j`IljM?+gmUYTqhSh$#CI~%&-?&ZEX0P3q`w~5!w;QF$-Jmkl1 zxLbMqwXZu7LdG1;J*K0X8)sQoWizQOi`0wbVVtLK-|D1U1n72qEywP;PT%Txx}A$O z@z<*}5L6hD)`l@88bK4k1aMLO#fO()7U~KgTaI@ zj^IlKaZWJvI9{B;Xc^#9^*vL0cL`$vm};2X7XYU18n*09#{Ht)HL623`;P(3#mb>3 zmW5$m8=febWx;sXD@QG`R)nt_cGj8aF6*?(U;rc|DF6Tv07*naR4LNdNlkRZ;`oOO zz*_%IrkV;Y17KyU%u)n0S$jou%|R)X6A5MlRZbXpNngWYfRlw+RZ4k4T1%K(Yw_e_ zYZJ#c>IyVJRaF%BB&ln(YXY2xnh5L!(HqB;2~O?aPf`@!eZdu9C|wg=`ZdAcAoQOZP3 zao^ZJ*XGYnu0MUwrY)s8V)iSe#LBPu**V8A^-V_o?c+yr{N2^Sj(_!gbXmVRZ8&Mt zxvQN!}Tm&PGmBxjHcPwS4xXNOI+UHaRl3kGkO%3w7CrUUR&TSe=#URGXcoyi3pCm90HH?F+`DnYEuJQU)=~*(~AncFA=Rru1kh)&8YFZq= zG^J0aYeo*sy06~lRGPS6PR6&-YH${;(U6POqypxzob{N z!?uXpy4^_8STPu?*Yq7pH*nc8K_v581Y}*SC0e-&;Gj4UYOTyPHJ&AP*E&~`d2H5I zvEi6=CaBt_7K~zA<*y{D)xR1am~tH71sLpyV%DKvU9Wq#q@y{)sOO5$W#2vR+HacW zSM;DJAnBV?c}YqZTB@;VFlqAAI1QAA!0lKkI_{}b*x;_^pSaOE!%raedqLWE!ZS0$ zNyjMtg3|zC2T{BGdUUxm=8m-gtxTpGp1?GHb|8OqHs-88;TLEBn|=J^Xvp~6(id? z6VHatbu06e#}>tL(`n0KTc4;230<29cR}CF_sP|V)Swq}d7bSJ(f$aQB*$Y4+=8I^ z*JbD8YUKdNfbQjujN_GQfI2m3w|BQYxd+F;I_;WgkdjMr1={G`K%JcsA1<>46!0e9 z?FZ1l91BPQvv&w&#q|_d)%7aFk#Ri>79nlEqcBgcQ7Mz>aka&EG;|fi?rxjWPk+CT zIh7q)#g>y_v2$3atFeEzE03Va2C6qe?APIX?&HkEPP$6ykp%kUGDiSYGXaf7(i^6Z z#4rv+sNDDgI&;IoB-EO;(LML5CHaKDKT1c!cp${`xf=OQpO3rKmWw{c}U{5gHg%PaA0`s<# zAC@Mi%}Q7+7|ufGmcdjY87f%|q)S#~u^@}-WgdYPMu50!B1vh$8yJQl#w*~ZW>eg$ zj5aI0OG!-(_RDJYI!9oKCDRnd*umcqj#on+bif0CytBl@AwoK*6)t4=3j`5aP|*KbVdtYiTEG7K~}%LDx); zA6X`i;97F4`(vm7qVK#$$V7)&YPo~-JRY>uvde-pKRpTaGuo1{eC#{pmfW0H%c;6z z{9AckR8xJ-*xj$D{^>xvNEl4Ms*e1dCMQop?z8lZ|+aOs@5WQdF zwt0m3BxQBS7W)3#2#{F9dkVv2y=!3rmIt{rkl6p~96n3zKHJ#egS)?42LM$;ThkYm zwMgHZ!6qE#ZeL#Wi$iS7Q|h@)W>6p}`%+1>FRPh6uO>Htj&HtXx1Y1?kIC(a?CMdH z$+r*r{X=nkmm{ukKwNRj0C%shasXK9tL+dR(8fD!0Ql-Qqu#|ozl2)P%W~AX&Bh^` zGlRRJFK`a}?hYA5@OGCYl)hq0wb>R3h+U{#Yyn_nE(icmbQY}EFuTIzVE_PEGHwz} z1+4lD$_QAz_$mZPuMZjHa+h4~Q*1f+W;qJxrMF)sm+Snn2~_*~n}xTUd0;S9GKDf? zEnW?QG3B3)y)v=0pj#&HAhLmk*2SB%^H=8=uP<7sh$Qwl>)GM3(16CBa?Mgk{~i}q zz%0LF4-x>p-%n)zAcD5WD$!&iRvU_Z`(ipO{`~UU>Yhs>v^q&a2P3isbo96yErLwj ziU?p$AWI554qTAivb&S%@Q>er4Sc7vkc|6$qWl0yRa6y8lh8EzuraBckuZrlI*Hz1 z3;^%?a{h3))1kj(7EUYw#5N1xxGLQYcPeRY zSf)_JW^EWGX0h~Wm@OA$f*fjCk)N@BnWbTyRds}aKQz{00Kim}kdjOkvtF91U_3Pr4{r^(V|&HbIyGC959akHs}i^gQj3Gw!&lY3~$ZXH_+wN zP2L;9BzC<>Y&8K~uU-p=$zaZX64P?YGx;0s;sbrbSK47tbtzYBq!-p=CH`*EyEv}X znSA!*v-&}&Fv&_V6>~m3AB-;8iBy+abxoUZl}}daVq1>ws@*7SCuu9s+Jn3^D0&FW z<$98ms#4ZYE02@%G##ELV`&BU2NKZ$gl@CQi`cGKl&e?kH0g^N&n;<&orlm?5m29;a)rbkX?dT!(A zpg#(^HTkY`ZPc-JUs))BJF~qx`RA)I8N`es>sQHb?i*wp29v(jtcG^VMLx?ln5@Gi z$qa|;H>KiqYkB%Cns3^8sVXYmR@&Fl_j%N6*nF58s8p`{?f+`%OM=Qr0#o@Ro9EZK zwas&zN6Za}d5G!g=3>0@@jjU8RrM%91fYBWX>k93aQm3)M1&O3y}KVEZf-M(+T%4; zZwv<0ZXOJlf9z!->QKvu=Sz3F_HiZvyuXZeZCDlX)?3VF(%Di^KuqVhI4W;~%`Sr8 zh3Zw}ra&*Yi)D=9Y$7I^Cu3ix_e?{`7iOVpE(iuw3JZ_5>xLOr2w!c`l#xXHJw9`W z%h2H<6VY`jdWL}Tg&^Jny4zwkiswZD5qw-_hfRWqHj7|6b!S5dv7Uv;P0j)AkkPEn zlFksd1>4rDYIE{z>Pq3S8+^N?lG1jv{L?2#DdDzVxtsvg}|UdpaqI;Xxi5HH@D& zw!knTy;{nwL#W}ob|`5{whVXTje=y(wYiJEwyeDZfVlw9CiZl0szKN6ac^yk=McRg*+yhjrOG$mk$$m z<-Vt;G7ri-GViTQ-BbeV9e}6KAt5cSCHNOx4TO;TEQnpLz3P}MXaE>@!~Dm@qgucv zC5P;W=RUo_hD{S^I<30no{?y#&E}@+C zRU%uo6RF(6CU|Zu&QHDQrR8e)B2N)cNP{iuRsw@TUoSlOqYK+R!4b$}2x4rxT1=X`p+HrvKlTw{VWx?_CX$;+%<)>DRsjB%kwUUBcz4U77y6HH zN-ay;J#oD$vY(LbG=;B*g#cf{UG5{eud>+vyQer5soO8EnQrtISq+sdFgL#0=I1f{ zUp@3ZNnop7mT$S4gl`Uxy#5>_Za$@myN~(9=i=c*arZ8Nd{;ia9YFiu+-IaOweQt+ zg1Ej)Zm!eoOE4_q#8b{vh5TL0|Ejy*hFAAFLL4P8qr)MR2{0>nK9#2ag-$Yq4b;#TzU-Q zq5}Z$w-L}wh=Q+|yKKKoH;_S-V7E+nvwS&>#sdpH-Y(+ZGJ*C*%z@a#nvd=6(u_}+ zfC!#S6|^kQfxczhXAv@F83I%g7)(+GORlhm_ANkr5&!@Y07*naR5kmE>+3b^un?@e z0(Tkfbt&{+m%DATn9DR=W4H*ug0hS0cw_aUv?2+wI{V)`M(Wn~a! zQbwg1HTR+b3eSlH+p&9K@OV`G_rLz&2L>ttcxpS&{-c;FqJM8u$ zfJwNkXr#r`%W_p)TGrE+Bpr?08tJaq1T}LEVC{O5Zk7pf z3&JrKtalzk-OgK;I{|*wse)%+9dByT%A%4*c>^0~f~g>@Eo+86YlnE6p7VL#_a(AmQY-(ZJB6+z`r|EHe)iyxhZ$%Pl5f~I1J z*?j@A%avo=PjXnHJTa93iJkd?-RtsyTRj!^4^A;-DT_>N9j1%Z zW(xxY&t1 zQfc8)-1tNL0-wiyvfG5ZlS$b#B=yi`S=M%%ZNSUIRl})3!R%uT7*9)kI_v|+)kt<- z23Gp^DgZN87|ZA(uq}%{006>wvl)XQL;Dau9 zEY(bw)$bsF|MK~;U-f$zfZ31i&WXo5ldi8T{$5yRBP_;twIs*Y`7Sr*%n zKxI005Wq%{)={c^Wj3sBvv4zkZIU>XNw%1e5cH0&-J}a8cVPlB9u8wjXBtWeK@TJr z47+W$--?!MB|RM{lToY~u0DXcTknUg+}`g>wodIg1r4-WDn-8z)=0C`SSy|^%@g!B z(<{k|vaqwXn#X$9? z?v8pSw*naZUH*3Xm&Ob^-a@o>UFwA`6BziA_`m?L4s;4xrXcQ^s)L!120=OCK@!Wl z2ukz<%%XkO2(zwoc#6u-dg9{I>D--&Hx{05Lu)GeboG}ib07@P0ot?$$t#)Xylv(Z zW_cGu*L0kT^9_IzRYTE0+JC7InN=o$Yj6tqISrzog{(U|tC8!oy`0#{&S`$B5?m6(kg9(CMn)^DHjT0~T1m^7c{@rkh+&B1PG2OiX02b^ z!Rrd!GzQ7fSsiAUqVeLo?0w37zL~NN+=9Da^fSVbe*uZ{B~HtRr(p1RtaCPV=B23W zH-|F!Nd#-vk0}TeuGGK~8OloCPnJPZQ}F$r$g{r$J$R76GKFm&=x`XoFTwx0 zHUWDw-~Lcc7a{d4pgSCSB6e%{44`*3_Q&IBIu)1yVG#^6x5zzQ?qznK7CDzg8_&g= z?Du6}8YGUR7IwxX8y5=#n8VTmU}^B(=HTcYZ#S?OV<|A652M8hto3F?mPtpzFz9>O zBHo@F2s z&bhnW?e`M`Sa$Zq)jFq2!zG@&O0tVXp8&QxZ}ywzU%&s_xp<>%z#Vo5gTB~FV_f|` zok&PWj*#@lj*L+XdXaBI1c!mGdGhXhHUH1Q{}8hah_J+FHkDe6g~7}yur0WLHAzRa z#g>7)A`TTcbdTFMn zabw3p4*2T=fHgvB%E{1C5o{aCu{>>%_krFdZWF*+(r2wW7j8jNFcnG{aCPl-gkzmi z@=9nH8h!3a^igun~ zWRi0h3|AzUoi;-mENU1~L~veVm4L0z1g$$vU(-^fZYFLwxhuJ79m{CCkU1+tveR0v zJ)E@Yj|~840}1M5<0~TVRWf3^>S-o`i*ZYY>EJZU-bC360>ZTFUmCVp_03xieA+NN zV+A#!3&rflueE;aDF9I*cDi)%2}yD4T8LU;wU}IRibgq=E-z?b*Z;}!ezg4;Ui8vW zUk2GLlDGnJRfMHsK)CwcV{(!gaL3>m(+kR73WuY<3Ur1R4tmS z_+O_Z<5>mWS$YXuKIquchQ>a<7er2y7|q${o>tz!H$3TDZKp{+tMGpD1X^RL@#Baw-JC(yxMQE3`&{Nvy%7`0TD#rC_v&^cV$dwBTZUDSq%Jm4>6kb)QMKH?T zaqh{$qJaY*AHY8WuwWPr28jXSGHX?{ev7`!i;%(y2bmt^iXd3B-#)2Zq8C90%;^Q3 zwZO$-w*Rv4XtNm#hShvyvrc7byfz?lA(jJip!lp>*K=C9 zxJQB93V@WP=6sy0HAes>;|?ZI9o!^RK^t->etD4ejL^0IN%si0{=b zGb0Oi%y8wj1?ZY3VVXVyZ(u50lE605cfaM%&$|%B&Rn7{5yA0zvdvN?I+qAka;Mntyx1KZ1BB_{XKKi^0{v zF8sBx7Cr#XiHEy&%94H=XuS^c|2Ug^!d;#HwOU3H!PT=g`2S)^jKBZQIuRW_wZ#c* z+#l<-#Ckr2Wm=fZvNOm#1aO>GSWS~w5?>(b;X25>1TfRrNp>EmXT&z~T$FuTMK1di zRbNw^>b4wJ<{kv0lC@Qjg3ualP#I($UkHF_VEH*4f0_5@twS~6Nx0iFZeRLD>9)#? zGXNM*!Hcs@j7eh_f8o(MeH|sILG;E8#d?~vo9Kl}OOR;rCd^;QgV!QqRq0map~_Qy z9@3WpHkR5rGmKvXz?S!e?f++Q}bSoUC)-*M@5V$NX+Sj>O zlWu)hOvI>KhBOGCMwlw%Z%V74GQ-rnRJSGt-ON18O7QR2{*S6)>grFQ+^y;Bew9pa zsO@GpxT$MxqnMit^*JnElQ1{m?+!b4)s=qBwtjb>sl=|ju)gN*Q$@5<|5fIIeaYHS zToIkiz1nI_)qD3bzWoqAJf?`p`wa2np?G(fzq`X0^0$0^EA)MMTVCDd`(wO=WZcJ_ zU9^;v4U5APSkf%B6Ld9{1x>qMB*jga2~_g&I=a3~mA)R6&vfL0ME>K;@$r6v|9swG zi<{%bU9J+)7x;vbrHuxN3-pr21TgJ=(=``cTq5yAb|MYcHFqf(mL_0a ziPno0^u={Y#@O!;hc&XsMHdRV zcGB;u$Z%L_!;B@aePG^Vl7YTg$0b*Mfmr$`QtYbUl?rD<_wsV7LU{(3u>BV-!L~A? zT&FrfUTV#lY^T2x;EL<`&E@`&-#!t*pedOO5e)hw28lxjtdW4e1n?Mq%Dqw@IXFew zvpc@i-K`h@{_FS1?Pnq9MtHo4)7+S8SfZ%ulhv&A0(gKNu!lv_3fdVNj2$N4n^T0j zC4jl0Kq7**GE6BAAk#yyk1akVJ}}^F+LLN4Y3yV&7HN^!`*eqvLM>o8%RC*g)N`Dc zZC_xEeY`j@jNg$8>r}xnJ|6gBk|#fokB8BElOfpZMiSGngLTNJ1e$#1+PoS`TE(DO zO<~e`h+G)vnlUH~xVrr_MQn$u2$0x!TNQmhfizAC{T9@7JN!ZO8yzJ|ClYvs=uq|93z^|x-a5+TKK78 z%5b+qP|K|BGMW{|MwiRS_`{N@*LP{b@g$T@Bl53)v-qp3|N3MhjP^AO_}fbFuWnYF zeMC<`XI(xgXs)y8AL;C>sZrt~DXU~>$ijOTLQ7qLBfyS+~UFPHAe z_p1-@maAnv*OnpEyvwCuCY+gku4b&NtrbE%oOAj=SPVsoOjclzFRpqJz8o+&8QSU) zB!w_(bg^E+A;bl- zju6U{dERV`Y6y}}%G<2-#XMFo5m}2h3i$2a^_R~d0ASaW9;7^VL0=8&N0NJ#GBh3< zW;haV5oA5MjMxw?LxOcaQX2XH^Phk1S2N%0q|%RMbB-Y}V`_RU6{sydgfO!rZhq%5gHCCEWrg67OUZ=reRls3zo+h2Z#c%dC zw&I_qaE-!?z&~T6n|0LKBG{SD6KLzfL^N*@@$Z1Ya~gEeMy6J@@phFO27|Ra$|2xL8`rDEh+txy^gV3z}*$ZowaTC%_EU}H}`cK~gm>F6!n20q9Cy6P_5vE}3n^Gw< z_zAsriul_R z)wBCe-kx^`HGl=W*BTJJi2HXE?;Zz;k8ejG9){GrDtz;|Hxdsw#oOER;jX;98C+jy zG7xa%FSo&Zmn}Dtr@?BSux1JmEtmFq+?~xVkQn>gt5CNR9U}T(t+rzRtkze7^!_ir z^*X%0nJgEQXD&)>FtjG3fZfT|r^5zS>}(#h-`Av|A%D|MmeZ1`%RW~C209ob0~eZN zU||RU!?a}{sX;ETHJr?vCv99%z+GH)7Bk3bNgd1DmEOfe;|{Z4k@S|6h-Uhg>rm2x z>RpT>f4$lPxJSobDZ|mp?W~f8Qo*OH9EP=kMF2}*~QDATJ{82E9JwgOt;aD zBrs+&e;~!oY7K3j`%eG3TmR30{}s7*=z_tOIi=}vBuxTTI6(?-KCc`I4knzmd!vk5e;ANim!< zrqhHq=Q_2ps+}H<653D$!{9FH3n?sW7`or<=ebWmOZE*LK@6g=Rt0kvX7w81g;xA| zTpn%~JQK9_k*9UyY9f=~qA?K-^Z@ff48PJbR6NDPKBO=Ji~xOgN4kWA@FI%aV69`n z_S_TjIF4F?D}wuAZ5VcZ{qy652>=+!@f2+Ff5H1g`gw5;n5pBsB04gnRvDaeJ-A-g zmZ21cC^^c6Gc`2juh?v9NVaL_NSCk}0La+T#WKPbV>DwiMr;8rvF$2KFEf`EGEIY+XoV|+DmjrMazl7w4@U^_3oZx5dHxw`n zn8AjRPi?H4U+p9IzxFgN4W|Lx$^^PPY`>XWsGGT2q+lruKrDkdy zDpQm7R>sle9|@qPV>8f80ON@G<}4i6Pp-7h9}E`T=e>Wp3L%AYM4aEJ_Euj<|9`9; z_rfC?UWETl{C{%ww}x@DTxIGj>Er_o=*@6zuO%(G-)G%Q6sYwvu4qvk|HGQ}>&irQ zy@Q4V#)W25SPM^Lhp>ZyHVa-&%)JI7|beG zru8U!CCis~p$?@+#&1b7FzQR;QV~eYjV7E4U&jvj=Ok@6J%m5EkG4&6__RoDpN_01g5

Y_*n+_|NQ6A?P}`u&XPcMHc&wmkIIZfZ9SG#nfiw7U9Gq z3?`$PNnK``Nne8Y>T+^(J;M&Z1c1qD`chSWK~=BtknWP>VT`+kNIIB1#BieR!W?Tj z9w+pUR{0xGrMo^N&q|0y)1KqVKBJ4FpR*LP{TM47=|DQfT!aGp*3FvDs^Vd z0pO}?Ocw>fU|IUDr$w;>fMXsQ!d)G~)NJ16k}dnWrJ^d5KWspk;kYM2F9S3MeZgSY zd4q@W$41pl;p;~iUU*)~U(Hnj&%Sp`^$dwDt20_OU`nVoq#tRsOu$|2EN4$T80X;r zQboMXH{=Xs?$CFd>1cKpOVj@$ADrVRUfX@+3JB#EkPtxL4V(`WQ*b83x;m=+qOTS(q5k#-B{jN$Ei(Io! zH1uxo@LT@~ssVBgb$ViB4C%{#LigJh)@Sa@6_P7vA5@h}8der`o&6uKY@Y#W2J%y5L6^?Yjq35* z(Yh+LYOEz|&(de{umpM$x9{TXx8d#E2m$m8eIL?yZw0^-cjddA!NYZOe-(3kdzoGB z#mN~_xmIZaz#uDU|FOGQWbVoXfU(6*;#@s6a1PDcCkuPNmhoqcl>^BO5q!K(fMK>M zaEcMNuh6%&hWO7ML*3e1c;%_~4awluIt73Sg$)2FX*Z60v1Zr|fTdd_>~R*&AnizB zX4)ozb%d%TE4%8O!TWmLo=eTw#4EB6fjTK%kSvcnS=a{8rlpq#t0Sw6tM9G{%`vQD|a4ghy zQmdsxwhS5iO6hE3bAXb}P*S{E-E+ilJ^RnUzJ#9CXVE!}bRo!TPD$==7K7C+BaEL$ z@Mf||5Am&4a#-)KyE>;?y3eKmt?-1DuJ}J2W6P?2OQY)Rg?Lr6;)(d1 zFNbcNbV5kppz2w2tP>ZqI1ts#z&_|J;hzE3RnJn?0)Q!k!C+|zr~oY71$1fqWf+XD z89M<6<2V)PsOYoQUq%t@_+c*VFmF^jqOU{ooz+$)uy!5fRK4;$(0VWv{8E5u$yg zSBxlmgYQn`4Zi%Y0@bIUirsGkY$;p?y+#2y^UTK@w9jEl1~*oJ8^uju0oe5ZvgGP3 z&OLW(w7y+$W;`pIuKgXG8Eg&9q}HEAe`6umXjY?T_fOxZ)41W#gQ`|dhFQFtb-GdQ z!~CR%p8>covm$O0l5+Uu8V9S(4Z+MZSH8%NB>S@qZON zdL60S7Ntsa;zPnh_|7J__E(7H<=Atv5F*BcR^nd(!(yNjbz<*4k6Pn_CC$Fea4~Vp ztW~9a_0k48A_~I?050$`q!_ylRlF{4Z+Em^lp^O^_;L-n@_atdH#@PuVp*1Waa=7C zS^{nCvGC9o^j)s9rPy3Y(gU+dINpvIQ+#sVG(Z8{-IG7R{PzCs0|Cs{U%GH;{@D{R z4lTUWMPHZtj78em%C%m6tYoeOPR4T`>)h_21#a)(fBkmcEnTafMRpom>@)>j%~&Ls z1h3~gNz4wV+M`31HyMoJhzL4$(2)wn1-$@T`My>ezC>JKO`(ZzZ{~;nkYHxk9YMzx zCWk47+32j@R=7D66KUWUH$7sirTJ&GHq0#nypXAg9JOlt{;2=}5CBO;K~$9Dw>B8~ ztk0^}hV71+S$ZAzA5W+GVl`Z-XEmO}{5CO65sVKh#nMcnZwn~{ENn23cZZ%Me;)Yu z@fQMo_Pej}2ZJ913kkV4%(f-^h=J1_Bh5;3!FJN|gLB6@^SlcL=EN6h8dhafh_if*11FeGVLcuDgZXzwHZyr{Ze*p`Xj(BC|3?(TfUZpG zX8Z5NmCz<&8E{m?Y_gCBhtbrP-XTa{6}x~g*MNDuJjU&~!WaxTC1X|2c~G@c830Sn ze3prsA}>&oKs5{oYeC;2JPV_9M3T1Sq@_D8R&rrG(7>}~9Mhz)bD6Y`T3-z^7hIRM zsuCC$DJ=Qt;$k@H4bnEC?guAvdIp47mYkzD0w*A70Y(c+2w&|sKFbDDFdW*c>rl$}G_`K>(Ax>yO>lhaSSzOd-Dg zPQkyOmY9*L2W_>I9o93~AJTm6DtlbpFN3&TM`zD;&2oMW`ztkEiC}EyO|kX%AHBmT z|L`$H+`Nyk-&M8EmFm6E9&Qt$7u)+AFj(rGL0{_K;~_M`qAEg{3|_8Xal_GOeBA2d zhIhY>mUD*#x&htE%);L*gztJA%V>JNi=3@o0C={t7aNzaHl4fT3|HcI)tTZRR;8^p z?9PMPG8)hPLetTLK&af{BqxM7#|E!ttO zLNTV+m0&vOO=O0e{2SvQmV?ki+(Fz0eF0rySS%!?j(SP9i=;Ch_ND8$uts?gnosqj zOu+RVDNn@}R>JS#I*v;`hzt7e_j8u}a+UY;Fu&32DlixTMgYJFkie`BueamHO2A<3 zI4b`Qb^Zc|Co*$F%2P9Z!%c@r^yPUg+=W=ub(aUj3oEOBOl>snb zQ>GkB;kt~hpN=DJIi?UH72T77dKV17JWQ`I=h&M0MeKoQbu?FnvDFf8ndVewr2TFf z_SJ18R>#T`l&v$;X>*W6!$K>^36Rc+q6nCjX4^3_T(uxa_-jl!Z`cfnnCrMhc2BXH ziUTKPsawAze5b5bpu-0KP9RfN}L1 zh;6P4tG@>gKv=ZJBr{$a0UZnsvm6XyPSZ0g>?k`)i*t4>K_!FJP|4+hu9;_Q*Cn1- zl1$e1V8GR+otd)cmQ~Q;E`k8gOIZMxhU4T_&0uM5^266M9KwG?1|z;}uI&EbO0K?I z@f9p7sG4Sw2E95#$UlBV->0hM=PgN%_26elk4?~;Xtql+v{|`}Ey4g;==-6!eAgiw zn|ilu93pXREz5=YI9I$why14b&lU_cE`r z5enVo`v9u<@_mH3d5G^GMenk+2m$oo-^6#f@$F3{ju~Q_k<)?^G~MlGE&_BaV!8F^ zYX`EmnpU=UIVBXh{r~7X58p`E>&nkRuvqK8!JEJV*#Vsj6;V}PjgIJuj_5=%f?)>l zSrW9CY*@jN9AH~A?ES0v+tedqChimzHNq|<7l zMmbva^`+x6XPbWL^HcL>NH1Bsyt43v5E84#1$rm*1Q_m*d<$R}gJ00Af$NB91#OH{ z17vedqmo`P0^L9^jZrLdZC3GiEl2z@B+;2T2B?EP_n6{uc-YIgm$w|~$TTPdW(b^v zzAB5MhHK#N1XqD}W7u)nvV;q(Somszjoqqg>fnM7rY_gR+uI#PuqowkCkF-aw|xS5F;DFpU@0rMUEDX|`tH=v z|L*_%;{NU$00t~g?^V=@{c0N4v)G}-Fo;Nb%KY#PfVBn*I&y$mPwG&>o{MWx^2gu* z;{rclylm)cG1#LY6KlYBD3;z>wkON1d{6*WTa&@;(PcZ*eA<$tuPR*`v7Kk+F~^qJ z>x9n&$%p+=wDNkOLrQJ7D63~yOU+n9DP5}tG%Y)rKxX3=5eo(r#wR|~T|R+K)xC$Z zqL^J;aoi9SuAo6HZ@elG9GD*^|T|oXbmzOC&olm)5|!r`x*dNle>nFJXE{wa;L@VrZP1y z74T$GAN8sRz+F6{z#6dCvH&nZJDE8az!HOsNN08C8V)OiL3uDN4M%cBbUGJVcGhm6 zccllr*lriV{wymrn-_AT6Vh)^Cs~ayRQ+e^Yk@>YUg}aHD&W^sJ!%P=w_Lq=Lj5%W zTb5e@f9te-vc}*gPV&hw0Jikq{34LOijwt}!K%%V?rU|f&W=p{YFhZTdYzwpC&Je~ z{?eAZP4(IWm~Ne`d;_30*mj?{7fg&fRSW^j_a&mse>%xog&fu5|klG%kK8Bo?kT3ruR`xg(2EmZqs{ zE(PG^^V96h^L)3-_S+T>+-b`W=*n!;)Mt*G=IpYkY~msC$0_sgxQiT!3G*1F)Xrgc zS`8;57z_Xp#sTX?_^aSl(kXqrlB5d3V2*Hb(H@&lbsKre8Wk@S^!MR_F993{A7toA z`!o4&=hFa>u*d|mwiC$TLKYPXU&#p92N_cfY*5y=qiTV#E>DfL=uCio=827UCx+RYsMq&0#m@nnE+P+wydy zQN)=gkh0SXqM+(JQWkx76i*r(kR_$sPbwUkj*x^?(;DrwwLrFh)( zS!TA4>-38Tgv9r1)&yTKkFq>ihHjyQSADy);r3>ZNATI>VT7ZsEmH0h!z&OJGFKc$ z5=dd(H;}=gCf6F$B#Wz-bg#pUgETcUXR=Q{rDe-uFTvM}7pCr3B7kX%nP%Q_+~N#3 zjkkc|32qB;PoU1y2wH4%=@ZYHJm)`|8D`wZMM236ijH?t_s$#s1;P!BRKtn36tLsL zAT}(yegRL$5rHqnlf6iI3~~o)DQuRh?YK*r=*^|DsLWow-pQ)$UFTnu?bf!NhV8y# zX?Kv9Dl>y^bJ3K=?Eh~|8dknzZ`6<_Li+b^M{)^Z{ZIyb)a(eE1ux4`c<8C(K@L0`6i0@v*DSMhF_N{G&Veo6$C%dialygQ_<^VqFqWUY_6iyS}Oh?--LpIa9f9*^4 z3je0B`=vT-zFodF@Kshkf0M6r0KW)T-3ox0Kgw!eZsY}h)r_;T`DVQ!zAtwZU46+e zKQ}?#!&9=qO}5w3@h-V}YTZ0!i07vs;{FcAZ4EY6 zbG{CMTQ<yUzJ^)@=E6a`Um;kD#Pynu&^I?50-N(l zQuw>)9LG$pTPaK7TO!^MbvGNdrRoJnZ`u%g`$s|Y*@ ztxPu+{8!?2D6*N~Uf~8pd+Ru3h7SR04iFDDy$oHOWsc_+8t!@B`Glx7&bTwj2?{|X z#06#XS%Gd`a+5Nm5f$;wYW*Vu&nK|`xGc}to$YB$0ssRz^C6$QCZbJl79bI8bTx93 z(J3&v?^F2FJe4aSxPPhLgdQzXNy{CxwnO)2=&sVutustIS2qmeJ{vNZzES3SG8Ovf z%aN+hPKmR*cqiICK@l)V;@TOG*Lf=(+H4Td`x1hA$R#jumDTSDKFRD!vnNixzy6D0AlUk1)0 zf?KT%Fqo6golY6wmxIx7PG)Jo_BYlC-L2|Q>rQn#FPm#Y7GGsGP+kCj^*VNseeRIu zor>Ut*#;;ZkSu_Wi^c0*!ux#9@GCD14))~t5HEvIzeq|V?HT|85CBO;K~yA|4A1W* zwy%e7^XjboRiT#v&KuB94K?LkGwZ(i;?16&`J=OVa#zoiZ9Yv+zXouIxcl4zZm%C& zw@;m$`_|QM6Jqz_vGZ`>MzFW};kI{o-MPJza_`MGv~PBKY>Hj;v31;w$(-ykftFfk z^HsK3x0c&PZd8Y|7-Tqhsc2>07@jE(k+O*lJcFRTzU)K$f^f5m54Hiivr!!}AG_RC zzga}fX*eJI9Q7GZL;PB|p?ybrZ?pK-wYHniLWg}VfY+POcGshK6`Qbd&WQ!mw=WY5 z9`BUZ`au5V^1U=JXDZ~TSdBH5yJD}Q?-Q&IaHA?i6l#e#95%#eZ|qD)4K|e+Q{Rp= zz=ft+2hy5xISzoXLhP4PzuJx+Eu*?w>~yn$`j0~<0M)RY;OY+s><;sz=-1_bKNs$5 zgB3fl z(+G6z;s_}WnXC3#LQQsQorWw{nsmtEUN7drlGu0T7`A~Ir^wdYa1XDH=Z{7i)7s#! z+(>EQ9Q2hY`DqKsUN3C5+#o0!^eR&kmD-0=?Y&^wyTFHB?Ot}zYQY7f>Yvx#Pxx%P zDm(1(DSXIJ)xuA1T8x{eri{AEZUfxrva?B6>G?nrER+i^;bN zm_IQpVAg<%IzYD>OR5Yym;lxZsH!lyYo1JhE+(jrAGPs_E_D0icr}{TY0}97Dh@jt z(IQ(S8sIUh%;R)iXLh>RE33Ayh@ZA%SUg5r#W$}^GhSObS*>|GHG7JdybTIq4(Ma` zty;|y`!f7$0sNBheU*7WSxa#0LX~$g+0FANjm!$`sR0Pv#AG?{3w?7`p4FnAIHz1hmTKPiH9EI z>Av^;(Enm$hyZ{Qw^!|(%NDdR!Y)fV>{71dmaTT`FuYuKKw0+OOE2HV19y$@tF9XZ zWsm#T?KR{`mjZXQNf!s6?hP1U67`= zocA}Y(cyBrKQ69sw|lMi0;^yud#?np$N6G4u-lOESsenN+g*efz&HZHlW7X{0>j+H zs5Rgwg$p-K;G8b}z@+CCfB%QyZFieSwIItFf*L1xL0>L-r&=Y3Iei5B&LP^A!LvcS z7>Pe6Bt8L*dyakv82h1H25GvT^bf!N`^|C|G%6OrW`0K161}llS+uP^I9X2H0C2D4 zgR;F&IP50~?Fu$K8#t20&60~*o4b;je`bHvR26q_a22qVT_o|6H7OyFnP1>-Do*?PH_y33?X+1{X?i zEsQ}~2KBKBU-ulJy(oTvUU*w9zvpvG?)z$R<|Ln@PB{YxpbqneU_Et`vN&NEr1ff* zzfG0GY;v@|m6B>wfDu%=;f$n+B}*I^LEj`UaQhwsEDMWtdjZ!lsP$u++mK|WN1L4U zHBA-##o;w|^r$8|bNwylO#uD?@f@?|DXUrf=51wlb<487S5hRFt<1*ILl|ru%eyi< zVUo`(*6S<@GjLaVQ?1Dq@dGxN;mEbG7}(Z(%88DZ!vcLR=qSyiuDq)3lU{;S1Y z+F@pqBnE4Bm>58nRf+P1fyii@W)FvEqA9n|mUB=Uc*ckFC3sorY0<%wjwXrU7))vg zIN!qi%3xC4i5=}`s~4x#Tsy z%BQ;!zG@#koop8Es{=pgLj~}Q14f=6KXqm%fGv7O__Exqi;(A^T>U)dOT zeo1zp-x~S+P4qe-qm6F{CqqfXUnB@kxaw^!{b!kWa7z+&}CCb`qb=Zvx=`TyI02^ zxJwTyF5tVp>>an+VU--$>E#B;n6X`^i;46};+Im2LpeUB?RjA)S#bgYZ`N&^8?Tnx z)%9e)XtFJf0A>vsU(SUJxMc8#7f1XBLiLL9RYNOa7;i~Dt!?5>orJHfDW##b{SI&rm)>N`k)NkR)~0VTv=FP;%1Wn*{*yeBOr!y1ZU* z6||SvD>9W0Ryg7+Y!@)FKMRku1)7BBBdq?C!Q0(nw;vvkV;Muzjk!?3bbFYLg>BHC ze7Cf7`qLl(X}wwkz@QG^YC9EcL(Pyoba>!gP%hj>{;sDTa2F?&UJMvZf0-`Q(JyHL z#=TYuG3`2)H1Qwru7CFrzm9_j0(1wPnbx*jk{CRv#8 znGDt@=N9K{Sx<%by}Mc2y!6#^c6D4p0pp0^{szrLx7ZpD9ZdUZSt_jSC5TBYg}E3Q zf)ytU;0`w_*<3WU)3!UB0ic54LSo$v!Okq>q7_zysD>AZ8kSzX-4xtq>$Od8FP8(| zI4RDf94(v8GZ`%#rT7W>e$jExg~1IG#6WMQ^1fRA0HrI+*g3Nd#%DEUeF5}-y7(SZ ztbVAu7sBA$`?B`~7~JaD2e|v30I{;XL@eaGAep45>Gh~iQZM5MJmKv!6TfCmnN?UE z`|_NobVvz(A&XW1iV-b90O!%yPbPusgfpKIZ4c{fDQ`RsCs!E4RKBLDTNsXGXZSqJ8DeF4r^!J zKfxYsh6S+qvXW1C6P*syFx|TRTw6R>^QI?PiR*GB!pVZ(z`9vkBgSu)tBlF!N#GN6 zW_CNjxKMFGma+bVFT{g*DM;ZMNA@j$rFz+Wh1mV*Z9W^TNE4rhzC7l}7w+ET_QWN_ zZt%4gV$v7?>iL%jRId$im-N-y-$34;LjCYly#FyeewOy;tEcSxx%Kead3x>{rF+-= z>0$8G6ZCGM=)J#c-(9whk>pJm^kv*$b`-r5m%Gk!+up9)$6f#F>40nfeAOP$QvL;U zgbu$ApznH>iJi^B1Aw_-0fd`Pe4R!Y`MBF;$9+fC@FH5z!^0{9gDHZU_+^zBzxpG! zuTu}jR7W`z5|<(vC*Uzi4EoCKuX@zk86=gzjx1wQJ&oUZoJ__6?&awWKmaeN;c6C1 zWA@Bf?ly1~>$suxMDR8O&&Rzgx504Uku#259muV1>_)+bAdN~~HPejhx`!ZwpoE;_ zdR-hjRl;*9EnM+etI>8l1%P*l`OV!H0H)^yuC_p_b$&h_{AEKH(0hHoW-eNb!7Ca; z<4R30=&P#*#1mKMEha6nlUr%oheZoa?iKjwfBDmLwWwAuJXOF@>Hshsuh_H3v0cs% z$)wOA-9oN)qe07`_7j{8+d;1>bz=HRs6$gAK9^n@^cwcs5W&mYSiGjA1^`T=kGlSB z7+ZsAPPxd^i>0hCX02Ks5L5gsz}lAyoR&++i7c(-ar^^i##j5Ox68i7dcamD0GJI~ z2X%r(0K-tg`|ZSTFyuXo_Bxr8Fr=_BIC1cQ7wcYOGB{QPONw9sSevB>%pn7l2sTbz zQ!Tslfy&sJSvJEsa`Bq3TVhq%z}T+6 zO{8k01x~TAksPeHMyq417*2^BMqb>pg&wJfYU2_CMg>eW5QyMNY-fthAp^kp5Wyjz zAT1bNNj;FsxJoxag`!iU#h|3D0S)(S`*AfFT?I% z>aZ!=(AQLp)1-jVrtUKLHRTFelFxk;HS$&VRcIL-BEeo)8M*0)!+C3I6jcDT=?q`e z&&RhA&9uk`6>q+3FeYnpq|807@|wOU)wriyiR}6ASGJMrYoEn$0nFy9R}Ne{k870f zs|a^LMJMw-(O=cO7Qoxj{^r?xp|1kizM7qE-scMbwL8^ITNcA=U*MJ%UmTaurt{fA z{foZIFTwuDP-cogC$x}cl^3i9asT$N|I=;n#~U1>eFt=M26V4?&8uyCd(41gu=cP? za0Gp!fF+J?1n4UT+KE`UHpLow>f}gU8N@j{#+`+tw&5sGqFtLbzTb? zxP{+raq$XplZgAi#UjF;fz+{dB9QhP^RbWjuvsL)Fk7pLVf^|I`*q@$&NToqgztKh zv6)kZuex7x?uZ*^*jij#X|-0XQh& zx*vwMfBmvvW-*v)XK)uM%V}HF=|&dj+~FO0OrypdOpa>9P-5RDe(XR5CBO;K~yvYed!U+ zLLJ=`#VmR?Sj{?kZ*=LJjihauS!fo6aRiBhUYtM{;{-@1dg&T%hJSR2(qaZR+?6#- zYC@8#-z2>?Y(|>99GHk^s1)v7*N)S|u+2_G4Rghzcz2`$FwDIU1TaF7>_ejjAns-} z#xI6`7vdaZI+;u|wrB~DwR(;JUj&_{`#lfXh-0Arf@-)}eTM*I8~%kKmK^WG^GdE; ztk=)WIEflZgJIpCHyDOE0y)HO8&`8Rz_9>k zl2#p6>vX$p;XkYGHKmMNwX2G7!d_xAW^Xqn3*D+fc?*E?t#KUIZ2-Vfz-g;2Yw8t* zfSi6uvA45}Oz;OtXH7_I5!Ojr0Iz0q)V0lKLm15RZC(;)k2h1`>nXVl=vMd1RQO2Fsdb*p_mn>w;ny*Y#YZ`s9F-=6U zWSCjL&7D0UcDWl$r#7?-=90eZ_|ag-4kx_i%C%RYMga5snhjBHDG9$(w+b^ai{s+C zPO*Dx0GXRi`MJyuzTFjgYT#_!qpU5Ib!xO;Q7=0Q$lWhK0Ji(`!rhZ%YNSR{uK+A5 zWyS5w#1V-8qlxVo_w=*)Ub66i1L)TENEsWZ(?D;-P`>C_c}53YrR- zz0=UX-DaH)&uqMs3qf3CCKmVsb%0o0z9DnfPC26gFgK`!#A9uK#)TMHbMb!|WsB8t zf1EGZLjrhrm@L<(@e1^1{+X?_Cw1Q$)6v=&4H4F3y^z-b)JdFU0hVO!N4FGEZsOfW zUXcp*-~RnyN8=#@%$6}O*x{5BJ(V~EBaO#{*cwLS1Xq7(P?>A$xHb{32G>$Z4&Aa- zJ&yyo-^u>;$KTH(g1vGg=>b>v54Ob16967{LXNoP&Pq+X|Gy-t_4k20gVlIT_Eqp4 z?+5gS>V-zYu{Sir=B;q%T|3OG$?Vn0Gsx*aw2EPrAd)koIvLt41SuM0u)`q!W3D9+%BI(Pb z05J@0z2DE*>oMEDv_hQWf0@4_%u!PZ<9~KB&k$lcG6U%oAjkKMz%ZmR0@{}V2AjhW zq%T$~A4{e8I93{;iq#KA_lH_^7G8Pg=4O%&Z-ja083DZV^3n}isRM5k-livj^e-36>%xH%&7*ncn`|k z6WBK^tyGFW_+_h=Xc?Zv&GtsO4 z&o7B++%d>~L$k`;5goX2@FuNo7R@?rk+_?8S1Evv^#_yEU?IPSedQLuO8QUhxNxbZ zr8G}z$+idpOW#<dZ@;8oH&CLWqx05wUZHGnSl1=F_woT;XfJnSHL#ztm`^k-JsA zYy;#u0eq5e_P$lX)<5#Z2J*ymnMq(k>kCNC6MtpoqrsSv?8{f^H30rf0b8+aHLd}0 zZl9_4UhX#c3Bk!rn%eO7)g~g_V#Xr(>1v8R4KD9?1!4W!q_QD-MfiTkO@mdv61UG8 z;_0#b{A6mqKffRR;$isZPUs8O`*_p6zaHEiyT@%N9mtF5YMV(>b^`z>`*q5?FOER( z*2zV|P9exu6@|-EUg}n@~-G$6hD8zp|1_yGPCU z))zB>vx-S;)_Tp_TCKd&byny*%v(PcvC`fwz8ubE9I$B<0LIn9tOOo5#MWc#<5zY( zZs@9|NZy`~LV>=Ud6V?z`()UCy&&;o9M6X0xgo#DgMc9$jaqe1_j2w?d?>XFrJDm1 zT(Z0EfJVx)az}j}byHB4yB6@-H7=~%DY%PkZoLjsQXWEkLF_{QO0$(wu{bdq=EHoi zX-W1!TX$$CpJ~m3D>Ac`0&lGZ<1&rwH3xgxdM#TBaSiSHx(QgsIxh5J$-n={zYRx& zO7+6?C3&ve*H;m&G*vT5Yjy~nGaXIeB?w39L!M}TK`n?-c`eo zZuBW`m8BiJ4f<9xQEAf5DD@z@-;Mi&fZnbg!eRB-9NP`BO`I=-3ji2=B7j*5CVkn6 za9XS-!07x;Lq~Qq(d>dE60a{+0@swnOIt)>bTL-5LNe%}nwkrJD8VpiKt>OiU8M zco3hmx>*>ECwJ={ZDJzY>>=)yseq;HiZZ%u7|abE$N{0q{%v6(6^4UoTsDPu3HeZAIT~g|Z24mF8joCiC;>2tgmK z>*wap=j`sOjUalzJPi>)Jq&)l?<2n4ne_?KzKEO4(QzkJx&3Z+Jal%OOl+;z0A#|v z@nHwm3-q>t-t{_Oufxftj{i#tTy7bHZqUYB8K+}?f?iR^NowBQuiD#1wirk3F6Qc7 zAQtB|cjQ8E$lv+Yqw^HlEDz38yZe(4t~#n4n-(fX2>Yto5;7Ezj*vAW{xNeI1AfmY z6OXe)>}^Kq1e7v(7LmBjKjVZL#yJ=~8+kYaz##6VZ|KXBU&H{n^Q}5fD1i{cu&!(a zqSU7eKh+2#Z!~BEz|g)ETy6UhQV?(nQat>0k zTmZc{S1SZvI9T_k2*%0n?G~Xhmi#lm3PE^77y*{tGDN?AT>BtI(x}8{F#s4BdH~?h zfB8=UxK=HAZj}q(nMp=~XSBj#<1r|1=X3#M(Z0%H)|lBZEvs1j-l&(b3>>;8uTf4T zeCzhV{>vYC>qY1_*r+vVyOKyq9T_ZEYZUIvWfRtV(Z+{tkY+D5`>k+}@5sh0&=)F) z&K`J6VDM_v)~;;9@NAN?{faJ+6vTEUiOpH~l=Xwe>$5EjC+w^SjMc0orDs-CNy(rT zX8#mtlQ^e@|3{oNIJ~4LSqXPMXroqF$Aw$m>i`UQI>4}(rcS8!VEk5C43o9cLZ_Kj|vEY z%3#3MG8@)l&Mx=V>@i!AGMw~(4?lCb9uDtG|6ZEeWn6t(Cw85ocMQ%Aa0g})WDdPi>8Wo}amU~sO%0E9902jmPg8w2mX91W{V zx^CIjIsuGVGYVKC&AzSN*i!qqjlZVD>X;aMsO1P7%Eb3W1+fLN&4gP34+gUJfvx6m zC~A$dqV_W*a6%PJ=u#Te@p1LHb-S1yrtf*ql&pO`Zw-guw>A#t&Jl zr-;K((P=gJRj`Zdv$K9~;3$#9_1hg1{~s8Cy_eT!#U(LrG`dpx1i-r|Z~yEAw8~nD z-EjXLAP!IBAIZfDw~sBNS2y))-1QirZ@Wx8KU{a9eIKs}4_E!m<8Zs_42E7?MhiS? zo?1pUpdg09;Qc<^Y!dG175O`=%YN)>#QSR|Gr2lf2LycxUkNU#pEp6@)ijw3L4D~Q z*8DT1=VavK_XZ-EtIdE$K#{gnwBwLMuLdM9x0>J_3}&+;9iee8;N7>}n`<{9-@{PW zBH?Zw`WSE65%*>VFuny%Kltqg!;_ec0(pXWi}#Fk+%Yipv&noE0lm<{I01T)xE!EnpN6~CP}#Ai|cA|QO{(=IpkfxCb)NDKx;80~g|=mtlKCtO~u)laz2;tDRa zD7%RQc*?@zUi)=-n=yxH>{eiQN9W#?GLoc^3@L(f!3BMn+F>N}XxfGdW`P!v>$M$R zuw-B(7AtJWDOvzS0XuGmN}cp&`pztEY`Fxm9Z4Ec)+h)$B@E0%h~TIem4Oa2xe&o_ zU96$w$bGoK`u#utrWpr#kdZ}ummatz+^BDEOA2f4Psc^q~mTkYBpWgoALViuaPB7 z+5*N3G1TxxyY_G^mK$kxS#(&fyNBbL44zC=VXy)izXmk%z=sgT2#yiAbuXt3h0mH0 z%`&H_9$Pd()(onFE94+MnKj`QFz64ZK2Rny=|a+t1qxuUb^w66hg)7mZ~pL&D1X`I zWY;d?%Vn=9moW_LT$C&NkL18Nl1}Ujw}(j|fc~vf_0rjfHDLU%>N@0N;1v*Z5*L}5 zmZNrl8T=E#+Q-L@WCSg58t{gtKAnn~=KV?-6(#hg;${f}27{NGP&RkVf>w?$NNW%` z(=EcHjGM(Ids*awYm{Yh>valR#+`9zBMi>RoD{uz`?Stb8KX_wTWTw4z7d%KHtrvN zhc4V8F|*b^e z>JF(;t7oUd>~#-V9|) zutd{kECD1Lc=(F$Jx*e-kEs1hDT*rYUGkU>pM5;G|cZ7qf^$Ay}bilOv$Dy3h#e*?xc z|IJ6VT8wj|mygH*A?}&_kt9g86AeF7e8?ZBbWyeH3SEzVQY_Zu*y=jnfzSG@L4_u$ z`;b|Zak754IiD{GrLPhGwCO*hJdG3#Vmf-qSz?i_3>@XUdH&8@+DBCZARQ z)@hM)mVW1@YnM$@MRrH^0iRe$_nwBFQZ{{z@9z=9#U) z-TvgAs@SiB8uul=oTK+7^Q;AF&4-K3{rn=zrNsN}BX*DB{wX>1fi8eKRKphS)8 zT?8vtz&cXqNa8}JC-cL`4_5W)d=?`hH^Jb;E|YxnQi4N1to1?xzx3m&0tRIfOhlWy ztO9tm%w!9%Y_OL_p0ee8ZHmp)NyxcgDqyC7@b@XJRC31|{^sHLwcoFaZC#1u*dNm;d^6uivfK3IH%SB?G+)uKv2UJ`5rCbgn}Mu|T&Q z0QCo5SA( zE;?j+i1`n?O!IM^&_auMX|sHONgKbL{2B5-hLwIM7zkQw;xubCTMmw`j>p6)Z+|hBZ-4-1+cx-$H+c$RDquYB2Nx`C^Er90 zzDO?-Au$&hDuBb_LY6t|zlaz%>1)k1N(vY1E zEj5>J)znP8Ve`+YE&%jE3%}MUBG@>M7_*=*1Vh6nwB;xcCl$zFF!)Wr%)ljm6~Jcn z$gcJ~tptCy9YM!_Z-9c*&y8#f;z5HdWbG@?MKA+S5D^40;C6?K? zeJW(x-u0Tnf>_Jrbv{-6y7tUQs_^nl#1Fw;c~H@N`6$7OUO@MjYkHx2@7woxE$%G3 zziHoIW%pOv<4s%g%r{-27Xh&g+#U}p;&5mpE)UsZm*O57e=6*_>-K9y5x8O~DtiOh zF_#f7RuL31NIV?YSWy6L4gaJaT2{=e{0+HGdp3iTOS$ieo>nxKWC7T;TKU; za3IrG7oGxGWGh!c#YHc?AVf`Hw3dM-&#ax>IP(@X&474TK305&Iynt7R(g_5J@ z%>*?)6)i`w_>Ya7l_bjti1Q&RjvxcTL3oaTzWMH2SH@ikLe@ZaN;H>N&!75f3Yq|x z0&t6Nnzj<`s5(;P>z+Gkzp?@05{TZQjChj^U)FkGdV_6k_*H+_>(1faI^$)T60MT$ zetT=IVJwuDg4UDyt3>fDhv(cg>ubrYahgE>{{fhlW`=#jI`3ZIKL?Uqehd##w@fKN zhX}Ct_z?2(t0!Gm^eAz2-@3jtdiUu;!z>N#>f(g%?N$5!O6aQ}w)qISyWc^TrpJAg z0S52)>3r4h^u4UpX!p!UUI2JDbJp7ws&}&Rr^{fz3};&Xl`(Lwu+AWqWrwyXU>=79 z4@c0K_LBfGZ5`EAIi$a%X~NQqF9G~g0M@1VIAPiu=oL*ogHV%M+hGsa-%v8u>hD31 zE$ITA;$GWl&Y6}yeJyfGg(J6F7X{p{p6&pDc_$MIQkIC7LUrHc5qFCU-AH*HYQ*DS z0PYHXb^jXIzsN2>zX09Vj_WvrXE>473t|EljQeRC))4rRscBr%aP5Y`U2R6Z1n)NE zjrP;NNQ2u{(=6D~ubC=`fQ$ z4ch!nBP|47z*q_P>*d&!JqM2u*MIo!uc3fbA3rxSj&8>eeuf~insxh-yt=EZ!4533 zrPRfR_}1(xL*PWtwHwQ>3BrY#sZ`!50Kog@fcp*cR%H-t+5%HA57VuBEOTq}b~hk& zp?6s!rtoDEovmBevICD0z>vk0QLC>@7nm!iTBU0T7z{SECyTz&-EIUD%i;~`qB15~ zHVdtDN-ZTQ?X=pgALC0Pi1BK%jw3S*&8jfJ5iyKsQVr`(8^8~doyriJ4yUmUj9`nv zKoiajO+<@Y@ zK?IeIr-9itz94`((i6lNesqq&iJhs%Nlvx%P->_bdCs=PCz#P&mA`f!0;uNuMIhD+ zUt2oKv(U0ZnM)YGxPb7JB93lw4xqB8OQ70wHcs3AZL$*p#+RImU>p2Glc~->q+-sq z%2mFIgyyU5D3qOsYHAvQD@rNNo86iWgY_#C-7*(Zq~g?3;W#xb!SvDOVseJXuyy+y zs^IB&Y%`Y-+Bj$qDu_3E@|o)P1&VgR%cECzr<^%+GpCZrX1FR z@+E%qtg8O1r<&ULG~4`Du+mHWc*!3ZuU!jY>(&C{k4zAr_vNNqK@!p$9T2=K^q`5R|^g@7~JLJUK~eVmt9v7#|WHE2N3{_0D!sZ+qh1KrP#ZG zZbPJgnI{07t^l5yl^<`_V-o5XV8*BR$2kCOH{3xP zO;IE_oTB&d&bJpcN72>?UPfx!r99qKlwpaEdXKTlFN7?ZxzSKNzny8z%N zUa3|)pU?XMaJ$n2fE!L(<*)dJ0Kg`6Qkejj)?(!u?X2-3LT7?OxD*VA`lnws{>eD! z3W{DU#0g;RH;Q<{@i6=MfBD09HDx6j^aX=KU$N%U-LCYZEkQ@T}8s1sm{fHwd zWu&1#?)aaGM&db47$(!JT2nNonHthpW3v^|OYV}vCn8w;umIz*>P8oh;FDo+cp=|N zTeWfYv}No?*D6rScy>W^nIoTh%3w=whLzELS#5{5CLTiQD3g%RuY3rKvYxeVHltA` zr=9Az0H(>M1+eCyO$wTZxZE_Q8yMwrn%+anK=Ta5^RlMKTTD~yxjGoWIh}$vGBmf& zuzkWLrE%(ba_C3F+Uki~eP!BwI^J{2X1Y zMl*LJI{`f!d2aoneXo_6|*e=8- zYnhG)eSus3tT9{GAz*Q}#5ZD@S%R;l>0*8f%fsE=_gs9qh8`4fuTx=x*=lj|-&n-! zxiEM+4W&e_rC&Bx0k?y;0r0rzAtrsHFOH;dzvZycsFT%OX*CIpaZmtyfiVP5j1Ep+ zuqV?cNF1mok|(1KSN8d`4+RYFZgLgNFwIuVU^*Id<@v)6qSg;5pQohTfm5&a0PRE(V#!>;y2`EZo z`|X&N#^ZP=o6UryZu!=x%x0%)(z4n15%~3xPH*N*CYiRIwJCh@A&oz6iJcASQBcaa zEqyH4&q~fGMA`dL4bI%O7_=%;vleG~KQd|@1SLE2#JVXc2yzqNcpb2f8;e0iAQ=G+ zJN`$BP@)lhaHBInIY&fkA<0U{F-p_605F2CTO3H^3=$PE0USlr#NdSIb^ojpU&x!( zL^KsGVfmG`B_nxfU;)hg13vRqF`E>(0+}rl`oZ|4sNxpZ%)(2q$Vw&=8uipLmh#W z`BP1Rr`p$AS-mLZQ{0}+_E=Pth+J83xoeuCa<#3?4NuhbYq`v?vLOFf?{0sJzN!A2 zimxhQe9BrP$-9y0G-us99=<+e)DAB`1>;7Kodwbu!zmr1m)E*&@Ob0OlSm zJOKe1562Azbp@jVYQgIWR?8#V|=s ztTI6j`pzLtCo)dTv@kb!TE#41GJrM>wyTyj*>eq1{@)Tcrnx{qB4-;4a&< z)oMekzujilj`xNz^arc0+ul32}zd%9CW=SN^2J|Pyw@_i0&LL10%$dqwTXV8d7*RNLjFlAjTtHkwlwl)_Sim z=g*J(r-$9m)q?jlU@(W5NMGikSxD9ary&I~Vh%ol7RVF~>z8Vc z^J@JQqSBD4I%jq79KlV9JV!V|0YO<@b>G#z_jUJO!+T%zaQ?3Dzqbqy(hKNpZY~l- z>F}HYwvJbv<;90lP&rY+f`1EOuPKwk?8X9yt*$*~FuSzKR8i+aQT8kQ7kHm4&I_#2ey}&_#f_le_BlzJ{;>#^Wzb z6i!wwSe0zQ+`{{m-~5z(Rt+y-vGW^c%okKg%(?;giK1OTzZ7@#K4(8K{l2;b$j@;< zAzuahE+3rrlSl1)e26tdk-zup)q~*n?lwc*-ZXjSiFy3Gg}A@T5O%Cch|2~mrk6G0 zyxE3`?K;}5Lay3HY(=Naen56OPoa9H$+@`(Qx^eP3*zDgFrMnR=Yj6A!ZWRhGc~Ra z;?^o%nf=`~@d%f4&;(j=tSQRoYyQlpzk$c8HCkVB4jA<9w`%mF0x8*| zJd^CS$5i%E_ly$2Og>Ww<3n5bnkHyAh!>IDM$zyIgInpp}3%r59=(g22W6@&cE5?@5HR|7RO-Ozx03#Ogzh6Yai z7!OGOhjSnp|8@=<4O(G83jkUm->;Xm$ZN*lFMfLZ<8Ob{ihcY5A;-bRVLKqysn zaeuqMyIFB6>8K6T%s-RXJfW=wHz_e_n?;XF&I+?_ic*+9(i|5)ZHK0L7F{Y&CxiJ} z20qle@E$R2`>P3iVA!f*TN}1XX||83B--(B1^#j##9>DE+-MIjOOO+3ZLghUIPa}r8nu+uUi5o7S zY#y&T?^PTNdaK^|HUDij{GlGdZzLbw=2@7X$L#_UB3(=VnF!pVl$_W;1HgDB?_&@* zN&?u63t%t-Oj8avMFW$Ldv=;$#?hjb0G2QJ3gY7F7xE;z!aFER=!d8MSr)*W+?HH4 zj(+fo05)Z2Hh*c_ndlYw67Lf&Jflt}?uzyWdLe?de&yR5Fblv;K2y{(^Gs_FUKKg> z$(>7F>fCDAIBiS-1IcfoZl@0wK$l_BOK_e}%6?_wOnYYwS3;LxWzSDvb7}# zliu7U64xoX`xT6Nf=>~{OgMA6=x}K6b_rO!UIs$kbp#R%eHRkoE|(6iW&u;p;H&E0 z+I;SAHpzCI&K8ioH7WNBeW8XuYFy@TUwW5jq4B!Xpt9un5C?g8yB1WknHbIi%%h~K zSJI`055*WV2Qaxyt5Tg1_tf`Fynh$tbT*8K9j6%g z2w>=7eACdWMs5vU9}n7p{`Wua*0azpCxK+|`7qla3bSc||1K81c}rolDV&PtN@=KJ zFr!|3S1J8aF221ezdJAefFl@Ob@Pw6YL;Y*6a3SD+nf7_WQucM!}FNNbN z;8}9!8@6LhKrh16TLGbdtE?f58ab536-I2cGPAsGBX&EWa^8fcJ<>GjFba66K4NxI zn5}SBz-%>tL#b-H3kuo^+E=5ruhDBj$XcwXrme;$WvN_WlFzw{J*BU0V792%aKFN; z9VI&X!jmWD!SP}QxI6#s&7OS3@-YN@m-o@?AqIDMkLGxFmm+R%n^)J# z+~cmjd@ZxAbRG>Vi`VmK* zgT5fKQ$KIiJ|S=d`hvmiy@L2-jv6>wPP>T1ZnoP9Wv{Q-#4U|AICQjLk8W-@1S)qN z(G?4!xE+DJTviB8jB@~ZcbG5*jf*A$OfcYbnNMl^V%n#JJ)jp&vh6hh01yC4L_t(e zSg)N8Qpn9_Py-HKr*d<>|I2^hb-<+2GWxZ zws9sHFrykKec3IA2l3O8w(zFULN8=@tdT}8;+KE>{Exr+Wg0lKSI@$FPuCR6muspV z^kpR&BnEfai?&%3Jd`nX)+rH8KI4eDZI>0|L)*tIGfUd7E&mte7NqbJ`cjuCilc}+ zOM^G0IDUp)%)lD(^W)yG6Q-pldCZ?P3#EJ~%v1xwtO_$7on=0yur?xa0!B?<&FjYWSfZ|KPXI!p^xwauLMmj{lJWj*{vr zfDy8p(Y^4TbGPwH=9HoeBy1!2WC08XOaNOn+7m-uQe2TKo>p32HVi(2tNALgfX8iK z`n0-i0SqJ5CP(XzMH2I0fD=E2=OVZUeFiZRrDr^-DA3c zYF<8S+@!}Gy;s-3a1$RQt}bK2?MP z-zC7fV^T1dr<7&uky=Y0_Z61tOCa0kGte+XZMSO0|IIfO6hTd$wH;=EG~yb_QD*_Yuu z>sQjSHXpZFv)*Pgpph@lob6UYuy(s0=@jqe?rwKH&TenlP{4~t-`09@T&xDm_3-}j z08NZXNM&il(jj1O``PaXhy9S%UtS`+Q2E1<{m=N3BDkt=(o0)Wg8+sCzQ4N!fFlTA z+)TJd3t$l0cT0#k6kiT{TG^&5#jx;_S|386`;jCOjr*rA{);1kGj@xRwm>hwV;ip! z*70M}oPn%_nos%=!TZfT4jNh5=%&7GWzfw?#`-Gn-)8$5LUPf1V*&DUlGXO;l7(#F z26*d6(A=Oko?s;`Fbv^K7=yUL?Q-5h(5XX~3LnSE!^jlc zbxEQvqssKK_A#yS-zP#dv#ravZ}~+H2aQ%HmK~>ilk&pw%NAiPg}+)eY(K>`b*~qz zr*veg&!J)JZ|iMI-!8nd&1P~qEavl`Wv@=1c| zv>Q;F4wzbfU#)+1{gN;15M*BkFpOU(h+qj|xcKh8@D^$qnz&qr0>*Dz!SRYX@*Ko1 zH{KO%Z$$?;-U*Kz--E#==wSa{CH$e0eguPq_NOrY?2#7tD-Ckj_BNB>Cbyh>W?APcE2FnRMVt#_ zud?zu)JOc&1%;gD{VHCe7i@lVR}cRBG034CAcVUQ;pQ%qxDOE|?%_T`9PgW#583`P z-904x>kM&um1@L@!&NGA)7)Jphhqrn=8^0V(QY4acMo^ozX^i{(zApd7*dP-O^xGAC4QHUb)%2$l8T2MDWCc{GHF;)g}?= z4J9QlA?*S|@p06F9}aX&caI_&dR|;K?|UZt8IeWa7663V1vU(xe!;pJdN=SoI+;Ywz(Po?y+#Wz*I;V9zt1 z$GMRZUyfh9eyf&61sZV}0E?lO&{tjA1icKVpaEJu2>PBxz|=IoC&6I$Udh%oTw>e; z1Tk}5o>%gH{Bc%;prY<~#n2T7s|%xyMnDoB_p`g34b82%J&-Pv*27udtmgOkdjRQWpeYzmqHo{VFrZ7C(0&INVwgM}Cc zgQ0+LZw>@-1ybHE0+7z*Z1*L=8vF<6IxNnEgIYfb)B?P1^1rCWh&33MniSToVZ#3ue<9)6t8iau@WS zwPnY{IHpb55Vx(mAQC@Y?RzT8pMZ~V2jt5?6THWbsf5;p3zZKSWhn-iY9A|-qZS=3 zON*WNHSZ%7DuRjVQvLfv^=B9Lw?*e&5jxm^Uk=`a!ESUGq%tKOM(0$JG>N4Bq*8F(!cU+t%W+e77vek;>ql|fY~lB$<#Ja90qnSE+$xcz2J@7& zrff{yGBwTGuxebWXJ}bVTw4-$Aj(|>;~+d2|7Uh%#Z^dl=yj;}P`{i2ZnmqPzHVk5 z7}sdyht)3kI^uJHAc+BB(6^bgMO*-^hFOlKujZoNd|C+@E@d)fE%D|Qx~DBs)-J;; z-SwCH=0^)!m);truNB00REgEx)9P$aT)U1iAb=ImW?`_3V55D%%0)BQPZFDZfBO(9 zWesjO_c3C36Yp=6<3ozLylWzEZd06H^E}p&R1OAfnizio1h?Rpw+W|DITfPoxa@*IpDE|tW| zaP0CNAtG4Yte}Gz3zmlib<&7!Q#8dcJCJ41!NBFhK?YYZFe5#ly5R0&6#>9d((|SH ztfjBEM%TnqOE+g30IN`DLp4Z@o4YVLQzvmZ3eUa9M*z4T*CVIUDF5KqK4eLeHkLyv z_xf}j7hjIC85-u~5`GaoX&C?pZs((r`xRz5ANYugxUxA`1XJd642kHa=fg2Oa3SUr1-e<`Vh8z~yGV+m zl^Pg{nLYu`MTGd2h~w*(k-5kD?fniU<`@#xFi3oTy*wPIBFK~q05GV)Edp$QW}cQ! zSj^~37ja)aBk@z!!Q~nl?77vO>;0eq@}F@MnHsRLw${yLUjjrbv~N=^y&Ui|(+;fZ zFk4Q$+Fj+b&6rMD%s^6SxvfN z@D@_C7t21xftb4yr34RKlc;@hb8~mQAefz%R=Zu6H=JtMt03GVf?xy+T^7l)`lXAdKzG;YOoi zJEd)x7Jhs2%4XH{yu-T|7T1}R->9{?blR(<)_T)ht~$8$fYzrD=8^5__!4}%csi;m z1Z-H}1!bX+3#Iqxg&!`85|F|O_EDE=@5}WM3@G4274-f7qVnCR>UUu9MdN#o?+{h@ z2Pga(#L%E;oU-L+C(iz|3!3vtWH4nh=o_as@!wDdYyk}JLJHHGBZf5WIbzz?dRY+x z0E44YrR+>5)Y*__gseiB|59euO&(ioy2gh~m9Ejj`iO0i2GqN18HRTYz0RDuSs=k_ zC}6Tv1AS#ja!=Zr+wBs9o(JqUrTH_C(6yW@rUzL*3hb!!pvSdxoLOSZ8W;wBA%fpn zpfYvLg}5tat<}5v08(R}Yu|i#{VPiiDG8r6WZ6cl(`2&kv9cd3S+xxOP+#UXV1DhZ zRxC|B=fk_g-R*sh*xyMUZW6@RZR`53ee>A9erVm?O8~tL0QmZ@yFHjy2OJy%diR$J z=)2wp2+$YD<;KfH(90At$A@$?V7yyJhmGtF+^k}5(AzDN?OZnd?zBB>G>}yULv=P6 z216qbJ-VE?I_0cgLiD8^D-0%v5#%l&BrMsttoF+xb*e?LZN)OVWwr7EcX90FYsb2X zcMcc_6U{

30D6TjkIZK9mhb3u&ANLCJXB*?I2!mXsxGQajNEFD~D$s0IK#m3IX2 zc<6AS5`sQi%UMd{%jFG8c+pNu5W#f0qSeN<=g!sDnblv)Uk)ANq?gt3AV+>#c+R3S zBk>E7d!7bGB7w%UY=oxI0FIHQxo}033xRC>)g=TtU(C8USF5Lo18916wc@N1j({-% zEY6WKbTm*KjfFm8{P3{j)+5?(;K;bTS#uhAyA=mYK$mU0HaiOXf(kgA@n5ag;UwSA z>r?7Ui*o7!z@RKZ2mn7l-u%aZ{yPB7F(f>Qpm!CBOZkgW#v!h54x6wjf@yli{%3F( z(B*g%G0zRepl`3~W?=&W)-8t~8SK?cL8H=)Juvt;|L1T2>36^Bq+#e(32C*JZg4{| z%gnfqzzrFWx-eMxWzEf4Fc`dD56A!(eW`%iki{*E+Lk2%9`*1(qfX*ZdMW6;pZB)o z_M(^2YlS9XOf2K42bqgtGw|^+y1icFXU;}wu2DMdrrWhlb*m{ym(9}n)|}+QF8~>= z3k{o{R?yCTYGOk1v@?q)(f}|q41&@}nnOqG;PI7h)=Qe2eO1gtYuEH?i}C~!v{(L01yC4L_t)1 zhvQk{XP=7SU6kJYOJ&;4q%Q;M?- z96?`QJW{9E75lTeAyPwBvaZXhk0zc#bRH^GWq4`6jAzibApKI-B~5g07)QK4JON*b zSBBcg7vf7s`Oq-ipw_Dl#MKwCa}aqr@_V}D2){$F^Ik01^%vc5oYzY4BCm*Rakccb zM)hr$Ua%UC+lx-KI2kyLNg($h(?kZ7w3G{)Hp9Z8UFXb_n01UJpce{wDLf84X$8R! zEL|xGjawDboK=~jW%-$F&JcJ5ki4{2k_9Z9)ArnqKMX(P+CD0B_Yn zf-sQIpu>pyXIv8zfG)0sT4Z?;#5tX-H934?GtvgbQ4RMfyUpad zpRX2!`Ls&_vt5gewm2yV5xm*<@e9Txu>e?Snbsjc6sXrQ+qo!6r?N2ZE} z!G2Z@+vT+HWJ59VYPQ9GGSvLDq>-JEIAJZBLru+meUpSfV$e&)uSO!wJUi|gf@4K5 zUL3h$7I!sDkE8;a4kyMt)4eddSvMKy8-g3Mp&!WPbLUYDTc)yL$-s0PtOMxRt>nRktlb_vRWXZ6a=OWJX9VGVZ(gcO5F=oBJN( z_O2^&-MzkS@3$?40r0VT*e9E9IA1tA7Zj~F(P9-$m)>~pj3)KrxJG?B)AdAi|p7QA$T=Av9Y0#^6I^}k|L;!O+F40T+B4~gm$FZwq1uPvVtGNygM*xypYd};H2;42=!1#WMn!b>Exo8L42~f;Q_eE``$6x*Oo)*y~E`FBpk`5veBAL6AhM zfC=EAeti6wfBokm^lOa^$15=fO(PCy-$w1+cT3z$i1W}bF}tqANMbf}I{wQhFHZ5Y zMQb){sV#OLWCi~59yl8fu?q(KPA!f6G;$$=|M>gA$4TttwxERXqL}w+umxZb+U{%^ z)0R@{+gvZ&Vi2uuy6l+(XlZCHlfl}CW&x~;XzA<5KMf2XcN1l>BRd<$t;3?fgIet; zoJGb@Ol&%It{Oi~{A@vA$UB^a#H^3vhmRw^5ybcH^;&BDny|Hwm68V6BsrU#be(XU zYFL&E=Y3M9F)DHczm5n4v9)To0zev4m_qi{lhW3MSsNxDS;XZylQpwk>gEp|xnYUH zb}(|6iD(O8_VClsaV6x zE*3tXe|iT1zkm0$_aDCd@bUW(XFmgae|Yyd-@pA|Z-4mT@816m3`V^F^f#aWA6;+W z<2rU-ecvze{P7xr-F^Gw)*xsiNQwdn5gbHN6Es3op+?m0w$X`WB%WZ$ZNzpA$BB{W zTR&^>b$CjBofp_3SSpoDrIPqNYoEQ>zWImi-WST?fB5412mkQ#|9pA-gRAb3+TMqr zBdxp}r+6|m%@wIP@mA7LV! z!F+CJ}x(gsdP;rk#d*wcTZmrfm@nYvCL{OIp=`Y%SP<#45G)o zC2Ig(|O+p1hGx+vg5X{`|1|i2YrjIm8Lfc09b0K76U*uucVee&Thb9oQ$V}TdPo+ znr7fzlZ9W++;Y;#5$9r+wGP>&L@A7;Rl_*q_Q}Gn=gxFFn5_cBnB+!)uK=)=NiT=M zCjm^-PnX_m7vg8r@|NBmY1WmFb@vK{bGsh_U=RABch$Q7|9b5o=IN~zV^45V?oG%2 z&j1X{&P#VzI8eI#MN9xg_~Le)@0Q7NldWeF$NJK5k`5bCz$_pf>&$R^wBmyy?E(6! z19z*!v!3akNGdB|oi?gn|0aseqfL@{9G;dB58IcQBU_Ac4zau4R)DVR-8IcO#G!YS zzr1b_$9ldy*(1FzHjNB~2@XEAiVV|6f?F)qTPc343{BIfmI zw<<5YesKcQOV5wid~q9?N7haw#1%^c3?BRa8?WCQxYCleT}}V*fB*ToTjF+|T`29; zX1wFD%Z=nojs=!e=N?ng9GZ04mf}*Wh8PgO05H??Oi(lb+%PymFm28}IUW-)#k?5q zW*Gpy2VlmLzse)7$k?X&ch#!sB0ZfCf>-HBohYkjhd)~*s ze+2-${`IBTBl~Ki@H!IPDQzOs;%5LDC)_GBQy)eWL~jJ)o42E^ZEUB?9yym6{VazL zhGxBHH}Jr_4g41UwrF2v0UYUcVX2yqj8(OoUcEK`60{sGOa*MNAzE&22562PJTi;0 z41jTM8OY!YjgPd&jz%DHTS9Fqxr2K-+QCkD5D}bOV=U9QRGC4-td4f<6o+>kv$@;j zaNpgx{k=>Wbef^RZ^I94R@rJ?QWgNV4F2p6mo6OK8@5&(ro#Cmj5D*2Co)5dG~rD2 zLimdIeUKg@@Kq4|FhYFBV0`)Xm_I&b5V#U|83VWleGzxZ@o8V2cFElVD|e_^$p9}z zT>8611O~6S0RRm2j_bB6U?DNib$nwFYLy5iJ7uG{>d`H7QUf79Q?OokNLjED0k~#G z8#fYu1SIajY%_w826Vwu9HEZ^V_=x*t*2154&mA;V>Rw*0IcCdSW`peZgbfimM>>B zj~m8#s$jW*e>uRN0pQIcUTlJLf^|j@ILG_G?|jkkzQ?=J>3nQm{Rl_5d)2x5VfXe& z#prfcIfyFn;0O}0=Ybul0MLTIfG+5}n@0%Q^ex@B()YB@0bq9e(q4lO8>Sq(kRd!Q z8|JWXoXgx5_12;GWoH6=2Bfr7m#bV9H;(Xae2{QCriTOgdVjz9^yv&0GM#6Tvn*!8 z@$qp39&_9;u8$xtR4={qA(Zh`yB%&>bJKURDv#&oVwEF6Ux;7?{hzt-%S@mK=$qIv zz;6s_x_3n4YdYFYViVoTiu(QjRjc(SQ`3;eB7Zf2;rAbYaDDql*S+d_*B$4hI$6F4eQAObgzYdE zL8+EfV)Xb~;6~Dy3OJ5?qmk_I%4|d^&fGE6cE=J)(Gd)nT?9@>r7e1L6vHy|fkT#9 z9*EDltiLbJBXO0GLMok(3<<#wpI|7}(Xs;25y)UL77C`csHuIFymSUKuk~$lznXC9#hn2JupY;tFZ*Ey; zh#`*esCRcwm(gBZcx@sYC)^bl!>kK`N|RVtk7x^Erl3D_#kvIWrPtLZdZ~T2u-QL; z3T+U&2yu&iO71n`jG!ac!+rAi07l^U`@5KR&fuZ7^BM@Fm=cw^XnHqh9Aryb=5D5AEwOIyYZ-Z{N4C|Do6VB2R80 zd?9}U;Cbyr0TaMr?OFkB#O^%85w`%qYxU3CF5>-aq()jpT26A<5sy-hr4t4@NIZ#e z^Q=qvRJzVe<~eF}?}zVi=|<43lvxyq9V}y6JG$43Du`6b4xkhYSSY)xz)_(0c$`55 zKRm3D5EdKBGpixxV%bdQv7(tpSnN9z@96FLc%GBKIJtjZa}N@vp^Xu!V-+xyfzW>l zx%w|tmJmyCkM_cH4pPv+K>)!2^0ROM{O3OphhoIhcUqSKhW5=yJ{SxVLjjkPa|U7~ z$>NUV$2VI7pj=3wp`&@~#w#h=e@NCwTDq)%xYlF-fY#E2!_ zc+MQo2ptUcvMg&2TxHV2gdbr_pDLD#efmRzwU75JRzxG79@ZR*fpdbEWnBDm3PIT- z)g~oCOZ%omc}bf-B^j|W=!3xsQNv!B7zPvpXMs{f;YTHIBs$rbt2@t~^kx4bo@^5;faDl>YV4QGRIA3|Z z0-sfE$=V1jq1*=-0Z70e`0uo@u0DPN7$ZJj|FGTtz~&{#xyG}SSq@D(73dp}Oj36k zN>@@C0mE-YlMq%13w`r`S~yuLW16Zu7*~U$a?9GwYX>o^`$^SffX6b>Ndb&Vi!PJf zR;Sv6K2~WlfKpr&aJirn5N)SMiCF=#g^8|P%v~F|%fS_uG*jFxfyR+Tj%inkKO~5* z0bm3GtWwzgnL5_6rLG!gsxgJNH6+OrFt}@H6xxYNOj&apF;V^QGlvZxK~}<*hRgu) z;!|h-+D2T$_5TmIm&CRHR#N$V;a3IXO2S!7tC(#*J_m@y>k#NYze)=)6V4)eU(%Q7 zRQ#FmW5nmgJ;xv}0w;*OvrI%d9V2mRJ|*Y#=tF2;u3jkC5g1)$g0Hy-gZXzjZ27rk=-U6kI6KY(_UzSAK+NfH0VeO5= z;BgmBg)l`x#a6REpevbb5yT$Oi@JjwfmkvacgEci(64}Kz4XU(SAWnYp_%BW@+N?{ z+gN(|+)G)qf*^t0& z4{yQ85?9sN=iR55J!_tE1!Ni-Di-n=BA6AVVDtUGF~Gv*OglhifUDA1+JYaOj$zRE z_3QKF^PW?W9-p_=z63n3XlzKu1&$~C9l#)p4S@?Elple_3M{E03))i6G;+b4(7o|G z9}&3L|MD0A{HOo;qvyLl=i2T8OApde<^dzvj3n|mmm!0kaRlxzrz0iVfYT;4HEj~z z{6(ybW+oZWfzSoual%qH=wR{kbZ?=6^U)9@_z(Z~t1645fjD1sPB3CT5+g~_m&ZjN zO3#=UOaaE?@TG$brQ};ZIJpN2`AZTQ8%35z(`icqjOWIjIZnp0Gglofx#(pH*t23B zKhAAtVi@N*!HVbZJe3XjhqZOcqW0wgCE!`q;VK1t__Nf_n^nPXC7r)iYKc=uX*(Xr z>1a3%9MA3ax;NS*WGb^lod^l;;-1z>@&dORLu;qg%cf!8fjMe`lj&&dx@CPla%Ev; z%7)+Cg)N3fo%?O95{Tj5X0l!yyGnLmne&SmivJ7z3-E{IMbHIeW*t0;XRt6YTnKSQ z5)ZK8==W~Bo$GG*Bcjv!fFp!5RtBsz4#Ms*>H)w>>LghQa!|M{3>GPD;e^}cw3}o- z1n4XMMHO)C789?Y1(W%(nhprya_S*ugrW{oD<_6nY7&r zrU=Hju-;WST(fp(v6bDZwg9$2#X@WGz;Zq!aNT1caG>^EDs3gR4epY`ieZ`07(}-+ zwNPujSl$2yLHfS+JyqSLxJO!EdZB|2fY~ej24GreSnn#jO9Ho-bCAp}8lU+*|K0xX zoAIQb&2YKaPa2Cn?lyT1PXXv#6wsC(l^N0Xo#PKK$ zCWZmv<8idx#CA+xV|n4xG-Ik`h^k2s00wKzrYsrgMWp$SDRIIIZtMWPNqPg~Qrd#4 z_%a?{1HiJwsshwvm0i=bVHrQH)0S|u-o~p<1Q|Wbu16`}QrAr9 z62MTv1n|(gE=Qd@H|RC_=S7S-EE5FN&WtttjLG9 z#bTAOadn1Z(t>9us5yz2Yel>_KO? zfF%eN!So2Tp3-Eq+E)iK(1g;s zQPTfXJAm;7@H7ZuFZc?G~s`s<>@@FS+QW*EtSbr^DMq(TJ;%}e5{Y$WW9vq$qrkxe+W-ipB_GlQxZ&}GOVUNMXe2;k!(-0wp$7~DM^62xvNy+eR5gs+`bJD)lL zuxY@(U@+6mfZ3=Jr3=>5eWED)ITmP%Olig)SU-gm-p5uT6TLS7%-e;&MSD66&UZCn z%oH@4s&EytYXQs~d6dMmGMFlv0EYag$ZucZUfv{OOxJb)Z~s z_cf`EI|JDJL$z9G2%I2*VaVUZ-jx4vU>|fINW=L>G@zJ|BPhseF-!)a@2%U#a=ZWA z-~9aF|L}VP*wyN2(2>=`P`y(B?Dvw;gASfl38Egy_|~M9$JbvW0ItfAwMAtvkgjyF zp!KTck!?sEQz)weZP^lIEL_>08!#Tf<>x>9_7C6vdYneWV6P4N%Tb2okp~9XxrYFK zs|*XQXfq$-D1#&Gp;Tk(7$^{z*LoRQsBR?m&%#s1ih<9B@|OVSjxYVO@iqhCp@U^h zSamSIB{Q8gonTa~qLg0}uK2&-YgwEfB}7+Cd=~&_b-Ha5v+iB=(X7W3Y`wLUlvtbv z3PJ)px=4aDCWdi4?ncqf8fgSh8h=Wukh+}WV3W_1I&K)upqG{=t0MrI493C{m}i?Z zR{+dH^W5pTAX2G@7mHHVuuKpsxHoM6@P@L~yZjg6#4bc+N1W3g!0B}c3{S9NDxrgY z_8;Q~!FrA@a0Bla;WZ(4H`-PN4AWsF9`$XNll0DNKSGl9@n|d-EASaF2Lv$Cs}TbH zkirN880bYn76ZWf*n#|&jaAv%?J0n7hZkPcthy5DGB2&08a#650gp5TF)mth+cqN+ z-qg+ZJQ!F9X*J2x%4afo7++s7_=D~We{TXY74Rj1ErXfT<8_SrJdR}G<{JN;ca3>u zzv)NnT*_It6}>U|a<<_2v(2VP`fYBY(ZSo7K4SOkNGN*2-R+aVe+&@EhY)cVE9L}x z_wgyE2{VhW*kZ)eDsya_ju*Q4SlEpLfoGLPlWtdyqqwcEfXG48xvhlf+n zj4^0BS%9N`%`JBoz42Iz^SRG9 zBpP0>x6(SiS`9WTg(ow!8x00i+1Fxm<>Jo_{adH=zIzK1{KJ0hhe>b?h(fbM$X?PH zv0Fvj2_2Blo5hep4=e&0+@-rDPq+=NhR;KYU}#^wL1}27#;qv0Vt~i^7Q0IkxVX?} zmPJ@xtFog2>;!}9CVZN7A#;B)JI_q$(x_xs;@zRO_@G#fD(*6t(UX+s2aG7>GZ@Lh17 zMOEw@7U7!*P{3*jb|b4O&3iNDI~|8gGM5gW2=+1&z<&P*!9L^lqW;@o|8#%a%5U`A zBL#4k21G9%%J5&q`JxU1;MFw7mu2QGXE7KoUA(&Uim)OK0LJa0FWoV%RR}dYQ}jiK zb#TH8ZM;6q8alWN@b)0MB-(;lScHe19vLtcw+YbkEd7Eo- zmRLz|3mIs*MsXK0%3M%3%RC)hBoW5_1UM{*S%KAzgMbvSCkDW*PRB1bfATb}H6LD%eFRRJ z8&8_X9y_*(O4p*76%{PAm-hNxN=azCj_V2DNcbFa9)sq0$7O~2!joM0}8?UEC7IM^jK9r>DDb;RoSk`9qDi# zx5t8BQM91%D7%i*j|dB3aUIiCZJYtUZO}Ixw^+k$EhlX+(4`@UE!x6^6P);Qkd=y- zI+*!q^JtaUBPd*TyEmM#ht$3ZmQ34nEkas$e|2$CjvYa%mSWA9K2+~^AA`92eM~3L z-A>ZZTG8z>7cJRowb`0r9hyUaId1nW02ncFKY)cCTSS9Nrj!v!Sy)0JJlDD&+i^qY$o3A$D(?1O&9c5$^$8cW+_=U_St|$@=5n?+!bd{^;m`y z73{gUP#Czf|NgsQfA`&Yp69U$Yv|pm=a&>Jn{HrN!|!=+$LnK(A`DIwZ=3}nC@_o@ zTsm3cs>6@{NfpxciU7tl!4X1yInBUb{0QAVn5<^&5q=Q@+=U4K{lEP(O9HQV9jSeE znTRF*feFOF2}j! zInSXf^C5mC7`!$NE_btxzk)+1L{cwDY`>xV7^evVu}_anj-_J8mDvbdRp7fUj$_jf z;mzH8)<{cTQW-Hg;0R)u(lZJ@?hQ+sv;vr;g>g5y<6aq5RfwO`Y%oVVh=(Op;^3L?!nSN#mgjd}uhVm`+uaXXAK-3SG;B6PbiC*B z3UL2hGSb?WXH2&B1zE2WEs%aI+TxOts7cWf73gEp&?xu+=4l1dSbHJF(Uyd4# zqAtWPSX)*RBOZA}+->BgSPo_bED<6+2p*wuN!AM25X}!UrW#~0j||*1(v`)eAg z;x_BftfLkSwb#w*RskOXd>B=DY8VhsIC(t8X2;SnS#pK;4UkZ5gb`X-D&+aY%}g;Dh1Lsq-3)Yc$tkw z=}PCWmR6Cbl)U+*m(|^T+%Ie9rA6t2zLS;EH=lG65WC}v$6w8qHPh5wD44Bc9l^9* z`s+0oA`yF9z(DW3@~5S{s0ZBH zC5esMWbG~{9>)eVY{9c|xAyJWB|Zp84YEmwrvI~g0Q&AX88B?h^fOOCV4+?S;%PnN zg#aJCOqbQTY(Z_PQ|=g7A6(sLI+cB?@>c+?i9We1X?2yFa?I6>qdK2gIC47S^Yej2 z8gS9vY{tOt{o@({uBS1R*i1*`c7Pc_KA)!mFzAcpPD#KbTU=TA2?U14$Z1)KPh>U_ z)jKxJbD1#}^<<`#CVnBRpn!k(-M_h>)9c@|4GHp8=&O=fRIeIF#*vRZgT6%?az-Io z)yyT#8W*Y%ug_wZiQNR)rf!sM`{8s#HP-Mcf@S1`dTE7zCvaO_5Dfj^Vp{&!U;glT zw;%LncY-h|% zr;dJd@edUr=}8I(v&w8n22Zo&yx1?&#aP;_@EYO*ieJQZH}J`s_MFxy+*Jz>;}5Df zmh4C-u&K!H)t?$&Ag#5;RJ2SlPcQ7F)6o#?B&Xl%cCKlgB_-3%EC;~VRybewAmOM+ z93`-tWs+M4ZV6z}S{s6$q8MsHwE!D$D$tr~TLh@gpOOlx#HIZ0_pcG`P_p$|xP{Xl zfZ^kD$v1Xm!zl&Ncwxn-OtFVQp9Z2frO$i-i)fUW$Mdz!Z9 z+s`6Q+6eYCVa0EZy1qYwn0v_xF!(bCEPa(p7td`mHMaTUMp^We*cfsNfK3OH(w6|X zy7n{G`}g%$p9Ry@i`V}ArMGx?mM@^MhX8R!@}2|4Ndp8$$R_UJ>D|kQBCCKe0o-7C zr05M0o2`#nZGCZ+)LV!d@`eCj$lLG6^>P}v@F9FQZd4+PqkqJ6HEr<#9B@Q&tk`+(|ozbYv?-}aCk82 zi=Z_*R)Vu}08N9XD1s%>fG$Naf?CJS&&h{cd=$(kDJ}}Q5o>c$eDCGMG7M&h7<$A;JJ)z?kkF^meAE#05nSeH;W{BE$qrPFO3+4DJVWKr*K~ z`u%IW*$k!IYkk%4ew1pgp_|5ofBET;|NVEr0_h=$(+FBQVE&w0XaxRuoS8xGi;&8! zN`^_Z?|HY*w=1lrV%~^=3SZ4qieLbkVoQ>T&Ddbjg3}0qVUh1aZ;}S50Q=36LzX?Vi@U1~nF{W%-0)hmi!+RQ~a63{3=?vD~e#8NYcND8ExhUKm> z01Od~{}dRE0F2qN+tf(+($wcj29{zm_@x#W$orG;Ri>jk#Q_+$9ZF11tA$p^py!6x zXGJ>bFwll2CZ(?s6yhuy;}dhd+W`NjDuEh49TuBar6$<1oen9j*kBu!sJ=__=YO^_ zYy>fotSwuzDWFSUrlvu0{CBv`LEkRm8L}7}7cW8>JJ7q(z6b)??xrU)-OJ;1u+M~9 zB4U_DVYYQ@-e_Wa18_V86tML0XnEJT!WGpwe~2cc@j;U-hVE-SJus;n9dUe0{ z?i?{11}B`$dx>6xmbcuUhxd1(j4(PUoMLo1$D4gX=q`8ueB&;*-fAy9of`|t{i<$(UXJQ3it9A}00xi8f-V5qpm%hgYjY6*9A`HGEqiSN zU{KSNPs)$A1DN~4)@no4aP3h6OZAq5lU=+BHXTVNvm(>#Y1UOyE(?|CebAS?zoSVz zop#u3#D-wDA<;i8&aRjh#{<&0i$f1VT&_rPvXbeCrs`X!BCZCDg(v5g1QjsWXrB9J zzw@KO`xpgRG7mWGjnl3Lu-Z@h)oa%aiL!qtC9ew6vow1 zE1zeYf|iMdKrclwP5@nK-0i+Tp65?5JA4TMZ+4UEd<6QgHs$l{UI@Lbzxi~OvRh4N z5(9QR5I$_&2Bu=8Y6Lb|Xhr}l3%dhHOc4L@@4x-+zx@UP?z=a*hT^&g!giaZFUknO#C7+*v=ltBhwxF>HZ*dfR#3BXUPC z-&Ah^?fEoew=4Ia@lbf2-Ddpsuzq}4;6~e{Ovc!M9B$;s@LUtHoC(NWLM1)E2Ed3> zBE33vtYok7rHQodQ&Pvu(M9=Hs$J$2tOY55sf?MeVLKDy-K-!X#8X;MQU` zO5yHc04aRM-Xx~P9k(qT!|qL|Cmlq%r5?xIb$vcA_uHuydzT>>J>n8N6>lt#%8-Ka zMg&_oX;v4~cbbU`{&)Dw;2f(x$X~aAh2Yy2R0f7wEUmKG1A1|kkU0$wi--A;000mG zNkl7;MV0wdl+aKxF>erl2qPfX#RY zEhID(wF?iI0+WKCf73GyS@De)lVx@(3K>fP{D);6+XFeGfB{Z7^hTCi=pkEACU!WZbR z)*hl*^bzIE$!cx(m0e*cpO~Fs060oNio4{rH(LSWeVTcJyW(HH8ZbEf0m}|rT1x*F zo@XghmNIn<0QSB2zVlT$xK6_BGV7MP48r7qEvtYvnQTIH)ZE;aJoEPf?8&$!ZC~L4 zV8B=tGGgh#6f|LMrubK%kUbv z$O&M9v5E}fle@)Gy>~jT0o?uc=?n(T%m#%n_j)0M_s6NaaMU>2>?#Q2`$yS1KIr%( zu{P9(OHQI?cL&$<;=-64)eBb17N(}4#gr-({sD)?9;DTu{`k9J|K?XzzyL6`1%$

q>&D3uZEylx8lP zmLqsFVo|A$!U&vL(=JwJOGUIY;Ihgcmv~T_yV~<{QfI?_*sVw2YCPOd;{8ITFn(7S znb93A?gc{V35o!TWemn5!y`k(ef@fPec5okmvmuKw4GtVEn&i&8CoO76jZX8A>uV> zr|)EvR^v2|OnnyZtL#)IT6X9J!;HJUc2*MJcox9c6^k3dL^bcAGYusdOdrQxf_AklDM_&q7O>=LU8R;3`*tmT; znyYaK>C1`5lB=i#Km{1q_sp&A4J&{>@0NM#NR+Wd-%Xh`l>+|}3-udsa98rurDqw; z1U2LG7UR6u$Ymy|t7hCMfl6B#t#C9=@T@Ih&32OXX~>139l9|^A4%A z%v=T-_}?R1i^NMnJi(8Y&Zrl;#7+kjl@YtbuyaHW(lK>q63R;gPgr{68U zamZb3Xmtr%s@rB#?^|)!Wx{#=;wg7=^w*ExN>%UvF*rO85&OIFa368%-^nmI(U5WX z2=3n(F!#JClO87_0>*la?1n)^b&Ka(}z>N|}%<*E5>*-=H8=ooei~w|@dU09VYa=gp1|&s29hFstVf#IL#n}AD_240ddU;!s8V3S9x5sP>b%zEMQ@2E)6J{ z>SQUFNwAOlP>T2iEr6B2*P-75fN?bkfPeX`UswR+at0Pc<&R>?JVS#z-J4$fO8QT{ zE)+0siH5yGO_e1JtzOw&!LZGjoxT*fkiQ&O$l?^OPx0xAWpJWmAgZ*k7~NK%=WxGrR^$XMw(?=vLD>oVz1|!+EERd zAf?P=7FrFfjShz99t9m>c$Nq2Nwk}fpo8`OGa%Y!gLxX#jBF>(U;R!6AKKSOkx1F_rz z!IwDVJ&gA%`_~f%Fh1Ja_cf$7X_k3KF<`Jhi^Roehhfi!tj$ISmq$b|gC$qAg5mqn zCe^S^1+QYSwoCDmoQL&d+__}-6eXt8T`L)?p~7Es$mLWa2NFDUN2&!Ek<@m@9932daDc8 zs!ycRvb=@or-sl?bycuG4CJS@%ZQJ#I|e)9uD3e+>-}&JQ8?)VUF;pgIYZ5p-`asL zr|JU0oS=ZC@o=8>()0=ncs}pT=J9R-0E6N}U-i}yf2#}nGUrT9Y;wgHHP7r90zsuc zNi8HsuKju`W*VYv30kqf>fuI^l^AA4H0}e?PItjDfjUwb668z3bXG!7U7#`9oYaLck$gx z)!nRu<38DKLg~&bS~7`YCRmkZvVykG9W`^7)O3}15Ov<430YkN*xb3oJI|d?{PiMU z$?QT&P!qrq!Mf=i6Tp(Q)d{TQI*Af@wkURzJzn8PuBOvbR2FGjBt`mcPWon3UX;3TX+c@a?{hK_C z{`?=m|CfLLndiH%uiJQjOUhe-Pc_E?ZoPgB4CX!`X9MGUhhQtM$WU@f3Y}tvI#Z^I zNf`lk+hws?5IKmRS7%() z?PNplaI=YPR`_5rbudVeSkDsvF8m_Sq@n`eZ!0kPbeKLptRL>AG@1q-bg4Y-YSsyx zHsW1L8%s9u*oq`7X3<;CvqBV^sZNp{ton7>5x>?#5=UmFiD5cq*|uOiv%yMadqSCu zyDAJrTqpG$^>3_M0E>BN%~?!duHE=|B=8AhpV>o?o*stOTW zA|B|r?&kp39JOE%9~@g=APlaD*6UP$gs!WqfaP0Nz)zXk4_3IE(yeAL2&<-<&XElo z9iNbXZ>EA7bChRYcD{TMz-s2q*AoT`uEraEpQ<6+7TQ;`eeQ#W# z8A_=02fwd+-xAU4ssZ#0eP7)9vom{i=1)+-gVl4eeID*!!t+aVdXCQz>G3Wh(tuJh zRp|R*Hg_$I5$YT{G|&ZT@1os#2${P+_=wHk-yR0r1LzxqzBpg)Wz%=D3BZ+1OP4=O z_Ahvmn5<1Y68bmLSDz`KnH0j(*u@gm^w z)%l6iC5!-fE48a6fW>JEU?uUT z0>)8CMahdSejrO+C^<+cq&~)VQ%2g&b%I_U$c|1ijAI8P16MIzSvH%=c00wF2wZEj zGz5L8lLALvk2KFL-In}R*W+ldli(0cK{s8z)8%?RnL${W90q(mtJSksX+i$tgdSMH zu%x4(Hr9ya;c2G~UVzF_B%I}t=RPi2;``CaDXW0_!6SfqIgsMa!sEbs4m^ee)=7)v z!(3O{fBxkUKl_(|a=o721D3R&gZs4D^=o4&iQ+D_FL!zAD#ZjHk3jFd9yK1(f!bU| z+S@ZQqlo2d6+m3FfQu<>+S~)c;0gfD>4*5$G{$;;ItQMNPLh@+GmY3|-Kk{1bu-xS zy$`)B4s4)P2g|QWU)E&dD8(;{!}*N6l?)P4q|V=exmI+T!V5@ZF5sq;9gknWYH4;ZjfM=hbUPJLkK68H7N zW^wh>t2Un!r7*j6sO?OBa!*939i~K0jCX9)E-W<)oZN6ZRG9BoQkg@A=@Cr~^A48K z%G~?3glM)@s&48%vH^WTiC3u}wUvt!5WQ5!Y_hQYv&~ENL*<^a(X!g$L=s;P7Ua(ot9Z{h6{9Yz zy*Rl%3U27%XBe#dn|G7#Aq6llZt{R5na4nun{kAu&9`YKdK>+F(aXC5eXZy7tHkQn zlM3e-K-XV9dkbmv75W|?L!kHWF+1Il_WO9Xl4%F)1$4X5fm3f384ISBFvsy{3D;SJ( zj;SY*pzxM+59mD}{PWr=r>5pv%A1=F;3jUg%BjazADUKHlb&tHl~y7xq#}t& zWj7u7vZc<4Pfu8O`SpC^H2QPfg{0Om+R2F~Ax9m$;sT=(#$UM+&{I@&A~1+XNakayry000mG zNkl+VucQU0% z<&-V_A%MAwND-_SuC$6y3(dYsgdE9DHeaWjv^3nFhh(4LI_iZvzU2zTyqy z^sc~Q{JJa&e)G$p{qgs|8Rv1}bP#+@dSjJ|^d_;B8}c^^Zoxur4wiSttR86JMMP=N z;lTtju8(X<5^HEJ3*w3GN@BLqb|~RnxHEn*@@_--CL6Yi$sACqXo*CP9rE`VZ zcos$0fGw8h1;@$T}Tx zwvx?AgSd3jvU|h0kv`9yI*bp|T9VQQx4LCkqrO~xSuB7rjkGx2P1 z`xx7fan#)eAu-z)^3=zX8%&(b#BM8ma-o9@EWGl!eP1gaX?(Af!vkhs}aChBw^n$pE)w2Z9yLk>e4O)C);g^wF3KwwI`>a zPg+s_VVHi1i|f(&7DrC=WdOj^AXh<$WpUnM!}%BiM4xEtr~c-)ntA9W{& zbe{Ks-fZq5sBTLzSk$dEns!KEQhB-y0A^wstVIC5)xoQeKB8E4^JNE=jjQWHc4Yw^ zj&JZdpfVz#bVUBD(-zks_+Ln!^SD=)-Eq+=vX<0am6CZb@-BBfa1I?j9^V$l^|-i! z2&OqnUAefOt!&^cKnv|F@>hF#S>IcZq~?gDa+r3WPW#MzOQ`amR`{;lj9ch&D^bjZ zcQrmFqmh#&{VW^c@`THcXab!h%QZD(Zan{_@Cs3u0Y1ib@{{)5UCp^hAf=2yIxi2W z1u%T~uz7qG11x%A;Y$D*#HAqKG*#1gcT4rg+KD^IVFL8xC_4B-?6g37Jo2ZPJ)SCe z2Wh^s-9Qk;^VtwbJBb0GWNG=0JDj0QD+#*+nUt*U;g~>|M*Wo27p_g zufSl}y&3ATLKa5R;hA)FdLN;Tb)dqvG#9DrrT$CfRubN5epr&s%2zXy5EmC*m1sUi zLrM;B5X%cK$YO5~mIVkXU}m8uZI}f6&HR7<>pviZBflSdz0k*czejgy`dT-0o%`JC z1`cJsRpH`&vYJQSS>S#!uAaQ);mP1jUX?`3XmyXxMYBPZ)iE|T%|8LF2Qi1a{vj|- zBh1}01B1D&VXu*tg5!Fvmw5ckIREOPqm!V6Ij4cU1`~)mFh*g+^%G|sFcHlb9i}(1 zL=Ynj-B%{R@!)Er{o@$d8fmdyiG3RhLa?jsIC;s}J##tB>cQsaI$ zbICeO+s$D6INTEE3H?KW-cIMk?d_NC_E%U3a6!PnVGddVjPbR3$ zlGbF~s;eg^+pOhjOhn`T&n*}`cbU89{AlRjd9Hq+2`lqy*2az|k;{`9VH9xgr>V$O zQjk)W(v$d?in&#WAck4rXS&W*k+0_&Vl_*#R^z*!?=)loqE*~F6gl97Gq_2_dzxB( z)$}YA&T3ku9dMt%4gXv>$tFf%ZE=g?aw9U0~!2CIW#k;0`NTP9UmJ^Y= zpBx6utc;J<^8nE0asN6*9A2XxwC_V8&Q?$1`B?xgOjY9x8ZU3wo{T5D8!CN6=v~@n z&_;vZL<~?C0(7$O*Q?%i)n{QdPE4qMMC0#hDvcq6FZXDTne(*AHX%`>oRX`XzT6wW z91FNucbcRR<;A62Mg6Z21L%)1o`f zTc9t5FG91#;9^Jmh-PFkM6Hvpobhe|3T-Pzr6ehR9s z0{~}>HYhuq+y*&>FHX8(d{A70!D)r(d7W3c<)qEm1nUm~ScGrc1%MHpPnqW}k-TF^ zCmDCN#GtQ+gUD3XzFKc4ym&Bwi04&T_oz0(Z22+b2 z3@s;V@qv%QaVOJVn1Qsxb!%e+Ac-SfapqdUsRbSKF$RFaMY;&B*CnpGKrh`QaZc+D z0Qli)2k0U=E9voh4=_XK3XJd8l*=G7e)j2U%K~X=-{;r;!_(&e(b!dj=y=%Y#|{(A;U%<=4pw5>8msFuug%j2jJng?aG5lY2GhX&M zqo~gYA^J5s&NYkXm=k8PH0a2pXyB6=wq&*Ago!`~G0d%B>+)d}(U&B)BN2Ij{2~%p z<_s!pxkJpPv{l0_pN4!d^C6`0b~}Y8=CosZOHvq8`;+2H z0~~5Jwat!BN^mb{>*~b4PMVwcT*AhbL}~JwbBbsHshvfwi!V*fkb%1P<2Gf+F7v=Z z;B@V4$#EO97%*l{Q@wO2D^G5(@q2IiIA*?Y<%}mXYzy)?Dm&1=BcX4108CbG&^H1g zXZ>>J7aI@sO_zNffnLOT?I8eToHGkuEV>AYT@ZJA@E7Od>^Labl8zoJeUn=9&p>an zaPzt2CSQ7^_u06m2AQS=OkS4SM>GiRS28f9la5+i3huJ^w^6`ab5D~_EzZJE)mr$6 zZ?R4imt6=QD|~svd<%Wbo-U$K9Z!pnW;`-4yQ}O1+53AhFFU;d*gC)KB*d z=rhol$>-HH765A!m_^7#PexA7XXF3=umAYTw_gLm-ToB;jO#eWD2T`bsQ6>mGq1;H zN~r^ir6AchAhFy@(s4B|G^zCl!X0+25*Hv&{o{@ogDzSuB(W0=aXXul09rAE*5s;` zL;v+p&kx6N(8rDVR_u2mf&pL|j-)#gSXdzN2Liyd`yl(@rrm1y5PY+L$eqKZGMy7-0!J>-6;LR)pjHxp~0%i*Z88Yf}4oC({*~!-6iS^_ihb7Yvpb9ZgVEZ}GSU1?z+pGFY5E8hLEh#XpgK z+w2l%usDmv{cLKXO*OMf&;}FEB%&>)rj>`~^rer7-5a(h7*_i-Db4O-JLbV|58D9` zz%XDupBD!FrgJG~2e2@y>Dk3=!a;|ZMkwrMB8l1MrIR0Xu3&JqRnyJl(lutzS_VH= z<;_$uv(TiYeb~#EWuli=bqvmX#(RwD#XAj4z5QCi%=Hr|a8Sh4P!A!6*3HB%KFMZK zhi;3oB8;t5_z^4zu~KYIJgngcjiBvNLXLUB^$jE@eJO%%pPMxvd1oy(#C${Qs(PAX z_7KY_r$Mg|=mNJSu06SbO3n|^yD{Q?pV>H^((OLx4BGW_fY|K=)w|3*i+$CbjecR$?!E;e}bRt5V6YM{mAe80ZQQD?E73e$4u0d<~_QvLDtPAIi8|K=q15mO1w80ms@)8S}!S=SETXp?x`M z8j?4udc&d}S3QVeNMY#IxMI2TZN6}eCFtvo7EV0tASi!9-)iIISTwn4mRy0jhZSJ0()K911$Spt zV?W7yKiR0join*Zk#{wEqokFN+PG|OH|b&?0-|Cmt_c=)*H}kMC_lED+u33Cg`p*z zZjJP`j8L8f(>S=Q;zL4y%gpx7gTlitzx(w+{p=r~j<_Ps3)%?aBg#(*znp2ADA0=! z1~ZKyC9{t7wBnbC(`>aVH@gW`FQl-HXE@GxhuQPiIGw46`4^oYOiVQ;*J#ZYOH9Jb|YUje!tTCki%>sca`3{sCR zxv~fB-a5Uj<)Z%EfB*UGZ(ba?Yl^UR?i=oayIHGSyBkV7Kz#T`Iy9**3t+sGvbQRJ zlPRo|?C0sFng3RLE!h;v+fJ~S z$w;?}ihG=d?hT&6v>49E5gELhkD$VN$>tS&I!(B#2>|ni{u|&f=t}@|3!gzHXY|k_ zQbDAYsC5QiO z`-!%F*j95h6K>m-FQ;+fAIi~_ta7)qo8F@MwBnrG_WUlFdR$C!d55Jf4M|K-`S&4B z?s8Em-qGN$HWSBjPi9dx^4CJw&OtH&j>Np00Jc)wI-xS9|IW4*Njdb31kk&Al~gkV zG8d|s#Jvno?InO&+kCz+PIozk?`kt(Y&JtNK3sYTDqUk6soTBOyMXR=(P-RxS3;F8 zp=&#fSm-3B&YXs8W(U#TLM9@x=9wM3;0-h=lxUo`qLDajC;6=uQb8zZ*I98Z52du` zfZoYM>bXSh?t;lK0Cz!O#QZp1o+BKm`@!tsBj!5~vDyVoaC$R<2%c{PIhlFl+EI%9 zO~?IFDbNjzHUJ!!ooL*GNR9F<1TYM>I+_BXa!e*&k;QU?V<(&UAb$~K_1vHW&gUHl z@IRh+^F-zRHn_G7M;cxw@hzktU^AVFrv&@nc=e|U=G7KgRgU$&91OzX)(GS;D-jSJ zw*ZND+}5}ji^ZVUP=FKPyc~Z0^KXCkuRreGC}3P$ zp>?2dfKp&mGS8}Lxp4~(Bvn-ROR8SxqCsEX72e=S0O^;P{p;&N?>~bq27q@vsm8+X zM=bD9GG+(Rl?}qp_~CvoAA2+2E{6!liUe14UKE&U1#USeh{qU|b#O86@d}Hz_Q+FSa>x)WI9fG}VmPP`0(| zA;%%GBZ%%)BAV5Rs;N~8ScE056k(SDRwGOqNDKz2iI>EKr^nOZ{`w~|#_~H9!IwiC z*b1y2!0tHh)w!CT={7&!75I&SE{;qQH>EV8Ca7hf7#amKotH&2n7L?9XrM4My~4Ti z+?PQP>d7TznzG@#PGpMkvfR#dQ+lfU2@i!UFLNRLLnZyJI{63xue)=Ncd|10ZB#J3 zftgb^W)!MX?4_A&1@3OL7U@mTr6zQ&uP}Jv_e^QD-}7}%!y39~mV*N+%#<=S((DYj zb1xLRM>U~E%tce5a95kVzn8Ap?D2BK$j*JbZ+AAFV!vW8yN(u0dwtEQy&-xfI;73d`$~U+pvVkpDcX( zFwfURKy-bK7bQ4;ohxtSW`uqe)jbZYSMz)(3#Y@eLvpecXo*27tB2 z=oX>b?>6WQ2D1~XT=u|bb_o{~7XXgaw#=#=d=*C5v<)%E+j$oN&SZ#FM@I~qR4`M} zI8JJh&e#AgWUkcxmkz#_#5a)0dN*kp$7cX8KY952 zc@J5v1`g6YK`$!EU)I`yqf(;$df?bWddRYmfeX%ZqT0-DUa_+D$cFPPH#t|fD4-!~~ zg@sN!5>IAakvpyTyX^uB_|wwJW#EkLhBlQc(j%dlDt1S3Z`E2Z z%Za6L6|uhyfv1EQ)({%^Y`TDOx29OSi)UrVCTg9tm~ahbD!cR?s}bWLzWX&qFn5B% zV7156D(g|7f1O%liOHy`ich;T^+h)(D1!M`p$KM2ILB|`nMnRa^MRDVw8*Duy&z?cfb1)A;YiK zPsTcDB?&%y0$RJ#Yt^u|@1R8ftSiYX=IwUEDnk3MX0!u6(v6!3J*8EnzZFY!8`xS} zlE-$y!{yZB&1NFaRMV^;$E>tx!y6e{0kKX0G&j+)FlCwnAC2uM-EGZ+hMToqzA&|8 zo4*yw(yDvuM#)4m+jy)KmQ~f(SX3Td3+U`7z3ptqEzC}{HJs{}OFI5WzUz3Sgl5;d zPi%#+4QgKi7|`{7ylyvSFaaFmD%Z?GvN~A&u*l%1vRW(4txPJie`}7G0}Mkuyyy8oMZsx8yVETh9g%qoce71q=)~`@Zt{ zwmk_9W+7Fv=ugSrwO4L^#CYd1s=d#uW6*bgAFS?&^OHZ>xzoJ|L5yR)aiL93>yZLD zsd}TjFZ2b2^P5lx8eX%bNk$0gHvljTvLJ<1^|7Lrl{b3tXCDCIbOyvq9}y6n&7{&Q z(~hIdmZb5jk6$e>;IcoS`J=KMMmI7_I=V>!xx9l&i>^j5EBgR2ZcpReOh$SMYr$6p z(971W@wm&RG^uR-zi_uvo1SW%Dr3v*S!qT8NbzLQ91*+dsHDMr{5Xz@*pA;=bMq*; ziig+CghP8l06pKY!C*WZ9-J+Gt67TJuWJO@j9@VZKK8cNmHnMeEdrSj4_gRUP?L2x zoIFS!3E>m+4=-D-4}VzG`||g6h_0n{5;D-|qq2 zTbQyYblIC{ZKc`jqn;iE=E<3tW>VU!UbZiPwmpm!NM~S}Nojd{RidNGqy&rn(gAoytTWi$(yMUIa%w;Pz@peAM_`m*%eI$l|W4k}2Si?*&Q_LeMw(i^vAtt+i}DyEx=NC&_=k385>JuU8(6AaM$y$T^BFi4Mng8F!Rq= zdsqOQW@6df?$h)h@s8YOu(tV9^%AuA&y3KL`0gn}K>qGegX1wi9HQM$g59*+eYn{T zSK8G>??WBOD__oJjJyIU_QD^!qxTTOaRt>YHDBCvhVW$@QZ|SDmGh$)seplA0GN5{dg3FXKjdwvYk!Uzuo)Fr)wBLt zQk{B*qK^!#sf$v6DTq4^uNhb$c>Y%d|10QeU|426M7{gt{EQ{`qQq5|7Qui7y_1x< z5$Ct#M8@lCBf)xJ;Qr!+q0<9tb}zNfkGu7{!gYuH!2mGZikN~v-K{=-a|aARJng>y z_DM$&Lhmj#JH38-*}Z%^a5k`R2G8*bdz~z6iOY+KT(yt&-Fd1OhR{qIm-%<+8YgVT z!qp!qvL!j{0zmb z)&T$v(bnsHfPjON%hK@QfB&0*`|U4qGU&GvGOP(&Ip}0zk9}5bNfIlx!Xf^d6rmnv zGZHh;h^7%-1{X@Dw021`)oe3_Tz251OiK+W4=M4iD>ecG@6)8FBvTuDX^%w@ULf6EHj5>05zZOf@N>6 zNfc)h=!=&w9J&#}ruNZxegoyEEszG}Y@IU&?xkmzO*PwjN*2RSAH1pR(tYBDo$=Oc ziq8l1Rf>27u#Pb5+l^u7rRjb{YY|Fei)XAGAc7%<*Xw#V%WK*8Zd!m;aneDP*#=sL}(o()TTG%aNW{hR!G)-(U`ON3W zo^MlOFpH|Xsj}usQ+10Z*PF60I$k-3zHu`TIO;}fX=w)uN5eK}9eU13ieOGR!kt4M z)i6>Y4>jNDaSxcaffwruskV97pjV2m*w+i_N-Ghy?@M_98a+P8jQhv%?qP_~MqXds zGj<+_-XoO0BS>MKv#oZu@<8A9I^cdVNofriHQGhpVi3S!QmTUxWWIgXs_QoBJ6CUK zmMgPjnMKQFFdnv<>nC5@2}K-!AnuP!-)0xNCqJu`g}7HL4j6Mu0tdjihT4@??v3nTWH`I!` zQ~&@F07*naR4#52`0g;h!jXw$)2p&TcATZ_>Tv1M|p!@J?C42`>%}&%PoDcWGrJQR?oz9RrKeR!DgKt z_BntjiiEhW2I3U+{kAslZQxsJ*5^AlQ3n~R@-H1cv0!+`@CP4cx`X#V7<@o@{rCOO zkHCo^zaFV(*hH0dpP7P|rlY6j>3)WIdfn*wqY0-1o6&?#HWJrs+6CjBc1v{O z(1K5?g1$RepPpCi#fbS{(_%Ot$fWvdO!@*;0C4QLLRXxypd%k2j{ozwzdSzOT~+HBFbWqu2@4KZ<`P@?&bLoPxa~XB<0Y)OiQ#s!g?q+r*U2u{$vhj zV3hzvO*sY#i(vv-6tGrkf3Mv|6%w0+0g}bS%si&w0$Zx8)CYhee?zxbguQt&1a~hP zywI0j3enjIwHyJfr}OlDH)Ch;n=#gAZ0oS(KdzIW-}-7Av1N8B^~ka#)=ryIPTJQC zGL>ayJ*qet$byZgm8^cU29_KxjQcYM%_d-4VzKt>(vhRlyM-0Iw*1QW7GL%p+vGNh zuDR$TpVg(4CA*TS%kB2?<=!yP@gtxw)bMIm)slivY+pW}#zKpp@RDLp^MJMQ{TvGy z&9x4+Mc$NaaZDDsNVw9%LZ8cpLNzh}`}}v?jv(uhMGIF-^EZ%yKH zHINy@rI$C4V;!%QxLpQ)D3jRitWG2 zd)US&E+DMW7hsQgw|(+=5WZUKOzlemGagwsnPMD!5oW+yjObPS*}%wCNTH7xYcm zt#k=O_km$XvF&H89&RkR!Q>cM>%j;(EN;2ci)BPs_Nc-|0p}9TH(MN)oc0UTA=;rI$iqmSnv9%mTdaws$a9ETlQ+2wsi zR=Psp%tbH(qMacFEpnFrA~qW3d25{aq|qqr((Y4B&+HhAvV&QD-xc z@34qIPR@s#AJ?PKKbTdJ#pT^$0RVscbbNW)(|JSZ4Av}Kff{DJ@cF!Y`E+`EIY9L; z*W+rEZ1+=ecYmBezaGKhho{YtzrBC?dPe|1z6h!TU|dIVbz@T#E*TWN05C2nRKP64 zqERrX|4OCFEdKgsdv}HXG_N+QiE?aMVeM!r-ANxm-{U3i$5+=(t_SyFn1Z z^tGoG799*|e2C*n+%q6;p&H{!8R0d-Q7x_lIsvf?8gPaDWnHxKUY@1g0H)l;35ON3 zZArV5d`@VOZCIB`>Gw#3Djeje7 zDZe;j33ryBB`ul-|2S<>1uGOPbm~|~GRQn7`c=tjFTYKyVL3&IQCpk^!l{XLcA0|a zWDzVe@yNDJnq!0M8qNDtKwH}^K8bXILb0?U$cgPe`J`{Y_3~XGk#2j@QUJ^Vh5>2FRcsZV%HBegB7p=&QK6#pLaGT*H)(~!hyiJQKC833GkIF5_3%BAHOnAFU3 zm)%WNv^ZgsIS$$g=AT7e>gGD{DaN^6Jh5X~1H|RFZX9%}tpgVtU3My`G{j1@ZcPeD47X0O$1gC$C>~> z@23x^1p;fq^$Ku}aD-d~Bpx3YV6cqjTVygpOZ73^^hV$C{aA5l59R%0m~S;K6z z%0L|jF^4IEWZ*6qRrJ!L^yEe?Fbu+dW(0lN_^S_Svdwxl9v$Q^yM`Ft7``<6xTL!# z%#EQmW%00a^=h}j0&eNbLha5WjMhjCe+8Z-7`$GC^rg*#3y;+i+U&?S_S#I^vvt?q) zF4yl)4}-g>p%C{mJU=AIyXf>VB!dy4uedkgg`h7-1RnMt7`)&4$3t*B;+9A^fCa!> zX%*T4j~CJ->x%kRTSU^goO+0&a->DI>6WooyT4BhF`(`{`I%^UWcdUPJj)9rBbORN;>PT{aA~(1OVOT-ovrl zI?GeAI)~NCli}L4S3icU=Xi0EbaBjg!)(`2H{EpEAFl*}r+a6*53;qBRHNA; zsZR-0(9+mE>q(!p_FWs4)t81_*o1|^eVA!4v?h(`2871lW}<@G$KBlU6~Gwhz+L8? z5#zd@EjvKpxV*z_#2+3{leaHRyqAOim)`JJ#EhsXt{4oa3xpsLvgTh`0gk+JU5Dz| zYf5oo#kwNT9tY7SOW z$^!sA9rvgTE*=|=Zy?bZN0x_~fy5PiIL+A_Eqc)^GKJ-mYd6_2_z>%bti7>6i_T6n z^<)GFg9q2sWHlSlQfEGPS5uu$T8@Fi)Qe^&oQohnmcW4b@3wd!-##u8*g470K;Pfv z0gzB)vxVP2KCWraD_sQ&8^CNUDCcYYy`%OhW%b}kV z0XWfdVQc508R?K6SQL@wSP@TjDk-J_902%wR+xWcsW4&q+5_EWI4O7B>tY4htgX|iG56A-@NSL~GLBeO+oyA~%$Qytf8t{o+?Zc7M(VQg*= zQ|xu@IFkt#owglS#9)3TtW=~m3H~e{eGR}Sm7*Oj<7}WLL54CkA$L#o4WoMtz(8Nz z4)pch*Td24k@LoJZxF6~&vI{?4hg{87ujdtk?3o*!~Qn_=F#elk%E8m_!3G})r-s& zJ-^MLp0lUt7;)vA5Ydho0nj}iT@4?>xn3rp3BZ;C1Aw<%Z@Dz-Us7Hi5oEwRx;i8a z1W}~^|0=kqS1 zH>*0L?X2nOY}QJrcj^Yw2mL*rr+7P^(d%LN6&WyFkpX)ET8p>@V4wvs12_t}1+4DY zDPZ-m#oCwgMC<~a1{sPO;THS~0DRo#_!WzJZ1E+ln@vW7$_okOSzS2NXR*nofkImf zvG>HT6CYOTxlqw1U;{V@$BK+txel=~VMtF|rX|6gq)*4pEkv{v-$^|zSMlc>8~n>< z{qk}I7z2QD4(O%Kg04<<*e-vk=^|ss{7WnaSs>O`qaU+%BcY6c?n7#{u;TsUL zaR2}i07*naR1aSt-hbEwfFB;~^JVt(PT+RG%kYH(`r;f5^y9;vgBAo}+0&>R2JmcM zN%JjBo5C`+Nf<9j#TtjA8x;>#igE;y0|5Vj|L@NakEh|NC-m2q6f{V%84*!m1OjkA zcIRabJVxLTi_`^M6~`p4_=+V<(50LtwLXA|?2cx`GrN{p4@U60@pgh4?uj>rBzPPQ zvT#UuVfH)+ZXW;)9{l$C{Qv&@FE4K&Lm;%)o0T;8*b62U96Ug6Iix9CXOXQOG~Ed) zVNI1v{P=hVDx0DpGrHG`D_m;1^0HwSw@CA;w8CTg_X<`B)maK0xCCoXcq;VHU0IKm&Y{=pSFi{*Q1Yp{bH0kB( zb>sAPUb=B^7*n2ezn?LEt+LOiYs}6WgQ=4ii^)>ch~UeBT-zq4t%3&#F=eIkCt$;X zVa-d+=3~7q@Kv>qQFI-)uw(~*u7|rm3qlv0nJF`A8u6;sDplEDt!sIy&(x+^)W|u= zt7S5vY)teG?axQpXz zHL9xqVqvt10lHv&Hl$m4)-z;rYMO+>{Gzd-Zy4X;2&P-tE{%GMqBG9h2(jj!{+&0G zX>rP1T3Dq7V}}ZndD$|hEk?|C!F1zIR?c|QkEU%gTF|6Ar6{QcV(bXjSg_s%0ARLg5u|~>S}ks? zs7Q_$83Zl`eN+^?&7E%_mf0X<7R_(Gd^NT+6e;|!QrVf_E8KDt>|D~ ziTi?zA4%7r;B@l^lOxWnh*?nDxwHTIyr0W5s`m$B0su1$Ex4XLY}q9}qTCe?2QR0k zcmQjk)akSY?!JG2etzE5PY@@-VB82u2FIoIAP^U^+DvhdTY$d!k(0r|-Iwafo_{);Qj{f+E(bjWp41e?W}=0E#Y z#sMT;F1#G}MNiTJ=r02F7xCS<@4f%FI@cvWO*eP}{K2AtlgX!CMXK#3m0$qyqKGz&96UG=dSx==eDJ=?fWe@`yDGsG!}Z6i zhmWNQmYoE8`825YFQ0$qWMH~qf7s(Q@c1Md5lMjj632y$B4jHTB|9jx0qE61qlryWUt_TC zqqdZnNQ{3icATmfw*@!dn!jQ#nUKs)0{~TX=03$WJ+EWsqpkDtb*D687_hzDEl#J^ zayh}1w2~lf(PA*uP&e6TwW*h|GrnwjyPh(V+_g$sagdjS9_$ie3fjV(wF8Z_pzk_=++xkO<%5!7lj-ZfJeR8;6T*DD8@a_Cj)&w zR(XMrMBnWuAyJfP$$7|-V=2D~GuTuPoz{wUL z{h6rn()He4V+Hw_kZ@&Z~pez|9X5nD*)e*T&%+P2rHbVM03D0FfiDZ zgrgx%e5C?9jrZ%4Aj)JiJD*wE#nr}*$89P8yQ_ji76Q`E7&qQ`Y=d|^8MBaP{I6)h zs<1b_4;&%Ek=FwQ4ujG2)8(&!`Q!U{&%QU}=D=pT<&g_lW297gC^FINlS-);j-aqR znuTHPT7ZHCV6MNcTyW;cj*430es)LWe=+;5AGV0fnuux=g9mSBWAI?WuwZbR92VKJ z9-o%kb`dXfhhrglz1Wv9SHT3h?F*C5!FmjS%rrIjVMjpqc@7w6>pLxgY~9he*w_@e zBpbD=ZDCL5%P(t$e1H$2i9pIR$Ao}VKsc~WSIYn0G&nKM(ML6 zu~q7@0BnD>tyorQdUIt#xLl>p0C8b!!)(sNQ=)zdGtYE);4`#H%+@W=GT{%`>yn+) zxM8P^Oj25b%_5u~Am)#TaMOlC zs~8}`6ts$>UZ}mRO?%2MbrjNZm&&{3xJ+3Cw%HDCGT1s|Wc!)zbhzd5Ot9Nc#uYjC zZA#K~K|ef(245Qhe)}v%Uj$C@BY$-|d#9sI0N(GM)w*BR0NpmCs(XN5(BIA05p~Ip zJFog2;g!%5uSpc^91dkD;<}0{%qwMA73pq%e>P{pmDtoL^DMDuCX~_;}tM?S`PrX$>g4}t>}v_ zf;2*7J5s357hYNt-i6*9>_|lKS|6W%WW-%QK90DNqgnW%5P)O9!>JNbUd}V4ic-2MZ$8gA5uf2uLfFBakRMdTf$nrz-^)$$Rjxu?a}yzNo9u ze9qFbCSA@%Ci;9Rv0?%eu;@$jS(|{Yl_5|{WP~Lb?Xd<7TzPrk%H~)5Ke>eMh5jx+ zeth`Z&t3q!Uw{1|_Pxr3b$7o8B=abqgR1-t7{;%_i9ddP!u{XAJF*_klJIvweR==> zcswqo0Q?}hdwHt2pk;^2<5RUiNYgCVU+%;Ky>Fju@ZiUX`EEPbZ&WBbN$s>M$8J51 zXw}E-!*o4f8qhb7duh;4L(#qfu=%4F7%&02Kj=sScy!OI8*o<>l6^Kp(~*#^(EvQ& zsGV6J8=*mSsmno9Xz@w*WO~8b{LHeth*7IdJfKKeX*I@;b|guh4-y&h1+@rYJs*}@&S-Hy znA%t}o3x5?Nhy56#ni0PO+Ak-vLevYq}K7$=yjv5;D!f-1OtXMzl*3de^rFLS$e7q zVDKLJojceT-~}!U>@Ou;$bh%~f}EQAMS8U)%bwomI2S zTx9w7V{9B9O0TI9e~K^8kKwVQzn4cJe3$6U#w*VIYU$TMA0(K91_p08!_9iMUJXt1 zS+md;h~T_opR=B*NY*1Mjw)5P04)BslOBRvQLNxnF)B&haneEnfc@|_sBkjAPqP+N z&_rLhKsQ*+baY$WuYmXXNB2p7ljL`Cb}Ri#%iiMPiKW4IG~LMLF3^|e_SvQr%F+6BF5}RJfzWH8V+b9uTE{!FN2*Xf_>2-I+x>&bw{!;+IF&% z$0e1CPz0cYCJhIn3o{T17I#5yaZX!b93LOI0MwJxVrn=OeN8-WzWMeEe0O(P0EQ2z znnD~*LGO9urPM*GRGkMY&=H3N zchpKk{9zb{&NpAb{o7yv^v&1r01v66FM=&ybVkC51bZnq3a|l3jir(z&0su?CUW{ z4gdfU07*naR0SL3Li~s?6mR7GZu93xJd1g3{1*gazOf&UwNu)o-4hEXmJr((Ef$73 z$OITpu}54MtIZTJY}mP06X-u^bgeb3%w|SThckQ33u}cZm02bt_*%!DRNO&fQxBykH87_oI&h38Y^UXDj_Zf6A_96EQw}?nhDy1E*%sAx^a4!W_QK3 zW9De{J3K5Ktge&HYbiHCoEs5g-{17ywKjOt?)q z4kBLllQn)ErZ}!72*AYP`7S^JJLhYUjn;%-n--RBhna7d$>Vb2PG%!q2QcR9fWP%9 zEm<8R1i)A{CRK1_w~OoAjr`kD|0mdsRBL~^^+jf+9?fPwkYGYD1OE%?n@=QLB2Dvd z%W4X;stT+H;u3vv+$Yi zY8x_Nq+%NUksVkJ-iP^T-t*mu^Vc6A*@Q*Jl?<~MhJnO5;ubmq@AtFau6%e{No{Ob zP&ybGOrd%FYOOM}QiEKjPmeWV_(77=;5rfOnnrp;W~d?xL37u_OUGpFX8;W1_|xyd z{_ns2@$zsSj(R}fk!!{ZiN2=CSZxUaz__XeW7XvlNCs_MOk>sN%;;6XLOU%{nPtT} z?aFBq{P(;w69v#_14M~RIZvewJXXgAR)PVvG8PrNS>hwAS^mQxehU)3D6_!rHx>@k zgq0;d1XaMAbhKngsFuar2P@FPIc&%t&kG#4t3;;Y79rb@Ib+T4;!iS=^Vn+ka><^n zOtk68(cHVmU_?EQmSsE%`eig+=D~Uru`NqlqnBfBl|c0O%i{SYjnH(7001-2Ckh%D zRw)|Wg3qeIbPgs<oz$7qWN$t9A z79(trG#jAoxG-S2nJF5xpsV(a26Q=tWOXa8r=j(DAa8CahCfXeH`G}~F>P{N^U|4W zjKnlt3d8=jnG(n6J{uaAnWf>K<8{)^o#QjPnXb2@5W;RU>)J$bi6*1qU(IU-Oe%ab zH&pF8Ts@%I^|4uNAf=TAMO0;dvfRwPaRaJ%Z$rwULDYOrSj< zN_czG~A&m!+E=o^WP z(Ln;B`*4b%&&k6f6!cvQ{Y3zJrP*rMo2cCoP;)$K$uRC>1j1^ypTg`eDDDwa))wf^ zl^TxQKwJtJn>sPakaW0+<3o5fpf3U^dD#NZBe~SH$$?fNT)mUyL;y`?%^R%yvEW;!2>fDj(uELQe zK(56&k*e6#letV*6LpzxG=4+PB}!*ak#upKqyr&3AihN3un$}bMmLl%b~TUcj&75v z#~yv|4DiTw#1ovD1>)tPWlM4|rBFU#7)JvYLhMp}^8t`JVjUsPeR+QZrs7ACU~*re zFQ_oMGNIS1V!eBJVndeP&6ap|`be~(Uk;$cv@G0gCS1j6T}OQn1ipCKz0zofgNX;= z^tt92kJpgWR~CKus|?H!2n0yRIqB~;0OL|bUfUhq0b&Wjr}KU=>;iz50p9|Ham84{ z1*EaP8CM2aTcoa3e~Uo3I6{tbmDW|x1}iJuDW1E_96!>HoB~)hNoBd0C0NR0m^t9F z3qg3r)Q<0v^y80b0yY=Hpp9kVza(W^z5Yl{PM>#@n}_q!h>~0_yG8sgt)_DHF-GAnSbV7vOKG^m_2jKh^Bjw50%O* zmh8?2B)@;R{rJuC`DuyUDU?R)V@sGMK(=4ndiE)D%i|mKB^}h+ZAt_%SdHrgaALe2 zzHG=k%=4#B&6RUXwmC~#Z`zR8f(8tvzn_I2OrpU9|CS|T&J!c_p^9rV%|D?ym+h1W zYNn}UWi_w0J8VXpNK7zp+#P(KlV0ri6;3GK#lR!eJ+K*>8s+@i9kOoVXjw%O)O zZ4_9j6jy2Gv2=9vi{r^f><{kY=t-XW6kN{n`4rJW@UZu70C$1DPpA02^LJ}!vmCCL zgSrx*qO$CklMXD7Fg z$DJ%{7b-7~e}^?%#%UB(0{7M#ymE#&qrsbD|Mj5v%5&}rz+#!{cd#x40GhT{j|NKA zO2m!01G|dUo;EUagEI;4(5=V@fEEb4T#Me&%gd38XqqvQ{t}O$pZD}NV!;?EY{en~ z1A0M@*{*dy*8p8CUh{d(p--yXa#{m7*6OKpRAUBwwP=!q{V!=8FBIo}fwF`dT$9kb z1qnWFC$_1Zb;s22hHlFr-MNE%+k~~-uY3J=Z*U8`fD4GrNM*YT_yNeSPUSK~z z5=reDoZ&rr@M2#4_``30_uF63XOlP>C7}>y;5U=-L|i%q+tD(~ny8iw^Usz#Xh@qq z2i}0eIGSZn!HlaR+nvaO?MNusO*zp9G`5&=LJ6;;nuPl*0|uALC=Ysz%v+c7zD|L` zpu)JlQVec7|09ZaNjK0or)CoY7}!aawIrB>Oy7Nb{_uXs2_@0hYSglbvRr~K0Mjv= z#X`QW9UvKxwwo^3d4&yAE%usa8B(GFAAmR%HBhm{P}WO5OZGiA%2}>0>k>h!&aqK( zW-{RGT(s5Suoj1G&QiN15j;U$&k8pV#3`ScJh!PC9j2p$nhg)EMhAz3qei>qv(aHQ z_nf-)I$W>ICb=#1&2)bLx#_zo9ycL)z6uRY#u{At$7;yYYt!1HqHY_tq4HQ=QSq%UXA zIO}q7jYjSSIVs}KJlg%vXD(asW~DJQ!g7Ok2X|xDkd;>|7YZLzr(W<>`W-1=_R^>| z4uQb}z<~M4zZcs<_YPp=4sJ%h*I;i5;D?|u9Wgnm9`INGuRUU((<68GtIuL7YNSC$ds~62Y#spwYLmSJ3x%8~+vAC&F$LCOTo)s4m)D2%bUP(Y2HYHio;~ofm z8g`FUR|H3?0f&IJo~m2i1AqZ(V88(2&34Heu;lAB8i_|b1NI{&iqtZ0|t6CYs372y>d)$18&t~VMz4F3Emg{YdmMfXmHo- zybiG&$b%&I_~bu+^AbnCL^#M&S4@KQ@Y68&RSH@GSoV3;1Pcrb>_I2NIQJyRBe8kc z?+zsr0kmY0v`&gu6T^1M<3^>z0cU)vtwBOe0WWncDX)8^Im<-MquexsR_BaGYYdNu z@14b9ZQTlSd!D;Eg00$#WMHsrcQ|}vgkdWjO{RWrbZCh(?uNfwEHWy1ESD2bJyHKl z__}rx+sj2HwxY^ScU81r#WX2rG3dG-`kM7#n+zKEsXW*iaH)0>i@_#+Ju|APcHYT) zKUj=!df;P*J{g7N#`N0KVgN8mFl9z07p;O{1Yqp6zTjAqNirWp#9Fu}v zapRu0-gz6GHvV=sT2=i;)kREaonqP&%3E}bqLphuvoum^YgIUI0eykH7JX?B2)Y(V zcdqxwabG(kHS*QaedPu>ZXieu{)!_&6ftzalJNe~4Zj2u18Z%nSrNCVi2GWr&eFpL z(8b>ZeeqCHD*0_tY8`?yU0MQ-OLevf1}ps?R~=w*0cyK(v$c~iN6EYwm7QSH@{4-_ zupsWn0s0m?kBbvCQY;P-g1%OA3y5nn&x*eKR7D_@_n}T!vFuHy2;HCWNA<}=h_&#^ zU+npV07*naR6tH}PQ1`vsqzwlrw*rq3Bc4w0J2g($vWp?*|G~XNs{<@Xk>{x2?lKd zFkuG&EA;NX;cejD`>u(&k!r(dT0DRg*~rr|3IC3)7cjsMTdei2f0A)A$mf}amc01=FFWWkR&4)up$_oGnC$>kMjwUd(*-G68w;w)SaEmB) zygfWTtWGB}V8982N(F#ktX%X&I;vPd!iXPj3ld*yPd=RHoZ!++)MHXX?4hby8^vP+ zFrWyR4(OXlQUC@C2KuJq@L&Gpw)wlsAC4zc9*eyQ7L@_U zw#A7Qgh)o8oX>>&+1Y0`vBes>i~+H0CA-sj2ok)SM&QAqzvuPzxSsCn9KYQxBpWZ^ z3j(})A_4mW!0+E}0j{L2l<#0Ww9PhKby8|$@wawL*!J$)GO+dY0bT-tr?a@6C-Z7N zTcr3=hGf(Llr_%DBm%qhZEDMUH5~&7?FtB2{ho({$5k#!CEiQeF$p)}0Vv1Ws+xnV2wa+=X>R zz)b+F#f`{Ds1e(lG}9E_2)z-2NrEL2-2m`RpNRnQ`NSTpfMgd(fbMoJGR|u--Ias$ z!^+>)?tbZQ#l24CH8|r7R1@$6<<*eRDFtB3IcorSo#fU{?*PVP5Tx43K#KsxSD|<0 zywP|?Fh&50fyV>qtKRS@KwrQxxGzvP$#2FJ>BCZ5d?RziO$Hmd&S7GJH=tMkB)lO2 zgGMti4fHkU4eIent6h-M@uCa#)o{wK53&o&JFa@^qRSav9GQ70{pF7`o2wp5RN6B7 z(&|avu;C%~H37h80$5RevhEeDZocdQgBOS4d_P!hhxOh8`fd)vb{{S3QIfow&-;f% zh)Z2gdefqt1$T-2CQI+vOMkPASDO&%JFgsYUjzU+FZzJPz`X?`0*1-JsPL=;RigQ< z^GKeCtbUoYs0C5W2b8Kb0P zWJqw@NXaHlQCe`$EKtZ0|r52@LisW0M^)*9JTr&v3s0O zz-&ii^E2HS*qO!TGjHVR4!wlw`X_n`Isp~j2T;A8AU3-x zV!NG6H}ch_ljdnNASFkD1ja^P1PjB!U=Aq-L637vHY05f5}4YhK(rlUvKR~i{){o> zp4Z*f6s_ca*rH{_%1T?QFKYt@B<3WQtpO`1mPT$Xp=Fz;IXVp7-E3wwir8;wSOJKC zEd4MwZMC#mp3n=MHdaeg6$S$;`<6mgyf}DlZXz}H`?3$2IvdW#jgOj2$qm>#5rzMNN%OMF{Niq7r8H~ zDm`>LeJkiIq}H9RfR1jt@eBYj4DqE|uMGk=Li~Cg`zD$F-G&GPuvMKDh3e^GIv4jR zF@RD47W%6Uc(w!jj>;{-+gTr_2E09rmsDMkilS9jqA6Asclo%5NWGibc|Du<_uKez zNca1M7+ftqkl=b50)x{CeDnqY3?wGwq~cXw2?jR6cMEp=@Bj950N8p{kDR{abv^@N zS~9S$m+e2SD7l4g_{Ql>FGvFM$t<*@L3*c3&RP)x%?b(Y&{KUux4Ifs;~{MdsmC zA@fLDOpVx@uC~4!V4OW*UY7abkyVv{2E#T5&AM+>Wn!_>f@IbP+Q>HmXUH2K^GC<1^*^LgAM0E75aT9fi3QQY!_TihtYE-K}wQRds@Pf{UeWr^!eGA-0%(gy`q`bh| zblyP#Xs^+iPDF_DqCKhl+SuhwEQ49)sU6eMD1Vhhfqyk6oYrFQ%lTs*RfKB<0Iqf; zaNpIz-=3r0Ndn+n*DfwK02m}V&+oIOoksVO`zH2o7Sq9g9W_Q5>hQRYfW+GkHgWzq zZZiOlWiiyTOKpB$1PFiuwGnV)+n%NVr*&U^&+$2<=BiN)*7;yAM)Xc#Co|`a@h=F# zHVD9!eZYqppI|_56bd#2wkdbTVl#(un5o864#3#d1#tJguYkeW`Cd*-Hje;zL41$L zCF1F64-9^KdsuDCNf}kkobnn}Z~pfCr>D1DECh!`Mad4pFf}Owz@WT52k4S3?}T1& zX=n(z<@6E#2Z_g6XlAnr-*dKQ3H?2o;Z({RlcmvAfD9M`L}B}zu}s#1Y3l?G63iwn zA8cT7=k)IYz+}Li?Gga&`dtadU^ZB>>zJyO^eLk16Bc6CCc z`x@U|tBQr-G%x^|#u3}y@x3=9SXW+j;4 z4m<)DQ~VduUt%yLt;)AjmIv6U0Pw-C+Gr$d%ZWq;awnRUqjm| zZ3mV{!;XA@0<3!=<@o9?cAME^md?uhD#A7CNr-0$A4uQmaOxBH32jzV> z`@+T-mt%C?`MVWp?oe>I8Z4`kgrYB?7cre`iI;9gKu{gk1=_LZ>ct?tEwWysuN&P+ z<5lto;l{81^d=qyID3l0eHzGn;Vr_CfS@f3eTC7zE8^E*BJi++smYBKd^K?YY2<$i zFy?78i|+ctwD=f z4`%+^&W76ABs<(<37qw0q;?1X7hZ_i-X+~6?nqNb+9NZgEE?D_F*s@b8<^(x{T}C( zX0w!(*S0jetmzX0SR^*_F^*(tie>C> z_f5b1I?#z>PB94^9(94fh(X_UY2kI@MXj(k-(xA5fzXQ!XDMS5Sfh-|;4%>aW^J`` zTjInvg2UOI4cqT<{WAhE-UYm^bOOc^AFb;tZ8}3(l`iSkGLr?7hVBS8D`OoJZ32mQ z!r5dnnSuU!^E$W&V0@}Ya0XB2Fx{WZ-EqqJ;gMxH3)Te>wDi0`3d+wWbTA7p;_+)nD_Nx+lOLbUfF%5NghOfH11mCVG>y zOW8541Sypzn@$*enG^bwi#SPiwuin3g4r)UMPwFw+S zfk_fy9yxzp?_986;I6RVOLBZjkLP56jMnP_(3_@rMbQD20)QuR8#5CO1+*czb&&GV}0DT33b$>@SB@iR7 zcWlUF_pGFgoqMPMMps_I#ywyl4(yoNxG{<8~|9TMcIuelZE@T`nvEhz>g0Li4kST(dcYs2whDfcR&*=x4>>-R^jt;};`C8Z!O=S-x3QeA%8 zJ#^Ynt<^kk$7|t( z{PU2YONb=_W&bllT8Bj2fO7<{u=)|PNIYb7I~|JHZB8o5w~2*+c0@}0i|8~&3!Ey=o&9g{_vEKdn-~RmbpM4hwuIIGyXn50c1vuUY zz(Wx1sg}jcH0UM*R|c1ec?C+u?AGGY@N}tgc@4F#Op7Vs5q2iCEGNe1D(%9$ua*3j zCK}yGvVu+kF2{Z~iK~eSmT_-E5)A0wRS7V7HH|n(#uO3x5dJS`&txoE^@lmJdf1hS z({TdUOV3I+#NwXph{p3|U$kYw1YO%2Z8bWqjIedAlP;l|44?y#@mhcuQp#x@XYJSw z_RX3s8PYK@Zn};cfVULXe;P9#eVviEGrpVvuBy~xFu@gH6K+*GG;DeBH3n1DgR;^T zu(Y$nSKdknxyg@{WQ0$MGrZ$uFb9?bf9Sb=!Z5`w@fmZ5_jpD5*prg*zFKX{x$uNU z1F$DUQ}emmzFZqHY#Xf%tC52D=&;WT!)7B@$4u0zaoj*1T0gZ+8-`7_OEcaUsZ5aM znS>TkOe+@siMb^TRn=0fp92;j#R{+TfWfPEVtnV=$cfLA#_=@!0?-TAt4bQ3*|a+^ zdy82gN1P+*M3jv0rO;cnq_;V{1E7NAYJlwC4x^hv_+}Km8Tzk>{ws;#OB=vo1>i28 z7M>iaFvzaRTW4JWu;;&VJ?XuYJ}j9>x&9 zOrJCTWH^arJ7$?D1gZ6gw*cUN`;}tw8)-#%1J9764Xu`}73nx<8+`Pmjm_VYOP% zfx#fbr_1_qT8f6o(-!Fa@U%wYSp#0JD*&+LbsW{0q~iieFtC<=YB~xm^fYif5_&f#A(;>+%7Pzj4cM?u zJMl$`GQ3lFR|wnsj#-S|4FoK>N+CHl(wL%;QDwV2m&C8;=eey>k*tWip!VS}s9&&ytO5+W$#hF2$*;8H_fgs~yWqAqo5X#9>9 zS!5|$hEPOg7MeRYP~P(ipAc-(mX~v>BdQacCS7OC&ET(gli4X!YxTp;g!PkWqYz*i zA34gB*zr?4lf#N*y%>WOibjVPhII?oj+6v@UWe|1O;tFx-OKD-re3riPr9}-rqhFN zf)|{L$Jc~7ZIz{&h~{)Yp_-3>ot?JhPn5R=UQVZ=$W9#hJ+I|B(u8I0m6(yX(@NBo zMmSEJuEU}%y_sP%!7-}I#K)rnhQZoR&$;$ab2Qv~4_m=9PAeJb=4Pfyo1#bRP2_%N zFl=Sl3>DU9X`@@II=f7?;1=ePT=yO?DoQ~G0Y(6(0ZnPEg|}LUbf3d>z$Sq6-(_djrBVBhz3F*e0I^hG!iDFz+BFn5Mt_ z+*nJ-eE{L)%0%wJOJCRBeA#0qc(KAW6aZfBL^XQ54-Tgo=zGHP7;QHAFpcPcJTHcb z5^W={YB+-uak0RRvCuSbJ7zHRU_8=q zrM$|R)#w_Bhq@dVFOQpF{`+^o`Q^`_FDv5}Gaqy4==pKm2xx2{9#&LretCO&d^lVl z_D|2J^=1J8R@_~I{wflSn?k+H=pjfL-W_Hj!88_>u9jm>r$P#2QBzu_f6DW@Ry*MZ z-Cp0lY`*{Q^6{Ia>3`A0Bi+~8_zF}ui>WFY8^vI)Su$%1Uj5AUKAB9TKP^889HqR+P2Yp!)zk zH@`O?i^II@4Bovw{q;{j{_{`2HB`)(JpmKBoCD@SFw@S`<)^I%0{^N5!^A#TC?&ya zg1O5dP9;q{Xs2jrdn{tnMi5*X!Q`z?+hSRyK);dc7p;;+cbOhoFN?wQUTB58DqO^T z?5;E;Em`-tD`grLMr9igJ~M2O*EXe0Hf_&a*(_dWAXtE2kYId%m?`<@>jMIx8LP`- zl`ILLwyFEGDPj9tvO3&?KO~>FWZD|q+dgo781R`H4L}@kKrZ93-?U}*ndZd_sOMy2 zYz^7BY`LlJ$+8J*s%u$hj2BA_VKzb&hDo5=U(HRe%}ZPKwIj&Q<4cMgz&Rd|5~Ymn z&*Ee-Wja2yS7Hb!9^P|wc(+@u*QKp(b9#zfG&3@EWgE=CmS)G6GHCd5RgcFTk*KYi z*b}LBdT7Uv8OGIZ;_%x+47O&#Nrc_c{b+QHErsj1{IKIEZ3Hk2I91Nvg;>E#PnL=8 z7_r8a*=1kM=YZQ*K50wj_adpGtQS0NJicddbCAg74-2~2+}90mKwCLAL=Y8xOd``}a z!Mk0ky>DJs$<$C;49c`yDgdu)Z&|ql!)su0007?YVi1LmXc31v9@gn`GsY1?45t3` zL4;b8`P2dE+SD;vDaCl%!pF>{QCSN6U@D*pqR6lHT6JY_0eXqP1Yq`F0ewM;r8ex{ z19G@Pn|h>{*~p*7cBT@o#7&*87O9xP^BXcBO9$3|@!Sj%J-_V4k@wwE*zIY%Suf6) z-Ql=iuBSj>1ar~A;L~MQEpq@c5clcrmKaO`=8vaK&0!=Qsk6hx8r83`rT~4hq_X+> z!~5OOe)M3yONp3C@(PHM@Jw6^||0aFqgBoDhBNe^ft z91K|ZG_Cn0{*Pb$D*(7&&MgD>oEBD6TyVMp8ZQJ@V+Q)prZJ91<}YSgTnezC!)AWm zE)JU+E~Yj=OMvj5b~EgFfLnxH03Or7I1z>Id157?IR%6*+NugohrFgh09rbWJYf2o z>^Hyq#h-rs{cbZ0bck6!6Ge8EX#mQaVn>4OL%|TH z$BlM$=89&uZf>YvPR2k*Av|GhCajE^0-$ke42i)&-$CyNR2Y;o zk&T)o5}}QsQW*B*c$nutQI=I(pmI?JB*fR+lZ0EmOhBe}^JTu8bz)mr{;a5MZ?p{9 z+9pyBYFc_(J_HGlq8_`n2*X5KtKeZ_n7?AMS(-^{i^M=>?a#`wmEUiTv?o6dOjk4o z_>}mE6Wb7Ho3oCGg4&ji47Fz)p05Eo&jwWY<1q@%1g1N>?GN7!MmIz6jxqA@K~STt z10Fo9yhY{LOKHnmuHw}?!IAMrqv71qSza|iC^~U^7sfY!_}Y)(FudqB&{ycMjP~9E zO8sZqqZt4I5CBO;K~zRe14l#@x4>M(ajQY-8#ZAvT};4c%@_bYbOp9mf8#EQ+aSl_ z?70Tfm+H^}xwMdGE5JD($Ci7klSOR}ju-)ViM|xXumDUEY3wbu|Jk%dOBq;YEGbb* zJA`uU=F5Sg@ARHcSTsybr=6?Bveb83ji%xi{|iE%kKlC2_G(>^4vXsKa%9a4cZV3U zKPJcX_~D#BUU1CL$8^69cbkBU&;VT-0v`9kfM@w&Icoq|W4jI!n<`}58K8UKtQMzVwhYdSyT2?*0d#YRk zZV{Yx0^UUaedydqt^lxD4qQ3n5qfPKtvK8@dRz2_SCzz6%D~6^MM# zfH6+$GT+v-bya{*PsV^r=@!A?a@+`T%eH6yNa0WFY!g~ceM__GruoPeAlx*>yYGPP z5-hF7A)Y?~m`YwwU+Tf)oEVG(fB5m6_joP;`txt`4D}C3Mp;_h!B_jY%m1~na z6-v=sHVRr?2MJy-0=jj{G*K1vRbVj{K~TzXvAm+L8wgO{D;OXIdK0mI%|Mn5Ym*rAyEqb^r0QWR?0_JK8$u;KJEqZ)b3#*B}WikcMl zST#tZ0XJ~exM0470E}HxppqQ`JZdtN2RGBelGL?d6Q#Bjc1Qq&8CI`jHj4 zb(oIDyybdSNdO-FzK$ux2nHMgy28G8X-QKw;1&=oU0VHHQsMs7}PVy>;xwZB+~)hZ$YS9K_63|Y}i#1n?=BR405dzw}SAFKE}Y#Ebjp(nS~bm+W@dOOW)c6=#m8E z7{vE!-YaL$WI9Al%MnkCa-?0;U46he2q5%i=2!qG{*lE3cUL>(3}}k7Wrr3HtoRar z3B44nqEIu?7Z_|U0zqD*vX$zjFBou80Et_yd{f)YS~k&pnE$9D;%!!onR#X{naWx0 zwQkG`{mm{U`to==nK&Qg(=I-4qy07p!~$-C!LtJ7pi`B@<=g=Y-mHR6jkUmI#g`*S zz*^ug(D$^>NPh{;YJ3zOcNvZV;52Fl&b^o>she!$aM#Pn#=4Gth|{0f7J=916Gi2C{d?uA$5#(jAsxQGhPhHpsmIT5LvR9u@S? zZbt~foD#-w1NWARS-=u7Y|wcFkOKh!<~u+^kw4_y*;+3U`dFhx07A2oSkmF}V|Fd;vW{c-3b z5`T0pZ%OqPc4H|9gKxdTiXVlJ>-6es_PgKy`p4h@`f}W`bDOf&*|;yd2P%w8lLmge zI6_UC7d$aK7K=#8GF6iRNcpA9F<**P<(2em(xb`#zT?T_^f2@&-Zv1DY zlv{X`Gi;m_MaD$@EgW7MpseP520HQOFiEhfGfHWinz0I-EGul6m*BxHVc;XgNpY<5 z%yl1j(ld{+eOp}ONwb(wW<{g%*BdjvOe)-@rW3%x`82iaP5@)}@k;W!!F!tsrDOCY z_osLvV>j?RBcPPi=BACJm5fF?tEWS^F=eyJgPEYV%(dyRno!}A7!2s0h=-t0h_#y1 z2>xx8!A==EI$T%)rVKJLc(oqm96UI|LKF|v)E$pK4h`cg(CghGsQg6?w!_4DU86?6 z!yR_;UBEVUEy`KtsxGQI_9bE}wcC`e);C%lasioq#$^P`TC%JAo7A?cTYEuXYNi>8 z!Dco|+o#3;RS5}|cPW71?Y}~F2Cv%vuW;-RU-z6>L;prGxSN&3iS%SC2G=3cR{%KC zJTv%i5WPVN>(u}T3k-)>(ExBHEzNxZq?quCk8uZ(IbV3d(Rkb@;&Mhvlh1efLnoB1 zHQS#3s09p0gh?mM`_odioB+KH5O$q4>S`+cj-6Sc$oX`bO$Kax2JBH)1Dq1X7wB7W z9O-t}>Mwq)nP+L7F6Vtf@1k~Ri;?ws(B3PtNdN#dZ;ZeRz?gcI2*9VGi+vOO&I0UF zik9_jqT7W0$i^<}Q7?Mp?5kB|oa>Lh`Fcop&bBGUelMd$$0Hb6gaGa$E(eM8K0%yz z;Dw+sSSUyHNgo&t^abt$eTDdHn-$R)N0xq>d1eimzgnpe5=bzIl(3=+XHA$tq3$4M zbR>mB1*^qW%7-)=Bu{1E0Rb4`A@~t?q=r`*xho175n!;AQh%78I~4RM`i=uBe=?QF zb)S6Va$3HBIRa>3UQVauX1`k^wi{8M1SEqHi;CW5rA)W_=G!LH^Uh!9fwuGsv&b z3o&f3VoDa{B7nnD7)#2T>44ezO_i|r$pkMhe(2qq97E=ZZU+Diy!`dAegOa`1Ew?q z9e+X501UJpYzC8zCmohiEVB5O&Y~EBNiteIGW(3QFdQ-=L6<<|!H_krNxBoF_y8MB z06F*-?JU{E)ObJi$y3SlMG#Gg!r36^j=%s~oL5fb;Ja_X{_ns1@t=SC?Kt+5&}k$) zhAK`nDvKeVwaj#{euOAuKp;eLmnKcx`d5_40v1ZDyo}EKIRKcRIiD9IrP1R{lY+=B(LpJL(6b^Gb(-49M6+g$qj-O5hq*~?>Jm?*j)!xN z6N)pihnCexW|jG&qGyB6PP0*q8#_)eS>Xsu9G{N(yiI92K$AYEtSRxq+?5%~0S9da zD-bxxCxo5tq8F{)m)61rW5O`7O>GTh;wVePG$_=*syX@nH4i55*Y@MojtdjNv8k1w zWV|mbF+tN@(VEa!N2Z{u1GUlVzT;_z`v9Ajg&Xm#Ec1cKpy_~E#o&9_ZL7;+moQ9g z3U>sSf9DL^qkcUozV5uMqd$ukJcu;@IlFYK^|^danU|0O0X-001r*o?x(X zWl#W)k~fGTdgX^-5rYB7mI_PnRU+7o^Ehcm(xTkXr-Rwtn@mUS*PYD<>$N0KmrHL_ z_5nzu4XIPP(l!MO8yW!S#BdO|z3|=-ZpT@Vte3>Mm<$T(lSl zT40sE#}<7XO=f9sBKp$HL3^^Cd1XT8Yn3jO`_7kcwf0Gxr3Jcd7mGo;bU2Je0jzY| z0rZ+Hklbk6`4a$BlVmcHM)6761-G^dZS9?IPpU3W2FZOXoguBuyO3fUgkb{k8AvRV zXpE2B1Q-n5T}-hMkA(6r13>a_We}Gri*pOTI43qY${WUlaECi=MXXrZhAuxWANbfaRJtX?;FiW zIZ5*MhdowFrlB|tD%nESo}`gGbrX5Mt`kY*&O(-c*NYf<1JqeAq`XS)Cni5}k*S0= zpTxiY&9DCS#~%Q|Bgd%bV%-F!aiQn@422iK67oDCBy%1Vfwh2Fp6>#|l^dyb1wakS zHSM5|?WN+IYZWLpeJWGnY${>vFJ8Fp_hrZ65`ayzT|pg0SvsP9A?V;PSUSOj=d=9x zzxmZ4fB4;IxrhUoTGrfnO>+@YTTDDLPS(C<`f(X8p~lRZYSq&Hq-xbn^|KF)#Pql= z51XkK>lc(YHSB=8C?e^sW15uuqcjI)_t~D-I7$sj?!`Q+6cS9uF=~>7@=`gArouQU z64QTE$BV`FfqEwR5g(rC$2C6EB2P$>LWM?-FtG!RQdtNViSg;8$}~Py%!OW=$QpwI zOV>0b>Qmy_I^x+9rpUBuVOXo469ixwgg8|BZUh^o3BVjxvQ${)v@-vC#+Ne!?0*LO z+WFv_cB0{ngWIhEB7Q|$oa3`J@j3IlQQ;@f&^Hevf!oa>>_H62v;}ghC86nJkx@;W zHR%kW^LPm89Sm*}7KtsJClWhDprFhw;T$krP9pGNy!@4>$2B)DL>%ZlmnkDpyPZe4 zk}L*WCnbx)jQ>#{p0Z`yVsJL@M`3F;d?mPh|Br}H>z`V!FA;aGpCE4A5;whn00s~J z*Fe3b=m`nNQm`=A!sNjQfW!E;#tncLoS4ne(m9;BfO!C8xlsd%JD(3%3v5X7f;-jR z`11f-)@u(?H=PYQH58=x;J!MW^!gfrL2U&}la{nuQCF*w-Ydd(Gvh0F!?~(g4ulX# zg4uXjaTr|m=2d@DkE$hztfNSbqcvUV838Pytco=vaDwLs9<1&N!0ceT4S~V<5zw2@ zL4O?ttHCa0qu^Ia?XTawqG%{KPv_R z1BO?XkxS%EBuIcalmXw+ZQ&M^Efgo5zS7pAsOsww3%G(-{@N7xmz7I(p+(73$sZGm zpho~;z`3-QPC}X$;-RD!OGi$vTdnleY^OT;vwOU3o*s{v^X`1w0(#f0InLj|zno4h zDqGz~zM}vD5CBO;K~x=1^?F;bHU;?Z<#D6p8`YxDz>I;-ptgY9m-h#dUEBfaE4^2W zzGTBx>cAbo`R4NUv?1u8uv|WGfxGOZ`Pt82C_jYIiqV+%bKibEee?B!)jM(&{E9N4 z?0mNQPjx4Z>bZa1<(y>Qt`hNr6hDlR;@d#4rab_7%ND0BC=!HK z2`B8h<_xzy85Lb=iotC*h>=UhksAi1?>~O{>z{u7`S&05G-4hbA1axloVa*7+?sIL z0vM*HqmbanOOdQyHV3-H)7hkq7H`|-q@D>eB>>y89IMBR2V^nWO7PDc&lxj5tK*y0 zCo!*R>{VsLEsGW4lq!t2uZy2V?wfh#iL`~|$j>ut>TER^3|=J6JOc;`z&H`IuK7#~ zO4Bq6FwApcFnKU*ANGJ;xak-&ox18Y;88=-!h`hf9~V~`EbxQ9lunlgI-%61 zOE>m*6gR!jOPjH=WR&MJs>Ir@R%#~JB$(~cRD{Ou;+Bm~!#20~!LN*!p{AED21|RI za%gsA(InBDe(Jdl?z7utxda;?)1%1_4M))cxH}x)0fup8i8;$Q6#9cK9YzyJjc_i@NJa134 z&aCLIK+EP%Rd!d4L0x|e@;B$}xn0A5qyl`d!?A_y*Bg8;MuT|zI;0llkT1Plfh z#-q_PK{C=Ro`nGVj!T(+lHTt~I??conzrX5b`02L%&Vc%^q4cJJBBju8Oh<6dz0xDC$R;Ia$P+vu?J_rTg(j)zrv+QjE= za$MtflY&MF>s^JL+L!*UnRgAnl;Z&UvJY#I?=U`C707X1O??(<)eqnn=&SR-9Pt#N zoXBZ`xgvzNYQ~ZUQ1?gsk1!h*Y-E!PvA1CMtHDG4(*4b}?)MzHxA08AtX z=mLomxC4HL+uy$3QE!roHNr5?|K;cJzWwHMI?SIyj?Z%|_<(f{0E{5_wdrUe5E-!1 zP1Ffs1riyy79-nr`gEB;o@W4KY_PNB0iif=J5qN!$U)r2t_*27XAtD^8|`P+@k@nS?D%22^rZ0A^D(w?1b2Ru!Yz z|ICV}9c`rdiwq+vBm=7`M}QmI-D6YPc3cgg7QELqXwoScCy71Z8!Q*)55N1*AAkSr z&2lE9TG5ELRnyiN_NC3ZHsxDVVYxm^)A?)(z!Zo!nFhM6u1mZkd|ZLSln*3UG1bgB z1v??!9}g@09tB|Aip5@N$=vFIJ4fcU@*)>a(m!-EE`loe7XaXNz;cXqU}-Lz=E1lR zt^jv1cqlDD=M=KG7%VC1M#hqf6RzXdwUDg_OiJU(5hIcUPHWxg@4{+fUddtNmXb|j{J#KTkYE5X^(=kAi|>VH!}u{$ zp;pj(lacPXhQ0fK?|z_3X>2cwA_SuEb_>vJ5z?BO4Fq2iCA1prs!vvioB*~}VYYo- z^I!^nuv(9Ifu3)H*K&q8!~V@kcL|oV4;^WZ?hRh!#PRN3U$VbZ+RgIeWNNGrzo5?n zK$pVH3{kzv?&6|FwpVJdH6OPod8f>~0N{EmF`KsMrPX%?o$Ugg5P&N{SKs}zJ@|+A z;2(j(1YptDNLyLnW5QWkZ#PQYjV$FYMK-7?S(KuvECWb^2uA~eaeq8GFdqMoB)D1* z!F{*K5J3`*sMg}R0QQNnwtZm0fL;<`pf3Xam}5==U?!ynfS2mipfne+f*s(vAUKz_ zv%)iAp50!8_hpy!#DIL$ilu^`xEcUp^$qk`_XX%m5f`w!3K7R`ayg^~VDW$4`1`eY z+6emMcw7ta0&#)6h|4a0*pJy@1?VOB74!wE1d1y1(M0{0~MwQ3Jo z{W;CaagLXlyH?#HAwKU#$6YnBW&wa!lDZFYo| z9lR`O;zv`eJea0mroOSsz?*1;THn~u0Vf(BJZv!7_>zT<2C7V!=YjOtYhRU}wPg!5 z{SBFy2DlypOQ)GJyVYDY-H3_7);-B;aoBkz`^Y5Rv?yjH7%hsgEr$Wa*HpOId(-Iw z((aqiGI{2vQ+m)A4DQ{CSX;m4x&29ztXFev>sQO!VqVP3tof(9jo4&*{iW@k4h{6e zy4D_NvEK@ru`P?m_@-c=vL}vtDSoF4>|#s296wEmQPc~=ZV-UGcVt93>_l-VQ6WtH zuP++V(R*|)*MVA0vf{ErbJv`3u@hhAZ(~g8DY4K=o z_^LPjr|#e%JNC`hZui0F5C{+6fbu#BqA%cCa@6%mEQ40QgklK_#>QGa2)F_s z6CllAXe0GdMv_HT>AvHB@o*Lc!K1b`OH&n7&}zNF=I58Um-p`;0n&#<_457zSOwOC z1fL()ID-D-WL}LCxE<#ozk7aqy9WRx2-qLLd&D1t2Lpg-ix@}tUa|gk!oqi1h|%x4 z<`@Z%QW$=_e#G(z9;`VuEH0Oa>a59Utc>hyeSW9`u~_JFG+n`}2*$ZAz^z*8MVnkrd12Lo<*UlV}4B9<#8nBQk0E>now z3q4e!%8{M#jJz)OIzCBu=q-RuEj09~Qpuf=_C*gG7s#%*!AnP;K&+l%IpZ{obO|Jm z?cZtCxO)6UN@I#FW%mZry88)&ibZMURI=t+c{gFk+LXYY=e2(@Q>HpmBcju4wxe84+rilTJugFT`Ia3O{gR0* z^hW_!fu-TIgin!(oi)=Cba$Y*X@GYsb;~l*5nD58#Cj^ZFGV?|30%KQI7+XR3Up8w z!?a=H`ldY^jTvoqNEucDmiNZri$|{Z`nlcqX`2 z2!<=kb2lA&UT-{abzb!b=aJWTT#YjE!fmVd#(S?U7-8b+U=>=;LSK_{EwL&{xn)tru;qdh@(od!_Kf;@7Bl;96+%&YlD3Wv$J46soNefCaHk*6Mb)D1*B? z0C#Qc;8ZoFqu15N#u%{B7l^fNcI3X!Ze8BFh?_5!Z2eKeE#lHNe2wRMv2EeKQSEub zGvP(XoP6HNdcGX>iwIr@)ON=qm<1>QvbK)rL$R%}=#SRw8!NH+ONFAF`qI|^dObcMV7<6H+!X`wa^QL#d?$K8MsTIdD;t?lFuobQ4gUgH_=~;+ua8D^`woaGl&o9nC zt(4h;ol5`!5CBO;K~ye8o`$`qNbviIoB#Kpe~APOj{#uz1dKU_A-8VcW|PwSU@N=2 zYg2GC9%IQ>o=<8BZZi!`?pGjc^T93}MYcA2Ip}+Ndpo<@511i_$LIkJaXLwLO<*5e zA~Ru=c)bc66x~{`KE+^oFc$)OAZ;3{Go$aj12+mo9i)iO0;DK?cyMvC?pOZ$tYPeKf_Fa zA@?eueW{ZQ0FW;r|Z+qmk)@ zPXp*RvX`;;EU*-t3^os~0zIMnFGPheE}rXusa1m0FfHG@I&|KWloke)mo61Ejif9R zyjYIsi_vJ(>JO7Z+5IeveRKF7J#F0pX`eS^t3=~^Yy*rKY}&ed=l%-8HZe8Ov~$K9<2#x=rAzZLGkS|tE5al7q^G?TtQ z1>m{kt`;)gauAPkVgQEcHiB7(C5vrny<==66|ArM3~1J-gv%F#UM7g5XDUshcIyvj z`cS8o%^-R!DJvsQw##YPJAkTT$Z}A}Jx1s&=-q85itT%p zc<^d98jV^4>HCNMc0W~Yb`v44LWnCc_SWdJ?sP@yr8D5;7y`!a=VP zwM<&lV%^t9Y+V2nQA0Afa7O{~&3-Ka{^jSN0AQi7`7wxvR8zY~$6z60bYNDu= zbJa>-yL($-GA~Q!9+Lq+0aPm(yLNnZDTrGl8hsgug(u-Kqa{1ek_th4ZT+X+ZmXs{ zEko=2)q2|yYes2N2vI~;tX`)&=r-Do%52>G;U9nf_m6+yt!G{aE;K7ya|rg{F&xpu zTynoINJA})GZVc`+arqkSu=kvXl|$UcR6kE);)drFklwSz!9AU-`~vj?SRL$(u9UG z?;D@b>Sp1->3YXp(=roD)&STWTZBU9H1=1wCMrxJwLguq#_66f` zG<(<5X(e43g5I3NFi0#It|z78sIy#61jCa_XK2@fgk~72Qv0-A{Y1C^qYVU?sxNFJ zD0yL&v?Bl(48KU4pOL8+NwrStw1jMZTipvYZyp0M9%7?T8khFpRP2l6)5Z-LA!eXIKg%ExFq+ z6oZW?!&d9 z+FPSHqQAQR@Wu7}&#w+wGt{AN*627BxLWhYen>7F%4>#$*XD&Ttc~-F!fD;FJ9Uh6 zSx|y)=M~~Qw^!5srVrv`5A4b3X0%dHou+EAI(DA8kO)nU)hzH> zwQ)%;i&_(%HtEi;Al79s1*p`9eWIy?+YVf0bAKrUx7t_dku^9EI3 z;qGxaRG0{;uWqq@2BmI&7uScez8xM+J1fq?LVbOex}}krr)xK$PaBIHm#Ylh0>j`z zGV``9!7$BPx3+H{_+Q)j1tlin`FWr0GJ_Zz=R_1!j&1F(7C9imCBaXdol45PCs^ z&63h*&4aZ=@N%dObZ(?}4sl>9iey1jg~Zf}1)Pq-2vTAhnJ%9uA$M?c@5CG8j0#;1bY z80G5oV)+xIP_f9DJ}p*06GgTu+rjI4`+2qbNu&Eh;H{usN}CdW$T4xPFh$8h9uq@_ z@!DPv?kn^a{dM#`gZ>8e?LO%(1CtiGJ553%*5x(wq<E(9 zMj4MBkFmGc&nO0?tZ7xw%f^+xZ;Ko<01p5QZiT*p?s{9>?COYVumkWMxSnM@1Cr#^ zX>PeJ{RV&|`f^M0!9oCON$*x|w~Gqx;F4fWo565U=dmlYnjjwu zG4#-N{hM#hb}IDM?PfKa&->POIs1LD?#t)AMb>|V#Xi;aQBBV-wJvKz>n__G)TJ;hiN{G;0k5MYbjsd zzg^wlEvWS(>I>@?1}~OvJ^116O4m}WnV}=bjGmfVeZt6KX?-`>Snq&EGD3?l1Hs5k zG2u$1GX2Aj!N!2=rQE~KLFh{jSPU3_pHk_(Y=$}X-7r^dUZgL}Ct5{z0HP2&EmJ(h4+cXGcT0R5eeg2kJyL6+Dk>5sbBM=>CJm#Dzz zNpJYSlk=kTr72Su&dkcNRs?_-)4>nlfBUbW{&Cn$>t$`}^5!w@4OUD=)3PV%6#xr{ zg}$S%_KUhM`gUe^@;YO|V6%}~woraX{{;C-ph!!bK$MPX05}XUd7FA9g;=-Jkp$dY ziPY=Fw##Ycpe9s;83Go{iufu(-?5L#58bn2Blzi7b%BVu^ZrfYt5aYa3gC~XzwluF zEgjPrO%oZySOQ?rGdFw~rjDT@`Df$q-ebWPBmmZx1q{Qh;=qjUFkAyf57T3W**wz3 zI~|YL%K`Jj;EncGz%WBf`Rq%4kQojVx(4gJEaG@cW3t+;YG_GD$6xqGtvLf@pX}y#o#%JGo-ZLafs>f^Ps^s(n(d zn&W+`_B<$Fd0N=)jLOdyQCiYm4SHuu=d)Vt(`N6bkXY#3>b(Yi8PoyZ(43+ln1Zg0 zTczOI%TfBJ_o~@R-F$mb4@L_b>a4R|sqva17&D~bvz7cw@?JGT4n9QUVgT3jx1OP7wT9jv|xBWOCkWLF26N0pTXcL z4a5_u0wQie+e?rGbO7dr2$GYfbAntn1TvrZYo}hE95+tVun)>91JtdObQG7d{jiBqZk2*KgP<2qA!(TAucUf z0I&`y2E&7e!~n1sIBi-H#Ig48W>%jtZ9xndF&GnPlLQiEq)~@J&7UzXI?vHkt`)NY z@c;bh=Wef+FJ!C(%g2zcwWJ~dF47)Vujkxd?!3`372kHd+!Qu@bULMh8KX7?lhp9^ zEEq7DiXA=UJ(L*qHW*lPXVah|>``{NrE;8Fp*CzQuZ=Nvxml#!T-ijNm_Eimk~o_Ckipqz|&GHy2Lf9W0*j`lVs z7DpzbX|tm39{^SefQQ7CORL5g4F>Bg z4hrNhXTh0})JyeRG4vdGgESJhQ8HS$=t%eb^$5f1v=XKc1MRb8!*hgfP%TYdH%}~t z8!_cekjkc=n7S!7)G)uE>XTb##|y*E&3stR2o3s~+y`752sC0VxMYH?Lk=UX;JO?-f5T=+K4}^IlyHto9?TaV4 zg^xNk;_?gh1{OOqJ!|@n38AJ{YOy2qrY-&o&`ZOY`40|5`da8K4Au+Uh*A5J+_-^s z_e@y35F)N?2vn^$bpbGtoFM{8Y*rN;E)ww-{aw{TUm@;# zUOEYHhYsP17+Tl>01yC4L_t*9=~-nvErY=+5+?@0o7T;)bGz#wQ@M8=kD{bDiS+T~+lPl^G)}+? z{O)f1@Nm$r09dg!4)rS`>+Ud7=ziTJh}D7M`TlWzb8niI?>-zALS^B! zkQ)aiK`a^q0Il^xdzF{cukP2aj>V7lNd1alElP|EAu*pJ_=@ruCGcQ1Kd!^icz}sL zxkD7_%V&$NeYKEzygdql|MTm=+nq)(e+d91IG`mj0Ae%;xy4>nj*Iz%n& zH83rpdDhk#*5m35-c0V6^RIl4s9-(GVFblR3abSZj||P#_G+xTAv0Oc(mzE5myT&G zL#-MBR^%^V<}xqEJbLYV(}l4_g8%)me{R+@0dS{LLhpsshMu+1r`9cj!Q#QIN&B!G znzx4;S`@so->2z(qTMmL>x8&PB{&+pk`+X}*TlS>jN-{iCn}%|^FS?&;-C5YjqO+1 z3ELw(6-$G6f`zlyYrH3`pX3$7;Bm@>N9{tZa^`yl8*SqBKmc6(0}{?cM-ksByAe!{ zoCJr=xu>Zem4gh{_0J$OyjbVTwqM(Nc^UddvSUGyX@ts)$-Zt zMiwNF7@YHgrD8!BRDLkfnIPbt%%%gIS@LoZdjbN-LlP?FT{!EgXha9%IQboV=)4k7 z{XPOPMiKfd4S=2XzI^iWb)!JM0#h+aE6oanZ7$Ylc@tBVeB%SeuRveY(Qsn?f~ezS zpOA9jEc%qO+ZoUe-bbKs+I1DP$GX$#F9Slu4AC20qQlJJYMYU8h~TFL`nvEWlSRSY zu#-s|*3oSbcEHxF3224B`+XCM=H;?7^USsgu^?7JOF(%e1GanC6~XO%UWlO|b*H0m zP3WuGuM+{V$nI)ZUd@W2uMX&lj?fGG0>Fd-ct2|#=FO{hhd8+Eq$^=rGcy1jTB|(g z8OKst-J10arch$?6Cqqv<8uLboyROX+867D(3uTL2z}AeU=Grf&zS4^9HhCSE$zgz zoSwtExbMjIYs~V`#elH;7S=9iz3qCuSqX_pGq>}E`=U4L0DLc|iyPAI?TQKAyE}6< z0+R1t`FS*HZ1>ZLcSliMAu9rtS2qhm?`A((Zn}r-$<^&lalD!8SMNW+5>5-D%^3J- zjti!W=MXy=WAGXo(3H>3~ijE*>UUDgC-T{Ux9hY!7;+o8v?POc|Ij zrIlQgq6Y%$SQZ2R{NWY=Zs{A!Ut-6G+CU_rS~zOuoQn)x&Cj*c zMJXqseWmx0ml4iR0^m~a4FH_azA_nvcD>WAHj?t=!_CkC{{HK)J`THe7_c`{=Kx@2 z#q6`{6is8?`>@0&uXm%(yzQr4ZaOG0rgeo|1t)kV=|>$4;Yc`}VS@ut)Kaj9mq8`U zedvV5Avkuy=(HC~0m-0OFmj)?%p}Uoy~whn?6&lh@VHqTCWU@d95hPPZgoHJ?PlGH z@T`7m7(7VK^~;MC^kD0iK~OEn0^l$Ic>DQ>J<~@tJab+};ltFwp>;eA(9DXtO$L^z zBbrvsW=Nkclc_X0(U(QXA!li6f^BcMG-e-?A0O_ zrZo@d$_Ot-VtTLA=BcNIGqCz!@{o?f)>q}|i(4@LRsgU;BpwLdWR z82dK85^Ur0KKi8(f$l|xXt9u37@W(zV2aPKCYRwnrNY_Fo6P0wZ1$CYtW^txek;PT zc94@vhjA>Y_#SS32(M+ljdpiF_ESAeHeQq%=t9u>X@ETr7%VJ*hWJ$K)cX?j%@#fZ zfQ8C*CR>@d^*ZWgdGFPk7l6-1c?lis{#x^e7_*?7zG&*ZG+5CBO}Q79tHHQrsbdq# zEJh5DR5+xR2l>&oGM<;MXUbKV#eIdoU_7Hrg4;-Z0bqKVX|oFMgs$f$=&jXX1HhD- z$K#w3SH$;lXo0=~O}*S3i7%jQgm_z7@2cFn+t=2c@?ue(&GPeUaWN}J0N!s6djA`J z4S+q$%V}vdtGc+=69A_SxJK;f_1(O&UzirhVbvg6jq0S2^VXoh)N~OR7<7w>=G%y> zpM}hx#?cWQ6-_5kELsKaLm9)+s$?l;H(j6wnl*@J2tpt-v0vNZKbt`>EbC$C^buAV9hyeq@2#vXLM+JFpMXdFjOh;M_MkUGs zbyVX4HudWOtN?r1ZfXVOPCbR)m7y09<#O4yJ}`!a9JF|_;C9$71HfXy0^qf9$P?y_ z4DcWE#?Wku643A8Z3V!LA(51(e~Nb5IO2j85)Xhy=~p_|i^REMD!YJd?6VDp@YG+A z#;a)IK#Ne?Cfz}?lG=Z&z9J;92!@$()3%I>^Zz|7tTV^XE`2`zIt^KAOEaCro#@k` zv;`1rhme%^F0I%ptsl#!Y`axMm)>TU#$DcIaD^H+-1;yySfP-G z-bOPinB2GRPC;Z^vWaO-jyeufrRt#Jkb=S$CpzM1^*bX%;v060U&xbf1^uK!BW z9=z<1UUx@l77o4G|1pUKpH{>dA~utuseX_3};>2JiV)ZH&pIeBr-k*j zq(EbmZYk+r!o3=5C`~{Yu>T?YoVjR{;s8W{gVZhcEQ_wGdsn4)G-g zty^Y|bPvNw3oU}%J|y_zadYLn*SH9h8zlc}Wkpj1uFgiS{d&Bb^-#Ljf_vBwwC+;{ z5FYC`sh*K^B@10GUI?Ok&D!tZzy0->e*wUyavptrhCo>0;2#2D8*MD*OU0acun-qE zoXwmobZiHgFWiC7ye1K`qAwcA(feUKS)fJ#6u`+alKzXRUa93Q3Qmz!*WQAc}yBie9F7n7(k*A zOCb#2E;@&GpVM1NY>iHizN3B-JVs}my8CfAygrNtb?6znbd>oc#o=ImU;3}x&3tqa z(gLdG4=HSYN=AP@f6K~*j(Y?ui&UAg)+lG>%2f0y2H9wPY?6Va4fp~5!v)~&*8 zozyl`tZLIgCGG{?2NfXtBJ*|lTx*|v8wEtNLT9^jiyrR?8=a8{}-FB|svOXz1 z2N^2W8pKYP>|(WgQS*jd&Qv{y+Fqy-`=n!RI9$)WMA&;e00&cd_nD!`QtLirh{6Cv z-)=)O=`qJvmpVQwJ@x?|> z0SR8FO)f|PPA65}-d>Fl+n#N@?H{*};_Y&%TN`(t8x><{Rk#a0XeSf_n0l3%q5!y) zRQ~w+qX78lfBz@|E>{Yv`>A0tgI?`s2}AX^D=oL0)mBm#9@lF{MYWPw=uRyY`ZmRS zeVQWC9%wdcM;UspuveGppkOzRf% zrL^NQRSYBtbq;rP5{rUP>CI0k{qMg0^H1M@d)zIlH|rA+1_u?Yt|?QR?e3sT4LG>) z4yvnZb2UvY2>FZv01yC4L_t)%#lc#fp62UZox}6eVaG$=oow?d?phbL-=p`8ub0kP zn)7Ldp*9>kAz)Dm_v4i8t`$L`qgB!dRAkq&wlV7&64N6sDy-wBnsj(RgS#} zJEE^O4J~`oL&+zUgjmVRP1eDM1f{fG0k@~a zNHk%c3>g~+Tj%E1oeG!jC__y{7GNCpoKcm>^di_M&YNb(R?T`Yx506 zm|60Xzp~H%MKMd7r3w95(SN6}c&1&u=>l0{n1LmKSyCx_8}@ZD4eZdXPo7b4v&!&t zLz>&@#kpY$ThA(uH|4~-uJWZ9r|2sLWl~7T+0v)E^7CTtMWqpBHweVDO10ChRqzn_}~7Rb8#h*1fzgZ#R|Qwz}UL z7z>q8(HG(i2_^--TotD?W75;90q}NR#n(vmS8%(S6aipT&@f7^o*?9IuR9vt-Q{ccS^f^Cc;Vf;dmD1+Bbo3MFC=*tt==Wo2x-G?AF{j$y$X2Zn@auU|8w)iWtnXqvFdY%uRCIrpPVy6$aBC9qPf} z3npUG)SaDb%lm2Hzq|Y8U;q62kDu$!SIZ#*9-XpmhvzBWQ}h+$3U{^9bP{Zwvfs&R ze+ds}KYULL%MDLsbdb9zjdmNlsjPD+odc#}QAchb6@ zdU7=mu#rKr3Wy=D38IN9Rw_@D9gzx$8DgEW?xzH!^=9doaFJ~^!X3h0B(Y*2HIGk$ z8MVuv`;d+z52hPA!f==cN`X13UZkoWrdEv|p-)>e>=aB#+Lrjy1*IJW1JJ3%(gl9Q zzv<7)W?w0oSrwPD3Ry*-vCVLi+F}vuYgvN zDd^4Qe+K~TNA4jbZFg2bD<`io2x4H#^d>8xz;p$-`O>E_V4q@o!3a~R0Vi(|f;R9& z{$g05BRY0zMe`+v0CGAH^SFklUi59WqF2&ItD9}LGfCr|(BdfU>2@-`uDL-NW>0dh zo*5~&ItI*wXZ^PC28fR3Ha9GIt~Xw^+h^l(VLmS{m)21w02ca!!H0c)zpYz4)uv*Q z?A-V2*s%K#^@zT+d2T$p3;;YUZkH8eWB6K{n|oss9=ta6HMm9bYQL;)=Osnjb!Dtq zG}rpGguauCaCbSX%m<~#P{39+44%}Y{3LU|&;lVuuPe%X*+|Zkx?wP5Lc&+UEy_xC zV}S$=6_Ao_WZa4Mn?_LnAtMuk(DImnoOdOORNHJYOtU?DuU&VSm z_L<-@qR=A5aN>t|$JJ&u6EwPTv?28ML~;9e`SFi8??3DXz3<-d-af1!9yhv;JQ&2) zp9YonBZ66Dw{su#OZrsnwbx1gjn-}vL;p@TN85(#UzXu;Bw z)b9uF-_uz`IPtjG8g-k)uJ~&W;|()@?$-Fe^cCyN4O+^`7WPY>ZUNESez$7e+I6)e z0GsLk*ergTAn zU0QUX>Hmt1jn@pdWC5_}km*&nNXLbB;<=|`7MTl7K@#g`%AR&d>%0|=X;TRFl8$Ej zNc(K<5t##~HTpLW4RGRgZkQ3KZq%dJqV4{A(*_< zJ7-`imwV+S23bOvVQi2-4Z*N}D;O4wSg*$dV;zt@*K#KeR(R&g#Sgp^kBt&v8DHXV zYxM=Zt-#=CY5#L*zoPmJ=$=Ld;A-=YcrXcPST8NpLTjNfUcYHYISde+!BOkN(!$;t zWwS~B%K*CRaIhH^_A_R2?;!*gOmYlcO`5N(b-my#l(U4vjpju?ITPM!eeAX}ica&Q z-?2a8u80{g{hE}f09fd&3s0Av6@61;-RZn(Hea@zZw9@LVW(LKdi8f(1%SnX&8&Bq z0K@w6ct{L=cQpW5=(|`JjQ&n8N2Bayk~e}YOf~c^i?Etti}cYggGDjdgA42Hda z!wy#~yZhXkkB8_Hqm!^DJyNi(HJAO}VKc&ojga|Vp38b1ue-+e#g~8&!^JO2lH4+Jae76-C>qqy*ZU|^S=R7!Gjc)H|*EbU#Z+8Ob&UzC@ zT(r5-r>aj_?C|<9+^vI}Kg+S!ee1&Y88FnE2;}}F0NZevcOx^jQ_5d_^QS+E0e}C` z?`rjOxl$-CJ1Gi!89mZF zA<4lIQL~m4e>Ks{L51m6?Kx8OmTcV{s`Vc9NIfiC3%gs9l|1k$9JB;E#bza2FQ&7Y zJA!QHA=g(q!Tc!&edsduv11)^vu?RC*v5~t^9arB7xE70_` z80_(h9#g8n6!caaZwT?`eC4y81F&#W(AzX;-%BeSyMbW2@&XfIq3`Kra7Z;Xwu|Cb zKbQ!G*5#D)nnI-OL^j)J>5TGAFxcdyo%;%Od+kgsIcpgbUx?$HVUZgnniQ88hDDAC z{laKiv>4^*^U7i+Ze8ql&swcl0^ol4ayBWfmrnp3Q_%D?qi!!n4p-?2J zEz{(#MUvL@K4o2DGt!2N&B82N=i|1?GPJ9rL0aF}=D|4@{nZ(HI4s0{g}ypRb;^!? z+Fj_YTbH<6=)&uE^_h=+{MWi1%|3`+{>_%xJOmpV+65>E>phz}MCl@*eO1iA(H5cC zt~YAM?PmV{KmYdq_uuFQs1(i&_>+8WwntGx=-X{%PXSoCD-1@d1060D$3m-1+5$}$ zTE}D{$VLFYh?Mc;e%HG?4lT#tFK90=0A_|HR`M));Db!mgBh^}w6G-7OX*Y6Th;#? zO27SN(khP{MZ0Y|29KJ;VA`kII^aL1GlA2CqP0yhd)6TeJ}ZR5!dIcA_5r%{^AGzE z?{~Ol;t2BO0qnk+SP&9Awkvnha;z=PwVU5|4*Q;#dzaa2VhKP&lz&+pXtvQ&aLOs8 zjrNjpiD6aVLE_Gs7lqsl;Vxc*?#r8tb4svbZQXQE>P0{!-J;il=5r*zk^4prJ_TSp zu;9T_IV-|2=o{^d0pQr;{)E20N~cr8iHKYd*T@M5=Wz4QTs&9kjMbIZ)K;}oOp<~P zEER0_F9dn%%o}qZF6+8033`{yp?Jk~+GTDSb+Dj}of;RCY>1V9(3j4VCk9Np*P{Bu z!i6{hJjQmD&PBa_UTvO{vW^c()vU5sj;+5bmOd*KpX*lW+i05mZ?B)n{~#opyB5sp z>Q}>2$q8!+nwJCs01yC4L_t&z1`G^~xiU3m%~tI*ao_l6a1OS&L{7Vt6$aPJFPg?t z1ho0dtZY2np*M10ZFmK}irK8ZUMEOx^!pdW;BNa|F&*axz~Js~TUH#lwf&~LT~`f* z*JjxpFxUZjyQ^CM*#USq69yNiT2cfnXO7ohzkI_>(Nx#q^@3FpGa_s3L`{k8nDiQU6XQ#2@*V5SgT{*1L6+H z&FQ?W1JceBfW0s*g&yxO>=Zl^=fbeydwCKQxWOUCd?Ch=%1@Td%8uK6w!a9mi@8G9W`aF+c2TLE$4wQp7VNI< zr7$0KvqAx|SU8@(CZ!u363=zN9Xn?0)r7$SFxKL10%Aj-iI3JV9DVJi!a$I-LZ?C9 zWrVes6>_h&meCHa+dq8q`18;I_{xQ`^nkXAbuByYn(75D;+@1oJeblcAplkg$w*Km z{24qL#&xp&RDwlXduZSixHS`h#ZzRKkTLG|Q z)~SjCQw$afUXNQgkJPKBdR~@JXNwcHD%q%E7ZHbjgAK!eVp(FJB7J+mjB_j`s7Y+{ zBW=t?XpP)}!N&3@%5xnT=04~r#>F^`7ARFl*dEglY=9+rM55gmsZqn^)c)B7_qOPd!;L*OcQ zTXn6BQ+pz-*Y>l`p0ym4ua0ffR*n_=HqOO*OXU|rUxi386<>EXD2V$;=r#21nJchD z4;W7>qP)PZpjVLG@nE+UztF7Nye@=g;eb(z; zit_3#)MjwGNJM-Ut5towZLYV8k>H6S*}RPhy$fOIW>pcair12S4%OdamSE_6+$I8G zSJ*JFya?`x!2r>;J0^L(&U#ta7P%=579 z=vx@Ib132}CjAnuSFfqqE)xVP)1IsfR9IULkzl+?VJD0Qn-)Y0z$~(CTD44DuX3xT z15%gNed&c3A+`q5p(t+;aewApba4jD9X;2lS#)b-NRzfMs&>09UP}&YHXW>%69KT$ zSFBg)yIzmAThyg1>Za=rtt;WN0GQ?r=76ms%e$i)G{X1@TO^DbbWgWm69DTNJQhC& zfU#syi2Dk9?;chfDaxQfRkjcV{_d|||L51A{{G!x zl18;y%Ec5kZJDAG05G0$tQToh%mwqod0z;$(rGJGPGzt6~U_a6ApkoS@ zD6!CI#~01unf3?P?n@s)FfJ{(J$J`KtlKcu;c^Ektm%wu*3Xchz!ykcG4v^g_u~3C zaMi9Wl4@Z&8~*UaUw``P+x2p2s)x?1&Dmb>xt>FL&1i8WE6ND*r4>s*iUFHpa3jkn zkMtF$4xn1hGe;3niUNEuKsD80QnIP1eVh6y^GEO>;NxDh|b zHfGv?gxsLD_KW%-$0Pl}73z+0#RrBBiBm0zMcUky!f-`wb!93#eL9RHXqg6<_cRH# z%Ei|dN`NuY7Z?@*8wQ)-WlmI>S>coPthEj5dS}m#h;)>L)*|5Rz(fd5YgJU&qCS11 z9UV67+C#?z_IMohmMJAfXNV^+Me%Q8ypKvoY0@|}99p#8d9z$}d!<^A!Z2;pw8}sd?@1br{slHMO<8@nayh@s{6*kE0`R8ioMYCZkXfa^X+`gr+FYs4zPld{S zSz9hEh)o`kZG}lruBt-K(I6uXo=@`tuys4H%MpNa>J^}-jm?I>dgN+l^fz@RG(W`o zyd)kxn-n%HgKAfM27rsuUqwV;=r3957@JvjIWEom#c?M$Y-I<{i~txP1p%;;U{66C z1121OaRr`vMq1n6UN_h8<*g*#)+#BQav{(Kj0qSFYWqy?lCkXf^xOhtlw!bi`MT?f zb>F~rF|Y%$(RmQ`nnMoWJ3dxV=f!;9pUryxp0z-CyS3G7v~UGVkzoC(jk6x}_;|d( z--+hB-i=}K@i@D>n%~{6-@e_FRTl9DahL0%Kok)^j7QkX4~CtJJ&bkw-1Z=A2!QXODDEIPc3Aw3phP&dpF0? zao1nXL$~dI(?9NpqF>a56-Lgc4Xyi@sPt)Uve3wMFfSX1I%>sl{_^F2{^wuc{rxXu zzyjb><+7Nn9MGChqKv#5k{ZlvLq~+KWnU5ceOnXtc+@~AHYw4F&^sNsXOoW2VGk3U zw=svHF<3vwFWP=|nIy(!VGKGwv|u5$LNg21L~Se(It7XK|DxK6t@BjGmo%SD;w?%@n{SW{nJgy%Ht)R=H7qoUKM`HabejNOi`X!S- z@Wg}uy53Awe~entx{VB&{uOE3`S|IjxGWJZ52@q(|7dGB=TeZ%4!P9 zrQR*Z3=9EN55_lX=1wQ{ZOsM=!j|(vRWa>pdu=^sHl*acH;TKb)=8|_v}g%{6@avR z5%#0ZAyn9o9kBJ3>*MUWQY_62fjIF!aCnnrl_ytWQYz@;M>1^}_)V{D@&(Wy>`i3E*G`$=X z$f2Rh!BtDa^|fum=?;Mh|E44QH;q~YciSDM#)8zjV{0@y?SR?7Yl#Ygb~5*hXn?cV zWS~y}i-yuhUH1Kv_df4NVIzs-yNfNpbyF=JG$GoFnFSmk(O2KS{>Br z_AIrUO8~S&Spl$K7EX+mm4I1yGN-GT74!<)b*p0!BfferPqB`wL21-4Hj+00aIc#c z08b{tF$tSOEEcxnuZPyvRY!4s-PNt`SuDzvkyzm6Vpb5`9`34n#Z z7EXehfSe9Wu@cNJ2ZXnDminEXO>6WE))d_~f?_L$FOlGZjxDQfgo;LWl{{t!Q%4x$SZUU_IA+VajIy=mj|;V%^oDt$5~5>q$&b1f3#6MHzluLGPkLuB>E-+!{c^!+O31ZmKbOh#+{;| zR~Wo-TECh$w~Nkx)x(#NhG!kqnQR#Bqe>#LI`^mnBlV?Q`g-WzvS+#J0sxHa*6|>S zZCl!JrcFjeKk82UwuHMpoe8Cz>+!qC)$Pq>Yb}TF$dn3V(-9KgZK1-PS2)`0Wbgv2 zDZs#eais)+!QfKqoTLsgOeL5q?3#+$9`%32nKIb47R=3xYqYZyeQm3O-u zp&$Quv$S~~ma>B3;h+s09*^5v`i8@19L;ydz-n|LwmD$oZljxNxJN>&O!->)Dzp<2 znwi14EKn3W3SUdL=fM~_O({29m)>>tLYPgrvz{`Y)qvjC;8GFHeZ8Yf=*wU(-OiSy z9+mVI*sz|cKc^S*KWFGG+!Yt;_VRvfWn)Uk(`jioD^ImK@b}jAStDVve$<`O-Dt6@ zt~T|xiENnE#$lHn_YK9>p?TOf#a0E7lR;JhELc4r5^KEjCM;msa?YNArVI=KTNyYN zf_5!v;&8B&~ZRy~!NVZd>zYf5qv6g@ofEA-| z-VA+*dY$6T+o2W9NsW%^=}0S)HDMXkfUqTCha#X!M}F5`A4KUZti0*l%^IAO)q(-Dr@cZYP#&GWy$3*eVKud%e0& z$NT&J`}fxreIFhUUw-*c7_4J$b@d~f8~PDx==riQaNX|57%k}b_I~XO&sPFq{R&hL z6Gx_dwRNk8wKqkZVesxa67)WP*d4AX)PS#VW+bBH(2>wrLFcmoSkQZQJzA|>>rH24 zi91`880QcJPYgZ)01yC4L_t*X1%TZhuLA&^{==e&fUwPOrD@NYf(C7)mYQb3O5O2LY(KTZD*^J&;qBHMxvIU2lH zNG_kj^|dHRle?r|`u)duzx?t~QDIaMEeqW&!8zEb0Kll9V*Wu-7PIe2Wsze*VuG`J z(9LU;s{b(}?t0Pmmgyh~iAOK4z&h1ox^XlXL8$mYf<4iLC<3q*j8o=K6oPo}2Jcz)mC?TF!g$jGf0)%iF#?q4jXx&5Xp2F#$5wPJ<-=LV9_s5+ak(XP7Nn?Q%S zuU>FIFHrp*k8?ue&7unWGWZMn0>I>-nK%M{?{@9`P3wB$XD7kBQ#un{nu;?;2>c-F0TNRnH=8n3oJLFw^kil&ubfk7i=uw3!VB(Wae z9chymV?JEXXu=WzivjCJ#B_zeqP!x(Zy(lzVFiL4t96&oXPtfk@cz)(Jy+M-e{@&N zCQI0SQWN?Dz)Tsz8mHRcdWOI!Yi%x;9%;+U`WTY2rRpW4U-U*5^RKlp{`=qm^z$!2 zee>5p0l-!Ou7o*S+TY0b<6n!ie5~B-V%Fzet7Y*CrhbW%5qaa8k8*;(2=$SbWkiZO zZvYt3Rp`L9L>QUHlb~N?cvS0Sw_9e{MW1|-XYtZ03Tvi`?~Qw6MKpiGhmaIT8oFA^ ziy8dz)8GE_{a+5dnbinQ8oGemC8CdXM+X;b9}dQ{Ftz_ODomT3_KU`7Jqtb31rh|J z6Ch1rlbbiRpug4#?G;}E*b@mJ)~6@kvluq;A3;;XK=8z#Wi!N1yKN`hx35(ItgqY7 zfo@QyG}~ZrE9=(s7A`gd23sR{r#NaCM1qCE3%|#@%sf3#o}3Ib0vc#trR83$<3f2! zN0UH)>f3U0N~{+ES5zlMxi=NkLb!M~P4t>v)VLoCeeZ6k`V%%i?A_EnSSS_qw_$3? z)6uh&jwhGRDh1Cj^Y#dGk7;Xk_5_2^>5=YqDq29$jy@SHYQuo>H$=^Yh=V<+l32oB z0dUm%;H}1~Bs~(8-KIKOrxoS+A_m6m?sC-$o>8Nu4+&0rFfiO`m`)DWU)m%^g6Yzt zHtf0Rmx>@O?X}@t;Z3EM?e&}U#b~>oE*1mGiPwq3WcIUGH|yg=7jR#T`fG(SHTEz= zPk~QD^jF|Yy%w;j?EN70F0kfE%~h3emxv!gj-8t)v7MS zA@mh;i~I7o1pKZXslRTtm|rQV=~}^c8Du&Hz`CEIBfS}e_SS`UA2|Kh?Qkr*Y<9o1 zNlqcAyIKUh!2PzdUDsj2%UOQADg(O5ZPO9A7VEw#{WV)(6UK7MXv)Bb>$B2)TEvV2 z=#AnV5rApGf&m|wbw^)|n@w_D8Y+t)TLE~GpXxeq=X%YIqTkWhJ}0;p=#F~XVK>tk zk!@V)c4)#txl!M=I1~b4GS800g;p~o^oOoIeWKWe}VYq_)pFrIl%eDI*Biv;r`WHdIL z@%{Zy^cMiu@w<0d*7LlZuGb^1MrnRtZo2bTTj*;YRW}PEtAKelX`#y@^aXTMrRsu|%}h z+MVs0AGi(FmM4RT(ATAsvu5W$tkU&EgS0k4)#4jdpYTT1ol$zkm4g$G`pg>(2+hdZU`F7Hv?f~no$yic{&jN-EX>1f}3$HJ9_q+x|t_YW78~?IUGm7bfG)`LWW_J zgxm(N1Bz?Us!grc&IgH^1Z$(I&)fl63|Ii%sb&;3Leo|@YL&+AvWPNSYeR1TE|@9D z8%mtaBx2SB2J@Dyr$#M=g{c`M^+4;E5#r-a7%c3xuAki?_H6;@c+-N)^q0}(1;Z8w zbD1v}M)z$(X=9`uH!yn}4qc1X$l+AWle{#8!hG)~_tRvZNp+;Nz7?ZK+8PWSjRNDs z%+;LQ?P>y-Dk0d4Me$vC}s!(nJRWTDf6B@YwZ%IiX?X8OIRww|~S2U|vm;b+n8 zC_-h+#)YwDAp317YkF8&;iwVWRduGgj$f}}(g1Q^FaQqOW+S@+eK%Fz&s?wA zt%U=yP<%Nr>edg+dRc|ZL67pG;n~EWON)tBe-*;l&7>ssy1P*mSR_ov8#1YmvcHJifpB{No+NNXP5B&{|K~><4H}QuM|Ch~BH%1&u|L zRz2r@BZ$hsR z%WiRMEt+8=@Pp{{%IuH`3O!b>yXzgI!6qN@1A(EbNT|RPwPpRRH^H zHAA;N&Q9Xx9yt#?#0NDHyvq~76rJ^udtZ+`mz+neJCdSnim)ywF8 z2?iSp?i72?oS6hqo4@Ico(`&XfsF?x)HxIwCFw_fQ`#+w1TzF2CbQkD4|QeCToGuD ziqKIeI@-+95p8K(SGA1WQ^U)C$r{3woIbbJq-{;$j=?&x>b3qCZ6oSA0kHlB?ID<_ z!dF-@3;roMjEhj0=OZEFF;G2))rO=~T2boh0r?)++>!c1ck7h_5mE9Pf;A+R{aS z8#+Gp9VcyB>@ARFNB^r>e4WWWzqok*=FRUe&!3kHXIzyOhRdaFshCOorER7k5f3`0 zwIt4F!u#QT-k(f5qmj8GT_V(M80_d=q9+P>A=3b`=2))044RE&m2 zZ9903{(XH2BDDs(mDdVku#UCm@|_-SUQ6D0Dz-M2m&mIdl07-4(V zGaet0fB3`0mw$Np`1!3U>}oaCmBS1Jcr2iO`*!>IxM%cMG*ltD#a}Fp`R=ASH*39= z%Rz@>Bw?@~MlxCGD+X-ndmM@W3WI6O5&$!jMBNtv{_w@Ee&y}cW=ANrp3ber>!52% zW+s5W?KxOJL>Iz=mg8~F>%nFl3}ZN&7DrFZy07mYVXDyAHZj$+dgYD#JZ9pEt!|OK zvdm=K90Xbi4Xl!w!I=P9`{MDW_ub$B^6P(o`s0_M3xM;5jL^5>GVuVgHwhPgrl^3{ zL1dHA3vJ1@gw?90YNe>K1E2jssl!%;Qrgnxp3q2;q6eZk6O2?FdERqKAiGu?rV)ss zp`qr&SeGuDoADX8OGbxlm2;2F*a55Uh#4K0^-*L{y)WcmWiLO=XJ3(v)+w6*e?+|5b%$OCD%BH}K8Kv&Ga&k+X;GzI{DaPjZh3I5~ zvV&%>-^g~73=R!8UX^+pj@??@#HEL|ZX-)`89U%^uQ-_|uXlZWlm4~^r3hx> zq(ruvhAg2k-B<>|zdfZ=000mGNklP7I%4;AY|)B5I9e3PlsG&%c1!8NS}{76j7_o-YT_(pg)p@rD}I9a zkvSK+Q?C%z1S5MF!d+Z`4Sl=kZNXbV1J@i+P5m(#1$NG#bR`*K8fHaO1){>~?KV-Y z1fL6gmOvC9yqN1^s0oilZrKA51|0}}SDX6o&`_+mV!&lVuVTKg0>DOsy-&L??p{x8 z*zNOP=c3=e1b~H+0!vf8T2_Ulgb(b7K4+$W0pR~?yh;JsFxa0i`a7TIA;ADJ3|quk z4;F_$Y#Mr^(0wIzpIZL;xU4(z75cV`n@uA0-Oo)L8U`!?26rdj0+UFic8CVNfx84rTS>a}3S>^p$#8)VLbGM;K zS^zBc)tzr24}PZ+WzyXYIbiK@bv+iZy}q$_Xp!9%mCYOp5)Aq-yiACmpGd&faVQ3? z)ttsFZA!G_Q&}gmua65Y3*e0$gSaO7URt1SUKS-RPaxAyIhzj!z+%9E_~VD)q@c+{ z8vt8zwB&}YdF1gB{0p-9)q+P!fj<(hrvPwb4V;(3LA`oOb{B|^h-;16HZ1f;fj1H8 z%VaS6Rx~BKHB;WR&{;Als9PHeu3koeEmQ1r+hY_@wIivSa>$!}_N4$=8v^7rwL)#T z)9?TJw}1ZQueaChS_RAM3;--xiU4ebv+Y8ZsHCSUVlaF$=A21EBaIFZ7Ak|gFjte% z@)=@q2uL$(NH?ta!SdS(zz}7|f-QyXpw6%vv&h!%*v`#|joqR@6L=T^S4N$nQi)Qu z@RcmIad(&Lpe-wyK8=%^TR0d7dv~|?f+E2>OYP(o33eX5^hQWzqD?mIb|uP-ts$nF zx7UlinO?nG%iw%=w_xSl_!~*fKZzmGfX!Vq7A|crb%K=xPaf@!Um?>y+{Wz}||5pmZlD zmQPtP; zlO|vNG&k(--FhSn9(q8#E12s(6XH_w)oroznRzNyo|oz`Ypt_ZKcs@A?>*cX=v6$m zF^|oxx7)uUP2KLF_s3ZVfkv}}08%iy*wloe+kJDlYls2c{Ey@D@w&S|wr2*$B`3Zm zm^5P_C@)2t56OC8U+yZ4ZF#aN45wMW_;8v!3ionie$~p0O8K)|?XyPXRi|Y_ zR|4Q+KRX&^1e4;v0e6>G&nlNOP6!oWH%K_FsutdU1pxENCk&3xzSebRh)(`lNUWzE zx6SK)+q?+p=Dx5p5}eyki`VPAK==yh!vl0z34_IA-#)A#-)-rBA}!4HJy~eR4D>Jo ztzJa;GZ5^`lw-ZJ4dc79piox$YTa9h87)^P_3VPr0^Q^FGPYuYzV{DX9dNzvv=|*t zb_4pW9X$+#d*B&b>~s(97|#)6+;fBEqbzkhE!ln%fJ7gA2?Z$SWNvk)w5UVo(-1nL0m1%?6OIQ{_! zQ*}eh8RasRs$2mhi`EJ|1KlFZ!R8FLXCzsoEe8$H069M*a4oEjpbKp4emJ*_e`RRT zDY(8SD%MF=o06*N?~gxx_opwv=(X#5fZKCfgSY;ieQ1egZb4#&fSDw1v`aD)93`#{ zVyy;@NduK&?nwbSfhAjKmNzBE-hKi!jhSA&TAwo2>96o#0)T_s=)fvC`sfyu)}$u@ z76~?K^r#dq45p!M+PA4B>cj%w#jrNjW};hKj_R9fQ^(!0oG!w(R zlPB7zG;L|Kj?xxm!8*{3<71dMkOx!YDEDZ-_ij2wTNZMvF`aX2Ysgv3R7K>z(BBBa zr@hb-S%sr?LC0Am2<{^FN8<7D+Q@fLaXPk1Ly@7sX`R^rC<*yRpSew&k}ang6bk_;A(P z>>7gM;n*agT@l(ErhwjvzW$^2UafYu<+eK8mK1|Yt~bi`M&|Bd1>>l{e-{pf78*o0fENKsxS*3egeINeUXTbRcGoGE|t94Z;)!tn58g zZLwWVe{cZ){l|9^fSCi1J{fv2>dGzeSaAjXaJL zFgQBThzje?cvZWkcevjzfB62}@4o%>VZRa?@-Y>&@S^#vQ8{Z?&q3c)0Jb4ucT9@C z&_t@dVbGgeHMHE`xa&@Z^>`0mNIroRJXudQ0!jA5dQ)(+wr3z&1X?7R0zcTV`>h!p z1F>Er`U?XFfXyV>^+}j%w!tc0P0gZyg|)EZaj&u-C4yvuu`sybFeN*^fsU^6XZ|26w0#m(7D`1PN3U}Y$&jrA@H{!%&8(4Da)vY)&6q%|pg<8XZ8(v{J-i)095JU|{(2^0Q3l#WQgxT`x-1+0-I)TjC7jpEcH0!|7580l z6CtZWw?7Pi3<7e6?u-gnf@d8A=OVrq`^scp5X?sa?hgvgFWLW6c~L5US}y*sR(YP( zUI>E+oy+O4Ao>eT0>FmBv!VhF4(5Q%s6APy6>BeYd;-8e-CK2wg_5^fRbo<_qOx%J zYS&WeSBp_r=)0K}#i#G~4M8seECzhHYnl$_tg@X}P5gOe3X~IJYA4rkWxLLOBLLHE z6%x*li?m#syP_+4cFdgd(u)WtT7oI0h_68}1>lNBL|-~?;5X16nr=X7_qr)ZD?Mg0 zNj_8f5!u!CaCMkpr%;Nnx=zj8+tvO3Mwo}(D@|CaO9~^eZ`VRo8%DZb=_!Ih>Uv5qv@XK22#~KeCOtT7u)t}-6#yR(Hg~jJcf^1du^ZM? z^femR=pNUvDE$hC?W1!ecdUng1HkoiX0x0Cz+Zg+a0A*G`4npvY$@r{VGn?;YgBL#??4q4d) z^!U50gIIS8(Wf@HUX0DwcUyL(pR>14*nURl>?GWKpPSTD1} zwu{wH!ei_bT2aGNu^QGl!iH|Cmt@FAwc0st7KJqQE6}WfgEe^?h_b_EMcYI)t>{`X zdth&e7C(OfZu{_d#r#rqqGie`diAVVE$l`VG)wDOCerB^6rmx@#j{RDF-d)s%1)=b z{!6gdd-(IN%8~(tQBjQyIF^LL;3p3f7qE;~Vb>Mtdj8ovs^(2gS$Ur`{m)=<%qj=f zNxw68TE*Nl?AdfV-1miYGNETda8Ke`%AlySD!s&O8CHFMw8L(t&U zi7#x`$nmTcQqao^^w&hGy#IN-Z|X;p-QM6bwPEm><`t=gWDv2^vCtO)-d#6#H?843 zXU)=S42DJIy4sygz4EeBe6FaLJ`)BvlUM!r1pvI5m8b!4RyAk9Zfr0!WJNtAjf&G^ zAOF?yB6dNS9kT&olZ4#Pt$&JVxngAiVBOjz(kLqutXH_&)CIr~S8auOFuhm%Wn%6N zGi`pWGhIb}tt24T(Nama=@{F%afi9e{<;>i&MGz=i<;77`0| z>4=633vo9)Yt$0Y_FkKfDzH z7m8WxVS)a-ZA0{Iu}LI1pAk9GVgvw>$L)SU!4=pKwBA(&y(1H$ZO72}HP@{JFjkVn zT3UJ8Kp?%Mf6Y{^(`{LtO#+qmKkA7jhlALCIxcDR$Igj^8j0^n*w4{jZ!YLbfkjqp zkhTkYtD^E+l6Je<_y7FvyKld-cIa}hQMIvPc)!lcwzZF$TjD7I>sE*xrh!u!b`18h zy;gSE$xnu52jJFv(V#CHp;p}~NCuAqu;0+%2*AhsiG7Tx2R zr$JNG^&HAx#7!6%)=5hr8Fmhj4{HH1mP)5x)6xEcc_e4O4aeXHE&^aM)L#dl5bDO@ zM_$2fq+LHNop4R4NJqP`SE#l`HXP0n?yp`noB3X^LOqxUX}0)=owJ7R zm>nkL3{uP|$ILSrjDA*RwEu;{p7-LBVaO_l;h5;=HL-nU>?$^DVel}qK6Z20R&?#c zv{F%}atZoovoERpqKFWcrM*APnzI4}R@n0G1`N0_i1k|Yl&|ce<*I*a>1DSI98QbQ zeRJLZg~Iu34$hjEY^$dL%;c`C;&&LoZVs2$d9>1#D}Dns99XuKlr4Bw@s zhuBaz$%}B{5vzyUb{@e22NG2KO>c7EU(9-&)hH@Q>Xv*mC%UeIhlkzW-CD30(UdTG z4WHcAQ*_M45iA*~j(ySSb?C))9AzmLv`JgOI(1)|Eqda_7&F}5ZMOUWkF4|HapcO9 zwf@6f%t+mhG9+k`bf5(-XhDmzs4jyx5+t<*xfWzb(CqAB_Lsjn=ev2E>IDuGStN@^ zvY0n+91|fzJhFV<)#UPKc73-HzTVs}gu8GE+M9LN35KrpFe%y_(Ane| zjAmSMHcV0-$|ho1Q&&od0Ux$K*HLK#Eik-e5*)jr?cA%pF&7<+!TPKWgBKl}jB*S{ zngak116}Q~Z%~Z871;26*qGXga6y5Y(qd5Gj@yFXX*)3t9#nS z@-mKthuL#(hF%ix0Kgo*FkJDCT9{L!A)s75VLmOL6wk&+dSIAIVj&ruP5{{JTtSN? z7GmSDZ!G#o436i=6GtSOk^Y!_n|Dk~$I^0y@F<>zC<@+FQE$r|wS2?jB0Q$l>*bY> z!*EUSG@)7gxnXeTvvTp2+ECqRmY~9)2(eo2b3!oON(Xp^zMX!K8*PH9e{NcmZtE-7 zJDMg6;8Vvaye!;}Ra?5K!jB;xZM2wiVF5EmTnF7eVf1$*^v&`ktd}JAYE#)?G%v4v z+kG=I@0rKMybiS?u=ynyk#5vaDv9-BSu0lZS)=;AT|4PD&quxU=`aTXYZEY^2ftnc zp#n=HI-)~u*yG5m$V$KHTUqsYp7<^0h}jXjQ=(kbuX{gN{c_W|+SM+%)r(bfSeAKa z(ckqnS?imf(q91B#(e8%0f5_CW{q_0wlain1d>NX%SCqwc|}tUxUF5Y{)3rruc&Bu z^6n99MhnLPOllOYW!h5oR{)GntmqnDHt;zcN$Ms#zqwf5U2XQl%k>Cu3U=z;8>kzDQirdj*<;(}5y8FzZL49V!gNhBu=cjYhPNvqew1 z3k=`g?+=$V8x(c`7W$eH^v#^{U-Hkp{m@!TokJkLL3bE_40-_8Z^0e?dXCPs*dfA) zr0&HgU2vm7rc~JG*2sO-9-<*UkB=QmbOoCglIc*M7jn<`yXEh{{q&!I|M~cEQ!Hf) z#UR%gJ5!7bJ8wo?D!N~oikVl@#CnIrW{iHn-qH2nsr0+mVZW|>?E(F|{pj*3`p@e1 zi^%G~$v1%}Z2%ZEUAm~C^<<%8z@({Z*^2;d3Z|IFw#x3<(I7YAsgx3)OY}llOJPZ+ zgFd-@|`fG9)J{-kYRJ@RRBy5qUg9@>nG=#y{ zrRdHj^HC)=Uok}v&IjY)J(!6bRy>35D zrkZ<0ddWwUn5DJ?cDDi#782{d;QKV`Bou>pvo3~)vu=6bOTgf1&-@#JJzfkj2?p!S zeC@?ufD^-6Hqas%Li*>1OBKue%%7mXZfqK+7x>Tq>U_s#ztwHV$zpF=u590G#} z8#P{!Hg4;S%0v{Jptt;3;t{UcD&V=#OyhZ)n=0n5b2(t~mqcEVAs^8EZ$ zPfA;h76VHtdwgKPgwPk?h2z_yzaP+7Xg5tvox|BMxng2Ew~{aqqp4~owZQ-{Q>+*P+OjecAqO4;WLmCzgjr7VJCyn|G zn@6fX7Xuamcj~8u&gpEF7xXF?+7_fx3JFe8woHhjZs#RY*k~7c48T_XofUUSP)(hf zj;)B|y3rYM!=o0m+146uA@sGuUtP~B`cnOk0Bm6Fv!p`YR{gY5eW9bG(>zb@(@lQT zoFc78kZE9X+-zd|{1EH|Px^x@*gXOW~u|L>U;bJ!|Y7npWR-J$QP!yuMsv zkV3~YMxMe{XRG3`Q=zY*SI4WXh0xb?(T1ZmNeMyqc-$HUt7Ncgq89Yt-yejsj3GsT zB;5jpqu0TpFyp^t!NYoZbz_pz_m3Ao4ZO1HquV(i3?}-KHaY7=t5xhH&kApS$0UhG8)@!C9PV4G_o*8*cS4-j$zS{767JAiRoL%;C$VL z>rOM7PcIH@0r3C+=U)%^w*WAck-{hZfRWLNw!Tr@kDewvibZ)X^W3ZHDCiZf)RnJj zw-enGZ)`V9f?-;sDC;tfCXS^qQq)h@Kb_uYvLFy&zB56c!_+QoT6gIG^x@88!^+#n zT(uoB2GC$GE30?PUvv{>rRgQj=?R|vY^`d zSVUd0k9hDg0AuJIJDH=*Cz2hhu0<*Bkv?$@4qgt#aXLD(BPT|uI^GhQakLrc*Y!NwlHwwzw;6iPd~`77!OyZbH2m55 z>ED=%hbtQZx6M*8tLXMDmpd4jw4et<>{1&fp8;Uhm`xvJR%J*xnhptxk(~5NqzsIi zNn$I)NK@*WKw;4RD7%Xb}y731K_U>doI`=q+2mRh9Ewcj;)VdhVS!CD1S zbV>@(v1-@aLBkQ5)#beBu4H3toN1M~(&pZyk87B7Qvv5hh1b4EA;d!ZmoN8}gn?&MvfNKsn~~_Ro)!rXo!{K8 zZ(nZi9@aN6mzOs)Q;_!772p=(NvQD6?E*VO)}u@BCDBUsaKC1B5;lO!fsJGgjXs76 z+SF=|As>Apt69eynr2PJl8~PSfED^|wXH#Dg5DDWt@gr~SKHryHvoQlcU>xH1;E-J zyW0C{1Yqn7Eo<#80d-|$brmj&l}C`4+EVPgB-0Bznpg+Y94-<`N<8cdYG-<>NKDv( z?6@Y(V6sTB8IeUgtqiS&h$akVj&H8tQbLEzgz1xPt(+lkuBY|+;B$d4eP``zzERG= zc(kOtcEM*=t9BRkjS>moZsx!K^3yLr|M+lsDM&VfXan^RVjwg^Gt2|!#hnmHMyPTv z@;Wxd20^a?cqKIT(l43kI4Dd~+MA`#r-7E{DANenr0s|VFTsyAX9YLLesE->7cUG% z9SsnZ3?O+<~`f7tm#9DNRj#m3Q9cjUx@l=M%=G zH?~BqmjmW>5tXEcDs>qOLrTZ09W+Q6^UqP9A;Ck7R!mBR!ED`3z0y62LxI`K!vREf zqOWDd*EmfSxhw!2VbX-I{I_Dn-}*?Acflm3hFN4Lk=g)yVXF)s34P5t z!33&o0LhcjCRT+31LMLvTH@M$e@DaObYh9$&Bl76SDTt(c(xL|Ejk{Tyq`Ji)5E#> zvc%l5i0|&QE$F?t>e93&0&S^mQC0IhJ}Q_o+Y+E=bM|A(APV#3^h@+5?H!8^TIt6Yz`PGrFe|jm~Q;~>nC$S z@~1^bOE-!x>)yx5OQCg?>CmsE9c{JYhr`qBYx=G)uNM)3MSoY@&@zhP1_D@suGTCh zIE?=KYK5XbJm6Sj7by?zW6a^lQ}m#362eq%X+(-H>&Qf#L+zj@07hym2vZ&VxHvlmDvC-U(6f|XE2&Evcn76E5F?X62wJj@_3+ILWS*e&Qm$Jn| zfNV*wiirV}NQc+DLt+W>7G@vAltuBZ zlzWjBPO7CdL^pZ0h;#~oTh{oUF?~wUE{Xw&1Pf(F;%n7nt6BN#%eTM%`u>M+znly^ z`h=Ul^N9NoJg2Frg1GQt`k#ZGMbN6O2!jR20I-7OvrZ@giw(P;sQzDx&dG2@eJJd| zVwN?Qgt;ZcGa6W-19?;hhOL*)RWEp0u(I&27#|>2ZNcqg)D#aE^hVz&%TD*g=&;!d zw-Uvs-`J1Zt6@z%SbL7cx=#Zjqenq_@-WrL7nCJktXE4DgWe0@>fkr5Z}r8PuEW5F zodL%R@r?s>jN>PaR|NCHdgDwA=tq4Nn22NH5a}m>>>SohL<1)9dk zA2aFLVtuTr6>o`uD0X|%l13XE1~x&2q@EWZ*UghOLtgq5L)>8z^d;btBEII=>%Gl^ z^)g%(Sg+@wz4w?xFSiJB&2FLf9KkHhT|2QRvppC2Tl*;RzPaAlmfMPAwX=3D@9Oe_ zrL~oN1;BB7SPwSU$!!hME2|2x$_hd6c$174MFIva03P)7{a&uqJZsjB0XHkpbw27B z^w+fm5CAIz15PayA_Eqt3VjI@#m9rcG(V>dxDsJIG;Mi?dA}+vcFU4tyC`nv1wEc8 zcde^}Ld4hNXzCZ}C4{@3rXcpLRX6qKa^cgY_*p6ccby1^wYq6>L_8s2umiASI4Y+r zP75|hPmr}!rO9VwGwq^QQUP#M(&uy1sb>`J+BueaT616B@4t9`{dl+4MZR4RW|MYw z;6eO(CkmUYaEQeUAccQg3uwPW`59+lR5B3Ipa~1WroM~!ktu)}qQ3b;p4;2 zKYo87Q_#750N2O{P?hp(eG(+4@-MV^7Ic;JXSF2Xs+R@8ne*ogKo{H%zNAT})hhS< z^|nCH|1NBjtpHkAda1OG;o79vjH(w2XFZsirC7GmE~Md_lu?$_=(YEC7c$TE@&vJP zecrFO4gyZ%BfC1C-u=_$J+$ z!m4BSmp?(Joc?G17%_O`BRzB-19E+D8aPVDRq?b2mFelzmr7rFVQ}{R@60K+o#`IS zM;k~N&4wtXqaCL$-<#%s$s~u?s-qdCSj3H!NHO^wkyyVKlL}%E0Y?BfHay4@lz1cb64ra=>XO|-9tWgw z`^4svgxQVO3oHwxTqQJ`rvpbrf0l_}F$YWwv~U+fY_iYm1n5-+ z7h)FHESp;0(30KT0*HBfm+6UIvy(LC1VD zQ^ILi^M`aaly@_;Mra-%#U?H7JShj@XZ`<&Tnb23EFR_pq5Or(bZEBEUKa!U| z7Qhm?Vuhr=GcHMAd~vS_i2kltLp^}8CHFrWLw~>e>d{eu#gpi-Gggn|uVQyG0)Ux5 z64OQH3NRKASgtxuXlV7(!l8Y=t-lu&E4H~H2K@Zq0dJ4L$meY2>TQ(byX5Pgq%N{m%+-oJ((z#xt5Eq3@o!~HtryFC?2E)z+ z%1-5l#FW8|?-~hy{l{-VfB(%_lToYXyr0%_gKe`44n4>nX@UmZ@cdPK=MZdBh)uVl(HGcbb9h9q6 zvZW(i1k%X34GJLjQYlD*piJ4(|4*749!$3cl^Qs)u8t_*!TY6QEe>uSSBOao=*WD* zF`LBe;&@6p_A^_ici7N3lePwJJzZD%Q(XeI9Mbuf?v(2&L3+tqhdadEs$L(EF@gq%NyO4D%ppB3b@*Tq9 zPhhA5V5qPF*v5Q)u9q&VV?9Xo7jkDLE9*{^<4Q0#4C2kT#- zIbo_RKQ~N}@}hll)xEy%DGq{R8xgKKmY1RyNAU68)n2zOiclXl~@+sRDEWg4#l;Q6!|0ho5G&}p@5Y?t-pqAvivnN>`z z$~&+GrATF=nFS1cp4lP%h&^wo7U}I`z=_b;{EpmQVbaYHTb6AOvqqgf-OinMrlnWj zJZscXs+DKO!haQWe^Zq6&&cmZ07es$Hfdez+SHR&Qfu>eeYUMEPmqfpOY-n<8Dc`;xB*lWP~ zd?AAw12~O*0RSxQ5da4?N?jTBn0~kF(pNdRcsqrdRz$~rcmuCD{Hd5$6prFHsQ)r7 zN-vcFeXZ%;r@#^4(7sJy2?f1)`dyR2b!lis3A`!V%6lkW(zm6c3)*IR9es7wdBk8J zNwV&nYB|?wRuIM#3EpiNzy13D*I#~myuYwE=|+i}U8ld(n6Xi%c{IafZ|Hm;1N1J*~mB&&pq*gc5JEkMR$^0%`jR?S7_ddGxwk%x~(Fi=MM(d-{ zlbDIJSGd@Jkl)syHe=>qkvVB?+>hsWFr`)mrzvmVq|yW?Q5&}A;d(w+g=s>hEi3Zi zSQ19rRCj4N3-LADV^ex3mhnmcMaJ_E`fQgWZUY91T zqHtH}D1@&P9g7o`T-`yb$eCbVLKd zJDsQVzME;y!t&2m062~(rN!VhcReky$3-j%@j)VSy_l3|qvB+cANS4aNZgl+BZW?w zU({yV8lIbH&Bm#Md8(xRsc^TH3*4779srDTBy?G9c+kz`m6YD%jaqoDdW43Wb}<65 zo$}h2UcPyK5Q7v07VCxng2ZP1 zd%cA6Vwr$Yh5%SU-rpY>C^A^}erB|^=JOuy(85>YG2)a$+_g7d!+`ZN1iIv_O_#$( zE6pIq{ZnDO^o3qrPZ98=2}}11N_E0yux?*0+l)x+NS)6#ecZNP*gPCny1k-~Iu`)z z!qb(uTMZ7I5m^B?_-voK%$S0u1=^&bD9^XeO{kijM&LB;EN9yF;?v`;0Qlek`R}`z z*USNzN~Tl6igV0>ZMwgbMGBO9616d{S!i^)a+VcnG1VZyr$@$#%qSyZxk~rc3nFMp zDLDYsQUq6vvXr3OFvV}}JnYx&d5cCi zGT^@`Qw|%GUKN=RCWdhq5m^+zBAr1+2H}y|vMv(Luvv5*qJ0S+CrH?E!#4Oau385MsNfS7kVO=ox9f$4RSf{gLhRA>5$yKietrLPMK0RBo4SQ4-=T+*XTJ8%tZ3HBaD2=~ z1H;s|NeSQ(1)S4jjdUd+7pVd(s9(&mN8GLlK=0ZIYC%Wz@95}c%^3}}>{$OWv%<9O zMX~4zz>x=IcIgu0W~&P90h1_XDVQD7pF<6oKaFU?N0x;UT;0nA2M?xo>o}hrlg#{~ zD3x{GlNAfn5sc#laB*crtZP%t>?a}lJT~GR1D6GeuZ{N3YhdkIQ}^co9z=F^=yPcTShS)=U}w%<7=u|U@+ZPt4&RCi~5xdL4T0JG9|2C9SjD26+++9 zA`cA1fY~w3=Z3!1X=ywzOhy(u8M{WNUI{sH=74oHBo;s#YL+~8>;+&$-@0Jfka$)X z=tcluPpa_XZ8|#acO|i7i`FWk?`A@ib73*c+i_B!k4wQ)u#+3KvqVJSQMVxGstdK( z&9z(S5q;~m7q#RCws&*@MJpQtaIu;7ZuvE>QWK$ef@Ot`qf^ztN7ycD_z*SyiwlJSN7&+ zB^XA6)taK+CV}Q>q3p%g5Oum5 zFL$PKuXP0aOCJYQ7D!Y^K}s|z^!YdHXO-l6F!e+KHqk$&^!oMfAAkHL0KUDu!j6!h zDZtf?b=~6L`*#eqhTW>GS+&OfMzfl4RC1%9cxNIWtYu3WX0yLNoAe;#Cz9&f3j;{u zt}vM9OqNK>a*P#$F;;^}dj)`JeO1UsM|~?XNIoJYk?o!OHwxhnapjBcSSOyxE&;$y zOGAQnZr&2!&1X(Hh4XsF27>h#m+SRF7M_R>leOM{ zrJd`rlV>OhnGPYeFqjDf^9pphr9nLgUF*D~2*9!8dvO>n=Jm-qnN6$kU8aoCgbKzC zUK0(TLf+~K0|tZjU_l)NOQ?dgxiK-UZsk~`!@917$L(_8hlBghgF`V`jJcnP1W&X? zI0n0JPklZ}-@ET85F{7O8^uq(7NEZZNT%EMRfom$lA_KtX=hzB^iMDxf0NSR*rG`K znkFoGFi*lC(x1@7m{y9Pp|+|xBm%>DD{YR1s}%d~WVg{>19G!bz)~3OVjZW68S9!% zbmb^$PXLu7OUu?gpgKzm}%GVCm29|Xst>GwxVcd zygjOD#k-C(-f^OdOn^QIPYf9Q{{+OPdKynC*#=YIc|hD?y5ImzzM6BvvpvA+a&!;G zA}Jytu&OZAg<)nkD{eNm!=dG)y-gId82Js#8;i1T-0tg}T}{XJR=AtYR;Bs6GFv6{ zb(tP6A7`>4WowWuX|N7NdSDn>RZ`VO=S(np(LZ5=Z<=3|x zA?|WLba&pB85UhE+@4{{WU#Oq7bB8UuU=h0K3+z7OVZJ_N$beuF_mLMuO6(UXtBQf z`lDjKPp|eb@0YJ$?{p$0*0RFXV-ybpcTLrAH-IHm1A_`Y+%2vzMs(<`*6rEcGS7lx z9s7eaRU&ageOx+fr(*Q9neS`g-LC{g`%x8dT6e^&;1zEpWc9OZ&* z-2MLh5C8t3f8O0*6-&8X-klgeO#Pl)%droVnvinoOi(oH)h7M+xYrUjR0xa*9n;)! zxhqB_Ei+7`5GyR>5W1af9uG?0NG7@0Dd9+Oc-##N5)>>*mPFSqIId7iRPu5^a+wP= z_zNxH-hj56b;ws!0}grPdI5K!UPBbN7^O%|ilJ~`E$8Tkwr(sJ#(MYl+dqH*#VWyr zX04nd1zk78;4By%L^*sU2}_2>xN2M2VPYq4PDL~u=emMKf(1+DpTo?qE2VIwm44F! zZsa-XFgon}tEKR`I-k{q#AsaT$i2W!)QU1p@}fgjibje{=qQvD501WArhn3*n=I)! z%Zg#UGD};a$F4~?@Lcq$Rnjf1QB!a`71!_Ng~9Vd*)g~&9xPNga-0f}pxn+TfcK?c z1?|lONX&!Dmcvt{FCnF0T{2*>P8b;oB5~eng=rH0V8U!vN8r;#7jUJT!z?oLCZy{P z;N24fqvDV=*p6bgRrd;~#e;=LO!u-iq%cg6wAt?FpGW1asAS2Hz%ZQ?NOq8sJ}$(@ znP5DFV}hC@F=hQJy+-W$i@_iCrVs0Jz&v z=YY|9_5v_~nmQeoVn+Iy{)+oDkEDo2VmhU=G~bHZKSLb=zy1q-8Y zUWnVNpLQE(f%~@3y*_;kb8S>#gfQhuvriCbQs^YsdbN&3vtBcJubf2mO##?kkXy~u zcIylg5Vwc4%E?+T;=V1e#e zUpWMTRG@2=w_Oqa?KaB-V4WjBX>JWhe=BfYYfN^0 zY>23hLQ8@ef|G`ZevuhpPV^XqYHz0^a9qHVUPtVrQU20-^tfc&%>_8~G(ubdRIMNY z7UXn1rHm?;@tAT>VG_`_QoE6~>LyNkd9k4q{PN~tGr|50I#!CO!KdK}fT{H&!J(tI zK#!{SdKwvh?X~q`3md56ycO*W**)m>3w^<0rUq~ec52v(qKp8rel%xjpL|WN?CX?- zP0a(XG#{#tV_gD8p;WhHcG~8s?X7u1(j)dBlKK^(ksD?^ce2WYl~$= zfe2;DR8K$TwDpAI)2MR{$GN#fuVTNi3taaXO#!gr76vSKE4aP5YF}S>guZ&rc3WL- zlf}9u3|_A7UU6dU$=X!iHrPB66}(_Utgw~_D*>>AdEfc8Oh#IqIM@+-Yt?pMa{60! z^ld9rRp(@zCZ&T0R+@a)F+y*OzE<2F_j3xJEJw+DQdLa4d7-b@dJTPB)fWO_QqUr% zpl?$Ad$s(TpjStQ)(b7xN%@(gT>4B$z%`0*P*&8Bf@ixo;PkUv^|>K#^R&}GZ#G1o zp8>#Nuvx^kt;w058m+~Y7_A+;mR(F*SNo}sT9mOOIqasdUtfLs<;&M^E-pO3Bmn;A z-R;+3U5f#K{`OMw(s9nF`+cZaU#VcbYZ)FVtlRN?*~czWM^Rp8eCeDL`nq=2MtA8J zG1}L!Z>&6gw-xm6FQ#|*TRjPVSpNLlI8TJo3Wk?-oeT!nb?I6J3!$&#_HK^yGrlpx zT@zbhwCI0E28-FGOD}OD7^GF^)x+xMQVh7aU9}GT-rStE41l}Bu%0FDsdR!#C|U>| zL0|BR2D-t{{Q0LPY4e%~2U82@t zO3rQwZH?T6D$dXfonX$v)=lq)PCbM<+0_YSgj*tBjmkMQT2OZXe5`Go>~U(SP!R(L zO0}MPJGY6MXjP>vt>xl;olfQRFP?t><$HZT<8hm8fu6rod{HZ&Ff~gUl{5-yT5_iU z>=VG`V@W@RG*a?HFO?SMl$+L;vpT|9^go9#Xn%K%`7Rd?S5$7eJ5U3SWzk|`usaqs zDW4;x6bZh2yVC{ob>{|7=@9J)($nc ze+yrA;bL7K|38K1kO3FE>hhncob9ScN9fQ-x`7L1{= z$Hq#uc?LM2HNuRd8#x?nM@M)*9)F5A9xGyw$01)8q$nHBQ(f zUS4-zK8)_}hXP>ZzH7mJiOFCEC&FNC4fRKjqlffzVKT`pX0u|HYZk-`aRFeT{Y^Hj zda7nsLKy=9zT7l!_Fd6mJReBWasU7j07*naR27Z^IMQ5rEdU&Az_GPz)XVC)aCwc@ z*z5)816?Y*VDi1@xd0eFY5-V>D9{!9mh%5qF8#fde5Ru{Ta}-cik}t>e~-ri!(}ms z6B3v{HfIa8ZZV(1+G)M^LKrN>75XXy{dFp=9~o7m16Dw*V+Ve!cx_FdWwCy%GZ!1`B-;7enj?+1GQa2!J8Ppfd1$a3Nf>&;sCxyZO~& zaM*TNT5x9~H0DC1U#HI*63P5DpT9yV732ne>X!~U0r1qPu|R9U`zTL9O z(i83_-e=M#;{;u0 zg`k(?Zri=o7wmEr6RkwdOGj5F`szgx1-;FN_QdBc({;DqGp!i7PKDCA8%|L44Hzr} zcf^Cyixv!9=~tw`SDX*Z>q*UI-lJm#a?Vcoye&UHNuhLUM7nDwA-`?_HDZ6|>o zrbgAnm;iacL@l$YgN#H zPA7DINY_fg7u)839s8d@q@W|y1%MS1fJ2_y(RVtuW-EoDSGWrg)^U>Np9R1=i2y9V z3+M_v{b;Ve0^LIXZ!z>EQ7SwGaS5F#r56COA}I^1|4YOd5o`tMs~`Kl9K$fQ2tf{j zUIsduUey)5TUpnlE&x&3hll;u)#CPcEdYLFeE0C~>zki`eEQ-0hp*qge0jgNZR}x6 zYInIFis`O41EZ~X))XB^csC<~EA&@LyjTqoYNw6)@zoXa@N{|ma;Hb?0s0j^UJn-f z-rQLkSdVA?R{$)87W%sJ!<5k@Z9Gx468c_UPcE;<3Je&6Wt)#4>A3P*7to8D%+7~2 z{NnH3-OeHa3w`GkeNZKq5?v&%R-snQbULM`@Ts1yRL;u&UodYX7l@`tkPd?x0DBp@ ztj}DZyf`0f68ZB_b7!9lEOA8n;)@3{U;*%Uw<;&OZ0E|p%;{jP70e|gTLAijN(DreCIg1cM@Glu|{ zHW|zTL+rHSFh#cHg-)n^Cxz$C$g$fH7$*YP{EJfVGci}*zTOLzo%iDIu!3QeUr?Y- z*=&|-wS1>n{rt;^pMU-Kt9P%a<96LL&qcZj*$~*dbHr{V+o@;5C*LcA!K-N<_NfANLX&|#O5p{+>Iv}hr#vLI1ax?434R30GLv% z0GLex9Rrq&?iINn8Co0lY7u}ZodhMUg*QuMTu5LZyq$K|lZN+X6@%a905&g zQ8zoNk$Cf3oE{dt6%USJ&xFE09c0qtgJiU8X2E@3Ez1r5T=z8VI*y;|3!|^DH9z}M zKKsrfGgk^?u4JTj%W+}&7=|M~g{_i**19LGjrr`tV7oo2%7NYGxn%LNE*!rooE*vw|Td61;d%QtOR8__+E@0oXFnE+4HQ z175lbl9A?l$&oT|xVx{eH|71I_VT{}_U+=~VRU)f63Q+XMTM|-?P+JBufmJL73+?6 zJ!k8&npfzt5&+wCP6{?(G%hHFzJfy}FHF8lcsZ|v$}2-t91%iCmALO=(*S@?h2yWd zdyKx2UWBdgfM>(f2H_kla{G3*29Xsuej^*UDQdz85 zF#P{){MW*GaG~%_k0Yy|5t}G+B*05J3;SuJJQKlU*Em^=KkAn?!N!-{u|NXcekR& zE*WF)fnf`|8i?$|fQ78WNNT-TH*2PhET!!8LSn#n`_;WGXPlVyO>tDs}{^)yB^T8G<4A%*FZKr7LT;8x+`SiwX97Q)7TEZH5}=?53FVVn>2r33(J)}OXX*%|Xfl_(R9s0A~% zo_WUIuPc5tvmPP?U2V~Hq$;cvePI}ljh$|BE|wYD;{jrzmkdAc$HHKpP>N=Lnnbi> z+^x+9&H1p!z!II(0$`D2NbqLbTnwwjR({aTjXQbq;4mL7U>;USon$p>Ums>ydovN) zZ~Ae*8Ona#eidB~gEWU%n*JhG>B7+@qNDX;lu6f7Z;*8K!~I$h0E6Q$geRwU>qGar z^I+`AX#NVxs&wj_&&NI@vlR-}kQknS$|EP9Is02K^C_}fe92>BI3dzerLbGoCpr9J zR}3ODBNTmwwWNpygTWtBWPW76gN0?jXc-SqXNA%9z#cLFN*oksZ0VSM#~k%1jpkXU z`WzG4X6wA&F;~6Uo=gha#hx^EEZ)ntpWf~%hPdD z06d)*1i;gAem2SrfNdg340v2ppkoC?UFyQ~8Z8~pv8Efc%07eie*qZhBA$~DXF;#H zuh3UVZU>L&gHm|%X^sA8Kv&0!`S=P8wRoLa`;}8w{2#l6e4~9WhC=7ky-M)EyFr4%5eB6rIBno{k+q@gQ5cJMF zll!>;dNO$l0LLj_Bsi!I3wp;>bqOzP{D(2G?Plt@IVw5yffxBN#Z=k|CO| z7k0Q93V_9fg~z%==(Iv!fU8|6b7wX>3S1G}^B$A&{maFzXw9~}Tepq-&g(aqqn9_c z!?uTet}uAyT6en4gu!jEvo2x3EJSt;JbV973Cn>gWYtf7_l?RK39X2QqzlJK%jM|xZHtm zX*adHnM;x$NkVVXt4&5Ny)a}TZC!KGO8V!q2d2ar=UzA$s>N!tfnv9yuU4deS~rm% zB$b`|GkS|wNQ0j-ZNkT*S5>LyM1sHk`bi}C-Pdo&qb}WNCWd7@l05ZhtaB^K}>i|^5CTE1|=~&4u}C8WMYZ6d1`{BQqRf7&{|f3r~+W+Q3Y3q{4>5u4);j zu+hLG2jCs!L(<3*cjME-oB4|$vh?1QfkrHn>`^ik8qG$*J}XZ|$9BRPRE0@LN4<{F zE>JU-@+2(@$2Msy$53Ia!he}0^hqIFtLToV!#QGbRDrgcC0|k$+R&q08Rac`HsG9J zkKNIb=Vg)3>qF<}qJ7xZHmhW{C@ts3#jK#?c3s); ztyHYzLG*W>Y&Mnk+6Z(2VCT3vD~R|CdiBhsL2fe0TQih*BLkvL;wp3^bc_rYq(pBr zHC?EI)+^J!vRKdRiq*6Rax0AHj!UytQPQ4Pd+MPTgJ-Vr9G`qXN~XHn-Ea_@DjW7~ zXPMcBp^_(P4bJP`lSc2f**|M^&+8q5@oBYjQmI;$l9NK|dA|5ep_6hY%qhX1>&@rQ z_DQSt!a|7dVN}@Luc9IZtBkeJxXFyx(7WsT^~LCNZ&|g?y3NR-@XRi}o8{+U-hKP+ zt8cz}`s%BD5nn8R5zwGmGGB`R_U5bhde?XAxnT21@|n^vC)RuTOjM2^LJ z1>QPGFPaoI0DN&ZM=zQdYqplwHkpnZV}Qs2Qmp>c!x{J2v_r#&(c&16DoAi#y91J| z;7-JVg}D1oXT4}lN9E13DLfVcYw;BT)3$~S5Z74O3Gr&t#qS8FrB66$S(pG>Q2@a0 z7!iuXq6KZ)-AZoQtqFkt@%#J#{O`Zkn+0>gCGpWzDO&4@AX6){7HHI?7|GC%o(?S6 zNzMXA*3RR|%EFYY^p%`61Opibs}H_3!@f?;Em)XWujgAPC)Aivy9j+4UF#)bKjH6j zF=?3+*04g44>?|%eS{@YTlhg=Qvd)E07*naR5UmA$#mO67(^#}o(YDjsTZ|dSbtQ9kPH&6-B8**YCAmp{J$`iCFByuICNd(rd{!L2Fsym9jvN|QP!{MpIJ!FnNa zr+$WH2j6^NHacYpaH5;R+_s*?Tu*AJsBMrk1%Nlp7O|Mu3G==8CTfCDfZDTlUHP;E zAD#XvO~R=(iVGtTq1p{|{aX#(=`yI4=w#Fpk*zxVHWbE&d(}~^q@!i0ht>I@qT{qz z?$yr}PKArhVPidRt*0F`S@JxAp7yYDSIzxM7<_wWJXK%#<36dFE(S7n*UP)5Rse+4 zqgU9qD@8L396gee(~50bU@%#MV~;`tsE&!~*}O^hO4nwrF*70sVDowmwvn#%?Jr=Q zeu2&9THp4n8wOYWJ5LLAG&E$xs=Xay%4=Tc;Bp{otjn1$OIoI5vG%x`Il^$9BZ_j< z5anYxBt4Iw5DbpOThYrQwtYo-)&o9){t5|1aFL<}eF0s?V36(iGm1e!ug8eOLVpbc zQ~IkTq8WG#j%FpHua$c@0?z6p1!iHno=xa0m=s>FmlXl6*;8 zTjzs*A@qt*3!PE6+B>QBPwRs-9h<#Oe^MGvD~kT0-0tM-&0MXKt<=tw>RGw^qEbKA zV$rCZV3x^d34J@K-R@btZ7Jw_?KvY!0f7C2grKDUtkx9$`f>N&yZg6qOk3m5g<*A> z*_6@K#r5^_?tc5`^P8`~eo(x5bA5lm6T$T+=LK!g)}Oq#(y!3>;(96we0jeF9l>1z zs?bzn!$_MkrCdgPMS^ecwg9j|R}UarEie{ccKPVFLKv)ILV$sR+uJqRuNwhlZ5I?G zz5-y{IEA}Zd|5=;Yr}v6;FU`U0KhKvqc=Xez8H!D3wjsRs(7&Q_;TN$Pbyj>6##Iw zGaI_Ynn_#u)Qxx3lmWuf-RcWE`i^EgRLwv}0pMmeKkC)L{r2rY{_!Iz=%iBo2!N5B z7y1s($G2z`IEIS}dwj-uk(-9kk^cmA^#JRU9-0x2^=jF91KFMVw6mP|%t~_75!@=q z!)B+WErq_%?d80WE+FhyTSlXa)3(r;=~7bA47$MlfFD#lY)pAz=C1%SZPoe_M_6Xw z$QdBhp<}a}OGOo|7aC=07S?XR_Qh9^BEesO^IEU1;iTD-JNJPB`zJsX+_+a1`nIYk z4!vgRiA*%J0~lklfnXdc0j6U5|6O zOk@SaV4n%rT~UsMe%D~k=K#!%te|nX?&(8=0UHT!CF5=l!7Nc>VeoR;n(CIWwMo+j z9Wi*=%J=G-ej_`>RG9hTeq!(1s|Ne^P%wP49cv#cWEH{1UxAt~(96FSW~>|S(s1YO zb*j;ElX@k^K59s9%t!|#lT@_w*vgaC8g%*CaT)S$h^r65FGlC+)@1G({(dTB*~P}d z^Tu`m7)^3=Flh8mcBbY+;`vnJHE3oX12FcTm9$3VGVI~vvZqRUFc)nOU0PDEb>sY4aBP2Eeu2~JzN`{_)&IdCCC%!;tzn9a!FyIKi(b-;M zG}pV7CyRoDZfA2IT-ObKCqdg%Po)?QGUH)(HYo^zg|CO5)n9k3z(lvpM0k9;YnZX_ zvSRlhTDP}@o2%YtRZUeS-A@pR^`vnGU_AnDi6=K7KS#dn8Oy*TYiMzU}`bo2stG6=M#+gEkg+l1twyJ?SItzfC&F8i1vueeX z()x!&%UJ1`|gS#o1mBP!-*d2v z0S`vGMj`YiHAJ08FT@$f0Q+p#aQ}I@j)7V0`OYwN&c1FAN5N z#ei4y`gSGiBW5E)Qxffi0Z)8`%ud<*EJoJYi4Y(F922&-(P?Jum6KG*iuPTjeY7|U zV6=#Q_uc0L;D7zkpDXP;T?^XHfX^ZT3p)W|fJ(S%GVVSZ$($}`13>}NHTSVxg?Ew# zWhx0E6o**OJKOchF}S;!^&D~AeG%eeBZ}miFt3lwAie>_#v{0khBu` z5)U*Y1s820koRZV(P!v+B+v*+#lI-nC;0R*w~MpJ8CC$2D>vGl2#>vZTqW&{q81}e z5sA^nK-R;G#Qyy`jwohnBet`SCk9HRp@-yPXxmXFj#l# zmd&`aofrmB-KJvPD{mJa8xeM?FTB4VA2uer>MhW*rI{BQ87fI5E*wO%5UxSD6)Frv z1%olMP*~4|KQo>dbWt$x#3b?YABw$N+7Mj305yAJyBM#6AELgiE7yw#hP{8vH*-O< zqahv~orTKom{dN}$-=pW!9OY;UhFtUIZKz4zUnAQJ7kK;no-1f{K5D4*oZLpHXqv& zMxBk1v@L1B`k+90H2ZWsAFMC{h6F2`t@B>LVCXw20G394)1!cy>MsCniRfub=c2z3 zz$T_Ko)@RfvUv_FmSPE2D!#&U^3PUI9$NlcIBE=d+YrRk{lwtV#kMZ=71o+l?@Bzl zb$4Uvt4ErC5o16f^inU+5x^8FFs-Tw!H*HFKgKVpJX5Pu&lbC`Q z0E-j%M@5T4Suq^f$J1tSSQZA?n&-}dgK7r=+-#lIo6jq?Pm{`L^~T9ySX!>EL&Rnf zohx)|xpvhYZIi-tUGP7B_eS*h@#R{ZVg+M@=%8L+TkH;#!{rQTUty~752bQ^5rQ?Z z`}+!jZ*FH#ulBFsT!<)JX4oaJc%JoksHZ{>8egNwS66SpczJcRHWA9*1OV2r2$dE4 zi|KYh7WzIs9ROgVENYi}4UD>@y`}H5?xIGeH>-f};$=klrWv#NIzlFG?_2Wdwua0e z0DOBj-fud~nbuQroy0>_raw!?UQ1qtMj@XY#+uvo z7tIH^pdJ19-+%GPA3y!`zyDk;=Lm671I8-}(Fu~e__FnSwnp^36*r2ptY+%;+*C|P ztyGaCNN^yM095N`^Ww$Y#Vzdh`-@UZqX5Et<(P;u@<~x$^}R^ zW{JRy8#C}qT6N)KYc^_62F+A-qB!a#!BNVSF)i~kj4n@spor6iN^p|z_nO~+^Tp5a zzx(dp=d*DS`4JNGj3k9RG}_2!g;Wy{_7rr^Fxa)DKQvCaO^(Xcxy?q*3ig6eAQSoS z4_NLwcD=j9cAx-pb^UIZ;>2A{g)#jEzvCEj6!d@`1Hd1ef!(T|rmdKgH7;oXj%Kv1 z@KSe?PH*!McJpJfwo^Sb%IjL2sDSBS%e2?eC++;AUtW)@TfK4-eV63KqH(|KDfC82 zL<@sS`GTWyW*6QccLp(meB*tNFI`jmm1EQV4x{XkTAy)u^u)rP(AG`kXynRl~Tio{i)) z=-X?Z8VR=IYiOIYEVLJBNklK40W&Y8h)@mgaza6O=0cJlR>uW>Cw;q-T5ka0amfiZ zwPZ_)Lxm&yZpCKYew-zdTGgtNzW^ z;{I-PEne$Q_U0UNyHZ#a@@7Dt1NsX9lS4*Y^7iFUka=}GzrI^Auq5_uE?_>zdw0L( zc?84OQMDhN7vb&Z{_#S;MavbytPmbQJY9+w>tOG_|YE(E|j z7XXuCp3Up4wUv}?EXt>oV+R&)NO7)_y*Arz^!Wt9H`+s7jWuTT`7WU7Np3&tHAdqplVPf!k}PHLCIYZvre4=|)c)azFFyic41GfrR+2$Q z*_;@>P>R&877Oe7bj#k*zUvfR$j4NMWvaUc1=UA7fCSrGVuZw6y!1~;dlC^!Kex7& z`LyLzn1=Dgt~h-a)h+yXqJ%QY6sy0X|7g_E$AWSKTD}5N5ftqV#NdT|_CeM2HaK)t z3Zc8(NU*=_!>BHdxtN}*iJ-dyj0`T6^wzBdwVW#D>H6C>FGwVk>!G7iDm5%yD8 z0|59#a-x-^e_Q_`kzIXyh+112JGF#@8IzsXUEWUI1%P+!j=n7yhk@yp+J3qjXNV&V za|^0lHVCw6MS0}d{R99{+~zX63hMK>37k%aIyWDYwQx6!CXzL%D1@oeeo^PVWpkux zW);HVd9Nf4R-liq2M;^N&Ae?Gyy;)=N4Wp$`!B#dR?MI~j2`JI`wUCocs@z{*Ozxo zBH9$jS~4YJ;Fe!xcMBvdNJrDjMOvP}bv!u@3^QqMm*n+C>yk@JFAlqD3d1cA17iWO zLIB+BnX^#D;5f*KV-j=l4#OutahHh$1*EL8H5?4;LrZSkG0jD{$KznC7zdV)Y3@hT zT2UA)(%d-X^bwXvHY|D*02ulU_w9AFo%VUVbw*3A=__?khr?XpudcKl#T^}hMR^mt zlo?DC^wOUUF&z){(^1*N>!#MIJShZ8NRQO}ue@C*V!f+HLTy!di2;lI>cR7A-oxyS za5OUdyQ=FC1^PS4fxi9rnSs6)f&c&z07*naRP|wbqS!Lbeq00`Ed#*hpACJT&K?uo z1$k*FzJ|EtqP^_?QP}GIAq&l~uhLpF(jR*L3TwA^^aX$yCN28`fX7qU(VP{=^Wt!t z7Yw5pX1HsSYjv|Nt)bllC5m8PU3sPu{bhv7w4)oRBrvpv>JN$=mkU@en_7QOf(L0_ zCjki4)3V6bb#t|PdArs3dutk1HU@Y9xVI)`*GEP5lqxLEfkCO<0a!RH40a)^l|b>$ zn`i*u$ z4aK=hV(Ug1l%D8?jVHCC*4$}zx9>;v6%sQIjJ+D86bx6;c!f3)iFYz)T2e)HqM4(Q ziki4C-LsMGnx3|&5M5U?8x^6^$%?sF^txlet^t7S25{w9tGVg4`_qr#{Q1W(fBgB| zY(6fQGKJ!KQqBo-XbHw!7c&F2py|C51_Qw6l;Gvq@JIVKmmMfs4YgHLG@Heyd)f<7 zu}!75N^3o%mauu&{nV~CxGf1aA!G`2(G*bO+|WCaIPzdH%n;7ixGaC(x00}T7!^nl zL{K5z(s;8HuArf}E zSTYz17W(=$Gh$>$nq3#&1_6AAib^fm8ApfXOp!4&S5)S^5#&4Ob#GT3poc|7pWvu% z2?@3jXZaTlh6l$)Gyp6#qW)^N)k)j_1-`e_D`&FHG(IsBo;38<1gqxZ-OLGG!Qfdx z8MO;wFg$o6!q5wiX?j!IPwdu4f?<}_T$xRxZVd)AD5V>L(wJdJ)+R_urU|4A?_Nf7 zgp7S`q0$L1hu|&@nDgjt7)_autHOr&+pfq1wxMFct|Prv0K=##1H;pCdol_<*fH36 zaHCPER5FFai$cyu>JdE+-O=f!dz8)MUPk`(yS-j@;KL4SQ&q$B()D9=-{bhd_1$BU z%b1;xlflPoToH*w4Y=Jp?{#ycxmF2w(4~=wvEXh$Gjv-as=`06g zcw9jc{na;EUu9Hy0AL&)Oqb3DXlPkNA4*^AEB86DCaK*-j8otz4vH%^xQi;A(AV_J zUEJ#8YALXMe03!Z79QW-ZC<~=5mM^j<$9=JzqvE?JzPz0?^pZF@p9d_WU?ziGapPB zv;qJYkPCoyub}$sW+@2Y>_$S_$Hz;dFLs1M!_v)>ycf(~kFJeww=CSnXn_K-a2LO$ zC@DZk^xh?SA_)kIch8vFOo%DkSE5W3!$t5v(3fOB+E|s!nW9$9G>a$f4ra02EyG!{;XIyFBLOXs&HQbfQ7_9>1(-b ztA=DqR&u7zn>n>h~On&|V%r?XX-co)7V z#f&gm(92wMy;c$l{`vh6!r)gAH$vrFIn$`*a7TtIM*AZ$SSSSsQwDBp@hzVPp{`WY z)u!S7oJlGmlOZLm_}G@tq>kWr0$|UMn7GPtP@GOGLf_@05eXcfz=l96A*L^yEVpIp z(MEQ6`m~B!i|uKQCn0mO)xy2#(mfW^MY}bJ1Wh<4HnaFnBpg z6gm+GkJ`a9Ss#n2u%6$1MSWKa24m$5{Y6v~Jq;4nY%jQWn7si?BeF6R42tvMID^Es z7F~zqZ$W~Yhi2&Lmb6gNoim*TH6ozV{fLN|UN#{PEwW<6{UQK7Px&s8jFgo^573JT zagD(bw9zh1(_bMGjp!9q#Ws2Dw+H_1`RCAzH81N8hI)C>0!w_Xxj38Ur&F<_T(ETP zoHyEM`s5W2%P^mJJK0X#<`i8_Cy#5PU>N6MJ%;FXbF+C}k&2}2SI%h&(u!%mr*4RQ z|Fpii9?w^8ean~go;KaIDAO>t-H*jqX*L%6LVr!C?JzP4i~ZP}lb8387jHhld--q> zRTW+eLFsB%2s`zd)wTx!Zx2K9THRu0UJhn&b85XOaSg!#1 z_I8UagUuGZIg)M{05kH0>89yQrcOs3(GviDnLz@Z1-JBjvow%uvxUz^7ICvNyWC-g zPn)?z)G)LZ8lbumN4b2GB&QL8ttZ*72v8g&L&(glO&^uRfJE4US96QS;Fq7j7X$wN zAHPgzBXQqc_9OzZNoo{M^cSO(u1P5SMjn?K02sl=z?PbMG_b4%w3b)suheWZI1Bkk z-5x;<$G!DaOH z1&I{kFpm{BXWQ` zoKWnvkzfB<(B)v9hF)j_wyh&jWWTuVDXb*iOXwbmdfKC&k>E+ss@?i_308U6dYj8p z%``gtAs0Pvz0u|P$5$F9V3G;Z|8UTAXA3?6tV?3)4C&_S9U2eK`Uuws2 z&_cAEUhHRdFi-1S7?D}9}c`4>sarso-skJC!W zR5)^FcNeb2o-8dd%s#|vrPz&iZ1WH!&KG@D7(UKLA0zQ6THl4f;#&%>__gKxPMAq{LK5Qpz-N&0N5lN-%I3q?Vn@!1O=s&(S6g zpB9AcT)(RqFrBxB#IYAzN30BW#OXm`tgW%W++=lxzFHlYmcQyV=Fc9VGBEO!K{#{O zLA`RHCeVU7pC=*tlyKRjhI;JdD~f4iQbz#XXyiIV=yWpJ9PeFg2_rw)q$ALIs>y5s zDQGkX{PQ<|{PB|jcrqOdcLl(K1Q)b(e^JiA5XJz&RFN5Tq)&%IGV0LuU29p1V;IcQ zCP}7J2@4I1xT2({u;GbK;E=%{%p_9dhYV>?0GQ0JX+hKQm5N4T9*lR84c_=-3KYS` zc_k3Is%O-R<5>|JsdOR$&SgH+yVhEnIs1F|{8Ouxo0dqiQMYca+ndW@e*W>tAHIF{ zbT2ByFbS1lqv@_h7VH_^r$M9;47NF7H~8!8jaRdz!4b(~h8PBn#S^Vq0^oKhKM=mA zGK%`2x?ylr030Q*2)%1Cm=Y%6DBN&^IW9fwE?p9GyzW?a48UNpxfY6sIxR+g%}u4U z^r_*-NMAJRXcFvLBkPuh%XG~8$+%S*)U*ADMX#ReI!+6)^=#T>&Bx}d$qx15e*Nb4 z;ma?sU*0X@yOd)hqqXF)12Cc)Ts3hc8~doEwFBcxu^x#nCILbxlug!{(gi_W3K;=cMWWzYYfIr|%0 z98sVqDo95WX}Y)UtCe2Yo{?_Cg9*SGPJApg86~kIzJ638j{zEN<52i$neDqI0ot31$ozVa)CkMBCJ{Ibc-A zp!e9OcN}8HdV8IdZu^D!G0?kO5fx&ysqJ>==&)E-tdGfy){4=vNLf0jh^=1h?a;A% znGlPebn}V`!11oYaeD>bHR%@2|H~8Cps)R+V=xj|3K(-tSugCbl%qFGm;?5~Br4ni zfHzIEh45B2-J&0LR4kWO{ERKzKP>ipxvs#NGJM-chpmHpR5sRIKhck~X%&H<>7=5& zMnhW;umK0B6^1icsxA2}4IB zz7c@+oXfRnbXQMnh2(qPzR^*Liw6T#*c^r3w1g%s#5Y(S09w`yMB{WBYaPLr0gxss z4PObm0lxlX&#v?6V^go5yZAP{<8zmW&m#w2t)2^vL0?^vS{JmHF}gFVGVX%odgzXJ z!Mq?EP|dB^y8QO_>H>0P)tPk3J^$wT>t6t3D-!OP=MbZn;rUvV&G-+HVSm(a913EA+|$?2@M6Hi;McGAX+z?N@ga5+;a}{d1b8KJiIF-YM;%M%RCDOVLYjj- zlP8}=f4lQpbuup7EbFYwFUE%Om^qlQ+QejTTtXi#ZiZ3y;sYN=)-AYQsDCia6vH|e2Y`Pgj-^-=|SPWRW zBKm71zXI%$wJxW<)5d+731%vZ)HLE1R7v&tPV4!gcLJr30IWX;^eWblzLQzeJcj+R z1chpvydc4jktkI~!b%sFNbR_j!!B@^wpK-OHDvANqXRZv8Muv)2`KLP9a^a=Gn3PH zNQM(LXY4)FCCA|UZq?YW+X_Gz00x7pplh3Anw?W^nTs^UiTn0#KD#W$70R}nX9%&9 z|KU=Z&$L^&O{I_{h@X+G@wI?ms(9^wKUr;i53kJaz?3wwz}yQF2eU;-T-N%q?ss>0 zHqojWh(tufddpfGZ87RjS(sRc`fh+h6IMgWd#eD)_Q zS@O>nw>@Ar@djyowW2}rPFrzAMoqf!T>A+)J+=+nVbtr{2*9SLoB}YtX?l-wX+~kY z=^1-hFRJ@Tl!58Slho$noN}*an4M?SZA6=l?h+M_0E}K{vtFoH3U{{`KfnJ$B>3U} zx?U>zl$0sj9{q+1L?nX@gXXGNz-U!a*U@ThsM#5@wJ}#j{x-RNT8XtJ-)a5r8MX zs@^pgjboRq#LGb^dYjGUyk0tm_v=%lk3mNOSg58;;Pz%N41V>r6AX(G(_Iy@^Vq^c zZ;j3gsys2z{6V$KKbENSfu@JJH7Z)ElcTmK6(o%p^SXOX1!oBU#Lmmi#LE9Vj>21C z(1d5`W@yXXF?X^u!v)4`b@Yp7k5pHI09YX^jFAHv{82iZTy*T9 zwk(VG(A`P|U62*%jh$H$m5%`!NRFCW^kf|y3^OSFNk{atpJ(dSdwRAh`j1q}dC zQXCyQ{RMrG!PRds#BiyR8UibpdOo(-li|Kdp@ZO|1)|wKvx-4-b1p zGmOFtUp;&C@^%fEy?@-letXTJ5%pT#etB*B&t^k(vx572xAQ{aXL46tYpv1)guWhw z`O@4Mo?c&CAC~K00j1*5?#(ddSFZ0C`^&M=cQk3}MrMC?q6j_>E}Ql6bSbzM*6O!J zfAx|?eDyj7z@FcpF?<{WSl?#hw3Vww^@@K}RY zHMiYPfBof$-+uj306ZM^%B3tdU`s*gGm2{IM94&cua;NxjS+yyJ#*p%z`!s(Vd82+ z2^I%8q@H2G)^9awnIi)EH{0eHuy~@REik6J%(nklz_uK+y%Ipzv#HGLgpM0;JJ*Wb zbLV-hAdalv8sSVtF=5!+%EXCG(&@Z@>;+M%Zdgy&nJ_qe{wcy(-aAtWGr`||`Tpnc zzWwHl)pFuAI*Zeksm(OAhBVczJ{HukT%58W2l^tGsO0_A;D7M%x1mud1+30VdhF3rD6rN+IJ&J7wa-7Or>d0$``|54Fey9G;Hju4|=&P?R z*F1^}0#_4k^QBPt>S6ktioY^AdwaV!O{?prKXQ6^vq4??%dhVRb@~z*upK6Xx;LNS z*z}Q0UOYY?Aj*hx2%&|$x>rC*CRw3xk8XeYaCmxsts{-i%oO3x;5}9jz_&(fN0Sz` znBFUpn1(E&FVCYtA>1XWt#iG?&`s?-gV3kF8C&)DYR=c!hK3K*D3v9|6}}2(MRsu> zq;|!g9rPttNUDt;H{F{8-K)dc`qVbY4DL+Qa=2Wzbg>DF>h(geS6j_G8|^KoZJYFU z@L(yQjuPw8aZ6g7lIS!}Ia#^aD79)r%5v3hePO^qz5n)?Uw;q)4~AXgZma<(#hgO0 zXY)TjD`y(z)%xNXtfSF8mst=x>aQ>+_wAP=!TNQkrG>$sjZgO| z-f+Z-&Y+zeSqZ7SU36BHws^2UN$qArs=1x#O*tVh2ytWk2mp-6XY>qq<&6f$4CGqL zox~|4;D^CB1S!E_=(SErT+?qHd!ZEo@N(Xpde#*5jeHIOCUsBppx;aetqM|EhPA0} zuuUSh3xF{&9EPDAwl86FOy6F8hYy>Pj_epv$a;F*#;Kv$FvTD*mkA@hv1fuCnX2Gn z2ySpooD$YiPb&<*f4R81o?z@K3>Fn$Eyeq5w(nUsh0Q`}!LUGgxoAYw3ossFMqmf? z0}7~uRefSM5Im?mNezR%pf9-l|LZyr-ZrvqTlY_R)7@~81d$TK2!Q(5={pbDD3mBtVyd&w+F`9_PJ)^5@?j*q2DQlpg8^XB zH+XRd9_(Ru>`XC;b_2lFhQW9@EFYs%pr`j=G5D`Uw3paSLVrDE75xd*1tFp(pS|%1 zQ^Ib%*B=&zYC=15zh`GXOaFSscfG1E7iAif&rag2i{$d6dvP9#{t7r}F8eG1PIVkr z^q0l64Ti^MMIw&t1FvGh*hn~iE*L2toWHV8&!)5pMQLDA3aYeHHrEtA{I8H2`2Cs~~nd?^^-*WGsNEW!m%GmYo(b zi#H2>JwZK1_E|^$1^peMT7Mbt3*i>(>j+tguhY-PkDTicU@%MdYD~)?Ip|yQ(x<~a(Sy~6i%Fb)%2?M8VTlr zX@sUv?R1kc06Lzu1ij(`6PH)C?%$ayeuy-P@?u8_`ZD-LN4K^kX}^We7Y%DTNl@=p z(2&LYh|7~=G97;V{_)G#kH5cvt1mMEtamlbuevJ(0IaK6SF5f^ooEwtH17ex;=z_b z7&QfoG-2@xTEX53v8k^RItP`-cZI(G#V|q2<8|!*ND0ot*be}}L61Ujg3)4cTMN=9 z3aZY*aEWmp>ph;uMoHHr060l(o)tbvUDLgNGCf7JjcS#}gSD$O40adcrBh*{Z`v)5 zx>eyZ4u+6^n!_{I%vExIzIeDl(^3CD=w1Q603IDx+rk>q-$43tUjV8Z>I*8Bv|N$L zrtgG5etR<)07G*(M*`O_WY?#;Iy!gHN8`uBV9^YU$~o1Jbq6kOUA(r*cHYUzmNqW7 zcY*IN6UA)S-v(d>3ev)9FB>0E?8W7h-E)S;DL*0T)k^oFk$r`Yoi2`_w9DOPM8tVmm<3kI_T>?k5 zZS);>54e%*Ilrnc9Zi?Nz*zT8gA>c3m<|v066~n|;x2@?2^iN$!!kozdT!IyT$?=f zJWJEDg}tSVioZZ@EVR8iT(6=RxAV9(x-Al^M*KR#T(etB_s zdvblbG)n-VFJzYg@@j6Xt+yK?D4opuTA2RXYP4D;_b*OAe|&g&bN=?7u=5NO{OaLC zm}k?s-u5gc698kq0EK=1=8|q?-5&>}*&=pYd~x&Q1Yr#l%X6*l>r{wKBQ$u46eX!? z?2nLu){S&v(Haf9>mhnRdTx4@o)Q$C*(5V&aJbdcTe?Qv$GX70aZC)D5^w0eq9jah zI5>zceHTyl7vpq$-`MOQ4Yf{b?J&8YoB741sgd}eSNqu*2CSo*6SzDUsYR{tf?loo zORE~TY+6)s=;R}A9Wp~g*D-6TF8=e=g#h@^e}4bx|NIaD(*>QQZ>8C&(y_Tc4#d$L zn6q)3em;VXK^xk(T5E*Cv^{G}Aff+IAqpHmv2dE9s~)8aJ~QXA&JBr6_IbpX%w6e9qLEJuS~v)p*#MBvB?0 znKNLQhAwp)#`6TgmC}yht6crcqTQ+8zr6nT{qv{K@83M!btB6t#9mw%nWm9j0PMp# zW%kp4J-3>xTlT_CTbdNlqYQidS^IZnD)jzi{Icq~*F`U--C6OIvxiACbu6j7`fJg*Mszadh7+brQI?I;0%%jA=bIo zcf3cMqA#=?uQoXDiT8_98>ZhXNO@R2c#|^c$yzE5{)zlBHDG~d-=NnTp0)Z53D!ro zqfLEt+|bEtSrO|M@&SHEJ*TFaaeNes1fOg=LSJgV<9W?!?x>QCt4Uf(T;IcR-J7{Y ztQCXgVC1qM3aYl#QEkvGcH6sxVg7PZoizOoM_&je;iBkIT8Q~&YpZ?~>PIj1tMudD!=VlXhQ6K17+{#eh!=&yDR zV!AXr>#czAA~s^ZW6p`gJW{6bvo*DuIlUYW#ahUlonMTPPprBrfHCWpQFlET10Dgu zBEdHG>$5IL^T-x5!j9!=vfEeY4_2y29Mto_B zva)o`M4{WR#K|m{!ep_dOq4@!%VIwI{N;m4@TZTzua+|m<`DYG9Q|m*$^qE-%~frW zHj7xFRMsl&63Rl*;8ciejowd7)Vq_QK14{cU(pr4YP^9_bO&o0oQ3C+g(5?nL51Tk z1z?aPjKFSVaMpRWF>wi9#TevieUGi*-n7hm{kkGBHlGnM)JnS*YnU&fk3AVQt+p+4 z7FBw!f+=rwtB~V${(9MJ=ySpL`ynX2o{eYozZhq5Ndk0fg9=_rV6f%e^yD2@ne;^- zizN1TUi$xVXk)$j9XamybaHh$5$-xCHUJK=opndrd6tf5yBsvdmh)Jz#rm_3($ixb z6h1qdop`NkrQM8h*ZoDrk5}%Vf~T38eOd9?Fqn)BEms^tVlen`+R~9KbT1>~qk-w!tuXYt2 z0bsq!dIv5phWGb#EE9CiC=&J*ctZU~eYUo9Ua^ z*DvqR-aX!a`~K$TtCP(6(#;Y;U&I{+z_ee1zMv@p%$99DjRd-PFVBHqlF!1_Ei^UU z1%UPU6?9G0AU&DI={OoBEyZ}+(*qI4;+cqQ1HkBE31#&iMICw@fT8B}ZDH6T(oez} z0A_fR&TUfA&|*?pAyw!AtaVUSCO%q5qBxVZ#)kc9(_buY>*}uE9mQ%k*ep{4urLY# z9}EE2vknaeV!-GnZ38f)KFmBc#DJTJt#RwuF}7z6NPC- z&3jBG(UxVLc-7bQ?{yD=UTqYj_5pmIbo3SmSMq?rhQa<7VxE<5qo4oXNm|s^08V9HZBk8RJbL&xmrd!>C6m+GfyX66kT7POp;+R zt_iukC5h;)OqRPLQ5&X;jNlhJYU;Ze=ObaTQ(?W6x-bU_jnSNC%G>@}fLw1HevZ`9 zZSsCOU`|Pk;oa><;d&j@&1NDP7Wy99ap1xox%Ow$3}f*$E6{aSDLoJBl|ivG1U#5< zDtr){v!J=#E`+o?2g%88P0GKyGW;|an$D}!rDNx$q%dq-Rt3F6g7NG?A)F9exTk`Z zU7fdO9Z$mD%_cH)q=i1e%wlgiJxpdLTCM{6_T%DkSQG+f#tE(w4HA=Z9*?SKBj4L| z9m)oxS0P}Bi)Goufoi>URJM`gDlJa)NrMFMY*azwgAv})fhELEqJrYT0x;3<6yo;2 zj)GntISKF_ZYL3~BX_nt^u$Ywz0Q8Oy@y$Xy_~oxS}#tFvjs6o_L5N{ofSv(gXy9) zTb8w}&{5~aWNu0I)v9rJ*1x_Uy|`W6-ppyLBJS@`6~dVDMAuAwd$Sa&6|(;R`yEZf z`mnK2pgZ8z{kdyCPk(!R^X2Pnp%MEvdaQ)I2tmV`gC~-3j*5kKN59yJ{>~P$VEE?6 ziO?4}1!1RP74*f35X`22tUFT!7Uk8Q1-Hql6ZNX`pds{S7>R#GdinL6%ZEoxj|*{K zJZtPC(i`yD44Q7%%qA&xANsWQ&X{qNFAW5fNH~6ze9rRHc~*@P3uhr(Wg?-k!sbjy zbw~i}xS9Noo7ijR5)_FJ;zDTBSEGh|O-9~BP&sl9%K*T-K0OCp280Bt^?FelEC9Z_ zJ^%d2=O6$6@#jCkCTR}<)~{T_%4UVN%WfMU*kf_X306y1QuV~LuOm&mc(h~-LdZh1 zxR6FB3%6N|m0H0}01S{o=CrEXWNO-(dH=1QIDyvoLQo3&0>DT;!=h*`%BHPc2?U#T zX!p?~QRts?%N78)lDLW4QJO{w2inx8cPsoUi4BO5Foo9xToRGy?t=IFh0bS@tvb`O4jR064HiLdPv9aJ>13Bb--Tt;8 zgiUOo&_z$-!Ga3CA(eyY)kERL&OzbH?#{3KdruFFJLS?oVkt~KTX$Y_f7mX8!Bd}5 zT1|TEX*^FmRNRF|$8IKO`}kKU3N0W$!Q655jo6j0mewQ%42LH+(U*KP*qo+1>J^>l zj=xaheCl@+&==vk$2aG=5wq(BgXyxyxk0fx(!1Jo4DQ2v1;&>bWAfX< z*1IPRzP?<(ygPaG`r^gS(bdIDFf8=-$Tl~0yA7L9UVoMk=Dn=(2;M}n+*7d2I=hx?u5ax;U|*G{jQ7(? zA?Io(tc^tAG8Q|o33LU$HiNrpPqzR#otH5f$h?(21)V(#;{>1IMOm7eVBJTEl??U~ zh|aUhbx8K0jU@hoN z0JNNQ(rfK0K;Ox*D%j4Tx|gA^pckV+q8Arqx3#cIYfrq#gT4N6KTdasll^4AtC%bg zW@}-v_Bw^>;$Si_vgy(1A`I5W;F%fgLL{pUuf22Q-iyoGiGRi4Je&zuKYYA<`}Rg? zBsA4$%&@G^wblLo-7VkI_rJXmhh`AXhJd|~3By7CL0yv<7pv>*4fR(DD8y7h3QdK< z0#qN^wPt2IpGhg>so>bW#Qum@EIr)yDQEOZi~b6F8AGD_%O8i}iqtAVR{eMSu%Ns` zT!=VUOS&^p-oW_g$flWn_7~AwD#5lo_%twal+QJ?R+7kKp;^t_ZUfx+Mw@|<#__BM z%T(y1#TiM*AeB5z>&MI9#qp3vzm1Kov?poSJnV{$ndO-)DwJ^iZFgz{;J|W_7nw*|Er~aYd@;;(6Up#ZIE?t5;Wl{P|5J`1PyX zs8erL1l#UuC^}d_7<3GDL%@KwPZChfA432D5CBO;K~(NqoBF7+oU{bM3>5Xcg+~2p zrM6eC?<;gtuRV)RRHQaD_1UJ&gJ;f2ZnO|9XbU3w%p5QVCxPK1!C|w-q;Q=ql6@fq z0RSTi1v%!^0aS2D(9Ul-Y-n+h<0|h}fZpfNet!DwAG>=`3dQH8@_uHP<(6D-ifsDN zX4udvkGfUr!NTCB=Qa$3lcq3Om%p~HH@7PR@Wbm<;aolo1QVrO3LwmS?rcjsZj7d_ z=^{EhNtpBt7KEgo;k&_lfod_sPFkk!?~c%|G?DGxB1!jgnmcgpH{4|siH%N>kM+9p zkO?Jk)H2E*+@(SmUF81p;ZjJ9;T!aq2n;wtFO$UV@bot33exuVqYM-jWSL^8kJ9V$ zmX5C1_ktuX%2`3QQs+$i27Ssfj1)w&41m+|p%LGi;U&;3iYfFJ=nm6;BWmN2EY0Ze zaJb*^?+ylgX=<5Lq3>+kn0REaJ`TW>Mb-Z7s2Uh>CT8gkN3>ssM6{SOl27TdfIxIs z`khrX70FrM9G2Ei+zS?_-Dn-r8A!W<;50QyLY-vBL~|2x)`CddIiN4l>($?~C#8)6 z{|#;f;&z+6M7#E^)7%lnS{c}TvUDHtSkN0s1wxm!BJLGUhk0nal1QDzgF>&r-|IiO zNS>y%{o!mU9zRW{d!u<_G}T6DPcajSuJ~3cx*7aTI zZ||-?e0cfs<158)zrDb|SNGTP&Ev(V&oAFTUf6Z6ZSUn06sL@uRe9Y|LEB;Lnsyco z=0ShKyu1b4WU$UJR}^%q{t91p)T7KC>Gn8`Bq25_=nZ*hpc(^U&{y|o;t0qGW$Cx# zxpBJ{dNa}KW8fKR=RVqquojrzf;$1D|I8Q?K1f+Fv@eLjFgtp!G6LZBqH}#QzP^~a z+v`vqi1|ObCUldsXl^iI(o~{WXGh7^X^K+m#*`ddqhZ-S7)t+N2HYv%yg2>(qiPgYY!JC!FcR#2;~4|4?$=5?==ZYN(GG3Ol%0x^;Q8>&_Ya@Hz5o2_{bD{5 zDYV?ImyI#8AQ4SNmU!@D+!g=}cNrAaCuJ5Xf|g~J3{BOw)+p4Q#YXF(**Q`SXjPAp9Z05?~`#gFPvi<|_sRqx28PT?SWiTrY z!iT`Hj(QVH2hVnQf8N>o$MfBP?CkwqICxsF?vbcBy_B?Vb8AUMuX=zEWpp_1)#k(2 zdfZj8uOfFca}3_LC%L_uUtfvBre2E`3JysEqa{ht#C+8g`i}L5U&q-Mx25w;(U*B> zI4d_od0)Le27~o0((=J231d(S!;0-{F@J&kgkNz_!7z$ifeqU{*m5AIAsAL%oXxbe zp-iJ-WWc8evJrDqGO^p1@I`Hzg7luKup;ZaGQq4$XweVt==#c4D$lFc9l@~Wt1;Ap|ZqyTy z>@vkWnboKwi~DBowzGqDekcI8AD#Xt-Uv<0)ns%i0NySG8~XM|8TW+KC}%-`|1SUw zcNabx%s{Y(ITf11vkm-s-8a{lZs}w?s-=UH5H}ECBA~DLWc>#K2N(u@BVCXlt?JXL zwJV7AzKqf~X%+w*1CA|#-mbd@;%w3N=yZ3Y-fnmJOwk)X8BCvdr%yWLU%JC5ar!JC zKJ6zuKJN{l0n#w$G%@#uVNx3mO(I+$>T;Q2MIZovd~>dg=k=@2#}7Ax-ar3*|Mlym zNU%O*?Ywm9iW5YYu|mk>EGSVZ!V{oXCp0Awo|w z=&PgX)cIz3d6J+Oe&VKe>7bl>{zRouq+fmqW-AS7gT4W?znxrAf{h3v#MQoox9u7WT)+Ffd z(Cq)19wxgR6d6Ny8b>B-@U@2L zag`s<=GNTitGa_&uho4WYmvta0Uj%KpI&db7wx3O14f(B<;d*|>p?0D(*gk4%!SNf z$n2FwniZyJnJY^x1je(pW*x|uXU<@l(0SIJY_}hV`Yt8jUT0retFV-^qpy&-Q-7}8 zhoa7dvLP-lTJE-+NfsCdF~>kfC)#hdcblypg%z1vJFU)>PS?;kPL22qgFEAYv`7E1 zJ@}Gpr^_Mb-alc@hp(T(>M*b!>~t0i*auF;Fd(Df+h0?wDOPVQeGzyJN_ z^QZf--yXjIcof{;-EXwpqBGu%0w2%r?$_E#dUeNEgtN=()$LMbSAXH*;Zo4c7>}W^ zD=jO~d1jUu@Y9ded2hCebt98Vi`BrB(k8osJus430$LCkDlD943`sY-`qdJS%OEm< z3eyFTY2eCT9~Qu^88qb>92^qyDz;Mhf%@oc%;Q00AA0!Xjoqvnq$MOU?U8{%Yto^|XT7k700g342CIL%5e5%Uh2yA?0J|4QyL_Ggvd;CQCd3zfJ$Brs zYiaFwwze#H&BBK&o2YgXS^f85j=S(?;|z>lMax^qn|xbDd=;h2ZZ-d&pthDxQl(8d zD6Ea5(x6=&^~%;Jt?m1`yPEWZu~pF81o?CoTwaU?z&F=|;VJS}&`_PfykF}Y$yy!H zM#A9bQGb0rr0W8>#pRRY?s48Gjpz;UkKwdS*HJBEmkik@z05s%Zvk2|(z*L#LjIXH zF@CEfUFdXcXFC{|h7}Uy-$3#iuZy|MX(dS}Hx`t)DGYlw5tFHwcZ9*B!ulqgGP&V& zp2f-ZL5rb5ng%XJW{^?=fP+#r($F?$ayc_4hMT2Megb+2qeByhbfM;ezLR|7D4=hW z6mt5z4@FZ96Cd_XEd;<5SCg2{Y78C0bcuktLSLb>0wf;l@AUUE6AW^aZbw)P04(%1 zvFO!bakOf0)*W*sG*6^5Cc#z`&IKR=;2`xZ(Cv5j2}rQ@Wc3cVDX$1FrChSj77o3_ zVEtA!SKK!hA{tJcEjD`Sw8mtN!51~5Z=?CV-gu^HHJ>Zm(XZWD0Q{tvJnfBt?T&sC z04uub^Um;TJN~uR`=!#_dwh?FYmW8$r1+ZQxs$hYaicUe*Ey_ z>z7xSXMT5u2qpNWqp0oei^av|n4U&`#ce-(J->djx)(OTzIgrmLVGbdF^>1BE+g0C z4a^ftxkB8@tc%D7Q{*~&Bp3;c(c*3d`s!T4Iiwl&EB))6yY=PGLPzZbbh16^MBbb9 zGH|OS7D;qDnV0zO>gIaERvG}Ni!~F2pbT3a*0kBsVo0~lM?v;4U~*2>;4u8Gc9rCd-T`<0!PwYu%|erA2+;>S4v7YnSv>v8iGY1h*QzN!KPR#dJ|6X|I2;DEt8(gGbCr%}`*!w)$Q@JzLs1dqPqy5frazZCX< zY19hTK>`c|zyX6P9#cBWl19B67@U}ElU0bZm)IN+&M(F{w+m6DpN8WS${0GqCV^RA zPNwtf+{b~0#6sVGe^<~eW)=?$6g3Tl2Zw`U$uu`cHqoTVPUrPBSHc2}0bP84NIQeU z05B{W`$7dyg#mh*2?l@(q3?R#h5;TUfsOzG15ZgrK~&R_g_H+=O2PLR8-}1pDYzB) z4V7R3*l#R`if;hm5V~Ce+^#*dwk!u=qsUhJJ;3f8zY)_1_LW*oTf4O<+^yB0R%=fx z)n6O+r_IK*PWMT#|6BkZ4Sww;{{Voa$9@;{Nieci|_7UrDagji08GFgWVfB7gH6xr=Q8V0}3Sw1%~#_L0_&xROMN zX|HA`QE5}aY}oAbZQ3v5^~6eHwy|z7ng$JGypK!1()45lefjZ?c^bK zGCg+9tRV=!MTLjkQ_CcxGk+8}4~F=L?DY1S5bzwZ*+fy8f%adC8SC4ASbVy_`?Ib- zOuDEadpa5wtpcejVX!V_eQz;x=r{%=)*%443UOK=>+{tYPg@5u`}5KN0u$v-Rr^f4 QKL7v#07*qoM6N<$f{mKoHUIzs literal 0 HcmV?d00001 From f75d391e9c30fec314af38dc0d173ad053b09fe4 Mon Sep 17 00:00:00 2001 From: Adam Hines Date: Thu, 9 Nov 2023 12:27:03 +1000 Subject: [PATCH 27/69] Remove testing.py --- notebook_testing.py | 58 --------------------------------------------- 1 file changed, 58 deletions(-) delete mode 100644 notebook_testing.py diff --git a/notebook_testing.py b/notebook_testing.py deleted file mode 100644 index cf6e162..0000000 --- a/notebook_testing.py +++ /dev/null @@ -1,58 +0,0 @@ -import cv2 -import numpy as np -import matplotlib.pyplot as plt - -# Load network scale factor -scale_factors = np.load('./tutorials/mats/1_basicdemoquant/if_scales.npy',allow_pickle=True) -# Load the patch normalized image -patch_img = np.load('./tutorials/mats/1_basicdemoquant/summer_patchnorm.npy', allow_pickle=True) -# Divide the patch image by the QAT scale factor for input spikes -spike_scale = scale_factors[4] -patch_img_int = np.round(patch_img*spike_scale).astype(np.int32) - -# Find the maximum quantized pixel intensity and print it -max_int = np.max(patch_img_int) - - -# Convert 2D image to a 1D-array -patch_1d = np.reshape(patch_img_int, (784,)) - -# Load network scale factor -scale_factors = np.load('./tutorials/mats/1_basicdemoquant/if_scales.npy',allow_pickle=True) - -# Divide the patch image by the QAT scale factor for input spikes -spike_scale = scale_factors[4] -patch_img_int = np.round(patch_img*spike_scale).astype(np.int32) - -# Find the maximum quantized pixel intensity and print it -max_int = np.max(patch_img_int) - -# Load the input to feature excitatory and inhibitory network weights -if_exc = np.load('./tutorials/mats/1_basicdemoquant/if_exc.npy') -if_inh = np.load('./tutorials/mats/1_basicdemoquant/if_inh.npy') - -if_exc = if_exc.astype(np.int32) - -zeropoint_inh = 127 - -# Calculate feature spikes for the positive weight calculation -exc_feature_spikes = (np.matmul(if_exc,patch_1d)) - -# Get the required scale factors to transform the feature spikes -perslice_scale_exc = scale_factors[0] -perchannel_scale_exc = scale_factors[2] - -# Transform the feature layer spikes based on the scale factors -scaled_exc_feature_spikes = np.round(exc_feature_spikes/(perslice_scale_exc*spike_scale))*perchannel_scale_exc -scaled_exc_feature_spikes = scaled_exc_feature_spikes.astype(np.int32) - -# Calculate feature spikes for the negative weight calculation -inh_feature_spikes = (np.matmul(if_inh,patch_1d)) - -# Get the required scale factors to transform the feature spikes -perslice_scale_inh = scale_factors[1] -perchannel_scale_inh = scale_factors[3] - -# Transform the feature layer spikes based on the scale factors -scaled_inh_feature_spikes = (np.round(inh_feature_spikes/(perslice_scale_inh*spike_scale))*perchannel_scale_inh) + zeropoint_inh -scaled_inh_feature_spikes = scaled_inh_feature_spikes.astype(np.int32) \ No newline at end of file From f37622e99196abd977caf4dc456dd5db0d3a04ff Mon Sep 17 00:00:00 2001 From: Adam Hines Date: Thu, 23 Nov 2023 13:57:05 +1000 Subject: [PATCH 28/69] Combined positive and negative weights in BlitNet, now only a single matrix --- .gitignore | 3 ++- VPRTempo.py | 2 +- VPRTempoQuant.py | 46 ++++++++++++++++++++++-------------------- VPRTempoQuant_Train.py | 8 +++----- VPRTempo_Train.py | 25 +++-------------------- models/.gitkeep | 0 src/blitnet.py | 40 +++++++++++++++++++----------------- src/settings.py | 8 ++++---- 8 files changed, 59 insertions(+), 73 deletions(-) create mode 100644 models/.gitkeep diff --git a/.gitignore b/.gitignore index 46fe2eb..ee89f42 100644 --- a/.gitignore +++ b/.gitignore @@ -2,4 +2,5 @@ __pycache__/ .ipynb_checkpoints/ src/__pycache__/ dataset/ -models/ +models/VPRTempo313662725001.pth +models/VPRTempoQuant313662725001.pth diff --git a/VPRTempo.py b/VPRTempo.py index 3ea1409..ac82f33 100644 --- a/VPRTempo.py +++ b/VPRTempo.py @@ -204,7 +204,7 @@ def run_inference(model, model_name): # Initialize the data loader test_loader = DataLoader(test_dataset, batch_size=1, - shuffle=True, + shuffle=False, num_workers=8, persistent_workers=True) # Set the model to evaluation mode and set configuration diff --git a/VPRTempoQuant.py b/VPRTempoQuant.py index e2ef724..1fa4413 100644 --- a/VPRTempoQuant.py +++ b/VPRTempoQuant.py @@ -57,10 +57,7 @@ def __init__(self): # Add quantization stubs for Quantization Aware Training (QAT) self.quant = QuantStub() - self.dequant = DeQuantStub() - - # Define the add function for quantized addition - self.add = nn.quantized.FloatFunctional() + self.dequant = DeQuantStub() # Layer dict to keep track of layer names and their order self.layer_dict = {} @@ -72,12 +69,14 @@ def __init__(self): self.add_layer( 'feature_layer', dims=[self.input, self.feature], - device=self.device + device=self.device, + inference=True ) self.add_layer( 'output_layer', dims=[self.feature, self.output], - device=self.device + device=self.device, + inference=True ) def add_layer(self, name, **kwargs): @@ -99,13 +98,24 @@ def add_layer(self, name, **kwargs): self.layer_dict[name] = self.layer_counter self.layer_counter += 1 - def evaluate(self, model, test_loader, layers=None): + def evaluate(self, model, test_loader): """ Run the inferencing model and calculate the accuracy. :param test_loader: Testing data loader :param layers: Layers to pass data through """ + # Determine the Hardtahn max value + maxSpike = 1//model.quant.scale + # Define the sequential inference model + self.inference = nn.Sequential( + self.feature_layer.w, + nn.Hardtanh(0, maxSpike), + nn.ReLU(), + self.output_layer.w, + nn.Hardtanh(0, maxSpike), + nn.ReLU() + ) # Initialize the tqdm progress bar pbar = tqdm(total=self.number_testing_images, desc="Running the test network", @@ -117,12 +127,7 @@ def evaluate(self, model, test_loader, layers=None): # Set device spikes, labels = spikes.to(self.device), labels.to(self.device) # Pass through previous layers if they exist - if layers: - for layer_name in layers: - layer = getattr(self, layer_name) - spikes = self.forward(spikes, layer) - spikes = bn.clamp_spikes(spikes, layer) - + spikes = self.forward(spikes) # Add output spikes to list out.append(spikes.detach().cpu().tolist()) pbar.update(1) @@ -131,12 +136,12 @@ def evaluate(self, model, test_loader, layers=None): pbar.close() # Rehsape output spikes into a similarity matrix - out = np.reshape(np.array(out),(model.number_training_images,model.number_testing_images)) + out = np.reshape(np.array(out),(self.number_training_images,self.number_testing_images)) # Calculate and print the Recall@N N = [1,5,10,15,20,25] R = [] # Create GT matrix - GT = np.zeros((model.number_testing_images,model.number_training_images), dtype=int) + GT = np.zeros((self.number_testing_images,self.number_training_images), dtype=int) for n in range(len(GT)): GT[n,n] = 1 for n in N: @@ -147,7 +152,7 @@ def evaluate(self, model, test_loader, layers=None): table.add_row(["Recall", R[0], R[1], R[2], R[3], R[4], R[5]]) model.logger.info(table) - def forward(self, spikes, layer): + def forward(self, spikes): """ Compute the forward pass of the model. @@ -159,7 +164,7 @@ def forward(self, spikes, layer): """ spikes = self.quant(spikes) - spikes = self.add.add(layer.exc(spikes), layer.inh(spikes)) + spikes = self.inference(spikes) spikes = self.dequant(spikes) return spikes @@ -169,7 +174,7 @@ def load_model(self, model_path): Load pre-trained model and set the state dictionary keys. """ self.load_state_dict(torch.load(model_path, map_location=self.device), - strict=True) + strict=False) def generate_model_name(model): """ @@ -227,11 +232,8 @@ def run_inference(model, model_name, qconfig): # Load the model model.load_model(os.path.join('./models', model_name)) - # Retrieve layer names for inference - layer_names = list(model.layer_dict.keys()) - # Use evaluate method for inference accuracy - model.evaluate(model, test_loader, layers=layer_names) + model.evaluate(model, test_loader) if __name__ == "__main__": # Set the number of threads for PyTorch diff --git a/VPRTempoQuant_Train.py b/VPRTempoQuant_Train.py index 7e02bf2..d228128 100644 --- a/VPRTempoQuant_Train.py +++ b/VPRTempoQuant_Train.py @@ -53,10 +53,7 @@ def __init__(self): # Add quantization stubs for Quantization Aware Training (QAT) self.quant = QuantStub() - self.dequant = DeQuantStub() - - # Define the add function for quantized addition - self.add = nn.quantized.FloatFunctional() + self.dequant = DeQuantStub() # Layer dict to keep track of layer names and their order self.layer_dict = {} @@ -81,6 +78,7 @@ def __init__(self): ip_rate=0.15, stdp_rate=0.005, spk_force=True, + p=[0.25, 0.75], device=self.device ) @@ -186,7 +184,7 @@ def forward(self, spikes, layer): """ spikes = self.quant(spikes) - spikes = self.add.add(layer.exc(spikes), layer.inh(spikes)) + spikes = layer.w(spikes) spikes = self.dequant(spikes) return spikes diff --git a/VPRTempo_Train.py b/VPRTempo_Train.py index 4bdb1fc..2958cac 100644 --- a/VPRTempo_Train.py +++ b/VPRTempo_Train.py @@ -72,6 +72,7 @@ def __init__(self): dims=[self.feature, self.output], ip_rate=0.15, stdp_rate=0.005, + p=[0.25, 0.75], spk_force=True, device=self.device ) @@ -177,25 +178,9 @@ def forward(self, spikes, layer): - Tensor: Output after processing. """ - spikes = layer.exc(spikes) + layer.inh(spikes) + spikes = layer.w(spikes) - return spikes - - def combine_weights(self, model): - for layer_name, _ in sorted(model.layer_dict.items(), key=lambda item: item[1]): - # Retrieve the layer object - layer = getattr(model, layer_name) - dims = layer.dims - # Define weight variable in layer - layer.w = nn.Linear(dims[0],dims[1],bias=False) - # Send to model device - layer.x.to(model.device) - # Replace weights with combined weights - layer.w.weight = nn.Parameter(layer.exc.weight + layer.inh.weight) - # Delete original weights - del layer.exc, layer.inh - - return model + return spikes def save_model(self, model_out): """ @@ -250,10 +235,8 @@ def train_new_model(model, model_name): persistent_workers=True) # Set the model to training mode and move to device model.train() - # Keep track of trained layers to pass data through them trained_layers = [] - # Training each layer for layer_name, _ in sorted(model.layer_dict.items(), key=lambda item: item[1]): print(f"Training layer: {layer_name}") @@ -263,8 +246,6 @@ def train_new_model(model, model_name): model.train_model(train_loader, layer, prev_layers=trained_layers) # After training the current layer, add it to the list of trained layers trained_layers.append(layer_name) - # Combine excitatory and inhibitory weights - model = model.combine_weights(model) # Convert the model to a quantized model model.eval() # Save the model diff --git a/models/.gitkeep b/models/.gitkeep new file mode 100644 index 0000000..e69de29 diff --git a/src/blitnet.py b/src/blitnet.py index 19a7531..b73be01 100644 --- a/src/blitnet.py +++ b/src/blitnet.py @@ -110,6 +110,13 @@ def __init__(self, dims=[0,0],thr_range=[0,0],fire_rate=[0,0],ip_rate=0, self.havconnExc = self.exc.weight > 0 self.havconnInh = self.inh.weight < 0 + # Combine weights into a single tensor + self.w = nn.Linear(dims[0], dims[1], bias=False) + self.w.weight = nn.Parameter(torch.add(self.exc.weight, self.inh.weight)) + + self.havconnCombinedExc = self.w.weight > 0 + self.havconnCombinedInh = self.w.weight < 0 + def addWeights(self,W_range=[0,0],p=[0,0],dims=[0,0],device=None): # Get torch device @@ -170,7 +177,7 @@ def calc_stdp(prespike, spikes, noclp, layer, idx, prev_layer=None): if layer.spk_force: # Get layer dimensions - shape = layer.exc.weight.data.shape + shape = layer.w.weight.data.shape # Get the output neuron index idx_sel = torch.arange(int(idx[0]), int(idx[0]) + 1, @@ -194,34 +201,30 @@ def calc_stdp(prespike, spikes, noclp, layer, idx, prev_layer=None): post = torch.tile(xdiff, (shape[1], 1)) # Apply the weight changes - layer.exc.weight.data += ((pre * post * layer.havconnExc.T) * + layer.w.weight.data += ((pre * post * layer.havconnCombinedExc.T) * layer.eta_stdp).T - layer.inh.weight.data += ((-pre * post * layer.havconnInh.T) * + layer.w.weight.data += ((-pre * post * layer.havconnCombinedInh.T) * (layer.eta_stdp * -1)).T # Normal STDP else: # Get layer dimensions - shape = layer.exc.weight.data.shape + shape = layer.w.weight.data.shape # Tile out pre- and post-spikes pre = torch.tile(torch.reshape(prespike, (shape[1], 1)), (1, shape[0])) post = torch.tile(spikes, (shape[1], 1)) # Apply positive and negative weight changes - layer.exc.weight.data += (((0.5 - post) * (pre > 0) * (post > 0) * - layer.havconnExc.T) * layer.eta_stdp).T - layer.inh.weight.data += (((0.5 - post) * (pre > 0) * - (post > 0) * layer.havconnInh.T) * (layer.eta_stdp * -1)).T - - # In-place clamp for excitatory and inhibitory weights - layer.exc.weight.data[layer.exc.weight.data < 0] = 1e-06 - layer.inh.weight.data[layer.inh.weight.data > 0] = -1e-06 + layer.w.weight.data += (((0.5 - post) * (pre > 0) * (post > 0) * + layer.havconnCombinedExc.T) * layer.eta_stdp).T + layer.w.weight.data += (((0.5 - post) * (pre > 0) * + (post > 0) * layer.havconnCombinedInh.T) * (layer.eta_stdp * -1)).T # Remove negative weights for excW and positive for inhW - layer.exc.weight.data[layer.havconnExc] = layer.exc.weight.data[layer.havconnExc].clamp(min=1e-06, max=10) - layer.inh.weight.data[layer.havconnInh] = layer.inh.weight.data[layer.havconnInh].clamp(min=-10, max=-1e-06) + layer.w.weight.data[layer.havconnCombinedExc] = layer.w.weight.data[layer.havconnCombinedExc].clamp(min=1e-06, max=10) + layer.w.weight.data[layer.havconnCombinedInh] = layer.w.weight.data[layer.havconnCombinedInh].clamp(min=-10, max=-1e-06) # Check if layer has target firing rate and an ITP learning rate if layer.have_rate and layer.eta_ip > 0.0: @@ -231,11 +234,12 @@ def calc_stdp(prespike, spikes, noclp, layer, idx, prev_layer=None): layer.thr.data[layer.thr.data < 0] = 0 # Check if layer has inhibitory weights and an stdp learning rate - if torch.any(layer.inh.weight.data).item() and layer.eta_stdp != 0: + if torch.any(layer.w.weight.data).item() and layer.eta_stdp != 0: # Normalize the inhibitory weights using homeostasis - inhW = layer.inh.weight.data.T - layer.inh.weight.data += (torch.mul(noclp,inhW) * layer.eta_stdp*50).T - layer.inh.weight.data[layer.inh.weight.data > 0.0] = -1e-06 + inhW = layer.w.weight.data.T.clone() + inhW[inhW>0] = 0 + layer.w.weight.data += (torch.mul(noclp,inhW) * layer.eta_stdp*50).T + #layer.w.weight.data[layer.w.weight.data > 0.0] = -1e-06 return layer \ No newline at end of file diff --git a/src/settings.py b/src/settings.py index 07dd23f..a83832c 100644 --- a/src/settings.py +++ b/src/settings.py @@ -15,7 +15,7 @@ def configure(model): model.number_modules = 1 # Number of expert modules (currently not implemented) model.number_training_images = 500 # Number of training images model.number_testing_images = model.number_training_images # Number of testing images - model.locations = ["winter"] # Locations to train on (location repeats for training datasets) + model.locations = ["spring","fall"] # Locations to train on (location repeats for training datasets) model.test_locations = ["summer"] # Location to query with model.filter = 8 # Filter for training images model.validation = True # Validation (maybe deprecated for now?) @@ -51,9 +51,9 @@ def configure(model): model.testing_dirs.append(os.path.join(model.testPath,n)) # Set the model parameters - model.epoch = 8 # Number of epochs - model.patches = 7 # Number of patches - model.dims = [28,28] # Dimensions of the input image + model.epoch = 4 # Number of epochs + model.patches = 15 # Number of patches + model.dims = [56,56] # Dimensions of the input image model.location_repeat = len(model.locations) # Number of times to repeat the locations model.annl_pow = 2 # Power of the annealmeant function From 27b9b415343f3b4c1c2d98c7330c11377aa0e700 Mon Sep 17 00:00:00 2001 From: Adam Hines Date: Thu, 23 Nov 2023 16:07:06 +1000 Subject: [PATCH 29/69] Re-organising script so it is run out of main.py, adding in abilit to run networks via terminal --- VPRTempoQuant.py | 16 +- ...mpoQuant_Train.py => VPRTempoQuantTrain.py | 30 ++-- VPRTempo_Train.py => VPRTempoTrain.py | 10 +- config/base_config.json | 20 +++ main.py | 144 ++++++++++++++++++ src/settings.py | 86 ++++++++--- 6 files changed, 250 insertions(+), 56 deletions(-) rename VPRTempoQuant_Train.py => VPRTempoQuantTrain.py (93%) rename VPRTempo_Train.py => VPRTempoTrain.py (98%) create mode 100644 config/base_config.json create mode 100644 main.py diff --git a/VPRTempoQuant.py b/VPRTempoQuant.py index 1fa4413..ab7e806 100644 --- a/VPRTempoQuant.py +++ b/VPRTempoQuant.py @@ -38,7 +38,7 @@ import torch.nn as nn import torch.quantization as quantization -from settings import configure, model_logger +from settings import configure, model_logger_quant from dataset import CustomImageDataset, ProcessImage from torch.utils.data import DataLoader from torch.ao.quantization import QuantStub, DeQuantStub @@ -46,14 +46,14 @@ from prettytable import PrettyTable from metrics import recallAtK -class VPRTempo(nn.Module): +class VPRTempoQuant(nn.Module): def __init__(self): - super(VPRTempo, self).__init__() + super(VPRTempoQuant, self).__init__() # Configure the network configure(self) - model_logger(self) + model_logger_quant(self) # Add quantization stubs for Quantization Aware Training (QAT) self.quant = QuantStub() @@ -176,7 +176,7 @@ def load_model(self, model_path): self.load_state_dict(torch.load(model_path, map_location=self.device), strict=False) -def generate_model_name(model): +def generate_model_name_quant(model): """ Generate the model name based on its parameters. """ @@ -198,7 +198,7 @@ def check_pretrained_model(model_name): pretrain = 'y' return pretrain -def run_inference(model, model_name, qconfig): +def run_inference_quant(model, model_name, qconfig): """ Run inference on a pre-trained model. @@ -236,10 +236,8 @@ def run_inference(model, model_name, qconfig): model.evaluate(model, test_loader) if __name__ == "__main__": - # Set the number of threads for PyTorch - #torch.set_num_threads(8) # Initialize the model - model = VPRTempo() + model = VPRTempoQuant() # Set the quantization configuration qconfig = quantization.get_default_qat_qconfig('fbgemm') # Generate the model name diff --git a/VPRTempoQuant_Train.py b/VPRTempoQuantTrain.py similarity index 93% rename from VPRTempoQuant_Train.py rename to VPRTempoQuantTrain.py index d228128..9457044 100644 --- a/VPRTempoQuant_Train.py +++ b/VPRTempoQuantTrain.py @@ -38,19 +38,19 @@ import torch.nn as nn import torch.quantization as quantization -from settings import configure, model_logger +from settings import configure, model_logger_quant from dataset import CustomImageDataset, ProcessImage from torch.utils.data import DataLoader from torch.ao.quantization import QuantStub, DeQuantStub from tqdm import tqdm -class VPRTempo(nn.Module): +class VPRTempoQuantTrain(nn.Module): def __init__(self): - super(VPRTempo, self).__init__() + super(VPRTempoQuantTrain, self).__init__() # Configure the network configure(self) - + model_logger_quant(self) # Add quantization stubs for Quantization Aware Training (QAT) self.quant = QuantStub() self.dequant = DeQuantStub() @@ -100,19 +100,13 @@ def add_layer(self, name, **kwargs): # Add layer name and index to the layer_dict self.layer_dict[name] = self.layer_counter self.layer_counter += 1 - - def model_logger(self): - """ - Log the model configuration to the console. - """ - model_logger(self) def _anneal_learning_rate(self, layer, mod, itp, stdp): """ Anneal the learning rate for the current layer. """ if np.mod(mod, 100) == 0: # Modify learning rate every 100 timesteps - pt = pow(float(self.T - mod) / self.T, self.annl_pow) + pt = pow(float(self.T - mod) / self.T, 2) layer.eta_ip = torch.mul(itp, pt) # Anneal intrinsic threshold plasticity learning rate layer.eta_stdp = torch.mul(stdp, pt) # Anneal STDP learning rate @@ -195,7 +189,7 @@ def save_model(self, model_out): """ torch.save(self.state_dict(), model_out) -def generate_model_name(model): +def generate_model_name_quant(model): """ Generate the model name based on its parameters. """ @@ -216,7 +210,7 @@ def check_pretrained_model(model_name): return retrain == 'n' return False -def train_new_model(model, model_name, qconfig): +def train_new_model_quant(model, model_name, qconfig): """ Train a new model. @@ -265,22 +259,18 @@ def train_new_model(model, model_name, qconfig): model.save_model(os.path.join('./models', model_name)) if __name__ == "__main__": - # Set the number of threads for PyTorch - #torch.set_num_threads(8) # Initialize the model - model = VPRTempo() - # Initialize the logger - model.model_logger() + model = VPRTempoQuantTrain() # Set the quantization configuration if model.quantize: qconfig = quantization.get_default_qat_qconfig('fbgemm') else: raise ValueError("Quantization must be enabled for training.") # Generate the model name - model_name = generate_model_name(model) + model_name = generate_model_name_quant(model) # Check if a pre-trained model exists use_pretrained = check_pretrained_model(model_name) # Train or run inference based on the user's input if not use_pretrained: - train_new_model(model, model_name, qconfig) # Training + train_new_model_quant(model, model_name, qconfig) # Training model.logger.info('Training complete.') \ No newline at end of file diff --git a/VPRTempo_Train.py b/VPRTempoTrain.py similarity index 98% rename from VPRTempo_Train.py rename to VPRTempoTrain.py index 2958cac..1fedb2f 100644 --- a/VPRTempo_Train.py +++ b/VPRTempoTrain.py @@ -43,13 +43,13 @@ from torch.utils.data import DataLoader from tqdm import tqdm -class VPRTempo(nn.Module): +class VPRTempoTrain(nn.Module): def __init__(self): - super(VPRTempo, self).__init__() + super(VPRTempoTrain, self).__init__() # Configure the network configure(self) - + model_logger(self) # Layer dict to keep track of layer names and their order self.layer_dict = {} self.layer_counter = 0 @@ -107,7 +107,7 @@ def _anneal_learning_rate(self, layer, mod, itp, stdp): Anneal the learning rate for the current layer. """ if np.mod(mod, 100) == 0: # Modify learning rate every 100 timesteps - pt = pow(float(self.T - mod) / self.T, self.annl_pow) + pt = pow(float(self.T - mod) / self.T, 2) layer.eta_ip = torch.mul(itp, pt) # Anneal intrinsic threshold plasticity learning rate layer.eta_stdp = torch.mul(stdp, pt) # Anneal STDP learning rate @@ -255,7 +255,7 @@ def train_new_model(model, model_name): # Set the number of threads for PyTorch #torch.set_num_threads(8) # Initialize the model - model = VPRTempo() + model = VPRTempoTrain() if model.quantize: raise ValueError("Quantization enabled, please disable.") # Initialize the logger diff --git a/config/base_config.json b/config/base_config.json new file mode 100644 index 0000000..6478384 --- /dev/null +++ b/config/base_config.json @@ -0,0 +1,20 @@ +{ + "dataset": "nordland", + "number_places": 500, + "number_modules": 1, + "database_dirs": [ + "spring", + "fall" + ], + "query_dir": [ + "summer" + ], + "filter": 8, + "epoch": 4, + "patches": 15, + "dims": [ + 56, + 56 + ], + "anneal_pow": 2 +} \ No newline at end of file diff --git a/main.py b/main.py new file mode 100644 index 0000000..3419ab2 --- /dev/null +++ b/main.py @@ -0,0 +1,144 @@ +#MIT License + +#Copyright (c) 2023 Adam Hines, Peter G Stratton, Michael Milford, Tobias Fischer + +#Permission is hereby granted, free of charge, to any person obtaining a copy +#of this software and associated documentation files (the "Software"), to deal +#in the Software without restriction, including without limitation the rights +#to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +#copies of the Software, and to permit persons to whom the Software is +#furnished to do so, subject to the following conditions: + +#The above copyright notice and this permission notice shall be included in all +#copies or substantial portions of the Software. + +#THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +#IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +#FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +#AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +#LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +#OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +#SOFTWARE. + +''' +Imports +''' +import argparse +import json + +import torch.quantization as quantization + +from VPRTempoTrain import VPRTempoTrain, generate_model_name, check_pretrained_model, train_new_model +from VPRTempo import VPRTempo, run_inference +from VPRTempoQuantTrain import VPRTempoQuantTrain, generate_model_name_quant, train_new_model_quant +from VPRTempoQuant import VPRTempoQuant, run_inference_quant + +def initialize_and_run_model(train: bool, quantize: bool): + if train: + if quantize: + # Initialize the quantized model + model = VPRTempoQuantTrain() + # Get the quantization config + qconfig = quantization.get_default_qat_qconfig('fbgemm') + # Generate the model name + model_name = generate_model_name_quant(model) + # Check if the model has been trained before + check_pretrained_model(model_name) + # Train the model + train_new_model_quant(model, model_name, qconfig) + else: + # Initialize the model + model = VPRTempoTrain() + # Generate the model name + model_name = generate_model_name(model) + # Check if the model has been trained before + check_pretrained_model(model_name) + # Train the model + train_new_model(model, model_name) + else: + # Set the quantization configuration + if quantize: + # Initialize the quantized model + model = VPRTempoQuant() + # Get the quantization config + qconfig = quantization.get_default_qat_qconfig('fbgemm') + # Generate the model name + model_name = generate_model_name_quant(model) + # Run the quantized inference model + run_inference_quant(model, model_name, qconfig) + else: + # Initialize the model + model = VPRTempo() + # Generate the model name + model_name = generate_model_name(model) + # Run the inference model + run_inference(model, model_name) + +def main(): + ''' + Define the base parameter parser (configurable by the user) + ''' + base_parser = argparse.ArgumentParser(description="Args for base configuration file") + + # Define the dataset arguments + base_parser.add_argument('--dataset', type=str, default='nordland', + help="Dataset to use for training and/or inferencing") + base_parser.add_argument('--data_dir', type=str, default='./dataset/', + help="Directory where dataset files are stored") + base_parser.add_argument('--num_places', type=int, default=500, + help="Number of places to use for training and/or inferencing") + base_parser.add_argument('--num_modules', type=int, default=1, + help="Number of expert modules to use split images into") + base_parser.add_argument('--database_dirs', nargs='+', default=['spring', 'fall'], + help="Directories to use for training") + base_parser.add_argument('--query_dir', nargs='+', default=['summer'], + help="Directories to use for testing") + + # Define training parameters + base_parser.add_argument('--filter', type=int, default=8, + help="Images to skip for training and/or inferencing") + base_parser.add_argument('--epoch', type=int, default=4, + help="Number of epochs to train the model") + + # Define image transformation parameters + base_parser.add_argument('--patches', type=int, default=15, + help="Number of patches to generate for patch normalization image into") + base_parser.add_argument('--dims', nargs='+', type=int, default=[56,56], + help="Dimensions to resize the image to") + + # Output base configuration + base_args = base_parser.parse_args() + + # Write to base_config JSON file + with open('./config/base_config.json', 'w') as file: + json.dump(vars(base_args), file, indent=4) + + ''' + Define network architecture parameter parser + ''' + network_parser = argparse.ArgumentParser(description="Args for network architecture configuration file") + + # Define network architecure (number of neurons in each layer) + network_parser.add_argument('--input', type=int, default=base_args.dims[0]*base_args.dims[1], + help="Number of input neurons") + network_parser.add_argument('--feature', type=int, default=(base_args.dims[0]*base_args.dims[1])*2, + help="Number of feature neurons") + network_parser.add_argument('--output', type=int, default=int(base_args.num_places/base_args.num_modules), + help="Number of output neurons") + + # Determine total number of timesteps + network_parser.add_argument('--T', type=int, + default=(base_args.num_places / base_args.num_modules) * len(base_args.database_dirs) * base_args.epoch) + + # Determine network functionality + parser = argparse.ArgumentParser(description="Determine training or inferencing and the quantization scheme") + parser.add_argument('--train', action='store_true', + help="Flag to run the training or inferencing model") + parser.add_argument('--quantize', action='store_true', + help="Enable/disable quantization for the model") + args = parser.parse_args() + initialize_and_run_model(args.train, + args.quantize) + +if __name__ == "__main__": + main() diff --git a/src/settings.py b/src/settings.py index a83832c..d949bae 100644 --- a/src/settings.py +++ b/src/settings.py @@ -1,26 +1,31 @@ import os import torch import logging +import json +import sys +sys.path.append('./config') from datetime import datetime def configure(model): """ - Configure the model + Configure the model settings """ - model.dataset = 'nordland' # Dataset name - model.dataset_file = os.path.join('./dataset',model.dataset+'.csv') # Dataset file (must be PyTorch Dataset) - model.trainingPath = './dataset/' # Path to training images - model.testPath = './dataset/' # Path to testing images - model.number_modules = 1 # Number of expert modules (currently not implemented) - model.number_training_images = 500 # Number of training images - model.number_testing_images = model.number_training_images # Number of testing images - model.locations = ["spring","fall"] # Locations to train on (location repeats for training datasets) - model.test_locations = ["summer"] # Location to query with - model.filter = 8 # Filter for training images - model.validation = True # Validation (maybe deprecated for now?) - model.log = True # Log to console - model.quantize = True # Quantize the network + base_config = { + "dataset": "nordland", + "number_places": 500, + "number_modules": 1, + "database_dirs": ["spring", "fall"], + "query_dir": ["summer"], + "filter": 8, + "epoch": 4, + "patches": 15, + "dims": [56,56], + } + + # Write to base_config JSON file + with open('./config/base_config.json', 'w') as file: + json.dump(base_config, file, indent=4) # Set default paths if the provided paths are not valid directories if not os.path.isdir(getattr(model, 'trainingPath', '')): @@ -50,19 +55,11 @@ def configure(model): for n in model.test_locations: model.testing_dirs.append(os.path.join(model.testPath,n)) - # Set the model parameters - model.epoch = 4 # Number of epochs - model.patches = 15 # Number of patches - model.dims = [56,56] # Dimensions of the input image model.location_repeat = len(model.locations) # Number of times to repeat the locations - model.annl_pow = 2 # Power of the annealmeant function """ These parameters are used to define the network architecture """ - model.input = int(model.dims[0]*model.dims[1]) # Number of input neurons - model.feature = int(model.input*2) # Number of feature neurons - model.output = int(model.number_training_images/model.number_modules) # Number of output neurons # Set the torch device if not model.quantize: @@ -127,4 +124,49 @@ def model_logger(model): else: model.logger.info('CUDA available: ' + str(torch.cuda.is_available())) model.logger.info('Current device is: CPU') + model.logger.info('') + +def model_logger_quant(model): + """ + Configure the model logger + """ + if os.path.isdir('../output'): + now = datetime.now() + model.output_folder = '../output/' + now.strftime("%d%m%y-%H-%M-%S") + else: + now = datetime.now() + model.output_folder = './output/' + now.strftime("%d%m%y-%H-%M-%S") + + os.mkdir(model.output_folder) + # Create the logger + model.logger = logging.getLogger("VPRTempo") + if (model.logger.hasHandlers()): + model.logger.handlers.clear() + # Set the logger level + model.logger.setLevel(logging.DEBUG) + logging.basicConfig(filename=model.output_folder + "/logfile.log", + filemode="a+", + format="%(asctime)-15s %(levelname)-8s %(message)s") + # Add the logger to the console (if specified) + if model.log: + model.logger.addHandler(logging.StreamHandler()) + + model.logger.info('') + + model.logger.info('██╗ ██╗██████╗ ██████╗ ████████╗███████╗███╗ ███╗██████╗ ██████╗ ██████╗ ██╗ ██╗ █████╗ ███╗ ██╗████████╗') + model.logger.info('██║ ██║██╔══██╗██╔══██╗╚══██╔══╝██╔════╝████╗ ████║██╔══██╗██╔═══██╗ ██╔═══██╗██║ ██║██╔══██╗████╗ ██║╚══██╔══╝') + model.logger.info('██║ ██║██████╔╝██████╔╝ ██║ █████╗ ██╔████╔██║██████╔╝██║ ██║█████╗██║ ██║██║ ██║███████║██╔██╗ ██║ ██║') + model.logger.info('╚██╗ ██╔╝██╔═══╝ ██╔══██╗ ██║ ██╔══╝ ██║╚██╔╝██║██╔═══╝ ██║ ██║╚════╝██║▄▄ ██║██║ ██║██╔══██║██║╚██╗██║ ██║') + model.logger.info(' ╚████╔╝ ██║ ██║ ██║ ██║ ███████╗██║ ╚═╝ ██║██║ ╚██████╔╝ ╚██████╔╝╚██████╔╝██║ ██║██║ ╚████║ ██║') + model.logger.info(' ╚═══╝ ╚═╝ ╚═╝ ╚═╝ ╚═╝ ╚══════╝╚═╝ ╚═╝╚═╝ ╚═════╝ ╚══▀▀═╝ ╚═════╝ ╚═╝ ╚═╝╚═╝ ╚═══╝ ╚═╝') + model.logger.info('-----------------------------------------------------------------------') + model.logger.info('Temporally Encoded Spiking Neural Network for Visual Place Recognition v1.1.0') + model.logger.info('Queensland University of Technology, Centre for Robotics') + model.logger.info('') + model.logger.info('© 2023 Adam D Hines, Peter G Stratton, Michael Milford, Tobias Fischer') + model.logger.info('MIT license - https://github.com/QVPR/VPRTempo') + model.logger.info('\\\\\\\\\\\\\\\\\\\\\\\\') + model.logger.info('') + model.logger.info('Quantization enabled') + model.logger.info('Current device is: CPU') model.logger.info('') \ No newline at end of file From f028dba6551bfa8c258f49cab49135af5bb2864a Mon Sep 17 00:00:00 2001 From: Adam Hines Date: Mon, 27 Nov 2023 11:48:43 +1000 Subject: [PATCH 30/69] Networks now run through main.py, user can set quantized or train_new_model to do either from terminal --- .gitignore | 15 +- config/base_config.json | 20 - dataset/event.csv | 160 + dataset/orc.csv | 2650 +++++++++++++++++ main.py | 97 +- VPRTempo.py => networks/base/VPRTempo.py | 61 +- .../base/VPRTempoTrain.py | 62 +- .../quantized/VPRTempoQuant.py | 70 +- .../quantized/VPRTempoQuantTrain.py | 62 +- src/blitnet.py | 6 +- src/dataset.py | 4 +- src/{settings.py => loggers.py} | 101 +- src/utils.py | 299 -- src/validation.py | 303 -- 14 files changed, 3002 insertions(+), 908 deletions(-) delete mode 100644 config/base_config.json create mode 100644 dataset/event.csv create mode 100644 dataset/orc.csv rename VPRTempo.py => networks/base/VPRTempo.py (81%) rename VPRTempoTrain.py => networks/base/VPRTempoTrain.py (86%) rename VPRTempoQuant.py => networks/quantized/VPRTempoQuant.py (81%) rename VPRTempoQuantTrain.py => networks/quantized/VPRTempoQuantTrain.py (86%) rename src/{settings.py => loggers.py} (64%) delete mode 100644 src/utils.py delete mode 100644 src/validation.py diff --git a/.gitignore b/.gitignore index ee89f42..4052199 100644 --- a/.gitignore +++ b/.gitignore @@ -1,6 +1,19 @@ __pycache__/ .ipynb_checkpoints/ src/__pycache__/ -dataset/ +dataset/conv/ +dataset/Dusk/ +dataset/fall/ +dataset/model/ +dataset/output_database/ +dataset/output_query/ +dataset/Rain/ +dataset/spring/ +dataset/summer/ +dataset/Sun/ +dataset/winter/ +dataset/event.csv/ +models/VPRTempo78415685001.pth +models/VPRTempoQuant78415685001.pth models/VPRTempo313662725001.pth models/VPRTempoQuant313662725001.pth diff --git a/config/base_config.json b/config/base_config.json deleted file mode 100644 index 6478384..0000000 --- a/config/base_config.json +++ /dev/null @@ -1,20 +0,0 @@ -{ - "dataset": "nordland", - "number_places": 500, - "number_modules": 1, - "database_dirs": [ - "spring", - "fall" - ], - "query_dir": [ - "summer" - ], - "filter": 8, - "epoch": 4, - "patches": 15, - "dims": [ - 56, - 56 - ], - "anneal_pow": 2 -} \ No newline at end of file diff --git a/dataset/event.csv b/dataset/event.csv new file mode 100644 index 0000000..d39b74a --- /dev/null +++ b/dataset/event.csv @@ -0,0 +1,160 @@ +Image_names,Index +match_0245.png,0 +match_0247.png,1 +match_0248.png,2 +match_0249.png,3 +match_0250.png,4 +match_0251.png,5 +match_0253.png,6 +match_0256.png,7 +match_0329.png,8 +match_0332.png,9 +match_0333.png,10 +match_0334.png,11 +match_0337.png,12 +match_0338.png,13 +match_0345.png,14 +match_0346.png,15 +match_0347.png,16 +match_0348.png,17 +match_0349.png,18 +match_0350.png,19 +match_0351.png,20 +match_0352.png,21 +match_0354.png,22 +match_0355.png,23 +match_0356.png,24 +match_0357.png,25 +match_0358.png,26 +match_0359.png,27 +match_0361.png,28 +match_0362.png,29 +match_0363.png,30 +match_0364.png,31 +match_0365.png,32 +match_0366.png,33 +match_0367.png,34 +match_0368.png,35 +match_0369.png,36 +match_0370.png,37 +match_0371.png,38 +match_0372.png,39 +match_0373.png,40 +match_0374.png,41 +match_0375.png,42 +match_0376.png,43 +match_0377.png,44 +match_0378.png,45 +match_0379.png,46 +match_0380.png,47 +match_0381.png,48 +match_0382.png,49 +match_0383.png,50 +match_0384.png,51 +match_0385.png,52 +match_0386.png,53 +match_0387.png,54 +match_0388.png,55 +match_0389.png,56 +match_0390.png,57 +match_0391.png,58 +match_0392.png,59 +match_0393.png,60 +match_0394.png,61 +match_0395.png,62 +match_0396.png,63 +match_0397.png,64 +match_0398.png,65 +match_0399.png,66 +match_0400.png,67 +match_0401.png,68 +match_0402.png,69 +match_0403.png,70 +match_0404.png,71 +match_0405.png,72 +match_0491.png,73 +match_0492.png,74 +match_0494.png,75 +match_0538.png,76 +match_0539.png,77 +match_0540.png,78 +match_0541.png,79 +match_0542.png,80 +match_0543.png,81 +match_0544.png,82 +match_0545.png,83 +match_0546.png,84 +match_0547.png,85 +match_0548.png,86 +match_0549.png,87 +match_0550.png,88 +match_0551.png,89 +match_0552.png,90 +match_0553.png,91 +match_0554.png,92 +match_0555.png,93 +match_0720.png,94 +match_0790.png,95 +match_0792.png,96 +match_0793.png,97 +match_0794.png,98 +match_0795.png,99 +match_0796.png,100 +match_0797.png,101 +match_0798.png,102 +match_0799.png,103 +match_0800.png,104 +match_0801.png,105 +match_0802.png,106 +match_0803.png,107 +match_0804.png,108 +match_0805.png,109 +match_0806.png,110 +match_0807.png,111 +match_0808.png,112 +match_0809.png,113 +match_0810.png,114 +match_0811.png,115 +match_0812.png,116 +match_0813.png,117 +match_0814.png,118 +match_0815.png,119 +match_0816.png,120 +match_0817.png,121 +match_0818.png,122 +match_0819.png,123 +match_0820.png,124 +match_0821.png,125 +match_0822.png,126 +match_0823.png,127 +match_0824.png,128 +match_0825.png,129 +match_0826.png,130 +match_0827.png,131 +match_0828.png,132 +match_0829.png,133 +match_0830.png,134 +match_0831.png,135 +match_0832.png,136 +match_0833.png,137 +match_0834.png,138 +match_0835.png,139 +match_0840.png,140 +match_0880.png,141 +match_0881.png,142 +match_0882.png,143 +match_0883.png,144 +match_0884.png,145 +match_0885.png,146 +match_0886.png,147 +match_0887.png,148 +match_0888.png,149 +match_0889.png,150 +match_0890.png,151 +match_0911.png,152 +match_0914.png,153 +match_0919.png,154 +match_0921.png,155 +match_0922.png,156 +match_0924.png,157 +match_0925.png,158 diff --git a/dataset/orc.csv b/dataset/orc.csv new file mode 100644 index 0000000..f864bb9 --- /dev/null +++ b/dataset/orc.csv @@ -0,0 +1,2650 @@ +Image name,index +000720.png,0 +000721.png,1 +000722.png,2 +000723.png,3 +000724.png,4 +000725.png,5 +000726.png,6 +000727.png,7 +000728.png,8 +000729.png,9 +000730.png,10 +000731.png,11 +000732.png,12 +000733.png,13 +000734.png,14 +000735.png,15 +000736.png,16 +000737.png,17 +000738.png,18 +000739.png,19 +000740.png,20 +000741.png,21 +000742.png,22 +000743.png,23 +000744.png,24 +000745.png,25 +000746.png,26 +000747.png,27 +000748.png,28 +000749.png,29 +000750.png,30 +000751.png,31 +000752.png,32 +000753.png,33 +000754.png,34 +000755.png,35 +000756.png,36 +000757.png,37 +000758.png,38 +000759.png,39 +000760.png,40 +000761.png,41 +000762.png,42 +000763.png,43 +000764.png,44 +000765.png,45 +000766.png,46 +000767.png,47 +000768.png,48 +000769.png,49 +000770.png,50 +000771.png,51 +000772.png,52 +000773.png,53 +000774.png,54 +000775.png,55 +000776.png,56 +000777.png,57 +000778.png,58 +000779.png,59 +000780.png,60 +000781.png,61 +000782.png,62 +000783.png,63 +000784.png,64 +000785.png,65 +000786.png,66 +000787.png,67 +000788.png,68 +000789.png,69 +000790.png,70 +000791.png,71 +000792.png,72 +000793.png,73 +000794.png,74 +000795.png,75 +000796.png,76 +000797.png,77 +000798.png,78 +000799.png,79 +000800.png,80 +000801.png,81 +000802.png,82 +000803.png,83 +000804.png,84 +000805.png,85 +000806.png,86 +000807.png,87 +000808.png,88 +000809.png,89 +000810.png,90 +000811.png,91 +000812.png,92 +000813.png,93 +000814.png,94 +000815.png,95 +000816.png,96 +000817.png,97 +000818.png,98 +000819.png,99 +000820.png,100 +000821.png,101 +000822.png,102 +000823.png,103 +000824.png,104 +000825.png,105 +000826.png,106 +000827.png,107 +000828.png,108 +000829.png,109 +000830.png,110 +000831.png,111 +000832.png,112 +000833.png,113 +000834.png,114 +000835.png,115 +000836.png,116 +000837.png,117 +000838.png,118 +000839.png,119 +000840.png,120 +000841.png,121 +000842.png,122 +000843.png,123 +000844.png,124 +000845.png,125 +000846.png,126 +000847.png,127 +000848.png,128 +000849.png,129 +000850.png,130 +000851.png,131 +000852.png,132 +000853.png,133 +000854.png,134 +000855.png,135 +000856.png,136 +000857.png,137 +000858.png,138 +000859.png,139 +000860.png,140 +000861.png,141 +000862.png,142 +000863.png,143 +000864.png,144 +000865.png,145 +000866.png,146 +000867.png,147 +000868.png,148 +000869.png,149 +000870.png,150 +000871.png,151 +000872.png,152 +000873.png,153 +000874.png,154 +000875.png,155 +000876.png,156 +000877.png,157 +000878.png,158 +000879.png,159 +000880.png,160 +000881.png,161 +000882.png,162 +000883.png,163 +000884.png,164 +000885.png,165 +000886.png,166 +000887.png,167 +000888.png,168 +000889.png,169 +000890.png,170 +000891.png,171 +000892.png,172 +000893.png,173 +000894.png,174 +000895.png,175 +000896.png,176 +000897.png,177 +000898.png,178 +000899.png,179 +000900.png,180 +000901.png,181 +000902.png,182 +000903.png,183 +000904.png,184 +000905.png,185 +000906.png,186 +000907.png,187 +000908.png,188 +000909.png,189 +000910.png,190 +000911.png,191 +000912.png,192 +000913.png,193 +000914.png,194 +000915.png,195 +000916.png,196 +000917.png,197 +000918.png,198 +000919.png,199 +000920.png,200 +000921.png,201 +000922.png,202 +000923.png,203 +000924.png,204 +000925.png,205 +000926.png,206 +000927.png,207 +000928.png,208 +000929.png,209 +000930.png,210 +000931.png,211 +000932.png,212 +000933.png,213 +000934.png,214 +000935.png,215 +000936.png,216 +000937.png,217 +000938.png,218 +000939.png,219 +000940.png,220 +000941.png,221 +000942.png,222 +000943.png,223 +000944.png,224 +000945.png,225 +000946.png,226 +000947.png,227 +000948.png,228 +000949.png,229 +000950.png,230 +000951.png,231 +000952.png,232 +000953.png,233 +000954.png,234 +000955.png,235 +000956.png,236 +000957.png,237 +000958.png,238 +000959.png,239 +000960.png,240 +000961.png,241 +000962.png,242 +000963.png,243 +000964.png,244 +000965.png,245 +000966.png,246 +000967.png,247 +000968.png,248 +000969.png,249 +000970.png,250 +000971.png,251 +000972.png,252 +000973.png,253 +000974.png,254 +000975.png,255 +000976.png,256 +000977.png,257 +000978.png,258 +000979.png,259 +000980.png,260 +000981.png,261 +000982.png,262 +000983.png,263 +000984.png,264 +000985.png,265 +000986.png,266 +000987.png,267 +000988.png,268 +000989.png,269 +000990.png,270 +000991.png,271 +000992.png,272 +000993.png,273 +000994.png,274 +000995.png,275 +000996.png,276 +000997.png,277 +000998.png,278 +000999.png,279 +001000.png,280 +001001.png,281 +001002.png,282 +001003.png,283 +001004.png,284 +001005.png,285 +001006.png,286 +001007.png,287 +001008.png,288 +001009.png,289 +001010.png,290 +001011.png,291 +001012.png,292 +001013.png,293 +001014.png,294 +001015.png,295 +001016.png,296 +001017.png,297 +001018.png,298 +001019.png,299 +001020.png,300 +001021.png,301 +001022.png,302 +001023.png,303 +001024.png,304 +001025.png,305 +001026.png,306 +001027.png,307 +001028.png,308 +001029.png,309 +001030.png,310 +001031.png,311 +001032.png,312 +001033.png,313 +001034.png,314 +001035.png,315 +001036.png,316 +001037.png,317 +001038.png,318 +001039.png,319 +001040.png,320 +001041.png,321 +001042.png,322 +001043.png,323 +001044.png,324 +001045.png,325 +001046.png,326 +001047.png,327 +001048.png,328 +001049.png,329 +001050.png,330 +001051.png,331 +001052.png,332 +001053.png,333 +001054.png,334 +001055.png,335 +001056.png,336 +001057.png,337 +001058.png,338 +001059.png,339 +001060.png,340 +001061.png,341 +001062.png,342 +001063.png,343 +001064.png,344 +001065.png,345 +001066.png,346 +001067.png,347 +001068.png,348 +001069.png,349 +001070.png,350 +001071.png,351 +001072.png,352 +001073.png,353 +001074.png,354 +001075.png,355 +001076.png,356 +001077.png,357 +001078.png,358 +001079.png,359 +001080.png,360 +001081.png,361 +001082.png,362 +001083.png,363 +001084.png,364 +001085.png,365 +001086.png,366 +001087.png,367 +001088.png,368 +001089.png,369 +001090.png,370 +001091.png,371 +001092.png,372 +001093.png,373 +001094.png,374 +001095.png,375 +001096.png,376 +001097.png,377 +001098.png,378 +001099.png,379 +001100.png,380 +001101.png,381 +001102.png,382 +001103.png,383 +001104.png,384 +001105.png,385 +001106.png,386 +001107.png,387 +001108.png,388 +001109.png,389 +001110.png,390 +001111.png,391 +001112.png,392 +001113.png,393 +001114.png,394 +001115.png,395 +001116.png,396 +001117.png,397 +001118.png,398 +001119.png,399 +001120.png,400 +001121.png,401 +001122.png,402 +001123.png,403 +001124.png,404 +001125.png,405 +001126.png,406 +001127.png,407 +001128.png,408 +001129.png,409 +001130.png,410 +001131.png,411 +001132.png,412 +001133.png,413 +001134.png,414 +001135.png,415 +001136.png,416 +001137.png,417 +001138.png,418 +001139.png,419 +001140.png,420 +001141.png,421 +001142.png,422 +001143.png,423 +001144.png,424 +001145.png,425 +001146.png,426 +001147.png,427 +001148.png,428 +001149.png,429 +001150.png,430 +001151.png,431 +001152.png,432 +001153.png,433 +001154.png,434 +001155.png,435 +001156.png,436 +001157.png,437 +001158.png,438 +001159.png,439 +001160.png,440 +001161.png,441 +001162.png,442 +001163.png,443 +001164.png,444 +001165.png,445 +001166.png,446 +001167.png,447 +001168.png,448 +001169.png,449 +001170.png,450 +001171.png,451 +001172.png,452 +001173.png,453 +001174.png,454 +001175.png,455 +001176.png,456 +001177.png,457 +001178.png,458 +001179.png,459 +001180.png,460 +001181.png,461 +001182.png,462 +001183.png,463 +001184.png,464 +001185.png,465 +001186.png,466 +001187.png,467 +001188.png,468 +001189.png,469 +001190.png,470 +001191.png,471 +001192.png,472 +001193.png,473 +001194.png,474 +001195.png,475 +001196.png,476 +001197.png,477 +001198.png,478 +001199.png,479 +001200.png,480 +001201.png,481 +001202.png,482 +001203.png,483 +001204.png,484 +001205.png,485 +001206.png,486 +001207.png,487 +001208.png,488 +001209.png,489 +001210.png,490 +001211.png,491 +001212.png,492 +001213.png,493 +001214.png,494 +001215.png,495 +001216.png,496 +001217.png,497 +001218.png,498 +001219.png,499 +001220.png,500 +001221.png,501 +001222.png,502 +001223.png,503 +001224.png,504 +001225.png,505 +001226.png,506 +001227.png,507 +001228.png,508 +001229.png,509 +001230.png,510 +001231.png,511 +001232.png,512 +001233.png,513 +001234.png,514 +001235.png,515 +001236.png,516 +001237.png,517 +001238.png,518 +001239.png,519 +001240.png,520 +001241.png,521 +001242.png,522 +001243.png,523 +001244.png,524 +001245.png,525 +001246.png,526 +001247.png,527 +001248.png,528 +001249.png,529 +001250.png,530 +001251.png,531 +001252.png,532 +001253.png,533 +001254.png,534 +001255.png,535 +001256.png,536 +001257.png,537 +001258.png,538 +001259.png,539 +001260.png,540 +001261.png,541 +001262.png,542 +001263.png,543 +001264.png,544 +001265.png,545 +001266.png,546 +001267.png,547 +001268.png,548 +001269.png,549 +001270.png,550 +001271.png,551 +001272.png,552 +001273.png,553 +001274.png,554 +001275.png,555 +001276.png,556 +001277.png,557 +001278.png,558 +001279.png,559 +001280.png,560 +001281.png,561 +001282.png,562 +001283.png,563 +001284.png,564 +001285.png,565 +001286.png,566 +001287.png,567 +001288.png,568 +001289.png,569 +001290.png,570 +001291.png,571 +001292.png,572 +001293.png,573 +001294.png,574 +001295.png,575 +001296.png,576 +001297.png,577 +001298.png,578 +001299.png,579 +001300.png,580 +001301.png,581 +001302.png,582 +001303.png,583 +001304.png,584 +001305.png,585 +001306.png,586 +001307.png,587 +001308.png,588 +001309.png,589 +001310.png,590 +001311.png,591 +001312.png,592 +001313.png,593 +001314.png,594 +001315.png,595 +001316.png,596 +001317.png,597 +001318.png,598 +001319.png,599 +001320.png,600 +001321.png,601 +001322.png,602 +001323.png,603 +001324.png,604 +001325.png,605 +001326.png,606 +001327.png,607 +001328.png,608 +001329.png,609 +001330.png,610 +001331.png,611 +001332.png,612 +001333.png,613 +001334.png,614 +001335.png,615 +001336.png,616 +001337.png,617 +001338.png,618 +001339.png,619 +001340.png,620 +001341.png,621 +001342.png,622 +001343.png,623 +001344.png,624 +001345.png,625 +001346.png,626 +001347.png,627 +001348.png,628 +001349.png,629 +001350.png,630 +001351.png,631 +001352.png,632 +001353.png,633 +001354.png,634 +001355.png,635 +001356.png,636 +001357.png,637 +001358.png,638 +001359.png,639 +001360.png,640 +001361.png,641 +001362.png,642 +001363.png,643 +001364.png,644 +001365.png,645 +001366.png,646 +001367.png,647 +001368.png,648 +001369.png,649 +001370.png,650 +001371.png,651 +001372.png,652 +001373.png,653 +001374.png,654 +001375.png,655 +001376.png,656 +001377.png,657 +001378.png,658 +001379.png,659 +001380.png,660 +001381.png,661 +001382.png,662 +001383.png,663 +001384.png,664 +001385.png,665 +001386.png,666 +001387.png,667 +001388.png,668 +001389.png,669 +001390.png,670 +001391.png,671 +001392.png,672 +001393.png,673 +001394.png,674 +001395.png,675 +001396.png,676 +001397.png,677 +001398.png,678 +001399.png,679 +001400.png,680 +001401.png,681 +001402.png,682 +001403.png,683 +001404.png,684 +001405.png,685 +001406.png,686 +001407.png,687 +001408.png,688 +001409.png,689 +001410.png,690 +001411.png,691 +001412.png,692 +001413.png,693 +001414.png,694 +001415.png,695 +001416.png,696 +001417.png,697 +001418.png,698 +001419.png,699 +001420.png,700 +001421.png,701 +001422.png,702 +001423.png,703 +001424.png,704 +001425.png,705 +001426.png,706 +001427.png,707 +001428.png,708 +001429.png,709 +001430.png,710 +001431.png,711 +001432.png,712 +001433.png,713 +001434.png,714 +001435.png,715 +001436.png,716 +001437.png,717 +001438.png,718 +001439.png,719 +001440.png,720 +001441.png,721 +001442.png,722 +001443.png,723 +001444.png,724 +001445.png,725 +001446.png,726 +001447.png,727 +001448.png,728 +001449.png,729 +001450.png,730 +001451.png,731 +001452.png,732 +001453.png,733 +001454.png,734 +001455.png,735 +001456.png,736 +001457.png,737 +001458.png,738 +001459.png,739 +001460.png,740 +001461.png,741 +001462.png,742 +001463.png,743 +001464.png,744 +001465.png,745 +001466.png,746 +001467.png,747 +001468.png,748 +001469.png,749 +001470.png,750 +001471.png,751 +001472.png,752 +001473.png,753 +001474.png,754 +001475.png,755 +001476.png,756 +001477.png,757 +001478.png,758 +001479.png,759 +001480.png,760 +001481.png,761 +001482.png,762 +001483.png,763 +001484.png,764 +001485.png,765 +001486.png,766 +001487.png,767 +001488.png,768 +001489.png,769 +001490.png,770 +001491.png,771 +001492.png,772 +001493.png,773 +001494.png,774 +001495.png,775 +001496.png,776 +001497.png,777 +001498.png,778 +001499.png,779 +001500.png,780 +001501.png,781 +001502.png,782 +001503.png,783 +001504.png,784 +001505.png,785 +001506.png,786 +001507.png,787 +001508.png,788 +001509.png,789 +001510.png,790 +001511.png,791 +001512.png,792 +001513.png,793 +001514.png,794 +001515.png,795 +001516.png,796 +001517.png,797 +001518.png,798 +001519.png,799 +001520.png,800 +001521.png,801 +001522.png,802 +001523.png,803 +001524.png,804 +001525.png,805 +001526.png,806 +001527.png,807 +001528.png,808 +001529.png,809 +001530.png,810 +001531.png,811 +001532.png,812 +001533.png,813 +001534.png,814 +001535.png,815 +001536.png,816 +001537.png,817 +001538.png,818 +001539.png,819 +001540.png,820 +001541.png,821 +001542.png,822 +001543.png,823 +001544.png,824 +001545.png,825 +001546.png,826 +001547.png,827 +001548.png,828 +001549.png,829 +001550.png,830 +001551.png,831 +001552.png,832 +001553.png,833 +001554.png,834 +001555.png,835 +001556.png,836 +001557.png,837 +001558.png,838 +001559.png,839 +001560.png,840 +001561.png,841 +001562.png,842 +001563.png,843 +001564.png,844 +001565.png,845 +001566.png,846 +001567.png,847 +001568.png,848 +001569.png,849 +001570.png,850 +001571.png,851 +001572.png,852 +001573.png,853 +001574.png,854 +001575.png,855 +001576.png,856 +001577.png,857 +001578.png,858 +001579.png,859 +001580.png,860 +001581.png,861 +001582.png,862 +001583.png,863 +001584.png,864 +001585.png,865 +001586.png,866 +001587.png,867 +001588.png,868 +001589.png,869 +001590.png,870 +001591.png,871 +001592.png,872 +001593.png,873 +001594.png,874 +001595.png,875 +001596.png,876 +001597.png,877 +001598.png,878 +001599.png,879 +001600.png,880 +001601.png,881 +001602.png,882 +001603.png,883 +001604.png,884 +001605.png,885 +001606.png,886 +001607.png,887 +001608.png,888 +001609.png,889 +001610.png,890 +001611.png,891 +001612.png,892 +001613.png,893 +001614.png,894 +001615.png,895 +001616.png,896 +001617.png,897 +001618.png,898 +001619.png,899 +001620.png,900 +001621.png,901 +001622.png,902 +001623.png,903 +001624.png,904 +001625.png,905 +001626.png,906 +001627.png,907 +001628.png,908 +001629.png,909 +001630.png,910 +001631.png,911 +001632.png,912 +001633.png,913 +001634.png,914 +001635.png,915 +001636.png,916 +001637.png,917 +001638.png,918 +001639.png,919 +001640.png,920 +001641.png,921 +001642.png,922 +001643.png,923 +001644.png,924 +001645.png,925 +001646.png,926 +001647.png,927 +001648.png,928 +001649.png,929 +001650.png,930 +001651.png,931 +001652.png,932 +001653.png,933 +001654.png,934 +001655.png,935 +001656.png,936 +001657.png,937 +001658.png,938 +001659.png,939 +001660.png,940 +001661.png,941 +001662.png,942 +001663.png,943 +001664.png,944 +001665.png,945 +001666.png,946 +001667.png,947 +001668.png,948 +001669.png,949 +001670.png,950 +001671.png,951 +001672.png,952 +001673.png,953 +001674.png,954 +001675.png,955 +001676.png,956 +001677.png,957 +001678.png,958 +001679.png,959 +001680.png,960 +001681.png,961 +001682.png,962 +001683.png,963 +001684.png,964 +001685.png,965 +001686.png,966 +001687.png,967 +001688.png,968 +001689.png,969 +001690.png,970 +001691.png,971 +001692.png,972 +001693.png,973 +001694.png,974 +001695.png,975 +001696.png,976 +001697.png,977 +001698.png,978 +001699.png,979 +001700.png,980 +001701.png,981 +001702.png,982 +001703.png,983 +001704.png,984 +001705.png,985 +001706.png,986 +001707.png,987 +001708.png,988 +001709.png,989 +001710.png,990 +001711.png,991 +001712.png,992 +001713.png,993 +001714.png,994 +001715.png,995 +001716.png,996 +001717.png,997 +001718.png,998 +001719.png,999 +001720.png,1000 +001721.png,1001 +001722.png,1002 +001723.png,1003 +001724.png,1004 +001725.png,1005 +001726.png,1006 +001727.png,1007 +001728.png,1008 +001729.png,1009 +001730.png,1010 +001731.png,1011 +001732.png,1012 +001733.png,1013 +001734.png,1014 +001735.png,1015 +001736.png,1016 +001737.png,1017 +001738.png,1018 +001739.png,1019 +001740.png,1020 +001741.png,1021 +001742.png,1022 +001743.png,1023 +001744.png,1024 +001745.png,1025 +001746.png,1026 +001747.png,1027 +001748.png,1028 +001749.png,1029 +001750.png,1030 +001751.png,1031 +001752.png,1032 +001753.png,1033 +001754.png,1034 +001755.png,1035 +001756.png,1036 +001757.png,1037 +001758.png,1038 +001759.png,1039 +001760.png,1040 +001761.png,1041 +001762.png,1042 +001763.png,1043 +001764.png,1044 +001765.png,1045 +001766.png,1046 +001767.png,1047 +001768.png,1048 +001769.png,1049 +001770.png,1050 +001771.png,1051 +001772.png,1052 +001773.png,1053 +001774.png,1054 +001775.png,1055 +001776.png,1056 +001777.png,1057 +001778.png,1058 +001779.png,1059 +001780.png,1060 +001781.png,1061 +001782.png,1062 +001783.png,1063 +001784.png,1064 +001785.png,1065 +001786.png,1066 +001787.png,1067 +001788.png,1068 +001789.png,1069 +001790.png,1070 +001791.png,1071 +001792.png,1072 +001793.png,1073 +001794.png,1074 +001795.png,1075 +001796.png,1076 +001797.png,1077 +001798.png,1078 +001799.png,1079 +001800.png,1080 +001801.png,1081 +001802.png,1082 +001803.png,1083 +001804.png,1084 +001805.png,1085 +001806.png,1086 +001807.png,1087 +001808.png,1088 +001809.png,1089 +001810.png,1090 +001811.png,1091 +001812.png,1092 +001813.png,1093 +001814.png,1094 +001815.png,1095 +001816.png,1096 +001817.png,1097 +001818.png,1098 +001819.png,1099 +001820.png,1100 +001821.png,1101 +001822.png,1102 +001823.png,1103 +001824.png,1104 +001825.png,1105 +001826.png,1106 +001827.png,1107 +001828.png,1108 +001829.png,1109 +001830.png,1110 +001831.png,1111 +001832.png,1112 +001833.png,1113 +001834.png,1114 +001835.png,1115 +001836.png,1116 +001837.png,1117 +001838.png,1118 +001839.png,1119 +001840.png,1120 +001841.png,1121 +001842.png,1122 +001843.png,1123 +001844.png,1124 +001845.png,1125 +001846.png,1126 +001847.png,1127 +001848.png,1128 +001849.png,1129 +001850.png,1130 +001851.png,1131 +001852.png,1132 +001853.png,1133 +001854.png,1134 +001855.png,1135 +001856.png,1136 +001857.png,1137 +001858.png,1138 +001859.png,1139 +001860.png,1140 +001861.png,1141 +001862.png,1142 +001863.png,1143 +001864.png,1144 +001865.png,1145 +001866.png,1146 +001867.png,1147 +001868.png,1148 +001869.png,1149 +001870.png,1150 +001871.png,1151 +001872.png,1152 +001873.png,1153 +001874.png,1154 +001875.png,1155 +001876.png,1156 +001877.png,1157 +001878.png,1158 +001879.png,1159 +001880.png,1160 +001881.png,1161 +001882.png,1162 +001883.png,1163 +001884.png,1164 +001885.png,1165 +001886.png,1166 +001887.png,1167 +001888.png,1168 +001889.png,1169 +001890.png,1170 +001891.png,1171 +001892.png,1172 +001893.png,1173 +001894.png,1174 +001895.png,1175 +001896.png,1176 +001897.png,1177 +001898.png,1178 +001899.png,1179 +001900.png,1180 +001901.png,1181 +001902.png,1182 +001903.png,1183 +001904.png,1184 +001905.png,1185 +001906.png,1186 +001907.png,1187 +001908.png,1188 +001909.png,1189 +001910.png,1190 +001911.png,1191 +001912.png,1192 +001913.png,1193 +001914.png,1194 +001915.png,1195 +001916.png,1196 +001917.png,1197 +001918.png,1198 +001919.png,1199 +001920.png,1200 +001921.png,1201 +001922.png,1202 +001923.png,1203 +001924.png,1204 +001925.png,1205 +001926.png,1206 +001927.png,1207 +001928.png,1208 +001929.png,1209 +001930.png,1210 +001931.png,1211 +001932.png,1212 +001933.png,1213 +001934.png,1214 +001935.png,1215 +001936.png,1216 +001937.png,1217 +001938.png,1218 +001939.png,1219 +001940.png,1220 +001941.png,1221 +001942.png,1222 +001943.png,1223 +001944.png,1224 +001945.png,1225 +001946.png,1226 +001947.png,1227 +001948.png,1228 +001949.png,1229 +001950.png,1230 +001951.png,1231 +001952.png,1232 +001953.png,1233 +001954.png,1234 +001955.png,1235 +001956.png,1236 +001957.png,1237 +001958.png,1238 +001959.png,1239 +001960.png,1240 +001961.png,1241 +001962.png,1242 +001963.png,1243 +001964.png,1244 +001965.png,1245 +001966.png,1246 +001967.png,1247 +001968.png,1248 +001969.png,1249 +001970.png,1250 +001971.png,1251 +001972.png,1252 +001973.png,1253 +001974.png,1254 +001975.png,1255 +001976.png,1256 +001977.png,1257 +001978.png,1258 +001979.png,1259 +001980.png,1260 +001981.png,1261 +001982.png,1262 +001983.png,1263 +001984.png,1264 +001985.png,1265 +001986.png,1266 +001987.png,1267 +001988.png,1268 +001989.png,1269 +001990.png,1270 +001991.png,1271 +001992.png,1272 +001993.png,1273 +001994.png,1274 +001995.png,1275 +001996.png,1276 +001997.png,1277 +001998.png,1278 +001999.png,1279 +002000.png,1280 +002001.png,1281 +002002.png,1282 +002003.png,1283 +002004.png,1284 +002005.png,1285 +002006.png,1286 +002007.png,1287 +002008.png,1288 +002009.png,1289 +002010.png,1290 +002011.png,1291 +002012.png,1292 +002013.png,1293 +002014.png,1294 +002015.png,1295 +002016.png,1296 +002017.png,1297 +002018.png,1298 +002019.png,1299 +002020.png,1300 +002021.png,1301 +002022.png,1302 +002023.png,1303 +002024.png,1304 +002025.png,1305 +002026.png,1306 +002027.png,1307 +002028.png,1308 +002029.png,1309 +002030.png,1310 +002031.png,1311 +002032.png,1312 +002033.png,1313 +002034.png,1314 +002035.png,1315 +002036.png,1316 +002037.png,1317 +002038.png,1318 +002039.png,1319 +002040.png,1320 +002041.png,1321 +002042.png,1322 +002043.png,1323 +002044.png,1324 +002045.png,1325 +002046.png,1326 +002047.png,1327 +002048.png,1328 +002049.png,1329 +002050.png,1330 +002051.png,1331 +002052.png,1332 +002053.png,1333 +002054.png,1334 +002055.png,1335 +002056.png,1336 +002057.png,1337 +002058.png,1338 +002059.png,1339 +002060.png,1340 +002061.png,1341 +002062.png,1342 +002063.png,1343 +002064.png,1344 +002065.png,1345 +002066.png,1346 +002067.png,1347 +002068.png,1348 +002069.png,1349 +002070.png,1350 +002071.png,1351 +002072.png,1352 +002073.png,1353 +002074.png,1354 +002075.png,1355 +002076.png,1356 +002077.png,1357 +002078.png,1358 +002079.png,1359 +002080.png,1360 +002081.png,1361 +002082.png,1362 +002083.png,1363 +002084.png,1364 +002085.png,1365 +002086.png,1366 +002087.png,1367 +002088.png,1368 +002089.png,1369 +002090.png,1370 +002091.png,1371 +002092.png,1372 +002093.png,1373 +002094.png,1374 +002095.png,1375 +002096.png,1376 +002097.png,1377 +002098.png,1378 +002099.png,1379 +002100.png,1380 +002101.png,1381 +002102.png,1382 +002103.png,1383 +002104.png,1384 +002105.png,1385 +002106.png,1386 +002107.png,1387 +002108.png,1388 +002109.png,1389 +002110.png,1390 +002111.png,1391 +002112.png,1392 +002113.png,1393 +002114.png,1394 +002115.png,1395 +002116.png,1396 +002117.png,1397 +002118.png,1398 +002119.png,1399 +002120.png,1400 +002121.png,1401 +002122.png,1402 +002123.png,1403 +002124.png,1404 +002125.png,1405 +002126.png,1406 +002127.png,1407 +002128.png,1408 +002129.png,1409 +002130.png,1410 +002131.png,1411 +002132.png,1412 +002133.png,1413 +002134.png,1414 +002135.png,1415 +002136.png,1416 +002137.png,1417 +002138.png,1418 +002139.png,1419 +002140.png,1420 +002141.png,1421 +002142.png,1422 +002143.png,1423 +002144.png,1424 +002145.png,1425 +002146.png,1426 +002147.png,1427 +002148.png,1428 +002149.png,1429 +002150.png,1430 +002151.png,1431 +002152.png,1432 +002153.png,1433 +002154.png,1434 +002155.png,1435 +002156.png,1436 +002157.png,1437 +002158.png,1438 +002159.png,1439 +002160.png,1440 +002161.png,1441 +002162.png,1442 +002163.png,1443 +002164.png,1444 +002165.png,1445 +002166.png,1446 +002167.png,1447 +002168.png,1448 +002169.png,1449 +002170.png,1450 +002171.png,1451 +002172.png,1452 +002173.png,1453 +002174.png,1454 +002175.png,1455 +002176.png,1456 +002177.png,1457 +002178.png,1458 +002179.png,1459 +002180.png,1460 +002181.png,1461 +002182.png,1462 +002183.png,1463 +002184.png,1464 +002185.png,1465 +002186.png,1466 +002187.png,1467 +002188.png,1468 +002189.png,1469 +002190.png,1470 +002191.png,1471 +002192.png,1472 +002193.png,1473 +002194.png,1474 +002195.png,1475 +002196.png,1476 +002197.png,1477 +002198.png,1478 +002199.png,1479 +002200.png,1480 +002201.png,1481 +002202.png,1482 +002203.png,1483 +002204.png,1484 +002205.png,1485 +002206.png,1486 +002207.png,1487 +002208.png,1488 +002209.png,1489 +002210.png,1490 +002211.png,1491 +002212.png,1492 +002213.png,1493 +002214.png,1494 +002215.png,1495 +002216.png,1496 +002217.png,1497 +002218.png,1498 +002219.png,1499 +002220.png,1500 +002221.png,1501 +002222.png,1502 +002223.png,1503 +002224.png,1504 +002225.png,1505 +002226.png,1506 +002227.png,1507 +002228.png,1508 +002229.png,1509 +002230.png,1510 +002231.png,1511 +002232.png,1512 +002233.png,1513 +002234.png,1514 +002235.png,1515 +002236.png,1516 +002237.png,1517 +002238.png,1518 +002239.png,1519 +002240.png,1520 +002241.png,1521 +002242.png,1522 +002243.png,1523 +002244.png,1524 +002245.png,1525 +002246.png,1526 +002247.png,1527 +002248.png,1528 +002249.png,1529 +002250.png,1530 +002251.png,1531 +002252.png,1532 +002253.png,1533 +002254.png,1534 +002255.png,1535 +002256.png,1536 +002257.png,1537 +002258.png,1538 +002259.png,1539 +002260.png,1540 +002261.png,1541 +002262.png,1542 +002263.png,1543 +002264.png,1544 +002265.png,1545 +002266.png,1546 +002267.png,1547 +002268.png,1548 +002269.png,1549 +002270.png,1550 +002271.png,1551 +002272.png,1552 +002273.png,1553 +002274.png,1554 +002275.png,1555 +002276.png,1556 +002277.png,1557 +002278.png,1558 +002279.png,1559 +002280.png,1560 +002281.png,1561 +002282.png,1562 +002283.png,1563 +002284.png,1564 +002285.png,1565 +002286.png,1566 +002287.png,1567 +002288.png,1568 +002289.png,1569 +002290.png,1570 +002291.png,1571 +002292.png,1572 +002293.png,1573 +002294.png,1574 +002295.png,1575 +002296.png,1576 +002297.png,1577 +002298.png,1578 +002299.png,1579 +002300.png,1580 +002301.png,1581 +002302.png,1582 +002303.png,1583 +002304.png,1584 +002305.png,1585 +002306.png,1586 +002307.png,1587 +002308.png,1588 +002309.png,1589 +002310.png,1590 +002311.png,1591 +002312.png,1592 +002313.png,1593 +002314.png,1594 +002315.png,1595 +002316.png,1596 +002317.png,1597 +002318.png,1598 +002319.png,1599 +002320.png,1600 +002321.png,1601 +002322.png,1602 +002323.png,1603 +002324.png,1604 +002325.png,1605 +002326.png,1606 +002327.png,1607 +002328.png,1608 +002329.png,1609 +002330.png,1610 +002331.png,1611 +002332.png,1612 +002333.png,1613 +002334.png,1614 +002335.png,1615 +002336.png,1616 +002337.png,1617 +002338.png,1618 +002339.png,1619 +002340.png,1620 +002341.png,1621 +002342.png,1622 +002343.png,1623 +002344.png,1624 +002345.png,1625 +002346.png,1626 +002347.png,1627 +002348.png,1628 +002349.png,1629 +002350.png,1630 +002351.png,1631 +002352.png,1632 +002353.png,1633 +002354.png,1634 +002355.png,1635 +002356.png,1636 +002357.png,1637 +002358.png,1638 +002359.png,1639 +002360.png,1640 +002361.png,1641 +002362.png,1642 +002363.png,1643 +002364.png,1644 +002365.png,1645 +002366.png,1646 +002367.png,1647 +002368.png,1648 +002369.png,1649 +002370.png,1650 +002371.png,1651 +002372.png,1652 +002373.png,1653 +002374.png,1654 +002375.png,1655 +002376.png,1656 +002377.png,1657 +002378.png,1658 +002379.png,1659 +002380.png,1660 +002381.png,1661 +002382.png,1662 +002383.png,1663 +002384.png,1664 +002385.png,1665 +002386.png,1666 +002387.png,1667 +002388.png,1668 +002389.png,1669 +002390.png,1670 +002391.png,1671 +002392.png,1672 +002393.png,1673 +002394.png,1674 +002395.png,1675 +002396.png,1676 +002397.png,1677 +002398.png,1678 +002399.png,1679 +002400.png,1680 +002401.png,1681 +002402.png,1682 +002403.png,1683 +002404.png,1684 +002405.png,1685 +002406.png,1686 +002407.png,1687 +002408.png,1688 +002409.png,1689 +002410.png,1690 +002411.png,1691 +002412.png,1692 +002413.png,1693 +002414.png,1694 +002415.png,1695 +002416.png,1696 +002417.png,1697 +002418.png,1698 +002419.png,1699 +002420.png,1700 +002421.png,1701 +002422.png,1702 +002423.png,1703 +002424.png,1704 +002425.png,1705 +002426.png,1706 +002427.png,1707 +002428.png,1708 +002429.png,1709 +002430.png,1710 +002431.png,1711 +002432.png,1712 +002433.png,1713 +002434.png,1714 +002435.png,1715 +002436.png,1716 +002437.png,1717 +002438.png,1718 +002439.png,1719 +002440.png,1720 +002441.png,1721 +002442.png,1722 +002443.png,1723 +002444.png,1724 +002445.png,1725 +002446.png,1726 +002447.png,1727 +002448.png,1728 +002449.png,1729 +002450.png,1730 +002451.png,1731 +002452.png,1732 +002453.png,1733 +002454.png,1734 +002455.png,1735 +002456.png,1736 +002457.png,1737 +002458.png,1738 +002459.png,1739 +002460.png,1740 +002461.png,1741 +002462.png,1742 +002463.png,1743 +002464.png,1744 +002465.png,1745 +002466.png,1746 +002467.png,1747 +002468.png,1748 +002469.png,1749 +002470.png,1750 +002471.png,1751 +002472.png,1752 +002473.png,1753 +002474.png,1754 +002475.png,1755 +002476.png,1756 +002477.png,1757 +002478.png,1758 +002479.png,1759 +002480.png,1760 +002481.png,1761 +002482.png,1762 +002483.png,1763 +002484.png,1764 +002485.png,1765 +002486.png,1766 +002487.png,1767 +002488.png,1768 +002489.png,1769 +002490.png,1770 +002491.png,1771 +002492.png,1772 +002493.png,1773 +002494.png,1774 +002495.png,1775 +002496.png,1776 +002497.png,1777 +002498.png,1778 +002499.png,1779 +002500.png,1780 +002501.png,1781 +002502.png,1782 +002503.png,1783 +002504.png,1784 +002505.png,1785 +002506.png,1786 +002507.png,1787 +002508.png,1788 +002509.png,1789 +002510.png,1790 +002511.png,1791 +002512.png,1792 +002513.png,1793 +002514.png,1794 +002515.png,1795 +002516.png,1796 +002517.png,1797 +002518.png,1798 +002519.png,1799 +002520.png,1800 +002521.png,1801 +002522.png,1802 +002523.png,1803 +002524.png,1804 +002525.png,1805 +002526.png,1806 +002527.png,1807 +002528.png,1808 +002529.png,1809 +002530.png,1810 +002531.png,1811 +002532.png,1812 +002533.png,1813 +002534.png,1814 +002535.png,1815 +002536.png,1816 +002537.png,1817 +002538.png,1818 +002539.png,1819 +002540.png,1820 +002541.png,1821 +002542.png,1822 +002543.png,1823 +002544.png,1824 +002545.png,1825 +002546.png,1826 +002547.png,1827 +002548.png,1828 +002549.png,1829 +002550.png,1830 +002551.png,1831 +002552.png,1832 +002553.png,1833 +002554.png,1834 +002555.png,1835 +002556.png,1836 +002557.png,1837 +002558.png,1838 +002559.png,1839 +002560.png,1840 +002561.png,1841 +002562.png,1842 +002563.png,1843 +002564.png,1844 +002565.png,1845 +002566.png,1846 +002567.png,1847 +002568.png,1848 +002569.png,1849 +002570.png,1850 +002571.png,1851 +002572.png,1852 +002573.png,1853 +002574.png,1854 +002575.png,1855 +002576.png,1856 +002577.png,1857 +002578.png,1858 +002579.png,1859 +002580.png,1860 +002581.png,1861 +002582.png,1862 +002583.png,1863 +002584.png,1864 +002585.png,1865 +002586.png,1866 +002587.png,1867 +002588.png,1868 +002589.png,1869 +002590.png,1870 +002591.png,1871 +002592.png,1872 +002593.png,1873 +002594.png,1874 +002595.png,1875 +002596.png,1876 +002597.png,1877 +002598.png,1878 +002599.png,1879 +002600.png,1880 +002601.png,1881 +002602.png,1882 +002603.png,1883 +002604.png,1884 +002605.png,1885 +002606.png,1886 +002607.png,1887 +002608.png,1888 +002609.png,1889 +002610.png,1890 +002611.png,1891 +002612.png,1892 +002613.png,1893 +002614.png,1894 +002615.png,1895 +002616.png,1896 +002617.png,1897 +002618.png,1898 +002619.png,1899 +002620.png,1900 +002621.png,1901 +002622.png,1902 +002623.png,1903 +002624.png,1904 +002625.png,1905 +002626.png,1906 +002627.png,1907 +002628.png,1908 +002629.png,1909 +002630.png,1910 +002631.png,1911 +002632.png,1912 +002633.png,1913 +002634.png,1914 +002635.png,1915 +002636.png,1916 +002637.png,1917 +002638.png,1918 +002639.png,1919 +002640.png,1920 +002641.png,1921 +002642.png,1922 +002643.png,1923 +002644.png,1924 +002645.png,1925 +002646.png,1926 +002647.png,1927 +002648.png,1928 +002649.png,1929 +002650.png,1930 +002651.png,1931 +002652.png,1932 +002653.png,1933 +002654.png,1934 +002655.png,1935 +002656.png,1936 +002657.png,1937 +002658.png,1938 +002659.png,1939 +002660.png,1940 +002661.png,1941 +002662.png,1942 +002663.png,1943 +002664.png,1944 +002665.png,1945 +002666.png,1946 +002667.png,1947 +002668.png,1948 +002669.png,1949 +002670.png,1950 +002671.png,1951 +002672.png,1952 +002673.png,1953 +002674.png,1954 +002675.png,1955 +002676.png,1956 +002677.png,1957 +002678.png,1958 +002679.png,1959 +002680.png,1960 +002681.png,1961 +002682.png,1962 +002683.png,1963 +002684.png,1964 +002685.png,1965 +002686.png,1966 +002687.png,1967 +002688.png,1968 +002689.png,1969 +002690.png,1970 +002691.png,1971 +002692.png,1972 +002693.png,1973 +002694.png,1974 +002695.png,1975 +002696.png,1976 +002697.png,1977 +002698.png,1978 +002699.png,1979 +002700.png,1980 +002701.png,1981 +002702.png,1982 +002703.png,1983 +002704.png,1984 +002705.png,1985 +002706.png,1986 +002707.png,1987 +002708.png,1988 +002709.png,1989 +002710.png,1990 +002711.png,1991 +002712.png,1992 +002713.png,1993 +002714.png,1994 +002715.png,1995 +002716.png,1996 +002717.png,1997 +002718.png,1998 +002719.png,1999 +002720.png,2000 +002721.png,2001 +002722.png,2002 +002723.png,2003 +002724.png,2004 +002725.png,2005 +002726.png,2006 +002727.png,2007 +002728.png,2008 +002729.png,2009 +002730.png,2010 +002731.png,2011 +002732.png,2012 +002733.png,2013 +002734.png,2014 +002735.png,2015 +002736.png,2016 +002737.png,2017 +002738.png,2018 +002739.png,2019 +002740.png,2020 +002741.png,2021 +002742.png,2022 +002743.png,2023 +002744.png,2024 +002745.png,2025 +002746.png,2026 +002747.png,2027 +002748.png,2028 +002749.png,2029 +002750.png,2030 +002751.png,2031 +002752.png,2032 +002753.png,2033 +002754.png,2034 +002755.png,2035 +002756.png,2036 +002757.png,2037 +002758.png,2038 +002759.png,2039 +002760.png,2040 +002761.png,2041 +002762.png,2042 +002763.png,2043 +002764.png,2044 +002765.png,2045 +002766.png,2046 +002767.png,2047 +002768.png,2048 +002769.png,2049 +002770.png,2050 +002771.png,2051 +002772.png,2052 +002773.png,2053 +002774.png,2054 +002775.png,2055 +002776.png,2056 +002777.png,2057 +002778.png,2058 +002779.png,2059 +002780.png,2060 +002781.png,2061 +002782.png,2062 +002783.png,2063 +002784.png,2064 +002785.png,2065 +002786.png,2066 +002787.png,2067 +002788.png,2068 +002789.png,2069 +002790.png,2070 +002791.png,2071 +002792.png,2072 +002793.png,2073 +002794.png,2074 +002795.png,2075 +002796.png,2076 +002797.png,2077 +002798.png,2078 +002799.png,2079 +002800.png,2080 +002801.png,2081 +002802.png,2082 +002803.png,2083 +002804.png,2084 +002805.png,2085 +002806.png,2086 +002807.png,2087 +002808.png,2088 +002809.png,2089 +002810.png,2090 +002811.png,2091 +002812.png,2092 +002813.png,2093 +002814.png,2094 +002815.png,2095 +002816.png,2096 +002817.png,2097 +002818.png,2098 +002819.png,2099 +002820.png,2100 +002821.png,2101 +002822.png,2102 +002823.png,2103 +002824.png,2104 +002825.png,2105 +002826.png,2106 +002827.png,2107 +002828.png,2108 +002829.png,2109 +002830.png,2110 +002831.png,2111 +002832.png,2112 +002833.png,2113 +002834.png,2114 +002835.png,2115 +002836.png,2116 +002837.png,2117 +002838.png,2118 +002839.png,2119 +002840.png,2120 +002841.png,2121 +002842.png,2122 +002843.png,2123 +002844.png,2124 +002845.png,2125 +002846.png,2126 +002847.png,2127 +002848.png,2128 +002849.png,2129 +002850.png,2130 +002851.png,2131 +002852.png,2132 +002853.png,2133 +002854.png,2134 +002855.png,2135 +002856.png,2136 +002857.png,2137 +002858.png,2138 +002859.png,2139 +002860.png,2140 +002861.png,2141 +002862.png,2142 +002863.png,2143 +002864.png,2144 +002865.png,2145 +002866.png,2146 +002867.png,2147 +002868.png,2148 +002869.png,2149 +002870.png,2150 +002871.png,2151 +002872.png,2152 +002873.png,2153 +002874.png,2154 +002875.png,2155 +002876.png,2156 +002877.png,2157 +002878.png,2158 +002879.png,2159 +002880.png,2160 +002881.png,2161 +002882.png,2162 +002883.png,2163 +002884.png,2164 +002885.png,2165 +002886.png,2166 +002887.png,2167 +002888.png,2168 +002889.png,2169 +002890.png,2170 +002891.png,2171 +002892.png,2172 +002893.png,2173 +002894.png,2174 +002895.png,2175 +002896.png,2176 +002897.png,2177 +002898.png,2178 +002899.png,2179 +002900.png,2180 +002901.png,2181 +002902.png,2182 +002903.png,2183 +002904.png,2184 +002905.png,2185 +002906.png,2186 +002907.png,2187 +002908.png,2188 +002909.png,2189 +002910.png,2190 +002911.png,2191 +002912.png,2192 +002913.png,2193 +002914.png,2194 +002915.png,2195 +002916.png,2196 +002917.png,2197 +002918.png,2198 +002919.png,2199 +002920.png,2200 +002921.png,2201 +002922.png,2202 +002923.png,2203 +002924.png,2204 +002925.png,2205 +002926.png,2206 +002927.png,2207 +002928.png,2208 +002929.png,2209 +002930.png,2210 +002931.png,2211 +002932.png,2212 +002933.png,2213 +002934.png,2214 +002935.png,2215 +002936.png,2216 +002937.png,2217 +002938.png,2218 +002939.png,2219 +002940.png,2220 +002941.png,2221 +002942.png,2222 +002943.png,2223 +002944.png,2224 +002945.png,2225 +002946.png,2226 +002947.png,2227 +002948.png,2228 +002949.png,2229 +002950.png,2230 +002951.png,2231 +002952.png,2232 +002953.png,2233 +002954.png,2234 +002955.png,2235 +002956.png,2236 +002957.png,2237 +002958.png,2238 +002959.png,2239 +002960.png,2240 +002961.png,2241 +002962.png,2242 +002963.png,2243 +002964.png,2244 +002965.png,2245 +002966.png,2246 +002967.png,2247 +002968.png,2248 +002969.png,2249 +002970.png,2250 +002971.png,2251 +002972.png,2252 +002973.png,2253 +002974.png,2254 +002975.png,2255 +002976.png,2256 +002977.png,2257 +002978.png,2258 +002979.png,2259 +002980.png,2260 +002981.png,2261 +002982.png,2262 +002983.png,2263 +002984.png,2264 +002985.png,2265 +002986.png,2266 +002987.png,2267 +002988.png,2268 +002989.png,2269 +002990.png,2270 +002991.png,2271 +002992.png,2272 +002993.png,2273 +002994.png,2274 +002995.png,2275 +002996.png,2276 +002997.png,2277 +002998.png,2278 +002999.png,2279 +003000.png,2280 +003001.png,2281 +003002.png,2282 +003003.png,2283 +003004.png,2284 +003005.png,2285 +003006.png,2286 +003007.png,2287 +003008.png,2288 +003009.png,2289 +003010.png,2290 +003011.png,2291 +003012.png,2292 +003013.png,2293 +003014.png,2294 +003015.png,2295 +003016.png,2296 +003017.png,2297 +003018.png,2298 +003019.png,2299 +003020.png,2300 +003021.png,2301 +003022.png,2302 +003023.png,2303 +003024.png,2304 +003025.png,2305 +003026.png,2306 +003027.png,2307 +003028.png,2308 +003029.png,2309 +003030.png,2310 +003031.png,2311 +003032.png,2312 +003033.png,2313 +003034.png,2314 +003035.png,2315 +003036.png,2316 +003037.png,2317 +003038.png,2318 +003039.png,2319 +003040.png,2320 +003041.png,2321 +003042.png,2322 +003043.png,2323 +003044.png,2324 +003045.png,2325 +003046.png,2326 +003047.png,2327 +003048.png,2328 +003049.png,2329 +003050.png,2330 +003051.png,2331 +003052.png,2332 +003053.png,2333 +003054.png,2334 +003055.png,2335 +003056.png,2336 +003057.png,2337 +003058.png,2338 +003059.png,2339 +003060.png,2340 +003061.png,2341 +003062.png,2342 +003063.png,2343 +003064.png,2344 +003065.png,2345 +003066.png,2346 +003067.png,2347 +003068.png,2348 +003069.png,2349 +003070.png,2350 +003071.png,2351 +003072.png,2352 +003073.png,2353 +003074.png,2354 +003075.png,2355 +003076.png,2356 +003077.png,2357 +003078.png,2358 +003079.png,2359 +003080.png,2360 +003081.png,2361 +003082.png,2362 +003083.png,2363 +003084.png,2364 +003085.png,2365 +003086.png,2366 +003087.png,2367 +003088.png,2368 +003089.png,2369 +003090.png,2370 +003091.png,2371 +003092.png,2372 +003093.png,2373 +003094.png,2374 +003095.png,2375 +003096.png,2376 +003097.png,2377 +003098.png,2378 +003099.png,2379 +003100.png,2380 +003101.png,2381 +003102.png,2382 +003103.png,2383 +003104.png,2384 +003105.png,2385 +003106.png,2386 +003107.png,2387 +003108.png,2388 +003109.png,2389 +003110.png,2390 +003111.png,2391 +003112.png,2392 +003113.png,2393 +003114.png,2394 +003115.png,2395 +003116.png,2396 +003117.png,2397 +003118.png,2398 +003119.png,2399 +003120.png,2400 +003121.png,2401 +003122.png,2402 +003123.png,2403 +003124.png,2404 +003125.png,2405 +003126.png,2406 +003127.png,2407 +003128.png,2408 +003129.png,2409 +003130.png,2410 +003131.png,2411 +003132.png,2412 +003133.png,2413 +003134.png,2414 +003135.png,2415 +003136.png,2416 +003137.png,2417 +003138.png,2418 +003139.png,2419 +003140.png,2420 +003141.png,2421 +003142.png,2422 +003143.png,2423 +003144.png,2424 +003145.png,2425 +003146.png,2426 +003147.png,2427 +003148.png,2428 +003149.png,2429 +003150.png,2430 +003151.png,2431 +003152.png,2432 +003153.png,2433 +003154.png,2434 +003155.png,2435 +003156.png,2436 +003157.png,2437 +003158.png,2438 +003159.png,2439 +003160.png,2440 +003161.png,2441 +003162.png,2442 +003163.png,2443 +003164.png,2444 +003165.png,2445 +003166.png,2446 +003167.png,2447 +003168.png,2448 +003169.png,2449 +003170.png,2450 +003171.png,2451 +003172.png,2452 +003173.png,2453 +003174.png,2454 +003175.png,2455 +003176.png,2456 +003177.png,2457 +003178.png,2458 +003179.png,2459 +003180.png,2460 +003181.png,2461 +003182.png,2462 +003183.png,2463 +003184.png,2464 +003185.png,2465 +003186.png,2466 +003187.png,2467 +003188.png,2468 +003189.png,2469 +003190.png,2470 +003191.png,2471 +003192.png,2472 +003193.png,2473 +003194.png,2474 +003195.png,2475 +003196.png,2476 +003197.png,2477 +003198.png,2478 +003199.png,2479 +003200.png,2480 +003201.png,2481 +003202.png,2482 +003203.png,2483 +003204.png,2484 +003205.png,2485 +003206.png,2486 +003207.png,2487 +003208.png,2488 +003209.png,2489 +003210.png,2490 +003211.png,2491 +003212.png,2492 +003213.png,2493 +003214.png,2494 +003215.png,2495 +003216.png,2496 +003217.png,2497 +003218.png,2498 +003219.png,2499 +003220.png,2500 +003221.png,2501 +003222.png,2502 +003223.png,2503 +003224.png,2504 +003225.png,2505 +003226.png,2506 +003227.png,2507 +003228.png,2508 +003229.png,2509 +003230.png,2510 +003231.png,2511 +003232.png,2512 +003233.png,2513 +003234.png,2514 +003235.png,2515 +003236.png,2516 +003237.png,2517 +003238.png,2518 +003239.png,2519 +003240.png,2520 +003241.png,2521 +003242.png,2522 +003243.png,2523 +003244.png,2524 +003245.png,2525 +003246.png,2526 +003247.png,2527 +003248.png,2528 +003249.png,2529 +003250.png,2530 +003251.png,2531 +003252.png,2532 +003253.png,2533 +003254.png,2534 +003255.png,2535 +003256.png,2536 +003257.png,2537 +003258.png,2538 +003259.png,2539 +003260.png,2540 +003261.png,2541 +003262.png,2542 +003263.png,2543 +003264.png,2544 +003265.png,2545 +003266.png,2546 +003267.png,2547 +003268.png,2548 +003269.png,2549 +003270.png,2550 +003271.png,2551 +003272.png,2552 +003273.png,2553 +003274.png,2554 +003275.png,2555 +003276.png,2556 +003277.png,2557 +003278.png,2558 +003279.png,2559 +003280.png,2560 +003281.png,2561 +003282.png,2562 +003283.png,2563 +003284.png,2564 +003285.png,2565 +003286.png,2566 +003287.png,2567 +003288.png,2568 +003289.png,2569 +003290.png,2570 +003291.png,2571 +003292.png,2572 +003293.png,2573 +003294.png,2574 +003295.png,2575 +003296.png,2576 +003297.png,2577 +003298.png,2578 +003299.png,2579 +003300.png,2580 +003301.png,2581 +003302.png,2582 +003303.png,2583 +003304.png,2584 +003305.png,2585 +003306.png,2586 +003307.png,2587 +003308.png,2588 +003309.png,2589 +003310.png,2590 +003311.png,2591 +003312.png,2592 +003313.png,2593 +003314.png,2594 +003315.png,2595 +003316.png,2596 +003317.png,2597 +003318.png,2598 +003319.png,2599 +003320.png,2600 +003321.png,2601 +003322.png,2602 +003323.png,2603 +003324.png,2604 +003325.png,2605 +003326.png,2606 +003327.png,2607 +003328.png,2608 +003329.png,2609 +003330.png,2610 +003331.png,2611 +003332.png,2612 +003333.png,2613 +003334.png,2614 +003335.png,2615 +003336.png,2616 +003337.png,2617 +003338.png,2618 +003339.png,2619 +003340.png,2620 +003341.png,2621 +003342.png,2622 +003343.png,2623 +003344.png,2624 +003345.png,2625 +003346.png,2626 +003347.png,2627 +003348.png,2628 +003349.png,2629 +003350.png,2630 +003351.png,2631 +003352.png,2632 +003353.png,2633 +003354.png,2634 +003355.png,2635 +003356.png,2636 +003357.png,2637 +003358.png,2638 +003359.png,2639 +003360.png,2640 +003361.png,2641 +003362.png,2642 +003363.png,2643 +003364.png,2644 +003365.png,2645 +003366.png,2646 +003367.png,2647 +003368.png,2648 diff --git a/main.py b/main.py index 3419ab2..0459fbb 100644 --- a/main.py +++ b/main.py @@ -24,7 +24,9 @@ Imports ''' import argparse -import json +import sys +sys.path.append('./networks/base') +sys.path.append('./networks/quantized') import torch.quantization as quantization @@ -33,11 +35,13 @@ from VPRTempoQuantTrain import VPRTempoQuantTrain, generate_model_name_quant, train_new_model_quant from VPRTempoQuant import VPRTempoQuant, run_inference_quant -def initialize_and_run_model(train: bool, quantize: bool): - if train: - if quantize: +def initialize_and_run_model(args): + # If user wants to train a new network + if args.train_new_model: + # If using quantization aware training + if args.quantize: # Initialize the quantized model - model = VPRTempoQuantTrain() + model = VPRTempoQuantTrain(args) # Get the quantization config qconfig = quantization.get_default_qat_qconfig('fbgemm') # Generate the model name @@ -46,20 +50,21 @@ def initialize_and_run_model(train: bool, quantize: bool): check_pretrained_model(model_name) # Train the model train_new_model_quant(model, model_name, qconfig) - else: + else: # Normal model # Initialize the model - model = VPRTempoTrain() + model = VPRTempoTrain(args) # Generate the model name model_name = generate_model_name(model) # Check if the model has been trained before check_pretrained_model(model_name) # Train the model train_new_model(model, model_name) + # Run the inference network else: # Set the quantization configuration - if quantize: + if args.quantize: # Initialize the quantized model - model = VPRTempoQuant() + model = VPRTempoQuant(args) # Get the quantization config qconfig = quantization.get_default_qat_qconfig('fbgemm') # Generate the model name @@ -68,77 +73,65 @@ def initialize_and_run_model(train: bool, quantize: bool): run_inference_quant(model, model_name, qconfig) else: # Initialize the model - model = VPRTempo() + model = VPRTempo(args) # Generate the model name model_name = generate_model_name(model) # Run the inference model run_inference(model, model_name) -def main(): +def parse_network(use_quantize=False, train_new_model=False): ''' Define the base parameter parser (configurable by the user) ''' - base_parser = argparse.ArgumentParser(description="Args for base configuration file") + parser = argparse.ArgumentParser(description="Args for base configuration file") # Define the dataset arguments - base_parser.add_argument('--dataset', type=str, default='nordland', + parser.add_argument('--dataset', type=str, default='nordland', help="Dataset to use for training and/or inferencing") - base_parser.add_argument('--data_dir', type=str, default='./dataset/', + parser.add_argument('--data_dir', type=str, default='./dataset/', help="Directory where dataset files are stored") - base_parser.add_argument('--num_places', type=int, default=500, + parser.add_argument('--num_places', type=int, default=500, help="Number of places to use for training and/or inferencing") - base_parser.add_argument('--num_modules', type=int, default=1, + parser.add_argument('--num_modules', type=int, default=1, help="Number of expert modules to use split images into") - base_parser.add_argument('--database_dirs', nargs='+', default=['spring', 'fall'], + parser.add_argument('--database_dirs', nargs='+', default=['spring', 'fall'], help="Directories to use for training") - base_parser.add_argument('--query_dir', nargs='+', default=['summer'], + parser.add_argument('--query_dir', nargs='+', default=['summer'], help="Directories to use for testing") # Define training parameters - base_parser.add_argument('--filter', type=int, default=8, + parser.add_argument('--filter', type=int, default=8, help="Images to skip for training and/or inferencing") - base_parser.add_argument('--epoch', type=int, default=4, + parser.add_argument('--epoch', type=int, default=4, help="Number of epochs to train the model") # Define image transformation parameters - base_parser.add_argument('--patches', type=int, default=15, + parser.add_argument('--patches', type=int, default=15, help="Number of patches to generate for patch normalization image into") - base_parser.add_argument('--dims', nargs='+', type=int, default=[56,56], + parser.add_argument('--dims', nargs='+', type=int, default=[56,56], help="Dimensions to resize the image to") - - # Output base configuration - base_args = base_parser.parse_args() - - # Write to base_config JSON file - with open('./config/base_config.json', 'w') as file: - json.dump(vars(base_args), file, indent=4) - - ''' - Define network architecture parameter parser - ''' - network_parser = argparse.ArgumentParser(description="Args for network architecture configuration file") - - # Define network architecure (number of neurons in each layer) - network_parser.add_argument('--input', type=int, default=base_args.dims[0]*base_args.dims[1], - help="Number of input neurons") - network_parser.add_argument('--feature', type=int, default=(base_args.dims[0]*base_args.dims[1])*2, - help="Number of feature neurons") - network_parser.add_argument('--output', type=int, default=int(base_args.num_places/base_args.num_modules), - help="Number of output neurons") - - # Determine total number of timesteps - network_parser.add_argument('--T', type=int, - default=(base_args.num_places / base_args.num_modules) * len(base_args.database_dirs) * base_args.epoch) - # Determine network functionality - parser = argparse.ArgumentParser(description="Determine training or inferencing and the quantization scheme") - parser.add_argument('--train', action='store_true', + # Define the network functionality + parser.add_argument('--train_new_model', action='store_true', help="Flag to run the training or inferencing model") parser.add_argument('--quantize', action='store_true', help="Enable/disable quantization for the model") + + # If the function is called with specific arguments, override sys.argv + if use_quantize or train_new_model: + sys.argv = [''] + if use_quantize: + sys.argv.append('--quantize') + if train_new_model: + sys.argv.append('--train_new_model') + + # Output base configuration args = parser.parse_args() - initialize_and_run_model(args.train, - args.quantize) + + # Run the network with the desired settings + initialize_and_run_model(args) if __name__ == "__main__": - main() + # User input to determine if using quantized network or to train new model + parse_network(use_quantize=False, + train_new_model=False) \ No newline at end of file diff --git a/VPRTempo.py b/networks/base/VPRTempo.py similarity index 81% rename from VPRTempo.py rename to networks/base/VPRTempo.py index ac82f33..252e052 100644 --- a/VPRTempo.py +++ b/networks/base/VPRTempo.py @@ -37,7 +37,7 @@ import numpy as np import torch.nn as nn -from settings import configure, model_logger +from loggers import model_logger from dataset import CustomImageDataset, ProcessImage from torch.utils.data import DataLoader from tqdm import tqdm @@ -45,18 +45,29 @@ from metrics import recallAtK class VPRTempo(nn.Module): - def __init__(self): + def __init__(self, args): super(VPRTempo, self).__init__() - # Configure the network - configure(self) + # Set the arguments + self.args = args + for arg in vars(args): + setattr(self, arg, getattr(args, arg)) - model_logger(self) + # Set the dataset file + self.dataset_file = os.path.join('./dataset', self.dataset + '.csv') + + # Set the model logger and return the device + self.device = model_logger(self) # Layer dict to keep track of layer names and their order self.layer_dict = {} self.layer_counter = 0 + # Define layer architecture + self.input = int(args.dims[0]*args.dims[1]) + self.feature = int(self.input * 2) + self.output = int(args.num_places / args.num_modules) + """ Define trainable layers here """ @@ -100,7 +111,7 @@ def evaluate(self, model, test_loader, layers=None): :param layers: Layers to pass data through """ # Initialize the tqdm progress bar - pbar = tqdm(total=self.number_testing_images, + pbar = tqdm(total=self.num_places, desc="Running the test network", position=0) # Initiliaze the output spikes variable @@ -124,13 +135,13 @@ def evaluate(self, model, test_loader, layers=None): pbar.close() # Rehsape output spikes into a similarity matrix - out = np.reshape(np.array(out),(model.number_training_images,model.number_testing_images)) + out = np.reshape(np.array(out),(model.num_places,model.num_places)) # Recall@N N = [1,5,10,15,20,25] # N values to calculate R = [] # Recall@N values # Create GT matrix - GT = np.zeros((model.number_testing_images,model.number_training_images), dtype=int) + GT = np.zeros((model.num_places,model.num_places), dtype=int) for n in range(len(GT)): GT[n,n] = 1 # Calculate Recall@N @@ -163,17 +174,6 @@ def load_model(self, model_path): """ self.load_state_dict(torch.load(model_path, map_location=self.device), strict=False) - -def generate_model_name(model): - """ - Generate the model name based on its parameters. - """ - return ("VPRTempo" + - str(model.input) + - str(model.feature) + - str(model.output) + - str(model.number_modules) + - '.pth') def check_pretrained_model(model_name): """ @@ -197,10 +197,11 @@ def run_inference(model, model_name): # Initialize the image transforms and datasets image_transform = ProcessImage(model.dims, model.patches) test_dataset = CustomImageDataset(annotations_file=model.dataset_file, - img_dirs=model.testing_dirs, + base_dir=model.data_dir, + img_dirs=model.query_dir, transform=image_transform, skip=model.filter, - max_samples=model.number_testing_images) + max_samples=model.num_places) # Initialize the data loader test_loader = DataLoader(test_dataset, batch_size=1, @@ -217,20 +218,4 @@ def run_inference(model, model_name): layer_names = list(model.layer_dict.keys()) # Use evaluate method for inference accuracy - model.evaluate(model, test_loader, layers=layer_names) - -if __name__ == "__main__": - # Set the number of threads for PyTorch - #torch.set_num_threads(8) - # Initialize the model - model = VPRTempo() - if model.quantize: - raise ValueError("Please disable quantization to run inference.") - # Generate the model name - model_name = generate_model_name(model) - # Check if a pre-trained model exists - use_pretrained = check_pretrained_model(model_name) - if not use_pretrained == 'n': - # Run inference based on the user's input - with torch.no_grad(): - run_inference(model, model_name) # Inference \ No newline at end of file + model.evaluate(model, test_loader, layers=layer_names) \ No newline at end of file diff --git a/VPRTempoTrain.py b/networks/base/VPRTempoTrain.py similarity index 86% rename from VPRTempoTrain.py rename to networks/base/VPRTempoTrain.py index 1fedb2f..07f4c49 100644 --- a/VPRTempoTrain.py +++ b/networks/base/VPRTempoTrain.py @@ -38,22 +38,39 @@ import torch.nn as nn import torchvision.transforms as transforms -from settings import configure, model_logger +from loggers import model_logger from dataset import CustomImageDataset, ProcessImage from torch.utils.data import DataLoader from tqdm import tqdm class VPRTempoTrain(nn.Module): - def __init__(self): + def __init__(self, args): super(VPRTempoTrain, self).__init__() - # Configure the network - configure(self) - model_logger(self) + # Set the arguments + self.args = args + for arg in vars(args): + setattr(self, arg, getattr(args, arg)) + + # Set the dataset file + self.dataset_file = os.path.join('./dataset', self.dataset + '.csv') + + # Configure the model logger and get the device + self.device = model_logger(self) + # Layer dict to keep track of layer names and their order self.layer_dict = {} self.layer_counter = 0 + # Define layer architecture + self.input = int(args.dims[0]*args.dims[1]) + self.feature = int(self.input * 2) + self.output = int(args.num_places / args.num_modules) + + # Set the total timestep count + self.location_repeat = len(args.database_dirs) # Number of times to repeat the locations + self.T = int((self.num_places / self.num_modules) * self.location_repeat * self.epoch) + """ Define trainable layers here """ @@ -163,7 +180,7 @@ def train_model(self, train_loader, layer, prev_layers=None): pbar.close() # Free up memory - if self.device.type == "cuda": + if self.device == "cuda:0": torch.cuda.empty_cache() gc.collect() @@ -196,7 +213,7 @@ def generate_model_name(model): str(model.input) + str(model.feature) + str(model.output) + - str(model.number_modules) + + str(model.num_modules) + '.pth') def check_pretrained_model(model_name): @@ -222,11 +239,12 @@ def train_new_model(model, model_name): ProcessImage(model.dims, model.patches) ]) train_dataset = CustomImageDataset(annotations_file=model.dataset_file, - img_dirs=model.training_dirs, - transform=image_transform, - skip=model.filter, - max_samples=model.number_training_images, - test=False) + base_dir=model.data_dir, + img_dirs=model.database_dirs, + transform=image_transform, + skip=model.filter, + max_samples=model.num_places, + test=False) # Initialize the data loader train_loader = DataLoader(train_dataset, batch_size=1, @@ -249,22 +267,4 @@ def train_new_model(model, model_name): # Convert the model to a quantized model model.eval() # Save the model - model.save_model(os.path.join('./models', model_name)) - -if __name__ == "__main__": - # Set the number of threads for PyTorch - #torch.set_num_threads(8) - # Initialize the model - model = VPRTempoTrain() - if model.quantize: - raise ValueError("Quantization enabled, please disable.") - # Initialize the logger - model.model_logger() - # Generate the model name - model_name = generate_model_name(model) - # Check if a pre-trained model exists - use_pretrained = check_pretrained_model(model_name) - # Train or run inference based on the user's input - if not use_pretrained: - train_new_model(model, model_name) # Training - model.logger.info('Training complete.') \ No newline at end of file + model.save_model(os.path.join('./models', model_name)) \ No newline at end of file diff --git a/VPRTempoQuant.py b/networks/quantized/VPRTempoQuant.py similarity index 81% rename from VPRTempoQuant.py rename to networks/quantized/VPRTempoQuant.py index ab7e806..eb819d1 100644 --- a/VPRTempoQuant.py +++ b/networks/quantized/VPRTempoQuant.py @@ -26,7 +26,7 @@ import os import torch -import gc +import subprocess import sys sys.path.append('./src') sys.path.append('./models') @@ -38,7 +38,8 @@ import torch.nn as nn import torch.quantization as quantization -from settings import configure, model_logger_quant +from loggers import model_logger_quant +from VPRTempoQuantTrain import generate_model_name_quant from dataset import CustomImageDataset, ProcessImage from torch.utils.data import DataLoader from torch.ao.quantization import QuantStub, DeQuantStub @@ -46,14 +47,22 @@ from prettytable import PrettyTable from metrics import recallAtK +#from main import parse_network + class VPRTempoQuant(nn.Module): - def __init__(self): + def __init__(self, args): super(VPRTempoQuant, self).__init__() - # Configure the network - configure(self) + # Set the arguments + self.args = args + for arg in vars(args): + setattr(self, arg, getattr(args, arg)) + + # Set the dataset file + self.dataset_file = os.path.join('./dataset', self.dataset + '.csv') - model_logger_quant(self) + # Set the model logger and return the device + self.device = model_logger_quant(self) # Add quantization stubs for Quantization Aware Training (QAT) self.quant = QuantStub() @@ -63,6 +72,11 @@ def __init__(self): self.layer_dict = {} self.layer_counter = 0 + # Define layer architecture + self.input = int(args.dims[0]*args.dims[1]) + self.feature = int(self.input * 2) + self.output = int(args.num_places / args.num_modules) + """ Define trainable layers here """ @@ -106,7 +120,7 @@ def evaluate(self, model, test_loader): :param layers: Layers to pass data through """ # Determine the Hardtahn max value - maxSpike = 1//model.quant.scale + maxSpike = (1//model.quant.scale).item() # Define the sequential inference model self.inference = nn.Sequential( self.feature_layer.w, @@ -117,7 +131,7 @@ def evaluate(self, model, test_loader): nn.ReLU() ) # Initialize the tqdm progress bar - pbar = tqdm(total=self.number_testing_images, + pbar = tqdm(total=self.num_places, desc="Running the test network", position=0) # Initiliaze the output spikes variable @@ -136,12 +150,12 @@ def evaluate(self, model, test_loader): pbar.close() # Rehsape output spikes into a similarity matrix - out = np.reshape(np.array(out),(self.number_training_images,self.number_testing_images)) + out = np.reshape(np.array(out),(self.num_places,self.num_places)) # Calculate and print the Recall@N N = [1,5,10,15,20,25] R = [] # Create GT matrix - GT = np.zeros((self.number_testing_images,self.number_training_images), dtype=int) + GT = np.zeros((self.num_places,self.num_places), dtype=int) for n in range(len(GT)): GT[n,n] = 1 for n in N: @@ -176,17 +190,6 @@ def load_model(self, model_path): self.load_state_dict(torch.load(model_path, map_location=self.device), strict=False) -def generate_model_name_quant(model): - """ - Generate the model name based on its parameters. - """ - return ("VPRTempoQuant" + - str(model.input) + - str(model.feature) + - str(model.output) + - str(model.number_modules) + - '.pth') - def check_pretrained_model(model_name): """ Check if a pre-trained model exists and tell user if it does not. @@ -209,10 +212,11 @@ def run_inference_quant(model, model_name, qconfig): # Initialize the image transforms and datasets image_transform = ProcessImage(model.dims, model.patches) test_dataset = CustomImageDataset(annotations_file=model.dataset_file, - img_dirs=model.testing_dirs, - transform=image_transform, - skip=model.filter, - max_samples=model.number_testing_images) + base_dir=model.data_dir, + img_dirs=model.query_dir, + transform=image_transform, + skip=model.filter, + max_samples=model.num_places) # Initialize the data loader test_loader = DataLoader(test_dataset, batch_size=1, @@ -233,18 +237,4 @@ def run_inference_quant(model, model_name, qconfig): model.load_model(os.path.join('./models', model_name)) # Use evaluate method for inference accuracy - model.evaluate(model, test_loader) - -if __name__ == "__main__": - # Initialize the model - model = VPRTempoQuant() - # Set the quantization configuration - qconfig = quantization.get_default_qat_qconfig('fbgemm') - # Generate the model name - model_name = generate_model_name(model) - # Check if a pre-trained model exists - use_pretrained = check_pretrained_model(model_name) - if not use_pretrained == 'n': - # Run inference based on the user's input - with torch.no_grad(): - run_inference(model, model_name, qconfig) # Inference \ No newline at end of file + model.evaluate(model, test_loader) \ No newline at end of file diff --git a/VPRTempoQuantTrain.py b/networks/quantized/VPRTempoQuantTrain.py similarity index 86% rename from VPRTempoQuantTrain.py rename to networks/quantized/VPRTempoQuantTrain.py index 9457044..60b8a21 100644 --- a/VPRTempoQuantTrain.py +++ b/networks/quantized/VPRTempoQuantTrain.py @@ -38,19 +38,27 @@ import torch.nn as nn import torch.quantization as quantization -from settings import configure, model_logger_quant +from loggers import model_logger_quant from dataset import CustomImageDataset, ProcessImage from torch.utils.data import DataLoader from torch.ao.quantization import QuantStub, DeQuantStub from tqdm import tqdm class VPRTempoQuantTrain(nn.Module): - def __init__(self): + def __init__(self, args): super(VPRTempoQuantTrain, self).__init__() + # Set the arguments + self.args = args + for arg in vars(args): + setattr(self, arg, getattr(args, arg)) + # Configure the network - configure(self) - model_logger_quant(self) + self.device = model_logger_quant(self) + + # Set the dataset file + self.dataset_file = os.path.join('./dataset', self.dataset + '.csv') + # Add quantization stubs for Quantization Aware Training (QAT) self.quant = QuantStub() self.dequant = DeQuantStub() @@ -59,6 +67,15 @@ def __init__(self): self.layer_dict = {} self.layer_counter = 0 + # Define layer architecture + self.input = int(args.dims[0]*args.dims[1]) + self.feature = int(self.input * 2) + self.output = int(args.num_places / args.num_modules) + + # Set the total timestep count + self.location_repeat = len(args.database_dirs) # Number of times to repeat the locations + self.T = int((self.num_places / self.num_modules) * self.location_repeat * self.epoch) + """ Define trainable layers here """ @@ -161,11 +178,6 @@ def train_model(self, train_loader, layer, prev_layers=None): # Close the tqdm progress bar pbar.close() - # Free up memory - if self.device.type == "cuda": - torch.cuda.empty_cache() - gc.collect() - def forward(self, spikes, layer): """ Compute the forward pass of the model. @@ -197,7 +209,7 @@ def generate_model_name_quant(model): str(model.input) + str(model.feature) + str(model.output) + - str(model.number_modules) + + str(model.num_modules) + '.pth') def check_pretrained_model(model_name): @@ -221,11 +233,12 @@ def train_new_model_quant(model, model_name, qconfig): # Initialize the image transforms and datasets image_transform = ProcessImage(model.dims, model.patches) train_dataset = CustomImageDataset(annotations_file=model.dataset_file, - img_dirs=model.training_dirs, - transform=image_transform, - skip=model.filter, - max_samples=model.number_training_images, - test=False) + base_dir=model.data_dir, + img_dirs=model.database_dirs, + transform=image_transform, + skip=model.filter, + max_samples=model.num_places, + test=False) # Initialize the data loader train_loader = DataLoader(train_dataset, batch_size=1, @@ -256,21 +269,4 @@ def train_new_model_quant(model, model_name, qconfig): model = quantization.convert(model, inplace=False) model.eval() # Save the model - model.save_model(os.path.join('./models', model_name)) - -if __name__ == "__main__": - # Initialize the model - model = VPRTempoQuantTrain() - # Set the quantization configuration - if model.quantize: - qconfig = quantization.get_default_qat_qconfig('fbgemm') - else: - raise ValueError("Quantization must be enabled for training.") - # Generate the model name - model_name = generate_model_name_quant(model) - # Check if a pre-trained model exists - use_pretrained = check_pretrained_model(model_name) - # Train or run inference based on the user's input - if not use_pretrained: - train_new_model_quant(model, model_name, qconfig) # Training - model.logger.info('Training complete.') \ No newline at end of file + model.save_model(os.path.join('./models', model_name)) \ No newline at end of file diff --git a/src/blitnet.py b/src/blitnet.py index b73be01..a7aa6ce 100644 --- a/src/blitnet.py +++ b/src/blitnet.py @@ -28,12 +28,10 @@ import torch.nn as nn import numpy as np -from settings import configure - class SNNLayer(nn.Module): def __init__(self, dims=[0,0],thr_range=[0,0],fire_rate=[0,0],ip_rate=0, - stdp_rate=0,const_inp=[0,0],p=[1,1],spk_force=False,device=None,inference=False): + stdp_rate=0,const_inp=[0,0],p=[1,1],spk_force=False,device=None,inference=False,args=None): super(SNNLayer, self).__init__() """ dims: [input, output] dimensions of the layer @@ -46,8 +44,6 @@ def __init__(self, dims=[0,0],thr_range=[0,0],fire_rate=[0,0],ip_rate=0, spk_force: boolean to force spikes """ - # Configure the network - configure(self) # Sets the testing configuration # Device self.device = device # Add different parameters depending if trainnig or running inference model diff --git a/src/dataset.py b/src/dataset.py index 84a17ad..bfc2a98 100644 --- a/src/dataset.py +++ b/src/dataset.py @@ -159,7 +159,7 @@ def __call__(self, img): return img class CustomImageDataset(Dataset): - def __init__(self, annotations_file, img_dirs, transform=None, target_transform=None, + def __init__(self, annotations_file, base_dir, img_dirs, transform=None, target_transform=None, skip=1, max_samples=None, test=True): self.transform = transform self.target_transform = target_transform @@ -170,7 +170,7 @@ def __init__(self, annotations_file, img_dirs, transform=None, target_transform= for img_dir in img_dirs: img_labels = pd.read_csv(annotations_file) - img_labels['file_path'] = img_labels.apply(lambda row: os.path.join(img_dir, row.iloc[0]), axis=1) + img_labels['file_path'] = img_labels.apply(lambda row: os.path.join(base_dir,img_dir, row.iloc[0]), axis=1) # Select specific rows based on the skip parameter img_labels = img_labels.iloc[::skip] diff --git a/src/settings.py b/src/loggers.py similarity index 64% rename from src/settings.py rename to src/loggers.py index d949bae..326eee7 100644 --- a/src/settings.py +++ b/src/loggers.py @@ -1,78 +1,9 @@ import os import torch import logging -import json -import sys -sys.path.append('./config') from datetime import datetime -def configure(model): - """ - Configure the model settings - """ - base_config = { - "dataset": "nordland", - "number_places": 500, - "number_modules": 1, - "database_dirs": ["spring", "fall"], - "query_dir": ["summer"], - "filter": 8, - "epoch": 4, - "patches": 15, - "dims": [56,56], - } - - # Write to base_config JSON file - with open('./config/base_config.json', 'w') as file: - json.dump(base_config, file, indent=4) - - # Set default paths if the provided paths are not valid directories - if not os.path.isdir(getattr(model, 'trainingPath', '')): - model.trainingPath = '../dataset/' - - if not os.path.isdir(getattr(model, 'testPath', '')): - model.testPath = '../dataset/' - - # Now, check if the dataset_file exists based on the determined paths - if not os.path.exists(os.path.join('./dataset', model.dataset + '.csv')): - model.dataset_file = os.path.join('../dataset', model.dataset + '.csv') - else: - model.dataset_file = os.path.join('./dataset', model.dataset + '.csv') - - # Now, check the conditions using assert statements - assert (len(model.dataset) != 0), "Dataset not defined, see README.md for details on setting up images" - assert (os.path.isdir(model.trainingPath)), "Training path not set or path does not exist, specify for model.trainingPath" - assert (os.path.isdir(model.testPath)), "Test path not set or path does not exist, specify for model.testPath" - assert (os.path.isdir(model.trainingPath + model.locations[0])), "Images must be organized into folders based on locations, see README.md for details" - assert (os.path.isdir(model.testPath + model.test_locations[0])), "Images must be organized into folders based on locations, see README.md for details" - - # Output the training and testing directories - model.training_dirs = [] - for n in model.locations: - model.training_dirs.append(os.path.join(model.trainingPath,n)) - model.testing_dirs = [] - for n in model.test_locations: - model.testing_dirs.append(os.path.join(model.testPath,n)) - - model.location_repeat = len(model.locations) # Number of times to repeat the locations - - """ - These parameters are used to define the network architecture - """ - - # Set the torch device - if not model.quantize: - model.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") - else: - model.device = torch.device("cpu") - if model.device.type == "cuda": - torch.cuda.init() - torch.cuda.synchronize(device=model.device) - - # Determine the total number of timesteps across training images, modules, and location repeats - model.T = int((model.number_training_images / model.number_modules) * model.location_repeat) * model.epoch - def model_logger(model): """ Configure the model logger @@ -95,8 +26,7 @@ def model_logger(model): filemode="a+", format="%(asctime)-15s %(levelname)-8s %(message)s") # Add the logger to the console (if specified) - if model.log: - model.logger.addHandler(logging.StreamHandler()) + model.logger.addHandler(logging.StreamHandler()) model.logger.info('') model.logger.info('██╗ ██╗██████╗ ██████╗ ████████╗███████╗███╗ ███╗██████╗ ██████╗') @@ -113,19 +43,19 @@ def model_logger(model): model.logger.info('MIT license - https://github.com/QVPR/VPRTempo') model.logger.info('\\\\\\\\\\\\\\\\\\\\\\\\') model.logger.info('') - if model.quantize: - model.logger.info('Quantization enabled') - model.logger.info('Current device is: CPU') + if torch.cuda.is_available(): + model.logger.info('CUDA available: ' + str(torch.cuda.is_available())) + device = "cuda:0" + current_device = torch.cuda.current_device() + model.logger.info('Current device is: ' + str(torch.cuda.get_device_name(current_device))) else: - if torch.cuda.is_available(): - model.logger.info('CUDA available: ' + str(torch.cuda.is_available())) - current_device = torch.cuda.current_device() - model.logger.info('Current device is: ' + str(torch.cuda.get_device_name(current_device))) - else: - model.logger.info('CUDA available: ' + str(torch.cuda.is_available())) - model.logger.info('Current device is: CPU') + model.logger.info('CUDA available: ' + str(torch.cuda.is_available())) + model.logger.info('Current device is: CPU') + device = "cpu" model.logger.info('') + return device + def model_logger_quant(model): """ Configure the model logger @@ -148,8 +78,9 @@ def model_logger_quant(model): filemode="a+", format="%(asctime)-15s %(levelname)-8s %(message)s") # Add the logger to the console (if specified) - if model.log: - model.logger.addHandler(logging.StreamHandler()) + model.logger.addHandler(logging.StreamHandler()) + + device = "cpu" model.logger.info('') @@ -169,4 +100,6 @@ def model_logger_quant(model): model.logger.info('') model.logger.info('Quantization enabled') model.logger.info('Current device is: CPU') - model.logger.info('') \ No newline at end of file + model.logger.info('') + + return device \ No newline at end of file diff --git a/src/utils.py b/src/utils.py deleted file mode 100644 index 9887328..0000000 --- a/src/utils.py +++ /dev/null @@ -1,299 +0,0 @@ -#MIT License - -#Copyright (c) 2023 Adam Hines, Peter G Stratton, Michael Milford, Tobias Fischer - -#Permission is hereby granted, free of charge, to any person obtaining a copy -#of this software and associated documentation files (the "Software"), to deal -#in the Software without restriction, including without limitation the rights -#to use, copy, modify, merge, publish, distribute, sublicense, and/or sell -#copies of the Software, and to permit persons to whom the Software is -#furnished to do so, subject to the following conditions: - -#The above copyright notice and this permission notice shall be included in all -#copies or substantial portions of the Software. - -#THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR -#IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, -#FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE -#AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER -#LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, -#OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE -#SOFTWARE. - -# Get the 2D patches or the patch normalization - -''' -Imports -''' -import cv2 -import os -import math -import torch - -import numpy as np -import matplotlib.pyplot as plt -import utils as ut -import blitnet as bn - -from metrics import recallAtK, createPR -from timeit import default_timer -from os import path - -def dummy_bmm(device): - # Create some dummy tensors on CUDA - dummy_a = torch.randn(10, 10, device=device) - dummy_b = torch.randn(10, 10, device=device) - - # Perform a dummy bmm operation - torch.bmm(dummy_a.unsqueeze(0), dummy_b.unsqueeze(0)) - -def sad(self): - - print('') - print('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~') - print('Setting up Sum of Absolute Differences (SAD) calculations') - print('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~') - print('') - - sadcorrect = 0 - - # load the training images - self.location_repeat = 1 # switch to only do SAD on one dataset traversal - self.fullTrainPaths = self.fullTrainPaths[1] - self.test_true = False # testing images preloaded, load the training ones - # load the training images - self.imgs['training'], self.ids['training'] = ut.loadImages(self.test_true, - self.fullTrainPaths, - self.filteredNames, - [self.imWidth,self.imHeight], - self.num_patches, - self.testPath, - self.test_location) - - # create database tensor - for ndx, n in enumerate(self.imgs['training']): - if ndx == 0: - db = torch.unsqueeze(n,0) - else: - db = torch.concat((db,torch.unsqueeze(n,0)),0) - - def calc_sad(query, database, const): - - SAD = torch.sum(torch.abs(torch.sub((database * const), (query * const))), - (1,2),keepdim=True) - for n in range(2): - SAD = torch.squeeze(SAD,-1) - return SAD - - # calculate SAD for each image to database and count correct number - imgred = 1/(self.imWidth*self.imHeight) - sad_concat = [] - print('Running SAD') - - start = timeit.default_timer() - for n, q in enumerate(self.imgs['testing']): - pixels = torch.empty([]) - # create 3D tensor of query images - for o in range(self.number_testing_images): - if o == 0: - pixels = torch.unsqueeze(q,0) - else: - pixels = torch.concat((pixels,torch.unsqueeze(q,0)),0) - - sad_score = calc_sad(pixels, db, imgred) - - best_match = np.argmin(sad_score.cpu().numpy()) - if n == best_match: - sadcorrect += 1 - - end = timeit.default_timer() - p100r = round((sadcorrect/self.number_testing_images)*100,2) - print('') - print('Sum of absolute differences P@1: '+ - str(p100r)+'%') - print('Sum of absolute differences queried at ' - +str(round(self.number_testing_images/(end-start),2))+'Hz') - - -# plot similarity matrices -def plot_similarity(mat, name, cmap, ax=None, dpi=600): - - if ax is None: - fig, ax = plt.subplots(dpi=dpi,figsize=(8, 6)) - else: - fig = ax.get_figure() - - cax = ax.matshow(mat, cmap=cmap, aspect='equal') - fig.colorbar(cax, ax=ax, label="Spike amplitude") - ax.set_title(name,fontsize = 12) - ax.set_xlabel("Query",fontsize = 12) - ax.set_ylabel("Database",fontsize = 12) - - - -# plot weight matrices -def plot_weights(W, name, cmap, vmax, dims, ax=None): - newx = dims[0] - newy = dims[1] - - # loop through expert modules and output weights - init_weight = np.array([]) - for n in range(len(W[:,0,0])): - init_weight = np.append(init_weight, np.reshape(W[n,:,:].cpu().numpy(), (dims[2],))) - - # reshape the weight matrices - reshape_weight = np.reshape(init_weight, (newx, newy)) - - if ax is None: - fig, ax = plt.subplots() - else: - fig = ax.get_figure() - - # plot the weight matrix to specified subplot - cax = ax.matshow(reshape_weight, cmap=cmap, vmin=0, vmax=vmax) - fig.colorbar(cax, ax=ax, label="Weight strength",shrink=0.5) - - # set figure titles and labels - ax.set_title(name, fontsize = 12) - ax.set_xlabel("x-weights", fontsize = 12) - ax.set_ylabel("y-weights", fontsize = 12) - -# plot PR curves -def plot_PR(P, R, name, ax=None): - - if ax is None: - fig, ax = plt.subplots() - else: - fig = ax.get_figure() - - ax.plot(R, P) - ax.set_title(name, fontsize=12) - ax.set_xlabel("Recall", fontsize=12) - ax.set_ylabel("Precision", fontsize=12) - -# plot the recall@N -def plot_recallN(recallN, N_vals, name, ax=None): - - if ax is None: - fig, ax = plt.subplots() - else: - fig = ax.get_figure() - - ax.plot(N_vals, recallN) - ax.set_title(name, fontsize=12) - ax.set_xlabel("N", fontsize=12) - ax.set_ylabel("Recall", fontsize=12) - -# run recallAtK() function from VPR Tutorial -def recallAtN(S_in, GThard, GTsoft, N): - - # run recall at N over each value of N - recall_list = [] - for n in N: - recall_list.append(recallAtK(S_in, GThard, GTsoft, K=n)) - - return recall_list - -def sad(fullTrainPaths, filteredNames, imWidth, imHeight, num_patches, testPath, - test_location, imgs, ids, number_testing_images, number_training_images, - validation): - - print('') - print('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~') - print('Setting up Sum of Absolute Differences (SAD) calculations') - print('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~') - print('') - - sadcorrect = 0 - # load the training images - imgs['training'], ids['training'] = ut.loadImages(False, - fullTrainPaths, - filteredNames, - [imWidth,imHeight], - num_patches, - testPath, - test_location) - del imgs['training'][number_training_images:len(imgs['training'])] - - # create database tensor - for ndx, n in enumerate(imgs['training']): - if ndx == 0: - db = torch.unsqueeze(n,0) - else: - db = torch.cat((db, torch.unsqueeze(n,0)), 0) - - def calc_sad(query, database, const): - SAD = torch.sum(torch.abs((database * const) - (query * const)), (1,2), keepdim=True) - for n in range(2): - SAD = torch.squeeze(SAD,-1) - return SAD - - # calculate SAD for each image to database and count correct number - imgred = 1/(imWidth * imHeight) - sad_concat = [] - - print('Running SAD') - correctidx = [] - incorrectidx = [] - - start = default_timer() - for n, q in enumerate(imgs['testing']): - pixels = torch.empty([]) - - # create 3D tensor of query images - for o in range(number_testing_images): - if o == 0: - pixels = torch.unsqueeze(q,0) - else: - pixels = torch.cat((pixels,torch.unsqueeze(q,0)),0) - - sad_score = calc_sad(pixels, db, imgred) - best_match = np.argmin(sad_score.cpu().numpy()) - - if n == best_match: - sadcorrect += 1 - correctidx.append(n) - else: - incorrectidx.append(n) - - if validation: - sad_concat.append(sad_score.cpu().numpy()) - - end = default_timer() - - p100r_local = round((sadcorrect/number_testing_images)*100,2) - print('') - print('Sum of absolute differences P@1: '+ str(p100r_local) + '%') - print('Sum of absolute differences queried at ' + str(round(number_testing_images/(end-start),2)) + 'Hz') - - GT = np.zeros((number_testing_images,number_training_images), dtype=int) - for n in range(len(GT)): - GT[n,n] = 1 - sad_concat = (1-np.reshape(np.array(sad_concat),(number_training_images,number_testing_images))) - P,R = createPR(sad_concat,GT,GT,matching="single") - for n, ndx in enumerate(P): - P[n] = round(ndx,2) - R[n] = round(R[n],2) - - # make the PR curve - fig = plt.figure() - plt.plot(R,P) - fig.suptitle("Precision Recall curve",fontsize = 12) - plt.xlabel("Recall",fontsize = 12) - plt.ylabel("Precision",fontsize = 12) - plt.show() - - # calculate the recall at N - N_vals = [1,5,10,15,20,25] - recallN = ut.recallAtN(sad_concat, GT, GT, N_vals) - - return P,R,recallN,N_vals - -# clear the contents of the weights folder if retraining with same settings -def clear_weights(training_out): - if os.path.isfile(training_out + 'net.pkl'): - os.remove(training_out+'net.pkl') - if os.path.isfile(training_out + 'GT_imgnames.pkl'): - os.remove(training_out+'GT_imgnames.pkl') - if not os.path.isdir(training_out): - os.mkdir(training_out) \ No newline at end of file diff --git a/src/validation.py b/src/validation.py deleted file mode 100644 index 372dafa..0000000 --- a/src/validation.py +++ /dev/null @@ -1,303 +0,0 @@ -#MIT License - -#Copyright (c) 2023 Adam Hines, Michael Milford, Tobias Fischer - -#Permission is hereby granted, free of charge, to any person obtaining a copy -#of this software and associated documentation files (the "Software"), to deal -#in the Software without restriction, including without limitation the rights -#to use, copy, modify, merge, publish, distribute, sublicense, and/or sell -#copies of the Software, and to permit persons to whom the Software is -#furnished to do so, subject to the following conditions: - -#The above copyright notice and this permission notice shall be included in all -#copies or substantial portions of the Software. - -#THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR -#IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, -#FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE -#AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER -#LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, -#OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE -#SOFTWARE. - -''' -Imports -''' -import os -import pickle -import timeit -import torch -import math - -import utils as ut -import numpy as np -import blitnet as bn -import matplotlib.pyplot as plt - -from metrics import createPR - -# used to validate the network training, reject network training if threshold not met -def validate(model): - - # unpickle the network - model.logger.info('Unpickling the network') - with open(model.training_out+'net.pkl', 'rb') as f: - net = pickle.load(f) - - model.logger.info('Validating network training') - # set input spikes for training data from one location - net['set_spks'][0] = ut.setSpikeRates( - model.imgs['training'][0:model.number_training_images], - model.ids['training'][0:model.number_training_images], - model.device, - [model.imWidth,model.imHeight], - True, - model.number_training_images, - model.number_modules, - model.intensity, - model.location_repeat) - - # correct place matches variable - numcorrect = 0 - - if model.validation: - outconcat = [] - - # run the test network on training data to evaluate network performance - start = timeit.default_timer() - for t in range(model.number_training_images): - tonump = np.array([]) - bn.testSim(net, device=model.device) - # output the index of highest amplitude spike - tonump = np.append(tonump, - np.reshape(net['x'][-1].cpu().numpy(), - [1,1,int(model.number_training_images)])) - nidx = np.argmax(tonump) - - if model.validation: - outconcat.append(tonump.tolist()) - - gt_ind = model.filteredNames.index(model.filteredNames[t]) - - # adjust number of correct matches if GT matches peak output - if gt_ind == nidx: - numcorrect += 1 - - end = timeit.default_timer() - - # network must match >75% of training places to be successful - p100r = (numcorrect/model.number_training_images)*100 - testFlag = (p100r>75) - if testFlag: # network training was successful - - model.logger.info('') - model.logger.info('Network training successful!') - model.logger.info('') - - model.logger.info('Performance details:') - model.logger.info("-------------------------------------------") - model.logger.info('P@100R: '+str(p100r)+ - '% | Query frequency: '+ - str(round(model.number_training_images/(end-start),2))+'Hz') - model.logger.info('') - - # create output folder (if it does not already exist) - if not os.path.isdir(model.training_out): - os.mkdir(model.training_out) - if not os.path.isdir(model.training_out+'images/'): - os.mkdir(model.training_out+'images/') - if not os.path.isdir(model.training_out+'images/training/'): - os.mkdir(model.training_out+'images/training/') - - # plot the similarity matrix for network validation - if model.validation: - outconcat = np.array(outconcat) - concatReshape = np.reshape(outconcat, - (model.number_training_images, - model.number_training_images)) - folderName = model.output_folder+'/similarity/' - os.mkdir(folderName) - - fig, axes = plt.subplots(1, 1, figsize=(10, 10)) - fig.suptitle('Training similarity', fontsize = 18) - cmap = plt.cm.gist_yarg - plot_name = "Similarity: network training validation" - ut.plot_similarity(concatReshape, - plot_name, - cmap, - ax=axes) - - # Reset network details - net['sspk_idx'] = [0,0,0] - net['step_num'] = 0 - net['spikes'] = [[],[],[]] - net['x'] = [[],[],[]] - net['set_spks'][0] = 0 - - # plot the weight matrices - cmap = plt.cm.magma - cmap_reverse = plt.cm.magma_r - - model.logger.info('Plotting weight matrices') - # make weights folder - weights_folder = model.output_folder+'/weights/' - os.mkdir(weights_folder) - - # get the maximum weight value for each set - IF_Exc = torch.max(net['W'][0]).cpu().numpy() - IF_Inh = torch.min(net['W'][1]).cpu().numpy() - FO_Exc = torch.max(net['W'][2]).cpu().numpy() - FO_Inh = torch.min(net['W'][3]).cpu().numpy() - - # find highest divisors of weight matrices for plotting - def closestDivisors(n): - factor1 = round(math.sqrt(n)) - while n%factor1 > 0: factor1 -= 1 - return factor1, n//factor1 - - factor1IF, factor2IF = closestDivisors(len(net['W'][0][0][0])*len(net['W'][0][0])*model.number_modules) - factor1FO, factor2FO = closestDivisors(len(net['W'][2][0][0])*len(net['W'][2][0])*model.number_modules) - - # initial weights - fig, axes = plt.subplots(2, 2, figsize=(10, 10)) - fig.suptitle('Initial weights', fontsize = 18) - - ut.plot_weights(W=model.init_weights[0], - name='I->F Excitatory Weights', - cmap=cmap, - vmax=IF_Exc, - dims=[factor1IF, factor2IF, int((factor1IF*factor2IF)/model.number_modules)], - ax=axes[0, 0]) - - ut.plot_weights(W=model.init_weights[1], - name='I->F Inhibitory Weights', - cmap=cmap_reverse, - vmax=IF_Inh, - dims=[factor1IF, factor2IF, int((factor1IF*factor2IF)/model.number_modules)], - ax=axes[0, 1]) - - ut.plot_weights(W=model.init_weights[2], - name='F->O Excitatory Weights', - cmap=cmap, - vmax=FO_Exc, - dims=[factor1FO, factor2FO, int((factor1FO*factor2FO)/model.number_modules)], - ax=axes[1, 0]) - - ut.plot_weights(W=model.init_weights[3], - name='F->O Inhibitory Weights', - cmap=cmap_reverse, - vmax=FO_Inh, - dims=[factor1FO, factor2FO, int((factor1FO*factor2FO)/model.number_modules)], - ax=axes[1, 1]) - - - plt.tight_layout() - plt.show() - - fig.savefig(weights_folder + 'Combined_Weights.pdf', dpi=600) - - # calculated weights - fig, axes = plt.subplots(2, 2, figsize=(10, 10)) - fig.suptitle('Calculated weights', fontsize = 18) - - ut.plot_weights(W=net['W'][0], - name='I->F Excitatory Weights', - cmap=cmap, - vmax=IF_Exc, - dims=[factor1IF, factor2IF, int((factor1IF*factor2IF)/model.number_modules)], - ax=axes[0, 0]) - - ut.plot_weights(W=net['W'][1], - name='I->F Inhibitory Weights', - cmap=cmap_reverse, - vmax=IF_Inh, - dims=[factor1IF, factor2IF, int((factor1IF*factor2IF)/model.number_modules)], - ax=axes[0, 1]) - - ut.plot_weights(W=net['W'][2], - name='F->O Excitatory Weights', - cmap=cmap, - vmax=FO_Exc, - dims=[factor1FO, factor2FO, int((factor1FO*factor2FO)/model.number_modules)], - ax=axes[1, 0]) - - ut.plot_weights(W=net['W'][3], - name='F->O Inhibitory Weights', - cmap=cmap_reverse, - vmax=FO_Inh, - dims=[factor1FO, factor2FO, int((factor1FO*factor2FO)/model.number_modules)], - ax=axes[1, 1]) - - - plt.tight_layout() - plt.show() - - fig.savefig(weights_folder + 'Combined_Weights.pdf', dpi=600) - - - else: - # log unsuccessful training details - model.logger.info('') - model.logger.info('Network training unsuccessful.') - model.logger.info('') - model.logger.info('Performance details:') - model.logger.info("-------------------------------------------") - model.logger.info('P@100R: '+str(p100r)+ - '% | Query frequency: '+ - str(round(model.number_training_images/(end-start),2))+'Hz') - model.logger.info('') - return testFlag - -# run PR and recall at N -def match_metrics(numpconc, output_folder, number_testing_images, number_training_images, logger): - - numpconc = np.array(numpconc).T - - # make the output folder - folderName = output_folder+'/similarity/' - if not os.path.isdir(folderName): - os.mkdir(folderName) - - # reshape similarity matrix - sim_mat = np.reshape(numpconc,(number_testing_images, number_training_images)) - - # generate the ground truth matrix - GT = np.zeros((number_testing_images, number_training_images), dtype=int) - for n in range(len(GT)): - GT[n,n] = 1 - - # create the main figure - fig, axes = plt.subplots(2, 2, figsize=(10, 10)) - fig.suptitle('Network metrics', fontsize = 18) - cmap = plt.cm.tab20c - - # plot the similarity matrices - ut.plot_similarity(sim_mat, 'VPRTempo similarity', cmap, ax=axes[0,0]) - ut.plot_similarity(GT, 'Ground truth', cmap, ax=axes[0,1]) - - # get the P & R - P, R = createPR(sim_mat, GT, GT, matching="single") - for n, ndx in enumerate(P): - P[n] = round(ndx,2) - R[n] = round(R[n],2) - - logger.info('Precision values: '+str(P)) - logger.info('Recall values: '+str(R)) - - # plot the PR curve - ut.plot_PR(P, R, 'Precision-recall curve',ax=axes[1,0]) - - # calculate the recall at N - N_vals = [1, 5, 10, 15, 20, 25] - recallN = ut.recallAtN(sim_mat, GT, GT, N_vals) - - # plot the recall at N - ut.plot_recallN(recallN, N_vals, 'Recall@N',ax=axes[1,1]) - - # show the full plot - plt.tight_layout() - plt.show() - - logger.info('') - for n, ndx in enumerate(recallN): - logger.info('Recall at N='+str(N_vals[n])+': '+str(round(ndx,2))) From c0a8c50d40f8720c263631a0bce9c600a0700dea Mon Sep 17 00:00:00 2001 From: Adam Hines Date: Mon, 27 Nov 2023 11:56:39 +1000 Subject: [PATCH 31/69] Fixed up forward pass for base inference model to be an nn.Sequential --- networks/base/VPRTempo.py | 32 +++++++++++++------------------- 1 file changed, 13 insertions(+), 19 deletions(-) diff --git a/networks/base/VPRTempo.py b/networks/base/VPRTempo.py index 252e052..46f4e42 100644 --- a/networks/base/VPRTempo.py +++ b/networks/base/VPRTempo.py @@ -114,18 +114,23 @@ def evaluate(self, model, test_loader, layers=None): pbar = tqdm(total=self.num_places, desc="Running the test network", position=0) + + self.inference = nn.Sequential( + self.feature_layer.w, + nn.Hardtanh(0, 0.9), + nn.ReLU(), + self.output_layer.w, + nn.Hardtanh(0, 0.9), + nn.ReLU() + ) # Initiliaze the output spikes variable out = [] # Run inference for the specified number of timesteps for spikes, labels in test_loader: # Set device spikes, labels = spikes.to(self.device), labels.to(self.device) - # Pass through previous layers if they exist - if layers: - for layer_name in layers: - layer = getattr(self, layer_name) - spikes = self.forward(spikes, layer) - spikes = bn.clamp_spikes(spikes, layer) + # Forward pass + spikes = self.forward(spikes) # Add output spikes to list out.append(spikes.detach().cpu().tolist()) @@ -153,7 +158,7 @@ def evaluate(self, model, test_loader, layers=None): table.add_row(["Recall", R[0], R[1], R[2], R[3], R[4], R[5]]) model.logger.info(table) - def forward(self, spikes, layer): + def forward(self, spikes): """ Compute the forward pass of the model. @@ -164,7 +169,7 @@ def forward(self, spikes, layer): - Tensor: Output after processing. """ - spikes = layer.w(spikes) + spikes = self.inference(spikes) return spikes @@ -175,17 +180,6 @@ def load_model(self, model_path): self.load_state_dict(torch.load(model_path, map_location=self.device), strict=False) -def check_pretrained_model(model_name): - """ - Check if a pre-trained model exists and tell user if it does not. - """ - if not os.path.exists(os.path.join('./models', model_name)): - model.logger.info("A pre-trained network does not exist: please train one using VPRTempo_Trainer") - pretrain = 'n' - else: - pretrain = 'y' - return pretrain - def run_inference(model, model_name): """ Run inference on a pre-trained model. From 31f045b388d64715c61d154998388af34d781d2f Mon Sep 17 00:00:00 2001 From: Adam Hines Date: Mon, 27 Nov 2023 15:58:31 +1000 Subject: [PATCH 32/69] Update README.md --- README.md | 68 +++++++++++++++++++++++++++++-------------------------- 1 file changed, 36 insertions(+), 32 deletions(-) diff --git a/README.md b/README.md index 8a862ea..200a4b9 100644 --- a/README.md +++ b/README.md @@ -25,35 +25,49 @@ If you use our code, please cite the following [paper](https://arxiv.org/abs/230 } ``` ## Installation and setup -We recommend installing dependencies for VPRTempo with [Mambaforge](https://mamba.readthedocs.io/en/latest/installation.html), however `conda` may also be used. VPRTempo uses [PyTorch](https://pytorch.org/) with the capability for [CUDA](https://developer.nvidia.com/cuda-toolkit) GPU acceleration. Follow the installation instructions based on your operating system and hardware specifications. - -### Windows & Linux -#### CUDA enabled installation -Use conda/mamba to create a new environment and install Python, CUDA tools, and dependencies. - +VPRTempo uses [PyTorch](https://pytorch.org/) with [CUDA](https://developer.nvidia.com/cuda-toolkit) GPU acceleration. Follow the installation instructions based on your operating system and hardware specifications. MacOS has no compatibly with CUDA. +### Get the repository +Download the Github repository. ```console -conda create -n vprtempo -c pytorch -c nvidia python torchvision torchaudio pytorch-cuda=11.7 cudatoolkit opencv matplotlib +git clone https://github.com/QVPR/VPRTempo.git +cd ~/VPRTempo ``` -> **Note** -> Install the version of PyTorch-CUDA that is compatible with your graphics card, see [Start Locally | PyTorch](https://pytorch.org/get-started/locally/) for more details. +Once downloaded, please install the required dependencies to run the network through one of the following options: + +### Option 1: Pip install +Dependencies for VPRTempo can downloaded from our PyPi package. -#### CPU only -To install using the CPU only, simply install Python + dependencies. ```console -conda create -n vprtempo python pytorch torchvision torchaudio cpuonly opencv matplotlib -c pytorch +# For Windows/Linux systems +!pip install vprtempo + +# For MacOS +!pip install vprtempomacos ``` -### MacOS -CUDA acceleration is not available on MacOS and the network will only use the CPU, so simply just need to install Python + dependencies. + +### Option 2: Local requirements install +Dependencies can be installed either through our provided `requirements.txt` files. + ```console -conda create -n vprtempo -c conda-forge python opencv matplotlib -c pytorch pytorch::pytorch torchvision torchaudio +# For Windows/Linux +!pip install -r requirements.txt + +# For MacOS +!pip instal -r requirements_macos.txt ``` +### Option 3: Conda install +>**:heavy_exclamation_mark: Recommended:** +> Use [Mambaforge](https://mamba.readthedocs.io/en/latest/installation.html) instead of conda. -### Get the repository -Activate the environment & download the Github repository ```console -conda activate vprtempo -git clone https://github.com/QVPR/VPRTempo.git -cd ~/VPRTempo +# Windows/Linux - CUDA enabled +conda create -n vprtempo -c pytorch -c nvidia python torchvision torchaudio pytorch-cuda=11.7 cudatoolkit prettytable tqdm numpy pandas scikit-learn + +# Windows/Linux - CPU only +conda create -n vprtempo python pytorch torchvision torchaudio cpuonly prettytable tqdm numpy pandas scikit-learn -c pytorch + +# MacOS +conda create -n vprtempo -c conda-forge python prettytable tqdm numpy pandas scikit-learn -c pytorch pytorch::pytorch torchvision torchaudio ``` ## Datasets @@ -65,7 +79,7 @@ VPRTempo was developed and tested using the [Nordland](https://webdiis.unizar.es To simplify first usage, we have set the defaults in `VPRTempo.py` to train and test on a small subset of Nordland data. We recommend [downloading Nordland](https://webdiis.unizar.es/~jmfacil/pr-nordland/#download-dataset) and using the `./src/nordland.py` script to unzip and organize the images into the correct file and naming structure. ### Custom datasets -In general, data should be organised in the following way in order to train the network on multiple traversals of the same location. +In general, data should be organised in the `./dataset` folder in the following way in order to train the network on multiple traversals of the same location. ``` --dataset @@ -76,17 +90,7 @@ In general, data should be organised in the following way in order to train the |--testing | |--test_traversal ``` -Speicfy the datapaths by altering `self.trainingPath` and `self.testPath` in `VPRTempo.py`. You can specify which traversals you want to train and test on by also altering `self.locations` and `self.test_location`. In the case above it would be the following; - -```python -self.trainingPath = '/training/' -self.testPath = '/testing/' - -self.locations = ["traversal_1","traversal_2"] -self.test_location = "test_traversal" -``` - -Image names for the same locations across traversals (training and testing) must be the same as they are imported based on a `.txt` file. +If you wish to specify a different directory where data is stored, modify the `--data_dir` default argument in `main.py`. Similarly, if you wish to train/query different traversals modify `--database_dirs` and `--query_dir` in `main.py` accordingly. ## Usage Both the training and testing is handled by the `VPRTempo.py` script. Initial installs do not contain any pre-defined networks and will need to be trained prior to use. From c5ca1f91d87008f098ba27c5e48caabfea425e25 Mon Sep 17 00:00:00 2001 From: Adam Hines Date: Mon, 27 Nov 2023 16:00:37 +1000 Subject: [PATCH 33/69] Update README.md --- README.md | 1 + 1 file changed, 1 insertion(+) diff --git a/README.md b/README.md index 200a4b9..d11d767 100644 --- a/README.md +++ b/README.md @@ -1,4 +1,5 @@ # VPRTempo - Temporally encoded spiking neural network for visual place recognition +![PyTorch](https://img.shields.io/badge/PyTorch-%23EE4C2C.svg?style=for-the-badge&logo=PyTorch&logoColor=white) [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg?style=flat-square)](https://creativecommons.org/licenses/by-nc-sa/4.0/) [![stars](https://img.shields.io/github/stars/QVPR/VPRTempo.svg?style=flat-square)](https://github.com/QVPR/VPRTempo/stargazers) [![QUT Centre for Robotics](https://img.shields.io/badge/collection-QUT%20Robotics-%23043d71?style=flat-square)](https://qcr.ai) From 2188bcb9d8dd260545c574a998c1120f44ff80ce Mon Sep 17 00:00:00 2001 From: Adam Hines Date: Mon, 27 Nov 2023 16:27:57 +1000 Subject: [PATCH 34/69] Update README.md --- README.md | 8 ++++++++ 1 file changed, 8 insertions(+) diff --git a/README.md b/README.md index d11d767..fbe824d 100644 --- a/README.md +++ b/README.md @@ -11,6 +11,14 @@ This repository contains code for VPRTempo, a spiking neural network that uses t VPRTempo method diagram

+VPRTempo is built on a [torch.nn](https://pytorch.org/tutorials/beginner/blitz/neural_networks_tutorial.html) network that employs custom learning rules based on the temporal codes of spikes in order to train layer weights. + +In this repository, we provide two networks: + - `VPRTempo`: Our base network architecture to perform visual place recognition (fp32) + - `VPRTempoQuant`: A modified base network with [Quantization Aware Training (QAT)](https://pytorch.org/docs/stable/quantization.html) enabled (int8) + +To use VPRTempo, please follow the instructions below for installation and usage. + ## License & Citation This repository is licensed under the [MIT License](./LICENSE) From 6096c210060d6a2967789d860a4c2a8afd7a14f5 Mon Sep 17 00:00:00 2001 From: Adam Hines Date: Tue, 28 Nov 2023 10:02:55 +1000 Subject: [PATCH 35/69] Update setup --- setup.py | 19 ++++++++----------- 1 file changed, 8 insertions(+), 11 deletions(-) diff --git a/setup.py b/setup.py index ecb2740..85cc2ab 100644 --- a/setup.py +++ b/setup.py @@ -9,22 +9,20 @@ # define the base requires needed for the repo requirements = [ - 'matplotlib', 'torch', 'torchvision', 'torchaudio', + 'numpy', + 'pandas', + 'tqdm', + 'prettytable', + 'scikit-learn' ] -# workaround as opencv-python does not show up in "pip list" within a conda environment -# we do not care as conda recipe has py-opencv requirement anyhow -is_conda = os.path.exists(os.path.join(sys.prefix, 'conda-meta')) -if not is_conda: - requirements.append('opencv-python') - # define the setup setup( name="VPRTempo", - version="1.0.1", + version="0.2.0", description='VPRTempo: A Fast Temporally Encoded Spiking Neural Network for Visual Place Recognition', long_description=long_description, long_description_content_type='text/markdown', @@ -33,7 +31,7 @@ url='https://github.com/QVPR/VPRTempo', license='MIT', install_requires=requirements, - python_requires='>=3.8', + python_requires='>=3.6', classifiers=[ # 3 - Alpha # 4 - Beta @@ -55,6 +53,5 @@ packages=find_packages(), keywords=['python', 'place recognition', 'spiking neural networks', 'computer vision', 'robotics'], - scripts=['VPRTempo.py'], - package_data={'':['nordland_imageNames.txt','orc_imageNames.txt']} + scripts=['main.py'], ) From cf0701d8011d843c18cc77e152587c642bc22bf0 Mon Sep 17 00:00:00 2001 From: Adam Hines Date: Tue, 28 Nov 2023 10:03:15 +1000 Subject: [PATCH 36/69] Create main.yml --- .github/workflows/main.yml | 29 +++++++++++++++++++++++++++++ 1 file changed, 29 insertions(+) create mode 100644 .github/workflows/main.yml diff --git a/.github/workflows/main.yml b/.github/workflows/main.yml new file mode 100644 index 0000000..bf2bc34 --- /dev/null +++ b/.github/workflows/main.yml @@ -0,0 +1,29 @@ +name: Update PyPi Package + +on: + push: + branches: [ main ] # Trigger on push to main branch. Adjust as needed. + +jobs: + deploy: + runs-on: ubuntu-latest + steps: + - name: Check out code + uses: actions/checkout@v2 + + - name: Set up Python + uses: actions/setup-python@v2 + with: + python-version: '3.x' # Specify the Python version. + + - name: Install dependencies + run: | + pip install setuptools wheel twine + + - name: Build and publish + env: + TWINE_USERNAME: ${{ secrets.PYPI_USERNAME }} + TWINE_PASSWORD: ${{ secrets.PYPI_PASSWORD }} + run: | + python setup.py sdist bdist_wheel + twine upload dist/* From 656c6421ddcf0d1127cdc4380ec49ff42086acb0 Mon Sep 17 00:00:00 2001 From: Adam Hines Date: Tue, 28 Nov 2023 10:04:49 +1000 Subject: [PATCH 37/69] Remove old workflow --- .github/workflows/python-publish.yml | 29 ---------------------------- 1 file changed, 29 deletions(-) delete mode 100644 .github/workflows/python-publish.yml diff --git a/.github/workflows/python-publish.yml b/.github/workflows/python-publish.yml deleted file mode 100644 index 0a80fdb..0000000 --- a/.github/workflows/python-publish.yml +++ /dev/null @@ -1,29 +0,0 @@ -# This workflows will upload a Python Package using Twine when a release is created -# For more information see: https://help.github.com/en/actions/language-and-framework-guides/using-python-with-github-actions#publishing-to-package-registries - -name: Upload Python Package - -on: - release: - types: [created] - -jobs: - deploy: - runs-on: ubuntu-latest - steps: - - uses: actions/checkout@v2 - - name: Set up Python - uses: actions/setup-python@v2 - with: - python-version: '3.x' - - name: Install dependencies - run: | - python -m pip install --upgrade pip - pip install setuptools wheel twine - - name: Build and publish - env: - TWINE_USERNAME: __token__ - TWINE_PASSWORD: ${{ secrets.PYPI_TOKEN }} - run: | - python setup.py sdist bdist_wheel - twine upload dist/* From cea563e458e3bf5df199b87d988ef64340cc9b22 Mon Sep 17 00:00:00 2001 From: Adam Hines Date: Tue, 28 Nov 2023 10:09:25 +1000 Subject: [PATCH 38/69] Update main.yml --- .github/workflows/main.yml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/.github/workflows/main.yml b/.github/workflows/main.yml index bf2bc34..1ea5172 100644 --- a/.github/workflows/main.yml +++ b/.github/workflows/main.yml @@ -23,7 +23,7 @@ jobs: - name: Build and publish env: TWINE_USERNAME: ${{ secrets.PYPI_USERNAME }} - TWINE_PASSWORD: ${{ secrets.PYPI_PASSWORD }} + TWINE_PASSWORD: ${{ secrets.PYPI_API_TOKEN }} run: | python setup.py sdist bdist_wheel twine upload dist/* From 8167e441fe7d60c3487d477f30e03332935047c4 Mon Sep 17 00:00:00 2001 From: Adam Hines Date: Tue, 28 Nov 2023 10:14:09 +1000 Subject: [PATCH 39/69] Test --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index fbe824d..6b8319a 100644 --- a/README.md +++ b/README.md @@ -20,7 +20,7 @@ In this repository, we provide two networks: To use VPRTempo, please follow the instructions below for installation and usage. ## License & Citation -This repository is licensed under the [MIT License](./LICENSE) +This repository is licensed under the [MIT License](./LICENSE) a If you use our code, please cite the following [paper](https://arxiv.org/abs/2309.10225): ``` From 56adcb000b787e79f2024fa5a55072e12a0dea2d Mon Sep 17 00:00:00 2001 From: Adam Hines Date: Tue, 28 Nov 2023 10:20:26 +1000 Subject: [PATCH 40/69] Test --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index 6b8319a..85cd2f2 100644 --- a/README.md +++ b/README.md @@ -20,7 +20,7 @@ In this repository, we provide two networks: To use VPRTempo, please follow the instructions below for installation and usage. ## License & Citation -This repository is licensed under the [MIT License](./LICENSE) a +This repository is licensed under the [MIT License](./LICENSE) If you use our code, please cite the following [paper](https://arxiv.org/abs/2309.10225): ``` From 1aeeeb0501c5bd8ece3c5d39afc4b0619ef1c44f Mon Sep 17 00:00:00 2001 From: Adam Hines Date: Tue, 28 Nov 2023 10:49:40 +1000 Subject: [PATCH 41/69] Update README.md --- README.md | 49 +++++++++++++++++++++---------------------------- 1 file changed, 21 insertions(+), 28 deletions(-) diff --git a/README.md b/README.md index 85cd2f2..17e04b9 100644 --- a/README.md +++ b/README.md @@ -1,9 +1,10 @@ -# VPRTempo - Temporally encoded spiking neural network for visual place recognition +# VPRTempo - A Temporally Encoded Spiking Neural Network for Visual Place Recognition ![PyTorch](https://img.shields.io/badge/PyTorch-%23EE4C2C.svg?style=for-the-badge&logo=PyTorch&logoColor=white) [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg?style=flat-square)](https://creativecommons.org/licenses/by-nc-sa/4.0/) [![stars](https://img.shields.io/github/stars/QVPR/VPRTempo.svg?style=flat-square)](https://github.com/QVPR/VPRTempo/stargazers) [![QUT Centre for Robotics](https://img.shields.io/badge/collection-QUT%20Robotics-%23043d71?style=flat-square)](https://qcr.ai) ![GitHub repo size](https://img.shields.io/github/repo-size/QVPR/VPRTempo.svg?style=flat-square) +[![PyPI downloads](https://img.shields.io/pypi/dw/VPRTempo.svg)](https://pypistats.org/packages/VPRTempo) This repository contains code for VPRTempo, a spiking neural network that uses temporally encoding to perform visual place recognition tasks. The network is based off of [BLiTNet](https://arxiv.org/pdf/2208.01204.pdf) and adapted to the [VPRSNN](https://github.com/QVPR/VPRSNN) framework. @@ -34,7 +35,7 @@ If you use our code, please cite the following [paper](https://arxiv.org/abs/230 } ``` ## Installation and setup -VPRTempo uses [PyTorch](https://pytorch.org/) with [CUDA](https://developer.nvidia.com/cuda-toolkit) GPU acceleration. Follow the installation instructions based on your operating system and hardware specifications. MacOS has no compatibly with CUDA. +VPRTempo uses [PyTorch](https://pytorch.org/) with the capability for [CUDA](https://developer.nvidia.com/cuda-toolkit) acceleration. Please use one of the following options below to install the required dependencies, and if desired follow the instructions to install CUDA for your hardware and operating system. ### Get the repository Download the Github repository. ```console @@ -44,26 +45,20 @@ cd ~/VPRTempo Once downloaded, please install the required dependencies to run the network through one of the following options: ### Option 1: Pip install -Dependencies for VPRTempo can downloaded from our PyPi package. +Dependencies for VPRTempo can downloaded from our [PyPi package](https://pypi.org/project/VPRTempo/). -```console -# For Windows/Linux systems -!pip install vprtempo - -# For MacOS -!pip install vprtempomacos +```python +pip3 install vprtempo ``` +If you wish to enable CUDA, please follow the instructions on the [PyTorch - Get Started](https://pytorch.org/get-started/locally/) page to install the required software versions for your hardware and operating system. ### Option 2: Local requirements install Dependencies can be installed either through our provided `requirements.txt` files. -```console -# For Windows/Linux -!pip install -r requirements.txt - -# For MacOS -!pip instal -r requirements_macos.txt +```python +pip3 install -r requirements.txt ``` +As above, if you wish to install CUDA please visit [PyTorch - Get Started](https://pytorch.org/get-started/locally/). ### Option 3: Conda install >**:heavy_exclamation_mark: Recommended:** > Use [Mambaforge](https://mamba.readthedocs.io/en/latest/installation.html) instead of conda. @@ -88,26 +83,24 @@ VPRTempo was developed and tested using the [Nordland](https://webdiis.unizar.es To simplify first usage, we have set the defaults in `VPRTempo.py` to train and test on a small subset of Nordland data. We recommend [downloading Nordland](https://webdiis.unizar.es/~jmfacil/pr-nordland/#download-dataset) and using the `./src/nordland.py` script to unzip and organize the images into the correct file and naming structure. ### Custom datasets -In general, data should be organised in the `./dataset` folder in the following way in order to train the network on multiple traversals of the same location. +For convenience, all data should be organised in the `./dataset` folder in the following way in order to train the network on multiple traversals of the same location. ``` --dataset - |--training - | |--traversal_1 - | |--traversal_2 - | - |--testing - | |--test_traversal + |--traversal_1 + |--traversal_2 + |-- ... + |--test_traversal ``` -If you wish to specify a different directory where data is stored, modify the `--data_dir` default argument in `main.py`. Similarly, if you wish to train/query different traversals modify `--database_dirs` and `--query_dir` in `main.py` accordingly. - +Running `nordland.py` script will automatically do this for you. ## Usage -Both the training and testing is handled by the `VPRTempo.py` script. Initial installs do not contain any pre-defined networks and will need to be trained prior to use. +Running VPRTempo and VPRTempoQuant is handlded by `main.py`, which can be operated either through the command terminal or directly running the script. See below for more details. ### Pre-requisites -* Training and testing data is organized as above (see **Datasets** on how to set up the Nordland or custom datasets) -* The VPRTempo `conda` environment has been activated +* Training and testing data is organized as above (see **Datasets** on how to set up the Nordland dataset) +* The VPRTempo dependencies have been installed and/or the conda environment has been activated + +### Pre-trained model -Once these two things have been setup, run `VPRTempo.py` to train and test your first network with the default settings. ## Issues, bugs, and feature requests If you encounter problems whilst running the code or if you have a suggestion for a feature or improvement, please report it as an [issue](https://github.com/QVPR/VPRTempo/issues). From 06ac16a55206bfc0f0c75d1c3fa639e7ed4b6286 Mon Sep 17 00:00:00 2001 From: Adam Hines Date: Tue, 28 Nov 2023 10:51:43 +1000 Subject: [PATCH 42/69] Added base pre-trained model to git lfs From a73a3c50e73a8f63edadccc7f3b3acbeb454c8d1 Mon Sep 17 00:00:00 2001 From: Adam Hines Date: Tue, 28 Nov 2023 10:55:47 +1000 Subject: [PATCH 43/69] Upload quantized model to lfs From 2e1a196afcc3d94da1db91c6163db1859fe92067 Mon Sep 17 00:00:00 2001 From: Adam Hines Date: Tue, 28 Nov 2023 11:09:20 +1000 Subject: [PATCH 44/69] Update workflow to push on release not on push --- .github/workflows/main.yml | 10 +++++----- 1 file changed, 5 insertions(+), 5 deletions(-) diff --git a/.github/workflows/main.yml b/.github/workflows/main.yml index 1ea5172..0be658e 100644 --- a/.github/workflows/main.yml +++ b/.github/workflows/main.yml @@ -1,8 +1,8 @@ -name: Update PyPi Package +name: Publish to PyPi on: - push: - branches: [ main ] # Trigger on push to main branch. Adjust as needed. + release: + types: [created] jobs: deploy: @@ -14,7 +14,7 @@ jobs: - name: Set up Python uses: actions/setup-python@v2 with: - python-version: '3.x' # Specify the Python version. + python-version: '3.x' - name: Install dependencies run: | @@ -26,4 +26,4 @@ jobs: TWINE_PASSWORD: ${{ secrets.PYPI_API_TOKEN }} run: | python setup.py sdist bdist_wheel - twine upload dist/* + twine upload dist/* \ No newline at end of file From 0f2af1eef9beb5d3897a869f86de9fc2d8b62cc0 Mon Sep 17 00:00:00 2001 From: Adam Hines Date: Tue, 28 Nov 2023 11:31:21 +1000 Subject: [PATCH 45/69] Update README.md --- README.md | 26 ++++++++++++++++++++++---- 1 file changed, 22 insertions(+), 4 deletions(-) diff --git a/README.md b/README.md index 17e04b9..30c5b70 100644 --- a/README.md +++ b/README.md @@ -12,7 +12,7 @@ This repository contains code for VPRTempo, a spiking neural network that uses t VPRTempo method diagram

-VPRTempo is built on a [torch.nn](https://pytorch.org/tutorials/beginner/blitz/neural_networks_tutorial.html) network that employs custom learning rules based on the temporal codes of spikes in order to train layer weights. +VPRTempo is built on a [torch.nn](https://pytorch.org/tutorials/beginner/blitz/neural_networks_tutorial.html) framework and employs custom learning rules based on the temporal codes of spikes in order to train layer weights. In this repository, we provide two networks: - `VPRTempo`: Our base network architecture to perform visual place recognition (fp32) @@ -48,7 +48,7 @@ Once downloaded, please install the required dependencies to run the network thr Dependencies for VPRTempo can downloaded from our [PyPi package](https://pypi.org/project/VPRTempo/). ```python -pip3 install vprtempo +pip3 install VPRTempo ``` If you wish to enable CUDA, please follow the instructions on the [PyTorch - Get Started](https://pytorch.org/get-started/locally/) page to install the required software versions for your hardware and operating system. @@ -95,12 +95,30 @@ For convenience, all data should be organised in the `./dataset` folder in the f Running `nordland.py` script will automatically do this for you. ## Usage Running VPRTempo and VPRTempoQuant is handlded by `main.py`, which can be operated either through the command terminal or directly running the script. See below for more details. -### Pre-requisites +### Prerequisites * Training and testing data is organized as above (see **Datasets** on how to set up the Nordland dataset) * The VPRTempo dependencies have been installed and/or the conda environment has been activated -### Pre-trained model +### Pretrained models +We provide two pretrained models, for `VPRTempo` and `VPRTempoQuant`, that have learned a 500 place sequence from two Nordland traversals (Spring & Fall) which can be used to inference with Summer or Winter. To get the pretrained models, please download them: +```console +# Ensure your directory is set to VPRTempo +cd ~/VPRTempo + +# If not already installed, install Git lfs +git lfs install + +# Download the pretrained models +git lfs pull +``` +### Run the inference network +To run the inference network, there are two options: + +#### Command terminal +```console +python main.py +``` ## Issues, bugs, and feature requests If you encounter problems whilst running the code or if you have a suggestion for a feature or improvement, please report it as an [issue](https://github.com/QVPR/VPRTempo/issues). From 80252ec261260bbde4f1d70a74052af54a961b9c Mon Sep 17 00:00:00 2001 From: Adam Hines Date: Tue, 28 Nov 2023 11:36:06 +1000 Subject: [PATCH 46/69] Add example video --- assets/main_example.gif | Bin 0 -> 74655 bytes 1 file changed, 0 insertions(+), 0 deletions(-) create mode 100644 assets/main_example.gif diff --git a/assets/main_example.gif b/assets/main_example.gif new file mode 100644 index 0000000000000000000000000000000000000000..46e9cd67238f3b83d0270c8b7cb46e850d931bf2 GIT binary patch literal 74655 zcmeFYXH=7G*DiV|Bq2b61VTutp@(WfL_pLhg(@W!>AFG{5H%<&O-(}RE%YK{kRl)| zO$9|)=pYubqDx(1#j+Hv*kH%??frghpE15O-hKA|w-02%kBnqIbKY~#YtHMMx3jC0 ztzB3k{5<#qEWrv;P-Wr(S_wu}lELDo3{{kfsybdotThS9k%$a6GFcs_sxD)!u415} zPS)^s&;$yaYMPqrx|*80nzS`qKt)SSM;l?Ftwz>X*U{F{(_R&#O${dlEE(X*6i>3T zj}DBeqiUc-*3;4R)iDXuSres)*U%$EdfJA1WJ7%zUSEc!uWg`Db~XTV1~7sFjA#H; zH$dtdC|eom7#ZlSHL&n82y-_?Y8cAs8_KC0QZ^dNsZ(UtDT;>1aJ(@>-59NHjMg=l z(KSJ+nIN@HkYp2-u8EBH-!HPMG}#obX^Pf1MUzcsbj+m5W@v3QwB)bkrDGE@ zj?yqkX`7?S<|rL=X)SYUZFA~Y3nbA3sb(RgX(2+-M!Vkk%rz!#>#lIdmhf;vgiBb&=6#VHeIlX2NWX27{_LoAj3`(CD7UTK*E6>>{kOaO z?eqxW`CIJH$bCC^WpE-hIfK}u#uL~>Smcve(=&W@D4Jt_IIy!@TJ z3piN?3B?6_c?GFCh3S=rg8V{3Q&n146+gE+A+u&%M9uEx!#j5!-k(*QT3(x8U7M3v zn^SY7w5~4Wq^S60LtSrUT4rPIiRSdomaM}q6{1u5c^%~^I}X=(71o_;{=KjH^o8n< zOSN_4p7Y})6BB1AZe6?i;M(0M5C44s?A_O|OFzH=TwY$$S&{Q}^z&uVSdLZ}R4Et$ zK<6t0Df{dHvN>aSR9IqEBzb>qVhlMdWm{~tMZ~ThU|AMUge@UtTKcD{Z&8L;Wf6yyn3tD4-(22%JD=UN!bkq-JnfkfZ zx^(J}$Xif@dj>ii#)@q8!-vuD8%9c1NGT7vT}_jf)QHQquHDU758Li}^d^M6Twhvu|cP!l(U@wok`YpV0tQE5SV`h9w7b7^rR22SdpqWavXxD@Ug_<8GA7j9ROjB;^=vZzK+nQ# zL-z~9(KV@W+ao^~X>Ty=S(@f&y}s)JUC`R`t>>>lS_WpF9`+$)?jO%8JNxkKzJ$jc z4qDeAd9bha*+kI70&d;C-o5z_q8RxL7rwlk9m-qL_PW&n^~3zl6Te-*bn*L_g(s6o zy?(#+^Bv=UAl;`ahoECAND!cDNeKdMa9TZ*ARDd2klU=0fIyY>4y5noaCjL6PMYPo zVt}A?MAa#DZY0(X?d?c3JH|t)v*US4)d0?bqjG>K!BN?5Ve07a-?)n-Dgj&`GChQw zfE4~_{q+ISH3s&K7#u@G;Jh5B^$8)?i|K?QYaJ$55Kqj+e*Jh;(F7-gIaY8+jbGFz z-idv2Bl|AY5;G-dLMck zt&wO8&sM1f;V_*X%+!RnmKY|jvID&Wcalq{ba6E)3#?I%4UlLYZ2|a5HQK>qCpBW3 zx0E~tIvJ#JYZ{8=60)cTMowdXVwCUfo>kgGi-KR%^MB3pG1>B0S6%1$!p#CK8q8*HofK@;bkD zO!GAk`T?GHoY`!aF1DrKNx|zyah8=;d#4j=T|Z9@+oA#4NK13L4B5E5Q;;f}y8uV) zREcTQMgp$*zH$Fb0$s+amcx~aI&|1cDp6c)bAPYt!b$iOttpx`jHs7a;)mv4AJ{>M zjZBELEWXV*R_^@vvgP=xlvn8-DJhM)$kHscTI!QLO?c#EIoLbqO;@WHahJTQDD+9L z=_I2?$&~&8e3`l213O>|KMp`L8XOj1Mw)_kmNF=N z$diG&E5PBqZedr>eo(YXmQME-tK+#+=jE><;CPLP_yxYYH9!w@jt~>s9c%Vpla-4o zL#-VjP)J!wCu8c-&Mt$DPM}`x0*vE$Ac=EXMG!+HwZLSY+@IjupaFvl%c3naT;feG zLvQ7hj?}8O0l*ulA=}O|+dqZDY~~pXKc><*kfl(%agc^WW#$^Z2=!1mLg~v3T zY#Azv!sa!}Vh`S;}=`AufqTqlF? z`^ebO44DLD1&SX59<#(#D4RM;6osL@*y*@YGTf_C7q*Sf!w|8#PGSfX*2~AZ=%?>g z<1vvp+>zhd8H6irjKz&(f7CD$YDoiftCC=-eH_%P+0(Ff^DM$C;R=Eh$)h=6hIjG> zsMO|xwNCMa1P7zj)`qt>ZRGHk!#{eg4Wy&OlK2W!-bJZ_kENoM_$qELH%e+gHc~uV z-2#H?1{fN`v4gL&j|*F!4U-QM#;6DYijbot7jG-C)<#B|03OVqJBV+jBIe?Eqdkap zPPo35<`N{s7JC!Np>(5#ahU)<99PmIMe*jzx@P;}Z@3|Pn%Btq5vA~>pJ zv6YzsITr|%btN-`H&z;Wr0hg9ZTT4Lcm_3F3~wXxl^rT4LV`bcRb6e5UORd3TFU2c zQMm!D^DBb#(Fn8lAs^qkP-{Lu?-H6#$G5OEZ?1IdU`|BsP;O%(J?Ljzy>IL9+GC2$ ziLT$|Q8kEK)n^h{8{_fTDO@Ds7|K-xs)zb$*97a+dX?;osd}4f0@H3Nuvt0%|_u_v1Ht+Uv z0GruiXb{Yn-tNR-oQJa-rG7>=}v)RFVpX_XLQ8uHBZ>*c^} zRtfU`er862lk7{o%P*KcrwG1YiSg{NxqIcg&4sTkS2=~8>fffaJ$sI+UY&PZ_ib8O*wbj_@zO2i+l{JgJwU5n{Y10wSHsi-V zKedJYd=>b+^=S9CPp49UzGfRO-5K)y+;#Zpo0u1gCvuK_K6~NkUz|hV?{{Orod4tJ z+oUf`QzL(Uy!8F&JFa5?thCosz}+9SG_U^0s@IoB*DWs!Pk*@d!Q<=YkmdJP*Bzd{ zsQYp)b@_wH=*!ci*l#xuFMn()`uNCs%hH_-%bz-mF233J`>We|HJ^L0Uwpg&`u9iQ zQ$BS?rM}AY`tev%d&wJnX|eM9kLN=_7f`?N7998b`6^`P+syS#pU++Y`8IXs`>f*c zD@$Wu%kK}b{FwLp{oCE^%bzc3|2(UB=EDoGm2au*uOciga`mpSEPr2F0YommC3-v{ z?$UlPx{52?%RQxf2sO^d5_w9tJUn{OH=E&GEb*ztbSv9*>%jDxyFBtJLa#U7VJ3Y;6<3`opxX*wW~OgU61Y?e+=zRe zdIg?K0v0jDU_Xx;nBkw4QHMH!Uds)g$=JG-!6s&6j%WB7W=1Dv##Cj-jb}uTM{Zxr znd{$(YdFVayy85z&58c zFz;+q9=Rp=d~aToQEvZIo|w3=Cp&LAFn^So)Sk`%Zj^UrCjZ(}zS92O0o#IGfqQQR z7R*!?kk;mp%@jOZDxeyn9@`c^4J>?~R5)K%_^P+?%}n9jrNRYb(RlZuwA zioW$0{g^3QUMd14Av~z?Zc70wS@?FeV76C?xhK4c+AH6jtYlY=4=N@k7pMCO(S5}l zt~-$~`!z`=y2dG|Y)TB1OC~=TQ~FBG?!`K_L{dqmR(7Sg?nY5U(4F>@ECUGetj|SGUb8Q<-yf)eu3p%UzS5( z%foX@3T-Q*?aHE(E8_Y}!ul$9Ru=^HmG8EzWZf&@m0XGXTAbKdnbudH^tDp`Yl;0# zr68zE5XiqAlb+jGm4C0Q@N1QjR9zxdoe*19kz6gXjUo0`*WRnH`&#|Lzs$|9rZK3d zA*i~lx~7f9%Z{x%^|hwsWv-7*RgX-iLT^oP^E-&DnE1`N(@$!HC__&(&Ei)pg(cj&je{z599;sEJZ5j{XP|p>h+KjYYEO zMHn~kxnvPmt=_{~q!e6FP>aW>)T^DZKUX1=|5i`_R!_QIuOEDDkLn@2m}4gAk99q- z*ZFpg`l?Rv@-ge+hUR^2`F%(2bF)^*HEf8hw@_=K+c%0yjm(rrmzuIqeGTp=f|C|+jyJKH*Gziw*Ff~c#3F;O?7lib4*Qh-1+AC`_0b+ntoF| zo~+s&5q#Xho$ zv-gs1YlTURV%+hXw$^>gt##k_7E<;ewQt*^+S-`X1|MrFI^WiA&uz|a>$tz`d0%T! zaDChTw%(c(Mb5|1+&_U-J0VWl=k1&_5ZtadcH&Y^dumV_tL?u$^#L?bKuYQ%{3WJx@6`Uvui!`BQJ~i>{o{zpr-seQ?5E`_rFO zPVckXZ#Q51NEJ2Yg)zBBW!(=*dSl9Th<*G3z*=a!+H`JL5lhD1~$qUPl?+ z>ri{WE2XtV>p~4awNrO{XX^P*!;qcnDP1P1J5OXbn11hiUeQHe*L{`HrDv4dy<~qv z`$G4DoDPTY-NWO$^mRSVNnPvIo~!;nZl*mhfAmZcu>VQ6n85%X>;w|t1ziDPXbl&v zxJWWPnuL!3njNunH?VrqqMB^t>bM70#kcY6G#I(~>ftL+9N?g$KGF4TNWuICT6x|S z$91>Z^D2@EKi1~3E`7IyXu(NJQ(-;2hdex9o@<8Cr71I8ZVQ|S1+G=k!f{%97tzc; zXW|(Kfn`)<9|S}?$F#~tLZj_lGTbsj?=dF(;RS9w-I$2|7cXQM0Ph1Z$uB@701Scn zH{M8+5JOmik$hsmx4I+q#l-ELZ(8w8CcmU=1b|8!Lh^s6R9U1v!MdS$${5DEK zxxSxIoBM2N;27;B2)rvXuiuolBtJrB_27*-by_HR7o|GHUn60>6dHf!bAnb}UEfV$+&tX+Pcnc`*_ zzd6pakvsx2`~d~0J1hsFoik+4Q=}4keOqYjZhcy%l=EPjj56d=p>=u*a2#jL>vWUe z$MCx6#oAg27PvE|$A_9dW#}WZ2ysPQaJWPKBBQXz!fCTTi7_e{l;xJxtRe+@gq(}J z72~Zpnp0&4o`U%s-R>lCXeD#+cQk|p$qoS0$JU6c-h-zQU5qX%Ei%97#Pg0dtu-DcAj@W27H5KgY+!5`7g#=h0-QQ^K6>`cgP<=r!| ze*cL%1nq&Ldm`5MaQe_aDc`imi(0xkDR3JQQz)-79kC1Lj%x7a z=cOUpyReQ>c~FbhJmlKmC{T0Bsb?skmw%cIS#>mS#sa|{7OQa5k`D#ry@Rlb8&g;; zJi6YI6dL%9MGSA5)1i&G3M!$vd`py?C-*iB8_>%`s)WhcGkrJ^@CiKImqzLnck+y_pm5?*eHyXp4XJc>)**CLTzbj!F&cD%|}(H-H=sSeo1%xl(=B1K3!k&90u_oA-nUg^T!;2l>zxu z3M+qI+855f?0pRvcn03NeVC+cP$XrGd4`# zUW>rHQ;Veo?tob|^WqE}v*Y0>>J)K7z6S-6wa&h>8{sU55cFepfGT0>2sFQD`mQlZ zBd8sSYo|=9gaT8+gUry!!u~ZJK2;R9z*^Od5RFEUtB{_ zB;lNhY+L+YmkLM01SV3LAh7>3+b|&=N!8h+>gAA-feo_zn64HeObGGWh?#Cx0F>g* zgor8_z_+k z%4WAPKC8@b?ZOq;`ncPN?X$ukiU#5~3$`K;u6Gj({A#7b=#KMJVioNje<<}o_MZ&_ z=0Lo~R4A&^ZHb?3WklM-+%dvo&p=dtkKiX&iO_`OvF+C>k~W}9{# z5i0@*Z5SlORW%2Nk(JWb)$jc<>RMk)z(B^ZoxGmDCS%ERNwW%~cMGDbB#r9p0lr)PkYV3&EY&Gj){)UJRJQ-Xb5&K8DZgFp?h4h(d1%9T1*lJyB5@z zOqwEK>8w?Y*pHL;qo4x=YQd~LV2{(J+~Uy)w42!i5~|c3t_KQR?r<4kRoRLp29C=z zO(iYI0+OzoXgnnkuu7M} z1yeMMHfvOGh@jC;S^I&sG5Qv_AAW#Dm%jMeeyZ{^VG;(ycTQ}VF-ZLS?$m`$PFp+J zV>hLSTw1{R$pDZ6QIkqvnm3Ci{X-2I@49Lh4!dF<2kEki9WddkR+Tq%7;qilky*6^ zP)`rCo?#$Gcmee^d^@yxsLCOW#eg|e#tlvyF4RuhodVd5R;dXr0yHyOfdosm^>BXl zJb-S4VKN*XwN)BW@pXW4aaQP_GigqoFEeCqxfT5^4K!G=EOW%*P*q?`jG*lsM5$-r zk=c(>+A_ZO;oK^8n9Wt|{j_vaxU9Yt!5%Z6L3q?UrUv{&FW$jMOVLnjfm75cP(=RR zFmbCp45++9dQ;RQ+0%pZm;Tu6$QC)GNL!qGL_yqO4o}bncbqdUUq^LD@poxaget%~ z%u(4xzgVF1wDc$f=ZeQ=5CfPApCSU@VIAi_D>fPd2G%9!&M~Bwgkf{13?4*17MO<8 zFntUcT<&bMndkfona5nLD`B@iwU=`}MWRyB+HTda@aremDe7_QRU9;x?RB4y0}{$gR$a4__bM)sF<$oT6+s9B>M zAsBQOX`{Eb7uqwF!B^+YYMvj^;~rZrH=6Id`g!_sT&&xt7TPP6Y(P^972P>P~yj6>A-Wa#V{`3mL&tY9o|yEky(Rs(k^~fjKOTHW*eNxL4zY9CJnm0=HiU9R!*R`B~}Z>>rUA{aOuK;t~5q5Cd!s9L$*T? zXBJASkcD-cE*}T$bj$*=MG2VUNZNrK>~y{I8kWEk-WSF*Kj^Z@YvT&U(89U(l%u7# znLU}%L#|;6^BZL?MNGK|eZ^e()fFB9Ys^fh<@eyr=uEOcsrZFqw+By?|;yetHq{94#N}kpl)4@_6mO^EEEe7C}l_aVRL(vaKV{&v1fqxl| zNs3}x)GcW`y89t7*vvj;_zwNKjP&k+!{{6WlZ5YdN z(W!+(#SRX|DqQL1v)dqs)e+uP;Pd z8%+6Bv`cu#I)8&G30HdY#PZW@aso5c*r85@R-qB^|kTy zUws?hRY{zk?$zGzSVH*0ALFvoC#p_|4DH=lt>yBpK(T+WY?t4u5O9H-0 z)*oSz>BPDH)1Pmr*l>ol8O(}@ld9%_UZ5)s?ZB|n&wAOzLXB|LO$88SRS`=x#3&Uw z=f?~m>nv0-@y*tUv79EWN*IFtd-5U))QaqO&cVewN?I|1lPrbG-&MFZcb&|Urj!cf zEob9-@FsMzo^y}O${gLHfnXjcwjQPrZ~9np2i==|olN9*%i~~Eu&f)Sj^I}PpDN{% zAJO2bgH-yiw7KaiEluxzPEKJ!6zuE>xFa~yRg_pxoi`z7u@Bx7ZYjZwPI`LYMcdMY5E;(`)cy!U{x|0FY^Yi|?(kxiIHs zYkez9-j)LR**cN8XpB`9A)R5!@#D*E2eX-429b$SWrB4gTv{VXCyPV?!mCc}>7B(I z^3SThb-isqUb6;ft;KfqxJZO5%3Xp$@|IRUNE-ZvS;ygIo0X3l zPMWpY?atCwETf}pXX3V18kXIY05=r|*^_Qtxvu_d{n4G_k(juNF=Z_nE0@>2Arw|e zTJtS|2quviH=OfE+9lo^BFh(i3v1iaJJIZ9{ILU9Rs2np^8RyW4aQ%vA+01Kq#yR7sS0gG8yDouGE0xHsH( z8mU1FTckNXjzqjymfwq0+upM#afEouZhC5m{Jmx^HL*b@Zr7JjcbbN=p898}%LBld zvnt(oi-KvjeYS^HqOJW#V;X{ry_K^=Xv}A7j$!jD>IM?ocQhLB=)^=9YJ%=9IEGWx zF6$9&(}{W%$+rW;C7PD%AVK0b^p6J@rgz*@Nm*TJL-OO+?Njw}=|om&syt-jz1j6Y zRUGjH4?o?H;9Yd;yO4EeI!08V%9!rfzKGx2?x3XNN8$a(h>R@T_-Uv#GTFIdP8(3A zxz}N{iIsUo=jC&_ZwW^G-|FS0X3{spf*1J29`;*u)qkjpcvqye(m$A$U)U-59|NS2 z=z`_a(oGahLVJa9AgixrRqIk*pO>dv`RDlqx`DsU6{u6^+0_{fB+nR>fwu5Fq@4CsPc_U?!=g@S##lgXS0rVO5f*>h&dW>dYTs~i%BmLe+xw2HmSP%c?O!|r?5 zPvt!U*-GmU|MY2ct9!gp<`IUr1FOjOkljeCy?u4o&R_Fh%!-D$tDG+qRUCp6Y1w`+ zJlOB3_F{YJJR%xn6$U5cq%voX5eVv?mPHp^D`94UR!n*wwAqs)5rQkQ`Hp+9RKVXe2 zFtGy}D$L=R$2`BwTMloIlPoh3T(7X^rM1Udh(iIf^%<&L1=Xeg5$=mso*~fU@hwe% z1>D~p#D$IGw}eW%$r!)5spIxXqOmIO7xAs7Dz|=aKC$H#973x2d^E|R|35LIP*NNI z`yA)eA)*0&m-fJ3x{izhtL>IQ-XUS0ezAq)olgdN^2iN8T!i{S#>n?rXpRqglZ=vu zs9!iYm@a3tW3<0o*$7ly9g6Fv_E4r9l&o%rrj)h%)>u^@fH_Lh8M&s(@@#Y9dv2Ij%?2XQbD=}82 zTotP*eqQhGw`8En0c;?0%)^4X!Va{u6PpB_1y`UFgcxIun8U2->_7q~i+LEv@|Zz> zv02cR_QWwM`RZ{W&>L$pHBn}~1%2zmwz!t!5dw&WL3?)-y)}Vkj&tM&ftCzam@M;; zZC5QTm`cI%^=wty%!FZG|NL!^1T(>NC-?|ytx$0v0Aspf8~{VanFX}kJ_rus;0M@f zT@0WWNXNwtNP+$6L^K)k6gI2^hb=lQK)oU@;Djz4gdhx409jYTp#28eNIoRZS>V$G zYrUV7qTh(3aeBjQnB$!k1p00Ecr-g zJ0RXfJ4#G1fF6V@3Dm$83_@bZS8S)WuOK>6U=7}Hu=Y0~=0S!ZO@wfRo>)41FcUx; zQhTSOyWt5ODInl_52{`!Btp`f2o4{*yP%r|xhj;o(Qv)Am(T;OwY2#O0P^K!BCS}~ zQpqNIL?CGjY5BvlkOJ~k2hb1cv1^9*w0lDunqa|~o0%~6Fi z{t}91Z>0#a!L~X~#Y3Pz zf`5Btpc9HqqD^6#O1H$lvdy2!U^%u}q}nd~Q2>QGNJHE>xDZ8K*o)IigI^UR2?YGp zwX{gA_2?eQ(5&J8pkwotiWh5fSS1VrOD3(mB1%`WXDrTaJFy-%qRbH1JIT?O#0b*L zn&RO!PZ58qWmfeywjT4)b&z;|;qWASVRfa<(eH+gnxR10+Mci1BQqD&OduNhA};%T z4>ld?R*$it8W0w85u_wBTvs%Rmpz8E%%0=2l@&ZRM>et-v$J0`i?kAk$!Yz# zP8=nRwLRyuwqT{evL1Bfhclz6b*s{bCr4MnboPpj_Da9Ys8L}j-O#e%sX)MQJi%3ngxUbg+`9Vqf?%?bQ@p8f<{`Ss_Tbp6C0jQ zgCP>XFyh{d-4_8K8U3Q^&S+jbNwae0L=K)^0=}_)7ZP#u z207S-nrSp&^?>dL%sth#FEHD?t<2SpL)^4q$%9u8_JvK~*5pTB? z%c|UHl!E`K)F815l>JXtdLaE@nhx641@8jq4(Hg!w+HHQ^oEPbj9d*FAHG0N$)&Mh zRKlG^s=EBW4@fr!b)gB5nODj!J@e5Cw@w{7qrD+*CiHSotc$sGz5oY1?gQVvyuA3N zemED;Z!Z&*mSSc}9^|oj@5}f}h2tF942*sCrr!RP4H7RY=9N%Tzdhrt`1q{ZUImg& zO^tR+XBg0{s5)3_u9ER%t@zKTx6OFHx_#e2xBvP30Y)a1r^~_)Y)=JAaS~pOEBF%; zt>;cHc&@7Gg}Kt6EHVdE2!G|OF=4mIEB6q_ zztKWj9!#tf0JxbXw3B6q2dl%zk>uEqgp_OzV34wxb!XTCnX4QG0ch|LCEiR+6ib^q zJD}o4xHVECwbybRgNd~q!H1wfs;F%8ra9IDTbdB>s;oYRo^3NdT$inDB5d`r3>LN(SdoTbLEeQmI;yB0osu?SSdAjOWRHKv z_$Q`kNTNmVZv}9@L`_0)!X%ikgw{fkGciC%TCxt86sHRe!ESlM^LJz|a8=jZNW?EY9vG;?9&?HFfw=zhoBGRWaZr= zBk&sCG|)XR{Qc06c#TeB5D6!*-;kE%ctvcw(Pz2W3NhKc@6G$31uf2{_4kjkMZsqbW~ATpD#??!|R&Lpg6z%z-88ho@b@B^W>zmiO$q^jZGuFxjoN z5xfU6D5whB^-y<M)qI99BaUh&2I731E+p^Mmo^deIZ(x=|4X$cQ}IooMZny)Yn zI@1-8dK%brCC2}cjs5=*%51j8b;Q42H}We)T;LE*RX-GTNF>@^6;qU3SqJwqQqnCd z&BTaAOr9mm1h&A)DJijUKeN4Zf?rf5HK_rEoY24`v;}?d%e$lPh+S-13|v$qc8hvY zR$qMjxCtso1mWV`4~zHqZD3DNe>~cTjuFUi@t>6qIIcBSg&!B>4DSV@j&V_4%LqZ8Ci-ON8NFz377H4q9!3NJv#r^ znOXyWg=}y<^uObaJc%z<|Mtb@zrzR)a??@h-@Yn=_cezRBt%S!XcZ&8CNvY zIz$lt`sQP%pp23;D9Fdi5%NQGZrsRIrLgojRq#jU)vONdz^ zo_T#o6!On3`7ibDVu{`VQ6@V6BYiUD)X@PLLs{!Ofh% zNeMi~p2q3$(N+;Z;NS#P23SQ-g&MaKp;AM5#vKg$-#BjJzao6-mvt1OU_f%J8a+1&;2@4gWMu_ipua}1QCF+K;++jqfs27K$YK42zs%39>rxelZe*Qp-#VbqzD3RY z#NtgONH~#r2Hr zViNrgid3d})PA)u+NPc!jj1+{1S}o1r|D>109;uBkIH>!oTsY3j}hGo8Mpx#l6l5# z%;mDR|5lLxm(g1*@q@zOP1bIS9}u&Hs2m;|xm75n))!@BVPv}!?rq4-N6r4cp6l!- z9S;PZr@Ii!p!n0_?D8>!fnZ%3YocoE@J8_cN@zVjY8I!Xz5L*UG#GKOfuBTw6pN*} zroPSSd=p_lWbM{YMrI;$oV-Ws+jLE-~=vM=40cHXNvEtk;QIWjW!Gm;uEq$*ZqRnc{DjswAMHJ3RyV=*?4H>$Fphg%qB4tkj-x- zI7&AjTwZ!s9fp*}R}_7Wyl_?~Q`%*D`O~D{P_7r~KxDdApl&oA{8=Vje~c-kY`DRA z$NAxSoaYg%@s2CHtZa9E7c+9#{_AxGdOrGFNl8tMrDFjH1GCw*i2&Y?)u#98lA2*1 z`RHsp#qsi!n_ev}+|p9lbz@(@L-PN~uV3~N|F-WJ#v*2qktK`+x`Z5-K1Y}I6756^ zN5UKdf=e%l#z(-(stzJsmNeHi;9zLN`zO)_gXrP%h|1#`iX~yP_vWlPn@X*m0`nJM zy!*{aE~Zha(d)v-o7unjgAW!_3>&>gP(86#fg3LZQ!%{!;O+w}%L!djw5h9qCJ0o@ zmXYdO|K#&0-|a9tyrH{`iQ1Zl8Sb8Y{)>NHAQXh~oWZ!Q?r?Uoo-S2L=Y~JJm|DbS zlWe2OB$JkNLgQ}7F%?TQT_#Z}s#R?4%W63Ip7|PYEgo~nwJ>wUhU2B1f-I1I(4&?e zo20p^_Wu*cHUQMWwx84`>gB({w@%_A{NEnB_P2-VY?`Wt{|sP9)c=Cgtysz&f8m5HJRT!#U;cRKng_t_uDrgTy(JmV{mAhWeS)njuIBw^oXc2~2fR`--|Ls+}p ztHC-L$>NM;^yYk3r(qqt&4S$a$NIJVyPq{WlGQ1 zuGxMzJmW)|F=UsHG*$oK!&He+K$m2)`%j|kA0rS}&t9MQnC_UX^dI8ISfLUK#Tw5I zB4xFG+d?P03}{B-Y1BnpX_iOjuPae9VzitU{g|z>Pv(R&#if2hG6J;@>+ipe2^&PT z-aHZ5tyG4`Oe$D;waBJ5o@u{VK8{b8n)1BuWy);P^&l6#xpyH+FZvJbJLqa%$1*gk zgF?Ij(NI?7lf8@KU=5-T&PG`j4}dpczdKtD93B;sDyxr4O{z%PQ%GkpctV`KvK*GT z;FMQ6)%#9qt_vxLYdl%b$}nHYKm1^PG8ieuyOkOuaw0a(Mo$uqeM+|fZXYE}e|hVq z@9O%li$8+)uKWnfV?|?CQd%ewe~@Qq)G*a4LPt3#ArVCEtmfvQVnnM8q-tnV>)_mc-i0y*7Zhq(Kh3Xgse z^uA{_msI>Z#N?^TQcHTId$qB?TbU6u0{^KzSe1_o`Afi9K`V=S+`a`Ktu{>QN($-TR_bDSI+;#1Dy|o)whpWdF&>M+a79 zAmiqB{BTa$*i7w;7Nso1<`!S*f2)cAKYG*%$q=e2Icf=-0(KKqG?0!8)9D|+N6 zH#bW?e{VPI$V8OZqj~E?IObV-U`4rOkr(`Bl#tOT*%#P#i)Wx=`N{yh z8+7b{Qf^uT8zGoq%4s^Xt6yhSkqH&+2x1&wJ{5WR$4YeHE|QYN^1{&d4a>t3Fhb(h zzKjqbp$>dQq5b{q*1Fjuw}vAXadF3g20r1byR*Y+hQ~)&g5x%R4CFdB(`P%2+WSXk zCve(RH@!~xfA-DAXk|0nTEA%|IHvoc^$BV?c6WU1S5f^C>4MT^yIMfY7b7*9{yitp z{YZQdQ`=W;eSPE4A5V%len5+ch-r>;TzpKD=z9PA<@5r88;37!L>skp20s)=?82Xl z>slDb|Dngl`s7tw2OLeWDi+}9t|NPN=0vEL-46C{` zO>$odocQ3P)g>~2|HoomI$EDDTBI4hza;-<;}Uu0{Tfwu<&$4#b;o>ilqg@^d&d{y zz7y(C#V3+BF2413HHfjD6G1!0X33Arx0U3`^HiPd1NT7T8SUfwOy`u+!aP<(<6+%Z+ z7(=C-vvmw|?o;!*rfrdrTpP_rp^u*2=iF;mkmmoWa$jf!Hk89*$*S`T{iJ{{1QfuliTiSy*2FjiN7qg_p+Ty(bUYL zKpH{|3vBALeovdK*GO%7@{bl?F`Ga3tv4a7>prk)(=b-zdE*30;~(L93wc&Mj$ zkMAlwEVp%LQ1*I7{~!WbK3Qgec91> z-^MmzE*H9f6RUm(PLO7sYzoRuyKU(>!!b^JU*Pn%&-2G!0?uDQwERKg!NRe}PNRzH zHyRW+OL3cfd5S4eTOIq>nARxHV_ijq3h*%5SShnA4S!3)z6!SPjb)MjPL_)L!{a_u zCbp?h8QOJI(FPkIj~{|=2&Q*$ihDW%e+qk3cQtkEG8)S}fB%ydJVx4fQ3v2+c112@ z1;7CcRAhqF;#sXJ5m{iGJ*1Fcz?EK5>q{Ehq=o1{5nUu!aOsyj^b8BZowmcS*4Rjv zgtFXY_jlZ!qagyS;C(*G&3crd2waiw@+4)$)y2y_Uh?c7Q_Q! z=r3Cnk@(@+cw$=J82zW^yffz3^vxy2(Ub0lM$K2W=7^)`)kw2?4GVEUzMYC1n!LWK z#@B3UVH!~fay+3yt(e#M9Q?uxw9g7FhPX^4TkqG-!wr|dE-~$1iPPO$-rlQCVg|ji zMDL3nyf@>oX_U#e`myDS@>7n@NlV(>ZR@_@KQcv+q7fedXyt2UQ3ut{I%d`AtD<_% zops$FSVc1%lxjt5jK~9WQ)^y5%TW6j0;PR_z94Xu}4`@A%iNl7P(wvAe#)SULtFbMe_nHLoK7*&w6WzCr}n7~rRvmQUhKr}DM#?K6?)=OWsnxzUJ?McGyWJjEeRV=#q zC4%(1V|0aDrIU9kqf_(M%(_c|zMbFQuK2A(+v(|SlfvGfC)GJKsr_x!xv`jOE`do`@XN^yw2-9zvt&W+qP!D z9GZ;DJZT`Fw}Z!cv-TgD7ltZ$cei}$enRl)scz5ss$f9(0sEWlbz5Fy zh>_n)GKWr4(a20Gs((GbTL;R;2LwtK)i0qYdV|%OkN%~>ha`x;SN;AJ|%Be zPeK(gbCd>D8WcAS__D;Ls_e2)dZ5AvPVrn`CRWasD{~TYqb9h3hJI>}xsf>edzs+d z1b_;#qP+Gxa;ma%6A)m>oqnF4=oa&cRXj+WoyE+%wX8wFD3n;CNE`gzQ6Ij)@{S2| z5_y(LHQIxk>jtMtW6hs;YhDjzmrGJDr&8Lt6~xQ3p!c{tCgM|8gW{7S(lzG29y@Fz z-q)`w5hI~gFsz;3e-+LHfEg|=r!;ByQ*&=3qNLW2p2I2qW|>UGXI;5MWX!>S{p|ehj~|@6JQI|f z@l%@fLP=okn)7$aDkF))#mr@4L_sJ%0`}`zmzlGB8LTcA32%TQgU~~?af0jIf{;VX zzyf*Z5_jD&NB0b9Y3hlops8|KDIWCT*g{msob_UL>yQ}dB-n^^C7m!j^^4W76Wd)+ zIV&84;8Ib5-ud{@53xr1<9qt}Gn#%DEJ9q~*qqNRS?6bwWhPV!E47T3xY8ceeA4+} zMBpw<{ztg${;FM8Jn^`RLE^Lf3~C8N{fIc>!BJs;0Se75gUN>NK`aL@Y1 zxIZ;ep=a5u#tEZlkX1=D1NRJs8?>aiwa#&NOt}>8LI@jw=7g7H{b^3_B5t%8vj{-d z$)QE^eM}o>kqJ60B(ZH64_dq5GF%i3Vp=+#@$>uO-b1h^0#z1si zQr+9>WRwugweDLahw5zb_Appv+#{3WMy=2q6Im-vzK{VdqQS-6cO03tVJX9@?E1b` z0xB9nr9OgmCbEkf6FI^C@d&2z?89i{dZ@0a@(^nsf$D-1l9~Y0s?Jmj4W55%@9p=_ z*TpfAvEYiuIn55n+QGTlBayb{c)imd1kT*h`R*MKZ>x(mLH;ZlLP)=Db6z}qYSr{D z=LO&YjR)!!zIShbf8Mp2hrp(ZG=d_aMkXjM{GasX`6` zvJ=H|bYUDtjD0J`&U^%YVYL-@GvUFZa&LkIWOia*H3ta^*-6s0Jv zgk56NB^qJJwkeC`1n=`Fd>aY7Or$$v)VZ$}EhhXv>xrFqvhB3-X{um(AJWrdT{m33H*>$c)Y#D=}SJ1%_0 zaeq7Ey@qhk(3NcJa=*Uv-_XW?ucPP4HCwN1yggmmHmCcBbuKe2R!C6-n{nxKr%QjiPicO_dC(TrL-s{)mChqyF(VMx`5)&MM`XJu z?o2vz#d(#XE7A^&?QoWmI>ioWS_9|FCo9j*)g$DcCaBDSp2Nc6O{Cg7=PaM)6|n)+ z4c*1w+w<(_-cx>(h2V!+aDoeFRu{V1ggPo{oo)STuDW$p4rLqAQen-71gDdFpjr=f zbe%8yjXm}fEJZNb&FDEaOuijX7Wem4;J7o=e^*YnWMM?WwuR?2E+iRgZ<8S!IdYlv z*Zt_s&!|~#tQF@Su{QIm4{OF1vQD_atPUx%p@&ZOlGCT{G~@|c=+IQs#G0NuD>Tax zv%S=`>jo^8Cs5CwD!Pihhk%h{6wh{*ji401mRJOH^wm+n3+Su~A$IaU*1rrV3Xl@^ ztx#}Tg1OeWH)IPj)>p*suzYmBWte9Ex;)bpj^ggdzt_{gQiNR06e;#MIjQgw^Q+1E zi>>I3)na1d_DC_*Mc}N+isNT4&o(CEcph0_E6S^`%m7mUn_KW%jN?9lf|-aYeD)xr zMR6icVco%2trxTCfkduL$+V?FP(iDylOzn>{u?&Ba6ghxpD zuKK4(vW|!FE_5KPN6_VlUdEE2>B3w+K@)g=P;6v5T@NPrHgT9EDh~Nq|V#mFxop$=(owu9uK7OG8#m2x* zfg&2zkC4u#a3&1+YB6pFi_{McqJsvDOZJl#gFm1%ZscO}vR=y~j<(_5o>s&4ay33t=5Ff#1H?55=P-nbRNAePjh-<^E0 z2zAH06L+V?qj~Dkq()P$)6uPe-g*0e@mo2;b3$uj>KSc$hR!${otFK(sjr?|?!F6fSA z;oz24$h&fI{w&+axmV!fq{`Q2K;)e$`MKmdrubL3X%CdNZI!*VvLpW*ioG{&ZtE{o z+2}GcPAkW8TAtO};nB@~b4L%R-9P^=&*T(aUX0ji_n-26?%$9)tpxBZkQRm_9WPWD z-Z`|#zKw6cO%Y1V6A$WWsE0$y&@;Si|M2=cOOc+lSFA_WhaqS0Dj!&Ob^@6 zHA%61tQoJ3tZ`ZvQ=VQL3u~iM+KFgb4Bsi=hHboW!3T}ffm=vn5F}@>+0AM)PQ}Xu zrl+}7i%~5s=g&ssko0BOx|gGR?0q}lI}209#jt7C&+?b|gqP;-+(OtC7A3|0x$WgD z8hIxTCi=X>S2%wXzZ_*bS>H7LH2?llx%0Ia(sKi$nMGC|dzBmo?>k67^xqp>%ga$K zb{KKmL3?u`jl5U7<*&{eQ*ylz1-@$MzC6%EGRfD-grqM*^5IKZ>e=gLb4&o@^qJ-S z(f_aC*O6rQ@;!OK(PGi_xsxFM?@23*@m6TxZ_v-%Gx2h~%~pb!=FNR=$1BkOG~82% z$bSs;T8=;aFeFdfw{xO(8A^(y&G*>2Y3NY6)1_cww@De@?od;rA%M8YHupf=haH;Y zVW|^jEr7T{@?9>|+Su@dZJ(g;9)Kjp%EXYxxs{zwxh)=mI; z&LzE4_*v9u9>&Dik~}wWQv5lOr?fq($*~~6VCTH)A)(G5E%Ec4)f+!LT?-ml+{e|r zhLX|SwvdmH8D~|~GIpn|okjFq+74`ucG?isz;EO?FJJ<>p)%U=?!g(_m5oISNbKPXmdx~Pd|LT!ms$l z@|#Be=C$VaY%B2qU>W4zB`p2DP^6V<+W)LBFUY<0WVC1d@hA7Xodw$Rj_FVC9i7N0 zb@Wk9)Idf2E5Cc!NghA1F1)NvpYvH9cxYZgH7V6&Z_|yVDV_f)G@qQ==>y~c{i{ME z$VUgoC;sinQUW|;LYH-3#8KF#O~=0>|E_-X+iAN-Ow|%)X-BY!JiKA@ zibo6fyL-&3?m(}6xagYHqh#s!iZj10{@L&BqvekY4~_)3h6O9J33YDW9^j_({|@E0wK2NdZID%a}ED$$C!hAoou<`*R10m^7; zHu0|k<-F1_w5)qz8J$D&Cl3`FuGIqt$#_zu7KGn`UXC{;}pZwLjEyWQl zCe~ivVt8XQqF*MMNnawq`}!df6Yh3gQ!Y_@U6-R?UaTOL8TsUjZ9WY`1+h@xhwQYg zLv=brfuWCb$fOP&cs`|!_Q3UUBATwe&i)B9xf%d;RE~MpoF1Zkhdx6?e2aG!+uZkX z)pVJ;xmeD3Gj)ac>MVpDq0()KT^%Nkjo$jM?Bl3ofRMj{Ab1_*X4f4G`}P(;e|)2x zj(Rnm;-oLoLtZjC_cebC1GY!fZdRhv5DqQq)hDCaQ~ z`{cAO6pcdAKqM%kHE}>D3B4&8Dh|Emn11tpqb0nE%ghi%%d9 zR0;G$e74LHVa1T{uqmcMI@Y~LKtjEZ7-0(#^IjHOQ?=De0=@uemrc ztqEK3ArRy5fEJ`8aFkmY5wfB}FbFD2WFsG?nkJx?-1S+VS-3dvWv{Q&M$l+*nY=}T zZPDj>jT-SvmcZ|ceb)_w8CQ8vxw5pT(W`aw@p;SoIg6y&_%T-kyIp}Md{y8&`4qem z{!nhm&9`@Ozx0?W%MW6B-)PQKs>UZdUUk}|2p3>cvN;qKTe{%*K_MK{e!|16b;aa7 zVT70DCtZFyNTj#(JW^?@zAIuvfF#1Hl%>j$K85F<0(^xhG%Vl@{xQ#g>4!hT1S+5C zw0*(#9;EZ9Q68oi#dY~jN|yB4Tu)d8G4%^@vr?atHp(*n|1vce03#kdBlwj_D1JW*uue8fukZ|Yc| za$z62rArflfMk)$;AY|oXib6ZX}vtu-Ck{&8)d_6++LTBLn``i1y=B3FR9Uz3E#D8 zL7?B~XPr8<7*yAapCK()C`4S3O#=j!P9rLGl&g(w;`%?c!VxP@z`4wRWPwHL+*5;D z+@tgr(*~NIKthHUbUm95NB;!EaqVXKrZh8Qy0~RhJmAr-=S8-TVDg6dlEo|mspl|0=4m0_- zwP_kd?zYYfau#+FJT8n3S@m*9dQ7Tt3nJ}BH0%qv8t3cw`i|$5S2{J z1p8;syBVEb7?m1slo+=MgKZ zrpOf?PLn%fOarHZUb2Z;$a?DfPINhVGYHe#LCo)6S~kKZ5_={T!Fv&mFXt_J#jq0W zbIM9)oM>7h?f1GYF-QLTrn%J0cRPbzi72_%gv#bqSuFLRiVnh}_D#Czd~7jN^~3Eo`1?k`vPbc^FeJ9z$j5umxiD935)0UOOL$Sztjg5~Ce3 zoawj?@ne|pbifST#p%@E=L$vT7}|}7nIhIM9LMmpHDW2|JG-WW^;3~dU1`^dX>xWp zlqS(sAsVp}GdUac-4MLoh~@*D1%$zZF$v6r$YO3^_cv=TNCBBlS73v&+ z0*++CUR=}~i`sV$I;kDK4A3m)Vy0OzHB!wqDR%M@$dQ9fO=v1tUNxqkO~qCr=u#0X zSJzPD2r?{~17NGiQDQ45ovB^Qf#=xJVu|);5PCXJQ*KpF8-}aK_$vX;oGwjuHfGkC zCes8&8s%brL%dAAx)+rw#&B%V%503YP@5o8S9WQqWveEp1$m3qDL5#99FUMbGy*Y@V@G*epdU^tGWBo)RTF4Z6){oiW2zK`YM#xKDwcC3 zaIOpv>{WV5Q7JkwPlo<6Hiv11roBZ?#woKTniQQT9|si((QYQS$f$~!ptHI{gJh^A zK&4uPP8?SknB0PQo8Zpg;q6jV1n5sgHxm2W?@ETKd5yf=tv;@Qc`1N2A4Zd+bJV@Bf z;y|~;nYwI%V(4Wojh#LoD#>hJBuYXr6t8Oa}cte3Y zIW(k-69aJwb+o%i{kg%jb7Y6xNLx7Q+nw^CJm0X zDk5>pu%VU^tD<@@xb}Jo~Jb@#D@Mm2gN+6aMTazhWxg$hNnH z0FmAt=;J>6L^um_mKMZ5R|Xk@>tgWTTe-6i%HO0&?1fru9VfwqtHO`=KtK%OoX$bB z+m%#VD8;G>L*ywOwU?Qvmfpw4;iYRJZi)2Yhu%+?^OvaZmGy>)QsGw<%-&XDp?S-RVAWScuD+UsggRv}Sq#jHZp#sIquQcL8 z<*rcCt_Y#BK~4`YELzToSwk_7pPgs+*XY9MZ&HRY4%1`@)xU%ixbQ@*g>jS)$A}Ff zy`hI7{p4OPw;N7nsZz$a$63@K2&zB|(@bivMYT+%^01)NILcfp%BvTqHUa!{?Idnu zfn1d)!Uix=XIH8CGL#php3w_)#!znK>dI^&ht-f}QEgfahngU7nR+-Lv)YC#_#T+i zjuqjQIlZux36<5ZuIg0<+SEBZkT-^+FfmKzVC5RvkNWGu)9nFPzi3A}VMz16R2^$U z(JgS1O&Pfi6(CjT>p=k*6=+w+;x4YTqT)Gd-&?3G0KVjeuCi+)r0U5A)m>LG&4zLo zYQDEmy?77IHL3lis4QJ*@uR&_#Vr$I_D$*U=Do_^_cZFs0pQ5YoF^IplVw6Lm7+_S z88VBeQjVQ&MA!79Mbd`Jwi9j=a6Si{X~C3p&=M17rWlBn!<7VeoqO5-N~mz$ObdA~B}6ic>SFmdG(~Lr}CXRFVyR$7xtDLoczQ zruJy_v$0FMF8|Dwebvku6 zvmsNWuGKZ<>A^Uvyh5%GkZTvQG}EmoZjmlxm!p>=n5k;+;&$zHp{CXZ=d&&r8ML`W zD47-I*#C{lvkp;BnKpYbqm;Nf8#P<5T{xzhBgD?+qE|C9Q)rl61BS21h;{NRooXh~ za2!rpI)<65*L+M+N$v3Xzslv=s-=J?Le?PGqgLxQ83xDZq{_8w3vG%jA&`P=h&RHu zB5iV+yugkY$u+ZOXliz7@w^5UwV@*W$782Z)5kT{Ce2JPrg#Xon5M3iC~7#UCD{#m zh}K8kuvn}}Hp1q6U>btuo8Y>3v~Wx-5NRnU3`T+yBfv~agNUgPlBrNSO@RccLCR-H zH5W5fpdMZGt7ZWUJ-1ymHM?P9j>u`E;8mU8aB|t+e6lL^BF)S00j+-4N44u0n$d3sT*Ft{M zqK~lk2D{p;YtY#WLN)5exW@}|5Rt0MXa_@t&`0v2PcI(@BH+g~h`~~_hoH6Zl(IhM zOSgl^HXnL7&WvIygCsGsd!ZEj%~dW?B4Yph>9L;Trsw~@@tH#MkScvCaIEkyTS4#J zuUxZv?{FAg?+t%BaZuH^&uMS?P>o9j_duA)Pc?Zz)8ZE)gcGvY&tOBL`dT_osVYAh z#&n+GpZsOXq22yB1Lp@W+gwTuu2J181z9>UfvI}^0*c)>qN;n(MpTW-mR6avb-W{f zIuuERnM_x|N@aYGGU#fk??Y(l926_s6)A)x#Y*1q;o(=6BbVP6e%=rT$fH;?63ESx+YI?&Unwze=d(J!L6gB^A#1X(dJ0H){c^|>DS>|zH3 z*UoQf^t|krIY9|$t?;dV$Jh`w>435#peyrMopj>Uq`yARIr}Lrn?5h_(B#06D^`A9 z+3;Dm?enUGpI4v#yyoiX`Uj4e&(>~yHtE>sbywg1u+mAf)JgS2Sz>Ka(SxC;UAsu{ zH%-vMy&6krWa+0coy%r#CM^_h{(bN0QTlt`VU5)~kNrfO9VAvX=GOXeF2+4OD!XB& z3vxR3KYVGKps>f@j9!$@e>=4GU09esjPtjwX{Bz9Gk4mX4cih|ON)c)PgnWBJ(O{9 zmCsV$#>B6QA*!&APW16vY{{Ji8={lehHjp&{~88|(V)nU%BWB{-dklW4)wTbUpxI^ zVhj{=b5|7e0BZ4!*RR`dZGggVcBn4zi(ORndtE`W6)cz+=KEn&D56xkL(ztz@R3ck z3ikbz4|zLk1*V{Ug3CHIQ+|Dym!U}D4SO3DUfGaWFBE~B{#~1bVNxc{hWDKen$YNi zlJ4aPCt23qRyc2gUXDQjO;rN*N@v+^CA~vcem^qYHS+T&^j`dr2U}U3YSdGupA}Uk z0n@s2I@PdWB*UkNem-^*+5T>3mIQs78o+Zl~Z$V`U^{k12%|viG9|;DT-a*dnjHo zZNFc!Xu#^CzPu%Zv|ogOhuat!cXk;0W(zHXB8tnA*1*ysmPdIvZmJqf(U(YH%h!x9 zC^(%%6nn(Gz?UN#B1`UxT1G*HXqDL5Rd}S7HY;+#h`UXhx_KgYp1i(t{{hznRQAFu z9vjX)!DqGT^s(tD-NJy(Ezu5hkUzc8mnude115OIZo|E4_ZIDlO?+g?klxwPo3t=a zdkaQynB)K5y;*49`vqQ6OBY*Z`pbtsyX$@|X2q=t*%F(zb9WT9FNDy_rq7ys>i*)^ zl{I!dll=*|>2yKd&V47hUd!`hFH`3f(u-ZYb&*?#s9C?>$Yz%^jp=NCL zpiMXFcGuGz(Z_oClB4eHgGfY)j@AS|LEgbmC&h93jBE1gaO`=OYeDkqc0P$deQ-J2 zZiqUKdY|JRAaby?5`<;sgs}2BdGuul3mFQG3T+uE#7MJ}K}l9)A@BjWj6^4YdG+ zx!com!}lj&l~*Eb{I<@0;;ygjb=J;wgv2tM<%LD`nbl0w`*BwDB1fu!)1vVoK7lRn z4DwS;F)2cm=2&(R7-bhs!kt)O+qJh~+t?MFJaEI3@~4#lX(FJ|XS^UWc7rS(xl6;u z37@*J?CK9&ZqpTV>CWB8e#B^1a|Z$PN*OBLq{kK5K<9`N&_j*r3JfDS0O7kkDX>Z1 zPcikqDnI#6|30dcs)RmaK+U7>F%KrL`>VfK05v*}ja<;0R~C_p#|la|YH-6IkB5Ee8{ zWG#nq-%HAn@V7WWG1%7Cqw-7cz$D5bvaCx$M2)Pc;rhr~(*9825pcx?2ve?yNLHpQ zO9H_gI2za5KXGveI-=odXj(2hv^S74r59r03)dH40^PN=0k3yPRen()=}%vn1n4j>h*um8p8+7erX+pCz zN#!gH(p{&>^E#^W9udYF>&0!{5e*%6N8KMovcL4X_!!9 z#)>$@jr<$HgP?jjp*#k0J%fSf=KZQp%PKko``Yj!y|Z!!OTqN!SUi! zLK$Ml9!plSWi(7VqQvP;+XG8@_#9oI&t7@47n4t+Q2Tr;ue|Cf2vZ zWvSzc{n7+^4APK|L(bk}DS>6;V$hNrGmEa}0=OoY6um#zzY`$KI~2WWHzPUgJBhSapA zy_Wk8QqAn1LTv6p-=2M3HCea->oqvy9cL6IkLuUYau`PRX3P6O=vx+!bvW14(qr%Q zbS$Y1)7X32$G>m`{lXseV}@@vR4mk`JXGH*6D^ z{U4nmCKQ$O)=rupx!lySUv4G{xyu$y*ObfdoPYAkpA__HggjXec|!JnR=N!nB{q=G zFipX?HvuIVa2{_tS>bvGvEvI=`G$K>YeSrPW2U4nG;IQr(lQqjdtKz3lXvho6zc>? zCN1ClK9Qnh@0&;qO*Z#Mru)8PTT{9ODmnsa z62&H61u$9DY0S9Q2sWn)As2migTGrWsh~;ax!r&X=qi*;dlcRqBv~=sk(R$(VV`P| zhK(|9ScUZY{2~XVu6HRpwrBLmW3DH1NjO2=p}s-cD}za6z2v}OU&-b{nBQK z`H^R+o068^@7H6FOI4=S3;dZ-oLEWhn#c=a1o)NrJNJTdHkjE7#uY&X6wItr21@$8 zhi?SS`ooAogp>~%`{H`QdK47Q01tjt0%B+~Ab>{sbOf?c`}`yM0ltEedcgk!MC?}j zntp}^2a0zzE>fooat$HX^r0S;dymOk-{w82_ACe8m-9T0 za-!6ni&J2A+-dG@2oB^)2Dmgcwf^DesXW&~IWn9stW!`#0HwEYH@b}|Q($E?LUmkv z6$J0(g?B1_Iu$o03aoK<9$pdts~l|sys|SnJ3KUa9-`-gO%RD}VvO>gOltCS-}&<} z5xNPpv-C=K@Frrpg2?6NBq_po>_ccK2Frw4bDB*x+)g%4oz88UBssPND$ zGO87R11)|Rz|2eF>Q$pYCZ21r!jHDyv4H?P8D8HWOXAbF&T|C}W=Dvt%P7y-KHaP2 z0a47OqCgKKk5|RZXa?Pe7+&e-S+7T_L!(n~Wn@%%dDm|jRHds<$jPndqUrmiT{1m$ z!5K*dR8IO#4oE+1kFLUe$)R55Lb_5#Qi^o&Z%Lp*5{4;O6$!)M*C!1z}u zJSzHl)oT@X2Huz6G`@LU-@uigVCf4vAf!`(E5D^C`L;!IJ)N}yXAgEP^E zuoI$8=rNJi{eChaKD`gHL*bDn(KsMD9d_#CdA5dBs3#(cj!l#2o%6!R%(N!%6 zS0DR>*cQ6<{y`L59$g+9Srr=0g5e%7c-#pw$rG(S$QKS_aAS>1plTOT1;sH;-a-M< z0&*;h%6YS@ABHxp=xX@u1(D0g-U8X>3aSkDCjtpYd=y6&N|c8Y1yHv#jwq)K`-yjd zC-(s3l(9e@5L2(jT6nHpTZ4bt=8%a$FRrD<^eC`QRUnQVF62WOAXT_B%)||3!o(h4 zlp3UR1b((Z=qw;w+V`}X4;A&r$mCSxf$H!>JAVz^)spFk@CNO`au?83s+hcb+UxE+ z2*BI(QcreMP<5b;|A&W~N9|G|OocmxSJhXsYkv5F)m^Stm8vh)jTv*iM(G~u3inpf zRcP+|^rr_B?B4WHQorr&w_UP@;YaTuE=e;xJ}ek|Au$A3D?(1BgEN}d(Hq=HOQRndjD%Mbw^tHd_^Fm7F1Ewx(#*tNM|zG$ zoNv({yRxwLP-wMgLfd`)@b_23fT4vK=}RuY3$L`@|NU)*oAt%1Ge^v~|6H^lJht^^ zWeB+B%)%plGm`rn;k??M^!)d=+g85ax-u`)T)lmp26K`gaZHQ3eoY!bt}@UlpOSRH{REvS(s~TaAJ#$vjpPZq?FigXnLXikF+siZ z`tNeJ z_=Dcpqzq-rLpcz!*G#o?eTLFslmY=IfrL`NlO8O*5_0Und34zSB44p>-Vy^Y2iS9k zF@@&VwB+u8kA?QqP1h?W<40Vt?swM#v72i>(q|PmmwGb76Hl6`^;}m3ycseb%H4)7 z=PjN*6SB&^icpl^bgyiTH%?JA)l9LpxQTg-^JXuS&53^T^44DeW0?w<_<`bMtpdA; z7sI1+dBOBBgdW))RT%%l``uTs`BmprA!EBrc7 zxtH@i2TZQzpwsv=;&PtHfXN+ao|34@n0GhGjqiB8?ox%%n8}CMx5zu)%L-((jv_e7 zSIUdodYBxq*kVvn%0bUDHn( z*k0#n<%W(b5Dw%~uJB=T!^En{*I-hWAY_0aS*6@-<%X5Op<^wf@qO__9g{fy?s6Ul z;mux?FtT15#&9ejC^}aeW%Xu7!hV3GyCOLDOP~LsV}0_x#quDbigQ7kc%eTMB?w}w zLK%CQG<-ylAY}-ozUGoTVJ6X(#1eQg`r@c&XA3#O2!~nwnCU8iMt=ZN8JXJ`gDB&1 z+-Q+1gk?ep2!eE6W-FXz$PVT56GW>2a$tWB%<7ev%N^@7yb%3+IuZZRjDObPMI4V8k(A&_)Ifwhcs%5eGac&dCW&9Exgn*5bjdN8T(p3 zb5bK!07Dhd;3hN)0=sV#)qSypKtjEemAWU9BZw?g(Z%v9Wl4hjrr2zO-#9eM%3~sY zq=)Y>mNTTPz}~*#P9&IV1xWq`$NaLdun4j z;*`Y5zDGTB*LKG>K&5B66AE7PIG;}IkL={dSvQ>ergRpABrBK@@58F^^HuW?*!$R$ z;p1!g9HElVRek;NDf9!6Ic5&`RR%UW9PNVsp~9Pspqhxj*m_xlMM)Hz+XQP+n6`pn z(jSKKJp2^iR7@v|*^_zjTBY2)z(OtdH$aZ(FN}EC2-u~8M`3t%=g?rR* zGrqg;p30L{X*fPLUe+{9N!knS6Z@ydd)6&E!A8-uW}3f7RPS1H@z=^rD^7;YKD>WN z=s!M-|M~rge||f4>FLD3zr}F@gkzlQ%EWdMi+c471P#uCnXQ~nr5TN$u?z3^ZYs;# z7{JpGi}dB!Lder{a?e@Ir)^=*JJZ=ay*%&70QmpGX#D?<2l)T-8~;Nt`Uunk|4T<1 zTloJ<8gTV8fYwg@mH!KfoO-fzs%Ccn|IktP-%#uz^A)AH5k?fy1q{7Ad9a|#K`LT= zUbc4%(2rU;La%r}$v^L+EG*}Ac>i{I0Zf z#clKqrW{urkOP@EfL^;pvCZ#qWQeU7bZghKED3MT0w5L7?47<-5mnN8yKe9tqeMFA z;&pe8@KwR?qU9^*N8QE?ZWRTkXWIgK&^jZ?Fx1!j0z11^r{ceNC;O@!A0b3ljY+E?ks?{d-Yl3zFawOj`)`hc&8ZvzFuzINEQM1^vZ}`fe2EkFLxLv z;YJ&||BX%xm>;`q42c174$xV|i{QS6!R8PZE&%m~M+^yO^*5hqpyf^A;Tf9(;cKOB zYY!T3X{JUK)YqAzfweR>VLiZ27zgyTGM<{~57N>PE#J!-0ZjQjgH~ni+u8LRI>2jx z+^b(g`14P*Pti>HF;}{M00+eC0)-2J<-8f$dw_k{4Qu>IZ*jBsS2)vMMn1YGLgaz( zrtXM@O{K6`;pTPzxf2IBa7&eL8BXw_oSkV-ZM{xMGV+!Q)7IB(Hl}^?of{H9GWi3Z zZ|(l-8v(E9Vy5<|M%-eRH78V-eERp!z0FT^9I*B859q9MJ1Gr#;Kbp9!Cly0+pWiE z;^!7^4Q%UW0t&!-f0;;r*d?W+`ZQy9b4}*Ug88wFDbnCGFgF!G1VuJ}`zr-GAMvd}J(2uWg{yaoUUD7atj*0c;y zQqQzluYuO=8F+BJ>CR~liM0w4mS&gh4CNUaKP|?-;5Wd! zbmE)sXO+XCWS)Ov$|J)T?qA%ChfS(!!4DxZfRV@eF+CQ(8vHxw78j^WXV_m2aMyhf zCRZDkm^mn8$au=xR5dY$n<(B(F!aM3-G z;{9{!d0o%Z=0U|X@0iW0>$~2Dt{l8}hK_7p}g^xU`x7vs-4qYwuocbJ9o z#FOpQfmd#W7C%5%hEc>Hnf1~;`;=@3k_{YpeOqer>oqr!L0alTv3&Q1MH707?;i^Q z**31-rSXKFKQEc9zJxIJG~57u)}q0R-qI9fHVPnD`Jt4qxt*@T;QJk1$tNTM$ERJL zlkNe9XXqIq@F-68S{J5gSD8r%d@R&qK*KbEPV;QPaIf2@*y0x)Jec0^t`loxIcAcC zsq`8)P6r%VW(l&vhwR|I^#(fXxrb)E-|pBlRdJ|n4DvX}LPfTA;3eFCSBr7e5=sZo z=iH&0pj>lGtXL?KLQ$@G>Vd-`X9gGcI%(}V^V0}^au7rTSeOL2fwj0AmCIf+CKlyB zom?aEJSNvNtth7%NM-h31kJYYkM@7`jF-mHw@m1HO#N^xb%2HD2D94*ig`&)J$~?8|+$Z)iziAf8Xv zk@GXPr34h-X(7(5I7c&#=P@N5_k~z`>)39WjHHlhu}2N65XZzd&EIm3Hd7nOHAiRv z!~OgInHw`d_MAz29>f=(y2)iJ)S1%&FCsj#K+NTQx+I^ z86-2%9cr#fcuy!PR~*@)aQk?-dtq41>1?0j$!NAfCA(1!-|ccV0t)^n47eq<@txrj zMNG~Tng)m3n(Ehvc*)F-IEq3T7!1$w>9k^|{>`gq z(E^z2#6`dr<_a+)G;wK_HuYd_{XPkPfRakp?M{wDQiyaP`P{)tKZSHp0sv>N5pC*L zG%BjxfE`lz-%)HlFp%uBOrnklgxx70MrdZvkIr{bH08clgz81(+)7ZM-!+nh3;dHO z1ezCJ0|PHkOzPWa6c;FlX+D7M47XUKkAH3BaNe1t*$eV65r=8NAo5lsgk6~a3ylrS z15lf_TVO5)=uP)7Nc`0ZvFcAR71llv_qwsj)eDfiCb%54 z3iaDW$R>~FV;)bbx)e<5`ZB881FrenefU^E*vrz7$4W^e%&0=T3BX_UiEHPAqHr zlTVjI^Z2Moj*{22*B2$)9hg3{;=|KSi|*4OA87h&xBl0+$Iz_3b*45ZX&EN zU{moMx*O))Ks$<$Q&c^pUD|^VdQr1R(WCGu;g#NZrN}%VloL;0_#+KD$X$!AAraoP z&@AM8I+FT1CD}fGgti7Sl4k!wT%{+Bh9alMc=*;j;vZ`^$pf$afybB=d4_drJH{-4 z;b3IVCL|VdU9ZQc*>FL%SU`ydOu+Y6{$hIotXPJZW9Hg~7ZKMbcH9ChpB;(-rAWUV zmnzK9K7llv)WPw{OL-!Ohd*vxgNj8Og}@FgJ`=&<>oD4We76x^glHW0BKe_6m)1dSc|bv^XO>Mp^=KS()hbi zBIqifZx}bjiveiuk*(x1I%;+d3xf?nv-wdbV(nqY3M}BK;#q0ft#ow4(jp-in90Hl zv`jH*)x9{@+ZNm;<82<;4w5k2%Ho>4k-j@OtxE($w3y|)(Qe}y));zS8rpL%)JKBg zs#dI}+Zu)2_=jQ5BLb~kEZnJRmnp6QL=m_q1SFZx!J5C%bJk+x#0jH|(H6F-IkMG3 z4Izn&c|}GE)ZeepQ{WaxF)qKEFG@j&gH{3+MyL#PVW6v}c)g2ZJ^)T=iw?iES-cKT zE=lxJdP>5vp(@_dJD~1n{##Ol#}OV*rYOP#2PMi$*}5=jEg4ISQqs>DZ~U$vJQaf> z?{yqG_#Hd|6Q@4w8 ziAvnWG~t^b)9y^d^*mfQ61Pf>b?F5TTq3}7csvz64Q6jg0TY!tcPXJ*NiR4=MAC5Z z?I{l;s6xTr0M?lRSl+>;58zHJ4W^WYRZ2?&25?tlSN4;}lEBeV$=HxhD89XK8R6_g z3Z8n>C%e~YcZwrF<#^g<&tEr#uaCq4$*zCeg1>GihSy$H^u?XuSq5O>u!eaiTCgC-3TT*(AS$k<IiB^X9>sj1IGu#+|6XR;69ySt`5$NyOD;jE+*#WATf_tsGf``{bMZG} zFQfLqrir+i+qcmx?tD|6?H8t58@4>)TUW!iN`ti;n)xU?K^?VXDcT)q1+?hG58qB0 zU_REb2-SxD+)FBDV6ujz%GwT9uE(C?RjdZTY0Sp9h_E44?48TLk4KG^V{!L)Uf#wF zI6i)9{K3iy=*r$xhLf%V<(RPQg(<%Y-K#o?D=Qk!Ui@HooZ+`3?&@>hu+k~+Hne{m z!{_C(tNry?9;`n++#BV7+vSmY;QfGg?>v048ESl$T4$?OB+b-iR2`1!T0E;>atJhN z22Hn;(o($RV?gh8$9s1V{XFI8eH0{r^syUR!*A{WWmNduZ{6+^Gtba~Eg#|=Yt2py zFgGuFPVD;0@?p>23!a{HK3{4g!?lTNU2C@V9_JVbva7(Ro?iAy@1mH){7#Ih8?$QM z={Z7{mtQ7aa(ou|KzauJ`Iy&V;HLH7_#+`m&8pPog8O4?7~3D}#_`8eRJM+T`a z3!OJgIH6%Toj-y^U~&<% zxb-nM4=Htv=46Fh)Fp^HDZz7E@VBG{YpN|*dXTFDIyq=z3l&Z?nWZC5r1&!+I*N1g zPGEGzd>(3{3*#NJq*@!QUyTYw?ysSZbR&D zN#5S#jO>C90-WB>;hkskOZH(NH4sjyiLMfTK#42n=uI#Q`WWD(a%G$ry(MHbo~j53n0PvgL@C-JrPg!PPiY_on!zlI(J~Lj!N%A zh`#BQxI4-D!EM+pVm&J{u1km;Rudc{tUz-P1!sQb7%-;M%tX@gGSGU>iTA9!+W@L@ zC!S@WjgskIEx|gPHuPcv6Blqmata@V7L9qI*EBs<@tdgi$XVT5DNfSRDuo~;7(-*7UIX~iz;tWbX)D?EH5kDCzl0F};89H7#eY}aBa7Nm`) z=~#r`Z4LomPVSLrO-O*FwnR1P*-3Ew=Hy9aE9pE3|K~-W*HYByM&ctaapz1jEy@u9 zcgr>Ur^VQFR45(X8VD>o$bNY8Nu7tpD`5r$h%cURtc4*bxg_iqmh6rnMGA=}yN`7I(1QIkc z#-uZ=+_#j-95@WTV?6qG()X5oQcq}H?>tAbW|I>k^jZmeuNdb!jXF-{nqLSxe<#cG z1tP+rQbY|d|Bam`#P4Z|3)iB#N`iApr(Q5BQd(Ea*_*(`5diqk@m$)O+QD6P0&%bi_y#e40TOKoA#pDQqi-u zhRJ`R1zPw#0nNXMagRB_T^E-DVwW!LMZ0rQK_nD)_nc1YTJ4DoxkV!92=uHrY!u0s_MH%*RWgaU`=w+L=y4+`E!B24L9 z?M0&E9U-RMo|0B9Opy>72H*YuY#3P7N5^G^0ryL>C!{(uX8my~B148r2ZZi3v4WPs z{lG%M6lsVAfD!_9*y9|LfDqeZf!rNHJp$Cl3lVDa#!fc{jm%4QI)1t7)VS9MU;vTa zuQBB%0f%DZo37ElCEsZg_?;<6!k{z2Lj)BE83ExNvM&+}`{oK*n}I1bdfk0Ps~jBC1=0?9GVWtG&+ z(^#LX0F-X!S%6wxXw@}Pa>*%bTH!_Zchco4F8fk^yg7-6VqpGPGN2Q~l&${oEvC<} zaJ^MO|F6jRTLTklHL_SQ#Pjls)tumkkgiDC8Q<$Yz!_(QH9WwpV>t?t0=iD z$Bu0F6z>2GJV61<4!E+40VvlU0Sd4t3b_o!DD{QGCfPkUcR2<5VS!Ep$S5fi&}P@H z;gq5ji>A?PO<{3eST>jZ+2~|PqH>a589N(8V%#elJDGT)`3kEX^q?Q5^p;cZN{!Imii3Zl&)9{8^duABo+*7PC;&$K z2(?jec2-DCInYESJGIc`rBPO`f5e{K*K>%*`m)}0*X@bFcnZ$hnHs!pG!9S{c95SE z%$y8*2xiix%wSh?!4vu9UNTaLd0cW_d;3J*)r7jENtwD%fyGE2&4BhVdOAW%*WuQy zG8MMX%sAb$Q;%Z{ZN&#y9{7~E<`MJxYwJn{vvJK({Ij5|)<(d9=L|pQ08S(s3_R3^ z38qEA`)mbNp5y{NO{S(z6=qfm>08Y#q*;HVdI#h9U@?ca_=|S5Ng`-yQs!7@$GjTy z$#t$&?003KAQYv#Kd0%jblE5LMw8v^#30M#i;5K2A?hvR;|m2ygEZHy57)IafZAhx zRf!!s$+fg==viuUVK~Yj~7H#!3^0)cYt~Dku_AG>S=@cXDP`nW1 zN9*^RQtCC7PZ`k{=6eqqq>+>eDf#jzEa2XnWqeh`vj0%yeEU?^)}b2XGXNnSkP_-S zQkuZ8Z}o0I{=wVHa$c-|x3&`8Z;t{#Bh}UoYEPrkCDo=Ok6vbfGO|AUo;B`L<8}LG zgLAJM6(Q-ubthY7chK+~C35|h)U1TflLYH|waLZHZ0~(Qm^&4=yknra8PWoGx6DsY zV`w{g^vUZvgeZZotT1>(SUVGAaw55%} zU`%J9c9&s-)y9GGAjUG1kM+e@;6a+4s(Fb|0=w4%u2~efS^Sfyhb*<(B&X)V{9tm{ z0@yJGGKi~jiE4J$jb)e&N)pv?Z~d_!r_`+U+cYu>DL5|3wMm;SNOHWpt}PMgmi$D& z!^lq9pMrOu%Es=&=Q#jS8)sZgPs|cH=zk-i7SGQE>NX*%n9_B0~@)JX)HOAhY zY;0jmzt=bdFk1d}`zZ*^+!&&tOE$2L0YyCNdn_s0hITfLG1^h3ewhdZaY2v zp~SF^Xfuh&0ooSS;`MuuM}Fd)3_)2N-0bw0Y_oMB6 zJEOwoGH|-UjzYAbeCP4{JgWVgvqH9iKcgq4yU*I}=)poV>zj|{SmCcFU9yKR{(l7K zrIvlOYu$~og6pgE=8nEg$&J5ThyV63%}J9hxq+Ma4z=3PEvW&YKSR?(IR)JY^uAXC zG;L_d%8%fI#@C!rKZcG4|F#gVe7obF%2<4MbWCY^fX?>V{O0QJ&h@<4t3P=>^s7Uu zmad-3JN(%EO>*9{q{$2Nyv`?&CKr7l*n`|Yvt`QlM91DQJ=S;S!1H%k_m0_}dA|T$ zF~2C@cW24l52s#qkFQ^~KjzBH53MIX-tJnk-v5R3)cUEfRCwd!{wKP=hHc6|TDJ1j zlVz(Q?u--{&%u_vKmOc6%QAncdHs6Ni6sccf98(-zqpV7KmStzum{ljJ2T4_Xuy{v zRjMu)-p~xqN!E7fA}^7%nF)m=fMB@q2!1q{Utr>xD8fr@gz`lpX2iWIG5?S9y8h3< z?f>=@0I(N`MC$y#h(DvE2{F>HEZk)!0&1XkXGM^grpc8$`~vU{FGJ3G(p9vGpPJ#D zSmOiO`TWNs{xB!*@1(}-$G#?9{B8Mf5kNQ6kt&R3B!bDBEt=`j^1x$D*?uKkG=;h$ z+ehvj>0Pt2PAsRmujE*GR&7pKGbY2axa0eeI>8RH`53fOHz%RUi+O^QwF$}yLZD0_*&wyK20 zgO#)%a#^1`6BM+7J>~}?w;Y&yp?2%fyqqKwB^pUrys@#!TlWYxvyZ+_GuqFhD^oUp z3t?GPN|DLtsS?M8JAPC_WC&KTP*U52tAua8STbO8km8;e>I=q4^HEEBT4wOJ!d7{(eUDw*xl z^L~quz2WP)B=;hVbT3D`NNsO#rC)RTNlLq>4>e_7U;Gtvn+U*+| z^S8X(9*bS^U_7R`tTlXR9<86vC9FKx+?{2!eRW}2U)7iO>z{ZC4SMXtPZ|RvhU}VKOS(WG zRjw@yFiVR*-{aIe&*@&e zU&uz@u-P|W7lhs>Hh9;emvGV>T{}Y8a~iHfU89dkINm1r-oF0)y5*YFAFu!VXwZ^V z9sab?$u$|(L%YgpBRV}w&k9(&6Yq>gUgK#7xNRA?idfweP64Q`rxUrg=_J|Qj14H(Mc0}uDlto?v+_90F3gl$uTyVV{?f`PmJm$eKLoLkcPGtDR5^|+ z62Yw{j?^Z-=5}CIFIJpszL_fWT<9d_yU!qr5~;x8Ni68vqFyv0?YB*fDTd9JOlO9W zz_ja6PWxsHB}AJbDD)?3pC0LUQ!bt1tXM=vlG{NqSJ(_HDIA4?Ph;MjX>i|?QKpY0 zy;)K<5gzHu=fOVb`Vjg0nONMVrfl4=pspp8M&PCQa0t$ju(K3sUj*_njZ+(>Zhr)+@6%=@_HRtYG6RXN1S3vrRpWHKoKYcaF%X#kW?x1h@|E*ENb*C@5=P;M+p>g z7wM6-%RE>{uw%qpYy!Ji=+V)3=q~(B*CK=ax2(7W>J{D+$lAXokKH8G4Ik*vO@rvP zbm(+Y37^;wqG(B7!Z_uknByF}C4Ai#bGaKQ;-J5zyJEMfhE05XGp*Cr)WfYvBeVyK zA*JETNj>yZb&eDB!+Dk7nWQy4F_sMEBKMX|(*fY98MBrcT`9vKRjqYekV81X8KkKW zCw~pBdgUjuGw&{O$x`+mz3azjf82Br17h7nZm6Hc=z@9&-YM|&wPJxNYq$@_zBA@A3GKt$pjK|^KLO2=Vat<0*x|J0%unfa|u6M144Ksk! z7IxgX!ZJ32y?-6efY4fbEih5DG@HF~yN-|3t;_w*pA3c!YUV@k{+Q-nqQC0$eC?mDxx#$S`WFSr6Dp~Ewfn#}wF8nZYPSR80 zC_mo>0-Ng06bR@foE(-^JQ`c$7zKy{XpNgq;x%^wY^|(80qY&JS*NT)q8q$d zzd*|;K)PJs8Kb{M{lU#w53+rPOeDd%hY2uidif~A(;}#ZNiT5TP8`<-kZE*rP8(i? z0^YOB@ca=fR|yl|NGK0kLD#qfQW6Ew0R0M^-w5$l&}BSY0aX!=a<`ypeHlVhI z?uRpVJ%A}Dk{{iPP%mkhETACQLj1S_dcZ6XM(*J?f@ZL7o_KkX8A@ul*7k=tZ6iy~ ztMN@_2Tc|L*yM9CXJXK8M@&QoP>r;tc<}(B)MJ{Z` zi@8@x{Py327)ZUIYh_oLJG>v^O>8~y{hb~!pRaMV(eNNQ*_un|k=ha7sTn|u8^V|C zTs*RTh1g-WXGkwGmsnoJh%`1TgwS8+v%=Ew;kbQB<4`;;T_fY$A~rS7cwoIY>}F+V z({AMfEein}<++E>y(assX-Xnre>~F;Wvl~8AUq@2D}1m#j)uIw@BQz+L@Xt^FBk~qMLDijJ3QE3_wfV%x|D2drRKw!L{ zlr&PYI~&Gw6*;8ME6#Znx#SW%OZ%a_hvMBwlwKxL8305PfB1L^@8VfQHhrnKJ-ayv>l20M4QyH0%?>2t`h2u@kK5d5C?$6M13g61RyQsV@(^vy3>#M{$ z)~AMq^h~8ZZMI17Wj$XpHCWK$Y;&};&VKFS&`rwAGAwB^f8{+tmU4_`z*=nPYViL} zpjk9La(zM&|DILgKA6-nsQ!2HWdG=cf%8-OrjF}66@QC{|L3fd9RcTR*F9^zc>>DP zvGnKBjJe^Zp$JJ|0mKa)1>8QTz2u*aSLp=Wd+7l65s0*k(hFPGwtjOy)pCD?>edgw z4O60HM)s6*J08>Dlmcry&*N zf^SleLC#2}O<>Ic7!XmQpoqN~gUfRQr)=oOkum#C3XEwj0e_i{W)o+)jSak#n8n;9 z6rWAKoOIv^sS$!J02jQa$N8dAr)ZYB#Vv z;hLOGj}*D+=vKIOOQD!-8d7gpTCF!(+2QPM!p3(I=tM~iG7L4f?U7wQL8a;NH+GASimVfVEU zvdWDU)PSCqV^c{E>KVsHtv}(Ge4V{0vM$)EPmNNLw(vCGZe-@1zDE^)3UArdE79|8 zd=qkWG3OzFknt}2e8JK?8kwJyH8pfKqpR~4k+`EgWaHihMr)SaW3|?s;u9Bbm z1<^<1V-a>Yv*x=yqkSNxhmR^%%A$udcsd|T_mCle&Be7+0 z8PXT2u)SM9cYWEZ_%bgOy=MM(pjIq|4K znfVqEno+~t)9Gbccst2KJ1xorUHUuya;vU+23%iu z4njdTd*Q``OaF{OxZ>=?$pB_qcpTB`G1UdnXysA!Jx&AfM;gw}z(eL@N0T1Tuj&QO zppzc;{fJ|p;(egy9e7q*wh0dga!f>Z3JU<*i4_Fwo(o1MP49aDLY4PxwXyq>2bref z5@&zbp8C2xuv#^Sw62lNV%fX0X?azag&KmLRXkFS%SblpwLFtX^L09wcDG-@38H7& zRRa>=#hcT`a`Qc~?FZ={(;&<2VaRN+@yX67-qcEt=9)vCT9RieSET0Js^LyzUDp)j z!`?9el42MK2{+M~`+YBVqzT|OfNs|amPnoQrON!-=JOdM8|>&1`}ooA$EHr&MG z5iWX7T`X=%E_Hy)p)*kiBC&wv8G|*cU4_Z8|)*kTpyM}DM#UyZXY z-^2#ek-DDB9LfN|HAzC6m8vm}NGT#8X4HB)LhgrbSm=cYdI2f(Hxa(nS%UuB2MgkL zHfXwuN2xh;Nuzq}I@U)O)KxUkkX)=K`l(w`(m5&yNKzF*jT*Gz&U2@-s%~<>w%kC6 z&kA52gf!5hpETZO&r61gX=)5hfdC3AS>#wX@|8ul?sYTYJ#PkvH+~+Y{nUKj=_eOc z@pepk__U6hdd#GKntNnpj25Z~h7$Ef#rSo@{QF}SL8%S2f6`mwaJxew|7W}NZBbSH z-R|Tqs-C?6Ok?~jz828pV54r{qc-_cXP_FYI}M<+2@CHK}bU|JCl=n?~!r z&H!S2ae*;+cddW5|AklKjlTbaea-Rc&=Pu1VB~qv!`}6!CVJ9#M)i;1C7D2X^H%T8 z-8FQc4X}{!+%0yZp-CCZes=vxN9)sTMK|%JFBjUL4OhDC2x2|;E3*wN&Zw+;mPKp^ zJc%EW5W36B+I}g5BUFvqo<$5O`J%0pESHrdw!Y5?lYXH$w;0dM6w^1k1vk~m23=id z(m)`I9;?GY>8=f5XhUh?RKH4#KiA*93g1Y)`QtXJ8>3FXKL7spBQpdSe^3-@{(PF7zkCD${5Xa4 zPoEu@Fdv6swK5s(9Qg!r zeMkHdNJO4NKq#OJrM5-0Yy__Q_h^IAvEHy?s|tWBT{3N?!Mol7B;H1$3Vx5}m8}ad z1FkQl>1Y5?L|=EQ%@EuGzVaX7w}0~=10`KcH+_LjBmm4OEUAvP(a-_*+`&~3E-p)~ ze4R49+Ui3H0#h~J_`|P1wz-ygneGZjLB}IGs(d##wKfn9c%r1XSAE+Q_NWbExh6n8 z7@`Nx3Pcg#Jdx|u@w8mS#JlDM32&+RZ%zl~0@|*^ zTHX>DpT!+SjocF-xig5yZl@2#`_4EMme$@a)n`@$S^yaPlIrbILzEOV*0FKf=MPM`#$?(*oi z?3l<5PJR+GVV0wBA3~r^0|wP{{$lq@{0_BN58k-LI{9K3attvD0emZhP_%K|^~uT{ z`$XR!v->l-Jf6_>BIkP?}UC+fW*o?q){uhJWt8S{4`V zBFA&2uG%JDXPa+KbdYCQoW(@stdy~02H_voR$AFPwb+3mEeB@HRKy1FP=Se4vJ4x2 zw>z>~Sl9; zCbjDFevxF~_noW^hfQ5nUdnIG(0W?pNw;f$!6}V>$7%yly5Al&VO7pKzR1?KxxAc| zR@z5!tH*??j7rw<994?Y>?qyG^-E{1#L=l_I+aF2u&YZpbW>rg7-9%*U& zuf*E_-XqJHL9g6u>lP0mc8H^oBA(?3*@uVzi@yE}33bvY)m3(HnH%=`Y`)bHd>K&t zwV%EXr)+Qe#c!9Y{B%U4e@W%c>$S4Pn-T4FA^r$O5IT1(;L_P&E*Fc+j})Z+@c3sb zO83!nuWY$(5a3I(;hfbt3sy2{HbNghGro90Nl$QjVOxGMx}9FX$l4@R=Q2W*C}~hG z#10=1TEBZEH@Y#9GV;@f5|V#Fd1!Xc^WdTsbPRdfUWRGv>y@Tnn;>cF_8U z+NO{Ja3tWSq;$z3gOFCLOE%7}w+8-Nyzap^81!H=#oq8}Z1`5w?|3=A_PYB%k->H7 zsN~iy#x_Z)uY2v?%Jd`?1W8Pn)7X5h|I&MGBm}awr*wH8AWEE=MTYAJgAX!A=D&|JGrGeblR>&I2Z~3WtdXOUqU!TK|vq1PboamGdu@2vj z3Eie0i^#_$HU0MT@^qs|IN6toMiFzHZSzRgE!|;A%w7rJ!SNxfkir8$Wa}Syo0DNO zG*Ud^lA*y`>}rqA#W%x;Ap9_kSw8XB0ZvvTas{{4o^g2V+#qA32DN>|sn>JEoc-n5 z&|94kvh_)lynAQT+^z((O9!X1RmB*K&+WHP70p_L*q9) z3xBf4Pj%tq4hMa_mw0&F&ihH1R(!nqV;}qXhiP#ijN`%-H95q%4+4x4Wp5cj$2dNn zWE%QoN!MZHIKtGjO@{olm6z88;340n__Lp$S8a0YczR&M@$+O35t1x>{q*h*R<8%<8e@d9AJSNzv zpHlk|=ns^5^kz|b0Y9xYD&(*#WD!6o z23$&e;LKi0og6xM4lb)dKEt6WZzg)=h7KFIrYMw)0ITmoBo({X!G&p9#r5hX0?ISu z8m@OPp0y!f?IoYq*9$y}|829qCS>&cj-9U`RsRu@*%ow^V-?)lk#b^Vzed$F6m~qM zDM@$h;_sTwC~`VVI@SGoFtI_{mQKJiZ%O>%tHKLZO~!a3PNV2S{m7!W-p4 z-Q!Tc$FXTT$ng1e>tLQT^`Zt_0zE( zNn2$vFWgP^7&D3Tl=aisCLsuv9f0Z@>7)_|u~z}c{M~#G;A2kKxG44aRHb4p>e^#* z))jIM!QO{zP-t_aCckN08Up@Lu1lx(ki5w>@oukEwX^*edzxF>d#5>vFMcg6LCkfv z7nu)ea-pyc;0S1fzF=g$J)V!U07l?7P_#wLQ4?#qG+UppB=z7T#I{*x6%AhEbz6f- zYXf}t&dBaW?|8dw!b(I%Q>v=Be!R!9pS4$r%E6F<&>R{#UGzlE?IXt<(Q4pp=YT@L=s$O>%LbJcCT7~l!?(d1}{3T zt4E~$#+&(1yh+t}5&bNAbFaT;Var@DwHl3p>>`OVeWYFCS^4-Xn7q|@8Bk?WtEM#@ zDGAe5Bv@|LjRa(!wppM&o{qFVo{gATvyn0@w@j>}gSICJ5Kxi4YAy?kW{mfddDPNj zx3u!uV%8gui)vL;YZX<|5_j%@{1AKbnfwb-tW#IJh{C z*A}>>!aXYwWLtD$NQr9YustD(u5Z!cCiEpbkBf(wJ;qasNFX{)ZHe5=(U46fp*L-J z4m|ad z`(D1NQl1sC>>{8pgbo!X`?(<1Z3^cy{L`YQRyXO$vW|z+V)}mOQ$Huo-PnBI{ppa` zdUwLl`?-&e^M&l)+bbGaWD(_ zQ8iOH$RdXMY`E6s*?5iOBhib{s@-&$g(m_gjkfUuEFp<%PioP7w97cWQX)>1PcjZY>fN7dFxe1nQyl((6T&eb!T*uLf5YlIxPg9;#p9VZg35PKq(LrxY$;_n?TJ@MdD^3(3OCl|>NwQYU>>X+f);d^cOA&Zij zhIbH)9XZ8dH#k!$POFH$`)2|jR_A|KI}_)urQfTBg;tJ7tqUAiA4}eN{YTd!W>_O2 z-uWVoM%iJJ?~K$E>(6+d$6M6CG?e;R9!M^MK~3GVUEZe|JW2Ye9P|X)8P{*O2n>7$fRn+6uat~&K%8og4Oh!n!l-pEOYWh z>Ot$lLTPYS6U>1wC`^3tHC z4vnm{GR3yV|Q)eRv5+p`LL4zPZIEdiy>NSdh&o~UwFW! zd&&PD61O!<72yI7JAN~?^xSA--D=qL$YO8l z-vjPyD-1O!FygE?$-gAiJ0|j+{xzU7MbtlW378+O4!GpB;ro7idCu^qbKm^n+YTsc z&w3Qi+xE~s=U_L7?D%+mt3in>Smq9>xZ&~THtfRtUoLz;_f?-2@W&sQ*qO&{gS_DZ z_m8KMGRQk-%jnBd5)Em6A=M@P+7T~NW1uVuyipy|bR+$AeO4RfyGsNaFu-{=Q}kog z!j-369~_Ci2eiatflv4DtSt*Vpd527iJvgqFXLlX*k0Y%8kRd^e!+ z3N4w+3`WIvjP@BJ3EZ3ZsZGe6^oEu=JQ*;8@}OpQT$cS4_Bg?V#0U-0xl@C-AE2j@Gy(3rqhu)qa(*?SXRJr`i&82F)Q+N=+ z#DnZC-lzQ%I;{87xEyU1V$tQpnwXc}VC`ZY89VUjhs%#o{0ZnZDbMl|eF^()PcuVz z_X>zCwY)Bm7m*Mv_gs;_R_wy57Y^vnb<#z4=)tiArU!#{0#)5@r!kRT8b!pYe&fy@1q^8{JhImsPYs8*@e{{y8+{7h?$|Df!rh==zZv zq1Edj-s3!eA9;@>4RElz%S^X@5JvDyk|QIoYz2+ur?atU1*G~zH99Y|r?>g+;Qa=Z zfO<=#8l!J~@oz4HDQG~Lv7X7lxv&q=E5DHb{#8&uNvgcMALo4pAt}I9!o2X#TfF3W7J#?5 zK&lM^n;rJ|5XrVJo3a*wFXmr0ilcvh`K3VmeDK9YOPp@~+-*JS>dc4jI`u+HwO8|_ ztrzHh1EH4H7Kl$%gqtPjGu+>*TARe(8=pSvb@^?u>dnnl3k?fatFL~U|Ne61{y#ro zx$?)E%k7vto5BqyvS8$n`}NnO7J0uH#YXE*sC)d)eoJrDS&pmeF0xmXg@e3zXA&Oe zJgazqbJY)*o%^=FS;KrHcX){yUaDbe1{{&)rKa(b>4181Nqt?Bp_22IPqz9X9a-`V z?|kqQCqOI>-7&xfxra1!*X@5)HXT~^XZYr46_FpyqE=0}ew^GFn#)S`S!>ZsVfOi= z)QopY1|lAk)n;OX`t!+<%L5=e(9Q%u1#m~FQt?Y~6R8>#iC zntk^<1Xao7`l{VOYRGHx2*~N^6#>q&HEj&H)TPo{Nn39@Mibj@SA`N#g;jhZwL+r7 z*{@Zru34HuNQj7ism1DYEn><}`kbP_Z6A*aIK!3?B=;TG?0$Xb8zhaU2`A#?Enu~| z2PhHv(M}VidsSzM{?YtO6VH_~SdvdNLW+;8PY|z-n=gDvY_tC)!|5&?nd#B@A(kdZ}oo={`Xe@Z%CJa{mgC5+6ApJ>0-Qi z%fo@zx@-SM=EGpdtBMZ`(t4{{=MzT`uZ{R0TqeyQ0p$=!Rla3T?K`jOhn);M;s4#x zv!*ea%RJkjnMkGBN3?V61zuY54?w+`@!qxOz72P11k4mQ|8o4x91LdG?pT$v{2jdB zcAF&AtcwFlk=}A5GeifaEHP0lxZHRi#Xd)&uyI+*+bj?dX;>k}l__XQsagj7>U;d{ z?1{GzI(9z&cl~Jw&UomYWQY5VtFwAypRZ7}Ag;)IARVP+3y>F7e#=k0o!7S{lX*vt zoY5h2!=}zyx#dB|QPuW==NDJ&io6{8y3_KEC&&(B+^B5Z4it9k;~X zI4cBwW?3J(5CQdH2bw#bW31CPA8rNv=qK^V6&D&ApYaqwz!s?n<7F`~0cK#yXo< z;jAPY-8k~Xil3RBO7T(Q&X;W4FC1u`cId3Jo@XePX*dWzp{q|Wk2zDZVI=w zsUl9suL(7j`kZ(eUxSeN^s>T+7z?Lv*&oCQ$|J*5jV5&Te5!K+==Npfk*ox4B0}|T z>E)y$Ol0}0ziEH$$M*->R`TDnrJ(nG2rm`R+_M3cHrLh!D~%ShizDk40P-1K$soR6 z)@K+$(t=x}O@_tUMOB73AwBV2uw8mbUBNEA$FJG1S#S-5A-H_+52A z_x=6c-_Q5{-QVxuJ?haP*Lz;C=lb#vJo(%ijfEJ}>=N1;TU62fPC(?p0HCO3@TZD| z#YLePL_}iFV*n}g96fB^Rd$$}c07+k=};I5v3;Wppjg2QI0 z_?(!~-UML_jjIh%TYpm_k0-zr!J@d$b~ugm`Cf7`%v7=_)eaNcM zZ=p;87jG*%e0IV0BfXTwKA0Tk^NV{QB*6pHfYp+y>>=qHk$u)}T{vGw;p_YLo zGdo_gyQN(-k#>0YWkiFW{^OmsZIOOqe$xwqM2aRr(d!82HKB9wcmQ6xCEu^7jBNbJ zhxRAeAG|yF?eH*PdFXK2d;0V){$$_Xr2n#s{kJia9}n{XXLi9rTvb?Es0XiTDW(7Z zAd@=GmFf16P@(G4O z7!W&A$hXpM0K4*ha-7F>^cA+cHIbKJ$`N+)LyTr#cIof0;3BlmwcOT zH?C{&FTV+UwBW3)tivi?CK&qcFQai%fi|nb%jcE5fxr3>2Vc3ce)qv8iq`j+FK&{a zdJ24(z8SQT@Obyn2fg&)=es2%Bm1*NN5Bfp8*IvG3_Bix%q7j44=0gOK9f7D5G^+M z7AD^q-}L1t)%kVKB|-A4U*|jUwRh0;ttySj1lIHRQGpCc3`7N4cNd(FMg>`SW}4|3 zQqf%{#m z_Zro}`a0{*AL#{ds1cf64`rMSV-s3B+WJiF3*-w$+dkowQ|Dhk_;vUBuLETa_yK`H z<_I~Emhd)#paHJc7%d8Wd;V^Xdm+ zs?)~d>e=eCZt90u>$DA6(QHVYA!9;0vH19&L|@xi2IZzk9Bf=Fb-F{33sc8bCvZKQ zBCkOCjEz%Y=wi>YBa}t^D6yclBGD*( zY&2$#aq$B^mfK>;knd~vWhC_CmVNi49lSHLR?f@V5|%>WkP-b~bh7_x4psZ5DJp;H zWZlvK`^pv@6Lzz7KU{p|S?85}`v5cMpDP=x0W?Sbu;}Q(@-vLi!<>WV0W}B13U#x+ zk9*W7$VrB*2&FwNbkTGT^x96uy(|C8KVAN!e+y}NA@dV!J!7IPe*wdrZDqzdu?k=S z6+@0FF~w?SLNvUXDal>v<01^-ThPd;3c3Gg^Xry3_q6AZ!~D~iw=2mX>kePjBi4o0 z42ovVE&Oao_C`|(<`ZuQz$!Y7}w{fg=!;zCow`OGjz;*>2;Bwl`0v*(SoghFmirB|Kt0WU0b~anY zuNq$tnyh=-5s3v322a-dM@P#E^O3W4Aoh~`xn~P^+Ln<>F*3Qg_I-5ipzHBbg`AuV zI{TV^6tf_6Q@!mKO96SKaA~0Hqh;G)BLEDA7ipkvyrVh1+xYO+@?JMtHFnU2LmCe; zL~1|;2U6xZ$q@rg_3MpQ&q&zeMWF^j9uNxaSQLh=Qi^=}xVE_?Z&htkfYjfr>MEi@ zvtiotkTK9cgaOX9lV$AeDS8gQ`6-<{zq*fKz=;B#z4T1@EepEYd!19?`Jb3L@$U51 zSJr#zPQoqkTEMiI2*3~hOE-=MI-gwSNYm3Lnyz`n}hL%?yo-w7SkyJ5vk}Q z`2ivez$8oc@yf?u;%`@H9t8e&?dz*Ozg_?R>#g5zz*A{TiPSGTa~XYQo^4FGYc>CH z{D!Cpl-Sxcj!>}UwU*xN<#E3C{5Yc?va zg$bor7+(AI{SXU5aw?2tMGB3!TTggtXNMm%`cA7ac-F`0ynKqJ z$JUWF+&^vSG#)aacEsdBOvZxN4^MpO-aP-gOnp!G?g+jrG+;R+Yj>PG8g9(2F?qx6 zd~1bWQhnC1v}|EO*`iY)fw}Fumb?W)OWP~RjHYm+d(8+<%E~Pwc}+#v_*dShEK2Ob zSPK09qQD*saDhy{^m`w>CkMr|ETw9E=G?Js88I6)f08oZ8~&mCT%p_df~j6AAgJv! zxhf8qS&uuX2Yc)XIauVQkxzwAQvj_$DWuv)53&%nv6o@HZ*xA;F{m_W}jS{`s>_YP^<9%$MRIgq@S(m58#%uXWPu1 z@RFhg3B3s|!7Y~7`*krIn#1~Rnt&mH3$8nXZQ5WIinC>dBmHc-z%>{27|Bhi^1!yf zYs}vo27bf~KHYY?HPf%#1$evwlndu`qTwL;AV~t(0hCtN`Sg79gAcMLWz+xm^kx)g`utdgK8e!&ca_G{I2 zrT?n~$;S#_9ZbE@|LV}j-u~p`z>faptUo5`X2luL>#^8E%6KsS6761>&3k}$+iYpp zaxDw)kFf)rCIHr5OC7wcDq5h)F$L2K%}m{2bQ?>v9=$$MF#YPp$s6CtdrkzWPSR8c z*%R5m#uukJk+#(&A@&v-BzwC#U*XfZ z!77^@urng?@ZjCmZRljfyPn+SUXmU1kX+Y}FMY8fxYu&y?-J(&If)rlYhU8ojlLW8 zYK8`{e7n6{nL{)U`Qylq-4D?1W7&`020R#OV`Mr(tYhYPi)P?wEGC5<5X$H1US=vA z&#k=UWXlP)u3=Vs$1O9PL&qhBRfyTwS8wc={{^V;ihttwzdnDu>x_p_cIqtqLq80) z6RZF|4~_u9!b18NL*RV1HUV++>3!t0K7c;r#oXHI6Ah+xy#l`$#&9n@m_^ot4#o^ z*B|Y({n-9OLZb2+w->Z}mfzL@itx%pL0o;k<#h`>qzGzO5%j-lOS9l?@Eh2fXJ#?Q!aagJy2BSy2U8-uKCm zUM~0YwVdwjzylbg7r~BODxCVO%0zUCm;$@V_4dlrcs7;IUqB<&^y|0n6MAb-UwYu& zj=7{aMB^JTRhHp^R&-rNGEgy$r?=9O-4&7|J z;=4&mjsB0l{wH2c-=yW+p1pb2ozaWeC&I0K;;=&v}Pi%3QEI-d2TM+08zs z>y(kg=OqSldNRW&dV0bg8sBH^HqC^-jD$r6f4Lv}j{ljmEKtfD0=y*+kz01o(jQ6? zOg+H&w;p|tfyTAc$AI6HFVD8s*17>Zeo|fHZ#5UXG6S229!o9$`pQoGFC!uXekx!8 zr>C+<^Hj=H+5ZkPj27k<1;P&3|1~0nvokMyVPyUBKc0%_VkG+}WX%1M0&qE@V;uoM zm7n3yMZbY<;rY$R=Th$OTfQ#eD!SDE+>Y~%Bn9O%Y8=V-%Bz)8H=&3oq|zf}uochj ztM6T;VW<9~%oBK*iN;(5;oQTb@(lz-5%fOMcu5_IM36BuIu z*v{NG{X%}~JhuKH^pkGvCHTuP)|Qr1Prda_eYxOnsO?bz4DDJ=+RyTaZ*sHJ8!2^e zt-=ZkIx}Cn^ZtWu9Y4xYYM_$o8>{ z)$jVaoi5i|aSb6}gbHG4LGkSf^!)dki~$$RCdM5AeJ!42c?7nExa^^st8+ZR`jtu8 zdQDFxczY^_vP2I)ON(k{lsFU%MmwX_L1o46JG-H7P3OVkJi0O^9SdM&FY|ETfLs$O z8hvrw8nw7=qBe0@v@VW`ndP|h>?DCx9J zXN1e?zPiJOW-uKKY9K!_2{zqlkvG{tC?}mbupT4uH=;{VtMh)5TTkp;_wmxJffogu zvEp|eo!E*8AK5G!9Wwk?(>pfgR{{rPz;XwbRMSkFRMXUmYzXk6k^KtPT5>Pj1dN#K zF%kS%iF@z*^nS}D&FKTSXWpmZV&1UbJm{>yKJB)tH?5NzE`8#}Nt{@@pPg>t!=oG- za_OahtNVJOo$vc6WEc^(;miHV{5;+E=*1cj)~wX0Y#l}azk(8&;hn$Y5j-J$OANdU ze}-TFBl8@X<0~~fU~ul3<^i{Lch+-XHoy}?D}b)^1C;ocmo+Ei#5IkucP@9uv4Y_} zVXnv)hR?wAyc9wi{a(1@VXaU<mfg6%^B;50JK5o`O90wyd3xUB!sayMq6E+!9hZjB$hRK% z%N}&wKM4TX506UyUC#dK%qT9Ub1j~vBueS9v#fZx?S;t%?@tKPuSK7Z!?IxYRV+Z^ zUv11Y#6ac2Ok~xt3@CoeU|TgTFS})Ou6?`^XYy1Y?AY^D{Q$dhz$RGr(hjcZ=w#lF z7|-{tfo5JD67|NwmXFU~uWPoxDzK>e^N(@EP|t(MWcIxF)*j6&+nn3L+vpcJJu8&Z zZ8OxL!z9Oj04mrCkYXsP+8;r)FU`YByJ<09j_PxVXT!U;xglU-c?w;H`;#ug+LTn2 z2dwtSTD)%Q{{80T*5)nRh}~0o$2^_TXxLdQddkI{o~dTtbomvJMl~>1j(h`l!2=vn z4Q31&*Hj}60Mh5_0j&edY&;yHPoRJ4FjDdxA&s1vm>=$ zf`;vmeC-wPFw?ris5JLFSJpxWcwjd&;UD&ylpbH_ZBj7b&MyzH@Dd=17kU732hi-} zvrOnmen6#Itp7ap!)-boiFOA{f8D}-`4qaKrBuDFE8cRe(fzFLNN~K#a#FHjcniCc=xbJTBlJ!gqbcNEc_co zG@^b|uP5%G@KtEG)t!$YF4jt_Ak&ZfKRlOm@5JI;Kh^Q^>tB9Mfm6Q8eh3;;8GUXY z;(Zd`Cy#9%@zvFcg%%&B)*u592VFYbyZeXBbkN}3jon|Dw5M6ieyj2E@Z3_SQ-A+} z?@|Sm`C%>US zAa0ji1Z;ah2Z3fa&fG8dNn}gx27~dd%`ZdUQtn>L1d@Riw(sF1-XF6%{kY@odwsUk zMQ4K+Z6HnT&4758@qrHz@@KiD+b_hWq_7b_p&#(x0}k+M6<_-S=2U^u#zRqP4QEC* z0A`CE2|TJ|0B&_OA(i=fFrKgow-_EcdS5qBlm)oj%!RXLWc1<-PWOqA_8`4-cYbhwpUfCTKHjWP%hx6D!E_1*-JKFZVpKZ-3d5;+hP!(W+2-Xh~Fx1~hG>K!AWZV7ZdZsjq z6mrtY2s{oCh|_F`A2G4_r)~Bu;AWkt7>0oo44Es0RX-#?4Fi~hl$JELU5_ruNlx}! zeYp-{uk?jF9#Zp-eISGIpfoG4Nwo6aC0c$g%;L)bV?daC3q~m+Y0~ITGuW?{J%t@4 z<=`)+l2O>OGJQ@^NRDXh^Rw7sU>M}~;qyKI(m2NmuVs2|oG5*1^n?FL!u5wn4im1i zDGfg~a?Zy8?PJ%-H5#IqzZyK~zUjGlws#?=ik+iZ&-i;RSYJzNgsmX_n&;ck^$>LH z=E03vIa`kVuu^*cTDi$%_qCj0|D~w=666M+>=Kq<0^NF+L``l>pT=vsg*yXm;F@otTzI`4k@17g+ z5uu_JX&gzwmYM7(Ib_!Cn!vEciZL`~j)3LdnyWNEVvVPFCFPq(?)A2v)Bb#HITw3T z!I?)U)Xd*}8aDhbyHR%ownM#p_^ZQ3oLf|!GZvtNpRrCK*xv%tjk%6tjPVKB2i*cX z<9$X+BRorhk{~tIv%Y8g8ZX)W45!@1e&x1u z_Y_l|$3`Sjih#3x24H_06g=nM$U*_`;YhUxaDflAHrJ*^IEO`OGD_P&D6!k^-Dhq# zyYbQ(A|bq})yJSW!YkkUEhzz7|K}`-Yyu^y)1FXe3~5^HCo3CaYZRmNz@6kn!5l2_(A=cPIY-;S?vn2D0PD zAPX16fapNQIL_mg`*Z_PI}*lT@Wihi$XWr7cn(y300b+e}eepZh5+Up22iL)M zH&1+@7hBKBH4%RXt4HVQ&f^I!ac zAKFdnbPi7%DmAbrZT4pYR9G1wR;L$vY$Hu*<^PN&;EE?-9eU^=Rp+@Fl=kX6+jf$y zhbUeoMCQTjnY|0KfLiM^VwuE0?>oy)w>R- zgA!pSJo8)uXU*?(_q2es4<7G5)&Bg%y3 zJDcE!bE3kBoq(OB@Y@c_L#faW~24}y&b!7z7_OrD7IUz4+O$zuXmvF$3}FkH4tKqH*EBMM1ryq z;^!3U5Rzrq^ZomEUN#(Sx zcSE;M#Lo1PxJ`dfb=>m#FRD5K`~vtPt^S<_hUg2t0Tx0z{C`N>3Aru_peBNUvpz6~ z2T+k-d4snO*|++4{-?(`AcLmuk_x^+(wZlIjYEFqgnmBAQ>Wn(wxA>R(%DE-E zuMJ#?1gypOnD6T~6Cvv_xxwfa3tx=Mbb(lG^4xKEADNPFs({aIzbIh4*}`>9v>bso zaMu3S>vq$`-S=RRFD*0~p^{QiY10yN>c~ZX6mciq+@$^2e3kA}Y8u8cB|5Y>U#K8s zC@EkB1DJM+#~3V=M&Hv(kx%F8hGlMHp{ryJ-gI8@`~b2U;9lq0o6q0i z$16r&3r#3u?(^drs9M!h3I+JICn*q=~Hi{EcL ziU$r0vJE7liTqKcRI2&-)j?U|@sz*QcJd|GYwIgQQr9+Atva#xSoOxYYa122tgY+Q z4}K@>Mo@)5TT!mgD5FGhj-EqG8l-UzxLNETvZ>Lu_nFUlP9DgTlXFO1_jq5@)%5%C z&b->m%xUczfV{MmMjcUS!lwqF;yMEstv}zlH55nm$Wlo!s>jNcR-+x4>V!5L#J1y1Cr| zkaTJv9AaHiTbRz>AnYoFszfZ5dDEa6v<@G2EHq9j3hN^`(HLG9mEF)e=vwnpoas?{ zJkHwlD5DSJXvGzXss#$-BGJ?|L2qlD_IVn&dZv%$eGA$QU1|=$Y22ikZZqEKw^RCv zCCc_E9T3i)+Ou#Qm|bWfy2|?cOg>Qz=jt;OyzM`Zgx<8=G`Q18m1J?+?E$q)Tg!Co z)fwK{HqX#476plCw~gB=Uuc@d%A02f+8)Ag7LD`qnoj;1!v&(Fpv2Es2qqjbXq6k^ zGGi$^3&5IcMhW^Yb%Z6Z4<+*Dlx8m+;OTZREqjAOttXGRtr$itza~>-k z?(D?%>E_s&GZ1gmA6%3w6bU_SbZ-JeL#)J+L>)*!HnP1QIL%T9q8(-X!J?@gw-7`@ z0JZ^)LlvYdJ;`wjeL`F)^&7S|6b}+i~eDbYdO7VE)-od20O`eVH~&Y_)RJMdwK$;Evt zwB;Xaf}b|XsTE-LLW}Sev+RXuRA?t>gvP3=?6QF=tXt8TMs#K;m6a1{=^ei!ZZdmE zO8@Y_%Oh4^lao3uYq{Ne#PS=4RC2T0EXQxGaZ@HL8_U4hfE_3<hBT> zE$VEpR!bW~#+tz->+C)SO0SQNcakHuHJwLJX?|&t7dH#zvL!1s5>~95T^oK$l`Syu z)J*_Tl!Gl1x634HJu+qa)g4j~?;MDuL{i>c=i1L@B2ZPMJ)~Y$?vZp3xS7^#u|j~c zZ@PIJ?l3pofyiM^We{TBvyJOQWgebpdK`Yvj>|MG$(F0nrFuoYdny0zis=5-C=Iz^|3N_pBy#+Fv>h|>2}e^|C`yDar8SMz()naz6)Q5^T9m;9sO z3N3=h2u}6D<@RR7tAg-|wGtARpYMFI6uX!t0e978=X=TvR<)E7t?W=5vnow~{TRV# zDpcp7dbJPps6*UntDz^eAiY}B-aM0P;K?sYHm6lBvF_CTI8_p8o@n$E?9Mu-N=#OX zFTOSK(pxXm^ckd^>}O_&)vD<)Js!X3p9RnXVl%yQk*{frD7Rwk!<){0FTJfK zu~ij9XS5G>@QNA>AAM}HWlEj2Rkhrev%^)_GY~;z?XSU!#wZ`a?)sP}wH`qXRd8d7 zr(VpD>g*{#jMSA)<$;zc3X_i_M_e1P(1WiCn&jjvnAtqpQA`y7{N5EG5WdQT#3cbp zBL=f5kaCoAlaI!RJx+|HaYo-h>YRtA5dtVm@_U-MVIdn0m_H`w`ZNK(Xy$kFCMNWYCQGF~GWn1tz z)#4=mbP_w8Hd$H}n9`+>dzPkmS&U$xtRY2Ou_>&k*8^a~Qp3Js7twAPlw3Uyxs*qqxy%>|-miR8ORSv-ztNzTdDew8_RW{jM`xe))nh>(}&vug+JbNV?l?~l)>{y2NOPqQT|M+aH` zJ2p!nzjYVSC*xn}?!NlR>(ytC%{ztw>SfN=bja9^gO3&? zmkQ{}R{KH6MNKTssuq+pAM3A3MM}bbnZE?Ef1yN0Mkvs1HEIc)k9Oq6by%Z@FySqz zO=>Y9!lWh9d_`z41JU<1iNnL{;vg4}IOlr=% zQpr*^YN-Gd2}nM>1jh3{iP14-4d?qiNz0x(*%z4Jq=YF2e3$e2p^K#DH%(XVi zEIT*=!fc4v`MnO6i_7bF=Eu#N^DQx^<0;N9C|R`G79Xrxc4`oWG0QFpQ52Yz8OJQo zy^y&lMuMnN;`-`PD@ADdA`e%ATA_&Y0x-ANL?9NRxhlII^T9(?LMK7~pTp=UEX)%m z&}E6?3D8s}ZvRX4m-yoP`DmUB!&0E46sRqu*&H#h8uD>sr)ijBo+LzY1$)POihdo% zuhv7qOOFmxWhF9EZ*P`73yYqjB2wVLvb^|VU(rAch6kaSNC~iA=c`{@m#oNxDd(rb z{{iF{HU9FNwe3}9)(dshXj)@@Y^#W9D{0(nYO%@pFw6hRLv zhhwo{M{-V_>LU{@E%H1HH7Mdh&~61E^LjN7BKKp#SjflQI&In3O#0pEkx{6 zA@B3GO6BF7M7a1j*wC1Lob8n{kAM-e)?Q$Lh!q$uAi)=p21Nu?3$ay=IK?D|sP=7I zsF7x{FYyg$KujUeTv6ft2F{-a2n?etXTq^s4i}I?Y3KEN^@d?8F^0C?% z%GzQMEg1rii3!f)oxpOO;}+b)bexcnhHs3m5aBk_;$Iu~2&-Nu!rfYn6Dd%S{P9;* zA-Mv~s24VfUmdK-@)GY{DZp)m&}S|jCYm4Kq*NdXxX~EgK+KlQs*sE>xR3=KE3OU` z;gY9NpWmQg8=y*Qo4I|t7Y@`}r)oP3u>Nwi!|bxRlW3kYs=uyy8ExfTiok9Xy_AMq zI)&cSZqr?h`Z$z5XTFR_Lp%HqKQW_4eGwZPFfj_u-aK@t6fJ4OE@`oEN=L8$9UZE+ ziKQQlkz*X*iuo&!xf3wS&RDxXU0>R=jZ>&NwN0WohHHJyf8yBNSrnIv_M5^olhGx4 z=#mH7VepZ(IR&~XHL%D7O+6dfD>bm$alC4P?88Jc`_KVuw4|$ia((S|;X4i_naz@Y5?yeO_V`X(-bLXeV`SB!odFVq0^pHO338 zTJ0Jm@|RAgubjwf3BU;D)|l;%<@KzyGpmq}B`e$QQkX>)Y9vc;kSGXuQm5?Q$Mk?4 zJk)`qB8(ReZJdCyJb3(%$7e{js6A}gBsMyr1J%&7k90MsClIu zY3N@>8uyj>N1w1;RK!X(_LLZ0Bhqw`W8aJLx0A5eHv{szi63Z0rW(tDh$=Oa`I->l zh{cFEQ)##pjl>U35=V_CL4^Bi;sK?`Ejdo3&%OLX0HcLCts*kiSZ9dvR81^vA>HMJ zq_8bFp_Ei5a17A8!cRxBuUu8*p8^`&p+mN6@Y>u;Z2lw7>q_L=MTGkbQW=eOUjTAw zxEnkTxP+n7=X$FR@`ym=suF)6&?w+HmmbSJRqwESrE=%VwEJQ0BUAV>NUM!TY7xVk zevJtx02|quDvf>f7TLZ^NRgvA$~Di5G@Qid9QOz|FCVA>w zNFHXuQ{$|9@FEQqsEHrMhz7n^i_5JvbyB+c@=ZDM*J|PmBdv6R_!}GN!N=M`_%+*h zAI$HAf)8Q%#QiQ<4>oRR%UPL%v_XW6c(m)t)VhmuY@V8!EXD-x!%J;Zc?!~YCGrv< zClwLb%!#m9MT8It`}rMiYmqjUjT?kOClPU*2NE5XgX*koc@ytXRoI0~d9&N@Zi-;fBVQY=9JIQea5Lmkhw*|TvEg~iuV|PEe zm%v7`jX_6dntoe#F~s3DE2fGoX8}z--dP z+;Bd@=)4o9yc5kvzc<4CS|1cK^NTXV>?7JNiak~$Gpn_C)mj$Hm~ck@;1&_u{gf6Fi>5$mNyntCl;aEIZjJrVTR zvZI8eBt=l1414aTx?hSVKM%b57#XdI(TYmHw=GcNe4}Lm=8d~Iv+uZ&W+RC>y`v|}aZVLASjOA}I(n{=`--u4N=(lR zZ+_qLS?x1@XP;{1gs^}U;R;OWWz3)24#g!QsKmfj6|(O7YnI%&;rbgV@vC#4Xvh26 zJDy`~p?ZcW@6hu{@JSsnHP%tkY~%i_?|G(+h}6nP!QS0$TBXfD(3|-9)Hu9|iIxi- z_d;OjC(u?&7?xwV@$p8>@m|><_$?o}st>N8Kq^ES5@5IT@vQ8RDSZ5`{*TY>J@+un zRW#g}T^~jA-}JgZ-u>$%m5Cn_9hTF~vpVu8NJ_DE=7C zoIdjCqYP@@s{$$@&DU!`-q*y1sKJ)GZ(tV9)8Z~pu0mF;HPXcxe<-)#gt7wSxj&vXUqhpu1>GE{X`I;?F!l>kiY)`})69MWoLF zK1)GLiLrtzv?$m~c^m79Rn#k7NzfK)!-hP(ItLg4ZO%22;}K7BH9geJk_# z;1*(~=qu;I_ki6*fr7O0fQoDShu*h!+W^PR3LA?r^RIR`eKf}C(NGb9!?{l6mMPwH zbKk2o&)0QhSaV`uM|cxN%Hic0CoU@yHW+I1^b5&<~8c;{be!-z?Kolmie&wn06G+h2R;>7Y(+QoG!e~N8% zlf0wToM31fd$cNd*u~DkN~mOg=OmL1FJ>SV1<0P$aTh~Mz-b0X17Q8q|8#yA`j+5g z^l5kc=A+qF0F_wEz_ zF|*;OS4+z^!`NBTi=JXr-@~!r(~o$!K&@OUsPp#zsnu(c7{am-(wjkWQESS#!-`X~ z)gCVksTLm^-`oDaim;y*TW0>~Y)_!zGnZq!Ynjz2mDz8W7puIO9E`rOg@ZGV2=Krc zs7`Z<4z?m|>n73L#ovyN@~v!mZP|@~%;YeAbfbi=KKiSrA}@pEnP+(O#>U^^jgN?j znhd<&JNnV{&CmLonLgcg!|eE3a@YJLQdWRfBZWo#zqrlx-cW4r|MemZxDdLA+I-1_fSEc>ja9GyLP zBKSI7+2ZgJ%(&MeVQ*~TMI6Dh4eLxLS5P91?U>V|0djXP+tvteumjlun}&gmY`hW3 zvmBFBT)j~_B3RQgwJXx@OYkRE^umP^j?jETd{d4YT$I(%_IN|p!6qXn4b+NHK(k+597JhJKKzSywt9=-4h*)u<`e5jty zuj5ogp?nTc4~S-Vm&SIBjR8kcS_3hRIuc_7O+xG0^y~He*s-(j*kzH?W4%IrOb5nb z(*{>q!7MU|j^Q@Aq4Z5CeOw7pwBkfl9dfDzXEIS>Eje>=E+Dn~#Dm8#PqlBwTj+XO zeU9WrMBKOWjzF($<}jYth6Ov@p0x57Klmc$+%n9_Cna|CdFSzQunmC|w7fLz5^Pu4 zcT=q)lHn!ue5DPd<$2z1z6n??3TfI!_qX5k8(69V*pKjOFxRMAg=A zR}1As=w%^65^n>uxP#jKu%9)$!YZ*UuKlzYL+U05GUyJ4Nkok&kBorKhgv^{$XZo(hD&*B;HUX$YW%r z(zdr^fsn`pq$N}N>@2n09H7W|9&KSv0{}_Y!r3Q~V2x}*EH7oDX=RrdCPvM1HIomt zBx*4-O*nbyizQ$@$!j_mdf3;Sp4PDgiO<=Et;?sk@EN}IWb?`ZrJO(Jj;H!r?n40N z(G7c29dp?xj`HIqOL}S!-}(d{I!~5jg=z+eRNBZ(K2fY7y*zbQkvs4wVjkevMVNjK znLn)+t`%_)Y1f_4^)%PMV+rbIsP@A}M3o65?)i;J7mVV^us~CfVO2aS*L#X~9Z+gD zE6Tw;N{#rcNCR)k^e&KSc-*$j*vJ1)`tUIw-zg+;v8Bc?1HJ&!-uY`=JLGm%ve?L0 zW`BCYoSUpgT#B?p9V@}m=$Y$j82HERv;npz>+G78CKNf3f6DtaLvin5=dT|He7XUe z70dVX!p%qz$8%@_{f!Hw2EtBBCoRJ!6Q42bFoBx&QQ>~sA-AUba*YBB&o6gssX%hj zn+RG2UjWl)aw~TZDSa04Z1Pe?wmKwBUsU-*H>DY*rr?ZeY z<_xr~2-n(4ZByjfRCj0I_2{F*9Jyh|n4IwF9rc2UR~Mn%EDL_W97;2zd(PC`miw>L zFKb+GuE=~D2=09>E;PvGV9R}EPzjXdk%`2@q;;?^vMG1tf>VH~DPc|Eld3s(p7CN` zzl`*iWmqYEDHkS#UzN&ygT@tjgWiqez*19oq6xAf&lsS9?GL_Q9!(0ckOTCxJL@v+ z-@G+8&zGBi#soaLWM~Mq$vsHs_)YCOhMEoN0i?nJn0!>W0Qsv&5l3Sid*fDIkf6|9 z(s+C^m!eQNnt@|@gZnZsr*-nvC80EE7gP6nSl(&t4*Y`O^=!!6wx6;1#>4ef>|Fwe zyPmWI0QJK0+HT7AjY{`BY2Mfjv?VE*fPQam`1N-k>k*b2oUrst@W@4O44{2jgbXlY zpjg%R5m&qEisYLz4n%Aljq)nk8Lmg#e$1I`(bY( z;E_$a%3khz$nfU*sRM=su={^~CoNgrlW(bwmPqRi{|xoh+xn?wRSU4;fx4#$J-l2? z*h!n>-=CMo^#>-I3=B2bMLdMx<6SOKaFi7Um3m9ee;-lXPm!$mYpg5Erk!f)>RT}L zWW)PoY<-M!$>PgTvnLYft)=!cyT=GXMe8V%tQ@*LwGya8piKI59R`{pJ7>TV?bu_# z>mSA|ed_d?%FZVQdpSt+*2F}konAykRFZUj-(1Uz_Nc#>FVjcsddumVSY%$>X$#iV z_8u0sWsip#L47F?@wAVhLGro!PRvlmikbl6^L%#K(;=(7$l?H{N=Rk z2B6bpMBeOE8Zi~wG`Mf9{NyJjpaIrKE7gZnvf`-IUk3|g?reMfkweRa{N^2QEjWY# zbgqD020#-4lY$4R4lnzX3wxHLl#>hY{X#J)3p_vjXdET+GWjhCa-0-v9$q^y_6`lw zsFYwxhTtVqJYsqKH@&UYQKz*^pAyHfdbnw^!TRUlUhF?-@0P8zHA8^VYvN!{XgN@{ zqWz}-k>1!@<;rAT=WT@@pvnGL`1_wiRo)Bx$EG2PjwgTrE^Tu^GHjeEVOr1y19y=H zzx&@*pJ(Yd;diDd#wz@=WZfk8j;--ogxTe(9Bi`_b|W7ftXLE~jWv;4L@9Nv8TQ^h ztWletL$8iFX}LuMbSDRElA>KclY|O&zm@|f@zHktg)EHKihVxcb20Xr65?o%jSKs_ z8EV=LRmPDHH=;n4?OSbw*w6(&oUnUbd;S!f3kvl(9$J!B<7*(Vx-c*voqz(YA3!S= z7?uhhnG(08J#SqE9^LA2c0OdkAIj3p7rQ|t%4~-)a%wzoYcvEO4z3hyi`dvo>_ zEnj@!DIqT1YBn=xrhRY0mlAT$l2v_sk#Cm&Ygx~K+l27n{s90S0`>x0e=oiQ1p8-I zxlSFq>}QLWsYwAGv;DdFN@Z^}4i+2O)Na2g>g`$xG*xnR_h9_!_rWDd|8knaqCuc3 zG!LxJJ&3~~X8oYRJK3hd)!+T6s2mPeZ+eI;C-SKQmIKUa6re#jX^yPmXp70&A)u>& zfXGIb?MN{B&K&9_laUN(@>rylVz80;QIRGrVp|DGVe}kq0GXDj6-IZj&)qA**V3ff zm|{bFKZ1R)b`n8sb4-V4z*yi1rg(43)>CJBmzgN_WW|J+GE@vQ^x%ZBTZd|QeWM|mMGrTMiSY#^C+LcZWwH{>x0AD)zDaHY`hHzIF&EI3xL zLwcIN2WMjc>Ik^a?}d2x3ZvRw^5XZBPRL2rdRRYZq$LlEwXEtnw6XI*kKu+9z?ISRfeMvHRk<~YGZ-+9kaC+jyX#lPs|_;eckuV zjUKlt@YYpQZjozdQ}%6>y3x6F{tLz?kb#Sag)B{{OsdyyV`u4RUutTb07Y|)0Kj>~ zmQcyrJFfsgtzz%4?0Fl3jxHn6a;k?2c28$tRA-C3G#6#nit!E^Dh@~&sU&zrRvNpV zZmC3Q;-pYM(jhApg-w@EBQ@t6i7k+{ZV8}C%lw54yq0P6sKTq0dyAYOkE+a`n#(~q zRSO4%9Ugv{7nK#qMc#?uzM-}1x29WjV`3!QKG znh-r1QvB+A=rqbfH1DQ9&1i~yb*kjn27H>4ARCVpiMU!AcT%T5y+Xb5#)83L*jiSD zrAW=yrgQAAgfx+A({rkcX&2QNgNB8Q0PlyCFObmbO9Ju6ErvtaJ+ww$`>Y+Sa<) z&d#p0Gu_#p?H`@{=WpiD{LY+ve&?L~`<_pnb-|Qw(6X+LHV51^T5gd9%G5?>#3x1y zdsGohwp$;&iybd*1VoX`Ein3w>l`lsM#6Nyr^=e`91qZAlWaHMg6@7DDy4oL(B9n? z0kr;le$MCvqtPUdHZh=0v%%^dGzo_o1Zd)$ZGQe~fU)zcJm{R=g3i0Ngk&OMsvH$} zny3cbr4+Z5vPLL+EbMEIUaN`7J4ob-c@R@lhI27xhoXrWCN55H}{NQplCB>j7VmnTkuBRTSn7d;aZANY`@ z60MY#0P{$;_i~$vq2s^b=#(5zD*T*Qqigz~0=>Ly?^Z_Fs!cQ7@aB#1 zD=bazhKlgiv4~auiT0Dd>yVH=SG)G8G}ac%rVTH?w%;Ed^U#^GPA?&nDhpBj+#ZaP zSItvKNl>GjHd5Xb>C6uXia{G7YSYKp0tp}T#_T0Jn41~0BAtyQS}$7~y`x2+6O@AZ zt;^+(5Vm9{@j>=cnYAr8?xG(fE0{? za(++W?ixou25Npd`Dw7CQ>zke!A#TKryN>Qs7@wF1?c0bi@l}NWaWd-`mn?yfTN+v zfsEsfBO0&8zA&SdW9}|l8ArDVYP?B zFH8T(qn#O?0K*-U! z8R0z+!VL??{P^3z?I{TP17@H?SQ>+0EgSqW8<-jToH-XTuFZvhvmHGlG}2fHTg z@v7ewB)k2#Fb=q!#OP&hQ8Fp(m!Bdc(x&XfWuF|&`WSehhy>o!cH+-UX-O)ek~m8s zgRMl>SOQI6bn(5j?>wWCP=OrC*PMaBJ?Ngmv&9(fmyWLuSOYLO1AX(>R}h}le|`m| zmB1^E3)okmgTaC6PZ#L#l4AR|k@twQz{$x%F&=3X5QX2S0$U6qlGwmS;S>Uig0Z#A z<%^B#d*`!OY`(`47yv zc_w3=o@Z}<{<=K~kj%1DJ|;NpGbad@j2cf9Z*0;c@d9eWU3uN4#2P-2H*e?<4210F zczr2OqD&8Y2udMKPsl=>htYWp|E8~?!W$KGy2KniDPhz(+~H6f8b@eRu{Y`*le{pE z>{2q`fCX)SVi`owSIkEV><#-xOo(wSteJBTcf`rGkE?@h5&43nH2M>-z;g=T7Y%ty zyX4)KFz?WLr{x}@wqXUa+}uoyh~3g&zKyp2rYBvR+y=`8O zK{iq3ClzDEMPw=%xibH^bu{;}#>=|HwTV}<4t>Kta&U1dFP0v!d?w0k#X4jC@2iPN z5D7mULSF)XAmFELc_)DE|HzivZ|C=v2*Bz~yggNV2y_RgdaBYgtPXC1-eVM&m#BN= z%7#jMJ33l93I4~2cHg^$^Tj3QH~V2@oUs~QN-NFp)XVviFN{Qcq)d>MdD1($&2Xvb zHQh*uY^Wj5eHQimwLpJgBFlvU@&VLV@(e);itAMqmEF#^MQh!b_S%)plkNd~AS@QX z3RM-VKsB;yOPHh>vp4Eq<*DzC(+fo}XT1nFHeswF$Lg8_ zQ>3buNYAr>p}b+Kl4n*LZl3d@^ioiKykw@vgW2Osh0k-OIn;s}4Lz2WbjEdS&o z?JND;##x=mz~O>{j*E5?zW!(ilAyC<2MUHbg=!14H)R(aePpiGFSynJ{Z-GAwM;Nz zk)O{#K=z}b&Gm(;clHr5uJkd14WTm;*S>J@!U<+G=LRoM09UB5N8Ywk!k<#kUX6r} zTsv^65lJmQG)Y534c;olyL#dJ;sM3E_)-UP9P4sx=ubK{j>6souB-E8&_VuRz6(we uBxoi!U7)A6afi$L*1nuIeY59H-CsM#vrc|7O#gjP>;4XPTj9w7 literal 0 HcmV?d00001 From cb92446699325f9fc9e0cc1762cdbcf222a87c83 Mon Sep 17 00:00:00 2001 From: Adam Hines Date: Tue, 28 Nov 2023 11:40:46 +1000 Subject: [PATCH 47/69] Update the gif --- assets/main_example.gif | Bin 74655 -> 109188 bytes 1 file changed, 0 insertions(+), 0 deletions(-) diff --git a/assets/main_example.gif b/assets/main_example.gif index 46e9cd67238f3b83d0270c8b7cb46e850d931bf2..1b14a98acf66c8b556750428a77336a35e2eb0b5 100644 GIT binary patch literal 109188 zcmeFYX;f2b+a~&CP9Q)M0!bi10>}&oL}oESm_Y-gGKm3EP!U0qLPShL0ud1cA~GA0 zNd*K&W;J0F6{(<>f}#e*c_>t>M5Uy8->#h9tX@>fAssSJwtPV80Fo77Dz;sREG!r=86yQvOmMNf` zLUc_bG*g(KDQx9zV2Us_gX){X^vqy1GZ@_rPBTN$%wc-wu$43Y--m$(OwR&AvjiAR zh@K_Hz!IiyiO{!17+7Krtq{6aNFys%>T001TE*DfY^$~Xb{o?AH7X`+G;D1F#ujg7 zht#wS@o>QFIMOVgEY>(>MmVoxxM(t5D2^_)wd)8b>sGnB($~3Kc(_`-taoC%J4JX{ zgt4@oSzalgWE)SKv!}^MZvxSWNb@&l1sXaB`bBQAv)|~z+UU$-+xxMdf;L4*g{(3P zF}B@o>a}HaWT`ZFf=nX zn!D=|_edu9Xbms)5I;UoAZ!=L9}}i?vybG6xJ9Dl#|!pni*rsECgv4pXBQnxElSTn z6~!rzO(_ReiofVupn{!rDQYI;{kyP|c z&fcp1t+@6$zc&ADT}oD6UO_`jN@HbPQ$=0N*~V7!nM#VNt z5(&E6uk_|M^mY#P_D%JP#nQ6N1E)&|YkG&z-Mn?R=eDGN?ApzVp$Ajre<*H0nVEhz zKmBI@)yL0&&M$ud>-*y3&!zAG{QUXPKRCXMMl>IbsUoYB@{fVhN52Wlo z04!D>0{_BQ&i_G`Iqd&H>i?&ZT3%j8F9U>$L-GJZEeow?7BHGbR}-qywTc&$Vg^K3 zMqWdu?dNV5&^*$cW#_y`ii`ubn%(Zz-Oe$jk5o>2JHxVS2xD!#VdVv#Vx*T-$VABQta1=hNTxGQZY*d$J!#EtT+;%@mw0tft9~fcSXp43`}2z~N~pj&4V|7+$`q zn?wtpId0O>G@EPD`DXS6W5nb|p6$c<7bhKFHJ!_QF~Q7&yUua5)Hg6>Lj>O?sQ~9| zfge)wXIKjeK~~m7g!Q4O0-Oh!@KAO4X_u+EFDh87@jnhVj+L>@C zVPl!mOjdz?>^l!!xvQ_Sid*gSc{stxqy}DYKbJIw_gyd>Qn6>rj8)d8C0`(;mS)vl ze@P9v1&4l^eC&9zW$(wUle;c{?3_-0|FKJvZT_iyu4M10o;M8_KlM&4air(!K7jXi z9*p*3&B%cEcjsd{(R0-~y6;|9m+AI;lGoG`MwKJ;3g4D&NszI~tNN3@F&?43tiphl znPE+4K#-s~%a0Ck=NE$Gw7J`=lW4Bj zL`2HIBg)0BFC)sf{kV(7ZP;r}JrhGIQk&-geE#oXwQJWjBa5wNlsJXrCWVhafTW}q z2O&{$3qd0~RB8>P#hZ*zS$0=`EH9^78=?1MS!5U~xIt);G{Xz-ek32@qQuweIxm<4 zZ121fZE_;)vjdYXVfGNp=LIGKHA-7Y2Q*ji9M%4vBCW|L7tgAbyS-@r*7?yip#E-t zL}!^{t#&AHK)K(+%M6QWCCh6x74t}~Ir+)N*cccbco{Q5cI{Idt|FeLbq|-bxx)=o zOdHmXl#2or++q9DxGD)r+>N4h7*7+Z_DI`JVksSBYLZ16XWnqBd`Kyw!j!N|og=eh{ap~+&nIhN6G znFLf-+T64s%ehG6>KZ%o3#v9Q$8IbLdT1Vw3&z06%@D{=2M_3Y5)W#@fopbi5oU*P z6%}!yXosxTBz87l%7N@E1sElerCJI>(5`s|Y}&)a1V~`cAGtx>op^q=U$CZ9Q-5Ox zAWU}vPfM;piG6G1K(zJ?aTdM-hs0!v6ZJb9!XMp!*xCD6%flffy#zOyjYy_7?K4Ds zm<*ClYBevhVJHWVst=W>`DAiX#}=RG{$N)9wu6T;Kl!A8okBZ$p1UeEnY)@g21+Dv zU}hJ14waJH{19MASfR_3DJGJh=78N*=vir znjg?Y?aI&CK$8Iyq&wQ?dUQUM=&t=jEASDvhDmhXiO=IK*BOXyFjPq-s#t++{gCBHqCrmwe}`__Cf(59JPl2QQYR+ij|Y;r zADf1iAt(1ALj}C`i}-P`G&7QCFA*h^b72v0AnK^XamI(w9GlQA?O0}(Q!_nn=L@Or zFB(ig2_RC*9>~O?JhaK5QQmAO`ZkP+#wnOEIYfoV;oq}c0Jn8R?sjvzE+X&%DP;cc zAcitqi(%0UDb$Y*C6B31YrX=i+_rj#f(yftKX8)gvt(8@hyxQcYz6MaCTb(1M)Cd!BGPCk%%so_jZ zLU{LpW=dd|x(O5IlLXZ)QV0xv=%~Gm?wAn?!k9M0cKaEoHJaUT7S9vsm{okt9Xa3H z^Ax>hajLL6331u^fO24HAE7AeQp+{05}QWA-D7kfIUJ2~^Y44a?G)+{N#V9DZ?$fo z&zg4EXqUrPN~O;YjxQ}VZM^m_ES?MTiN<)hx!-j>Eg+@2DfQpC>PPkPdlInm3Y`XH=SZyE|`eH1FnOo}7I0p2Nupp(lsq`J$YY54%rJ zPo8|Xcv3;mpLNKe3(bF(mj9+S|6TXV>+y!xuMykid0!j~7Me~fLJJm43x0GLEKL@S zqY=NzVyL4S9wtT}7Ng6=N<*;0K%Bkm+%hV~?@28lQV)w)1 zHNK}j4j22B75nuR2TT=j_+HF*Ebt6F6%=-Q%i+_ZWv9b?PDkz*Z<;#Ip_Ifpmc)jY z>~a);T!h8-lq5`*Bz`YRdV6a3?gHzuGpUEqq?MgX?>UpvlMkiw_k0nwEmH(){nGVoF)j)TtAWrKb*;m6ny2_mtfUEj#+XOhPHIbu6z7D}UWxT3J?p zp{Klgs^r)$IB%-_vSUR@SVh41^7h>oy*(BEQx!_b%db-^2OKMh%JM!sz*BaY-|nd# zo2nfDUP;4L4m(yo2&+0@Rw6H}dfZbrJyrD#gQ)&qHM{IsJr`E}>U-hL;p%ri)gPv+ zKZWJp+gD%wsi)Ckj^qg%tT>01cvp`F-lX4asEJRD;Kq64PtQ&eHePTK%YHXq}rA z)tZN&v(u`yOh4z;d#)J1sg4z1=apXPQ(ouSTNm)SZo`i{wpM+xQ+-Hy z{g(9l(DM55-ulSL^-;N1Hd+laP7SesdEdes;>#QMJg&CAeJ=4wL)ldRI&tOR@W#~i z#;K`>q~6Ai+|sz*My^&9|Mr>m$Bo(PO}V>kM7>RU%Svaer<%lC=cB(j6@{NK2|sw?So^R?j@8Xk-5(l1=-y%7KXMDvdeZN1|2S{FOQFB+AeuPVRT z+k5ey!^O@Y7n|Rml{z&KUC86yzBpRmeA_JldU*4A`1!j(n(y6i>h5iRnBMXzyk)Yt zW%}{?38xmtCKBjE`f+zORY9|MB9h+mzK)gv~nv__Oz+~YXwSDiMegzPp+bJTl3yt zjj5=Obne`Br#AFR=N|u>oqe5&=9R@iIuGoX>~ro)^{+T|q$|CzJh`tc)4A&Nk1oD) zm%c+|){*X^?;XK?-Ffc|51;53A1N)+?kRrXl&h3+x}v9<(p~*q<>sHpL4PQ-igzr&etCL7w7)yf82NNji~q0&ubpbVb>JS*O!{Eob<(!V?6#^RAv%@sG6_MYlgz5%Gx33S6h5z?mgo)C^y zDeqcepH%h3>8T^v)m&shOs*3%u4!h-?pKs(m`Zh*WR(|X`U%b7oCk~&Ds!E(^!f)N z)B)pWnQOUpb;bb2W$;?Wpj~C(t2+ZO{ny}?gGPCSOqV{1^N_y9kXJ(Q*ptD4yemGH zL$yDL*dKa=U53lGuWeb9dR7iAM-E3)du*Q!#VqwkEe(qzMs~S$`@4)JP}|}wM~;~{ ze^tKuR(mj|^2Xljk@SR1sTnu_`Z<^xd1JZnrXb_WGwspm?*~N73D*usj^_8boLm|$ zYHoIRxmEI^^>oIq^68fS{iFMz+^X*Hlu&QSofxjeUO$&{JEr3Hh3Tt>{kPhvO*zxI z2b}M8O!qaP=;>MU_I;@*>cYw<~q_2FPoi@BZwUr#Z>dI?eboIl=PIswMeW>V$gL z#G!X`&1=e zXdM0H$lgDqTDmsrJj`)=7<=@pO2)&`s){|95B;zGk)+d(pML09^)O}IqxHB)>FcUD zUVD_e?aa}PM`x%1;BUJv*fzOi??chibGg?h*FK)ie|jlLXDUp2s`z6~$Hm^tf(a&AOwHrBf#i}Uj{e!WEeZ4@Lo_f5*G{`FR(`>xjYU0u|>hRkQF&gj#|X&eRu`S14ie|4jA0Iaxi5H!`NO(M%etLx9rxJ#6E zu^N7rKJ7@ZmX$?J-Kh19#|f3atPc)tbhSd0jTZuL9jL!k!q|R0&-Y-%-ExQh@5XK& zZ2Y~Nc}z*gFQsXs)~CQMu)MhLej{{q6V2i3p3P06Za_h2n{R2Ng$P7SF~SG97!7w5 zhrcgA=}LNWyUM?-^=V()*LT;Rq+Z&jvlnpyhjz<(K1kh7)Qu-IIZ}~ z8;dW9gmVilBbYn6q`VkfZGOid3oD@GMi%!g@~2XQH=o$jyC zH#ImlLX>EnTMkA^%j|&)M6#QgHpqZTb(}#PgnDgU1B${i6$U^LC^URyBvJ?or}|(D zO2sxbxlO4Iv7k0)4=A9{h6@K&LndBTTz+Ra=1p?0)bzrL`Jeq5EgF~k5VL?FBI=RP zNcI3Aj~s{&G8aTA;E{+8frSF*G|!%#7Ljyjpj+u`>JTYXG6L_oTJ%$(-W

2eClT z8vb~o-IK(Un|~d%T^$G1+0#s+`ex31L0D@zF{=5S5C>I(a0yUI zGK)*xmOM;2O$a&5L^O1sjhKbd1P@|FpAX$l==zu%g^c|TLEPw)OzBATR{jI;Z4xkJ z|Hq~qoBw8JX|ot0pziOId%|0lq)T3k{8fN4EkHvrAOs5Clc{tce@f zpogF%A;kE*W#%DVwi)}pQsdg_AC+c!XfDqQet^rodht;{E+t9B!Ooo92EALYqFnQF z@=_8;6~djnT|fl~76GWooa!cgQyPLwMe1N1(CddNMhgwa!s%{2LaGLIOMNIdEG2b% zrQ_9=i3&mjyh1gc{*n1k%$)li{5*31nIASGksI)(cxpOSA4%N0 zp;`NJU(&XTh!zf^1HKn-|Dnx&-0A215b<@L!tMXsDgNItmqpkyAm}N2 zHI`++^I>z@eZ)A=c^^{8tixpDoY((40t!Pxn}P;CPpVnTF9hC6ZHd5HxeEZTD^b*) z{IOSRZvW@AzO-+jR{3|g%?ygvACdh_tY3^|dpr=kq*}ZjKD8!d++qbzW7QrxCQY?8 zHym_p6QGB+zkk%W<4$#8U+2ds-3Q-4yW7|G=W}V+6HR3%56Z(Kjl9SE9l0-|=0F?; z;j6xRcy@b1tH+TqALOVl%g4r-oWCkPpqnr@X7(<;&>#*qx?a1!@b=5oC%-;eW|8e4iwsl)=HD0;tP{<+VFKnDaMg8&J*)zkk|Y=@V03h-I3|+! zqBt-TGE@>6dw7@>W++3D)&UvfOjJ~|@Qk_ZX93EMY>H>fj0b5wR^UnA0RQZv3Vc2zh~XPBaNxi= zF{tK%W(|{cf%qm8q*&Jz+>&_bn5k&nS0q@wxg77s!V7U=Q8CDjmNUF4Q#N$uRY$`@ zI0br$E+pkB6?;+Up>2p{RZ>4f(<_ZWLI7!WAu&3@4W_a!1&^deh0w*<5M8oirsEtA z36`N!0W%c)poNBe-TZaj<=cm^zcW#m3vw1|-@=5Cam&KJ0Q-*%_ucl-E8D>wA%N)J zq6aFK9eFP)C>3QL&hGh;xZjJe}NpAF9XTYr|}X_3Ydb2+h)Pcfw}%hv+$QN{cq zg7kSUFc@U8)rNMyzsZcFZG}@@$@GUrk$USvQbdBa5h;`rv0oFmj|bIda&D`F0){f; zLEBBMpa0Qxx?i^*8Mo$e{l-gGJ4EYV+bV-c4kr-f*z(t&OU&W zLY{cocemLA9|_j{YY9_Vx(+1$32{7_rM3)Va$Nwx!00?JzH!OYO7Ya;Rx;nAxC@?E z2;6%q)Q47rSJY%^;zkjlygflA2Wq$y;1Fog_9i^YtpGnCjC%6o+w)?q`L`GkWv)Ly z7jUt4w4b9`D0w3lmPj{N%)(`VQv70OkU4hjLw8vdo00=xNxl4p`cGncyR{&{W1XxKB4%iLtHCF&7P6>(sf-)yCuXvjK;IgaG+#u%n4Cz+5Oab6;f*g?5;J8{uO zbH@Q@G9ZpxL732Z)j8zY9vH|g;}b(ACBR`29-!3jyQmJf4?;Dgy3Qy6SZHLbTwtHs z1rRhT;kAU*$?{%fE!v2UnFQJ+OqruZ1tgG1k-c27wjTm?+dLTzx$yJu4G>!(#gI7w zY3L21%6Y22o3Eivr0^$oypU^by`^uI_ z+%*M~Z2f&aY%p6>eUyppuKGQ4{0JFUI-f;#Z9XW72ve8rX*E}L?E`2FP|0)xTnuQ} z;cvL2VQ<}>rwo4)sS2@xtpqse^`-9H_urXOJ+e61w?V^VJz7p+$%+HeoNHSw63z_A2k+JzOar;tK~cv1ktwbf8orG;Yfa+ZxJ$jm>LZ zeRL*f^M=-PQ5Fj>VJ!t{;M~4|4;1m zU%k0zFb8Mgg-zxol!1#AL{u~s4#ei5RIp8% zmJ>lw5*F(?%-xjfg7gIdWv!0l`Ijm{lEI&1YZUjdJKt7U104r_wX!>@jpWsbAhDl= z9TRZ;*xr!ClL&Bz=dU_aD4WYUgYNxhU1G1W)iA4ilz8jz#F)E*=P1CbwxjW;!JQv8 zMP690`yBk9^s`p!`jO9A+Zmly;W=Jn_t)isnVX#aoCHux5gmbyRF0V0Lv6(fdKkDB%mP!!)wx z*#W8xz7F@$L@zD!Q1-?h@HAOHb0sYj+q06Syo0;UY=II~!-xYz$rXq==;=;eB~)dX zDfD_!J+3mVewo7}Tq@5NpMZPX;ZX2xw!cxlH67nlTrAc`-T;>cxog0}}Y znMyoJ-Z;bI!g}o zR}ZYLw7CPXADJM;pC5*g!Gc^^?pw#0Zb(YMbhrfZFaDeF3TgKURJ@zOIhz+|5j<=^ z+uRA=vCjHoM!Ut=doa__Lh_Ci$@?dq_aD}toOV;WN(hN)VR(dfjoEpyp07x}=$A@& zSH?5CI-37Kvf%#*K)I&O@KFW1ApAo-go^^2gnyIWI^W|~djvRg?J8~wEriRJD6;s) z#s}ZUhC=iOJSF0m#h&{sSX)mw*~#cYoNdfV*NxT3p#YWH9DH@p)uydk%C@5j{z z!I}BOeISAEfsDy_LEaUYl=?t{dUjkJU5aLK9(SS$%g1Sqk%h0w3AuEKmkMhQLS8_9 zVc=b=AAP-W@Q<#u>yIfkI(W=12ZQatX|d1=gr-G`7u3|p8;3zilaLsY1b~)S`etSp z7NbA7lR4c!P9AW1p|<|l*p?^EF&sOa_()VdMn@@iWYOr5iSI| zN18e$$Q3&GGIwI@1ZhzWftlN$v7~DCp6@gk zF>IQ0k4Uw#KF^GR`{PJuL8e~&o%eNml9VTy9!EWSwXm(Q|J zXu80S;B9R+13a9;zZ}L|PZDl3w{7&_^M32UNZ;^px*xX;;lLFG!>A&Q9Rt(kiJjg> z<~s*sr!F^c%+)hQs`%Q*h_t-_yV$E3fw%F6n>Ebf7udi}mQw>m0y(56Vd4t)R(=&4 z!i+esp&;zryG17LBGQKrMbvzZ5*_uJ{lgsp=hIFTml z*8-3QFe!l^0Ay6}7-rX0ToQIjNQPy8Mu12fgsBlVN_tA%lrn*chg#CTj%ldSS>)K_ zE}cGouAF!%2jFCSsE9B5s5jlVPXDI@rHhOS48KcnYF})V*ycp2sVR3bXmfUUP0ZcK~!itcBtxl-m3Tzp~(?N0{rDAce;> zeTG(80UQr601nAnB?7Mw1SK|LBwo`s{*8xbk&0l&D3r?bnG{BQG|2}201bY+VCucQ z({M%AGeGLa*FC%pEu=yKTL~B^*@&sQ^D$E^8iX#UU|51|-S`08QD{USW`aUk>6>6U zSUE@uw(6mG&>?Ic5@aoYw#2{?rvl+X&hzheT9 z;&?$5Fv40;s0}8W0G#z{LSYzy3xGi}06ofRTTAa<7UIunLZP{QC@p{*gaQE!2x~4? z%thZ)vXvolJeM^X1Ym>Ps_eS@Vf@=cwQ$gk$6JqK1t;ksvNn%W0fzx2dQbFKmKHV^ z#wtV?yN?4yBtU`E=r1gqe@d!nLb1;0Dj=eWN+D2F4;4qA33NiGHf+udtwF&uTRq3w{f-oBBhI4V?aZZI}RtRhu@ zS(B8*>;~*h1>DU5`Zf!!XuG{FrzGf*20XM9#+q5Yc(6!%r)@XA^nz2gHP6%Jxlaswt(AX2Zy z;Vszh`jN%eu`wR!L{wgZ3ABo(8!Ipcv_NRj06uuA%BA{^bLEWthrCS`qmWzcdrpmN z*xhn)+7gHM6Y+6kDf||vNhq=9!%dhFObWv=fIqt1C|F3j6;~iKEaw}2rLFpuO!Ib# zCGsiyT5A)XO9W4u(6nWYIcr0Dn zasZbt2=n|EI4AzvG3r#0v%fn>Lt!4)1?>EQChW_;r~iyPkjk*#z~g?!Y@B~(_ttkJ zH+-R%yvomG&FzW&^o4Vph&XR3^gqqyf7Q|(0QYZe7zW6r{9&o43!sIRCe;l7w^}-! zi=lrRP5Y18>8KP)I})4%K40P?6GGo&m|HQNcI5@C5bpudHK!UkR;eHR(TqN5G=2`Y zAIk3ScpKQ@W15|mya|EUusxH#h=a1w2plcx9}H8<)MB5@6|f;dAi||E#otq7o^-0e zAK0v2)Dj`u_t)dU{M-54`vLZaMl-iIauB!Z^J-8(F;uqN=m3P9g^9Cv;3^c#oKXT` zmNfm1UC(fhv*>v5=viho%LZg z8nft}Zd$scfNGmQx4igi(7V*aHsDS7qk`w_H=?A)db9ta0K=w1fPn>#F^#>!d=|M+ z<)(n(j%8J`wqv8WYeq@z5T2o&_U9|zH>Kj(U|5H?#wLf?9xH{C!6t1>XrJ=l2A2)z zJ`E(oKxjzNFw>hY6OujTZG-E6z4;mik8+rSuf!+{2$11|SUGwv4!Be)MC=>3o7I5; z_K}9dV-a;6FC}yb zc-=DE6oZTkNHzpePup8%I)UxOMZibDFbq~WH);yHgMvt)18)rCXf(X;t|qs)Ol9V> z0LsDw1&WnL9Y%t5z(t|}2rk6kfJiqmsKiaERkFz|1>$PXN&`^$W679#CSQY02TyZz zSSsBUWX}U>A^b}#j0ys-Uii7k^Sx7BD~rTvlXhv86chu``Aq-Qut`oz4PH2A(OLytDc$cVLk9^q!7zLtr{>RF;K zJWW&N6OU+?J`*=gu@C;NCjH}IsF%3CSVbE~Rlf^i&VJQJw6`zYiC4|xAk9;@KOT+b zI`>AP#BH|c()1bDJBVcOb9p| z55o^ha=p?N%Jt%5(^$GlKTW2*cwg>W4Zy0VT^Pr-K;Ct>L{+$2f4c|`R-7Y)_(Xj# z2H&%vA+S3yN886kR|c!y{zwtz-1rK3G zk+hE*(*AQd)W73o*?%oiD|A|+Kcu9&V!e>N+4R92w1IwzTf6?SrlnQ*bQAR4a2|DY zn}hX%;p3-_HdZtK9Vc6QR5H42U-?z6J@~HKw7v27v&<}`;wHk(aZM{Ew5grA5*6qi zo{#?=a()0ucf~Dd;Tz=;#qAGA=+jwrf`Vi&O;R;=1+O4w_YJQTQ6=Q z9fODh&9>~_!p~6N@lPB1qGHh3U=8vE-)6fkZ?&42MW^+an^k&iw#-A^h5azVon+S> zLUgq~?M2S_cD{eok^KJpx<3By%NoRPA(ILPFA{~Q?X8NdNiXk0Y`3~5rT+Eq>hA3~ zTUR!6JnA|9V_9>9CKUbRb%eQSu<o)TfzJ1v+)RbX)T2IFW(n;44|8yXMf-4Mx%h0`DxOR%`$|BPl^bh z2`mH^=;71^DmahE1{vMT< zoedOX7}!m2A0`Gx(zEf=hImh$s|AEb@rOfz`Wl;>*Hzy!CbLJu49;`m&75+LSByObQ1w>*Sgp0Z2 zhaV>RC-4xN$8&jEL=mfFdaP0Ng&=!@}y$8sI8$wkF_wob=Kxcau6Iu zjU{=U#2jIWHD9-e4|8pyoa4bU355o{O4XEkYzP)UO!{HPU_*QPF6>t28woEp4W$g6 zYFZP7OG#63HtYH⋙bR#1?FIyE!Uc{dItQ z(&P?QF*I1|F#D02Xu@47>>Ui8@s_n5t}&n$UfgW3SO`GoN_~Ovdc(_BfI5bVVmf3e zM}SIe2v9W{2C%rd5b1j$;cQ;{Vh|=~JxWDNbE-%__z75Wuwm>m2eGyGk_xcSmfu%3 zeZO>0?aaPYt3H2yjvL6wOaqRx^?f~kH%lP-q6!|tz-`Mo0G=V;RjpS1unvZdAnXvY#@?+8|YhFQEtre~4eG z^XV|pbUS4_Mw7$C)ZxIY04a637Xq4v(T4#y2h$8eM>IjfRguhIKN+NzZj5@XJ!)wu zUD4q%kiouf2cnf;n|f;by*+DM0s$isnucEuxHD5)yj5_JhrK$p+8Eq4Xlw%x0g~! z(a4x(pSLTqzkZTGM(ttt6_Em}+4K~#$4e7gO6Q&;qy8nL2!$^JaPUI7aFkLK267jr ztH84o%%OOCP$P9ztHT>Mr5dI{g_0 z#2gr-{Jh>0P>%MI(!8X+xCy`NJLlXmy`lWHheSY~A0RxK@;sDT6YKZ6thc!cW}QTX zbQbZ6k|a3o*C~jZIb?oAoQ9EzS4~6@n*&_7rH`9w0btHnPM|D1Ado#xOqXA7Q;G5u z7-*Wd+zTb-7xFO65YV%d9vZgYX^b4bKM3ZbAht%?N5NMs<_p7?RbtTri%>$Vw07OL zXw2Hb#Hw{Wpr!#b<)CtRauUO_?l3(z)?pQ@mu;iE528X19l+uKrW^andY3+5%p5s# z+rUNE_y>O=8p1@ZQk=r>E0teynM14&n2Efj55@N;!OfU6{pF(?s(uiz%II3GtypFp z8>AG;m_^nE-`05N*J?_Yp>>noiPe&3p7@U0cEU%3L?Ivpni6O-Z%L>?m`$eAwvOtO zTDg~T-;Y~dMsSIhIJmQ8B5f4LBorq_?8{y3+@XcW#mqHwF{6!(#LxTBtc*7OEj_PW zJ&|+k%UJ^&L}{H=mUDLLtPzA3?qPCJ3fKs>r;7XQTZ8>HUS%NEd;pBFqDGNzcjUo5 zC6j7*%{=zj)m*!d#NENf3-d43&rJ&ab`whV*S*Dsc@D#p`RbWV@lWvIEdnldlttec zxV+un@!OaAlAgRh_`OZ{wuzkS|ekgATS(_Iv!s}yaCR=R= zm~~0IjuG~Bk^FyyhID|KJvQ~s`S@AR&{*|xXElEzI1nwaBz*Iw-E-*a&& zysy~xPUXvWugy}PSpIdjqvPA%KQn*+d=AvQr7t59z8{_c=RW`6W>l~c>2R)w1!!}S z#Y7LNTLLE0r?B?K3G(VK)BiGcvQQANOS^mB0M5ei0&%yz&QEM*QbKgNzvJc^+QD}n zZwtK#a@SCb9vqe{+>g7MAsHB&;C?C1ijP~Y@ser5_hskp7IU^%tmO5U-TLpn8sjGp zV0mj>o^+{HU1lD3pPBBVU-&|dXE%n5ZPycR`@UHO0<#d>hP>`%k%k`8r_}@iffA8U zd^Xl|C2*|FJZ1|!sEvs@XYCPsxA*GayG=nys_!1QFmpL!74OjdR^pJp=K*VROZ}OoJxf60&F2k&DDnvHYny{>JvIVcZ%bp96_;$ zvf&^$sf0zC$HdNvtes{AIQIa0RhIB20}fIq+uaUr@cGQq*zVvkL>#BQ$@f-Dn^y+b z=m&!;ju~hv$%{P%**HkSSK+;BH8JTrR~19bAnom-S6oPn4&Vi|MjF`p_A;+sZ$3wo zbyT|G=h^pG)W$17gPjPYE`Of;EkYg&^&}G?dbL6~e-$yi*=@HR0JaF@=}zo4a|FdS zo^{$Y;~XTIY$F2uq++P&u0=W&m0ntd^h^sGl4(q6q{`638o;Gc9Z4^}UZ(H53o!~E zg%dd-DW7>8hZby%M*} zVHq&%wNEmxP!Lk(ZstczlMTqa61HeiBWx4?lD1_#1I$osQ%&X*wiTMTCCvFoi|5=_ z?JK5}2G@dENeqm5Qh!5rsDlbu7sDQs=8(|E&@nLA>RfLR6T`d*lv(bI_>AxggerAo z7xUaP>uuim$P5qDPojGhS#@E-h2)JeiRaPh+hl?}yNO0H=uQhKpk(_-++v{NyF%w2 z1?>ow^A12_dm;>yI1p`_Oah0luCN_7_{%rSI}xW>AmKuksZpLKOuSm9J1t5vKoYY> zsp6BE*%u!7ZA#Zxpli4P)K>SrK40^9WKHULJ4Sn#Sjd21;9ohuLH)Uz!|9W7H(FG% z$9I!2u-rTpa9numm3zt{H?}5s7E@3U*T43+z%85Fqd~d1c6c_#jpixlVfC+88FfIw z{tt?*{v@~$L_xePfva#Q8*C@#xV!hgo-w*nb>5V>^KgkNTk1zxA1PN1Xt(EaCb5^3t9FNZ9@I2V)I(UAF?m(!b_SuO#^9 z1l)g`FPB%$7tIy<@gJkID|WLYHw&>5upN>lD-oxAlgPoEwK5<`%!nUthr$bR?q&*E zV=Ofvl-okUPM`c0>rr%E{{H#(V}IFU@lCAbOuB2zBI8RAQ4H(;_423v{wy_%h|DF% zWlzppK-3KM=Z2VWYGju&YSxIWoi}IS3sPV8{_OQj8!syT7uMc0sLB87_rKBu1QH-X zC}QZLhbC1B)kx8RARsM7L{!9}ps1+nbP0%nJ#<9GfQYDw0YR#WD2j?2swk)dELb`D z-uIdNeE$!AGv_~Z9w&2U=AGTW_Otui{rpyu6Wt`^2zCbqo6bG2PS!lDBas&|eI6>{bCd2%RiQB>F*Sov{u{2!paS6!f$N4;OKj5`yM(F z(&hq_bY&?MC@04Sd?px%e=wM0Dy~r|*C>w)OZ=m!Fbr`ZZ8(OmiMiz??1#Ceg7>RrmsMJ@S z+QGvE+U;@fFZf`_E@YC(?7m`&&e8ec2@okyuY7AAP&*QoH^TI}3H8z403lf&1K--= z$p#pPGR5#hT91_mpiu>+P3j3FJ&!v;zdZ(Td3dr_3wrQIX-7^Up4?z-Y)qHKa4oT0 z7v~y%RnE$mrEuz3tbiVQ$iHfo|G0_vzYKzcms178TEmzakxT}#6?@)+$RXuOxdCLE zhdV5PEg>5lRt5&720c}4=JMK*D^{>e5YqgJxlN_;;Xu!UkWmw;{2*nffvOY! zy5VtaD(|T58R#xxVRV323bJg1q$UMrp~KUC zqT@{pz!+E>Q`T;(OoY$IT{R5gMv7KK-bG#no=eF#*|m& zWGR}Ga5C=hTCN1OtzqFzfwEC#tMu68!)iVL@+@51Qd}P)aVfDlVApeFiaI$eo?%sM{?=HrzDC{mc9QBe2@}Kcf7V ziW2v@T;R?!O*`)ZVsJ$nCIE*|u;O@U$hs0Jn8h*@Qd=jJBM`tYol3^0r7y(|sG5bf z(X({DQM@gyOMmW!g8Ebpe4(4NCcC8ldDrx@uFFrfp?Gc3G$8Vl3DApZ^TK`I{MN08 z)Zhi9=+Ec+%(olJ6)(rEM@E*CR9gFSjCInCZ!!c`ax*>PQuZ3tVMt9VFD`Z9=I1?J zy#VCRjzI8}I-sH)^eOZa^i*RU01fYq^DnVdjJErmaSdG38(84g-ozbH(@3L_7KZdA zVoktTfJ`M=wwj(&;ZD4kw4FilZOA-h!Mi1mXbqvUKc;09^Z$(l_ev%Crx^FY--iFR zb=l^?c}&`5SGEceiNfN_X-HKalXQvz@Iq!O8F}Cwmmrr;rMsf)@kBqVB(;Yqvb z_)61zlw+_|lYjY%r3c5~KVDuLy>)Ku#C*x;w-?o-c_>8(U#ex`8-0~?-2C}_*MbbQ zC!u1M>d^MeypbNuOZTq%!zTd}l!4X2EHF0yykCyQ<<)v}qEnTbh#Ougb`COwz zYz4~tBTuMSRNxH+89|Q1+pryhATXK))VpnC%8P4s-W^eMuQ!bqGZ|@ky7Z1F1Vio zcyOp?U=B-G)|LEQJXyxdm&K=Z?n_fBK!rk6PwT!fZ|vGtR3Q1d_TGs(>&l6yIJ`1G z7Z_gwd*^cYNIlD@#NA)jSfQJK-v-iGV2Rjm;+@f9{FGTIvMLlMj5~QhDztbgHpo%V z0F{CqD5hf-+h6>BfB%J@95w@-6ySu(89Tdu@XOM6-!Iqh`-y|9G<<4Dubx&i9w7;jGDN zfmO2aGB#hNU;OKxn`-&+lC%DswmaWHo&Wdy@;{o)fBaxXs-o8asF>KXol80>Od|kseT}ub6G%4-Nb$bk(pQs95;(!j6T_ zzSPzO%7>^;Rkd};X`h)^Io~R!_NGe#lTH@NSkd$oWu05th%HEQ3MjRPo?o{RhSJmE6x z=Yw~RRDRp|gA&Qa;bOXaE}cMv#TSn*tjGS}#QPUgh5tJZ`y%yLDHZ|bOZ%+N4#|9R zHU}(iow{2=Gco_fdx1x{tQr^;OrgY1_oCB-mO79+`V32&GxrL#13U2#3{=gwRF4Bw%!iMUt(sY-sy~oZ)9ZVt?#%fd(|+QtK1zOL zJRE~x0ADx~|9S0JKP4Iu>S-*GN#&62uD?T@R>{+j+(vnE);R9V{`AB7T$YEwGI&?| zL?<_@2FImOO8?Wv{2K5zv&TGo^Nw5pBsARz2C*#vbVonC(v6jKS z6X6yQ{7z4FSIE_S{BbN|{HveyA8qipR3Y{Mvcd0Cg`gr&d_K!%8$bn#xc5~s2wyA? zOv=RIJ%TBsMRpFxEYkmcYhxwLAwB3KKyjxI6o9YM&lo>ox1IR$SH&40Z>WYR6%o#4 z!u(V$W1_q6zu1g>Wa_s63qwW>FO)K36#jF|nk`nLwX#|z4>?!8Gji|V|FJoYaghe= zmxX;$Gften-7?eXZRQMACn!4hBz6T|bGbqpwU$tTEsJ2Y?we|6{#KA135$?`r_95v z9&U1cUO!n6s0LFC?~hb#*{|z!GB6#1TLnyhYu!J?%`l6OCijwJc_oIorhGZlsE>OW zQ-lxQbR+w#$rB^^zm7msDS&TMHU7Udl>dXw{zEwF0@`YpOJl8%%m3ME_Rly=91_rx zlCm95JNin9+xyRNR3^dBflY%cLS+V+>9$99jc@bZprwC1UGc!oK#4(sfPBGew087L z*mYGeT}md_EUY>u+@mEi{A$9Jx~sQf8}qgO2QNlRXDFj`Y@zT@Lp{`~)&nxKt$wY< z36I*ifN}$j=Q$neMja%H(r=fXF01}#Fnq2m!m1r4KENJ0-HX`5U_XU3j1S1D0kRjDb2S!W&~FSv~(siuW#Hj!GP>&En{IbJ78JTjb{ApKPkOpm7u;_ zy%Q!wH^tI3)MD33ufh_YV{3c`!3F+KY7F?dr&}Ja&md&!VFTh{yr4#<6nJ4hk!3Tb zP3n?v)d2kBeY9iY`|2n*h;d&vf-yRKE^WlF>%!r0yGr=S;nIBl|Hc9Sqi6g-`~UzD z(q5{P)Uc}mIS35zzAs`U5wb45Akj?@5+)G9Npg%W7_3E&ulhStTZ$FM1_g8_0Q_i>?iJ-)4}r#b`5v z7(3Z5&BG`h!{%Ez=1VHJT!}NES4j+Og!Ebe_-SY6bt~#lb;waV0JKEeJb>kX`$TFu zQX>nOcrMa158C|OC;lI*@c;i&(wSR;0;>4m4w<4$p%xp%V9^`@H^cs4$YFO5&Sv+2 zRj2duYl5T)&{%guv`1ZJUsKhR*u)pPgRglnMCzB zUw%?Usqp1Gr6dGq2AtUay8p)fBYo<9*0I*g`WM#|o><7399)pnRw!~-P*s1g-ll5& znjgiq(R&PtoVNde&zBj^yt+vhS48U_-K*IWd&+RP&6TQ!Z@U95gWA(CPa5RBuiJc) z+@^awb)HinC7mye_(G}*^#5nR%>Hxrtz&X)EnIwqCVP(_U2GCk7hcAkji|gEc{8~( zrZnzt!(Hd^pZzN{S4(ui>74pR8``-!KYG3Lx9|rgCn65;{;1o3S{u7*vA^IKFhqI2 z;|DB3%mlq5d8@RlEP`1W?M$^K9~ayNS5Z~bd-o>loV4g58|=-*n1p$IZ;o6ML>J_S3Z$2&Zpz+fUkzgoVe*B5BhFK26eTu>tStZcL&Utw)DEtK*~U z4+J6#BM-i>DoEutc2hQ(Gofo@s{3Yi4o~ZFF>y|@@kP6zU7poRanOM)(8k^y6{eyB zx8e@|l@6or0FeqkJqZQg7t*u~VAz zzmg}9-2P0jE~70JGZoih<=sKuDl{+2pxe(cdJC?rVn`317AI{i{}O(9bbZ*z)V%rk z?=AT;`qf|@o@9*&&@x7vlZa9K~jb* z<}>?qv)M1mf?JOlM%x{grNeZvT%B5M|JnZYk=u9j1RHBxbA&bY?XT8;OT|hl16pTQ zX?hJ23`unR6&Gc;#uaEwbp6vRJ3n@@`>Z za6zppS-qZN{wus$sX8-A3{tqHS<#IDZkBCF!{+ufr)Y!?CAaFePfMWEW;e`off5>1 z%EWu%t`7gv)Aq83YEouR9GY_TE%b^Vu~xD!X?TO%8d(n$H+Ub&lV5votjj2uuT=3K zwSP3b$EtNgMm=-FD^)R2rB&$l1*91ETHNihUsxYsKuKL)iEXS*&fSjBDaA^*_R6mK z55Lzt^LPxT+9G`Li<_MEdho4IzK;CX1>nTEztLO+`C(KrmA}~ac71vBDk`Q_EE|dR z^>nz|;hVk4f4bnU-f0kUxU+8CvV)K9req*O=D_JY2WoLSr~Q+DQ{68wl{Lpz<@l!S zDO+M7Kxv8BJNL~;0|qm6_Xp+~#cieq=NkU~(1D1a1A`;QA?xnVn62Mxy>|Uqt^!YV z1u3*ThOjYd_PT}Gl{R^STlAqh(;(kLYYMCIWY=W<%xHM9nBwd&^~O;1l!Xq>8)Qg- zLTk?#=2H0b&kQN9EWi0_w%p~wnTMq_bz4sg!_qN6cGCVp@scFr;OHASUrM1Tam^ zYUslAY|}&sAIDwggquD*Iw(+kM20B6v38+oJW`lyO*FTAH?ngDk|+p(ShP2C<9+MP z5H4{*d_fMd(9_~&H)nH$mk+6DsUajHY~t43q~l9xW@`a^2WH6lPyY(Ha~YtM1#-&b z1NF;Dl102C!<=4L1xP#;b@@z)aAM!%-x-d%jF>-5-&gze{Xe-e0;Bw(B-Eg^7)`)2 zlKd6>=kH`d>4ACJS!kBU``81E-(v^jskTN$Us~7WWb99mxh-_aMy5Hbwa&pT zNU!C>Nw~E=nHetSff?%J(lA)p1`DtC^MN_H)o$^*H*p&BDTAIGJkm21ZZS8F?5WzS zkXn0Seg0B(^3#EnEw!nQSytrjDq%PF94pv6pY;6atL9JLgak@%c-V^ zO~qbExITk<@f;qg0G>IXP+hP^rJl1pPlfA?zEp3)LqGyfn9fZZ8M6)GU72uQ1qM@d zNeg0)BsmLxt}cIy1RtGsgb{`h$P7BeGJ4dfxsA6aCueG!xT#$J+vmtHkyJq zDn>t9M!#mHe*Vr-7)#fr$X*LQzA8c@4dH%7sB^Q@n&POrQ%6r0@7MS7ANC9u7{E;p z4{SRX{{;`SryJ0e;L&))T^LX+)t|o|=`DicsK?%KG5;ojG^oO3>4ZoLtV{p+w9&e* zB^gT*EJASnJRc-eOzn!Z`MP=&y(1LuO@*TFXB79sd`O5kP83g{ifAR~q-B-&W@Z$^ zpGzAQNC$2l(q0H76F2Gfq6xf+)6l~!r{Sm>GaWq?2m^1^(H`qMY_e>E3E`3P@NYzK z-!XZW)9{SRjN!42j6$$5`Mc1m z(cMBhkyvgCm%p5#aI?$ph@IS9A?Rjm-ghc+i-P(>$cM_Hj{6Yze?d=*WTzMiB`Wfd z7hfqH)i#_sTp0hA59-4gXc_1CP*63Ztf9itCINg36VXmVt+`d$4xqZ}s97HRD$C)U zlKd@+yz{CM7K>pKyJLPU`~H3wpVZ8{Er5&&fiSb@UZR_{4a5HL zl-%K%{Od%ydPxaWrqsbE#o_>}O(IXD%ZEe%9DxS9@=@Kw9p#Q^>ZQ=Ya9r9B7nVf64KH0uc&=Wi^g3O3+B-*0J>35X z>I4Pqd@HT7+}X|8zB~nT)1heYlpLK=D!6=3;E0}S+7kRjE|_sTLD_m-Aidb(Y}snx zS^5^nWp-(g5K;3*dA~8&HH9KZmbBg6Z@J^7Y$Ywisl~C?_~U z9PtOgy|W$-LR(VgNAVC#F=(BJzWq!mT#>+9T-ixII4s=y(*GV7GBf~J=*o8cq@U1 zcDI{JD0!czaCl?-M}oVED5oigkogc2AL6$kxWTv4D?-!}6%=-Fx~7|O9glJ)LDt7Y zeJIc{45&fPTHq;jmZ+dtw??d^ad#NA(GyQ;Juobl~0qB2DGoDqS{(sBlRP z0)~~v*-$bb<}cKGvj{^SgegEOhbL`HvfNTAvTsQUdjKkh!`(Az2d=xWTt9!ami6c| zWSk1yDNxL<$Mv-`X^6a*EMqLYFSn@1OsWOP4(Vle7AQh|Qiif7gk#iNkv4)u*9 z$7lTw3A>RW1+rA)jg$yP&^!kWQoXE*4W~orvm->T8=es)9$v1iAI_v8!bP%1JUdV4 z=BA}I_cJjQBW9*^a>>K;=K;9$6*yf0Pmv&;FlbE0`ml58MQTeQ9Wwr7{gbLV^#Q1v zsjd{Z9VK%|m72zhi0FZf1%}*H*-c4@x!2`@(ta*c?toc!iQY7NMS%XnN3Y=TK6So( zKF-`(0NKTdZ*Wk^c~N>{wRhVi=k^h~yG<;#+d23?G3XMh{_ea=taHodW#N!h!|ppR zHp49;b+%XR+J6$;S1B?G3_N6!sTT-4{)-r*VLd{Eo-LPgI%RkHtNCg~M^yxRt)ShB zPUpns{B4N|ak9MZ&3Y2i`Bc-aNl9Lvj@U(U-1+J@=1Yy=EU4+%9atdj#<|)HrFV3H zfkVZ2ZWsj>X`C#6>0+_xlGV9OUC+Hbay!m`N<1#T#! z+K^;F{kpOHR`@o;J*y9(otnmc(*$dPA3py_6i*6R4RQ>KTVd^`@Pq7cA|&t<54Bsg*5!f)IiYD+l4zklse-fib5 zx5na*JFHtZP073NgWXT|9z97sq(BzaYE(|UT)*^{RHm9;EB{mA_QLu{x$^^E5K#$q zhE#7Uf<_czcK$B6m214>r+v8qbGZO!3G`fSuK%fIol6J2NbqPr)N_$J)zu@M>`@Yw zWegv_Rvu*qbyXq3ZAd_le+yxy!}aop0{=mGrA8l8qZR6oHXhcUb6=f)#~Ib6I}dVm zfp-5=G|K7Uck3vsK%*hIs{;Y8-VrvhT%jpI7E@(%si?P@E5d_uX(7Z>7TQ^eI5&*U z71FwI4^mc_p$}16ai$f06#0a6&?k|Y-CrO4g!__GEOzP1WeH_=V4$0bN^4ttPF@$S zN_r|q$lTDd?_p0H_MqVynR5c9%UDMqN*Epz%58phi7J!Fmw7ZSccdIPRW9Ydzzi}aoKh0blV5=fY!$@CA$1VmwXRKfhr!z-178j7TQT5x8M~p zB|`GI_1gvbD>5D^7D0w&uez?W0|!3zc-SCHw{+(y^bE@%Awdqd!LnH}nS~a^BKSN7 z_2Pi#$qk`houi{&^6YmViTs>xH)0?UAk)IJ9*Vpszwes!eSbjl(1qb6uZQ;-cXdWw z&R_k8v2Y#}=3biPTW5Ui(&Wpv3y|r+h$8h^vOl-*?xmt*vOUAdbP=*x1l=Np-R^vG z^|#CRoPxSnPn>O)p5;E|sr#7xL7&G&9wkCzc(6^!ptEM9J$U##yxi0V^2aGNNv>Rv z2%&8B?E6A*Z~_Z)I+xkD(I56y}*Dq%d1CpAID3&@;6JBR? zNqG&s@Sro<+lDmLshL}9?P3RJqP|kxI`M#lHDnagKD-ojrOMh=zPX14@g_p7Nia8& zih1gj??x|O%pX=qJqhQ(Y;KL(G8EASo_dWz*o$Cre;DQ1(8bb;DUxgoVAi*4;1LVC z`-}z-mTqagRli-nbJBWdTxF)IJovRx1~d#?X98D#Zsyx7k0HGdqCA&Le$MT>f3knr z?bF3&taX(DGKG;rNNi8e!2Hw>CPKIO-#J-)>ypCP{7&iC^(ELwg}3>MB-)ehH58N* z9onJuQY*gbc_|qW9;AJ26p4+jPn?;VY7vtxsC59aLq(zMhM*2_FfoED`O|kwhd-du%1RQsdkhew#<~ZKR#Bk@ ziZs;e^fFJg&-4RPC7_r&T7j~A?IF+gM!)Q*Q>izQzr2}^%Rq<^tylZ)f=CU@ zcpj_diPm6t^fP)$ID&jLtcQVMf6kLmRbL^8ZcZ~VZDah zkyVYQCpDih-Gb1%yt4LJRk)mR_gYeQVOQ;thuS- zLwM|Mlf({PL-5TL9vjcL)l`_3S|07I?i0#Xl8^mf`tu6wK6qLuZ_Q3AM#dOF=(@4^ zi?3dIlU`6EKJUl$#$xpY=tD_d;t^y!CZz{*=I ztEu3=;l;td>-lIpdue_(|z1`jT7~#@7OhZ(EUoWTWuc3FK^03KS zgN?;(88z8sxa4xIiS0eg3YqZE-(#Zzx-FsJ5THIe9VfR%WRi8SfU&v8<$Iz>Fn1oRq28ISc z4!-|%M}j@_Wo<0D^!lbPH`72Tlhzf8bBtu`_UQ<;Sed8fOUX7BC4YbQR-QO+K&(2A zNqKJo&p*8p0M3$U)nh+R)ODZu5L<=IYNMDysy)C8CZO~)-fC3Nk9fJO-x?ozLsDYZ za8YT8L&wu5jy+e4!iy(mt%w+Fhc*69n;*Y~ezGm2znC}|p4QhLRUFmw3FjKU;$c57bm+WU$kiKinC3`1 z>2#9D=S!*j4%IuNS>Gtmms*zy;n1&gySu7+Uu*|iy&bZS} z(Fje6zCTJ|HT>2oI|eT%=4S?+VXk%}}OHzvng z|Ms9kKF5N$0-mz2xH#2H2A4=75e;6vat*L#x~yOBKSp;*MJ*cjV^d@-L;=Boo~C%Vh#{TyA_QwH%oOy$tVNQU;K z#+RA>Ycu+~6>c+SE=P7$`%75Z1~JT#G%DAQg(w$_&zO;}tYw`Y^{k8)>F7`R*e$W3 zM+^$jJ7JP~{b$EJ`?%&r1Hy!2wqyN+Z22M``CUY&%f(`JI!bHMePG^@e1OkA|HrVJ7S@y8M&TZDwIQtF>pkPC zwWxF**>Ggtr#Bm(ZhmZ8RM^YFS<}ML2*2xYWK^lmJuXV;bm@-+Ap1@3kb5U5?0W1h zG+ij!9a`wM6ED~Xx2@_QP>maUZg)Bz!{;PPNE(-(Ziux@N2iZZ5vR|1;O8W~X`u&x z%UmYvv4QykS^uW}_v_;q9rfEvsjBT%R>B291HX6D@u*GK?&pt(E!&>a;;@#V*R5`k z_||YJPU~(iS=KL1;cZ2K=qJhPWu^l2%Y$35Op8*k1B^qHlUh77WX)48_`0;3J7K+G z!|pp9myRfH^6l<|cL_O$z4GmW(o1#d9rD_lo_0Sa^bD1&b0%uV_aENcu;vpfgA^xH zhGz?)YX|Xi;0am@Ph|C>^I40DevQXtZ)iJ}qgxaP4k9JPwM+@Ax5DZ|!-l8$UzA0x6g9x@b?{(7jiVczV1;<$T8KEz_^+?!QH+l~&~ z!=HDy(-|S;`+$sR>}5rkMfR5Qr!jXkut_ACWtx|U1_9iRZhs%QL%)+`0<*{3e=xN$ z>#v*ehQ>=+C<>s_N)+vN+HcX&I(NR{?$^eHuje1{6>KY8vo7e1o#rLr%!@o+6C(Tf zu-?0dmzo0|r4|}4d70I(*!zc~aMs`MCJ!%M&)xvU6WN|D_1h!eofs#jeMBk=t}Y=R zd2I$KL^9u=)s@qif$?LQj%UaYCSxTbnQ&KPM)j|D7*?jB zHA4#n^`mmui@4j7cj2#E9_M6@+$nwF%sY%!fCuMA*0NI_;Jf&|?GkSJ7|W6m+TVXy z72<^ZwZ445KAZs8k${Xz*;9V)aS^!q?S#uVO|QyYEFJZ%t&|(CUr3sAg>yU%oI0Y2 zOp@`vi8SXgQ}VGNxO>EK>~9Zj8!ws4hM&ulK zdnSCA(FsdGdsM*O?ZC5i>2M%|9zP+SC9HQp3v%W|p@|BLoKx$z!@Luq8_67$B=_V2 zGgY=(-=u+IWmcJ->#>)>@|PIw(*h*H6SjC{Rvd;R$R zya@h!wS;JGVUzN$_VZHfbKJ;;N7|4)#)i-bplx+K^!Hl87>DA(!kozEyqyV z;fhVqZi9_8bD>VwGPSu9fPA7fLsM8AyQeAp{T=VFE62a|oq+aVa>-4@FlfD8d12@A zFBumdvBE6WNH3tw2PqF%xb!o0sbC#(l?3d2f|#MX0*@p^&eUHMgvnRcaX#&Df<2b6 zWLO%Pg3t~OP9Nd~s{hVHkEAt2bB?=v3>X?grEEz}NKG>qfV+O;} z81|uU#fBIN8e{gL9?_j;mOb3J-PmDT84)yKd;(af{nM*&uJJ)I!3Sr3_DojYDV+!7 z16CmLtE?=8w40hj$g?jG-~K+mdYAzuh)qWZjd!Kp`QnRr{|Sy~)wnA`irdy03K-$E z!L(9lt<_MBB9G!bVA%^cDec|9$g<`GSAn4~PZ5N<0b9JzXA^(f+y0vq5JwUa39Y=} zPapkh<0T6@Zn%uie5V}#Ix7coI6dR=9PiI>sZwg_()#TkN>-(ykc5oGn2epnk9JA` zt=~0y_^Xx@z*7uAoQaTs_$X8966sp{0O{5(q-7d2C@n+d?qj`~CwtO(nk!Q90c@7H`A06p zZ3XU&WT5yApVX%t@&FW(lZ=P;70Hapa-?tsL=}KntPi^ZsEH-0g<)v*kez3 za-SvSF^~x=73oZ%mb)7O@80_qwE{8y!)kq5xOoMBix0$BG1gsyX&`}cfCq7S9&sA* zE1u(xpJ#d;4@`t+{!%jC3j$^VcOPQm(+*Qpq z`MT2V+zYbbN}u|MSib5j4w!?xI)JB4M{wOkGa)7dmoX&*Z_75W} z6Tli16<2Q<$@UkMap9;r@E}*`iOkjWd0FNd_P!M^iUc0;1{+Q2uA(Io&9BSJ0>jDPt0cK*T}O%iKOY?xU>r0hscLK-i; zmkU2AMhwB)6yXUJm@EboiPD~a#regg&X-DWbp(e+@x||vzG5+=MIm~HHS=>Y+Y!93 zmPZ?gAs(EgF?bdx*4J;WiTw#pAi&{C;&2R)Mux8?KP>(OJ{PQjjGr|8B#uOutbOz5 zN@*-Ym6qUuZ9gaIW!NWRcnHb^Z}A>J zaE(&W#7|SDy&!`Xux=sPH1^$*a-$C~GPOrE3xMLxNyC1DVyxCr>7%w}W(u@AqHK`kt_w#Sn zWR!ifde8fisCpEisZ9m1xPpINO#by?-=Eoi%9he%8w^j^xZ#8Qy^3eNQ!muH6ogGn z)y05)hM^h+(E1gQa~jBr@Lik!)m?nhyeZseO!`g8I%FzZkm7fbNfvUf2uzpOuj;Mr z9X+6(`=F~y_8fmQTRkjQm(2DjLN&w;-_I;{2dLlh7pF0(Gl69*gnDB}eZn~FNM8d= z?d?jXEjut#0QH#zE0lh-s{Oj>J7CufT|bw)qRiF;4kh1YZ?1)?Q`p{_P~Bdz?=W=j z@DKlcAg3{oqcCjmXO_jV?gtTjBLS)_IOOhdsKy9lL`>uKur~`J>Io~Je1DmuG{4#v z7tF6y&(qZB(gMhrvo^Dp@P|$vvRB+Uhj0c!(yDMR%v`_>K*F_23~vnFbC~7P%MBO< z6iBe(1h!o*CsN3kcYti0gPK#>kvOh&UG)||*FNnowG;xCu%i+|{dZ6rSA)dZNaQ(YGCcvfxA1rb683Q|H2o5tw@mWo+41Vy3O%hES$A}j(@1+23T&!sg@Rw`aCeA(vd5Q)tSBLs26?3 zNN(NmSsxK}2hr2?v?{T6>lrfLcuZ3_mu29=@Ch|A-xqhcGmsW!D#%Xs!MV#l(=cv| zdrv0z;k0!5jF6Cu0p&Ax=i?d|@qDUQ>{(j;+CwunwJTSML9#{ zZTx2zMZ8Ndx*(@v-%{ zP_lkq$a@psKTx5OOzB)!FXsO74RI8xS{#)UgEJiDzfK`%g5Ju7X)&27a67+4aU>St z;2y-@?3VlbwHTxpn|r8>t3J%QgnE4pF_mINRFrP+B=lUsSyCBLwW-(i3AjyMWA{P* zH!HAXG+SnLj#nImqh^cxzV*!Ov6>64xWR~~wxLLkCCY-PWRt{|w zb|{8n+}9}k^p-}VzD6~I4t4CHcByPgB zWivs#jWc9;>+Zdm!FUD$^L=pv2RIaTt3{JQ-d8s|=8$toB^>MJ3lO2R^+GQ@eLWu^!j;smDvXUwa_&s&MqkyjqOIMAx;xsK7nK_t6C$ zHJTYnq;~D^5tvGFr5so3hf}iGorr}iP}Q&dL0#AU96+Mh&qu7dO)%YpPuF4he!;LS z2XnmcYsYld<6=q&8kIU-uLwIRj>_bg!}(#O3HZ1OKiQWkzPTWD#Gw}Lgi2voGgdLO#N zQTkK&^UKw~b~t1FvIfOe*}t}=OPcpuK@%Ap6urm5VAr&RU~3Ru!EgGg^adU|MQ9?s zM8gN?x`Ow{{;_cNI`|^w&3EOHVAmya#!YQ5HVCC~j?swL@lp*h`uP$4fg9y0KBIix zTg{fN)AeE5P=|v7$E&TwIQ%x5sbPmk+*0!dhSJ}TC0Tl1&a+>9j}04ca7hee=p4W@ zjI3H2^9skmDLwoa1yflCZ#~{Rf1j^bW%~3R2j&>2k|3_eB(Q-PlOf*hL9v z^TvtjO6$=&6rHV^CUS#WhcMd!hJI%?=_XAV+dyqbQSrzizB@GYKFpHnw=UShL$Py= zJAO4MK3w2|E%3H!9sQhp)A#9*go7MSFROLY#7?>Xl50z`vF>5OOZBKN_!p!JWYk!v z;#s~Afe@Ir8339t;v3byNZygSNF^4Uju`mrP+e<|T@&oAEVy%JgNh(-zJ6y^|Bn6S72ydSv*$YWtK^Tqa({4?1kPsnIuQEHip6pG6Zw* z{RNkzNjM4lKrc?XWizr9GP20H0Z<;BxD3jLkW7?ED7t8oVaW#mG|Ghz1qN5Ca59Na zzh_#CG8N=liU8@w)>ylzkbNQ_O`3>!K*e3YmeGwnDPfsB6<)mz z(bWVPTq(ziIX5O!IkF7qbsBo@eaMV*v0@XS5`$wMy4Jc7k#Q-y@NoR3Vx1`TMs#mo zb&$v9IXcn;`3)XJoN%}~1L`080uRDZqPoOPU)xFevGu{~z962KWM>&5oJIRpL0O;< zWST!a(Z_&o5|($+rqy!|IN0+APJsQGkU_|%XOO4ya;z1|np{4QTp62rVuh`ER>UL! z2FaufyfkvD@Dx-zbQca`wyBe+C+vtm@5wNK#*_=_1zJ`&5Iq!8u}FQb4vZq4rI8sZ zkHU6hZuqlx#z93fIwGa#WS(Ire?$u?!*;g1%RF7oTsO>=e@o?rtWu}+5<4*R(VeR8 zBp|kkjhqQ%<8*c4dgHNjYi2$0x*c${+EO_OBFy=j1fr$yE~|}1m@F_*;DzU=tt&ow z*$$pk8dJf(_Ws%=;S2Za2?fb8SO=cRC1x_^r&i#`&lppN(_*=dOfU6x4g{TE(fJkw zwW8~QEbux?Jfh9DF(K5`YZB?++GU%-VA~wmfz%2f*wb{_aS5Jsp0yC>yA=fZ9v;J^ z@4lBrLeL!`8i_=3Vjku-xhoX4Zr!TKX;=qzUyr?fFNTZomAoT0GnIx`JQU*TV$H+} zbcRFc)t?4%rxXw>kqWVGv0|Hxd`j{%HyB#eBR9=VXuMhR$91Y|!n8=L6-dU~;=sIU zO6Qts%!UVN8uLh%EX~(rQ27U-yjV<`VxQyzPKlo5j>p5h=-w#cF$#5F53^060!~=W zapSwINF)!83F6#+nC>W03;VtY+5dk~Z%rv|75e z*2L?v!E3LB;!gpaCLt*AcSWj%W@uc}`E37{aX_%uPFaLlM3%r>(ZOb*yu>*HLQ?#2 zW&IMHFGc@(najv`S2gnqKetYyCQ7eiM>Y0%_gdk&PJ%i|qV*a^lIdr;?_?eOT_1GG zJx?{_QtN(Ei?S!`Z1bA@@_Da@`4Cta$>K}o?CS~&sSe*%-m3*K<|PH>e8;#xieUBI z=Vccg^w5n0SpS;Vj` zJjJ1yhifut-*)Pk{u&@CetU1fzi1peyFCbx1%E*$_ zQGA>gk|J0LP69iA0FxkJi5#esk2xy+NeG1O(Z)M}A%i@yRp%SiLsH7ee!@&4{X*g;D@sV36_)=eGZwO4Fp%6&{gcr$uU+o>0rHwl(4RmM| zl(vxBpJ@HbBuu5Vu_(k_3ee zS%P3393(}-c=R4^v=^|bw8u{=i-d{M1`=2a1P;pJPAMr%&OnI-q$QdLBS+<)N5RcO zJ-&gu03}Y7=%_YaTQUjgB>j2-V^Evp;0Ihn}m<{)WYf~8q66~cRiW9r^>EnyWS zctSrY`eq)-*GA>bB6DS7{!nO#-2buEuUseUgcQyrTRG@$!@|1ejOCLO+5zx|Mp&tf zZGprH5N0Kj+GS&{Kzx@uZqS_2n)H(wE^(N{yP*IA@)wdg3Z2Iu`4}Zhf~N;&=>m?* zS&5|ai0qudAE&BkRA*0AmMs3A22}t-&O1-98SAi&@6v`&CPf>h2>{uae$|kF2Na5ssP9H(k?%k+<%_J}fAEZvla9*6Fqx;p z5^exRRhF^%vml10qO7MfSO>IP!dSC{s^nsHbZn@Mv~W0EH|F0Rlrw zvE@)iyVToD7xPUcMC77wdl0`T(gBdNNMmz*#cF6wB_Qg9y!tRC5+JOy$CCw# zaamwFE^h1zNF1?9ltgGK;iPpYB1u1`0b?9yT8mClO^TLW_RrES4Iqu_#yG7tvE5oh zCm7)+7xAUd?Y4Jehz8zppQIFT~bMK>4F(QYDNu#?l zp&qP$Y7uvfgVj9?_K-$Z;(Q7JB8ml7%2`L}MN)C?lMSSGgLl1{a*M^j2kLV z{(=b_?^b)cyC?35&BlXEpbgH6eK+nBN?YSUNErsWh{mN4V6?XSpLvqc>z5%Uu zQocmW;d3(&OhZ0ySbg~_t3rCX((L{}>-XhIs8j@#JgTH_)my3Qplk0fVeGAwl^Pd`v(uaJ-g4)Ge?J$w);B!) zLLU?OTz}1WqpD_veOhv(Z?JyG>+K})v~bTP4ULA(*(9v4=Xi5owMQOHy2}O3hg$n> zRhr0|4ZOeVuhIJ4(#&2z4bnC!T*9QwSmJMKU<8xt@BK^KT65Kd=EY&$ptsv`G*aau z3$U6$hMxwfDfW6R_(ivo?uPF|?xZt0yxmq82^c#Al=P&eJ)5EtPW{w(%l0lD5CYCu z={9HDpt9dRamLM8r-gyp7v535ajAQSbn+C|u}Tg1XP~J@>RvUOuXp1f$ei(`ix6vA zoW1-~<+Mw-6*EQ{YsQ+Rwy~TLz;(di^qXhge+0dOUoHxzuyc?0Z`3UJo99O)g_eRDE$HxUuP8%AA{As|KwA-KX68>_yMsp%JEKUh+RTZN&OG_ngW_s>U|F8=Us8 zYxAn_Vsn3FRO;f(Zr`l@?o4?*7(Pf6HcnM9H?K6pj zt3DN1EOT+XJr)4(HI_-m=8u9^5#KBkNtO+Gn&9ZCN!#QwU$Zw2w|HydK7!>Kk&bI2 zJ-CF!gXh%w8>y8M5vqokC3krDWD#DLO`|m0G>qHl8RUh#2llBk&90=>!+mrrri)aP zxFsN&1@4@RTT?WgIp(rr*&l^~+hN&H6mY!)_u8Qe4yBP%$WMV+fai^Rx3ZDbE3RI_ zQZ$UI77lkXR^>vYNdU zbYTk2XHd(EA&sungbiA}v!p?x`>92;s1}O==@Hx-!2fcRU~eUR#Xl~cxt?b z@~}$Wx4$Pgh9vO6DlibfT~Od-v-hAZ>|;%EV$T>MDX~NsfQ*jn&{D0^2&6}dV1Z6u zqZjK9HYB|?mU&#OG(JrxD$&LdI?Ff- z&rj_5a!d3c8M#guXwtX}6R9YcU@$ZHKoJ%4kSt4l49QA8M@-YXzOewU zT16BIJ34i6((TSk_HpdBHP;>h;e}@bo8@`R&P7N@xphU@qmvT{6KnQoXZ~vB9n8?0 zFW;PTkzH_Bavlu!YL7i9^YFXU_U?C87C)hLZ{+y-|h9@2N$g&#D&yrn=hu- zC?rraF)}bNYonmOXLJeEJv0|+pLTKkqS@z`*sp9Gzhm(%id}7(SJim;*U`F6{@D_KLAB9@IC`MSiJhuF1C%9m{ zw?p#dwllFW@-|v}{X{i9uW!Pw$+eB+WRdkrKcX6_b9zrF}F zW!H%9X+v0T;h5df&>iWfWz(5TQEoMz*p)k!m(mbRGtA!t*1aB$3o~dY^Q+B1+L+6ouNi)Ay^)$g* zd(~KaXj80@%+NZgJ^i^tc2G>P)Mcgf;I(BNfo<~&=|!By6$a_19QD#e`q)z^U+8H~ znv|`yfRitqV^8JD8hKj|J7r^zBZW&3c<9S=SUiSn=bAQ>Ymy1+Xtzn%OBdZCA4xwT zSaLk522Uq;`s;~8yUAV2>w#t;6kkE6-P-t^gDoDR_uRoA ziYer&bu)V)Mfb+bdXG~ESwP12o#(dA9@LOIr6mN|(5mk6+Y@^|dzinVRg>&miAyOp z>Xl<(vLhcxQh1~+a6>a@GtcMqGa@hVP3=@_>44Su?(0Lwl{WyA4Y|5UR8*J5PfP58 z_(@H+Lf0t|D~C75r(javlqcwZI5F-HNLJ){>_=oPtvyg;QhL#*xC@Z1F+=p)7fHA> z1o@?;mF}-gBlJc%Gk3M$U*U~5WplO-oeWQT<3Py@^p0%nk|Kj@<7iW$7D|t~W1&tU z6#p{Dv=QJ2=};?;t9Vr>bs4x(pmU*ovjJOViKe8j!nBdQNv@1{ikeMclxFhY$@gE8 zcd+Uma-W3GR~%+&TuBl?A+e;|H9;XPYDn{W-s2kiAFaAEWbrGgMV=*T9t}v@wW!=P zAeGK~M<8SSH2fw2HYXP{R}wwLl5A~MZX0h2suf`%^%}j9UlynlUK)s<5@VPUKEAA#qc;Ul9 z)z}c85g<8NvL`eT@~Rx_)BAmeXdG13AHU5839OWvg&meb_I;PV%*ekG`L^DO*> zHnQYfOjzrpH*cbtTg6poX4z^BH)`R{2>tzo>sdWt00%iJ!QN4*2;ra7*MwC{S%qm@ z_q4ZG(GyAA<*?)b$95x{s5(1gZ{4gK6kd@crl;4*5Upw4nH0_8yw*O~eZcG~ywmi! z;p6PJYbO3tc((aybO10Y%5hBpr910)5^&b~|jqWyPtbKPt$MxCdbq z7Ts91(Mhg6@tl}h+%fAy|NMpj4c?et+pzPusOORKo&8XF#L`6_(}i|L5ZW!J#AvmXyc?k%0PWY^uj zpFSRvdY5Hy-Zgk2?(f6dd&{Ps*mZAb_@W@J-nt&aUY@CX^w2h;qP2M3)OokZKZ#EubzYlO;_$K4ersBG zDgB>!!N|7<(7*BLUrw<4Mjb1?CWt3~UR_hMTkzy+K>Udlvm)1hSWB6lmT5fiy(sO2 zghl)<%L}1grS${)w3dyDYxjV3r)hiagt_j8*h%9lu}h3zw#sMOG`|EeETHhfM)HvnxIchH`{Zz}88hj@7F(0QhWJtWACcJUI1ch$Bqzl66mkj(h8eWl&Hcr792~@fg80q8X%>@`K z5Tke7=pFd_K%@Iaa36pLJelG)V58(3X>~ScBJjo;Tlsd36=w%<8zs$5k0Ra#60}qJ zyOQI#AO24H4|VOv`G^uRNtvgVj5wU+3%D!ABtY3x+(du#nxe;Dt)NRH%4~d1d1Z6$ z!ubgR`?`h|N4Q!wE_#e2G<(#Ub%p4bM*LkpPA6fmPLFX*ZRubsywvC(WuzsdO;J+M zZ>5x{1|j9}J`(elKmMYuZhe&9eU05E1NHQA{$DoQ&mH@!_Io6uq;8bH*~VyApBVnV z3%0S7q;7;wLkVV=ncZw4X}i>Y+_EtFJ}D)ILd6Y~KC{S|@Yrb=(lEDm zW~3MRuS~ySxBJ!FF;W=*}`jENRdXA^yn#3p8GFM%Ow*ycA888J7lVe2y4h zaRYyyhF=2w>#Ks+NPU*sT?CqdSSe-jkC7~i zc)i`_I>EnXn`MQmtn$cklKZ~XMij= zhl_HQ%!fGSKz-`W-U_GTQpKgAf?F!Lqf*!kx_1nC9u;#f2HNx+wO#{|6&Lkm-s8-o zWoEA;DYe(gx8b~p8n-86a*H_9NjNYq0qRw}5t8%8&S0ty@GQIgE1Y&j%V*eK9&7lh z8TK{Gb{cqnQtlv;qLQ-Xj2<$nHv{xhO1++-)Z-a+!=Ge-yU?kA(m>ZC6+6Qws5a_q z&7uOch@<4{L7ykMm)h!8BnMK#_Tom-7nW=F$0ic3R8=wVUNrYe}=w>py_DlJF8aAR4g_lt?%wGN~?ttCZ zX82-4nTWyTh*8iBumcAG#R}I~IOo2KA8KTE*m?IsUXj_eNh(qk-e&_?TZrqI{xk}0 z0`#N%$bf-ek>qdGKr5A=aRxyx2(1M9g*Yog$s089uqcyv89f$%^dhOK^(uI~%B{~B zFSYZ_%(PjYyciXm5R*A|5JlzvAK+0g2DY1BXoP}q6Ske=6{t8iz+J83Gy=4ujdZUq z z+qFom6mBu|hor6yxc~*hRuw|SSUw>XFV#YwnA?fY9x1`Y{{g@Zn|qWUP#T3T?XC%C zE=Nh}1<4$KE&&SEN3C*A zQ0A181Orl@uaT3N?0uh*F2;~H4OIyWlk8qjz3~>{m8kMcGm0u-xKn~y2<~&zEErtI zLIEr$P%0Srmn-cKk7VGkGefn?a~<-Di2&`0)cI|k07S$W z^H#dK7R0*U2iiwk$e>8{84;>HE5x2#a+$3f7aG9N03qvSlGf}-LPZ}1J_Rajh1p}W7^zbU1pi`h$p zBS(y!MnZhj#)uPH`xaM4X+Wa-rF|S1>Mux=c6n>M&P|AFBxE4~QxC4u)Du{fa}~IO|0*|B1~d zRl^M=kjX~wGL-j+fxU+Y?7_qSw(*@ikS-gw)!-u2aO({48|M{_6=+}L_`(l1wtpn} z3@LL^d1wO8%@DIK2G>r5ivn2ulO5>BnYj_%Cj`s`ITFl8X6Mu!c$1CD3(WWrK>BLq zca0&-qHv1Qlur;YIVi$VEt{<3R9|4{f6d(TKO+lon*ex4EM%M|Amlo&8hGQl1;r^TT}mhl zpjVZpnmEiNoK>WB)1i>zIPH@Qy$O4wS5kbHj7`U!pW1WZIi55y&I7b2!qA8|M<8#U zGn0ZHGz$RK0!*jtVY`iKL!dw#H84|8q>)UEDUB!tZ?o3Esf)uHZK2LoKRohux4Dt{ zL0E(bj=Q8`?_O-9R-@4SrtSZQK^JV4n6$$xkCSIHN);+?02%{<{Y?t`VkPAuVL;xH zk7M;ww#+6>9~I=gn4o?>^rZkL?K(k)OX-W9RQ?;Z&Z^{Mpl4Q)G2kjM5bx|-*j`}x zQj2d)q3qm_`|j$aJK5I<(kObgqYd*-NPl+R*1G_pAFQK0Av}+Ql1(QzF9T?dU+J$F z?PR0Op*M`lA+@-LxkveWI+Iy)ZHALo(2-7;9r<}#gSpKxR2)3qZ7{E9JjZ|B#bLQX zQ%Wb_U|z^z91Ui~Wd5_J;bO6kvhQ|%Ti=011GVWE^Ax}sNhJ2JVH|HG7(cz;R9v>@ zL_PDuq|+;hY4taq-D5oj?H~N+_^4oJ`7YCOB0ciHYo^k-?M-7N!MsHS28ag6&0VLI zC%13{)@)+b+FlKmcD80hR# zQiNiI+dIm)FlHmL?;t_b{>5nYI(N!O@tqjCbw|%-R8V!8Sz=(-{YM)x?B(Yh4!+qv z`KJ%3_Hn=QX)$&VGQNJ-RnB6Z5wn>lIOy=HUKeKOjT~9b#1J4qm6Ch#2I2FH618tZ3OcW!R?B3mWm#;ftQbC`5^AGEc{5YImjI&=6 z%px0Sz+ioVvzwG#Mo@N(lJZ8mTTs^TzmFkd(gtvEA91qHCSs|mYRn^7GwTMQ%q@7o%q`P^roaIG@LQ=zjwFeBUk9dNav1DH>`YFS8C2K-1S3QMK5~VSq2q8 z?)Pr;2j3fW#^*#0SR*YpH`CFW%`rQjKC#A-oZ~=3L)@{4XUZR4_?{Vm{PFpU*CN0g z`eziW;nJ^x%dS3Z_02!135Kn*ZCfixFq|go6q zt?u-uaW$38C&vY3Mco{$=X0;{zS~14^H=;!E7Hq29{$cV>Hfwj_enWyPSIo4B(~^q zt&aMzohN5)eH=xgj*>`7_^Q)#E2O8(ay2qY;d(<<+~-<9_N4P&CBSydnBs*Jb8phS zqf1%7)cpN&3JtwWr!2_wBjPv0%d@;v%Ef&?i}c1TaarH+-uPzyohFwTtW#d@b+&cMWa9`px^Db~yq;=mUzV>qzTffmX7Gh~ZR~(IB_}fj ze<3vKagm)M>|V^>sJ1X7LU)jE4o0R$(~8ya;eYHjmzsc=-W?TcFq0f(D}6Jr78SuwfM>p7qbe1v1@P*9%VWTLa|YM z?rs!p!|&F?%?fQV#RR)T+~TaMB$0z}VT^&Tg&Fk2ywfT2guoAJWA`4_7K9X^05=3C zn8cI4f^5oX+s&0x8)DU1+hkTKS&|VxN^v(!)GqOp@md!Q~i=(f`BQEaiR| z*mT*y*s)=r#E;ubBmo5)`Z9fwC@C)~p*xc5Tcw#YtwZ+Shkh;XAeqVoNuw_VlrgY| zHbrbQkDa zd=1`ME@q7$!lGn%YXgL;5z2v34gV}r<0ny35+tLMOKM$ylh~*XlzI$FX&x13D67lN zJZ`Oin!cKg=msVirNSiHySALbKCk zyn|nAoB}TW$Th9XgywcCjHxr7{T8Qic+_eQBPFm0ZB&zk6I7K2U9y}d7*+Z>ht;f} z!u8Frm+uK+PN^jE`wORqRxg8!0qUBTH3A@FQvUgSs!~7^GKlyyC zPMHo~i0_bn0*LD$<4%R;IxMUv6PNnSfm7Rl?_;r6nt1b8^(7TIfFv6u+Zp}--axKd zh&0BRh{4V}7%4;&2lkGmFAHHN`2zeA{q#LK*bnA80gmhf7QfKFFPTT_rwcaxs{Xue&+BU=h5w>#v|S^JnrLQX9j9mH_;vyjS%;iCqAWl*nS;RYBmW= zROMNLLkT`7DWpzc{$l^+*iHvIeCY4N!Q*GooS2YHw%LZR-LDDeIG>zKIn&1g#iOXx z@mkM{B$5LI71}IR&RkfciCKy1c%l1U7bf6AMd0G^_RM2<4qxGHVd8<6qDQPHT|J|k z1W*ztI7t9hLH5Zor&lT#sE-n4-{uzD$m>cd)+>fyp+Dx)E+J70xvYkNR9*=-lE?MP z4Wr5dkI}w)YrW}z8JOR{N}7m+X)jp$?wb(BtH1pdM!&V zcI`d4309kF&+%$jlximuKT&wHqG#^708hFog?+uk~Qg#3v}qL78v+`L;@oQd6pAB_JSpwy&D?Y1Y?Q zncsbdx^D2C1EF*7DvHly3p?@4uK`)cL($Gr0pLYO0hBref5U2&RFC+orcPXBsW4xx zc6!KZ*{y$l9C5+rhvooQIL}0$Xd8hhtq}YlLaYSNvB8sZe5wuh6qB=U={Y8N0hn9+ zd^+tjUTnsV|HCuYrC^;ls80>0B`U0G69)WhN5>Q=>zrF6*@twwGS5?$=d)cmwu?Kq zOC6k6om?{K{{IBqrs;}nbaHF8&)Hc&K2M+YS@%OsbxK{$%(PWrT>``O>6vLYKfpEF zmE>t9wR^Xfu0L3_u&-8T(JqP9DeE-fb#YhZZCH?3Gh?WBZQq8)f7LGLZip4u+7@hB zRkuObQTu&IT|ryi!4V+zKrq)bxI2Zwv5z1u6 z^c)BM3`Sj#(4!SK_7db^Me*JnA~S0^fLqvHnA=$>ArWORP$(OP}(6eV}%-8 zF>US!2kTFqK0`@6U|^IQ=wp?%)i#iEczXNUmL03-zyR>lKE{*H(N^+AbasP@^+ZjZYhg7QCaRyFmljWP2a&0Pv_K$$O4`6V0c3<8EN2ecCQ zF?C#mjk6sEin1N+O5nBt2s*$)+;;fmSpiviL$kHUve@K_jKn4)Cpx{w|f9q zllZ!gbJ#@50j5@(m>uen+cvrjkI_MJdelI#euOa#2ez7+5K8$O8M8pmEK^e7AwVy{ z1Wk;fB6c+fJ*d!TI>;V4{k|GVu(E0ps7TF;bTGC^BF^n6e~vACnZAE>`_3P2>^3!R zE5T}Wuy+A2Z8mll!QSX#3?X0vF5C@paCHc-c4>Fog4Oir7>j&_vl$2CPtr7sABF+r zF$JsFvFsf{--vRyA@n&Y`58eIqFgk?Nm6VpL^#bRO0t7}0%31K7*~~a4Mt%c+z?yV zA@v0)1ZdDR>oMp6&RnjboJE;x1#Pbyc+~^utti=NV19Z)IiR3KC@E(hj2a9o#Ti?0 zIA6jzgN?xT5~k4vZIUqeDc~ZU)PXYiR@z0vXLB$uKq>JQL%_VHTNSj0w#1_dgEEtG z!9klvjFEk)Th!e0fU%MBZ2iMG$2NBzqY931sGmb|kfWSbVjCpHz;pz5D!s`79FI~m zZD1ZQ(me+=U*H~kC`ST0O`#KQS$-Sl`e0zb0^au;a%SBhCctwLF!4Fa#lS};q(hOD zwyz{d{+&5G#z|O}2~l`10tu~U*x#8GqW0I4r>#pVy|_XUIIUwDw`Kxq+OP3bW~+7C zdcg#qX4?T#PclA=0u&#ZH@s%fD)Tg+CVk&WvJxP_{Rn?;&FzbwbocWJ?4%>hwvt=< zltV)&@6?o}8rthtlB0=DHJ7KQ;y4F3?rPx$$ zZc|hBkhucBz7|?cZOgFvJlqQ3oi=x}o;=e48*2o>_>mJI$K`l}1x~cHbcMhz7D~h6 z`04N`kvSD>a(P_R(J&{_#C&Gj&MC=`mrMdOPt2Kr{uw#OTtfdDgDuhUWOa^*ej*iv z0v|wNF`SH1e^XLVer}#Q4So#4?a9b3H7(u>r|Bt}o;+D`XF{ZF56f;ZQ$G$P??SWz`;D*o28Jbc*aXl z?wu@D!Y$(`#VeWb6zo+5&2Hmd0q9o{=sZgMy7g>}gMI2Xc-Fz*jf#H3ogo~W6W5)v zwNn(Dp1Pg&6UN)>l;jj6>`0XP8_G&B(Ox>(8iaPm!TKJj-j%SAppYGNxuT#6=Fiir z*-r^39cSEDIB^who|>^0VAyb~hn`{~*axuU>k8&VWX`?3o3%Djjk9m#bQ(@|0Mzqe zGa(!61wnl%Vf7-=AWjKFIO_@WTZDF7&2YbM#jT<4*@I37{0I zQ_dN@>v2x2gt8)(F;Cx=G!HoKq-RT5n+@!ZSlgWs)Iy26!ODV_jGq;^?kgV%ZBUjY z-fpGTC@FoC2nR-cp=AH4r#{6=_w|fz1aqRzsY`Ee&~pwUF7pq!kG8VzE7{u-(3DOo z)VVzMr-(f%JO$-30U1rqlLk&T!Wu@{;cC_)2lJtR@LSJd(zg9Gm(e>3%JjYLH72nC ze=#(S-D{<)+F_8@#$=i}!d?FWN?EHUn+1f@_y7nPp|+65t*_7%sl;OcZ@b zz(ppna}qku25rE-&KJ=NP2`->l&dGHPaWtvE9;ZTgmQxN(n{%aK06mNodXby(z$Mz zW9k*n1TEt|Ya>Ec6HA3k+9L^2uc04Rl1kj4O#m2w=xKWiN}40T_Za&f-nQpg%S99O zJ^~%sOHMXHx12mtHT|Lqd~2n@agtN;aU}}ILj-DwS@hgHon)ZiwXyfn zKt=SyQ%+a@qF}AH(mEBu$u^2z&;I@B=41)YPOy&>pjFA4T1US4)>;VOH z9&q)f)u#{{IlH8kvrA9CrevQtdH;pb7Jkd57?{2U{hb;x>N$^fjMsYBA_?agJ$s%6 z98|vjSwe?#)-KbSImz@#j+PZBw$)0nR7*6Lu+ZfE&mbSnama)(s<#l&9bep~QU6GP_gW=7a$O8QfjU1LZ)Q}Xia){eGZ zCo35)RZ{2KAf+iNUrZ@7<;>Spy&|}AtKj(Y;br*Tny{W78lpF32t|rRB{)SRA^U!p zQ)c?Rl$e&kbiuZJ;l8&g6zZv^5=x^txpW~l2ZO47H;=VK(LYRCX>bCq$kDqgb8XOk z1u1`N`XqgJI!?|qz=irewOUl+AjPZyrxQaJ0L9o z_llpuyf~;lSrg*YnC9q?SHcsP6#x?W`>U|)N(ewM6^L^mE{9S9fEcQ`xabsUUafuG zP#t+H+VXvTPQhyPP$fJi887*Z{NW*Vc_mah`kP|t3w96oZar(EnST5MULYmUIs+fN z_urLvILmfihQh^eaI_+OfLzdV^6McQlF~Giw3I~Hq}6n{@S-8BU0%l>J-I!PivzkD z&af^i`T7>Ictb@+T1~w**Q&*nNG0jZUr4u5_b1U0TZgZ=Oy1+)yrsH? zXPn$tl)c*3&g)R@j43UAf88y3W=FyEHOU$L{i>~j?*em%C!b9EIk;%oso(hxOP}95 zF#DH3WR1Y_+{35t9-Ub`1^zCwbt1JRXKDIu&g)faWhcjnxc|}p^^Zl5&#y@BUpxPQOKj#EmoWv8KmY#Z>b8gl zPac2y@ca^p)fW8vb;Y{}8|U$RhRY`ZZoj;F%#^+Y9QTVKgh~duRjWV$_560~aiYmP zVI?u#I_bBO^#GI@h`WBXr~a`1EJf6hDE_Ym;B4cg~LI3X#(f{vtVE;dU0s#0xBDe?mf2sPDuH*RqKbyr; zb(1I7H?|hHU)vfu^@vxXSuPOEV*c|C9BpBS=V*`SzE+{Vdodj&_JIp_r|s|HMb|&d zUSw&$#L<&@qpvF(|NG_)|1$u#Ciz6Ycjk6`|N4K|k!)^k(vGHC0+B`2Rm5#6+^+FADK>7I_u$8KIcXD$FHdpG{?uiq}s`)in9{^pS~2)OD@mQMb4 z73{1y>~+Ec7UX3Em#RjLO;TC)J0Ne`+&{-d;eY(|zUdo`Z!CY4)tcr(GcTP8Sn?M< zsC@UOc!pH7f(j(RvxmKioX{6MqF}4`If!- zczW}Oe-pP2#D}zf5`~<$^{`5PnVZULZ{7KQdb)Ljx~XQT9Y~?9OvTKt5b8LN%&H8uiy~EwLmqU_EC{DD+%ml8pobx8C5zl0QdVAVh{Bf%< z(5QletJ5#&j{t)MQ}VHtkUzTU|F-*%@~FyAb~`z)H?!fNR~dhFfBf1m7z6Zzgd5QR z2H6CW&o2B4Zg?9cy}MeFy+cZpl$nvOZ^57c8#m~tpIPSd*A=w|#ADnxMslwD%R{7F z#oLd*zwQy)|NaK|#`Jm}&`tSpGvVdY<(szu{_aCPBf8?&^6%W|%-Nk6)7cd4Q3uxE z3GzU0t}XCquSl8?=u^_u^INS}(xT?xHOAU|n>gd2h^?XAj)flMM00<#f)hewPGQsk zNkOGwSR?m?fX|Oz6Kq=dTb@Y#I{f5LDNZfh@oZJ1S z=^5kNf?hWBS2nTxtv7M=yM15ZxUOvk3~3cSKCbwzMb;nMFOnCw|2*fMgsH zapcqBF+Y(hc;$_eChL?tUi;f*%7wx?8=QlRr>Z(Y*+-eFIC<`G+Ss=#ajZ>u?=?xT z-`eMhDq4jCuK=~=A9!pY(6m%o6M8fE(o$KPQm+5LvVPQ8+yMJI?QKtAM;26)0B@NK zU`-LP{E}1Mbw>Kb_lFBdXE}AzK8xUjqejwbWGzVR5j}L&CiELQtNMC;zM4uD3F*kl z*i)BA#a*47Y1@$&WrC|EDw-g>k*c>Q0bcgX0ut`pErEbxLp}UDU0O0-A5`8>gRX(V zVp~nnuuCI5TgzjUj9LH$<|JCYT(*E{zOeyt>`H1SP6UzgMy~YNGb??s=!j^h3foxb6exBob-GtmNt(gQ==MsH+$o7C4ySJ^=mp16-(Rccn-OCY z1iZ(pHGq){U(;blcx~<$Bf8F-lwKCpoCRzRAT>`F6(J*a8ImH`vZ?ZkVFP5%=MUuH zSuoe<3=(7Az?vg`DutCe8Bhu<;oF`(D^(X0&4=leYVVsM8=wStpedeN*r@M!N`>34 zS}Z{W0eG96lLki0$w0pM80ITW{DF@O7NAt33mww1MmkN?avC+1^oS@?-nIP^Aemn4 z-&%&}$I(f9`sfHw$zZ>kK z!?YkSL`r>IyEtJ=X>)9v3_Wt;GFIJuqk&{Q45# zPgD4?L0le*(6g|;F5T*5p4HbTML96nR+}>uoFhiY$yWA_hhz+x_WiC~Zm<{SzFRx( zIhpW2yf!y7af^6PwVo?c!!LZISVaU*{iE(Tuhz)%S$QPqWE|#mih!r|UtNn%r|Rl9 zpt*TUL7RjeQKVwbFlD*z(bvQUOXG5IncF36%9wm(9oatPUNC=L@c7j<1wYNr3F`=t zQH>-{EqR|C+&(^d1IV0Y`^9H%A`)0>XQp4g{U1DVB!0smjBi>uK{r|>j>%?BLh6M3 zBxkETZrrL2NNaaF^=iz^4d|O$TH(j#)qzz~#)i9y@U(C+fy|V7&&yHYqgt7k9*)0B*O^bg`1_O?jCHx2gHFN#i?S&(X z8E(fHEsQ&{8m%j?BWA=d88vm7dGQ}o*Mtw%`>0;x7HwST-1!bozwK3Y>$GNX%gf+y z6iTIufHk4nnj|qT^*hqV{w}?L?$`f|x%Yf)D*fBNudKCF32}v%1Q1tfh8~I#uqD(; z(a;1GF(4u;YG6>&v7`|~Q3E2Pq6QSjHWRR6olwOd&{6C`QPFW`f;x^f<2~&4dvQPa zezRXZ$FX1Re*g|vI99&b_d3tdCo=qkptS`nce;h$QG6(72ANi9f4mtSJfJ+-tnX4v zR?MHEOJ9*~SAAGRpMG5l;Y+d}Fs$n?|ml~><(SeuymPN5;=WNay z*7-*_|3%re@WV7~%i%QlHlC_%XE~`fyO7?YLe(5gA{cYye zySIo#pPFIpHpG-;{{s2!QTauO<*!RwiW)0e6#8s4ADsCKO&>Tj3)<5)5rEVk3<#6ai$*yS^qzGbjcofcUi$4BSfcDjkq_w58l|wN{5m4(;jEv7MYAA>Y ztBM;)vrwBwqf|SLRK?BiNkf}t@M1JN36&$w#6)QheQ+bEixRAZvtAMKW8+cO^Hm_6 zVVFW95W_5rRgtm5VYHiW@b@2cDanEB?WjdEgpZ*VedrHTG|?C_!ruaMDNi%dBDwW2 zhStjAMWvaF5cGv{E7avl;Yx!LSs;P&{E$xR$~g_uQ&W zB_*c(bIuGkhaTdM1l_TnDK&K;FwHV$#oAT7Z93wHmBvr7#t85(q9N2I?5i0$}0o24IVh{)7O` z$p8o`@E|qwIw4R>XM4;CkNk9H%(Vu_4lEUqO1o#GWpa3pR!s@C7Pq2hTC@#+;$>-r znKMu?)J9KxtKUu@Z=xt-h`1F)3Z4G5Qgt33q%fcf0;57Hcd|g9LK@Ou%^0EFG=R6l z`NZ@zpg#Z%)|@b{pNGWaLddPh3CuAPD}uqwUKA5hpzS_KzV?f8_ZW-8p} z=uHDd-=QzUQEfDONg^jRT~~&`k*Jl4E9ZETdy4ceGeT2SyXqR3JH=QMB#)G9(C&w6w z!DwVS2Dh=cbPU>+O`yA+FsENj;JSD?iA!{n9&_UFjP!=TDceroL$>WEhL{Oq{ER>g zBrzaiCffireE0@2&P-Tjnfp%{L2s~1{;O=uI`~qLMAp;3%h?&SP7$8nK#J1A{|+gDBy4;g)8r|ew;stcc4UlTOHMBjun=SAKPI^o z?1aQ@zAkf@^>cpu{l2w!GGwvI_INO=@PX}gT#_Odu0*P8r(c`!MpviNBKVW4pO#lAjSwIyCaDuL&~l^=vCdqRNj(R+Wv(0c5^B@gthJYpG@JGJOiRCHIA zC;<{#A>%aS2#s=`<_5q{loAz>W_0duF$W4_&EC}&P?>Ej0PDPzlhVH*jcSI(!VRSdfUbQ zmWooXz=w%r1J@)lB8Ojm((O8i{-)=AZ=vr>XFMdpz0~rR*j%EbvR#aZx4JHn5nU{v zYsN$T%mfd>(EFn2F?dmAJkwka;mEbaw5fi3=~j6A2)ZVloGl?%)k4;*wpk% zKG+?OW_;b;i_-Z8-3u2^UcaRG{Q#o_qanC2^FlKKDYw1Qn={bUWjCPay=&onvq@m~ zX7sE+^jjlba*BiCgO>fSGC%P*F}i*uf-iz=`sSS0Q%@cv{zU<8;pkJ-e7KnWi;;VN zRT^0ooEupWAnv>8H%lO9Huu!n_AKi!A*>;)5&w0kDn2mRjP zEL(t_He#If3ras=B)QSRN^G5D5U`#e5zMC?lA9tP>qxmIEAzbdLgdUSl_yMSG?CO6 ziquG^=*g>MkbEOCA&k66Po~QfIGNxF_K{8|8- zINOYU>mbg|RXv%y=Z2IPCZ$mVzt5H}a-dq)oUdcwcE-ryTZxOGwEAAn` zh0&bUu7ZPGrp&C^?6lA;a3nuXw`|)~mvj{|{$}@Fhh?mrYp=dJlZFu^LD`P;OVitz zuBtyj*HXZlP5h^JNz%k9u@FJfTWYKmeU&Ub`sU1BLq|_NF>3xaKNe}r{0;g83-tbZ zwW(;jkT|q(!+Dmt_0kft?CfF#lBk=N9_Vs*S!{F|&L1jWaAZ{^A9-ghHuWz(VY~F= zCz;^kABiY({$b%4E-}6MQs_fx>*+{^)3U<;V$*#4=?~-^CS(u({+y=&vyV(PYYJu_ zT`p%_kjM+P>;B4ovLqd>dSoL@$5!o|_hoCrhIEsxl3Wxev7dGHt4UL+p6zwiW77}k zkizMnaNze6OLyu+IpxDwD>AX0ga{4(g|T1evxufxuX<>;*IoY(o4;qqdG$>q7G{*( zIQT71_H}sc*O-a8FXSoQ=Rf`FKD9JB?#sp>|2!~7{cp>kSAHyL-nw;P_7_^$b-UVs z=l&k>ddkGxfC=mI{{jSkygeXVyEqFh=17&qIWm0AppOJLPLXzvy4*;ml~)kLNf{N_ zc_bZ(-jnh=zQJ$NRW;{7X0d6jp7-uaeLMHS%+3EIj%j0(mY8iWF?-YAr5s7xKdYQ} zW=WcA%BsARl%eB&%A7jTX~SGO;LH7K6Ejn{vcHZoIJarzU`x-`dGS|Il@VR-y?d_=2AncT8Jj5VSC4(u2I>x{JUG02>dIfb`)Y=Nj0wzf_;_mJ?%%f^FDAQ$hGW%s zff;)*ua5LkAs~BVyV!z}z$$++knmqFwQBH6J)RG4mRkXlxDkA{agZ-l4F#8F<-ER8 zs|*I(S|zc1_noYM*3+Td&Yyj9JuZK(dtKe=xp=kjkCP_TYy-`QkODD8-`@Fhmf{U; zY*%)U4OqQz{7Ue9c^ULf>vIiu?V{iD{-x^trhN>zz^i4E5!xGqmLI)cVRO093<)IX zHBlgWh+N-oH3W>%sep5WFr|eTz_|e+2q-X~s^ai~nYzu5WEi!jSkA$mCot zgsNS&Gurls(#^K=Simme4i(zI0;&fAk}1bo|dpA2-@yYve(6Q&O<)&7M;hu{l@S8PUL ze|-?;i8}|>V0Wk|;=LiOsYm#{eYRKq#nmSXy7SniZtRdgW!7?{bv8Xx%FLzFD)uR> zfUqNtzR_7OdRoku6B#LS1;7|6-j6GxMRflMGcM_w!|yo!-eMZ1af$uX%nT9RKwl+% z$@tmlx<8N^l*V5-IY|*8pjRo~p^4SMO3JS{7E@K75STHbyA%u26YZ4j$3PfJi?mV| zN^B6RW=bgL94N2?4}j4vXBj$4_X~qQ{)hpDJt{M>`uQCOqy=bMS)}tC-2%rFJ!xL_ zDQvx2$-anc5P-MQunccJX0;&=0t%E2f)s&|{-}Y0;6+y{*5BGO2WwPUms z*;L-(5UKGqOJTrI6VV7@v2QQFbRr(2E9n|{fTeD`yNb-x<}Sf@IV&WCV*$ z?XmHx)szA-@09m|9l=PNtEtL&=NhrUqc`MDvW%vclzglzqMG!(m!?Hk)IVi?>`tnIsy9I=?7N zOTss#l)rmfqYCF~T4I!`y>jiQmfduMt3MsM>;3XsBf_Xlr3PzNnv#B4hX8MGz{0OW z8kWTf1;*ffvD<#2jhV{$SiV@(O9i}g5n~-?h8hMd`3ShkP5@2asHS@O;)3MuaRyb+ zYVgZynyV(x0nyq^Su_Wm)B>XsE4Ppi^h?p1It4us?3(yS-xC7(u29RZOdmW-ZS8>A zpXbF*YpS3}Xt#0uu-K`+7gT@R_iouWL;I;tzIz$L=yWT5k*GIIM`a&&J}y1+!qA#r zrwdxQpmE4vt|O((lsG-R{9^q8b!VW0>Xi*M9+XqStr4uW%`M7tTo4e_d~_k|X-ccr zD#zqZV8lP@+z6HQ6Q*1$H?f70E?|{?rVqt+(^tp3A_mC3q-gyDY!c0K(q>AGD8;c- zwM!9UY3dgp7OIqBzWWYdv^Bu)zTq4u39G%PdtCOIZyzli^`^vDqKl{7xiiAekyKA+ zG>xJR|J`{CSYaT#cMg)5h~H;@KjA%83}M8h0Ta(We+rz$_IJy|7VnjxY4yWONnz$EqA!;f9=;>fZtM}+ z=kQ^k&XbJK`qLLZdZ;SxvP!@~ANk<0j}WC~4VbJh3t>9;nIz8au3~iO-r@A#jxtP= zWj})e|gi>URh6^}A=GdigTBkWt*aey@a6zW8`%oEbv)$xUupZn#Zn7c)mFt=HMm z-RdB_dW+i4ol8xjDBEat#ELDslwe+@LlYpbXCWJyTu@2j5rpk8V zK;jx!Z`7=Z+1?3>_`mazJ8|zap4CSJtTP-csLQorW99Jl`Asu{V9 zdC`&^x3hvu%L|ArsTpQSS0__-xQ|fGwaIpM5%`r0jnT}Lkc7RT=vUez^U6?19uoJDS!{FDl9`_W0(%6?vX%DY$F ziI|eIxBR)QA%lxUO7`PNEDgQ!10|AO#=0mA-sFT7>KYqo25C8_2q1tksVaoO$CG^- zxvsd+?BrDH9tVW7RWc~0)ly3Hi9d?l0FXEl z+G)7PVE8~fPy6R_XR1)OUh2)drE~S1-tr&^zj+&88S}2ysNJ!bsJ+n&Bdbonw1G~O8S9*xAD#gbO*|5Vs zqbl@#O8{T$c1wLJ zab}fL#x9kUq>{i1Fd(uGI;j--fweBQ-igse1DsT zl*W?|nofA$aEmIlLS;#nc1EQb2v_3MWyGSjl^5ensz6IJvh`h*13w-k>8VXQve|eKa(e!#zDjr9w z0AG2FAG_g5cYc+P%)=c$?aPMUL7l7i*26ZXp9Oe+ReA%Z8wD=!A@B#3oUh7|G01fc zD*8uptCApoVyjrWLs57+=sWAX7)05$-?vQRYay`pq{$Y5p}~%g1Yf>rHzIE($bIV% z-22{j%J5`os~I0hJ@=`)20v9P50Jb8)wwLQ@rLY{f&ek z>IwcOg_A|$Y$SM6W&{l=Ctr8I;zRJ*xPJ=9vc*&r99}5E62BJFN;yg%TWR0k#Veft zu5i-Tfis@kI$sHt*aOXeUF&94dPpH{8{}&dl;?)edQJJ`yL)L?yFLa}F2f)SKy_Vd zS33FX@GIpy#rFj2Hg872*kv7-NbZ6Xr%}A09A8S^<(>th;n3WF(t3Fm_p*Dwpe}3` z^sG?Do0Be>cI&~ux@jE9gOXZKZE!;)x>HZPH3}w&I}d5C-Q-H|%$?2>XmYXA_iL-# z;#P--@6O!Sz{@yQs9dp^@-K%r>J_)7oR(6B=ev59=Iwz7&FAEUHdTaqkbF7~Ue%`X zuz-a??J8``G|H>pA!CR(v2)7A#N4`Uz&>MT#fz>u7~!S%ROS`jI3F30J% zYytqVGvDulZ^evuR?XQ*`_iij(v&Oj51wuzlw5B*=0&mYwg&j_z7Vz>Ch@;2_MdG% zFf+_cr*Qy#syc;DeUDG}QP25mDY~O;c!VH9OGW$bQ0dW@RYOhc!|I)FDlFI$Yp=fl z_(JQGy_tuUjq$GyQ>N$}Sd@@6`O5W?36C)%`$psRl7{6@Lcpu=8yUV>{&Zk1HPCSV z`oIkjenr=(MO+(`IL;EE&nURM0{MCmr%eBJfpuhtiTpMCL9-{M^Y zag_GQZ-2ZvliPfU~6YjJL?c_pvXMt}0Qnz|O1=a$6)nHugl*EYg7ko zb)KG7;H!O*MJ;5LvOoT??3US{B%ihyVQk6<{Bo&oj;8UUI>BlF3F%I=`rqkVXGFfB z5&l{>&!OSPw2$;r3mcAhp|PR8rPe$)l*K(a1?=(}o<Ftm3VvBw+208TO4w6n zKiBIZrM5OetjvD4W7m{7|W9gFwD7zJPvJ<9z=qG)r3u#EGzu7(a zo&7tjbNYAcbIU8VX>*<}-}Kv(#)fzL`GxzQ)3=AN*d6=swq?0KXGMPO`^E$B+P04# z^IvhIU*|CvbKVUP*Y|2q=LLuqzOl2zn5WR!Mm z$lQpUPMNEyoE043#Ad!SR?z$y-(JR0J;C=pAvG(pQ-a-(U^=_9xI3BG&(^!n+e zcMsx`xXH(DZrE3e?Kg5>2IgPWWUw6;d37wmaWrjPPO-PCy57_7O7zUm6uNCdmWF;T zB}Q7$OWI3m3R)V=IERcw(tk#&_TKRgcC{nrt9G47CWby}iy_*l!6 z1iKMBd4BlIT#~#k=ilF+JBIzX`gvcg`Ra$P_Sk3XZS09X?fKUWKwOo2>n}@VHExLw zWvt8=H5qfSXu4t(F0S)gYzAuX`lndAXtAUVvCVR>MY6@;#jsn9l86o$cNx zodm6IFSknuh8P^8m>bPVq;S=uG~5rwjPsr5xOMSYeUC$CQ9IH0Zz}VJeV$Cz@2V=o z%9rQNXs?UgeVgB7?eP@!T8G(*t~q(iiena^F86xVnBTDc&7KI3n&==fTPoObQf7uj zOc~Z=J$DpnCPzHwd)TUO8~daIx6l|Hh*%rzR>>QAYaRX>Kkx;JbB|5R9nc?R#a@91G%*j;eXkBsnrZh_aO+o+D zK_VyYY20h;g?8&94aTs{cg$UvCVj_+ z{o0&`q>Y?ga&_#aY1ucX?Y*2!ci*$A#K=G7EXlWRYd-er&Wt}le7f6qU_eBBrBxuD zSVD4K(B1pVQ$4OC=*{r!Ma|cO@i0`s{{SULy*p2=r-fG*$*%?X%L%aoCTE)>{1Du( z4esrgl7sp!(spuY!^F#NyfFTFlW21#SL63W64^C%0L8J?7fnJH+hyQmJgzorCqf&u zm()0{^!a{Q=9xkcm)0TE5k(9;z&G-4 zgrTYSPLLiI#RqlPkH8K&^?b_AU+NI>S_{40_TSsrJ0i zPStq)AzM=Er4dUK-1Rl73G}K?QpiU+O{jHsaM4E(?v?m%OKjd)KSr9`8Aw}2k8+x( z?efXa4Zi-AREXjA-#BsP{;zFFVJ6A33UduW)+pvg#rpszRj>fCcjA1|5Rjw^m z&{Oz#7aNS_Au_-+@w&ndA`RQz;&NAukOi{sLZOg#7mcxX7gqM4?MmAk2ta>sbrJ8S z&8fDYa9Y>)u*N9(9=kV4%2btf=7F7^eVjW?YS|eDXA`c0@b6a?l;&B>JIlF`x!STO zSCmKJouB@O0zG(4zL;kdT&8uw`zt#m+1c|Ht7g}K#> zzjfQa8YWD)>8i}G&xPB>WdBmRdiMQDdVFK#d`$(A)Vn#{ZtV5BH9k>Aw~4Zwtd6`B zFE%M1KkJtSQFaLQnx%%3ylfOE=m%+O^-HYjjU>l-N%fjx$of6j?=KmwnomFEyaZE@ z@KG!GBRY0>+nB$scyPx3m!t~Z{A38EFF_CC3YX}xjf6^9waBSbCt_)YzAD)W$yL&i zuXw2IPKvC`I%6IC@p`8~1q#GuuYRN2M*fnOUkJ0d;9<&5Zk+k$huIItaY#Pq#P5uu z$(Yq}p_@Gc?envdF;d#xplc=}>#|V8H|sfLRZCfSnk&~AM%u0wcJGx*lq)Ao?cNk3 zp8W<@N+Rwh9wRx03Zwl?yXd!ZK6%6-BXgqg<)k<>$(bUlD(!ST_>dwDP3fY}HG%!_ z&{!7knwpO0W)P!(hG*(&MN+w=o4hyty*@LIfcm~ha^SJo|Uc;i}{&Np$% zD;hPRPE=JgBaeB;3=5RSTK{h&yJuOHwY{?PpNuQf>S5s|9J}IY#DjMqjRDf;au-Sq ztGmtZRUR7Am8<|rTP#ML1RXnvr^HBljU;SmM%38X^1sP8*WP1qF-t%`P zX)d=0&j*vAl#!elyxSICk2zNuSNI$luMzpZWc~G?(2kT;gqnrcL1nPZkVzA1mrLhO z3=?dJP*PAmn6v_@9Az?cP^QxUS)0i2!QZMWqeg~|2RrT6k#196CoRI1nGGiR^nc+1 z27d1pom?Y&Dk2FoySZaRwZAl;UI-wk1AECc58IK;%3w}EAIAR}G@B1O8BHo1x*w@j z+s*n-f^eGEeo+I2#}7@KV?)h!CWS=KstJ}(|94zR9-;os-`@URm(}dTMn^MVZ`Hy? zv9$Yat4_81sDc#K8HFVRB(;(Yo#m0am;{<#&^L zWws8-Rg9ME`xNJ%XWTlogP$-C=Zv_Cr6EN^>P#~+6O_%Cd#tkI z__I0Te7F{+-ujssgu;s^Kw!43tm@eVt{m|95$eCfM#X2H>+geylEKaUmGDbWaM9dVbi;6j0$61&1@nTIS7R*7Z(xYKnSJ0(YL*s{inc_#NZrFXg_h*4WRZ^X{Exi)6R*836Dy=xnvvok2mHpzfo zR@lV4j}tR%?VJM99E=o^Rp)-)K4WBO7{}HTx8QWtT`aDLnfO+i`xio_0RVjeFV<52 z|NkfeTJWiz@!wOs*r4xHQEa`l2ModwsgT(>q-+OxEti=I)2SclmZ9m}^oC%1O76oi4oBf*fR=v^nb) z)e7|47p@o3ZvQClsha$crEP9y`t8W^plEaQ`J`Pr|+yq>nsI>y)( zf5tmDU;`_qx#i0#p?iXU_}jiej@|Kz%`x`9A8ttlP0ftMb;Q-n4oMD{)hbU@<(#4| zSA+@Y&i(qNGb3+L&?{<}XVTSdYJ97BSHR-2_}rHsRjiRSgzWITk^ZEB!ir_hkmJ~Q z@1RyNv3Qe5c;1KBeX&`y&`Yd-;q0)@tMC139L*?!c&F;9@;+o$ag@Vaf|&pkTBbwsdo@qa?kXX(>Jg4gc8pY@K*{AS|V{8+A$IDmZ#y|{&Y)Y=*zKiI&t3a5& z0kH-(f&Br&n`)ozEjstkGb$n%XV&L^BdD8SDpflaysacEytj}6HcaX?PH0iqN!SeTA)_^zB?#PN807mPi zGK;ruQg(7~N?73Qw@1Vwx%XINbZ^h3Tq!sq%m)@2Y_q9{84HV&mBKZpwY!ugL~eC{ zR%vrDJ>izrt1YG%00v~wT*YK;l=WK0jfKQ4|B2pvYvtlhve6-DfNDHfi!y&@hJEJ4 zsJKX^^3N>6Evb^CWaMPxQ=^O-C)pIm6o~_)7y*Jt_+*9{Gl6V`E@#fjbIvSdl)yr# zF84^P7eHRc6R+Qr#n`R!JoR}f|6MN^D%hl2#o7TCm;1J(wXvk*qa`5lEgGzHeTb?E zE(7j|Vp$6}abuC*vYiy-wi#|#4y9P?En`^zgglD6PhgvX0HLbYF01WQm)G+`8x`-Z zv?sPDxSl@{dmRjuq*Je!uyX?6A4&HulI*0v~dp8+SZNDerQ(kf)FoN|9uLh#?nqF=I zCW1`|e~((X#2%q)gjz)<+wNDZFS&dFGqu;_93%=`9n>pT`+u+^*UQPFXAC4pNR(}~ zw8Hb8PGhxBHR+6=7&@V3szOavJQEp1zkzPgh=!S`P;vMfgH~1#tnYUsGqBoi8Df>K z4e0g^ZKkf1bvt_qN#FrSnv{0P!DgU`0wmT!lt{Y|ICM(SFZaqU@QV{FyoS2Sle7w} z9Q~6}wxyhfJ890z9||)?lK?MoArK&pzgua$D5D!;4iMRJ(U6lW)Pf=5u|n(5Om}dA zH^4?BVSlNJzgK=x_&`Bc=-nJH*-{u+31<=kW(QT0_(%u5`W6AKNMX_uh#{gQEVh>9 zWz}sxnKEj362P9x#e7f?fq9)v7064!FS#(d)rN>%`Sf{ZCU}K+^Q=FwPt22^1)u@Wlh^i%LTI_pxWYR@E%q;~hgV8wUDz`c>`=!H4 z9TC{Apk18fX7@-=4Am4{fsnk(9decT@nYICdZhgeOvBRZY4Pmi$jz_O^be-(QmN4@ z1BXY|DQ)*TbLq^^m?@z;frj&v^Uwghts9{(aK}q8+MZD4r9yNv9cwA<5!Q+DTX1fq zl2hSGjI;tZuXYadTK(|+R0fdBkxE6#SBcU`Dxy2{v=(5YCYlH!7YOso9kXVANW@m2 z0%11*@We`D?g@0B&$%?kEzEI-P$&w@*gkiH(u>$>U-~B+qo$X3&3neYEfnGdC}k7{ z0uq4qB0tJ2(%`$JrAHH-am?atSwFXHz-mDD z94i;fEfx7`D$0V!-uNd#Jwfkv0)?w+M~b(v_z>Xa4uB&7)zivePSzGiClOt17U^N& z^c8aWI0yCmkT~JgCy3$X%ZO%3Ke^Q;dXqP(N#zGH5J_wpznQ;hnp;OXkOyaq$lU~B z3qR5j%;D(VA|d9WjR_^aO!7}7%tEMjLVf!->3slp;K(!xvr4>gX2FpQ)-Fr>Wiymk zUWC({Mtc<^wVO+=RwVd_s-};1bB48DUcI&30DQE@c$vMJd;4}x9z#PG}QaO}xH zY{|pXGxo~Vi{yu#-`EW}GYpEPHl_7V=`|mLyn0FgD@I^uTmS`Bl^I+e)L)4qhCmYJ z8|A=vtFob-Bg`AXoxkFP-n?I|mLHC^`gV>88Ts3jZqCO#tPy6c&`O%Gq6bdsdvmTN z=t4$+BNYwzI8nwOhmI@emRu1{);-Ms`%$;^-Y2*1T$Uy&oN>nHJ=mqg#9cB|LE2#G zq09J`+7k-qnl_)y!)8BhL}+~g5eEFudNjSPnzFR4%Z@=P=X}7dlVS-@MSa{*L33={ zv;q6o=%b5y*BNIjh12vW)C-*cwZz|afGqs&QIAWk7T<+k`uP>bMN%s6cz4+%DYr2b z=mES)Y)nq54jft4W$JfaCxJwrP4wMY6l|l86i~z^Z?F*de3X%0&v5A~Zvu^xj5wNd zCtaKp>DVh%g_yZE3Lu}%7}SLFfwRgAc5pbfb80r1ybfnbVMZA-BBb8BLat(7mcya- z1adg9=WT-UvHw6YoMV|(5_lm+@!3d)a=}7_Qw$$zP$EM8%wI%sET5RbM>0VW+C$vq zis~dt3LutrxV#@i`jkkb5&2waTUyKslffA}L9oOzOb4%hfcS}tu$I_5q7WL9SP3#0 z#Rc;|E**&X$kb~iijX?L@6S&T1B&-*^h!%$N^8V%7-(daB|<7sTb9{a-YFuc0;EVt zs|ayU!jQusAr~oSubhx)K=7IVkt^nK8VMKjvt{Bu46eoK2X*kR3M8Zu@#_r*C^E+s zctwc>yD^WvCYGdE%$|@bvyI4184_niNP^&neAo#fLJ4_(r~A}8mQ6Ea*NG=pe0B*c z*Jdtb?X-=v@S$SZ$w>LJcFM_aBBPG}qk2?hCl+)Q`whF5#{# zN0e8iEp|OotC(BNDQdSBw%DgwY9hwnrn$Q8;u7x{)@;kOuOD&vE7>hd=9pe=E8}k4 zn~M#$mVeIN5u6(shANc=V3X`}SUDLFb9Po?fs7PA&9?b0gk zp{{~2Uw26#*+dW`spFF~AF*SKo%8e_4T0?LY4vmeVqu)!S(Ua^-m%)+clhjKl|9-O zImdqWcR1(le@*}cgu_4s{(E(f$cR-!p5%BMXTUJhrM8+3eSI0DkF125IlcI@KWYcZ zIy9OxG!naw8CH`0&QxifIuG4A4yEdu{@`-<^}p~4-2NO_+UFA3SmQmN{3RR58W;oY z4yGMr+qMiGh4y(n2L&FL9EgD+8b15xb>{Byh|&~!wQT6u zabm4<)@By#>$pLaSp;KmHC?d+pznqnas>=9kUu{3>Q`?C6ChT60|l?N=IN73@}xV5 zI|m38I)FLJp8?(A9??c~5a57pTQ+Vq{|thrmHMKS&M2->>|j>5IDN=Ivkad<*UB4W zsA~nE4hRS8ON^caXmU2&x)>*p0$*M-{q13;ZPa-nwGOn2!ANlpl={DN(s&+g}Ib#jxTtDB$Nd&qoDT-C(|y>u0k^%F6& z%LHL#4Cxd}$WXu5so3FVx~Mk+5s<@i^r{Q0Cb@iVjNWTP+{=tq4@I|q%T)9<_L??N z4B2hW&~2B$#)7qSveI?-4&Er0n5;z(>AUoTa(Am^-L~F58+CN9Z^52iGV7K9&RYiG zM81|4a9CFE&5ouyAeDAMC_^i=)qc*R%9s==CeaJ2a^GVu4(*QdUJ#hD>O!7IFSPPH{PiC57M%|@(%y!`fb}&!ONxM z1jXzO+T{2%ZG(rzJG~d(xNqJ$6}nWaSaS6E&nGh5kBoCY;_Hw6=OCXjf7Bk#JD#TK zwyApDVgK{h$%5U|X9~Yh9YlR-p+vDhE_AtT3{B46bUL4zd6+VD>)+TvPo{=fW$BwhS`-7{`=w&LUH(cJ-y55zNHrN12WNVNNxsQbr|r~m%f*w4_? zufO>$b~w1}Wv_OiA>#)DwFJIieP0ZoqF+5@XKwxWZ{-B*_a86+^>O0cf8F~tU^fyN zh3-2r@29JqRfE-r3rq53H@yPN%%Ux9Sr-vVwd;Buf^PAn?B;y4z)PZ^%44X)GSKU= zaK=dAiZns9T0T=a(nbGy)nKnEYg9*A5(o&$l6=dT%tIQ3M;VYNF}mwQ!0(Q zib6r0eiD8nPc~t;b6sN8flpUTLXx+I9T#KOVF!BAewzfDKojA1_#KjG~&XMP^1iCioW2)BS(qY>< zOb=ZsG_6UCLzf|I=?%YAZKp|-^*~p^&XO{pH7ZWp4mj4=EP=wxiY$E&f_h_o#Lewe ztB_1enj8277{zgZt44^>Eny_Z2M0LT_z>(kImao%kKXU>y8YhLgU&;qu`&uSytYdP zTvEteXSBxsO#VxS%Pq5{!S_yf$xZJ^o%mOHwKJCJbEH0sLb&5@)58uyila+2Lb$Qh zUPxRABI@+E*GVzig$aJWoh8C4@9JF%qIH7r;@D2Wd`oC3%>5WWSHLBqm2Ii`)g%Rn znRJL3-JShU)8o6x%3hpW|LmX9iJnK_gAc@|y=s>K>)wnTCBN9?Wvo62r=rtye9oAb zSP|OoMz?1^`P@|l8dr$o97z-yCu$egYQxx#Sib|bnIK0`PnLhN$DjpyZTg^66T!1HHc;w3|$7g>XUGnc=V@KC) znSEMnUSY4f7BG9)*@D0N>@yP;D!;qYsRNGG&OVI7-yToU+YbRNC&Y#heaLgZTc#4q zisd3%l=E?;(65L&6PR7sE$&pftQ*;ufi^q5HzAM!LtS-TsLL45Eo`^WD-@Am05Hij z5>e%M`>!0avY!~jH2!!~xfJvekP`X#HE$~=H7#YOBeO0T*KEnW^|J7!UA5HNY?WY) zbdbqOQT3uF0%;G4K4?voiRi!tbG8Eq5s=dtHTJMefI0{-&lY`+V*X9h^t%J+Lq_8T zm!t5EVG$_@?VTKCKoy_OTq$%)qSzO)E8{QNd-85IkkMR7qyH zweB6!Yg57W`bGu&2Z?&Na%oPwMM=NNFUNqMyoeGxX^&jxiFJ`f*aJ45mY;~8dqSJmrG8}w6^=fsP-5xrzPu@sM5U4OCaJR;RzoE(2$Qy95qjSBKvLp!;4!) z0n=`u$jMMTZ-?H>tpE8XcHJlMdIb5Oce)IJr$71M-|7EZ&RTCIm|I7>)frc3B>o?k zv%EORtP3CeYg~hKx;OpxQBzw9^ujs+U!)@bOkwQ)h!bgpb8r$}?Yfru{qfVho!p>3 zj?ZqKJ@N2I$Fl{`=9GA4DdYW)JZmfU6SWg}&S#E=zRlXU_^MzP1)~A4wc&r?3(Gv1 zyZN7w9&?+1EPl1MkD=|Np6hshvvH0qb1cJbuaUTJxzO?Hy3r@AO+5bbwf_R;qzWMI zHWhVWAUBWx*T+y-Td#R7z8_BVPspAVe++T=3;d&h>b#)*PGxUTjgzx9$1E#H3nGskJNqvdPKBRVI$OsN824$lYgo?blu7B*PcnSueV*hJNv)X zc%hiODXrULNJuX~v@h-G>Rr^}yN8B!U^Xx2#tH9B2|- zB+><+1rewN2a?i2BYMBjfpb}|VnZ<<<;Yp&JHW~oh+?)TV71-;FZdIA?*!*+a-+8f zQ|b~!Ht|p{=?wnTy%Z?4w?Zny~dA-zHp;Hd@d2 zcv^hNaV09f>9dlpuGA~nzT0u`$zHF12idk?KHrmAAye9*7~>QBFw@9(pXZk38sCeB zsh>h9tkP=X$^S*zcmFk&Zv8&#g#ZaP6fp@c^aKzP8Qlp1B1J;6BZeZP;s}U}%4h-s zLNyc>6%`N#6%`Z}6*YkXp{OY6prVFiFGI8Ia5r<#`MmR$a@d^o)dtzg91_D_j7=6#}4GN2%CgdK2 zbBUY%4OjJ)DXgBPWaJP!^SyI%GO9%zCzze&O@A3*iLtFM6Nnj4W6gVSntnt<3%-Lr zQ)6qkc4Jb4{LcKCn3(G$I|&jMJVIupu86gNFumRCIr-LBf+eWvh3t6N6z&Jy z*>@gx=F}DW(sTez6TGZWCYz!Ub2Q;dMa<(5EYT`FZ`NT!w&yShKU+A2Un=G56$8DE8=8)$YB;q&L8kfl=E?zY8g60tsrc!~;M}Wx#wHl@n%6YVi$W?h8o-b>Kn+SC} zJbY*W@aTz}PA}8mZP5y%)#>O19ZIX)+3R2AntA(=Y5Z#HjXOl{@F3Bx7c>cIWVfwz*>dT3)hg}{+Sb+C)Yh>jn!VsS&83VdlWYiC?X)l@Yj*gaY1dzz7S26%c zLcp>0q=02Ae0)d&B;rsX0$-z+wP#nDj!=&aG7uv;tar;$BD(bSiT{V%_^AFv-)MjMyd-OlTSiaj!I!pF$@&MmWF(X5mD_h@+9 zb15zESq7RGPDn(!W)n=fmR7V|ul}3Z|Vob-xnU z@x94Vc(zd*$8DRa(j%IJvaydMu3~1GwLoao{vk4tnSMjbl9&u|$W~;$SuB(_MnICv z(U4{T7mOvLnsC&HYgky1#)$be{uh$D*8nAIs->oV>?CW~c;D(D(X|VHzP6T$PQ`eB zJn4OsYv4s@+?(pj{rP8N-s;j#8ywN5n$J%0lyX4 z=QJEw+G$uyF0n^fHh_Av;cfpSY4{Mq+cq4Q+S|n{)34qrj!IT#cnmx^kdWk->)@9Jj4(X=rh@aX<9IJ~+_~ zlyWm~kE(nO;*Q?aWmCV%@r&xkD@(jaJ-;YS z*QvsY=MAdA)Hqyvh>u|94Umd*_3DwX!#iEPTBnS=`FZ}#xxYW`X|>^zF#gluXjZ;nmRC&h)B(uc<^Q)!$`!6YB_%f zvJIE$PJf<=eX({ZQo36!;-{@}U+6(^y&Fc1aoeiHv;FwxZ~l})ATa}n{5GWxrY&mK z>7+mV?j&3h(6IV<$K!@Fsl+Udfn|jPYq(5;Ycp_eW_jxvk(!kHP;Cg_$hk*=HgHzK zId_1JQR)Q2GC*9MaKhJ+P5#(MLay6}NwK;uM{nh`hI*6yn#a;9AXPM~9}u{|jbsMP zv4Cg3Y{-$6i(C zyLB-oI#2fwRhQnr&(mEcDUv%>(}vpg77G+&hmmEWJcm&gmq*3hm*kMzJf_2PamPK( zbI}E9C_o9c=VYDer=oD!Q)wd$u|*N)8k(y{6EpO<=u>=Bq8@4?X*F#~p}C$GRzNfB zM?&Vjlp%zn3w|Qd$#Vea*RsjuZTc-yNoZVCIRjy=iip8eF7hsPX+}ZfW43qFE@+an)f8%j$A-ICp zMc9ni-P1%}RQ7cmn^g$%%xVXtNp3PyBZ@c*-!*g3Et}T$*N6jSL8PdJsJ-zkW$;tl zORm5gH}-PzUS26K9oXnZHrix;eprrmqg1|#{uK0P9i0LdQXetNBFJ6QuXg2}MJM*D zn(S7br!J3gpZG)md+g#9hjtCGGgz%k#LhV@pX8&D=uM(9_2C%^`ZbRdzGa6bbdmit zlqk0|Hj#6YZpKdzw0S5`FR+I_Ho&SZRjA?CAc*lL4OHu(9B)h8sPT7+(ZU$&01&zU z5Fmk^LwY9jaV!;!bke+a2d*Mh@vRs(xq>qB7_t~<6BsbIC1)Wt5uR0SB=Ph%3e&mM{bF%&Yz#?Fp(t{SFr6-Lco4^LhCbd{7Z-KMDGh9>@RJxo)^I&nD zghd@vqQ@<2`;~xYpl*X#SL9&p`g>*)MoCo-rlbX}!K&=Hn`_mj@`rcZYR_ zDd~oVvT0;^nz@ciVh1}eD%)Ll4C!5=bgXX3)g0uSrg~vK&W~efM=1ObeQPCAMWkea z5(BVg()9X5`s2#v)8Bo2$f8nG(1PI-%L>MJo8 zQU!S{6G^ES;*GvQw2ib3Lsn)cM&PZ#4lc)m$rjT=nzoLex6xIB#Ccj>iI0_|%xG+w znGqv>qgrRj3euhH9}psh8Frh5xH-)<&D37+=1-!+)FiP+u!>_eCBu2B!3DrPOK)do zI8?)5_mivzla{mf=%m>6_nc-LFZ~DCJ_3j+vKEO+uUg|mv%+BOMBZxrv6(k3o$`a^ z->lXsC)7zS12e7Qo|4^au6}**K8O1H(#7|}thAyeOll>QdBtCM!cJxh(TVzw3Ts)E z)PyvIT}n;YOK-8XphXe5<%)n@p*b_*rN?TB7`8_(e$5-gLhVyCRL`F!xOV2Sue(f3p0rH5=W{fsp6zD%N zxkl3ZvK2wo*l$KUG0%Z)!y9sJY@gCM9md#1i1S_WBP&hs?X&d~JBN=S7Pc^LmhVC5 z{X)rTtOJYfNV&}NmzVST&27W) z@G%y&zv+|UfNXI8KfLHFa;`U%c$#0Xs{fA?A(L~p&Bc~^&|d6u{U1A$`-Cuv1p-6efa@s&|@bl?`%-z>nh(ydEhQJ+eDaFxdi+Ii@hd6X9w!Ow*`!fmzrthCueN&V+J<^QF0TlwBxr`Rw=KJ ztMUw8$`ZFHp`@F@^q*08jvQWnbN92>&(kK;+OzkVM^gurPcN`iqz*0T)m;tib{ye<) z!)o;Nk5cVFwceTU(EerC{CPr!PZZ`wtvTN>baydPHvNf++YDc|@jJZf%w8quQsZNB3>`U3Y%;sgs7$3F1s#yhkh0(fN@~q);1^ zb8vVd(gd6IykBP_pXdPF%gx1_fLiXHM~VXV65KO#jHY#Yua5s*Vo(t*eJVY+5LDN; z-uBwSbnd+*Y5%gPQfjrrOq*}dHsQT^k+x>fg1Gfu>e7UeHf%i08))4m>58f7Mx+#t zq;q{ukoZwwmvh)&qU{Q~ZmVqzS>9%lQA=-~D?=xDTb>bsU=zYdSfyX0Y|XXXAb@h* zHh^gvo`qX}V(797LR1Ri++v|j{JN7*g7Mxg~a@9wpO_d?7 zQ#9YhTD@XTw$B1(vW(ft-x(P$eXp3NoOlrmvR|V*)@_fD8e8aoFFX|Mq9z^7)WXh{ zw5?pDX7gzqNr-lnm{W!qAKR>IFcK9sazkknMFn>K~k>&~(-B*_{5@*j!P-Ci97C4vqz!0WXp3X;jv=$MABqi@+3Ad4Fe5oTE!oO}^EJlvaIbn+=SxD{)s^TF5cO@&D_9`LE-y z9`2$hSK{lq4OOlGK@rLPWl7zzPuJdkq0OqPzc}< znEO>d^=K(Q)$c&g`|E)D{hX<#oW=OKGxHMv zSk;uOnOmSCWbs-hhH=-c`ZPd?J%T@UjeS&}R`z+#?V9aJ*WUi-xuN~Xxlk-Sq)HHZ z>)2;THT;KV5*Ej#8)4N($Ui~_0elnFA@w_eH#6M0iY1#y;nDfWmC0BkK;p=Lf**Bo| z!{1@#`f#$1l48XCm`QOOl%bc0n>Ix1uXL4ULfdI55#9L};?}HffZSnSUC|*}V1Mb= za31T^h2V82uS&~uJzl5;1mqI|&*>#O!^ioKq@;5P@_O$>*0X!URp7yYRs3*Sf$a6L45FsHZi9^XE<*7;t6f~=(L+cz#B8CvID_&i6 zG+Qy^UAXlv(}lnq@1A>V@I(NUYQH~_Bzebu=y48g)&QC1VYa$8ixg)Jb!ruw+I5ZG z{5gl^=Kk&}qv}#a9_&}P{ovTI)L$tP1Iu@H9JzBGxgw_qg<0=#X~1lKI(2Zz>GQdK zq#T2dZt_+ck2T+Ig?KVHSnYRFOaSQqm9|oh6yM9Af6#$&aLZPI2V`DheKxd zHe{044(f>PFVTS9m^inc&%UQb$}J~)?xl0ik|cWyzx8kY{3P||s%`U!bEfH!yF|yV z7ZMv&bxB&Kwa3~vKJAB}7|OXgyp~E8)>|DQEfPDvQil>ipA01;J>#KBRQIM4!u5OA zeNtnP;2p>zptIU;fq@W-c9MF?m1=@U$`K%+AzM(mqvprNlkHqFHLTX)%hbIgAg8<5 zAHW*o2N*J)XjAS(()N0G26e|M{RiayD#b@P0k1F7Zgi>j#CdVA-&?yQ&2$gHw6eJ;&o1 zDudCI3~hqNoDdo;;zo;{Oe^sXl}KRaaUh3Y>DS0nC2QS7GY8OMNikj%tAil$Dhjut zA+yg+#4n%Ndv;9u&w9@kbG3?PS@zXvmaxO5-!EHMnitayGWXSIXYV#a7OF0kKg)m4 z4oZnJAfhvE$6gRACl^MUjquvY?U1c*hW*-w-76l2l1lTd9lMd;tv`-Co#_wO_u78! zru?4c`MD=JNaX*}2-{#9;rD;15&og^_D)~Qh#VjGffu;t=e_<-;|){85k?bOkvVG9 zpojA$KInk!=C0>@zs=Y zuWd~5k&n5F8x*&f915 zrHeYphPx<6AdVCjtwb3*A~lM(hoI%9YT_NME02v;dPZi99n)oOlyig=-5||h zHiICwBfJ{jefhbSa`|=ky61Z_nn2~crA{|%)?Mj^ECbX@ga|u3ns8r#E|6zIOncNF z<2~|LSd@|=&oqQ7S)%7*W&J|WOX|eizDJd?8d27$fVV7?OBZ6f42L!}lH=JFD9!1E3l;(n+dpg=% z+X`ook{WEpgHy0k6(e%p&6oQazp0~iy3?dCDlDi)@SG>sk90ZoSBD`vUWw)cY&)o6 zaxR(*x}8>#qh-vO>D70->@UANKmY4gm{2RywP@njy7w^4xg$_Fe@?Ut;?Lbc*3pC; zE7@-^sSq*^D*{t@k6mJUNr2n>h-LyM7EXG$USR=p9q=OdZEv`WHH+#iqLXKVrc-AU zJT`|vesb|iOuF{+is{9lp9OrilFf3jjgo5lMNr_ytfER2pftE|^@C_3afB?u@}tC1 zo!d1Ru@+?-uBsmQHS~}UB_4W%q+@}rDt-hd83H4k(W z=}zUbZo1xSp1kEW`#P&#eQz0WL+Kw1dk;#Rcr=AZke&)7YHC)Cbfh9QZ4QUfeg=L5_MNsM z!^usu3>`EbXH!9We?VZPJB|!@+&oLZs*-qP9I3}Ue)C*v6h89gJ%N{xtj|K}U_B+J znr88p4C5pzCvZ5V3*&)NWM(HIL@RG2m6_@JZs5;WtRWp z6ja$Q1*untkHc;ehnpm$==1;M@ebYtiS+29)v(CKXKjxM<9SVAjo_Gn8v#S~$ql=( zzOhxmaMroi*RnEQtP8a5!4a>!U6&kGrxs({w|q~kQsgWi=hEZd8F~i;_oaOuw$uQ1 zDHlF;UrwD3e)~H0wXbH=(KX#N`peeOcLosbrTtcBLEkD2#gY41h%*vPSRqq2$h^*G1HE4Hiw0~h^9mfjY&puu5iL#Z)m!&5pLZd9pnGg$naSgGMMS}!3v(e6s1 zSbX@iRf}ued~{8jlLW(-{E|)+;_JTP-SgJ09nN`}RC8y+&9oP75f<&QbPbmd!s(w+ z2Z|8p1I-+s)zdmgD;3yJc4|1!FU?}V%r6$}Elo>8&Fb}t$-xbjhvngpGLL0)Q*9J& z8Yh$}e?k_kMav4^#>!_doRAEcTb&)KqGq+7T)QX&2xDmH(5)Q1KfLbw&MQyp!(#ya zfaCZ4T5rwW#w%9M^Tbh{ z|0M+p+@X6|{>TP#g!OIxJHKebkPp@;_L#~bq85f$L0xjb4PKgls{!-Vx|f72Zy{2m z^u$WdEH6|6J;GwLz_y0~%ijo#$1`yk2a6YZSV{vpn1g99GW)>?X#2xOk)5OSzeP9;I+%*;Xn; zMfL30lp|J@#6EdmwszMQ*3pgQ!siuE;hEYAKPa8EO-VX@S`>fW191tK;_be10wJQO z;8Xatb?9Uj{q$W}*pgt1%qB&RQv7s-)IdaAQ!2oMRpB}Xn{LluayJo$lx5)jfM^aV zrRsS4wfvX}`1bbnojteNSs4QK# zT*Si=c|<23K0>XdEVBQQA0Id}e4}3Oe6N1-=DPtVb~XFhFHR8KcJQHpLz|xe_YuQA zfd5Y;W?|mav$36_$Gf^}1Kw{W;uYu;$^SZTmi? z4Oc-FGM1hevRfKZqPoKkTkoA()xCA&K@0cFtiv1bZ`fO>ud(a+wWM=P#17As_kM4v z+J6n)h#2Y~sJtQm`U#=(y8>$-itI+dFZE9^J5=DUafW-LOX;-wR2qe9>A#Or#r9v` zqC5c|OhrUgzFwo!KeXKK(cx5dYd+m6uBVATrh-TfM$_M|$5t&{@SrqgogX6i6Pgma7lwMMC^OFJYV>F_$@+*4nc9ORmG#L&G* zt)M_aAi-JcNm_k$=ZMju8;~>XpGk|epaZ6j+6$&L+q84RSl^x8pGxLPzU!xBds0V# z*}F8?YlkbGK_BaaBbyCG=aDYT%rz)cr0~^y@M~PMV6sJ*Q2bOH&80>}j3Yst-eeZ- zcjjg-3ZQK!Z`RUeOC-nfQ@DAV{MJrLVhWM01a3=4j_!UsaDb}#xQ^+&6wQ{+LBt}p zoSow*uwF?@0NlSJDikGIg-t|seD6J?#aM5zrkR;EYPPci9P7r;Q%@HcXuSat_Ta~e zMxR~C%xI$4V2W;_CfbMAi^#tHoKey9NP6s)#M15zci8}r=bF|N(qqvGal{rNyhv=@ zr&FEf4g};Juad!rLW@_V^NLVQd+#2*TNd?go+*&KY}V~TN;?*KxRC8vM5GFIkwc7L zkG$|ntOtXaTnHgbPe)(qd0~EJZL{y`@x~ye5KYA5>O1H3Rfn}(-GS?K_n0AB^2+;K zJdTkW_1Vkz{PSSS@0#vwDQT2BkJEIgQ)(dCN~dx#YuemnFRni)Ck9#&`9cS!<|| z-4_pj{O~>Hyexa*gYmW;r8KK&h^OySD~9#97U?3Jf!JGarXH{8Qc|dCaTeiuK~o!P zOKk|+C_#ik>*^0z{t1=wQ6j@Ye19f%iRMZ%G+vU#qXbHO^$Q^k9OIR`;A=QBf0O*Qa#I+rgLSLZj-P6-mr#l^pllJM@9lx=En+^BF)UoUNA_ z(dd?oA@2SgiKy9p4$&$>(=emG=8(2+wed+8=@Pg;rY-e3VRe~!vjq(nYE@)dviBKa zLSZfJ-MsL34C+Y_RIe~8);ut0iLZ*MobrtcrmM&mYK)~<6l0V9aQZ0-W2+ty^3hYR zXWY}#%G!{+_D2rYpcAIT?-hAI3SpGA?d3AsWqqNCh4wir#i&m#neex4of$3Go&S79 z!K;tCV_m3^dT$=Q=sc7*9P@KpZt+i}?937M52I|<(zYl~tv9 zb3C{W!N$%5u6LDsQE;e^Gzazlwm0!+6x z_W8Q)OJ&LMEo)f4mit*5xtz*<$u*dE)*8pcKs`Big%cQN_ z2_eOW)@JBwh8Bz62nW-+r|AZ=Zl;d4d7v)hAl)b#N6vVclB_jvvaXU}-Rs==st6fM zYmZ&)dx(izeUAaWGUF9FUOProK3o-Uz+YQ1}qws#HlC11_EvA_EkCAD8kO>c2~ ziudN(Ka{3(=*Z`?wYwfGqdMG%~y+l1Lin(j%x%}N%0 zE5iSx)wvHtx6Jyh@hxG9u0dg z>e#Q(c6?=E{7db9v})?o?+&lD*+Vq_Ig_-HU%$}f+F;0&UE0f$@ZMSx z(&L_+O2fNu=^@|aFDOe7z(&zTfi@Ib6&w)sWGu&hV`3N)w4%ejNv+a!b-v53wdTKF z$)Ok)cwtAdE|GOHNLD44hBX4It-!QzEM6AB4d0(`R^jT6X1|`X*8KW}OmOLe6RoU1 z{Af|k1&ws_FC-&Ip~Z)>@h*r;a>*@8J)1I8@G(lTY}fWb_eqUF6H=RAmUv9V#H8Mk zQ-Skw$;Mei-nk^|;Js|p>i*G8Qk;j2oNO~r zAd{>vbKltUc0MW#E`0R!kuecD3-D%Lt>|kvMhChq1l{)BVMyvRGAjNZ&qWyCujWz_ zm&ag@OIB?IhO%}r8M41DDp^E8twVG`R#X&3LMNdDOwOgE2s@BZmcN3&P*1bC-(26p zT6_2MJqy|d6(cQY8l1b3wUF*YtxKjQw@kJr#u$Sepq{9CSvpcpx&~xST?%bi4r4LUPd4CvJWng#eNjMnv&pW4VS9`sD@-R7|WqKFqNvF`-Ed92Hyqe&l{ zUp}4p;o6?}kDYGfz0<}!OoE%ouZNd(l2*TCHb({b0JQE(JvPd)>L;C?jGVKTTyZ)| z+y=S3R<6)mIw;_MJGWCJiGQuTg-2eF){;L%--RPwF<*OhcX-PTA#0?L6d);hfb|q0 zH6=8ZiO2N^e04frsmACwDe$RsjeDnQkR8T)cY`I()}Cw^uF8uvg4|&-(LK= zL2pQ7KQm;I7@7J!K+(9`16!CJ!|JpREdxze%EXR~C3ANeO|;c3try4j0G6a%ZUh<6 zi@fDIyZ}r`cOUtA=jei6)Ak>qPgrc+@W9U(^<|>PTNgORxw`$_S)JYITU!1xIVLNc zu`;%q#^*)-eq>pk>GYf9uchea=N|!4fAjU7=|6|Nj|T647D?E3;fCM0cAkOQ9UrO* zvIQ)@+osrxT=yDsn`WRrdXT z1_0J9c-B=@{#ocW7=F{Kj z7Zq5d3n<2D3$dddnWk%vW(#5Qs;%M5wBM-wIH>)ud=8(^8*be9= z7tCZ(Hb z$+{wyM@MtA$o{OU=NF}TJ&Ak;Kvrz(7O<|h^*7(EFB?p!!G zFw1)4U8N&!1sP_#zvzr25U>BSTa1y+s~VFR+TrCFu;2|yJP(k(}V$DkK%{?-Kvy8eiVIw zhS?5(*JaYqLj@Y6d;|fm9i``6-5!%+Qrp?3zt7O8ei{K$7A8(*K~`vInH}=_zNul| zyDz>Z1Tb!W@mt3Z@$N$Z5|Twvj8`aTXAe+(X(=iZuti3}!0T2ry%lO5K7|J{14(>} zAJqzL;4@l;qwq@MlVw$@P++*17uLJ2{|OBP;Ih6}au9UAO{3H_8tn+f&3`Q&yPSsh z2mkqXXwQPL2d;y$JoZiLbockk*5Cy{JMqpLzHfJRj54a-=F?FE>{hsLQcRqkEYGLvIcs@$XPfF`C-v8OxBl-BA z2NT2Ie;+qn;5+5Pf4@`w%RL(W_u4Im)waVJbIu;%v1^>0No@OHyU9!pC)eElSE{1Z zr6#!C=MwC0!Q|fh%LjO{zSidi4AJgg_ZQjIZBgWWaYIWD%E91cuAV*j0;*$C4>xlJ zIt$Lq4hLM`FduyT^t|u1`_X4Nf15s>3$PnkUG=>gZbVdfme~8qBE=IJx#2PY?5^jz z2ZVdAku|Yme05H?ks0jhYg!@9Z-rwxe|(0=&72fIx1{I-tXE+R7PWs0z-F# z<$a@hCIPXkG4kh8!jshk51n40T&Hj?%K+2PG6v=;=U|9C6&DZ`NTU&4)+2T+Z<}aG}!M zHIFM{DeK1aY1sHDBaimXBAB7?7_V=fScJ|kHy40h1C800l0VI>(Ury;VR{@OGX@2G zmmp7Z0!QvvLcWHlxE`p|#P-_*4Zs%7>t&13$P#oiLc}pb54L3EB2w1zsAv)67KknP zW`K8k5)}3(5L$CqsD^_W@8;UE)4qi#jJHu=_T91RS>etOJVq`;&@Pvb1+ecnk7MWR zPqD&CnWR{*XJfp%zzF%8u4|6Eo~~eykEJ8Q9|>H9&5gthIk+<_mmXseX0;UVq8MkkN7k^yEJs_C<4R{EMA|M9VjhJb zOK|{xiFA~C(U&Li@EAPu{loRK57$0yz)kl$wg2EYkGIV}n&zC}L(3Yoy9KrSM1Ulo zwtF*6&oZ4V#w?;EDwF{)*a`{7DM5zjFExcDLsloSGxWUc`Xy5!JgJrB&O`WULFyJt zoO(X9rvh&#=M=5b+n)(VIfqEoA*&J0pZXR^ou+UsqF$l3o}7V1m`wRDBa`@QiM1=8 zxRj3|^i()ocy*%sstnEw5w?-C7JcYKskPohVvs1^(Du##n>DI74IO(tU$~4sM6=Bj zl;==S@Y`%xj63J#RvE0Wa=T+cM*q8f|NlY#{0A@E-`5y^14Cp-bs;L7#^JO9V~2mo zKeP*gY&%L`VB(wjrl)h#N~aK1K;pkhWa~`Es;F#UQfF2*Y?^j zmh3vi6}*P(4Sv}*j#R@pPi*H_c&>bajcuP^KRLbh=+m_6Y9G+YJNsn+!s=AQPE2(# zbB^|Y$;7^{65GfDvr?VRjRrYO*WVZujbvr3V5hy3cID!Rs%fD7)9>2Wjl2K+bNqY9 zMi%Tmi#+`!S&5R_`$Y~?iK0anb6nO(Q=ays0By0a%Q~dIm1LQPV@$6Ljm^r|Ng0!c zeEFD%^S^y#@rI1ICMPn#e+hYZ=VtUxm_(*l%oiKc+I`|aS{KvUz4QQkOSORLxUSAx zwuNXLn*(hs6%yRosp35MDphZr4*C}uQGLeTyvXDL?HI-=#1h@6A66~qvK2~Jw(awj z;vpH&-$GpkbOubQ@%rm12sMBO&UJ>OkC)+AHJxt&VgCO^LK<>C#OQ{Ky#vxktwA^V_AZcT&NCKS#GCT;7Y{qRsJ){R2rD97+Tf!szv<2ChC}7NfUr2Glj|{qLcLUm!B$vT6My>vyKK9!oU7 zF`?>!XV_>8;7{VP5!IEqjbjrOz+(rz(3z}^$3mclSt8B^@oYH#62LRb18-5f^M>nr zj@dOxH?RPG#rZ>L_UmI4UG^79Wx~L$?DL$bsV#E1r)Y23O>Jr}aGf&<QFkrGN4lp5hKu)K>eO%ix>*iYfa0TxQnA0)Lshn>s;&h1kS8S6UL z{L6&x&#LChn~>9W_TA6L`Am0_Ug}e4z43=+mss%wJrFz5K~WK^_cpBwG4#=!TZRRO zPCcw?-_Ur=-ZSp0Y$au76Ib_a?}?R3m2@s*QJg4DW~j%ZQDpLqfW{#nJe5u@r%k#w zk%b$BkW`rn??Y{&`1hjnhAJROZ}J{do4LYhzaWc-*%P7E2&Jm^nRCeM{5G0RGkzyy zz*=T?a!l$($21lnZNkj~4Rm!|eYTos$AH#zX&=&iSVuD0A_th=13f zXvFEI&Y&pE&o}2UEO`;=1dc%B;`9GZ1@~`ccAB{7GgozmuM4elFMH=Y1Dod9orBeM zTaF!`$rse@&hqWH4!#=NQr+gI@Fu{$;KMypiU z`p<3eMO4T5pN^&z&%5^9!slmCC~tyiOZFk^+OETJ?|Q|~(RB)+?|dL?tX)n$ zviYsn*FR>1XV)_{W}BtWj_HV~;yv7$n3r$plGRg2AMrH+>&q6nPW))s0q(J;(^n2X zSLHGMnwEAb+R1*Kc(GghELaroZ$BH~KKrBoFYO6lIKShU6Q;YjmI}K)_Q{HRT!v$Z z5uiJ50=XOaiwoAcEiFbh>pm1O#jQ?F$}qm|;hkgLRx4Fl1M*$pt*9WCAYmTfT*LBB zM>!Bhc6(xksXGTZUXj zjZLFt5iskkAdAb`ou1LP7bvrUDpBfD+|=4(7m2lH0$+nSvx`*-f#K!@_-fpY14V_n zDoGcUP6;!_(BL~U!G+^H1D|+J=8%j$E=ZwEPhhm?Hh#KM?0kv}uOq09E;8muRwWr5 zTXDB*9)*RJvw^8R*A7Q|^X}IygHyp`+3UvI)gfqhuPe5qQp0mYv*NaiM`~g~{zejw ziHQy`A!6OBRfPtDYF4iS0?0{-0eLdC7I`K~K!Qj- zEY)nS3<(DfqN`yAF%Y8UdaJdkt23Zg?+kNbsHBKbbFGeY*A1wrw^P>55WZ_F6gUew zT~}a)TW3W!LjFu9lNT$qcm}?`hclpdq$rOK4+a^GohE;J?`<^M?R0hW#?C+F-=7A| zIVAJoMLhbgQmFy4;Ftry_&5UKt9gg2_@<53v2MSHNN}#MVzf?#fP;aHj*}!CqnVt; z+ZLN5LYz^nuJ!5vt`lnlbYQs&^d|}exGy)s@COl1AwnB8K^SKNQY%e}_97qr2@N?q z4s|X%Re??))%F&QrR(h*$<+8&V2-(h{L?Wtleh!D9iKn6L_?ynw zc%q#I+zTy!shaW)tr6@cbsi|Gy?=WCob^2?DK(4g;K}fQ-CwqX_fpF6N882BRod;d z-X=MUPN6O?Q3TwDSB#~f{`?IoG=Bn5hJZnwaP|C-@1I`h{Yae{NttS`sk?zdU~E2In^g$1(zAw)yrrbTsX1`V#=Npu^&Jeg ztg_SOg_jOOdlb;pJ&en7)*Kpu&F$3uk|4$k`KL_WzUB-5hTDXbi%cYGVL|C|)P#tE z+c*u!itLh%6xxctN^;yJ^;`k#ESmMYUb({cW%-t0x3=YYt)tvBu^LrLa24v|E*6D9 zmS?j;Sig|%Apik$02wKA$q7&HseVdA7g)*~&HY_dN?G3eW@+XDtV`tH_PLoUo&wXy z)$FWl^hSCX`ckU1)bnupG1xs|!Ijy!#np{_cXS>bqdl6*5m0dn_A(|eK6w#%G9?CJOKhT+MWP@BGI`fnGz@tqqJWkWHB44#638fU zQpVE}=8x(sCkJA!tM5FFuQ_vRe%Zs8IG5f zk}(_ogi(0tDs{Ar`Y;uhKO?7Ih(3^FUSMg~$k+pU;8Tus>ejm}_1y==ew5Hu3TzU1 z2WQ#=p5W8_*rhe!KTI!!HMN`msMa-P%O-tE<#UE4hRftyz%194`-Wa0NrVcKmIJfE z{1lZhC%31lm7M(r_F=9|bjz5vMQ!Y^-x~Nx1bLh#k$qeZzt|D&!i6meBd&q&JGb7;{??Ba--Y**n4R4D_@!``8Fp% z)$k7=IR`$D=nXX49K*$j>}qgG8l$1(VHvI&7NBnnK%G>8^_v}y8f?4B@rA2&k>aW z%eVYj5b_L6`&ZV6-bsO?rQw)wKJ8yY$p7SYxCJXOCFXbDJ^nxSB}G98!;Rqlr1nCy zlRqNh`({Sk_OypPr+cqmWVP`Ax6ID_rxsR1MgEs&TuyyYEf_H{B?P;iw#;jVi&3KQ zzu9QJxt@t7bck9~(U>$KZ zOs<|)WR|oCN%JOw)sfB9O&nRX{Ev>l)4^Z0C2xRI613C zK3F6|A%Vno;|5?^?d3Mj5!e7l@=3YtlLDv+xrVPGL_&f?F37sLP`F=G<$)rA(`gx< zCNnWP*4Wp5cXoKZh!0ud_372fo}XizpKXfluP)a0!^1G;r2!o=(_X7F(8{USj{qKs zW+E^IT*%?^fKL1Fr3oOL)iQ`^ckGU5kezwd*r(j>4wnO%JIYanxu<0=|00i|lOvT< zU-W3z{0|vNsVhmp7u(_Dky;Mxn!-44`^d5wtt=86VRnhB3%T!w`_Bw(Hp)mW#h2+8 zF}@Zm$#5T#(FMQ2)s_?kv?#g2{*65SmTfm}!k<%SDtmRIm!W*sSg6w(vfFZRv<5ia zgV3ZkHa2Kk--{TwaRbdEq{1Wtw9vCc3H8jWkyUQcvDTT)bpa$sunpdeAv5@Atdaa2 z9BY&`%vqEMYshv4mXIu;^PmE3B~tF+NXz!>ZOoep+qkRcVeE|V#Jj_wTv;N$Ad0`+ z4v<&w_CztXED*rm6c(RsAj@vk(7dWF+%u&Ij8*?=xNQu|VOjBJzBw6tQ(1-KY^+!- zpc2%a0Jb<0am!6X9_@rZT2lvADd%eLz_R}{m*;;Sot}KP%VzsN7N97B)ESpwtZC0i zS7`xD5<}qN>@hjD{sOb5!||!Is@3TsergPQ!m4U_?1?{yA)@HL0xNV*W}AU!Egi2J z+o<4~t$wRU%mN-OKaXYKUfVo=s7x@bS8<>e4T|F^SgnLqnrc?k_-KoB8^YBNW)X) ztTD^iL>H=x#1E6LPiv<=q^NZE$aqm@B0tnZZ1G%&#W}+7k zPGnKe`L#Ty?i}@9Uhf`f+Q~isKKN{+-Bxr(k??U->g1b(_!^j&7QHW>JN&$}MCSGO z!`?5S&J15h(oO2#TAqijf-(LfSDP-ZZT|Wx^TFldsrmORgI;!j{v#aC4y|IIeT5;4 ztQX$^vLD;k`cFbrLotFmO&hzfA=19KY>m=4cZvjK&fZv&2?_>wdaqskTru5(n#Kp; zNc+00E;x$p{d~;FcAZPa75XuiOq{7wl{KWg?Y0PuEkf*ei4{q7HmyO(NpsVR49F09 z3Z?aMV+hh1>64DIeN6U-dzS%}%lSSw`6P#Vw*OA-$?-SUiC zc3#tYn+ySmA;k8sTzugF5O$tXP3>=+-q|IM1a=4|^c^|~k^s_d2{nLVXaWKn5EK+O z2r4LQDuil4M8p;l6?;Hb6iX;7)`J~A>IsM*^mvZJiXN58|D82!y)$cO%~w8z1xfb) z?dQ4g>mq)_8`@$CWTXt+c8!uGU?YZ3{14HN>|t@0J1zg-5cW2=x7y0Px@ojI|Hh}$ zT^?5l_im)i?NKDJ+CCQ0$g)I?G(dZM{V?g%4cw7|B~hgAw*G6>McE@^r2ibDXzNw? zZ`kCO`V4t|LKAno-4piRu{_0sZd(1U=E zdm#H`C2;D|ij$$IpFUlP&k~4NoS^mg*WzkC5`wKlDXiO$I1dNZf)@YQT( z5%;^Jp5;F8uTxJiWqGg%@(q(_@PU&mV-e$jZn!BM^hL_!o#JJIFXJmH&P@_BZvSAv z0om!osR|enI>b25)Nk4VHZZP4O#!u-fcgtF%bDyhz0!G|wdc1nWaqMTCC4r-Fnwsq zc2OFQtc#OaDyz97ZppCgz@ivHc~#%A#leJJf%!G-xKk~9i1e^N2$w^Qhs~TC3efq9 z40gY9GKbwyiF3panDT_&Z=XN^x_47Q81B3H_4$^mOc zFr5uxgPb1)XLitILj(G$$tYy5WbNyiB_?y)_eoZ1V7*`$pPbtVtVWrCxsAE4XPTQ_ zz--=?u)-J`Dm?AI-~FF?mP-xxPSIxKMQ!OgPJ&i{!0F_-*q{1e>`47=x6!|vcaeMgNYat; zT0P;hOV1f|nHxM3Bs`|+SgK!F-&}CqX6D)#H}=fjQM1)+{$6a}MzfW_moxt*Q+77K z|D&IJu^7iWbAx_`ON-t+uVl%kO*?R7H}#95Ik*1htbS4b-tHtZ2@bFD{!rE63S27f zJy)FlN|wF9c<0X?#b0}%qs31GH~yLB05s-iubKIZX5_PKsSdT$P>eXuEB?6iQ=ngL z_f<{V&E0$IBqTXMr0vUjXJ#?jaiN&~(%_TDZ1N>nP!RRXEhS&vOHDUnN(r_m0ni$t zbRg8w{{q%;7G^TS-Ta0$kRG;P_xO2OtSftfuZN>YyV@_zQE)=?<>uH zS+nx<{+G40z6={J>#KtSU{%%hc7YGY@1%!xa2gaQ{JTfj>HDUQL%uFG3t;Kx7Ryau-e%SZoQm>OH~8FO zAH-NFv*#J!7=V3)4R9yR5)AMidW;t>;h7LN_o8&(rlfhWV=)GrUGB49CVu4yRouH; z22(MVfV1`5Jf6bIwH-Af6w&(7J`ZdnC z4y+!~JTsc7C;;s5i&kiY_NWUv>>Vhev1iNlD7Nh-`tV-Y@KkkW*UDTjC#V<|5Unr* z-2kzj*Gj>s&8pA0z6Xdx@K-g)5H~be->!m6mkjwVG!G3~o|0Gq+1^t16M$R!AyHP3 z6_AEO9!dEA&jq`--`;BoUKi$kYcR|91D`uyrPR2-yzNTy4T<$)e7bj=z4AiuZO)~9 zBaP=7J7+wQp3m&_o6z08=6e-}!o8jV5FYraUGhAz9Hl|ib{DH*0)Xuaam`fD%ok(j zfM|QA1~2{r0Nx)swyqNRj5d~($fE*lG-b1it%kOOet5M;%q_0P{&~BHoSch(=vL0U z5}@IS}SGX7J6Hxl0j%z=6>Ky>s^SIcYfO)2yF`4&xrXir?*ig6-_G1K{ z6Cio6(bp=~Tv9Br)#SWFI)TGx0xGTpAOIywF7}(Z!u*Ut<~1n_O6LTd)UxCj0V70S z3TQ)GBU89uv!C;5R*&?dZ8;qnKK${7Vwvx75c07?$EmZcMPchNAyzEs;$3e|eH_A~?{NzJ150EdLy#nTk z;Sz1yjxUKx?IDjoJh^u*b7k1W4C#}eh673encxc$tKnWlKhUdNLTKQ`0+ZL-U-606Gw^s;y&7LY>6cVT;%8W%?I8+ zb>y{NSa6AJ`HS=1vFpph=!225tAirn9n2wz1EBL8ez|9M%M{UX9a#0bb#V)5`Pd!PmEg3a#>3rUmI-lE0^wIlIg*l46zh(kWcpJBo5ATo&Qg|Biwm^ zZh-{r8vTLx3!2e%eLV+Qe|xjI{)?u75R+q`c;TU01_@ZPm9dHvWg>pX-0;<; z5i9c*d?1_FzPWOaBj2#A0sn*;N|F67%TIphFThHEJE!<#v(d>17p2EcTC8y!PVSw2Dy!1So$T$ve2t4V4QL3-^B^AU@@iWm%TQiZ#B0fc22>_G!n zSl}a7`N|6p3@rDDa~EH+MBNGpa1bAIM_E)+2#prd@2hw9+01e<$EUzEUQAT_l}fBD zIU6oK=%Kz%kZ}%BPtKD^^*9P@TpUH>9Pc9m}L1 z8^l}93ag3DWg3pT%BSGqI>SPNJ`y+>PDNRy;cHs-ZU6$_;8bOFWm1nSuiAO*4#ytD znZD5&HYtHFK6Qx>Jc3dSIKZYM>Mj&oFQjy8Z~;T)I~?LdE$Nwx;L0)hfKn?&$ZrCQ zvl?jEQdjH1eHv;7huyVo<0X}WK#gl>QDyv+Hv+1R1NpDzE%_?tbQ^;zfTknwM{!vi ze4Z9cHd~pjLGt+cxpnwF4Lva+VzCmR#ggagVrL)PC{Bg;!akR0aquJo`HTklt_~kR#X=Sd z%F;B*?Jo#F1wRL`C~TK!iEy1-GOvB*B27w0F`U|M#qp2e4;2=|^53uGW-NpMZNz5+ zh(Jil8d5Am@pa?*JpSsyFLJ%?@)1B-sI7d*EssU<3-uhcNqBL0{_L*^UkRpvEfSc^ z^y)SXCIIqbF+d0dVU9*GXM?Lg!N(6QdPhrmwInh8itX$nC|Co(!@;waE2SDFMuc>p z&Wqvb^=^piCmBx@5v+y&HOA6~NCbya$boOZ&Kq6}hjNi^ia1^IRscjIIrt1Av{pwL z??%SPQ(`zpiOTvvWf_)%74PmYOlLt7Jy=HrbEeeGL9zbVB)C-6rJ>=uX5m{0vYmth z5vq8%iUf(DS)?faRkzo+;@Gc)@EpC2LkpD@LAFRk&x}++oA*wfF)>*i(6A&JgP#o6 zN#WZY0}(9my6r|cm~EOcPYr*|sMXKvy~Ce*KPaci5*LK+-z)2 zazf+Hb|$SwI4XFtQW@Td)CZmnV7UTcHY(OMFKc!d&0KjUAJh6fgE99gV&L) znA;nJ*TeBn4T;*-?}w3h6a4C_bBWHTa0ZscJP_o(Jwe*SUG;6Rt^yV2t=OW7Ba4wr z9G0S4G+${Ja@Rck)#|iNl%2GC*Bf3Uux|bke6ASX+_^Y@hRIYadh8xD`K0pMC_VHu zGR?)xS&qJA=RET^n=8)G(jxQt;f>wM%sR8-D_g0gw3=5grjJ^(Fq1NxD(sQcf(-c1 zD0ew;MLf;0Y`t){ZknKT`S|r5Xl@*XFGQl$I9nl%1{wYWQnz;glK_)YIc|N*v2-=8?qwtk;Cw#ym6GJc zX+y*r?G?ZdodG<0sDy12yq5f>AK$H{NLVM+SY|hK{Pqtwb#BU1oBDkiMdAP&JMm!EdUSmF$JRYmg!-ER>hYWO!mx~bHMrSwQ) zPunU$s-i66;gf~D0&?vgz%b~^{=5wcLqqK4AInlY&t)U2e6T@dCX5B}6%ww7YSctM9k6$ZjB1WLkP*$s zu5{J;SgVWqfdC4e9yl*g62$#|*ovbwcqpKB>HQ-y9K8PlG;`*ebA!{64#Xb=Z>b^^ z)jT+^bFtt=;jXGgL0oYfDAiF1F=D6^(G(nw;U6a~GvINSAI`K&L!oe~Z;$@1Hpkc9 zJiLW?`h@5NAWCOA;cZ!zeiWw^Qm^RG0Xn*#1@@5KnWoNV)^XzpKeQ6r{yFDIeQJO>WI6nCf3wTx7 zK5gE#bk%C0GO1BTvE=|-5wuH0WeXGP(=ypgs!)WxxGNi)K%DsG0lgBG1>v+56$dEn z>U~`V$NxCJ!1{J?;>AwExwK+La?G;%C`HaU&~k2gd_Vn9=J6#}(5sLdC~i@nhWtiD zveMW-Njb6R=#|=6whMZQeHv<8a#P~0LByk*IB$6wlY4wWp~l~^LxsehNlg^?c8W;6 z@t!3eeVd02bvpbWeXbuPyOb{TU(w?6E(>Pvu||!0H00#~`MH{^R3ZOgF@q3rlAw2BL1IOD@dsd{(qZ~!=)~#Tij3Q*Q@XJL| zEOva;-HclmS6?ct4)?%$b#RV`ScwtWzd7?P_*%1oO0!X3kR!8I_-ZA=3yUXYo_w^N ze3=hwowNKk_(~PANQ+x1B-*N!n!EiCR+NaQs+r=9kTPhkhFB&f3w)kBFN;Skf7QRSBT#rGg zc@J*=b!$X}UnxZ9iZY^qKJ&;1d^w~#VW0Sd`7ya3dU+l0eHb^DlPEq;cG4lAqIhjV z(E3Vr5og;z6k3c8UdVwzvGp&R@gtgakk@9nU=cCC`@U1_CNYvBC@;evym8O@x4!@c z*b(u?uj{!x7WCq|-)C^$(87)?CD`n0sgF^c!5D z+VcF}(Q59CU!Rfay>1a0G|#W;`SO>NU(-L5;N?$|O;e+&xVPiQrnFej;$L6*e+Ry4 zdzjgL0B%~kx5AKtF%!YO#D*7{Er!N(M<8EeZN`Hoz`3`_YPG>pSrPO=C7$bmaQR79w7=7JFQ^%F9{sY6 z!?rIkB@_)QIZ8PCGhBVHcaEUtS5soD3VyRHhjRxh(%}7Bofkf6IqQ*my4ZA0iuW(N zpYw+zB|cnNTM1uzhXXnlaW?~D=4ZP5l#~_=VTZJ&p7`An{G_=`uX&{M{8pjTt@2Oe4V3%0u;pjQ z@?qw7Xs%k9j$74I(Ha0uR9~0vpxoU7Z}U8~oxl1{xOW68FVQ(i)5RhAUx&jVBKKj$ zF*zwijmS@aS++6OS9@>|?|v-*eLR*J9=811LcjXdxY;_$VC{EbC3sWRy!BjTq}|W6 zO#dAs!@pT%wr1Tb0gLo7^Q?<4{{d)9B-K@hnV%a#?>G(eY#x>8MerYo*9H{6y? zyu>nSI#j|KFR8@zhQ%^V56_vEue{a7XEPUM`_?7MfUTzz7Cr@_vi+g$d0V?&-!{7S zDVFwU@fMD|_d2aAXN8U~r~sN*bU!*)x4ovOJn{i{ydvZdUCe)@U1=Zekw%5LVarJa zH3=k>p4{i@PPb$6oCiV2x!Y?q?D1VkE|#>oFSG_XT}`Tt8*lP33|Q#t&~-50e|FOS z!&1jrsVuqyza->ew}tlb((dh*cdzc4&a&d`$716tK`Ugrtkh0elY8$#%)anF3qLP^ zbUfp7nN8Z4{HLd=|;unP1UB{zO)3G$SZqiJc4ivjX)K5BPq| zDy?XGy{Nmb<>i3^)#~NltohQ5fgeWGm2KY~UjMLRM|G<+9h^fB3fLOad}-CYdjS&i zk4w51O3)?Lz9#6N;C&6tnDxrsu#&jn@SBN@We{|4(mwEGGw?ou4PM`>5QJCYDn|!6 zl9}vUhT6bmSY@Oz|LtF;oit3KJk|byHTALuEiK*-OdlBVqRxaD|&BH<9@78HLY1 z$5zEBg@--$A<046orMoFWcS{(s@3(DTPcb5ia&RYK9ymDJuUYgSGl%U8NZ!;S;iXV zv{rZ=X{{*2+KI1A-H#e|j#d z_L{|Ni;St$W|1ALHGKx|n@_JF!MbM$6J7Q~5(5|e%sv9Js)uNG8THEAT3{-?iq-|_#uCb;tM!9fYx{f^v+VwbJTGyq1Yf2nkq zp?%SZ_X&Pq325geJEZr7FI;sQwt2vI4)8bYN}wd z{|)ZgVc{y-QB)?6y`d#Vh;j^@w4s(4xMW{NAHC}gviJqIrseuW_njiyygrui!hW2k z48G{xez(O)o*U{!29QvJ>HYvw=_S4_NZ+|^!a&+8Ee->4jbU0BJSxKHYhF6<;Fa5~ z5}ckc!{MYUc*AZ??KN+jMR#r=?fgL+KOlr|kqi6Q#}OQFB~Tbcp)BtWds)SpQC~_J z?I|F0DvmMxEg%&3XrUyTFo{v^Zs7FHD(m8rjf=av4$2M^rI$*`Q6t_U7oU{wV9e%Q znh&73RDnIXnAdDROIfkZ)qdfR9^8~ob!N5ABw&6c0JgXwl)rM+n$=;D(T<_}@rnIt zM1Z0BRVgJcpGm!lUbWfq>cF9;kRe;&yU5xhT_}JIv&Z%1@9T7pe|%-tUWy2p+MRV|o=)R(CyrRG0E{lH!>k5HRV$RE_=6n0Q#OaV z_SwKGDTl+5nUqad!Y&q={2`Ff$i<#nw`JNW2gB`hM=JPeh{2*< ziAk;Y*-YYK4E6S^gEKDX#U4G_+Nl{gzu*ha?S|-gIkI}(11B$gurFpi)6RR40AEvwvAbI2PCzeI0}$-AT;lwqmnOcPC+k=mg&?KL zU|x5x-PMB1{9zEM@7%bywkV1`R2H}S5mt@&Pn%sHKEB8mv}0Ju4hx_~96Ith&p`^1VRdN*=sN?2f* z2DTPf>7U`me*|4zdt!Y?>+kaJJvIF0>nQ#31mlV`Tu>W3parS~c-QoW#B~D#DoL*o z_)sP9sxOCd1{m&)7>sV{pBvLGwp}=37_6zc*v8_TIa404+QFq*p6d@{sVf&?z}#K; zLfC`2@)ct^7Q_3TMxSu_xnTsqK@bkqkB}+q7E0t~u-%!KT88V?FPoL)l6HbYLEK9K z*ESgrbdM0gTw9AshiyFlyU6imhz3s7ycGj|AEy7**9b8A zas_T32TCi(rxKwUlps*UVNLkNVQ(8EVTA~SRmf@{Y@aJFJ9l^~=4byDNYIw89D@H@ zNFZ~>t@ipg6Ou7r7NBUnew6hsMH2X3o~y&p3IMW2cuKc4MTZY7mgW%==`Jzcc{oz- z&+L`F>nU5Ica~ve<&Ps}8EQca`So%JMZhOh}lo5Qp%| ztYNWlwanhtWxDPdFQwLVQsTgouGHZL3h_)uxk9J+;+1(4;R6A%J!a1C1}W;YU!kwRld2JzT+O^dM*>7z-I;o0 z>GBe#H6M=QK^AH#8kJdSq*2ANJ#W$p3y@hbjAv?a)+*U7 zLBK4vj58!*je}mjK(rbkL2M<{p-ceuVoC;xN86iU?Z(H3wUiiv_a7afEfdT-m&rQyaZD=9`KM@ zqtcK`i3Lk$>LH$`lCczx{v$0Wsb5MxwInDOiJZJ5ZAy?eoNts1};S_VH#GZw7P^ltY^^OtI z!4LW?kk~6%BCnVH$tBv(X?@i{V?DH)EF%UVZMCs(18OJ#*W3} z1BWFR97*AFl?8U#L#U7Gg;_G>zn|Y%HtJ}^Kj^@Za900T@>W8b#4&Z^6L|rAwNLbu zo#)zy$jA8*3f1F8(_Ld6H<*~-u=i?e)|~@gyCwQkfcyCV&g&A7aZ8VGNq>dOp+4O1 zOv$x${WV&`L|X#5wg>BW`HPQI1|_+qy+g|BqVM1@?p*uCc_{6}9rF8DpYtZ8S+h#qQ}j z5^WvmtOJ=ma7|pCod&RDNDkk%8Teq_M!PW-80V_Ax;M1XcoH+X@?f4k8Uplbm&Okr z=4YN*l4er{FhF=NF|Tphb68SFqmGcMBQ)CuIS&tX#A5*xx29(H=)*-bY)9g-*&DVG z(;ODrP#1NI_gu&hCJbT8AS0nWvgZzukZK z{jTPzM;mUdgKn=?SiIx*=|g~I%JJuYmzW1GjP27WB&$K{o4&ZGk;m?G45#aACn7;V z9%MOmMT$7k!NkeN?2_M8f~%NttZga1QJ^41S$7dlUa`V9(+33pfw` z`jB6?=U#K<>8Co=KYZ)~P~=vOBJ_4-bpV%x5yFQg!HTjZ-Gv1z`2`)Ehr%S*sl*{L zz_lznK!m7}{9Ng5ZP|Kanaz-N<*;5_k6!?Q)*N}-U{#bBAEp3&n(&e#@vFesw4YT+_j3yD2t0(ak~1LM`Pt zqBPp(kEkHDkfv1myacaCL5As80&Z$>tawMLd zS633J@y1n2eU&s20Q7j)%6Q=J#va-U!u* zzP$5}rPYUX+Xk}dI|N8hip_rAkaEXkFFmjdFW3`aXBFN8hPs34z00Q$0;*cv^9wj9 zPD5J3)^J+=pQ!QXyymMfK%?&KYi-PYn0)u4hVYX7mhbuQvq7&CTzJZ#fgeP6gLh7E zI@JH_`QkiDexHd4YHqtGBD~jf@9V#(URBalUKd^Fy*=0Y7K7pnzd^la+)i1o-W@0(C134r@8I%3i>9enwe)m z`nZ?}O%;A*Q_rQYd7rn&!;7jz{-FPy2w(r{2@#-b%eSbC!gTsk$wSv2AN;mhxqbZ< z8u96533zU2bMD_CHiX$X?Rm21p(W>J;he3H*4We>-f5|;p`WYRw&>@_1?8WER)6-q zyw+V?;3WZ*{lCmPRQR-R+o2Y4{#Ki?ngi=M?Du+jC}P9jL*I`qo1{;cD0TqfIK@Z5em_b0S4CR0>T&t% zL!zIlU)0I}o?f;wsG=z9h8P!xVpYn{guiBAT|#wFZprvTIt@$wg8ammHY4(;pfo&;;ZIA@A+@qYxv)w zhI@b$fDu5{2S39A9H7LMAR;Ex$#CI7v;~l75@j+zFc>NiZBm>Im`JrUI^et%)H=1A zyP)^;Cz$B`P*;D{Jk|0`?ybb@RmNo;biG0ssn zOoR3pe;bu!4bw7k6wPb zkU;DM{8o(9t_byts00MN85~kjS!Gx6M2LFXRx78x7x~{MS*x8Mxfw%rPw*_w8A(i4q6zgY0vjNWID6OYhX=oh8q0m3Q*Yfjg z9yB|~1Mtq(`vD)x%QywX;G5H+8H}t|=f4UY0fwNtdq>F$`-VmNNA}_i}8ME?O@%>9Ux3k-uKSvbq zp4aBj0&6(d0T73kN9$TllA0v6%U9zBGVUYdr;<)${k zyWVNQ7FLa->#r*|r6J{CaP4O+`45JMZ9UnLKUNKEnca&rBb8H$A z=Gd`|5zWH^=4tu3a7L`4F2tgk*RrH~d+7bcoD5yLJTl3`gueYiYgbxq%5Bsf-~q}o zvow z9u)p|3s2o+l94!bh??w38(8fGa8@Nk>=v0k#y1ld_?H$)3CV&whDm&Afj%KFEC?}9 z5EQ_sbgCX_$QNdQ;rIw>+(r6M|Gv#}iJ|7T;U45T*dNeq>+dyQVD1eK##>*y5 zlF~_W>fpp|TmXF}7mN8bXKhs9HHKvF#MtT|vzG?~dY4*14j7K{Ed)46htfKkKuT5`3PxcjqwGnxD$7|LamJFMw`o?|rqlNC}7Jp5I z%_2i-mqPThSo!n!bL(I;D7hfSBne_6NyM100b{)u=&Ope-QAj-m6&Ud+opnDDYy-W z9s6h}ScpsMn3xgRN6WIelCW@;zYT5%4`5|$f0j9>p^6umF#N^SI{)d_Ovwyzb0K@&G?5Pmyv4fR zteL_jZXep_cUqRBs{~v64<8gBxk=SGaViE6hrX1%pjRCdOBlwTf?jDU+n&ei`wnNF zz7o?bisGfy3I_Fj*AGmx@Sdyv5dCyfs9zRuWc6O`D65N$-PHDtd~ZV89JK-44O-yQ zG4rCBTX1=#D#9R{c+l$`*_ z9&bEVIb-&ip3X)9C;+hLUGHvd9D?9SE4Pr^tVYL()8Kj{UT~S1{=;b?b~as z|0d_2DvQzAC+uSgGe-e@F1%zHtL8A3z~PIn-KaUb!M$|IEI)lFs4DyoL)kBu>h4Q{mK|RV(Rc?>IJRLcIp$h2;3Q*fz)$? zKM*pYZ^6f{<7Lj|0aC(va58@6zEdb=nqlcn+L43Y8o?KTg$)r^Vs#S77PXe@Rh;Wy zW^ckJ)5L;^v8(k8ejcgE?e{+0ama3HEB1%!V$&Cg&O1I+b^oXeHm(=dxpz-nlxWX0 zT%&6&zWB&JWANm!^SVnogRx65_Uxloi{u1L*%n}ORp^2=rQ3rY1`*m5sEl)Y&UEhD zltBZt-L1d>pvpu&B?ZQ98u+0nQ=Z9dNr;V(ny~yfxE3eLPx)|3sm``%)UM)=U46NK zx?@+0#XlTlSJ(SLvyZ}0`fx6ta=8<0%c9ABJ6c|EKRHaD0`l)1tL)QV-doIcUhS+0 zgR^+tm|KL%rWB)1ip-zJ*_n%rqnt*pmpRV-es=`t^ZG`;c$)4>xuF{?yX-;8_Tn+( zsz}LQ!>lE@_PDR$4RTHgmA?tG+JNbE`U@?I16v2f@jgmc+xpupI8N%sGp@nrQMc=E zy%HtA7?SbGv(dC-H^>q&RwRFU^VCIjJ6M4Jd zI!fcM1taH;>O4?NOY@b_H4aM(P|skzXd}JUasQO%3?4^F*=CTvm>9U5yPWB>N}ELq z8}u1if2VN&;0)%Gqru|k&xU}mHH7)|M;_upbe^v?ULTT%3uGGEbV(0z8>UmWPZ>Tw;>O8ukfLIrBHz;)|{D*I$oiIYc{&9&T}l0 zR!QvdNVH=;{@3n$)(5a!Njw`$cj-t4aWMOJUQr=~IFh$TIe#82n^+KJL_`YKg|73Z zgLO!LFC(*H*>@+`@{yRvrD(VoXV|?NsmmcPbzgs`6sco*5dqOQwl7B3hxXsUG}%|q zfD7Pge)v?fOzY&lA(OqspAp5M=EXt6lJh^BnWqoUva6%bS4Gl`^K59e_YU}zblSjc z^DNDV&6)l&9LBTHvu%6JdOGI4*pJ%h%8D3^7AYY6(C|7l_0JV@ly0EdK)P4fy z0B{s$l{A_0?NQ46giy{+Mm)=Tr=VX;8C3YnqUBfohG2UC?4uhpYu5(UJF^#;6!^I%?Te5*V;`K zb_+wDU(-I%2*=+~zzPiNgp2f11sol|`WPiSY>81q9~3o|)RYDFhOf2czYB~F0N|C{ zS>7iEScZF9=&>Ql-UWjd7VBRtAueF@Go8KW+|Y zQfZjgS`5EvXgg(OdY(Eu07LRL(>Q3-%m?Te41EC`5R@g1vuGMh%*2v!a>yANlFuRZ zFf9Ya7OYj`W0s*d4Mc|8Do=#uFRhL!*?GeU2n1y23yf=>0$jR~<=Y?*iUca>vI}51 zFEmYuBoxB%I?m}e1h~MRG6J&;pl}Yt)1*LRBwPqD7Q?-PGRlOXf=Lu&&;q3K^qV3= zOJo`reCB#!jF3b2U3z*A^zXwaxWo4!aJT=In%9)Nw>mK)JZ@UDwu;!hXc5Qs+kN

S4S<-O(I1A*2PbC3msnAgaApEA6-^7Rwdjwj7oL-eHms^5r! zhYT4hOyV@KxBC`*_L>?_%!$UV7AwR4O^TFA)*GI0_4qyytiy?i;i-@UDs!%|BNuo8 z?+iebq=?CS#H-9$^b*mhIBj*N7AWK|YV;hQ0dR2Pf`yST7PfqZc8c%Wd|(=x+JK?W zlIj1N8lT!PP0;QE063Ku(0KR2L3{iUhVc~@$s5JXd{BWhgL;>{2xPc}z%{YKLd$l^ z5h$m<(4h!@4;yX8&`VQ+Xxh*g=d<{Se#WcWj?ahD6fNSzpKmjx{sXgJwP9~Ws}u|} zr_Dg0VFu31IZ#Xf}Ad!SwRfSz5}qmJRwWcd8Ol2@gsV5W^H|PhmQ_w+&*~;U^ld>Q;i{g0I`n&a?EN zHGI5`_=ZJ^7`38UK>^>UKmOi9$pRw0$)q|ET0>r`Bm-#ibgp5VJvxp9%5@;)DSdS6 z(~)G%=81+n)=KF~ARYxA)@!YVT=eJiT`6ki{!v=uS|nU^6rrsIJ6LX^2Kw~s`!~p; z`q-;O4*wR}*-qR7TeTCe!K}dLl=r3tXVlDV~s-|8;^VGRw1M_Mh^zCrF zK`*ixgZ8Ph1LrTX{@Rr&M2`0$bB5L4D4kZwsjpjV6tWpSQoEiH-~Q;i`e_e&mU$M4 zFKc3i~b2_yu|jKh#r9jIUKkYxJ|E(|PVI>+m0w@}u%C;J@5 zT%U;w0-HvX!SttdeecdnJeDRrvl#l)XN05E?xwDMNtsrWefpn0-P?U7G{kGX2DZ+?3Lie?KEgU zZE2MR?8VQ$G99eLU#0--vE;8;af!jxpluAKqVW$>;yG#(#LLw9T_KqAyV1_ciZ6%2orHhSw0o{Jpn zv@a7v@j5@DFBGWkw~F)B%CZg|8KPt^YGf0|r~(jjmcDJ*mt3x|c-&cI3~G^jnqQpG z3^GGLyBTNuq;sAc|Klx)2P!TeLst|)X#s3U4@6apemijfk2HO#8*-UMvwqYB51D>E zCH5=LRj4?fPZEooef|z!2TmPv;*J`?r zla##JI!=7`3;Zv~w;2&o+m-wTMEBEzh6^Bd1yWnCA+KL-+Qu=xW&CRo?aiweYHtW( z&gfFHf3*+iIelb4P;r8LEwNPWx_9(>KkClC=D7JKqxHq@F0J&nw%(I5W8#l*6(bB= zZfNaG-W(jGd$JV~ikG;8k(d(7Ae|Fs(3!DDux;s75b71?;f0q90(EWgXUi>M!bY}6K@v_Z3 zasM6N008%aE`a{OPsM1fB8l2Ex)%irSMWNrdTq^ooU27Hn%%Pa}~J+`@+M z(neYv%@$L~iR}*lVNe9lHDpDy6>t=IkU8vb0a%z&Db=)afte)X#t$4Yc2jdGLE1)h zMC}0&4nQ>a;m4SFAUjfi(w9bC0(rFx609;X1GWqdF?eRqy{CZ91&7xxa~A;d$1Hb$ zFw+E|mrM#%4l=NvCbI)A#{*RLTiGrpc@!qAB?7nN&=D=PP%CsRxo%LW}SLw1_#HO4Oinp|nhtTkML`7pJ%ij4e0OLd`YI zV!mPOEn%o>!mPwP0PNC}Ytn>wVbeco4ObGJmX2I8eV5es%G9TQyNsTc>%wnH&%Zlh zO7b2KGY`;eV8gH?w%jC2k2o^n=a2kp79E;WXUs1e31MV<^bQ!!(@$*}SroRcGE2w| zPf7az&{-lecGPoCh#iPUKxOa$Xzfg+nmGG5e$SGP1eh!kA`~YOFf3|Vq_|H)KsF&D z*0dsq#f_p3s5P}#Cm}2%YJwt2k%mRZr50=zw6qQo1edmGZKV}8SgY7-3qG_(TzIDE z{qnpY-Ve`v`gzXGhkMR_&UIh^`}$pWftR1X$;DgUby1K-P1f{?R~n$A#tg02+_;~#^pVt9Ffsqypm@v!v~pBfJ7)-GMQYC%wdHKP;w2_5Lo;m&hHL&GF5A|Mexy-^Jlb^+)@6PU$2on{ z<&r@64|?p%?{*ID1B~OxymLsF%@Aeg5nJ^LLolexVM-hhW8gZ4UlcP;ZiN^UvlL-U za`Mru={Y1f;;r%iLuFxxU8B(M$OcOISHZQSZ|5kwSnM23X%q{>hNdB_Z6x5UdCSy% z?Ivjyzk9tDkz}Ul7fM`g)-J(j+a!6B9iS(RCB6>ZMYf@dG+j7q9X)&D?UHLBUx1A@ zX1+B!{~dnP$@x9}4m(IYITqtFZR_*S-ERTXK!kOXQT=g?C(bMs713E5H1lo@TpK1GaT#TJUKLk zij}T!QLtD}u>AWWmW8Zv!D=NQx(hI+GgfTF{gx2mrIc{qTkc>44wGC9ZW6Z3I3rai zMlj`C9o~)lw_M<8buhPDhD4tuquYOS^B?YVZ@|&G(Vcj_5}iK0x#XSuS)wA%B2X5> zSx%|Ak@C*jzhNMIQ%X92IRH6hmW+ zol+yM2pIqH)#ECnYc~#UkJU}heUE850+=oXA0hqy z8xVqUbEETmoSZRSUqrOi_uCxg^xRfv$bMXMm$G}c8=c~{umn{U1#IZ#y}PzSa7)e% zB3mF`sSmtBUIj&F7LL3O**48mm^BsWKqvQpK=Oe6suf!J>;#&t=#G}2Cj~7-@bd&? zJU`MH=2e+DT}N=3`8ODIj9jmgD9E2IMkj~AL1^cklhpi!^Ms%|V5D2NV+7sN^KK=V z=w<}l+OEwQIoJ7wfH1z(is39~a8`BNGZ|puK>Rb9=E=)1T-1RGo1fF275XB-{h7j& zKJvA+eD*Z}xyp6SKo_N15Uvugpk2j|dIrjna^_P;X1Ib$7xuYINs|4i9%fJwEGLYf zf(d|7o!Ij8@I?X1n(~H{2ai=vfvaFv@e+N2-1uskK{GnJthp_iFs~erupi_3m_k^W zHL&OBsU#g;cI2MP*3v<%fLJQ(=lv$pW4v2(q{>6ohOE{4GE>T|P4qDVGH(>-#eVBd z>Ps&5k&_(HeWs3bi&1RIWO^vB^NtYnm$XQc42$QIT_c=19Rx466ecT1j>yP*Hmzt+ zXHbov8YtUaQ^-sr3MGRMr;76`p~;43$yqx%IiQIDWS|P;`sEM3ZJS7bD@a>&ZU;h5Q$?$A2}gyEWh$ z#e@AG6jjFI@jEM7?xqt#27>4Fz*L*C>11$X{hcjar;Atj2L-IX6qrGVo3`Oa(aEuF zp-R(r#?9>F+{p^Z_~1*+DQP;CO7wY%?~N61d@_)l9y#C!#{3sJOO^8{6VF{<`s%eE z2VbOp`R6R*^)YX5=jSWFN~;oS_n(?NMicW$+G_pLZ&T2!Uh8O=_$(!lvvwvW$*nhz z&e;56*igJ5?AowTL7Su7uIXIgC!LatBZh}HZ=D{%9ABZDC@D8}+&K8~lzi&AgG)h# zjX2y`_Q{Li1FD`MRvZYb?oCgjDy3!I7mGiId5FxA~J&i*T7tBaaDdn3y z9crc1(*C{2olGqa$+Q0Yreyor;pCTlVk;+Ze)8p?ZQr~!=UjO1_$C%6{(}+ve@+qq z!3O|b2W>#~zoi$XJ6F+CFP@3C>5ttj+C>FBhvi;n^Qo%cc$CkJP<7L#@+Hjev$I;R zTrz60h`30^iS(RS8E$_h<0cpbR=U?p1xE=fFy++y^!vv~19;W@3=&Z$0hFH}hD9ki zI49tCP*@WLvdf@SP^vppxSo6je+q#!#@mAPsW>L+L>X(I!9=D&xuMSN{+Y18{!9e& zP!x5ftDWx{u-PALN|CEv9V(S4WRsup2Q!FI0>1VU{&dB%B(#t zeED-%Pha>~gH_sc(cQRi`yHjJ$%PC`f^e4Q$Yn|aTZbmKT`_O};+uF9F}&*CH8OYt z(xNT#T)HIayWxn`2l)8H^l|JvkC@$OZ>`B=V{h_k(l?fr;uX^EoFvOfl9qaeAcAGG z5DUF~@}v06z_q)ZV+UKJ-I7|y?0j*m$j*yTuSb(q1L08`_}uFjfshW9@WRxYL%cMF zy5ITM2L@@$=}T4j`03#^AwTZ3QlVIoG0pOtH2TB(+0xU$u5~Smq^nv$2AY7J+ zI%VLEJDQ>`@CW(b{8YmF8c3xTpb)4>?Q}bvlHryD6zaG{T`Lx~Sj~SVc={x=KhZp; zY}hSz?Jqr;DtJilw%8KioKiDoa#Qn>nu4v-B`mkC-L7pjX7z~t{H$j2(!@DxTT1i9 z+NPR|vNX}*n9IvWJ_W<-`XytdV4#YV;@fWL==RDHm_Bu{Cuf8w%>|tG7#x=Wb zYO%Jb@k!|BZnvx#xf)?uzBI+{&)?3SYEKyJM_QkF%ZBUrIt6~~wmeVyc=NBJA;(0! zXXHmW9)+o+S&T0dTE3Wn=}LaRwaf|y{dKi)ZzQXa zBaT>q;{LgnrN*&-*pJWgcwW#d7xCT;+2k^}IRz3=jfVKbgn7&C8{xQXdSyoztLFpO ztiS@dNWDhQhd;R)-4kP(R9XOVvM^S!cBf;r_2L&aObq z0Zw@AXp6wuyV?5-A1^1MlsJa+jn=zH#8Hv(BbU>S=Gw>~l>ejqY$5$W084#J+(IjV zNiMu}u;w{j6cZJ3|Edz9O=oh(E92fB_QuuMuDCcg_+Sfx&3y|!Cl5~%XS2-$WE9A^ zOQ#sevRFV<9Ne$sW%BHvWeUjPk;-}77MYnin$iT*&BU`5*+F1p`TUzlk^=vM1*6K%&mR9O!l# zYY|XJZD8^l;^!Jy)ai1oxVzDc3@R7hL z>)PRK5D3RuqcH9Qr$o670H$-^X^161^i#zeT3qQC09%*4#-=qUZfssPKnN2k<1=lM zvlG&#KdI7*9Lw-XN-61M1H5UdM(Y6!AAD<693i=m%3z?UiUrl|vp2O|1FS9I(cZo> z!m|{x=iKmd%*4)&lvNzSiaa_*wVHMxTYn-N4 zbG*8s>U4+M=c+D4V>1c2T1rCqJGjduVRxJ6>@CPPiN+Ai(^;YBAa>r@OD$D-bxT^O zqbJ|_^;v1&fF21>8)EMe-uO5RHZL6OeJ9@FBB4HI{Ls|I*`EEiX9QJLzn*aW4PP|3 zZiv2~&0m~kIdpvcL+OUh^#LOjaI5WrOm2R_SP0dK>oi4Tw3E9;-&Kb$mFu0o|TraZ#SIzef}(`mHxZN>-;Mj zxnCsUqfTLNvaj>^BtyQbr8nIYBQ~h~pu2lbZ(XiOpUO#P$4`paCHD@D{9b(_h`Yp4 z`c>s2G^2ZBMF!{=Q#g}mBH8xL-J;ZgkL{fOnmWR`HMaI?bM(6SM;#K;yI$|k8eB2& zm$GwR$7Dw~6q-vj+p;FEf3)Y*`I6`OmQ6Q%zDPQK#`^d-gShPWuM19hJb(E+d9&{h zl5E(AqCol#WjFx6E8d1ZVp6^ojyg8-m~TQM26w;lri;PjmXd z{%GlO{A1Nf57%|2Ei%7CRJK&U@MC|vKfO%ox2)U019`{>Cz6kAX?U`foRL}nhV%Qg z>UY-W-8{X1mwd<~-T2p8hR_)lPX`U^gF)}=szdy1f-@7VaEot3g)B3$eZ49mNyL5p z_<%0E?LRHH|9%zz!8e*{k?9Tu^n$+ndqL$Ir_Mq)-$fc5t=n&gvw3P@yG3PVtiViR zbE2y;&$8_p;^^apO;|h!rY^bRz!I)3K!|<*ti#)m3H;*S1818iMy&QL2mBITLeD*A zIEg~MwYNVkNgjkk(zkloN~4%yMpo$fMB6)eJ5Hq6&C4Ix=yoes+I9VZxZb^BSk{(P zo1GJ<)lEKqxvwO`mmi?D$I{nL6>pr8bjz88<5bnj^^6&FAFG{5H%<&O-(}RE%YK{kRl)| zO$9|)=pYubqDx(1#j+Hv*kH%??frghpE15O-hKA|w-02%kBnqIbKY~#YtHMMx3jC0 ztzB3k{5<#qEWrv;P-Wr(S_wu}lELDo3{{kfsybdotThS9k%$a6GFcs_sxD)!u415} zPS)^s&;$yaYMPqrx|*80nzS`qKt)SSM;l?Ftwz>X*U{F{(_R&#O${dlEE(X*6i>3T zj}DBeqiUc-*3;4R)iDXuSres)*U%$EdfJA1WJ7%zUSEc!uWg`Db~XTV1~7sFjA#H; zH$dtdC|eom7#ZlSHL&n82y-_?Y8cAs8_KC0QZ^dNsZ(UtDT;>1aJ(@>-59NHjMg=l z(KSJ+nIN@HkYp2-u8EBH-!HPMG}#obX^Pf1MUzcsbj+m5W@v3QwB)bkrDGE@ zj?yqkX`7?S<|rL=X)SYUZFA~Y3nbA3sb(RgX(2+-M!Vkk%rz!#>#lIdmhf;vgiBb&=6#VHeIlX2NWX27{_LoAj3`(CD7UTK*E6>>{kOaO z?eqxW`CIJH$bCC^WpE-hIfK}u#uL~>Smcve(=&W@D4Jt_IIy!@TJ z3piN?3B?6_c?GFCh3S=rg8V{3Q&n146+gE+A+u&%M9uEx!#j5!-k(*QT3(x8U7M3v zn^SY7w5~4Wq^S60LtSrUT4rPIiRSdomaM}q6{1u5c^%~^I}X=(71o_;{=KjH^o8n< zOSN_4p7Y})6BB1AZe6?i;M(0M5C44s?A_O|OFzH=TwY$$S&{Q}^z&uVSdLZ}R4Et$ zK<6t0Df{dHvN>aSR9IqEBzb>qVhlMdWm{~tMZ~ThU|AMUge@UtTKcD{Z&8L;Wf6yyn3tD4-(22%JD=UN!bkq-JnfkfZ zx^(J}$Xif@dj>ii#)@q8!-vuD8%9c1NGT7vT}_jf)QHQquHDU758Li}^d^M6Twhvu|cP!l(U@wok`YpV0tQE5SV`h9w7b7^rR22SdpqWavXxD@Ug_<8GA7j9ROjB;^=vZzK+nQ# zL-z~9(KV@W+ao^~X>Ty=S(@f&y}s)JUC`R`t>>>lS_WpF9`+$)?jO%8JNxkKzJ$jc z4qDeAd9bha*+kI70&d;C-o5z_q8RxL7rwlk9m-qL_PW&n^~3zl6Te-*bn*L_g(s6o zy?(#+^Bv=UAl;`ahoECAND!cDNeKdMa9TZ*ARDd2klU=0fIyY>4y5noaCjL6PMYPo zVt}A?MAa#DZY0(X?d?c3JH|t)v*US4)d0?bqjG>K!BN?5Ve07a-?)n-Dgj&`GChQw zfE4~_{q+ISH3s&K7#u@G;Jh5B^$8)?i|K?QYaJ$55Kqj+e*Jh;(F7-gIaY8+jbGFz z-idv2Bl|AY5;G-dLMck zt&wO8&sM1f;V_*X%+!RnmKY|jvID&Wcalq{ba6E)3#?I%4UlLYZ2|a5HQK>qCpBW3 zx0E~tIvJ#JYZ{8=60)cTMowdXVwCUfo>kgGi-KR%^MB3pG1>B0S6%1$!p#CK8q8*HofK@;bkD zO!GAk`T?GHoY`!aF1DrKNx|zyah8=;d#4j=T|Z9@+oA#4NK13L4B5E5Q;;f}y8uV) zREcTQMgp$*zH$Fb0$s+amcx~aI&|1cDp6c)bAPYt!b$iOttpx`jHs7a;)mv4AJ{>M zjZBELEWXV*R_^@vvgP=xlvn8-DJhM)$kHscTI!QLO?c#EIoLbqO;@WHahJTQDD+9L z=_I2?$&~&8e3`l213O>|KMp`L8XOj1Mw)_kmNF=N z$diG&E5PBqZedr>eo(YXmQME-tK+#+=jE><;CPLP_yxYYH9!w@jt~>s9c%Vpla-4o zL#-VjP)J!wCu8c-&Mt$DPM}`x0*vE$Ac=EXMG!+HwZLSY+@IjupaFvl%c3naT;feG zLvQ7hj?}8O0l*ulA=}O|+dqZDY~~pXKc><*kfl(%agc^WW#$^Z2=!1mLg~v3T zY#Azv!sa!}Vh`S;}=`AufqTqlF? z`^ebO44DLD1&SX59<#(#D4RM;6osL@*y*@YGTf_C7q*Sf!w|8#PGSfX*2~AZ=%?>g z<1vvp+>zhd8H6irjKz&(f7CD$YDoiftCC=-eH_%P+0(Ff^DM$C;R=Eh$)h=6hIjG> zsMO|xwNCMa1P7zj)`qt>ZRGHk!#{eg4Wy&OlK2W!-bJZ_kENoM_$qELH%e+gHc~uV z-2#H?1{fN`v4gL&j|*F!4U-QM#;6DYijbot7jG-C)<#B|03OVqJBV+jBIe?Eqdkap zPPo35<`N{s7JC!Np>(5#ahU)<99PmIMe*jzx@P;}Z@3|Pn%Btq5vA~>pJ zv6YzsITr|%btN-`H&z;Wr0hg9ZTT4Lcm_3F3~wXxl^rT4LV`bcRb6e5UORd3TFU2c zQMm!D^DBb#(Fn8lAs^qkP-{Lu?-H6#$G5OEZ?1IdU`|BsP;O%(J?Ljzy>IL9+GC2$ ziLT$|Q8kEK)n^h{8{_fTDO@Ds7|K-xs)zb$*97a+dX?;osd}4f0@H3Nuvt0%|_u_v1Ht+Uv z0GruiXb{Yn-tNR-oQJa-rG7>=}v)RFVpX_XLQ8uHBZ>*c^} zRtfU`er862lk7{o%P*KcrwG1YiSg{NxqIcg&4sTkS2=~8>fffaJ$sI+UY&PZ_ib8O*wbj_@zO2i+l{JgJwU5n{Y10wSHsi-V zKedJYd=>b+^=S9CPp49UzGfRO-5K)y+;#Zpo0u1gCvuK_K6~NkUz|hV?{{Orod4tJ z+oUf`QzL(Uy!8F&JFa5?thCosz}+9SG_U^0s@IoB*DWs!Pk*@d!Q<=YkmdJP*Bzd{ zsQYp)b@_wH=*!ci*l#xuFMn()`uNCs%hH_-%bz-mF233J`>We|HJ^L0Uwpg&`u9iQ zQ$BS?rM}AY`tev%d&wJnX|eM9kLN=_7f`?N7998b`6^`P+syS#pU++Y`8IXs`>f*c zD@$Wu%kK}b{FwLp{oCE^%bzc3|2(UB=EDoGm2au*uOciga`mpSEPr2F0YommC3-v{ z?$UlPx{52?%RQxf2sO^d5_w9tJUn{OH=E&GEb*ztbSv9*>%jDxyFBtJLa#U7VJ3Y;6<3`opxX*wW~OgU61Y?e+=zRe zdIg?K0v0jDU_Xx;nBkw4QHMH!Uds)g$=JG-!6s&6j%WB7W=1Dv##Cj-jb}uTM{Zxr znd{$(YdFVayy85z&58c zFz;+q9=Rp=d~aToQEvZIo|w3=Cp&LAFn^So)Sk`%Zj^UrCjZ(}zS92O0o#IGfqQQR z7R*!?kk;mp%@jOZDxeyn9@`c^4J>?~R5)K%_^P+?%}n9jrNRYb(RlZuwA zioW$0{g^3QUMd14Av~z?Zc70wS@?FeV76C?xhK4c+AH6jtYlY=4=N@k7pMCO(S5}l zt~-$~`!z`=y2dG|Y)TB1OC~=TQ~FBG?!`K_L{dqmR(7Sg?nY5U(4F>@ECUGetj|SGUb8Q<-yf)eu3p%UzS5( z%foX@3T-Q*?aHE(E8_Y}!ul$9Ru=^HmG8EzWZf&@m0XGXTAbKdnbudH^tDp`Yl;0# zr68zE5XiqAlb+jGm4C0Q@N1QjR9zxdoe*19kz6gXjUo0`*WRnH`&#|Lzs$|9rZK3d zA*i~lx~7f9%Z{x%^|hwsWv-7*RgX-iLT^oP^E-&DnE1`N(@$!HC__&(&Ei)pg(cj&je{z599;sEJZ5j{XP|p>h+KjYYEO zMHn~kxnvPmt=_{~q!e6FP>aW>)T^DZKUX1=|5i`_R!_QIuOEDDkLn@2m}4gAk99q- z*ZFpg`l?Rv@-ge+hUR^2`F%(2bF)^*HEf8hw@_=K+c%0yjm(rrmzuIqeGTp=f|C|+jyJKH*Gziw*Ff~c#3F;O?7lib4*Qh-1+AC`_0b+ntoF| zo~+s&5q#Xho$ zv-gs1YlTURV%+hXw$^>gt##k_7E<;ewQt*^+S-`X1|MrFI^WiA&uz|a>$tz`d0%T! zaDChTw%(c(Mb5|1+&_U-J0VWl=k1&_5ZtadcH&Y^dumV_tL?u$^#L?bKuYQ%{3WJx@6`Uvui!`BQJ~i>{o{zpr-seQ?5E`_rFO zPVckXZ#Q51NEJ2Yg)zBBW!(=*dSl9Th<*G3z*=a!+H`JL5lhD1~$qUPl?+ z>ri{WE2XtV>p~4awNrO{XX^P*!;qcnDP1P1J5OXbn11hiUeQHe*L{`HrDv4dy<~qv z`$G4DoDPTY-NWO$^mRSVNnPvIo~!;nZl*mhfAmZcu>VQ6n85%X>;w|t1ziDPXbl&v zxJWWPnuL!3njNunH?VrqqMB^t>bM70#kcY6G#I(~>ftL+9N?g$KGF4TNWuICT6x|S z$91>Z^D2@EKi1~3E`7IyXu(NJQ(-;2hdex9o@<8Cr71I8ZVQ|S1+G=k!f{%97tzc; zXW|(Kfn`)<9|S}?$F#~tLZj_lGTbsj?=dF(;RS9w-I$2|7cXQM0Ph1Z$uB@701Scn zH{M8+5JOmik$hsmx4I+q#l-ELZ(8w8CcmU=1b|8!Lh^s6R9U1v!MdS$${5DEK zxxSxIoBM2N;27;B2)rvXuiuolBtJrB_27*-by_HR7o|GHUn60>6dHf!bAnb}UEfV$+&tX+Pcnc`*_ zzd6pakvsx2`~d~0J1hsFoik+4Q=}4keOqYjZhcy%l=EPjj56d=p>=u*a2#jL>vWUe z$MCx6#oAg27PvE|$A_9dW#}WZ2ysPQaJWPKBBQXz!fCTTi7_e{l;xJxtRe+@gq(}J z72~Zpnp0&4o`U%s-R>lCXeD#+cQk|p$qoS0$JU6c-h-zQU5qX%Ei%97#Pg0dtu-DcAj@W27H5KgY+!5`7g#=h0-QQ^K6>`cgP<=r!| ze*cL%1nq&Ldm`5MaQe_aDc`imi(0xkDR3JQQz)-79kC1Lj%x7a z=cOUpyReQ>c~FbhJmlKmC{T0Bsb?skmw%cIS#>mS#sa|{7OQa5k`D#ry@Rlb8&g;; zJi6YI6dL%9MGSA5)1i&G3M!$vd`py?C-*iB8_>%`s)WhcGkrJ^@CiKImqzLnck+y_pm5?*eHyXp4XJc>)**CLTzbj!F&cD%|}(H-H=sSeo1%xl(=B1K3!k&90u_oA-nUg^T!;2l>zxu z3M+qI+855f?0pRvcn03NeVC+cP$XrGd4`# zUW>rHQ;Veo?tob|^WqE}v*Y0>>J)K7z6S-6wa&h>8{sU55cFepfGT0>2sFQD`mQlZ zBd8sSYo|=9gaT8+gUry!!u~ZJK2;R9z*^Od5RFEUtB{_ zB;lNhY+L+YmkLM01SV3LAh7>3+b|&=N!8h+>gAA-feo_zn64HeObGGWh?#Cx0F>g* zgor8_z_+k z%4WAPKC8@b?ZOq;`ncPN?X$ukiU#5~3$`K;u6Gj({A#7b=#KMJVioNje<<}o_MZ&_ z=0Lo~R4A&^ZHb?3WklM-+%dvo&p=dtkKiX&iO_`OvF+C>k~W}9{# z5i0@*Z5SlORW%2Nk(JWb)$jc<>RMk)z(B^ZoxGmDCS%ERNwW%~cMGDbB#r9p0lr)PkYV3&EY&Gj){)UJRJQ-Xb5&K8DZgFp?h4h(d1%9T1*lJyB5@z zOqwEK>8w?Y*pHL;qo4x=YQd~LV2{(J+~Uy)w42!i5~|c3t_KQR?r<4kRoRLp29C=z zO(iYI0+OzoXgnnkuu7M} z1yeMMHfvOGh@jC;S^I&sG5Qv_AAW#Dm%jMeeyZ{^VG;(ycTQ}VF-ZLS?$m`$PFp+J zV>hLSTw1{R$pDZ6QIkqvnm3Ci{X-2I@49Lh4!dF<2kEki9WddkR+Tq%7;qilky*6^ zP)`rCo?#$Gcmee^d^@yxsLCOW#eg|e#tlvyF4RuhodVd5R;dXr0yHyOfdosm^>BXl zJb-S4VKN*XwN)BW@pXW4aaQP_GigqoFEeCqxfT5^4K!G=EOW%*P*q?`jG*lsM5$-r zk=c(>+A_ZO;oK^8n9Wt|{j_vaxU9Yt!5%Z6L3q?UrUv{&FW$jMOVLnjfm75cP(=RR zFmbCp45++9dQ;RQ+0%pZm;Tu6$QC)GNL!qGL_yqO4o}bncbqdUUq^LD@poxaget%~ z%u(4xzgVF1wDc$f=ZeQ=5CfPApCSU@VIAi_D>fPd2G%9!&M~Bwgkf{13?4*17MO<8 zFntUcT<&bMndkfona5nLD`B@iwU=`}MWRyB+HTda@aremDe7_QRU9;x?RB4y0}{$gR$a4__bM)sF<$oT6+s9B>M zAsBQOX`{Eb7uqwF!B^+YYMvj^;~rZrH=6Id`g!_sT&&xt7TPP6Y(P^972P>P~yj6>A-Wa#V{`3mL&tY9o|yEky(Rs(k^~fjKOTHW*eNxL4zY9CJnm0=HiU9R!*R`B~}Z>>rUA{aOuK;t~5q5Cd!s9L$*T? zXBJASkcD-cE*}T$bj$*=MG2VUNZNrK>~y{I8kWEk-WSF*Kj^Z@YvT&U(89U(l%u7# znLU}%L#|;6^BZL?MNGK|eZ^e()fFB9Ys^fh<@eyr=uEOcsrZFqw+By?|;yetHq{94#N}kpl)4@_6mO^EEEe7C}l_aVRL(vaKV{&v1fqxl| zNs3}x)GcW`y89t7*vvj;_zwNKjP&k+!{{6WlZ5YdN z(W!+(#SRX|DqQL1v)dqs)e+uP;Pd z8%+6Bv`cu#I)8&G30HdY#PZW@aso5c*r85@R-qB^|kTy zUws?hRY{zk?$zGzSVH*0ALFvoC#p_|4DH=lt>yBpK(T+WY?t4u5O9H-0 z)*oSz>BPDH)1Pmr*l>ol8O(}@ld9%_UZ5)s?ZB|n&wAOzLXB|LO$88SRS`=x#3&Uw z=f?~m>nv0-@y*tUv79EWN*IFtd-5U))QaqO&cVewN?I|1lPrbG-&MFZcb&|Urj!cf zEob9-@FsMzo^y}O${gLHfnXjcwjQPrZ~9np2i==|olN9*%i~~Eu&f)Sj^I}PpDN{% zAJO2bgH-yiw7KaiEluxzPEKJ!6zuE>xFa~yRg_pxoi`z7u@Bx7ZYjZwPI`LYMcdMY5E;(`)cy!U{x|0FY^Yi|?(kxiIHs zYkez9-j)LR**cN8XpB`9A)R5!@#D*E2eX-429b$SWrB4gTv{VXCyPV?!mCc}>7B(I z^3SThb-isqUb6;ft;KfqxJZO5%3Xp$@|IRUNE-ZvS;ygIo0X3l zPMWpY?atCwETf}pXX3V18kXIY05=r|*^_Qtxvu_d{n4G_k(juNF=Z_nE0@>2Arw|e zTJtS|2quviH=OfE+9lo^BFh(i3v1iaJJIZ9{ILU9Rs2np^8RyW4aQ%vA+01Kq#yR7sS0gG8yDouGE0xHsH( z8mU1FTckNXjzqjymfwq0+upM#afEouZhC5m{Jmx^HL*b@Zr7JjcbbN=p898}%LBld zvnt(oi-KvjeYS^HqOJW#V;X{ry_K^=Xv}A7j$!jD>IM?ocQhLB=)^=9YJ%=9IEGWx zF6$9&(}{W%$+rW;C7PD%AVK0b^p6J@rgz*@Nm*TJL-OO+?Njw}=|om&syt-jz1j6Y zRUGjH4?o?H;9Yd;yO4EeI!08V%9!rfzKGx2?x3XNN8$a(h>R@T_-Uv#GTFIdP8(3A zxz}N{iIsUo=jC&_ZwW^G-|FS0X3{spf*1J29`;*u)qkjpcvqye(m$A$U)U-59|NS2 z=z`_a(oGahLVJa9AgixrRqIk*pO>dv`RDlqx`DsU6{u6^+0_{fB+nR>fwu5Fq@4CsPc_U?!=g@S##lgXS0rVO5f*>h&dW>dYTs~i%BmLe+xw2HmSP%c?O!|r?5 zPvt!U*-GmU|MY2ct9!gp<`IUr1FOjOkljeCy?u4o&R_Fh%!-D$tDG+qRUCp6Y1w`+ zJlOB3_F{YJJR%xn6$U5cq%voX5eVv?mPHp^D`94UR!n*wwAqs)5rQkQ`Hp+9RKVXe2 zFtGy}D$L=R$2`BwTMloIlPoh3T(7X^rM1Udh(iIf^%<&L1=Xeg5$=mso*~fU@hwe% z1>D~p#D$IGw}eW%$r!)5spIxXqOmIO7xAs7Dz|=aKC$H#973x2d^E|R|35LIP*NNI z`yA)eA)*0&m-fJ3x{izhtL>IQ-XUS0ezAq)olgdN^2iN8T!i{S#>n?rXpRqglZ=vu zs9!iYm@a3tW3<0o*$7ly9g6Fv_E4r9l&o%rrj)h%)>u^@fH_Lh8M&s(@@#Y9dv2Ij%?2XQbD=}82 zTotP*eqQhGw`8En0c;?0%)^4X!Va{u6PpB_1y`UFgcxIun8U2->_7q~i+LEv@|Zz> zv02cR_QWwM`RZ{W&>L$pHBn}~1%2zmwz!t!5dw&WL3?)-y)}Vkj&tM&ftCzam@M;; zZC5QTm`cI%^=wty%!FZG|NL!^1T(>NC-?|ytx$0v0Aspf8~{VanFX}kJ_rus;0M@f zT@0WWNXNwtNP+$6L^K)k6gI2^hb=lQK)oU@;Djz4gdhx409jYTp#28eNIoRZS>V$G zYrUV7qTh(3aeBjQnB$!k1p00Ecr-g zJ0RXfJ4#G1fF6V@3Dm$83_@bZS8S)WuOK>6U=7}Hu=Y0~=0S!ZO@wfRo>)41FcUx; zQhTSOyWt5ODInl_52{`!Btp`f2o4{*yP%r|xhj;o(Qv)Am(T;OwY2#O0P^K!BCS}~ zQpqNIL?CGjY5BvlkOJ~k2hb1cv1^9*w0lDunqa|~o0%~6Fi z{t}91Z>0#a!L~X~#Y3Pz zf`5Btpc9HqqD^6#O1H$lvdy2!U^%u}q}nd~Q2>QGNJHE>xDZ8K*o)IigI^UR2?YGp zwX{gA_2?eQ(5&J8pkwotiWh5fSS1VrOD3(mB1%`WXDrTaJFy-%qRbH1JIT?O#0b*L zn&RO!PZ58qWmfeywjT4)b&z;|;qWASVRfa<(eH+gnxR10+Mci1BQqD&OduNhA};%T z4>ld?R*$it8W0w85u_wBTvs%Rmpz8E%%0=2l@&ZRM>et-v$J0`i?kAk$!Yz# zP8=nRwLRyuwqT{evL1Bfhclz6b*s{bCr4MnboPpj_Da9Ys8L}j-O#e%sX)MQJi%3ngxUbg+`9Vqf?%?bQ@p8f<{`Ss_Tbp6C0jQ zgCP>XFyh{d-4_8K8U3Q^&S+jbNwae0L=K)^0=}_)7ZP#u z207S-nrSp&^?>dL%sth#FEHD?t<2SpL)^4q$%9u8_JvK~*5pTB? z%c|UHl!E`K)F815l>JXtdLaE@nhx641@8jq4(Hg!w+HHQ^oEPbj9d*FAHG0N$)&Mh zRKlG^s=EBW4@fr!b)gB5nODj!J@e5Cw@w{7qrD+*CiHSotc$sGz5oY1?gQVvyuA3N zemED;Z!Z&*mSSc}9^|oj@5}f}h2tF942*sCrr!RP4H7RY=9N%Tzdhrt`1q{ZUImg& zO^tR+XBg0{s5)3_u9ER%t@zKTx6OFHx_#e2xBvP30Y)a1r^~_)Y)=JAaS~pOEBF%; zt>;cHc&@7Gg}Kt6EHVdE2!G|OF=4mIEB6q_ zztKWj9!#tf0JxbXw3B6q2dl%zk>uEqgp_OzV34wxb!XTCnX4QG0ch|LCEiR+6ib^q zJD}o4xHVECwbybRgNd~q!H1wfs;F%8ra9IDTbdB>s;oYRo^3NdT$inDB5d`r3>LN(SdoTbLEeQmI;yB0osu?SSdAjOWRHKv z_$Q`kNTNmVZv}9@L`_0)!X%ikgw{fkGciC%TCxt86sHRe!ESlM^LJz|a8=jZNW?EY9vG;?9&?HFfw=zhoBGRWaZr= zBk&sCG|)XR{Qc06c#TeB5D6!*-;kE%ctvcw(Pz2W3NhKc@6G$31uf2{_4kjkMZsqbW~ATpD#??!|R&Lpg6z%z-88ho@b@B^W>zmiO$q^jZGuFxjoN z5xfU6D5whB^-y<M)qI99BaUh&2I731E+p^Mmo^deIZ(x=|4X$cQ}IooMZny)Yn zI@1-8dK%brCC2}cjs5=*%51j8b;Q42H}We)T;LE*RX-GTNF>@^6;qU3SqJwqQqnCd z&BTaAOr9mm1h&A)DJijUKeN4Zf?rf5HK_rEoY24`v;}?d%e$lPh+S-13|v$qc8hvY zR$qMjxCtso1mWV`4~zHqZD3DNe>~cTjuFUi@t>6qIIcBSg&!B>4DSV@j&V_4%LqZ8Ci-ON8NFz377H4q9!3NJv#r^ znOXyWg=}y<^uObaJc%z<|Mtb@zrzR)a??@h-@Yn=_cezRBt%S!XcZ&8CNvY zIz$lt`sQP%pp23;D9Fdi5%NQGZrsRIrLgojRq#jU)vONdz^ zo_T#o6!On3`7ibDVu{`VQ6@V6BYiUD)X@PLLs{!Ofh% zNeMi~p2q3$(N+;Z;NS#P23SQ-g&MaKp;AM5#vKg$-#BjJzao6-mvt1OU_f%J8a+1&;2@4gWMu_ipua}1QCF+K;++jqfs27K$YK42zs%39>rxelZe*Qp-#VbqzD3RY z#NtgONH~#r2Hr zViNrgid3d})PA)u+NPc!jj1+{1S}o1r|D>109;uBkIH>!oTsY3j}hGo8Mpx#l6l5# z%;mDR|5lLxm(g1*@q@zOP1bIS9}u&Hs2m;|xm75n))!@BVPv}!?rq4-N6r4cp6l!- z9S;PZr@Ii!p!n0_?D8>!fnZ%3YocoE@J8_cN@zVjY8I!Xz5L*UG#GKOfuBTw6pN*} zroPSSd=p_lWbM{YMrI;$oV-Ws+jLE-~=vM=40cHXNvEtk;QIWjW!Gm;uEq$*ZqRnc{DjswAMHJ3RyV=*?4H>$Fphg%qB4tkj-x- zI7&AjTwZ!s9fp*}R}_7Wyl_?~Q`%*D`O~D{P_7r~KxDdApl&oA{8=Vje~c-kY`DRA z$NAxSoaYg%@s2CHtZa9E7c+9#{_AxGdOrGFNl8tMrDFjH1GCw*i2&Y?)u#98lA2*1 z`RHsp#qsi!n_ev}+|p9lbz@(@L-PN~uV3~N|F-WJ#v*2qktK`+x`Z5-K1Y}I6756^ zN5UKdf=e%l#z(-(stzJsmNeHi;9zLN`zO)_gXrP%h|1#`iX~yP_vWlPn@X*m0`nJM zy!*{aE~Zha(d)v-o7unjgAW!_3>&>gP(86#fg3LZQ!%{!;O+w}%L!djw5h9qCJ0o@ zmXYdO|K#&0-|a9tyrH{`iQ1Zl8Sb8Y{)>NHAQXh~oWZ!Q?r?Uoo-S2L=Y~JJm|DbS zlWe2OB$JkNLgQ}7F%?TQT_#Z}s#R?4%W63Ip7|PYEgo~nwJ>wUhU2B1f-I1I(4&?e zo20p^_Wu*cHUQMWwx84`>gB({w@%_A{NEnB_P2-VY?`Wt{|sP9)c=Cgtysz&f8m5HJRT!#U;cRKng_t_uDrgTy(JmV{mAhWeS)njuIBw^oXc2~2fR`--|Ls+}p ztHC-L$>NM;^yYk3r(qqt&4S$a$NIJVyPq{WlGQ1 zuGxMzJmW)|F=UsHG*$oK!&He+K$m2)`%j|kA0rS}&t9MQnC_UX^dI8ISfLUK#Tw5I zB4xFG+d?P03}{B-Y1BnpX_iOjuPae9VzitU{g|z>Pv(R&#if2hG6J;@>+ipe2^&PT z-aHZ5tyG4`Oe$D;waBJ5o@u{VK8{b8n)1BuWy);P^&l6#xpyH+FZvJbJLqa%$1*gk zgF?Ij(NI?7lf8@KU=5-T&PG`j4}dpczdKtD93B;sDyxr4O{z%PQ%GkpctV`KvK*GT z;FMQ6)%#9qt_vxLYdl%b$}nHYKm1^PG8ieuyOkOuaw0a(Mo$uqeM+|fZXYE}e|hVq z@9O%li$8+)uKWnfV?|?CQd%ewe~@Qq)G*a4LPt3#ArVCEtmfvQVnnM8q-tnV>)_mc-i0y*7Zhq(Kh3Xgse z^uA{_msI>Z#N?^TQcHTId$qB?TbU6u0{^KzSe1_o`Afi9K`V=S+`a`Ktu{>QN($-TR_bDSI+;#1Dy|o)whpWdF&>M+a79 zAmiqB{BTa$*i7w;7Nso1<`!S*f2)cAKYG*%$q=e2Icf=-0(KKqG?0!8)9D|+N6 zH#bW?e{VPI$V8OZqj~E?IObV-U`4rOkr(`Bl#tOT*%#P#i)Wx=`N{yh z8+7b{Qf^uT8zGoq%4s^Xt6yhSkqH&+2x1&wJ{5WR$4YeHE|QYN^1{&d4a>t3Fhb(h zzKjqbp$>dQq5b{q*1Fjuw}vAXadF3g20r1byR*Y+hQ~)&g5x%R4CFdB(`P%2+WSXk zCve(RH@!~xfA-DAXk|0nTEA%|IHvoc^$BV?c6WU1S5f^C>4MT^yIMfY7b7*9{yitp z{YZQdQ`=W;eSPE4A5V%len5+ch-r>;TzpKD=z9PA<@5r88;37!L>skp20s)=?82Xl z>slDb|Dngl`s7tw2OLeWDi+}9t|NPN=0vEL-46C{` zO>$odocQ3P)g>~2|HoomI$EDDTBI4hza;-<;}Uu0{Tfwu<&$4#b;o>ilqg@^d&d{y zz7y(C#V3+BF2413HHfjD6G1!0X33Arx0U3`^HiPd1NT7T8SUfwOy`u+!aP<(<6+%Z+ z7(=C-vvmw|?o;!*rfrdrTpP_rp^u*2=iF;mkmmoWa$jf!Hk89*$*S`T{iJ{{1QfuliTiSy*2FjiN7qg_p+Ty(bUYL zKpH{|3vBALeovdK*GO%7@{bl?F`Ga3tv4a7>prk)(=b-zdE*30;~(L93wc&Mj$ zkMAlwEVp%LQ1*I7{~!WbK3Qgec91> z-^MmzE*H9f6RUm(PLO7sYzoRuyKU(>!!b^JU*Pn%&-2G!0?uDQwERKg!NRe}PNRzH zHyRW+OL3cfd5S4eTOIq>nARxHV_ijq3h*%5SShnA4S!3)z6!SPjb)MjPL_)L!{a_u zCbp?h8QOJI(FPkIj~{|=2&Q*$ihDW%e+qk3cQtkEG8)S}fB%ydJVx4fQ3v2+c112@ z1;7CcRAhqF;#sXJ5m{iGJ*1Fcz?EK5>q{Ehq=o1{5nUu!aOsyj^b8BZowmcS*4Rjv zgtFXY_jlZ!qagyS;C(*G&3crd2waiw@+4)$)y2y_Uh?c7Q_Q! z=r3Cnk@(@+cw$=J82zW^yffz3^vxy2(Ub0lM$K2W=7^)`)kw2?4GVEUzMYC1n!LWK z#@B3UVH!~fay+3yt(e#M9Q?uxw9g7FhPX^4TkqG-!wr|dE-~$1iPPO$-rlQCVg|ji zMDL3nyf@>oX_U#e`myDS@>7n@NlV(>ZR@_@KQcv+q7fedXyt2UQ3ut{I%d`AtD<_% zops$FSVc1%lxjt5jK~9WQ)^y5%TW6j0;PR_z94Xu}4`@A%iNl7P(wvAe#)SULtFbMe_nHLoK7*&w6WzCr}n7~rRvmQUhKr}DM#?K6?)=OWsnxzUJ?McGyWJjEeRV=#q zC4%(1V|0aDrIU9kqf_(M%(_c|zMbFQuK2A(+v(|SlfvGfC)GJKsr_x!xv`jOE`do`@XN^yw2-9zvt&W+qP!D z9GZ;DJZT`Fw}Z!cv-TgD7ltZ$cei}$enRl)scz5ss$f9(0sEWlbz5Fy zh>_n)GKWr4(a20Gs((GbTL;R;2LwtK)i0qYdV|%OkN%~>ha`x;SN;AJ|%Be zPeK(gbCd>D8WcAS__D;Ls_e2)dZ5AvPVrn`CRWasD{~TYqb9h3hJI>}xsf>edzs+d z1b_;#qP+Gxa;ma%6A)m>oqnF4=oa&cRXj+WoyE+%wX8wFD3n;CNE`gzQ6Ij)@{S2| z5_y(LHQIxk>jtMtW6hs;YhDjzmrGJDr&8Lt6~xQ3p!c{tCgM|8gW{7S(lzG29y@Fz z-q)`w5hI~gFsz;3e-+LHfEg|=r!;ByQ*&=3qNLW2p2I2qW|>UGXI;5MWX!>S{p|ehj~|@6JQI|f z@l%@fLP=okn)7$aDkF))#mr@4L_sJ%0`}`zmzlGB8LTcA32%TQgU~~?af0jIf{;VX zzyf*Z5_jD&NB0b9Y3hlops8|KDIWCT*g{msob_UL>yQ}dB-n^^C7m!j^^4W76Wd)+ zIV&84;8Ib5-ud{@53xr1<9qt}Gn#%DEJ9q~*qqNRS?6bwWhPV!E47T3xY8ceeA4+} zMBpw<{ztg${;FM8Jn^`RLE^Lf3~C8N{fIc>!BJs;0Se75gUN>NK`aL@Y1 zxIZ;ep=a5u#tEZlkX1=D1NRJs8?>aiwa#&NOt}>8LI@jw=7g7H{b^3_B5t%8vj{-d z$)QE^eM}o>kqJ60B(ZH64_dq5GF%i3Vp=+#@$>uO-b1h^0#z1si zQr+9>WRwugweDLahw5zb_Appv+#{3WMy=2q6Im-vzK{VdqQS-6cO03tVJX9@?E1b` z0xB9nr9OgmCbEkf6FI^C@d&2z?89i{dZ@0a@(^nsf$D-1l9~Y0s?Jmj4W55%@9p=_ z*TpfAvEYiuIn55n+QGTlBayb{c)imd1kT*h`R*MKZ>x(mLH;ZlLP)=Db6z}qYSr{D z=LO&YjR)!!zIShbf8Mp2hrp(ZG=d_aMkXjM{GasX`6` zvJ=H|bYUDtjD0J`&U^%YVYL-@GvUFZa&LkIWOia*H3ta^*-6s0Jv zgk56NB^qJJwkeC`1n=`Fd>aY7Or$$v)VZ$}EhhXv>xrFqvhB3-X{um(AJWrdT{m33H*>$c)Y#D=}SJ1%_0 zaeq7Ey@qhk(3NcJa=*Uv-_XW?ucPP4HCwN1yggmmHmCcBbuKe2R!C6-n{nxKr%QjiPicO_dC(TrL-s{)mChqyF(VMx`5)&MM`XJu z?o2vz#d(#XE7A^&?QoWmI>ioWS_9|FCo9j*)g$DcCaBDSp2Nc6O{Cg7=PaM)6|n)+ z4c*1w+w<(_-cx>(h2V!+aDoeFRu{V1ggPo{oo)STuDW$p4rLqAQen-71gDdFpjr=f zbe%8yjXm}fEJZNb&FDEaOuijX7Wem4;J7o=e^*YnWMM?WwuR?2E+iRgZ<8S!IdYlv z*Zt_s&!|~#tQF@Su{QIm4{OF1vQD_atPUx%p@&ZOlGCT{G~@|c=+IQs#G0NuD>Tax zv%S=`>jo^8Cs5CwD!Pihhk%h{6wh{*ji401mRJOH^wm+n3+Su~A$IaU*1rrV3Xl@^ ztx#}Tg1OeWH)IPj)>p*suzYmBWte9Ex;)bpj^ggdzt_{gQiNR06e;#MIjQgw^Q+1E zi>>I3)na1d_DC_*Mc}N+isNT4&o(CEcph0_E6S^`%m7mUn_KW%jN?9lf|-aYeD)xr zMR6icVco%2trxTCfkduL$+V?FP(iDylOzn>{u?&Ba6ghxpD zuKK4(vW|!FE_5KPN6_VlUdEE2>B3w+K@)g=P;6v5T@NPrHgT9EDh~Nq|V#mFxop$=(owu9uK7OG8#m2x* zfg&2zkC4u#a3&1+YB6pFi_{McqJsvDOZJl#gFm1%ZscO}vR=y~j<(_5o>s&4ay33t=5Ff#1H?55=P-nbRNAePjh-<^E0 z2zAH06L+V?qj~Dkq()P$)6uPe-g*0e@mo2;b3$uj>KSc$hR!${otFK(sjr?|?!F6fSA z;oz24$h&fI{w&+axmV!fq{`Q2K;)e$`MKmdrubL3X%CdNZI!*VvLpW*ioG{&ZtE{o z+2}GcPAkW8TAtO};nB@~b4L%R-9P^=&*T(aUX0ji_n-26?%$9)tpxBZkQRm_9WPWD z-Z`|#zKw6cO%Y1V6A$WWsE0$y&@;Si|M2=cOOc+lSFA_WhaqS0Dj!&Ob^@6 zHA%61tQoJ3tZ`ZvQ=VQL3u~iM+KFgb4Bsi=hHboW!3T}ffm=vn5F}@>+0AM)PQ}Xu zrl+}7i%~5s=g&ssko0BOx|gGR?0q}lI}209#jt7C&+?b|gqP;-+(OtC7A3|0x$WgD z8hIxTCi=X>S2%wXzZ_*bS>H7LH2?llx%0Ia(sKi$nMGC|dzBmo?>k67^xqp>%ga$K zb{KKmL3?u`jl5U7<*&{eQ*ylz1-@$MzC6%EGRfD-grqM*^5IKZ>e=gLb4&o@^qJ-S z(f_aC*O6rQ@;!OK(PGi_xsxFM?@23*@m6TxZ_v-%Gx2h~%~pb!=FNR=$1BkOG~82% z$bSs;T8=;aFeFdfw{xO(8A^(y&G*>2Y3NY6)1_cww@De@?od;rA%M8YHupf=haH;Y zVW|^jEr7T{@?9>|+Su@dZJ(g;9)Kjp%EXYxxs{zwxh)=mI; z&LzE4_*v9u9>&Dik~}wWQv5lOr?fq($*~~6VCTH)A)(G5E%Ec4)f+!LT?-ml+{e|r zhLX|SwvdmH8D~|~GIpn|okjFq+74`ucG?isz;EO?FJJ<>p)%U=?!g(_m5oISNbKPXmdx~Pd|LT!ms$l z@|#Be=C$VaY%B2qU>W4zB`p2DP^6V<+W)LBFUY<0WVC1d@hA7Xodw$Rj_FVC9i7N0 zb@Wk9)Idf2E5Cc!NghA1F1)NvpYvH9cxYZgH7V6&Z_|yVDV_f)G@qQ==>y~c{i{ME z$VUgoC;sinQUW|;LYH-3#8KF#O~=0>|E_-X+iAN-Ow|%)X-BY!JiKA@ zibo6fyL-&3?m(}6xagYHqh#s!iZj10{@L&BqvekY4~_)3h6O9J33YDW9^j_({|@E0wK2NdZID%a}ED$$C!hAoou<`*R10m^7; zHu0|k<-F1_w5)qz8J$D&Cl3`FuGIqt$#_zu7KGn`UXC{;}pZwLjEyWQl zCe~ivVt8XQqF*MMNnawq`}!df6Yh3gQ!Y_@U6-R?UaTOL8TsUjZ9WY`1+h@xhwQYg zLv=brfuWCb$fOP&cs`|!_Q3UUBATwe&i)B9xf%d;RE~MpoF1Zkhdx6?e2aG!+uZkX z)pVJ;xmeD3Gj)ac>MVpDq0()KT^%Nkjo$jM?Bl3ofRMj{Ab1_*X4f4G`}P(;e|)2x zj(Rnm;-oLoLtZjC_cebC1GY!fZdRhv5DqQq)hDCaQ~ z`{cAO6pcdAKqM%kHE}>D3B4&8Dh|Emn11tpqb0nE%ghi%%d9 zR0;G$e74LHVa1T{uqmcMI@Y~LKtjEZ7-0(#^IjHOQ?=De0=@uemrc ztqEK3ArRy5fEJ`8aFkmY5wfB}FbFD2WFsG?nkJx?-1S+VS-3dvWv{Q&M$l+*nY=}T zZPDj>jT-SvmcZ|ceb)_w8CQ8vxw5pT(W`aw@p;SoIg6y&_%T-kyIp}Md{y8&`4qem z{!nhm&9`@Ozx0?W%MW6B-)PQKs>UZdUUk}|2p3>cvN;qKTe{%*K_MK{e!|16b;aa7 zVT70DCtZFyNTj#(JW^?@zAIuvfF#1Hl%>j$K85F<0(^xhG%Vl@{xQ#g>4!hT1S+5C zw0*(#9;EZ9Q68oi#dY~jN|yB4Tu)d8G4%^@vr?atHp(*n|1vce03#kdBlwj_D1JW*uue8fukZ|Yc| za$z62rArflfMk)$;AY|oXib6ZX}vtu-Ck{&8)d_6++LTBLn``i1y=B3FR9Uz3E#D8 zL7?B~XPr8<7*yAapCK()C`4S3O#=j!P9rLGl&g(w;`%?c!VxP@z`4wRWPwHL+*5;D z+@tgr(*~NIKthHUbUm95NB;!EaqVXKrZh8Qy0~RhJmAr-=S8-TVDg6dlEo|mspl|0=4m0_- zwP_kd?zYYfau#+FJT8n3S@m*9dQ7Tt3nJ}BH0%qv8t3cw`i|$5S2{J z1p8;syBVEb7?m1slo+=MgKZ zrpOf?PLn%fOarHZUb2Z;$a?DfPINhVGYHe#LCo)6S~kKZ5_={T!Fv&mFXt_J#jq0W zbIM9)oM>7h?f1GYF-QLTrn%J0cRPbzi72_%gv#bqSuFLRiVnh}_D#Czd~7jN^~3Eo`1?k`vPbc^FeJ9z$j5umxiD935)0UOOL$Sztjg5~Ce3 zoawj?@ne|pbifST#p%@E=L$vT7}|}7nIhIM9LMmpHDW2|JG-WW^;3~dU1`^dX>xWp zlqS(sAsVp}GdUac-4MLoh~@*D1%$zZF$v6r$YO3^_cv=TNCBBlS73v&+ z0*++CUR=}~i`sV$I;kDK4A3m)Vy0OzHB!wqDR%M@$dQ9fO=v1tUNxqkO~qCr=u#0X zSJzPD2r?{~17NGiQDQ45ovB^Qf#=xJVu|);5PCXJQ*KpF8-}aK_$vX;oGwjuHfGkC zCes8&8s%brL%dAAx)+rw#&B%V%503YP@5o8S9WQqWveEp1$m3qDL5#99FUMbGy*Y@V@G*epdU^tGWBo)RTF4Z6){oiW2zK`YM#xKDwcC3 zaIOpv>{WV5Q7JkwPlo<6Hiv11roBZ?#woKTniQQT9|si((QYQS$f$~!ptHI{gJh^A zK&4uPP8?SknB0PQo8Zpg;q6jV1n5sgHxm2W?@ETKd5yf=tv;@Qc`1N2A4Zd+bJV@Bf z;y|~;nYwI%V(4Wojh#LoD#>hJBuYXr6t8Oa}cte3Y zIW(k-69aJwb+o%i{kg%jb7Y6xNLx7Q+nw^CJm0X zDk5>pu%VU^tD<@@xb}Jo~Jb@#D@Mm2gN+6aMTazhWxg$hNnH z0FmAt=;J>6L^um_mKMZ5R|Xk@>tgWTTe-6i%HO0&?1fru9VfwqtHO`=KtK%OoX$bB z+m%#VD8;G>L*ywOwU?Qvmfpw4;iYRJZi)2Yhu%+?^OvaZmGy>)QsGw<%-&XDp?S-RVAWScuD+UsggRv}Sq#jHZp#sIquQcL8 z<*rcCt_Y#BK~4`YELzToSwk_7pPgs+*XY9MZ&HRY4%1`@)xU%ixbQ@*g>jS)$A}Ff zy`hI7{p4OPw;N7nsZz$a$63@K2&zB|(@bivMYT+%^01)NILcfp%BvTqHUa!{?Idnu zfn1d)!Uix=XIH8CGL#php3w_)#!znK>dI^&ht-f}QEgfahngU7nR+-Lv)YC#_#T+i zjuqjQIlZux36<5ZuIg0<+SEBZkT-^+FfmKzVC5RvkNWGu)9nFPzi3A}VMz16R2^$U z(JgS1O&Pfi6(CjT>p=k*6=+w+;x4YTqT)Gd-&?3G0KVjeuCi+)r0U5A)m>LG&4zLo zYQDEmy?77IHL3lis4QJ*@uR&_#Vr$I_D$*U=Do_^_cZFs0pQ5YoF^IplVw6Lm7+_S z88VBeQjVQ&MA!79Mbd`Jwi9j=a6Si{X~C3p&=M17rWlBn!<7VeoqO5-N~mz$ObdA~B}6ic>SFmdG(~Lr}CXRFVyR$7xtDLoczQ zruJy_v$0FMF8|Dwebvku6 zvmsNWuGKZ<>A^Uvyh5%GkZTvQG}EmoZjmlxm!p>=n5k;+;&$zHp{CXZ=d&&r8ML`W zD47-I*#C{lvkp;BnKpYbqm;Nf8#P<5T{xzhBgD?+qE|C9Q)rl61BS21h;{NRooXh~ za2!rpI)<65*L+M+N$v3Xzslv=s-=J?Le?PGqgLxQ83xDZq{_8w3vG%jA&`P=h&RHu zB5iV+yugkY$u+ZOXliz7@w^5UwV@*W$782Z)5kT{Ce2JPrg#Xon5M3iC~7#UCD{#m zh}K8kuvn}}Hp1q6U>btuo8Y>3v~Wx-5NRnU3`T+yBfv~agNUgPlBrNSO@RccLCR-H zH5W5fpdMZGt7ZWUJ-1ymHM?P9j>u`E;8mU8aB|t+e6lL^BF)S00j+-4N44u0n$d3sT*Ft{M zqK~lk2D{p;YtY#WLN)5exW@}|5Rt0MXa_@t&`0v2PcI(@BH+g~h`~~_hoH6Zl(IhM zOSgl^HXnL7&WvIygCsGsd!ZEj%~dW?B4Yph>9L;Trsw~@@tH#MkScvCaIEkyTS4#J zuUxZv?{FAg?+t%BaZuH^&uMS?P>o9j_duA)Pc?Zz)8ZE)gcGvY&tOBL`dT_osVYAh z#&n+GpZsOXq22yB1Lp@W+gwTuu2J181z9>UfvI}^0*c)>qN;n(MpTW-mR6avb-W{f zIuuERnM_x|N@aYGGU#fk??Y(l926_s6)A)x#Y*1q;o(=6BbVP6e%=rT$fH;?63ESx+YI?&Unwze=d(J!L6gB^A#1X(dJ0H){c^|>DS>|zH3 z*UoQf^t|krIY9|$t?;dV$Jh`w>435#peyrMopj>Uq`yARIr}Lrn?5h_(B#06D^`A9 z+3;Dm?enUGpI4v#yyoiX`Uj4e&(>~yHtE>sbywg1u+mAf)JgS2Sz>Ka(SxC;UAsu{ zH%-vMy&6krWa+0coy%r#CM^_h{(bN0QTlt`VU5)~kNrfO9VAvX=GOXeF2+4OD!XB& z3vxR3KYVGKps>f@j9!$@e>=4GU09esjPtjwX{Bz9Gk4mX4cih|ON)c)PgnWBJ(O{9 zmCsV$#>B6QA*!&APW16vY{{Ji8={lehHjp&{~88|(V)nU%BWB{-dklW4)wTbUpxI^ zVhj{=b5|7e0BZ4!*RR`dZGggVcBn4zi(ORndtE`W6)cz+=KEn&D56xkL(ztz@R3ck z3ikbz4|zLk1*V{Ug3CHIQ+|Dym!U}D4SO3DUfGaWFBE~B{#~1bVNxc{hWDKen$YNi zlJ4aPCt23qRyc2gUXDQjO;rN*N@v+^CA~vcem^qYHS+T&^j`dr2U}U3YSdGupA}Uk z0n@s2I@PdWB*UkNem-^*+5T>3mIQs78o+Zl~Z$V`U^{k12%|viG9|;DT-a*dnjHo zZNFc!Xu#^CzPu%Zv|ogOhuat!cXk;0W(zHXB8tnA*1*ysmPdIvZmJqf(U(YH%h!x9 zC^(%%6nn(Gz?UN#B1`UxT1G*HXqDL5Rd}S7HY;+#h`UXhx_KgYp1i(t{{hznRQAFu z9vjX)!DqGT^s(tD-NJy(Ezu5hkUzc8mnude115OIZo|E4_ZIDlO?+g?klxwPo3t=a zdkaQynB)K5y;*49`vqQ6OBY*Z`pbtsyX$@|X2q=t*%F(zb9WT9FNDy_rq7ys>i*)^ zl{I!dll=*|>2yKd&V47hUd!`hFH`3f(u-ZYb&*?#s9C?>$Yz%^jp=NCL zpiMXFcGuGz(Z_oClB4eHgGfY)j@AS|LEgbmC&h93jBE1gaO`=OYeDkqc0P$deQ-J2 zZiqUKdY|JRAaby?5`<;sgs}2BdGuul3mFQG3T+uE#7MJ}K}l9)A@BjWj6^4YdG+ zx!com!}lj&l~*Eb{I<@0;;ygjb=J;wgv2tM<%LD`nbl0w`*BwDB1fu!)1vVoK7lRn z4DwS;F)2cm=2&(R7-bhs!kt)O+qJh~+t?MFJaEI3@~4#lX(FJ|XS^UWc7rS(xl6;u z37@*J?CK9&ZqpTV>CWB8e#B^1a|Z$PN*OBLq{kK5K<9`N&_j*r3JfDS0O7kkDX>Z1 zPcikqDnI#6|30dcs)RmaK+U7>F%KrL`>VfK05v*}ja<;0R~C_p#|la|YH-6IkB5Ee8{ zWG#nq-%HAn@V7WWG1%7Cqw-7cz$D5bvaCx$M2)Pc;rhr~(*9825pcx?2ve?yNLHpQ zO9H_gI2za5KXGveI-=odXj(2hv^S74r59r03)dH40^PN=0k3yPRen()=}%vn1n4j>h*um8p8+7erX+pCz zN#!gH(p{&>^E#^W9udYF>&0!{5e*%6N8KMovcL4X_!!9 z#)>$@jr<$HgP?jjp*#k0J%fSf=KZQp%PKko``Yj!y|Z!!OTqN!SUi! zLK$Ml9!plSWi(7VqQvP;+XG8@_#9oI&t7@47n4t+Q2Tr;ue|Cf2vZ zWvSzc{n7+^4APK|L(bk}DS>6;V$hNrGmEa}0=OoY6um#zzY`$KI~2WWHzPUgJBhSapA zy_Wk8QqAn1LTv6p-=2M3HCea->oqvy9cL6IkLuUYau`PRX3P6O=vx+!bvW14(qr%Q zbS$Y1)7X32$G>m`{lXseV}@@vR4mk`JXGH*6D^ z{U4nmCKQ$O)=rupx!lySUv4G{xyu$y*ObfdoPYAkpA__HggjXec|!JnR=N!nB{q=G zFipX?HvuIVa2{_tS>bvGvEvI=`G$K>YeSrPW2U4nG;IQr(lQqjdtKz3lXvho6zc>? zCN1ClK9Qnh@0&;qO*Z#Mru)8PTT{9ODmnsa z62&H61u$9DY0S9Q2sWn)As2migTGrWsh~;ax!r&X=qi*;dlcRqBv~=sk(R$(VV`P| zhK(|9ScUZY{2~XVu6HRpwrBLmW3DH1NjO2=p}s-cD}za6z2v}OU&-b{nBQK z`H^R+o068^@7H6FOI4=S3;dZ-oLEWhn#c=a1o)NrJNJTdHkjE7#uY&X6wItr21@$8 zhi?SS`ooAogp>~%`{H`QdK47Q01tjt0%B+~Ab>{sbOf?c`}`yM0ltEedcgk!MC?}j zntp}^2a0zzE>fooat$HX^r0S;dymOk-{w82_ACe8m-9T0 za-!6ni&J2A+-dG@2oB^)2Dmgcwf^DesXW&~IWn9stW!`#0HwEYH@b}|Q($E?LUmkv z6$J0(g?B1_Iu$o03aoK<9$pdts~l|sys|SnJ3KUa9-`-gO%RD}VvO>gOltCS-}&<} z5xNPpv-C=K@Frrpg2?6NBq_po>_ccK2Frw4bDB*x+)g%4oz88UBssPND$ zGO87R11)|Rz|2eF>Q$pYCZ21r!jHDyv4H?P8D8HWOXAbF&T|C}W=Dvt%P7y-KHaP2 z0a47OqCgKKk5|RZXa?Pe7+&e-S+7T_L!(n~Wn@%%dDm|jRHds<$jPndqUrmiT{1m$ z!5K*dR8IO#4oE+1kFLUe$)R55Lb_5#Qi^o&Z%Lp*5{4;O6$!)M*C!1z}u zJSzHl)oT@X2Huz6G`@LU-@uigVCf4vAf!`(E5D^C`L;!IJ)N}yXAgEP^E zuoI$8=rNJi{eChaKD`gHL*bDn(KsMD9d_#CdA5dBs3#(cj!l#2o%6!R%(N!%6 zS0DR>*cQ6<{y`L59$g+9Srr=0g5e%7c-#pw$rG(S$QKS_aAS>1plTOT1;sH;-a-M< z0&*;h%6YS@ABHxp=xX@u1(D0g-U8X>3aSkDCjtpYd=y6&N|c8Y1yHv#jwq)K`-yjd zC-(s3l(9e@5L2(jT6nHpTZ4bt=8%a$FRrD<^eC`QRUnQVF62WOAXT_B%)||3!o(h4 zlp3UR1b((Z=qw;w+V`}X4;A&r$mCSxf$H!>JAVz^)spFk@CNO`au?83s+hcb+UxE+ z2*BI(QcreMP<5b;|A&W~N9|G|OocmxSJhXsYkv5F)m^Stm8vh)jTv*iM(G~u3inpf zRcP+|^rr_B?B4WHQorr&w_UP@;YaTuE=e;xJ}ek|Au$A3D?(1BgEN}d(Hq=HOQRndjD%Mbw^tHd_^Fm7F1Ewx(#*tNM|zG$ zoNv({yRxwLP-wMgLfd`)@b_23fT4vK=}RuY3$L`@|NU)*oAt%1Ge^v~|6H^lJht^^ zWeB+B%)%plGm`rn;k??M^!)d=+g85ax-u`)T)lmp26K`gaZHQ3eoY!bt}@UlpOSRH{REvS(s~TaAJ#$vjpPZq?FigXnLXikF+siZ z`tNeJ z_=Dcpqzq-rLpcz!*G#o?eTLFslmY=IfrL`NlO8O*5_0Und34zSB44p>-Vy^Y2iS9k zF@@&VwB+u8kA?QqP1h?W<40Vt?swM#v72i>(q|PmmwGb76Hl6`^;}m3ycseb%H4)7 z=PjN*6SB&^icpl^bgyiTH%?JA)l9LpxQTg-^JXuS&53^T^44DeW0?w<_<`bMtpdA; z7sI1+dBOBBgdW))RT%%l``uTs`BmprA!EBrc7 zxtH@i2TZQzpwsv=;&PtHfXN+ao|34@n0GhGjqiB8?ox%%n8}CMx5zu)%L-((jv_e7 zSIUdodYBxq*kVvn%0bUDHn( z*k0#n<%W(b5Dw%~uJB=T!^En{*I-hWAY_0aS*6@-<%X5Op<^wf@qO__9g{fy?s6Ul z;mux?FtT15#&9ejC^}aeW%Xu7!hV3GyCOLDOP~LsV}0_x#quDbigQ7kc%eTMB?w}w zLK%CQG<-ylAY}-ozUGoTVJ6X(#1eQg`r@c&XA3#O2!~nwnCU8iMt=ZN8JXJ`gDB&1 z+-Q+1gk?ep2!eE6W-FXz$PVT56GW>2a$tWB%<7ev%N^@7yb%3+IuZZRjDObPMI4V8k(A&_)Ifwhcs%5eGac&dCW&9Exgn*5bjdN8T(p3 zb5bK!07Dhd;3hN)0=sV#)qSypKtjEemAWU9BZw?g(Z%v9Wl4hjrr2zO-#9eM%3~sY zq=)Y>mNTTPz}~*#P9&IV1xWq`$NaLdun4j z;*`Y5zDGTB*LKG>K&5B66AE7PIG;}IkL={dSvQ>ergRpABrBK@@58F^^HuW?*!$R$ z;p1!g9HElVRek;NDf9!6Ic5&`RR%UW9PNVsp~9Pspqhxj*m_xlMM)Hz+XQP+n6`pn z(jSKKJp2^iR7@v|*^_zjTBY2)z(OtdH$aZ(FN}EC2-u~8M`3t%=g?rR* zGrqg;p30L{X*fPLUe+{9N!knS6Z@ydd)6&E!A8-uW}3f7RPS1H@z=^rD^7;YKD>WN z=s!M-|M~rge||f4>FLD3zr}F@gkzlQ%EWdMi+c471P#uCnXQ~nr5TN$u?z3^ZYs;# z7{JpGi}dB!Lder{a?e@Ir)^=*JJZ=ay*%&70QmpGX#D?<2l)T-8~;Nt`Uunk|4T<1 zTloJ<8gTV8fYwg@mH!KfoO-fzs%Ccn|IktP-%#uz^A)AH5k?fy1q{7Ad9a|#K`LT= zUbc4%(2rU;La%r}$v^L+EG*}Ac>i{I0Zf z#clKqrW{urkOP@EfL^;pvCZ#qWQeU7bZghKED3MT0w5L7?47<-5mnN8yKe9tqeMFA z;&pe8@KwR?qU9^*N8QE?ZWRTkXWIgK&^jZ?Fx1!j0z11^r{ceNC;O@!A0b3ljY+E?ks?{d-Yl3zFawOj`)`hc&8ZvzFuzINEQM1^vZ}`fe2EkFLxLv z;YJ&||BX%xm>;`q42c174$xV|i{QS6!R8PZE&%m~M+^yO^*5hqpyf^A;Tf9(;cKOB zYY!T3X{JUK)YqAzfweR>VLiZ27zgyTGM<{~57N>PE#J!-0ZjQjgH~ni+u8LRI>2jx z+^b(g`14P*Pti>HF;}{M00+eC0)-2J<-8f$dw_k{4Qu>IZ*jBsS2)vMMn1YGLgaz( zrtXM@O{K6`;pTPzxf2IBa7&eL8BXw_oSkV-ZM{xMGV+!Q)7IB(Hl}^?of{H9GWi3Z zZ|(l-8v(E9Vy5<|M%-eRH78V-eERp!z0FT^9I*B859q9MJ1Gr#;Kbp9!Cly0+pWiE z;^!7^4Q%UW0t&!-f0;;r*d?W+`ZQy9b4}*Ug88wFDbnCGFgF!G1VuJ}`zr-GAMvd}J(2uWg{yaoUUD7atj*0c;y zQqQzluYuO=8F+BJ>CR~liM0w4mS&gh4CNUaKP|?-;5Wd! zbmE)sXO+XCWS)Ov$|J)T?qA%ChfS(!!4DxZfRV@eF+CQ(8vHxw78j^WXV_m2aMyhf zCRZDkm^mn8$au=xR5dY$n<(B(F!aM3-G z;{9{!d0o%Z=0U|X@0iW0>$~2Dt{l8}hK_7p}g^xU`x7vs-4qYwuocbJ9o z#FOpQfmd#W7C%5%hEc>Hnf1~;`;=@3k_{YpeOqer>oqr!L0alTv3&Q1MH707?;i^Q z**31-rSXKFKQEc9zJxIJG~57u)}q0R-qI9fHVPnD`Jt4qxt*@T;QJk1$tNTM$ERJL zlkNe9XXqIq@F-68S{J5gSD8r%d@R&qK*KbEPV;QPaIf2@*y0x)Jec0^t`loxIcAcC zsq`8)P6r%VW(l&vhwR|I^#(fXxrb)E-|pBlRdJ|n4DvX}LPfTA;3eFCSBr7e5=sZo z=iH&0pj>lGtXL?KLQ$@G>Vd-`X9gGcI%(}V^V0}^au7rTSeOL2fwj0AmCIf+CKlyB zom?aEJSNvNtth7%NM-h31kJYYkM@7`jF-mHw@m1HO#N^xb%2HD2D94*ig`&)J$~?8|+$Z)iziAf8Xv zk@GXPr34h-X(7(5I7c&#=P@N5_k~z`>)39WjHHlhu}2N65XZzd&EIm3Hd7nOHAiRv z!~OgInHw`d_MAz29>f=(y2)iJ)S1%&FCsj#K+NTQx+I^ z86-2%9cr#fcuy!PR~*@)aQk?-dtq41>1?0j$!NAfCA(1!-|ccV0t)^n47eq<@txrj zMNG~Tng)m3n(Ehvc*)F-IEq3T7!1$w>9k^|{>`gq z(E^z2#6`dr<_a+)G;wK_HuYd_{XPkPfRakp?M{wDQiyaP`P{)tKZSHp0sv>N5pC*L zG%BjxfE`lz-%)HlFp%uBOrnklgxx70MrdZvkIr{bH08clgz81(+)7ZM-!+nh3;dHO z1ezCJ0|PHkOzPWa6c;FlX+D7M47XUKkAH3BaNe1t*$eV65r=8NAo5lsgk6~a3ylrS z15lf_TVO5)=uP)7Nc`0ZvFcAR71llv_qwsj)eDfiCb%54 z3iaDW$R>~FV;)bbx)e<5`ZB881FrenefU^E*vrz7$4W^e%&0=T3BX_UiEHPAqHr zlTVjI^Z2Moj*{22*B2$)9hg3{;=|KSi|*4OA87h&xBl0+$Iz_3b*45ZX&EN zU{moMx*O))Ks$<$Q&c^pUD|^VdQr1R(WCGu;g#NZrN}%VloL;0_#+KD$X$!AAraoP z&@AM8I+FT1CD}fGgti7Sl4k!wT%{+Bh9alMc=*;j;vZ`^$pf$afybB=d4_drJH{-4 z;b3IVCL|VdU9ZQc*>FL%SU`ydOu+Y6{$hIotXPJZW9Hg~7ZKMbcH9ChpB;(-rAWUV zmnzK9K7llv)WPw{OL-!Ohd*vxgNj8Og}@FgJ`=&<>oD4We76x^glHW0BKe_6m)1dSc|bv^XO>Mp^=KS()hbi zBIqifZx}bjiveiuk*(x1I%;+d3xf?nv-wdbV(nqY3M}BK;#q0ft#ow4(jp-in90Hl zv`jH*)x9{@+ZNm;<82<;4w5k2%Ho>4k-j@OtxE($w3y|)(Qe}y));zS8rpL%)JKBg zs#dI}+Zu)2_=jQ5BLb~kEZnJRmnp6QL=m_q1SFZx!J5C%bJk+x#0jH|(H6F-IkMG3 z4Izn&c|}GE)ZeepQ{WaxF)qKEFG@j&gH{3+MyL#PVW6v}c)g2ZJ^)T=iw?iES-cKT zE=lxJdP>5vp(@_dJD~1n{##Ol#}OV*rYOP#2PMi$*}5=jEg4ISQqs>DZ~U$vJQaf> z?{yqG_#Hd|6Q@4w8 ziAvnWG~t^b)9y^d^*mfQ61Pf>b?F5TTq3}7csvz64Q6jg0TY!tcPXJ*NiR4=MAC5Z z?I{l;s6xTr0M?lRSl+>;58zHJ4W^WYRZ2?&25?tlSN4;}lEBeV$=HxhD89XK8R6_g z3Z8n>C%e~YcZwrF<#^g<&tEr#uaCq4$*zCeg1>GihSy$H^u?XuSq5O>u!eaiTCgC-3TT*(AS$k<IiB^X9>sj1IGu#+|6XR;69ySt`5$NyOD;jE+*#WATf_tsGf``{bMZG} zFQfLqrir+i+qcmx?tD|6?H8t58@4>)TUW!iN`ti;n)xU?K^?VXDcT)q1+?hG58qB0 zU_REb2-SxD+)FBDV6ujz%GwT9uE(C?RjdZTY0Sp9h_E44?48TLk4KG^V{!L)Uf#wF zI6i)9{K3iy=*r$xhLf%V<(RPQg(<%Y-K#o?D=Qk!Ui@HooZ+`3?&@>hu+k~+Hne{m z!{_C(tNry?9;`n++#BV7+vSmY;QfGg?>v048ESl$T4$?OB+b-iR2`1!T0E;>atJhN z22Hn;(o($RV?gh8$9s1V{XFI8eH0{r^syUR!*A{WWmNduZ{6+^Gtba~Eg#|=Yt2py zFgGuFPVD;0@?p>23!a{HK3{4g!?lTNU2C@V9_JVbva7(Ro?iAy@1mH){7#Ih8?$QM z={Z7{mtQ7aa(ou|KzauJ`Iy&V;HLH7_#+`m&8pPog8O4?7~3D}#_`8eRJM+T`a z3!OJgIH6%Toj-y^U~&<% zxb-nM4=Htv=46Fh)Fp^HDZz7E@VBG{YpN|*dXTFDIyq=z3l&Z?nWZC5r1&!+I*N1g zPGEGzd>(3{3*#NJq*@!QUyTYw?ysSZbR&D zN#5S#jO>C90-WB>;hkskOZH(NH4sjyiLMfTK#42n=uI#Q`WWD(a%G$ry(MHbo~j53n0PvgL@C-JrPg!PPiY_on!zlI(J~Lj!N%A zh`#BQxI4-D!EM+pVm&J{u1km;Rudc{tUz-P1!sQb7%-;M%tX@gGSGU>iTA9!+W@L@ zC!S@WjgskIEx|gPHuPcv6Blqmata@V7L9qI*EBs<@tdgi$XVT5DNfSRDuo~;7(-*7UIX~iz;tWbX)D?EH5kDCzl0F};89H7#eY}aBa7Nm`) z=~#r`Z4LomPVSLrO-O*FwnR1P*-3Ew=Hy9aE9pE3|K~-W*HYByM&ctaapz1jEy@u9 zcgr>Ur^VQFR45(X8VD>o$bNY8Nu7tpD`5r$h%cURtc4*bxg_iqmh6rnMGA=}yN`7I(1QIkc z#-uZ=+_#j-95@WTV?6qG()X5oQcq}H?>tAbW|I>k^jZmeuNdb!jXF-{nqLSxe<#cG z1tP+rQbY|d|Bam`#P4Z|3)iB#N`iApr(Q5BQd(Ea*_*(`5diqk@m$)O+QD6P0&%bi_y#e40TOKoA#pDQqi-u zhRJ`R1zPw#0nNXMagRB_T^E-DVwW!LMZ0rQK_nD)_nc1YTJ4DoxkV!92=uHrY!u0s_MH%*RWgaU`=w+L=y4+`E!B24L9 z?M0&E9U-RMo|0B9Opy>72H*YuY#3P7N5^G^0ryL>C!{(uX8my~B148r2ZZi3v4WPs z{lG%M6lsVAfD!_9*y9|LfDqeZf!rNHJp$Cl3lVDa#!fc{jm%4QI)1t7)VS9MU;vTa zuQBB%0f%DZo37ElCEsZg_?;<6!k{z2Lj)BE83ExNvM&+}`{oK*n}I1bdfk0Ps~jBC1=0?9GVWtG&+ z(^#LX0F-X!S%6wxXw@}Pa>*%bTH!_Zchco4F8fk^yg7-6VqpGPGN2Q~l&${oEvC<} zaJ^MO|F6jRTLTklHL_SQ#Pjls)tumkkgiDC8Q<$Yz!_(QH9WwpV>t?t0=iD z$Bu0F6z>2GJV61<4!E+40VvlU0Sd4t3b_o!DD{QGCfPkUcR2<5VS!Ep$S5fi&}P@H z;gq5ji>A?PO<{3eST>jZ+2~|PqH>a589N(8V%#elJDGT)`3kEX^q?Q5^p;cZN{!Imii3Zl&)9{8^duABo+*7PC;&$K z2(?jec2-DCInYESJGIc`rBPO`f5e{K*K>%*`m)}0*X@bFcnZ$hnHs!pG!9S{c95SE z%$y8*2xiix%wSh?!4vu9UNTaLd0cW_d;3J*)r7jENtwD%fyGE2&4BhVdOAW%*WuQy zG8MMX%sAb$Q;%Z{ZN&#y9{7~E<`MJxYwJn{vvJK({Ij5|)<(d9=L|pQ08S(s3_R3^ z38qEA`)mbNp5y{NO{S(z6=qfm>08Y#q*;HVdI#h9U@?ca_=|S5Ng`-yQs!7@$GjTy z$#t$&?003KAQYv#Kd0%jblE5LMw8v^#30M#i;5K2A?hvR;|m2ygEZHy57)IafZAhx zRf!!s$+fg==viuUVK~Yj~7H#!3^0)cYt~Dku_AG>S=@cXDP`nW1 zN9*^RQtCC7PZ`k{=6eqqq>+>eDf#jzEa2XnWqeh`vj0%yeEU?^)}b2XGXNnSkP_-S zQkuZ8Z}o0I{=wVHa$c-|x3&`8Z;t{#Bh}UoYEPrkCDo=Ok6vbfGO|AUo;B`L<8}LG zgLAJM6(Q-ubthY7chK+~C35|h)U1TflLYH|waLZHZ0~(Qm^&4=yknra8PWoGx6DsY zV`w{g^vUZvgeZZotT1>(SUVGAaw55%} zU`%J9c9&s-)y9GGAjUG1kM+e@;6a+4s(Fb|0=w4%u2~efS^Sfyhb*<(B&X)V{9tm{ z0@yJGGKi~jiE4J$jb)e&N)pv?Z~d_!r_`+U+cYu>DL5|3wMm;SNOHWpt}PMgmi$D& z!^lq9pMrOu%Es=&=Q#jS8)sZgPs|cH=zk-i7SGQE>NX*%n9_B0~@)JX)HOAhY zY;0jmzt=bdFk1d}`zZ*^+!&&tOE$2L0YyCNdn_s0hITfLG1^h3ewhdZaY2v zp~SF^Xfuh&0ooSS;`MuuM}Fd)3_)2N-0bw0Y_oMB6 zJEOwoGH|-UjzYAbeCP4{JgWVgvqH9iKcgq4yU*I}=)poV>zj|{SmCcFU9yKR{(l7K zrIvlOYu$~og6pgE=8nEg$&J5ThyV63%}J9hxq+Ma4z=3PEvW&YKSR?(IR)JY^uAXC zG;L_d%8%fI#@C!rKZcG4|F#gVe7obF%2<4MbWCY^fX?>V{O0QJ&h@<4t3P=>^s7Uu zmad-3JN(%EO>*9{q{$2Nyv`?&CKr7l*n`|Yvt`QlM91DQJ=S;S!1H%k_m0_}dA|T$ zF~2C@cW24l52s#qkFQ^~KjzBH53MIX-tJnk-v5R3)cUEfRCwd!{wKP=hHc6|TDJ1j zlVz(Q?u--{&%u_vKmOc6%QAncdHs6Ni6sccf98(-zqpV7KmStzum{ljJ2T4_Xuy{v zRjMu)-p~xqN!E7fA}^7%nF)m=fMB@q2!1q{Utr>xD8fr@gz`lpX2iWIG5?S9y8h3< z?f>=@0I(N`MC$y#h(DvE2{F>HEZk)!0&1XkXGM^grpc8$`~vU{FGJ3G(p9vGpPJ#D zSmOiO`TWNs{xB!*@1(}-$G#?9{B8Mf5kNQ6kt&R3B!bDBEt=`j^1x$D*?uKkG=;h$ z+ehvj>0Pt2PAsRmujE*GR&7pKGbY2axa0eeI>8RH`53fOHz%RUi+O^QwF$}yLZD0_*&wyK20 zgO#)%a#^1`6BM+7J>~}?w;Y&yp?2%fyqqKwB^pUrys@#!TlWYxvyZ+_GuqFhD^oUp z3t?GPN|DLtsS?M8JAPC_WC&KTP*U52tAua8STbO8km8;e>I=q4^HEEBT4wOJ!d7{(eUDw*xl z^L~quz2WP)B=;hVbT3D`NNsO#rC)RTNlLq>4>e_7U;Gtvn+U*+| z^S8X(9*bS^U_7R`tTlXR9<86vC9FKx+?{2!eRW}2U)7iO>z{ZC4SMXtPZ|RvhU}VKOS(WG zRjw@yFiVR*-{aIe&*@&e zU&uz@u-P|W7lhs>Hh9;emvGV>T{}Y8a~iHfU89dkINm1r-oF0)y5*YFAFu!VXwZ^V z9sab?$u$|(L%YgpBRV}w&k9(&6Yq>gUgK#7xNRA?idfweP64Q`rxUrg=_J|Qj14H(Mc0}uDlto?v+_90F3gl$uTyVV{?f`PmJm$eKLoLkcPGtDR5^|+ z62Yw{j?^Z-=5}CIFIJpszL_fWT<9d_yU!qr5~;x8Ni68vqFyv0?YB*fDTd9JOlO9W zz_ja6PWxsHB}AJbDD)?3pC0LUQ!bt1tXM=vlG{NqSJ(_HDIA4?Ph;MjX>i|?QKpY0 zy;)K<5gzHu=fOVb`Vjg0nONMVrfl4=pspp8M&PCQa0t$ju(K3sUj*_njZ+(>Zhr)+@6%=@_HRtYG6RXN1S3vrRpWHKoKYcaF%X#kW?x1h@|E*ENb*C@5=P;M+p>g z7wM6-%RE>{uw%qpYy!Ji=+V)3=q~(B*CK=ax2(7W>J{D+$lAXokKH8G4Ik*vO@rvP zbm(+Y37^;wqG(B7!Z_uknByF}C4Ai#bGaKQ;-J5zyJEMfhE05XGp*Cr)WfYvBeVyK zA*JETNj>yZb&eDB!+Dk7nWQy4F_sMEBKMX|(*fY98MBrcT`9vKRjqYekV81X8KkKW zCw~pBdgUjuGw&{O$x`+mz3azjf82Br17h7nZm6Hc=z@9&-YM|&wPJxNYq$@_zBA@A3GKt$pjK|^KLO2=Vat<0*x|J0%unfa|u6M144Ksk! z7IxgX!ZJ32y?-6efY4fbEih5DG@HF~yN-|3t;_w*pA3c!YUV@k{+Q-nqQC0$eC?mDxx#$S`WFSr6Dp~Ewfn#}wF8nZYPSR80 zC_mo>0-Ng06bR@foE(-^JQ`c$7zKy{XpNgq;x%^wY^|(80qY&JS*NT)q8q$d zzd*|;K)PJs8Kb{M{lU#w53+rPOeDd%hY2uidif~A(;}#ZNiT5TP8`<-kZE*rP8(i? z0^YOB@ca=fR|yl|NGK0kLD#qfQW6Ew0R0M^-w5$l&}BSY0aX!=a<`ypeHlVhI z?uRpVJ%A}Dk{{iPP%mkhETACQLj1S_dcZ6XM(*J?f@ZL7o_KkX8A@ul*7k=tZ6iy~ ztMN@_2Tc|L*yM9CXJXK8M@&QoP>r;tc<}(B)MJ{Z` zi@8@x{Py327)ZUIYh_oLJG>v^O>8~y{hb~!pRaMV(eNNQ*_un|k=ha7sTn|u8^V|C zTs*RTh1g-WXGkwGmsnoJh%`1TgwS8+v%=Ew;kbQB<4`;;T_fY$A~rS7cwoIY>}F+V z({AMfEein}<++E>y(assX-Xnre>~F;Wvl~8AUq@2D}1m#j)uIw@BQz+L@Xt^FBk~qMLDijJ3QE3_wfV%x|D2drRKw!L{ zlr&PYI~&Gw6*;8ME6#Znx#SW%OZ%a_hvMBwlwKxL8305PfB1L^@8VfQHhrnKJ-ayv>l20M4QyH0%?>2t`h2u@kK5d5C?$6M13g61RyQsV@(^vy3>#M{$ z)~AMq^h~8ZZMI17Wj$XpHCWK$Y;&};&VKFS&`rwAGAwB^f8{+tmU4_`z*=nPYViL} zpjk9La(zM&|DILgKA6-nsQ!2HWdG=cf%8-OrjF}66@QC{|L3fd9RcTR*F9^zc>>DP zvGnKBjJe^Zp$JJ|0mKa)1>8QTz2u*aSLp=Wd+7l65s0*k(hFPGwtjOy)pCD?>edgw z4O60HM)s6*J08>Dlmcry&*N zf^SleLC#2}O<>Ic7!XmQpoqN~gUfRQr)=oOkum#C3XEwj0e_i{W)o+)jSak#n8n;9 z6rWAKoOIv^sS$!J02jQa$N8dAr)ZYB#Vv z;hLOGj}*D+=vKIOOQD!-8d7gpTCF!(+2QPM!p3(I=tM~iG7L4f?U7wQL8a;NH+GASimVfVEU zvdWDU)PSCqV^c{E>KVsHtv}(Ge4V{0vM$)EPmNNLw(vCGZe-@1zDE^)3UArdE79|8 zd=qkWG3OzFknt}2e8JK?8kwJyH8pfKqpR~4k+`EgWaHihMr)SaW3|?s;u9Bbm z1<^<1V-a>Yv*x=yqkSNxhmR^%%A$udcsd|T_mCle&Be7+0 z8PXT2u)SM9cYWEZ_%bgOy=MM(pjIq|4K znfVqEno+~t)9Gbccst2KJ1xorUHUuya;vU+23%iu z4njdTd*Q``OaF{OxZ>=?$pB_qcpTB`G1UdnXysA!Jx&AfM;gw}z(eL@N0T1Tuj&QO zppzc;{fJ|p;(egy9e7q*wh0dga!f>Z3JU<*i4_Fwo(o1MP49aDLY4PxwXyq>2bref z5@&zbp8C2xuv#^Sw62lNV%fX0X?azag&KmLRXkFS%SblpwLFtX^L09wcDG-@38H7& zRRa>=#hcT`a`Qc~?FZ={(;&<2VaRN+@yX67-qcEt=9)vCT9RieSET0Js^LyzUDp)j z!`?9el42MK2{+M~`+YBVqzT|OfNs|amPnoQrON!-=JOdM8|>&1`}ooA$EHr&MG z5iWX7T`X=%E_Hy)p)*kiBC&wv8G|*cU4_Z8|)*kTpyM}DM#UyZXY z-^2#ek-DDB9LfN|HAzC6m8vm}NGT#8X4HB)LhgrbSm=cYdI2f(Hxa(nS%UuB2MgkL zHfXwuN2xh;Nuzq}I@U)O)KxUkkX)=K`l(w`(m5&yNKzF*jT*Gz&U2@-s%~<>w%kC6 z&kA52gf!5hpETZO&r61gX=)5hfdC3AS>#wX@|8ul?sYTYJ#PkvH+~+Y{nUKj=_eOc z@pepk__U6hdd#GKntNnpj25Z~h7$Ef#rSo@{QF}SL8%S2f6`mwaJxew|7W}NZBbSH z-R|Tqs-C?6Ok?~jz828pV54r{qc-_cXP_FYI}M<+2@CHK}bU|JCl=n?~!r z&H!S2ae*;+cddW5|AklKjlTbaea-Rc&=Pu1VB~qv!`}6!CVJ9#M)i;1C7D2X^H%T8 z-8FQc4X}{!+%0yZp-CCZes=vxN9)sTMK|%JFBjUL4OhDC2x2|;E3*wN&Zw+;mPKp^ zJc%EW5W36B+I}g5BUFvqo<$5O`J%0pESHrdw!Y5?lYXH$w;0dM6w^1k1vk~m23=id z(m)`I9;?GY>8=f5XhUh?RKH4#KiA*93g1Y)`QtXJ8>3FXKL7spBQpdSe^3-@{(PF7zkCD${5Xa4 zPoEu@Fdv6swK5s(9Qg!r zeMkHdNJO4NKq#OJrM5-0Yy__Q_h^IAvEHy?s|tWBT{3N?!Mol7B;H1$3Vx5}m8}ad z1FkQl>1Y5?L|=EQ%@EuGzVaX7w}0~=10`KcH+_LjBmm4OEUAvP(a-_*+`&~3E-p)~ ze4R49+Ui3H0#h~J_`|P1wz-ygneGZjLB}IGs(d##wKfn9c%r1XSAE+Q_NWbExh6n8 z7@`Nx3Pcg#Jdx|u@w8mS#JlDM32&+RZ%zl~0@|*^ zTHX>DpT!+SjocF-xig5yZl@2#`_4EMme$@a)n`@$S^yaPlIrbILzEOV*0FKf=MPM`#$?(*oi z?3l<5PJR+GVV0wBA3~r^0|wP{{$lq@{0_BN58k-LI{9K3attvD0emZhP_%K|^~uT{ z`$XR!v->l-Jf6_>BIkP?}UC+fW*o?q){uhJWt8S{4`V zBFA&2uG%JDXPa+KbdYCQoW(@stdy~02H_voR$AFPwb+3mEeB@HRKy1FP=Se4vJ4x2 zw>z>~Sl9; zCbjDFevxF~_noW^hfQ5nUdnIG(0W?pNw;f$!6}V>$7%yly5Al&VO7pKzR1?KxxAc| zR@z5!tH*??j7rw<994?Y>?qyG^-E{1#L=l_I+aF2u&YZpbW>rg7-9%*U& zuf*E_-XqJHL9g6u>lP0mc8H^oBA(?3*@uVzi@yE}33bvY)m3(HnH%=`Y`)bHd>K&t zwV%EXr)+Qe#c!9Y{B%U4e@W%c>$S4Pn-T4FA^r$O5IT1(;L_P&E*Fc+j})Z+@c3sb zO83!nuWY$(5a3I(;hfbt3sy2{HbNghGro90Nl$QjVOxGMx}9FX$l4@R=Q2W*C}~hG z#10=1TEBZEH@Y#9GV;@f5|V#Fd1!Xc^WdTsbPRdfUWRGv>y@Tnn;>cF_8U z+NO{Ja3tWSq;$z3gOFCLOE%7}w+8-Nyzap^81!H=#oq8}Z1`5w?|3=A_PYB%k->H7 zsN~iy#x_Z)uY2v?%Jd`?1W8Pn)7X5h|I&MGBm}awr*wH8AWEE=MTYAJgAX!A=D&|JGrGeblR>&I2Z~3WtdXOUqU!TK|vq1PboamGdu@2vj z3Eie0i^#_$HU0MT@^qs|IN6toMiFzHZSzRgE!|;A%w7rJ!SNxfkir8$Wa}Syo0DNO zG*Ud^lA*y`>}rqA#W%x;Ap9_kSw8XB0ZvvTas{{4o^g2V+#qA32DN>|sn>JEoc-n5 z&|94kvh_)lynAQT+^z((O9!X1RmB*K&+WHP70p_L*q9) z3xBf4Pj%tq4hMa_mw0&F&ihH1R(!nqV;}qXhiP#ijN`%-H95q%4+4x4Wp5cj$2dNn zWE%QoN!MZHIKtGjO@{olm6z88;340n__Lp$S8a0YczR&M@$+O35t1x>{q*h*R<8%<8e@d9AJSNzv zpHlk|=ns^5^kz|b0Y9xYD&(*#WD!6o z23$&e;LKi0og6xM4lb)dKEt6WZzg)=h7KFIrYMw)0ITmoBo({X!G&p9#r5hX0?ISu z8m@OPp0y!f?IoYq*9$y}|829qCS>&cj-9U`RsRu@*%ow^V-?)lk#b^Vzed$F6m~qM zDM@$h;_sTwC~`VVI@SGoFtI_{mQKJiZ%O>%tHKLZO~!a3PNV2S{m7!W-p4 z-Q!Tc$FXTT$ng1e>tLQT^`Zt_0zE( zNn2$vFWgP^7&D3Tl=aisCLsuv9f0Z@>7)_|u~z}c{M~#G;A2kKxG44aRHb4p>e^#* z))jIM!QO{zP-t_aCckN08Up@Lu1lx(ki5w>@oukEwX^*edzxF>d#5>vFMcg6LCkfv z7nu)ea-pyc;0S1fzF=g$J)V!U07l?7P_#wLQ4?#qG+UppB=z7T#I{*x6%AhEbz6f- zYXf}t&dBaW?|8dw!b(I%Q>v=Be!R!9pS4$r%E6F<&>R{#UGzlE?IXt<(Q4pp=YT@L=s$O>%LbJcCT7~l!?(d1}{3T zt4E~$#+&(1yh+t}5&bNAbFaT;Var@DwHl3p>>`OVeWYFCS^4-Xn7q|@8Bk?WtEM#@ zDGAe5Bv@|LjRa(!wppM&o{qFVo{gATvyn0@w@j>}gSICJ5Kxi4YAy?kW{mfddDPNj zx3u!uV%8gui)vL;YZX<|5_j%@{1AKbnfwb-tW#IJh{C z*A}>>!aXYwWLtD$NQr9YustD(u5Z!cCiEpbkBf(wJ;qasNFX{)ZHe5=(U46fp*L-J z4m|ad z`(D1NQl1sC>>{8pgbo!X`?(<1Z3^cy{L`YQRyXO$vW|z+V)}mOQ$Huo-PnBI{ppa` zdUwLl`?-&e^M&l)+bbGaWD(_ zQ8iOH$RdXMY`E6s*?5iOBhib{s@-&$g(m_gjkfUuEFp<%PioP7w97cWQX)>1PcjZY>fN7dFxe1nQyl((6T&eb!T*uLf5YlIxPg9;#p9VZg35PKq(LrxY$;_n?TJ@MdD^3(3OCl|>NwQYU>>X+f);d^cOA&Zij zhIbH)9XZ8dH#k!$POFH$`)2|jR_A|KI}_)urQfTBg;tJ7tqUAiA4}eN{YTd!W>_O2 z-uWVoM%iJJ?~K$E>(6+d$6M6CG?e;R9!M^MK~3GVUEZe|JW2Ye9P|X)8P{*O2n>7$fRn+6uat~&K%8og4Oh!n!l-pEOYWh z>Ot$lLTPYS6U>1wC`^3tHC z4vnm{GR3yV|Q)eRv5+p`LL4zPZIEdiy>NSdh&o~UwFW! zd&&PD61O!<72yI7JAN~?^xSA--D=qL$YO8l z-vjPyD-1O!FygE?$-gAiJ0|j+{xzU7MbtlW378+O4!GpB;ro7idCu^qbKm^n+YTsc z&w3Qi+xE~s=U_L7?D%+mt3in>Smq9>xZ&~THtfRtUoLz;_f?-2@W&sQ*qO&{gS_DZ z_m8KMGRQk-%jnBd5)Em6A=M@P+7T~NW1uVuyipy|bR+$AeO4RfyGsNaFu-{=Q}kog z!j-369~_Ci2eiatflv4DtSt*Vpd527iJvgqFXLlX*k0Y%8kRd^e!+ z3N4w+3`WIvjP@BJ3EZ3ZsZGe6^oEu=JQ*;8@}OpQT$cS4_Bg?V#0U-0xl@C-AE2j@Gy(3rqhu)qa(*?SXRJr`i&82F)Q+N=+ z#DnZC-lzQ%I;{87xEyU1V$tQpnwXc}VC`ZY89VUjhs%#o{0ZnZDbMl|eF^()PcuVz z_X>zCwY)Bm7m*Mv_gs;_R_wy57Y^vnb<#z4=)tiArU!#{0#)5@r!kRT8b!pYe&fy@1q^8{JhImsPYs8*@e{{y8+{7h?$|Df!rh==zZv zq1Edj-s3!eA9;@>4RElz%S^X@5JvDyk|QIoYz2+ur?atU1*G~zH99Y|r?>g+;Qa=Z zfO<=#8l!J~@oz4HDQG~Lv7X7lxv&q=E5DHb{#8&uNvgcMALo4pAt}I9!o2X#TfF3W7J#?5 zK&lM^n;rJ|5XrVJo3a*wFXmr0ilcvh`K3VmeDK9YOPp@~+-*JS>dc4jI`u+HwO8|_ ztrzHh1EH4H7Kl$%gqtPjGu+>*TARe(8=pSvb@^?u>dnnl3k?fatFL~U|Ne61{y#ro zx$?)E%k7vto5BqyvS8$n`}NnO7J0uH#YXE*sC)d)eoJrDS&pmeF0xmXg@e3zXA&Oe zJgazqbJY)*o%^=FS;KrHcX){yUaDbe1{{&)rKa(b>4181Nqt?Bp_22IPqz9X9a-`V z?|kqQCqOI>-7&xfxra1!*X@5)HXT~^XZYr46_FpyqE=0}ew^GFn#)S`S!>ZsVfOi= z)QopY1|lAk)n;OX`t!+<%L5=e(9Q%u1#m~FQt?Y~6R8>#iC zntk^<1Xao7`l{VOYRGHx2*~N^6#>q&HEj&H)TPo{Nn39@Mibj@SA`N#g;jhZwL+r7 z*{@Zru34HuNQj7ism1DYEn><}`kbP_Z6A*aIK!3?B=;TG?0$Xb8zhaU2`A#?Enu~| z2PhHv(M}VidsSzM{?YtO6VH_~SdvdNLW+;8PY|z-n=gDvY_tC)!|5&?nd#B@A(kdZ}oo={`Xe@Z%CJa{mgC5+6ApJ>0-Qi z%fo@zx@-SM=EGpdtBMZ`(t4{{=MzT`uZ{R0TqeyQ0p$=!Rla3T?K`jOhn);M;s4#x zv!*ea%RJkjnMkGBN3?V61zuY54?w+`@!qxOz72P11k4mQ|8o4x91LdG?pT$v{2jdB zcAF&AtcwFlk=}A5GeifaEHP0lxZHRi#Xd)&uyI+*+bj?dX;>k}l__XQsagj7>U;d{ z?1{GzI(9z&cl~Jw&UomYWQY5VtFwAypRZ7}Ag;)IARVP+3y>F7e#=k0o!7S{lX*vt zoY5h2!=}zyx#dB|QPuW==NDJ&io6{8y3_KEC&&(B+^B5Z4it9k;~X zI4cBwW?3J(5CQdH2bw#bW31CPA8rNv=qK^V6&D&ApYaqwz!s?n<7F`~0cK#yXo< z;jAPY-8k~Xil3RBO7T(Q&X;W4FC1u`cId3Jo@XePX*dWzp{q|Wk2zDZVI=w zsUl9suL(7j`kZ(eUxSeN^s>T+7z?Lv*&oCQ$|J*5jV5&Te5!K+==Npfk*ox4B0}|T z>E)y$Ol0}0ziEH$$M*->R`TDnrJ(nG2rm`R+_M3cHrLh!D~%ShizDk40P-1K$soR6 z)@K+$(t=x}O@_tUMOB73AwBV2uw8mbUBNEA$FJG1S#S-5A-H_+52A z_x=6c-_Q5{-QVxuJ?haP*Lz;C=lb#vJo(%ijfEJ}>=N1;TU62fPC(?p0HCO3@TZD| z#YLePL_}iFV*n}g96fB^Rd$$}c07+k=};I5v3;Wppjg2QI0 z_?(!~-UML_jjIh%TYpm_k0-zr!J@d$b~ugm`Cf7`%v7=_)eaNcM zZ=p;87jG*%e0IV0BfXTwKA0Tk^NV{QB*6pHfYp+y>>=qHk$u)}T{vGw;p_YLo zGdo_gyQN(-k#>0YWkiFW{^OmsZIOOqe$xwqM2aRr(d!82HKB9wcmQ6xCEu^7jBNbJ zhxRAeAG|yF?eH*PdFXK2d;0V){$$_Xr2n#s{kJia9}n{XXLi9rTvb?Es0XiTDW(7Z zAd@=GmFf16P@(G4O z7!W&A$hXpM0K4*ha-7F>^cA+cHIbKJ$`N+)LyTr#cIof0;3BlmwcOT zH?C{&FTV+UwBW3)tivi?CK&qcFQai%fi|nb%jcE5fxr3>2Vc3ce)qv8iq`j+FK&{a zdJ24(z8SQT@Obyn2fg&)=es2%Bm1*NN5Bfp8*IvG3_Bix%q7j44=0gOK9f7D5G^+M z7AD^q-}L1t)%kVKB|-A4U*|jUwRh0;ttySj1lIHRQGpCc3`7N4cNd(FMg>`SW}4|3 zQqf%{#m z_Zro}`a0{*AL#{ds1cf64`rMSV-s3B+WJiF3*-w$+dkowQ|Dhk_;vUBuLETa_yK`H z<_I~Emhd)#paHJc7%d8Wd;V^Xdm+ zs?)~d>e=eCZt90u>$DA6(QHVYA!9;0vH19&L|@xi2IZzk9Bf=Fb-F{33sc8bCvZKQ zBCkOCjEz%Y=wi>YBa}t^D6yclBGD*( zY&2$#aq$B^mfK>;knd~vWhC_CmVNi49lSHLR?f@V5|%>WkP-b~bh7_x4psZ5DJp;H zWZlvK`^pv@6Lzz7KU{p|S?85}`v5cMpDP=x0W?Sbu;}Q(@-vLi!<>WV0W}B13U#x+ zk9*W7$VrB*2&FwNbkTGT^x96uy(|C8KVAN!e+y}NA@dV!J!7IPe*wdrZDqzdu?k=S z6+@0FF~w?SLNvUXDal>v<01^-ThPd;3c3Gg^Xry3_q6AZ!~D~iw=2mX>kePjBi4o0 z42ovVE&Oao_C`|(<`ZuQz$!Y7}w{fg=!;zCow`OGjz;*>2;Bwl`0v*(SoghFmirB|Kt0WU0b~anY zuNq$tnyh=-5s3v322a-dM@P#E^O3W4Aoh~`xn~P^+Ln<>F*3Qg_I-5ipzHBbg`AuV zI{TV^6tf_6Q@!mKO96SKaA~0Hqh;G)BLEDA7ipkvyrVh1+xYO+@?JMtHFnU2LmCe; zL~1|;2U6xZ$q@rg_3MpQ&q&zeMWF^j9uNxaSQLh=Qi^=}xVE_?Z&htkfYjfr>MEi@ zvtiotkTK9cgaOX9lV$AeDS8gQ`6-<{zq*fKz=;B#z4T1@EepEYd!19?`Jb3L@$U51 zSJr#zPQoqkTEMiI2*3~hOE-=MI-gwSNYm3Lnyz`n}hL%?yo-w7SkyJ5vk}Q z`2ivez$8oc@yf?u;%`@H9t8e&?dz*Ozg_?R>#g5zz*A{TiPSGTa~XYQo^4FGYc>CH z{D!Cpl-Sxcj!>}UwU*xN<#E3C{5Yc?va zg$bor7+(AI{SXU5aw?2tMGB3!TTggtXNMm%`cA7ac-F`0ynKqJ z$JUWF+&^vSG#)aacEsdBOvZxN4^MpO-aP-gOnp!G?g+jrG+;R+Yj>PG8g9(2F?qx6 zd~1bWQhnC1v}|EO*`iY)fw}Fumb?W)OWP~RjHYm+d(8+<%E~Pwc}+#v_*dShEK2Ob zSPK09qQD*saDhy{^m`w>CkMr|ETw9E=G?Js88I6)f08oZ8~&mCT%p_df~j6AAgJv! zxhf8qS&uuX2Yc)XIauVQkxzwAQvj_$DWuv)53&%nv6o@HZ*xA;F{m_W}jS{`s>_YP^<9%$MRIgq@S(m58#%uXWPu1 z@RFhg3B3s|!7Y~7`*krIn#1~Rnt&mH3$8nXZQ5WIinC>dBmHc-z%>{27|Bhi^1!yf zYs}vo27bf~KHYY?HPf%#1$evwlndu`qTwL;AV~t(0hCtN`Sg79gAcMLWz+xm^kx)g`utdgK8e!&ca_G{I2 zrT?n~$;S#_9ZbE@|LV}j-u~p`z>faptUo5`X2luL>#^8E%6KsS6761>&3k}$+iYpp zaxDw)kFf)rCIHr5OC7wcDq5h)F$L2K%}m{2bQ?>v9=$$MF#YPp$s6CtdrkzWPSR8c z*%R5m#uukJk+#(&A@&v-BzwC#U*XfZ z!77^@urng?@ZjCmZRljfyPn+SUXmU1kX+Y}FMY8fxYu&y?-J(&If)rlYhU8ojlLW8 zYK8`{e7n6{nL{)U`Qylq-4D?1W7&`020R#OV`Mr(tYhYPi)P?wEGC5<5X$H1US=vA z&#k=UWXlP)u3=Vs$1O9PL&qhBRfyTwS8wc={{^V;ihttwzdnDu>x_p_cIqtqLq80) z6RZF|4~_u9!b18NL*RV1HUV++>3!t0K7c;r#oXHI6Ah+xy#l`$#&9n@m_^ot4#o^ z*B|Y({n-9OLZb2+w->Z}mfzL@itx%pL0o;k<#h`>qzGzO5%j-lOS9l?@Eh2fXJ#?Q!aagJy2BSy2U8-uKCm zUM~0YwVdwjzylbg7r~BODxCVO%0zUCm;$@V_4dlrcs7;IUqB<&^y|0n6MAb-UwYu& zj=7{aMB^JTRhHp^R&-rNGEgy$r?=9O-4&7|J z;=4&mjsB0l{wH2c-=yW+p1pb2ozaWeC&I0K;;=&v}Pi%3QEI-d2TM+08zs z>y(kg=OqSldNRW&dV0bg8sBH^HqC^-jD$r6f4Lv}j{ljmEKtfD0=y*+kz01o(jQ6? zOg+H&w;p|tfyTAc$AI6HFVD8s*17>Zeo|fHZ#5UXG6S229!o9$`pQoGFC!uXekx!8 zr>C+<^Hj=H+5ZkPj27k<1;P&3|1~0nvokMyVPyUBKc0%_VkG+}WX%1M0&qE@V;uoM zm7n3yMZbY<;rY$R=Th$OTfQ#eD!SDE+>Y~%Bn9O%Y8=V-%Bz)8H=&3oq|zf}uochj ztM6T;VW<9~%oBK*iN;(5;oQTb@(lz-5%fOMcu5_IM36BuIu z*v{NG{X%}~JhuKH^pkGvCHTuP)|Qr1Prda_eYxOnsO?bz4DDJ=+RyTaZ*sHJ8!2^e zt-=ZkIx}Cn^ZtWu9Y4xYYM_$o8>{ z)$jVaoi5i|aSb6}gbHG4LGkSf^!)dki~$$RCdM5AeJ!42c?7nExa^^st8+ZR`jtu8 zdQDFxczY^_vP2I)ON(k{lsFU%MmwX_L1o46JG-H7P3OVkJi0O^9SdM&FY|ETfLs$O z8hvrw8nw7=qBe0@v@VW`ndP|h>?DCx9J zXN1e?zPiJOW-uKKY9K!_2{zqlkvG{tC?}mbupT4uH=;{VtMh)5TTkp;_wmxJffogu zvEp|eo!E*8AK5G!9Wwk?(>pfgR{{rPz;XwbRMSkFRMXUmYzXk6k^KtPT5>Pj1dN#K zF%kS%iF@z*^nS}D&FKTSXWpmZV&1UbJm{>yKJB)tH?5NzE`8#}Nt{@@pPg>t!=oG- za_OahtNVJOo$vc6WEc^(;miHV{5;+E=*1cj)~wX0Y#l}azk(8&;hn$Y5j-J$OANdU ze}-TFBl8@X<0~~fU~ul3<^i{Lch+-XHoy}?D}b)^1C;ocmo+Ei#5IkucP@9uv4Y_} zVXnv)hR?wAyc9wi{a(1@VXaU<mfg6%^B;50JK5o`O90wyd3xUB!sayMq6E+!9hZjB$hRK% z%N}&wKM4TX506UyUC#dK%qT9Ub1j~vBueS9v#fZx?S;t%?@tKPuSK7Z!?IxYRV+Z^ zUv11Y#6ac2Ok~xt3@CoeU|TgTFS})Ou6?`^XYy1Y?AY^D{Q$dhz$RGr(hjcZ=w#lF z7|-{tfo5JD67|NwmXFU~uWPoxDzK>e^N(@EP|t(MWcIxF)*j6&+nn3L+vpcJJu8&Z zZ8OxL!z9Oj04mrCkYXsP+8;r)FU`YByJ<09j_PxVXT!U;xglU-c?w;H`;#ug+LTn2 z2dwtSTD)%Q{{80T*5)nRh}~0o$2^_TXxLdQddkI{o~dTtbomvJMl~>1j(h`l!2=vn z4Q31&*Hj}60Mh5_0j&edY&;yHPoRJ4FjDdxA&s1vm>=$ zf`;vmeC-wPFw?ris5JLFSJpxWcwjd&;UD&ylpbH_ZBj7b&MyzH@Dd=17kU732hi-} zvrOnmen6#Itp7ap!)-boiFOA{f8D}-`4qaKrBuDFE8cRe(fzFLNN~K#a#FHjcniCc=xbJTBlJ!gqbcNEc_co zG@^b|uP5%G@KtEG)t!$YF4jt_Ak&ZfKRlOm@5JI;Kh^Q^>tB9Mfm6Q8eh3;;8GUXY z;(Zd`Cy#9%@zvFcg%%&B)*u592VFYbyZeXBbkN}3jon|Dw5M6ieyj2E@Z3_SQ-A+} z?@|Sm`C%>US zAa0ji1Z;ah2Z3fa&fG8dNn}gx27~dd%`ZdUQtn>L1d@Riw(sF1-XF6%{kY@odwsUk zMQ4K+Z6HnT&4758@qrHz@@KiD+b_hWq_7b_p&#(x0}k+M6<_-S=2U^u#zRqP4QEC* z0A`CE2|TJ|0B&_OA(i=fFrKgow-_EcdS5qBlm)oj%!RXLWc1<-PWOqA_8`4-cYbhwpUfCTKHjWP%hx6D!E_1*-JKFZVpKZ-3d5;+hP!(W+2-Xh~Fx1~hG>K!AWZV7ZdZsjq z6mrtY2s{oCh|_F`A2G4_r)~Bu;AWkt7>0oo44Es0RX-#?4Fi~hl$JELU5_ruNlx}! zeYp-{uk?jF9#Zp-eISGIpfoG4Nwo6aC0c$g%;L)bV?daC3q~m+Y0~ITGuW?{J%t@4 z<=`)+l2O>OGJQ@^NRDXh^Rw7sU>M}~;qyKI(m2NmuVs2|oG5*1^n?FL!u5wn4im1i zDGfg~a?Zy8?PJ%-H5#IqzZyK~zUjGlws#?=ik+iZ&-i;RSYJzNgsmX_n&;ck^$>LH z=E03vIa`kVuu^*cTDi$%_qCj0|D~w=666M+>=Kq<0^NF+L``l>pT=vsg*yXm;F@otTzI`4k@17g+ z5uu_JX&gzwmYM7(Ib_!Cn!vEciZL`~j)3LdnyWNEVvVPFCFPq(?)A2v)Bb#HITw3T z!I?)U)Xd*}8aDhbyHR%ownM#p_^ZQ3oLf|!GZvtNpRrCK*xv%tjk%6tjPVKB2i*cX z<9$X+BRorhk{~tIv%Y8g8ZX)W45!@1e&x1u z_Y_l|$3`Sjih#3x24H_06g=nM$U*_`;YhUxaDflAHrJ*^IEO`OGD_P&D6!k^-Dhq# zyYbQ(A|bq})yJSW!YkkUEhzz7|K}`-Yyu^y)1FXe3~5^HCo3CaYZRmNz@6kn!5l2_(A=cPIY-;S?vn2D0PD zAPX16fapNQIL_mg`*Z_PI}*lT@Wihi$XWr7cn(y300b+e}eepZh5+Up22iL)M zH&1+@7hBKBH4%RXt4HVQ&f^I!ac zAKFdnbPi7%DmAbrZT4pYR9G1wR;L$vY$Hu*<^PN&;EE?-9eU^=Rp+@Fl=kX6+jf$y zhbUeoMCQTjnY|0KfLiM^VwuE0?>oy)w>R- zgA!pSJo8)uXU*?(_q2es4<7G5)&Bg%y3 zJDcE!bE3kBoq(OB@Y@c_L#faW~24}y&b!7z7_OrD7IUz4+O$zuXmvF$3}FkH4tKqH*EBMM1ryq z;^!3U5Rzrq^ZomEUN#(Sx zcSE;M#Lo1PxJ`dfb=>m#FRD5K`~vtPt^S<_hUg2t0Tx0z{C`N>3Aru_peBNUvpz6~ z2T+k-d4snO*|++4{-?(`AcLmuk_x^+(wZlIjYEFqgnmBAQ>Wn(wxA>R(%DE-E zuMJ#?1gypOnD6T~6Cvv_xxwfa3tx=Mbb(lG^4xKEADNPFs({aIzbIh4*}`>9v>bso zaMu3S>vq$`-S=RRFD*0~p^{QiY10yN>c~ZX6mciq+@$^2e3kA}Y8u8cB|5Y>U#K8s zC@EkB1DJM+#~3V=M&Hv(kx%F8hGlMHp{ryJ-gI8@`~b2U;9lq0o6q0i z$16r&3r#3u?(^drs9M!h3I+JICn*q=~Hi{EcL ziU$r0vJE7liTqKcRI2&-)j?U|@sz*QcJd|GYwIgQQr9+Atva#xSoOxYYa122tgY+Q z4}K@>Mo@)5TT!mgD5FGhj-EqG8l-UzxLNETvZ>Lu_nFUlP9DgTlXFO1_jq5@)%5%C z&b->m%xUczfV{MmMjcUS!lwqF;yMEstv}zlH55nm$Wlo!s>jNcR-+x4>V!5L#J1y1Cr| zkaTJv9AaHiTbRz>AnYoFszfZ5dDEa6v<@G2EHq9j3hN^`(HLG9mEF)e=vwnpoas?{ zJkHwlD5DSJXvGzXss#$-BGJ?|L2qlD_IVn&dZv%$eGA$QU1|=$Y22ikZZqEKw^RCv zCCc_E9T3i)+Ou#Qm|bWfy2|?cOg>Qz=jt;OyzM`Zgx<8=G`Q18m1J?+?E$q)Tg!Co z)fwK{HqX#476plCw~gB=Uuc@d%A02f+8)Ag7LD`qnoj;1!v&(Fpv2Es2qqjbXq6k^ zGGi$^3&5IcMhW^Yb%Z6Z4<+*Dlx8m+;OTZREqjAOttXGRtr$itza~>-k z?(D?%>E_s&GZ1gmA6%3w6bU_SbZ-JeL#)J+L>)*!HnP1QIL%T9q8(-X!J?@gw-7`@ z0JZ^)LlvYdJ;`wjeL`F)^&7S|6b}+i~eDbYdO7VE)-od20O`eVH~&Y_)RJMdwK$;Evt zwB;Xaf}b|XsTE-LLW}Sev+RXuRA?t>gvP3=?6QF=tXt8TMs#K;m6a1{=^ei!ZZdmE zO8@Y_%Oh4^lao3uYq{Ne#PS=4RC2T0EXQxGaZ@HL8_U4hfE_3<hBT> zE$VEpR!bW~#+tz->+C)SO0SQNcakHuHJwLJX?|&t7dH#zvL!1s5>~95T^oK$l`Syu z)J*_Tl!Gl1x634HJu+qa)g4j~?;MDuL{i>c=i1L@B2ZPMJ)~Y$?vZp3xS7^#u|j~c zZ@PIJ?l3pofyiM^We{TBvyJOQWgebpdK`Yvj>|MG$(F0nrFuoYdny0zis=5-C=Iz^|3N_pBy#+Fv>h|>2}e^|C`yDar8SMz()naz6)Q5^T9m;9sO z3N3=h2u}6D<@RR7tAg-|wGtARpYMFI6uX!t0e978=X=TvR<)E7t?W=5vnow~{TRV# zDpcp7dbJPps6*UntDz^eAiY}B-aM0P;K?sYHm6lBvF_CTI8_p8o@n$E?9Mu-N=#OX zFTOSK(pxXm^ckd^>}O_&)vD<)Js!X3p9RnXVl%yQk*{frD7Rwk!<){0FTJfK zu~ij9XS5G>@QNA>AAM}HWlEj2Rkhrev%^)_GY~;z?XSU!#wZ`a?)sP}wH`qXRd8d7 zr(VpD>g*{#jMSA)<$;zc3X_i_M_e1P(1WiCn&jjvnAtqpQA`y7{N5EG5WdQT#3cbp zBL=f5kaCoAlaI!RJx+|HaYo-h>YRtA5dtVm@_U-MVIdn0m_H`w`ZNK(Xy$kFCMNWYCQGF~GWn1tz z)#4=mbP_w8Hd$H}n9`+>dzPkmS&U$xtRY2Ou_>&k*8^a~Qp3Js7twAPlw3Uyxs*qqxy%>|-miR8ORSv-ztNzTdDew8_RW{jM`xe))nh>(}&vug+JbNV?l?~l)>{y2NOPqQT|M+aH` zJ2p!nzjYVSC*xn}?!NlR>(ytC%{ztw>SfN=bja9^gO3&? zmkQ{}R{KH6MNKTssuq+pAM3A3MM}bbnZE?Ef1yN0Mkvs1HEIc)k9Oq6by%Z@FySqz zO=>Y9!lWh9d_`z41JU<1iNnL{;vg4}IOlr=% zQpr*^YN-Gd2}nM>1jh3{iP14-4d?qiNz0x(*%z4Jq=YF2e3$e2p^K#DH%(XVi zEIT*=!fc4v`MnO6i_7bF=Eu#N^DQx^<0;N9C|R`G79Xrxc4`oWG0QFpQ52Yz8OJQo zy^y&lMuMnN;`-`PD@ADdA`e%ATA_&Y0x-ANL?9NRxhlII^T9(?LMK7~pTp=UEX)%m z&}E6?3D8s}ZvRX4m-yoP`DmUB!&0E46sRqu*&H#h8uD>sr)ijBo+LzY1$)POihdo% zuhv7qOOFmxWhF9EZ*P`73yYqjB2wVLvb^|VU(rAch6kaSNC~iA=c`{@m#oNxDd(rb z{{iF{HU9FNwe3}9)(dshXj)@@Y^#W9D{0(nYO%@pFw6hRLv zhhwo{M{-V_>LU{@E%H1HH7Mdh&~61E^LjN7BKKp#SjflQI&In3O#0pEkx{6 zA@B3GO6BF7M7a1j*wC1Lob8n{kAM-e)?Q$Lh!q$uAi)=p21Nu?3$ay=IK?D|sP=7I zsF7x{FYyg$KujUeTv6ft2F{-a2n?etXTq^s4i}I?Y3KEN^@d?8F^0C?% z%GzQMEg1rii3!f)oxpOO;}+b)bexcnhHs3m5aBk_;$Iu~2&-Nu!rfYn6Dd%S{P9;* zA-Mv~s24VfUmdK-@)GY{DZp)m&}S|jCYm4Kq*NdXxX~EgK+KlQs*sE>xR3=KE3OU` z;gY9NpWmQg8=y*Qo4I|t7Y@`}r)oP3u>Nwi!|bxRlW3kYs=uyy8ExfTiok9Xy_AMq zI)&cSZqr?h`Z$z5XTFR_Lp%HqKQW_4eGwZPFfj_u-aK@t6fJ4OE@`oEN=L8$9UZE+ ziKQQlkz*X*iuo&!xf3wS&RDxXU0>R=jZ>&NwN0WohHHJyf8yBNSrnIv_M5^olhGx4 z=#mH7VepZ(IR&~XHL%D7O+6dfD>bm$alC4P?88Jc`_KVuw4|$ia((S|;X4i_naz@Y5?yeO_V`X(-bLXeV`SB!odFVq0^pHO338 zTJ0Jm@|RAgubjwf3BU;D)|l;%<@KzyGpmq}B`e$QQkX>)Y9vc;kSGXuQm5?Q$Mk?4 zJk)`qB8(ReZJdCyJb3(%$7e{js6A}gBsMyr1J%&7k90MsClIu zY3N@>8uyj>N1w1;RK!X(_LLZ0Bhqw`W8aJLx0A5eHv{szi63Z0rW(tDh$=Oa`I->l zh{cFEQ)##pjl>U35=V_CL4^Bi;sK?`Ejdo3&%OLX0HcLCts*kiSZ9dvR81^vA>HMJ zq_8bFp_Ei5a17A8!cRxBuUu8*p8^`&p+mN6@Y>u;Z2lw7>q_L=MTGkbQW=eOUjTAw zxEnkTxP+n7=X$FR@`ym=suF)6&?w+HmmbSJRqwESrE=%VwEJQ0BUAV>NUM!TY7xVk zevJtx02|quDvf>f7TLZ^NRgvA$~Di5G@Qid9QOz|FCVA>w zNFHXuQ{$|9@FEQqsEHrMhz7n^i_5JvbyB+c@=ZDM*J|PmBdv6R_!}GN!N=M`_%+*h zAI$HAf)8Q%#QiQ<4>oRR%UPL%v_XW6c(m)t)VhmuY@V8!EXD-x!%J;Zc?!~YCGrv< zClwLb%!#m9MT8It`}rMiYmqjUjT?kOClPU*2NE5XgX*koc@ytXRoI0~d9&N@Zi-;fBVQY=9JIQea5Lmkhw*|TvEg~iuV|PEe zm%v7`jX_6dntoe#F~s3DE2fGoX8}z--dP z+;Bd@=)4o9yc5kvzc<4CS|1cK^NTXV>?7JNiak~$Gpn_C)mj$Hm~ck@;1&_u{gf6Fi>5$mNyntCl;aEIZjJrVTR zvZI8eBt=l1414aTx?hSVKM%b57#XdI(TYmHw=GcNe4}Lm=8d~Iv+uZ&W+RC>y`v|}aZVLASjOA}I(n{=`--u4N=(lR zZ+_qLS?x1@XP;{1gs^}U;R;OWWz3)24#g!QsKmfj6|(O7YnI%&;rbgV@vC#4Xvh26 zJDy`~p?ZcW@6hu{@JSsnHP%tkY~%i_?|G(+h}6nP!QS0$TBXfD(3|-9)Hu9|iIxi- z_d;OjC(u?&7?xwV@$p8>@m|><_$?o}st>N8Kq^ES5@5IT@vQ8RDSZ5`{*TY>J@+un zRW#g}T^~jA-}JgZ-u>$%m5Cn_9hTF~vpVu8NJ_DE=7C zoIdjCqYP@@s{$$@&DU!`-q*y1sKJ)GZ(tV9)8Z~pu0mF;HPXcxe<-)#gt7wSxj&vXUqhpu1>GE{X`I;?F!l>kiY)`})69MWoLF zK1)GLiLrtzv?$m~c^m79Rn#k7NzfK)!-hP(ItLg4ZO%22;}K7BH9geJk_# z;1*(~=qu;I_ki6*fr7O0fQoDShu*h!+W^PR3LA?r^RIR`eKf}C(NGb9!?{l6mMPwH zbKk2o&)0QhSaV`uM|cxN%Hic0CoU@yHW+I1^b5&<~8c;{be!-z?Kolmie&wn06G+h2R;>7Y(+QoG!e~N8% zlf0wToM31fd$cNd*u~DkN~mOg=OmL1FJ>SV1<0P$aTh~Mz-b0X17Q8q|8#yA`j+5g z^l5kc=A+qF0F_wEz_ zF|*;OS4+z^!`NBTi=JXr-@~!r(~o$!K&@OUsPp#zsnu(c7{am-(wjkWQESS#!-`X~ z)gCVksTLm^-`oDaim;y*TW0>~Y)_!zGnZq!Ynjz2mDz8W7puIO9E`rOg@ZGV2=Krc zs7`Z<4z?m|>n73L#ovyN@~v!mZP|@~%;YeAbfbi=KKiSrA}@pEnP+(O#>U^^jgN?j znhd<&JNnV{&CmLonLgcg!|eE3a@YJLQdWRfBZWo#zqrlx-cW4r|MemZxDdLA+I-1_fSEc>ja9GyLP zBKSI7+2ZgJ%(&MeVQ*~TMI6Dh4eLxLS5P91?U>V|0djXP+tvteumjlun}&gmY`hW3 zvmBFBT)j~_B3RQgwJXx@OYkRE^umP^j?jETd{d4YT$I(%_IN|p!6qXn4b+NHK(k+597JhJKKzSywt9=-4h*)u<`e5jty zuj5ogp?nTc4~S-Vm&SIBjR8kcS_3hRIuc_7O+xG0^y~He*s-(j*kzH?W4%IrOb5nb z(*{>q!7MU|j^Q@Aq4Z5CeOw7pwBkfl9dfDzXEIS>Eje>=E+Dn~#Dm8#PqlBwTj+XO zeU9WrMBKOWjzF($<}jYth6Ov@p0x57Klmc$+%n9_Cna|CdFSzQunmC|w7fLz5^Pu4 zcT=q)lHn!ue5DPd<$2z1z6n??3TfI!_qX5k8(69V*pKjOFxRMAg=A zR}1As=w%^65^n>uxP#jKu%9)$!YZ*UuKlzYL+U05GUyJ4Nkok&kBorKhgv^{$XZo(hD&*B;HUX$YW%r z(zdr^fsn`pq$N}N>@2n09H7W|9&KSv0{}_Y!r3Q~V2x}*EH7oDX=RrdCPvM1HIomt zBx*4-O*nbyizQ$@$!j_mdf3;Sp4PDgiO<=Et;?sk@EN}IWb?`ZrJO(Jj;H!r?n40N z(G7c29dp?xj`HIqOL}S!-}(d{I!~5jg=z+eRNBZ(K2fY7y*zbQkvs4wVjkevMVNjK znLn)+t`%_)Y1f_4^)%PMV+rbIsP@A}M3o65?)i;J7mVV^us~CfVO2aS*L#X~9Z+gD zE6Tw;N{#rcNCR)k^e&KSc-*$j*vJ1)`tUIw-zg+;v8Bc?1HJ&!-uY`=JLGm%ve?L0 zW`BCYoSUpgT#B?p9V@}m=$Y$j82HERv;npz>+G78CKNf3f6DtaLvin5=dT|He7XUe z70dVX!p%qz$8%@_{f!Hw2EtBBCoRJ!6Q42bFoBx&QQ>~sA-AUba*YBB&o6gssX%hj zn+RG2UjWl)aw~TZDSa04Z1Pe?wmKwBUsU-*H>DY*rr?ZeY z<_xr~2-n(4ZByjfRCj0I_2{F*9Jyh|n4IwF9rc2UR~Mn%EDL_W97;2zd(PC`miw>L zFKb+GuE=~D2=09>E;PvGV9R}EPzjXdk%`2@q;;?^vMG1tf>VH~DPc|Eld3s(p7CN` zzl`*iWmqYEDHkS#UzN&ygT@tjgWiqez*19oq6xAf&lsS9?GL_Q9!(0ckOTCxJL@v+ z-@G+8&zGBi#soaLWM~Mq$vsHs_)YCOhMEoN0i?nJn0!>W0Qsv&5l3Sid*fDIkf6|9 z(s+C^m!eQNnt@|@gZnZsr*-nvC80EE7gP6nSl(&t4*Y`O^=!!6wx6;1#>4ef>|Fwe zyPmWI0QJK0+HT7AjY{`BY2Mfjv?VE*fPQam`1N-k>k*b2oUrst@W@4O44{2jgbXlY zpjg%R5m&qEisYLz4n%Aljq)nk8Lmg#e$1I`(bY( z;E_$a%3khz$nfU*sRM=su={^~CoNgrlW(bwmPqRi{|xoh+xn?wRSU4;fx4#$J-l2? z*h!n>-=CMo^#>-I3=B2bMLdMx<6SOKaFi7Um3m9ee;-lXPm!$mYpg5Erk!f)>RT}L zWW)PoY<-M!$>PgTvnLYft)=!cyT=GXMe8V%tQ@*LwGya8piKI59R`{pJ7>TV?bu_# z>mSA|ed_d?%FZVQdpSt+*2F}konAykRFZUj-(1Uz_Nc#>FVjcsddumVSY%$>X$#iV z_8u0sWsip#L47F?@wAVhLGro!PRvlmikbl6^L%#K(;=(7$l?H{N=Rk z2B6bpMBeOE8Zi~wG`Mf9{NyJjpaIrKE7gZnvf`-IUk3|g?reMfkweRa{N^2QEjWY# zbgqD020#-4lY$4R4lnzX3wxHLl#>hY{X#J)3p_vjXdET+GWjhCa-0-v9$q^y_6`lw zsFYwxhTtVqJYsqKH@&UYQKz*^pAyHfdbnw^!TRUlUhF?-@0P8zHA8^VYvN!{XgN@{ zqWz}-k>1!@<;rAT=WT@@pvnGL`1_wiRo)Bx$EG2PjwgTrE^Tu^GHjeEVOr1y19y=H zzx&@*pJ(Yd;diDd#wz@=WZfk8j;--ogxTe(9Bi`_b|W7ftXLE~jWv;4L@9Nv8TQ^h ztWletL$8iFX}LuMbSDRElA>KclY|O&zm@|f@zHktg)EHKihVxcb20Xr65?o%jSKs_ z8EV=LRmPDHH=;n4?OSbw*w6(&oUnUbd;S!f3kvl(9$J!B<7*(Vx-c*voqz(YA3!S= z7?uhhnG(08J#SqE9^LA2c0OdkAIj3p7rQ|t%4~-)a%wzoYcvEO4z3hyi`dvo>_ zEnj@!DIqT1YBn=xrhRY0mlAT$l2v_sk#Cm&Ygx~K+l27n{s90S0`>x0e=oiQ1p8-I zxlSFq>}QLWsYwAGv;DdFN@Z^}4i+2O)Na2g>g`$xG*xnR_h9_!_rWDd|8knaqCuc3 zG!LxJJ&3~~X8oYRJK3hd)!+T6s2mPeZ+eI;C-SKQmIKUa6re#jX^yPmXp70&A)u>& zfXGIb?MN{B&K&9_laUN(@>rylVz80;QIRGrVp|DGVe}kq0GXDj6-IZj&)qA**V3ff zm|{bFKZ1R)b`n8sb4-V4z*yi1rg(43)>CJBmzgN_WW|J+GE@vQ^x%ZBTZd|QeWM|mMGrTMiSY#^C+LcZWwH{>x0AD)zDaHY`hHzIF&EI3xL zLwcIN2WMjc>Ik^a?}d2x3ZvRw^5XZBPRL2rdRRYZq$LlEwXEtnw6XI*kKu+9z?ISRfeMvHRk<~YGZ-+9kaC+jyX#lPs|_;eckuV zjUKlt@YYpQZjozdQ}%6>y3x6F{tLz?kb#Sag)B{{OsdyyV`u4RUutTb07Y|)0Kj>~ zmQcyrJFfsgtzz%4?0Fl3jxHn6a;k?2c28$tRA-C3G#6#nit!E^Dh@~&sU&zrRvNpV zZmC3Q;-pYM(jhApg-w@EBQ@t6i7k+{ZV8}C%lw54yq0P6sKTq0dyAYOkE+a`n#(~q zRSO4%9Ugv{7nK#qMc#?uzM-}1x29WjV`3!QKG znh-r1QvB+A=rqbfH1DQ9&1i~yb*kjn27H>4ARCVpiMU!AcT%T5y+Xb5#)83L*jiSD zrAW=yrgQAAgfx+A({rkcX&2QNgNB8Q0PlyCFObmbO9Ju6ErvtaJ+ww$`>Y+Sa<) z&d#p0Gu_#p?H`@{=WpiD{LY+ve&?L~`<_pnb-|Qw(6X+LHV51^T5gd9%G5?>#3x1y zdsGohwp$;&iybd*1VoX`Ein3w>l`lsM#6Nyr^=e`91qZAlWaHMg6@7DDy4oL(B9n? z0kr;le$MCvqtPUdHZh=0v%%^dGzo_o1Zd)$ZGQe~fU)zcJm{R=g3i0Ngk&OMsvH$} zny3cbr4+Z5vPLL+EbMEIUaN`7J4ob-c@R@lhI27xhoXrWCN55H}{NQplCB>j7VmnTkuBRTSn7d;aZANY`@ z60MY#0P{$;_i~$vq2s^b=#(5zD*T*Qqigz~0=>Ly?^Z_Fs!cQ7@aB#1 zD=bazhKlgiv4~auiT0Dd>yVH=SG)G8G}ac%rVTH?w%;Ed^U#^GPA?&nDhpBj+#ZaP zSItvKNl>GjHd5Xb>C6uXia{G7YSYKp0tp}T#_T0Jn41~0BAtyQS}$7~y`x2+6O@AZ zt;^+(5Vm9{@j>=cnYAr8?xG(fE0{? za(++W?ixou25Npd`Dw7CQ>zke!A#TKryN>Qs7@wF1?c0bi@l}NWaWd-`mn?yfTN+v zfsEsfBO0&8zA&SdW9}|l8ArDVYP?B zFH8T(qn#O?0K*-U! z8R0z+!VL??{P^3z?I{TP17@H?SQ>+0EgSqW8<-jToH-XTuFZvhvmHGlG}2fHTg z@v7ewB)k2#Fb=q!#OP&hQ8Fp(m!Bdc(x&XfWuF|&`WSehhy>o!cH+-UX-O)ek~m8s zgRMl>SOQI6bn(5j?>wWCP=OrC*PMaBJ?Ngmv&9(fmyWLuSOYLO1AX(>R}h}le|`m| zmB1^E3)okmgTaC6PZ#L#l4AR|k@twQz{$x%F&=3X5QX2S0$U6qlGwmS;S>Uig0Z#A z<%^B#d*`!OY`(`47yv zc_w3=o@Z}<{<=K~kj%1DJ|;NpGbad@j2cf9Z*0;c@d9eWU3uN4#2P-2H*e?<4210F zczr2OqD&8Y2udMKPsl=>htYWp|E8~?!W$KGy2KniDPhz(+~H6f8b@eRu{Y`*le{pE z>{2q`fCX)SVi`owSIkEV><#-xOo(wSteJBTcf`rGkE?@h5&43nH2M>-z;g=T7Y%ty zyX4)KFz?WLr{x}@wqXUa+}uoyh~3g&zKyp2rYBvR+y=`8O zK{iq3ClzDEMPw=%xibH^bu{;}#>=|HwTV}<4t>Kta&U1dFP0v!d?w0k#X4jC@2iPN z5D7mULSF)XAmFELc_)DE|HzivZ|C=v2*Bz~yggNV2y_RgdaBYgtPXC1-eVM&m#BN= z%7#jMJ33l93I4~2cHg^$^Tj3QH~V2@oUs~QN-NFp)XVviFN{Qcq)d>MdD1($&2Xvb zHQh*uY^Wj5eHQimwLpJgBFlvU@&VLV@(e);itAMqmEF#^MQh!b_S%)plkNd~AS@QX z3RM-VKsB;yOPHh>vp4Eq<*DzC(+fo}XT1nFHeswF$Lg8_ zQ>3buNYAr>p}b+Kl4n*LZl3d@^ioiKykw@vgW2Osh0k-OIn;s}4Lz2WbjEdS&o z?JND;##x=mz~O>{j*E5?zW!(ilAyC<2MUHbg=!14H)R(aePpiGFSynJ{Z-GAwM;Nz zk)O{#K=z}b&Gm(;clHr5uJkd14WTm;*S>J@!U<+G=LRoM09UB5N8Ywk!k<#kUX6r} zTsv^65lJmQG)Y534c;olyL#dJ;sM3E_)-UP9P4sx=ubK{j>6souB-E8&_VuRz6(we uBxoi!U7)A6afi$L*1nuIeY59H-CsM#vrc|7O#gjP>;4XPTj9w7 From 8d56b6c309e5c3c4a0436e3666a6d3ed133667b2 Mon Sep 17 00:00:00 2001 From: Adam Hines Date: Tue, 28 Nov 2023 11:47:39 +1000 Subject: [PATCH 48/69] Add quantized video --- assets/mainquant_example.gif | Bin 0 -> 274100 bytes 1 file changed, 0 insertions(+), 0 deletions(-) create mode 100644 assets/mainquant_example.gif diff --git a/assets/mainquant_example.gif b/assets/mainquant_example.gif new file mode 100644 index 0000000000000000000000000000000000000000..6df28c49a94a6198714de2e30f4df6b8849f3a43 GIT binary patch literal 274100 zcmeFZXH=8z*0y^kcLGU(5FkM4A@rgKL<~i^Lz5;30R;pN2#P%@Dj;eCK{^Cb1f+x_ z0wM%OrKzDwRfD1;pawy~`e4V(muIc@t@qty?{|+i_TT;eVhj=nBlDi~n%6web7rlF z8_gyx5NVG11}wl5Km(LCP{m5g$zbt#V5}f#r$BO51Q;cP3K6KN5LHy8?bU#c8X&6S z)ii*C23ko2Pt*j;nrLG!h@@p2thH*dHhG;k{eTX@=>SC?psXXaLWiuOW9LHFBa`)D zU7)V3t)i=|txM6S$k|XxCKQuZdcZ&rt)+)E)Khc*`(0#n1E6dGNCw(Eh5%~_Gz=ka zL$sa|WMG8VHb!V0Lu6w}*BH_>Mr#?PDJBR#6G+DdBAY;ZCTKlVNXHb?HARt4QMzUb zvKgdnhSD)ZQOp6s9HD8B&^AZtnM;$+rS+Eqxn)3e8A4|nq_YgAw*sTH0;9hIXGBG* zQRU321PiK)y#+$c3dmUL8LpBeu9Blz$NR5VFsGUM+E{F}Rb6AN=Vhm2Wv{esjg_AR zLCt~U;9y2|SZVJ_Sqaml=xR1jfg4;WgtoGZnF?z>lPE zWA#a#eD1#dFCMWYx?mC!~btx@9Jv}}pcgxP)@PxcQ8F>fe^5V1d zQnK=slTWAT7sizorIZ$@)t%jb;A~9J+2eI3hmMw{UMk6JFU>10J=I%w`Z7Q56#rBm zzoMlwxIAm`u_FH&+p%V|Nimk_n)Pozjc>nd|dtgoaqc# z%jHxE0RYhbjzZ)9{`qH_^MS~)n8*n7k)1J7g!>RsH|DsxV6cG6#rC*UTh?a9(N{E6n*MPS@7n zy}7b4gS2v^xo@{~e~z~E@mcr0D)(FqH?nuzhR96C<=b|ZcwFA@dd2|L9yJ=i!?Vab z38&@RQaf7Zo^KjD)KYi%zb(wH`1bq7 z9j(=SZ&jVSd-LYf5|A<$vr#HhVh+ZzR-7nnO(O4K-AUl!OvlJvf^`ImD@S@S4#TaA zFn*q@{hptMSNlqKk;9LWxp=pEMpCBs1jAX*be`-YZ!2OX<=D)!rn8jm;Ut_r$wN2U zUO!GRoA{8`Bj;N$g56yy$G`U|nWi#a@>i1ynT|gfp}WA#Fik)Il+UiZ>cWl1ug(=89(r~D z?8(=4wfyW|yXtE5>R;Dgs2O^Fq4Czz#OnsZJ=5J6Tc6fnxY+sJ6CliL#e*u!_7#!x zYiPb`C65Ja4KC1Fw->j@pH!K(dMXx@w~i6_DpOJ|rDcO6av}LO3;aDNSFz~QC>K=o z^W*^kX|CK(^)PO!z13(h(GNb_C+9P@yPN1po^(}BrI>M*{iB+bW7O^RLh5MCGWsd z_VUahe)34hBBA#_W9_mpWB!}=et8hMs%9q1CwDVl(G(FoNy)*RJV?`^diC9+ z&ofxi$pJcBWfO7AwQFrF&s}eM;bU5vn{l%M5m^Fv_4`iFkL|KbI1&8X#T%z{~>%-R#n$b;ip;pbPzx@5D_p1a2TYTyc zE=0s>&t&HJ%LRl)$J|?RA-i<$`u3M317-O@+FgiLUtn*T$x<6qK&zdiD6F8}((Im= z+v*Q1&J9RukT~)&35mGtq?4_pX}SG^3gYa*Ez(nv%_3DIaiU~BD`s;1G!viZj#6(W zORY=gfOJxy){;FN;}X)14qpUNFBN$4d!+Z9Zc^{#;LyhQkEet5 zU?65@;A;7V)&YxDIJia_g8!%f_k6@5UmI)$36aUvv_og?k8r@6YFVH-@& zR;2>?(_-@8k}A2C?%hTo&I4oN#~Rx0I-es$et{G+I4n%Y2v|vbSTp#9C~0J;Lh6RM z-7;G9Y}+4f_U4co{GQa_6+Z|WzT_F%?D=FX!!G23aUmjQzy;dJN;cI83NxpAq-V)e z1Ytnw0hpsXl(q@m%ftsU5i+w;YsNIWQtG>ua?w~H)ZsLWY29r^` zwQtn|;eM;|=IrdBB+~D=;1l8O{zI}RPM-p$Xl_WYhwdn)c6Rd5S3SNzE_5HL8h)|- z==Wjf^2sJLA(b`7Mw+k_@n0A4)B$)2<1-MbS`U&exYKCU*d!HyQL>r)B{ddR4dpG6 zGW6#Y2SvgcxR;PdEPJJ5tLG6#Rw9bPMET_b+}I#M)iOQT4I!0{VJXQFCgT&>g~LBW zD9wH-e`?9WZh#T8rw~Y@C=ts#RuvOav6)yK?Z0X4HJ-#oYYFH$t6(;2T!_`;17*uw zC{xYpEJJrTd3VTolq!ExOLPT6Wa5HQ0B0>kBDvE!ho5Z&UnUL|&aL|^esXiWP!XXa zVBat!>B{D(B1vVTO^K`VxPU@B;ces!BUHGI6#=PylA2^ntdO5n@2^y86@7u8b~{fB~@|EOVwYyA>MAohNlTI6twT{4NGnzho5a z9~GpWnGNYPyfJi|)17l-=$^+tjFaGuVjh3RF#`m~8g{#f%{0wE^j1RtlTJR;U2gbPZC-KW8lKNCTr@uON6Sh#3 zbj9p_1*`ANpA=on%DsafyU;$j+RY;JgAnIzoL{`*uLGJRd~7^UaU}N~L>BXLYlb)q zWiOlJ6*wn6Yn=!sQmfLxi!tk+zh%VebG1Tl%w&DzjqM?zGzs+JpiPNmB?NBi3s`y$ zZ_|>p=T?+~kdK&uCX~N%qVi_P((i?wn-7n#(la)uZ>?MJq&QT)qIR%@x!#Wo1Jrs3 z%9(+Zsx>-$CcboaeEA$3U(3b~#Mf;)E=5Cyp5a*BgVbV=$$aDZ>Lsk#OGFGD8<#%x z5qT)X2xXm|=yy=}UVkED-U|KcsQS1q%%Hk1K>kehdIsA{c>KKn370^wTkDaV-Fn=$ zvBW@*tN6t7dG@mW6F;t`$}R4cd(o+u#r&%Ae4p>97;2|C6yn)4647_wZMD*|pwfqFS@+{gC)!G`aG!Y zrAH|zsN{89+1tluAKc64)XG0TKKtrb+1I%8#iH_ynDS4L%m36Be)(RGwB?^1EJwxj zF`fmEb>*@XeEbi7Hl~DNTR{x2xVDpzEv`_vJ-w<9%H3H(Rx%W- zE6pb=_XJfMt5;bL`tmCUx(+X(qRraQNwi8vbdbOfS#q!{4xA^LX!eZE@+Iyl} zE~v^!{oID3Oor{bjq&G%f#(9-&xO1$j0=K7)oa2{GhNcFx5w8+4P^z}*6cB@uEQ4X zRX@MCzItcy`NQ$&e-@qbGCiL#an5t%JiGl|Wcqn-aP7(T;`kpGDebkHOS@`ztJm_1 zE0QK^PX*WMPE_O;*R8XyE10M&8{(hXbvmQAu6kEh$&b3);`-O$YtK#8&$aRE)h}Ec zD*Iw{;cEN^!C-x3`vq}aed~`4!r&sl2MP*oxE0?pP~0%o-Y_!JaOX#ZNd4kH+lynt z7azu79522&(SC7i;^NaE7scw0&utrLaTg#`!+ddLcX6H_zw!N##{G2{I&GUCy}Gav z-?UgH~dZyXWONl$1zS~~5vdh+7lDSN~kiYuu zWqY%HyUEM&WS&s1#iir){@@n($QA;X&Q^K_U-sX8r5St4_v{tg_m<$v zD^3|#wrE_nYHxy!uWsL*=XLbzuH9J`?N|5x%(dKo<$&F_x>&*fqt|?7uEus;!>V12 z`FV}qkrpz1jcdl+xw$oUG9zXpHEpu>Pi#r0dTX9tTlr!Q^HpnMM(Nw)wvyqTl*zWN zH`h+twV&9WzlznyKihtLv8~>#wPCXTs9meTuA_7OYRl1%i27@-9UVK;E>-{R5dJ(` zqj9Qpb7%fy`z?*D0db98lbv~XErY`y0~*(Z?XHh$TzPo(`Z}2lcP6iMWG+lBZSH)m zal>7vZMLIh=I9N&S^Lw;8(qaWUQb?L(70)1ck{E%<-Ds?TyF2OO6WOUTzo#G$G)U~YO)6osnhw@jkW7^$!v8_ z=tZ2p>6v-WW2*O8y^t}|ZK&D1aZjzOecyvO9l@Pf*H85|7WXkbuLmUbZ7=C*x4X5u z;modttIOVA+S_@HrQRPtd^2Y1ietj9_>!8f3H_Xj{^L{Uy)_3IGB>!H*Kc?=rZ064 zWKIoa{~F+F4(8bpo(dT(=)A~I7&!RjTye=2>&|}u6u)R{Fx+;i`tA9h2}57bp3$x! z@;KXHp*g&4*HB}^xpMR2R__aSA;V@zhueM)_n7o`b`F_+JUSvXGVqq)Vn5>hdU){H zNL%~xNQp2~_V&Z6vSIt%-ni=%n!*POx5eHi`=@TNcr!AcaHlX%5b1Ttboln$x6Lmz z?|if``e1+e>r}zxUw7<0yM9dFiF*uv(-gJT_57Y1HnHhPue-gcM5KH6uB=uS{f=!t9)jE&v0+aya0Y+CbZapWQE zVjXYy!y{VfcV2&ld^2`@?=V|y+;8F$cU^hXv2mZ*qv>mEGM|ixsXyR78L@cVou4&i z8vi&u^j^%9$4)!Pi*Fa^X-&|F9#m(Y;~$$y3R>a5aI5V1#K&<NY zlG15>NyjCm^ab0_sq?;JJ@9W6dTieadPZ;8Wf18EKE&_F+X!4(=5$-(*efm5QJuUa-Ug`MLEdK4%r;}@*yj=4vcYf;i@9}qgt8U9d6Stqd zEqw;HKbyGzG+a(>H!<~C?#ayWXHxIWF?h^N!jq5do)Pb)jz4*(v}OA9u_wQdJu?Y9 zx|W5KJ1%x%KAZe)W~lf)-tzhCp=l`l`IRFh>JBpvwJQwEFdns#Vk+DI>5Rjl8CZMP z$zj%I%dDG(I+e|O-k9}%I_vXimZAM(gTo8|EiX16e-T*rBG}=Ds`hj$Z^rJ%i*SdR z5nEnvKmIbR?B%W-FZVosx$nkojGOc%8J|TU{1++y7xjynCYrpKk~!F*%C`jEj(=Z4Qvw+)3nPDFJTuTygV`U#JaG%CxcRB(zT2%aDJ8FV9lX2eS}o(|PS>h04MQXly;DvnQb8@#U!d^`XO8 zm(ev=fkn2)>PEcQ`Z!FBlffVX#D@)-Z-~H5_kbws><&iqmVQ9?I__fbQ7EzCQw~|iVnz3N-IHrh+_C6({!aEMy77fcP#EfxZpF%RP4UF^AK&y}@!u1s`hRCg9%)NIe5``w< z5t4;cFfC>Z52CYV*jOzRbDvSS_1lFWQVms_xFTYD-svV*SC!sy0Fk5^;I7NS%OC;? zr2#SYWLSYW#83)dU_UysVG*9Yjvj?~MMJ*PDBz0mPge3lg-zX+)>6;}0S(@SE!!L5 zdV-r(^T+6e*qD&$74|Y8B;f1zMrEfF02B?>>1^42~;yKet%iA+Q3E5oq#|Qj4Db| z9{DTx-jjEn75{i~=Iklk0gT0RE+O&4>~2x%xA#B)GWw9(yKrFh_>VVD<^JeWr~BHA z@4)Q7yr;rV`+t9twZOBd$B+E=`fq!{$q!puegf1g@+ob;^BYoD zYfJj=^N8v#S?yPLJ!;rGoV`xt>bu9+cF#P$*m30jvrf)W{NMO`dLYBdv9Z(U)7)^C z-5Gr8wWsP(8tP9l8dl{5U20t7g`Be^8cV<0)4IVmO~JsEH&DL9(f!%a#ZPaZ-PLK* zy)hs9pcmc<#9TO-fWm_$Af=P=d2lWF@b3Ug6_d8tPSdM84+&wNU02XxhrT|Y#2ANN zx#knsrZcFwjP z`9y>{9iCu1(J>*@T&CNdwQt(yYmT15>|y4jl{Up1=$r~1XZI1Ib*v<3KkpAv1Q2IH zjnW_3TELya?dAAWqwgQFv62GH2tO}gkLeWKh2Sjf`@Zw_N%M~btI-Om2+z(#T-X5< zL#98m`3!|S5)s7;NMCOr-b}`&Vk7o~DR&SZFzQS&L^L@q<|0F!4HRaQ$ zH60@x`j0#{5j|Mp#JPN-sX%V`Sk(E8Uq|I@G-n8*{d;HnKb2nm`Xn}^vj^TcM+{YM zIQ(^vE)GtW z!gY_X?Bgm~Y#E_7C-0q>}-D7RfNJmZK=Dw<4!qz zuu*g9Qk3YwOGc8;d8PirKWc8*19TcmPnZp;SIr+^j$Bi%b>U%BFxWfO{sj(qNozN7 z8#5R!XbSB#_?WJ2S1Fk8NmbG?+`0~+a1^bdL~Sg(edew4Ff2t<$*T< zbH+0t5^C@XQoemX}Y>l?1VetkjkkD6hh!vQ>SyU2GwRyq0{DF}jSzvf zwtY@s2{dZ~`@GFg)_J8+^56`d?tSF_dI!<(K3RL#(gM`!h>t)5EushwLb-B6g^x&q zi;8zA&rb~qs3J`p11}nVk3H2{g=Xx~M_dP#5BO|wAMGOs@83(6U2l*0)~h85ORAXx zJZZ5T>&4H%gwiX1E%d7H|Mg+O`9-FxI)FVsLCKIm84CM|0=>Ul)|$VNJ=MQ*22*); zMTHeiklQ2Mf>uu@JMoMF8y2bB7)S%Tl|q=IvNoCJ#)w>eMtJW=u$)Cfj%|Sc>&y)a zSC^GacsOw29;c*1$POVOrIPO1BMtvbBFk1_*1C5q7B84$$f=kEmC|63*oby;t&UWs zT!5@TX`Joq6Q7$|vWHIq3^-tEmS4&l@REZimmu>qoN^}2Q2_vbhlzk>@f>M)Ceeh= zSxE$PAS#?e#JHl7u9+AY@p^M6#~fb`_Kr(|c?pv?*2Nf&RB3-3=y&+>A?GW^9^vU{ z+Y(Ufjuk?9L#y0s!mK>1i>=4*=5UOG3=0w(U?@@`0XC5(B$3p`iE2nO*rlIJDfOeH zgZCXoHNzNLSZX<;T2`6{6s0c>FN;b)5QbtS5))zTVo*qLW~=*s&o3PpCO~b-ycp3H z$KX%J<0CcJ*V0a{S-4AlE`qh^5nv|~fC>zWZr-(GJ76nZC#PDrOyk#x!Ze<;dS%N3 zmQp-xyb*`Vm`EwgO%7GaTdN=q3i&t7{TYSUi^XCoMOWY-LzaJ$sOBg_XxM+wS}~c3 z9%2g#fP7k&24r~Oq25D6_Gy_awH1t$#-@ZKB59JBbiFRF`XNDQ|H$=`kGfjYf}=|#Wo)$}kt@KGxt zt)YqcIixiZm&?}Iq|$Nr<1p&|`J{r0uRUaZbE+!_tvdo^J3^xjq>(6f1jvDl{Cfa^ zOxZZFsE(AiuW2nGFk5dqQJ>kK(R%L*354w~OfHW^=@Ah@ksFYpSWtUq=NakV9{z#3w^rR`z%+(2a%xj5-Mk6a)kR47(IHqCZxV24dBL>* zrOPi(B10(F^u^xSo6V9RBn(|86ld)YKKgS~+<5V2_qz87&inVWebt^^asL@-jR|wQC1V%}pR47JtqYsyck6c*Y#4VF~iNtiWIH(@(7s{yx@&0Xz zClK}pc4X=)b?VZ)&)DsI-{K))Gk2bZ#5ZaI83Qx|q$XHSA}L~@>>=5yu$eF2 zPp#vnqxU*v_NCb!*0ky7V)p`<*w?icRklFgHfoHYTlF)W+;!pG(yc~;)L&Znv9DRz zkwRJEc3=u7H0azsz92Of*j#xsI&&3Z^}*})Kj?sfz~~Z}#t%X$5lUk-l%2*z5b!ic zu;ppy1ES>Ha$M(>HFBGJ33$tCJ`RdR07V}Qgz#Xau6{Qu#s#qP8?E>mf15ROkgkm8 zNqnuYzO%{({an#OZR^h=ILHPTv9X70Q}v+R0Fv`HjNqU{=FvThm{ka%M0MAd7$@9E z?<)o^@FWI{fk7V5+J0J(=Y%6@cp`QEQ)SgElwK13-BU*cp*F&HXDzaV6p$iRpY)4d ze(IH4WNXSjHLz#2%w^LU!&zAl1flRGY)Yk(w>sP(b`qQL9>{;bbc+aNW~@5O6}x7Fg&4 z=*a@oDOzXgS~u2|&-=8SIC~Br^eLG*TdaTfsHt+MJdrQwugFc7LqO~v1=I^yI!?=e z4X@4M2z8GUhCa%s{%JXW7c?p;Xsu@qq`E3Vt`-Ev0NGu$@HLB;BdVxr?MP+i2G&@$ zzp=&qAp{cGI61=~I^`XrVqKK>?Q5M<0Vwyg`8eO8_plEQ!Oge4LnD;zMhd>cZmHt_ zWmRlS8s_ef2$u$z)YG{q*}6}Dk!|Kj5qa@WH?}?jK(54};CAZ9G(3lKA>qH0@=9LM zyJ4*7Me+5QgN!>3z5dbF^)PJ0Zy!rE9!k=h%|%R8K4UGKN|0*@`6g&Ua^ihNaanS2(5f z`b_X2veX7enfKPNwRN&c#}++j)z5b+yaqX#=}PSn=Wdma;ImV`t0~x^TduYrb9tJT zZ(|kz69`Z#89cQ9bv#LkoiX)f7in2=D=SREl;HwxHce&kFmqp&o?qcoD31gUO{#_NI0v6!0ISg2vPYJDWF=3NzxACHMmFs=# z^&7UFYyVRJ@B(m`CBC^V;iB7)rDs|2-rYa1H+8jic;k+TDnV=D+e4fF^1EsA8HW!! zy7wesg-=?>k(LMUyw14GFVR@*6sdP@pOM&FXD^0?sJwY}aeevw zU+oQC&b3uDc-!D_`<`9fS$=Dc{k82gwK;Emp8kkknCpsOTka6r7F{8)5^?5j%}*_P ztohcZBFi2RWuy7~5Y5rx`q9sG&xY5QclRIF2rK~uIcWBuZ*u{;TN6H2taerMi}4jF z_Z56!huX(S5^B3CPZ8p$kCRg5;zdB6D>%FI9RtAc7heiseT~{ zU=ZyuF&%16@C}dqz(TZ^sa33Ns@IRXaOKdD++I0TD};~>xQN-)p}4RfWml`ZUP34m zhLpFjvPe1+MD^XN;uSNBR`M>9c9joR4|9=!qZL*r7iB#P)%m|?^(xT)mzwKqcN`By zD?9#zlL$)H2%%Ic;JYa7upD(w30!13IsAD$vz~%yRwUuK2T&Qr;`ijl;=oi!Uo~`y z%1~J$VXUPUEE-+5D%R%W2*qSoKH#jqzbd^Irn&jv$nL_ffo0#Uem0D4SCB9>yljLFc)BopXK(pm(l8BJQF(@+WKkoZ9lk5J z(AKg5FjJ8Acg01fP5Z?jhsaWh2=C`fL34?c8AsJ@7!7#W5l%uQj2!^P*k%NhDI<+y zBiS#n$piu*8M9=lLS#}!9}55L8G1OJy`p5BrpcS`4nW8;u-7A;Be|L!=Hwh-*cRt! zCWDk>N&^}Q`0@#fUNUAB?40V7OP+Vt2}gj)5`@yt`CD);CwcyRwe$8|2+WeDiHoz) z$4_Y_*>6O;EEkP)DMcPLZ07_DnY*Y$u!4lNB#O7W=sT-PPHWC$7+b3rsF}mPvLQV5 z{?Aw`QY^JRv%y@N3`uG4RDoEsVOw55HK_DmzDiCXd6UmoyV@mdO_kZD?r{;#+MvyxjNg2hf zjfq2lW=LP>OC$kQMzL#R7p`>yZAe4NEIa2mBznlPGN+?DsXE~8i~P(*7Yl44TSn>t zQrVu5)S-H*#4^xUp<#z;^GF4R&?ZS&Ho}z8ZuMt3W01^4PAtP;#sVZ|1AFV%b8PG$ z{{m&W0z$_kmCJZ2@~qH^NF86}Yt*P5Lq@~u7*k1D)~O*v;uetdve9zz08{7pLW-lg z0;kS*HyQZ>tHQWtQy8g>v4wMLfpEEb!W#^6RWXLxj8~fSHFQN^V?&b>wd28-UhaxbUi^8EF>+P#%}PN zCn!ukDg)oe^d|v1*aNU&Gu;zY>EuM%BXNKV?}oeZom7iq@qQo7_565*d?5p+kC9cJ zP)?>8GLwDz-AdP(NffV-RBe4b*WSV>JT%v0jHBqTWb!$q!c zf4ZJ4k9I?5FizSJDa@3%v;ecr;7AK61#V`9g4r}2SiQX=utEFVcO%TphT`?y1=Fz~ z{9VDzWik%2la34yxcyA(PCEqZwfVFM7+1UQKhJv*B>!m)K9vn=vY}s6SYS;(FO1TR zFu)-CzaRJ@U&fy`INLY+CF3)kP8O)iw_ysGcW3H`-n{uEt2lsWkumx)NMU&1Tdz?k zyDngt=Gm3KQG?2g{-2E&{pna2c4Fi8mWfLkR2$UQ#lIcSb%}Rez7e;R}tj~EgF?qJO5z_ z{P}e8>bHh(zb6xZ{(J`HTZPhF3Jz%`T+hQ}{sScZH{k95_eBc@BjGefr2Idn(USlM zQ3zpQZ@K|2kw%+QY1uO9M3O`r^~hJCTYIOn_`|2P=q<*hl{LMoG}jF+Hn|iw$zgNe z0(C6uA3FhPeoI|S#&Qqhp}zrd^@hv%C!Q@AHZ?k9RrF0ylj)a&D{dqN3oZs;+%SsM z*S$YCTo$%zi+;MVG&Ea79LE(cwWD^N-v-oAYVnryXmZh&U4iz0o`99QuH zf>C~=QbJ9Mo>Pa=z?84cQ1EBu_GU};1h)K>FGrr`xe_^I+-7ET_c1s7XdR-HF!xc1fBm_b~))--?{&9e=U5L_56|=_uL%k^nAGD~=dG zb7R&;!CoQ_Dz4wN1caJYhDCBwBR=|hR`3+sRo;FI&4Dd7aX`+57ZNDc z{BaOS7UA|_T%>>*fN!Z`!23~((HNaw}a-jlnxKJEwuFD&=Fhv(19Tc}RkSaX_P+p>H(StQIm+>gAc6Dg1&)VPjzy^%HQcA2nFb+i+sb^JRX% z{OlFe51$O_@$d{b(mM5}RFOJxRKn2hV^cNAA4WpTKW8{#u9uPDq8%IJV|I zsG^nZObo==Y z435m^-q-f@#{8ig`;A+ou+2niV$RE>plzB)2)fwQ(XJGg z6e1D~qDUYS75%&#mm-DNOl97&(^u3V%LOW}$mGtP_qug{s- z^dzv46l%M%H>_G`j}?m})E^9=&fEjkM-ICC^W``=Zk8qVE-dK?R3rhPk1DK|%bQ?J z9InVzRgRq+O@W~QmLr!WIYRn(j_A_~04tB7OFlT?wI>CsN70-P>%{_2yA!E`xhOqzQpq%IljQ*+MpcS6 zc=boe>giiVqv!x9Cs13&+4tn?*9)7bvC6{mHR+aT=I@$8ICGMWSWd9Oz4T#jKA9$8-mt-8}w#p2ZH=cjuJ=0iu?G zVY3ZGH$+8?`*%B5QObdBmWluT6%qO3&uS$dhZ0oRG@k=W zguu7sqfaY?09~l6Lqz38x}2b0m)0S;*+=$rY|#G+8v8rS=MaQ{A7Pc`G?ir-ij_MO zmLZT)6wP_6n^QVz>pzSSW?M#Dn`ioYdR}GTZI{9*&XVtka7P0TK;io%7|B?9Q`+%` z*17%Vjvb7W%+i1E%4S)IIr$>WBGKDV)gU41d^7Lug2Qr?gV|bbRbJ&j*MIDBL^_5^ zGd-p158kAl`fRGY@6N|Zm~h8ycWzvl?8-W(=jF-)q!Yk*D#iF9n_ZfOob(l6KKJA} zmQB6TjQOx?USfQ>Q-cR`#+PK>nlwLps+IWrkq=@*nweaQ@!@%zu|E0?Et9#Ds|sO83T~tdl;Yu!r;WC1(!@d(MS|aw zVhro&E1jRbny)%WLG)Dz&iBoqE8Mm> z=HIEKIbMkd1PuDPuH6sygBF33$nTLH@kiE5BXWOSaQK@!*u4_hOLxln}TJgH%WD|QG zIEdsUWL5B!zaG5zERI{0tXZerrMwtI9sKk0Y{%`;lwXoH>(*c;yLmAxaHVlL&a~E; z;-rlH+cT4|8>XvBwGvAvapMY&WQk{nvToaHcN8%Yjz$yRGUuOXP*29_DjKSfhG)`V z*3Jalex29L{*P=>e?K7gf43e@njo3ZSq1|zU5R3=SYSLq!`%=_*M?&Qh0z?>G(`hU z2)SZgqRNq}T9nD?;3>m(*_uU`=Y~%D{QmKM*r>}xnd6d5oz@kkzh#pVs25D~#^eAGJX6rd_>~-Rh9ll_B4?pI?WHP<02K z6O~ctO@H41CQQlK+J!xgm9%F8FQCI4e`|Bo*WN`k8VkDz{$v?a~)ZdVz?a!)pG zys}T2qECr0bPwnBq2*WNI$OzIiFW&@ratiCD&gO;tg}qYc9h66ZJcOVN$-L7juXOr zQZd#`i+!Db6`njYltc4PgN6#r=_x8#Dl9@;sflI(i?sKSYN~D4hj%JTNFbqiLa%C2 zN}TW-FdQ`s@2$8JP1}j=Y7o6C-Z)!TpkB>m=OaJP%nt z(}+lWXQgKfN)BF{ieJXWq;zamOiM*P_uYlG{Rm5T7pCZK0DlNs=c@x~x$LV@kq9J9 zY4@G8c%iQf%%}bR-u+vlWCU%bYT#5MoKQ02tPlDeLZaJ&^<= z0j%~Bl_}lP*6R9$h9PWP8W_MXk0QWM_(hX3R9pMzW^iRXh=ZS68T1DsxqS3 zbY1FC<;bV$q$2slumuacE~sWBSbl{ZF0iC8R^vD@q2Y5@2J+L=i;awDwK1se*Gy;M zp2PVMN%+BC;F2r}!JC}Gt~(@6>c`yaz!Xe=tEx1D@6f$AqR5d;p8K_h=WobgAM()C zs$%MK;8w}MBa>d}_x%@gQ&G@D1IcI@HxdR%cFF-{oVGn238vzelYn83c6Oc?Iui+@ z`@03|(oI{Ydq&+@c11&wVniBOjj-Lc=|#-BHh+QuAcu9O)AY>G&PFl z83U!g_1ocYxz^Cwu&n^gXSuDDawvGe#nR40+}4n@uHwmaYN?o8Fkd^L+CA*g{XzTh7pS*Pm8>5b8Ls|mmIvXhk{ zrdge*R_A@zIzfM`{41qKcK!DcLt{Tg9_OqUe=b~UQ&;?3pYxB&{)O^?{<#tu&ecdVqdVCUHEyu!It-k^u;zp#6q%_Go~N_p ziz4*%gf1{9OaTzq(CUJm@n0t}G_8mtq?{7Ck=J$}cq(OmKu&0G4adO-{0=f+u`Et- z>wsaW6UGL8y}cI9XF?4iRojQX!-K21A(w2~fe`A^`TJmWA7>+gOhYP}XmT<6BOc~l z6eaxp{Adp>IRCQKTpZi&YINRe%HN8fhmbjx|AMfeA#)&!$qdLGTk(4!MUo6DZ5e2K zFm{+GsbI2tps7E(JC7_6Bnrs(aG8Xmp+)%B^E8roO;_vH_N{HFXEbTCqg@j;hpiC` z7unq`i{nebPCnUEmA)}+O*6HhJ@t6k^kX4}iF7UswNi{Dr{hIddCSgF0rZnpjk+2;t;ZRg}t8BdmXhgp(qvqX8 z-KQZlZVDLlc8+2ICinZjl@IN z_R%}W+!5}}3yb$Jq@+q|(k(DwC#O(y#;(`)eXK!Z{ea6yU&zT4hDvW-_ z2Na^(>vJEK@B9&Q`89x|blCXxbRYii`nK(Sw!-?$u=5_$30XU4=Ukg7Qw_Zj&Mdff zzmw57Ctva@M-}h&i;U1;tbLqL(%xu@^kH|}Cle$h{N@OydXFwTfwYsyc3RBy{qyO4 z-ruY`!2c^C`{qAx`u$JT(icF93=JhRpNcMf4oXrANvo(3lM-LM8W;|(aAk{2MS6)Q zb5E})BRv+VbLpNX-cG{##w+J2$iOpxv1|^;6WCa!U;=m6-Eh2(NORX5*8>$d#=7OR zcXsq0T?SE2>>YP<^SsfvW91(GYTIXjhW>6S&J4J4#P2|6mtm2~LD$0l2Rvq%M91WuoRDB?7Iz^kn0r)TCtxyY;`mhvNW7qG|pPgA|-A zKTLX*o)SX>LUNb`+$tPijHDtY?&f@^Y5La?HQ*B-^MEb+Aw#`Y$fAWGdX;s|-p#! zxKbMM2V|gQ^GIeuzMq^X#O0;iArDUPAA?EC1}Fj0DXHH=`*Vq18pO0B9b4uAra%UG zQbypBU)Fb`pQT3$?gqlovtArsK5MAhlFX~|WHDmD=yZBMKEL6d!=Y)CP@J{9G`{`u zu>6xIWdRXQM$lTL;TvF)l)qDAaO26a11~r)~#)Rq~6ikOCxGE*yQ0(PTX^M7dny zH5CC6)V)f_iS5$&IjrR=Y;bdNkI)$YP33U=cqSsx<1jq%nZaWtuK{G359q%dR9*k{ zAyaR*TNc#*RDrL`;KRnw+X50GxBlx$7FbQ2MxxX&epP#Mb#$|{D ztE38OR46n`5+S*xCLsdILWy~Mkwe?l*Y9(PP?Ls&|floL+p;P^oaNneke$(0^M0@~hxU?iK7F9JZmYPd zL+iozzyIth=x6^6jQt_dki<%Iy8_%ERDcR~2VfNv8bYk7=q5p_fh%CNcd^K*gGf>S z7~CR(p5#W90!Z5SY%)ucgOgshw7fX~jt?th*#a^KR}sS8%JtknVZo!fwr8bl!1%T6 z(uw-?gP5CZwY?r*$gNP5E$vR-OpS~`xPLM3W&R(n48I7@wf32}*}bw*=(`J)N>e^4O*F~+}u#|jV*wa>|^Gyt~$Io8KSj_53go3T%q{cra(D97XG+-k0x z1fP-p0V-3(V80x}T3q`U5f-1NNu?@s~5wDj4lj zIziWgdM?L-wF+=j`A4#B`&SwqxL=|s*Bd-sUVZO0^$%Hg?ZTsTR_gR%GHVKM;r2S) z4WPkAkS5_@3ue8BKyKu-pq+4y4>^ffkR`$8xigEsOJ0 z7q^B_jufwAUi$v=L*o?-sb|yBQfJHo=XAteA@&5xL!Xt5P^OB6BsYc7u5@TMdu$684iRY9)jE|q zH1x~i;9c0L@%*R%BTjr7Ix8r*L1*B+X^s!pn6}<1c}ogVKFjL3eYr= z(5J!)i`6z}I)2G@%mZ?X8vBvh0=>nbb06Me+lvk0r-$ibRrg4S0b!r!-?`h%>RH7D zqO}Myg0bzH@p+5uld^hJ*Hq_O9^0BMe(?gW=q-5&(@ut)H?5;}B z5+glRrXV!6pjbcPUh4jo@6iMLap!DT{k=l{$5@Ai{jmWSvOx&6lB$4#L$OX9DAJE* z^6b;J&`EA?9m$Yfv+8c-a8EfBkd)e^Jt{b72T1V9v7_4Qo(0Ncxx0ZB9Fgpj-Sw0j zH@rcUk^rBwL}3fgI4lzUm^*R4<;quRguk_d{@8uXe|$t{pn@laI7v3sK8y_6J&5{G zgfiUb&mc`Qpa za<>>g`D^Zj-fE$&9>C`RqmRJW&)6d}q*UlU^6=!wb8UMu0^UcT28d8DT^AAoAHxzz zvd2su$PeG%J~l+8#fF8aP5!0Zd6c9GY9ZQ07k_w@8jmfhxkg+{zA-n}TZm||n3Vwm zAs&*iR=GO<{N5k=0@ZNqv>G@if0K+*g*oz~r8eZz*&8j^aOG`Ew7X|2V}Gk`O}N^5 zU6WDj`=Cg+xasjiXb{4wkiI$U zeC*$8zdxr$1n|(!i1`C6Xcatri0vzwB@@dX*;p-It^x^w;!O=T)?va;mh~H{2IE$_ z<*U171MT~}?VW)Q5sbN!vGaDoOJIgLwJJv$m;utW^gmCWD*@E7MVrK7<j{38AbHa|zZx}yC9i%nVt_A|``+~3 zv~y|fwS6~p=sR~m%P_ccBoyu_p0a6K^TYk<#4u?ifJwaQFyXAe{VYAhw;XBUq0P^s zkw%2}9D-Xqu^&sju~#R6H;&dk{XObw{jQCFr&0d=V&DJxh6%%r9J+8{`efMiO4fmT!752M;ZDxc4y7Zz{S7%bSKwJvU*Id z+t*H_%8viOovE|+=3kn&AzldHS(@ql#8rx#_mnLidCpm2Mf0BpW!5qb2!Cv$7%0>A z_*;tllz@^b2KDKhzvZ|hlSmraGpUw0RXy2l-nUy9pLzm&5YIJUHEl}${&DQZ#+ikA zNEATKO4sFtyb-hCUM#YS(i^~d?PD*ye&)}Da;~Y9l${Es9l3E%DJ7}l>AB~p(evp@hiquT) za^J3W+!2T++d2Vc=BsV`tKs_PiD5uTUt-6IM={~YvH^NxICJ8!uG!vLKl7xhpDKqZ z#Z2suU(gM%uTO6HvuXa8qd8lW9M@60t@6d^?*?LlM=*a5@<7&FeQwKyOWxk0oGV#L z>Kor&T?bryOlwB(k+^;A=WTQ0X(LSw&rehNJDWOw+w1-zF|V;>7z+ z5rCJF=1BB6Wp$D&cQ)|F1_DOD$#O2N8iEtKpl zv#q}ep3TtxGzA^xX1TvH*8g};|N9S6Tm&>>ivNaq|1b5O&NQOdU;R+$OzpJ=0N00+ zt+0yL15mzH{6~Gqlci=2D42vrJSh41$=-udGe#E2U_JUvLtuBkhb+sx_D}b-=2?x` zAKi{;Iz%n|BCnGU=iLcP4(yr0mde^c{ZO^*n#43BiOv)1@0X44@XZ*iytM&aI0_e^`>dE%DxiKZW)UDpG13mv-m z3#5bVW`V&o*M)#~lYR1?j}OEF+YTZge!Feugf$@Q!mk?ux=Gf*c%AHzC($%O|LfQz z&T)N4w~Q@7?>eq>uvA)#&H^rFmU*honCbyO6um`sL7L` zN8HMby(^|C3yG6)8*LXw_3fKtCb1I$Kr81+xzX)Y&T=Fy0T`r+!I91l-7;0V#sm@Kt%PK?=O-eI;MY`-}660mH+z-^^bo80HE~|KpMJfHBkCf!DK$pV!e;F zROn?gP{0)h4}}+ka<;^V4ihK34;dysf%bim8GZtl5oF|k`SUKW%J^D58E{4_uiDZ~ zi)u>7be{C*_X$ItFtUcOfWkC&(_Kj&HxN*CFvGg@9Jx+q9tV2;;r>@OH5_gjyTch- zk=t6nM;ABje6Ut$mXrRxX~*lDot{@mwrT^{zkf42Q8(NU6e)~kB{Fh4bHqLoOXXw# zuZXLEw8a1Z1GG*E;NV67e_k5qtgWyv=)VSD3PP!?MJ4a*{#Zc1}%wtZZnS>eSE&R+If|dN!YWR z_8ZKxpjE!(Y5!8!@wC|64Fihsb4H}PkxTRm!xNd`1irbsguF8AMdM8!vhwrVn7I0P zHSs?()p8owOlEk1ep?;{VV!j9!UHrgTOo1y8!uL`s;K%)>0@PkW`p^svEBej)~Js+9{GJS8>ocYPEtyXM%ipSx5m>fNe&+8357U%P{ zWD0KmeA=LZ<@5)w+fq{IkJe2ugJ!4of=C1x{m|qCubl%x%*f;^+QP)UP+4V7Bm%G5 z2Xx|fMv0>i9>dJAj5QCz@(fBvWJQk2WO`+`o4!9MLksd!t`jb!GkjG6L}GZYp03I@ zt5NXJ(4vS z*Bxbt&F_ZWdx&@wJk1%Jtiw7|rjEqsozway+P5jmk=mPIO`I=25#j3)@f?egQ0R}+ zJC{)KbC*3*TiBxwE~SYkYl7d5?M|)hC4zFw_3AdFHZm8g89U|LUe5 zE0aP8mvQpv);L}}(uY24#H@`H(aY_<7wASUZ_QixNx5YpH+6_hFV%JTdx+1F(5m$) z)mYQ}E`%~v{YzRIwtY3k0waYab9>Sk;e*E}J$Tt=n!L=@hf6Mm^#eO!**h`Xjjso( z_@qb=nt!0w4?C>7+!)yuzaI*q^N;L;mY`sHi_CPE)f2CJB8#zx7V(0AKtn}8vo+df zl?7uBcFVsCf4oWhvGO3{&F>>e^N@zW4$HiLF_dHRW^2pu8)Mw{599FsfGO|( z>#Y`-4-B47llb{=-{-MBDu%)8RNiy#_2LJ?9f_qEv!--N_+xx*Wp?8uXS7-dg9AP{efwSdFneI5Y)=EXievI*oh{LmyH7^9xrl$l?nQ@i)qZQbt{2;rw)*rao>W6-+r>YOt!_cW>qLN`{->B@wQ9pZ zpPQ+U<{Tt6vCgbO^c0cuDK2C_1t9=Hb)cQR%MmdDRWI4=Ln2sXI>pB|Y+G&iB`|)C zjt%KHDPv+Wql?=|3rg%4Z_e$F-PA5?T*B$wo0}8U7p}G;t@(8Q<-I{qD#>jwk_1L5 zPES;ZPWZ82HgE*H0la(nxv#akU~m5Sa95-Nu$hK2^LfE%?MnLrW13e%L0|BK!j!YU z$EUrELbznjY%;v28xwy`*)Dk6g)-Th-4f(E`Rk5L>+~41_GP<7Vn^Z01#&`Y-&woM z8aGxe+|#8BhF2eQcM+Vwj4>6x#P^VGHXG(0RB7sv#-DH~xRm4Q|n9yPzUu<`i8 zc{L0TDg_wwW^V*J<>P$YeIOt~FRwbar0#0-sy}l7gZLrF6na^~?NI<-77Dr|vl+%;-9+W)BFL%awV1#G}ol|&p&5@A7SEGF| zdtQ`Dq6vxZo~dF5KQ@sb8pftH1NUj9lYaGad?V3FI&l`E1=2ZLGVhU8&>@+TlCpZo;F#CDbYLYNfGr-` zxnbVQVUoarQ}`W0$o(Sxv5!ii0!k^8DV^Sf6pyML#axWUIv=TkD@{z=wx>59(eEH- zCbr-7YW8e6cp!g?$4t-;f_w`~ zZGd$DIn!Uc`&U_YAr&^N;&qDDBHca{H ztI(d;F-m(KPH9(M+cBQ93Oli zx_)WP+odMNs;ef+GouF@mv-#59pYvMSqpV(lh+SD^4w$ird&=)g-N_Q{Ql9$8|QW( z4Srtx9vvOXZfm*!^O+6qLsFBy0*^vT+nLaI?aJs>+gVFsyLd9+H}KN+=uR^id+)II zt+gSidsM4Ku}EWr(Yk}Q%==3}=HHJ=v{8FxnX`=Crj0}VhaV1}w*4ABHH!Y!?SM$v z*g>_mkzcH|w157k4{>}zXEs>&1FndhE|~f4fvFZS0U1BZP(Zu+ zt6vq&u+;>yZC^?Duim!hALmxOUxx$DWV|FDWj|~4Mre7i>o{)Uc+53PEP(4HBCNuF zPG6H0=O4E%KF}M-`o*vs1c4XBSQAl*?Sz?1FRL0M37f@VBg1}*5|cJb!T@|51soO& zrGu!zVZ>3U`=;j+p(SQJzIcq5;u)^OG;YAO`LY6KQ+L=i)(0m;iU3 z2teu+;|&LMF4!+sNn(bvLLq%4utP|RTGt&mDFB|6+1i2Z`Ww`5T%b#UGZfG~?}UcR z0Sy#!7_hFUai>QL5I&p?a1zKp2*-g0&wzcd6O!!!JCg{6YsE>300|;6NZEI>hqfpJ zTA6rxodlIwt}GFVoX9h1*tkdpF7U*A`N)%wNiA;9QcPS2H|e7VaiJ$oy$3G^GD*XL zvIro6l0R3>qb7bJ-_bDZ{7_WU&hoEj)0AW$5pbTRTh9eONQk>VCYdpe9u%R=MA^}1 zo0M+GXo`-$-9uvJek$sC^lDMTLEdzI^N3w6YWRND-UL5-pkbKS*&p26nD5J0n z;n@>d5|2G~;G%db6QMz6hyEy<1W(3hl$O6dRpBn)$P=&N!8;haYxucYm79NxN{-)M z+u$m1jKmBw34H>>v668AZp4UCJYd-BaHlnoS(0|KG$RA|gK6}HW2l(Suov!SWD1BXfk2E6j= zvk8@wc~K`>i>YIqtw;h~hX8I!L%lU8BCe)gPOx|+;^Z>nZ-n?U1DlXeLS06wuHors z$Mw%a$r%uL@;jnKFM5%Te~rb5^E72Wh$p9tzK>yi7sX;`#lMmzN?(d!15Wb+$*KX+ z_2(&6X2}UUs-_p_PcOf+5E^0WLuRgAHS)i|vn5 zU_lhvnI4}-uAel>H9y2PRRpqmr?bMbHylv}9;%NahM~YrGq~v~`4%hMR16O$b~hku zccIxd5GlmJDUGg8GxNDu~?VQbD=UBnzhH6DuIeA50X8BT|`5b4Nx1WvUlV!R~p z4Fl&qwYeHmpu)RQ_8v;TFc^2+y*SCA$(GfX`(Mzvkmwhcfx3sUfR0S;^9aoQT?lXb zp(}HU0B&7{j6`utwb_=75vQtQv`f$5Npb}4_BXO##uXS`gwHe{apA_)nQk$e#_Z+U zSBGQq2e^+;Rg2w)Vd#>K8`N2@l`Xlb+;2}LnP!BQ?z~%hW}y3hYcg{yLcECijmfqyVKIq62^5;A0KPS7w=N%1+lWX2&j5`Z*A)D=TZ_iyhDlhC)ekL4;Q8d=PhWOT_+gx@go^(K@GFM~E!IXEkZ5r{P! zmNtpsP!_lhlt`NJvI~_pA`V}5^mA%Bb-r*mCNeb=!;1`ea*m!RP{C^t|jD@ubJP{58+SiqNvo~b(08uBm)wJSAOX62^4jCT1yVX?uij<+=y}=~Q zj4OkpjJ;pY${1ZHDt9+fn@gx-lQTZK3Ew-sEI3_L;J^I+nEx2YeM0*rJ3>+oK-XzC< zs1r4C%VG}ODKqiQ*8SqIV;p{oE>O^Kh@i}+hrfpUJIMG|3+%F!(JhNmP!oT_LwV6q zfdbf`nvIUrk~1r0_|lY>+x7h>OalGRL)%La31z1a7fR9_GsT{77$je47WFS1(zbYjyU3Uuqvu{3R1%uAvrx;r4gw;z0)H z^J&5(f#?(d>9<)Afi|pG@UVUMiLEMLgnRd$L&kCYP{f^X@Ib z{9$E5WOGE;R#ey#`|Go)KJM#Vw+3su;;(JCrJ%}hF_DWjhbPzJ8n=e-*}Qp35Z#+M zZ_vf>V?L9}f94{1mN~TH1&AsoynS$K@WSxOB~y=vVL~_=KYKy)jCHvs4nX)`iL2XD zS#)J7>G+{ln3ufa&)Y^e$wpio9yTHSce_~G6^XY~@D`a!?j@zxUn1Mxgm!E69pLTI zrK;r}f#n|u#UBpc1aS}7p`u~Jx>YAi84kfp+kQR;$NGd5XReXBLsF3J#Vp*AXl+3R z8drGK*BtZ-ri4E)-t)Aiq##w62(zY5B|k)9c$m!98$i+FqqA^p3QUtcWk{b&IX2bo zbmPY?{0`AB;HxUqWK)`}IV<@U4QGk3ow>D{5P3eaC z8OcFn;aMWgkfM3r`$Ky!p#Cl)<_S87Qmi?Pe127}T|+H89}#Th5+W^O!IY>30sigJ zcUMnE<63{3ixq$pLEu&m;|a zP9I2ny%o>d>jC0Mh-lZfx;6Q+G9M&omc(?sU@5CV@b^t)fY<(2F_EkB#mD9@ceXk$cP9l5V1c5)%0vSaUOk+Dd7!FAC`T^ zUW>G&AgC0Cmk7|Sv(Khs-igHO6dLehxBP)^wQtOSbi%GkAbpH9JOnC_IyX%baL_Yo z2x}zU4skvYLHg2Am!Iq{fG3?U3`s>l$wg}pBfLd`$*QQ}BNmgqCO!{!w&=+P>=vre zEx*6A{4Nh+#T+HH^**VBza!(=cU7dM8csUijox`3(3n0W7rMOgZT^Mih%NR4C)9_9 z!~&VJISO;-Iw1}m^ly_w!2_SuoMo@?WA7e4J`=~$rM8pSO_CJ8c`PrL6qF$&_+c|k zyVgd!SKxks>|`?Mu*q1}KC z^5Lm=HHK?yF9A`!Os!)yGk?D;k$`zaM6_qAN@OX?WGf5Q~O=b|c|0~#VPd~-c# zu^FRzj5SPb92WGvr=@W{Eb>aa_CLdxOzuWNMT7_+JJ#)eLbo>3QXnZJvc^@ut}=oyyF z484B1(E0e~L&K*$akc&rl;c$Lc5;RycdVRNh>r?*mm2&0m3pG#RJ(`nN9$8!F)jx9 z5Upd06)Ye8mq+~7ZN^jN+*f<2%GafxCuJ-i5sq%yKB02)q3rn-xowx{2A@q}E^je? z-?qArftS_JZ{FdmlE}vKt13Lo=?$+Y^DrVmfB((foFgv<9_HC&Z^v9pU(=TOtyrM9 zM~98k6EOPfW%C}xWn-%OGrZ?9ZyOGAK8=i^jV=!Z!Li|50sKi-nN3-k%feBV*TaiH z-el>&-)4fWu3S6>Hni{)ZkeBlqvxbD5A#2&`gOsKn|Th>d>SgV)G&OZ*87YS4`H9c%vXi zv5P!f%G2|^4?HwTzgeaxK-AS{01()0-wLl{9uS#w?PT8LnTZz5r(INgo=8RmfK*e9<{_>$%c@o`c>@Njo9R16&)Q(vmDp#6HLaYPDL3X?7PXEnzrK+|58UfD?y$v6)vPIai+$Q+kBDa z#QdBua|M^OLPJ(mQ%;tBR0z!i2K+7*C|b0vexh|@q4R7a9eGQEemXET6-|L*{J8rA zDh@Mjl>m&_P$-oee-i!n>d&(u580bLn;jPs6UdGElH*­G$x*lye=za&aG6n zVWyb?srE`wx4OPY5Oax0Lg@}C?aVNb?(6B&Z=ta~uUPT{t@E~DB6O$L_Gg*q6mFOv zm-l`Ctj)&esgk13)1oO&__>A7RoYpyL7dIv)(iF*_{|$0|89r*N3u5`XSz-3T!m-H zS82!WZ1F&&RXILJVUNXHd#t4|Ea{)M$Q9K|Bs}jiX#cQ|6PmLZYjZ(d7-8++;u-x z(dFK^Yj?YLyrWlZs|xkkiA}AQb!hPN8zdJ?d7t-} zX!FP?AJZl{x5|51_13Xrn=|)5d%nfhr6=yAn_%T|o-=MtB7u+4k{Pa%G{53=#c&Uv zu7O`!KLjIY2eN=e7u`|6q|Q82j@Y@zle8o0sf|V*lpUQi zCwj~0>pDm`nkFQSqKob`da?|AeFazWBQY_;Z2zVai9{X(uXZcg{m$&>$0UVqY!F{61@gRloTR%%Ox@g+4DfW?O_W0V&oJ`Yq zzVO&5;>k6aFV5xH_Fw+>q-|#Y6bwKIxdF9<`udCdm%}xU$p+sGGz~Rd3bA2VV00I!#9=VqX(NVhV<>HOCERUgpCA zeQmXL@yqW84g5ypruKRV*xN50S*pa9CS#pa5Iqb6QyML?Tm?rpdf3@FkJDB#3n?Lq zpb-c+ri$MuUssnZ)RRJ^gfL@1TXTw~#$Ee%OSWMa;R6Vpx@J7xSr`6(Epm6|o3$LP z;oFJ}P22CW5ML^(_3XF>j;+v9EPu@pPjKPdjgrN6s{q`a$LBUmSMC*X(6f#LvQRE; zH7m0`Bb;{r^r@N*7JK3Pwwq$uQY)-TsMXB6cDHptRP&qR#rvhFi<*^F1!loxn%M&l z?fq+%$1YE_S*RT>L#jwo^^Y zu0%%$6`hU0n}4KpS5pcu-3IFhH)O~TIkp`o-!0H~4;7(exiSofSRygi5`@`Q6il?R zQ|HrL+SfV{t@S?S)F#R(Jkl9LbkF~lvWp6H7NnXJVS7E-A0^$i(y-jv1rG(q4)vmr zPFZmHV%thRf(F2>J>bIWGmaU=ll=wvL9rkOG~d+y)RB9;=$ti8XwO-kLlPW5E-TMM zZ*((?uEHccv~j-VuOTC2`C|L%o&{Zf+#`;mr5=8KAe4vl)w**vqhS7h^Jb%a_nB*= zzTOIYqTCa_{?~r{e9(T=`l9*p{Bp@cnLyrSA_ZJLNqWQZ}CCdUWR(fqW% zTn?cLZi~~cyeN1Q>#(n|Bk^=j(!6U=kv2RM+)hnJ)AcSSiy;@Nd>Y$u02E(qmI-jxjufWPBGG!t0d0}^I8!pfi)q5C#2s2j;Hk-0kH00MgfLL`X&_{b!l zH`&fXQ?hA0auq{w7hKH^l~TwQ=xXz9vubm9S)~9VYgvX4`}hcO2B61^ElNR6o@_6t|g8)*L;*SA~4P+cG(|~jkT?#5T^rc1+93$HsQGUyau(EXQv&X>e zM-~{bL?`%-i`~a@*mp`iDIK4cs`dQy*Y26qK+{>Y3kJk8!R6LX*0(mTeBCHE3@VdT zMb~>fp7%YHQEzD08ZD2&%8{MF4OB3>T)70~OcI zo5s-qI}YyX2ympy)*vN~AcW77U>n&Md3-Ufhz-5e8G}-fDHb=Tim*X+F%0xrEz1yi z5z`Gf9tQfNxXFpSu946dF8m$Sm`u+`Q@V@}t1AUIxztgS9hpH3inFj63Ex`LOir|* zUsHhxw_>mCSsO@dh94lJBm!ZlivX>iCyR(;ND+LN1^W>V+UMKFmBL~Kc19C+1$$qd zEEZqIV6Oqu?Ooz)zv)%PT|V)&TRBr{L+vSZCSc#xswiSx?g%oDd}Vp$#qL|I5FRRA z@;^#;hfwe>Qil-d`v;W7g@8r4Io6%C{I(*$bT; zo$A}0pR}9Ic44WkU8N~Y`q;Qb)qBWWHo{~Lp5YFwXm{WD?y2pNIYWJ=0jN?__msj8 zI4G3S0KHO}7Qp@%4@9cs>cBK~B1@CT#?DqPnVw35pbCB6$x>{lCA+kgZBPpEi@+7F zKoNQ%6}>G>nR>010UtcTMhjK;w`byWuoBxOB)4UU6x3B(r>Zl0q-^@LoNu71>{s2e zp$D&z=5uQ6fDGrtZ$tg&S%rF{X1nfQbf88#r6^xDL{H*8ah zgd<#rbxYZbiHJasYe#UoL^KKO)`v-CD;e}}^SY^a(?e`3IWEx~&>trCuvCOFbs_7gO_G7vriD(rjgbkwCTaKqIW&Fh|pQaKwMUqf$rReMK*ziz!Q1-7-CoeJGl z1Y7^i?>FSdtX-G~0Uv{p(}Lf_kV$?Wk8cX_PyC%K9GF`C&tF+HKRl1yU?j7{SW6a z&-jEku@}l-1?zjRmfIo*JYe*qpg-arxC9&Mw!>s|uBRXBZB>sk=le?h>i-XL}Fa?oE)J6u%ynqq)I{2Xm)$+cN}LHCvV zNzexKw6ABTFLykcit4Z0RX6WsK5%YRAn!`c2&t%HrO^uKW)tc1OZkSlUSp?UlYfR? zFPhObbALPPXrip|#MY~_QdiPo%-23S4+3?WP6d35BLf-AfZpHvR2+%q>2$Q9=~m1vc}OO_=A1dr zr;ds;ZL&sknX>7CL;#aC1(V>hG(;t>XuHqd6AQQCq(l%$d2I9sExWJ|Nrz!0eGcrN zDZR;FGNPIDHbw-wW8R>QU(Qf#_$`5_MhLMzn90kUIRCzv)A8=(`jNW z@22(sB9UfcBsvVK{?%dQY!;h^2w*BK%qkDOs<1TEC#6{E%j2}e>QO#*=?z642G_2c z=_q`#Zc8Wg{l-$;pGQTWpg{O%4#zwo5ilx-y`$V`|Ni^nMvNSZ4;UprYl^pyUqBAZ zscO|wPy+S`KUw`?>+PtgFzz!_StQ{65>&&4e6jYtq56)})5 z)Hz(Q*45O^V`g0|A5?W&I?-J{u!8UCs+Y4{khW52I zWh?W(7ZAk^EK=lWJB|2&af$DV11}99M+5LLd!xr-$GEL2Wf!z&R_YFME@LQC}6)eXb7+TxRHjSn<#0zJZS!vSMT{C zg$vM$sd{|i;+kO<5zDs9fRorg779&d|H*c|r39 zT4WZ#_tlNv&f>2DkwGhM5G?t zY8{r}@?m%PuGOV4V*crQP*pqOov5hEnez6Dr|*a9b-$m+lTwbXQ4T))e(uJ?rT3>6 zD{Jp+ynmvvDet{r9$0_uzs#d)5BE5(%76h8_hX2H)Hk0zsL()GL7i%Z^6?@ z%5p2ni~QuGSLdrQ))Q#^+*aBrIss`xrD z?BbuT2Jc%Y)xOe&C&H-gwQ)nUmS^@JAGz=6f(36U56V>Gf`F*+Hft=Map|Qp$9Svv zs50KLGhkbZIzqf6&O1M#zAGwR$Tj&M#Ow~Xh6dJ^JbbwGW>MH|sxmh7XiRu~dh6Ji z=ZSlZX3v=VcH6=JXA35$Hy1@v_Q!wCV+M>XPAHon|8Qr(ir=YwYS-NU&{clwZO+Z( zlCA4zNCdKwG8gn!fTnIv{{fF3cDi+;lGGk^{`kWeHaezms}B|1hP{c(UD-J6rgq98 zteWobtyy+>{eQ-@FWot)bT9v8mT!Kx{smn)XT+p;H~n|Wtg86##N&$#Ua3W|GW{y= z2ti>tB7n{@@*XT9&mvnadz|mo|L@{V zqDMU5ny&b@{sAj|#0pAGRBC(8-mO`=rxyK{ z^}h?N{tGOm3Ihh_$kw#PEBa}3l{OSxL5YtSJCJRluv0UAnRNHLpOw0`XIw&#EY-}d z55H0p%MYD*O#GM^j;aCAPFOx;)4A+x6OPa9#KVs6kINykqhqg`H!J<{;sD>moX_oR zW_86r3wfnfz;jhdalm>6Ef~M4XV2yS$1lGBy}D^ZHp&ks;K=h!{ElxOSzQE#!(%qR z6gTxpAul;jx}AsDG_N*?*-Q!U1wP94OVbDc`1>jc;l#SDHdguW zo|)uGsjnz-%?^ICz}23EgLHorkkr@$P8B`>PducBzTqobSC#omw3jrgUAbUd>ASq}sD8Kek4KOkFe%Bt1RqTG96;f6L*ohr&%ZfT(_O+OIDK z72W;*E@&coy;WHgNPu)qH)A{r=MU9fcxEOX>!8*!`1q+kfl1Q(Ra2{D3yN2;3Gu;m zg^iCojy*7+Df|hM*$F@n5S8sYZ|Wn*%OomS8{)*xblOp7e{sRXfBcav3Q8bArkL9| zZST%^%(wSH<}ul9`3 zbq-dO(;g8gU-(RX;q+<3>VX4fAb(25`?b4&3wWC^QqjS`JHe`on@;j~y6Cz+&P6+M zXGjW#!hLoRV?u=da>bb=X?D(;BtTLyqFgJ>m56&cg@ri_-m)2EB+?Qnom=(1BX+F1 z`(*y``FaON4=5L_* ziov_5=HAUx2JY%xx8Uqf^P_mzw4FCMK0fSObGo8YKnV_V5k0T{JhsR*|9=gt+!g=f z*uT{d{&%Y%uP6X#deQEj4^Au)L)Gd=P^pY^_k9~Wujr`*t z>`}Jc+DEnHtCGUT@Y{Wk6fxtvQLl=0&MLTD{J4VVx5gVBV|9c`8iF0jwRzg>W@V|0 z5b_zoLAGKdcr-sQ@b2>;8^2Gq$VK_`I%^R$u9f3B&_Eww*yd1ZGu#4~>F4xt z@0a9%jmon>AdB((5HvH>VsM;%nA?+KcY8Bsk1+FdNko^=GegCnaZTQ<|$H-@JC zNd0&(Z@{)ipCcVa7%~&eDy?tzG)KSAyP@P~H|4v3P|_o744lU&pI(R-P~z7tI8d^0 z*V0?|{M!*G#;$C|NJ)A@=amKP%hUV)**d_}RegSwzbJF|-M_=fr}Y6ai4z9n%VTp# zMobBMwCm`Bxg}OTX4G3spgEU4H<2`RQdUCgBG!pjt6s%lhKuKQNo#Usr1PTG`Li>O zHSb16gr3~fFt^2p8W#ILsoKE38uY1)67+t%Wul4tnm3AHPbyPnC0KpNeZKt-&7a!B z4n(4CROr6)TWZ*nr9a0UygktN`9y>s-Cu2S@v_^vbpE`So}m-GY_L0j4#{ha`nStS z&w+M15~yYjAmKx6ib`Y8-G0{l=2PI$L(3^Uc#HvO5o9v3{N+6^X^*%wes&Im$LzzQ zq*UG;g7P20f53Xhf6{7azI+Y(oj$#K$C-t-h%JxudWC3Y8k{o9NdZ2w*z@~a*m zpI-3ag0TBXG|a&sN2(f5Rg;OMmoK+_`TglWrdt>b0t1j;Av!5`_M)Cp5^?~_P}0WD z&r7vlJMXvuZY9UeFG_u^XrB?J%Ry8CZB2OQx5DiBn8`*$F3I63@4cEei`lH8jOeAi z0n|wroPIHHd@OiyOxrpS&^A^loU9OfDl#Wn&#qhT1i7~&+s;on<#!7s^(I9*kMZRo z|M#8B7J{>mI#39B z>dBJ}TfK_=yi9~Qo6LJM*wC(i}h@Y{g=>PWsztme_<->(BB@Nqy6Q)U>u z*mmwC!-TG!;8@p1vuhTmEc5os3G7sdFtVXoHNTT^j3M?x*BHM+hU8rMkj zTNoPu^fsp>pBYRJ<@fnYT*R`zsrs<)dw?fe?bq^l5#N#%Xf!w(XZp>h=baC;0Tcn( zTj##$4s5_#k8u8P*J~@Rtz5Dc!O4Ean(uCF|4AYHq2FS)va00WKubM^phYSDinMS= zX}+RUBF}L|fVKVvr4tx?r(aAW1O!2oki94bC6HL>4=fo{PZ}4!dsuOJpnuI8!p63U zhq`CU)O-Z+lH`zw>vkl(+wt8^MSCZNawbs;S#qoAH}{RN`lmZgU%hU&e=4{&>3GPO zY@;sws|QN1Ts|_4m9LvRB8W*EGHjvA@Vff7GXSL z`WyvdB;P2sfb>ozC(Bg$_7PC8H+qD^&xlI)&hU|O`)P@)Y zK&xl`!cF6%%Lcf6o*QPyHEeuQ!tALoRVoCsWUo%#4qNF__bzK5WLrqM`n_hydD_Jq zP=7`BYvdAa@J4| z9ruw_m{$NDoe&Gu&O_rSqg%?gytfSz^+2sS&9G8!O?Nr8(ZYDpUy=jIHQZj~;WBj3 zw#z7t!QJCS9nE;Ho!UIs4%}6aL~6{^H`_Y!g9KeXw8MUi`b*F%=Nh|IIE0 zB3cMR?%yr3M-ab1Xnu;9>xkz%<7NqHmmKPqhVz>L;A!7Y=rTy0=BsD_j_DAf8(*8C0$9bneoEpp3K9^TATIWR_l|Oe1MBiLL zMb7MPtRRyl2Ag4k^qVA)0``=Son}J&zPC^$h7SureLMBf8&4AF)v{^Bgtyfjsl~L zwe0U2W19D;`x66na;zW?eeD_ZBYLg%YkGE(#u~GE^v}F!A!8d`yn-z`GOU6(UhfKp zj%y^rJnwZUaJajwWaYFc-r0i4bT|~UbHz4^6(LDv?|~NBB9|xUEM}_1SLBtRkDadj z;PCjPcPG%DaAu`Z$2)cg{^4zJ@wPb~G7d{NZae9~J7Xgt{}m6Kjv_WaY1wzq@Ep&` z%^}QK)ay;l2#dK83U#h15*}j;$FBC5gz~<6BgcK<$KG}spM=L5I|Dy^M1JNy&Yu31 zJg)D{q>9!t&q(s$q+3CXJ$yw7H`L#FcBH$n&#}e+87qY68@$)9vzgNB8`JV_2w(>h zvb6NEEFXDgHWa7wm-xW$KA)1-)6UXaj8J)Fi_J}u3 z4jmV7MP9CQ_E208$r<;C6ykn9#N97fp5r{6e~UJfE^G0FzJyFkuS%;#Cw@G(Z*}+* zzmUf$C++Us7=vv$>fhB8{*2_OS3CVUx!<8>eEm@P#}ILl!twY>?fVuvetxE9C}er^ z-+Xe^vwe=MhlE~bqiTl2SvelDIN3;wdPef?Hn5Vr8;Zx;g|6HNUYPGbBrlJicS|-| z(Bfwt3MaQR(s1UO<&?BC$G|foF3J?tVMAoj5ZjEu zN4`1s0&zX4O@{HIWV#LE$h?Cs`p2_Qf(;?LZ|E%LbcCkkTl1-a$ZRE8D z7&!sg)Lagv=-;5+`qiH^K)ee9*N48~WOCQ+{NbO?<-(7*pA5)39l&{mPu=Kc_2A{W zZrb|zyFh6W#2SPsSRin2UQFe&M{m1CiAKQ9$2R3uZ{o2tdF8jl7jQU|r+G`LcptE4 zWOAqpU;lm+ufl=dJircC?D}Nc#4Gt{*7QIQ;kdy!b9J?GPuOs{gMrVG#^t!35a zOgQ-0*VMl*>kf~rdiQg4)URU?PRK4@t_{6%@Qm6^ zA6HIWg7oyOdfvn{_E*o0oOss#>RGRe=K`*tn=5~Z^}Mx-J^Hd4y)znQL!a)f zCD@Rf8~X}I6hrT=K_|HMnfV-uzLkPP^VV%=gSoC?PYVuH)OO=3nMoshUZe|pwti3D zbH@@~y8IJc3HDqkxD@d1wF#MzP&j$*`;u!=^2{FJsT(~(ZfY5yt?p!jFW%J}Sq7UJ zV)2Y^4=lfJ8n^y+qZyKHd*n5V-u3(5e9IZT31Hv+Nyg>Z_^L^CzpzKowr!lJetaz7 zZqoMNbInecN$j-vo_~YCG1V_dgRedT{K0L#mjAIuYSVh+fpBsr_u8L*+wIhQAmG}^ zb7#tT2MWbwR0{=(W_mx27Za!*{J40pi~xOpRAs{OAVRf4>8Q>h8J>u>8FC}q?ZUU6 zO_nBi(7037Pooqr?{^iBRa3_HdY45O`&Qg+j;c;AWsWWW9d+9|%BI|5xohnLpNK~i zk&`XsPDoC@5K8mEE~+lHa5;{}fON1rwFL6rGt@lnG2nqjEJztzVN1()*e`F9{pzdE zSLCjD-L*or;z8Ny5@4CmRA3X4w`6u^O>5hoC`Z2;rxx%d`K<@Mcfm;+OFxH;QsozZ zzjtTtof007%so{1{&D>RRqVAxvF`J2;-FFczbs_2{r8lg+V)W4*K=m+hm9#MVNtMa z6p;Mv`jIW0KK*4Vu%B{t>*lZT9v+{6WAa22iRO2i)M_X@?M1!w`daXCGb_*Jn3#UX;2lX4p*9U;`?gJuh$% zxN~m&9xWcdb%6^>k!@L#lkJ-{wQcA4c#z73n2EJvK|||t>b$7WuW2*aIOuS+Y{k-? z31ydaNaJF4Z7i?ggW)@wCjBzl>yo(=s%-D^O^RGuB_rMCEU|fYYZ5*Z24?~^_RMzMCdhiZsg6Z z_f^Yr5}li(&1P~Ew9bEXR87ulHtcr*&Ap}@BaOuR0mh+g{_$(tC-yg|ipymOznt`1 zo<&B=VZ%qy`h-a5kCpDh6lXF;iNzlW4*BJ%=@pR!7Il*~zEpSPs1Wk*~vt z(>%Z2R6tHC$E#L4n)54@P5;}!<$YlezBzl>meZsn7aTBM`KNzo_kaI>ez0W67f7F7 z>{&@nkO3GpwLU~xf>C6#z4Y)vOjw5o0D+(I$(aj;*#J%^nU;|y*?evV*+rs z|7|ktS}esCc*_?*2nFX!C(>g~V1YcB9-&g(*7Wkq_024rW{qD-@ArX?xx8_jf@pw5 zEoy2WDbq9Uf~`eVG;f?t4P{if@ORU!WG`v{tWFboY!e}NhBwOMs|0mOgxJ4#N37Px zwp`v$UAQOTwi2@`K*QZrRrvHk3}|nfE&T6V z`s1(=-cjPdtE@MOY1_iJJ#b{L-Qxp*lEgb}%t=V`rB7&@;d0|d%&2&fIXSh?CQF{{ zJc!YwI05wJ4rWB@A*9l+FHwt&gOO6C|R%nUU}}2n#c5Sy1(K2 ziTlpOvl%n>ZoHm@x$cb_y2xqu(=BTc&Drql5j3iEV8-dbt`S@Pbc$5Z8H?+4`7iV* zK2sWOsut#!lyxzltq2kD2OgYX`EJLzMa$rIKd1dnJidR!g^!Er5oD`Z+p1{o@hSgf z#*Iq8b^7$sN2~~F@k}FDg=Z?r&0l;t>*#bj4hk~Syo!F+Q6OrJeIzp%p?u$W{^blX zT~79?6E2k)(|GR#ukgA4nEDCVMn&Yhy&?4Rl0i(3QO41J;PO`Iog8yT&J`h7tUGkI24-p9eYx``W*|XbCc6UG7UX|YMv}@9eIv6Tg|CFGS}_< z;qBDJqgh-1#za4crbdn3^7&Ab@U$qHf`v-H!*r*CC#QWydj2{>EivA^c_X-oJ^S4Y zm$)S1B3SL5zo$Ufg-}m8lKA}Y+|ffi-cqxHm4LN4$IUC)T1&FEC7@YD( z?htFBbx&&@aUMNiD7q!^AQV2d&)MT*2>!MTK$t>+R56&2Lavj}z_Z83N^jYSlX?%5+CwOUZGkTmK~BO>NzKQNXFP$#(}_fcU9y(^{q-)E7N&|y z0rCY)F+hu~KW=j#qj=ih;+0kaz}V#!Buzk%)~7|TOk{|ZhN@5JLQ0nUvZJgvlv(W{ z-?M;RU1&OuHgUzjgq?SbDVzf2TK zjE?8SZL!#zcdiZVb*%pqYG10!_kjLnq$_{g{6eg@%Y^Mm)uZjl3%gB;-kAfa zXJ>};R&|Fk8#MV26^VkvSlcFqfY1taQ7#Y zyA<~tOiU&&%u3`Xm;|q-lHgvj*x*=VU}Z=pjZ!vO=kUrP8a6p@SJ<;LhZe<%Xv!ug zA}CeU{4xG3P?En)RGE1CdZIv|2zTKUX9a*rZMG@EG^ylOBK)+GNyCJX6x=InURkew zp_)~xBkMu_f2d@;8kRk9w1yiyony0!k%7~X;-qrvh(NVa4mjk4j?IA6fI%22bvSF{ zrW)Wfxh+CCSg!Bp5g`A%l+$d&5rSt19Yu-kN`r&dn0k2)PfqF$W~3g)9V-_Ww-Q-YZBSl)DoIObkpF-?&UP;_?{S5 zlWzZ1%kKa=R@7H>qJ-Vs-z>FDCYEe9QK~@Z7=!33DyRfI(19IhMC_~p<5F0*guTAk zwoZDv=lJ%O^080WP2y|8$rKP%OFAA2GIe$-y>PjjBs16_P2^f0;o>;-`+l6kR0z6z zc}&cq8zA{14p9nP4Cde_bv&zOUC}a2PD!$KtW2G77_fhXJCIQDw@E@mg-N~QMnI6M z5OyXC8w~;+1e<$f#Eo^H3Wx8QgAFEIfH@!liRc|M!oZ^7LYV^a*EvF%cn}ej5Xa(k zdu;*Rpk9X(owf60!#(G~)(RaH?MNnCoR(jcC`ra_t}AF2XrnSk6wxd8kqSCNTca?ak19a7zB{=bvziePm%&Jq`Z|nu2_2nO{EPG z_F{z{4doQ;010kaqvl#@fWsYx-(X;kGuXB1z%Im%KSS+g zXK)(Qg0_T1ozCv5f_4;0=|r3wdmZ*8PMF$ZhR$xB6o3iaQYoNSTVFR=YLLu+!-;6O?gxhZHNgoB1fcSD({5FjfIXfaV` z07;){OENgjIL#~r#y<0zGk$z99{{%+gd|j;HE>$A{Cou~s~6r6!byqtWm4Nfodefe zLL?a9(GhlP#~xq?Sx5HM+P^YWl~O0Zf*M!HVw!{z2Ks*7nuPJHddZfyUQVZpU1;mT zREQ*M`z)z#j{<&VwblkXcXSJLwf7zoG*2G?sg&1YpvZAaH$fv5;^@zT3v_^gqLU}) z_yG}j0#2gbHL%J417hEAfL|xtSRK>q4Wt(!Un~_3MhL1B`CSScO*-N!!K}pT_n!w ztR@y!893uC0jPSNC^`@TFBacCdnH_{GD(dp>y;% zz-ftqCun~jp@tb8pJE&~Zl%HkJyKg|gPjSmZ!kGs4}(6`@%k0w1e9vV#T6x-XenEB zK_pXvvoTv+5G*l>J^>ZW#uL@H5d3*Y6t&BL6pvuW#U hwmv zt-(GSXBUGKe+4zG*FmBqMT2gPTt~7M-=7%pRv{j7jvNO{o|+bT^zuCk-bDj{gidI2 z#e{4VT%#UQEHIBzaFp1ji3W#w1(})XFy<3?OfNMPp`v*IkUIJiwDTtWqf)lD-k6%meuYpbByv`&9rD9-Zh-7ee2u3GHX)=_IPD@T zTB##PgQBB}oPJ^p$G~i`9PigJ1zhPR^Of*k)(RhrvPAVP;f@Z?uEP_`j zim#)9Mq!IQwj*>LOv~u@*!=39S}(RzNR+z=Jj=S z+EHz40?yTdLQg#D5Wv`q5ve#m5T#~mNk@TI2{_~X2WkyK3!>37w4^aCMngZ9&B!SR zELKX^WS!WLs0v+3$uv>9%a^INq%dMZ*LR9cVShG}bFl+DiWlt6XAV2iGKuR62rK0m zEf=5<-$~gH9G_MQjkrlKMo(t|>2*t?F~=cKjOJP@n=xFrd6-dK1;(+c)rYa1i4E{(?UtRmGwy8pQZz;h`ladKz$PFL7b>A18889I4$h)(R5R1FVg--P$o% zPa<6Y-&Z!?JO-sgTM2sVU3^`KS_N=KiG-MOdg6OrL!3SZFdBhoKPdP2d$lU^`lgiS zQ4GdPEu9-hzlri*G#L1WN1|nn;P2U7Spcb(UQZaykUF-k_sz@J0ov8Us2g7w9lQQM z(ejAC=|#g0A^lf5T7Y&`o$pgurtUMIfKItwjT~U82wm(msFT6eI$qWCnEeyCA**S{ zNS)t6;?}7U(($Z&#d1~T4dJRAtvmI^^d@caoj<2TC4ox{_EB_+ z=Y3zfT5Dq17SfCuYk;vy1%NPcHtPc;Y2~9^$gVkej6A3|o6AWX$g|9wp2O$la65w5 zG`zT52jV4ba(C(mRzN8x=A+1VVXAuILr~?dtF?p7uHSiEdk)|j>C49h38~k9Agry; zOy~QM>^L(QWoeNn_7P19H0ObfdN{tjxQ>yF(0v-z^NMTZKA8TkoM@M3XqXi2x&5_e zYu}s_07ACT>Sc~$L4m}hns=)Hh}Et%K(uO_K2dT#mnOl;+tJlxwCCwNiE}rj9OdgV zo|`mDVxm{f7bYOjqWY>J&ji!?BzFN zFG>MUmd<{=ju%8*SB8Qqd z^SBce3zr;^mK|%$`Sqlz@4}5fvdMmp+Ac-M6B+*6kHT4rd|RB8nP?k^!lefL;!xXC z1>e)U&!x;NEiVZaR($#&=scYo-Tms1&$HWalG6jkQy1+Wj63A_DtZFu`++JA_mBR} ztWNHd&vJHka?Hy)aCMwq^h98}83otbS6`IqW-q&Wc!|TOuDdB6MSI6hk1^@&JxWHz zHqWaWF5fk40R7ux$bq1O~gHCSVUX( z7;&r0)IH~atU#bUW`|J0@dMcP=KlXTB*-sK%>St>YX8V6pLJ{UL)1B}z+rRF&HpWU zc+!5sma7yGrC(ZEe%!F0!;JlBCe=nC`4H>68@taVqPUZa2Veg3wiA?WDh>PD^SxV{McFxcXIRa=Qno`PuV?rTP8>|J~vf0@=y8=SV?KrnfJ~v>|f~M+rQIO zYFs*1B7gI+)P9y~*6rZEgO4otJkFUE95>qL-dwxU@#}M>H#N??Mn6E5MZUr`8=mN* zYYTInX{&EbFm5!ECe<}3hK~Gf{@mjDGLTPmd5qiKV?<^o=5U_HeJOEgEvTXjLuV<# z#FS3cu5mr}{KA0z!83&u533$$`>UECN6JqPR80eFlbr$No#-sb;bBm|)~7z&>3z85G32*WCFls;4A17euF5d6N0DS-N~Jq0G&4Nb zXUuB1`LKBB>WeSd+_kK}^lJOzu^>y?m+SC(+3VbZvW~t&*^Z7rhI7u~*{LI%Y_%QU zRUPuEi9Q{`G&hsx5z}J{v2Ln6q+PF3^3tlarB5_v%sr%X^)#}uzUoeZPsO=tm;9}U z5|U71GWYwj4`zO@nsm#b?um%I?*D|P)5epU9dM6Z6qGG9Qj9G374p3Y*ozBQVZsgXwbTG_ z6j1nG)FeeAr<=8Vf1P0p3xeC^cm6UFw8? zw&qySV9zG=J-4ffDaP$K1>v|alDXvAlk~F-fo3xwr`Zlayc_8yv!OKI@p`cJ>-{Ob zN$V((X_xaJIFvTNyZ&7M#7kI+T7Dz*HPyd{oxPJ)+s1#uPi*UBiJDURGh|mauW7#0 z)V{kD6Ef4O?zX6Cr*rqXVVDC}swJoNB-$5mCI`=UIAv_LZ%ii((-Lj#H1v^G0C$B^ zL2kilE`D&)R%@puR-Vn7tzxI8h1x((H%Cga^KQziE0)KFcohHmYGWyP7B|Cf?k&B= z;|b7yerBZIkhyeG1z~$rqlTP8?tF+uivZBKq&>SV%c?{ssNMdiE?a2T7J8NMvwx~6 zm|;s6|6vLX&Q_EN%3bXKiOaFOv!^7yWS1jO^o<#Fh8mrr$_vpetg5lQ@gLS5c;yU` zj2L%g2|(KpwL7NZwCHYytW=+CKc#Yblw5P0eVi)a4RU5pYswj= z$7qu>6p){iJZiv9s(wz;7Y*dtp4F44!XdQL<{aiqG|#1*V9bXp+-_CAttiCCxjWlg z@-T0dO3hzlLOI@**RSt(zj2I&{L))+#H^l9w1J1DeK+V`cR?OUT*SITDRE)K- zt(qfG6GrxGYDsg4DUyNj)alj~O@&eRr(uw9H%iHUO&(c@?6S!OQIJUytFX(yS_L!3 zL>X0xX3Vg_YC*~OY=*?Zm<->sO#ohw7{V^*#%I$IqA+bxL0iym;Fch{?rA6`1j>fC zW7a!o1vGq01Qz4QL@a8k|W2F*#4@UBg0JI=iZ`1tBRUDGVpwL_#a0; zmAnf+Pyo!UKV`QOpdQ~IU<|TWezY*QYLc2h2@m0(!1AO6dgfGFiv=!k&iO5tGNxLE zry&ce$7u>iSbd1VXSJVOS6=IUS%{!Po+~v`m?0QRaMVos#$9-M@_?FKj4zQ6#4sip z!76IWpr{kESU7yGRwcOe@K2x zo^4xKxg_(lyXD8}O_PUa?f&23svZCKe7gSQ2Jb)f&KnI=gQF2;9jw)j2cT)0O zVDVFmzyw70ukeqgo)4euucxNT$pJ7r1E-1#$T7;O2!ymPj%vjNgql+12+Fe1Y7&agv#$gDh0zQ}XRuR7V_;n|AnG$)W^#f_GXcZIzBj z^+)HG?iYXoluo1on=RJq3WiBC`*PA)W1J_u7I9#cIAC`++LvG6K+0eQ`L zlE1bj2BtZ+lLh(Ir5cLPZsYShU!{h&MHw*exFpg_uB(_g7pF#Qsq5jD{#u7fl|bY^ z%A-CFfY%D2?!5a=CC#J8nHR@l-$!w1r?*Ba}EfvsOcsn<-Pwi{)lUwq_n=qFq#i0=(ebcu=6tUmrl;MzE^n z)Y+;HzH(YIZXs_siCYNTt9Fp9qRclhyb>4hs9o9kgRDfD*9gc9CtJyy!6u+gPvUAK zxCm(`p1?Jef4p0gYh>+JMda6z)0O+?qvT_9@-%Y_*OcN6>{cVV=>O~$7tPp z8WUr@H_^h)q)dW+NpGFKTr$6-Tn~vT!y;WR#SdY$Kc>T&qZdNmCrUY23wY?+bS)S~S{|vPEPZ~|eT7B)!C<$9x_-Wh zc1pwSL&0_}>mk6i-X1&}e>y#E+#cMXLcQPwv(D}{hA zcrzR^#x*^C4#K>pI?g*NnNNU48g4$oTLp*C)|2Bf|5Ow6vyqu)thgqRT2HXb2nyB2 z#^1ZZ^}uY3WyCZcv{EXo4XoK^ro2EA$jx&W`+W;u=hMtl^$y&}LxMiayZ$ zOsv2p<~3~QcZ8L#CEbv-JyCM;1ZIF0B}ts{1*jWl0bL05M=s-op57y7s4j!sV2M>{ z&}3#_W4veoI!6m{aOkfH?wcx%rn$IaX7F8;En@04H{0MRsD)GAr-9$ zV+Q8BI?I`R3FdN~c}ve6C4g?goD!V-4CBba70yOh1x)QCNNe+^e<4_JluS32t409p zjqxnZmZIE~C~q?yvO`0S(fS6Vlnt}M6qF-^dAkv|f#7IW9=2V zvtV8g!d;?DR;nn{4OB0L{@Bd2xQ-_D6V?dT0_s{&~f6n%W~FX@Djpd%2vwHz)mT7<;se^bjD|V{EaO zS*`~cprG2s#Sm(&a>6~F^~oHu1tzz^q$U%y4`(zZ)0z>|JdEmng)s}|y2&Tls%W3| z^j4UaI)_F!GOy}^7NUL^!dh*nTA9d8aq^uFMH>{L@(`;`PBSYRmoUgWjFt)mjVO1Q zia7&k??lMsG4dQ0l__VJYJtB1S};o4TMcYeak62`08AAd=^ZAj4@PT88U1EzD#Es2 z?%YhA#puK`7#RGQBgR-OwIpA&=*Cm3myvNq&$w=$F>Wu=ucgMevTF3SCYaQQF+T$q zhItFC;XHe}7Ff25>ZO5BV$fMV12XvxgkNO>;5Fd34q%@@$0*c5keSq@B5lzhN-zQb zSilBdnL*D0G0tin_#0rHd(2*@C*9YOU=_0gVV?xRY7IMIPnoJ+S?a>vqNO?-IlGNO z9L~6bLVJx|2nS&O_{Du3!o=8*(O&7TP8ri^gT{N_lMWi$9WY}eo<3bq8d9-}^`thK z^->P$G~6NtN;U3fw2&A0TlX4Or()}@yiSC@Qp?e)xX0w|;>Ror+Ui}*xvga~^{vZH zTu8}mlmo2*C&kG8Q%-sblOE#CVilzfVGL?55E+2Z0OW90bsEZ{DnWmwxSkkjMN@H?Uzi}dH8Ak06kfHMv4YzrNl)yP}jds_i!qR=cLTbD=Ok1>uSrAM`n zxhUfZ3N6w=eTTO)-Xr8`rdSU>DO20J*a+@3F)(HOQ4Hd0 zrfyJCwiEOPCUTH*^Mqd7J~_lUUpSaTKcK4d!)Ql{StTaw0?nZV7!-$1*k@M6BLe~e zI;y44)I+mW^l?aom3;KEjv|*sOSIr7^g}YrSV2&VRTjo((+5mTb6CSXY@)g;8Kp#j z3c}1#z40oiuU5WYtp(Fmj8uTU2z~8iqNmHLF=m<-eC~+S*CM1)?aWgey3j};#^*)N zCL=f7+8Ut!dXmy)U7J2j9(+PIrW~8=u4L$7T5X-i1BFu1vC~zgauwYPWl%0q#=xJv zl{DX4x(5s$!Ci8V)FrHi_G@}6N^3MF`5V_xH7>e7o;-y(@VEmMAp0FPWL_Np=LTx5 znKV^X?05q#W02Quq(tsdZEgaCeC^Lt%YETRp(a3X9a%9_$6FR!nah+zuGL2RG%LL* zk~#+=-K1HM2GB-J4n{5HG6uDML&W4yE2qotBQ)QX-zn=2-A4hx37-c} zmVf4;Dj%G9Z5^4ovY!jY2b{PZR}>*vck5Incg z!gdYGyHnyBk}ENMZtG~ZVsorjMhYq%Gq>b7?j1UHk6R2DbD}CNtk_+7RO#KKE(#x| z)B+WXQAGmx=<-;@!#7q}Y7_?mt!rPo%iQhr5}77?`=R;SSh`PmVYEx2ZlDbe?=Ubu zR6d(;FTJ_XIS{~R`Q*sYck~V+_{wiPi!@7XHGnP8_uX7b z?!E8vd_A7e*XxOwFJ$e%bH76$u#sJjd-j2JD72wHxHY=}O(&EwNK`Q+`y`#};zf2P zGjxXuf-*dcY|OBn`>*N4iu%r@A1Gc6O?LQQW`uPSZA|CuL;yYVG^xY`iiz~ELbh_h zKM*_Dyr9)%zbGv!szC+?gs94o=kytZy2LVd;odf- zD$Y8+<6i9k!9YJjLCaNk49|Kkb$r+PR5Gu+L#m5z#Z_J2Ck5)zD6=9qX;(43)*s~x z_3cwnJc8C&L1FYAMV}Pc{c38>0ou6_`mfzvb@S|gkEzcX*SCd=+Yan1tmSQE*v*zc zI@jvxrL+4isYnQK=ZD(OCFNh#ZJk*;9e^E0`~7Q~c(9*uI}Yz+os(A^PI>Tj9*Etx zf1`IhsM}d}5=XW-e6n4sN=uUe$}XxMeCb_nB|477a|SJRzbLv_#(kjXs7SF|34#H!a@{-lNm$z04chaLE)z?yeX+;A@j=@)CQ|M5lF=9}soPeMuwHCQm4tD| z6`0$4{U;F;WCt*B*SJ*MEGTUWe>$Dk=wO5GqFTv|_IduXSNvs<2jE@u-EAD>+`j3^ z)3Noon{|Kxc4lvnw4CZtC?9H7SWJN-Tre<9FnfVl=@~yLYs|M&RL}|WaxrGb)z? zfLdv9$mqAQUH}Bbh4}bVljrwVfk(gDnMsirt0Y%LPRf|LSURH;rzJEP*Jm}?uukx= z1W0;S3PqLkR&lRaPcP;^2s)JJtC9W#*!)#W*WZmwKMRX2eNat%Aj|aT5493jl6b|- zm~=s)lwBA?*)m;q0rXj4rHqi-i zJh!VpS6Hxe^Pd!Hq^pABoYm+JV^&b7Sts=;7-2Gi_>P7!CNNqIwQ9@2MV2+a8hXsLLXYo!I#=oPleg9270m9%ldm= zpBk>gqtXq$eiJb;k~!|3%~`%m=(SKl#uS(s6%GA9hd5YpJg>D1=MXyx(j8~^trKz5vyJE-r=hK%65q+9@vn}*7VBDrLY6NC24WeB1Ur}a zr%h;T)29JH|oBerxG%OlG+4f zf!0A6g}81PKC0wxd7bOk%|XU?e`Xf!?sb<7baT5+P?Eflt)OD!U(Can4C;`20d48W zDn_0-J?wcb?m0rz3)>-Q1<;PO+iED@-KCsB#y+rNF(WkBe>YKcw1t^W2wl2t^T$bq zs9Vo3SdtNHRs=asZ>PDe5U7(j>~r!ETVgZYa>IMh;Rh3;Z5BlP)n^kko&;Wt9C;B| zLD{N7fmb@9LQfy(WzJoG{-^v}h_J-Wd5p7~#ham!4l$=Gb@s9cn(-b(p^ol858Jn! z0zHQ4lkxS%YaD9Wr=N53xbxL5a?MKjxfrEDxNzf;Q-m%;)_&P(1we(oI&4%!WQ-3N zYlHoV@ZB`v>a5z4%F6upL{XpMkV()({2SnXNyU*m;L_hrFLQh=>NKeyAuj|3H3cqQ zv}pU}J(*bo9Gd$!5RYi?2u2Q!oWH$h*~wR5flS#~#I0FqaBvlt$5s(?8yt|lcS53> z!m4zLzq2qji2}vQR(1FvBqsP2=f07g=iiU@pZ;P+9l6Ufu3Zb4;uAsmn57l)OFTG; z=^W@t_{r_%hl24r3(JrF{i74wFA}T9q?7IzyCr1T9~Tyq&al6I+528r%iA{jKSP&N ze!n?y&4;1V1Euk))F22)%(ZD)!LW0YgO{E_#R$j%RBIna(fw9!ZFdz~>8ueE2bJE& zAxAQ>5+G+s`zHO?jYz#yKVfzOfy&z>|&qj`ar=JvX?FO&u;y z8mEwU{w2uuv8d;osONKI3d>*U=DZ=P7oI0la;&N)HaLbLt8opJB#XK*9}#VuTnAZI zQF8iJnTlc7rndKrdAr?a=sZOymasM6t=a-H>0v|~9MHvZVZ?>h$XlsFK>*l6vlWgJ zfZ0^4sEHKucKZm_3l!uWC%RCga*=2Y+J%|@n2!Vczg`An8ZO2}cv=Y`MeHE8pL#x( z5rdew*fod?K@UB|3v-b`PBPsN3ADT)j&bmE#lY97S;Y5>Ht1aOw#5>vmO|!PH4K6#;*H}ul>2it zSKZ25{U9|;L|e|*P*i4_U9-uEO!)|T8FYRu+TxKkniwsS0Z%E?>2^jos8Z7O+5Jaz z4O-y`c(DPBv6HfPm}OF}&dc61EBj;+8Qw*TWf~vJSxLJx3|H40quNH92mWwE^FOL3 zW~D!=svS{z5K4*VsJ9@PWl_c%&|NlVtpXkwuFWQCkEGd0p5`1yCQx~AetcD!?Ys|3 z<9wj`TB*=QDAY&gOVB*c6GJV^`6bEYZ7fzhZL9#=epu;CFz!C_1Uyx+Wpg0s+R?nc ztF!VpH-68tvc}nzot&0_q%DxAg4gDS-9M7K3LlMNUYcm^|MymZp7Y(>ya##tKX^>w z+RrhA@lH{Xe&=m6x98@^yj|8KPxF%Q#zSMpxj!R!?#{}89$D~9_xfWOu0J7|k5~0* zRvKP;Y~xrMZ<-OSZ@a}EFwY)oV!x4`f?$}4)=Kr*};Ld}BKmWaz^|9cu zRd;I}@_%9*G!ZEl@!bzkZ~r-~aO7>_XkMnndBdOnhBxuI|GRZ(G*66buYioar{Kh& z526@f7yOoNecNn(YGwS~e-8a!JZ9#5cc zBVykp1J_omT-r&Flo{ToG8op4)2jaJg4je)xK#CtKbdQWCWuuLj^p9&%2_pEr97bp zSRg-H`mw=%v1eOCM`-&jj49_;(NizE&`2Sn%c(~t z5L-qbV<|C9j{hL}FGo9D0Al1cnN^E}7R9ZJG^wWE0O>hJNk5fU9%)TFi#moiu_NjT zDdNvTO6@QUAf-}dVV}N|(8QBiEWy#S2g&p-iE+ z)^ev#T;*d|uTj!6d1&S!8PC>=$n56>Y6xiNa>-~ME|O}NtV8OkwZhU)IL59*LynP!_R33Kh>}Q(q6{R{CV|VMVdYZ*Hm-iCN|p4MpjCZbNjGp zyEgZ|?o&PBbLg20+CsB7rH8hVuURblp@FZ<7-h#ak?>S8y^zp1M5=v*zuxvQyhx4+ z?W*>30kf={N}euXMlbBaY6JACxLQ7liWER%K+7d`AITv6Xg2ZhZ2a9_&;vJ0XRr*& z93C=3swp#T+|BAJhgy>amx&RVo+ss0aYKTN+a>vf+GGPcnIC-Ij8quONevsLp^CR6`8Z7VS}T+G1q)O^Exi+H zkWO577mrzAIvxcGx(2O(EE8Qx#R zCOvlB$T6b_Ri#d4uAJiLJ<9QeBo0&)tblH~>2D($VrZ-kxHyjUb+jPkiCZs}ev(I|RhGAE$jz6n)*Ur2SGmwy zo=RBW5+Qc}(aP8^>WS!q`nb@z{)}&5pFO7^i`S}uf`|JV z#}O)jQ42JD%U`x`l1Q`UCN0R}%qW8d7FC~GrO-hfxk2B5)fXU9CS_00-6K?wVcu8! z|78y=Xcg;DOXovNT<1S%J>yQIi;bE#FedBW8SXyXc9HTZxLA-qDZ`FRM@w-sg_?fh zS;qbdQhDaZ#`&w&GcMl<@7Wm9uJrAi*k^@gyzEdu6vg)TCurjphScNAC_B2;rb!m- z7f`YuPm9Y@(I7CHoZBjYJMyBh#-XKzeLzbW2Ho5d zjW?IRN`y@{m&ff?QwVMq7v%S2MQnu9gh~yRiJcxzDq}~q3&6o*fewja>>hlZA_h~9 zx*8dR^3}^nR3XIq2relZL8Byafe4E+VL5~jkRdK+Rm`}7XEh666l7A^SKm+t|HY?N2=-2xeO|o}NWZJ{^x_Su`XV6sG!E#E?6JS16G~4Hd zvUr#pK&hDw^Qyq!D$3BX?p1$<}~?cDQN;Wl5A&TV!bf zgYAztZr0?kq@~GqU_>|O5-mEUaY|O^M7eH(8HtwbUEyJ5aF zZe(LK491$z2H{YMJYndq;(M+!z;4i66W#YI18i%zU*Hd`M)GZMi~Mn~iknk{#7+RI zV~yn3oWG?eotic%_ImfexOML2{yR$B-N%wbcrD*F6me>eVW)cFeeK}jh5RS>{3jp( z))%fg5!(C0qeazogr%wj6F zFTQ=so|b+!Vixo^WvuPhg9hNmCjS4WRzMLn%6mawDgtN-^8XJ2;0YvfL6%JuoPu(8iH>(>XdKb?Py3JWx&9R=t;PRrquO&Lx8%^Q@0)_RY~{_o z2Xg}V-`>ez@}_lu?SZ@B2r@pww!5}qcB(3T_KlMV?;i-zGxvTxFyX;r$r7&wt}q^Cc{ZD};I+bD&FP$AdFc zj_YNhp~<*jCtlv$C`Q_ws2b|;!XSQ{jI=X>tdg0{DnHy7QAe0fQ=I$SdM z_VUwz{LBo2$KTnwD34xx$m6N0BIDwXD|_y~i~8=I^}C40P7T(r@YgEIvlFAI3!WwX z`QGjxzL;nJX64Rum!#~%OBet9r%=Cp4r4vXJUW7MZ6vZW_=h#Y`%seO$}Y{N%pmRJ zB0NXdk)^r-1Nzjw31alz>@H)_xEAhDDUV$qxC6HO)wK&tw> zT~;ZyZmrYC{+uCc;D`#sI>Tn}TK4Pf@@Z9Wr8ODuHp{b(g8$qnbgYWY;Z5FavNc#uwiX&i&`L)8l2o9r-$D zb;P@#iZ`k6&f51Mes}Ke>EGU+zx#~&$Aym<%VAGq^2)Fr!;inklpv+7cbAlm+Uu3O z+}>_$;y)F%uHU_3->;0jtS9qw3jaRjSU_QFhoI8n#*FKXJzs2Wz_~Lk;U%uk!`F^> zxX}QSLHOOu`DwzNY5zS>j@h}ar9~Va_fJFf(p!IazfyDz2%it|c217~*&hXI8@{>o z-nV{i+V2U%oOPc`LEe`OKRuEiIP&Rn!HYuN%#{S#yD8c2QWy{`7kbn*Tv3;JKH+geEf(=ZXYM#kFS!;+5*mKxG=|Fp?y|Zx2j1SZCJ#bmo@0_Jh zZo(GZS>^l}c-by!%w*`?R>h+ASA=~58G%U9TPc0oV6|w4^m2o^;u=OcIVfNg$5LN|p49+!GQtS5b6!~Vpa_2Qu&6F=@16r61v z>nhxW3H!bY_VMsW1IjWC^Ni=t62Ya)-Pj|68!L4bsew3~+@2aZb8xtDYg52~9wOeU z?+=%`rem3AA{_(5dxmzNx9@fo zD!nJs=BYWp_YSYUb&9SUef!5jNOn!IBG%Z%g8+Lep4vbo{|8KCyw`RSZ_1s4rjHGH zbZ=m5HFSGztYBLNhiGK;EC?(TiNbb;8W&M2;)|2tN8MT~0sgnJaY_^rVhqIhbMA7k zE{)lEUfm1=QiuhCjJj$(_HPHH#Mwq%_yU_!qvoPx_XCTFrH^G^Ic?;CxzxteZij^sFcAC;xl+ zCDo%l+%9~`-=#I>yf}Ed=3vbvTVMdu$myD{3|-T>KBA-}t^S3@V+^D&58YcnnGgvZ ziLwp1Y!N=Igl;tpNr=OJ3(N-SEJ+!2r}JqESWam~%PbhAZA} z-s#0iDcPu*Aq>F3DJ#r4XY?KmnnRXuO84!_kgR<|PslD-xjlYvS0{HcGbSZwZ2q0K zEcyjw=BTb@t*X?eiwEjSu#{bQ}i=HM#v zL1Dr7yPkY6ttSf@;lV0$+tV{|u|~_?b=zOeI39Y3N^*<+SA4Gh*w@92xoG(QADtrc zBsX|Cb>_+{=J=14Kispw4&8WjF*(G(9%$fhm6vUV!6%rN(eecy%zf$#$TIxUkxC*; zAn>@{o_>=ZK@=IlK|GcxtUpgY|5dr{JHesw_>GX}DalFepEL?qTp;q0ao|$jWMGc< zN%gPs0CMPunDJq=pLXvzXztb&XxQZ-NCDC@3p0p&V&XLbOUx_N z%gG>%3uak>1~6)PUm`5$Cxp|z5+Xc^xJNRd2LYrb433QgW+ytE^%EUDt7eLbexBRF`y`wQ?9C#wMvZDXz!iwg<`B+tC8&ruegaj}OcjhVqfmeoFgxek zT^c_zl_nz3tSI4z^gMLEV8xrth%G$lcV>!5h3YVH!pdAIh)U!WxrxrF$a>0CiX3P5 zahSCeiJk0eSipR8e| zCBRC1VVMn#jEy50kUOD8Wl!$6Buxb47(gnfE!jv9nop<+Y>pg*2U>p~M#kD^p`(pc z7m@3rA)GWLE)4LhB%(r0JMs&In@vwPR(wIiS;PjJ#ec0CpJ>9jg~*u7wRjt@HDbPw zu`fc2IxB6Ze7@45G4kTRvCe^xe>q!CkW$7M@)~h}In<_}Zb{o>t@HIz2hGE&7LV3U zRA_^9mu+m3;$bAZ-iWJEu+^O0je~zY@U0H)edflP6CoR86B3Fd3SYwh^vpOhQYwzf zw;(RoghwZ{Z*D{~crd5Q+f78I*pM=F$XBrm9|l06H3#m6pLPPJWsPPokwZ3MZPjVU zpmHHQ-vQ;3aEcL~NQ~#nGvf)`7iA2PFn9Psj$l-Z_*p@`d0eR#%_E`{f{7#onPyRL zV11cS^`C~|$;6_`A;jMKiiGR57%Ni2g9lP286=ENB4#_FfA(%qs%|RVOR0!oXpT>5 zj7Pd?tTJ+GSCQ!b*?G+236sl-YI_fgA=-3yA(6Wh0cnoVX=DcwAd|Pj z6JD9B-H;#c9<@x6EG|)bn& z3Nkre)eo|_ZY$XQ@xc4h6FJW-x?~V zzv}Vd-hF~)Nq0=1G7ln&b1`5wHy?6iZRem6+YX^}z zgE$k|y=cba%Z;g)+=`o)EBlTPk=c zuH4ytg;i!Nf&-AHrNq8kB-w#fNYVKj-L!rFs?RK*F*{)rktc1sp+qwsaPEN#Q-WEp zrd@C&TD9URHc;q}fM3IqLL*{%;3cM`65gJwbhN~Z);Ea~+z?||H&3aEgTMt79%HQg z=4!EA#`-+Ef;bmTQx>PyUTLHk9fOM^UVdLJ5p085Q7gPz(#_lb9Hr~FrTbesaRm`u~bv+?C+C_pK)-cgt#WC{9f^;ldvWk z2hWVFf2OTi;P_6#X+O>*q~dO-B3b06VnlkUMlqZi{94yKa{D^9QQF%Z`Y3$w_%o>T!NKpL5I9N4#VCm9bu z8$9JTaN1x-KbjavEsVnnvpu_67q*_*qjmmSOC0`_`b*GU`86~)v57se9|yNXh}YsC zM2VKziiUr4`bwNw$6L2CpeDF!7gTi;X>%Sw>U?>psSOggFvZLr39Mx+R~AYx4XnGq z+(#Ve?_Rg>C`21`V+nK_IK2{=K|}OLK{XU>2F5yIbp8eai#6DIFlyFu6A|GyKuv}(`T!98$mn0LX9WI07sn-d5ctYIEK`qkg+9bL4 zE4O+XONBS0!;KrMWT-tv9~67j=3p!aEo~3KkEJnkjg=d1jBSqNKu%9kUf(f`m^h2* z5>z3>XWXZJGtVlB9{s6`f){OJL;|OM(qvEIK;QmTs4-6ySmBP9#6{?4%3IV!fPF2c z!!wA{rE{vtq)IW}BkFv%-^u!0_wXTx+7dOD11%PpUBbbAPx@2nOQaT?4d4dH9OIcO zk^K`ET9D&E!h33wupc-61A~cYHS^wz=kvx7LHP8k#8%^x=MluEs{@I{Ki0=1rNk+O zB^)l2ht%x^QejMNT&6i>xTE;XDP8X&IIM0`j1UbBfmqfV^livjZR#}23_`*g<|(zo z+~vn3pC_@VSkfkzQLd0Feh#RBK>Ub#(GZ&J`OU4NZy&5eax78hW`r+Box=%tD+n9q zWo61UwjS~K(Cq&d0dW(X7abV?MjxQz*k04~s~iI^zrXOEU=7 zuSjk54ydh*8SpBg@h}ifso3Y2MZ(4ZTQs?^V7e8_2KOt>XuRX>j!}pj|w^*c+c~L~~zJy)piEl1` zd4!S^+03=4enSSF_7P=ArIk*-6PI0OC>Ij?eOGoS5YNxMT)Xp|DG*q5iJ7Yj=bzjb zhR_#R0J!|}Lo@y@$A@ptSS%F`NMU3D0$AF{JdT}^<9-1y3&9uH8m?diCAULptvKL! z6CV~4Pfxk-@tQWrXmyMWYuh)oO?r2e@BwD3|o75bc6Hfz~qh@-|B{@j$*Y3SY$>M&EsS2sjtG(|3l(Oc?(q zk!wQ|l8AR7Sl_&a|C_<@+jAM%E=HZAsY9JF8CDKJ@WAt(5X%oD@ZXmb%(sija;;khWn_C+#i@aMc*oia7^ zY|*8)`za}-Yfom1t*1N)37bh%`Jj_Vji?KYvZTzKYJy_KpLWj)etha^5(#flXBV|} zWO#own}^mGh}?(W_~Ji2X-Iw|42n?87yuBj^mcKF$vbm1SA$D&qe^5e zsg0d-Jk@s%5QU8pHCuw1TWs9w;Qc}{dq&Qc_L5fxyQi-HAL3hT7k6f?AD6MC^mXz6 z97ag(>-0M6Tm07T0sf4>I-srB1~(Ywi5p z@yq`EAL=i0Nc*%d;|s#!AgwA4%*tjv0p|(2+W)SslYE$a=j*9oVq<4~l%2nsKFEft z0kh;<)5J%l7$Ix%(LIm2_WT1`_r6;_ijA8!B7gp6W9Y{h07_+}i@6U>#CC5G3S_St zFR~lo{q)_J^zoI+B?y=m^7gPIEp zbF>NN)939wRX%g^)r5-K%U_#Y5k_41_~y-r@^ke-Chk}WENDQ?W=`zE84{oUelZuP zPLe7aGmoDBby>^ph%dIKx<6F-200Z5`|<0x z{Py={zcg8Ue&&wUoUVd(lYt2em75k|q*h_i&S0JB?Kd34J?L~`4G8t^bn08{a`b8a zXx-ssUT+Lhz#i8X-l^)Q_q2O;GBaR}GcU;2G6NqQeI;qp*`RvguKjBX(Xm}-W9-y3 z<^?(XF4pco?>PIVQukYD;*VjfqXDTwch7AYIAS6Kj{eBJJZV}5Ifn?}%Wd{h%?wSH zA3eNHl}Zy}3z=W+=M?+)2ZrBSJchk~j|N}wGs(aGi0Lusc|hFLul_0%8Zt*S<9z-H z+g#JSUVPoPkF}9hOlfDAwvo}B7j z-cRmHl7lB{0+s8#>o9xsqBZnZPmgX032BZD2zcE)hvccZo~)H+3v*W#r^X@6tfT7j zNEM#JPj&nBBCL%4fYn-_>UEk3M95TTg+0}Gs}b;=RT-q9&G(a8Tljr|+cJAv;6_59 z&QUR=iqj{o;pxhVPL{DJ9dKA{(X-W_Yo(zPiyBuFkE*?TMF_{{0_LPwd%E7sNIbz> zSML9d-;?%?nEK)MHGB8C{kWA#nsIdli?zq=Ll+WKNb})TYhL|E-yDeOYG7q7y9!=UPt4S|U}qaTDGs zip=uKJlrMb9C5A-Dw%ver8<3E--VEnuY7LhoSV2QeER-K^kAmoak26I=#}8OqJz0L zGu#6Z%9ec2f;8nc>KE*JUarFh!3HVao=)}T;XuC0wGlI?KY2{W68V=Z13z!hW<^e< z-06Ux3c6U45bT;)_q8u8kTA-Tb=?c~NeCo}I^k(}W5w%dJ)y|DJ1s}uzB!y8iXJp) zX{9IkZiw&8Xfr1+eec*ENBYp;=+r*!A$st42DiC9Y6m3TdrqFqJ1@*iRScf|DT{M9`DZlkvY)& zxM2UPKWj5Td_QnJsdh?fnM&3n|Do*O`v7tBp;=?AS=>ce4%$m0XM^VEs!yJRIBjac zCX4cZkLQW+G7Qq6pO@`;>>3oh<@cf|Ek+u_Veki4PIn00RdAe{Z-P9CzaO(FC>g0_ z-?)Y*Bmk#5g%L)X}>UQm$lN*@DNXGSK<>$br~{ib(ZG)->&3hm^&uOP zCKu)LaD&>b)G~iUu#%Z?R=PMQY695z23l-=&N}%^cXI%m$nA62iIIYzA7gW^m)-bz zo6;r^;blFk`&Jtlgo$YMns(Twd(}eE6+Ku&Kje9iqjk4dVOMJ!+;&@F?gI-W(b4F# z$du{N3w*49LvvxT(~buF4T-b3dtDw#M4Zw9I`*n}#_;}YQ-6AVgL$3jDz)7SCnnXG zDQM2g-PgBrVi`PpD7{IFI*MsdXOAkAdvosw%1P0CL^0-$%d@|(1-Qm^ea-5!AR!-p z!DK?^sSqz%-MIx0;~>GE;tRn&E10wce866*wfP3%bN*5uIcWO0y0GJ7@5=Hi4FGku*w7NG3QsqxJg5-C>2?V5Xj|_+ ztHbHQaV4bab@Ea44y;$HYc`zd~L@s%XcJz%-}Z6AOnGWvK5{(RhoierfH|MfaIC(B@8W-=5RI zECq3G@8)A2*XMi696EVq2d#`0GOrcFxB5uzk1|bItr?pjqP^sslpQBdf2&emb*Du{ zfI6ur&P*>h(tPZivUU(}nCc>hBD=^c6XIfo#)_1Y5|!T|!1?NW2ShV#MFbfng?8># zhI0;d^l9WhXifQ`lU+@rL5^Tp)!@FwVs-lg`NdEd9&Bb(5H?|w(*iqIX#Cxsv zwyPNJN`H=OyB|8urj%GAwq3P+Px`f;P;R_7MNAeO;I_l=z9bd(dBDd?bG2)WjI;<& zbhGo+s}Wrc?zm8Cw<{YPr7*lu1F}+~X?Q!W?H46ekTs#}dZbBNyH`2Zu3R_8;v>4+ z@!Z#Ir!uU+D~y7Gam&~9ulWqN_?WJjmSzZSTJQg3JfLY5;baHyVtN>&5+0r21)FNnH#)Q-Qnf^Z#q;4+V!haYaS2b0SyHN{a9qD`i4BR7qw|eOTLbv1 z30;coLaZ7A4%aAPIiRNvs^*AkCGDC7g}RZ4_;isA9573cHkdSYDLOjOu8p$m68LbL z4Jx6y3l11sXgbvXT?hju}a zw)9`sd^-sSwdGbYRgUFzt}B4PvWLbN!3zu^m3m7|>Nrx1*|jNlbQNWFB+-Rj>`$id z#|z48xo);Z#kZ>)DQc-d)}ODGi1blrT8UYoFC)FBaI=g|96_r&ns_n&&P}M=Q4r78 z)Q)H;kxGi81Gh1`2t_$awOt!3f~!d^*?{DW)s+1=mxGmvNs(B$jOqi%)6E%y-KE+F z3qoOYMQjY==~i;EQK3jZPjS=5hA!?weZ-mt94yL$F0|+p%&f(P#)Z%}ST9j+!)KUJ zxSMr;eC3=$U5+RZ=j-C_aPVxUz@U>`;W&$a`JgsRteayZy)Bw~3jJiDmPqc$n&>NR z+5`bsJM!JM9-S1x$r7EMpaO2lN*;>!`7E0lo>Qa6VUQ}lBLLCcojjuC5$x#ZNJR817bDu%rU^z1>^0+S9R%9_kt z7q)r{N0T%?4i{i~5~yCPtQ6>qY-IKbTIM+3fa|BRu}m)6G^ide6ksI^<&9dkNUmf2 zq*lnaE)+l|$EdCXY5katf=_tbS}XaV2@2zbdNXaY3`ItCSpqW3psg~V6O2Vs6Egf! zIoVc}1d_NS+Eg3rLgA7kgbMD9w8C>lx}Qp+VDpLhwK`UUQf$$L+R-W#98F>r@8@B^ zQ{S$J9vj{ilLC&8#z$s4;Kd}ed=Ogf(9DtFpNV60&1j>QjCEisMp{BY@M}9PG?CRtB&SO^Di-N;Njk3|p5uT~hqw%AMSLvVuFaC^*#teBt3N+m!|g%8=!cO( zcqyqY#GkD&!Sx(?DWRz!L<;$6f{C8lqx2wX^TaTXqyIQdQ!mrzOE7l@eJWe+B7NqK z!%d{Nu?L;gk4dfCG>I;T&}WPF>>iy+04jJoe31Nml_k}J;x?7S3Ria_$OzIPAZK@B ziG$di-=D>EkmZKtnOsfYpmw&MS_se+OgaKovH7}211)jy6^dz}B~ac<``N_`(n*wN zLY4qcgo0LV$AqOwRTnM5fRzvG<{6b@f!0rgEH_q8=JiImmAPA(ykKMrg1+I#Qp!J?(`625ZYpoThcp+YM#(gh}32L5wQ z{|gEUpKn95_-KxZKHW^eb4u-M`SzCuWQ_<-lVi~WeF`}g%SPiZG_>bQyp5bBB_;u# zz^rxh*YYjO&co0snSeydFee2)$D)cA(ZwV^ONuO3s3Hw$tyD{uds1!Mp#&^nLM<+| zIb5W{s4TbZFax~MLN2#IOYB1P1t1egud-DOc14%cN3#TnD=IN(p058Ca-$5MWuhJ& zWwu2(L40nKFNyTbE5^w*1sdFs6-)HgZc=QbAZv;<*3BW2R0YlQ3&~gLADvRmtjR^@ z*SY;@A<#~9XrGko6L9#_5@e1;)8Np|5@=?Un(1=QQloOT*ou@9+v^3O!CHRPg_KJ) zrED!EAQwv2g8tfRUu(h#;R*+Jm2@5#sg;p(!en)MxsfUVb0`GXct+?FG&&U(|MXn zY+a#2QzdRdaC(JI57@dK0@PVx|3UEYY5`x2p*HB*25la@(X+ei@2j-Rc1&!mYv2oO zfkwc?Y6#TDgz+UhNT$ysl`b4z0fl>tj|H(I8K34S2Mr{`BFV*U%^O%#Ek|7jHH(c( zZVy}~CP!U4^hbNuAr?)MiOc|c(4!N`b)vysxpg|tfOKh8DGGXl0h?^l(d^nn`{GnW z^WQaHjZqnoJ8*@Xn%;1(J_Eq@e6U;sv+U}wXMj#IyEs}S0F{F%B38@9nkD^DXa=o> z@)n5@RDel(761aWDJUJhUQOrfuf9Eoo^Xr@# zE>h0dAgt;Yvgl1gVM04n{ zL0#FeOKGQEsYuialDSQp$D!A8^>HRlq|hfAQR)_+EMDx&j(b5pQb{hpKTzk+7X{YRdtVUo{XH?Z)6&fxr4ezHh3`y%Nqpy zs*)G8>2kJ)T2w1cc`JZk+65?$s#H!E0o?+r22CXQ)Q?IBsg&g@O7wwc0T1vBs|4l-XMz zwP+ouF=%d=asNcy2yaiwJKcoZPl>Fg1BYFF$}jB>WB-tQd5h1LUHQwdMQwCnUbUCk zaq9Pn-m~gbeHPf(Tiqt!p1U6216FIzWdP0+s`aD~2WeGeg*XZ^B%$uD_9 zqVbnFm)Ch*8GODLy1ptf%^Q_}aE8`!Kja3*)TU9b-|d1sT--mXDgy6myzB3~N_clX z&6c`8_A3R)IeBgEFyw#if)ShAY7t*0a`svblO8^;)<$=0?q`HqcR{_OqnFbI(!%;j z8t>5VJPo|#dtNR95z5U2>%E)X;T*r&RUi7fSK60kgX5YYwR>4}Z#v$?7p8f}?F!t$ zX%?h82e0JqY2nW(?YzmK&xO{k=8x0cKDiGSc4LE2{Q{B2}k=)+VL{VV(B@WYOuP7N&9(at-DTs&^kw? zLoVKatpnHDOz?bzxBjT@x?e&=TdME;+JTIG@y7wWbGYHY9#0%GYrXuWK~C)OZuu}v z)bJC1OyI2ny2r!n#thEQhU0y%i65)9&~f(vqv%Y-nmF4wJZtul00{|Ual*bS0oer9 zNrD&=F)AV=+CizJQW}+3v}h*_iwHC-Dk{>Ts7TR9rIsqSlYodyeWRkKYHdKOXswM_ zTWW3j=KIG#j#)DE%>7)~c?KHYryPCRCkQBxneA2JXqg2c_dTj-oF;mzB%vbJ0B3&H zO{Q0_D4F4wZxID z@up%e>XvJb>D%qQIVN2)k(H#hd2i~lqNv@0;`xuz`9i%H62p+X2)FfNc(_$=4DEIz zJBApb)ln6vQKF?oMo||56~C%Ampb%uK{W&DDAwS1_mYZ=37O)$ zQSGa~n6>Y0V8drs5sKVP>nJ3$l~`6p+mOjVJ-cCkfkq2)=t_G@n;hCkPo9Xsm{A>0 zBulz{Y)prSNL!ZvPX+{zVFp=d3;XRCD)B)Zy7q z8=n(gA)yG?Dzk}`?ShxRU+cbQh!hs<5G-lp3r;2prmeB|Ne15VYT5vg3yuo!Y$aMV z)Z=j}slq!~%!EF&^R)fdGsX#yA=d=2R#dGhw}D#H;FdjP6Z3rs0LIok zGPfEn?V19Zsf{*X8UW9EF6U+wcE$>`DS*hdq|%zf3ucp~Gl!YXG6-JdgQ2NQ9Ta($F;B-FQ7F)U(*M6Jx8Da zW)LBq`LZF)f{B1!rBKm_#Ayti$|H7Oz2ygU%&({~p*l%W`ule5R76ggoAB-OaD0$) zdN~yI$^!b0+a$RfP}Gi9T#wbCj&W-fwCO7DLu6-?&MQk#vv#^}vkx5mvgO6eCH`^y zdlMRC+zg~~;Y%Ey*FVY2>`L=*wJ_;_8m(yg(cf3kN!k`7)+vVlUjz2PQX!sU*)K^u z35d6Mm{DeV`jag8QtA*{{;9K1!jfOpjM?6wg|Vk73K+G9pSg|H#Sr0L*5@C+Y}us% zAkzRNi-dr<&9GZ)_|f@YprD3WA{uk(1;59zI3d3OX7Ommj$}%L2?>-?3}uDwRh&UUB{G*G|u9I*svn1`sr# zjVn~{4d2rtC6GNwV>s7#8VPbXEX_`Ygty%2KS@|iZFS#x%Jj`={~q|I!{AY?0GZE+ zSQ*sCp_sdQUwnDkR9%AZTT+0=D^6cL`R{r-@ht1$ zlx(TIPj)(iETK`0$n>mR(NOP z$g1Yen=b$J>wAF(^m9yg_@`4#@EOCO*JVQg%%j##16~#0|My2=;3rBL2Z{(AT}-9M zesE9oHl56p5a9Y#d-&9TVI~PxQ`ZjUe~0GpO!MwbwTatEH_XzKs~30pUkwJcZZ031 z#sy8w#c79F#Q+Z{C%Fu~Y@3^x6yVu}0DhE~P4`YLLh~1hlkl)=m2R!5`UBv-U5%@4 zB-}l}^rvQ4t<5KlbWieM8RNr$2dr#7!0PSeVTX6x@JWL>T2#ks6bT!$#SbW?7~o^O z;SNeXicjA=srN@bI%)xGwpBi$ZetB@gLT5NbQ;Vd_k|#9lV>Kyd*CGoDDn5C*x$wo zD@Y9o8a~qVl5jWHFvIHp(-4WRP)+6;B-R{p8 zz;pp6YXP@x@w~~|3#Qq)MHDg$EYHM+LePB>%esTPI}ayR9zADzlmL+lv=-*S!-+LV zr=5K?Eug^G@+f8dqolJFfytGJ_49J~ZlF989-+r6F3}_FCow;pSck)+MaN=5&$0XB zwGSC_dO>cUIMo+v$d!!d?06&LJ8=F3p!F$mVHogfg3wkV;$0PQ$QBD2-dEBJ93_)h zj+ zOEUx=qt@H#ND3q$R|;B5*t(>2@{qV2pMSv~f>9n1$dIcR_rXyyy63iM!!)rXe8P zdnyjgi}W|%fE$k6_zFV+u7A^wPwG0M{~n*zuMT|;GOhX`ZG(qM?pCOm6ZWt&#R^qYtBuhLrYL%X#z6fqPXajsaz{_tm{J~R#7s6`t3JpAG9TcfSr)9^ z?&}K%Y7C#`JdxtfL79+OF^Pp4gkwNPjFQt}NOeu9d?_lZ_A~Kou*09dA?o6Z)kf%?4z2t2tNc{yNO7bk)$+r_=AAJp3@c`SHo- z7i;-Bxq>#pOK1-TawZWfF%I~Y+f!UNOv95^lNe9Rdw#q3x15%>U|_jjstpgU{-JKA zm#iF;w_OjS5!Ahh-CHT|Vm<4*QWjR9TA@sJtOT8ga2EMkYZFMxgj$tvoL;1W0`a9{ ztbo&TGQmQ6Y77{K%Lqtb4ZJNkV1>4GN0cZIU`g3tVFr2;;aLpFyi*Qq>^|M(n=aaH zNAp_lb9g;roven4iMbw4tHhSjcfKG%_y;?TF+A0zMw|4x-m3vlU>Up=UXKY|-9bG| zNMEbQ|AK4+Yg<5(TOiBst|eo$AtZ{XC=W6QY@t@=;vG-D#)+U&L27}1$U$fK840*S zlwHUfv!y<;$M=GMzDn5u7+9@N)z}%L_W!JnK^>o$&d|q{_XH$`X1oLrA36Hr+5N(2 zhG}ia#BP0br;#TD;sIk}87LqcJVh#6Ip6UXN=&6_)<|kcq%=(6tyM=ywf~R>%Zrua z=AHnPDz&_4auFV<>j^Eg8PAB~bn4U~HIigdjH>u$>H{X*-y0-yswd)|9?PFF#-+l2 zi}m7SGEQR*%_c*DzR9i1qya;`4vf|GOs>_-2iBplPfXz%uv&PySGCva+H-@yRF%Mj6(%6@HI(8~rj+UFp`WkoGWJfH z^v)iiNeSNJ;%*=;%@}T_FRgu=#vahCR+UbWQ+MbhQsXQ$~(*qB}LIZ}ds;pcIn2-wp>!;iPTC2e8&hz|J59~882z8C;u=&ettv*;^Ds02yLfA4nJvnOa#X|c3j*sFQ(g&%u;2z?AQZO4&R=L0f`hy--gl8 zA*fXqfdH6pqDMifMU9FGvT|y6kL-aVnWT>d5EcG3_~&E(zD8CP6!siS=vGQQj65xU zverhH>BWdG`lKPE_y1A$ll#GV9u+24>((m44pk_Rj7_yC7vZs#>tH7o-U&(5)PTtl zijZj;tE7Wa*aJg!r#@s9N@S6fp2L1=N=dF1sHUcBC;;mTMSy7yw%eoT0LmU(1Z*jy z;yMh|%Alk$RU8IDgCx`ePm0p>Mh*0fS)fn{AVx;3_>%)+?%)am?9Ym#){TPvh%dD!8ADjp_*>w@-ec0xZUi^;A?pIHg+&u*leAb!egbneuz2 zO%;fdtOjKiX^bg0#1xV7{dxsLCMuxmq+xQG0h|sZ*-)$*j@2odA|q#r@_1Jzq1d@A zY@*VotT;8$rTSt}HN~YO7AwJQRXl>vJ_mV!J5Rt;1`!qs{u2gimCfK>q@Mn4w$%!yBGGbnI1+I^dLO)C0H z9*Y@7r~%)e0EA*X?Tj{hrJxFU{%6V%G&u+!D^xOZJShr-YQgD+hPW;}@JUYSY$A+ z_92yjFI7r2)x38~MW-rd2u$ptV#W<|CjAHAQeM6~wAL18Et^)Wm4xXzz^PQJDnyi& zpi`yd27fC#?ZKD+6p++!Ke|Hg=OkILe@*)Vc>f+gtxM%qXpbz?C#R}X<4*op)Jt&H zFiwSO)mUc_)~SnYQ^p~xB$GjP{icUXgr-3WWi}2D2ftHA@a*wHWDB*3(`dVr0{c5v z!Q-mfTs_8ur*?sfVX8?O6`gAUhDfi0o}_Ln?D^l`tyE;RO*FJPImr$*LebrywJdj) zM$dTkWUcyR5^|}c9pdORBQ~b=OPhe@&JO~MjedppsqggO&;Jd04bEK-_6{0?liFgf z_Q^rU3_*pg$cQ!cU|q&Ymfg$z{&(}B>AleORw}FZDZ^xpaw)-Hm2oEMN&OEj>N%k^ zbba!fpdpVVg#0%3Fm-S+ZeWxeV~U_iYFw74pJawZqwH`J90AzHggUlWMcWS8w zrs`B*O;LCK&c_QkEJRhYbP zo_bIE?XpMQy%5?%f;1Xnt|ThFo37H1Hic`}a(Y#(RUXM2W3Hno(9L5~>Zr%^YYfe2 zc+?C>n(=o1glEOZt=+_#mf*{lk7ElRid9p7fYGyss4F{4o1(b;tW^Wf+dC=hj^>*K zA^5!WQSlX0(ApS7Q`oSSq6Q{-GCFq3osGMSxJPHNCA!6|3T>l{=ISf%x#%*i*`HU=j*3(I7!wv4?I zSuWB2)|S_nu!kSCYLM%T8#3<|ZPRPnjmP)~!}qrW)%+No<-27Sb5f^y4UPD8*{UKI z5`_`5&{LI28l?YacT}TPW18W6liD#k?#waqV0RdT#^#<`vxk|(e(dIrYz#nW&Uk6B zOxiy2&8&*Vs9`E4lwkk``FXo+^(#x3(ulHh?=-!p^<^3(^MMxUqUk$EE21LK9NWcL z-Bfcz?rwU&juYnn{*H(?g({}cS-a@Qw5J`nZ=}3zILD62X(NT{`}*ysg=Ea=oVB=K zFI<+bTvf5STAx;#Rcu2*{yw^OF|(0?E))Ni6?)32gj>w-jSZ^>x!G6M44>l0g8KBk zu0l4)G8zaet53qv)a|=scVaZZW%ruYEpi$e?LE3UcTt$Baap0|k>tGMSXH-+jX zi_Np(KL_#El;h5k{lu%GQFr=gb=DSMFt6k!KFPQ2zqmz@SIjuqztYGsH9DE@X+mg+ z+~h1UO44)?!#~ZUuVni+4iD>#bx!7ocdHGsJK-dZe4WroS zi5z;^ZFQp_jtuD6&x>eRtb~y?>q-d4+J>tmERNv{e%gc<-=h)|M|Mi$a#bw%8CT@2 z=WDG62F^kY+@y``SFwERrPY;;)f8A2nPgR(Br8|}EbMb)1Pw7*jQk=TS)`*lGiI}w zV?Dg3xpu~C3zF!qXDWs$zLhlI=NB-12!r5HW@|0IBFn2@0k3ny?%6mpU+TxRXhErB zn5k-`cyyifvdzMYPEws%VMXZg06IB{A2K^bf-w2~d8H$sEz%Qmt(>Vc=ZlZKV7DY3 z`EwJ6yh}(H57L9m>N<3qg8joAgS)KJCfJBU%wn7~wM@^Suj3Z>9toLSrWD*=W0biF zc8(JOYAD~p{1bD~9%8`h6WK`x!?W0sKLNuJ{@{FdJ1$Q3ZK+X6;*FoJ|;)JHnN zrehLtk`}%_4cI`B8aP%*|Kz3Co#9#>E!V<+CM$==iV9>7nCZaEcD}Zar0LLve*tz< zBOtP3sCPEbj2G&?_fmRxre(fDqY~&GB!f06E!RQm1Zn(TQLrItOz*p;NEzZH>V32h zo}~1mEXl^mVnL$OT)k|NfHb6ia}y1l1a31U$1f{#tQN7Vg>l44f2})_pw7yqvLg9GG_3i~M5nHL~ux)X4#rnfm>4ASPv2w-36JglsWGn*BW zJ?WJxAYabYnw{dBM{prvOtn;sLmItpBljH;%#k+eVy>T+}`Ln~Jyqtsk zCbzpgmQ@7dKd{tA&)0$XZ#!Q~0JZbCb>6oJgK+8j>)hu#Cmqhg-5(o-r&aDX*qzrK zz3id;+L7=t?q2S=dwG`iw?#i8$gxXh_6-_u;PL(JBP&`?&2RfX3rxv9FB`s`!q~71 zzzl41N;^Bm?p|+|CVueox%u0k^_-`<^KHMkB+vU|XHR#dVrs&vS%)JR#Iub3AGNS+ zEzb^hM4cF6d_)7!2DYQy-jAe}pzgf54g77xX_Dl&BvLN`{6balE&b-;!_wB27~O&0UN? zPcON?ep#gK)-|{Iwz_ShYo^}Mx^UXleYM&6HqYnBpF;j@V&Om-tKeM8y>Q;EaLCVe z!(#DF_^%v?x1gM#*1WMHj(HW5(ULx;P`PMJ8RA&1*G+XL@>lEVT*^wRnAmf69)DKe z?Cvbj6XTa-nm5#~X}aSl`1118*MoJRHH`)*ZaJyE^isEM+Sz0-0!j5drt^+UmP&h~ zo8|1Oq8{&BmWoD{8YS6w?<=HAM$<~?YAvE4#}VGgbK&V-E8$gRz3j3W9-c&rhMg7S zGIzK4D1!HprA96p$M$@A__q%>|8qa);mi7-!xJw)`ud-r0xxa+a^a8cTrD1)yP&3^ z+|Fwzu7oho@Fk^~M;B>KK4N8UE>toG`+Vv!K%WewCtBVUV{$M@;=3u+;s9(g(~FuxEMRUpVK17eQHxGgo0_%!FH zgM%@iQ5|YVyBQ8D7VvP^@7Rm+gGKjv!ucH64lhO4;Ef%l^>;E(gPvAsvUM=$G{g5g z>uxANf4+YvDP1}2JIIi-EI`1pc!Fo~8z+QY;KXZc<2@U9qs=V`_q9{QP1OC&lH2uM?)-Xa^JgVt_1vdHcPL%f zpIqK&PUd#}MN<*)a@6h7Uhe1fxZj$`yMBW_9Wfg1emo%%WI~_U;F5RiPMI$8-bi=R^Ok6oW~)z7na0SlI-0Ct3Jm2N$UlY_<0R3@Dr<7VQzIj2V>^ftmhnTKlS*FOGIrJ!Q&6VWR7-h zYr>c{B(sPZ3@U1QG0OULE?NR;NTkn_@uS1xbz3;_s&}4f@tj1j5CWcw$4I3A~%bIS^<)w12_u_%SH>dkzll1*h#d3)t1T7 zAmtWT(ybI7F8$2HYJRf8zbce_jZse3&{_K;3$rGJwH0Hxk^Db;Q%0lOCxYfmP69cc z-S?zw?{60z+)WL9ye{U>7nk-e@c!g%%;p+q2gzy1xy2+$R(XaDY9rHF$yeDPFu$PV zt4nYh)p2`9{gw+ESw+8{^!>Hv+NrM_Gh=ENgg~5=EUzaFZ#c5qj zOL&>iYo{Iu-AMjrY6aGvef@{+y=;*w`gf#X2gLt0Di19>mAQz$5%2f^{(%LH|L7X) z8E0p=Itt}!YR+Um9_Sp+99=zm#;hqJzqiulmPUNhSI7q^((B{j-0Wo7*&~axayACP z@dV28o@=~z`}d69=PDT28CbCmm~$}m3(f2?EZq#RM z4nMn6gL{AIEL}&;Vwaxq&tQ){`F4C^xB0c^V(AI$)x&bYd**C*>9g7CfvDH0yb0(t zWwK@S625(OTFOn2*EH9Ns;VQldp&B7AkY$S!+-p%M;5kOJ+EpOg>P{(S1y!*IJNqN zyX5O{nrhCBn&8riVP^(z%>H|IWZ8D2R(s{dv&co?W;b`MKW&Km>PW*GUC}vuwN||6 zo88yuot<~EhytrO(eSx*MMO&oSz^C_r@IIAeZiV?a;{H&@5ESf+iEe8L{|B8w4agi z>bkt&er4&Lm+~ifH_ZQgVaPyGD9Z%oT%NmVFTe<~oV@qun|jgc*wmTti-FPE2S*Au zRT1yao!cHEKA#@{Rl=PC0EiQ01Xqyn?dJlW8JTNO?SAHTb2^1A3#Wr+c)@0@CX_@S zvyp@b2uU~DOgPzA0+=BeS>~8?Syg5n4IAc1gf`a@a0tmvF51v;k#*B%a$;j%8?7@E zr55nJfv7s%7=kx<&2BDbo~m58V>JP#&DEZ(`@~FT{Z`88BZUrt(Lq8tFws7$+VO1N z1`T2cSgUbn)LKTHg`GorzD;A1^!#&X=&}uK7#`O_%b!0lBy~D~RkG&v+ib}q%;Oy; zpumI`q7*nM)n1J72r2kiw2nbgEMgw3X%-L%3J{WW0pENfXY-$t9evczN)Ged zF^-vp`*7~QD_{^Pps97m7AR~pd=}siIoI~gL7rV_Z6_J$ix@S)iY;wbaX1jwB0>np zar}DQpC1=TmZm?;*;2&GAwAAppdn{vJ62l!*E+%4ZIJ|&Ek~+1vsO@ij$U_zLp3&V zIFLs-hGIY!&yBHyzy8plAKy)M>vVqn77#zavh5>^RdR)u2Jriwc|TGj-Lt$!#|^UU?`Kg>SAQM4MX-tgq)k-J$x?Tgu` z`Si`=?W^(9m%m*aAxlR_*UhrrEF~D3NwtzyJ08Ywd__s(a7MGG@(H(mUfFfob3b^gp$I%9T2Ap3+*|z`)+|dM=pCyG3a1Lh`jSHE__FER#*fqWiyBLs8j-v zarY76%v;RoW7{gAg<&Ndegq&47Yy3CubdltoE$0WQQ~B<{kG@4={c;7ukq6{R=R+f_@0d zll2M~Vs20j-$DsOZ0vHgdmk}343oVhp-U~|IE=U5CQ2aqBL$wXooI>Od(grS(F@av zBL@gUrc?N^fVLEWc7s~=gcPnOnJcF8b%5t?+DYz2Yw(~HQan10V3@~qn{WmG(H+~; zw@%OVG&aE|CR;tb^uj)pq4|;dHXSXqa3{K#a#sNSpkaQ~W`Uvw4x@*=76E~`d`~f( zNcZ9zhW5wp4&wcV7AWXLc9PAP_!}JqglQJWEy4pS;H(4alZEP(o)2+`l>%!EBr;qm z8b($c-3Kh}CLCz8xiK&|Q30=n5EK&vE9Q1VFYBuGzsT=LMu9icz^aQ_)f!7a>3q(7WD{Et1L z?F*c_6@RaS5=iyW|0LNX7{A;i7$DTHrS2H@$lX?0IBx+@2gUi%#LmII$_n5MgdjxO_a4>ycQP;c z_`F&m=N&FYS~vp)w*wcHVweB1K$!(TFED;RCOJfX{SS7g$;m4zJojFE(=0+D1tEsq zACvPi3w-uIr;!q{m0NYJs<39x3Y7vME1RDY17JOn_0YA(FAID;LU=J`S z&!Gf3N}n3J*ICN1dD#0N;nSt})!2lsdhe|*&_2M|&Jb=NmgSJ*8o7VoFq%IsOSO3n z6!>)OV`KH=IKp>^--TRdI^zFuUnK?N!CR$wnZeQ#Li*SYp3UN&^H5wZWKuK3)nf|N;(0_kzrpcs5`9Z z7U3Rdy>uVo(^?>F@8(lV23FwHZ1b8y(fjy*ubuoHrSB!ov#r2Kq2$t3*c8mmG7L5m z9;M)<#}p?+FUym2AA){(wCBMBROIwJUEuSd<<^&=xDjBO<-#!1XCdG%E%0y+OM#U) zeb((?*eZQJ&&bHXtkR#6k6vRW-8=hq#8UuHO+_D8?B4au_4uslpu_OgqNXp3bgahv z6Ty!-z>fWKYk~bw4s~jUVe&uH*YOi`E29p-UHIEgN#3JN!ifFFyIRVeCDX@`b>O0p zZjF3n9sOWwB7fJ|OQ*7;hCOA>abRx4N#W7r^&>wm6b&!AkX58>owp%<`Pn(AGJJ?D0BnJXL)9bUE~Arf0?GD>IZEt1MFAd0#%5w{q3#{QcbqhPX55&dsBy ztjH^g;qDt7?0BzIR(N!(egE;rmtK))(Se)oi_gin?ODK%T+e{Q2~G*SZ@aE(P| zB=2uh&z_1B@SKR|@w05nHOp=WZ+hk*v%qU<3v2y{cpi*+Y1g9)mRs6F4z!*+x+AXn zwf*|!Grq4ffFCTcGJz|F0eEyXSB*2a8};q$QTEXR#N&)SuBK2s^jAr8lBFbG)L=dN;n+EhCLS{{E*%EuSh zF=8LI%mw^fdpL?qMFcM{GSx5-a3CK25zjM6ZeTK&Rx`uOQ=|uq17*5T@e=#fnH(3{-lPimG=mt4aJBqvi&&$_mJ-Xrrqh z)?=IcR-wku0_1js;&s3(2kBFR3 zWU8=$=N;7J{%aW$_nh2078L38xf%37vg^y}2awpa8i>nWzqOksAipgvIC09$Dsh=nxCT!TI{1>gASia;u5}d;CvrmDnu{n(%tW&xbrDDN-;> z29*=sEBLIigTtEX;{@;JkZIC7ye{^60CA-Vg`DR4ncb^|FEoe35Mcz`8{pk!$<6%v zOm&$Kl5H%zEDyQqW)4;hL`iVGOAF3#fN5J_<>auNp(}Vs0YQ-o&@O5YHL~`=kTE6B z#UA{Kl#$viL1)SO`D04>05!|E+&q{{4)gSuD?xG2ngwxAVHcK`idk6Yu9bARc@`FD zWlFLk8E2>`>u<7tR?<;7)!|-`cBd(#7;|^@_oTeCR;D>%bRcQg^na~&%xqHVDl$!f zMSM2zoxII<%~1gCj^W)|dE-tX#qBajWctADt@91oCvNN-r-YdM~>g5CM)zn?2uiunU1SO zwE$rQnDkQzkiaojDxM$VDqVEQH>S4MgWheDUiNBIaGG9p0lSFG&^W4kBHzZ&Cm6xm zgdx}WD7Vd38CgghfUi=XuQVAD2lyKo*}QDI(-_!93|m&*!wVn7gLe;erHYXq{4w}tsRf;v87OlzrzO-5qq8VTnjeOE z|EcXw6{#P_vzCy=Uk7Y?0L zm|CjB(p26}MWpw@FBQz95ee5~QfS>P`HgllE6kK&+Q6jKg8l|Ye~joRke>QTvUN-q zb@0s2&d5N~TrC-)a7PCt^bEhSiq{LZHAET2`;bIqUQx{X8VmGcF3NJes4f@{V3@{D zqJ03H7T$>Ct;##&!m;$AGVw=u0c^Vx_RlQfBn;WZimc3|7W7-d%`9YGF;8q-?);?R z%#78dN&;S^;C!?Potel@qkG&!82N%Nb~|U#78F%AqA>%YlYPPp&L`m{C!%m7z6vnF z1^W`Ts1>3aV$oV~yP2AlV=Y9)TDu4-a7s-#-!KoNjP`!c1woNr7C1vP}HYh>|4GS5MZ=;?7!ZPy? z(b5?QNK+hN-k~MQz)VYURTz{-*A;}UFD<}SE3_^b6biY$Of(Xp4-a1Mgxx3*w}LVN z_SACTodZu>xnF3QmkExLM703uM!&-pXp(|HBY>+B&IyCUDbU?oIUj>Obui8Bbi?UR zIxJSeZVqle2`nLDA7b}Xa#yqh-PX2iDzQ6N>$3!dcH)|oi$L)-lbaPx!r^dp^(-q$ zJGIhrc8}0)t);4@C_f2+V*$4ht%!Q4avd$fvBDAF@0~siE+r;rWLbbp7guIRm*9I7 z$qHXBaE#)f+=Q@5hAap45rPR6Skb>@AxR$w8XR8NJzlXr44MU0`{MA@IM7!I$16Zu zLlLJ1JuUIkPMG6D=^}ueCe+sgt0<7~@JVtWNN~L;bD$05P#jh*UdlS4n|2uSR1vWM z4s@QmA_G8)FnB&u=S!E8srtn@lCDM42$;);b1b080c2a(p6OJ5gcjsjAa~%fs|;cN zh%(u53I@e#VY>7iP5a5mfEo+uP$v@Z1e8>>65G3&n7L~dsA{aBsTY=Sz!}cw1cm8V z83MSVXbQ}xz{U7P#GL;x3L-mLwL8NhEeQtz@N5PAX*Ima;X`}br#gVYPXwCeoux(Q z189Qo@aJPlk{P16OKH>myQOFju3zFnwL&B^&*$?tG=W4H>)`f3p+g6dIXZMP4o`O; zpBcgWg!+65eqyopxb-T!jLiGQ$^<#+Dge#U(LU>zL>-(VwcS3mR`e{GS?C3*XDj^NIQ9Xo3aJ!%a#6RXHZ$R5N4Ry<;b~ zwk~n(`M4%;gK$oO6{jR$)p9_AGYLtAHJO7htUmnd7QnpXZa|g!2f-bO3!-)Akj3DiT1y?mu>4*0upK zW)bLT8EB4{2AQ6y;~ZK_pli2Qei?xXA`#9qG$jxHqhKrn5OsCi zDhkeVA&zA0Vly(|m8zE^oT4xG=Ala|WWDTo@M@G=g{JCuzJCGwIOEjLXK=(9$7!%C zmg_T{IFUd=(~^&zywfH;)0(Sb>^O;TbHEYw@mH-o_F0li3!rH@GI#wkt(HD=B-sLI z5$$P2LYB*_IFy$~w$8o)#gnJ?HRtC!5S8Mq85Vd=_1DC&$XblG!37naIhy5Y{_3EK z!9BH7cDyd*#C#X54nxwdM;7cv6PKa3gBDI+`w}fO9XOR%bOO*FLsGt8bLMQM1zOEQ z8@87^q41*(id)KbK{7A|r!2_ag?L6?wUuggP<2u89~ zGRJ%>BIVRf3lxb@Q1j^LN(wR?IGK3-hBzD9!9!+kQ!@OLTC~=eVE`os7tcFSkdwW)Mi06aFsm+kYfT ziUam<>v?|FmTg9)JM-Kh92&U?XFE{A{bT87_&NJ>Npi$A;=KJEORD+PIMyMd<{Wjq z4H$saG34o7bZ#|rWSXh%GJSd5?s6|L)*+jA=4H9yIe7n?78+>$MJk2VUAQW`5395j zKB=F0)g_zOxWAX>K%ECK-96+bNI^4pB2O=VI*INRP(X@~Z5-CYW&p$v{9?VDFDAnA@ zO8#FK{pil@pH6-LRr(IU=gHS=k>}G)%gyM`PrT0WJRkh{_{cyr-D#fN=rs#K>S_j# z-n+r(+-Tc->EzyT_SYhS4Ap0n1F1qw0G&GFfVA8EwUr%9(rj@aU-6!kW{GcY+ml2fZVo`< zKxnQr=UIiqIw&{*ZO7eKRif*{pgrTQJNLMKOw3qOw!H+~9chO0R4{D{JMB~X*wYe? zA#u)#H8<&TA+i`ljY%kY4V*^8A9>p{F=R~?LY@2YM}nP1W5K4uo=#SY1KVr_R>L;W!{yyr1#8Q60^+oEhdzB?sy!SJ>X=`aX|qJxULRW2tRm9F&9wqVGNuK zpcCKh|8^HN!&%W(#C&RDiJkPTr((GRZqn?E!#;^fxto8g=g9|OJU#XB*U9If)SW-M z*r%C?{FeE%=Gvv-uG&i8T8q9w>h3p}b;ETRCkAS-_jO0M9%0}7@B3y=&H0k{o`3j# zEnisX2yxi$%3A&K(L98G(2HGj9t=9)p3;she)jw1{EP380M6E0uKWINeV{)g&YBrB zWmru)lk+bESd-`UrZn@&q~;L-ANj4eb&dW!=SK5I?#;Rkhu4cyz=CKZewhXIsiioy z{o?bbkK!K=C#*nT`(2wuo=*WD<=yxtP&O*PI1ru%0A_~URK|x|!HAO;E#wS1SQjh! zS1imePq>>fh}wiM1Xve0f7PSqXi z$jQran>FP7E4-r^yw%11!g(@aoUOn(Jq}i$i~AkP|HRC^s^fj4YdSFZ@p1~8BGe87 z>~eZzNWpkdEBGDb6gfEyNKU>p>_-dJAawJ%!uUnOLCt74;MVK}iWR(v7;Ay$f?yfv znozL9%DO~y0tohBE}lULf9>LyQs`ml_ElEoSBfbk*?;NywImGog4=O6h;epOjPG>Z zJPc^pvLJx{>&INWjozc+ECATKRg9@xlwFRzIMws(sn@^q`!tizx%iLMRv zyngcAi01U0c`NA8hAW)<*9BkpESvHO{%?o(!(R#ofc(ahWmzMdN%U6no4@A0S+@O= z=JVs4gU2@rMrPbNqV|6?`_h}-7o+q2e_53EOPY4v%O79%Vtj@Fo0-^n-Q1CN|NE=_ zvy~2l>j3z>pRffkQ3>V-FXWe7pZVC%Ow{kBKtOvT-C*9~17yH3_sDY5gTDi70iz{7>^;Wq}$A<7*f;&P2 zEdXzsmHvfupX1zEAtM)qK6mnu(KQ^LIYzKz&8(+5dyUI&D@Oy7Z%AC}VB5`E*LD=uSHH3K72k_TZlx-p-o7z6PSjobv|#shuLuH)`_aSl4@NNi&`h{-64)%oj*%AY)fy- zJYG9~<(EmRWukD^fwS(x)3>I%Exh;o>8+HH8~#k4R_!4_^FCL(Jo(jcwj*^S?_2j1 z0pQeO-tpe8E$p2e-!(1m~WL=)~$KV(9xXk}jFAP6TP70O3H*x9jzyD~8 zS>=^~|KE>?Pk~{>`QKH0Tzy$F^NHZw{_S@<^yTE}kW}~in?EU>=SoJ8)(k)ZcS)%H|}fbB+m~K3&+ueD;`!~_L^8*t|UA+`7X8j6s!h&B&#{IanFsIzR*Y8 zwSeM(u$!$GANfu*%<@el)V@UTG~8#|`8k0H@{XT0aX0_>Ozpd<<4oWIKsN1{`mEz~ zW|0}ayIMFAQ5)q4p&C81XFa|Y(X0A5ptWns7$&kJbLmLMI@Jc_0qBO}gvX3~yPV$f zv0KucmUow_SW-uIWn)=4wYo98qS9%Q%BCe$e8z zRs%rvAZ#~oWYKU+5l(Pxr9IqR3P$(?5-w$>$;vR3pNn9KFht&|gVPlOyi@|h#;gXB zV_2}%Z1du^pi_!$ytNv2K$ANUp=U+&ogn&7$fAKu!adR+!D?Mqij(A2j`#4(95juQ zK*=H_?*_)6PT^>=f)-H%EN#8Av4Hm1d)WBgBDKe=Hj2*!s}=bLg5?^BH(;)wPAajr z<0_fxOf|m);BV7GX*D=qOx813;XRCZmTE;mvCmL#XNwBr<67x4LY~d1X~Joofd|l{ z@g7Mg&d6vqdakh09c0otIZP#pCOKH#AB^B3;DZ_s%t;fLfT%$%*aM|gRbHS=}`cm)IT2jg} zS<#!}eKfa0(k|Xix}_dGxN}EfaXbN!+~oAp@BuT2IwJVgDn+MAVTOyjbZ*`Y=WEi- z974l#Qat}D#@NQ5D{*#(A3S?JfK>TkdGsvM=Xo#51FzzZ4Med779<3v>%?cN8n?v zVp)S;bNmOjp0govi9CB`#pLK_a1EOm(LTTX*xB5veG?Mpk5t~5cl25+!W4Kl|GJyb zU-A$0iQ|~>ziyr8eQ4Ixck@^L{Pf?&%j^g!VgRzMQMpr!&DIHKvhs)q6|@5Sg{Qzi z-&~$tB4kf)c|U*gqSAoE<@7Xb_4>6`1VAEWKR63hKWwna3qYUHq{S?Q?0{|~V`S## zHeRFMj@Prx88Mdb?$vkE-LIo>TbED9^U8O%%PYcezsW9I74}7FUs3)bdsQwWa*TM< zI#Jef^G@Zg%hxnM?%CY`u5aZ=JF)khK$HoC}#qp-eG z`|2Elk4NdK=QgF0n276_`NB=DKo@@}{=Butp z#ylZnqCyY-)xFZP>v?}G(>zq&*0MMR-ZN>@?KhdZ87Kel-CvPMTebFgh9~NI@8IG2 zKI?`y{J5rnRMxXGy%2ZhAQ~7+*lm@Qhre3b#cTR}O=iU7OkZ`Lyx!%bU?gz#ZgQih zJlExPtnyZN_cX0)~WAM*WX9i*#)n>%xk8rm(ql zm$UQdsAh?c%Q)`5&oT5hHV2Lh_fNGEF1_$Vvhgs|aKux_Src>ew7Gwl%&}1BR46;M zXk)--n5IYbd@E+?se^>FmAyKdsf=piCaKEcrco0B!`VR2H-o8d1H}iJ`*T2C#6%L`k~J7Fx^VO*9sz*d!RinaFo_ z2xO%f)G@LQWmG(Op)WX70tMKUb_|OJ+I%Gf&QXjE}e26zw z=YhhOpgE@?o2EcPXSkpRX00Xzn>7Btft0n5${v%YuzUV-x`L!^Yo2xF4VPw?g0$No z#WkIv(!~=x%eRaKXx&2P`@SU^Imz{{^#G8oBd@PfBMfko(7+u89Qf|k=oi(a$G86Q zYiN(}=}`hCaR3oC!HMI4@~_i&;3NAIfbnBz z%EZiMAM5rmoI@SU?>HJcc0c)BDE!5;^OeQrO0muF=JQ=(<5jl_7mlUgXie=dKG*Q2 zVx5)o<1j)~T_=Wb6!N;w;_fy{SRh|?d`Gp-J+pUR_1^B(Uyn_G+FF&0;_*A4NjE*yr#>m1@_Nmb0o3N_j+AHLN)Mb7c{~>htEPN>Kjrst zw`w1y{%D;n)n+Dd?-LBBru{KH?JFnkX@AAq;cn*e*z1L9|FoukE57xnJLN~9vvl10 z#!*1-mg^i1A7>Qf6-$kXivk8-3T%Ud$(5g3L;=jlyz!r2>{i%(P}r8qP{rv0NtfHO z!Y)Q>KW4lnR=ch~q9au)*r0T#KC(Kc>qVv8+M^oqzq7Re*Iw=a^#uSLsgSJ<{C^=^ z1Hl*5sE}=^ss3^W?(R`dg>0{^M=SBROtt9R|AcHCn?jyntx9Gs{4#7f(7xF-cY@CE z^!#h3kuyYRn5X1CQmP63;%AuO;S8E~_cM+ChV`;i??z{xU*djRQO4Ps#eOrk&#_}U zl<1DexiKrEm-(JG@;q%9WUTxLKQ0qzI$ydOFsM>om@jm3-sKdi+2X*Rwf6BgpYN)s zpx#-XsHWDR`90piSv~>%feLgB zIW~_io~-y&0b=0S!_9bDkxN24(v&VEP=D|shhe%abOdAR5hG;2levnFUFW*bU(uE3 zK1r=;hE*4(jUYo&a3^oP%zMuJLka8P$wNBnM6CI8Tp9tDDdymfr8ZG!hpgpbz+zBO zuQX=Q8~897mp^LA9Je%v+rLk(XnduclpI-s%$}Fsi1HI8*J^AT5#ll_2~3d8FZ#=6 zyVs2&dF9bJC8ZdC&tfTKR+_d+tMU-DOE6G$g>W_fqkso&nJ3GNucJ`gNHWgWK|g5l z=On;VN5A1gh22E{m)w=YdRS_YmYuWgP%EL*g$rylc2oxEL2>a9pA04h+eXR|nd=}J zkY+E0AT``J1}_3?!Uu$@4#n|P3r7@L+YfQWNpZWc0^f=T32{a_tk&(sm-Wy%FPgjZ zVqe^p_<`6pEb|gP%I=Qir71^*U?(sBTGQ%Q4azwiCH70tU8g%Dt!;4l&Y^Ybu8#?| z$vrRm_PD4qt^>9J{}(!bp)490Qbj@;0=!{fF6IvGkvq=9If$8QDr7N7eb4yCD0LX%?m_xdOV$OhOP`V0`I0buu?vXej|(Zo&Py+b2?^sR^&a-&0xx$vUQ zJz-6exPI)%_%m$K?VA@89||KTql{PFI8$?B=D!_hG0!?lsoGq09eRq4#y})&?(7?iP1LI?L96 zQo?UT@8X?^(HT|JIg{cqd;GJpKT$R&*KTqAdaThDe%b!Zl)AU#yrpBnw?N$MJf63H z&u#49kUbi44&$H?P| zzXJ3<^vz7)BRNj@?DTX&4);@x7(W?^Mb&xZ{vS3Gzn8d;@e@^%O=@m=Mun43LYBFC z3O~xJ&1jMhB5S8e{X0)jS87Om;|ln^ix(sr(R-@_I3NY`CZE!AoOqA@DxGxta*wA^ zm)c!Nr9z-tFEQW3;YW!;{HGzfa6hD7V~qQ$Wqpv1xP&H5Boe(0%V8>Z)O3d>E9hXsFj+V=^*n(5v(L+tA-M^ zTN=Q>BFxG9z~CiFgh7Q@3 z8Ska`)flC{MCVem_*fAH@;vXfemC0|{Mh;3fZHi%Qg|LcWbmOAUDTV{8B1&^p+_Es z%2Rt`H*|=4po7VABNO7?Xj$|BSR)HvwOdO9LPtM1lzx^u9ljNyccJG*li#lLvt6!5 zMyKFa%?brjxPrfZ@cG|j^Nh1#M??EYMZAho2_|_%5}Tk%)ppo9yUwwlTjtfc0hT33 z(9ap{^-|vY0J&g38~jqA>$t?XPWrdCS!;E)-PRdzc%a_!jVCCyiPCn=w%Zt<*Ei{z zN(cfiED(8o8$vqEjzNHas*YGRP$tz5M3biw`voW%Z)Jj6#ko8B71-E~*Ke!4{}gJc zb@C(QxIxXr8rS^2yTA0GoEtgDz9B^)f%0dPz9qsW!TkteO2`bn#Xe%Fd(3~nVG3*= zaaXmJdBrErs8I1h+q>Ajzr%5!rrj;^Gd<9|emYrLZwJveXMZ(}1L7L8TdR8YzgCxHMciSbt?_y`f}WipK|92 z?&t=#3DeJBkv>u0ub&^vDQ-Hl&k|=CZCr{Su*1e-4YWYF9n6eXaMytJRL>kCr>3ag z{+c3>1lZ2R@O@^c{MyX?$HG4>FfM^9c6bEl5wWCEY!L5hn>=W zuGQCV3lyZ|329kp;Zqf*$(V5EdU-ahpBpP_*Qm`4$YE(%|6=f;!l#do&(2Xr;esCQtlxZ1a&}jd`)} zA!%cO#b6=C>_5@%e9WNxh2Kc&bvg4d5N#|>mNx3oYMUxEk`U6!uI(fFyKraW06`0g zqy&8HN?ki95$g^u)7Fi3Pt`a!eexTVj*F&x zhT*Gup)`5Vq9|&#BB4gwsGnvOiyW0b56vKGTZil<1T9VCH^J=oG!&09BN8>aZAddD zqdkR@U6YW;dSS2z39G|r0Av9im(qqjnuJq`MZjQSwT02>&3xVLKTYB>_#Bx;Ay!5> zQZuUS&T`3M8q&Nn9Tx5K$-4C**x%?=qx|tPgp3QtC*DDigoGAGy6;-*9jZVygHhv* z&b)Nmqow8Blr&yLaoJKNd}J_iZJqZ-zVlR*$AyE)7y_osmqSGhCjeTa1R3dA2L=NV zWFoQnYVYU1J`L~~6%sB*VkI6~X4jYV%U@Qk7YNZhqLPU!x0kWF%uwweJ1W75MhLz~A=;uA=L`vLGG?EvoKh}Y<#EWl>cDzt z8{+b*>Mx#fih0f?0`GGafJ1vPkDd1%IxPdLK9QNt7DNzCI`#YeZ^fOKHjtm+KeN zMozm=lX(9-fM%L%6O7fd66fg(NtU#hmQDGwU0hAI)RM;a&1*I88&pXK^zOCQPD_c# zSNM$B(79diG-xX#3stFV*+ZzvM4&vn!h%p-!Ls44e+*F-f^xW?{xikxh;U94zE9%& zQxl%w47m-uTK~W|hP(6nP?tV*f*G-~g5zItktvBK3rff9yd&`1BA2b%RcPOe>K1%d zI6g;Xf3?8*->rC(#P5`-B&`7Xv&8v!gV0U^^$7&QGBk3eZ`G(F!CY_LRpK|pDz>TL zczCnDa}+*FLUT3w`zhRc=~G%8;1~t+qS=q4j@<7;7q=z53$owSBE27?-RrX&;m?prA<~i?;V1ZXKdX08ac5&SH#=*cLPqEX!`T` zQmymSrDIm4BZj~5|2k1xE;bcIE}Ge)hF!DI7eCsXrlf&qEx6koJXcL@Rv`UfcXJ`s zt{1B^FK(O0vzR5!q8*FWSdSF*9*fJ3hVU)8c?YhIx1E8AHk|VI>Sa8Q$8D?)TFaQt zMq0jXj+$gDzy|BeCR=57^Kg;lNE@`)h!xDld&)!0n4pTlTBGRqL+HKpnz(KBe>d}+ zwWqw5KW448R#SWE2tCYo?7Cn6#P@8Y zO3ch3EdDGSukot$Z#9hHt!!e(^r{SBI0Q?Lj;#T2-^Qp26pg!{6ha)mAk!11|-jd<*{k z`9dadGR{NG|DJ@_GjlGC_8|(Hkc_Gm9u33qm`rVEPMjzHJ#DS2vMG?g*KFWA49>IK zF&S?*9|)26Z+P2j()CVa3&f0&6k<0sRk%*Ps* zzh>435Vra=?WANXMUK3z!}n*gzTnG&Bw>obZTu^I?jX8E6y@buz*Mr)Y@4}O_D3r- zK*LDAg6lN4eShzi-r<;X(`k@RDBygrTSu#5@yx3nva4R_r3FvI9a*5ujteW&kr4k? zUN{%$WW?i0W6ay|ov`fOlt|i}Q_83JOb8DXd1q%gu==g6o3(XdkXuS1bKsEb&ZZ9W z_xJw5ABu6e0DQkG`#}`0GsbdjYNmzZ^8k2m$2q5>ZIRk;B=B z?~nxlL&0=D8{h!3AA{M7f~box7SsCnBH6G#xQO!@gEY{tV)CrqulMmzVwGnMgcj8U5A(NjjVtl)2;}sT0Bc02n)8P=C`)n}Wh-Vwo!YG_t?ipj~aHnYc z_p@pHgXehR_&lk%)FyKqJ=kLNwtwTW;z9r$Gyr<-gNbZ5IFIZRqjRa@znTWd~mT^bb(Zg5pWoP_;>l-^wg*Y`}H>Y0Am9T<|gBfPms|9qt8*j9N z=m^~2tXe+?f1Gz785y#m&DfOMpV79q>lr(dq1*YpyJByy+!lw6?lKp^Y->?7uwawC z>)9dZ&$HS4@4F&3tY83bF>qE–YQ*bS>2J0TrIjxz^=}FuW%h>)h7%!e#LS$x{ zX_s-%_GPZZ6vBNRzHbl?=Kzm?u-7!sK`BL0rU|?P+sAD@9*rM5jBhl;n~iKcE@-nb z7g=e_{@D?VTL~G9?T0oaJm+zbPaTAj1d-1k>SiILl%?=+kU(V`1N*!?wB>a%MX9KnUbX7vcWyRQMiNxRYUK=CvXQa zyCRl1avYyA2&Y)~n|ilWs7##2Ypc>x^q0X#=^(O0T?qw!0={b?m?AUpH$!16Cy@!B z*ba>og`WG%Fb&XlO-G_*@JvPJpM4;fKwFi%DR}+#$@Z{p+p78A2Zv!-3)-gL@-z!t zd(2qPNAmFpr}D9ZI0HtV4eTv zw(GZ+U1bd+>*9_!)UQoe^OF|V1!?V2C2e~W?lu#jF%r9Yg2|r2+cHCC_(91_03m854W#qLA=iP&_?{_212Iqc+Fo)X+Q5IKDr-J8y?L`|@m^v5=E=g}g+t;==8sPGf`&`Ke|z@3 zqf)Tv#P9!YY#N*}D1v--8qQD0aJl(6v}eD2_8@=ako|Ww2^=UC6UpB|);Smyi6T{?z+r?#Lfb%0YhcSJii4 zV>irN!h!7O!P7p&v*O~JBrM2wQc2H=_tVaO7zHo+>M-Qkdh5@BF8vw%fd_7%)QsA@ zTK0RzD1Jl~eVi1@G|ri;y6igkE~m(&soyzYisUP3M9%u&1jLuWTKmf|SGF->t|T=d z`ElZVewye+u+@GR;;(UDeG;j-W%pu-8>8NCZ9RJCxu+ofFzxVb_~T?%4^!F zC7gijw~y?WpbRY{^BW3E`UoJYRjQ?NJ>vBi`SyT#&~M3BRBra4#u^u0@{$Ey<@|N1 zb9$r9U8bW>ccfhjqKv@hMX(0DS~KSRXB|5%6?Q)IHGg+A3GZZ(kl#JrQctpK&2U4L8~FCGt&?mAB8WQ(H`Ao$2&n%6L1RYSCk0?x;-@ zLT4_I^_@8K!<;HMlbu=N-KL~MCgPp04p?hs3q=bMmeH&Di3TQINml=zWnXzAC19~!5}h06mA3Q;O*m8XAh z^gQ-tDJO<@*rpc4V_Dp3^IVS*a~axfx=hd}(uM%R^R}HB%~;vd~w6O{OuOZn>!Tw6_}jlxQrP-WN+O_&SeXSNQ&=k_cin zzZMkOSPrf)j7-uy&p{jJ6D#Qcal2+YCPDCYQIxQL1sE3l6acAbcy(0HTJcA;vE&cyQ?VXc6AVa>dI1upC7bqkv6W|u)y z10B@S8{hJ0LXN;5AK1RSk>k%UVYc5Pu!W+7+qL#}48Z-BeW>QE&E^?IKsh+f&*6O1 z86yC-#kCX&&==bw{Gj0L1V=p|>=t4LIvcY83Mrx!^T?bIx^Nk&`(|8`o33$j*QMcFK48 ze5YaQ(<#qpm~*DyBIB9XSZ$ui0M7$tdVLB#Rk?fpW+5)-#k-tV)xLHd+R(!kuY$AU zpQ8;R2uK}3Q`}9~sVGqQW+YQ)*XbHx25Fm0Cy$1uzN~b~8%X2SiUaUzn<3SlP5g=g zCw0hPBs`9&HBe#)vv+B46CY?gp7P=H2KzqN!C%XLaf?6M+Q9#C9(E`({ZblzYZXnV z5o4l?bYQlDqjpI>2tybqW<9e@Jbwh%;7S0l`CdWT^;ARMdQlWtIDOJ+0}U*AUsq@fQ^|ONJ~8<8&HMH zhN^H;o`VBmZXHK&2paBldhw4uEL9q<9e~6d!KAmqc!}(23e*}kL97tD$r2xJ9C`vHs z`aWm!Q#jJnb&GUiu|_V*dG5Z8csi+*yhYaW16!RjA^lV+e!Yh{8;m(MV3|!vPEDB6bJ67{G!zfD8COkK z(X*SR7wX$LsXc`YA{pTQl|U>?{0{tBR=gAI6Eiv`|5!>~ z8K@-|6Ih5yhNdq?ce;1MD7~i2Lnw#kESeSF*a*MVWWcy)k*u6 z<4AD;&G7dN?>y(3xz9SMqs{a@XvE}kTOelpMszwpdBwQ!je1sakaIOY_@Il9>K&OA z4I*u4q!Er*EBECQrS@OiTw{9mKcWpVje_FCBo2#806oe!51}Ni+*3wq??oxqKqU`H zD$1;dG$6`{=Rt$i_)5C}gF_n{Z|#m{f?Qa3SwE3#zh*P!|BzbS{#N*pAd)qesw237 zmoAOq7+eW#>(WX6u=I{9q24!nHl9>)kVwuerPoWg5Edybm2#HZ8v)Ov8PkHA(PI_g zlLHK}6ngjQm_rWGWzr7rfE;G0kpS$ zO1Y6PAm|sZU2LhlO{$8numaBDpQ`HL{!D~>%xoR8kBhyc{T7NjxoY-UEYi3!xD25f z?xr7W2$2aIeLfOVI`}v~R2+o!JM4=1{i*dl8Gm|!ed+K5Bnfkn&n_47 z*{e-hXhB*#(BLtdvN==J%eEK>uq^qepvyZS_`(4m%2$o$B6hf&xwC zr|}a46oIahr4vfD$Tzmn@FmxkoC^)`$fa43ub|pT>f~Fv;bHHQ$SCe$P0a>(s32yJw9(c^cmP{3!lK+$libDNua{b+?Y1+8?&4P+A(-$RO|EMH8U zs;h~41HWchx-~_QgSQ6ddrFA0cb=0~W_D{Grjxe$`^LDIRIV3bo)RsU@O4(f`|4mK z3Kkuc>8b7Kp~~rjSP~_U7$!&Q*;+a5W^ME7)_MlBbTWj{4stkGB2XO1@rIG%&C zX{p$k7o>N|Ca*Q4+2?sa()Ix(yvf)Q)wnI3hyBof>LIf^C};eO@fhLEYL3(fP30^* z9qkZV?a~B|ES(kg0qJ;{y*p6O%w6x$ph^%6V39cX)Q$GQ>X18s;gfe=TJ1K`8nU%M z@|1L8l~c>lqfMudUT(SQhwTfW2r#rnQ|gPAdg7#CiNR-(I;M;meIdFrOt0P@zsrbv zOE!3SM%J6-cBwU7X?qP`9^VNIIwKX$jNne~i6=Earck#n$;M?5yZN;(v; zznEvCpWX1p4QqE}ZLzQXsU)_+cm4HymYtp5-K|%58exmBi$+U&dW`9=thT=rYj=G8 z+(IoAX=by2c62U^~(9ZrP+k*=zq?aM!Jod>XfBY{`j5cDn;o$jTByJ z?giJ$7M)v=KILz{Lkz}nxVH~atub0|^r!adQ?Ea<)C?$YMt2(`Vcx&pf~PhPYbU2n z#>Bl1i=K$E`}cY}T@$Dq{($lxQ93zDvh1-v1>lze>@TR^-37ayenQ)+BMmgI04Qpp zEGbHAN|SyKdh3QE0odH8eOmePR5K_PP@_6@QB%4kOwZd;P7)Po3&1N_Ga<8rRNOZH zgTWUo7g=D`+*DxFPEuvWmWw({uE~XPrSh;{MB_(xjbN?zmB2>Yj^d zm?HdY8Ex8bRc7`Xrh83hG`5DLE}W=D1_De9yXZ)S@VTR&Tk0&q_+7hj&h+^ReZTn+icNTdYs8(mxb~P#lx! zX$N3tw!VCI4m~;FGuY&iA>UPM$kJ(CV~5X7FmCmD=|;_WwKzER0R?)7s~_@GRx#(S zRv4pa<29A8p{l}z<#VaEeH{DB*?Il1-p;L0x(+MHU0N2teS%UKWP!u6(vX%hin#hCieq_|y1!73Q=Mbf z5y;dPZEk@gBJIW*bi?U8Ke~sm9H(Vum)c_+Q%-Mpalm#Jiw+0s2mW~wHC`ViCxb9_ z*;~k+fW^`+qgC4ETr~64th==TNrWb;5UrXixcG$gz{-7PwXtD(>pAf&ZAUeQ3o~lC zf{pG?S7$Xx5d&dYo;xQ!frKiUn;+4EY#mq$wOVD~`RD)bwRO;pA1N8rr(#X}9CqPI z0PW(qyL}NOR7||Zc0I5KdQQx4?fy9C-F(@JJHak>z-5qSlW%*M89%N;Gs23T$kRZC zKEkz*OjEnAZ_)}aq`!3MaS?V&0sl+$Xr{6#C1jv=z3o;lVIu4CyCiVf_k}zzZ*?Qm zY!CJ)|J0vibN}5gGO(`gf;I9SC-Fmy?Wv<$>KpM3Vc=q1VJ36PUh8753|Dq0t=>Re z!w$%(7AwT&)9~3Fc0&qy+MBRrR@wdhhFT)llUR=zz(lL%-)WU%e3K8gbC$srDYSd# zyx%*cUflipH$T0P>6KQZUHELQs91XA{d##!t{1+=zcnRw+v}AFU$3%Z!PfSwVT%^; zY&AW<(_6)i;!KH~wNVa*Mbd!+^6>5XlyMHHO|IPidSvflN|lE)WeT(F%OdkHNfek2P04azTDavqlF&_{_Sk2_m)|`LlxzFGVaxVsSQ;0sKk&Nz-vOiJ z+xopvg6~3v8H%?%S*ke|UG2X8li)ulIp@griGg~x=`blkN#Bq#59XEO?h406yFaS- zUCo;>etTy6yR#dWmsfu`%2%0Z^e&Z7BQudbJUt>&$P|)+tkNl?v4!9|%O&F8ymyxq z-*-%ZevJ$2l$=^XI+4_4WO2`iINQ3qdcm$y%*#p*`f4 zA3umLMl{rFIZsm7o&!zM=)Ss-{%O`i&_o*n1G;GL2dm@9KJSky%L|1PRRw6REg{bs z?0Is?0Vm)5pmnO##y{4$YRIf-8fUfEUe9D`NNUCVm4)rp2Ua&@F+ZJrzWnz;%YPp( zx4kx3woftnKXD`nR>e!(#`LNrSq`k9WRSdN#?HJ2RJm{0TiY z$f8!YY%6K!mJo^soIeL`8AG@ele?g?`XZM%X~=#?5o?qNs^k5$m&uts6kF{;WxehTsV92)$PaQhv4EcrZU!RH7kO!PbCyW(@yq0d1-z8`n(bM%Z) zn*Recq=5rK0aIH-*a(0yH@V5!R*L=q(4c4X?*9iG6ok!38=CiD+vHNCaZ5UtH_6}T zBrq#+mfVLHP?yo!(P{Q)?dyKhRok%51+GxYy6(=ut(~w2YlXh#UvZkUKY5Q!PtsQB zu!BJ3zxAkD40d99#awBfSNdsC2bn9dBi>x5j%nUv_C>c&i4x(gTYFw)0Ly_`<_!uP zicb0z8&th#CSfk~EwPqYL~|aj=}sig*JyhzsvFHGq$g`>^Z#Rm@=V{1GneKB7_Qpw zIV}9|FJ$|Sy=veBnZ~TX>8kDi);(cdqAEgnuC5br5uJ-$;(}d`8cy6~jsg+kBdW)D zd!^x%{5We8-_bSm#&@yL^iL)t-qFI?Pb^RBu>^GG=h+F_)=3JI<|o5L=;`8awMG7d zIs(Wk=70~?CdH`Q?9ay7)HB(W5)RU&NJp^Vp4IAKERH0Wc= zippqZ&<}K{{xu;6Pp_T6hBfS!u+#+gQ_>#FiARL)R>l+vNJV(qQWJlxD~+3DXn-G$5L+8=-pfslQ#jsxQpS*d zvXQ|YJ9%uc>bXsIdc6grzEsl{%UKuiT#hRC`>Rh{B@eTS49Wj=ee5guEl+(}O?Xn4 z4NqYRZ_^WYzBYj3e5>ts1F5-@hi}L%z$%jUJyFy04K{gkv_CxZ;IX%r&o_+z-fEhi zmi&EgL3q!a&9O-^z&F&vMN_Xy|NL;K?J7Ds%w|b5c8{923EpmT%Sr0r*mxAzIfAvj z!wiw&eQXy>3!b^%AA6%xc)>9urmQ7nJ(W>4&UY6aXBNX?dMmL=78x>>=;->hSc!39 z6B8s(U*Q5)B_~{#X4>DQ-b{D<_#XJ>NGfiJ+#HJM&T56qvH8Q~6b{W4P~meEo;#&3ww$ZCfgs->`GiRWN@~b)JwEK zMEWF`ALckKgJjc;n{eBW)#+I!r}xqC7m8GUI&D~A%AyN{b>5m+p}P^Vs8NCbYd_gG z9e`Y5E)|87(J|IGYCp2W`*^N`-t1Dvg zH``{hFMQzTtB^otlHCZPX7XmBroGV)ztT=PkWtQB1I@;ZwbIf^i=RuAc~&+rOP<#J+5Gm%y>#`^K7)Ie3A065PD>vruK@i zKX_}N+_6f6H&jZoX@jGt%+5iCy_**yOxSjv!lks;SOpjDm6iX`x`?#=Vn-($4@Sz) zuWf?@!}T^*CTNHJ1d&lkj>?cgzW8Q>JKV;lwev@*AfM51HTry`yfX_@w{+ip(W_0` zWJ<^hfXuvgU1JZcD9&_|dkU>xSIFw9v8(i!C6*X=>}*;L(#>%W+Pk}Msd8-Fn6vUi z?^USH%>Ux1#y|TMQz4&EM4QPw>OmyUCC}#Y`+~DJM|e^Gd2HSAjM&J=sin~}#UI+& z2VP;|hs-!)wP5b7RQcA{o#L=vKifNge3*U&%i+iG=JfdY^Or^EjJu+mne8Arl!URQ zf+Uz-4+6>yCy6$9&ay`@JGz%_C4R>kTOQQor>-w@brdE4BqF&?L| z$=F1bCB*XSV9c8weA{&!XO$XVJf$2CdcnNl&2|D10(^b11#7~cQz1}d73iGsBI z-EaVPWs}fcc7>UAfgdF#xESr0|8zRxsPszE=Ap)N>RcBt`2A%f1X`tyN|;$zYxBG+ z&uCtPK9V}cFLfX}0PF)GYB8(?lpyhiMHfYfXO(sW!Lg-5;M4TERn?KME#DWVd3YJ7 zVvQ5{)K24kWTSdohqHsJjji#_^;-MZb6OK{zdnRteMAFxEoFhkb9lb5Dt8(?PE_~tN3ifrh-yv3@+gA}6g5gB>wn3?Kwql=KCD_FSk!5f{n4I#T^ z^=GlXp#BT=p}3GQ_sZ=p;G9BHl$LJveheAmYtCJK_zk8Ub%1ZHJ(IN}wu;x1!=$8F z;n=h{+D?Kk!z+JY{pnQcaJ&3;Ipzb1qb_=@jqPTV2`u|6Iy;2lwVWAMl3g}B@3j37 zM<4T#;bh4)a7aEfAfrMW9yY1!G;i@4*@@zhaV#;s>?p+#vr@HZ!k9hmf!JQHdF@^o zz?GAaGSqaS6OA9;MP}%%X8-Q_8}c_t#m7ra{js)%NN|#!G1gRaQHn(Th~2JNeGX`S zPy1xAXQ@;)0b0-4p6$l(=@&gMzbN+4<}Zvl=a)4aSyN1;trqNbAjsF8!vNJOkhA`I z45#hPO#cEuLOqqazg5fs+H2UHE@URCk|NjQe{S53|Ng$N?PByv%c`oDbmAnb|FCJ4gBMXhjFI!=^itg&-vL&_{r^T} zYnoOMMs4~h-t?bSNCQe_j$*t#bm`mcw2{9bkNijHRnEvKmQ^(^dp7K(p+G$}Q!`bF zI!)rI=4d#*8k=DauE$r0bM~nN0z-Kp67j$6NVi_nW0*v)#lG~$ud8^z1P8YiGhl6C zuXgmX_Aq2WKxP3WYeF2a8;6bFen=6sTgpNpUrD4cK2w+2iJwYOIwivXZp-0>aDf#R z6Hc2;lfJW)QTK31zpP+25HBC1845Mpx4PAb*So^r$XEpzm3uXp&C2IRwmB7L=2gDr zB}-|N5c~Is(otD_$Bc59dg9PB9lJ&W49JrDW$b!Lq*nNkw4swFv?&C-q*;@&9Ib1T z?%$F=ZfI?S3VrBQRaaMeBBO%Et7@4$t3M+bFi_YV zODRT<$IofYM-_&0qR;6>G3{6jZmd8eDU?CJex-QB?Xgu02k`wR=ndP{Iw0n-MXDMl`(b?nsW}g@5uIf+DM)|Bz zOj$dRHPOi5_K=r&Mx5|wO-1jN ziAGeSq5IdPIwM~cg1qUCrMloZN@`}mSp`gtv@rZ+1YTsM)l$ZDDH2ZM6@!s{nLhvp z(=BXRDP-{&(OGz*8eh4C7cEJG>oF^|a(FCuUsN8Jz1=HYwNF+QVcx)M-mW{Pnv=DI zTeN^7WBRM3F5;}dSmx*u&h2g7FDgf%q2v&5Oo*eL{$l1eQkNYEi&dg?(27lLfekNag(YQe0ncX; z^YX-((m|=U07$^ip3oJF99l@xy=B5jZSWNden!flJLvYPo>?&n;34jUP*x{_jlYba z3&9^+nKl~7ER{b{aLUZd(_T^#PaRUj*kELS2ZL)y&!>mQcW|(x#&rmQ)sOZ|eR0>j zjBC~~_93WAX#|>GbQxpT)WsEGtn>#wlUNM*ZF5S*my~Bv|2VGTSlAIjA z@rjfUELpR?agB(D4nePsbXpDlwHSY=`o7F-HnlY6(Hyo)?R|4Zz1y)K+Z!<-Q?l4j zP3-z{Fa%YpY%!86@%m1z+7W+bCm=8jABxsDp7p~o5}f6R1uo5)R)`&TNr8ELc*62X z(*YX9{D}^V{c%(soF5eoG~5^F?|$l^?d*?tQ1Xt?%*!JDBNK$0cNKy{@B@B;30M|r zaFE_j3j@ZYz7YI$626yY>1JZ_^KpwyJ<>+YdLBB-4E-RreQIh%AbQYLhQ{by?1%qi zq^a>a4X@mRg?0g<4~)Uj8hG8B@2eDAVDXtcpXc-(gm-SELk$m-c|5gS`zxCBFm0WL zMfT4r&D4ckMe#N6xRvq9%D*yFSscI%_NN4ND%#R9JUb&CqmG}Wpe;$>v_tOUBALsf z6v#!+e?y4>Q0S-T7|gzDjs!Zs0MVfi6D6(@&@>ysP)5c&IZ<{K+Or6VTCJ2dQye7S zi3MahN@>_8m}m1nr6W1Z;65-ETe-b?MX@V{l1+7qQkW;F#AK7k<2}yM=vZXKaImWc z`uBC{Pf4!u5Z&ij!m!}XOaVkG@5cSnVgosB&qfza$~3&eXNvLo{RHKWOE^>}H*DD= z6!_y%fEn7p2oJ;4XTOP^ZYg3E(fqE*W*-PY`3^sWx{Sep|Y&yZe3vrlufX_0OGgzF6A|dsDua8y&JXlPFFR;{Ul$ znWjj8(P)=J`QA*`n_uv)a(v9&z{Lqg1DWBAec~ds9m20@BZ_EaT^oOBOGSoacE;n^ zdz}#FQ9;{TREexxkigGt_t$KqDUs1intS8w$tt_JW_bQ(#PJ!N!stC$LCcV47UwGGbWD;1T8y~^ZKh2!pcxkQpcgO6u!q}L`=tLD!yVdc zyUEK^@Syi?k`lp~c~j5Sdw^3B?n2m8{2ksWUjW;+9Kp9kE<<-{Y~Na^k)eG)$I>sj zjsjp|=U0%vYr@AoeEv9Gq!uKp*E&5y2sAcfu=2UjwZz^ftId0v&D+mB@cn-kJ0Xd@ zLZk6mRUt=d+iEz0_eErR;@cMToP6>9)O9F~^7*^)p&845iI*?LU+tK;cTG*b+x7j0 z*PR}5S1H`bUck4gY`^*Am(#(*Xx`Zb{P83Fr&q8YiM=ASQbO?!8n#8U%|R%f^~Qd7 zTPMF>$b{%`f2iG&qQ74_^I`SPNs-5CAxu9N?X%qDj`bRi2mX43R}wlN3H2Yqf6#t! zRjHogtRBN$xR1rRV%>xLHvWqL!}n1UNSc~!OV|aEJi_%UI0CONPPuu%5Pec%nWUfa ztpGo}gZ`7ogh0^hf?SUp(jnwrfbcR>#5oPhI7P-JKJQnH?*q;EwQUTfhfzNMj%}N$ zbvHhdb8q2OGFK6`sj%>;j$Nj0ysSukBnq+JjRzay)lB*fFW&--o4;urlHI}z!Ip0c zaA=0JTF_ZxxZ+N?IHc3*v6Z&;VWr7C-XM7Ic5<2K-nsm zY_;+a4=_LZ3vA zM)o1oOk?*?>T`S67wpTQ^1lds)3>J1J#2eT8A)IT0tASVFow|p0fG#!3_wuSps1*b z0a2q;4T>5S?aD|Pv_Y}OYHhICom#ZPTBT0SfQr`IU}=l3wgIt4Yunh`ZrbfG&)U!P z;r;mj1%!31<6ifD-M{NR@ixwuj_BHn#4Y$;nXDYNBz-rLk%5PuU3^qAF}wCrZfyey z{(l`U-dlw$v#_7?wjp|ne;_H$}n}Jr35+LTIWtOv` zL_`^31W%I*R>WJ2eu?ZU{jov!$^O5Z$xA+PDt<)f%|vB*lh&mN<#S?tetxqgZ4zwA z(?K+4L1pwVWvin#iqe>>~N0IhL z&(qc&YFbojyBi1aphcCV8kadgiNS79BJcUqngH;2(SU;rediWpmg`Q zo87_>55PdbTp{5IsaWi{6;!_bL+<&GR}mVFiPbbC0IbK@fxD)kH=V+6GMX*eFMW%x zS*v1)zLx&hnD}ix&<{9Y$$aGtysiTWLvjxP%tu8#uPp9vL>||9lWHHUh63(boLX6mZ*Nq;FPrGt0yh1I)*{NVeFh(j?{Y44})F{b^KT<3~&8 z-L*Yt`_G=6`(;p5^%v=T@_nc!CtruI4-p^puYy< zfnNblN5XeoK4zNE^Vmkob|O)-!B>9^1|9<;H_2Ba+qd;oCYSCE>Hg?-?tBjUZMk49 z7ESt@I;xBJ0yY+vy;*Ci?N;>arV4KhG|(%juVmDhkksDZk{Trd&{ic+ z8Ee+@O5&6;?}IbWypY7k%IloD-E1C^GG%ph{gO-y5E>xLsM<;$VFBX8JIXH`0o9T- zM;}*%d(LibYCZ_P@;u-4dtnJ2*%EU;OR}Yc=MByQe61EmCx|cKP~9cp7x~2ZX6f55 z2fHR2^Sy=1eAWU$1_0OZl>Y3nQV(gfu3}YHdEVd(bs)f8s*)fTe_X|`t9}iL-&(!$ z`@oW*tG}?qR6u+k68dH;#8mM}Z(5v`xn3O;C*w&kc-vyip*5oAbNA&>ZVGBU7INBu zC`Ig|l%ehA@gPw9885-I)>c)#_WdJ5f^6HXqxuuA$?>{GpxTG2dN_cSwEe4}ELUb2 z!EYUJ#E^Ba-ak&Gk^CwN@_xOWq4o_8K1<$1j2ng~UbG(Z^|ex)ZZn^TU+iSpW&G>? zrIS31>HRZ-#8Vkw+?Z!g9r_Fuwn)On{u_EfU{2KW{$xy?kq|Xsga!R0lwQ%@xlY}l z%mi?(JXSM882+fi-8N&%oFSSN*P~DKy2Q2e%~5t}jT)Egy#ud#k{=B=PNIo5{7h9# zIqFau-rx~s>}TI&TGioH!SmQMLEOe@h`dDl9<+4u1SN`!&l6f#Qd@`@8Or`{V5Xmq#)C4Ffw`JJ&%wxXF^U-0({PR?IX{0k6b6VR zfD2CagY?PBds;I!awF=EovhglW5Pd$d5>m}*L`%eWgf+dglxXDH03AO66)Ycz|I!Z zl6!#nYCDj&?Z@E3q`nR2sVSS?oe=r6uJb67b)t zSLQf%!v>_DRxoQa?3&t;$oNg4>?dVGGyssh-kTFFhXJY_ez%vtjUnIq@-tH-Hw6ul z?uwlN@Vtt><2`9>d1p&*%DF7O>5L~lJeiENI1uR$t=RH6l`ZyCSOtAsPNBo(27Yd9 zi-Z%}!w5Z1VU_H2@pl4FqWM7(VDt+D2N2OWD7oo|F9_P$$_1$j2&+x@km%E@Bdj@#(hZ4f#_plXl z(Qh4I48XwCmQ59r1Li7DXYeh@=t|l-BjFa^`M^x8pk)QjZ<54r?>L55`CGSsf}ek~ zgDMW6fVgk*BUW48S6J?jThx?*6=Qf)qH5U`p^A+fZl?;1QA)*@v!sv1D6vW_6H$Q0 zGn~Pbq}b16y{vEQ5Nvxs07v#$z#?xr(qNz+)E#hVR_Y5suti3XO;P>V6r}Yi64PJ! zUBX|kWlr^FX7#?_VT;%2&Dszf@s=erI-u~fCD zlsfva31H0g-k7e7eC){rac`scS} zGcTu>4=W<$pzjOf{Sym6`G4WmniOr`t*T!?pZVuMGc$l1-N+7j2V40Y#%l8ggMGEfj5BkVb8NC~u+q4|H{|1X?c59WT!R|9B3L@Db64jt7LkVa^3;cBRo!4n%q z)rMRuOLcgI>I+Kiqy5y(z`M^WOHPJk6FIef-RGWHdIyaCd8B~w@(K>?*uO&V+-$j* z$A($^LS4p6>gwA+vPv~b%eb-g{NABmd-{Id$6`g6?=pmRAx+O=V)!-6Sq2XTi-n}s z8l==8Q9f3;lp49Lx=7xeQ|>Ik|D*Qx4W{FLW@JWZ$^IRg8rj3-BXj-mO8frQajjCg zE1?b%>EIG9M1H}fz(@;ymO&ld;%Y6$kTpF-?uAqVy91I~cfQ`o9g=)JW+}s4ma0vG ztj=Zj_AS&9rY8Nx#q!>|-ABsMzCV%6V{L%5E%kZCs|l)+~GzizoJnxX^pb;x&Txg z&2RnSU&_$TUp$gLcqI6dSFFfEC?OFXlNC(C;)c(xvgs)6Fd(?;pl-#OZ(y54d%@>9=#Kz-{!aAaFnVmq z8&`It?Re6@kI)(=Qd8E0ykMzM`F>6u1(Ad%^A5Xbq4~dY*|i z;eZuj^MYQnw*JQz2Pnz>6!cC$dUznP?;SMKI4ML= z(K?cabl{Q$(m7Yn&RxG$6<6n539-&_h$S?UmSsr<07K~bCMKqb23C{!n;fyMP%jw( zHme-304Qwq)2uTHVO#-+PSf=zLC;`96;Kfcv2#AU%k%Vk8{@=(m;;)+WMb~>Jt3K=)s7N6g z-y2YR4tOCOP8Pz=1jXN9s9sU@Lk|Ux425@{`(#P0&=<-7X+amdfqxv0b83|4h5hr|7?O{?Ui50&h zQz8t;&IO-1AAD(q!>nOVpC@eq02P5e@Ls#}BhvKY?r*+^mH6@eDiWAOk^nn-g`Y4o zZQ}8AbmHLWtwo||pOmyov%RE)WciNlgx^nXpe%Ui=kO+S6i@8YZ|&kYvBW209~UbNP=O2v4|O*NA5y_v6Ro8vPqY%xUGDYrJEU+hc_ znpq4O{dAIMn8l)ONky*#x5!}7Rn;xVfbQ@Yr^4#^a2?%$i~aZFh#p7GVbx8>_*s&U zjAbGZDAxVYZoVNNzOsVZB0O{BUGxYV^k)wGek|~>C{{lMxO^X-iiivDqCWAhhetR& z0p=ifB6J`_{$9vu>(&RmHq*LDBOxmy$_*brxcO1zrzIb!kX_VbKhheq^Pl&wlQMyn zZq`m<9qNKeBX_B~dKV8J!!yTKv}=#oUGxI4`x!fg%g~X}r^iW&HyN3#f`^yU!-Z(? z$`1j8D55Cmem3$$P4~C7^Q5MjI*c*(_j|J$^cY=Sm_!FXm(jWyAK~xQXGYfg8LUZF z(ie_TD+i81&ne=ypEK(Cn{S~Ne~&1B)~&?z)*Mf!Gl668@grGZ0=~Bjt%p`9!Ir}$ zw`8T-78NVJ4UdeHGAY!?<)Pz83GKt-Ck5}81@|4D6MGf)^rL?r8`bXX3=zWbhlg_z zxRJq1!9xzLLhA}q@d)5Da&M2xR*l2O!i;QB>S|2~3*ie&F?<^_S$Op0-n@$X5^FA z4{q#x5XoonI`H7m!w0iUzhze5;ANhK1}Hy!`;n2zZ{GSgptt1HnFTDF_1N8_?9#j3 znGbW&Q&^Djr|K+y5h2JGuCv?+oZ0;D!L-MN+#(3+@KR(?{AGvbeQ9T~~d}`<_dgv~? z?8L}G_4q^%dhnmAVAhHw|FGWr1?^@(IdrXf#kKLSr9SI^)|v07ZvXpfcg9{v_0ygV z^qpGt>z{$YRykW< z?fRcaq}&@R4PT+_FByO9m!G0*OC8_l19z3c_!(k=m^+NP;38{z`NDEHr;|NUzDR{s z{e!v&iJNWTBHn@RuICiiua{?i_tV+m&~fDVnY%4r*IWKMgHob@`&TQHv&K}k7407V zO{V(EGxhsTN?Y|^$vxwE1poK(&rsj;1G8R3#uxlvR`R>jVL8z7N6k#lvX~X)kAIcV zMWraRuM^Hzg-E>CIYLvO7hdK>Ry!^gaOZLVGv|YwEW#$T&~eRt{wzPilQ*<3)k~@p z{`>VMzdSxWK5qsYUwwa$5>`fkcZUCa)~}LRix;kJ{w(uLWMqlG!U>CPkjM!WUZ1W% zF!XEE0w-MP|Ea?9*F-TKeAIVl;M=?x$Xt!DaxrQ9uLzOwFYzIF3SKTmk@25lvHvH# zxcu-IG{*+58j1{-lrQ{z-4}5`6(@w1&)9a!QRK+g;B$AcM0XRaAJXoWmn%n+Z(c>u z3|!j2rehXP%I!jy^9r*Tp^jmRuWSk+8k($Fh(>2Xr{=wpvUJl6Ad9G_wJmJ%sTLER z()L+Jkg&e*HUTW(EFgZ+sY7vP-B@qdDpDJF>qs3;L2mQ2HW(%|1*P+9X%q76?NND(WxZMF__q#qTq-Qr zPqs6oq*a>TUnG2bBuO!Is5@KZ1Gw$vZusynTacr!vn^#}Ndnil367XLF_4!6^%HmUIn>VHKATZYXA=|;5 zKaY1BpJz!BKRG5-B=B!`v)mdwYO@FDXUUm*y zJlqzSJLa2d<;(4aQ%tP3K`|EPle7etwznf(vNfl-PI>4ad(2L9rP`k@n|*V=%up~ZN2TZNR5ijFTHRP zC^R1hDS=|G+YIg;FCiz#za?277w7+)p;Kc& zCLhUZ;7zxm$kXcDbOAr8AWr?f30icm+V^94Z4du3InmkM##FrJd~I#bt=JAIaC{w& zB}PG9m+!2DX6^YU|8a^&0dqqm2cg!8mLA-Y_%0?Qv0hr_=Cn)0p|o{BKg3|pmG43? zL)C3VL3?vYRB+`Mohrbdr$P1Au_HV>snPluoyGG>y9J0Nf!IyIsanoML-{1>L6_Y8 zbN5gDgO#cpes?bCo-bU6YU>Pa9Y%q2aYt;&!uOg8J76@7PTzslGQ2WFsGspu7$Q?Qc{SM>yeuL_N@4b2Oz z>TSxVO7Bnq8={DLRMBt^Wz|U&y$1@79EQGpy&ehA?F04xQg(w7WL5F^aqTsce^KDT zJ1R=~BPZINjL>^x11e`6t42;cjUZ-V((P`x6$nlc)-kSfO8>-K@w6$zJG9#sa*(Gd z6G<>r2xfl8H{1Z6WzZ9V^q`j_?u!fCKL#Y8a8X0OC&Mp!VNQ*!Lp*8&uiA`&u!&JF z$C&-vveZjhiD+;<{K_CHtky~0I_wO+G;QKtQMRwWGS2*D%9QLzU)!p!hnuEIvmIVa z%U~QK4w2`w2M~#`n>h>nF}4AvubBp$nmsz{>Rxc3y*Ge>H)b7_w1)KP;ht(^G{O)3 zhVP5OInMY)5(~9T&*{eXsh3pbdCj)qF%`n(3fpTNT%oZ5k`$&pQ0r8%$2cW3A$KJ~ zYo}a{0ZvJHaZ_ilKp!x`F~^96w2dk~Wrf9+bHRqM9)`feek1HagEm@X15%t)(L%I! zE%GQ}gMBDKp4nRKgQL=LQchK-Il&goX;Mnkh~{Yo)r}IVEwbm4F&&MYRbyXQq`qiO zKOPrQr|je1upK;e4d?tZMT)%V45%{d4s98MX5)1hTFqAWYzLG=%uy;DVi9|_yEL>H zFJ{C=>=8ao_hR5Yl`Oaz1rr^;y44Tj!u1Y!`ur^_U zUfLK-#5(jMPzIdKY|k-DkW)SKOi%@ryj8?jLl$w+)sfNX3cWZcr6}vh7yDxYk40`M z>msE;sOK1cZlO7olG@`in74rja?0{M-wWf-CgD1VR@Y|B0+Nrv#Vy9a$$FE;B?TUH_ zcLul}pGS?^;t&fC`E8vb7YaW)e1kixYkftmkGL~YwDQ>8v41YZFkxPRKju~=LN*RFAtIaYe z`P5#+x+%bH*Ry?wT~=_T!U%I(=UU(-J9#bPK^MR?HOfP;pyvExeUdGZL?!JKB3mql zA~8i#4PkqaVG2qqVJ8)~uEKy?0j1)9rD(GP$4^)5=p0fl4r~<|woRMza9|xk-pnCq zc#ASD##)PMITgtelJ;_tf-&-(LFkPSksVfWG5#jxHA}0>3VYEal^Fz#byLS|!XQv( zDpvz5dQ1hwCWe8mZs6c`K7{Eo)=+WHprOiU1TFY0V^ASArAbMo;)Y@;8MEWPM!04Q(qPxi zZ1XnxqgUak)M1cBm=CG=Jgo^7lD4ajl@`N#A-)MmW~5FN@l;sUxs}!WB7h=P$X8m) z5l*uNfHygTU4AGL*DabNAwF0;h?IHHSE7S5m1(%yw3Uk24kMt_j7>$X<(YEQ79c+T zPOFYE7J}Z3pxU$y1zyqUYpLXw0zAt}o{i$mod(QDaPW;}8(B>F(AcZBJ`{2 zRG0wGQwVmx14QiRGCRPTHka6eG>frWiZ7TVGi`ap&wy&2JZ$;`2i>(%fs3|QkZKs{!v5+tcfrw)UK)nt+{qY5R9hP#Z&Y4CpfP8O;X{X7 zS5Zw_Q?SObr&Ez_g4Xq7!*YRf=a{j;Ya&~K-`L>FJBEE(Kzf>K8MQTM%m6)wf@$q0 zyB@;G71a=H4Fb_9_eq<2`&(gL6!^R4gvDT^!R~j1! zk@X5>_yxJt+FIp6BsLIGLjnz6Rszfx8)~OWLSf*{;wCa9!dxkAEq5RcH5r*QRgED^ z4uIh1zn38MrpRZ@_4U-R7TCb8W07^Zxm1W$ip_w}1qsoVDg7+3E@=#yi;=0QZZXkn zwbQ>^Yud(ZCHm2d;YCRn_&*Jn7(WZ*0U_1oBCAfOC8cAnFaASX@2^CJ#uaL0^OP}v z_zT8_Y>}|FH_p7vhg4E2ONUKW3KL*87YrI2wV<$v9HBO-)W%n;O*I;11r->2%dFzG z=BZ4}t>iUopuvaC_UYAPbCVZeVU3{*O!c^VlMikpz@)^W&paKQLuuqtDmeIJdn*}7 z_A1C48y<+a&Md`%d6;SQG=fZj%j_|17L!V}z$P(%bqTO%*i2R$=2^`fFrdnBVmiQV zJLPM)c{9+uSP1T_HeB@^wuwzbC5itST1U9?*h6cyF&6qip3U3DBwdatB-MVZZ zWjXF%qiM|p3{7Ktvc|N_YHqLtx%Spl9LVOhuA%CFXftl9Hf{&VtF`bZA+Sq}R1BJ$ zgb0Y4oAv^W>=gMFp5>qf(BT~%1C8)KXv{};z}qz>p$gpQH)RfzUU>;6YIXCT!n?;F z-u;<~Hd;G|kb(BRI(G@1ukC{Y(Y2`3kFi7A^TMIS#c5EmKg_b-e z7F|=5|NRFK469M{BB3E$xF#7z_DsQhsNe>#QCp4305eqsIDUq9`1PYpNg+1#=bK22 z2lMNwIA*2X9}DWTTG2!pn&5O^2~K! zkEqt8z*-mfn2E1xt(H=3C(m5u8p0hxiG%QVzfov2F7BZe;b1fxF;7j_*vZ9{J+Oje zAj4lo;dG@@J!LEb4BMwk%4xk?ae09TZ=_NrPWX@i8iZoX_*$51rIc6e(`*nhg$HU) zqrXFQ?UN#VTdIawEXilWfVslf`GbK?c9W=De+Q*PR9wz8GaXQdPoFYn2*==Z3>I>X z^l5#b8o(S#cC}8+`zhQ9%>#^SHn4OI5!!%jrH0wlM9&lsb=(MDcV4JAPywStZJ14* zVzdTf4?G_WOII3837AK@fxuaat;X3tJf8z|h*GZt*`k!?+7O9W7cUN1icU3!xZXAvC6HLGMvmB!*dp+{*d$ zTpySPp!kG#hAxqH1ndRi23yO61Y1emD-1H@i3HVv`75Vw^h zq#H5?H-&@gm=F5peT`*DhhRpQ7+gP4;)DGH3eKW7WIID7n~8Z zLcpLMl_(PKHFG=gJp8Qr@*lgu)hkrS$T4WXeb;aoGWCn$$H3hA({Q8{lwxqA4GNzJ zrc;fIYGZ<9N4Xc`DfLNeXw$A|HozFY2Fg_$GpBfc@}Cw7k=qJ=qVUv!Lj2V+8b_#q zp~H)(KR7=QW?yQjDe+l$eGMy=i@ljBG>KIDcpOZ&LXi$#9}Api1JioI$f<}+U&jPa zgI{%&$4?!7*`wnRLV-%-8l_3(*QHr?HjX~t2XcVaKpZ^&N2G*GN|YMvtO!NeMR$T! zm2pvZK(zPm@am`(Tbs?-eL})5NQI(@gIG2lbJ{o~Q3KCWFdUQ-SWS zW6tWq*$yyH7}?F??mfyl9YLBSjynoc1B-Slce}t_A%U#*%_}Cb5;SR{W~%8+z>G!) zil?a1T2E)9(C!?5<4xc}h?5o&Yylfg$T_B%x+XXo@&@+BqRZfFvO?vl=Xaw=1Ho zrGjT{gDI8YId-p&mm-}h)qBKFZ9)e%Dpy{GW_ffL-qQ76)J0ul2w!gjPb(i=ED_7( zcWqf~J>)iF?WCQEWALngpNwe`e1eyIn!|%=z;{P|+QytMxY);Rt3< zD@kmnxaoRlwU=7LD*8t`6r!Bs>Cr_mRPqBy5>_DW<$_95XnEE1p@0QdIvK0bFEoXi z`N?{CMycL;{nbST!h)IH{A7sLFz+wqlXBq0>J^4iASIKz~?CS1mW9QcjobpeXn$9QY=v zj0kPGKr4}E7wQ@g%;WST?3q7!L!sr3HjtS&jUsr+6T!wq`9AF3lS|Rc>!C#P>Nr)z zdop=IRGbM0E}E=*hlz?YL*37p)+1rYuM}HIQH2uO8)xV6p}_2yIQ-sBUc2{jNNT^5 zgg*PHOn%^_HcTCKE4k9R9+@#2g6DF~hWC~>Z{%2jsu3d`I_k_gdSvPQeZea(?oB|k znsE^-1BCv=r3=bSz5*t&*Qu{M^S{zB==IK=q5G+b6C=&au>bU%Ze%pl0%5Q?k<0CNk7GwFz2l?KaSR2dC;5STQLEBDV z>yNl0NgXsMEp!?at+&bQ>5zBNtv&NTqciJ3Cf%z7;DMJz^krT>RKvFk2*97JRkZ5WZLiCtgv}S37hed#r}{**bC)=d&X!P47paIdg

NnUX+C0 zqdiMGA-KU4r{l3~mCtqbhZUwHXH3gq|M2s}j1S%a0rA5}`x%wRq{Abfzmn$S0AI{E zME0xVMOh2Jy0<>28wG)lxFm!-gb2p*wqM4b=pmGUs`GQ{pLJa=?X4tIi#~+vkViKF zrVADyt$c7z~!@M93{{giyQf*jhKwP z&^*SzQ%T?6r{lQ+I8jr_xonlZjqK{E1vCuf0v)OaP6Z0qhHvH>a>rEgcP}JCvxnV5 zhg2|~@ea3_>fzWOq$K1dx5H-$yPz>;I(_7QJ#a{mw>8svy;A#=EC!2cE$-exTBT`S z_+GwlsXz+*08ixK0Er@~k9vh;D7|bo#}Cy7&R0Y1zi|?`Iy~wmhZqBEq9DMdur*fd ztSvl!WS<0GDf}gRS=9HLb|?AMKNdYdBqYb#v4B(|DV?o?%f}2sQJ5juheg>WICExH z;0fumLAjH^@2XNkB&#c+*nvgqQ8(+jgYxxy9c{7pn>B0RC(UVek@q-m#y0TeQH`#p zn{Fv%{#3%*SJnoXJ#=#y+mO^}y+NxvhM0S{i(-c)K*BbLoGbI_ZM{J&IkJM4yX;2QFbU-RsbYw3mSy_D3Nbt7r6Ke>*`_gl<8d4GQY% zs1B@=1myZ4V3YD_B7rY#sL|!!WwoaXEVN~WL)DxPW%o(o!4m0vmqn(;zTTiZrz^<$ zQkq6RNn6sVm*23G(h9ju^1G7R$}Upk<@>ZHDp^dQ4CAU@L3@Vvac2iwMXE?9SKwar zJqBk}-Al#Z%|Sc&Zw~F$p&Ol&aPEB)y%CH$>z9g=O5HNazjt-bqEWz2ZbnJTJu z@e3?SgTDj3$tlg`jg!(d??>GqyB?r^9#A*viWpIq3H}it+$?ej52*3H-*^G_H3rfV zzqxSdxM}BSyujF2(*;T* zy+u;a!tjVbI0Ki3X{ADI?Xqfc-H2h%GwFeJL!MlcIt675+~gM=iAg5*>JcTJp_N4r z1G$BIM#GFW(WonE)`d4q!q`q>Av}8wi}%UILMc}S=RMPt0T1zph8}kb$Byv_J-N7^ zCh%mw)Q98XA_veOux+56I^AX-kDOYUBt}=xCXR4TXEc>`b!14U~e078m3OsHg z?m?t&`rJVsGz}Ivc;dCLJ;Dh1n_8aSlTU?`pSi<@hQMdIuMdy$x^sHKSyW!4Q6fY< zLOXD(?^d2)ml&^)l*_VS+{>>rFnTc2@Y<;&gIG!ASmn${mnhyKsK7Fup3FXpz;4KS z=?d#Me9;vyd>KRBnG|4d;(y3ix+BCMVTC&`U$>}1nmr~Hq)7{>x@jU$o^#ghmr!<( zZgnS<)&C_qemr~P0F~jM!*gc$K>5erqGA2-sDz^VHu!u{k=iZpgVMe3wByoTs-C9w zM06WscyNTzlb|ugb&1gd-tPm#s~}OcCvJ3& zXbhZ#0J$0|TfID8>?RvMaW5W=HDEX(1H?`O)R>^v&$^-q8fAh$Pr?;LoJ~gZL!3)` z;Y$hdKp%(T@tsMTa%n=%GJ20Ifrtmh`V4_HzXB?%(dUbyv>gEQ0?KMR!JO7*QGu{d z*BmWKn1(YfV_yp-ZRrL;VMywO*Y1@5(X0z)V~H9)Sq0=+@H|vsXrF=jn{b~1OOBTT zN*NE`u=}=iPMV(Fkf`B|gfxJNLoZ_JV@BIwzdx|AB} zoazm~ci*OK;7A@G(un0W>Rpvk+K?f9%01hwBP;dUitm{fI2>R9M*qT~78y}iNuQR) zs|@7x?hGCtiW*W{j@=u*A$OCKt31pKL!3|s6nYYyVa~8L?HehdilzD8!Gn<@%@Xt~ z%#gcNtK9r&x`JV>|29tL!HEo63_uTS#AoABdX+3XUYa&+2x!p>c{r8e>-Fo%PAF&C zU8ulCgDyY}0u^1BdKniX;>sB*VE6DWz}^48n>-}t3HxYiGX51Q-DdD7>zMsG;DaKn z?_{EG(Nf9DMqC&#&6?EZ3^`*8Jtgy;qJE6o9M9LP`A#r*7>9=R`MA5lrt>v|L@<{W z4@HRJBwPnqNb}SfRcU~PeFb(r!LA3qRtL?KJf&j{N`wr6bOjEx>#~NxIm38(GqJ2d z1rJ=gRoLtnX+G5;L5D6lXNZ zQnivw&M0q4#;G>Uk{gn|l1K#@f%gvQeuPDys3ZqpCaSTPVv4Mcc`i7qe)!}Bm{p%I$(011iLS)vUB5nvg> z3!V|+(XWEnyW{N!a;JwQ03!Mfv0gB&iXKL&(b=-teovfGC29fkHIjlxcW^ZrCU&Ou zLy^a2dt>pOD`0r1C%gxz**yg~am|vpbM@o?jh={R1Ch5dxKIucn{9_kC^Sa}iV$gn zU*8c8=Zc{0VNj&e6{NWfG}6y2LB9n{_R8|R4S*fY>A`LedE)vp*e6X;NWuXL?VK)` zix+UDzs@;+Z(0owK}8c8hyaea&&X04ZVtos0Wo0Uh|RGRFxht)=iwx+g!B^18v`j1 z7(`GI?}hnJU`~Y;xg$-py2QAPc#)z`!Ca#!NhK4+yHnz&BCm^^)>_8~@)T|kyC!E? z3XAo*c1fXM!cj@*oY&D%cR{C~oTg8(GA`evGI0-&>dbPw-reNP7*63Fmn2;Ae7erX zig$%gOY(c9{qyh~pG2hA<(>a=)~GZIai$WkWMW3E1h^6d|KbbYkknd{ZTf&~kk0g`>j z6MqFraYErko=D!wkSRPsW5}lB`^G_0H<|vp7-P`9qvHk9Zemq7CXNiF1?q;f5M(4pv zgPxcN`b5T=x*AuMO`l(gMK!|Vob322C`+^|T(08{dtx-QS#nv7zd4WV;n{SdJuV^l zr;w@pK^&~RZ1e|fsR(T@5 zj}k^*h`oc@TEtX%5{y9V^mm+>pvdXISYC0xQ|~DS-`N?NJqPABN^%>&3z&A(>;R+1 zEt-a6M~2%1;q3EJOy|2P$1xrTizjtznuPAq?Z}hv-0Vy<0wkw9D-D7M-35Xm`Zup6 zh&{=}K(xS6z<_vKPhKHJIu44a^i-`Bjdmp&rLiMmnoyQJhW+~+L%3X@JuPJ@K!IdQ z>Pr!#cFk^pV}_jxs*m6ouP;n+g$QS5hz+U305?r0Y;oHUSucq-2zu}tMCz7`A3(b^VbM#; z>)(78z>sCXa0k~|LPV1N@9&I9+|k6W1P*3W4Kx9euXT&=K^YDR2FpX-MI0~d1WzolVSuL{2 zA<1m5j#&Is?z}~lyJru>$$nir+Yoa_m+q7b&XZ3Gb$l%>PLsl3Fi)vxau0=b5=Z-2WUT37~>Rw`@MP#G_OuOntrwCFtfXJm^Q?OX49^h1x1f#=K zPICO*kozSe@vV~|471a$%Xo7`s({FDX{O2$-a~#AzUYn48{1V9rbA)wzy{Zl(D;Lw zDh>s84sG`V*p#4Nev1{GE%w^@CyC@zDEIbA9<{Ork`&9B6)Am#oqX1(1z}WF9{X-Z z?*!uPOpMh~S**(I6`bXAyS;L)rz1Rydi2~^>d7u*ViWjl#Na_V6=&0$Cy*ZkQnIy9 z@q}mQraX=tyzs4g@wWn^v$jvE4n6J-j!kKAWZF$UB6UCidEB^tn00o6uIh-ciZM_N*~ngbT)-jD6_KTKQGjOC~d!;z2B~})sxUT z#lMtiYz{p$u*67>SZrFHSyT~yxBt*z7XtwzKVVhX(R#uwPFM9VUf25i>hHhOuAu%- zrEp(=tNCb(w2Yo~MAsNPVk{4iTDtSJU1(^lOkBqI5M!DRCnbkg-S|spcxD$vIjj~j zL=N53Q#U8_65dNsv;X~?UQwT1_FBT22c(ROZF*|#S0ViDG>u}sIC7}oJv4PrxX!BC)HHj4Z+iw&=xzJ*kW)hIJB>pDQD=qc z+I{Dar4{gB1F*KpbH;j7np!(SPw5}K+nThWQ*ViBAM9;S{pb-tAmx%zM~SR*=x(O~ zirlMo;v+Tec{onoHb8x_L924&AKCjPd;|87Vbmj$gSO?e{``8^^ z?;{dJm12AE1D2Ph+aOF0{H?j#=TqdK>+{NcXWj`q9>4Oq_vXla?u^5o@j3Du$KzXy zjPrDe^R!(tgC1uzn-t>TY-!4@&Wk%jKVm~Se^V@Usa6+{NzU)^Dj43^|J!Ct=bZjg znP)7Top0c{Zm#1#+cxoi)8l{6NcLzXn}+o)pTl+XY$vrKisOCB+*P^i>{GSrWotox z!kR`ho~=AmnxAp`*Wm9tEk`s^y8pYr2fgWEJe$Z*wmW`hdl_65cNEvn@k?F4CI`bO zUheENIjH^zw`5;NDl&o%z3NPdq$;5jFV*OySKT}}FlpLfclTHOJwdfm$vu?%^>5oV z;vc-H>M1ZiR{ROs{#v#ZCt<7QMn0! zk#sxNpT2(7b8CjMO21P2Q@!;o$@f2RyWu+dVRn07Q$=H=3cmL`5Mj8V*uhE^*#yb6 z%RSj#ZrI`j_fOJkqLCYr!v2td#Ejn5ea*_3y6lsc2ei;@LT$gouEER7UFiYQ`q(aV zk+%Fa)yLrtw7)Zdvd(nBH~a?{xLe8_?$~oM&DtQ z`Kt(aI~QT3#@p6y>-Xkv!Hv|;WORPYby4ig1JmBj+WX_#ht8Y*&_n0nev#Mj-X=bV z{=?C5lKb7=wrUVnzMADadN6)-Yg-tjk~wb};SZ8b-bOtqxwO$`_>nOy!MWCB_JR%Vd{Bwc}^1)84NCHC^Gg#;Qus{X5bq``Fx zi#11;G+}cX=c`y^#!O3|t6KzenNEYn{zNj&RYC7( z>k+O-y>T5;_6r+GLyOeWYgF~e*HK(W9eHyZIVT{_D&i`wzC-OCj~FOnMv+)>-p}RM z6^h3WSjCkA#D6rElSdN1;>*2srUCJEkgkjDi!QGLOge;xEYr50aA>(NC#_!PH8RFb zK&_m?DPMA>cHnc@3Qg!VIK!kMg$57*bEk_bMxbd#Gc;7P_Nyn8%c7#SQO6Ei7s`mI ze^mJJ>BgrCk<^jz3gn(ThY1l|jQrIA4p1fdV&?Mi;~i5c6s#`RIRsNn)!DD^TMaQ7 zyP!8;5VUE;ExAdrl<45o^!fPW52rT4n365vx(!NSS zEni(i%0Bd$3qFqgC1`cz=N3t)doBa5;yPG5pWGN; z+Fs60G5oBcOAt$&DxC_t#GdgtLY`^J6zy}b8P~oPT(I+U`nArV-%RxPa^Y>wS&T8; z&2;0Ss9I73{3JC)d6VhG*>`Bz$NYI7yF+2$HUiANw$HwaD}kURj)$4;)>39Ldc z>L8zQ*Yg8G;@Arc(x}}dalY6p-b%Z4-Lp!6V-}Avr-!gMSy}ot0DWc? zc4@L9$<3(qH0du}XmqDZCbh{l;Ay-TQRzK_o)@h59Lte=zthU%)xwhw=WYn= zp`cy5|H4fkj|s0XguBt2Q@RrAdMhll!48|~gO;Axxb)kEe%g$5%44J6`8Fw=srP2e zy}fJs;c6LMjV2Fx1UJcWhb&zuyaZ_20V-<3XkboyUv$9+X$GWpIJ&FJi5S2_ZElf} z=f752q}ux_C4+75Q8=&Q6!rje=^|nCfaHUg*Qpj=(YfF{&o|otE1}&B$=*4<_-fCo zTF-pB_mTl#9bM=~@ggZvxDDF8oU0@S=k$EcA=#~Vqm{Q|z37D&No$gQ0Q@4G+Y`Bm z)GDl#yFVnQssS&0&^ks@unBV2Hn~Rw#h>IYQ#TFO%J3$hR_)QEmPYHmvUE~D?xnE_ zvM8Bsz(YB}FK8cGzNr(TK)D#hW?0Yr?fTwC_4Ci8$8<2x660@W+r$Q34 z$vMlhw1Q$gaXAfiqY>~>G=Y0MXD%u0Fmkt(J#lK;Yg~E(2RPx80zt4<{N}!^l@jEt zU1w_f>5%782=Cu;p*YObFPk}2FG3wsUjiz5Ct08qwCO;}fLpiCb!-77q6T;$sIyBb zZ2tg*FPFet-fbI%HhBaC&npD_3HMBtONW3I)}r6(-4fNJI*Jzy;N$`NE2Z}+u-}Ga zgeXT1VGj2*Henp(@?>CZ78%F@u(jAF(!uUfyXFq~Ez4(&aCniVdkVyFPy>lhGS%ih zY!hkJSa2EljAP1Q1QI9r5<}uqJbhLZ#@D_Y#9zRqOa(l-kGPf>Ow8fxpqwK+JTY9V zAcR}x;Gwf;#{f?wpL)}l=&2UV^eOE+kusgN%yoF{_|i4m1Pef2o`xLRirx z?vjhC9La0kD^BgkR13xm2cSYLSL(pRn_$YCS_t6%^r6b?F4YN&)WCP(cPTzgXyrYC z#2Oo>8juij_fVZH47^5hZficHvk88tmG$h-J$!6e0p)B~Gp~@+DUc||CSh8oNmXXgCV z*CaXetE9sQQTT%+*LfWj*gN2&)ru)dk~_dKb|+8Kc|N2>7Y1g@Z88FK8G8n#ANF&6 zb>bH~>^3EOIN;{z;1=SHe$q2dEgQ9ZU9-9eszG&=gs(ZE^{sXzoL$&kvf#27V zqWzGkMgLcv-ZNM0l$Yha8Iqili#`%wmk8D;tE}}tqoGMU4sz|ViTWw+Yglkw=h|oE z=QyO>06z9R#~WA5bf}?L(o{7+Otspse54ITB}FS@4{$nb^#$!(r;G? z`mkHngL|$Eb5^M(!_}hZ0nt;vb0;L;E0mPjM5nEc+j4&QOvuBh4wf6@r=eFGA2`+4) zFO1cO`xKl1Jd!L1(OxL@kY^H_TSE>&~vI`lfE@-*t@% z5F5a3dQ>}`H|A@@PQG;Z)$wvk50M(#PdR_mGIzN>Zqu@H2mb+Jc@sik{pISGlzyv= zSoay<=JJkU4wE9bn)%G?;y1vM=)`%y^OZVLsde!+CF3I@enBFrp0+3ixR$3>V?~6p zOAU1ro=#9y1`Q?3`PH+<&p^Fx<`gjCl25XN)z7=EpB>RMKT#rF&bv*xywC~#@S<;s z<>F&-Cn*v)F^hm8ST1->IwgYSdsZ>3X5#gK^nBy`9w9 z#d2{E>CDtK|0Q@h)pC(ywaCRx+^qp}>Y{k}=#LrqW`T_x&ne&hM0gIc8*nUcCNEC! z6oWerQ}Am8_HQJ&sM!0Om8q~e1Nh`*u<(_0F69(A zAXxdzWoR`Y)i*5D^2K^qi4|*@yUcP(5JL)s2N)}@&i6k4Cs{2#O*n_@Jr~gSqpfi% zZl3!k@1FioryI=Lzpty~x*NamAA7@NiU)78(_WiqLG*BbyMq-z{((I)C@&w`e4SGd z%9~%FFj*%?63NO_kl_?`dhnW`gQ;49Y*lgs%bC#xx0*y+wagZZhn==w*EuK7a7DGL z2epWTWVSg@)DaV8)=6!SYw5@DBApBZod%jmF*D|BMj(1{`tEB=LRpr9ChQ2_<5 z)3VMfwrDA+CzVP48aVSbvtcU&Mf9-UvL>xn5t<6k7tz`>wp^*Bv`3i@bh$wNlQaMjdiX;#e{)>GJazzFN z9XiQam%M+eHhQS_syH7RIvM^raY7&vY=%5ldV;>lE~V}!+4#|fxCe)O$G5Z*tiay8 ztBA-WzXlZiuXkt%OKN?xmP8_{35EEii%4(*&eG;*EP7d>)xsrYpp4?QRldinn_V3FbA^YP49)~NpX_j(C%K~dCb_0W{)z0@>x~O3|t%5lC=_ND#IIFWQ zE11zpX}7p3O-~ATX*e6Mq0_9&Z##Ten+kZXgC}k$-aL)-$Y0W0z0=3ePzQqzzeW7A zB{XBz-l|#YiRgB1#%`+;+@27!I>|6}KU6^Nc5v!fWJrC}-8ic#AlEvcI&P;ZUruVn zvqxK&<4a@kUmi3p!Simu`-0%)pO`bUBG9lTDP91A4YQ6^jNc3DLcdx*vuyVMqo@0B zEHAVwh8esbGOeWbi$z!Fz=0VXL$uGHhxYq$+VH$=b$KQAy z+|2C?oV=S-gdbC!ba1ZSob~t`xBfpNCJexVdlkQM+6W3XrwPZ;Im!3PI#%r@pS2sr zWDRkI3UuEm0RO^u^`Cu)=EP7yDv~LsUSX(U%Q%fnXe@upc+w-{3?}5Dy@|DPTRwi` zM7G(R5_d?aR7ak8aE$oe)KJi!63;knkE>gkXmXMf4JsRA>PeNw#6;VgT2g9_v)lTt znMZphlIbTMqqTO`|c6;F}#n3UH+pU?D zqwUmDmU&!S{Ku!M=St|F-Nu<)1)djH)n+dK&+CKcD4{ZW!NnH=o^8J!X)9xm{e9^8 z?hDh?{xkF65!3s&?#7?ChphYiSI6x5jT1L7_FqKELbT zAH2IVWO?HERqW{_hI^_%y}J!ACmZ(gB~2-N1bBLh@3Ym* zymu6K+z!1{c=q1Z$;$-i_T@lTPWp1xdhu;k` zeA?aTzhLhku7r!NHWrY4`>rwi&k>fC_gbmMG zQ;wU;ZYz(K)_{N>+`^s+w^)*557tEN;4d`U%Ul-Xt%+;x&uZ4+i~YTC{dZHHjSO^8 zn~yDOgJy9RKEF`yG--3Mh8-Hg7CDd8)z}2%w-*X~gD#bJB}%XE{R8%WQ_{qkSfa@i zjC&kM0sK|lfRpcA+I^MT3*x6sC)kB)$i~FyXzY$FE@|U*En)X!HbvTRPZZd7yLihA z^`kOfNi95v$IrXE0{g*wQGiuYw=Zp`;3dQOC8SZ|%so;Xm>vkwn~@x#7nnK3aw9;-3J_t#p`ZSmW{FQkxhY#ZB9 z$xdmbM3+Vk-hFsloCS8?OO%Q26f2TGc&))<*McN;vIBA{P$5DS$(d_~_cegBohmiM zwG9XsSrMfeV$G{l3sv`dMO$^qbP^VybdcoTRDh)TUcRyhwCzD+|mjoVg;t*=0(s zzyFq;E-Y=27Xj<(kvhUpf7jcfY?_)d3dPp|l<*b-*{fat5V)-w#GMi%AA5bqxs!K$ z-ToB)%+0s|IJBVWg}Byjz~zQPyVPmXk}bhi#ZJlz`g z^@(F7`2Tv%4{5JC>i^$se%jmaljMsh7~+)SEjRZlvlneW-f`^C0oCH$4XJ0BWhi3S z55~1+AHUle_NA=0lSc~m^COEP)vM$XN^>+Vs$gjN;i)|NAo`7K6@7ENXus^%9(G>i z+=c7L$M0YKrT1(wT+oZq?I&|Dsf4|YD_nr*gO$NqiA6U~#xq2@bv~7kDrWn5u2|LC zkr)_aGswbQ{A>5`sePYlYN>Xq-JiMgLw(1s>$I27Pi!8#i-42uVm`SkJ7_XJ1wm{tseV`Nr2L!RBz9UJV{(JHACP&z-+D^p}wzp0d@Cx z1nTl)?xQ;tDC7fjh!F7Y1vEr0P}Z6KuNU#aZp)fG!g7GqUh$0K0L{fWw(8xdf7JfB zHWr}GcPF3$yHBarN{Tmrs0R^FEA-3N*NS4()a?aFQzdgd-`(*9Z3e!dNgByW$ko1|-h})dULzIl4Cng| ziiUQCu83?2jQ4hKaq?IBR<3RbudB_>t5}vzwo-hZ2Mhq)Mevq~tvm$p)1OlZvBhk4 zBYjT@vTDZO+7}_;Y|%upg=c9|xldRTLvJ3C1Kgx=v-d^nUANk01WOIREVCu(_;VF& z<9i@WdjkGe5_N_J88j!Dn|x?Dl31LnU?piZa**;pJMtc|aAFQEKnPZ?>Fk|X>=Rkl zBSWXdF~35>K2weP&`9wQ()T-wuD7)#{JQ`+Y|jp&qR>b4M6enHzVCQB zUlY616R?lyT#0&rF;?6Sz%(o5%npw-SP*AU=G^!<8gr7QO#V>Gz6}WH^u&xJ(4Xvy zuG?{71CVzDB6@+`ysq~+@2yAg#32m+zrj%SaK+Ut&!fuQ77Gt^yG3IFsOi&>SEFQ5 zov6mvz0b#O0EBbHYqId8d{FA0v;g|Xs0wlA=o-~l9Yw{#rUbtlS=dmfSTeTf!l4kr% zc4C+XBE_;6=vcwrcqIoU=D~obL6rG)>5nyi2O#y|u=BqygYdPm2bi?^=#IHcU-5ch z?PO*clzO9Q$&Eaq-t8mMB_*z6hk2_@Uyfm4Fccm@(mc6<0k-+gM4m`eCQLp?F4F?= zXn21(q&iQqtx~CS99Sa9S~yk~e*xRILDfxpWaHa!Hzp&Sv&yW+0b4vxA*WB}y@BS$>OJofwJDQlOLo7?3knQQpYG?yxH>PESu}CtYJ-hcD-vKUcyH z$O>cjPwux3E!eS_BVF<5io60_Qt{ivOD|!DnjZxyIkyPD#E$RO_kWiU2l!^Q203Dm zuWFEB01d_i#0I&_1jYEOurd)U16UX4qScT4SP>=D*F)-B@Dg_zRAmda*%fRkHm#T^xbghHvVGKqua*9e(9~ zK5Ma9iArw0{SLHtD;cTjiAYxF7v z_+h=`mXVr5(|tTm#vYP39nWWXJ257y)RwTDzny%2@Mxq-a%=_`qgW!PlYd!g7aFe} z`Vy@|CoPFEQvp6yPzZaO*IUvs!UI32wGrFZPI}{i@hj#^;=*NYf1sWW7rh9^J zqIqhZR&un6kjR!}4IHBr!`AISFYTqN6WNDAfnATmjOZ(rb6wt097~~(I41@xtjo^> zN35ZZN5yp>6(u@Ytt;-X1$KkS8zw0k;*#hI2xkwxkf()S;4sN~3Jr0q_ve_+;!yo zhF&1Jg4#z1T?9gd7kUpne}{H@BD>D1@!X4(f+2xr>;nRx5l~#sCc(m@#Q5z2<`~IR zJRoKM!~PLYsxvBBi`ksD1S@S=T~(d3QQ;>yhvnrvvA#i^7WiO4EP3@fQ?hUNcayP% z1vmL0533Ke4K3YvD`&kN78evz3;uUor?U3(r8w+EUll4WwtmRred8X8xR(5|6@PQw zr$`Gg$c}f0tfrxlJ2?}mOX?-#*Xj$X<<)J3Yn@6TRuzvPL%=di&36}_esPPCz^j?> z`abi}rN&v+!WcX7i%}oCA?tlQ7+zNP=Rj=I=)ptK$Uy-qzKdo;4>^O#dO3%yD6%?} zq;hdQJ3hY7#xHc-^Qc*g6zko_1Zgjg-X<*)mlq)-HfNzq;k>E#oCB#9WuqTnFzhS4 zm@y=h@9)c=szM&=(P^}PL{Fm*_%qw5DUYG6md7U98MlhJx?rdRgv2{mnTt|qsPf^X za)jA;TD%D?sRM>C}!583M-UDE;Ti;D9(hU z9a05`rYKNVo$MTrrF5mkdJl!eb=%-fK>7axAs@0sUcNvHs}JacmMeVh!q4klvAO{u za&e#0@i|zxB^hGGkflqPVQCsht`hT}7eRcyktcoq%ymdO- z*^Ud^p?Qm41K(kAI1=cBZaI$4RvBgu;uAqRS5V`1lR_ z@0e4m&!1h|>vgWSa#j3>95OWT1=e4Rt!2cr z2e67xbj^A!7BB)eh+_aVQ_xR&3YOl7RlG%JuZqzqv&R;%hxH6sf-&2IW@%C1cW|KA z{fjK@3mtNkB|M3PR5RKchVVr}otdt?n#vgWJtuX#H{6#6gd+viHU_lITkpGJIr?ch zs#quAxRJAs^7mXE9%CPm-sfJ*72-;4Dv2ym@hcpRxm^ZHait(fsIemvF<9crj`gCEBYdyq0$s_Y(6O}Wc%()j((}kjGR1(m6;iw zj<5v#nsA*7u2nnLGIhj$K@;OvF1E#dfE$+f89t6B$IrC0CXB%UYhuip6b>{jVE;_m z#8_TYh1AxGYt2mch8~bNerzy>(e8e56SiQ)J()sxyElO6+4IfO=>RFPvkw1_PjsLQ z9cF=$ymJxz_YZD=N#4{A=+jA9q-9FWUieWvG2ao4yp3SqXB_aWl@w3kiZ!*Yz%tD- z+dE{7!k7t7jCbp%f2PLPYMMGs6d+e_?Dmhv!`xY*sA15|h2QbN*QUQDFy(sq zHbG1t^TQ@+O?h_SqsQ3&3utf-mSKg_u&K8#t6Yn{RuQ}HwStSluuS7r$_2kiVA;M{ zU6SZb0d}Gji%>!TF|#%%33h1nLQe7@4>6{R3Q*f|CpF_rlW2X>L{oM`f6-!oJHMvB z3XCi$`PJ#M1=IFmruVVu2K*mfXD+vjzV#J+JHiXXo9N4<9)dMA9?P_I`&3SIdOv@Y zid8c~MNz!Nns{~3f`bmhyAgKz`_EG5)^)ANtOWfU!xnet?8BG*uoCM~v;Wj^UIXwT z0-MSb3bfFNZtOcoJnKI1V-#k3-pbNDA5l5|gtR)nodWBN&nqUGaP0ILHUGO7&LGBp zi7$nlLT5jZ|JL$V*bMAj6&TIJ;H>Edv3x)4DW2^d6XMPYXKZof9kPeq)ig=f&`t)} zV2s(Efc@?g0E#{XMN=d*Fm$N}&g3Ar3G4AN-rF^48`wV+7q?vC{+Wx}5?1`6Wu@=O zPUDAR2=7Xn?GlE}V}dtPPCgV?K!R&j-rEtT8;9W+!JXAzx-lV>D_{C523yAkL3Z>_ zP9iFI9y-rF0KiHtI4xIjRtg=lVjIglfQFrsau{~uc;{jVO0l!`b6K^3Rp!x|xt3n$ zdsvj(ZbRosh1p``9V3jLs%5EzS3*x>-jjtp#_VR&CDm3@(HRd z$bIm=m8qoW0`0V4L7w+z4)T`ak(hoY7K`%3K9;DrD+Eo}xy-PZ&+D*P0cwro?6ZT| z<@;FP#;Pa8S8Scr27J!HDVTgDk7K=` zTJVRsQwaxv3f2cvvOJ3fUpUUfdd`e|Uj1!WU=gx+61MVW z7q1;o-;6a9=}k*7J*>qmHO$}aO@NGv{tMMXh{LhaAD;f}?jAP8-TDLL=niaUl5>gn z+d|DHRLF<}JH%=bpv})5OS!ab9=+z=)U=$Dg&$)yfej9)Tp+)&co$Mz%dj;b##c|A zu^wQIB(u5M%4U_#rCH}doa@leWa&D+F@tIa_H*-z(<2wFqw?rFj4A7R--dT`1_T`q z6BQ2CG;EMlz{q6uEa7#Wnt}2`{S)jS#{GU(qH`Fs7Ylx{p>2i%#z)x;%nQ!H zJ5MHHKWb9Mk=WxC*ms~@76rb(vl5J4bdn<(F_;U%er)9*UbYF*)qW|Cn@gtrd12KB z3j@ZT-$w1@=s-K>^o6?P6FrIhS^S z%m*TIIASElEe4Cw?zmgff`*CT)zw8}?(~1Wv&}(siM=~s=O)OvZSAR6P)M{H&KX1% zMaH=nB3aYh`rO-m6HACewhZi1!AMqkqGu6Od$Fw52d1rtEd#~n?P%7HRD~6}*MTn2 z!|X894T0&Z*zBPnfgL@gN2ZeF8JQ5Kz_G6CDHi&&Adr=|(b%Dk#E)?=5;KdorfZbw zd_P3*8#%H$LQ}1b3eC|-k=l@Vf!HJs(xG!}MS$&_u&Gqkv@smsSG6_0diSC!v~t4W z4bh&VJkBvQ##()=7OmeObl}C|{|cT>ix@Z4s>~nCX6b(V5=DLEk%=7SXW8A>J%#`M zAN)O!QRL}4cXjxj5%_ol5(yyK$CGCG+J7P_Z2Yt8D^^qEx>Of}VK`91w_wq}9 z2at}A@6lrJPZoB`PlLXDkiS>UD~1=%G=&}tx3QakcmicXz32-iT2Y8i%twM$XybFN zwdsKWYeY>}Zaq+Qvg$c9F!YB`G21de)r!Vj8~MWBu-dCQOk4~xI*WaNleqsIg8fii zGl%rO(j*UbAmKZ(^=ry!1^DL_F>+6_Yp`(($9nx%#5aiVd(E$8;HBb@CR7#UUJS*| z_}hE>NKJ85(O>P}vF5Vz>&$oS_D%k~Mx^(BR9m@w;y5*-u)j53+`3DgD*fU=*@Z=$4;<-xGb=tb+B)Ezxy)Y5*e>~4{AEHYU6(j+^@BG~hDs;J162QC)^==f1Lijmo4*t-8bB65@H}QXKhW+2_f1}m%z)*Z4 z*frd4a48mVm?)oSMqL{f$z(s9UVWSLcy2yUt#U2cF1&LexXl#?nG25%p6xw@1<|3J z&~cL?VbdTs!6kchD&`apZSQcWC6gU_Sn9|dcG%lThBv@EK~x6j{{p61W=Ck{Uys3N zQ4A(RqbLWghvydw0xjRmu0eYFBIf-prw3k>9s9282m9t=U$)2QG6Hg)h5EN}bS0o6 zIIJV!*ARC937B`H-GVn1)f=$P9wbK&*>gOXv>txrS3o9 z*nRFQ^aw!IZ6RPVuGI~+%uvgi{t{z>C8d_meCF(iNG{1#P>H9(eTWYx;IYro4LOsl z%#;1fw!~$$ToELa!`7<1hU6NWj7?OEsHC0VzicwLWdwTG#>aICIronGHRisaog-wJ zJh{my3;J^QnNoY*_!{g%L?)29`gXgx2C_k*`pV+oATk?URS=ef0i3n1!ef5I`s2Rf z1&xwf@+(s6$H~2ehFL^%+w_9>0Q)?>+kF%FLEb!}M!lyWD2eP}^JFI3*pZc;x#nnc z(yY(xCFS1?s%C)XA3nKG8vMo(y;5v!A5pTFxVDdo>C2MhqdPithpcS}jvKxWo*SYx zRF@E!lCP><+ufxHUkuu?X$fHc!Oc2ZP*#b z(;zYkSf0D1WR;Rx9LR+f%T|Wn+%sD{z-aah{MGlH2)-iKb^QX|AKL)z$NWn8^+E;L zrK;B@*^;+lPf#DZA4%^r+0hd+Q*N!lBI6lkthn&elZ*o$fJiMnBBal9 zPLS0c6%k4Nz;Ky?rlzU zaG~v(pQhh3aI=29C4iTqm7i-K<#Q_nKxZD4-Z!L_>iKJLM9o>Kmr~O~NkKNjPTV;h z3p&FJ0E7F$5hx5?8LjZFeznwH#eH`S&xsFWcYR%7^_XG~c4;GMgut4sI*2?x2u4W{#<@=C<}p02qLn8w zycEsJ?ebd&5<`1=pwR9-7T{rtT;c-Qz3CUnjXUhrLbDQiFdUA6U$6u8^laugkr2&pzWu;fSrK z+W5@{O8hKP$$tS-j+U8v!h9D^Z4c_en$4TPX2??U1t034B%re0tBqmLat&xE72b%*XBk zttefS;P*PrbZ~ZyNzbk?zNTWi0xffUTeso^d||4wEAofA0#JvHFDsF=8C430ze0YHs&gi)Ipd3cyz;wttWz%ztYbfAQoD^+(GA z*0~4RkvwB_u;`K*;M_m&gYg^QDaz>8vs0JdK?|sLRlT5ZMUDPw<~P%VQI2Me(!2P? zr`JEc?{eTtg4)}0Jlan1_Opi$))S&bk*^thR2~(;#9mJ+LZXB>aiA>^HQz2DLkoyi z%|`PT$0R{NaA`T)bUaVb5kSPYy;gK*j{b10viEv8_i&M14ASkywmM>eV9pzV3j&;F zBbaHg0n7lPN2Wq*4p%k1HFaebn0rm9Ngt3B9}ve9=7p;#OZ!3ca#i+`*!w}oA;P5^ zH?V=06;nqd?Ak;6UqEeUN!M9F1PDyvWLSWyDN*x{pl*nv?uA~~O9F5yqkoNNA z9uHr-43X+uBs*tZ1e50Jf2SwLSnqM;ZgM6RS;v^22>E3pU`Epodza>zxqV+Vsmw0n z6&P~uCz<<=Y}ZH%^0QkZX({9!Z3m|$zn^ufBj@Ze7zNhHr)JwB=lUDQ+~gtu_#JHi zhb}auHL^Kk_?M8-*?Xefv#B3$yxE{X)zu*%3XXf5y5y3I;hO{TRBun{%C&A#0K+n| zQ|-Zv&k7#4HZIwur^DE&?!)r!*nn+G3@}!U2RaiO#LDfCS@oYT;#3oqTBkyf_x;XB z)m>lwem(67VGHMHXhbV#oBd_BOB*9^yLM4RCDy^6d2nq~8)bZ0u%t1gEnfVVi{hi* z>?svp@*UyPm7D+MM3wg%mXGBdWyAaZ6Qg^-XdGF%ll^zVemT64k$>~xZ!KIFlN90g z3&Rh5vnI-V%Z`>XW=hqZjJeKyHte#e_pgBLZ;ISHsEjfk`ajC{*pl*Au>)r>8E8G& zsBn2BO1aBeH$ree?UiZ9E2E;ht#e0*kG5=5GK6WR|9n4e%Fzec=9ZkCoiXvG`F+4@ z-&Eqy}&t7_rs8XWc^y1ws zTJgKsJ+kBN*Z3iv#5VN^UycZ-bRV4rHOLarP)nCx{ORZ4D?Y#S%Wqv9QV~Vl>8d?+ zC)biCo&hRa$#S!`jh$*y>OP-;Fhdo)wqoMb0q4rmEAq?GfgwLdy-&}?E840BIYT;ooAvX^M9VzdJ-G&3mkAUCl|!D(7%aZ`=-S2$ z2Y!5jrB2QmT(svRLcQT!x}5QD>Uk5klrznvT^Rmj&vM3=myy<=mvDK2PMy|fOHQeG zQ^s+2Ku7ueBGU{=@TmCwLiQ@*88hnB0_dh<*tww-^P~Cye?n6PwTiuRzW&37ufvZ2 zbZyJCzs9E85}<2e?!!G z4IA$0eLD@Voe=U6_UxZ#GG7bU8aAAQoy!cKZTh#DRDXRR;osIJi{mLf4IVq#V>3>j z@=r0iwn21yGf-mk8L9f={&jmSJkCm(*wcgsz$qp&`?A4r!FAtJXgmowwoQ>D#K(X1 z{*ozy=BeXKVM*SXAu$L}!eGHfnb!8YPTxksQKt>^Qa!zg>pKj6nWxA5^>h22{0$71MKpS+KVJ_?E$Zh3(>DHL zTRoJ#>}+J;y9D}SHCnm_{UlDe*<1C}JcveHSiR7FgZ_t2dd>(muBd06#h|K7V38nu z{tc(d9jWztCcQ&qq4(vXJ`p?~=Lze8m-*Tu+%UTZ8k6^ig>1c%T*#%L-=FiZe`|+b zd*J{q3c^5=qkL8`EUAP1iVnLM0Exx$;}hUXl8Z5;yVk%g0Mb%eo!)kq<^)Vel^w)b z%fX1rqYnI_{??VG-}|tDjr<~l#^;?B6u>OAk*fhpi=HNKWu{=+AJF>Ou*7U+2*on0PgLevFhjtUiY!u}dK>%Tp> z&-LY8=lHgeA(D!aVMDN$!xb}T)fqx*X|s)i;>Jai@=!aRZ8aXML31d>mvYBvC%A4#an|@&TGeAPgLh7%me(A}12%i~0@eF=(XO z_tbCyvl9**hma;^WnP+8s zXpwA-!996LXV-!uc6CjDI zNM~0@YFN`%tce4%H+%1i2u^!l)8KfJ+Fe)K3a!%`VlSE0p> z!9_IjYor+pT1xP+fYlPlSg{0IO9*H6!-sYHITV^YlDC#J7Uv;}bE+hmBiNMyiqx@DHZ9GY3`z^K zPK8dfl*g9p%iCbChB+nW_MA4b){JhZ^>n(e)jlDF1cm(wT2x*#{49z> zW-A#XW>C}yP`la>M;2hv+B$SI&9v8{!a61gBeRsObwou1UO^YFXBDBd2$J1v+}dUY zl4DGbKH!h4g9XX5GLY6rqtr|q^e(}e(+P4u_QM?{^w{hH*Ju0s3gP2PESJ&rSJ|Lo z1esRA^1#p{JMgwZ5do;r!W#?yu ziA7Av!I(o+>{eucijn>a-Fx+8F>Hp1_NIH?bblPiEy^g9@!;*UwRYe!3NIr7yHua4 zVhV=Il$ie$!v(a(pYk{m3*XCsbaOniva@`>)?3hD;Y=|@+uS@l8EcEm5;aW3#G2}; zn2EC{V*0?56h;hl#VB&@pRrg zz7!N;smSiE@KjagvYB(011=w$$`=oO!5ju}s{}2;WrP`Oh9gfHU?n3TXXX@;i)OnajmdjUYj6~-{r+<-+5`>|tNH1bdB^dcy z=5!N?sAJ44h2m3~6YRTYq!{V9gAXm~7J)Ro5tbnvQ_3a7B)qch^+I%lR-e$xSl|sPughW%&n2@&eN)7$#NGfSqvZTjE8a!fa39{$S>u9dw1-xaSA+*lql>*VeyGJl9!V39oj59IRNu^Kg|G~pd zGxE^w5A=QkW3E~6ny1gKYYOfhuQUfwA3YyNluzp?ohUTn-}8btSgLvMPQpS*g^nP_ zyVHduNKzdXlmZbF+CYb<6_v-ul&v0V3Zc-PQsiKjQ8(KQJDAKUt>r;3CjvjdElI%EO*wQ>rhx`{9w}`%z@RBL4l;c zmY9CoXI;-^c1^0TCzMHo=PKFyerR$uCuj(yI0i_p{f3!UzH7fK% zdERf)?-MRo1wS%;*k|ygsud29D@GS#P@}2jOS8dT-$)WDKPn1&Xrue92#i| zp4_p_f5-B|?s3GuTXh@f`~kFR?;&u_sT_j4xvqdwo} z#UBM#ix>5+udic!ck20(?8Z7nKmpgQTf5+3%hHCA4cY&k{p{n#vE|-DhJU5zrRiH< zcU4u@rIbiXu|EFW{%x2``w=M2xEx@OLng}P7APJOz5 z^Hbk}j~8ZLxa0i)h&s=>CbB==pDC#%Frfwrkc1*l3{?gJg8|gY$3BERN_v4LY0kE+UdRwEeo(|mF4P;1;To_=%DyqjCV^-gE~rc%nOot zP#0`VIrrtYXm{93y4%~(qI9K?TvVQ0>iMubX@PBpOT(KCP3DoASm@ zTBaQLvMEeyo!Hxy`(yR&B>iM++@Xo}P6>mNxO zh&f|UsOT{q_42MCRSuW#Vz1A@8zH^#ur;ZC4m_+ z{u1l7NM4I=96r>eUD?4kItWr=g0Ub|t~_D$_n98+cxzQVF8L}g)QZD?Yr610b>FK! zeg?41KFJHZN>BVMQDP~DpI}CMG0@u~33LLBFzMdmxp+i@!&iEIf^AP`sq%#Pj@LR> z&LUqI><6v4EA!-y(=wZwub?T>?@)l9vZCT|mEBaJjk`|HHd{@QnG^uTrdUQ2m_*ZU zJ^iA%%>kG!o)c;7ksjttV8rSCR^71G&frcIxKX{7b}9HzeDH$N+g=;Wkt58Gx7fEl zNml2~yDRREfBT6l{e-php90-AEA&2b&?ZtZLzy-7p}73z#A+pZ)@`k2W3YGxY&per z1D?H(r?8oN8}uAHY8h8jJM!#XpXO!-@Ad}qa;3Gu|KOHj!~rJkQ&PAJ`|BY?Q9>K1 z(!>zu0K1h3N@Jz~*P2)feV$FjIy(WQA?~EeA~xk9srRp5gF6?$z&j94I5@4cL|sfO z*7sQTtqVr1?_?;+C#499YMBi73BO^pVik;3?hL}>@-nLyT;f`N2oP&3hX|)AUO9-I zS&!P108lu)O5_HYwu8=62;M52Ej(;ed5aB`{Mr=#=O=4Uw~dBa$ltf)i3;RsEJ~S# zHRH!;?Rf_QWvo4u2aHx=4n`4~c+U!zbj58gP5sYfn_><8DoTi66jb1i=C;7ngqdlC(BbJ=Tn*a2Me)6Wy%Ot- zj)aJm(?9Wl7FT+I4O0%VTAkKhti&r>)2rF3E>wrG!y}D~z&Q|VyUlMv6j1y~ti9Gb23{ck12o1#V97Ld++s}Zr~8zoEWP3Os|o%_=Tnu2GhBf_ zep*B&G`7SFOc+p3z6enZ(Qa-)nAn3X>X-X=b3?j39kN=P?sP9$O42W&WhN^*%Yv>I z0bo5{BONb}h?pUySVUC{<~VW+YU>T4(rNP3O!htOnjbJ_l@KSnW*IV>T%cb9xU93_ zI<79sT|!;JzJaMj6%d$>D~~vQvTT#lTQi%8bENw!;V`RbN!lDs-- z7Q9bu{U2=7Rs-dOrYYE7SZarLdV%6wdesU>D|47D zUP{ZPFE~BSE@=z`BD3|>;x*{pvi`gWRd`yT7TT>@>20B%iua^m8a+r31bT*CJKVgV zgim+?5i6;!#ji*>sb5!JdRop|1n_`ew`+VhZs!^}eZKo3q70bE=^M)|u#_dj*>0re zxEFOA3$yr_wN9tT5TzAn6I(oFi_u6=j~A1AX{WDX2(f=sE!*N#D z;ROz~VQMZ{uTMonLW-J1?87C#c(io+{5VxgA1}`3&UK63RTS zLVQU;^GTE4aL19Hp?5va!-Q>d-2H6enYBUHC>(LRukCY3PZ}2&ujD?yw0iwj-gBoR z;a!_fRrsnpXpT|HeYU~NvS$zuQ;o}7G3u#oAvRZ%p1y~yUrgcypf2D}|JdthiGP@^ zlwU;FR|cRb2WMlgwjHBlZ+lF>T$ay$JKpv?zOCBI8Aw}#IUsykpz-hhn>UQ9_+I{4 z0j!nbtqJyM=QdlH5i94rmNYxFOyO&ZQrn4cKJ&VErhO}$+5aXkL@1Lp^l!<9HhgzU z<=O_#1vvOxjMZnV7mVAH%L@>a!aU$D$DW$5BC983cJ}d|piH$B0u)d#;{I29uB^Uw zVl=hzZN$IGu7g^NJPR-%YY02YXc0KLADh}L@fd5cls(M(_xl&zD<4nmfSv(gBD#Pr zi&9qc?wG6D#EFkY zA#GNy?Psy$s}#Uxz(bT3i>#3n>x}~I3sS05f+R{2&#(BxL$iUv3V9WfB?0z7OX?S4 z0hac7@P#OC!B12cd# znA@+;f(^6C{Z>P((`_17psYmzLza$|Z=QfXFHF&~VFVVyqo z&p7s{IVsy1!NbeoPVx&WbHCQd^p(108aBj50stKwVm|Js>ZDfJOr%97LJDR*kgSLA zlcy0fq!aEnu7Txi8nm>E>y+C%I*_VtMza@7F&06>!?62inxDx!-$T~M_}gxc=(OJdQ|mVN6#6~G#4%kAt#IsJ8SyQ;!u#S8Ir%}gI;N^#nNU`6&unukcT*4)q3+Djj2-mt& zK)EYmXmpeZz03&`+Vq*zj9RM|W;jMR4dLxcMWSuK>1IwOEF z0BPZiB*<(cY4NIxS)!5$I!lTVsq-;uiqU%$=2xuUvj8XMNl3e2!D$G{H_ApcNq$mt z3Fa3w4Vydeg@owVB0R>Qtt9kE(v2#iPlfQFFQ)EkesG<hgIJUm?=*XeWcfm8S-+msxOV`Chi8Q|EQtszV0 z^xPRxo`5_}f^O=@mL5bSq)32_yg-jHk%)qa(Ur25u9AH@I4MEPjWALc7`+<5!a@-x zPv>{R7h9?m<(k4R&7%wLj;{JSaqm|+QHMmmL}%h8z63e?W>WPG%+Jh?sYe+jK`C5P zwh@&yc*W}c9`Lak%r6D=8$1PXA3+lUQkO~EEky4qc(WH~B^4dvJvx(myqt9L^T3xhWRMa`Mt};w)c|+ zGIF)R>0mzTeFk4-QLtq`X+{#xbvZvCMOhsxanQhqujG;=u!AvB8glA2a&p#5>_VuI zM}NpNkrUzU)re6B-=dQ&D&r~suMfnNG!f7;SEb9==%&LfJ-`d3Jn_$zs^4m z*TF&A$m@q_wlO!>a^GGa-d->XJ2NA;C7!>KmEEY@NH;Q zBAp!eFi0@-H!MJ+btjgwdN>Zad`<#pm#ycX9KtweLv$v)BIIURUC1vj z?t!Nq+n&Zo=#g|8vX6Exl!$r%MVw_smq5KwcrIsm@P6M%N|%yuDkfMg6IY6Z5qadG zAIw`7W~Cs_l985KC^JD%mJZQA^NrByD&&6WauF-5YXMyN<^!)V4X-^ouV^VIPC-Q= zJWk-a{}XE#xE!NF(+N^TDe2#WTLMieJLL5LVA9=XXD_Tp(uv6)!H@$UkXVmS;i832 zq%3XFtLnXXtw=xJMCE^9d2whf0$oq<<%)pUN(KNEv969#{`fDXTr=O7&u{6lbErd? z1tOMOvn#G7swbRT?{&E8LcGg5z$L~jkcRsKHJ-Dl*vH#OVZI@!#WG_ro5ehRG*P^jrbD$4;CUfH}|~O1NFyMWm!|_ZdXw z{}{j;d!qV`+`1;iU*uAIzG1VB8Aq`xAC~7is)F|9|h7&L+Ug{lB0sKqNpM z1QW}ZtUC`JEob;h0kWD!=HQ7lu*uVmdeWCUUtGd9eNP(q!xj!BI2-%x%hlZOC$k7} zX%V*BlswO_O`)gOaH-XWVF)Bj(XB@f$n9mUOA!>s)`ZnqI$!d_e=T~J24W`D-|n1@ z)pyHXIbz=T8yENJ-pe)A#|^-ehti(G~k38I14viJ=}>flS=NR0jeh$PaP znU}s~Sg3Sr8i8ycmz9;eL&3&nS}IUV1=X)o&hHWy_808!ZK|9`y6rOysc?Gui5b4N&qjNP1 zdI;@%>%>UzVR$Hcwfxm82pn%+$$B%)rh%c-lpsb@epH&?0A29pkw!*lOXlJzubU1ZBvXexCv!bFqb&9ap7dz6wTs0x3OB za%Nn%@-b1eY$)u3iN+$z5y<)s06xT;gw1(CV|_|CTWb$1HX)C)m@f}AF=y+{vH8nb z(^>c22Xth!4|IZHe4n;177P6ylfj+LeYmDw`zq<++~+!y)y@K?0NYbE<8v=_Czeu1 zP~iNzMlHDBT1IVtqxfOWuQQ-QVtr9VQE^kx>EYO@s)K%#tpe)yzHWPi9Dyoe-sUhEg>|SQGF8Db? zTNI9UVK%O_qN8RorvH(F7$!<>EqO?~N&VRe2%(^Y`DqEZS5K-K*D|aVEo<0QAV}^I z&`CID$f&gNUo}g)-1w07&xE%NXn4E) zh&`k(KjzdlYmh9WO_q>*CuEN=GG5(3`_C0GE^XS^?VRBhzY=jxK?Pe1x`Iwbfue@h zrr+eKuPv-iVz+xw-cS?PcdpL(rnZgo*XY(g@y-|sql zR^C`8=Efg~w2|lM$@>EP_bRFE#hkW-^a=3;ag(ifEde-)x07@7XC5U3|B$WXt))3~ zU&mw)r>{osE~g6B?Yb8Dho&muV9-HGuAMU?)&z~;daFs!VN*%)@}lW9ukz>dFnHGY z6CI5|hJdNV_xspjZ}fvJZ(LZ@YKuZ3sZ(Y$3jEc_^}|*2M3+9dXkdhiT<+e2YOhG$ z>m3v0_gIY+*5vksln9``jsXkWTPFm@Mch~^nC1xLv6b3OdCqN?zU5WkRuK@sB@v)Y zj&BWck)ePDMpsU#?WQFh3gY&Qcf|m)UIZkll;vImah(@*1A<-DXG&yUQG8Mn{yO$3 z2@J|nKqVi1Q}fXF)5N)Jo-A~lJY(B>!*iKq?gGzcWLq)@QmQ@-1e_nWbBrHe7{QN$ zxFc?$?Kz+1J=IN};L6`IX;|J?1QVVNK-8`FaTa4?nUN)2a7G9{IsXhLIjS$Ri|VKI z-tt`|9T4ueX}oGO|Hm{E-oC-@;Ck&q+j>*ApvlbBycmHHA`Qic#@XOM@q((`DPp0U zcv~CnmPJ1QXqsBY7IVZaVC~FB|FPB2U9QQPAk)XaEnPh*cLvUHPI|geI?I}zP<@l@ z1iTc+pX328w>&58whGQaA>SZwxwn}AmPV}jEFGTjLtaV+;+iS>0(AuRGRUs@+(PsO zhC#&B4J6Pw0%YYF(|Dnq0&MsF)HoP+zmMhc-NpKKfysT83eEy418A}4=kkwiUuFh5 zq@DIPh|@OlXw|1x+~hfUQ?ah-IG^-`!uG!a_ZI*sO=!YdfW-w?qbGXDrzJ8M=K z3|4%hsTrQmTQ%tuGBx<~@B(hcK(~MCZzQWFlY9jmD<<RL%!l7z}XYd#NrG>H@oY zjX7p~3C%KPo0=`Bddy*w1}|#q``P4#!@7#J0vage$AuI9q?*yg_LG60#up&b%L$9e zNHnKdgZdk#ugi z-nd?4hM9sEtCWLco1C0zHHW7GWd>%J$@1OpG}lJRHo~m1A0w@ku+`SYFc@0+o)iuA z@xidYe@z_xIW_3)h?61IY=l%XqYXZ+|O z5q)TrBEEVYmFVO@qh6$%gjTCbn9zYu5glK9W^&lrUDBVEv0a!w-_8VC`}B05{mSR3 zL@I0>%?fJ&HY9sMPoG(LE4ZSc($_9TPnvJc_@t#farWDFMQPmTMP;95)O zQKtyH89vfmPGP3{Ut~LN{3X2Sf+eKDA%Z&04{{Xnm2oR|sJ%mISFlt@VwjznjUDr~p?zsd(+e8|yGCq?{<067gCjX!4Qu(J%a z?FOLfrdTjpFL&3RppSo+n?d`}^2nk3Y%{cGmKDLphZOT#s%$Lz-q(zP zo@lD&>I5YJIW6>LOY4R^nYA?@waPJhSXF48nG0GQOZGkJtkI&r(yuv4Zl~OH*vV55 zC~^2>WjG^W9rNCB{h1)4S;`8W1JMGTUw#AQQj}|E(}F(QF%{T|_kt{%NbhUke39kl zWJjN+dC^lA*f$~Px*D!I@{;%MjErk1tKc3#Za1^s0 z<^1Lq@70r-)@eJM;^ZmqrCKjTXea%j>*p$VURAof>q3H5htHta)Z~ktjUi)dt z^Y^^R&JkgqezxzU0}OXAzW%l~nA11zG)N|=RJpHA{P6aN6I+MwT1Uh?US7_RY2vS# zIoSQMg0(f2^O8wf-zO|8Ilk@hUa#F{y`GBCzX%3LeAb@3IqBq*^No$KvA-gz=|Nw1 zEgMu$x_2%yXWMGKhYN>ee}B6?sLXI`OxlUD3`=}Nki*kj*9MXOb{r)vO;Bnitj*(T zijYBhzw#J=+Qw)9mk9m&mk%qqY#e+wb=~o8;rtySH)3=Dv@4L*dFcJjczAuyGD*Q4 zBww@uRT>4_Zc;w{7(dG*TQl~5+v+q&o^~Zy7wkG+`C{z)w9TJ)UMYXAY^G<)lK&wO zA4)Y^JPx>1Jb7rFwFo7(ysvmv6jg~z3WH)@)zq$6q!A&?$X~hn`>*a_r_OdC`TE<% ze_vf0pZaqCZ}`%|UUe}17m=X5a=v{EfCbCvbN{~j8i9*X_p zmO*Wl&zHAX4TS>s1mtwRTO0INu68jh{u)xKv5Jiln4(oH_cjWOYTo8s%1-vhnZH>%z#eZd=DSapZU80y=?1a})Em@{f-=THG%tA{j*HO6( zJ3Q)kFLCPBtbQtYO#VH2_xuut-$0LAulCD{pVwe0SlZy;Cl8(h&wGDt{u@O|c@6%T za8P3#@jm#f{Oa)y>^}=G%$*%~d_yDO1c?~-j_+$jF826w50^{_f3{oTajfR%dAVtd z-c`+Ma|-~#l?uDGfy^ewZiSkTh4C8|c)|Z|IPx$~1a0U4-NU|SXqJOx3p(X4V6w{~ zlVKGyo;;{azF23+Qn;JW)k@FXt)KdfULf8Vx8~>>Iutyi(RRW8b_>8eK>%AJ3BFzD z?Dr}BwXm13NIiDaX@-**z6-j|NE>8|I;cy^yL|K(dLF87RnOiUW|!pj=|(q zy!Dp4>*q<)S8Hd4c=kc_R^KXFu-on*h$H^Fr-m9BeZ=vl;}Pw&Kc^%}?O-=T&JPSz zcX25gRCr#oxC3^zN{M^!7}$mdtrAmY1cwMqzr{FJeEhbq@12lU{!j1Ndinh~we^hl zabDMS%MoGIg}R;l>Tl~678KXsL^$hp>FX69eW@)MnTHjpYXxb8k&0vQYPaMc_EI+f z&|hn<)JdZ2ynGeE7SMZJw_fUR{Pkw?V4K2oY$98o7JW>%RaPr67wP^^EfZUtWE5FS}fYw{BJ~EyZ=rSh?BDLLf zmQ8Xz7=krCfF7xTrO&WZQjrm8Ws8bFpeSstmgmH5lcow`BEQqWNlC@udtU2jst^#) z1(2Lb;E9vRkJKb1>N|HwtsubjzS^f^%3zzD<9)&#%RbP0?qUB!>xq+U z*-Ba?@mGfYL#tI*8^rkHSlh)-&Vkl()UoQVWd{kj&!{s{x=3xSwUea`|6%&3$b3R6QzurWg;UQf3j(i86%%L#u&ZtloN}-ZxPS zTRP67;+DOAJngAc(8t)@h&x8z|cgqyub}j?8t@vt4AmsS=f- z%`Kr3VGj^dQm_6|Ns{>4w+)aGsNzzu$VXkHjmkAFXu$yKI!%LDBcqBO3kQ@k0Q)u~ z9+q<6v3>T^ZZ%sq?$cGV0F%#N6MX-w(<4#iRI}rz;I`*uWamc2XLP36S-qi7b$UM| zv1{4^FI3bB-S4T*pp(D8k<<>Q|0Q^_zlDm`s3(K_7K4S0Q9iX%)%ys3#h$Ef^r#+_ zGo0_KdTOKeZAk*eqf6dpf_DF?uF6;WYZUd_a(f&(s+@LSFW=&PB)vRQEpAyv5OHkx zpED^-j2F}cs14)j)L+!q!rdimbv8tthk$#XvQ~!Fm$W*NL3dp&@TDj%sBc##mD{Jr zG1~WbE=9MP)o2XEcUT&$VDU!vQ5)V&15OQ{qg3S4u4Olh*PY?>Js) zuH@{>U#KJP1(i$GO0qU@vqBv#Xr`O=B}K^Yf14%Mzupm$%Jo*e*FTMw<)hyn1zI_) z`kLIt8rvuj5mag4sHU{Vh>KtXNjQN9BmA!{Kmmtrq zP_LAdC6US$=k$mY(hpVYG(tTyN0C;oE+J5t(RyE$nDbe&5>zhNDw%9Y<|q$#rmB}K z|KM)Rt5VOGRl@3+4aJpn4^x*)X?ec+n03t0KT?V@bo@tlHCA&Q%mLVS$TeFk1>j|H#cOKi60J>%mg;`a>bwLV8XA$6DKAu0 zVF_{fD19Zj;z2GcwTqN(UN{>cT4h%BZLM!K;fDYzSOi@Eva5Wp%+^)h$tC5PNrTSR z2qXHIO?{)L-X8!f%UUu8l=)<3f-L{>kLvx0)wXLaZLP*xEx zIq?hOTv4fBA|}maGj2w>%u*Mr*%eG`&kd7eO(WB>cC!F;oAgy@e;HD9 z$@9U;fBqh7HDle~+TU-`mR@sC8&E^kVtsyv3>NpC+b9#^lk3%N%P7M#8}F?1*HGEt9>G$$j87OUt)!EaX_1bE^bh3 z7cJ4)18QYnqx+gsS0+ld_-#Mq{*!u)p>HGjr?;WbIg8}_vvT#-flqR_(?+&BsAO-3 zfLdBtktV1KZv1_`?Jq?Fl`JuiY>^#G6s)+SwA>9?Znpa2lZsyS;J>jCBfhXNj$q5S zq(;&t)oRzoMcHa1+GCqqy~SOjNainj~g71X7Q4`daSI;|~sHzb+E*>m;o}sQ{{0Amrv2UfG3;T*K zfj*l)A%SY9kk~cR($`f&>E7lHOcm3Gi!=H(+x`Ws#}3GS>%s(S#(D6&q2>id>_wac z%<|weis+tcuAYn*QJFeq`Pj@_U$7g$BA4w{w5a#-j&*kK?3M+@Hge66m}%N-u~9i* z4dv|D)STI-wwI!!UD_O3p<(JrIjC2Im4hZEfuKy*RbTg>2<~jC>^5+2F2bw{5K(gVBZtAVWt>4mC!_ z?A59YFy?fiqF{^!cXtz9z2&f4=B%chVu`&}YLqEiPb!HZB+~El$cKdj6@-)1lONl` z#DgT{4>z|wZl!}3DHtO;`R(PqBKE-SutCpKZ%CVo4 zqj+r@HHvfo2z9UKw$9B#NXBJ<076XNyb_b!12oQEeLn(nblxi`j(^PBCKvOhfE=rK z0d2^px+BR%#e6+H*PzG;l|NAB`H{S*KUsZ%sEe2D`}t&($>2o!u>vB7OpFz?GaCVS zxsy#Ckfh=RFHK=ZfX_pv)1U2*qh1;nmZ2b2Z~<#>S!3L~RT*GifanjifwK(b|1 z#T)8S74Lhj@J6@khJ#gE~Je zY(pisArP6{-N*8uwITM<>NqDN6?@^%QOa%^{3CQ61gl^WODPkVk5Q#J4f7sgGlh-B zD4oRzdLR(W=?*R+C#o$UA^k8^rha@`PGMTRZORgtyu4Z~@CSvE% z{%2|9X{rb~R)i~mqrWX`4s5_6~OqXJEwo@={Q6nN{KxyY*&}onWqpX5zr{;oy z@s{}fIA#>5G=ar>CNZE6zSwlX>1}K3UGXZDYCCA>ixyN!J60vF3lDQPB$He~%mW_pzzB@4b9Gm>8V ztu`KTE&Z+cpvN97i$t&Hs+RF_ivXJlcpn*(EQt^`CTvA)#vPWvA?RN=Tz3`)(*wIV zQ`Y?1TVFFe%m69HN8*yEs)>ppXSy|r_T@d02&}nrq(lX#31izo~?(P5k+HT7`59%rKu<7cE!eYj^JeI3@HZGxXKOXC5Dd*F@-?2XIDIBqoM{= zfTTanDI~t{kM0}w%3k;1_bln~*jS`TJWxCOu?~-E(Vpl0v18Qte+mC}To!NHJSh8x z`OaIVs=G15y|G>U^44pQUu>3z#psq}Q{pOoigr*=eWM8_IgD99?4 z?>qw6X`fEdvYc1CzTdcFnfyCj$grKY9rD1hMdVUPgT-5=AxlT63HO1j*FIsY6q^4w z)6=z0DovT0N1p^LcC`ys9&_Z=8lR6?O>JKcZc7)qeG&eqYD_)z2lwi!psEeO)?nhl z_wKwBRJEd3lOvs3w$q#S-s*o>9Tt0R%;|3q-@Ju+1O5X%dqf_OaBwWwTs>UYNns89 zPKw#-(Ry@XhBKdZbbro}?vFtLy0QM)WvkcKcHaBr)z8O1^zC49cuoJFS#6g#d+Do3 z&nO3~SKPWY;2|#Yx7kvCxg}(;-9iq4bC5|d#z4s=JIw2sc3RVj(qjYKDCGv#tJ@hP#6|7+V%h zo)3Y@6zy-qOa!DBDs3|wZ-&OR4i%>yF<$wXBNdE*u+Za}ago zloEhL!-&0GWr@c7_D{+`fZo%3_@uIsH!|bKZ^H581}dlQg4ZVBZ7Xx+8cAgCy(RiH zPV3yvk52tJ@bmIbXXe{%jEy__N1|-qnX9!LALDxe{Rb{xJ9=#KQ{>9nHOkbFi+@@% z>~ZC<8O|US2x^zuzv8Nh&ice!o$0i`^fPu;oddG#|80Rg6z-_sEU!JE)6ow}_nsc#Y zJCQ8T6S#%uC=*f=sGMH+Ib6^s5&+!CB!U1QQ$!N^zR3Do(fkc!;|XD!+@zcyx0H$q zDH)i4$%+A%0HJnyZ;QkJFB8Xkb`e8wpEg^+cX|@ZbC}uUFpuZBC|{r7EgTc^P0SEf zlq87@;ab09+l+hP7B%K3F_a)hINkEAf`lylIJoRls_z}4FU3_92eQ;-`@6kyQlttF z=b$S%D&NLIt3m^JkLcS@RWQ(pa!?DddGBbPZ5woG_5#3H9fw--lgAWUMxJGA&rAVs4RJv=aRZlF zw*2^(Vx-+!M8BICGa&xm4Gp8hPR-pM0KALh0y=~d8}!4ko(fNMqZkFzVj^q+TGrH) z5+lcqRFVC4VGR+kHJ}~yCvxJ$VtS$*Ttq3(Szo!L-tLGFt`nd1bc|2Hsr&Ev5{I?1LIrNLb27~@` zQ&}^hnN1X%K`Tn(POqbn*7^w@^y7N6K(4)Qvfr}`F5Y(^EQ2p>4v6@ zzOA9xPLGoYKwl*Oys&3dufghl;;$&x#_g#Fl~SId77fIM}ruv<%=D$D>!DbPdN~>1x`3|FP9~eFE!1^#1DAZmOSx z86sI~Qts8=XKrR0)ply2oYP>KJA3Qn_Mcw(A0K{;c|msl_tIpE4s1DnP;WQK;JYTR zKITSNhQ0qnp<@#(zOABR+<%O9qtTY3*iRt=X6JJIge>pX1q*F6k z2L0aNhOwYN%`0(({8h<{p*mD#7DjSWvYG5Pf&$;3i5&(VKc4U2>pcR8Q+?qEim2F^ z&Dj3&ThL#L$B$rOF-< z9Fe#uCT1k7ktVY5ew`>klkE3TqOR}n9Y6oujLsL354^RnYzi#Jc_1#E0efS-o9CGA z=PcN{-b)6nisP~ex+mqp)3r}dwO>Q&K}8llsl9oqM;2tF)*`ruN+rw-aK7US6o!(uCAd3i@xH@&qBUjsZx$nw% zS9xnMw>#~TCB*gMc3!(YheF=1*;du|z~O1%<4j7}pL(ao!j(}0m;PSm^!w+$pI)%U zHtZHGA=<-!Lb`W=k1Dc?wQypeIs5KZ&v&d_=?f**pK6Le;np4UJaIOEesa>lUE$!z zA^W2}JFXYq?gz03D=p;e#k(5Ol5yvmb=cro!{@9RxosG9t@2*S`mpy&_k!Kh?&kE_ zD-0#S=<_d09HjJj+0;(lRTxeywa>K6GSCO{=^oovkHY7!8~>K`ZjbAI_XL{t8~xXg zOW%Aqxn93b;wmPdfyTv4?GFEqz@fTsQfBkH>PJb zT_0JZCq{B16qbAzp3K^pebW7;_}OB2RdSzx+K0WCBnj!nvCgPfHBN6zF@x^9<6>SI=JS@_+h!~YMV3O@CHeDRu&Gh?T_UCW(U@(EF?#$C~0 zabW4E68+Gd+-XJDA~AS>RG1MNXv4@$wB$YF1pKvo0z;6c>C?U`PT0v<*9M%vi~Po} z1##kL@UJey<<|;NtH<4SClxq+t-PkHyv%hga*IMT{Yv$xAlgn;SbvjyQ1k&&z)V96sh;+#{W3W)k80w z^4+sz+DPJHcS!`8C{X|onxv5rSBM-__)eULNm_-YM$Nb#A1I!%kfR#@q-aYZ7Jls> zY*XfDJ?9&lo0`@s!{#n;!o6?fdshaDV#bv`Dwr^);QIpazLAdgbWt0A-Qpu90`P>XpM~qq-E$?PbZ&e^{IIa}pcy8H|9!iG*GsNB z=$u+1;F8AuRHQy??VuuKO+;3&f*(noh)G#OUXWoHu?c98^Pj>7#JK_L_Kc@=i6S(; zXX@kA`&=?hSA@Eu6VD$`&H0_=!Xmj9IBB{&Xo^X#=bCBV4vol*ozuK`d3y<~e}0CQ85}M%055 zi|5IYaZ@A5@cm(Fc~?>CL~DEHV`7PRy_w;!e8i{}P^}0?IOUu(W1)l{3cdkp6aH}g zPW`;gF_3_DPwE0%%%EtIq(Q$BoCn4okF=-bCjho6RCm-V(sHzCCqLk7moH={Lf9J; zaRqPycR~O@X(f;juoH8t3>m=QH+1x!Gzgrv-u721mUdM+VHPNRH!-P5toB4F+IlM21I%`jW*--nrtOXMHkzvE z{=&JPTK*%wfz}S#mwG<-3u6Y!OGfr84?>BpW(CmN?Y-F6%PnCzGkCmYML-Y@!YU32 zVjC1xmFzKb*~2_3E6|@el+G7vY{91|((i{zx1bFA4+A!F`rtdep0FEtqI& zTQSgB0!v&l3UMT5uW!&2P{rV_EAqb{ey+(E-)-=D_L;k+DDyTK)%NJP%CF+zY?c3q zs5cKwD*gZeZ#d_$g9ik6>)^hJYg$%-`;y_lWQA*1R%ljcHL+<{W@uVgR%mLr4wjXb zHMrY4=u~56z0o#nn!=`OnyDGTe6H(vUBCai&IKIKeRIE_&*$SA?$?f{RNRK8*+A3O zlH$kP-~5yzbYdwxi}2DF1>WsP4*^mOttBO-;AohUqhx5ePuDBAh)u zJYQ}pZ98ZDIf6HhHqL(j%lPgcuysQ zqyZ41Y4<+?$u|Ky8SiD41yrVt+-PAtgkbvgA1s{g;W-4v2_S9WXl6$1gtBhwf zhet$blhf6`C?mln@++Bc-zn#-M)rJU3inF9BW-{hcCc~C3%ZUMJ{N_r#o@ut7k#YL zIcSxw692D|WNS>uM#t(Y+r=x|8O=KfY3>wv73`b-)vhVP9bBA;D$6g@Se;ThHHL zQ>ey=k%Wj}2R#1C8CoR6t}HEqruRHSfl@HTxF_8S%} zY2j7``GZJ1x^LGj*&{XH@B7qAAZ-=Q+=W1l!$a)(Dwl|B>9y<3I3PyvI8c!@ug0pM zHZH-l&#RHc_sb75^>T+Vs&XqOk+=N4!jV?%AyXm8*NqJ>Z$VQ*rh9sWv3Ag)BB`%Z zeLBfKl$~}GD@K48C!Ljh0Ep*+ z^Lnr4RXD;j;~W~Kr`dd!I{uDGQNY6yu@O&UoKz4@8J!T zemV&}?urMGodTw3CCZGTy%f9lc9VQ{CX;W*iTc`ue(EB@-#7Ly`ijGxrI1sh7H7SX zmIp(gEeI!@OcY-eRD9N3pp7OU!bc7qfJHShz_}GFpnc4fH`9 zR3<*4Z{AA(=Xkh_ymg=9Eu}?DF+C>WutH5;TC}5HU$`aD3RNF1mG={kf>N;<^_@9kBE#759rR*6$5_+RlIhhqtA)I8;L~6!RXW?C zCUqp?AFC`X9LE_T(52VZ4Je$pu|Y(acPC?XO5yS=K`6e!$(+`L^6})>1 zu~?EkoW$lIUTs6Y=q;b-9^ENd+DoL5FIhb`Ym!0^{7r?oiZe#&LaD{YSW>tMZ*rA= zhjH~FnIoOfAm+fz@lTX!y|nI#;THG1dcx!6$XKIZ!B{jgLtbckpVpvNdSTooT^rf# zL4A-s1xL6gmoJg)LmXi)>9#+q>c-&3S=zL>Hp4Fj+d!$x`Xy1MH5#AA3^s?x(RiLzrPM1mbb1yH4W6iOHH_efLf-{Y*<4g889(}a!fiyL&!ECF)Ib6R#T>4 zP{3(CdG|si^Qh%x*AFLg$#iNl9n75l@UArff1z5!SvqmJ_1{u0ZnysLG9v(Z?@Ile z!tnEyTK&6qt0+d1J0FlDHGP90x_nS>r55VYlAX>{+SPxnOt=-l|K6#?*17&&=T1H? zB`s{hU${#ib|RluIl&k+y9ZmRCan87{9NLq{P;XLmMXY~xlxG{KC(_5n7=YmeAmRL zXNLovBh<#d*I`p1$V%}z!;Y{Vqi(BeYmhEiYC{8J-{(t7UBjWueI{G=gaYxO4E)h~ zWUyLKsZ=*#_>p2INo>UWlQg6s#J#nAs?90aA6`>J`4^m|h1d9`YIkF;H%gz(uh!GH z=pWL`QLg^F?i7Be0O4Xv2{|3#@_=cGO zTW4eGsUI)bGA7AWd4Yvq=WENC=c|co?XqJ1bQxs!zEZF!Q=~>0u$|)1B1W+ppFr``^+fcKgmaPTwLF zXvwdC#!9rao|){@XegcMqDK$LUkev}VV8-a9lqP=g@^T#SAg zo5|OA?N*ZtjO_8D&bwN|Hd4X&gdatC0_(O#w|e2DcJ{WcH7|w8RxwG#0-fBK=ZS>M zeXY$=6O4Ps}1f8_=(P@(guNAwsJ3GaMb}2=kKn=*FtyZ(YAfVB0s!lER zz-Vn!g1&8}4I^t<&~T551?_@POui;1E(erm!pDp^j$g#HW;JbZmdq(_qqIpKU-RKf z?cUE)@*pTspWOaE>RW=C=2lX8n*}bv+f!gS{ltg96Yp;fp?6}|GscCiU4ODodvD4E zNm@y6(~8y^qi^cImoE@62e)knD?_F9vUl~_zf%UaqStnUgvBPIw}TTfp_eK5b?+K9 zdpER{ecuQRm~@=_;y#;(zmI7KmGhoCxuvyn1;?q`T|DeB5*d{ianh2oiSrs@dOhBl(g{k^u&-Si-@Wz?OWr_tQ zQk;SzNLjaw{8?)`{xjA)vF%eoW$NyR`rYSQ+H0nBWQ8QxC0oKMcrwXrI2F>9k~NZ@-v=C*PNtrtn?r&MQIwM<+O zmv7_?R{2z%k32!I9SFUxrc^ftw{||3{(R{XzFLiwc!Ub`d->gclu7(`pHJAaO34AD zmzMv<1^A1aC@Fom-}SV{EYEe-w15`{v|dNegatdt^@=XG%Fgt8wh8~;@549%3%rBG z)J7R6Ba2*TKo3kBra+q~ zdd&f~vb@!+Q=Z9~Zu0yHCYZtWp37fY{m^e#2yBfD`OaSBBOjC2gzBYMs2%NWPvFzt zXZlyM9svs)?Df@S8NJzZo2=7FbmmoNvYXWr?hHTmIGrl;DBCYEak(nM7q#OkRpAmHTfa$5x+<7@RAjW zUsNz*c1(7#`oKA1w!njHQ?loucYU~HlexK43rd!|SFQ|b(*y1mbn=?mkpHp2Fd&X-SiY( zHZlw7C{z@Rnu^~u7&EW0ccDkpt%Iqxd)=EE3EBd7paeE0|B zrPiGkFwPER;aV(#0J3G~7I}LU^w&o}Rc8rVs{UoC)wujDj-d}b8+dShpZ(|v#(QIZ zIH#}ye3{hGHB)yk6B^HWncxY3e)5^nO1$l<8O8Jq8yU~}R@xJ0s%9D^dloH=`i^+KxtV<}%V{1& z7_;OyG~+I)k2CF#dkOF!hGtrd7D{cpw6=i) z!Zi{=)6>s3(XA{%*H9^re~^j4ehqh7?h3NG_J8Cdymof`p(BJG)4K`^CBd^gz%xxv zef>K+i6>X7@%Obw4{<^HCnJ~L!b zFdShW?m*(>FbdbYxzuG7A$pZVTw?z9>?&s zR`NQh6p#Hs$rlT&9=4Ny#dwdQ8~JYo^2x9JA>SV7=s^+cQaupy+l zJIlgPY^s%=_?)c%cH-YgK&_^LarFY4T^de(8ONXX{x-wd&OVA6&pu|8J=7;j)h=`9A$u*cW!^eH;rUL>wu#DzQtNQpmVD1c+j^)BoH&+%_>4QAQb5D@OJ^+ zmfiqBsN=(8(2@xcvSM9>YDwd-kldT+@=fZJ{HW*emo@HbHO?4x?7X-f@PW;ndA`Sl zxHlwUfBV9J;!vq$o0Ky70Xd8%+2kg2?%Ux2MWwztYq34j_h!Y}cU64i;J!HW&!jEd zcV%iqa2#B$-C4?qB;c7C`+S%QJ}l0x4GXw>YOPF+TCj}MSe>&F;po#uZaMHfMM zPrO=<57qw9>-V&n4swN8y4VDtBz|!1=H$HlBpg_jA`aWDT?K^wDmPw!QX~$FK#fx( z(2fZsYU#1d*)s1I63c;Ksnbmu0dWruq{P-% zYUA@-MLcj=uLt&F<@F&J^P+l`x0r_`wtWQ>CE3I|PGy19hO~^Bg9}=qE5A*1Sy&Ca z5dA(vMRMC0AkNtxIcsH*zMvP~qvO!-;7WVALu|Li>hAXD77E9a7N+a+2`M)PnU>X! z*Wz75Y+Z03@cTYO$U~w0`&U7E^uFt%*D?>)!n>ng&K$kqz^dDA>e08h3l_EBu6K{f z*O9J|M%7#SC*`D%utB|gqbrqT7y7Ny;ZRzCg)*sJqRjxVs z*W$zQvbRI&Ig-mP&amxpsA(cvVZ#n^AsX}Fk53JX%yW3nm8OZ`BM=sCx(xxJN8U_C zFMEGdP8YJ{l`=U_9L9;Vh=)V=JRa83X{Q|e3m3c;hngs6`;aDbeo7TI;0+$UGM4 zX0FCcZ!Pvln4!E}CG!^dpbdM)t^fsVfldVHF(@51XMXHCX$u^)UmXi^Zszo#i|nTG z>B1>-XyJU-W!>2j+Qf{~WLa9r;|pL)1Z9XCcb!ZO1x@`ONy=OGCC{IwdWdT)U(R9+ z*aF33T6|OMb^y{9lw?uYXmT^tHH{O93JzI{hoy$-r9mT*iS=7U-&I_3!MP!F$qGOhi%JsF+|LH+oz`*!dfgIqX2|0#hkom@9iS~|T;YiXL4Ir8$Q zs0H-UyQi@W1>x{DBIurQOarkdEqT!S*mw5xq$$POuasVQ-z{)Aa#b%o9(ABikRrrP z&NYp%t7kR$$4@bxg>`Ld99iCqiKMfEIq*oCZ{_*D*XV=V# zL@w58IR$COj$u3*#1Sp#l$o*A^_6J7;GKT8^>7tw#aA=;_{1)jtkv*LX#xyc*0dI z!n(|uCHGO7w-}u#Dq}&E0aUo~nY8I%nm)qJ)P^)C@2o9NC`YXMFPDTh{8D{b7w%js zhHNyw_WqK3av(S`XG}}|EIe3~8Fs`*$MT)~hr;qMAQ@M@U}uBe>nj}`nYw4S=(0>+ z1ORzL3qR^r23WmAc#-y?mnU2PRXE@Jl=nYK1}Inn>oMeRGcrpiCh=9MR(T{nQn-H0HEm!1#>*rih19-eKK zn;~=YsSYk&Qm*IXOxKW5@cz;ndF$QON|4rdxxS7Cv^-!y%7B*1^>kl!(F%S_Dkq-r zT2iRQ%dU`KSqNotdTGy|dv$nFh6aW#bkFw=Kw zFFbWvo%#0Wi`H7VkX~_r4mpeiW{jf9jt zL5sy}0iQtmzy?e8VROFlp_sxXzp|^N8}}Af2?C{->qj6XSSKo_-;N%i78U7o2%#9w z>3dYK=ZC`J(I{BwZixW6=9iojId?pdG%rQiWZq3BFWB%ln$VBNRu00g{4n!guoSc$ zkV~$YoBjhpi3HzIduwbV^RDz4N)MfINp?BF%8qSx4BDMNT$tLtE2m`wY4}?1`h^OX z>o>ceo>D*ojlbNwz2$z%`HM$CR=o+{ulup=SRo#7*s~IdO*mZ@KmVg)jJ(fwT-K&{ zcj~B(BRy$Mm4X>-3pqXwXi>vPB65;hCGg|>ot}`|iJ4&4*kd}7mIuzmQBodUX#>Wt zffPM`34nly`epP@{@%#SK{IRB{?)g$h!rZCjS#04z3(9cr5zfl?Thw9Z^wrp;b!P5 z!B591BmKDR?pt~|UtHeAR`#K;7Kj2T0vnB!X>sMx<>ix=t3t&C?pL7@R7M5u8P=zz z5!PKDwT+ZEw6A=wPr)5Drc|K@5~vo(Ph8Ldf!D@!YIct*Ah-pxPm*qF)MC^s4ul)1L>Ag!kxk$wp6VoqavfU3Km`!-O|CBnzGO^SP z=}b*Qy7JMRvun2hmih78uab~d8KRhFZHAyl#vo`KbHX3dusl;JoyZL!MWFs z<5h73nkk1n07=*x5wB^e$DLQ(*bXdbxQhKY*RrhGEcQ) z3@}O$DhCYINfmLgW(_cqM|d+oxYsZ+KJ5iUaKe;aJK6}>mNBvoVAL&I8qrYX9?y`( zQ*V&K2{q%WmUhF*Dp?IW0Ii~8b8{1q7Eh*yuXDzfn=7|PPp*3Hz}~50MHsSczM?c) z47;=J*UPLlHNfu#OZ1Dq+V_1M-se#XYKM%7G$_MB&Z|LwK*^Gj#I-Mpa-(&1A~{kA zXFy<;1fF-$CQgkkG!PExNGT#W_jvN&zX(o)uu@Ff1HejY=ml;X3V07r*O}r^gFWuj3nn{Y=#lfDTWss5ci%L zg1-dulMvc466Z3@RZD1=SiBrWpKBo_{?cG97J50i9_1h4lgp%=G+p=(CM=Xf8GQ0? zksBkDNSh#A;-R!lgw2W^|2BIL8SLY+jz?@?VldWaZ+5C(QKbuSR+GefSAyAm_bgw4 zLAWGb)o7Kw_wqG5T%DAh15{hc3?C7^@f9}_%-sUO77Za+f(Md=v3#6T!>U0ktJL`2 zJW2_M_dg{66wjmKASQkZI|=vKC!|bG%oT3`AyH-6P(}#T%?Yo2 zd=d?C@D)qru3;rvZzExvJ0TzXQMRiE16>%wL&(jn6HZpAF|Z;8*??p36d(&lxLy4| zC$b=hD1s)iJRKh?Wp9fGo~Jgzn8G|zgM~^)vlvoH$rdGG_#Z}>#Dr}atZhn{BDXhMEZBTx*c+m&@OCP^t0As(8o$Ta z+z4M6b;3dn-;sLSYXFz1LwwaUj!!0Ff)8Y)hx|Xq_-WV+0kqu@3NutAcHEwRi#clC zZ#A|{F0$hQWSdn+o1kWiF>8I~VEQtj!^q!{k3YSA?%6+cY18og;&pH_Cq@drT?NfG zHZR#(E>A*2@d$zCB$9>&=)C-zZ3;T9NRaL8ekjENXPjUq8la3mc+?1l9C3MQXHy_R zOtm<97Hf$X>U;sa;e_#*Sep>{&sMXnaszq%l*S88e4p#>>69?7zrQdk$PE0p8Fqo?`S>LDz{vA zc`lS_zqMt?2-IAbB(B!~1Fyp&it@Qvf_^k+JGen`6sl>QK%=#|d1`nlD>RhFzA(wX zC4;y2b(Ws6t@rU-a0cEQX0DRKrk`iIjdTwEVf<>H=lFSP?6^CxGc)X67x67OU9#-0 z{edo+;}&nf)QSCc@?7hhYu~OyO&z{Tp3w}Xo$@cbS9V}%zy952mIZSpA?K?DYm5*I6*rzy1Pu7Ypr z>)ADX5KkugYTiKF$Bvt2i09ku9Z$k;F8+3LR&U2vB>cr5*5^CuLhUBu$jxuR-C(!O zz$FnY4O>^PC{NiMkUsHLtDDqPqqWbAZU+CBa&k|P<@mlFPO{L2y()U$2@%f9y4D`I z$oqD=UPV}aD2do=W~g@$7n?paC5D+3m-3)A6*3nkxEVI5XhcP7*s!0lhUq?jrYGub zf6U$f#qaxa82iH5+<<9&Q` zb%3VBdFr6Wx^JaNoU@IQjGZTG=YGPVWrmZ@9rYCxV!1Sz%cJ#3C{e}fIKQG5D&lDa z2+$x#3iqx9q`Sj}p5dhlkvC{KYMFMaMvnk={ zCHXfq&3nH67XID(r_HY((8lFL`l%8D!gQQzO&2%OWl%T|_LZ3JO@dOgHi@v-Ilz=x zjKr$ZI2rU~s@p0V1f6n(DmWu{Zs}^5X>U07cb>1o(^r>=x3c?RA1XOutm8UWe3|*Q zHdWIMDYiY>zxeS^o0=0xY?-@mc3Gw;{qE+0e=^hkxZ{F0t>a4m^`DN@pM30b-9E5# zbR7PJdUbuj-M;OjzrH=Wo&)XgU`6S!{!+|}ltT3vSvL|rK2O53Pfo!UZ}(}=AEWGo zEdis|A1V#J2+e*PM_jp>xkhclV( z|4qYTeA^DDwZ||1!74w zSmyqFvCVw;-fACr(Y}B0h_blQDhbU_-SNl0*K2PcKhLrbP~ii4XXdR`GS=h25#c)if=gwuG3O)E>osUWgLz<_t2BDo%8^rLbMsZ(4#qr2DFp3e6vE*;Ozn*+t z1x2agNPt*llt~?l!y~k-b_Vk(C$t=2J=oh%Xw|ELdOBW=(Ep27N~r7k@AezlQ59mN zo2oY>$$1fSH7R}`d~zKeEwx;0q(TW_dJLT$y!>(!Jtka@$oj3mO%5z5ypXY!Ye z#Sqv$ic$`KX>S()Ixw_|g;w(mf>bg~5X7QVX3p-hMpk7$?mr8@v z{W&W$POydw4hB$1MP=?x>0S&s#D{+J`ndPw*X@tsWqjO9DZ^wGk=Ns^cqXH2oLGzN zLn&4$!zg+!Q_*i~=qps@F5W*@sw|Nj*R7-YsPK<@)L-<3N;U1>tOFc1@<5xJr7|u7 z^u2muCnc2V2=64{*nIL=4cSM9)bL5~WW>M3lsQuTTMffX8n*6JatF&AHS&4Ihj(*e zUp=u_OCJ&=yVcb95~!&Y&W$&@VIV;MU-n~h2M{#o+6+MPT76F0vZAfV{!UM!J;R8ud*Idglcat5ZRfBKXU`^oj{T+Nm6IktJ8OH zMp3g9SpBSAyi_hQiqpsu0>H_af?S)JCU`hOlQmH7xb)Hc^v+ce&*wdT^!w7TqFXGk zT^^;}cR04>Z9+@sUeDvFZy9=vb ze0u)56c?^8X8afW%LA{ZE2}~FQ9g24s{ zJLw7%ud=c9+AsYrik82P4mP7UZ>=bsN3vE`iSQto(K~?c_Q7L&eoGNy)&S3QsZoye z3aH>1PAuIEq&=7wt#*h5EJn0y9HXq2rNCgoq+0?0Y}In9orl{tpMpauaCu`H6I+<8 z%qcKLdwE^|{3(Xl$KDX@Gt_)$mzN+I- zgv?hgSK*{turQlgG5+`kR^RO%S+U9syscY17C3xVKuaLEWLfl@NtNrQf_VS~z$#=) zU%`sJP|%Nsz?DvxiuQIPOa)yBPxAc41cxo4a!~EZj~Z5oh_gt$?GDu5pEG-MEZ@eByU-M! zEV(HjUQto7CE`rvJKIVw&LSuh4(H>fCg(t)fNn}HR_G{mF#T4N0;Lzsfgjdwj zJRY8so6s&0D!Q9+H-Qw^aPf`>Kdv-w5hI?Zf@33jltdS;rEUVg3G}4WY1r+FhEUv~ zCuL|toxcFcD@pE{{1tWz(8D&uEZHd?AHB?@@N=7}3l8CCXk*we_q%|8WvY+BxB$D~ zHI`;drB<0W73@en=YUQ@V^8n26d7Z>QxF`=Ba8~9HV<`tlhuYZ&5to83k^j|F>-)b zPp;DSG9`wcbMFkiN%JJyI^c0n#O@bPQ72rLOM3?Kz>76h* zm^&h<(nbN}MiQ!ZAXZ}n;Lt?2mP{I*B)A99d`OJL#zfC4*r{7uZ&%W6qU3wpRswJv zmYSxng27#I0HEr$ipNs6g$_H+9E3rl@~InQBv;eA|urm zYY8@5QlgQQ8liqgQ_f%rU1>d-^Cc?hKGU9 zff+D)*OI(OZOre#W5}!bDSOB(alPgIY+sd#<&d&~nrbDuoM`+rbJbJUT zf6Ahtn7DV%`XSb1E^Xq%FQ3;I?cF*)`ALtY8={ zW9QJbWL6WwPcmk@TcogxG;@lc_9}ixb@~|h=Efhb>$h(`pmc!EJxY4cv*Vu;JbKt&1n4TtYMc>2z(WP+=ka-3DBe^!uEcOv&cBb#V4oYkwwpgJ2Q;w*pg?W0xEuQHKX)U@%L=w=ABa;_q;-7wE2Mx zMXzb}D(%wKDI%9$d^L2ut4reBvTknV<`s=0Nkebw%@yq4%u7zT*-u(YWBQqeL}{=f zHl{eKZgkl{Sh~?W0c|N)I{|!c05L*j37)bzn=`h;Zk}t3u)dkNU#7>XJnpPk0%J^hdBJIBS_~0zuEy4Gh1^SPyz!D_|pbx zLZ1RzUkIID(z~WGnWvu%f<<@T5?@_Whlb#_JNZu^2vmeB`pY9hXBq^%cxH&f3U*Bh zLrjT*efb>mrK=CpmeNWv|LYE9U}f=d7%^qVSpduk$=uM;Q8YAmMOvjMGI*QRJ0vG5 z?2lekCQ~|~j@foH#UhaW5&{|D%?J6*uX0rkdXTZ$VlL>`9LPBpz&4M}?B=TIS&_!} z-K7QI<@`v8_>g0Jo&<4dt!568DtXV(cj-ep8wk?rg4<2q~O<5`L}0pNnRmn&hGEw4_#=5 z8H=d#aPk6n33SqAfQBrO4(zzdU-B8KGg3YBN2HM*8-H7otX-{&CQPFj!(&Y!urAwa z%NqF$K1(1@j%O0wXH48&h!cF8d7$Oum)-bF@7}5j4Oy0!rOULg)SboS5jvj}AKJm> zWUMT2xAUJ3_tz|f3?a-bWlE)J!AhkoE3WhIi)xTNaSp3NKbucHD`#j|`cBx3ZgdfU zM(vNkT&?;I#0rPuC`ctQ+Da^X$2-xo5M?EIeSsN?Q@_{T>acys%1E9&uEb ztft2cGfff}m0RHEBuB0mK7ZGs7!4(dd6Kfsg#m}O95VfB>=XO|PQReSuHoFU(8aFi zZd~Za;%C+?Lt-*6rv=z`dYoIGdgsX_#(AN+tisVnGW*w=Ctogi-SbQi?qTd1w-Z=I z5<@q}j89tq)n(fR?={0oC*eu%T@kR%*ggI(myewJq4jzB zc+8KBRj+g0oJQZj*1B8Yogm0wFZkbs)qQ8fdWR#!CueFKNW0-T5$K)l&RGZhBP8!* zA2maqDfJe5TqR4bQ(WQ+cq#3Y1onvroU_}Uur^Zay*sYX-D;m59rCQ?t@HY$X@I!t z%<^AH@7E{cR)-#GEQ(4&99#&UPCb?kClO?XH_eu? z`Gy9T(w_g>aQA9%LG!nU<^G=(0|#DiT15IEjkWcuo63_MHB5F%;2l05bQs&vfTO#K z$-%K{UU*Bz?xiqcUIfH-UG+mMBR5(<&xkG=ZOco zn;@tg+{X6v`zW=6wOL8xRMy0@gHIC{&9lq(Jb%lNI|lvsrSJqD1oqpNnC@G&I_IIS zYnVI1=V{e@BTHh+Ul=OU?qk>P^*W?jAjdH{UvXd(0O$TD>Sg13{n1nibW;?m=*n^X zIyGSTSxq0mN{D_ns}iKVXe>;UJD-^0k|19@g`(jP`#Zc!>j$p25y9Qqk*S#b)Jf`n zy&fS2ZutSmx9tzXgT%{GB|z^Cw!L6(0*KH|duX!#vb8Cz^3=a7NmctU?4M)gZGpwc z24V*pez-T5F=eKA=QEbNeBe>32P0 z9Z-X)2TgePaCi7vUd$)5-WeLH$L7N(t#?zn8)?*0IK5sC{@QJ#~6aQrJ6GIfFngr1EJ$Hmzm65Bn7j` z(ZwZfNQP^IA}X0et?SNsC>G;TD$)|QD5WL59*PysB?u7KYh{rW z`us%MLT@-$f`myRe*@g_;ya&*1}YXMsbGBbJ zr|z>FnVX7wFAzn=q#%L~ke@ynt5RE+He&^=2@3wx)|(B zR>yl4&G!ZKfW&XTuwE9hgaaj+p5-j|W){z)N&{?VCJ#TK z>jizdL`QTE4>$IyLOuu|mCi}k?B_yqp9hE7#=BkTUc+h#H!bud0;wes;g<1{ z5}$3(ydMxI>9Po14fh@T3oQ`Ybo-&*8n?N6E`-DRZehNc(HniyGR>y#8|&XR{i_vFmXzqdNL-WS}{yt8@ zZ9CZu6^=4~f{X*OVkjQ$GVrh4qj(KhowW&%6*5MasqE1U5>om>)AM|=@RRpo8Y`); zi8x||_dW`HA3X>_o|MX#GLAc=CORc3JF&wR`uPQ2t=b~edF+{s>UoUn)ze5E-HPbX(&;2kB~PVJRvJIuWer6on&YAyj<)Y~Ndu^&h@vrsl3VbC@ZBeNjJj|IvTW?s%JR(gP_@CHkrpZd_wV zWSJ&Okm*3y60x<7;T$AO)0Lf{dV(7J1k6$Q1z7se8z2V32 zPkuaF1|TkJB+JeuUjAR1hID3W0|mIj;40WoYKp;+(C!{KV$?e>`;*=I)N#!YfKrA7 z(N-QhiwgX9cDNk5(6s^H(R2pyO|O<%1gXwt5g_J_B;L)C^!W6J;HMW|g*9J`tzNuE zm$#-m|8_C*NaxfA_w~BslN-_Q$_4u`9*$mmDdmi5lPTzSfZ|ojR3^Mg0WH)4>K)T1 z*k;1SrPS+}$-fy7VN1^Gk#2+Yl|$&=Fcd$0`Rc=?&RLW+Ny&t$tn3c6@)pxBbZfP^ zF^SF4qnjwqHbw{i*L1W`La|?p{{0Hw?ug!~cX%VIuMX;hMxcTM=B~fouLPQ&biZaU zi|oA0Bxj>n#pKk(c;D~sxeE5Mz5L?1Nl&ilrTrf zGUWH*i{MD9dBou(r=FswBHZC*+(MC?uV_xY>MFurT`{O#(SZvD;qB&8!prILWyI+Nui1VRf|DAXyA?_}!l#*=>c(>?8sMy^`2c;U!5Nd)S=p_ozuL6ow9S?J0y3hBXLpe{mW(! z5OT!U{y;*@O5ZBkn^6Mma)aJHVIALp#HI=Frdv?e7O><_ue6`ZxXX0a!=c(L!o)pP z=Ca5>NwI&>e@1e1q zgc=|Y`jy8}MI%$`rkmH8dS;-eN0%@)$1GkUmsKP}PLpNU$;aY;Xu@c$xAWf+F0FNZ z#zS{)KcB1$ghmJfnEUtgmBgMF&RI4m;l`g-utNX;7<=!irqaOu^Ub|C$xY=ZRH;em zMG1m*H3=;uC3Hk(0wSOy1`x$MNhk(v0TEGA1A-tnP!#N;DJW{NVw(xr(9tm{I_iwW zX1?d_+28JO_niGde&{n1UrbZ=Bc**cQwIi9wpYtMlWbOZ$hb*6aW!= zO0)FyGefcpeIUB~SZm(wg}KLvw2zt}&XYXQ;-fJ{jw9Yuo-b8lcnkC@*J%0KXq<3o6o!hyxoqEbH+o6)6C&kz44@ME*TuGf=cBG3Po#6Kb z^FikY6UjQoMxFa@+x&M=tv;~s11U9N%SM0^vL%$4N?_MsIy)^0pOyq9Zdb)efQ0Dn zkHuWR_v{PNI|B3aq^Y;8hP$aJx#-~qn8hn*j#bL8LF_8edOR@J=pxcWW_%Kp#PW## zJp@f>EGA;tY0C81PnY$>W>pw&MZIv5iuzbb%zkQ;hBY4hnz(LdBa#NS@_sc)gX`;9 z(OC_yX(e%OJ5zD67ngOV1NO)4C<*O4=OyXBK-h)H4lt5edH_ve zv&{5XsB)nSGVDcGUi)lN84V;~er5b#HwycUT+)vj8s)i>O>X=1@qul)OV3RWm3H!W z+$ypFI!%txCpV*k8goPOc<2tga?@LD9U z@1&$uZo}Bnxzmmewz{cHztAk{{G<%k+h3E?$m`n>zWBk_xj#w#97`P86Z>mNUcvb( z3f+y& znr;{YJk2_|Rx~Ooqgl- zzXiVS$N9HagcdxvQ=8^w&9(oXXdk3DI0kOIVSBjN@tPYC0#mRT)yV%mmI)%AVocqKEu z?7Ppczq=%S_zG>Wu;xIZA49Re(2~@!=*Q}J4@%8rdKxLxZ2Sw=_a|Po@IPMNIuv#& z_2>H1UvYuOSy)QKr$y$*gh`|Ho2Q~FtJ+;nCGYZd5v%Zkm&>tiL#!}*HfeDgK| z#l4T)d!Otkgur`6sL@=Y)%P(U-UtaYPReKxF|}~v9E&)Y7D}1-8s-te4jhY8&&!K)g%36M`eA?v9mOZZ&Ei2g$ zezjtl(fTcRp5L2|WRwIh!j}w#+iz_O%3m0IoSwWDYx&g zCszcTKAAbo=|CHw$gUk2E7v#1IjGG>E#ct$z{gs$eRYd~)Xr66Svj|3(9At>e!|73y`+dzGmRM&99luz}Dnn3OmKc&KK^X=9W4(Y96nxC(d+T z?$b2QT+37R11E?`G#9an=H}|rEz6e95?0WJUvJ>dpZ%RyVe5d^ml;i-k)7TuZQUKs zYE`G{w{!=fU0&~I3X3=V`@IvFRI2jU6gMAvGR3l&w?JiHvHT!1F!RI9N^?cWAkW;1 z!;qb~6i4=oI2uebRw*;64pmNL4}y2AN0D$*yM!MK-N1i=Kjt*SMriSzQK{9zm zi+@AO0X0;!{u;MYwGdzylNZfn|0Fr#8BCcSA~g_q(8Y2b*WlQfujrZP87k8*%V@S8{%_XCKXvOfz7o+f?$=6+rvz9TpJwdG$Hkcv_|;yvAZoT z2)nN}CAsfag*-u;Of5ER&_{@NF<7`|iOGv^@{k<8i`=Qla)u1`Cw~H2ePfpErvUH; zTq#d|n6Y0ev%0I-@T)YeP6p0;oKX?d$FpwcBBm@cU30mcIa&l;Xh#*1dg0I~0L&t^ zHx`Xmpi#bZJ07FL{n;oEPg?x%KTTVu4_+tY`<=?Ri4e{L$k0L<Cha2#t&qXq;CbCE<{FaQhvPtH65m#_+6`K4ApCIgk7se=bYCfKc#{G2zJPoUY||i78*b)4vUxW1@LD_; ztCW<`BvKgg@K^p^YUf>5#dhs@7~0C6Y3U>*TNW7(P`&j~$2Tdw>nBd!Emn@}&Yqf6 z%iAweO}pj`h@#qVN7uhCh_!gYX#oyosMMR;PEL|SYsef|^F~14TnMP+;Ykq|I1SDk>9r{n{;%O)66A`*0h~VELjVpz{;$*zfF_U#rT_1#A9oZh4K)w1 z6Sn^^sb48qxzTc7{^6=Br?}Qd^Oo969cCC3h6jQN2Wx!`-c63gIvUr4Y)#9|wr~dE z>#;xe>uXU53~=|yCpuaaj&W;%dO|>!8bhVaDd6o9yQeIOigNp+*FWLo1?IBF>Z47>9geX|vlWb+8 zOCAbbVW%!;78p?CDF8T&*dRW(+_AAeR2rh@5B+g#}p;);JGQ62m=qD^RF@z zqf__G_(!uF5A*8C!BmGhf2Ewa_njR8mug>C2d9a~Xl@J5CL_2v>^t~qq@HSElQ-Ea zeJ-GD9-acngG63RxAfbqKt{TV8bmL-ov;iwg8AMJtDAW@F(Ws@)w)MVkD(L!LDSo) zeM1Z2K?xSn4!!4wERkHZGg$&8y);HGTXftY)h^rXq|Qmi42ow5clf^Y*2L0=V|w%C z%VR?Nq4T=FV6Ve1r979v(uz|+a!j{{d>)^Ak}ccm8s;<2g?}%+5;l9l}YW zCe$e1i~rZeL9$ilgM+++z~_8ZGf*O}p}A0y{h3I4IG$>(oDLag z9Y&rSM77u}2pQX{YJ;YbLoueZ1V$Gj z7NS4cW|)6(ZoePK9u9cI)8;FmMfTxfzjCIA2poB%z9QE1aD5`8Zre^;j1302NlItv zSd^p|fq35$j2(e2f{)6u{{~MjS8jpZWhPUxdn)&`_@q#bgdq(A;Kl$9oZQGDy+mP& zlsg_3M2orooiBskJ?x?dIljzu3_E`jG8-k!XIJ)tpyOCM6k>=^0RC<&E1ck#Off?zTKt{rvpvT{KB1m&3B6w`5t_ zc}+wn=(?S!3OZcg)9piX(o;DtZTtLK+wDeGf;R5HBYs;{~J?ADsGw*CKgk!4#43jnw5h;#Zf`FL`|YgSM8K0|x1Ix#eJ)Mdrdk^`Wt z-&;?}WdR8MKG5rT;>;BKJiB29Ke=iCS8?e-Kq}c@WRP~hjk-2G+aN-zowIOPv3>&u z)TVJH9m0q5oXx7B}gYr;e4T=3>KyTVrU=XEtoW#kE+RWT!--A3QYvr z@@aQiLe|~9@?#r$H6emZhb7@=ug$7CN=Nj)2vV83NXM!{zI@qrd*6;QCL%`kI1SfzoBwZ+hR{2#a}-@h0lN zfa*R~uP`<8yt8bLVTR8}2tCW&?>F<^3TzRyFTsq|75b zh77J1^xPOLAwM3K+HJJh_2;W2#I8l0x%5zivW<_dA8qB;a!qz%c4_KbgQN*GEV(K5S$r^IHg{+ z<4oO~h&Sak)1&bWWAH6*aHo^kDc~EH8oB6=z~YBSaqjl^{RvI7V93-X?J0{H`8Isv zkGp=49cB@#XtC6>U`TbJHwhkAQR9}^MxAXkIdP$eg)(q<6Y8j zH`BKjqP`a#+Y4q1Gf zuyv8G;hJ#`Pu-TWh>xo$H}87z^j06ydJ{|Fdz*UXO4XU!GD2Pd;O>HLlNSp5B!<$A zZjXl3gw&UIeiDDWk|l5MwhtFdx6!rlxkTRUY`XAeFZ5_fn0_A1nP*vWQeV%;H8H!^ zlvj0d|EL3O(m_11vp%;>UiTyX&`8hY!2c45kyWlGqZv?*g zqk?6uon7MMG3z1)u_Aa6SMGlgm<;+8eK4mYHv#f6X3Gh}UW=If?6E}{*>Y1nAWwz#kSZBb>spKV%F@Nofb)P za>#2jJP2r~S=fM*x?g3xRsAcIZAk63vbinxR%ZcWB-$|L zU{$Ptw{3^m_Kpv|yR97dpe_(*MYnk_#)GY;`WOoT{H~MaEaWUEk0=>U%?v%#=Nn&) zcH6-9n`JG&!Ih+bHE|`wSq_220~ThTk=`QQ9R_XzZ!4N7vtvx>=w|wAn0FGe$9aWe zZAMQZussIpf|*mx z7+s%T^VWJ6yeLZG!Dc1=9U715Q?A9+Od3)h9^AI{K zsy0t-)#&RMhkMw7GgQG@FW~GvgnZQE@hAw@uI7Z|Ph|!>)iC_9l(^X9|X^%4D$;stRKmKQQqY;S1OO5~W4_i7VJfwY%;4i!u9k>li+U zK^r=-#UeOrB0Z9sUj70}l;(#FV2vG&K&}zR4s(^5hdW^cfcNP|{`A5#M)#Sf1@I+E zum^r>DYnmp;I205O)#Fr4QpD0%>pK(cqB)LPZrnxHp?)0if#1$1tXAW{52+tSefC$ zt}6Vx^Nb(!NeJfEhAZmB;^fnIykY7C>+@OINwL*qFXZvWq0TdF^u;L?vywUwHA&i;0-`UoS^S!AmQZ1V%G zoa^>Ul0e}%<*jc`D{ab0r)@s$w+$nB>AW~TjCUmVCcrt@jD?k2x`@$286))n^&8kGA|cp$-P?`O^$yan2Gi zt`aGKf_W)JS0@<<>L895j%O{j)VXf)heOm`nS)5I+9$_Tj~E#zXpTQm!5A|Cb6G*| zZMXwLjEFXzg)V%a_5@V9mBtU$UTDuhSDGM(qgC_m((sE}$Qd%*+8>+Mj5t2cvoF|d zlok-J3!8ei*LZ3opNYeVuufY(J+phwDj^SXe8Mo~c@y6Km-^8!!2X)tpqq@RmAk?N z&c@Hrouz_#Qh3&N#zPeua5)JU=h9c?L{M_KU1!X|oR?fYm-F<@Ws&2MZsW>;&efEr zI)Fc`ZGzHB(J7sq|L*KR$9bqhGl!9AN|$1P*U>dy6;Hc%{N1IrIA68FxId$P*M{@> znDW|-=j#GuKHNQTn70nakyRUn5B#zIF8!l4^|m6rl9#$v%H;6za}}K6T9x>`#Vp;? zzm78W=Ex%{7b>2AsaCaAJ;^GedAMbF?TPtKP#H~tE8+`WES48~VBre^EB{;ZysmVM(>{yEc}Cms=?fl9EpRE<67!+7Jf{ix2;!e$!k)VZvGIn73p$v? zdGEc=60S4I4_6sv5H5e`2{)d$?LGt5i&8Z35guiIKkjG%*1XUhXoyRc(B?%<<0Wv| zBpm3%Fn{MV{enqJJ-+etP0MbRFrH@$@5n=(;bu3-FI&i7rC6}UTp8nT=|M1UWn?(b zu64B3>bNnO3P_?EM|^(~>bH!sa1Qn;0J|w#J}BX)2NP2CUyWG2LC&0Sr`<^(n1v(A zS4Mn#4t88Z_v>vm>%QvCH+Wc&s-?7&0xGgGV)+!GqL)}^wPAg(*nRE7BWIJxw_^Tn z_^Al&?~U|(V)V>)%v*feIA(r~Y8Buv1NwxSOZobb^Fs;6LV6ACa^1(GH)mS@6P+e;G_At#9Kc32C~=AY?r9b^kNIFe_9=;GKY`mM zLtfdU^QH7%s@r%Raa2nBeM(Kr5imL}2%|rZzKq?EmO+Tj*CGZN)jd-q0wcP3k9PR< zE}Xc37G74PY)6l&8+`&XGZp6d7okNWw;J~9)zW`s4_SBrb~1fKp_x0)ihXt=cD4l5q!Y-_{wjQv4IyQS^9Pa*uQa}IvF8oNy%~Bbc z%!bV82NYGFuF${W6ZU@DUURBmEygW$d&P(c~rLTWybkl^nDCJ z3iFLpTifhsupe44zy|SoMzghA_fh1}*T#Ro_=q3IJMPKYo61jC_sziJxdAaDJamK9 z1X*PjFV+o)Vj{`8kD+<-y0?wFzxt}pJ$XicI_1#c+>A-&-n28bCHOfiKhYFVS67Vx z?S1!6;aZy5GY*zDh3B2>8FulT{Z8DYFH8PuiBdfd;qJ4tz;E%OkXo9{FHM+5M(v01> zE(S?G$^7Ffu3M|1d`hKnFnD3lfn3m--1Y94JCQVvBZ* z{!9H_Q~57$Q9!nhS28j!_NB1OKJsAj-cOB3^AE;{d*N9lE@q(4?Ah15=^mggLwKVz zjAH<9Hjdu!DN|V=h}@rPTU1PV8%3m2H0HKlE4i>Y#1G8ZtNk#QQPn!;mmER_dqiROVP+cz0)-U48dkmq93)QvVdalZ4 ztQ1XnA}+JuHzI{?%FH;#zo|FIPR#)0qjRSc-NwtG)F!6|R=0F@SP61BEHby3$^O&T*`` zb#LzPcwcSom$SwsQQX}<+G46nZDTm8C#}pCt>Sd=p=Ne*hz=t~@@fALb){8?%^4K4 zHtV(V!5$96rKQXIW0r37*u0M8(!x#tr8vQ%C9?{r!}-a}zJ0vz=s05>1#3h*><;Yi zYN*(MLf9}h%)nvI)HNL8P$Kn?OqeU(l%JaD%Ir_aqBn#bAB;{sN$yQocYypKgpqHKtQxZU+0tAVj{T0 z$rj1BJi)b{oSpE;yA2%1`T^NJ+iG8^%&J7#aP7Te>xqhK4!Z7NZhEVBk?G!|87SSL zK~Au)FjG_*b(j^`_I#y(rjUEtz|yxy=%l6%Nfe8Zj` z{g#umo9FWB6n#@S=2FDRL$dN|@%21I8IGOH$E;T`Cv58~b>_t2LRInvqh%$on2zxq zk6`rfNz`l4yDyg&&|S0cgFAOrazL3 zozE+gZ3Uio?>4k&j*X8E?4+_CKQzfx3gX*>dVRw;qrUPG@X_v9Jx(LtTkzTdhs?V%{AXrcOXzC~`@di3xjW#`qXML9vhN zH(3{3n{M#Yx7!#-V*P#koV7sudOMp~U<%HGM7!N7@&y|lol2L~dAFz&unkV%b}U3_#WD^ z#=Oaa>#JAyU><kS=vTF`uCfIU%w=NirO0E@=u>LCMso_9fwwFLuZUEQ-rWs z7L`h2)Vo-Bw6xI><90iZPoQ(Q9X1?AgK#rtl-+mYune}D27A-k?jQBeg`k@me`kRBx9uk$Q2jcY4s*9B*@8V0<&Ff z3wn&w1|a=P(D7Ji-?UJR0*gMklcC?W^LMc;$g!$-axbaE-LHp`aX`s~fX$?O)*OA; zf$lUhc=bq4^fX3=v&~NQd!7`oRa<-;eH>u9K~o1nT74Qa*h&#;h zSz^B z?0xo#(w@Ae%-@WE5c^bdESTggf7?+iI)Co#v+?t>0%jTa%(htzQm#-0lAQ;gSw^=> zA&1sK%-iilV)>$c2spU<6{3r8bR50cEIQ07 z>9*ZkMvIWLzE{SzJ~}1tt+2YN)Gt28S7B_yxf4%2B`T3WK>jdp|($#bOhTaoQ!|_sU&=PsjjMbzHLLr+c%A+lPdmUw3;)w&Ns}t zW2@RSNXeUGbXkyT)@Kd<>tos~=&dh`zm3aERk39uE`jff(qFG`{`Z?_SOL%wp34*- zd3_Ae9BHv(U<**w+9Tgc;kiaKYnq>~OhcXH>!oBq_G3dt?{8cs4Q#uvp$DMVWmM|- z>v!hdxRztUVu=(M}?q13^FMIh`*PKz3ONxH%-Y)I_L*wNH4;jgQHP9go zy?CSLjtksyzd}%?S`-ymia{jRHqUcBNRNaEHbvOG3mH7Oi$x4* zMg|Y?B-f4aZ>5@ddC&}u1TlQ?8sBsZ2OOUnV?3u(E%c&%>%PV71R5#t;-`162f0q{ z_dNxr`8T?NQ=o_iOL|}X_cA`?TZPRyL z`8>sU8^7H9Oc5mQ0>|q$DM5B=#nTQZpT1>!-uk5h|DR{IOM0kD9}?mE0Z82*CCS>M zM}fhR`(e~hf3zj{-1qE6F*LB8H&$w;Q*r7Ywr7hvb7TqD9aAAveuYyX^uj$iV9vBH@*g#+MN+`l?`w?&vgMts7|JeKBf4wA4PLuTECr z>!~!oB!=CEP|m08K}Ur{tYAq5V{WGUVhhG6B}wIdRc4JwW(XxAn{Cvp3YI&iRY2d< z1evOkts~mxBmtoEiQlivT`K+=8T_BaCgjHpM@(ri zuxw?q1$O$w#_lKS{W4AYwZrka15C<lf4_9xok)(F z(&Xm%5&+GzZWT9`RrpEw;%3%&L<-CPuAtPZN^M0U^!tuImUzC0O<2kzT&axov-q)$ z_~YK4IY_xUC>zThP?m7~gcuQYB#4a7GgtQ;N5%6?dGX5Rv8|hpn|rr<(KAMPmOXY6 zGxj|Y4$~fvkG)XNCE1yjo&}m-M*Oqjj53289XEDiUxb?KV-at6ZH`a$NuDtR+T!55)z>t9mHzLP-$F%_N$M*y{`l^i7#>g7~vZCie`(17m)v zCl2TLdhY;jV^k=TUkWL&tu5V~yxQDG^y8&%YupH}q>S%V=TbKZnV9kcJ{2L00>sX zN%81@5mJSXRaCyBAD_6UtH1ZlwUb{c>g@|~kCd5XjZbzqSavSbY@e|!kZAf zI&i!m`d$*4>w4X7Qqvg1(gVwvKymozpKRqm#=I)RaD3A9TIfP!N~y^Y0m?BxK7De? z_+9eKua7tUOn-ZM!pc@-at){68#GkX>H4JT&CiFkSWl-O@{kBv6N-;IxUuv%g(Lle zH)jQr2Hwn$|H}_LpgK2Jn{}J{yOJEVhR=9*_}J^lJ-LvsHwP1FXf{|M=zRJ2e$J0rH()TV6L__c)0*x{iDzuvOP9b0*mmWWipt zJ#tz#PvZ4ZTL~T4mbkX8+E`z)cMt$hW<<~;dzTUZRMlUCE%ER0(N50@A054JPvXF8 zox+M*udsx)bima{p%NN+Cbda%8xypBfn<|fNmG#Rzn_>hawUzp@M6&P}s2T1og;cRg={$ z^WZ&zw}rcBaOglbVY$FX@lWo^(DIaBb|W#`S)GHoD$#l(G|E3##lhH4q&mGNnX zYAe8@U?eTz&AdD7pL{;}ZK!$9UyrAZLe}>k8Y+P%zLlTT7B!MAw4jXc$t<@DCi0~Z zpOwv2wpo?H+*(FhwWh}Oy^4)Kcr6HSRZg@Ra_o!;>a9ObFIJ0H#`WETok1cF0|1#6 zG5DHPX+IgxUZg}ojk?mkQOa7ZdTgd}!Ng=_uhDoh2ee&1OtzyKS1In3PebzHJWi&s zf|gxFXu;{{&9nzOHyo8-9Y@)#^h*pSWKdwvAz>}3`4Jao-Q5+OWL^|&l7-FF;1>Gf zO&mtZ(yq+3BeNoJN77UzP^5<$vtBWmnp1CI>2RyQ3C=qS7aG0S;;c^>i8b(!x2R+dD; zivL880@@fcrf?@TERu`QvWm?H?7V<9V$rr{`f&e!t*#;rZ8Y6GOXyW;j#!v^oqo_R zrv|G^PWtkKnS1r%Ohw&{x;JP-kqmy_h0EDqNC^A3N)W6qnW6tVobPN)Kf-I7_DxNE zQpczdRGB{>isg6|*m? zpoDSA&|G}^EqfAQPzUHG;CJ$~`T8+GoN-$}?82>g0BzkAU#-Z}j5Y=6n`KywT1FaC zyBYclF!8!m&ea7?Q2irniN?e@zWa`Iq(YXdmhH#|DT@~tRQO_kW*u*?2LZY*F3>Wx za4RQ1`zUks5|x9OjQsot&Ud@6*pA01&0+P(y*-DES>3!4MRIHR<6^y1=D~i40ml8e zh&|USQw32(IgoW#QyQtE` z)o(BBeyB6CJlXi5uGm&mra9{{P%#v1!5#+(dQDmkv2D2}+!i!iPn#`2j11o=Yal6lEDar6`lrQ_u#BQb3vLDA(-Fss!1p2Is)1uc zusQht@@zfCJtUoO>DzrL|8ExKlibm)R1Wt>QzN$NB3QQ&I+3= zDBGk(Xs*HVz}_AsNp6WH7EJmcied`&UWaKir-1voCss3yZFHcfZ;{Y=hf;Iv(J_?A zqrV`I{qRT(@JL7!GOB^QizSYjpdFe*^q0}Lp#I0iWKmzW*SBYVX$HuTmJs3Ua+zLX znyQf*MEzJ7IQ!)#fp`PNzze_vjx@AJ3wttCYz0nJXN?0s$6@WUzlGq#r3HcNM5Zre zw9x5bRz%LywU9?1{}D1C#7L0DuGy8;3rGfOGg0rb!AIB@TT&4hj+5e-=%AO5*er>! zCrb{+z@t#sRLKm!;R9-9DoaBqW zUAhPvF1}ZQN2R}F`t@oaj{Xu~XpjBq!4HTS>$P->$D-&EY##)SRaB&#Lg~ePSyCW^ z5s$@8kHFfgD*8Dtwn0PG6=J+9IZt4-<2V~Skw7v`b%H4{xw?LJov{-EPtb-B5rIpLLorhUTsUO=& zKn)q@dB6<90xteqFuF`jMf2R{_i<261u2G>KS1rod_|I#Va2~Ld4(D32)9{)f}<}+ zz&Rz&+-vI_trt8Iw~>n(@{-8iG*=#}CE4mI1}dE>f8ia;qx8ir_zfQ9ioi`V!Si#) z!ZzwIF?JkdoH+bnePY5X74Ybk7!e&8JS2_sViq=-&3~-0 z9OBwP_C?R>eA9Rfsm!E{gM`;8xFDe&RqqKc@M}~vZ))lv44P3tA@Aag+K_c9-(4?9 z;PBv)285%7mOhNn;!zI++?xkTCT`Y=Se*S}99I-70Pc}k7|$Q`R0l9HYmOQhqH6Sn z@t!P*tHeh&DUJKq0#T@*vy0~9HlD}A+l;()Tv!I@c!ou&ksxJuZ9cL&6j|N_=T0@R zGE_w_<|2_gc*#s0R_G);+<0AP>8Yo%yS+IQ!%&s*=5>)qK7Br0=qU*b1@nDWUK|l_ zBwg=>fciRcE4TJuG(G-p!;2RCs!1tG91#tz}makZ~ zXVd;PMyS3@ITMkq&^zh)=Az?4Ri@+3tQq_p*We#L+oN#1{AOVaRX!dtP_HDx0bglPa9FrX8Jo|1o9F5M79Zz^XnHeF>kT@G?cO* zvk?2xZy@2C!2*XS&2G`frTJEi3xUpCp4}{dQhVAv*vY zh1?H>zzNdne;3&N#YRQv<}zy-+@!TX$!D7dEIgZ=siquem8PiSL!xjb?GVI9uPdoQ znWXB(b{gXHxMX*(02ziGMByhXz%$>|otx03TTt-ipxy|s2eenHDM!?G*XHXT4P-pu z^}QeI4(k#;LCV8dM6o>d64`U&3&~Uclw(ZFm>-tc=0a+R2lNiT!7yH8*}-m6-7Dgc znIz7agnn1Dvu?qWHqM5%j6==m#XxJ8{Eow^ao8B5(iKz2q_-zDK<$*LJC51%|!tBUaK@frUpCu(cZ7NAs|a zzTmtcSQMxLyyQK-p0h9)N2z6Q^#Td^(!2y3O?x3X028!b1Y$Z2z#l4%eW{EooimFJ zZt<}FYCMo$z_a1RSCk}4Wl_$oez*9|+h{&7=$%rM0ajkaRS~6nqXAfC6PR=?)bf(hoN1@I#5%`3DOi9R1_&0=@QKro9eLY+W&R8dB%?L&Kz| zPTv9~lKg6q(r!yjkt(KFY@>Ma(c zrKGg=$grz^{JemCKyR_g5JS1g^%XPHGOp(VCB5b>H%$u_KcH z1-hiLOp|pC++TTkn=&|7{oElFZkyb+>|qN&5Ai;Sm3Ke)OFZVMgkR?&BJ~naohu|W z)AcP>AAJ^75SPSjq%VoGo4G0)TiLq{Audj$oZ|@pMJNr%zkh;5b#3#ls*OsK=RNRm zCdltq1=IfNo2P@XIXsL}M3WP4SxkHq~-W+vcm_GT4iPOR+w>t%uz zK5(NQXyNypEDe`#mWI#%JoOL`)xiF5kf?uGO>~$Ce!iNw<$+MV)@e(|v36EC@Abs$ z*ycoh2)5E-g)`yq+e;H`17~=7i=&=wN3M+Kzx2kcZx~;}S+)`_PrO-C{o8tT2e;0H zX8X=bHf5E3>@W}5g4B5whAKIyYTlZ(tIqy4{p0E`U(-{Han5f~-ZGk_Zf9W;r&k@9 z6?APzYPS{){E1x2TWy{wM%p)AIcGkeYZ9V8v29zy6+*#F`XBdNqqvS(>y>x^Lc7BE zcYIIjx^pII{xPi8S_e;D6>eY#UN6|7U1)rRdsA19-t45CR>`B+RFWA0?cDrT7CQ+LfL;^>6mM{{aABH+FpiG8socDl7` zwXe^57L=ACk>4PLz1~}1*&)7fRt0#%8ogMiIXwLSJJYKX?sc` zP$7|0d>Rjql*~OlT=?K?AJX2r>kdvN;Y@$v?*h3gQa8I3-934)%$w|@)V zS{#%xTWSgFM^Sx81gGJmV%8QHLnb7R!4vrA0_)WGOLcfDhh#ORt8Y@FAQH`&0G<%9 z01C__yOC8BO(L4-V0{EC(f#1K1S}y)R~H1w^BWMgS!tCMHq@YI0-r!sVB1yC639i^ zBDbO@maQ2_AFL~+u7EL{y6+hXS{7TJg?=rERC35HsSFaua4E?>r8Jw+y5x!UYul~n zmRTyOIpy8>=%(SsW(=x}(oNBC`0<==IGPAOoYS2zLHDygT&HS42&-1Ls z3tsF6o3(D>zQ5OXeXgLbtOZl0vACpgpFp_BbS5B_dJJ8_wBC(7S(-u48iWHvMu#t{ z_AEh#)_@H&E%b9@7u7kH^b!+Y3f*R@O1AZue*&Er0EG#_g7=Z2rvl;Z(-m%QuZNJD z8UoUT*A=(f$Jd*bKM$t-zhw9dbLJJky$6cxy0z3o{Q9mG4BMYJ zGG@*PC;ZwnYkmsfJhBbj*P;ujRv4yRem}LSjRn34frElp;~`dcLy}84B7D`1QZ7PR zD)`ln|CI`>k(899Hdeg~ejan93qGui9-%Z>Jfg|VbUr}yl10+E$@Wwt(V9m2wZ=0` zS05=gdqi4K!WHUn@3+2qecFgKxR|&8r>%ezwa1o{aLpD3Zkx1Zl_{nD>fu*}hJ<{- z-i4i)b)|Jdg`)nUO1<~~{r$JN$B`LrqPBXxTT9016skK`S>UkA4bKT?fTi<1gi8Dk zL1As~a52>wPvuRd;*NV;S=JPsxjPHesCCh{Zr)`4+2a0O{Mt5m{@RX@XRu}2kYvA= z?b?&NAQ@RQU3rk}u+1M=#M@(=?Ed4Fueomai2QiFj^&^_CPrP-1!cMQ>*sy4@ngLZ z3hQ$>1yP(q*@f9n8e5;?nnqc?LrgB(s+n1u9ZhKP{f7ceYn=R7y z5e%9Wf_5sJ0x#&1Wclz4!PE)L3O^~;`1%A>7JcUKb5GhtwktN5$)vLma4dm|N%iqOGDA8lUqHL)aAu8RxyWwr^dbP-g4|6(|YBeCS zv@~*HU<3=7L%S3&-MU{rC5K{a_a4NMN5>*dy@x}iqJ;iv&EKjE0h4=@^>B9b59xS6=iHwyO=&A(wLW71g|Lc= z$eIshmCUS??^>&r?W*NJZh3I&x0&CwN(zWr7KAM_;PmiCp+3AU+MPb7-B&j?&!l%N zUHT@nT~Z@%GkFGz`C#qT$@|`txmB-PZ%hHK()Dxj!A!eNkP?5 zYg>O&syV^gUK!#Lk?D1gj+$xr)7aG+b$9&3I%(TGE0NoiD$R{+M2sU~FW2E|tEL`| z+Fkp`{%qr`{AqX@d2Mr0YUh2fW#MikcaihEWeD1(Bm?BB9>@r3BWd;aRjA*i(v1i2 z^{fiLG`W$~V8}QQm4(;cOny>vJ(obORAc+ySrZu#lhw&TA%`Rm$GTUkF<%}+#_Q)CI(@y93A z{YaC$+k4p0MkzLTO)JR{B}Qs9rO(o6dFhTMlVYP#)lRsD0&%YR%dRzfKb%s_qq2;# z+Q)45iM4Zvcz@2_bnwBWeLuYIvOIWZ&As(Glv(f3dkp=|J>p2VZ1JQCBP7gp9f@nu z5x`EqGyc`%j<}x6SUoeOd?gJWCS$x)UFBExr$UyT`Md{UVy}IU4vQ>6qHRq+Ik;L- z7BGY#-@EI|*rRvfS$wTps~|YFAf!;aALGAZwJZBP5+U7p<%R-NaHWO)zy)~k%vm38EY!UkvvfEkk>&e*Z9MZgvG>d%s zrFO;w3ywF%c9IC<Pp znU*MwGY^u+{KEG$i2`AQh32G@QLjsNk!-$7hVUA=()pt1%0cCRr_M?ybRpXpE}=|p z|KVEy44zJTupjr)pPCLa8*_;Mfcv&E+~V8j6$2e=Zin@sm)S|?>S~G;gtWQg55iy{ zgyGVL-z|ham`)zzR(^;XP%ClvrnJ?}Te0Sc_Z#7t!Sn5!lnW*rY9&9e-Zl?kL}{1| zvg!QGVlw zbF>^IeuU%V-ALoAC)u+n`I?Y4a?TCNCy|2-Pi|0fZ*}!XxAesj!$ab+75!l<8DU*9 zZ~{`Gv)LaVY6CEm4HuWUKl9aO{n(ePzM9rEYpDWB5okyW-}~um%;S!o>$*3l5q#pw zP9d7$&ILaUHR9T_i80p@%Va-UR=1eZH9 zl}$2FUa{Z1di(%!t_mw3`JZP5Z{YC9fg_DoLgHYPV6a&a4yb;iSdjGlG-P{Tq-tU#Z zcoui`O;qAqJ0#FgFsYoHGlMtg-coGtLr|r^y7kxB=p7LFMx(aZMQ~pQIhu~R4|AQ< zmV6-&x3J4+tg|Bm_dfY8kUZR+bc0*Ii#2R>U06$M9aiRat7R7`J6Kz*s^GC(RMMSX z0l}3|Sxwo6>r@t#u>(x#UqJL&RQ1mCj>FvRB&w>}UE?gdIM|QN4ZLf^j*gs!v>sg9 zul#G@si8F1gyV?k<`J*b5#jz3Z)e}XTSk1Zj`-ah@qa!N@M&ZQ>24tBZnV_nCR}*{ z+`_-yo;Ic>8fAB{7vJ4iB$@v6%C5Y-VrRYcKTEK61TL71I6VFJt(s0qe~Wy zF8OyK~(_{>h2^6JsAIC(NZuI7!R@VDA>fk>_^rl3$5ke&utg zX64Ts_c8u;_xr}RJ@gQKZehw@%lnB7@Qmv6bsq4tE{_d6%8fqv-tSET$ox&85?{+w zRcWIcpHdRe(XELOk{`SCFeP;ga%SQ#zd|Daqj*8e?Qbvl%BdcK+QOd~yE6y3mY)0O zYU-Am52n?{b2AqwMm|phyyT1W+UZeroBzH0?4_AAX`-X|@am*SBG+j$rR3^^&~x7y{a{-_J#~JIQxFP9h2CjJZL+&!%h6tw7 ztYgg$(7FK_bSdvpehko6W|9t2fqKl=xYNdsUw?~!wEch%=GJ2i4k|6V)ipW6`DdZu z_m{tj@myx(Ejcw)bVUyNQ6q_c1HYfGT= zJ6lJdKKiVsI2JtgnOy!a$NVBQdY0k=;#QwAzxNO8?ThrTmu&)z{imI!6}*1shqHCJ zlP&r3D?|Tqg#BI~iYyQLqcDGO{v^~I2p1fz#K*L=Qg8f?E8j06gc6U@=md`*PY^!*ZLXR6EoEq zeG1=t@LAUs-Stb(3YL?jgtFm|&RBUYK<{0nP_LUJDMKjc8ttZf$kT**GL=J18?A?) zhj*9x$#Pw}?s;X$oZG;{DX~TYJ5Q!M)-b`rA7MQDVRm)gOhS?#S`X+A3w6m{fzP!{D=y>rgcP`}v=9A+I^NN+? z44!j8lw}U0>jVGG`hg!zS*`<)B@n&XpDV_Bm?aBY4KM<65?&Wwy0nw=pI?yL{Kv1M zmu7~a#eBZ6V{*B$Bm=JFl4~qs)|X6A3|qrnOfQBNHcEFb?8$_@ z81n2_B6&uKdbnu{+V_j{;(dSmy44#_;tn#1C2!fi20qDDO0_+{53#RZhlwensKhMK zl?TY6$|-Y}65aqUNYwm1R}8z10UvP8y#W4D49RQhId*H#uqqB-et{tP=)XUvaox3l z=lH}eXG!pKy>j}!gXX5q?Yo1|?+2E}$I120!RxuhzfVuj zhXo+StkP@6Kv;H`jG?w_#Cq?u_g6i*X2*T#B8QMM2=mZdhmDbU#UIMi)nwIQR0~Tt zO{oJul8X?M>PzcRyS+g_kmpi%QO=c?Q-;#W*t##Oti6pE3X$-sm zqA8@V|B*w5l%z@gDMFdaEz9JpAT!n7gwG;iDKf5iy~Z=>Lh}HTtDtTjCV^sTH5qI! zE}LIKNa2P7Md{;*&9>H@Zyr&4%&KrU9DwbYgsrwlSfC#GcoF{{E3NM21^%g>wyp;s zuvwe`W~{WFJ@*c_1k_}qy9yLH+uSuv>Xmhu&fv1wwNquwhQ*-!WvgU8|2xVG4E``y z#t|!5aCgN7zTfp)wR)1o5fWY3xF;uKJng1!!vtj{8SU2aqF)Pl&2p5LLnq2JyAiJh zC!6Rp!p*W@hE<#0DeVqHDq!K|rr98O4z~bBrkA^lUFaVkv)Vt|W9pT~-;dc6&s`V_ zAcEBz)!br>`R)`)hDBal;GVm{HxEu7CG!qp{`!7=((&9Y+#lDZKCLiWs?)c=Sn-8W zXUg!LJcxHnRuq@D{mGg;hn}w!94MyjnytRe*C_%iH`eS6)CEuTH+F?iT{{cFy0&xa zznP;g7fkv&Ku=neM_eT=)07WKwyTQ)R-0xwM?h0ai5Vuc? zc#@aZMm)~~1X^TRU}t>`i3)pZn+4tpEH3OtD&PZxcw9o3O_t@x$0}`0vvf5@a?%!Y zDM~0qzA59@?@wfZ1KP^0bvEl)Ux@Ic#A|tYfy$F_vGPu&%G^L@lKo-8iiZhY{e{o< zkem2PE_MkY#$x)3Noy=|4Lk=abLxiHVx^u94suM({qpworL%!Wv%xU2*i0yfu!Sm{ zp&zi10Gplm?sjW)9SM{>R0xd?d$dZyO?nc+q(>TSNeyXcFM?$aL^{)Y7Qzw@*&qd?TzzmLowX5g zgN0jb)2HR%Q5R|~$g!P!fxgwJ*r(MVG-T%nrxb7(gT90WN2URp0mkjNHV|~T9}cZ` z}&xa-8Oka&F=<&7y>ze}IqfjGM5G!ohduFI&wYel4oZ%KNN2fEB%#~P5c2U2} z+q_}hO^<-~5e{mP-VZnLPMhuHxz8F=BDVD^3+N!pQiYZv35;`4FCeXbOvVJm>>M)v z8yV4_P4-8vfr=wwWTwRq@W8InP2`#Tl8Bhc{D;}AV%~9TZwew>)nv~6uYsk7ZY@MJ zJC~BcnkCdw^}P3w;Aq#_q%&^o-<1~NyH2slm~{eIDi@KG_uKe60PWR8(txCNnY4a# zbw~-fXqnwu{=N~{A3?#*8QvSQ?`5PcOGz2!M6yM&xNpiD-Zu7w5Oi?`)iX_O^`c%X zHwQ1vA8`v5NEcW3C(E;@f9uHG=rtemeI(i@$FAi8nf}#sO8wKl zqW>U-2=;SCyBC0tJ0#m*=WdGh7@lm-2z$UCt(D#d*aF+qrPqx~Loyl}%*vza3Ebb} z4QELE(Y8x}?%Z4BF}Oxy19V(DQ=D_;Y0!pQm*a=6g`(7-ex`Ar6k}wm(l1?VX#dg>T6&&=gAr?rXTDYDFgc=kKjWmmkFn zH_WnD80kJ~dE-?r9Idy@8KzvqglXYnN6uW4TOAD2Pg_hLXaPkqpEmsvz8}|hQ2vh-kUuttj zKG4PgJZuXt6M&uHO1p`?dN03ghidCra#olez(Ri2k&_*eIbUspT9^;m-2kvrV_fb`82G;_W zAJok+w%(h{Qhj~83njqqrB8-REI2K#-h(O zBrkTe!?H<~8oTODR~kfRYI>cD3I_0xO%;0|?W3L7@#beVA?a<0(!o#l9%Blt^{fcj zuf>hCDHC39O1y2%%wCr$tTxG7!+T92WEirt&R^zoKBvo18)G#~yP8+f3D4JM@ec}R zkiG5Ec~cT7WzM4bNnPne?~j_>|3Jk5(iZy-+kjukQb&N^Y@^d{SyVzbyCWz-fFzR2 z<9R-vB>$o;T2xwpT^?3CJBM$ra_SZQD>V&itF~qUO`0#4xQxPjKNyF;^BVd1qQxeIup$g*glC`p=a*wMh$t#wX4 zA1H;RDXz7c>if1_x`=6H4Q*2Uh?V4(XHn)Bj36AA5Utn-(Pjj9K$I5IiCQ1TxdMLdPCX=RK=5G^|QEDF> z!B|w#&N5}MHYVi zj({hNVD0RjaF&>(N_qnme!ljcqtu3SO-ac&4@68@>XA-k*MW`{;SeB4Fb~;QDTp&F z6o*Ls>AsWhv7?TZagusRb^4J~Qgn;H^3U~f#|kU#!GGZFe;j<7i&5?HW-EW5{w-~l zM2$3tQby|-o(;>H+$lY!wC=^a&H8a%G+t`*f6odZQp@R06dM=ZTz~n_rC?2!nyV&j z4mLVSny87BU##j7SZ#YR92Mg>5j&&T+bZ)SR}NdX43mmD#A}qlP|mZEQnI(fBK6o5 z^I!qdSzJ$u)f(A@%d`ub>6VN0@Lg8$CqB(?6kzx^&o{3ne{Ux*U4>IHaNt&`p)yuz zq)8>Jd9QUH$?^xo%vTzJ{Zisg9ZVYyQ$$?_!tzFMmyB`CNSRUea~t8$a4WD77)7re)Lwp< zZr%=qIcKd8TZaGeH|B-g)GV*H4m?7YK0ap6GyU+ZmBZG{IBuPP`fK331JqAy(Vynt z$Vcu5O4(okM)I=Mqg|Llc~N-e-BKMY%Upe;^x3C|caY>(vYNwGk2GZo;T(-37bVlD!KHGC~ zqTnXRVM0gwkOh{((vvPMM_C-TO^!WaqmLJ4vBDuc1!MyZ|3oMLn^nW`v)P-BS?Aoa z8j^VO5mu~$+mq5d*Rby75gYZ=xlMdf6<@e5jWha$&aAdp9I!e22wx6O%mg($RI%IGH(IZf@H4n0f^~7PxmaEzL(66G| z5UcG;2WsHtS=q@^o2iUjYo?d6fPvb+0NS$BH3D;dgVQn~S}aDuP@Dp>3-n|;cKypiR3`BccCuj_1a|6lP6QgekC6}P0s}KJ>*JvX zwr0+p)1pRwcKHk{vb%KjdB<|%UaX8cjJiSAek10ONf%41 zNz)lIEfO8^1-w{N$1#=s;qha`b)xAvb9PN<(i8Q1iw)+RMr~;Zrp|+&X2|R^__Ro> z(yCDayX?IBWayb_qaMEZSmZCC3|u|Q6o8KyMXbLZYY=CTT>gsLnEjSHgS>o{5RR_C z4BT3YTv=jF@tvptE=RxaPiGrimd54;UgvJq^YnXdH4As?c)|23lKkSxXkmeYC7X zqSIj89r{EhrKKB^4PzPM=)rNljtM(!;%4+nIB%4@zBEzs6f|!-rx*f~Rp#ZoPx?&H z%QJ9GaD>Tmml;`KvA{fQyI6?RpBh6n2&6c(3M%p#DLIr9)5h`4iDA7s7|T4$3&OAG zt3S3%mpDir(<<#ufW9i1 zlz>{ea4~Ani$^;lmw^OUzoL~ZwO35zNDp?Ltv=UXD(ExI3znWO=-eP9cZU-rqtE5b zpugG4`xW+y#d@wn7J_WntrPN}>zFOT!=&2NXRvEgy435N{9wC}%90*F$ZIE*zNU>N zXvg)0AoQu?YE7q-wG*E+8>)v7whciRX1z{=+iIxs4^?OXwG*VfXv| z1X>t$SD|UJUFRW=H1a1PQ3po)cVHnpI7orohgVX@hW(0sR(7N>iCZXa@dr5spPVHB zp+$c863W7-jpY0&e`ZpQ0OAOQW^34tH)ixO;Ho39Fq1j@q+bW+=vWNegUbtWk(gvb zL0Mb$TWk9#+0w8);wu_vnNsC{|~$5lq}$BR5LR6qTsqHEn+B>v7%GriS_!?BJ7GIMBNd; zq^pj>W#hsq+r|gJY%mYf+fz=wL!mzfw}v&?g}O!Q`kV(fsHjCUdum$gThQy#spqpJ zgK9}XKGbi_QSBLu2-HMA?u+oCVCUEiP+knG#h;snvB{c;LY03XfjQpGxFcau(4%y{ zMZD^GKNWxo(VIB59wxOJgUt$tWY2x(N)D~#o}H8-SAPA^XfNJn&(#OZCEmdN)m8d% z)MSJ>tG|L)th5vAy)hWpMaJ~pq(c(o?c$&W{ z@MG#vl8C@G2A=ECP;^qPB3ObO96>}_%d}C{2Nc{shP~9QxYxH;iai208bIqdeW8m` z)oJ?+`_cuy-V#PwcjffQz1!oIBL5m^L{HNjC2aJXz(tY$2Nejhko? zxgoi+Uhg_oc}E&$T;Gm9g3oxQL$hOJrUo81-2|H9M;h&qa`c|#LX@{CP!y3}s64k&j!T6D{VR1M3tA;+Iw_@yNMFrgiVux8+UE0GvMe9*rYg z9rm57;_K4C7e<5@8(JOvLMi&ty{Aw~ga|~h{sLcMtDOo|ZsHA@jIKFgSD3_TBf5E? z)8~&xqYSZfzGrE&_QDqFb4Tet z*PI;HUz6|GCH1-W<^99uyI}9DDOD5g*QR3B)*6Yi`5dYsgiaZLN|Mg4)CYoIHArlU zz;$!?AZlezW5=SLBvjX{H7UaduvnFkbS(5DAKnwqF0olgc5q{Cdi#)aioD3F%|8mHm~#Bi6Z5)TKLIlqF=tj zVKU++FU(4+r8Sb7>AO%24-`i@6~l0MgiHVC@1a|p$Bb^;!7A^lD{Qs9C?;Si;>>r; z)MwGQrF6%9@Lj0`Q3!{`%G|1rRzf%;2NfoxBuNb%zR0_3`kJG(fZx-(Fj1d#1q5z} zNG&I!bd3r=e^1cGaXr0dm`Z%D|(DES`ud`zgZ_Y>JRB$X(?3BO+X zn4J?-w-AlW!}an#zD2}{*p%AXDvbG})i=Vq2l#&buDg-ZoTPDKmTtVg?5*Ow)v zhfFZ3U;nj4@6?yv1{~XrGft zCZnAzVy<9NP9$dU&^P1g(UPi&oapm^U4sIPBB(NBa=#=?tY3Em*R$2jlfK&cK@P~E zJuhllhsl3IaydrlmfL;N9iosk-@zeU>Y595^Ks}av_HcLdV*$qZJIm@l1*jo)X;jv6yWFRMG%?G-|JB^2ORUiN}}h z*;)I~nL!#W6^u0k-E=?ELIQ~=&#WY1b-A-*!?tMekasU$RZ9val+{@K#;`)dwAXFD z;EhC6}wu;j}Io64)W&DK|J;R-b0h9yU*N08E`l{AM|$t$T1yTvc11~^uoG`CsEO3GwCVJE_d0!zkz<)$xe5H`{WEifVHYT z>9(jP$V{`O((A#5<^E6wZuz~U6E3qp7-($UqjkgfswlHhYg8BpS7=?5nuS19%>3a< z)%5nx3IPVPz3t1}VBf!saGb*WRz@&~#U}XW#+u^h3a{EWW7M#0=nO@8O8>q`)m>89 zuj-62-r(z7-WXIR^?Mh(6&1^+f3|TGPdGA+@1xyn8`s@@xk{A1IQ&YuhBA1|w>=h= zCBYTm>%OjuW8F9!FP&2|&u4DA& ziSvA#iYE{sOebphao8~x?}4ASJ)s52{gjq&qW*f+K0S;c+UW>WqRRidn;Q5-TD)L! zb;LcnG~Od1xute0DC($oZeF6}56lz7<%V!dc_icBz~ddRqvuxee?P}c+1ox{|6aa* zj`M@I4XfvBEZs+w|DrnF&J`_P5@|Cklg~Ek7pIjk`%&S%rigW2T;K1OvgBsv;1eF{ zUvJrxO>^?dUUKWm%PtFUjy(Cc-1PU&Bl`{x-fUYX`e(AW#O2(p<^yrHqeo*mxBq_P z%&qiwEhiQxjkfDD2iKL_{yX`5LV10~n~g`}Vjdm;g}&_f6Hiyg{LyrL-nZ>PzIVR# z_R_tdZGSs*+cRt(Z)35yw<@6xW98(CW7_^$r8Ta4Nl(8u>fHgys2xf$Wk5&FHcwm? z_*?p?drQB0{OLi~p5>n(t~veq^RF9kKlYCHgh0d5Q+uBYg+@qWd6hvWIJI6B`+SHy zKi&OYcN&;Htd53$$>s?&DR5`oX2y!I?+0f5_Vv#@OIG~*VDU*K8N|#M)~OcGo@BL{ zG}kNtS3L+YdGVP_Ddnj!bT(BOw^1tvz%l<$?SY^6jYB|Z_uiohYs1K z5M6=xsqp(^X#iOVTBZ!n7Hi7l?+0mG{P4r^^au?{ToG zcLk@s7?HddTZ_M&;?u>Xqk5w-y-i==M!6)ZJH2*QZ|bk)6PGSKobfJ~PFIZZ2F}SX ztCMyRl7DxbJ?nC{^^O?#dymt8lErPP-upvHGi#(wjU*WYmvVb;=v@Rb4AEwpSvz?O z_FSM3#nP1V7cuf8-m@Zgx3asVpf)I09W9deu4tc z6Kcsyp{sA2;e$XR{J3_WbOAMYALr;X&&owQ+JP9?htqd&;(mt^t9RRY&v}yB{ymaS z4LkV%+voaKpUS-EFI}xx@y>RvO?~EzUL0=yYo3qn-^B+T>g7t8aLdf)Mx2p3g}YN; zQRSNW?HNV4ZX7;NeQ)Fa{pW~r3-m!_!;YM7JvqKjwPXw4)cxa_RffQ|f=WI!GW&6> z?ck6uHz+vxo{ONC+;ZQ;^!J{sGOhadbMKtGnU&1@ElXX!7OhCjtbg|8nN8huONn2E z^Jx1=VTk1~vB_4pyDa zctbt^c#@W9v-%}AlyYm0(Q3oDXKu&lk&~Gf$14QwKGWmES(!1xTd#D~{#v0nn;oEn z89(gX1Lfrut(shu))3*l=;CS#qQt z^+N+zoG7yo)t1sFx~;()BU%us67&$M!QnBSi`qrs6PlKYnP#k!w$@juXPKh`AGmz# z(M|*O(_6<}F(A%(K8EZC7>EmAd$gcvdikcHAwpH~t_xKIjlVpklTB^v1A^>1{3U~_ z!!0TY;m&}CC#*_Bbs(%B4%u-ZVug`O{df10=L)GG(pBw?Ovm4Y$=;Xb1dF3B@a~0X z6vf^N4{lX886MbP2?9?(qERgZ%uKmQ>)9UV+sUtB5UH~w@$#=yj<``qZmoY)8PxYi zBpW;7_;BQCl3Bmuo?fzb0x5SVS%i&InY(r33g;Hbcn!?nVmju#7A3wezDT)N;Km9) z%)G#oJb@5v_VHr3U1s7Q^B)}}K_B`A0v}AbfRz<<3YmbwmNhgj-F%z^vZiC_B@Km7 zrJZk)JcUIOV(I8fpY}oM*L0#b36tAosZ-F`uCiGL0rL2y>G&RVQZraCdy&luSghu9#zr7!$Q2gN!@=v!gHAMe;a28P#~SnizsGXHm%TmL1#0Aq9kvZ7e9H4xLr42&&ZUpQLoouO_V&0 z$sHF3LqH+1La_gd6f7XI$|nH%HDMzYsE<=8Oq4M|eWWFyHA&aLK=LvB>Frsb+UBi7 z(}A59Aa>k7CPMgo;DUM`HGk!{4}dktB&?OP3If=VP;&TNX-6L=Ur#P0lFb5M*M@0& z1k24tX29H!M!{zVtpKCYCT(hsktgMS+rFO+Giwjo*N}!XTHYznu$6gA$HL{<>SJ!SBM~s&V0s(B&-Q@%F$$gSl;@> zxg?%ArD6*2aCS%qtxLe-+ljJ5dY=ckI-;^F8&JT@-Ob#pm&joVbSs_2OhD;>UDXVM zaeDyX)s7<~06Mbj>DfGbGdnG7s2Sx5~X0(di=MBsN%00*jZy+knFEyg@i<*tr|G@5+WVA&{cyA*O0N zZbP@--35WkYECBVT)_fGt~4>*^W=> zAZ>=#u)@jw4IkxOf7Zbe!n}3jZa4&(=F&huyR%kFH_oVrgMU@n4b}V$Fk8ndBp-F? z?-$B-OaPn#n4`ojfX*rmnAjVYHO(v+Hjp$ed23x(l}+#;Mnnuo8{cWWlJSPmof?_l z`VJ96;E8e(Bq20zN`0JV+xAKrb~5aGljl$7oWE{KwUKO2<4<247v>q*Dg598f`&aJ zgmpW2!z`e;-#(7iLuM_NJ8>P_y4g|o2}wFCx(&c(z5_6EJ)1;(vXzbs-dTm^@;_}R z4AlPspeZ96ZlMPLat7|0VFNx+ka&>u?^xtsC8)~gElf=3D?b5+ZJcTA2L<^Q2-)!x z`C>x!z&mLY1A5yQ3y@?Go*K8iR>)8(p3?~*2wdAS>>5Su)2G8m_Qn$dvTcl>F0 zAF~+RK+}dS%(C?MVM5e*wpDP{bT#Z#-E2=wvDlo%VDl#c5<2}k)yf)01lVnyqn&VEs0VF^(CuEl%w~vgc%A>$sfs=eLa3u1=0XntJGNwyJ4olB-&>Tyc)`IL~TdVPrI{*=n=3TN7HWyjw!7sW>Pok%xAsU zkvpr_KwtxlqZ+q+f+;RN@MOLhI!cJkCxu;r$}=C{OhWPphqpreDH;D5=J0|-`+PSH zQh*qo!N@kRaJUPj_LRMy;yAk)oJSSWN3w{r@$~BKfYhwq9W2l|9t-KY7nL@JhNTSr zV2^}4ZMns6@H3KmU)YQ;34wwcZtNV%r{K?aVJO4~e(?k_ftJ;qs3Qt1Jg7>X`Kz7P1o+tWh*(Q9rkP4~cG={pqtg97%767`wAsMu}BMf(yObxyM9m zJ3;T9u={Tej5Y-qe?c}#qAoBv zr}GksJR&qtj$s3Ni-Y%;zxN!~gR@Fj#}|aQZ`(~^(RfSvOlkXKghSi1J6~^E4b6YK zI_wa?p?cdo2(f$1p%x;uMa3n5n;^(Us7ERHQ)zt!83UG+x>N0r9i&UhBzdhDcRh@3viW)ka>wo+f1mL3D6mXEimG zs^{)bx-I1Xj!fzu1t>JnW9JEj<*Mh*gR5a4pLg-r5=hU=x3srYZd;+-1`zHB6Rk*$ zQu1~)5st)!P?21Q8wWefb>yl<>n@qC1uK)#!gwda->T!!zCT63-wr&hvK?jpF8=?!M-v)!b`k6oK3$x9>0*tQZ zb1UxsMQ>hy+OX{uW*K2ZG8Lq3zJneq+!yg?G8r1#$n>!Q^$@9SjU{ACx8UbmE26xc zGJe+k=9&(iA7>w%!=v0~c0n+LnJL{ibvnX}m*iu=hOuTnUo{}?9No!)?J6MV?}$w- z=$>J)!<#lRCJw04nDxqoPD#)y)BXPtY9YU>J&Jn3l$ZOfP^^TTA?v~cAq_Y4v&g|; zyhMD*^C%D+Vx}3{ZjdQ2l284t%ebU)`(jsdQ)frEAytgq;ak~?(fsnJ6V|fJwoTl| zspAj^zgSIT8tk_4X`XuahQgwt5|>GR=)roHn$I29S*4*-gnevab_$>EItVOAHvYgz zb|&x}6iO_X3y(=`e{rO-QSOV+$nPnzTY&Rj8{pVPOT+NRPTul=mR@oI*Y+LEs^hZ5 zJ_EpN9A_KvgYFVb;g6!cafiH7e4+4W|t67<_6;Ae#ey9+kvA+H)0u$zKR%%(~a(&s}2 zshVJh%^U<|uF(?5JREi9H(|0A39Zrj9g`qp#3Byv^vPu@lE{retfbw@>X@+LNi3+@ zghGOy5wh-55b%lntK(o}lXa+mwpc>QlY~rvsF+!z4@91k8g;8Yb;}7cBu@pQDuK|I zcE1`v?HNbRgimkpzmN3AAKq!uxpyb5}N9+@4gAL}(~n-oYUgI66>kA5}1A_P<=)=ins%sxv^A zHUP9`T)@vnFr7iIkUtG$0P~q$^l=g`+{F~iE5e&1Jfdw5CmHi*C$v&;`zE&yb>M{S zaXx`mSQZl5FVh7;lC14lU&YqM)u!+*-DONyROWM{`TPwIx{>;UC|3(=+y#&r>hyAp zKAiUTAJB<=uK@EJ#oOT4n3~Sy+OJr1j%I~WaCfpTsD*0hH_yC@h{%nJ_CR;`tPj51 zZwq8qZ`y*%YZ8t{k0foGUGs+H7}7*BjBh2={a42A>r=K2Sb+#N_rwQ#uO;sC{EWYU z811Kd#$aIPVbQC-L1Q<9NmPBz^D8?S{nMIY_sZ^$tXAsjEoF2$yeD9d{-I^;MI3uO z_Db=K=`q_S6cR{`32#!f7QQK3V2>ufU%u(PeRiIMcRAz4YuK*YT3~XGVI+G zqtW-$%}7eT6Z`nTxdafZfJ)a#5XXrzCGixAO?Z9l(j5op#uL+$Xjxawh3J_`?&24c z1-7yO%B591=6X05=iEuH%Zw;qkWdvTF1Ke(lj4c1QfZ|v8)Ro+CNEvQTtESCk1SIw zirtKca$70UUnq4IoGA4^B{Tb_8&l_HkvI!7?sGvp1tn|*le*q~Fp}aE9hLSgF>WB3 z_kR?fiC64k`j}sHmW*xZ@g{6`O`@xMpRBW~R2GS=oL-BwQ*qGb?LwsjRHAw6ex#aH+J+ zsH|+688mCGUo&CTOty{hdH(=Dtmp9D*L7dti){SYeO$HrH7wpF`1xvIT9S29;PG5r z#hRV5;2(?yvhN&aHNWUqdUeVREZ;6TyyziC)cWrevKP=}R_u-#M^mDW&(a4LAk9LQ z)pkWzl!Y_8M%uh7W?h{BtFNaeLmrM8YspOAVoO2TeGG-)c7wk8TkUB7Ew)9{QR+Ms z{33zx{&j{@*yLk--v8Iurj_YyB;89LY#U~qo`sE3(qdeb?uaZ`L#xh8VhIOF-zZXBWJnF@MVS_S}c3cQI*;uIB=b&JyX22l+6{!a-vdlcfz1*@!vc5BFkt z@NU{3w}LTszn-bVY`c%~I$K$JGhId--xM zI^x?J77tXa>tsfgvn334+HBtl-|?x z|5f^H_;?-+ndhZl^mF{0$kQ<29+7veJMSIFAopSKjfbz~oa7$*6rV>9KFk_$ z30=1;VNGJ^k>>*^!w!9puN9{pnRzJXK{5=;4L(CXaMz;G~ z9{QG=HRmT{GKwN6fD&VUl*%yEhVd%G3f zFSYm+BfYs@Mb6|zWK=@tpe$o~K(`533S`!+Cxk9)Xy4h|Tnn#xtk^HbYMs9_0+}@) zH)ikuxuH2=Y^E&ZORX}w73ruZdIfW*mGn#2Aj|!Kev*GHgNqC&TC|F|A0G_q0y}@` zIreD5iKmIi^o@-pqo?Hi%@TKdSYO47ISUR~CB4QiymqH2e}(PaMa2$J((livy)O29 z`}|GvoU5aM`XxZHS>CWW)L9u7`mrN4ZxRJ8+LWUPCK-HG1cL^A%o#x~3NuDj<=;BI zmPG=T(8Of4KAdqMIne27U@U*dAm2hXoNe(J;B!Y(p~*2NyB?^oOLF!t0ZjAN6_}Xr zX{fL*+Yy*hpliIMuJ+MoK)>arQ<&8v+aG1!y=U_H_x-QI?0Zw_Fo|$wb}7mox9=ui z(u}|KSF;uSzIg3Fl>LInm@_tS%|eEw9{;QoFiJX5SX7{etc~SB;ow~!cOVnQtu7^3e^G);$ zlEVC^>44p$<2KllE+{=8*~j*XF^ic1jw`mOkIPlzlIEP+QdjHU8A6+QSm?0~*aa0} zlM~G0P1<^P(^POwGRw?52yF?*P~arfb_~GwZy%`x927M&1knC^!V`XOdJO(nuzR)r zZC`1m+DwrdM$+L4dSYvH&5ZGzks0`JIXc!F?Y1*p znAP+3ZPNRHuRgMPe{%0{g{Ey^CgT4HG5j=pw&ZW+wKuC{x1DIsDmnA%@`LyvN>*Tu zqm7rF0w4e)z6etT-gTVXsD(D?+2AreP=}6W-uN+whFTV1#lGKBe*GsS=8<;NY~!Km zpf5Q@z;T-hxGV;-O?!WCR5}7A15*p(mQwm{R_IzRYct3_XqaBN;Gz9-G+1BK=RjES zQ2X@*c_k?m+>oiXUtw5;#6NcS`haHHvgD5^%z?3ZE}Ln=%Xe*CU754u`29oJjFsku zsXHOSQ2p~*gZ)kfW7!Dlm_<7Bu?bAslMPdvq;PH7oL3M3 z7x(^8QRh~V+0_Z%Y#2MU8;NkrZk3ZmAAMqBL*3KD&B6G24MKr2u z7N<7hVp<7GL&aV$K2DFxqu`Sb*pY*U&JD}^37c+e3L9RRq;J_YkgpJJsjl%TS+cNt z;jNNIe^g7hWIiPT_Xe?tm5mq<09teyKdvDayKiz1k1t5mQ}{ZEn3B-+Nwzs_-`5l> zO+dQ^rw5Otvw|t%COd`>J(q<#Hh^vm!CG}f5tKkR3VV!=n#0Fj5xZD1F}LI%0aB=r zPupp2o%s?ypJ|h*wSV_;Zkl#KLl-14&J9Y&q;k|mP$V29O~t0jqIN1Gd0KP` z6Xlv6=cPpnW#|wSF*(ZRhp72GdZC+tM{+x$U@7L97#-1sP9K=HNBV97lj$eHb_Y@B zaUHpQbkJ3Z3kMvq##jo_>y(VafxVjw4sEG8wDt6%?L&ulzB#o0D(m2dIjb&OMH}X1 zPy1{MtdHel(`2GW23`g)V5`FAL^5Xgm`%PbWsAxsxOZMGYp&Z8>`3sD7ZCC(*}L{S zb=O))GsE6kGopgfokVnVGB!Yu4&XYjETg@-5V;|H&K0Fk1GV9D&YZ{xHpd@&9WOX? zMJctfU8KKn7s!KBtlT@Bxeawbi=;;c!C~vi!%xM~9BQpEcRINy*}K)Sj`!JrPde^b zGiSHg4}Zt}@K3=HpDKQsd6Sx&yf|9!^==IP*_D!hdcOL@EZRI9y>qfAiGsl|5iz)E z|E*d+#ob2X^sq?#Hajj#ABSb3@=RtjsrF-u58|KnUW$BJm!SVl+k&#CVwJB_lLD_L zK1$v6Z(V|Vqi1ANeCLCfiH`|?gk(AnN~5`nxQqmgRV|-~S`*&3E+U;s+IHyc=Z(Gh zF$FO8N-K7s1~(|673ne5`nr>HbM2TY*n}!FY~aaKazpDSdZaZ19gGDb#uGdF*aCyd zbHKb}kJoLnpx(Bz=4SN+>%DH>n?`wi2fN$KpH(N5PS<#!J`j7lH0A`$IwbXp*)Msr z%a6>bxcGTD%`X}38uSpYZZ48iwh$M0x-@*XGzgQ8P7kP_Y0}L z*SkGpDV9WNeOK2!^hMfF!i2nSfBdn9Hq*|cFCUCJH@fun(=+Fu-#+*B+7C9^a3Lk1 zT~vNWPhK6g@xmiJ+-8rgON14Ab6iL2R`~%xo{!aPvlmQRwhr1KMbq+WS#aI6!+Q;F zd%ucHs-Kk{8(L<5v~Ay+wxRC5zs6p$S#!Z|%@1EI!lHHPVBDkNB8+J0Rdv+aZv5P?*7}6K&r8T+7i#$;H-gJlh#NHpbLR8e_y0?{J?XVD z;@V?u0m-a&+1IPjBW4>hKFS*OPhw-_|Ee(aVw>65u5CMDH&vH79(p{w@?7$5w+nF> z2ESbEWmWGdwLZ|qeGT_t$i#9@r%Z!QRe3yI^jl;Bb8+ zHH>ehFOVG!H^uMkwRtldbL?UBw>k_G6}DL$%DG^dxYc7mv-*20-+A=vjQtOj0*t1A z8L7nfU#l(z#dUUjOM=nbQ;At5$1ZebB}{X^eavvE%WX}!mFmz9<8(9g69d^R(zuw{ zB^NFQV`4gH^>4Qqi7&DqXWz&g_P#c{$l)hc_{OMRDXdpXti?uJK*39w9n-e|Mfh0h zZNrSivI4&;_Q7aV|D_!s&d(R^t3CZK)V8~X2IOh+S}ePTx)WkW-N&RGoIE3~5CSsi zenxFJQhA{mO2x)AC4Wzh?CM4ThYARzV3z8z%e7dc4*h!|J?othXIb9p+VVq198Tdqvm{@c)<69zI;?JeQ_EV4WxkJUj-11!zugtz81m6_$*gx+gE5 z#Y!=Na>n{a>7#GC_Zu>LbJGy9740Tq{9^sM`=g68()Pb3`+ZC7k0-Yauh6r4?WAy6 zr_z(%f?C1BIA$mx#n9YdH%U^l)}2rYg>3~YzTwdEU||>+^mLf{r9xgX<57Wd<(^nq z3g$`){fBedt*@6kY$2`TZs@s$UY0)^Bb*>@HJ-R-!aKmR%S0Jv3yB0Biqkv$+i^6;$_O;0 zF~jqGEb5o`U>E)ufhsJI%b^}TdJf#-??{$qg=l*$wWuSbU>^Z^OUqT)FGa&I{Kbr~ z>u^t?bncsguGCiL1_>3`1Ou4Bz zTWdb^Yb96qD=^_-$~`J6;DFY=lzYBs7-yYMatKF@|9TyN(~K>8jo5>r1D8iJYZ-ZS zHjy@B0iMf#dmK$WD4PUEB3F-I%wM@tSF@9aZZ>4FA+xamY0d-lre}8Zi0>Y<4lLuF ze>B(~Ue%MgxIDmYZ3{>KGyfCL1?AT6T2jORf*&ME$|LKzk^=7|E z89jWLdH>|D(Ld1$Xm`VWT-T#AUVQ}GwFM_<19k@Hl*nyC`b8im{$jg+Pu8Gza9OfD zy2^lL)&A(4L*B~8pV{T%_g`)>ObRpuJ^ZCt_!)Cdp7cMcwG^{91Ga-2a)Hu8+U!wr z3g2b;tHmE($u#d_iXW2Iov7Fq#vNU?6Qk?RcW6_NUd) zI)lhpj5|v87P|ph0l+Ut96O2B1!SOu1mtL-Eh51ef4fJz7)?`aS9G&2fkF6I2Wcr= zfe{z>mAq5Cx*kwEZ_l>A#OQEHvy#lx-qTOjC<|HIQvRgd2Ay^aou?p7PC(oaed?0)Mv>$xJ+?k}I)}r#KE|mhVA1 zNmRaeJ?J4q9kvz9;c^7L`r)7XGScrQxT7A4FROr!zG9YG$>-8P1ccw%Z z;D;hZ#S=SzFi4<1i_b@~UiF7iaOe&U(&o_$=)x)!1Fo%<0YV*jUyo{vyDFxMLbN3S z^~KhDUrTruILV6B;Pf5+e@AclT80JwNv8rY&8;@odG6hP+;2%Un_%UGrQJpuXK_to zd=TluPIn50GgqcM6x$BEBN=S#S7(mO$$cg3kTeZJH!`6AA z!+bu#T^+P^8EG4E2HgNY;7_|Ycr0QVk}2KD56!@;EKVTHn;xHUJwc)AD^%@+5V4%r zwr}CpV)GkTpn3X4%_1J0gejktTiSxb*ui6Wxq=4~*`WJGO^UsXC=+LIZ0gZBk=QVXnW*|`Lb3ct@Ao^&yz6k#16rYo6+9ql+Z%6PXbwJ{ zLAP8>Qwmxmihh=r|CmeRRRr=J5q_XVSN>9%em|HGL%&-vd+oQEA6?qU?cy8W=#R&hlgWFV}xwQ}n z-np7j8;2cZb2?QRQ3|05F5*430Rz5r*3vj3Kal*ugw3pzt+40UVL_wFjKLJU>+bLU z&>>=7kv7c!gGkK76~+a`rknrtTp$76|0t-CJ!X|nlnvbzW`I-fZ+#K+;j-NM6v9~$^)&n7SX-}d^k^NCDvM~=qP9e#<4$^Y2The`y7*!??$Ie2%15fgWR_L zyyWn|nXXpTZTl=5WdcKOIMu6p!eU#xHXJ=^(!>{+xSGkvqWzq6+yDizhR5K%5yRcU9eup5-B1+U29e@0 z6~ypC_T*t2;EN@7fKPud*Q+M8EebN+!I-=unzPojU{Fa;evopvdk;CFTi7MzJN3QW zU^P94q1U01Y$;OS4b0p-4JqIwzpg-+=fIN%$7cxgl)x;XPY^q2LaY>i-vGiZ*h*cK zQ6aPhUryi=v4=pIMq4JUMKL`P>z+m!^I}@_WPChi&DYb5M5FeqwoQt+0zxQc*n{Ne zvJf|x)ux&6lNAjPg?sPW@E`q-7qjp^5{$ zn$WeSi-qC`u5qTWh~-G{0$bpF{bIIbM7MWOgpr^cmYLPi2WTAaamN|GWkW{awt8(S z@XfKX)($z!wB_?=*dJ~F#~!>>99b5lv9+$M z4~}nIM5z(ur(m6bMo#sEzfVwj^k`qe z#dxgM1C*p4#nO&xhmD{3zm`pDcghJQu8+HQa>C6XV(h?5d>zPPGuhtlUn_4 z+_WpL+z<)i;Oq_xcU$Aj(~x`dO4QJPzCKO)4QsjEws)lk+@HiU5$tbM(ZdjfBKRCl z_ciyHV^+Hl5Kix|w>%CbUy;v7si7LVVpTTRoxZwu&t4?#&|w(yGF*x1W7&d-Q>w1E z_f`8Gs_H1Fq*=n_jB@4O1?c}&bbtb9uNEo2O^{0l<^9*lhB8!EKg6M;ZXfV*HT~?} zy+9??yU0U7tU2P{eT6|e8&FH}mMEDf=-zmZPe+egsuP`eZ04+zwBvN#1nkABvDc$G zZ74FV@G(HFnaDe6*hwC8HI~3kCAewoT{YcVXq1})LfC?mxr~Kn;p{dB2Pj1%l%c!T zZJWXqR@xSv8EH}6-iUJ7)cfZ46}Koy&=xGDBu(qXJPby|!xwkz++fu0qu1PcO60|` z+LSg7J4vcQ>e!J5+&a{Q! zy7gRO`r6ZP=n>4laVcBtA&X{ngPEsqxJ^M9CT^Hx_&ZCwa@n`uSJ~nq{it98qZ>8( zbzy#{aM^66Ii&OZ24GJf!@-DFXDI*MF7OpAnX((;D+E5yH>(U6cT(N-mwjZR&ZQ_U z&o6+ZWbzv45)kxS^m8eS&OD=P1JrNT_crPW<|<+(mVXrx9X} zDO^h<-3`z^AEiC4aFL*{S9+CcyIk}r9K>@Q3>aN;S41bE9Q~Lc2OfwN$R~lB2AHiQby}1#!n%5|qQ3l3NPd4r1s! zg+~X<>_h+PX)%?DdNj@WRZ4HUcEzJj`DWR?3){KuS|9aADwU7AFcD0h<=#-YMsLUz zd2n={8Or-9^BR^}l&T=6G0wTP=TX^$mT5FrPL4N~aRyNigs?U3`+S+GqjAw#y5C6% zkk%;uwfehH`7IIX<6yoclAT?fC_cN7#r3A@ASZrV|BjAFZt?Wag;iB${`9yO+O6#a ziqzrD_I#9!A;e(@>P=NR=rFuxrymdBd~57i&BWrS`|cziv!@4Br9ZohG@>;L4|6Rf z8We|s`unRGq!QN5RhAiH20e5knilbK{=mTC+x($rRSy;wfVmY)hc@U!OOIWhRve=l z88YWAIrJt)$=Qo$2Q{(jWpFv;(u=c6>gVrI%4`Y;-Ra&)=0NQ~FhUh!~Ih z_${VThGuoQ&gY}46x69C%@PuN1sc9$ME?P!4$Ak<%U60#p(Sban9^hO`J|UTlB4uO zEv!7SJy11;&bD!MXi^%5UG}^XUp>^)t6n}>wt;W1YABa~@%7>N*BOIbEzjWs8MOFU6DT3fv~!4bibs`z2mThsd4@o`VtNE{D@-H1>JleiZS*?&|`-cy~Q;#ymdbx3?kplW&neNsTBef)HoU7r*TLZJ7qYclYgqV zml6X)hA!P#p42UUX+UKxQ!+Ja3_aV^l)#dBE29Wu24(9~iySBwFt5~Al(}fdgx*>nP;Rrw~#q93;oypkYk6Z8`V3__MkIz~7f(kd|d6R4X?ectTXKo~cO9 z*dNW;;AW+G)lB&bDIq|r?2kdOo+3GdJ)0ZUp*n?Sro|3E!5r-Kd4^rC$-*`?_QTd_ zuqQ;MkrtQ%F18th*YJ9rOwfd%`xcX{{abU!5#U_|`DU9J2+CsfSr zD7|R22n|J47ba+ETb+iGHi~@nHv_obz3Sy0B4Vls({URz?ABB2ZvYTrQucenvGhGF zr!MwO)b3h!tbNnt#-q-hAhrR*x79)2%}>)bff?$>gmPcqS^OIHM482sS&C&oQyrRt z=Ta!>eH{f2xMH5dt*z!!x4J5$qCoLd#l&KJl{k8JV6$HiL46=-g-T!h4GWxbaOtz3 zDk7`%xoWpQR)=0^{^sag6WKcWE1bnD1P~Pu0bVbtpHp#y&Gqfp}zNVLt2XAViX_mH4@zfFpT%qk9Sd0AP?ek3XR?i+DTPV^W?P#_ zmI2irJj6+9-3P-ElG%kNa1=uFW`pIrr^!}h?X6c8cb>wQT{T96 zI@O>qrBQ}1P(zWN0uz&X#MXyksnR<05NP=f?kXJ<^jVdiabl!a?& zRXDuNsh)qj{8bXcSB`3Of|&;E`yHrQ8J05LTw0=z(kMNRa9YknqgC&5F=0)1)sOv_ z_8GUIh>Z9S+}t+G(r{+SEcM`;CBSszN!d}$1dL*y}3Yoy*vma`{N-$ZWP`;D&(Cba$BfMEtr?Mm8X*M0oTL)7~b(*mS(Sc0y4;~PME z7GDTwY5u%egy>|-ERpL*jg?x;`ozWmo2)r=Ir?7A87`>kAe0R?p;~(P*A2;4W6et> z>QpJZP@cP#_+Tc>>!)4>)*RTCe~!n*bYlH0?M(P($NnF zb+k#toYfvZo~jnM9sI;6*iN01&Lx4xr{sP*wQUH4v9wM_F~bq1UOduFyWN|HJ~8&KX2ehZnuE$73g zofRbK`3I1q+ZPTedh3y^t0cRo zqA_%>mzKcEVm_k_(%YBV06zrRg!k5lmvsI*XofG{`p z81I4)ed>}Mv;L;s7C+II>sup~yjqrDl{z;52!e|MnlNLX!3)XDm)RQ`ef)jsYpMu& z$P+7Qfxh?`2a?1@l$=(s{bpPE;4u0bj?YyvAh3c5*-#XV4wt_yT7WQm(~anrTF9G- zS>1N<;6zPMw|eUnM}o9GkOWdQK0Mao;$=4Wv$Fr>bWEf{6E&mB($=kOD7WVMfj#8~ z{BjEomS1lVbh-+aYW0G068|%`6$dlj(fotfU@Zi6tn3aI@c_H)wP8=cYHL03a59x& zSIJ;Q9VyHvoOi;>k|rII4(7$tiqK%ySeVER8j}Fux|p z^(|d`l)LTj<@uob)8XCBx|G zht1!M=p@jd-<8E{tT8Q10^51c)v>VC2?crirI?whgMJ0+<^as$C^-P>gGU(%a6lN= z=)g*j3Is`vT}89~B^y@?R~c;uprb42pj&0mUkKQKGK^EU&w0>#cDvRvu3kR#p`vsePk}oK5eE%gu<~_+ZAzR-alHxCzo+v~} zlVN;R(zvzQ4j3VQM2ovhW7VHJxt#8VtucV0`=Fmn3~v%syxXJ-ip{XG%rcERE{+aP z9T(ehhxHh%fQ%Zc&F z&@yMA(j8y-8%n<%_B4;2<&EAjtGM~u z_5jzwREoIq3TLZccWdCDo4r_28*3tz5#ooXUI!S%1~fk3^?oZY(a0~ev;sP!a9>`L z$|}{osf-qG;O5yR$m~@VIhi$SCeoh9fM~$)#~~gVWX1Ev^U0%Mw&u_nGt9o07tRV5 zZSja6x|Gt$@gr|VQ7X_Iys|Op7MciHi!OUFp{4ggh046-=i7JW0TLG0CVmp>;#kfR!~5Wq!aaA&sklF-{trWh;PM^3ee;fy-rCckL&w! zF;WGlTJE(+Maut~83qy^sjfB@$b_@tXU^%jWP}8k?d3C@+6`ptuVO2&wbL(t4d!os zwTaK%HFdURAMpm&^W@!6mWz6Bw?5(N4d_QeQX@5hMwH&wB6U<{Rh$?ovXa}|yH)0= z_hPV!7jf4)NzcVxSfD!`K#h(J>^F}v7!MLWAE@*8iyEhp3zRN!6L4J=Wn^jNl8bxA zAiJeW1Run7EgmdEA5P;_2d0doY0RaF2*@=h=l7{bx$52E8|k_SNt8Mm`?rimh$vOk zD!CYk@LqfbYQ^S#p>FOWvv>jz?n779Yv08e#Lj$87M?fsdY10v$*IcXBdKnV>{iRC zZW5Xfl)G9Zfsnz$Kk}zk%#S*JOet#UBpc(zS%VkKnZV<|Fy@9|krZhnLg0#=NwaOn z3D>=&q3$kO;{E zUs*=Bd0~f{+3HT@X+*-Csums&Dwn^@vH2~zoSjosb=#HDrGqhUjJJ{p%}Tpf6AK*f z>lCqC7w1(X>Yu6O#6{gsf`LCyO^31;rRb=XV}x?gUH5&SZtbIVa4WvoQHeio%%Pk& zU=LR?3A5DUeHJ=ChLel;U)Pu{1b^6w>|+UYXL>DNZ)$km?YOY1-2Y0%Dh~)f2e=DkDJ)_}2;RI(hl|f>UN2mdrl$ zYU)4)s3u%S_t}pf%pqj``|Kjh>70?v<-WP&J|8y@QW}`-)@87^q?-G;Xt_POH%iqTXKWTA@-HDHad(X~4Mg?fA%%4<=*poH^Pc5?K?~k?ecDX-+&KmqU^WEOw&)0KEAZ2?&7A1{?srvs|sT) zHlO$&XlXXj(2L$3dL_JvNzOO&sjXZr{`Zlpa8nA&O8BUtI`ErjGZqi^q=6LRn`f+Iy?^$rgk4Q0F^kDMyrXPEWaeP54@Z_svro$>aJufTbX zq6ORRI3efGL!REtH)@^ctc_8euzL9L@QQ4OH(|h=q80Dld!Yzt%s~5P=u!C{hH-w z4nG0V@(l|w%9jx($bZ=md2{_-F|p_jOxp$ffZU)`%96o`=nINgk6c_d_Y-cj?A#ib zJIisABunQ1Hgr%&3Zv^BYhIj_lvT}f4E%d>@>ulUxvCHKvymYE`m4Rt`43uG%saav z>kH=&MpyIKj;W!ieh)TabT)yVZwmH*ah;uu`Go0)yu)%T>>@o_2PK2-W`Mo2;=j7l zw?g~D8m(QoE6bZVx|V+5Oxv!TAzc^<_{#!B`?6S9+Io}rPtz%tOe!E;dUrg@Aqw$8 zs@s}H^FxUP@06bH0MzwGe^dN&Bhg_-xt!n20l*`-*AoCH4-)|RPXKJ&2E?rmqBdbz z>OcTjiDD19reZRG6$uTALZg7miFWYqjf}BRau?Gx`XroR%_gCM3?WuGYL&WIgy^J9 z#JcXQwKfiIRr(L~Ug9jLcUb2%_M#CCJG-AD)`zmi4jLhSSRiB)ZrCfa=>u-en^v3j zrwBsfAUd(JcQ!Di&%70Cr}k0xOFw)^c~6#mvj<4JekOZQ4aA>l8j2PRg;Q`4Po?Ck zW^6z@&^u5tWOtPpA98O(d*(uR_bE!wF_GQ|uth?ke9)_Ro>Fp#6Q;laZiSp`s$+b+ zm4n|MH|Ug>6kz~wAfr(rpUROUkipaeRTpi_{$-%+${_ETK|w2nBiuF&AOGLHmf#02 zU|50SVXWGlUf-yh3cao3Vf^ZT5ALp}2#}&F5V;nMjb$Q2ii_!{D-)?hC=*Q)@F7A! zCSL^j-sXD>*ACz_Z}7~8Q6(r9Tje8@3G)R}@!7&b*g>!44FG@r-(pv($Wp+fmcuxy|rvzHVhjwGB=xes_Tg&t!<4@nubq0FPrZ3Dlzwub>G z%SGb;0szX8jZnHOs;7*VFIsA1fmZBB?y|GTDgqy%-KELGcM9&?sL+O+ayc6Dt0}Tx z34r~5Wl`LNPu;~UwM&KFY|tv2PMXNnwua^jXxvI=YqT)q2Q~`!*&)JkqezVcuj*CN z>jx6@VH^I4NTRSC|1IQ0-i9x)H=tI_|Mi$fwf^9biH>4M`*(;*Ccf=A(AAR_#e0ou z6AAPCZKRmLOUvBfMV$g5D5M#2JKuFce(V8T_5hPkw0_|PBFj=GurH$z#G}I^RK9>8 zOyCPOXbw+h#-B{{MXz}*yt~dV%sR>?ziAUsg&FBXJ5(t34j{ANo&ZAGD)y)lR7->z zN_M*lZD0U%7;#?0x|Ry_`^+*Syap`r8+0he|921}=s7(Zec|3w=2oICXXC@(E##!S zC0{>8^1wu{7dwgbn8R2w;|WR}=VrS9?dK6CMpZhzbh73UUsqCd&?rI~qZK`E-iJ3T zm;8025ndTAlpv=*3=3=|2Fe$Rt zPA*cQKx6tqpvDDoJd_iJ76yWq#LycAPXe(hpeIN~be;+=Y<-y^LRyC~rTBgAdZKSX zwrAchT4wWc! zxll3@@D|YcW`{h)A#7FhhZYfEIVVK5#9v_RJLG9_31j!WwWGs=a(*w}FQT6m_3(oS zl=IkPTf^;il?csw9Zhh@?6~~_TPW;?x#B1~!-hTxG9i)MyH)p$sF2ZIZ*!D?x1MEc zveUVN9fC5X%2cPEGmuE=7yd2W65|-?7NlDa-eY+^Im{Gfk(@p z^2^Ovx$d}amV16V8=6mqvZ?!*)ayp(v%OG!y03!S3R#6f?H%Ck5s+D{WsFHwuu zu9<=o-=6v4-B~Or11LjqS)NMEyz?8H^Bxv0fSZv`+{`1e_5SZ{{5+^m!oU*r`gbBvVIo5X@qMb6=OpXXn61mHpW8_TU9%f#{err9AX3g zZh%Q_hB>_Qkf9h|7rdes+-|C<&#d|_K8BhKeu3^TuCq7x!03{StK)o91JOLUH$mfJ z>KPK+2(E_QGMjof&(Z>)dB?g(|MbPt8gXB+sgIru-8t-rT@N!kD05ElAMf&fw*R}j zENp6Ll1V{Djq5{)Vl1pH|6-}F-t9}Zfh;Nx)3|9zts92-E)tH~Tb#D}ZUVFB%LP}s zPL`SW-5Ndiscq%*Uh5DAn#XtO1$Hc`1#@NC+Dr)@V*FyuACc^Mox^i6@ zp5FMTZK-f_4z?-fdbpU{PN#7XH!{=x?|X0l#X0fUm7Tqw5Ok8x~@Zm14~F$j(V~7ynN5U4F|5S?hiio>&UEogMuW5XjP-b zJ?`r!6X)(Bs=xS+~flm z5L)L#nfLYNVfAqSo|1o@H=tJhaYFi0@UpGy^ZNOvFWS>u53c|7;I&-bB4@Tb6ah@Q0c(1}*-;gIKcw*(tQoQ{Po{~$Q+oGEyeKU^4inOe7qQ4MX= z_3ny~QB6PCSq+g@iv9V5iR*fmlos%Pvgm32<=`FtbHDYAb_~RQn;n?jaxOvSXnX!0 z52KENNsWDBJ6!$0;Xr$nJsT6YLx|@zzm6)~GQ}1DrnJ2VF?y7Cclg`KVTj{8Z(xnE z=he>j`UbfuRFWflp_q5)cvs4|2f;fZ&i(#S^!>rIOSbC=yjuG1e;5jQH+TnBYqFg^0aqTCQMq;Q_EGdMquGB( zt6k$81`Z~xJK(U4K9>@`Z9ZBZrnX>u*{X6bcntWqDk%d{Ko1)KZiQV4dqX^6 zvBkf5V1xi6UcG0`Raw-P5m9>PT4-DPz^Vw$w#$99cDP<-x5Xl)YTRn~wBziw+wS}y zuAV8tU_MrCmr;VY z@{W~pPftuT@j!Au6_Vb#S?!%B<74HMH&PkFea0C@g{{y7R7dtg@a>wjytSYWIuU2* z08}4gs6Unl65A^cMea>@&f&Awsa*v@uU?)GSeSl!hyBL9yGO&fY}Vvz5{B?q*4dn= zd4i!+1>Rj-YeOf?eci5v<>ZD4ht5QK`VKl4$E*3f*w()u+48Ou4fsXQxh5@3wPEp9 z<)r4LcU%Q03B`}GaTWC~wy#xH+IUKia0_ZDci1qCtLO!#sM#))&MXL6LpKj_cSS9r9S{qHAT8?4o+bre_4 zcaN1*dnN!~S@Ax0mXf#hD@aM8Q5{p^J1c{F3<4z$ci-r>c}@o&GU z>wbIl%-RkG=~Ej#K?Mg`x0Y9@kio`!JNW19u>G$1siTqs8%HGfHF{nNZ-J8f??XU&|yRwf^` z!DpxOB^bPiZX^0Y*cc$jENFeB@|P1nU6b#*G_ptSfUt{P5aQnBddf!r`Pu53?7M7v zzE0tGCc_LLv*xF_I-J~)jl$={Bbp_U)|@p9%Qa-#M)& z7KrY~ifibfE#5>C0ZmXB8usz+g@peP#Fq}(S|dMiPTXe1`i@yzjPXO(j6vzZ9QqTX z-Om)YXT%MGymnrBMhjAA2ZS#!RLuiMdlGa@K+#|Uz04XfxGDHcT9LzSwLICTHv!82 zPz0v*kT*!SNrv+cmLQ0NWkqBVGudUt4xqO;9jx_Ff^fM&PlGzl76U#i4o2B}$g9gT zmFA-Wm^n?DsZ?lMCZqnjTA{tBdCydVD6*T-Lc+#u-y^-{Frd&nJ$PeIvL7eTd7`n~ zk??=Sy=PccY1=k>XJsW>2??x(gsvtbbd*q}iMj%z7ef<7)F7y!s6kQDu_O?BF(4`; zYG{IW03Ag|4MoKs5EbhHqN1Y?)!?KejlPRbqvJa*a8rhD$B-VygW^5@5j_Z` zdyv3Oz(uawJYGA+vG0ZJnFlv>EV`)M+aWvM7J4#Q0N(`iX0*3tf%`M`lzW^T06D8C zC+QuAb1iji3YCa17)U1Rq*don1#%-w%9R&vJ~64hgWx6A1vQ#XE5GBm(Ia?KizEwF zcys1en1H1NZMJzDd9mh_Xp9OXTAy*(3n}1JlizYW15^XNB2A{UHybV;n(^`xz-9rM zn@1V+eTMS$$G0q=g!JI$w-T^qG@)*iSAZ=ZcW3)Jgjdpf$#6u4E_K(WO(SZYJo{T_ zOhgEb5rVbjuT6#}VPfj)d=oGt(Ov2e5gNF@fQ$#sZqjegkABmF$J7F&Qp;HDI3Dtd z&;ZHxd)3zPw^3cuNh1GCdE93-Q)hNL2RQU&hpGr5HIIK7NJy_uUKZdifl0Oor_8jp zNuB~4^;L&Xm+R3VMMGTLDA5^=8kqD+9d>dl-qtcS<{EaKGq$iN`P{C2F9`pCEO(Em z%6ldW3@Be0nS!PW&i-et7h{^Z0+2n)@^dp7==9#sa`|q6g4Hs$;g?P5GWeN%0cPT@ zb_U}F`g`V0eWzA!>M{wLQCEfQ~9PJKVwae{XuSv=kF(PG1kvCem^ z1|v;sAXl?G{AY4`z8;Gl6a^i8ApF(4V+qlGvY0$`U$(*bUD~XstmQzS;^38!_Cj)~ zCm?t-kQHZ%Ay6FK_0uSh=3jL3j0|zkc;(nR71NlNYO&Dv_t~?>M4qEC*G?k^+3_E^ z=Y{?TncuCvl_K8N$1o_%SIx{AWP@as~SWosI|5Rod|BXA#UF7(6IW4U3 zHhqJ50M|z3vZ8DB_mVYyv5tIsO{VVMI-lWdSb5*%VcNo)Je&A=b3@t)gv;{xEqk7% zZtu>##K<@E*(Rm>D+^60xo0wGH0R1}9G3J?%*brs{QS|=>LCSn55ew-8zo^u*|Ls^ zEW6%;X>Kvl7TljQZ#XHfLPNn2SY}@?)!gJq&++jdNDJG+DPc==A8dflR zG=%gHyMZja4|#=jnRlud+x@wa9Em=nU#KM*b^Er{HbSL)zeAI(>vE=eW)hWm)|(JIKfN zEEV>s<$84y^{&8kB%~NLZA}(Qgwuh5_Z245008#u!5HWzFaba&00A)zXi~T1z4T`B z-A&bs@WjEJd)-Yd zT>>RZVI>Y54Ibx<2UNV7zO0R3i20?OJ0^Q&d>RWpb@aiB z;;ZpNCowtsy5!f3j!pd2%c;ZxswXCo;#Dg7J zIwfprUQ@Hj;)}O6Ch<(ud&ghhX^cFwehl`@qIz$Nzrd4qyv~Xv$mG<4)lo;>#rW0U z;VS2vmqsN(iK|pJ_a@BvdY2TZAbwgyqpyNHw~l`!Obk#oi>CF|ZA3n8Ja_*4U!&7+ z1vXzQx3G*keZ?^E^;J5pARvMRtf?-fv}9Qe%*aIGPW?b@LN?CF_4*omZSFuIxMx=s zN7$+=!JY&N_HP_f)IZ&7e`TXZT}*-$r76E<%^(r=VB*|#VeVW0d^!)yKK zK9k=WIfYI(YxDJ)@=9E*F*r3`Mlk|W_yaadd!sHdK{< zFJ*2}>Ldub6~y)y(~TsxzO+9>B0mEP?BlsC=Y z*XlHrch~KpLv;dk32m!p867&1o&}~av2Ru)(fz16*55rX#q5D#D8vjMko$1VRPTep zkz_sq3(?_B3~d8=Moz!l*QDmCbH}tgR9x^YNf9%->eVr~h!%ECs-w@Z`(>9cv~Q|4 zSjx$6ikn)lPX;?Rn=p$n_8grZWVSzp92rXkX-6`pkXGRr%D;UzYt_~RknZ&+%^Fiq7E*h2Tw zcUXuE!G}Z%J+8(4+TKZs&Pt0-uO4ssozI*aern<7dyDp?oHOm7C`z*lj}pm@>$*No znRM_{b^?jn_2ubbe@;v+Exm!gXfc^I!kxzNnF0*EHDpi8w(7N+(4>HNTHNSjW}BMq z)-5tz(v-!eS0htdxHaW}AN3f>jz9o-W(fiV0u2A(A3z`#ghKoNa|UD~`nLaN2C%np z87j?2E^p`h6qp6J)Lq?S9eFtZYD<0a?z)Bldj_n1{rKufbD<)wZON;^lZ`#K0Xu9L zT>B(#RK!;X?F;(t@ZBS^8)o6E_t1O4N;?ZC1+TZ&H3193=wPDX&KB9TYx{yvANLl( zg zC;yoN3vZtN?T`CSiP!gso;&sSQR~`2p58on`p@4rSvpg~+FIW~>)v6v=vLdAk1w^g z!3V<5pZ)wt|A`g9-#UNpuRjMm3n!+`xzP6YqaeqheU3qQV(ef;D1 z+ZQiROaQX=fE+eR9#9~bjRTo<*O7rN)X#cQ$)1}$m~FJQaWKbh{m39rfmsjb33eq9 z+GOECu6oL1u`GM&v*@2gK1XZ(_Ag=AWC& zPgvXpKKkz1*+`}@kX=G&T1JnEf-=%qh&biZ?=X)y>wQBdZ^jHzm$^J~#4o&X5;KTf zC~iF+DkK2yDTVR#$R>7`nKh z_30G>a6{)UM^BawSQa}l*q8D!-5c#;)56I)6kd!Itn0lGNb;PB@3poo94($}FeW|y zopcCZiSN)b2pE%Q?m3>?iNi~<+3a(N8&EeBzy@~e{c}M4V=}ELqik;U6Cew5+lWjg zIjy>gre9V2*(4$m^hy$Ym>4=r1?2~q1v>%B9y*q>`r(93*Dl2CSoz?1CN(1r6mvtIXp4;91It3sa z`teZ=+3H8>G6QZGSMsS)fO1@mO)L*up@#gdfwF4w*f{lw!E=*gXoTm4;lRbg>Z9&<*O zP>GpU8_k#`)(6SCbn6#+E8D`iPy%wNvLbvWWAC@${(8q?GBN8s$jm_kiTq=(G{Y!} z+__20Vc%13f1q3p8Z!;8HcsJ3sdER+>uqDMUYmRN!_KCndi!O8*W(_3*wuQYe%gks z*B5?svSGGfc8KoNRS2?5h-ZAK<=F67qjjrqM1>#g_03PtL^x$3HA6)fUMtohWKB)x z$2Kb8$>tRqRl!z%V$0PLH;jIT4R&6ZWXBD@LQO{ock=xvb}ruZ(l}Ec#Df%T-KfL5A;P;n zbQv{73hmsgovK@>LzyAJ$BbxznZxpR7FTUSre?Qby@aF|%yIrCcd~3c9L-lxPCcxG zhm}QK{KlC<={2`9;$@ROo=C$#z<+%HJax9$q^V1SN^PS=2h=@(1eVL^X0{fG;NtvZ zmJ_@?zMbl?&h(!1A?nKl!qg}BJ;_w3uJVb^<+QZuMSuFG5taR)Jg>OhfFOdrx*U(3 z+DCVwFFyDst<(1EB%NuG$8vXRGP$%7Y?!;_^np?TmJmn(9{5AHII#XijPakCa4>&e zS(2R6p2=MNvZA!w->kUX`+@kb%8*%?75wTgc27=IV7$iTud*FUi`}U4Nr27FNy1Oa z40pEIR_VSe_RRsg^y-t`BSGa6r8)NUnCVcr*afaR7?iw{JI_5jXkoT%chgCYJ@GdE zTcv@)f>GY=ehyvxXvf2r*4$r-_Z9`8fGK&IDAIag$7R%(@0>*T?!S+DZgvA*bGgYz z6^XOb=yAf)8FZaMy)HM-+n$3H{y`nQJubg6FL(}LDPlrpo12oxf8&7gKlr_WZzVr{(8{cX9otf6&z^ zyn+hPTfmJ*gEDqT_#{EP1M*|@UMVMRCjrjDl6%lnyy z$|q%0gomizw9jmzok7whUZ0oODW3t+s#T+0itCzs-Q^OJg-ZhMbG$)QRa0D%L_rIZ zL!5|X%G2qJ0zdHHTRnQ*5+US;AuTOBHFmZ}@yO%FJ!qNG$FwvM@ssv2zlE6atygh5 z0fag{zd=0C51cAnZIqriPmJ5tTs4Zsi)zBGj6$oFj%TfS*?3rmdt{TQIk{xZ1z z7mda*1UhB3G9C6C^+q`(#I&^0U3)|O1ftJbh%G=wGWG9sT@i~8Ny@^uLDH^C(-{VP zNTzid>p(@j-l%t$`{N;fZX&h$ax1rlnw$Ph~IQNuw9{gk0U02u#k zo9s%^VG4+*@Mn#HDMl#oC10{_wB%4 zu{oSHT|nHc)g?4BWD-!Hy#>!O+AT*81H#+UNJ`HP_C&w21GF+xYEx*flW2~f)*{=J z(Q&O_>IOY$RNn2kEKX@p!*tuF6riCENs&VJHgZ~kArJbEk8YMhS`A~G3R*ivv;Txj zrAU914n3MyEJSmcfLs9f0`hAu^`4XrxJpwEQo^OHg;q_HM2Jb8gy}Y5Xpz22fSl+c zTM9-&1&&6g^g{rARijqB^<31%K1)Ab;#W36CFM}|NoiS{JW|gL)hLwbi*E>Rwlopa zCA9q*<#1$SK^eM5M%}3`+Al>Mw4{arkC_spA9t0~iPDHhMR2L}`YDZ4>O5)m0!!QY zW}UK=i|delJbBDkBNvB_+L}t;bnqf!x!#ZrzIb^>Ml-<_B`hy1N7M*~na)uVrxQs+ zHGwH42B}ti$nACI2FcNLffno^%9hAPxe=&-(~Q{%iRU6oLM?Dm6QeQ5!Cr9GoW>Z1 z%_t^8vQ%F=oRNb%2rGmbJUuYT83sSrlioXd+4q>o;0^ELz5%F%JuCfvhr=8X%k;UV z!q29$*y?EM7T=92Mwy0pT<0H5;W_tK9y?QM?48m&Wi2fVYU*9cEJQeS(x${?|a%E1Np!Y>e)8C-}#O8ZKefhd@E<#@t+VVH3x1(2wCi|E{Gu9d4pniqM zcGpn*P#v%GJ`U=S2j%NnaNI~v;f+aonkkJNa8U2Hbf=*g@Jjjr2-G(Y72ps1p+aHi za7dBMyLDGx?V7@$m8{GD;A;ql<7!hc1LL`R9zdwj`_1^3AUep)ramTs>-cVz zYpdFy8FzJ8jbZem23Bl(a};h+d4_SK(Ppdtio4vdxzV@~nB^Bjz;?`G5MX9ll!CO< z2b&=Hitpe{FpeaO+Nd9D=_oGu8r2@wo0YCqvK(B51O~pUe@yok_05_6^Kqw$6J^A- zZjf7q_l0`VbA8b1ja-iIDq{jnF=gAKIDipAAf|0VPV{^ud5+F@(aLc{2_cKN{~b4* zy#ts#ASv%imJ-G=*5U0o^NHh_s~<#hxBI01vZM?sxD$L1gs z)r>`{uSsaiPu_usp-57eLH(zpD{!1U$=a&72N(TySB?d{cn8{VtsC%mS)H{N?f2g-d}n2O4TC3$v#wYf#UkF)i_DKu!yeDgTDhDJH@GA^~3&yliUuNy^ziha^ zl&0Vgu|TQK%up)+Tsr zQ+w{p8+3dPRjUR->`hdmdAKv5x;YgBDJWt@2lDy2a?S9)!oXfZ zn{~9E!Aw?So6}}*5!b~zj~MM))4F>OQ0s3R0Pwgp^AQSj)+S%WmTPy=DysE&wL+9z z657lRQ65Ov=&uLz<470EJa@@-lq~n4cQF^VLKZ>oR0pI>e-YX}wbI?Z(2PJal>tV9 zZ#lETn?I(a%+i*2pL29_z+|}mOmfrMMZFbry!%oY0X$Wt75$OrS*e;}(zPTdUeHYz zW3Xs z@*8TD^L!7{Buxjsho0{`mB$7zl^t_WeP*YAR#OZ@(U)OMoX@#0Kj?V#koUW~I~>w~ zuqgi{y#hcAh=TV2dlKUm>wiP9Fw#(QCX7?8{|CJSqQM*E$mfXMF1o1gUy~TiqD=}q zX)UG@m*91Kns$2aKa=<$dWF%UhBRzBo499mpz^nWDAvOZzJI9Vp86NP^6ufvi*TjL zkObK0{zb0{JLf>Ns~w5b;=zCDm3S9FW03VJ4}inckZb?YD{+JR3NxUQL6~_i!#y_g zYy8>2=@lZ87oc4K?*CtU<=>O|vh}kfmwU<2irrr{J}dG1GV*LYMz$GNi49VQO9Lzq z4VQ(uz8c;k@w0he9yK@RKPNGVNnkSr%Z)y>1O#hf);+y zT`mwuU><1!-f0UO<9&)S`^_Cxa2{bpE+7_CUDzUo9HQRS=e+wrj&8|lYbg0x5Bd6wiYj-GRy=`aNk*Oq;>Ijh6=oN>5`fH_W^ zWUkWmw2iB*Nn1pEqLw=4jrk^bo?8PiLuEehG+}QlT|IKwe+r|bkM!&Eq689{bH)zU z&uA3SeZhtFlkMs82}OD(C^=Irn!b88OB3ZpoEo1%i<0f;w5Xw+*xNe#Z{iGNiKJs9 zKErK<2%f5mK??+NJsk=I8B)~1 z7K}G@8;rYu0vViIoxT3~nw^ML1qsO(aZ658?WeA}Fd3<)#iv1*`-H(tZhQGm!qPbv zsvTz5BC8YCnKkf`ts*%n<_rX?m20vi8N-qoS;yC{zI*M=c$JV%IkRnq=}<NZ;#5P2d#fkh``CU6Zh^Npe? z>`9k(1&x^ow_9^*0TyOppc1PQp*(}GM5sL*OA=md?I!|8hB^fCChN*{ zZOba!t;~m@WfK5e0yD97vAMzc=mkTF0$b&%TA49KChfTtbk7RCu~6UuC1hh!k5sFW zBxHKU!sw$hsA*RXXCe2cDAf^tcU4zsZDQfNTFEqEEzfT^D$pa9QHnMX8tgI+aHuqJ zyXfV=38wnvzKL5W(&bzeG{8zzjeyvDEj}KX`6lWd)rbMuFAcDQGaqLPd`_1bU$Zn2 zG7623aRZ_Y=?@hqioP`Kr+FPj+Tvn( z1RyQ{bcx%qC4z3|xqN&6*>1FZhEd1anTWmRsvl|nIlXz`Sg?^*cZFawFElG7VZsm+ z5iSc)z$aR=4M>N6kI5Snc0$h#CfO@7*|=)9HKxP2?$aZy}hs0m__wId&M;Ke)N;M6B0Urdmkk z6CJG=WUSod>gl(E8OLJ|$kCGXeO6J@9lq9vbpF076L&SiwlO+uTQ?keUJ4DmA`}^S zp&I^7G9Az?nDhE*A0k@F(zA^`dH!A@2uEB3MweM?vu<{E&2O5xnj$KTj?PT3Y+za& zMw)OTYkL{j=Cf#d)Kk0>LrpDt9Wb5Jdm|@aMDXzQC zOJ_{x=a>ukHtOQBuLgOQMY9D88jphYfB%@}WF@%aN3AvKo@m@rZX2`dm+#@>9rYmv zKfmO{jpM+IIR*xdSr7EMJ=x)b2=K8jCvN4q$LoOWK;fXE;RKoi%^Zj#~fm`CgzPBdfFTmY7(oF9`Gy#6xBTbiVkmL8mL zjY;9TQc{RKGE0nxHrXDF**IklOs<#5O+1&*eQ&rofw;6>MtcuMj>5xi|MjOb#RWXrh+9cF>)XK$}U{Z|iW5ddAo}nsi=GvQs%97)`1+;=x>?#THr|GQ%m#_!&7JkmI{S0 zz9}!DG#fva6zhK|ffZoBaA}GH6qDoCvLaF`!}tsPB_*B$Kw!5gv3c7l!do{yH%?3Z zzARt&J@J-PaIkP$T?IL10C|6%&#{|R`)sGlZQeSbW zowWCq5`9P6GbYARpHWCC^Pi=L=ZI$9s`0iPUdL&72)n!Eb`PmAiiwh+u?%p7C`&mmkXk?Zk(IF~y=jbD^z=9t= zK-;trViJ~Nx?RtaMrVlt|F#Y^_H&Jb0k*vqs{_qCbrMnX#?Z^VoTAsG-)<}LP(C0L|Y+XMG$L+ zkQ^!`&q9&JgCtjBjNYL2?Z5^dg3Sm1LL0ebjVcMx7k+q(wrF&&vwY_%rv4TzwI~@q znU#mMo8YAgJJ3l3F{T>0CJxQIi{0W2=VK&>i)*%qa66DY>m|`$?d_!zJEMCj zj_}>2^&7;jz<%06>&nbisFRE&3t+V)V3Ux>3wOP)LZ1Qfz6o8TWnMoU1BHNaFT#H~lGFq8X)!m+F#4 zI;Sy5%DrVUlV(A7U#MxYR1~tqmFu~c@I>{RizM(S16_|ToO!|pXsC}Q2WSM3cpu^> zBNP8vbi^G!ETck>y1xe1|7Ak2s3q*wIMq020Q%6tqD`olzLas97oB zq1@j@<|$Fe3f4zV2`QExlT)hdbsDClS*oS8Vi>QMJJ>rmL*Yx<)eK9yFevRPb+CxY z)NA%f`?a(M+!M6+-*$w1k(kF3k<`2k-EuuX1!0Doqk}t04gToCHRPA0YI3zM+?=4l zhRn`lsH4%JcM_;f(z4N+5TTjvC^~d-nKk~ljdX37 zMK3fdDnut~qGF&SRYjj2vO*h<9Bx~&pQAxcJ$UWlNmy_|IbzO(u{n12#G9=Q$B6!;P#aVpPzrzWj+A<`+_g;Srm3WAq6nM-qeKTS?7$_FNxu7G zF#1;~?LA^%u>^7?2(`rO^i+2_5pS}qJwS&a)JTptTA|Qiz6d!4@776Tb{~ zkeic@#3UCDvBeWLX=l3<90Ju4XA~CVk)q83ab2}@(%_#TiNgZeSp(0X2$}JPzt?@a z{*hsOq3{Y`Zda$ojA7o)p85}9ufNsTz%aZi#YPN1wz+&`rZEpPm zg=bt;r-Nt<>Ud+n8^#sHXTL=dnTMF+q?>mDr>WlC0u6jA z)~_a3q%&Pd4FiR+o0!y;zDlQu6c-hG$jdZLMvBrB_fH(*m=*h$LnOZe*ra;Kman$D z)n~+tdXza8J_x%z!mNF0?_)Srwl%~8t!!L#eJ<=LBh8VzB~wW!6MQVr+lDWJLxn*r z=7rAS!V=J6KIj|MWOc-2vdaLlJ#>W1i+~(=2QDN22u3~TG4WmJ)}!m3#`!UzajzbP>`!9ldCSc8*f_ zzE>BaDxzrmC3Di*#HGt}dkHqk`2n4Qne_3*i(DqWgvJUhpn04{S7>!AoOf+H%O%Q} zLE!|gOy|1?bFQp%cNXo2c0kur_rfUUvk(4P?w15JkwPhP@Q_ivE>z91AFZUN6)oZt zAN!&uglEy!4udeub>`guq;gX5T;@D& z2+xB#upF(pj`j~w58P{G*X&QbevH}<*ZZDaWW>yu=}5KY!gY*{bFidTe}j(&;Bpgnqg)4)%q59hCgRW|s#C~&#lqo|Md#9i%p`{ff)W_?(kH~y z$7qD`xFo)$365}e+H1AWZ#1svlHF5uI@=K!hzM6<8go(O?oLPx#;_6 z^svnfkRGgWK!==mHn^!joJUMF(5bRP^{&|+mHi5bC-h2Cqb!fl7Ie629+7!}cM#nTQ2u zOO{5J38`!#-nR9qH)*h^$f24Zh`8qu)_08OMF=@4iXNF4}{#T>>{W$Mf>7+ zczG;`gE)NSWtN}b`{c8@QK}H!Um36ftSL5g?Ko{K-#uxEnT^S(qgT&n9kER@Yw0dh zx*+~+#o7S<^BIn!8`aDa#+C6O{Y2HktmlsyIIM55K8G`_(71vX@N` zi~qXj#mzZ1+2jS^(qG>_w&=?K1>e_~ZDL&@pqXZX^!Vlh{{stuZ2I!{#QmQB#+nbA z@814?<-nqetv{K^R`yv|`+xw2TLSl+`Sza%NlhZk6s6X@=V&`5U%`Lvn`6iyxA7=H ztSa(h`loAsKFW1c+}Zk0Ot&evvc+WEg`)(WDdiO+rJ(KgQP)5Ktg25o=?AzS3aG?~ zzNJi~Fy6ePRBY3Lr*wA|-B^CUojijj=kQ)T@t&L#+_)y36A3k#bLW>>fgvNO8H)X_ zi>qx5Mvnu^G+>f5U;Q+&}@{4Kb` z*LB{Vf&opnty+_iX?A!-k@ImlB9mt3Dzv^sT`F0OG^U!@6r58v^8Kxxmb^Jgm8q*0 zmN9n~R7-K>Tn~kJk#$Mg*sEnz5}0EjZ*11{Yppv6q(dZ^`21(bBT;ufvMIM?F)f5& z#;GYjRG}#GlS+r0_PRC+iXAd+E^!tSx`%R<`8q46f-e=Y#Wwk*vD*b4 z+tF&cXqqjSqgEP}W}b5fn)->|(^j2XV#YXX#F0l$&y?$=T`naQRm^SVmj2@Uo?jaK zf>xu#lY(Y{y?*gT+I52UOQjX5(vjAokjX(&%ea%Pq(9bz{=xrslk1bHPue*k(N2SIv4{zxIOL}6w;0Bmf%1sGSBH~gD-&Iw@ zc0z8ph3MZ(;JBzmJIt?@iRB3CgG4aL+z*g6`16ZOxg)NmZh2D_xFFCzCGnMIp%D~#N@w~z(xM#g8s$VSR6Y* zzey7cukV`Q6im=YJolaAbAiWW`;Y4)Xtj)dGtvKk(4v|OW;^4`9 zk&`;U6XQfM`)8g$A!f_I23$1IVl)XfML8AOEyOVGv@J;ljeUJHPwVKQR_VF}``vs{ z!BA!k_5t(~D<*0Xa33}H{~9ag7e`0koftwjD-^#cR#MEEVNLFGNg=O@rw=D(0z?cb*%+r9B$%I?eo=QBQB zpN6RTS{D8=&=r6&>Ry|xvJYWyUyhcN=*|EY2c{)7>w?HJ3B_e~6rS3*Ae|tx-}8{0 zKf?sbj*D6bwYl!<_(ZJ@nr|)H@cYK4y-jqtH$va`zCp-ke_z=R>? zX-*`OsLh?&_BvjH#gL4knNbF?0Debf4aws0$!C`ghlIb$P?xIe-?3up$$85z&N}+3 zSFbknvO!}kYZ|Z`6H3g8RHwLXD5Xb<#M!fa2@u|u$H41ZRh$E@y_a=vz2$jNIquHC zWVB0Cmcxds)oZ*@l5Ge+#N_Y0hQ(t5=*_w!mSk6j_)qg_VuArP3hB~Lly&e{ws^JK z0M?amE9@hIofD{Nc@R)+#62J|tlK%Lh5_Gw;PIdywa3(;&Gb`;?6**ECQCKv`1l9A zrzQ9M(hKUkp6Nb0E{T9SmpMREWug7#@>R%U&lGfz|Dy!<_cv>gO#I^?C9vI+sK1rK z+mdl1|NpbD|L@a$`@f#%Be+!hzw!1Y`tikH1!l%fDyvN2Eo4B^QvbIE2tUntxB=$w z#eHv*Be-E)49-*{eGR4iNx6J`D0|Q^Lvk?>X*uz?uK&bxUxf4uvx4@mvdDw2IJTln zz5=qiiteyt#09o!X*>D8fcuKzt5&I^fV**gId`XR)IxxqX?MC%AZSS) zzEbtOp-Icm<@<37(7K{fWVta3_;VN_j5lG_okVZEUQmtY^}WnKF#i|e)xP&M*9y#7 zAK>krn8&nm7Is{pT8e29+hl938*@XGd}t5@%EvB84c|^I`SJ0#Dc^eV?mAr8zjz(b zgBNK2(Mw%0^_B|4NS*ZIYy1aaGw0Fx@S5A!^YhjgPG_YLilu?tXq4UDSDQm$VC|B{ zRj6vO8~12F6dU#nYWp!C_fErf&K`5&by3HgLw~ zR%_KHqN9?r2dIe{|Jn2jr>8!K%g6e2_z2G`BqB?Zza5K z0BfhZ_DrXvGUhG&L3ua;CG;e*9&shVbINFP3j_}Vt~c!+)(d#iwmMURW4gQ?bw0e_9&mv%ld1palnY-F4L>wG~yK}!H-knjqozbcz(zD5WA?zkwo8C#L8Km5fIicGHE+_U+2L*vEIy4Z5EmCt@}cG zKcV5cXTDf)PmZjBfRCsg&%R>mCw+z~&elDiy3SFAtQD|twVlXRbBh2>$0g^O{xVtD zHojPG2pq(6pO#OOOR+2XJpsyE`*Uc(=U}qups| zRgNmHQ@e8`x;qTcj@tge9t!tx$=82g@&BjU2iFDK=fPJmZ#SDcOW+MBiOR^~m4BOk z{uv7JgPy$762V&5tJu2k8>ODX&`3a3-L+cL44U|w_$ny)mMm#u50JXGAxOsj8B&Mo6;a-c^w;P#dMOP8ZxVk3J4me{8T~O_{|m`xFo@ zUJTsfTk__A4TZ#`Hjq4TS_b8N@#93P%4XMH+rdXmh)b@O{!*}clSK=|ihm@}r6VDe z2o|`zbkFyt>^S4erUgzLZN)^Df17=tthw5KVZ53TOwXG7vQ9|c!!7!V;+r^syrLwoh9bf6q&y#aSstI z!rh}mEkK^2!ETuJ8H3G7(L?C|T;135Folgn_O5eu?$Lgg_ZuC!wg<)@;P{L$ByZe;adHf?d$F(Hym5v{p}duGV|~IvK+q_PyPE^ zWXCS~Z}nLJC}YF#MB zFI3>WeXH5wkBiR=ZOg$x{{OlbSB`adb3kYbdMH9-v9l%W0)%Fgf>f4~+dS!fRgfOf zdp+IQo5MrRB}I~IzA!+=n^O)e*7zRo+WJEqW!=Bw$Uk@8(FmQQZ{ZFh69t2)D>k`us* zq%~+)aA^TgGB9gG>7=@vGpise>cL8v>bzN}U&w@z<_an>wXfdjbeIh&x<5W{pZ#O( z#BHN+f=oaCAG;f65>M;y=&}ZxUM;SUi>}CXD&a9wky8Fxc`u-S*j!66xHQ!z$GsuM znalto2}HQ$abma09-z9Z1EM~5uyj5XF-3Q%fuR!DVx(sIM~yGjXM__|Ab2l)hZX!R5Fib||anT$zaTBTww2hLRf!6P{Xhel*ShR|`S>8!@M)5{Q0LVn$ZL5U} zMkE+muP;P~^Q@V8v@BkHBov|E?C5#@>RjDP^ZcUHNbKk_@Yh42+R)=)LM``RK|CL) z&knM0lyZWsMGHAcc~O^c*Zem3l61$U z;6Ic({{(2XE%dvSyeXB}&KItP^UL;kQVrn^ny8Cdq8yfw%TOfOW zPmkIsR|EK0J#BLKAoQCKeKAaU%c7ma2H3GB?uFENmLu72G5ZvCL? z)t}8(MPH`NFEPLUX!u(oX)Q7Tc(ht%^Yv3Z3_3SMk^dKCXX4h>wTAnZoe&ZTkdZM$ z62goUMgxNGgfPkwFd!&uP*hY@P*j`~2oMl7ASf!;Fe%~$h)P?kVNyWQpr|-D2r8&; zL2<0Z-La=Vz4xA;=ll!%S!=Ivc;DZvH!q#q|2`Uaz9y(vpGOy@p0Ew z@5qn@D7s-%!g`WT4UTi!`yxYW4AQ2^m;jmX@QlL}8hE=e-^jT@qFtLo(_IU9T&vvJL&*!VOQetKI@)=J zyV5`};x{4I@0e;NA@Spyco-MeIFxaxZ^y?E zqi3<%i-H;1n5W8D?`fo6DA*eecV0XsB%Jb8ELs-TwxOK(1orJbtOELVi#C2TK8_!!+0{agkEi^~ibzv%F?d2a z3;K+PXML)^Jy-OzC*nQ#sR1f3nloH5byo%o_DD$I)Qwa~udmWw7?^%9C>|xDxMLUu zTMy;U*>n!j?1ncuk6f4PK$^(RyMCPvnN}Pfn8JO{^Kc4o+>QNtDuQ?5;3^FO6z!n{ z{NzeK8}oFOls(bKAeLa#7(z6jnK5rA$@k5jB7{G&-2ZWXMLwsaITL^)pa^7@b__q{ z&P$-;q1x)3ax3H?mj};xE_vj?)u#S&)TWKkj~88VhG3I@!H*GfesW@nU0TcdJreXw zS%0e?7_Cqc4g0_gddwC`kD0fnI0u$wyy~nmY|S$Ao7BACjfW~LvB-?;EBvjyrSzf|sQ2W9$q*4F|VS26iS{*^~{9i5slh^=SG!M15 z=zd7@VnIv-sx#HxVWOjh|8iWUGF^VsHRklv(z}-#xz29iO%|rS>bBoQ`&;Fx9jN?& zy_0@y$Ulrn8M-VUpNJzCQb1UlMhuZy%s*i%j755MZ}PJ%`+al|%DO1sS6KlCrfKgR z?e;l_o@S#s8?1d-AqXzQ^Rp+kIA-xaTUYJAZuMnKvvuL+*F)piXK{ zPl;pf^S7fz?YgBo!6m9x4*K+7sk=C7a?=@T&neEsm0D23@-A@HV^C=wY(N7mw=Jtp zLQBkIGJ6B=5gm)zT(6Xjs3)CRy1vzJMCYtHUB)OQ8ky5o)Tg_fJNy@aG8>uU7m&M zRrK}O(^ApEcc~o$N|=}1!3G8EA?KQw#$6^fB*ZuST^WS7y&$n}r>qVc$c8cmb97C1 z2+>!kFH~Q^Ebgdq?Q>`yaV4TmKWGoXuSx6Dz@@Q6h?4(9sbd%8YzP%v&12de1@)cY z7n5OQkn1;)O``zTZaahY=mOhc#(AN>pi3OY_h%O&DS94{d+|F{Mj~egJH}&V2_f3b zaZUAQo5P~X7ZlVX)1~j8#FSFPydf+f_GCRP6 z_*l+Ss!0Y;KZEgXE_6Uy2s@aTm>Oi1xZzAU34p}1A!1`B#;CaZr3zy=L$0@?U@_hR z+Mqxi=SdoKR{>n3Y~^=v5_9n8d1_t9-RTV&My-r#25QTRXPmYG4Z%={*`UU{zX$F7 z2w@lrxj1Ox_ol#_Z&XH0nd}$F7Fp;5qMPs<`5F?TV#tY&3e8`wk{a^MozKGI0Qe*C z%#S=HU0#K(mu;gXF%rs&{n(Gs-$J@9QIzeCZSO2sPoWae>u^gV)}$ND7OlsYl9$Ky z@BLX3G;Q9x`Nz6o71hF`EzgScYkMMTylFVgd^shfdGae5Wc8gvmm zH;md#blrn`;ZCeO&?V6#)QBlyti1TZ&co6`ctLPc&G3Qbqj(lr=Dc_h<^mBNZa;{u z72H5Nh_uU*MMZfRCo6;O@3fGj64t*_JgqFK#A8S^)#I6r_;F1hi;W-gU&9GQsm!*f zFnjDz$1x=Wjt5hX&1^2l8Xa=X5gGZt2e8qp>nYZ|lEQb0S=A9v!{AC7&%s6sSU3pcwexc{SHl*llkop;LCpt}+`_B1$Kk|>o%0cAJ zR{nKnF~TRIrPBX$W*OE#5?3O=Sn)4V&ei?sJfbUpjxyvR2fLH!`c5{V} z8Bg|`w$ki?Bv=c|SuGp)@bIZFyh+BjgD!~!jw0caMd%Fo-Oq9sf}|B6CF&zXw*v~3 zenN_scSprZxUX?ohfsO)vbZntM^`A1Zx&xw+bz z5-dos$F$Q93mbC?vI3US52&-QyBoIHQX*FGTUoc7C7Ni%k{HS^IA}69ggD#9gON$x zfcMCTJ$$9@p|g5DZ(%G(88X~@&#q?#-S3{iJbR85MWm*>#&m`(=ONbIvyMd={=Fi- zUz$hu9kM3E@>Re7@bdhO`w_ohcKWTw<$rP${!xSc-z!?2QSA58HvbXW#_-Q!^NZ!d zQbTPGBFQ4}wfnOMu?T@snR9GIWV7`5u`@Bq8cf<5W9$Cky#}MiGpAM#M10lYH+EE!M68h zV|y$zodOk@nAuubQ%QyGLw%r2wsc=Jpem@}1>3W*=B}*NbG%~uL1BekeGkDjaG3|t zsIb5y-V$pgn0<6+m)9aIi zjwaxSY__Oc;gN%#!(s=#8v##+>%%bnaAh4!8 z4d@&~&B(AW<#?hg4pgPM8iJd_;)6(qAy(_vJ@CJ*AEUPATa9sV!t{JFZfFYFb1V`0 z0hY%e?tsHt!ziL8=rd3o$*%J{sX2(Rdub#U5%nTT5Yad%t&7;*G;>`y6Y&n~doFDu z=1}GuQ!mq+Yb*G)kWcCWlhnatz5y=jbuRi;v$cYWr`^IBN>z}N0@@7Kl!!v(p6x5& z_}n4r77k-LP22Q3KvERX>NlL*f>4P0m4f$j+xiU1K)80s}4OccgAXWMW-;iB?~g!Q+5pHjn)97X<{_`Y^st0W-> z(H93pDg-)Lnd}A1lMfIuX%*KTh6;d`S7pF%w;D@mY)dZgBIY=bHTT0)mG(-^MQDSV zC`EskWZUJmC@x!(#jgU<7ph-HE!p$am0x>3wyrGJi~oeWj3vHLY%>NY>$4Uqfp{v& zbS|o&=kCE2S`pPz`IZZ*usYd?ILWs@7T2g_09qy>^Zn`kE^KCtD|$7^XbjkYp&A7| zd{VY_VCW*L|4J9`ktzB8Q~I+aIflU2><3S~)9*I~n4Zfbp7&IBt%#s+x7^UwO7u4L zP%?#7ezG4?my#kuC+_U4=b>HTZ1jSra3uN7Me!?fUSPsBA#DZ#a|3Vp)VJ!p4{+~3 z?y{S;AnGJjngz?}2MhdT7^pjoFIhAZsXrKXDByL8M}Mb0&~H8X3V}6UoEyNNHSqBp ztjQuOSPN@1iv9b8qJ1~2|2^P}Ls0tv?cJD?C#UDBQ4%}|g9bU$Tx6~V|0S#Np}Pr= zg_Utu<)`2xADPf2ay}+}t967HGeg=0c&eixiks)yk6hKba)vasUrx531Ja{@G@eak z;Xc1P^!snM6b9V<2a6%wt6o#a8O8x~&o!T>Bn!kub3>0&bzA@*utV#5)lxK!E&(4W z^!xTKy0m?X!f`>b7O-Y=CGOxWR-v6=IOcHXXMX3th|)F=Dt%QA+(Ie^trO=mYdkhD zb}iZJvmv^<9s#TwS{%-q)jKWw>llQJ-^iyu1#z);MiSv2OR9j+4k62fQwLLbtlhg` z(9pYAF>9dWsQJbRHV9xXZ1s&k(56|e&vrwYzs7feQp?Q81bn%VIN3kPaIT1l^r+1v zL|P0?40gJZk|}|Aco64GZ=brXK?YpSMXun1YahP&q&3>^1|SCLom#DGHE=8whED(5 zx|m9^5DK!0Udo$=e%-xY>RG>wu4GXHs6)uRaeho~`?i2{6=`kB+SZnMdDR7iCfBBJ z+i*5>@Bzyo^_@LSXyU~!fqcr;#4Dzcy4m$*f>@m zdKnVMV>A!!Rd+Aq5JXb5!*Nh2<*@0iOqw2HQcy+MOnzaPrcn#fnJ1a;RtC5Hjr>+< z#CK~4mtB3heLu4SwGT68A`@1AtTEH26Vo~{EMKX@q+?nKqHa`HV@NUb`YZ!?=gCY0 zf@sc4yl0$JzfqXrL~K1nN~Favi6PD5h3(sAMb`PQSxrfb;oWXUn%s4w!VQ1ljQnHa zlZG7NyMGlv-zcGoh26NN@;@jE5DU9rk(?eMRZX&HNdajr4Fb9#A)-v9LJ_Q?_{={o z>}#kYGC5otkiFP>-Xy!VnsVqdMtlP|AQKkC-UmiPOC3QDVGM6{*bWm{&W-6gf9n2) z)SrD&;K>yu`^0wJJd1vLvD4iAPZ3ErY_w)w7e7!TQu|S*Wo)xs#)MmdPD3C&t@$laBg))C$(mp2y?C22zkBc z92HMM%oa5&YxOVQNgad&_2M2oV$wt&vO{1gOq>`9%EF<{^_s8Si0d_n874dG41To|VrEsgfXFGQ!bd3apQ~ z)g;$r%tplPI_0g1E# zd_Y{|(OI8rzrJ6VnSOiai&Nwnw94w3@YOCSbLxn$kD__54rLy$`ilE*cs<{whBqS6 z^ASb0PQ8Eup|;TAu#OdaJF^$CQeh!QlrC1tsa?z?XP(<2f3D zb6i5VSDU(ht~pIeNG^TITJ2YvqPazK30?hh>^E-%37H#4 zd<#eT?nZArwN}zzZ6Nm&Qa4Q>5DW&VBJt0h!8N8~B9(>=Dg_!B5WpKMg^QRKf-%s$ zCLy5z@aML77xdF<&qwxK9U`Zb(!9Tmfl;>;EF(oaAw?4dzXfbPwRMZ0T7g6 z>nq>a57$a?VM@qEPWp~BE+rN)=0niG*Pw@xJALNgciO%_wAAUpOE&>=3jrw@yw(G1l^RD^Z`sFDPL5J+Pae7N--KWiTTi zigH5-mRcKnaqAOhxv;$l_0@~%Kl!}b{>3+H!(xx~?-1(e+^+(DfZ)i&+VgTE+kWM<%qz}Cod$*<*5Az; zTrv07HbfnSlulu3*`RLV@nvIK*Xu%p7>0#TnZcxkmJ5Z5SV%_Cob9r;$zRU{a9nlP z;PD{bZh1n#4ygN35$<77R?+41n}nyfF$}+bJ?B%>u>%zE!sMq1l6yu3G{f3;1`L*% z6zb^)QUO>dxs#9W0`({wy2DM6{rG{>z|4gqtA@9Ea0)o-E#pYYYi%hShrZ>Pt3k)=3Rqwel89ZXumJDT?g?}vHVRBR{IB` z>m+Vc!zIookl>3rM@38O@%-&7XHN!(=479#2OK67L+v)7WD1FplpOSZMIS=}r3)*& zZN>7%I6|aj(|iZu(I&I5ZDBfqd6$Ml>|`yBE(&1-%VdMLsK${zRMg~9Cql^@{rvCo2f|O`71QI4>M2}B4)00yik}&+%xx9>VJSv<> z4b<4)rnNdX)CwX+MgcUhj)>opHRz>M;yi;5dyhZbzxKT^6-*RLN)nq{{hd<@XtilI(TxCksY_JLdGVQe3S5}TDF%okjw zCl@n9vTS#e!|O^Iky*Sv#bTOycSM|54M6DqQbIf=BG zu@xld+|!se7AC)#6%(@9GfoFja|~3x^r);JO2`#qEWKH&!92T|qb=h+Genttm{;}k zj!S=z)1nu32%7gzxOJc}dQgqY$ujZDfohqlnJ=VP2K04f$Xbl|d;WVBZXt zH0wRaN|+9JupGih4t{$3;p=*8Mg8K3m$YbJ%ft~X`dq!k(iNel20416A#2eRhdGI0 zJlA1ui*RrbrUIoR3*~T-wM$Y|^v?NZUxdqCP}1WwkO=gn{LBESAFAwqF3L~n2iIB#(ILqYK%1z!gU}7tl`o-iwh)J$J$^$ zLQ{u+w&H9q!I|5hy`{QKSOB|d0aHa1q)A+<;w&Me`x$DVg~_C=w%zH+(Nr42J;E(t z@RcF7YIKwt$RW+T%V0;z93lGMd-RRN+Ye6HPMlX2AsF6zE6*H4eJAI~WH{8#y!Yd^ zLnqE5#TO+Vg&?)QVWtE~yXc3tQy4`wp;hcx=}RIlEw&tuu-q)1BY{`E>W?^&J&QTt5VMP zc#`P@Xiy5uu?`at#xu|0##v$0S};O=U^rvk0ulzTzCX_s3OTO-cRly5_#ya(nRO_yGYW7_B~nrqfYblq$3a4=_6gk$$fj#;gTX8eIZ z!tjuUVtM_sDRyRwH1J|;M{9};`-p7m1q98zHbyi-|D8+y*=*Gn_uwT3%Ug1&9SbaG zSdvRL)1>7cPEd+CV8=LGfn-7pm6l`)vGn)N<5>*M)i3Ng*FpOLduCXL-rO#JA*Uvr zQ&2&W{!bg#O61Q_``4cVBh1#QkUzse^8F}wxN?mohsen%=!j0g+1Yv}v*{1BG(O!2H|)TAb?ek4F>r!=<5(Gt(c-ltk;8dO%z$ zSXRWs7m1|M(o?+^{&n^|ea+N(tC@_qujf7spj9u{Lc7ac4e18-Ufg}t#b_(O7>0nObIrN5s@WDOW3Ffb<&Fe71Pqb92GxlwJ5D!Vl#Pjwf zs48Cf064=;ErIzLKc)gAra?6oG>X1526h$G=z%4v4-uBXQ7BNK%o#O;FSTwuY&hi_ z0`2};rJ%$qhnU2d5es*kb6jEP)9FY# z-x>^eA|h^Aq9JsyJqXG3V((8 zY%6xlHtTl(^Fv=Z>JnfGDao6CWVtqX2<+~iQq^!5OOe_x_g+f{5^I8#ly7st43R7p zrxLH256fN!_~jv^Pm_Pik&vEMwpzIA^vm-vjydg2)#y4Fa*2nG+dmJ%R{KS5d4vqW z38w0OK#&e)4~lgSjx`_>WQ$4CWs}kbe!dCN40W46brW2_@?OnzS{eHNs#o2mF%@?S zF)bQEU>T$fb{NYzLT1-)U!d7KeRd!1p+QM3KlC`KqI6&W+> zTLc%$qPA5ce+Kc7vZb^beNn7Z7xo|SQP3_5CPEd3!58oO6Mnx> zAjcJq6(h7k>XOSID{jh3xwhN&MnW*p!uQ(Qw5=Le=2H&2XgQhZ>SD4*n1#pr0l8$U zF!n7VcI5Rl{UyF0EQ|^nJ1ZIe75>S5J5X=$5S?USY`3n6y*V?Mu|STrtt&o?p5FRK zXX_ou=>h`*_e02V&TP||lF`)E>MkS3B8#Jsi0t4}GZwH9sT1nz>bfsON9l{vcNyUe zN0Vp7G76mtA0}P|Ezi99utcke^{c5|SYtbNVtc-lx+g=o?W=O4Biht*ZmMq+Q%&7B zjgB$ff>PlpWxni(2hrB}V#kniM!sE`iioxC!Z&pw))2+uVr-0dryE;Kwq+1&6 zQ){{;A#=s^Fi5!Yu%>6ACg^xy>BOrnomn7vll zQ{pe1;^3NvhRh~pdO<|$MvS|1hhmGxh(t#AAYv|;K;c98^}S^STPGSx4XxP7+FNk& z`I}dMu(J?9Jhay0lWO?sgH0||sAqpM#H^lU77!ITw6jLW^P^BZX!x8rH+gA8B})HD zTy;lm#bzV`0~G8g)`@5AD|7kQ+K$!iRZi8mw&L`^x3>Q{$I_P5>c1Y%Kj&DsC;wrN z#qjqjSNZ>$bP>%YG6D;T%uGzk?A@NrFP?N5w`o1#z8S);bgzh%hL&)TuR|2>$ch<~ zJX;)CS{40=_`Q=EqQoILx(m)(IK|P`t-5Eg)r?(wf*Bo%q$5xU!4_vjX*Qlky&kjG z!3qO|-S5@U&lJi}z&ApXqzktmTkVVrQdZ}i?;{yH@Ry=>ZFpR(lf;oL7~oM3YTVje zF;+1GgmL*s7dXU36SpM>kk3q?-S}$w8F%HVHtAw|ZNM&v*|U%7Kj0Aq^+JkwbbKw? zoQf~WL^-d*3QbAZn8iUirGutM7_;FeAi&@k#k*h4>9t}ylaNHoC?Qp*7u@0u4 zK6n*-j_58o;Sa)M-ik7oKA2v%NyngA2JN<4BW&-PzK}hz8%AST;g)CvC2ICpZfy2K zoEF7sf>#wX_oZ9=;|5Zq#6Ei`k%*d$0?nO;*mJ`HCb$Q!z53IIQUT2!1BXpHuBq(t z*`_EKQr$FB1VcoPB;gz;$l#e@%S)f{TOnF}1iN}~7)U%LLg!5&z?hit;%CUw@yl%ejkZS=kQ9)06IXAME3F^b6(V=DIO0N;k4d4pd4GJ>8NQ zK;3XA#D$0|gWXY6-#wW6Vd}fBo=GnY&vkmgcSbI99v<@8ja5$Ze|r>o!s2YI^=_32I~q zQaOq3Mr`{c$)8q|H3A2PJe&nf21~{!Y>P@9H`~gt?CvOX3@pI?A>nY9QqwERJ$tNR zEMGd0)I$RSIfT~t9eETmw_NDDbp%(M^ZDb4-%W;-qfcuQ)At9SDjYes^zWE$N)p|3 z&G?2vcK0qUC57rxoF*?eK_(}X;!-@-9RE9tXrNkj(Ue>FGU3}=!?5#SFf*CDPj4s2 zb&QpIn`e7!HG%M&ALSesobt5keMm!fH05*Wn`38A^9GUJnCmC@>0v@OgqW|4q{xE= z&V33?o>LoXVqN00d%fsNybXv4Y&1xyNFG}^w%(sqM=E-RtiuQU=kiCD*}llD6lhQ( zvd+@#I2hhX7^+^E^g93Y@;3}I%mzwXJVY)G zMyts84gh%i!dgUxJ}rF$A^_ae#i0cJ3mrO`-mp{8Yu;7S3}YMDjLIG+*<6i#PG_Pr<}&p)2tNr_3u zO3vx7xrIo|F*;GaLx}CO`RUsizg_y_X^)EvW0JzjbhSJ=-bQf$yD;w`fA|}aBYNwv zBl_nL-w`8R`VZUkm0EeJj1?gG)9XQF9mr!J?L45DM=avbITj(~8u9UDfs$f3w|0<@ z+jGCr!f(^GKcbBcH&}W@noyz*wA^w<7x6`VmBC(u>*A4TZA^bmCWI5g1@nteGDk>mv{#k9bQEyQ`4umiB&@dEQ{kXlgZ)Or2(1X6i3Gk$D zg@MIJoOfHIuEf&A(yjZ|nDN27&+k86-IUcpzF3Jw8=a&b3)>9Gg%=nGt@s;}l}ucDrU#z*gqcFOZk2>FyBk+=1{NCk6nP_EZr zPTE~N@Txf5`huiNN()laNXE3ub-P>+3c+q)F(Nc|0l^iD8PMve-Od=ML^Z9DQ6D`E zXr?EmeeyHbZr)6b3}%X5h2|Di{xwSuAQqaTyuPXPKsKD?C(6b>id&47OoYdVR`D`z zN3?ke>5>FzC02m51P{(CAeG;jlSx%O0vQ!md$u8665`EFx{QoARC#a|ux~d))Ommc z5@M+Wt}+cj{RTr3z>OCa>2lqulbNtvCEo~ai{s~UU4gm>zTok-Qabz7M(6$3Z9iA%_+=nqKwH1|!No8|AQV=Tc&=y=WIr(v zO&Jsh6mtQm4ozIEZs&a}T8fD~f84`S*Ckcey3}F$sSPpFD5d$CnHf`y$c01c0W^mg z*QJ58J`rz}Bt5C=I5Ypw>UR$_&Qe8>w!Je#x+L6(0Z)z0WKBlU-z9n{kUMhZuLwX{ zbihCPp_+na2tb12y7479Ei20`l>g@)Su)dO@d$&=c5^Srr0%ut+cjhDGz^r)Y}rz1 zn}8CskNuGpa8R9N;0)^05AbPAN*(l1yvc@%ht+ zmGw<4?p#9n)YydV_8gW6y&N;X1WAL=vbuPx4HL-An#J_0$V5wUz{PyDo>`4-!g%R$ zNY~mUvmy;oR~Lq9dR_bqlZ-HQe)`Ymz9fEw9>(iV^SUfnAN}z) zb70!uK_OqJTfIC#+3Ic8M(} z4YKG#GTrBq=vgp(1n^R!E_WF$40Kos$dY;fak zVbe;uP&n&XP@fIEri+Of+=nWYMH|Th&yFb%KhtAS-ZK?wENz3OW4x7%pLC_stp_F)DFbzm!a8hj0f4ZU&J!< zcVo5+6EEMSH?UibLvPMuU^|EEsB4msyYYRA8vum5FY*7D8ysy*kX{fG*K0=OD+ zQuP(Zzh>!uhwyo$Y?jdOS^*n1nm)F-l4PyF3%dYkbl4M$DW`u9`Nm;Cv$0$c#vzp) zAf!EJJER3+bCf+7&_kecW;c)0(ma#8Qbo@U9;iHA)_QX=* z`wiNdyKEhplgt=fs8f07x2NzHJ$&W7))FPcY;z5LPcCvEv#raV?0OR(@zWHwR^ zT-5~7qV&HAG?J%qNNsYloy8;ox)viJAVLf%8lLwg(AhO66gN;rhKbU(dxhId?*z~m ziG;ic=`G|ytd=@Ri4S}$$s?T z5Bnc#K*Rsn&Fze<>G{w5Aw7@9GIUgxomsZ9f!iS7aT8d1?>otBUFjCduevl!&X+qwN(f!&OITw`0w{ z>PC|dvM;yecW_sH#d$7sMux|Ot37WFG--ty`b`x`d~34>C}-K**y_61Op<57u4fnp1~laG_a} zj_q;8s74k7MJD?cPy|o8O24t&1hCr?*#^5Qm>VS{X~SJzg}{6SnKU~cy|8erhi%NPFO4UhY?uq3w-`=-Zcq+5j*ciRAgdUnvCy@k^qN z!o`diu(>_C*iGn`g$U)--((%$;#dE!^qlhr=SA~C!mzGM2~5d_bRObh zFHmqZ>Hu`ABA9iD3!ULnxo9vQFO4!n6h9+4o)?jtW4}+1Y=(amWCF)mgS=cD^&rUz zEGa_+Q>-cG8C))yXfw@1;%Y(RsH^dEJ>So*hp$R>4UaehF6gpfLN|~gax2hd`2oe~ zA~!BgDm}K{1IQf?brJXb?@*Ehb)bH!f>wxTgqm{EY86G-xTMqWbdzg4vDhP6Zl~nj zNOaiJgq7GmF{5I74MYq9ja#ck6C&gq!HD#+$Y|!>FwmrVuqo1*V(6jUjupI|jd(6T zy(N*qcYOxy@S5g!W_u(w5PuJ`%@dkHdEi!Ru;c)__$+Ea65KULk)ty-b-z0dxyTP( zjadlLhAJ2@e{~o;J%hrsuLyhjV~?(9<;5IE^-7F`VP&0oR&MR}c{>~ky32#x&97lH zz3B3$bzSY2A5)$GUd{buD|8xp{&xS_3V~WT;Xjpm-wYRdh8QHj%^xZ1to~dWO+m!# z{F`0fd)*RuAT7)>-Vr0|G@0%hgF?rE{Lw!|h+&cDQhp4Q5f@XZl;!v16vsuy1T)rv zCU);~+Q%1nt{=HHgQakM5_;kE!ynTlE$<>R0R@h%WE`mtEy*{}U|Oa{>*U~oyTup8 zT#GN-tB<^KFR%A40x((otC$q9X4Mt^5Yw{<;$<#OaFweVl$+R7=?BJx`mv5HNYh9N z!32;33hWb`&!1YJS&^n4bpJ+V7CYa1J$&V`hnbiGzT%dqMjAgi7go>D6`xlj^24L9 zHu|bU6U++dlt&+2u0PkNyavSqNe7X~Am%w*$Vhr#Zb;kXuKNZhnQ2+@PC-*ya>|6h(hO61dxjafF;huvC3omj&p6>Wz62zJb2b9VbJRLqCm|!D7O4MKhgV zWE0|#8!!b-zcjTz2FVWip<>I4@wVA3Y}B+!Tv!&RHEL5aIi~Blkcf-Qp5`wkh;*ph znNu6#*vVHtj(s{H&AglKPIA7J^13hYVLIiS@4J_0L;t4}{vW0B6h}eaKQ#M!L>`}v z?<%0Amj5}AvZXo**&zo^)vSZPa-*S&15rBNQMKRD zCbZGWOuu?A6RJ+UlNWPiGG|F3+AyZpzO#jxOKztGzV+a?9;XdVMD(%S1(~0n|21o zkU}QK#xzfMVJj~?xYSDMi_#=!lYxifWsTNkm9xh3^R_}o5}261r<=Elq))Jo&+ z`e-2=vxV*<#w>=vniVE8k;6E_961B23uSz#j_5t+E(4pgaaSG`huKY`wuO4R17ROw zc0#d&@oNSX?S6jLHFz3C0;;LivfMfAjRNf-t~AxIaww(ygPq+3Q8@3d$STJpfsl>` zzbM|e!AP23FWsdDry^lboz0=fX)1H{VhCwf)A!l)3!#*fCHWA#Ta25I+klb~7Q&ib zFU$8l_0&S3xIRm`)PcEQe6;R)9l&5!1a8V#*WPJvh|*%izKuXNeW6^P>ou+5f(UuW z&Wh0I<2c7)FC{O}`vybJWB*DWf!uXhyQ%o<$0Q+=*xi?ME{~);2f~2`&YG@!>bDTsOx+1B;a}PORh(JP)!p$HV2z1Iy^f9 zrj>U{!o)jn!Bqp>wLl!^h#IN7wS*P+4w1(1#debpR#pb-$HrGkElbzZiUEGA5NAiAIv^%7JY@&*FC*Yfq+{znL|uh|At*S7%+sN5$+7HQ@*(awQThG|aobQOfk5#P&j(!;I zWsAMfiVVO((E*J(lW6bV$T?oja&F)8>0`s2W0A8H+O*8UJ~j2!%z46z=hgul=ghF+ zO`_rvJcx`-6+eFyg5uGP9{vz>bu+<0%3F#A6>d9fvjv!bzqLA7SCV+-;CceI)ZZok zn3(qU51aQ-`vgfR%;1UPdr12D+NdrVgH&q8ZEV@usgv>PI^>uXPQFJgw=&b`N{1_& zx3O%PxV2+!NrD7PAFqIiMg9^TnB-_0>B}@0$TwhmrYu)@7P`rUDx$sGIT=btP|~ zI|T_p-4o6Y+RT=1Z?iq|va#Y9D*LQD&}nLf=Y-EM=LVPE7yex>SC1T}L;pTX|BdX^ zP!$9aOBDD%kxxPv65IZK0HOsBXO{&X)RlrX-1P^AEKz}J!yiHRe*EK*j;ho#xSSXk zx}lED66~gvxU$4qJAYrpIF0~GZfX5_+Z`%-XcCYCW!jR}eRzweHG|6bz&(~>0IsM| zESd#AeR}d^TD4y6kJ@Q3K}nT(7i=kg+>|upkQHselYS1;w-F`t`IEYu7mI;N{*tQo z=j|_gj(=Wd|8SZCO_BY>=d|07CZ#D$^%tzp@xOig1(Xrif;<4ErCo4)N;lcKPc8m> z#Xi(j5@>)C`CykQ_vff-?z_X2T0Z}NyY*ZJiWzJ38wkD$Q{P9W_c%A;h@sP2DFATY z=p9nnfL=1VxUe)vlS98(6X**#6PRzyYfvm2OcWfeUl)jIM-Z0~+6?)-gYsHpT!A<5 zVLprvDPhbZNOjn;wW@3w3I0$UtVoE)JBUR9INDV+gysOQLh}(5|22vqb)sr-^3mfY zB)S!tkhR<7tkbxo%lL-ZY!qlO5i=7VPVgwUCs9eGu#0G%Px4RqT(EsppyQap-T{fW z^dMr#s<94CVmz>q68cBN6Ed;CU(ZUbAfNVJ&$eQouR zf1>rs@wxNw*piTS z#ms@jf^}7NP!35@ycMrdp7q=2Sh;+hiuAL({Hz2b0G`rmN!N z+(pBsn-=CJZ0uf2yg7nGS?sS~5{9m3SGAHk-e}-eadNnmc_4w0_(%!qOTv_+>$+`f zU}V<|wjrj6ZT=x!QWZcI)@t-skZKs-plA(u{+a8oz~94_WWrGyHbT4dE=`cb zHlPW_h;C2N&Me7j^#ii?j zjApmX`q1~T6q{876wYyO%lJ$CX>^g9VfJ?zf3!o>9g~@pnkCn$hDC^^Dke?YLFI%o zraFRzv<|F+*jGVBEwAn%7~%#n%e{yljcBA$Zx8c+;LJxyz*v6_)Y>WRF8QUi6`R_s zkx}e7{jwoKV2{!P!5U7xNO~Y!<}aM$`Sw_-FH;sJ)T9dJi=Lf&_h_4o@vWN=Gu};o zk1Pu!qGlg9KmGo3!Ses<4mBcosO;Z&=)doTgZ3bDs#F!P`^w%w|l8p8=7~YTt~qi6`;?nMM#A(<2F+2XkBg3T zipi*x^_hiCx_Pf~afcn*ke-Q~Xl-?+TEqiUNRbIZCQF(Rw2bqOzag?jYeA);qkMjW zqg=TJmjeg3k$yEzuDL3kmG70h`jCRMhgH0$@2eC^FDkXlo4O&scw}!SRyT$-sjIZQ z^x)u%$AyS2ap!)o_u_1y!mui=+1p?QN<{oLok)jPXcbb7)NG2Lx3${zXqVeH12h+m70t*6IfqZO+7UWt|ExUSvKnJJ zFKHO(E+J@JSLc2?95p#z2h0Nsf_5cw-P{)^8-iyd4mPV!7=@-a)udiyWNOyQ5sOdz zQy=rLZ_}XhOc+Q1+HrlmXKWOOwBc#ps-1j|B+xr2jv~ho_9D8lyMjt-R$d1(oLyFM z!_XA}1__bN#igTtkC`^=tcH+fHfMh`Z@2A>jEPPdtH>fA(*5Puokc(1UgeT1x{;*YcSZt)kdYZl z!W0H23`$VcJ0Z-20TRKnK~Yetf}%pJHi3Wv0Rw`fq5`6#MFmC07TbhD!7&0VR%*kb zQmYjdEn1cT4xVHC`#h)TIj{5f-npi=z6)bJlYfNv)|#|7l8t7(b!M$;KmDE zYv|Jy?j5;xd{7nq(C()ay~1MZ-}~c#Dn5EJMlRVttRkeLx_!srKu9D9L7S3N%ycHC zt2G3w1LxBwH?r6x@?l@5s-|-fA+p3h21_6-XMTk&Fsclr9;Edzi5*cn^yp!|KYt|( zWv~QUJXW<(y5N+p9Xge57PfPb!vUWB%%*8e9OiBd5oWdWF$P>Pj;yJ-1K*5UX{U!Z zH9)q20eKRey)JON!*sn%mEjYMLVMO@qI#uJND*=u^l}!^beFlvjW0S?C zW>oRKn)p`&$&P2I53SS9lP>(_){oy@@rILWClSD8Xd-%Qi{cyOljQK(tDCif3{iyk z+SDJC*9%y6iSUTh>E5JbqBB{*tzty8cP{8N?@Mm;)Qc&M#sV==g@1)Q%_sXZk_5C- zg?kMf@n9kSaITS-=s`b*}wA$WQVr0V;TfZkxcU;fNW#+!4KMBzWe&I<5-;m4X^&y?ZRYL4s>ACQoH3O^u{y6{QYl( zZCneRWueXoK_wb&NYQ>8C!G%#pt8?^EyY?&^>nDt^-+R$DZn0;b8bcvnA|Df#uYBNLtt3^m||W z3MInL7X+2Rll6LD0}>ErnXeu1H~9M_fss?Nu%h6(0}GO{*uTtd=V95|`MK=Wp=Fi- zRf@!Lj!5OAASosU`S%TbI(2WT!_gag-nKV|oisx-)39H&#=9ziSB3AthDe97Q;1)( zwlcO%j1>gN9JyL-A5_2;=B0M1P6vP*oc8p|ALj<{yxaU~i1Y*Me*F*`l&o!%n!gPa)7fYPuXq^9l%sD7EA7#7rgP=PG{0ORkTe$KIbYs+#*q;@PiC+`U(fOCtDa z>x^SeE$M-uU>9 z+Qmc(szwmTfdg=mALXZ0aESaeD2jfMvY>nAx6jW#~c17Bi&0eEKy8ba21LvLL$I)+q;X-p{`!r`zg`efg+DPLF`PZ zsf|@cRfrqVvLREZnEvKf(n-|rL-ShmZNtruDDi+tIF6Eixu7bb1SG34Mo=_Uj#Q=L z`saLey*X=ZcvC%8m^i%l%2{P-5O{&)<(Ja6tJd1aq71FmvF55Nr}}CjyJ*$!&BGja zQbg;j(ks}d>;RLyz8>JKsR`r0Blk3?vyJV3=h}c(>+qF^#}Y!7D;6uiZriBbdvw#5 zkoGm>e)Y+^uGSrm9)&BIQ&6q0Qx~)t$_hAxo+bNNgwhllQm|!B?}Ifr#{oXMoK5<4 zq_x)tb~p2beHxzmUJh97H}Z3q#Yzs{7Cki~hc#cxRgtXb^lV2Wbj5%2vFFf~d8t;XKsG*i^Ro6c05*9uCYHiE^nGtf=k& zRCLLq3?QjsrkyEuyWu7|fm}qlhZL7McjH+trB@NAaUO?)I$OIS_rv=Y0hK*Ze`!@h z6AedTNCGx3AIqU6V4#q#z*0Ol2H-n%^mmQrk8o8>H|&__D(HT!wWdCev6b(Qd9<&ob; zuaJMmwI}^HGygFnDj=qbK*9S_+8UPx>;k6#CW6_Tb5`J7Hnic&EWPw)n6!~PPw0Gd ztm}U|ku<>%zU1=<4<)<*%{2zyE_f&tkY-ctLsXwPWI+)NYLwS=U2u=Fh=OqaAR>F_ zUw$U(Ru#EF?fbODwYT<*CfzQBozC+B^LTZca~ud;Hs23QyvkgWg7Y;oxI79|Tmnhg zBMyKQSXGfeb7*plR-63b?1_H(!T%C*JP|Lm46@om?!bWVa+8$^>plo7{=vhoH~AWB zJ7qsQFI886Cy!t)P>9!doVEko&b=~RYb|cjk7vPjPXif~!X74PrQu|3Ma06FFJt>@ zr(<%3(pBin7KDUG$tP}gxa`QcD!Du)5(o{8+)jZJ86~Ks43D`~mpc67^jd}s%dt;} zH4BkgJOSLBmaBX1p_!X7W+>i5X6N}I`{P$<^7>edjj zOMF;kToHmn=wJ-q^QUcv0T#dbWC0H5V$2ObC3y&AhK`oYrY2?>s7au5La&+hQRU29 z(xKWeY#P02P0cZJeO8am*xp9=8SfAGvQ3dg_jdB63Z54gzOb})yE(bOScJMwXmktO zPS68^lF!(Iza*36`n}-ewj|((<}+31hHnqwGIAC5V;cz0iz}%v8fGZRLzD__utU-I zU`{d$aK27qs+i$DT8e8rsK?oh6H)3!^l=nog}LpCF|jCPi|B>0sW5W|FfMaz)5}1k zh4h%KPVmZm)zHO(j)m()Z&S0G!!;!>@ku9p@iYRzo#^Po)y6{|bU?gYzs?f`tI2JL z;J*+cN_3*tL9rRvC=$)^aa^Zh)2pu%i@Jer!pmr z&f#Q~IR7f_jg;U(;i5RxnzlF_T!I<@M#Hi1^3nXXyF;cDemkw<{<*g=)CTj)$oNa? zrHg_Hr{BN4ZtNy~r49Djy6k^?oByCyUR?g4*N-rKi2}oyI(A`gQ^r{$hpV5~k7t*6 z?z3Ei<{W>uGLVU6=p$Y70=DyfTLzspdAn*R-{$lxient0yP$=6NR7mDzUNoCtD*zs z3m-G8+d|6R#44Xv=u#t4jq~I2^X&<;V{9;zL74#`>DzrXJ(tzg>*;cH73^iL_+r=* zt195t(!#`v%(pIXXte}OeR_$^U|~>WS87l%#2$Y0$G)rsH@?5{VhDJg3t?s@=MV<4jKC0KJ9!48gLchE{tbxJl$iwVfD%9Fz6y0D`z(~TgG+BQ>V&t# z%C^|CBeethP^m!>Fz>z! z4V{`B^4<4|$fg!sh(j%Vj=wbkuE2i);)9yl*&a1*zK=0cU*6%nK|1q_43P5gD^kasuBHSyZ>c8hO(G*LiJMiH&;8Xqh-z;N3rdX-zoQlBf@ z)-W=Z_4y#ERy?mj@snv}Z#kJhIrkySE82*2c$D%)8=u0s%c9_u#c`XfjRf6E;BMu> ztn_Ij*)uj1pox34yvqGB&D z(eD}Kk1AbxHa=ul8-c`_Z4_L`Zb1=Uqjvlh!E1#>;eOL8n%mNBjGbsTIig{b+o+o^ zeJVcl{6W(O=RVcs2ne_{H;Tf3x5b=pX147h5m}(XwGMf5x57L$9m_IS$L#aH1j;8C zQg6fh_wni5jb~ymK;hew^>94AebABt6!{+HBJZVX1!p^FOuMfBS+HEW;i^wUEz=CJ z9nfmF)PZ`{*Auar_3j3y1_abnscSd&8L1?BKS^S;=&9uN;mJKiVUO=9t+#lJ&M` z0A*&;6-pDkTfFr*%rq`TSm2eKbpzbTR?AE`lS+wbIp-`kQwIULT(llCjk#pDAM;HW z{qd3V$7XvG=$QcCm_S%wI7aLu)$`S;Uwi!HAgX@_d7s-kn|~feVXLN>?g!}U z=_p9z^y7?j{`Cqfeyz7BGtq?>{1%$wjY8WEPkp)?IM+if8PAVzCg<`$XDyZ@Uo0TQxwei<#Vp5NEc zFWWL9G`&=!(AK6c_iS?tj#!(F4m6y1fKsM}sI7o9CmSUPMV`LH#CD~@n+H#JE>SoO zw=9H`<_qfp8y}?Z`Ihc1&j(D4j8mrrm+E`!x1$N&ya{bqZvE`Rq5ASn_B3< z1q!=7!rdVo@ADE> z1<(3#T7@gBNdeaQTtI(OJUp~ZL~1nh&&P5j9K-dy^NF`|lEbUck#-(;q*50^;9>xl z3n~5vr~1yw$qN+Sf%MER(5dxa`?xUJaGiuU1fP7)>ifd;`=(n{rAg1dh6lG-Tl|c{rMc*A(EE4Nv!_wMjRfFV0>NZdS>x1AvVjsbG;4= zXimIT(5k$un!4es9y&L#$oZRgxi1LX~k_tT+f5MKe2_Ihd}AxXTqfiWkb>V? zVLMUVi`jFx4Qr#1@PG|SiEu2*2`!_?)rzAVaAn82;Cy^EhLIv`Y8kmZ-<(Wu49R@V*tNhXhk(wB z1`bJD6PRIl*?5V=ZG{QhVf{{4G(dKmOKs9^7y(%FHE8ENyTiM*gSvd~;p4-mvrt=b zKYxKjuk*6T&L^kmpr!2=O|{V)NX&qtKJZN_ ziC@7JtvP6lRV|uPQ*Z2nQkE1DdsGwsxp^N|c-j7EjpG9cn%`VqXatfW%53@Kk|NK^ z9Lmv4QZ(3>4^?5)#)Cy+F#f2>JdPm?g`e!gc)F2fhp9*LU)CC~b(q z>wR&NlWVP%1U!aEb7me-Mhs`83)8d`#U=>LNGd&Z*$N0{hJavk*6!r7&QRx;2;Y;j zaQ3Opbz3g&)l7=L_)Qnzs9EBj5bPH9)b}p zNimVp7(UYb~#U!xjiFgsW8kR6-c>t;l;;4X&;Wves5mY=%Wv#ocL&H zcm=u#iIvFzv4agMm8H<2~bg?Mqq$+1|$Hy3Vz}!&DV@7u`Gh#z3&`{l|;8 zA2Mf93W49l%JD^)ew>&v|Ml_%w?pI8v5d%aZo%x#p3PT%Qfd=+`gqAub~1cF?1u*X zmK9=`_^|G5#_>NNjHR$aztT5g%(3-{g88M1a4GPn|DO3b7I>E-720g%s>2*Hg+W_b zew$>swf2?N5!V>o`laZQw_X5Mr2s}BwYRmoeS^6 zjV0QxAKy3pqEeW>`=a=?keyQ!VAG$C`K7L5`%J=kOg>O8z9@u*d9}Tan+{~2<>`kt zUMnE|+h`3X0So5PC&Y5A`*p~E(xid&7LzG52g9R<5G4opr!-ogcy=b6H8YPUA>I~d z$$Pu6Qu`~sZdy7?TS<1W17jdmP6`{!2X)k&1Tvg@1XT5geAXhRhy<*fj7hf8v$8W_ z%Ug;0S*&?MPk6-QXqi`Wy5@eItuQO!F`__jWXl+nhdHmSi@s@ygFLxC6A7#q%Of@l zHDk5~yhtQW9+9=s4P;Fi(0e*rS|=c?gpJ|#{ymxy=g6*D2_nj8@;ZbH(T@nqC91n*`aC51O@G~msAw`@ z+^-lcyme~dZ@5eOfBxRQXw&=`E`RSE^*81JFFg)EHI=UHKi!m3Og>vhC{}TdqacY} zPiqZ6TJdSU&DiI@>Sf~1f?0uV6j~t_9S|0%ZIWZ0KsA0lp>ZIwvgeRZ{~gGB%!{eh zyMxxm2H$a$sKgi1D=Mk-b)8eNFIz(yocI%hi*UzK%npWw6g!4l>MAVd@MDHT7jb62 zF}lrv)KT2xVAv(|dW4f*nFe82z;=ePi5^CNN}@~LbI4AxT1jke<%DI*h=8Z7IGXT}~^`>d%-b)l|Q66c!2^AT83a&1x}sEBCGbQtFgZNjtFer86a z-J-)i3S^t!oKO@Y!~5D26R+CXR6M@C7QBb?5}#02$zBA$)fl;N1={kZ!tvBlRhD?2 z_Qy)BeZ00F2jI~=zzF}=L6mVdGIcNQ=xB)P91!vQ4$L^8@%nMax*kCE4F;`P=ops4 zf+}m3C!#{g!&YLDlXTdGo&(b_8Z=loQzOUtB;wV}622y=@!w*&*_gRxhvtM7%hCN+ z9%5PR*nymIW_W zRYM9pX28EM-Ba0nLpQ99$gy*_@?1tsm?uYMKJR(n$+r#x6-jYrt+9z?$l6Jf;+-sWggN&*h8@74Tg$s;+h8X2=StrFe}2(D%IQ%Lf<7ZcUI|nRWYxF zn9u#s7|_V#bC-Q<2)jbC<$N*9I+fRY4Q7?Xk}4KcdIZZS0XNM6M`!4_`jzP-g4=zI zJw)KagkHT5J{;SPnJBnkm)Ys%=;E%3DmgOP(OGXL2uA@c3aVQEP7O}D#?*+M!Dk6wIZk&7}mrU|(M?oQIDk_W< zoqT7XARS06n4rENA{*66kjq!h8U_#;_Jmj*${5It1#Jy-=Bb)0wE0n^9+s=K#WC{i zm&v0&jo(G3yuKs(bvl`7-K^c`27LbL`oRa${Dke?dPH@ZfVzSrh4npcM3&Z=Am$)N z&8Im;Ca4<_zEWfZE~dfUf`*1YTKtj?>M7^qgQvZXWagbbLyLY`gQZL8tYT`}lN{_) z%#q6T$f`A$?0?OC6sWjMdS1(TB9C1A=kul=)5*WN;c%J1s|`H1{u_LiJh)>& zdiyZ!W+j$FCBpLCy%xI+n}1~|$KK54B}P`l1eFe!UMq~CH}}ui81;+G#je65R}X|= zSQ`mhNvWci0G!NvlfBidGnzH?^Mob?+;U$6ovGI{rUfR<-S*+l+iT`Mo%hvx_d=wI z3?eRtrDa8DnDL!zOmE8Ap~gi!)9k26Vpd>|`jQ;l^LP0U{IqRa3GtXQUS)WrPttPwyD_UPM+J(%k6*K{#=IbbGMLs2W3)AY`T6_ZB6=-gRTty@*%5 z6L~!tIc6in-A!ID|3Qpaa}W1j(YxwKZ8BjB5oF*HWX4vw^!`dj>XM#KK;PG8`@-$} zHM<{0XQFoe0ws~g*P)hg?*6xNII`2v&{cQ%;+tGTU#0pXw}hCS=lYAjcvXe~RA5On zIoN7Y)kW~hYqD4Qp)E6^^MT;tAo%#~tbpdz^6Rh1!cP*^)C7xVft%33a+!|vuj@jb zs}$u`G9>f4mRz<@t;)e~t!a=u9BFQ-c3vcsk+&Q4zap7^nFS+ZxGXn?DVxV4yOyK{ zx8kjBsxSuD5!`G<>fSF72&N|r8C+eZ5S!@&rHK@sR)MhfpkV^TDXUqFcTWwU;(}@m z_7)efm5Uama`@typ=d@J46YQ;%P4!Ei`o2a^or&59il>O;ZZZm<_rF<;NTy&7JeYU6Fg+8)u|1g8;0uiXhGHqGYx z2rCs&1lu}e#`K1{EwmFnmzJ2x)01fmT9f*6)yV?}6J7;Nf zRaSbtMMHge*|bAzFJ+>1#z{FJ#!-Zur(tr}xGU%KyYFEnvURL+1}`DoinUy zaM@e#HBmHNVqhA5@cpu(Ie4tTn-Q9prj;27ja}Cr>XgJGdGw-w&w+O!nS~Wg{ z9;?7_F7=jf!#+ytoozGJJ6Mr!v{K;way$#Tz(~}AbxtN@g~SZ<;WjdPiBAXf8eJuD z7$rc2sMk0i!F_|0sS!D`5%0f;Ghhv2-`@?+z0%(lziQ+8r>+rm_f2R5owaRMzzc>s zLNTK7sm%_mtKP9%mL!Vz=<_h1E*=L7?p@%*3O^T^o}bZV$0kns&&cdI!XzaHIns()0bMKJW>888k;zOWU`c}w+7mTcA^ZLOvopdlf`fno6&8wg^v})wl`^9? zxP#PH=j0U$RId`VdmLr8u=o6B1CdOljU^Z8ofM|M-pmaWCHj-_zgr^1Oep3LOph?S>>C*)p{4Fx+wIz1CD#$)1pfr)*qC9m!1W zx*r@u&#GHz{bo)N1uMhYfKrRl-kK~E*8ri7 zCz_@vJA+hle?7{p)Q0x<`6~lcJpEuk9K5!g7no4;A8N_0;hm+^fW-keCuauV4b1r& zJyJc|;?7ZOBbRqrm-j?PyDE2((nP|L98~_>{?Z;Xv~i4rT88G^RLW zLVwCNIO*L%jZ?>jpyCxUqhcx05_cT(sn7BK0X{KG_b?1DCfEjlvdlv>M0Irv^x8}hd{+jo5ZGZ1C7wM}Y;Af6z^ z>4TLth)YHH4gby#B-HawGNLj@^Xs9km)W*+bsY}3Xm4fizBqbj@~$0*z~7!^XO#%I zF+e;qKmw`O3Dgdciez;FpXfq&pU}@F_>Se>j zx&~}2h7Z*1q17t89CJH+XZyoippJ4}1$9MMe$FZ~J4Fj<-aP3`B(BnpEcx9;-io!> zBKq=Ed>V-bsZPn(HM2yNFy%<=4_t`BMo1$_yRl8hubueWKAxiQVATf1wM&d&-jl{P zzF>$%f#>7g2}L8+pl@iCmaZ+r)ROy{+8@_-0>al$RT0{Vqf*z+MQ*x&a z9mTI6F**BSP3Ue#5HD>XVwEBqaKBA_3P-r4!Z$s2do8ISHH_2+!$i2`mw3<6j~ z&x)-;vb6U0)E%;hFxC+$O_~KVqOSd5KJ)=>mjcrt zZ$fnbmJT4d+*-rc8e)D$$-H@3l)41{C0B*vbv(inV{6y2=8W~gz54xBKoM!){B{~~ zy3~VUK{M1qa0+vT%O*(r&P>b1GQ8C);djA6R*%7qszyaP7r7!n(84p@G^%&w;-wz7 zf1(Yzoc=YfKKI@$V(zY7e3l>LzN+sgygp;;VFhKosbLkkG5xtKJwPyfDm?mj*Tvq6 zPx`R#@7m)ISV6Ks!>a1gIwSsniwtAZpipmeV^_>H{C7NRL~RUI!FkirsOmFE+YbbZ z(7l=7)wlM~S#_#{U^=B9A9vItwB*xecVS~RE}X&P7Xch%zj^iKg>9CbIA3%pOds>dI;7+HWrvX=c2jzi zIyL}f?s>{DzZWT}whl?x1LIfV3mhV50A8Ug^nUJ#afq*)*Ei^bJX^N(X7j}j@^vdK z`R(7%gA?>h$Haj%adu!8;7pW^Vh792;~feUyb@Ohuu3v+Tr7k+XOt9rp4RIG-O7Oe zmbN(UisK)BkgYi$gCm&0z0}S&xz^ch`Yw^%bzU_vFdu!1c7I*3K`|nGBti<|^QxR; zF%)3;D{>f^Ly?b+1RP$qP)V;bGTD2wMVZ{l>G)8InFcLGmsHw^nV|#E21dw0W$3K^ zi(hSbs;^6po>|_k%koNuco-?+hDu~cXwpQO&4)=b42e1+9Os{!aB~-EvZoY(tbEl= z+32Z{8g^>rn?Z**5lpJ}TsnGgIDL_f-f3?EZ5`%ldTTB^jxf}=5Kb|W4Z@p%a1fDN z8))Jqu0mO!_ZbN=Fue+C9Y$#c1Vg|DSENP5(BZS%IbY{hdbFRtY;#J6$u&wLI8-5% zSe>ujYao@kw>Zk#6{!@N8ihhkNdDryB1bDlRp`u=dYCc)yAV>PPXQ?a7l3YBK*8Qu z*a*+7{pIIH$L-ZVhn>TOvOfl_ceF~>y1>s5%7jLwNY%II*H7d_ExGe9yam= z$W_BBzC`~Nc%9xdYowLp0b~cDY52Bq7&O=Oacq@YDP`Fnn9kzfufzVrH9Rsu2J?36 zZH7pDa~iC8m6;+ub9)@f5Bto{g_A3-9LXh&G_cS`#%nC{rkiH$Kv&mKj@!&*5{{AkH`J@ zR9TEIvri{$<+FvKy(@Ac52XQU0i!%jFW;bx+)IdlQyRbS4xYnXGnpzItDIR2DoYdu zx?5bS#VDk@%d+RW#Z<*S%BP(+J`!WO-b_Y;@Js(RWA*A{cF0p|@zeS*=6>_QN*Zc) z9=ZvXo-cFQQ0qpSQJ}3Xj$c;9gm8+&j*)jl2&3Q#iaf2vFsB8} z?zu)S??V^iMZC0b)49Zd%W=8l;)g2>7t`{wx3rjCb1=rX7JhhkIRYC;HtUCsQjT^* zo&S84)jju7wDGku=6|NKPmno+UE({0GE_@P6`RV zrAk^hQbZg(fmppSzUk;zBQ0{U=E4~91`auNHZ<3?3tW7#76)c^uKxXE*hVyBHJ`gI z5Vw+m?GsEVJTaul$7ks?Hq|MxZRC1@a36HO<02(fMc7(7poCGmB10FhUQ*jX2WvX# zN1KhY7avu-z3i}fbVrR}n+MEX(Y6gL@>9wDLkMS`6WJmhTcE|-@HCq1)4st$Jgr4B z23SRq>sum4o{b>~Q?!_?=u05`&YCK^SLfo*TPf5qP<)Rl!9G9C&vfaN)BuYy$(Lb> zD>)`}Np#?qh$u`B(Ra(9R}AN z-^T3}*FhXV`P*Ign6fQ}N`{e{15!lwjK}3sYiH-v`&XHVl`$n~Q_65_uu$zSBr8x- z{NOq3Ki^)<1>tuus=U`ce0I*rz(!J(q7&s@-D&CiRch2Y=4ycn54&teye8L_WRmJ& zNtD9$2hvKAQ6zA`vqhuiO=B4j97v?_^PxLOk+SP4R zu#%EEF#Edk+zSI8Ss3^p9 zYF^m}>D40}35)xM^UQNO%aoa^Toq^&3nJW>BHZiBc2L>Q1M&7KG2#eEIxV3z*X2yX zhF0VGJm}uPS6Q8EbZ53qfZD z=H6M7w0F~+H@~e5JudVV86=7HOnK%8ed@#6eXfhwZn!!ft~O*R2%*R=m%(%d zMUUQl%z3FRgT^Wm85;aeLL1~5PN=0Ee$dgU1R_CsdbC9G}b3%p0IT244moA!PLgF7@|CnVfEx)7rQ z&ylwIRc3Vgy>m2v7=#OjO0ZGQ0Z>OG`{K;4k00I+)7H*^H(lQG@z0SfbN{RLZr1+; Dd%h(_ literal 0 HcmV?d00001 From 7f5da2348d56274654faa19e5997fb3308214775 Mon Sep 17 00:00:00 2001 From: Adam Hines Date: Tue, 28 Nov 2023 11:52:55 +1000 Subject: [PATCH 49/69] Update README.md --- README.md | 13 +++++++++++++ 1 file changed, 13 insertions(+) diff --git a/README.md b/README.md index 30c5b70..85aae4e 100644 --- a/README.md +++ b/README.md @@ -119,6 +119,19 @@ To run the inference network, there are two options: ```console python main.py ``` +

+ Example of the base VPRTempo networking running +

+ +To run the quantized network, parse the `--quantize` argument. +```console +python main.py --quantize +``` +

+ Example of the quantized VPRTempo networking running +

+ +### Run `main.py` in IDE ## Issues, bugs, and feature requests If you encounter problems whilst running the code or if you have a suggestion for a feature or improvement, please report it as an [issue](https://github.com/QVPR/VPRTempo/issues). From db0fce39c3065a3e689f40ce33264b1bb6fe5ece Mon Sep 17 00:00:00 2001 From: Adam Hines Date: Tue, 28 Nov 2023 11:55:29 +1000 Subject: [PATCH 50/69] Remove example --- assets/main_example.gif | Bin 109188 -> 0 bytes 1 file changed, 0 insertions(+), 0 deletions(-) delete mode 100644 assets/main_example.gif diff --git a/assets/main_example.gif b/assets/main_example.gif deleted file mode 100644 index 1b14a98acf66c8b556750428a77336a35e2eb0b5..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 109188 zcmeFYX;f2b+a~&CP9Q)M0!bi10>}&oL}oESm_Y-gGKm3EP!U0qLPShL0ud1cA~GA0 zNd*K&W;J0F6{(<>f}#e*c_>t>M5Uy8->#h9tX@>fAssSJwtPV80Fo77Dz;sREG!r=86yQvOmMNf` zLUc_bG*g(KDQx9zV2Us_gX){X^vqy1GZ@_rPBTN$%wc-wu$43Y--m$(OwR&AvjiAR zh@K_Hz!IiyiO{!17+7Krtq{6aNFys%>T001TE*DfY^$~Xb{o?AH7X`+G;D1F#ujg7 zht#wS@o>QFIMOVgEY>(>MmVoxxM(t5D2^_)wd)8b>sGnB($~3Kc(_`-taoC%J4JX{ zgt4@oSzalgWE)SKv!}^MZvxSWNb@&l1sXaB`bBQAv)|~z+UU$-+xxMdf;L4*g{(3P zF}B@o>a}HaWT`ZFf=nX zn!D=|_edu9Xbms)5I;UoAZ!=L9}}i?vybG6xJ9Dl#|!pni*rsECgv4pXBQnxElSTn z6~!rzO(_ReiofVupn{!rDQYI;{kyP|c z&fcp1t+@6$zc&ADT}oD6UO_`jN@HbPQ$=0N*~V7!nM#VNt z5(&E6uk_|M^mY#P_D%JP#nQ6N1E)&|YkG&z-Mn?R=eDGN?ApzVp$Ajre<*H0nVEhz zKmBI@)yL0&&M$ud>-*y3&!zAG{QUXPKRCXMMl>IbsUoYB@{fVhN52Wlo z04!D>0{_BQ&i_G`Iqd&H>i?&ZT3%j8F9U>$L-GJZEeow?7BHGbR}-qywTc&$Vg^K3 zMqWdu?dNV5&^*$cW#_y`ii`ubn%(Zz-Oe$jk5o>2JHxVS2xD!#VdVv#Vx*T-$VABQta1=hNTxGQZY*d$J!#EtT+;%@mw0tft9~fcSXp43`}2z~N~pj&4V|7+$`q zn?wtpId0O>G@EPD`DXS6W5nb|p6$c<7bhKFHJ!_QF~Q7&yUua5)Hg6>Lj>O?sQ~9| zfge)wXIKjeK~~m7g!Q4O0-Oh!@KAO4X_u+EFDh87@jnhVj+L>@C zVPl!mOjdz?>^l!!xvQ_Sid*gSc{stxqy}DYKbJIw_gyd>Qn6>rj8)d8C0`(;mS)vl ze@P9v1&4l^eC&9zW$(wUle;c{?3_-0|FKJvZT_iyu4M10o;M8_KlM&4air(!K7jXi z9*p*3&B%cEcjsd{(R0-~y6;|9m+AI;lGoG`MwKJ;3g4D&NszI~tNN3@F&?43tiphl znPE+4K#-s~%a0Ck=NE$Gw7J`=lW4Bj zL`2HIBg)0BFC)sf{kV(7ZP;r}JrhGIQk&-geE#oXwQJWjBa5wNlsJXrCWVhafTW}q z2O&{$3qd0~RB8>P#hZ*zS$0=`EH9^78=?1MS!5U~xIt);G{Xz-ek32@qQuweIxm<4 zZ121fZE_;)vjdYXVfGNp=LIGKHA-7Y2Q*ji9M%4vBCW|L7tgAbyS-@r*7?yip#E-t zL}!^{t#&AHK)K(+%M6QWCCh6x74t}~Ir+)N*cccbco{Q5cI{Idt|FeLbq|-bxx)=o zOdHmXl#2or++q9DxGD)r+>N4h7*7+Z_DI`JVksSBYLZ16XWnqBd`Kyw!j!N|og=eh{ap~+&nIhN6G znFLf-+T64s%ehG6>KZ%o3#v9Q$8IbLdT1Vw3&z06%@D{=2M_3Y5)W#@fopbi5oU*P z6%}!yXosxTBz87l%7N@E1sElerCJI>(5`s|Y}&)a1V~`cAGtx>op^q=U$CZ9Q-5Ox zAWU}vPfM;piG6G1K(zJ?aTdM-hs0!v6ZJb9!XMp!*xCD6%flffy#zOyjYy_7?K4Ds zm<*ClYBevhVJHWVst=W>`DAiX#}=RG{$N)9wu6T;Kl!A8okBZ$p1UeEnY)@g21+Dv zU}hJ14waJH{19MASfR_3DJGJh=78N*=vir znjg?Y?aI&CK$8Iyq&wQ?dUQUM=&t=jEASDvhDmhXiO=IK*BOXyFjPq-s#t++{gCBHqCrmwe}`__Cf(59JPl2QQYR+ij|Y;r zADf1iAt(1ALj}C`i}-P`G&7QCFA*h^b72v0AnK^XamI(w9GlQA?O0}(Q!_nn=L@Or zFB(ig2_RC*9>~O?JhaK5QQmAO`ZkP+#wnOEIYfoV;oq}c0Jn8R?sjvzE+X&%DP;cc zAcitqi(%0UDb$Y*C6B31YrX=i+_rj#f(yftKX8)gvt(8@hyxQcYz6MaCTb(1M)Cd!BGPCk%%so_jZ zLU{LpW=dd|x(O5IlLXZ)QV0xv=%~Gm?wAn?!k9M0cKaEoHJaUT7S9vsm{okt9Xa3H z^Ax>hajLL6331u^fO24HAE7AeQp+{05}QWA-D7kfIUJ2~^Y44a?G)+{N#V9DZ?$fo z&zg4EXqUrPN~O;YjxQ}VZM^m_ES?MTiN<)hx!-j>Eg+@2DfQpC>PPkPdlInm3Y`XH=SZyE|`eH1FnOo}7I0p2Nupp(lsq`J$YY54%rJ zPo8|Xcv3;mpLNKe3(bF(mj9+S|6TXV>+y!xuMykid0!j~7Me~fLJJm43x0GLEKL@S zqY=NzVyL4S9wtT}7Ng6=N<*;0K%Bkm+%hV~?@28lQV)w)1 zHNK}j4j22B75nuR2TT=j_+HF*Ebt6F6%=-Q%i+_ZWv9b?PDkz*Z<;#Ip_Ifpmc)jY z>~a);T!h8-lq5`*Bz`YRdV6a3?gHzuGpUEqq?MgX?>UpvlMkiw_k0nwEmH(){nGVoF)j)TtAWrKb*;m6ny2_mtfUEj#+XOhPHIbu6z7D}UWxT3J?p zp{Klgs^r)$IB%-_vSUR@SVh41^7h>oy*(BEQx!_b%db-^2OKMh%JM!sz*BaY-|nd# zo2nfDUP;4L4m(yo2&+0@Rw6H}dfZbrJyrD#gQ)&qHM{IsJr`E}>U-hL;p%ri)gPv+ zKZWJp+gD%wsi)Ckj^qg%tT>01cvp`F-lX4asEJRD;Kq64PtQ&eHePTK%YHXq}rA z)tZN&v(u`yOh4z;d#)J1sg4z1=apXPQ(ouSTNm)SZo`i{wpM+xQ+-Hy z{g(9l(DM55-ulSL^-;N1Hd+laP7SesdEdes;>#QMJg&CAeJ=4wL)ldRI&tOR@W#~i z#;K`>q~6Ai+|sz*My^&9|Mr>m$Bo(PO}V>kM7>RU%Svaer<%lC=cB(j6@{NK2|sw?So^R?j@8Xk-5(l1=-y%7KXMDvdeZN1|2S{FOQFB+AeuPVRT z+k5ey!^O@Y7n|Rml{z&KUC86yzBpRmeA_JldU*4A`1!j(n(y6i>h5iRnBMXzyk)Yt zW%}{?38xmtCKBjE`f+zORY9|MB9h+mzK)gv~nv__Oz+~YXwSDiMegzPp+bJTl3yt zjj5=Obne`Br#AFR=N|u>oqe5&=9R@iIuGoX>~ro)^{+T|q$|CzJh`tc)4A&Nk1oD) zm%c+|){*X^?;XK?-Ffc|51;53A1N)+?kRrXl&h3+x}v9<(p~*q<>sHpL4PQ-igzr&etCL7w7)yf82NNji~q0&ubpbVb>JS*O!{Eob<(!V?6#^RAv%@sG6_MYlgz5%Gx33S6h5z?mgo)C^y zDeqcepH%h3>8T^v)m&shOs*3%u4!h-?pKs(m`Zh*WR(|X`U%b7oCk~&Ds!E(^!f)N z)B)pWnQOUpb;bb2W$;?Wpj~C(t2+ZO{ny}?gGPCSOqV{1^N_y9kXJ(Q*ptD4yemGH zL$yDL*dKa=U53lGuWeb9dR7iAM-E3)du*Q!#VqwkEe(qzMs~S$`@4)JP}|}wM~;~{ ze^tKuR(mj|^2Xljk@SR1sTnu_`Z<^xd1JZnrXb_WGwspm?*~N73D*usj^_8boLm|$ zYHoIRxmEI^^>oIq^68fS{iFMz+^X*Hlu&QSofxjeUO$&{JEr3Hh3Tt>{kPhvO*zxI z2b}M8O!qaP=;>MU_I;@*>cYw<~q_2FPoi@BZwUr#Z>dI?eboIl=PIswMeW>V$gL z#G!X`&1=e zXdM0H$lgDqTDmsrJj`)=7<=@pO2)&`s){|95B;zGk)+d(pML09^)O}IqxHB)>FcUD zUVD_e?aa}PM`x%1;BUJv*fzOi??chibGg?h*FK)ie|jlLXDUp2s`z6~$Hm^tf(a&AOwHrBf#i}Uj{e!WEeZ4@Lo_f5*G{`FR(`>xjYU0u|>hRkQF&gj#|X&eRu`S14ie|4jA0Iaxi5H!`NO(M%etLx9rxJ#6E zu^N7rKJ7@ZmX$?J-Kh19#|f3atPc)tbhSd0jTZuL9jL!k!q|R0&-Y-%-ExQh@5XK& zZ2Y~Nc}z*gFQsXs)~CQMu)MhLej{{q6V2i3p3P06Za_h2n{R2Ng$P7SF~SG97!7w5 zhrcgA=}LNWyUM?-^=V()*LT;Rq+Z&jvlnpyhjz<(K1kh7)Qu-IIZ}~ z8;dW9gmVilBbYn6q`VkfZGOid3oD@GMi%!g@~2XQH=o$jyC zH#ImlLX>EnTMkA^%j|&)M6#QgHpqZTb(}#PgnDgU1B${i6$U^LC^URyBvJ?or}|(D zO2sxbxlO4Iv7k0)4=A9{h6@K&LndBTTz+Ra=1p?0)bzrL`Jeq5EgF~k5VL?FBI=RP zNcI3Aj~s{&G8aTA;E{+8frSF*G|!%#7Ljyjpj+u`>JTYXG6L_oTJ%$(-W

2eClT z8vb~o-IK(Un|~d%T^$G1+0#s+`ex31L0D@zF{=5S5C>I(a0yUI zGK)*xmOM;2O$a&5L^O1sjhKbd1P@|FpAX$l==zu%g^c|TLEPw)OzBATR{jI;Z4xkJ z|Hq~qoBw8JX|ot0pziOId%|0lq)T3k{8fN4EkHvrAOs5Clc{tce@f zpogF%A;kE*W#%DVwi)}pQsdg_AC+c!XfDqQet^rodht;{E+t9B!Ooo92EALYqFnQF z@=_8;6~djnT|fl~76GWooa!cgQyPLwMe1N1(CddNMhgwa!s%{2LaGLIOMNIdEG2b% zrQ_9=i3&mjyh1gc{*n1k%$)li{5*31nIASGksI)(cxpOSA4%N0 zp;`NJU(&XTh!zf^1HKn-|Dnx&-0A215b<@L!tMXsDgNItmqpkyAm}N2 zHI`++^I>z@eZ)A=c^^{8tixpDoY((40t!Pxn}P;CPpVnTF9hC6ZHd5HxeEZTD^b*) z{IOSRZvW@AzO-+jR{3|g%?ygvACdh_tY3^|dpr=kq*}ZjKD8!d++qbzW7QrxCQY?8 zHym_p6QGB+zkk%W<4$#8U+2ds-3Q-4yW7|G=W}V+6HR3%56Z(Kjl9SE9l0-|=0F?; z;j6xRcy@b1tH+TqALOVl%g4r-oWCkPpqnr@X7(<;&>#*qx?a1!@b=5oC%-;eW|8e4iwsl)=HD0;tP{<+VFKnDaMg8&J*)zkk|Y=@V03h-I3|+! zqBt-TGE@>6dw7@>W++3D)&UvfOjJ~|@Qk_ZX93EMY>H>fj0b5wR^UnA0RQZv3Vc2zh~XPBaNxi= zF{tK%W(|{cf%qm8q*&Jz+>&_bn5k&nS0q@wxg77s!V7U=Q8CDjmNUF4Q#N$uRY$`@ zI0br$E+pkB6?;+Up>2p{RZ>4f(<_ZWLI7!WAu&3@4W_a!1&^deh0w*<5M8oirsEtA z36`N!0W%c)poNBe-TZaj<=cm^zcW#m3vw1|-@=5Cam&KJ0Q-*%_ucl-E8D>wA%N)J zq6aFK9eFP)C>3QL&hGh;xZjJe}NpAF9XTYr|}X_3Ydb2+h)Pcfw}%hv+$QN{cq zg7kSUFc@U8)rNMyzsZcFZG}@@$@GUrk$USvQbdBa5h;`rv0oFmj|bIda&D`F0){f; zLEBBMpa0Qxx?i^*8Mo$e{l-gGJ4EYV+bV-c4kr-f*z(t&OU&W zLY{cocemLA9|_j{YY9_Vx(+1$32{7_rM3)Va$Nwx!00?JzH!OYO7Ya;Rx;nAxC@?E z2;6%q)Q47rSJY%^;zkjlygflA2Wq$y;1Fog_9i^YtpGnCjC%6o+w)?q`L`GkWv)Ly z7jUt4w4b9`D0w3lmPj{N%)(`VQv70OkU4hjLw8vdo00=xNxl4p`cGncyR{&{W1XxKB4%iLtHCF&7P6>(sf-)yCuXvjK;IgaG+#u%n4Cz+5Oab6;f*g?5;J8{uO zbH@Q@G9ZpxL732Z)j8zY9vH|g;}b(ACBR`29-!3jyQmJf4?;Dgy3Qy6SZHLbTwtHs z1rRhT;kAU*$?{%fE!v2UnFQJ+OqruZ1tgG1k-c27wjTm?+dLTzx$yJu4G>!(#gI7w zY3L21%6Y22o3Eivr0^$oypU^by`^uI_ z+%*M~Z2f&aY%p6>eUyppuKGQ4{0JFUI-f;#Z9XW72ve8rX*E}L?E`2FP|0)xTnuQ} z;cvL2VQ<}>rwo4)sS2@xtpqse^`-9H_urXOJ+e61w?V^VJz7p+$%+HeoNHSw63z_A2k+JzOar;tK~cv1ktwbf8orG;Yfa+ZxJ$jm>LZ zeRL*f^M=-PQ5Fj>VJ!t{;M~4|4;1m zU%k0zFb8Mgg-zxol!1#AL{u~s4#ei5RIp8% zmJ>lw5*F(?%-xjfg7gIdWv!0l`Ijm{lEI&1YZUjdJKt7U104r_wX!>@jpWsbAhDl= z9TRZ;*xr!ClL&Bz=dU_aD4WYUgYNxhU1G1W)iA4ilz8jz#F)E*=P1CbwxjW;!JQv8 zMP690`yBk9^s`p!`jO9A+Zmly;W=Jn_t)isnVX#aoCHux5gmbyRF0V0Lv6(fdKkDB%mP!!)wx z*#W8xz7F@$L@zD!Q1-?h@HAOHb0sYj+q06Syo0;UY=II~!-xYz$rXq==;=;eB~)dX zDfD_!J+3mVewo7}Tq@5NpMZPX;ZX2xw!cxlH67nlTrAc`-T;>cxog0}}Y znMyoJ-Z;bI!g}o zR}ZYLw7CPXADJM;pC5*g!Gc^^?pw#0Zb(YMbhrfZFaDeF3TgKURJ@zOIhz+|5j<=^ z+uRA=vCjHoM!Ut=doa__Lh_Ci$@?dq_aD}toOV;WN(hN)VR(dfjoEpyp07x}=$A@& zSH?5CI-37Kvf%#*K)I&O@KFW1ApAo-go^^2gnyIWI^W|~djvRg?J8~wEriRJD6;s) z#s}ZUhC=iOJSF0m#h&{sSX)mw*~#cYoNdfV*NxT3p#YWH9DH@p)uydk%C@5j{z z!I}BOeISAEfsDy_LEaUYl=?t{dUjkJU5aLK9(SS$%g1Sqk%h0w3AuEKmkMhQLS8_9 zVc=b=AAP-W@Q<#u>yIfkI(W=12ZQatX|d1=gr-G`7u3|p8;3zilaLsY1b~)S`etSp z7NbA7lR4c!P9AW1p|<|l*p?^EF&sOa_()VdMn@@iWYOr5iSI| zN18e$$Q3&GGIwI@1ZhzWftlN$v7~DCp6@gk zF>IQ0k4Uw#KF^GR`{PJuL8e~&o%eNml9VTy9!EWSwXm(Q|J zXu80S;B9R+13a9;zZ}L|PZDl3w{7&_^M32UNZ;^px*xX;;lLFG!>A&Q9Rt(kiJjg> z<~s*sr!F^c%+)hQs`%Q*h_t-_yV$E3fw%F6n>Ebf7udi}mQw>m0y(56Vd4t)R(=&4 z!i+esp&;zryG17LBGQKrMbvzZ5*_uJ{lgsp=hIFTml z*8-3QFe!l^0Ay6}7-rX0ToQIjNQPy8Mu12fgsBlVN_tA%lrn*chg#CTj%ldSS>)K_ zE}cGouAF!%2jFCSsE9B5s5jlVPXDI@rHhOS48KcnYF})V*ycp2sVR3bXmfUUP0ZcK~!itcBtxl-m3Tzp~(?N0{rDAce;> zeTG(80UQr601nAnB?7Mw1SK|LBwo`s{*8xbk&0l&D3r?bnG{BQG|2}201bY+VCucQ z({M%AGeGLa*FC%pEu=yKTL~B^*@&sQ^D$E^8iX#UU|51|-S`08QD{USW`aUk>6>6U zSUE@uw(6mG&>?Ic5@aoYw#2{?rvl+X&hzheT9 z;&?$5Fv40;s0}8W0G#z{LSYzy3xGi}06ofRTTAa<7UIunLZP{QC@p{*gaQE!2x~4? z%thZ)vXvolJeM^X1Ym>Ps_eS@Vf@=cwQ$gk$6JqK1t;ksvNn%W0fzx2dQbFKmKHV^ z#wtV?yN?4yBtU`E=r1gqe@d!nLb1;0Dj=eWN+D2F4;4qA33NiGHf+udtwF&uTRq3w{f-oBBhI4V?aZZI}RtRhu@ zS(B8*>;~*h1>DU5`Zf!!XuG{FrzGf*20XM9#+q5Yc(6!%r)@XA^nz2gHP6%Jxlaswt(AX2Zy z;Vszh`jN%eu`wR!L{wgZ3ABo(8!Ipcv_NRj06uuA%BA{^bLEWthrCS`qmWzcdrpmN z*xhn)+7gHM6Y+6kDf||vNhq=9!%dhFObWv=fIqt1C|F3j6;~iKEaw}2rLFpuO!Ib# zCGsiyT5A)XO9W4u(6nWYIcr0Dn zasZbt2=n|EI4AzvG3r#0v%fn>Lt!4)1?>EQChW_;r~iyPkjk*#z~g?!Y@B~(_ttkJ zH+-R%yvomG&FzW&^o4Vph&XR3^gqqyf7Q|(0QYZe7zW6r{9&o43!sIRCe;l7w^}-! zi=lrRP5Y18>8KP)I})4%K40P?6GGo&m|HQNcI5@C5bpudHK!UkR;eHR(TqN5G=2`Y zAIk3ScpKQ@W15|mya|EUusxH#h=a1w2plcx9}H8<)MB5@6|f;dAi||E#otq7o^-0e zAK0v2)Dj`u_t)dU{M-54`vLZaMl-iIauB!Z^J-8(F;uqN=m3P9g^9Cv;3^c#oKXT` zmNfm1UC(fhv*>v5=viho%LZg z8nft}Zd$scfNGmQx4igi(7V*aHsDS7qk`w_H=?A)db9ta0K=w1fPn>#F^#>!d=|M+ z<)(n(j%8J`wqv8WYeq@z5T2o&_U9|zH>Kj(U|5H?#wLf?9xH{C!6t1>XrJ=l2A2)z zJ`E(oKxjzNFw>hY6OujTZG-E6z4;mik8+rSuf!+{2$11|SUGwv4!Be)MC=>3o7I5; z_K}9dV-a;6FC}yb zc-=DE6oZTkNHzpePup8%I)UxOMZibDFbq~WH);yHgMvt)18)rCXf(X;t|qs)Ol9V> z0LsDw1&WnL9Y%t5z(t|}2rk6kfJiqmsKiaERkFz|1>$PXN&`^$W679#CSQY02TyZz zSSsBUWX}U>A^b}#j0ys-Uii7k^Sx7BD~rTvlXhv86chu``Aq-Qut`oz4PH2A(OLytDc$cVLk9^q!7zLtr{>RF;K zJWW&N6OU+?J`*=gu@C;NCjH}IsF%3CSVbE~Rlf^i&VJQJw6`zYiC4|xAk9;@KOT+b zI`>AP#BH|c()1bDJBVcOb9p| z55o^ha=p?N%Jt%5(^$GlKTW2*cwg>W4Zy0VT^Pr-K;Ct>L{+$2f4c|`R-7Y)_(Xj# z2H&%vA+S3yN886kR|c!y{zwtz-1rK3G zk+hE*(*AQd)W73o*?%oiD|A|+Kcu9&V!e>N+4R92w1IwzTf6?SrlnQ*bQAR4a2|DY zn}hX%;p3-_HdZtK9Vc6QR5H42U-?z6J@~HKw7v27v&<}`;wHk(aZM{Ew5grA5*6qi zo{#?=a()0ucf~Dd;Tz=;#qAGA=+jwrf`Vi&O;R;=1+O4w_YJQTQ6=Q z9fODh&9>~_!p~6N@lPB1qGHh3U=8vE-)6fkZ?&42MW^+an^k&iw#-A^h5azVon+S> zLUgq~?M2S_cD{eok^KJpx<3By%NoRPA(ILPFA{~Q?X8NdNiXk0Y`3~5rT+Eq>hA3~ zTUR!6JnA|9V_9>9CKUbRb%eQSu<o)TfzJ1v+)RbX)T2IFW(n;44|8yXMf-4Mx%h0`DxOR%`$|BPl^bh z2`mH^=;71^DmahE1{vMT< zoedOX7}!m2A0`Gx(zEf=hImh$s|AEb@rOfz`Wl;>*Hzy!CbLJu49;`m&75+LSByObQ1w>*Sgp0Z2 zhaV>RC-4xN$8&jEL=mfFdaP0Ng&=!@}y$8sI8$wkF_wob=Kxcau6Iu zjU{=U#2jIWHD9-e4|8pyoa4bU355o{O4XEkYzP)UO!{HPU_*QPF6>t28woEp4W$g6 zYFZP7OG#63HtYH⋙bR#1?FIyE!Uc{dItQ z(&P?QF*I1|F#D02Xu@47>>Ui8@s_n5t}&n$UfgW3SO`GoN_~Ovdc(_BfI5bVVmf3e zM}SIe2v9W{2C%rd5b1j$;cQ;{Vh|=~JxWDNbE-%__z75Wuwm>m2eGyGk_xcSmfu%3 zeZO>0?aaPYt3H2yjvL6wOaqRx^?f~kH%lP-q6!|tz-`Mo0G=V;RjpS1unvZdAnXvY#@?+8|YhFQEtre~4eG z^XV|pbUS4_Mw7$C)ZxIY04a637Xq4v(T4#y2h$8eM>IjfRguhIKN+NzZj5@XJ!)wu zUD4q%kiouf2cnf;n|f;by*+DM0s$isnucEuxHD5)yj5_JhrK$p+8Eq4Xlw%x0g~! z(a4x(pSLTqzkZTGM(ttt6_Em}+4K~#$4e7gO6Q&;qy8nL2!$^JaPUI7aFkLK267jr ztH84o%%OOCP$P9ztHT>Mr5dI{g_0 z#2gr-{Jh>0P>%MI(!8X+xCy`NJLlXmy`lWHheSY~A0RxK@;sDT6YKZ6thc!cW}QTX zbQbZ6k|a3o*C~jZIb?oAoQ9EzS4~6@n*&_7rH`9w0btHnPM|D1Ado#xOqXA7Q;G5u z7-*Wd+zTb-7xFO65YV%d9vZgYX^b4bKM3ZbAht%?N5NMs<_p7?RbtTri%>$Vw07OL zXw2Hb#Hw{Wpr!#b<)CtRauUO_?l3(z)?pQ@mu;iE528X19l+uKrW^andY3+5%p5s# z+rUNE_y>O=8p1@ZQk=r>E0teynM14&n2Efj55@N;!OfU6{pF(?s(uiz%II3GtypFp z8>AG;m_^nE-`05N*J?_Yp>>noiPe&3p7@U0cEU%3L?Ivpni6O-Z%L>?m`$eAwvOtO zTDg~T-;Y~dMsSIhIJmQ8B5f4LBorq_?8{y3+@XcW#mqHwF{6!(#LxTBtc*7OEj_PW zJ&|+k%UJ^&L}{H=mUDLLtPzA3?qPCJ3fKs>r;7XQTZ8>HUS%NEd;pBFqDGNzcjUo5 zC6j7*%{=zj)m*!d#NENf3-d43&rJ&ab`whV*S*Dsc@D#p`RbWV@lWvIEdnldlttec zxV+un@!OaAlAgRh_`OZ{wuzkS|ekgATS(_Iv!s}yaCR=R= zm~~0IjuG~Bk^FyyhID|KJvQ~s`S@AR&{*|xXElEzI1nwaBz*Iw-E-*a&& zysy~xPUXvWugy}PSpIdjqvPA%KQn*+d=AvQr7t59z8{_c=RW`6W>l~c>2R)w1!!}S z#Y7LNTLLE0r?B?K3G(VK)BiGcvQQANOS^mB0M5ei0&%yz&QEM*QbKgNzvJc^+QD}n zZwtK#a@SCb9vqe{+>g7MAsHB&;C?C1ijP~Y@ser5_hskp7IU^%tmO5U-TLpn8sjGp zV0mj>o^+{HU1lD3pPBBVU-&|dXE%n5ZPycR`@UHO0<#d>hP>`%k%k`8r_}@iffA8U zd^Xl|C2*|FJZ1|!sEvs@XYCPsxA*GayG=nys_!1QFmpL!74OjdR^pJp=K*VROZ}OoJxf60&F2k&DDnvHYny{>JvIVcZ%bp96_;$ zvf&^$sf0zC$HdNvtes{AIQIa0RhIB20}fIq+uaUr@cGQq*zVvkL>#BQ$@f-Dn^y+b z=m&!;ju~hv$%{P%**HkSSK+;BH8JTrR~19bAnom-S6oPn4&Vi|MjF`p_A;+sZ$3wo zbyT|G=h^pG)W$17gPjPYE`Of;EkYg&^&}G?dbL6~e-$yi*=@HR0JaF@=}zo4a|FdS zo^{$Y;~XTIY$F2uq++P&u0=W&m0ntd^h^sGl4(q6q{`638o;Gc9Z4^}UZ(H53o!~E zg%dd-DW7>8hZby%M*} zVHq&%wNEmxP!Lk(ZstczlMTqa61HeiBWx4?lD1_#1I$osQ%&X*wiTMTCCvFoi|5=_ z?JK5}2G@dENeqm5Qh!5rsDlbu7sDQs=8(|E&@nLA>RfLR6T`d*lv(bI_>AxggerAo z7xUaP>uuim$P5qDPojGhS#@E-h2)JeiRaPh+hl?}yNO0H=uQhKpk(_-++v{NyF%w2 z1?>ow^A12_dm;>yI1p`_Oah0luCN_7_{%rSI}xW>AmKuksZpLKOuSm9J1t5vKoYY> zsp6BE*%u!7ZA#Zxpli4P)K>SrK40^9WKHULJ4Sn#Sjd21;9ohuLH)Uz!|9W7H(FG% z$9I!2u-rTpa9numm3zt{H?}5s7E@3U*T43+z%85Fqd~d1c6c_#jpixlVfC+88FfIw z{tt?*{v@~$L_xePfva#Q8*C@#xV!hgo-w*nb>5V>^KgkNTk1zxA1PN1Xt(EaCb5^3t9FNZ9@I2V)I(UAF?m(!b_SuO#^9 z1l)g`FPB%$7tIy<@gJkID|WLYHw&>5upN>lD-oxAlgPoEwK5<`%!nUthr$bR?q&*E zV=Ofvl-okUPM`c0>rr%E{{H#(V}IFU@lCAbOuB2zBI8RAQ4H(;_423v{wy_%h|DF% zWlzppK-3KM=Z2VWYGju&YSxIWoi}IS3sPV8{_OQj8!syT7uMc0sLB87_rKBu1QH-X zC}QZLhbC1B)kx8RARsM7L{!9}ps1+nbP0%nJ#<9GfQYDw0YR#WD2j?2swk)dELb`D z-uIdNeE$!AGv_~Z9w&2U=AGTW_Otui{rpyu6Wt`^2zCbqo6bG2PS!lDBas&|eI6>{bCd2%RiQB>F*Sov{u{2!paS6!f$N4;OKj5`yM(F z(&hq_bY&?MC@04Sd?px%e=wM0Dy~r|*C>w)OZ=m!Fbr`ZZ8(OmiMiz??1#Ceg7>RrmsMJ@S z+QGvE+U;@fFZf`_E@YC(?7m`&&e8ec2@okyuY7AAP&*QoH^TI}3H8z403lf&1K--= z$p#pPGR5#hT91_mpiu>+P3j3FJ&!v;zdZ(Td3dr_3wrQIX-7^Up4?z-Y)qHKa4oT0 z7v~y%RnE$mrEuz3tbiVQ$iHfo|G0_vzYKzcms178TEmzakxT}#6?@)+$RXuOxdCLE zhdV5PEg>5lRt5&720c}4=JMK*D^{>e5YqgJxlN_;;Xu!UkWmw;{2*nffvOY! zy5VtaD(|T58R#xxVRV323bJg1q$UMrp~KUC zqT@{pz!+E>Q`T;(OoY$IT{R5gMv7KK-bG#no=eF#*|m& zWGR}Ga5C=hTCN1OtzqFzfwEC#tMu68!)iVL@+@51Qd}P)aVfDlVApeFiaI$eo?%sM{?=HrzDC{mc9QBe2@}Kcf7V ziW2v@T;R?!O*`)ZVsJ$nCIE*|u;O@U$hs0Jn8h*@Qd=jJBM`tYol3^0r7y(|sG5bf z(X({DQM@gyOMmW!g8Ebpe4(4NCcC8ldDrx@uFFrfp?Gc3G$8Vl3DApZ^TK`I{MN08 z)Zhi9=+Ec+%(olJ6)(rEM@E*CR9gFSjCInCZ!!c`ax*>PQuZ3tVMt9VFD`Z9=I1?J zy#VCRjzI8}I-sH)^eOZa^i*RU01fYq^DnVdjJErmaSdG38(84g-ozbH(@3L_7KZdA zVoktTfJ`M=wwj(&;ZD4kw4FilZOA-h!Mi1mXbqvUKc;09^Z$(l_ev%Crx^FY--iFR zb=l^?c}&`5SGEceiNfN_X-HKalXQvz@Iq!O8F}Cwmmrr;rMsf)@kBqVB(;Yqvb z_)61zlw+_|lYjY%r3c5~KVDuLy>)Ku#C*x;w-?o-c_>8(U#ex`8-0~?-2C}_*MbbQ zC!u1M>d^MeypbNuOZTq%!zTd}l!4X2EHF0yykCyQ<<)v}qEnTbh#Ougb`COwz zYz4~tBTuMSRNxH+89|Q1+pryhATXK))VpnC%8P4s-W^eMuQ!bqGZ|@ky7Z1F1Vio zcyOp?U=B-G)|LEQJXyxdm&K=Z?n_fBK!rk6PwT!fZ|vGtR3Q1d_TGs(>&l6yIJ`1G z7Z_gwd*^cYNIlD@#NA)jSfQJK-v-iGV2Rjm;+@f9{FGTIvMLlMj5~QhDztbgHpo%V z0F{CqD5hf-+h6>BfB%J@95w@-6ySu(89Tdu@XOM6-!Iqh`-y|9G<<4Dubx&i9w7;jGDN zfmO2aGB#hNU;OKxn`-&+lC%DswmaWHo&Wdy@;{o)fBaxXs-o8asF>KXol80>Od|kseT}ub6G%4-Nb$bk(pQs95;(!j6T_ zzSPzO%7>^;Rkd};X`h)^Io~R!_NGe#lTH@NSkd$oWu05th%HEQ3MjRPo?o{RhSJmE6x z=Yw~RRDRp|gA&Qa;bOXaE}cMv#TSn*tjGS}#QPUgh5tJZ`y%yLDHZ|bOZ%+N4#|9R zHU}(iow{2=Gco_fdx1x{tQr^;OrgY1_oCB-mO79+`V32&GxrL#13U2#3{=gwRF4Bw%!iMUt(sY-sy~oZ)9ZVt?#%fd(|+QtK1zOL zJRE~x0ADx~|9S0JKP4Iu>S-*GN#&62uD?T@R>{+j+(vnE);R9V{`AB7T$YEwGI&?| zL?<_@2FImOO8?Wv{2K5zv&TGo^Nw5pBsARz2C*#vbVonC(v6jKS z6X6yQ{7z4FSIE_S{BbN|{HveyA8qipR3Y{Mvcd0Cg`gr&d_K!%8$bn#xc5~s2wyA? zOv=RIJ%TBsMRpFxEYkmcYhxwLAwB3KKyjxI6o9YM&lo>ox1IR$SH&40Z>WYR6%o#4 z!u(V$W1_q6zu1g>Wa_s63qwW>FO)K36#jF|nk`nLwX#|z4>?!8Gji|V|FJoYaghe= zmxX;$Gften-7?eXZRQMACn!4hBz6T|bGbqpwU$tTEsJ2Y?we|6{#KA135$?`r_95v z9&U1cUO!n6s0LFC?~hb#*{|z!GB6#1TLnyhYu!J?%`l6OCijwJc_oIorhGZlsE>OW zQ-lxQbR+w#$rB^^zm7msDS&TMHU7Udl>dXw{zEwF0@`YpOJl8%%m3ME_Rly=91_rx zlCm95JNin9+xyRNR3^dBflY%cLS+V+>9$99jc@bZprwC1UGc!oK#4(sfPBGew087L z*mYGeT}md_EUY>u+@mEi{A$9Jx~sQf8}qgO2QNlRXDFj`Y@zT@Lp{`~)&nxKt$wY< z36I*ifN}$j=Q$neMja%H(r=fXF01}#Fnq2m!m1r4KENJ0-HX`5U_XU3j1S1D0kRjDb2S!W&~FSv~(siuW#Hj!GP>&En{IbJ78JTjb{ApKPkOpm7u;_ zy%Q!wH^tI3)MD33ufh_YV{3c`!3F+KY7F?dr&}Ja&md&!VFTh{yr4#<6nJ4hk!3Tb zP3n?v)d2kBeY9iY`|2n*h;d&vf-yRKE^WlF>%!r0yGr=S;nIBl|Hc9Sqi6g-`~UzD z(q5{P)Uc}mIS35zzAs`U5wb45Akj?@5+)G9Npg%W7_3E&ulhStTZ$FM1_g8_0Q_i>?iJ-)4}r#b`5v z7(3Z5&BG`h!{%Ez=1VHJT!}NES4j+Og!Ebe_-SY6bt~#lb;waV0JKEeJb>kX`$TFu zQX>nOcrMa158C|OC;lI*@c;i&(wSR;0;>4m4w<4$p%xp%V9^`@H^cs4$YFO5&Sv+2 zRj2duYl5T)&{%guv`1ZJUsKhR*u)pPgRglnMCzB zUw%?Usqp1Gr6dGq2AtUay8p)fBYo<9*0I*g`WM#|o><7399)pnRw!~-P*s1g-ll5& znjgiq(R&PtoVNde&zBj^yt+vhS48U_-K*IWd&+RP&6TQ!Z@U95gWA(CPa5RBuiJc) z+@^awb)HinC7mye_(G}*^#5nR%>Hxrtz&X)EnIwqCVP(_U2GCk7hcAkji|gEc{8~( zrZnzt!(Hd^pZzN{S4(ui>74pR8``-!KYG3Lx9|rgCn65;{;1o3S{u7*vA^IKFhqI2 z;|DB3%mlq5d8@RlEP`1W?M$^K9~ayNS5Z~bd-o>loV4g58|=-*n1p$IZ;o6ML>J_S3Z$2&Zpz+fUkzgoVe*B5BhFK26eTu>tStZcL&Utw)DEtK*~U z4+J6#BM-i>DoEutc2hQ(Gofo@s{3Yi4o~ZFF>y|@@kP6zU7poRanOM)(8k^y6{eyB zx8e@|l@6or0FeqkJqZQg7t*u~VAz zzmg}9-2P0jE~70JGZoih<=sKuDl{+2pxe(cdJC?rVn`317AI{i{}O(9bbZ*z)V%rk z?=AT;`qf|@o@9*&&@x7vlZa9K~jb* z<}>?qv)M1mf?JOlM%x{grNeZvT%B5M|JnZYk=u9j1RHBxbA&bY?XT8;OT|hl16pTQ zX?hJ23`unR6&Gc;#uaEwbp6vRJ3n@@`>Z za6zppS-qZN{wus$sX8-A3{tqHS<#IDZkBCF!{+ufr)Y!?CAaFePfMWEW;e`off5>1 z%EWu%t`7gv)Aq83YEouR9GY_TE%b^Vu~xD!X?TO%8d(n$H+Ub&lV5votjj2uuT=3K zwSP3b$EtNgMm=-FD^)R2rB&$l1*91ETHNihUsxYsKuKL)iEXS*&fSjBDaA^*_R6mK z55Lzt^LPxT+9G`Li<_MEdho4IzK;CX1>nTEztLO+`C(KrmA}~ac71vBDk`Q_EE|dR z^>nz|;hVk4f4bnU-f0kUxU+8CvV)K9req*O=D_JY2WoLSr~Q+DQ{68wl{Lpz<@l!S zDO+M7Kxv8BJNL~;0|qm6_Xp+~#cieq=NkU~(1D1a1A`;QA?xnVn62Mxy>|Uqt^!YV z1u3*ThOjYd_PT}Gl{R^STlAqh(;(kLYYMCIWY=W<%xHM9nBwd&^~O;1l!Xq>8)Qg- zLTk?#=2H0b&kQN9EWi0_w%p~wnTMq_bz4sg!_qN6cGCVp@scFr;OHASUrM1Tam^ zYUslAY|}&sAIDwggquD*Iw(+kM20B6v38+oJW`lyO*FTAH?ngDk|+p(ShP2C<9+MP z5H4{*d_fMd(9_~&H)nH$mk+6DsUajHY~t43q~l9xW@`a^2WH6lPyY(Ha~YtM1#-&b z1NF;Dl102C!<=4L1xP#;b@@z)aAM!%-x-d%jF>-5-&gze{Xe-e0;Bw(B-Eg^7)`)2 zlKd6>=kH`d>4ACJS!kBU``81E-(v^jskTN$Us~7WWb99mxh-_aMy5Hbwa&pT zNU!C>Nw~E=nHetSff?%J(lA)p1`DtC^MN_H)o$^*H*p&BDTAIGJkm21ZZS8F?5WzS zkXn0Seg0B(^3#EnEw!nQSytrjDq%PF94pv6pY;6atL9JLgak@%c-V^ zO~qbExITk<@f;qg0G>IXP+hP^rJl1pPlfA?zEp3)LqGyfn9fZZ8M6)GU72uQ1qM@d zNeg0)BsmLxt}cIy1RtGsgb{`h$P7BeGJ4dfxsA6aCueG!xT#$J+vmtHkyJq zDn>t9M!#mHe*Vr-7)#fr$X*LQzA8c@4dH%7sB^Q@n&POrQ%6r0@7MS7ANC9u7{E;p z4{SRX{{;`SryJ0e;L&))T^LX+)t|o|=`DicsK?%KG5;ojG^oO3>4ZoLtV{p+w9&e* zB^gT*EJASnJRc-eOzn!Z`MP=&y(1LuO@*TFXB79sd`O5kP83g{ifAR~q-B-&W@Z$^ zpGzAQNC$2l(q0H76F2Gfq6xf+)6l~!r{Sm>GaWq?2m^1^(H`qMY_e>E3E`3P@NYzK z-!XZW)9{SRjN!42j6$$5`Mc1m z(cMBhkyvgCm%p5#aI?$ph@IS9A?Rjm-ghc+i-P(>$cM_Hj{6Yze?d=*WTzMiB`Wfd z7hfqH)i#_sTp0hA59-4gXc_1CP*63Ztf9itCINg36VXmVt+`d$4xqZ}s97HRD$C)U zlKd@+yz{CM7K>pKyJLPU`~H3wpVZ8{Er5&&fiSb@UZR_{4a5HL zl-%K%{Od%ydPxaWrqsbE#o_>}O(IXD%ZEe%9DxS9@=@Kw9p#Q^>ZQ=Ya9r9B7nVf64KH0uc&=Wi^g3O3+B-*0J>35X z>I4Pqd@HT7+}X|8zB~nT)1heYlpLK=D!6=3;E0}S+7kRjE|_sTLD_m-Aidb(Y}snx zS^5^nWp-(g5K;3*dA~8&HH9KZmbBg6Z@J^7Y$Ywisl~C?_~U z9PtOgy|W$-LR(VgNAVC#F=(BJzWq!mT#>+9T-ixII4s=y(*GV7GBf~J=*o8cq@U1 zcDI{JD0!czaCl?-M}oVED5oigkogc2AL6$kxWTv4D?-!}6%=-Fx~7|O9glJ)LDt7Y zeJIc{45&fPTHq;jmZ+dtw??d^ad#NA(GyQ;Juobl~0qB2DGoDqS{(sBlRP z0)~~v*-$bb<}cKGvj{^SgegEOhbL`HvfNTAvTsQUdjKkh!`(Az2d=xWTt9!ami6c| zWSk1yDNxL<$Mv-`X^6a*EMqLYFSn@1OsWOP4(Vle7AQh|Qiif7gk#iNkv4)u*9 z$7lTw3A>RW1+rA)jg$yP&^!kWQoXE*4W~orvm->T8=es)9$v1iAI_v8!bP%1JUdV4 z=BA}I_cJjQBW9*^a>>K;=K;9$6*yf0Pmv&;FlbE0`ml58MQTeQ9Wwr7{gbLV^#Q1v zsjd{Z9VK%|m72zhi0FZf1%}*H*-c4@x!2`@(ta*c?toc!iQY7NMS%XnN3Y=TK6So( zKF-`(0NKTdZ*Wk^c~N>{wRhVi=k^h~yG<;#+d23?G3XMh{_ea=taHodW#N!h!|ppR zHp49;b+%XR+J6$;S1B?G3_N6!sTT-4{)-r*VLd{Eo-LPgI%RkHtNCg~M^yxRt)ShB zPUpns{B4N|ak9MZ&3Y2i`Bc-aNl9Lvj@U(U-1+J@=1Yy=EU4+%9atdj#<|)HrFV3H zfkVZ2ZWsj>X`C#6>0+_xlGV9OUC+Hbay!m`N<1#T#! z+K^;F{kpOHR`@o;J*y9(otnmc(*$dPA3py_6i*6R4RQ>KTVd^`@Pq7cA|&t<54Bsg*5!f)IiYD+l4zklse-fib5 zx5na*JFHtZP073NgWXT|9z97sq(BzaYE(|UT)*^{RHm9;EB{mA_QLu{x$^^E5K#$q zhE#7Uf<_czcK$B6m214>r+v8qbGZO!3G`fSuK%fIol6J2NbqPr)N_$J)zu@M>`@Yw zWegv_Rvu*qbyXq3ZAd_le+yxy!}aop0{=mGrA8l8qZR6oHXhcUb6=f)#~Ib6I}dVm zfp-5=G|K7Uck3vsK%*hIs{;Y8-VrvhT%jpI7E@(%si?P@E5d_uX(7Z>7TQ^eI5&*U z71FwI4^mc_p$}16ai$f06#0a6&?k|Y-CrO4g!__GEOzP1WeH_=V4$0bN^4ttPF@$S zN_r|q$lTDd?_p0H_MqVynR5c9%UDMqN*Epz%58phi7J!Fmw7ZSccdIPRW9Ydzzi}aoKh0blV5=fY!$@CA$1VmwXRKfhr!z-178j7TQT5x8M~p zB|`GI_1gvbD>5D^7D0w&uez?W0|!3zc-SCHw{+(y^bE@%Awdqd!LnH}nS~a^BKSN7 z_2Pi#$qk`houi{&^6YmViTs>xH)0?UAk)IJ9*Vpszwes!eSbjl(1qb6uZQ;-cXdWw z&R_k8v2Y#}=3biPTW5Ui(&Wpv3y|r+h$8h^vOl-*?xmt*vOUAdbP=*x1l=Np-R^vG z^|#CRoPxSnPn>O)p5;E|sr#7xL7&G&9wkCzc(6^!ptEM9J$U##yxi0V^2aGNNv>Rv z2%&8B?E6A*Z~_Z)I+xkD(I56y}*Dq%d1CpAID3&@;6JBR? zNqG&s@Sro<+lDmLshL}9?P3RJqP|kxI`M#lHDnagKD-ojrOMh=zPX14@g_p7Nia8& zih1gj??x|O%pX=qJqhQ(Y;KL(G8EASo_dWz*o$Cre;DQ1(8bb;DUxgoVAi*4;1LVC z`-}z-mTqagRli-nbJBWdTxF)IJovRx1~d#?X98D#Zsyx7k0HGdqCA&Le$MT>f3knr z?bF3&taX(DGKG;rNNi8e!2Hw>CPKIO-#J-)>ypCP{7&iC^(ELwg}3>MB-)ehH58N* z9onJuQY*gbc_|qW9;AJ26p4+jPn?;VY7vtxsC59aLq(zMhM*2_FfoED`O|kwhd-du%1RQsdkhew#<~ZKR#Bk@ ziZs;e^fFJg&-4RPC7_r&T7j~A?IF+gM!)Q*Q>izQzr2}^%Rq<^tylZ)f=CU@ zcpj_diPm6t^fP)$ID&jLtcQVMf6kLmRbL^8ZcZ~VZDah zkyVYQCpDih-Gb1%yt4LJRk)mR_gYeQVOQ;thuS- zLwM|Mlf({PL-5TL9vjcL)l`_3S|07I?i0#Xl8^mf`tu6wK6qLuZ_Q3AM#dOF=(@4^ zi?3dIlU`6EKJUl$#$xpY=tD_d;t^y!CZz{*=I ztEu3=;l;td>-lIpdue_(|z1`jT7~#@7OhZ(EUoWTWuc3FK^03KS zgN?;(88z8sxa4xIiS0eg3YqZE-(#Zzx-FsJ5THIe9VfR%WRi8SfU&v8<$Iz>Fn1oRq28ISc z4!-|%M}j@_Wo<0D^!lbPH`72Tlhzf8bBtu`_UQ<;Sed8fOUX7BC4YbQR-QO+K&(2A zNqKJo&p*8p0M3$U)nh+R)ODZu5L<=IYNMDysy)C8CZO~)-fC3Nk9fJO-x?ozLsDYZ za8YT8L&wu5jy+e4!iy(mt%w+Fhc*69n;*Y~ezGm2znC}|p4QhLRUFmw3FjKU;$c57bm+WU$kiKinC3`1 z>2#9D=S!*j4%IuNS>Gtmms*zy;n1&gySu7+Uu*|iy&bZS} z(Fje6zCTJ|HT>2oI|eT%=4S?+VXk%}}OHzvng z|Ms9kKF5N$0-mz2xH#2H2A4=75e;6vat*L#x~yOBKSp;*MJ*cjV^d@-L;=Boo~C%Vh#{TyA_QwH%oOy$tVNQU;K z#+RA>Ycu+~6>c+SE=P7$`%75Z1~JT#G%DAQg(w$_&zO;}tYw`Y^{k8)>F7`R*e$W3 zM+^$jJ7JP~{b$EJ`?%&r1Hy!2wqyN+Z22M``CUY&%f(`JI!bHMePG^@e1OkA|HrVJ7S@y8M&TZDwIQtF>pkPC zwWxF**>Ggtr#Bm(ZhmZ8RM^YFS<}ML2*2xYWK^lmJuXV;bm@-+Ap1@3kb5U5?0W1h zG+ij!9a`wM6ED~Xx2@_QP>maUZg)Bz!{;PPNE(-(Ziux@N2iZZ5vR|1;O8W~X`u&x z%UmYvv4QykS^uW}_v_;q9rfEvsjBT%R>B291HX6D@u*GK?&pt(E!&>a;;@#V*R5`k z_||YJPU~(iS=KL1;cZ2K=qJhPWu^l2%Y$35Op8*k1B^qHlUh77WX)48_`0;3J7K+G z!|pp9myRfH^6l<|cL_O$z4GmW(o1#d9rD_lo_0Sa^bD1&b0%uV_aENcu;vpfgA^xH zhGz?)YX|Xi;0am@Ph|C>^I40DevQXtZ)iJ}qgxaP4k9JPwM+@Ax5DZ|!-l8$UzA0x6g9x@b?{(7jiVczV1;<$T8KEz_^+?!QH+l~&~ z!=HDy(-|S;`+$sR>}5rkMfR5Qr!jXkut_ACWtx|U1_9iRZhs%QL%)+`0<*{3e=xN$ z>#v*ehQ>=+C<>s_N)+vN+HcX&I(NR{?$^eHuje1{6>KY8vo7e1o#rLr%!@o+6C(Tf zu-?0dmzo0|r4|}4d70I(*!zc~aMs`MCJ!%M&)xvU6WN|D_1h!eofs#jeMBk=t}Y=R zd2I$KL^9u=)s@qif$?LQj%UaYCSxTbnQ&KPM)j|D7*?jB zHA4#n^`mmui@4j7cj2#E9_M6@+$nwF%sY%!fCuMA*0NI_;Jf&|?GkSJ7|W6m+TVXy z72<^ZwZ445KAZs8k${Xz*;9V)aS^!q?S#uVO|QyYEFJZ%t&|(CUr3sAg>yU%oI0Y2 zOp@`vi8SXgQ}VGNxO>EK>~9Zj8!ws4hM&ulK zdnSCA(FsdGdsM*O?ZC5i>2M%|9zP+SC9HQp3v%W|p@|BLoKx$z!@Luq8_67$B=_V2 zGgY=(-=u+IWmcJ->#>)>@|PIw(*h*H6SjC{Rvd;R$R zya@h!wS;JGVUzN$_VZHfbKJ;;N7|4)#)i-bplx+K^!Hl87>DA(!kozEyqyV z;fhVqZi9_8bD>VwGPSu9fPA7fLsM8AyQeAp{T=VFE62a|oq+aVa>-4@FlfD8d12@A zFBumdvBE6WNH3tw2PqF%xb!o0sbC#(l?3d2f|#MX0*@p^&eUHMgvnRcaX#&Df<2b6 zWLO%Pg3t~OP9Nd~s{hVHkEAt2bB?=v3>X?grEEz}NKG>qfV+O;} z81|uU#fBIN8e{gL9?_j;mOb3J-PmDT84)yKd;(af{nM*&uJJ)I!3Sr3_DojYDV+!7 z16CmLtE?=8w40hj$g?jG-~K+mdYAzuh)qWZjd!Kp`QnRr{|Sy~)wnA`irdy03K-$E z!L(9lt<_MBB9G!bVA%^cDec|9$g<`GSAn4~PZ5N<0b9JzXA^(f+y0vq5JwUa39Y=} zPapkh<0T6@Zn%uie5V}#Ix7coI6dR=9PiI>sZwg_()#TkN>-(ykc5oGn2epnk9JA` zt=~0y_^Xx@z*7uAoQaTs_$X8966sp{0O{5(q-7d2C@n+d?qj`~CwtO(nk!Q90c@7H`A06p zZ3XU&WT5yApVX%t@&FW(lZ=P;70Hapa-?tsL=}KntPi^ZsEH-0g<)v*kez3 za-SvSF^~x=73oZ%mb)7O@80_qwE{8y!)kq5xOoMBix0$BG1gsyX&`}cfCq7S9&sA* zE1u(xpJ#d;4@`t+{!%jC3j$^VcOPQm(+*Qpq z`MT2V+zYbbN}u|MSib5j4w!?xI)JB4M{wOkGa)7dmoX&*Z_75W} z6Tli16<2Q<$@UkMap9;r@E}*`iOkjWd0FNd_P!M^iUc0;1{+Q2uA(Io&9BSJ0>jDPt0cK*T}O%iKOY?xU>r0hscLK-i; zmkU2AMhwB)6yXUJm@EboiPD~a#regg&X-DWbp(e+@x||vzG5+=MIm~HHS=>Y+Y!93 zmPZ?gAs(EgF?bdx*4J;WiTw#pAi&{C;&2R)Mux8?KP>(OJ{PQjjGr|8B#uOutbOz5 zN@*-Ym6qUuZ9gaIW!NWRcnHb^Z}A>J zaE(&W#7|SDy&!`Xux=sPH1^$*a-$C~GPOrE3xMLxNyC1DVyxCr>7%w}W(u@AqHK`kt_w#Sn zWR!ifde8fisCpEisZ9m1xPpINO#by?-=Eoi%9he%8w^j^xZ#8Qy^3eNQ!muH6ogGn z)y05)hM^h+(E1gQa~jBr@Lik!)m?nhyeZseO!`g8I%FzZkm7fbNfvUf2uzpOuj;Mr z9X+6(`=F~y_8fmQTRkjQm(2DjLN&w;-_I;{2dLlh7pF0(Gl69*gnDB}eZn~FNM8d= z?d?jXEjut#0QH#zE0lh-s{Oj>J7CufT|bw)qRiF;4kh1YZ?1)?Q`p{_P~Bdz?=W=j z@DKlcAg3{oqcCjmXO_jV?gtTjBLS)_IOOhdsKy9lL`>uKur~`J>Io~Je1DmuG{4#v z7tF6y&(qZB(gMhrvo^Dp@P|$vvRB+Uhj0c!(yDMR%v`_>K*F_23~vnFbC~7P%MBO< z6iBe(1h!o*CsN3kcYti0gPK#>kvOh&UG)||*FNnowG;xCu%i+|{dZ6rSA)dZNaQ(YGCcvfxA1rb683Q|H2o5tw@mWo+41Vy3O%hES$A}j(@1+23T&!sg@Rw`aCeA(vd5Q)tSBLs26?3 zNN(NmSsxK}2hr2?v?{T6>lrfLcuZ3_mu29=@Ch|A-xqhcGmsW!D#%Xs!MV#l(=cv| zdrv0z;k0!5jF6Cu0p&Ax=i?d|@qDUQ>{(j;+CwunwJTSML9#{ zZTx2zMZ8Ndx*(@v-%{ zP_lkq$a@psKTx5OOzB)!FXsO74RI8xS{#)UgEJiDzfK`%g5Ju7X)&27a67+4aU>St z;2y-@?3VlbwHTxpn|r8>t3J%QgnE4pF_mINRFrP+B=lUsSyCBLwW-(i3AjyMWA{P* zH!HAXG+SnLj#nImqh^cxzV*!Ov6>64xWR~~wxLLkCCY-PWRt{|w zb|{8n+}9}k^p-}VzD6~I4t4CHcByPgB zWivs#jWc9;>+Zdm!FUD$^L=pv2RIaTt3{JQ-d8s|=8$toB^>MJ3lO2R^+GQ@eLWu^!j;smDvXUwa_&s&MqkyjqOIMAx;xsK7nK_t6C$ zHJTYnq;~D^5tvGFr5so3hf}iGorr}iP}Q&dL0#AU96+Mh&qu7dO)%YpPuF4he!;LS z2XnmcYsYld<6=q&8kIU-uLwIRj>_bg!}(#O3HZ1OKiQWkzPTWD#Gw}Lgi2voGgdLO#N zQTkK&^UKw~b~t1FvIfOe*}t}=OPcpuK@%Ap6urm5VAr&RU~3Ru!EgGg^adU|MQ9?s zM8gN?x`Ow{{;_cNI`|^w&3EOHVAmya#!YQ5HVCC~j?swL@lp*h`uP$4fg9y0KBIix zTg{fN)AeE5P=|v7$E&TwIQ%x5sbPmk+*0!dhSJ}TC0Tl1&a+>9j}04ca7hee=p4W@ zjI3H2^9skmDLwoa1yflCZ#~{Rf1j^bW%~3R2j&>2k|3_eB(Q-PlOf*hL9v z^TvtjO6$=&6rHV^CUS#WhcMd!hJI%?=_XAV+dyqbQSrzizB@GYKFpHnw=UShL$Py= zJAO4MK3w2|E%3H!9sQhp)A#9*go7MSFROLY#7?>Xl50z`vF>5OOZBKN_!p!JWYk!v z;#s~Afe@Ir8339t;v3byNZygSNF^4Uju`mrP+e<|T@&oAEVy%JgNh(-zJ6y^|Bn6S72ydSv*$YWtK^Tqa({4?1kPsnIuQEHip6pG6Zw* z{RNkzNjM4lKrc?XWizr9GP20H0Z<;BxD3jLkW7?ED7t8oVaW#mG|Ghz1qN5Ca59Na zzh_#CG8N=liU8@w)>ylzkbNQ_O`3>!K*e3YmeGwnDPfsB6<)mz z(bWVPTq(ziIX5O!IkF7qbsBo@eaMV*v0@XS5`$wMy4Jc7k#Q-y@NoR3Vx1`TMs#mo zb&$v9IXcn;`3)XJoN%}~1L`080uRDZqPoOPU)xFevGu{~z962KWM>&5oJIRpL0O;< zWST!a(Z_&o5|($+rqy!|IN0+APJsQGkU_|%XOO4ya;z1|np{4QTp62rVuh`ER>UL! z2FaufyfkvD@Dx-zbQca`wyBe+C+vtm@5wNK#*_=_1zJ`&5Iq!8u}FQb4vZq4rI8sZ zkHU6hZuqlx#z93fIwGa#WS(Ire?$u?!*;g1%RF7oTsO>=e@o?rtWu}+5<4*R(VeR8 zBp|kkjhqQ%<8*c4dgHNjYi2$0x*c${+EO_OBFy=j1fr$yE~|}1m@F_*;DzU=tt&ow z*$$pk8dJf(_Ws%=;S2Za2?fb8SO=cRC1x_^r&i#`&lppN(_*=dOfU6x4g{TE(fJkw zwW8~QEbux?Jfh9DF(K5`YZB?++GU%-VA~wmfz%2f*wb{_aS5Jsp0yC>yA=fZ9v;J^ z@4lBrLeL!`8i_=3Vjku-xhoX4Zr!TKX;=qzUyr?fFNTZomAoT0GnIx`JQU*TV$H+} zbcRFc)t?4%rxXw>kqWVGv0|Hxd`j{%HyB#eBR9=VXuMhR$91Y|!n8=L6-dU~;=sIU zO6Qts%!UVN8uLh%EX~(rQ27U-yjV<`VxQyzPKlo5j>p5h=-w#cF$#5F53^060!~=W zapSwINF)!83F6#+nC>W03;VtY+5dk~Z%rv|75e z*2L?v!E3LB;!gpaCLt*AcSWj%W@uc}`E37{aX_%uPFaLlM3%r>(ZOb*yu>*HLQ?#2 zW&IMHFGc@(najv`S2gnqKetYyCQ7eiM>Y0%_gdk&PJ%i|qV*a^lIdr;?_?eOT_1GG zJx?{_QtN(Ei?S!`Z1bA@@_Da@`4Cta$>K}o?CS~&sSe*%-m3*K<|PH>e8;#xieUBI z=Vccg^w5n0SpS;Vj` zJjJ1yhifut-*)Pk{u&@CetU1fzi1peyFCbx1%E*$_ zQGA>gk|J0LP69iA0FxkJi5#esk2xy+NeG1O(Z)M}A%i@yRp%SiLsH7ee!@&4{X*g;D@sV36_)=eGZwO4Fp%6&{gcr$uU+o>0rHwl(4RmM| zl(vxBpJ@HbBuu5Vu_(k_3ee zS%P3393(}-c=R4^v=^|bw8u{=i-d{M1`=2a1P;pJPAMr%&OnI-q$QdLBS+<)N5RcO zJ-&gu03}Y7=%_YaTQUjgB>j2-V^Evp;0Ihn}m<{)WYf~8q66~cRiW9r^>EnyWS zctSrY`eq)-*GA>bB6DS7{!nO#-2buEuUseUgcQyrTRG@$!@|1ejOCLO+5zx|Mp&tf zZGprH5N0Kj+GS&{Kzx@uZqS_2n)H(wE^(N{yP*IA@)wdg3Z2Iu`4}Zhf~N;&=>m?* zS&5|ai0qudAE&BkRA*0AmMs3A22}t-&O1-98SAi&@6v`&CPf>h2>{uae$|kF2Na5ssP9H(k?%k+<%_J}fAEZvla9*6Fqx;p z5^exRRhF^%vml10qO7MfSO>IP!dSC{s^nsHbZn@Mv~W0EH|F0Rlrw zvE@)iyVToD7xPUcMC77wdl0`T(gBdNNMmz*#cF6wB_Qg9y!tRC5+JOy$CCw# zaamwFE^h1zNF1?9ltgGK;iPpYB1u1`0b?9yT8mClO^TLW_RrES4Iqu_#yG7tvE5oh zCm7)+7xAUd?Y4Jehz8zppQIFT~bMK>4F(QYDNu#?l zp&qP$Y7uvfgVj9?_K-$Z;(Q7JB8ml7%2`L}MN)C?lMSSGgLl1{a*M^j2kLV z{(=b_?^b)cyC?35&BlXEpbgH6eK+nBN?YSUNErsWh{mN4V6?XSpLvqc>z5%Uu zQocmW;d3(&OhZ0ySbg~_t3rCX((L{}>-XhIs8j@#JgTH_)my3Qplk0fVeGAwl^Pd`v(uaJ-g4)Ge?J$w);B!) zLLU?OTz}1WqpD_veOhv(Z?JyG>+K})v~bTP4ULA(*(9v4=Xi5owMQOHy2}O3hg$n> zRhr0|4ZOeVuhIJ4(#&2z4bnC!T*9QwSmJMKU<8xt@BK^KT65Kd=EY&$ptsv`G*aau z3$U6$hMxwfDfW6R_(ivo?uPF|?xZt0yxmq82^c#Al=P&eJ)5EtPW{w(%l0lD5CYCu z={9HDpt9dRamLM8r-gyp7v535ajAQSbn+C|u}Tg1XP~J@>RvUOuXp1f$ei(`ix6vA zoW1-~<+Mw-6*EQ{YsQ+Rwy~TLz;(di^qXhge+0dOUoHxzuyc?0Z`3UJo99O)g_eRDE$HxUuP8%AA{As|KwA-KX68>_yMsp%JEKUh+RTZN&OG_ngW_s>U|F8=Us8 zYxAn_Vsn3FRO;f(Zr`l@?o4?*7(Pf6HcnM9H?K6pj zt3DN1EOT+XJr)4(HI_-m=8u9^5#KBkNtO+Gn&9ZCN!#QwU$Zw2w|HydK7!>Kk&bI2 zJ-CF!gXh%w8>y8M5vqokC3krDWD#DLO`|m0G>qHl8RUh#2llBk&90=>!+mrrri)aP zxFsN&1@4@RTT?WgIp(rr*&l^~+hN&H6mY!)_u8Qe4yBP%$WMV+fai^Rx3ZDbE3RI_ zQZ$UI77lkXR^>vYNdU zbYTk2XHd(EA&sungbiA}v!p?x`>92;s1}O==@Hx-!2fcRU~eUR#Xl~cxt?b z@~}$Wx4$Pgh9vO6DlibfT~Od-v-hAZ>|;%EV$T>MDX~NsfQ*jn&{D0^2&6}dV1Z6u zqZjK9HYB|?mU&#OG(JrxD$&LdI?Ff- z&rj_5a!d3c8M#guXwtX}6R9YcU@$ZHKoJ%4kSt4l49QA8M@-YXzOewU zT16BIJ34i6((TSk_HpdBHP;>h;e}@bo8@`R&P7N@xphU@qmvT{6KnQoXZ~vB9n8?0 zFW;PTkzH_Bavlu!YL7i9^YFXU_U?C87C)hLZ{+y-|h9@2N$g&#D&yrn=hu- zC?rraF)}bNYonmOXLJeEJv0|+pLTKkqS@z`*sp9Gzhm(%id}7(SJim;*U`F6{@D_KLAB9@IC`MSiJhuF1C%9m{ zw?p#dwllFW@-|v}{X{i9uW!Pw$+eB+WRdkrKcX6_b9zrF}F zW!H%9X+v0T;h5df&>iWfWz(5TQEoMz*p)k!m(mbRGtA!t*1aB$3o~dY^Q+B1+L+6ouNi)Ay^)$g* zd(~KaXj80@%+NZgJ^i^tc2G>P)Mcgf;I(BNfo<~&=|!By6$a_19QD#e`q)z^U+8H~ znv|`yfRitqV^8JD8hKj|J7r^zBZW&3c<9S=SUiSn=bAQ>Ymy1+Xtzn%OBdZCA4xwT zSaLk522Uq;`s;~8yUAV2>w#t;6kkE6-P-t^gDoDR_uRoA ziYer&bu)V)Mfb+bdXG~ESwP12o#(dA9@LOIr6mN|(5mk6+Y@^|dzinVRg>&miAyOp z>Xl<(vLhcxQh1~+a6>a@GtcMqGa@hVP3=@_>44Su?(0Lwl{WyA4Y|5UR8*J5PfP58 z_(@H+Lf0t|D~C75r(javlqcwZI5F-HNLJ){>_=oPtvyg;QhL#*xC@Z1F+=p)7fHA> z1o@?;mF}-gBlJc%Gk3M$U*U~5WplO-oeWQT<3Py@^p0%nk|Kj@<7iW$7D|t~W1&tU z6#p{Dv=QJ2=};?;t9Vr>bs4x(pmU*ovjJOViKe8j!nBdQNv@1{ikeMclxFhY$@gE8 zcd+Uma-W3GR~%+&TuBl?A+e;|H9;XPYDn{W-s2kiAFaAEWbrGgMV=*T9t}v@wW!=P zAeGK~M<8SSH2fw2HYXP{R}wwLl5A~MZX0h2suf`%^%}j9UlynlUK)s<5@VPUKEAA#qc;Ul9 z)z}c85g<8NvL`eT@~Rx_)BAmeXdG13AHU5839OWvg&meb_I;PV%*ekG`L^DO*> zHnQYfOjzrpH*cbtTg6poX4z^BH)`R{2>tzo>sdWt00%iJ!QN4*2;ra7*MwC{S%qm@ z_q4ZG(GyAA<*?)b$95x{s5(1gZ{4gK6kd@crl;4*5Upw4nH0_8yw*O~eZcG~ywmi! z;p6PJYbO3tc((aybO10Y%5hBpr910)5^&b~|jqWyPtbKPt$MxCdbq z7Ts91(Mhg6@tl}h+%fAy|NMpj4c?et+pzPusOORKo&8XF#L`6_(}i|L5ZW!J#AvmXyc?k%0PWY^uj zpFSRvdY5Hy-Zgk2?(f6dd&{Ps*mZAb_@W@J-nt&aUY@CX^w2h;qP2M3)OokZKZ#EubzYlO;_$K4ersBG zDgB>!!N|7<(7*BLUrw<4Mjb1?CWt3~UR_hMTkzy+K>Udlvm)1hSWB6lmT5fiy(sO2 zghl)<%L}1grS${)w3dyDYxjV3r)hiagt_j8*h%9lu}h3zw#sMOG`|EeETHhfM)HvnxIchH`{Zz}88hj@7F(0QhWJtWACcJUI1ch$Bqzl66mkj(h8eWl&Hcr792~@fg80q8X%>@`K z5Tke7=pFd_K%@Iaa36pLJelG)V58(3X>~ScBJjo;Tlsd36=w%<8zs$5k0Ra#60}qJ zyOQI#AO24H4|VOv`G^uRNtvgVj5wU+3%D!ABtY3x+(du#nxe;Dt)NRH%4~d1d1Z6$ z!ubgR`?`h|N4Q!wE_#e2G<(#Ub%p4bM*LkpPA6fmPLFX*ZRubsywvC(WuzsdO;J+M zZ>5x{1|j9}J`(elKmMYuZhe&9eU05E1NHQA{$DoQ&mH@!_Io6uq;8bH*~VyApBVnV z3%0S7q;7;wLkVV=ncZw4X}i>Y+_EtFJ}D)ILd6Y~KC{S|@Yrb=(lEDm zW~3MRuS~ySxBJ!FF;W=*}`jENRdXA^yn#3p8GFM%Ow*ycA888J7lVe2y4h zaRYyyhF=2w>#Ks+NPU*sT?CqdSSe-jkC7~i zc)i`_I>EnXn`MQmtn$cklKZ~XMij= zhl_HQ%!fGSKz-`W-U_GTQpKgAf?F!Lqf*!kx_1nC9u;#f2HNx+wO#{|6&Lkm-s8-o zWoEA;DYe(gx8b~p8n-86a*H_9NjNYq0qRw}5t8%8&S0ty@GQIgE1Y&j%V*eK9&7lh z8TK{Gb{cqnQtlv;qLQ-Xj2<$nHv{xhO1++-)Z-a+!=Ge-yU?kA(m>ZC6+6Qws5a_q z&7uOch@<4{L7ykMm)h!8BnMK#_Tom-7nW=F$0ic3R8=wVUNrYe}=w>py_DlJF8aAR4g_lt?%wGN~?ttCZ zX82-4nTWyTh*8iBumcAG#R}I~IOo2KA8KTE*m?IsUXj_eNh(qk-e&_?TZrqI{xk}0 z0`#N%$bf-ek>qdGKr5A=aRxyx2(1M9g*Yog$s089uqcyv89f$%^dhOK^(uI~%B{~B zFSYZ_%(PjYyciXm5R*A|5JlzvAK+0g2DY1BXoP}q6Ske=6{t8iz+J83Gy=4ujdZUq z z+qFom6mBu|hor6yxc~*hRuw|SSUw>XFV#YwnA?fY9x1`Y{{g@Zn|qWUP#T3T?XC%C zE=Nh}1<4$KE&&SEN3C*A zQ0A181Orl@uaT3N?0uh*F2;~H4OIyWlk8qjz3~>{m8kMcGm0u-xKn~y2<~&zEErtI zLIEr$P%0Srmn-cKk7VGkGefn?a~<-Di2&`0)cI|k07S$W z^H#dK7R0*U2iiwk$e>8{84;>HE5x2#a+$3f7aG9N03qvSlGf}-LPZ}1J_Rajh1p}W7^zbU1pi`h$p zBS(y!MnZhj#)uPH`xaM4X+Wa-rF|S1>Mux=c6n>M&P|AFBxE4~QxC4u)Du{fa}~IO|0*|B1~d zRl^M=kjX~wGL-j+fxU+Y?7_qSw(*@ikS-gw)!-u2aO({48|M{_6=+}L_`(l1wtpn} z3@LL^d1wO8%@DIK2G>r5ivn2ulO5>BnYj_%Cj`s`ITFl8X6Mu!c$1CD3(WWrK>BLq zca0&-qHv1Qlur;YIVi$VEt{<3R9|4{f6d(TKO+lon*ex4EM%M|Amlo&8hGQl1;r^TT}mhl zpjVZpnmEiNoK>WB)1i>zIPH@Qy$O4wS5kbHj7`U!pW1WZIi55y&I7b2!qA8|M<8#U zGn0ZHGz$RK0!*jtVY`iKL!dw#H84|8q>)UEDUB!tZ?o3Esf)uHZK2LoKRohux4Dt{ zL0E(bj=Q8`?_O-9R-@4SrtSZQK^JV4n6$$xkCSIHN);+?02%{<{Y?t`VkPAuVL;xH zk7M;ww#+6>9~I=gn4o?>^rZkL?K(k)OX-W9RQ?;Z&Z^{Mpl4Q)G2kjM5bx|-*j`}x zQj2d)q3qm_`|j$aJK5I<(kObgqYd*-NPl+R*1G_pAFQK0Av}+Ql1(QzF9T?dU+J$F z?PR0Op*M`lA+@-LxkveWI+Iy)ZHALo(2-7;9r<}#gSpKxR2)3qZ7{E9JjZ|B#bLQX zQ%Wb_U|z^z91Ui~Wd5_J;bO6kvhQ|%Ti=011GVWE^Ax}sNhJ2JVH|HG7(cz;R9v>@ zL_PDuq|+;hY4taq-D5oj?H~N+_^4oJ`7YCOB0ciHYo^k-?M-7N!MsHS28ag6&0VLI zC%13{)@)+b+FlKmcD80hR# zQiNiI+dIm)FlHmL?;t_b{>5nYI(N!O@tqjCbw|%-R8V!8Sz=(-{YM)x?B(Yh4!+qv z`KJ%3_Hn=QX)$&VGQNJ-RnB6Z5wn>lIOy=HUKeKOjT~9b#1J4qm6Ch#2I2FH618tZ3OcW!R?B3mWm#;ftQbC`5^AGEc{5YImjI&=6 z%px0Sz+ioVvzwG#Mo@N(lJZ8mTTs^TzmFkd(gtvEA91qHCSs|mYRn^7GwTMQ%q@7o%q`P^roaIG@LQ=zjwFeBUk9dNav1DH>`YFS8C2K-1S3QMK5~VSq2q8 z?)Pr;2j3fW#^*#0SR*YpH`CFW%`rQjKC#A-oZ~=3L)@{4XUZR4_?{Vm{PFpU*CN0g z`eziW;nJ^x%dS3Z_02!135Kn*ZCfixFq|go6q zt?u-uaW$38C&vY3Mco{$=X0;{zS~14^H=;!E7Hq29{$cV>Hfwj_enWyPSIo4B(~^q zt&aMzohN5)eH=xgj*>`7_^Q)#E2O8(ay2qY;d(<<+~-<9_N4P&CBSydnBs*Jb8phS zqf1%7)cpN&3JtwWr!2_wBjPv0%d@;v%Ef&?i}c1TaarH+-uPzyohFwTtW#d@b+&cMWa9`px^Db~yq;=mUzV>qzTffmX7Gh~ZR~(IB_}fj ze<3vKagm)M>|V^>sJ1X7LU)jE4o0R$(~8ya;eYHjmzsc=-W?TcFq0f(D}6Jr78SuwfM>p7qbe1v1@P*9%VWTLa|YM z?rs!p!|&F?%?fQV#RR)T+~TaMB$0z}VT^&Tg&Fk2ywfT2guoAJWA`4_7K9X^05=3C zn8cI4f^5oX+s&0x8)DU1+hkTKS&|VxN^v(!)GqOp@md!Q~i=(f`BQEaiR| z*mT*y*s)=r#E;ubBmo5)`Z9fwC@C)~p*xc5Tcw#YtwZ+Shkh;XAeqVoNuw_VlrgY| zHbrbQkDa zd=1`ME@q7$!lGn%YXgL;5z2v34gV}r<0ny35+tLMOKM$ylh~*XlzI$FX&x13D67lN zJZ`Oin!cKg=msVirNSiHySALbKCk zyn|nAoB}TW$Th9XgywcCjHxr7{T8Qic+_eQBPFm0ZB&zk6I7K2U9y}d7*+Z>ht;f} z!u8Frm+uK+PN^jE`wORqRxg8!0qUBTH3A@FQvUgSs!~7^GKlyyC zPMHo~i0_bn0*LD$<4%R;IxMUv6PNnSfm7Rl?_;r6nt1b8^(7TIfFv6u+Zp}--axKd zh&0BRh{4V}7%4;&2lkGmFAHHN`2zeA{q#LK*bnA80gmhf7QfKFFPTT_rwcaxs{Xue&+BU=h5w>#v|S^JnrLQX9j9mH_;vyjS%;iCqAWl*nS;RYBmW= zROMNLLkT`7DWpzc{$l^+*iHvIeCY4N!Q*GooS2YHw%LZR-LDDeIG>zKIn&1g#iOXx z@mkM{B$5LI71}IR&RkfciCKy1c%l1U7bf6AMd0G^_RM2<4qxGHVd8<6qDQPHT|J|k z1W*ztI7t9hLH5Zor&lT#sE-n4-{uzD$m>cd)+>fyp+Dx)E+J70xvYkNR9*=-lE?MP z4Wr5dkI}w)YrW}z8JOR{N}7m+X)jp$?wb(BtH1pdM!&V zcI`d4309kF&+%$jlximuKT&wHqG#^708hFog?+uk~Qg#3v}qL78v+`L;@oQd6pAB_JSpwy&D?Y1Y?Q zncsbdx^D2C1EF*7DvHly3p?@4uK`)cL($Gr0pLYO0hBref5U2&RFC+orcPXBsW4xx zc6!KZ*{y$l9C5+rhvooQIL}0$Xd8hhtq}YlLaYSNvB8sZe5wuh6qB=U={Y8N0hn9+ zd^+tjUTnsV|HCuYrC^;ls80>0B`U0G69)WhN5>Q=>zrF6*@twwGS5?$=d)cmwu?Kq zOC6k6om?{K{{IBqrs;}nbaHF8&)Hc&K2M+YS@%OsbxK{$%(PWrT>``O>6vLYKfpEF zmE>t9wR^Xfu0L3_u&-8T(JqP9DeE-fb#YhZZCH?3Gh?WBZQq8)f7LGLZip4u+7@hB zRkuObQTu&IT|ryi!4V+zKrq)bxI2Zwv5z1u6 z^c)BM3`Sj#(4!SK_7db^Me*JnA~S0^fLqvHnA=$>ArWORP$(OP}(6eV}%-8 zF>US!2kTFqK0`@6U|^IQ=wp?%)i#iEczXNUmL03-zyR>lKE{*H(N^+AbasP@^+ZjZYhg7QCaRyFmljWP2a&0Pv_K$$O4`6V0c3<8EN2ecCQ zF?C#mjk6sEin1N+O5nBt2s*$)+;;fmSpiviL$kHUve@K_jKn4)Cpx{w|f9q zllZ!gbJ#@50j5@(m>uen+cvrjkI_MJdelI#euOa#2ez7+5K8$O8M8pmEK^e7AwVy{ z1Wk;fB6c+fJ*d!TI>;V4{k|GVu(E0ps7TF;bTGC^BF^n6e~vACnZAE>`_3P2>^3!R zE5T}Wuy+A2Z8mll!QSX#3?X0vF5C@paCHc-c4>Fog4Oir7>j&_vl$2CPtr7sABF+r zF$JsFvFsf{--vRyA@n&Y`58eIqFgk?Nm6VpL^#bRO0t7}0%31K7*~~a4Mt%c+z?yV zA@v0)1ZdDR>oMp6&RnjboJE;x1#Pbyc+~^utti=NV19Z)IiR3KC@E(hj2a9o#Ti?0 zIA6jzgN?xT5~k4vZIUqeDc~ZU)PXYiR@z0vXLB$uKq>JQL%_VHTNSj0w#1_dgEEtG z!9klvjFEk)Th!e0fU%MBZ2iMG$2NBzqY931sGmb|kfWSbVjCpHz;pz5D!s`79FI~m zZD1ZQ(me+=U*H~kC`ST0O`#KQS$-Sl`e0zb0^au;a%SBhCctwLF!4Fa#lS};q(hOD zwyz{d{+&5G#z|O}2~l`10tu~U*x#8GqW0I4r>#pVy|_XUIIUwDw`Kxq+OP3bW~+7C zdcg#qX4?T#PclA=0u&#ZH@s%fD)Tg+CVk&WvJxP_{Rn?;&FzbwbocWJ?4%>hwvt=< zltV)&@6?o}8rthtlB0=DHJ7KQ;y4F3?rPx$$ zZc|hBkhucBz7|?cZOgFvJlqQ3oi=x}o;=e48*2o>_>mJI$K`l}1x~cHbcMhz7D~h6 z`04N`kvSD>a(P_R(J&{_#C&Gj&MC=`mrMdOPt2Kr{uw#OTtfdDgDuhUWOa^*ej*iv z0v|wNF`SH1e^XLVer}#Q4So#4?a9b3H7(u>r|Bt}o;+D`XF{ZF56f;ZQ$G$P??SWz`;D*o28Jbc*aXl z?wu@D!Y$(`#VeWb6zo+5&2Hmd0q9o{=sZgMy7g>}gMI2Xc-Fz*jf#H3ogo~W6W5)v zwNn(Dp1Pg&6UN)>l;jj6>`0XP8_G&B(Ox>(8iaPm!TKJj-j%SAppYGNxuT#6=Fiir z*-r^39cSEDIB^who|>^0VAyb~hn`{~*axuU>k8&VWX`?3o3%Djjk9m#bQ(@|0Mzqe zGa(!61wnl%Vf7-=AWjKFIO_@WTZDF7&2YbM#jT<4*@I37{0I zQ_dN@>v2x2gt8)(F;Cx=G!HoKq-RT5n+@!ZSlgWs)Iy26!ODV_jGq;^?kgV%ZBUjY z-fpGTC@FoC2nR-cp=AH4r#{6=_w|fz1aqRzsY`Ee&~pwUF7pq!kG8VzE7{u-(3DOo z)VVzMr-(f%JO$-30U1rqlLk&T!Wu@{;cC_)2lJtR@LSJd(zg9Gm(e>3%JjYLH72nC ze=#(S-D{<)+F_8@#$=i}!d?FWN?EHUn+1f@_y7nPp|+65t*_7%sl;OcZ@b zz(ppna}qku25rE-&KJ=NP2`->l&dGHPaWtvE9;ZTgmQxN(n{%aK06mNodXby(z$Mz zW9k*n1TEt|Ya>Ec6HA3k+9L^2uc04Rl1kj4O#m2w=xKWiN}40T_Za&f-nQpg%S99O zJ^~%sOHMXHx12mtHT|Lqd~2n@agtN;aU}}ILj-DwS@hgHon)ZiwXyfn zKt=SyQ%+a@qF}AH(mEBu$u^2z&;I@B=41)YPOy&>pjFA4T1US4)>;VOH z9&q)f)u#{{IlH8kvrA9CrevQtdH;pb7Jkd57?{2U{hb;x>N$^fjMsYBA_?agJ$s%6 z98|vjSwe?#)-KbSImz@#j+PZBw$)0nR7*6Lu+ZfE&mbSnama)(s<#l&9bep~QU6GP_gW=7a$O8QfjU1LZ)Q}Xia){eGZ zCo35)RZ{2KAf+iNUrZ@7<;>Spy&|}AtKj(Y;br*Tny{W78lpF32t|rRB{)SRA^U!p zQ)c?Rl$e&kbiuZJ;l8&g6zZv^5=x^txpW~l2ZO47H;=VK(LYRCX>bCq$kDqgb8XOk z1u1`N`XqgJI!?|qz=irewOUl+AjPZyrxQaJ0L9o z_llpuyf~;lSrg*YnC9q?SHcsP6#x?W`>U|)N(ewM6^L^mE{9S9fEcQ`xabsUUafuG zP#t+H+VXvTPQhyPP$fJi887*Z{NW*Vc_mah`kP|t3w96oZar(EnST5MULYmUIs+fN z_urLvILmfihQh^eaI_+OfLzdV^6McQlF~Giw3I~Hq}6n{@S-8BU0%l>J-I!PivzkD z&af^i`T7>Ictb@+T1~w**Q&*nNG0jZUr4u5_b1U0TZgZ=Oy1+)yrsH? zXPn$tl)c*3&g)R@j43UAf88y3W=FyEHOU$L{i>~j?*em%C!b9EIk;%oso(hxOP}95 zF#DH3WR1Y_+{35t9-Ub`1^zCwbt1JRXKDIu&g)faWhcjnxc|}p^^Zl5&#y@BUpxPQOKj#EmoWv8KmY#Z>b8gl zPac2y@ca^p)fW8vb;Y{}8|U$RhRY`ZZoj;F%#^+Y9QTVKgh~duRjWV$_560~aiYmP zVI?u#I_bBO^#GI@h`WBXr~a`1EJf6hDE_Ym;B4cg~LI3X#(f{vtVE;dU0s#0xBDe?mf2sPDuH*RqKbyr; zb(1I7H?|hHU)vfu^@vxXSuPOEV*c|C9BpBS=V*`SzE+{Vdodj&_JIp_r|s|HMb|&d zUSw&$#L<&@qpvF(|NG_)|1$u#Ciz6Ycjk6`|N4K|k!)^k(vGHC0+B`2Rm5#6+^+FADK>7I_u$8KIcXD$FHdpG{?uiq}s`)in9{^pS~2)OD@mQMb4 z73{1y>~+Ec7UX3Em#RjLO;TC)J0Ne`+&{-d;eY(|zUdo`Z!CY4)tcr(GcTP8Sn?M< zsC@UOc!pH7f(j(RvxmKioX{6MqF}4`If!- zczW}Oe-pP2#D}zf5`~<$^{`5PnVZULZ{7KQdb)Ljx~XQT9Y~?9OvTKt5b8LN%&H8uiy~EwLmqU_EC{DD+%ml8pobx8C5zl0QdVAVh{Bf%< z(5QletJ5#&j{t)MQ}VHtkUzTU|F-*%@~FyAb~`z)H?!fNR~dhFfBf1m7z6Zzgd5QR z2H6CW&o2B4Zg?9cy}MeFy+cZpl$nvOZ^57c8#m~tpIPSd*A=w|#ADnxMslwD%R{7F z#oLd*zwQy)|NaK|#`Jm}&`tSpGvVdY<(szu{_aCPBf8?&^6%W|%-Nk6)7cd4Q3uxE z3GzU0t}XCquSl8?=u^_u^INS}(xT?xHOAU|n>gd2h^?XAj)flMM00<#f)hewPGQsk zNkOGwSR?m?fX|Oz6Kq=dTb@Y#I{f5LDNZfh@oZJ1S z=^5kNf?hWBS2nTxtv7M=yM15ZxUOvk3~3cSKCbwzMb;nMFOnCw|2*fMgsH zapcqBF+Y(hc;$_eChL?tUi;f*%7wx?8=QlRr>Z(Y*+-eFIC<`G+Ss=#ajZ>u?=?xT z-`eMhDq4jCuK=~=A9!pY(6m%o6M8fE(o$KPQm+5LvVPQ8+yMJI?QKtAM;26)0B@NK zU`-LP{E}1Mbw>Kb_lFBdXE}AzK8xUjqejwbWGzVR5j}L&CiELQtNMC;zM4uD3F*kl z*i)BA#a*47Y1@$&WrC|EDw-g>k*c>Q0bcgX0ut`pErEbxLp}UDU0O0-A5`8>gRX(V zVp~nnuuCI5TgzjUj9LH$<|JCYT(*E{zOeyt>`H1SP6UzgMy~YNGb??s=!j^h3foxb6exBob-GtmNt(gQ==MsH+$o7C4ySJ^=mp16-(Rccn-OCY z1iZ(pHGq){U(;blcx~<$Bf8F-lwKCpoCRzRAT>`F6(J*a8ImH`vZ?ZkVFP5%=MUuH zSuoe<3=(7Az?vg`DutCe8Bhu<;oF`(D^(X0&4=leYVVsM8=wStpedeN*r@M!N`>34 zS}Z{W0eG96lLki0$w0pM80ITW{DF@O7NAt33mww1MmkN?avC+1^oS@?-nIP^Aemn4 z-&%&}$I(f9`sfHw$zZ>kK z!?YkSL`r>IyEtJ=X>)9v3_Wt;GFIJuqk&{Q45# zPgD4?L0le*(6g|;F5T*5p4HbTML96nR+}>uoFhiY$yWA_hhz+x_WiC~Zm<{SzFRx( zIhpW2yf!y7af^6PwVo?c!!LZISVaU*{iE(Tuhz)%S$QPqWE|#mih!r|UtNn%r|Rl9 zpt*TUL7RjeQKVwbFlD*z(bvQUOXG5IncF36%9wm(9oatPUNC=L@c7j<1wYNr3F`=t zQH>-{EqR|C+&(^d1IV0Y`^9H%A`)0>XQp4g{U1DVB!0smjBi>uK{r|>j>%?BLh6M3 zBxkETZrrL2NNaaF^=iz^4d|O$TH(j#)qzz~#)i9y@U(C+fy|V7&&yHYqgt7k9*)0B*O^bg`1_O?jCHx2gHFN#i?S&(X z8E(fHEsQ&{8m%j?BWA=d88vm7dGQ}o*Mtw%`>0;x7HwST-1!bozwK3Y>$GNX%gf+y z6iTIufHk4nnj|qT^*hqV{w}?L?$`f|x%Yf)D*fBNudKCF32}v%1Q1tfh8~I#uqD(; z(a;1GF(4u;YG6>&v7`|~Q3E2Pq6QSjHWRR6olwOd&{6C`QPFW`f;x^f<2~&4dvQPa zezRXZ$FX1Re*g|vI99&b_d3tdCo=qkptS`nce;h$QG6(72ANi9f4mtSJfJ+-tnX4v zR?MHEOJ9*~SAAGRpMG5l;Y+d}Fs$n?|ml~><(SeuymPN5;=WNay z*7-*_|3%re@WV7~%i%QlHlC_%XE~`fyO7?YLe(5gA{cYye zySIo#pPFIpHpG-;{{s2!QTauO<*!RwiW)0e6#8s4ADsCKO&>Tj3)<5)5rEVk3<#6ai$*yS^qzGbjcofcUi$4BSfcDjkq_w58l|wN{5m4(;jEv7MYAA>Y ztBM;)vrwBwqf|SLRK?BiNkf}t@M1JN36&$w#6)QheQ+bEixRAZvtAMKW8+cO^Hm_6 zVVFW95W_5rRgtm5VYHiW@b@2cDanEB?WjdEgpZ*VedrHTG|?C_!ruaMDNi%dBDwW2 zhStjAMWvaF5cGv{E7avl;Yx!LSs;P&{E$xR$~g_uQ&W zB_*c(bIuGkhaTdM1l_TnDK&K;FwHV$#oAT7Z93wHmBvr7#t85(q9N2I?5i0$}0o24IVh{)7O` z$p8o`@E|qwIw4R>XM4;CkNk9H%(Vu_4lEUqO1o#GWpa3pR!s@C7Pq2hTC@#+;$>-r znKMu?)J9KxtKUu@Z=xt-h`1F)3Z4G5Qgt33q%fcf0;57Hcd|g9LK@Ou%^0EFG=R6l z`NZ@zpg#Z%)|@b{pNGWaLddPh3CuAPD}uqwUKA5hpzS_KzV?f8_ZW-8p} z=uHDd-=QzUQEfDONg^jRT~~&`k*Jl4E9ZETdy4ceGeT2SyXqR3JH=QMB#)G9(C&w6w z!DwVS2Dh=cbPU>+O`yA+FsENj;JSD?iA!{n9&_UFjP!=TDceroL$>WEhL{Oq{ER>g zBrzaiCffireE0@2&P-Tjnfp%{L2s~1{;O=uI`~qLMAp;3%h?&SP7$8nK#J1A{|+gDBy4;g)8r|ew;stcc4UlTOHMBjun=SAKPI^o z?1aQ@zAkf@^>cpu{l2w!GGwvI_INO=@PX}gT#_Odu0*P8r(c`!MpviNBKVW4pO#lAjSwIyCaDuL&~l^=vCdqRNj(R+Wv(0c5^B@gthJYpG@JGJOiRCHIA zC;<{#A>%aS2#s=`<_5q{loAz>W_0duF$W4_&EC}&P?>Ej0PDPzlhVH*jcSI(!VRSdfUbQ zmWooXz=w%r1J@)lB8Ojm((O8i{-)=AZ=vr>XFMdpz0~rR*j%EbvR#aZx4JHn5nU{v zYsN$T%mfd>(EFn2F?dmAJkwka;mEbaw5fi3=~j6A2)ZVloGl?%)k4;*wpk% zKG+?OW_;b;i_-Z8-3u2^UcaRG{Q#o_qanC2^FlKKDYw1Qn={bUWjCPay=&onvq@m~ zX7sE+^jjlba*BiCgO>fSGC%P*F}i*uf-iz=`sSS0Q%@cv{zU<8;pkJ-e7KnWi;;VN zRT^0ooEupWAnv>8H%lO9Huu!n_AKi!A*>;)5&w0kDn2mRjP zEL(t_He#If3ras=B)QSRN^G5D5U`#e5zMC?lA9tP>qxmIEAzbdLgdUSl_yMSG?CO6 ziquG^=*g>MkbEOCA&k66Po~QfIGNxF_K{8|8- zINOYU>mbg|RXv%y=Z2IPCZ$mVzt5H}a-dq)oUdcwcE-ryTZxOGwEAAn` zh0&bUu7ZPGrp&C^?6lA;a3nuXw`|)~mvj{|{$}@Fhh?mrYp=dJlZFu^LD`P;OVitz zuBtyj*HXZlP5h^JNz%k9u@FJfTWYKmeU&Ub`sU1BLq|_NF>3xaKNe}r{0;g83-tbZ zwW(;jkT|q(!+Dmt_0kft?CfF#lBk=N9_Vs*S!{F|&L1jWaAZ{^A9-ghHuWz(VY~F= zCz;^kABiY({$b%4E-}6MQs_fx>*+{^)3U<;V$*#4=?~-^CS(u({+y=&vyV(PYYJu_ zT`p%_kjM+P>;B4ovLqd>dSoL@$5!o|_hoCrhIEsxl3Wxev7dGHt4UL+p6zwiW77}k zkizMnaNze6OLyu+IpxDwD>AX0ga{4(g|T1evxufxuX<>;*IoY(o4;qqdG$>q7G{*( zIQT71_H}sc*O-a8FXSoQ=Rf`FKD9JB?#sp>|2!~7{cp>kSAHyL-nw;P_7_^$b-UVs z=l&k>ddkGxfC=mI{{jSkygeXVyEqFh=17&qIWm0AppOJLPLXzvy4*;ml~)kLNf{N_ zc_bZ(-jnh=zQJ$NRW;{7X0d6jp7-uaeLMHS%+3EIj%j0(mY8iWF?-YAr5s7xKdYQ} zW=WcA%BsARl%eB&%A7jTX~SGO;LH7K6Ejn{vcHZoIJarzU`x-`dGS|Il@VR-y?d_=2AncT8Jj5VSC4(u2I>x{JUG02>dIfb`)Y=Nj0wzf_;_mJ?%%f^FDAQ$hGW%s zff;)*ua5LkAs~BVyV!z}z$$++knmqFwQBH6J)RG4mRkXlxDkA{agZ-l4F#8F<-ER8 zs|*I(S|zc1_noYM*3+Td&Yyj9JuZK(dtKe=xp=kjkCP_TYy-`QkODD8-`@Fhmf{U; zY*%)U4OqQz{7Ue9c^ULf>vIiu?V{iD{-x^trhN>zz^i4E5!xGqmLI)cVRO093<)IX zHBlgWh+N-oH3W>%sep5WFr|eTz_|e+2q-X~s^ai~nYzu5WEi!jSkA$mCot zgsNS&Gurls(#^K=Simme4i(zI0;&fAk}1bo|dpA2-@yYve(6Q&O<)&7M;hu{l@S8PUL ze|-?;i8}|>V0Wk|;=LiOsYm#{eYRKq#nmSXy7SniZtRdgW!7?{bv8Xx%FLzFD)uR> zfUqNtzR_7OdRoku6B#LS1;7|6-j6GxMRflMGcM_w!|yo!-eMZ1af$uX%nT9RKwl+% z$@tmlx<8N^l*V5-IY|*8pjRo~p^4SMO3JS{7E@K75STHbyA%u26YZ4j$3PfJi?mV| zN^B6RW=bgL94N2?4}j4vXBj$4_X~qQ{)hpDJt{M>`uQCOqy=bMS)}tC-2%rFJ!xL_ zDQvx2$-anc5P-MQunccJX0;&=0t%E2f)s&|{-}Y0;6+y{*5BGO2WwPUms z*;L-(5UKGqOJTrI6VV7@v2QQFbRr(2E9n|{fTeD`yNb-x<}Sf@IV&WCV*$ z?XmHx)szA-@09m|9l=PNtEtL&=NhrUqc`MDvW%vclzglzqMG!(m!?Hk)IVi?>`tnIsy9I=?7N zOTss#l)rmfqYCF~T4I!`y>jiQmfduMt3MsM>;3XsBf_Xlr3PzNnv#B4hX8MGz{0OW z8kWTf1;*ffvD<#2jhV{$SiV@(O9i}g5n~-?h8hMd`3ShkP5@2asHS@O;)3MuaRyb+ zYVgZynyV(x0nyq^Su_Wm)B>XsE4Ppi^h?p1It4us?3(yS-xC7(u29RZOdmW-ZS8>A zpXbF*YpS3}Xt#0uu-K`+7gT@R_iouWL;I;tzIz$L=yWT5k*GIIM`a&&J}y1+!qA#r zrwdxQpmE4vt|O((lsG-R{9^q8b!VW0>Xi*M9+XqStr4uW%`M7tTo4e_d~_k|X-ccr zD#zqZV8lP@+z6HQ6Q*1$H?f70E?|{?rVqt+(^tp3A_mC3q-gyDY!c0K(q>AGD8;c- zwM!9UY3dgp7OIqBzWWYdv^Bu)zTq4u39G%PdtCOIZyzli^`^vDqKl{7xiiAekyKA+ zG>xJR|J`{CSYaT#cMg)5h~H;@KjA%83}M8h0Ta(We+rz$_IJy|7VnjxY4yWONnz$EqA!;f9=;>fZtM}+ z=kQ^k&XbJK`qLLZdZ;SxvP!@~ANk<0j}WC~4VbJh3t>9;nIz8au3~iO-r@A#jxtP= zWj})e|gi>URh6^}A=GdigTBkWt*aey@a6zW8`%oEbv)$xUupZn#Zn7c)mFt=HMm z-RdB_dW+i4ol8xjDBEat#ELDslwe+@LlYpbXCWJyTu@2j5rpk8V zK;jx!Z`7=Z+1?3>_`mazJ8|zap4CSJtTP-csLQorW99Jl`Asu{V9 zdC`&^x3hvu%L|ArsTpQSS0__-xQ|fGwaIpM5%`r0jnT}Lkc7RT=vUez^U6?19uoJDS!{FDl9`_W0(%6?vX%DY$F ziI|eIxBR)QA%lxUO7`PNEDgQ!10|AO#=0mA-sFT7>KYqo25C8_2q1tksVaoO$CG^- zxvsd+?BrDH9tVW7RWc~0)ly3Hi9d?l0FXEl z+G)7PVE8~fPy6R_XR1)OUh2)drE~S1-tr&^zj+&88S}2ysNJ!bsJ+n&Bdbonw1G~O8S9*xAD#gbO*|5Vs zqbl@#O8{T$c1wLJ zab}fL#x9kUq>{i1Fd(uGI;j--fweBQ-igse1DsT zl*W?|nofA$aEmIlLS;#nc1EQb2v_3MWyGSjl^5ensz6IJvh`h*13w-k>8VXQve|eKa(e!#zDjr9w z0AG2FAG_g5cYc+P%)=c$?aPMUL7l7i*26ZXp9Oe+ReA%Z8wD=!A@B#3oUh7|G01fc zD*8uptCApoVyjrWLs57+=sWAX7)05$-?vQRYay`pq{$Y5p}~%g1Yf>rHzIE($bIV% z-22{j%J5`os~I0hJ@=`)20v9P50Jb8)wwLQ@rLY{f&ek z>IwcOg_A|$Y$SM6W&{l=Ctr8I;zRJ*xPJ=9vc*&r99}5E62BJFN;yg%TWR0k#Veft zu5i-Tfis@kI$sHt*aOXeUF&94dPpH{8{}&dl;?)edQJJ`yL)L?yFLa}F2f)SKy_Vd zS33FX@GIpy#rFj2Hg872*kv7-NbZ6Xr%}A09A8S^<(>th;n3WF(t3Fm_p*Dwpe}3` z^sG?Do0Be>cI&~ux@jE9gOXZKZE!;)x>HZPH3}w&I}d5C-Q-H|%$?2>XmYXA_iL-# z;#P--@6O!Sz{@yQs9dp^@-K%r>J_)7oR(6B=ev59=Iwz7&FAEUHdTaqkbF7~Ue%`X zuz-a??J8``G|H>pA!CR(v2)7A#N4`Uz&>MT#fz>u7~!S%ROS`jI3F30J% zYytqVGvDulZ^evuR?XQ*`_iij(v&Oj51wuzlw5B*=0&mYwg&j_z7Vz>Ch@;2_MdG% zFf+_cr*Qy#syc;DeUDG}QP25mDY~O;c!VH9OGW$bQ0dW@RYOhc!|I)FDlFI$Yp=fl z_(JQGy_tuUjq$GyQ>N$}Sd@@6`O5W?36C)%`$psRl7{6@Lcpu=8yUV>{&Zk1HPCSV z`oIkjenr=(MO+(`IL;EE&nURM0{MCmr%eBJfpuhtiTpMCL9-{M^Y zag_GQZ-2ZvliPfU~6YjJL?c_pvXMt}0Qnz|O1=a$6)nHugl*EYg7ko zb)KG7;H!O*MJ;5LvOoT??3US{B%ihyVQk6<{Bo&oj;8UUI>BlF3F%I=`rqkVXGFfB z5&l{>&!OSPw2$;r3mcAhp|PR8rPe$)l*K(a1?=(}o<Ftm3VvBw+208TO4w6n zKiBIZrM5OetjvD4W7m{7|W9gFwD7zJPvJ<9z=qG)r3u#EGzu7(a zo&7tjbNYAcbIU8VX>*<}-}Kv(#)fzL`GxzQ)3=AN*d6=swq?0KXGMPO`^E$B+P04# z^IvhIU*|CvbKVUP*Y|2q=LLuqzOl2zn5WR!Mm z$lQpUPMNEyoE043#Ad!SR?z$y-(JR0J;C=pAvG(pQ-a-(U^=_9xI3BG&(^!n+e zcMsx`xXH(DZrE3e?Kg5>2IgPWWUw6;d37wmaWrjPPO-PCy57_7O7zUm6uNCdmWF;T zB}Q7$OWI3m3R)V=IERcw(tk#&_TKRgcC{nrt9G47CWby}iy_*l!6 z1iKMBd4BlIT#~#k=ilF+JBIzX`gvcg`Ra$P_Sk3XZS09X?fKUWKwOo2>n}@VHExLw zWvt8=H5qfSXu4t(F0S)gYzAuX`lndAXtAUVvCVR>MY6@;#jsn9l86o$cNx zodm6IFSknuh8P^8m>bPVq;S=uG~5rwjPsr5xOMSYeUC$CQ9IH0Zz}VJeV$Cz@2V=o z%9rQNXs?UgeVgB7?eP@!T8G(*t~q(iiena^F86xVnBTDc&7KI3n&==fTPoObQf7uj zOc~Z=J$DpnCPzHwd)TUO8~daIx6l|Hh*%rzR>>QAYaRX>Kkx;JbB|5R9nc?R#a@91G%*j;eXkBsnrZh_aO+o+D zK_VyYY20h;g?8&94aTs{cg$UvCVj_+ z{o0&`q>Y?ga&_#aY1ucX?Y*2!ci*$A#K=G7EXlWRYd-er&Wt}le7f6qU_eBBrBxuD zSVD4K(B1pVQ$4OC=*{r!Ma|cO@i0`s{{SULy*p2=r-fG*$*%?X%L%aoCTE)>{1Du( z4esrgl7sp!(spuY!^F#NyfFTFlW21#SL63W64^C%0L8J?7fnJH+hyQmJgzorCqf&u zm()0{^!a{Q=9xkcm)0TE5k(9;z&G-4 zgrTYSPLLiI#RqlPkH8K&^?b_AU+NI>S_{40_TSsrJ0i zPStq)AzM=Er4dUK-1Rl73G}K?QpiU+O{jHsaM4E(?v?m%OKjd)KSr9`8Aw}2k8+x( z?efXa4Zi-AREXjA-#BsP{;zFFVJ6A33UduW)+pvg#rpszRj>fCcjA1|5Rjw^m z&{Oz#7aNS_Au_-+@w&ndA`RQz;&NAukOi{sLZOg#7mcxX7gqM4?MmAk2ta>sbrJ8S z&8fDYa9Y>)u*N9(9=kV4%2btf=7F7^eVjW?YS|eDXA`c0@b6a?l;&B>JIlF`x!STO zSCmKJouB@O0zG(4zL;kdT&8uw`zt#m+1c|Ht7g}K#> zzjfQa8YWD)>8i}G&xPB>WdBmRdiMQDdVFK#d`$(A)Vn#{ZtV5BH9k>Aw~4Zwtd6`B zFE%M1KkJtSQFaLQnx%%3ylfOE=m%+O^-HYjjU>l-N%fjx$of6j?=KmwnomFEyaZE@ z@KG!GBRY0>+nB$scyPx3m!t~Z{A38EFF_CC3YX}xjf6^9waBSbCt_)YzAD)W$yL&i zuXw2IPKvC`I%6IC@p`8~1q#GuuYRN2M*fnOUkJ0d;9<&5Zk+k$huIItaY#Pq#P5uu z$(Yq}p_@Gc?envdF;d#xplc=}>#|V8H|sfLRZCfSnk&~AM%u0wcJGx*lq)Ao?cNk3 zp8W<@N+Rwh9wRx03Zwl?yXd!ZK6%6-BXgqg<)k<>$(bUlD(!ST_>dwDP3fY}HG%!_ z&{!7knwpO0W)P!(hG*(&MN+w=o4hyty*@LIfcm~ha^SJo|Uc;i}{&Np$% zD;hPRPE=JgBaeB;3=5RSTK{h&yJuOHwY{?PpNuQf>S5s|9J}IY#DjMqjRDf;au-Sq ztGmtZRUR7Am8<|rTP#ML1RXnvr^HBljU;SmM%38X^1sP8*WP1qF-t%`P zX)d=0&j*vAl#!elyxSICk2zNuSNI$luMzpZWc~G?(2kT;gqnrcL1nPZkVzA1mrLhO z3=?dJP*PAmn6v_@9Az?cP^QxUS)0i2!QZMWqeg~|2RrT6k#196CoRI1nGGiR^nc+1 z27d1pom?Y&Dk2FoySZaRwZAl;UI-wk1AECc58IK;%3w}EAIAR}G@B1O8BHo1x*w@j z+s*n-f^eGEeo+I2#}7@KV?)h!CWS=KstJ}(|94zR9-;os-`@URm(}dTMn^MVZ`Hy? zv9$Yat4_81sDc#K8HFVRB(;(Yo#m0am;{<#&^L zWws8-Rg9ME`xNJ%XWTlogP$-C=Zv_Cr6EN^>P#~+6O_%Cd#tkI z__I0Te7F{+-ujssgu;s^Kw!43tm@eVt{m|95$eCfM#X2H>+geylEKaUmGDbWaM9dVbi;6j0$61&1@nTIS7R*7Z(xYKnSJ0(YL*s{inc_#NZrFXg_h*4WRZ^X{Exi)6R*836Dy=xnvvok2mHpzfo zR@lV4j}tR%?VJM99E=o^Rp)-)K4WBO7{}HTx8QWtT`aDLnfO+i`xio_0RVjeFV<52 z|NkfeTJWiz@!wOs*r4xHQEa`l2ModwsgT(>q-+OxEti=I)2SclmZ9m}^oC%1O76oi4oBf*fR=v^nb) z)e7|47p@o3ZvQClsha$crEP9y`t8W^plEaQ`J`Pr|+yq>nsI>y)( zf5tmDU;`_qx#i0#p?iXU_}jiej@|Kz%`x`9A8ttlP0ftMb;Q-n4oMD{)hbU@<(#4| zSA+@Y&i(qNGb3+L&?{<}XVTSdYJ97BSHR-2_}rHsRjiRSgzWITk^ZEB!ir_hkmJ~Q z@1RyNv3Qe5c;1KBeX&`y&`Yd-;q0)@tMC139L*?!c&F;9@;+o$ag@Vaf|&pkTBbwsdo@qa?kXX(>Jg4gc8pY@K*{AS|V{8+A$IDmZ#y|{&Y)Y=*zKiI&t3a5& z0kH-(f&Br&n`)ozEjstkGb$n%XV&L^BdD8SDpflaysacEytj}6HcaX?PH0iqN!SeTA)_^zB?#PN807mPi zGK;ruQg(7~N?73Qw@1Vwx%XINbZ^h3Tq!sq%m)@2Y_q9{84HV&mBKZpwY!ugL~eC{ zR%vrDJ>izrt1YG%00v~wT*YK;l=WK0jfKQ4|B2pvYvtlhve6-DfNDHfi!y&@hJEJ4 zsJKX^^3N>6Evb^CWaMPxQ=^O-C)pIm6o~_)7y*Jt_+*9{Gl6V`E@#fjbIvSdl)yr# zF84^P7eHRc6R+Qr#n`R!JoR}f|6MN^D%hl2#o7TCm;1J(wXvk*qa`5lEgGzHeTb?E zE(7j|Vp$6}abuC*vYiy-wi#|#4y9P?En`^zgglD6PhgvX0HLbYF01WQm)G+`8x`-Z zv?sPDxSl@{dmRjuq*Je!uyX?6A4&HulI*0v~dp8+SZNDerQ(kf)FoN|9uLh#?nqF=I zCW1`|e~((X#2%q)gjz)<+wNDZFS&dFGqu;_93%=`9n>pT`+u+^*UQPFXAC4pNR(}~ zw8Hb8PGhxBHR+6=7&@V3szOavJQEp1zkzPgh=!S`P;vMfgH~1#tnYUsGqBoi8Df>K z4e0g^ZKkf1bvt_qN#FrSnv{0P!DgU`0wmT!lt{Y|ICM(SFZaqU@QV{FyoS2Sle7w} z9Q~6}wxyhfJ890z9||)?lK?MoArK&pzgua$D5D!;4iMRJ(U6lW)Pf=5u|n(5Om}dA zH^4?BVSlNJzgK=x_&`Bc=-nJH*-{u+31<=kW(QT0_(%u5`W6AKNMX_uh#{gQEVh>9 zWz}sxnKEj362P9x#e7f?fq9)v7064!FS#(d)rN>%`Sf{ZCU}K+^Q=FwPt22^1)u@Wlh^i%LTI_pxWYR@E%q;~hgV8wUDz`c>`=!H4 z9TC{Apk18fX7@-=4Am4{fsnk(9decT@nYICdZhgeOvBRZY4Pmi$jz_O^be-(QmN4@ z1BXY|DQ)*TbLq^^m?@z;frj&v^Uwghts9{(aK}q8+MZD4r9yNv9cwA<5!Q+DTX1fq zl2hSGjI;tZuXYadTK(|+R0fdBkxE6#SBcU`Dxy2{v=(5YCYlH!7YOso9kXVANW@m2 z0%11*@We`D?g@0B&$%?kEzEI-P$&w@*gkiH(u>$>U-~B+qo$X3&3neYEfnGdC}k7{ z0uq4qB0tJ2(%`$JrAHH-am?atSwFXHz-mDD z94i;fEfx7`D$0V!-uNd#Jwfkv0)?w+M~b(v_z>Xa4uB&7)zivePSzGiClOt17U^N& z^c8aWI0yCmkT~JgCy3$X%ZO%3Ke^Q;dXqP(N#zGH5J_wpznQ;hnp;OXkOyaq$lU~B z3qR5j%;D(VA|d9WjR_^aO!7}7%tEMjLVf!->3slp;K(!xvr4>gX2FpQ)-Fr>Wiymk zUWC({Mtc<^wVO+=RwVd_s-};1bB48DUcI&30DQE@c$vMJd;4}x9z#PG}QaO}xH zY{|pXGxo~Vi{yu#-`EW}GYpEPHl_7V=`|mLyn0FgD@I^uTmS`Bl^I+e)L)4qhCmYJ z8|A=vtFob-Bg`AXoxkFP-n?I|mLHC^`gV>88Ts3jZqCO#tPy6c&`O%Gq6bdsdvmTN z=t4$+BNYwzI8nwOhmI@emRu1{);-Ms`%$;^-Y2*1T$Uy&oN>nHJ=mqg#9cB|LE2#G zq09J`+7k-qnl_)y!)8BhL}+~g5eEFudNjSPnzFR4%Z@=P=X}7dlVS-@MSa{*L33={ zv;q6o=%b5y*BNIjh12vW)C-*cwZz|afGqs&QIAWk7T<+k`uP>bMN%s6cz4+%DYr2b z=mES)Y)nq54jft4W$JfaCxJwrP4wMY6l|l86i~z^Z?F*de3X%0&v5A~Zvu^xj5wNd zCtaKp>DVh%g_yZE3Lu}%7}SLFfwRgAc5pbfb80r1ybfnbVMZA-BBb8BLat(7mcya- z1adg9=WT-UvHw6YoMV|(5_lm+@!3d)a=}7_Qw$$zP$EM8%wI%sET5RbM>0VW+C$vq zis~dt3LutrxV#@i`jkkb5&2waTUyKslffA}L9oOzOb4%hfcS}tu$I_5q7WL9SP3#0 z#Rc;|E**&X$kb~iijX?L@6S&T1B&-*^h!%$N^8V%7-(daB|<7sTb9{a-YFuc0;EVt zs|ayU!jQusAr~oSubhx)K=7IVkt^nK8VMKjvt{Bu46eoK2X*kR3M8Zu@#_r*C^E+s zctwc>yD^WvCYGdE%$|@bvyI4184_niNP^&neAo#fLJ4_(r~A}8mQ6Ea*NG=pe0B*c z*Jdtb?X-=v@S$SZ$w>LJcFM_aBBPG}qk2?hCl+)Q`whF5#{# zN0e8iEp|OotC(BNDQdSBw%DgwY9hwnrn$Q8;u7x{)@;kOuOD&vE7>hd=9pe=E8}k4 zn~M#$mVeIN5u6(shANc=V3X`}SUDLFb9Po?fs7PA&9?b0gk zp{{~2Uw26#*+dW`spFF~AF*SKo%8e_4T0?LY4vmeVqu)!S(Ua^-m%)+clhjKl|9-O zImdqWcR1(le@*}cgu_4s{(E(f$cR-!p5%BMXTUJhrM8+3eSI0DkF125IlcI@KWYcZ zIy9OxG!naw8CH`0&QxifIuG4A4yEdu{@`-<^}p~4-2NO_+UFA3SmQmN{3RR58W;oY z4yGMr+qMiGh4y(n2L&FL9EgD+8b15xb>{Byh|&~!wQT6u zabm4<)@By#>$pLaSp;KmHC?d+pznqnas>=9kUu{3>Q`?C6ChT60|l?N=IN73@}xV5 zI|m38I)FLJp8?(A9??c~5a57pTQ+Vq{|thrmHMKS&M2->>|j>5IDN=Ivkad<*UB4W zsA~nE4hRS8ON^caXmU2&x)>*p0$*M-{q13;ZPa-nwGOn2!ANlpl={DN(s&+g}Ib#jxTtDB$Nd&qoDT-C(|y>u0k^%F6& z%LHL#4Cxd}$WXu5so3FVx~Mk+5s<@i^r{Q0Cb@iVjNWTP+{=tq4@I|q%T)9<_L??N z4B2hW&~2B$#)7qSveI?-4&Er0n5;z(>AUoTa(Am^-L~F58+CN9Z^52iGV7K9&RYiG zM81|4a9CFE&5ouyAeDAMC_^i=)qc*R%9s==CeaJ2a^GVu4(*QdUJ#hD>O!7IFSPPH{PiC57M%|@(%y!`fb}&!ONxM z1jXzO+T{2%ZG(rzJG~d(xNqJ$6}nWaSaS6E&nGh5kBoCY;_Hw6=OCXjf7Bk#JD#TK zwyApDVgK{h$%5U|X9~Yh9YlR-p+vDhE_AtT3{B46bUL4zd6+VD>)+TvPo{=fW$BwhS`-7{`=w&LUH(cJ-y55zNHrN12WNVNNxsQbr|r~m%f*w4_? zufO>$b~w1}Wv_OiA>#)DwFJIieP0ZoqF+5@XKwxWZ{-B*_a86+^>O0cf8F~tU^fyN zh3-2r@29JqRfE-r3rq53H@yPN%%Ux9Sr-vVwd;Buf^PAn?B;y4z)PZ^%44X)GSKU= zaK=dAiZns9T0T=a(nbGy)nKnEYg9*A5(o&$l6=dT%tIQ3M;VYNF}mwQ!0(Q zib6r0eiD8nPc~t;b6sN8flpUTLXx+I9T#KOVF!BAewzfDKojA1_#KjG~&XMP^1iCioW2)BS(qY>< zOb=ZsG_6UCLzf|I=?%YAZKp|-^*~p^&XO{pH7ZWp4mj4=EP=wxiY$E&f_h_o#Lewe ztB_1enj8277{zgZt44^>Eny_Z2M0LT_z>(kImao%kKXU>y8YhLgU&;qu`&uSytYdP zTvEteXSBxsO#VxS%Pq5{!S_yf$xZJ^o%mOHwKJCJbEH0sLb&5@)58uyila+2Lb$Qh zUPxRABI@+E*GVzig$aJWoh8C4@9JF%qIH7r;@D2Wd`oC3%>5WWSHLBqm2Ii`)g%Rn znRJL3-JShU)8o6x%3hpW|LmX9iJnK_gAc@|y=s>K>)wnTCBN9?Wvo62r=rtye9oAb zSP|OoMz?1^`P@|l8dr$o97z-yCu$egYQxx#Sib|bnIK0`PnLhN$DjpyZTg^66T!1HHc;w3|$7g>XUGnc=V@KC) znSEMnUSY4f7BG9)*@D0N>@yP;D!;qYsRNGG&OVI7-yToU+YbRNC&Y#heaLgZTc#4q zisd3%l=E?;(65L&6PR7sE$&pftQ*;ufi^q5HzAM!LtS-TsLL45Eo`^WD-@Am05Hij z5>e%M`>!0avY!~jH2!!~xfJvekP`X#HE$~=H7#YOBeO0T*KEnW^|J7!UA5HNY?WY) zbdbqOQT3uF0%;G4K4?voiRi!tbG8Eq5s=dtHTJMefI0{-&lY`+V*X9h^t%J+Lq_8T zm!t5EVG$_@?VTKCKoy_OTq$%)qSzO)E8{QNd-85IkkMR7qyH zweB6!Yg57W`bGu&2Z?&Na%oPwMM=NNFUNqMyoeGxX^&jxiFJ`f*aJ45mY;~8dqSJmrG8}w6^=fsP-5xrzPu@sM5U4OCaJR;RzoE(2$Qy95qjSBKvLp!;4!) z0n=`u$jMMTZ-?H>tpE8XcHJlMdIb5Oce)IJr$71M-|7EZ&RTCIm|I7>)frc3B>o?k zv%EORtP3CeYg~hKx;OpxQBzw9^ujs+U!)@bOkwQ)h!bgpb8r$}?Yfru{qfVho!p>3 zj?ZqKJ@N2I$Fl{`=9GA4DdYW)JZmfU6SWg}&S#E=zRlXU_^MzP1)~A4wc&r?3(Gv1 zyZN7w9&?+1EPl1MkD=|Np6hshvvH0qb1cJbuaUTJxzO?Hy3r@AO+5bbwf_R;qzWMI zHWhVWAUBWx*T+y-Td#R7z8_BVPspAVe++T=3;d&h>b#)*PGxUTjgzx9$1E#H3nGskJNqvdPKBRVI$OsN824$lYgo?blu7B*PcnSueV*hJNv)X zc%hiODXrULNJuX~v@h-G>Rr^}yN8B!U^Xx2#tH9B2|- zB+><+1rewN2a?i2BYMBjfpb}|VnZ<<<;Yp&JHW~oh+?)TV71-;FZdIA?*!*+a-+8f zQ|b~!Ht|p{=?wnTy%Z?4w?Zny~dA-zHp;Hd@d2 zcv^hNaV09f>9dlpuGA~nzT0u`$zHF12idk?KHrmAAye9*7~>QBFw@9(pXZk38sCeB zsh>h9tkP=X$^S*zcmFk&Zv8&#g#ZaP6fp@c^aKzP8Qlp1B1J;6BZeZP;s}U}%4h-s zLNyc>6%`N#6%`Z}6*YkXp{OY6prVFiFGI8Ia5r<#`MmR$a@d^o)dtzg91_D_j7=6#}4GN2%CgdK2 zbBUY%4OjJ)DXgBPWaJP!^SyI%GO9%zCzze&O@A3*iLtFM6Nnj4W6gVSntnt<3%-Lr zQ)6qkc4Jb4{LcKCn3(G$I|&jMJVIupu86gNFumRCIr-LBf+eWvh3t6N6z&Jy z*>@gx=F}DW(sTez6TGZWCYz!Ub2Q;dMa<(5EYT`FZ`NT!w&yShKU+A2Un=G56$8DE8=8)$YB;q&L8kfl=E?zY8g60tsrc!~;M}Wx#wHl@n%6YVi$W?h8o-b>Kn+SC} zJbY*W@aTz}PA}8mZP5y%)#>O19ZIX)+3R2AntA(=Y5Z#HjXOl{@F3Bx7c>cIWVfwz*>dT3)hg}{+Sb+C)Yh>jn!VsS&83VdlWYiC?X)l@Yj*gaY1dzz7S26%c zLcp>0q=02Ae0)d&B;rsX0$-z+wP#nDj!=&aG7uv;tar;$BD(bSiT{V%_^AFv-)MjMyd-OlTSiaj!I!pF$@&MmWF(X5mD_h@+9 zb15zESq7RGPDn(!W)n=fmR7V|ul}3Z|Vob-xnU z@x94Vc(zd*$8DRa(j%IJvaydMu3~1GwLoao{vk4tnSMjbl9&u|$W~;$SuB(_MnICv z(U4{T7mOvLnsC&HYgky1#)$be{uh$D*8nAIs->oV>?CW~c;D(D(X|VHzP6T$PQ`eB zJn4OsYv4s@+?(pj{rP8N-s;j#8ywN5n$J%0lyX4 z=QJEw+G$uyF0n^fHh_Av;cfpSY4{Mq+cq4Q+S|n{)34qrj!IT#cnmx^kdWk->)@9Jj4(X=rh@aX<9IJ~+_~ zlyWm~kE(nO;*Q?aWmCV%@r&xkD@(jaJ-;YS z*QvsY=MAdA)Hqyvh>u|94Umd*_3DwX!#iEPTBnS=`FZ}#xxYW`X|>^zF#gluXjZ;nmRC&h)B(uc<^Q)!$`!6YB_%f zvJIE$PJf<=eX({ZQo36!;-{@}U+6(^y&Fc1aoeiHv;FwxZ~l})ATa}n{5GWxrY&mK z>7+mV?j&3h(6IV<$K!@Fsl+Udfn|jPYq(5;Ycp_eW_jxvk(!kHP;Cg_$hk*=HgHzK zId_1JQR)Q2GC*9MaKhJ+P5#(MLay6}NwK;uM{nh`hI*6yn#a;9AXPM~9}u{|jbsMP zv4Cg3Y{-$6i(C zyLB-oI#2fwRhQnr&(mEcDUv%>(}vpg77G+&hmmEWJcm&gmq*3hm*kMzJf_2PamPK( zbI}E9C_o9c=VYDer=oD!Q)wd$u|*N)8k(y{6EpO<=u>=Bq8@4?X*F#~p}C$GRzNfB zM?&Vjlp%zn3w|Qd$#Vea*RsjuZTc-yNoZVCIRjy=iip8eF7hsPX+}ZfW43qFE@+an)f8%j$A-ICp zMc9ni-P1%}RQ7cmn^g$%%xVXtNp3PyBZ@c*-!*g3Et}T$*N6jSL8PdJsJ-zkW$;tl zORm5gH}-PzUS26K9oXnZHrix;eprrmqg1|#{uK0P9i0LdQXetNBFJ6QuXg2}MJM*D zn(S7br!J3gpZG)md+g#9hjtCGGgz%k#LhV@pX8&D=uM(9_2C%^`ZbRdzGa6bbdmit zlqk0|Hj#6YZpKdzw0S5`FR+I_Ho&SZRjA?CAc*lL4OHu(9B)h8sPT7+(ZU$&01&zU z5Fmk^LwY9jaV!;!bke+a2d*Mh@vRs(xq>qB7_t~<6BsbIC1)Wt5uR0SB=Ph%3e&mM{bF%&Yz#?Fp(t{SFr6-Lco4^LhCbd{7Z-KMDGh9>@RJxo)^I&nD zghd@vqQ@<2`;~xYpl*X#SL9&p`g>*)MoCo-rlbX}!K&=Hn`_mj@`rcZYR_ zDd~oVvT0;^nz@ciVh1}eD%)Ll4C!5=bgXX3)g0uSrg~vK&W~efM=1ObeQPCAMWkea z5(BVg()9X5`s2#v)8Bo2$f8nG(1PI-%L>MJo8 zQU!S{6G^ES;*GvQw2ib3Lsn)cM&PZ#4lc)m$rjT=nzoLex6xIB#Ccj>iI0_|%xG+w znGqv>qgrRj3euhH9}psh8Frh5xH-)<&D37+=1-!+)FiP+u!>_eCBu2B!3DrPOK)do zI8?)5_mivzla{mf=%m>6_nc-LFZ~DCJ_3j+vKEO+uUg|mv%+BOMBZxrv6(k3o$`a^ z->lXsC)7zS12e7Qo|4^au6}**K8O1H(#7|}thAyeOll>QdBtCM!cJxh(TVzw3Ts)E z)PyvIT}n;YOK-8XphXe5<%)n@p*b_*rN?TB7`8_(e$5-gLhVyCRL`F!xOV2Sue(f3p0rH5=W{fsp6zD%N zxkl3ZvK2wo*l$KUG0%Z)!y9sJY@gCM9md#1i1S_WBP&hs?X&d~JBN=S7Pc^LmhVC5 z{X)rTtOJYfNV&}NmzVST&27W) z@G%y&zv+|UfNXI8KfLHFa;`U%c$#0Xs{fA?A(L~p&Bc~^&|d6u{U1A$`-Cuv1p-6efa@s&|@bl?`%-z>nh(ydEhQJ+eDaFxdi+Ii@hd6X9w!Ow*`!fmzrthCueN&V+J<^QF0TlwBxr`Rw=KJ ztMUw8$`ZFHp`@F@^q*08jvQWnbN92>&(kK;+OzkVM^gurPcN`iqz*0T)m;tib{ye<) z!)o;Nk5cVFwceTU(EerC{CPr!PZZ`wtvTN>baydPHvNf++YDc|@jJZf%w8quQsZNB3>`U3Y%;sgs7$3F1s#yhkh0(fN@~q);1^ zb8vVd(gd6IykBP_pXdPF%gx1_fLiXHM~VXV65KO#jHY#Yua5s*Vo(t*eJVY+5LDN; z-uBwSbnd+*Y5%gPQfjrrOq*}dHsQT^k+x>fg1Gfu>e7UeHf%i08))4m>58f7Mx+#t zq;q{ukoZwwmvh)&qU{Q~ZmVqzS>9%lQA=-~D?=xDTb>bsU=zYdSfyX0Y|XXXAb@h* zHh^gvo`qX}V(797LR1Ri++v|j{JN7*g7Mxg~a@9wpO_d?7 zQ#9YhTD@XTw$B1(vW(ft-x(P$eXp3NoOlrmvR|V*)@_fD8e8aoFFX|Mq9z^7)WXh{ zw5?pDX7gzqNr-lnm{W!qAKR>IFcK9sazkknMFn>K~k>&~(-B*_{5@*j!P-Ci97C4vqz!0WXp3X;jv=$MABqi@+3Ad4Fe5oTE!oO}^EJlvaIbn+=SxD{)s^TF5cO@&D_9`LE-y z9`2$hSK{lq4OOlGK@rLPWl7zzPuJdkq0OqPzc}< znEO>d^=K(Q)$c&g`|E)D{hX<#oW=OKGxHMv zSk;uOnOmSCWbs-hhH=-c`ZPd?J%T@UjeS&}R`z+#?V9aJ*WUi-xuN~Xxlk-Sq)HHZ z>)2;THT;KV5*Ej#8)4N($Ui~_0elnFA@w_eH#6M0iY1#y;nDfWmC0BkK;p=Lf**Bo| z!{1@#`f#$1l48XCm`QOOl%bc0n>Ix1uXL4ULfdI55#9L};?}HffZSnSUC|*}V1Mb= za31T^h2V82uS&~uJzl5;1mqI|&*>#O!^ioKq@;5P@_O$>*0X!URp7yYRs3*Sf$a6L45FsHZi9^XE<*7;t6f~=(L+cz#B8CvID_&i6 zG+Qy^UAXlv(}lnq@1A>V@I(NUYQH~_Bzebu=y48g)&QC1VYa$8ixg)Jb!ruw+I5ZG z{5gl^=Kk&}qv}#a9_&}P{ovTI)L$tP1Iu@H9JzBGxgw_qg<0=#X~1lKI(2Zz>GQdK zq#T2dZt_+ck2T+Ig?KVHSnYRFOaSQqm9|oh6yM9Af6#$&aLZPI2V`DheKxd zHe{044(f>PFVTS9m^inc&%UQb$}J~)?xl0ik|cWyzx8kY{3P||s%`U!bEfH!yF|yV z7ZMv&bxB&Kwa3~vKJAB}7|OXgyp~E8)>|DQEfPDvQil>ipA01;J>#KBRQIM4!u5OA zeNtnP;2p>zptIU;fq@W-c9MF?m1=@U$`K%+AzM(mqvprNlkHqFHLTX)%hbIgAg8<5 zAHW*o2N*J)XjAS(()N0G26e|M{RiayD#b@P0k1F7Zgi>j#CdVA-&?yQ&2$gHw6eJ;&o1 zDudCI3~hqNoDdo;;zo;{Oe^sXl}KRaaUh3Y>DS0nC2QS7GY8OMNikj%tAil$Dhjut zA+yg+#4n%Ndv;9u&w9@kbG3?PS@zXvmaxO5-!EHMnitayGWXSIXYV#a7OF0kKg)m4 z4oZnJAfhvE$6gRACl^MUjquvY?U1c*hW*-w-76l2l1lTd9lMd;tv`-Co#_wO_u78! zru?4c`MD=JNaX*}2-{#9;rD;15&og^_D)~Qh#VjGffu;t=e_<-;|){85k?bOkvVG9 zpojA$KInk!=C0>@zs=Y zuWd~5k&n5F8x*&f915 zrHeYphPx<6AdVCjtwb3*A~lM(hoI%9YT_NME02v;dPZi99n)oOlyig=-5||h zHiICwBfJ{jefhbSa`|=ky61Z_nn2~crA{|%)?Mj^ECbX@ga|u3ns8r#E|6zIOncNF z<2~|LSd@|=&oqQ7S)%7*W&J|WOX|eizDJd?8d27$fVV7?OBZ6f42L!}lH=JFD9!1E3l;(n+dpg=% z+X`ook{WEpgHy0k6(e%p&6oQazp0~iy3?dCDlDi)@SG>sk90ZoSBD`vUWw)cY&)o6 zaxR(*x}8>#qh-vO>D70->@UANKmY4gm{2RywP@njy7w^4xg$_Fe@?Ut;?Lbc*3pC; zE7@-^sSq*^D*{t@k6mJUNr2n>h-LyM7EXG$USR=p9q=OdZEv`WHH+#iqLXKVrc-AU zJT`|vesb|iOuF{+is{9lp9OrilFf3jjgo5lMNr_ytfER2pftE|^@C_3afB?u@}tC1 zo!d1Ru@+?-uBsmQHS~}UB_4W%q+@}rDt-hd83H4k(W z=}zUbZo1xSp1kEW`#P&#eQz0WL+Kw1dk;#Rcr=AZke&)7YHC)Cbfh9QZ4QUfeg=L5_MNsM z!^usu3>`EbXH!9We?VZPJB|!@+&oLZs*-qP9I3}Ue)C*v6h89gJ%N{xtj|K}U_B+J znr88p4C5pzCvZ5V3*&)NWM(HIL@RG2m6_@JZs5;WtRWp z6ja$Q1*untkHc;ehnpm$==1;M@ebYtiS+29)v(CKXKjxM<9SVAjo_Gn8v#S~$ql=( zzOhxmaMroi*RnEQtP8a5!4a>!U6&kGrxs({w|q~kQsgWi=hEZd8F~i;_oaOuw$uQ1 zDHlF;UrwD3e)~H0wXbH=(KX#N`peeOcLosbrTtcBLEkD2#gY41h%*vPSRqq2$h^*G1HE4Hiw0~h^9mfjY&puu5iL#Z)m!&5pLZd9pnGg$naSgGMMS}!3v(e6s1 zSbX@iRf}ued~{8jlLW(-{E|)+;_JTP-SgJ09nN`}RC8y+&9oP75f<&QbPbmd!s(w+ z2Z|8p1I-+s)zdmgD;3yJc4|1!FU?}V%r6$}Elo>8&Fb}t$-xbjhvngpGLL0)Q*9J& z8Yh$}e?k_kMav4^#>!_doRAEcTb&)KqGq+7T)QX&2xDmH(5)Q1KfLbw&MQyp!(#ya zfaCZ4T5rwW#w%9M^Tbh{ z|0M+p+@X6|{>TP#g!OIxJHKebkPp@;_L#~bq85f$L0xjb4PKgls{!-Vx|f72Zy{2m z^u$WdEH6|6J;GwLz_y0~%ijo#$1`yk2a6YZSV{vpn1g99GW)>?X#2xOk)5OSzeP9;I+%*;Xn; zMfL30lp|J@#6EdmwszMQ*3pgQ!siuE;hEYAKPa8EO-VX@S`>fW191tK;_be10wJQO z;8Xatb?9Uj{q$W}*pgt1%qB&RQv7s-)IdaAQ!2oMRpB}Xn{LluayJo$lx5)jfM^aV zrRsS4wfvX}`1bbnojteNSs4QK# zT*Si=c|<23K0>XdEVBQQA0Id}e4}3Oe6N1-=DPtVb~XFhFHR8KcJQHpLz|xe_YuQA zfd5Y;W?|mav$36_$Gf^}1Kw{W;uYu;$^SZTmi? z4Oc-FGM1hevRfKZqPoKkTkoA()xCA&K@0cFtiv1bZ`fO>ud(a+wWM=P#17As_kM4v z+J6n)h#2Y~sJtQm`U#=(y8>$-itI+dFZE9^J5=DUafW-LOX;-wR2qe9>A#Or#r9v` zqC5c|OhrUgzFwo!KeXKK(cx5dYd+m6uBVATrh-TfM$_M|$5t&{@SrqgogX6i6Pgma7lwMMC^OFJYV>F_$@+*4nc9ORmG#L&G* zt)M_aAi-JcNm_k$=ZMju8;~>XpGk|epaZ6j+6$&L+q84RSl^x8pGxLPzU!xBds0V# z*}F8?YlkbGK_BaaBbyCG=aDYT%rz)cr0~^y@M~PMV6sJ*Q2bOH&80>}j3Yst-eeZ- zcjjg-3ZQK!Z`RUeOC-nfQ@DAV{MJrLVhWM01a3=4j_!UsaDb}#xQ^+&6wQ{+LBt}p zoSow*uwF?@0NlSJDikGIg-t|seD6J?#aM5zrkR;EYPPci9P7r;Q%@HcXuSat_Ta~e zMxR~C%xI$4V2W;_CfbMAi^#tHoKey9NP6s)#M15zci8}r=bF|N(qqvGal{rNyhv=@ zr&FEf4g};Juad!rLW@_V^NLVQd+#2*TNd?go+*&KY}V~TN;?*KxRC8vM5GFIkwc7L zkG$|ntOtXaTnHgbPe)(qd0~EJZL{y`@x~ye5KYA5>O1H3Rfn}(-GS?K_n0AB^2+;K zJdTkW_1Vkz{PSSS@0#vwDQT2BkJEIgQ)(dCN~dx#YuemnFRni)Ck9#&`9cS!<|| z-4_pj{O~>Hyexa*gYmW;r8KK&h^OySD~9#97U?3Jf!JGarXH{8Qc|dCaTeiuK~o!P zOKk|+C_#ik>*^0z{t1=wQ6j@Ye19f%iRMZ%G+vU#qXbHO^$Q^k9OIR`;A=QBf0O*Qa#I+rgLSLZj-P6-mr#l^pllJM@9lx=En+^BF)UoUNA_ z(dd?oA@2SgiKy9p4$&$>(=emG=8(2+wed+8=@Pg;rY-e3VRe~!vjq(nYE@)dviBKa zLSZfJ-MsL34C+Y_RIe~8);ut0iLZ*MobrtcrmM&mYK)~<6l0V9aQZ0-W2+ty^3hYR zXWY}#%G!{+_D2rYpcAIT?-hAI3SpGA?d3AsWqqNCh4wir#i&m#neex4of$3Go&S79 z!K;tCV_m3^dT$=Q=sc7*9P@KpZt+i}?937M52I|<(zYl~tv9 zb3C{W!N$%5u6LDsQE;e^Gzazlwm0!+6x z_W8Q)OJ&LMEo)f4mit*5xtz*<$u*dE)*8pcKs`Big%cQN_ z2_eOW)@JBwh8Bz62nW-+r|AZ=Zl;d4d7v)hAl)b#N6vVclB_jvvaXU}-Rs==st6fM zYmZ&)dx(izeUAaWGUF9FUOProK3o-Uz+YQ1}qws#HlC11_EvA_EkCAD8kO>c2~ ziudN(Ka{3(=*Z`?wYwfGqdMG%~y+l1Lin(j%x%}N%0 zE5iSx)wvHtx6Jyh@hxG9u0dg z>e#Q(c6?=E{7db9v})?o?+&lD*+Vq_Ig_-HU%$}f+F;0&UE0f$@ZMSx z(&L_+O2fNu=^@|aFDOe7z(&zTfi@Ib6&w)sWGu&hV`3N)w4%ejNv+a!b-v53wdTKF z$)Ok)cwtAdE|GOHNLD44hBX4It-!QzEM6AB4d0(`R^jT6X1|`X*8KW}OmOLe6RoU1 z{Af|k1&ws_FC-&Ip~Z)>@h*r;a>*@8J)1I8@G(lTY}fWb_eqUF6H=RAmUv9V#H8Mk zQ-Skw$;Mei-nk^|;Js|p>i*G8Qk;j2oNO~r zAd{>vbKltUc0MW#E`0R!kuecD3-D%Lt>|kvMhChq1l{)BVMyvRGAjNZ&qWyCujWz_ zm&ag@OIB?IhO%}r8M41DDp^E8twVG`R#X&3LMNdDOwOgE2s@BZmcN3&P*1bC-(26p zT6_2MJqy|d6(cQY8l1b3wUF*YtxKjQw@kJr#u$Sepq{9CSvpcpx&~xST?%bi4r4LUPd4CvJWng#eNjMnv&pW4VS9`sD@-R7|WqKFqNvF`-Ed92Hyqe&l{ zUp}4p;o6?}kDYGfz0<}!OoE%ouZNd(l2*TCHb({b0JQE(JvPd)>L;C?jGVKTTyZ)| z+y=S3R<6)mIw;_MJGWCJiGQuTg-2eF){;L%--RPwF<*OhcX-PTA#0?L6d);hfb|q0 zH6=8ZiO2N^e04frsmACwDe$RsjeDnQkR8T)cY`I()}Cw^uF8uvg4|&-(LK= zL2pQ7KQm;I7@7J!K+(9`16!CJ!|JpREdxze%EXR~C3ANeO|;c3try4j0G6a%ZUh<6 zi@fDIyZ}r`cOUtA=jei6)Ak>qPgrc+@W9U(^<|>PTNgORxw`$_S)JYITU!1xIVLNc zu`;%q#^*)-eq>pk>GYf9uchea=N|!4fAjU7=|6|Nj|T647D?E3;fCM0cAkOQ9UrO* zvIQ)@+osrxT=yDsn`WRrdXT z1_0J9c-B=@{#ocW7=F{Kj z7Zq5d3n<2D3$dddnWk%vW(#5Qs;%M5wBM-wIH>)ud=8(^8*be9= z7tCZ(Hb z$+{wyM@MtA$o{OU=NF}TJ&Ak;Kvrz(7O<|h^*7(EFB?p!!G zFw1)4U8N&!1sP_#zvzr25U>BSTa1y+s~VFR+TrCFu;2|yJP(k(}V$DkK%{?-Kvy8eiVIw zhS?5(*JaYqLj@Y6d;|fm9i``6-5!%+Qrp?3zt7O8ei{K$7A8(*K~`vInH}=_zNul| zyDz>Z1Tb!W@mt3Z@$N$Z5|Twvj8`aTXAe+(X(=iZuti3}!0T2ry%lO5K7|J{14(>} zAJqzL;4@l;qwq@MlVw$@P++*17uLJ2{|OBP;Ih6}au9UAO{3H_8tn+f&3`Q&yPSsh z2mkqXXwQPL2d;y$JoZiLbockk*5Cy{JMqpLzHfJRj54a-=F?FE>{hsLQcRqkEYGLvIcs@$XPfF`C-v8OxBl-BA z2NT2Ie;+qn;5+5Pf4@`w%RL(W_u4Im)waVJbIu;%v1^>0No@OHyU9!pC)eElSE{1Z zr6#!C=MwC0!Q|fh%LjO{zSidi4AJgg_ZQjIZBgWWaYIWD%E91cuAV*j0;*$C4>xlJ zIt$Lq4hLM`FduyT^t|u1`_X4Nf15s>3$PnkUG=>gZbVdfme~8qBE=IJx#2PY?5^jz z2ZVdAku|Yme05H?ks0jhYg!@9Z-rwxe|(0=&72fIx1{I-tXE+R7PWs0z-F# z<$a@hCIPXkG4kh8!jshk51n40T&Hj?%K+2PG6v=;=U|9C6&DZ`NTU&4)+2T+Z<}aG}!M zHIFM{DeK1aY1sHDBaimXBAB7?7_V=fScJ|kHy40h1C800l0VI>(Ury;VR{@OGX@2G zmmp7Z0!QvvLcWHlxE`p|#P-_*4Zs%7>t&13$P#oiLc}pb54L3EB2w1zsAv)67KknP zW`K8k5)}3(5L$CqsD^_W@8;UE)4qi#jJHu=_T91RS>etOJVq`;&@Pvb1+ecnk7MWR zPqD&CnWR{*XJfp%zzF%8u4|6Eo~~eykEJ8Q9|>H9&5gthIk+<_mmXseX0;UVq8MkkN7k^yEJs_C<4R{EMA|M9VjhJb zOK|{xiFA~C(U&Li@EAPu{loRK57$0yz)kl$wg2EYkGIV}n&zC}L(3Yoy9KrSM1Ulo zwtF*6&oZ4V#w?;EDwF{)*a`{7DM5zjFExcDLsloSGxWUc`Xy5!JgJrB&O`WULFyJt zoO(X9rvh&#=M=5b+n)(VIfqEoA*&J0pZXR^ou+UsqF$l3o}7V1m`wRDBa`@QiM1=8 zxRj3|^i()ocy*%sstnEw5w?-C7JcYKskPohVvs1^(Du##n>DI74IO(tU$~4sM6=Bj zl;==S@Y`%xj63J#RvE0Wa=T+cM*q8f|NlY#{0A@E-`5y^14Cp-bs;L7#^JO9V~2mo zKeP*gY&%L`VB(wjrl)h#N~aK1K;pkhWa~`Es;F#UQfF2*Y?^j zmh3vi6}*P(4Sv}*j#R@pPi*H_c&>bajcuP^KRLbh=+m_6Y9G+YJNsn+!s=AQPE2(# zbB^|Y$;7^{65GfDvr?VRjRrYO*WVZujbvr3V5hy3cID!Rs%fD7)9>2Wjl2K+bNqY9 zMi%Tmi#+`!S&5R_`$Y~?iK0anb6nO(Q=ays0By0a%Q~dIm1LQPV@$6Ljm^r|Ng0!c zeEFD%^S^y#@rI1ICMPn#e+hYZ=VtUxm_(*l%oiKc+I`|aS{KvUz4QQkOSORLxUSAx zwuNXLn*(hs6%yRosp35MDphZr4*C}uQGLeTyvXDL?HI-=#1h@6A66~qvK2~Jw(awj z;vpH&-$GpkbOubQ@%rm12sMBO&UJ>OkC)+AHJxt&VgCO^LK<>C#OQ{Ky#vxktwA^V_AZcT&NCKS#GCT;7Y{qRsJ){R2rD97+Tf!szv<2ChC}7NfUr2Glj|{qLcLUm!B$vT6My>vyKK9!oU7 zF`?>!XV_>8;7{VP5!IEqjbjrOz+(rz(3z}^$3mclSt8B^@oYH#62LRb18-5f^M>nr zj@dOxH?RPG#rZ>L_UmI4UG^79Wx~L$?DL$bsV#E1r)Y23O>Jr}aGf&<QFkrGN4lp5hKu)K>eO%ix>*iYfa0TxQnA0)Lshn>s;&h1kS8S6UL z{L6&x&#LChn~>9W_TA6L`Am0_Ug}e4z43=+mss%wJrFz5K~WK^_cpBwG4#=!TZRRO zPCcw?-_Ur=-ZSp0Y$au76Ib_a?}?R3m2@s*QJg4DW~j%ZQDpLqfW{#nJe5u@r%k#w zk%b$BkW`rn??Y{&`1hjnhAJROZ}J{do4LYhzaWc-*%P7E2&Jm^nRCeM{5G0RGkzyy zz*=T?a!l$($21lnZNkj~4Rm!|eYTos$AH#zX&=&iSVuD0A_th=13f zXvFEI&Y&pE&o}2UEO`;=1dc%B;`9GZ1@~`ccAB{7GgozmuM4elFMH=Y1Dod9orBeM zTaF!`$rse@&hqWH4!#=NQr+gI@Fu{$;KMypiU z`p<3eMO4T5pN^&z&%5^9!slmCC~tyiOZFk^+OETJ?|Q|~(RB)+?|dL?tX)n$ zviYsn*FR>1XV)_{W}BtWj_HV~;yv7$n3r$plGRg2AMrH+>&q6nPW))s0q(J;(^n2X zSLHGMnwEAb+R1*Kc(GghELaroZ$BH~KKrBoFYO6lIKShU6Q;YjmI}K)_Q{HRT!v$Z z5uiJ50=XOaiwoAcEiFbh>pm1O#jQ?F$}qm|;hkgLRx4Fl1M*$pt*9WCAYmTfT*LBB zM>!Bhc6(xksXGTZUXj zjZLFt5iskkAdAb`ou1LP7bvrUDpBfD+|=4(7m2lH0$+nSvx`*-f#K!@_-fpY14V_n zDoGcUP6;!_(BL~U!G+^H1D|+J=8%j$E=ZwEPhhm?Hh#KM?0kv}uOq09E;8muRwWr5 zTXDB*9)*RJvw^8R*A7Q|^X}IygHyp`+3UvI)gfqhuPe5qQp0mYv*NaiM`~g~{zejw ziHQy`A!6OBRfPtDYF4iS0?0{-0eLdC7I`K~K!Qj- zEY)nS3<(DfqN`yAF%Y8UdaJdkt23Zg?+kNbsHBKbbFGeY*A1wrw^P>55WZ_F6gUew zT~}a)TW3W!LjFu9lNT$qcm}?`hclpdq$rOK4+a^GohE;J?`<^M?R0hW#?C+F-=7A| zIVAJoMLhbgQmFy4;Ftry_&5UKt9gg2_@<53v2MSHNN}#MVzf?#fP;aHj*}!CqnVt; z+ZLN5LYz^nuJ!5vt`lnlbYQs&^d|}exGy)s@COl1AwnB8K^SKNQY%e}_97qr2@N?q z4s|X%Re??))%F&QrR(h*$<+8&V2-(h{L?Wtleh!D9iKn6L_?ynw zc%q#I+zTy!shaW)tr6@cbsi|Gy?=WCob^2?DK(4g;K}fQ-CwqX_fpF6N882BRod;d z-X=MUPN6O?Q3TwDSB#~f{`?IoG=Bn5hJZnwaP|C-@1I`h{Yae{NttS`sk?zdU~E2In^g$1(zAw)yrrbTsX1`V#=Npu^&Jeg ztg_SOg_jOOdlb;pJ&en7)*Kpu&F$3uk|4$k`KL_WzUB-5hTDXbi%cYGVL|C|)P#tE z+c*u!itLh%6xxctN^;yJ^;`k#ESmMYUb({cW%-t0x3=YYt)tvBu^LrLa24v|E*6D9 zmS?j;Sig|%Apik$02wKA$q7&HseVdA7g)*~&HY_dN?G3eW@+XDtV`tH_PLoUo&wXy z)$FWl^hSCX`ckU1)bnupG1xs|!Ijy!#np{_cXS>bqdl6*5m0dn_A(|eK6w#%G9?CJOKhT+MWP@BGI`fnGz@tqqJWkWHB44#638fU zQpVE}=8x(sCkJA!tM5FFuQ_vRe%Zs8IG5f zk}(_ogi(0tDs{Ar`Y;uhKO?7Ih(3^FUSMg~$k+pU;8Tus>ejm}_1y==ew5Hu3TzU1 z2WQ#=p5W8_*rhe!KTI!!HMN`msMa-P%O-tE<#UE4hRftyz%194`-Wa0NrVcKmIJfE z{1lZhC%31lm7M(r_F=9|bjz5vMQ!Y^-x~Nx1bLh#k$qeZzt|D&!i6meBd&q&JGb7;{??Ba--Y**n4R4D_@!``8Fp% z)$k7=IR`$D=nXX49K*$j>}qgG8l$1(VHvI&7NBnnK%G>8^_v}y8f?4B@rA2&k>aW z%eVYj5b_L6`&ZV6-bsO?rQw)wKJ8yY$p7SYxCJXOCFXbDJ^nxSB}G98!;Rqlr1nCy zlRqNh`({Sk_OypPr+cqmWVP`Ax6ID_rxsR1MgEs&TuyyYEf_H{B?P;iw#;jVi&3KQ zzu9QJxt@t7bck9~(U>$KZ zOs<|)WR|oCN%JOw)sfB9O&nRX{Ev>l)4^Z0C2xRI613C zK3F6|A%Vno;|5?^?d3Mj5!e7l@=3YtlLDv+xrVPGL_&f?F37sLP`F=G<$)rA(`gx< zCNnWP*4Wp5cXoKZh!0ud_372fo}XizpKXfluP)a0!^1G;r2!o=(_X7F(8{USj{qKs zW+E^IT*%?^fKL1Fr3oOL)iQ`^ckGU5kezwd*r(j>4wnO%JIYanxu<0=|00i|lOvT< zU-W3z{0|vNsVhmp7u(_Dky;Mxn!-44`^d5wtt=86VRnhB3%T!w`_Bw(Hp)mW#h2+8 zF}@Zm$#5T#(FMQ2)s_?kv?#g2{*65SmTfm}!k<%SDtmRIm!W*sSg6w(vfFZRv<5ia zgV3ZkHa2Kk--{TwaRbdEq{1Wtw9vCc3H8jWkyUQcvDTT)bpa$sunpdeAv5@Atdaa2 z9BY&`%vqEMYshv4mXIu;^PmE3B~tF+NXz!>ZOoep+qkRcVeE|V#Jj_wTv;N$Ad0`+ z4v<&w_CztXED*rm6c(RsAj@vk(7dWF+%u&Ij8*?=xNQu|VOjBJzBw6tQ(1-KY^+!- zpc2%a0Jb<0am!6X9_@rZT2lvADd%eLz_R}{m*;;Sot}KP%VzsN7N97B)ESpwtZC0i zS7`xD5<}qN>@hjD{sOb5!||!Is@3TsergPQ!m4U_?1?{yA)@HL0xNV*W}AU!Egi2J z+o<4~t$wRU%mN-OKaXYKUfVo=s7x@bS8<>e4T|F^SgnLqnrc?k_-KoB8^YBNW)X) ztTD^iL>H=x#1E6LPiv<=q^NZE$aqm@B0tnZZ1G%&#W}+7k zPGnKe`L#Ty?i}@9Uhf`f+Q~isKKN{+-Bxr(k??U->g1b(_!^j&7QHW>JN&$}MCSGO z!`?5S&J15h(oO2#TAqijf-(LfSDP-ZZT|Wx^TFldsrmORgI;!j{v#aC4y|IIeT5;4 ztQX$^vLD;k`cFbrLotFmO&hzfA=19KY>m=4cZvjK&fZv&2?_>wdaqskTru5(n#Kp; zNc+00E;x$p{d~;FcAZPa75XuiOq{7wl{KWg?Y0PuEkf*ei4{q7HmyO(NpsVR49F09 z3Z?aMV+hh1>64DIeN6U-dzS%}%lSSw`6P#Vw*OA-$?-SUiC zc3#tYn+ySmA;k8sTzugF5O$tXP3>=+-q|IM1a=4|^c^|~k^s_d2{nLVXaWKn5EK+O z2r4LQDuil4M8p;l6?;Hb6iX;7)`J~A>IsM*^mvZJiXN58|D82!y)$cO%~w8z1xfb) z?dQ4g>mq)_8`@$CWTXt+c8!uGU?YZ3{14HN>|t@0J1zg-5cW2=x7y0Px@ojI|Hh}$ zT^?5l_im)i?NKDJ+CCQ0$g)I?G(dZM{V?g%4cw7|B~hgAw*G6>McE@^r2ibDXzNw? zZ`kCO`V4t|LKAno-4piRu{_0sZd(1U=E zdm#H`C2;D|ij$$IpFUlP&k~4NoS^mg*WzkC5`wKlDXiO$I1dNZf)@YQT( z5%;^Jp5;F8uTxJiWqGg%@(q(_@PU&mV-e$jZn!BM^hL_!o#JJIFXJmH&P@_BZvSAv z0om!osR|enI>b25)Nk4VHZZP4O#!u-fcgtF%bDyhz0!G|wdc1nWaqMTCC4r-Fnwsq zc2OFQtc#OaDyz97ZppCgz@ivHc~#%A#leJJf%!G-xKk~9i1e^N2$w^Qhs~TC3efq9 z40gY9GKbwyiF3panDT_&Z=XN^x_47Q81B3H_4$^mOc zFr5uxgPb1)XLitILj(G$$tYy5WbNyiB_?y)_eoZ1V7*`$pPbtVtVWrCxsAE4XPTQ_ zz--=?u)-J`Dm?AI-~FF?mP-xxPSIxKMQ!OgPJ&i{!0F_-*q{1e>`47=x6!|vcaeMgNYat; zT0P;hOV1f|nHxM3Bs`|+SgK!F-&}CqX6D)#H}=fjQM1)+{$6a}MzfW_moxt*Q+77K z|D&IJu^7iWbAx_`ON-t+uVl%kO*?R7H}#95Ik*1htbS4b-tHtZ2@bFD{!rE63S27f zJy)FlN|wF9c<0X?#b0}%qs31GH~yLB05s-iubKIZX5_PKsSdT$P>eXuEB?6iQ=ngL z_f<{V&E0$IBqTXMr0vUjXJ#?jaiN&~(%_TDZ1N>nP!RRXEhS&vOHDUnN(r_m0ni$t zbRg8w{{q%;7G^TS-Ta0$kRG;P_xO2OtSftfuZN>YyV@_zQE)=?<>uH zS+nx<{+G40z6={J>#KtSU{%%hc7YGY@1%!xa2gaQ{JTfj>HDUQL%uFG3t;Kx7Ryau-e%SZoQm>OH~8FO zAH-NFv*#J!7=V3)4R9yR5)AMidW;t>;h7LN_o8&(rlfhWV=)GrUGB49CVu4yRouH; z22(MVfV1`5Jf6bIwH-Af6w&(7J`ZdnC z4y+!~JTsc7C;;s5i&kiY_NWUv>>Vhev1iNlD7Nh-`tV-Y@KkkW*UDTjC#V<|5Unr* z-2kzj*Gj>s&8pA0z6Xdx@K-g)5H~be->!m6mkjwVG!G3~o|0Gq+1^t16M$R!AyHP3 z6_AEO9!dEA&jq`--`;BoUKi$kYcR|91D`uyrPR2-yzNTy4T<$)e7bj=z4AiuZO)~9 zBaP=7J7+wQp3m&_o6z08=6e-}!o8jV5FYraUGhAz9Hl|ib{DH*0)Xuaam`fD%ok(j zfM|QA1~2{r0Nx)swyqNRj5d~($fE*lG-b1it%kOOet5M;%q_0P{&~BHoSch(=vL0U z5}@IS}SGX7J6Hxl0j%z=6>Ky>s^SIcYfO)2yF`4&xrXir?*ig6-_G1K{ z6Cio6(bp=~Tv9Br)#SWFI)TGx0xGTpAOIywF7}(Z!u*Ut<~1n_O6LTd)UxCj0V70S z3TQ)GBU89uv!C;5R*&?dZ8;qnKK${7Vwvx75c07?$EmZcMPchNAyzEs;$3e|eH_A~?{NzJ150EdLy#nTk z;Sz1yjxUKx?IDjoJh^u*b7k1W4C#}eh673encxc$tKnWlKhUdNLTKQ`0+ZL-U-606Gw^s;y&7LY>6cVT;%8W%?I8+ zb>y{NSa6AJ`HS=1vFpph=!225tAirn9n2wz1EBL8ez|9M%M{UX9a#0bb#V)5`Pd!PmEg3a#>3rUmI-lE0^wIlIg*l46zh(kWcpJBo5ATo&Qg|Biwm^ zZh-{r8vTLx3!2e%eLV+Qe|xjI{)?u75R+q`c;TU01_@ZPm9dHvWg>pX-0;<; z5i9c*d?1_FzPWOaBj2#A0sn*;N|F67%TIphFThHEJE!<#v(d>17p2EcTC8y!PVSw2Dy!1So$T$ve2t4V4QL3-^B^AU@@iWm%TQiZ#B0fc22>_G!n zSl}a7`N|6p3@rDDa~EH+MBNGpa1bAIM_E)+2#prd@2hw9+01e<$EUzEUQAT_l}fBD zIU6oK=%Kz%kZ}%BPtKD^^*9P@TpUH>9Pc9m}L1 z8^l}93ag3DWg3pT%BSGqI>SPNJ`y+>PDNRy;cHs-ZU6$_;8bOFWm1nSuiAO*4#ytD znZD5&HYtHFK6Qx>Jc3dSIKZYM>Mj&oFQjy8Z~;T)I~?LdE$Nwx;L0)hfKn?&$ZrCQ zvl?jEQdjH1eHv;7huyVo<0X}WK#gl>QDyv+Hv+1R1NpDzE%_?tbQ^;zfTknwM{!vi ze4Z9cHd~pjLGt+cxpnwF4Lva+VzCmR#ggagVrL)PC{Bg;!akR0aquJo`HTklt_~kR#X=Sd z%F;B*?Jo#F1wRL`C~TK!iEy1-GOvB*B27w0F`U|M#qp2e4;2=|^53uGW-NpMZNz5+ zh(Jil8d5Am@pa?*JpSsyFLJ%?@)1B-sI7d*EssU<3-uhcNqBL0{_L*^UkRpvEfSc^ z^y)SXCIIqbF+d0dVU9*GXM?Lg!N(6QdPhrmwInh8itX$nC|Co(!@;waE2SDFMuc>p z&Wqvb^=^piCmBx@5v+y&HOA6~NCbya$boOZ&Kq6}hjNi^ia1^IRscjIIrt1Av{pwL z??%SPQ(`zpiOTvvWf_)%74PmYOlLt7Jy=HrbEeeGL9zbVB)C-6rJ>=uX5m{0vYmth z5vq8%iUf(DS)?faRkzo+;@Gc)@EpC2LkpD@LAFRk&x}++oA*wfF)>*i(6A&JgP#o6 zN#WZY0}(9my6r|cm~EOcPYr*|sMXKvy~Ce*KPaci5*LK+-z)2 zazf+Hb|$SwI4XFtQW@Td)CZmnV7UTcHY(OMFKc!d&0KjUAJh6fgE99gV&L) znA;nJ*TeBn4T;*-?}w3h6a4C_bBWHTa0ZscJP_o(Jwe*SUG;6Rt^yV2t=OW7Ba4wr z9G0S4G+${Ja@Rck)#|iNl%2GC*Bf3Uux|bke6ASX+_^Y@hRIYadh8xD`K0pMC_VHu zGR?)xS&qJA=RET^n=8)G(jxQt;f>wM%sR8-D_g0gw3=5grjJ^(Fq1NxD(sQcf(-c1 zD0ew;MLf;0Y`t){ZknKT`S|r5Xl@*XFGQl$I9nl%1{wYWQnz;glK_)YIc|N*v2-=8?qwtk;Cw#ym6GJc zX+y*r?G?ZdodG<0sDy12yq5f>AK$H{NLVM+SY|hK{Pqtwb#BU1oBDkiMdAP&JMm!EdUSmF$JRYmg!-ER>hYWO!mx~bHMrSwQ) zPunU$s-i66;gf~D0&?vgz%b~^{=5wcLqqK4AInlY&t)U2e6T@dCX5B}6%ww7YSctM9k6$ZjB1WLkP*$s zu5{J;SgVWqfdC4e9yl*g62$#|*ovbwcqpKB>HQ-y9K8PlG;`*ebA!{64#Xb=Z>b^^ z)jT+^bFtt=;jXGgL0oYfDAiF1F=D6^(G(nw;U6a~GvINSAI`K&L!oe~Z;$@1Hpkc9 zJiLW?`h@5NAWCOA;cZ!zeiWw^Qm^RG0Xn*#1@@5KnWoNV)^XzpKeQ6r{yFDIeQJO>WI6nCf3wTx7 zK5gE#bk%C0GO1BTvE=|-5wuH0WeXGP(=ypgs!)WxxGNi)K%DsG0lgBG1>v+56$dEn z>U~`V$NxCJ!1{J?;>AwExwK+La?G;%C`HaU&~k2gd_Vn9=J6#}(5sLdC~i@nhWtiD zveMW-Njb6R=#|=6whMZQeHv<8a#P~0LByk*IB$6wlY4wWp~l~^LxsehNlg^?c8W;6 z@t!3eeVd02bvpbWeXbuPyOb{TU(w?6E(>Pvu||!0H00#~`MH{^R3ZOgF@q3rlAw2BL1IOD@dsd{(qZ~!=)~#Tij3Q*Q@XJL| zEOva;-HclmS6?ct4)?%$b#RV`ScwtWzd7?P_*%1oO0!X3kR!8I_-ZA=3yUXYo_w^N ze3=hwowNKk_(~PANQ+x1B-*N!n!EiCR+NaQs+r=9kTPhkhFB&f3w)kBFN;Skf7QRSBT#rGg zc@J*=b!$X}UnxZ9iZY^qKJ&;1d^w~#VW0Sd`7ya3dU+l0eHb^DlPEq;cG4lAqIhjV z(E3Vr5og;z6k3c8UdVwzvGp&R@gtgakk@9nU=cCC`@U1_CNYvBC@;evym8O@x4!@c z*b(u?uj{!x7WCq|-)C^$(87)?CD`n0sgF^c!5D z+VcF}(Q59CU!Rfay>1a0G|#W;`SO>NU(-L5;N?$|O;e+&xVPiQrnFej;$L6*e+Ry4 zdzjgL0B%~kx5AKtF%!YO#D*7{Er!N(M<8EeZN`Hoz`3`_YPG>pSrPO=C7$bmaQR79w7=7JFQ^%F9{sY6 z!?rIkB@_)QIZ8PCGhBVHcaEUtS5soD3VyRHhjRxh(%}7Bofkf6IqQ*my4ZA0iuW(N zpYw+zB|cnNTM1uzhXXnlaW?~D=4ZP5l#~_=VTZJ&p7`An{G_=`uX&{M{8pjTt@2Oe4V3%0u;pjQ z@?qw7Xs%k9j$74I(Ha0uR9~0vpxoU7Z}U8~oxl1{xOW68FVQ(i)5RhAUx&jVBKKj$ zF*zwijmS@aS++6OS9@>|?|v-*eLR*J9=811LcjXdxY;_$VC{EbC3sWRy!BjTq}|W6 zO#dAs!@pT%wr1Tb0gLo7^Q?<4{{d)9B-K@hnV%a#?>G(eY#x>8MerYo*9H{6y? zyu>nSI#j|KFR8@zhQ%^V56_vEue{a7XEPUM`_?7MfUTzz7Cr@_vi+g$d0V?&-!{7S zDVFwU@fMD|_d2aAXN8U~r~sN*bU!*)x4ovOJn{i{ydvZdUCe)@U1=Zekw%5LVarJa zH3=k>p4{i@PPb$6oCiV2x!Y?q?D1VkE|#>oFSG_XT}`Tt8*lP33|Q#t&~-50e|FOS z!&1jrsVuqyza->ew}tlb((dh*cdzc4&a&d`$716tK`Ugrtkh0elY8$#%)anF3qLP^ zbUfp7nN8Z4{HLd=|;unP1UB{zO)3G$SZqiJc4ivjX)K5BPq| zDy?XGy{Nmb<>i3^)#~NltohQ5fgeWGm2KY~UjMLRM|G<+9h^fB3fLOad}-CYdjS&i zk4w51O3)?Lz9#6N;C&6tnDxrsu#&jn@SBN@We{|4(mwEGGw?ou4PM`>5QJCYDn|!6 zl9}vUhT6bmSY@Oz|LtF;oit3KJk|byHTALuEiK*-OdlBVqRxaD|&BH<9@78HLY1 z$5zEBg@--$A<046orMoFWcS{(s@3(DTPcb5ia&RYK9ymDJuUYgSGl%U8NZ!;S;iXV zv{rZ=X{{*2+KI1A-H#e|j#d z_L{|Ni;St$W|1ALHGKx|n@_JF!MbM$6J7Q~5(5|e%sv9Js)uNG8THEAT3{-?iq-|_#uCb;tM!9fYx{f^v+VwbJTGyq1Yf2nkq zp?%SZ_X&Pq325geJEZr7FI;sQwt2vI4)8bYN}wd z{|)ZgVc{y-QB)?6y`d#Vh;j^@w4s(4xMW{NAHC}gviJqIrseuW_njiyygrui!hW2k z48G{xez(O)o*U{!29QvJ>HYvw=_S4_NZ+|^!a&+8Ee->4jbU0BJSxKHYhF6<;Fa5~ z5}ckc!{MYUc*AZ??KN+jMR#r=?fgL+KOlr|kqi6Q#}OQFB~Tbcp)BtWds)SpQC~_J z?I|F0DvmMxEg%&3XrUyTFo{v^Zs7FHD(m8rjf=av4$2M^rI$*`Q6t_U7oU{wV9e%Q znh&73RDnIXnAdDROIfkZ)qdfR9^8~ob!N5ABw&6c0JgXwl)rM+n$=;D(T<_}@rnIt zM1Z0BRVgJcpGm!lUbWfq>cF9;kRe;&yU5xhT_}JIv&Z%1@9T7pe|%-tUWy2p+MRV|o=)R(CyrRG0E{lH!>k5HRV$RE_=6n0Q#OaV z_SwKGDTl+5nUqad!Y&q={2`Ff$i<#nw`JNW2gB`hM=JPeh{2*< ziAk;Y*-YYK4E6S^gEKDX#U4G_+Nl{gzu*ha?S|-gIkI}(11B$gurFpi)6RR40AEvwvAbI2PCzeI0}$-AT;lwqmnOcPC+k=mg&?KL zU|x5x-PMB1{9zEM@7%bywkV1`R2H}S5mt@&Pn%sHKEB8mv}0Ju4hx_~96Ith&p`^1VRdN*=sN?2f* z2DTPf>7U`me*|4zdt!Y?>+kaJJvIF0>nQ#31mlV`Tu>W3parS~c-QoW#B~D#DoL*o z_)sP9sxOCd1{m&)7>sV{pBvLGwp}=37_6zc*v8_TIa404+QFq*p6d@{sVf&?z}#K; zLfC`2@)ct^7Q_3TMxSu_xnTsqK@bkqkB}+q7E0t~u-%!KT88V?FPoL)l6HbYLEK9K z*ESgrbdM0gTw9AshiyFlyU6imhz3s7ycGj|AEy7**9b8A zas_T32TCi(rxKwUlps*UVNLkNVQ(8EVTA~SRmf@{Y@aJFJ9l^~=4byDNYIw89D@H@ zNFZ~>t@ipg6Ou7r7NBUnew6hsMH2X3o~y&p3IMW2cuKc4MTZY7mgW%==`Jzcc{oz- z&+L`F>nU5Ica~ve<&Ps}8EQca`So%JMZhOh}lo5Qp%| ztYNWlwanhtWxDPdFQwLVQsTgouGHZL3h_)uxk9J+;+1(4;R6A%J!a1C1}W;YU!kwRld2JzT+O^dM*>7z-I;o0 z>GBe#H6M=QK^AH#8kJdSq*2ANJ#W$p3y@hbjAv?a)+*U7 zLBK4vj58!*je}mjK(rbkL2M<{p-ceuVoC;xN86iU?Z(H3wUiiv_a7afEfdT-m&rQyaZD=9`KM@ zqtcK`i3Lk$>LH$`lCczx{v$0Wsb5MxwInDOiJZJ5ZAy?eoNts1};S_VH#GZw7P^ltY^^OtI z!4LW?kk~6%BCnVH$tBv(X?@i{V?DH)EF%UVZMCs(18OJ#*W3} z1BWFR97*AFl?8U#L#U7Gg;_G>zn|Y%HtJ}^Kj^@Za900T@>W8b#4&Z^6L|rAwNLbu zo#)zy$jA8*3f1F8(_Ld6H<*~-u=i?e)|~@gyCwQkfcyCV&g&A7aZ8VGNq>dOp+4O1 zOv$x${WV&`L|X#5wg>BW`HPQI1|_+qy+g|BqVM1@?p*uCc_{6}9rF8DpYtZ8S+h#qQ}j z5^WvmtOJ=ma7|pCod&RDNDkk%8Teq_M!PW-80V_Ax;M1XcoH+X@?f4k8Uplbm&Okr z=4YN*l4er{FhF=NF|Tphb68SFqmGcMBQ)CuIS&tX#A5*xx29(H=)*-bY)9g-*&DVG z(;ODrP#1NI_gu&hCJbT8AS0nWvgZzukZK z{jTPzM;mUdgKn=?SiIx*=|g~I%JJuYmzW1GjP27WB&$K{o4&ZGk;m?G45#aACn7;V z9%MOmMT$7k!NkeN?2_M8f~%NttZga1QJ^41S$7dlUa`V9(+33pfw` z`jB6?=U#K<>8Co=KYZ)~P~=vOBJ_4-bpV%x5yFQg!HTjZ-Gv1z`2`)Ehr%S*sl*{L zz_lznK!m7}{9Ng5ZP|Kanaz-N<*;5_k6!?Q)*N}-U{#bBAEp3&n(&e#@vFesw4YT+_j3yD2t0(ak~1LM`Pt zqBPp(kEkHDkfv1myacaCL5As80&Z$>tawMLd zS633J@y1n2eU&s20Q7j)%6Q=J#va-U!u* zzP$5}rPYUX+Xk}dI|N8hip_rAkaEXkFFmjdFW3`aXBFN8hPs34z00Q$0;*cv^9wj9 zPD5J3)^J+=pQ!QXyymMfK%?&KYi-PYn0)u4hVYX7mhbuQvq7&CTzJZ#fgeP6gLh7E zI@JH_`QkiDexHd4YHqtGBD~jf@9V#(URBalUKd^Fy*=0Y7K7pnzd^la+)i1o-W@0(C134r@8I%3i>9enwe)m z`nZ?}O%;A*Q_rQYd7rn&!;7jz{-FPy2w(r{2@#-b%eSbC!gTsk$wSv2AN;mhxqbZ< z8u96533zU2bMD_CHiX$X?Rm21p(W>J;he3H*4We>-f5|;p`WYRw&>@_1?8WER)6-q zyw+V?;3WZ*{lCmPRQR-R+o2Y4{#Ki?ngi=M?Du+jC}P9jL*I`qo1{;cD0TqfIK@Z5em_b0S4CR0>T&t% zL!zIlU)0I}o?f;wsG=z9h8P!xVpYn{guiBAT|#wFZprvTIt@$wg8ammHY4(;pfo&;;ZIA@A+@qYxv)w zhI@b$fDu5{2S39A9H7LMAR;Ex$#CI7v;~l75@j+zFc>NiZBm>Im`JrUI^et%)H=1A zyP)^;Cz$B`P*;D{Jk|0`?ybb@RmNo;biG0ssn zOoR3pe;bu!4bw7k6wPb zkU;DM{8o(9t_byts00MN85~kjS!Gx6M2LFXRx78x7x~{MS*x8Mxfw%rPw*_w8A(i4q6zgY0vjNWID6OYhX=oh8q0m3Q*Yfjg z9yB|~1Mtq(`vD)x%QywX;G5H+8H}t|=f4UY0fwNtdq>F$`-VmNNA}_i}8ME?O@%>9Ux3k-uKSvbq zp4aBj0&6(d0T73kN9$TllA0v6%U9zBGVUYdr;<)${k zyWVNQ7FLa->#r*|r6J{CaP4O+`45JMZ9UnLKUNKEnca&rBb8H$A z=Gd`|5zWH^=4tu3a7L`4F2tgk*RrH~d+7bcoD5yLJTl3`gueYiYgbxq%5Bsf-~q}o zvow z9u)p|3s2o+l94!bh??w38(8fGa8@Nk>=v0k#y1ld_?H$)3CV&whDm&Afj%KFEC?}9 z5EQ_sbgCX_$QNdQ;rIw>+(r6M|Gv#}iJ|7T;U45T*dNeq>+dyQVD1eK##>*y5 zlF~_W>fpp|TmXF}7mN8bXKhs9HHKvF#MtT|vzG?~dY4*14j7K{Ed)46htfKkKuT5`3PxcjqwGnxD$7|LamJFMw`o?|rqlNC}7Jp5I z%_2i-mqPThSo!n!bL(I;D7hfSBne_6NyM100b{)u=&Ope-QAj-m6&Ud+opnDDYy-W z9s6h}ScpsMn3xgRN6WIelCW@;zYT5%4`5|$f0j9>p^6umF#N^SI{)d_Ovwyzb0K@&G?5Pmyv4fR zteL_jZXep_cUqRBs{~v64<8gBxk=SGaViE6hrX1%pjRCdOBlwTf?jDU+n&ei`wnNF zz7o?bisGfy3I_Fj*AGmx@Sdyv5dCyfs9zRuWc6O`D65N$-PHDtd~ZV89JK-44O-yQ zG4rCBTX1=#D#9R{c+l$`*_ z9&bEVIb-&ip3X)9C;+hLUGHvd9D?9SE4Pr^tVYL()8Kj{UT~S1{=;b?b~as z|0d_2DvQzAC+uSgGe-e@F1%zHtL8A3z~PIn-KaUb!M$|IEI)lFs4DyoL)kBu>h4Q{mK|RV(Rc?>IJRLcIp$h2;3Q*fz)$? zKM*pYZ^6f{<7Lj|0aC(va58@6zEdb=nqlcn+L43Y8o?KTg$)r^Vs#S77PXe@Rh;Wy zW^ckJ)5L;^v8(k8ejcgE?e{+0ama3HEB1%!V$&Cg&O1I+b^oXeHm(=dxpz-nlxWX0 zT%&6&zWB&JWANm!^SVnogRx65_Uxloi{u1L*%n}ORp^2=rQ3rY1`*m5sEl)Y&UEhD zltBZt-L1d>pvpu&B?ZQ98u+0nQ=Z9dNr;V(ny~yfxE3eLPx)|3sm``%)UM)=U46NK zx?@+0#XlTlSJ(SLvyZ}0`fx6ta=8<0%c9ABJ6c|EKRHaD0`l)1tL)QV-doIcUhS+0 zgR^+tm|KL%rWB)1ip-zJ*_n%rqnt*pmpRV-es=`t^ZG`;c$)4>xuF{?yX-;8_Tn+( zsz}LQ!>lE@_PDR$4RTHgmA?tG+JNbE`U@?I16v2f@jgmc+xpupI8N%sGp@nrQMc=E zy%HtA7?SbGv(dC-H^>q&RwRFU^VCIjJ6M4Jd zI!fcM1taH;>O4?NOY@b_H4aM(P|skzXd}JUasQO%3?4^F*=CTvm>9U5yPWB>N}ELq z8}u1if2VN&;0)%Gqru|k&xU}mHH7)|M;_upbe^v?ULTT%3uGGEbV(0z8>UmWPZ>Tw;>O8ukfLIrBHz;)|{D*I$oiIYc{&9&T}l0 zR!QvdNVH=;{@3n$)(5a!Njw`$cj-t4aWMOJUQr=~IFh$TIe#82n^+KJL_`YKg|73Z zgLO!LFC(*H*>@+`@{yRvrD(VoXV|?NsmmcPbzgs`6sco*5dqOQwl7B3hxXsUG}%|q zfD7Pge)v?fOzY&lA(OqspAp5M=EXt6lJh^BnWqoUva6%bS4Gl`^K59e_YU}zblSjc z^DNDV&6)l&9LBTHvu%6JdOGI4*pJ%h%8D3^7AYY6(C|7l_0JV@ly0EdK)P4fy z0B{s$l{A_0?NQ46giy{+Mm)=Tr=VX;8C3YnqUBfohG2UC?4uhpYu5(UJF^#;6!^I%?Te5*V;`K zb_+wDU(-I%2*=+~zzPiNgp2f11sol|`WPiSY>81q9~3o|)RYDFhOf2czYB~F0N|C{ zS>7iEScZF9=&>Ql-UWjd7VBRtAueF@Go8KW+|Y zQfZjgS`5EvXgg(OdY(Eu07LRL(>Q3-%m?Te41EC`5R@g1vuGMh%*2v!a>yANlFuRZ zFf9Ya7OYj`W0s*d4Mc|8Do=#uFRhL!*?GeU2n1y23yf=>0$jR~<=Y?*iUca>vI}51 zFEmYuBoxB%I?m}e1h~MRG6J&;pl}Yt)1*LRBwPqD7Q?-PGRlOXf=Lu&&;q3K^qV3= zOJo`reCB#!jF3b2U3z*A^zXwaxWo4!aJT=In%9)Nw>mK)JZ@UDwu;!hXc5Qs+kN

S4S<-O(I1A*2PbC3msnAgaApEA6-^7Rwdjwj7oL-eHms^5r! zhYT4hOyV@KxBC`*_L>?_%!$UV7AwR4O^TFA)*GI0_4qyytiy?i;i-@UDs!%|BNuo8 z?+iebq=?CS#H-9$^b*mhIBj*N7AWK|YV;hQ0dR2Pf`yST7PfqZc8c%Wd|(=x+JK?W zlIj1N8lT!PP0;QE063Ku(0KR2L3{iUhVc~@$s5JXd{BWhgL;>{2xPc}z%{YKLd$l^ z5h$m<(4h!@4;yX8&`VQ+Xxh*g=d<{Se#WcWj?ahD6fNSzpKmjx{sXgJwP9~Ws}u|} zr_Dg0VFu31IZ#Xf}Ad!SwRfSz5}qmJRwWcd8Ol2@gsV5W^H|PhmQ_w+&*~;U^ld>Q;i{g0I`n&a?EN zHGI5`_=ZJ^7`38UK>^>UKmOi9$pRw0$)q|ET0>r`Bm-#ibgp5VJvxp9%5@;)DSdS6 z(~)G%=81+n)=KF~ARYxA)@!YVT=eJiT`6ki{!v=uS|nU^6rrsIJ6LX^2Kw~s`!~p; z`q-;O4*wR}*-qR7TeTCe!K}dLl=r3tXVlDV~s-|8;^VGRw1M_Mh^zCrF zK`*ixgZ8Ph1LrTX{@Rr&M2`0$bB5L4D4kZwsjpjV6tWpSQoEiH-~Q;i`e_e&mU$M4 zFKc3i~b2_yu|jKh#r9jIUKkYxJ|E(|PVI>+m0w@}u%C;J@5 zT%U;w0-HvX!SttdeecdnJeDRrvl#l)XN05E?xwDMNtsrWefpn0-P?U7G{kGX2DZ+?3Lie?KEgU zZE2MR?8VQ$G99eLU#0--vE;8;af!jxpluAKqVW$>;yG#(#LLw9T_KqAyV1_ciZ6%2orHhSw0o{Jpn zv@a7v@j5@DFBGWkw~F)B%CZg|8KPt^YGf0|r~(jjmcDJ*mt3x|c-&cI3~G^jnqQpG z3^GGLyBTNuq;sAc|Klx)2P!TeLst|)X#s3U4@6apemijfk2HO#8*-UMvwqYB51D>E zCH5=LRj4?fPZEooef|z!2TmPv;*J`?r zla##JI!=7`3;Zv~w;2&o+m-wTMEBEzh6^Bd1yWnCA+KL-+Qu=xW&CRo?aiweYHtW( z&gfFHf3*+iIelb4P;r8LEwNPWx_9(>KkClC=D7JKqxHq@F0J&nw%(I5W8#l*6(bB= zZfNaG-W(jGd$JV~ikG;8k(d(7Ae|Fs(3!DDux;s75b71?;f0q90(EWgXUi>M!bY}6K@v_Z3 zasM6N008%aE`a{OPsM1fB8l2Ex)%irSMWNrdTq^ooU27Hn%%Pa}~J+`@+M z(neYv%@$L~iR}*lVNe9lHDpDy6>t=IkU8vb0a%z&Db=)afte)X#t$4Yc2jdGLE1)h zMC}0&4nQ>a;m4SFAUjfi(w9bC0(rFx609;X1GWqdF?eRqy{CZ91&7xxa~A;d$1Hb$ zFw+E|mrM#%4l=NvCbI)A#{*RLTiGrpc@!qAB?7nN&=D=PP%CsRxo%LW}SLw1_#HO4Oinp|nhtTkML`7pJ%ij4e0OLd`YI zV!mPOEn%o>!mPwP0PNC}Ytn>wVbeco4ObGJmX2I8eV5es%G9TQyNsTc>%wnH&%Zlh zO7b2KGY`;eV8gH?w%jC2k2o^n=a2kp79E;WXUs1e31MV<^bQ!!(@$*}SroRcGE2w| zPf7az&{-lecGPoCh#iPUKxOa$Xzfg+nmGG5e$SGP1eh!kA`~YOFf3|Vq_|H)KsF&D z*0dsq#f_p3s5P}#Cm}2%YJwt2k%mRZr50=zw6qQo1edmGZKV}8SgY7-3qG_(TzIDE z{qnpY-Ve`v`gzXGhkMR_&UIh^`}$pWftR1X$;DgUby1K-P1f{?R~n$A#tg02+_;~#^pVt9Ffsqypm@v!v~pBfJ7)-GMQYC%wdHKP;w2_5Lo;m&hHL&GF5A|Mexy-^Jlb^+)@6PU$2on{ z<&r@64|?p%?{*ID1B~OxymLsF%@Aeg5nJ^LLolexVM-hhW8gZ4UlcP;ZiN^UvlL-U za`Mru={Y1f;;r%iLuFxxU8B(M$OcOISHZQSZ|5kwSnM23X%q{>hNdB_Z6x5UdCSy% z?Ivjyzk9tDkz}Ul7fM`g)-J(j+a!6B9iS(RCB6>ZMYf@dG+j7q9X)&D?UHLBUx1A@ zX1+B!{~dnP$@x9}4m(IYITqtFZR_*S-ERTXK!kOXQT=g?C(bMs713E5H1lo@TpK1GaT#TJUKLk zij}T!QLtD}u>AWWmW8Zv!D=NQx(hI+GgfTF{gx2mrIc{qTkc>44wGC9ZW6Z3I3rai zMlj`C9o~)lw_M<8buhPDhD4tuquYOS^B?YVZ@|&G(Vcj_5}iK0x#XSuS)wA%B2X5> zSx%|Ak@C*jzhNMIQ%X92IRH6hmW+ zol+yM2pIqH)#ECnYc~#UkJU}heUE850+=oXA0hqy z8xVqUbEETmoSZRSUqrOi_uCxg^xRfv$bMXMm$G}c8=c~{umn{U1#IZ#y}PzSa7)e% zB3mF`sSmtBUIj&F7LL3O**48mm^BsWKqvQpK=Oe6suf!J>;#&t=#G}2Cj~7-@bd&? zJU`MH=2e+DT}N=3`8ODIj9jmgD9E2IMkj~AL1^cklhpi!^Ms%|V5D2NV+7sN^KK=V z=w<}l+OEwQIoJ7wfH1z(is39~a8`BNGZ|puK>Rb9=E=)1T-1RGo1fF275XB-{h7j& zKJvA+eD*Z}xyp6SKo_N15Uvugpk2j|dIrjna^_P;X1Ib$7xuYINs|4i9%fJwEGLYf zf(d|7o!Ij8@I?X1n(~H{2ai=vfvaFv@e+N2-1uskK{GnJthp_iFs~erupi_3m_k^W zHL&OBsU#g;cI2MP*3v<%fLJQ(=lv$pW4v2(q{>6ohOE{4GE>T|P4qDVGH(>-#eVBd z>Ps&5k&_(HeWs3bi&1RIWO^vB^NtYnm$XQc42$QIT_c=19Rx466ecT1j>yP*Hmzt+ zXHbov8YtUaQ^-sr3MGRMr;76`p~;43$yqx%IiQIDWS|P;`sEM3ZJS7bD@a>&ZU;h5Q$?$A2}gyEWh$ z#e@AG6jjFI@jEM7?xqt#27>4Fz*L*C>11$X{hcjar;Atj2L-IX6qrGVo3`Oa(aEuF zp-R(r#?9>F+{p^Z_~1*+DQP;CO7wY%?~N61d@_)l9y#C!#{3sJOO^8{6VF{<`s%eE z2VbOp`R6R*^)YX5=jSWFN~;oS_n(?NMicW$+G_pLZ&T2!Uh8O=_$(!lvvwvW$*nhz z&e;56*igJ5?AowTL7Su7uIXIgC!LatBZh}HZ=D{%9ABZDC@D8}+&K8~lzi&AgG)h# zjX2y`_Q{Li1FD`MRvZYb?oCgjDy3!I7mGiId5FxA~J&i*T7tBaaDdn3y z9crc1(*C{2olGqa$+Q0Yreyor;pCTlVk;+Ze)8p?ZQr~!=UjO1_$C%6{(}+ve@+qq z!3O|b2W>#~zoi$XJ6F+CFP@3C>5ttj+C>FBhvi;n^Qo%cc$CkJP<7L#@+Hjev$I;R zTrz60h`30^iS(RS8E$_h<0cpbR=U?p1xE=fFy++y^!vv~19;W@3=&Z$0hFH}hD9ki zI49tCP*@WLvdf@SP^vppxSo6je+q#!#@mAPsW>L+L>X(I!9=D&xuMSN{+Y18{!9e& zP!x5ftDWx{u-PALN|CEv9V(S4WRsup2Q!FI0>1VU{&dB%B(#t zeED-%Pha>~gH_sc(cQRi`yHjJ$%PC`f^e4Q$Yn|aTZbmKT`_O};+uF9F}&*CH8OYt z(xNT#T)HIayWxn`2l)8H^l|JvkC@$OZ>`B=V{h_k(l?fr;uX^EoFvOfl9qaeAcAGG z5DUF~@}v06z_q)ZV+UKJ-I7|y?0j*m$j*yTuSb(q1L08`_}uFjfshW9@WRxYL%cMF zy5ITM2L@@$=}T4j`03#^AwTZ3QlVIoG0pOtH2TB(+0xU$u5~Smq^nv$2AY7J+ zI%VLEJDQ>`@CW(b{8YmF8c3xTpb)4>?Q}bvlHryD6zaG{T`Lx~Sj~SVc={x=KhZp; zY}hSz?Jqr;DtJilw%8KioKiDoa#Qn>nu4v-B`mkC-L7pjX7z~t{H$j2(!@DxTT1i9 z+NPR|vNX}*n9IvWJ_W<-`XytdV4#YV;@fWL==RDHm_Bu{Cuf8w%>|tG7#x=Wb zYO%Jb@k!|BZnvx#xf)?uzBI+{&)?3SYEKyJM_QkF%ZBUrIt6~~wmeVyc=NBJA;(0! zXXHmW9)+o+S&T0dTE3Wn=}LaRwaf|y{dKi)ZzQXa zBaT>q;{LgnrN*&-*pJWgcwW#d7xCT;+2k^}IRz3=jfVKbgn7&C8{xQXdSyoztLFpO ztiS@dNWDhQhd;R)-4kP(R9XOVvM^S!cBf;r_2L&aObq z0Zw@AXp6wuyV?5-A1^1MlsJa+jn=zH#8Hv(BbU>S=Gw>~l>ejqY$5$W084#J+(IjV zNiMu}u;w{j6cZJ3|Edz9O=oh(E92fB_QuuMuDCcg_+Sfx&3y|!Cl5~%XS2-$WE9A^ zOQ#sevRFV<9Ne$sW%BHvWeUjPk;-}77MYnin$iT*&BU`5*+F1p`TUzlk^=vM1*6K%&mR9O!l# zYY|XJZD8^l;^!Jy)ai1oxVzDc3@R7hL z>)PRK5D3RuqcH9Qr$o670H$-^X^161^i#zeT3qQC09%*4#-=qUZfssPKnN2k<1=lM zvlG&#KdI7*9Lw-XN-61M1H5UdM(Y6!AAD<693i=m%3z?UiUrl|vp2O|1FS9I(cZo> z!m|{x=iKmd%*4)&lvNzSiaa_*wVHMxTYn-N4 zbG*8s>U4+M=c+D4V>1c2T1rCqJGjduVRxJ6>@CPPiN+Ai(^;YBAa>r@OD$D-bxT^O zqbJ|_^;v1&fF21>8)EMe-uO5RHZL6OeJ9@FBB4HI{Ls|I*`EEiX9QJLzn*aW4PP|3 zZiv2~&0m~kIdpvcL+OUh^#LOjaI5WrOm2R_SP0dK>oi4Tw3E9;-&Kb$mFu0o|TraZ#SIzef}(`mHxZN>-;Mj zxnCsUqfTLNvaj>^BtyQbr8nIYBQ~h~pu2lbZ(XiOpUO#P$4`paCHD@D{9b(_h`Yp4 z`c>s2G^2ZBMF!{=Q#g}mBH8xL-J;ZgkL{fOnmWR`HMaI?bM(6SM;#K;yI$|k8eB2& zm$GwR$7Dw~6q-vj+p;FEf3)Y*`I6`OmQ6Q%zDPQK#`^d-gShPWuM19hJb(E+d9&{h zl5E(AqCol#WjFx6E8d1ZVp6^ojyg8-m~TQM26w;lri;PjmXd z{%GlO{A1Nf57%|2Ei%7CRJK&U@MC|vKfO%ox2)U019`{>Cz6kAX?U`foRL}nhV%Qg z>UY-W-8{X1mwd<~-T2p8hR_)lPX`U^gF)}=szdy1f-@7VaEot3g)B3$eZ49mNyL5p z_<%0E?LRHH|9%zz!8e*{k?9Tu^n$+ndqL$Ir_Mq)-$fc5t=n&gvw3P@yG3PVtiViR zbE2y;&$8_p;^^apO;|h!rY^bRz!I)3K!|<*ti#)m3H;*S1818iMy&QL2mBITLeD*A zIEg~MwYNVkNgjkk(zkloN~4%yMpo$fMB6)eJ5Hq6&C4Ix=yoes+I9VZxZb^BSk{(P zo1GJ<)lEKqxvwO`mmi?D$I{nL6>pr8bjz88<5bnj^^6&F Date: Tue, 28 Nov 2023 11:56:09 +1000 Subject: [PATCH 51/69] Re-add example --- assets/main_example.gif | Bin 0 -> 109188 bytes 1 file changed, 0 insertions(+), 0 deletions(-) create mode 100644 assets/main_example.gif diff --git a/assets/main_example.gif b/assets/main_example.gif new file mode 100644 index 0000000000000000000000000000000000000000..1b14a98acf66c8b556750428a77336a35e2eb0b5 GIT binary patch literal 109188 zcmeFYX;f2b+a~&CP9Q)M0!bi10>}&oL}oESm_Y-gGKm3EP!U0qLPShL0ud1cA~GA0 zNd*K&W;J0F6{(<>f}#e*c_>t>M5Uy8->#h9tX@>fAssSJwtPV80Fo77Dz;sREG!r=86yQvOmMNf` zLUc_bG*g(KDQx9zV2Us_gX){X^vqy1GZ@_rPBTN$%wc-wu$43Y--m$(OwR&AvjiAR zh@K_Hz!IiyiO{!17+7Krtq{6aNFys%>T001TE*DfY^$~Xb{o?AH7X`+G;D1F#ujg7 zht#wS@o>QFIMOVgEY>(>MmVoxxM(t5D2^_)wd)8b>sGnB($~3Kc(_`-taoC%J4JX{ zgt4@oSzalgWE)SKv!}^MZvxSWNb@&l1sXaB`bBQAv)|~z+UU$-+xxMdf;L4*g{(3P zF}B@o>a}HaWT`ZFf=nX zn!D=|_edu9Xbms)5I;UoAZ!=L9}}i?vybG6xJ9Dl#|!pni*rsECgv4pXBQnxElSTn z6~!rzO(_ReiofVupn{!rDQYI;{kyP|c z&fcp1t+@6$zc&ADT}oD6UO_`jN@HbPQ$=0N*~V7!nM#VNt z5(&E6uk_|M^mY#P_D%JP#nQ6N1E)&|YkG&z-Mn?R=eDGN?ApzVp$Ajre<*H0nVEhz zKmBI@)yL0&&M$ud>-*y3&!zAG{QUXPKRCXMMl>IbsUoYB@{fVhN52Wlo z04!D>0{_BQ&i_G`Iqd&H>i?&ZT3%j8F9U>$L-GJZEeow?7BHGbR}-qywTc&$Vg^K3 zMqWdu?dNV5&^*$cW#_y`ii`ubn%(Zz-Oe$jk5o>2JHxVS2xD!#VdVv#Vx*T-$VABQta1=hNTxGQZY*d$J!#EtT+;%@mw0tft9~fcSXp43`}2z~N~pj&4V|7+$`q zn?wtpId0O>G@EPD`DXS6W5nb|p6$c<7bhKFHJ!_QF~Q7&yUua5)Hg6>Lj>O?sQ~9| zfge)wXIKjeK~~m7g!Q4O0-Oh!@KAO4X_u+EFDh87@jnhVj+L>@C zVPl!mOjdz?>^l!!xvQ_Sid*gSc{stxqy}DYKbJIw_gyd>Qn6>rj8)d8C0`(;mS)vl ze@P9v1&4l^eC&9zW$(wUle;c{?3_-0|FKJvZT_iyu4M10o;M8_KlM&4air(!K7jXi z9*p*3&B%cEcjsd{(R0-~y6;|9m+AI;lGoG`MwKJ;3g4D&NszI~tNN3@F&?43tiphl znPE+4K#-s~%a0Ck=NE$Gw7J`=lW4Bj zL`2HIBg)0BFC)sf{kV(7ZP;r}JrhGIQk&-geE#oXwQJWjBa5wNlsJXrCWVhafTW}q z2O&{$3qd0~RB8>P#hZ*zS$0=`EH9^78=?1MS!5U~xIt);G{Xz-ek32@qQuweIxm<4 zZ121fZE_;)vjdYXVfGNp=LIGKHA-7Y2Q*ji9M%4vBCW|L7tgAbyS-@r*7?yip#E-t zL}!^{t#&AHK)K(+%M6QWCCh6x74t}~Ir+)N*cccbco{Q5cI{Idt|FeLbq|-bxx)=o zOdHmXl#2or++q9DxGD)r+>N4h7*7+Z_DI`JVksSBYLZ16XWnqBd`Kyw!j!N|og=eh{ap~+&nIhN6G znFLf-+T64s%ehG6>KZ%o3#v9Q$8IbLdT1Vw3&z06%@D{=2M_3Y5)W#@fopbi5oU*P z6%}!yXosxTBz87l%7N@E1sElerCJI>(5`s|Y}&)a1V~`cAGtx>op^q=U$CZ9Q-5Ox zAWU}vPfM;piG6G1K(zJ?aTdM-hs0!v6ZJb9!XMp!*xCD6%flffy#zOyjYy_7?K4Ds zm<*ClYBevhVJHWVst=W>`DAiX#}=RG{$N)9wu6T;Kl!A8okBZ$p1UeEnY)@g21+Dv zU}hJ14waJH{19MASfR_3DJGJh=78N*=vir znjg?Y?aI&CK$8Iyq&wQ?dUQUM=&t=jEASDvhDmhXiO=IK*BOXyFjPq-s#t++{gCBHqCrmwe}`__Cf(59JPl2QQYR+ij|Y;r zADf1iAt(1ALj}C`i}-P`G&7QCFA*h^b72v0AnK^XamI(w9GlQA?O0}(Q!_nn=L@Or zFB(ig2_RC*9>~O?JhaK5QQmAO`ZkP+#wnOEIYfoV;oq}c0Jn8R?sjvzE+X&%DP;cc zAcitqi(%0UDb$Y*C6B31YrX=i+_rj#f(yftKX8)gvt(8@hyxQcYz6MaCTb(1M)Cd!BGPCk%%so_jZ zLU{LpW=dd|x(O5IlLXZ)QV0xv=%~Gm?wAn?!k9M0cKaEoHJaUT7S9vsm{okt9Xa3H z^Ax>hajLL6331u^fO24HAE7AeQp+{05}QWA-D7kfIUJ2~^Y44a?G)+{N#V9DZ?$fo z&zg4EXqUrPN~O;YjxQ}VZM^m_ES?MTiN<)hx!-j>Eg+@2DfQpC>PPkPdlInm3Y`XH=SZyE|`eH1FnOo}7I0p2Nupp(lsq`J$YY54%rJ zPo8|Xcv3;mpLNKe3(bF(mj9+S|6TXV>+y!xuMykid0!j~7Me~fLJJm43x0GLEKL@S zqY=NzVyL4S9wtT}7Ng6=N<*;0K%Bkm+%hV~?@28lQV)w)1 zHNK}j4j22B75nuR2TT=j_+HF*Ebt6F6%=-Q%i+_ZWv9b?PDkz*Z<;#Ip_Ifpmc)jY z>~a);T!h8-lq5`*Bz`YRdV6a3?gHzuGpUEqq?MgX?>UpvlMkiw_k0nwEmH(){nGVoF)j)TtAWrKb*;m6ny2_mtfUEj#+XOhPHIbu6z7D}UWxT3J?p zp{Klgs^r)$IB%-_vSUR@SVh41^7h>oy*(BEQx!_b%db-^2OKMh%JM!sz*BaY-|nd# zo2nfDUP;4L4m(yo2&+0@Rw6H}dfZbrJyrD#gQ)&qHM{IsJr`E}>U-hL;p%ri)gPv+ zKZWJp+gD%wsi)Ckj^qg%tT>01cvp`F-lX4asEJRD;Kq64PtQ&eHePTK%YHXq}rA z)tZN&v(u`yOh4z;d#)J1sg4z1=apXPQ(ouSTNm)SZo`i{wpM+xQ+-Hy z{g(9l(DM55-ulSL^-;N1Hd+laP7SesdEdes;>#QMJg&CAeJ=4wL)ldRI&tOR@W#~i z#;K`>q~6Ai+|sz*My^&9|Mr>m$Bo(PO}V>kM7>RU%Svaer<%lC=cB(j6@{NK2|sw?So^R?j@8Xk-5(l1=-y%7KXMDvdeZN1|2S{FOQFB+AeuPVRT z+k5ey!^O@Y7n|Rml{z&KUC86yzBpRmeA_JldU*4A`1!j(n(y6i>h5iRnBMXzyk)Yt zW%}{?38xmtCKBjE`f+zORY9|MB9h+mzK)gv~nv__Oz+~YXwSDiMegzPp+bJTl3yt zjj5=Obne`Br#AFR=N|u>oqe5&=9R@iIuGoX>~ro)^{+T|q$|CzJh`tc)4A&Nk1oD) zm%c+|){*X^?;XK?-Ffc|51;53A1N)+?kRrXl&h3+x}v9<(p~*q<>sHpL4PQ-igzr&etCL7w7)yf82NNji~q0&ubpbVb>JS*O!{Eob<(!V?6#^RAv%@sG6_MYlgz5%Gx33S6h5z?mgo)C^y zDeqcepH%h3>8T^v)m&shOs*3%u4!h-?pKs(m`Zh*WR(|X`U%b7oCk~&Ds!E(^!f)N z)B)pWnQOUpb;bb2W$;?Wpj~C(t2+ZO{ny}?gGPCSOqV{1^N_y9kXJ(Q*ptD4yemGH zL$yDL*dKa=U53lGuWeb9dR7iAM-E3)du*Q!#VqwkEe(qzMs~S$`@4)JP}|}wM~;~{ ze^tKuR(mj|^2Xljk@SR1sTnu_`Z<^xd1JZnrXb_WGwspm?*~N73D*usj^_8boLm|$ zYHoIRxmEI^^>oIq^68fS{iFMz+^X*Hlu&QSofxjeUO$&{JEr3Hh3Tt>{kPhvO*zxI z2b}M8O!qaP=;>MU_I;@*>cYw<~q_2FPoi@BZwUr#Z>dI?eboIl=PIswMeW>V$gL z#G!X`&1=e zXdM0H$lgDqTDmsrJj`)=7<=@pO2)&`s){|95B;zGk)+d(pML09^)O}IqxHB)>FcUD zUVD_e?aa}PM`x%1;BUJv*fzOi??chibGg?h*FK)ie|jlLXDUp2s`z6~$Hm^tf(a&AOwHrBf#i}Uj{e!WEeZ4@Lo_f5*G{`FR(`>xjYU0u|>hRkQF&gj#|X&eRu`S14ie|4jA0Iaxi5H!`NO(M%etLx9rxJ#6E zu^N7rKJ7@ZmX$?J-Kh19#|f3atPc)tbhSd0jTZuL9jL!k!q|R0&-Y-%-ExQh@5XK& zZ2Y~Nc}z*gFQsXs)~CQMu)MhLej{{q6V2i3p3P06Za_h2n{R2Ng$P7SF~SG97!7w5 zhrcgA=}LNWyUM?-^=V()*LT;Rq+Z&jvlnpyhjz<(K1kh7)Qu-IIZ}~ z8;dW9gmVilBbYn6q`VkfZGOid3oD@GMi%!g@~2XQH=o$jyC zH#ImlLX>EnTMkA^%j|&)M6#QgHpqZTb(}#PgnDgU1B${i6$U^LC^URyBvJ?or}|(D zO2sxbxlO4Iv7k0)4=A9{h6@K&LndBTTz+Ra=1p?0)bzrL`Jeq5EgF~k5VL?FBI=RP zNcI3Aj~s{&G8aTA;E{+8frSF*G|!%#7Ljyjpj+u`>JTYXG6L_oTJ%$(-W

2eClT z8vb~o-IK(Un|~d%T^$G1+0#s+`ex31L0D@zF{=5S5C>I(a0yUI zGK)*xmOM;2O$a&5L^O1sjhKbd1P@|FpAX$l==zu%g^c|TLEPw)OzBATR{jI;Z4xkJ z|Hq~qoBw8JX|ot0pziOId%|0lq)T3k{8fN4EkHvrAOs5Clc{tce@f zpogF%A;kE*W#%DVwi)}pQsdg_AC+c!XfDqQet^rodht;{E+t9B!Ooo92EALYqFnQF z@=_8;6~djnT|fl~76GWooa!cgQyPLwMe1N1(CddNMhgwa!s%{2LaGLIOMNIdEG2b% zrQ_9=i3&mjyh1gc{*n1k%$)li{5*31nIASGksI)(cxpOSA4%N0 zp;`NJU(&XTh!zf^1HKn-|Dnx&-0A215b<@L!tMXsDgNItmqpkyAm}N2 zHI`++^I>z@eZ)A=c^^{8tixpDoY((40t!Pxn}P;CPpVnTF9hC6ZHd5HxeEZTD^b*) z{IOSRZvW@AzO-+jR{3|g%?ygvACdh_tY3^|dpr=kq*}ZjKD8!d++qbzW7QrxCQY?8 zHym_p6QGB+zkk%W<4$#8U+2ds-3Q-4yW7|G=W}V+6HR3%56Z(Kjl9SE9l0-|=0F?; z;j6xRcy@b1tH+TqALOVl%g4r-oWCkPpqnr@X7(<;&>#*qx?a1!@b=5oC%-;eW|8e4iwsl)=HD0;tP{<+VFKnDaMg8&J*)zkk|Y=@V03h-I3|+! zqBt-TGE@>6dw7@>W++3D)&UvfOjJ~|@Qk_ZX93EMY>H>fj0b5wR^UnA0RQZv3Vc2zh~XPBaNxi= zF{tK%W(|{cf%qm8q*&Jz+>&_bn5k&nS0q@wxg77s!V7U=Q8CDjmNUF4Q#N$uRY$`@ zI0br$E+pkB6?;+Up>2p{RZ>4f(<_ZWLI7!WAu&3@4W_a!1&^deh0w*<5M8oirsEtA z36`N!0W%c)poNBe-TZaj<=cm^zcW#m3vw1|-@=5Cam&KJ0Q-*%_ucl-E8D>wA%N)J zq6aFK9eFP)C>3QL&hGh;xZjJe}NpAF9XTYr|}X_3Ydb2+h)Pcfw}%hv+$QN{cq zg7kSUFc@U8)rNMyzsZcFZG}@@$@GUrk$USvQbdBa5h;`rv0oFmj|bIda&D`F0){f; zLEBBMpa0Qxx?i^*8Mo$e{l-gGJ4EYV+bV-c4kr-f*z(t&OU&W zLY{cocemLA9|_j{YY9_Vx(+1$32{7_rM3)Va$Nwx!00?JzH!OYO7Ya;Rx;nAxC@?E z2;6%q)Q47rSJY%^;zkjlygflA2Wq$y;1Fog_9i^YtpGnCjC%6o+w)?q`L`GkWv)Ly z7jUt4w4b9`D0w3lmPj{N%)(`VQv70OkU4hjLw8vdo00=xNxl4p`cGncyR{&{W1XxKB4%iLtHCF&7P6>(sf-)yCuXvjK;IgaG+#u%n4Cz+5Oab6;f*g?5;J8{uO zbH@Q@G9ZpxL732Z)j8zY9vH|g;}b(ACBR`29-!3jyQmJf4?;Dgy3Qy6SZHLbTwtHs z1rRhT;kAU*$?{%fE!v2UnFQJ+OqruZ1tgG1k-c27wjTm?+dLTzx$yJu4G>!(#gI7w zY3L21%6Y22o3Eivr0^$oypU^by`^uI_ z+%*M~Z2f&aY%p6>eUyppuKGQ4{0JFUI-f;#Z9XW72ve8rX*E}L?E`2FP|0)xTnuQ} z;cvL2VQ<}>rwo4)sS2@xtpqse^`-9H_urXOJ+e61w?V^VJz7p+$%+HeoNHSw63z_A2k+JzOar;tK~cv1ktwbf8orG;Yfa+ZxJ$jm>LZ zeRL*f^M=-PQ5Fj>VJ!t{;M~4|4;1m zU%k0zFb8Mgg-zxol!1#AL{u~s4#ei5RIp8% zmJ>lw5*F(?%-xjfg7gIdWv!0l`Ijm{lEI&1YZUjdJKt7U104r_wX!>@jpWsbAhDl= z9TRZ;*xr!ClL&Bz=dU_aD4WYUgYNxhU1G1W)iA4ilz8jz#F)E*=P1CbwxjW;!JQv8 zMP690`yBk9^s`p!`jO9A+Zmly;W=Jn_t)isnVX#aoCHux5gmbyRF0V0Lv6(fdKkDB%mP!!)wx z*#W8xz7F@$L@zD!Q1-?h@HAOHb0sYj+q06Syo0;UY=II~!-xYz$rXq==;=;eB~)dX zDfD_!J+3mVewo7}Tq@5NpMZPX;ZX2xw!cxlH67nlTrAc`-T;>cxog0}}Y znMyoJ-Z;bI!g}o zR}ZYLw7CPXADJM;pC5*g!Gc^^?pw#0Zb(YMbhrfZFaDeF3TgKURJ@zOIhz+|5j<=^ z+uRA=vCjHoM!Ut=doa__Lh_Ci$@?dq_aD}toOV;WN(hN)VR(dfjoEpyp07x}=$A@& zSH?5CI-37Kvf%#*K)I&O@KFW1ApAo-go^^2gnyIWI^W|~djvRg?J8~wEriRJD6;s) z#s}ZUhC=iOJSF0m#h&{sSX)mw*~#cYoNdfV*NxT3p#YWH9DH@p)uydk%C@5j{z z!I}BOeISAEfsDy_LEaUYl=?t{dUjkJU5aLK9(SS$%g1Sqk%h0w3AuEKmkMhQLS8_9 zVc=b=AAP-W@Q<#u>yIfkI(W=12ZQatX|d1=gr-G`7u3|p8;3zilaLsY1b~)S`etSp z7NbA7lR4c!P9AW1p|<|l*p?^EF&sOa_()VdMn@@iWYOr5iSI| zN18e$$Q3&GGIwI@1ZhzWftlN$v7~DCp6@gk zF>IQ0k4Uw#KF^GR`{PJuL8e~&o%eNml9VTy9!EWSwXm(Q|J zXu80S;B9R+13a9;zZ}L|PZDl3w{7&_^M32UNZ;^px*xX;;lLFG!>A&Q9Rt(kiJjg> z<~s*sr!F^c%+)hQs`%Q*h_t-_yV$E3fw%F6n>Ebf7udi}mQw>m0y(56Vd4t)R(=&4 z!i+esp&;zryG17LBGQKrMbvzZ5*_uJ{lgsp=hIFTml z*8-3QFe!l^0Ay6}7-rX0ToQIjNQPy8Mu12fgsBlVN_tA%lrn*chg#CTj%ldSS>)K_ zE}cGouAF!%2jFCSsE9B5s5jlVPXDI@rHhOS48KcnYF})V*ycp2sVR3bXmfUUP0ZcK~!itcBtxl-m3Tzp~(?N0{rDAce;> zeTG(80UQr601nAnB?7Mw1SK|LBwo`s{*8xbk&0l&D3r?bnG{BQG|2}201bY+VCucQ z({M%AGeGLa*FC%pEu=yKTL~B^*@&sQ^D$E^8iX#UU|51|-S`08QD{USW`aUk>6>6U zSUE@uw(6mG&>?Ic5@aoYw#2{?rvl+X&hzheT9 z;&?$5Fv40;s0}8W0G#z{LSYzy3xGi}06ofRTTAa<7UIunLZP{QC@p{*gaQE!2x~4? z%thZ)vXvolJeM^X1Ym>Ps_eS@Vf@=cwQ$gk$6JqK1t;ksvNn%W0fzx2dQbFKmKHV^ z#wtV?yN?4yBtU`E=r1gqe@d!nLb1;0Dj=eWN+D2F4;4qA33NiGHf+udtwF&uTRq3w{f-oBBhI4V?aZZI}RtRhu@ zS(B8*>;~*h1>DU5`Zf!!XuG{FrzGf*20XM9#+q5Yc(6!%r)@XA^nz2gHP6%Jxlaswt(AX2Zy z;Vszh`jN%eu`wR!L{wgZ3ABo(8!Ipcv_NRj06uuA%BA{^bLEWthrCS`qmWzcdrpmN z*xhn)+7gHM6Y+6kDf||vNhq=9!%dhFObWv=fIqt1C|F3j6;~iKEaw}2rLFpuO!Ib# zCGsiyT5A)XO9W4u(6nWYIcr0Dn zasZbt2=n|EI4AzvG3r#0v%fn>Lt!4)1?>EQChW_;r~iyPkjk*#z~g?!Y@B~(_ttkJ zH+-R%yvomG&FzW&^o4Vph&XR3^gqqyf7Q|(0QYZe7zW6r{9&o43!sIRCe;l7w^}-! zi=lrRP5Y18>8KP)I})4%K40P?6GGo&m|HQNcI5@C5bpudHK!UkR;eHR(TqN5G=2`Y zAIk3ScpKQ@W15|mya|EUusxH#h=a1w2plcx9}H8<)MB5@6|f;dAi||E#otq7o^-0e zAK0v2)Dj`u_t)dU{M-54`vLZaMl-iIauB!Z^J-8(F;uqN=m3P9g^9Cv;3^c#oKXT` zmNfm1UC(fhv*>v5=viho%LZg z8nft}Zd$scfNGmQx4igi(7V*aHsDS7qk`w_H=?A)db9ta0K=w1fPn>#F^#>!d=|M+ z<)(n(j%8J`wqv8WYeq@z5T2o&_U9|zH>Kj(U|5H?#wLf?9xH{C!6t1>XrJ=l2A2)z zJ`E(oKxjzNFw>hY6OujTZG-E6z4;mik8+rSuf!+{2$11|SUGwv4!Be)MC=>3o7I5; z_K}9dV-a;6FC}yb zc-=DE6oZTkNHzpePup8%I)UxOMZibDFbq~WH);yHgMvt)18)rCXf(X;t|qs)Ol9V> z0LsDw1&WnL9Y%t5z(t|}2rk6kfJiqmsKiaERkFz|1>$PXN&`^$W679#CSQY02TyZz zSSsBUWX}U>A^b}#j0ys-Uii7k^Sx7BD~rTvlXhv86chu``Aq-Qut`oz4PH2A(OLytDc$cVLk9^q!7zLtr{>RF;K zJWW&N6OU+?J`*=gu@C;NCjH}IsF%3CSVbE~Rlf^i&VJQJw6`zYiC4|xAk9;@KOT+b zI`>AP#BH|c()1bDJBVcOb9p| z55o^ha=p?N%Jt%5(^$GlKTW2*cwg>W4Zy0VT^Pr-K;Ct>L{+$2f4c|`R-7Y)_(Xj# z2H&%vA+S3yN886kR|c!y{zwtz-1rK3G zk+hE*(*AQd)W73o*?%oiD|A|+Kcu9&V!e>N+4R92w1IwzTf6?SrlnQ*bQAR4a2|DY zn}hX%;p3-_HdZtK9Vc6QR5H42U-?z6J@~HKw7v27v&<}`;wHk(aZM{Ew5grA5*6qi zo{#?=a()0ucf~Dd;Tz=;#qAGA=+jwrf`Vi&O;R;=1+O4w_YJQTQ6=Q z9fODh&9>~_!p~6N@lPB1qGHh3U=8vE-)6fkZ?&42MW^+an^k&iw#-A^h5azVon+S> zLUgq~?M2S_cD{eok^KJpx<3By%NoRPA(ILPFA{~Q?X8NdNiXk0Y`3~5rT+Eq>hA3~ zTUR!6JnA|9V_9>9CKUbRb%eQSu<o)TfzJ1v+)RbX)T2IFW(n;44|8yXMf-4Mx%h0`DxOR%`$|BPl^bh z2`mH^=;71^DmahE1{vMT< zoedOX7}!m2A0`Gx(zEf=hImh$s|AEb@rOfz`Wl;>*Hzy!CbLJu49;`m&75+LSByObQ1w>*Sgp0Z2 zhaV>RC-4xN$8&jEL=mfFdaP0Ng&=!@}y$8sI8$wkF_wob=Kxcau6Iu zjU{=U#2jIWHD9-e4|8pyoa4bU355o{O4XEkYzP)UO!{HPU_*QPF6>t28woEp4W$g6 zYFZP7OG#63HtYH⋙bR#1?FIyE!Uc{dItQ z(&P?QF*I1|F#D02Xu@47>>Ui8@s_n5t}&n$UfgW3SO`GoN_~Ovdc(_BfI5bVVmf3e zM}SIe2v9W{2C%rd5b1j$;cQ;{Vh|=~JxWDNbE-%__z75Wuwm>m2eGyGk_xcSmfu%3 zeZO>0?aaPYt3H2yjvL6wOaqRx^?f~kH%lP-q6!|tz-`Mo0G=V;RjpS1unvZdAnXvY#@?+8|YhFQEtre~4eG z^XV|pbUS4_Mw7$C)ZxIY04a637Xq4v(T4#y2h$8eM>IjfRguhIKN+NzZj5@XJ!)wu zUD4q%kiouf2cnf;n|f;by*+DM0s$isnucEuxHD5)yj5_JhrK$p+8Eq4Xlw%x0g~! z(a4x(pSLTqzkZTGM(ttt6_Em}+4K~#$4e7gO6Q&;qy8nL2!$^JaPUI7aFkLK267jr ztH84o%%OOCP$P9ztHT>Mr5dI{g_0 z#2gr-{Jh>0P>%MI(!8X+xCy`NJLlXmy`lWHheSY~A0RxK@;sDT6YKZ6thc!cW}QTX zbQbZ6k|a3o*C~jZIb?oAoQ9EzS4~6@n*&_7rH`9w0btHnPM|D1Ado#xOqXA7Q;G5u z7-*Wd+zTb-7xFO65YV%d9vZgYX^b4bKM3ZbAht%?N5NMs<_p7?RbtTri%>$Vw07OL zXw2Hb#Hw{Wpr!#b<)CtRauUO_?l3(z)?pQ@mu;iE528X19l+uKrW^andY3+5%p5s# z+rUNE_y>O=8p1@ZQk=r>E0teynM14&n2Efj55@N;!OfU6{pF(?s(uiz%II3GtypFp z8>AG;m_^nE-`05N*J?_Yp>>noiPe&3p7@U0cEU%3L?Ivpni6O-Z%L>?m`$eAwvOtO zTDg~T-;Y~dMsSIhIJmQ8B5f4LBorq_?8{y3+@XcW#mqHwF{6!(#LxTBtc*7OEj_PW zJ&|+k%UJ^&L}{H=mUDLLtPzA3?qPCJ3fKs>r;7XQTZ8>HUS%NEd;pBFqDGNzcjUo5 zC6j7*%{=zj)m*!d#NENf3-d43&rJ&ab`whV*S*Dsc@D#p`RbWV@lWvIEdnldlttec zxV+un@!OaAlAgRh_`OZ{wuzkS|ekgATS(_Iv!s}yaCR=R= zm~~0IjuG~Bk^FyyhID|KJvQ~s`S@AR&{*|xXElEzI1nwaBz*Iw-E-*a&& zysy~xPUXvWugy}PSpIdjqvPA%KQn*+d=AvQr7t59z8{_c=RW`6W>l~c>2R)w1!!}S z#Y7LNTLLE0r?B?K3G(VK)BiGcvQQANOS^mB0M5ei0&%yz&QEM*QbKgNzvJc^+QD}n zZwtK#a@SCb9vqe{+>g7MAsHB&;C?C1ijP~Y@ser5_hskp7IU^%tmO5U-TLpn8sjGp zV0mj>o^+{HU1lD3pPBBVU-&|dXE%n5ZPycR`@UHO0<#d>hP>`%k%k`8r_}@iffA8U zd^Xl|C2*|FJZ1|!sEvs@XYCPsxA*GayG=nys_!1QFmpL!74OjdR^pJp=K*VROZ}OoJxf60&F2k&DDnvHYny{>JvIVcZ%bp96_;$ zvf&^$sf0zC$HdNvtes{AIQIa0RhIB20}fIq+uaUr@cGQq*zVvkL>#BQ$@f-Dn^y+b z=m&!;ju~hv$%{P%**HkSSK+;BH8JTrR~19bAnom-S6oPn4&Vi|MjF`p_A;+sZ$3wo zbyT|G=h^pG)W$17gPjPYE`Of;EkYg&^&}G?dbL6~e-$yi*=@HR0JaF@=}zo4a|FdS zo^{$Y;~XTIY$F2uq++P&u0=W&m0ntd^h^sGl4(q6q{`638o;Gc9Z4^}UZ(H53o!~E zg%dd-DW7>8hZby%M*} zVHq&%wNEmxP!Lk(ZstczlMTqa61HeiBWx4?lD1_#1I$osQ%&X*wiTMTCCvFoi|5=_ z?JK5}2G@dENeqm5Qh!5rsDlbu7sDQs=8(|E&@nLA>RfLR6T`d*lv(bI_>AxggerAo z7xUaP>uuim$P5qDPojGhS#@E-h2)JeiRaPh+hl?}yNO0H=uQhKpk(_-++v{NyF%w2 z1?>ow^A12_dm;>yI1p`_Oah0luCN_7_{%rSI}xW>AmKuksZpLKOuSm9J1t5vKoYY> zsp6BE*%u!7ZA#Zxpli4P)K>SrK40^9WKHULJ4Sn#Sjd21;9ohuLH)Uz!|9W7H(FG% z$9I!2u-rTpa9numm3zt{H?}5s7E@3U*T43+z%85Fqd~d1c6c_#jpixlVfC+88FfIw z{tt?*{v@~$L_xePfva#Q8*C@#xV!hgo-w*nb>5V>^KgkNTk1zxA1PN1Xt(EaCb5^3t9FNZ9@I2V)I(UAF?m(!b_SuO#^9 z1l)g`FPB%$7tIy<@gJkID|WLYHw&>5upN>lD-oxAlgPoEwK5<`%!nUthr$bR?q&*E zV=Ofvl-okUPM`c0>rr%E{{H#(V}IFU@lCAbOuB2zBI8RAQ4H(;_423v{wy_%h|DF% zWlzppK-3KM=Z2VWYGju&YSxIWoi}IS3sPV8{_OQj8!syT7uMc0sLB87_rKBu1QH-X zC}QZLhbC1B)kx8RARsM7L{!9}ps1+nbP0%nJ#<9GfQYDw0YR#WD2j?2swk)dELb`D z-uIdNeE$!AGv_~Z9w&2U=AGTW_Otui{rpyu6Wt`^2zCbqo6bG2PS!lDBas&|eI6>{bCd2%RiQB>F*Sov{u{2!paS6!f$N4;OKj5`yM(F z(&hq_bY&?MC@04Sd?px%e=wM0Dy~r|*C>w)OZ=m!Fbr`ZZ8(OmiMiz??1#Ceg7>RrmsMJ@S z+QGvE+U;@fFZf`_E@YC(?7m`&&e8ec2@okyuY7AAP&*QoH^TI}3H8z403lf&1K--= z$p#pPGR5#hT91_mpiu>+P3j3FJ&!v;zdZ(Td3dr_3wrQIX-7^Up4?z-Y)qHKa4oT0 z7v~y%RnE$mrEuz3tbiVQ$iHfo|G0_vzYKzcms178TEmzakxT}#6?@)+$RXuOxdCLE zhdV5PEg>5lRt5&720c}4=JMK*D^{>e5YqgJxlN_;;Xu!UkWmw;{2*nffvOY! zy5VtaD(|T58R#xxVRV323bJg1q$UMrp~KUC zqT@{pz!+E>Q`T;(OoY$IT{R5gMv7KK-bG#no=eF#*|m& zWGR}Ga5C=hTCN1OtzqFzfwEC#tMu68!)iVL@+@51Qd}P)aVfDlVApeFiaI$eo?%sM{?=HrzDC{mc9QBe2@}Kcf7V ziW2v@T;R?!O*`)ZVsJ$nCIE*|u;O@U$hs0Jn8h*@Qd=jJBM`tYol3^0r7y(|sG5bf z(X({DQM@gyOMmW!g8Ebpe4(4NCcC8ldDrx@uFFrfp?Gc3G$8Vl3DApZ^TK`I{MN08 z)Zhi9=+Ec+%(olJ6)(rEM@E*CR9gFSjCInCZ!!c`ax*>PQuZ3tVMt9VFD`Z9=I1?J zy#VCRjzI8}I-sH)^eOZa^i*RU01fYq^DnVdjJErmaSdG38(84g-ozbH(@3L_7KZdA zVoktTfJ`M=wwj(&;ZD4kw4FilZOA-h!Mi1mXbqvUKc;09^Z$(l_ev%Crx^FY--iFR zb=l^?c}&`5SGEceiNfN_X-HKalXQvz@Iq!O8F}Cwmmrr;rMsf)@kBqVB(;Yqvb z_)61zlw+_|lYjY%r3c5~KVDuLy>)Ku#C*x;w-?o-c_>8(U#ex`8-0~?-2C}_*MbbQ zC!u1M>d^MeypbNuOZTq%!zTd}l!4X2EHF0yykCyQ<<)v}qEnTbh#Ougb`COwz zYz4~tBTuMSRNxH+89|Q1+pryhATXK))VpnC%8P4s-W^eMuQ!bqGZ|@ky7Z1F1Vio zcyOp?U=B-G)|LEQJXyxdm&K=Z?n_fBK!rk6PwT!fZ|vGtR3Q1d_TGs(>&l6yIJ`1G z7Z_gwd*^cYNIlD@#NA)jSfQJK-v-iGV2Rjm;+@f9{FGTIvMLlMj5~QhDztbgHpo%V z0F{CqD5hf-+h6>BfB%J@95w@-6ySu(89Tdu@XOM6-!Iqh`-y|9G<<4Dubx&i9w7;jGDN zfmO2aGB#hNU;OKxn`-&+lC%DswmaWHo&Wdy@;{o)fBaxXs-o8asF>KXol80>Od|kseT}ub6G%4-Nb$bk(pQs95;(!j6T_ zzSPzO%7>^;Rkd};X`h)^Io~R!_NGe#lTH@NSkd$oWu05th%HEQ3MjRPo?o{RhSJmE6x z=Yw~RRDRp|gA&Qa;bOXaE}cMv#TSn*tjGS}#QPUgh5tJZ`y%yLDHZ|bOZ%+N4#|9R zHU}(iow{2=Gco_fdx1x{tQr^;OrgY1_oCB-mO79+`V32&GxrL#13U2#3{=gwRF4Bw%!iMUt(sY-sy~oZ)9ZVt?#%fd(|+QtK1zOL zJRE~x0ADx~|9S0JKP4Iu>S-*GN#&62uD?T@R>{+j+(vnE);R9V{`AB7T$YEwGI&?| zL?<_@2FImOO8?Wv{2K5zv&TGo^Nw5pBsARz2C*#vbVonC(v6jKS z6X6yQ{7z4FSIE_S{BbN|{HveyA8qipR3Y{Mvcd0Cg`gr&d_K!%8$bn#xc5~s2wyA? zOv=RIJ%TBsMRpFxEYkmcYhxwLAwB3KKyjxI6o9YM&lo>ox1IR$SH&40Z>WYR6%o#4 z!u(V$W1_q6zu1g>Wa_s63qwW>FO)K36#jF|nk`nLwX#|z4>?!8Gji|V|FJoYaghe= zmxX;$Gften-7?eXZRQMACn!4hBz6T|bGbqpwU$tTEsJ2Y?we|6{#KA135$?`r_95v z9&U1cUO!n6s0LFC?~hb#*{|z!GB6#1TLnyhYu!J?%`l6OCijwJc_oIorhGZlsE>OW zQ-lxQbR+w#$rB^^zm7msDS&TMHU7Udl>dXw{zEwF0@`YpOJl8%%m3ME_Rly=91_rx zlCm95JNin9+xyRNR3^dBflY%cLS+V+>9$99jc@bZprwC1UGc!oK#4(sfPBGew087L z*mYGeT}md_EUY>u+@mEi{A$9Jx~sQf8}qgO2QNlRXDFj`Y@zT@Lp{`~)&nxKt$wY< z36I*ifN}$j=Q$neMja%H(r=fXF01}#Fnq2m!m1r4KENJ0-HX`5U_XU3j1S1D0kRjDb2S!W&~FSv~(siuW#Hj!GP>&En{IbJ78JTjb{ApKPkOpm7u;_ zy%Q!wH^tI3)MD33ufh_YV{3c`!3F+KY7F?dr&}Ja&md&!VFTh{yr4#<6nJ4hk!3Tb zP3n?v)d2kBeY9iY`|2n*h;d&vf-yRKE^WlF>%!r0yGr=S;nIBl|Hc9Sqi6g-`~UzD z(q5{P)Uc}mIS35zzAs`U5wb45Akj?@5+)G9Npg%W7_3E&ulhStTZ$FM1_g8_0Q_i>?iJ-)4}r#b`5v z7(3Z5&BG`h!{%Ez=1VHJT!}NES4j+Og!Ebe_-SY6bt~#lb;waV0JKEeJb>kX`$TFu zQX>nOcrMa158C|OC;lI*@c;i&(wSR;0;>4m4w<4$p%xp%V9^`@H^cs4$YFO5&Sv+2 zRj2duYl5T)&{%guv`1ZJUsKhR*u)pPgRglnMCzB zUw%?Usqp1Gr6dGq2AtUay8p)fBYo<9*0I*g`WM#|o><7399)pnRw!~-P*s1g-ll5& znjgiq(R&PtoVNde&zBj^yt+vhS48U_-K*IWd&+RP&6TQ!Z@U95gWA(CPa5RBuiJc) z+@^awb)HinC7mye_(G}*^#5nR%>Hxrtz&X)EnIwqCVP(_U2GCk7hcAkji|gEc{8~( zrZnzt!(Hd^pZzN{S4(ui>74pR8``-!KYG3Lx9|rgCn65;{;1o3S{u7*vA^IKFhqI2 z;|DB3%mlq5d8@RlEP`1W?M$^K9~ayNS5Z~bd-o>loV4g58|=-*n1p$IZ;o6ML>J_S3Z$2&Zpz+fUkzgoVe*B5BhFK26eTu>tStZcL&Utw)DEtK*~U z4+J6#BM-i>DoEutc2hQ(Gofo@s{3Yi4o~ZFF>y|@@kP6zU7poRanOM)(8k^y6{eyB zx8e@|l@6or0FeqkJqZQg7t*u~VAz zzmg}9-2P0jE~70JGZoih<=sKuDl{+2pxe(cdJC?rVn`317AI{i{}O(9bbZ*z)V%rk z?=AT;`qf|@o@9*&&@x7vlZa9K~jb* z<}>?qv)M1mf?JOlM%x{grNeZvT%B5M|JnZYk=u9j1RHBxbA&bY?XT8;OT|hl16pTQ zX?hJ23`unR6&Gc;#uaEwbp6vRJ3n@@`>Z za6zppS-qZN{wus$sX8-A3{tqHS<#IDZkBCF!{+ufr)Y!?CAaFePfMWEW;e`off5>1 z%EWu%t`7gv)Aq83YEouR9GY_TE%b^Vu~xD!X?TO%8d(n$H+Ub&lV5votjj2uuT=3K zwSP3b$EtNgMm=-FD^)R2rB&$l1*91ETHNihUsxYsKuKL)iEXS*&fSjBDaA^*_R6mK z55Lzt^LPxT+9G`Li<_MEdho4IzK;CX1>nTEztLO+`C(KrmA}~ac71vBDk`Q_EE|dR z^>nz|;hVk4f4bnU-f0kUxU+8CvV)K9req*O=D_JY2WoLSr~Q+DQ{68wl{Lpz<@l!S zDO+M7Kxv8BJNL~;0|qm6_Xp+~#cieq=NkU~(1D1a1A`;QA?xnVn62Mxy>|Uqt^!YV z1u3*ThOjYd_PT}Gl{R^STlAqh(;(kLYYMCIWY=W<%xHM9nBwd&^~O;1l!Xq>8)Qg- zLTk?#=2H0b&kQN9EWi0_w%p~wnTMq_bz4sg!_qN6cGCVp@scFr;OHASUrM1Tam^ zYUslAY|}&sAIDwggquD*Iw(+kM20B6v38+oJW`lyO*FTAH?ngDk|+p(ShP2C<9+MP z5H4{*d_fMd(9_~&H)nH$mk+6DsUajHY~t43q~l9xW@`a^2WH6lPyY(Ha~YtM1#-&b z1NF;Dl102C!<=4L1xP#;b@@z)aAM!%-x-d%jF>-5-&gze{Xe-e0;Bw(B-Eg^7)`)2 zlKd6>=kH`d>4ACJS!kBU``81E-(v^jskTN$Us~7WWb99mxh-_aMy5Hbwa&pT zNU!C>Nw~E=nHetSff?%J(lA)p1`DtC^MN_H)o$^*H*p&BDTAIGJkm21ZZS8F?5WzS zkXn0Seg0B(^3#EnEw!nQSytrjDq%PF94pv6pY;6atL9JLgak@%c-V^ zO~qbExITk<@f;qg0G>IXP+hP^rJl1pPlfA?zEp3)LqGyfn9fZZ8M6)GU72uQ1qM@d zNeg0)BsmLxt}cIy1RtGsgb{`h$P7BeGJ4dfxsA6aCueG!xT#$J+vmtHkyJq zDn>t9M!#mHe*Vr-7)#fr$X*LQzA8c@4dH%7sB^Q@n&POrQ%6r0@7MS7ANC9u7{E;p z4{SRX{{;`SryJ0e;L&))T^LX+)t|o|=`DicsK?%KG5;ojG^oO3>4ZoLtV{p+w9&e* zB^gT*EJASnJRc-eOzn!Z`MP=&y(1LuO@*TFXB79sd`O5kP83g{ifAR~q-B-&W@Z$^ zpGzAQNC$2l(q0H76F2Gfq6xf+)6l~!r{Sm>GaWq?2m^1^(H`qMY_e>E3E`3P@NYzK z-!XZW)9{SRjN!42j6$$5`Mc1m z(cMBhkyvgCm%p5#aI?$ph@IS9A?Rjm-ghc+i-P(>$cM_Hj{6Yze?d=*WTzMiB`Wfd z7hfqH)i#_sTp0hA59-4gXc_1CP*63Ztf9itCINg36VXmVt+`d$4xqZ}s97HRD$C)U zlKd@+yz{CM7K>pKyJLPU`~H3wpVZ8{Er5&&fiSb@UZR_{4a5HL zl-%K%{Od%ydPxaWrqsbE#o_>}O(IXD%ZEe%9DxS9@=@Kw9p#Q^>ZQ=Ya9r9B7nVf64KH0uc&=Wi^g3O3+B-*0J>35X z>I4Pqd@HT7+}X|8zB~nT)1heYlpLK=D!6=3;E0}S+7kRjE|_sTLD_m-Aidb(Y}snx zS^5^nWp-(g5K;3*dA~8&HH9KZmbBg6Z@J^7Y$Ywisl~C?_~U z9PtOgy|W$-LR(VgNAVC#F=(BJzWq!mT#>+9T-ixII4s=y(*GV7GBf~J=*o8cq@U1 zcDI{JD0!czaCl?-M}oVED5oigkogc2AL6$kxWTv4D?-!}6%=-Fx~7|O9glJ)LDt7Y zeJIc{45&fPTHq;jmZ+dtw??d^ad#NA(GyQ;Juobl~0qB2DGoDqS{(sBlRP z0)~~v*-$bb<}cKGvj{^SgegEOhbL`HvfNTAvTsQUdjKkh!`(Az2d=xWTt9!ami6c| zWSk1yDNxL<$Mv-`X^6a*EMqLYFSn@1OsWOP4(Vle7AQh|Qiif7gk#iNkv4)u*9 z$7lTw3A>RW1+rA)jg$yP&^!kWQoXE*4W~orvm->T8=es)9$v1iAI_v8!bP%1JUdV4 z=BA}I_cJjQBW9*^a>>K;=K;9$6*yf0Pmv&;FlbE0`ml58MQTeQ9Wwr7{gbLV^#Q1v zsjd{Z9VK%|m72zhi0FZf1%}*H*-c4@x!2`@(ta*c?toc!iQY7NMS%XnN3Y=TK6So( zKF-`(0NKTdZ*Wk^c~N>{wRhVi=k^h~yG<;#+d23?G3XMh{_ea=taHodW#N!h!|ppR zHp49;b+%XR+J6$;S1B?G3_N6!sTT-4{)-r*VLd{Eo-LPgI%RkHtNCg~M^yxRt)ShB zPUpns{B4N|ak9MZ&3Y2i`Bc-aNl9Lvj@U(U-1+J@=1Yy=EU4+%9atdj#<|)HrFV3H zfkVZ2ZWsj>X`C#6>0+_xlGV9OUC+Hbay!m`N<1#T#! z+K^;F{kpOHR`@o;J*y9(otnmc(*$dPA3py_6i*6R4RQ>KTVd^`@Pq7cA|&t<54Bsg*5!f)IiYD+l4zklse-fib5 zx5na*JFHtZP073NgWXT|9z97sq(BzaYE(|UT)*^{RHm9;EB{mA_QLu{x$^^E5K#$q zhE#7Uf<_czcK$B6m214>r+v8qbGZO!3G`fSuK%fIol6J2NbqPr)N_$J)zu@M>`@Yw zWegv_Rvu*qbyXq3ZAd_le+yxy!}aop0{=mGrA8l8qZR6oHXhcUb6=f)#~Ib6I}dVm zfp-5=G|K7Uck3vsK%*hIs{;Y8-VrvhT%jpI7E@(%si?P@E5d_uX(7Z>7TQ^eI5&*U z71FwI4^mc_p$}16ai$f06#0a6&?k|Y-CrO4g!__GEOzP1WeH_=V4$0bN^4ttPF@$S zN_r|q$lTDd?_p0H_MqVynR5c9%UDMqN*Epz%58phi7J!Fmw7ZSccdIPRW9Ydzzi}aoKh0blV5=fY!$@CA$1VmwXRKfhr!z-178j7TQT5x8M~p zB|`GI_1gvbD>5D^7D0w&uez?W0|!3zc-SCHw{+(y^bE@%Awdqd!LnH}nS~a^BKSN7 z_2Pi#$qk`houi{&^6YmViTs>xH)0?UAk)IJ9*Vpszwes!eSbjl(1qb6uZQ;-cXdWw z&R_k8v2Y#}=3biPTW5Ui(&Wpv3y|r+h$8h^vOl-*?xmt*vOUAdbP=*x1l=Np-R^vG z^|#CRoPxSnPn>O)p5;E|sr#7xL7&G&9wkCzc(6^!ptEM9J$U##yxi0V^2aGNNv>Rv z2%&8B?E6A*Z~_Z)I+xkD(I56y}*Dq%d1CpAID3&@;6JBR? zNqG&s@Sro<+lDmLshL}9?P3RJqP|kxI`M#lHDnagKD-ojrOMh=zPX14@g_p7Nia8& zih1gj??x|O%pX=qJqhQ(Y;KL(G8EASo_dWz*o$Cre;DQ1(8bb;DUxgoVAi*4;1LVC z`-}z-mTqagRli-nbJBWdTxF)IJovRx1~d#?X98D#Zsyx7k0HGdqCA&Le$MT>f3knr z?bF3&taX(DGKG;rNNi8e!2Hw>CPKIO-#J-)>ypCP{7&iC^(ELwg}3>MB-)ehH58N* z9onJuQY*gbc_|qW9;AJ26p4+jPn?;VY7vtxsC59aLq(zMhM*2_FfoED`O|kwhd-du%1RQsdkhew#<~ZKR#Bk@ ziZs;e^fFJg&-4RPC7_r&T7j~A?IF+gM!)Q*Q>izQzr2}^%Rq<^tylZ)f=CU@ zcpj_diPm6t^fP)$ID&jLtcQVMf6kLmRbL^8ZcZ~VZDah zkyVYQCpDih-Gb1%yt4LJRk)mR_gYeQVOQ;thuS- zLwM|Mlf({PL-5TL9vjcL)l`_3S|07I?i0#Xl8^mf`tu6wK6qLuZ_Q3AM#dOF=(@4^ zi?3dIlU`6EKJUl$#$xpY=tD_d;t^y!CZz{*=I ztEu3=;l;td>-lIpdue_(|z1`jT7~#@7OhZ(EUoWTWuc3FK^03KS zgN?;(88z8sxa4xIiS0eg3YqZE-(#Zzx-FsJ5THIe9VfR%WRi8SfU&v8<$Iz>Fn1oRq28ISc z4!-|%M}j@_Wo<0D^!lbPH`72Tlhzf8bBtu`_UQ<;Sed8fOUX7BC4YbQR-QO+K&(2A zNqKJo&p*8p0M3$U)nh+R)ODZu5L<=IYNMDysy)C8CZO~)-fC3Nk9fJO-x?ozLsDYZ za8YT8L&wu5jy+e4!iy(mt%w+Fhc*69n;*Y~ezGm2znC}|p4QhLRUFmw3FjKU;$c57bm+WU$kiKinC3`1 z>2#9D=S!*j4%IuNS>Gtmms*zy;n1&gySu7+Uu*|iy&bZS} z(Fje6zCTJ|HT>2oI|eT%=4S?+VXk%}}OHzvng z|Ms9kKF5N$0-mz2xH#2H2A4=75e;6vat*L#x~yOBKSp;*MJ*cjV^d@-L;=Boo~C%Vh#{TyA_QwH%oOy$tVNQU;K z#+RA>Ycu+~6>c+SE=P7$`%75Z1~JT#G%DAQg(w$_&zO;}tYw`Y^{k8)>F7`R*e$W3 zM+^$jJ7JP~{b$EJ`?%&r1Hy!2wqyN+Z22M``CUY&%f(`JI!bHMePG^@e1OkA|HrVJ7S@y8M&TZDwIQtF>pkPC zwWxF**>Ggtr#Bm(ZhmZ8RM^YFS<}ML2*2xYWK^lmJuXV;bm@-+Ap1@3kb5U5?0W1h zG+ij!9a`wM6ED~Xx2@_QP>maUZg)Bz!{;PPNE(-(Ziux@N2iZZ5vR|1;O8W~X`u&x z%UmYvv4QykS^uW}_v_;q9rfEvsjBT%R>B291HX6D@u*GK?&pt(E!&>a;;@#V*R5`k z_||YJPU~(iS=KL1;cZ2K=qJhPWu^l2%Y$35Op8*k1B^qHlUh77WX)48_`0;3J7K+G z!|pp9myRfH^6l<|cL_O$z4GmW(o1#d9rD_lo_0Sa^bD1&b0%uV_aENcu;vpfgA^xH zhGz?)YX|Xi;0am@Ph|C>^I40DevQXtZ)iJ}qgxaP4k9JPwM+@Ax5DZ|!-l8$UzA0x6g9x@b?{(7jiVczV1;<$T8KEz_^+?!QH+l~&~ z!=HDy(-|S;`+$sR>}5rkMfR5Qr!jXkut_ACWtx|U1_9iRZhs%QL%)+`0<*{3e=xN$ z>#v*ehQ>=+C<>s_N)+vN+HcX&I(NR{?$^eHuje1{6>KY8vo7e1o#rLr%!@o+6C(Tf zu-?0dmzo0|r4|}4d70I(*!zc~aMs`MCJ!%M&)xvU6WN|D_1h!eofs#jeMBk=t}Y=R zd2I$KL^9u=)s@qif$?LQj%UaYCSxTbnQ&KPM)j|D7*?jB zHA4#n^`mmui@4j7cj2#E9_M6@+$nwF%sY%!fCuMA*0NI_;Jf&|?GkSJ7|W6m+TVXy z72<^ZwZ445KAZs8k${Xz*;9V)aS^!q?S#uVO|QyYEFJZ%t&|(CUr3sAg>yU%oI0Y2 zOp@`vi8SXgQ}VGNxO>EK>~9Zj8!ws4hM&ulK zdnSCA(FsdGdsM*O?ZC5i>2M%|9zP+SC9HQp3v%W|p@|BLoKx$z!@Luq8_67$B=_V2 zGgY=(-=u+IWmcJ->#>)>@|PIw(*h*H6SjC{Rvd;R$R zya@h!wS;JGVUzN$_VZHfbKJ;;N7|4)#)i-bplx+K^!Hl87>DA(!kozEyqyV z;fhVqZi9_8bD>VwGPSu9fPA7fLsM8AyQeAp{T=VFE62a|oq+aVa>-4@FlfD8d12@A zFBumdvBE6WNH3tw2PqF%xb!o0sbC#(l?3d2f|#MX0*@p^&eUHMgvnRcaX#&Df<2b6 zWLO%Pg3t~OP9Nd~s{hVHkEAt2bB?=v3>X?grEEz}NKG>qfV+O;} z81|uU#fBIN8e{gL9?_j;mOb3J-PmDT84)yKd;(af{nM*&uJJ)I!3Sr3_DojYDV+!7 z16CmLtE?=8w40hj$g?jG-~K+mdYAzuh)qWZjd!Kp`QnRr{|Sy~)wnA`irdy03K-$E z!L(9lt<_MBB9G!bVA%^cDec|9$g<`GSAn4~PZ5N<0b9JzXA^(f+y0vq5JwUa39Y=} zPapkh<0T6@Zn%uie5V}#Ix7coI6dR=9PiI>sZwg_()#TkN>-(ykc5oGn2epnk9JA` zt=~0y_^Xx@z*7uAoQaTs_$X8966sp{0O{5(q-7d2C@n+d?qj`~CwtO(nk!Q90c@7H`A06p zZ3XU&WT5yApVX%t@&FW(lZ=P;70Hapa-?tsL=}KntPi^ZsEH-0g<)v*kez3 za-SvSF^~x=73oZ%mb)7O@80_qwE{8y!)kq5xOoMBix0$BG1gsyX&`}cfCq7S9&sA* zE1u(xpJ#d;4@`t+{!%jC3j$^VcOPQm(+*Qpq z`MT2V+zYbbN}u|MSib5j4w!?xI)JB4M{wOkGa)7dmoX&*Z_75W} z6Tli16<2Q<$@UkMap9;r@E}*`iOkjWd0FNd_P!M^iUc0;1{+Q2uA(Io&9BSJ0>jDPt0cK*T}O%iKOY?xU>r0hscLK-i; zmkU2AMhwB)6yXUJm@EboiPD~a#regg&X-DWbp(e+@x||vzG5+=MIm~HHS=>Y+Y!93 zmPZ?gAs(EgF?bdx*4J;WiTw#pAi&{C;&2R)Mux8?KP>(OJ{PQjjGr|8B#uOutbOz5 zN@*-Ym6qUuZ9gaIW!NWRcnHb^Z}A>J zaE(&W#7|SDy&!`Xux=sPH1^$*a-$C~GPOrE3xMLxNyC1DVyxCr>7%w}W(u@AqHK`kt_w#Sn zWR!ifde8fisCpEisZ9m1xPpINO#by?-=Eoi%9he%8w^j^xZ#8Qy^3eNQ!muH6ogGn z)y05)hM^h+(E1gQa~jBr@Lik!)m?nhyeZseO!`g8I%FzZkm7fbNfvUf2uzpOuj;Mr z9X+6(`=F~y_8fmQTRkjQm(2DjLN&w;-_I;{2dLlh7pF0(Gl69*gnDB}eZn~FNM8d= z?d?jXEjut#0QH#zE0lh-s{Oj>J7CufT|bw)qRiF;4kh1YZ?1)?Q`p{_P~Bdz?=W=j z@DKlcAg3{oqcCjmXO_jV?gtTjBLS)_IOOhdsKy9lL`>uKur~`J>Io~Je1DmuG{4#v z7tF6y&(qZB(gMhrvo^Dp@P|$vvRB+Uhj0c!(yDMR%v`_>K*F_23~vnFbC~7P%MBO< z6iBe(1h!o*CsN3kcYti0gPK#>kvOh&UG)||*FNnowG;xCu%i+|{dZ6rSA)dZNaQ(YGCcvfxA1rb683Q|H2o5tw@mWo+41Vy3O%hES$A}j(@1+23T&!sg@Rw`aCeA(vd5Q)tSBLs26?3 zNN(NmSsxK}2hr2?v?{T6>lrfLcuZ3_mu29=@Ch|A-xqhcGmsW!D#%Xs!MV#l(=cv| zdrv0z;k0!5jF6Cu0p&Ax=i?d|@qDUQ>{(j;+CwunwJTSML9#{ zZTx2zMZ8Ndx*(@v-%{ zP_lkq$a@psKTx5OOzB)!FXsO74RI8xS{#)UgEJiDzfK`%g5Ju7X)&27a67+4aU>St z;2y-@?3VlbwHTxpn|r8>t3J%QgnE4pF_mINRFrP+B=lUsSyCBLwW-(i3AjyMWA{P* zH!HAXG+SnLj#nImqh^cxzV*!Ov6>64xWR~~wxLLkCCY-PWRt{|w zb|{8n+}9}k^p-}VzD6~I4t4CHcByPgB zWivs#jWc9;>+Zdm!FUD$^L=pv2RIaTt3{JQ-d8s|=8$toB^>MJ3lO2R^+GQ@eLWu^!j;smDvXUwa_&s&MqkyjqOIMAx;xsK7nK_t6C$ zHJTYnq;~D^5tvGFr5so3hf}iGorr}iP}Q&dL0#AU96+Mh&qu7dO)%YpPuF4he!;LS z2XnmcYsYld<6=q&8kIU-uLwIRj>_bg!}(#O3HZ1OKiQWkzPTWD#Gw}Lgi2voGgdLO#N zQTkK&^UKw~b~t1FvIfOe*}t}=OPcpuK@%Ap6urm5VAr&RU~3Ru!EgGg^adU|MQ9?s zM8gN?x`Ow{{;_cNI`|^w&3EOHVAmya#!YQ5HVCC~j?swL@lp*h`uP$4fg9y0KBIix zTg{fN)AeE5P=|v7$E&TwIQ%x5sbPmk+*0!dhSJ}TC0Tl1&a+>9j}04ca7hee=p4W@ zjI3H2^9skmDLwoa1yflCZ#~{Rf1j^bW%~3R2j&>2k|3_eB(Q-PlOf*hL9v z^TvtjO6$=&6rHV^CUS#WhcMd!hJI%?=_XAV+dyqbQSrzizB@GYKFpHnw=UShL$Py= zJAO4MK3w2|E%3H!9sQhp)A#9*go7MSFROLY#7?>Xl50z`vF>5OOZBKN_!p!JWYk!v z;#s~Afe@Ir8339t;v3byNZygSNF^4Uju`mrP+e<|T@&oAEVy%JgNh(-zJ6y^|Bn6S72ydSv*$YWtK^Tqa({4?1kPsnIuQEHip6pG6Zw* z{RNkzNjM4lKrc?XWizr9GP20H0Z<;BxD3jLkW7?ED7t8oVaW#mG|Ghz1qN5Ca59Na zzh_#CG8N=liU8@w)>ylzkbNQ_O`3>!K*e3YmeGwnDPfsB6<)mz z(bWVPTq(ziIX5O!IkF7qbsBo@eaMV*v0@XS5`$wMy4Jc7k#Q-y@NoR3Vx1`TMs#mo zb&$v9IXcn;`3)XJoN%}~1L`080uRDZqPoOPU)xFevGu{~z962KWM>&5oJIRpL0O;< zWST!a(Z_&o5|($+rqy!|IN0+APJsQGkU_|%XOO4ya;z1|np{4QTp62rVuh`ER>UL! z2FaufyfkvD@Dx-zbQca`wyBe+C+vtm@5wNK#*_=_1zJ`&5Iq!8u}FQb4vZq4rI8sZ zkHU6hZuqlx#z93fIwGa#WS(Ire?$u?!*;g1%RF7oTsO>=e@o?rtWu}+5<4*R(VeR8 zBp|kkjhqQ%<8*c4dgHNjYi2$0x*c${+EO_OBFy=j1fr$yE~|}1m@F_*;DzU=tt&ow z*$$pk8dJf(_Ws%=;S2Za2?fb8SO=cRC1x_^r&i#`&lppN(_*=dOfU6x4g{TE(fJkw zwW8~QEbux?Jfh9DF(K5`YZB?++GU%-VA~wmfz%2f*wb{_aS5Jsp0yC>yA=fZ9v;J^ z@4lBrLeL!`8i_=3Vjku-xhoX4Zr!TKX;=qzUyr?fFNTZomAoT0GnIx`JQU*TV$H+} zbcRFc)t?4%rxXw>kqWVGv0|Hxd`j{%HyB#eBR9=VXuMhR$91Y|!n8=L6-dU~;=sIU zO6Qts%!UVN8uLh%EX~(rQ27U-yjV<`VxQyzPKlo5j>p5h=-w#cF$#5F53^060!~=W zapSwINF)!83F6#+nC>W03;VtY+5dk~Z%rv|75e z*2L?v!E3LB;!gpaCLt*AcSWj%W@uc}`E37{aX_%uPFaLlM3%r>(ZOb*yu>*HLQ?#2 zW&IMHFGc@(najv`S2gnqKetYyCQ7eiM>Y0%_gdk&PJ%i|qV*a^lIdr;?_?eOT_1GG zJx?{_QtN(Ei?S!`Z1bA@@_Da@`4Cta$>K}o?CS~&sSe*%-m3*K<|PH>e8;#xieUBI z=Vccg^w5n0SpS;Vj` zJjJ1yhifut-*)Pk{u&@CetU1fzi1peyFCbx1%E*$_ zQGA>gk|J0LP69iA0FxkJi5#esk2xy+NeG1O(Z)M}A%i@yRp%SiLsH7ee!@&4{X*g;D@sV36_)=eGZwO4Fp%6&{gcr$uU+o>0rHwl(4RmM| zl(vxBpJ@HbBuu5Vu_(k_3ee zS%P3393(}-c=R4^v=^|bw8u{=i-d{M1`=2a1P;pJPAMr%&OnI-q$QdLBS+<)N5RcO zJ-&gu03}Y7=%_YaTQUjgB>j2-V^Evp;0Ihn}m<{)WYf~8q66~cRiW9r^>EnyWS zctSrY`eq)-*GA>bB6DS7{!nO#-2buEuUseUgcQyrTRG@$!@|1ejOCLO+5zx|Mp&tf zZGprH5N0Kj+GS&{Kzx@uZqS_2n)H(wE^(N{yP*IA@)wdg3Z2Iu`4}Zhf~N;&=>m?* zS&5|ai0qudAE&BkRA*0AmMs3A22}t-&O1-98SAi&@6v`&CPf>h2>{uae$|kF2Na5ssP9H(k?%k+<%_J}fAEZvla9*6Fqx;p z5^exRRhF^%vml10qO7MfSO>IP!dSC{s^nsHbZn@Mv~W0EH|F0Rlrw zvE@)iyVToD7xPUcMC77wdl0`T(gBdNNMmz*#cF6wB_Qg9y!tRC5+JOy$CCw# zaamwFE^h1zNF1?9ltgGK;iPpYB1u1`0b?9yT8mClO^TLW_RrES4Iqu_#yG7tvE5oh zCm7)+7xAUd?Y4Jehz8zppQIFT~bMK>4F(QYDNu#?l zp&qP$Y7uvfgVj9?_K-$Z;(Q7JB8ml7%2`L}MN)C?lMSSGgLl1{a*M^j2kLV z{(=b_?^b)cyC?35&BlXEpbgH6eK+nBN?YSUNErsWh{mN4V6?XSpLvqc>z5%Uu zQocmW;d3(&OhZ0ySbg~_t3rCX((L{}>-XhIs8j@#JgTH_)my3Qplk0fVeGAwl^Pd`v(uaJ-g4)Ge?J$w);B!) zLLU?OTz}1WqpD_veOhv(Z?JyG>+K})v~bTP4ULA(*(9v4=Xi5owMQOHy2}O3hg$n> zRhr0|4ZOeVuhIJ4(#&2z4bnC!T*9QwSmJMKU<8xt@BK^KT65Kd=EY&$ptsv`G*aau z3$U6$hMxwfDfW6R_(ivo?uPF|?xZt0yxmq82^c#Al=P&eJ)5EtPW{w(%l0lD5CYCu z={9HDpt9dRamLM8r-gyp7v535ajAQSbn+C|u}Tg1XP~J@>RvUOuXp1f$ei(`ix6vA zoW1-~<+Mw-6*EQ{YsQ+Rwy~TLz;(di^qXhge+0dOUoHxzuyc?0Z`3UJo99O)g_eRDE$HxUuP8%AA{As|KwA-KX68>_yMsp%JEKUh+RTZN&OG_ngW_s>U|F8=Us8 zYxAn_Vsn3FRO;f(Zr`l@?o4?*7(Pf6HcnM9H?K6pj zt3DN1EOT+XJr)4(HI_-m=8u9^5#KBkNtO+Gn&9ZCN!#QwU$Zw2w|HydK7!>Kk&bI2 zJ-CF!gXh%w8>y8M5vqokC3krDWD#DLO`|m0G>qHl8RUh#2llBk&90=>!+mrrri)aP zxFsN&1@4@RTT?WgIp(rr*&l^~+hN&H6mY!)_u8Qe4yBP%$WMV+fai^Rx3ZDbE3RI_ zQZ$UI77lkXR^>vYNdU zbYTk2XHd(EA&sungbiA}v!p?x`>92;s1}O==@Hx-!2fcRU~eUR#Xl~cxt?b z@~}$Wx4$Pgh9vO6DlibfT~Od-v-hAZ>|;%EV$T>MDX~NsfQ*jn&{D0^2&6}dV1Z6u zqZjK9HYB|?mU&#OG(JrxD$&LdI?Ff- z&rj_5a!d3c8M#guXwtX}6R9YcU@$ZHKoJ%4kSt4l49QA8M@-YXzOewU zT16BIJ34i6((TSk_HpdBHP;>h;e}@bo8@`R&P7N@xphU@qmvT{6KnQoXZ~vB9n8?0 zFW;PTkzH_Bavlu!YL7i9^YFXU_U?C87C)hLZ{+y-|h9@2N$g&#D&yrn=hu- zC?rraF)}bNYonmOXLJeEJv0|+pLTKkqS@z`*sp9Gzhm(%id}7(SJim;*U`F6{@D_KLAB9@IC`MSiJhuF1C%9m{ zw?p#dwllFW@-|v}{X{i9uW!Pw$+eB+WRdkrKcX6_b9zrF}F zW!H%9X+v0T;h5df&>iWfWz(5TQEoMz*p)k!m(mbRGtA!t*1aB$3o~dY^Q+B1+L+6ouNi)Ay^)$g* zd(~KaXj80@%+NZgJ^i^tc2G>P)Mcgf;I(BNfo<~&=|!By6$a_19QD#e`q)z^U+8H~ znv|`yfRitqV^8JD8hKj|J7r^zBZW&3c<9S=SUiSn=bAQ>Ymy1+Xtzn%OBdZCA4xwT zSaLk522Uq;`s;~8yUAV2>w#t;6kkE6-P-t^gDoDR_uRoA ziYer&bu)V)Mfb+bdXG~ESwP12o#(dA9@LOIr6mN|(5mk6+Y@^|dzinVRg>&miAyOp z>Xl<(vLhcxQh1~+a6>a@GtcMqGa@hVP3=@_>44Su?(0Lwl{WyA4Y|5UR8*J5PfP58 z_(@H+Lf0t|D~C75r(javlqcwZI5F-HNLJ){>_=oPtvyg;QhL#*xC@Z1F+=p)7fHA> z1o@?;mF}-gBlJc%Gk3M$U*U~5WplO-oeWQT<3Py@^p0%nk|Kj@<7iW$7D|t~W1&tU z6#p{Dv=QJ2=};?;t9Vr>bs4x(pmU*ovjJOViKe8j!nBdQNv@1{ikeMclxFhY$@gE8 zcd+Uma-W3GR~%+&TuBl?A+e;|H9;XPYDn{W-s2kiAFaAEWbrGgMV=*T9t}v@wW!=P zAeGK~M<8SSH2fw2HYXP{R}wwLl5A~MZX0h2suf`%^%}j9UlynlUK)s<5@VPUKEAA#qc;Ul9 z)z}c85g<8NvL`eT@~Rx_)BAmeXdG13AHU5839OWvg&meb_I;PV%*ekG`L^DO*> zHnQYfOjzrpH*cbtTg6poX4z^BH)`R{2>tzo>sdWt00%iJ!QN4*2;ra7*MwC{S%qm@ z_q4ZG(GyAA<*?)b$95x{s5(1gZ{4gK6kd@crl;4*5Upw4nH0_8yw*O~eZcG~ywmi! z;p6PJYbO3tc((aybO10Y%5hBpr910)5^&b~|jqWyPtbKPt$MxCdbq z7Ts91(Mhg6@tl}h+%fAy|NMpj4c?et+pzPusOORKo&8XF#L`6_(}i|L5ZW!J#AvmXyc?k%0PWY^uj zpFSRvdY5Hy-Zgk2?(f6dd&{Ps*mZAb_@W@J-nt&aUY@CX^w2h;qP2M3)OokZKZ#EubzYlO;_$K4ersBG zDgB>!!N|7<(7*BLUrw<4Mjb1?CWt3~UR_hMTkzy+K>Udlvm)1hSWB6lmT5fiy(sO2 zghl)<%L}1grS${)w3dyDYxjV3r)hiagt_j8*h%9lu}h3zw#sMOG`|EeETHhfM)HvnxIchH`{Zz}88hj@7F(0QhWJtWACcJUI1ch$Bqzl66mkj(h8eWl&Hcr792~@fg80q8X%>@`K z5Tke7=pFd_K%@Iaa36pLJelG)V58(3X>~ScBJjo;Tlsd36=w%<8zs$5k0Ra#60}qJ zyOQI#AO24H4|VOv`G^uRNtvgVj5wU+3%D!ABtY3x+(du#nxe;Dt)NRH%4~d1d1Z6$ z!ubgR`?`h|N4Q!wE_#e2G<(#Ub%p4bM*LkpPA6fmPLFX*ZRubsywvC(WuzsdO;J+M zZ>5x{1|j9}J`(elKmMYuZhe&9eU05E1NHQA{$DoQ&mH@!_Io6uq;8bH*~VyApBVnV z3%0S7q;7;wLkVV=ncZw4X}i>Y+_EtFJ}D)ILd6Y~KC{S|@Yrb=(lEDm zW~3MRuS~ySxBJ!FF;W=*}`jENRdXA^yn#3p8GFM%Ow*ycA888J7lVe2y4h zaRYyyhF=2w>#Ks+NPU*sT?CqdSSe-jkC7~i zc)i`_I>EnXn`MQmtn$cklKZ~XMij= zhl_HQ%!fGSKz-`W-U_GTQpKgAf?F!Lqf*!kx_1nC9u;#f2HNx+wO#{|6&Lkm-s8-o zWoEA;DYe(gx8b~p8n-86a*H_9NjNYq0qRw}5t8%8&S0ty@GQIgE1Y&j%V*eK9&7lh z8TK{Gb{cqnQtlv;qLQ-Xj2<$nHv{xhO1++-)Z-a+!=Ge-yU?kA(m>ZC6+6Qws5a_q z&7uOch@<4{L7ykMm)h!8BnMK#_Tom-7nW=F$0ic3R8=wVUNrYe}=w>py_DlJF8aAR4g_lt?%wGN~?ttCZ zX82-4nTWyTh*8iBumcAG#R}I~IOo2KA8KTE*m?IsUXj_eNh(qk-e&_?TZrqI{xk}0 z0`#N%$bf-ek>qdGKr5A=aRxyx2(1M9g*Yog$s089uqcyv89f$%^dhOK^(uI~%B{~B zFSYZ_%(PjYyciXm5R*A|5JlzvAK+0g2DY1BXoP}q6Ske=6{t8iz+J83Gy=4ujdZUq z z+qFom6mBu|hor6yxc~*hRuw|SSUw>XFV#YwnA?fY9x1`Y{{g@Zn|qWUP#T3T?XC%C zE=Nh}1<4$KE&&SEN3C*A zQ0A181Orl@uaT3N?0uh*F2;~H4OIyWlk8qjz3~>{m8kMcGm0u-xKn~y2<~&zEErtI zLIEr$P%0Srmn-cKk7VGkGefn?a~<-Di2&`0)cI|k07S$W z^H#dK7R0*U2iiwk$e>8{84;>HE5x2#a+$3f7aG9N03qvSlGf}-LPZ}1J_Rajh1p}W7^zbU1pi`h$p zBS(y!MnZhj#)uPH`xaM4X+Wa-rF|S1>Mux=c6n>M&P|AFBxE4~QxC4u)Du{fa}~IO|0*|B1~d zRl^M=kjX~wGL-j+fxU+Y?7_qSw(*@ikS-gw)!-u2aO({48|M{_6=+}L_`(l1wtpn} z3@LL^d1wO8%@DIK2G>r5ivn2ulO5>BnYj_%Cj`s`ITFl8X6Mu!c$1CD3(WWrK>BLq zca0&-qHv1Qlur;YIVi$VEt{<3R9|4{f6d(TKO+lon*ex4EM%M|Amlo&8hGQl1;r^TT}mhl zpjVZpnmEiNoK>WB)1i>zIPH@Qy$O4wS5kbHj7`U!pW1WZIi55y&I7b2!qA8|M<8#U zGn0ZHGz$RK0!*jtVY`iKL!dw#H84|8q>)UEDUB!tZ?o3Esf)uHZK2LoKRohux4Dt{ zL0E(bj=Q8`?_O-9R-@4SrtSZQK^JV4n6$$xkCSIHN);+?02%{<{Y?t`VkPAuVL;xH zk7M;ww#+6>9~I=gn4o?>^rZkL?K(k)OX-W9RQ?;Z&Z^{Mpl4Q)G2kjM5bx|-*j`}x zQj2d)q3qm_`|j$aJK5I<(kObgqYd*-NPl+R*1G_pAFQK0Av}+Ql1(QzF9T?dU+J$F z?PR0Op*M`lA+@-LxkveWI+Iy)ZHALo(2-7;9r<}#gSpKxR2)3qZ7{E9JjZ|B#bLQX zQ%Wb_U|z^z91Ui~Wd5_J;bO6kvhQ|%Ti=011GVWE^Ax}sNhJ2JVH|HG7(cz;R9v>@ zL_PDuq|+;hY4taq-D5oj?H~N+_^4oJ`7YCOB0ciHYo^k-?M-7N!MsHS28ag6&0VLI zC%13{)@)+b+FlKmcD80hR# zQiNiI+dIm)FlHmL?;t_b{>5nYI(N!O@tqjCbw|%-R8V!8Sz=(-{YM)x?B(Yh4!+qv z`KJ%3_Hn=QX)$&VGQNJ-RnB6Z5wn>lIOy=HUKeKOjT~9b#1J4qm6Ch#2I2FH618tZ3OcW!R?B3mWm#;ftQbC`5^AGEc{5YImjI&=6 z%px0Sz+ioVvzwG#Mo@N(lJZ8mTTs^TzmFkd(gtvEA91qHCSs|mYRn^7GwTMQ%q@7o%q`P^roaIG@LQ=zjwFeBUk9dNav1DH>`YFS8C2K-1S3QMK5~VSq2q8 z?)Pr;2j3fW#^*#0SR*YpH`CFW%`rQjKC#A-oZ~=3L)@{4XUZR4_?{Vm{PFpU*CN0g z`eziW;nJ^x%dS3Z_02!135Kn*ZCfixFq|go6q zt?u-uaW$38C&vY3Mco{$=X0;{zS~14^H=;!E7Hq29{$cV>Hfwj_enWyPSIo4B(~^q zt&aMzohN5)eH=xgj*>`7_^Q)#E2O8(ay2qY;d(<<+~-<9_N4P&CBSydnBs*Jb8phS zqf1%7)cpN&3JtwWr!2_wBjPv0%d@;v%Ef&?i}c1TaarH+-uPzyohFwTtW#d@b+&cMWa9`px^Db~yq;=mUzV>qzTffmX7Gh~ZR~(IB_}fj ze<3vKagm)M>|V^>sJ1X7LU)jE4o0R$(~8ya;eYHjmzsc=-W?TcFq0f(D}6Jr78SuwfM>p7qbe1v1@P*9%VWTLa|YM z?rs!p!|&F?%?fQV#RR)T+~TaMB$0z}VT^&Tg&Fk2ywfT2guoAJWA`4_7K9X^05=3C zn8cI4f^5oX+s&0x8)DU1+hkTKS&|VxN^v(!)GqOp@md!Q~i=(f`BQEaiR| z*mT*y*s)=r#E;ubBmo5)`Z9fwC@C)~p*xc5Tcw#YtwZ+Shkh;XAeqVoNuw_VlrgY| zHbrbQkDa zd=1`ME@q7$!lGn%YXgL;5z2v34gV}r<0ny35+tLMOKM$ylh~*XlzI$FX&x13D67lN zJZ`Oin!cKg=msVirNSiHySALbKCk zyn|nAoB}TW$Th9XgywcCjHxr7{T8Qic+_eQBPFm0ZB&zk6I7K2U9y}d7*+Z>ht;f} z!u8Frm+uK+PN^jE`wORqRxg8!0qUBTH3A@FQvUgSs!~7^GKlyyC zPMHo~i0_bn0*LD$<4%R;IxMUv6PNnSfm7Rl?_;r6nt1b8^(7TIfFv6u+Zp}--axKd zh&0BRh{4V}7%4;&2lkGmFAHHN`2zeA{q#LK*bnA80gmhf7QfKFFPTT_rwcaxs{Xue&+BU=h5w>#v|S^JnrLQX9j9mH_;vyjS%;iCqAWl*nS;RYBmW= zROMNLLkT`7DWpzc{$l^+*iHvIeCY4N!Q*GooS2YHw%LZR-LDDeIG>zKIn&1g#iOXx z@mkM{B$5LI71}IR&RkfciCKy1c%l1U7bf6AMd0G^_RM2<4qxGHVd8<6qDQPHT|J|k z1W*ztI7t9hLH5Zor&lT#sE-n4-{uzD$m>cd)+>fyp+Dx)E+J70xvYkNR9*=-lE?MP z4Wr5dkI}w)YrW}z8JOR{N}7m+X)jp$?wb(BtH1pdM!&V zcI`d4309kF&+%$jlximuKT&wHqG#^708hFog?+uk~Qg#3v}qL78v+`L;@oQd6pAB_JSpwy&D?Y1Y?Q zncsbdx^D2C1EF*7DvHly3p?@4uK`)cL($Gr0pLYO0hBref5U2&RFC+orcPXBsW4xx zc6!KZ*{y$l9C5+rhvooQIL}0$Xd8hhtq}YlLaYSNvB8sZe5wuh6qB=U={Y8N0hn9+ zd^+tjUTnsV|HCuYrC^;ls80>0B`U0G69)WhN5>Q=>zrF6*@twwGS5?$=d)cmwu?Kq zOC6k6om?{K{{IBqrs;}nbaHF8&)Hc&K2M+YS@%OsbxK{$%(PWrT>``O>6vLYKfpEF zmE>t9wR^Xfu0L3_u&-8T(JqP9DeE-fb#YhZZCH?3Gh?WBZQq8)f7LGLZip4u+7@hB zRkuObQTu&IT|ryi!4V+zKrq)bxI2Zwv5z1u6 z^c)BM3`Sj#(4!SK_7db^Me*JnA~S0^fLqvHnA=$>ArWORP$(OP}(6eV}%-8 zF>US!2kTFqK0`@6U|^IQ=wp?%)i#iEczXNUmL03-zyR>lKE{*H(N^+AbasP@^+ZjZYhg7QCaRyFmljWP2a&0Pv_K$$O4`6V0c3<8EN2ecCQ zF?C#mjk6sEin1N+O5nBt2s*$)+;;fmSpiviL$kHUve@K_jKn4)Cpx{w|f9q zllZ!gbJ#@50j5@(m>uen+cvrjkI_MJdelI#euOa#2ez7+5K8$O8M8pmEK^e7AwVy{ z1Wk;fB6c+fJ*d!TI>;V4{k|GVu(E0ps7TF;bTGC^BF^n6e~vACnZAE>`_3P2>^3!R zE5T}Wuy+A2Z8mll!QSX#3?X0vF5C@paCHc-c4>Fog4Oir7>j&_vl$2CPtr7sABF+r zF$JsFvFsf{--vRyA@n&Y`58eIqFgk?Nm6VpL^#bRO0t7}0%31K7*~~a4Mt%c+z?yV zA@v0)1ZdDR>oMp6&RnjboJE;x1#Pbyc+~^utti=NV19Z)IiR3KC@E(hj2a9o#Ti?0 zIA6jzgN?xT5~k4vZIUqeDc~ZU)PXYiR@z0vXLB$uKq>JQL%_VHTNSj0w#1_dgEEtG z!9klvjFEk)Th!e0fU%MBZ2iMG$2NBzqY931sGmb|kfWSbVjCpHz;pz5D!s`79FI~m zZD1ZQ(me+=U*H~kC`ST0O`#KQS$-Sl`e0zb0^au;a%SBhCctwLF!4Fa#lS};q(hOD zwyz{d{+&5G#z|O}2~l`10tu~U*x#8GqW0I4r>#pVy|_XUIIUwDw`Kxq+OP3bW~+7C zdcg#qX4?T#PclA=0u&#ZH@s%fD)Tg+CVk&WvJxP_{Rn?;&FzbwbocWJ?4%>hwvt=< zltV)&@6?o}8rthtlB0=DHJ7KQ;y4F3?rPx$$ zZc|hBkhucBz7|?cZOgFvJlqQ3oi=x}o;=e48*2o>_>mJI$K`l}1x~cHbcMhz7D~h6 z`04N`kvSD>a(P_R(J&{_#C&Gj&MC=`mrMdOPt2Kr{uw#OTtfdDgDuhUWOa^*ej*iv z0v|wNF`SH1e^XLVer}#Q4So#4?a9b3H7(u>r|Bt}o;+D`XF{ZF56f;ZQ$G$P??SWz`;D*o28Jbc*aXl z?wu@D!Y$(`#VeWb6zo+5&2Hmd0q9o{=sZgMy7g>}gMI2Xc-Fz*jf#H3ogo~W6W5)v zwNn(Dp1Pg&6UN)>l;jj6>`0XP8_G&B(Ox>(8iaPm!TKJj-j%SAppYGNxuT#6=Fiir z*-r^39cSEDIB^who|>^0VAyb~hn`{~*axuU>k8&VWX`?3o3%Djjk9m#bQ(@|0Mzqe zGa(!61wnl%Vf7-=AWjKFIO_@WTZDF7&2YbM#jT<4*@I37{0I zQ_dN@>v2x2gt8)(F;Cx=G!HoKq-RT5n+@!ZSlgWs)Iy26!ODV_jGq;^?kgV%ZBUjY z-fpGTC@FoC2nR-cp=AH4r#{6=_w|fz1aqRzsY`Ee&~pwUF7pq!kG8VzE7{u-(3DOo z)VVzMr-(f%JO$-30U1rqlLk&T!Wu@{;cC_)2lJtR@LSJd(zg9Gm(e>3%JjYLH72nC ze=#(S-D{<)+F_8@#$=i}!d?FWN?EHUn+1f@_y7nPp|+65t*_7%sl;OcZ@b zz(ppna}qku25rE-&KJ=NP2`->l&dGHPaWtvE9;ZTgmQxN(n{%aK06mNodXby(z$Mz zW9k*n1TEt|Ya>Ec6HA3k+9L^2uc04Rl1kj4O#m2w=xKWiN}40T_Za&f-nQpg%S99O zJ^~%sOHMXHx12mtHT|Lqd~2n@agtN;aU}}ILj-DwS@hgHon)ZiwXyfn zKt=SyQ%+a@qF}AH(mEBu$u^2z&;I@B=41)YPOy&>pjFA4T1US4)>;VOH z9&q)f)u#{{IlH8kvrA9CrevQtdH;pb7Jkd57?{2U{hb;x>N$^fjMsYBA_?agJ$s%6 z98|vjSwe?#)-KbSImz@#j+PZBw$)0nR7*6Lu+ZfE&mbSnama)(s<#l&9bep~QU6GP_gW=7a$O8QfjU1LZ)Q}Xia){eGZ zCo35)RZ{2KAf+iNUrZ@7<;>Spy&|}AtKj(Y;br*Tny{W78lpF32t|rRB{)SRA^U!p zQ)c?Rl$e&kbiuZJ;l8&g6zZv^5=x^txpW~l2ZO47H;=VK(LYRCX>bCq$kDqgb8XOk z1u1`N`XqgJI!?|qz=irewOUl+AjPZyrxQaJ0L9o z_llpuyf~;lSrg*YnC9q?SHcsP6#x?W`>U|)N(ewM6^L^mE{9S9fEcQ`xabsUUafuG zP#t+H+VXvTPQhyPP$fJi887*Z{NW*Vc_mah`kP|t3w96oZar(EnST5MULYmUIs+fN z_urLvILmfihQh^eaI_+OfLzdV^6McQlF~Giw3I~Hq}6n{@S-8BU0%l>J-I!PivzkD z&af^i`T7>Ictb@+T1~w**Q&*nNG0jZUr4u5_b1U0TZgZ=Oy1+)yrsH? zXPn$tl)c*3&g)R@j43UAf88y3W=FyEHOU$L{i>~j?*em%C!b9EIk;%oso(hxOP}95 zF#DH3WR1Y_+{35t9-Ub`1^zCwbt1JRXKDIu&g)faWhcjnxc|}p^^Zl5&#y@BUpxPQOKj#EmoWv8KmY#Z>b8gl zPac2y@ca^p)fW8vb;Y{}8|U$RhRY`ZZoj;F%#^+Y9QTVKgh~duRjWV$_560~aiYmP zVI?u#I_bBO^#GI@h`WBXr~a`1EJf6hDE_Ym;B4cg~LI3X#(f{vtVE;dU0s#0xBDe?mf2sPDuH*RqKbyr; zb(1I7H?|hHU)vfu^@vxXSuPOEV*c|C9BpBS=V*`SzE+{Vdodj&_JIp_r|s|HMb|&d zUSw&$#L<&@qpvF(|NG_)|1$u#Ciz6Ycjk6`|N4K|k!)^k(vGHC0+B`2Rm5#6+^+FADK>7I_u$8KIcXD$FHdpG{?uiq}s`)in9{^pS~2)OD@mQMb4 z73{1y>~+Ec7UX3Em#RjLO;TC)J0Ne`+&{-d;eY(|zUdo`Z!CY4)tcr(GcTP8Sn?M< zsC@UOc!pH7f(j(RvxmKioX{6MqF}4`If!- zczW}Oe-pP2#D}zf5`~<$^{`5PnVZULZ{7KQdb)Ljx~XQT9Y~?9OvTKt5b8LN%&H8uiy~EwLmqU_EC{DD+%ml8pobx8C5zl0QdVAVh{Bf%< z(5QletJ5#&j{t)MQ}VHtkUzTU|F-*%@~FyAb~`z)H?!fNR~dhFfBf1m7z6Zzgd5QR z2H6CW&o2B4Zg?9cy}MeFy+cZpl$nvOZ^57c8#m~tpIPSd*A=w|#ADnxMslwD%R{7F z#oLd*zwQy)|NaK|#`Jm}&`tSpGvVdY<(szu{_aCPBf8?&^6%W|%-Nk6)7cd4Q3uxE z3GzU0t}XCquSl8?=u^_u^INS}(xT?xHOAU|n>gd2h^?XAj)flMM00<#f)hewPGQsk zNkOGwSR?m?fX|Oz6Kq=dTb@Y#I{f5LDNZfh@oZJ1S z=^5kNf?hWBS2nTxtv7M=yM15ZxUOvk3~3cSKCbwzMb;nMFOnCw|2*fMgsH zapcqBF+Y(hc;$_eChL?tUi;f*%7wx?8=QlRr>Z(Y*+-eFIC<`G+Ss=#ajZ>u?=?xT z-`eMhDq4jCuK=~=A9!pY(6m%o6M8fE(o$KPQm+5LvVPQ8+yMJI?QKtAM;26)0B@NK zU`-LP{E}1Mbw>Kb_lFBdXE}AzK8xUjqejwbWGzVR5j}L&CiELQtNMC;zM4uD3F*kl z*i)BA#a*47Y1@$&WrC|EDw-g>k*c>Q0bcgX0ut`pErEbxLp}UDU0O0-A5`8>gRX(V zVp~nnuuCI5TgzjUj9LH$<|JCYT(*E{zOeyt>`H1SP6UzgMy~YNGb??s=!j^h3foxb6exBob-GtmNt(gQ==MsH+$o7C4ySJ^=mp16-(Rccn-OCY z1iZ(pHGq){U(;blcx~<$Bf8F-lwKCpoCRzRAT>`F6(J*a8ImH`vZ?ZkVFP5%=MUuH zSuoe<3=(7Az?vg`DutCe8Bhu<;oF`(D^(X0&4=leYVVsM8=wStpedeN*r@M!N`>34 zS}Z{W0eG96lLki0$w0pM80ITW{DF@O7NAt33mww1MmkN?avC+1^oS@?-nIP^Aemn4 z-&%&}$I(f9`sfHw$zZ>kK z!?YkSL`r>IyEtJ=X>)9v3_Wt;GFIJuqk&{Q45# zPgD4?L0le*(6g|;F5T*5p4HbTML96nR+}>uoFhiY$yWA_hhz+x_WiC~Zm<{SzFRx( zIhpW2yf!y7af^6PwVo?c!!LZISVaU*{iE(Tuhz)%S$QPqWE|#mih!r|UtNn%r|Rl9 zpt*TUL7RjeQKVwbFlD*z(bvQUOXG5IncF36%9wm(9oatPUNC=L@c7j<1wYNr3F`=t zQH>-{EqR|C+&(^d1IV0Y`^9H%A`)0>XQp4g{U1DVB!0smjBi>uK{r|>j>%?BLh6M3 zBxkETZrrL2NNaaF^=iz^4d|O$TH(j#)qzz~#)i9y@U(C+fy|V7&&yHYqgt7k9*)0B*O^bg`1_O?jCHx2gHFN#i?S&(X z8E(fHEsQ&{8m%j?BWA=d88vm7dGQ}o*Mtw%`>0;x7HwST-1!bozwK3Y>$GNX%gf+y z6iTIufHk4nnj|qT^*hqV{w}?L?$`f|x%Yf)D*fBNudKCF32}v%1Q1tfh8~I#uqD(; z(a;1GF(4u;YG6>&v7`|~Q3E2Pq6QSjHWRR6olwOd&{6C`QPFW`f;x^f<2~&4dvQPa zezRXZ$FX1Re*g|vI99&b_d3tdCo=qkptS`nce;h$QG6(72ANi9f4mtSJfJ+-tnX4v zR?MHEOJ9*~SAAGRpMG5l;Y+d}Fs$n?|ml~><(SeuymPN5;=WNay z*7-*_|3%re@WV7~%i%QlHlC_%XE~`fyO7?YLe(5gA{cYye zySIo#pPFIpHpG-;{{s2!QTauO<*!RwiW)0e6#8s4ADsCKO&>Tj3)<5)5rEVk3<#6ai$*yS^qzGbjcofcUi$4BSfcDjkq_w58l|wN{5m4(;jEv7MYAA>Y ztBM;)vrwBwqf|SLRK?BiNkf}t@M1JN36&$w#6)QheQ+bEixRAZvtAMKW8+cO^Hm_6 zVVFW95W_5rRgtm5VYHiW@b@2cDanEB?WjdEgpZ*VedrHTG|?C_!ruaMDNi%dBDwW2 zhStjAMWvaF5cGv{E7avl;Yx!LSs;P&{E$xR$~g_uQ&W zB_*c(bIuGkhaTdM1l_TnDK&K;FwHV$#oAT7Z93wHmBvr7#t85(q9N2I?5i0$}0o24IVh{)7O` z$p8o`@E|qwIw4R>XM4;CkNk9H%(Vu_4lEUqO1o#GWpa3pR!s@C7Pq2hTC@#+;$>-r znKMu?)J9KxtKUu@Z=xt-h`1F)3Z4G5Qgt33q%fcf0;57Hcd|g9LK@Ou%^0EFG=R6l z`NZ@zpg#Z%)|@b{pNGWaLddPh3CuAPD}uqwUKA5hpzS_KzV?f8_ZW-8p} z=uHDd-=QzUQEfDONg^jRT~~&`k*Jl4E9ZETdy4ceGeT2SyXqR3JH=QMB#)G9(C&w6w z!DwVS2Dh=cbPU>+O`yA+FsENj;JSD?iA!{n9&_UFjP!=TDceroL$>WEhL{Oq{ER>g zBrzaiCffireE0@2&P-Tjnfp%{L2s~1{;O=uI`~qLMAp;3%h?&SP7$8nK#J1A{|+gDBy4;g)8r|ew;stcc4UlTOHMBjun=SAKPI^o z?1aQ@zAkf@^>cpu{l2w!GGwvI_INO=@PX}gT#_Odu0*P8r(c`!MpviNBKVW4pO#lAjSwIyCaDuL&~l^=vCdqRNj(R+Wv(0c5^B@gthJYpG@JGJOiRCHIA zC;<{#A>%aS2#s=`<_5q{loAz>W_0duF$W4_&EC}&P?>Ej0PDPzlhVH*jcSI(!VRSdfUbQ zmWooXz=w%r1J@)lB8Ojm((O8i{-)=AZ=vr>XFMdpz0~rR*j%EbvR#aZx4JHn5nU{v zYsN$T%mfd>(EFn2F?dmAJkwka;mEbaw5fi3=~j6A2)ZVloGl?%)k4;*wpk% zKG+?OW_;b;i_-Z8-3u2^UcaRG{Q#o_qanC2^FlKKDYw1Qn={bUWjCPay=&onvq@m~ zX7sE+^jjlba*BiCgO>fSGC%P*F}i*uf-iz=`sSS0Q%@cv{zU<8;pkJ-e7KnWi;;VN zRT^0ooEupWAnv>8H%lO9Huu!n_AKi!A*>;)5&w0kDn2mRjP zEL(t_He#If3ras=B)QSRN^G5D5U`#e5zMC?lA9tP>qxmIEAzbdLgdUSl_yMSG?CO6 ziquG^=*g>MkbEOCA&k66Po~QfIGNxF_K{8|8- zINOYU>mbg|RXv%y=Z2IPCZ$mVzt5H}a-dq)oUdcwcE-ryTZxOGwEAAn` zh0&bUu7ZPGrp&C^?6lA;a3nuXw`|)~mvj{|{$}@Fhh?mrYp=dJlZFu^LD`P;OVitz zuBtyj*HXZlP5h^JNz%k9u@FJfTWYKmeU&Ub`sU1BLq|_NF>3xaKNe}r{0;g83-tbZ zwW(;jkT|q(!+Dmt_0kft?CfF#lBk=N9_Vs*S!{F|&L1jWaAZ{^A9-ghHuWz(VY~F= zCz;^kABiY({$b%4E-}6MQs_fx>*+{^)3U<;V$*#4=?~-^CS(u({+y=&vyV(PYYJu_ zT`p%_kjM+P>;B4ovLqd>dSoL@$5!o|_hoCrhIEsxl3Wxev7dGHt4UL+p6zwiW77}k zkizMnaNze6OLyu+IpxDwD>AX0ga{4(g|T1evxufxuX<>;*IoY(o4;qqdG$>q7G{*( zIQT71_H}sc*O-a8FXSoQ=Rf`FKD9JB?#sp>|2!~7{cp>kSAHyL-nw;P_7_^$b-UVs z=l&k>ddkGxfC=mI{{jSkygeXVyEqFh=17&qIWm0AppOJLPLXzvy4*;ml~)kLNf{N_ zc_bZ(-jnh=zQJ$NRW;{7X0d6jp7-uaeLMHS%+3EIj%j0(mY8iWF?-YAr5s7xKdYQ} zW=WcA%BsARl%eB&%A7jTX~SGO;LH7K6Ejn{vcHZoIJarzU`x-`dGS|Il@VR-y?d_=2AncT8Jj5VSC4(u2I>x{JUG02>dIfb`)Y=Nj0wzf_;_mJ?%%f^FDAQ$hGW%s zff;)*ua5LkAs~BVyV!z}z$$++knmqFwQBH6J)RG4mRkXlxDkA{agZ-l4F#8F<-ER8 zs|*I(S|zc1_noYM*3+Td&Yyj9JuZK(dtKe=xp=kjkCP_TYy-`QkODD8-`@Fhmf{U; zY*%)U4OqQz{7Ue9c^ULf>vIiu?V{iD{-x^trhN>zz^i4E5!xGqmLI)cVRO093<)IX zHBlgWh+N-oH3W>%sep5WFr|eTz_|e+2q-X~s^ai~nYzu5WEi!jSkA$mCot zgsNS&Gurls(#^K=Simme4i(zI0;&fAk}1bo|dpA2-@yYve(6Q&O<)&7M;hu{l@S8PUL ze|-?;i8}|>V0Wk|;=LiOsYm#{eYRKq#nmSXy7SniZtRdgW!7?{bv8Xx%FLzFD)uR> zfUqNtzR_7OdRoku6B#LS1;7|6-j6GxMRflMGcM_w!|yo!-eMZ1af$uX%nT9RKwl+% z$@tmlx<8N^l*V5-IY|*8pjRo~p^4SMO3JS{7E@K75STHbyA%u26YZ4j$3PfJi?mV| zN^B6RW=bgL94N2?4}j4vXBj$4_X~qQ{)hpDJt{M>`uQCOqy=bMS)}tC-2%rFJ!xL_ zDQvx2$-anc5P-MQunccJX0;&=0t%E2f)s&|{-}Y0;6+y{*5BGO2WwPUms z*;L-(5UKGqOJTrI6VV7@v2QQFbRr(2E9n|{fTeD`yNb-x<}Sf@IV&WCV*$ z?XmHx)szA-@09m|9l=PNtEtL&=NhrUqc`MDvW%vclzglzqMG!(m!?Hk)IVi?>`tnIsy9I=?7N zOTss#l)rmfqYCF~T4I!`y>jiQmfduMt3MsM>;3XsBf_Xlr3PzNnv#B4hX8MGz{0OW z8kWTf1;*ffvD<#2jhV{$SiV@(O9i}g5n~-?h8hMd`3ShkP5@2asHS@O;)3MuaRyb+ zYVgZynyV(x0nyq^Su_Wm)B>XsE4Ppi^h?p1It4us?3(yS-xC7(u29RZOdmW-ZS8>A zpXbF*YpS3}Xt#0uu-K`+7gT@R_iouWL;I;tzIz$L=yWT5k*GIIM`a&&J}y1+!qA#r zrwdxQpmE4vt|O((lsG-R{9^q8b!VW0>Xi*M9+XqStr4uW%`M7tTo4e_d~_k|X-ccr zD#zqZV8lP@+z6HQ6Q*1$H?f70E?|{?rVqt+(^tp3A_mC3q-gyDY!c0K(q>AGD8;c- zwM!9UY3dgp7OIqBzWWYdv^Bu)zTq4u39G%PdtCOIZyzli^`^vDqKl{7xiiAekyKA+ zG>xJR|J`{CSYaT#cMg)5h~H;@KjA%83}M8h0Ta(We+rz$_IJy|7VnjxY4yWONnz$EqA!;f9=;>fZtM}+ z=kQ^k&XbJK`qLLZdZ;SxvP!@~ANk<0j}WC~4VbJh3t>9;nIz8au3~iO-r@A#jxtP= zWj})e|gi>URh6^}A=GdigTBkWt*aey@a6zW8`%oEbv)$xUupZn#Zn7c)mFt=HMm z-RdB_dW+i4ol8xjDBEat#ELDslwe+@LlYpbXCWJyTu@2j5rpk8V zK;jx!Z`7=Z+1?3>_`mazJ8|zap4CSJtTP-csLQorW99Jl`Asu{V9 zdC`&^x3hvu%L|ArsTpQSS0__-xQ|fGwaIpM5%`r0jnT}Lkc7RT=vUez^U6?19uoJDS!{FDl9`_W0(%6?vX%DY$F ziI|eIxBR)QA%lxUO7`PNEDgQ!10|AO#=0mA-sFT7>KYqo25C8_2q1tksVaoO$CG^- zxvsd+?BrDH9tVW7RWc~0)ly3Hi9d?l0FXEl z+G)7PVE8~fPy6R_XR1)OUh2)drE~S1-tr&^zj+&88S}2ysNJ!bsJ+n&Bdbonw1G~O8S9*xAD#gbO*|5Vs zqbl@#O8{T$c1wLJ zab}fL#x9kUq>{i1Fd(uGI;j--fweBQ-igse1DsT zl*W?|nofA$aEmIlLS;#nc1EQb2v_3MWyGSjl^5ensz6IJvh`h*13w-k>8VXQve|eKa(e!#zDjr9w z0AG2FAG_g5cYc+P%)=c$?aPMUL7l7i*26ZXp9Oe+ReA%Z8wD=!A@B#3oUh7|G01fc zD*8uptCApoVyjrWLs57+=sWAX7)05$-?vQRYay`pq{$Y5p}~%g1Yf>rHzIE($bIV% z-22{j%J5`os~I0hJ@=`)20v9P50Jb8)wwLQ@rLY{f&ek z>IwcOg_A|$Y$SM6W&{l=Ctr8I;zRJ*xPJ=9vc*&r99}5E62BJFN;yg%TWR0k#Veft zu5i-Tfis@kI$sHt*aOXeUF&94dPpH{8{}&dl;?)edQJJ`yL)L?yFLa}F2f)SKy_Vd zS33FX@GIpy#rFj2Hg872*kv7-NbZ6Xr%}A09A8S^<(>th;n3WF(t3Fm_p*Dwpe}3` z^sG?Do0Be>cI&~ux@jE9gOXZKZE!;)x>HZPH3}w&I}d5C-Q-H|%$?2>XmYXA_iL-# z;#P--@6O!Sz{@yQs9dp^@-K%r>J_)7oR(6B=ev59=Iwz7&FAEUHdTaqkbF7~Ue%`X zuz-a??J8``G|H>pA!CR(v2)7A#N4`Uz&>MT#fz>u7~!S%ROS`jI3F30J% zYytqVGvDulZ^evuR?XQ*`_iij(v&Oj51wuzlw5B*=0&mYwg&j_z7Vz>Ch@;2_MdG% zFf+_cr*Qy#syc;DeUDG}QP25mDY~O;c!VH9OGW$bQ0dW@RYOhc!|I)FDlFI$Yp=fl z_(JQGy_tuUjq$GyQ>N$}Sd@@6`O5W?36C)%`$psRl7{6@Lcpu=8yUV>{&Zk1HPCSV z`oIkjenr=(MO+(`IL;EE&nURM0{MCmr%eBJfpuhtiTpMCL9-{M^Y zag_GQZ-2ZvliPfU~6YjJL?c_pvXMt}0Qnz|O1=a$6)nHugl*EYg7ko zb)KG7;H!O*MJ;5LvOoT??3US{B%ihyVQk6<{Bo&oj;8UUI>BlF3F%I=`rqkVXGFfB z5&l{>&!OSPw2$;r3mcAhp|PR8rPe$)l*K(a1?=(}o<Ftm3VvBw+208TO4w6n zKiBIZrM5OetjvD4W7m{7|W9gFwD7zJPvJ<9z=qG)r3u#EGzu7(a zo&7tjbNYAcbIU8VX>*<}-}Kv(#)fzL`GxzQ)3=AN*d6=swq?0KXGMPO`^E$B+P04# z^IvhIU*|CvbKVUP*Y|2q=LLuqzOl2zn5WR!Mm z$lQpUPMNEyoE043#Ad!SR?z$y-(JR0J;C=pAvG(pQ-a-(U^=_9xI3BG&(^!n+e zcMsx`xXH(DZrE3e?Kg5>2IgPWWUw6;d37wmaWrjPPO-PCy57_7O7zUm6uNCdmWF;T zB}Q7$OWI3m3R)V=IERcw(tk#&_TKRgcC{nrt9G47CWby}iy_*l!6 z1iKMBd4BlIT#~#k=ilF+JBIzX`gvcg`Ra$P_Sk3XZS09X?fKUWKwOo2>n}@VHExLw zWvt8=H5qfSXu4t(F0S)gYzAuX`lndAXtAUVvCVR>MY6@;#jsn9l86o$cNx zodm6IFSknuh8P^8m>bPVq;S=uG~5rwjPsr5xOMSYeUC$CQ9IH0Zz}VJeV$Cz@2V=o z%9rQNXs?UgeVgB7?eP@!T8G(*t~q(iiena^F86xVnBTDc&7KI3n&==fTPoObQf7uj zOc~Z=J$DpnCPzHwd)TUO8~daIx6l|Hh*%rzR>>QAYaRX>Kkx;JbB|5R9nc?R#a@91G%*j;eXkBsnrZh_aO+o+D zK_VyYY20h;g?8&94aTs{cg$UvCVj_+ z{o0&`q>Y?ga&_#aY1ucX?Y*2!ci*$A#K=G7EXlWRYd-er&Wt}le7f6qU_eBBrBxuD zSVD4K(B1pVQ$4OC=*{r!Ma|cO@i0`s{{SULy*p2=r-fG*$*%?X%L%aoCTE)>{1Du( z4esrgl7sp!(spuY!^F#NyfFTFlW21#SL63W64^C%0L8J?7fnJH+hyQmJgzorCqf&u zm()0{^!a{Q=9xkcm)0TE5k(9;z&G-4 zgrTYSPLLiI#RqlPkH8K&^?b_AU+NI>S_{40_TSsrJ0i zPStq)AzM=Er4dUK-1Rl73G}K?QpiU+O{jHsaM4E(?v?m%OKjd)KSr9`8Aw}2k8+x( z?efXa4Zi-AREXjA-#BsP{;zFFVJ6A33UduW)+pvg#rpszRj>fCcjA1|5Rjw^m z&{Oz#7aNS_Au_-+@w&ndA`RQz;&NAukOi{sLZOg#7mcxX7gqM4?MmAk2ta>sbrJ8S z&8fDYa9Y>)u*N9(9=kV4%2btf=7F7^eVjW?YS|eDXA`c0@b6a?l;&B>JIlF`x!STO zSCmKJouB@O0zG(4zL;kdT&8uw`zt#m+1c|Ht7g}K#> zzjfQa8YWD)>8i}G&xPB>WdBmRdiMQDdVFK#d`$(A)Vn#{ZtV5BH9k>Aw~4Zwtd6`B zFE%M1KkJtSQFaLQnx%%3ylfOE=m%+O^-HYjjU>l-N%fjx$of6j?=KmwnomFEyaZE@ z@KG!GBRY0>+nB$scyPx3m!t~Z{A38EFF_CC3YX}xjf6^9waBSbCt_)YzAD)W$yL&i zuXw2IPKvC`I%6IC@p`8~1q#GuuYRN2M*fnOUkJ0d;9<&5Zk+k$huIItaY#Pq#P5uu z$(Yq}p_@Gc?envdF;d#xplc=}>#|V8H|sfLRZCfSnk&~AM%u0wcJGx*lq)Ao?cNk3 zp8W<@N+Rwh9wRx03Zwl?yXd!ZK6%6-BXgqg<)k<>$(bUlD(!ST_>dwDP3fY}HG%!_ z&{!7knwpO0W)P!(hG*(&MN+w=o4hyty*@LIfcm~ha^SJo|Uc;i}{&Np$% zD;hPRPE=JgBaeB;3=5RSTK{h&yJuOHwY{?PpNuQf>S5s|9J}IY#DjMqjRDf;au-Sq ztGmtZRUR7Am8<|rTP#ML1RXnvr^HBljU;SmM%38X^1sP8*WP1qF-t%`P zX)d=0&j*vAl#!elyxSICk2zNuSNI$luMzpZWc~G?(2kT;gqnrcL1nPZkVzA1mrLhO z3=?dJP*PAmn6v_@9Az?cP^QxUS)0i2!QZMWqeg~|2RrT6k#196CoRI1nGGiR^nc+1 z27d1pom?Y&Dk2FoySZaRwZAl;UI-wk1AECc58IK;%3w}EAIAR}G@B1O8BHo1x*w@j z+s*n-f^eGEeo+I2#}7@KV?)h!CWS=KstJ}(|94zR9-;os-`@URm(}dTMn^MVZ`Hy? zv9$Yat4_81sDc#K8HFVRB(;(Yo#m0am;{<#&^L zWws8-Rg9ME`xNJ%XWTlogP$-C=Zv_Cr6EN^>P#~+6O_%Cd#tkI z__I0Te7F{+-ujssgu;s^Kw!43tm@eVt{m|95$eCfM#X2H>+geylEKaUmGDbWaM9dVbi;6j0$61&1@nTIS7R*7Z(xYKnSJ0(YL*s{inc_#NZrFXg_h*4WRZ^X{Exi)6R*836Dy=xnvvok2mHpzfo zR@lV4j}tR%?VJM99E=o^Rp)-)K4WBO7{}HTx8QWtT`aDLnfO+i`xio_0RVjeFV<52 z|NkfeTJWiz@!wOs*r4xHQEa`l2ModwsgT(>q-+OxEti=I)2SclmZ9m}^oC%1O76oi4oBf*fR=v^nb) z)e7|47p@o3ZvQClsha$crEP9y`t8W^plEaQ`J`Pr|+yq>nsI>y)( zf5tmDU;`_qx#i0#p?iXU_}jiej@|Kz%`x`9A8ttlP0ftMb;Q-n4oMD{)hbU@<(#4| zSA+@Y&i(qNGb3+L&?{<}XVTSdYJ97BSHR-2_}rHsRjiRSgzWITk^ZEB!ir_hkmJ~Q z@1RyNv3Qe5c;1KBeX&`y&`Yd-;q0)@tMC139L*?!c&F;9@;+o$ag@Vaf|&pkTBbwsdo@qa?kXX(>Jg4gc8pY@K*{AS|V{8+A$IDmZ#y|{&Y)Y=*zKiI&t3a5& z0kH-(f&Br&n`)ozEjstkGb$n%XV&L^BdD8SDpflaysacEytj}6HcaX?PH0iqN!SeTA)_^zB?#PN807mPi zGK;ruQg(7~N?73Qw@1Vwx%XINbZ^h3Tq!sq%m)@2Y_q9{84HV&mBKZpwY!ugL~eC{ zR%vrDJ>izrt1YG%00v~wT*YK;l=WK0jfKQ4|B2pvYvtlhve6-DfNDHfi!y&@hJEJ4 zsJKX^^3N>6Evb^CWaMPxQ=^O-C)pIm6o~_)7y*Jt_+*9{Gl6V`E@#fjbIvSdl)yr# zF84^P7eHRc6R+Qr#n`R!JoR}f|6MN^D%hl2#o7TCm;1J(wXvk*qa`5lEgGzHeTb?E zE(7j|Vp$6}abuC*vYiy-wi#|#4y9P?En`^zgglD6PhgvX0HLbYF01WQm)G+`8x`-Z zv?sPDxSl@{dmRjuq*Je!uyX?6A4&HulI*0v~dp8+SZNDerQ(kf)FoN|9uLh#?nqF=I zCW1`|e~((X#2%q)gjz)<+wNDZFS&dFGqu;_93%=`9n>pT`+u+^*UQPFXAC4pNR(}~ zw8Hb8PGhxBHR+6=7&@V3szOavJQEp1zkzPgh=!S`P;vMfgH~1#tnYUsGqBoi8Df>K z4e0g^ZKkf1bvt_qN#FrSnv{0P!DgU`0wmT!lt{Y|ICM(SFZaqU@QV{FyoS2Sle7w} z9Q~6}wxyhfJ890z9||)?lK?MoArK&pzgua$D5D!;4iMRJ(U6lW)Pf=5u|n(5Om}dA zH^4?BVSlNJzgK=x_&`Bc=-nJH*-{u+31<=kW(QT0_(%u5`W6AKNMX_uh#{gQEVh>9 zWz}sxnKEj362P9x#e7f?fq9)v7064!FS#(d)rN>%`Sf{ZCU}K+^Q=FwPt22^1)u@Wlh^i%LTI_pxWYR@E%q;~hgV8wUDz`c>`=!H4 z9TC{Apk18fX7@-=4Am4{fsnk(9decT@nYICdZhgeOvBRZY4Pmi$jz_O^be-(QmN4@ z1BXY|DQ)*TbLq^^m?@z;frj&v^Uwghts9{(aK}q8+MZD4r9yNv9cwA<5!Q+DTX1fq zl2hSGjI;tZuXYadTK(|+R0fdBkxE6#SBcU`Dxy2{v=(5YCYlH!7YOso9kXVANW@m2 z0%11*@We`D?g@0B&$%?kEzEI-P$&w@*gkiH(u>$>U-~B+qo$X3&3neYEfnGdC}k7{ z0uq4qB0tJ2(%`$JrAHH-am?atSwFXHz-mDD z94i;fEfx7`D$0V!-uNd#Jwfkv0)?w+M~b(v_z>Xa4uB&7)zivePSzGiClOt17U^N& z^c8aWI0yCmkT~JgCy3$X%ZO%3Ke^Q;dXqP(N#zGH5J_wpznQ;hnp;OXkOyaq$lU~B z3qR5j%;D(VA|d9WjR_^aO!7}7%tEMjLVf!->3slp;K(!xvr4>gX2FpQ)-Fr>Wiymk zUWC({Mtc<^wVO+=RwVd_s-};1bB48DUcI&30DQE@c$vMJd;4}x9z#PG}QaO}xH zY{|pXGxo~Vi{yu#-`EW}GYpEPHl_7V=`|mLyn0FgD@I^uTmS`Bl^I+e)L)4qhCmYJ z8|A=vtFob-Bg`AXoxkFP-n?I|mLHC^`gV>88Ts3jZqCO#tPy6c&`O%Gq6bdsdvmTN z=t4$+BNYwzI8nwOhmI@emRu1{);-Ms`%$;^-Y2*1T$Uy&oN>nHJ=mqg#9cB|LE2#G zq09J`+7k-qnl_)y!)8BhL}+~g5eEFudNjSPnzFR4%Z@=P=X}7dlVS-@MSa{*L33={ zv;q6o=%b5y*BNIjh12vW)C-*cwZz|afGqs&QIAWk7T<+k`uP>bMN%s6cz4+%DYr2b z=mES)Y)nq54jft4W$JfaCxJwrP4wMY6l|l86i~z^Z?F*de3X%0&v5A~Zvu^xj5wNd zCtaKp>DVh%g_yZE3Lu}%7}SLFfwRgAc5pbfb80r1ybfnbVMZA-BBb8BLat(7mcya- z1adg9=WT-UvHw6YoMV|(5_lm+@!3d)a=}7_Qw$$zP$EM8%wI%sET5RbM>0VW+C$vq zis~dt3LutrxV#@i`jkkb5&2waTUyKslffA}L9oOzOb4%hfcS}tu$I_5q7WL9SP3#0 z#Rc;|E**&X$kb~iijX?L@6S&T1B&-*^h!%$N^8V%7-(daB|<7sTb9{a-YFuc0;EVt zs|ayU!jQusAr~oSubhx)K=7IVkt^nK8VMKjvt{Bu46eoK2X*kR3M8Zu@#_r*C^E+s zctwc>yD^WvCYGdE%$|@bvyI4184_niNP^&neAo#fLJ4_(r~A}8mQ6Ea*NG=pe0B*c z*Jdtb?X-=v@S$SZ$w>LJcFM_aBBPG}qk2?hCl+)Q`whF5#{# zN0e8iEp|OotC(BNDQdSBw%DgwY9hwnrn$Q8;u7x{)@;kOuOD&vE7>hd=9pe=E8}k4 zn~M#$mVeIN5u6(shANc=V3X`}SUDLFb9Po?fs7PA&9?b0gk zp{{~2Uw26#*+dW`spFF~AF*SKo%8e_4T0?LY4vmeVqu)!S(Ua^-m%)+clhjKl|9-O zImdqWcR1(le@*}cgu_4s{(E(f$cR-!p5%BMXTUJhrM8+3eSI0DkF125IlcI@KWYcZ zIy9OxG!naw8CH`0&QxifIuG4A4yEdu{@`-<^}p~4-2NO_+UFA3SmQmN{3RR58W;oY z4yGMr+qMiGh4y(n2L&FL9EgD+8b15xb>{Byh|&~!wQT6u zabm4<)@By#>$pLaSp;KmHC?d+pznqnas>=9kUu{3>Q`?C6ChT60|l?N=IN73@}xV5 zI|m38I)FLJp8?(A9??c~5a57pTQ+Vq{|thrmHMKS&M2->>|j>5IDN=Ivkad<*UB4W zsA~nE4hRS8ON^caXmU2&x)>*p0$*M-{q13;ZPa-nwGOn2!ANlpl={DN(s&+g}Ib#jxTtDB$Nd&qoDT-C(|y>u0k^%F6& z%LHL#4Cxd}$WXu5so3FVx~Mk+5s<@i^r{Q0Cb@iVjNWTP+{=tq4@I|q%T)9<_L??N z4B2hW&~2B$#)7qSveI?-4&Er0n5;z(>AUoTa(Am^-L~F58+CN9Z^52iGV7K9&RYiG zM81|4a9CFE&5ouyAeDAMC_^i=)qc*R%9s==CeaJ2a^GVu4(*QdUJ#hD>O!7IFSPPH{PiC57M%|@(%y!`fb}&!ONxM z1jXzO+T{2%ZG(rzJG~d(xNqJ$6}nWaSaS6E&nGh5kBoCY;_Hw6=OCXjf7Bk#JD#TK zwyApDVgK{h$%5U|X9~Yh9YlR-p+vDhE_AtT3{B46bUL4zd6+VD>)+TvPo{=fW$BwhS`-7{`=w&LUH(cJ-y55zNHrN12WNVNNxsQbr|r~m%f*w4_? zufO>$b~w1}Wv_OiA>#)DwFJIieP0ZoqF+5@XKwxWZ{-B*_a86+^>O0cf8F~tU^fyN zh3-2r@29JqRfE-r3rq53H@yPN%%Ux9Sr-vVwd;Buf^PAn?B;y4z)PZ^%44X)GSKU= zaK=dAiZns9T0T=a(nbGy)nKnEYg9*A5(o&$l6=dT%tIQ3M;VYNF}mwQ!0(Q zib6r0eiD8nPc~t;b6sN8flpUTLXx+I9T#KOVF!BAewzfDKojA1_#KjG~&XMP^1iCioW2)BS(qY>< zOb=ZsG_6UCLzf|I=?%YAZKp|-^*~p^&XO{pH7ZWp4mj4=EP=wxiY$E&f_h_o#Lewe ztB_1enj8277{zgZt44^>Eny_Z2M0LT_z>(kImao%kKXU>y8YhLgU&;qu`&uSytYdP zTvEteXSBxsO#VxS%Pq5{!S_yf$xZJ^o%mOHwKJCJbEH0sLb&5@)58uyila+2Lb$Qh zUPxRABI@+E*GVzig$aJWoh8C4@9JF%qIH7r;@D2Wd`oC3%>5WWSHLBqm2Ii`)g%Rn znRJL3-JShU)8o6x%3hpW|LmX9iJnK_gAc@|y=s>K>)wnTCBN9?Wvo62r=rtye9oAb zSP|OoMz?1^`P@|l8dr$o97z-yCu$egYQxx#Sib|bnIK0`PnLhN$DjpyZTg^66T!1HHc;w3|$7g>XUGnc=V@KC) znSEMnUSY4f7BG9)*@D0N>@yP;D!;qYsRNGG&OVI7-yToU+YbRNC&Y#heaLgZTc#4q zisd3%l=E?;(65L&6PR7sE$&pftQ*;ufi^q5HzAM!LtS-TsLL45Eo`^WD-@Am05Hij z5>e%M`>!0avY!~jH2!!~xfJvekP`X#HE$~=H7#YOBeO0T*KEnW^|J7!UA5HNY?WY) zbdbqOQT3uF0%;G4K4?voiRi!tbG8Eq5s=dtHTJMefI0{-&lY`+V*X9h^t%J+Lq_8T zm!t5EVG$_@?VTKCKoy_OTq$%)qSzO)E8{QNd-85IkkMR7qyH zweB6!Yg57W`bGu&2Z?&Na%oPwMM=NNFUNqMyoeGxX^&jxiFJ`f*aJ45mY;~8dqSJmrG8}w6^=fsP-5xrzPu@sM5U4OCaJR;RzoE(2$Qy95qjSBKvLp!;4!) z0n=`u$jMMTZ-?H>tpE8XcHJlMdIb5Oce)IJr$71M-|7EZ&RTCIm|I7>)frc3B>o?k zv%EORtP3CeYg~hKx;OpxQBzw9^ujs+U!)@bOkwQ)h!bgpb8r$}?Yfru{qfVho!p>3 zj?ZqKJ@N2I$Fl{`=9GA4DdYW)JZmfU6SWg}&S#E=zRlXU_^MzP1)~A4wc&r?3(Gv1 zyZN7w9&?+1EPl1MkD=|Np6hshvvH0qb1cJbuaUTJxzO?Hy3r@AO+5bbwf_R;qzWMI zHWhVWAUBWx*T+y-Td#R7z8_BVPspAVe++T=3;d&h>b#)*PGxUTjgzx9$1E#H3nGskJNqvdPKBRVI$OsN824$lYgo?blu7B*PcnSueV*hJNv)X zc%hiODXrULNJuX~v@h-G>Rr^}yN8B!U^Xx2#tH9B2|- zB+><+1rewN2a?i2BYMBjfpb}|VnZ<<<;Yp&JHW~oh+?)TV71-;FZdIA?*!*+a-+8f zQ|b~!Ht|p{=?wnTy%Z?4w?Zny~dA-zHp;Hd@d2 zcv^hNaV09f>9dlpuGA~nzT0u`$zHF12idk?KHrmAAye9*7~>QBFw@9(pXZk38sCeB zsh>h9tkP=X$^S*zcmFk&Zv8&#g#ZaP6fp@c^aKzP8Qlp1B1J;6BZeZP;s}U}%4h-s zLNyc>6%`N#6%`Z}6*YkXp{OY6prVFiFGI8Ia5r<#`MmR$a@d^o)dtzg91_D_j7=6#}4GN2%CgdK2 zbBUY%4OjJ)DXgBPWaJP!^SyI%GO9%zCzze&O@A3*iLtFM6Nnj4W6gVSntnt<3%-Lr zQ)6qkc4Jb4{LcKCn3(G$I|&jMJVIupu86gNFumRCIr-LBf+eWvh3t6N6z&Jy z*>@gx=F}DW(sTez6TGZWCYz!Ub2Q;dMa<(5EYT`FZ`NT!w&yShKU+A2Un=G56$8DE8=8)$YB;q&L8kfl=E?zY8g60tsrc!~;M}Wx#wHl@n%6YVi$W?h8o-b>Kn+SC} zJbY*W@aTz}PA}8mZP5y%)#>O19ZIX)+3R2AntA(=Y5Z#HjXOl{@F3Bx7c>cIWVfwz*>dT3)hg}{+Sb+C)Yh>jn!VsS&83VdlWYiC?X)l@Yj*gaY1dzz7S26%c zLcp>0q=02Ae0)d&B;rsX0$-z+wP#nDj!=&aG7uv;tar;$BD(bSiT{V%_^AFv-)MjMyd-OlTSiaj!I!pF$@&MmWF(X5mD_h@+9 zb15zESq7RGPDn(!W)n=fmR7V|ul}3Z|Vob-xnU z@x94Vc(zd*$8DRa(j%IJvaydMu3~1GwLoao{vk4tnSMjbl9&u|$W~;$SuB(_MnICv z(U4{T7mOvLnsC&HYgky1#)$be{uh$D*8nAIs->oV>?CW~c;D(D(X|VHzP6T$PQ`eB zJn4OsYv4s@+?(pj{rP8N-s;j#8ywN5n$J%0lyX4 z=QJEw+G$uyF0n^fHh_Av;cfpSY4{Mq+cq4Q+S|n{)34qrj!IT#cnmx^kdWk->)@9Jj4(X=rh@aX<9IJ~+_~ zlyWm~kE(nO;*Q?aWmCV%@r&xkD@(jaJ-;YS z*QvsY=MAdA)Hqyvh>u|94Umd*_3DwX!#iEPTBnS=`FZ}#xxYW`X|>^zF#gluXjZ;nmRC&h)B(uc<^Q)!$`!6YB_%f zvJIE$PJf<=eX({ZQo36!;-{@}U+6(^y&Fc1aoeiHv;FwxZ~l})ATa}n{5GWxrY&mK z>7+mV?j&3h(6IV<$K!@Fsl+Udfn|jPYq(5;Ycp_eW_jxvk(!kHP;Cg_$hk*=HgHzK zId_1JQR)Q2GC*9MaKhJ+P5#(MLay6}NwK;uM{nh`hI*6yn#a;9AXPM~9}u{|jbsMP zv4Cg3Y{-$6i(C zyLB-oI#2fwRhQnr&(mEcDUv%>(}vpg77G+&hmmEWJcm&gmq*3hm*kMzJf_2PamPK( zbI}E9C_o9c=VYDer=oD!Q)wd$u|*N)8k(y{6EpO<=u>=Bq8@4?X*F#~p}C$GRzNfB zM?&Vjlp%zn3w|Qd$#Vea*RsjuZTc-yNoZVCIRjy=iip8eF7hsPX+}ZfW43qFE@+an)f8%j$A-ICp zMc9ni-P1%}RQ7cmn^g$%%xVXtNp3PyBZ@c*-!*g3Et}T$*N6jSL8PdJsJ-zkW$;tl zORm5gH}-PzUS26K9oXnZHrix;eprrmqg1|#{uK0P9i0LdQXetNBFJ6QuXg2}MJM*D zn(S7br!J3gpZG)md+g#9hjtCGGgz%k#LhV@pX8&D=uM(9_2C%^`ZbRdzGa6bbdmit zlqk0|Hj#6YZpKdzw0S5`FR+I_Ho&SZRjA?CAc*lL4OHu(9B)h8sPT7+(ZU$&01&zU z5Fmk^LwY9jaV!;!bke+a2d*Mh@vRs(xq>qB7_t~<6BsbIC1)Wt5uR0SB=Ph%3e&mM{bF%&Yz#?Fp(t{SFr6-Lco4^LhCbd{7Z-KMDGh9>@RJxo)^I&nD zghd@vqQ@<2`;~xYpl*X#SL9&p`g>*)MoCo-rlbX}!K&=Hn`_mj@`rcZYR_ zDd~oVvT0;^nz@ciVh1}eD%)Ll4C!5=bgXX3)g0uSrg~vK&W~efM=1ObeQPCAMWkea z5(BVg()9X5`s2#v)8Bo2$f8nG(1PI-%L>MJo8 zQU!S{6G^ES;*GvQw2ib3Lsn)cM&PZ#4lc)m$rjT=nzoLex6xIB#Ccj>iI0_|%xG+w znGqv>qgrRj3euhH9}psh8Frh5xH-)<&D37+=1-!+)FiP+u!>_eCBu2B!3DrPOK)do zI8?)5_mivzla{mf=%m>6_nc-LFZ~DCJ_3j+vKEO+uUg|mv%+BOMBZxrv6(k3o$`a^ z->lXsC)7zS12e7Qo|4^au6}**K8O1H(#7|}thAyeOll>QdBtCM!cJxh(TVzw3Ts)E z)PyvIT}n;YOK-8XphXe5<%)n@p*b_*rN?TB7`8_(e$5-gLhVyCRL`F!xOV2Sue(f3p0rH5=W{fsp6zD%N zxkl3ZvK2wo*l$KUG0%Z)!y9sJY@gCM9md#1i1S_WBP&hs?X&d~JBN=S7Pc^LmhVC5 z{X)rTtOJYfNV&}NmzVST&27W) z@G%y&zv+|UfNXI8KfLHFa;`U%c$#0Xs{fA?A(L~p&Bc~^&|d6u{U1A$`-Cuv1p-6efa@s&|@bl?`%-z>nh(ydEhQJ+eDaFxdi+Ii@hd6X9w!Ow*`!fmzrthCueN&V+J<^QF0TlwBxr`Rw=KJ ztMUw8$`ZFHp`@F@^q*08jvQWnbN92>&(kK;+OzkVM^gurPcN`iqz*0T)m;tib{ye<) z!)o;Nk5cVFwceTU(EerC{CPr!PZZ`wtvTN>baydPHvNf++YDc|@jJZf%w8quQsZNB3>`U3Y%;sgs7$3F1s#yhkh0(fN@~q);1^ zb8vVd(gd6IykBP_pXdPF%gx1_fLiXHM~VXV65KO#jHY#Yua5s*Vo(t*eJVY+5LDN; z-uBwSbnd+*Y5%gPQfjrrOq*}dHsQT^k+x>fg1Gfu>e7UeHf%i08))4m>58f7Mx+#t zq;q{ukoZwwmvh)&qU{Q~ZmVqzS>9%lQA=-~D?=xDTb>bsU=zYdSfyX0Y|XXXAb@h* zHh^gvo`qX}V(797LR1Ri++v|j{JN7*g7Mxg~a@9wpO_d?7 zQ#9YhTD@XTw$B1(vW(ft-x(P$eXp3NoOlrmvR|V*)@_fD8e8aoFFX|Mq9z^7)WXh{ zw5?pDX7gzqNr-lnm{W!qAKR>IFcK9sazkknMFn>K~k>&~(-B*_{5@*j!P-Ci97C4vqz!0WXp3X;jv=$MABqi@+3Ad4Fe5oTE!oO}^EJlvaIbn+=SxD{)s^TF5cO@&D_9`LE-y z9`2$hSK{lq4OOlGK@rLPWl7zzPuJdkq0OqPzc}< znEO>d^=K(Q)$c&g`|E)D{hX<#oW=OKGxHMv zSk;uOnOmSCWbs-hhH=-c`ZPd?J%T@UjeS&}R`z+#?V9aJ*WUi-xuN~Xxlk-Sq)HHZ z>)2;THT;KV5*Ej#8)4N($Ui~_0elnFA@w_eH#6M0iY1#y;nDfWmC0BkK;p=Lf**Bo| z!{1@#`f#$1l48XCm`QOOl%bc0n>Ix1uXL4ULfdI55#9L};?}HffZSnSUC|*}V1Mb= za31T^h2V82uS&~uJzl5;1mqI|&*>#O!^ioKq@;5P@_O$>*0X!URp7yYRs3*Sf$a6L45FsHZi9^XE<*7;t6f~=(L+cz#B8CvID_&i6 zG+Qy^UAXlv(}lnq@1A>V@I(NUYQH~_Bzebu=y48g)&QC1VYa$8ixg)Jb!ruw+I5ZG z{5gl^=Kk&}qv}#a9_&}P{ovTI)L$tP1Iu@H9JzBGxgw_qg<0=#X~1lKI(2Zz>GQdK zq#T2dZt_+ck2T+Ig?KVHSnYRFOaSQqm9|oh6yM9Af6#$&aLZPI2V`DheKxd zHe{044(f>PFVTS9m^inc&%UQb$}J~)?xl0ik|cWyzx8kY{3P||s%`U!bEfH!yF|yV z7ZMv&bxB&Kwa3~vKJAB}7|OXgyp~E8)>|DQEfPDvQil>ipA01;J>#KBRQIM4!u5OA zeNtnP;2p>zptIU;fq@W-c9MF?m1=@U$`K%+AzM(mqvprNlkHqFHLTX)%hbIgAg8<5 zAHW*o2N*J)XjAS(()N0G26e|M{RiayD#b@P0k1F7Zgi>j#CdVA-&?yQ&2$gHw6eJ;&o1 zDudCI3~hqNoDdo;;zo;{Oe^sXl}KRaaUh3Y>DS0nC2QS7GY8OMNikj%tAil$Dhjut zA+yg+#4n%Ndv;9u&w9@kbG3?PS@zXvmaxO5-!EHMnitayGWXSIXYV#a7OF0kKg)m4 z4oZnJAfhvE$6gRACl^MUjquvY?U1c*hW*-w-76l2l1lTd9lMd;tv`-Co#_wO_u78! zru?4c`MD=JNaX*}2-{#9;rD;15&og^_D)~Qh#VjGffu;t=e_<-;|){85k?bOkvVG9 zpojA$KInk!=C0>@zs=Y zuWd~5k&n5F8x*&f915 zrHeYphPx<6AdVCjtwb3*A~lM(hoI%9YT_NME02v;dPZi99n)oOlyig=-5||h zHiICwBfJ{jefhbSa`|=ky61Z_nn2~crA{|%)?Mj^ECbX@ga|u3ns8r#E|6zIOncNF z<2~|LSd@|=&oqQ7S)%7*W&J|WOX|eizDJd?8d27$fVV7?OBZ6f42L!}lH=JFD9!1E3l;(n+dpg=% z+X`ook{WEpgHy0k6(e%p&6oQazp0~iy3?dCDlDi)@SG>sk90ZoSBD`vUWw)cY&)o6 zaxR(*x}8>#qh-vO>D70->@UANKmY4gm{2RywP@njy7w^4xg$_Fe@?Ut;?Lbc*3pC; zE7@-^sSq*^D*{t@k6mJUNr2n>h-LyM7EXG$USR=p9q=OdZEv`WHH+#iqLXKVrc-AU zJT`|vesb|iOuF{+is{9lp9OrilFf3jjgo5lMNr_ytfER2pftE|^@C_3afB?u@}tC1 zo!d1Ru@+?-uBsmQHS~}UB_4W%q+@}rDt-hd83H4k(W z=}zUbZo1xSp1kEW`#P&#eQz0WL+Kw1dk;#Rcr=AZke&)7YHC)Cbfh9QZ4QUfeg=L5_MNsM z!^usu3>`EbXH!9We?VZPJB|!@+&oLZs*-qP9I3}Ue)C*v6h89gJ%N{xtj|K}U_B+J znr88p4C5pzCvZ5V3*&)NWM(HIL@RG2m6_@JZs5;WtRWp z6ja$Q1*untkHc;ehnpm$==1;M@ebYtiS+29)v(CKXKjxM<9SVAjo_Gn8v#S~$ql=( zzOhxmaMroi*RnEQtP8a5!4a>!U6&kGrxs({w|q~kQsgWi=hEZd8F~i;_oaOuw$uQ1 zDHlF;UrwD3e)~H0wXbH=(KX#N`peeOcLosbrTtcBLEkD2#gY41h%*vPSRqq2$h^*G1HE4Hiw0~h^9mfjY&puu5iL#Z)m!&5pLZd9pnGg$naSgGMMS}!3v(e6s1 zSbX@iRf}ued~{8jlLW(-{E|)+;_JTP-SgJ09nN`}RC8y+&9oP75f<&QbPbmd!s(w+ z2Z|8p1I-+s)zdmgD;3yJc4|1!FU?}V%r6$}Elo>8&Fb}t$-xbjhvngpGLL0)Q*9J& z8Yh$}e?k_kMav4^#>!_doRAEcTb&)KqGq+7T)QX&2xDmH(5)Q1KfLbw&MQyp!(#ya zfaCZ4T5rwW#w%9M^Tbh{ z|0M+p+@X6|{>TP#g!OIxJHKebkPp@;_L#~bq85f$L0xjb4PKgls{!-Vx|f72Zy{2m z^u$WdEH6|6J;GwLz_y0~%ijo#$1`yk2a6YZSV{vpn1g99GW)>?X#2xOk)5OSzeP9;I+%*;Xn; zMfL30lp|J@#6EdmwszMQ*3pgQ!siuE;hEYAKPa8EO-VX@S`>fW191tK;_be10wJQO z;8Xatb?9Uj{q$W}*pgt1%qB&RQv7s-)IdaAQ!2oMRpB}Xn{LluayJo$lx5)jfM^aV zrRsS4wfvX}`1bbnojteNSs4QK# zT*Si=c|<23K0>XdEVBQQA0Id}e4}3Oe6N1-=DPtVb~XFhFHR8KcJQHpLz|xe_YuQA zfd5Y;W?|mav$36_$Gf^}1Kw{W;uYu;$^SZTmi? z4Oc-FGM1hevRfKZqPoKkTkoA()xCA&K@0cFtiv1bZ`fO>ud(a+wWM=P#17As_kM4v z+J6n)h#2Y~sJtQm`U#=(y8>$-itI+dFZE9^J5=DUafW-LOX;-wR2qe9>A#Or#r9v` zqC5c|OhrUgzFwo!KeXKK(cx5dYd+m6uBVATrh-TfM$_M|$5t&{@SrqgogX6i6Pgma7lwMMC^OFJYV>F_$@+*4nc9ORmG#L&G* zt)M_aAi-JcNm_k$=ZMju8;~>XpGk|epaZ6j+6$&L+q84RSl^x8pGxLPzU!xBds0V# z*}F8?YlkbGK_BaaBbyCG=aDYT%rz)cr0~^y@M~PMV6sJ*Q2bOH&80>}j3Yst-eeZ- zcjjg-3ZQK!Z`RUeOC-nfQ@DAV{MJrLVhWM01a3=4j_!UsaDb}#xQ^+&6wQ{+LBt}p zoSow*uwF?@0NlSJDikGIg-t|seD6J?#aM5zrkR;EYPPci9P7r;Q%@HcXuSat_Ta~e zMxR~C%xI$4V2W;_CfbMAi^#tHoKey9NP6s)#M15zci8}r=bF|N(qqvGal{rNyhv=@ zr&FEf4g};Juad!rLW@_V^NLVQd+#2*TNd?go+*&KY}V~TN;?*KxRC8vM5GFIkwc7L zkG$|ntOtXaTnHgbPe)(qd0~EJZL{y`@x~ye5KYA5>O1H3Rfn}(-GS?K_n0AB^2+;K zJdTkW_1Vkz{PSSS@0#vwDQT2BkJEIgQ)(dCN~dx#YuemnFRni)Ck9#&`9cS!<|| z-4_pj{O~>Hyexa*gYmW;r8KK&h^OySD~9#97U?3Jf!JGarXH{8Qc|dCaTeiuK~o!P zOKk|+C_#ik>*^0z{t1=wQ6j@Ye19f%iRMZ%G+vU#qXbHO^$Q^k9OIR`;A=QBf0O*Qa#I+rgLSLZj-P6-mr#l^pllJM@9lx=En+^BF)UoUNA_ z(dd?oA@2SgiKy9p4$&$>(=emG=8(2+wed+8=@Pg;rY-e3VRe~!vjq(nYE@)dviBKa zLSZfJ-MsL34C+Y_RIe~8);ut0iLZ*MobrtcrmM&mYK)~<6l0V9aQZ0-W2+ty^3hYR zXWY}#%G!{+_D2rYpcAIT?-hAI3SpGA?d3AsWqqNCh4wir#i&m#neex4of$3Go&S79 z!K;tCV_m3^dT$=Q=sc7*9P@KpZt+i}?937M52I|<(zYl~tv9 zb3C{W!N$%5u6LDsQE;e^Gzazlwm0!+6x z_W8Q)OJ&LMEo)f4mit*5xtz*<$u*dE)*8pcKs`Big%cQN_ z2_eOW)@JBwh8Bz62nW-+r|AZ=Zl;d4d7v)hAl)b#N6vVclB_jvvaXU}-Rs==st6fM zYmZ&)dx(izeUAaWGUF9FUOProK3o-Uz+YQ1}qws#HlC11_EvA_EkCAD8kO>c2~ ziudN(Ka{3(=*Z`?wYwfGqdMG%~y+l1Lin(j%x%}N%0 zE5iSx)wvHtx6Jyh@hxG9u0dg z>e#Q(c6?=E{7db9v})?o?+&lD*+Vq_Ig_-HU%$}f+F;0&UE0f$@ZMSx z(&L_+O2fNu=^@|aFDOe7z(&zTfi@Ib6&w)sWGu&hV`3N)w4%ejNv+a!b-v53wdTKF z$)Ok)cwtAdE|GOHNLD44hBX4It-!QzEM6AB4d0(`R^jT6X1|`X*8KW}OmOLe6RoU1 z{Af|k1&ws_FC-&Ip~Z)>@h*r;a>*@8J)1I8@G(lTY}fWb_eqUF6H=RAmUv9V#H8Mk zQ-Skw$;Mei-nk^|;Js|p>i*G8Qk;j2oNO~r zAd{>vbKltUc0MW#E`0R!kuecD3-D%Lt>|kvMhChq1l{)BVMyvRGAjNZ&qWyCujWz_ zm&ag@OIB?IhO%}r8M41DDp^E8twVG`R#X&3LMNdDOwOgE2s@BZmcN3&P*1bC-(26p zT6_2MJqy|d6(cQY8l1b3wUF*YtxKjQw@kJr#u$Sepq{9CSvpcpx&~xST?%bi4r4LUPd4CvJWng#eNjMnv&pW4VS9`sD@-R7|WqKFqNvF`-Ed92Hyqe&l{ zUp}4p;o6?}kDYGfz0<}!OoE%ouZNd(l2*TCHb({b0JQE(JvPd)>L;C?jGVKTTyZ)| z+y=S3R<6)mIw;_MJGWCJiGQuTg-2eF){;L%--RPwF<*OhcX-PTA#0?L6d);hfb|q0 zH6=8ZiO2N^e04frsmACwDe$RsjeDnQkR8T)cY`I()}Cw^uF8uvg4|&-(LK= zL2pQ7KQm;I7@7J!K+(9`16!CJ!|JpREdxze%EXR~C3ANeO|;c3try4j0G6a%ZUh<6 zi@fDIyZ}r`cOUtA=jei6)Ak>qPgrc+@W9U(^<|>PTNgORxw`$_S)JYITU!1xIVLNc zu`;%q#^*)-eq>pk>GYf9uchea=N|!4fAjU7=|6|Nj|T647D?E3;fCM0cAkOQ9UrO* zvIQ)@+osrxT=yDsn`WRrdXT z1_0J9c-B=@{#ocW7=F{Kj z7Zq5d3n<2D3$dddnWk%vW(#5Qs;%M5wBM-wIH>)ud=8(^8*be9= z7tCZ(Hb z$+{wyM@MtA$o{OU=NF}TJ&Ak;Kvrz(7O<|h^*7(EFB?p!!G zFw1)4U8N&!1sP_#zvzr25U>BSTa1y+s~VFR+TrCFu;2|yJP(k(}V$DkK%{?-Kvy8eiVIw zhS?5(*JaYqLj@Y6d;|fm9i``6-5!%+Qrp?3zt7O8ei{K$7A8(*K~`vInH}=_zNul| zyDz>Z1Tb!W@mt3Z@$N$Z5|Twvj8`aTXAe+(X(=iZuti3}!0T2ry%lO5K7|J{14(>} zAJqzL;4@l;qwq@MlVw$@P++*17uLJ2{|OBP;Ih6}au9UAO{3H_8tn+f&3`Q&yPSsh z2mkqXXwQPL2d;y$JoZiLbockk*5Cy{JMqpLzHfJRj54a-=F?FE>{hsLQcRqkEYGLvIcs@$XPfF`C-v8OxBl-BA z2NT2Ie;+qn;5+5Pf4@`w%RL(W_u4Im)waVJbIu;%v1^>0No@OHyU9!pC)eElSE{1Z zr6#!C=MwC0!Q|fh%LjO{zSidi4AJgg_ZQjIZBgWWaYIWD%E91cuAV*j0;*$C4>xlJ zIt$Lq4hLM`FduyT^t|u1`_X4Nf15s>3$PnkUG=>gZbVdfme~8qBE=IJx#2PY?5^jz z2ZVdAku|Yme05H?ks0jhYg!@9Z-rwxe|(0=&72fIx1{I-tXE+R7PWs0z-F# z<$a@hCIPXkG4kh8!jshk51n40T&Hj?%K+2PG6v=;=U|9C6&DZ`NTU&4)+2T+Z<}aG}!M zHIFM{DeK1aY1sHDBaimXBAB7?7_V=fScJ|kHy40h1C800l0VI>(Ury;VR{@OGX@2G zmmp7Z0!QvvLcWHlxE`p|#P-_*4Zs%7>t&13$P#oiLc}pb54L3EB2w1zsAv)67KknP zW`K8k5)}3(5L$CqsD^_W@8;UE)4qi#jJHu=_T91RS>etOJVq`;&@Pvb1+ecnk7MWR zPqD&CnWR{*XJfp%zzF%8u4|6Eo~~eykEJ8Q9|>H9&5gthIk+<_mmXseX0;UVq8MkkN7k^yEJs_C<4R{EMA|M9VjhJb zOK|{xiFA~C(U&Li@EAPu{loRK57$0yz)kl$wg2EYkGIV}n&zC}L(3Yoy9KrSM1Ulo zwtF*6&oZ4V#w?;EDwF{)*a`{7DM5zjFExcDLsloSGxWUc`Xy5!JgJrB&O`WULFyJt zoO(X9rvh&#=M=5b+n)(VIfqEoA*&J0pZXR^ou+UsqF$l3o}7V1m`wRDBa`@QiM1=8 zxRj3|^i()ocy*%sstnEw5w?-C7JcYKskPohVvs1^(Du##n>DI74IO(tU$~4sM6=Bj zl;==S@Y`%xj63J#RvE0Wa=T+cM*q8f|NlY#{0A@E-`5y^14Cp-bs;L7#^JO9V~2mo zKeP*gY&%L`VB(wjrl)h#N~aK1K;pkhWa~`Es;F#UQfF2*Y?^j zmh3vi6}*P(4Sv}*j#R@pPi*H_c&>bajcuP^KRLbh=+m_6Y9G+YJNsn+!s=AQPE2(# zbB^|Y$;7^{65GfDvr?VRjRrYO*WVZujbvr3V5hy3cID!Rs%fD7)9>2Wjl2K+bNqY9 zMi%Tmi#+`!S&5R_`$Y~?iK0anb6nO(Q=ays0By0a%Q~dIm1LQPV@$6Ljm^r|Ng0!c zeEFD%^S^y#@rI1ICMPn#e+hYZ=VtUxm_(*l%oiKc+I`|aS{KvUz4QQkOSORLxUSAx zwuNXLn*(hs6%yRosp35MDphZr4*C}uQGLeTyvXDL?HI-=#1h@6A66~qvK2~Jw(awj z;vpH&-$GpkbOubQ@%rm12sMBO&UJ>OkC)+AHJxt&VgCO^LK<>C#OQ{Ky#vxktwA^V_AZcT&NCKS#GCT;7Y{qRsJ){R2rD97+Tf!szv<2ChC}7NfUr2Glj|{qLcLUm!B$vT6My>vyKK9!oU7 zF`?>!XV_>8;7{VP5!IEqjbjrOz+(rz(3z}^$3mclSt8B^@oYH#62LRb18-5f^M>nr zj@dOxH?RPG#rZ>L_UmI4UG^79Wx~L$?DL$bsV#E1r)Y23O>Jr}aGf&<QFkrGN4lp5hKu)K>eO%ix>*iYfa0TxQnA0)Lshn>s;&h1kS8S6UL z{L6&x&#LChn~>9W_TA6L`Am0_Ug}e4z43=+mss%wJrFz5K~WK^_cpBwG4#=!TZRRO zPCcw?-_Ur=-ZSp0Y$au76Ib_a?}?R3m2@s*QJg4DW~j%ZQDpLqfW{#nJe5u@r%k#w zk%b$BkW`rn??Y{&`1hjnhAJROZ}J{do4LYhzaWc-*%P7E2&Jm^nRCeM{5G0RGkzyy zz*=T?a!l$($21lnZNkj~4Rm!|eYTos$AH#zX&=&iSVuD0A_th=13f zXvFEI&Y&pE&o}2UEO`;=1dc%B;`9GZ1@~`ccAB{7GgozmuM4elFMH=Y1Dod9orBeM zTaF!`$rse@&hqWH4!#=NQr+gI@Fu{$;KMypiU z`p<3eMO4T5pN^&z&%5^9!slmCC~tyiOZFk^+OETJ?|Q|~(RB)+?|dL?tX)n$ zviYsn*FR>1XV)_{W}BtWj_HV~;yv7$n3r$plGRg2AMrH+>&q6nPW))s0q(J;(^n2X zSLHGMnwEAb+R1*Kc(GghELaroZ$BH~KKrBoFYO6lIKShU6Q;YjmI}K)_Q{HRT!v$Z z5uiJ50=XOaiwoAcEiFbh>pm1O#jQ?F$}qm|;hkgLRx4Fl1M*$pt*9WCAYmTfT*LBB zM>!Bhc6(xksXGTZUXj zjZLFt5iskkAdAb`ou1LP7bvrUDpBfD+|=4(7m2lH0$+nSvx`*-f#K!@_-fpY14V_n zDoGcUP6;!_(BL~U!G+^H1D|+J=8%j$E=ZwEPhhm?Hh#KM?0kv}uOq09E;8muRwWr5 zTXDB*9)*RJvw^8R*A7Q|^X}IygHyp`+3UvI)gfqhuPe5qQp0mYv*NaiM`~g~{zejw ziHQy`A!6OBRfPtDYF4iS0?0{-0eLdC7I`K~K!Qj- zEY)nS3<(DfqN`yAF%Y8UdaJdkt23Zg?+kNbsHBKbbFGeY*A1wrw^P>55WZ_F6gUew zT~}a)TW3W!LjFu9lNT$qcm}?`hclpdq$rOK4+a^GohE;J?`<^M?R0hW#?C+F-=7A| zIVAJoMLhbgQmFy4;Ftry_&5UKt9gg2_@<53v2MSHNN}#MVzf?#fP;aHj*}!CqnVt; z+ZLN5LYz^nuJ!5vt`lnlbYQs&^d|}exGy)s@COl1AwnB8K^SKNQY%e}_97qr2@N?q z4s|X%Re??))%F&QrR(h*$<+8&V2-(h{L?Wtleh!D9iKn6L_?ynw zc%q#I+zTy!shaW)tr6@cbsi|Gy?=WCob^2?DK(4g;K}fQ-CwqX_fpF6N882BRod;d z-X=MUPN6O?Q3TwDSB#~f{`?IoG=Bn5hJZnwaP|C-@1I`h{Yae{NttS`sk?zdU~E2In^g$1(zAw)yrrbTsX1`V#=Npu^&Jeg ztg_SOg_jOOdlb;pJ&en7)*Kpu&F$3uk|4$k`KL_WzUB-5hTDXbi%cYGVL|C|)P#tE z+c*u!itLh%6xxctN^;yJ^;`k#ESmMYUb({cW%-t0x3=YYt)tvBu^LrLa24v|E*6D9 zmS?j;Sig|%Apik$02wKA$q7&HseVdA7g)*~&HY_dN?G3eW@+XDtV`tH_PLoUo&wXy z)$FWl^hSCX`ckU1)bnupG1xs|!Ijy!#np{_cXS>bqdl6*5m0dn_A(|eK6w#%G9?CJOKhT+MWP@BGI`fnGz@tqqJWkWHB44#638fU zQpVE}=8x(sCkJA!tM5FFuQ_vRe%Zs8IG5f zk}(_ogi(0tDs{Ar`Y;uhKO?7Ih(3^FUSMg~$k+pU;8Tus>ejm}_1y==ew5Hu3TzU1 z2WQ#=p5W8_*rhe!KTI!!HMN`msMa-P%O-tE<#UE4hRftyz%194`-Wa0NrVcKmIJfE z{1lZhC%31lm7M(r_F=9|bjz5vMQ!Y^-x~Nx1bLh#k$qeZzt|D&!i6meBd&q&JGb7;{??Ba--Y**n4R4D_@!``8Fp% z)$k7=IR`$D=nXX49K*$j>}qgG8l$1(VHvI&7NBnnK%G>8^_v}y8f?4B@rA2&k>aW z%eVYj5b_L6`&ZV6-bsO?rQw)wKJ8yY$p7SYxCJXOCFXbDJ^nxSB}G98!;Rqlr1nCy zlRqNh`({Sk_OypPr+cqmWVP`Ax6ID_rxsR1MgEs&TuyyYEf_H{B?P;iw#;jVi&3KQ zzu9QJxt@t7bck9~(U>$KZ zOs<|)WR|oCN%JOw)sfB9O&nRX{Ev>l)4^Z0C2xRI613C zK3F6|A%Vno;|5?^?d3Mj5!e7l@=3YtlLDv+xrVPGL_&f?F37sLP`F=G<$)rA(`gx< zCNnWP*4Wp5cXoKZh!0ud_372fo}XizpKXfluP)a0!^1G;r2!o=(_X7F(8{USj{qKs zW+E^IT*%?^fKL1Fr3oOL)iQ`^ckGU5kezwd*r(j>4wnO%JIYanxu<0=|00i|lOvT< zU-W3z{0|vNsVhmp7u(_Dky;Mxn!-44`^d5wtt=86VRnhB3%T!w`_Bw(Hp)mW#h2+8 zF}@Zm$#5T#(FMQ2)s_?kv?#g2{*65SmTfm}!k<%SDtmRIm!W*sSg6w(vfFZRv<5ia zgV3ZkHa2Kk--{TwaRbdEq{1Wtw9vCc3H8jWkyUQcvDTT)bpa$sunpdeAv5@Atdaa2 z9BY&`%vqEMYshv4mXIu;^PmE3B~tF+NXz!>ZOoep+qkRcVeE|V#Jj_wTv;N$Ad0`+ z4v<&w_CztXED*rm6c(RsAj@vk(7dWF+%u&Ij8*?=xNQu|VOjBJzBw6tQ(1-KY^+!- zpc2%a0Jb<0am!6X9_@rZT2lvADd%eLz_R}{m*;;Sot}KP%VzsN7N97B)ESpwtZC0i zS7`xD5<}qN>@hjD{sOb5!||!Is@3TsergPQ!m4U_?1?{yA)@HL0xNV*W}AU!Egi2J z+o<4~t$wRU%mN-OKaXYKUfVo=s7x@bS8<>e4T|F^SgnLqnrc?k_-KoB8^YBNW)X) ztTD^iL>H=x#1E6LPiv<=q^NZE$aqm@B0tnZZ1G%&#W}+7k zPGnKe`L#Ty?i}@9Uhf`f+Q~isKKN{+-Bxr(k??U->g1b(_!^j&7QHW>JN&$}MCSGO z!`?5S&J15h(oO2#TAqijf-(LfSDP-ZZT|Wx^TFldsrmORgI;!j{v#aC4y|IIeT5;4 ztQX$^vLD;k`cFbrLotFmO&hzfA=19KY>m=4cZvjK&fZv&2?_>wdaqskTru5(n#Kp; zNc+00E;x$p{d~;FcAZPa75XuiOq{7wl{KWg?Y0PuEkf*ei4{q7HmyO(NpsVR49F09 z3Z?aMV+hh1>64DIeN6U-dzS%}%lSSw`6P#Vw*OA-$?-SUiC zc3#tYn+ySmA;k8sTzugF5O$tXP3>=+-q|IM1a=4|^c^|~k^s_d2{nLVXaWKn5EK+O z2r4LQDuil4M8p;l6?;Hb6iX;7)`J~A>IsM*^mvZJiXN58|D82!y)$cO%~w8z1xfb) z?dQ4g>mq)_8`@$CWTXt+c8!uGU?YZ3{14HN>|t@0J1zg-5cW2=x7y0Px@ojI|Hh}$ zT^?5l_im)i?NKDJ+CCQ0$g)I?G(dZM{V?g%4cw7|B~hgAw*G6>McE@^r2ibDXzNw? zZ`kCO`V4t|LKAno-4piRu{_0sZd(1U=E zdm#H`C2;D|ij$$IpFUlP&k~4NoS^mg*WzkC5`wKlDXiO$I1dNZf)@YQT( z5%;^Jp5;F8uTxJiWqGg%@(q(_@PU&mV-e$jZn!BM^hL_!o#JJIFXJmH&P@_BZvSAv z0om!osR|enI>b25)Nk4VHZZP4O#!u-fcgtF%bDyhz0!G|wdc1nWaqMTCC4r-Fnwsq zc2OFQtc#OaDyz97ZppCgz@ivHc~#%A#leJJf%!G-xKk~9i1e^N2$w^Qhs~TC3efq9 z40gY9GKbwyiF3panDT_&Z=XN^x_47Q81B3H_4$^mOc zFr5uxgPb1)XLitILj(G$$tYy5WbNyiB_?y)_eoZ1V7*`$pPbtVtVWrCxsAE4XPTQ_ zz--=?u)-J`Dm?AI-~FF?mP-xxPSIxKMQ!OgPJ&i{!0F_-*q{1e>`47=x6!|vcaeMgNYat; zT0P;hOV1f|nHxM3Bs`|+SgK!F-&}CqX6D)#H}=fjQM1)+{$6a}MzfW_moxt*Q+77K z|D&IJu^7iWbAx_`ON-t+uVl%kO*?R7H}#95Ik*1htbS4b-tHtZ2@bFD{!rE63S27f zJy)FlN|wF9c<0X?#b0}%qs31GH~yLB05s-iubKIZX5_PKsSdT$P>eXuEB?6iQ=ngL z_f<{V&E0$IBqTXMr0vUjXJ#?jaiN&~(%_TDZ1N>nP!RRXEhS&vOHDUnN(r_m0ni$t zbRg8w{{q%;7G^TS-Ta0$kRG;P_xO2OtSftfuZN>YyV@_zQE)=?<>uH zS+nx<{+G40z6={J>#KtSU{%%hc7YGY@1%!xa2gaQ{JTfj>HDUQL%uFG3t;Kx7Ryau-e%SZoQm>OH~8FO zAH-NFv*#J!7=V3)4R9yR5)AMidW;t>;h7LN_o8&(rlfhWV=)GrUGB49CVu4yRouH; z22(MVfV1`5Jf6bIwH-Af6w&(7J`ZdnC z4y+!~JTsc7C;;s5i&kiY_NWUv>>Vhev1iNlD7Nh-`tV-Y@KkkW*UDTjC#V<|5Unr* z-2kzj*Gj>s&8pA0z6Xdx@K-g)5H~be->!m6mkjwVG!G3~o|0Gq+1^t16M$R!AyHP3 z6_AEO9!dEA&jq`--`;BoUKi$kYcR|91D`uyrPR2-yzNTy4T<$)e7bj=z4AiuZO)~9 zBaP=7J7+wQp3m&_o6z08=6e-}!o8jV5FYraUGhAz9Hl|ib{DH*0)Xuaam`fD%ok(j zfM|QA1~2{r0Nx)swyqNRj5d~($fE*lG-b1it%kOOet5M;%q_0P{&~BHoSch(=vL0U z5}@IS}SGX7J6Hxl0j%z=6>Ky>s^SIcYfO)2yF`4&xrXir?*ig6-_G1K{ z6Cio6(bp=~Tv9Br)#SWFI)TGx0xGTpAOIywF7}(Z!u*Ut<~1n_O6LTd)UxCj0V70S z3TQ)GBU89uv!C;5R*&?dZ8;qnKK${7Vwvx75c07?$EmZcMPchNAyzEs;$3e|eH_A~?{NzJ150EdLy#nTk z;Sz1yjxUKx?IDjoJh^u*b7k1W4C#}eh673encxc$tKnWlKhUdNLTKQ`0+ZL-U-606Gw^s;y&7LY>6cVT;%8W%?I8+ zb>y{NSa6AJ`HS=1vFpph=!225tAirn9n2wz1EBL8ez|9M%M{UX9a#0bb#V)5`Pd!PmEg3a#>3rUmI-lE0^wIlIg*l46zh(kWcpJBo5ATo&Qg|Biwm^ zZh-{r8vTLx3!2e%eLV+Qe|xjI{)?u75R+q`c;TU01_@ZPm9dHvWg>pX-0;<; z5i9c*d?1_FzPWOaBj2#A0sn*;N|F67%TIphFThHEJE!<#v(d>17p2EcTC8y!PVSw2Dy!1So$T$ve2t4V4QL3-^B^AU@@iWm%TQiZ#B0fc22>_G!n zSl}a7`N|6p3@rDDa~EH+MBNGpa1bAIM_E)+2#prd@2hw9+01e<$EUzEUQAT_l}fBD zIU6oK=%Kz%kZ}%BPtKD^^*9P@TpUH>9Pc9m}L1 z8^l}93ag3DWg3pT%BSGqI>SPNJ`y+>PDNRy;cHs-ZU6$_;8bOFWm1nSuiAO*4#ytD znZD5&HYtHFK6Qx>Jc3dSIKZYM>Mj&oFQjy8Z~;T)I~?LdE$Nwx;L0)hfKn?&$ZrCQ zvl?jEQdjH1eHv;7huyVo<0X}WK#gl>QDyv+Hv+1R1NpDzE%_?tbQ^;zfTknwM{!vi ze4Z9cHd~pjLGt+cxpnwF4Lva+VzCmR#ggagVrL)PC{Bg;!akR0aquJo`HTklt_~kR#X=Sd z%F;B*?Jo#F1wRL`C~TK!iEy1-GOvB*B27w0F`U|M#qp2e4;2=|^53uGW-NpMZNz5+ zh(Jil8d5Am@pa?*JpSsyFLJ%?@)1B-sI7d*EssU<3-uhcNqBL0{_L*^UkRpvEfSc^ z^y)SXCIIqbF+d0dVU9*GXM?Lg!N(6QdPhrmwInh8itX$nC|Co(!@;waE2SDFMuc>p z&Wqvb^=^piCmBx@5v+y&HOA6~NCbya$boOZ&Kq6}hjNi^ia1^IRscjIIrt1Av{pwL z??%SPQ(`zpiOTvvWf_)%74PmYOlLt7Jy=HrbEeeGL9zbVB)C-6rJ>=uX5m{0vYmth z5vq8%iUf(DS)?faRkzo+;@Gc)@EpC2LkpD@LAFRk&x}++oA*wfF)>*i(6A&JgP#o6 zN#WZY0}(9my6r|cm~EOcPYr*|sMXKvy~Ce*KPaci5*LK+-z)2 zazf+Hb|$SwI4XFtQW@Td)CZmnV7UTcHY(OMFKc!d&0KjUAJh6fgE99gV&L) znA;nJ*TeBn4T;*-?}w3h6a4C_bBWHTa0ZscJP_o(Jwe*SUG;6Rt^yV2t=OW7Ba4wr z9G0S4G+${Ja@Rck)#|iNl%2GC*Bf3Uux|bke6ASX+_^Y@hRIYadh8xD`K0pMC_VHu zGR?)xS&qJA=RET^n=8)G(jxQt;f>wM%sR8-D_g0gw3=5grjJ^(Fq1NxD(sQcf(-c1 zD0ew;MLf;0Y`t){ZknKT`S|r5Xl@*XFGQl$I9nl%1{wYWQnz;glK_)YIc|N*v2-=8?qwtk;Cw#ym6GJc zX+y*r?G?ZdodG<0sDy12yq5f>AK$H{NLVM+SY|hK{Pqtwb#BU1oBDkiMdAP&JMm!EdUSmF$JRYmg!-ER>hYWO!mx~bHMrSwQ) zPunU$s-i66;gf~D0&?vgz%b~^{=5wcLqqK4AInlY&t)U2e6T@dCX5B}6%ww7YSctM9k6$ZjB1WLkP*$s zu5{J;SgVWqfdC4e9yl*g62$#|*ovbwcqpKB>HQ-y9K8PlG;`*ebA!{64#Xb=Z>b^^ z)jT+^bFtt=;jXGgL0oYfDAiF1F=D6^(G(nw;U6a~GvINSAI`K&L!oe~Z;$@1Hpkc9 zJiLW?`h@5NAWCOA;cZ!zeiWw^Qm^RG0Xn*#1@@5KnWoNV)^XzpKeQ6r{yFDIeQJO>WI6nCf3wTx7 zK5gE#bk%C0GO1BTvE=|-5wuH0WeXGP(=ypgs!)WxxGNi)K%DsG0lgBG1>v+56$dEn z>U~`V$NxCJ!1{J?;>AwExwK+La?G;%C`HaU&~k2gd_Vn9=J6#}(5sLdC~i@nhWtiD zveMW-Njb6R=#|=6whMZQeHv<8a#P~0LByk*IB$6wlY4wWp~l~^LxsehNlg^?c8W;6 z@t!3eeVd02bvpbWeXbuPyOb{TU(w?6E(>Pvu||!0H00#~`MH{^R3ZOgF@q3rlAw2BL1IOD@dsd{(qZ~!=)~#Tij3Q*Q@XJL| zEOva;-HclmS6?ct4)?%$b#RV`ScwtWzd7?P_*%1oO0!X3kR!8I_-ZA=3yUXYo_w^N ze3=hwowNKk_(~PANQ+x1B-*N!n!EiCR+NaQs+r=9kTPhkhFB&f3w)kBFN;Skf7QRSBT#rGg zc@J*=b!$X}UnxZ9iZY^qKJ&;1d^w~#VW0Sd`7ya3dU+l0eHb^DlPEq;cG4lAqIhjV z(E3Vr5og;z6k3c8UdVwzvGp&R@gtgakk@9nU=cCC`@U1_CNYvBC@;evym8O@x4!@c z*b(u?uj{!x7WCq|-)C^$(87)?CD`n0sgF^c!5D z+VcF}(Q59CU!Rfay>1a0G|#W;`SO>NU(-L5;N?$|O;e+&xVPiQrnFej;$L6*e+Ry4 zdzjgL0B%~kx5AKtF%!YO#D*7{Er!N(M<8EeZN`Hoz`3`_YPG>pSrPO=C7$bmaQR79w7=7JFQ^%F9{sY6 z!?rIkB@_)QIZ8PCGhBVHcaEUtS5soD3VyRHhjRxh(%}7Bofkf6IqQ*my4ZA0iuW(N zpYw+zB|cnNTM1uzhXXnlaW?~D=4ZP5l#~_=VTZJ&p7`An{G_=`uX&{M{8pjTt@2Oe4V3%0u;pjQ z@?qw7Xs%k9j$74I(Ha0uR9~0vpxoU7Z}U8~oxl1{xOW68FVQ(i)5RhAUx&jVBKKj$ zF*zwijmS@aS++6OS9@>|?|v-*eLR*J9=811LcjXdxY;_$VC{EbC3sWRy!BjTq}|W6 zO#dAs!@pT%wr1Tb0gLo7^Q?<4{{d)9B-K@hnV%a#?>G(eY#x>8MerYo*9H{6y? zyu>nSI#j|KFR8@zhQ%^V56_vEue{a7XEPUM`_?7MfUTzz7Cr@_vi+g$d0V?&-!{7S zDVFwU@fMD|_d2aAXN8U~r~sN*bU!*)x4ovOJn{i{ydvZdUCe)@U1=Zekw%5LVarJa zH3=k>p4{i@PPb$6oCiV2x!Y?q?D1VkE|#>oFSG_XT}`Tt8*lP33|Q#t&~-50e|FOS z!&1jrsVuqyza->ew}tlb((dh*cdzc4&a&d`$716tK`Ugrtkh0elY8$#%)anF3qLP^ zbUfp7nN8Z4{HLd=|;unP1UB{zO)3G$SZqiJc4ivjX)K5BPq| zDy?XGy{Nmb<>i3^)#~NltohQ5fgeWGm2KY~UjMLRM|G<+9h^fB3fLOad}-CYdjS&i zk4w51O3)?Lz9#6N;C&6tnDxrsu#&jn@SBN@We{|4(mwEGGw?ou4PM`>5QJCYDn|!6 zl9}vUhT6bmSY@Oz|LtF;oit3KJk|byHTALuEiK*-OdlBVqRxaD|&BH<9@78HLY1 z$5zEBg@--$A<046orMoFWcS{(s@3(DTPcb5ia&RYK9ymDJuUYgSGl%U8NZ!;S;iXV zv{rZ=X{{*2+KI1A-H#e|j#d z_L{|Ni;St$W|1ALHGKx|n@_JF!MbM$6J7Q~5(5|e%sv9Js)uNG8THEAT3{-?iq-|_#uCb;tM!9fYx{f^v+VwbJTGyq1Yf2nkq zp?%SZ_X&Pq325geJEZr7FI;sQwt2vI4)8bYN}wd z{|)ZgVc{y-QB)?6y`d#Vh;j^@w4s(4xMW{NAHC}gviJqIrseuW_njiyygrui!hW2k z48G{xez(O)o*U{!29QvJ>HYvw=_S4_NZ+|^!a&+8Ee->4jbU0BJSxKHYhF6<;Fa5~ z5}ckc!{MYUc*AZ??KN+jMR#r=?fgL+KOlr|kqi6Q#}OQFB~Tbcp)BtWds)SpQC~_J z?I|F0DvmMxEg%&3XrUyTFo{v^Zs7FHD(m8rjf=av4$2M^rI$*`Q6t_U7oU{wV9e%Q znh&73RDnIXnAdDROIfkZ)qdfR9^8~ob!N5ABw&6c0JgXwl)rM+n$=;D(T<_}@rnIt zM1Z0BRVgJcpGm!lUbWfq>cF9;kRe;&yU5xhT_}JIv&Z%1@9T7pe|%-tUWy2p+MRV|o=)R(CyrRG0E{lH!>k5HRV$RE_=6n0Q#OaV z_SwKGDTl+5nUqad!Y&q={2`Ff$i<#nw`JNW2gB`hM=JPeh{2*< ziAk;Y*-YYK4E6S^gEKDX#U4G_+Nl{gzu*ha?S|-gIkI}(11B$gurFpi)6RR40AEvwvAbI2PCzeI0}$-AT;lwqmnOcPC+k=mg&?KL zU|x5x-PMB1{9zEM@7%bywkV1`R2H}S5mt@&Pn%sHKEB8mv}0Ju4hx_~96Ith&p`^1VRdN*=sN?2f* z2DTPf>7U`me*|4zdt!Y?>+kaJJvIF0>nQ#31mlV`Tu>W3parS~c-QoW#B~D#DoL*o z_)sP9sxOCd1{m&)7>sV{pBvLGwp}=37_6zc*v8_TIa404+QFq*p6d@{sVf&?z}#K; zLfC`2@)ct^7Q_3TMxSu_xnTsqK@bkqkB}+q7E0t~u-%!KT88V?FPoL)l6HbYLEK9K z*ESgrbdM0gTw9AshiyFlyU6imhz3s7ycGj|AEy7**9b8A zas_T32TCi(rxKwUlps*UVNLkNVQ(8EVTA~SRmf@{Y@aJFJ9l^~=4byDNYIw89D@H@ zNFZ~>t@ipg6Ou7r7NBUnew6hsMH2X3o~y&p3IMW2cuKc4MTZY7mgW%==`Jzcc{oz- z&+L`F>nU5Ica~ve<&Ps}8EQca`So%JMZhOh}lo5Qp%| ztYNWlwanhtWxDPdFQwLVQsTgouGHZL3h_)uxk9J+;+1(4;R6A%J!a1C1}W;YU!kwRld2JzT+O^dM*>7z-I;o0 z>GBe#H6M=QK^AH#8kJdSq*2ANJ#W$p3y@hbjAv?a)+*U7 zLBK4vj58!*je}mjK(rbkL2M<{p-ceuVoC;xN86iU?Z(H3wUiiv_a7afEfdT-m&rQyaZD=9`KM@ zqtcK`i3Lk$>LH$`lCczx{v$0Wsb5MxwInDOiJZJ5ZAy?eoNts1};S_VH#GZw7P^ltY^^OtI z!4LW?kk~6%BCnVH$tBv(X?@i{V?DH)EF%UVZMCs(18OJ#*W3} z1BWFR97*AFl?8U#L#U7Gg;_G>zn|Y%HtJ}^Kj^@Za900T@>W8b#4&Z^6L|rAwNLbu zo#)zy$jA8*3f1F8(_Ld6H<*~-u=i?e)|~@gyCwQkfcyCV&g&A7aZ8VGNq>dOp+4O1 zOv$x${WV&`L|X#5wg>BW`HPQI1|_+qy+g|BqVM1@?p*uCc_{6}9rF8DpYtZ8S+h#qQ}j z5^WvmtOJ=ma7|pCod&RDNDkk%8Teq_M!PW-80V_Ax;M1XcoH+X@?f4k8Uplbm&Okr z=4YN*l4er{FhF=NF|Tphb68SFqmGcMBQ)CuIS&tX#A5*xx29(H=)*-bY)9g-*&DVG z(;ODrP#1NI_gu&hCJbT8AS0nWvgZzukZK z{jTPzM;mUdgKn=?SiIx*=|g~I%JJuYmzW1GjP27WB&$K{o4&ZGk;m?G45#aACn7;V z9%MOmMT$7k!NkeN?2_M8f~%NttZga1QJ^41S$7dlUa`V9(+33pfw` z`jB6?=U#K<>8Co=KYZ)~P~=vOBJ_4-bpV%x5yFQg!HTjZ-Gv1z`2`)Ehr%S*sl*{L zz_lznK!m7}{9Ng5ZP|Kanaz-N<*;5_k6!?Q)*N}-U{#bBAEp3&n(&e#@vFesw4YT+_j3yD2t0(ak~1LM`Pt zqBPp(kEkHDkfv1myacaCL5As80&Z$>tawMLd zS633J@y1n2eU&s20Q7j)%6Q=J#va-U!u* zzP$5}rPYUX+Xk}dI|N8hip_rAkaEXkFFmjdFW3`aXBFN8hPs34z00Q$0;*cv^9wj9 zPD5J3)^J+=pQ!QXyymMfK%?&KYi-PYn0)u4hVYX7mhbuQvq7&CTzJZ#fgeP6gLh7E zI@JH_`QkiDexHd4YHqtGBD~jf@9V#(URBalUKd^Fy*=0Y7K7pnzd^la+)i1o-W@0(C134r@8I%3i>9enwe)m z`nZ?}O%;A*Q_rQYd7rn&!;7jz{-FPy2w(r{2@#-b%eSbC!gTsk$wSv2AN;mhxqbZ< z8u96533zU2bMD_CHiX$X?Rm21p(W>J;he3H*4We>-f5|;p`WYRw&>@_1?8WER)6-q zyw+V?;3WZ*{lCmPRQR-R+o2Y4{#Ki?ngi=M?Du+jC}P9jL*I`qo1{;cD0TqfIK@Z5em_b0S4CR0>T&t% zL!zIlU)0I}o?f;wsG=z9h8P!xVpYn{guiBAT|#wFZprvTIt@$wg8ammHY4(;pfo&;;ZIA@A+@qYxv)w zhI@b$fDu5{2S39A9H7LMAR;Ex$#CI7v;~l75@j+zFc>NiZBm>Im`JrUI^et%)H=1A zyP)^;Cz$B`P*;D{Jk|0`?ybb@RmNo;biG0ssn zOoR3pe;bu!4bw7k6wPb zkU;DM{8o(9t_byts00MN85~kjS!Gx6M2LFXRx78x7x~{MS*x8Mxfw%rPw*_w8A(i4q6zgY0vjNWID6OYhX=oh8q0m3Q*Yfjg z9yB|~1Mtq(`vD)x%QywX;G5H+8H}t|=f4UY0fwNtdq>F$`-VmNNA}_i}8ME?O@%>9Ux3k-uKSvbq zp4aBj0&6(d0T73kN9$TllA0v6%U9zBGVUYdr;<)${k zyWVNQ7FLa->#r*|r6J{CaP4O+`45JMZ9UnLKUNKEnca&rBb8H$A z=Gd`|5zWH^=4tu3a7L`4F2tgk*RrH~d+7bcoD5yLJTl3`gueYiYgbxq%5Bsf-~q}o zvow z9u)p|3s2o+l94!bh??w38(8fGa8@Nk>=v0k#y1ld_?H$)3CV&whDm&Afj%KFEC?}9 z5EQ_sbgCX_$QNdQ;rIw>+(r6M|Gv#}iJ|7T;U45T*dNeq>+dyQVD1eK##>*y5 zlF~_W>fpp|TmXF}7mN8bXKhs9HHKvF#MtT|vzG?~dY4*14j7K{Ed)46htfKkKuT5`3PxcjqwGnxD$7|LamJFMw`o?|rqlNC}7Jp5I z%_2i-mqPThSo!n!bL(I;D7hfSBne_6NyM100b{)u=&Ope-QAj-m6&Ud+opnDDYy-W z9s6h}ScpsMn3xgRN6WIelCW@;zYT5%4`5|$f0j9>p^6umF#N^SI{)d_Ovwyzb0K@&G?5Pmyv4fR zteL_jZXep_cUqRBs{~v64<8gBxk=SGaViE6hrX1%pjRCdOBlwTf?jDU+n&ei`wnNF zz7o?bisGfy3I_Fj*AGmx@Sdyv5dCyfs9zRuWc6O`D65N$-PHDtd~ZV89JK-44O-yQ zG4rCBTX1=#D#9R{c+l$`*_ z9&bEVIb-&ip3X)9C;+hLUGHvd9D?9SE4Pr^tVYL()8Kj{UT~S1{=;b?b~as z|0d_2DvQzAC+uSgGe-e@F1%zHtL8A3z~PIn-KaUb!M$|IEI)lFs4DyoL)kBu>h4Q{mK|RV(Rc?>IJRLcIp$h2;3Q*fz)$? zKM*pYZ^6f{<7Lj|0aC(va58@6zEdb=nqlcn+L43Y8o?KTg$)r^Vs#S77PXe@Rh;Wy zW^ckJ)5L;^v8(k8ejcgE?e{+0ama3HEB1%!V$&Cg&O1I+b^oXeHm(=dxpz-nlxWX0 zT%&6&zWB&JWANm!^SVnogRx65_Uxloi{u1L*%n}ORp^2=rQ3rY1`*m5sEl)Y&UEhD zltBZt-L1d>pvpu&B?ZQ98u+0nQ=Z9dNr;V(ny~yfxE3eLPx)|3sm``%)UM)=U46NK zx?@+0#XlTlSJ(SLvyZ}0`fx6ta=8<0%c9ABJ6c|EKRHaD0`l)1tL)QV-doIcUhS+0 zgR^+tm|KL%rWB)1ip-zJ*_n%rqnt*pmpRV-es=`t^ZG`;c$)4>xuF{?yX-;8_Tn+( zsz}LQ!>lE@_PDR$4RTHgmA?tG+JNbE`U@?I16v2f@jgmc+xpupI8N%sGp@nrQMc=E zy%HtA7?SbGv(dC-H^>q&RwRFU^VCIjJ6M4Jd zI!fcM1taH;>O4?NOY@b_H4aM(P|skzXd}JUasQO%3?4^F*=CTvm>9U5yPWB>N}ELq z8}u1if2VN&;0)%Gqru|k&xU}mHH7)|M;_upbe^v?ULTT%3uGGEbV(0z8>UmWPZ>Tw;>O8ukfLIrBHz;)|{D*I$oiIYc{&9&T}l0 zR!QvdNVH=;{@3n$)(5a!Njw`$cj-t4aWMOJUQr=~IFh$TIe#82n^+KJL_`YKg|73Z zgLO!LFC(*H*>@+`@{yRvrD(VoXV|?NsmmcPbzgs`6sco*5dqOQwl7B3hxXsUG}%|q zfD7Pge)v?fOzY&lA(OqspAp5M=EXt6lJh^BnWqoUva6%bS4Gl`^K59e_YU}zblSjc z^DNDV&6)l&9LBTHvu%6JdOGI4*pJ%h%8D3^7AYY6(C|7l_0JV@ly0EdK)P4fy z0B{s$l{A_0?NQ46giy{+Mm)=Tr=VX;8C3YnqUBfohG2UC?4uhpYu5(UJF^#;6!^I%?Te5*V;`K zb_+wDU(-I%2*=+~zzPiNgp2f11sol|`WPiSY>81q9~3o|)RYDFhOf2czYB~F0N|C{ zS>7iEScZF9=&>Ql-UWjd7VBRtAueF@Go8KW+|Y zQfZjgS`5EvXgg(OdY(Eu07LRL(>Q3-%m?Te41EC`5R@g1vuGMh%*2v!a>yANlFuRZ zFf9Ya7OYj`W0s*d4Mc|8Do=#uFRhL!*?GeU2n1y23yf=>0$jR~<=Y?*iUca>vI}51 zFEmYuBoxB%I?m}e1h~MRG6J&;pl}Yt)1*LRBwPqD7Q?-PGRlOXf=Lu&&;q3K^qV3= zOJo`reCB#!jF3b2U3z*A^zXwaxWo4!aJT=In%9)Nw>mK)JZ@UDwu;!hXc5Qs+kN

S4S<-O(I1A*2PbC3msnAgaApEA6-^7Rwdjwj7oL-eHms^5r! zhYT4hOyV@KxBC`*_L>?_%!$UV7AwR4O^TFA)*GI0_4qyytiy?i;i-@UDs!%|BNuo8 z?+iebq=?CS#H-9$^b*mhIBj*N7AWK|YV;hQ0dR2Pf`yST7PfqZc8c%Wd|(=x+JK?W zlIj1N8lT!PP0;QE063Ku(0KR2L3{iUhVc~@$s5JXd{BWhgL;>{2xPc}z%{YKLd$l^ z5h$m<(4h!@4;yX8&`VQ+Xxh*g=d<{Se#WcWj?ahD6fNSzpKmjx{sXgJwP9~Ws}u|} zr_Dg0VFu31IZ#Xf}Ad!SwRfSz5}qmJRwWcd8Ol2@gsV5W^H|PhmQ_w+&*~;U^ld>Q;i{g0I`n&a?EN zHGI5`_=ZJ^7`38UK>^>UKmOi9$pRw0$)q|ET0>r`Bm-#ibgp5VJvxp9%5@;)DSdS6 z(~)G%=81+n)=KF~ARYxA)@!YVT=eJiT`6ki{!v=uS|nU^6rrsIJ6LX^2Kw~s`!~p; z`q-;O4*wR}*-qR7TeTCe!K}dLl=r3tXVlDV~s-|8;^VGRw1M_Mh^zCrF zK`*ixgZ8Ph1LrTX{@Rr&M2`0$bB5L4D4kZwsjpjV6tWpSQoEiH-~Q;i`e_e&mU$M4 zFKc3i~b2_yu|jKh#r9jIUKkYxJ|E(|PVI>+m0w@}u%C;J@5 zT%U;w0-HvX!SttdeecdnJeDRrvl#l)XN05E?xwDMNtsrWefpn0-P?U7G{kGX2DZ+?3Lie?KEgU zZE2MR?8VQ$G99eLU#0--vE;8;af!jxpluAKqVW$>;yG#(#LLw9T_KqAyV1_ciZ6%2orHhSw0o{Jpn zv@a7v@j5@DFBGWkw~F)B%CZg|8KPt^YGf0|r~(jjmcDJ*mt3x|c-&cI3~G^jnqQpG z3^GGLyBTNuq;sAc|Klx)2P!TeLst|)X#s3U4@6apemijfk2HO#8*-UMvwqYB51D>E zCH5=LRj4?fPZEooef|z!2TmPv;*J`?r zla##JI!=7`3;Zv~w;2&o+m-wTMEBEzh6^Bd1yWnCA+KL-+Qu=xW&CRo?aiweYHtW( z&gfFHf3*+iIelb4P;r8LEwNPWx_9(>KkClC=D7JKqxHq@F0J&nw%(I5W8#l*6(bB= zZfNaG-W(jGd$JV~ikG;8k(d(7Ae|Fs(3!DDux;s75b71?;f0q90(EWgXUi>M!bY}6K@v_Z3 zasM6N008%aE`a{OPsM1fB8l2Ex)%irSMWNrdTq^ooU27Hn%%Pa}~J+`@+M z(neYv%@$L~iR}*lVNe9lHDpDy6>t=IkU8vb0a%z&Db=)afte)X#t$4Yc2jdGLE1)h zMC}0&4nQ>a;m4SFAUjfi(w9bC0(rFx609;X1GWqdF?eRqy{CZ91&7xxa~A;d$1Hb$ zFw+E|mrM#%4l=NvCbI)A#{*RLTiGrpc@!qAB?7nN&=D=PP%CsRxo%LW}SLw1_#HO4Oinp|nhtTkML`7pJ%ij4e0OLd`YI zV!mPOEn%o>!mPwP0PNC}Ytn>wVbeco4ObGJmX2I8eV5es%G9TQyNsTc>%wnH&%Zlh zO7b2KGY`;eV8gH?w%jC2k2o^n=a2kp79E;WXUs1e31MV<^bQ!!(@$*}SroRcGE2w| zPf7az&{-lecGPoCh#iPUKxOa$Xzfg+nmGG5e$SGP1eh!kA`~YOFf3|Vq_|H)KsF&D z*0dsq#f_p3s5P}#Cm}2%YJwt2k%mRZr50=zw6qQo1edmGZKV}8SgY7-3qG_(TzIDE z{qnpY-Ve`v`gzXGhkMR_&UIh^`}$pWftR1X$;DgUby1K-P1f{?R~n$A#tg02+_;~#^pVt9Ffsqypm@v!v~pBfJ7)-GMQYC%wdHKP;w2_5Lo;m&hHL&GF5A|Mexy-^Jlb^+)@6PU$2on{ z<&r@64|?p%?{*ID1B~OxymLsF%@Aeg5nJ^LLolexVM-hhW8gZ4UlcP;ZiN^UvlL-U za`Mru={Y1f;;r%iLuFxxU8B(M$OcOISHZQSZ|5kwSnM23X%q{>hNdB_Z6x5UdCSy% z?Ivjyzk9tDkz}Ul7fM`g)-J(j+a!6B9iS(RCB6>ZMYf@dG+j7q9X)&D?UHLBUx1A@ zX1+B!{~dnP$@x9}4m(IYITqtFZR_*S-ERTXK!kOXQT=g?C(bMs713E5H1lo@TpK1GaT#TJUKLk zij}T!QLtD}u>AWWmW8Zv!D=NQx(hI+GgfTF{gx2mrIc{qTkc>44wGC9ZW6Z3I3rai zMlj`C9o~)lw_M<8buhPDhD4tuquYOS^B?YVZ@|&G(Vcj_5}iK0x#XSuS)wA%B2X5> zSx%|Ak@C*jzhNMIQ%X92IRH6hmW+ zol+yM2pIqH)#ECnYc~#UkJU}heUE850+=oXA0hqy z8xVqUbEETmoSZRSUqrOi_uCxg^xRfv$bMXMm$G}c8=c~{umn{U1#IZ#y}PzSa7)e% zB3mF`sSmtBUIj&F7LL3O**48mm^BsWKqvQpK=Oe6suf!J>;#&t=#G}2Cj~7-@bd&? zJU`MH=2e+DT}N=3`8ODIj9jmgD9E2IMkj~AL1^cklhpi!^Ms%|V5D2NV+7sN^KK=V z=w<}l+OEwQIoJ7wfH1z(is39~a8`BNGZ|puK>Rb9=E=)1T-1RGo1fF275XB-{h7j& zKJvA+eD*Z}xyp6SKo_N15Uvugpk2j|dIrjna^_P;X1Ib$7xuYINs|4i9%fJwEGLYf zf(d|7o!Ij8@I?X1n(~H{2ai=vfvaFv@e+N2-1uskK{GnJthp_iFs~erupi_3m_k^W zHL&OBsU#g;cI2MP*3v<%fLJQ(=lv$pW4v2(q{>6ohOE{4GE>T|P4qDVGH(>-#eVBd z>Ps&5k&_(HeWs3bi&1RIWO^vB^NtYnm$XQc42$QIT_c=19Rx466ecT1j>yP*Hmzt+ zXHbov8YtUaQ^-sr3MGRMr;76`p~;43$yqx%IiQIDWS|P;`sEM3ZJS7bD@a>&ZU;h5Q$?$A2}gyEWh$ z#e@AG6jjFI@jEM7?xqt#27>4Fz*L*C>11$X{hcjar;Atj2L-IX6qrGVo3`Oa(aEuF zp-R(r#?9>F+{p^Z_~1*+DQP;CO7wY%?~N61d@_)l9y#C!#{3sJOO^8{6VF{<`s%eE z2VbOp`R6R*^)YX5=jSWFN~;oS_n(?NMicW$+G_pLZ&T2!Uh8O=_$(!lvvwvW$*nhz z&e;56*igJ5?AowTL7Su7uIXIgC!LatBZh}HZ=D{%9ABZDC@D8}+&K8~lzi&AgG)h# zjX2y`_Q{Li1FD`MRvZYb?oCgjDy3!I7mGiId5FxA~J&i*T7tBaaDdn3y z9crc1(*C{2olGqa$+Q0Yreyor;pCTlVk;+Ze)8p?ZQr~!=UjO1_$C%6{(}+ve@+qq z!3O|b2W>#~zoi$XJ6F+CFP@3C>5ttj+C>FBhvi;n^Qo%cc$CkJP<7L#@+Hjev$I;R zTrz60h`30^iS(RS8E$_h<0cpbR=U?p1xE=fFy++y^!vv~19;W@3=&Z$0hFH}hD9ki zI49tCP*@WLvdf@SP^vppxSo6je+q#!#@mAPsW>L+L>X(I!9=D&xuMSN{+Y18{!9e& zP!x5ftDWx{u-PALN|CEv9V(S4WRsup2Q!FI0>1VU{&dB%B(#t zeED-%Pha>~gH_sc(cQRi`yHjJ$%PC`f^e4Q$Yn|aTZbmKT`_O};+uF9F}&*CH8OYt z(xNT#T)HIayWxn`2l)8H^l|JvkC@$OZ>`B=V{h_k(l?fr;uX^EoFvOfl9qaeAcAGG z5DUF~@}v06z_q)ZV+UKJ-I7|y?0j*m$j*yTuSb(q1L08`_}uFjfshW9@WRxYL%cMF zy5ITM2L@@$=}T4j`03#^AwTZ3QlVIoG0pOtH2TB(+0xU$u5~Smq^nv$2AY7J+ zI%VLEJDQ>`@CW(b{8YmF8c3xTpb)4>?Q}bvlHryD6zaG{T`Lx~Sj~SVc={x=KhZp; zY}hSz?Jqr;DtJilw%8KioKiDoa#Qn>nu4v-B`mkC-L7pjX7z~t{H$j2(!@DxTT1i9 z+NPR|vNX}*n9IvWJ_W<-`XytdV4#YV;@fWL==RDHm_Bu{Cuf8w%>|tG7#x=Wb zYO%Jb@k!|BZnvx#xf)?uzBI+{&)?3SYEKyJM_QkF%ZBUrIt6~~wmeVyc=NBJA;(0! zXXHmW9)+o+S&T0dTE3Wn=}LaRwaf|y{dKi)ZzQXa zBaT>q;{LgnrN*&-*pJWgcwW#d7xCT;+2k^}IRz3=jfVKbgn7&C8{xQXdSyoztLFpO ztiS@dNWDhQhd;R)-4kP(R9XOVvM^S!cBf;r_2L&aObq z0Zw@AXp6wuyV?5-A1^1MlsJa+jn=zH#8Hv(BbU>S=Gw>~l>ejqY$5$W084#J+(IjV zNiMu}u;w{j6cZJ3|Edz9O=oh(E92fB_QuuMuDCcg_+Sfx&3y|!Cl5~%XS2-$WE9A^ zOQ#sevRFV<9Ne$sW%BHvWeUjPk;-}77MYnin$iT*&BU`5*+F1p`TUzlk^=vM1*6K%&mR9O!l# zYY|XJZD8^l;^!Jy)ai1oxVzDc3@R7hL z>)PRK5D3RuqcH9Qr$o670H$-^X^161^i#zeT3qQC09%*4#-=qUZfssPKnN2k<1=lM zvlG&#KdI7*9Lw-XN-61M1H5UdM(Y6!AAD<693i=m%3z?UiUrl|vp2O|1FS9I(cZo> z!m|{x=iKmd%*4)&lvNzSiaa_*wVHMxTYn-N4 zbG*8s>U4+M=c+D4V>1c2T1rCqJGjduVRxJ6>@CPPiN+Ai(^;YBAa>r@OD$D-bxT^O zqbJ|_^;v1&fF21>8)EMe-uO5RHZL6OeJ9@FBB4HI{Ls|I*`EEiX9QJLzn*aW4PP|3 zZiv2~&0m~kIdpvcL+OUh^#LOjaI5WrOm2R_SP0dK>oi4Tw3E9;-&Kb$mFu0o|TraZ#SIzef}(`mHxZN>-;Mj zxnCsUqfTLNvaj>^BtyQbr8nIYBQ~h~pu2lbZ(XiOpUO#P$4`paCHD@D{9b(_h`Yp4 z`c>s2G^2ZBMF!{=Q#g}mBH8xL-J;ZgkL{fOnmWR`HMaI?bM(6SM;#K;yI$|k8eB2& zm$GwR$7Dw~6q-vj+p;FEf3)Y*`I6`OmQ6Q%zDPQK#`^d-gShPWuM19hJb(E+d9&{h zl5E(AqCol#WjFx6E8d1ZVp6^ojyg8-m~TQM26w;lri;PjmXd z{%GlO{A1Nf57%|2Ei%7CRJK&U@MC|vKfO%ox2)U019`{>Cz6kAX?U`foRL}nhV%Qg z>UY-W-8{X1mwd<~-T2p8hR_)lPX`U^gF)}=szdy1f-@7VaEot3g)B3$eZ49mNyL5p z_<%0E?LRHH|9%zz!8e*{k?9Tu^n$+ndqL$Ir_Mq)-$fc5t=n&gvw3P@yG3PVtiViR zbE2y;&$8_p;^^apO;|h!rY^bRz!I)3K!|<*ti#)m3H;*S1818iMy&QL2mBITLeD*A zIEg~MwYNVkNgjkk(zkloN~4%yMpo$fMB6)eJ5Hq6&C4Ix=yoes+I9VZxZb^BSk{(P zo1GJ<)lEKqxvwO`mmi?D$I{nL6>pr8bjz88<5bnj^^6&F Date: Tue, 28 Nov 2023 12:45:36 +1000 Subject: [PATCH 52/69] Add requirements file --- requirements.txt | 8 ++++++++ 1 file changed, 8 insertions(+) create mode 100644 requirements.txt diff --git a/requirements.txt b/requirements.txt new file mode 100644 index 0000000..60165d6 --- /dev/null +++ b/requirements.txt @@ -0,0 +1,8 @@ +torch +torchvision +torchaudio +numpy +pandas +tqdm +prettytable +scikit-learn From a536a3becb59f844a4fe28e6002463a3700ba3eb Mon Sep 17 00:00:00 2001 From: Adam Hines Date: Tue, 28 Nov 2023 14:13:07 +1000 Subject: [PATCH 53/69] Update README.md --- README.md | 20 ++++++++++++++++++-- 1 file changed, 18 insertions(+), 2 deletions(-) diff --git a/README.md b/README.md index 85aae4e..3647da0 100644 --- a/README.md +++ b/README.md @@ -113,7 +113,7 @@ git lfs install git lfs pull ``` ### Run the inference network -To run the inference network, there are two options: +The `main.py` script handles running the inference network, there are two options: #### Command terminal ```console @@ -131,7 +131,23 @@ python main.py --quantize Example of the quantized VPRTempo networking running

-### Run `main.py` in IDE +#### IDE +You can also run VPRTempo through your IDE by running `main.py`. Change the `bool` flag for `use_quantize` to `True` if you wish to run VPRTempoQuant. + +### Train new network +If you do not wish to use the pretrained models or you would like to train your own, we can parse the `--train_new_model` flag to `main.py`. Note, if a pretrained model already exists you will be prompted if you would like to retrain it. +```console +# For VPRTempo +python main.py --train_new_model + +# For VPRTempoQuant +python main.py --train_new_model --quantize +``` +

+ Example of the training VPRTempo networking running +

+ +Similarly above, if you wish to run the training through an IDE then change the `bool` flag for `train_new_model` to `True`. ## Issues, bugs, and feature requests If you encounter problems whilst running the code or if you have a suggestion for a feature or improvement, please report it as an [issue](https://github.com/QVPR/VPRTempo/issues). From f7832184542c6fd9ff53bd13ea7753a3c8d9c1a1 Mon Sep 17 00:00:00 2001 From: Adam Hines Date: Tue, 28 Nov 2023 14:13:58 +1000 Subject: [PATCH 54/69] Add train example --- assets/train_example.gif | Bin 0 -> 163393 bytes 1 file changed, 0 insertions(+), 0 deletions(-) create mode 100644 assets/train_example.gif diff --git a/assets/train_example.gif b/assets/train_example.gif new file mode 100644 index 0000000000000000000000000000000000000000..3bc078bd98af23ebc05540a86601e1fdc5d88a5f GIT binary patch literal 163393 zcmeFYXHb*<+AV&kLFgd_2%#l(5HJ+!VCbQU5s`-`20;Ww#fG4W354E4l}@MvqK2XZ zB8FZ>3D~F_iX9acl_K(w?)~ol%$fb3dFMap%b7Vd8S>#CKK#~iUDvhNy6)IJ*clo7 zd4SbGKL9+i4e$amUO-a7R#{j8E`kt50BQ(?i73E_go~p936zK!N>msnjuhw9m*7>C zK#EI(#3ZGNXh2X3A|{0tky3HT04R)ggtR6fKM5~DC_#G0&=P# zB~^%ws>%*E9vL+$C3UcZIz&z#iu?V6DQEza8X!3h5LN@MpaGHBfM7KsI1MOP1B%n& zQP}|?cYtJffaG_86n8-6cR+AEpx7NSoF)jP36|Fc<20dIO{jt<46Dhbq-klR1qf?_ zWVJv_T3~rCn1Yt1s21K$Th)0dL~19G5}sEAFK>-c_tB9u)WK@$!qs&}RCN)$dVr)p zz^gB zPL$Dh&^LE5^mg32(^=nckG+qJ-JX3)mabA5*Imx8PUrXA2OrRKamQ-8`}zE3zt2N& zm&Yy}ui#VOh8{jdZ$D2TfB*OZGtU4Q?*OmkM~uya_eO*`g&ZSzA9L|Nb|m^Ya?7lY^*qw=EyC{Y(E6oqi3dd<{nSYrKDZS z%E~`;IX@#gzc8oZa8N;RULoyDarl*z?Bdd>lu|}XdCA@KvZ0EIQxzrk)oHCYmy2o& zD{9m0u4Sh+ghw~T6gT7+HI&ugEU38I)YC}2+*nfIcx|kyp}Coo+?-tBQq*~e-f$<2 zd8ci%omP04d8aEqrK_N#tCiK0U(|E!Zf`+-Z(&n!aa&*cz(8U8P+12gk8oTU%%Hgdj*3VzRe&MzSTx{L;TU(NBb+z#j z5C8zUbtp{e_xCR?>(fX4&K?QCo)117ggtWMXmFsm|HL1c zgdaJ5_Q+{KllxD=@48C(zp|?SUrGJHlKMYUQrp|x@NEF6NeQc9bj9*G6_W;;w4MZ! zJ;dU~Wo%EJ04`*vR#b5y1G_VMmDuDrl&!eG!p9i7z?Xz@%%=y>zv?YAI`e*JsQKz> z86lQm*0H5_tdf|mad5b$?(tO%9Eu2(*FU}H(Ht_%ZwZA;9&B?z$R;ll8WF=42Or$N zK7A+bS{~E#dAt`@;LH2j2X}71yib7$$T_z%=Xw&wcKD98HZBa%6`e|d-T{H2+Tpa? z#@NI+qc+8f66Sq;xzc-2tdi0&-?E?IyfyeNOUV{BCM_M9lT3VMh{v)Ux6lldr!<;eWrb66R9yL*Qtq z`32e1b4~>-HV>|-x;Z0KcCRm4?}d3pQTxsa8ocGiBJ9-WXejrfxj1xS?OeP}_}jSz zY`ofhqJ#uKR{-lA!y{tH4C+nMYFASfF-+}`6+2+mXe;g(+SrHmr1;rL1d=OkgdKrQ zh=>`Rby(D8nbI$eQ_C!se& zvKF#-20;<>#~QKXk50`%#N9Modjx|fR*uR{(X9tk4#0^Vi*K6CJt8JKb>F8#?|l3| z9X6o#W9IDh<3DC2-dz9jBI?KX#~&{#yxOfZf(SB!_jNCoqMEP9et>PJ={X6V=D0po z+QHHr#cQBq9%#BTt@h|#n^Zjd2};0H`9m)u>mugDGqmv>?(+?1LJR_^n5r3>1Q5 zdHcyQ+Xxl}6GZvaj|W5+{RD%26hRYg0Yf%H*cSoGeRdVh+dB&8WdVG6GH8A1GoZ-? zc-#T-&a+)0sbwo3O_kUmL!2xmo`UWmQ^eOm5L!SNRzS*e&6AP!Tr8H~C34Vlm>`HG zRY7$LL@8`j7OzLIF{KN%nDagsR&Nh3Bv_#_U-Ji@Yjm#+jRbaI2Sec$Y&Z_kL(fU| z)!GWol=C>S=Y>ZpRE!`gN=0wtfqa*%CC-J(H$+lc}c zssREX_l1X^0LsZ^V3q+(dj^$u0f_W1h?Q{1@_1rc0=@v1|IrVS;>c$}Vh~W!Vu2xN z%ON6fW1v=y7^iRsBqoOinm?+ud9Djk(hAV@_aqWjzSJBXq(G68l)oHVhu`cE-gtf0 z!VHatL?nVF2tdrCpNApdKo6ASU?98*zyma5JO&(}H5Gnq2--q4r+wI@3hoxQf zdE@xJed^ndh=WCVznQT5tHEumlE_8a!%lfvS=fPC@*-WQv4m=PoR zh#4ytaSDEleOM-pV7IFU1kW?*;n5$A36bU`nk{zmE26Ex*wJ}yw^6Hyj)c}8lVN5O`(0bnHx zuT(@AX!;|8bc78{DQU{G+w7Jc+yNnkQ(-UDP7rrY#)&sDI(RuWt+Rf~0%(w+bSrH4 z(p(1OHK&W{8beccp5ymk>qb9f#v6{z313|6!3sAf+B?r9i`IJ8TpE-A8krZc-Vfyu zgYDwbxks=RFdKo&k~uu4RX8C#2o&qXfe_$e!ISt{DR->xj#iL>@G=DVgdKBK5W+(y zTcIe+6iGocaA5rlh#yZ86=VR)K?I019?%P+Yy&D2JrXkCR1oy8JYxp++Xw^3+d!z% zC3k^@Ie_@!6X2aGi~aK&Sd`&*>({qtez)ZqUN(gXNq@)3e-FHqP5>8w{|uqvV`ZGX zM!!4`s<~Pe%-gyF3PN;2enkN?2#ACjJqFqGUf}ZDlpH^CJobv+(qZY%i9wg!O;;W+ z1)6S7veR$3T;20A#CvmU;?eEfcOHH`u|v8LMHs`aGUDYJ6rRAaIE=^pSQMp!$JV=B zX#88O6kA~I3W*}|OA3r=;Rw(BDZTm{1-TY4gfw-bxowF`(84#b{9Rrv`U(jQ8a2z;k) zdN6$mkPvoe{`TFik6{^iXWqE{XrJEt6nB>bZ=%Ggg<2lAWP$k^Oxmv?KRyyc7*T^Q z(kM=H+gWJI&mt(w>09c1=2MY1tVmZK5IjXe>~vr=tvR!fulG$uP}?`O@1z7tg~os+hPzz$TxoR=f}4g4y*Ax?Usj$o)W z9%e|Evj~g10hTvm$U3oOw9wGnD>1LirH|@`isc=3+#gz{3$s2QU35jsDLWSVos8^< zrW?Y}TZN_AM>}JsdwITZbZ_B}7k9-rS*Cv_>8X^UDVNIb~5vYe@`rviIA|RUXMT5y`dr$@M{gA%pQ3 z*OEyrD2bvpZK!d$8nTNd*VYb*mjK`!#q|TP>D;vPbbeNC_>>)bo za;;KvKBN?#JONMsYr-$9HTlI_8V8*|AC!E(7Us%;G2tmvgOO7C)CeN<#JDVTJbl$8 z<9krXt%}5z#MIP?j9+gvmL}3co*7R5?%NUcZ-caLBRYJNF1$`hNM$08Gf|$I5|Nqc zf=oT;kfqU>_iB1v!pwInI+gF6%iYsa#j%TsO~L_sCq2f?Th*T%XBY z-}PLpy7+Bcx=CAhnMZa|L0(8(Ug%`riS@iNsVm~1=>eX3e1qAi3$9#fyAm~dC3^h| zWis<@@Dv)RxTwXm=yqh0HKmYdTu?Jv)VW^7k}58806;hf3L71TSF0vHC^gaP$p@L+Pb3JNDD zOL?al!W#?(rX0zi%a>e|B?TL9D-mlimzgS;+bCz(6@{;tZF*LyT&Pe>&QtKpQ!1>` z-l)K1D$fL$Ht#EAs8<>lR+f?Hq`-N(c_gBPCDhvy&eK)Gf?RnnA6$DI8;DwqX{;VDK*;@P+CpK!rFjr5T zst%2wYOh;F;ssuD8B>K&~4JtJ6zb=o^Tm+ZMeOmCbA*0t#kx)eO#mP(p3Fblj{?O z*MAycd+tzod$@E8b7Q`~y4kBf?!xtj!W-|0^PX;8yU~7Q8FN$TT|?aZjV~8&uGQDP zHqM$2sejpC)rVn%O_|V(IUkc7(h6_#-(^ZU+&o{v6qIg6ZqkJ>mcKP=L>D!#dNh_r zmSZ*>vC>&HCe<%7O)931yqgW%Ue&78O(uZx-1WxUOH+{63^v!n?_2 zvw3c~al5UG;N3E;(egc{#j&V9%dx5VP7CQ`%d7V-X#N}fF5b!;ZXRrFf=%D@-MrON ze`_fDR=|$h%Bcc}_9hJf?a=AlCrrx^7quKQy%Uk#qU&@g;#f`iwcC-?calw-cE4|2 zTE9*6ZjEN4sUkce|MK{daru2a_hp4D5rZ<7YhbHv`=r|OWB^hHz?4#xOrvV zyYp>P{+ny6the$e5g5qClX$`i$c z7qj>~Sb{Sw;h!voOc&Cu3+2-#5!Hn*?!t6*$;@=g{p`ZZbSs#3EBSN_Xmeg_+ zzaqfWp1JbO>DIBk-TFQ~@gMH*Eba+Q>Nc3^vG{pQtD(ngDR0)a*RD8k?ZZ9$j$W;{ z&fPzINj?p>BfV}*S$j4slfC=A%!>PhZ=_zh<1N!KWO~cPx$SUNzqD~*P)EOnRB!0d z{tSoyGVfbqJ_E?Q{_x^~Ux_^zW(L0H_wJJ!j48fmW;PffHF&~nFmbzMFjcTTYH5I8 z+)Fnba;6OA6c4yW4P993FYFisFWr1JJ#@*eFU@DTCbhN9r#5ECaHZzJL#Kg;)So27HR2Kd6l{ z?PNRm-HUp7zy_MwmYz3eK``)Q$3Pb&oEwQ3uC7r5=fH z-A9*vwKFCLCwpD876B+GE8M_L=T!?2QIQtCGL$mZgsdFd^$8e>T$ip z>)zA8losd=l&4rT;NY{sOV5Hzo`u|d7CQUv#MZMg+2{S^Pkn_tNLo)L92iebZ{!wXQFhgy`*F+@4>^Gt*L~lrwtF=YR#vMOxvIyETrP|j@jwXt!b9* zOt<+=@4=ZfvlA_5Q@8g_WNERPTQeygQxER7j+@V3Dw<@M%#s909L(9zw$0laA7>nY z&gMRtRrxr(cxl?~dQ;`~*-x`QO(id$-+Q6s{ou>N7lT?;$(LTfPkZua>jfbEa`jU4 z>yek4PLB;sI4*;ApckAC?^zzXTjxJ=P>(tdJ;!Zi=gQ1E=9?3kN3F#^a|)k2Uzg0i z-I|Luom1?bKlx!y&E<~9qj_E7-t~izvb$l}oRje=Yc5d*zriOO$)<`(f&^?`zP-zS-js zeSbA;cfJn2v0(mi;e>EYz=_x4at%7sZ!UbQBX1Sxb-ba-)w^4~5iNQ}lWU6Ij(*GU zJ)NBX)~Ay}m3tQ>{AOvkJuCWMiPxL_&UY1#@4j7HNONgEF8BVxueU#(-+P>Re>(kr zb@~(j=*P#0-!;8>cTkhvaHBaj`UCRfT>0?@+v^`(Z@jk@UaE6hOxk+X`>V0CbSX}I z>Hedo;ZI8#{*RcuOHWE~CPjaI98x6^^kK^PW2pBHVQFUme=JG~u*+%{SjfR&SH?}vJ@|#V&H(L&E*1cTK zy}W*8JGt=WX6N=MOa5m!w`U&u*?;-xVA;>%n~-n>;vf40L2mN@C;ra`gaLpXe}dpL zL?$=>go|nTBr>5uf}o;fF|o0tF9i)E3=TFb_Q=Uud#!dMMuey&n|fz8tKQ)&y!(OL z6&vzHX;Z=PYPz=YkuqqR9|!?aV`C)qi6{s*WnZQNz$jQ=RRz=3K}0ugmM4e0k}8vzu-Sen&Sghcq~G>_}j)SI|74)I)`l%C9RWX z)K60#vefp=g%X$`Xf}SY#EfP0>vRQ;Gw)FzeF+&D3n0J`OyJEaA&S1A*jH(nD{XOt z7{^~-e}HCwL21^ciJzhh)EJGG_w0Dy44f9UQDhEeYgk`1J7sm{Mz=g*1>jR|f3{S1 zfCdgJ;F&M4>p^QEiwh%pS_X=W9p_q`y7lumRq`dSSzW<6+gOw!db^BTrQ-K3a2Oz}utl+hnqu27xFassRO4&yMVp)gg%y00vA*Z;ety&;lBvu|QDkt7P6S zH3ahT*+$FrvkthpG`NBqi3FE=M(20xMRbc9CNdNOuU9rb86v_q68j)enGm6?yQ(3U zt}x_aW% zYHw|wwxgQsBdcRK+8Sz7wA#9b9~{4$^V%lv$QwITHVSxBeN*hiC#6s;0pWj=^$#b1 zQ!n^GQqPYM5P{kKrXIKS1*|4K8WRUHY)b=V9KI;zNRwQ_lnMwTOGzL@M%|&graR9C z2#a)Gytc z2agYp&v77BS#6rbV8vlsQJ_P1q>8OU@e1ZMKpR!s@&jIv(E2+n0}6F~ck#J3@UT)b z0Jv?fksVAHv$@zZ7`Y5kv^0ckB!YlBIZg0G3{3%{M=68eK?_!zY9&z30k z^h%pz6mCQG&J$@9=vohDzY)%cVuII!i3#ee(Zu${m7rFZlp|08Tm2L&1_^(=-;&=2 zH=n4$Q$rUud4j+OYB}8Ui^c19^`-jYiSvmn8c%G}A;xnH8M~1=kJF62{ztuodrd$m zAo{08NTY%PhD}lokEopHDKN!4K^0?>Q_CiIC!nQ6piI$9?uJS=UglkxUstxu{!-0} z%*qF8_(P`y21$VrMS1A<^@#*`*$o=uPMVPPiDwp70NE*3-nGg`%FKwF*OSl_ zPw|gu8K9*&{(!Q$-kSH+v0n@F#My6 ztJ=wZ6-r?z)V)yq`94V-%|FUBR6O*^)A;M7glxzVINk(}_ihSx@Vol5^U_c7scitl z8X)m&9|kCTJ^YI}pVrnp^QFmRsw)WqB}yLHQnvRfhl#IxmP0Uwz3d)g8-%58?B1|B zj&RtBXso!8nP0D%yBUare6N10@S>2x#7piHU9>k@T~5^Il5y3bg3wU_VU1wyD(@B9 zRM+Vd@dLURM1Dy5EylZ}*L%f;P6RC?to7do#ERI}mB)&lcuPajs{xjjj+%rW`pdqq z+1)>vzK&wmXmcbGEDS+a6TYq!Ypq8ED1mxWh@KMRu4Nnk$k&Xk)~;1_E4X_v!V2!x zf)&z?aRn&{In-W-fm4kFdL;n3anB+1v;6i#=YMendbd!}d$jQSHo$|r5s33fI;@d; zP`g+2O01EgX7L1f(R%c0RcxZX20G|O+>^;11JW8_XB%{1Z^=wrCXnu zu})WEf;lM?Nit_1NC{b6J4%fkt%8(a&M5Ez_Eiv;h);tZ1jxfz#93zqu?b35z_OKc zR=_-4TrPsnvZm}4u$9;Wu)844FO3b>T2)kDV8>DzubhAF54xb#S%3mXd$3~cd86F= zMMorde0ze$dfN$j5>^oM!sQ3=Sob}H0~n3LZTxM}Gk^t>){{8}757{FvS-Kar8}>A zPnfg-Kwx@K6@TkNS7o#<0E?&eU3ix3{62<2=I0Q z1S#wwhqNZ#$n54IP`O$*H03~6>3OGul>HuN<83Ca} zXew3OY&>Z%z(KG9f)06w?o|cAnipaussM`p+9#Z17+eZq!V@&DAONNOz>_e_PNS+& z;ZuZhVML4`Z4@lrIJdez&r1t(OAIc{`q<`JqN5 zq7drKN%dfn`Mud-p$WDy=`0AbwU*%i5p7I$CZA1Y#A2#|xB^iKpl;NCs|7)Onuvwk zlDjKc^_r*C(yKiQ-GaU~Bc~lL9d;Q_jkG+zf@T2x2iCeq2yw9q3 z1r}9njm)bb5hGU0h(*ZE@!94#9P_b;eSc5kJD_GIs%;HZrYu{iH;sz85@5hgLZ=(6 z(mI?Sdv`GmzBb97U9ViP>mnXd%SN@WHb>`r{B9OGId z4Slmqj5uV@IU}|_<8LT}8I7R1#xmSo%sxqta@x<7iD)S+Qd7nwd`0O`XO0>?U$^i+ zP0DN_SK!%i1fBYcpD!rBb=W(Fvktq}a8&4x$Kwl~u+DSWPaZ#}_RjP9HPCIQtiqB* z>=fTs>KSjSLTewIZCx|*`*<6jWQpAA*lxsQhh+ATMp(xV5=PbBE8DPhV20Q~W9PiDk~Qp9*+3QB`?ER6@i8hBvomc8+4kfxuJ@<@jKz6!W#cb~mo zDh^;+?yEYIDZ96!*Qnr>cZr-IuxbP*$Af{jAlTJQ0yF~5N8*0PB58v0-;?(tM*54{P37s|ZqS`ah#_{VrCS|b=lo790&jDf3;)$8FS zA|25iKPS(P2Mh>P^liwxK{3C){Y%}N zY`e-*26{WdfVJ&4*IlHw_Y&8qRfNrJ^!bpzuSGTVt$NwW*FEtlH}k+IW9MOZ5rmshSBUfsz~+}<8p;Uy6M{hpuZZ|ubXVE2T} z5mW@2&=mtX3hK9#IAE#})G7!l#{tO_dIrS^6@i>M_tHdEka9O68gk7U#Ps)rYpDZx zsoKx-6h5F7{ca4x5(VZkH5Er6zlQFxONCdJH%_)+-b__EFjd({IB?q?phyr)_vF~8 zAw)f5(^<#CM?hHY=t~0B-JQP}#E_+!5IMjyjdd8UD$%%R1|vWz{y`vG@^V#qUa>p5 zVnX)_gdzeiYw_{mvRT!p7JD4YLlIAd6xI4($J}Bm*t&_~y1mH9(i)B(6@>rWIX7_+ zDglUai(%n+F~B*rE-?V3r0G$C>xu(Q6DVvBO-NcXRG+>^!e(bUSI`PL4_;ba{_Z+6 zkyY)Vsj!z^iVH?oCrZ0jnWc(W+6lrM^kK{2_P*SG(XdGW9h@wzWwbJLuj1Lsmt)d~ ziBLa&3MSS64jH<6RQ#P#wd^%zYbBOs9niHQwd>khE)yaY;HYwJ_T9byZ(ih7WUHqd zDg0{b`gU{WURT_6K{FV6C`*%w2-1-Jh+$$3V^E)PcpgB@rIZwWTFH(kB&Pj#f|_?s zOu?owj8E*fGx~wg@f`;-J`u-bxY@yfy~wF~i+gU#Kj;1(%s@#MWWE@{1)z|@V9Qvr ztX%+`Yzcu2X%K?^d-~yGFePCqK436C+td~9&@~``|I$zN@rkS>Rl@wjT6K=uCceCX$y(K8Ok)`Z zoCJI0%6pu7ZvXY;d-=V>a~wn9GLJ$nBp2P-5qQ&!?=&*_YIxlUJ{z&b^t~Lf;2~w~ z#3+=A2b-_WQywW_+IF??ZVw=<19quz*AQ02B3iid(7O^JG35v!0LqsIX5}duhMRes z9vK#smDCPpkYb0IGfkle!B$nKnIHYS%S4UGFI-!vPTwp$B!ay}zy42@{`a}c-G9;M z#~<2oO_LblOaOp6hGh&?8Xv?4z!2%i1kvCRa`PsL!PrWJur%i;rb3W z9FY$YQ`y@Q>+MasFPVD{4!jF^Q{^|(o$OM>XhnCj~;eaKt7u5>+alrzQ4WU%MT4>z&4!I2k z*Qy_^AOVOf*d_}~Rp^ZrDE9RU%UhVXufBU)_xC<~kBf!Wzo>+YILt|kQFbN-0f1Ff z0z^@p29*23k_B8^8@n3)dK2x!@qS3Tnfz^*bg%Vxi) zTylLnh3!^W0npwd0K9RLHyI6&da-$Q6b5M6fdbwsB3z_`<^}6EhDPO}S{}_R(@GBc z4ByDAJ_YY@A@0~vDgq|vX#$ce<`TGsNjxfF>`CDAe!V28!E-7hS?J*Cty z6ZPx+mj5cwIbB8uM1zkhCZLLx&*}1u_7g=D&j7@f#n_ZQDZ@RV0z!J>y}Q8=`t~(L zcUW9^>In;oC)T!_A4{iT3(j1dqMC*arjBd7_%v^Q`M4zI#z9(y%#Y`Py}9Bd>|+!H zYFDyLSM-WziJsT;GBnjmhYKR1^UirT;UkI6@^69~aq>vqcoknJzO~0JX^R=2P3^q= zRa>SbjPP$XejobZG?Do|Qjl=&D;Hs4Fa-%w1P2is6>Q<$t`g?I0EHxhuR1400{Uzqp;V2T)uY5(5szBPKl;lXCS$eLkfacRA*&WA~GAr<)uSQR?8b~)NmwnQY_$7OaUl!Ni?W{L@1$g9t@la z4M4%E<-ICH9u>Uq>!0J2x6Obkq-zVhp+xfeL}a|r9wH_(Q;ihfPcC^$Gq%GzN`CT zU7#T5;Axei0?k&70msQkYmO)y$y*ZpO7Q9Zs2zu%uq%{_2tYr*72sGoOAGrW&XvFV z{L&>WM`-6e9Em&V&3*SXo(N6vBD?cLm@>_S>4kgiX$~vpYrM@m1^BUYYvXKnzXqbc z@6)z(bZnhuOSJ6WaH>mp3RGm<{2x{JrL{ZNwBuC$ayFMt+AWE zd}{LZ%g)Q03N%nmGnOB)kM7Oa=}FfYJ^y{(wBF%eUJW=cQ=>MxUnkhK>BQDwb%7{m zTeySUb7kw>`bSp3ExZ?RsM>?PJ7>glwtaEycn?u07)g-iS{(7E@b0eWkkn6oHubB4 z2&(=G0MTQaPOzkqYl#b2_l;fNHozI3*_OrwHCIeA^B)b%pXV+dkrr-PWP`P0~=qrLYou5;#k z2IT*?M;PZqhW;(1R;(X2Pk@7VP*@Itr{0>w2lEjFQ8PV1x>^ z`s7ni?dm&SXR&f{!NYx=j|XZGyxMrT@cb#C2QT0b58@eq*l>FLS@_c?{{fa8SO}oI z$KNRPoOS!PPe)<)t`WKp0rUH;WldoHCFCr|aO@f!l4KE~G(cZFGE^eIM;n(D?19si4~Ued$nKHp z2M}Odjxx?TbMgG?l$+Zozzd|*PH%M7{^xlwA^wXP*_cTmuEoQ{$`eZY$ zs~so1!V?IlgV3LKZxo;GzNB(6X!34jTB1HprFUcC^C1gKH@6d^nf`XEh*XyPU6nmI zhq3vvPpxB>U(-?220pFKQ;hV-CdsHdWX-vJxoX~e_t~l>G1W%dN7}BYXHHP-69m__ z@c)xRH_HX%A2#CKADP6VS;hibB{L$O9Gif^{1%t-(qcj|%w!PP1Zn6^a2D>IEUOao zhI)aR3wBOd%u8u9Z5d@%0)FsE?0wb=!m7B#J{0S(hm`q^`6|?!tnCH8CW4ZF-ue9U zVJ_5gCf^bwXi9h(Hv8e~sG4g`9|~S2nlKYj99@1j{pNEZIz#Byy{_>Sg|~>OAIR;| zU<)RSN1dPqzo{1}iQZOl+8}t4(=a%%S_g4n9_irc73TzU4j(~K%|lS4YOpxEs=l_* zT9_Y?JJmK>e{z-v7uVPmPm_x7C)xoWMR4cN&9&1nY!dN*eKKqNn)-LWz3>N#-#%mc zHxdyQoFpWd7Ha##7zDU5*Jm(U@wSGl8iccI?8Ho!Jyo;<#*LTvE&W3--8@nF805vkp%`m30;w7x72Yh9s0i zJ~wETuyS5O9d5Zt>GALtdlb80V9kICLZ-kp7KRqjAhcapy&^0Krl{ANsIl{##3`ls zFK-WL!k9K#A%OXW9BeuKOo0DRyDc}iqKQ*2;Sk~ql#+)*o%LAf{zf7J;k>`O>dPXZ zxW@i&`0g`a*9aQc@c;wdlyoY6_=@3k%-^bM@lW6R4Z?q!4$Bx`Tz(LRTN{9&G*|bq zXlW@18iWWq1)iylwGJ^pgX7A1b~P)Y07c_F zQ+{CgRgI%-GmSl3H0fPCIU{e*@ldcbCp*;R`0Zpc_A2bSRz<<97{=j|ukI3WKpL+XkOH=`U zQVn9|h5}vjeFn;CeKH`*%F4hVWevSKDSzKZtkuRLD*!90%Iyg_*Tp1al=60Y zOLrAfl>5s4l1G+*LM}#e^W&x@e^;h5babYBypmU3+t|tny?!!S73vprw&ieulY~*7 zVENGV18-=G<|e19R?0lmUa4W6)k2CBqTC9W9Mt`)KOG}&#cF%Lw`>~kWddeYKpZm^ zcfI&I{WIeUO^<{VmYTH*64HNm+xA1C8ciIq>_vuJ9eI$azV9@90#E&s`aBDUiL{D? zf7Ig&sd8i#R{ZszAp7(4O5tDMfExu;Pi$TIn*R5~d&7l9_TRJ4h)wH?1srpX{J=3u zJbZkPN**AqK7IhBPhqj*?G2UD&N*tfjyc(Cm1=xn%YAlV+ML1x*+;5a3NHEhwtaC& zGZi!+a69x(nHaoJD355Xzr85nQ;cprUGr*pg>>K_zC1=xCqaJpZ|DL=QOzsO?%Na`$i7DHg~;aQkJ}9L}in2wA|nRSpkg zH1koW?-YH9mnWArooEq0#)n+w%SHjWNfyD#@B~rCJtyBVzW8;=^WkbIWZ<$JUsV>0 zXp{2&$(ifWS-Uds2JQ__Yz9PRocY0L(--?qxt1G$rvH7j`{iF{{7;r~Ar*4eM?^58 zmN7yKj!-hUt4nid9fidyXQ??^X&Zm-%DR7P^V8fKckiE-;9Lw39q%R!O#cv( z7nb#cT0|tRpe??oxuB0vy_q?(akpZ#;WfMiwup5<~DRht!u zMNLGhM3cTn0IVG*aB>|#<7?gCHdF9tgj!5IOTZNMbKje9ixyEqK|y>-8>}eRGTfsM z{0g2(I78;T;G6R4%4g)qtBP&xQ~9VY+q)`44^xM7xjx3~%phIe&-Y|L0+cvO-4nh; z)#_DhF5d5g%wIy3nr|vOSO2=|uzcZr!rxi;pGx(QfY{(-^$$6)#H~n_2bho)BZNVi zd4w@oG(Ox!{#%v9umm74=t;MzkVW+7+NnbFs{s+JO`=((E6ph%E4TG=Q}tbsl*)d* z0u!m&56jpJJUxY|A&Mp}yO%pCJ88 z<+mInhs!fwuVQG#Q!bH|i;QJ%GyRFqCAtbPIGY1Ts5m_*o_Xl9A72{U zfla(CalN=4Z4W?C4aTL2YV7Bnmi0B=y88+$W^yJTzd*Y!|54{)}qPK>KH)h$Kmt<~MC zey-^#JLU6z{58Az{CG^Rrl*;!s9KyuuKH2ZujwB*iyx@&HZq(1+Mlq0{fUrO9=B5vj}ghe#VvOZCFl3}u+4Tdx(0EC7IES5HTVd`~|< z%4eU9m~4bl+7D>QB)Kxk<9hp})~|;KS0~vM@jyO^5ogCB9(%I#GvNeSQo{*qzy~6~ z&CuGPx<=5Uy59+!cE8jL!X|!B*jHnuK40XNt1530n!oIqkp2>pASkL}lOX)ws@04JRU=`L4DI+CL-jH!T0QEYPqR2G_EPS^;bp zl$###x&urE*Rn|9CVq$c)I@MD*T}x&1=Q851uf6~4)ettf(z_V6*>B8UBG138A0zyR)fL>k}~$sM|A}|Lqs-4(FqzYmJem=0l|mejKBK5 z?#zNWC@I7JIoE_jx_u`4Kfiydg5m8Zo#BZiR=id4;A`^dwK?3t3>{PW$`!z`5VWzZ z+ae`~CpjZ(KW;X507u~htD;tnEVONu!?keD$#!lf9%pjn20GQ0TZyiV{b@3G7S0Uj zT({8U;9EhS-4`A5xpKi{sLS;D=j(kSC@9OFv$6m_vxr6i%@zLx1TNd)4Zp<`F$_!N zrgDJVKCW5e5rA^J#>0XGf@rt=iLjJBExFzLi%rT-c`rut0EO~RW z+IO}fti7|)m^rAGXvC5r9Sc~U{c!%|o6&g4kdT>T*i}}U69b9LK3hjP2XqHKbqobd z0Fv;SryDSqG;o$ZGd6{QQ#1+vR${F}(gy)MD9;eC!ahY>%^)<9={NAQ!As#-0YB># zivs++b^NCx^rv|ExYzsd=#4vsxSKFuA+XxM3J{P0<8_1r@l6`bFvuj;`0MKfBbT>Bf3g+u z{k&91U=g4+c-^v4dqi7)tUa~sn9=E=7iNf+bQx0Al264EI~w2UxmEF2n|b8xkx{^W z|D_EZb=TVSg1q3~&D9U!Gb3{Uy!t;CgZvl&e>YvOJ0m9{g&YZLAO?p(6~F-W2?mIk zVxZfuvkw4h3BYN9UZHG{&?5M9K3vU^zbfEYVFThL^IuW0?GD;k$F*tu#JbHQztH)( zHm$fSk!mH_S*pF8rd|>I`i`4CT=pyMjog!c(lzdv@{bF)T6`p(({twrPSF)=v@sob zMyjtur)7*}a%Sb#jp%MDDPSO79_Zj+wTq}u5cBnf|IkkExW>MOpY6WNpS&Yxk@NM( z=c8<8CxXJHsA7V6jcL{KlxJ!C5*5L*P!K{<08rjj;mqBZ4#vTyRjL?G(n_ZQFVaq2 zvO@$Nu&Ol~4~Ap%0c0bzar;Y80jpI`2dL|veujQso4 zyu{d+!vIkU;1mw1gTEF!YEhNeD<&0|Fu< zh9UwY21G>#O{F7E5fwEQ5fn9G!=BJYY=EfPLsL{#z=kz9zxTZ7z26<&HYu!j=unDkR6?{IygQ$wnjp`TvDB% zV|TQ{F=z97^U16k2Kc)3`0gLSXRfRmdne-noLecIg+*aG%DI_<*a(h2(08u;l2&3z zUykyp{9Ic-cO<_K;O90~*l6(|LW@h}`hE;ID^`SoI)JJ02j9 z`yAi&Q1aq(?uRH>+CPQ=IB8>f>QEX~~$A$kg-#=E;2UIUnmH%uxltd)cMuK#ppC>^J zATm8kS~lVXxTl7RP?9`6c|{$n7>|}+-~9{7|0m9=G>L9ZMSo^+0(Wgg>Z=YoUu|H) zo`$*B&OXE;=to16EmsA!J9UUAhctmez-b36RZU{Vh=!6gu(9wulW^GkIa+9CeT2X+ z%5z;HUX6G;3pB1Rzj&2)Kj`}}A1w}NmZ z!i&8WdTTw)W?3$_-27PXzMa3nd{`k?6jxDJw zZGbr>iJR~zIE3w~33yv- zuKzQ>-}EAbzWUOyhu(D(ejI?x&^hgNmI z-uLQ0HO^v|2ufe0guRG8D_UWZ}mOIMV=&E_ zJpAp<=0%dI1QpGnw4|8o6xZPYaM=^L=yEU^38)^K<-#5I1G5cF^3g`-(Ny!ZS(Rj; z8XCIucW|{;cZqr`b4}si$$@5dOJ>&&yo@1@hnE`tR{)TrGR*%ff6f9y03ouj3(bd& zR56@HAmud_mj7z5FoHH;14-yP}8-W-<%0vQ|u-=EbGJA}~n-lhDTY=TYa z=IclCME(l3=yOTK!*}{;wMHvU7w#}_%^1HaQrEJ+BN=SiP-(ra=6RzkuQ}jCf5^O= zbH$Z+E~UVO%(O(6k(R2fuPicFu}S_@M7L9!;lIT0?9ncnwskN`^bbI+LjEwKeoh<= zg|}11?mhn?e=(+=eB6%B+=mE7$@v+fW!COI#ExX#zJIT}Ufuv$Y78`Sf`{A{xl?Evm9n9Z&7k zu}the66l(&+NEV=mI{Q#ZdNfehM%1Es2xo3pZW6kV$tz`jP~o(NRaVq6Z*FQkK?8O zXJ7qOXMwXvRn!(#5TF9qRUD0f>_*pO^0nQc4ogF7>s4JNf~nyF3uK`ks^zN+K`>Qw zTz$d+H%JODSy-kZmGx{o>b+g(1Zp3pEEifh=7(T6pP7JEY#cm-vq3`;&yF5{2dd`78FoR#xsczswzvhs4qBuF3Mliv@wqr2`IJh%J%a4yQn zwV>1s=;s16$M3nSSV~V0an{|^t}~+nlUj&wc*ry9#!fxqrdK4b(nwVVG+vHZrGl!u z=?Phrh0t5IvVyDcUl-1Mr3H6SEnwxNqD`|&Wv{Q-FL{v$zmi$-?^xu2cDnyv?E9}P zROJW24>VNynSX_L|LH*LmDZ|?*Z=82GOWU9b-;mAYp+D(fVPHPm6R1Hq77S_2*8mX z7D+#Ay|n7z0!+(QhGrko68M#oR!JypFcZfg9B0=Db~nR$`wXE0>Vetug32?TrhulSoAz92FoiJ<9-dmj?|~l-#W&`yzOfJ! zbR>9HOFg>M+N!_Js&BQ0AHZ`D%ayaV{qW%0O|U1@`-^}6cIj37{b&7%n4Pnw zU*pk-ttMMl73Ehszx)YIF`==^JWTy#)!`iFv;|o_?@`j&G86amdb;^jMX9&dvi#8! zmVQ9R7J%x{F8w>LV<{dnw4K;%eJugz{gXvW*c-O>?F1`$^y0++gsLZO&@rs7!1}PX zyh}H+$JT~%BZmrN%u=Uc*JSstlBoeAGG%{`{=12z06t~1uGszEWMOQ}_sIskfAdlP z<+1;Nm%@Md!T)@PiroyT13Ie3Qv!fgfRtpQA|h);NfK!-GZ*l*4AUMXgIbuF93A1Y zSPZq zcsTI9O57}BDF&<4Q@HX>SfOV@(onLF`Pv6N);0YjZsvT5y*+6E>GCG%&7&8$4N`Qj z^PasFH(hkp%Oj{iSag+2U29=r@~PXdKS6{tV`mRvUEmv8pKzFD>}-j7^T5nYlk5yX z|NgObWe=P#3M^KaZoZ+BK6i{^XPc>R_IE^$M_v|(UweIlsGl6h#2#gczxY1uTy!P% zZuG^yPqZ&>Q|4`~apvhv4%G%7jX81xA4~U0co%wG)BWAUGb?SDKgx4)xmv5?^;56? z6@SXAJ!U~t7u`3Km81n(&JwC6VnQ9P)JaD)vu0y#G&e|$O3aEapwzkC+-;WcynKP} z!Ris-W3EK3Z{Y8vD43G#^dcC1gAjsQCeyt1_X{S2;4K-^@S3_su<)EvOv4PA5c`GU ziz$j#>HA}9dBR8pr_(#Bu^`bkXqnTa>=lGqQO?FM^@#^x1aosWwmpCQ=IHL(PUNOg z-4GVRC>5HlE72JeCR^%6*7{aq#ZGdE z>MErW;Bk37lD%nn@VQ&CAv2vS*`2;glOxvx!eNQCXYaS&e)n0^8O0@=`2^o;?#6CZ z)Z3rE=l38Mw@vXt^Xz!l2FFXv=fWN}20&V$U-)kG$E&YBi!`8k-yJ>hSHCUhUjx*B zYnthD`+~fc$QJ3@ul5p=zV4mRnldFpKrg!%R?y{zL*xHR-AIdvA%$$lKJ@V*<-ow(>;i* z!OG|hFEW3nmcCriBF#KcR5L0-ZL*g;`x;sNzW;D>k&oOYpsdAJv3_-7DQ;6uEqoyA z9uIkE_vV=MgV{A?&y$|yosAEx?pYK$pJK6nL!t16HWvc+uUR<1yC%-}(cgwNk0)NA zT#D@n+WSTNvA<4vPAG>v)v0YFuBhSnvg|)!lVU7xyE!W2{>&w=-l0i-X2G3%vUMx$ znu%?se4fwJ)TvFg!)Mj(>d1u#@Y0-<57eB~){BYHeV1h%U=Z1P^dn1y4f{Jm{5g_M zvnv3c^?Byq&&R}^8->LxOn^xpvSMS}dU?f7O7L86_7~yy$DOq|*ktt>1zl}u-r!Fq zKFN0H9j>mqv_pH;`a0(62eY=aZYr0ge#5pj=i{MTdu{5CZ-0aaO+c<0lY^)+?ArYk zAbt4B-xK0*p_hbuskh)_r>Vv}hEuKJE!$&>%+{f>zZ!O+(frD-7Y>nE^ZB&M8PKt* zpYo`qYN$`&ew~PJe2V7th@0inwtcqp$nyg?2og*}q-}m&kO^gFL1$~T1<)Poi`@ZS zM2k8LTc+Y2y?*{_EGUbr2Hylo1~5c943eW#wp;vY+esCMZMp%(?KD-qwI zJ-ND@6Au*?kEx%GxWkUJGs6-P&ix8mXHtRs!fM6qzFU1)F41*I+B->$P)eqc^9QqT znh!0q99rVsMOmT(u6w?^%oABunysj(c<;Nqdt3;sqvWcm@cPKhbXWZKH-fTS3)R2S zF_o8(9V2YHu>5?j_N0!rhj@$4PA*_@LlLLb`X-Ma-H9_A4!N=A8ijQQnmw8Ma%?Cbxp;7>tkMT&dwnLCfb9_`&aR&ogkv4Bu5hG7RL!o( zxdDG&h(3fQ-0??e%U+J1;osLDI5oONjCLumlB!i=Yj` zC9wm&(4$o=ceboo9@KP^xmHI6zZ~?t{q)8?3$U#>*(LeArk^sb&PbTW)DYlBPsT~O zZS63F>>2L~gt}2-f-g~G7npPI+ZoZ_B}N(x^9(3_%tBhHi2_htEIEDlK5oi;%2gVX zZ=tokpP{yMR*wIB_EeGRy~Sbtt<-D%>j&^1K5kDm-H`K^*KR({Tk|~^-w+o!_ApPN zWE2W=Nc&zGcdPYN6)u?{u$%nlZusY=*~K`sjn$yR>4^t{Y?2Jx1;dnSx$F);WwxuI z$+HcPhn7fm2IwD#cO*8`sbIIBhI85O{!Vmn{PEgwF7en5W!v3m?liqR?-#*7IbYHI z{m&;P#cPbpU4X2aHtNu~FTmG~KqYtc1pD3HLxL4bT+Hjh#}qGx$DE|qqrtFauC{PV zPQH!U(q{FGKFp8M4W}QU*if~*>Tz&dMT-2XAJ8EYlg1T;R~|A){P_x3#5_GMnh%PE z?cB|+^Qkw4Hf=YmOPa$ijeozyXcs+McaBUf&kB21?TlcxX5HNI;ij=l%&F?sj)w;u z>68rn2gk}knC+r72=*m!gUk+H42oppo1}2NaY>#Q&3W`)#Kfu)IXkF&uNUFOqmw2V zk=0(XuzeGy8@x`a0kR7hgn091#qXb>UW*RQm%ZJW=nz@gzeTrNTb!#tGQ#W!4HioZ zW)g9aloIi!QrP6KpAXh|OFDdvnwk36J6_6_9q)H}KkD0^2?Jf|3{2v(&$?YCpyWmR zqnd{Wz;AlKOryEk1`p{@)?7bi(&9A%y7c{ zJQL^o1NhW6Z*8l=d-W@QrK?klotiGG#LYfG>xwu&mUi_13I10@uaS+hsPFB+2i9Kp z^+ZHA5(R5d8y|R({T9{K^)uTV4Y!Pi)%+#Q;x#_EJo9>=erCY~+j6&stv}4_P;|^L z>C53`;r)QsxmsKY+}d*JdRXTt{PmGZul-SjWjv7uwjAYye>Eo}eWV7Js4q^6LpFRf zv{_6?kF9?7vrOT$zXK-v-aoB(%mzExJ7Xa zdZSnFH^UQafB!YRF*mzDyZfekJIULBtGhf@W3vRkjSUMXAx^iYZO`Mq+#5a03Q%%3 zm63S4yj@*OP#gE}l$)#HTLQ~^lu?TZr`34&y?l{m>2;gT9+k*k8B)X2CXuE6;aCLe zIATU`uR&?NVLnuxi@wTZX%rG09Mi9%mI2*j+$75tBDt8+ppN+!y zaa6&M?`I(QB#${1pCDAO_mFFAtZaXAWjXQr)y+bj`n@5XH6iEg}s;53v_hU%>@ zE>@^*e6yBqiGHPu8Kq(+3B8qvtyie^wHM!-RC{KSS!sc8<6v?5uzkGZVoCA)xsn&s z6|w7)ho^B>ijt}7;@-&ZYGYfK3gp3QT&=YDdw%IVO4%&}TFA-geO@ah;ffOw_{sdd z$+VZQ1qQ=Q-8vS*lgqLrQ<|iyB6fQ6UeRzQwjPgqQC%@NT--!m#=NOs#Ksm&EwAb= z`~%;)QTa9E3MwE|oZ;;Q|0VVcXvg8{^c8A5Rvm|-$~GrFuvgO2oBK6H?2_9{wr`c< zR<4AtGJu>&kQ*IX_IU5@3QcorM0_3mKzY@{^h`HAu=cTP6(HlkB3Ual6ZTh`;UOJq zsrj7dRtZ|w*{a13lN{d{wSIr%{^~(3Sng&Xx!YdtyJo)(tQM)#lVpL1$Fnwj-2$Bc zssck4I4r?{5}2E0UyLmrMM6gm+5eTHwvqOkqe~7ckk87>Y&n?+$R-~3OyKg@Ux1l90>CF{2yNZ%Z+d>fa{ z#O&(V7@FIp)J5CiaeT=R#ew}EZ!+a|)-)OB$2cjIk2IRzaB015hM`6_9=2vi|5wNU zA9=8{Y1}p{xc!IZ>ZQo#)9{FCc(e?m*QZxS^h z)=m2rjD-cH8Dc=r)^;t(K$cl?F+Rl{E#e)~GZ026sSU_b6fQC|9qBupbj%vFkyB&L zL6~eSTGZ}Of!kbsQ)#Cb@@JoDR)&6u$JLTB%_K~mUE?7gHgg!-AiJM^#1DdF3_XJa$fI%}^JP^N9P!$Tj@^o)!9E@QtVVP>ashe?giQuH?&`x_p& zAxfjloH^WIXRt~UU43o+;73u;fwi#iwc2_v@%0ITkLFjyjNg$(XDb72{KC;WElY`#=`L>qg^^R~0&n^F5*Hg%a4CRo`1ETUBqkI-#| zjrwK%;`$`)+|fskjgYBX9uielXPwj8@I3DPPno927tJ{yEdLql3$fz9UFMH3ETzb6uEt_L!m;&=!vM3e$7}A`+Ni#zTU5=d8Jb)?XsbAMH|0zY zyx?d)An^c2Czi)*X*p_T6`zPo-!6T$^CC-Gc5&?UR!aYvtZy>eas;E#2pz`n%>$2A@C=yUYOb~bKkGGwgM9h6{>(;IuZ*lZqD3~C`6#HXvJ zFE(7%NtaNrdMT&XYq;vE3X)4JJc`qPQx|HWtJiWg9iJ@T_rR>#cQ~=2DD|itSX&)F0zfVa;vH+TlsgA;~Uaw?b6Zg5|PJhlAkc*$v6F zsaw>W(YNtWjKJ($p^;-57hU`=U%8^YlU5ncasqH&V_nBQdQ;3ZiF&wY?I*`qt@9|$ zx?oYg+^Us^#;ir~ZWP@CcLJBq02_$=Bw! zUzoX4S$z8HN}tt%%Z`Yws|ITqZcgvB$Mh+XG#OH`;K<=FFa4Ene-F7g*{jny$W$59 zMGDj5U(}Iao1sNCV6TrpyI+RA|68F}!Mz_np`D>Zw`&%;DAXVFkfX0tKR#dD%idex zk92&L@r)aApex#X>5(tW&zI&DPz?{ewd{WCG+2Xd7@R^5J-=-JcDa03)^o`+bRU(xKTe$q@YC1|VG6m#P1`FaPQi5H+)N!^} zxTAU4lX%F54V#eL`OVy-O*J`1_aS3-bsPdQ4@!l2+?!r}@0EcA9JFKqVAaVREwUT28=WPq!NiRS11V#1&gE#D8oEXZ$j)xC&-6EuL*O%W z5KNw^%@;xDg+Mp}XkNT>AswVh!TFriDT6pCX@*l|i0hW+jc}7;R?1YNt=X@@b}9zN zg)LW-P8^=vkn`c%uY|slEBp8DxKkXbR?Leux^|`H1?zsIW*H9WL~=?VyeIm8DY*_? zcMDA;?Y*%rpw?l@uca{^qtH7M(j4$Oxu~MwZs_DZxldh>U&)Rq#%2p=7>*?LXurlj zj@`{Ljc-)V0WQpggjl;-)dPc`WouBiAG5>Ihw&H@5BZ8z+(pTpmZ2K@(e#)x#^UkA z(__Z$K-x4l77zWNa*^TDti|KCbaV~D{(C>pDn3!$oDO)@+AltQV z5UDY^L%Vgp#ztwW-D@0!n2=_>k)Ek51N2m1r(Gk8L&m|qjHouZ2bE5H zpW|anCC`me@TagvQkeH9xZoH3bSOH1;^Q+X_`7+p&P9JR09GWb-1US@F&nm?>yXOB z*3zdPY;e~x2VY2SHK8vI<=iLd85s}RrEhMq>8#J15#JX}&;Myyl&(!t;#{bjW1(5T zB4kq8M$Tr?<^GrR-5{Y6v2FSx-Nc!(^%q=U1*T#zRZKm~N@*{RB}PbpaMXri@F1C8 z%+U|&=+{~%TIyH!)4crX5wQqA%s@ZVLxS*Cl5G5dH=lQX?`PA>xwwr~%%fhE0WUVR zA302&zBiar(Y{u)9j8NIFFzXR&FjT=Yy#5xs^*Npb3Z<-nim?~A0u;6F#2d$LG0or zRh$>wvAdS2G0G8-`d3&j4Yg+jfH=NC>&g3V+_4+kR};u85v;&!^%H+TRNh)XLh^o= zFvCnNesmz)X`S8kDiYB#Cj3;)1fs=`8ZG1c55%=TxG%w2op(B+H}CQG1g+U$kLMq3 zN!pacPL7+sgG@-nb-4N1JwHqc3)C>oNQBPpqQC0cxFR5GWy`8l&}SV%5vwcc94qO{ zry1{^F4>F~!GZHGi`FR-&Ix;0I>j_AxnJI|$CHQfqmi}p@AtpDVTLIyub&8aIE0Ty z^h|vJa@2C62KmUj45u+aaUIba^ThH~!0ZIr0Poj%OxZc$(Qz%W(7;iLUN!yY?XaSs z-knfF6z^YJosn{J_k|J3i4eBox_#mLsnZNJ*oA-`8t}L0*EXJo9Z<5%ry0l*t!0h7 zM3oZ;F>}@O{K{|df^JOyMW;$TVxn7GC8YNa2Q@83({f-VCDjX%K_89}Ocjirb8)1K z43=FEnRO6DwG9VX0egKb41U`V$ha)jn~REEp^OltUn9MX1dV<54N}@aT@o}r>%zS^ zceY(v95;Hp{u4zC&Ht?77NE4!VpfCTcH-^3q(M|8??mGe%|%TMDhpq|;k$8mvOBNifCk;K@E#6v;(`Zl5=em>@ZkeCfyMk{vn^V^5IhYBjP=%AYZ z7&|W=owH*9^9v`du`fYQUjw??va4dKuz$4Vy1)uo&l(KjlZcXK9;4IN+G9|+EIUM_q3xn=i z<8vKINM*W??9kcbDoyt?rt#c+ev!r!csDA|)y=$kgyMX<8+T9BI+#UJaBi4fkIh>c z+^Lx}muoT}l)3xu_4nQ-%8xUe-gKsML8L+lleO?|ss(c0yBAy<9v4nh zpnzcp@nL(9TSS-OPjBAhkLh@^2nwrE>1uqP^s#FSwg{cdH_Xu2{;a1BXf^ffTejjB zj^8AGAI>wjLI(tl2yx$b`k;_nCs0WYb;O;UU~PpA;mKeBn(sFlw)3XM@p5=SbmY3$RLiU7+5|wqR?!O=6P1Tjt z4cDv2=R0EgQ9gKx+%D43z5>70G8KEhu=TP4!@z_#DdObSyH2Qn1Br-Ql#4WPw$d zHM}_A4_IUfqq!os)hC48E?;#dET-RWefm0hnFoATF25>)zsH+<>ms2Fo^CKbQ4D=9 zi6!cB3qRjp-J}+JA|gDw_liu*s=MJqW@S{Ezue@yyihYT7PUayvEWQ(gq?JS^@(>& z=iMXSKkdLPmUgYbpHz6ptX)Ppp^)jW4-4<;K#)5w`D_;81uT}UrQS7)(k}#Gut7o6 zg>S#JwrCUXqO)BKKb*uJg6m?>jYU zs6%*r@F^UwdFHgQmDV``Zd~mlx%n_PqjFwz4$BeYLX&C2y%j$142OF>jzkSk0ca+P=)SHjAWJ{MlJHKMvOjpL^ zzT4|q1;=}R=H%)ZAzfgQCM7c97_dk(#e-?~zrpu=r2pbIopD()mtitkR zHFwhv1!8{IAe^q>!wq}3Pop(rr^`_v$-_DtuLYk?LVBW@TRxr3%nuL-uXNn$+S5C+ z-y%ibtR28N(y|_Ttf3@vd};USd}6jj%~t>Nc4s{>x<;8VC4I;fYzirHo#Le~r?lyR zq7P@VNsSBVPvHq^}BtMzRm*oC|8&-QMQtJeEadVxREZua=aE#=N{!Y`(} zvhMjPKBoUZq z3BPXe{uTt2w+qeiM$d0An&k+r6$15s_;#t<_Q~7~f4N>5Lob+-j^~do6q<1z-W}w7 zOy+Kv=IKo#GbIRvti=VB^JfWH@KksfjbSRvqgOi|9)ylCjdj@w9Tr1B8>}k?D?p$Ru6b$N_;x!dPaWlYL% z`sYjfcI`ZB6Ec*}3vIp}k=cEs2sEq#3n|W0nr951r^)HoEE=zrmT?hniZ*`xT zw~sz2eR?7vt$vsHk`&kLmVM2s6PRw3|G0gfl!)GtcS?#^(%xiU;p z-y{Ge@MQ85a=m~|DrS+^>_>^E%4FT7le zZ%3S=2UL1NG}IAwV4=?--vh`EZ{k<5gdWvkLb1`jtRr!C0z6N|?H5U0Z+YZ{$y0vh z8Uevy#GQm!xZZL_@l~=a6~Mf7bHwSeTW49f&arOq^%9zwA)*qZWSF=k$Q8T&G+FW zmnzw@a0K_#kr9C=&%~drw>nuj0-ty3SuZ&O&=*C3c+kIw*~%0{vehb0!lBcq_+hSR$Kq7Cea{!1Sw zQ3orUnn+Tp(M|4-xZu%d)}(mxkYeCOF_+ zx@J*lJdhiQ3QwRTzuc@167+x{)j(HG#Aw zm|09dkwjODj=&4tBpeUNxo6i zDeqzdWp3D+I?PAdXf31_0FV_bGJoGH_uktTh1WNr1;!j0O*Q|CI(+m)q(m>uxSDS| z$zL$Jinnjr-5;hUaVh>|RL~E)0#Pm$;essCHd0_fk8-C!5q^DQkk4PbZWXSx%8(}9 zt@l*2?%A<*!YlocvXAA9Pf=#t^=*fbTz$A2ohq=c77W4!_hxDcb9^G5Z`t0op}ENr zAKf!iv&J@j|CWP9e6$=Pm`#tqcC0@R16}+2{Qe75@DIPRLU8W~|Een8l2k1^rB6bw z0ZTxV^^#JZQS*SsvW zd$NC?uN^1ma5ZGjdwQ+H@LdjcV^KsQHEQA%<@I@%4L4@O;ppe^S6{chESx2M43D|t z;QXPuWkYPtjWsWe&hMYefexbtq~1l{TcE?7wO{wGwUDg6bSxiPjS~A7kBJqiD$dx4 zXW;AsWM9mqjgn7?^IZkuBjFsDn6ze#!2CAn>^@Y?tu?cAukhBIpnELdFAQ0gFMjBb zzVOU@C>C^lqSPzB{Nk}ltU%he={uH=eVA{&^%a>KSK)6F^CX;Hg))A5p&)6rf)-OD z8MUUw0gFdVr_SKE3Q(t;T%Ai%N8*&|W$}9M0=q|}q`$8$8%G@%tJDkPt+qlgTSpK_ z@{J<}%EKh>Kd;=01r^XJu}WZmNaCt3Gsi=I8Uk1CR)=AMB}Y(kV#%pB5PA?K(kxVC z%39{Ng*ZM5-2?et_c-idZ`97OacK5^33f%+7uJne_)c8f2Z2-k$^bKmrY7{@It%}L zbX`Kwqo=`+&9RU8#uBg-wJv6r#SMp5H?B=s42*{-3S8}MlV0)}5f*VT1;`VLtiNkx zM)a2Nfoy=+B!!;#()zeWf!O!86(z)m(!4U}wefUfOtPdx91wrLN&MAP@Ae|%Ye4(! zYLg~#Qy<@u@`fmp+&KU$$&_Zpe*T8mB)7gv)Aq|&cO#KlSF`HlB5-z`?k(hV9gbD+$TX+>KDWW6hJgn*>vQ;(8}k;BEW z-&wOKjVBX{lW%LpNx-l%nbKz11X|Eih$<9~H(7QMyz>M!Y4;*3Ce4~sfWJxRhrsQr z?}E2LWZG2YBd~zo}aC;KL7BJtfz_u|n#p$_biBaP{@kdF?MX;Z?CN14D<_R+X3V>V)DOk)#aWtuX_ zeL&M50JHdOs>QTO*s^vcy&5p&AXi4h4E&L?lMt*Lo|*(FkVHue)m$_Fs$m3ezi7j> z5IqegW{KU}`SFU)Fq&v17fxWqnQD9ks(1}Wjm&ke!z z_2<5@*TX}P@~|9aT%?fLE>4z#LEDZ+eD5X#;PS{^wi$e-fRCLNCq@bvpU?HA0xa$^ zHwkQa3aCZhns6gGu>EV|T4D3KTz4wZdonjrx;3^;Y>MXxL?V47VF}Mg=rUl9B$tNb zhY_~HdW9RL@C`~tbQT}a-IlfK*wSI%jvL?cBt$9z-*qEb$(9Ld5{zp*&xe!i7b%Ru zAP6*IjejnU&R@>Wf=vrH;>B)~ERHm*_=c!tKQgkK2Wt{14`9EeV#KFUCo>Z)$?+O5k}^o)b5BMZS>6My%rr(XuRdq{?ONDD@Dh3=1_S@RgxF zr!r(1dpj|SZ<`>+X%^V9`4)7c9b540G*o~0mwm6mlqRrg;`gY*?rRE-s6p z_cM>Dg7j4`iC34w7lzz*@6$NF=qbWG+GiN@I1+7#dc+&injwicFbL#0oyEfs*AhYp_KEQsNh5h=Xj-vWCnIuHY$2eT z7lt)V))m=L{01o zPU{^l4l%t%+8>>(h164iC%ao8SZAI)qG@|a8jEqV@9o~dG9$qEU`8CF6C1r9VPg<` zcN%usHrvf-|C;oH^#t(_UtesRz}L4fdiYX9olgT*6j|Iu?P`b(8F+IXxWju}lMG?> zYhtNWCx%!CpPfAOytwe?}5cR{3E>D2JZjG8M8_-(a@N{6m zkA#6DMu`}`CY}ic1Iv|LCc4zLqN&1VOW;~vI$X!tmVn*za+L1cTrGqF9pAA8tEvHY z>)K|Q33P9UhQN*24^1PjZZmf*(F z{-7C+>}fe%N4b6CYo}VcE5^2Z8OzDnFPawXaM!5EFxNUZb>zA5%OkED*-wt^+B&i}wu>uQb7^4s6Ibsw>DkR)7TXoPc2)W} zwI9yonfJ|BUS$ys-%i837EH0J_y{=2A}ljbS1Ve(7^Ex0QoBv|MA^?g#*Rg$b*+lc zyw1{?L@*He(Y}2vSK@S4YVrMHm4R4tHXg!}hZp-`&9Y285Vl;cPUP5YJcPmA8Ntri zY+w|5rnm5~=#Xm&Fx!X5KKY-7se%*0}&B?dz4htgT$ z2PHX)FPnb=CGq!s1PBQYWMbkRL)*OU!lxIGYMP@=lhK7Rf)7LG_BWBT6#{u&_`|&o^7sm`4?TovA=*7EK_r$!9MZuEr!7(TQQPO&rv|Ae~y$8 zi;|nwXcaA%0qO?T5Z;p@EHx&>3wpcM=IDi*Bn!N4zu;q>RD_3v+nCZd7(XdCK3JB# zj9_Xh8BzBt9x=YfV;IvVSF8fcF@FOY)d0X)O7GO?N=H64QH7&-Not|v5T-xE?_BZ- ztUX_ZY8fuT(LuFAj_~i+iz1D-P3TZ=q-vt37=H)Aos;d?Z;~REws&~=bN$b?t0ZDW zncUzU3Wj%v@sI!=PQ&{-_XFZ!W0>}OT8~3TdLAq3lZGwF*Nrs8XVJ$9*;$W{F zifMq9fck^2Y6OnCR%}wYZef|&fxt6t$by-)zrCx;t|ML?hR6~|5wSt8|DL3VrKcAM zQ)Kv?+`M^@rgiYevBuj;B4XQ;A_5&UE@Sh|ds~rl(ptSye;*Wt!7-yrI)58Fu{9hq zsyEJbCv}N2v9*80^&lOWBwx2EEqQ#I0I4(WXTjkz9r^*yxjCT?wH1n*GskUfQe)XN z(D3P69aVZb|D^;bxggMZn-6n(O&6B%lpKv2UK5c-#ziy$8W(v;E2gB9@EbJ7(8Tje z1AFKq61IWoXS1~*L%c)9j!X%GznpuNJ1$tLNo<2J*C4nuji@|^`JMsHanMbN%xPSH zm?Wmc0mIU2IMa5dXsJk{aWk@6=VM>qgP#wif5(#+5$w%p({xE-q{r zyLxKD4(F8VI;J9wy|gs_*)mMjFr?cfRnNMrg7n)u5Rz6*>^Ww0RBzFH7LT{`syT2# zk!v&Airx?zZ&1@Dwq>Pb{TezoUqmt-1R?nzO=RtRct1d+RvmGUr12*5xNR^))w@8( zL{RDThewJW=IRWUXR5_U&u8-d`eTiX@wt}4A(+rI82%kf?Dbb#?C)<;_cC0L$%rjl zEKwLAmHFDkrA47A9{znllERW9Rdj#YxuhQJ+!18jIN7971`#@Vf+bVt`fW*Fo^j+- z#+13{5t5&ATRMVyM|SrM0LR`LKTnWpL_W8J5{zkN?E!a<%01)&w)*q$GsvPkJ7fYN0Bq z_&QI2Ksau$7p-N=Y=fP0w{ z<@o{$=_L&RIQ+%QE?esm3@ckklyiImS-IM3Ufho3)!mc^Er2y?4%kso0-vUf<1H14d)$*O zG`45u0)b9wa5~oX9hQ&UF@k{O$MiNRx-BxafQ)De$&o?`C7X=ec(q=8ngh4-R1`aL zpnC)UbWFpp{B2=JjKw?#!4nd&=0@>jG`Ndj$Y;RVM+e0gIbWX9U^jHC#dCU$uGi+e zU6q-9$@+7(P68q31iGkpkqb19iJN2SqiE_6>~~`PZ^lCBX)IueA}_jW6mf^jo3CQq zMoS>W&X;1qebx%Lx6Y_E%ZHiV32)&$1`8JO1RgvHBJn5*u)7bzsl$9=T;ROdM~wri z>bw+y>A~g!1Ud~b0K7WwdYM4B4_UF-Qo;nXIuv5n#O4lwD09x{tKK(90kq$Y`7D{o zUbY?;^bP2Ak}|Qu3NsY%Doe>n<;xtscp9m4LymZ%h;QK~1i7jjaaZ51mG)gsU{3B< z3|an`dr;`uD##@a=Ahf*sbIR&c#bSx)Ev`Ug=uY;6WA;8+AGsYV(4?$ z%-4-IgA3;Yf}2}9?ay@>SqeR(JIzQP&S5@o)p`!uOlXSf$P<>Dfb$0glm;J6N~c?- z0N_9#B!T(lDvvL6#AJu_7x}k`a_3^eWpBslX8D9K@AVq~qUX8}?T~U&rwhK*G#UmU zq8lc3TDJI1g!p*6b{q@~G0zri5BXSfA!iXp76J3xeQczl=Oo`#7qTxCxZ2INGU z+!IhT7vLf7F9nz(^1M_Y!Cq)vBQ(bfsFu8LxZIy6GZ^x*C4u_EkOy60+yFTwbV6U4 z4(DK2c%es&;LilOYXBr9$qflSTMiRQl52k9d&)YzmyOv(cX+~KR>Lyq{tjy%L%&5I zB6RAZIvg7qo_HUtRGuxZ(_va}QzLZhWvV5>9K4P$7y|97Psm&!n>o69JIsa1bM)#o zPU=|j8*+>UTzEWMbO({mKc6kLyW?XZ<6SW9RHp#6=MeTPkJ8m?!J`}Y`j|&PagFq` zq{JR2@KvgEYC{Z@DH-+--%2%(q6siMGrON^UyDFvtQ^>N*zcLd&=y zu2_a@Vwh(GM)m?ym|UO5wCrLS4}_%=UsPs=!LO zgXl%Kq(bmX8sBm}l6|z)s1^llb%` z&{87D_VX~Ljw8Mu=2LQFi;`}wdlBSgc@g9wbKnb z5T#2FQ}8X}0@O6$GW$3Y#e#+zhF-EGTVxi+lQ5Ftu@ya~5Jb^CY+3iy+T;W;x+Yr? zwU|c^6QHq=Z2$rEn_(rRtBo_%6(BE#vE(`3a9mDolI!_1trP%iT)zJrU_N9VXbBPh z<=U(clA`?ekoY|d0H$~_H@W#So^}^cf1C#eGfhdn^9?dYzf4;-SewAmY*0O9o}UEx zn8f&hXnWJBCeHY6_@2qWk_`wDWWpvOV31W*oP*_kI0- z*Cw)ei5L{YxSUm0_2VqNl*LSnCAttU3dJX$G?|5K*;vh29TIwi^&0?Qi z)^O#TKH`l;DeU?2J< zO)JPn*@ooXFv$T@!6JN4XFD)df? zabLGwOpyzEUd>STu)XC@vS03B!5qCIng(@{@F(on28m;R>qlBYqqUE2-h0b+96=wq zyrz=nf<{z4iWS@|$o3t;4Q!|4TH)f{g0_MnUx;f-vjCbiOvrKdx zCfF)+HaU4|D*K1wIpRR=S833%Mvk*)Tjk2QB~jY>B6)AT+36y`Hjo3p%y?3jwA9$M zTU_}h&FooI({u9JY1@dPK>uWy>^oQ1L-Nt&!BTh%^gFYkHcFI<w^jJ6##g)kE(*E>!uU5saO_MLN z-1rn@v_*&X40iAF_NCODT?{qVCrUjz+E(iy%e`BlS!N18_y_f99g@uKHYVr-*%CS1 z22DU9@viFUU#|ZC;oaXh$g7L^MrjtZwT{;Hp9A{Y)$a8Kpt&Lx zo4;%B31m2QsZM&oBI-1~ZeJ>d!^X;%YrE<4j}Nteak}K^KSloC%Il#x8jrh%?)41m z9UlcVC1cx0{gQbX=CtX(^Q}(rLPba zNh3u>bx`SZdT(HNz2CV6F5=dk!~Y17Tr@MS@@NcZ8?+0$0iO&>fZ4$U=-GZV_^?)Ra@}*{TY%0kIfdqyQJDrl;a`$30o!4cL zl!7>fJfar%Qpve8rblAQlw#7~joN9kT8D>Pre8-iaBJP$9k){8-5witv4c8FxFszQCBAe0La+x<jHNPqk& zI-BRQsinOdWR%!f#bIBxLCs*YMLyoUBqaA`NNS1i2l5ka!l zL8|#i8|tblaqEJdq7+qbig8$HL>o+>8avHiMA25Vu~O^)SVtGnVyhI>j3u73b5WKK za-%LvO!DX>8Zg42*XfGKlIr28)DkBiX<8D=s~HP!=?ub%kb#m&9_-UzVo%a=w(6oJ zv8;Msn0|qvDkOjJ`J;QIL)<}Vz1e*P_8riXT1q^7I{k3c_}3ki=$&C1x~#7|p%I;| z$1JWnE6#<=?{tn+N`eDBf?EbpbweBr>J~?Wb36VD&kQ32htJDQpfU(rTEEfRoexoQMYq76%&8>dW}RK#8a)67 zC+ffmd94okwsnS8DZ-ej>>?c4Zbu~~Uoi=;FY$ON4^MkbuI=z1+#601F>iIjAIz>F zfc>63`p2~2uJ)2-CF!A^(y4YQMd!jv3NO7`{26k^bP+rvoPEsxwLVE$L^}*C#}pC6 z=5L;e0uXp2yCdQRy!0yQXm7z(wD1gYi^Uv)$xL@1(gRmD16FsFK!=tny^GrP3MuG|I%;4s|+GQ5be z9(1Br?%TX&LNgSZNQmu8TrFVA2k1@%JpQ75%9pyG$G>wO11K2uJRH9-|Ett`=*7{R z+Sv2OCeltreVt2f^N%4amK&m2xJ$WDu(CTeUY5|HGoMHfoXONBo}2d!YRb8s(d|DT z8Jv)bzYaVVwnh;>eeK}U$)_6bc|)~*Ki)q0jPA2>Zw$sbxpJ(>Zdo#yIZoM=yZBVr z?WQ>oa1_ipXFn>k&BpXucV3FcFLGkXt-OoI^CHHR4fD^{FHL`XL=q@oe$wZ- z7b=-7UT{)!Tk&)-A|qzdro-cVtKH{gi6b9={Ma8Z~(0 zu&(vsqNvHc&a5ScHSLYun5U{O-|e8P_5Pkij7SY$3PQhc^=Fy4L=B{7QBY4q2{*UJ zrDTWd9xmmqXkk!Fkrqv6*$(F7LnTY^Rg{9oVm?w8v}3Fp*8g?SM5WC=(dt{h=%%@> zhPH8XmZM)=^D4I)zN0JZ7u_3uR=3<@Yjj%UDu=5i`G8=Y?g_lp7kVQQU<{3R23H*C z7rQ-toF9qfyh;giL!KC(Qk}=8HE^7Z2Ninfe#21dq^_Q%?as@1L-ff}z>DQshO4O& z8K|NvxC?8exQ^KR%U##;$9b_03A|a>9?vj+Hn4e;R!9MnU`JZ(KzT?c_U3rrv8}U zd|{ja&1If+q|Wak{X7&^Sou=}{XvEQ7NYQ!|G|w1D zzn^j6-}~#lAOcy@0Z-t>j0C zC(@HX;N0VWO`Klk_8DOcR;R98+G5vR54H zaB;dy_D$0=_lllL^ENxBJm0bR(p2I7g9LdwcV}%kS`L#b75d=k8AqteS5y4wjKE5T{->shg(012a?#1EN4l2a@x>MgA@6W_40@@BN z9655@GyRsVFg0-8=`7(Y+oi^k9eY+VzS<{Vtqe$OI4pgWHEnyue2~^q9?D~Nr6AKz z^&u2gwQ$6q}@@x-3P%@J## zkB4NXCR_!3)IOxf*jG-uDpClpVCwCR$hvuS*MA}DTV=`I`+x3KH;-R75np8bf{>MS zAjij=vQytqT2n>#0n{Z<&Fid{`X67jgJ=IL&HZphiml-pOqQT^*4&uzmais6rFd%0 zr*FV-7FlwBH7LT#v7;#WrmbvzR|I=HMv_+9(%Uj4*s&uesGzRN7|R{*)H=Pl?P9SC?H2+?)l* zej6XR?%-+fpB8)d?4jGcDwizH5UP$avI{(^S%%qSi-noZ^CS!2cKv$3zeN1d?3|_Q zaDcIGGX_4wp$0QK*rs(MH_$T@A)o3R=7i!FS}02Le|)?Gh`j_%9NrSkD-#o6(?UlH z+PEoB|L~uPe@66`(|NFanq0&*25i~nT*Asgb|jfXd~i9_z3NALIMO=s%95`P}b54}A6O5dUB*fl0p>>R|rz=!2)Y9Hf?ZUR@j#+0xNBk1}+8njgZJ$UX z1|9G_S?2xrw9tYjOlZV(6Fr9{-++6Re6zv3(uK0geFHb{1zDOlHtscgaz`P}OQkZbSQ*P3{;S))xtNt+ucangZig=8SE(dfEQBCU;b{!% z-a7ZPcEWAlJkG2P%;9Wy_m(Aj?8HXwQ0>2jcM;#Pv1Lf`b59o~Tm9W~)RWq1%BNe3 zSz#mCZmFHpaJ|iw-c3;Br7^E#IDT=`39P;IV5;L7%RhTC`eknYXwH0W*DN2tV?gK&+fiPK@90)B0oK< z1k~5CmNXu+TVN;xTmx3^l0$}On%ym7w^EPdub0oE^xwMHN9jm1C2gyOxuSP-YRq^tE!E8dwEpQJvZC34pxi;s`*^(YkaX ztmLFPjoBgJ42|8>^6TY-jVs-9wW2P_#V8kM$(Jpjm8uyNI9_Z&IY zXcm$Q{s~X_Nh+6IsoNHXyQ`dg{>{msJD9;LL5`N+2k{1^qG2iTwbk_t&P<2w>#K3& zh`&TqZVt}qP?1)t`8r_A|(ZeURvcn&i7}LehA)Ld7p@aH)fMu0!rmtWf@tGpu$%rNRpk)n*lqXdQHF zS8T|Y4EP((;NCh`8%9#f#fhz~WkXZ%p?~)R@>{|^OwQqHT_g?eW9JdE#>`oWJIxvr zwW&ExcukoqrwN8)q)ss6%4u-_jJOBL#i>%bNG%Wq@syDJIF(C*mN%e6Y5{X0=5|c$ z*oHYgmh(kGXqEFG;|{%AK3h&H8nTb|LPO&?cOc1-^E(Jy5khObW()v;i#r#|sntWA z0bI9A#jV$JV3o@Wl|#Q)vOx|4vnY*2LKXH#gw853yCZ6Mo=W5-e^CcHCu*G{AjdE{ zs|cr|s?ILVO@eX;25o?8?0cWg53fPznrsc;$DmbFS1x6hc?zp0IH(wywZw}&W!6@Mp zD0RD!vy-*1pNSLA$dt!FIkc&$eGNQMloBCzL9~J%HSCL!i{$WFqSmoW?HnK%+_bv! zPSK0dJ;g@>TP4^(l&&t}I#)wnpR@FpgTlS>LZKk^W=n%4Y~VTT@wh= z7PW8${WuXch7;h6?ODsZ^375CyIqudo$ zqrV_-2udz)5Cq#T{fCOb*MU1R8QLw zwl5<3@+WJLRD4Dn739Pxq?yWtg!j#k@8g+)ySQhp^c2*sP3tfUgc}^6^DoKj8D=;r(P368|d4`^U1Lq#vas&77W8yW1Py8>9w9>DLSDhgfA8oL4< zvaRd@Gye(7k0Klvswk#C++jlCEnmV##(AsZc96f3UyWp?O7mseY%_o%?h9IzY_c*@CiEq8EN-YY=v2b+FTaoA=-KSBx6 z@{4hYEno2@Xn5Z{cAJWs33%sK%U-ESQ=Pd=6)#ZE|I6x49s&<3q9+94X@&Pyv}_eG zK+e8rrDvn;mb0vuzaesiAcJ@w)4)wd_#=Ro8!Xabu$}9OQ%$~jHogxZ7YwlsiPPty z-1~r<4jdxnTzj2}cLU#qa#9hYD@1**5{yaAl=p;Qjo+Or70q4IL2yHG3^NfN|kQ`KG*Q>OLVVgyMT$r>6Wn`j^er6_m2Xqg!oOKMP6`*^DpKtP1hFqV0@RWsFYju;a&dCHx%f=te-qu`Xf5psQ<=Nlm zBXBuUb%$2g9LexI#yqGBV3s$X(bc%V@c-wg683(VfqE+L}9jXJ%yBB|_q6J>h+;3$R;q+CNtd-XaKF6=i|MTwW+0$3gI^_F+ z(SmOKd^I||_dpJ=KIHJeifG+#6+YY1l+wl6AHF7{m$9EqbggeC>!ynNnE2Q`A-1A?eil-=FP`@{*_f0Z@&^=kU- z#ont_O#6h9jnLBM+^+jqH|G9%6QL$$UD^Ns!eNw|xs4vz$9;~_vaK9}l+}UNZ$j9f z5U0#a%Zwtw#bv8!?D_D%Bf)*K+Y%c|}m-d|`muITN@((K>P+#&tjfyO^VW6$Ni_Be7jF z(CRGY}0A zuys>D5_>L=9E{FZsW|;8OMy8Y)N&FIe^J!C9A#`}NiCC*Q39aP*N`7eq!~H$txa<|w>EJN&@bJs?xFqLo`m(0P3B*)AYw*5jCGIY?p{X4$Xmu|a!*s>aNw*#Io z74N0mjeN_UK9^EGH253FJ0^AU)56cexX&t1ZuPJkFpOqyuvKi&b}?Rc-xIf8i2DMH-7%JCRlM$8e_tF4PN&dLXD@&bxS0q{6s5vpBthLr7gCJ~|GX zT_tkLMy-3gnHF{A(4$8`2!4lhq%+nw%sC)uZEQ+c6ZE*Ny08Y9dq{e%loWxxDj;f3 zrX)c-jtM!^{^Yd}2~>pOidHymcJQl5s;#0~TJAmM+u^-`t<(x(d(VX$W)nh#9md|J zPHk{;ZIDpS0eKkT`uFGAawr?)^+QxYxhv1=`W^*)%q&Ccs4wPFJ7mWN4iUSA;K^<2 z{NQ_c7w=SDBdw~6!fkhZDQA?;`QhI<5-GvZ9al;%HF3!gt7%F8v42(Eovc3Qr^m*q zOsHjUy?Cih`GmzDo7$Up^Hs-1aQd$aM|Xy;x!1i4ho#@|TGKHZO)HXAJRxKEe$2Q~ z^e;1_Ww3SS^}1LrIVDW@h%e?FIf2ptHI z+@5r?vgBnAJasVbtNa&7Zo34{JJ_84ZhVR)T#?^~zbhPQ1h?61HCV-cSK9U7l{pb+ z?xf}Xo8HkI$dt+G8uqRLM{FRHeCHxvwa2bG%dhjbsW)Qvo*PP|rq!){NxBd%^SdP#|j#7~5UHf^`(NzSA?k?uysjxfP& zup{w39F^0eHH3bjBi`=8th;62k&Z?M-pe^ zXty9q_AZVSHE72O;k%?%wnG(E?%>&HR!K51+B!(Sh0aMu>_k)|2WfGx8-pPr~=6ABzc4^6v(z@*BIZFxawLoFLn(+P@wWHK2wabPv zXS8X$T$UiMI?`|kOcGD|pedm{w3x!k zCC@g9X7=ITB6S~#nww(F=)<4U{Fu$DguIrG64M zwb~fV&ctYmILgUV#ZLfQyT)BrG|i~{)M!^z21;p3$^%Y~GScWAGlTljEIg?s*^eaF zbUR7fh?lxX9puC`!yE-#k%~dgV-FO9V^+O{ElrLd&@+qgmAH_#%*8zlQ4=5|fT)N~ z(}}7qB|&4OMA5uvonwxs!mjXR%=PPV@SZ{T600{C+nu;)QvfjFly@aC^9(_j+JkCl z<2nbUT`MMOrA-DTW`RwAt=qa~CMtKTmzBn^>Ziptuiz@Mvq3mPTaqSR^!e=cw|x18 zuN!?F&lq(cNex?5ad@owTB&##-y4!>pCL!J^e&7kw-*kyDaZjIZtVt!=j`n^@_4p< zLVx2|5kFXF|HoHng^bF(58}O|zL|BV*S(_T%~z(y2tiTtv%m|w8~=TDs9$obV`1B; zs~A(XIY*BA1h<)!4TX$PSr{c7Zbw5YXIAZIBjgLS{t~CZ3B5$h%Ga8Pw?gGrcdpp@lH|u z*ed2iJLc8bQrW3CEX!(_h8QS;vhT~YP&voL#9~*)Rxa4%M4gh|w1RQ`@^8#d?fOy- zHoV)$!L1ILn$0f7ylO>@95iK@!kP9B5@DqyV`*2M+c0>z12DMvJ6^Xm7=GXLM8w1) zY1;!5Z)ztiXApMWh(7%Ca?|B6b66k-)yiM%;D8=&RR3|1YJf8;kgKjOJW^IWL}udM z%Ue~nEDYU9OX%}Yl>$erR+5J+=-v-?Py1nNjy-8L|K4xn>xEaUgTx@piuoUfptFS( zc$~3(JtAcFviZEwU2K$wxV&j(?>`?u4CSE*?Ze0}? zd}`mV*H=+kMQSVD4TY`g52_{cLX<>aijjgQkyvRObRxaAl#w=iruDGa3CFi5bXnp3 ze)05^mhx%0nw%?a@-e<1OAA|5bf-S1vhEPCEE1Ko!m!Sut@df6>MebBqE0wOlnz{y zZ<)IJOQ)AeP76&_2pf5%FDXMbbkNK#laZzseN#B!IPUxWjTcwF`sTM)TyI(% za?WQYugv*-SorWq$^_9LbaaikV{pXzaj)^vTNyk5Y?-EaS^F+C1@8cl9wl$7EFS*+ z%s!JKrT-0m^DJ=vr{0;|KWqP75|lmbeTIP&!9Eu8i3NbDcyZh!al za<>ChpT+f@yYp`BM@O;Ow=Yx2xAe~o{^Q7$X)iyWIRDG#$1}nws2Ksj6y5CXpsY)m zH{bo>@7zJ8ny!EQ7T}*8w5HJ2FQ?VT8k!<1PR#u#LjA}?yowzmBduEJ!}P-=nZYvB z1bg9J3JrayNB{17_27!cAQ$iAO$)G0d?!uQIc7FfJh6Oc*X%FdBkjJ@+6~lfJkHUm zqR+e7K<)nmIj1Ar!oFbCio{Y$F+mAnH|)J#+%)dMr@tiiW_rKq>C^-MMF(@X{PQWu zk6R_>&MDA|gmkL(XFfOGUM+Aok;-mDC+-F|3an_>|#qqp^dw!%kDOi0D8GjelOoZS}64TQba3d<%@Mw7^ZvR){w2D#CO+Suty-Z{5RT`!l12?QpvW@Xn#`s{N zyWxxt*3Gvh_4`k`@Cfc0^teprjVlIzVP#-A%L%})0 z0}U3=zT1=-g0@~mQX__)B-+(Pr2HK;Z6U1_gIL!nqAr_=1vslt=Txxj&#~^G&`X%9@^RR{8DmgE*V8fKyhs z385})^S#x%ceW|lnN*7%-7#qoaInJbY}7;>ya6GHDybWI+5#TUlbAGxASYYkAQdeN zp{5z9OtZifRkZjW`$7-J<|}C;dj^|7yjm7oe>fr+gU5T((s0t5Gm(ymC@4Z+N3fJhS41_rD++TDkW>tZ_s38Ur&Cn&8R#ltB41d%>nG znI1=;%cELLrX`r-f1MxV&^tTBSPW$7$1cZTpE{s@QRP*T$Oz4VU!a z_C6{kJA;In!qa7>!+T>qOox({M-~IhgH!R-c(8|NYrKUNPLTaD*aIggIIfwZ zBrm`t7tW(7v6(Y0q}eKz_MtEoYxXcfQXWY~Ln zu}!^6qEP>#PB+qxM!Fu*4ql-Z7|BV>^*_t$fYy?QlCn_7CSGg>MvK8I=EKL6DG&nz zS`Fu%g^`7tij9+vs&Pr^7`+a))BdzNBUNc?T{?yK*22^S%AhkT8>RQ!=nzWZWv$il zNSkcbI)p=?f3}XG`D@M=JRn)g|cQ(#HIjo1o*10B9x)HA7ovz`*g*YP%kl)y2J~cFdz*st);`Tj# zBAH>-Q2mYcYK)xNd&Eh>83wciR_^*1NIyBD7(Qbx%pP8pl|VjHZto zcAfI#10m@e!XA;)4LEC9!#aR+=~nv$#(1Wp`k{;Swm}*G0OQ(GjRA7 zN~iOny06)HG0I1njwqS^CiVf8_6B3sn&2x4r^`Y)Y6@=9KpQqd6(-5=2pv+fY5^%t z#e4_KrijRX5^xeQzq7E88Mi&R(mJfvQ%cq;tB;BaBF_K3wb6-bWB*)=h5z2=ywpinT+Lv zf!|ODWE>y;g?o9Fyo5)s&t$+>xZT9WjBv2B(Laomfn08uF-PgFN(&o9K)Hs^M;VWK z;Hs+h7Dkuhj5|EmHOzU5azPGmK4oIJsyIt+Tr%b3jsEy0&%5BUBXVOL@Ft#V43 z?1!CwGdLCiVax#~eYuVH5WSv87GQ)X-;HSusCQYk)mXnU;x1E+!~14zjK^(Q9SguWXxs6 z{6`SgjIbMsNDEHnSd*Nsv~new+5#*VhRllG|AzLPk-b+1$^o}WLpy4MVa*x-=nr2R zSvQpoPYtWz#Mph8lBk)~gR$%z+U17Ss3FZp=1K4bIs!Ltg6tunOwH10js0Ij znTC#$vIpROKST43$8Pjeoblwv#M<(RL^mTj9Y3=75OCv>Lo-wnQ&Llnq_1ACJCK9Y3dyl5^6b0E9{v^o13y*p zYVH_g)B6>a!8;ACd7+6EZ9E)pIRUa#C$`=Ab+}9|+nU^~AqvLw-~YK8?fUR4 zF;8=qf(ofAxML(K71}jz&ga9+&-;#SNFt4;>ckX4ynnmrYx&;L39qK&uH+2|qM_lx zq136juaRSRzFT6;+wjwjTO^d)=%~B3_TgV7?AK7fK6!~I^qXsY7a#jn=b$0Y`XdDy zUHtiPsL}Dw9T&eNC%-*Mey}0r;g!5d(m#Q%PwTQ$X(NfQ=rJoeMy z#nV4;@ff{58NIso%f-v2(_>T5PaM^4{e0WwZ@72wnvey}10J0WvSTV2mzJ zvmjJL2+zj687f4*?; zTZ;Z#Z#6Ua{@gb=a{X@|yC-I?+Y|Nn>7}KSN0vQ`9(ZwX)89Woe)P|#{at_me*J3l zdfuzwt@f^`WuG>#N@)4@){*HKARuhleEJ+t>)!R@rBFj$W%>cgt~XNBF4GHaW`dpi zvPyQd5LU25$$=Knap@ za|xYtF!6ty@HmIjiVybWE%b_f~wM+@5Lg zrrYrHV&SQ*xdsjuwg-Krx@fPBw2`pmH^WMDBlP@s77<}DO_Rl9vg5J20uU8DIt!VU zmZJbj_t&%Izxt&R8Z3Q{@I7PJzkPV!8GU@ffdz2nNw*lVAi$5JvTCDfOX4=eFd0PT z3=ktHSC*k6Yd|xwDJq?`(q-ZddvA|G2BL|Xd8VFJ?UB9Y%^j9Mv-pKC4fAxT%7x$0 zDP!MmE}ool>02T9_nAJEZ*CKTTy088r9eAp>fd8MQqAlg9!Wa#wH*}VJ12N=&k+bK zuJMFRl>0(TX7RM@Tz>b~$+_2PR3FJazH-a5*g>9Y@b1Kj452z#Z4IX zF$(W!vn-8@Z3{75!;_9QXf60ppA2^8mZOi5*r&{CV#i?H`Was(7hS$u1d8r#g zhV|F7j5xVHR^YX=OX#-jTKsqOV_IV!{$1S~=immLNI{imUIbQ(E zc58C&<|&GaTs^>YluBmtL`=UO^w0cr>QGryd0#Ab8w|7V;GV`=%!07oefcWN&(?w)pn6 zgQKXvd8~Ww)~IjGZJE@W1v9v_5%S{2i1&LAc+$1P7;#_EqYtk~=2cEvJ-C?coD=jX z3wYS%6;7TeA^VDwwX4(JE=F|&TS>-5_5@e&8ROxvAF{zc4bkny-C$ z`IxVm__{-M&O!w(8uAM=#3xv#o*94O7F|PVsdEDDelItJnWh?@M;5D@sq|sT9jF1$q+uC=0H+E4B9)X) zZuhAGM63_%y{IX-gKf2LLl4%>NUZXKhbPl>6CJ;E3P6MILuioqkut9~l$mb8{A?pV zF?KCrtC$LAA;!d75{M+D5cy6#kWj%SoYEF|n1@z!*lnY=WM7V{R3=9EwhWc{42STxeX&IY&9M9;pLTs} z=cJi^B~X`^;gM~ri|J8x4@cVRc8dcTfg{difS%zcXfrghPA;n6NpExnc&xBdL)K!k z{Clhb;Q4M>=vs(k7`fuUg^Hnp6tKW}#fzNJ)W)5H$OtFk%KLczRIoQqW(beU10`4{ z=e3s?Xwy(T97#NP)36Gt*q2TNep*;*s3HWK9cZ_l`*jrUuwfx-vB+hDGJe3%I5ENR zhwlgkscnN;_HZnCbD4;ui?4SjvvSfpc+ub@<$j0j?le*eAhb?~Nr!>B8*bBtfUyC) zhzyG3#Kn4K<^m@g1DfDjvpeLAEdmTS(Pyc*Cm3+YZfupSv8FOwrC!7qS3TadTkn7a zI}ArT+315Nxtiu|d)vLrSj%cuF(V=08xfe!#S%!JpV&cOhnLRS?9AqCCJGh26K<(T z7-(9D!^m-xs2KTyzfFFwmeBhR{!RC@$sHqjB{B;j3vF7bL`Qfu!wSpobVdgn!2J97 zB)3sanChr=%e7J$;0m@U5Be`dMVpOx6fY^)xh6@OQMWtT>!L~)pSJJd(-zUQK~g|{ z6E!4JUdG!%u7dzmSxZm~lw^YwGUZ5v4xCe!j-|dBlkd217OlHOo{)5nnNX`ZSEq3{ ztouDVwMVXR*3>(NOBHC5@|@0+mA3Y1^k~rl&p2DXyHtMbn^^^-CKV-((X}8s@s2Tn zrCy3$XMpT^HLt%Mdf9b6J}>8vP!V?6XJqs2JCkp6)834am{`Wj%kQYtTMlymtzpI1 z^)Bs=r@ZjHhRjOSRT=MQ+cL85$E+?mb7XtV_hFwO^TR;Aw%fHCt{DYr$g7hEBoRj&7z{BM%%i)Z@xT!cr*E2@1mRUcTaeML|fz+mL&gK z_u$L(sO6hu3-%j>MyF=oW}LT_Cx19N-Fr%mv+?%cn;)8{Jn~F*rdtjqe>}EiTC_+b z?>{8_c>J4xU#aHONp$1a2RzQbQqR3`|3J)NC)W?X&RBlo;frM-UY~b=n|NC|0|2*o!iwyt-eG$yv&7Fx=j*^O;Fq#eRRW8mlr@u98aiQkcVga?t|2s7-JB*G zm38QO{))a@1y3i9H6jh4q&x+18~g9mKanG`wLzS9@1LIi?#Ns`@?U=V=Ti`du2XOJipBAd;C0S3qoows=fng3DbR6>T~q_D3>Q; zJ-b%l{@>-vKYTV3Ng#2sK2gTXyR(ePf2l~WS59TzmM+FO zc0XTx&UwYd^M25m?b+dLcYQz8#kJ}}+PW^E^fK9PPoMuidr(;qTT5p1wXtQ{w*{+a z*4!e6EP3o1&wB2oeDl{Mv7WitA1`mO-)^K2yU%U8cqMnYIw((I{>Y2@5||5?h!nK3I8Ys7vl z)h_bb4}W*Er5ay7Z{Ej62j;tIPsg*R626|Vx*;o>MRiQ`kW)j@PB?+2|*(oD(?fceXn0U5T*bUfPQ6uzbeCg9&|q zcO49RSVI>lTgMju#@q9|GVY)Pr9F|?q?{itnZuUGi_23!ck&WOR#7;sQ9**!{DDPY zY3k?gevQ*L=F+3)=y!U4GRg!zv_AhTJAvM{?7ZQolIp);(cEF5$gzJgMi3j*`Hrj+8!I;XrF zwoYNRo|q9f(Jo&IsqnL1okZ<2l?tZ-Sr_fvKugb*v=+NMBx3|0VrLDbaqKL;MOT#i zg~(t|OUt`r3<2uy)oR`ay?}Ox*U3-mvl}&xT{vZc7b_`q43VvM$%<3*OB_=Q$0V_W z#TZ7PoS3Wa5UC~nj-a|OKpjvgLbpXBbUyVNzW-8*qqAi^IPI9M-`+*qYAlI& zQrgD|_S~*?uOlI%L{h7V$#WKc30m`7;QH6MUHfOW5q-{3hdL>|x{-*_NVg!{{nAwY zcx{33B!@OrU!xaLYj^ZfB1!@3FwLP0kl?C@*%P<5=Ax{p}R@JqRT@YW#ZjC_4TOw0%-n&8i&KOwPwkGy6Kl#kK#7w>OV! z>VEr0zu7xG*%{dhVFpRU6ebOW2srJ80AVyBDky3|RGfpNQj0bT0Rke1K}DrDAR^8I zQE}=o3@RvUP-{`C4T=@3ZE>ijtu1%=_rB-6XWez~IcMFw*8Q8cvRDi9Jm2Rt7KJvo zmN~UII-fLj1@%fwF{QMedlGWkh8Jb3Vdpv4ZWgPPQecjH7X9TcZM2eR%9S5^rzEQ))hd6r1ScBWf7KwcY zCI(_7APvey(qXzIx{|gs{l=v7pb7orfWuBNTg-v!!$k??DEkv?WQrr_8r4)}lMT8f z2TA2q32&UA0{2}T6cw*lJ2@FO_PtelmSdv>R~hSGsGh`Em>o-ST-ZBMys03|wM9e? zn%qzsqf&F8kCA6OlZyP*S@0n-;__HPiLHPpEf0?tKfp@^_}LEkmEqT5kFiv<$+{gH4S$t z4cAS3I7arHXt$z6y=L1lIIJbLFzJ+IG{91JE*pHtv$V+g_ee$SJBH8qJ5oJniD7x@ zGL|Ad(UD9DVNfe+e+%Nd;!pK*tAN~ZkcgKwgk^U;gVzqq9L(keTf&SaR9q6#+{z#k zSt6m~-P0e684?j}w*%wA7CYWYOnR_dsH_D^a(B23Ep=zVAc=H zie*HS*&;{-wTWc=GTqlZAcTlZJEYDh!rzl~ z8_J2lw3}6bL$HOTcW64y=rwgR)5O^c1hrH<3Nyz)B$D)9mlqj}f(%tOIJC=^X9Xdi zI5WG@3O{J^aT~WlzSfxSU{oEFW}xH^by8O=I-UAkDQW04n>+FnkL;4eFZaSA#=^!%ishm)g0*6v)(?4{P97`7SI*jVMwTHRo z;v3}VDovc+!%-zCPbSiC*g1RcRvWswCsmrbiYVt(#;EZ51H0@Bw03K9NnTA=6&Yfo zJqa!L49(i51X5C+sMPO)in*cZ8L4h`MQ`cfJ85YW`n4zIu)=|oByu<9307p&oV6=B zN9b_3#m8%i!w9Wyw0||)P0k!(yNhGnE{bK)LX5WRlNL)KBUR@TDa49AtOM<2UNKcD z^&ads^6L>Xit>eXm$6E8Ka&bcbZL`^(}8KS2t{6r3V-HQHV%iMPPv==)p-Z|y6ZmP zfR%1GOT!4YOixOYc&(E2)=Zj!*5}b3)uca8^RJV;`0Q|*+UD2s-|Q<)a8bG!iSS{d z1|#L$T_x>omXofuxkhn9<}(-f4?)Rb8OI$?e{v2s zC~ecKC&O9Lzs4ASN+wXiX}FW{FcNPF@&)AgXD1DzNTdahG{W;OFwvOT7YxrdlH<&d z$zsvrAo6rP;=-?Cu{Cgtd1t-GsWb?VHzE;YWHyduDPUive~>CH*5EF{$n{xd;TZKZ zoRsw*K0a-Bs8TTB2rq`oA$+9vI-($?0T{AqVxvdTJ9t?QjAKZ=sp_eKJl*Iz^%yeS zNcQZ?A#&-$Ql`!BLL4Iyf@$Y`MqbZ_W*R2H42NZ0a%1=IS*`H2AUMaHlg7NCs~BexuXl zU}x`kc&1Wb+UpFFC>i2u2^cx=t@A>&Q%1LIgo<4J89Bm8el4$?i6gnoT;>8~nw1=_ za(^sEB292;s)#)C2%7WmfN*1_{VD;Jg3L3=&ss%JGkr;X4_E7b5>%63kN{EMx=@OkH#=e|x`6?CrsztJ@dYpVA%T3UVD2?udG15Xj!d+?9c_R5Q zf^07$t7H{FkpT+_VJ4eDjW!cv)SX|q^BLJG-Tl{sNy0X#=}Pa~jrzF?xAX%@y#$j0 za_x1edV#Qy(?ECxk7i*n^PD$tbBFmsW>-K9T=jH*IbrSAh<(&7c9ljp`z;Ix~Wb?FqrA*>bnCI#ebmp3%^{S*b zQqy|%t*!HP?i)Ys=rPlG@kiKywt9cwCfeDCu7OWHvYERr{N;hR;OS>Wr}MBlgXu4` z4Ktx_>XWmx{ygiKcXplWz{%f9&*<&)gYEGQ&U_MShiXNonljtep0?;*f(wafg+VoW z{*!Y{UZ2f^PcNN*J}1GRMEXCt)&V#QTu6@p?d+7B_-b$Tpkrn@ach^LPVu4PIRsN- z?~y&!+j{thjy`k!1JOonZMDms_)tPy&-1lGR?EhFP~ZmC%zlYQ5bc$vpjSlH>g_<< zf$;p?`@Jcev~9E6X=ZeuCi>7P{$Se=H3nO^7`v8gD<&YXd;<*2&_Qj?YRED5y*_cP5>X*eVgYO2fg*2h*#=?D(!;hyH1Y9Tb#%t5cB&xDo z0ib$xGfjPqQ#QLg@lm8D|3=IY50wKDpSc=@0`&JP2xmISA>NM~d(Osz*>}hp8)Nu$ zG@Yc}-#Joc-qnz5Fk$&~p-+|f{HWExzk$omtD)_@ejOPv7ti;z=P}fO*zZdfw?DL* zt>aMEiPU_>_IIoYJ?YQv9HOvqNCvv^spZ2x%-M$X^K2M@ZLOH9djNo~+D`UlO(C#K zix@}nG#KGEQS8388)1ZkT8Y9>+%8gtm*o4ffgSe)&y$mXuP^YKDGPXkj{7w579}J4 z>m;!a*pKCF@EIRFJ-{+Z#c)iKzvY2pVA9|hcptu>2F3y>JYG*Xs`)s z5y`_oz;K1X8?OSG)^MENzAKO%aSvMBYF0(rmk6Y6z(JcJkk=A{g@fK!XW$NuY%ohE z*^lpCTYWPN5qK!3JO;Q~yUWv-2^vshTR_(uN+f4U3I;fz+xD0fTNow3KtVWsu?ARs z@dc_7g$FE2HE0~_g5z9%eBh&?9>IzbpahBv{OlW{Wh(hEp`sg@J@mM^f(blK^E=6` z!rQ@y$>ggZion5sQa#RB7hhZR{B*e*r=dMNZ!&%t`-p`+St%5*g zNjnhxf;IB#>%z1~+!=_0AzBUUgK2=ToJh5Vd?vyb%;seEb)PLB2)^rS;xcwrb3o%{ zK9Jr1NQ2`VZ+9PAmB*IM{J>E6KtUlC^gefWFJ3&ZATLML;rC~IGlP=7fFfBDu^{u_ zHP##*C-CG~HaW*|EtO&RgUTSaSLJxbF1*yS{rZ|MpQ>*ihd;ZAzW5sZ(7_9J6tYVw zr{?xDC2>8H2rw@2k?auJt~;{{GWUDE?nwy*Xv?+7%#CV|QHxdLcmUc}p$R7x^e!d% zcr`19U$HLJuh;30aWX(FU2R*`k^=*x0on*bMVjfrP_jKR#|etF1(6^MWI|wYkRr(x z8IlN?xv{%w`b0^LVT-&mi-PsqRE)U;z0f5KGEN0!=vwPDmd)IKFBX#2evX}De_Q!m zAf{!HCD}e4FAlIL0P%X(R)~YY?=n=ZY7r8YL)Q>c@6_Zh?w( zX}}_7He-4r!0B7~0>3K~bAV$5KxTHY1S%VB98$mHR70OX5J-d(2EY28g$V6>_uuB& zKvNXI{YngLPYU+=%%3u$K4~8?SMqXhMw3j@j|~=FGlK=T8isL49H99|B-U8uSdxKt zl8lT+)+}doW3gvlC$s4@ctd3d#dmFIXtvP>tTq(6FlFQ|jybC+jT6wfO8DWinr9+}u?9Fq4JmGp5zcWTjx~N$v&w!q8 zoQCmS=?E0j72fGZm~&)Ix!Hp`bgbB`!yKJ)OXKuLiQ$(-K4&sW{2u|Bdd13sGlmsR zVbl|>i4lpCT&?1x4m{68pXbQGTkmI}#et=OXe3zJpx*IU3?Ctg!SkkKrxCuN|K_7u zwyK`*n&ls-?qU^MYu!h^(Ag>}R?wL0mHvV+Y0+@hMx8fV6h2WVVYgXiK=sP2A@sKW zUXNm@ej_b%KWRmkqR1m4i$=uWOuE8{0w+`g#8f zrbGp4XIJ#wPN^fg`UNfU%^d7p;^t(#Fx3DlaB|w{`h!g--Lf_>w2#)sYc>`6d@xcY zM}usUw&Fk5lbEp)KVWeS4(YdebuAuOCmtS<>wXRb<<| zEcDke?LPl%O!xMqd4fLmQIK?trAWx@q!n!GDsZ^J+ankl5g zVVP6d?ni0N&Nka-BV3P-%wA-=X;U|5yjHQ58eWW9f}2&BI$aMP|d1W=+wR!O&?%C?*S z@)2#z`mNG?H3l!2p+H(*Z#9kmC@--7`{wg!=WQJGUOeFyj$ zGuU4D;W7$+*gEYH@;CP@GU@ItU-|YgRZI5|ZkvqmkGN1(ZO|%epvkJE?MD|IR>ckr zgB;|ir)gI75-}m#!st1dOc^BmO-k#pv@!MZN34g!H7>)dJ5dM2iKZjr{?v7udJ_)R# zMh<`b_xR04f4{4{d*z4iJGMA9ZKun=zcLy-=Z|{_552Em@cHPRyMH{q{P(XS&Wy#9 zFY*VU{Qa@x?$wd|Oa2`C^Y7ox4u6dl&H41qWn#Q{&e!ku-Tm~#^oidsyTAUxnbP%Y z(ZnCkHt7Gs3+exno%o;q;C~JN1438901p3+WcB1D&6R{*U63v>*0FnhaHYwm! zXg&%KTwG=2zXh0tEcG-STeJW`I}ZfFw7T)-Cx57SUPz{x-ky0mJI38HjIS*Ee%AI0 z3bN~-^60<5__LbwUFyK~`z=KZRl|=T+-D!lYJsf3pIMs9n|mI2d~#Qm4%R#wuf4Q9 zK?7l*JcT3Z?cD@Q*@LHy3Dn}O^Uh29J6f|UEB?Ro87)9aNK^ik&*;rDNftxa-)|ChRm{v*T`4eH zl6E=>?)G4H!bA<^8lFqD)$R>i)=L1q#^q(~;-K?6zID&NpSpbR@!-$c-xuma<{96# z93NYcax%ISjlWHCpPj?$N{s7$l&1|_dB<4w?S}7X=kU6C>%Vi-nC7Ur?0SFnuKSN6 zNiAbx1=D~>M!n~r=SP1DLq<~f+NAwq?4Gvu^U9Ff@_Ol0v)kCPOy03cv6UuVW+b**+Gy{kZtr_ zSNRlOOEWsCL+@EzQtm%vMr+*mvYhqn_(dAON&=cdD(nOEpPf_;#zZ^Yfp$-hUbuYV-UU^S zcT8lk)4iThDFXkV)6n+(+%J#M)9iCG<-(gQDd%(YvUMoOCt2%|iHmuVrS(e~OkT{l zI6#b3dm`>NmeqV~xje^BbkmI~PS9T2a%jm+1xepadTclnhrRp|eRK&-9<C^8UbG7vJq96@)zo}%DfxXhl_W#b{t|& z6pjlWf^H59W`Alz4_AadB&x_F+6J?B3!^h|5$c!uZ)F%WM1=-~5n8B7@Mtq2MFOzB!S8cJ+5R z&#k#ZfoYS=k67Y3XL9c!UwrHQsV5bbWN{No-S^~j!TTS-yESbEq_qM)$#VG2aJSyp z|KZM63q5$56^^U!<*b$-NwZ(`wEyC!#}EzTXt^t>Rrh6RYGq5$vkE8AW6ZLuKLmUF zoxU)y*IzpS@_Ta;?9eL!S{qSY4!h<^=^meHUG*eWxBi1i)SjaVk(vRGs#c z+xjFwH4ZdJ$2Yp65Y{x^ivvnfs0 zO2)EeRZHy_eIV?)v8LY^v!;(4VcXm*1KsL5Ll?->?=L!(*w3k0aLslPZRPV_;iu=} z)@8S1`SFFV- zbO(YUqo?&?T021@VJQh(tJ1L33Js85%#0w!Ayw$HQ@BQFeSx_b8l#zoxYo=PSg`i-r)E1kb=e96-bT^q6smF@gA@~dpY;(BSHC_br^z&K_Y?2m zU>z9miszP%--|=5^ig_fL;Ev^AZQ%g#h8sfV+5{j!ux`nfFQ#@3sshTLAtkPQ_3FT z)MwMA>!f-KayK&E1)dujfgAeEUf&LXIl~qP3e4ZAB2;o0=$G*)+FT zR8uj`7O6jUR{FgobETy#ML07cU0oIH`@xcR$7^@NMl__e{p|J7cIL+G_Vdvr?|;7X z+tU=1kPjFE^jb-!v-{ehTb|#^2?x8L4CqryqL32Ot#C1E>OP>oDLO>vU$jvg)`1Vu znBca@cTJkI_GRi2hR?_9_Y@*moFkIek2C0M~XotWldM&rd1y7|(V- z2ugu4r83b~<9u6n-D8Z;p32wQ#9ry)e(muk)**DO1U=zcYh{8OxV}y=@@#xd)LmPh zH43v+*K?OikKgSLzrP0sBt3T0%FXZ9I)7~~Q{+pKRk_6idR`fenT_yGQNACID4s9D zD7b9$Qx0`1KZoI$-s$hCA;+{xxv`igH25uvpe^h)7|BaZE5XvVHtt3Us~($}HbW$3 zh02RWF$7na-ep^<*1+Po<>C2CZiBhgh0iIS8V+n)3^IFzvc+-jFtWF$2T7)uhbQu# z+Uo#{Np>bAnmH>l2_Z*w&U~C-dZM8hE5Y~Ir>;19{M9Sz#sgJ{9*zp}J@V9|OW5Lz zR#;%|vQZewAB{@LR^Q3V9V5BpBxEH@D$W*b1WiUtf*yBCY-P+JS2Jid2-F*W0#&Qv zDdHI4Ns3~z!kDlV>PmjkgZ=7D=n<%tNgQjwvSA`uyNm0s2D~)EoPRQ~yj3LUTmh1h zuC-sN{$@Ji*L|ehwQI^saK14e>G3 zG`94vstC(0u5Z5h?6c%Nud^7Hwhv`T-cD{{0BXuU!PLd5L+<9qZ$ootFh~hd=9utz z*DPw^_B-r)qLE(JNlPPQ8=FnXLvlya2yoZw=Wob;iWStEDD3d&^RK*h4U~+Q{_Q8N zWOh;(J=r8JEl-2JKltM02Cdze$l<>;1k5W}ciT?V9TJ2O&s^C7yN|0%kEaVlejCAt&=}qS0S&erf{Uj)YU$1kyEyBkiV4YX z*rv^0>fQuQVBIQkOqOt4E)6;nw&3N~BCgoA`U&x+AyNdICvkJK9e#fldEymw#9Yd& zN5G9;8iL;@|9wb<*_V^(+r+-{fek}h2R330cTIA}gtnW;B=j8^Jej!8eU)#@XkBak zu9Vz7^>wRlp<9taapUgxN(t-A11RcBCw2PZU3Sl0cve#bC8bVkvjUXGUy-n)#o@VW zo$M{`+NWs~;Zp4@UXg>`0}CP?-#iycDu0f+9PM25cx1z++UQ3oO3>}S+v#~ZQsjnO z=MhOVFKbs4az|-axm$MbqQCY|Klj>8MG*dPl(e~e3E!BRPTjKQz#CGWpoO z@arxeR>m3}qBNng{`AYmUTb|_+j67O;J3TxH<^F9q3*V6eq7YKv&i1v+P&(9waCvp zouWH>jfMTavj2q*kX}9w5ojFG3T2`K7!v44s zM2Wk(Ry2CbwpKBC{EV6fy0@N5p7>)6H`yl{b-d@enY~7=v(O_KHzxjCxba zqVZXW_^gvw`h7EPz(OJHS4VV^(&R2SvNi*FlZ9P9#$IA#G#eNX#H0g&Eih9Y(&PIu zW`}vR2+-OI{t%!q#x#qTlcy_IzG;OvS=s)CH&{nr$F~{78LKd;R>2Zm(W86N)z;Y4 zY9zxOBP5w;#^^K!YucrQBq7Z(?T~?Ntn0Zvm=)swtfN@!c`ZVdq3ZxN%pIWK5IPH6k-X*4; zGtygd)*3anPE69M^-ss>xAF3`cwC2-s#HUrfG$@fi_XCZFTkm0gsx=lRRTHAHkv4O z1-(HHR*sRHjU~%?=qyF?c~$Yn!^N}744Q%XWvC%4$_tFvYn^dPg{~Q8eG@_4 z3Ti%194-6(!WVX8$5bQaXJ+TAcS2U$c_S#p*pG3WT}I|AHQI?Yj{&%!kKV#SxgN?k zYn}pBjH5qc;JO;UYM~g6EU}uR!U;lVPv01ga8Z6?WNcBfIxT3(80Cu=!6KvU@5`Md zETmE~9BU#yRnf#^(gib(WJIdwQZFq>?~T#LN^ssxUt^fA6hQpv#n;bL56vS!fu-ex zIxAbRqWR{|q?j1D6h!Pu#APvbRmuEdNivSlzKF5KW+Y_{b9e~Fni%~!@o&utRx#UE zr2SSRe-`8at!<>pFL=$q7w>M2~LUyP_dZh%BNWYyWBz@ zG_mT(X7pQ$4?Yw1&9)$JW8jxsb{@fyTc;2#crU9Z~hKgRq+#0y)EWf+h+ zRhFd;3gROfCS=JGmxYQ`^AAA#?a2uSXse2G0Y`B&l4_ZqItJsG)%W_aC~?^RQ>ZaujPWVV~mF7kE$S%5;@m8_vl-4jLLcY zGqTj;6NjXo4u(&yNT>Wpo&&%Ez4I#n)pxcmPFCf(8{wG-m@(k#*8BaKSL}aP@ zD$*<{@xEd!aoRk8r3?WP2ADu<1jCm;xl9t}oqy_L9(Z`#bCn(Fzd~j%p?%`~_4<-^ zI`=F^W!~bAo|9zbUZ~@GP z{?Rr6TkHD|=_*QL{_l?PF7G5g=5(xDnP8Zb^gkToeIXvCqS#7cXnfJn^M)>jKFW&D zve%?(b$J~KUgx7Yu0D1%udiC1*`Xr|6+8EMWg*Gu=;oW1nn+-bs52e??mv$33uj^| zfSdnrGsC-sED!5_Nde2|uNJ*|FldAVzoauhk@(|Le#}L*`h?e& zozp1Gz=VNq_E$6LHOvR?m#_Z$+t~A43)0m^T`^F!6Z3ESK}OUN^8s`6uwb5{pe-K; zAz-i(^G8@W2>P)-A;dCIO#E%(Pwj6_ISOtY|E|T)HOx9qJAzLAV#3K_O~^-b(r4 zCYBSsGq?HJ4+ng|mMh5MESau>&Np$Th>(DCXW|aNB^rq z@w&zdGP;7}1Lz(+e$*7j;3cWAPl;<~;LL=ku>f#pSImJZG?BmG-res)CpqNJiDKS- zJ++o7o#8+T?~UqKU7&tU)AO_>;9c)(u4b|1`Q#5mL|8vyV4qM4uabs8}?jo+^n|2+ql-zcEHHOYNCJdbqw*v!Yk9|7wOW(Tn3P_Op#u zsKe*5#Wgx=DA2-tcFjnp&yq8#;6YyCAEQloYrDRMj*NBNbh}k`)y(VExqLwj@ErNW;-t_q<_^;*Spx7R(;txc?Zu$_HuS#E9>O z-*YmvHB8)oR>k-6tl^fjfea>Mu?k0+Mh zzuNbjDZxFCXH$Fq35Hsc^UAewo7{Ix5SFJmGAUKjF*nUKK}#0@cma&^C6$^tS_~o7 zFX%HjO#uWdEL9Sf30hH@1w9>?$tT)#3{k)uN7`iM?sE*51^YV~1gdS?dVB z)$X$2+*s_I?XZH^>o!?QMeKA%yhy(6DOBV|GA@J$?7<~|t+s`=jlim7yVQqri)1+HM0(4=^9xPqMj=F zVkfnktPVGo?t|Vg|I4$D9hb@H0wZ#j@Y0!iO~_YsQI;t`*?}x%=Z$vxAz3@O%6}G0 zR3w0pJ%IXt73>2nQTdp0N^$5draKq4PtK(}@Uw!DvZ&pk01$^VK$;11;Wo}`BPp35 zmwgre7>7TRaL4^(`Pm&p!~IZC#t;5Gc|B1@*NuSPjz@nMEG*`!j%=Bzu3uj3ZE1Ag zJmp-lyIm!wa~ezJ&mXI{+h#0wOswShp*=RvhshpTCBq8gm{u__|D2hA?XvuBvpPbP z53yX)sClcE5j#zL_^GN_5^j98qvL3cniVjo0!Mrb$~*+PO;mL{=7IA(2Wb-C=}3e6 z|HLHo&juh;ivMc^{9_Qd{f`ZxNt^UPhhaTALdQAHp7)w)y?ed>2N<>|L#;J4z=3oc z%%`ixnL1|Zw)}XuKd4Tu$`)7f_KB&hIq6<>2as`c1htJxNN-7~2jSI+f9ec`4k{4w zk@8ND`CHN>U}c$IOWwgx;qO=6!1l%3Zg7Ks?XCUN;E`}B@nYMHTP`kWJK5}@c7meF zwA&8q2AfbIcwtBacC zRj`>1(ozfc0`V<-Dm7(vVw|57gZf_zISPe4Tj>*|BC@H(`o(*I$d*g~-Y3)62s zrqeD)G!#4nz1fn7auoTZBm=cs08leyv7^kH_iodhfWa%I3!TU(gZ#C? zTr@XlkA;9*ddl!$dfxWps!5RA6LP!s5GMm8L()Np@iT<50)WM-$A2O=!0VszS+rWS z$%0>po(`CcO@-f* z?%+S8Q8KLnsKud=;+L&2NK2c;Y&YNuFtr^FFcXSv-+; z8Kn^Kz&`N%)?WDOV@$GMq!=O(e3vq`B|&##$l=rk1*fNd8q=_s9I-xOPDxc0_?${3 zS|u_Pnlm{?L?|M& z9omK%bT=WIrsPumTTX9>SFu0PvuA5m!~Q8~H|xW1dwfL8w}}$7p6G)QIQ6J0vHV-y zc0${)$l88&k(R`OcrK{|=4@h3PPALdUPKMgkFc6^QmN}$r(q<%vPxUbh<|{D9;ATg zHS)<{2gyQ$Z+0^C6%D`I^@OSFH1QqAqG^te)JUTg6F#f{vGA@?B$qOc;DCKgF2nj- zPFO;ErOhfzq^x3VM-w1N_^UJLC&j+_Me9$P%)mQ(sT>(p40tI7v!IIFD#raimbrGk`@ zrqH8tNjv2pPC(8Av(8Zx(z<=V0cIDo`K;E$r_cFwj!$HSVfr|qA;Oo3Q&L&Wly?M_ zel7lyH=$kmutnG!exT7lcn`nZG{%dm<%YQNDq9mTZtBOXty+%&FFF^`;vh;Yv=OR4=0q!Yp?b^0(8|bgg@&!OW6nq z8t-LOFCvmzO1&m@9>3YpYkywxO^Th)_7|bv%|6=~}mEo+PJY-?@Op?(zJ%V^k_IhlXVc*u!+l>E+B|WeoL8HTa>Gve1FHzZHpr)Q} z45Gjfv`!1%dP(7J4@a0I{%dSc6~4TDYCb0ivsFkQ^bZ685fcoWDZrbdz8y@WNAcwD zBc2$__soPNZpe|;1x)80y4&L}B(j06@KkdRS98&i?<>9y8$mZ1VIDh}s^LMD6~wZl zKZ7(fsYeS>Lmx?NJp5_r*EsuKQ^yu|k=YikwI(}#4SYD`!xYy7!VKu8B;*b=fEp67 zRG+ZWbZeFxx}BSq_uSk^(AaTF@ud(fq@90abs=9Rd4NCG>KKz%aYyYx9&fXYeIZ(u zK5B<-q}TnRyt|?hjc><_ya@|DEt~E&DR3lyk#p)IikJC5GK^w>2aVk7gXObx z80X+P%$nVou;|anKRHQ%VLB|;g*HUcjxFXNl~=tB^hBPA$^VmI{ePJi(nI!LUPRinSdHYQtKH+A>(y@4{UV3EqRVRuw)T^8qi02xaL)0> z{l}vjc7F4_Txrsp_zIR_Vd`+(@*6c?;x7~T3$b+u@8##@Rb{H!-QtDiX|D!~ysHGs z+wkwQqK_rssJnaU+&kIN2EOFu!i;Le&KhsQ#(=6unb9CF?0F;3=0wv4(#jD&@inc$ zQrmhQpL+CEI4)fMNuLrWuM(#1Fu%&lrKq3dwYj@UbAuh+Aq|+23oJJc7Xw%7(06cj z1usFX+TZ9!Rl7#k8S$VH?^|bO;~zWcJI-9tts2Ux>Y`4!5Tj&PJx{ktm3SZ7XoFP2 zzSqYAf)?mEQMlVp-PfIN$ZLAZCzVn0XqkLdzf(wsT?~3$`J5o0zs!@BmyDaDQE9*W z#x!6gsi#1{V=+wk08Y2t>weAkpl5h>7f%pyBR2dSTr2hbralF>lZ}^JmV^$GSf1{+ z54vqOc)s7|Ez*Os@R{g?UT0}aOA?~Y?d;)&jJ4hho;E|H79AmrVZVQCLJrBJn9R%(m5c!Hf+hA4t-H_TYSV<4<+#1QyOeaRKG-l7)OSnJLd(4y@Wqz7 zH$=_G&PvDp4qH7`S9dmsyS1)5$$4e`TT2v5^15d4mlJ$P=)P7{$6eXWxfyC}eaj4= zVz`$q;U&Y}tTg;wv5i~6doA5pcOPY5<~Jq@TI!&k(@y8w(t~U2Hr@=leKJqR$jSse z{TWR`m>;J*o9&j}{_O4K62$m9UE&&QsFmgQK&sT zU~UPzaBV9xKV_sT!_l^GBTAifM~Rr;nW3m4&5RI=J>{Fvr`WZxONpXf)&uFJyOuci z)c0!PEsr$)rm_fhemZEpygiKB@5rl<9~+e%N%ZTgoenE{4! z#7V&ijD(5tL#S=1V^`+c>(BjihKs%rQogomf2aLDQ#bQx;=wQC+g``0 zqKE480;6=@T{!}E@sVBqGJ2Zjet3Nl6_Iy4y7Og|n=}kI?~KE;LE!sPP{zO;y@Fa4 z4iiR9SNg_^tXFlr;s$oK5ogA>NZl@}wV?o_*eEpa`36KZNTP~*yH-{5|Fxn=!i0`> zZ?-B+SqcebZAT|}wS^KvTv+}lc<|5%q7`bGx*3b2zT;B@0*2AGST}rANe$^S)8j^9 z>U_hlIlwx(Bcg#P6PJ26O3175DBc|^~!i;3grSLh0ut%c4Zob=j;2>cSu&WL5|4`Ox?arA75R_?s)5jU&Go`Jj@z zSiP3F14FK+U3`zv(W_Dp5KV}S1{rh6*?Yw5 z+9r=IdTa+qxt}}rXvVd;L}6pq%R~($y-%}!^0Ti@**#w-{n?we{$2e+wa%w>oX+v1izzIHFxD7)#k$E5kKI}r8aN0(}Q7uthLulVJ$sl3i5Th18P z$ydyN{jje*r=3Il4~^l!aX$(87hpmEeFt=0Gn@bW)%QQ~`16AzonAG?)f9O|(L*D0 zY(A)Pq}@Ds;@dOI z?($utV)`EMj5c5q*dMp^TS&+=+Lqr^fW(gQ{qII-`+T>p3ZQX&TI~E|npA`yrkuAg zvCi=kXMgJ+*F=SKS2_hpGp96GxFua`e|5jbh5dUFe2q9l=cKlBVZ6ereP!;z>aerB zZ9;OJ^i|sUTeSdb4UM;w$OuOhr%XY8AH!NNBP(`CA{K!I`EwYaetEyUGV{gBIAIm2)(&_xD- zAC&KH@VV3j;qH-(fjLlx+V0#FUSZ30kzOG%S}-!uIr*eQnh0bropGXR^3KJnmTWLz6pO8&Uu0G$`2LoZ0aAgb0JPmsF z%;Iql@Dq}%nusLlX2Rbvr6KX~H797*L~G}f4MW_1|62vaMa~Nqoc-+N+#p>+<`y5Ry-+$&F${KctbN$+jTmJYrzm{ z`)%C1HcA!yq$zvEwY~RkU&IqoO$vF{qea}_hZCZg7d?$Mw}w5uevnTteglS!4K{&5G*| zYgz_K)2K(zNhhhnMwq(eiWPPQS4`24P!<8!7U(t7QRtlYnJe9E;Im1jvLNERP z*Z9jbso3oA9J}p5#mu5Hvwg_(C2Tc*#GJm zy*#lo6`fmqFSL^uUC_lVmy>-uJOwiywbw88Lb2|226; z2FicoP5<}F^PC_WW|U`!=k&_8d`@JZ&@|HHSa_!=ye+z~@87b&zOzT~eq~#xXb2XM z#1knc;JdoCECZjs%TZI1Z=G8!@Jd!6{ZU$XgqS>T3Fl8{6!VYv>w}_?KL}XV(LPmL ze9PW<(fRu5@u~7k-%N76og-rAI4^A1mEAiW8-GGZ3K$TI6YMpq9qAF=X1%$mcqKk` zz_07ut1WX+EV=#1$r|6#pNGnx$>fin+*i1gxNtOmZvxOgf)McF>TJ-Xf19JU(ED9p zWg)t%Xj_@Z5EK06S{w}>#O^KGo?n}n7+%psJR`$cI*Q<48q9XV$zc}WTvyr6uy%FT zH8$v1QA3AwiRQtR7U>Oq%?ur0$g>>%em73>9ZB6VZ}_Xg5EUtgw@9t-jqEY=sm>jt zA(Aycz;qK{*3!nHgZ3I!a%y}`>vMhW*gScnILI&s`gMTK>`LQmaD0fQ7rewwJ45!F zak{M3wFt~??B6d@x4w z26_~CUwv`{B)g}lOQM&+c9J5==k)_@pKnduoE$LC#`L>53WnJ@yOCML9D#%@l*tyY1MMn zM-kuLEJj(CmY1B~<@|W8Bs?FL$G@v}yg61H!ED4FOT&9?FI_`JJsY|EdSz{k#XG2L zpUM7nSp55$@*l&3{hy~Qub|ZOzj~(VlMcA%KO0#VTP=tSV`iirkycOkx&w#-Z&&k= zM)=>uf`}seOWq`^(utz|av}_?q|GtAA^pM+N?U)Mqn|7!@ZC%>tx4__fBxj7vxG+Y zua3hvYJJlVwD6?!8FnY5-`VfqRugZykoJjkjIO4Ez}WL^hr4oaur-1x=OAJ6twsJ3 zt~LEt&&!^>C3mRu+B}QR2U#?MV&yN|MZUUkZyrkehn}?APy&?8S5!F8+}8eo5%wl- zO`Toa_m!Q2O$d;X00BV~#xR;d5O88=f-o8e6%j3?f}#ebI8_QNxaFd-62RJYe^$Oc(7$tJ(g8-m@lVw&Dr8<9dy%X5CFC6N@si%X5MX4a0J= z;1bSy)4lkP+#h5(ljLFf{LODMR(D`rHdcqy)Q{Yur}LbCRm{=^sVj2`MWo z{SF|>eVAhJ^2&U&CD@Hc7N_)OXbm`haio3Bs)3uX8(0Ha;9FHn+Q*imb$eQ{w1xa{)J+E*y3xEtmj_h?)yQp)wM6H$#3qu7-dT*= z5d^D5^l+A^h?GzSbiJ98*&z(E44soqo6AU~CoSwwk2g2iqjoGIEy*xMZNH+TwqoOp zvp$y0EN8&b7JAl5XSV^PF&A2pyAN};z_q`Apw->^2BV+PcvYrL!){I^AMb@V9Y~mv z*+KJ&Y0$IJ&~DRRSfZLZTJ}S#dx>d}_uD@D4!^0fGu6cW7hg|wI&Y2836XV}-U_xM zdn~h^$~SpAJO#i4VNLN@-{hlubEhy%i|=a5l9@z5q7Y#0X6;$T3$9I-2Dxyu7ktIg z`Y*-|KP~`}h*#(M!%$OGx zH4Iq1_;YN@kvh$`LKqA)mG&Sbq04Gg!zUS~y9o6i7wOd!!JX9<=s~}_#?SpOEg}~p zwa+rTT<>zBcC7Q1dnfK<9X1eBF0uW7snwFk9FtJ`$j|`VrtFOVA|C@AxpL3Kq!lWA ziP;`CLus{e%a|~aRW*`3FY{5Xh-5`-)&Uv6PhK-mCM9<9Hh4d5MIw`{U5-Ho6LPBs z(@K%~kzH>fqZQ36zL`@UJA2-v+w3mE)q2z6x}#^l`t$ci{YW;la@=2J92+$v)OS^c z3H1HNaWQ0vop(uf4cQ+%z(T!A9&w{K+hzuFgbwo#n5UQT#l-4H1DP@%;27wEdJcNV zgk_UsHT{ddFHpb44eD~G3{oIjObjgh+FqKs$GflEz$;!+#!l4no9>}{r^eHABysNM zy0;?pCvd%t5(c3&V;8j?A!(UOj|EJ+#F4s(3K&@a$T-SIf=6BeK&>vfv zRmW4EOo2;cWp|)~<7)IuDH{XwTzwJ(j|E;n_sMV&Qg8q+W$>=lJX%eu7kx$VH>f{r za^?s7bpr;MyX}GvDI4072iiJ_z!B?}@y8iQeq}{G)p^eIG}>kTjd^2wt$&Hd@+u1- zbNt&5o1iQ3=Jab%lbk}-S(oF5s#SJ@S5g~ma)`1+i+4>W>oWq&?RYJzXY0Qp7Ft9f z$+*b+!mrTY15DR>SFia_Y-MnD_w#FC|Mtsp`@Y%Voa{PDG~b%q`{_GlD_tc(@%k37 zBgYb3FrH6I=t;WI8S__=`D~7eHiMDkfQN?s0}{Z7WhOJHhJ}U@vpQ$F&j7jGOR9>~ zvom&#wY1AEID@hdSH`V_BNeg$?=F=*mpiC@+>QkeSYWhgnx*6x1gnV)YgzXG@R7)E z0$K!{j%AK055QoM6q!x)qhoO7$Qel|2dY*FdN-p0fdOwE9gD<%N_3if)zBtdd$Xe5 ztWj%|X9GRp`>QA!qs!wSep5GIQ?$^0o$=~aUI$j5(Ll13CcZ0PN-Ngy z3r@dfcceuC8$qR>9klLhB-AE$$XaQQ6*ctxmP?d%CtqE8`R42JYqU<>mrHDNEn0+v z029{kY>LZIY;J)g=xaJi+VeV5TDze(~C$1d{G9A#iQy2{+p%$B14Z(KO zce802$EIOvzws~*>30r^8~cIc6dS(W1L^_#5!kiw3^Roe7d||#`no#@(;G_-wo%Y8 z6|*o!Z9`e6aTtV)ElA)1didpAo_oC|dP_k)Cz(M^jPLV25=Q&I1cM#(=B=!~<$H{7pYm+#-d5j)yq?aJ zmV1XNd6wG{NQ5f(oW3)tq>_D>@Ywz@Aqv_a58-m_fuXD}o32q4a_dJJxd^r0S_rQ^{&%rs8p)2^KMz`BA~c-eF-f*{0{ z2`1r}f}0;ti#wd!aO^c=zCP4UW64x#50aG(CKP6hQ@o)3L8NGy(Wp`ph&8Pwa8hF> zt=0{QDnS}#_#en4x-qho##h*u=26v|J}SOZILdyfV(W8Rp6^n?TUIMMNpIwLz7Q@}C` zR1n1FW&iX=dydEG%HUEJquAWDZKyk-lDOPm-$=*^lLr?Yhyp|-Wv&5Rh%;R*g>miQ z-l;Vuf~w$=!Ks2$%dqkr7os!;r4CDXSv+qQ6_&Iw3N0u}$DhmsO55H~o-%keNW3am-|B)@HB61cld#u9;%W^%Y{ND>ICpDwJCzgNr zt&n`U7Ng|rs;^2H(1FbR9cM(i(*v>A=Wc(53GpsRuVNW%Jt?BCOp9%S#H(<*$S9JV zCM0c}E(;)?k&WsJyI5=!n>Vc+elFtPO&*Q*Iyi|31$EVJE?0NQCcxVh8;b0=PKD_% z1a+C=6iGUTZ~y3iy1@GLDy;ZGbf47U>)MoDG~cWxyUXEqOcr18V}s7<7b45gN2@aK zrkoK)ZXOZ1KANJm(}(M-37ODqBP%k9g#b;w!)STtJmiut6fq_>Tj8%5hTZbV+}rVG zAfjF015hC6yQ%RZrcff(Pua9%_L5SDyR7rHa+ri_R?SY#iE4R9ll@_{(IqhcKrd#vq&^7ng zy^`p$xDKLoa$26%-dc*l9He48^mYQ7h_H@pl&9wzbD<3hAPwpRjAbHmo%zuN)@};DZ~^cNzeaC}&H^eUo-l z?CH0dMlR@$?UDr0t1 zP6-@B*L7OJ5vP$u^Qe;}w}l023)CBpTJzxEzf64NJ`th zbc(G7Hz4-TF>%TKm0)T-ZSa@%ZX*7+5k4L$i^lDv(%OD?8oAey(0e>&O+J-omDyKW z8sBM@yDY_HY)}(WL}$fMi6>76tjH@6XzrIK?IMFKM@f?y2L2!o@ZnjElcZOaF>mEI z<6EC-9nXb6Mv!5P*KSq7wkeDTp(|27B%Zl3=&2F-fw3ssLxvQ158l8W_r5SBc^Iod zP=lCXc$7|{0tuyk-gmnrdUP%D9~g|K!bY)h2G%@P;ogr+ z*n$4FYr!yVgk~~o_toDSe|ADfa0;gb4Jc-OZCfL=e=CF9g+1&ku`B52-!p@98e8eT zQ*xZsAnA@~EBVgb+{G%^sF>v2rxp?AEwfZT(gHEIgczlaC|$7eY;IX%7Qy*dL+eHi z&Y*iJe!qh&Yr@|P!^NRd^QyP7>0{ZT@=GWwcSZCD8Qb4;kD8ndC8^#4ux4h0>@`Ym zGk{ulSOcr=GSrSJEziy-G9%yVLO(^KbKj5CSj2}WZ8dMu__<7K+VBGc6PAUx*Rp_4 z4ROZQL2815Yx^za9tl^1n&{+rPG%At^cJ6&4d!tMyR9MkasJ>++9EhZj?A-7=x1*y zHDj39#2)+LQ}hF&*N)X+(#4m82BPS#Q2AgNEzkA+{j?-r4kdz%-t}>=ZS|j*45?rc zD+$AcwF=OMI8A@#2u%LcUS%I?=5Eu^{21vPbjFFQPm>|+sRqSoF)buSk8lkTXxN;% zJWJ>r2C-n*4L6x_(Jih8xgRx%1F3tq@psGo-=n6Y&Nu81)h}2Bkp$~(R zgWOxq$^JUsasW%_1!F||-&~vDPHFN->qYD0pR->w4bmP_f{+oczJF?|$*-Oo035wl z>KvM{LV_nk7}dybe>G&@U|qNxI(uAV{$i;DmQrp}H@?MPQ~0vnaBivXyp z^@BK@;09;I55+XGCwXg*JV>XgnzTXOer6iaCds4pw|BSC|6R%aH^D6c-=eJmCKT+BPn~9;M5m+Bg~658 zm(VZ5Tv~IW@x}w^LvZmOf$aQ)c{6{W6-cGsWJTP$ziiY;!fRpfV0Pi!Yg?^04nVQQ zL#)M_Fa_n3Db7oyai^`5_EBuY>!j6?s%KQ~2eeUxlApgzhud5@RafUWIT0R@v^Ke$ zfPZqGpZCf4Mf5c_LY{Zh%{*GfURD7o`{wAd<9b!4k&SS_r7KA{rtJ`;S^meeyu18e zs8luF{{5^XLLafA8ECLAHp)SQEAOKH65~-icl$B7-5=BJD?P)h8Ev;XQf^`p4ocEF zlDz-yv*B#AUyE|d28&T5V?eK@59iQBF1;eMWBBlD`Sm*brQxh9uSwXHjrY~<(or2MBRSvvN26>Y^>vC>BA zhVOWM*Mtq%!XzeQ(}RnPTqR-8zeUb+tx=P8B0SXc{)H_J?> z1f6OYtw6I}6Z9d#9?eFE`mlvAAi43DU8gl;(ZN)~Z=~h@}(V zvkPC_oh4YDDw84JwdK092CV0EJ@CWKw(k!FRX!QNr1g7gG{4pMwhmMcR92wooXK3l z4$pzUuZ4i=npfIv0~lfe+p+pI1=1M|dVE@6y=`+GR7P|YYQaPRRL-6`vp1RINMM+#FkO=?m8e1ZZdCgPlyJn917`{}8Q75bZ)vou90+g9?VU{Af?OR=9?f zY%d{xg^}Tb2uP_E+(&jcCFB)ZV8WB2UUHwl#NMmMVW|U`k)&q;AvppS6HnW%>R27_ z@8;9YBP9w$^-MRdioUm2g5eSQ4o})Bb>w~j& z!%n@Kfydph(d?h5+wM9l4p{HSka5N+ff?$|%6O~qx-612NZO8UE3tnQFsf$>AA{8R zd!Dsx8O&tn&-u0$$u*&C5=YQ^=Mlf(oH#ttkBQB&M~8VJ>0ONNu#UDS&Xkrcgj?K0 zEbk!=IkX5;+z^F(W1z%(lX{@U_9nZDM~@zp`dgL6+y-8sMQ-bH05OlVkr(xC)^>VH zXUsM@+)a6QY)7cj6jnw?^v_G3$SSgzs3wY$uNk#FD>`I8qT48MfP`T+z^yCT)=t88qA+tTF9J0 zFsjyAD>i`nBih^Db|bb2dWq2GcuTNc!}fRk8Fz``IlwsJ*97?(89Ftq8hc%ya^2<5 zFCv{K%|Mwg6s#KXnY{Q2qQKW5EaU&qi|5Jxa)kQ+1cBn!`p zQ*%A|@lx6vgd#B5{XvO?lK>E!td8P6An!g%0+-@Oe$A$ZgE({GKO@UB_F!o=CcP=V z9GWALuQCEtsDGBJAq#1&K4rxk1cyqHx+1114ZF6X73V9dE_*)FwctCx-(<%iHH<6N z6xKY6eGmu*$Rm#rE6UM9-46~3$Gug2x5NdZrwq^7qdjYP$YgU}t&->xXK z%$$NfOS9OK$OLqQ|9dnEkrV;)KZUcTbU?tBUM)Zfu0 z&1WO_xvelNC(3$nm!iOUt+}mOWaDQN{-fAVOm~eqJw;}T;=PE;=`K6t@v>EJE5Aac zNv?kN^LH}*`lL47%}R?Er^IRTpNnIQMVYTugTgdaDLhV|a>^kda#&iDVce30l6G+t zy|JcD>nNK=;hKDmaAC(5s&Ij0_*mmFXf%o5msQ4UCD|tvOv|zYe~^Elx8Md)`IpdE z*QWNA*=-hHK;jv*gyCATJ`HNupipTyVij#+kmhbv{MF`K9KWo^5N!GJMu5Zc+}c4U zT>BhFa=uklvRPey>>Lc1IiRx`8}NySJMfuwUTRzs_ri=SJk219x6d0ql4jF*v=NQ# z&k{&rPbi|x;jm5Eni)Fv_X*dVVWmAcEV?~z1HzgCV_ z+X6KN7}&dweefd@2ao<*NNrY-5oW+(t4#Rzcg2In`XCW807vGU?s!j(2{izY?R9l3 zH!AhTQm(Dp3RK-=rz+QVas2$pPHvxOJzRJro# z934T3KGk7DPD}ufLuw^&fwcmt-F;zU{}NSq85JC&DU`^OkDhXKs9b&v8+yG92ZCo1 zER+Hm1lHFu8u+lSkJ9GYuT~eC4x--=2e1Q6yn;(Q*kQsb;uyMVx-mcxTB|K^rI2dB z_q``k9VPRX&Qn^Uj%hCDOzI_lkk)6kp9L4y1mZSbZXlZgp@-6Y7#@1~SFwtT z$qQ?6f*JYCUK<)SybY=RwnLjMDXO8J*>R9bl6$$8_N^=zceu^1 z9f~Tdi-3TBd;z+4IB9+su5j;EDmKm05%h}-uTK_b^r3Xb4uU z7G)x+|M}i{lOMPO|Nlo6l96q`Nfo-Zi1>7IghF<2u- zqmbsN`p^P0Q;dJnaU6Hbjbx-y-O3Lyi0q$UAR)Si*DElwIGOQz>D*L*=s7CY?Fvq_ z76p<{uKell+Db(a&1p>y&9O;ZP~jMMM8bKi(50STdM0?p=*gD-^MfTID!%ly@4n<; z1D=DK4XB)#(7UeECa=uOvC5^I$qszg2&eQ_QUrnJtVo$5jxQ7!nK8kV$-@aP>iNFq ziu?gSgFZ<6cx=`_gW31u?xowP2WQ>Wue_As2Kr*$Y@gQyE7~~P=63~qis2z5pj1%?d`EL)J9fU#VLi^bU8%rX8jhv+5{R`~g}a^s zAh1ZyN9XbAWQ=S%$Z$|v18JHL0}RQPCSg^rek`xka(|!CccZ`xw)!LyaFDl3U!Zy# zN3Cx>ePE?sMat8|FN!fGbeBD7U;i?WB3^P)E!9vKIVJY`oamD(JnzTKMfx7e6zu%B zHy{CYwKfaT%?k3OcgE&^Fg}8QZ_Y*#W344F=Yl0z@O{zEbryuauv@ymiE*_3e8ntB zj(kziRJ$K!sJkqYR0?_&;3CRNY$W5==6a`Yk0Rf)*xF^kPYI6i+}C(zj*0lA%mJc6 z0?$Kr7_7s|B9^|>fDi4YdF#yMJ_~5c?agl8WA429w`3D-I<@sSJ^1L0))LPs)|d-# zT{N>JK78%D*X?BgC8Z`edeV4$(kh<7fMbp6j9NSM`w`1M`52j{;nE2_!>UfE!&r;5 z&gKhH8PPJ6@e(pvHmanX&Ni#UuL-fMOSAC)`}(biUBQ+3IXLOTCAVVwz(^wTzwpf|6J!c?pz*^dN(q zbF1^B)}K9<8M7p&c320{Pu@0U zAZ0D~wom8wY1n}p$-yD{W1`_>kFh;0=Ox1#Xq-C1iG6@>^BVZkepW>zS77uamF64P*3HQ_aBdWAB#NR;=9g z`m*EM)>ZI!@7p{$%kOp|I9ZonydG}k$1vo-Jo zv)T`Lq#>opqh<*0uAa!sfHk2sTf=*jaTIHvDGwT z_ro^CiPq7@KNdrN*_n7~^A$uxIioNM9IMcLNd4X#_SG72+R}9SqRo=Ia%fS+!h!(Vzqq$Xh z;HSY`5QQfUjU?;*A=t1aOk)((;`aM5Xtc!*o~mcvidO;pU(LMjOL+CgJFWkMZ}OUY zmwo*8{)Vk9|7~m$qi>P$KX1{3Ae6mnE-n&Iht~lM{>QgsscxRvbf{aBlqAxqFJG$E1zZ-#<{Wf%eVx zO*9|ysx+a{H9kkL)Y7xUrPSK)jle!)SNa2J;3*aGvZgE^3-=wg@u>@LG_utzG+Xw^ zvR7w*Ini{hCwY9g-5(5AGQrR_@iqyxAE*3+xMG! zfbrz8$)CUdvisJ1^4hPj|N8R2XyM3URv9;0+9sYo@LpG!Z@cHdetAVQREy$r(YI(9vqlkzIKGkH*0H?75EN|r8Ey`;eMrLX^V%DSkwKlQ z5JHKGl1mIy=H7tQlH1+fG?<%hB49~_S#TYr-`%;McMG`+5V^q6&$KgRP3DW|XBHRZ zLEQJljJeqvAPb3>SirjBGRyzLZtsOsbZsSW%rQceTNUZP$sDcSn8d@7g`OPNp)FHo zZK6BLkX!a}Wb^V39YV5SvI;e(US)2kcVaKmv-|7{>D&7GUho(J-E!+5vM$zS6J6uI zBTpDE8!9z0zjGJLws}9u&vW>?_I4NUgjg5Y0u?midoNh^j6A%)ezKEXY@B1@)I97z zkE7x!4cXQhG*jYp3ZK8b<%u6Nt%U+JyllO-MznM!+az9_mTidkxOmHLxVAjK&0|ag zvH2PX6)E7Upkvm_BRCX1eC^q_Ytp#gaOI2=qA|+l_mSm&WQFn9#W#f{Ub80_<^poo z7T~?x`WJqLcUlb9Z;0J)aP5>tVBo1@0o@ z#Z7CdWgp1`LtURqO^DEkhr0(I3&m6XmXzKRt*oLD!cOQcK!q*eNFgPdJ#hO?$6Qfd zyP;zV8cncuPsLKqmml9h+WyOb9^|LuC`PAZ!aqxAmh#pSxy66!Qt^w@jGAgYOQEA& zPQly9$85NS^$(ij+DQL`@s^$ozE(D(Rav0T>5hz(gXLzklRS<#UyT~-=K?!X!OQ5V zVx$etQ)R~;rNYqWM|RvPk0tO6%#u24X)g1>T-LaArl~Map^wfz!anhWZZjsj-x6$ z-#9obqZ6HssQx~NlJ=YCQOdy*n*r4oEvWlaxpul9wFmS$MR_2IKg%#Wn&-F9c9Zlpm5& z!E0CE9a?C!s*N!&3r}2Ntx=IZ-vLIi%~y`-61Vr-=g5Kul0zLvI9(oAp|_bqCUc77 z0(~~g=A>jaO}vVD3XABGUeAt35sROuyu8q|*Rvzz@OXHkdB)tB2}zr7A`Qf5(qgRW z)0indvT7oxiQqJ;ddmVAycG)MDNs3qbgjESlU)wUd~(RmuaP^N`&!?dlsHA=wWsHQ z`PP1OV-7Z9qLF6;T1Ij$e}S|DWBm`+|CuP2nmfeI`;A@Zt6DH%1ukV$smJ(IFJF&S zH=JvF{v48x-v3a#2)bvim7MQp$_V7$Z(qLq9@$X-kQ6P6)95eDR}z5F^t|UOUalN` zJY+_}-dVeuCncRWb0XVHO(x0upMRVX80J1f@MOt!tit%uPBwPky6ss6oj4Yz38BU; zmtsys)uvO!3e#oUK-*s><;OxavbNjCXm1*Bz50f-J0!o4ywXpyW%`*a&ux)d1T&|{ z>&~EE>dUju-Y*-v+`j%c@Yu3HUbj5^Gv?n#FBpAe&_DZKZ}NYk<84~!==iE}jjmX3 z=X1QuTL&uJ|vhs8Ma760+& z9Bj!cpt(k70rrsu7m>rF4C&#fq@Yr3`U!aFV?}Qa&7;Em(KAD-wJJ7uX4=f}#6Wt zO#ktB6{Ff=Z6laETdY3l9{NK|Lyn0_ShmQ^M*1$t>rnDzBO|EQMgo_Ur_L@Ut!F%tE`)7Mz_ zGP5l?W5;*D_o<*kuTe>g8Hpttv5VXT`F)HHT2HL}QZaHtE?RE$MeMd>CkwzRVNqbN zNZ1;Qg>`OKLWm7~qwSVGMfe0luXL1RM|dAA<(2V!-@kbI)v{Kp&>*D>y={rJoYe5< z!T=^na?0xB(r#AS>qo8V8-wWgk-I zJt=m#5$9X$8<-7J3Mn=rZU`x3Lz~*(?w^0YUoA=-h^ue~WXg`F*s$vP5qpJ!le&jo zSA#idI}dSa^%J*Ux*>?>=T$2R~)QD6WQ4VeCxrfYG6A!(}cIu&gq;`!AUFL zUR_+Acez?-k*Jf@ih`7nl$zCx`=oQWG)8H7V94DzGc!h0pB1(Tqh@w7fZ7*#Ff*E- zxi)#MRBV6vcHqYlZLn-*GE-#aTm|j71nh(YkBb_nj$5mmfjHN(bOGs$=GJZ>SP>@C z!#Wy0u#}af;A9*Mvr>L60(^5+cnuZBO-l%iE_ahs=k;Nc#Ho@pV1|FO2Gh81k6S-9cD@Alj&7Nu_>nf1orw{32h z$jv3T?!2*F%cXU*QXQ}d=JwoyKVtiE{=ox^Tg$xOOpnqzx|3X0)*S_$d4I%@?g+Bl zPwZ`$D-7|gOA{@&;M%(MohOLsutsT?6BD@Be#F(^NTp9VF4<=ToXEmKb4)G+KRe=vsRTOcx&%73kKG-(b}xZ_9O+(TXu(cyrDcT zU|+^^RyWSN0Rt2&oyB72^vdqGH^rM4TeY-OE7dqU<%x^883`Oma#+e<-Q~k^)RZzH zv!+QI`4pIv8LMEblJc17o;I9;A4}C_>~hSa6y0re+f}+D@NnCT8fCVH#gl^1gr=Z~ z%m=KTeSW+I^JilJ``lBG1Lw*uUM5?;nVj4&%g`^XFcRCYJ~!t`i@a6WUG+Cm`DvLO zf_{B4|5JBq$^T9Gv1wxpmK4^b6D8HbD9C(CisXrqPlQ3Gd(+=x^gWlJbslirL)=Wy zU<3hSzH~@uL!PmX;ICox&Uxs-!Vze=$H*z74Xv^wy+ig+6iTXW;=Ui#E$WnMLNB?V})Z?hcHbgHS209#;l3)R2vIUYE`)d!i$NN;J z^?B9yNqKgi3}z<@i9&Jj;i>9Q_X9UZi6p|0kF`s;4rvAZmHLk3Dn)eeAYxsP1a*$w!6HcF~Vj7yLUd1CQSA~($IPBT*ex0TDQg~@G zN%4&L9BA8+Kc?C@==+gI5~{oH&%3PXr48!1bxv_G4(EayT776?c(>c2stv=JhxTBW zbgKCI$TgLW&#qU?@b*@F&qea*UagzjH%`3v#!n)YTUk|BfMlqtbbcF$P(&( zN3!XiJ@jJ$CRS5T)IYs8{QR$s54^}FlZxoAy}92q;DG%kLJKF>cCTo!?T> zJZ}iBC`+wmC!G5Julw@Nbzw!q{2L1KSY1Tk0#T=hyYS?9Uw%ifLM@zqx97a)mO&Nu z-IhziIQg;WCe<>Cq(NOGt5+9ed6=v{cQ>~XuHgNIw63bO4eVun<>V5Iiw4U2I87Zyzk1pOO8{65pN z{bmsvX?{f>7wE0Zo1OV^smNJ<*e>AnO+VlI=IiYR%t71Pm(3%^+>}~c{D&=#x`}d0 zR1S5AAW&%?x+UPY0xIG9v+EH`((Sdm2t8&+$4^b3pDiV`jt`+dgU0>Y|GYb>U(~y$(e_wE9fPdaJp_F~qGFfG=f?Ec97O zx?FBbj0B{2_#U!;%Cu35GeZ%lzwl)T84sW0zPstZPCdNOd6P=gFZ4FgkIfA4bbMBI z+^1E84ou`MXH76U4}4i}1LlAK2swlJy2ugpH?JCVK`%N)SnXy>1KCvRyAGU2)6#lm zldyI_^7}-@kDo7@f9}P(dSX%m;ygAxP_hWHpdyb8ICkK9C~mGU0&>3vg#MSop5W|$ zCzxTh-zNusW)48YFXb#U3B!GbCXTs^!cZj#I2EDWi7)c!l+i~7K&;=30XmFfjM#LU z45QYIohCb*Y%Chdu}(vm&6e291KI^(CcbY$H-hpZLFD(ZJLnshXi4Zy3BvzcHh^iEsw(vj1igSZp%s|Be~?JA@i# zO^F8|i;Erb3sWGD_LweoayRRL&ZP8gbD&s5U%v0VRu&t!&wsyB^&om+Z?|_dsoA~x zFW1tK8ymYySm8w=whgC7udOK3zljp&8MuKgT&Xp__F*pntfCYJ7iez5RSH#_aF|>H zeVqK_1q9!|{8v7oyNt=N)3n^M6P3|CaurBpQZL24!e)_K79=XSKjmOx=8i{-tQ=3v zLYX;!)*!Y*VRnBx;5yFRD7ob)11>C2$-$3;1EzSAK?HuL~9>&;r5qc&W_ z3ebC(&{cBM@T>%rP5=wTDPsB8mpgU~_Wo(BBa{ppqZUXwJ}D0)w?HBNJ+GSj^riY- zKR5ho8>PkRqHI4>gpd;!=MfT-=dneafOsC+-Bw~lvUFg8?RLrNnUtsS0EGgEJM`zx zOp+`&eNtUiC<2quXvxL)mSfsXc3YMTP;2YlrcVR9eC~CJtLLiFP2AI&d*3hhhpR`A zN;^{$s7!rZzV%o>Cfm^L6-vPZ7inMiBDM3rJT^5e<11fzvO^~^Lu-H=OkZ7Ef9ux8mohC*Cx)!a%V&Cio< zj=GqVM?T4$YNJyZ^iaqmgX&jRJUSU8oW18>;B-{{nxdK~!zw zDY0DX>ox!#vNv@@vDx5_8sZO^<0{xZPPP+ZE~NbV!*5&fDA++gpVoOPg?vRH!m+D< zvOn?*kU#RiYrk1DMyr_TjwdsMPit>A))pMF%NA&~{KbAHCghK4?@5bZJb#I<^Gwev z2Cr@%+yc+ibU=Vrrh~8WaB1BU#2dZf4%=v7_qbZI;`Ws#zA$l{XDiTyE+|bqcxQkV zvqvZ3-h&OHQCELd&{if_i%!&4^WCnds?e!qQ{3w zpbrCqpK1lmEu2^r{mwAl><6w&=hClUv6agVSDHR=9$M*4wL^is0&_NNo;>xj9jzaE zEVEIj8plDhYYKWc$(2^e(mK41xkNcjU}6N8PgRsnu54MF+`eBex#{+lg(7uNc0)*I z2!t3I5k9`#?{Xq%{an^SeVEx67$-2_z}Q~GTW6+l27AW=pk)rr_$G%%8UhG{6a7dj z_v3U-HdS#({g?Wnhv0)0OoFAGq>5k^J5Kg9jcP$xIxShKh{grduDhL#DLwaGMQl#z z{4*EcKh!(L&>HFxg=ct?9qe{Wcq#?E!cSAC5{d*QO~+~9zD%6Huz8{6-aHPb6AAiN ziDFoN6KDj(5{}S-iwx8ohmGrtD50t5L~{$Ex{s%(lCfI>_a>S(u>2461cTSHiom7M zpDJE4T}4!i09O$?{IwU2Pus4GS~xdEHi{lyp4+S6UpytGEUFYG{qi7h!JpI3*yVqI z7(a8u?%|88zx?^fN&LSK#{DIF{!fX6W5aE1|BIWAcr-s1YDyHA(!-9}-q#5!a-3&h z{|`wUkd{bwK#onsq-gR*Dq%jEb~rLNqG&df>3y=}rn364OJL_$ftB@BN+Z7@x?|*( z$ir=lu~kK0nF>*$f@qv8JVM*ql#qAx+m%JhXRq53fw@1bt!k--|@#^*y(* zR(hb9z|1zm%;oWYFfYN6G=OH^X6{&}I%rW?09LRx&y{p80HxN=JxVLz@YKU))|&E1 z)DM{aCD-0QxuZQ9bRu-^a8B@G$!d8-$ivnbx>W2eQi=y$u1DPr?K+uwUfP_2aN_L< z%#=G18^b_ARfXaLAh(*49J{I_4;te?HH5=~qkzFT`z%qAzu+s76#_%m)<`z>6-T0< zi6JZag+QzMB+#H_J*C6U302I%jwQEmQR*8;VLniOqFe?m6Uvw^n(W|(&&LjsUPCgv zq_VBwtUi+Z_bgWK(n0__039V_*jLDKN>sMKNz@Pa6_Lx+?SST z#A467J6e5;P1{RU0HyiKy#IKo>D80_TReM;-($s1UKWp$XmZ*K2!QQ1V3=?>9GrJ#wEibj4Jqr8f23 z*H5&~zZTbZX74bWZ!U`+$Ra)m?po^5F-Nk=7MIA?)CdrpX9?!Wm-uO^Bk*LE`k612 zRku-+>a=`)rXE+v3c$C~Jp&`5TPF@oShUX#U;J!{(P0RZc^!rv2_^N8D!Noc0;$!C z_2IHFq6|IBWAN3*Ft@`bHfT?@;mYQv4!{FFxke6m+15C(2h5Q$Y1^$O^aQLF^~=Pt zdBn&u)zIzoRcPcGFJHr<8uVNlrnUa6ea{bZU8p<~VtZBVB)Avorzp>YaXsb#87xp?Q!D78= zQ?_jVQ=ahuioG5lCF@-S+_Mgzkq(f7w_>bs*axdt==l=- z2F^D9$4YYfMdu;U3k&-TDb9T;>`rFB9qgtS#$8iXH!1WEIYt!0`-akPS?sj- zA_ZQMVfE$*w=~3MEk(c60XcEf_HoM@aXB%R z&2q@@{)_}?8uE(W&KZ2Q^bLgQpz>IfBZfRy;D*}K{C7M9GPU!7v?;{&-Nz&qk^=x*l2g%K zoDD$IuJ>aMr=4^urX41MW;8|7sQ3=f*n^za$M{AJfJYZ?S2u@hF=i-@N}r9lNMDmR zx8QraQE3du-*(}&a6D;#%1jN(j#WF+kCci(8Px_K;l7<46;04mZWg3fRw7r%o~u2I zgD>U9b02B3P6HWPo!)s>qcFH5;hGqufsX+Tz8SjIMh80*Sm0Z+BRNaQs!vrPwN5}c;|4N}oeZS208Xms%0|P(t^`?BYmn&X7bVtX$tVI) zNo>x6QW8fA9vB=NQ1&p2dzZG_R@vo&X8&M8bBwlN0q(Vpa@p^2vte4(qRQ-am$20L z50bI#3y@@$6j`v%wk?Q@&Y*=(Fli(C^gYrn?$$!+xoed76t^kQ^IlyOrso2Us{_UW zAQ*ifEYN`f{SwCNJF!g=blOF5>)MIAK#qLW!NyM*xz|QMAYIrvY-dnPxw64ZYg13}m^Zc*PoTy`68`6@MtYh!Uig5)FWu zHs3s^+n-?3q^Z4kB7sNzWKY1Rsu$G2~g!@^i7 z{0IV<-?lUuWGT>4Fdg)i^&uPv7(#05e0r(njWj-=4H%bbQfM86w6;s_J=RXXJ>nNoBPrH#DUKbpfKI(Vp;Af8Mn1<0@wPUDqer;2& z?m_G2nXe}5R{0x)Ef*96gSL33eK>#vc1o>eJFTne*N$946Yu{&(%wBD>h%Brzvf_! zF_>X!h|G-hu^ES=$ZHN542?tOR3R0mBC@sHwlj=l(kP@-Q7TF;rBbOKjAPW0Ep2Kk zl}asAt5*45quqV)=kt5N-=9Bzf6wjKAG)sV^*lTt_eY6i#8K#w-!pIVlCqKVtI;81 zcm5Bw+~P86h5x!Pe7R?*k3~2~uGnYlo2T!M-w@cYCF`5F-_K_CZTQTkJ7FgtfR~0& z92V0Eb5TW(Ksk~7jA|Ldb01%EyHC1%w%oWp0bqRZ_1s>x{M>#StTZw^z@Q-Y# zgwux%p!lxaK-3_aZo3ca7^+38i?_o1n1QLfNC0$UkTB_kL{=t&!lGxzYARQ5>C%J~ z8cyHuWOC-uuM;(K_m`k$w#AJ#t*9G?J?J^<@deH6(I2(p{jPu$t58sk!AplZK8_oC ziMy@w2wRg!a0ta7fNI;9$v1!qOF{Kve5emYEw$GFe*{A^}@JLeQW zA{L_Z1VmoC0L)IX65s?&w2u?8Xi{E_c1f(PMLD72>em7j*1Vi8buVZ>HJE90e#LQo zMUz!)^Qr+=YWb=n^iuPefW8{O}DN=OMR;`(IyJJR+r=~qzyhG=mOG?7Dq}$ z4a({@AL0hF1?dv@?-fWG`9S{0i4M!%v2E&Wr^H;Mcl}VSq4T!{uSEQ;`~ffF=;dvC zpD`Cy(=Qq=X#gS{okTVjXx59X3CVzwspWn^EHUts1ga9_28GQUcG*yy--C+s=Cmrd zHj@H*<2`v+_c#6i2ycf%G+6xFaW2s>bX>0CtkgvOYF(!S*pbB&Eoad7`xb1`fQ>)k zk4J1+45U0QSK&AYuENK;!O^HO?vKPknj$v&sofu=-vqNgg9Dw1c;xSrTzOhc+wp*~ zcyyANlCMU-X@pK3=95A-nDNrhom9pFdC@=`GyokKFk@HGJThd*Fx;`TEDv zE5GfkkL!L@5c%Y%Ei<2|7F+x@{ZUCEE2>)k4vU8#+A$IJp9E9oE&lTNT#Vw<_}>Vo z-VB}_ln2)4bePZi=)$1DM$W+WFU`D5axPJucY5h=bGD}bBDpEBaWngJ)`F2&XyNhK z#s+@`--9}-s%stkqI_%w(qS;^9Qi!T@5Da4kqFkRb6Q zu|#7>HcCd_ks^j8hx+J>c#Y37L^~^?IHqoI^5}&jpVZ7zL ze>Ss0@Laz8*SXw|M@ls@|JjdCJ?umtk>~K?b|ah;ww2+x-(>hRwS zPqVdh;6;(FgN~b4^)~w!Fx0LJs^I=n6F3>Xz5a>bHT1Qay?RkLZ*THw3CpB4&&1D- z3!&h?FR3i)qOeL#%U*h55I*vF23|A|aG)I>Q{S}f^R$0)$j91Oa9-@CT&DB$Mc znD|3Cd7mV7s(R*xrs!Vgnq@fcM)AbE& z8lX*;fH>?S$^I_=VC!Kmk0qJxsDhmzUan8M4rs_itth1lb-KqNqLxlzxZ&9sVLfW3 zuV;ylj?RT7mGX=T(6xXhnutPm+T)-Q(FW-IzKBOVQ0`p&^)+ z1k8$oY*`YLvXTVhW6|EUxGow=I|T%>39YCaF#-MwNlv@uHHkM7RXZnM2tEYUX`c+g z4MHHqfvUCR$s7TowX8eYjbJob_yhY*(3{@#^p;d!;{}`wB(K(Tt?X<$0k8#6^jukU z#RwUYv81;eUdnmx{7Jb^Amyc8#}tLUJ9?bJYZ?4aV^~i5o|_`qXW`C6%G5XZfts#` zg@rFF4s8CUC_1L}a{S@5Y*r<={-6D+^2z`3_ti4wlVqmiEwmP^{{%l_Luj>WMMtiw zUqC{yWRQQrY8hwvDPClVb>EOM1!BwgSy=oz&V}%kL$HFQ-4gp3rNzFgGXrPH2bW~{ zO3aosLM|^TwMg^Ts`{IHv?z6w855h^NdjpNEuj)KT|01mw4a?pxOX%HFo)1id{RyD zDaEtiUi<+Dm(!(qEnJ1SN&o$;JL4{Kw_K(^xFtU=Na)eU;tpz?z!=(S2CVyN9PDvw zZxPH#vWfv^{m?k9xK@5btw{eH#6+P|Axc))vF1Ci-1g9U1fmWusBoPRgEY9VuM5gWu2z}| z=hsAjqq!rgMv3qrw$R}*0STw^&E!zKvsvEkW@JK`0&J;6vrBrfVoPq04a6FBqh_%N z*-nl^+m0wzjGkEjlmObuDSF_tlb_^;&Y%nNi zRq$(I-x8b}8hO&&~4R=GLTpc;vNG%_gPPNOX zku=)0vDMIz9sL`W2z3SOM9at0b={MCpgL+&s6quUfn2TVuCh`+ABmz0D(-6Lkb>^x zAb`IQmxCJ!$;hK{sqS(Kxm71y_3cL}K%G~hv&fHqU&kxdUTKqhdv(Q~tM-44 z*8P^dY<5YX`pI41$>*qQNLath*Ob1|X{t?S}mZU3l@ zJ$)~=B7_Wos?YR2sn)dnas}&2+&(m3n*G!ev=cubad*&jLK)lk*R8dS`;woscS6JCZgAlX=|AAr%3t8bx_ug)NKE1T~?3Z=vE`p zXJD=1cTQ98OI#niW)C$+&P+#iklZ|zJMH{@&*fX6hZV0<+AikhBF&CDQDkrMLkisI z4-#h$$}t>vJ=96tsHv@ARY7~d{|Sr__m zPV7B(OoN4mN^BeZRr6&-aN}qiBlvT)V(BWK3kI@OKo8M0;4Gko-!rI`r*|S%ZW2#s z1I;lD03;n@6ABx<2*&t2HJ~H{Wft+uR+2sQY$n=GRoAM5)B%X&GYl=jflVS*24b0A zi;Y}4$dej3vZGZsEo003Ls$3Ls)7~ukP&8sVAG)z?g@t&2F9B7QlJl+wy-jhXJ9id z#IV09O&|g_X3B^8?PKJ$HRVONzYnA=HElusgyZRYfn&vm5KRzz+4JY6T};y?Upcdg z%(6^cuDt{Z(;KYha2gI@O9$?iFs~L(F6hB%tclQ*=($=B$tl3JF+`&$lR^3w?a6G! z&gIoK5-ab&fl8P;vArQ8cd|;Q$JH;oyZ~Z!84@z}{yt0-C#O9nCYf!iZB**;2EU7y zE5IoDbY)11Tpe9Fx$_T*HSnnX=lAgIycX)${t9n}gACltZDHb?^5%czR@8?Sz^Ymw zoqUE5ntyfcu$-b&6>BQb@+TJkivs9zC|19(jK3dUu-ud*fhK8R6$c{+UK!cM{BWpv ziXz)%;GIw0!7$5f-9gU%ivGEhXteo}!&-G<%|27-q|fk{9$zLKE<5hIn_}geE7*CQ zo26^#o;q4DmgZ6_mTO{YjDx#%3*7Vhn|l{B?pg-IgLxby^WP1>b(k9G^RwZtk2PrR zdK5?O+bPlU!GpF-t`bYxo*h|(yiCh1%V1iOK13mBSJy{V4q8<}oB9R^ukF^XqrXor zRwQr>LV^^FzB!v`Cq70rO#4u?+T({WqZpAJxxVe87;j!Vm_~kt0%pG=(6m}X#i&rR z(T#13+YPgXbe}| ztWiRsRV3%2(dR;0W5aZ?aQpC+&Ux3F$y{n60pi2Z zJC6I=f=Tv16t*$SXMw!Ll4J-f(LJt!Hs;8q@Q2a=SV<`T+Z;=c)hJWrHn$+L5Ki)v;QP1KCDlYeCzz)7nRpF&jXRRK*xECHYfdMy^hG)}nVtjCJ7%2sg#9N&qaytqDo9yH-@iY~O` zro7;xbd(kBX7!Ciu)&;{7?H=At?h^Y*mrPLtJMXkv}JN-iVn}U6YIWxZ9dYKIQ0^W z>Sv&;-aD>NV6stw_{!Btyh`48Q5W}E&&|%0I(O5=Jfph`vCQ$h3~4j{P{?R99&ZTF z&UpnLmk{TWCiSta8_YDau9RjXDN!L>Xk4-Ks?HSR@Vn{?n)Eli+$WBxxG0*hqlIJC=yEc8bt` zuGv9eSeecR*aHyRc)zm7=v`wN>q#2US)`^DT!Xca^iE$);agy}ab{8rZ{GGMooo9F z)LeeFHdA5>vZdc2tW^tOHff&Ek{ZbqEy7%LNDd6FiBN2{FsJKvz!S*`sX}!dMr3k& z5bLJLQ@5fG2YlPs7IbK$uyUIJ&uMEg)L^{-TZ3V^ecgYYwzk(oR4I*XF6m)cbo^zh z_Dc^a#pittg4-o-W`Dy2(`W|RgwCk)ff@{0w9mU?HD*p`__7>~T$VBJ90jG?Nlh8K zoFBlK&yJHr!~>PHMf<(ATH=+>E>`=V^7k4ARn%>o!pbQ2+`TYqhDSeO?t#thIewB~ z(2%#+u>6UxNR#3b`^tIb&g!3Pb*i0qT$|;SEyWyUFk6U5kcCusA=c-WxLPH=gMQs= zxdcfY&Nkw76qkmJ+VeF`TcqYtYb!z{w~$?6(Qaoade?6cmDFWp;|Y#=(pA}**!&!s zFoEk)u2WmW1~C_F2;S;~J%f&A1p=2tG7-+^N<(=XXFBEiozzF)tNsd?N}=U*7(m3e zl21lfUX0)4J%rVX4%EdOOx0(jVV31)i2s6ci=$XyQ0*x9lulJ z^^`1?gwH6MW3AvWkys#yQixg&34c36nCwdVS*`UjqO9CuodEZ`E5R6?rzTufTj&t` zHH9I7(@*X=QXph0=QQ_BoAlGmFrCV#SObkVqyK3lJAC9G)K?T@W!m1B(P7&#x)(CR z?F978(~kX7z6)2z&X^#Ma@yb?&L6{P?u3#P=_>m&l*B^AbEFRY%U!_7z6T7oz{OlHP zaz82?vwCtI1*MEVnOae$j>5G`LLu%l`hhruBm5pEQ?<_P$)+xulC~nE`oVNP1~#n~ z=dFnHo(omVz!*$V>}Fl<8t}$vp{~QCeU7iE2I#6$p*Y5gLle~JP0EQ|x}|0j0T@Nv z;iVRJ8CvK~WNt#pFf6Jr$2WSC{Ul@Qdcgv6GcmqR%E8VRFdK16Z8aGruAzS1ot?i6 zHo>fCp=ZBN2(MAGJWabcoqXr}7rdvyt>ErswXnda`tH<5tj?})ltnuRDM1$7ZpQkT zD_vtBUv+(g{cymlWf$&m{^O13p97~^Ic*5MV4qNb7wnaLN)Wdvpz^;VL47X33r7AG zQi%VChul4>V}agsyrC+YK^JGf1+YC<6VZH+_C?OZLm&X~XNW#0n;4{HllT=j1?EvG zr>dzfW!LbaNwD&k(kJbh;qtNvbKcWFAca!yXV$5Gf(#XUQD)xxX8)v9Zc1&{ewA^0FpU`SA`^o?_=Mnm3|!DqfpYehivUF6 z7#2lw5o)-QwVay)65+t95W|lNS0t*^@(XoD3+t*;7^}BHBYf08H%u!h_=Pxgj; zhWlVwd^(s}Uz^87v!13SZ3+ySznkQ{>nvR{K)*`g}uX3Wi>9YLa#OcsoIMD5LXtecD&obNw9D z9AIfCbm3Mh$4orhp6xjhC8=ZO+LI4i{7DZbHa^IL=VgK;$2nIOa%h-f`9 zg?cLx>Gh>TEJ@je+AQj3EE-R-0fU{`NYcS{%;vGiM(uB=hP(|Nfe1%Q=^|$v+ZPsi z&#|loXs~vAE;N%Vi2l~b0yey0ZLbe$oex7{L1Z0GdYiaOm)pKYLj!2|)nAUt0$n)K zDOMk?81Z}R#MN@_BXJH3D{6SF1BWHfU!}M~?FMYDv5>?eU3p*q`(v*~i_62gUW1e# z%~0`kxz19e-i1q~K(Px%jPQ6`IXZOV3X;B=N))l`67^ST%ltG#?(q8b65291BL7Ir zUiLo+xKmMsM*ROWz}25sBbj;@ptFeNZ0$9EIXR!Y)F>mE41FYqPcCVy_*?y>19vblg_zVWmmz8+Hi z#O{^CgW(ywi{Jt%F&bT9>~WS}-5~K(24a`&-q1lFR?XFC)yo0t1a8DM>~dU(07`ka zj8m9Bhox$3fNQbP$g(8&F_Vt{qEWDhR$_+v{1G$uTkR1_wE4xO0XME~>xu*}2gR)i z>O;shpP6?V&!Nh(LMnpf7C_`Y#4UGBq5phEc+i8FV`?YRHdZMGi<$l?Q*6^6;T zGepbN1t%+?A4<4frC9AMEXSbFR&Q;xKMl)Vg9aC_4{^y(M-qcz7W~Ly!)!lH%hJEKO-x-bHdr$0Wp^_Kd6QL?`=Bo#oW zE-34)h9*IU!<%LI+m(&7uQ~zm)OZkc1Oupb;Hg0W;`20UpNi`x61A$wx(Gme;Wkvs zH%XTn3d!=H_!j3lN!tVJ5+ewhq2)59o^d zttpRNi6ORjpGGPcQ(ABUsmjpflE|LKljO!0Vo+lFCT&_F3W#$SqhzFzzOtkz-VvcJLQc1MAZI8p6C}JspzY+)Z zvcudzo3tZNo_#k@SdLR;EGt`D?Z4AEqqEjnwAmPh-uQ|jiS{*$G0W4n3kPxH@CNUr2^J%&kZbcNw-Nt2rSnk6zk<+Sw9HF2-01Ingf+N1}o%H%E>p=zRO zW}HZt1Zd3)oni|z$RS-IYyJ>Vn{D1Z5LAe4+_`?$#vd=ec(R+>itkZRtG-J_i$*UH zbpTB!bVa|^E&(_CV~DKtgS{;a=EFV9YV;);3BR3~4gn>GNj%N!XC4MJXD53 zj_YtI;f@nziEe~KEHVqr*lV-R)-h+nkAPX}dG?4io4UDk#_Dx--4lw8Jf|MMZlSS? z-FR;@1Y?(tUEr@eP;>HuzM3sY)$|wHV5{v50R-P8wsg|oUkG1i$DO!jAZ^iO74~%N z0z8b|Sc0zc@|+&I`wMQ2NW^7AwgoV*K(!+~>uFLWmnqp(|D>Ao`@~J{<8ba>FOuv6^)Z`P zd8o<7dfwUWHjRZqnyD4te>*zM0MtdP8Zj$rC-v?49a-F;lqQ`$`?b?_*()~hP_S$R zxdhhESLsN6U6{&4)^L>Pi-%}hMmWo|fC6(1SXf=>E}05xQ_wDR?F|B>2MC);=4pC4 z^%&}M4Zp!^gcqLoq>LPO5n9A0k}|dD+PW#Q`&YmH{QIZPDnM8Gz6PUn)xEAce9JZ! zQAh}>M^5pm7*yyK6gZEWcOmImEQp8tivM`UQ&XPAwv!4h-S?H&?~C>m`yYyG&|zdE zb`g~oesm2=3LLbUn!AVfIZfEDDCHaWX3~K7di?m{9 z)J3$=Z$`5j8Mzekg4#1haY2L#JM*iF1>Y6st^&xY7i%ImNB1YMympG=145B?!0|Hh zWO)wB0`nO)*!J7%_$3s`(Y|^`nWVAim_}0y4%mfZKlG!9z47MWaiGkk<zS>=5bv& zKfB{mS(SQBnr(h&iWJ| ziXs5a*&xnRB6hevwE+;%EwbHPZKV_zvGlYfWPvSYdL&1KxWPpM>jU@zX!jFLOaF!U z`w_Uo5#3t1i)jnahtz3-KgNPbHpDD@J>EuJ*rEa=5xUg&tV?CAb0O?EEC7!tRR0BE z*OeX$EppJ1aN=R8I{eSaY?qkqg?6ipx%kgZB>v0|*!_M^$@sB6RhgHGasc7%g#5i&(!WYf-aCOlcGO6(*5aj?YV^QH@ z3oE5w^HM20Gv@A0tV#0&E^uRE-PMz=&L94Orp74gER2SzY{NOdgE)3FF}7iyF`_gJ%5C}zSZ%~;>pz+ldFrZRKy{P~$QU99PF!c&F(*BwIxb8*(~oQs0z$(aT3)v7f~6MzgeU&~Pf98Dz&=R#E*0k6mE;<3rV`xoMrVmINc29&{^o^&e$qQVcK~y=G1aIc6&KUF+JmH~dT^ zF#_x5c=qEcDa~V_yk;Xaf#_0KvoCW#x_}`wZ40d!STf@>r&arBPfI9;E>00!KA~QO zaEcJ93qrGaN3`w60{5`ClosT<6ef%flDM?O7S+Nij0%Mf0)={Q$kW>vG($KAb}CKM zV6G+h_M~aNRf*1k>Y`_bxMfk^s$Fr~S%&pa?*^>;PWI#@H_9%kv(97hdM>n|CLJK- zbkR`aM@;rN3=K`fvJ>Pr=y|Up|D*)-{UuK-4&T&e(m#--!0OuJ5f^+ZU8M+W1mmL? zBRH9LE%?37F$Iuv+{#4!M_Ql`4Y1csXJY&u50tLya4||4rzSX!s)_7g)E{qx66au5 zJ*@s<7nPAP=x2$g1!}NY`@j_Vf=O-J;@rYWlZh$&G&q8>i2$TYMpLuIQkiS0pw zV>0Fn9aqv#v0iv~V4H@l95tW|#u~-y2~$F@x^sU|CSj}2ko;t@WrH!;0pVtrI#A37 zI=`6^$B4b>e}9`pVJV2daI~K4G>wCpNYl0BDSnj3mel3LB(CQ2iop>BKHph-bJ&jE z-2ITfZXQUw`hZ9A@87$<$s2n}_R=z4J(leVx4xF*f`=LS3+4ge6eYcCS4@pb<}V;x$X39PT-?X zXJQZt`F3Sg)s}AJxK%wF%%jL_3&bMVEc46Ho8&jbCNKJ&K+p zr&m91gO1x>rN>#i4d|1CQzggMR_+d_-r=KYUc@px>?cL9^w>{LtU8GxGUejzT5Z+# zYF}f}kAIUn)q4MmKdW-Gw8W%6&+*F5f2q(>(vf*xB`a{CTf|V;936yJwEa1(3`ShUa26*>lw&U%tZOyjTwJ<@xQH5E zpbXbqRtsp}4jq%_&n0pI2)m|BU2<8QY+$?@s4ak*7M$5k3+#`|@EI+; zBEzLQYS_Lbm8Z_U;;)pW@B}+WON}|Txp?)>7+G<~?<$wbZzWGWjqK8mm)o~G0$ z%2CbKReiN$0u4lYZP+wctC;`OpfFwM*g5OB^~0Q$*!T5TV818x$jSc-|7`;<^;6WnR}!R&>XOc*6|>0=F5UL z-h0i~ouIOgUsNlyfD-shS9wRFU9>2{wZUv7Z`U;T)5A7%oX9FlX|#jn1#!?mJoW-s zq)q3<4TD+W0y`x}Z_30s&n&2tmlG76nx`KTM{qj+)SF0&Tvs90zOUf@0L+`o^phQr z?~GOw=Dr~YFxh~ns%r_ zF-I;=W z+n5TCQpbc2ygsQ4i0dNFB2m25Vb%m!-3}rEHJrLws=S{l{+=X3{OJ4pQLAGQ#%(7L zaW%H15uR>X=#b8wxL}rii??lbKlk;jNqGX`ZxWkpgdmH#gKde$7mfr{%iU@?!y~lWYJ+_&F%r$T|js4G@Qot3jF6?wwyyBCq4( zXoHDA4*ckFx4V76&FU{KuWa7nZQ&;z%`oCQM(z8vaC@m`9YB9Pb0q2c0T*ETHY6Rp zCPU_2kK%>8lwMdq3fs;5KWeJyhrb=G%^+MI;E2&5&y_=;g%WxOx`tt9pMb1{X5LkC zaS1{1wP8vpj(%kd;Wbu75{us`CrYW8In_bhuR;o$aa{sN&B|=CS5Zvi+R*$Y^}G-zaIKY;<{cF7h*Fhr+|9i`1%f z+5gq(MTI6*GpCjnWDwR?mT?T$E0FYZAnJ(;-F611b=p-VVW}JNlMweO>?ct`g&0c} zrI4W%X}Fv}M>r6bg=9}OLVs#Q4Ug(SpbJUw-0)^?WG%gAL!goi#7?L^*nru@N+-G3 z;6&`LuJS{=>@K8PhX+4NL{}F>U7!R&e;vu70}~rn{SKUSiektC0>vVe~Cgo}2;WKYw39|ltH8@=fZ$y)#WvrNH0(hHLBk5UWv36&hqblXM_)dKmG`h3=3322D*ZJQUhSIFA>^OOA+;rWR} z9PO8EyV!G7s~{fib0UEos;uZ1CCyBC;^FUF_cI+ioz}A<%`Gfo`;xWBE4SSVcWq~b z(5HmT${SsVkM-L}4bOEOay849Q38aKr;@P1h{>+AHJ!d?6?Pj&uNVhFlP~|tneib^ zw*lR>Mfb56s4{Y~c#ihO2csKG4B*<$ zah{tr2u@oEdx_|e8ijt$6xkX-4ePzm03LL4?gQUmlR)ePT? z_65)^Bk_n;Uqe%#%B6af+jBQc-zj#peo<~;7MMeK&urk4GI0gb+$OUD&Snv2OLp_1dC^c;%-C`!blS^59YxgabV`-EA8m z1wmX;Djx$wW3Wu&rVnpDvk=woE#a9hjLaHBMM=n(?md!+OA+1eY(Gij zH|*s=!5x5J@Q=^*%6BW}^Q(6J&o9hRVDxX1Jf$S=|IpiLEJ{jCtY}`0{wVp#Hv8w! z!Ug5@-~sPxfEcpTr#se`-<;!IS=ZH}%n}ivcpPG2n%$Qdj)nA1Y3?$xd|QHU5EdLT zgqqf>t!tnT&94Fswrv@7cVbjJ?U)!o1G9@T>iJe?IRQ2xMh=i??a0;iIkzo4Ctf$v z0&%Y_FKo*u1A6vkB#}2b*VIqt-i^aoatiJg%P0q~VF2y5Tz-*dK+-@%|vCUgAV`ZFg zCP?z7h82%LE&4bEaMZ!M)dI*k(4?_7MK56%0SK%pR?K|^M0-rYG$~y#j9Sx0#o6+9 zBVWcWGB(zzRl<~W!aX7pYS;Hb`I&bIg2iJqk?=$_g*Kkblg-~x#Nwzpmx~w6BFAz9qpNs-MH{FKH64f1UP~u9P8cN#*Du&Xj zn?Y3Dx9CQi@Qf3&IJT?0J~Xg7fNck3$r|h{JgMjmrT%<0F+SB1@06icL8zO{aWWH^Y+?}FR{F9sJAuH-B5E#LE^a;FhJyc z&kW)8r#OYO`2dae=&rX-MCglRN4yDHCcL@?`l6^d;p0O0wWDyLnQRf+Zh9c$LexL? zt4^>OGWg#^Hu9Oqeg9s+`gO?mcQJGluGi=b;-AQKT8+_FI{_*7si9c%R*u)XI4cda zJ`z_^RdCWLhoq(*dkU!%>`7E>Ub`DIcq#?t63qI-Ju^G$gM>>;!vE9db^A=(3iP~E zC;Mw-a|ZS;PVE{j;kN$V&u{#$r;h%rRIY5UdbTm& z(s!M$es8Q3-@@^qP$2%P*fFrf5_FbLjp3v#(ep%OO#g^vC#sO^G^C;swey zI4?oXVZ=G`q$j?(4Cd@&H%W7lhtt75Oa6d{K|6eDpT<`=uD8tXc zU7;6vb@ML*HQk;cmMRTZcV&hyHa5LMi<=WSJSI25FRS&qZqPJS0Gs-0)%Tb7& zM1Q(dsH?XLh<55om>IX{%-NI@7lJ}sI-kTWBauT~Hc9oY>Tq}UDaH_X9Qls=wX%T{ zZD6|sZ2=EI3aYiS0EPXEznR@KN5HQ9&EGHfe<^tephD6c7Bnuy+&I;uy?=+!Fx3_u z^l?1Zo#S*EZ_0^X*ZiG*i9~;U)}8LJna(LEDB_R`evkI^9J0;wL&BFmlj{l?P_I(H zbzjah`z2bR=Hf%}MOML*z7bz#rt|h?n|lfvI1P#wAnI>dk`37tr<@#2aU!a3%rw6o zD=L>v!$>db@>wVA!_SFl4_yyo^7YfvUQV4xJmvb^J}5hQ5E$y!n@bwI4j&<=`Zv^% zKh?ip&%~S$G+Ox}Mi59N6p0)zVZZIwRY#16wf0)VuH2%pPHokqdXveHBPOOQGbr$u zlU*ovTb%yuou6i2sGWt4A+~(bL9AtDdxE2GNuuO%_QqQ5{sGM%3MFiBe@7syMZsY7 zP)pvi2*+{WP>$uPl0G}2P&7GaN=h2-wItH4&1fU87HF{D3XcIXR%Ltrb_b!}vPdaz z5lM*FAPSf7S1g$Z@0<1LRZ7RjaZ`2cEj2>|RaS#idrSi&Ys@1i$?-MuPxs#5&u`Ee zI%L3fVn#-L^B8z(kfx;?t#GgU;<(2BIV)jLP@x{i%0i+CL>Pj5nQ|LjCnU}J3Vx_- z^dba~V2^5nvLDAedb5Cs(AYswlcf4VDg^gV-a_gJYPcjXD*NSyuAp!U-&tNG(F=Aa zt5mbmK(40}Hq=j!VA6+)9zuS)wyzs2l(;+&h0|sX556M$XH%LX!-=NAh71=TJKK%3 zW#+o7LFQU8k;02XS@;S0?vu=nM7&1E&t!Mo@^S4jP34Q7B@mLy9??Z)_4(Du+F{9a zA=l<7+jm_~?^NTvU0zgQjQQux^gkZ%fA_=eb%=nE|C@iv7XL3@F#EjPtZebmQ}4Im zKW0Hr2|ghIz*qCai(4g2(&u3b33 zRWkb0KYtp(yFP`}dtRA&c0Gho1dDgU7k(|x$ch!jFQ2=0EKA=n&J@ble44)BbZ63R zHcet~nCqtxb^{t+rdFtWlWuaJF7Y#ai9sfwtbmzkxEs&e=Oc8m#RR7L0h!N@C=_sd zNIxt-GI%wO4M7JPXH2{ghBd%=7j~NnbHcm@S(!}@m~l{v();iNZ8f#^63**VM$d|? zNAi?~KE35xAcniF8t=Rv3XZ<+7kL@V{bHb@F4X(%(a@PfcN)xfs?hQ{lR&}+PAN0b z$VbZ1_{VX*^S}vWUlVex1_OwyIhcIJJ>UwNMMAYsS^4W zmzXFaY>^aTNUGoe45a~O(hQx8W^l2#8o=c3g?-S`ruI24&xD>B$RnS3hw-WRU2(D~ zRsxH(B8p0BC89MJNTER{dbO4}f znXrJ;dSHVW8{Euho-~BNAq(;Igb>goP z{(tKt;gkB5YZ2g-hV@|y87_3Uzt?x2ef_bg+RU9dF@}HNtC!{&o$}|Hg_(?|aXia( zVM?cy8HX1YT%lFvw6b@NYRB%#<8dc1#6~@kOi!Z*ul%<9tXlN>m?M75C)MGKyaW}M z`RfgK+Ays|drOm{6~L?IusRE=^ujb0$!W;rhfTk>p4(8bM9jLcE;H5mW$qG1g)@g7 zPA{dl-n@kFoqWxs&}cd8Ctyl|_%y6zBFDBy97~FrMSS?;Z%y=ntAc2rUx#PZam;G& zEq=c7!rGbo+Kk-;x!aFkef`LutS5f89EE3BP5soBcxN$uQh)e?P>VG|tOi6U@OlOE zWHlo8O_0#`2prejbyw4OJ07F;G;2dkJlC@wJJChuOSwYJ;^^ngcYV1u@?>|JN*UV4 zMZqBgs0H5xcDMznBaiV;w-`p>;&K*j#6tqS1*rAZ^keD;E=;w(=;xj#BMr0fff@|^ zkCEoR>q3MoPY=eOs?xE)P|dtGzbEo*kSzdbKq3sXCCa-NfrdF6s~$N8;g4J~1!ylr z%Nn$!HWM#1r%-sB+N$p*NF8+cOL^nRmxr{-!aYs(hoIuO$gCwy^?$T|T!Mg-EzMSE{FPh>rE0wXigo)BYUPYnFnWx^cZP|7 zo_P8t;DVOr=m6e^&I-=YIYk!S%)UOKx}2hu>{1EXcY^Mbj+~3@fr3wEE#0}v2ZKDM zhLki7J0yB(T@Oi^I8wEyj6(4Mym&e(my-Eq=TQ}d;je?m$8KW*m$m>Y(O)NBYUl5K z6U}Ei1!02*cXpF1@#>=GfKlq&zW3PhF}2Fj=K^IB!AQQ!_&|_4kS1;O)_abghBVh~Ez zN*-WWjK*l7RRc|=wtL6=3N`^#SYH+iFAiV_LV?Vwu#zcFXO+K8Ba}d_EB7Ukl_=3u zcRW4_X_3nvlo65~-F-x-Z30<`C75n0fp4@4xlA}#2w*OSBhJPG3ER|_JW~|kbLR2sZ4~Uh1LyLFpj?$s(_UeY0wX#2C6HJ`twmT1MjZl z5@i2P308Y`9*S#dEgH<^wGK3i_Z~Js3l(kj>!OZJS5PoVHrH<{32

kbt_Hs2VWtb`3$+Dp` ztaG_?3S4$!32lUP3v#2a+7-CxFc)?Cx z9+G{Ncwy37ICm^Xo1<6)2HR7R?YatyOcj*0%-Bd?v+=j3E`aZtOog74VP(T%b)knX}x8_rC zCw(hA5BYU!_JcDPxDujDabWA%bsVU1{T{%2C+Yh&3;K4xWC><&@xcf8`N2K5*dvPn zn~A?;_!j_uzZJvp=)N+#D^2fUd5z^)2d)>m9j~gRWeJ+BYoetw-`KOYCEJxdoEpn3 zZ*yCx_XT~$`woiGWM*95)UR&Zi&fBVl_#n+1W>wM)M0r$%FE zKJ#y`yZEKXPv>}8#Sb^O!+yEfDL~ye@L6G=GlU-&02m^ADc{UP;4T0h`QWlsl`yhz zmznvzTn?hrSK)X(ZjGgYGXQ3RnsBbQO8Wk8VbsdylJslYKd?M44#e~5ZrJdpl!P_(;$7Vl4;gW zR*D9F!DB6{pXHgBSq6!vMMT5G3yEO}1K48DF)NGg#{oR-*?I{z4Y9Vx5LbECy+Xfj zGn-5*j&=D3m79$s0L-4jY}3?embk!4RoArQ?PleIzM{1ct>^AyqWerpsV`Q??DxUfJp3`<6c^z6*?K)AuD4SJcX8V{ z?1y3PPOm7{LfUyHshY{GY0x+5u~uu8rDjN!M3yGAu{A*G+PP(&o9yl&6|!V05gafWoX_n; z97pSe4?+fKWZ9CcMtOvr00@J8co_R835Hob^5XKd%nBC{adY6ds`KkXs~Z%`nM^uy zaei`ox_ff6L+=|F4>{RVmRCgYi^2Zkr-Q?7FjxjhpSipW%u^9#7Fd>yXqez!S%S}y zqVLh$vXn=Kz>v~!T`Etbs0 zg{h@qduI}$KDbC7C9@~#{24n;N4=GlRG(m=_ab}970D;5&&SD6r|B(KxI+L;{V{$7 z7|LKRp^GhkTd^H~EotdI)yYFir>E)#JmIR@M5KNY3WAHOldvIMI*e<_Ev`}fA|OKov) zK=V6mat+*8hqF?DQW!5P^Nl%}7W9Y%9D3ius0{Dh?H6Ez z;eA(|fB=R)VpS$dr&=@yLum*P`ogtHmw46kmOt@b_@|K__VgVY%calQqpAX7^!uf5 zw=n3HI;~v0neTVYy=J)`6nf1H)M-`$58ug&_pN3;BNtc&K)2r-P2S zn02Mt#cBZ8i|u^bpD(-9d7B^vsBl8AxCMY8zAS6iQmL3Ts#!2N49qIQDdHiFwN=d) z(#bDZ>xOSxHMr!Gv`$i`Gw2{$su~P-tX!*6!@F=f&|==4&!iFv-dfq&px5z$Uc3<) zY}+L^5@sM;xnWr`OgHTNHPb9qDj96?66ruJ%Z2@6zm8Llhrqn7KUQp(%q(EF*RsNj z)>MRH(09~#u%#^?bev(=g>Z~K>{@idATH<|)C=&zU@!)B!(6bW^581nZi%Hoq)Wum zne?R@GhiI2FSS(3@Q}1;UV5vA3-1g1Vt|KNYZ0h?wGNh35WO~E7_)h8u{5W%Dgiv~ z7yI4(Xi$;p$O!*PD$Kjay&Cr5y~aahGBTlf-zSh5zF8VTH8aF2Got-=4m_qO=JH}f z8nlMM-DVrdr#KJ{w^9&rE)_pia+ws+ZsoaBIV>B}$U@+>U(eJV1=w`YOS*2t_fw8@ zS*;$I%ZJ!PwdxsEDW6m;rr!6(Oi$49%-M70zQIXo81?t!}?@#&WE>?9PtGUtgo zs|_LodtC67%wf9=`wQZxB(YhgO`WE9 zWY#u?hr3+qOXy~cd%4m+*JtB>VZM1Qz%rBPNuc)-#y3+q4@+^WmeNOw&o~tm?;zN$S%doZlsb^+3idLv<{JFqX>|v;^n!vC4u(Brday zS+;_?%CF-5ZUkm2PZ5>Km`3x;;i8&nS&sZ#xC$hW0hmP}by*3GJx$!#feN~QoQaH2 z@xG&=1f^fXZUox(egyFAsUF^+U;F7O4N9@_DbJbO-vapWdRzkdDIZ!}2{@NNC=5Zz z?gonStmgPF0_mtR%yY&;t3B@96NWRv`XcoW3eTy}{5m84{F>Cwovfg_dbB~`>5Vbk zRKQ(q2dm0h@~Yg?yh`YT!2~b`2KR@e$;=v#YYaOx=Na}FFkY;@>D*pz8UQf3D>io| zZHqQnU2Gf8qUr!ImKOlVp25)V_N?x}=nYMwGPpZ3MpD8_>I}2$VH-c1?HqnvoAoSQ zHGb$@^`d8|n?V8I7rcaTYX&83L0^dW7wGMH6>bAN*Kj4KI_i00ag5b~^aX~6zVkMW zDJ&zsAgI}>mnx;?x5q0(wKE5d4ba`n->vo6000mGNklE}HSIi`u zo^^M%XiB_J}h+* z7 zArrh1@10~p4U*fu%^u2kk?CrQ2baeTJfE;LkH8U8-ZF9V5f`vN4! zAn>!Vg17dPrhQR0PPz8CR5>DgZCBF4psIBS2uV)}nI+v*QjL}iN9-jGu{KuO$@XRq zzwPEKnL;s}$tKUwj^TsZl!5@}(kTG=@N}E~bXl%4s_-R>CQA3XY*&KJ(bR9*I*kKZ z$DfrBxK2rCiwk)9E)&G!^wn#Mq$5*mThmuEq%u+}3q}@hUZ&WI-r`QCu#K$@N_)Vt zs=u+tB(JC+gGvD_>;tRdE4Hc9A#i(g`6rHyiem1lYFRsp!XAb3Sq9JI-9P^k!L{@{ zWBO(SwHmJ;r3MvUk@zES#@k#6K=NQz9Zi5wwIp=mEf;k-;9lSE51iY(;b`pQhZ{fN?T!IWrgiM^^$k$D z-7oh>H8!xrNdWjxFAt)#4^Ok1f#7`uFV(6S8h$QtvsUfWcQRmb!!JtM*~tlp)ub;S zaNARI%T2rJn4onDMi7)`!@>D_0D->3;8`1c#^Xl6?{Q8PrW_8qn7?>_x~^7=1h84l z!t#bwylSFUg`kUeEpL=^rEK!+m#bFY0gs!0EnKjq958EElfi)}O@DDE@WJ3cu4gf8 zua~{mqPv`TKuT3cG*mjK|&s09FH zs|FI3o{bulLC|YCorZOv4)lxQO-~zn>Fz#vaN09uimIW(}zlq%CaH*1V zy+OU?dU?+Wl8d+*>NLyk1_p&zvse#sw^Wem#n>724X}AUus~mk-j~UD@W+d>C-hYU zk4FPZn3y z41vuR#$ugSpGWpu7Q5Wa%D-fFLrGx|)am5;5Cc4{$I`xlUXWPwznnAEJ;zQwMF6uN zH5ja{umqgJ-9qtLCZvnUT$q%vC7J^#XgU?6kj0a-vjW+R4ig9z5qAQ^|;%68^Qj4YLbrP{$6q1M&r1< z?L8E__jxEz(D?CW_PZHhCQ`ivtzL1&P=V}JLFVw;r<@LbkG_|{V2ZwcsMb4$Gx4fo zSG3ldtsqLWY+6M)77sO9#d~Kg?ycFCxwx@s8>c-ibjOv}porg#@!XoPo!+Pf0Jr*C zFc<^S7d{xac)X~o9(Ltujfc2ipclrsuNvcED-0ePQssXhzyZVW!USJk_xb~i^^ZW` zPS+gI>Z57U?bZAs*Bw^-V*|f;8o)q%PxYOJIvvTZ!SB28q(R@hm&L%UT>!&%FUNjC zftwcwM`_O>aW^P;{1Ra7R5Pxb14vYNgzkLaTdyVYN`lYQf3ODtPbN(OxYr9|gA)?K zPhU6XQodM#8BJM6P6Jp9Te>9`g)XZ_#)V2D*=zbwU#>aR9D2=`oJ#kN&^{PjfOayf z%MF1_$kMaIDzO3|hz9@+M-JhhK+0!!!k9C+A{CB?GZq-D6~ow$M^3M6GD;7za7P=^Y8E@~ zvXrH4m7=A?l5odbT2fX;krg~1^#OYe7I``GA*M_Nz%siZtsCaj;eNOL|MB%6JaU^$ zx2}J{z4-RF4a=4UO+rU7f)QksjgIJu4l|etjRGWFhVA|BjdMPnzkgTNBH!UiJ{Kqu z95y>l;=@&M)v5*lB$UCD-(I++sn$y;T0SkEP7t_%>PKuSO*zHXCod^|3{) z*DeC`cd@V#%t(X5(7`m$G-X@}h*XGCX(^TpYAD(+0n8{S7sFY5wCG99`UGt;?r&yG+rb;UbBpx%ey-4~L7lB8TrUA&9jeH|O)uE5 ztoB=y^yWB1R$wvn46%#A4uZ-UcL1;3PXPY=s8HJQpK1<2Z+a8b@#^q2MWAAE)2Y8H ze4iSN>yy8Ncay=5cye8CI!qbReq~|N1hBX>{_cHC=;qSzxB2030sM6(RAb@UES(aT zby!L`DOsx0zs-`U=j}j$8#R5cij=xz#I7lg7UD98Tvt&^A=PvAHt9>*EeG|?`KO+8 z7Xa=9!v?@O&Ga90R0DpD`#=2M@6P@Yw^{Ga^vUkM^cU^lhTD4|=)HVM_t)|5V|jT$ zSRcdHA)2h@lCjwM>wT~}K=K9@!LzkB-`FCB58-@G%U_`{FuB|YI3GK^Ln5u2b9=pw zcZZBM%s1C#T_B9aaQILzmhp5J0lm<~>&;-ZA8Zc=&lhnJzXhauOGNQ0=P(RsSO@Q%s=Bx0Jum+2giQTw_Cq` zykAW6G_-I6tB9qDiR;0Wm<(nj8t_xcj3F7!;w(yG2v&9pBLLT2tD{L)jxSu+=rtr( zzvyx{$p&Q@r%n*{6Woh%r*v)L*zokijvx|TW3kiuLoCV-c755b)F zVj5`p8*$T2gzIy8B804Fo|({2*uNy1YMoNd(GlC7x7oVbu5oj@umIiF%3~~-E(6DB zvtG5PtEE*48RRgvnM)sPr4_(TvVy_7ZBqveQ|Da-)orDuCv6-z3|0Xx0A>Lf0t}Yv zjS67CwX7@8yI?Tr%b3k8*b}$u@B)#I&eP!;z8s9&%HT6G>e3MNkW2<42k{w5Og|~? z<6w}s$BSq*%i`P(Lbum%x4UnIzB;mr;}agq<{M;iMaUKL(D&PWrs(q zc!Du2jjMX&Dhcc`<{#~^!W`#w=N~N%d-lOX;342slE%NOY$ZzTPmA}RzVFRG0KkrV zYdBxg*R&@Q!19?t_wiDj-zAp6_CR6=1uvD`{|lz0m25#SjofWe?IxGS1?8{nEk?;&jE z{56h<(-58x?s6RLW|v%Ejkde|=6VA3>Oya(Mb4szu?2t+$MNxc3;@rT;b`j4SJ7fE z^|SymUPNC?s%AJ257%5=dFK;A(HiA8usY0o5`%t`b%&)TovGsh$TSL=B6wN|EM?lD zP9o?f9D<|{oYtSeJqE57ND8`_L{=8{R0K;Oa5dmz5CFhg zBwm#OFzEaFTWE7VJ z9}M<9X``A?bF&g`0KC?iEsD`3&2Vzm2e!d%opo5S$O|u}7_KU%@h*IQne;FUO(i+L zciip(f$N1db3>{gcLM^r0<)S();6|)F-Q;4g1Cry zbQTRy+N0CA)A!jDebM=M7L9T{se3WG#E;QCgp zXPqIWOUF8aT6LrIC~pVpg%@A2iCI#?Iyi`?B5Y3riGgPtFXP2UaI0&T*kwn8Ug%&U zaU@mBedi@tg1-f@wC8rK3M~3*5Vr=vq;EiV000mGNklsUO9({PXvY4jL)v|jhMYwq?Lpt}i@o2%o;-@@C!vYRg%pbOQD*gr<=J8yIABX(E8 z=I9-+!t1;A>Ly=pgmar+wBDrP-)!Ms-3<3v$@Umw`|i^m+r>uw{GfEFbC=~R;y^U_ zK}~FdPe62cES9TS2e3<5DCoOC6vxXEVzo}8eYFHSlA4{RECBEJ!^72RwaxGf&=x?L8B z&E#r7r_ChjO9t=vvn$C(itMOKcU7_0+~B`FOBoTnC~Cmw|q=J-NvuZ}Yc zVh&Iuh7p`Y3>A)B0elk3Vse*>Xl$W?MFcMj#AKG2qqr!-D6&Goo5uD?W+~<@&f=Nu zB&I?wC+z*TCer-2TgjK#TS8qP-^={p%Z%3!$R~Rh&%40#Y6ilfj2bC^}3+__a zmh<*-(J|`QKzBH4A;!S-q*abDp3uAK%$8jucDA+%U`b```Z1SX=1W_MKI;pBCshEw zVR;r5rzvg=aDOnDzA3;sAGfiMi!(M&r9}$?BnQa}SSb60PMEc_(v5Qq4EE!mAGRgp z4kWJ|o%qRFG&uFs*Fk!&HX0`gfEgq^J^xXcfyMZOtHQJ#p#lba9bfD)rBW=aTqLoT zOt|-o+rBTkV%A|*mRQ|t<{;@SI<@msiCdXcsnJzE{^&x=n<2Yx@5FN7v_aF>KTpm? zl&k;7kF^o>kD7v(-XwaH$wIOQ2OxsSuUh|nc_FtHd|zT%o0onP48Qs3PcQ%9?|=En zKY#u&#E-AO|E_NNWiu41`E)h3UTc(jJC$}+FQmV7?Z8frRo`^SeuZ0cGp=6W zH^tb`Jh|#K%{lThfV~gh+4~N)Cbn#zX^PQi>*`m1HGH(n&{pfIlHgr_@DRkL;h*eO z=&eF24A0VgmVzXhc-jL)aUY9DwOM=)o+y4 z?y^o(o6csfsg^&9{f7Y1z4{Q}d`e}B_g!VC0q%;Q#!Yy*iw{@v_7EVhZnMkF1eYf; zRcenn>3k7FdLFNe^}&~#=R|CsLXZCavfV-2qOidpFy6Z&7 z-3+ba$mU2pFqp!3y%|hr5rpq#>KCO2&;r0x{Jc)43%r7lm*NNjwLnV0cRZ0}bFd=? zs56J_f3*S*%iKzn4kAh0S>7Fv9K7Hl?;==)#lk3PQxH^2e>cPJcA~glVT(8(7eKER zVJUs7fcN{!R{b{!;N?u1I89 z|LzX(F4CtDBNfryY8HAvO+*T75*u5{bm(AmmpYg`Ocd*Ig%Q1@A%zE-hc|+{4a0s3 zb-Nt0Mw+f2pznNHBCs=^=A%)9^Ap9e+(4vYXR+Df`<-$v844Ium@QcQ_3*G6u>om1 z@)1Cwm`%vm=3C z%`;bG7jMKVljN};lsB!`n6=xR$q77)liAdybyYrlpYW%mE*$m(cW+Rcke=iA6kODN zGCei%7qwjaRWf`T=rXfAp8~)Z$2Z|j?8`Fnq(2?^rekX|>eGm0qWNl~*R1SHHI}Mg z>ROPM+%*6mPR=LuHqkqo1I8EFS*-i>O@FfNfW8va(bUB&fWfncrEercyqxtA#k32` z0+Wcr1V=0Y7{@_hJVbMB8jQ%0C^fq_Fir=ZR79|o6#XFSg1b@LN%9`RENsrtg6uTR zPl8Nx$P($fM11b}Z*(%mFFosx!u5tqu=KU)2t==p^c5H5CPN%*yduFjfHAvb)5 zkjV<#F2&@tIB)b{)u8=}&K~v5!52UyHL*?tR(-4n9V{`UDfH`;A6~r?X^y8*F-td; zi0qfz94x8ks<5l7c76c>zixjo{Yd9O@GTf@Uec9sW$^1Cet7v$#EUmSerIeq*nots zX>`#-B*7l8zowX|)|$_3hviFh_Z!##re`4mZ(Kf1JPF+A82)y(81HT*=2w+XjgnxO z{)on{iCcn}wZ0X4LEQH)qvB;l(Nf@oreDPqafPGqf4|^UWTK&KUoH| zb;NfEdcp6pMlt9zV>z2jf6G$m^Wd7EX1y%$r&$M)4|)U9Rqn8?OepERLFTO%1r+2C z3Qtyf=VEkqxnSDa#1V4yQU)+=HbVlK1;BtSfSQFa0PNX405}PtaVrJPsLHIy0Yo`C zn#cVtaXhEx*_|(+-;K*O^!kHDmW`={*_gyGAoAFFPGJW~#vOx6L<7KFtmO_Etk#uM z9X%ZE6hW4GqK3o1G%OY1P`O^qC}Nsc zu9qcOh|TiwYLW9ULGBo|#S4MEoGJ>NK@ww!1=Ykb5X<0P2M#&}gL$ijquN&0LIbaoJL?#-U5apbG`61 zOxk#25VvGZZ#4%=3ZYd5SEB=aw#Iiv?ET^evOEke?nkGhhMm{IIaAOiF6oP4 zBX5(7!sE)FLu#qmYDE`o&=&#a+UmWo*Ogyz)ma@pWKIM1G`*c!Q~m1V2YPXk&D_UB zwtt=s>@e+N=k?i7KfnGbLEFX(Gc%*`^j)E}q*8uo=)p0d@=Shp#?K(|nFeq>lHGqXTi}yZa{?3~{x)qIT+1enk zJALakgSZ9!G~CgHGrreQRSNDRaGU`I;-S%X7#>GZQwbay$@#Z!uk7%`yj3n#MNie?dqN12z=?%<%;_NFk<~a z*n9|?WCnL7?jwoY`0_3}+@<^5zOS?C3Ng}#@Gcvl^Q&EDT^Z~>~EgC^kI zLahEayJWd>a2?s~qTBlsj%=YV)QlGZ7PoR`+~48-9HE;5!0rVfMfVNDP3* zrh^lc8vVpNyD(iZ2jCyk%XBpJ(m=8nFc0Z5Ih&-TGJ>=PP(80hDGc0#!L@s3!C>n! zwv$PQa|VMTmP%=;=U$$BcnW?>2##>TPe4eo3HkLJFCxX#obe#`UWKn(Uv4QX*Uwyn z>)Cl~34=!xY*=D&C3rCpDTQ$aCrJ9b^1pN`f4SVdnpYiAxL?5!jdL~l>ju9?SeH0x z(jVX8>sqoCh3|IG;l7+Ik=0 z;<DS zrG?0b{lVB)3$Px2u*33h0pK`4uWGhkk<_HG&`}f4)o7!7zCx`^UvR8~=@sUz;y0&1iu_fz`uglgt=v9^ zp5~OK%1%;!wW`cH&y)$-TC=TgWwN=Bq!32m*Bz3>Td6a{vGk07*naR5lwAYWV7A2p+FC zqJZ%Vbom)g0bm!z1%RP_LEk~?m7`!h0bf0E5iy@dP(qWjpC%mu`09E_0FTBF-)N{- z_~W@lyL`Ol7peF@+yN^7duZs;fIp%Rj7=;B?1pp8fpJJX53;Gg#YM0x5W zz!e$cr*+Po-DH29BiQvz`XXd0`Z&f`nw4nqcz`82gJ8B7clZ0t<}0y$rS30VY3U%aFLx?xipjec{OIDOlV;$kT?{O`ui!Ve-xTyLTTFe*Xf}wCiaxv4 zimX%0!bA^GLFkgUh4X=byp9=r3?u`b8`} zTmx1kYgs4Gq*=Mc!s&|2;-lH4_ci`=(?Lha9`{rb_r(xf0i2J!05IimgTZIfuq9D; zB=VM@oFT&OLbw~B0>IcuV8;tZ=3)z_3k56aj>)0oX8@ zfiJmKY{c=K^B=T4TNZA`JM;7hHbix-*OItaBQ1Jq)z6Z^e%F2j0RMbil~%nt`R9+X z{|j3ki}YhZIM0V(oLhJuyal-a;?;lAkmS4ZLr3DiXBIEbLgur)>+{u3?wI^7RVH?n zf+92_K#6LRQ}6B7J4@odt^2C9-g|=lw>CoP_+TMs_kG6nuE(tgj@#z=xAozaD9e|Hm!7zhkE(3Z_bz4 zwd4h_dW`I{ix-LaErh(_9&gc&_nq`uJ%pWT*EUD^l;XxJ0qh%VaE+~#Us>3K^ms4* z02g>WxmURD4{mz+E)c`ZesSpLyKc7a4EO!<(OzErE48NDKO_L{?yZzlt!~}TU9fwI zcK6}_0g^Y7mED^J0peoIZr$xs;_9wk?J6q+dH_N7u2wQAMzU>X-^@$j?FXPE{{I1B z`cK{5KtX29by$sYU3j(jbtm&+GLOcya5xS@-@I^(puXT71DGSVi+2C zHXAen46GV8%%n7k3pI>qiGX%{h$IG<;_0MVEhn`5fC2`9>nCQ@X~MTQ$#ePrDtc)x zVsx-bVHK~`vP>g0!_1^KQ_YmQ^HDGx`m>?S)-r5IxsAXpWN`;i9Hc$`Imx>W>@;fQ zAfS%t?$!gT1slmyF*LEVw!-bGun1j7p0o#PNB8?uDnE3g+Bx>P7T*pLE(}%}L--Dh z4z~CbP)Fd;Pw39nwA#W{tetfLQNofd#Iuz>S@g$qT`JbK;juvaxpJ^LSIfn z)*7w~z`2A7-(f2po(C$3HS|c)4hF4S6L$o|*(sTgZIoWH4+_B)G$4(WL0>LNOO=-U z%Jp9N>{snxweHJp6TMWx2(Xi*8hC;MFarz*UoX0^@CtYe`=Q$T`3vn!`icl13xlbBD|aMmjdcfccbHj;e>RBQn`L}+DU%q0 zd5*C&tVOVXl?!t05XA=;XI;)_=W3!{VS5nMf?mDQv#vOdEidSLe&2DsmfdwdD~f$T za5~+yUjJgTDp#8k=u7V2+-+(8e0{wHgRgJqpzn59LjG>H#d;%l6U>W>>(d~B-c4is zKmYx!({BO5NhA!W@#HA;r$s~vF^$aX>oW5Yc$Vk1T&w%rr}yjG$hSI7P;*K#h)eEL z1k+HOPnUu$?NGwE2Gr3b+Ax@9SsY?WKMly!^>VmSGc4woDQd9;#Ii;j0qD{{OY5a` zWw1o`tjNVJ3o#r9P?_;;S^~pdA*Oofvnavw;mt}mO+}2u7tjkqoF#q9s1H2OT;lpM zO+y)wzglS}KW6|KVd#tC8Z+lI;U^}8tu(ofBXMv+M>D!~u~%C<)0DUXEuMm)D>$I5 zM_LH%YxJbMtaJciJY_Kr2yg7;<1vU~@E8J`=*1tN=DqRjlWevuh;T&l!qHASn>ACc zf~FK^HJ0}K>YB0gl`0mxSxTVw9Qt0-1B+|SEcL2zTa#G!ReW=?*>oWj!^N~h?^7=N zIe`tnQJayBI}ACYxCn~#Ncxi7s+do!xs5=0 z302*r!gj+~w5(!-GHb!GpXOrh<@qOl?FQxqUj^j%O#qX@cnAPSwEM5jX`FhbgO9#v z0kiZko&UrdX5f>EeRT?n3@ZP?9mMOipYSCfW%m(iEnQXW>czGzAo<0s|L28HVEp;j z4=3j@ziSSkuhwXF`L@|U^sRAKvvb$<>^40no2AZAmCS!LdpP7ECIfHtg0jpub85n7?@Am!oFlEh$6&n==4*%6^ZR`Y$Q=&AYJ`yS2AWl- z_GQ)a&Fyrl)8%wZV9vJA!@gLpQ&Fy(b{E>q z3YxmA$i2|-B#}h`2W~G8!DC4>gTY1Ws+*%n`qG(FIqHMlgUk!Oj??d`2!0QEgV`dE z(;fkAg3G`r5seq5FBKRTco)lg#zJVImkhqXnjRt952GFK7*?4y|LCf)p()2R2!kUx z&%#>K4vl9P&YVm#en|{d3O6x~ow7(+T#Z<*Modj_w?bv;V8O6XSVFL<8w!{on}ItC zNzSYG)lzDYJ6!Q4`G{xJ*CZzwHiFgc{B>hrBrkIeN@e^d;AHw`)&q=1_=2x#bdiKD z1cyq zF{4&r5uA)5hCxkmw3zl0q%Q%?hzD(oU)wR#Q z+yCYszIaU+-{=NO+z+B>t5%5?XBW%z6WEONQgiDZ_9IajAy7p>do{Dc3? zYH@vXBi!cH1P!-YfNcuCs#Ro7lGh)gIbl$X!c^az1#I&%0Dcw;Yq(n;G}D3VTZgAN z)q4xxK;Z3`l91VllHKz#Ux?@al(L-Z~(@y3eSJs@?~P z{iB5R4n0QK5We^E@j5z4^|I!cwR9Q8QU@O}HNL(}cSnD3ortLl-iaRjGh3j`IljM?+gmUYTqhSh$#CI~%&-?&ZEX0P3q`w~5!w;QF$-Jmkl1 zxLbMqwXZu7LdG1;J*K0X8)sQoWizQOi`0wbVVtLK-|D1U1n72qEywP;PT%Txx}A$O z@z<*}5L6hD)`l@88bK4k1aMLO#fO()7U~KgTaI@ zj^IlKaZWJvI9{B;Xc^#9^*vL0cL`$vm};2X7XYU18n*09#{Ht)HL623`;P(3#mb>3 zmW5$m8=febWx;sXD@QG`R)nt_cGj8aF6*?(U;rc|DF6Tv07*naR4LNdNlkRZ;`oOO zz*_%IrkV;Y17KyU%u)n0S$jou%|R)X6A5MlRZbXpNngWYfRlw+RZ4k4T1%K(Yw_e_ zYZJ#c>IyVJRaF%BB&ln(YXY2xnh5L!(HqB;2~O?aPf`@!eZdu9C|wg=`ZdAcAoQOZP3 zao^ZJ*XGYnu0MUwrY)s8V)iSe#LBPu**V8A^-V_o?c+yr{N2^Sj(_!gbXmVRZ8&Mt zxvQN!}Tm&PGmBxjHcPwS4xXNOI+UHaRl3kGkO%3w7CrUUR&TSe=#URGXcoyi3pCm90HH?F+`DnYEuJQU)=~*(~AncFA=Rru1kh)&8YFZq= zG^J0aYeo*sy06~lRGPS6PR6&-YH${;(U6POqypxzob{N z!?uXpy4^_8STPu?*Yq7pH*nc8K_v581Y}*SC0e-&;Gj4UYOTyPHJ&AP*E&~`d2H5I zvEi6=CaBt_7K~zA<*y{D)xR1am~tH71sLpyV%DKvU9Wq#q@y{)sOO5$W#2vR+HacW zSM;DJAnBV?c}YqZTB@;VFlqAAI1QAA!0lKkI_{}b*x;_^pSaOE!%raedqLWE!ZS0$ zNyjMtg3|zC2T{BGdUUxm=8m-gtxTpGp1?GHb|8OqHs-88;TLEBn|=J^Xvp~6(id? z6VHatbu06e#}>tL(`n0KTc4;230<29cR}CF_sP|V)Swq}d7bSJ(f$aQB*$Y4+=8I^ z*JbD8YUKdNfbQjujN_GQfI2m3w|BQYxd+F;I_;WgkdjMr1={G`K%JcsA1<>46!0e9 z?FZ1l91BPQvv&w&#q|_d)%7aFk#Ri>79nlEqcBgcQ7Mz>aka&EG;|fi?rxjWPk+CT zIh7q)#g>y_v2$3atFeEzE03Va2C6qe?APIX?&HkEPP$6ykp%kUGDiSYGXaf7(i^6Z z#4rv+sNDDgI&;IoB-EO;(LML5CHaKDKT1c!cp${`xf=OQpO3rKmWw{c}U{5gHg%PaA0`s<# zAC@Mi%}Q7+7|ufGmcdjY87f%|q)S#~u^@}-WgdYPMu50!B1vh$8yJQl#w*~ZW>eg$ zj5aI0OG!-(_RDJYI!9oKCDRnd*umcqj#on+bif0CytBl@AwoK*6)t4=3j`5aP|*KbVdtYiTEG7K~}%LDx); zA6X`i;97F4`(vm7qVK#$$V7)&YPo~-JRY>uvde-pKRpTaGuo1{eC#{pmfW0H%c;6z z{9AckR8xJ-*xj$D{^>xvNEl4Ms*e1dCMQop?z8lZ|+aOs@5WQdF zwt0m3BxQBS7W)3#2#{F9dkVv2y=!3rmIt{rkl6p~96n3zKHJ#egS)?42LM$;ThkYm zwMgHZ!6qE#ZeL#Wi$iS7Q|h@)W>6p}`%+1>FRPh6uO>Htj&HtXx1Y1?kIC(a?CMdH z$+r*r{X=nkmm{ukKwNRj0C%shasXK9tL+dR(8fD!0Ql-Qqu#|ozl2)P%W~AX&Bh^` zGlRRJFK`a}?hYA5@OGCYl)hq0wb>R3h+U{#Yyn_nE(icmbQY}EFuTIzVE_PEGHwz} z1+4lD$_QAz_$mZPuMZjHa+h4~Q*1f+W;qJxrMF)sm+Snn2~_*~n}xTUd0;S9GKDf? zEnW?QG3B3)y)v=0pj#&HAhLmk*2SB%^H=8=uP<7sh$Qwl>)GM3(16CBa?Mgk{~i}q zz%0LF4-x>p-%n)zAcD5WD$!&iRvU_Z`(ipO{`~UU>Yhs>v^q&a2P3isbo96yErLwj ziU?p$AWI554qTAivb&S%@Q>er4Sc7vkc|6$qWl0yRa6y8lh8EzuraBckuZrlI*Hz1 z3;^%?a{h3))1kj(7EUYw#5N1xxGLQYcPeRY zSf)_JW^EWGX0h~Wm@OA$f*fjCk)N@BnWbTyRds}aKQz{00Kim}kdjOkvtF91U_3Pr4{r^(V|&HbIyGC959akHs}i^gQj3Gw!&lY3~$ZXH_+wN zP2L;9BzC<>Y&8K~uU-p=$zaZX64P?YGx;0s;sbrbSK47tbtzYBq!-p=CH`*EyEv}X znSA!*v-&}&Fv&_V6>~m3AB-;8iBy+abxoUZl}}daVq1>ws@*7SCuu9s+Jn3^D0&FW z<$98ms#4ZYE02@%G##ELV`&BU2NKZ$gl@CQi`cGKl&e?kH0g^N&n;<&orlm?5m29;a)rbkX?dT!(A zpg#(^HTkY`ZPc-JUs))BJF~qx`RA)I8N`es>sQHb?i*wp29v(jtcG^VMLx?ln5@Gi z$qa|;H>KiqYkB%Cns3^8sVXYmR@&Fl_j%N6*nF58s8p`{?f+`%OM=Qr0#o@Ro9EZK zwas&zN6Za}d5G!g=3>0@@jjU8RrM%91fYBWX>k93aQm3)M1&O3y}KVEZf-M(+T%4; zZwv<0ZXOJlf9z!->QKvu=Sz3F_HiZvyuXZeZCDlX)?3VF(%Di^KuqVhI4W;~%`Sr8 zh3Zw}ra&*Yi)D=9Y$7I^Cu3ix_e?{`7iOVpE(iuw3JZ_5>xLOr2w!c`l#xXHJw9`W z%h2H<6VY`jdWL}Tg&^Jny4zwkiswZD5qw-_hfRWqHj7|6b!S5dv7Uv;P0j)AkkPEn zlFksd1>4rDYIE{z>Pq3S8+^N?lG1jv{L?2#DdDzVxtsvg}|UdpaqI;Xxi5HH@D& zw!knTy;{nwL#W}ob|`5{whVXTje=y(wYiJEwyeDZfVlw9CiZl0szKN6ac^yk=McRg*+yhjrOG$mk$$m z<-Vt;G7ri-GViTQ-BbeV9e}6KAt5cSCHNOx4TO;TEQnpLz3P}MXaE>@!~Dm@qgucv zC5P;W=RUo_hD{S^I<30no{?y#&E}@+C zRU%uo6RF(6CU|Zu&QHDQrR8e)B2N)cNP{iuRsw@TUoSlOqYK+R!4b$}2x4rxT1=X`p+HrvKlTw{VWx?_CX$;+%<)>DRsjB%kwUUBcz4U77y6HH zN-ay;J#oD$vY(LbG=;B*g#cf{UG5{eud>+vyQer5soO8EnQrtISq+sdFgL#0=I1f{ zUp@3ZNnop7mT$S4gl`Uxy#5>_Za$@myN~(9=i=c*arZ8Nd{;ia9YFiu+-IaOweQt+ zg1Ej)Zm!eoOE4_q#8b{vh5TL0|Ejy*hFAAFLL4P8qr)MR2{0>nK9#2ag-$Yq4b;#TzU-Q zq5}Z$w-L}wh=Q+|yKKKoH;_S-V7E+nvwS&>#sdpH-Y(+ZGJ*C*%z@a#nvd=6(u_}+ zfC!#S6|^kQfxczhXAv@F83I%g7)(+GORlhm_ANkr5&!@Y07*naR5kmE>+3b^un?@e z0(Tkfbt&{+m%DATn9DR=W4H*ug0hS0cw_aUv?2+wI{V)`M(Wn~a! zQbwg1HTR+b3eSlH+p&9K@OV`G_rLz&2L>ttcxpS&{-c;FqJM8u$ zfJwNkXr#r`%W_p)TGrE+Bpr?08tJaq1T}LEVC{O5Zk7pf z3&JrKtalzk-OgK;I{|*wse)%+9dByT%A%4*c>^0~f~g>@Eo+86YlnE6p7VL#_a(AmQY-(ZJB6+z`r|EHe)iyxhZ$%Pl5f~I1J z*?j@A%avo=PjXnHJTa93iJkd?-RtsyTRj!^4^A;-DT_>N9j1%Z zW(xxY&t1 zQfc8)-1tNL0-wiyvfG5ZlS$b#B=yi`S=M%%ZNSUIRl})3!R%uT7*9)kI_v|+)kt<- z23Gp^DgZN87|ZA(uq}%{006>wvl)XQL;Dau9 zEY(bw)$bsF|MK~;U-f$zfZ31i&WXo5ldi8T{$5yRBP_;twIs*Y`7Sr*%n zKxI005Wq%{)={c^Wj3sBvv4zkZIU>XNw%1e5cH0&-J}a8cVPlB9u8wjXBtWeK@TJr z47+W$--?!MB|RM{lToY~u0DXcTknUg+}`g>wodIg1r4-WDn-8z)=0C`SSy|^%@g!B z(<{k|vaqwXn#X$9? z?v8pSw*naZUH*3Xm&Ob^-a@o>UFwA`6BziA_`m?L4s;4xrXcQ^s)L!120=OCK@!Wl z2ukz<%%XkO2(zwoc#6u-dg9{I>D--&Hx{05Lu)GeboG}ib07@P0ot?$$t#)Xylv(Z zW_cGu*L0kT^9_IzRYTE0+JC7InN=o$Yj6tqISrzog{(U|tC8!oy`0#{&S`$B5?m6(kg9(CMn)^DHjT0~T1m^7c{@rkh+&B1PG2OiX02b^ z!Rrd!GzQ7fSsiAUqVeLo?0w37zL~NN+=9Da^fSVbe*uZ{B~HtRr(p1RtaCPV=B23W zH-|F!Nd#-vk0}TeuGGK~8OloCPnJPZQ}F$r$g{r$J$R76GKFm&=x`XoFTwx0 zHUWDw-~Lcc7a{d4pgSCSB6e%{44`*3_Q&IBIu)1yVG#^6x5zzQ?qznK7CDzg8_&g= z?Du6}8YGUR7IwxX8y5=#n8VTmU}^B(=HTcYZ#S?OV<|A652M8hto3F?mPtpzFz9>O zBHo@F2s z&bhnW?e`M`Sa$Zq)jFq2!zG@&O0tVXp8&QxZ}ywzU%&s_xp<>%z#Vo5gTB~FV_f|` zok&PWj*#@lj*L+XdXaBI1c!mGdGhXhHUH1Q{}8hah_J+FHkDe6g~7}yur0WLHAzRa z#g>7)A`TTcbdTFMn zabw3p4*2T=fHgvB%E{1C5o{aCu{>>%_krFdZWF*+(r2wW7j8jNFcnG{aCPl-gkzmi z@=9nH8h!3a^igun~ zWRi0h3|AzUoi;-mENU1~L~veVm4L0z1g$$vU(-^fZYFLwxhuJ79m{CCkU1+tveR0v zJ)E@Yj|~840}1M5<0~TVRWf3^>S-o`i*ZYY>EJZU-bC360>ZTFUmCVp_03xieA+NN zV+A#!3&rflueE;aDF9I*cDi)%2}yD4T8LU;wU}IRibgq=E-z?b*Z;}!ezg4;Ui8vW zUk2GLlDGnJRfMHsK)CwcV{(!gaL3>m(+kR73WuY<3Ur1R4tmS z_+O_Z<5>mWS$YXuKIquchQ>a<7er2y7|q${o>tz!H$3TDZKp{+tMGpD1X^RL@#Baw-JC(yxMQE3`&{Nvy%7`0TD#rC_v&^cV$dwBTZUDSq%Jm4>6kb)QMKH?T zaqh{$qJaY*AHY8WuwWPr28jXSGHX?{ev7`!i;%(y2bmt^iXd3B-#)2Zq8C90%;^Q3 zwZO$-w*Rv4XtNm#hShvyvrc7byfz?lA(jJip!lp>*K=C9 zxJQB93V@WP=6sy0HAes>;|?ZI9o!^RK^t->etD4ejL^0IN%si0{=b zGb0Oi%y8wj1?ZY3VVXVyZ(u50lE605cfaM%&$|%B&Rn7{5yA0zvdvN?I+qAka;Mntyx1KZ1BB_{XKKi^0{v zF8sBx7Cr#XiHEy&%94H=XuS^c|2Ug^!d;#HwOU3H!PT=g`2S)^jKBZQIuRW_wZ#c* z+#l<-#Ckr2Wm=fZvNOm#1aO>GSWS~w5?>(b;X25>1TfRrNp>EmXT&z~T$FuTMK1di zRbNw^>b4wJ<{kv0lC@Qjg3ualP#I($UkHF_VEH*4f0_5@twS~6Nx0iFZeRLD>9)#? zGXNM*!Hcs@j7eh_f8o(MeH|sILG;E8#d?~vo9Kl}OOR;rCd^;QgV!QqRq0map~_Qy z9@3WpHkR5rGmKvXz?S!e?f++Q}bSoUC)-*M@5V$NX+Sj>O zlWu)hOvI>KhBOGCMwlw%Z%V74GQ-rnRJSGt-ON18O7QR2{*S6)>grFQ+^y;Bew9pa zsO@GpxT$MxqnMit^*JnElQ1{m?+!b4)s=qBwtjb>sl=|ju)gN*Q$@5<|5fIIeaYHS zToIkiz1nI_)qD3bzWoqAJf?`p`wa2np?G(fzq`X0^0$0^EA)MMTVCDd`(wO=WZcJ_ zU9^;v4U5APSkf%B6Ld9{1x>qMB*jga2~_g&I=a3~mA)R6&vfL0ME>K;@$r6v|9swG zi<{%bU9J+)7x;vbrHuxN3-pr21TgJ=(=``cTq5yAb|MYcHFqf(mL_0a ziPno0^u={Y#@O!;hc&XsMHdRV zcGB;u$Z%L_!;B@aePG^Vl7YTg$0b*Mfmr$`QtYbUl?rD<_wsV7LU{(3u>BV-!L~A? zT&FrfUTV#lY^T2x;EL<`&E@`&-#!t*pedOO5e)hw28lxjtdW4e1n?Mq%Dqw@IXFew zvpc@i-K`h@{_FS1?Pnq9MtHo4)7+S8SfZ%ulhv&A0(gKNu!lv_3fdVNj2$N4n^T0j zC4jl0Kq7**GE6BAAk#yyk1akVJ}}^F+LLN4Y3yV&7HN^!`*eqvLM>o8%RC*g)N`Dc zZC_xEeY`j@jNg$8>r}xnJ|6gBk|#fokB8BElOfpZMiSGngLTNJ1e$#1+PoS`TE(DO zO<~e`h+G)vnlUH~xVrr_MQn$u2$0x!TNQmhfizAC{T9@7JN!ZO8yzJ|ClYvs=uq|93z^|x-a5+TKK78 z%5b+qP|K|BGMW{|MwiRS_`{N@*LP{b@g$T@Bl53)v-qp3|N3MhjP^AO_}fbFuWnYF zeMC<`XI(xgXs)y8AL;C>sZrt~DXU~>$ijOTLQ7qLBfyS+~UFPHAe z_p1-@maAnv*OnpEyvwCuCY+gku4b&NtrbE%oOAj=SPVsoOjclzFRpqJz8o+&8QSU) zB!w_(bg^E+A;bl- zju6U{dERV`Y6y}}%G<2-#XMFo5m}2h3i$2a^_R~d0ASaW9;7^VL0=8&N0NJ#GBh3< zW;haV5oA5MjMxw?LxOcaQX2XH^Phk1S2N%0q|%RMbB-Y}V`_RU6{sydgfO!rZhq%5gHCCEWrg67OUZ=reRls3zo+h2Z#c%dC zw&I_qaE-!?z&~T6n|0LKBG{SD6KLzfL^N*@@$Z1Ya~gEeMy6J@@phFO27|Ra$|2xL8`rDEh+txy^gV3z}*$ZowaTC%_EU}H}`cK~gm>F6!n20q9Cy6P_5vE}3n^Gw< z_zAsriul_R z)wBCe-kx^`HGl=W*BTJJi2HXE?;Zz;k8ejG9){GrDtz;|Hxdsw#oOER;jX;98C+jy zG7xa%FSo&Zmn}Dtr@?BSux1JmEtmFq+?~xVkQn>gt5CNR9U}T(t+rzRtkze7^!_ir z^*X%0nJgEQXD&)>FtjG3fZfT|r^5zS>}(#h-`Av|A%D|MmeZ1`%RW~C209ob0~eZN zU||RU!?a}{sX;ETHJr?vCv99%z+GH)7Bk3bNgd1DmEOfe;|{Z4k@S|6h-Uhg>rm2x z>RpT>f4$lPxJSobDZ|mp?W~f8Qo*OH9EP=kMF2}*~QDATJ{82E9JwgOt;aD zBrs+&e;~!oY7K3j`%eG3TmR30{}s7*=z_tOIi=}vBuxTTI6(?-KCc`I4knzmd!vk5e;ANim!< zrqhHq=Q_2ps+}H<653D$!{9FH3n?sW7`or<=ebWmOZE*LK@6g=Rt0kvX7w81g;xA| zTpn%~JQK9_k*9UyY9f=~qA?K-^Z@ff48PJbR6NDPKBO=Ji~xOgN4kWA@FI%aV69`n z_S_TjIF4F?D}wuAZ5VcZ{qy652>=+!@f2+Ff5H1g`gw5;n5pBsB04gnRvDaeJ-A-g zmZ21cC^^c6Gc`2juh?v9NVaL_NSCk}0La+T#WKPbV>DwiMr;8rvF$2KFEf`EGEIY+XoV|+DmjrMazl7w4@U^_3oZx5dHxw`n zn8AjRPi?H4U+p9IzxFgN4W|Lx$^^PPY`>XWsGGT2q+lruKrDkdy zDpQm7R>sle9|@qPV>8f80ON@G<}4i6Pp-7h9}E`T=e>Wp3L%AYM4aEJ_Euj<|9`9; z_rfC?UWETl{C{%ww}x@DTxIGj>Er_o=*@6zuO%(G-)G%Q6sYwvu4qvk|HGQ}>&irQ zy@Q4V#)W25SPM^Lhp>ZyHVa-&%)JI7|beG zru8U!CCis~p$?@+#&1b7FzQR;QV~eYjV7E4U&jvj=Ok@6J%m5EkG4&6__RoDpN_01g5

Y_*n+_|NQ6A?P}`u&XPcMHc&wmkIIZfZ9SG#nfiw7U9Gq z3?`$PNnK``Nne8Y>T+^(J;M&Z1c1qD`chSWK~=BtknWP>VT`+kNIIB1#BieR!W?Tj z9w+pUR{0xGrMo^N&q|0y)1KqVKBJ4FpR*LP{TM47=|DQfT!aGp*3FvDs^Vd z0pO}?Ocw>fU|IUDr$w;>fMXsQ!d)G~)NJ16k}dnWrJ^d5KWspk;kYM2F9S3MeZgSY zd4q@W$41pl;p;~iUU*)~U(Hnj&%Sp`^$dwDt20_OU`nVoq#tRsOu$|2EN4$T80X;r zQboMXH{=Xs?$CFd>1cKpOVj@$ADrVRUfX@+3JB#EkPtxL4V(`WQ*b83x;m=+qOTS(q5k#-B{jN$Ei(Io! zH1uxo@LT@~ssVBgb$ViB4C%{#LigJh)@Sa@6_P7vA5@h}8der`o&6uKY@Y#W2J%y5L6^?Yjq35* z(Yh+LYOEz|&(de{umpM$x9{TXx8d#E2m$m8eIL?yZw0^-cjddA!NYZOe-(3kdzoGB z#mN~_xmIZaz#uDU|FOGQWbVoXfU(6*;#@s6a1PDcCkuPNmhoqcl>^BO5q!K(fMK>M zaEcMNuh6%&hWO7ML*3e1c;%_~4awluIt73Sg$)2FX*Z60v1Zr|fTdd_>~R*&AnizB zX4)ozb%d%TE4%8O!TWmLo=eTw#4EB6fjTK%kSvcnS=a{8rlpq#t0Sw6tM9G{%`vQD|a4ghy zQmdsxwhS5iO6hE3bAXb}P*S{E-E+ilJ^RnUzJ#9CXVE!}bRo!TPD$==7K7C+BaEL$ z@Mf||5Am&4a#-)KyE>;?y3eKmt?-1DuJ}J2W6P?2OQY)Rg?Lr6;)(d1 zFNbcNbV5kppz2w2tP>ZqI1ts#z&_|J;hzE3RnJn?0)Q!k!C+|zr~oY71$1fqWf+XD z89M<6<2V)PsOYoQUq%t@_+c*VFmF^jqOU{ooz+$)uy!5fRK4;$(0VWv{8E5u$yg zSBxlmgYQn`4Zi%Y0@bIUirsGkY$;p?y+#2y^UTK@w9jEl1~*oJ8^uju0oe5ZvgGP3 z&OLW(w7y+$W;`pIuKgXG8Eg&9q}HEAe`6umXjY?T_fOxZ)41W#gQ`|dhFQFtb-GdQ z!~CR%p8>covm$O0l5+Uu8V9S(4Z+MZSH8%NB>S@qZON zdL60S7Ntsa;zPnh_|7J__E(7H<=Atv5F*BcR^nd(!(yNjbz<*4k6Pn_CC$Fea4~Vp ztW~9a_0k48A_~I?050$`q!_ylRlF{4Z+Em^lp^O^_;L-n@_atdH#@PuVp*1Waa=7C zS^{nCvGC9o^j)s9rPy3Y(gU+dINpvIQ+#sVG(Z8{-IG7R{PzCs0|Cs{U%GH;{@D{R z4lTUWMPHZtj78em%C%m6tYoeOPR4T`>)h_21#a)(fBkmcEnTafMRpom>@)>j%~&Ls z1h3~gNz4wV+M`31HyMoJhzL4$(2)wn1-$@T`My>ezC>JKO`(ZzZ{~;nkYHxk9YMzx zCWk47+32j@R=7D66KUWUH$7sirTJ&GHq0#nypXAg9JOlt{;2=}5CBO;K~$9Dw>B8~ ztk0^}hV71+S$ZAzA5W+GVl`Z-XEmO}{5CO65sVKh#nMcnZwn~{ENn23cZZ%Me;)Yu z@fQMo_Pej}2ZJ913kkV4%(f-^h=J1_Bh5;3!FJN|gLB6@^SlcL=EN6h8dhafh_if*11FeGVLcuDgZXzwHZyr{Ze*p`Xj(BC|3?(TfUZpG zX8Z5NmCz<&8E{m?Y_gCBhtbrP-XTa{6}x~g*MNDuJjU&~!WaxTC1X|2c~G@c830Sn ze3prsA}>&oKs5{oYeC;2JPV_9M3T1Sq@_D8R&rrG(7>}~9Mhz)bD6Y`T3-z^7hIRM zsuCC$DJ=Qt;$k@H4bnEC?guAvdIp47mYkzD0w*A70Y(c+2w&|sKFbDDFdW*c>rl$}G_`K>(Ax>yO>lhaSSzOd-Dg zPQkyOmY9*L2W_>I9o93~AJTm6DtlbpFN3&TM`zD;&2oMW`ztkEiC}EyO|kX%AHBmT z|L`$H+`Nyk-&M8EmFm6E9&Qt$7u)+AFj(rGL0{_K;~_M`qAEg{3|_8Xal_GOeBA2d zhIhY>mUD*#x&htE%);L*gztJA%V>JNi=3@o0C={t7aNzaHl4fT3|HcI)tTZRR;8^p z?9PMPG8)hPLetTLK&af{BqxM7#|E!ttO zLNTV+m0&vOO=O0e{2SvQmV?ki+(Fz0eF0rySS%!?j(SP9i=;Ch_ND8$uts?gnosqj zOu+RVDNn@}R>JS#I*v;`hzt7e_j8u}a+UY;Fu&32DlixTMgYJFkie`BueamHO2A<3 zI4b`Qb^Zc|Co*$F%2P9Z!%c@r^yPUg+=W=ub(aUj3oEOBOl>snb zQ>GkB;kt~hpN=DJIi?UH72T77dKV17JWQ`I=h&M0MeKoQbu?FnvDFf8ndVewr2TFf z_SJ18R>#T`l&v$;X>*W6!$K>^36Rc+q6nCjX4^3_T(uxa_-jl!Z`cfnnCrMhc2BXH ziUTKPsawAze5b5bpu-0KP9RfN}L1 zh;6P4tG@>gKv=ZJBr{$a0UZnsvm6XyPSZ0g>?k`)i*t4>K_!FJP|4+hu9;_Q*Cn1- zl1$e1V8GR+otd)cmQ~Q;E`k8gOIZMxhU4T_&0uM5^266M9KwG?1|z;}uI&EbO0K?I z@f9p7sG4Sw2E95#$UlBV->0hM=PgN%_26elk4?~;Xtql+v{|`}Ey4g;==-6!eAgiw zn|ilu93pXREz5=YI9I$why14b&lU_cE`r z5enVo`v9u<@_mH3d5G^GMenk+2m$oo-^6#f@$F3{ju~Q_k<)?^G~MlGE&_BaV!8F^ zYX`EmnpU=UIVBXh{r~7X58p`E>&nkRuvqK8!JEJV*#Vsj6;V}PjgIJuj_5=%f?)>l zSrW9CY*@jN9AH~A?ES0v+tedqChimzHNq|<7l zMmbva^`+x6XPbWL^HcL>NH1Bsyt43v5E84#1$rm*1Q_m*d<$R}gJ00Af$NB91#OH{ z17vedqmo`P0^L9^jZrLdZC3GiEl2z@B+;2T2B?EP_n6{uc-YIgm$w|~$TTPdW(b^v zzAB5MhHK#N1XqD}W7u)nvV;q(Somszjoqqg>fnM7rY_gR+uI#PuqowkCkF-aw|xS5F;DFpU@0rMUEDX|`tH=v z|L*_%;{NU$00t~g?^V=@{c0N4v)G}-Fo;Nb%KY#PfVBn*I&y$mPwG&>o{MWx^2gu* z;{rclylm)cG1#LY6KlYBD3;z>wkON1d{6*WTa&@;(PcZ*eA<$tuPR*`v7Kk+F~^qJ z>x9n&$%p+=wDNkOLrQJ7D63~yOU+n9DP5}tG%Y)rKxX3=5eo(r#wR|~T|R+K)xC$Z zqL^J;aoi9SuAo6HZ@elG9GD*^|T|oXbmzOC&olm)5|!r`x*dNle>nFJXE{wa;L@VrZP1y z74T$GAN8sRz+F6{z#6dCvH&nZJDE8az!HOsNN08C8V)OiL3uDN4M%cBbUGJVcGhm6 zccllr*lriV{wymrn-_AT6Vh)^Cs~ayRQ+e^Yk@>YUg}aHD&W^sJ!%P=w_Lq=Lj5%W zTb5e@f9te-vc}*gPV&hw0Jikq{34LOijwt}!K%%V?rU|f&W=p{YFhZTdYzwpC&Je~ z{?eAZP4(IWm~Ne`d;_30*mj?{7fg&fRSW^j_a&mse>%xog&fu5|klG%kK8Bo?kT3ruR`xg(2EmZqs{ zE(PG^^V96h^L)3-_S+T>+-b`W=*n!;)Mt*G=IpYkY~msC$0_sgxQiT!3G*1F)Xrgc zS`8;57z_Xp#sTX?_^aSl(kXqrlB5d3V2*Hb(H@&lbsKre8Wk@S^!MR_F993{A7toA z`!o4&=hFa>u*d|mwiC$TLKYPXU&#p92N_cfY*5y=qiTV#E>DfL=uCio=827UCx+RYsMq&0#m@nnE+P+wydy zQN)=gkh0SXqM+(JQWkx76i*r(kR_$sPbwUkj*x^?(;DrwwLrFh)( zS!TA4>-38Tgv9r1)&yTKkFq>ihHjyQSADy);r3>ZNATI>VT7ZsEmH0h!z&OJGFKc$ z5=dd(H;}=gCf6F$B#Wz-bg#pUgETcUXR=Q{rDe-uFTvM}7pCr3B7kX%nP%Q_+~N#3 zjkkc|32qB;PoU1y2wH4%=@ZYHJm)`|8D`wZMM236ijH?t_s$#s1;P!BRKtn36tLsL zAT}(yegRL$5rHqnlf6iI3~~o)DQuRh?YK*r=*^|DsLWow-pQ)$UFTnu?bf!NhV8y# zX?Kv9Dl>y^bJ3K=?Eh~|8dknzZ`6<_Li+b^M{)^Z{ZIyb)a(eE1ux4`c<8C(K@L0`6i0@v*DSMhF_N{G&Veo6$C%dialygQ_<^VqFqWUY_6iyS}Oh?--LpIa9f9*^4 z3je0B`=vT-zFodF@Kshkf0M6r0KW)T-3ox0Kgw!eZsY}h)r_;T`DVQ!zAtwZU46+e zKQ}?#!&9=qO}5w3@h-V}YTZ0!i07vs;{FcAZ4EY6 zbG{CMTQ<yUzJ^)@=E6a`Um;kD#Pynu&^I?50-N(l zQuw>)9LG$pTPaK7TO!^MbvGNdrRoJnZ`u%g`$s|Y*@ ztxPu+{8!?2D6*N~Uf~8pd+Ru3h7SR04iFDDy$oHOWsc_+8t!@B`Glx7&bTwj2?{|X z#06#XS%Gd`a+5Nm5f$;wYW*Vu&nK|`xGc}to$YB$0ssRz^C6$QCZbJl79bI8bTx93 z(J3&v?^F2FJe4aSxPPhLgdQzXNy{CxwnO)2=&sVutustIS2qmeJ{vNZzES3SG8Ovf z%aN+hPKmR*cqiICK@l)V;@TOG*Lf=(+H4Td`x1hA$R#jumDTSDKFRD!vnNixzy6D0AlUk1)0 zf?KT%Fqo6golY6wmxIx7PG)Jo_BYlC-L2|Q>rQn#FPm#Y7GGsGP+kCj^*VNseeRIu zor>Ut*#;;ZkSu_Wi^c0*!ux#9@GCD14))~t5HEvIzeq|V?HT|85CBO;K~yA|4A1W* zwy%e7^XjboRiT#v&KuB94K?LkGwZ(i;?16&`J=OVa#zoiZ9Yv+zXouIxcl4zZm%C& zw@;m$`_|QM6Jqz_vGZ`>MzFW};kI{o-MPJza_`MGv~PBKY>Hj;v31;w$(-ykftFfk z^HsK3x0c&PZd8Y|7-Tqhsc2>07@jE(k+O*lJcFRTzU)K$f^f5m54Hiivr!!}AG_RC zzga}fX*eJI9Q7GZL;PB|p?ybrZ?pK-wYHniLWg}VfY+POcGshK6`Qbd&WQ!mw=WY5 z9`BUZ`au5V^1U=JXDZ~TSdBH5yJD}Q?-Q&IaHA?i6l#e#95%#eZ|qD)4K|e+Q{Rp= zz=ft+2hy5xISzoXLhP4PzuJx+Eu*?w>~yn$`j0~<0M)RY;OY+s><;sz=-1_bKNs$5 zgB3fl z(+G6z;s_}WnXC3#LQQsQorWw{nsmtEUN7drlGu0T7`A~Ir^wdYa1XDH=Z{7i)7s#! z+(>EQ9Q2hY`DqKsUN3C5+#o0!^eR&kmD-0=?Y&^wyTFHB?Ot}zYQY7f>Yvx#Pxx%P zDm(1(DSXIJ)xuA1T8x{eri{AEZUfxrva?B6>G?nrER+i^;bN zm_IQpVAg<%IzYD>OR5Yym;lxZsH!lyYo1JhE+(jrAGPs_E_D0icr}{TY0}97Dh@jt z(IQ(S8sIUh%;R)iXLh>RE33Ayh@ZA%SUg5r#W$}^GhSObS*>|GHG7JdybTIq4(Ma` zty;|y`!f7$0sNBheU*7WSxa#0LX~$g+0FANjm!$`sR0Pv#AG?{3w?7`p4FnAIHz1hmTKPiH9EI z>Av^;(Enm$hyZ{Qw^!|(%NDdR!Y)fV>{71dmaTT`FuYuKKw0+OOE2HV19y$@tF9XZ zWsm#T?KR{`mjZXQNf!s6?hP1U67`= zocA}Y(cyBrKQ69sw|lMi0;^yud#?np$N6G4u-lOESsenN+g*efz&HZHlW7X{0>j+H zs5Rgwg$p-K;G8b}z@+CCfB%QyZFieSwIItFf*L1xL0>L-r&=Y3Iei5B&LP^A!LvcS z7>Pe6Bt8L*dyakv82h1H25GvT^bf!N`^|C|G%6OrW`0K161}llS+uP^I9X2H0C2D4 zgR;F&IP50~?Fu$K8#t20&60~*o4b;je`bHvR26q_a22qVT_o|6H7OyFnP1>-Do*?PH_y33?X+1{X?i zEsQ}~2KBKBU-ulJy(oTvUU*w9zvpvG?)z$R<|Ln@PB{YxpbqneU_Et`vN&NEr1ff* zzfG0GY;v@|m6B>wfDu%=;f$n+B}*I^LEj`UaQhwsEDMWtdjZ!lsP$u++mK|WN1L4U zHBA-##o;w|^r$8|bNwylO#uD?@f@?|DXUrf=51wlb<487S5hRFt<1*ILl|ru%eyi< zVUo`(*6S<@GjLaVQ?1Dq@dGxN;mEbG7}(Z(%88DZ!vcLR=qSyiuDq)3lU{;S1Y z+F@pqBnE4Bm>58nRf+P1fyii@W)FvEqA9n|mUB=Uc*ckFC3sorY0<%wjwXrU7))vg zIN!qi%3xC4i5=}`s~4x#Tsy z%BQ;!zG@#koop8Es{=pgLj~}Q14f=6KXqm%fGv7O__Exqi;(A^T>U)dOT zeo1zp-x~S+P4qe-qm6F{CqqfXUnB@kxaw^!{b!kWa7z+&}CCb`qb=Zvx=`TyI02^ zxJwTyF5tVp>>an+VU--$>E#B;n6X`^i;46};+Im2LpeUB?RjA)S#bgYZ`N&^8?Tnx z)%9e)XtFJf0A>vsU(SUJxMc8#7f1XBLiLL9RYNOa7;i~Dt!?5>orJHfDW##b{SI&rm)>N`k)NkR)~0VTv=FP;%1Wn*{*yeBOr!y1ZU* z6||SvD>9W0Ryg7+Y!@)FKMRku1)7BBBdq?C!Q0(nw;vvkV;Muzjk!?3bbFYLg>BHC ze7Cf7`qLl(X}wwkz@QG^YC9EcL(Pyoba>!gP%hj>{;sDTa2F?&UJMvZf0-`Q(JyHL z#=TYuG3`2)H1Qwru7CFrzm9_j0(1wPnbx*jk{CRv#8 znGDt@=N9K{Sx<%by}Mc2y!6#^c6D4p0pp0^{szrLx7ZpD9ZdUZSt_jSC5TBYg}E3Q zf)ytU;0`w_*<3WU)3!UB0ic54LSo$v!Okq>q7_zysD>AZ8kSzX-4xtq>$Od8FP8(| zI4RDf94(v8GZ`%#rT7W>e$jExg~1IG#6WMQ^1fRA0HrI+*g3Nd#%DEUeF5}-y7(SZ ztbVAu7sBA$`?B`~7~JaD2e|v30I{;XL@eaGAep45>Gh~iQZM5MJmKv!6TfCmnN?UE z`|_NobVvz(A&XW1iV-b90O!%yPbPusgfpKIZ4c{fDQ`RsCs!E4RKBLDTNsXGXZSqJ8DeF4r^!J zKfxYsh6S+qvXW1C6P*syFx|TRTw6R>^QI?PiR*GB!pVZ(z`9vkBgSu)tBlF!N#GN6 zW_CNjxKMFGma+bVFT{g*DM;ZMNA@j$rFz+Wh1mV*Z9W^TNE4rhzC7l}7w+ET_QWN_ zZt%4gV$v7?>iL%jRId$im-N-y-$34;LjCYly#FyeewOy;tEcSxx%Kead3x>{rF+-= z>0$8G6ZCGM=)J#c-(9whk>pJm^kv*$b`-r5m%Gk!+up9)$6f#F>40nfeAOP$QvL;U zgbu$ApznH>iJi^B1Aw_-0fd`Pe4R!Y`MBF;$9+fC@FH5z!^0{9gDHZU_+^zBzxpG! zuTu}jR7W`z5|<(vC*Uzi4EoCKuX@zk86=gzjx1wQJ&oUZoJ__6?&awWKmaeN;c6C1 zWA@Bf?ly1~>$suxMDR8O&&Rzgx504Uku#259muV1>_)+bAdN~~HPejhx`!ZwpoE;_ zdR-hjRl;*9EnM+etI>8l1%P*l`OV!H0H)^yuC_p_b$&h_{AEKH(0hHoW-eNb!7Ca; z<4R30=&P#*#1mKMEha6nlUr%oheZoa?iKjwfBDmLwWwAuJXOF@>Hshsuh_H3v0cs% z$)wOA-9oN)qe07`_7j{8+d;1>bz=HRs6$gAK9^n@^cwcs5W&mYSiGjA1^`T=kGlSB z7+ZsAPPxd^i>0hCX02Ks5L5gsz}lAyoR&++i7c(-ar^^i##j5Ox68i7dcamD0GJI~ z2X%r(0K-tg`|ZSTFyuXo_Bxr8Fr=_BIC1cQ7wcYOGB{QPONw9sSevB>%pn7l2sTbz zQ!Tslfy&sJSvJEsa`Bq3TVhq%z}T+6 zO{8k01x~TAksPeHMyq417*2^BMqb>pg&wJfYU2_CMg>eW5QyMNY-fthAp^kp5Wyjz zAT1bNNj;FsxJoxag`!iU#h|3D0S)(S`*AfFT?I% z>aZ!=(AQLp)1-jVrtUKLHRTFelFxk;HS$&VRcIL-BEeo)8M*0)!+C3I6jcDT=?q`e z&&RhA&9uk`6>q+3FeYnpq|807@|wOU)wriyiR}6ASGJMrYoEn$0nFy9R}Ne{k870f zs|a^LMJMw-(O=cO7Qoxj{^r?xp|1kizM7qE-scMbwL8^ITNcA=U*MJ%UmTaurt{fA z{foZIFTwuDP-cogC$x}cl^3i9asT$N|I=;n#~U1>eFt=M26V4?&8uyCd(41gu=cP? za0Gp!fF+J?1n4UT+KE`UHpLow>f}gU8N@j{#+`+tw&5sGqFtLbzTb? zxP{+raq$XplZgAi#UjF;fz+{dB9QhP^RbWjuvsL)Fk7pLVf^|I`*q@$&NToqgztKh zv6)kZuex7x?uZ*^*jij#X|-0XQh& zx*vwMfBmvvW-*v)XK)uM%V}HF=|&dj+~FO0OrypdOpa>9P-5RDe(XR5CBO;K~yvYed!U+ zLLJ=`#VmR?Sj{?kZ*=LJjihauS!fo6aRiBhUYtM{;{-@1dg&T%hJSR2(qaZR+?6#- zYC@8#-z2>?Y(|>99GHk^s1)v7*N)S|u+2_G4Rghzcz2`$FwDIU1TaF7>_ejjAns-} z#xI6`7vdaZI+;u|wrB~DwR(;JUj&_{`#lfXh-0Arf@-)}eTM*I8~%kKmK^WG^GdE; ztk=)WIEflZgJIpCHyDOE0y)HO8&`8Rz_9>k zl2#p6>vX$p;XkYGHKmMNwX2G7!d_xAW^Xqn3*D+fc?*E?t#KUIZ2-Vfz-g;2Yw8t* zfSi6uvA45}Oz;OtXH7_I5!Ojr0Iz0q)V0lKLm15RZC(;)k2h1`>nXVl=vMd1RQO2Fsdb*p_mn>w;ny*Y#YZ`s9F-=6U zWSCjL&7D0UcDWl$r#7?-=90eZ_|ag-4kx_i%C%RYMga5snhjBHDG9$(w+b^ai{s+C zPO*Dx0GXRi`MJyuzTFjgYT#_!qpU5Ib!xO;Q7=0Q$lWhK0Ji(`!rhZ%YNSR{uK+A5 zWyS5w#1V-8qlxVo_w=*)Ub66i1L)TENEsWZ(?D;-P`>C_c}53YrR- zz0=UX-DaH)&uqMs3qf3CCKmVsb%0o0z9DnfPC26gFgK`!#A9uK#)TMHbMb!|WsB8t zf1EGZLjrhrm@L<(@e1^1{+X?_Cw1Q$)6v=&4H4F3y^z-b)JdFU0hVO!N4FGEZsOfW zUXcp*-~RnyN8=#@%$6}O*x{5BJ(V~EBaO#{*cwLS1Xq7(P?>A$xHb{32G>$Z4&Aa- zJ&yyo-^u>;$KTH(g1vGg=>b>v54Ob16967{LXNoP&Pq+X|Gy-t_4k20gVlIT_Eqp4 z?+5gS>V-zYu{Sir=B;q%T|3OG$?Vn0Gsx*aw2EPrAd)koIvLt41SuM0u)`q!W3D9+%BI(Pb z05J@0z2DE*>oMEDv_hQWf0@4_%u!PZ<9~KB&k$lcG6U%oAjkKMz%ZmR0@{}V2AjhW zq%T$~A4{e8I93{;iq#KA_lH_^7G8Pg=4O%&Z-ja083DZV^3n}isRM5k-livj^e-36>%xH%&7*ncn`|k z6WBK^tyGFW_+_h=Xc?Zv&GtsO4 z&o7B++%d>~L$k`;5goX2@FuNo7R@?rk+_?8S1Evv^#_yEU?IPSedQLuO8QUhxNxbZ zr8G}z$+idpOW#<dZ@;8oH&CLWqx05wUZHGnSl1=F_woT;XfJnSHL#ztm`^k-JsA zYy;#u0eq5e_P$lX)<5#Z2J*ymnMq(k>kCNC6MtpoqrsSv?8{f^H30rf0b8+aHLd}0 zZl9_4UhX#c3Bk!rn%eO7)g~g_V#Xr(>1v8R4KD9?1!4W!q_QD-MfiTkO@mdv61UG8 z;_0#b{A6mqKffRR;$isZPUs8O`*_p6zaHEiyT@%N9mtF5YMV(>b^`z>`*q5?FOER( z*2zV|P9exu6@|-EUg}n@~-G$6hD8zp|1_yGPCU z))zB>vx-S;)_Tp_TCKd&byny*%v(PcvC`fwz8ubE9I$B<0LIn9tOOo5#MWc#<5zY( zZs@9|NZy`~LV>=Ud6V?z`()UCy&&;o9M6X0xgo#DgMc9$jaqe1_j2w?d?>XFrJDm1 zT(Z0EfJVx)az}j}byHB4yB6@-H7=~%DY%PkZoLjsQXWEkLF_{QO0$(wu{bdq=EHoi zX-W1!TX$$CpJ~m3D>Ac`0&lGZ<1&rwH3xgxdM#TBaSiSHx(QgsIxh5J$-n={zYRx& zO7+6?C3&ve*H;m&G*vT5Yjy~nGaXIeB?w39L!M}TK`n?-c`eo zZuBW`m8BiJ4f<9xQEAf5DD@z@-;Mi&fZnbg!eRB-9NP`BO`I=-3ji2=B7j*5CVkn6 za9XS-!07x;Lq~Qq(d>dE60a{+0@swnOIt)>bTL-5LNe%}nwkrJD8VpiKt>OiU8M zco3hmx>*>ECwJ={ZDJzY>>=)yseq;HiZZ%u7|abE$N{0q{%v6(6^4UoTsDPu3HeZAIT~g|Z24mF8joCiC;>2tgmK z>*wap=j`sOjUalzJPi>)Jq&)l?<2n4ne_?KzKEO4(QzkJx&3Z+Jal%OOl+;z0A#|v z@nHwm3-q>t-t{_Oufxftj{i#tTy7bHZqUYB8K+}?f?iR^NowBQuiD#1wirk3F6Qc7 zAQtB|cjQ8E$lv+Yqw^HlEDz38yZe(4t~#n4n-(fX2>Yto5;7Ezj*vAW{xNeI1AfmY z6OXe)>}^Kq1e7v(7LmBjKjVZL#yJ=~8+kYaz##6VZ|KXBU&H{n^Q}5fD1i{cu&!(a zqSU7eKh+2#Z!~BEz|g)ETy6UhQV?(nQat>0k zTmZc{S1SZvI9T_k2*%0n?G~Xhmi#lm3PE^77y*{tGDN?AT>BtI(x}8{F#s4BdH~?h zfB8=UxK=HAZj}q(nMp=~XSBj#<1r|1=X3#M(Z0%H)|lBZEvs1j-l&(b3>>;8uTf4T zeCzhV{>vYC>qY1_*r+vVyOKyq9T_ZEYZUIvWfRtV(Z+{tkY+D5`>k+}@5sh0&=)F) z&K`J6VDM_v)~;;9@NAN?{faJ+6vTEUiOpH~l=Xwe>$5EjC+w^SjMc0orDs-CNy(rT zX8#mtlQ^e@|3{oNIJ~4LSqXPMXroqF$Aw$m>i`UQI>4}(rcS8!VEk5C43o9cLZ_Kj|vEY z%3#3MG8@)l&Mx=V>@i!AGMw~(4?lCb9uDtG|6ZEeWn6t(Cw85ocMQ%Aa0g})WDdPi>8Wo}amU~sO%0E9902jmPg8w2mX91W{V zx^CIjIsuGVGYVKC&AzSN*i!qqjlZVD>X;aMsO1P7%Eb3W1+fLN&4gP34+gUJfvx6m zC~A$dqV_W*a6%PJ=u#Te@p1LHb-S1yrtf*ql&pO`Zw-guw>A#t&Jl zr-;K((P=gJRj`Zdv$K9~;3$#9_1hg1{~s8Cy_eT!#U(LrG`dpx1i-r|Z~yEAw8~nD z-EjXLAP!IBAIZfDw~sBNS2y))-1QirZ@Wx8KU{a9eIKs}4_E!m<8Zs_42E7?MhiS? zo?1pUpdg09;Qc<^Y!dG175O`=%YN)>#QSR|Gr2lf2LycxUkNU#pEp6@)ijw3L4D~Q z*8DT1=VavK_XZ-EtIdE$K#{gnwBwLMuLdM9x0>J_3}&+;9iee8;N7>}n`<{9-@{PW zBH?Zw`WSE65%*>VFuny%Kltqg!;_ec0(pXWi}#Fk+%Yipv&noE0lm<{I01T)xE!EnpN6~CP}#Ai|cA|QO{(=IpkfxCb)NDKx;80~g|=mtlKCtO~u)laz2;tDRa zD7%RQc*?@zUi)=-n=yxH>{eiQN9W#?GLoc^3@L(f!3BMn+F>N}XxfGdW`P!v>$M$R zuw-B(7AtJWDOvzS0XuGmN}cp&`pztEY`Fxm9Z4Ec)+h)$B@E0%h~TIem4Oa2xe&o_ zU96$w$bGoK`u#utrWpr#kdZ}ummatz+^BDEOA2f4Psc^q~mTkYBpWgoALViuaPB7 z+5*N3G1TxxyY_G^mK$kxS#(&fyNBbL44zC=VXy)izXmk%z=sgT2#yiAbuXt3h0mH0 z%`&H_9$Pd()(onFE94+MnKj`QFz64ZK2Rny=|a+t1qxuUb^w66hg)7mZ~pL&D1X`I zWY;d?%Vn=9moW_LT$C&NkL18Nl1}Ujw}(j|fc~vf_0rjfHDLU%>N@0N;1v*Z5*L}5 zmZNrl8T=E#+Q-L@WCSg58t{gtKAnn~=KV?-6(#hg;${f}27{NGP&RkVf>w?$NNW%` z(=EcHjGM(Ids*awYm{Yh>valR#+`9zBMi>RoD{uz`?Stb8KX_wTWTw4z7d%KHtrvN zhc4V8F|*b^e z>JF(;t7oUd>~#-V9|) zutd{kECD1Lc=(F$Jx*e-kEs1hDT*rYUGkU>pM5;G|cZ7qf^$Ay}bilOv$Dy3h#e*?xc z|IJ6VT8wj|mygH*A?}&_kt9g86AeF7e8?ZBbWyeH3SEzVQY_Zu*y=jnfzSG@L4_u$ z`;b|Zak754IiD{GrLPhGwCO*hJdG3#Vmf-qSz?i_3>@XUdH&8@+DBCZARQ z)@hM)mVW1@YnM$@MRrH^0iRe$_nwBFQZ{{z@9z=9#U) z-TvgAs@SiB8uul=oTK+7^Q;AF&4-K3{rn=zrNsN}BX*DB{wX>1fi8eKRKphS)8 zT?8vtz&cXqNa8}JC-cL`4_5W)d=?`hH^Jb;E|YxnQi4N1to1?xzx3m&0tRIfOhlWy ztO9tm%w!9%Y_OL_p0ee8ZHmp)NyxcgDqyC7@b@XJRC31|{^sHLwcoFaZC#1u*dNm;d^6uivfK3IH%SB?G+)uKv2UJ`5rCbgn}Mu|T&Q z0QCo5SA( zE;?j+i1`n?O!IM^&_auMX|sHONgKbL{2B5-hLwIM7zkQw;xubCTMmw`j>p6)Z+|hBZ-4-1+cx-$H+c$RDquYB2Nx`C^Er90 zzDO?-Au$&hDuBb_LY6t|zlaz%>1)k1N(vY1E zEj5>J)znP8Ve`+YE&%jE3%}MUBG@>M7_*=*1Vh6nwB;xcCl$zFF!)Wr%)ljm6~Jcn z$gcJ~tptCy9YM!_Z-9c*&y8#f;z5HdWbG@?MKA+S5D^40;C6?K? zeJW(x-u0Tnf>_Jrbv{-6y7tUQs_^nl#1Fw;c~H@N`6$7OUO@MjYkHx2@7woxE$%G3 zziHoIW%pOv<4s%g%r{-27Xh&g+#U}p;&5mpE)UsZm*O57e=6*_>-K9y5x8O~DtiOh zF_#f7RuL31NIV?YSWy6L4gaJaT2{=e{0+HGdp3iTOS$ieo>nxKWC7T;TKU; za3IrG7oGxGWGh!c#YHc?AVf`Hw3dM-&#ax>IP(@X&474TK305&Iynt7R(g_5J@ z%>*?)6)i`w_>Ya7l_bjti1Q&RjvxcTL3oaTzWMH2SH@ikLe@ZaN;H>N&!75f3Yq|x z0&t6Nnzj<`s5(;P>z+Gkzp?@05{TZQjChj^U)FkGdV_6k_*H+_>(1faI^$)T60MT$ zetT=IVJwuDg4UDyt3>fDhv(cg>ubrYahgE>{{fhlW`=#jI`3ZIKL?Uqehd##w@fKN zhX}Ct_z?2(t0!Gm^eAz2-@3jtdiUu;!z>N#>f(g%?N$5!O6aQ}w)qISyWc^TrpJAg z0S52)>3r4h^u4UpX!p!UUI2JDbJp7ws&}&Rr^{fz3};&Xl`(Lwu+AWqWrwyXU>=79 z4@c0K_LBfGZ5`EAIi$a%X~NQqF9G~g0M@1VIAPiu=oL*ogHV%M+hGsa-%v8u>hD31 zE$ITA;$GWl&Y6}yeJyfGg(J6F7X{p{p6&pDc_$MIQkIC7LUrHc5qFCU-AH*HYQ*DS z0PYHXb^jXIzsN2>zX09Vj_WvrXE>473t|EljQeRC))4rRscBr%aP5Y`U2R6Z1n)NE zjrP;NNQ2u{(=6D~ubC=`fQ$ z4ch!nBP|47z*q_P>*d&!JqM2u*MIo!uc3fbA3rxSj&8>eeuf~insxh-yt=EZ!4533 zrPRfR_}1(xL*PWtwHwQ>3BrY#sZ`!50Kog@fcp*cR%H-t+5%HA57VuBEOTq}b~hk& zp?6s!rtoDEovmBevICD0z>vk0QLC>@7nm!iTBU0T7z{SECyTz&-EIUD%i;~`qB15~ zHVdtDN-ZTQ?X=pgALC0Pi1BK%jw3S*&8jfJ5iyKsQVr`(8^8~doyriJ4yUmUj9`nv zKoiajO+<@Y@ zK?IeIr-9itz94`((i6lNesqq&iJhs%Nlvx%P->_bdCs=PCz#P&mA`f!0;uNuMIhD+ zUt2oKv(U0ZnM)YGxPb7JB93lw4xqB8OQ70wHcs3AZL$*p#+RImU>p2Glc~->q+-sq z%2mFIgyyU5D3qOsYHAvQD@rNNo86iWgY_#C-7*(Zq~g?3;W#xb!SvDOVseJXuyy+y zs^IB&Y%`Y-+Bj$qDu_3E@|o)P1&VgR%cECzr<^%+GpCZrX1FR z@+E%qtg8O1r<&ULG~4`Du+mHWc*!3ZuU!jY>(&C{k4zAr_vNNqK@!p$9T2=K^q`5R|^g@7~JLJUK~eVmt9v7#|WHE2N3{_0D!sZ+qh1KrP#ZG zZbPJgnI{07t^l5yl^<`_V-o5XV8*BR$2kCOH{3xP zO;IE_oTB&d&bJpcN72>?UPfx!r99qKlwpaEdXKTlFN7?ZxzSKNzny8z%N zUa3|)pU?XMaJ$n2fE!L(<*)dJ0Kg`6Qkejj)?(!u?X2-3LT7?OxD*VA`lnws{>eD! z3W{DU#0g;RH;Q<{@i6=MfBD09HDx6j^aX=KU$N%U-LCYZEkQ@T}8s1sm{fHwd zWu&1#?)aaGM&db47$(!JT2nNonHthpW3v^|OYV}vCn8w;umIz*>P8oh;FDo+cp=|N zTeWfYv}No?*D6rScy>W^nIoTh%3w=whLzELS#5{5CLTiQD3g%RuY3rKvYxeVHltA` zr=9Az0H(>M1+eCyO$wTZxZE_Q8yMwrn%+anK=Ta5^RlMKTTD~yxjGoWIh}$vGBmf& zuzkWLrE%(ba_C3F+Uki~eP!BwI^J{2X1Y zMl*LJI{`f!d2aoneXo_6|*e=8- zYnhG)eSus3tT9{GAz*Q}#5ZD@S%R;l>0*8f%fsE=_gs9qh8`4fuTx=x*=lj|-&n-! zxiEM+4W&e_rC&Bx0k?y;0r0rzAtrsHFOH;dzvZycsFT%OX*CIpaZmtyfiVP5j1Ep+ zuqV?cNF1mok|(1KSN8d`4+RYFZgLgNFwIuVU^*Id<@v)6qSg;5pQohTfm5&a0PRE(V#!>;y2`EZo z`|X&N#^ZP=o6UryZu!=x%x0%)(z4n15%~3xPH*N*CYiRIwJCh@A&oz6iJcASQBcaa zEqyH4&q~fGMA`dL4bI%O7_=%;vleG~KQd|@1SLE2#JVXc2yzqNcpb2f8;e0iAQ=G+ zJN`$BP@)lhaHBInIY&fkA<0U{F-p_605F2CTO3H^3=$PE0USlr#NdSIb^ojpU&x!( zL^KsGVfmG`B_nxfU;)hg13vRqF`E>(0+}rl`oZ|4sNxpZ%)(2q$Vw&=8uipLmh#W z`BP1Rr`p$AS-mLZQ{0}+_E=Pth+J83xoeuCa<#3?4NuhbYq`v?vLOFf?{0sJzN!A2 zimxhQe9BrP$-9y0G-us99=<+e)DAB`1>;7Kodwbu!zmr1m)E*&@Ob0OlSm zJOKe1562Azbp@jVYQgIWR?8#V|=s ztTI6j`pzLtCo)dTv@kb!TE#41GJrM>wyTyj*>eq1{@)Tcrnx{qB4-;4a&< z)oMekzujilj`xNz^arc0+ul32}zd%9CW=SN^2J|Pyw@_i0&LL10%$dqwTXV8d7*RNLjFlAjTtHkwlwl)_Sim z=g*J(r-$9m)q?jlU@(W5NMGikSxD9ary&I~Vh%ol7RVF~>z8Vc z^J@JQqSBD4I%jq79KlV9JV!V|0YO<@b>G#z_jUJO!+T%zaQ?3Dzqbqy(hKNpZY~l- z>F}HYwvJbv<;90lP&rY+f`1EOuPKwk?8X9yt*$*~FuSzKR8i+aQT8kQ7kHm4&I_#2ey}&_#f_le_BlzJ{;>#^Wzb z6i!wwSe0zQ+`{{m-~5z(Rt+y-vGW^c%okKg%(?;giK1OTzZ7@#K4(8K{l2;b$j@;< zAzuahE+3rrlSl1)e26tdk-zup)q~*n?lwc*-ZXjSiFy3Gg}A@T5O%Cch|2~mrk6G0 zyxE3`?K;}5Lay3HY(=Naen56OPoa9H$+@`(Qx^eP3*zDgFrMnR=Yj6A!ZWRhGc~Ra z;?^o%nf=`~@d%f4&;(j=tSQRoYyQlpzk$c8HCkVB4jA<9w`%mF0x8*| zJd^CS$5i%E_ly$2Og>Ww<3n5bnkHyAh!>IDM$zyIgInpp}3%r59=(g22W6@&cE5?@5HR|7RO-Ozx03#Ogzh6Yai z7!OGOhjSnp|8@=<4O(G83jkUm->;Xm$ZN*lFMfLZ<8Ob{ihcY5A;-bRVLKqysn zaeuqMyIFB6>8K6T%s-RXJfW=wHz_e_n?;XF&I+?_ic*+9(i|5)ZHK0L7F{Y&CxiJ} z20qle@E$R2`>P3iVA!f*TN}1XX||83B--(B1^#j##9>DE+-MIjOOO+3ZLghUIPa}r8nu+uUi5o7S zY#y&T?^PTNdaK^|HUDij{GlGdZzLbw=2@7X$L#_UB3(=VnF!pVl$_W;1HgDB?_&@* zN&?u63t%t-Oj8avMFW$Ldv=;$#?hjb0G2QJ3gY7F7xE;z!aFER=!d8MSr)*W+?HH4 zj(+fo05)Z2Hh*c_ndlYw67Lf&Jflt}?uzyWdLe?de&yR5Fblv;K2y{(^Gs_FUKKg> z$(>7F>fCDAIBiS-1IcfoZl@0wK$l_BOK_e}%6?_wOnYYwS3;LxWzSDvb7}# zliu7U64xoX`xT6Nf=>~{OgMA6=x}K6b_rO!UIs$kbp#R%eHRkoE|(6iW&u;p;H&E0 z+I;SAHpzCI&K8ioH7WNBeW8XuYFy@TUwW5jq4B!Xpt9un5C?g8yB1WknHbIi%%h~K zSJI`055*WV2Qaxyt5Tg1_tf`Fynh$tbT*8K9j6%g z2w>=7eACdWMs5vU9}n7p{`Wua*0azpCxK+|`7qla3bSc||1K81c}rolDV&PtN@=KJ zFr!|3S1J8aF221ezdJAefFl@Ob@Pw6YL;Y*6a3SD+nf7_WQucM!}FNNbN z;8}9!8@6LhKrh16TLGbdtE?f58ab536-I2cGPAsGBX&EWa^8fcJ<>GjFba66K4NxI zn5}SBz-%>tL#b-H3kuo^+E=5ruhDBj$XcwXrme;$WvN_WlFzw{J*BU0V792%aKFN; z9VI&X!jmWD!SP}QxI6#s&7OS3@-YN@m-o@?AqIDMkLGxFmm+R%n^)J# z+~cmjd@ZxAbRG>Vi`VmK* zgT5fKQ$KIiJ|S=d`hvmiy@L2-jv6>wPP>T1ZnoP9Wv{Q-#4U|AICQjLk8W-@1S)qN z(G?4!xE+DJTviB8jB@~ZcbG5*jf*A$OfcYbnNMl^V%n#JJ)jp&vh6hh01yC4L_t(e zSg)N8Qpn9_Py-HKr*d<>|I2^hb-<+2GWxZ zws9sHFrykKec3IA2l3O8w(zFULN8=@tdT}8;+KE>{Exr+Wg0lKSI@$FPuCR6muspV z^kpR&BnEfai?&%3Jd`nX)+rH8KI4eDZI>0|L)*tIGfUd7E&mte7NqbJ`cjuCilc}+ zOM^G0IDUp)%)lD(^W)yG6Q-pldCZ?P3#EJ~%v1xwtO_$7on=0yur?xa0!B?<&FjYWSfZ|KPXI!p^xwauLMmj{lJWj*{vr zfDy8p(Y^4TbGPwH=9HoeBy1!2WC08XOaNOn+7m-uQe2TKo>p32HVi(2tNALgfX8iK z`n0-i0SqJ5CP(XzMH2I0fD=E2=OVZUeFiZRrDr^-DA3c zYF<8S+@!}Gy;s-3a1$RQt}bK2?MP z-zC7fV^T1dr<7&uky=Y0_Z61tOCa0kGte+XZMSO0|IIfO6hTd$wH;=EG~yb_QD*_Yuu z>sQjSHXpZFv)*Pgpph@lob6UYuy(s0=@jqe?rwKH&TenlP{4~t-`09@T&xDm_3-}j z08NZXNM&il(jj1O``PaXhy9S%UtS`+Q2E1<{m=N3BDkt=(o0)Wg8+sCzQ4N!fFlTA z+)TJd3t$l0cT0#k6kiT{TG^&5#jx;_S|386`;jCOjr*rA{);1kGj@xRwm>hwV;ip! z*70M}oPn%_nos%=!TZfT4jNh5=%&7GWzfw?#`-Gn-)8$5LUPf1V*&DUlGXO;l7(#F z26*d6(A=Oko?s;`Fbv^K7=yUL?Q-5h(5XX~3LnSE!^jlc zbxEQvqssKK_A#yS-zP#dv#ravZ}~+H2aQ%HmK~>ilk&pw%NAiPg}+)eY(K>`b*~qz zr*veg&!J)JZ|iMI-!8nd&1P~qEavl`Wv@=1c| zv>Q;F4wzbfU#)+1{gN;15M*BkFpOU(h+qj|xcKh8@D^$qnz&qr0>*Dz!SRYX@*Ko1 zH{KO%Z$$?;-U*Kz--E#==wSa{CH$e0eguPq_NOrY?2#7tD-Ckj_BNB>Cbyh>W?APcE2FnRMVt#_ zud?zu)JOc&1%;gD{VHCe7i@lVR}cRBG034CAcVUQ;pQ%qxDOE|?%_T`9PgW#583`P z-904x>kM&um1@L@!&NGA)7)Jphhqrn=8^0V(QY4acMo^ozX^i{(zApd7*dP-O^xGAC4QHUb)%2$l8T2MDWCc{GHF;)g}?= z4J9QlA?*S|@p06F9}aX&caI_&dR|;K?|UZt8IeWa7663V1vU(xe!;pJdN=SoI+;Ywz(Po?y+#Wz*I;V9zt1 z$GMRZUyfh9eyf&61sZV}0E?lO&{tjA1icKVpaEJu2>PBxz|=IoC&6I$Udh%oTw>e; z1Tk}5o>%gH{Bc%;prY<~#n2T7s|%xyMnDoB_p`g34b82%J&-Pv*27udtmgOkdjRQWpeYzmqHo{VFrZ7C(0&INVwgM}Cc zgQ0+LZw>@-1ybHE0+7z*Z1*L=8vF<6IxNnEgIYfb)B?P1^1rCWh&33MniSToVZ#3ue<9)6t8iau@WS zwPnY{IHpb55Vx(mAQC@Y?RzT8pMZ~V2jt5?6THWbsf5;p3zZKSWhn-iY9A|-qZS=3 zON*WNHSZ%7DuRjVQvLfv^=B9Lw?*e&5jxm^Uk=`a!ESUGq%tKOM(0$JG>N4Bq*8F(!cU+t%W+e77vek;>ql|fY~lB$<#Ja90qnSE+$xcz2J@7& zrff{yGBwTGuxebWXJ}bVTw4-$Aj(|>;~+d2|7Uh%#Z^dl=yj;}P`{i2ZnmqPzHVk5 z7}sdyht)3kI^uJHAc+BB(6^bgMO*-^hFOlKujZoNd|C+@E@d)fE%D|Qx~DBs)-J;; z-SwCH=0^)!m);truNB00REgEx)9P$aT)U1iAb=ImW?`_3V55D%%0)BQPZFDZfBO(9 zWesjO_c3C36Yp=6<3ozLylWzEZd06H^E}p&R1OAfnizio1h?Rpw+W|DITfPoxa@*IpDE|tW| zaP0CNAtG4Yte}Gz3zmlib<&7!Q#8dcJCJ41!NBFhK?YYZFe5#ly5R0&6#>9d((|SH ztfjBEM%TnqOE+g30IN`DLp4Z@o4YVLQzvmZ3eUa9M*z4T*CVIUDF5KqK4eLeHkLyv z_xf}j7hjIC85-u~5`GaoX&C?pZs((r`xRz5ANYugxUxA`1XJd642kHa=fg2Oa3SUr1-e<`Vh8z~yGV+m zl^Pg{nLYu`MTGd2h~w*(k-5kD?fniU<`@#xFi3oTy*wPIBFK~q05GV)Edp$QW}cQ! zSj^~37ja)aBk@z!!Q~nl?77vO>;0eq@}F@MnHsRLw${yLUjjrbv~N=^y&Ui|(+;fZ zFk4Q$+Fj+b&6rMD%s^6SxvfN z@D@_C7t21xftb4yr34RKlc;@hb8~mQAefz%R=Zu6H=JtMt03GVf?xy+T^7l)`lXAdKzG;YOoi zJEd)x7Jhs2%4XH{yu-T|7T1}R->9{?blR(<)_T)ht~$8$fYzrD=8^5__!4}%csi;m z1Z-H}1!bX+3#Iqxg&!`85|F|O_EDE=@5}WM3@G4274-f7qVnCR>UUu9MdN#o?+{h@ z2Pga(#L%E;oU-L+C(iz|3!3vtWH4nh=o_as@!wDdYyk}JLJHHGBZf5WIbzz?dRY+x z0E44YrR+>5)Y*__gseiB|59euO&(ioy2gh~m9Ejj`iO0i2GqN18HRTYz0RDuSs=k_ zC}6Tv1AS#ja!=Zr+wBs9o(JqUrTH_C(6yW@rUzL*3hb!!pvSdxoLOSZ8W;wBA%fpn zpfYvLg}5tat<}5v08(R}Yu|i#{VPiiDG8r6WZ6cl(`2&kv9cd3S+xxOP+#UXV1DhZ zRxC|B=fk_g-R*sh*xyMUZW6@RZR`53ee>A9erVm?O8~tL0QmZ@yFHjy2OJy%diR$J z=)2wp2+$YD<;KfH(90At$A@$?V7yyJhmGtF+^k}5(AzDN?OZnd?zBB>G>}yULv=P6 z216qbJ-VE?I_0cgLiD8^D-0%v5#%l&BrMsttoF+xb*e?LZN)OVWwr7EcX90FYsb2X zcMcc_6U{

30D6TjkIZK9mhb3u&ANLCJXB*?I2!mXsxGQajNEFD~D$s0IK#m3IX2 zc<6AS5`sQi%UMd{%jFG8c+pNu5W#f0qSeN<=g!sDnblv)Uk)ANq?gt3AV+>#c+R3S zBk>E7d!7bGB7w%UY=oxI0FIHQxo}033xRC>)g=TtU(C8USF5Lo18916wc@N1j({-% zEY6WKbTm*KjfFm8{P3{j)+5?(;K;bTS#uhAyA=mYK$mU0HaiOXf(kgA@n5ag;UwSA z>r?7Ui*o7!z@RKZ2mn7l-u%aZ{yPB7F(f>Qpm!CBOZkgW#v!h54x6wjf@yli{%3F( z(B*g%G0zRepl`3~W?=&W)-8t~8SK?cL8H=)Juvt;|L1T2>36^Bq+#e(32C*JZg4{| z%gnfqzzrFWx-eMxWzEf4Fc`dD56A!(eW`%iki{*E+Lk2%9`*1(qfX*ZdMW6;pZB)o z_M(^2YlS9XOf2K42bqgtGw|^+y1icFXU;}wu2DMdrrWhlb*m{ym(9}n)|}+QF8~>= z3k{o{R?yCTYGOk1v@?q)(f}|q41&@}nnOqG;PI7h)=Qe2eO1gtYuEH?i}C~!v{(L01yC4L_t)1 zhvQk{XP=7SU6kJYOJ&;4q%Q;M?- z96?`QJW{9E75lTeAyPwBvaZXhk0zc#bRH^GWq4`6jAzibApKI-B~5g07)QK4JON*b zSBBcg7vf7s`Oq-ipw_Dl#MKwCa}aqr@_V}D2){$F^Ik01^%vc5oYzY4BCm*Rakccb zM)hr$Ua%UC+lx-KI2kyLNg($h(?kZ7w3G{)Hp9Z8UFXb_n01UJpce{wDLf84X$8R! zEL|xGjawDboK=~jW%-$F&JcJ5ki4{2k_9Z9)ArnqKMX(P+CD0B_Yn zf-sQIpu>pyXIv8zfG)0sT4Z?;#5tX-H934?GtvgbQ4RMfyUpad zpRX2!`Ls&_vt5gewm2yV5xm*<@e9Txu>e?Snbsjc6sXrQ+qo!6r?N2ZE} z!G2Z@+vT+HWJ59VYPQ9GGSvLDq>-JEIAJZBLru+meUpSfV$e&)uSO!wJUi|gf@4K5 zUL3h$7I!sDkE8;a4kyMt)4eddSvMKy8-g3Mp&!WPbLUYDTc)yL$-s0PtOMxRt>nRktlb_vRWXZ6a=OWJX9VGVZ(gcO5F=oBJN( z_O2^&-MzkS@3$?40r0VT*e9E9IA1tA7Zj~F(P9-$m)>~pj3)KrxJG?B)AdAi|p7QA$T=Av9Y0#^6I^}k|L;!O+F40T+B4~gm$FZwq1uPvVtGNygM*xypYd};H2;42=!1#WMn!b>Exo8L42~f;Q_eE``$6x*Oo)*y~E`FBpk`5veBAL6AhM zfC=EAeti6wfBokm^lOa^$15=fO(PCy-$w1+cT3z$i1W}bF}tqANMbf}I{wQhFHZ5Y zMQb){sV#OLWCi~59yl8fu?q(KPA!f6G;$$=|M>gA$4TttwxERXqL}w+umxZb+U{%^ z)0R@{+gvZ&Vi2uuy6l+(XlZCHlfl}CW&x~;XzA<5KMf2XcN1l>BRd<$t;3?fgIet; zoJGb@Ol&%It{Oi~{A@vA$UB^a#H^3vhmRw^5ybcH^;&BDny|Hwm68V6BsrU#be(XU zYFL&E=Y3M9F)DHczm5n4v9)To0zev4m_qi{lhW3MSsNxDS;XZylQpwk>gEp|xnYUH zb}(|6iD(O8_VClsaV6x zE*3tXe|iT1zkm0$_aDCd@bUW(XFmgae|Yyd-@pA|Z-4mT@816m3`V^F^f#aWA6;+W z<2rU-ecvze{P7xr-F^Gw)*xsiNQwdn5gbHN6Es3op+?m0w$X`WB%WZ$ZNzpA$BB{W zTR&^>b$CjBofp_3SSpoDrIPqNYoEQ>zWImi-WST?fB5412mkQ#|9pA-gRAb3+TMqr zBdxp}r+6|m%@wIP@mA7LV! z!F+CJ}x(gsdP;rk#d*wcTZmrfm@nYvCL{OIp=`Y%SP<#45G)o zC2Ig(|O+p1hGx+vg5X{`|1|i2YrjIm8Lfc09b0K76U*uucVee&Thb9oQ$V}TdPo+ znr7fzlZ9W++;Y;#5$9r+wGP>&L@A7;Rl_*q_Q}Gn=gxFFn5_cBnB+!)uK=)=NiT=M zCjm^-PnX_m7vg8r@|NBmY1WmFb@vK{bGsh_U=RABch$Q7|9b5o=IN~zV^45V?oG%2 z&j1X{&P#VzI8eI#MN9xg_~Le)@0Q7NldWeF$NJK5k`5bCz$_pf>&$R^wBmyy?E(6! z19z*!v!3akNGdB|oi?gn|0aseqfL@{9G;dB58IcQBU_Ac4zau4R)DVR-8IcO#G!YS zzr1b_$9ldy*(1FzHjNB~2@XEAiVV|6f?F)qTPc343{BIfmI zw<<5YesKcQOV5wid~q9?N7haw#1%^c3?BRa8?WCQxYCleT}}V*fB*ToTjF+|T`29; zX1wFD%Z=nojs=!e=N?ng9GZ04mf}*Wh8PgO05H??Oi(lb+%PymFm28}IUW-)#k?5q zW*Gpy2VlmLzse)7$k?X&ch#!sB0ZfCf>-HBohYkjhd)~*s ze+2-${`IBTBl~Ki@H!IPDQzOs;%5LDC)_GBQy)eWL~jJ)o42E^ZEUB?9yym6{VazL zhGxBHH}Jr_4g41UwrF2v0UYUcVX2yqj8(OoUcEK`60{sGOa*MNAzE&22562PJTi;0 z41jTM8OY!YjgPd&jz%DHTS9Fqxr2K-+QCkD5D}bOV=U9QRGC4-td4f<6o+>kv$@;j zaNpgx{k=>Wbef^RZ^I94R@rJ?QWgNV4F2p6mo6OK8@5&(ro#Cmj5D*2Co)5dG~rD2 zLimdIeUKg@@Kq4|FhYFBV0`)Xm_I&b5V#U|83VWleGzxZ@o8V2cFElVD|e_^$p9}z zT>8611O~6S0RRm2j_bB6U?DNib$nwFYLy5iJ7uG{>d`H7QUf79Q?OokNLjED0k~#G z8#fYu1SIajY%_w826Vwu9HEZ^V_=x*t*2154&mA;V>Rw*0IcCdSW`peZgbfimM>>B zj~m8#s$jW*e>uRN0pQIcUTlJLf^|j@ILG_G?|jkkzQ?=J>3nQm{Rl_5d)2x5VfXe& z#prfcIfyFn;0O}0=Ybul0MLTIfG+5}n@0%Q^ex@B()YB@0bq9e(q4lO8>Sq(kRd!Q z8|JWXoXgx5_12;GWoH6=2Bfr7m#bV9H;(Xae2{QCriTOgdVjz9^yv&0GM#6Tvn*!8 z@$qp39&_9;u8$xtR4={qA(Zh`yB%&>bJKURDv#&oVwEF6Ux;7?{hzt-%S@mK=$qIv zz;6s_x_3n4YdYFYViVoTiu(QjRjc(SQ`3;eB7Zf2;rAbYaDDql*S+d_*B$4hI$6F4eQAObgzYdE zL8+EfV)Xb~;6~Dy3OJ5?qmk_I%4|d^&fGE6cE=J)(Gd)nT?9@>r7e1L6vHy|fkT#9 z9*EDltiLbJBXO0GLMok(3<<#wpI|7}(Xs;25y)UL77C`csHuIFymSUKuk~$lznXC9#hn2JupY;tFZ*Ey; zh#`*esCRcwm(gBZcx@sYC)^bl!>kK`N|RVtk7x^Erl3D_#kvIWrPtLZdZ~T2u-QL; z3T+U&2yu&iO71n`jG!ac!+rAi07l^U`@5KR&fuZ7^BM@Fm=cw^XnHqh9Aryb=5D5AEwOIyYZ-Z{N4C|Do6VB2R80 zd?9}U;Cbyr0TaMr?OFkB#O^%85w`%qYxU3CF5>-aq()jpT26A<5sy-hr4t4@NIZ#e z^Q=qvRJzVe<~eF}?}zVi=|<43lvxyq9V}y6JG$43Du`6b4xkhYSSY)xz)_(0c$`55 zKRm3D5EdKBGpixxV%bdQv7(tpSnN9z@96FLc%GBKIJtjZa}N@vp^Xu!V-+xyfzW>l zx%w|tmJmyCkM_cH4pPv+K>)!2^0ROM{O3OphhoIhcUqSKhW5=yJ{SxVLjjkPa|U7~ z$>NUV$2VI7pj=3wp`&@~#w#h=e@NCwTDq)%xYlF-fY#E2!_ zc+MQo2ptUcvMg&2TxHV2gdbr_pDLD#efmRzwU75JRzxG79@ZR*fpdbEWnBDm3PIT- z)g~oCOZ%omc}bf-B^j|W=!3xsQNv!B7zPvpXMs{f;YTHIBs$rbt2@t~^kx4bo@^5;faDl>YV4QGRIA3|Z z0-sfE$=V1jq1*=-0Z70e`0uo@u0DPN7$ZJj|FGTtz~&{#xyG}SSq@D(73dp}Oj36k zN>@@C0mE-YlMq%13w`r`S~yuLW16Zu7*~U$a?9GwYX>o^`$^SffX6b>Ndb&Vi!PJf zR;Sv6K2~WlfKpr&aJirn5N)SMiCF=#g^8|P%v~F|%fS_uG*jFxfyR+Tj%inkKO~5* z0bm3GtWwzgnL5_6rLG!gsxgJNH6+OrFt}@H6xxYNOj&apF;V^QGlvZxK~}<*hRgu) z;!|h-+D2T$_5TmIm&CRHR#N$V;a3IXO2S!7tC(#*J_m@y>k#NYze)=)6V4)eU(%Q7 zRQ#FmW5nmgJ;xv}0w;*OvrI%d9V2mRJ|*Y#=tF2;u3jkC5g1)$g0Hy-gZXzjZ27rk=-U6kI6KY(_UzSAK+NfH0VeO5= z;BgmBg)l`x#a6REpevbb5yT$Oi@JjwfmkvacgEci(64}Kz4XU(SAWnYp_%BW@+N?{ z+gN(|+)G)qf*^t0& z4{yQ85?9sN=iR55J!_tE1!Ni-Di-n=BA6AVVDtUGF~Gv*OglhifUDA1+JYaOj$zRE z_3QKF^PW?W9-p_=z63n3XlzKu1&$~C9l#)p4S@?Elple_3M{E03))i6G;+b4(7o|G z9}&3L|MD0A{HOo;qvyLl=i2T8OApde<^dzvj3n|mmm!0kaRlxzrz0iVfYT;4HEj~z z{6(ybW+oZWfzSoual%qH=wR{kbZ?=6^U)9@_z(Z~t1645fjD1sPB3CT5+g~_m&ZjN zO3#=UOaaE?@TG$brQ};ZIJpN2`AZTQ8%35z(`icqjOWIjIZnp0Gglofx#(pH*t23B zKhAAtVi@N*!HVbZJe3XjhqZOcqW0wgCE!`q;VK1t__Nf_n^nPXC7r)iYKc=uX*(Xr z>1a3%9MA3ax;NS*WGb^lod^l;;-1z>@&dORLu;qg%cf!8fjMe`lj&&dx@CPla%Ev; z%7)+Cg)N3fo%?O95{Tj5X0l!yyGnLmne&SmivJ7z3-E{IMbHIeW*t0;XRt6YTnKSQ z5)ZK8==W~Bo$GG*Bcjv!fFp!5RtBsz4#Ms*>H)w>>LghQa!|M{3>GPD;e^}cw3}o- z1n4XMMHO)C789?Y1(W%(nhprya_S*ugrW{oD<_6nY7&r zrU=Hju-;WST(fp(v6bDZwg9$2#X@WGz;Zq!aNT1caG>^EDs3gR4epY`ieZ`07(}-+ zwNPujSl$2yLHfS+JyqSLxJO!EdZB|2fY~ej24GreSnn#jO9Ho-bCAp}8lU+*|K0xX zoAIQb&2YKaPa2Cn?lyT1PXXv#6wsC(l^N0Xo#PKK$ zCWZmv<8idx#CA+xV|n4xG-Ik`h^k2s00wKzrYsrgMWp$SDRIIIZtMWPNqPg~Qrd#4 z_%a?{1HiJwsshwvm0i=bVHrQH)0S|u-o~p<1Q|Wbu16`}QrAr9 z62MTv1n|(gE=Qd@H|RC_=S7S-EE5FN&WtttjLG9 z#bTAOadn1Z(t>9us5yz2Yel>_KO? zfF%eN!So2Tp3-Eq+E)iK(1g;s zQPTfXJAm;7@H7ZuFZc?G~s`s<>@@FS+QW*EtSbr^DMq(TJ;%}e5{Y$WW9vq$qrkxe+W-ipB_GlQxZ&}GOVUNMXe2;k!(-0wp$7~DM^62xvNy+eR5gs+`bJD)lL zuxY@(U@+6mfZ3=Jr3=>5eWED)ITmP%Olig)SU-gm-p5uT6TLS7%-e;&MSD66&UZCn z%oH@4s&EytYXQs~d6dMmGMFlv0EYag$ZucZUfv{OOxJb)Z~s z_cf`EI|JDJL$z9G2%I2*VaVUZ-jx4vU>|fINW=L>G@zJ|BPhseF-!)a@2%U#a=ZWA z-~9aF|L}VP*wyN2(2>=`P`y(B?Dvw;gASfl38Egy_|~M9$JbvW0ItfAwMAtvkgjyF zp!KTck!?sEQz)weZP^lIEL_>08!#Tf<>x>9_7C6vdYneWV6P4N%Tb2okp~9XxrYFK zs|*XQXfq$-D1#&Gp;Tk(7$^{z*LoRQsBR?m&%#s1ih<9B@|OVSjxYVO@iqhCp@U^h zSamSIB{Q8gonTa~qLg0}uK2&-YgwEfB}7+Cd=~&_b-Ha5v+iB=(X7W3Y`wLUlvtbv z3PJ)px=4aDCWdi4?ncqf8fgSh8h=Wukh+}WV3W_1I&K)upqG{=t0MrI493C{m}i?Z zR{+dH^W5pTAX2G@7mHHVuuKpsxHoM6@P@L~yZjg6#4bc+N1W3g!0B}c3{S9NDxrgY z_8;Q~!FrA@a0Bla;WZ(4H`-PN4AWsF9`$XNll0DNKSGl9@n|d-EASaF2Lv$Cs}TbH zkirN880bYn76ZWf*n#|&jaAv%?J0n7hZkPcthy5DGB2&08a#650gp5TF)mth+cqN+ z-qg+ZJQ!F9X*J2x%4afo7++s7_=D~We{TXY74Rj1ErXfT<8_SrJdR}G<{JN;ca3>u zzv)NnT*_It6}>U|a<<_2v(2VP`fYBY(ZSo7K4SOkNGN*2-R+aVe+&@EhY)cVE9L}x z_wgyE2{VhW*kZ)eDsya_ju*Q4SlEpLfoGLPlWtdyqqwcEfXG48xvhlf+n zj4^0BS%9N`%`JBoz42Iz^SRG9 zBpP0>x6(SiS`9WTg(ow!8x00i+1Fxm<>Jo_{adH=zIzK1{KJ0hhe>b?h(fbM$X?PH zv0Fvj2_2Blo5hep4=e&0+@-rDPq+=NhR;KYU}#^wL1}27#;qv0Vt~i^7Q0IkxVX?} zmPJ@xtFog2>;!}9CVZN7A#;B)JI_q$(x_xs;@zRO_@G#fD(*6t(UX+s2aG7>GZ@Lh17 zMOEw@7U7!*P{3*jb|b4O&3iNDI~|8gGM5gW2=+1&z<&P*!9L^lqW;@o|8#%a%5U`A zBL#4k21G9%%J5&q`JxU1;MFw7mu2QGXE7KoUA(&Uim)OK0LJa0FWoV%RR}dYQ}jiK zb#TH8ZM;6q8alWN@b)0MB-(;lScHe19vLtcw+YbkEd7Eo- zmRLz|3mIs*MsXK0%3M%3%RC)hBoW5_1UM{*S%KAzgMbvSCkDW*PRB1bfATb}H6LD%eFRRJ z8&8_X9y_*(O4p*76%{PAm-hNxN=azCj_V2DNcbFa9)sq0$7O~2!joM0}8?UEC7IM^jK9r>DDb;RoSk`9qDi# zx5t8BQM91%D7%i*j|dB3aUIiCZJYtUZO}Ixw^+k$EhlX+(4`@UE!x6^6P);Qkd=y- zI+*!q^JtaUBPd*TyEmM#ht$3ZmQ34nEkas$e|2$CjvYa%mSWA9K2+~^AA`92eM~3L z-A>ZZTG8z>7cJRowb`0r9hyUaId1nW02ncFKY)cCTSS9Nrj!v!Sy)0JJlDD&+i^qY$o3A$D(?1O&9c5$^$8cW+_=U_St|$@=5n?+!bd{^;m`y z73{gUP#Czf|NgsQfA`&Yp69U$Yv|pm=a&>Jn{HrN!|!=+$LnK(A`DIwZ=3}nC@_o@ zTsm3cs>6@{NfpxciU7tl!4X1yInBUb{0QAVn5<^&5q=Q@+=U4K{lEP(O9HQV9jSeE znTRF*feFOF2}j! zInSXf^C5mC7`!$NE_btxzk)+1L{cwDY`>xV7^evVu}_anj-_J8mDvbdRp7fUj$_jf z;mzH8)<{cTQW-Hg;0R)u(lZJ@?hQ+sv;vr;g>g5y<6aq5RfwO`Y%oVVh=(Op;^3L?!nSN#mgjd}uhVm`+uaXXAK-3SG;B6PbiC*B z3UL2hGSb?WXH2&B1zE2WEs%aI+TxOts7cWf73gEp&?xu+=4l1dSbHJF(Uyd4# zqAtWPSX)*RBOZA}+->BgSPo_bED<6+2p*wuN!AM25X}!UrW#~0j||*1(v`)eAg z;x_BftfLkSwb#w*RskOXd>B=DY8VhsIC(t8X2;SnS#pK;4UkZ5gb`X-D&+aY%}g;Dh1Lsq-3)Yc$tkw z=}PCWmR6Cbl)U+*m(|^T+%Ie9rA6t2zLS;EH=lG65WC}v$6w8qHPh5wD44Bc9l^9* z`s+0oA`yF9z(DW3@~5S{s0ZBH zC5esMWbG~{9>)eVY{9c|xAyJWB|Zp84YEmwrvI~g0Q&AX88B?h^fOOCV4+?S;%PnN zg#aJCOqbQTY(Z_PQ|=g7A6(sLI+cB?@>c+?i9We1X?2yFa?I6>qdK2gIC47S^Yej2 z8gS9vY{tOt{o@({uBS1R*i1*`c7Pc_KA)!mFzAcpPD#KbTU=TA2?U14$Z1)KPh>U_ z)jKxJbD1#}^<<`#CVnBRpn!k(-M_h>)9c@|4GHp8=&O=fRIeIF#*vRZgT6%?az-Io z)yyT#8W*Y%ug_wZiQNR)rf!sM`{8s#HP-Mcf@S1`dTE7zCvaO_5Dfj^Vp{&!U;glT zw;%LncY-h|% zr;dJd@edUr=}8I(v&w8n22Zo&yx1?&#aP;_@EYO*ieJQZH}J`s_MFxy+*Jz>;}5Df zmh4C-u&K!H)t?$&Ag#5;RJ2SlPcQ7F)6o#?B&Xl%cCKlgB_-3%EC;~VRybewAmOM+ z93`-tWs+M4ZV6z}S{s6$q8MsHwE!D$D$tr~TLh@gpOOlx#HIZ0_pcG`P_p$|xP{Xl zfZ^kD$v1Xm!zl&Ncwxn-OtFVQp9Z2frO$i-i)fUW$Mdz!Z9 z+s`6Q+6eYCVa0EZy1qYwn0v_xF!(bCEPa(p7td`mHMaTUMp^We*cfsNfK3OH(w6|X zy7n{G`}g%$p9Ry@i`V}ArMGx?mM@^MhX8R!@}2|4Ndp8$$R_UJ>D|kQBCCKe0o-7C zr05M0o2`#nZGCZ+)LV!d@`eCj$lLG6^>P}v@F9FQZd4+PqkqJ6HEr<#9B@Q&tk`+(|ozbYv?-}aCk82 zi=Z_*R)Vu}08N9XD1s%>fG$Naf?CJS&&h{cd=$(kDJ}}Q5o>c$eDCGMG7M&h7<$A;JJ)z?kkF^meAE#05nSeH;W{BE$qrPFO3+4DJVWKr*K~ z`u%IW*$k!IYkk%4ew1pgp_|5ofBET;|NVEr0_h=$(+FBQVE&w0XaxRuoS8xGi;&8! zN`^_Z?|HY*w=1lrV%~^=3SZ4qieLbkVoQ>T&Ddbjg3}0qVUh1aZ;}S50Q=36LzX?Vi@U1~nF{W%-0)hmi!+RQ~a63{3=?vD~e#8NYcND8ExhUKm> z01Od~{}dRE0F2qN+tf(+($wcj29{zm_@x#W$orG;Ri>jk#Q_+$9ZF11tA$p^py!6x zXGJ>bFwll2CZ(?s6yhuy;}dhd+W`NjDuEh49TuBar6$<1oen9j*kBu!sJ=__=YO^_ zYy>fotSwuzDWFSUrlvu0{CBv`LEkRm8L}7}7cW8>JJ7q(z6b)??xrU)-OJ;1u+M~9 zB4U_DVYYQ@-e_Wa18_V86tML0XnEJT!WGpwe~2cc@j;U-hVE-SJus;n9dUe0{ z?i?{11}B`$dx>6xmbcuUhxd1(j4(PUoMLo1$D4gX=q`8ueB&;*-fAy9of`|t{i<$(UXJQ3it9A}00xi8f-V5qpm%hgYjY6*9A`HGEqiSN zU{KSNPs)$A1DN~4)@no4aP3h6OZAq5lU=+BHXTVNvm(>#Y1UOyE(?|CebAS?zoSVz zop#u3#D-wDA<;i8&aRjh#{<&0i$f1VT&_rPvXbeCrs`X!BCZCDg(v5g1QjsWXrB9J zzw@KO`xpgRG7mWGjnl3Lu-Z@h)oa%aiL!qtC9ew6vow1 zE1zeYf|iMdKrclwP5@nK-0i+Tp65?5JA4TMZ+4UEd<6QgHs$l{UI@Lbzxi~OvRh4N z5(9QR5I$_&2Bu=8Y6Lb|Xhr}l3%dhHOc4L@@4x-+zx@UP?z=a*hT^&g!giaZFUknO#C7+*v=ltBhwxF>HZ*dfR#3BXUPC z-&Ah^?fEoew=4Ia@lbf2-Ddpsuzq}4;6~e{Ovc!M9B$;s@LUtHoC(NWLM1)E2Ed3> zBE33vtYok7rHQodQ&Pvu(M9=Hs$J$2tOY55sf?MeVLKDy-K-!X#8X;MQU` zO5yHc04aRM-Xx~P9k(qT!|qL|Cmlq%r5?xIb$vcA_uHuydzT>>J>n8N6>lt#%8-Ka zMg&_oX;v4~cbbU`{&)Dw;2f(x$X~aAh2Yy2R0f7wEUmKG1A1|kkU0$wi--A;000mG zNkl7;MV0wdl+aKxF>erl2qPfX#RY zEhID(wF?iI0+WKCf73GyS@De)lVx@(3K>fP{D);6+XFeGfB{Z7^hTCi=pkEACU!WZbR z)*hl*^bzIE$!cx(m0e*cpO~Fs060oNio4{rH(LSWeVTcJyW(HH8ZbEf0m}|rT1x*F zo@XghmNIn<0QSB2zVlT$xK6_BGV7MP48r7qEvtYvnQTIH)ZE;aJoEPf?8&$!ZC~L4 zV8B=tGGgh#6f|LMrubK%kUbv z$O&M9v5E}fle@)Gy>~jT0o?uc=?n(T%m#%n_j)0M_s6NaaMU>2>?#Q2`$yS1KIr%( zu{P9(OHQI?cL&$<;=-64)eBb17N(}4#gr-({sD)?9;DTu{`k9J|K?XzzyL6`1%$

q>&D3uZEylx8lP zmLqsFVo|A$!U&vL(=JwJOGUIY;Ihgcmv~T_yV~<{QfI?_*sVw2YCPOd;{8ITFn(7S znb93A?gc{V35o!TWemn5!y`k(ef@fPec5okmvmuKw4GtVEn&i&8CoO76jZX8A>uV> zr|)EvR^v2|OnnyZtL#)IT6X9J!;HJUc2*MJcox9c6^k3dL^bcAGYusdOdrQxf_AklDM_&q7O>=LU8R;3`*tmT; znyYaK>C1`5lB=i#Km{1q_sp&A4J&{>@0NM#NR+Wd-%Xh`l>+|}3-udsa98rurDqw; z1U2LG7UR6u$Ymy|t7hCMfl6B#t#C9=@T@Ih&32OXX~>139l9|^A4%A z%v=T-_}?R1i^NMnJi(8Y&Zrl;#7+kjl@YtbuyaHW(lK>q63R;gPgr{68U zamZb3Xmtr%s@rB#?^|)!Wx{#=;wg7=^w*ExN>%UvF*rO85&OIFa368%-^nmI(U5WX z2=3n(F!#JClO87_0>*la?1n)^b&Ka(}z>N|}%<*E5>*-=H8=ooei~w|@dU09VYa=gp1|&s29hFstVf#IL#n}AD_240ddU;!s8V3S9x5sP>b%zEMQ@2E)6J{ z>SQUFNwAOlP>T2iEr6B2*P-75fN?bkfPeX`UswR+at0Pc<&R>?JVS#z-J4$fO8QT{ zE)+0siH5yGO_e1JtzOw&!LZGjoxT*fkiQ&O$l?^OPx0xAWpJWmAgZ*k7~NK%=WxGrR^$XMw(?=vLD>oVz1|!+EERd zAf?P=7FrFfjShz99t9m>c$Nq2Nwk}fpo8`OGa%Y!gLxX#jBF>(U;R!6AKKSOkx1F_rz z!IwDVJ&gA%`_~f%Fh1Ja_cf$7X_k3KF<`Jhi^Roehhfi!tj$ISmq$b|gC$qAg5mqn zCe^S^1+QYSwoCDmoQL&d+__}-6eXt8T`L)?p~7Es$mLWa2NFDUN2&!Ek<@m@9932daDc8 zs!ycRvb=@or-sl?bycuG4CJS@%ZQJ#I|e)9uD3e+>-}&JQ8?)VUF;pgIYZ5p-`asL zr|JU0oS=ZC@o=8>()0=ncs}pT=J9R-0E6N}U-i}yf2#}nGUrT9Y;wgHHP7r90zsuc zNi8HsuKju`W*VYv30kqf>fuI^l^AA4H0}e?PItjDfjUwb668z3bXG!7U7#`9oYaLck$gx z)!nRu<38DKLg~&bS~7`YCRmkZvVykG9W`^7)O3}15Ov<430YkN*xb3oJI|d?{PiMU z$?QT&P!qrq!Mf=i6Tp(Q)d{TQI*Af@wkURzJzn8PuBOvbR2FGjBt`mcPWon3UX;3TX+c@a?{hK_C z{`?=m|CfLLndiH%uiJQjOUhe-Pc_E?ZoPgB4CX!`X9MGUhhQtM$WU@f3Y}tvI#Z^I zNf`lk+hws?5IKmRS7%() z?PNplaI=YPR`_5rbudVeSkDsvF8m_Sq@n`eZ!0kPbeKLptRL>AG@1q-bg4Y-YSsyx zHsW1L8%s9u*oq`7X3<;CvqBV^sZNp{ton7>5x>?#5=UmFiD5cq*|uOiv%yMadqSCu zyDAJrTqpG$^>3_M0E>BN%~?!duHE=|B=8AhpV>o?o*stOTW zA|B|r?&kp39JOE%9~@g=APlaD*6UP$gs!WqfaP0Nz)zXk4_3IE(yeAL2&<-<&XElo z9iNbXZ>EA7bChRYcD{TMz-s2q*AoT`uEraEpQ<6+7TQ;`eeQ#W# z8A_=02fwd+-xAU4ssZ#0eP7)9vom{i=1)+-gVl4eeID*!!t+aVdXCQz>G3Wh(tuJh zRp|R*Hg_$I5$YT{G|&ZT@1os#2${P+_=wHk-yR0r1LzxqzBpg)Wz%=D3BZ+1OP4=O z_Ahvmn5<1Y68bmLSDz`KnH0j(*u@gm^w z)%l6iC5!-fE48a6fW>JEU?uUT z0>)8CMahdSejrO+C^<+cq&~)VQ%2g&b%I_U$c|1ijAI8P16MIzSvH%=c00wF2wZEj zGz5L8lLALvk2KFL-In}R*W+ldli(0cK{s8z)8%?RnL${W90q(mtJSksX+i$tgdSMH zu%x4(Hr9ya;c2G~UVzF_B%I}t=RPi2;``CaDXW0_!6SfqIgsMa!sEbs4m^ee)=7)v z!(3O{fBxkUKl_(|a=o721D3R&gZs4D^=o4&iQ+D_FL!zAD#ZjHk3jFd9yK1(f!bU| z+S@ZQqlo2d6+m3FfQu<>+S~)c;0gfD>4*5$G{$;;ItQMNPLh@+GmY3|-Kk{1bu-xS zy$`)B4s4)P2g|QWU)E&dD8(;{!}*N6l?)P4q|V=exmI+T!V5@ZF5sq;9gknWYH4;ZjfM=hbUPJLkK68H7N zW^wh>t2Un!r7*j6sO?OBa!*939i~K0jCX9)E-W<)oZN6ZRG9BoQkg@A=@Cr~^A48K z%G~?3glM)@s&48%vH^WTiC3u}wUvt!5WQ5!Y_hQYv&~ENL*<^a(X!g$L=s;P7Ua(ot9Z{h6{9Yz zy*Rl%3U27%XBe#dn|G7#Aq6llZt{R5na4nun{kAu&9`YKdK>+F(aXC5eXZy7tHkQn zlM3e-K-XV9dkbmv75W|?L!kHWF+1Il_WO9Xl4%F)1$4X5fm3f384ISBFvsy{3D;SJ( zj;SY*pzxM+59mD}{PWr=r>5pv%A1=F;3jUg%BjazADUKHlb&tHl~y7xq#}t& zWj7u7vZc<4Pfu8O`SpC^H2QPfg{0Om+R2F~Ax9m$;sT=(#$UM+&{I@&A~1+XNakayry000mG zNkl+VucQU0% z<&-V_A%MAwND-_SuC$6y3(dYsgdE9DHeaWjv^3nFhh(4LI_iZvzU2zTyqy z^sc~Q{JJa&e)G$p{qgs|8Rv1}bP#+@dSjJ|^d_;B8}c^^Zoxur4wiSttR86JMMP=N z;lTtju8(X<5^HEJ3*w3GN@BLqb|~RnxHEn*@@_--CL6Yi$sACqXo*CP9rE`VZ zcos$0fGw8h1;@$T}Tx zwvx?AgSd3jvU|h0kv`9yI*bp|T9VQQx4LCkqrO~xSuB7rjkGx2P1 z`xx7fan#)eAu-z)^3=zX8%&(b#BM8ma-o9@EWGl!eP1gaX?(Af!vkhs}aChBw^n$pE)w2Z9yLk>e4O)C);g^wF3KwwI`>a zPg+s_VVHi1i|f(&7DrC=WdOj^AXh<$WpUnM!}%BiM4xEtr~c-)ntA9W{& zbe{Ks-fZq5sBTLzSk$dEns!KEQhB-y0A^wstVIC5)xoQeKB8E4^JNE=jjQWHc4Yw^ zj&JZdpfVz#bVUBD(-zks_+Ln!^SD=)-Eq+=vX<0am6CZb@-BBfa1I?j9^V$l^|-i! z2&OqnUAefOt!&^cKnv|F@>hF#S>IcZq~?gDa+r3WPW#MzOQ`amR`{;lj9ch&D^bjZ zcQrmFqmh#&{VW^c@`THcXab!h%QZD(Zan{_@Cs3u0Y1ib@{{)5UCp^hAf=2yIxi2W z1u%T~uz7qG11x%A;Y$D*#HAqKG*#1gcT4rg+KD^IVFL8xC_4B-?6g37Jo2ZPJ)SCe z2Wh^s-9Qk;^VtwbJBb0GWNG=0JDj0QD+#*+nUt*U;g~>|M*Wo27p_g zufSl}y&3ATLKa5R;hA)FdLN;Tb)dqvG#9DrrT$CfRubN5epr&s%2zXy5EmC*m1sUi zLrM;B5X%cK$YO5~mIVkXU}m8uZI}f6&HR7<>pviZBflSdz0k*czejgy`dT-0o%`JC z1`cJsRpH`&vYJQSS>S#!uAaQ);mP1jUX?`3XmyXxMYBPZ)iE|T%|8LF2Qi1a{vj|- zBh1}01B1D&VXu*tg5!Fvmw5ckIREOPqm!V6Ij4cU1`~)mFh*g+^%G|sFcHlb9i}(1 zL=Ynj-B%{R@!)Er{o@$d8fmdyiG3RhLa?jsIC;s}J##tB>cQsaI$ zbICeO+s$D6INTEE3H?KW-cIMk?d_NC_E%U3a6!PnVGddVjPbR3$ zlGbF~s;eg^+pOhjOhn`T&n*}`cbU89{AlRjd9Hq+2`lqy*2az|k;{`9VH9xgr>V$O zQjk)W(v$d?in&#WAck4rXS&W*k+0_&Vl_*#R^z*!?=)loqE*~F6gl97Gq_2_dzxB( z)$}YA&T3ku9dMt%4gXv>$tFf%ZE=g?aw9U0~!2CIW#k;0`NTP9UmJ^Y= zpBx6utc;J<^8nE0asN6*9A2XxwC_V8&Q?$1`B?xgOjY9x8ZU3wo{T5D8!CN6=v~@n z&_;vZL<~?C0(7$O*Q?%i)n{QdPE4qMMC0#hDvcq6FZXDTne(*AHX%`>oRX`XzT6wW z91FNucbcRR<;A62Mg6Z21L%)1o`f zTc9t5FG91#;9^Jmh-PFkM6Hvpobhe|3T-Pzr6ehR9s z0{~}>HYhuq+y*&>FHX8(d{A70!D)r(d7W3c<)qEm1nUm~ScGrc1%MHpPnqW}k-TF^ zCmDCN#GtQ+gUD3XzFKc4ym&Bwi04&T_oz0(Z22+b2 z3@s;V@qv%QaVOJVn1Qsxb!%e+Ac-SfapqdUsRbSKF$RFaMY;&B*CnpGKrh`QaZc+D z0Qli)2k0U=E9voh4=_XK3XJd8l*=G7e)j2U%K~X=-{;r;!_(&e(b!dj=y=%Y#|{(A;U%<=4pw5>8msFuug%j2jJng?aG5lY2GhX&M zqo~gYA^J5s&NYkXm=k8PH0a2pXyB6=wq&*Ago!`~G0d%B>+)d}(U&B)BN2Ij{2~%p z<_s!pxkJpPv{l0_pN4!d^C6`0b~}Y8=CosZOHvq8`;+2H z0~~5Jwat!BN^mb{>*~b4PMVwcT*AhbL}~JwbBbsHshvfwi!V*fkb%1P<2Gf+F7v=Z z;B@V4$#EO97%*l{Q@wO2D^G5(@q2IiIA*?Y<%}mXYzy)?Dm&1=BcX4108CbG&^H1g zXZ>>J7aI@sO_zNffnLOT?I8eToHGkuEV>AYT@ZJA@E7Od>^Labl8zoJeUn=9&p>an zaPzt2CSQ7^_u06m2AQS=OkS4SM>GiRS28f9la5+i3huJ^w^6`ab5D~_EzZJE)mr$6 zZ?R4imt6=QD|~svd<%Wbo-U$K9Z!pnW;`-4yQ}O1+53AhFFU;d*gC)KB*d z=rhol$>-HH765A!m_^7#PexA7XXF3=umAYTw_gLm-ToB;jO#eWD2T`bsQ6>mGq1;H zN~r^ir6AchAhFy@(s4B|G^zCl!X0+25*Hv&{o{@ogDzSuB(W0=aXXul09rAE*5s;` zL;v+p&kx6N(8rDVR_u2mf&pL|j-)#gSXdzN2Liyd`yl(@rrm1y5PY+L$eqKZGMy7-0!J>-6;LR)pjHxp~0%i*Z88Yf}4oC({*~!-6iS^_ihb7Yvpb9ZgVEZ}GSU1?z+pGFY5E8hLEh#XpgK z+w2l%usDmv{cLKXO*OMf&;}FEB%&>)rj>`~^rer7-5a(h7*_i-Db4O-JLbV|58D9` zz%XDupBD!FrgJG~2e2@y>Dk3=!a;|ZMkwrMB8l1MrIR0Xu3&JqRnyJl(lutzS_VH= z<;_$uv(TiYeb~#EWuli=bqvmX#(RwD#XAj4z5QCi%=Hr|a8Sh4P!A!6*3HB%KFMZK zhi;3oB8;t5_z^4zu~KYIJgngcjiBvNLXLUB^$jE@eJO%%pPMxvd1oy(#C${Qs(PAX z_7KY_r$Mg|=mNJSu06SbO3n|^yD{Q?pV>H^((OLx4BGW_fY|K=)w|3*i+$CbjecR$?!E;e}bRt5V6YM{mAe80ZQQD?E73e$4u0d<~_QvLDtPAIi8|K=q15mO1w80ms@)8S}!S=SETXp?x`M z8j?4udc&d}S3QVeNMY#IxMI2TZN6}eCFtvo7EV0tASi!9-)iIISTwn4mRy0jhZSJ0()K911$Spt zV?W7yKiR0join*Zk#{wEqokFN+PG|OH|b&?0-|Cmt_c=)*H}kMC_lED+u33Cg`p*z zZjJP`j8L8f(>S=Q;zL4y%gpx7gTlitzx(w+{p=r~j<_Ps3)%?aBg#(*znp2ADA0=! z1~ZKyC9{t7wBnbC(`>aVH@gW`FQl-HXE@GxhuQPiIGw46`4^oYOiVQ;*J#ZYOH9Jb|YUje!tTCki%>sca`3{sCR zxv~fB-a5Uj<)Z%EfB*UGZ(ba?Yl^UR?i=oayIHGSyBkV7Kz#T`Iy9**3t+sGvbQRJ zlPRo|?C0sFng3RLE!h;v+fJ~S z$w;?}ihG=d?hT&6v>49E5gELhkD$VN$>tS&I!(B#2>|ni{u|&f=t}@|3!gzHXY|k_ zQbDAYsC5QiO z`-!%F*j95h6K>m-FQ;+fAIi~_ta7)qo8F@MwBnrG_WUlFdR$C!d55Jf4M|K-`S&4B z?s8Em-qGN$HWSBjPi9dx^4CJw&OtH&j>Np00Jc)wI-xS9|IW4*Njdb31kk&Al~gkV zG8d|s#Jvno?InO&+kCz+PIozk?`kt(Y&JtNK3sYTDqUk6soTBOyMXR=(P-RxS3;F8 zp=&#fSm-3B&YXs8W(U#TLM9@x=9wM3;0-h=lxUo`qLDajC;6=uQb8zZ*I98Z52du` zfZoYM>bXSh?t;lK0Cz!O#QZp1o+BKm`@!tsBj!5~vDyVoaC$R<2%c{PIhlFl+EI%9 zO~?IFDbNjzHUJ!!ooL*GNR9F<1TYM>I+_BXa!e*&k;QU?V<(&UAb$~K_1vHW&gUHl z@IRh+^F-zRHn_G7M;cxw@hzktU^AVFrv&@nc=e|U=G7KgRgU$&91OzX)(GS;D-jSJ zw*ZND+}5}ji^ZVUP=FKPyc~Z0^KXCkuRreGC}3P$ zp>?2dfKp&mGS8}Lxp4~(Bvn-ROR8SxqCsEX72e=S0O^;P{p;&N?>~bq27q@vsm8+X zM=bD9GG+(Rl?}qp_~CvoAA2+2E{6!liUe14UKE&U1#USeh{qU|b#O86@d}Hz_Q+FSa>x)WI9fG}VmPP`0(| zA;%%GBZ%%)BAV5Rs;N~8ScE056k(SDRwGOqNDKz2iI>EKr^nOZ{`w~|#_~H9!IwiC z*b1y2!0tHh)w!CT={7&!75I&SE{;qQH>EV8Ca7hf7#amKotH&2n7L?9XrM4My~4Ti z+?PQP>d7TznzG@#PGpMkvfR#dQ+lfU2@i!UFLNRLLnZyJI{63xue)=Ncd|10ZB#J3 zftgb^W)!MX?4_A&1@3OL7U@mTr6zQ&uP}Jv_e^QD-}7}%!y39~mV*N+%#<=S((DYj zb1xLRM>U~E%tce5a95kVzn8Ap?D2BK$j*JbZ+AAFV!vW8yN(u0dwtEQy&-xfI;73d`$~U+pvVkpDcX( zFwfURKy-bK7bQ4;ohxtSW`uqe)jbZYSMz)(3#Y@eLvpecXo*27tB2 z=oX>b?>6WQ2D1~XT=u|bb_o{~7XXgaw#=#=d=*C5v<)%E+j$oN&SZ#FM@I~qR4`M} zI8JJh&e#AgWUkcxmkz#_#5a)0dN*kp$7cX8KY952 zc@J5v1`g6YK`$!EU)I`yqf(;$df?bWddRYmfeX%ZqT0-DUa_+D$cFPPH#t|fD4-!~~ zg@sN!5>IAakvpyTyX^uB_|wwJW#EkLhBlQc(j%dlDt1S3Z`E2Z z%Za6L6|uhyfv1EQ)({%^Y`TDOx29OSi)UrVCTg9tm~ahbD!cR?s}bWLzWX&qFn5B% zV7156D(g|7f1O%liOHy`ich;T^+h)(D1!M`p$KM2ILB|`nMnRa^MRDVw8*Duy&z?cfb1)A;YiK zPsTcDB?&%y0$RJ#Yt^u|@1R8ftSiYX=IwUEDnk3MX0!u6(v6!3J*8EnzZFY!8`xS} zlE-$y!{yZB&1NFaRMV^;$E>tx!y6e{0kKX0G&j+)FlCwnAC2uM-EGZ+hMToqzA&|8 zo4*yw(yDvuM#)4m+jy)KmQ~f(SX3Td3+U`7z3ptqEzC}{HJs{}OFI5WzUz3Sgl5;d zPi%#+4QgKi7|`{7ylyvSFaaFmD%Z?GvN~A&u*l%1vRW(4txPJie`}7G0}Mkuyyy8oMZsx8yVETh9g%qoce71q=)~`@Zt{ zwmk_9W+7Fv=ugSrwO4L^#CYd1s=d#uW6*bgAFS?&^OHZ>xzoJ|L5yR)aiL93>yZLD zsd}TjFZ2b2^P5lx8eX%bNk$0gHvljTvLJ<1^|7Lrl{b3tXCDCIbOyvq9}y6n&7{&Q z(~hIdmZb5jk6$e>;IcoS`J=KMMmI7_I=V>!xx9l&i>^j5EBgR2ZcpReOh$SMYr$6p z(971W@wm&RG^uR-zi_uvo1SW%Dr3v*S!qT8NbzLQ91*+dsHDMr{5Xz@*pA;=bMq*; ziig+CghP8l06pKY!C*WZ9-J+Gt67TJuWJO@j9@VZKK8cNmHnMeEdrSj4_gRUP?L2x zoIFS!3E>m+4=-D-4}VzG`||g6h_0n{5;D-|qq2 zTbQyYblIC{ZKc`jqn;iE=E<3tW>VU!UbZiPwmpm!NM~S}Nojd{RidNGqy&rn(gAoytTWi$(yMUIa%w;Pz@peAM_`m*%eI$l|W4k}2Si?*&Q_LeMw(i^vAtt+i}DyEx=NC&_=k385>JuU8(6AaM$y$T^BFi4Mng8F!Rq= zdsqOQW@6df?$h)h@s8YOu(tV9^%AuA&y3KL`0gn}K>qGegX1wi9HQM$g59*+eYn{T zSK8G>??WBOD__oJjJyIU_QD^!qxTTOaRt>YHDBCvhVW$@QZ|SDmGh$)seplA0GN5{dg3FXKjdwvYk!Uzuo)Fr)wBLt zQk{B*qK^!#sf$v6DTq4^uNhb$c>Y%d|10QeU|426M7{gt{EQ{`qQq5|7Qui7y_1x< z5$Ct#M8@lCBf)xJ;Qr!+q0<9tb}zNfkGu7{!gYuH!2mGZikN~v-K{=-a|aARJng>y z_DM$&Lhmj#JH38-*}Z%^a5k`R2G8*bdz~z6iOY+KT(yt&-Fd1OhR{qIm-%<+8YgVT z!qp!qvL!j{0zmb z)&T$v(bnsHfPjON%hK@QfB&0*`|U4qGU&GvGOP(&Ip}0zk9}5bNfIlx!Xf^d6rmnv zGZHh;h^7%-1{X@Dw021`)oe3_Tz251OiK+W4=M4iD>ecG@6)8FBvTuDX^%w@ULf6EHj5>05zZOf@N>6 zNfc)h=!=&w9J&#}ruNZxegoyEEszG}Y@IU&?xkmzO*PwjN*2RSAH1pR(tYBDo$=Oc ziq8l1Rf>27u#Pb5+l^u7rRjb{YY|Fei)XAGAc7%<*Xw#V%WK*8Zd!m;aneDP*#=sL}(o()TTG%aNW{hR!G)-(U`ON3W zo^MlOFpH|Xsj}usQ+10Z*PF60I$k-3zHu`TIO;}fX=w)uN5eK}9eU13ieOGR!kt4M z)i6>Y4>jNDaSxcaffwruskV97pjV2m*w+i_N-Ghy?@M_98a+P8jQhv%?qP_~MqXds zGj<+_-XoO0BS>MKv#oZu@<8A9I^cdVNofriHQGhpVi3S!QmTUxWWIgXs_QoBJ6CUK zmMgPjnMKQFFdnv<>nC5@2}K-!AnuP!-)0xNCqJu`g}7HL4j6Mu0tdjihT4@??v3nTWH`I!` zQ~&@F07*naR4#52`0g;h!jXw$)2p&TcATZ_>Tv1M|p!@J?C42`>%}&%PoDcWGrJQR?oz9RrKeR!DgKt z_BntjiiEhW2I3U+{kAslZQxsJ*5^AlQ3n~R@-H1cv0!+`@CP4cx`X#V7<@o@{rCOO zkHCo^zaFV(*hH0dpP7P|rlY6j>3)WIdfn*wqY0-1o6&?#HWJrs+6CjBc1v{O z(1K5?g1$RepPpCi#fbS{(_%Ot$fWvdO!@*;0C4QLLRXxypd%k2j{ozwzdSzOT~+HBFbWqu2@4KZ<`P@?&bLoPxa~XB<0Y)OiQ#s!g?q+r*U2u{$vhj zV3hzvO*sY#i(vv-6tGrkf3Mv|6%w0+0g}bS%si&w0$Zx8)CYhee?zxbguQt&1a~hP zywI0j3enjIwHyJfr}OlDH)Ch;n=#gAZ0oS(KdzIW-}-7Av1N8B^~ka#)=ryIPTJQC zGL>ayJ*qet$byZgm8^cU29_KxjQcYM%_d-4VzKt>(vhRlyM-0Iw*1QW7GL%p+vGNh zuDR$TpVg(4CA*TS%kB2?<=!yP@gtxw)bMIm)slivY+pW}#zKpp@RDLp^MJMQ{TvGy z&9x4+Mc$NaaZDDsNVw9%LZ8cpLNzh}`}}v?jv(uhMGIF-^EZ%yKH zHINy@rI$C4V;!%QxLpQ)D3jRitWG2 zd)US&E+DMW7hsQgw|(+=5WZUKOzlemGagwsnPMD!5oW+yjObPS*}%wCNTH7xYcm zt#k=O_km$XvF&H89&RkR!Q>cM>%j;(EN;2ci)BPs_Nc-|0p}9TH(MN)oc0UTA=;rI$iqmSnv9%mTdaws$a9ETlQ+2wsi zR=Psp%tbH(qMacFEpnFrA~qW3d25{aq|qqr((Y4B&+HhAvV&QD-xc z@34qIPR@s#AJ?PKKbTdJ#pT^$0RVscbbNW)(|JSZ4Av}Kff{DJ@cF!Y`E+`EIY9L; z*W+rEZ1+=ecYmBezaGKhho{YtzrBC?dPe|1z6h!TU|dIVbz@T#E*TWN05C2nRKP64 zqERrX|4OCFEdKgsdv}HXG_N+QiE?aMVeM!r-ANxm-{U3i$5+=(t_SyFn1Z z^tGoG799*|e2C*n+%q6;p&H{!8R0d-Q7x_lIsvf?8gPaDWnHxKUY@1g0H)l;35ON3 zZArV5d`@VOZCIB`>Gw#3Djeje7 zDZe;j33ryBB`ul-|2S<>1uGOPbm~|~GRQn7`c=tjFTYKyVL3&IQCpk^!l{XLcA0|a zWDzVe@yNDJnq!0M8qNDtKwH}^K8bXILb0?U$cgPe`J`{Y_3~XGk#2j@QUJ^Vh5>2FRcsZV%HBegB7p=&QK6#pLaGT*H)(~!hyiJQKC833GkIF5_3%BAHOnAFU3 zm)%WNv^ZgsIS$$g=AT7e>gGD{DaN^6Jh5X~1H|RFZX9%}tpgVtU3My`G{j1@ZcPeD47X0O$1gC$C>~> z@23x^1p;fq^$Ku}aD-d~Bpx3YV6cqjTVygpOZ73^^hV$C{aA5l59R%0m~S;K6z z%0L|jF^4IEWZ*6qRrJ!L^yEe?Fbu+dW(0lN_^S_Svdwxl9v$Q^yM`Ft7``<6xTL!# z%#EQmW%00a^=h}j0&eNbLha5WjMhjCe+8Z-7`$GC^rg*#3y;+i+U&?S_S#I^vvt?q) zF4yl)4}-g>p%C{mJU=AIyXf>VB!dy4uedkgg`h7-1RnMt7`)&4$3t*B;+9A^fCa!> zX%*T4j~CJ->x%kRTSU^goO+0&a->DI>6WooyT4BhF`(`{`I%^UWcdUPJj)9rBbORN;>PT{aA~(1OVOT-ovrl zI?GeAI)~NCli}L4S3icU=Xi0EbaBjg!)(`2H{EpEAFl*}r+a6*53;qBRHNA; zsZR-0(9+mE>q(!p_FWs4)t81_*o1|^eVA!4v?h(`2871lW}<@G$KBlU6~Gwhz+L8? z5#zd@EjvKpxV*z_#2+3{leaHRyqAOim)`JJ#EhsXt{4oa3xpsLvgTh`0gk+JU5Dz| zYf5oo#kwNT9tY7SOW z$^!sA9rvgTE*=|=Zy?bZN0x_~fy5PiIL+A_Eqc)^GKJ-mYd6_2_z>%bti7>6i_T6n z^<)GFg9q2sWHlSlQfEGPS5uu$T8@Fi)Qe^&oQohnmcW4b@3wd!-##u8*g470K;Pfv z0gzB)vxVP2KCWraD_sQ&8^CNUDCcYYy`%OhW%b}kV z0XWfdVQc508R?K6SQL@wSP@TjDk-J_902%wR+xWcsW4&q+5_EWI4O7B>tY4htgX|iG56A-@NSL~GLBeO+oyA~%$Qytf8t{o+?Zc7M(VQg*= zQ|xu@IFkt#owglS#9)3TtW=~m3H~e{eGR}Sm7*Oj<7}WLL54CkA$L#o4WoMtz(8Nz z4)pch*Td24k@LoJZxF6~&vI{?4hg{87ujdtk?3o*!~Qn_=F#elk%E8m_!3G})r-s& zJ-^MLp0lUt7;)vA5Ydho0nj}iT@4?>xn3rp3BZ;C1Aw<%Z@Dz-Us7Hi5oEwRx;i8a z1W}~^|0=kqS1 zH>*0L?X2nOY}QJrcj^Yw2mL*rr+7P^(d%LN6&WyFkpX)ET8p>@V4wvs12_t}1+4DY zDPZ-m#oCwgMC<~a1{sPO;THS~0DRo#_!WzJZ1E+ln@vW7$_okOSzS2NXR*nofkImf zvG>HT6CYOTxlqw1U;{V@$BK+txel=~VMtF|rX|6gq)*4pEkv{v-$^|zSMlc>8~n>< z{qk}I7z2QD4(O%Kg04<<*e-vk=^|ss{7WnaSs>O`qaU+%BcY6c?n7#{u;TsUL zaR2}i07*naR1aSt-hbEwfFB;~^JVt(PT+RG%kYH(`r;f5^y9;vgBAo}+0&>R2JmcM zN%JjBo5C`+Nf<9j#TtjA8x;>#igE;y0|5Vj|L@NakEh|NC-m2q6f{V%84*!m1OjkA zcIRabJVxLTi_`^M6~`p4_=+V<(50LtwLXA|?2cx`GrN{p4@U60@pgh4?uj>rBzPPQ zvT#UuVfH)+ZXW;)9{l$C{Qv&@FE4K&Lm;%)o0T;8*b62U96Ug6Iix9CXOXQOG~Ed) zVNI1v{P=hVDx0DpGrHG`D_m;1^0HwSw@CA;w8CTg_X<`B)maK0xCCoXcq;VHU0IKm&Y{=pSFi{*Q1Yp{bH0kB( zb>sAPUb=B^7*n2ezn?LEt+LOiYs}6WgQ=4ii^)>ch~UeBT-zq4t%3&#F=eIkCt$;X zVa-d+=3~7q@Kv>qQFI-)uw(~*u7|rm3qlv0nJF`A8u6;sDplEDt!sIy&(x+^)W|u= zt7S5vY)teG?axQpXz zHL9xqVqvt10lHv&Hl$m4)-z;rYMO+>{Gzd-Zy4X;2&P-tE{%GMqBG9h2(jj!{+&0G zX>rP1T3Dq7V}}ZndD$|hEk?|C!F1zIR?c|QkEU%gTF|6Ar6{QcV(bXjSg_s%0ARLg5u|~>S}ks? zs7Q_$83Zl`eN+^?&7E%_mf0X<7R_(Gd^NT+6e;|!QrVf_E8KDt>|D~ ziTi?zA4%7r;B@l^lOxWnh*?nDxwHTIyr0W5s`m$B0su1$Ex4XLY}q9}qTCe?2QR0k zcmQjk)akSY?!JG2etzE5PY@@-VB82u2FIoIAP^U^+DvhdTY$d!k(0r|-Iwafo_{);Qj{f+E(bjWp41e?W}=0E#Y z#sMT;F1#G}MNiTJ=r02F7xCS<@4f%FI@cvWO*eP}{K2AtlgX!CMXK#3m0$qyqKGz&96UG=dSx==eDJ=?fWe@`yDGsG!}Z6i zhmWNQmYoE8`825YFQ0$qWMH~qf7s(Q@c1Md5lMjj632y$B4jHTB|9jx0qE61qlryWUt_TC zqqdZnNQ{3icATmfw*@!dn!jQ#nUKs)0{~TX=03$WJ+EWsqpkDtb*D687_hzDEl#J^ zayh}1w2~lf(PA*uP&e6TwW*h|GrnwjyPh(V+_g$sagdjS9_$ie3fjV(wF8Z_pzk_=++xkO<%5!7lj-ZfJeR8;6T*DD8@a_Cj)&w zR(XMrMBnWuAyJfP$$7|-V=2D~GuTuPoz{wUL z{h6rn()He4V+Hw_kZ@&Z~pez|9X5nD*)e*T&%+P2rHbVM03D0FfiDZ zgrgx%e5C?9jrZ%4Aj)JiJD*wE#nr}*$89P8yQ_ji76Q`E7&qQ`Y=d|^8MBaP{I6)h zs<1b_4;&%Ek=FwQ4ujG2)8(&!`Q!U{&%QU}=D=pT<&g_lW297gC^FINlS-);j-aqR znuTHPT7ZHCV6MNcTyW;cj*430es)LWe=+;5AGV0fnuux=g9mSBWAI?WuwZbR92VKJ z9-o%kb`dXfhhrglz1Wv9SHT3h?F*C5!FmjS%rrIjVMjpqc@7w6>pLxgY~9he*w_@e zBpbD=ZDCL5%P(t$e1H$2i9pIR$Ao}VKsc~WSIYn0G&nKM(ML6 zu~q7@0BnD>tyorQdUIt#xLl>p0C8b!!)(sNQ=)zdGtYE);4`#H%+@W=GT{%`>yn+) zxM8P^Oj25b%_5u~Am)#TaMOlC zs~8}`6ts$>UZ}mRO?%2MbrjNZm&&{3xJ+3Cw%HDCGT1s|Wc!)zbhzd5Ot9Nc#uYjC zZA#K~K|ef(245Qhe)}v%Uj$C@BY$-|d#9sI0N(GM)w*BR0NpmCs(XN5(BIA05p~Ip zJFog2;g!%5uSpc^91dkD;<}0{%qwMA73pq%e>P{pmDtoL^DMDuCX~_;}tM?S`PrX$>g4}t>}v_ zf;2*7J5s357hYNt-i6*9>_|lKS|6W%WW-%QK90DNqgnW%5P)O9!>JNbUd}V4ic-2MZ$8gA5uf2uLfFBakRMdTf$nrz-^)$$Rjxu?a}yzNo9u ze9qFbCSA@%Ci;9Rv0?%eu;@$jS(|{Yl_5|{WP~Lb?Xd<7TzPrk%H~)5Ke>eMh5jx+ zeth`Z&t3q!Uw{1|_Pxr3b$7o8B=abqgR1-t7{;%_i9ddP!u{XAJF*_klJIvweR==> zcswqo0Q?}hdwHt2pk;^2<5RUiNYgCVU+%;Ky>Fju@ZiUX`EEPbZ&WBbN$s>M$8J51 zXw}E-!*o4f8qhb7duh;4L(#qfu=%4F7%&02Kj=sScy!OI8*o<>l6^Kp(~*#^(EvQ& zsGV6J8=*mSsmno9Xz@w*WO~8b{LHeth*7IdJfKKeX*I@;b|guh4-y&h1+@rYJs*}@&S-Hy znA%t}o3x5?Nhy56#ni0PO+Ak-vLevYq}K7$=yjv5;D!f-1OtXMzl*3de^rFLS$e7q zVDKLJojceT-~}!U>@Ou;$bh%~f}EQAMS8U)%bwomI2S zTx9w7V{9B9O0TI9e~K^8kKwVQzn4cJe3$6U#w*VIYU$TMA0(K91_p08!_9iMUJXt1 zS+md;h~T_opR=B*NY*1Mjw)5P04)BslOBRvQLNxnF)B&haneEnfc@|_sBkjAPqP+N z&_rLhKsQ*+baY$WuYmXXNB2p7ljL`Cb}Ri#%iiMPiKW4IG~LMLF3^|e_SvQr%F+6BF5}RJfzWH8V+b9uTE{!FN2*Xf_>2-I+x>&bw{!;+IF&% z$0e1CPz0cYCJhIn3o{T17I#5yaZX!b93LOI0MwJxVrn=OeN8-WzWMeEe0O(P0EQ2z znnD~*LGO9urPM*GRGkMY&=H3N zchpKk{9zb{&NpAb{o7yv^v&1r01v66FM=&ybVkC51bZnq3a|l3jir(z&0su?CUW{ z4gdfU07*naR0SL3Li~s?6mR7GZu93xJd1g3{1*gazOf&UwNu)o-4hEXmJr((Ef$73 z$OITpu}54MtIZTJY}mP06X-u^bgeb3%w|SThckQ33u}cZm02bt_*%!DRNO&fQxBykH87_oI&h38Y^UXDj_Zf6A_96EQw}?nhDy1E*%sAx^a4!W_QK3 zW9De{J3K5Ktge&HYbiHCoEs5g-{17ywKjOt?)q z4kBLllQn)ErZ}!72*AYP`7S^JJLhYUjn;%-n--RBhna7d$>Vb2PG%!q2QcR9fWP%9 zEm<8R1i)A{CRK1_w~OoAjr`kD|0mdsRBL~^^+jf+9?fPwkYGYD1OE%?n@=QLB2Dvd z%W4X;stT+H;u3vv+$Yi zY8x_Nq+%NUksVkJ-iP^T-t*mu^Vc6A*@Q*Jl?<~MhJnO5;ubmq@AtFau6%e{No{Ob zP&ybGOrd%FYOOM}QiEKjPmeWV_(77=;5rfOnnrp;W~d?xL37u_OUGpFX8;W1_|xyd z{_ns2@$zsSj(R}fk!!{ZiN2=CSZxUaz__XeW7XvlNCs_MOk>sN%;;6XLOU%{nPtT} z?aFBq{P(;w69v#_14M~RIZvewJXXgAR)PVvG8PrNS>hwAS^mQxehU)3D6_!rHx>@k zgq0;d1XaMAbhKngsFuar2P@FPIc&%t&kG#4t3;;Y79rb@Ib+T4;!iS=^Vn+ka><^n zOtk68(cHVmU_?EQmSsE%`eig+=D~Uru`NqlqnBfBl|c0O%i{SYjnH(7001-2Ckh%D zRw)|Wg3qeIbPgs<oz$7qWN$t9A z79(trG#jAoxG-S2nJF5xpsV(a26Q=tWOXa8r=j(DAa8CahCfXeH`G}~F>P{N^U|4W zjKnlt3d8=jnG(n6J{uaAnWf>K<8{)^o#QjPnXb2@5W;RU>)J$bi6*1qU(IU-Oe%ab zH&pF8Ts@%I^|4uNAf=TAMO0;dvfRwPaRaJ%Z$rwULDYOrSj< zN_czG~A&m!+E=o^WP z(Ln;B`*4b%&&k6f6!cvQ{Y3zJrP*rMo2cCoP;)$K$uRC>1j1^ypTg`eDDDwa))wf^ zl^TxQKwJtJn>sPakaW0+<3o5fpf3U^dD#NZBe~SH$$?fNT)mUyL;y`?%^R%yvEW;!2>fDj(uELQe zK(56&k*e6#letV*6LpzxG=4+PB}!*ak#upKqyr&3AihN3un$}bMmLl%b~TUcj&75v z#~yv|4DiTw#1ovD1>)tPWlM4|rBFU#7)JvYLhMp}^8t`JVjUsPeR+QZrs7ACU~*re zFQ_oMGNIS1V!eBJVndeP&6ap|`be~(Uk;$cv@G0gCS1j6T}OQn1ipCKz0zofgNX;= z^tt92kJpgWR~CKus|?H!2n0yRIqB~;0OL|bUfUhq0b&Wjr}KU=>;iz50p9|Ham84{ z1*EaP8CM2aTcoa3e~Uo3I6{tbmDW|x1}iJuDW1E_96!>HoB~)hNoBd0C0NR0m^t9F z3qg3r)Q<0v^y80b0yY=Hpp9kVza(W^z5Yl{PM>#@n}_q!h>~0_yG8sgt)_DHF-GAnSbV7vOKG^m_2jKh^Bjw50%O* zmh8?2B)@;R{rJuC`DuyUDU?R)V@sGMK(=4ndiE)D%i|mKB^}h+ZAt_%SdHrgaALe2 zzHG=k%=4#B&6RUXwmC~#Z`zR8f(8tvzn_I2OrpU9|CS|T&J!c_p^9rV%|D?ym+h1W zYNn}UWi_w0J8VXpNK7zp+#P(KlV0ri6;3GK#lR!eJ+K*>8s+@i9kOoVXjw%O)O zZ4_9j6jy2Gv2=9vi{r^f><{kY=t-XW6kN{n`4rJW@UZu70C$1DPpA02^LJ}!vmCCL zgSrx*qO$CklMXD7Fg z$DJ%{7b-7~e}^?%#%UB(0{7M#ymE#&qrsbD|Mj5v%5&}rz+#!{cd#x40GhT{j|NKA zO2m!01G|dUo;EUagEI;4(5=V@fEEb4T#Me&%gd38XqqvQ{t}O$pZD}NV!;?EY{en~ z1A0M@*{*dy*8p8CUh{d(p--yXa#{m7*6OKpRAUBwwP=!q{V!=8FBIo}fwF`dT$9kb z1qnWFC$_1Zb;s22hHlFr-MNE%+k~~-uY3J=Z*U8`fD4GrNM*YT_yNeSPUSK~z z5=reDoZ&rr@M2#4_``30_uF63XOlP>C7}>y;5U=-L|i%q+tD(~ny8iw^Usz#Xh@qq z2i}0eIGSZn!HlaR+nvaO?MNusO*zp9G`5&=LJ6;;nuPl*0|uALC=Ysz%v+c7zD|L` zpu)JlQVec7|09ZaNjK0or)CoY7}!aawIrB>Oy7Nb{_uXs2_@0hYSglbvRr~K0Mjv= z#X`QW9UvKxwwo^3d4&yAE%usa8B(GFAAmR%HBhm{P}WO5OZGiA%2}>0>k>h!&aqK( zW-{RGT(s5Suoj1G&QiN15j;U$&k8pV#3`ScJh!PC9j2p$nhg)EMhAz3qei>qv(aHQ z_nf-)I$W>ICb=#1&2)bLx#_zo9ycL)z6uRY#u{At$7;yYYt!1HqHY_tq4HQ=QSq%UXA zIO}q7jYjSSIVs}KJlg%vXD(asW~DJQ!g7Ok2X|xDkd;>|7YZLzr(W<>`W-1=_R^>| z4uQb}z<~M4zZcs<_YPp=4sJ%h*I;i5;D?|u9Wgnm9`INGuRUU((<68GtIuL7YNSC$ds~62Y#spwYLmSJ3x%8~+vAC&F$LCOTo)s4m)D2%bUP(Y2HYHio;~ofm z8g`FUR|H3?0f&IJo~m2i1AqZ(V88(2&34Heu;lAB8i_|b1NI{&iqtZ0|t6CYs372y>d)$18&t~VMz4F3Emg{YdmMfXmHo- zybiG&$b%&I_~bu+^AbnCL^#M&S4@KQ@Y68&RSH@GSoV3;1Pcrb>_I2NIQJyRBe8kc z?+zsr0kmY0v`&gu6T^1M<3^>z0cU)vtwBOe0WWncDX)8^Im<-MquexsR_BaGYYdNu z@14b9ZQTlSd!D;Eg00$#WMHsrcQ|}vgkdWjO{RWrbZCh(?uNfwEHWy1ESD2bJyHKl z__}rx+sj2HwxY^ScU81r#WX2rG3dG-`kM7#n+zKEsXW*iaH)0>i@_#+Ju|APcHYT) zKUj=!df;P*J{g7N#`N0KVgN8mFl9z07p;O{1Yqp6zTjAqNirWp#9Fu}v zapRu0-gz6GHvV=sT2=i;)kREaonqP&%3E}bqLphuvoum^YgIUI0eykH7JX?B2)Y(V zcdqxwabG(kHS*QaedPu>ZXieu{)!_&6ftzalJNe~4Zj2u18Z%nSrNCVi2GWr&eFpL z(8b>ZeeqCHD*0_tY8`?yU0MQ-OLevf1}ps?R~=w*0cyK(v$c~iN6EYwm7QSH@{4-_ zupsWn0s0m?kBbvCQY;P-g1%OA3y5nn&x*eKR7D_@_n}T!vFuHy2;HCWNA<}=h_&#^ zU+npV07*naR6tH}PQ1`vsqzwlrw*rq3Bc4w0J2g($vWp?*|G~XNs{<@Xk>{x2?lKd zFkuG&EA;NX;cejD`>u(&k!r(dT0DRg*~rr|3IC3)7cjsMTdei2f0A)A$mf}amc01=FFWWkR&4)up$_oGnC$>kMjwUd(*-G68w;w)SaEmB) zygfWTtWGB}V8982N(F#ktX%X&I;vPd!iXPj3ld*yPd=RHoZ!++)MHXX?4hby8^vP+ zFrWyR4(OXlQUC@C2KuJq@L&Gpw)wlsAC4zc9*eyQ7L@_U zw#A7Qgh)o8oX>>&+1Y0`vBes>i~+H0CA-sj2ok)SM&QAqzvuPzxSsCn9KYQxBpWZ^ z3j(})A_4mW!0+E}0j{L2l<#0Ww9PhKby8|$@wawL*!J$)GO+dY0bT-tr?a@6C-Z7N zTcr3=hGf(Llr_%DBm%qhZEDMUH5~&7?FtB2{ho({$5k#!CEiQeF$p)}0Vv1Ws+xnV2wa+=X>R zz)b+F#f`{Ds1e(lG}9E_2)z-2NrEL2-2m`RpNRnQ`NSTpfMgd(fbMoJGR|u--Ias$ z!^+>)?tbZQ#l24CH8|r7R1@$6<<*eRDFtB3IcorSo#fU{?*PVP5Tx43K#KsxSD|<0 zywP|?Fh&50fyV>qtKRS@KwrQxxGzvP$#2FJ>BCZ5d?RziO$Hmd&S7GJH=tMkB)lO2 zgGMti4fHkU4eIent6h-M@uCa#)o{wK53&o&JFa@^qRSav9GQ70{pF7`o2wp5RN6B7 z(&|avu;C%~H37h80$5RevhEeDZocdQgBOS4d_P!hhxOh8`fd)vb{{S3QIfow&-;f% zh)Z2gdefqt1$T-2CQI+vOMkPASDO&%JFgsYUjzU+FZzJPz`X?`0*1-JsPL=;RigQ< z^GKeCtbUoYs0C5W2b8Kb0P zWJqw@NXaHlQCe`$EKtZ0|r52@LisW0M^)*9JTr&v3s0O zz-&ii^E2HS*qO!TGjHVR4!wlw`X_n`Isp~j2T;A8AU3-x zV!NG6H}ch_ljdnNASFkD1ja^P1PjB!U=Aq-L637vHY05f5}4YhK(rlUvKR~i{){o> zp4Z*f6s_ca*rH{_%1T?QFKYt@B<3WQtpO`1mPT$Xp=Fz;IXVp7-E3wwir8;wSOJKC zEd4MwZMC#mp3n=MHdaeg6$S$;`<6mgyf}DlZXz}H`?3$2IvdW#jgOj2$qm>#5rzMNN%OMF{Niq7r8H~ zDm`>LeJkiIq}H9RfR1jt@eBYj4DqE|uMGk=Li~Cg`zD$F-G&GPuvMKDh3e^GIv4jR zF@RD47W%6Uc(w!jj>;{-+gTr_2E09rmsDMkilS9jqA6Asclo%5NWGibc|Du<_uKez zNca1M7+ftqkl=b50)x{CeDnqY3?wGwq~cXw2?jR6cMEp=@Bj950N8p{kDR{abv^@N zS~9S$m+e2SD7l4g_{Ql>FGvFM$t<*@L3*c3&RP)x%?b(Y&{KUux4Ifs;~{MdsmC zA@fLDOpVx@uC~4!V4OW*UY7abkyVv{2E#T5&AM+>Wn!_>f@IbP+Q>HmXUH2K^GC<1^*^LgAM0E75aT9fi3QQY!_TihtYE-K}wQRds@Pf{UeWr^!eGA-0%(gy`q`bh| zblyP#Xs^+iPDF_DqCKhl+SuhwEQ49)sU6eMD1Vhhfqyk6oYrFQ%lTs*RfKB<0Iqf; zaNpIz-=3r0Ndn+n*DfwK02m}V&+oIOoksVO`zH2o7Sq9g9W_Q5>hQRYfW+GkHgWzq zZZiOlWiiyTOKpB$1PFiuwGnV)+n%NVr*&U^&+$2<=BiN)*7;yAM)Xc#Co|`a@h=F# zHVD9!eZYqppI|_56bd#2wkdbTVl#(un5o864#3#d1#tJguYkeW`Cd*-Hje;zL41$L zCF1F64-9^KdsuDCNf}kkobnn}Z~pfCr>D1DECh!`Mad4pFf}Owz@WT52k4S3?}T1& zX=n(z<@6E#2Z_g6XlAnr-*dKQ3H?2o;Z({RlcmvAfD9M`L}B}zu}s#1Y3l?G63iwn zA8cT7=k)IYz+}Li?Gga&`dtadU^ZB>>zJyO^eLk16Bc6CCc z`x@U|tBQr-G%x^|#u3}y@x3=9SXW+j;4 z4m<)DQ~VduUt%yLt;)AjmIv6U0Pw-C+Gr$d%ZWq;awnRUqjm| zZ3mV{!;XA@0<3!=<@o9?cAME^md?uhD#A7CNr-0$A4uQmaOxBH32jzV> z`@+T-mt%C?`MVWp?oe>I8Z4`kgrYB?7cre`iI;9gKu{gk1=_LZ>ct?tEwWysuN&P+ z<5lto;l{81^d=qyID3l0eHzGn;Vr_CfS@f3eTC7zE8^E*BJi++smYBKd^K?YY2<$i zFy?78i|+ctwD=f z4`%+^&W76ABs<(<37qw0q;?1X7hZ_i-X+~6?nqNb+9NZgEE?D_F*s@b8<^(x{T}C( zX0w!(*S0jetmzX0SR^*_F^*(tie>C> z_f5b1I?#z>PB94^9(94fh(X_UY2kI@MXj(k-(xA5fzXQ!XDMS5Sfh-|;4%>aW^J`` zTjInvg2UOI4cqT<{WAhE-UYm^bOOc^AFb;tZ8}3(l`iSkGLr?7hVBS8D`OoJZ32mQ z!r5dnnSuU!^E$W&V0@}Ya0XB2Fx{WZ-EqqJ;gMxH3)Te>wDi0`3d+wWbTA7p;_+)nD_Nx+lOLbUfF%5NghOfH11mCVG>y zOW8541Sypzn@$*enG^bwi#SPiwuin3g4r)UMPwFw+S zfk_fy9yxzp?_986;I6RVOLBZjkLP56jMnP_(3_@rMbQD20)QuR8#5CO1+*czb&&GV}0DT33b$>@SB@iR7 zcWlUF_pGFgoqMPMMps_I#ywyl4(yoNxG{<8~|9TMcIuelZE@T`nvEhz>g0Li4kST(dcYs2whDfcR&*=x4>>-R^jt;};`C8Z!O=S-x3QeA%8 zJ#^Ynt<^kk$7|t( z{PU2YONb=_W&bllT8Bj2fO7<{u=)|PNIYb7I~|JHZB8o5w~2*+c0@}0i|8~&3!Ey=o&9g{_vEKdn-~RmbpM4hwuIIGyXn50c1vuUY zz(Wx1sg}jcH0UM*R|c1ec?C+u?AGGY@N}tgc@4F#Op7Vs5q2iCEGNe1D(%9$ua*3j zCK}yGvVu+kF2{Z~iK~eSmT_-E5)A0wRS7V7HH|n(#uO3x5dJS`&txoE^@lmJdf1hS z({TdUOV3I+#NwXph{p3|U$kYw1YO%2Z8bWqjIedAlP;l|44?y#@mhcuQp#x@XYJSw z_RX3s8PYK@Zn};cfVULXe;P9#eVviEGrpVvuBy~xFu@gH6K+*GG;DeBH3n1DgR;^T zu(Y$nSKdknxyg@{WQ0$MGrZ$uFb9?bf9Sb=!Z5`w@fmZ5_jpD5*prg*zFKX{x$uNU z1F$DUQ}emmzFZqHY#Xf%tC52D=&;WT!)7B@$4u0zaoj*1T0gZ+8-`7_OEcaUsZ5aM znS>TkOe+@siMb^TRn=0fp92;j#R{+TfWfPEVtnV=$cfLA#_=@!0?-TAt4bQ3*|a+^ zdy82gN1P+*M3jv0rO;cnq_;V{1E7NAYJlwC4x^hv_+}Km8Tzk>{ws;#OB=vo1>i28 z7M>iaFvzaRTW4JWu;;&VJ?XuYJ}j9>x&9 zOrJCTWH^arJ7$?D1gZ6gw*cUN`;}tw8)-#%1J9764Xu`}73nx<8+`Pmjm_VYOP% zfx#fbr_1_qT8f6o(-!Fa@U%wYSp#0JD*&+LbsW{0q~iieFtC<=YB~xm^fYif5_&f#A(;>+%7Pzj4cM?u zJMl$`GQ3lFR|wnsj#-S|4FoK>N+CHl(wL%;QDwV2m&C8;=eey>k*tWip!VS}s9&&ytO5+W$#hF2$*;8H_fgs~yWqAqo5X#9>9 zS!5|$hEPOg7MeRYP~P(ipAc-(mX~v>BdQacCS7OC&ET(gli4X!YxTp;g!PkWqYz*i zA34gB*zr?4lf#N*y%>WOibjVPhII?oj+6v@UWe|1O;tFx-OKD-re3riPr9}-rqhFN zf)|{L$Jc~7ZIz{&h~{)Yp_-3>ot?JhPn5R=UQVZ=$W9#hJ+I|B(u8I0m6(yX(@NBo zMmSEJuEU}%y_sP%!7-}I#K)rnhQZoR&$;$ab2Qv~4_m=9PAeJb=4Pfyo1#bRP2_%N zFl=Sl3>DU9X`@@II=f7?;1=ePT=yO?DoQ~G0Y(6(0ZnPEg|}LUbf3d>z$Sq6-(_djrBVBhz3F*e0I^hG!iDFz+BFn5Mt_ z+*nJ-eE{L)%0%wJOJCRBeA#0qc(KAW6aZfBL^XQ54-Tgo=zGHP7;QHAFpcPcJTHcb z5^W={YB+-uak0RRvCuSbJ7zHRU_8=q zrM$|R)#w_Bhq@dVFOQpF{`+^o`Q^`_FDv5}Gaqy4==pKm2xx2{9#&LretCO&d^lVl z_D|2J^=1J8R@_~I{wflSn?k+H=pjfL-W_Hj!88_>u9jm>r$P#2QBzu_f6DW@Ry*MZ z-Cp0lY`*{Q^6{Ia>3`A0Bi+~8_zF}ui>WFY8^vI)Su$%1Uj5AUKAB9TKP^889HqR+P2Yp!)zk zH@`O?i^II@4Bovw{q;{j{_{`2HB`)(JpmKBoCD@SFw@S`<)^I%0{^N5!^A#TC?&ya zg1O5dP9;q{Xs2jrdn{tnMi5*X!Q`z?+hSRyK);dc7p;;+cbOhoFN?wQUTB58DqO^T z?5;E;Em`-tD`grLMr9igJ~M2O*EXe0Hf_&a*(_dWAXtE2kYId%m?`<@>jMIx8LP`- zl`ILLwyFEGDPj9tvO3&?KO~>FWZD|q+dgo781R`H4L}@kKrZ93-?U}*ndZd_sOMy2 zYz^7BY`LlJ$+8J*s%u$hj2BA_VKzb&hDo5=U(HRe%}ZPKwIj&Q<4cMgz&Rd|5~Ymn z&*Ee-Wja2yS7Hb!9^P|wc(+@u*QKp(b9#zfG&3@EWgE=CmS)G6GHCd5RgcFTk*KYi z*b}LBdT7Uv8OGIZ;_%x+47O&#Nrc_c{b+QHErsj1{IKIEZ3Hk2I91Nvg;>E#PnL=8 z7_r8a*=1kM=YZQ*K50wj_adpGtQS0NJicddbCAg74-2~2+}90mKwCLAL=Y8xOd``}a z!Mk0ky>DJs$<$C;49c`yDgdu)Z&|ql!)su0007?YVi1LmXc31v9@gn`GsY1?45t3` zL4;b8`P2dE+SD;vDaCl%!pF>{QCSN6U@D*pqR6lHT6JY_0eXqP1Yq`F0ewM;r8ex{ z19G@Pn|h>{*~p*7cBT@o#7&*87O9xP^BXcBO9$3|@!Sj%J-_V4k@wwE*zIY%Suf6) z-Ql=iuBSj>1ar~A;L~MQEpq@c5clcrmKaO`=8vaK&0!=Qsk6hx8r83`rT~4hq_X+> z!~5OOe)M3yONp3C@(PHM@Jw6^||0aFqgBoDhBNe^ft z91K|ZG_Cn0{*Pb$D*(7&&MgD>oEBD6TyVMp8ZQJ@V+Q)prZJ91<}YSgTnezC!)AWm zE)JU+E~Yj=OMvj5b~EgFfLnxH03Or7I1z>Id157?IR%6*+NugohrFgh09rbWJYf2o z>^Hyq#h-rs{cbZ0bck6!6Ge8EX#mQaVn>4OL%|TH z$BlM$=89&uZf>YvPR2k*Av|GhCajE^0-$ke42i)&-$CyNR2Y;o zk&T)o5}}QsQW*B*c$nutQI=I(pmI?JB*fR+lZ0EmOhBe}^JTu8bz)mr{;a5MZ?p{9 z+9pyBYFc_(J_HGlq8_`n2*X5KtKeZ_n7?AMS(-^{i^M=>?a#`wmEUiTv?o6dOjk4o z_>}mE6Wb7Ho3oCGg4&ji47Fz)p05Eo&jwWY<1q@%1g1N>?GN7!MmIz6jxqA@K~STt z10Fo9yhY{LOKHnmuHw}?!IAMrqv71qSza|iC^~U^7sfY!_}Y)(FudqB&{ycMjP~9E zO8sZqqZt4I5CBO;K~zRe14l#@x4>M(ajQY-8#ZAvT};4c%@_bYbOp9mf8#EQ+aSl_ z?70Tfm+H^}xwMdGE5JD($Ci7klSOR}ju-)ViM|xXumDUEY3wbu|Jk%dOBq;YEGbb* zJA`uU=F5Sg@ARHcSTsybr=6?Bveb83ji%xi{|iE%kKlC2_G(>^4vXsKa%9a4cZV3U zKPJcX_~D#BUU1CL$8^69cbkBU&;VT-0v`9kfM@w&Icoq|W4jI!n<`}58K8UKtQMzVwhYdSyT2?*0d#YRk zZV{Yx0^UUaedydqt^lxD4qQ3n5qfPKtvK8@dRz2_SCzz6%D~6^MM# zfH6+$GT+v-bya{*PsV^r=@!A?a@+`T%eH6yNa0WFY!g~ceM__GruoPeAlx*>yYGPP z5-hF7A)Y?~m`YwwU+Tf)oEVG(fB5m6_joP;`txt`4D}C3Mp;_h!B_jY%m1~na z6-v=sHVRr?2MJy-0=jj{G*K1vRbVj{K~TzXvAm+L8wgO{D;OXIdK0mI%|Mn5Ym*rAyEqb^r0QWR?0_JK8$u;KJEqZ)b3#*B}WikcMl zST#tZ0XJ~exM0470E}HxppqQ`JZdtN2RGBelGL?d6Q#Bjc1Qq&8CI`jHj4 zb(oIDyybdSNdO-FzK$ux2nHMgy28G8X-QKw;1&=oU0VHHQsMs7}PVy>;xwZB+~)hZ$YS9K_63|Y}i#1n?=BR405dzw}SAFKE}Y#Ebjp(nS~bm+W@dOOW)c6=#m8E z7{vE!-YaL$WI9Al%MnkCa-?0;U46he2q5%i=2!qG{*lE3cUL>(3}}k7Wrr3HtoRar z3B44nqEIu?7Z_|U0zqD*vX$zjFBou80Et_yd{f)YS~k&pnE$9D;%!!onR#X{naWx0 zwQkG`{mm{U`to==nK&Qg(=I-4qy07p!~$-C!LtJ7pi`B@<=g=Y-mHR6jkUmI#g`*S zz*^ug(D$^>NPh{;YJ3zOcNvZV;52Fl&b^o>she!$aM#Pn#=4Gth|{0f7J=916Gi2C{d?uA$5#(jAsxQGhPhHpsmIT5LvR9u@S? zZbt~foD#-w1NWARS-=u7Y|wcFkOKh!<~u+^kw4_y*;+3U`dFhx07A2oSkmF}V|Fd;vW{c-3b z5`T0pZ%OqPc4H|9gKxdTiXVlJ>-6es_PgKy`p4h@`f}W`bDOf&*|;yd2P%w8lLmge zI6_UC7d$aK7K=#8GF6iRNcpA9F<**P<(2em(xb`#zT?T_^f2@&-Zv1DY zlv{X`Gi;m_MaD$@EgW7MpseP520HQOFiEhfGfHWinz0I-EGul6m*BxHVc;XgNpY<5 z%yl1j(ld{+eOp}ONwb(wW<{g%*BdjvOe)-@rW3%x`82iaP5@)}@k;W!!F!tsrDOCY z_osLvV>j?RBcPPi=BACJm5fF?tEWS^F=eyJgPEYV%(dyRno!}A7!2s0h=-t0h_#y1 z2>xx8!A==EI$T%)rVKJLc(oqm96UI|LKF|v)E$pK4h`cg(CghGsQg6?w!_4DU86?6 z!yR_;UBEVUEy`KtsxGQI_9bE}wcC`e);C%lasioq#$^P`TC%JAo7A?cTYEuXYNi>8 z!Dco|+o#3;RS5}|cPW71?Y}~F2Cv%vuW;-RU-z6>L;prGxSN&3iS%SC2G=3cR{%KC zJTv%i5WPVN>(u}T3k-)>(ExBHEzNxZq?quCk8uZ(IbV3d(Rkb@;&Mhvlh1efLnoB1 zHQS#3s09p0gh?mM`_odioB+KH5O$q4>S`+cj-6Sc$oX`bO$Kax2JBH)1Dq1X7wB7W z9O-t}>Mwq)nP+L7F6Vtf@1k~Ri;?ws(B3PtNdN#dZ;ZeRz?gcI2*9VGi+vOO&I0UF zik9_jqT7W0$i^<}Q7?Mp?5kB|oa>Lh`Fcop&bBGUelMd$$0Hb6gaGa$E(eM8K0%yz z;Dw+sSSUyHNgo&t^abt$eTDdHn-$R)N0xq>d1eimzgnpe5=bzIl(3=+XHA$tq3$4M zbR>mB1*^qW%7-)=Bu{1E0Rb4`A@~t?q=r`*xho175n!;AQh%78I~4RM`i=uBe=?QF zb)S6Va$3HBIRa>3UQVauX1`k^wi{8M1SEqHi;CW5rA)W_=G!LH^Uh!9fwuGsv&b z3o&f3VoDa{B7nnD7)#2T>44ezO_i|r$pkMhe(2qq97E=ZZU+Diy!`dAegOa`1Ew?q z9e+X501UJpYzC8zCmohiEVB5O&Y~EBNiteIGW(3QFdQ-=L6<<|!H_krNxBoF_y8MB z06F*-?JU{E)ObJi$y3SlMG#Gg!r36^j=%s~oL5fb;Ja_X{_ns1@t=SC?Kt+5&}k$) zhAK`nDvKeVwaj#{euOAuKp;eLmnKcx`d5_40v1ZDyo}EKIRKcRIiD9IrP1R{lY+=B(LpJL(6b^Gb(-49M6+g$qj-O5hq*~?>Jm?*j)!xN z6N)pihnCexW|jG&qGyB6PP0*q8#_)eS>Xsu9G{N(yiI92K$AYEtSRxq+?5%~0S9da zD-bxxCxo5tq8F{)m)61rW5O`7O>GTh;wVePG$_=*syX@nH4i55*Y@MojtdjNv8k1w zWV|mbF+tN@(VEa!N2Z{u1GUlVzT;_z`v9Ajg&Xm#Ec1cKpy_~E#o&9_ZL7;+moQ9g z3U>sSf9DL^qkcUozV5uMqd$ukJcu;@IlFYK^|^danU|0O0X-001r*o?x(X zWl#W)k~fGTdgX^-5rYB7mI_PnRU+7o^Ehcm(xTkXr-Rwtn@mUS*PYD<>$N0KmrHL_ z_5nzu4XIPP(l!MO8yW!S#BdO|z3|=-ZpT@Vte3>Mm<$T(lSl zT40sE#}<7XO=f9sBKp$HL3^^Cd1XT8Yn3jO`_7kcwf0Gxr3Jcd7mGo;bU2Je0jzY| z0rZ+Hklbk6`4a$BlVmcHM)6761-G^dZS9?IPpU3W2FZOXoguBuyO3fUgkb{k8AvRV zXpE2B1Q-n5T}-hMkA(6r13>a_We}Gri*pOTI43qY${WUlaECi=MXXrZhAuxWANbfaRJtX?;FiW zIZ5*MhdowFrlB|tD%nESo}`gGbrX5Mt`kY*&O(-c*NYf<1JqeAq`XS)Cni5}k*S0= zpTxiY&9DCS#~%Q|Bgd%bV%-F!aiQn@422iK67oDCBy%1Vfwh2Fp6>#|l^dyb1wakS zHSM5|?WN+IYZWLpeJWGnY${>vFJ8Fp_hrZ65`ayzT|pg0SvsP9A?V;PSUSOj=d=9x zzxmZ4fB4;IxrhUoTGrfnO>+@YTTDDLPS(C<`f(X8p~lRZYSq&Hq-xbn^|KF)#Pql= z51XkK>lc(YHSB=8C?e^sW15uuqcjI)_t~D-I7$sj?!`Q+6cS9uF=~>7@=`gArouQU z64QTE$BV`FfqEwR5g(rC$2C6EB2P$>LWM?-FtG!RQdtNViSg;8$}~Py%!OW=$QpwI zOV>0b>Qmy_I^x+9rpUBuVOXo469ixwgg8|BZUh^o3BVjxvQ${)v@-vC#+Ne!?0*LO z+WFv_cB0{ngWIhEB7Q|$oa3`J@j3IlQQ;@f&^Hevf!oa>>_H62v;}ghC86nJkx@;W zHR%kW^LPm89Sm*}7KtsJClWhDprFhw;T$krP9pGNy!@4>$2B)DL>%ZlmnkDpyPZe4 zk}L*WCnbx)jQ>#{p0Z`yVsJL@M`3F;d?mPh|Br}H>z`V!FA;aGpCE4A5;whn00s~J z*Fe3b=m`nNQm`=A!sNjQfW!E;#tncLoS4ne(m9;BfO!C8xlsd%JD(3%3v5X7f;-jR z`11f-)@u(?H=PYQH58=x;J!MW^!gfrL2U&}la{nuQCF*w-Ydd(Gvh0F!?~(g4ulX# zg4uXjaTr|m=2d@DkE$hztfNSbqcvUV838Pytco=vaDwLs9<1&N!0ceT4S~V<5zw2@ zL4O?ttHCa0qu^Ia?XTawqG%{KPv_R z1BO?XkxS%EBuIcalmXw+ZQ&M^Efgo5zS7pAsOsww3%G(-{@N7xmz7I(p+(73$sZGm zpho~;z`3-QPC}X$;-RD!OGi$vTdnleY^OT;vwOU3o*s{v^X`1w0(#f0InLj|zno4h zDqGz~zM}vD5CBO;K~x=1^?F;bHU;?Z<#D6p8`YxDz>I;-ptgY9m-h#dUEBfaE4^2W zzGTBx>cAbo`R4NUv?1u8uv|WGfxGOZ`Pt82C_jYIiqV+%bKibEee?B!)jM(&{E9N4 z?0mNQPjx4Z>bZa1<(y>Qt`hNr6hDlR;@d#4rab_7%ND0BC=!HK z2`B8h<_xzy85Lb=iotC*h>=UhksAi1?>~O{>z{u7`S&05G-4hbA1axloVa*7+?sIL z0vM*HqmbanOOdQyHV3-H)7hkq7H`|-q@D>eB>>y89IMBR2V^nWO7PDc&lxj5tK*y0 zCo!*R>{VsLEsGW4lq!t2uZy2V?wfh#iL`~|$j>ut>TER^3|=J6JOc;`z&H`IuK7#~ zO4Bq6FwApcFnKU*ANGJ;xak-&ox18Y;88=-!h`hf9~V~`EbxQ9lunlgI-%61 zOE>m*6gR!jOPjH=WR&MJs>Ir@R%#~JB$(~cRD{Ou;+Bm~!#20~!LN*!p{AED21|RI za%gsA(InBDe(Jdl?z7utxda;?)1%1_4M))cxH}x)0fup8i8;$Q6#9cK9YzyJjc_i@NJa134 z&aCLIK+EP%Rd!d4L0x|e@;B$}xn0A5qyl`d!?A_y*Bg8;MuT|zI;0llkT1Plfh z#-q_PK{C=Ro`nGVj!T(+lHTt~I??conzrX5b`02L%&Vc%^q4cJJBBju8Oh<6dz0xDC$R;Ia$P+vu?J_rTg(j)zrv+QjE= za$MtflY&MF>s^JL+L!*UnRgAnl;Z&UvJY#I?=U`C707X1O??(<)eqnn=&SR-9Pt#N zoXBZ`xgvzNYQ~ZUQ1?gsk1!h*Y-E!PvA1CMtHDG4(*4b}?)MzHxA08AtX z=mLomxC4HL+uy$3QE!roHNr5?|K;cJzWwHMI?SIyj?Z%|_<(f{0E{5_wdrUe5E-!1 zP1Ffs1riyy79-nr`gEB;o@W4KY_PNB0iif=J5qN!$U)r2t_*27XAtD^8|`P+@k@nS?D%22^rZ0A^D(w?1b2Ru!Yz z|ICV}9c`rdiwq+vBm=7`M}QmI-D6YPc3cgg7QELqXwoScCy71Z8!Q*)55N1*AAkSr z&2lE9TG5ELRnyiN_NC3ZHsxDVVYxm^)A?)(z!Zo!nFhM6u1mZkd|ZLSln*3UG1bgB z1v??!9}g@09tB|Aip5@N$=vFIJ4fcU@*)>a(m!-EE`loe7XaXNz;cXqU}-Lz=E1lR zt^jv1cqlDD=M=KG7%VC1M#hqf6RzXdwUDg_OiJU(5hIcUPHWxg@4{+fUddtNmXb|j{J#KTkYE5X^(=kAi|>VH!}u{$ zp;pj(lacPXhQ0fK?|z_3X>2cwA_SuEb_>vJ5z?BO4Fq2iCA1prs!vvioB*~}VYYo- z^I!^nuv(9Ifu3)H*K&q8!~V@kcL|oV4;^WZ?hRh!#PRN3U$VbZ+RgIeWNNGrzo5?n zK$pVH3{kzv?&6|FwpVJdH6OPod8f>~0N{EmF`KsMrPX%?o$Ugg5P&N{SKs}zJ@|+A z;2(j(1YptDNLyLnW5QWkZ#PQYjV$FYMK-7?S(KuvECWb^2uA~eaeq8GFdqMoB)D1* z!F{*K5J3`*sMg}R0QQNnwtZm0fL;<`pf3Xam}5==U?!ynfS2mipfne+f*s(vAUKz_ zv%)iAp50!8_hpy!#DIL$ilu^`xEcUp^$qk`_XX%m5f`w!3K7R`ayg^~VDW$4`1`eY z+6emMcw7ta0&#)6h|4a0*pJy@1?VOB74!wE1d1y1(M0{0~MwQ3Jo z{W;CaagLXlyH?#HAwKU#$6YnBW&wa!lDZFYo| z9lR`O;zv`eJea0mroOSsz?*1;THn~u0Vf(BJZv!7_>zT<2C7V!=YjOtYhRU}wPg!5 z{SBFy2DlypOQ)GJyVYDY-H3_7);-B;aoBkz`^Y5Rv?yjH7%hsgEr$Wa*HpOId(-Iw z((aqiGI{2vQ+m)A4DQ{CSX;m4x&29ztXFev>sQO!VqVP3tof(9jo4&*{iW@k4h{6e zy4D_NvEK@ru`P?m_@-c=vL}vtDSoF4>|#s296wEmQPc~=ZV-UGcVt93>_l-VQ6WtH zuP++V(R*|)*MVA0vf{ErbJv`3u@hhAZ(~g8DY4K=o z_^LPjr|#e%JNC`hZui0F5C{+6fbu#BqA%cCa@6%mEQ40QgklK_#>QGa2)F_s z6CllAXe0GdMv_HT>AvHB@o*Lc!K1b`OH&n7&}zNF=I58Um-p`;0n&#<_457zSOwOC z1fL()ID-D-WL}LCxE<#ozk7aqy9WRx2-qLLd&D1t2Lpg-ix@}tUa|gk!oqi1h|%x4 z<`@Z%QW$=_e#G(z9;`VuEH0Oa>a59Utc>hyeSW9`u~_JFG+n`}2*$ZAz^z*8MVnkrd12Lo<*UlV}4B9<#8nBQk0E>now z3q4e!%8{M#jJz)OIzCBu=q-RuEj09~Qpuf=_C*gG7s#%*!AnP;K&+l%IpZ{obO|Jm z?cZtCxO)6UN@I#FW%mZry88)&ibZMURI=t+c{gFk+LXYY=e2(@Q>HpmBcju4wxe84+rilTJugFT`Ia3O{gR0* z^hW_!fu-TIgin!(oi)=Cba$Y*X@GYsb;~l*5nD58#Cj^ZFGV?|30%KQI7+XR3Up8w z!?a=H`ldY^jTvoqNEucDmiNZri$|{Z`nlcqX`2 z2!<=kb2lA&UT-{abzb!b=aJWTT#YjE!fmVd#(S?U7-8b+U=>=;LSK_{EwL&{xn)tru;qdh@(od!_Kf;@7Bl;96+%&YlD3Wv$J46soNefCaHk*6Mb)D1*B? z0C#Qc;8ZoFqu15N#u%{B7l^fNcI3X!Ze8BFh?_5!Z2eKeE#lHNe2wRMv2EeKQSEub zGvP(XoP6HNdcGX>iwIr@)ON=qm<1>QvbK)rL$R%}=#SRw8!NH+ONFAF`qI|^dObcMV7<6H+!X`wa^QL#d?$K8MsTIdD;t?lFuobQ4gUgH_=~;+ua8D^`woaGl&o9nC zt(4h;ol5`!5CBO;K~ye8o`$`qNbviIoB#Kpe~APOj{#uz1dKU_A-8VcW|PwSU@N=2 zYg2GC9%IQ>o=<8BZZi!`?pGjc^T93}MYcA2Ip}+Ndpo<@511i_$LIkJaXLwLO<*5e zA~Ru=c)bc66x~{`KE+^oFc$)OAZ;3{Go$aj12+mo9i)iO0;DK?cyMvC?pOZ$tYPeKf_Fa zA@?eueW{ZQ0FW;r|Z+qmk)@ zPXp*RvX`;;EU*-t3^os~0zIMnFGPheE}rXusa1m0FfHG@I&|KWloke)mo61Ejif9R zyjYIsi_vJ(>JO7Z+5IeveRKF7J#F0pX`eS^t3=~^Yy*rKY}&ed=l%-8HZe8Ov~$K9<2#x=rAzZLGkS|tE5al7q^G?TtQ z1>m{kt`;)gauAPkVgQEcHiB7(C5vrny<==66|ArM3~1J-gv%F#UM7g5XDUshcIyvj z`cS8o%^-R!DJvsQw##YPJAkTT$Z}A}Jx1s&=-q85itT%p zc<^d98jV^4>HCNMc0W~Yb`v44LWnCc_SWdJ?sP@yr8D5;7y`!a=VP zwM<&lV%^t9Y+V2nQA0Afa7O{~&3-Ka{^jSN0AQi7`7wxvR8zY~$6z60bYNDu= zbJa>-yL($-GA~Q!9+Lq+0aPm(yLNnZDTrGl8hsgug(u-Kqa{1ek_th4ZT+X+ZmXs{ zEko=2)q2|yYes2N2vI~;tX`)&=r-Do%52>G;U9nf_m6+yt!G{aE;K7ya|rg{F&xpu zTynoINJA})GZVc`+arqkSu=kvXl|$UcR6kE);)drFklwSz!9AU-`~vj?SRL$(u9UG z?;D@b>Sp1->3YXp(=roD)&STWTZBU9H1=1wCMrxJwLguq#_66f` zG<(<5X(e43g5I3NFi0#It|z78sIy#61jCa_XK2@fgk~72Qv0-A{Y1C^qYVU?sxNFJ zD0yL&v?Bl(48KU4pOL8+NwrStw1jMZTipvYZyp0M9%7?T8khFpRP2l6)5Z-LA!eXIKg%ExFq+ z6oZW?!&d9 z+FPSHqQAQR@Wu7}&#w+wGt{AN*627BxLWhYen>7F%4>#$*XD&Ttc~-F!fD;FJ9Uh6 zSx|y)=M~~Qw^!5srVrv`5A4b3X0%dHou+EAI(DA8kO)nU)hzH> zwQ)%;i&_(%HtEi;Al79s1*p`9eWIy?+YVf0bAKrUx7t_dku^9EI3 z;qGxaRG0{;uWqq@2BmI&7uScez8xM+J1fq?LVbOex}}krr)xK$PaBIHm#Ylh0>j`z zGV``9!7$BPx3+H{_+Q)j1tlin`FWr0GJ_Zz=R_1!j&1F(7C9imCBaXdol45PCs^ z&63h*&4aZ=@N%dObZ(?}4sl>9iey1jg~Zf}1)Pq-2vTAhnJ%9uA$M?c@5CG8j0#;1bY z80G5oV)+xIP_f9DJ}p*06GgTu+rjI4`+2qbNu&Eh;H{usN}CdW$T4xPFh$8h9uq@_ z@!DPv?kn^a{dM#`gZ>8e?LO%(1CtiGJ553%*5x(wq<E(9 zMj4MBkFmGc&nO0?tZ7xw%f^+xZ;Ko<01p5QZiT*p?s{9>?COYVumkWMxSnM@1Cr#^ zX>PeJ{RV&|`f^M0!9oCON$*x|w~Gqx;F4fWo565U=dmlYnjjwu zG4#-N{hM#hb}IDM?PfKa&->POIs1LD?#t)AMb>|V#Xi;aQBBV-wJvKz>n__G)TJ;hiN{G;0k5MYbjsd zzg^wlEvWS(>I>@?1}~OvJ^116O4m}WnV}=bjGmfVeZt6KX?-`>Snq&EGD3?l1Hs5k zG2u$1GX2Aj!N!2=rQE~KLFh{jSPU3_pHk_(Y=$}X-7r^dUZgL}Ct5{z0HP2&EmJ(h4+cXGcT0R5eeg2kJyL6+Dk>5sbBM=>CJm#Dzz zNpJYSlk=kTr72Su&dkcNRs?_-)4>nlfBUbW{&Cn$>t$`}^5!w@4OUD=)3PV%6#xr{ zg}$S%_KUhM`gUe^@;YO|V6%}~woraX{{;C-ph!!bK$MPX05}XUd7FA9g;=-Jkp$dY ziPY=Fw##Ycpe9s;83Go{iufu(-?5L#58bn2Blzi7b%BVu^ZrfYt5aYa3gC~XzwluF zEgjPrO%oZySOQ?rGdFw~rjDT@`Df$q-ebWPBmmZx1q{Qh;=qjUFkAyf57T3W**wz3 zI~|YL%K`Jj;EncGz%WBf`Rq%4kQojVx(4gJEaG@cW3t+;YG_GD$6xqGtvLf@pX}y#o#%JGo-ZLafs>f^Ps^s(n(d zn&W+`_B<$Fd0N=)jLOdyQCiYm4SHuu=d)Vt(`N6bkXY#3>b(Yi8PoyZ(43+ln1Zg0 zTczOI%TfBJ_o~@R-F$mb4@L_b>a4R|sqva17&D~bvz7cw@?JGT4n9QUVgT3jx1OP7wT9jv|xBWOCkWLF26N0pTXcL z4a5_u0wQie+e?rGbO7dr2$GYfbAntn1TvrZYo}hE95+tVun)>91JtdObQG7d{jiBqZk2*KgP<2qA!(TAucUf z0I&`y2E&7e!~n1sIBi-H#Ig48W>%jtZ9xndF&GnPlLQiEq)~@J&7UzXI?vHkt`)NY z@c;bh=Wef+FJ!C(%g2zcwWJ~dF47)Vujkxd?!3`372kHd+!Qu@bULMh8KX7?lhp9^ zEEq7DiXA=UJ(L*qHW*lPXVah|>``{NrE;8Fp*CzQuZ=Nvxml#!T-ijNm_Eimk~o_Ckipqz|&GHy2Lf9W0*j`lVs z7DpzbX|tm39{^SefQQ7CORL5g4F>Bg z4hrNhXTh0})JyeRG4vdGgESJhQ8HS$=t%eb^$5f1v=XKc1MRb8!*hgfP%TYdH%}~t z8!_cekjkc=n7S!7)G)uE>XTb##|y*E&3stR2o3s~+y`752sC0VxMYH?Lk=UX;JO?-f5T=+K4}^IlyHto9?TaV4 zg^xNk;_?gh1{OOqJ!|@n38AJ{YOy2qrY-&o&`ZOY`40|5`da8K4Au+Uh*A5J+_-^s z_e@y35F)N?2vn^$bpbGtoFM{8Y*rN;E)ww-{aw{TUm@;# zUOEYHhYsP17+Tl>01yC4L_t*9=~-nvErY=+5+?@0o7T;)bGz#wQ@M8=kD{bDiS+T~+lPl^G)}+? z{O)f1@Nm$r09dg!4)rS`>+Ud7=ziTJh}D7M`TlWzb8niI?>-zALS^B! zkQ)aiK`a^q0Il^xdzF{cukP2aj>V7lNd1alElP|EAu*pJ_=@ruCGcQ1Kd!^icz}sL zxkD7_%V&$NeYKEzygdql|MTm=+nq)(e+d91IG`mj0Ae%;xy4>nj*Iz%n& zH83rpdDhk#*5m35-c0V6^RIl4s9-(GVFblR3abSZj||P#_G+xTAv0Oc(mzE5myT&G zL#-MBR^%^V<}xqEJbLYV(}l4_g8%)me{R+@0dS{LLhpsshMu+1r`9cj!Q#QIN&B!G znzx4;S`@so->2z(qTMmL>x8&PB{&+pk`+X}*TlS>jN-{iCn}%|^FS?&;-C5YjqO+1 z3ELw(6-$G6f`zlyYrH3`pX3$7;Bm@>N9{tZa^`yl8*SqBKmc6(0}{?cM-ksByAe!{ zoCJr=xu>Zem4gh{_0J$OyjbVTwqM(Nc^UddvSUGyX@ts)$-Zt zMiwNF7@YHgrD8!BRDLkfnIPbt%%%gIS@LoZdjbN-LlP?FT{!EgXha9%IQboV=)4k7 z{XPOPMiKfd4S=2XzI^iWb)!JM0#h+aE6oanZ7$Ylc@tBVeB%SeuRveY(Qsn?f~ezS zpOA9jEc%qO+ZoUe-bbKs+I1DP$GX$#F9Slu4AC20qQlJJYMYU8h~TFL`nvEWlSRSY zu#-s|*3oSbcEHxF3224B`+XCM=H;?7^USsgu^?7JOF(%e1GanC6~XO%UWlO|b*H0m zP3WuGuM+{V$nI)ZUd@W2uMX&lj?fGG0>Fd-ct2|#=FO{hhd8+Eq$^=rGcy1jTB|(g z8OKst-J10arch$?6Cqqv<8uLboyROX+867D(3uTL2z}AeU=Grf&zS4^9HhCSE$zgz zoSwtExbMjIYs~V`#elH;7S=9iz3qCuSqX_pGq>}E`=U4L0DLc|iyPAI?TQKAyE}6< z0+R1t`FS*HZ1>ZLcSliMAu9rtS2qhm?`A((Zn}r-$<^&lalD!8SMNW+5>5-D%^3J- zjti!W=MXy=WAGXo(3H>3~ijE*>UUDgC-T{Ux9hY!7;+o8v?POc|Ij zrIlQgq6Y%$SQZ2R{NWY=Zs{A!Ut-6G+CU_rS~zOuoQn)x&Cj*c zMJXqseWmx0ml4iR0^m~a4FH_azA_nvcD>WAHj?t=!_CkC{{HK)J`THe7_c`{=Kx@2 z#q6`{6is8?`>@0&uXm%(yzQr4ZaOG0rgeo|1t)kV=|>$4;Yc`}VS@ut)Kaj9mq8`U zedvV5Avkuy=(HC~0m-0OFmj)?%p}Uoy~whn?6&lh@VHqTCWU@d95hPPZgoHJ?PlGH z@T`7m7(7VK^~;MC^kD0iK~OEn0^l$Ic>DQ>J<~@tJab+};ltFwp>;eA(9DXtO$L^z zBbrvsW=Nkclc_X0(U(QXA!li6f^BcMG-e-?A0O_ zrZo@d$_Ot-VtTLA=BcNIGqCz!@{o?f)>q}|i(4@LRsgU;BpwLdWR z82dK85^Ur0KKi8(f$l|xXt9u37@W(zV2aPKCYRwnrNY_Fo6P0wZ1$CYtW^txek;PT zc94@vhjA>Y_#SS32(M+ljdpiF_ESAeHeQq%=t9u>X@ETr7%VJ*hWJ$K)cX?j%@#fZ zfQ8C*CR>@d^*ZWgdGFPk7l6-1c?lis{#x^e7_*?7zG&*ZG+5CBO}Q79tHHQrsbdq# zEJh5DR5+xR2l>&oGM<;MXUbKV#eIdoU_7Hrg4;-Z0bqKVX|oFMgs$f$=&jXX1HhD- z$K#w3SH$;lXo0=~O}*S3i7%jQgm_z7@2cFn+t=2c@?ue(&GPeUaWN}J0N!s6djA`J z4S+q$%V}vdtGc+=69A_SxJK;f_1(O&UzirhVbvg6jq0S2^VXoh)N~OR7<7w>=G%y> zpM}hx#?cWQ6-_5kELsKaLm9)+s$?l;H(j6wnl*@J2tpt-v0vNZKbt`>EbC$C^buAV9hyeq@2#vXLM+JFpMXdFjOh;M_MkUGs zbyVX4HudWOtN?r1ZfXVOPCbR)m7y09<#O4yJ}`!a9JF|_;C9$71HfXy0^qf9$P?y_ z4DcWE#?Wku643A8Z3V!LA(51(e~Nb5IO2j85)Xhy=~p_|i^REMD!YJd?6VDp@YG+A z#;a)IK#Ne?Cfz}?lG=Z&z9J;92!@$()3%I>^Zz|7tTV^XE`2`zIt^KAOEaCro#@k` zv;`1rhme%^F0I%ptsl#!Y`axMm)>TU#$DcIaD^H+-1;yySfP-G z-bOPinB2GRPC;Z^vWaO-jyeufrRt#Jkb=S$CpzM1^*bX%;v060U&xbf1^uK!BW z9=z<1UUx@l77o4G|1pUKpH{>dA~utuseX_3};>2JiV)ZH&pIeBr-k*j zq(EbmZYk+r!o3=5C`~{Yu>T?YoVjR{;s8W{gVZhcEQ_wGdsn4)G-g zty^Y|bPvNw3oU}%J|y_zadYLn*SH9h8zlc}Wkpj1uFgiS{d&Bb^-#Ljf_vBwwC+;{ z5FYC`sh*K^B@10GUI?Ok&D!tZzy0->e*wUyavptrhCo>0;2#2D8*MD*OU0acun-qE zoXwmobZiHgFWiC7ye1K`qAwcA(feUKS)fJ#6u`+alKzXRUa93Q3Qmz!*WQAc}yBie9F7n7(k*A zOCb#2E;@&GpVM1NY>iHizN3B-JVs}my8CfAygrNtb?6znbd>oc#o=ImU;3}x&3tqa z(gLdG4=HSYN=AP@f6K~*j(Y?ui&UAg)+lG>%2f0y2H9wPY?6Va4fp~5!v)~&*8 zozyl`tZLIgCGG{?2NfXtBJ*|lTx*|v8wEtNLT9^jiyrR?8=a8{}-FB|svOXz1 z2N^2W8pKYP>|(WgQS*jd&Qv{y+Fqy-`=n!RI9$)WMA&;e00&cd_nD!`QtLirh{6Cv z-)=)O=`qJvmpVQwJ@x?|> z0SR8FO)f|PPA65}-d>Fl+n#N@?H{*};_Y&%TN`(t8x><{Rk#a0XeSf_n0l3%q5!y) zRQ~w+qX78lfBz@|E>{Yv`>A0tgI?`s2}AX^D=oL0)mBm#9@lF{MYWPw=uRyY`ZmRS zeVQWC9%wdcM;UspuveGppkOzRf% zrL^NQRSYBtbq;rP5{rUP>CI0k{qMg0^H1M@d)zIlH|rA+1_u?Yt|?QR?e3sT4LG>) z4yvnZb2UvY2>FZv01yC4L_t)%#lc#fp62UZox}6eVaG$=oow?d?phbL-=p`8ub0kP zn)7Ldp*9>kAz)Dm_v4i8t`$L`qgB!dRAkq&wlV7&64N6sDy-wBnsj(RgS#} zJEE^O4J~`oL&+zUgjmVRP1eDM1f{fG0k@~a zNHk%c3>g~+Tj%E1oeG!jC__y{7GNCpoKcm>^di_M&YNb(R?T`Yx506 zm|60Xzp~H%MKMd7r3w95(SN6}c&1&u=>l0{n1LmKSyCx_8}@ZD4eZdXPo7b4v&!&t zLz>&@#kpY$ThA(uH|4~-uJWZ9r|2sLWl~7T+0v)E^7CTtMWqpBHweVDO10ChRqzn_}~7Rb8#h*1fzgZ#R|Qwz}UL z7z>q8(HG(i2_^--TotD?W75;90q}NR#n(vmS8%(S6aipT&@f7^o*?9IuR9vt-Q{ccS^f^Cc;Vf;dmD1+Bbo3MFC=*tt==Wo2x-G?AF{j$y$X2Zn@auU|8w)iWtnXqvFdY%uRCIrpPVy6$aBC9qPf} z3npUG)SaDb%lm2Hzq|Y8U;q62kDu$!SIZ#*9-XpmhvzBWQ}h+$3U{^9bP{Zwvfs&R ze+ds}KYULL%MDLsbdb9zjdmNlsjPD+odc#}QAchb6@ zdU7=mu#rKr3Wy=D38IN9Rw_@D9gzx$8DgEW?xzH!^=9doaFJ~^!X3h0B(Y*2HIGk$ z8MVuv`;d+z52hPA!f==cN`X13UZkoWrdEv|p-)>e>=aB#+Lrjy1*IJW1JJ3%(gl9Q zzv<7)W?w0oSrwPD3Ry*-vCVLi+F}vuYgvN zDd^4Qe+K~TNA4jbZFg2bD<`io2x4H#^d>8xz;p$-`O>E_V4q@o!3a~R0Vi(|f;R9& z{$g05BRY0zMe`+v0CGAH^SFklUi59WqF2&ItD9}LGfCr|(BdfU>2@-`uDL-NW>0dh zo*5~&ItI*wXZ^PC28fR3Ha9GIt~Xw^+h^l(VLmS{m)21w02ca!!H0c)zpYz4)uv*Q z?A-V2*s%K#^@zT+d2T$p3;;YUZkH8eWB6K{n|oss9=ta6HMm9bYQL;)=Osnjb!Dtq zG}rpGguauCaCbSX%m<~#P{39+44%}Y{3LU|&;lVuuPe%X*+|Zkx?wP5Lc&+UEy_xC zV}S$=6_Ao_WZa4Mn?_LnAtMuk(DImnoOdOORNHJYOtU?DuU&VSm z_L<-@qR=A5aN>t|$JJ&u6EwPTv?28ML~;9e`SFi8??3DXz3<-d-af1!9yhv;JQ&2) zp9YonBZ66Dw{su#OZrsnwbx1gjn-}vL;p@TN85(#UzXu;Bw z)b9uF-_uz`IPtjG8g-k)uJ~&W;|()@?$-Fe^cCyN4O+^`7WPY>ZUNESez$7e+I6)e z0GsLk*ergTAn zU0QUX>Hmt1jn@pdWC5_}km*&nNXLbB;<=|`7MTl7K@#g`%AR&d>%0|=X;TRFl8$Ej zNc(K<5t##~HTpLW4RGRgZkQ3KZq%dJqV4{A(*_< zJ7-`imwV+S23bOvVQi2-4Z*N}D;O4wSg*$dV;zt@*K#KeR(R&g#Sgp^kBt&v8DHXV zYxM=Zt-#=CY5#L*zoPmJ=$=Ld;A-=YcrXcPST8NpLTjNfUcYHYISde+!BOkN(!$;t zWwS~B%K*CRaIhH^_A_R2?;!*gOmYlcO`5N(b-my#l(U4vjpju?ITPM!eeAX}ica&Q z-?2a8u80{g{hE}f09fd&3s0Av6@61;-RZn(Hea@zZw9@LVW(LKdi8f(1%SnX&8&Bq z0K@w6ct{L=cQpW5=(|`JjQ&n8N2Bayk~e}YOf~c^i?Etti}cYggGDjdgA42Hda z!wy#~yZhXkkB8_Hqm!^DJyNi(HJAO}VKc&ojga|Vp38b1ue-+e#g~8&!^JO2lH4+Jae76-C>qqy*ZU|^S=R7!Gjc)H|*EbU#Z+8Ob&UzC@ zT(r5-r>aj_?C|<9+^vI}Kg+S!ee1&Y88FnE2;}}F0NZevcOx^jQ_5d_^QS+E0e}C` z?`rjOxl$-CJ1Gi!89mZF zA<4lIQL~m4e>Ks{L51m6?Kx8OmTcV{s`Vc9NIfiC3%gs9l|1k$9JB;E#bza2FQ&7Y zJA!QHA=g(q!Tc!&edsduv11)^vu?RC*v5~t^9arB7xE70_` z80_(h9#g8n6!caaZwT?`eC4y81F&#W(AzX;-%BeSyMbW2@&XfIq3`Kra7Z;Xwu|Cb zKbQ!G*5#D)nnI-OL^j)J>5TGAFxcdyo%;%Od+kgsIcpgbUx?$HVUZgnniQ88hDDAC z{laKiv>4^*^U7i+Ze8ql&swcl0^ol4ayBWfmrnp3Q_%D?qi!!n4p-?2J zEz{(#MUvL@K4o2DGt!2N&B82N=i|1?GPJ9rL0aF}=D|4@{nZ(HI4s0{g}ypRb;^!? z+Fj_YTbH<6=)&uE^_h=+{MWi1%|3`+{>_%xJOmpV+65>E>phz}MCl@*eO1iA(H5cC zt~YAM?PmV{KmYdq_uuFQs1(i&_>+8WwntGx=-X{%PXSoCD-1@d1060D$3m-1+5$}$ zTE}D{$VLFYh?Mc;e%HG?4lT#tFK90=0A_|HR`M));Db!mgBh^}w6G-7OX*Y6Th;#? zO27SN(khP{MZ0Y|29KJ;VA`kII^aL1GlA2CqP0yhd)6TeJ}ZR5!dIcA_5r%{^AGzE z?{~Ol;t2BO0qnk+SP&9Awkvnha;z=PwVU5|4*Q;#dzaa2VhKP&lz&+pXtvQ&aLOs8 zjrNjpiD6aVLE_Gs7lqsl;Vxc*?#r8tb4svbZQXQE>P0{!-J;il=5r*zk^4prJ_TSp zu;9T_IV-|2=o{^d0pQr;{)E20N~cr8iHKYd*T@M5=Wz4QTs&9kjMbIZ)K;}oOp<~P zEER0_F9dn%%o}qZF6+8033`{yp?Jk~+GTDSb+Dj}of;RCY>1V9(3j4VCk9Np*P{Bu z!i6{hJjQmD&PBa_UTvO{vW^c()vU5sj;+5bmOd*KpX*lW+i05mZ?B)n{~#opyB5sp z>Q}>2$q8!+nwJCs01yC4L_t&z1`G^~xiU3m%~tI*ao_l6a1OS&L{7Vt6$aPJFPg?t z1ho0dtZY2np*M10ZFmK}irK8ZUMEOx^!pdW;BNa|F&*axz~Js~TUH#lwf&~LT~`f* z*JjxpFxUZjyQ^CM*#USq69yNiT2cfnXO7ohzkI_>(Nx#q^@3FpGa_s3L`{k8nDiQU6XQ#2@*V5SgT{*1L6+H z&FQ?W1JceBfW0s*g&yxO>=Zl^=fbeydwCKQxWOUCd?Ch=%1@Td%8uK6w!a9mi@8G9W`aF+c2TLE$4wQp7VNI< zr7$0KvqAx|SU8@(CZ!u363=zN9Xn?0)r7$SFxKL10%Aj-iI3JV9DVJi!a$I-LZ?C9 zWrVes6>_h&meCHa+dq8q`18;I_{xQ`^nkXAbuByYn(75D;+@1oJeblcAplkg$w*Km z{24qL#&xp&RDwlXduZSixHS`h#ZzRKkTLG|Q z)~SjCQw$afUXNQgkJPKBdR~@JXNwcHD%q%E7ZHbjgAK!eVp(FJB7J+mjB_j`s7Y+{ zBW=t?XpP)}!N&3@%5xnT=04~r#>F^`7ARFl*dEglY=9+rM55gmsZqn^)c)B7_qOPd!;L*OcQ zTXn6BQ+pz-*Y>l`p0ym4ua0ffR*n_=HqOO*OXU|rUxi386<>EXD2V$;=r#21nJchD z4;W7>qP)PZpjVLG@nE+UztF7Nye@=g;eb(z; zit_3#)MjwGNJM-Ut5towZLYV8k>H6S*}RPhy$fOIW>pcair12S4%OdamSE_6+$I8G zSJ*JFya?`x!2r>;J0^L(&U#ta7P%=579 z=vx@Ib132}CjAnuSFfqqE)xVP)1IsfR9IULkzl+?VJD0Qn-)Y0z$~(CTD44DuX3xT z15%gNed&c3A+`q5p(t+;aewApba4jD9X;2lS#)b-NRzfMs&>09UP}&YHXW>%69KT$ zSFBg)yIzmAThyg1>Za=rtt;WN0GQ?r=76ms%e$i)G{X1@TO^DbbWgWm69DTNJQhC& zfU#syi2Dk9?;chfDaxQfRkjcV{_d|||L51A{{G!x zl18;y%Ec5kZJDAG05G0$tQToh%mwqod0z;$(rGJGPGzt6~U_a6ApkoS@ zD6!CI#~01unf3?P?n@s)FfJ{(J$J`KtlKcu;c^Ektm%wu*3Xchz!ykcG4v^g_u~3C zaMi9Wl4@Z&8~*UaUw``P+x2p2s)x?1&Dmb>xt>FL&1i8WE6ND*r4>s*iUFHpa3jkn zkMtF$4xn1hGe;3niUNEuKsD80QnIP1eVh6y^GEO>;NxDh|b zHfGv?gxsLD_KW%-$0Pl}73z+0#RrBBiBm0zMcUky!f-`wb!93#eL9RHXqg6<_cRH# z%Ei|dN`NuY7Z?@*8wQ)-WlmI>S>coPthEj5dS}m#h;)>L)*|5Rz(fd5YgJU&qCS11 z9UV67+C#?z_IMohmMJAfXNV^+Me%Q8ypKvoY0@|}99p#8d9z$}d!<^A!Z2;pw8}sd?@1br{slHMO<8@nayh@s{6*kE0`R8ioMYCZkXfa^X+`gr+FYs4zPld{S zSz9hEh)o`kZG}lruBt-K(I6uXo=@`tuys4H%MpNa>J^}-jm?I>dgN+l^fz@RG(W`o zyd)kxn-n%HgKAfM27rsuUqwV;=r3957@JvjIWEom#c?M$Y-I<{i~txP1p%;;U{66C z1121OaRr`vMq1n6UN_h8<*g*#)+#BQav{(Kj0qSFYWqy?lCkXf^xOhtlw!bi`MT?f zb>F~rF|Y%$(RmQ`nnMoWJ3dxV=f!;9pUryxp0z-CyS3G7v~UGVkzoC(jk6x}_;|d( z--+hB-i=}K@i@D>n%~{6-@e_FRTl9DahL0%Kok)^j7QkX4~CtJJ&bkw-1Z=A2!QXODDEIPc3Aw3phP&dpF0? zao1nXL$~dI(?9NpqF>a56-Lgc4Xyi@sPt)Uve3wMFfSX1I%>sl{_^F2{^wuc{rxXu zzyjb><+7Nn9MGChqKv#5k{ZlvLq~+KWnU5ceOnXtc+@~AHYw4F&^sNsXOoW2VGk3U zw=svHF<3vwFWP=|nIy(!VGKGwv|u5$LNg21L~Se(It7XK|DxK6t@BjGmo%SD;w?%@n{SW{nJgy%Ht)R=H7qoUKM`HabejNOi`X!S- z@Wg}uy53Awe~entx{VB&{uOE3`S|IjxGWJZ52@q(|7dGB=TeZ%4!P9 zrQR*Z3=9EN55_lX=1wQ{ZOsM=!j|(vRWa>pdu=^sHl*acH;TKb)=8|_v}g%{6@avR z5%#0ZAyn9o9kBJ3>*MUWQY_62fjIF!aCnnrl_ytWQYz@;M>1^}_)V{D@&(Wy>`i3E*G`$=X z$f2Rh!BtDa^|fum=?;Mh|E44QH;q~YciSDM#)8zjV{0@y?SR?7Yl#Ygb~5*hXn?cV zWS~y}i-yuhUH1Kv_df4NVIzs-yNfNpbyF=JG$GoFnFSmk(O2KS{>Br z_AIrUO8~S&Spl$K7EX+mm4I1yGN-GT74!<)b*p0!BfferPqB`wL21-4Hj+00aIc#c z08b{tF$tSOEEcxnuZPyvRY!4s-PNt`SuDzvkyzm6Vpb5`9`34n#Z z7EXehfSe9Wu@cNJ2ZXnDminEXO>6WE))d_~f?_L$FOlGZjxDQfgo;LWl{{t!Q%4x$SZUU_IA+VajIy=mj|;V%^oDt$5~5>q$&b1f3#6MHzluLGPkLuB>E-+!{c^!+O31ZmKbOh#+{;| zR~Wo-TECh$w~Nkx)x(#NhG!kqnQR#Bqe>#LI`^mnBlV?Q`g-WzvS+#J0sxHa*6|>S zZCl!JrcFjeKk82UwuHMpoe8Cz>+!qC)$Pq>Yb}TF$dn3V(-9KgZK1-PS2)`0Wbgv2 zDZs#eais)+!QfKqoTLsgOeL5q?3#+$9`%32nKIb47R=3xYqYZyeQm3O-u zp&$Quv$S~~ma>B3;h+s09*^5v`i8@19L;ydz-n|LwmD$oZljxNxJN>&O!->)Dzp<2 znwi14EKn3W3SUdL=fM~_O({29m)>>tLYPgrvz{`Y)qvjC;8GFHeZ8Yf=*wU(-OiSy z9+mVI*sz|cKc^S*KWFGG+!Yt;_VRvfWn)Uk(`jioD^ImK@b}jAStDVve$<`O-Dt6@ zt~T|xiENnE#$lHn_YK9>p?TOf#a0E7lR;JhELc4r5^KEjCM;msa?YNArVI=KTNyYN zf_5!v;&8B&~ZRy~!NVZd>zYf5qv6g@ofEA-| z-VA+*dY$6T+o2W9NsW%^=}0S)HDMXkfUqTCha#X!M}F5`A4KUZti0*l%^IAO)q(-Dr@cZYP#&GWy$3*eVKud%e0& z$NT&J`}fxreIFhUUw-*c7_4J$b@d~f8~PDx==riQaNX|57%k}b_I~XO&sPFq{R&hL z6Gx_dwRNk8wKqkZVesxa67)WP*d4AX)PS#VW+bBH(2>wrLFcmoSkQZQJzA|>>rH24 zi91`880QcJPYgZ)01yC4L_t*X1%TZhuLA&^{==e&fUwPOrD@NYf(C7)mYQb3O5O2LY(KTZD*^J&;qBHMxvIU2lH zNG_kj^|dHRle?r|`u)duzx?t~QDIaMEeqW&!8zEb0Kll9V*Wu-7PIe2Wsze*VuG`J z(9LU;s{b(}?t0Pmmgyh~iAOK4z&h1ox^XlXL8$mYf<4iLC<3q*j8o=K6oPo}2Jcz)mC?TF!g$jGf0)%iF#?q4jXx&5Xp2F#$5wPJ<-=LV9_s5+ak(XP7Nn?Q%S zuU>FIFHrp*k8?ue&7unWGWZMn0>I>-nK%M{?{@9`P3wB$XD7kBQ#un{nu;?;2>c-F0TNRnH=8n3oJLFw^kil&ubfk7i=uw3!VB(Wae z9chymV?JEXXu=WzivjCJ#B_zeqP!x(Zy(lzVFiL4t96&oXPtfk@cz)(Jy+M-e{@&N zCQI0SQWN?Dz)Tsz8mHRcdWOI!Yi%x;9%;+U`WTY2rRpW4U-U*5^RKlp{`=qm^z$!2 zee>5p0l-!Ou7o*S+TY0b<6n!ie5~B-V%Fzet7Y*CrhbW%5qaa8k8*;(2=$SbWkiZO zZvYt3Rp`L9L>QUHlb~N?cvS0Sw_9e{MW1|-XYtZ03Tvi`?~Qw6MKpiGhmaIT8oFA^ ziy8dz)8GE_{a+5dnbinQ8oGemC8CdXM+X;b9}dQ{Ftz_ODomT3_KU`7Jqtb31rh|J z6Ch1rlbbiRpug4#?G;}E*b@mJ)~6@kvluq;A3;;XK=8z#Wi!N1yKN`hx35(ItgqY7 zfo@QyG}~ZrE9=(s7A`gd23sR{r#NaCM1qCE3%|#@%sf3#o}3Ib0vc#trR83$<3f2! zN0UH)>f3U0N~{+ES5zlMxi=NkLb!M~P4t>v)VLoCeeZ6k`V%%i?A_EnSSS_qw_$3? z)6uh&jwhGRDh1Cj^Y#dGk7;Xk_5_2^>5=YqDq29$jy@SHYQuo>H$=^Yh=V<+l32oB z0dUm%;H}1~Bs~(8-KIKOrxoS+A_m6m?sC-$o>8Nu4+&0rFfiO`m`)DWU)m%^g6Yzt zHtf0Rmx>@O?X}@t;Z3EM?e&}U#b~>oE*1mGiPwq3WcIUGH|yg=7jR#T`fG(SHTEz= zPk~QD^jF|Yy%w;j?EN70F0kfE%~h3emxv!gj-8t)v7MS zA@mh;i~I7o1pKZXslRTtm|rQV=~}^c8Du&Hz`CEIBfS}e_SS`UA2|Kh?Qkr*Y<9o1 zNlqcAyIKUh!2PzdUDsj2%UOQADg(O5ZPO9A7VEw#{WV)(6UK7MXv)Bb>$B2)TEvV2 z=#AnV5rApGf&m|wbw^)|n@w_D8Y+t)TLE~GpXxeq=X%YIqTkWhJ}0;p=#F~XVK>tk zk!@V)c4)#txl!M=I1~b4GS800g;p~o^oOoIeWKWe}VYq_)pFrIl%eDI*Biv;r`WHdIL z@%{Zy^cMiu@w<0d*7LlZuGb^1MrnRtZo2bTTj*;YRW}PEtAKelX`#y@^aXTMrRsu|%}h z+MVs0AGi(FmM4RT(ATAsvu5W$tkU&EgS0k4)#4jdpYTT1ol$zkm4g$G`pg>(2+hdZU`F7Hv?f~no$yic{&jN-EX>1f}3$HJ9_q+x|t_YW78~?IUGm7bfG)`LWW_J zgxm(N1Bz?Us!grc&IgH^1Z$(I&)fl63|Ii%sb&;3Leo|@YL&+AvWPNSYeR1TE|@9D z8%mtaBx2SB2J@Dyr$#M=g{c`M^+4;E5#r-a7%c3xuAki?_H6;@c+-N)^q0}(1;Z8w zbD1v}M)z$(X=9`uH!yn}4qc1X$l+AWle{#8!hG)~_tRvZNp+;Nz7?ZK+8PWSjRNDs z%+;LQ?P>y-Dk0d4Me$vC}s!(nJRWTDf6B@YwZ%IiX?X8OIRww|~S2U|vm;b+n8 zC_-h+#)YwDAp317YkF8&;iwVWRduGgj$f}}(g1Q^FaQqOW+S@+eK%Fz&s?wA zt%U=yP<%Nr>edg+dRc|ZL67pG;n~EWON)tBe-*;l&7>ssy1P*mSR_ov8#1YmvcHJifpB{No+NNXP5B&{|K~><4H}QuM|Ch~BH%1&u|L zRz2r@BZ$hsR z%WiRMEt+8=@Pp{{%IuH`3O!b>yXzgI!6qN@1A(EbNT|RPwPpRRH^H zHAA;N&Q9Xx9yt#?#0NDHyvq~76rJ^udtZ+`mz+neJCdSnim)ywF8 z2?iSp?i72?oS6hqo4@Ico(`&XfsF?x)HxIwCFw_fQ`#+w1TzF2CbQkD4|QeCToGuD ziqKIeI@-+95p8K(SGA1WQ^U)C$r{3woIbbJq-{;$j=?&x>b3qCZ6oSA0kHlB?ID<_ z!dF-@3;roMjEhj0=OZEFF;G2))rO=~T2boh0r?)++>!c1ck7h_5mE9Pf;A+R{aS z8#+Gp9VcyB>@ARFNB^r>e4WWWzqok*=FRUe&!3kHXIzyOhRdaFshCOorER7k5f3`0 zwIt4F!u#QT-k(f5qmj8GT_V(M80_d=q9+P>A=3b`=2))044RE&m2 zZ9903{(XH2BDDs(mDdVku#UCm@|_-SUQ6D0Dz-M2m&mIdl07-4(V zGaet0fB3`0mw$Np`1!3U>}oaCmBS1Jcr2iO`*!>IxM%cMG*ltD#a}Fp`R=ASH*39= z%Rz@>Bw?@~MlxCGD+X-ndmM@W3WI6O5&$!jMBNtv{_w@Ee&y}cW=ANrp3ber>!52% zW+s5W?KxOJL>Iz=mg8~F>%nFl3}ZN&7DrFZy07mYVXDyAHZj$+dgYD#JZ9pEt!|OK zvdm=K90Xbi4Xl!w!I=P9`{MDW_ub$B^6P(o`s0_M3xM;5jL^5>GVuVgHwhPgrl^3{ zL1dHA3vJ1@gw?90YNe>K1E2jssl!%;Qrgnxp3q2;q6eZk6O2?FdERqKAiGu?rV)ss zp`qr&SeGuDoADX8OGbxlm2;2F*a55Uh#4K0^-*L{y)WcmWiLO=XJ3(v)+w6*e?+|5b%$OCD%BH}K8Kv&Ga&k+X;GzI{DaPjZh3I5~ zvV&%>-^g~73=R!8UX^+pj@??@#HEL|ZX-)`89U%^uQ-_|uXlZWlm4~^r3hx> zq(ruvhAg2k-B<>|zdfZ=000mGNklP7I%4;AY|)B5I9e3PlsG&%c1!8NS}{76j7_o-YT_(pg)p@rD}I9a zkvSK+Q?C%z1S5MF!d+Z`4Sl=kZNXbV1J@i+P5m(#1$NG#bR`*K8fHaO1){>~?KV-Y z1fL6gmOvC9yqN1^s0oilZrKA51|0}}SDX6o&`_+mV!&lVuVTKg0>DOsy-&L??p{x8 z*zNOP=c3=e1b~H+0!vf8T2_Ulgb(b7K4+$W0pR~?yh;JsFxa0i`a7TIA;ADJ3|quk z4;F_$Y#Mr^(0wIzpIZL;xU4(z75cV`n@uA0-Oo)L8U`!?26rdj0+UFic8CVNfx84rTS>a}3S>^p$#8)VLbGM;K zS^zBc)tzr24}PZ+WzyXYIbiK@bv+iZy}q$_Xp!9%mCYOp5)Aq-yiACmpGd&faVQ3? z)ttsFZA!G_Q&}gmua65Y3*e0$gSaO7URt1SUKS-RPaxAyIhzj!z+%9E_~VD)q@c+{ z8vt8zwB&}YdF1gB{0p-9)q+P!fj<(hrvPwb4V;(3LA`oOb{B|^h-;16HZ1f;fj1H8 z%VaS6Rx~BKHB;WR&{;Als9PHeu3koeEmQ1r+hY_@wIivSa>$!}_N4$=8v^7rwL)#T z)9?TJw}1ZQueaChS_RAM3;--xiU4ebv+Y8ZsHCSUVlaF$=A21EBaIFZ7Ak|gFjte% z@)=@q2uL$(NH?ta!SdS(zz}7|f-QyXpw6%vv&h!%*v`#|joqR@6L=T^S4N$nQi)Qu z@RcmIad(&Lpe-wyK8=%^TR0d7dv~|?f+E2>OYP(o33eX5^hQWzqD?mIb|uP-ts$nF zx7UlinO?nG%iw%=w_xSl_!~*fKZzmGfX!Vq7A|crb%K=xPaf@!Um?>y+{Wz}||5pmZlD zmQPtP; zlO|vNG&k(--FhSn9(q8#E12s(6XH_w)oroznRzNyo|oz`Ypt_ZKcs@A?>*cX=v6$m zF^|oxx7)uUP2KLF_s3ZVfkv}}08%iy*wloe+kJDlYls2c{Ey@D@w&S|wr2*$B`3Zm zm^5P_C@)2t56OC8U+yZ4ZF#aN45wMW_;8v!3ionie$~p0O8K)|?XyPXRi|Y_ zR|4Q+KRX&^1e4;v0e6>G&nlNOP6!oWH%K_FsutdU1pxENCk&3xzSebRh)(`lNUWzE zx6SK)+q?+p=Dx5p5}eyki`VPAK==yh!vl0z34_IA-#)A#-)-rBA}!4HJy~eR4D>Jo ztzJa;GZ5^`lw-ZJ4dc79piox$YTa9h87)^P_3VPr0^Q^FGPYuYzV{DX9dNzvv=|*t zb_4pW9X$+#d*B&b>~s(97|#)6+;fBEqbzkhE!ln%fJ7gA2?Z$SWNvk)w5UVo(-1nL0m1%?6OIQ{_! zQ*}eh8RasRs$2mhi`EJ|1KlFZ!R8FLXCzsoEe8$H069M*a4oEjpbKp4emJ*_e`RRT zDY(8SD%MF=o06*N?~gxx_opwv=(X#5fZKCfgSY;ieQ1egZb4#&fSDw1v`aD)93`#{ zVyy;@NduK&?nwbSfhAjKmNzBE-hKi!jhSA&TAwo2>96o#0)T_s=)fvC`sfyu)}$u@ z76~?K^r#dq45p!M+PA4B>cj%w#jrNjW};hKj_R9fQ^(!0oG!w(R zlPB7zG;L|Kj?xxm!8*{3<71dMkOx!YDEDZ-_ij2wTNZMvF`aX2Ysgv3R7K>z(BBBa zr@hb-S%sr?LC0Am2<{^FN8<7D+Q@fLaXPk1Ly@7sX`R^rC<*yRpSew&k}ang6bk_;A(P z>>7gM;n*agT@l(ErhwjvzW$^2UafYu<+eK8mK1|Yt~bi`M&|Bd1>>l{e-{pf78*o0fENKsxS*3egeINeUXTbRcGoGE|t94Z;)!tn58g zZLwWVe{cZ){l|9^fSCi1J{fv2>dGzeSaAjXaJL zFgQBThzje?cvZWkcevjzfB62}@4o%>VZRa?@-Y>&@S^#vQ8{Z?&q3c)0Jb4ucT9@C z&_t@dVbGgeHMHE`xa&@Z^>`0mNIroRJXudQ0!jA5dQ)(+wr3z&1X?7R0zcTV`>h!p z1F>Er`U?XFfXyV>^+}j%w!tc0P0gZyg|)EZaj&u-C4yvuu`sybFeN*^fsU^6XZ|26w0#m(7D`1PN3U}Y$&jrA@H{!%&8(4Da)vY)&6q%|pg<8XZ8(v{J-i)095JU|{(2^0Q3l#WQgxT`x-1+0-I)TjC7jpEcH0!|7580l z6CtZWw?7Pi3<7e6?u-gnf@d8A=OVrq`^scp5X?sa?hgvgFWLW6c~L5US}y*sR(YP( zUI>E+oy+O4Ao>eT0>FmBv!VhF4(5Q%s6APy6>BeYd;-8e-CK2wg_5^fRbo<_qOx%J zYS&WeSBp_r=)0K}#i#G~4M8seECzhHYnl$_tg@X}P5gOe3X~IJYA4rkWxLLOBLLHE z6%x*li?m#syP_+4cFdgd(u)WtT7oI0h_68}1>lNBL|-~?;5X16nr=X7_qr)ZD?Mg0 zNj_8f5!u!CaCMkpr%;Nnx=zj8+tvO3Mwo}(D@|CaO9~^eZ`VRo8%DZb=_!Ih>Uv5qv@XK22#~KeCOtT7u)t}-6#yR(Hg~jJcf^1du^ZM? z^femR=pNUvDE$hC?W1!ecdUng1HkoiX0x0Cz+Zg+a0A*G`4npvY$@r{VGn?;YgBL#??4q4d) z^!U50gIIS8(Wf@HUX0DwcUyL(pR>14*nURl>?GWKpPSTD1} zwu{wH!ei_bT2aGNu^QGl!iH|Cmt@FAwc0st7KJqQE6}WfgEe^?h_b_EMcYI)t>{`X zdth&e7C(OfZu{_d#r#rqqGie`diAVVE$l`VG)wDOCerB^6rmx@#j{RDF-d)s%1)=b z{!6gdd-(IN%8~(tQBjQyIF^LL;3p3f7qE;~Vb>Mtdj8ovs^(2gS$Ur`{m)=<%qj=f zNxw68TE*Nl?AdfV-1miYGNETda8Ke`%AlySD!s&O8CHFMw8L(t&U zi7#x`$nmTcQqao^^w&hGy#IN-Z|X;p-QM6bwPEm><`t=gWDv2^vCtO)-d#6#H?843 zXU)=S42DJIy4sygz4EeBe6FaLJ`)BvlUM!r1pvI5m8b!4RyAk9Zfr0!WJNtAjf&G^ zAOF?yB6dNS9kT&olZ4#Pt$&JVxngAiVBOjz(kLqutXH_&)CIr~S8auOFuhm%Wn%6N zGi`pWGhIb}tt24T(Nama=@{F%afi9e{<;>i&MGz=i<;77`0| z>4=633vo9)Yt$0Y_FkKfDzH z7m8WxVS)a-ZA0{Iu}LI1pAk9GVgvw>$L)SU!4=pKwBA(&y(1H$ZO72}HP@{JFjkVn zT3UJ8Kp?%Mf6Y{^(`{LtO#+qmKkA7jhlALCIxcDR$Igj^8j0^n*w4{jZ!YLbfkjqp zkhTkYtD^E+l6Je<_y7FvyKld-cIa}hQMIvPc)!lcwzZF$TjD7I>sE*xrh!u!b`18h zy;gSE$xnu52jJFv(V#CHp;p}~NCuAqu;0+%2*AhsiG7Tx2R zr$JNG^&HAx#7!6%)=5hr8Fmhj4{HH1mP)5x)6xEcc_e4O4aeXHE&^aM)L#dl5bDO@ zM_$2fq+LHNop4R4NJqP`SE#l`HXP0n?yp`noB3X^LOqxUX}0)=owJ7R zm>nkL3{uP|$ILSrjDA*RwEu;{p7-LBVaO_l;h5;=HL-nU>?$^DVel}qK6Z20R&?#c zv{F%}atZoovoERpqKFWcrM*APnzI4}R@n0G1`N0_i1k|Yl&|ce<*I*a>1DSI98QbQ zeRJLZg~Iu34$hjEY^$dL%;c`C;&&LoZVs2$d9>1#D}Dns99XuKlr4Bw@s zhuBaz$%}B{5vzyUb{@e22NG2KO>c7EU(9-&)hH@Q>Xv*mC%UeIhlkzW-CD30(UdTG z4WHcAQ*_M45iA*~j(ySSb?C))9AzmLv`JgOI(1)|Eqda_7&F}5ZMOUWkF4|HapcO9 zwf@6f%t+mhG9+k`bf5(-XhDmzs4jyx5+t<*xfWzb(CqAB_Lsjn=ev2E>IDuGStN@^ zvY0n+91|fzJhFV<)#UPKc73-HzTVs}gu8GE+M9LN35KrpFe%y_(Ane| zjAmSMHcV0-$|ho1Q&&od0Ux$K*HLK#Eik-e5*)jr?cA%pF&7<+!TPKWgBKl}jB*S{ zngak116}Q~Z%~Z871;26*qGXga6y5Y(qd5Gj@yFXX*)3t9#nS z@-mKthuL#(hF%ix0Kgo*FkJDCT9{L!A)s75VLmOL6wk&+dSIAIVj&ruP5{{JTtSN? z7GmSDZ!G#o436i=6GtSOk^Y!_n|Dk~$I^0y@F<>zC<@+FQE$r|wS2?jB0Q$l>*bY> z!*EUSG@)7gxnXeTvvTp2+ECqRmY~9)2(eo2b3!oON(Xp^zMX!K8*PH9e{NcmZtE-7 zJDMg6;8Vvaye!;}Ra?5K!jB;xZM2wiVF5EmTnF7eVf1$*^v&`ktd}JAYE#)?G%v4v z+kG=I@0rKMybiS?u=ynyk#5vaDv9-BSu0lZS)=;AT|4PD&quxU=`aTXYZEY^2ftnc zp#n=HI-)~u*yG5m$V$KHTUqsYp7<^0h}jXjQ=(kbuX{gN{c_W|+SM+%)r(bfSeAKa z(ckqnS?imf(q91B#(e8%0f5_CW{q_0wlain1d>NX%SCqwc|}tUxUF5Y{)3rruc&Bu z^6n99MhnLPOllOYW!h5oR{)GntmqnDHt;zcN$Ms#zqwf5U2XQl%k>Cu3U=z;8>kzDQirdj*<;(}5y8FzZL49V!gNhBu=cjYhPNvqew1 z3k=`g?+=$V8x(c`7W$eH^v#^{U-Hkp{m@!TokJkLL3bE_40-_8Z^0e?dXCPs*dfA) zr0&HgU2vm7rc~JG*2sO-9-<*UkB=QmbOoCglIc*M7jn<`yXEh{{q&!I|M~cEQ!Hf) z#UR%gJ5!7bJ8wo?D!N~oikVl@#CnIrW{iHn-qH2nsr0+mVZW|>?E(F|{pj*3`p@e1 zi^%G~$v1%}Z2%ZEUAm~C^<<%8z@({Z*^2;d3Z|IFw#x3<(I7YAsgx3)OY}llOJPZ+ zgFd-@|`fG9)J{-kYRJ@RRBy5qUg9@>nG=#y{ zrRdHj^HC)=Uok}v&IjY)J(!6bRy>35D zrkZ<0ddWwUn5DJ?cDDi#782{d;QKV`Bou>pvo3~)vu=6bOTgf1&-@#JJzfkj2?p!S zeC@?ufD^-6Hqas%Li*>1OBKue%%7mXZfqK+7x>Tq>U_s#ztwHV$zpF=u590G#} z8#P{!Hg4;S%0v{Jptt;3;t{UcD&V=#OyhZ)n=0n5b2(t~mqcEVAs^8EZ$ zPfA;h76VHtdwgKPgwPk?h2z_yzaP+7Xg5tvox|BMxng2Ew~{aqqp4~owZQ-{Q>+*P+OjecAqO4;WLmCzgjr7VJCyn|G zn@6fX7Xuamcj~8u&gpEF7xXF?+7_fx3JFe8woHhjZs#RY*k~7c48T_XofUUSP)(hf zj;)B|y3rYM!=o0m+146uA@sGuUtP~B`cnOk0Bm6Fv!p`YR{gY5eW9bG(>zb@(@lQT zoFc78kZE9X+-zd|{1EH|Px^x@*gXOW~u|L>U;bJ!|Y7npWR-J$QP!yuMsv zkV3~YMxMe{XRG3`Q=zY*SI4WXh0xb?(T1ZmNeMyqc-$HUt7Ncgq89Yt-yejsj3GsT zB;5jpqu0TpFyp^t!NYoZbz_pz_m3Ao4ZO1HquV(i3?}-KHaY7=t5xhH&kApS$0UhG8)@!C9PV4G_o*8*cS4-j$zS{767JAiRoL%;C$VL z>rOM7PcIH@0r3C+=U)%^w*WAck-{hZfRWLNw!Tr@kDewvibZ)X^W3ZHDCiZf)RnJj zw-enGZ)`V9f?-;sDC;tfCXS^qQq)h@Kb_uYvLFy&zB56c!_+QoT6gIG^x@88!^+#n zT(uoB2GC$GE30?PUvv{>rRgQj=?R|vY^`d zSVUd0k9hDg0AuJIJDH=*Cz2hhu0<*Bkv?$@4qgt#aXLD(BPT|uI^GhQakLrc*Y!NwlHwwzw;6iPd~`77!OyZbH2m55 z>ED=%hbtQZx6M*8tLXMDmpd4jw4et<>{1&fp8;Uhm`xvJR%J*xnhptxk(~5NqzsIi zNn$I)NK@*WKw;4RD7%Xb}y731K_U>doI`=q+2mRh9Ewcj;)VdhVS!CD1S zbV>@(v1-@aLBkQ5)#beBu4H3toN1M~(&pZyk87B7Qvv5hh1b4EA;d!ZmoN8}gn?&MvfNKsn~~_Ro)!rXo!{K8 zZ(nZi9@aN6mzOs)Q;_!772p=(NvQD6?E*VO)}u@BCDBUsaKC1B5;lO!fsJGgjXs76 z+SF=|As>Apt69eynr2PJl8~PSfED^|wXH#Dg5DDWt@gr~SKHryHvoQlcU>xH1;E-J zyW0C{1Yqn7Eo<#80d-|$brmj&l}C`4+EVPgB-0Bznpg+Y94-<`N<8cdYG-<>NKDv( z?6@Y(V6sTB8IeUgtqiS&h$akVj&H8tQbLEzgz1xPt(+lkuBY|+;B$d4eP``zzERG= zc(kOtcEM*=t9BRkjS>moZsx!K^3yLr|M+lsDM&VfXan^RVjwg^Gt2|!#hnmHMyPTv z@;Wxd20^a?cqKIT(l43kI4Dd~+MA`#r-7E{DANenr0s|VFTsyAX9YLLesE->7cUG% z9SsnZ3?O+<~`f7tm#9DNRj#m3Q9cjUx@l=M%=G zH?~BqmjmW>5tXEcDs>qOLrTZ09W+Q6^UqP9A;Ck7R!mBR!ED`3z0y62LxI`K!vREf zqOWDd*EmfSxhw!2VbX-I{I_Dn-}*?Acflm3hFN4Lk=g)yVXF)s34P5t z!33&o0LhcjCRT+31LMLvTH@M$e@DaObYh9$&Bl76SDTt(c(xL|Ejk{Tyq`Ji)5E#> zvc%l5i0|&QE$F?t>e93&0&S^mQC0IhJ}Q_o+Y+E=bM|A(APV#3^h@+5?H!8^TIt6Yz`PGrFe|jm~Q;~>nC$S z@~1^bOE-!x>)yx5OQCg?>CmsE9c{JYhr`qBYx=G)uNM)3MSoY@&@zhP1_D@suGTCh zIE?=KYK5XbJm6Sj7by?zW6a^lQ}m#362eq%X+(-H>&Qf#L+zj@07hym2vZ&VxHvlmDvC-U(6f|XE2&Evcn76E5F?X62wJj@_3+ILWS*e&Qm$Jn| zfNV*wiirV}NQc+DLt+W>7G@vAltuBZ zlzWjBPO7CdL^pZ0h;#~oTh{oUF?~wUE{Xw&1Pf(F;%n7nt6BN#%eTM%`u>M+znly^ z`h=Ul^N9NoJg2Frg1GQt`k#ZGMbN6O2!jR20I-7OvrZ@giw(P;sQzDx&dG2@eJJd| zVwN?Qgt;ZcGa6W-19?;hhOL*)RWEp0u(I&27#|>2ZNcqg)D#aE^hVz&%TD*g=&;!d zw-Uvs-`J1Zt6@z%SbL7cx=#Zjqenq_@-WrL7nCJktXE4DgWe0@>fkr5Z}r8PuEW5F zodL%R@r?s>jN>PaR|NCHdgDwA=tq4Nn22NH5a}m>>>SohL<1)9dk zA2aFLVtuTr6>o`uD0X|%l13XE1~x&2q@EWZ*UghOLtgq5L)>8z^d;btBEII=>%Gl^ z^)g%(Sg+@wz4w?xFSiJB&2FLf9KkHhT|2QRvppC2Tl*;RzPaAlmfMPAwX=3D@9Oe_ zrL~oN1;BB7SPwSU$!!hME2|2x$_hd6c$174MFIva03P)7{a&uqJZsjB0XHkpbw27B z^w+fm5CAIz15PayA_Eqt3VjI@#m9rcG(V>dxDsJIG;Mi?dA}+vcFU4tyC`nv1wEc8 zcde^}Ld4hNXzCZ}C4{@3rXcpLRX6qKa^cgY_*p6ccby1^wYq6>L_8s2umiASI4Y+r zP75|hPmr}!rO9VwGwq^QQUP#M(&uy1sb>`J+BueaT616B@4t9`{dl+4MZR4RW|MYw z;6eO(CkmUYaEQeUAccQg3uwPW`59+lR5B3Ipa~1WroM~!ktu)}qQ3b;p4;2 zKYo87Q_#750N2O{P?hp(eG(+4@-MV^7Ic;JXSF2Xs+R@8ne*ogKo{H%zNAT})hhS< z^|nCH|1NBjtpHkAda1OG;o79vjH(w2XFZsirC7GmE~Md_lu?$_=(YEC7c$TE@&vJP zecrFO4gyZ%BfC1C-u=_$J+$ z!m4BSmp?(Joc?G17%_O`BRzB-19E+D8aPVDRq?b2mFelzmr7rFVQ}{R@60K+o#`IS zM;k~N&4wtXqaCL$-<#%s$s~u?s-qdCSj3H!NHO^wkyyVKlL}%E0Y?BfHay4@lz1cb64ra=>XO|-9tWgw z`^4svgxQVO3oHwxTqQJ`rvpbrf0l_}F$YWwv~U+fY_iYm1n5-+ z7h)FHESp;0(30KT0*HBfm+6UIvy(LC1VD zQ^ILi^M`aaly@_;Mra-%#U?H7JShj@XZ`<&Tnb23EFR_pq5Or(bZEBEUKa!U| z7Qhm?Vuhr=GcHMAd~vS_i2kltLp^}8CHFrWLw~>e>d{eu#gpi-Gggn|uVQyG0)Ux5 z64OQH3NRKASgtxuXlV7(!l8Y=t-lu&E4H~H2K@Zq0dJ4L$meY2>TQ(byX5Pgq%N{m%+-oJ((z#xt5Eq3@o!~HtryFC?2E)z+ z%1-5l#FW8|?-~hy{l{-VfB(%_lToYXyr0%_gKe`44n4>nX@UmZ@cdPK=MZdBh)uVl(HGcbb9h9q6 zvZW(i1k%X34GJLjQYlD*piJ4(|4*749!$3cl^Qs)u8t_*!TY6QEe>uSSBOao=*WD* zF`LBe;&@6p_A^_ici7N3lePwJJzZD%Q(XeI9Mbuf?v(2&L3+tqhdadEs$L(EF@gq%NyO4D%ppB3b@*Tq9 zPhhA5V5qPF*v5Q)u9q&VV?9Xo7jkDLE9*{^<4Q0#4C2kT#- zIbo_RKQ~N}@}hll)xEy%DGq{R8xgKKmY1RyNAU68)n2zOiclXl~@+sRDEWg4#l;Q6!|0ho5G&}p@5Y?t-pqAvivnN>`z z$~&+GrATF=nFS1cp4lP%h&^wo7U}I`z=_b;{EpmQVbaYHTb6AOvqqgf-OinMrlnWj zJZscXs+DKO!haQWe^Zq6&&cmZ07es$Hfdez+SHR&Qfu>eeYUMEPmqfpOY-n<8Dc`;xB*lWP~ zd?AAw12~O*0RSxQ5da4?N?jTBn0~kF(pNdRcsqrdRz$~rcmuCD{Hd5$6prFHsQ)r7 zN-vcFeXZ%;r@#^4(7sJy2?f1)`dyR2b!lis3A`!V%6lkW(zm6c3)*IR9es7wdBk8J zNwV&nYB|?wRuIM#3EpiNzy13D*I#~myuYwE=|+i}U8ld(n6Xi%c{IafZ|Hm;1N1J*~mB&&pq*gc5JEkMR$^0%`jR?S7_ddGxwk%x~(Fi=MM(d-{ zlbDIJSGd@Jkl)syHe=>qkvVB?+>hsWFr`)mrzvmVq|yW?Q5&}A;d(w+g=s>hEi3Zi zSQ19rRCj4N3-LADV^ex3mhnmcMaJ_E`fQgWZUY91T zqHtH}D1@&P9g7o`T-`yb$eCbVLKd zJDsQVzME;y!t&2m062~(rN!VhcReky$3-j%@j)VSy_l3|qvB+cANS4aNZgl+BZW?w zU({yV8lIbH&Bm#Md8(xRsc^TH3*4779srDTBy?G9c+kz`m6YD%jaqoDdW43Wb}<65 zo$}h2UcPyK5Q7v07VCxng2ZP1 zd%cA6Vwr$Yh5%SU-rpY>C^A^}erB|^=JOuy(85>YG2)a$+_g7d!+`ZN1iIv_O_#$( zE6pIq{ZnDO^o3qrPZ98=2}}11N_E0yux?*0+l)x+NS)6#ecZNP*gPCny1k-~Iu`)z z!qb(uTMZ7I5m^B?_-voK%$S0u1=^&bD9^XeO{kijM&LB;EN9yF;?v`;0Qlek`R}`z z*USNzN~Tl6igV0>ZMwgbMGBO9616d{S!i^)a+VcnG1VZyr$@$#%qSyZxk~rc3nFMp zDLDYsQUq6vvXr3OFvV}}JnYx&d5cCi zGT^@`Qw|%GUKN=RCWdhq5m^+zBAr1+2H}y|vMv(Luvv5*qJ0S+CrH?E!#4Oau385MsNfS7kVO=ox9f$4RSf{gLhRA>5$yKietrLPMK0RBo4SQ4-=T+*XTJ8%tZ3HBaD2=~ z1H;s|NeSQ(1)S4jjdUd+7pVd(s9(&mN8GLlK=0ZIYC%Wz@95}c%^3}}>{$OWv%<9O zMX~4zz>x=IcIgu0W~&P90h1_XDVQD7pF<6oKaFU?N0x;UT;0nA2M?xo>o}hrlg#{~ zD3x{GlNAfn5sc#laB*crtZP%t>?a}lJT~GR1D6GeuZ{N3YhdkIQ}^co9z=F^=yPcTShS)=U}w%<7=u|U@+ZPt4&RCi~5xdL4T0JG9|2C9SjD26+++9 zA`cA1fY~w3=Z3!1X=ywzOhy(u8M{WNUI{sH=74oHBo;s#YL+~8>;+&$-@0Jfka$)X z=tcluPpa_XZ8|#acO|i7i`FWk?`A@ib73*c+i_B!k4wQ)u#+3KvqVJSQMVxGstdK( z&9z(S5q;~m7q#RCws&*@MJpQtaIu;7ZuvE>QWK$ef@Ot`qf^ztN7ycD_z*SyiwlJSN7&+ zB^XA6)taK+CV}Q>q3p%g5Oum5 zFL$PKuXP0aOCJYQ7D!Y^K}s|z^!YdHXO-l6F!e+KHqk$&^!oMfAAkHL0KUDu!j6!h zDZtf?b=~6L`*#eqhTW>GS+&OfMzfl4RC1%9cxNIWtYu3WX0yLNoAe;#Cz9&f3j;{u zt}vM9OqNK>a*P#$F;;^}dj)`JeO1UsM|~?XNIoJYk?o!OHwxhnapjBcSSOyxE&;$y zOGAQnZr&2!&1X(Hh4XsF27>h#m+SRF7M_R>leOM{ zrJd`rlV>OhnGPYeFqjDf^9pphr9nLgUF*D~2*9!8dvO>n=Jm-qnN6$kU8aoCgbKzC zUK0(TLf+~K0|tZjU_l)NOQ?dgxiK-UZsk~`!@917$L(_8hlBghgF`V`jJcnP1W&X? zI0n0JPklZ}-@ET85F{7O8^uq(7NEZZNT%EMRfom$lA_KtX=hzB^iMDxf0NSR*rG`K znkFoGFi*lC(x1@7m{y9Pp|+|xBm%>DD{YR1s}%d~WVg{>19G!bz)~3OVjZW68S9!% zbmb^$PXLu7OUu?gpgKzm}%GVCm29|Xst>GwxVcd zygjOD#k-C(-f^OdOn^QIPYf9Q{{+OPdKynC*#=YIc|hD?y5ImzzM6BvvpvA+a&!;G zA}Jytu&OZAg<)nkD{eNm!=dG)y-gId82Js#8;i1T-0tg}T}{XJR=AtYR;Bs6GFv6{ zb(tP6A7`>4WowWuX|N7NdSDn>RZ`VO=S(np(LZ5=Z<=3|x zA?|WLba&pB85UhE+@4{{WU#Oq7bB8UuU=h0K3+z7OVZJ_N$beuF_mLMuO6(UXtBQf z`lDjKPp|eb@0YJ$?{p$0*0RFXV-ybpcTLrAH-IHm1A_`Y+%2vzMs(<`*6rEcGS7lx z9s7eaRU&ageOx+fr(*Q9neS`g-LC{g`%x8dT6e^&;1zEpWc9OZ&* z-2MLh5C8t3f8O0*6-&8X-klgeO#Pl)%droVnvinoOi(oH)h7M+xYrUjR0xa*9n;)! zxhqB_Ei+7`5GyR>5W1af9uG?0NG7@0Dd9+Oc-##N5)>>*mPFSqIId7iRPu5^a+wP= z_zNxH-hj56b;ws!0}grPdI5K!UPBbN7^O%|ilJ~`E$8Tkwr(sJ#(MYl+dqH*#VWyr zX04nd1zk78;4By%L^*sU2}_2>xN2M2VPYq4PDL~u=emMKf(1+DpTo?qE2VIwm44F! zZsa-XFgon}tEKR`I-k{q#AsaT$i2W!)QU1p@}fgjibje{=qQvD501WArhn3*n=I)! z%Zg#UGD};a$F4~?@Lcq$Rnjf1QB!a`71!_Ng~9Vd*)g~&9xPNga-0f}pxn+TfcK?c z1?|lONX&!Dmcvt{FCnF0T{2*>P8b;oB5~eng=rH0V8U!vN8r;#7jUJT!z?oLCZy{P z;N24fqvDV=*p6bgRrd;~#e;=LO!u-iq%cg6wAt?FpGW1asAS2Hz%ZQ?NOq8sJ}$(@ znP5DFV}hC@F=hQJy+-W$i@_iCrVs0Jz&v z=YY|9_5v_~nmQeoVn+Iy{)+oDkEDo2VmhU=G~bHZKSLb=zy1q-8Y zUWnVNpLQE(f%~@3y*_;kb8S>#gfQhuvriCbQs^YsdbN&3vtBcJubf2mO##?kkXy~u zcIylg5Vwc4%E?+T;=V1e#e zUpWMTRG@2=w_Oqa?KaB-V4WjBX>JWhe=BfYYfN^0 zY>23hLQ8@ef|G`ZevuhpPV^XqYHz0^a9qHVUPtVrQU20-^tfc&%>_8~G(ubdRIMNY z7UXn1rHm?;@tAT>VG_`_QoE6~>LyNkd9k4q{PN~tGr|50I#!CO!KdK}fT{H&!J(tI zK#!{SdKwvh?X~q`3md56ycO*W**)m>3w^<0rUq~ec52v(qKp8rel%xjpL|WN?CX?- zP0a(XG#{#tV_gD8p;WhHcG~8s?X7u1(j)dBlKK^(ksD?^ce2WYl~$= zfe2;DR8K$TwDpAI)2MR{$GN#fuVTNi3taaXO#!gr76vSKE4aP5YF}S>guZ&rc3WL- zlf}9u3|_A7UU6dU$=X!iHrPB66}(_Utgw~_D*>>AdEfc8Oh#IqIM@+-Yt?pMa{60! z^ld9rRp(@zCZ&T0R+@a)F+y*OzE<2F_j3xJEJw+DQdLa4d7-b@dJTPB)fWO_QqUr% zpl?$Ad$s(TpjStQ)(b7xN%@(gT>4B$z%`0*P*&8Bf@ixo;PkUv^|>K#^R&}GZ#G1o zp8>#Nuvx^kt;w058m+~Y7_A+;mR(F*SNo}sT9mOOIqasdUtfLs<;&M^E-pO3Bmn;A z-R;+3U5f#K{`OMw(s9nF`+cZaU#VcbYZ)FVtlRN?*~czWM^Rp8eCeDL`nq=2MtA8J zG1}L!Z>&6gw-xm6FQ#|*TRjPVSpNLlI8TJo3Wk?-oeT!nb?I6J3!$&#_HK^yGrlpx zT@zbhwCI0E28-FGOD}OD7^GF^)x+xMQVh7aU9}GT-rStE41l}Bu%0FDsdR!#C|U>| zL0|BR2D-t{{Q0LPY4e%~2U82@t zO3rQwZH?T6D$dXfonX$v)=lq)PCbM<+0_YSgj*tBjmkMQT2OZXe5`Go>~U(SP!R(L zO0}MPJGY6MXjP>vt>xl;olfQRFP?t><$HZT<8hm8fu6rod{HZ&Ff~gUl{5-yT5_iU z>=VG`V@W@RG*a?HFO?SMl$+L;vpT|9^go9#Xn%K%`7Rd?S5$7eJ5U3SWzk|`usaqs zDW4;x6bZh2yVC{ob>{|7=@9J)($nc ze+yrA;bL7K|38K1kO3FE>hhncob9ScN9fQ-x`7L1{= z$Hq#uc?LM2HNuRd8#x?nM@M)*9)F5A9xGyw$01)8q$nHBQ(f zUS4-zK8)_}hXP>ZzH7mJiOFCEC&FNC4fRKjqlffzVKT`pX0u|HYZk-`aRFeT{Y^Hj zda7nsLKy=9zT7l!_Fd6mJReBWasU7j07*naR27Z^IMQ5rEdU&Az_GPz)XVC)aCwc@ z*z5)816?Y*VDi1@xd0eFY5-V>D9{!9mh%5qF8#fde5Ru{Ta}-cik}t>e~-ri!(}ms z6B3v{HfIa8ZZV(1+G)M^LKrN>75XXy{dFp=9~o7m16Dw*V+Ve!cx_FdWwCy%GZ!1`B-;7enj?+1GQa2!J8Ppfd1$a3Nf>&;sCxyZO~& zaM*TNT5x9~H0DC1U#HI*63P5DpT9yV732ne>X!~U0r1qPu|R9U`zTL9O z(i83_-e=M#;{;u0 zg`k(?Zri=o7wmEr6RkwdOGj5F`szgx1-;FN_QdBc({;DqGp!i7PKDCA8%|L44Hzr} zcf^Cyixv!9=~tw`SDX*Z>q*UI-lJm#a?Vcoye&UHNuhLUM7nDwA-`?_HDZ6|>o zrbgAnm;iacL@l$YgN#H zPA7DINY_fg7u)839s8d@q@W|y1%MS1fJ2_y(RVtuW-EoDSGWrg)^U>Np9R1=i2y9V z3+M_v{b;Ve0^LIXZ!z>EQ7SwGaS5F#r56COA}I^1|4YOd5o`tMs~`Kl9K$fQ2tf{j zUIsduUey)5TUpnlE&x&3hll;u)#CPcEdYLFeE0C~>zki`eEQ-0hp*qge0jgNZR}x6 zYInIFis`O41EZ~X))XB^csC<~EA&@LyjTqoYNw6)@zoXa@N{|ma;Hb?0s0j^UJn-f z-rQLkSdVA?R{$)87W%sJ!<5k@Z9Gx468c_UPcE;<3Je&6Wt)#4>A3P*7to8D%+7~2 z{NnH3-OeHa3w`GkeNZKq5?v&%R-snQbULM`@Ts1yRL;u&UodYX7l@`tkPd?x0DBp@ ztj}DZyf`0f68ZB_b7!9lEOA8n;)@3{U;*%Uw<;&OZ0E|p%;{jP70e|gTLAijN(DreCIg1cM@Glu|{ zHW|zTL+rHSFh#cHg-)n^Cxz$C$g$fH7$*YP{EJfVGci}*zTOLzo%iDIu!3QeUr?Y- z*=&|-wS1>n{rt;^pMU-Kt9P%a<96LL&qcZj*$~*dbHr{V+o@;5C*LcA!K-N<_NfANLX&|#O5p{+>Iv}hr#vLI1ax?434R30GLv% z0GLex9Rrq&?iINn8Co0lY7u}ZodhMUg*QuMTu5LZyq$K|lZN+X6@%a905&g zQ8zoNk$Cf3oE{dt6%USJ&xFE09c0qtgJiU8X2E@3Ez1r5T=z8VI*y;|3!|^DH9z}M zKKsrfGgk^?u4JTj%W+}&7=|M~g{_i**19LGjrr`tV7oo2%7NYGxn%LNE*!rooE*vw|Td61;d%QtOR8__+E@0oXFnE+4HQ z175lbl9A?l$&oT|xVx{eH|71I_VT{}_U+=~VRU)f63Q+XMTM|-?P+JBufmJL73+?6 zJ!k8&npfzt5&+wCP6{?(G%hHFzJfy}FHF8lcsZ|v$}2-t91%iCmALO=(*S@?h2yWd zdyKx2UWBdgfM>(f2H_kla{G3*29Xsuej^*UDQdz85 zF#P{){MW*GaG~%_k0Yy|5t}G+B*05J3;SuJJQKlU*Em^=KkAn?!N!-{u|NXcekR& zE*WF)fnf`|8i?$|fQ78WNNT-TH*2PhET!!8LSn#n`_;WGXPlVyO>tDs}{^)yB^T8G<4A%*FZKr7LT;8x+`SiwX97Q)7TEZH5}=?53FVVn>2r33(J)}OXX*%|Xfl_(R9s0A~% zo_WUIuPc5tvmPP?U2V~Hq$;cvePI}ljh$|BE|wYD;{jrzmkdAc$HHKpP>N=Lnnbi> z+^x+9&H1p!z!II(0$`D2NbqLbTnwwjR({aTjXQbq;4mL7U>;USon$p>Ums>ydovN) zZ~Ae*8Ona#eidB~gEWU%n*JhG>B7+@qNDX;lu6f7Z;*8K!~I$h0E6Q$geRwU>qGar z^I+`AX#NVxs&wj_&&NI@vlR-}kQknS$|EP9Is02K^C_}fe92>BI3dzerLbGoCpr9J zR}3ODBNTmwwWNpygTWtBWPW76gN0?jXc-SqXNA%9z#cLFN*oksZ0VSM#~k%1jpkXU z`WzG4X6wA&F;~6Uo=gha#hx^EEZ)ntpWf~%hPdD z06d)*1i;gAem2SrfNdg340v2ppkoC?UFyQ~8Z8~pv8Efc%07eie*qZhBA$~DXF;#H zuh3UVZU>L&gHm|%X^sA8Kv&0!`S=P8wRoLa`;}8w{2#l6e4~9WhC=7ky-M)EyFr4%5eB6rIBno{k+q@gQ5cJMF zll!>;dNO$l0LLj_Bsi!I3wp;>bqOzP{D(2G?Plt@IVw5yffxBN#Z=k|CO| z7k0Q93V_9fg~z%==(Iv!fU8|6b7wX>3S1G}^B$A&{maFzXw9~}Tepq-&g(aqqn9_c z!?uTet}uAyT6en4gu!jEvo2x3EJSt;JbV973Cn>gWYtf7_l?RK39X2QqzlJK%jM|xZHtm zX*adHnM;x$NkVVXt4&5Ny)a}TZC!KGO8V!q2d2ar=UzA$s>N!tfnv9yuU4deS~rm% zB$b`|GkS|wNQ0j-ZNkT*S5>LyM1sHk`bi}C-Pdo&qb}WNCWd7@l05ZhtaB^K}>i|^5CTE1|=~&4u}C8WMYZ6d1`{BQqRf7&{|f3r~+W+Q3Y3q{4>5u4);j zu+hLG2jCs!L(<3*cjME-oB4|$vh?1QfkrHn>`^ik8qG$*J}XZ|$9BRPRE0@LN4<{F zE>JU-@+2(@$2Msy$53Ia!he}0^hqIFtLToV!#QGbRDrgcC0|k$+R&q08Rac`HsG9J zkKNIb=Vg)3>qF<}qJ7xZHmhW{C@ts3#jK#?c3s); ztyHYzLG*W>Y&Mnk+6Z(2VCT3vD~R|CdiBhsL2fe0TQih*BLkvL;wp3^bc_rYq(pBr zHC?EI)+^J!vRKdRiq*6Rax0AHj!UytQPQ4Pd+MPTgJ-Vr9G`qXN~XHn-Ea_@DjW7~ zXPMcBp^_(P4bJP`lSc2f**|M^&+8q5@oBYjQmI;$l9NK|dA|5ep_6hY%qhX1>&@rQ z_DQSt!a|7dVN}@Luc9IZtBkeJxXFyx(7WsT^~LCNZ&|g?y3NR-@XRi}o8{+U-hKP+ zt8cz}`s%BD5nn8R5zwGmGGB`R_U5bhde?XAxnT21@|n^vC)RuTOjM2^LJ z1>QPGFPaoI0DN&ZM=zQdYqplwHkpnZV}Qs2Qmp>c!x{J2v_r#&(c&16DoAi#y91J| z;7-JVg}D1oXT4}lN9E13DLfVcYw;BT)3$~S5Z74O3Gr&t#qS8FrB66$S(pG>Q2@a0 z7!iuXq6KZ)-AZoQtqFkt@%#J#{O`Zkn+0>gCGpWzDO&4@AX6){7HHI?7|GC%o(?S6 zNzMXA*3RR|%EFYY^p%`61Opibs}H_3!@f?;Em)XWujgAPC)Aivy9j+4UF#)bKjH6j zF=?3+*04g44>?|%eS{@YTlhg=Qvd)E07*naR5UmA$#mO67(^#}o(YDjsTZ|dSbtQ9kPH&6-B8**YCAmp{J$`iCFByuICNd(rd{!L2Fsym9jvN|QP!{MpIJ!FnNa zr+$WH2j6^NHacYpaH5;R+_s*?Tu*AJsBMrk1%Nlp7O|Mu3G==8CTfCDfZDTlUHP;E zAD#XvO~R=(iVGtTq1p{|{aX#(=`yI4=w#Fpk*zxVHWbE&d(}~^q@!i0ht>I@qT{qz z?$yr}PKArhVPidRt*0F`S@JxAp7yYDSIzxM7<_wWJXK%#<36dFE(S7n*UP)5Rse+4 zqgU9qD@8L396gee(~50bU@%#MV~;`tsE&!~*}O^hO4nwrF*70sVDowmwvn#%?Jr=Q zeu2&9THp4n8wOYWJ5LLAG&E$xs=Xay%4=Tc;Bp{otjn1$OIoI5vG%x`Il^$9BZ_j< z5anYxBt4Iw5DbpOThYrQwtYo-)&o9){t5|1aFL<}eF0s?V36(iGm1e!ug8eOLVpbc zQ~IkTq8WG#j%FpHua$c@0?z6p1!iHno=xa0m=s>FmlXl6*;8 zTjzs*A@qt*3!PE6+B>QBPwRs-9h<#Oe^MGvD~kT0-0tM-&0MXKt<=tw>RGw^qEbKA zV$rCZV3x^d34J@K-R@btZ7Jw_?KvY!0f7C2grKDUtkx9$`f>N&yZg6qOk3m5g<*A> z*_6@K#r5^_?tc5`^P8`~eo(x5bA5lm6T$T+=LK!g)}Oq#(y!3>;(96we0jeF9l>1z zs?bzn!$_MkrCdgPMS^ecwg9j|R}UarEie{ccKPVFLKv)ILV$sR+uJqRuNwhlZ5I?G zz5-y{IEA}Zd|5=;Yr}v6;FU`U0KhKvqc=Xez8H!D3wjsRs(7&Q_;TN$Pbyj>6##Iw zGaI_Ynn_#u)Qxx3lmWuf-RcWE`i^EgRLwv}0pMmeKkC)L{r2rY{_!Iz=%iBo2!N5B z7y1s($G2z`IEIS}dwj-uk(-9kk^cmA^#JRU9-0x2^=jF91KFMVw6mP|%t~_75!@=q z!)B+WErq_%?d80WE+FhyTSlXa)3(r;=~7bA47$MlfFD#lY)pAz=C1%SZPoe_M_6Xw z$QdBhp<}a}OGOo|7aC=07S?XR_Qh9^BEesO^IEU1;iTD-JNJPB`zJsX+_+a1`nIYk z4!vgRiA*%J0~lklfnXdc0j6U5|6O zOk@SaV4n%rT~UsMe%D~k=K#!%te|nX?&(8=0UHT!CF5=l!7Nc>VeoR;n(CIWwMo+j z9Wi*=%J=G-ej_`>RG9hTeq!(1s|Ne^P%wP49cv#cWEH{1UxAt~(96FSW~>|S(s1YO zb*j;ElX@k^K59s9%t!|#lT@_w*vgaC8g%*CaT)S$h^r65FGlC+)@1G({(dTB*~P}d z^Tu`m7)^3=Flh8mcBbY+;`vnJHE3oX12FcTm9$3VGVI~vvZqRUFc)nOU0PDEb>sY4aBP2Eeu2~JzN`{_)&IdCCC%!;tzn9a!FyIKi(b-;M zG}pV7CyRoDZfA2IT-ObKCqdg%Po)?QGUH)(HYo^zg|CO5)n9k3z(lvpM0k9;YnZX_ zvSRlhTDP}@o2%YtRZUeS-A@pR^`vnGU_AnDi6=K7KS#dn8Oy*TYiMzU}`bo2stG6=M#+gEkg+l1twyJ?SItzfC&F8i1vueeX z()x!&%UJ1`|gS#o1mBP!-*d2v z0S`vGMj`YiHAJ08FT@$f0Q+p#aQ}I@j)7V0`OYwN&c1FAN5N z#ei4y`gSGiBW5E)Qxffi0Z)8`%ud<*EJoJYi4Y(F922&-(P?Jum6KG*iuPTjeY7|U zV6=#Q_uc0L;D7zkpDXP;T?^XHfX^ZT3p)W|fJ(S%GVVSZ$($}`13>}NHTSVxg?Ew# zWhx0E6o**OJKOchF}S;!^&D~AeG%eeBZ}miFt3lwAie>_#v{0khBu` z5)U*Y1s820koRZV(P!v+B+v*+#lI-nC;0R*w~MpJ8CC$2D>vGl2#>vZTqW&{q81}e z5sA^nK-R;G#Qyy`jwohnBet`SCk9HRp@-yPXxmXFj#l# zmd&`aofrmB-KJvPD{mJa8xeM?FTB4VA2uer>MhW*rI{BQ87fI5E*wO%5UxSD6)Frv z1%olMP*~4|KQo>dbWt$x#3b?YABw$N+7Mj305yAJyBM#6AELgiE7yw#hP{8vH*-O< zqahv~orTKom{dN}$-=pW!9OY;UhFtUIZKz4zUnAQJ7kK;no-1f{K5D4*oZLpHXqv& zMxBk1v@L1B`k+90H2ZWsAFMC{h6F2`t@B>LVCXw20G394)1!cy>MsCniRfub=c2z3 zz$T_Ko)@RfvUv_FmSPE2D!#&U^3PUI9$NlcIBE=d+YrRk{lwtV#kMZ=71o+l?@Bzl zb$4Uvt4ErC5o16f^inU+5x^8FFs-Tw!H*HFKgKVpJX5Pu&lbC`Q z0E-j%M@5T4Suq^f$J1tSSQZA?n&-}dgK7r=+-#lIo6jq?Pm{`L^~T9ySX!>EL&Rnf zohx)|xpvhYZIi-tUGP7B_eS*h@#R{ZVg+M@=%8L+TkH;#!{rQTUty~752bQ^5rQ?Z z`}+!jZ*FH#ulBFsT!<)JX4oaJc%JoksHZ{>8egNwS66SpczJcRHWA9*1OV2r2$dE4 zi|KYh7WzIs9ROgVENYi}4UD>@y`}H5?xIGeH>-f};$=klrWv#NIzlFG?_2Wdwua0e z0DOBj-fud~nbuQroy0>_raw!?UQ1qtMj@XY#+uvo z7tIH^pdJ19-+%GPA3y!`zyDk;=Lm671I8-}(Fu~e__FnSwnp^36*r2ptY+%;+*C|P ztyGaCNN^yM095N`^Ww$Y#Vzdh`-@UZqX5Et<(P;u@<~x$^}R^ zW{JRy8#C}qT6N)KYc^_62F+A-qB!a#!BNVSF)i~kj4n@spor6iN^p|z_nO~+^Tp5a zzx(dp=d*DS`4JNGj3k9RG}_2!g;Wy{_7rr^Fxa)DKQvCaO^(Xcxy?q*3ig6eAQSoS z4_NLwcD=j9cAx-pb^UIZ;>2A{g)#jEzvCEj6!d@`1Hd1ef!(T|rmdKgH7;oXj%Kv1 z@KSe?PH*!McJpJfwo^Sb%IjL2sDSBS%e2?eC++;AUtW)@TfK4-eV63KqH(|KDfC82 zL<@sS`GTWyW*6QccLp(meB*tNFI`jmm1EQV4x{XkTAy)u^u)rP(AG`kXynRl~Tio{i)) z=-X?Z8VR=IYiOIYEVLJBNklK40W&Y8h)@mgaza6O=0cJlR>uW>Cw;q-T5ka0amfiZ zwPZ_)Lxm&yZpCKYew-zdTGgtNzW^ z;{I-PEne$Q_U0UNyHZ#a@@7Dt1NsX9lS4*Y^7iFUka=}GzrI^Auq5_uE?_>zdw0L( zc?84OQMDhN7vb&Z{_#S;MavbytPmbQJY9+w>tOG_|YE(E|j z7XXuCp3Up4wUv}?EXt>oV+R&)NO7)_y*Arz^!Wt9H`+s7jWuTT`7WU7Np3&tHAdqplVPf!k}PHLCIYZvre4=|)c)azFFyic41GfrR+2$Q z*_;@>P>R&877Oe7bj#k*zUvfR$j4NMWvaUc1=UA7fCSrGVuZw6y!1~;dlC^!Kex7& z`LyLzn1=Dgt~h-a)h+yXqJ%QY6sy0X|7g_E$AWSKTD}5N5ftqV#NdT|_CeM2HaK)t z3Zc8(NU*=_!>BHdxtN}*iJ-dyj0`T6^wzBdwVW#D>H6C>FGwVk>!G7iDm5%yD8 z0|59#a-x-^e_Q_`kzIXyh+112JGF#@8IzsXUEWUI1%P+!j=n7yhk@yp+J3qjXNV&V za|^0lHVCw6MS0}d{R99{+~zX63hMK>37k%aIyWDYwQx6!CXzL%D1@oeeo^PVWpkux zW);HVd9Nf4R-liq2M;^N&Ae?Gyy;)=N4Wp$`!B#dR?MI~j2`JI`wUCocs@z{*Ozxo zBH9$jS~4YJ;Fe!xcMBvdNJrDjMOvP}bv!u@3^QqMm*n+C>yk@JFAlqD3d1cA17iWO zLIB+BnX^#D;5f*KV-j=l4#OutahHh$1*EL8H5?4;LrZSkG0jD{$KznC7zdV)Y3@hT zT2UA)(%d-X^bwXvHY|D*02ulU_w9AFo%VUVbw*3A=__?khr?XpudcKl#T^}hMR^mt zlo?DC^wOUUF&z){(^1*N>!#MIJShZ8NRQO}ue@C*V!f+HLTy!di2;lI>cR7A-oxyS za5OUdyQ=FC1^PS4fxi9rnSs6)f&c&z07*naRP|wbqS!Lbeq00`Ed#*hpACJT&K?uo z1$k*FzJ|EtqP^_?QP}GIAq&l~uhLpF(jR*L3TwA^^aX$yCN28`fX7qU(VP{=^Wt!t z7Yw5pX1HsSYjv|Nt)bllC5m8PU3sPu{bhv7w4)oRBrvpv>JN$=mkU@en_7QOf(L0_ zCjki4)3V6bb#t|PdArs3dutk1HU@Y9xVI)`*GEP5lqxLEfkCO<0a!RH40a)^l|b>$ zn`i*u$ z4aK=hV(Ug1l%D8?jVHCC*4$}zx9>;v6%sQIjJ+D86bx6;c!f3)iFYz)T2e)HqM4(Q ziki4C-LsMGnx3|&5M5U?8x^6^$%?sF^txlet^t7S25{w9tGVg4`_qr#{Q1W(fBgB| zY(6fQGKJ!KQqBo-XbHw!7c&F2py|C51_Qw6l;Gvq@JIVKmmMfs4YgHLG@Heyd)f<7 zu}!75N^3o%mauu&{nV~CxGf1aA!G`2(G*bO+|WCaIPzdH%n;7ixGaC(x00}T7!^nl zL{K5z(s;8HuArf}E zSTYz17W(=$Gh$>$nq3#&1_6AAib^fm8ApfXOp!4&S5)S^5#&4Ob#GT3poc|7pWvu% z2?@3jXZaTlh6l$)Gyp6#qW)^N)k)j_1-`e_D`&FHG(IsBo;38<1gqxZ-OLGG!Qfdx z8MO;wFg$o6!q5wiX?j!IPwdu4f?<}_T$xRxZVd)AD5V>L(wJdJ)+R_urU|4A?_Nf7 zgp7S`q0$L1hu|&@nDgjt7)_autHOr&+pfq1wxMFct|Prv0K=##1H;pCdol_<*fH36 zaHCPER5FFai$cyu>JdE+-O=f!dz8)MUPk`(yS-j@;KL4SQ&q$B()D9=-{bhd_1$BU z%b1;xlflPoToH*w4Y=Jp?{#ycxmF2w(4~=wvEXh$Gjv-as=`06g zcw9jc{na;EUu9Hy0AL&)Oqb3DXlPkNA4*^AEB86DCaK*-j8otz4vH%^xQi;A(AV_J zUEJ#8YALXMe03!Z79QW-ZC<~=5mM^j<$9=JzqvE?JzPz0?^pZF@p9d_WU?ziGapPB zv;qJYkPCoyub}$sW+@2Y>_$S_$Hz;dFLs1M!_v)>ycf(~kFJeww=CSnXn_K-a2LO$ zC@DZk^xh?SA_)kIch8vFOo%DkSE5W3!$t5v(3fOB+E|s!nW9$9G>a$f4ra02EyG!{;XIyFBLOXs&HQbfQ7_9>1(-b ztA=DqR&u7zn>n>h~On&|V%r?XX-co)7V z#f&gm(92wMy;c$l{`vh6!r)gAH$vrFIn$`*a7TtIM*AZ$SSSSsQwDBp@hzVPp{`WY z)u!S7oJlGmlOZLm_}G@tq>kWr0$|UMn7GPtP@GOGLf_@05eXcfz=l96A*L^yEVpIp z(MEQ6`m~B!i|uKQCn0mO)xy2#(mfW^MY}bJ1Wh<4HnaFnBpg z6gm+GkJ`a9Ss#n2u%6$1MSWKa24m$5{Y6v~Jq;4nY%jQWn7si?BeF6R42tvMID^Es z7F~zqZ$W~Yhi2&Lmb6gNoim*TH6ozV{fLN|UN#{PEwW<6{UQK7Px&s8jFgo^573JT zagD(bw9zh1(_bMGjp!9q#Ws2Dw+H_1`RCAzH81N8hI)C>0!w_Xxj38Ur&F<_T(ETP zoHyEM`s5W2%P^mJJK0X#<`i8_Cy#5PU>N6MJ%;FXbF+C}k&2}2SI%h&(u!%mr*4RQ z|Fpii9?w^8ean~go;KaIDAO>t-H*jqX*L%6LVr!C?JzP4i~ZP}lb8387jHhld--q> zRTW+eLFsB%2s`zd)wTx!Zx2K9THRu0UJhn&b85XOaSg!#1 z_I8UagUuGZIg)M{05kH0>89yQrcOs3(GviDnLz@Z1-JBjvow%uvxUz^7ICvNyWC-g zPn)?z)G)LZ8lbumN4b2GB&QL8ttZ*72v8g&L&(glO&^uRfJE4US96QS;Fq7j7X$wN zAHPgzBXQqc_9OzZNoo{M^cSO(u1P5SMjn?K02sl=z?PbMG_b4%w3b)suheWZI1Bkk z-5x;<$G!DaOH z1&I{kFpm{BXWQ` zoKWnvkzfB<(B)v9hF)j_wyh&jWWTuVDXb*iOXwbmdfKC&k>E+ss@?i_308U6dYj8p z%``gtAs0Pvz0u|P$5$F9V3G;Z|8UTAXA3?6tV?3)4C&_S9U2eK`Uuws2 z&_cAEUhHRdFi-1S7?D}9}c`4>sarso-skJC!W zR5)^FcNeb2o-8dd%s#|vrPz&iZ1WH!&KG@D7(UKLA0zQ6THl4f;#&%>__gKxPMAq{LK5Qpz-N&0N5lN-%I3q?Vn@!1O=s&(S6g zpB9AcT)(RqFrBxB#IYAzN30BW#OXm`tgW%W++=lxzFHlYmcQyV=Fc9VGBEO!K{#{O zLA`RHCeVU7pC=*tlyKRjhI;JdD~f4iQbz#XXyiIV=yWpJ9PeFg2_rw)q$ALIs>y5s zDQGkX{PQ<|{PB|jcrqOdcLl(K1Q)b(e^JiA5XJz&RFN5Tq)&%IGV0LuU29p1V;IcQ zCP}7J2@4I1xT2({u;GbK;E=%{%p_9dhYV>?0GQ0JX+hKQm5N4T9*lR84c_=-3KYS` zc_k3Is%O-R<5>|JsdOR$&SgH+yVhEnIs1F|{8Ouxo0dqiQMYca+ndW@e*W>tAHIF{ zbT2ByFbS1lqv@_h7VH_^r$M9;47NF7H~8!8jaRdz!4b(~h8PBn#S^Vq0^oKhKM=mA zGK%`2x?ylr030Q*2)%1Cm=Y%6DBN&^IW9fwE?p9GyzW?a48UNpxfY6sIxR+g%}u4U z^r_*-NMAJRXcFvLBkPuh%XG~8$+%S*)U*ADMX#ReI!+6)^=#T>&Bx}d$qx15e*Nb4 z;ma?sU*0X@yOd)hqqXF)12Cc)Ts3hc8~doEwFBcxu^x#nCILbxlug!{(gi_W3K;=cMWWzYYfIr|%0 z98sVqDo95WX}Y)UtCe2Yo{?_Cg9*SGPJApg86~kIzJ638j{zEN<52i$neDqI0ot31$ozVa)CkMBCJ{Ibc-A zp!e9OcN}8HdV8IdZu^D!G0?kO5fx&ysqJ>==&)E-tdGfy){4=vNLf0jh^=1h?a;A% znGlPebn}V`!11oYaeD>bHR%@2|H~8Cps)R+V=xj|3K(-tSugCbl%qFGm;?5~Br4ni zfHzIEh45B2-J&0LR4kWO{ERKzKP>ipxvs#NGJM-chpmHpR5sRIKhck~X%&H<>7=5& zMnhW;umK0B6^1icsxA2}4IB zz7c@+oXfRnbXQMnh2(qPzR^*Liw6T#*c^r3w1g%s#5Y(S09w`yMB{WBYaPLr0gxss z4PObm0lxlX&#v?6V^go5yZAP{<8zmW&m#w2t)2^vL0?^vS{JmHF}gFVGVX%odgzXJ z!Mq?EP|dB^y8QO_>H>0P)tPk3J^$wT>t6t3D-!OP=MbZn;rUvV&G-+HVSm(a913EA+|$?2@M6Hi;McGAX+z?N@ga5+;a}{d1b8KJiIF-YM;%M%RCDOVLYjj- zlP8}=f4lQpbuup7EbFYwFUE%Om^qlQ+QejTTtXi#ZiZ3y;sYN=)-AYQsDCia6vH|e2Y`Pgj-^-=|SPWRW zBKm71zXI%$wJxW<)5d+731%vZ)HLE1R7v&tPV4!gcLJr30IWX;^eWblzLQzeJcj+R z1chpvydc4jktkI~!b%sFNbR_j!!B@^wpK-OHDvANqXRZv8Muv)2`KLP9a^a=Gn3PH zNQM(LXY4)FCCA|UZq?YW+X_Gz00x7pplh3Anw?W^nTs^UiTn0#KD#W$70R}nX9%&9 z|KU=Z&$L^&O{I_{h@X+G@wI?ms(9^wKUr;i53kJaz?3wwz}yQF2eU;-T-N%q?ss>0 zHqojWh(tufddpfGZ87RjS(sRc`fh+h6IMgWd#eD)_Q zS@O>nw>@Ar@djyowW2}rPFrzAMoqf!T>A+)J+=+nVbtr{2*9SLoB}YtX?l-wX+~kY z=^1-hFRJ@Tl!58Slho$noN}*an4M?SZA6=l?h+M_0E}K{vtFoH3U{{`KfnJ$B>3U} zx?U>zl$0sj9{q+1L?nX@gXXGNz-U!a*U@ThsM#5@wJ}#j{x-RNT8XtJ-)a5r8MX zs@^pgjboRq#LGb^dYjGUyk0tm_v=%lk3mNOSg58;;Pz%N41V>r6AX(G(_Iy@^Vq^c zZ;j3gsys2z{6V$KKbENSfu@JJH7Z)ElcTmK6(o%p^SXOX1!oBU#Lmmi#LE9Vj>21C z(1d5`W@yXXF?X^u!v)4`b@Yp7k5pHI09YX^jFAHv{82iZTy*T9 zwk(VG(A`P|U62*%jh$H$m5%`!NRFCW^kf|y3^OSFNk{atpJ(dSdwRAh`j1q}dC zQXCyQ{RMrG!PRds#BiyR8UibpdOo(-li|Kdp@ZO|1)|wKvx-4-b1p zGmOFtUp;&C@^%fEy?@-letXTJ5%pT#etB*B&t^k(vx572xAQ{aXL46tYpv1)guWhw z`O@4Mo?c&CAC~K00j1*5?#(ddSFZ0C`^&M=cQk3}MrMC?q6j_>E}Ql6bSbzM*6O!J zfAx|?eDyj7z@FcpF?<{WSl?#hw3Vww^@@K}RY zHMiYPfBof$-+uj306ZM^%B3tdU`s*gGm2{IM94&cua;NxjS+yyJ#*p%z`!s(Vd82+ z2^I%8q@H2G)^9awnIi)EH{0eHuy~@REik6J%(nklz_uK+y%Ipzv#HGLgpM0;JJ*Wb zbLV-hAdalv8sSVtF=5!+%EXCG(&@Z@>;+M%Zdgy&nJ_qe{wcy(-aAtWGr`||`Tpnc zzWwHl)pFuAI*Zeksm(OAhBVczJ{HukT%58W2l^tGsO0_A;D7M%x1mud1+30VdhF3rD6rN+IJ&J7wa-7Or>d0$``|54Fey9G;Hju4|=&P?R z*F1^}0#_4k^QBPt>S6ktioY^AdwaV!O{?prKXQ6^vq4??%dhVRb@~z*upK6Xx;LNS z*z}Q0UOYY?Aj*hx2%&|$x>rC*CRw3xk8XeYaCmxsts{-i%oO3x;5}9jz_&(fN0Sz` znBFUpn1(E&FVCYtA>1XWt#iG?&`s?-gV3kF8C&)DYR=c!hK3K*D3v9|6}}2(MRsu> zq;|!g9rPttNUDt;H{F{8-K)dc`qVbY4DL+Qa=2Wzbg>DF>h(geS6j_G8|^KoZJYFU z@L(yQjuPw8aZ6g7lIS!}Ia#^aD79)r%5v3hePO^qz5n)?Uw;q)4~AXgZma<(#hgO0 zXY)TjD`y(z)%xNXtfSF8mst=x>aQ>+_wAP=!TNQkrG>$sjZgO| z-f+Z-&Y+zeSqZ7SU36BHws^2UN$qArs=1x#O*tVh2ytWk2mp-6XY>qq<&6f$4CGqL zox~|4;D^CB1S!E_=(SErT+?qHd!ZEo@N(Xpde#*5jeHIOCUsBppx;aetqM|EhPA0} zuuUSh3xF{&9EPDAwl86FOy6F8hYy>Pj_epv$a;F*#;Kv$FvTD*mkA@hv1fuCnX2Gn z2ySpooD$YiPb&<*f4R81o?z@K3>Fn$Eyeq5w(nUsh0Q`}!LUGgxoAYw3ossFMqmf? z0}7~uRefSM5Im?mNezR%pf9-l|LZyr-ZrvqTlY_R)7@~81d$TK2!Q(5={pbDD3mBtVyd&w+F`9_PJ)^5@?j*q2DQlpg8^XB zH+XRd9_(Ru>`XC;b_2lFhQW9@EFYs%pr`j=G5D`Uw3paSLVrDE75xd*1tFp(pS|%1 zQ^Ib%*B=&zYC=15zh`GXOaFSscfG1E7iAif&rag2i{$d6dvP9#{t7r}F8eG1PIVkr z^q0l64Ti^MMIw&t1FvGh*hn~iE*L2toWHV8&!)5pMQLDA3aYeHHrEtA{I8H2`2Cs~~nd?^^-*WGsNEW!m%GmYo(b zi#H2>JwZK1_E|^$1^peMT7Mbt3*i>(>j+tguhY-PkDTicU@%MdYD~)?Ip|yQ(x<~a(Sy~6i%Fb)%2?M8VTlr zX@sUv?R1kc06Lzu1ij(`6PH)C?%$ayeuy-P@?u8_`ZD-LN4K^kX}^We7Y%DTNl@=p z(2&LYh|7~=G97;V{_)G#kH5cvt1mMEtamlbuevJ(0IaK6SF5f^ooEwtH17ex;=z_b z7&QfoG-2@xTEX53v8k^RItP`-cZI(G#V|q2<8|!*ND0ot*be}}L61Ujg3)4cTMN=9 z3aZY*aEWmp>ph;uMoHHr060l(o)tbvUDLgNGCf7JjcS#}gSD$O40adcrBh*{Z`v)5 zx>eyZ4u+6^n!_{I%vExIzIeDl(^3CD=w1Q603IDx+rk>q-$43tUjV8Z>I*8Bv|N$L zrtgG5etR<)07G*(M*`O_WY?#;Iy!gHN8`uBV9^YU$~o1Jbq6kOUA(r*cHYUzmNqW7 zcY*IN6UA)S-v(d>3ev)9FB>0E?8W7h-E)S;DL*0T)k^oFk$r`Yoi2`_w9DOPM8tVmm<3kI_T>?k5 zZS);>54e%*Ilrnc9Zi?Nz*zT8gA>c3m<|v066~n|;x2@?2^iN$!!kozdT!IyT$?=f zJWJEDg}tSVioZZ@EVR8iT(6=RxAV9(x-Al^M*KR#T(etB_s zdvblbG)n-VFJzYg@@j6Xt+yK?D4opuTA2RXYP4D;_b*OAe|&g&bN=?7u=5NO{OaLC zm}k?s-u5gc698kq0EK=1=8|q?-5&>}*&=pYd~x&Q1Yr#l%X6*l>r{wKBQ$u46eX!? z?2nLu){S&v(Haf9>mhnRdTx4@o)Q$C*(5V&aJbdcTe?Qv$GX70aZC)D5^w0eq9jah zI5>zceHTyl7vpq$-`MOQ4Yf{b?J&8YoB741sgd}eSNqu*2CSo*6SzDUsYR{tf?loo zORE~TY+6)s=;R}A9Wp~g*D-6TF8=e=g#h@^e}4bx|NIaD(*>QQZ>8C&(y_Tc4#d$L zn6q)3em;VXK^xk(T5E*Cv^{G}Aff+IAqpHmv2dE9s~)8aJ~QXA&JBr6_IbpX%w6e9qLEJuS~v)p*#MBvB?0 znKNLQhAwp)#`6TgmC}yht6crcqTQ+8zr6nT{qv{K@83M!btB6t#9mw%nWm9j0PMp# zW%kp4J-3>xTlT_CTbdNlqYQidS^IZnD)jzi{Icq~*F`U--C6OIvxiACbu6j7`fJg*Mszadh7+brQI?I;0%%jA=bIo zcf3cMqA#=?uQoXDiT8_98>ZhXNO@R2c#|^c$yzE5{)zlBHDG~d-=NnTp0)Z53D!ro zqfLEt+|bEtSrO|M@&SHEJ*TFaaeNes1fOg=LSJgV<9W?!?x>QCt4Uf(T;IcR-J7{Y ztQCXgVC1qM3aYl#QEkvGcH6sxVg7PZoizOoM_&je;iBkIT8Q~&YpZ?~>PIj1tMudD!=VlXhQ6K17+{#eh!=&yDR zV!AXr>#czAA~s^ZW6p`gJW{6bvo*DuIlUYW#ahUlonMTPPprBrfHCWpQFlET10Dgu zBEdHG>$5IL^T-x5!j9!=vfEeY4_2y29Mto_B zva)o`M4{WR#K|m{!ep_dOq4@!%VIwI{N;m4@TZTzua+|m<`DYG9Q|m*$^qE-%~frW zHj7xFRMsl&63Rl*;8ciejowd7)Vq_QK14{cU(pr4YP^9_bO&o0oQ3C+g(5?nL51Tk z1z?aPjKFSVaMpRWF>wi9#TevieUGi*-n7hm{kkGBHlGnM)JnS*YnU&fk3AVQt+p+4 z7FBw!f+=rwtB~V${(9MJ=ySpL`ynX2o{eYozZhq5Ndk0fg9=_rV6f%e^yD2@ne;^- zizN1TUi$xVXk)$j9XamybaHh$5$-xCHUJK=opndrd6tf5yBsvdmh)Jz#rm_3($ixb z6h1qdop`NkrQM8h*ZoDrk5}%Vf~T38eOd9?Fqn)BEms^tVlen`+R~9KbT1>~qk-w!tuXYt2 z0bsq!dIv5phWGb#EE9CiC=&J*ctZU~eYUo9Ua^ z*DvqR-aX!a`~K$TtCP(6(#;Y;U&I{+z_ee1zMv@p%$99DjRd-PFVBHqlF!1_Ei^UU z1%UPU6?9G0AU&DI={OoBEyZ}+(*qI4;+cqQ1HkBE31#&iMICw@fT8B}ZDH6T(oez} z0A_fR&TUfA&|*?pAyw!AtaVUSCO%q5qBxVZ#)kc9(_buY>*}uE9mQ%k*ep{4urLY# z9}EE2vknaeV!-GnZ38f)KFmBc#DJTJt#RwuF}7z6NPC- z&3jBG(UxVLc-7bQ?{yD=UTqYj_5pmIbo3SmSMq?rhQa<7VxE<5qo4oXNm|s^08V9HZBk8RJbL&xmrd!>C6m+GfyX66kT7POp;+R zt_iukC5h;)OqRPLQ5&X;jNlhJYU;Ze=ObaTQ(?W6x-bU_jnSNC%G>@}fLw1HevZ`9 zZSsCOU`|Pk;oa><;d&j@&1NDP7Wy99ap1xox%Ow$3}f*$E6{aSDLoJBl|ivG1U#5< zDtr){v!J=#E`+o?2g%88P0GKyGW;|an$D}!rDNx$q%dq-Rt3F6g7NG?A)F9exTk`Z zU7fdO9Z$mD%_cH)q=i1e%wlgiJxpdLTCM{6_T%DkSQG+f#tE(w4HA=Z9*?SKBj4L| z9m)oxS0P}Bi)Goufoi>URJM`gDlJa)NrMFMY*azwgAv})fhELEqJrYT0x;3<6yo;2 zj)GntISKF_ZYL3~BX_nt^u$Ywz0Q8Oy@y$Xy_~oxS}#tFvjs6o_L5N{ofSv(gXy9) zTb8w}&{5~aWNu0I)v9rJ*1x_Uy|`W6-ppyLBJS@`6~dVDMAuAwd$Sa&6|(;R`yEZf z`mnK2pgZ8z{kdyCPk(!R^X2Pnp%MEvdaQ)I2tmV`gC~-3j*5kKN59yJ{>~P$VEE?6 ziO?4}1!1RP74*f35X`22tUFT!7Uk8Q1-Hql6ZNX`pds{S7>R#GdinL6%ZEoxj|*{K zJZtPC(i`yD44Q7%%qA&xANsWQ&X{qNFAW5fNH~6ze9rRHc~*@P3uhr(Wg?-k!sbjy zbw~i}xS9Noo7ijR5)_FJ;zDTBSEGh|O-9~BP&sl9%K*T-K0OCp280Bt^?FelEC9Z_ zJ^%d2=O6$6@#jCkCTR}<)~{T_%4UVN%WfMU*kf_X306y1QuV~LuOm&mc(h~-LdZh1 zxR6FB3%6N|m0H0}01S{o=CrEXWNO-(dH=1QIDyvoLQo3&0>DT;!=h*`%BHPc2?U#T zX!p?~QRts?%N78)lDLW4QJO{w2inx8cPsoUi4BO5Foo9xToRGy?t=IFh0bS@tvb`O4jR064HiLdPv9aJ>13Bb--Tt;8 zgiUOo&_z$-!Ga3CA(eyY)kERL&OzbH?#{3KdruFFJLS?oVkt~KTX$Y_f7mX8!Bd}5 zT1|TEX*^FmRNRF|$8IKO`}kKU3N0W$!Q655jo6j0mewQ%42LH+(U*KP*qo+1>J^>l zj=xaheCl@+&==vk$2aG=5wq(BgXyxyxk0fx(!1Jo4DQ2v1;&>bWAfX< z*1IPRzP?<(ygPaG`r^gS(bdIDFf8=-$Tl~0yA7L9UVoMk=Dn=(2;M}n+*7d2I=hx?u5ax;U|*G{jQ7(? zA?Io(tc^tAG8Q|o33LU$HiNrpPqzR#otH5f$h?(21)V(#;{>1IMOm7eVBJTEl??U~ zh|aUhbx8K0jU@hoN z0JNNQ(rfK0K;Ox*D%j4Tx|gA^pckV+q8Arqx3#cIYfrq#gT4N6KTdasll^4AtC%bg zW@}-v_Bw^>;$Si_vgy(1A`I5W;F%fgLL{pUuf22Q-iyoGiGRi4Je&zuKYYA<`}Rg? zBsA4$%&@G^wblLo-7VkI_rJXmhh`AXhJd|~3By7CL0yv<7pv>*4fR(DD8y7h3QdK< z0#qN^wPt2IpGhg>so>bW#Qum@EIr)yDQEOZi~b6F8AGD_%O8i}iqtAVR{eMSu%Ns` zT!=VUOS&^p-oW_g$flWn_7~AwD#5lo_%twal+QJ?R+7kKp;^t_ZUfx+Mw@|<#__BM z%T(y1#TiM*AeB5z>&MI9#qp3vzm1Kov?poSJnV{$ndO-)DwJ^iZFgz{;J|W_7nw*|Er~aYd@;;(6Up#ZIE?t5;Wl{P|5J`1PyX zs8erL1l#UuC^}d_7<3GDL%@KwPZChfA432D5CBO;K~(NqoBF7+oU{bM3>5Xcg+~2p zrM6eC?<;gtuRV)RRHQaD_1UJ&gJ;f2ZnO|9XbU3w%p5QVCxPK1!C|w-q;Q=ql6@fq z0RSTi1v%!^0aS2D(9Ul-Y-n+h<0|h}fZpfNet!DwAG>=`3dQH8@_uHP<(6D-ifsDN zX4udvkGfUr!NTCB=Qa$3lcq3Om%p~HH@7PR@Wbm<;aolo1QVrO3LwmS?rcjsZj7d_ z=^{EhNtpBt7KEgo;k&_lfod_sPFkk!?~c%|G?DGxB1!jgnmcgpH{4|siH%N>kM+9p zkO?Jk)H2E*+@(SmUF81p;ZjJ9;T!aq2n;wtFO$UV@bot33exuVqYM-jWSL^8kJ9V$ zmX5C1_ktuX%2`3QQs+$i27Ssfj1)w&41m+|p%LGi;U&;3iYfFJ=nm6;BWmN2EY0Ze zaJb*^?+ylgX=<5Lq3>+kn0REaJ`TW>Mb-Z7s2Uh>CT8gkN3>ssM6{SOl27TdfIxIs z`khrX70FrM9G2Ei+zS?_-Dn-r8A!W<;50QyLY-vBL~|2x)`CddIiN4l>($?~C#8)6 z{|#;f;&z+6M7#E^)7%lnS{c}TvUDHtSkN0s1wxm!BJLGUhk0nal1QDzgF>&r-|IiO zNS>y%{o!mU9zRW{d!u<_G}T6DPcajSuJ~3cx*7aTI zZ||-?e0cfs<158)zrDb|SNGTP&Ev(V&oAFTUf6Z6ZSUn06sL@uRe9Y|LEB;Lnsyco z=0ShKyu1b4WU$UJR}^%q{t91p)T7KC>Gn8`Bq25_=nZ*hpc(^U&{y|o;t0qGW$Cx# zxpBJ{dNa}KW8fKR=RVqquojrzf;$1D|I8Q?K1f+Fv@eLjFgtp!G6LZBqH}#QzP^~a z+v`vqi1|ObCUldsXl^iI(o~{WXGh7^X^K+m#*`ddqhZ-S7)t+N2HYv%yg2>(qiPgYY!JC!FcR#2;~4|4?$=5?==ZYN(GG3Ol%0x^;Q8>&_Ya@Hz5o2_{bD{5 zDYV?ImyI#8AQ4SNmU!@D+!g=}cNrAaCuJ5Xf|g~J3{BOw)+p4Q#YXF(**Q`SXjPAp9Z05?~`#gFPvi<|_sRqx28PT?SWiTrY z!iT`Hj(QVH2hVnQf8N>o$MfBP?CkwqICxsF?vbcBy_B?Vb8AUMuX=zEWpp_1)#k(2 zdfZj8uOfFca}3_LC%L_uUtfvBre2E`3JysEqa{ht#C+8g`i}L5U&q-Mx25w;(U*B> zI4d_od0)Le27~o0((=J231d(S!;0-{F@J&kgkNz_!7z$ifeqU{*m5AIAsAL%oXxbe zp-iJ-WWc8evJrDqGO^p1@I`Hzg7luKup;ZaGQq4$XweVt==#c4D$lFc9l@~Wt1;Ap|ZqyTy z>@vkWnboKwi~DBowzGqDekcI8AD#Xt-Uv<0)ns%i0NySG8~XM|8TW+KC}%-`|1SUw zcNabx%s{Y(ITf11vkm-s-8a{lZs}w?s-=UH5H}ECBA~DLWc>#K2N(u@BVCXlt?JXL zwJV7AzKqf~X%+w*1CA|#-mbd@;%w3N=yZ3Y-fnmJOwk)X8BCvdr%yWLU%JC5ar!JC zKJ6zuKJN{l0n#w$G%@#uVNx3mO(I+$>T;Q2MIZovd~>dg=k=@2#}7Ax-ar3*|Mlym zNU%O*?Ywm9iW5YYu|mk>EGSVZ!V{oXCp0Awo|w z=&PgX)cIz3d6J+Oe&VKe>7bl>{zRouq+fmqW-AS7gT4W?znxrAf{h3v#MQoox9u7WT)+Ffd z(Cq)19wxgR6d6Ny8b>B-@U@2L zag`s<=GNTitGa_&uho4WYmvta0Uj%KpI&db7wx3O14f(B<;d*|>p?0D(*gk4%!SNf z$n2FwniZyJnJY^x1je(pW*x|uXU<@l(0SIJY_}hV`Yt8jUT0retFV-^qpy&-Q-7}8 zhoa7dvLP-lTJE-+NfsCdF~>kfC)#hdcblypg%z1vJFU)>PS?;kPL22qgFEAYv`7E1 zJ@}Gpr^_Mb-alc@hp(T(>M*b!>~t0i*auF;Fd(Df+h0?wDOPVQeGzyJN_ z^QZf--yXjIcof{;-EXwpqBGu%0w2%r?$_E#dUeNEgtN=()$LMbSAXH*;Zo4c7>}W^ zD=jO~d1jUu@Y9ded2hCebt98Vi`BrB(k8osJus430$LCkDlD943`sY-`qdJS%OEm< z3eyFTY2eCT9~Qu^88qb>92^qyDz;Mhf%@oc%;Q00AA0!Xjoqvnq$MOU?U8{%Yto^|XT7k700g342CIL%5e5%Uh2yA?0J|4QyL_Ggvd;CQCd3zfJ$Brs zYiaFwwze#H&BBK&o2YgXS^f85j=S(?;|z>lMax^qn|xbDd=;h2ZZ-d&pthDxQl(8d zD6Ea5(x6=&^~%;Jt?m1`yPEWZu~pF81o?CoTwaU?z&F=|;VJS}&`_PfykF}Y$yy!H zM#A9bQGb0rr0W8>#pRRY?s48Gjpz;UkKwdS*HJBEmkik@z05s%Zvk2|(z*L#LjIXH zF@CEfUFdXcXFC{|h7}Uy-$3#iuZy|MX(dS}Hx`t)DGYlw5tFHwcZ9*B!ulqgGP&V& zp2f-ZL5rb5ng%XJW{^?=fP+#r($F?$ayc_4hMT2Megb+2qeByhbfM;ezLR|7D4=hW z6mt5z4@FZ96Cd_XEd;<5SCg2{Y78C0bcuktLSLb>0wf;l@AUUE6AW^aZbw)P04(%1 zvFO!bakOf0)*W*sG*6^5Cc#z`&IKR=;2`xZ(Cv5j2}rQ@Wc3cVDX$1FrChSj77o3_ zVEtA!SKK!hA{tJcEjD`Sw8mtN!51~5Z=?CV-gu^HHJ>Zm(XZWD0Q{tvJnfBt?T&sC z04uub^Um;TJN~uR`=!#_dwh?FYmW8$r1+ZQxs$hYaicUe*Ey_ z>z7xSXMT5u2qpNWqp0oei^av|n4U&`#ce-(J->djx)(OTzIgrmLVGbdF^>1BE+g0C z4a^ftxkB8@tc%D7Q{*~&Bp3;c(c*3d`s!T4Iiwl&EB))6yY=PGLPzZbbh16^MBbb9 zGH|OS7D;qDnV0zO>gIaERvG}Ni!~F2pbT3a*0kBsVo0~lM?v;4U~*2>;4u8Gc9rCd-T`<0!PwYu%|erA2+;>S4v7YnSv>v8iGY1h*QzN!KPR#dJ|6X|I2;DEt8(gGbCr%}`*!w)$Q@JzLs1dqPqy5frazZCX< zY19hTK>`c|zyX6P9#cBWl19B67@U}ElU0bZm)IN+&M(F{w+m6DpN8WS${0GqCV^RA zPNwtf+{b~0#6sVGe^<~eW)=?$6g3Tl2Zw`U$uu`cHqoTVPUrPBSHc2}0bP84NIQeU z05B{W`$7dyg#mh*2?l@(q3?R#h5;TUfsOzG15ZgrK~&R_g_H+=O2PLR8-}1pDYzB) z4V7R3*l#R`if;hm5V~Ce+^#*dwk!u=qsUhJJ;3f8zY)_1_LW*oTf4O<+^yB0R%=fx z)n6O+r_IK*PWMT#|6BkZ4Sww;{{Voa$9@;{Nieci|_7UrDagji08GFgWVfB7gH6xr=Q8V0}3Sw1%~#_L0_&xROMN zX|HA`QE5}aY}oAbZQ3v5^~6eHwy|z7ng$JGypK!1()45lefjZ?c^bK zGCg+9tRV=!MTLjkQ_CcxGk+8}4~F=L?DY1S5bzwZ*+fy8f%adC8SC4ASbVy_`?Ib- zOuDEadpa5wtpcejVX!V_eQz;x=r{%=)*%443UOK=>+{tYPg@5u`}5KN0u$v-Rr^f4 QKL7v#07*qoM6N<$f{mKoHUIzs diff --git a/tutorials/mats/1_basicdemoquant/summer.png b/tutorials/mats/1_basicdemoquant/summer.png deleted file mode 100644 index 72f953c56a133de6c6c65c6ff4259b9fc22bf6cd..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 309004 zcmV*6Ky$x|P)H0c z57o^dzqWvAqx{=Qil7WnKH{`VP>ShE7yfW0#@ortYuJKShC+d?DZ-9Pva-)y^Aba6aAbcT9_zmlC55HB|=o}j8 z`Zd_~>lf(9uOX=cU+Ny}M|BPMiOXL?@C@w(eIVF?pAEdq_nsl~uDXZd>w+IM{^qM1 z;Rpc70XQbKf2wUoRo1n^RS;}c)O;u5t$a`Uw-($F_k?2$3XU_MYumrnbr`Cu@2slt zsBY-2ZtB8+I#){naxPh-iFAW=S#k1AHJxTCDd`@~c*m(NB>dCt=4_|+J z@Tvmz_sjD8FUs#d|9JP=hucry-Fp1?=A$<^9==9h`}-y6>irj}%YVPPbpJW%%7d4n zs}EmYd-Ur1*cTS(PaL(do zn|AHpuxH2m-P?DbJiO`9-X+^Mt=_wH?VjCBw``t0e_>(i#GJzX+@gZw$;F`YlL{wJ zFU`zP^(IGpQ^R6XLOsa=5lQ}$X+bH4-i+eZ_-t={R$NM6a$ZSRYIZ_wYFJcakSE?R zB5rJWR6wZ5FDz?>CI&kJ zj0`3biIKtoR{#@hjk_85L;!>6ph?G2eqbd4BZE<}-3-S;v44of0St$DCx8tS6M*s9 z^#5l7`=YFG`ubMiAjr5gfEK}kkWg>W0pN~-A#tl_21l;}V50Bv04BaV0qja*{<}f| z^B)X}!nvpji{_C+h#DB z01Sr|>j2Ww^|i4Z^{wd#siygd_$QM8P4u5-{+H>K16Kem3`+nLERnthImE3&Uld;D z42Eq)uOKdbO!=HB{M2xg0s08{6wlN629CgA8ee^?BV;0Rfu_J(6utz9?(hIcY{OF# zfRVuj;74yNk--RH5CHhj)As;iWbpL|uZX@^?mb5U19}m4xB-`!{{|Sp09}3f5@8A8 z$RI(BjW z=H1IyZCbs4^O_A?R&U?9c>T(G>z0CMty}P%1unojI#lllh|;>AT+@o!%hc0ybpE- zFo*!GWgQS*MaNUlT|AP~KN~)Y31cm^IOLD{QME~`1z4-q42KvJv%h$V|K9)@Huw?Y z|2qH!dQojX{r^h?~ zg#k$X>j>G;*bD&EuZ4avxZifR*V#+YiNbC5Ytg|Kc9u3k7{*Tum?Tm<0nFKKN3R87 zdUg3u;QjRKTYEtGKFi>g$OtN6nvp4Q-J#cj0w!N!1?OeHb3#Zz}6KdT|4Y>l&2iR+s}AWdN9K7zTd>{7Cd-I2wX+9Ru}(YW>dVQ3q?OdT|xNJP2y;9s)IW4K;QSqUcbF^d$%EZI^NXkLw`2fVsvo3d9s`oWmec)D03L#8 zK>E_Vh4-Mo6aC-Bzg4FhrT+{1r@%b~MT6P;A4mN~;Gd$YV*oCjI|p03hJ?BYzW*4M zKRk5`0$)BqMHYV`dA5yzcRVdH&H(78fsV*a1RIbK5s07#s&SDqrJK;C5)L_l1$P@d z&|yfm+T%WL3uzavKtOAYS_gwMl8bSJZp@0l~0=xe|j0Q~svXJ&#c9=!Sl z00yB6#wau}*ub!~yf1XH_leYFjPwexsf9>Jb4)OH+F}FAL|+s>5ChH#V6wj=1};ws znDKpr=skPuA?VEQho^5nIC1Uv-c#o{?kQWp>%h)^M^~-izIf@1nX~_zIDKOAwO zO{n zM~!&>sSd?S%!AUjVZ@~g!vx^}C5D|@Vax}koX5vu7|dhT%-?XF_c|Ol-eewsHSEP5 zfYuDy{q#Wfa){oxA0TJm*Y1FY;FGcsXdR4@xE#PlUrXBlB5@rgRsc50hw!5?uP^#? zr^`((_qfh%u3)f5T+#p!gBu}n#4U#_(wCn)ke&5~TTUj*$2-w$0ND7=xB}QUNw02d z`vHGzRIOAU{Pi`GnK3mmY@JUSl;tLv6I#l7wlQEZxS{i>oxc6fr}dQsMgS`}JkSpe zCTT-FWQ3q)4p?L;@Odayt^*H!6ilM8n#U5HL4IeX%1LPcCxHJo`fgi)4z>0Cf?rNY z->=U8AxroZ#Zv?w7^gr5zC-@f$Y6v$y&U2h_M-_#`^()e2Q5+A05DuqYL*hf1mG%o zU8yhH_oKcv!k(_r4e-((lqyE(qKM_3zVL)-*(qku;cfU}!wq8y8Ug(14P1VH__`7R zjDcumu#pT#3{wu6C0rHufWe4i+#n>AIYwJdIb9A~61(-ywMVZ}Jmbq9FxX#oz@Uq_ zpPaw>=+w=>Ph7u;06u-=@8ehQ96Wt-!|sDy_m&+wb8+{9!wZ(KES)$hzpyAPKP#sw z2lKn*3eywPy;%jx*+r=(lX9lc9G_Q`5uX+b==COtqjLoTI3uF{L1EsppwQ?5pf6b7 z*p$eG^cVmzdSXvp5IhR(a(JvC+)Z3Yjs>S15gioj@rR9&h|$1ZP*~JR!1IV#6}2Fa zVJ=^BX|lp-g2@NF#-fKe#8i`o8~oha$w;?~g48URK=`p3Ut^F@H{G7YSnStv~uwl2n80R;gu2GugnwKT?nt=-YFURT93}?oI z7V16-;2QX&g9Md(xh>{a*eKD`e~2Lizy^a6!+2-JoBdp5kbT}>?tq5}Fn7a-G>p*` z%iORgu^|jTBY>&=ja4bi_tw=9r-{y>l!`sDfC1;U`Y&$nHKany?LF|EaDFMy-uedG z`v*G)hB^m-VGdhXlL^r&Mf<=|D>z{IK6^#!MnhLm1N>3w42GSoQ`E{T+tk07npW}u z3v{HMv`p5jq#ISF!ljH6!hx}#U-Hl~3X{ReVBl^w92VgDb-4SJu)l2;4eg&AJ3cpe zRW^0Pc6ogp$FLE0=E8>?No&01J{ZMA&;Vd$Fb1N5#N>lPlnh1;gUAg7gMp(6R3Izm zTse1F_2pYrSAbNFR@bN2mcOO50_`;2|ckiFRefP+v>)?I& z96PoD{^QDOMqSuW)3H#I@+$EPV`blkvuB_n2M{N4w$^Jlkr;a@HUW1+{LqLtTfT56kQ}8 z;1VAbZpETAkcROOPG8Deq4#wHm}jij5n0#kV(qSonX{B69{N>~S(eZ6QYI{w;!;Ov zR`JAR(Hgy~>=`T+ZeSkQiZeUBxFKY)f-c)uXAeIH<%va~0-pw%000mGNklpNI^@LQX#_3B8Hq0@X&h+;qh6%&Et1M z$@0do9x3_PVP$ULJNrp(-Gl8vhUi31n%zO}afJZ7@Mfgi!SaGHhx41>!N%@h5J0!F zyT87(w^p7oVZ@?dCnLm$4o$|yGcpX**!*1q~u|E9X}?boLFH7!6^04*T)V_oZq+VAha zHG|+LxP)6_5A25x*n>Ms#vWdHMHU%1a1Y%2x~c(QngbZ?pA7+qfxZM_txuE>MiP@7 z1^@#-k--wc3a%9RB?fa6i-7RW2Urh9ZW!yfC_v4xG7<~=UVZomg#ecR`zaC~E-&AG zdPO9FAMZbXdDqF)r*7RjapOkW#f$sToZoxu?Diu^51u=J>gwgPGp81=T3$M1YGzS( zPHBGe^a+#aP8(O4otTl7m>L60O82B@MJHu>fW&YalN^NJ7ue~E2>|;G7>-Q}@g@d? zfVI(aV2i_ny9~hops2(kAa`V9kT*3fKEneW$?4Jg1ft0Y6NzzyXNZmX zGi7;+l!o7R#GlFRx_D~?+Z@1jmcUb1RN+bgsO0aBZThhE>GY|F6TkzeR1(@MB10Kf z;&>CLu0h&?i9<7S7ca%Zy2q@XQW)kX$GT;RnP5d<6arXk2mwqRZeeOGSgqgz^zF7~ zJ=JmCsxva>3%~?jJiMwZXekPc`byRN!Z4NXsH!4qUl7CU%t;5RePLKKm_xJ|v!|@y z-U(*Q1k+Wm z`L*srdaYfr6?TSaK6U;6kt^4>96q|~@PX|oj%+)Ac-QIUyHB0kbNckEo!eIL+P-1W zwq={vOr0}r%IvB6r3HB<`6W|J;W8;RIXNpOJ~cKj#T%Ov5t9^#_>4&w_BSRW2tW&# zH!Ny&c=Q;!gzd;!|EPqJ__WBR%s6jyWHfLW6ep6q2;hi#zp&Ubo`k^k{P==NnK>n? ziOslY@bk)iMqXrp? ztvY93sKpzsod8xf-apKWBs!W8C8 z9K$RkZHuKdvumR-WmpXW^Rz1=jd#tF{k0r0D<*f=lM|#}7(6uO1h8%kmM|V1;!Qi+K%{)te-P(%ge$XA$oaLMT2h|B8C@u^ROFLzN-ik9t<2?hhLPSC!wbsDAnB zE9v#;8X~lC;qn!EGME~Z2*3t|b#Kzgd(XiHzb6w+nP3DkGMGZp$X!IQ6Trk^3QbE4 zV=(!dQAACKSc3Tl6<)!k;CW77z5_ab@z&AvH})Jmvvk9@sf!m)oIh{c@`dv^u3ocu z_v$^nR_)%tx*0f52y zCT2yY=ETRRM|t9cM7=aBDj+y~Oi0A&;P6p_p+X~`fA|XG0CvUjTkBL#w5%C5St2h2 zB>wgtRPLybHq7xbCYaOLnLy>aSPBqN3rT#O3 zeSKKN5Z8({SfAN$!QPKiQbc=r-vwFWmLI=#V%X-ToHh$3Le_o495@+FZA+}2#|hwm zf-W9d71SAw`Rnr7vZ9NuGBW_o?UcN9Y38;X$@C>s(8vMvZW&%c$18C-gQ;lNo>Q=@ zcm$`vcljbQ%MJG#VdP={3dS556g|oSx#5F(uNQ7J`kJUF^rE$;ZNMt?!Tk=wO)3kk zPR08B+WUG{z(fCv=o8uEF3hGQZm}&2MDIaFl|{MrK&!o9i>E5U#Ug#t>>_%rnma&Z zTgEC7!$4n=GLZCbfYa8_0RXTx!F{cL15N-_839#P;HQ8;B8_&zp9h?WVJer`B$u;s zB4CawL#%iVEClYB!@>63^AFW11G>k}fGq%%3C2vY0bmf(_rk5mDDzIITj6LGRB3o) zAKZam!ta5^lELN73Ufp3S|-hVleon+WPnN^H!Z)*6024g*_j5eZ|^sZqqD1+BaNJs z25?Vx(@%21JiN?#Y-h83-I*(co&AnR37Bg=ngJO6EJjw?>A;LbJb@W4G7nd}hBvLj zRrY2i-reg=GaCTLH(*Z>50YF>Fb6P~QG`W?m_pD-`H!;>%W%dt(aG7hg6CVrX5_Rg zsg)!~7#kRNOz;>k+U(@3vnk6}hDGL>C$tk3-IKw3GMWv*zxsr5HkK-YQnRt>RE$W^ ze>0-m!2bM*Tf|=H;4ckeE3AS5#&RknDj+|UnupUM6TQOze((AU#@)cAOf&Zg=MT!*onmD24Jfq+HQhB7`;i< zm2~;;vrBiLk}lqULIMV#yYUb&&t883muP}XoW#18it4to!V81jkI&wE1WyRhf8wgB zv?@D)>A=|wyN@2yLUJc? z6pV68c0y8C96W8&)bVNg>A^7}L7uUo;ONmIF=N6Lf+Lf|q7uWgML0OhKOlTGSme;? zz`%&H!D0TONN-3~Y-o5?U`T|Y0`POjU|()nV^~OG7ywK@n3-Tu1p~0rD-4&MOitE1 zd~g@9h>^DAhe25bz|Kl8M1!0zQLcezN6;m|2{8adH_S2Y+O}kzj?i~vd~jz47Jdo3vZ+U3<)k+Y zwfMJ67TGwR;^_vgizYx4bh+estX}6Z7GAe3?6S1fR7ge5Q8Xk(R#XX!%W)qf#fuJD zW7zhC!RqTKDz?%Lrf-|i52)+-QQ!Hq5xyVzHY9rSN#IR(_7CA_#C$n?Cvvul{LRPdyW5ewR+?h{AO?rCk^&O24lq*k{I=-Qcb@C&x#n9u>3~S z7_NHw4j2q~sL_^5q8BCU`?R9UQu$Yd-^g`p2zJo-Gtrkq&`to;kSr|7QjJM>pJ7Wb z_62baqZJ1FIsptdtydHSWGC;H!xyMVC2Z4s8JDdAu)1nRzz%YxHkxH z@(Udml@JaJjui9_3iS&PABzeM9c=;lxf_NF##VJSV=y`3cap?pf>FZ&mU0Jf*4VU#DKd9uJO3$3H zqEEtj4BRT5=C+kjK%*&I)cNBRz^sWJ6A(b$AHV+n^WPZF79^%Pvrz?x^~^Mmw4E{7 zlI?dQLOU3RrgI(M@5Czd1XCq_f#vYDzwiVR-l{PADv&NZ@pMmiKLfB3Y=gi$gMqG* z_7@w{u)GTksxhUFGqLOBNKP8Y$!Be%8zyIr6QNc0R#k%x6xYgul$K!6i}D&EF&w3V zz6jvwbd<(;vUI>4!04xmz7OAh#-<|_)jw0%*_r)CVF;QgWPzwXNs{>WjfbzUKL8TH zAVbVOF)|8|&R#rv;mV55+o%1tVA;BjtG8^Py?D{& zdDE9|TD4>U&MC8}0&CNA)3Qs)>hIzM261?0vPt zU=jlOmHd4WfZu`-rgmW1pDq%?ROsZ-RgQ=7;H>Dc7z9A zhE8xW8%0L0+%@c)vjj<2%Jdk;w7wWDz5!XVW+cmbU9@XkuzB3 zz@k=THg_7Usrhh9GCUwS_R0ktgwPl9g%+F+n1~Ck<<-u71{N2g7r2YULCtqwd<5MV zS3lykEZr#l4j2pq245AUsh-iqN{UV^Hw+lofoKp=`N+8&tGDi7x8vaUgC`H1y#xS0 zaq0H43paNiKeg$=p zufSbYT&f3n9G4U>dVJ#o!0#e}fw&ZZ4vz{5i5QD}un-#8QAp16CT2v(Bu7RiMtI^v zLZbtMBgY6ujRJ+nj0uSz9TYhdw&CHy;bX$10#h>L5>sPD%ozb3I65$BjDOfD(1<7R z;O|rg7$*6`u!=}m)Y561ZC(d6!T9TO4y|#;geGm+9|{^`=0xaJOXtO zW4;y(rr1pBJ_Imke~ny&ef=fO?<(}#xvN)#f**_ylNbQTh_o=on!Z>nCHjR}-w|~j z)wWv>Rn}W^`zr+W?T|rlR42T>U%$Th^$~YLjXnLS=DtDfGj8qug;D4R`yf)e_Q{Yc zFqE|m&E3BmI|uo3qlV4LcAm_AV)LSD;uV{3r4FaWW33|Wy&#vA#87we->+yw~k5F(G7`$cQF`)16BWD4+$1mPG zaPrcjGgptEzfpGf?6$J9bqBW0-?((`p>4a)AKHE4`1Ui0w;wM%bouOw%jZ{YUO#RA z?2;Li^CuM*PoFSx_LOnOxf!_`rBl_KMX6wICuZjr=M+xJhy9@V)Y#bMnCQfCF)%Vd z7z9>W%&UqI5kn#qf&jo6XU6dwxNH&j?26QH#OR>#KSDesRe&1nv*JTzQ=`1e9s|HY zU)(?d$0kP1oI82JlGz#KQo=kzp5@+){zGRVgh2j10ETuv80! zG||t6*GM}TG~{4*ZBlYH(OUJWu7z5@oTxGF(ltHIlf+!inD*8hD;hN`aR58(#hmze zosP-U(q?AbnWY})4mRmY2n1l7ljTdkVxcT#ZQ<6rr^Vi!>gt~9KECS04ExI;ZqJeq zx~6_@K}fd+7+jFkz@)%)BxJAAiphfX#;BFhY zzsh=GYRGX$zd4edd@Lq`&JW?o$FtZmi~tssUJT3Fs_OVuTagMc+ZMB8H2sN;9FPfG zF;#4kX@8FE;lnfFDo&_o1U9AVaE8$ zvr9{+7Uve{fC?uTfCG+AiHc4PjYM&26abq%C#`cA4El<2!6&a0XypBF#D2i?iRk)P&(~t-*Nz zN2$hN2Y&c@y8TdV#+f)p3+;tl6 zYK@;Sa8)u1_(YD7Po)quq2$~s4Zk5OIN|_S7r&AoOE@-MiiO@*nqJr z!g?lz*K1y?*!f z)tf-yEqnLPT)1e$v`L`SnG;H8lunvAb>`AJOSY}qb-HZJ;oWQYY@RlMCIEQij7gxJ zqP(>1jKb35arwC^=}F0HiE&Ah8QDn_XB1AGTRLf0N%r`RywY*wibSF}CMhf~IaJQE z3XD$)!K5#a&VW5|>G6(%OSn%$YItl?2!a_Trc1{9d*TDcD!*|-q0wNAMI$d_I5>P1 z2(JnQ9X%!(9B}mLkZ8Z~*ucb$*sOxIv*e?LDz{{X*$K!32pX_-mjiGjol zzzV}!#9-J)D{Pi!v0?!N@Eb?3uyca6>l(v6K z4evU=(q)DN(zmvyhhovjoDEK2-dk)Cm-K(at+6fVUJV*(G+JXh-q^Z5zu2k0S@Oe+ zY-yCBVLDx(-|)m(y+sb#M|qJ|txa9L4D;+HKnf4pIA`A`jNGzzBVS`jo#o}e?!yDo z068aR$qHi{n857HV2)u<3+ElU&2>h$@txpKo8gwviBF5qj5DE7Kw@MtVpx5RayA7m z!3h+U!e(6XxW9D$omG6N1ISiQG7ryE&_!lpdk|MrYKc!=_Y;R$foMz>`e1m)jzJ-n zvK<&g05|KoSJb2+tfY3moW6Me!KZUjjGE?Q;Tup-sNaA(Bf;OH0&pLG6%-5y5rA8V z2HSoOfxZt8fUyR94ZgYlM=$zm`g$=o4)5X1_s-8P9hJ@PAM0CyyMS9jFX+wJ`q$NU zud5npNEU2>)S?cx%^z!;u#WmorJRq%CT$txK6qT3U_6W)X0hmUG`?~i^m~d$6M%0% zeTSu3gkcV2il6A6$0q+}^U22Tz%$hNI#j6MW^JZio)#tyx`D~z_CFA zV*&&G`~&?1!XradGm;ZiV#6bYN09w>1uzPr``qXiwgZ^S8pCF+s>J(-X_zISqD5BN z6~MNjwAN?11MJsVU0Z#8&31Ooi{@obR`A(q4YCg0xD0qp4>H(F2|MO!>N2Z7$}1ZH zriB)a6^l8T`Gk#OsLY9IbRQX4$!HqwvvL~WPeW98%h%aemR&neBNwX=#HOF-GlBK< zTZ{eix@G>^d0lHgQ-fo;zcajSjD4RLd! z&12EF@U;~3l9=jhn)zd$QEuC*fP6L*`d}Q*NCO(t6N_b?y86g{(z@3g!#1nhVuc_2 z*dk8IMRV0AesV@}T?{oF+@%qc=+W{0z^f|&52)Fb62OS_0qev|F5aNZo#aO|+&@mm z!igNzGDH(OKx$jQ8KSba^0)HJHUMMD8jU+#HvF_y*WClE?dk>9cm4!Xff#(}@P6Qp zeQIh0%M0`c^uGPp08;3!u6y~VhL6q=!4i5>^-&E5xN5NHnODM2k1z2G&bc(H7{Q)SV}9&tAKK>fFt< z7w??8e0T5Rvm19FSg>M!@x-Y)1;r&3CeNNbf7Yxy>FJrN>1oBKC9~$wpEhSsc42-- zZgx&#{-o(sm#$i|X5;#~3m2A5o}8YYm6@BJk(-f_mJpv56BFl&PK@v-M*@t!2@x?# zuq{?o0EzVk4Xq5Co3)}IC2bdR~AJFB7H+5 z#zw`4coV{Lok34rNK`@?IC43RS;R9#TPon4Fkr`+_2LP^9fT`482YO8?8PF zKj$h*u06rVV5|l5UihMO4>J5(z~mI1mp?x z>Yl9nW|)d`XDXMkeqqp;r-z55ug(EGy)V%hxyw~i+YCY&^ZN@(*MF~o{S3oArtNgw zE}?H+R#ra*pR-b<9Yi$ZxnY#k4I|z(hcHAuK%xp^ZSO!orIgzvE6GFLKqhpAG7;Nv zaF+t(v;numYhfVT)(|XPk9gz**G*D?Vm%y#R{cZn@{w3Lk%NSjDVw^**#>=HmC3f1 z0b0#ka%6O`j=`wqAL#Qco7?g8Ydf6Zz==*LS#Y%G_~#a0Rs!{1bv?~+e*L-TRpmE4 zaw19p1KjD03?L;U#d7dCuD2)1Dl><1#?t>nRhxEBm^ypbyd~3T&zm@P=8Rc$ z3yMmLib@L$OD0U3oL^W3J`$8SzHs@PRXg|ZU9xJ$yu}Nr&zS{C1_sBaBzTkJViKd` zQoI?tX~~(1@ySs!@!`>lLRf4C0G6yBi}VE&gBwN+BY-1f#=;&jzPKMYgydR;azS6D zY%thgS*sO_Wzs<3_~ZysYNj_OBPK2}Iwd_JF*zwGFL&jpjT?6Em@sozT3&uiW_o07 zOi*Y*m?tE{8xflv8=D#(5HZ#kf=1l(f-IL3E$ka+t>Osd7s?i^Ux3)qolBCzmJAqE zXxb>$qQtP#M*Kx{x3a#YlJG1s>@2x522%2|l)B={T+~u;gh^vPc~`hPduNSO9perb7xhwZu32Z- zJ?f?9VaxW$9Oo7^P?Kl43El)?vaPPoS_V*EW6r+puYq0?0ng&71G>ar678plh@J9? z{E1VOKVfaF=vqOn+8>LzqC|6x{r%A0kjgwiN;OL45h*my*-5ceE_8>KE|nbpA*~)= zwU#}wnAG(XM7JWPcmXrMG;XsHaUbPe!Gksn?5Rv`9i6U82VAG8Q+?AI=5jh-~C zCICB^Amk*5gE>Fi;}ISY=2p9@>~Ntb7n-?*OEkiMxC7cPcocB~*V)78C&U1Z|9)Bi z=uPDV@X%njpMSh^_u1*ow>IrMxMIWRO}qB~wP@MA#mkqhSo7DyrBkQP9+zEEm|t8} zP%?Gu^y$-Q&R#Hg*_svemo1tyd-}|IvnS7-IxasqDLobF8xL}dcnkuywbFisl^kfmnLOo6qJ^(+_ZW5hK(iDr=;a&$EU?b#D;sK zL&GD3!#qK;2~m;pVPk^-9KpXGWqF4MFfkZ0th&NwtN3%>7_L$gvQ`Vnt-Y$Kp&4wr zx&wE{JXP#m;DI*yx`)om(vg20YW@YSG9$FWbpb(Ar2=;KY>XR|z zXNS6x+jjm%C{$R_%B+SLosRf2%EMGX^Wo1l_lh@k8t6sJa@;xr%t=i5FP8!mS4d>i z9m>D8V5_JAtrO~c%94O1PvX3Z zr=p#Y#rqhq&h0XXx4HxSD;xjjF4H2}sthPvp#gn4&=dhIs<^f7790Kjt<*Y&?d)P9 zCS9wgf57l-Bmh%AwgPZNhwdqA#<3f`Vg}HQ07eNOf2O&=^>}CQbPeM2OM||K@g?+% zNtSe!mS%~%n_kOfGA(vTIYFyaRCM2UV2ptlHl_uMu}n<8XKB{q;QvAf!0|<~Wm%pF zR6UoO&D)RP?mu=G9Prv5+g5JbG;P7W#p~AmwQTv^rOPHxpPoB@{QQLrmaSO6a?Q%+ ztClZXv1I?Dj-B(CX+;!1G)}JM z+GhZmM`c|zrWQi%`B%h)foJZmHF}2-@Rqej0JC#&*VT>cWY>S~uywq3dPqo()G)Qy zMtc$g7)zXJu_b0PDQJ4n9MG%sK}DpxSnXDWi+{~<}EjBkt^l8)ItLZyLbC9D|4`6-va^9s!uXSlEC^mFsaLG)v^Ij+U#z*A+FGs2161IdStDywA$I z+fUx@I(&A?nvK)`S~Pe0;>GJ$&0Vo*{qC)6w{4%jcuDc(i4&$x*|m4a`AcVypE`Qt z^s$ZGH*Vj%eRtWOeMj~mI$5@0`TTKtNr|bEMU%639|9M>dB^^ZTX(G*m!Gh3>C8O` zHt#LlG=0wayzwcpbK|yUn|G{Ozhy~6YB(6*@aR#1XV?jXop6U4bBk&0MrhCxyi%hsUIZrsu~O&nlewSINxPa~Eu0GHvekjJ(Xq zxXADr(Si);2TAE3*~sJ{96ko@@2J4v)hJ38d64;C4q(n;1I84uaFrFKR{3KS!>?2; z8!fn0XONgDiIKt1W@5hVlG(OoPX$p73Pk{J?*8R0P-^Y9?Q{*pQuB`)ZdH^uy)_50 zQ3leeZ{pafCHgV|Qw;~d z;($c@qNOH#%>(J5^vm&VG}VPsVAj|}Z-8&pYJ-N2=4S)eiiCO{BwVTpQSqg*lM2FV ztt7Yuot^7qv|fyRV_Psy@X)r{Z8(>nZ4N(L_~EI-Y-}E5z2h_&8vbfPCL=qGwaU*b zgfN0g@#oh%*NgNr>YQ!iM%EBa-WQ)-d)zuXW2+gr^iQxT>jJCjP9+A;eu0T6_ZV+t0SLT$*|<7i(>3&nl%DpvP_fMEQd-4oX>b!8x ziY*6sAHHyE_rXJ@Q>T|qpE7gdyxnEnPhC8A#)aC5KKP1zo&x<>ZAk znK?-S#lnd>WheF?Jicq+k?p$=Z1`)@$F*fB)ev0BO+nJ!=xvB7ms^kWp4sFK#1}Rh_f!2?lHv@V5~* zYDxz4J+2sbMyKhX#BvM6tbof{@*EAjA1C1 z3er9p0BMAsdB;7aEuC{7sOs1NuxpjFAp)>vf*oOJqHm48j+c8iozWD~{n`R2{y&|K zRR(~0p1a9x=jG!Gt;tiv0NALt_9c6OLHca0wsmy<`jW0nwJLS-5Xs*Ix63?;O_6q9 z=4O4>n!(@LS4ztf8jBJVi8+HghKaaDU%U#p5-bhh>?-AqnFDsZUWHzYQETFIkLx0P zjWk!Kqk`I%kxIH=?2|O^L|pXoJh45@Q_)rKo+)@s)JMb3oiTOy@`P)ZZtFtyR?1ZZ zaf1rN#p~+uyER!)b|}@hcT=OVC~xlS!MbQ_1x9m>b2&N&|3@`Rt2GnF4_hqIBwTnG zt;;xPPe>L@rL16H~Dc6AEgwM_06%8Hb^=%(&&Doi-0WtvWH101dYmvUsOZ)0VB?xNQBpMXOhB*tKWh@sk^O?kk=;3jjQM&di+$H=nq02>5#F z1;hp=+wr}0JX4$I0_8#1V z4j8m_)okGF&VB1(d)w~Su}L97!IH`2_8r;`J9qEj1hk$stso>~w3>${XKv^MX~6Jk zgsxf{Ne8HLg<#PloD>|H7!;lu7@O&d$%qEUW_aT=W20h2L6P2&P>)y>NhstGzo6d& z!bb*qM*D@16ac14-%kI^G3*P#zIe>}?P81VUB%8N9}vAp1+~K>1B}1hJTZ{C7S8wK z9Ic)H{pc*1W0-8Bu)>aIYT&nMbtzyC6kA$Ol`_f0w@O&@@*+FueAO_UfoR9PNn1|K zZq8`IHN7p+>o#lJCxG!iH?ttHD}eu_31%byT|)Op*OT7v_XS{Qmz2q1i@t+cv&!wV z@gBqn)GH!8lL!WY`H7Bm9JDVt%o$81CO>M~UkzYoTanO`o%}u=y~+e@vT_qlzLw-% z7J~LvvGo&G1(|OfTIs0nw#vL6qP8om0GkTA?XH)*TW2`hH44pdA`;u~k8?=meq#iO z^&aZ2gMcjiDH7ZtdqbV0UBN= zNX+U9zUVay-^pPbF94Pjz?7He$y&bRFF9RBVhLcI7_D&|ut%}w&ti=bs}3A5^-yao z6o&^r*i+Nl^R@j)RcjYWbuBk_Ry4GKtZN1IqR99nhDD>4sq}?+000mGNklfMPMfw7IpM0#o_p1EzU9q@t*{RFRH|*TH>%h9rJ7>+AH-F)hxl5NVUAKM!=s*|0 z>H3W`7A_uFoS#vcvth@oBWL!Po!EW!%>E5K*34Wm_4MWAr!E~kbh2#!(S3g{m=l{2 zGjU4kv6DykmF?JjaQluu>w%_l2>=FzyJ73niPLhy77NxM*syiiDgbbNN*ItBu7V*3 zRIgsY2;D8x7jcWOH!99g#;etSl!`w`{D}@YHZ3$U%i~E16js<96cXhh5gQzp5C%jK z^^6G&{nJ1A_pyQh8WZqOkk|J;r8h*$w62$~l7qBxLY4~Ts#$;nhqf{e76Il{{ft%_tYoI; z-<=&bF6CP6wW!Y7NJ(NL30nqAZ{vPNVyE}DdY5_4CkL>Clg#6CH2$9e%mdL*nvx}T z4(MbUek-qGF^qJ5a-tW0g5z z?vg)B88y=Gsa$4lzpynBX`3?Ebh=q(U(m@}&P@fnm5!DwUm_SA9m&+V?2`9o-OPN( zh%N8S$7-@YwoxP;z4mD&#_Mt)tSg4h_kc6S)KaH%5*Yv(L{(r`CzTvTW3;myvsy8U z1NW@&5VJom0OK=j3?qZ#=kcMs=?!2>Cgvzy%nPP4WsCGR62@GwD!+-+Ef(g*|3q z@_gCpi|cpp-+S!L#hZ7w?Abqm$+9IYS1;eNe#OQOtG8`huzLBp;@r55#1$Ks96GiC z@Tmhw&y;Q6wQlmPk`ot>9zTENz_C61kM3T(ad~W_r+8xCp<{aw9@zyB7`U5~5tEe{ zzj(#WMayTTWJcwUPeHT0YybK!J66ZUhy1l@GKQl;yY_9&%1y-PB3gM6;2ISEM_}0R zWOjKhI>a*)ZbblxdB?^iheRa?MJ5Eo20Ten*hqjb2+S^^cXZIdKz>1gkVXf=&fkH) zBLn_5!li6V%3v^Im@jKJ41jr~n6El&BS4MgKDbdvBy$GyZ2&NsU@DR4h4O@9%u?Vu zH!{c4A1fGF87nWz^F%sHl#xjxqi58$Y1KNK4_^ai4>%iz%KYe0|F_)x;x?}@)79NR z#u~H#I;#1ih!eJU*cs`veC+UI_p}YCv;xAm=yAW4EssmMx>5rVmXo>-N1aFKCgx5mXs1>tkrfF5;%Dh7q9Zc*ECtv8oi0dR{AEymH1y1 zQ*M6p1t<7aP8;(1lrcAN{nb9slP`mT&rIt|u_dJVD$CY3k+{XNY9tPsk*h=Y(6SjK ze#>I!;(OM~iw|2q@zSX(3V4?^xD zdcpW2ec#u#=+T(6*b1&PLyWgljW>E?EFuHrD+A8ev@*n_w-x7Z-am5g(z+dcwv-(@ zcjxYzQ*W;BYIr#KNl(&mTeIzriJl{4Q)n#`lq2c4Y&g~ zG6Ay#LVpVg`2*04mKRv-A2up1#y>c643KzK;6H)8NZ&vG|7igjr)qHe4g+AEr80~O zCW{OJMh3h3V?K9UG1%T){DK9jjchTE-$Dk%CGS_Gb(v^=;_{kyDFI_-Fp>BRjjO?@;G$wq4*k23c2tBqD=wZ-@*xlAku(R*A~uIE9mbC4Kp}Eq{#3U0Xr5c(^n2OrF@nu+FnkFDyTe zF#4OV&w@i7-IjGS%&QtP?EosKW1SV$s%AsxoFBQlc!6iqo|BH@5dT*qg;I zu<3OvjMbm0Cd(Q&g8N&$>*dP9d}%4pU3_&`%4fqZY#5f8u5xpXw5G)(>vXdgP3gkm zL4`cQ`Y3Tl717Rsvns8U!CR6nU#fli*)qFk)K_;j!N&Wq4RCs=(g97KKwN|_=u@N0 z=Ax-pnR^*Bg#Ex>LhswJO>e3j-+gOFQ;X4N0x;}{Z33`rl+pt=Ma-Ek3xTt@?!SD0 z>F%R5*KQrZc=hfYBeLIfkc2H%wj`E7iN}qXrBssSe{G#^gfh6bL7MjUHd;PL5>fp`UNltMH0$)!k@B%PFAEkW))mk8;m? z{*i%00>DtX3-)1H#`#bkTMLWOC6)nT$za0)TXq4LUT4CoMmP%z2Qr}ENxiSGM}7F(0HUin zkO7x)$LHj#kZgv-`e*5Qc$Y{OGsoNzQ#f6%GlALGruMIn@UJO7R~hXc8egMH$yEeq z>M*8AFBRllCGkH7Te{7>hDa-P^*43)ff_q{Q4Q@qsQNZ@-A3n1j&=4HCSpGyO2g|R zXzT{9-_Ya+V7lrAFwvJ!!oqVeq$buV8H*aZ0$A4%n*c@ztEZBqJb=D9LaSU3dl7Z% zjU6CWk|xVy;Lt~*W0X27O8OFm0kJrhn)ffko#CFm6btvm8^gCJ-mo5li36x<>BGCv za3SFr`;MPov1!MmHJb`1P0lDN%$+oT$%a)+)-4@ZoE?)G6&V*1=?#gB4PCZ&(S9K7 z;hk`~a_!=@tb}DN7o9$L{P?NECr%$ZdG^rExs!4W0kPW!efMwKwSPT0U;rcrlL3wS z#i?M6x9wiNbKknHJJ%$oMQzx!9K0{^7{I)0-QtMoK(w=xxFaRGMFc{ zgU9G0>`|XNkBu4B$Y3K6P3Ht;e_z=B`g6Crm_%ZdBrzD`?>a_}rbNZ1EA11f$rDTN zc5%BPkHWTNC=f##IuW>^F4`IBl_E$hcQ_hEJXMtkbwP7>o{BT(X%* zyjchtY^(riENbMstZ$2oF!vKOX_x~dU-Vq*_%P*V;e+$3x%?Q-r$CTj=QH%JPEZY6 zqOYFGAd?6>RKP~ExDUf}e)-PCFt5hqeI__;0V_h)(M=A}rwF0gU?Y%d{*kaOQm^6Y z$+qb#dKzlqR7ONz;*a?gI|;DWA7LL3i&XQJwjt$`^}0+>S?f4SPs}T=u*}#hMP|!F z2=+9!RW!E3Wo2`FRcn_V)~Gsq>-8XUe%gl(7DjKl)p``)MM@=)= zKs0iTCXLX*FZvbP7Gq$`B{ee!<8Uq-n?>D9_?`_1Tr1B-@CyM7Qow^ITd5(G8o;h5 z7@=zj@WzwAWPhnd3!WKX2&bH?^0$_5FuvHAOnqn-jy@uBwXPMoi-K)%w?JQpj-g9K};`I|I%t=en zPS40m$x6#E%*`&$%E(Pi%!md13jp@S1TR=VXWx;XsFiD$W@e{OpEdQ^$s;FDA3JsS z#Hn+KSFBkGws_}W04i!@`nWh1Quc_^&H3Zg0kp7x_x?@WcCC$y4MI7J&IsXhJUy^CYr5_n`PTp9uQ*%L?bCXx1oq!Kp080g|+Q+0$56}mde6zE%pU^iM}M-!cl(8vL4mN$3ZbYM z<&?2O*p_A7gI$$a{rG`#CXsR*M`ppJeb*EzLp}fnXg@_*DO&0#;+0nF6eqG;KAo!VF?uUw*vx?A_J-F95wqF5cRA>hi&pm-Ze# zw|#5b(#0D}N~dJ!6sBipB&8&0WF=^#-&Di6Cxyl=k7bQ3v}Svo;4emu zpA9A$6T>_9tdC0$4h;JjKo`)9!mHfu;x=9acPZ?Q4E789ZET>RFGy#9g%t)cBZEm; zmZbnpFmnwiJHd(UGyqKFy!mn&bd|ttkeKFugM4)>J$G~uzpy8#dDWOsE+%45T)v)AiJsW+hCW-3vB%l$IiP~_LyVcw^dXYbh1#5+D^F|yh*WA@> z+%|sDaZ&6Qrlw)wF#r;vh_li-@UZn(M_i;c{;AZ~)8Ezu|3m|D350Ibjk&G%1|j&T zfNukXz<9FqxupY)IIX`#D}2yAYRTgslh<>Ht$`#X4|A`vvLZ=vc8$Q*(n*ZV)k-UM0{FwY@#P3I%vVN zdHW9UIdt^k;bUbRwyeq@pOu}Tx@p_$W2X)rI=1KV@!k6mZJRi?5YW4O{}vH~-nTI& zBL=uAdWWL?B!IK_m2C$+?>Vp)`+&ixCZvXg8x{cGzkdJWE%TR5g`Eggs;+`QZAYK}RJIJGnII^hociAk28B>)dWg{l|;xoFms+UGR z+j6~Rd8sxShj6LYPc6%9q;=7Pw2SfdgB^OAbd*}DMz09ltTVFkwA`MeSu|!NAS~%p zsvS;)?6N9~dCs0!v*V+%unuePD7=B^RqW1f)E7>&+I4v4u)V^ZSFzFg1UX=G5^B^D zOR8aV?mhSkVJTE9mq`3pQ`T~~EG3LNV1k_B+&63W1)90>$r`Yr)=Hv9f_cOkF|48^ z`W&&IEk=Y%N-SMAMp+qSzbyQ-!Pk7{W9N#+MuU?z=~{YadLcAw(g%x${P-X$=L#xH>l{pi5vV0b@d%IPgx z#1LL#3 z_$>7DOU)5O0la9%f=_lH{b6VMBS_kgXyvMtyzC~UOoP4fQ-2Bj?kJLR0e;o4=yGsM0^*1n?9PNIugv_>h$ zoQ)A$P5>L;*O?DCV$o=VE&HpNT|x)U=}W0T-U6hTb6|bIcJx|d+a460r1t}HJNt)} z1_rsh28TeffnbI^O9sn~mt!;|FI?j5(kR68wQ_As7YuNbrPlS&R{Jkc=-PtMaxqj~ zAiZs10E829^~x~)RQiPIaB94g-E8Urv7TY^P5+^gN!nG z_OvQd>ee7`V!6FJ z82f;+^4XZep?<4&?5Rdu-R(+&Wvc^+twh8H)S(%ZYB(jE{AGJl_A2y3_*!-L+GZLK zh35nom~jRc>r+x@U5=xo&Yu) zFjlv{{nqfIuDQJ7`=_QhV}1x_uW1Gd6(tzX7zFPY2#u;~>jIJeg^z|qNrnBD!H?IK z-<)GK_zFneeJUJE0F$16_{&FjhtN^UAL%!0?-|_3vw&)PyqDs!sJ&lsu+9 zG(4>W?T4x-AFFXB2o_R3d?$qa;qqy@IPk(j`^Nnj7p^}zaB%OMwJUcX+jQbu*@fqK zuD^S9=k4noFQ4Cd^5)v3R|w#1;DB#E-d%R?*x6e<4<28ldw9RWe~>eqm8^ zW^zJWLTsWKwj7%h0Rk)Ri3uv4n6q%j+@&iPf@aR03;+g~oL7_q44$`W+S~2}S@TTzyTi#ExM#MGH}_E25nMCK<_KIy&=p z9r&OF0x)LLc!dtn;L?J-_L!|)LlpgPzY?;xd*~MtSE^rX5bx98*N+TF3>)o0yw%58 z*qkpdZk7Z)0Bp4ai%EM!C|+G9le@YES`Maf?(1*qA3!zr3gHUmvl}!|~u~W(lG4WvS0}n zVVR?$<@75gs~UY}A0+uf6PlMdquF&Gab?Jwr-%a|SWgbM-_UF(1cP%4-Wt}f$^+4A z+@r3{qEf`KGH#ER!-QBOE}z?~d^Wx=>$^32hp4RxuL3Wdf7m*4sddddMfgx)e=){@p$LQ%Fc_>bU>HOR>iHJ_Q)^7)@x}}{it()Yj z1_Jn_D0r?D^aVg_pdvUe2D|n93L+wOrJlU61o6cLaX&trB6LO7vrhuUV1nT@zN=}( zUUOq&GsT=SjEwna>=%0UrV?|v4_;MZ2^F>v;rhXkK2$#b`1#@cPh#Wk=ld@{o;Y)5 z=iVb5*DhPSaQ4bgvvwR@aqRA?OE0cnd;U=9(JRpP2XAgXe0%l&tMfOX9J_F9-|>r^ z_8i!-Yu}npTNW-~IliPcD?2AMJ3V7unm0Mz6BiWb9Se#|3<3c!)3d$FS#b&JF=<)x z>Ei&>g3VxLJzhVY5D8!dg+&U&;WE7#Mn=$LK^E9h+y-b7U>0uWf zb$m+33pHUd zSXid&`wtK=^dR(7q>I|~sU+C0M(Q8aa=FhN`M2iz1r%af?!@ZQ24fvlDj4P%=5AQ` zq_sOE)lS(4ojMF64d|fZk@UN=O{~<*D$tLRR%_rtLaM9cr3pq`5jVITY}9&dNiQhm z3SbPw^1;i_<&&|--npK%F@{Wx@@EY>T)uW{tO^F(B#Q*GkV;kLaW^kNqfX@t^a26_ zhgHpOAlv|73lK8Tj)|gI~j=AM?Bi#BOH{^@5V7?5wm)F3L z5RO7{WD^j5{O;4Ew-s-_-hF-L?(2)UUL3!2cgegnkGA_vzpB4=mhCN`E<5R+75`y5Kk={T+ zFFXnyC$3y177EmB8371Eupfzt8CgvCB5o11NMF0V{SAw-sM;Bet?*J6Tge(Ll!!lv zh(I*(7!(lk2Lc#}a$xp%Y~b%8bigCW{ugM3o+@R{TSjRZt95*FRVfm#@<_`U%7q-N zt?}aAF}w8&`)Ug|#!x?Zm|(tU17Az{-4}TCbzH8)v*e?M;QpALGZ^eV{BZ|NuGd(` zKsU}x`pUu(!O?yZbM6}W#nDUlmxOr6;4^w(QA^TecKA4lUGQ!kcc;rMJRQqF&@2uW ziD0xIZtY7THh-dMlf{K8fYYIw*r{bPCFNSAzjjYN(*L3g;T*yxxR|G>jmJ zaqdOSy7AT>-f`g?j`qc13Q!vs8QYMY;uA9nrN(N8ip^LVgua$_?&`@_)({M5VY5n( z*yGGb&#QC#1kGup&Rsr{ia(Dte2tEi=!>x*xpW8b*|j=iow(&Y0k=e4J<740?;#9h zuA0A3ig?%SVTxdO!F>V+zcjUi2#tVM?Ej%MC}J>B8HE+vz5q4ue$z4qM5_*Z*58hRP^;DtYx27Jw{{lh) z1AQ?K3_=X6-Y4yPdG8ZOm=V2be385No`1OW;=}Fd??G5ab@}h-mmfU5{^aS+7cXwT zdt1P`f7LkC!tq4V2>p#br!BS z_@5xm^S)-&`IKmgiNPaq)kf-+;9V0WxC3q2d0b1b6p^f# z9c0#-jnN?Y{M2oMVLqagCwG-cSLhWYf>P8DHjHX-(GKvYyL>o#4u%Kaa7VW_eFGF<6tbme-j2Jpcd@07*na zRI}D~hC?X{TrW*08}8RuGtt$S}qiJB7@)t?j6nFu@`|9W=(^ z^G{h13=gqQ#UkheWjSayZn2d>+=TQc0K+}0RQn4X>Fu)yykcLBPfiaG#lqm-I| zf)&Wrhi#D9no7nnOb!^fZEn&|ZgadSqE{Ay!}GtY{01~d)&g{q!KA-meE{ZxaK6H$ z50xOn+V`Ijz4)lV-x_bN2*~^E{pFDZ(!j-@8Tz_=`#-nHFZ{6FudF$+{)Bl=YuxL)n zyt#!7=8c~|JA2)xIY(|BK6&@ViM!W8XKp^&dGzd-y+?N(6e}IgTDYuq`kcR(u3ETk z#q9YDr_GsBIAMHZdVG9pY(h#Dm|br|cywGSxM7qhCP*&F8w$krCWnJmk~k?0kSs#h z=yav)1@uP5jFw9n*@jh#bpT~I5f3$E1RF!j*v>0J8}SFHF9`O4unx=aeg6~;4){$< zt+jx{LC|oCf^881m*YWXEc&<6{{I4vFi`Y?>NZ&mBhrotO(qi84b-Mt0E%<3E zwrYa94^7fgEx!&?pqr**Spdc)u7oJQA5Be>!R66B5Zp>96Z`~%m*_wHVjOr&}b05{bSq)uV0+<1qx{MH< z2v?(*hBvwLhu}TA+2xj(i^{CHJH+OF?tPsACj0A1+v7puKa1)W2(-TH?+EY)gSi_v z(!lgth7UyZ(yeOEU{Q^QB|L70^i(Qk%zEU@1ITUFre%%JurEJQ&E_x@jCswoF`BVf z4@4y6i`f3gW=6sWPtY3n*YKLeU|NC`0Ex9u5~#8@P9j#&_j?De8(3qdifyi!(!B&= zcp%(CclD^JLTk%cZNhJo24vC<5OSXqhYbK=EWbhr%zJ@&_m>JvYZ4pDV0c<*5Zm=h zkjmDajn8TUK@lI;VPq7NSkPAj7_g_T=j#umfk%o%8u#CORet}q!Z2)*h{sq$C5ogf zO+EWm{iOVh(#LAynCJ8|UV;bWK196onx1u(<6+w zLS8mv&b_N@`tZeKGjSSM>MgGpci@6M%llia`67w=(njQ=?Pl5@bH*eet_}RTK|DE2 zo9X(gwo3c@tnhwNAFG&D^tYOid?`WA_He(h`ti@qYw=J4-1d7S#Qdce?7iD0WHVn`j{jbL03u2YAOgF3b zXvW$oBl1l2C7KSi9+z`bOJnYeF97T9T0XCUFii8R*ih2p62Q)za1URYh}YAqd?8z~ zh}wksLITzz2dbCXG}*3;4plkEMml*+)KsZcdjZt9@3!T24FEeUr?|0hU}aE}xXPrW z(8AV=dSG}|C!&{+e&qi|_BoDyGD0pM1($WYgov$$N^JE*T9cUOfuL2T z;ZxlEssUtdcrr4W3^BK}__VN-L-&=eYR2+os%plYU;|^wbSb)tWIUNmmj&nr{V^J8A*)g%D`X{;`Z@Jksb!(;;pcOz8UBX z=tZ-O#J%zK73u2z=a=q0xpe2@!BZDDZ`-_P{hB4qr*GQ2r0m4*;YSu-+cEy`cJZO-oFyAEGCbl}tp(9yG(4xhdN7@jg` zLCNIF>Dk%IY4Pb<$*DO>DcOn1S@8hi%$(%Z%y{^2pEh(X)wg1A4$*8QgvY-RS1R{9$~C7${A+rYYQQbpS_P4;Tq)*?z zqr_F&=L0JL_WeUOaJ^Zt<}2LuyGkb9U)k{XQ$1c%iub+1IlPv5b$sT^npTkHW&4-9 zj;ea0FLkipjvI(lxDVZ5y&v`_=}G8;pz4Osum3M)@8KFp*0k~Zf4GfJA(7w><4`QbOvtB=3G{`AM2&)<~f8#m9x2>A2w z|NQdp-*OZ8FTN8@tw&$~C4yj`zW?SU|2S(+Gg#uYY~Owriv*UIiO_3~V$F6F9L9>b z6q|VX8+WnbQ5w}-QOOmx7|E?)p3w4wW(!e9f5*>pe6&|5E?`03C8Mbiu%Xb-oN?osey@dfLro_zZ9=tF!f7tjk4 z?cEn|xcdh;-s0I{@_kgG%ekwB!hD@DAf_AAWmv>4+^wYRIat36U0a|H{FD#O*y<)yVT;BF}9sje?Y00Vl1QCA@1^ak^Ry8vKNfipv^ zv62aA0vj|TqbXxRN&Gw;VAgxu}KNS;z62$yK(QzTu34yt>X%g1Y^*H=bsS3ggS(u7EMaF z@!4%!oNWx35$clbA9SKaME;5R4KG1(a}G=7rO>-CB*Z72BqS4$RlWWMdh+J;)3-mN zh`z{Op-;bpUVr}W%}>8;w(o5BORqYS?Y|Phnj??w0M@FYC4jX~Ukrt1$rXA9ke8nH z!1|LKFetxARi@~EWgg^UwwzSrS|y6*MiXWcdbvXd;g$-KIGm`8*x2XrftrN|$T`3I zzcV&svN`TEcQ1);$U{6~=V{Y~?3l;6vPcOM_V{{+YTZ$IExE~2;p`D@gj zXRow*6-JTaC5^k_+r7%xuL59Zj`0Ew%kHopVkM-;JMcG}qhV^#RVtY=_641}-VXt; z!0JU!$1dDN0SifV5`<}CE;xfbwM1e-EXOSpmj}&&ZMYua2zS6{Aw=(ivsd?>zI^aB z#J-nTt=~Lj?!qY(dMAzRo;9^+;+U46-i8@7N6(otZd6xeS8MUup6ZF?o5qc)@9Aoo zIKFe*{|(XgB;C01nScO{5wPBsG<=X@JIdJV@Ki~EF;G2v^%3>(g0efjr=_lJAF z{P+u^7wL-tCI*W!EIJzBv60=1hZIJ`U;q5i&wu@|Ar6)s!xSZB*81}w-_T}HpKJDK zT+DuQpfQL_krW$6@H-hVCk$Oo|@1xO8YPK{?VHcnwjF;k5Arx!e4T&SCtK}=LJ@ZsK=MujR?Tpd0UxlglEt{ znFe^gW_DV9)B)dnmQ(J3ktF`@&CkES|Lu>j|N76*|NdVzazT>~z%z{udhqV^{kNa) zy?KB4^}GI8Z|}S`K=<}jh*MvHZa#hvM|i1JGAq*_Y3u=|mvNhxlG1b%X_~-@TfR~2 zre(1;kFY6vjvH$*&kYEIoCup)_hKuiV9ctl7ecR6w4Q_!sdy}OQ|-+ki3z7rSs96P^e?WQSHXHD#B zozUGfeRS)LF>Ry!>ZeZWm^Hm`bZ=vCYx(GrRik>Urc7!b)z>t3T-($s1eO% z?QWbpee{%ReSLi+r%xY0ch1alWBdBX_BFONhD)M>SSVB+3YUbVC4g9GsKg5ZF0CnP zXs<6Wi+TJmx4)pMEC`{nCs2qb&-JWDFTZ z+ePuZN^LZKd}B$g6Jg{dXaU1GJ`uoLkji+bjPH&=%fCq=jza-&Jc;oxgD#g+qJmxU zJWx<9@&5j^<7avC;b+7!0+=vN3>GudG)DeGNn<{t%!pw_Pq0|%k+GsaLps)97oQ^z!EGAAbX2qA&54$F5VKl-}6^1Fxe9ncR1V?;hVOo529)RwB% z53?hQH~wCOa37^ z?mwdmU!)JCK zJ-z$bnKi37j~hF6YHue*!IQe{XO3+fGrD2&r1m+p$4;Cua&%|Sn6BCh;~FPVgvhvV z%-H4$6S}&)8ylO7dPmidpVTpWT+% z^8W-~GTbms2v?@H7|XBtOECoVo~nz&8!zt7LYAo9uq7dwS%|DgztCBrNNTvNXL>eSygME7mrnQ3l_# zz426Z(Oi4{LijrAhKsnLO7>4EGLtfwA}eh|{GkVbKGe%gV|wrD6C>i18^FreGOz8T zBsQWKj{Hl-Vk?S$MYfru-g8$DoxKe7-FNal;uhjg(B9)0Ao@h@Jq~9sp>Pf1DUcG5 z7^=cLA%>B-7~R5=!dwCGlb7V3FYG>g4(@=r0_{9@ZpV=`oAw>su;<9O14nipJ-L3v z);V(*&6+f3QeS6Rb978+d0$WMl!@)LruX!8R&|do1C1NqII6p*qqAo8n3mq&)~2S) zy82jGcU|A;<}qVi$BpY6KfZh3qUoTiGbWFnFuJX$y`sLdxVFp{@w$UfZ`kb&6x6m< z!ugWw(nwJ#5cYY4c8GmFfdW~LCCjg*=@qZH;?N}+WAq7F#oA+xgXI*2Bo18^CW^Jb z-W*L>0xioH^$*V7_$XrL&+y#1eVbtClGQMqA;Ht3JTFRYAb+d)@E<+ltoUiL21JAD zDc=Al03&ok7y6%`zw-oS9+YXAC(ZiE6KxW|RCosF%66oxtH`43Zjd@<%r1u){?ochle>wxsx3fd|j9VFq0f zY2TC!ouuGMCQ!KfO5^BxG>j09ry1lAM0s4$1~f^bf20OuW4z0InUriZ?f5F_#qC~B zUkZHppSl3_-FxC3hb~BTsZDM zby+GN-R?SmVdt^)J0ZY5a#q~r&}p~>+zJHf-G2D=)`KTE?>V}1^X@gRCbK47&ESG+Kln-ZH+b6WwrIi zqsO+-nloY2l-};%meFH7#!v1ZHMXs_qpr5GEK=rg>uGH6st=ZUgHg9XEEwE0vY}&a zXGK$GQAIRV9Pmb*uAl(0+n)~rrbI5E2}lqngGmf<0e*m6JmP}(WeL5+W-6qjRI@;= zw3b8z4Xmre^LRtLEk)S)_3%Ao?GBRVJW}UhfV}z8L0EyQv=}P+XET7gh{Svwl`g{| zQeiL%Yd#Iq_k$n2cpuMc%agP~H1c<8DLCV;IC1&DFQ3Okf4pd}3+_oHl0{(g`V%sk zzDJDa4WV!%qaVdikD_525NjK~Sbn8XYtYive3F_T2mgzE`%xBJ^WdcswhX#7G#-1X zcn+D{Fj2vg64WXKx}|XbL3}QPF~)tX*lX~AG8v$w^GWRfuKNKf-dRYZG&qm zt11&_qFzO z);x^#xr9Iz)*MKHQL?Ob(p(tK*_<#9uCR(fZE$~yep3MyemYv;lcRqD+j8pPALuCg zMvO*)p!pM8WZZrI?#|1294RoSj|33qyLTQ4_X)+b;>KNal0p&-4EI09@j>FBSTY!7 zHo7wVY$*LplvltwxZgNKkRsh{x~nsHY1Z5vl?Goa(L{9R7N8gRZV#QgDw4@MefJzc zi_kR!_&m}Vg#g}p_$=TPgwzClVjK*J#f&tP7!%98Ph6D5JtyHRwBz7u(6;?2LE8@q z0dY}V4xHG$|2SyN-eU_^ZJxhs)vB#qSFc?HSRLC_IjW;{%*beOOK@a!psmr@Sm$hR zaF1*WceTeL_U-9ym_2Xyw3*ZDYHNy%VimQa?$M1Cr*w@P)7;(L)HbrFx-L{w?heNa zf{{FbB)7h$s9|JztkN4P_5p)KrT)f_y5`=d;<}=es-kd7Fj(yIgzXUi7P_)D7fI^j z(H)*SQ*lk6&q!Qp0GY%wjGM1$44IV&H?c^E$PpaC@l-QwF~X)J5;9xdR;I5p#f|hu zp>HKhuvxYjiw$6z7`NqHGV)T>a*{1sBL)$}_yjR!16619Po(D`zwno!r|&<5lnN=@ zMkN3fw)Liq_-{O-7X`ol@u{LO-V=k&%v66Xfv%unqpeL9+IuEf5y2duOt87D6#FpiF|jS(bGo6)8OGG}RX-kxXg zm4Ord$4jQ!32d8m7~f$QPMm_g!bqt?;!IKmA2PF?tdfOoGP@G7#OsRbE9B1s@RND= z@n_sQ#tb&_Sb9Ug;~_7f!FLUQPxPq(Xb^GsdjC0qu2JWS!M6nY_`ka{UzwXfD-S5# zwMyTE|3Co7sgX*BGqn{VXi@NWg0Q!THwd9{I~EhdKu16$Wt&B<)A6&rkDVdz%Ebkg z%sHbjQ5=i_rYKef#Ck4Tgu+@9Tf10Z50UN}5TbX>-s7A19D^fh)9$0Fjr$IQHtjjE zYU_{7)@__NZ{g&bQzy-sG9C!pQPtNG9n)3R+aB&{@-^4FLA4b*&2{#+=0JBxZ0xwU zNt3&#&zjyly0^NrDjW0oF&R)j}QWw zHw%$7hAdZ3#kysTbTyY|oxT8L?M&w2)Qs=ph$fW6vO`9$8r^e;i#B4J?k37ojkMVuGlLPmJT*^wp}Ll?K9i> zk^cai)H4hFKgr>lNSshcgN}cGFnZrpp%(5Co72<~8FLJ4zAMJ4mxZ?RK|_4Vfzd2p zi)8`8+WbmGVj*4S z(H{}5iQ~kTimw@fk-^$Oz3jeK=lw~U9~YD-68g)40|ak8e9j|Xw39r0zAacCIWJ5=5tgR{B(d-6wHo8XEJ6h{p4V49TmAQ>I1+_K#-Cf}c6Wbt0bXRYCb5mnkX-TZaQC#M#Y;ac8J4&k^#g&EOk{o~3<_+82!E}c=4V3Rm&vjV~ zy;;KBSuofWEcQmq0^Vpopw}DCaRf4Q-AS4Dp=d3M7{(4-Tu?a`ZMY(XIdpL!7fm7w zy%_rYLZ^$o8 zsDxoL^-76Qm{nHuyuC7KjVju>w;vhV^JZe>OheU^Qn8{m+GG9oH`3<8QKPVAu$Gs8 z`;|}4L-g|bpa@+u&_Fv2?##?>BdHRK@7)@c$&bk=kLE*@bgT*ycTuOV->1bX;nD}e z&;yK$Fy=tf+vUxLo38Q~IX>R}zacrHXBLu}KdG2^h!wsnoaWF~+O$}C+AGS{YZ-es z=as@QUS7*RAIuliekA7y4Z`F1p@Jr5`mA{Q@EOhq5HogY=AC{kWy0g9wg3PS07*na zR2&|zIqCW4E5+8_qY)pKXz)9afXSoyf}pG_0IE&o10x@-_y( zaIu_UMD0UZ!+i3}E%e0D%9v$$5T=y(Ng+OWpSUQc1*W(KD>q!v?K~#-V&S9vPhJLL z%u2=20>g6GcK?~H`+2!C;hEvqECMhIg5a(DPJl2VhBNE;9Ne`3$nve*7Ovm0Y}1DM zt5;56I0v*~*}Pc`X3SqWW7>@IV@5S}wpWbmEb3|tx7OR6YVzA^^E(?I?TyZcs@&?b ztg6z?(vpnos@%4bMPtX;clOjZwv;wCmDkk703bo%zRD{+v7*9~%DiZ4mM@aw4q82- zG&nka>2{A5U7E3$%Hg%S{8*n4Nx9&r zJYVoK7BPP%0OPDK1(0+^0N;D2>F(1vn0e#EeHv|VOkdM`@3QI@PHR%XzPomZW%lS@ zW`6V1Q?oPCQ==Jz*&~n-iQ_X(&E|aE6^k2VkwZOhGn19B&UHS=P1`M|s%b4j{qZ+s z@T1p15rfGF9OtFbIKRIKFyFpSxPz;tkuiz|Nsej@S_44|x=7rU*X|jPSMHv^dJk>u zl|gA|bv&aWa?*V58IK9c6e8378NOSr1joc+o~0+mlI@paLl<`(ja|`dX_b+_^iw4U zcy zS1j}V0nez5i{YD+g;c_aS=wc2ox2x=Ju;vdTZ1G!FU$Jmi&~YF6tH%OsFo5(I)j4C z_R4n=fQh~$($xU0H5%bdiklMxm};jnFUg${^p=a{szG>4(jTzh8(iCcK4tKTrJ6nBi4TX)>IiU7NI{>(@ zBD*Y>RvNVy7iE-|WY*R>n_K+VwZ5_nXIZ(YqS9Ac;faKEBSp4wEW_)!x;!aPzt!Qh z6uK=1uG9iYYQ8pLQFg{Keia!k{?TPR8n=XLl*Qe6N%MO? zvj~f-cr6v~=F-k9Rzf8tE(z1f#7GoSlLT-*ex-jP9ldn>_{G~NF5N+$yxfmRTmYL9 z&nO-u>nZDpIBDFBWcH^&!9H=qF-i$Lujopi#8$R=<2$>C)-3hMOOtBEuo{M2Dyik- z)k$dbfZ{LFQW&IsluRM$Lv$scL0@9f>6>@WqB5xXxOj$PU>MK(iip!t5C1}uhQr4% z?~o_66#TEeDMr>mM_m&s>n9|dWlKRb0hqoX{5mu=j>{>NQQ*KeFUd*+x)6S{jkCQceRW=!X#NqrN>b&cw2=^a(q z+E&`w;AyCLH#ZixHal7x3L0v1YAdtrs&X1@^I=g@oKX_7#KNh?QEO>gPH{y<~vgy?lf;8D-d!-i@b%dEN`%|y1ulb zrK+Sn>J2#UuDk+AjvVf5)3VJt<46ZEC7*f86#ge0UdmRSLP zfx+nEjN^U|5V)hBbb6nz(?~)bOsP^dW%W zVV3Vf$r(W9VS^|>Gk9(=472d=vzfvCCHe9sn)<@g3zrESfrqc-o3&={5+D@-eIwtc@EeglP@0-olPQ&AglGD(@Si#7u}ml!PzgEeK|~2{Bl|e>^@$QK*gE#?-<@p)iH` z<~fE`0gmG9gniG-cCyivL><4VVAud)%)~PE8mfZLBh&SbNg?Sij60MdTnk;fB_z#< z=^9)M(c7gI7z203Lc0HJ&o{U3Bi<+)Mz(2=%1qj02Xlm1X!p z5&zpFjA^ExM&H|yl^g(xNUY@H&8cY);7j@tU-5u)_3kP7K}nqi7+<(~?CkX;rv-x# zh!FNNGMJio@g=nq5t8-tW;J_^+q&k~pe+ZFfv946+o4n24;}}JKBB{C)@+|R+KQaI%G|0lTS+t( z09+KYl$7KY6=lVW3ae`Z6_tTNFfSU(kA(C5L5OkFT;6nt+iLfu$r-&Vz+kt}76|A1 zgLbdKAm5Q0h`8Fj8hgi#9NE1S4yI0gjYabQ!72u=E*1-yZk-kV=q%R;D1Z$c_DDEb! zw=j1N00#69P5o}T^#=ejXb>e%dEl#T11AJ9a?~V4_bruJ8%?R;uz3wR(U)@FxHi_f(Swc_2lJ*4e( zbrybBm-|n{Z!g5e=dMFQd`KjvH61*C^^jn5{0tBpw}*Mb6mk~}n*p~7T|g{Ipm*Pq zbwBP~y=~|EoqM%;K2}Zzpw~adwt=+b7&cfxR#!Z>OaKYO3>lQAW)7{hF-PhbVuDx%3Ywy_R-k#c~ z##mjoqo%SDg5CP+-1=&Wdb40%U7lH9lwKOOmX~BzmgQ8I*kBzErIf_dYHMB1&4Gsc zSbbfzx;zvO+QWgoqKG{Z$nbitPM6i;wBUeV5Rlm8&vbgyU9KFjH^0!8T~roq?`&=z z+1SwB5Q>I?zIJzx!;=dnhJZD_64C%*Kraf`A_5+O zqbg7dz;F^5Xho|V(u#$YYIc#(L>}#+Ieqz#Y&@l`16ZK<@hgy-yTn&c<%E3YOdW{6 z@c$VXoWvk}=*G{YB(VodRwpb3+jcr%zXI95sTCwx0MIWij|Y5zLd7OYQJ zK)z?5jnSi{8_1XCQ0k|d7f2iI^CzA%nn>Kn$%!6F3>^nLVN8(zt}k|^Zm+rT)2g4Z)E zCL|OJE2d!FpM)b>VQ^f!y#vqj3Y+pYI6ZW$;G6 zxyy~Hgt4M*EkhaFz2punSz%z$4>k7i=TQxx*cQe9zZ;%t8GZ4WS@+708)YDX`Cxg2 zSlZdVAFPyRQ8bJUR({%)$G!}Y8oI8)GY2egJ-!IP?eJrS2R?YX!LV3nr=_k--2}m} zDD>{QCmx_w%S`?RZv@zS5uJ% z(1l}dWp+)u$T^qAGD;$8#Zg;PBm)%=q!dNcswxXc^_F&Zl)-x&YQrTld(f8^4dnrV zU9J?nBNbHWw79$(fL>oPI})`+lpG2*FEW9{mIvN2?x#fWXjL^mOFEtub@)-nyEYdgG3fvtA0LCmdRYW6tMIDx4?GKXB z;$m1xeUBT!7&L>Fq%=jqI*GLuGzgQ=X*tQZe9PYf74yif-7BVrY!9<5ratz>CJ|*JZEmM=h8N_pTDJVIbqgXsqj*s zV90Mo`3dtoB=q-JoR7#j;^C{$-2IBTAt5L95KSB6`(NqH0eoKkReHdMXU+f@0lRmp>eB5e*YCf$Awery z`$kHnK;eidAsVBZ(>O62_sIG5XfoWOLE2cwCQ_;LR%YRc%oilI3{#XaU(M^K1zO~0 zHZL^Ouw<;;if3pwRy}2s`{Ht=)Lf&ai9Jd1d^>)WEHB7#3ZEmD-*Eiz&nw-YLGJ(n z5CBO;K~yNIz`}41bIc&!m-K~q!T-nW4-6&lR85WFIL74(tFiFAQ%cIIP>VW!afh3p zNbn@tZV2}e*)%1}wr@W^505X`?_-);!?65CJ#_xo!E+*`b3hDNxQ?~W`nK@}+|30H zZ`pfn%bug44Z98iGB@ttzh?WcwcEDOU$L^YZ)Df#j;^t-qbGMwTR3Imn)!29&Y!z# z!IF)u7jIZKZNcomDdR_u>z%oD{@T5}HyqfvY5yV7*Sr7FmV-xDZP~VD-G)s&cC6d7 zW%;V*(`QYeFt)e5qou96q_HkiQ|)i457*U)YwJSwwcg5ddwrF?raZr@G*hU|R#}<> zv2R%n(3=jpjfK;rp)^n=X!ZM&LqSVvNoHHCzoE`kTkY&_uPBSz1K!MVASdL{^10Jp zPOH;lak|n1!JN`EcSWVItlS3-uBeDqRz?G14*)n;5&`-;J$5(-qYhuFfRA3F=?l~f zJP?4n&lCo}h(^psXXROt!AM`pS1If8WXmuJaAhbwgq1)KqvSK<83YS}F-qb&UY3PP zY>a)eGZ<^IS>4vq5ov<~z?Q5LnFZEdr>)SNGl*DgPA?;X*#Lu&lsd+#EL{2-10m2d zo=3(B!{4~+3`-Y_#UmjzgZWFmM&T~ORpBT{wL;&70LGW_pPcTd#M4S_Z4R{+V8=JM zSt|Q)x{&!%2_snV)>|p@!&Iyo!~&D0W-}nk5~WEdzEz1dO4RimcVL#f3~?m<;f8=x z3SZL6%eS6fz4PoUyro|pL2wc%c%Bg&qvUf}@1MDR7bF%CF>AF{YO%CvRnimM80k`0 z8AYJQn&4(ho#fmeL_LPyXRsk-*aX7*cM;pP(Y$icy^-L~fxPz{k zP{L0Y?~Hddi#}089wUIYq9mQfR1`*0HRm)eG=4De5x$>oo{p#27~_>MnSZBzBij?@ zqYkv+F8P#3$p9P|!A&R?8)`m(#f)LvwSkvpC`%hygke5A;g0@?0{@4a8_eKHPaz2b ztT;((z_vuxhd z`O8-?oHcLCsGgSA=Bnm~XhUtNwk7}!uCDfg%1iB~#Rb*ng_WiG_re+RJ&rK@uWIOzM+4gh@Iy16U(zBASwhHj4KZH!_+aQY&Qm6J-yO90ld)ILO+C?)*G2$*oF!AvsPs28Z)kDd$qK2!r%g}AgH zDEZ9kn-IWw(tH6wsYpRSf3{G9=7haf2|JtlNu{XUY?x=xf@*(5<)2P1yfb+--DA>v zle7|FsmE_gcOJdH{qW7L2e08sf|H>B$M5t3SXbV6EzJAbWOMk)v*dXoe zk-_Uj-NXtx3UK8@&;oSLW}if2SfC*&EU?YmFiV@6MdPQ&lklnW3E&P(QxkyA%~8r^ zi@1T55x~mmCuP`eT-r5!KGjPEFfR{Q-75Hwxaq+Tt*6N#>~X>^6886jmqhSg6~kk? zaSCtzmt0tAJ>%goDGp#v1~9nt+_KWp#T&P%-tEk-ds^Mu4Y4ndXF%s}Ke~8VE1|!9 z=LrB9f?&k(*=zS82tFZ-2XDxRC6TScng$)lV(=et@ZEFl{EvrD|9JTL_Jc=PZQZC(xw#&z_y^o?!l>1%9kC=y$?H6alM zH$+;Ri|XqGRaNe?lER8IM|p8>X)L=qYLmjK*BT93Fzs9%$t()n0KfrXs^4n~`qKhF zD=6%@mPE5kW4V5Js@GxlyV4;D4*Ie@?lgxzrO=+@a9WCr9px2Xh=YTnT#qNm<;n_2 z-Q|@Lr#IK_&ksbLpjeqZTJb-1-IRqO2LoAc0}68+Zifs3lghsA?$C8fhvwgGJzrh^1^ceux8DkFZ7b4A8~C zBapuP`$LLt2s{~N6%LSsrrfe>*DRh%4dE}Y>7?2B5zjw(^-jv*xj~rW$=kmPTV+x@ zj^0}jpGmzS4FuqU#P@x9u$z#qcm`ptoKbW`4>dIN9TV(1iFu%GZiPyi+~$qTw~f6M z#y_lyTUt4Q$q$PxBN8?@3o#2Vd>2k`e)2-->C2yf`S(-v0{MJbm+3OqhQD z>Cv-~51+kz@bvAyM{n;+go7}y1=jXUQ$t;A=qZN_hI=oxuP?q$vUtw*YRz zL(kLqSQ!UveOF#<8m2ZXC0|VdRu~))b9rkJ`e3jQX~njJY_p8P@hjBb7jHoKUcS8# z|JmVh0{n@PqmUHANhu7GKRtQ>8TItTPftH+zj*QRSEnzHKv2g2#q;o{&0wVO#oH=w zc`X}7y0qYR=AxwhM*oRxw?W6R-a2;WCLD3%{h6C02qyE8Yr2Qm#aoZhUK3fIlVZo@ z7Pc*c^t!@pawO5!Jtr^eV~zxX*YDiFaLuMA>(?(>y?V~lMRS)eo;Z8T?4|P-E?L+* zvbCZjT3uaS*BGg)4OBOTYMUaJP2q-)(s9!}yT>R8F2fe$}RBbJi>!J9pZQ z#S2$#-Z*c`64106(|bnsjv3e0)zi|^Ro~iP4fL(6jWpF4HPl8cD?F_&#Z67Ysw$_T zZ>b$P3W&vc7k7Ly;T#R7$3ht(SO9l{z963`6$Fcr&jRP8L7M=uGd18z3;HrWPOGyp z)lrb*u&275R-ZpB5-lhxb@>C?Zck>R-D-EG2O|Z(K)%b~qU^v%l!y+tTs>Es%M#Hec?6fT> z6)u1?GCPea<)M?#+0Eq}x-7#S zkAMlc11L^kz1m2;<^IdJ0ANg(CQLq4m6H-&@-0{ao+mGj;qP-T1r79lpw>^B15ibr zuL?nxljdtQy8yi<5f=PBx8R}gB4Kcxa05Fbl?Qr^NZ<}Qfb}u=b)qm=&ei!$(~!({ zUff!QJ4?gj)#pFn|D@^T*FQgg{o})z-$7#Wix>knkUstP7al=B{rXJ`7Vz?4AAkKP z9C0C__4A)VFJKsu8?8)%?!fq`uRc9~@!`Sqk01=zF>n0r?a#n$^d85t84234^iY*x zjBzbaw%`rZSTqhl5acB}sGylBI+vlhDDSk!zB0Y5`x~=Z(R@P@+i-#AN~SZID!DW( zO6{LaK)3(dhr7?=Q3)QBeu4!yYRlrd_-1gzsf!%IiV3B*cgsU+xDU(U3cAQ&WAeJ< zd!_7G?&*z3@VNQx=HutLp1c6{KYvXy1`?xy$G9LoqZpgzs6_eKhL>mFVF@0NVFWN` z*RSY3!Bhy17^W6*nvtM%MZ+0_E;U1A|CN}aaOLLF%QsL2;8WKj0)Bik-n}OO-o(r%vyiFlolT8KAz2qsC1g zJATsGwvLwi+S11Q^2Vm3n%YoBji@v^ShHg8%B3^r&z`?*(Ui#(Mz*(fceITg-P_sG($n4E+uPdH)6&*lR$k&MD|Ob_ zg{o?t#ihBJf-Z?=%3wF1a0aqQ0%<6Sbb+-oeqn~o$mEygn~JtaGu9&b2!uU3sUp#7T~TokmL4cq3ljueqoxv>6-%5 z0h}sk?#f{dI9W)Wf{*~fT7$3dE}10lms4{b83mqf2!*o>(?GB&aAxJ%Z3tbAXmOov z9Wp%Sd)(rcRMz~W$z6-4Bw>;n7U*h8+r7AL48iWu)b9o-{{w^!MgRktQ!|A}w1|Ky zpG^C^N?c3&uK=cOGanufXJot4J0^o6Gj;Ux+Ni|guLLkjCvoDPU^*)M%KTGsrlRML z!cm2_bOEioApo7cX6*DI2=L~*YtCjRf6n)(6{06_D^#`s*(M@k7*Md=KK%B_yI+0-z5n%h(A%FyBn=@oPW5>9?(@^PpR|;w%WRe)J8iLEmoEj?6naZde97a)-2)V zUMUr#QxP0)9H1XHJ|R)h7)H#zd>W(G|LPje=M!+tYmNOtYe{t6Mn!-DhVf`l@M^I# z^RvWXd-C6){bTdc2tJ*OPejm$H8GnV?pduETvIm@eBR4RSptwHOWRv1r> z(byYJMe=l>!q%grBkl$bx<7v9&WWp94>auoV+Hs%`a=OfI-vfI2dA&}bLXtXXRjYT zeO2!jj$1mzV(Y%+OIB}PxnbwD=?f-Jo-=di?4?VWPo6dzV&CpjBRhNAx;vYCx|-`7 ziYh7tK;LjtZYXApmSjiEvx_QoBb7NtHTk7Y{`PS-eKYzxCU#6+G;7{!h=Lc)Sv-66 znC_n5k-c4=ptk0wu95A%eeDw_jq2*CD~`E~i|iHUo{9>4ES6nboL5$oUmPWqk3awb z5CBO;K~znTg{`_|$&~~!qBr2PQsC?JSl!MPyM2Vql>&ipz+(w`QUJg~uN4!~9zov} zklSGqa#_8ebeB8b?y#Vot~9StbR~ft?le$=!wM>NTJr5F2w*Mkj6J?=1~31Brorz(2RYz~RZogfk|eGjlD#;3Ui7VaeYCh9MM2 zFk=%D_sP;hD>{_m?dWPrg<6Z5 zPbMTTF8BpJ)r_TE{4M;WJPzh1&`Ka^u!?;0^6t}DC?knqVYd=sSm8GTIAQXcN3lvQ zn~<^u+N+}I^f4EHR9o=BN5-2BM0#_CO=sxqOc-a=pTGFuL6iG274=Y38mo=8vLpFd z82G7nB*8}&vDgBRK8EF4JUej{=Bk{1ai z982(fp@cJY3H_A}$dHt96YRZ)g^tzV$O;sW+@6eV&p~*-JRcv(fw3=$oL{L!jAj+^ zQ4sKtBD%%ie-X2IC4k{M3I4IP;SG9Dm_kxAT>KjV8>SKPSxgeZi1Pv4dvuFtk=kX2 zPQ2rm45w%#hO*X56rOOB#7*P>(*)&XdaW|;>Eb4?(tL#uXbOFiujnNy46P(+d9L_) zeDC)95z&c$9q9`?cKJ3i_~dnwmp*gro-pIQ{{&sK>3^R#C<#94wR<>%5N`zlhS-<5 zi!*&u!d_$d(ak##Z`iPV@#6J!XDyyTXK7DYcUw#Aq$#8O#&mRc);Bj-R8)G4OB}#m zpszoi7K~;DBI%LhtWa@gq%=ENmRr%}tM9F78eQEzxoh@{S<Ao-}jxlo{hzty{8q z$)Yi1NB52D?e6MqsIO{msqgD;E-&>L3F9hHESwh&<(3rX7RPd8(X?p93gK@wWQhc= zLXy66(>Dd8UJ$08Vc~Hldt9l2VK@Sh0lgt#8Uk30eG5}u_EavnD-8t!vD=dY47R(h zfL^;R9R%n_`U(ISCg&C;(GILPacfBzgVuNr=-!Jr$Y3*i%~Zx5a>BP5&vOF`Gul5WMOg7%lhTG{+VUj& zat2czoDjf&v-?X7RuIcYKC~pnExklT+Dl?0sp%Rltu%640ro(jR9Ps`0ZJ{2Dy0JD zZUUz#-UfpthHy&$#gE&GaQ_fuFyal6gZR;>Ieh~GcM-sX!IHQLV1>aD=~BoGFKPHO zguG~W{rc-~F9ER_xdOnx{0c`9d2_;NM<{9xh9fW!$S3(nmSHbH0|LLiFz9Ez)k__U zM)byKIrC2h_XNxnfR$m-^jN@6L*YurES+Lv;O@BysirQyyVoy(>aV z<;l`qIYk!M%J!{r*`%gtMqdhZId@4s{6z+11WW)%9lt6B7zPHPy?q}<-#A&Lz$b;z z2mlr{8#Dl4J1Cogcb~Y3URS~^Lmqb=IkWHN`5zCT+_C%Ex=nlL%w9Zo%A8SM-JNai z&COLUE!7Q;#Z}dz(sDhL{jQd1TZ(Mlq3fFj*xxBqG}o&nGnM|fQO*~ zt^i<+eFcL@d@7k6QDg~)fIv-P zCkXS#?|=QB^2Q+gkXib95k@0=kz@qdIKz;#dKjvVqb6%G9Q6@*6O%}e6IX{iNPOs% z%3uzAyoP@n_+87)v-YKGlB4FeU|l~Cphd*eoDy*>8Kc7y1X25w_h0xlc$x_h(khA( z!>kX74-(c&ko1v9Xvz`qf5idy_n#&xeg{YD5!k4>G zT-bU1%#X)T?>Kr2jvMzKT(x7@sx3QKY}&SR^}1Pe=J$4u>}+qTs)#faO`fP&1 zZmR^aKyQJ=ns2uNcR`qZ=D1Zd&kBrzvb0%Cg77z|z=Bm&*g%Y}!+G|!0%vA!VLFgi zcJ~ejxMpOhfTS~}p?_B|auzU7u?C@h6Mqbvd}tue~@<2 zVm*i`%L7?1JcEes*UKGI+8KsS9h`CFMx!AV-rO)i(9~KJXFT1XK8ph2IEjrW9()`4 z|56LhbG!-Zi=agzL5aRJ7LDeW@-uW^8K%a0%6kq3S_FLgHs+H#fDy@Xo`?&= znZ5u{RD96y`75MD7p@+@cnw$!M_d4UVFBk4oV&c|Fvi(tlqhO<&Le3)~;Q+X3dIKs~0RYQ`)lI?{SkkgR{0v6T?a^=+T5x`g! zjZ8)K>fJ=RA1vJ~4FDdDZqji52vPQ|VHg1n*8qCO)^94+LW^Bt9L4}2g)@VUyR-2m zGl{d10DSxD%iB6`(R&#e9KZ>CY0R??xP7BM4)A&L&NAfvzW_L4^UvQim{(Ep324Mc zj#xe({G7;l^^?wAy8}l$N#n!^f;68uPVZ7i*3i>EH{$1_G$2PZp1G)xY@?c*D>ACQCa8(Kq_{1%M73yudH-4Okok!HGw^Nx{WpRDCeg!$mP@A$w)ROir*5P#0XSZH zr1#q>6KZ)IE*3Q5ygc%epyDIs7VgfXrxjUDP!?C%N#1{wSTfQj5qc?*Mfw6<;fNA& zm88_-Z}~=IFbJn$;f$>F5azOCE=q307tFaEchEG(wW5GodU^wQAyh?C{S+^)BIxpR zD%|nK(3WSFc@`Sc3z05L?;5&7!vRTvQV@*`gbV0OqBXt?xVvfJv30u+Z9jY(xGUq` z!>S~DC(A1644=z_8RkN}H7`HKUa0jTxm{^+1bIE_;ZTk*km2@P z-J&Kd4IF{?aWUt^3*JHbR^#4w&8r1)F$ z-CuLsnV`tyT|WOnKWW&wHP22!?3t(eDiJUTF#n|ge*w%xVRK|mXLyM+1;LbmR(Q$9 z(W{6fnbxPT-sT@w-i{3t^ej((5gL;D^*W*Pj}&fzB@UW-Kr9n_S0Ox-A`&O`54oem zKx438vWFG#oWwNkNSN70a-Mt0~RPM0g{+=HD##y61ppV9qyu`(N^PYj8RexJ z6=gOQo+&BKtgOnbt8-UZJF2SOpo$7-S(&{gno|_ciiI-6{&b%&#p_K5c|1uN_2Nb^ zpx1660RsBs!f784NY;bkB)>N$=(mJ}Y0+?Yz?bf@TR{-`78a!1^OHfqW1rXNL1#*L zsy}G+_|jY+i$*g6x=nKY={7NI0m=~T}j;Gv=%$W62QP+We*tX%NvJy z7q2Y`;$TtmOkU9X{_b$*D=9FH6;*J=;YHFS8m!Kl$H4;u7->q}1;ip{4P=!kPhGi%3r$!0g>)pJk?7T?#o@>r znhK}i(+v2tlF$U>1Sx9`zz=A@84YZS!2n?HNs^!qOon25-XdOw$A4$|Zw@WU)|57D zWiIy@1;B7b0E1{l*F1C!?}Mpt9* z%yRSkEKH|!06+iqi&o66S6u;s(OZ#1TkLto3MqW(!Q2D6BEw4rFrSylBVaysfqoeT z=lIM9plts`5V|UAV~%7!5rUJ8Sj!W?7=xa?c8_LWi75^MT6rHl;z&xaQzCmT&Y!)d zIfom@5=*%9{aQXe5lO5>z?d->$z(}iL@W{akZ$^jzK^)TAe9Rpsd(^8#3lL?P?4!P zqj%>qZP4$o;}_(JUvUyY3MY3QIlFoP@%6h8FWIzp^1>yvR;`-1ZrzH_TNkZe-#KAI z*TjjF=gpe4eDSQsi>Az-Gilna$qSh{k?+=UY-Pa89C;^;Bm%`J6R)q&D7cX4rc zG-``P)5DQ8oU`i>rvZ9hzGOHC!q!+xR(XXG5LeK*B)t-j#hIXzSY~n57K>&S#o(A$ zQf#ZN$gip_s3^-XE6GLMjYuFP=(T!0DQ97R+Spk2h+a=~BdAu1A_<{h&5C_Zrb85alB`06o z=ruMP4aaP=B<_gp0!I1IyL zk~X{u0Bjqk&oYW57EPgtr+hDD0hTj-3N+*MUj`}?%xAgF}O%r8m*rJ;yzWnfRsifGMPIs9`+L_ zp9!&M;fGF%0dP#0?*MwW*`hcnj&T=t;_^){IYRE1!gzXlM*fB3ndjBK{@Vng(+xx@l$=9_OW!KQ9^mX6Rf;^VXX7QI2d<@;fP-t zeO1cVFPR(jy`7IGl8 zmNBNZGYYGvNN|lgZ;Wt7*JY3}ePkglVU>;?xA>CQ487V|-ye^jBjL;KhtJR)-wk_? z%v!N}`PLmPwr`ubVE&BdOJ=WHzHHN`g=^PNoj13or@OwZb<(^U%QmiGv3cX7RqGe8 z-mr4rmKk#wx3sl`8k?)iE2CxQ9sqExI5!x!`GZzaAe072U%=vlfYqNW&V;SONLq1; zt-K#9CgQR#s#!FS3=zGEhYkOE{1e2__dut))daP*EhKv?vRWu0p=FfX9M~ zWtR&mJ3<4npt8l~jLYLrvlk{8<_`k~gIo@6_cs)Dny3#-nrv=X7?yvCNC@>UT>FeQ=zQc3vNw_zRXOO`pc&W7^p>zOS zGKLU|@hD9zQ*rDPH^gugoYc@S&_ zaC{yx4}}x%4aw^ornBMz<f=OW!Srt zpw&Edq-YHbd^>)Ylkz16*73b(Df50aFT>^-Mh4?|O|8a?O_-9M=C0lJ{KR2QzZ>^u zQWwL@$1;j#JI4Sp;2EF}FbN<1fFZB$!uII_bKyr;k<~E3jEz11LL4QtLyTy--4dA{ z;&v~sF+6?6+J`9Q<>_wTe5}R37zZ1hjETfl%tgD)NKi7MP{w8`68Q!RV7&@mh^7%> zpp0)v7{?oR^nRiEEa5wGizo%aINz5dU22)-Jv>4*U< zUW02M>2mZEePz^pP9pXkYR3_c#5e>H&WQd}CKzU29|S_|dbMEm^xm3@n6 z!l|%Em#aun_-sVNX` zmR4`2OKkD-iw7tFKSNXhXGGffz+Fq$u++?*i`O}c>7M-lL}g?!J|E!MsgzsC zE3W0fpa||Ij0f@w;e}}+z_4OtLa0_U83q??_y>Z2FT^n0KYsic*6;8M4|iVmr@gpO z3ul#*kHyX?*+;7p7llrTluSnY5|a6O+UP}WfK!(OBep~v~ zfKT!?=9Y?xQeI|7XV{#Bx6<749S1i3aJU~hIaBfpeYoI_ydVx>9yBW*v}Z(gdygVc zW0CMp)RBv~2*x6Km2d^70$&NV@Df;yLgK>W;Ds9p&R<9EKXVm@6AN%HNB9X5VsXvF z+^Zy+Hg`3Q>}&0v+%sxQZ&OEO z*O<;RlgER)Cyt#kd;0iU(|RV2n=yZOM_+eCQ)Ov+I96m2NAiQ=EV*L}@vg-iOalRl z{lRohL<4t$zJOjh0!pKibcl3ueo-`(5)D~M`a~mGi`HIwCLI_Y^jmPOf&j291(VFM z0Lr>uR*kz59D6Jf4TF3>@e;V}v?qZ)uGB~*8|3q)fN(s6&z}W|1pvF8>BwNa2Hh|)A6t2;xLmQu989FR=2;b91&|;~xC1ZG6 zCfsBM#mB(fVU~XokL3pN{|je;wLo8Mj-YR9)?iDvh=T#fgS2{PY%9`9+;5Co34th% zRo46ahT}P*omN6@E0i^7o)yK@o;rY~-Xef8p60@$FmraAxjDw^d*$xKxa2M=#=aMC zKTs;46P8w)!(RoxDD5TDSN8;<`Vm25iC!*xdmQ16=$yey?902GF6ajIhWVy<9wxN< z;=AA&E~}24?0SllIf=Ca8~S*5693ny>UwD)tnmhCzOvH1xB$$|Y5bEcw)#vPC43Y5 zslI(nwbRtOgyQDsilbgQ;Fx z689k=I@+XJky?$VD8Y~c;f~jzShY+9_jznLvYYPFfOBO$SL<(B4*_lEL1k!>*h=5bY ztvpu0H_hwIw#&fR?aHthTEu2BymX4RGmscfHVPamh0fFh7ZyLG1Oetsy*XPRDYz};l6ODi$ zj}7R(3qj!n?sY{KSbx)clrZ@`5P-!(r!VT5UWZ8`FQNB194}luE*HloiHW;(LtfiO zy-(*7C8Bw&l0KOIp<*_on0zUQAsopZ%n2EMTc6X8$x_|^kQeC5-z%-djrj%}2Qt!3 zMmX}B({k96MpkN(qRnP(-o@TxE?&t@&K`!IW0ufn1AMet7Pw0#(*RczP&V)EyW#)< z5CBO;K~xUfC(mhd_0iKS51(9q@c7bwQG%|xDk6j7yXN@h_Kh-D#{ZbA!7`DUc8>XQ zj;n065x174PH~B0tsaUNShS2?L+3@l`Y9Z-q6$b%yS6f8e2XM!&fi2NAG&y(bQtJ+ zxgXaWXwP2Xd*<4n(^q$&x&p_zPF~r4;xY=>NMCvKB89WK=Fu$?7dZ+7vH~wj7_DwO z5GN=KIf@Ix&V9$$?>)M1@6q-9j&0BdXSDU6qp0<}kF48u7=$l3?mY&A%hv8bykhI# zX^YoPTeN7_vSs5ZjB9RbYHO-!t}m^u@{1t~6`|5ne_2JiyfRYLP}x+UCSzn6_^0btDrf6Id>@w zO#nX5q(!~JT`56g7WE#za1C@!*KrmHEBEI$S<2?L8NiCC$Hhc48-^tG@WNo4`c1Ey zrcDr!$@}n5JUh+)p$#qO@rrB2FuJGFj7v5p;wQdkt27H?bu{nIMdM7}KJzbJV+%4l zMB~jwwC|+Q-qRcR zoZ7GlBGlvScOL_-+jVs9&LgXL9tN%Y@xY4h`<8D%Kw6<`-^v~P;iF84#PvH5ul(`Q ziX8{Var@!r+YT*QyKTnOb@NxQZ5=hXzO}ituXj{$S6gdST}^RyWwfF)P*)#=pthmQE1TPEK#h$RrKLf@n8z!9Dnzl86&C)W zR5;BS(yFn5zQrZBSkw{@B@5%KpeTk4`o&bDNFWVIDPX*d7={G^7>y)>!Cto@tH+aq zkuJ#R&A?q=ZR;04Buk?q2-bR#3X=tZT_R{kFl$9y64hD^?S|)u?4p>%>&bLEMORXO zL8=UbtsrbV0s!j{l$!CRhFD45oP41?`_O#Humb0BIOaP>fbt5HbMi;%yT2NMk--wf z!-&CLxWB9K2WwN3EW#^8<1Q?;Jzd){Yql8S057pw2+4{;u)b9+gymNwQol#Z%f3rV z`$5}3mZ@yG72Fdmu;5k*V6hFHH8>?xOa&fp{cg~ed+>+gAshk2c+_~z1OXxn*UA~a zi0P@B)8gf$N2u!$A6~ov@cM&CbPZx#VJ)X7tvUGVyz$|HPx^bt-$h@ZQskU)k5fsy zN>u(Tg#z8L?U@eBl~giRaA#rXctP?FzGoB{PGSP}uCT zrI_fNZAK`Mt&mvzX~-~ICyMw*Lg6nGF8IG4#J=Q3$~)N%TOs_JOhOK~b>ms$ctQ0~ zFF${wg6em_{Pyv;-#`5N+xuUBg(Iwm6ZN-mKmGL==*vI`Lywqbe#sB_8o9+#DajFrZf&Q=o+f>LPn;xqAPpY&X*O$c2pNtoXBv z|HN?Gu5lj+6Hd79*G+N&)iSNch8*bQusDeYjHTBVciTV<4gfId;{E3r;Omz<*Z<_q z?MJB7w;rCl`QXI$dq=O_QHYD#X3{~%U`jZf0SwxC;u4oeW&JWZv*XwW)Q?9m>^O2> z33eg6-E`m-Xyd-qs118ht>1HU-R={hwY!c3J68fVcN|2%F59|q>6X2q#hdpm+O&Jo z#=Q$S>{+;B--7jf7p~upTD)=Z;!XR6Ht!MIv~S7g{isD-gy77A^}A;-ST$|#@@X?> zH#WDGm6z7kR=2b_v~@Jq)mK*6l-1Q%G}Ko$G*-8@H@3FdHMiDO)kMoGf~8fSqH<@n ztRP&HS5oDyX$m&ARW`O(bad1e6?p=|JOD6+i~wMW9U&kNgfcQe>j?01^sCOpVj9PVXh!?z#8_agJ_sw(5rbk`@N#<8B4AZpSag6IO-HJvE1~9 zlPQQ;pl?CJu)=~Q0I-HzY0UxW3k!!A+EeTfplqtgn*o7uFq9vQ7RWH#W-qi9T1N zqp=EDV}*6dm@Wo_V)>O=OCIAMFkXW@zQ9y0yh0=BB+Fm|uw<|RFqT%~{%%UVb4dsr zkVFZz?fayR??$A3F93WI!aJ!;{SWY{Bx5Nkgd-0V=_T%-B9D0y6JB}w?%lZh?_Ifj zpWcOZhriBxg!+__&kLhC?CC=&cAhuS7#;}NL&HCU;g!P(9i!C`sF|W0e$_~zmUOjF@X8wAAiu$L%5aJv-|1m6B+x$ zC)EqE-(szz)LVtV0|6N5Dtt#m6sYsk8X*Fwu?8S8$|opGIQfh)?r| zj?#~SSp*%xFGv(*$EQbQG^~Gx+;9UOtVE=HQwWKBLhmdh4Fq5<_Lb4F;O_aGn)C=5 z$%=5LHAgRBqky~HkDlLl9tY@>fV*pU9$U5J$Vv!R zw;o)!F1JTZ^8MkAK*Sa+%`2;N)Hg+&+e#{H0wv|{U?>M?70A{dF~!g0OB4PT zK5L;X+3rqq`vri7MEIMG0LF4EpD!g4u;9KdoB<>Y5(m=&$$oDN&M$(?+|DEfFs7HW z(FpCX;3e`{R%Q*i+lL9t77hpciWpaxYax2`3Wnw855>|d_#(xFLNKSe#0fF9+(=Hh z7pCOpCjEbuz4wn?Ww!pye{k>j%*eRAOBGeARZ*2%-4)bP-ECX8v1Mah#(+p80|O#z zNCFQdqKG02gOQDGIm(^XQJvLMZU;Fb6D%+wU}kjYgkSEJ?z7&t_o}z{F8iE2dbIV{ zu3R4av!C^@KutLmq1p9{{bd2byfI8O7>K?kEFf@KVc5gF!n_}>#h(rIa^h7q>8*gV zF+I?u^>cQy_ch7tF!yea0I~qsWN^8)r0$6g0Q**Z{cL~1?>Y!r4~rn~`I0WeB<=x!MHqaAi`MZiRIQTUrk3Juk~GhiomqB)98k0LK4e)W189 z{O`iq(VXQjld>2m=V<0@MOQUxw8He&TW(3pF?rt~ez|)6x9@-b=Z}A1%em`a!|Ie32nv+%lP42e9^$wA@MaCP%`} zkED%ZFlQXet}wjs_~}a~bj$U=Mse-*Qt!-i-|PyjXL{ML6O)T4DC?@s;EGHu5O;JQ zI;y-c$Di2&>+Tjh&_8JbFwXEv1~BOR#i>ycmvIZ$mZ5v3|D(fw(1(Y50bS-U>-_`0 z0^m1cUOzkj`lrWUC7XNXH9+*^LpZ(ytbTY10&y*R<%2`es~;X@fw<5cpB!PmxA*9q zAAR-wD{sH}+Pe?j|L`M!e)9QeUwGoNC%38p{rS`_4N+U%2758;a{T zmey^|cdgBJu1$8VNicwMZ10ZWao5_d+uK3qjx|*HTWnUjSA_sYZfP5s1p2}z;#h30 zZ|e-VvS&9=A2WAJ)N_N5co;y-`@0Z3 zU1__)pv9SN)&UGNs)1ya%1+QXnRaBdUS)!5#BXa$vZFo2G3|U)D3|r6Q|?UK!)3vo z2yFzMb6$4CinU%fg3z0yx?a@}i!rS21cSaRJK7@*j$}ObX?Hk93C7{12a*gdO2SIf zFknzwCiqI{NWm?$Spdu<1vNsKn>@RMH8^PwBCK`!ZgqK9xxKgY6S>-$YmHb8U@_Ai z<(A+!?5`_$>n$Vm%c9Zw<*|j+EUd@D=K0ei!LW!qjfdg!vS#rsjMB@_mo>Mb7;LfWjV z26{zu^Hik>!;0VKD71=ZOPh|WJwPlB*1K2gO)jP97_0dc|&XKBGzBOJ+3QIyKTVvR>tfUy~M?=4A@5KdxQ8hD#9q z8b7FdEo)CY0Wdz5?sp{%Z0^$6GZ!waJ>3Yea>%lM71X zcK)vb01yC4L_t)GTt{?bVgceLXI@hs5z8d*F%z_`Ltw2bJ>|+yUjeWVV=VYFSO|b& zd6~GtEsh@?G+LUalGv;fx>xk}7d@N9-+cSM zzy9sDM;>`%_wGOcjITypl_iR;QVLymn@FcHWmXV0966FqchyvM&o#?aaBG{V|QU*o2lOg9?xi`B3;T= z4pBV0!A+vbGligWp4)5i{;u?!BnE@2IbSa8&1O{mIp;PTQn~8L3)gzh1zU*7&*7Z8m(k7X>J+l#gP_^D-)(m)^V#dTV9GZvq+kqgN9~j zq2XC#u>MB8&|kTd@z%7U$~+*0e9D@aTRT;apX!y>B83x;FZf}j~9~}XRXt>zJnM%!rgNFi(g2fFOCf0AAbKA z0~q3ohX#ZH`@dzQ7tn=phV?Tn@4x;9fxh4U{<}`x%h!K~F8*-+0%&*bM=UB^Ltj@; z*VtH9hO%O+ywX+4UKIN30G1)`vh}M2STXoJ`DOTb0D1x4E7$RB{QUJ#zg+#9^18ub z!~1gNz|2|02aw!J2;7Av?|Sm=1@8Q;kMh;W)H8RvwT0GU!yHRs0$8L2xLm?JHmAE= z;i~}ElJKmDpmhN2mRBb+-(&!PesYAP&>VTzNo?rQz{iINc>`GXfF&rs_xSj}Q&R`} zroZZ+IXEzTXmAd~0>T*)9>9+|JTP~te^%17MVz61WN3Qd$>9(89ewGI5BI$K_Ge!n ze*688pLyZ0&%f~U-(Gq1l~>=|{oteb-+%w^-Me?}xNXy>Zg^h+7=E|8y&lH5tt-~r zk!)^@vr4To2r!1bmFlC$e8r9_)L01Rn?rb*(T<}nR4jT;#~Gw3v1&L)O{U-}GhRTk zy*&cZvL|lHIw7!=H+Mm00GQCL#AQgv&aR1GrY~e-m;jt>bY~k}nVcKKyFl3-JbFDR zQS*nPt{q@%iXM;yjB|c*y}TK$1GtP{)rvBaCQ)iM$-~UP34jg$B^*>}3ksS5das?7XiHE zE0s<{U)8CDi-uRRC&%wWR`FD|p-Weq7jkIpVYBQx`S9G;#VnwrHC zYZgC1-MctEy#Qf>cZc*V08p8Etd12E{dDi8kjxg`So2L4BEF~!W-4qnGg1$sb83~P z@TSsX>j1ta30eA!SRw&RXUA+kqU~|%!O8}c9W$J`Qy!qxA%C6#em3naa zTk2K$E5x~15bmP3(*OL|k09~C{_|&ZCm2%P{qLXttFqs%=y73=^D_qgRVFJ)j)JkJVu;2Cn)TM__!>nv#VaZT)Gs6Lwbed137;01 z1^AGZacy1)h}#zA<0zj^rX=YNpY=gQI(i4@miuRybmPk-Z%qI%+9f?SPKQuG=)Z~F4dIc(Q8k%Pv8D2O#vPeg*I7-$cvrHM+4b#w(ks1Aw z>dFIno}_xDgU1i{41Kik;NRZ<;H~#Qf?j^*^(UTs=B~T$+PQP*`i&iH*0px7X>4gv zx3nkQI@2(_4BhswbaPv(wIkEsm1%BE;AEkhx+PQAQj-q?sPwH<+*@b~lLPLELZy~a zQ^5yLL&Q#aR-lwJo~U>UYgl1Gx>Z&E778AsZ^n_$Isj3sJ~FeHxx}c@7=)S{ybW15 z=$lEq8Ng5`<75DXy9&KdDBIwHQfUtZxS=sz$io3gdG=9LV>p)$BvW1*O{hMP(3kr^ zGkRG9U}FG7$^!s%AX-^rssons3`USy(HG1EYq`ZE7JQTHZj~Z2cQo#a#(m+4;di-M zh}&ba8`d2#^U~PyH8Q1X515h6Iab`&lE*Yfv+h{V6UpErzyLo!0C&71X#lPmk>sm| zZqey004|ew*5IpQf{DRPy2j=f1-;B&p)Vxd)d6f0ni$LgmUoAE&Bj`XnI$RL-e1C2 zHgi_rueI-9YiI1$t`%iSk_BBAx)lKfQk5x5H*40R%q5v)Jy}}w#Jbb1p0uUa3fptF zBtR{)fVS7%Z)Tkwofe7V)?Z|>TFI0AyU>rOoZoyUgZ0f_W%4M*dj9(#E|AsZHqk#b zfFW*C$$Vu7^BL+`39G82vZ{p^*+epkzx)Ql*M9f=Kd$}rpFhIv{>Oj(NPd^N3+O_o z<^4@JxUz@3tYv}eySV~gZ9|umy;+P>oxbv|=T%*wf+Eq8ACId#Nl@V2!-}gD&iAfp zCr7{1*>CX)DL0MWt$IOuS;;v!YZ)$AG=*M1KeBXoc<~I5)bLqrZbj{#&9;#|L*5*I zu+l%d%<7pe_lB$zc2=(U_~@K!h%u|x?21!lm4bCwU`A8ZuEHz=+ ztV&`Gv->0|f*u=P;^XnLW$EuB0dT%DkV^zwXt>pNXb3ia3W&w=;NYYjdGXc21f-wg z#i8NpgVd`M7YAeej`klPocd({!Ixft>#Ywy+Vk2QdtQF^nde@->+UCEDo4G zZZd=OJ|4Z0XbeO$9&Th|WLmNPO}Lr95Y`-aHZ!nX;BI}?6N!04^)5XXO90IEMdc=x zWnR{r^}%j6g|JR-1J@8`)s8PW-eT_y%S(!Tq`{Wi+=D+DJ76`TA>eTO>l{8uowx25 z3wNz1cy`IcU=UZQF9CRNeq?rzk3cUpIyE;kIg8`ibOm?$@xpATH5SGm^TG;VpFab` zOo(eSTQ`wTWodeBA+arbe8CphUV$VY&OTeou(^U>OTa)~I#@e(@b2l2#v%!TEd|8= zT69{FY`LkkmJ+8;$E;i7s#Q;nRmSa!ktyi-@T5gJDHx_*XES}QuQCx#Co#Sz{pR># zO*mP6unu5A^t_UpaCDtbuvlSP{xkQjWG0>a_Im^2>UFf}@lTiWM1^GVn9VNE zD8CC6`Gb`3>Z!td0NEBpE+frwu`0V;|BiaKUPb!-g)4e2dS0u(GlzyeJ6Yx%=SOIu^tn$m{bI!Z0+HS0=H zzL;3MzWIUOJG<62H@7wvn&Exp#g=HkRBw!_&-)sS0jzaV3kx;KkLrzhi7(`MQf zWhSTGsiX@GrciK+I(Trq3@Iz(;ImZsg4sYXZv*Q9&ZRw>Bqccmx*1M*PP<8J-2?l`kg=mg4tpaAsRUng91XaOg#w|zD`AUKXTa0@XX=CoM-fWV0f*HW^2EP&M zO*(mhm+Wtx#|&d9Sm9PGgE{`Js*hZ%rxlG9bca@R zl@agtGJ3hP2uEpYDV;s|vVh-$dt)j3)`GrHzw;JL;*}l176;4#o>;(o3D7mTJ2T6B zy}Sl`iM}&)!dgxeB zz{cN7qfkl?+Bv|wSd zIN<)-B>>o*W>4sa4~BTnEhkmi$$4(k%wcB(y(2R!Fgt76(8Yoru&UYpvUi-crz z&~#tVFzMtF^?B~mq|UIuI5D{QSpVn82e4onclC}yc<|>Z2fsMh`_`vl!uUS-*T22= z#;c@PUjEacA9~=y`?hZ1+`YD?wY_QQu1&XX?rQ7EZ{4=Odwok&Db?E9wDYdbxGP^w z=SwlDsR;Vk15wOcz?fpr%@G61=GG~Ztl;N)x_B5@?t-tB8KIIC zD9)_V>sQ9t*wW@N$lnp)h3s$2#rBsQQZj?N5j1B$^HwV-SVhu4gTYA;ABDK$ea$&Y z9&SR(8CW9WE^h#nDl34sR#{Gme|3%LkG0-a&cG^8b>@UG>Mp5zTKPgXREZQbdQ2MJ z#m)LUf4J5kc6x(#@V@S#(;alX0xnO;01yC4L_t*0WdXg=^ulS-cWP+`M_r1_XZS7XXh6=I?_+VmmH`8ntz0TXJwr*k zdR?+!g{)UJnR6G)L1sPFEDqR`fM!ojGpVm{JR6@!N{1^Z2lL2r(qu2n}jl5~^H#zV;GkK;Gvl_EZpoJU$ih->@VX@FDT*=vC-4Y z%wA>;V~uC=#c`o9@y|KPJPzxvb*&ph|?i;w>0u}7YM^p1P)*mmc(&D+-9wslQQ zM{eD1tuVXyJ+OV_rcP+hhSrvj#^&~h_U=McAq4>E8Y2x&(L!^yr9BBmF?w-iR&mdY zY-2!emr_d#&J8w@*5qq$jdXNGTU*0mDwPtc1m;Z6*<{oj`J0==d2^rGR8Tc-R#NRX zn7#~P-U-fRoEcSX1o2)kGdPiS#uE-^Fxgz#ZrbPtfWzP}9!V)z8Gkb6P3Hoch9Hi) zrZ9~^%K2m)n2Uh%T{z`R(KjI7p|#mZL}G?6u{Q0CX8aJ}q`aqu8F1F-{u+T|<%!t= zi#;uu28Fnv#;xAqYH4eQqdB`*dD)P|x2UvaL&LN4EUZW87g=KqOM2GT=)wXtHow61wE%c* zW@dbL7Mhrwo19;qT3CXn7m2%~nZ*^B<&01n3zi_QYI8(AXw0!?gRd*#?&bNjSClSs zNepD!tJAxBnO3+;m9vDYB@Me0%oQb7)79FTFyI-$_B3fd#;%V~sM;7(o^A$?~cTCR{v0Q%h&3myI7`?#y|}=(3_D*05ao zOP2I&WAhb@%dm-8`N*|NID)}ChK0nsExvH=N0YwS*zZCL?cef|0lat#c)JA6ox?v$ zc@M&xNw)-Ct+1;86XRcV@%*JTSH8LU-4Cow-y2EG5;NymI_=;}gR0Bl=-t`$4l{bt zTXvWAW;OF>r&!BIwdQ><@Wq6>VmLEwUf2z5Bck;^U}LPk8brLI6E?j zN1nq180Ja6eG^MPV+*H7=TDBzofw`yJ~VS|aO&v5@#5IvH148%l~1L( zbl)U|HK03$>wx8pGz@Y1qMATl9`?X99zbO#F_4clI6ty{act%C_?at{=dN;RE}R*d zKg**GWkXtvFmtCZc=3rB-hKc6zdZZkU!T46=|{Fd_RxzTzqfy21SI|frj~rIF-PH3 zp!YEN+WX1j9;IH3xaTtf%u*Qcm#GXN9XR^V-UH9>*>lhC-G6%Y-p8N)^ApcKvi$#XFeO{$Od9(p#I5OXkcoNH8?#Fah9B(C?|Us zU=!&nt8 zea{%yw}j6r;);M_Q2DHO^7Pj*kyjb;cxAlH{CWJO7xW7+{R&JEq|5J5*Ao{muUx)* z_UmuK-EV*X?fYN<{{3&ifBVa?U;q3wboG~CaJ+o|`o$k`L4fzA&x}v5@A%4(p#2~6 z5`P$678vPNwhK6e$7)|0kCClt>142K)uxx^Dv#255#g8G!tW66B zjA?J!!0;S&a%A?zFb%!O5o?^GX(HNauYMK5=6E$0L-S`RRxWd&PH5uHMZHHDBN@J& z6R>-ymarb2J2SL+Ze;laG`w`)TwEAjIL8BqWzZp$m~xVbW+)fBZ~V}}xXT9?Bsk;a#{7nT z#|9xa<6-EFll>naJoeHXuRr|sQ+MBY$L8BNY~Q*5!H4gB?5PKC-?{GYd$-d43ypU7?iS<%uNFs}6k z{|LGK|F_fke>uqt*LwU8x3A9S4mq3whuh%|c=h^V0N4|9akCDi+q1SC&9QFKHyHCr z)AgywM4`Q*rMuABoWspq`X;8J-tkFZ^iNJh15-0YGjouTSj_S892NC~wS!aBtbxfX z7S==4Q&3e5Gl^-T0?|xm1~BMLhIskR%;~d?US69z&%z&f{`<}gi_E|K^oP}^Dh;cv zHoF$c>HRMSdwQoQ-SS$Rhp4}sxEB`?XH-6yQPXUxdeR-0{GqoOw8&M0d}e(Eo8M6| zJYs8xHC(A7t&XT1?w(oXY&%_A-n+2@L3;$s4(eAM{LAYyqYjtAD&xbmfz!r#=)XUE zI6z3JZ&erzi6utOJZ8wLRN-&HT5y-QgvAXDiSb~LY(sc8h2hH#IXypFYJ|+;o8R*j zVQQ~l{{`Ir?$_VI-D|)9{fEE*1Hw&k_sUN{34JeI!xaENgS_4M(hE%MKq5mnzu_wb zx;WrXVg+n`68Tp)E)W%Z8MhoTXNhZ99d%Z?*sP*Sxao!~0IZdL%fq->oSU@JUh?U) z<16R5oN0XVf=ZtzPt5Ka2Wwab%!^ra&nWOU<#*U6uhAjNVDOTP49T z#m1E=PCmENHw(}jZMh&GGt5JUB`aH13e8f`TU9IVKR)>0-b0(V?TDr_^$pQbw%*qi z?zm&^x(9Y`didV=kDU6vkNQaK!;y%=N13~Qx(xarACUQj5I3Oy^7zSD-~aI8Cm!5( z=hn?z+ShL=ZP-}YyrpH^PB>kxi)+?4wzVf)TI0q3R${c|%uWm>jLjg3iMh=e@Z` z5+jytd^w#;%6z%i1|1cW*+cU&k#vE+T+vING%_A=7xazBY8lMx0aR`Ti6LeHb0#wn z{RMp+@>Js7m@m&kqGBXn+~L{nU+r+YYw8?zUR5vTU#&3gg1iBDu-@;Fx}`~$j}oWd##kg3 zwU+v0yfyci4#fkRd@5T^rt@(YNK60*dZC`N35x(@V3?(wKmV6^^T20 zSPV=~3{FiBPfm_ZO_|~7dD#!V70hp<|Rwd)gsfZBE}cK zy>|Ya@6TQR?#z|)&NL^8LFcaGUZWe=*FXOJ%}>9wh`Yc1{@w4tU;D>De)#7oiL z{-2=tBGtpuOkX1wZ8km==<;r{OzEJMu9XYrV&Vlu9LFZsR`w$0r^uK~qZDfKJdE$~ z!nyI&mvk{`*4u#^*^Y?fID2+mbh- zDfPOShBUzbzQ6C#V=w%zbN$*-JX)U%hqECU{&p9l!RG8ke|z?$Q>UQMPY!)?${1N_ z#G*~sD)jb3I0ND4-V=jtmrV>)TGqRtefs2!FFde&=Z4$b)~?TWug!F=Nq2UqIyy5@ zYa7s;=omxF!0{9S?3PN|gvy5k6tfMk29@3nvx^0*k=8ybRbm0yKyM;dM?1S2C-a+xcT5|g z<=o~>+5?xYws?(tUlnsE0K*moz&M&)!cN`^RshDm&UoBQ4mjmcrtz_XTbN_NYHdwb z&gP{?KmpjNlC9VZQ_iz&11ko*rMELgZLQSM1-7}7m=|IUiw`FHCVll$mp@qJ3#^8) z;BFhz2wLlmL2aMS5ev0W@2w8^YNw~B&UY*5%K$be5{Aq381$ip`p^a5Y36imE;0_s zyqU&WJXc?z3IyX`D3S`-CquWK8Xboiy1bS%%x0GO1k+ehH|n-r)Mok-ZLJZn`aUej42&@8AxU-1HEE&b|@))=JRD_c*(l4f4ovrg+9=W5NB%`5ur z=m56#$JRSvTE31Lap^t6H{~QdkUHtC)rSE@&xYsmy;{tS{ zZ+`v-`u3M!alHD=Pv89d^S8hK^4;&he*gF1AfoRtaA;wL zL({x}%&&$gN`aP0Pa21Y7thdh7tc^FvI=GEO{b|7$n47C{AsR+($zb?aB6byQd^ z`^6_7e09%zCy#t`tbgxGV_L8gi#`Uw+h@4p!#$rK={21(NNk+>{P=)M!s>bR<1g;} z(|udEZMkhzsjEA?W=*oQGY053x4`cvOU(&(y+AU++}a)~wS-`Q0btM<5NgPifZq1b zMyRO}H}*%#1P6t|yh{q`a^b8|FPk!?a+g42;$KSnV8GSnuDhYh#Z8+HxT>06QBv*f za&{HvIdjY9EYR)%J3&x(y~I&PR^~AS7{rx4EG%$F?Fze8I}U2U#Q=s0jwjrVVVGdr z32q3e0gF5tDadhkd?~ZTGdJQelAoE%3}#}mndD4`Mmz+G+f2qikyttZnIE9`eZ9eO z9Sig&g(+Q`k;!>jmbt$abM~zksp_NEEVyBk?^c{-`X(}A9C?-lH`(BqV!$(iL&gYU z7do5+giu`$xfC6GvS?vanZP{1Bsp1newKu(B~opKuU7ybN}`cORy||c-aAt-E0Vfiy{ksGDkI|o z_L^z^WzDBAYPoC`{W=7eI#cC>Krd6SnkXcg$M>~>+0yOHzBw)3u;y&GVn@pD-KvrmgiC0=2YS_ zASeK7HtSHqXLEO1cg*?|rP(+=Q304ptSXN|-*W#;7~H9O7H}&9cTbGZ93PuLI>Ou? zJJ8P>Hwti7kuI0yLi>6~U}rx$c53g*zV{D&b?*~T7T0tn3JrxdrFbD3$^^Y}k3Z?d zG1L@m+uFVJnTH>Jd(W$1e)<0KSr}YaTWg}FIaVx1z}jMSxYSbL-Wls!lWgydG`CWVW@<2* z4@23;5F8=b{&sXXAp8kx^AH{TVicYwixP%Q_FSprMJFt>*UcisLP z+Vu6-GJpZyTJI_xYdn91aK>BjgqMwF!$7ITqTTeGMz1T6(QM1`!NG_d%!aqdD~A$3 zJU0;a`6J$2jt`AMz%Yw%>f)37z2(K=$jPBmKAs#NfrP;#cw%LXjZI=4`^PIZFflzi zIm6;LchS;2SxOTRvu;?E@|t2aaipmdfFBrX1LuusS}{FBYfHjC!Xyz%Z`;X9NtTMGF)uTT10jsl{dC zuG!D|>$6{fYmQ7%`uc0u@|7#*$#QOym{gs(mYbE*6V%IK)(x?~LoAW!a(49h-;*ke zgE`o%PJa8{xo^J3@xpiCU;O?WgayfjF))1j+I5I=OO*ZLN7j`euhZiCbxE+g^3zYe z*NY?0lYaaOuGhj{J)|uAyOriueVxmf@f(`1_j~c{x{24lvVmS>yx>(!H%c>)`jT|y z;I_}>l?;~2SJwP2bL-bKAdAD-l-s2erw68%Wz$zjIKQ$iWVQ!OJT8|V^MXAtqnB}u z;|c2WF>`cy`pD4Kk)i3sgHwkFCcf$$JJ36-H1<_r1%Mg7`;HB~{pnW^z3|e*FYej% z{(Bv_Z%yaY;b=IJQN}ms^F+O_dbcCw3}x$6&6&j7Vth?u_bV^_ZU3ix-v8`_gC{;X zc=G+PPJD2{P$hjyxcTvclb?Kb>aznU_q_h$)6e|nslPn^$Yb|!+S1+D5pQmdG?yYR z&Cyo4-sUI+*l2>$5>h=Q>q{*G1~5-I;>sLA2n1^DOg9zl%`Q=DMt!44&0U~z^fUxF zd-FwqbBhlErsmHL)XgfDs^ffS>Fvxjj&eCC z_q5`OG^5u{U@ij~=;b|NMPj!AIFobcV6vM$IU13qs)|)TaRv`i*9YoD;)=n;B}s|2 zOSOXzG#0`T)0b>LjX832@R>G)Rc02BlA^@`R-3^NYS5to44W(EzW^{XSnd8A*&A`tLnWXpqB*ziwTA;)^~+_$42|c%V$WV z6HwpSBqR&{CNK;!n;FB@+tSPklk{w91GG`YDXBHq{TiR{vvXnvVKxOoD zGBCu6!Hi)!smqRMenES;Ed6SrsxuZU>z%n|cUibgNwYLx`Mm6TOF(}9>;*6t()Ysg zu&Vp4g5jkLms!gfuYkKNm#;zq?U`@BS-ET@*@f$6fycn@ zH^2V+?Qg%~2n^%M3xmhkf98B_&F_{kR`8kS*U*E;#xHa6;^L)C{O$BK@5++sYkJa_ zUP)~0gvGJ~SReVUPrX>%9|fP_4JbuKD7J3`?qe|+*UG)iz6^xRD%#$?1O=4V7S;E#DX0#b!l!2 ztHfY}?rmF|+q=?ccSaxQUQu;#!JEr_04)j&Cw-7$nCUBm-ORy9sxl$2J0kmApb#`D zn@rX+dcj?;?iBzxn2nt|v6;$tGk(sc;?yb@1K7OjlwKSR-~y#s(~zZxtdr}Mi~zL) zFrW_MV=KD5q#GsYlo`(6G`lM7T;{G0U~U1;8POHJu9P_QSq2=bJ{vTn7u*#9OOp*1 za3%nok95jdBnB`@$pGeWMKFP7S@hidB9NRv-FxA3wHr#%PULKjy~U_qP>Y3qqYaYg~|+I4j>C? z8KM>otNnc^cCwLWh^jo~OZE^h|HT)o8M~?%F6#h3bLAU|0Ss9HY|vK;2(cSn`wni^ zLL()8ck^rER@rb@W?JbxzJ_bm0DS4kAInnhEdgB!9F<72F5cPY94prMzy1Eh-~YkI zMFxp~`9-(ChVi|A9dE&~XZp&=(=6}TdPcY9CIgtH`FqP3mv1eB>%~gf%jlJoB<|Z~ zZ-&MA)S+nMZg~==EpwikYCm69@)j0vT>)dQAvu@BNvk#L4>LR?IyN|cl!h^kEA)l>n}&SJ8o@VAfmes-ew^CSJbzBoGYkipGlXrniib8}vFp~){@u8gUIja~{S8#}vRPG)8YEYe||OgPfu zXj)Y$(L4qh09-23fMNA^Bp7Z`pAEX|L+NJ#C-Lz>-$E#@+E11zG35NJ1xHY;N-_o? z@sS1ZYm8xtS1_Ek_4NbOx)N!;D@#gDqe_K2X76 z-3PN3RvJ+n6M@rJ(JOdXK6tu!bV~d&8Ddo&Wy#96Cuv&%%(5FUKWIoaEfOQ62 z0K9bhG5~Bruk7GjQmgE~)>36uReFZA4&d?z@VDO@QE1HvgN~Pf{0R~-3z~BI5LXc4 zh?@{VOXrAccr0p2ihjB?^y7U+a zhN=IWsx4-zULVtk`^FFTj+qP|kt(45Cx*bt{U--LI&k!fm;Uy`8}GdJ{)hMc>A_4> zQ#c-X#{-Zjs^ZTf7ZgqeL-7FU3;7d)U@Da9EWGgUD<2&>vah%IaNmUJX#d2KzVYK& zA%j@}01yC4L_t(T6RI!G#HrEAzKI$2rvq2m%j46FdtP~K$Bx@JZ0K0Oq0rh!`BrW1 znby{9p^)GND-f6Je~R^Ni?MX1WPzp72bx^ThO{b@nCC;%jX8tGuryJaA?ynCr z+ePtQARik_(3eBIY(|ZJStA!(^=Ho3DmhY_x>U{uoO5<`p@{^yns4+-M`$1uhE<8u zrjiLK1hjMdm4;qApGrD;N)nGI#48kwULN)U>f<~$?ojzz_=FHHGO~>!wSn#9Ty6lE ztBkZXE065;8q<)}krz6E6@#5-ze$fubkYG_$KrNWpf9iarp4^~&8%hkOv5`bmOe*$LKlYGhbxly`_p?3L{p=9I2sX7E(c$fUWZkToY`bD6S{kF653 zd0k0mh1i(|F~LGjy~~7dcI`C%|0MyieV(HXShUEV2yJOq%^9uu%UiYfMvrjncQG=F znwJb1%ir-Tv^E2z#z~XD3}DCtU_JQE+$DHiyf}Zsn!U_soj0M`wO56)1vypCpUz-C zRamDo0DSJd?}WjOVIr{#L389;956$dF$}~S68rmW8NEzjm3VdCBG6p`%!Nkfa%A%} z--y9_nEfVU1N}Ni{g~yH_{z2$r&aAQn70I}J(p!m?XP*)vZX#)2ciAEUL0(fj%xe< zE{o6Ww%7t-+|&Wg3^rPyj?J^E-N*0@)C)Y1OaY3}iJ|G9QS!~lh>fKD`whir{9RA|%&p+7q@cnP? z|BNH#Y|4!`t5fqdJ5^mz+w*PhDcIk(&h&;&rH<}~VoL&` zmEB)4!2mEY+}f6a8^(FKVQSG_2sbnaR9_2!%^DqovQdJ=J0JXV*8 zJGjpV?*vmWRosz?*MYvgmz>ME$VMvw7mDs;$wLwECI|az-aN)fXahg}$5}CTsq7RkFY;5oNLF`qhR#C{0%Qn{T-7 zlulwSWDQu7A-;Z{^QUxiY+2S4ZMFoQIi_9SV^(4YGwh|shYnyI?OxXG`Fv>(h}C8b zN*0wqXHaae3EgsRS*M!GHooXw)Cp(txHkf@;CY~OQZ=6!pwiqV)8>}POKbbP+*#UA z;);Z?fvx}VikLdITqWkO_JZxxq zX7iRiy}4MrtMtG#kEJ_`-cZ0D@YM#~HGY@F?{o%?qciNHY^-|M)_b?T^Z9$N8{7R& z(U(7cbM(UU;F)>O-!%W@OtW=wBaPn9~ylJBvg#;Dzo_wQ=8eOHGio4Ei z#+w1c6K(()^i>X+04(%X*;sY70jw&Qc%m>n>0-fM$h(^Ibr5yfXz)Z6j&QUFM`;^U z0btd?n)^-auGc6oQoFoH$19%rt3=7qDl{EQI?Rq&#$Z8S>+xqjwya8oec_ll5)XzV zK2^NS#+No|)zPra0I)B7t2eX?40iihDN-5$=4Kt-wF6eT&iw~)ceQI319-Lj4-8RS|d#r{^3b#Pd}$@D$kHy{pJ0L=7d4C82Ma0t>FtixEd z$Q4m*2Cym3D347@X|isAnY%c{5ou+D=XG{k(xY@YY(H<=Emn(i@|UF-qZAtPf2a_r zWOL4xh_jdZUOCC>R62bLT?%GKsMchmV2{PDr5=YWG0GAjE^pilfOXs|aLPhn-%4NY z?HITE(<_Ycg$uLi&dr=XYq@|B^y<=tuQNS5F96j`q@AWzT10POx@Uc60S@U1@Y> z2`}q$W5rPez~WrZRK#Vw{T;NmDYc)GaW9(=e#On=kx+&m`TjfGNvu5Vk8!B zjx3$!S;buMt3Q!HJUl(VuVsSryxI7gL+;!H3;-USS{@mlyJOd%e32j&%+|Z(K6l9H z@VjfhPN>e5!{_2uth%tXsjJY~(NGtv4dlZ+AG>qk=&_*-Gvnt@kDXl}TRA;`W@X~+ z>5=7yvD0Tqm(NV#KU@4ayK;7PVd?P6<4?cv+?GvUEu{?4?rmvLbaZE0JCZazp%CVr zEC3kXRUX%eBW(tkBE{w)!~ix$#*_yHakmY|XCmVu2CHU`2^x#5rZ1=-9qNpmiA(9w zaYrOt8;;hg(6rGWD`J>eC+M4Pa&u*{8E|&1Ks4CtB>E=nRBLD#12`UYLS%Ny__7Hm z^x`cbZo84mICHe4Od|T`efhkblCbhl2;T?}7$2ZMR?A(wxMGT}a07l8O8oXK22&mu z?+tUX+UR(dpi#RD5bE*xgGnWM)JefL-2-^Iy9CX{W8#Zo~qIF*eh z(vd*e;}5xUgaBZGSz^~z!h{!(QR)^1B&#;jHFz}%WkcXJ`D6ELsLo4KXf98x2soS4 zV$rM13|7yo05ITcVX*xsKSqyH8_CiG!yJ(oF@}!~3_>>ouzk;%iHoBob}@jZ99b|d z0Jb>b8|5d1ow|ROxG{ig$&s$SxgZU(tL^44+d5vImULxZ7W4{zK`$257d&J8dlMoG zX)FxZt+0U8?ru5r_C_c9Svq&+E?%(l1$yNJ)8{umuFhTgnmU8+5ot^Gm2V2b?9SK% zW@2#Vg$UDEekES8ITnsGjAfylT03zqu9}H1V#f0u=^xJ$SXO}nVz8bzC8kQcOO{L6 zD|dFyIP+<{g%tqnxrdbeKW8BMe~DZB8N9MsTixACsFsI(==HlS!^@i4&cb8jw_>nS z7OcvPncwpI_?iq?JqAF(!|Agu;E;prQ2*2%z94>|FApBybo;JA(CZI)+##1U;HdMt zh`w%ToySGoH5pv%g(LBJqF#R@;DDQfZOZy$#mEDD{`_hGm;H<5r)GzbPYs-$89F$0 z;@EiK=$WOFmBo>Tg}$k&p3#v{zdG>z%P(%dV_QdCuDO`x1S?hSo8Sa1mf7(t$PC7U z#{w2gKB%F|m2Gh38r@X7qW}zhN^xe@dy)anaOIl-aC!Pd1I3ncCYq>YfpekA>iQVG zrr#(L<_?jmI!e4UNw3nfXv>y^#<0JQIR^loNjYGDlL@2whN5hpxgV_daTR^T(bae_ zdtFZ^%W0@;}jeCvKUL2h=*;fN_4L95fMcwI!NLyFFsg#N)aqSX=V1m5?Cj&SX z^+XbWY4L$0qc-l zpaECWO-QVJ;;H~X+BXOp>;3^qtZ>!Pv_azGF+HUVM}41I@7Sex>5>q%hT%C~_SmwX zDka%cRr_ynNLl7VS+;MLR_wA+M`&cBufZe}z#y3cGqnccm~%KGWl1Y$*`3 zdsdyGb}!4SdKYKv5*^Jmj9&i0(`U|DzNvoAVg0_kLt5bFNl7c}jD!mMvsqtwp-Aw!Aq1?3T(d*~c}b0;;K*DShstZga;fCo*wRRNu$7 zw|cIO9+&rDOe8PL5Dq=Ud=oKT@tWnxuwrDHsphEZo^k4!adKkTF0L6hMp;jbV4_5DNdAD+bO^N&3J=-v14Xzwnzw#1>9mVin= z3N|-OoeXAhQSRdUC2l#HRrN(pO_ZWsEP4UR#zrRu;|uiiF_&>cu)pybaTg4( zkJJFSTxi7O7TC+y$7=8vMw?8P&68LL1YDAnFDb6Nn*48~FKa>W4Vfxh5wE*}Sm>*HS7 zUjP_ZnA=JE6};6(vQfxHd%&SpfNm&Og9`|J41fJK2;gH-X_M;t9E{VH zLvOu%_xCW8usHu&0?T&F-Uz*VqL%ex3d5i;959EYS?r1B zCc)U`uAWwHEpV!AlWAdaWkS}Rox%1>Bt2)UYMzvtsBDChHGJxws;Zb>;mu7W9 zIU@`JyWwUy!Y15M;<&l(sy!Z?8{R}J~{kl&*bpL$~^ub zIC=W??#G{c`K@=~+52g}tHT%Zx`Ixw@c?ll*x%L8x>}C|Yhak7&}t_b74~;2rC>bne)>wtG#}hP91rIx`&|^{uTzp0>-WRWgen7*-4psbNH6t^>{&;Y3|J zfFW=z)96Y!I5Ul8a2dCt5%q;u+rT&ps&N#W?~SBtVwt*BgEyJ;usP;1wd!%Ey zmn>;Rg989A6etDSu)nHW*OZ$9oKpGEvA8P~uBngIanKm_t&gmRy$(lfAdonofd{4e z4FEihFT@GejXCwQ4X#Y44$hmzV+z%%M82@#&!$>s`K1fAjF(^^9Elr(p(h5%VWXW~ z^-HZK6`pY~7|boMbO4L%l_)gm3p7R&zCf!0#oHa&~>Vz8%4kvx}DH_kQJ*sR?Fiz`HWeYs?Od|acs}9tv1k!hZEk4*DrxgG*gBim* z7bQfj@8HS<1O_@^C1@=ERn}D{kEf4eYxiM%eMR5Nl@(}W+0eN8)5*_RwS|b~$JArd zmYrZ}SaB0o4b+!+%_|F;IBAQeU&Pq?ZAo*pL>FYSfGZXHxj3on;_SH#GxXz-rt$xf z%3>j5?I?}bUJ~dsYxSEtfF;RU2e1xZi*qfHn>58kpdmS9A#v3+@xNcJs>e`fsw%ptH$P2r^ z>i_ECz`;-UfB4o%ukU_nS4&&AyDQVy8t?2(w6#TB+he7cdJaT$2P>ZNqh=}?!;9c? zRX?mivDps*GZ!!Q1mLWbdSj_xR~+U|H+dSH zgW#?*!Q`01yiC@s>Vo{>F6av>drA>wV3Gy&n#lA})sO;kGUbgY-1YTN$Ot>vuMUP* z1;Su(Eu<=sYk}cZ&XuJMYM0tbrkBlS9CXB2$T+#hG(=M$6lj^jyce#lxrZ@q^uRLh zFZayio$LrXZzt~xtNbj=f94Ss_!#&w;b3jn+Qt9W2AUKx+!U20q$sHE#!#yq#glE^dX zUg?R@eB^~QP{Z+RqZK8$eYW(ZtWtNR*o=GiyNsIPp%F{4+5%t})3*#@$=Is&zCvFe zz|V(+=S6$|l*Q2+%+O-RLSG3o%NPcWghrMZx7q6o zPt5Pd5$PMnhmAaBCCfIgMLKu&XUTcX+EPuVZ}iHCA75T3;ae+>XN<;i7ynxhSa!k1JK#@V4zA>!nSW9B-Y(mc+LkWuh7X3KuWVQ8L;EK`*#Fh5tX$ zwUjX{P_G&?wKOunsJBgJ$pf_Ug3DTSH)}PK9lgR%ouJ&~LYiIhkr%>d9n!Mqr-*+Q z+p0TPHm?R~N2fqg5i=D6YY+C1Ltpg~ZV&g3e{$sbs~>;1_xP#9L!(Cq#*Pgck32Ry zacXjAaAxj`{G__*yV|O-4PGutM>$=zQ$s_ zy}N1chWxsXg|6;gTYIX#JKD7_v2I)AeUIMu{+DmQ{ND4=?0M|z7aw`#(OvX_wrERB zJy#P+l@ZXwC9 zkO|;AxMYyEwKWV!3$NLj_qVh~0pLiy)<9#@*^u+$F{M%f0M6y=ATU@=sw|3mAH;pK z7{FXO1o}oIt_aW-u7QG~)qzkgyr$thRq-*qaBkwkI0t}nvxtZz8Gxd| zl7|CAJRJc(6*iikt`Vaq$6Q;k8;;a~xV|vZTf+_*$6$1|ab7)M-9;%{co^kjdH#(z zeWfF`9(mTfL)UOBH809#NIG$w;1UC zUozOlu$8|02C&RX5CF?Yubq@uA8gW*qOYc_lWb?aPUQ@SB@2mpQ(54oyKUpWR#uq7 zw6|IbV+$tbIzWFwMRkx3uDZL`@3m8zUi=1mReE+eh-;d;Wrm9V>syl4s$Se!LetiP zk|uZcudGK1I8bl7D6uq=wx(5AhVGfWdPLzyF?`E4(Cqp1GxVw0@1A4&PMZJ6&~vHS z$Z~qr@Z17quDO1lRigs1R4ziIFM&rjBPF+ad-n6IYKO%YwY` z@FY-rba0%H5PRH10}~8j=*Ymx!QR1l_U?V+rI%j&=!1iOJ%?~DJ~n=AeERsr%&Ez# z-szbm1AWiD@^aUPb?dimN@POq-Gw{vXy37|dB@hmw#`jjw-xTXr}NS0?tbX$J0AMW z?gyX#Q#>1wq#}TBozKO%b%%Vo2>=J8p&E~)R_*?R!Hy7#F&vD0!b#ZEWOHk#xh>V+ zm22-vx3(o)JELt~v5t+&+jbW2{L^ha?_0lVYs-#Z-P?DzQ`_feia8tQyeiWQNBB9T z9+&$%@rb~z2ke21Ew+XVB_Fs8`oaenN&(4@%H@3&VOC*e$#ce$M*_2VHX0GyURAv$YdpTy zzJM`nfgLJO38a|~VR||cjtdK{xnDHafeNdO9C%;OBLjok8OuZmh$@u4e*k@< zTJI{U`qfjQWv%?KQO=~7A>sTj7P8)CDuWJVd%tJ_u-s+T6Zac+O2(G3DILI4NleEZ z09ZoM_CT}_U@bFiR^J2Wq9ZoJlG_Y1FL9K>DeFd7n4|!Se5d`Jd)SlvA4d5@AjmU*WDL=T7}%)ZI+zD?rs* zYq@EWmP<9yNxwHro3aFxbuX){R%`Q10)KeT`UK+lQE$>S3fCnm-Z^!GjY>YlqEx_{I5 zjm7qSp*ecnmX;mc3!67(H?2)Un>RFU+1R*!SKDn{^XWpkb7LVA4+g>>chKt!ctBsS z`h|Q!k3ZzC^*CzWb-=L0?^X%Y_|xq2)_WMhna28tLM&g3wX~;OJ5r_Ac&RPY+8J+K zA8+4~=vWtry4NPwZ_I4CE!*B1$9c6MV)2XBSyB^H!Kp9|B>S4O4iblsD*>FMnTABiSj^-1uLga?VMn;WHmVAf z%mitp2_>FO%DAYODP0RkE>jL;i5f0g;;mnN9kRkrL5h&4-882m?NRMVe5%7&d2hP{ zy-LQwiKL76gJXs$_#COFtzy6xMAZ6Q(PnU<7668faSIXJWnibvv2@whrsOg%I#O8m z1&GSD)s5=_nhaqy{eTr#qDVE5HT3vaK^&R}P?_{9wdz)Jx5f}d-zp8ge{=>`adQvu zoOO#%U$&SQ21~&CCY_>%%J!(W-ZQIAUkOTA)-37aXiF5@QkA6VMeB2ms{$D4)jBrM z+s8QwB*dFmN3RKB76Eu^iKGEZr|*c3MtBULugc~M7%wm5^&weUcx+i%@GP-w=F?5U ztQQpN=+z_S`qc@q<&*PQ8#Xnh`f}@IGvo{E*58g{dtBO%Uiqf_WrxmStD85otgB8! zw7252%#g6OqqCY(1YF#U^rmLFk4|}@Zo+6GGlSzRR3S!`QWvWK046T^V&OaJ@V8O zkN)Mc$DVoonK$=5`26D^9NG8P@TmhmM<0LbncH@(@7&n7d0TgTcT>lj)Y^>=pzp>F zMBk0wiH&PBx2?-=+?3n2r4h))pUYqbe_@^8fY%@LdqN%u%&yPj3b;IeS0L=G^VT^P zk5zQq?eODor4tLTZ;7OR>3pQA7;Wvyv~{MN+Y-gL7}VSuDRtDhbcR~H!foC4q>g&v zlXo#W@(k`4@?jP?l{6Yg=Dca6w}y`i!~y4g(Mtes3l~~~0B}R0V%`xCDv+tbCVgv} z7I45|Ie-eaH2Ydx{2(p>436U1-WG&fOP=O}tF77F-s0$!CHz)M;-A5b)!`6ILK%7<7Kvz@gipMITE`S zipIET*hyjetd|>-WU^jqnVHQQ^rdbgW}!3JK}Di9>glTZSS4f`X<5-aeN9$aSyI!O z5`F!_I>?;SOY+u(jx{*q-&znZ``PSqx#);Xp(L3+sk&})F%pY|&o~;_0m?md+7}!! z=T%8VN?!0q0C(4N2LAv7!w|q+0bn~PEDqR`)l4T96j@`7i;$38UY4w(`Qln1j|G|CBwNu{ zDMg=w(Y~}K@5R!Qtb^Geul`>e;)*TpGuHiV;jV7z^)Dq~gc96l=LfYR8C8E_%h$9g zYU%Xlm8h*A000mGNklsKK<7D*ZPL`HJOgCcxQKF!@3l7+q(3+u6S2Rth+P5W=(SA#@wdO z&BanA67z=YT`;?_yzU_N$A_@+hupz>FX#&@yYW}D-U&H_wY9!mJ(Mh6hd;{6oIl?Z zFSN#5yVBfGqtuR@(L!52sU-+rwseF`ZB$UC`Ybx&Ut3#Zg?y-3s0VtR8iNhoQ8MdO z7S;p$W>oT#WdHJrKxKaeJYoUfH{IYgyIdKGNHUxt(-2H%eA2~&*bH`-f~AtL2w&Um zZf*0mHV2A%+Jyy)JK6*7ZT>c#FS%NZZY3`S02iBFATGFDXmI6o&c;k#E>+Wzb#n!< z8mjLL59;Hsj;-UN6PqAg*r4^F12F9!?U<#7vGzohSG_eSd=7Fgz>ZR z_(h(Q!~o|0)lyr<)k@^}Qvh%cTW#2Gu%Bo8$_}*TNb3P%7PzZYvGmCbB=)ADU@%S- zg6RcKe$(ryU0wi~qTF1~Wwh{gsp-fL+F$3CE7;%q)erz2O}QyGEa9bqw#uWX#Cx;l zq}~)-_L!N$FwGo-uJ!)$h5+V-EPeOaJ__l717JIkDK6bRpr>V(Rk=@06-pX?#TJuB zDw3l0qb&L+W-L+Yp-MLB2rOG+2CBlIg>Xzhfg+B0p0a6N-o-|OWC->bJ%)k&=L7?N@$U7%^t__XNM7>EciPB0Wjz$8Dw1n{i9Ccgro zmwWX_AJQ0v?JwSf-^C*Q$B6&x-`o4y=Z6oy^6p!E-hA!7y`Mbu@=H%X|I`!DJ$dg# z_iWv@<(`M`+_-(+rk!hd+`D`Zx>?LXBA90^&$rGlv0x-`!D3&}e zFu2VD?t_6vYm2wJccopQ%wo@ms~!x(s2p)rUMepkh=L0@jI#WR=q6;vx}XAH*#o{OI)$fa4J zFQZqDDI~Tr@bC+mZLaAp*!wboiNP^Wu(gRr(IG z4rzNi6Z_pN7}m42IO*DKZz&6XKUhaEug$nL=V6r#lLj?5+{mR_0IZu%p)cQS&{x~* zwXnP@dUfdP;}ju#$XYNgpGq)n@x&T{R}^&5&R;lZ>ViEfTF)rf1H5#dp(S$LznXjt z`zR_I2Pro#7aTW=Hy93hWrefK%e6_SJGbPTRSmOO1@Qd2^PsN|U`DT@%6w+McB{-_ zEf-AB2CvxbH68FoWxRl@P-v-LoSzTf^jAg_4(?3V6ZFTQh{jL6bBDfPh*(6^=F%Qw_EW>;rYtF!4Et^-!KwT|~?X=_%Q zU^rkfSZxf`_#^3xrTRiU*u3T%{4|51;42h7JOPP3F~}OLCHh7k@whjU@FkKS9%~4S zvxim_56eoaJ#PvFWXsuP271k!VEzRNy=;G@F1Eh{U@k*4e6ZnwjYe7uehzMl1)oZ0 zS~*}lfJIW{6s)IIXYPch_Im$V=lg>*u*w&qjvRPpo|xqJ*ARD&GG7PJO;YqV=0I?L z6kY`Mb$b86!Dom7Y~T0Q%aAM%*aBnAc}p3w{up~uT5_Z%=4`1LrlR4>sl(+))7p+T zO9!xC9Bcuwu)#7;xNJig7OVi~Fs$i%tq%Bq0 z%FJg7pVks%mrAXQBrFAB9L4@JdY3O<*2QN|U%tX?cF8O}3s0XvdjXm|a~{$=U0dp# zr>wzeYfZUiv1tK@(-!FsP|Y8(N~7`{P37Wv53W9;9#9Z01b{W21cOI-${y*|C_M}h zwnU69!oB7mDWKl0SWJMX=H+g+RQ|MT5XKL6;` zFFuaN_FbFS-PW;oeKXX(rlGSd+uoIK>rAzGq*~h&E$s=cJGzpc-6;r*?ygK%XIf1F zj1`)rjfHSBN3-gJ3AYabuJ`dSuUm~thj?T0lQAwFth(ift5g z25SM}Tp^e#2GfN=vdNdq`?L7~pQM%-8i1*N6&2O^v&#OGR8B8XQ{aA2>{;P`A-+)H zS%jch((L4HX8(G)$d#1vic4c)L{;n*2yDtzHg&#ebaIA;RrNo0`9@c<;B0C3G?%<^ zz1(wyW&$Q^vT0{igBK1M$~QP5;%>T*(VNN`lND0DiED1_!V}9bFHiPm`m$&nIP1+d zawBWiRx{(GfOg!Oh}MC=kjmRC=T6h4CIw*X&XF;2D{B_-4dY=(@Hy_3na3<6Zme2x zFoU^@mvgd=ptNEh)lJ3RylcxC=4c1Uv31;<-j@@;TzDyvQt`4Z9#F{1Q=HWWQ9+S+ zl>+c;dW>qp0RVF*Hh1Hap-h~cP4f*se`NID>iR#>Etaic9l%xTYcEN%TuhJB$tHsgSZA!1}(gxM4D;T7=dTg|>&F zE&kg=DGRQQ9c4w|n*f+?tF{kH-WT*;x_r@Oa777?g}!<>De0g*T%whvwSl1M3N8mewNnx@RV+9()$)0=E{O`TD8=n2-EK1~Ajt zVDQR0`%bx?zIsxQ0dFqk-cJErhsdM|T+jiZv_1-`2 zyyt-(JMP@P>z>=U+`g`RZA)i&zH3bZt{3!$dOM8-Twk4sK z_H<(*lFkJ(4ZjX$!!sLLO7`=dUluUkQv#S>VmC^P6*v1kfJ2V%~6E|_nL0=@Zm zQe$f**9;zqKwL&|vWZ0Piwo+c31FC7Dy>l|MF22NFg}Kokvzo%70A^!y10yhnYT}+mR*m>-+{yct%oqjtg_e#40Vz$1wwl_l9|rF=er(+`?K#R@I6t;-m^9RX&7;FqjgX zqviZ8vaJyZHLV0|lU{Dw!HqRkWs!@a&Ov^muhI5P^`pk)-TqZP6<7^E0yt}Vj3At= zkx`{6s{jlKyqW{f?$ByaxCWv{;8yNl$qdGk=_|$;=w0O`-EwMd46^uOOB7lMaCx5K z(5R&}NPmT@F>QM-lO_3Cg3^Ww9v+4m#zsjJ`(P8g^7?vxu%$U=)tSLJ0Wb(>i9B24 zy^@?vZg_raVqqD_u{kSg>>I#UEjYVj-7)KsyAgopGe~)o8G|+KuiXLb&9HP&DalR7 zm(uE~Bq98Nyu8p^t8ekzWnt2kjD)I;AzO^Qe(7LoNMe~MQPHzg^SHYAUAgi#3(#fp zP5qI=V6xFVeJeYl+1skfgoMDpmTHGof`K%uE#wS87(I zdtVt(B2CfRk?TGiH@PFajMS9DByz7) z(b>U|NPD2eB4qW)Eub%quV8Jf%ij!vzRn;`uEj}6SnVcYSWFRUWe*1c2Lo+hUz^+0 zq7)IS%&<38_1@IvlCdP9uRS@hTE&!_z{bFU&Mv9m0=nR;7}d#Q?@*!Cig^-WcXa91LL9 z3M+vG4L{er000mGNklw)pzN%ig zvqrb0x=HcA8vy>|>{-UJA~}HQWF=6EbDE!O^Pc`agSGK(t;w#8Eo<_hX{`cyL)unZ zCo8kDD#kN>UkJJaz%qiW-3gZatXd3fbB`Io=SD~XFiVT!t@d{-dMlE`D#FeZz06$+ zVC|dP0^kjLRrHmtoL{shwOG5=T~T_pVTjedGr8D`;cYgpx2pr@xI)F7S0Fl@kQz(E zw!)Ia!p=Z^W_&I=k(!%Kr=)O`&)|rkLVP#z@D0n$3(4K7Om-@hX7TgzWBGyNMMWTb zdUhiUtqC4zuU(W7!sh;?@^jNBdxO3*z^-ldE#Dz&HZ_`<8<|PcOY=^)aNhmnQ(EpDZH&H_B-Ywo2D1z-Yg@%_ZH>->ap{b42hg{7e0p^y2Ku&8?W}N7c6SR&jM#Iyb<~S7Xrytx0i$TmNJg3WdX?Ees+l9` zs<3Hpt;J3L5j#Jif;}Sdk_wVFa=S->mV(KmkQX!sfSJ4OhIv1j>wv*sh?{bFT=ifu z`(QkeQ%o3CQ<~N0lz0_uy`{a@W>sEMvA+SMpnemJqS;~#8E?QQN{_^juTBgSZej;4 zQmOTzFV0}WCYWQ++`vShv5P*GaJ|57b6Yi}ZJNPXDik45<^eY-O{~ny070Xrw%J<8 z!Dq8wNC`4GvY*CHn^TXQe2K$VUigIZLi*O75XYPwHBtdg<-D9o)o7?{6w`ls$RIml z25@6b6$4mR4d`3fw4=81PC?&0s~UDl-SOqQa}XH3u{eEBY7>|Rs##y1J@@6AvlV$y zTLCPM_4k_N&267I_oC_WSC6D{`8& z{Mfjp*j(=okBSrk84xvRyYTu-ECC)3HP%p5eG zO+hocv=nZNAEhOg+35<_X89zJxWjZd!|26AN{e&xx*{k&lVlc>)KM0kzgEFu?F=Y( zz)W9Rv&3dscDGhLdnd=!8@?PGPm&Z2%dKct98u@|G6o*hKQRd&Q{}Pvcc>k#x%Gk% zNB(~y|98kp4BqqBfg-$PEw7(&UVF{7>32!ul4WK*k(ijBolGW1rY3&*>lY6m+JFDU zhwgpwuDcHHI&fDvh|Ah{pmXou=)L#uz3X7CyURnd<+wc(2XrmqE(16iY4?Xnfsh08 z`)z@ModMk0;R1v0&StCKV0JdQyIMe2(GH1*G4Qw>o1?`Su(@2V?IJCfw&F~+7I(8R zZ1P9U-VoevE8xmD7e^<>pW%I5A(y|^9cW|8hQ{0?gW79|LBE_o%=S)c8DZDcVx5?Jsq7;zsz1bA6FWX0B&P%kz=g z1as+;(uC5_BY|n&19g`aIb3)kj`&z;Yuu@00Gr!uMEaGEyIl%H%<0gSoF%r0b=&|% z&4RAOLpb2f05+PaEwj~W#KjE{4Rm_jJb`vOF=<1ht24OU?x2BDv}+(fHwJKX+s+nK zl>%dN(Zc}72X1Jl){LYpq+~E{o@pr0RGhDH zy<2mhTUFO6o23;+l=C#uE zT&?~Z6dg~+1gg1-ObWt68;}^C!>2Seo|-w{cjm44{_y0pKRR;X{<{zFhUJC!?2F^L z|6s@Ny^)?>{sRYN`}PL9yIftJ&JF-LY7GQU;fMt==AnMxfXNp$`-66%)aSE8p^!Zm zbH`(jP_P}qBQxYMnw-tB!X~R8=xrA5326?UuPqp|`1~e^lg8=LG#ifr2A82L-7N>1 zv9|k3HeWN2P9MqTZ4sNzM(tD|1~50QAfKlU(No$Mf~=gq>`{Ah@Dw1INOflViWU$Q zDOE-eXr=&hmM^v)95;#=rED)OK>apiaJ3Q@5bjnx5122Eln}I~ zQHnceSe%X2JKEhO08G`!JT(PKC zhff%>99~u%eNe|~^-+?(Aao4?T&t_rqIYNgo!a#sTC5UTdwY-f_I-1{7a|6q-y+^s zJ#!w?CLUL~;fm0-7RH-)j@8B*#9-}g;8Uk7Zt@w4WZeAX^cgAGank8?{Kjy7AjJSy z=qnbG_QGG%R{~fGmVQqw3~i4p2oTcx;H_V9THC?Y-*{=s=0Wi`l&(_BTiQxr?S62@ zC4#m+h19lZD!5w#TCLfYh8stI-L3D0FCF*|D=BH4LkRLYw|%!FdwE)JT{C(mfTa^< z@t3=#@3sKeFj%?6W*GDRa|~b{XA5~=v!oT)FgU5*8?I;sU6IkYX{fWhTdYN|>;$rT zf@D$xSPi77HQUk&j=eL9dCk(E;h6d0)Fj(t4p7T5HI7fzy9fe-+k?muRrtL<3}Di*x4Q2y*I|{ z*&PwbP*+c&tJ}M0Z)jJK2k7nWuy=Jjpjgy`^{yT_U@Uq#m;%9euV2V(@p#(7UD)4_ zs3YhzfxgYAI=#8UNG*T$Bs0E^xDx;a1v7axoJ7JPBYiW8bY4$YnbYV@l7hHI~$0K@D zike_i7EEz$Cay?t=Jr@LF3F~1o_}`+u%ItBz#;&fsv!=)b0QUYz~Es-+(MGY(|qBK z>1s^0jbs4B0h0-K)mt33W?Qw%TE%s}>LjHN2h6+0%48%l6gWZep2ZBFvP zk?bo;o60I^39j;_B(&zIOkV}MLfV^K0nE_d7Qm$b{u2WOn;fvZ->D_Xw!6X#z1Rc` z0BhsV6_q(#lfO2Sp9RCTYc25PC4&5smc&}lX?Ll&)-i8|t~Ri|DZ;Etr{XhPuLHDi zX=~c^R-#wXS0-6N)A;3xFS!xvc;I1 zOQoIlw9$S`H^sF<0=Yr1T`TEhV&9s>)Le^InaC|j%zMeW z$>%vyTpDrh=OAB#f2w}?^Z_P|1&9}^avsL_rQf}D_Yd#B_mM;QKY9;v3;IIcyTUkj zbOpM0hr9Pgx_UxbcXoNeVA$Vy%m(Q8bi2B{?a-b*?!9|GJw1-jPHQOK9t@d%0SkcY z^MS$UV9-VmIP47hEU>vEu&hj4HHuI(tgzG5Ox9T$%4?=-RF4tg-L00Ic1MHLXN0(4 zm4`NZ0b`soFmxTBR*2VbU$f|{(W2yD`Hbq+1PUh0=7=JhnZC_|Pn%t* z9BB%MnqWx<1t~FV!wvfySz-^E%a$5N6k5*=#u00{VVkwC9TyPh8j?U1b-=J2lq(D? zcZkHh((%LvF-wtlj%gR!UMr&0bwXlaS&Vi7eVq=q{8#jdma^Dt*zauFnVchuv4e4EaF}tR%ad5Zm%H*TWW+jznU|%>Qn~T@E8U$ zsjyK_M&j;QG$fd-ip5Do+YU%)s%mQ6$=S{@#Ef21Xrzd;t^{|bB!HR0n*a>@Zdl>- zeH>wy4VJg&TW!U#JpXU#D^0LArK=LR+evO1Gk`02EE!y3g4qE}Y4^Q=UZ(E`)iyW5 z&?Z1>6N@S}L}{OA21j@gcx%s!@5{U1whT!@+IG;DKhmD8c#~SkS@Ax%Zsk_Qy0z$) zA$0Yg147Ds;17-7!+=o#kkskHA^J47bHH17f4N;3l};r#;?HXG)J7C~G7bAnyT82k zyY238#ZK_|iIFU0(VOp|`5pi($y{0={C(|Bwzl~koTr zr?tNoS1J|PD-}s(vZh%|ZBa5gG(9CZm6^UGNi9{eHLmWgE8^=OINh0II<;6xEfkZb zJg=wIQ}6uw?IRE0weN7x;Ul{b-rc2eww?!lEp|BNR7AS>+Axk)7i-hc< zfYs}_nk{5}fnIKg07nA<%E`>!BE#b`S*`kZtHEk-#y70ZZEy$L2(;d2L0N*aJ7{qF zl?EDaUn}^{;yzYV0IE8}+nfYZ(U6h@p&Uk5>s}f}C#+4j zn8;zNHMiG*PvBfA+!%`+Vo@VaUl8+)!a=>DDT^wAqY;|805|OOHLy1&E(#wk^Q2Ut zs+9S1#F)yB98D~z2>>xixMG7=fz8%F5}PB#8_rc5Z5|vv zJ}{u|7*(rHX|%Vk{pbpK}w@w>0olAHEHM>HNSTh^t^& z70y&-jcMY~qrDSjeUsz;QxgneFkpCQTEPnFWPWZaIf>&ZC%^2S930O~ z|L=$Yef0UK4jt*0l!Px!-(eB;;j&4t+!wvLy^!Ra%cKRY6UfADA%mXj$_gkVd zYge}m^aX>vI!vAMw(fX)XVlc)X@OvZY5uP8!L%jpYf%^+v_bx$-RU-&oh_|4gU(dn z)K=-46_%?DwO2)R@c7xW6>lO5slYbb%WDV`r zzJNX+(~%;2i26#Z0*s?!qte^i-^jsdu#jtcxm6^W2`O34T=gq12tUKvxZ}(c9$|NPO z0OpZ}+~^7n7KXTyaVrw7$q@73QJHw5Og*A8z`W}$CjpBcU#j%QCk7+X>*u2pa>93iTdD=zd7;I*T+9Oe)1CyFDu45 zY?~UrQQD-UT{i3Z`0L{zef7;hzWD0HFTchD;vSaT5r^7}VI^~abHDlwtPY@yuS~<+X7fCoROX$ch=r#+xu4l zSh>Tdrd?uug>r{}0C?-eiM4|YhSkLYq(lWaCu9lx`@I0J@Nf(gM(=bgIW;$nBcx@p zmap65mhUVdqJ6CPq;%NgsCB)w8uT)^M7q;<{Y*65z|<2|N-%gvb`jZ(XU4XYh9;BI zv<%)_hy`ii-sTT&PJV9k+J)DQWE??UDLx~wZ{(*ZWBXt&Bp1nIZmyIAdNYgpGsEZq zb>@rz{`fC{{NTMOfBwuH@BjXH@4fz$qmMlH#6A1=2lws^?A_zvz02F(LpC=OcSJj! z9bLZ8ZhyR!>@NTujeA2Odmvy1fIB)JU0oJfULJM}`gTOxpm?}78Zt+Mrf|p<@V9t9 z)TTHbvV?-|LB9p^`6w>!@U&VShGq*Ka4je1a5siFGY|p>8?E*h92vk)cPsN%746Y# z0qhI5aaRqJ-{_`x9L+qRj)K)nJh_o;d1*6J1T$f0DdkGc<72t~dTQ%0wt=1!&^fx4_>0q?yPl)DTDwpo}V1B z@V=n0sjbS~R&Q#hSUTr$@wTp9gLZVm;iwe=)`{@@hW%v#x3tufl%CJ^JWNp32g4Ir zDI*1KB&(~@=`%RIdfN0=fGUcBMWGSzBJ-!p)1?^3!V1^mJiB2$p*jPY0vp^_g9X-# z5k?{lx~+y2o<+qGO&hG&?SQ~wDmM}i7|;cS>zZ(WXPv$V;w3n{Ep zW5OKrC5iRc4p|C%fm=b`Z5w(htur(u1+{H7wBDNO3+{rxS}}?F`0E3D%4V{{C4k8t ziu_)NN=3G_q{2*kP7B})X*sF@Tcxj-;@Y(ax3d+Ll5DF;bi$hy0oy4~bgC!;VyR~) z`X|P56dDtnkkYbQHV{=OXKXa_mLyg@@s@31nRvCu1kY}JwIP35Nn-hFNa#v~%dBPG zCg-ydpv&k@FXU$O$xl!I^Vsix`Rq$SdGcpZ{O~6a-~YtDKYaH7dmcNm?_julx3{y~ z-m}{UQ!6@3x~OKi!x`&ziGjOra2MVeVgN&ts0DZ4z1!B^-M(j+4cgsh+1rDo4Gazk z+Cu);NZ1SjLm+W9VxbYd0>ECc+2b+6)B>w*cA7BA-;dOJ-(~=PA#fJ}hAg&bo5P5E zvb%-TpMLEh%!f@cmBiN;oZbhyqpmst&kTRF{hR3J&5Ne6Yu> zM4ox3f*d#~$1TWVw~*S2iD%^1;ZgpeArfn&0Y`Bo>~Ckx$ob4+Sm6i-oJH1^Uc{D_ zY9dgOVaeXqNu4I^8J74F-AB+@iH(bTAqBvWCaySwe+4o*^~u;;1%Tmt1@_eKG4kFs z@B6wubxuNly)p)v7)-g-yzdLXQvOt1V@peYb2H5}Y%|qDOja0Nh<|0a)ck&=1LnK& zLkPoywb}{6ykDzy$P)AgdU*?2V2!(gBHLL{~Mc)SgqPM_l+Q6(`WeDiKD2b{le z5~6G$&E8jvZLu8WAghuf4n#A6CD+LWtK6j{zvs>LmG`d*p>Nw)MC;wPTj2i}v$r+^ zJhyptai6vkpsGqY{Jj9yrh2J}{Xb!>HPhOst)Ra2zJk7kXGe#LpyOk`V{`;&crA5) zbmaUfpgV{~1%TDYnTq|Db0f6$m31s)7j}-(o5-XfEF^#{P%7!75_ChG$+{7h-71YQ zOl+?FQKX`mq~&hk_yp8DhL2)GCGogMqe2^J`1*sTmT^x=0B;UZZx3K?=CjrZ%a2av zmu-`nRuM3eo8nB|4d~A2p;W1mE*CS4#p&GKaAGXCTuha-Fuqf%>5o4D_=RIf?|bO3 zd+*-|-Fqva}fk5|e4~_GSnd6<-&Ms=&4D`bOg1ewE7Emna26Tf#M>y>A z1EQ2sW!|;RdDq>ZJ$r3?_t^IBwX^o`cI@f4#-rv~#6(f(5YZQkgxeXwey`c>ZiAf8 z7OPdy`K#QOmy3~FL0^hL8=!V8?61-8Y!(1E0*Y|D-axCm?<)rJ`i-LHq)z0}HrYW? z(bEb?d^O`cn)9k~(1LyUkDiAuO81vN%bw&%vS}m8Ue$Q`lD)!JU8ut zz}hBbjXIv8M${lxGk_a(HT8yCXd3{Z>F+-~FmP^gP^cg39UAHz9_||+h5ARvSXiGM z96mcRg!_Zg3~3Phgs8aXvS6wV<}@hLrbFf@vwMcVJaOiWcsbV*pEOsl4?^+XR+3Z7K`&3Y4nc zWvGn8+YOG74~&hmR2UBn1}hGjw5b4TY?J*JwZH6oW%iRaWH(cm=km7VTewU%ET3B+oQ(E+Hk#cpS5O;h`D|`Y%+Ns796%5uo z;H{x%?KZhKRZW&!Nt9~Ekz|Ikw7DCBWkFm%va+ROt~_5@Dh*DIy#2R#2NRgjPDIN(2cz_ojqWmmTa4j35Tv)j6>r@g1!+|^-%I^s5%;83{T>ucfM zW&k+gYj?R?AuzSws^cMaJQz+%$ZBh7w>P(%8r#fGW{ckLr0gnD*GqLo{*XyBn0il& zE|L(Z^FSPv6g4ePWPe2p5@3vz+=ZCMyO`2bdSDq{dTK)FG{ zBZR$1+>IvU*{JIz3~nse5{v4?p~jHEF$}-!YjitnT#jlS*>`fnGq=v*K}Nj&Y!}U~ zc&45*{*S}Rg1cNp%&jxnJ#!Z=1~3TPZmu?iZB&C>-Q2bl&p>mZf(Ad;HF2>M*w4nd z7To3XUrNP-xugdQ|Jqg$wY1bSfU!^jY^sF=RvkZGYT!-ctt#o?nh8ZpSXh)}X>*k& zfO*#ze+yh8Ik?u#qn7~YzLjz(m;sDGBA9Kq<56l_mdK877gWX*HjAugU2_!!m=mnj zzE=cYp5qJj)}c83?EnA}07*naREZj24mESM82}bNEUS6^5!V5;_x)Z6+&?k|4U7&$ zay>LY3Jp(;jZRHKBa@TR@Wcc(G=cBj(Y}$PvjZC#K7RK6H)qa4U!Oh;Y1hzKr_Lxk zc^2rEf}fTac_Yv*^ySIZU!2(JzoBIyFy=l zk7VkWc6WShp4vuAmj=LJ0>DCF2mpT}Mzejc0(kSN)U!g$O*yfZMyQ_MG^O=x@K~Ka z_tp76sABwI#Xhtaz;c^ef?4}hZA4m4q3V}AxN71R0r(95;-f@X@O5BZ5x$xweIy4_uzj2o?VX4xVaK- z?;G&9ilZqQFnfJ%G;uay0@6U)=GJv0PEbMOsH%kGwv0xHYCY?n|vF2=NV_U6Y zaE+v|G_}lB-tpzgGwt#!_P3fw5Q;Q0PM_vG*XXLNn+Vlf`fem)jVC52W~Xq3#%3l) zrWELoO;196vO=TN<0I4K!&75}VfYW^bi_@o6`kvOBZ=45u1$|Ff z0Qif|a8(k}gnfs;K6hRzhVJbJu~=K}BTmvCxNiw3Vd0+r{a*phy~-{xqmTFx_P28-G08l1Dt>WpAxR7l8Icxo9?sMuQsiWLT#a^X4MfebgnI@!#UKZr5J6hWYIfG)Ed|4^ zq)-#hAr9-P^_8zdG~9swt=XIfO%ZI)wBlqdFu0|)np3*Cv9sLJ6`QZ*J9&3pZtjA+ zyzeX8U{zN@m$|EK0E?}6e4Y}(0=;!=t%^sR5IZqU_e@oZ?T5?Rw#Le)moP98o8`c?tDjkMUB2z^IpJ_V%;$(i)j zbZUBPZfYhyo5&=m=4PPj*-2<7IR)WILgIWX0Zk^SiQm%`<5S}xcZFb}VWREEBRe0IV`w(w6~zytfZJ(bq4f zqO0%ZU_bAgD>=Xe!&C^nxjlv0mmNB;X}!y5r0^rHD0f;2HkY0BSE3+W?lD(%P5HXF zw<4{YZfY(XDpYX+ak77a%XURB)zF4p6#-;rOJaBs>K_Gh$8hZhO(iBaG&4OpJq1ln zO^!}Yk*23v!)oAUWO5u5i^>6MUJZF*sHXg3kL~?o(xY8<#f1KMen1vrr%~7Y~v6(3dZwVTinqc8=%gYF9g{2$T zMwJ=5+8uEXcNNwG?QF7zW;B}BOey9#^QJc`bE#nZ+5JN@FrXEmoXcm^#eAxegRoFg zI-lp@GdtjI1^Q-6%KejN(rhVX+@wq^m~CP0*Td|e@G`wZ7Bw|Lq6a`2f0#Y{@>kp!Ih{H?K2OC(@aASd>K0a4&Q z95m9bAurJ}>^FpbN`RMMj%NNC#i#}yx9p%MS=1!CL7|lBOAKGmU;*GYHO0BTKIkm)U*+HD9@ka#U9rbrs zZO(#LI$!_Vl(X4c zFgr0f4LmcdCuhc46VqdpGsI@bGlZKEuUTW0V-Oa6H#`bo=rhTQ=~-If=J?d;*yPCQ z#PIOg;NS?@+{a>6GpEn?_mT$AL#O-BpXxow9$InIy&&lMug{%@zBzx6C8&IkB`q&= zm(k16tw1kWrNyw|ZvUo|8*aogJjgmVq?|uJG@>mO7Tumlq)t-rNkx3-^a$zf*w`6O zBjt)d%v;-0ZSB;dx?4)2Qj+X8H`t=)kpjKIEmMR;rh`-CjGSRmQ?PSvdU7h6NTlcH zGP9{{GLxOn=8~*Tc1|dr0v=Mc5bg<0&dy9Erh#WtVoLsFz(pG_-4dAuh|82!iJMFp z=OA1T;$NUpS}2<$B${+6YtmaisYpuCVALCRhMz3UTGM9lEx>7g; z05g4AoVv{PWmN>9*%0#rnk{BXr7SBkPv>!E^To-}-+b>6_dj@G&%WrcE_Y|l4%`Bq zU0pW#(T)xaN1h>^kH)OLr_1z>MeRUoFleJZ=a?%RcgMTjVR{A^OmJ7HqqD;f0K@op zbyz9#j2}g;c!&gWz~AB%0}nXH8w$2T!9c6eOLDoJoh~EG<~Go1KSwi9MryV+fxa!G z`G&=2wAl=HyOD?DF@Ql|yWhxdpBccMb;aF=Z4RT^(xlFkk9V5FLC)yUI)0b{eJ%4(;=B$}__(Xpu6 zq^q6;TWq5WU?7>(rp`4P+m*#Tw$@Kgzlqx3X3Nwl9 ziZM3wWY?2<<;JSi>WvbP1;-r zEyNhsE-D225>PcIyjwSb`Qf-*qL7}+r*LEpV=_s>3f;+aPtd-B192RpmF z12nKGMq9iBwCzwNW{!1O0Ar{lZU;5PAqy-l(91?P6l@O%ZLx@Ah@&w_C`^!!#hsup zHGdYaw!iDj@k zoABxZ;6FsUQ7+3g3;+NS07*naR9<(J!&VD`fn?wraI1>iRE0uDYC+{S3Nxy6I`mxR z!}(Thg4xE2+8D~r;?g6hM<4HK>FzPdW6c1tVt>UeGXKHr-|>+of_5Vm-V8Rv?9DT0L%>bc$n7{Gj9-S(z^WopZ8+1c8@1FtLStL()}^b%qLb&(Dxx^_^5 z4&E3xw(e*K>^JPMj=Q7Cd}dB>7F9-d+Adcb|5_ytZZowI*Xd2QqO`Y`Gp)pgK^iQ` z$HvwjhIZ}&LVTrGl&v+)X12(@;3sc1?5Nf6pozcQo*SD1yy1XXFBR7=&nvoETv^L6 ztz@MZRx*pLIOd?zQl_{--;xrI;9@c}DZX2$08}uTkBmtOFrG{d1Dqf<2%1Qa&CZR_ zr6<$b>2z*ZHQZ_b+6DWe@^YFrzc^Q1OcWMo@})#>ekNO-PUk06xd~EcaxOiQN=-s@ za}&wrcw%;9CPDZY>?hw$G4RRJ;j!VN(IE(nk?|20ZZf3%2M0t9d=TpGA2{DfcFv7o8p5qqYdkGgM%P3#ja(OZM8=xC6H@8 zH(w2$Jm1IH1ZVmOIYAwa>>VEN8yOlH8|fP#=^Y#9Ok*zi(dHW~7#`k`0$?G|sNyGN z@pA&bB-6IDR|bIg%E#MD_E4FgF zSV|S<=ki76Ux=bSuCZo0nnKrD;;ERjv;f8FY7fV>`fnh|*Mg+QytrE)DwJ|~Cz<&S zq>?zbRq0|HgyuU)v4NI0TC1e6)H5QuO;QuB8OiL7VUd+R+KqVfCSR*Al{`Tny zFaPcs^zaW49k{D=&u&5A4p$^v^BJv$a+$lsc04H@HSIZXt&<%(pkNF_+U}yYg9{*#IPMPg%`l) zd}%NkIPv zWt!SnP}3HXaiD5Z8}6sHYa3>AJNr@80$paw3K*kr#)txlptWq4p{4S8NGP8 znW~dTN|(sW=8=NDmyBm4`|E48yX#Z{D<)fR6>~Q$2C#}rO0ZJhZDT7nF|8H2-2kv0 z?ptpJP=6o{F}2+QUzxIOpf}LlvZJZ_PH??m_k-#t;PyXu2<}36*8PAxKLfoRSEQaZnw$}Oa_WkM-^ z&*o?5vQtE570k2g37i3{@uN&`2I$2R-_iK8##cGMbIZ&4!o^o@2G9lUmo8)$*U}5C zsq)I){L-w#;PP~?G?gh%qzmJu{3MjiO|i1s$t<2WGleGy-SN@{dvPhiR|8=4Y;rO= zHwC5AGjpkF)@*V*F*`Mzn1PbB(@-is3nk{JVb-T-#=v!4H1Kr;T{{OQ+nOKXMY z3q=+OW|me8(Bg7_VF`w~AV^H`h9_nTXPky|$Im$*> zF0>?O25Sv;1%M$=c}rvxZ@&BHkp~VOzHi_Dec|1^{5{=X#$+hm9*VSuqbBZM6^*x( zgdq+EO;9joVFAOupjOYF?v73;01U(mzFI(EsVF_OU5Mu{m_T0|olCRs+dP7=qDuoc z4fX}VU@EZ{qv^@}dc3VTGJs9iCXqzbAm%YpOZ_%;6UkId2z2S;ePMi=z6@Xob-8L` z0E<0fa?)mto-2kOt`=p2udN>V4~CoR3cv@@HZzuD@TUGopR3O6tmT|3*jC!C^|w$- zl1uNV94P9uD5lUib8`=yyUA>?;{+m55a^9W4Y0rQ4r45Cz%z$}P3&B`Nd@;_7KXA$ znMdTP6XXAs=|fJZ;*7x|o2%C8ZE*XWxNnBi2}?{R;%R_N2WEGpLSIW2`%xUhFuV{x zVfNp+4xqM|u;XF9nB_ntj~tGgc58K;d52P}#7&z;r7r`Ri=fC@+v(*@&+BYL)1j#qUhBnZ8_iRHM5Srj{FVa4!xXIH>F;w{DC9 z2AJ!b{sRE6YWx8oL1Gr4snPA=PSKp1b;qsmR;6yl=1a(-zkx44*FSjd*kbI|-kqO>?$Tu2tmvxQViBOGcr}0cI0HN{uNGD>%&%T5X;g$(F6Gv)&~vi**@Whym9_ch)gnj?3@g$2bR@t070$xX3+?`soe^LYXE?4zGjO@89Qk68N^Po5g6tyXbE5l55be*E1u+R zqW)HX1NB&THw68nA7q5`q{OUyN{nJ#%<|&`!lmk3`9I2K)^!M?IvS5yX3+3@5w2Ry28TP#aOzvbE)!T0E^c$bB=EkqK5y zotgSuaa9jBoq!t#M?qf(Ff$kqlB{#c$PF(e;U-ZBr4ttfjUHFM+u7i-5mR}rFBZn; zod)9$gMk>VOb!Njt<{WALEkDGYSgkrq(G}1w88;%uCgjkniXFth=C34gYgWlZB-n~ z=BMQu!#tM>zb^m`ob$K^p?al?%u=hSN7ZtSgaIsao2wbXG-R-~PEeWR(tJ}b`4tn5 z1UTyqpfC015cR=3$^N!gv8!hEHt6rH*X^in`~kC;#T}s~eKmuUs66QohOQRC3|$4i zS{Q%3D6|ZheD%fxq++tLVOy0iYuZuf-R0$rS$wwwv=^=xFI}C#a=i?zjVFlVgZrm(izfrnzbK%N{m)9~Y7t*U2Gi#T!7cS>mmo8>6U&>v&oWFdffQLgDFXb*= z%tC7yGKwzcwE}){#0&9H@q~C<{sc;^x%riBVJV#|&de1^sp1@zoW~a;z8qnOlK6_x zlyIN?{7P|tHD6rG74eYeOnEI2@kfURo~N{yhcZja^y2Iso{*jsNSGR%8;1rGqx~}@ zy~)w@vmQ?te7Tq%`a$P||a+mScA<3?~6qM8~+km;^9U9 z*s+jLh#&EDGT>Dnmq21+!Qqct1^&3$G0SWQKDlyn9s=WWl*U@xYyO7{I}TvOCBqr> zo^%?2uY!`2oy;X?vs4r?qlTtgGAn8$6*;HSiwP(9SvT=m1K@4jFK>-DYYTZd-0&6$ zTp@r~wvf~o_zGnqH3KUJ;h&}Wmzfp;YJ38@&p!X>&z?Ve-+c%6@9*4yAS(K1m>IxY z0hTyVo;chd2%5aU7AO#Gm-bhNqp9jwG~x)y?6M~%cjt(AsKz=>bcg*_)2t}#%I9sS z(i%71a0?@u(``g!DJdfa*4i9K4nenBbQVW5vD4M!aJ2!z78}vjN!3RtCN8I6VF3n9 zA55FU?iQLU+pc5l3=DJ6CMTsd(-i>u;9zqg0Gn%!hAIEq?^TA_E9pyO3a`@ULhFFV z)FYy=tC2&mV1_541At@k=6Hub8f)UozMObPDay_U&ST=-V2E;##Iy!VTBby3MJ|`J z@yUg-4iAY37U2l9izngHe%uvVw!LHowwQJrTkmW({Qv;-_!l!5*V?udFF_7iSb6?^6#$FI8rEvZODa6baItlcn~atY!vNYsu!CIx*!}s7ll(De-4vd`Y#9cS6cuuOKcS zg(rcBX0eSXSFI=Ap@NXn%i0FODt#CECa5V+E)#~YmBp2{+-74aNc=+w_mZ5LyA&`SC*FJ&3rpItMgfypk6x3jDJc@J{$L;_9{X zwd-^fC;2=c4j%9?wRU;_!j%$^^m~E0m-5n_QQTErUhwrtc`XZpSn~wbTz)B&EX^j0 zGvHaGFgsmHPUUAOa?{XcerCEjn<&lAmQyp!bBUGI)Z#2Ok{*G^vSa;;ek{gwiztS{^OtZe*NXZiH}cz_V&l`zxm;Ne>wT_Z$EhFx!)iA*;}t1 zc=DkKpMU0oqfg%bkc6fjMo&&)H-Cg$`yywY>e){T5U5EDk z@q_n2{Q93SzxnDLe|hJhr@k0WO$=wI-v8u(hLWRmE4jYe;jjCSC(EhDRe+74MKBW= zQuu4qpH%~3MkYQk31BrStt1oRCjWb2=;9B7PoA&j@PUiJ#k}|{(}$0r@)N3rR!lYv z>&sUcE?g?FT~ypN8EF28r>>d1(AwoPi*GWLSt^DV02dZ>9Lkmq)?hf56t&1QAz7v$ zYXQuCEwrMrc5y>;rjT}YM8#Z1Z8t&0&FFNFBOh5JP*YwpGx# zjp!?g%l)Jv9(s=>1p0!q{MCssS(?OPZ^BPqu2#x_wo@Xs%iH4dw=r~?yL@DE9v01S zur#)s8fEh=S!v1xk(?eqx1Wu#Z6AS|#2sA|^xVA9L?CVfK2jSNQgM|sMlL=g6ykH|ad#j!r zOl}6SNu4gtzLpcLxW$#B8K%&>;ilg=#qotPJD%dHEZ>@F{mn1^U_*aBG$Yzsu>ZrjcV~tARYO#e} z%f(1obIvoNmyK^D&0|nHLN_a2ExCuKY-w3*sHz08*6*rP*-Tr-i&6@}uFbET?7A{}0 z*A!IWbn&5>@+J8T;?3h%xN>6&TD@9Yx>Q)XT3EYIBrY$f#dcpM<7!v(OZ9TSz44lh9;2IX<5lDozg;ruwqu$ESKf8$bQt@qfJd?yJB0 z^Y0#g>BkQ~|HLEDKY7nH4?Xt6Ge>{>!cSiL*&{!D;?R#D+V`U)dw+On-=l{Q{^-F2 zk3VqVPaZ$`_yeG6$C3T}9=&hZLx+P0dwlyk-90g9SH#sBad$;M-7ze@opE1R2iA0^ z12>~MiJO6*j-JB@AOGo(|MTS+ci(&9?jPR!^skLYUM*j`QU(rjgxIPsUx53}@lhMHW=G3R#b+zi4*0r9 zUj1CXfuDlV^TH4pCEe+PR~P8Dt}Wm%f+Jr2;?+fH_38q&a;3~#zFdOj&6O()QmdCh z;_}Kxkhp}a3S3(Nz@?=ue!*NhqtI6kM6*Pqb($s1pA^5VDF@Pam6Gw^irlDe2Nl!F ze0rvkffB{+EFNCU&y@?T)Iw3NabA7qG;6Mu*(%x1O42vGRDkj;^Q_!*F~3q^<(Bh> zC00qO2qX`Vo_q6;uibO+o&$Gvc6RzgA$vGvjz%o8xQ)Fp=u5o`1Fh_U`3z?!1G+H2 zJh<2AH{l3=L%x8;AG9)nvG)4gy@A$n%o>YYKwkzhs0Qx~2E+Sua|y4<=o3%NrL+`} z6}Tnhic(#|u;}gFZa11}Bygj_Oidz9)~0rRFMADQ)`D8F#6uB8sM+G74PdL!(C*Q- zdvG*x3l1=eIwFaEK>)bjYTzk4z$X9}TSui*IRLhx^5Ht&~)zr4Lv2_QII#ZR{+@+FVrEPdi zbwx5Wl@h6&#Eo*Gg34X?zTA0(+delMlnF>O;7lRwMjCixr6_oP05-d=?+-CVkGec{5*^5xr07jKrAujJ=fbA{zhZY>9;S29p$C6ii8O)e(J z%hRVaW5@pb=83^GFup^jnZEqQr!(jNc>1F^zxeA*fBD_d-g)`xo5vo1<>);>eRSWG z_s1VR5IVdoc&I0Mu*csc6EmLbo;yG{;m$l*BN(3!>(A2gas++iHF^>2*l^z@u(|CJnlHSx8tro(fvJv zJzbFlyYb|qeLcawySzR0oJSsi++2tUE|*l5S&Nrwy>M|JDqkorTqu@S^YhCEHolaxwUE!Kd%zr$h2*XQgayM` z9wFwmw4R_Hcd^haF`t1r$5`$JZ-kn8vsT;_kDXh{rxpw8r6QzVu;>ozJR%mnEXc}7 z78_jcNf5WVRxYfTR28)UM z*tyAbFkH5A<+dASWC-wsxXp#j*GBE==_xu^>$?_kJ?8?9?~!Xfy8s zfMI_D;AqU~^HbK96fjJC+XBG&1?_eU6yxFm2A%T4Y197N3Gy1ZR^TjSK6k~Dx1|-lmftvUfwW@J=bvSFZ11 zjNMuXS(jLfl_XHD-CVx}-B@3{zP@^Wefh@v%GLG7Yjn4@+v^u_yv01D^D9@@m)E{4 z7cR|ZmJ{=rGM8?ZNVkiZ$;d81*VY$rtiz0wZhyA|U0I(`tqs5P>92nCm*?L2{f|HU z*BfU(`|q=#zn{zXUca7RzBQd$?awdve!HIgc0F@*J#}k61KqftC*8_HH`iyctxxxl z{Q0YszsqM%t>d2GE!?JGXCo-BiXHGO+g}nh_~r^p7_zJ1EeO%?$oIVZ-SU;&OIL2M zLKoH-FRm}G;n!SWUbwwnyiv|woljrNXRpquF6F1!(y6P(iR-zu3*#^R?GLVddw%== zn}7c7gI7NJ)6;ML^5An1#~wM*dGDU+q3+n--Qfcr-aTQ@?hwf8+Z_$>?F#Mb4DId+ z@97Neiu<~wp3X3iI0N}%WaA;o*Ae!1#60n+llU6(b_m77zIY_i8N6Et&=niNMh-!9O9w^^PZnYT1HHn@HMUUOXA-_!TdcZvkk8lR z^cmcNW>3iI4bzZ85v8QZN&wr0{WZIrKwpzf$3qvW2$<@L8`%kg>q_q`5$h(>iv}H_ zGCN%kJM$m}uAl`<9S*WI*c9`F#Xn_M^O`%wy_#4N=ody0cMj57|JoiMXkx zn??(Jd^99D80KU`?f?J~07*naRMb&J3}+35*Ai*T)IM67axW6Bc%PW_q__*T(rLN9 zk?GsqS}WtOREpD9hu=#r^wNbQ#z@ov0Qww!CeM0AkBTLxUoi4Yc)0TZg0S!n7d8_y$XFr7iiG~t40KwcXCda_>>sQ)LN4J zTk%3W16Tr>B{H_EIAd#LaG|kEPFUi_9hYyH!BocT@~u+t!d!ACnOI6pl&6Psqu&gl z{-Xc*H-q1NJ@ECJ@l&TpPyFSx_ul!(A3i-HEH^Y+9GxmpO)pFjWQM;QIsWcP z@4fu?D=+-^*z528;r$Q)=O15u{P*J@{_X1zJ~;mACuhDqKY4B3v>92 zoWGs^a_p0%zj@#%zrOe7S04ZHqt{M;`QH2Qyf8TQL8;vPuike)IPrS#=--wu4;7Y9 z&SXAK=DxhSo=D|RK$owMt*i|!t({oCbo%Di^9#j)r4t{oEuOx9efsw8xo^KK-d>;o z_PY{vYkh$vJpH$~mw4k@ES7~<;r@9$`P+3|i{L^54j$fm;o|!I<@F`#;`++!cZ&<_ zrTmTT#KoC^O?>&zXYc>{_}@P|`}t=B$N$y;&9C2m?TKF>ef!hDymj(_pLyq{z>!_e zaaYgb{d?}ctLGm0%Z}*2cnrrqu~1K#73_`#y29Shu%{yw=!!yE`??|!7V0_%Uki^5 z3(IlvezK$+$ywe+tKKsHi{(18A^in>voP)BeR~G27oyjHh_+ius#@Q z40!8o}{6NBIi#X_`)`@>o_b zX(kF|UCYi`Bve=5@#(p*|8e49pPc*Ze~-?PX5^JlNWboA9B@r{_M&mA)CC{-3YTyf!@k z{_3T(lhc1oraroMd2s#P$?v`^LU6;-t@RS?_WHv5`r_^N@~zu~&194p$&OQ8eepYT z_6yME_2Sa)x#Nj1-v0de!-f97^x1bl|I-_vy!orY{MV0OdFJk;4}|XTf`9ezi+0?# z=dMTY+x@_y(Ejew?pXXlclY7$=>Dj`JM5181F=xFJKnRur+Z&_$L@~!u6V2`7U_ya zyQ5I3BNU7WL0`r#7K+HKDssg_EJq{&IVFHY0r1j>qY#r=AUWcW1K6Fgxz13S0gOBQ zJK{jECmI5VVVVJQZzmWWc7+3c(j5s}13o;tLu}dELu7&-A!4v6-suE};~l}S?mhP& z`uO;l!*dgJi#aAxelf=)k};FO<`quu&cSq2$QLg8(mbRI4lBY*=}=hv01*8VO`SesS1!2LO zozKzMEN4Y2d#lX6ED?Pr5Aj7wW*JsB%X_ifm(Xt6Zp9}(WFbrBE@$Lowv>hv^C@2N zN##D`Nwm*aL0>?Zg*Bi%f2mx$ynti*%3}V?{8Ty7KR5KjiH{CHdBon~^c)Dp?(h2f zAAkLeKfV0$fBx{;+rNI}-Pd0E{jt|xd+E_f@9B!$^W< z>@U>?8N|FJg|alE$l3(-a(I@Lu*8e%W%6*lm^cJj!n1mOODN1CFM#&D=U&+%A$)(!gmMSa&Ib3x)Tqa{neM_sZwN1|s8?OZ$%4Szp zt(*^tg_zB-Q)mYOEH{Hi3&{rIfE##5p}D=5tDn{J$qm9NZ#ZDaFh@j`TX-~QycuOI!d-#!g+{``fb$A107tFJ!) z$}5jQ_vF2gJ@DXD4?OVX{f8bteE5-j?t1X>kw@=;@aZ4k|K!6@{o?4ON1wj;v4AUZL z98b09!N+zz`qcjWAM8AIPx#3v_dWaUp`$;)=jGr2=&kpTzWT-!FTVQ7vDY7a;+dYe z-#xlC-}~*g#O-xB;35O{)_NJoo9l}UmlK7R(QE4kVEE>GaqV{Q>U#O&dU5`0Vrp@4 zIDhtd;;Rq)|NiFZZ#?(rPxe2)r{|&0Lr)#v{qP>wuArma@5ZsqXA3)Baj&l{MCu6o zJ3~--SFCeS9O~W`>De9a?1{#^!m-W>1O|8R=>~m)UI4gjZx?R%?BCtBw+BCh@%6-l zZb4!kAy`r{lIR-^!k99K-71Wo!tyeP1uuhkjcfpC1dokFK&Ceq7qMiVtoau&e|Y$ISn%K}=G@EYVx5MYo^ zkYTYfwq+ZGFhOe@%V1mM@mMpqM^1<+7WVG%`@Bze&4InY(O0FK4%OA+)aU)a?-P7I z@XaWMU}V`zF@fhOu*G9k4`}y=Tp`*AgF#|5ik-9td)?XCxc-*++;P`eKl6pp zKX?8t+~nB{FP?e*1(H}1Kl8>}ViJtzYcH}BWjD+^_gm8W-@U}bK6CfnZ}H!AFaQ2L zG@mypLE(ry93xDiC$ zZGxHBLZ^9*BDQ}wdrT*JAydv{M(=KB^Ih|}ccb|Lp^w%D| z=k7ed4aqo_g=qJJ%g{N50iI&6c63hL-4%8f$7GhXeo08&16MpWpL= z559dc^x=KudA_d*d#-}JFu@RY(uL8qN_kTR;-Z!X05gLr6w9l6^UNh`my~Axj^dyZ zxK-CGnZgB%yk2U|&hgbatRPd7Ybk3K3r%eVb;?94GJs{Zi0f=tc(SolY_2kZ3-D5~ zlHR)J7qnnq_1E;ENc*DN28dhJmL;o5X-HC1`tow`%KD|tt9zi8 zHISHi3@U?{vbN40mKebE;?FqRK@2b8vvJHOE&WpQjbdeQp?n#hh3~?0ar+6Mou(u$~))r0T#|gXs@Vg#cRNeIe`BzqG}Fc3IfnpMN7vOo^57{m18RK$$h0* zJbs!7RW0NJRy?Shul`bxqg=b9nzN){u?Cz8|K(1=*j}7Q7EK9Zc16LBx9wlKba(nM zKc2IGnaUg&&G+tKy=>pgo=a|g-$$TpZ~O3-@A<%~cfaeJ_uYEkd)~Qm;>eNXN3Oa4 znwxKX&owt)w{v1+`}l0<=;Y|h&BLd*us=IA8E*||heyygZ@&UJj<$N^?fzu5J>F;y zHq!nq0fVQ9Cf&{1v1_kBcH<3)uDxdK^25{PTRT@C-M-?;Xv4J+nWsM>7}N*a>!yCdV)D^~Xl9r;J9% zdu~4R`8#gA=R2SN?tP!T|FOIN_Cm`H9KRJs z-8AeZaW9Fwv6}?AC2S>erB39rUORXG_4C-i z^x9eI#W&7m<%QQyL;L{V=h^%GuKd4vUGVbRSDuG{^D?aS zZ=ig{fC0pFFFy}><1wt~FTC&^crWxk*#Fwu(-;H@oq6;8`9Hk&%!Oy)_vsG?8?ir& zoJr6*Hn4iW92;t+YO$tAni1=IXsEuXI+|=LhTpU!C2r|Qj*qUsW?N+F*7K}ikcN08 z9I#;*O(%;_)(tAltm_p`E9c!2EV~K-)7Go_Q6q>deprr@8We_A>T4wE>zGALUl$oi z>)blmb}HnjMN*TVmBCu!GFUl)ISmQ0#8tk~SX!?yuGJQ>U9Buolui9W8Q?KjC2LJ` zmKASRc2=9#a>H1us*7cL0Sx9KES`J@eF?z&Dg{Ez>+GC>VXg(ur6|E#ykFZVaphq^ zf^P9J7AbRoq%1p@g0~A?tBcEMa1jr#;l&J|*Vdp84f$j66oy|Cm(rx1CdDK!gu%LF zFL3}=6ymNz;IDY@lJBkZ?VhtLLX;^=Syvaxe2b)H7O0s67_0*G7=CNT%Y^-96TBA! zgJF^JPPy2p>#lOoL5N#5NYVj_r=Y37LMTRZ*PW@j>M zVY_)~xUn;sZge61ce>HuI@I0RZck?kG@b;bvELuLy`ckqb|+ENkGqpjZ>tLpHe20k z+#1DU*K^u7B_s3~_6t#vSwop3opt$D*Z8L4#-M-)JyWO7C z?ik!3t=qG>J$TyEa7)_LhcmxB^S4h9j$F5O=$eh`RWoPoYN-TyLkrTnx;3=*zOD5v zvme^SI2a^eF9PaC?*9+552t(ZJCTS-QS{?)|9JB&I4Pk;ile9Z+^*1^YU~ELD z*9p^c$Ll3_JM`K~&}{|n7>oq_{chy81IX_tI7z@5B<5}Ij3w7@Iu^DxN9{SPXKOyT zF3@X6K2JE~umC*J9(E#(3DSO?^rE00x{2qu;B+Hw@fdz2Pf!zm!$|idFjyDiG@9jo z;KLt%`OORG-+1-u*Pi|5xu?$j@ue63aQ4}^PCxVdv!~xW4*{z$|KZiw|8n8AKhyTD zzrFG1|9$f;Ozodv5jy|!pU$0m>-2^HeB~D}J^9#kkALg2dms7rW4C?g1Gj(kb9X&> z_b<;q`Sh#5e(0%3e)IZsXMTV7!e3r~_0Q+wbpQ0~zw!J3 zy72m+UV7zsFM#f6UVrZSSD$_1wdc>g2`m4?={HV4eg5g6z3|Ily!gc9FFf(9SD$<4 z)#smm{mkh%UO10q{^eDiKaPCiPv>9x#$8UPmJTbQ`dVte6*-@Hb`$w0q(<1FjhH($c`xwp>!`nTtv z{r$_&|MAuDKk=iR|M}gpwiqd5yl6zW9$H#J#8o^MvQx*5E!ou|09dhA!>PL=)up2F zs6-Z}Hfp)D8dYKqn8CvU=2}$jN;#0qwkobuW8sOSewF}mRDpt^;`?RasStfdEHQ^5 zQK>1rG(RSZ5==#EDTuy%3R;vDCRl=$K<`TB0JK`=3W5uT`eIdCt7*hw_+SY1t*8fz z(t)zF&@|UHuMGM&j8)LLqEO^B5CS(0aUUcy)>Tkpg;JOV^6_RJzv@L*0TK@8hk^xPF}EpvgZQsKc9$Z`wL#;F0jpp z{|-vjbAswzF5_rfZ)2633WLG*`d&`Mr3xWbWa9w73(crQ)mjMvE|eA_9FP}-S@>`E ziiJH4U_6ludr232C*%zTWqpZLnYmD<$W5YY|0;Nl$B53p7wc9E08`)Rbk z`I=2ci>3=XfOAjGc6oQBBo4x2@B9A(u&7B{AO_DDfQ3YvNoH-n?#s$oh_S-}CI`HE z;_#8HPEL*it%J@+JDnumVFV{Sg$;$aNwclicoq-G@n95bcZ7k^lkUd-Vlb>Zw>vV??yc*B6iwNtec^xd9vC}x~*0_>v%b59?N$r# z*B|;-yIPRfp^8!jdh0@xQpOmt-}Q$5U_5eX(_lJ_Cex5Us7X2+rTu<19H;p7#?#Jl z-0JmH93Q5+Gl=@L)?lOE8MiTB0bj#@0@i}WI4fbDF^);w;{>Qq$C(7JZ77d|#@2}f z2+);mLv~Ey79JNCT=%T`p|W*oA0vQP5Vm~`2;!a}bv-w>oyc-wi(?;ygRmWA8?>UN z+YZv$OA;rFYz#4cxa0ta*l@%CWb^)?KJx4HFWmmEJKyoq_uTi(AA*{n{Q9Rq__+^# z<{O{?moI$sb9aCK-bcTC_IJ;|_SctAzxLG6pMB()FZ}qc|9iyBIJvp`2J2tuggYUfU(;qr{^VRS8$a_EW z)!QFG{qt`;c+a;Uxa-j;e)#>LeDl$#esIU#AHVy7FFg9I@Bix;Klr74|Lw7-e|YB2 zr_TNU*BActEMDY>ly`^C@Pea8py{P^2HcI%BFyY1L}uiLr# znrl9C3-r!UfB5E4f9PMn_HSQ(_?{oV@U!0o;s5={8~^pntABY3J{|(dVcB2((^*g% zc*Z`L`*`Dz=U@Hpi_j}?o#8?y7v6dfdgZsL&%gQHxi_B0_SH9^KmXcqIHm3B*Umio z%JV-z``Z+`KcKe_+z#~=9iFCY2NFCH3SdsK3pYM=y>5vO*TxTd2jmZCX?Tgjxq zLB*C;SHj;Twu;j<+^QWkI59V?wgEFlDwFpWsl6O*1s@EF`WO{>U$VaHoi>=KWw>XK|1sOqF!0)}haazkCN(>y2jUEl>^ z9Ft?azzp0j=GE8nekt?HuUcMFx3k%Djtj#{!o_m09-b-9!i7ZP2yVqg@lf&-7fl3) zsRDCWCW6yu4pK*fc~OoqEc(HU<1YH%V&E?Uz^=0h+`{rQePMiIi~lY`2v*o$;#$pu zmrL{d&omt^i}t{ImwP4_w%}i(ybrE47j6N@3~L1@*r7JV+2k|3Y7Pw}OWoXGYwWAm z_re4Nz;L(3zk0DLRRG{Zah1B$U!2x+)+$YEzRMM!;d=84=iMv5^J>ov{{Z0K>A$-z^6sWad2MGg`OM0SSgn)~ za$FVfaJ8)Yif=|=+&F(&mU^_Xz9*lHrYUO}<+Z(+fCrOVXR_H9q6y^DBCjJa&<7me$wv;!(lYtOyPY;(+HsL^Z{KPTW}WuhCpIyFb0NQI9Dr_F~k-F zZCx_erXk6elHUU1x&VR1*wVEiP@TkZQ`1Q_D^jdT^V>G4i7N&09Ciq?UZk3CL$j)` zFH^(OmYv}C9*E+(iJ{o_rdl>#dA2p$Iy8;Oq184s=(g>k1H&Z1$wF%w8C0r9V#^nHKkHjDrKoumy3!~>$lxu z*B|sPs5dbBLvt{6Mq_U>_NS8o!Vb*wXdDg(A-r^aU{G@Ge$;q@b2l!+3@J-#5IRDjt+-MdePXAMhP_D=^wl5&@CUn_G7o- z@~&HtU2)y$+8Z~IU*6j}+Pd+bM{d6D@?%#F4qrJqe(j`(!OhV@Z`vJg4cntmI%tK% zv^DF+laA93-Ch)qS|9)7r;puqdFOC{aD3d^Nk+$e!^6quss5qMhr{h?vK1XYHGJ3m zPrdg;SAFRATR-)cf7uub?8*QD5CBO;K~%o(7DU?eA$K&uel#5=8Gl77>9xO{z3|ubum9I8ul?=ibALSZ z%o|TX_WY0T{^^7N_V0Ip?CW3sr!U_5p3i>jouB;p^&k7l760`9qqn^K*sbq5b?bYt zc;Bs8zW=t%Z@cBhd*6NJUGF&jjvJ4>^QPnPynb}*NOyZQJGnDBJjG7D(UBtE3>3d* z@hlMrtd1u&v_>w~X=<({{%NPH#!|6KBo<9<7J2O!*Ju?Em6{z~g6c{W345{XdVk~o?AC4===~ZhBdH$;ikmg9J6<)j)>B}PBNYun&XUqj7 zxd|W`jQu&Dmu*;2dr>zI0Kj3e3;_Ecwriq2@ETwY5>p_wXb+qvBUwaf(>Ms1Y#DIF zt6ZsyJu9C{v9u53Q(~m;4oJ=?gaKyVTn2!7^;fj}Js>p~ME~Oz(HDX0Pr+C>gLascD^wo+aY zSlzoj?}*VW+BwkE!S91>7gvaRjvBgTHX}QG_)rIeW1|V=e$efDeW6azYj@pFFM!%z z5-<$m_HN%F&LXHc_S*v|=>UFq+I2`B6C|Dxb-dvOJhtI_8%DKhC_t}lVf3wH0GR%imrx-Y9vLo%zll$e1Uv>iA(__?GX zSa?Of(vT}nrK&j!`0Djtr)%3S-Dw+6M}xec5e%%L?}5rrLbf<*2LMvLm!_S#+XW+& z>Cm1Gtj&=_B^|fY{sh;j=DJD%UahYc>cz5DspE2{H|uJ(q1BQ|?{(Z>*XVZiR!?pB zHDGu!vPKhUGV>-AXFRrtLvu8;FgocEoG3BUw%r=SgW9-O0>f}Bam&Y#{ZY3yX}71H@kVDfYtN=3Bql||wCyD=SJ-{XooxoQnKhXh z)3LR+;cblVabF)#?b)U`-3lg~K8A64)@am%`n|MAGxjuAh`O;8yFm|j-#v8IiNT?n z*>WI^pTe%&?t8;>I0SQy;%H43CCWYcMgpGp{ps+tWd7(ocpM9(Ii|@H=fQZEIny zM6s5nj`(HcJC26KWIPN9J-3s1T}s97ZjJj}qxQ7d-53nE$Jk;&9kV*gs2vZwP_#Li zU3Ki1&wlvM@89*&Pviy!i*e_~E@j{@(phJo@;VC!udW_WipbyZ^o?fAW=wzxUxU-+t4-e&ob$@7}!e zUDNB{KDzd%!PPemueyG8^$nvduODA^1B9L7scWIh$!kW(uNodY28|By3=eJhrhS?t z!C&q$YPX#Rs6ORbkw+|Mk%%R z6`d6b!{9FH3xZO(uSI8~DwT%rpTw(JQG?lSDmBv3|)b%_0YB-Ezy6 zOf2eHac5r)4k!<&vREz?fNM1v&1G&Hfe#8+p2Ms}bt(!jWAqY(&DAWDYu*tE?9r@c zs*`0d84e{4E7}3D7WCy#MBI`H|8?vI*IA}1Xfff;Vjm0=Ys!9jR$*Hgx$iG611l?{ zG}VIW7)Wck#Iwf5${1{pxydffF;xW-orYC$97S2+f>sRgN_AhkvX>{%ImM_@-CvcK zg2>d(1_OAt2q(InJ75kWCNzpQ;N1?G0nF)P`JhCY-~&PndBX-SnF-Ph-XEOXUt%!( zU~Y<#Pa|^(74wxRnc4ehn$!3Huc0sNB8Isuut+23WsWRZdS0%Q9WVj7v~Lv-yGG5F z7~8yxoE54RHKJ*bdMyizzGSwQjA!A_q4xGp3q}@yq7lvFIuOiROIWm4$4lETtKId9 z#{<7R47ww)Go*`PtLKItnqdx8u)&HGrQ5T{V_?Q;53I1IG>ryqA}9sp%jlic*MMMu z!DbA}Wm8sdnkAD=JhDM^(ZpH}0&4|>L1I<+6)|bnREWN{rcsrxIy0CbY)3SqEg6l9 zR4O-%6}c>1k`ZfWqU&)}32JIs)uNh_NM9lcr85HAr2%)iwc0 zC)Vp`qbQeF>xGrtI#iI#RlU))F=A-qG(5j4n!Tt{+?K+$5vR>=UxyVI(t87~+gG7p z-)gnBq^)(}mB%hVDDDpvhFYryNGD+4=JsG?t3Mp4{b9^QpWY}Y)QKhe!6X%tYe`q! zi-%1&dXrhV)p7@e_{ibz_EtKcM6^7=)d8sb8|~p%cjL%-wAJg(y2X?@f|1M`L0tp+<5fpvC(zcAHC_uW#MAvyB)-H+V&8a~eUjNje$D<54gicvAp)Mq3O!CLe z8`Bn^HS9-Fr{m*8Xbs!2@?fXeZuwmb8g~;1!q1E*JX#jUg1wn>+I0}Y=*LCcc>0_wZ^MgSImmf}By(8nD>yET`x^_?R9d30dPH*Oo zcaqtW_QvI#o$apMx8rHJbN$J~H(q|^=C@z|zW1Jb-z^(AUbk`M4M*O6^Ypr#dY4~4 zyaI^5adgGoN!Ypa#_5&soLupa@#Sx4VSjeTP0;q`S9dmc@X7RNgTaJWF#uisW?*yi zEnu975l?^QM5&ylD)k_0NoiY-TS}{|d$DY|RSveY6B+cilcwKMTLY;xQZQJg_JRVy zJVngqAw{LhqGqlec2Ok$Qq?LEy9?*K&QZ`jEzEN4GSJJ>&e#TijX|DGYl~XSTzq3b z^IYWGjRL?W(3b`J3IH>`)`$TZ{pwZD2m*kq{gJd%k*TM8v9SU>0su?;y5-j`uShe- zBL11^>ttI7FqfhPr)8tS9gr%GRnWKET%)8E(X>ENVU25G8O}N-GHGjKVp#;-iePCj z?#R7oKqj80E>Kx!JxdV6e>H^yl_?8ZI)EKsyX79hTtB%|B?fb)3%m)cn}&ym>RJqrluL@!P~%F1Ag>F8`3SVU&Q@(S)Q3S9*79K%$~icKYBC%!}YEB zb}_?Dj{JW{U=g{i`?(DRgj3~3UmSrEo=*FjL#mJLrM1u7h>Au=U+6}buY3i^V|?HvUG#uk>eDwl!b8t@NJ z+YQBUH0(;lDM?;Ma%*bP!~vm(U9Vd;aGF-dY#HEpJeES0^Mr6f+=T~#=uF?`>KaH~ zlq)rZ=!?@Z?YbXQ!2z*2UH78~E`05t5qIUV-Awzq(rHjGje zBey@WdwqKVcx3Yjp_tP5U=Uf8t$5>5Yhydbun7Yu2={jSPPgw!WjFKcVcXkHX zU%PqJ4LjG}c=-C8jvTpiJlu|2(**GFV5z6Q)}*V4mgJgh;AC;sjtOb5Zul5#*yHW~ zi7U3Y4i7LCn{M^C4-Jl=+_>_Zty5Rd4jmg$HrxG;v@?m|K5sMeu{cFK}nOH5$78o;4icfUu?!FoR)1 z(2nC?E9?Y*%X1SG11vZ^k7B~W6}{EgG2p`}hXy)5v)j=lyv;~;L2bD6!?Pn-9mo3( zda=`W`iJ`c!-Hg&hGXC9SysouR!{Z1TW>lI`WZMi$#2SGQwkbdESoLONL9#e8Kgut zV#P`|r%k~G;Bh>O!DhGTI<&N*g~Ex3EUC3yNCCPzrl8D zCHRYrjZVw%_jMY7;D{Li~tpo-`6?vUXK)Yqm119=< zWQA2~x3H!VcR}CPhOtuD3Ds2kN?8}7vnyPokg7ma%b*nwzv76htgVn3E;N-@1~8|Y zVu!P&=E=$hbN(#OFXBR1+)N2)&I`kNCn9)00pL|C6{1s5Jw+4qz|IQ9fmh66(APBf z8~OpNPBk~ULI-)JRu!!MDrW!y5CBO;K~%hKNC&tg2UYwK5ETqQ(2(|Vqre=%7-y`P z_CTO70~mfZn<_U~xnZzGB_|hzZ$2m%kEzHM0~o>%94&4HHT+PQ7`}{?fU_QjyW+6s^(M38lyzlEFgUBBu^YoM!3R7r^59ti3eFT|FqKoyEfN>Ru{W zxw8Mj;$_hOg+2S0F5ADn7h722OF9F+H!?9^28nxvAZ^=GVnK5NySV;>zHy3eCc-dJ zH48;u7uFEhM8j8HUkxIICtbTk1xkjN=2rk(*k2&FrhviNm#cCU;>lakw<+$etAMTq z9s`6B01TR{jzWQ2k!GbPEG%FNtE#$EO)FQ`QifHhA=`DuX%dpf^cn~XUIOGbwOW=+ zKxRd&){MIB;W}Fddc{s%avQSO#I|Nut45`&*BVxnUmgBi6)?sD>uMEScJMNd4=^|{ ztyb37s_WQdzoyo+*EQ?-5Wrx^lQ;u1Y{_v)^;(i0*ZsB}c2x*FPSW&Ra@1F#bR@UN zN^fHHr{-W{g2&yl-Wh2ibkfzj16u@^+nv6d;#vvXO`ZPO>JCUS(Cr>Yh6}my%A4Cg z!1B~p<14S79loMJJDRj+ZZfe!2tCpLP6~OQSPSf?V<?w-X zN_{)>{8rQ+wg>QAo89iT6%Ks2V}n3$$HV}uGr=#%==9+1b!IJ`=wL#^AOq(Q~L@6Nq`;x@Ai@5#!jy@ZnuUh$7$o&2;+-!o)xNYs6pJ` z4g)?Mu+`SY!~=D>vpiYHU??!sLDJhEOpk9kJy%O~t8Ip(z-(JhUy=eDl7%E+sylW3 z1}b{FY?QGN9@m^&!;vIU;m0VUY@|8>Y`1i;YXyDBYZ)Ro&=t`Mx|^C&kA%0DqzXnJ z5N_0cJY9m6P|;$|>4vnh-ET$HL2Kvm@B}b?Jv2OdBgE*<_jghG9nkc|we8L0y$S4X z5XL$cD2t6K(&I>JrFyTYfx+#**6OJk_62b>X{%{R!xsPblP124sBd{~&1>NYsk$vV z;D(bl;=Z1C8*#gq7u=u(U!wpA>Y^G@qSS>+35lxM6)m1zZJj<4Zo2!yi$nrt;^^Bk@MP1dk z0#sF~1T@K6)7^DgUh=+Vb}ts86!Fi?RdtD<&Sf{aq$Nkv!u8^v+HR5Ttf)=xI0b7C zV7yZ<{vhfd9_0269J7rx(6##g>c(77iVKf%1d&Mj<)xOAU zL30AJKz`PaP%I}eaHuoah!*r+%yW=<(i`;U4o-6hFU}{WX@~7E3;R^XOcuqxMc)NM z-=%!5_o4|FzWjd%Kj*X17uS_*`&TM^=kd=}lw((O-@WsK8ySOh2fVO?0Reg6y$9a5 z@8D(7-bG?Crzc&4zsas={7W}rhvf>>@a}AEtq4X7p(AZ6Ku;g3oVd_ea%(X zKoMz+>v0oX*{`Zz6`za|)^L}VRPD6pwi|v|f+K-1anh!pG+@K z09^@)ZMt&ZZdT2DRd1Bl8dNiyHLHPJ>ZT;rz_3gU75x14RI)m%)6?BPjXy97u~Gwf zLD<2YawEy{Ykt&(HHSgRPYXY}s#V1+iWjW|_Q0^wG9fto+2O72Q`c{uyl#5=^^;TA z<-&ibmt%X~@YFTE<5%`iTno*PooY=syMr`LT>PQYKsh$3cxcdQx9D@gFbJcxD3vkt z!)XMmEPf#hhI)R2Ph0jos+}}-zo|Gi*{(LtvhI}dL!w3EHr1#CeJRwLW|gV%1=z_B zn8KiJ3U$tFQE|*LcdZwV>x*2A1CQaRM!sJLfVrx(pf6Dh#@F-f*m4CZMmsx2cEFrf z%sl3RCQ;FX=u48;WVOg?NSOr}KA5+lDK5vLtYENky<+B>7K7=(q85jZQTsY4AThJK zmR7kA?@QT7aJ2A$j#u(29d@1TSWzh}b5)#V*5+M=?^0u3nxkegOY5-g^LHTtEaq}e z8*Xxmt2%>Qc|j;f3%fmD@63!~b1$%JSt~e!&@XUXKuR05G>J07R)OR%s7#$Xo;wtD+Q_0PrHyogUxVM`6zb zpFC*bw=WDdE$HG+fxeniD->5(Ru@Z^rD}bZSC@H>mfb2Bp3M6(;0U5AGA-xl&5P#K z0}I^Ih#Aa%lOzgRUt#+4k}xZyEHk*Wk4jtDvue+L7sp5o`Yz=yDDstQo~HhX1f*SU z80diP;MeO10ALQSg7WoU&KS3lMfFc6xR1{>8Ulw*OLS?}0s}#modBSlM?8 z{`TnVIk3a7;m3v(s1C+5p`OM2L_}i2W0Ti+0br6qZ`g4lH!HCRv#S270SkrTGz8P(KE9y&Xz!n{}$@S9Khf)9#40vW!0>ku4GVBN7)JMSr~{{R@{;j)PUZ) zRfcfwgJg$gwmm55g}Bjaxp)9>#16Jx zB!qI7IuV?o5i62kZ@5)#<)8rp#yDZz?xczfYt`1UwOWdiNEmHk%i?=MESN|))kSKV z3<1v=Qm}$9o=cDjK{))hI&@+3NJdZRkmt%twbj#)ADDK5`FRMac5uCsZ#4)i^87sDQGH9 zC1y~wiP?ESBB&`-Mi6envjm|_JmJiZ>qTmB24K!I;!+!&#={PHp3=i5DK6f~IjkD> zv|r&B;-k)U@6W@pvSN_TRA3lZm?~RU_Hy-Uc|M_CZSJc{893(^n|FKJefZuxy#SV@hD+l5 zB6l6;2XLa%Jlcz@PU0o-EP9&?t$9PDPDti@d54RK%!_F9?NkN}0A|nvt6V;XyBbqr z=la1s4>(sAy4B#`i=t`AJSFL3DzE_X|4agAxUQA=a;pZeUJ1bCmfSJ(c6abs*4IIz za%`*BeM_Z1OKbb~E&T62``#w#yZ5sFmtD316TFu(dr>* zBnAgWVk1aQh_ZbWg9EjKj_bE6TZYQ$z^YnseiCdn#TKPX5KE95$_=B$=mK%e5{L_S zX5N(PJNLnOOcP)h4}jgQ)50wnY*PM`>?#mvE3z@g14_+eu>ts%n3OmUfl#hO9MUBg zn<-|hAQjh}1?+&bG}VktpP4YP{ z^R#jx(Hg24*6>V&M-7@*s!_Uj3ui@gQxhi; zf}jb|t6<0&bTG)kjtbk2p>lXxK;|8*POjllG3hAYN} zTA7G0K+Z1;KMl_f`KBB>TECUdhW%u=5lyDanB)%n-f-ae`*yo+C$PF;f>=V$`Y0E}2~}o6Hp)0bTCA%Z`>4mKeRe0nCWyQX6@H z1yq${m+{=hs3UY)qPd?MA*DZ0|!G^h7H&z-# z+=ihB3~N~c7q@f3^%~-7B69!$5CBO;K~!cMFo6TkdlFFeFRY>Eta(9+ z`yCm^5_kVqlmpxyh?jUlUtv|r`!VERUA`XiKq1o3mU$b6G^9S&(H9v*7`MucktK*hAfcNfO_+PNU`wjxV`}Q2% zd+C8o_Z%c23=@0_M#pX{v1f8q`inJi1^0nrVz3`rkQ-_+$8JJmHw*>?v;eT1T82-N zJ34qnrTev3hpKSIIAEe+WUYk?kw#4FGJt96S0w=F=;hlBQWaWnR91}>mLF9R4(mjNv3RiJ<@TP*%*@H*w)!b{NP zGY)IO7~!mnxE$kDaU)JZwi_jB9rT5O;X*yTSmT7jU|fZP3W|d1t5#B#-L<-1Y`SGZ zR-hLqxW@ZD4#;^7zTz&pB_1@8Dc4F>wL}ZvMupE)`1mqz=X>*aB%WRd>cBj_uY8&v zF9c42dAYY1>)#D=4zz=h6dx?FQ-b0(yP8eZdo>tbJcX$0+3YA zdRecQ4Lqv}V^??TFnQ$jjK7n3%Y4`dy_N?zsVF|hzTrluHIFUC0ztMkKoVyKX44$6 z$VO9w8b%dPD!IZybMg#^dVV5>0y(;0qiF+BCj#kZQ%oCxkzlYY!UD42Pd3b|vG}Jb zgr6KOD2N|e1u8Ym^b5?+kYWXD#NY;hbb3(7a0gq}tLkK;nlO$b91KgrN5nbn3~=En7^Sy7BKhL43h(YLA=y|7LT z#$hv<9}SR(clW&-1Vbz$uu5F1N*A6F66L5?S=guASi;vrTmE{!W zt~Y0J?tuCFJ6{W=9tjPZ3pJBugW4G>CU#aE%>`<9DjHPg*`WN`s&M|FZUv>s7qyewIl(+i*%W8E&}JCR|vy$A-ArSi_!S_V>|%Ub1V`* z0a!!RrAESd7G77pG)*9Lc?xVLZ4p)&FF|oq&HWtV%pHn2-AELx%39fT2ch{o?n3Tj zxtT5%nQ9zlhl&8CKwH1Z)5L?im>Fw|!y;2IY;>L)Bo=E$zur=PKfaXCAo64Q5_pmI zQe{C@f!?1x;JgbV$9%y7^V?(wb7VOCUB+!b9W7?~DQ#NPiNSScNr+r8zV2dkfhUJ^ z<4Zd{L9MRvPl6->jPI9AaO|#9xf{UjZV9pF1G}??cLO*_FLRgCOYvm_y8K_-=W1Nl zgS-;FZ~1Ne4qm!{VGq17&ZcU%_B{ zOojv|UqOJXfm;BxqEf&PO%)2LGk{rqvBp_J6$OSBUb6`onAm3q)eIO3sYm zj=av#Wf(&|!7eCX<&Ywl;9TaO*?;Fx$q~-aDr>lfj>B7F@ zuv5}1>v9pQ7&V4*Q7spg5>NPNlM3P`u$_-Q>KEsJ=Y-Cd0K{YPUw#bza^_2?4VoKh z;>*Ivh?CL$8YQsCs+Z~*=Xo(rw}QdAkzx)6yajg~3}X(^txidL-^3dg196NM)!}HxB^atZX zltzZBdOiWz@?;~ZYhKl~>$+J5|ESAQ+=N05L=p@~ns!jdutTERX0Fs$QuV5=SA)dz z636f~-EQDeA{ve+pQ+WLBN(j5c`;{ZYMHwW0HrkJN&sFLiJMt@UIwthEgWGr z2QZv&4sX$eZ&kFZpC=IS>IKBD2D#gyh`7m=vx*~ea3KbLReM#jh|@R+3>Or$Sl8EZ zsl{cNYCGdG4kaL|-nwLy@og9^LT@JgcMjl+vIYQGn=5sBP0R_e0>Hjs^zBt!U(}Tq zi2Doi6m-@dPd;c^Yp!2(ysYvwCsWmG%Mf?(VQ{MYLCsj;PQXmNtdyphKbQ|V2*8!* z0r*SysgkjT_Xs}04dXF*r#wwv6N{--A_^GZ1z^tB1%^d6u0^rGj{wa5ba&NNW(PdC zrw4fAmvU{zR5ROU4&Y)8b2$!K-Y-e}vIHSfK9gNF&KciGZ7FoT)6oCM6`;TNB3Ui?|oR~zawSK-J33}sGtzUWIBo&%T}j4>Gi%nV+y{f`K& zIe_ytBrupUoFxkHGPvAVc(rudN^wtyYGHYE&&>}LeT6CIX{Eftc}moJL4-Z?AX#+^yxw`~}vs#W3DHR7%!!Tu71h1-W;r7>}O3{-e!J|K2@h9GBc zPT%ZBvuXKC?yAN7B=MdTw_vP+J+Y-wHDTkj6;piR;K~}zB0eR(jxFfR0Ny>RKrbXl z9ykpqclMF0m3#n!^QQ;Q9W(EP>tH;#HLHOq(woA_fMyG-;4us_Y;iVljGAWH;MgJ_ zXXMd&L|RNRjFTujsCn6Qf4UJ}}ac)j*bjHcn z_GCEfY;6q>9hw|HIy-)R6T0Gx!|hhwN~u8Gc+zXP{U9)GUvdH&j8yEZZq|WSH>gFa z9JQKWRQ2KpWW^25ugG4VCjYHk)2LAJuv)|?FxcpHCTTLj_&7-VKCH875!moBrm^af zZZ|cn!2wgeo}D#F5Z-sU1LhjMpd&2+i`IL2cS6xPfm$S)qE#?Ip7UiHyvu$b z4A;0I1MCzowH)kPlU6TE)VIQwn%EC3X)fzd5rYf>IM3x31+Z}0T?BwZU(thMO#pbM zX|9s-6$L4&A(Bv4TLyqj@KS>AWaZ6eT731^#p>^xp)IQ5D3y9%QnSXoSzCBcA0qlX zYgy_MhKBM=xx7#;Qi7}~VNJ`}aFCj@#LwkvXYS>YPr&Al2XX+@@!9iQl_Uzj zb5Jqm9Vv}cy$qqVgT>r0t>H1Tr1fGG z1MT&?UgqUkyy8M>nE{N8H2}O`U56_2xj9W4u?*e?bwyl+ToROn9o9J#9VGZkg z1@9EZ63dn)d=zu9-)PXdK@3^cig;FyCsZl44Fis5c|N(yH(oqA&rjsy(-5=hBG5^I znO9hGBR`Q>NppBJqc2&#F3kouK zD@{RPUV+v^3H(#trfk>iauMPHJ=>OLxh$*HLbWNEEJqGgt3OW0v;JV*naz3t@YY6e zbJjg_Xn5?%_|WEH(4od28ymgRAPzh#ziK#jd@r=*Z#Fce4ge=@HB8}X%a&hpqq^6U z?YMzq0c86M95cMKW>i4p{;U-Z1G`1J`v7pOtw*sO$8|0e>DU=WTTu-PBZ+3AMec9z zeZ`_3dAM4GN>erQYuB=zqWQFQ)iBE(mc_NBGXSfwm@C|Qm*b@=lv-WODqGC~EQ#;SH#<_?HOXE9fSXkJYE6`bUIv>XFqmeZ zmBmcLO97CMTj9ok-1OcumUWe?FdBL`rOe4N^TZfxvB2e>d1;)=X~`5vy;j&)DDG`a zD{!S?75m_kBapcdXgBTEJYt!r z$Kic}UWiPv0B|h}LOzg}zG87Z1jawRUdDNr;3QfQX3ZEhDg>QPM2k!(t_zJ318hcj z7~{81IY@<--BZwcrmr~p1G)K3#9cK201yC4L_t)ZSAkv30z$vql~ZEi7+FV&Q$cr$V;ATVI6V&D?Em0rUlfiNsk=N@_mH0M4si{B#n$9MJ;dnG04*IjnbO)pK(RgcPb2^@2XLGhS z=nW^6S+6%pS}EiOe!JTV<3!aB#ncR5j7IDQ?D13>W6aHIK*0{NMMJWKZj3QPJVC?g3?NViRvAnWe!iyHz->g+upd7%E z>Xr4N+H}ih9V2l-j#$1v=Cgy1XrW2KlGW$_r{0*hj;y#y>7KCBf! z@FL7yT`OUHraBE=wefV4RuiXM7eVY*k}z|ueAvW3a+iw#ARaF8yQ|Q6BCDs(|K-mi z%ifl=XgHEy5hq{ZuLd6`PLkro{W@$A1DG8uf6jHG22gEKu~Mih2*j$z$G4kT?Jn`7a0d^(hA=K#34Cs z#QCgn1O=l6F-_gHmPzI+RMS?OwIyk>Bpt+a;eg2sYpYe7US9M3I^H`N47v6S_Y_ia zZtBW>eR`G68P#uUEKrdRtH87IT;Gb^o3us~uvGVvbAc9MjzM=(NckXcq>|BWYUjNN zsQw0q;@`(s%7#=)i#&KBQD)N%k|ZpI*b5z-X2 zNHTugdg;I8Zheyx`hpYei};oOeCSYh6`E8LZp~Q}c}ZZ(|6w)i+ccIkQnBe3uavsb?vZYakIZP3Io@f4JIcJ9XqtS^NElC z>vzBP?YqAG75uyN&O7hA>l@$x_Puv}{tI9J>euhQ^Gjd)(%0_(#&KUc>LNcidq9I>rEoD1ozX-;*Eh`P2w8MO{LxtQ`4OAQx)-9 zxM<=M36*QbVr9JogWV|Bnk9&qfu#zEL@^%VAccusucAJ0%E5AgTB;t1PaSji-a|I20c2giTzmRhSsRu9`L7Za}zQ zqnXKuZpoS{$y!rV8?siXL-Bw>uCQ<#EF2Ky1|B-(JLNi68mcyN%Nkc5s!6!EVqj5X z;jQI6`Ca_RaRN9Wx=YM7N;=gM4eBOwZmc3@5h}^&~E#!mWO>Rh&}5Jr|sS# z?hljEq#dV@7wBPZwc8$^)$Mxiw!;~~aiVp54i}!Jc0DeYxrh^)>x*&mmfnDB;|$04 zWabU}cCTx8+WK(d^hOji-5$zOrxvs-VY`~P>p@fs{IzbUe)-YbsUy|RiRBnewg;2l z#PI=OUZZ6kHdXv==&QsxMXA7g873QJ0@1~<%vniUs{=jjAvljbDsVh7UxGQgh-aZ0 zz?qj7odM@Flgoe{H6f-!fSBwBtE3F5xEA9~I5}7`*C_GVSy8N|hACu_E#_dWqO@3O zE)<#vV1jWw+%V?^V8!} zsGEzTeDs0{ieAoRo*BR_e*8QKmupe&6(HOLhniKPQm8B!=&PH{@WHZ}a|VE!zC0a0 zuMSNM%=y{kD+Yk^_X68hsTLW)BFT7f9`+37?8pA{+S`c1wI!Y~SX#Lh4Ca=I^urMC z7Uo*Y^Nx5Kf`1!X_R;^N(eJ`4P5g3G1d)|1nlY56wW?D1p8)21&dlIE%!<}}xdew` zZN6Zf*T%w2)9+vOWtx}Cz=QF{pDMneds#K}YE$i+&WP~L% zqLo^&C2^So#Vt{gq_wR21(;W%I!Ofe$WBp+CM5AEovV(&L#GVC3)XsVIqK`tKuyO+ zI@Xer3biJBJk)Sw*jIv{>~|%|ZApx0Gpe(AfBw2vU>k!2hzlvewU}N7vivH;63D^j z-iuTsN+NMh3>Fn(NF*tgSz1mmN*1yxTpZ8E(Xs>{zs~8ixEFlI z7B7Jp;$*p~t%|pUSFHPK9p{<$)x5fAd#LC8aaV?-jszt=1;V}EvB~8>vCq{&2Q#NL zwMY}EJ9VM{hCkeJh3vu18f`k`Ew?{4{j}=F<<>yyj`3UtPsfo}x5StAhEXztde}Ak zBX_b9O*X>O)Sqs~Leb8V&e5ak@#F37?Pxl6$CIExaKPFmaeCckIA{aIoet3#0*Slb za5!#(yVSFC5JUM6+2wA~?+0w7p~*Df*lgj2I(>^PUbWg9C*qIB-e}@Lv&~>*E8NoLp4{#$+gpu8JJN8dhhf4UH6~3BEen2^$SVjEgD$tQ@aI)vv5I09X?9(u`i_E=LRJZj8<|ixOJS0gPMn#ZLB@ zoXpBk=Sf!vIe^C#(b%ErDrrBjhKdr+S<)@9lJaMsE!m13Bre2Z7z>uQ#NCrPB?;7Q z2-~Wv2RTZa-7sUAZSj0^m;elW3IOwjHpe7`zPecS<=86`esz$=r7mffyOE_Dld5>p zB8IJ(_tzIsa7K8&nz%`!>WpcNo2@)e80N%^QU0vV5RyeS-wr_EH&+_V?^&-{G z5?||LuDsS&p7qP?z8smHhcxdhaYdaHxLgK1;H=|slYT1m#)Smn-R%OG%a^TG_U;b0 z%0smBlwSrggPF$!IeM$}YSnlldYIt)BJA%)0PlhJFYmo<;nKZ}dk?J85P<+3_YKhq zMUQ&sY}R}CyKlJVeK-HpKfmu|pZ&D-iIFe z+7G_-rSIKy=eO^=EAy6fzN*OqhI*k$G-UakAMD-&wTldpZU@k z?)=7GU;fTL_uT*QU%T(#dmg;++mHP4n-Bfq8$Z17JC8o}orfOy?jsL9^oyU~|I;6R z?`MzP{m6Y^y#MZ7Z~y0Ht6j3I4Uzn+*j0+d^eC~CFTt6!30PG#tl5-gOp9TvS>a1O zj4W<}FTq`WFWfCn0=pILJBdu?_fpA8nr^!x%1+gwsNaCXzQl}dPmN@x1CU|A(VD37 zRBml*?M$_oCqQ8%#M58mq*an zDcs`YztHrUJ3Z#p!;VL@V+k!T#on5IcviNLf3l((RMU)`^(K2cex4A%thqR@{#5?nm;Cv!lVru^8Gqf#b9` zkK+O9?&I*Q&!3p$k(}*ueoqJ{muMdIUEn{CI4~heA9O zFC^{?A^aDQ+&R_8dx7w#@S?1(lL54YkMvZS@8rTQnRo@-e%5{>w!?Ow zQwKJ+L=FZbvJ-F+y-s-Eje84wiFYX-(gV~*h zJqrwO&Bcvqd26li?D?IAojB)URWZEFk|_zmfK#ho=?|>Q)D!GYJk=Q6S9EM{uDVxO z&AYqqdKt{8&T`f1_AJ|~H0ln_?rhcrP2p&}Z3pVK>}K7751vlD>>CXeJRG;^hOxiZ za+*yG8173arv^K7&*z=Vq>1;B&&bFC01yC4L_t&%Z#{N<-5P8z2IG-E89TG7x0nae zeCDqfKCWRlF&8ttKddy{Io_tY%}mXeDOKFx;66rfS$g?yzkm+~0qV@sQWYmo;NeKq zQYE1p=t?W0eDNGV#B{)F>NiE`vej4|jQfEPzty2KFV4XlRwq}^WMK@$r%~M~UH@4ZTvToN z)C6!G#*wRkXQox}|ufpY{f zQ?4{w6H`#MZ5xmV|`Nhu8qNnfRHI^gZ2KR@sP2@K=mY3lHg#h2#v zCKzq}@fCjk+gDG6&13)Od35zW`SNS|__v3z|MC9$KYe@rk6)kv^Yh>S{cnH$_kVi% zZ{J`3>&w%Bd3yZMj}QOyaPv<$o1dHOzg}Z|^KT=e5x;>{PlBv^{s(12Ah}0`o-CNcQ@aC zX#L`0d-WrLZoW5ee>87iM7Q5t*UycsAC2puO>8&c>)7%k_rxD+-TZ23-Tt)=-TZ3l z0i<7b|EqoX1MkxK^0P(p;q7-%^uvMfe)vlDn3~aHp>AI4d=-xT@-u++!C!tha4^p- z`rZ<$J$QHhz8FJa|Ec}>&mC+Z{@Qx@Ye#ne>^%JHKK$xK_dk0a=!bY#6u!1g;f4CO zTG1Od?teA)`>Ge>N*b@1r!I^~sw?;7;zzsxRi~nda)#UQ!Oe?*_w0Xp2{4A#m+P*7 zxXTxN_1(ch9)@4KyZmZQ@5;05>f+W|UYm<60~p@iyU_gFfPL%@ic`4Eu{jyqAtgPuF=d&`CD^|@|;x#{2E4z5LL|tktsdTAWjQDo&c$B_!a zu)>!GQM!DTSIdhbd22PNtFnO(Rne#&HSc>wrSQwHd|o;$)iL99*!ZyGUsVDT=Zu+Y z94~*tz&m|yp>hcO3#Icrc)3h4=lILMmB{YUU4=Q!d07P%R>CUmsLq4?U@!m-6N~{E zoXviQipA}6dADNhm&F;wF-J4O`E7{p2w5D1%bBQfWwU)|DZm53`8;sW7w&TQH_Vh) zGt-<=&g4#T3eYW3HDb^uF^o0&D!cGjNuNsIBQy9rL_Lu+x+Nnehk;&2dkIv;#(V9K6fz2cKOnV zHZLs-3|oB*Ae?9Qg7Y^-Ph?wj^{usf?rgsI)M*EsALHv^)2o-!^0BvuZ-d==YFvG5 z>a#)M93Xe|(!TxP!9d2(ja#)70x6-Z?@cYuIZedtA1y6H6u+|&$2dkQiC1}eN~C_cwZfB#f_G=etN21SuK!jy0LJ$a70_G0)`{M@ zzPxz%-`~*aHumzH7ni`k`{_~|-iqaNevnBk{*FYQ;$kyo+h6@Jzr5(#);m;dTI&H3 z7@eURG4)m4qfV&r5B#?`7V-Ou*K5PYD@@h|odbp7H(7^pAZUw-$f#f!W8?m_%l z0j-|x`4_XlDs;xV?j+CVB9lpVHZvwOV?3?RW|s7Qn!A&UH3fQm2COHr2l{q91_8X7 z2G{Ej0K8c?Z#Lc8*t4vn& z_Xc$W7=jNbhI_pLZkT;DaR$dJxNZ^N7u*GgA<%a^@wny9!MJBm2ljm8L4%5EGU*$i3?`nHIX>r1DgmtWrO%n!q$R1{t^k;23%L$T@}A5@p?c1>o{7RqHUcp1 zY^HJq<&2|DHB7bwWkKJw>>fxA1}A}S6`Cf1VV%M9eC1eFI#R2HBv71AA7!)Bd5{y9 z7(lAGJba$iJgS(8u)6%0r8{)*WyQm3^+qWuN); z)D|!tHk?;E!<;i_hay;8F~JJGHDezG+d0Mn=q;7N=6&heP~C+H;Bb*rF0`|$%vL%h z#AStQE?X)Tk6`^x^F&wOD!}qa-dDB7!LdBY#U-knr$9V zF7^&j!{&pWfmTz?5{_0agb&ZsN4OZg`&s%BNZvcykxE#r@4@;z~2ZuQ~*BkYwT-e~92Ml)dmbKZDKB2HtV=qX~h> zFr%=flRJO}Mm6E};>wN^vXxlgf8_3q0>5{M1#+o)C}^q}>3G=2CXy8m8>F!(Ayz8+p` zblDMi)&8F@a2|Uqi1vq4e~svlLoWL(sjhtUMMx**{)?Tgp*!FsEyKU9$W~=3Nf!>DI zZraVd+3)(Jfuw6qr=8)r*&76sEZy_F{h-xxF#wf8Vqm!4c3roU&tDV@m+e*+Zv+Md zy0fVdO~(Fo65wKFf8W9ds|L(2XQM|$i*O}nrJti}>d@{;pGRhF^?GG!Fp!2z-Cm87 zmR9YObRF)L)%0_jON#5QQcy3sUfywYo?n0)W|d0G%u)+~xdJ#GtL$iY6Jqb6N~m+% zP$piP4j6pSj=4@CtCJ<7t9l=uXOAHOI8(Vum4&hZaJG7qDjlTDhxzJZw!DuqV4Ntx z=xhPNkQ^oeJ_U&>&T3~%hg^xvdQ1dxE_bTC|H?Ldg5TUk=HxOB5+9{9r(qaY%2vw) zUqz+^HMf1lYEyK;Djdyb!(nY?;5J;06t4Uci^=(5Jaw7cB7l_@-irXdS19eUxJM22 zwGKg9VA!&O&;4p`55fQ{NzafU;*&ua+J)a z7|a>*VtGF*jI{$tp3H86YQ?Iorpp%-$47@J$47}2{!k}OC1d;<^gX-Sp$`@wUwmfR z8Qg{aJv#Yxd@9Rox#maD^3w8#GqO?1i`O;`YVB{7ge6~!EPpujUf(yy$V00 z&=S9-KdcqTvJ*e7rhZEF!`=M!u%-0)4S7g3QxRbvUbZM}=lL-yN0*qbdO08u5CtDX!UT;2>Wc?4`*5~iM5(5P>Anx$^L2z5HecDn!uce|40rN#Q&?S8pCtYQnX z7dV*RsKX@}dwmmI*ULhlYBMb5Ev+=K6OGh9yXBp2^pD)r|0I-V5gFRaSFnn#XvI78zA!ucV zBke*s24cq~AXe%&Cq6?LK;6ao1DzfK01yC4L_t(109bMN7|Iupq@ghn z563lm-&HgF^MZ-n5G4)Y<6?beT9wXD)D4a+%x@p?k3-8P4h^ z22|Fbm?rq>{LkZyPoyuCocS%Vn;~m2)Ah3QhR(*qLuvXOtAQ1tBo=t*;A;=!3wgQt z=RC5x5`vBaI4VN9A6Gc(3(AH7-c{X#cQk{E>ci75wfuKSiw>AuvDBG^1n#a%VDQ03 zZU=97bh-V<{D(&^ehPqrMo0!fMa%DjSYevo&?1Y|C7vNgYo0-{jpL#4gfA|%R9d{) z(DcO_J{tW8WAN1+elZ7kM*qreFDvbZ(VEwqvuZFd+5MC=NH^z&@tqAq!vx1YG=51} z3bdjhE<^`2`))(?pBA+IVM2@VCaJtsE=M29@hZk_g8U2gX-$YU3FTb#LJ_e2HiR0$)`o)bK!MH)ZRRGpO+S|xdb7$OMztcw~$05qA z3b!%*GYqcBuQvpmzWR^A>x}(1u7CPBzk;}n4FmP+FByI#5pLB#28GY)OUK|NeW~zY zjyit%-GHKjJiB=|uU@R%ZyxmJYyI}#Utc@ZMRh!_4ab$y#F#Cd$;@H5ys~BF%v#oQO5Lsp;|l;|I~)d$Mhy-) z@I`RIZCK%k)or_Aa0i~a>kS6=@w6?AgJ)f}eko{z&Ak9p)4&cKu*Pt+ZZv`#tahVb zYBeiRvtDgCjc(iOcj16VDo$=N!D>8mlu`EJiK*GlS*?QQEEsfagI;Aekx6bv-$J{c zlWF6oY+InRLhoQ`0lM(bYzRG`+7icZmz%AU>d;(fgJiWw#6Hk0oay)(Sv|#O4^c}7 zR=tpQw^2U^;Moh3wtHdwm$1U6>Y2byn%f*P#0Q4~H;i9f{O01=UZ`AV3a2_xM{;~J z`-SqEZU9`8>FtwfqW3IbWCKuFvDrO|%&S^g^yomET7Y{}EFS{25|jpnvb!o#`SWSw z&$HwwTv*wZOf(^MX$QWx46_RdEOjmqV)WfN%sl~cZLd__B`lc>ok(tjzL$wD4A`oH z^rg7uNoP|R%dg9sV49QZ&v4JM(TsshZkH;{g+D^6mc$)l&CI7$$;9Oa0G!EQrZOj| z=ex{yCV&~k2an-*Ifp8PQzwAGm7~wfWBwR&=!-pY7y`;zuB-LWfYN)w+iOm zFl%7R1TgcZiBIK6!+GB@_li;CJ+he&SaX+2Rgl<5{?a|0-C= zLwXU4c2q*vXN*r$pU<;9&}n*$%?kgReRnA!lk}bba3|lL=?@%@6xp8E!qh4A6?c+Z3?D zn}hHQc`>m!<=q1gi%Xr^;alkO|9`y+t%uk7dNw|cpZRSx9+zju8M*#$YVlLxd%^wF zn_DQgXZ}*tT7aE$n`OKktbbZ@YYW6KaIn(+xe9TBEx5aQF{rC=?)9^G_Yhp&I=45$ z-EIAPa_K^#?|3T21$_YE}nuv26Ta5a2LX0JZ_IhEet^1x?c{wlJ6Grra*G5VM=;e%fx$iI|f7t z4+g^r_XlRLZ}664F>~>uuGeia7-RW#Giy3EN26-5R|I;4Mz+~5bo&+ggNzK|c{r@K zyCu+fI2K_iV2nM0v~apxlF8=CG1uGqpe3nZelyE0+%TjWthQ3ev1*)xN!Zp*X$_6XD#u(I%nWKU`%Jp} z?BRG89A*wPXKERFzDVrJBAN7|^t7;&FltP#VqbcU#imOUF?@tGfDO!+YfJ1&)LJd_ zVVadnKbGWSvBj!=6PE%5d$Rb)Jj3UWW`z&f1TcwfOKqKA`~|=MxI!>nvZG6~?x<>t z=yZWwj4Q@2RI~P>im?v>hvDMPE-Ww53#HOhI68!G*h5LJQO-+tRk3uUfN%SS4IJ2=&99em6b>m@Yj0Sy#XH??_B($NY}IVwF^) ztcJwucQMa+x>jhN-*Q?<&VO?xeRd3)Le>{^^=vaINCs+82;CP`OJi6rTRn`Q_8ooy zr{ZfR7!V7mbKX?{S>BAJ%hq~lJ@rFi68I!C=P#m=h~KKq=NfT1kAyD^-zGIxFPuGB zDKeN_Jy^yJu9jl0I_-09_6-cKY2o4GTW$VSUENq$U)Tj#GyH#li5t&}h)`oN}jS3vOF>zaPw}oyDw+?R4Dg zcl~DFWbKaOunFkG7ULvg2KBf#><7Rw80-AKt1=!~>4q6$vo@Da_ z%Z6i?x#V2_Smip&3Sd@*&R5RZ@jeU!*AkiXd04o=bPT`C#ta2hGPbgni=^seotQDms=q0Wq&>oY%D*h}|=6H`x z4cA_?NJ|uj)&P!ls+$DA1F%ZD+SkMdebpl1J)JY9Gp9J+bKywtnHXf9YJm~w`Vr89OzMO-2W~oG>Wi0NK5B0%N zh~5{Q78!$RLRuomak7T^d~taha&qN&`KtIC;@rir_DqGNm4ABuSq}}?Yh=<=muJUM z6<*KZ(R()kPWst5HaZs8jDA4`1Ejxf0_gs#4&5w8*Yn0^8q9{ysB5%>s$I)iMjir6LEp`4 zxLyu8`#YO72R#?|6o>^rEvty*+w~gu*k*n_Y$_60@j^IP&~!X(0KgE=GlkiO{q1_N zw%x7|3`5{?&@cnF2UZw{ShBQm@;XRd0f{M?V^Cka;a*ooq?I975-Yq~Hs&)wTtGaR zV8CkSfWeD}HJ_Uh26(t$yI0rV=E_|x&DGkTFRHV7Wiqb~C*{tdB+ZEj<*uwMmK3&n z8A}K+Gv; z?&s2BxvNkB=9#%FNlUL&dIhkSiYLA z@nNA^{D9jyAn8y+-1RpDB7J4gyIio?8I&?@0p5A z(!`BPUv?bH@6bEb=Ok_wdbJi$=H|(Pzzpbi(^^cNanD?gz4ffVnK!N$O>99RplC3( zdwml&5$LTq%FR}F&^5*b`)1wza^1OG*Kbz=w}AK6+{X)XlF86%H%j1WF@KTEUDRs1 zUN4xtnKA29| z_iOOJT&jd^8|Q48_)Ww+N@2@!dmzn)U7#8`$0a#d0Ry~?ic1?pV&#Sj;9j?eI}DXR z?S^y1Q+qaZNZjSh(gJ-6;G5ebJ&T|K01yC4L_t*G`o@LU8*8;TXUp1TUg?j^y-|s) zrMp7Ve4~>CfI(ac=!Me-M;omyo>Ft|RT^jv#^cIh083rPo65ScNfmeol3{{v{}P^9 z(Yg{evarr=Nez=5qo7$-7*1NQ@YoG`AeB5th+V0M2I5QmNxa;xL^)!NIAN zRHBeFPv?iCi@ikZ2xntZnmWJSWw$;6xL7?hoD&GvvsgXIR}XWQ1J;3}OICGf&)9^3 zE1KY>h0~RNFc@3dRxsGGa7nv`^0wq>$N0V8MhDC(Qi(9DrUhY-Kj|ifJ%574EcYm$ z_~O&y*F2>6gyIM{hGM&ccoC1F2ckt)Zl>tqRx)r`I__swp>uT6ZTvQ{dF{2Kt1 zwM3(qrmti&tI{9wWb7~zEV@^~jRKbr^Y$XFhZUh$Ll;|~6DR+JKef{rPsw=~OlH`b zh$R}y(I{`rRVForrH=Z>L(uQ&tHaTgXA_DTEU$`^q$KT&2fw55YZy6(-q|YHh?K=PqnIhrPThTeGO4f?iJqUg!&DG=BQDsYXX zzO|gy?{B)$mrY|cbD-74nhtDGd^U8Ue%o&P71u1*N@=r_Y5Fz5Qi9Jy-ySot08s*1 z;>iuyGRttl-6o8w0~1^+B|+#$V893Cty_&6)$7>fVE_gb!;0b(j`lsX(+>KB)?nD~ z_JexU0+{Rd&<*3T$*4I3q?KugA@4o`YL0qHX2H5 zG)N30QZU4uO|V*dVDR;IaC=t=hC?^JHm8d!d@ux>4n~qg4uP65vb{mI(<_s~jYhg7 zi@U_>0=f`aT0!!E&T50f!_YG#%X4ZaW>o};SLD^_Ud`Irob2g4hyFG z*je%Xg6(7-H;1idXLQpDi7HnTm0C)gD_a>51;6b083l&R)g%B6;==m^s9bQ8%bk|X ziK=;_)<@wC7liaB%&utf;zBAc;`rl}JqSMdB5}wxF6>nG7k5-)3h7S((^)Z34fnWe zAC`@SVs(!bz+viERFWdzaTfH#3k&5FU|0%C=69r{gG%F4mUmnFC`g}%T_#JbJ>r9j zPi1*`ITOtIGaay$gH`~B_oe;SXVW6W!z$2sTqc9r=RjFZS$vf(;o~1%X2O~z80(2%VwiDe-Hw;D z443)i3$@snsm`*^>{6%cu*)wO8ZjIlpYhcIpFm*0#y19Fsg@0+>Zi zFLJvowQ3JDtU>rr~LR>{Y+ z1Zq5(4ADkQ$`u2@QF!^?WH9&Ru<^GLz|>pX#gDhh-DvVSoJbBmuEH&^{~dsNLK(!6 zK&bE}agQ6mN|7d(?_+2$xR8LeyNFO7M_TClV$+J`?pxIq7vIo#`TS~dHFq_AS5GyG zjsntQq}qs!Cwx^br}wRcz|_L16*LV&UG_q#Kt-WDwr0HV~nm=05@~g9Ybgv)1np4zo zJZ^!MaKK6WJrx@&C zUpK&Gdg9g6S}x4x+*&W;n;liIL^NA?6TEgFjK-4o)ohhIonjv}?H7ha{1GbH_WLEC zd^D;~CZKPPYp-E{>rJ7r^pNORWU+Fu*6SNgw{Et|jb_QK=ln)KXcp9<0I5RaWxr8s z_smAK;s?c`F3XhbjWUEi*mB9T8%XglmJoqCmSAs5BGq8CWP7R5B3Hbyb%bdpEIaAe z(@v18)-EJ@yLbT%LrMI&pYD^s(D~(lIt!zGlFl81!P2ZSu_q2Yy)6rls|Ph(09>&S zO11q$MWV_g1>mp-me{PVOb znd21hCNbn>~H9qD*Nr+lM%gLt0DY^CNLTy5Wz%^*kOH7ATcT z!MDd~s~6{l=J6sX9btZ@Z#1o_HGirszJ=*U+7OezAElpST97uW>b+v=yXu6I+pCBo z3p;%s#~{ZU(C61lRw^Q&jFs^X6V-Yi?=f!ptx>9<TucH!ce@ZTzYjh8S{OXAy&G639eRVm<>0EP(`26vr7&xI|9IR70k!D5wZ zV08jR9L(n~*a_k;X7+mNZB{t(Q72&W+&Fdm!Zi94P7kR+38lM2$VFO63WwGiLHfY8v>n)OI$Gs@93=oz$EoIACRhr7#wo{zg))O^_dZ zTmu6ecbPttX;e1y%kKifpsy;>Az9GzWk^N#QBaxBT#?M8n5xR=9xH7z35)hOO2XR9 z6}GbZZ88`Lm&mi~!5~Rk3c!rYswQj&!>r^Bnajk9FjzHOV58rt3)7D3j3nI&31GHr zpa5WDFpFWSCc9jW1oSfRj77>+rIdqr0H)|f$yyCyS&2k2XZIxCJ*u{$djMaik1tY3 z=gGsfgl^9ePs@^44aw|Lws;oBA@+4_{0#0~0T^2Xm=nOPQhAv>A%hunX5$CGugo+j zK0_gZ2}Nl5Xvi9&R{#@xwgxTGOZsZ)!ZC|!jsUFnj>OSPY@Rb>q)o-rp*<*mygo+B zd>0~)Kcpenzy4a`FFui`ezJwT%*y#@#{KKx)4S~1*Jv{_5FNv;S}g)H4&acl@8Z>O zxz1Bfo+^-L>MJ-^#5F`O`Sf@7`WFCwHGtpZwyed6gKs4$+9^CHhCc#Whm_ytRlWPm zYs~Yr#CHCp@#{6mpc|t1Yi0RZ~5kwk{S@m z6!?X@TLKze^)mL%hVEkQ&qwZZ;$O|`i=i`Y86Cew@7wT1br;^ZBApd_{&d_RDc8&1 zQZldxi$!-bkqVTJhFPm+0btjyRI6FnEHq{Lug$IumXT`&#(dg!?ULj?D*!{dApkYO zMVuL@1yh-vCE3yaI{dC}RqBD=>ox}c7MCi)0k;~K%D}3Q2K69f|1w`hqb`~)HG)ko9mY#&=*^vcRH1-TRrL2WDG~n zc;b!5aM&hx((F#u)Nij>1azem$VkqQXIZ7I)hPyzY`b6X45S7KjBmSBRjY~%Y!qQT zDa%X1kAlGp!zFMxUY|>g<`_F6Jr=u+^9Z@cL#yK0A`Ikg?VQ)jy3GvaHBwHHXtc7p zA!zjq?S8S@Ey`l5K=>V2@~WjWxf6KbROSTql^zwQl>GwsxN=DqM*a-vDrSgh>i zOIxaK@Ifw5$@DFt8#P=KF0y8%s@NsVkjho+kgI`X@n>OtG=IDcNulP9R6>RW_8LZ` z<6T_d*lG58CDu%^XNul?Z?#Q(xC<;WM z=xz<+O5X^y5Lbk=4keeO$x5^QK{z+8;u(=-S|MEW8%3dGL20qAtPrBR6thCe8Ezvo z+dw{ja0vdCMBU-z@j;S>GuZ3>v+doJa52)`Jglu(2Ml3A5qmJE(B!d30c;_p6>f>) z@r$kW3g8d+H_qMA`!Z-8VfYPPHIn163ZI2h7O!l+v%d^ELIPC$a4R#U^(Hu}9>#Zy z(R{4voY;3-J=GWrey5O~k;fG(#26Vj!Fc$Z+#B<(Z=L9Cey`>tr(=OYeb{^d8l6Y) z=LJl@6{+cSDLmB^B`_mp3C<9%-^#l6s-R0U{U-?&8_0`JTEWEp`=KW3g?y9|+H&)YNISJrgSM$crrh9YUy}jw( z-S(j=crdW~o!YQxwi}g(U+gris%C}78k2P|*9;2XR;Aaj^gGr0*j~-N#n_wlt!dAi z082rw<5d)Qg>c=r<2p6dDEV#$t`wXDBf-4QYN+T-`|Gz_b`aDmmCShDcARppmUE0e z0L;!v?WP@g)k-n5Sxy?h6}S?b))~+kzXe2Sxf|F}|v(HAu`R6U>^Xn6w3m0;?=z$?}|1 z&134Z9yQBhvLrR!b62vZz|KmquNGCSDwtgU1VTeN10D*MMK()VciI)aMH|MqE9uaj z_icAe&2|A)mSnCV2M6pmG7=MRqybCzW>)sMq(SRR{c47$^X$Lr)N^dMh=cuB(Qg%? zdaFp9!VU9m1Ta@ELz2JU&O*&@9sq_UwOcuFm}8X%Ch%q*Y@pY$lh|1`!!F1Yi%#vr z1p-L<@xn}EE1=@?0K$6P zYV};d;a1Hu1JQ}pk!nh~qtP2@Owl@ERjl|rB0OY~mgqb?s#5o7 z2;NuC0q<+HgU83oPluPEPEy;K=_8ztO^_6WWj=W4_|N^bEzS6F4wwKYXo=q60oYK% z>bMWK-w77>ouiG@H#|QrX*hkW4pw}fJeu*he#_=4RZ68ng@y^IdaR8fD%9j_b@Eu& ze2u$O?8H-X;dfmBpuW9MaFb&t(O6p18rs=wzsRs<8AM5(*=NMV~;UsXtwa6&AK(8`JnG|767+6 z01O6k2VG+_bS6U^xCM7X-%hhMgy$O?qd^S-o(|1X*XRSu^-8}{?fTWWTlU>DET&=P zi^XKVkjmx~)k+>VbUJRY7K2qp-}zkDAocqmFbNQrN-0nfp0!pj*fjvy=(QZE-LwL) zV%3Vxz+OxTwo!r`29>)_v(qpnLhe@>iyjXfvq_utyWsI;RA+D-t{Pm2Ay#da*iJZL z?P%;b%>v#X=$+4TL(m(Iq*D`)!3iZTs{tb(&Vn=TYc{P<#y+#OI7!UuVJ=~UKuQL# zaTpFBNf!r;Jt0(+D9Nt|N}G)$q?lR*R>c!{Dw^EjuCm28U%~+nhVT|DhpRlDnzNZ0 z?ryi#YUQCuJzo!Ujb;&IeGeMkMzaJ3b-3ibYH2LE%?E|!fWwfgpe zb(^K?g>sEt2pcZoQ7|~U*gZJ;ynp=p=xis<=2f+#Wcs#x8WpkH)kP@TJt>vhlAa1G zg$lf3FGUpw-%|a0KOLX_2cQV0B`^=B1==5pBBwyYA+PA~WI9qk@(?;LGyAN>gogT7!e?60gXR^jeH6mg9(cpGBR zojy6hp%5`1P7EhpJ!0|Bm>N93j^kAR0N@bA+QD58Qb-&0s9L)tXG}&raha7t9vJ7M@mnO z-NjVuA+z?=Y+^4b5@DW}_-!6l%Y7*KEoHDpu zE~Kwk)4FGRPPr+SIt&816;$hf8G>Dg$&S_sx8i|im}c87;Ds>alTk}-u9_HTeijH# z48tX>&cwoCi8l9KxZ$33DYm+jfF_}D&H*dqYts{pE$+FjHLa$HUyDwIz63D4GXbUI zeVZkqSIR^Od5kqy0bu%Ix?TlxORq~Nwqbw8WUEr3oN1m-%wZp&z1ZvERAq=Pm&zWU z0vknyWiNxg0NBq_fvQuDJ*-eoIc^4902l&Ry+(=vhS|jld!rgCOTO}jK_lI4=Qsz9 z1GGS58gT%aAP=j3MGWSajh=wsig{YI&!v)v5f+s!mX5Pww}!A11=rCsa|b^7=u7~t z7`%OvlBK9BHB9PG)3XA@HS9gKH%@s0WO&BwQc^gLpz^cEpw64mP zq`_3Cu*(W%DRl+~VDY$N=}MKk%^-xLuY{o0`|fL-&gzoN{>tp~!TIOilTRwhyvsJg zx)EVKxJ`Q*ED)A?n^R65v!uw!||;Z&cA(<^K4y1DsPPeJlN^qB@}Tj=sNTur|c%DY>Nn*8-$X zt@gfg2h2D#xx4&o0I`evDg?_bU)G}u?n3OyySy{kU!2)hZM3ZQrlrBG+MATe(;5Ub z3QIcg8=|2J^va@Mz<6XW)fmq%XZ7jGB^%nE%4qD&=JgS{3ldM<`PA90>Ni)dyPMAS z3d|0^T({P9?6*dP3K)!^cvxWw=D1Za0=-bv!?xTBY7M7Uw~LTt)a}W% zzgkZr4PZFn>9jMMG~s|@L!oT;e7PK&MhO5`YnHOig$97@t~lUgF4^#{^>R-mcSNwNcgg3S+HsvA=%N2_w?K$`x~L)m9cfbjPGRv zU&>*6eikkklDsN4(d#$UfGBX@>XlTFWbw)XuxTY7FBvq%0W$>M8AwwK9ERgTU)z@i zY1{$O77Mu<9uHEK;anKbS*jAL`~sw6o+WXMgGWn2^j6G#=tj!;Z_U`>(V=Qe6mD^0Q<< z%M@~YSD9B(Y8&{0PX&NMU(3no3mNGLe0dB2gT7LVjHR_@OZRT8!&scp1ib{IxWFkksYH zy*0V1&Tne#d;9v)gMi!lwShgL@8Zf>UYqM{Z?U$+1_`rTZ&aGjO+1881wof!@X(~| zT}^|rv17w_*nQhRdgUa!0_*9~l!QyA+i zyl=aiR};XXZ@J+Ysld(Gy#nbQSOv(pORiafm$j{mto-Q(i^TwNg@E4m8UP-$p~7fX z?{*#AE}CXOm%G?(CU{k)oCAQ3a;EN<2;hcSb*+k7EtK*pnBbOg+tp&jE5jdyz9N;4 zRrjl4aJy;6W6@k9JnRRcDInSi4DcJgXLSw&SYw!T#<&>Is{q4ti!g$LcEMLVX`F$c zm@vkBv9czf0^ni6!(g?7E&$AGm)J60ixAZg7y!l=^yRkIEJB<}=A&5_IpPGG;2?z;V464#Ou_y6uq8+xFCL4SD{fab}P_?%( zmhg2Wi*37IfC%PhS89g9;NmbcwJALo^Q>9TfVS%<>h(;cm1XHJsT0yK1Jdxj0$`?Y zsrhF5W@V|9>}_ni=aA){LAHD5c<0!<{)OXR3XH9Uv{X{f5E=FqN+rTl{zQ&$2oFQd zUJxNb3b~nqg;7$})x=jkn+eS&CB6{<3_B3OjE>Oo8T0 zRNNTO^%F2`;{QV1Fs*7XpH3uCg~0&N*%onoawb(dVS-cH1GN%K3^CYzd@8*NaWldD z3AOzb*o)dNu=T>R&VObIx>!2}fOWkNLxS=;000mGNklS<`lH~2gL6mbYHwSE$7#8AC^|1J*aFw%O<8+eRW`;A!S&YomEP{5-^}B5Ooh^^&-{U-Nj1TkZ)D#^53U_IlnJ z;`l>>ee7c5=nZlERDj0nA*bp`ca`y%>ipiCeKA4b@pWZ!V_rRYw@>xutu@^k^J{Cq zF(IHATCQCXcQ7iCCRHi1G%io)_HbMq^@X*typw^koO=>Oo_hGP<}WV*EK|Aa2c1z( z{^&Ejxmq?L{A%O38}!AG_^>AbgC4d=_j67=1S=1Z}^(0JTvx52z3l*^sp-p=7ctJN&%iyyJT z36~MK0;BGkU~r|B3cM;9TrFkQ!eS|M2@S>~~DIXk>$A zidp5jgTWsy{L}gJXO!EBW(fjrAq{MNU+q?j;DqRa!wj#96s!h-8Qy?q6BA+@SD25j z4#rnM9pP^RuWSjkWq!e&jBwLd!56()Skq~Zz=lR6gSlP3QLQ_y!qoQ1)poZ4%CFI3){VL z{e%}J{d$TGCrtaou+Gc1P^y=(%-6ziNf1>vH{{CTY+f1_=Zois(gnP!>KrAdBD48j zsoPvSsMJpMOt4_Mc$CZT>6Q$vD5(dD%x5sESXC>djKi8K9-75B(iu4{k=&+8P@tCr zfNM^=J+OkNmoH^G2Yh}hRYzC_n$;*T5__x#MmG#FA0B@`IQq1A^l5wlKkOd<1pwYV z`t#^)JE}8vz*-!s{9d}an@+#d<1EHw1wLOd;~UTI6TF}&rv(VZD~lXrhda-!fBS6eyt3Us968dtfnv<2axN@M?#)D=H3+U|+OK`xwVPU?qmTMmj?zJoJMsYN#;YXG;xD&O&R8K47 zhZy#YKkhJCpzl!H@X1d(L(t=)p7!1((4cB9m)i|YkE zAlJ$`W*P!_n{Js57Wx|bYB2>lR&me^=JP&GFt#%LyB^LKJ=kCROOVX>tFBuv6fW=X z77Rg)Nwtaqx$4TmiC#mUwouGoT(4)~v0cll10)Hn5ro|aG4LE=Ff8e0)C7PPgQaLC z-b>*#04&u?q%sf-&~`fBWYWjB(#C;8R5FkIO=0e4A>0ky_&`O$?bSjd2$w9+=R0Y)Uf+WMasgsF`%1 zWX}lzSfyU8%9r)$`eF0+aVJ0*8i-={_^ob;u*Aj)Z^)%v9rgfV0VNyEE@0Am

kbt_Hs2VWtb`3$+Dp` ztaG_?3S4$!32lUP3v#2a+7-CxFc)?Cx z9+G{Ncwy37ICm^Xo1<6)2HR7R?YatyOcj*0%-Bd?v+=j3E`aZtOog74VP(T%b)knX}x8_rC zCw(hA5BYU!_JcDPxDujDabWA%bsVU1{T{%2C+Yh&3;K4xWC><&@xcf8`N2K5*dvPn zn~A?;_!j_uzZJvp=)N+#D^2fUd5z^)2d)>m9j~gRWeJ+BYoetw-`KOYCEJxdoEpn3 zZ*yCx_XT~$`woiGWM*95)UR&Zi&fBVl_#n+1W>wM)M0r$%FE zKJ#y`yZEKXPv>}8#Sb^O!+yEfDL~ye@L6G=GlU-&02m^ADc{UP;4T0h`QWlsl`yhz zmznvzTn?hrSK)X(ZjGgYGXQ3RnsBbQO8Wk8VbsdylJslYKd?M44#e~5ZrJdpl!P_(;$7Vl4;gW zR*D9F!DB6{pXHgBSq6!vMMT5G3yEO}1K48DF)NGg#{oR-*?I{z4Y9Vx5LbECy+Xfj zGn-5*j&=D3m79$s0L-4jY}3?embk!4RoArQ?PleIzM{1ct>^AyqWerpsV`Q??DxUfJp3`<6c^z6*?K)AuD4SJcX8V{ z?1y3PPOm7{LfUyHshY{GY0x+5u~uu8rDjN!M3yGAu{A*G+PP(&o9yl&6|!V05gafWoX_n; z97pSe4?+fKWZ9CcMtOvr00@J8co_R835Hob^5XKd%nBC{adY6ds`KkXs~Z%`nM^uy zaei`ox_ff6L+=|F4>{RVmRCgYi^2Zkr-Q?7FjxjhpSipW%u^9#7Fd>yXqez!S%S}y zqVLh$vXn=Kz>v~!T`Etbs0 zg{h@qduI}$KDbC7C9@~#{24n;N4=GlRG(m=_ab}970D;5&&SD6r|B(KxI+L;{V{$7 z7|LKRp^GhkTd^H~EotdI)yYFir>E)#JmIR@M5KNY3WAHOldvIMI*e<_Ev`}fA|OKov) zK=V6mat+*8hqF?DQW!5P^Nl%}7W9Y%9D3ius0{Dh?H6Ez z;eA(|fB=R)VpS$dr&=@yLum*P`ogtHmw46kmOt@b_@|K__VgVY%calQqpAX7^!uf5 zw=n3HI;~v0neTVYy=J)`6nf1H)M-`$58ug&_pN3;BNtc&K)2r-P2S zn02Mt#cBZ8i|u^bpD(-9d7B^vsBl8AxCMY8zAS6iQmL3Ts#!2N49qIQDdHiFwN=d) z(#bDZ>xOSxHMr!Gv`$i`Gw2{$su~P-tX!*6!@F=f&|==4&!iFv-dfq&px5z$Uc3<) zY}+L^5@sM;xnWr`OgHTNHPb9qDj96?66ruJ%Z2@6zm8Llhrqn7KUQp(%q(EF*RsNj z)>MRH(09~#u%#^?bev(=g>Z~K>{@idATH<|)C=&zU@!)B!(6bW^581nZi%Hoq)Wum zne?R@GhiI2FSS(3@Q}1;UV5vA3-1g1Vt|KNYZ0h?wGNh35WO~E7_)h8u{5W%Dgiv~ z7yI4(Xi$;p$O!*PD$Kjay&Cr5y~aahGBTlf-zSh5zF8VTH8aF2Got-=4m_qO=JH}f z8nlMM-DVrdr#KJ{w^9&rE)_pia+ws+ZsoaBIV>B}$U@+>U(eJV1=w`YOS*2t_fw8@ zS*;$I%ZJ!PwdxsEDW6m;rr!6(Oi$49%-M70zQIXo81?t!}?@#&WE>?9PtGUtgo zs|_LodtC67%wf9=`wQZxB(YhgO`WE9 zWY#u?hr3+qOXy~cd%4m+*JtB>VZM1Qz%rBPNuc)-#y3+q4@+^WmeNOw&o~tm?;zN$S%doZlsb^+3idLv<{JFqX>|v;^n!vC4u(Brday zS+;_?%CF-5ZUkm2PZ5>Km`3x;;i8&nS&sZ#xC$hW0hmP}by*3GJx$!#feN~QoQaH2 z@xG&=1f^fXZUox(egyFAsUF^+U;F7O4N9@_DbJbO-vapWdRzkdDIZ!}2{@NNC=5Zz z?gonStmgPF0_mtR%yY&;t3B@96NWRv`XcoW3eTy}{5m84{F>Cwovfg_dbB~`>5Vbk zRKQ(q2dm0h@~Yg?yh`YT!2~b`2KR@e$;=v#YYaOx=Na}FFkY;@>D*pz8UQf3D>io| zZHqQnU2Gf8qUr!ImKOlVp25)V_N?x}=nYMwGPpZ3MpD8_>I}2$VH-c1?HqnvoAoSQ zHGb$@^`d8|n?V8I7rcaTYX&83L0^dW7wGMH6>bAN*Kj4KI_i00ag5b~^aX~6zVkMW zDJ&zsAgI}>mnx;?x5q0(wKE5d4ba`n->vo6000mGNklE}HSIi`u zo^^M%XiB_J}h+* z7 zArrh1@10~p4U*fu%^u2kk?CrQ2baeTJfE;LkH8U8-ZF9V5f`vN4! zAn>!Vg17dPrhQR0PPz8CR5>DgZCBF4psIBS2uV)}nI+v*QjL}iN9-jGu{KuO$@XRq zzwPEKnL;s}$tKUwj^TsZl!5@}(kTG=@N}E~bXl%4s_-R>CQA3XY*&KJ(bR9*I*kKZ z$DfrBxK2rCiwk)9E)&G!^wn#Mq$5*mThmuEq%u+}3q}@hUZ&WI-r`QCu#K$@N_)Vt zs=u+tB(JC+gGvD_>;tRdE4Hc9A#i(g`6rHyiem1lYFRsp!XAb3Sq9JI-9P^k!L{@{ zWBO(SwHmJ;r3MvUk@zES#@k#6K=NQz9Zi5wwIp=mEf;k-;9lSE51iY(;b`pQhZ{fN?T!IWrgiM^^$k$D z-7oh>H8!xrNdWjxFAt)#4^Ok1f#7`uFV(6S8h$QtvsUfWcQRmb!!JtM*~tlp)ub;S zaNARI%T2rJn4onDMi7)`!@>D_0D->3;8`1c#^Xl6?{Q8PrW_8qn7?>_x~^7=1h84l z!t#bwylSFUg`kUeEpL=^rEK!+m#bFY0gs!0EnKjq958EElfi)}O@DDE@WJ3cu4gf8 zua~{mqPv`TKuT3cG*mjK|&s09FH zs|FI3o{bulLC|YCorZOv4)lxQO-~zn>Fz#vaN09uimIW(}zlq%CaH*1V zy+OU?dU?+Wl8d+*>NLyk1_p&zvse#sw^Wem#n>724X}AUus~mk-j~UD@W+d>C-hYU zk4FPZn3y z41vuR#$ugSpGWpu7Q5Wa%D-fFLrGx|)am5;5Cc4{$I`xlUXWPwznnAEJ;zQwMF6uN zH5ja{umqgJ-9qtLCZvnUT$q%vC7J^#XgU?6kj0a-vjW+R4ig9z5qAQ^|;%68^Qj4YLbrP{$6q1M&r1< z?L8E__jxEz(D?CW_PZHhCQ`ivtzL1&P=V}JLFVw;r<@LbkG_|{V2ZwcsMb4$Gx4fo zSG3ldtsqLWY+6M)77sO9#d~Kg?ycFCxwx@s8>c-ibjOv}porg#@!XoPo!+Pf0Jr*C zFc<^S7d{xac)X~o9(Ltujfc2ipclrsuNvcED-0ePQssXhzyZVW!USJk_xb~i^^ZW` zPS+gI>Z57U?bZAs*Bw^-V*|f;8o)q%PxYOJIvvTZ!SB28q(R@hm&L%UT>!&%FUNjC zftwcwM`_O>aW^P;{1Ra7R5Pxb14vYNgzkLaTdyVYN`lYQf3ODtPbN(OxYr9|gA)?K zPhU6XQodM#8BJM6P6Jp9Te>9`g)XZ_#)V2D*=zbwU#>aR9D2=`oJ#kN&^{PjfOayf z%MF1_$kMaIDzO3|hz9@+M-JhhK+0!!!k9C+A{CB?GZq-D6~ow$M^3M6GD;7za7P=^Y8E@~ zvXrH4m7=A?l5odbT2fX;krg~1^#OYe7I``GA*M_Nz%siZtsCaj;eNOL|MB%6JaU^$ zx2}J{z4-RF4a=4UO+rU7f)QksjgIJu4l|etjRGWFhVA|BjdMPnzkgTNBH!UiJ{Kqu z95y>l;=@&M)v5*lB$UCD-(I++sn$y;T0SkEP7t_%>PKuSO*zHXCod^|3{) z*DeC`cd@V#%t(X5(7`m$G-X@}h*XGCX(^TpYAD(+0n8{S7sFY5wCG99`UGt;?r&yG+rb;UbBpx%ey-4~L7lB8TrUA&9jeH|O)uE5 ztoB=y^yWB1R$wvn46%#A4uZ-UcL1;3PXPY=s8HJQpK1<2Z+a8b@#^q2MWAAE)2Y8H ze4iSN>yy8Ncay=5cye8CI!qbReq~|N1hBX>{_cHC=;qSzxB2030sM6(RAb@UES(aT zby!L`DOsx0zs-`U=j}j$8#R5cij=xz#I7lg7UD98Tvt&^A=PvAHt9>*EeG|?`KO+8 z7Xa=9!v?@O&Ga90R0DpD`#=2M@6P@Yw^{Ga^vUkM^cU^lhTD4|=)HVM_t)|5V|jT$ zSRcdHA)2h@lCjwM>wT~}K=K9@!LzkB-`FCB58-@G%U_`{FuB|YI3GK^Ln5u2b9=pw zcZZBM%s1C#T_B9aaQILzmhp5J0lm<~>&;-ZA8Zc=&lhnJzXhauOGNQ0=P(RsSO@Q%s=Bx0Jum+2giQTw_Cq` zykAW6G_-I6tB9qDiR;0Wm<(nj8t_xcj3F7!;w(yG2v&9pBLLT2tD{L)jxSu+=rtr( zzvyx{$p&Q@r%n*{6Woh%r*v)L*zokijvx|TW3kiuLoCV-c755b)F zVj5`p8*$T2gzIy8B804Fo|({2*uNy1YMoNd(GlC7x7oVbu5oj@umIiF%3~~-E(6DB zvtG5PtEE*48RRgvnM)sPr4_(TvVy_7ZBqveQ|Da-)orDuCv6-z3|0Xx0A>Lf0t}Yv zjS67CwX7@8yI?Tr%b3k8*b}$u@B)#I&eP!;z8s9&%HT6G>e3MNkW2<42k{w5Og|~? z<6w}s$BSq*%i`P(Lbum%x4UnIzB;mr;}agq<{M;iMaUKL(D&PWrs(q zc!Du2jjMX&Dhcc`<{#~^!W`#w=N~N%d-lOX;342slE%NOY$ZzTPmA}RzVFRG0KkrV zYdBxg*R&@Q!19?t_wiDj-zAp6_CR6=1uvD`{|lz0m25#SjofWe?IxGS1?8{nEk?;&jE z{56h<(-58x?s6RLW|v%Ejkde|=6VA3>Oya(Mb4szu?2t+$MNxc3;@rT;b`j4SJ7fE z^|SymUPNC?s%AJ257%5=dFK;A(HiA8usY0o5`%t`b%&)TovGsh$TSL=B6wN|EM?lD zP9o?f9D<|{oYtSeJqE57ND8`_L{=8{R0K;Oa5dmz5CFhg zBwm#OFzEaFTWE7VJ z9}M<9X``A?bF&g`0KC?iEsD`3&2Vzm2e!d%opo5S$O|u}7_KU%@h*IQne;FUO(i+L zciip(f$N1db3>{gcLM^r0<)S();6|)F-Q;4g1Cry zbQTRy+N0CA)A!jDebM=M7L9T{se3WG#E;QCgp zXPqIWOUF8aT6LrIC~pVpg%@A2iCI#?Iyi`?B5Y3riGgPtFXP2UaI0&T*kwn8Ug%&U zaU@mBedi@tg1-f@wC8rK3M~3*5Vr=vq;EiV000mGNklsUO9({PXvY4jL)v|jhMYwq?Lpt}i@o2%o;-@@C!vYRg%pbOQD*gr<=J8yIABX(E8 z=I9-+!t1;A>Ly=pgmar+wBDrP-)!Ms-3<3v$@Umw`|i^m+r>uw{GfEFbC=~R;y^U_ zK}~FdPe62cES9TS2e3<5DCoOC6vxXEVzo}8eYFHSlA4{RECBEJ!^72RwaxGf&=x?L8B z&E#r7r_ChjO9t=vvn$C(itMOKcU7_0+~B`FOBoTnC~Cmw|q=J-NvuZ}Yc zVh&Iuh7p`Y3>A)B0elk3Vse*>Xl$W?MFcMj#AKG2qqr!-D6&Goo5uD?W+~<@&f=Nu zB&I?wC+z*TCer-2TgjK#TS8qP-^={p%Z%3!$R~Rh&%40#Y6ilfj2bC^}3+__a zmh<*-(J|`QKzBH4A;!S-q*abDp3uAK%$8jucDA+%U`b```Z1SX=1W_MKI;pBCshEw zVR;r5rzvg=aDOnDzA3;sAGfiMi!(M&r9}$?BnQa}SSb60PMEc_(v5Qq4EE!mAGRgp z4kWJ|o%qRFG&uFs*Fk!&HX0`gfEgq^J^xXcfyMZOtHQJ#p#lba9bfD)rBW=aTqLoT zOt|-o+rBTkV%A|*mRQ|t<{;@SI<@msiCdXcsnJzE{^&x=n<2Yx@5FN7v_aF>KTpm? zl&k;7kF^o>kD7v(-XwaH$wIOQ2OxsSuUh|nc_FtHd|zT%o0onP48Qs3PcQ%9?|=En zKY#u&#E-AO|E_NNWiu41`E)h3UTc(jJC$}+FQmV7?Z8frRo`^SeuZ0cGp=6W zH^tb`Jh|#K%{lThfV~gh+4~N)Cbn#zX^PQi>*`m1HGH(n&{pfIlHgr_@DRkL;h*eO z=&eF24A0VgmVzXhc-jL)aUY9DwOM=)o+y4 z?y^o(o6csfsg^&9{f7Y1z4{Q}d`e}B_g!VC0q%;Q#!Yy*iw{@v_7EVhZnMkF1eYf; zRcenn>3k7FdLFNe^}&~#=R|CsLXZCavfV-2qOidpFy6Z&7 z-3+ba$mU2pFqp!3y%|hr5rpq#>KCO2&;r0x{Jc)43%r7lm*NNjwLnV0cRZ0}bFd=? zs56J_f3*S*%iKzn4kAh0S>7Fv9K7Hl?;==)#lk3PQxH^2e>cPJcA~glVT(8(7eKER zVJUs7fcN{!R{b{!;N?u1I89 z|LzX(F4CtDBNfryY8HAvO+*T75*u5{bm(AmmpYg`Ocd*Ig%Q1@A%zE-hc|+{4a0s3 zb-Nt0Mw+f2pznNHBCs=^=A%)9^Ap9e+(4vYXR+Df`<-$v844Ium@QcQ_3*G6u>om1 z@)1Cwm`%vm=3C z%`;bG7jMKVljN};lsB!`n6=xR$q77)liAdybyYrlpYW%mE*$m(cW+Rcke=iA6kODN zGCei%7qwjaRWf`T=rXfAp8~)Z$2Z|j?8`Fnq(2?^rekX|>eGm0qWNl~*R1SHHI}Mg z>ROPM+%*6mPR=LuHqkqo1I8EFS*-i>O@FfNfW8va(bUB&fWfncrEercyqxtA#k32` z0+Wcr1V=0Y7{@_hJVbMB8jQ%0C^fq_Fir=ZR79|o6#XFSg1b@LN%9`RENsrtg6uTR zPl8Nx$P($fM11b}Z*(%mFFosx!u5tqu=KU)2t==p^c5H5CPN%*yduFjfHAvb)5 zkjV<#F2&@tIB)b{)u8=}&K~v5!52UyHL*?tR(-4n9V{`UDfH`;A6~r?X^y8*F-td; zi0qfz94x8ks<5l7c76c>zixjo{Yd9O@GTf@Uec9sW$^1Cet7v$#EUmSerIeq*nots zX>`#-B*7l8zowX|)|$_3hviFh_Z!##re`4mZ(Kf1JPF+A82)y(81HT*=2w+XjgnxO z{)on{iCcn}wZ0X4LEQH)qvB;l(Nf@oreDPqafPGqf4|^UWTK&KUoH| zb;NfEdcp6pMlt9zV>z2jf6G$m^Wd7EX1y%$r&$M)4|)U9Rqn8?OepERLFTO%1r+2C z3Qtyf=VEkqxnSDa#1V4yQU)+=HbVlK1;BtSfSQFa0PNX405}PtaVrJPsLHIy0Yo`C zn#cVtaXhEx*_|(+-;K*O^!kHDmW`={*_gyGAoAFFPGJW~#vOx6L<7KFtmO_Etk#uM z9X%ZE6hW4GqK3o1G%OY1P`O^qC}Nsc zu9qcOh|TiwYLW9ULGBo|#S4MEoGJ>NK@ww!1=Ykb5X<0P2M#&}gL$ijquN&0LIbaoJL?#-U5apbG`61 zOxk#25VvGZZ#4%=3ZYd5SEB=aw#Iiv?ET^evOEke?nkGhhMm{IIaAOiF6oP4 zBX5(7!sE)FLu#qmYDE`o&=&#a+UmWo*Ogyz)ma@pWKIM1G`*c!Q~m1V2YPXk&D_UB zwtt=s>@e+N=k?i7KfnGbLEFX(Gc%*`^j)E}q*8uo=)p0d@=Shp#?K(|nFeq>lHGqXTi}yZa{?3~{x)qIT+1enk zJALakgSZ9!G~CgHGrreQRSNDRaGU`I;-S%X7#>GZQwbay$@#Z!uk7%`yj3n#MNie?dqN12z=?%<%;_NFk<~a z*n9|?WCnL7?jwoY`0_3}+@<^5zOS?C3Ng}#@Gcvl^Q&EDT^Z~>~EgC^kI zLahEayJWd>a2?s~qTBlsj%=YV)QlGZ7PoR`+~48-9HE;5!0rVfMfVNDP3* zrh^lc8vVpNyD(iZ2jCyk%XBpJ(m=8nFc0Z5Ih&-TGJ>=PP(80hDGc0#!L@s3!C>n! zwv$PQa|VMTmP%=;=U$$BcnW?>2##>TPe4eo3HkLJFCxX#obe#`UWKn(Uv4QX*Uwyn z>)Cl~34=!xY*=D&C3rCpDTQ$aCrJ9b^1pN`f4SVdnpYiAxL?5!jdL~l>ju9?SeH0x z(jVX8>sqoCh3|IG;l7+Ik=0 z;<DS zrG?0b{lVB)3$Px2u*33h0pK`4uWGhkk<_HG&`}f4)o7!7zCx`^UvR8~=@sUz;y0&1iu_fz`uglgt=v9^ zp5~OK%1%;!wW`cH&y)$-TC=TgWwN=Bq!32m*Bz3>Td6a{vGk07*naR5lwAYWV7A2p+FC zqJZ%Vbom)g0bm!z1%RP_LEk~?m7`!h0bf0E5iy@dP(qWjpC%mu`09E_0FTBF-)N{- z_~W@lyL`Ol7peF@+yN^7duZs;fIp%Rj7=;B?1pp8fpJJX53;Gg#YM0x5W zz!e$cr*+Po-DH29BiQvz`XXd0`Z&f`nw4nqcz`82gJ8B7clZ0t<}0y$rS30VY3U%aFLx?xipjec{OIDOlV;$kT?{O`ui!Ve-xTyLTTFe*Xf}wCiaxv4 zimX%0!bA^GLFkgUh4X=byp9=r3?u`b8`} zTmx1kYgs4Gq*=Mc!s&|2;-lH4_ci`=(?Lha9`{rb_r(xf0i2J!05IimgTZIfuq9D; zB=VM@oFT&OLbw~B0>IcuV8;tZ=3)z_3k56aj>)0oX8@ zfiJmKY{c=K^B=T4TNZA`JM;7hHbix-*OItaBQ1Jq)z6Z^e%F2j0RMbil~%nt`R9+X z{|j3ki}YhZIM0V(oLhJuyal-a;?;lAkmS4ZLr3DiXBIEbLgur)>+{u3?wI^7RVH?n zf+92_K#6LRQ}6B7J4@odt^2C9-g|=lw>CoP_+TMs_kG6nuE(tgj@#z=xAozaD9e|Hm!7zhkE(3Z_bz4 zwd4h_dW`I{ix-LaErh(_9&gc&_nq`uJ%pWT*EUD^l;XxJ0qh%VaE+~#Us>3K^ms4* z02g>WxmURD4{mz+E)c`ZesSpLyKc7a4EO!<(OzErE48NDKO_L{?yZzlt!~}TU9fwI zcK6}_0g^Y7mED^J0peoIZr$xs;_9wk?J6q+dH_N7u2wQAMzU>X-^@$j?FXPE{{I1B z`cK{5KtX29by$sYU3j(jbtm&+GLOcya5xS@-@I^(puXT71DGSVi+2C zHXAen46GV8%%n7k3pI>qiGX%{h$IG<;_0MVEhn`5fC2`9>nCQ@X~MTQ$#ePrDtc)x zVsx-bVHK~`vP>g0!_1^KQ_YmQ^HDGx`m>?S)-r5IxsAXpWN`;i9Hc$`Imx>W>@;fQ zAfS%t?$!gT1slmyF*LEVw!-bGun1j7p0o#PNB8?uDnE3g+Bx>P7T*pLE(}%}L--Dh z4z~CbP)Fd;Pw39nwA#W{tetfLQNofd#Iuz>S@g$qT`JbK;juvaxpJ^LSIfn z)*7w~z`2A7-(f2po(C$3HS|c)4hF4S6L$o|*(sTgZIoWH4+_B)G$4(WL0>LNOO=-U z%Jp9N>{snxweHJp6TMWx2(Xi*8hC;MFarz*UoX0^@CtYe`=Q$T`3vn!`icl13xlbBD|aMmjdcfccbHj;e>RBQn`L}+DU%q0 zd5*C&tVOVXl?!t05XA=;XI;)_=W3!{VS5nMf?mDQv#vOdEidSLe&2DsmfdwdD~f$T za5~+yUjJgTDp#8k=u7V2+-+(8e0{wHgRgJqpzn59LjG>H#d;%l6U>W>>(d~B-c4is zKmYx!({BO5NhA!W@#HA;r$s~vF^$aX>oW5Yc$Vk1T&w%rr}yjG$hSI7P;*K#h)eEL z1k+HOPnUu$?NGwE2Gr3b+Ax@9SsY?WKMly!^>VmSGc4woDQd9;#Ii;j0qD{{OY5a` zWw1o`tjNVJ3o#r9P?_;;S^~pdA*Oofvnavw;mt}mO+}2u7tjkqoF#q9s1H2OT;lpM zO+y)wzglS}KW6|KVd#tC8Z+lI;U^}8tu(ofBXMv+M>D!~u~%C<)0DUXEuMm)D>$I5 zM_LH%YxJbMtaJciJY_Kr2yg7;<1vU~@E8J`=*1tN=DqRjlWevuh;T&l!qHASn>ACc zf~FK^HJ0}K>YB0gl`0mxSxTVw9Qt0-1B+|SEcL2zTa#G!ReW=?*>oWj!^N~h?^7=N zIe`tnQJayBI}ACYxCn~#Ncxi7s+do!xs5=0 z302*r!gj+~w5(!-GHb!GpXOrh<@qOl?FQxqUj^j%O#qX@cnAPSwEM5jX`FhbgO9#v z0kiZko&UrdX5f>EeRT?n3@ZP?9mMOipYSCfW%m(iEnQXW>czGzAo<0s|L28HVEp;j z4=3j@ziSSkuhwXF`L@|U^sRAKvvb$<>^40no2AZAmCS!LdpP7ECIfHtg0jpub85n7?@Am!oFlEh$6&n==4*%6^ZR`Y$Q=&AYJ`yS2AWl- z_GQ)a&Fyrl)8%wZV9vJA!@gLpQ&Fy(b{E>q z3YxmA$i2|-B#}h`2W~G8!DC4>gTY1Ws+*%n`qG(FIqHMlgUk!Oj??d`2!0QEgV`dE z(;fkAg3G`r5seq5FBKRTco)lg#zJVImkhqXnjRt952GFK7*?4y|LCf)p()2R2!kUx z&%#>K4vl9P&YVm#en|{d3O6x~ow7(+T#Z<*Modj_w?bv;V8O6XSVFL<8w!{on}ItC zNzSYG)lzDYJ6!Q4`G{xJ*CZzwHiFgc{B>hrBrkIeN@e^d;AHw`)&q=1_=2x#bdiKD z1cyq zF{4&r5uA)5hCxkmw3zl0q%Q%?hzD(oU)wR#Q z+yCYszIaU+-{=NO+z+B>t5%5?XBW%z6WEONQgiDZ_9IajAy7p>do{Dc3? zYH@vXBi!cH1P!-YfNcuCs#Ro7lGh)gIbl$X!c^az1#I&%0Dcw;Yq(n;G}D3VTZgAN z)q4xxK;Z3`l91VllHKz#Ux?@al(L-Z~(@y3eSJs@?~P z{iB5R4n0QK5We^E@j5z4^|I!cwR9Q8QU@O}HNL(}cSnD3ortLl-iaRjGh3j`IljM?+gmUYTqhSh$#CI~%&-?&ZEX0P3q`w~5!w;QF$-Jmkl1 zxLbMqwXZu7LdG1;J*K0X8)sQoWizQOi`0wbVVtLK-|D1U1n72qEywP;PT%Txx}A$O z@z<*}5L6hD)`l@88bK4k1aMLO#fO()7U~KgTaI@ zj^IlKaZWJvI9{B;Xc^#9^*vL0cL`$vm};2X7XYU18n*09#{Ht)HL623`;P(3#mb>3 zmW5$m8=febWx;sXD@QG`R)nt_cGj8aF6*?(U;rc|DF6Tv07*naR4LNdNlkRZ;`oOO zz*_%IrkV;Y17KyU%u)n0S$jou%|R)X6A5MlRZbXpNngWYfRlw+RZ4k4T1%K(Yw_e_ zYZJ#c>IyVJRaF%BB&ln(YXY2xnh5L!(HqB;2~O?aPf`@!eZdu9C|wg=`ZdAcAoQOZP3 zao^ZJ*XGYnu0MUwrY)s8V)iSe#LBPu**V8A^-V_o?c+yr{N2^Sj(_!gbXmVRZ8&Mt zxvQN!}Tm&PGmBxjHcPwS4xXNOI+UHaRl3kGkO%3w7CrUUR&TSe=#URGXcoyi3pCm90HH?F+`DnYEuJQU)=~*(~AncFA=Rru1kh)&8YFZq= zG^J0aYeo*sy06~lRGPS6PR6&-YH${;(U6POqypxzob{N z!?uXpy4^_8STPu?*Yq7pH*nc8K_v581Y}*SC0e-&;Gj4UYOTyPHJ&AP*E&~`d2H5I zvEi6=CaBt_7K~zA<*y{D)xR1am~tH71sLpyV%DKvU9Wq#q@y{)sOO5$W#2vR+HacW zSM;DJAnBV?c}YqZTB@;VFlqAAI1QAA!0lKkI_{}b*x;_^pSaOE!%raedqLWE!ZS0$ zNyjMtg3|zC2T{BGdUUxm=8m-gtxTpGp1?GHb|8OqHs-88;TLEBn|=J^Xvp~6(id? z6VHatbu06e#}>tL(`n0KTc4;230<29cR}CF_sP|V)Swq}d7bSJ(f$aQB*$Y4+=8I^ z*JbD8YUKdNfbQjujN_GQfI2m3w|BQYxd+F;I_;WgkdjMr1={G`K%JcsA1<>46!0e9 z?FZ1l91BPQvv&w&#q|_d)%7aFk#Ri>79nlEqcBgcQ7Mz>aka&EG;|fi?rxjWPk+CT zIh7q)#g>y_v2$3atFeEzE03Va2C6qe?APIX?&HkEPP$6ykp%kUGDiSYGXaf7(i^6Z z#4rv+sNDDgI&;IoB-EO;(LML5CHaKDKT1c!cp${`xf=OQpO3rKmWw{c}U{5gHg%PaA0`s<# zAC@Mi%}Q7+7|ufGmcdjY87f%|q)S#~u^@}-WgdYPMu50!B1vh$8yJQl#w*~ZW>eg$ zj5aI0OG!-(_RDJYI!9oKCDRnd*umcqj#on+bif0CytBl@AwoK*6)t4=3j`5aP|*KbVdtYiTEG7K~}%LDx); zA6X`i;97F4`(vm7qVK#$$V7)&YPo~-JRY>uvde-pKRpTaGuo1{eC#{pmfW0H%c;6z z{9AckR8xJ-*xj$D{^>xvNEl4Ms*e1dCMQop?z8lZ|+aOs@5WQdF zwt0m3BxQBS7W)3#2#{F9dkVv2y=!3rmIt{rkl6p~96n3zKHJ#egS)?42LM$;ThkYm zwMgHZ!6qE#ZeL#Wi$iS7Q|h@)W>6p}`%+1>FRPh6uO>Htj&HtXx1Y1?kIC(a?CMdH z$+r*r{X=nkmm{ukKwNRj0C%shasXK9tL+dR(8fD!0Ql-Qqu#|ozl2)P%W~AX&Bh^` zGlRRJFK`a}?hYA5@OGCYl)hq0wb>R3h+U{#Yyn_nE(icmbQY}EFuTIzVE_PEGHwz} z1+4lD$_QAz_$mZPuMZjHa+h4~Q*1f+W;qJxrMF)sm+Snn2~_*~n}xTUd0;S9GKDf? zEnW?QG3B3)y)v=0pj#&HAhLmk*2SB%^H=8=uP<7sh$Qwl>)GM3(16CBa?Mgk{~i}q zz%0LF4-x>p-%n)zAcD5WD$!&iRvU_Z`(ipO{`~UU>Yhs>v^q&a2P3isbo96yErLwj ziU?p$AWI554qTAivb&S%@Q>er4Sc7vkc|6$qWl0yRa6y8lh8EzuraBckuZrlI*Hz1 z3;^%?a{h3))1kj(7EUYw#5N1xxGLQYcPeRY zSf)_JW^EWGX0h~Wm@OA$f*fjCk)N@BnWbTyRds}aKQz{00Kim}kdjOkvtF91U_3Pr4{r^(V|&HbIyGC959akHs}i^gQj3Gw!&lY3~$ZXH_+wN zP2L;9BzC<>Y&8K~uU-p=$zaZX64P?YGx;0s;sbrbSK47tbtzYBq!-p=CH`*EyEv}X znSA!*v-&}&Fv&_V6>~m3AB-;8iBy+abxoUZl}}daVq1>ws@*7SCuu9s+Jn3^D0&FW z<$98ms#4ZYE02@%G##ELV`&BU2NKZ$gl@CQi`cGKl&e?kH0g^N&n;<&orlm?5m29;a)rbkX?dT!(A zpg#(^HTkY`ZPc-JUs))BJF~qx`RA)I8N`es>sQHb?i*wp29v(jtcG^VMLx?ln5@Gi z$qa|;H>KiqYkB%Cns3^8sVXYmR@&Fl_j%N6*nF58s8p`{?f+`%OM=Qr0#o@Ro9EZK zwas&zN6Za}d5G!g=3>0@@jjU8RrM%91fYBWX>k93aQm3)M1&O3y}KVEZf-M(+T%4; zZwv<0ZXOJlf9z!->QKvu=Sz3F_HiZvyuXZeZCDlX)?3VF(%Di^KuqVhI4W;~%`Sr8 zh3Zw}ra&*Yi)D=9Y$7I^Cu3ix_e?{`7iOVpE(iuw3JZ_5>xLOr2w!c`l#xXHJw9`W z%h2H<6VY`jdWL}Tg&^Jny4zwkiswZD5qw-_hfRWqHj7|6b!S5dv7Uv;P0j)AkkPEn zlFksd1>4rDYIE{z>Pq3S8+^N?lG1jv{L?2#DdDzVxtsvg}|UdpaqI;Xxi5HH@D& zw!knTy;{nwL#W}ob|`5{whVXTje=y(wYiJEwyeDZfVlw9CiZl0szKN6ac^yk=McRg*+yhjrOG$mk$$m z<-Vt;G7ri-GViTQ-BbeV9e}6KAt5cSCHNOx4TO;TEQnpLz3P}MXaE>@!~Dm@qgucv zC5P;W=RUo_hD{S^I<30no{?y#&E}@+C zRU%uo6RF(6CU|Zu&QHDQrR8e)B2N)cNP{iuRsw@TUoSlOqYK+R!4b$}2x4rxT1=X`p+HrvKlTw{VWx?_CX$;+%<)>DRsjB%kwUUBcz4U77y6HH zN-ay;J#oD$vY(LbG=;B*g#cf{UG5{eud>+vyQer5soO8EnQrtISq+sdFgL#0=I1f{ zUp@3ZNnop7mT$S4gl`Uxy#5>_Za$@myN~(9=i=c*arZ8Nd{;ia9YFiu+-IaOweQt+ zg1Ej)Zm!eoOE4_q#8b{vh5TL0|Ejy*hFAAFLL4P8qr)MR2{0>nK9#2ag-$Yq4b;#TzU-Q zq5}Z$w-L}wh=Q+|yKKKoH;_S-V7E+nvwS&>#sdpH-Y(+ZGJ*C*%z@a#nvd=6(u_}+ zfC!#S6|^kQfxczhXAv@F83I%g7)(+GORlhm_ANkr5&!@Y07*naR5kmE>+3b^un?@e z0(Tkfbt&{+m%DATn9DR=W4H*ug0hS0cw_aUv?2+wI{V)`M(Wn~a! zQbwg1HTR+b3eSlH+p&9K@OV`G_rLz&2L>ttcxpS&{-c;FqJM8u$ zfJwNkXr#r`%W_p)TGrE+Bpr?08tJaq1T}LEVC{O5Zk7pf z3&JrKtalzk-OgK;I{|*wse)%+9dByT%A%4*c>^0~f~g>@Eo+86YlnE6p7VL#_a(AmQY-(ZJB6+z`r|EHe)iyxhZ$%Pl5f~I1J z*?j@A%avo=PjXnHJTa93iJkd?-RtsyTRj!^4^A;-DT_>N9j1%Z zW(xxY&t1 zQfc8)-1tNL0-wiyvfG5ZlS$b#B=yi`S=M%%ZNSUIRl})3!R%uT7*9)kI_v|+)kt<- z23Gp^DgZN87|ZA(uq}%{006>wvl)XQL;Dau9 zEY(bw)$bsF|MK~;U-f$zfZ31i&WXo5ldi8T{$5yRBP_;twIs*Y`7Sr*%n zKxI005Wq%{)={c^Wj3sBvv4zkZIU>XNw%1e5cH0&-J}a8cVPlB9u8wjXBtWeK@TJr z47+W$--?!MB|RM{lToY~u0DXcTknUg+}`g>wodIg1r4-WDn-8z)=0C`SSy|^%@g!B z(<{k|vaqwXn#X$9? z?v8pSw*naZUH*3Xm&Ob^-a@o>UFwA`6BziA_`m?L4s;4xrXcQ^s)L!120=OCK@!Wl z2ukz<%%XkO2(zwoc#6u-dg9{I>D--&Hx{05Lu)GeboG}ib07@P0ot?$$t#)Xylv(Z zW_cGu*L0kT^9_IzRYTE0+JC7InN=o$Yj6tqISrzog{(U|tC8!oy`0#{&S`$B5?m6(kg9(CMn)^DHjT0~T1m^7c{@rkh+&B1PG2OiX02b^ z!Rrd!GzQ7fSsiAUqVeLo?0w37zL~NN+=9Da^fSVbe*uZ{B~HtRr(p1RtaCPV=B23W zH-|F!Nd#-vk0}TeuGGK~8OloCPnJPZQ}F$r$g{r$J$R76GKFm&=x`XoFTwx0 zHUWDw-~Lcc7a{d4pgSCSB6e%{44`*3_Q&IBIu)1yVG#^6x5zzQ?qznK7CDzg8_&g= z?Du6}8YGUR7IwxX8y5=#n8VTmU}^B(=HTcYZ#S?OV<|A652M8hto3F?mPtpzFz9>O zBHo@F2s z&bhnW?e`M`Sa$Zq)jFq2!zG@&O0tVXp8&QxZ}ywzU%&s_xp<>%z#Vo5gTB~FV_f|` zok&PWj*#@lj*L+XdXaBI1c!mGdGhXhHUH1Q{}8hah_J+FHkDe6g~7}yur0WLHAzRa z#g>7)A`TTcbdTFMn zabw3p4*2T=fHgvB%E{1C5o{aCu{>>%_krFdZWF*+(r2wW7j8jNFcnG{aCPl-gkzmi z@=9nH8h!3a^igun~ zWRi0h3|AzUoi;-mENU1~L~veVm4L0z1g$$vU(-^fZYFLwxhuJ79m{CCkU1+tveR0v zJ)E@Yj|~840}1M5<0~TVRWf3^>S-o`i*ZYY>EJZU-bC360>ZTFUmCVp_03xieA+NN zV+A#!3&rflueE;aDF9I*cDi)%2}yD4T8LU;wU}IRibgq=E-z?b*Z;}!ezg4;Ui8vW zUk2GLlDGnJRfMHsK)CwcV{(!gaL3>m(+kR73WuY<3Ur1R4tmS z_+O_Z<5>mWS$YXuKIquchQ>a<7er2y7|q${o>tz!H$3TDZKp{+tMGpD1X^RL@#Baw-JC(yxMQE3`&{Nvy%7`0TD#rC_v&^cV$dwBTZUDSq%Jm4>6kb)QMKH?T zaqh{$qJaY*AHY8WuwWPr28jXSGHX?{ev7`!i;%(y2bmt^iXd3B-#)2Zq8C90%;^Q3 zwZO$-w*Rv4XtNm#hShvyvrc7byfz?lA(jJip!lp>*K=C9 zxJQB93V@WP=6sy0HAes>;|?ZI9o!^RK^t->etD4ejL^0IN%si0{=b zGb0Oi%y8wj1?ZY3VVXVyZ(u50lE605cfaM%&$|%B&Rn7{5yA0zvdvN?I+qAka;Mntyx1KZ1BB_{XKKi^0{v zF8sBx7Cr#XiHEy&%94H=XuS^c|2Ug^!d;#HwOU3H!PT=g`2S)^jKBZQIuRW_wZ#c* z+#l<-#Ckr2Wm=fZvNOm#1aO>GSWS~w5?>(b;X25>1TfRrNp>EmXT&z~T$FuTMK1di zRbNw^>b4wJ<{kv0lC@Qjg3ualP#I($UkHF_VEH*4f0_5@twS~6Nx0iFZeRLD>9)#? zGXNM*!Hcs@j7eh_f8o(MeH|sILG;E8#d?~vo9Kl}OOR;rCd^;QgV!QqRq0map~_Qy z9@3WpHkR5rGmKvXz?S!e?f++Q}bSoUC)-*M@5V$NX+Sj>O zlWu)hOvI>KhBOGCMwlw%Z%V74GQ-rnRJSGt-ON18O7QR2{*S6)>grFQ+^y;Bew9pa zsO@GpxT$MxqnMit^*JnElQ1{m?+!b4)s=qBwtjb>sl=|ju)gN*Q$@5<|5fIIeaYHS zToIkiz1nI_)qD3bzWoqAJf?`p`wa2np?G(fzq`X0^0$0^EA)MMTVCDd`(wO=WZcJ_ zU9^;v4U5APSkf%B6Ld9{1x>qMB*jga2~_g&I=a3~mA)R6&vfL0ME>K;@$r6v|9swG zi<{%bU9J+)7x;vbrHuxN3-pr21TgJ=(=``cTq5yAb|MYcHFqf(mL_0a ziPno0^u={Y#@O!;hc&XsMHdRV zcGB;u$Z%L_!;B@aePG^Vl7YTg$0b*Mfmr$`QtYbUl?rD<_wsV7LU{(3u>BV-!L~A? zT&FrfUTV#lY^T2x;EL<`&E@`&-#!t*pedOO5e)hw28lxjtdW4e1n?Mq%Dqw@IXFew zvpc@i-K`h@{_FS1?Pnq9MtHo4)7+S8SfZ%ulhv&A0(gKNu!lv_3fdVNj2$N4n^T0j zC4jl0Kq7**GE6BAAk#yyk1akVJ}}^F+LLN4Y3yV&7HN^!`*eqvLM>o8%RC*g)N`Dc zZC_xEeY`j@jNg$8>r}xnJ|6gBk|#fokB8BElOfpZMiSGngLTNJ1e$#1+PoS`TE(DO zO<~e`h+G)vnlUH~xVrr_MQn$u2$0x!TNQmhfizAC{T9@7JN!ZO8yzJ|ClYvs=uq|93z^|x-a5+TKK78 z%5b+qP|K|BGMW{|MwiRS_`{N@*LP{b@g$T@Bl53)v-qp3|N3MhjP^AO_}fbFuWnYF zeMC<`XI(xgXs)y8AL;C>sZrt~DXU~>$ijOTLQ7qLBfyS+~UFPHAe z_p1-@maAnv*OnpEyvwCuCY+gku4b&NtrbE%oOAj=SPVsoOjclzFRpqJz8o+&8QSU) zB!w_(bg^E+A;bl- zju6U{dERV`Y6y}}%G<2-#XMFo5m}2h3i$2a^_R~d0ASaW9;7^VL0=8&N0NJ#GBh3< zW;haV5oA5MjMxw?LxOcaQX2XH^Phk1S2N%0q|%RMbB-Y}V`_RU6{sydgfO!rZhq%5gHCCEWrg67OUZ=reRls3zo+h2Z#c%dC zw&I_qaE-!?z&~T6n|0LKBG{SD6KLzfL^N*@@$Z1Ya~gEeMy6J@@phFO27|Ra$|2xL8`rDEh+txy^gV3z}*$ZowaTC%_EU}H}`cK~gm>F6!n20q9Cy6P_5vE}3n^Gw< z_zAsriul_R z)wBCe-kx^`HGl=W*BTJJi2HXE?;Zz;k8ejG9){GrDtz;|Hxdsw#oOER;jX;98C+jy zG7xa%FSo&Zmn}Dtr@?BSux1JmEtmFq+?~xVkQn>gt5CNR9U}T(t+rzRtkze7^!_ir z^*X%0nJgEQXD&)>FtjG3fZfT|r^5zS>}(#h-`Av|A%D|MmeZ1`%RW~C209ob0~eZN zU||RU!?a}{sX;ETHJr?vCv99%z+GH)7Bk3bNgd1DmEOfe;|{Z4k@S|6h-Uhg>rm2x z>RpT>f4$lPxJSobDZ|mp?W~f8Qo*OH9EP=kMF2}*~QDATJ{82E9JwgOt;aD zBrs+&e;~!oY7K3j`%eG3TmR30{}s7*=z_tOIi=}vBuxTTI6(?-KCc`I4knzmd!vk5e;ANim!< zrqhHq=Q_2ps+}H<653D$!{9FH3n?sW7`or<=ebWmOZE*LK@6g=Rt0kvX7w81g;xA| zTpn%~JQK9_k*9UyY9f=~qA?K-^Z@ff48PJbR6NDPKBO=Ji~xOgN4kWA@FI%aV69`n z_S_TjIF4F?D}wuAZ5VcZ{qy652>=+!@f2+Ff5H1g`gw5;n5pBsB04gnRvDaeJ-A-g zmZ21cC^^c6Gc`2juh?v9NVaL_NSCk}0La+T#WKPbV>DwiMr;8rvF$2KFEf`EGEIY+XoV|+DmjrMazl7w4@U^_3oZx5dHxw`n zn8AjRPi?H4U+p9IzxFgN4W|Lx$^^PPY`>XWsGGT2q+lruKrDkdy zDpQm7R>sle9|@qPV>8f80ON@G<}4i6Pp-7h9}E`T=e>Wp3L%AYM4aEJ_Euj<|9`9; z_rfC?UWETl{C{%ww}x@DTxIGj>Er_o=*@6zuO%(G-)G%Q6sYwvu4qvk|HGQ}>&irQ zy@Q4V#)W25SPM^Lhp>ZyHVa-&%)JI7|beG zru8U!CCis~p$?@+#&1b7FzQR;QV~eYjV7E4U&jvj=Ok@6J%m5EkG4&6__RoDpN_01g5

Y_*n+_|NQ6A?P}`u&XPcMHc&wmkIIZfZ9SG#nfiw7U9Gq z3?`$PNnK``Nne8Y>T+^(J;M&Z1c1qD`chSWK~=BtknWP>VT`+kNIIB1#BieR!W?Tj z9w+pUR{0xGrMo^N&q|0y)1KqVKBJ4FpR*LP{TM47=|DQfT!aGp*3FvDs^Vd z0pO}?Ocw>fU|IUDr$w;>fMXsQ!d)G~)NJ16k}dnWrJ^d5KWspk;kYM2F9S3MeZgSY zd4q@W$41pl;p;~iUU*)~U(Hnj&%Sp`^$dwDt20_OU`nVoq#tRsOu$|2EN4$T80X;r zQboMXH{=Xs?$CFd>1cKpOVj@$ADrVRUfX@+3JB#EkPtxL4V(`WQ*b83x;m=+qOTS(q5k#-B{jN$Ei(Io! zH1uxo@LT@~ssVBgb$ViB4C%{#LigJh)@Sa@6_P7vA5@h}8der`o&6uKY@Y#W2J%y5L6^?Yjq35* z(Yh+LYOEz|&(de{umpM$x9{TXx8d#E2m$m8eIL?yZw0^-cjddA!NYZOe-(3kdzoGB z#mN~_xmIZaz#uDU|FOGQWbVoXfU(6*;#@s6a1PDcCkuPNmhoqcl>^BO5q!K(fMK>M zaEcMNuh6%&hWO7ML*3e1c;%_~4awluIt73Sg$)2FX*Z60v1Zr|fTdd_>~R*&AnizB zX4)ozb%d%TE4%8O!TWmLo=eTw#4EB6fjTK%kSvcnS=a{8rlpq#t0Sw6tM9G{%`vQD|a4ghy zQmdsxwhS5iO6hE3bAXb}P*S{E-E+ilJ^RnUzJ#9CXVE!}bRo!TPD$==7K7C+BaEL$ z@Mf||5Am&4a#-)KyE>;?y3eKmt?-1DuJ}J2W6P?2OQY)Rg?Lr6;)(d1 zFNbcNbV5kppz2w2tP>ZqI1ts#z&_|J;hzE3RnJn?0)Q!k!C+|zr~oY71$1fqWf+XD z89M<6<2V)PsOYoQUq%t@_+c*VFmF^jqOU{ooz+$)uy!5fRK4;$(0VWv{8E5u$yg zSBxlmgYQn`4Zi%Y0@bIUirsGkY$;p?y+#2y^UTK@w9jEl1~*oJ8^uju0oe5ZvgGP3 z&OLW(w7y+$W;`pIuKgXG8Eg&9q}HEAe`6umXjY?T_fOxZ)41W#gQ`|dhFQFtb-GdQ z!~CR%p8>covm$O0l5+Uu8V9S(4Z+MZSH8%NB>S@qZON zdL60S7Ntsa;zPnh_|7J__E(7H<=Atv5F*BcR^nd(!(yNjbz<*4k6Pn_CC$Fea4~Vp ztW~9a_0k48A_~I?050$`q!_ylRlF{4Z+Em^lp^O^_;L-n@_atdH#@PuVp*1Waa=7C zS^{nCvGC9o^j)s9rPy3Y(gU+dINpvIQ+#sVG(Z8{-IG7R{PzCs0|Cs{U%GH;{@D{R z4lTUWMPHZtj78em%C%m6tYoeOPR4T`>)h_21#a)(fBkmcEnTafMRpom>@)>j%~&Ls z1h3~gNz4wV+M`31HyMoJhzL4$(2)wn1-$@T`My>ezC>JKO`(ZzZ{~;nkYHxk9YMzx zCWk47+32j@R=7D66KUWUH$7sirTJ&GHq0#nypXAg9JOlt{;2=}5CBO;K~$9Dw>B8~ ztk0^}hV71+S$ZAzA5W+GVl`Z-XEmO}{5CO65sVKh#nMcnZwn~{ENn23cZZ%Me;)Yu z@fQMo_Pej}2ZJ913kkV4%(f-^h=J1_Bh5;3!FJN|gLB6@^SlcL=EN6h8dhafh_if*11FeGVLcuDgZXzwHZyr{Ze*p`Xj(BC|3?(TfUZpG zX8Z5NmCz<&8E{m?Y_gCBhtbrP-XTa{6}x~g*MNDuJjU&~!WaxTC1X|2c~G@c830Sn ze3prsA}>&oKs5{oYeC;2JPV_9M3T1Sq@_D8R&rrG(7>}~9Mhz)bD6Y`T3-z^7hIRM zsuCC$DJ=Qt;$k@H4bnEC?guAvdIp47mYkzD0w*A70Y(c+2w&|sKFbDDFdW*c>rl$}G_`K>(Ax>yO>lhaSSzOd-Dg zPQkyOmY9*L2W_>I9o93~AJTm6DtlbpFN3&TM`zD;&2oMW`ztkEiC}EyO|kX%AHBmT z|L`$H+`Nyk-&M8EmFm6E9&Qt$7u)+AFj(rGL0{_K;~_M`qAEg{3|_8Xal_GOeBA2d zhIhY>mUD*#x&htE%);L*gztJA%V>JNi=3@o0C={t7aNzaHl4fT3|HcI)tTZRR;8^p z?9PMPG8)hPLetTLK&af{BqxM7#|E!ttO zLNTV+m0&vOO=O0e{2SvQmV?ki+(Fz0eF0rySS%!?j(SP9i=;Ch_ND8$uts?gnosqj zOu+RVDNn@}R>JS#I*v;`hzt7e_j8u}a+UY;Fu&32DlixTMgYJFkie`BueamHO2A<3 zI4b`Qb^Zc|Co*$F%2P9Z!%c@r^yPUg+=W=ub(aUj3oEOBOl>snb zQ>GkB;kt~hpN=DJIi?UH72T77dKV17JWQ`I=h&M0MeKoQbu?FnvDFf8ndVewr2TFf z_SJ18R>#T`l&v$;X>*W6!$K>^36Rc+q6nCjX4^3_T(uxa_-jl!Z`cfnnCrMhc2BXH ziUTKPsawAze5b5bpu-0KP9RfN}L1 zh;6P4tG@>gKv=ZJBr{$a0UZnsvm6XyPSZ0g>?k`)i*t4>K_!FJP|4+hu9;_Q*Cn1- zl1$e1V8GR+otd)cmQ~Q;E`k8gOIZMxhU4T_&0uM5^266M9KwG?1|z;}uI&EbO0K?I z@f9p7sG4Sw2E95#$UlBV->0hM=PgN%_26elk4?~;Xtql+v{|`}Ey4g;==-6!eAgiw zn|ilu93pXREz5=YI9I$why14b&lU_cE`r z5enVo`v9u<@_mH3d5G^GMenk+2m$oo-^6#f@$F3{ju~Q_k<)?^G~MlGE&_BaV!8F^ zYX`EmnpU=UIVBXh{r~7X58p`E>&nkRuvqK8!JEJV*#Vsj6;V}PjgIJuj_5=%f?)>l zSrW9CY*@jN9AH~A?ES0v+tedqChimzHNq|<7l zMmbva^`+x6XPbWL^HcL>NH1Bsyt43v5E84#1$rm*1Q_m*d<$R}gJ00Af$NB91#OH{ z17vedqmo`P0^L9^jZrLdZC3GiEl2z@B+;2T2B?EP_n6{uc-YIgm$w|~$TTPdW(b^v zzAB5MhHK#N1XqD}W7u)nvV;q(Somszjoqqg>fnM7rY_gR+uI#PuqowkCkF-aw|xS5F;DFpU@0rMUEDX|`tH=v z|L*_%;{NU$00t~g?^V=@{c0N4v)G}-Fo;Nb%KY#PfVBn*I&y$mPwG&>o{MWx^2gu* z;{rclylm)cG1#LY6KlYBD3;z>wkON1d{6*WTa&@;(PcZ*eA<$tuPR*`v7Kk+F~^qJ z>x9n&$%p+=wDNkOLrQJ7D63~yOU+n9DP5}tG%Y)rKxX3=5eo(r#wR|~T|R+K)xC$Z zqL^J;aoi9SuAo6HZ@elG9GD*^|T|oXbmzOC&olm)5|!r`x*dNle>nFJXE{wa;L@VrZP1y z74T$GAN8sRz+F6{z#6dCvH&nZJDE8az!HOsNN08C8V)OiL3uDN4M%cBbUGJVcGhm6 zccllr*lriV{wymrn-_AT6Vh)^Cs~ayRQ+e^Yk@>YUg}aHD&W^sJ!%P=w_Lq=Lj5%W zTb5e@f9te-vc}*gPV&hw0Jikq{34LOijwt}!K%%V?rU|f&W=p{YFhZTdYzwpC&Je~ z{?eAZP4(IWm~Ne`d;_30*mj?{7fg&fRSW^j_a&mse>%xog&fu5|klG%kK8Bo?kT3ruR`xg(2EmZqs{ zE(PG^^V96h^L)3-_S+T>+-b`W=*n!;)Mt*G=IpYkY~msC$0_sgxQiT!3G*1F)Xrgc zS`8;57z_Xp#sTX?_^aSl(kXqrlB5d3V2*Hb(H@&lbsKre8Wk@S^!MR_F993{A7toA z`!o4&=hFa>u*d|mwiC$TLKYPXU&#p92N_cfY*5y=qiTV#E>DfL=uCio=827UCx+RYsMq&0#m@nnE+P+wydy zQN)=gkh0SXqM+(JQWkx76i*r(kR_$sPbwUkj*x^?(;DrwwLrFh)( zS!TA4>-38Tgv9r1)&yTKkFq>ihHjyQSADy);r3>ZNATI>VT7ZsEmH0h!z&OJGFKc$ z5=dd(H;}=gCf6F$B#Wz-bg#pUgETcUXR=Q{rDe-uFTvM}7pCr3B7kX%nP%Q_+~N#3 zjkkc|32qB;PoU1y2wH4%=@ZYHJm)`|8D`wZMM236ijH?t_s$#s1;P!BRKtn36tLsL zAT}(yegRL$5rHqnlf6iI3~~o)DQuRh?YK*r=*^|DsLWow-pQ)$UFTnu?bf!NhV8y# zX?Kv9Dl>y^bJ3K=?Eh~|8dknzZ`6<_Li+b^M{)^Z{ZIyb)a(eE1ux4`c<8C(K@L0`6i0@v*DSMhF_N{G&Veo6$C%dialygQ_<^VqFqWUY_6iyS}Oh?--LpIa9f9*^4 z3je0B`=vT-zFodF@Kshkf0M6r0KW)T-3ox0Kgw!eZsY}h)r_;T`DVQ!zAtwZU46+e zKQ}?#!&9=qO}5w3@h-V}YTZ0!i07vs;{FcAZ4EY6 zbG{CMTQ<yUzJ^)@=E6a`Um;kD#Pynu&^I?50-N(l zQuw>)9LG$pTPaK7TO!^MbvGNdrRoJnZ`u%g`$s|Y*@ ztxPu+{8!?2D6*N~Uf~8pd+Ru3h7SR04iFDDy$oHOWsc_+8t!@B`Glx7&bTwj2?{|X z#06#XS%Gd`a+5Nm5f$;wYW*Vu&nK|`xGc}to$YB$0ssRz^C6$QCZbJl79bI8bTx93 z(J3&v?^F2FJe4aSxPPhLgdQzXNy{CxwnO)2=&sVutustIS2qmeJ{vNZzES3SG8Ovf z%aN+hPKmR*cqiICK@l)V;@TOG*Lf=(+H4Td`x1hA$R#jumDTSDKFRD!vnNixzy6D0AlUk1)0 zf?KT%Fqo6golY6wmxIx7PG)Jo_BYlC-L2|Q>rQn#FPm#Y7GGsGP+kCj^*VNseeRIu zor>Ut*#;;ZkSu_Wi^c0*!ux#9@GCD14))~t5HEvIzeq|V?HT|85CBO;K~yA|4A1W* zwy%e7^XjboRiT#v&KuB94K?LkGwZ(i;?16&`J=OVa#zoiZ9Yv+zXouIxcl4zZm%C& zw@;m$`_|QM6Jqz_vGZ`>MzFW};kI{o-MPJza_`MGv~PBKY>Hj;v31;w$(-ykftFfk z^HsK3x0c&PZd8Y|7-Tqhsc2>07@jE(k+O*lJcFRTzU)K$f^f5m54Hiivr!!}AG_RC zzga}fX*eJI9Q7GZL;PB|p?ybrZ?pK-wYHniLWg}VfY+POcGshK6`Qbd&WQ!mw=WY5 z9`BUZ`au5V^1U=JXDZ~TSdBH5yJD}Q?-Q&IaHA?i6l#e#95%#eZ|qD)4K|e+Q{Rp= zz=ft+2hy5xISzoXLhP4PzuJx+Eu*?w>~yn$`j0~<0M)RY;OY+s><;sz=-1_bKNs$5 zgB3fl z(+G6z;s_}WnXC3#LQQsQorWw{nsmtEUN7drlGu0T7`A~Ir^wdYa1XDH=Z{7i)7s#! z+(>EQ9Q2hY`DqKsUN3C5+#o0!^eR&kmD-0=?Y&^wyTFHB?Ot}zYQY7f>Yvx#Pxx%P zDm(1(DSXIJ)xuA1T8x{eri{AEZUfxrva?B6>G?nrER+i^;bN zm_IQpVAg<%IzYD>OR5Yym;lxZsH!lyYo1JhE+(jrAGPs_E_D0icr}{TY0}97Dh@jt z(IQ(S8sIUh%;R)iXLh>RE33Ayh@ZA%SUg5r#W$}^GhSObS*>|GHG7JdybTIq4(Ma` zty;|y`!f7$0sNBheU*7WSxa#0LX~$g+0FANjm!$`sR0Pv#AG?{3w?7`p4FnAIHz1hmTKPiH9EI z>Av^;(Enm$hyZ{Qw^!|(%NDdR!Y)fV>{71dmaTT`FuYuKKw0+OOE2HV19y$@tF9XZ zWsm#T?KR{`mjZXQNf!s6?hP1U67`= zocA}Y(cyBrKQ69sw|lMi0;^yud#?np$N6G4u-lOESsenN+g*efz&HZHlW7X{0>j+H zs5Rgwg$p-K;G8b}z@+CCfB%QyZFieSwIItFf*L1xL0>L-r&=Y3Iei5B&LP^A!LvcS z7>Pe6Bt8L*dyakv82h1H25GvT^bf!N`^|C|G%6OrW`0K161}llS+uP^I9X2H0C2D4 zgR;F&IP50~?Fu$K8#t20&60~*o4b;je`bHvR26q_a22qVT_o|6H7OyFnP1>-Do*?PH_y33?X+1{X?i zEsQ}~2KBKBU-ulJy(oTvUU*w9zvpvG?)z$R<|Ln@PB{YxpbqneU_Et`vN&NEr1ff* zzfG0GY;v@|m6B>wfDu%=;f$n+B}*I^LEj`UaQhwsEDMWtdjZ!lsP$u++mK|WN1L4U zHBA-##o;w|^r$8|bNwylO#uD?@f@?|DXUrf=51wlb<487S5hRFt<1*ILl|ru%eyi< zVUo`(*6S<@GjLaVQ?1Dq@dGxN;mEbG7}(Z(%88DZ!vcLR=qSyiuDq)3lU{;S1Y z+F@pqBnE4Bm>58nRf+P1fyii@W)FvEqA9n|mUB=Uc*ckFC3sorY0<%wjwXrU7))vg zIN!qi%3xC4i5=}`s~4x#Tsy z%BQ;!zG@#koop8Es{=pgLj~}Q14f=6KXqm%fGv7O__Exqi;(A^T>U)dOT zeo1zp-x~S+P4qe-qm6F{CqqfXUnB@kxaw^!{b!kWa7z+&}CCb`qb=Zvx=`TyI02^ zxJwTyF5tVp>>an+VU--$>E#B;n6X`^i;46};+Im2LpeUB?RjA)S#bgYZ`N&^8?Tnx z)%9e)XtFJf0A>vsU(SUJxMc8#7f1XBLiLL9RYNOa7;i~Dt!?5>orJHfDW##b{SI&rm)>N`k)NkR)~0VTv=FP;%1Wn*{*yeBOr!y1ZU* z6||SvD>9W0Ryg7+Y!@)FKMRku1)7BBBdq?C!Q0(nw;vvkV;Muzjk!?3bbFYLg>BHC ze7Cf7`qLl(X}wwkz@QG^YC9EcL(Pyoba>!gP%hj>{;sDTa2F?&UJMvZf0-`Q(JyHL z#=TYuG3`2)H1Qwru7CFrzm9_j0(1wPnbx*jk{CRv#8 znGDt@=N9K{Sx<%by}Mc2y!6#^c6D4p0pp0^{szrLx7ZpD9ZdUZSt_jSC5TBYg}E3Q zf)ytU;0`w_*<3WU)3!UB0ic54LSo$v!Okq>q7_zysD>AZ8kSzX-4xtq>$Od8FP8(| zI4RDf94(v8GZ`%#rT7W>e$jExg~1IG#6WMQ^1fRA0HrI+*g3Nd#%DEUeF5}-y7(SZ ztbVAu7sBA$`?B`~7~JaD2e|v30I{;XL@eaGAep45>Gh~iQZM5MJmKv!6TfCmnN?UE z`|_NobVvz(A&XW1iV-b90O!%yPbPusgfpKIZ4c{fDQ`RsCs!E4RKBLDTNsXGXZSqJ8DeF4r^!J zKfxYsh6S+qvXW1C6P*syFx|TRTw6R>^QI?PiR*GB!pVZ(z`9vkBgSu)tBlF!N#GN6 zW_CNjxKMFGma+bVFT{g*DM;ZMNA@j$rFz+Wh1mV*Z9W^TNE4rhzC7l}7w+ET_QWN_ zZt%4gV$v7?>iL%jRId$im-N-y-$34;LjCYly#FyeewOy;tEcSxx%Kead3x>{rF+-= z>0$8G6ZCGM=)J#c-(9whk>pJm^kv*$b`-r5m%Gk!+up9)$6f#F>40nfeAOP$QvL;U zgbu$ApznH>iJi^B1Aw_-0fd`Pe4R!Y`MBF;$9+fC@FH5z!^0{9gDHZU_+^zBzxpG! zuTu}jR7W`z5|<(vC*Uzi4EoCKuX@zk86=gzjx1wQJ&oUZoJ__6?&awWKmaeN;c6C1 zWA@Bf?ly1~>$suxMDR8O&&Rzgx504Uku#259muV1>_)+bAdN~~HPejhx`!ZwpoE;_ zdR-hjRl;*9EnM+etI>8l1%P*l`OV!H0H)^yuC_p_b$&h_{AEKH(0hHoW-eNb!7Ca; z<4R30=&P#*#1mKMEha6nlUr%oheZoa?iKjwfBDmLwWwAuJXOF@>Hshsuh_H3v0cs% z$)wOA-9oN)qe07`_7j{8+d;1>bz=HRs6$gAK9^n@^cwcs5W&mYSiGjA1^`T=kGlSB z7+ZsAPPxd^i>0hCX02Ks5L5gsz}lAyoR&++i7c(-ar^^i##j5Ox68i7dcamD0GJI~ z2X%r(0K-tg`|ZSTFyuXo_Bxr8Fr=_BIC1cQ7wcYOGB{QPONw9sSevB>%pn7l2sTbz zQ!Tslfy&sJSvJEsa`Bq3TVhq%z}T+6 zO{8k01x~TAksPeHMyq417*2^BMqb>pg&wJfYU2_CMg>eW5QyMNY-fthAp^kp5Wyjz zAT1bNNj;FsxJoxag`!iU#h|3D0S)(S`*AfFT?I% z>aZ!=(AQLp)1-jVrtUKLHRTFelFxk;HS$&VRcIL-BEeo)8M*0)!+C3I6jcDT=?q`e z&&RhA&9uk`6>q+3FeYnpq|807@|wOU)wriyiR}6ASGJMrYoEn$0nFy9R}Ne{k870f zs|a^LMJMw-(O=cO7Qoxj{^r?xp|1kizM7qE-scMbwL8^ITNcA=U*MJ%UmTaurt{fA z{foZIFTwuDP-cogC$x}cl^3i9asT$N|I=;n#~U1>eFt=M26V4?&8uyCd(41gu=cP? za0Gp!fF+J?1n4UT+KE`UHpLow>f}gU8N@j{#+`+tw&5sGqFtLbzTb? zxP{+raq$XplZgAi#UjF;fz+{dB9QhP^RbWjuvsL)Fk7pLVf^|I`*q@$&NToqgztKh zv6)kZuex7x?uZ*^*jij#X|-0XQh& zx*vwMfBmvvW-*v)XK)uM%V}HF=|&dj+~FO0OrypdOpa>9P-5RDe(XR5CBO;K~yvYed!U+ zLLJ=`#VmR?Sj{?kZ*=LJjihauS!fo6aRiBhUYtM{;{-@1dg&T%hJSR2(qaZR+?6#- zYC@8#-z2>?Y(|>99GHk^s1)v7*N)S|u+2_G4Rghzcz2`$FwDIU1TaF7>_ejjAns-} z#xI6`7vdaZI+;u|wrB~DwR(;JUj&_{`#lfXh-0Arf@-)}eTM*I8~%kKmK^WG^GdE; ztk=)WIEflZgJIpCHyDOE0y)HO8&`8Rz_9>k zl2#p6>vX$p;XkYGHKmMNwX2G7!d_xAW^Xqn3*D+fc?*E?t#KUIZ2-Vfz-g;2Yw8t* zfSi6uvA45}Oz;OtXH7_I5!Ojr0Iz0q)V0lKLm15RZC(;)k2h1`>nXVl=vMd1RQO2Fsdb*p_mn>w;ny*Y#YZ`s9F-=6U zWSCjL&7D0UcDWl$r#7?-=90eZ_|ag-4kx_i%C%RYMga5snhjBHDG9$(w+b^ai{s+C zPO*Dx0GXRi`MJyuzTFjgYT#_!qpU5Ib!xO;Q7=0Q$lWhK0Ji(`!rhZ%YNSR{uK+A5 zWyS5w#1V-8qlxVo_w=*)Ub66i1L)TENEsWZ(?D;-P`>C_c}53YrR- zz0=UX-DaH)&uqMs3qf3CCKmVsb%0o0z9DnfPC26gFgK`!#A9uK#)TMHbMb!|WsB8t zf1EGZLjrhrm@L<(@e1^1{+X?_Cw1Q$)6v=&4H4F3y^z-b)JdFU0hVO!N4FGEZsOfW zUXcp*-~RnyN8=#@%$6}O*x{5BJ(V~EBaO#{*cwLS1Xq7(P?>A$xHb{32G>$Z4&Aa- zJ&yyo-^u>;$KTH(g1vGg=>b>v54Ob16967{LXNoP&Pq+X|Gy-t_4k20gVlIT_Eqp4 z?+5gS>V-zYu{Sir=B;q%T|3OG$?Vn0Gsx*aw2EPrAd)koIvLt41SuM0u)`q!W3D9+%BI(Pb z05J@0z2DE*>oMEDv_hQWf0@4_%u!PZ<9~KB&k$lcG6U%oAjkKMz%ZmR0@{}V2AjhW zq%T$~A4{e8I93{;iq#KA_lH_^7G8Pg=4O%&Z-ja083DZV^3n}isRM5k-livj^e-36>%xH%&7*ncn`|k z6WBK^tyGFW_+_h=Xc?Zv&GtsO4 z&o7B++%d>~L$k`;5goX2@FuNo7R@?rk+_?8S1Evv^#_yEU?IPSedQLuO8QUhxNxbZ zr8G}z$+idpOW#<dZ@;8oH&CLWqx05wUZHGnSl1=F_woT;XfJnSHL#ztm`^k-JsA zYy;#u0eq5e_P$lX)<5#Z2J*ymnMq(k>kCNC6MtpoqrsSv?8{f^H30rf0b8+aHLd}0 zZl9_4UhX#c3Bk!rn%eO7)g~g_V#Xr(>1v8R4KD9?1!4W!q_QD-MfiTkO@mdv61UG8 z;_0#b{A6mqKffRR;$isZPUs8O`*_p6zaHEiyT@%N9mtF5YMV(>b^`z>`*q5?FOER( z*2zV|P9exu6@|-EUg}n@~-G$6hD8zp|1_yGPCU z))zB>vx-S;)_Tp_TCKd&byny*%v(PcvC`fwz8ubE9I$B<0LIn9tOOo5#MWc#<5zY( zZs@9|NZy`~LV>=Ud6V?z`()UCy&&;o9M6X0xgo#DgMc9$jaqe1_j2w?d?>XFrJDm1 zT(Z0EfJVx)az}j}byHB4yB6@-H7=~%DY%PkZoLjsQXWEkLF_{QO0$(wu{bdq=EHoi zX-W1!TX$$CpJ~m3D>Ac`0&lGZ<1&rwH3xgxdM#TBaSiSHx(QgsIxh5J$-n={zYRx& zO7+6?C3&ve*H;m&G*vT5Yjy~nGaXIeB?w39L!M}TK`n?-c`eo zZuBW`m8BiJ4f<9xQEAf5DD@z@-;Mi&fZnbg!eRB-9NP`BO`I=-3ji2=B7j*5CVkn6 za9XS-!07x;Lq~Qq(d>dE60a{+0@swnOIt)>bTL-5LNe%}nwkrJD8VpiKt>OiU8M zco3hmx>*>ECwJ={ZDJzY>>=)yseq;HiZZ%u7|abE$N{0q{%v6(6^4UoTsDPu3HeZAIT~g|Z24mF8joCiC;>2tgmK z>*wap=j`sOjUalzJPi>)Jq&)l?<2n4ne_?KzKEO4(QzkJx&3Z+Jal%OOl+;z0A#|v z@nHwm3-q>t-t{_Oufxftj{i#tTy7bHZqUYB8K+}?f?iR^NowBQuiD#1wirk3F6Qc7 zAQtB|cjQ8E$lv+Yqw^HlEDz38yZe(4t~#n4n-(fX2>Yto5;7Ezj*vAW{xNeI1AfmY z6OXe)>}^Kq1e7v(7LmBjKjVZL#yJ=~8+kYaz##6VZ|KXBU&H{n^Q}5fD1i{cu&!(a zqSU7eKh+2#Z!~BEz|g)ETy6UhQV?(nQat>0k zTmZc{S1SZvI9T_k2*%0n?G~Xhmi#lm3PE^77y*{tGDN?AT>BtI(x}8{F#s4BdH~?h zfB8=UxK=HAZj}q(nMp=~XSBj#<1r|1=X3#M(Z0%H)|lBZEvs1j-l&(b3>>;8uTf4T zeCzhV{>vYC>qY1_*r+vVyOKyq9T_ZEYZUIvWfRtV(Z+{tkY+D5`>k+}@5sh0&=)F) z&K`J6VDM_v)~;;9@NAN?{faJ+6vTEUiOpH~l=Xwe>$5EjC+w^SjMc0orDs-CNy(rT zX8#mtlQ^e@|3{oNIJ~4LSqXPMXroqF$Aw$m>i`UQI>4}(rcS8!VEk5C43o9cLZ_Kj|vEY z%3#3MG8@)l&Mx=V>@i!AGMw~(4?lCb9uDtG|6ZEeWn6t(Cw85ocMQ%Aa0g})WDdPi>8Wo}amU~sO%0E9902jmPg8w2mX91W{V zx^CIjIsuGVGYVKC&AzSN*i!qqjlZVD>X;aMsO1P7%Eb3W1+fLN&4gP34+gUJfvx6m zC~A$dqV_W*a6%PJ=u#Te@p1LHb-S1yrtf*ql&pO`Zw-guw>A#t&Jl zr-;K((P=gJRj`Zdv$K9~;3$#9_1hg1{~s8Cy_eT!#U(LrG`dpx1i-r|Z~yEAw8~nD z-EjXLAP!IBAIZfDw~sBNS2y))-1QirZ@Wx8KU{a9eIKs}4_E!m<8Zs_42E7?MhiS? zo?1pUpdg09;Qc<^Y!dG175O`=%YN)>#QSR|Gr2lf2LycxUkNU#pEp6@)ijw3L4D~Q z*8DT1=VavK_XZ-EtIdE$K#{gnwBwLMuLdM9x0>J_3}&+;9iee8;N7>}n`<{9-@{PW zBH?Zw`WSE65%*>VFuny%Kltqg!;_ec0(pXWi}#Fk+%Yipv&noE0lm<{I01T)xE!EnpN6~CP}#Ai|cA|QO{(=IpkfxCb)NDKx;80~g|=mtlKCtO~u)laz2;tDRa zD7%RQc*?@zUi)=-n=yxH>{eiQN9W#?GLoc^3@L(f!3BMn+F>N}XxfGdW`P!v>$M$R zuw-B(7AtJWDOvzS0XuGmN}cp&`pztEY`Fxm9Z4Ec)+h)$B@E0%h~TIem4Oa2xe&o_ zU96$w$bGoK`u#utrWpr#kdZ}ummatz+^BDEOA2f4Psc^q~mTkYBpWgoALViuaPB7 z+5*N3G1TxxyY_G^mK$kxS#(&fyNBbL44zC=VXy)izXmk%z=sgT2#yiAbuXt3h0mH0 z%`&H_9$Pd()(onFE94+MnKj`QFz64ZK2Rny=|a+t1qxuUb^w66hg)7mZ~pL&D1X`I zWY;d?%Vn=9moW_LT$C&NkL18Nl1}Ujw}(j|fc~vf_0rjfHDLU%>N@0N;1v*Z5*L}5 zmZNrl8T=E#+Q-L@WCSg58t{gtKAnn~=KV?-6(#hg;${f}27{NGP&RkVf>w?$NNW%` z(=EcHjGM(Ids*awYm{Yh>valR#+`9zBMi>RoD{uz`?Stb8KX_wTWTw4z7d%KHtrvN zhc4V8F|*b^e z>JF(;t7oUd>~#-V9|) zutd{kECD1Lc=(F$Jx*e-kEs1hDT*rYUGkU>pM5;G|cZ7qf^$Ay}bilOv$Dy3h#e*?xc z|IJ6VT8wj|mygH*A?}&_kt9g86AeF7e8?ZBbWyeH3SEzVQY_Zu*y=jnfzSG@L4_u$ z`;b|Zak754IiD{GrLPhGwCO*hJdG3#Vmf-qSz?i_3>@XUdH&8@+DBCZARQ z)@hM)mVW1@YnM$@MRrH^0iRe$_nwBFQZ{{z@9z=9#U) z-TvgAs@SiB8uul=oTK+7^Q;AF&4-K3{rn=zrNsN}BX*DB{wX>1fi8eKRKphS)8 zT?8vtz&cXqNa8}JC-cL`4_5W)d=?`hH^Jb;E|YxnQi4N1to1?xzx3m&0tRIfOhlWy ztO9tm%w!9%Y_OL_p0ee8ZHmp)NyxcgDqyC7@b@XJRC31|{^sHLwcoFaZC#1u*dNm;d^6uivfK3IH%SB?G+)uKv2UJ`5rCbgn}Mu|T&Q z0QCo5SA( zE;?j+i1`n?O!IM^&_auMX|sHONgKbL{2B5-hLwIM7zkQw;xubCTMmw`j>p6)Z+|hBZ-4-1+cx-$H+c$RDquYB2Nx`C^Er90 zzDO?-Au$&hDuBb_LY6t|zlaz%>1)k1N(vY1E zEj5>J)znP8Ve`+YE&%jE3%}MUBG@>M7_*=*1Vh6nwB;xcCl$zFF!)Wr%)ljm6~Jcn z$gcJ~tptCy9YM!_Z-9c*&y8#f;z5HdWbG@?MKA+S5D^40;C6?K? zeJW(x-u0Tnf>_Jrbv{-6y7tUQs_^nl#1Fw;c~H@N`6$7OUO@MjYkHx2@7woxE$%G3 zziHoIW%pOv<4s%g%r{-27Xh&g+#U}p;&5mpE)UsZm*O57e=6*_>-K9y5x8O~DtiOh zF_#f7RuL31NIV?YSWy6L4gaJaT2{=e{0+HGdp3iTOS$ieo>nxKWC7T;TKU; za3IrG7oGxGWGh!c#YHc?AVf`Hw3dM-&#ax>IP(@X&474TK305&Iynt7R(g_5J@ z%>*?)6)i`w_>Ya7l_bjti1Q&RjvxcTL3oaTzWMH2SH@ikLe@ZaN;H>N&!75f3Yq|x z0&t6Nnzj<`s5(;P>z+Gkzp?@05{TZQjChj^U)FkGdV_6k_*H+_>(1faI^$)T60MT$ zetT=IVJwuDg4UDyt3>fDhv(cg>ubrYahgE>{{fhlW`=#jI`3ZIKL?Uqehd##w@fKN zhX}Ct_z?2(t0!Gm^eAz2-@3jtdiUu;!z>N#>f(g%?N$5!O6aQ}w)qISyWc^TrpJAg z0S52)>3r4h^u4UpX!p!UUI2JDbJp7ws&}&Rr^{fz3};&Xl`(Lwu+AWqWrwyXU>=79 z4@c0K_LBfGZ5`EAIi$a%X~NQqF9G~g0M@1VIAPiu=oL*ogHV%M+hGsa-%v8u>hD31 zE$ITA;$GWl&Y6}yeJyfGg(J6F7X{p{p6&pDc_$MIQkIC7LUrHc5qFCU-AH*HYQ*DS z0PYHXb^jXIzsN2>zX09Vj_WvrXE>473t|EljQeRC))4rRscBr%aP5Y`U2R6Z1n)NE zjrP;NNQ2u{(=6D~ubC=`fQ$ z4ch!nBP|47z*q_P>*d&!JqM2u*MIo!uc3fbA3rxSj&8>eeuf~insxh-yt=EZ!4533 zrPRfR_}1(xL*PWtwHwQ>3BrY#sZ`!50Kog@fcp*cR%H-t+5%HA57VuBEOTq}b~hk& zp?6s!rtoDEovmBevICD0z>vk0QLC>@7nm!iTBU0T7z{SECyTz&-EIUD%i;~`qB15~ zHVdtDN-ZTQ?X=pgALC0Pi1BK%jw3S*&8jfJ5iyKsQVr`(8^8~doyriJ4yUmUj9`nv zKoiajO+<@Y@ zK?IeIr-9itz94`((i6lNesqq&iJhs%Nlvx%P->_bdCs=PCz#P&mA`f!0;uNuMIhD+ zUt2oKv(U0ZnM)YGxPb7JB93lw4xqB8OQ70wHcs3AZL$*p#+RImU>p2Glc~->q+-sq z%2mFIgyyU5D3qOsYHAvQD@rNNo86iWgY_#C-7*(Zq~g?3;W#xb!SvDOVseJXuyy+y zs^IB&Y%`Y-+Bj$qDu_3E@|o)P1&VgR%cECzr<^%+GpCZrX1FR z@+E%qtg8O1r<&ULG~4`Du+mHWc*!3ZuU!jY>(&C{k4zAr_vNNqK@!p$9T2=K^q`5R|^g@7~JLJUK~eVmt9v7#|WHE2N3{_0D!sZ+qh1KrP#ZG zZbPJgnI{07t^l5yl^<`_V-o5XV8*BR$2kCOH{3xP zO;IE_oTB&d&bJpcN72>?UPfx!r99qKlwpaEdXKTlFN7?ZxzSKNzny8z%N zUa3|)pU?XMaJ$n2fE!L(<*)dJ0Kg`6Qkejj)?(!u?X2-3LT7?OxD*VA`lnws{>eD! z3W{DU#0g;RH;Q<{@i6=MfBD09HDx6j^aX=KU$N%U-LCYZEkQ@T}8s1sm{fHwd zWu&1#?)aaGM&db47$(!JT2nNonHthpW3v^|OYV}vCn8w;umIz*>P8oh;FDo+cp=|N zTeWfYv}No?*D6rScy>W^nIoTh%3w=whLzELS#5{5CLTiQD3g%RuY3rKvYxeVHltA` zr=9Az0H(>M1+eCyO$wTZxZE_Q8yMwrn%+anK=Ta5^RlMKTTD~yxjGoWIh}$vGBmf& zuzkWLrE%(ba_C3F+Uki~eP!BwI^J{2X1Y zMl*LJI{`f!d2aoneXo_6|*e=8- zYnhG)eSus3tT9{GAz*Q}#5ZD@S%R;l>0*8f%fsE=_gs9qh8`4fuTx=x*=lj|-&n-! zxiEM+4W&e_rC&Bx0k?y;0r0rzAtrsHFOH;dzvZycsFT%OX*CIpaZmtyfiVP5j1Ep+ zuqV?cNF1mok|(1KSN8d`4+RYFZgLgNFwIuVU^*Id<@v)6qSg;5pQohTfm5&a0PRE(V#!>;y2`EZo z`|X&N#^ZP=o6UryZu!=x%x0%)(z4n15%~3xPH*N*CYiRIwJCh@A&oz6iJcASQBcaa zEqyH4&q~fGMA`dL4bI%O7_=%;vleG~KQd|@1SLE2#JVXc2yzqNcpb2f8;e0iAQ=G+ zJN`$BP@)lhaHBInIY&fkA<0U{F-p_605F2CTO3H^3=$PE0USlr#NdSIb^ojpU&x!( zL^KsGVfmG`B_nxfU;)hg13vRqF`E>(0+}rl`oZ|4sNxpZ%)(2q$Vw&=8uipLmh#W z`BP1Rr`p$AS-mLZQ{0}+_E=Pth+J83xoeuCa<#3?4NuhbYq`v?vLOFf?{0sJzN!A2 zimxhQe9BrP$-9y0G-us99=<+e)DAB`1>;7Kodwbu!zmr1m)E*&@Ob0OlSm zJOKe1562Azbp@jVYQgIWR?8#V|=s ztTI6j`pzLtCo)dTv@kb!TE#41GJrM>wyTyj*>eq1{@)Tcrnx{qB4-;4a&< z)oMekzujilj`xNz^arc0+ul32}zd%9CW=SN^2J|Pyw@_i0&LL10%$dqwTXV8d7*RNLjFlAjTtHkwlwl)_Sim z=g*J(r-$9m)q?jlU@(W5NMGikSxD9ary&I~Vh%ol7RVF~>z8Vc z^J@JQqSBD4I%jq79KlV9JV!V|0YO<@b>G#z_jUJO!+T%zaQ?3Dzqbqy(hKNpZY~l- z>F}HYwvJbv<;90lP&rY+f`1EOuPKwk?8X9yt*$*~FuSzKR8i+aQT8kQ7kHm4&I_#2ey}&_#f_le_BlzJ{;>#^Wzb z6i!wwSe0zQ+`{{m-~5z(Rt+y-vGW^c%okKg%(?;giK1OTzZ7@#K4(8K{l2;b$j@;< zAzuahE+3rrlSl1)e26tdk-zup)q~*n?lwc*-ZXjSiFy3Gg}A@T5O%Cch|2~mrk6G0 zyxE3`?K;}5Lay3HY(=Naen56OPoa9H$+@`(Qx^eP3*zDgFrMnR=Yj6A!ZWRhGc~Ra z;?^o%nf=`~@d%f4&;(j=tSQRoYyQlpzk$c8HCkVB4jA<9w`%mF0x8*| zJd^CS$5i%E_ly$2Og>Ww<3n5bnkHyAh!>IDM$zyIgInpp}3%r59=(g22W6@&cE5?@5HR|7RO-Ozx03#Ogzh6Yai z7!OGOhjSnp|8@=<4O(G83jkUm->;Xm$ZN*lFMfLZ<8Ob{ihcY5A;-bRVLKqysn zaeuqMyIFB6>8K6T%s-RXJfW=wHz_e_n?;XF&I+?_ic*+9(i|5)ZHK0L7F{Y&CxiJ} z20qle@E$R2`>P3iVA!f*TN}1XX||83B--(B1^#j##9>DE+-MIjOOO+3ZLghUIPa}r8nu+uUi5o7S zY#y&T?^PTNdaK^|HUDij{GlGdZzLbw=2@7X$L#_UB3(=VnF!pVl$_W;1HgDB?_&@* zN&?u63t%t-Oj8avMFW$Ldv=;$#?hjb0G2QJ3gY7F7xE;z!aFER=!d8MSr)*W+?HH4 zj(+fo05)Z2Hh*c_ndlYw67Lf&Jflt}?uzyWdLe?de&yR5Fblv;K2y{(^Gs_FUKKg> z$(>7F>fCDAIBiS-1IcfoZl@0wK$l_BOK_e}%6?_wOnYYwS3;LxWzSDvb7}# zliu7U64xoX`xT6Nf=>~{OgMA6=x}K6b_rO!UIs$kbp#R%eHRkoE|(6iW&u;p;H&E0 z+I;SAHpzCI&K8ioH7WNBeW8XuYFy@TUwW5jq4B!Xpt9un5C?g8yB1WknHbIi%%h~K zSJI`055*WV2Qaxyt5Tg1_tf`Fynh$tbT*8K9j6%g z2w>=7eACdWMs5vU9}n7p{`Wua*0azpCxK+|`7qla3bSc||1K81c}rolDV&PtN@=KJ zFr!|3S1J8aF221ezdJAefFl@Ob@Pw6YL;Y*6a3SD+nf7_WQucM!}FNNbN z;8}9!8@6LhKrh16TLGbdtE?f58ab536-I2cGPAsGBX&EWa^8fcJ<>GjFba66K4NxI zn5}SBz-%>tL#b-H3kuo^+E=5ruhDBj$XcwXrme;$WvN_WlFzw{J*BU0V792%aKFN; z9VI&X!jmWD!SP}QxI6#s&7OS3@-YN@m-o@?AqIDMkLGxFmm+R%n^)J# z+~cmjd@ZxAbRG>Vi`VmK* zgT5fKQ$KIiJ|S=d`hvmiy@L2-jv6>wPP>T1ZnoP9Wv{Q-#4U|AICQjLk8W-@1S)qN z(G?4!xE+DJTviB8jB@~ZcbG5*jf*A$OfcYbnNMl^V%n#JJ)jp&vh6hh01yC4L_t(e zSg)N8Qpn9_Py-HKr*d<>|I2^hb-<+2GWxZ zws9sHFrykKec3IA2l3O8w(zFULN8=@tdT}8;+KE>{Exr+Wg0lKSI@$FPuCR6muspV z^kpR&BnEfai?&%3Jd`nX)+rH8KI4eDZI>0|L)*tIGfUd7E&mte7NqbJ`cjuCilc}+ zOM^G0IDUp)%)lD(^W)yG6Q-pldCZ?P3#EJ~%v1xwtO_$7on=0yur?xa0!B?<&FjYWSfZ|KPXI!p^xwauLMmj{lJWj*{vr zfDy8p(Y^4TbGPwH=9HoeBy1!2WC08XOaNOn+7m-uQe2TKo>p32HVi(2tNALgfX8iK z`n0-i0SqJ5CP(XzMH2I0fD=E2=OVZUeFiZRrDr^-DA3c zYF<8S+@!}Gy;s-3a1$RQt}bK2?MP z-zC7fV^T1dr<7&uky=Y0_Z61tOCa0kGte+XZMSO0|IIfO6hTd$wH;=EG~yb_QD*_Yuu z>sQjSHXpZFv)*Pgpph@lob6UYuy(s0=@jqe?rwKH&TenlP{4~t-`09@T&xDm_3-}j z08NZXNM&il(jj1O``PaXhy9S%UtS`+Q2E1<{m=N3BDkt=(o0)Wg8+sCzQ4N!fFlTA z+)TJd3t$l0cT0#k6kiT{TG^&5#jx;_S|386`;jCOjr*rA{);1kGj@xRwm>hwV;ip! z*70M}oPn%_nos%=!TZfT4jNh5=%&7GWzfw?#`-Gn-)8$5LUPf1V*&DUlGXO;l7(#F z26*d6(A=Oko?s;`Fbv^K7=yUL?Q-5h(5XX~3LnSE!^jlc zbxEQvqssKK_A#yS-zP#dv#ravZ}~+H2aQ%HmK~>ilk&pw%NAiPg}+)eY(K>`b*~qz zr*veg&!J)JZ|iMI-!8nd&1P~qEavl`Wv@=1c| zv>Q;F4wzbfU#)+1{gN;15M*BkFpOU(h+qj|xcKh8@D^$qnz&qr0>*Dz!SRYX@*Ko1 zH{KO%Z$$?;-U*Kz--E#==wSa{CH$e0eguPq_NOrY?2#7tD-Ckj_BNB>Cbyh>W?APcE2FnRMVt#_ zud?zu)JOc&1%;gD{VHCe7i@lVR}cRBG034CAcVUQ;pQ%qxDOE|?%_T`9PgW#583`P z-904x>kM&um1@L@!&NGA)7)Jphhqrn=8^0V(QY4acMo^ozX^i{(zApd7*dP-O^xGAC4QHUb)%2$l8T2MDWCc{GHF;)g}?= z4J9QlA?*S|@p06F9}aX&caI_&dR|;K?|UZt8IeWa7663V1vU(xe!;pJdN=SoI+;Ywz(Po?y+#Wz*I;V9zt1 z$GMRZUyfh9eyf&61sZV}0E?lO&{tjA1icKVpaEJu2>PBxz|=IoC&6I$Udh%oTw>e; z1Tk}5o>%gH{Bc%;prY<~#n2T7s|%xyMnDoB_p`g34b82%J&-Pv*27udtmgOkdjRQWpeYzmqHo{VFrZ7C(0&INVwgM}Cc zgQ0+LZw>@-1ybHE0+7z*Z1*L=8vF<6IxNnEgIYfb)B?P1^1rCWh&33MniSToVZ#3ue<9)6t8iau@WS zwPnY{IHpb55Vx(mAQC@Y?RzT8pMZ~V2jt5?6THWbsf5;p3zZKSWhn-iY9A|-qZS=3 zON*WNHSZ%7DuRjVQvLfv^=B9Lw?*e&5jxm^Uk=`a!ESUGq%tKOM(0$JG>N4Bq*8F(!cU+t%W+e77vek;>ql|fY~lB$<#Ja90qnSE+$xcz2J@7& zrff{yGBwTGuxebWXJ}bVTw4-$Aj(|>;~+d2|7Uh%#Z^dl=yj;}P`{i2ZnmqPzHVk5 z7}sdyht)3kI^uJHAc+BB(6^bgMO*-^hFOlKujZoNd|C+@E@d)fE%D|Qx~DBs)-J;; z-SwCH=0^)!m);truNB00REgEx)9P$aT)U1iAb=ImW?`_3V55D%%0)BQPZFDZfBO(9 zWesjO_c3C36Yp=6<3ozLylWzEZd06H^E}p&R1OAfnizio1h?Rpw+W|DITfPoxa@*IpDE|tW| zaP0CNAtG4Yte}Gz3zmlib<&7!Q#8dcJCJ41!NBFhK?YYZFe5#ly5R0&6#>9d((|SH ztfjBEM%TnqOE+g30IN`DLp4Z@o4YVLQzvmZ3eUa9M*z4T*CVIUDF5KqK4eLeHkLyv z_xf}j7hjIC85-u~5`GaoX&C?pZs((r`xRz5ANYugxUxA`1XJd642kHa=fg2Oa3SUr1-e<`Vh8z~yGV+m zl^Pg{nLYu`MTGd2h~w*(k-5kD?fniU<`@#xFi3oTy*wPIBFK~q05GV)Edp$QW}cQ! zSj^~37ja)aBk@z!!Q~nl?77vO>;0eq@}F@MnHsRLw${yLUjjrbv~N=^y&Ui|(+;fZ zFk4Q$+Fj+b&6rMD%s^6SxvfN z@D@_C7t21xftb4yr34RKlc;@hb8~mQAefz%R=Zu6H=JtMt03GVf?xy+T^7l)`lXAdKzG;YOoi zJEd)x7Jhs2%4XH{yu-T|7T1}R->9{?blR(<)_T)ht~$8$fYzrD=8^5__!4}%csi;m z1Z-H}1!bX+3#Iqxg&!`85|F|O_EDE=@5}WM3@G4274-f7qVnCR>UUu9MdN#o?+{h@ z2Pga(#L%E;oU-L+C(iz|3!3vtWH4nh=o_as@!wDdYyk}JLJHHGBZf5WIbzz?dRY+x z0E44YrR+>5)Y*__gseiB|59euO&(ioy2gh~m9Ejj`iO0i2GqN18HRTYz0RDuSs=k_ zC}6Tv1AS#ja!=Zr+wBs9o(JqUrTH_C(6yW@rUzL*3hb!!pvSdxoLOSZ8W;wBA%fpn zpfYvLg}5tat<}5v08(R}Yu|i#{VPiiDG8r6WZ6cl(`2&kv9cd3S+xxOP+#UXV1DhZ zRxC|B=fk_g-R*sh*xyMUZW6@RZR`53ee>A9erVm?O8~tL0QmZ@yFHjy2OJy%diR$J z=)2wp2+$YD<;KfH(90At$A@$?V7yyJhmGtF+^k}5(AzDN?OZnd?zBB>G>}yULv=P6 z216qbJ-VE?I_0cgLiD8^D-0%v5#%l&BrMsttoF+xb*e?LZN)OVWwr7EcX90FYsb2X zcMcc_6U{

30D6TjkIZK9mhb3u&ANLCJXB*?I2!mXsxGQajNEFD~D$s0IK#m3IX2 zc<6AS5`sQi%UMd{%jFG8c+pNu5W#f0qSeN<=g!sDnblv)Uk)ANq?gt3AV+>#c+R3S zBk>E7d!7bGB7w%UY=oxI0FIHQxo}033xRC>)g=TtU(C8USF5Lo18916wc@N1j({-% zEY6WKbTm*KjfFm8{P3{j)+5?(;K;bTS#uhAyA=mYK$mU0HaiOXf(kgA@n5ag;UwSA z>r?7Ui*o7!z@RKZ2mn7l-u%aZ{yPB7F(f>Qpm!CBOZkgW#v!h54x6wjf@yli{%3F( z(B*g%G0zRepl`3~W?=&W)-8t~8SK?cL8H=)Juvt;|L1T2>36^Bq+#e(32C*JZg4{| z%gnfqzzrFWx-eMxWzEf4Fc`dD56A!(eW`%iki{*E+Lk2%9`*1(qfX*ZdMW6;pZB)o z_M(^2YlS9XOf2K42bqgtGw|^+y1icFXU;}wu2DMdrrWhlb*m{ym(9}n)|}+QF8~>= z3k{o{R?yCTYGOk1v@?q)(f}|q41&@}nnOqG;PI7h)=Qe2eO1gtYuEH?i}C~!v{(L01yC4L_t)1 zhvQk{XP=7SU6kJYOJ&;4q%Q;M?- z96?`QJW{9E75lTeAyPwBvaZXhk0zc#bRH^GWq4`6jAzibApKI-B~5g07)QK4JON*b zSBBcg7vf7s`Oq-ipw_Dl#MKwCa}aqr@_V}D2){$F^Ik01^%vc5oYzY4BCm*Rakccb zM)hr$Ua%UC+lx-KI2kyLNg($h(?kZ7w3G{)Hp9Z8UFXb_n01UJpce{wDLf84X$8R! zEL|xGjawDboK=~jW%-$F&JcJ5ki4{2k_9Z9)ArnqKMX(P+CD0B_Yn zf-sQIpu>pyXIv8zfG)0sT4Z?;#5tX-H934?GtvgbQ4RMfyUpad zpRX2!`Ls&_vt5gewm2yV5xm*<@e9Txu>e?Snbsjc6sXrQ+qo!6r?N2ZE} z!G2Z@+vT+HWJ59VYPQ9GGSvLDq>-JEIAJZBLru+meUpSfV$e&)uSO!wJUi|gf@4K5 zUL3h$7I!sDkE8;a4kyMt)4eddSvMKy8-g3Mp&!WPbLUYDTc)yL$-s0PtOMxRt>nRktlb_vRWXZ6a=OWJX9VGVZ(gcO5F=oBJN( z_O2^&-MzkS@3$?40r0VT*e9E9IA1tA7Zj~F(P9-$m)>~pj3)KrxJG?B)AdAi|p7QA$T=Av9Y0#^6I^}k|L;!O+F40T+B4~gm$FZwq1uPvVtGNygM*xypYd};H2;42=!1#WMn!b>Exo8L42~f;Q_eE``$6x*Oo)*y~E`FBpk`5veBAL6AhM zfC=EAeti6wfBokm^lOa^$15=fO(PCy-$w1+cT3z$i1W}bF}tqANMbf}I{wQhFHZ5Y zMQb){sV#OLWCi~59yl8fu?q(KPA!f6G;$$=|M>gA$4TttwxERXqL}w+umxZb+U{%^ z)0R@{+gvZ&Vi2uuy6l+(XlZCHlfl}CW&x~;XzA<5KMf2XcN1l>BRd<$t;3?fgIet; zoJGb@Ol&%It{Oi~{A@vA$UB^a#H^3vhmRw^5ybcH^;&BDny|Hwm68V6BsrU#be(XU zYFL&E=Y3M9F)DHczm5n4v9)To0zev4m_qi{lhW3MSsNxDS;XZylQpwk>gEp|xnYUH zb}(|6iD(O8_VClsaV6x zE*3tXe|iT1zkm0$_aDCd@bUW(XFmgae|Yyd-@pA|Z-4mT@816m3`V^F^f#aWA6;+W z<2rU-ecvze{P7xr-F^Gw)*xsiNQwdn5gbHN6Es3op+?m0w$X`WB%WZ$ZNzpA$BB{W zTR&^>b$CjBofp_3SSpoDrIPqNYoEQ>zWImi-WST?fB5412mkQ#|9pA-gRAb3+TMqr zBdxp}r+6|m%@wIP@mA7LV! z!F+CJ}x(gsdP;rk#d*wcTZmrfm@nYvCL{OIp=`Y%SP<#45G)o zC2Ig(|O+p1hGx+vg5X{`|1|i2YrjIm8Lfc09b0K76U*uucVee&Thb9oQ$V}TdPo+ znr7fzlZ9W++;Y;#5$9r+wGP>&L@A7;Rl_*q_Q}Gn=gxFFn5_cBnB+!)uK=)=NiT=M zCjm^-PnX_m7vg8r@|NBmY1WmFb@vK{bGsh_U=RABch$Q7|9b5o=IN~zV^45V?oG%2 z&j1X{&P#VzI8eI#MN9xg_~Le)@0Q7NldWeF$NJK5k`5bCz$_pf>&$R^wBmyy?E(6! z19z*!v!3akNGdB|oi?gn|0aseqfL@{9G;dB58IcQBU_Ac4zau4R)DVR-8IcO#G!YS zzr1b_$9ldy*(1FzHjNB~2@XEAiVV|6f?F)qTPc343{BIfmI zw<<5YesKcQOV5wid~q9?N7haw#1%^c3?BRa8?WCQxYCleT}}V*fB*ToTjF+|T`29; zX1wFD%Z=nojs=!e=N?ng9GZ04mf}*Wh8PgO05H??Oi(lb+%PymFm28}IUW-)#k?5q zW*Gpy2VlmLzse)7$k?X&ch#!sB0ZfCf>-HBohYkjhd)~*s ze+2-${`IBTBl~Ki@H!IPDQzOs;%5LDC)_GBQy)eWL~jJ)o42E^ZEUB?9yym6{VazL zhGxBHH}Jr_4g41UwrF2v0UYUcVX2yqj8(OoUcEK`60{sGOa*MNAzE&22562PJTi;0 z41jTM8OY!YjgPd&jz%DHTS9Fqxr2K-+QCkD5D}bOV=U9QRGC4-td4f<6o+>kv$@;j zaNpgx{k=>Wbef^RZ^I94R@rJ?QWgNV4F2p6mo6OK8@5&(ro#Cmj5D*2Co)5dG~rD2 zLimdIeUKg@@Kq4|FhYFBV0`)Xm_I&b5V#U|83VWleGzxZ@o8V2cFElVD|e_^$p9}z zT>8611O~6S0RRm2j_bB6U?DNib$nwFYLy5iJ7uG{>d`H7QUf79Q?OokNLjED0k~#G z8#fYu1SIajY%_w826Vwu9HEZ^V_=x*t*2154&mA;V>Rw*0IcCdSW`peZgbfimM>>B zj~m8#s$jW*e>uRN0pQIcUTlJLf^|j@ILG_G?|jkkzQ?=J>3nQm{Rl_5d)2x5VfXe& z#prfcIfyFn;0O}0=Ybul0MLTIfG+5}n@0%Q^ex@B()YB@0bq9e(q4lO8>Sq(kRd!Q z8|JWXoXgx5_12;GWoH6=2Bfr7m#bV9H;(Xae2{QCriTOgdVjz9^yv&0GM#6Tvn*!8 z@$qp39&_9;u8$xtR4={qA(Zh`yB%&>bJKURDv#&oVwEF6Ux;7?{hzt-%S@mK=$qIv zz;6s_x_3n4YdYFYViVoTiu(QjRjc(SQ`3;eB7Zf2;rAbYaDDql*S+d_*B$4hI$6F4eQAObgzYdE zL8+EfV)Xb~;6~Dy3OJ5?qmk_I%4|d^&fGE6cE=J)(Gd)nT?9@>r7e1L6vHy|fkT#9 z9*EDltiLbJBXO0GLMok(3<<#wpI|7}(Xs;25y)UL77C`csHuIFymSUKuk~$lznXC9#hn2JupY;tFZ*Ey; zh#`*esCRcwm(gBZcx@sYC)^bl!>kK`N|RVtk7x^Erl3D_#kvIWrPtLZdZ~T2u-QL; z3T+U&2yu&iO71n`jG!ac!+rAi07l^U`@5KR&fuZ7^BM@Fm=cw^XnHqh9Aryb=5D5AEwOIyYZ-Z{N4C|Do6VB2R80 zd?9}U;Cbyr0TaMr?OFkB#O^%85w`%qYxU3CF5>-aq()jpT26A<5sy-hr4t4@NIZ#e z^Q=qvRJzVe<~eF}?}zVi=|<43lvxyq9V}y6JG$43Du`6b4xkhYSSY)xz)_(0c$`55 zKRm3D5EdKBGpixxV%bdQv7(tpSnN9z@96FLc%GBKIJtjZa}N@vp^Xu!V-+xyfzW>l zx%w|tmJmyCkM_cH4pPv+K>)!2^0ROM{O3OphhoIhcUqSKhW5=yJ{SxVLjjkPa|U7~ z$>NUV$2VI7pj=3wp`&@~#w#h=e@NCwTDq)%xYlF-fY#E2!_ zc+MQo2ptUcvMg&2TxHV2gdbr_pDLD#efmRzwU75JRzxG79@ZR*fpdbEWnBDm3PIT- z)g~oCOZ%omc}bf-B^j|W=!3xsQNv!B7zPvpXMs{f;YTHIBs$rbt2@t~^kx4bo@^5;faDl>YV4QGRIA3|Z z0-sfE$=V1jq1*=-0Z70e`0uo@u0DPN7$ZJj|FGTtz~&{#xyG}SSq@D(73dp}Oj36k zN>@@C0mE-YlMq%13w`r`S~yuLW16Zu7*~U$a?9GwYX>o^`$^SffX6b>Ndb&Vi!PJf zR;Sv6K2~WlfKpr&aJirn5N)SMiCF=#g^8|P%v~F|%fS_uG*jFxfyR+Tj%inkKO~5* z0bm3GtWwzgnL5_6rLG!gsxgJNH6+OrFt}@H6xxYNOj&apF;V^QGlvZxK~}<*hRgu) z;!|h-+D2T$_5TmIm&CRHR#N$V;a3IXO2S!7tC(#*J_m@y>k#NYze)=)6V4)eU(%Q7 zRQ#FmW5nmgJ;xv}0w;*OvrI%d9V2mRJ|*Y#=tF2;u3jkC5g1)$g0Hy-gZXzjZ27rk=-U6kI6KY(_UzSAK+NfH0VeO5= z;BgmBg)l`x#a6REpevbb5yT$Oi@JjwfmkvacgEci(64}Kz4XU(SAWnYp_%BW@+N?{ z+gN(|+)G)qf*^t0& z4{yQ85?9sN=iR55J!_tE1!Ni-Di-n=BA6AVVDtUGF~Gv*OglhifUDA1+JYaOj$zRE z_3QKF^PW?W9-p_=z63n3XlzKu1&$~C9l#)p4S@?Elple_3M{E03))i6G;+b4(7o|G z9}&3L|MD0A{HOo;qvyLl=i2T8OApde<^dzvj3n|mmm!0kaRlxzrz0iVfYT;4HEj~z z{6(ybW+oZWfzSoual%qH=wR{kbZ?=6^U)9@_z(Z~t1645fjD1sPB3CT5+g~_m&ZjN zO3#=UOaaE?@TG$brQ};ZIJpN2`AZTQ8%35z(`icqjOWIjIZnp0Gglofx#(pH*t23B zKhAAtVi@N*!HVbZJe3XjhqZOcqW0wgCE!`q;VK1t__Nf_n^nPXC7r)iYKc=uX*(Xr z>1a3%9MA3ax;NS*WGb^lod^l;;-1z>@&dORLu;qg%cf!8fjMe`lj&&dx@CPla%Ev; z%7)+Cg)N3fo%?O95{Tj5X0l!yyGnLmne&SmivJ7z3-E{IMbHIeW*t0;XRt6YTnKSQ z5)ZK8==W~Bo$GG*Bcjv!fFp!5RtBsz4#Ms*>H)w>>LghQa!|M{3>GPD;e^}cw3}o- z1n4XMMHO)C789?Y1(W%(nhprya_S*ugrW{oD<_6nY7&r zrU=Hju-;WST(fp(v6bDZwg9$2#X@WGz;Zq!aNT1caG>^EDs3gR4epY`ieZ`07(}-+ zwNPujSl$2yLHfS+JyqSLxJO!EdZB|2fY~ej24GreSnn#jO9Ho-bCAp}8lU+*|K0xX zoAIQb&2YKaPa2Cn?lyT1PXXv#6wsC(l^N0Xo#PKK$ zCWZmv<8idx#CA+xV|n4xG-Ik`h^k2s00wKzrYsrgMWp$SDRIIIZtMWPNqPg~Qrd#4 z_%a?{1HiJwsshwvm0i=bVHrQH)0S|u-o~p<1Q|Wbu16`}QrAr9 z62MTv1n|(gE=Qd@H|RC_=S7S-EE5FN&WtttjLG9 z#bTAOadn1Z(t>9us5yz2Yel>_KO? zfF%eN!So2Tp3-Eq+E)iK(1g;s zQPTfXJAm;7@H7ZuFZc?G~s`s<>@@FS+QW*EtSbr^DMq(TJ;%}e5{Y$WW9vq$qrkxe+W-ipB_GlQxZ&}GOVUNMXe2;k!(-0wp$7~DM^62xvNy+eR5gs+`bJD)lL zuxY@(U@+6mfZ3=Jr3=>5eWED)ITmP%Olig)SU-gm-p5uT6TLS7%-e;&MSD66&UZCn z%oH@4s&EytYXQs~d6dMmGMFlv0EYag$ZucZUfv{OOxJb)Z~s z_cf`EI|JDJL$z9G2%I2*VaVUZ-jx4vU>|fINW=L>G@zJ|BPhseF-!)a@2%U#a=ZWA z-~9aF|L}VP*wyN2(2>=`P`y(B?Dvw;gASfl38Egy_|~M9$JbvW0ItfAwMAtvkgjyF zp!KTck!?sEQz)weZP^lIEL_>08!#Tf<>x>9_7C6vdYneWV6P4N%Tb2okp~9XxrYFK zs|*XQXfq$-D1#&Gp;Tk(7$^{z*LoRQsBR?m&%#s1ih<9B@|OVSjxYVO@iqhCp@U^h zSamSIB{Q8gonTa~qLg0}uK2&-YgwEfB}7+Cd=~&_b-Ha5v+iB=(X7W3Y`wLUlvtbv z3PJ)px=4aDCWdi4?ncqf8fgSh8h=Wukh+}WV3W_1I&K)upqG{=t0MrI493C{m}i?Z zR{+dH^W5pTAX2G@7mHHVuuKpsxHoM6@P@L~yZjg6#4bc+N1W3g!0B}c3{S9NDxrgY z_8;Q~!FrA@a0Bla;WZ(4H`-PN4AWsF9`$XNll0DNKSGl9@n|d-EASaF2Lv$Cs}TbH zkirN880bYn76ZWf*n#|&jaAv%?J0n7hZkPcthy5DGB2&08a#650gp5TF)mth+cqN+ z-qg+ZJQ!F9X*J2x%4afo7++s7_=D~We{TXY74Rj1ErXfT<8_SrJdR}G<{JN;ca3>u zzv)NnT*_It6}>U|a<<_2v(2VP`fYBY(ZSo7K4SOkNGN*2-R+aVe+&@EhY)cVE9L}x z_wgyE2{VhW*kZ)eDsya_ju*Q4SlEpLfoGLPlWtdyqqwcEfXG48xvhlf+n zj4^0BS%9N`%`JBoz42Iz^SRG9 zBpP0>x6(SiS`9WTg(ow!8x00i+1Fxm<>Jo_{adH=zIzK1{KJ0hhe>b?h(fbM$X?PH zv0Fvj2_2Blo5hep4=e&0+@-rDPq+=NhR;KYU}#^wL1}27#;qv0Vt~i^7Q0IkxVX?} zmPJ@xtFog2>;!}9CVZN7A#;B)JI_q$(x_xs;@zRO_@G#fD(*6t(UX+s2aG7>GZ@Lh17 zMOEw@7U7!*P{3*jb|b4O&3iNDI~|8gGM5gW2=+1&z<&P*!9L^lqW;@o|8#%a%5U`A zBL#4k21G9%%J5&q`JxU1;MFw7mu2QGXE7KoUA(&Uim)OK0LJa0FWoV%RR}dYQ}jiK zb#TH8ZM;6q8alWN@b)0MB-(;lScHe19vLtcw+YbkEd7Eo- zmRLz|3mIs*MsXK0%3M%3%RC)hBoW5_1UM{*S%KAzgMbvSCkDW*PRB1bfATb}H6LD%eFRRJ z8&8_X9y_*(O4p*76%{PAm-hNxN=azCj_V2DNcbFa9)sq0$7O~2!joM0}8?UEC7IM^jK9r>DDb;RoSk`9qDi# zx5t8BQM91%D7%i*j|dB3aUIiCZJYtUZO}Ixw^+k$EhlX+(4`@UE!x6^6P);Qkd=y- zI+*!q^JtaUBPd*TyEmM#ht$3ZmQ34nEkas$e|2$CjvYa%mSWA9K2+~^AA`92eM~3L z-A>ZZTG8z>7cJRowb`0r9hyUaId1nW02ncFKY)cCTSS9Nrj!v!Sy)0JJlDD&+i^qY$o3A$D(?1O&9c5$^$8cW+_=U_St|$@=5n?+!bd{^;m`y z73{gUP#Czf|NgsQfA`&Yp69U$Yv|pm=a&>Jn{HrN!|!=+$LnK(A`DIwZ=3}nC@_o@ zTsm3cs>6@{NfpxciU7tl!4X1yInBUb{0QAVn5<^&5q=Q@+=U4K{lEP(O9HQV9jSeE znTRF*feFOF2}j! zInSXf^C5mC7`!$NE_btxzk)+1L{cwDY`>xV7^evVu}_anj-_J8mDvbdRp7fUj$_jf z;mzH8)<{cTQW-Hg;0R)u(lZJ@?hQ+sv;vr;g>g5y<6aq5RfwO`Y%oVVh=(Op;^3L?!nSN#mgjd}uhVm`+uaXXAK-3SG;B6PbiC*B z3UL2hGSb?WXH2&B1zE2WEs%aI+TxOts7cWf73gEp&?xu+=4l1dSbHJF(Uyd4# zqAtWPSX)*RBOZA}+->BgSPo_bED<6+2p*wuN!AM25X}!UrW#~0j||*1(v`)eAg z;x_BftfLkSwb#w*RskOXd>B=DY8VhsIC(t8X2;SnS#pK;4UkZ5gb`X-D&+aY%}g;Dh1Lsq-3)Yc$tkw z=}PCWmR6Cbl)U+*m(|^T+%Ie9rA6t2zLS;EH=lG65WC}v$6w8qHPh5wD44Bc9l^9* z`s+0oA`yF9z(DW3@~5S{s0ZBH zC5esMWbG~{9>)eVY{9c|xAyJWB|Zp84YEmwrvI~g0Q&AX88B?h^fOOCV4+?S;%PnN zg#aJCOqbQTY(Z_PQ|=g7A6(sLI+cB?@>c+?i9We1X?2yFa?I6>qdK2gIC47S^Yej2 z8gS9vY{tOt{o@({uBS1R*i1*`c7Pc_KA)!mFzAcpPD#KbTU=TA2?U14$Z1)KPh>U_ z)jKxJbD1#}^<<`#CVnBRpn!k(-M_h>)9c@|4GHp8=&O=fRIeIF#*vRZgT6%?az-Io z)yyT#8W*Y%ug_wZiQNR)rf!sM`{8s#HP-Mcf@S1`dTE7zCvaO_5Dfj^Vp{&!U;glT zw;%LncY-h|% zr;dJd@edUr=}8I(v&w8n22Zo&yx1?&#aP;_@EYO*ieJQZH}J`s_MFxy+*Jz>;}5Df zmh4C-u&K!H)t?$&Ag#5;RJ2SlPcQ7F)6o#?B&Xl%cCKlgB_-3%EC;~VRybewAmOM+ z93`-tWs+M4ZV6z}S{s6$q8MsHwE!D$D$tr~TLh@gpOOlx#HIZ0_pcG`P_p$|xP{Xl zfZ^kD$v1Xm!zl&Ncwxn-OtFVQp9Z2frO$i-i)fUW$Mdz!Z9 z+s`6Q+6eYCVa0EZy1qYwn0v_xF!(bCEPa(p7td`mHMaTUMp^We*cfsNfK3OH(w6|X zy7n{G`}g%$p9Ry@i`V}ArMGx?mM@^MhX8R!@}2|4Ndp8$$R_UJ>D|kQBCCKe0o-7C zr05M0o2`#nZGCZ+)LV!d@`eCj$lLG6^>P}v@F9FQZd4+PqkqJ6HEr<#9B@Q&tk`+(|ozbYv?-}aCk82 zi=Z_*R)Vu}08N9XD1s%>fG$Naf?CJS&&h{cd=$(kDJ}}Q5o>c$eDCGMG7M&h7<$A;JJ)z?kkF^meAE#05nSeH;W{BE$qrPFO3+4DJVWKr*K~ z`u%IW*$k!IYkk%4ew1pgp_|5ofBET;|NVEr0_h=$(+FBQVE&w0XaxRuoS8xGi;&8! zN`^_Z?|HY*w=1lrV%~^=3SZ4qieLbkVoQ>T&Ddbjg3}0qVUh1aZ;}S50Q=36LzX?Vi@U1~nF{W%-0)hmi!+RQ~a63{3=?vD~e#8NYcND8ExhUKm> z01Od~{}dRE0F2qN+tf(+($wcj29{zm_@x#W$orG;Ri>jk#Q_+$9ZF11tA$p^py!6x zXGJ>bFwll2CZ(?s6yhuy;}dhd+W`NjDuEh49TuBar6$<1oen9j*kBu!sJ=__=YO^_ zYy>fotSwuzDWFSUrlvu0{CBv`LEkRm8L}7}7cW8>JJ7q(z6b)??xrU)-OJ;1u+M~9 zB4U_DVYYQ@-e_Wa18_V86tML0XnEJT!WGpwe~2cc@j;U-hVE-SJus;n9dUe0{ z?i?{11}B`$dx>6xmbcuUhxd1(j4(PUoMLo1$D4gX=q`8ueB&;*-fAy9of`|t{i<$(UXJQ3it9A}00xi8f-V5qpm%hgYjY6*9A`HGEqiSN zU{KSNPs)$A1DN~4)@no4aP3h6OZAq5lU=+BHXTVNvm(>#Y1UOyE(?|CebAS?zoSVz zop#u3#D-wDA<;i8&aRjh#{<&0i$f1VT&_rPvXbeCrs`X!BCZCDg(v5g1QjsWXrB9J zzw@KO`xpgRG7mWGjnl3Lu-Z@h)oa%aiL!qtC9ew6vow1 zE1zeYf|iMdKrclwP5@nK-0i+Tp65?5JA4TMZ+4UEd<6QgHs$l{UI@Lbzxi~OvRh4N z5(9QR5I$_&2Bu=8Y6Lb|Xhr}l3%dhHOc4L@@4x-+zx@UP?z=a*hT^&g!giaZFUknO#C7+*v=ltBhwxF>HZ*dfR#3BXUPC z-&Ah^?fEoew=4Ia@lbf2-Ddpsuzq}4;6~e{Ovc!M9B$;s@LUtHoC(NWLM1)E2Ed3> zBE33vtYok7rHQodQ&Pvu(M9=Hs$J$2tOY55sf?MeVLKDy-K-!X#8X;MQU` zO5yHc04aRM-Xx~P9k(qT!|qL|Cmlq%r5?xIb$vcA_uHuydzT>>J>n8N6>lt#%8-Ka zMg&_oX;v4~cbbU`{&)Dw;2f(x$X~aAh2Yy2R0f7wEUmKG1A1|kkU0$wi--A;000mG zNkl7;MV0wdl+aKxF>erl2qPfX#RY zEhID(wF?iI0+WKCf73GyS@De)lVx@(3K>fP{D);6+XFeGfB{Z7^hTCi=pkEACU!WZbR z)*hl*^bzIE$!cx(m0e*cpO~Fs060oNio4{rH(LSWeVTcJyW(HH8ZbEf0m}|rT1x*F zo@XghmNIn<0QSB2zVlT$xK6_BGV7MP48r7qEvtYvnQTIH)ZE;aJoEPf?8&$!ZC~L4 zV8B=tGGgh#6f|LMrubK%kUbv z$O&M9v5E}fle@)Gy>~jT0o?uc=?n(T%m#%n_j)0M_s6NaaMU>2>?#Q2`$yS1KIr%( zu{P9(OHQI?cL&$<;=-64)eBb17N(}4#gr-({sD)?9;DTu{`k9J|K?XzzyL6`1%$

q>&D3uZEylx8lP zmLqsFVo|A$!U&vL(=JwJOGUIY;Ihgcmv~T_yV~<{QfI?_*sVw2YCPOd;{8ITFn(7S znb93A?gc{V35o!TWemn5!y`k(ef@fPec5okmvmuKw4GtVEn&i&8CoO76jZX8A>uV> zr|)EvR^v2|OnnyZtL#)IT6X9J!;HJUc2*MJcox9c6^k3dL^bcAGYusdOdrQxf_AklDM_&q7O>=LU8R;3`*tmT; znyYaK>C1`5lB=i#Km{1q_sp&A4J&{>@0NM#NR+Wd-%Xh`l>+|}3-udsa98rurDqw; z1U2LG7UR6u$Ymy|t7hCMfl6B#t#C9=@T@Ih&32OXX~>139l9|^A4%A z%v=T-_}?R1i^NMnJi(8Y&Zrl;#7+kjl@YtbuyaHW(lK>q63R;gPgr{68U zamZb3Xmtr%s@rB#?^|)!Wx{#=;wg7=^w*ExN>%UvF*rO85&OIFa368%-^nmI(U5WX z2=3n(F!#JClO87_0>*la?1n)^b&Ka(}z>N|}%<*E5>*-=H8=ooei~w|@dU09VYa=gp1|&s29hFstVf#IL#n}AD_240ddU;!s8V3S9x5sP>b%zEMQ@2E)6J{ z>SQUFNwAOlP>T2iEr6B2*P-75fN?bkfPeX`UswR+at0Pc<&R>?JVS#z-J4$fO8QT{ zE)+0siH5yGO_e1JtzOw&!LZGjoxT*fkiQ&O$l?^OPx0xAWpJWmAgZ*k7~NK%=WxGrR^$XMw(?=vLD>oVz1|!+EERd zAf?P=7FrFfjShz99t9m>c$Nq2Nwk}fpo8`OGa%Y!gLxX#jBF>(U;R!6AKKSOkx1F_rz z!IwDVJ&gA%`_~f%Fh1Ja_cf$7X_k3KF<`Jhi^Roehhfi!tj$ISmq$b|gC$qAg5mqn zCe^S^1+QYSwoCDmoQL&d+__}-6eXt8T`L)?p~7Es$mLWa2NFDUN2&!Ek<@m@9932daDc8 zs!ycRvb=@or-sl?bycuG4CJS@%ZQJ#I|e)9uD3e+>-}&JQ8?)VUF;pgIYZ5p-`asL zr|JU0oS=ZC@o=8>()0=ncs}pT=J9R-0E6N}U-i}yf2#}nGUrT9Y;wgHHP7r90zsuc zNi8HsuKju`W*VYv30kqf>fuI^l^AA4H0}e?PItjDfjUwb668z3bXG!7U7#`9oYaLck$gx z)!nRu<38DKLg~&bS~7`YCRmkZvVykG9W`^7)O3}15Ov<430YkN*xb3oJI|d?{PiMU z$?QT&P!qrq!Mf=i6Tp(Q)d{TQI*Af@wkURzJzn8PuBOvbR2FGjBt`mcPWon3UX;3TX+c@a?{hK_C z{`?=m|CfLLndiH%uiJQjOUhe-Pc_E?ZoPgB4CX!`X9MGUhhQtM$WU@f3Y}tvI#Z^I zNf`lk+hws?5IKmRS7%() z?PNplaI=YPR`_5rbudVeSkDsvF8m_Sq@n`eZ!0kPbeKLptRL>AG@1q-bg4Y-YSsyx zHsW1L8%s9u*oq`7X3<;CvqBV^sZNp{ton7>5x>?#5=UmFiD5cq*|uOiv%yMadqSCu zyDAJrTqpG$^>3_M0E>BN%~?!duHE=|B=8AhpV>o?o*stOTW zA|B|r?&kp39JOE%9~@g=APlaD*6UP$gs!WqfaP0Nz)zXk4_3IE(yeAL2&<-<&XElo z9iNbXZ>EA7bChRYcD{TMz-s2q*AoT`uEraEpQ<6+7TQ;`eeQ#W# z8A_=02fwd+-xAU4ssZ#0eP7)9vom{i=1)+-gVl4eeID*!!t+aVdXCQz>G3Wh(tuJh zRp|R*Hg_$I5$YT{G|&ZT@1os#2${P+_=wHk-yR0r1LzxqzBpg)Wz%=D3BZ+1OP4=O z_Ahvmn5<1Y68bmLSDz`KnH0j(*u@gm^w z)%l6iC5!-fE48a6fW>JEU?uUT z0>)8CMahdSejrO+C^<+cq&~)VQ%2g&b%I_U$c|1ijAI8P16MIzSvH%=c00wF2wZEj zGz5L8lLALvk2KFL-In}R*W+ldli(0cK{s8z)8%?RnL${W90q(mtJSksX+i$tgdSMH zu%x4(Hr9ya;c2G~UVzF_B%I}t=RPi2;``CaDXW0_!6SfqIgsMa!sEbs4m^ee)=7)v z!(3O{fBxkUKl_(|a=o721D3R&gZs4D^=o4&iQ+D_FL!zAD#ZjHk3jFd9yK1(f!bU| z+S@ZQqlo2d6+m3FfQu<>+S~)c;0gfD>4*5$G{$;;ItQMNPLh@+GmY3|-Kk{1bu-xS zy$`)B4s4)P2g|QWU)E&dD8(;{!}*N6l?)P4q|V=exmI+T!V5@ZF5sq;9gknWYH4;ZjfM=hbUPJLkK68H7N zW^wh>t2Un!r7*j6sO?OBa!*939i~K0jCX9)E-W<)oZN6ZRG9BoQkg@A=@Cr~^A48K z%G~?3glM)@s&48%vH^WTiC3u}wUvt!5WQ5!Y_hQYv&~ENL*<^a(X!g$L=s;P7Ua(ot9Z{h6{9Yz zy*Rl%3U27%XBe#dn|G7#Aq6llZt{R5na4nun{kAu&9`YKdK>+F(aXC5eXZy7tHkQn zlM3e-K-XV9dkbmv75W|?L!kHWF+1Il_WO9Xl4%F)1$4X5fm3f384ISBFvsy{3D;SJ( zj;SY*pzxM+59mD}{PWr=r>5pv%A1=F;3jUg%BjazADUKHlb&tHl~y7xq#}t& zWj7u7vZc<4Pfu8O`SpC^H2QPfg{0Om+R2F~Ax9m$;sT=(#$UM+&{I@&A~1+XNakayry000mG zNkl+VucQU0% z<&-V_A%MAwND-_SuC$6y3(dYsgdE9DHeaWjv^3nFhh(4LI_iZvzU2zTyqy z^sc~Q{JJa&e)G$p{qgs|8Rv1}bP#+@dSjJ|^d_;B8}c^^Zoxur4wiSttR86JMMP=N z;lTtju8(X<5^HEJ3*w3GN@BLqb|~RnxHEn*@@_--CL6Yi$sACqXo*CP9rE`VZ zcos$0fGw8h1;@$T}Tx zwvx?AgSd3jvU|h0kv`9yI*bp|T9VQQx4LCkqrO~xSuB7rjkGx2P1 z`xx7fan#)eAu-z)^3=zX8%&(b#BM8ma-o9@EWGl!eP1gaX?(Af!vkhs}aChBw^n$pE)w2Z9yLk>e4O)C);g^wF3KwwI`>a zPg+s_VVHi1i|f(&7DrC=WdOj^AXh<$WpUnM!}%BiM4xEtr~c-)ntA9W{& zbe{Ks-fZq5sBTLzSk$dEns!KEQhB-y0A^wstVIC5)xoQeKB8E4^JNE=jjQWHc4Yw^ zj&JZdpfVz#bVUBD(-zks_+Ln!^SD=)-Eq+=vX<0am6CZb@-BBfa1I?j9^V$l^|-i! z2&OqnUAefOt!&^cKnv|F@>hF#S>IcZq~?gDa+r3WPW#MzOQ`amR`{;lj9ch&D^bjZ zcQrmFqmh#&{VW^c@`THcXab!h%QZD(Zan{_@Cs3u0Y1ib@{{)5UCp^hAf=2yIxi2W z1u%T~uz7qG11x%A;Y$D*#HAqKG*#1gcT4rg+KD^IVFL8xC_4B-?6g37Jo2ZPJ)SCe z2Wh^s-9Qk;^VtwbJBb0GWNG=0JDj0QD+#*+nUt*U;g~>|M*Wo27p_g zufSl}y&3ATLKa5R;hA)FdLN;Tb)dqvG#9DrrT$CfRubN5epr&s%2zXy5EmC*m1sUi zLrM;B5X%cK$YO5~mIVkXU}m8uZI}f6&HR7<>pviZBflSdz0k*czejgy`dT-0o%`JC z1`cJsRpH`&vYJQSS>S#!uAaQ);mP1jUX?`3XmyXxMYBPZ)iE|T%|8LF2Qi1a{vj|- zBh1}01B1D&VXu*tg5!Fvmw5ckIREOPqm!V6Ij4cU1`~)mFh*g+^%G|sFcHlb9i}(1 zL=Ynj-B%{R@!)Er{o@$d8fmdyiG3RhLa?jsIC;s}J##tB>cQsaI$ zbICeO+s$D6INTEE3H?KW-cIMk?d_NC_E%U3a6!PnVGddVjPbR3$ zlGbF~s;eg^+pOhjOhn`T&n*}`cbU89{AlRjd9Hq+2`lqy*2az|k;{`9VH9xgr>V$O zQjk)W(v$d?in&#WAck4rXS&W*k+0_&Vl_*#R^z*!?=)loqE*~F6gl97Gq_2_dzxB( z)$}YA&T3ku9dMt%4gXv>$tFf%ZE=g?aw9U0~!2CIW#k;0`NTP9UmJ^Y= zpBx6utc;J<^8nE0asN6*9A2XxwC_V8&Q?$1`B?xgOjY9x8ZU3wo{T5D8!CN6=v~@n z&_;vZL<~?C0(7$O*Q?%i)n{QdPE4qMMC0#hDvcq6FZXDTne(*AHX%`>oRX`XzT6wW z91FNucbcRR<;A62Mg6Z21L%)1o`f zTc9t5FG91#;9^Jmh-PFkM6Hvpobhe|3T-Pzr6ehR9s z0{~}>HYhuq+y*&>FHX8(d{A70!D)r(d7W3c<)qEm1nUm~ScGrc1%MHpPnqW}k-TF^ zCmDCN#GtQ+gUD3XzFKc4ym&Bwi04&T_oz0(Z22+b2 z3@s;V@qv%QaVOJVn1Qsxb!%e+Ac-SfapqdUsRbSKF$RFaMY;&B*CnpGKrh`QaZc+D z0Qli)2k0U=E9voh4=_XK3XJd8l*=G7e)j2U%K~X=-{;r;!_(&e(b!dj=y=%Y#|{(A;U%<=4pw5>8msFuug%j2jJng?aG5lY2GhX&M zqo~gYA^J5s&NYkXm=k8PH0a2pXyB6=wq&*Ago!`~G0d%B>+)d}(U&B)BN2Ij{2~%p z<_s!pxkJpPv{l0_pN4!d^C6`0b~}Y8=CosZOHvq8`;+2H z0~~5Jwat!BN^mb{>*~b4PMVwcT*AhbL}~JwbBbsHshvfwi!V*fkb%1P<2Gf+F7v=Z z;B@V4$#EO97%*l{Q@wO2D^G5(@q2IiIA*?Y<%}mXYzy)?Dm&1=BcX4108CbG&^H1g zXZ>>J7aI@sO_zNffnLOT?I8eToHGkuEV>AYT@ZJA@E7Od>^Labl8zoJeUn=9&p>an zaPzt2CSQ7^_u06m2AQS=OkS4SM>GiRS28f9la5+i3huJ^w^6`ab5D~_EzZJE)mr$6 zZ?R4imt6=QD|~svd<%Wbo-U$K9Z!pnW;`-4yQ}O1+53AhFFU;d*gC)KB*d z=rhol$>-HH765A!m_^7#PexA7XXF3=umAYTw_gLm-ToB;jO#eWD2T`bsQ6>mGq1;H zN~r^ir6AchAhFy@(s4B|G^zCl!X0+25*Hv&{o{@ogDzSuB(W0=aXXul09rAE*5s;` zL;v+p&kx6N(8rDVR_u2mf&pL|j-)#gSXdzN2Liyd`yl(@rrm1y5PY+L$eqKZGMy7-0!J>-6;LR)pjHxp~0%i*Z88Yf}4oC({*~!-6iS^_ihb7Yvpb9ZgVEZ}GSU1?z+pGFY5E8hLEh#XpgK z+w2l%usDmv{cLKXO*OMf&;}FEB%&>)rj>`~^rer7-5a(h7*_i-Db4O-JLbV|58D9` zz%XDupBD!FrgJG~2e2@y>Dk3=!a;|ZMkwrMB8l1MrIR0Xu3&JqRnyJl(lutzS_VH= z<;_$uv(TiYeb~#EWuli=bqvmX#(RwD#XAj4z5QCi%=Hr|a8Sh4P!A!6*3HB%KFMZK zhi;3oB8;t5_z^4zu~KYIJgngcjiBvNLXLUB^$jE@eJO%%pPMxvd1oy(#C${Qs(PAX z_7KY_r$Mg|=mNJSu06SbO3n|^yD{Q?pV>H^((OLx4BGW_fY|K=)w|3*i+$CbjecR$?!E;e}bRt5V6YM{mAe80ZQQD?E73e$4u0d<~_QvLDtPAIi8|K=q15mO1w80ms@)8S}!S=SETXp?x`M z8j?4udc&d}S3QVeNMY#IxMI2TZN6}eCFtvo7EV0tASi!9-)iIISTwn4mRy0jhZSJ0()K911$Spt zV?W7yKiR0join*Zk#{wEqokFN+PG|OH|b&?0-|Cmt_c=)*H}kMC_lED+u33Cg`p*z zZjJP`j8L8f(>S=Q;zL4y%gpx7gTlitzx(w+{p=r~j<_Ps3)%?aBg#(*znp2ADA0=! z1~ZKyC9{t7wBnbC(`>aVH@gW`FQl-HXE@GxhuQPiIGw46`4^oYOiVQ;*J#ZYOH9Jb|YUje!tTCki%>sca`3{sCR zxv~fB-a5Uj<)Z%EfB*UGZ(ba?Yl^UR?i=oayIHGSyBkV7Kz#T`Iy9**3t+sGvbQRJ zlPRo|?C0sFng3RLE!h;v+fJ~S z$w;?}ihG=d?hT&6v>49E5gELhkD$VN$>tS&I!(B#2>|ni{u|&f=t}@|3!gzHXY|k_ zQbDAYsC5QiO z`-!%F*j95h6K>m-FQ;+fAIi~_ta7)qo8F@MwBnrG_WUlFdR$C!d55Jf4M|K-`S&4B z?s8Em-qGN$HWSBjPi9dx^4CJw&OtH&j>Np00Jc)wI-xS9|IW4*Njdb31kk&Al~gkV zG8d|s#Jvno?InO&+kCz+PIozk?`kt(Y&JtNK3sYTDqUk6soTBOyMXR=(P-RxS3;F8 zp=&#fSm-3B&YXs8W(U#TLM9@x=9wM3;0-h=lxUo`qLDajC;6=uQb8zZ*I98Z52du` zfZoYM>bXSh?t;lK0Cz!O#QZp1o+BKm`@!tsBj!5~vDyVoaC$R<2%c{PIhlFl+EI%9 zO~?IFDbNjzHUJ!!ooL*GNR9F<1TYM>I+_BXa!e*&k;QU?V<(&UAb$~K_1vHW&gUHl z@IRh+^F-zRHn_G7M;cxw@hzktU^AVFrv&@nc=e|U=G7KgRgU$&91OzX)(GS;D-jSJ zw*ZND+}5}ji^ZVUP=FKPyc~Z0^KXCkuRreGC}3P$ zp>?2dfKp&mGS8}Lxp4~(Bvn-ROR8SxqCsEX72e=S0O^;P{p;&N?>~bq27q@vsm8+X zM=bD9GG+(Rl?}qp_~CvoAA2+2E{6!liUe14UKE&U1#USeh{qU|b#O86@d}Hz_Q+FSa>x)WI9fG}VmPP`0(| zA;%%GBZ%%)BAV5Rs;N~8ScE056k(SDRwGOqNDKz2iI>EKr^nOZ{`w~|#_~H9!IwiC z*b1y2!0tHh)w!CT={7&!75I&SE{;qQH>EV8Ca7hf7#amKotH&2n7L?9XrM4My~4Ti z+?PQP>d7TznzG@#PGpMkvfR#dQ+lfU2@i!UFLNRLLnZyJI{63xue)=Ncd|10ZB#J3 zftgb^W)!MX?4_A&1@3OL7U@mTr6zQ&uP}Jv_e^QD-}7}%!y39~mV*N+%#<=S((DYj zb1xLRM>U~E%tce5a95kVzn8Ap?D2BK$j*JbZ+AAFV!vW8yN(u0dwtEQy&-xfI;73d`$~U+pvVkpDcX( zFwfURKy-bK7bQ4;ohxtSW`uqe)jbZYSMz)(3#Y@eLvpecXo*27tB2 z=oX>b?>6WQ2D1~XT=u|bb_o{~7XXgaw#=#=d=*C5v<)%E+j$oN&SZ#FM@I~qR4`M} zI8JJh&e#AgWUkcxmkz#_#5a)0dN*kp$7cX8KY952 zc@J5v1`g6YK`$!EU)I`yqf(;$df?bWddRYmfeX%ZqT0-DUa_+D$cFPPH#t|fD4-!~~ zg@sN!5>IAakvpyTyX^uB_|wwJW#EkLhBlQc(j%dlDt1S3Z`E2Z z%Za6L6|uhyfv1EQ)({%^Y`TDOx29OSi)UrVCTg9tm~ahbD!cR?s}bWLzWX&qFn5B% zV7156D(g|7f1O%liOHy`ich;T^+h)(D1!M`p$KM2ILB|`nMnRa^MRDVw8*Duy&z?cfb1)A;YiK zPsTcDB?&%y0$RJ#Yt^u|@1R8ftSiYX=IwUEDnk3MX0!u6(v6!3J*8EnzZFY!8`xS} zlE-$y!{yZB&1NFaRMV^;$E>tx!y6e{0kKX0G&j+)FlCwnAC2uM-EGZ+hMToqzA&|8 zo4*yw(yDvuM#)4m+jy)KmQ~f(SX3Td3+U`7z3ptqEzC}{HJs{}OFI5WzUz3Sgl5;d zPi%#+4QgKi7|`{7ylyvSFaaFmD%Z?GvN~A&u*l%1vRW(4txPJie`}7G0}Mkuyyy8oMZsx8yVETh9g%qoce71q=)~`@Zt{ zwmk_9W+7Fv=ugSrwO4L^#CYd1s=d#uW6*bgAFS?&^OHZ>xzoJ|L5yR)aiL93>yZLD zsd}TjFZ2b2^P5lx8eX%bNk$0gHvljTvLJ<1^|7Lrl{b3tXCDCIbOyvq9}y6n&7{&Q z(~hIdmZb5jk6$e>;IcoS`J=KMMmI7_I=V>!xx9l&i>^j5EBgR2ZcpReOh$SMYr$6p z(971W@wm&RG^uR-zi_uvo1SW%Dr3v*S!qT8NbzLQ91*+dsHDMr{5Xz@*pA;=bMq*; ziig+CghP8l06pKY!C*WZ9-J+Gt67TJuWJO@j9@VZKK8cNmHnMeEdrSj4_gRUP?L2x zoIFS!3E>m+4=-D-4}VzG`||g6h_0n{5;D-|qq2 zTbQyYblIC{ZKc`jqn;iE=E<3tW>VU!UbZiPwmpm!NM~S}Nojd{RidNGqy&rn(gAoytTWi$(yMUIa%w;Pz@peAM_`m*%eI$l|W4k}2Si?*&Q_LeMw(i^vAtt+i}DyEx=NC&_=k385>JuU8(6AaM$y$T^BFi4Mng8F!Rq= zdsqOQW@6df?$h)h@s8YOu(tV9^%AuA&y3KL`0gn}K>qGegX1wi9HQM$g59*+eYn{T zSK8G>??WBOD__oJjJyIU_QD^!qxTTOaRt>YHDBCvhVW$@QZ|SDmGh$)seplA0GN5{dg3FXKjdwvYk!Uzuo)Fr)wBLt zQk{B*qK^!#sf$v6DTq4^uNhb$c>Y%d|10QeU|426M7{gt{EQ{`qQq5|7Qui7y_1x< z5$Ct#M8@lCBf)xJ;Qr!+q0<9tb}zNfkGu7{!gYuH!2mGZikN~v-K{=-a|aARJng>y z_DM$&Lhmj#JH38-*}Z%^a5k`R2G8*bdz~z6iOY+KT(yt&-Fd1OhR{qIm-%<+8YgVT z!qp!qvL!j{0zmb z)&T$v(bnsHfPjON%hK@QfB&0*`|U4qGU&GvGOP(&Ip}0zk9}5bNfIlx!Xf^d6rmnv zGZHh;h^7%-1{X@Dw021`)oe3_Tz251OiK+W4=M4iD>ecG@6)8FBvTuDX^%w@ULf6EHj5>05zZOf@N>6 zNfc)h=!=&w9J&#}ruNZxegoyEEszG}Y@IU&?xkmzO*PwjN*2RSAH1pR(tYBDo$=Oc ziq8l1Rf>27u#Pb5+l^u7rRjb{YY|Fei)XAGAc7%<*Xw#V%WK*8Zd!m;aneDP*#=sL}(o()TTG%aNW{hR!G)-(U`ON3W zo^MlOFpH|Xsj}usQ+10Z*PF60I$k-3zHu`TIO;}fX=w)uN5eK}9eU13ieOGR!kt4M z)i6>Y4>jNDaSxcaffwruskV97pjV2m*w+i_N-Ghy?@M_98a+P8jQhv%?qP_~MqXds zGj<+_-XoO0BS>MKv#oZu@<8A9I^cdVNofriHQGhpVi3S!QmTUxWWIgXs_QoBJ6CUK zmMgPjnMKQFFdnv<>nC5@2}K-!AnuP!-)0xNCqJu`g}7HL4j6Mu0tdjihT4@??v3nTWH`I!` zQ~&@F07*naR4#52`0g;h!jXw$)2p&TcATZ_>Tv1M|p!@J?C42`>%}&%PoDcWGrJQR?oz9RrKeR!DgKt z_BntjiiEhW2I3U+{kAslZQxsJ*5^AlQ3n~R@-H1cv0!+`@CP4cx`X#V7<@o@{rCOO zkHCo^zaFV(*hH0dpP7P|rlY6j>3)WIdfn*wqY0-1o6&?#HWJrs+6CjBc1v{O z(1K5?g1$RepPpCi#fbS{(_%Ot$fWvdO!@*;0C4QLLRXxypd%k2j{ozwzdSzOT~+HBFbWqu2@4KZ<`P@?&bLoPxa~XB<0Y)OiQ#s!g?q+r*U2u{$vhj zV3hzvO*sY#i(vv-6tGrkf3Mv|6%w0+0g}bS%si&w0$Zx8)CYhee?zxbguQt&1a~hP zywI0j3enjIwHyJfr}OlDH)Ch;n=#gAZ0oS(KdzIW-}-7Av1N8B^~ka#)=ryIPTJQC zGL>ayJ*qet$byZgm8^cU29_KxjQcYM%_d-4VzKt>(vhRlyM-0Iw*1QW7GL%p+vGNh zuDR$TpVg(4CA*TS%kB2?<=!yP@gtxw)bMIm)slivY+pW}#zKpp@RDLp^MJMQ{TvGy z&9x4+Mc$NaaZDDsNVw9%LZ8cpLNzh}`}}v?jv(uhMGIF-^EZ%yKH zHINy@rI$C4V;!%QxLpQ)D3jRitWG2 zd)US&E+DMW7hsQgw|(+=5WZUKOzlemGagwsnPMD!5oW+yjObPS*}%wCNTH7xYcm zt#k=O_km$XvF&H89&RkR!Q>cM>%j;(EN;2ci)BPs_Nc-|0p}9TH(MN)oc0UTA=;rI$iqmSnv9%mTdaws$a9ETlQ+2wsi zR=Psp%tbH(qMacFEpnFrA~qW3d25{aq|qqr((Y4B&+HhAvV&QD-xc z@34qIPR@s#AJ?PKKbTdJ#pT^$0RVscbbNW)(|JSZ4Av}Kff{DJ@cF!Y`E+`EIY9L; z*W+rEZ1+=ecYmBezaGKhho{YtzrBC?dPe|1z6h!TU|dIVbz@T#E*TWN05C2nRKP64 zqERrX|4OCFEdKgsdv}HXG_N+QiE?aMVeM!r-ANxm-{U3i$5+=(t_SyFn1Z z^tGoG799*|e2C*n+%q6;p&H{!8R0d-Q7x_lIsvf?8gPaDWnHxKUY@1g0H)l;35ON3 zZArV5d`@VOZCIB`>Gw#3Djeje7 zDZe;j33ryBB`ul-|2S<>1uGOPbm~|~GRQn7`c=tjFTYKyVL3&IQCpk^!l{XLcA0|a zWDzVe@yNDJnq!0M8qNDtKwH}^K8bXILb0?U$cgPe`J`{Y_3~XGk#2j@QUJ^Vh5>2FRcsZV%HBegB7p=&QK6#pLaGT*H)(~!hyiJQKC833GkIF5_3%BAHOnAFU3 zm)%WNv^ZgsIS$$g=AT7e>gGD{DaN^6Jh5X~1H|RFZX9%}tpgVtU3My`G{j1@ZcPeD47X0O$1gC$C>~> z@23x^1p;fq^$Ku}aD-d~Bpx3YV6cqjTVygpOZ73^^hV$C{aA5l59R%0m~S;K6z z%0L|jF^4IEWZ*6qRrJ!L^yEe?Fbu+dW(0lN_^S_Svdwxl9v$Q^yM`Ft7``<6xTL!# z%#EQmW%00a^=h}j0&eNbLha5WjMhjCe+8Z-7`$GC^rg*#3y;+i+U&?S_S#I^vvt?q) zF4yl)4}-g>p%C{mJU=AIyXf>VB!dy4uedkgg`h7-1RnMt7`)&4$3t*B;+9A^fCa!> zX%*T4j~CJ->x%kRTSU^goO+0&a->DI>6WooyT4BhF`(`{`I%^UWcdUPJj)9rBbORN;>PT{aA~(1OVOT-ovrl zI?GeAI)~NCli}L4S3icU=Xi0EbaBjg!)(`2H{EpEAFl*}r+a6*53;qBRHNA; zsZR-0(9+mE>q(!p_FWs4)t81_*o1|^eVA!4v?h(`2871lW}<@G$KBlU6~Gwhz+L8? z5#zd@EjvKpxV*z_#2+3{leaHRyqAOim)`JJ#EhsXt{4oa3xpsLvgTh`0gk+JU5Dz| zYf5oo#kwNT9tY7SOW z$^!sA9rvgTE*=|=Zy?bZN0x_~fy5PiIL+A_Eqc)^GKJ-mYd6_2_z>%bti7>6i_T6n z^<)GFg9q2sWHlSlQfEGPS5uu$T8@Fi)Qe^&oQohnmcW4b@3wd!-##u8*g470K;Pfv z0gzB)vxVP2KCWraD_sQ&8^CNUDCcYYy`%OhW%b}kV z0XWfdVQc508R?K6SQL@wSP@TjDk-J_902%wR+xWcsW4&q+5_EWI4O7B>tY4htgX|iG56A-@NSL~GLBeO+oyA~%$Qytf8t{o+?Zc7M(VQg*= zQ|xu@IFkt#owglS#9)3TtW=~m3H~e{eGR}Sm7*Oj<7}WLL54CkA$L#o4WoMtz(8Nz z4)pch*Td24k@LoJZxF6~&vI{?4hg{87ujdtk?3o*!~Qn_=F#elk%E8m_!3G})r-s& zJ-^MLp0lUt7;)vA5Ydho0nj}iT@4?>xn3rp3BZ;C1Aw<%Z@Dz-Us7Hi5oEwRx;i8a z1W}~^|0=kqS1 zH>*0L?X2nOY}QJrcj^Yw2mL*rr+7P^(d%LN6&WyFkpX)ET8p>@V4wvs12_t}1+4DY zDPZ-m#oCwgMC<~a1{sPO;THS~0DRo#_!WzJZ1E+ln@vW7$_okOSzS2NXR*nofkImf zvG>HT6CYOTxlqw1U;{V@$BK+txel=~VMtF|rX|6gq)*4pEkv{v-$^|zSMlc>8~n>< z{qk}I7z2QD4(O%Kg04<<*e-vk=^|ss{7WnaSs>O`qaU+%BcY6c?n7#{u;TsUL zaR2}i07*naR1aSt-hbEwfFB;~^JVt(PT+RG%kYH(`r;f5^y9;vgBAo}+0&>R2JmcM zN%JjBo5C`+Nf<9j#TtjA8x;>#igE;y0|5Vj|L@NakEh|NC-m2q6f{V%84*!m1OjkA zcIRabJVxLTi_`^M6~`p4_=+V<(50LtwLXA|?2cx`GrN{p4@U60@pgh4?uj>rBzPPQ zvT#UuVfH)+ZXW;)9{l$C{Qv&@FE4K&Lm;%)o0T;8*b62U96Ug6Iix9CXOXQOG~Ed) zVNI1v{P=hVDx0DpGrHG`D_m;1^0HwSw@CA;w8CTg_X<`B)maK0xCCoXcq;VHU0IKm&Y{=pSFi{*Q1Yp{bH0kB( zb>sAPUb=B^7*n2ezn?LEt+LOiYs}6WgQ=4ii^)>ch~UeBT-zq4t%3&#F=eIkCt$;X zVa-d+=3~7q@Kv>qQFI-)uw(~*u7|rm3qlv0nJF`A8u6;sDplEDt!sIy&(x+^)W|u= zt7S5vY)teG?axQpXz zHL9xqVqvt10lHv&Hl$m4)-z;rYMO+>{Gzd-Zy4X;2&P-tE{%GMqBG9h2(jj!{+&0G zX>rP1T3Dq7V}}ZndD$|hEk?|C!F1zIR?c|QkEU%gTF|6Ar6{QcV(bXjSg_s%0ARLg5u|~>S}ks? zs7Q_$83Zl`eN+^?&7E%_mf0X<7R_(Gd^NT+6e;|!QrVf_E8KDt>|D~ ziTi?zA4%7r;B@l^lOxWnh*?nDxwHTIyr0W5s`m$B0su1$Ex4XLY}q9}qTCe?2QR0k zcmQjk)akSY?!JG2etzE5PY@@-VB82u2FIoIAP^U^+DvhdTY$d!k(0r|-Iwafo_{);Qj{f+E(bjWp41e?W}=0E#Y z#sMT;F1#G}MNiTJ=r02F7xCS<@4f%FI@cvWO*eP}{K2AtlgX!CMXK#3m0$qyqKGz&96UG=dSx==eDJ=?fWe@`yDGsG!}Z6i zhmWNQmYoE8`825YFQ0$qWMH~qf7s(Q@c1Md5lMjj632y$B4jHTB|9jx0qE61qlryWUt_TC zqqdZnNQ{3icATmfw*@!dn!jQ#nUKs)0{~TX=03$WJ+EWsqpkDtb*D687_hzDEl#J^ zayh}1w2~lf(PA*uP&e6TwW*h|GrnwjyPh(V+_g$sagdjS9_$ie3fjV(wF8Z_pzk_=++xkO<%5!7lj-ZfJeR8;6T*DD8@a_Cj)&w zR(XMrMBnWuAyJfP$$7|-V=2D~GuTuPoz{wUL z{h6rn()He4V+Hw_kZ@&Z~pez|9X5nD*)e*T&%+P2rHbVM03D0FfiDZ zgrgx%e5C?9jrZ%4Aj)JiJD*wE#nr}*$89P8yQ_ji76Q`E7&qQ`Y=d|^8MBaP{I6)h zs<1b_4;&%Ek=FwQ4ujG2)8(&!`Q!U{&%QU}=D=pT<&g_lW297gC^FINlS-);j-aqR znuTHPT7ZHCV6MNcTyW;cj*430es)LWe=+;5AGV0fnuux=g9mSBWAI?WuwZbR92VKJ z9-o%kb`dXfhhrglz1Wv9SHT3h?F*C5!FmjS%rrIjVMjpqc@7w6>pLxgY~9he*w_@e zBpbD=ZDCL5%P(t$e1H$2i9pIR$Ao}VKsc~WSIYn0G&nKM(ML6 zu~q7@0BnD>tyorQdUIt#xLl>p0C8b!!)(sNQ=)zdGtYE);4`#H%+@W=GT{%`>yn+) zxM8P^Oj25b%_5u~Am)#TaMOlC zs~8}`6ts$>UZ}mRO?%2MbrjNZm&&{3xJ+3Cw%HDCGT1s|Wc!)zbhzd5Ot9Nc#uYjC zZA#K~K|ef(245Qhe)}v%Uj$C@BY$-|d#9sI0N(GM)w*BR0NpmCs(XN5(BIA05p~Ip zJFog2;g!%5uSpc^91dkD;<}0{%qwMA73pq%e>P{pmDtoL^DMDuCX~_;}tM?S`PrX$>g4}t>}v_ zf;2*7J5s357hYNt-i6*9>_|lKS|6W%WW-%QK90DNqgnW%5P)O9!>JNbUd}V4ic-2MZ$8gA5uf2uLfFBakRMdTf$nrz-^)$$Rjxu?a}yzNo9u ze9qFbCSA@%Ci;9Rv0?%eu;@$jS(|{Yl_5|{WP~Lb?Xd<7TzPrk%H~)5Ke>eMh5jx+ zeth`Z&t3q!Uw{1|_Pxr3b$7o8B=abqgR1-t7{;%_i9ddP!u{XAJF*_klJIvweR==> zcswqo0Q?}hdwHt2pk;^2<5RUiNYgCVU+%;Ky>Fju@ZiUX`EEPbZ&WBbN$s>M$8J51 zXw}E-!*o4f8qhb7duh;4L(#qfu=%4F7%&02Kj=sScy!OI8*o<>l6^Kp(~*#^(EvQ& zsGV6J8=*mSsmno9Xz@w*WO~8b{LHeth*7IdJfKKeX*I@;b|guh4-y&h1+@rYJs*}@&S-Hy znA%t}o3x5?Nhy56#ni0PO+Ak-vLevYq}K7$=yjv5;D!f-1OtXMzl*3de^rFLS$e7q zVDKLJojceT-~}!U>@Ou;$bh%~f}EQAMS8U)%bwomI2S zTx9w7V{9B9O0TI9e~K^8kKwVQzn4cJe3$6U#w*VIYU$TMA0(K91_p08!_9iMUJXt1 zS+md;h~T_opR=B*NY*1Mjw)5P04)BslOBRvQLNxnF)B&haneEnfc@|_sBkjAPqP+N z&_rLhKsQ*+baY$WuYmXXNB2p7ljL`Cb}Ri#%iiMPiKW4IG~LMLF3^|e_SvQr%F+6BF5}RJfzWH8V+b9uTE{!FN2*Xf_>2-I+x>&bw{!;+IF&% z$0e1CPz0cYCJhIn3o{T17I#5yaZX!b93LOI0MwJxVrn=OeN8-WzWMeEe0O(P0EQ2z znnD~*LGO9urPM*GRGkMY&=H3N zchpKk{9zb{&NpAb{o7yv^v&1r01v66FM=&ybVkC51bZnq3a|l3jir(z&0su?CUW{ z4gdfU07*naR0SL3Li~s?6mR7GZu93xJd1g3{1*gazOf&UwNu)o-4hEXmJr((Ef$73 z$OITpu}54MtIZTJY}mP06X-u^bgeb3%w|SThckQ33u}cZm02bt_*%!DRNO&fQxBykH87_oI&h38Y^UXDj_Zf6A_96EQw}?nhDy1E*%sAx^a4!W_QK3 zW9De{J3K5Ktge&HYbiHCoEs5g-{17ywKjOt?)q z4kBLllQn)ErZ}!72*AYP`7S^JJLhYUjn;%-n--RBhna7d$>Vb2PG%!q2QcR9fWP%9 zEm<8R1i)A{CRK1_w~OoAjr`kD|0mdsRBL~^^+jf+9?fPwkYGYD1OE%?n@=QLB2Dvd z%W4X;stT+H;u3vv+$Yi zY8x_Nq+%NUksVkJ-iP^T-t*mu^Vc6A*@Q*Jl?<~MhJnO5;ubmq@AtFau6%e{No{Ob zP&ybGOrd%FYOOM}QiEKjPmeWV_(77=;5rfOnnrp;W~d?xL37u_OUGpFX8;W1_|xyd z{_ns2@$zsSj(R}fk!!{ZiN2=CSZxUaz__XeW7XvlNCs_MOk>sN%;;6XLOU%{nPtT} z?aFBq{P(;w69v#_14M~RIZvewJXXgAR)PVvG8PrNS>hwAS^mQxehU)3D6_!rHx>@k zgq0;d1XaMAbhKngsFuar2P@FPIc&%t&kG#4t3;;Y79rb@Ib+T4;!iS=^Vn+ka><^n zOtk68(cHVmU_?EQmSsE%`eig+=D~Uru`NqlqnBfBl|c0O%i{SYjnH(7001-2Ckh%D zRw)|Wg3qeIbPgs<oz$7qWN$t9A z79(trG#jAoxG-S2nJF5xpsV(a26Q=tWOXa8r=j(DAa8CahCfXeH`G}~F>P{N^U|4W zjKnlt3d8=jnG(n6J{uaAnWf>K<8{)^o#QjPnXb2@5W;RU>)J$bi6*1qU(IU-Oe%ab zH&pF8Ts@%I^|4uNAf=TAMO0;dvfRwPaRaJ%Z$rwULDYOrSj< zN_czG~A&m!+E=o^WP z(Ln;B`*4b%&&k6f6!cvQ{Y3zJrP*rMo2cCoP;)$K$uRC>1j1^ypTg`eDDDwa))wf^ zl^TxQKwJtJn>sPakaW0+<3o5fpf3U^dD#NZBe~SH$$?fNT)mUyL;y`?%^R%yvEW;!2>fDj(uELQe zK(56&k*e6#letV*6LpzxG=4+PB}!*ak#upKqyr&3AihN3un$}bMmLl%b~TUcj&75v z#~yv|4DiTw#1ovD1>)tPWlM4|rBFU#7)JvYLhMp}^8t`JVjUsPeR+QZrs7ACU~*re zFQ_oMGNIS1V!eBJVndeP&6ap|`be~(Uk;$cv@G0gCS1j6T}OQn1ipCKz0zofgNX;= z^tt92kJpgWR~CKus|?H!2n0yRIqB~;0OL|bUfUhq0b&Wjr}KU=>;iz50p9|Ham84{ z1*EaP8CM2aTcoa3e~Uo3I6{tbmDW|x1}iJuDW1E_96!>HoB~)hNoBd0C0NR0m^t9F z3qg3r)Q<0v^y80b0yY=Hpp9kVza(W^z5Yl{PM>#@n}_q!h>~0_yG8sgt)_DHF-GAnSbV7vOKG^m_2jKh^Bjw50%O* zmh8?2B)@;R{rJuC`DuyUDU?R)V@sGMK(=4ndiE)D%i|mKB^}h+ZAt_%SdHrgaALe2 zzHG=k%=4#B&6RUXwmC~#Z`zR8f(8tvzn_I2OrpU9|CS|T&J!c_p^9rV%|D?ym+h1W zYNn}UWi_w0J8VXpNK7zp+#P(KlV0ri6;3GK#lR!eJ+K*>8s+@i9kOoVXjw%O)O zZ4_9j6jy2Gv2=9vi{r^f><{kY=t-XW6kN{n`4rJW@UZu70C$1DPpA02^LJ}!vmCCL zgSrx*qO$CklMXD7Fg z$DJ%{7b-7~e}^?%#%UB(0{7M#ymE#&qrsbD|Mj5v%5&}rz+#!{cd#x40GhT{j|NKA zO2m!01G|dUo;EUagEI;4(5=V@fEEb4T#Me&%gd38XqqvQ{t}O$pZD}NV!;?EY{en~ z1A0M@*{*dy*8p8CUh{d(p--yXa#{m7*6OKpRAUBwwP=!q{V!=8FBIo}fwF`dT$9kb z1qnWFC$_1Zb;s22hHlFr-MNE%+k~~-uY3J=Z*U8`fD4GrNM*YT_yNeSPUSK~z z5=reDoZ&rr@M2#4_``30_uF63XOlP>C7}>y;5U=-L|i%q+tD(~ny8iw^Usz#Xh@qq z2i}0eIGSZn!HlaR+nvaO?MNusO*zp9G`5&=LJ6;;nuPl*0|uALC=Ysz%v+c7zD|L` zpu)JlQVec7|09ZaNjK0or)CoY7}!aawIrB>Oy7Nb{_uXs2_@0hYSglbvRr~K0Mjv= z#X`QW9UvKxwwo^3d4&yAE%usa8B(GFAAmR%HBhm{P}WO5OZGiA%2}>0>k>h!&aqK( zW-{RGT(s5Suoj1G&QiN15j;U$&k8pV#3`ScJh!PC9j2p$nhg)EMhAz3qei>qv(aHQ z_nf-)I$W>ICb=#1&2)bLx#_zo9ycL)z6uRY#u{At$7;yYYt!1HqHY_tq4HQ=QSq%UXA zIO}q7jYjSSIVs}KJlg%vXD(asW~DJQ!g7Ok2X|xDkd;>|7YZLzr(W<>`W-1=_R^>| z4uQb}z<~M4zZcs<_YPp=4sJ%h*I;i5;D?|u9Wgnm9`INGuRUU((<68GtIuL7YNSC$ds~62Y#spwYLmSJ3x%8~+vAC&F$LCOTo)s4m)D2%bUP(Y2HYHio;~ofm z8g`FUR|H3?0f&IJo~m2i1AqZ(V88(2&34Heu;lAB8i_|b1NI{&iqtZ0|t6CYs372y>d)$18&t~VMz4F3Emg{YdmMfXmHo- zybiG&$b%&I_~bu+^AbnCL^#M&S4@KQ@Y68&RSH@GSoV3;1Pcrb>_I2NIQJyRBe8kc z?+zsr0kmY0v`&gu6T^1M<3^>z0cU)vtwBOe0WWncDX)8^Im<-MquexsR_BaGYYdNu z@14b9ZQTlSd!D;Eg00$#WMHsrcQ|}vgkdWjO{RWrbZCh(?uNfwEHWy1ESD2bJyHKl z__}rx+sj2HwxY^ScU81r#WX2rG3dG-`kM7#n+zKEsXW*iaH)0>i@_#+Ju|APcHYT) zKUj=!df;P*J{g7N#`N0KVgN8mFl9z07p;O{1Yqp6zTjAqNirWp#9Fu}v zapRu0-gz6GHvV=sT2=i;)kREaonqP&%3E}bqLphuvoum^YgIUI0eykH7JX?B2)Y(V zcdqxwabG(kHS*QaedPu>ZXieu{)!_&6ftzalJNe~4Zj2u18Z%nSrNCVi2GWr&eFpL z(8b>ZeeqCHD*0_tY8`?yU0MQ-OLevf1}ps?R~=w*0cyK(v$c~iN6EYwm7QSH@{4-_ zupsWn0s0m?kBbvCQY;P-g1%OA3y5nn&x*eKR7D_@_n}T!vFuHy2;HCWNA<}=h_&#^ zU+npV07*naR6tH}PQ1`vsqzwlrw*rq3Bc4w0J2g($vWp?*|G~XNs{<@Xk>{x2?lKd zFkuG&EA;NX;cejD`>u(&k!r(dT0DRg*~rr|3IC3)7cjsMTdei2f0A)A$mf}amc01=FFWWkR&4)up$_oGnC$>kMjwUd(*-G68w;w)SaEmB) zygfWTtWGB}V8982N(F#ktX%X&I;vPd!iXPj3ld*yPd=RHoZ!++)MHXX?4hby8^vP+ zFrWyR4(OXlQUC@C2KuJq@L&Gpw)wlsAC4zc9*eyQ7L@_U zw#A7Qgh)o8oX>>&+1Y0`vBes>i~+H0CA-sj2ok)SM&QAqzvuPzxSsCn9KYQxBpWZ^ z3j(})A_4mW!0+E}0j{L2l<#0Ww9PhKby8|$@wawL*!J$)GO+dY0bT-tr?a@6C-Z7N zTcr3=hGf(Llr_%DBm%qhZEDMUH5~&7?FtB2{ho({$5k#!CEiQeF$p)}0Vv1Ws+xnV2wa+=X>R zz)b+F#f`{Ds1e(lG}9E_2)z-2NrEL2-2m`RpNRnQ`NSTpfMgd(fbMoJGR|u--Ias$ z!^+>)?tbZQ#l24CH8|r7R1@$6<<*eRDFtB3IcorSo#fU{?*PVP5Tx43K#KsxSD|<0 zywP|?Fh&50fyV>qtKRS@KwrQxxGzvP$#2FJ>BCZ5d?RziO$Hmd&S7GJH=tMkB)lO2 zgGMti4fHkU4eIent6h-M@uCa#)o{wK53&o&JFa@^qRSav9GQ70{pF7`o2wp5RN6B7 z(&|avu;C%~H37h80$5RevhEeDZocdQgBOS4d_P!hhxOh8`fd)vb{{S3QIfow&-;f% zh)Z2gdefqt1$T-2CQI+vOMkPASDO&%JFgsYUjzU+FZzJPz`X?`0*1-JsPL=;RigQ< z^GKeCtbUoYs0C5W2b8Kb0P zWJqw@NXaHlQCe`$EKtZ0|r52@LisW0M^)*9JTr&v3s0O zz-&ii^E2HS*qO!TGjHVR4!wlw`X_n`Isp~j2T;A8AU3-x zV!NG6H}ch_ljdnNASFkD1ja^P1PjB!U=Aq-L637vHY05f5}4YhK(rlUvKR~i{){o> zp4Z*f6s_ca*rH{_%1T?QFKYt@B<3WQtpO`1mPT$Xp=Fz;IXVp7-E3wwir8;wSOJKC zEd4MwZMC#mp3n=MHdaeg6$S$;`<6mgyf}DlZXz}H`?3$2IvdW#jgOj2$qm>#5rzMNN%OMF{Niq7r8H~ zDm`>LeJkiIq}H9RfR1jt@eBYj4DqE|uMGk=Li~Cg`zD$F-G&GPuvMKDh3e^GIv4jR zF@RD47W%6Uc(w!jj>;{-+gTr_2E09rmsDMkilS9jqA6Asclo%5NWGibc|Du<_uKez zNca1M7+ftqkl=b50)x{CeDnqY3?wGwq~cXw2?jR6cMEp=@Bj950N8p{kDR{abv^@N zS~9S$m+e2SD7l4g_{Ql>FGvFM$t<*@L3*c3&RP)x%?b(Y&{KUux4Ifs;~{MdsmC zA@fLDOpVx@uC~4!V4OW*UY7abkyVv{2E#T5&AM+>Wn!_>f@IbP+Q>HmXUH2K^GC<1^*^LgAM0E75aT9fi3QQY!_TihtYE-K}wQRds@Pf{UeWr^!eGA-0%(gy`q`bh| zblyP#Xs^+iPDF_DqCKhl+SuhwEQ49)sU6eMD1Vhhfqyk6oYrFQ%lTs*RfKB<0Iqf; zaNpIz-=3r0Ndn+n*DfwK02m}V&+oIOoksVO`zH2o7Sq9g9W_Q5>hQRYfW+GkHgWzq zZZiOlWiiyTOKpB$1PFiuwGnV)+n%NVr*&U^&+$2<=BiN)*7;yAM)Xc#Co|`a@h=F# zHVD9!eZYqppI|_56bd#2wkdbTVl#(un5o864#3#d1#tJguYkeW`Cd*-Hje;zL41$L zCF1F64-9^KdsuDCNf}kkobnn}Z~pfCr>D1DECh!`Mad4pFf}Owz@WT52k4S3?}T1& zX=n(z<@6E#2Z_g6XlAnr-*dKQ3H?2o;Z({RlcmvAfD9M`L}B}zu}s#1Y3l?G63iwn zA8cT7=k)IYz+}Li?Gga&`dtadU^ZB>>zJyO^eLk16Bc6CCc z`x@U|tBQr-G%x^|#u3}y@x3=9SXW+j;4 z4m<)DQ~VduUt%yLt;)AjmIv6U0Pw-C+Gr$d%ZWq;awnRUqjm| zZ3mV{!;XA@0<3!=<@o9?cAME^md?uhD#A7CNr-0$A4uQmaOxBH32jzV> z`@+T-mt%C?`MVWp?oe>I8Z4`kgrYB?7cre`iI;9gKu{gk1=_LZ>ct?tEwWysuN&P+ z<5lto;l{81^d=qyID3l0eHzGn;Vr_CfS@f3eTC7zE8^E*BJi++smYBKd^K?YY2<$i zFy?78i|+ctwD=f z4`%+^&W76ABs<(<37qw0q;?1X7hZ_i-X+~6?nqNb+9NZgEE?D_F*s@b8<^(x{T}C( zX0w!(*S0jetmzX0SR^*_F^*(tie>C> z_f5b1I?#z>PB94^9(94fh(X_UY2kI@MXj(k-(xA5fzXQ!XDMS5Sfh-|;4%>aW^J`` zTjInvg2UOI4cqT<{WAhE-UYm^bOOc^AFb;tZ8}3(l`iSkGLr?7hVBS8D`OoJZ32mQ z!r5dnnSuU!^E$W&V0@}Ya0XB2Fx{WZ-EqqJ;gMxH3)Te>wDi0`3d+wWbTA7p;_+)nD_Nx+lOLbUfF%5NghOfH11mCVG>y zOW8541Sypzn@$*enG^bwi#SPiwuin3g4r)UMPwFw+S zfk_fy9yxzp?_986;I6RVOLBZjkLP56jMnP_(3_@rMbQD20)QuR8#5CO1+*czb&&GV}0DT33b$>@SB@iR7 zcWlUF_pGFgoqMPMMps_I#ywyl4(yoNxG{<8~|9TMcIuelZE@T`nvEhz>g0Li4kST(dcYs2whDfcR&*=x4>>-R^jt;};`C8Z!O=S-x3QeA%8 zJ#^Ynt<^kk$7|t( z{PU2YONb=_W&bllT8Bj2fO7<{u=)|PNIYb7I~|JHZB8o5w~2*+c0@}0i|8~&3!Ey=o&9g{_vEKdn-~RmbpM4hwuIIGyXn50c1vuUY zz(Wx1sg}jcH0UM*R|c1ec?C+u?AGGY@N}tgc@4F#Op7Vs5q2iCEGNe1D(%9$ua*3j zCK}yGvVu+kF2{Z~iK~eSmT_-E5)A0wRS7V7HH|n(#uO3x5dJS`&txoE^@lmJdf1hS z({TdUOV3I+#NwXph{p3|U$kYw1YO%2Z8bWqjIedAlP;l|44?y#@mhcuQp#x@XYJSw z_RX3s8PYK@Zn};cfVULXe;P9#eVviEGrpVvuBy~xFu@gH6K+*GG;DeBH3n1DgR;^T zu(Y$nSKdknxyg@{WQ0$MGrZ$uFb9?bf9Sb=!Z5`w@fmZ5_jpD5*prg*zFKX{x$uNU z1F$DUQ}emmzFZqHY#Xf%tC52D=&;WT!)7B@$4u0zaoj*1T0gZ+8-`7_OEcaUsZ5aM znS>TkOe+@siMb^TRn=0fp92;j#R{+TfWfPEVtnV=$cfLA#_=@!0?-TAt4bQ3*|a+^ zdy82gN1P+*M3jv0rO;cnq_;V{1E7NAYJlwC4x^hv_+}Km8Tzk>{ws;#OB=vo1>i28 z7M>iaFvzaRTW4JWu;;&VJ?XuYJ}j9>x&9 zOrJCTWH^arJ7$?D1gZ6gw*cUN`;}tw8)-#%1J9764Xu`}73nx<8+`Pmjm_VYOP% zfx#fbr_1_qT8f6o(-!Fa@U%wYSp#0JD*&+LbsW{0q~iieFtC<=YB~xm^fYif5_&f#A(;>+%7Pzj4cM?u zJMl$`GQ3lFR|wnsj#-S|4FoK>N+CHl(wL%;QDwV2m&C8;=eey>k*tWip!VS}s9&&ytO5+W$#hF2$*;8H_fgs~yWqAqo5X#9>9 zS!5|$hEPOg7MeRYP~P(ipAc-(mX~v>BdQacCS7OC&ET(gli4X!YxTp;g!PkWqYz*i zA34gB*zr?4lf#N*y%>WOibjVPhII?oj+6v@UWe|1O;tFx-OKD-re3riPr9}-rqhFN zf)|{L$Jc~7ZIz{&h~{)Yp_-3>ot?JhPn5R=UQVZ=$W9#hJ+I|B(u8I0m6(yX(@NBo zMmSEJuEU}%y_sP%!7-}I#K)rnhQZoR&$;$ab2Qv~4_m=9PAeJb=4Pfyo1#bRP2_%N zFl=Sl3>DU9X`@@II=f7?;1=ePT=yO?DoQ~G0Y(6(0ZnPEg|}LUbf3d>z$Sq6-(_djrBVBhz3F*e0I^hG!iDFz+BFn5Mt_ z+*nJ-eE{L)%0%wJOJCRBeA#0qc(KAW6aZfBL^XQ54-Tgo=zGHP7;QHAFpcPcJTHcb z5^W={YB+-uak0RRvCuSbJ7zHRU_8=q zrM$|R)#w_Bhq@dVFOQpF{`+^o`Q^`_FDv5}Gaqy4==pKm2xx2{9#&LretCO&d^lVl z_D|2J^=1J8R@_~I{wflSn?k+H=pjfL-W_Hj!88_>u9jm>r$P#2QBzu_f6DW@Ry*MZ z-Cp0lY`*{Q^6{Ia>3`A0Bi+~8_zF}ui>WFY8^vI)Su$%1Uj5AUKAB9TKP^889HqR+P2Yp!)zk zH@`O?i^II@4Bovw{q;{j{_{`2HB`)(JpmKBoCD@SFw@S`<)^I%0{^N5!^A#TC?&ya zg1O5dP9;q{Xs2jrdn{tnMi5*X!Q`z?+hSRyK);dc7p;;+cbOhoFN?wQUTB58DqO^T z?5;E;Em`-tD`grLMr9igJ~M2O*EXe0Hf_&a*(_dWAXtE2kYId%m?`<@>jMIx8LP`- zl`ILLwyFEGDPj9tvO3&?KO~>FWZD|q+dgo781R`H4L}@kKrZ93-?U}*ndZd_sOMy2 zYz^7BY`LlJ$+8J*s%u$hj2BA_VKzb&hDo5=U(HRe%}ZPKwIj&Q<4cMgz&Rd|5~Ymn z&*Ee-Wja2yS7Hb!9^P|wc(+@u*QKp(b9#zfG&3@EWgE=CmS)G6GHCd5RgcFTk*KYi z*b}LBdT7Uv8OGIZ;_%x+47O&#Nrc_c{b+QHErsj1{IKIEZ3Hk2I91Nvg;>E#PnL=8 z7_r8a*=1kM=YZQ*K50wj_adpGtQS0NJicddbCAg74-2~2+}90mKwCLAL=Y8xOd``}a z!Mk0ky>DJs$<$C;49c`yDgdu)Z&|ql!)su0007?YVi1LmXc31v9@gn`GsY1?45t3` zL4;b8`P2dE+SD;vDaCl%!pF>{QCSN6U@D*pqR6lHT6JY_0eXqP1Yq`F0ewM;r8ex{ z19G@Pn|h>{*~p*7cBT@o#7&*87O9xP^BXcBO9$3|@!Sj%J-_V4k@wwE*zIY%Suf6) z-Ql=iuBSj>1ar~A;L~MQEpq@c5clcrmKaO`=8vaK&0!=Qsk6hx8r83`rT~4hq_X+> z!~5OOe)M3yONp3C@(PHM@Jw6^||0aFqgBoDhBNe^ft z91K|ZG_Cn0{*Pb$D*(7&&MgD>oEBD6TyVMp8ZQJ@V+Q)prZJ91<}YSgTnezC!)AWm zE)JU+E~Yj=OMvj5b~EgFfLnxH03Or7I1z>Id157?IR%6*+NugohrFgh09rbWJYf2o z>^Hyq#h-rs{cbZ0bck6!6Ge8EX#mQaVn>4OL%|TH z$BlM$=89&uZf>YvPR2k*Av|GhCajE^0-$ke42i)&-$CyNR2Y;o zk&T)o5}}QsQW*B*c$nutQI=I(pmI?JB*fR+lZ0EmOhBe}^JTu8bz)mr{;a5MZ?p{9 z+9pyBYFc_(J_HGlq8_`n2*X5KtKeZ_n7?AMS(-^{i^M=>?a#`wmEUiTv?o6dOjk4o z_>}mE6Wb7Ho3oCGg4&ji47Fz)p05Eo&jwWY<1q@%1g1N>?GN7!MmIz6jxqA@K~STt z10Fo9yhY{LOKHnmuHw}?!IAMrqv71qSza|iC^~U^7sfY!_}Y)(FudqB&{ycMjP~9E zO8sZqqZt4I5CBO;K~zRe14l#@x4>M(ajQY-8#ZAvT};4c%@_bYbOp9mf8#EQ+aSl_ z?70Tfm+H^}xwMdGE5JD($Ci7klSOR}ju-)ViM|xXumDUEY3wbu|Jk%dOBq;YEGbb* zJA`uU=F5Sg@ARHcSTsybr=6?Bveb83ji%xi{|iE%kKlC2_G(>^4vXsKa%9a4cZV3U zKPJcX_~D#BUU1CL$8^69cbkBU&;VT-0v`9kfM@w&Icoq|W4jI!n<`}58K8UKtQMzVwhYdSyT2?*0d#YRk zZV{Yx0^UUaedydqt^lxD4qQ3n5qfPKtvK8@dRz2_SCzz6%D~6^MM# zfH6+$GT+v-bya{*PsV^r=@!A?a@+`T%eH6yNa0WFY!g~ceM__GruoPeAlx*>yYGPP z5-hF7A)Y?~m`YwwU+Tf)oEVG(fB5m6_joP;`txt`4D}C3Mp;_h!B_jY%m1~na z6-v=sHVRr?2MJy-0=jj{G*K1vRbVj{K~TzXvAm+L8wgO{D;OXIdK0mI%|Mn5Ym*rAyEqb^r0QWR?0_JK8$u;KJEqZ)b3#*B}WikcMl zST#tZ0XJ~exM0470E}HxppqQ`JZdtN2RGBelGL?d6Q#Bjc1Qq&8CI`jHj4 zb(oIDyybdSNdO-FzK$ux2nHMgy28G8X-QKw;1&=oU0VHHQsMs7}PVy>;xwZB+~)hZ$YS9K_63|Y}i#1n?=BR405dzw}SAFKE}Y#Ebjp(nS~bm+W@dOOW)c6=#m8E z7{vE!-YaL$WI9Al%MnkCa-?0;U46he2q5%i=2!qG{*lE3cUL>(3}}k7Wrr3HtoRar z3B44nqEIu?7Z_|U0zqD*vX$zjFBou80Et_yd{f)YS~k&pnE$9D;%!!onR#X{naWx0 zwQkG`{mm{U`to==nK&Qg(=I-4qy07p!~$-C!LtJ7pi`B@<=g=Y-mHR6jkUmI#g`*S zz*^ug(D$^>NPh{;YJ3zOcNvZV;52Fl&b^o>she!$aM#Pn#=4Gth|{0f7J=916Gi2C{d?uA$5#(jAsxQGhPhHpsmIT5LvR9u@S? zZbt~foD#-w1NWARS-=u7Y|wcFkOKh!<~u+^kw4_y*;+3U`dFhx07A2oSkmF}V|Fd;vW{c-3b z5`T0pZ%OqPc4H|9gKxdTiXVlJ>-6es_PgKy`p4h@`f}W`bDOf&*|;yd2P%w8lLmge zI6_UC7d$aK7K=#8GF6iRNcpA9F<**P<(2em(xb`#zT?T_^f2@&-Zv1DY zlv{X`Gi;m_MaD$@EgW7MpseP520HQOFiEhfGfHWinz0I-EGul6m*BxHVc;XgNpY<5 z%yl1j(ld{+eOp}ONwb(wW<{g%*BdjvOe)-@rW3%x`82iaP5@)}@k;W!!F!tsrDOCY z_osLvV>j?RBcPPi=BACJm5fF?tEWS^F=eyJgPEYV%(dyRno!}A7!2s0h=-t0h_#y1 z2>xx8!A==EI$T%)rVKJLc(oqm96UI|LKF|v)E$pK4h`cg(CghGsQg6?w!_4DU86?6 z!yR_;UBEVUEy`KtsxGQI_9bE}wcC`e);C%lasioq#$^P`TC%JAo7A?cTYEuXYNi>8 z!Dco|+o#3;RS5}|cPW71?Y}~F2Cv%vuW;-RU-z6>L;prGxSN&3iS%SC2G=3cR{%KC zJTv%i5WPVN>(u}T3k-)>(ExBHEzNxZq?quCk8uZ(IbV3d(Rkb@;&Mhvlh1efLnoB1 zHQS#3s09p0gh?mM`_odioB+KH5O$q4>S`+cj-6Sc$oX`bO$Kax2JBH)1Dq1X7wB7W z9O-t}>Mwq)nP+L7F6Vtf@1k~Ri;?ws(B3PtNdN#dZ;ZeRz?gcI2*9VGi+vOO&I0UF zik9_jqT7W0$i^<}Q7?Mp?5kB|oa>Lh`Fcop&bBGUelMd$$0Hb6gaGa$E(eM8K0%yz z;Dw+sSSUyHNgo&t^abt$eTDdHn-$R)N0xq>d1eimzgnpe5=bzIl(3=+XHA$tq3$4M zbR>mB1*^qW%7-)=Bu{1E0Rb4`A@~t?q=r`*xho175n!;AQh%78I~4RM`i=uBe=?QF zb)S6Va$3HBIRa>3UQVauX1`k^wi{8M1SEqHi;CW5rA)W_=G!LH^Uh!9fwuGsv&b z3o&f3VoDa{B7nnD7)#2T>44ezO_i|r$pkMhe(2qq97E=ZZU+Diy!`dAegOa`1Ew?q z9e+X501UJpYzC8zCmohiEVB5O&Y~EBNiteIGW(3QFdQ-=L6<<|!H_krNxBoF_y8MB z06F*-?JU{E)ObJi$y3SlMG#Gg!r36^j=%s~oL5fb;Ja_X{_ns1@t=SC?Kt+5&}k$) zhAK`nDvKeVwaj#{euOAuKp;eLmnKcx`d5_40v1ZDyo}EKIRKcRIiD9IrP1R{lY+=B(LpJL(6b^Gb(-49M6+g$qj-O5hq*~?>Jm?*j)!xN z6N)pihnCexW|jG&qGyB6PP0*q8#_)eS>Xsu9G{N(yiI92K$AYEtSRxq+?5%~0S9da zD-bxxCxo5tq8F{)m)61rW5O`7O>GTh;wVePG$_=*syX@nH4i55*Y@MojtdjNv8k1w zWV|mbF+tN@(VEa!N2Z{u1GUlVzT;_z`v9Ajg&Xm#Ec1cKpy_~E#o&9_ZL7;+moQ9g z3U>sSf9DL^qkcUozV5uMqd$ukJcu;@IlFYK^|^danU|0O0X-001r*o?x(X zWl#W)k~fGTdgX^-5rYB7mI_PnRU+7o^Ehcm(xTkXr-Rwtn@mUS*PYD<>$N0KmrHL_ z_5nzu4XIPP(l!MO8yW!S#BdO|z3|=-ZpT@Vte3>Mm<$T(lSl zT40sE#}<7XO=f9sBKp$HL3^^Cd1XT8Yn3jO`_7kcwf0Gxr3Jcd7mGo;bU2Je0jzY| z0rZ+Hklbk6`4a$BlVmcHM)6761-G^dZS9?IPpU3W2FZOXoguBuyO3fUgkb{k8AvRV zXpE2B1Q-n5T}-hMkA(6r13>a_We}Gri*pOTI43qY${WUlaECi=MXXrZhAuxWANbfaRJtX?;FiW zIZ5*MhdowFrlB|tD%nESo}`gGbrX5Mt`kY*&O(-c*NYf<1JqeAq`XS)Cni5}k*S0= zpTxiY&9DCS#~%Q|Bgd%bV%-F!aiQn@422iK67oDCBy%1Vfwh2Fp6>#|l^dyb1wakS zHSM5|?WN+IYZWLpeJWGnY${>vFJ8Fp_hrZ65`ayzT|pg0SvsP9A?V;PSUSOj=d=9x zzxmZ4fB4;IxrhUoTGrfnO>+@YTTDDLPS(C<`f(X8p~lRZYSq&Hq-xbn^|KF)#Pql= z51XkK>lc(YHSB=8C?e^sW15uuqcjI)_t~D-I7$sj?!`Q+6cS9uF=~>7@=`gArouQU z64QTE$BV`FfqEwR5g(rC$2C6EB2P$>LWM?-FtG!RQdtNViSg;8$}~Py%!OW=$QpwI zOV>0b>Qmy_I^x+9rpUBuVOXo469ixwgg8|BZUh^o3BVjxvQ${)v@-vC#+Ne!?0*LO z+WFv_cB0{ngWIhEB7Q|$oa3`J@j3IlQQ;@f&^Hevf!oa>>_H62v;}ghC86nJkx@;W zHR%kW^LPm89Sm*}7KtsJClWhDprFhw;T$krP9pGNy!@4>$2B)DL>%ZlmnkDpyPZe4 zk}L*WCnbx)jQ>#{p0Z`yVsJL@M`3F;d?mPh|Br}H>z`V!FA;aGpCE4A5;whn00s~J z*Fe3b=m`nNQm`=A!sNjQfW!E;#tncLoS4ne(m9;BfO!C8xlsd%JD(3%3v5X7f;-jR z`11f-)@u(?H=PYQH58=x;J!MW^!gfrL2U&}la{nuQCF*w-Ydd(Gvh0F!?~(g4ulX# zg4uXjaTr|m=2d@DkE$hztfNSbqcvUV838Pytco=vaDwLs9<1&N!0ceT4S~V<5zw2@ zL4O?ttHCa0qu^Ia?XTawqG%{KPv_R z1BO?XkxS%EBuIcalmXw+ZQ&M^Efgo5zS7pAsOsww3%G(-{@N7xmz7I(p+(73$sZGm zpho~;z`3-QPC}X$;-RD!OGi$vTdnleY^OT;vwOU3o*s{v^X`1w0(#f0InLj|zno4h zDqGz~zM}vD5CBO;K~x=1^?F;bHU;?Z<#D6p8`YxDz>I;-ptgY9m-h#dUEBfaE4^2W zzGTBx>cAbo`R4NUv?1u8uv|WGfxGOZ`Pt82C_jYIiqV+%bKibEee?B!)jM(&{E9N4 z?0mNQPjx4Z>bZa1<(y>Qt`hNr6hDlR;@d#4rab_7%ND0BC=!HK z2`B8h<_xzy85Lb=iotC*h>=UhksAi1?>~O{>z{u7`S&05G-4hbA1axloVa*7+?sIL z0vM*HqmbanOOdQyHV3-H)7hkq7H`|-q@D>eB>>y89IMBR2V^nWO7PDc&lxj5tK*y0 zCo!*R>{VsLEsGW4lq!t2uZy2V?wfh#iL`~|$j>ut>TER^3|=J6JOc;`z&H`IuK7#~ zO4Bq6FwApcFnKU*ANGJ;xak-&ox18Y;88=-!h`hf9~V~`EbxQ9lunlgI-%61 zOE>m*6gR!jOPjH=WR&MJs>Ir@R%#~JB$(~cRD{Ou;+Bm~!#20~!LN*!p{AED21|RI za%gsA(InBDe(Jdl?z7utxda;?)1%1_4M))cxH}x)0fup8i8;$Q6#9cK9YzyJjc_i@NJa134 z&aCLIK+EP%Rd!d4L0x|e@;B$}xn0A5qyl`d!?A_y*Bg8;MuT|zI;0llkT1Plfh z#-q_PK{C=Ro`nGVj!T(+lHTt~I??conzrX5b`02L%&Vc%^q4cJJBBju8Oh<6dz0xDC$R;Ia$P+vu?J_rTg(j)zrv+QjE= za$MtflY&MF>s^JL+L!*UnRgAnl;Z&UvJY#I?=U`C707X1O??(<)eqnn=&SR-9Pt#N zoXBZ`xgvzNYQ~ZUQ1?gsk1!h*Y-E!PvA1CMtHDG4(*4b}?)MzHxA08AtX z=mLomxC4HL+uy$3QE!roHNr5?|K;cJzWwHMI?SIyj?Z%|_<(f{0E{5_wdrUe5E-!1 zP1Ffs1riyy79-nr`gEB;o@W4KY_PNB0iif=J5qN!$U)r2t_*27XAtD^8|`P+@k@nS?D%22^rZ0A^D(w?1b2Ru!Yz z|ICV}9c`rdiwq+vBm=7`M}QmI-D6YPc3cgg7QELqXwoScCy71Z8!Q*)55N1*AAkSr z&2lE9TG5ELRnyiN_NC3ZHsxDVVYxm^)A?)(z!Zo!nFhM6u1mZkd|ZLSln*3UG1bgB z1v??!9}g@09tB|Aip5@N$=vFIJ4fcU@*)>a(m!-EE`loe7XaXNz;cXqU}-Lz=E1lR zt^jv1cqlDD=M=KG7%VC1M#hqf6RzXdwUDg_OiJU(5hIcUPHWxg@4{+fUddtNmXb|j{J#KTkYE5X^(=kAi|>VH!}u{$ zp;pj(lacPXhQ0fK?|z_3X>2cwA_SuEb_>vJ5z?BO4Fq2iCA1prs!vvioB*~}VYYo- z^I!^nuv(9Ifu3)H*K&q8!~V@kcL|oV4;^WZ?hRh!#PRN3U$VbZ+RgIeWNNGrzo5?n zK$pVH3{kzv?&6|FwpVJdH6OPod8f>~0N{EmF`KsMrPX%?o$Ugg5P&N{SKs}zJ@|+A z;2(j(1YptDNLyLnW5QWkZ#PQYjV$FYMK-7?S(KuvECWb^2uA~eaeq8GFdqMoB)D1* z!F{*K5J3`*sMg}R0QQNnwtZm0fL;<`pf3Xam}5==U?!ynfS2mipfne+f*s(vAUKz_ zv%)iAp50!8_hpy!#DIL$ilu^`xEcUp^$qk`_XX%m5f`w!3K7R`ayg^~VDW$4`1`eY z+6emMcw7ta0&#)6h|4a0*pJy@1?VOB74!wE1d1y1(M0{0~MwQ3Jo z{W;CaagLXlyH?#HAwKU#$6YnBW&wa!lDZFYo| z9lR`O;zv`eJea0mroOSsz?*1;THn~u0Vf(BJZv!7_>zT<2C7V!=YjOtYhRU}wPg!5 z{SBFy2DlypOQ)GJyVYDY-H3_7);-B;aoBkz`^Y5Rv?yjH7%hsgEr$Wa*HpOId(-Iw z((aqiGI{2vQ+m)A4DQ{CSX;m4x&29ztXFev>sQO!VqVP3tof(9jo4&*{iW@k4h{6e zy4D_NvEK@ru`P?m_@-c=vL}vtDSoF4>|#s296wEmQPc~=ZV-UGcVt93>_l-VQ6WtH zuP++V(R*|)*MVA0vf{ErbJv`3u@hhAZ(~g8DY4K=o z_^LPjr|#e%JNC`hZui0F5C{+6fbu#BqA%cCa@6%mEQ40QgklK_#>QGa2)F_s z6CllAXe0GdMv_HT>AvHB@o*Lc!K1b`OH&n7&}zNF=I58Um-p`;0n&#<_457zSOwOC z1fL()ID-D-WL}LCxE<#ozk7aqy9WRx2-qLLd&D1t2Lpg-ix@}tUa|gk!oqi1h|%x4 z<`@Z%QW$=_e#G(z9;`VuEH0Oa>a59Utc>hyeSW9`u~_JFG+n`}2*$ZAz^z*8MVnkrd12Lo<*UlV}4B9<#8nBQk0E>now z3q4e!%8{M#jJz)OIzCBu=q-RuEj09~Qpuf=_C*gG7s#%*!AnP;K&+l%IpZ{obO|Jm z?cZtCxO)6UN@I#FW%mZry88)&ibZMURI=t+c{gFk+LXYY=e2(@Q>HpmBcju4wxe84+rilTJugFT`Ia3O{gR0* z^hW_!fu-TIgin!(oi)=Cba$Y*X@GYsb;~l*5nD58#Cj^ZFGV?|30%KQI7+XR3Up8w z!?a=H`ldY^jTvoqNEucDmiNZri$|{Z`nlcqX`2 z2!<=kb2lA&UT-{abzb!b=aJWTT#YjE!fmVd#(S?U7-8b+U=>=;LSK_{EwL&{xn)tru;qdh@(od!_Kf;@7Bl;96+%&YlD3Wv$J46soNefCaHk*6Mb)D1*B? z0C#Qc;8ZoFqu15N#u%{B7l^fNcI3X!Ze8BFh?_5!Z2eKeE#lHNe2wRMv2EeKQSEub zGvP(XoP6HNdcGX>iwIr@)ON=qm<1>QvbK)rL$R%}=#SRw8!NH+ONFAF`qI|^dObcMV7<6H+!X`wa^QL#d?$K8MsTIdD;t?lFuobQ4gUgH_=~;+ua8D^`woaGl&o9nC zt(4h;ol5`!5CBO;K~ye8o`$`qNbviIoB#Kpe~APOj{#uz1dKU_A-8VcW|PwSU@N=2 zYg2GC9%IQ>o=<8BZZi!`?pGjc^T93}MYcA2Ip}+Ndpo<@511i_$LIkJaXLwLO<*5e zA~Ru=c)bc66x~{`KE+^oFc$)OAZ;3{Go$aj12+mo9i)iO0;DK?cyMvC?pOZ$tYPeKf_Fa zA@?eueW{ZQ0FW;r|Z+qmk)@ zPXp*RvX`;;EU*-t3^os~0zIMnFGPheE}rXusa1m0FfHG@I&|KWloke)mo61Ejif9R zyjYIsi_vJ(>JO7Z+5IeveRKF7J#F0pX`eS^t3=~^Yy*rKY}&ed=l%-8HZe8Ov~$K9<2#x=rAzZLGkS|tE5al7q^G?TtQ z1>m{kt`;)gauAPkVgQEcHiB7(C5vrny<==66|ArM3~1J-gv%F#UM7g5XDUshcIyvj z`cS8o%^-R!DJvsQw##YPJAkTT$Z}A}Jx1s&=-q85itT%p zc<^d98jV^4>HCNMc0W~Yb`v44LWnCc_SWdJ?sP@yr8D5;7y`!a=VP zwM<&lV%^t9Y+V2nQA0Afa7O{~&3-Ka{^jSN0AQi7`7wxvR8zY~$6z60bYNDu= zbJa>-yL($-GA~Q!9+Lq+0aPm(yLNnZDTrGl8hsgug(u-Kqa{1ek_th4ZT+X+ZmXs{ zEko=2)q2|yYes2N2vI~;tX`)&=r-Do%52>G;U9nf_m6+yt!G{aE;K7ya|rg{F&xpu zTynoINJA})GZVc`+arqkSu=kvXl|$UcR6kE);)drFklwSz!9AU-`~vj?SRL$(u9UG z?;D@b>Sp1->3YXp(=roD)&STWTZBU9H1=1wCMrxJwLguq#_66f` zG<(<5X(e43g5I3NFi0#It|z78sIy#61jCa_XK2@fgk~72Qv0-A{Y1C^qYVU?sxNFJ zD0yL&v?Bl(48KU4pOL8+NwrStw1jMZTipvYZyp0M9%7?T8khFpRP2l6)5Z-LA!eXIKg%ExFq+ z6oZW?!&d9 z+FPSHqQAQR@Wu7}&#w+wGt{AN*627BxLWhYen>7F%4>#$*XD&Ttc~-F!fD;FJ9Uh6 zSx|y)=M~~Qw^!5srVrv`5A4b3X0%dHou+EAI(DA8kO)nU)hzH> zwQ)%;i&_(%HtEi;Al79s1*p`9eWIy?+YVf0bAKrUx7t_dku^9EI3 z;qGxaRG0{;uWqq@2BmI&7uScez8xM+J1fq?LVbOex}}krr)xK$PaBIHm#Ylh0>j`z zGV``9!7$BPx3+H{_+Q)j1tlin`FWr0GJ_Zz=R_1!j&1F(7C9imCBaXdol45PCs^ z&63h*&4aZ=@N%dObZ(?}4sl>9iey1jg~Zf}1)Pq-2vTAhnJ%9uA$M?c@5CG8j0#;1bY z80G5oV)+xIP_f9DJ}p*06GgTu+rjI4`+2qbNu&Eh;H{usN}CdW$T4xPFh$8h9uq@_ z@!DPv?kn^a{dM#`gZ>8e?LO%(1CtiGJ553%*5x(wq<E(9 zMj4MBkFmGc&nO0?tZ7xw%f^+xZ;Ko<01p5QZiT*p?s{9>?COYVumkWMxSnM@1Cr#^ zX>PeJ{RV&|`f^M0!9oCON$*x|w~Gqx;F4fWo565U=dmlYnjjwu zG4#-N{hM#hb}IDM?PfKa&->POIs1LD?#t)AMb>|V#Xi;aQBBV-wJvKz>n__G)TJ;hiN{G;0k5MYbjsd zzg^wlEvWS(>I>@?1}~OvJ^116O4m}WnV}=bjGmfVeZt6KX?-`>Snq&EGD3?l1Hs5k zG2u$1GX2Aj!N!2=rQE~KLFh{jSPU3_pHk_(Y=$}X-7r^dUZgL}Ct5{z0HP2&EmJ(h4+cXGcT0R5eeg2kJyL6+Dk>5sbBM=>CJm#Dzz zNpJYSlk=kTr72Su&dkcNRs?_-)4>nlfBUbW{&Cn$>t$`}^5!w@4OUD=)3PV%6#xr{ zg}$S%_KUhM`gUe^@;YO|V6%}~woraX{{;C-ph!!bK$MPX05}XUd7FA9g;=-Jkp$dY ziPY=Fw##Ycpe9s;83Go{iufu(-?5L#58bn2Blzi7b%BVu^ZrfYt5aYa3gC~XzwluF zEgjPrO%oZySOQ?rGdFw~rjDT@`Df$q-ebWPBmmZx1q{Qh;=qjUFkAyf57T3W**wz3 zI~|YL%K`Jj;EncGz%WBf`Rq%4kQojVx(4gJEaG@cW3t+;YG_GD$6xqGtvLf@pX}y#o#%JGo-ZLafs>f^Ps^s(n(d zn&W+`_B<$Fd0N=)jLOdyQCiYm4SHuu=d)Vt(`N6bkXY#3>b(Yi8PoyZ(43+ln1Zg0 zTczOI%TfBJ_o~@R-F$mb4@L_b>a4R|sqva17&D~bvz7cw@?JGT4n9QUVgT3jx1OP7wT9jv|xBWOCkWLF26N0pTXcL z4a5_u0wQie+e?rGbO7dr2$GYfbAntn1TvrZYo}hE95+tVun)>91JtdObQG7d{jiBqZk2*KgP<2qA!(TAucUf z0I&`y2E&7e!~n1sIBi-H#Ig48W>%jtZ9xndF&GnPlLQiEq)~@J&7UzXI?vHkt`)NY z@c;bh=Wef+FJ!C(%g2zcwWJ~dF47)Vujkxd?!3`372kHd+!Qu@bULMh8KX7?lhp9^ zEEq7DiXA=UJ(L*qHW*lPXVah|>``{NrE;8Fp*CzQuZ=Nvxml#!T-ijNm_Eimk~o_Ckipqz|&GHy2Lf9W0*j`lVs z7DpzbX|tm39{^SefQQ7CORL5g4F>Bg z4hrNhXTh0})JyeRG4vdGgESJhQ8HS$=t%eb^$5f1v=XKc1MRb8!*hgfP%TYdH%}~t z8!_cekjkc=n7S!7)G)uE>XTb##|y*E&3stR2o3s~+y`752sC0VxMYH?Lk=UX;JO?-f5T=+K4}^IlyHto9?TaV4 zg^xNk;_?gh1{OOqJ!|@n38AJ{YOy2qrY-&o&`ZOY`40|5`da8K4Au+Uh*A5J+_-^s z_e@y35F)N?2vn^$bpbGtoFM{8Y*rN;E)ww-{aw{TUm@;# zUOEYHhYsP17+Tl>01yC4L_t*9=~-nvErY=+5+?@0o7T;)bGz#wQ@M8=kD{bDiS+T~+lPl^G)}+? z{O)f1@Nm$r09dg!4)rS`>+Ud7=ziTJh}D7M`TlWzb8niI?>-zALS^B! zkQ)aiK`a^q0Il^xdzF{cukP2aj>V7lNd1alElP|EAu*pJ_=@ruCGcQ1Kd!^icz}sL zxkD7_%V&$NeYKEzygdql|MTm=+nq)(e+d91IG`mj0Ae%;xy4>nj*Iz%n& zH83rpdDhk#*5m35-c0V6^RIl4s9-(GVFblR3abSZj||P#_G+xTAv0Oc(mzE5myT&G zL#-MBR^%^V<}xqEJbLYV(}l4_g8%)me{R+@0dS{LLhpsshMu+1r`9cj!Q#QIN&B!G znzx4;S`@so->2z(qTMmL>x8&PB{&+pk`+X}*TlS>jN-{iCn}%|^FS?&;-C5YjqO+1 z3ELw(6-$G6f`zlyYrH3`pX3$7;Bm@>N9{tZa^`yl8*SqBKmc6(0}{?cM-ksByAe!{ zoCJr=xu>Zem4gh{_0J$OyjbVTwqM(Nc^UddvSUGyX@ts)$-Zt zMiwNF7@YHgrD8!BRDLkfnIPbt%%%gIS@LoZdjbN-LlP?FT{!EgXha9%IQboV=)4k7 z{XPOPMiKfd4S=2XzI^iWb)!JM0#h+aE6oanZ7$Ylc@tBVeB%SeuRveY(Qsn?f~ezS zpOA9jEc%qO+ZoUe-bbKs+I1DP$GX$#F9Slu4AC20qQlJJYMYU8h~TFL`nvEWlSRSY zu#-s|*3oSbcEHxF3224B`+XCM=H;?7^USsgu^?7JOF(%e1GanC6~XO%UWlO|b*H0m zP3WuGuM+{V$nI)ZUd@W2uMX&lj?fGG0>Fd-ct2|#=FO{hhd8+Eq$^=rGcy1jTB|(g z8OKst-J10arch$?6Cqqv<8uLboyROX+867D(3uTL2z}AeU=Grf&zS4^9HhCSE$zgz zoSwtExbMjIYs~V`#elH;7S=9iz3qCuSqX_pGq>}E`=U4L0DLc|iyPAI?TQKAyE}6< z0+R1t`FS*HZ1>ZLcSliMAu9rtS2qhm?`A((Zn}r-$<^&lalD!8SMNW+5>5-D%^3J- zjti!W=MXy=WAGXo(3H>3~ijE*>UUDgC-T{Ux9hY!7;+o8v?POc|Ij zrIlQgq6Y%$SQZ2R{NWY=Zs{A!Ut-6G+CU_rS~zOuoQn)x&Cj*c zMJXqseWmx0ml4iR0^m~a4FH_azA_nvcD>WAHj?t=!_CkC{{HK)J`THe7_c`{=Kx@2 z#q6`{6is8?`>@0&uXm%(yzQr4ZaOG0rgeo|1t)kV=|>$4;Yc`}VS@ut)Kaj9mq8`U zedvV5Avkuy=(HC~0m-0OFmj)?%p}Uoy~whn?6&lh@VHqTCWU@d95hPPZgoHJ?PlGH z@T`7m7(7VK^~;MC^kD0iK~OEn0^l$Ic>DQ>J<~@tJab+};ltFwp>;eA(9DXtO$L^z zBbrvsW=Nkclc_X0(U(QXA!li6f^BcMG-e-?A0O_ zrZo@d$_Ot-VtTLA=BcNIGqCz!@{o?f)>q}|i(4@LRsgU;BpwLdWR z82dK85^Ur0KKi8(f$l|xXt9u37@W(zV2aPKCYRwnrNY_Fo6P0wZ1$CYtW^txek;PT zc94@vhjA>Y_#SS32(M+ljdpiF_ESAeHeQq%=t9u>X@ETr7%VJ*hWJ$K)cX?j%@#fZ zfQ8C*CR>@d^*ZWgdGFPk7l6-1c?lis{#x^e7_*?7zG&*ZG+5CBO}Q79tHHQrsbdq# zEJh5DR5+xR2l>&oGM<;MXUbKV#eIdoU_7Hrg4;-Z0bqKVX|oFMgs$f$=&jXX1HhD- z$K#w3SH$;lXo0=~O}*S3i7%jQgm_z7@2cFn+t=2c@?ue(&GPeUaWN}J0N!s6djA`J z4S+q$%V}vdtGc+=69A_SxJK;f_1(O&UzirhVbvg6jq0S2^VXoh)N~OR7<7w>=G%y> zpM}hx#?cWQ6-_5kELsKaLm9)+s$?l;H(j6wnl*@J2tpt-v0vNZKbt`>EbC$C^buAV9hyeq@2#vXLM+JFpMXdFjOh;M_MkUGs zbyVX4HudWOtN?r1ZfXVOPCbR)m7y09<#O4yJ}`!a9JF|_;C9$71HfXy0^qf9$P?y_ z4DcWE#?Wku643A8Z3V!LA(51(e~Nb5IO2j85)Xhy=~p_|i^REMD!YJd?6VDp@YG+A z#;a)IK#Ne?Cfz}?lG=Z&z9J;92!@$()3%I>^Zz|7tTV^XE`2`zIt^KAOEaCro#@k` zv;`1rhme%^F0I%ptsl#!Y`axMm)>TU#$DcIaD^H+-1;yySfP-G z-bOPinB2GRPC;Z^vWaO-jyeufrRt#Jkb=S$CpzM1^*bX%;v060U&xbf1^uK!BW z9=z<1UUx@l77o4G|1pUKpH{>dA~utuseX_3};>2JiV)ZH&pIeBr-k*j zq(EbmZYk+r!o3=5C`~{Yu>T?YoVjR{;s8W{gVZhcEQ_wGdsn4)G-g zty^Y|bPvNw3oU}%J|y_zadYLn*SH9h8zlc}Wkpj1uFgiS{d&Bb^-#Ljf_vBwwC+;{ z5FYC`sh*K^B@10GUI?Ok&D!tZzy0->e*wUyavptrhCo>0;2#2D8*MD*OU0acun-qE zoXwmobZiHgFWiC7ye1K`qAwcA(feUKS)fJ#6u`+alKzXRUa93Q3Qmz!*WQAc}yBie9F7n7(k*A zOCb#2E;@&GpVM1NY>iHizN3B-JVs}my8CfAygrNtb?6znbd>oc#o=ImU;3}x&3tqa z(gLdG4=HSYN=AP@f6K~*j(Y?ui&UAg)+lG>%2f0y2H9wPY?6Va4fp~5!v)~&*8 zozyl`tZLIgCGG{?2NfXtBJ*|lTx*|v8wEtNLT9^jiyrR?8=a8{}-FB|svOXz1 z2N^2W8pKYP>|(WgQS*jd&Qv{y+Fqy-`=n!RI9$)WMA&;e00&cd_nD!`QtLirh{6Cv z-)=)O=`qJvmpVQwJ@x?|> z0SR8FO)f|PPA65}-d>Fl+n#N@?H{*};_Y&%TN`(t8x><{Rk#a0XeSf_n0l3%q5!y) zRQ~w+qX78lfBz@|E>{Yv`>A0tgI?`s2}AX^D=oL0)mBm#9@lF{MYWPw=uRyY`ZmRS zeVQWC9%wdcM;UspuveGppkOzRf% zrL^NQRSYBtbq;rP5{rUP>CI0k{qMg0^H1M@d)zIlH|rA+1_u?Yt|?QR?e3sT4LG>) z4yvnZb2UvY2>FZv01yC4L_t)%#lc#fp62UZox}6eVaG$=oow?d?phbL-=p`8ub0kP zn)7Ldp*9>kAz)Dm_v4i8t`$L`qgB!dRAkq&wlV7&64N6sDy-wBnsj(RgS#} zJEE^O4J~`oL&+zUgjmVRP1eDM1f{fG0k@~a zNHk%c3>g~+Tj%E1oeG!jC__y{7GNCpoKcm>^di_M&YNb(R?T`Yx506 zm|60Xzp~H%MKMd7r3w95(SN6}c&1&u=>l0{n1LmKSyCx_8}@ZD4eZdXPo7b4v&!&t zLz>&@#kpY$ThA(uH|4~-uJWZ9r|2sLWl~7T+0v)E^7CTtMWqpBHweVDO10ChRqzn_}~7Rb8#h*1fzgZ#R|Qwz}UL z7z>q8(HG(i2_^--TotD?W75;90q}NR#n(vmS8%(S6aipT&@f7^o*?9IuR9vt-Q{ccS^f^Cc;Vf;dmD1+Bbo3MFC=*tt==Wo2x-G?AF{j$y$X2Zn@auU|8w)iWtnXqvFdY%uRCIrpPVy6$aBC9qPf} z3npUG)SaDb%lm2Hzq|Y8U;q62kDu$!SIZ#*9-XpmhvzBWQ}h+$3U{^9bP{Zwvfs&R ze+ds}KYULL%MDLsbdb9zjdmNlsjPD+odc#}QAchb6@ zdU7=mu#rKr3Wy=D38IN9Rw_@D9gzx$8DgEW?xzH!^=9doaFJ~^!X3h0B(Y*2HIGk$ z8MVuv`;d+z52hPA!f==cN`X13UZkoWrdEv|p-)>e>=aB#+Lrjy1*IJW1JJ3%(gl9Q zzv<7)W?w0oSrwPD3Ry*-vCVLi+F}vuYgvN zDd^4Qe+K~TNA4jbZFg2bD<`io2x4H#^d>8xz;p$-`O>E_V4q@o!3a~R0Vi(|f;R9& z{$g05BRY0zMe`+v0CGAH^SFklUi59WqF2&ItD9}LGfCr|(BdfU>2@-`uDL-NW>0dh zo*5~&ItI*wXZ^PC28fR3Ha9GIt~Xw^+h^l(VLmS{m)21w02ca!!H0c)zpYz4)uv*Q z?A-V2*s%K#^@zT+d2T$p3;;YUZkH8eWB6K{n|oss9=ta6HMm9bYQL;)=Osnjb!Dtq zG}rpGguauCaCbSX%m<~#P{39+44%}Y{3LU|&;lVuuPe%X*+|Zkx?wP5Lc&+UEy_xC zV}S$=6_Ao_WZa4Mn?_LnAtMuk(DImnoOdOORNHJYOtU?DuU&VSm z_L<-@qR=A5aN>t|$JJ&u6EwPTv?28ML~;9e`SFi8??3DXz3<-d-af1!9yhv;JQ&2) zp9YonBZ66Dw{su#OZrsnwbx1gjn-}vL;p@TN85(#UzXu;Bw z)b9uF-_uz`IPtjG8g-k)uJ~&W;|()@?$-Fe^cCyN4O+^`7WPY>ZUNESez$7e+I6)e z0GsLk*ergTAn zU0QUX>Hmt1jn@pdWC5_}km*&nNXLbB;<=|`7MTl7K@#g`%AR&d>%0|=X;TRFl8$Ej zNc(K<5t##~HTpLW4RGRgZkQ3KZq%dJqV4{A(*_< zJ7-`imwV+S23bOvVQi2-4Z*N}D;O4wSg*$dV;zt@*K#KeR(R&g#Sgp^kBt&v8DHXV zYxM=Zt-#=CY5#L*zoPmJ=$=Ld;A-=YcrXcPST8NpLTjNfUcYHYISde+!BOkN(!$;t zWwS~B%K*CRaIhH^_A_R2?;!*gOmYlcO`5N(b-my#l(U4vjpju?ITPM!eeAX}ica&Q z-?2a8u80{g{hE}f09fd&3s0Av6@61;-RZn(Hea@zZw9@LVW(LKdi8f(1%SnX&8&Bq z0K@w6ct{L=cQpW5=(|`JjQ&n8N2Bayk~e}YOf~c^i?Etti}cYggGDjdgA42Hda z!wy#~yZhXkkB8_Hqm!^DJyNi(HJAO}VKc&ojga|Vp38b1ue-+e#g~8&!^JO2lH4+Jae76-C>qqy*ZU|^S=R7!Gjc)H|*EbU#Z+8Ob&UzC@ zT(r5-r>aj_?C|<9+^vI}Kg+S!ee1&Y88FnE2;}}F0NZevcOx^jQ_5d_^QS+E0e}C` z?`rjOxl$-CJ1Gi!89mZF zA<4lIQL~m4e>Ks{L51m6?Kx8OmTcV{s`Vc9NIfiC3%gs9l|1k$9JB;E#bza2FQ&7Y zJA!QHA=g(q!Tc!&edsduv11)^vu?RC*v5~t^9arB7xE70_` z80_(h9#g8n6!caaZwT?`eC4y81F&#W(AzX;-%BeSyMbW2@&XfIq3`Kra7Z;Xwu|Cb zKbQ!G*5#D)nnI-OL^j)J>5TGAFxcdyo%;%Od+kgsIcpgbUx?$HVUZgnniQ88hDDAC z{laKiv>4^*^U7i+Ze8ql&swcl0^ol4ayBWfmrnp3Q_%D?qi!!n4p-?2J zEz{(#MUvL@K4o2DGt!2N&B82N=i|1?GPJ9rL0aF}=D|4@{nZ(HI4s0{g}ypRb;^!? z+Fj_YTbH<6=)&uE^_h=+{MWi1%|3`+{>_%xJOmpV+65>E>phz}MCl@*eO1iA(H5cC zt~YAM?PmV{KmYdq_uuFQs1(i&_>+8WwntGx=-X{%PXSoCD-1@d1060D$3m-1+5$}$ zTE}D{$VLFYh?Mc;e%HG?4lT#tFK90=0A_|HR`M));Db!mgBh^}w6G-7OX*Y6Th;#? zO27SN(khP{MZ0Y|29KJ;VA`kII^aL1GlA2CqP0yhd)6TeJ}ZR5!dIcA_5r%{^AGzE z?{~Ol;t2BO0qnk+SP&9Awkvnha;z=PwVU5|4*Q;#dzaa2VhKP&lz&+pXtvQ&aLOs8 zjrNjpiD6aVLE_Gs7lqsl;Vxc*?#r8tb4svbZQXQE>P0{!-J;il=5r*zk^4prJ_TSp zu;9T_IV-|2=o{^d0pQr;{)E20N~cr8iHKYd*T@M5=Wz4QTs&9kjMbIZ)K;}oOp<~P zEER0_F9dn%%o}qZF6+8033`{yp?Jk~+GTDSb+Dj}of;RCY>1V9(3j4VCk9Np*P{Bu z!i6{hJjQmD&PBa_UTvO{vW^c()vU5sj;+5bmOd*KpX*lW+i05mZ?B)n{~#opyB5sp z>Q}>2$q8!+nwJCs01yC4L_t&z1`G^~xiU3m%~tI*ao_l6a1OS&L{7Vt6$aPJFPg?t z1ho0dtZY2np*M10ZFmK}irK8ZUMEOx^!pdW;BNa|F&*axz~Js~TUH#lwf&~LT~`f* z*JjxpFxUZjyQ^CM*#USq69yNiT2cfnXO7ohzkI_>(Nx#q^@3FpGa_s3L`{k8nDiQU6XQ#2@*V5SgT{*1L6+H z&FQ?W1JceBfW0s*g&yxO>=Zl^=fbeydwCKQxWOUCd?Ch=%1@Td%8uK6w!a9mi@8G9W`aF+c2TLE$4wQp7VNI< zr7$0KvqAx|SU8@(CZ!u363=zN9Xn?0)r7$SFxKL10%Aj-iI3JV9DVJi!a$I-LZ?C9 zWrVes6>_h&meCHa+dq8q`18;I_{xQ`^nkXAbuByYn(75D;+@1oJeblcAplkg$w*Km z{24qL#&xp&RDwlXduZSixHS`h#ZzRKkTLG|Q z)~SjCQw$afUXNQgkJPKBdR~@JXNwcHD%q%E7ZHbjgAK!eVp(FJB7J+mjB_j`s7Y+{ zBW=t?XpP)}!N&3@%5xnT=04~r#>F^`7ARFl*dEglY=9+rM55gmsZqn^)c)B7_qOPd!;L*OcQ zTXn6BQ+pz-*Y>l`p0ym4ua0ffR*n_=HqOO*OXU|rUxi386<>EXD2V$;=r#21nJchD z4;W7>qP)PZpjVLG@nE+UztF7Nye@=g;eb(z; zit_3#)MjwGNJM-Ut5towZLYV8k>H6S*}RPhy$fOIW>pcair12S4%OdamSE_6+$I8G zSJ*JFya?`x!2r>;J0^L(&U#ta7P%=579 z=vx@Ib132}CjAnuSFfqqE)xVP)1IsfR9IULkzl+?VJD0Qn-)Y0z$~(CTD44DuX3xT z15%gNed&c3A+`q5p(t+;aewApba4jD9X;2lS#)b-NRzfMs&>09UP}&YHXW>%69KT$ zSFBg)yIzmAThyg1>Za=rtt;WN0GQ?r=76ms%e$i)G{X1@TO^DbbWgWm69DTNJQhC& zfU#syi2Dk9?;chfDaxQfRkjcV{_d|||L51A{{G!x zl18;y%Ec5kZJDAG05G0$tQToh%mwqod0z;$(rGJGPGzt6~U_a6ApkoS@ zD6!CI#~01unf3?P?n@s)FfJ{(J$J`KtlKcu;c^Ektm%wu*3Xchz!ykcG4v^g_u~3C zaMi9Wl4@Z&8~*UaUw``P+x2p2s)x?1&Dmb>xt>FL&1i8WE6ND*r4>s*iUFHpa3jkn zkMtF$4xn1hGe;3niUNEuKsD80QnIP1eVh6y^GEO>;NxDh|b zHfGv?gxsLD_KW%-$0Pl}73z+0#RrBBiBm0zMcUky!f-`wb!93#eL9RHXqg6<_cRH# z%Ei|dN`NuY7Z?@*8wQ)-WlmI>S>coPthEj5dS}m#h;)>L)*|5Rz(fd5YgJU&qCS11 z9UV67+C#?z_IMohmMJAfXNV^+Me%Q8ypKvoY0@|}99p#8d9z$}d!<^A!Z2;pw8}sd?@1br{slHMO<8@nayh@s{6*kE0`R8ioMYCZkXfa^X+`gr+FYs4zPld{S zSz9hEh)o`kZG}lruBt-K(I6uXo=@`tuys4H%MpNa>J^}-jm?I>dgN+l^fz@RG(W`o zyd)kxn-n%HgKAfM27rsuUqwV;=r3957@JvjIWEom#c?M$Y-I<{i~txP1p%;;U{66C z1121OaRr`vMq1n6UN_h8<*g*#)+#BQav{(Kj0qSFYWqy?lCkXf^xOhtlw!bi`MT?f zb>F~rF|Y%$(RmQ`nnMoWJ3dxV=f!;9pUryxp0z-CyS3G7v~UGVkzoC(jk6x}_;|d( z--+hB-i=}K@i@D>n%~{6-@e_FRTl9DahL0%Kok)^j7QkX4~CtJJ&bkw-1Z=A2!QXODDEIPc3Aw3phP&dpF0? zao1nXL$~dI(?9NpqF>a56-Lgc4Xyi@sPt)Uve3wMFfSX1I%>sl{_^F2{^wuc{rxXu zzyjb><+7Nn9MGChqKv#5k{ZlvLq~+KWnU5ceOnXtc+@~AHYw4F&^sNsXOoW2VGk3U zw=svHF<3vwFWP=|nIy(!VGKGwv|u5$LNg21L~Se(It7XK|DxK6t@BjGmo%SD;w?%@n{SW{nJgy%Ht)R=H7qoUKM`HabejNOi`X!S- z@Wg}uy53Awe~entx{VB&{uOE3`S|IjxGWJZ52@q(|7dGB=TeZ%4!P9 zrQR*Z3=9EN55_lX=1wQ{ZOsM=!j|(vRWa>pdu=^sHl*acH;TKb)=8|_v}g%{6@avR z5%#0ZAyn9o9kBJ3>*MUWQY_62fjIF!aCnnrl_ytWQYz@;M>1^}_)V{D@&(Wy>`i3E*G`$=X z$f2Rh!BtDa^|fum=?;Mh|E44QH;q~YciSDM#)8zjV{0@y?SR?7Yl#Ygb~5*hXn?cV zWS~y}i-yuhUH1Kv_df4NVIzs-yNfNpbyF=JG$GoFnFSmk(O2KS{>Br z_AIrUO8~S&Spl$K7EX+mm4I1yGN-GT74!<)b*p0!BfferPqB`wL21-4Hj+00aIc#c z08b{tF$tSOEEcxnuZPyvRY!4s-PNt`SuDzvkyzm6Vpb5`9`34n#Z z7EXehfSe9Wu@cNJ2ZXnDminEXO>6WE))d_~f?_L$FOlGZjxDQfgo;LWl{{t!Q%4x$SZUU_IA+VajIy=mj|;V%^oDt$5~5>q$&b1f3#6MHzluLGPkLuB>E-+!{c^!+O31ZmKbOh#+{;| zR~Wo-TECh$w~Nkx)x(#NhG!kqnQR#Bqe>#LI`^mnBlV?Q`g-WzvS+#J0sxHa*6|>S zZCl!JrcFjeKk82UwuHMpoe8Cz>+!qC)$Pq>Yb}TF$dn3V(-9KgZK1-PS2)`0Wbgv2 zDZs#eais)+!QfKqoTLsgOeL5q?3#+$9`%32nKIb47R=3xYqYZyeQm3O-u zp&$Quv$S~~ma>B3;h+s09*^5v`i8@19L;ydz-n|LwmD$oZljxNxJN>&O!->)Dzp<2 znwi14EKn3W3SUdL=fM~_O({29m)>>tLYPgrvz{`Y)qvjC;8GFHeZ8Yf=*wU(-OiSy z9+mVI*sz|cKc^S*KWFGG+!Yt;_VRvfWn)Uk(`jioD^ImK@b}jAStDVve$<`O-Dt6@ zt~T|xiENnE#$lHn_YK9>p?TOf#a0E7lR;JhELc4r5^KEjCM;msa?YNArVI=KTNyYN zf_5!v;&8B&~ZRy~!NVZd>zYf5qv6g@ofEA-| z-VA+*dY$6T+o2W9NsW%^=}0S)HDMXkfUqTCha#X!M}F5`A4KUZti0*l%^IAO)q(-Dr@cZYP#&GWy$3*eVKud%e0& z$NT&J`}fxreIFhUUw-*c7_4J$b@d~f8~PDx==riQaNX|57%k}b_I~XO&sPFq{R&hL z6Gx_dwRNk8wKqkZVesxa67)WP*d4AX)PS#VW+bBH(2>wrLFcmoSkQZQJzA|>>rH24 zi91`880QcJPYgZ)01yC4L_t*X1%TZhuLA&^{==e&fUwPOrD@NYf(C7)mYQb3O5O2LY(KTZD*^J&;qBHMxvIU2lH zNG_kj^|dHRle?r|`u)duzx?t~QDIaMEeqW&!8zEb0Kll9V*Wu-7PIe2Wsze*VuG`J z(9LU;s{b(}?t0Pmmgyh~iAOK4z&h1ox^XlXL8$mYf<4iLC<3q*j8o=K6oPo}2Jcz)mC?TF!g$jGf0)%iF#?q4jXx&5Xp2F#$5wPJ<-=LV9_s5+ak(XP7Nn?Q%S zuU>FIFHrp*k8?ue&7unWGWZMn0>I>-nK%M{?{@9`P3wB$XD7kBQ#un{nu;?;2>c-F0TNRnH=8n3oJLFw^kil&ubfk7i=uw3!VB(Wae z9chymV?JEXXu=WzivjCJ#B_zeqP!x(Zy(lzVFiL4t96&oXPtfk@cz)(Jy+M-e{@&N zCQI0SQWN?Dz)Tsz8mHRcdWOI!Yi%x;9%;+U`WTY2rRpW4U-U*5^RKlp{`=qm^z$!2 zee>5p0l-!Ou7o*S+TY0b<6n!ie5~B-V%Fzet7Y*CrhbW%5qaa8k8*;(2=$SbWkiZO zZvYt3Rp`L9L>QUHlb~N?cvS0Sw_9e{MW1|-XYtZ03Tvi`?~Qw6MKpiGhmaIT8oFA^ ziy8dz)8GE_{a+5dnbinQ8oGemC8CdXM+X;b9}dQ{Ftz_ODomT3_KU`7Jqtb31rh|J z6Ch1rlbbiRpug4#?G;}E*b@mJ)~6@kvluq;A3;;XK=8z#Wi!N1yKN`hx35(ItgqY7 zfo@QyG}~ZrE9=(s7A`gd23sR{r#NaCM1qCE3%|#@%sf3#o}3Ib0vc#trR83$<3f2! zN0UH)>f3U0N~{+ES5zlMxi=NkLb!M~P4t>v)VLoCeeZ6k`V%%i?A_EnSSS_qw_$3? z)6uh&jwhGRDh1Cj^Y#dGk7;Xk_5_2^>5=YqDq29$jy@SHYQuo>H$=^Yh=V<+l32oB z0dUm%;H}1~Bs~(8-KIKOrxoS+A_m6m?sC-$o>8Nu4+&0rFfiO`m`)DWU)m%^g6Yzt zHtf0Rmx>@O?X}@t;Z3EM?e&}U#b~>oE*1mGiPwq3WcIUGH|yg=7jR#T`fG(SHTEz= zPk~QD^jF|Yy%w;j?EN70F0kfE%~h3emxv!gj-8t)v7MS zA@mh;i~I7o1pKZXslRTtm|rQV=~}^c8Du&Hz`CEIBfS}e_SS`UA2|Kh?Qkr*Y<9o1 zNlqcAyIKUh!2PzdUDsj2%UOQADg(O5ZPO9A7VEw#{WV)(6UK7MXv)Bb>$B2)TEvV2 z=#AnV5rApGf&m|wbw^)|n@w_D8Y+t)TLE~GpXxeq=X%YIqTkWhJ}0;p=#F~XVK>tk zk!@V)c4)#txl!M=I1~b4GS800g;p~o^oOoIeWKWe}VYq_)pFrIl%eDI*Biv;r`WHdIL z@%{Zy^cMiu@w<0d*7LlZuGb^1MrnRtZo2bTTj*;YRW}PEtAKelX`#y@^aXTMrRsu|%}h z+MVs0AGi(FmM4RT(ATAsvu5W$tkU&EgS0k4)#4jdpYTT1ol$zkm4g$G`pg>(2+hdZU`F7Hv?f~no$yic{&jN-EX>1f}3$HJ9_q+x|t_YW78~?IUGm7bfG)`LWW_J zgxm(N1Bz?Us!grc&IgH^1Z$(I&)fl63|Ii%sb&;3Leo|@YL&+AvWPNSYeR1TE|@9D z8%mtaBx2SB2J@Dyr$#M=g{c`M^+4;E5#r-a7%c3xuAki?_H6;@c+-N)^q0}(1;Z8w zbD1v}M)z$(X=9`uH!yn}4qc1X$l+AWle{#8!hG)~_tRvZNp+;Nz7?ZK+8PWSjRNDs z%+;LQ?P>y-Dk0d4Me$vC}s!(nJRWTDf6B@YwZ%IiX?X8OIRww|~S2U|vm;b+n8 zC_-h+#)YwDAp317YkF8&;iwVWRduGgj$f}}(g1Q^FaQqOW+S@+eK%Fz&s?wA zt%U=yP<%Nr>edg+dRc|ZL67pG;n~EWON)tBe-*;l&7>ssy1P*mSR_ov8#1YmvcHJifpB{No+NNXP5B&{|K~><4H}QuM|Ch~BH%1&u|L zRz2r@BZ$hsR z%WiRMEt+8=@Pp{{%IuH`3O!b>yXzgI!6qN@1A(EbNT|RPwPpRRH^H zHAA;N&Q9Xx9yt#?#0NDHyvq~76rJ^udtZ+`mz+neJCdSnim)ywF8 z2?iSp?i72?oS6hqo4@Ico(`&XfsF?x)HxIwCFw_fQ`#+w1TzF2CbQkD4|QeCToGuD ziqKIeI@-+95p8K(SGA1WQ^U)C$r{3woIbbJq-{;$j=?&x>b3qCZ6oSA0kHlB?ID<_ z!dF-@3;roMjEhj0=OZEFF;G2))rO=~T2boh0r?)++>!c1ck7h_5mE9Pf;A+R{aS z8#+Gp9VcyB>@ARFNB^r>e4WWWzqok*=FRUe&!3kHXIzyOhRdaFshCOorER7k5f3`0 zwIt4F!u#QT-k(f5qmj8GT_V(M80_d=q9+P>A=3b`=2))044RE&m2 zZ9903{(XH2BDDs(mDdVku#UCm@|_-SUQ6D0Dz-M2m&mIdl07-4(V zGaet0fB3`0mw$Np`1!3U>}oaCmBS1Jcr2iO`*!>IxM%cMG*ltD#a}Fp`R=ASH*39= z%Rz@>Bw?@~MlxCGD+X-ndmM@W3WI6O5&$!jMBNtv{_w@Ee&y}cW=ANrp3ber>!52% zW+s5W?KxOJL>Iz=mg8~F>%nFl3}ZN&7DrFZy07mYVXDyAHZj$+dgYD#JZ9pEt!|OK zvdm=K90Xbi4Xl!w!I=P9`{MDW_ub$B^6P(o`s0_M3xM;5jL^5>GVuVgHwhPgrl^3{ zL1dHA3vJ1@gw?90YNe>K1E2jssl!%;Qrgnxp3q2;q6eZk6O2?FdERqKAiGu?rV)ss zp`qr&SeGuDoADX8OGbxlm2;2F*a55Uh#4K0^-*L{y)WcmWiLO=XJ3(v)+w6*e?+|5b%$OCD%BH}K8Kv&Ga&k+X;GzI{DaPjZh3I5~ zvV&%>-^g~73=R!8UX^+pj@??@#HEL|ZX-)`89U%^uQ-_|uXlZWlm4~^r3hx> zq(ruvhAg2k-B<>|zdfZ=000mGNklP7I%4;AY|)B5I9e3PlsG&%c1!8NS}{76j7_o-YT_(pg)p@rD}I9a zkvSK+Q?C%z1S5MF!d+Z`4Sl=kZNXbV1J@i+P5m(#1$NG#bR`*K8fHaO1){>~?KV-Y z1fL6gmOvC9yqN1^s0oilZrKA51|0}}SDX6o&`_+mV!&lVuVTKg0>DOsy-&L??p{x8 z*zNOP=c3=e1b~H+0!vf8T2_Ulgb(b7K4+$W0pR~?yh;JsFxa0i`a7TIA;ADJ3|quk z4;F_$Y#Mr^(0wIzpIZL;xU4(z75cV`n@uA0-Oo)L8U`!?26rdj0+UFic8CVNfx84rTS>a}3S>^p$#8)VLbGM;K zS^zBc)tzr24}PZ+WzyXYIbiK@bv+iZy}q$_Xp!9%mCYOp5)Aq-yiACmpGd&faVQ3? z)ttsFZA!G_Q&}gmua65Y3*e0$gSaO7URt1SUKS-RPaxAyIhzj!z+%9E_~VD)q@c+{ z8vt8zwB&}YdF1gB{0p-9)q+P!fj<(hrvPwb4V;(3LA`oOb{B|^h-;16HZ1f;fj1H8 z%VaS6Rx~BKHB;WR&{;Als9PHeu3koeEmQ1r+hY_@wIivSa>$!}_N4$=8v^7rwL)#T z)9?TJw}1ZQueaChS_RAM3;--xiU4ebv+Y8ZsHCSUVlaF$=A21EBaIFZ7Ak|gFjte% z@)=@q2uL$(NH?ta!SdS(zz}7|f-QyXpw6%vv&h!%*v`#|joqR@6L=T^S4N$nQi)Qu z@RcmIad(&Lpe-wyK8=%^TR0d7dv~|?f+E2>OYP(o33eX5^hQWzqD?mIb|uP-ts$nF zx7UlinO?nG%iw%=w_xSl_!~*fKZzmGfX!Vq7A|crb%K=xPaf@!Um?>y+{Wz}||5pmZlD zmQPtP; zlO|vNG&k(--FhSn9(q8#E12s(6XH_w)oroznRzNyo|oz`Ypt_ZKcs@A?>*cX=v6$m zF^|oxx7)uUP2KLF_s3ZVfkv}}08%iy*wloe+kJDlYls2c{Ey@D@w&S|wr2*$B`3Zm zm^5P_C@)2t56OC8U+yZ4ZF#aN45wMW_;8v!3ionie$~p0O8K)|?XyPXRi|Y_ zR|4Q+KRX&^1e4;v0e6>G&nlNOP6!oWH%K_FsutdU1pxENCk&3xzSebRh)(`lNUWzE zx6SK)+q?+p=Dx5p5}eyki`VPAK==yh!vl0z34_IA-#)A#-)-rBA}!4HJy~eR4D>Jo ztzJa;GZ5^`lw-ZJ4dc79piox$YTa9h87)^P_3VPr0^Q^FGPYuYzV{DX9dNzvv=|*t zb_4pW9X$+#d*B&b>~s(97|#)6+;fBEqbzkhE!ln%fJ7gA2?Z$SWNvk)w5UVo(-1nL0m1%?6OIQ{_! zQ*}eh8RasRs$2mhi`EJ|1KlFZ!R8FLXCzsoEe8$H069M*a4oEjpbKp4emJ*_e`RRT zDY(8SD%MF=o06*N?~gxx_opwv=(X#5fZKCfgSY;ieQ1egZb4#&fSDw1v`aD)93`#{ zVyy;@NduK&?nwbSfhAjKmNzBE-hKi!jhSA&TAwo2>96o#0)T_s=)fvC`sfyu)}$u@ z76~?K^r#dq45p!M+PA4B>cj%w#jrNjW};hKj_R9fQ^(!0oG!w(R zlPB7zG;L|Kj?xxm!8*{3<71dMkOx!YDEDZ-_ij2wTNZMvF`aX2Ysgv3R7K>z(BBBa zr@hb-S%sr?LC0Am2<{^FN8<7D+Q@fLaXPk1Ly@7sX`R^rC<*yRpSew&k}ang6bk_;A(P z>>7gM;n*agT@l(ErhwjvzW$^2UafYu<+eK8mK1|Yt~bi`M&|Bd1>>l{e-{pf78*o0fENKsxS*3egeINeUXTbRcGoGE|t94Z;)!tn58g zZLwWVe{cZ){l|9^fSCi1J{fv2>dGzeSaAjXaJL zFgQBThzje?cvZWkcevjzfB62}@4o%>VZRa?@-Y>&@S^#vQ8{Z?&q3c)0Jb4ucT9@C z&_t@dVbGgeHMHE`xa&@Z^>`0mNIroRJXudQ0!jA5dQ)(+wr3z&1X?7R0zcTV`>h!p z1F>Er`U?XFfXyV>^+}j%w!tc0P0gZyg|)EZaj&u-C4yvuu`sybFeN*^fsU^6XZ|26w0#m(7D`1PN3U}Y$&jrA@H{!%&8(4Da)vY)&6q%|pg<8XZ8(v{J-i)095JU|{(2^0Q3l#WQgxT`x-1+0-I)TjC7jpEcH0!|7580l z6CtZWw?7Pi3<7e6?u-gnf@d8A=OVrq`^scp5X?sa?hgvgFWLW6c~L5US}y*sR(YP( zUI>E+oy+O4Ao>eT0>FmBv!VhF4(5Q%s6APy6>BeYd;-8e-CK2wg_5^fRbo<_qOx%J zYS&WeSBp_r=)0K}#i#G~4M8seECzhHYnl$_tg@X}P5gOe3X~IJYA4rkWxLLOBLLHE z6%x*li?m#syP_+4cFdgd(u)WtT7oI0h_68}1>lNBL|-~?;5X16nr=X7_qr)ZD?Mg0 zNj_8f5!u!CaCMkpr%;Nnx=zj8+tvO3Mwo}(D@|CaO9~^eZ`VRo8%DZb=_!Ih>Uv5qv@XK22#~KeCOtT7u)t}-6#yR(Hg~jJcf^1du^ZM? z^femR=pNUvDE$hC?W1!ecdUng1HkoiX0x0Cz+Zg+a0A*G`4npvY$@r{VGn?;YgBL#??4q4d) z^!U50gIIS8(Wf@HUX0DwcUyL(pR>14*nURl>?GWKpPSTD1} zwu{wH!ei_bT2aGNu^QGl!iH|Cmt@FAwc0st7KJqQE6}WfgEe^?h_b_EMcYI)t>{`X zdth&e7C(OfZu{_d#r#rqqGie`diAVVE$l`VG)wDOCerB^6rmx@#j{RDF-d)s%1)=b z{!6gdd-(IN%8~(tQBjQyIF^LL;3p3f7qE;~Vb>Mtdj8ovs^(2gS$Ur`{m)=<%qj=f zNxw68TE*Nl?AdfV-1miYGNETda8Ke`%AlySD!s&O8CHFMw8L(t&U zi7#x`$nmTcQqao^^w&hGy#IN-Z|X;p-QM6bwPEm><`t=gWDv2^vCtO)-d#6#H?843 zXU)=S42DJIy4sygz4EeBe6FaLJ`)BvlUM!r1pvI5m8b!4RyAk9Zfr0!WJNtAjf&G^ zAOF?yB6dNS9kT&olZ4#Pt$&JVxngAiVBOjz(kLqutXH_&)CIr~S8auOFuhm%Wn%6N zGi`pWGhIb}tt24T(Nama=@{F%afi9e{<;>i&MGz=i<;77`0| z>4=633vo9)Yt$0Y_FkKfDzH z7m8WxVS)a-ZA0{Iu}LI1pAk9GVgvw>$L)SU!4=pKwBA(&y(1H$ZO72}HP@{JFjkVn zT3UJ8Kp?%Mf6Y{^(`{LtO#+qmKkA7jhlALCIxcDR$Igj^8j0^n*w4{jZ!YLbfkjqp zkhTkYtD^E+l6Je<_y7FvyKld-cIa}hQMIvPc)!lcwzZF$TjD7I>sE*xrh!u!b`18h zy;gSE$xnu52jJFv(V#CHp;p}~NCuAqu;0+%2*AhsiG7Tx2R zr$JNG^&HAx#7!6%)=5hr8Fmhj4{HH1mP)5x)6xEcc_e4O4aeXHE&^aM)L#dl5bDO@ zM_$2fq+LHNop4R4NJqP`SE#l`HXP0n?yp`noB3X^LOqxUX}0)=owJ7R zm>nkL3{uP|$ILSrjDA*RwEu;{p7-LBVaO_l;h5;=HL-nU>?$^DVel}qK6Z20R&?#c zv{F%}atZoovoERpqKFWcrM*APnzI4}R@n0G1`N0_i1k|Yl&|ce<*I*a>1DSI98QbQ zeRJLZg~Iu34$hjEY^$dL%;c`C;&&LoZVs2$d9>1#D}Dns99XuKlr4Bw@s zhuBaz$%}B{5vzyUb{@e22NG2KO>c7EU(9-&)hH@Q>Xv*mC%UeIhlkzW-CD30(UdTG z4WHcAQ*_M45iA*~j(ySSb?C))9AzmLv`JgOI(1)|Eqda_7&F}5ZMOUWkF4|HapcO9 zwf@6f%t+mhG9+k`bf5(-XhDmzs4jyx5+t<*xfWzb(CqAB_Lsjn=ev2E>IDuGStN@^ zvY0n+91|fzJhFV<)#UPKc73-HzTVs}gu8GE+M9LN35KrpFe%y_(Ane| zjAmSMHcV0-$|ho1Q&&od0Ux$K*HLK#Eik-e5*)jr?cA%pF&7<+!TPKWgBKl}jB*S{ zngak116}Q~Z%~Z871;26*qGXga6y5Y(qd5Gj@yFXX*)3t9#nS z@-mKthuL#(hF%ix0Kgo*FkJDCT9{L!A)s75VLmOL6wk&+dSIAIVj&ruP5{{JTtSN? z7GmSDZ!G#o436i=6GtSOk^Y!_n|Dk~$I^0y@F<>zC<@+FQE$r|wS2?jB0Q$l>*bY> z!*EUSG@)7gxnXeTvvTp2+ECqRmY~9)2(eo2b3!oON(Xp^zMX!K8*PH9e{NcmZtE-7 zJDMg6;8Vvaye!;}Ra?5K!jB;xZM2wiVF5EmTnF7eVf1$*^v&`ktd}JAYE#)?G%v4v z+kG=I@0rKMybiS?u=ynyk#5vaDv9-BSu0lZS)=;AT|4PD&quxU=`aTXYZEY^2ftnc zp#n=HI-)~u*yG5m$V$KHTUqsYp7<^0h}jXjQ=(kbuX{gN{c_W|+SM+%)r(bfSeAKa z(ckqnS?imf(q91B#(e8%0f5_CW{q_0wlain1d>NX%SCqwc|}tUxUF5Y{)3rruc&Bu z^6n99MhnLPOllOYW!h5oR{)GntmqnDHt;zcN$Ms#zqwf5U2XQl%k>Cu3U=z;8>kzDQirdj*<;(}5y8FzZL49V!gNhBu=cjYhPNvqew1 z3k=`g?+=$V8x(c`7W$eH^v#^{U-Hkp{m@!TokJkLL3bE_40-_8Z^0e?dXCPs*dfA) zr0&HgU2vm7rc~JG*2sO-9-<*UkB=QmbOoCglIc*M7jn<`yXEh{{q&!I|M~cEQ!Hf) z#UR%gJ5!7bJ8wo?D!N~oikVl@#CnIrW{iHn-qH2nsr0+mVZW|>?E(F|{pj*3`p@e1 zi^%G~$v1%}Z2%ZEUAm~C^<<%8z@({Z*^2;d3Z|IFw#x3<(I7YAsgx3)OY}llOJPZ+ zgFd-@|`fG9)J{-kYRJ@RRBy5qUg9@>nG=#y{ zrRdHj^HC)=Uok}v&IjY)J(!6bRy>35D zrkZ<0ddWwUn5DJ?cDDi#782{d;QKV`Bou>pvo3~)vu=6bOTgf1&-@#JJzfkj2?p!S zeC@?ufD^-6Hqas%Li*>1OBKue%%7mXZfqK+7x>Tq>U_s#ztwHV$zpF=u590G#} z8#P{!Hg4;S%0v{Jptt;3;t{UcD&V=#OyhZ)n=0n5b2(t~mqcEVAs^8EZ$ zPfA;h76VHtdwgKPgwPk?h2z_yzaP+7Xg5tvox|BMxng2Ew~{aqqp4~owZQ-{Q>+*P+OjecAqO4;WLmCzgjr7VJCyn|G zn@6fX7Xuamcj~8u&gpEF7xXF?+7_fx3JFe8woHhjZs#RY*k~7c48T_XofUUSP)(hf zj;)B|y3rYM!=o0m+146uA@sGuUtP~B`cnOk0Bm6Fv!p`YR{gY5eW9bG(>zb@(@lQT zoFc78kZE9X+-zd|{1EH|Px^x@*gXOW~u|L>U;bJ!|Y7npWR-J$QP!yuMsv zkV3~YMxMe{XRG3`Q=zY*SI4WXh0xb?(T1ZmNeMyqc-$HUt7Ncgq89Yt-yejsj3GsT zB;5jpqu0TpFyp^t!NYoZbz_pz_m3Ao4ZO1HquV(i3?}-KHaY7=t5xhH&kApS$0UhG8)@!C9PV4G_o*8*cS4-j$zS{767JAiRoL%;C$VL z>rOM7PcIH@0r3C+=U)%^w*WAck-{hZfRWLNw!Tr@kDewvibZ)X^W3ZHDCiZf)RnJj zw-enGZ)`V9f?-;sDC;tfCXS^qQq)h@Kb_uYvLFy&zB56c!_+QoT6gIG^x@88!^+#n zT(uoB2GC$GE30?PUvv{>rRgQj=?R|vY^`d zSVUd0k9hDg0AuJIJDH=*Cz2hhu0<*Bkv?$@4qgt#aXLD(BPT|uI^GhQakLrc*Y!NwlHwwzw;6iPd~`77!OyZbH2m55 z>ED=%hbtQZx6M*8tLXMDmpd4jw4et<>{1&fp8;Uhm`xvJR%J*xnhptxk(~5NqzsIi zNn$I)NK@*WKw;4RD7%Xb}y731K_U>doI`=q+2mRh9Ewcj;)VdhVS!CD1S zbV>@(v1-@aLBkQ5)#beBu4H3toN1M~(&pZyk87B7Qvv5hh1b4EA;d!ZmoN8}gn?&MvfNKsn~~_Ro)!rXo!{K8 zZ(nZi9@aN6mzOs)Q;_!772p=(NvQD6?E*VO)}u@BCDBUsaKC1B5;lO!fsJGgjXs76 z+SF=|As>Apt69eynr2PJl8~PSfED^|wXH#Dg5DDWt@gr~SKHryHvoQlcU>xH1;E-J zyW0C{1Yqn7Eo<#80d-|$brmj&l}C`4+EVPgB-0Bznpg+Y94-<`N<8cdYG-<>NKDv( z?6@Y(V6sTB8IeUgtqiS&h$akVj&H8tQbLEzgz1xPt(+lkuBY|+;B$d4eP``zzERG= zc(kOtcEM*=t9BRkjS>moZsx!K^3yLr|M+lsDM&VfXan^RVjwg^Gt2|!#hnmHMyPTv z@;Wxd20^a?cqKIT(l43kI4Dd~+MA`#r-7E{DANenr0s|VFTsyAX9YLLesE->7cUG% z9SsnZ3?O+<~`f7tm#9DNRj#m3Q9cjUx@l=M%=G zH?~BqmjmW>5tXEcDs>qOLrTZ09W+Q6^UqP9A;Ck7R!mBR!ED`3z0y62LxI`K!vREf zqOWDd*EmfSxhw!2VbX-I{I_Dn-}*?Acflm3hFN4Lk=g)yVXF)s34P5t z!33&o0LhcjCRT+31LMLvTH@M$e@DaObYh9$&Bl76SDTt(c(xL|Ejk{Tyq`Ji)5E#> zvc%l5i0|&QE$F?t>e93&0&S^mQC0IhJ}Q_o+Y+E=bM|A(APV#3^h@+5?H!8^TIt6Yz`PGrFe|jm~Q;~>nC$S z@~1^bOE-!x>)yx5OQCg?>CmsE9c{JYhr`qBYx=G)uNM)3MSoY@&@zhP1_D@suGTCh zIE?=KYK5XbJm6Sj7by?zW6a^lQ}m#362eq%X+(-H>&Qf#L+zj@07hym2vZ&VxHvlmDvC-U(6f|XE2&Evcn76E5F?X62wJj@_3+ILWS*e&Qm$Jn| zfNV*wiirV}NQc+DLt+W>7G@vAltuBZ zlzWjBPO7CdL^pZ0h;#~oTh{oUF?~wUE{Xw&1Pf(F;%n7nt6BN#%eTM%`u>M+znly^ z`h=Ul^N9NoJg2Frg1GQt`k#ZGMbN6O2!jR20I-7OvrZ@giw(P;sQzDx&dG2@eJJd| zVwN?Qgt;ZcGa6W-19?;hhOL*)RWEp0u(I&27#|>2ZNcqg)D#aE^hVz&%TD*g=&;!d zw-Uvs-`J1Zt6@z%SbL7cx=#Zjqenq_@-WrL7nCJktXE4DgWe0@>fkr5Z}r8PuEW5F zodL%R@r?s>jN>PaR|NCHdgDwA=tq4Nn22NH5a}m>>>SohL<1)9dk zA2aFLVtuTr6>o`uD0X|%l13XE1~x&2q@EWZ*UghOLtgq5L)>8z^d;btBEII=>%Gl^ z^)g%(Sg+@wz4w?xFSiJB&2FLf9KkHhT|2QRvppC2Tl*;RzPaAlmfMPAwX=3D@9Oe_ zrL~oN1;BB7SPwSU$!!hME2|2x$_hd6c$174MFIva03P)7{a&uqJZsjB0XHkpbw27B z^w+fm5CAIz15PayA_Eqt3VjI@#m9rcG(V>dxDsJIG;Mi?dA}+vcFU4tyC`nv1wEc8 zcde^}Ld4hNXzCZ}C4{@3rXcpLRX6qKa^cgY_*p6ccby1^wYq6>L_8s2umiASI4Y+r zP75|hPmr}!rO9VwGwq^QQUP#M(&uy1sb>`J+BueaT616B@4t9`{dl+4MZR4RW|MYw z;6eO(CkmUYaEQeUAccQg3uwPW`59+lR5B3Ipa~1WroM~!ktu)}qQ3b;p4;2 zKYo87Q_#750N2O{P?hp(eG(+4@-MV^7Ic;JXSF2Xs+R@8ne*ogKo{H%zNAT})hhS< z^|nCH|1NBjtpHkAda1OG;o79vjH(w2XFZsirC7GmE~Md_lu?$_=(YEC7c$TE@&vJP zecrFO4gyZ%BfC1C-u=_$J+$ z!m4BSmp?(Joc?G17%_O`BRzB-19E+D8aPVDRq?b2mFelzmr7rFVQ}{R@60K+o#`IS zM;k~N&4wtXqaCL$-<#%s$s~u?s-qdCSj3H!NHO^wkyyVKlL}%E0Y?BfHay4@lz1cb64ra=>XO|-9tWgw z`^4svgxQVO3oHwxTqQJ`rvpbrf0l_}F$YWwv~U+fY_iYm1n5-+ z7h)FHESp;0(30KT0*HBfm+6UIvy(LC1VD zQ^ILi^M`aaly@_;Mra-%#U?H7JShj@XZ`<&Tnb23EFR_pq5Or(bZEBEUKa!U| z7Qhm?Vuhr=GcHMAd~vS_i2kltLp^}8CHFrWLw~>e>d{eu#gpi-Gggn|uVQyG0)Ux5 z64OQH3NRKASgtxuXlV7(!l8Y=t-lu&E4H~H2K@Zq0dJ4L$meY2>TQ(byX5Pgq%N{m%+-oJ((z#xt5Eq3@o!~HtryFC?2E)z+ z%1-5l#FW8|?-~hy{l{-VfB(%_lToYXyr0%_gKe`44n4>nX@UmZ@cdPK=MZdBh)uVl(HGcbb9h9q6 zvZW(i1k%X34GJLjQYlD*piJ4(|4*749!$3cl^Qs)u8t_*!TY6QEe>uSSBOao=*WD* zF`LBe;&@6p_A^_ici7N3lePwJJzZD%Q(XeI9Mbuf?v(2&L3+tqhdadEs$L(EF@gq%NyO4D%ppB3b@*Tq9 zPhhA5V5qPF*v5Q)u9q&VV?9Xo7jkDLE9*{^<4Q0#4C2kT#- zIbo_RKQ~N}@}hll)xEy%DGq{R8xgKKmY1RyNAU68)n2zOiclXl~@+sRDEWg4#l;Q6!|0ho5G&}p@5Y?t-pqAvivnN>`z z$~&+GrATF=nFS1cp4lP%h&^wo7U}I`z=_b;{EpmQVbaYHTb6AOvqqgf-OinMrlnWj zJZscXs+DKO!haQWe^Zq6&&cmZ07es$Hfdez+SHR&Qfu>eeYUMEPmqfpOY-n<8Dc`;xB*lWP~ zd?AAw12~O*0RSxQ5da4?N?jTBn0~kF(pNdRcsqrdRz$~rcmuCD{Hd5$6prFHsQ)r7 zN-vcFeXZ%;r@#^4(7sJy2?f1)`dyR2b!lis3A`!V%6lkW(zm6c3)*IR9es7wdBk8J zNwV&nYB|?wRuIM#3EpiNzy13D*I#~myuYwE=|+i}U8ld(n6Xi%c{IafZ|Hm;1N1J*~mB&&pq*gc5JEkMR$^0%`jR?S7_ddGxwk%x~(Fi=MM(d-{ zlbDIJSGd@Jkl)syHe=>qkvVB?+>hsWFr`)mrzvmVq|yW?Q5&}A;d(w+g=s>hEi3Zi zSQ19rRCj4N3-LADV^ex3mhnmcMaJ_E`fQgWZUY91T zqHtH}D1@&P9g7o`T-`yb$eCbVLKd zJDsQVzME;y!t&2m062~(rN!VhcReky$3-j%@j)VSy_l3|qvB+cANS4aNZgl+BZW?w zU({yV8lIbH&Bm#Md8(xRsc^TH3*4779srDTBy?G9c+kz`m6YD%jaqoDdW43Wb}<65 zo$}h2UcPyK5Q7v07VCxng2ZP1 zd%cA6Vwr$Yh5%SU-rpY>C^A^}erB|^=JOuy(85>YG2)a$+_g7d!+`ZN1iIv_O_#$( zE6pIq{ZnDO^o3qrPZ98=2}}11N_E0yux?*0+l)x+NS)6#ecZNP*gPCny1k-~Iu`)z z!qb(uTMZ7I5m^B?_-voK%$S0u1=^&bD9^XeO{kijM&LB;EN9yF;?v`;0Qlek`R}`z z*USNzN~Tl6igV0>ZMwgbMGBO9616d{S!i^)a+VcnG1VZyr$@$#%qSyZxk~rc3nFMp zDLDYsQUq6vvXr3OFvV}}JnYx&d5cCi zGT^@`Qw|%GUKN=RCWdhq5m^+zBAr1+2H}y|vMv(Luvv5*qJ0S+CrH?E!#4Oau385MsNfS7kVO=ox9f$4RSf{gLhRA>5$yKietrLPMK0RBo4SQ4-=T+*XTJ8%tZ3HBaD2=~ z1H;s|NeSQ(1)S4jjdUd+7pVd(s9(&mN8GLlK=0ZIYC%Wz@95}c%^3}}>{$OWv%<9O zMX~4zz>x=IcIgu0W~&P90h1_XDVQD7pF<6oKaFU?N0x;UT;0nA2M?xo>o}hrlg#{~ zD3x{GlNAfn5sc#laB*crtZP%t>?a}lJT~GR1D6GeuZ{N3YhdkIQ}^co9z=F^=yPcTShS)=U}w%<7=u|U@+ZPt4&RCi~5xdL4T0JG9|2C9SjD26+++9 zA`cA1fY~w3=Z3!1X=ywzOhy(u8M{WNUI{sH=74oHBo;s#YL+~8>;+&$-@0Jfka$)X z=tcluPpa_XZ8|#acO|i7i`FWk?`A@ib73*c+i_B!k4wQ)u#+3KvqVJSQMVxGstdK( z&9z(S5q;~m7q#RCws&*@MJpQtaIu;7ZuvE>QWK$ef@Ot`qf^ztN7ycD_z*SyiwlJSN7&+ zB^XA6)taK+CV}Q>q3p%g5Oum5 zFL$PKuXP0aOCJYQ7D!Y^K}s|z^!YdHXO-l6F!e+KHqk$&^!oMfAAkHL0KUDu!j6!h zDZtf?b=~6L`*#eqhTW>GS+&OfMzfl4RC1%9cxNIWtYu3WX0yLNoAe;#Cz9&f3j;{u zt}vM9OqNK>a*P#$F;;^}dj)`JeO1UsM|~?XNIoJYk?o!OHwxhnapjBcSSOyxE&;$y zOGAQnZr&2!&1X(Hh4XsF27>h#m+SRF7M_R>leOM{ zrJd`rlV>OhnGPYeFqjDf^9pphr9nLgUF*D~2*9!8dvO>n=Jm-qnN6$kU8aoCgbKzC zUK0(TLf+~K0|tZjU_l)NOQ?dgxiK-UZsk~`!@917$L(_8hlBghgF`V`jJcnP1W&X? zI0n0JPklZ}-@ET85F{7O8^uq(7NEZZNT%EMRfom$lA_KtX=hzB^iMDxf0NSR*rG`K znkFoGFi*lC(x1@7m{y9Pp|+|xBm%>DD{YR1s}%d~WVg{>19G!bz)~3OVjZW68S9!% zbmb^$PXLu7OUu?gpgKzm}%GVCm29|Xst>GwxVcd zygjOD#k-C(-f^OdOn^QIPYf9Q{{+OPdKynC*#=YIc|hD?y5ImzzM6BvvpvA+a&!;G zA}Jytu&OZAg<)nkD{eNm!=dG)y-gId82Js#8;i1T-0tg}T}{XJR=AtYR;Bs6GFv6{ zb(tP6A7`>4WowWuX|N7NdSDn>RZ`VO=S(np(LZ5=Z<=3|x zA?|WLba&pB85UhE+@4{{WU#Oq7bB8UuU=h0K3+z7OVZJ_N$beuF_mLMuO6(UXtBQf z`lDjKPp|eb@0YJ$?{p$0*0RFXV-ybpcTLrAH-IHm1A_`Y+%2vzMs(<`*6rEcGS7lx z9s7eaRU&ageOx+fr(*Q9neS`g-LC{g`%x8dT6e^&;1zEpWc9OZ&* z-2MLh5C8t3f8O0*6-&8X-klgeO#Pl)%droVnvinoOi(oH)h7M+xYrUjR0xa*9n;)! zxhqB_Ei+7`5GyR>5W1af9uG?0NG7@0Dd9+Oc-##N5)>>*mPFSqIId7iRPu5^a+wP= z_zNxH-hj56b;ws!0}grPdI5K!UPBbN7^O%|ilJ~`E$8Tkwr(sJ#(MYl+dqH*#VWyr zX04nd1zk78;4By%L^*sU2}_2>xN2M2VPYq4PDL~u=emMKf(1+DpTo?qE2VIwm44F! zZsa-XFgon}tEKR`I-k{q#AsaT$i2W!)QU1p@}fgjibje{=qQvD501WArhn3*n=I)! z%Zg#UGD};a$F4~?@Lcq$Rnjf1QB!a`71!_Ng~9Vd*)g~&9xPNga-0f}pxn+TfcK?c z1?|lONX&!Dmcvt{FCnF0T{2*>P8b;oB5~eng=rH0V8U!vN8r;#7jUJT!z?oLCZy{P z;N24fqvDV=*p6bgRrd;~#e;=LO!u-iq%cg6wAt?FpGW1asAS2Hz%ZQ?NOq8sJ}$(@ znP5DFV}hC@F=hQJy+-W$i@_iCrVs0Jz&v z=YY|9_5v_~nmQeoVn+Iy{)+oDkEDo2VmhU=G~bHZKSLb=zy1q-8Y zUWnVNpLQE(f%~@3y*_;kb8S>#gfQhuvriCbQs^YsdbN&3vtBcJubf2mO##?kkXy~u zcIylg5Vwc4%E?+T;=V1e#e zUpWMTRG@2=w_Oqa?KaB-V4WjBX>JWhe=BfYYfN^0 zY>23hLQ8@ef|G`ZevuhpPV^XqYHz0^a9qHVUPtVrQU20-^tfc&%>_8~G(ubdRIMNY z7UXn1rHm?;@tAT>VG_`_QoE6~>LyNkd9k4q{PN~tGr|50I#!CO!KdK}fT{H&!J(tI zK#!{SdKwvh?X~q`3md56ycO*W**)m>3w^<0rUq~ec52v(qKp8rel%xjpL|WN?CX?- zP0a(XG#{#tV_gD8p;WhHcG~8s?X7u1(j)dBlKK^(ksD?^ce2WYl~$= zfe2;DR8K$TwDpAI)2MR{$GN#fuVTNi3taaXO#!gr76vSKE4aP5YF}S>guZ&rc3WL- zlf}9u3|_A7UU6dU$=X!iHrPB66}(_Utgw~_D*>>AdEfc8Oh#IqIM@+-Yt?pMa{60! z^ld9rRp(@zCZ&T0R+@a)F+y*OzE<2F_j3xJEJw+DQdLa4d7-b@dJTPB)fWO_QqUr% zpl?$Ad$s(TpjStQ)(b7xN%@(gT>4B$z%`0*P*&8Bf@ixo;PkUv^|>K#^R&}GZ#G1o zp8>#Nuvx^kt;w058m+~Y7_A+;mR(F*SNo}sT9mOOIqasdUtfLs<;&M^E-pO3Bmn;A z-R;+3U5f#K{`OMw(s9nF`+cZaU#VcbYZ)FVtlRN?*~czWM^Rp8eCeDL`nq=2MtA8J zG1}L!Z>&6gw-xm6FQ#|*TRjPVSpNLlI8TJo3Wk?-oeT!nb?I6J3!$&#_HK^yGrlpx zT@zbhwCI0E28-FGOD}OD7^GF^)x+xMQVh7aU9}GT-rStE41l}Bu%0FDsdR!#C|U>| zL0|BR2D-t{{Q0LPY4e%~2U82@t zO3rQwZH?T6D$dXfonX$v)=lq)PCbM<+0_YSgj*tBjmkMQT2OZXe5`Go>~U(SP!R(L zO0}MPJGY6MXjP>vt>xl;olfQRFP?t><$HZT<8hm8fu6rod{HZ&Ff~gUl{5-yT5_iU z>=VG`V@W@RG*a?HFO?SMl$+L;vpT|9^go9#Xn%K%`7Rd?S5$7eJ5U3SWzk|`usaqs zDW4;x6bZh2yVC{ob>{|7=@9J)($nc ze+yrA;bL7K|38K1kO3FE>hhncob9ScN9fQ-x`7L1{= z$Hq#uc?LM2HNuRd8#x?nM@M)*9)F5A9xGyw$01)8q$nHBQ(f zUS4-zK8)_}hXP>ZzH7mJiOFCEC&FNC4fRKjqlffzVKT`pX0u|HYZk-`aRFeT{Y^Hj zda7nsLKy=9zT7l!_Fd6mJReBWasU7j07*naR27Z^IMQ5rEdU&Az_GPz)XVC)aCwc@ z*z5)816?Y*VDi1@xd0eFY5-V>D9{!9mh%5qF8#fde5Ru{Ta}-cik}t>e~-ri!(}ms z6B3v{HfIa8ZZV(1+G)M^LKrN>75XXy{dFp=9~o7m16Dw*V+Ve!cx_FdWwCy%GZ!1`B-;7enj?+1GQa2!J8Ppfd1$a3Nf>&;sCxyZO~& zaM*TNT5x9~H0DC1U#HI*63P5DpT9yV732ne>X!~U0r1qPu|R9U`zTL9O z(i83_-e=M#;{;u0 zg`k(?Zri=o7wmEr6RkwdOGj5F`szgx1-;FN_QdBc({;DqGp!i7PKDCA8%|L44Hzr} zcf^Cyixv!9=~tw`SDX*Z>q*UI-lJm#a?Vcoye&UHNuhLUM7nDwA-`?_HDZ6|>o zrbgAnm;iacL@l$YgN#H zPA7DINY_fg7u)839s8d@q@W|y1%MS1fJ2_y(RVtuW-EoDSGWrg)^U>Np9R1=i2y9V z3+M_v{b;Ve0^LIXZ!z>EQ7SwGaS5F#r56COA}I^1|4YOd5o`tMs~`Kl9K$fQ2tf{j zUIsduUey)5TUpnlE&x&3hll;u)#CPcEdYLFeE0C~>zki`eEQ-0hp*qge0jgNZR}x6 zYInIFis`O41EZ~X))XB^csC<~EA&@LyjTqoYNw6)@zoXa@N{|ma;Hb?0s0j^UJn-f z-rQLkSdVA?R{$)87W%sJ!<5k@Z9Gx468c_UPcE;<3Je&6Wt)#4>A3P*7to8D%+7~2 z{NnH3-OeHa3w`GkeNZKq5?v&%R-snQbULM`@Ts1yRL;u&UodYX7l@`tkPd?x0DBp@ ztj}DZyf`0f68ZB_b7!9lEOA8n;)@3{U;*%Uw<;&OZ0E|p%;{jP70e|gTLAijN(DreCIg1cM@Glu|{ zHW|zTL+rHSFh#cHg-)n^Cxz$C$g$fH7$*YP{EJfVGci}*zTOLzo%iDIu!3QeUr?Y- z*=&|-wS1>n{rt;^pMU-Kt9P%a<96LL&qcZj*$~*dbHr{V+o@;5C*LcA!K-N<_NfANLX&|#O5p{+>Iv}hr#vLI1ax?434R30GLv% z0GLex9Rrq&?iINn8Co0lY7u}ZodhMUg*QuMTu5LZyq$K|lZN+X6@%a905&g zQ8zoNk$Cf3oE{dt6%USJ&xFE09c0qtgJiU8X2E@3Ez1r5T=z8VI*y;|3!|^DH9z}M zKKsrfGgk^?u4JTj%W+}&7=|M~g{_i**19LGjrr`tV7oo2%7NYGxn%LNE*!rooE*vw|Td61;d%QtOR8__+E@0oXFnE+4HQ z175lbl9A?l$&oT|xVx{eH|71I_VT{}_U+=~VRU)f63Q+XMTM|-?P+JBufmJL73+?6 zJ!k8&npfzt5&+wCP6{?(G%hHFzJfy}FHF8lcsZ|v$}2-t91%iCmALO=(*S@?h2yWd zdyKx2UWBdgfM>(f2H_kla{G3*29Xsuej^*UDQdz85 zF#P{){MW*GaG~%_k0Yy|5t}G+B*05J3;SuJJQKlU*Em^=KkAn?!N!-{u|NXcekR& zE*WF)fnf`|8i?$|fQ78WNNT-TH*2PhET!!8LSn#n`_;WGXPlVyO>tDs}{^)yB^T8G<4A%*FZKr7LT;8x+`SiwX97Q)7TEZH5}=?53FVVn>2r33(J)}OXX*%|Xfl_(R9s0A~% zo_WUIuPc5tvmPP?U2V~Hq$;cvePI}ljh$|BE|wYD;{jrzmkdAc$HHKpP>N=Lnnbi> z+^x+9&H1p!z!II(0$`D2NbqLbTnwwjR({aTjXQbq;4mL7U>;USon$p>Ums>ydovN) zZ~Ae*8Ona#eidB~gEWU%n*JhG>B7+@qNDX;lu6f7Z;*8K!~I$h0E6Q$geRwU>qGar z^I+`AX#NVxs&wj_&&NI@vlR-}kQknS$|EP9Is02K^C_}fe92>BI3dzerLbGoCpr9J zR}3ODBNTmwwWNpygTWtBWPW76gN0?jXc-SqXNA%9z#cLFN*oksZ0VSM#~k%1jpkXU z`WzG4X6wA&F;~6Uo=gha#hx^EEZ)ntpWf~%hPdD z06d)*1i;gAem2SrfNdg340v2ppkoC?UFyQ~8Z8~pv8Efc%07eie*qZhBA$~DXF;#H zuh3UVZU>L&gHm|%X^sA8Kv&0!`S=P8wRoLa`;}8w{2#l6e4~9WhC=7ky-M)EyFr4%5eB6rIBno{k+q@gQ5cJMF zll!>;dNO$l0LLj_Bsi!I3wp;>bqOzP{D(2G?Plt@IVw5yffxBN#Z=k|CO| z7k0Q93V_9fg~z%==(Iv!fU8|6b7wX>3S1G}^B$A&{maFzXw9~}Tepq-&g(aqqn9_c z!?uTet}uAyT6en4gu!jEvo2x3EJSt;JbV973Cn>gWYtf7_l?RK39X2QqzlJK%jM|xZHtm zX*adHnM;x$NkVVXt4&5Ny)a}TZC!KGO8V!q2d2ar=UzA$s>N!tfnv9yuU4deS~rm% zB$b`|GkS|wNQ0j-ZNkT*S5>LyM1sHk`bi}C-Pdo&qb}WNCWd7@l05ZhtaB^K}>i|^5CTE1|=~&4u}C8WMYZ6d1`{BQqRf7&{|f3r~+W+Q3Y3q{4>5u4);j zu+hLG2jCs!L(<3*cjME-oB4|$vh?1QfkrHn>`^ik8qG$*J}XZ|$9BRPRE0@LN4<{F zE>JU-@+2(@$2Msy$53Ia!he}0^hqIFtLToV!#QGbRDrgcC0|k$+R&q08Rac`HsG9J zkKNIb=Vg)3>qF<}qJ7xZHmhW{C@ts3#jK#?c3s); ztyHYzLG*W>Y&Mnk+6Z(2VCT3vD~R|CdiBhsL2fe0TQih*BLkvL;wp3^bc_rYq(pBr zHC?EI)+^J!vRKdRiq*6Rax0AHj!UytQPQ4Pd+MPTgJ-Vr9G`qXN~XHn-Ea_@DjW7~ zXPMcBp^_(P4bJP`lSc2f**|M^&+8q5@oBYjQmI;$l9NK|dA|5ep_6hY%qhX1>&@rQ z_DQSt!a|7dVN}@Luc9IZtBkeJxXFyx(7WsT^~LCNZ&|g?y3NR-@XRi}o8{+U-hKP+ zt8cz}`s%BD5nn8R5zwGmGGB`R_U5bhde?XAxnT21@|n^vC)RuTOjM2^LJ z1>QPGFPaoI0DN&ZM=zQdYqplwHkpnZV}Qs2Qmp>c!x{J2v_r#&(c&16DoAi#y91J| z;7-JVg}D1oXT4}lN9E13DLfVcYw;BT)3$~S5Z74O3Gr&t#qS8FrB66$S(pG>Q2@a0 z7!iuXq6KZ)-AZoQtqFkt@%#J#{O`Zkn+0>gCGpWzDO&4@AX6){7HHI?7|GC%o(?S6 zNzMXA*3RR|%EFYY^p%`61Opibs}H_3!@f?;Em)XWujgAPC)Aivy9j+4UF#)bKjH6j zF=?3+*04g44>?|%eS{@YTlhg=Qvd)E07*naR5UmA$#mO67(^#}o(YDjsTZ|dSbtQ9kPH&6-B8**YCAmp{J$`iCFByuICNd(rd{!L2Fsym9jvN|QP!{MpIJ!FnNa zr+$WH2j6^NHacYpaH5;R+_s*?Tu*AJsBMrk1%Nlp7O|Mu3G==8CTfCDfZDTlUHP;E zAD#XvO~R=(iVGtTq1p{|{aX#(=`yI4=w#Fpk*zxVHWbE&d(}~^q@!i0ht>I@qT{qz z?$yr}PKArhVPidRt*0F`S@JxAp7yYDSIzxM7<_wWJXK%#<36dFE(S7n*UP)5Rse+4 zqgU9qD@8L396gee(~50bU@%#MV~;`tsE&!~*}O^hO4nwrF*70sVDowmwvn#%?Jr=Q zeu2&9THp4n8wOYWJ5LLAG&E$xs=Xay%4=Tc;Bp{otjn1$OIoI5vG%x`Il^$9BZ_j< z5anYxBt4Iw5DbpOThYrQwtYo-)&o9){t5|1aFL<}eF0s?V36(iGm1e!ug8eOLVpbc zQ~IkTq8WG#j%FpHua$c@0?z6p1!iHno=xa0m=s>FmlXl6*;8 zTjzs*A@qt*3!PE6+B>QBPwRs-9h<#Oe^MGvD~kT0-0tM-&0MXKt<=tw>RGw^qEbKA zV$rCZV3x^d34J@K-R@btZ7Jw_?KvY!0f7C2grKDUtkx9$`f>N&yZg6qOk3m5g<*A> z*_6@K#r5^_?tc5`^P8`~eo(x5bA5lm6T$T+=LK!g)}Oq#(y!3>;(96we0jeF9l>1z zs?bzn!$_MkrCdgPMS^ecwg9j|R}UarEie{ccKPVFLKv)ILV$sR+uJqRuNwhlZ5I?G zz5-y{IEA}Zd|5=;Yr}v6;FU`U0KhKvqc=Xez8H!D3wjsRs(7&Q_;TN$Pbyj>6##Iw zGaI_Ynn_#u)Qxx3lmWuf-RcWE`i^EgRLwv}0pMmeKkC)L{r2rY{_!Iz=%iBo2!N5B z7y1s($G2z`IEIS}dwj-uk(-9kk^cmA^#JRU9-0x2^=jF91KFMVw6mP|%t~_75!@=q z!)B+WErq_%?d80WE+FhyTSlXa)3(r;=~7bA47$MlfFD#lY)pAz=C1%SZPoe_M_6Xw z$QdBhp<}a}OGOo|7aC=07S?XR_Qh9^BEesO^IEU1;iTD-JNJPB`zJsX+_+a1`nIYk z4!vgRiA*%J0~lklfnXdc0j6U5|6O zOk@SaV4n%rT~UsMe%D~k=K#!%te|nX?&(8=0UHT!CF5=l!7Nc>VeoR;n(CIWwMo+j z9Wi*=%J=G-ej_`>RG9hTeq!(1s|Ne^P%wP49cv#cWEH{1UxAt~(96FSW~>|S(s1YO zb*j;ElX@k^K59s9%t!|#lT@_w*vgaC8g%*CaT)S$h^r65FGlC+)@1G({(dTB*~P}d z^Tu`m7)^3=Flh8mcBbY+;`vnJHE3oX12FcTm9$3VGVI~vvZqRUFc)nOU0PDEb>sY4aBP2Eeu2~JzN`{_)&IdCCC%!;tzn9a!FyIKi(b-;M zG}pV7CyRoDZfA2IT-ObKCqdg%Po)?QGUH)(HYo^zg|CO5)n9k3z(lvpM0k9;YnZX_ zvSRlhTDP}@o2%YtRZUeS-A@pR^`vnGU_AnDi6=K7KS#dn8Oy*TYiMzU}`bo2stG6=M#+gEkg+l1twyJ?SItzfC&F8i1vueeX z()x!&%UJ1`|gS#o1mBP!-*d2v z0S`vGMj`YiHAJ08FT@$f0Q+p#aQ}I@j)7V0`OYwN&c1FAN5N z#ei4y`gSGiBW5E)Qxffi0Z)8`%ud<*EJoJYi4Y(F922&-(P?Jum6KG*iuPTjeY7|U zV6=#Q_uc0L;D7zkpDXP;T?^XHfX^ZT3p)W|fJ(S%GVVSZ$($}`13>}NHTSVxg?Ew# zWhx0E6o**OJKOchF}S;!^&D~AeG%eeBZ}miFt3lwAie>_#v{0khBu` z5)U*Y1s820koRZV(P!v+B+v*+#lI-nC;0R*w~MpJ8CC$2D>vGl2#>vZTqW&{q81}e z5sA^nK-R;G#Qyy`jwohnBet`SCk9HRp@-yPXxmXFj#l# zmd&`aofrmB-KJvPD{mJa8xeM?FTB4VA2uer>MhW*rI{BQ87fI5E*wO%5UxSD6)Frv z1%olMP*~4|KQo>dbWt$x#3b?YABw$N+7Mj305yAJyBM#6AELgiE7yw#hP{8vH*-O< zqahv~orTKom{dN}$-=pW!9OY;UhFtUIZKz4zUnAQJ7kK;no-1f{K5D4*oZLpHXqv& zMxBk1v@L1B`k+90H2ZWsAFMC{h6F2`t@B>LVCXw20G394)1!cy>MsCniRfub=c2z3 zz$T_Ko)@RfvUv_FmSPE2D!#&U^3PUI9$NlcIBE=d+YrRk{lwtV#kMZ=71o+l?@Bzl zb$4Uvt4ErC5o16f^inU+5x^8FFs-Tw!H*HFKgKVpJX5Pu&lbC`Q z0E-j%M@5T4Suq^f$J1tSSQZA?n&-}dgK7r=+-#lIo6jq?Pm{`L^~T9ySX!>EL&Rnf zohx)|xpvhYZIi-tUGP7B_eS*h@#R{ZVg+M@=%8L+TkH;#!{rQTUty~752bQ^5rQ?Z z`}+!jZ*FH#ulBFsT!<)JX4oaJc%JoksHZ{>8egNwS66SpczJcRHWA9*1OV2r2$dE4 zi|KYh7WzIs9ROgVENYi}4UD>@y`}H5?xIGeH>-f};$=klrWv#NIzlFG?_2Wdwua0e z0DOBj-fud~nbuQroy0>_raw!?UQ1qtMj@XY#+uvo z7tIH^pdJ19-+%GPA3y!`zyDk;=Lm671I8-}(Fu~e__FnSwnp^36*r2ptY+%;+*C|P ztyGaCNN^yM095N`^Ww$Y#Vzdh`-@UZqX5Et<(P;u@<~x$^}R^ zW{JRy8#C}qT6N)KYc^_62F+A-qB!a#!BNVSF)i~kj4n@spor6iN^p|z_nO~+^Tp5a zzx(dp=d*DS`4JNGj3k9RG}_2!g;Wy{_7rr^Fxa)DKQvCaO^(Xcxy?q*3ig6eAQSoS z4_NLwcD=j9cAx-pb^UIZ;>2A{g)#jEzvCEj6!d@`1Hd1ef!(T|rmdKgH7;oXj%Kv1 z@KSe?PH*!McJpJfwo^Sb%IjL2sDSBS%e2?eC++;AUtW)@TfK4-eV63KqH(|KDfC82 zL<@sS`GTWyW*6QccLp(meB*tNFI`jmm1EQV4x{XkTAy)u^u)rP(AG`kXynRl~Tio{i)) z=-X?Z8VR=IYiOIYEVLJBNklK40W&Y8h)@mgaza6O=0cJlR>uW>Cw;q-T5ka0amfiZ zwPZ_)Lxm&yZpCKYew-zdTGgtNzW^ z;{I-PEne$Q_U0UNyHZ#a@@7Dt1NsX9lS4*Y^7iFUka=}GzrI^Auq5_uE?_>zdw0L( zc?84OQMDhN7vb&Z{_#S;MavbytPmbQJY9+w>tOG_|YE(E|j z7XXuCp3Up4wUv}?EXt>oV+R&)NO7)_y*Arz^!Wt9H`+s7jWuTT`7WU7Np3&tHAdqplVPf!k}PHLCIYZvre4=|)c)azFFyic41GfrR+2$Q z*_;@>P>R&877Oe7bj#k*zUvfR$j4NMWvaUc1=UA7fCSrGVuZw6y!1~;dlC^!Kex7& z`LyLzn1=Dgt~h-a)h+yXqJ%QY6sy0X|7g_E$AWSKTD}5N5ftqV#NdT|_CeM2HaK)t z3Zc8(NU*=_!>BHdxtN}*iJ-dyj0`T6^wzBdwVW#D>H6C>FGwVk>!G7iDm5%yD8 z0|59#a-x-^e_Q_`kzIXyh+112JGF#@8IzsXUEWUI1%P+!j=n7yhk@yp+J3qjXNV&V za|^0lHVCw6MS0}d{R99{+~zX63hMK>37k%aIyWDYwQx6!CXzL%D1@oeeo^PVWpkux zW);HVd9Nf4R-liq2M;^N&Ae?Gyy;)=N4Wp$`!B#dR?MI~j2`JI`wUCocs@z{*Ozxo zBH9$jS~4YJ;Fe!xcMBvdNJrDjMOvP}bv!u@3^QqMm*n+C>yk@JFAlqD3d1cA17iWO zLIB+BnX^#D;5f*KV-j=l4#OutahHh$1*EL8H5?4;LrZSkG0jD{$KznC7zdV)Y3@hT zT2UA)(%d-X^bwXvHY|D*02ulU_w9AFo%VUVbw*3A=__?khr?XpudcKl#T^}hMR^mt zlo?DC^wOUUF&z){(^1*N>!#MIJShZ8NRQO}ue@C*V!f+HLTy!di2;lI>cR7A-oxyS za5OUdyQ=FC1^PS4fxi9rnSs6)f&c&z07*naRP|wbqS!Lbeq00`Ed#*hpACJT&K?uo z1$k*FzJ|EtqP^_?QP}GIAq&l~uhLpF(jR*L3TwA^^aX$yCN28`fX7qU(VP{=^Wt!t z7Yw5pX1HsSYjv|Nt)bllC5m8PU3sPu{bhv7w4)oRBrvpv>JN$=mkU@en_7QOf(L0_ zCjki4)3V6bb#t|PdArs3dutk1HU@Y9xVI)`*GEP5lqxLEfkCO<0a!RH40a)^l|b>$ zn`i*u$ z4aK=hV(Ug1l%D8?jVHCC*4$}zx9>;v6%sQIjJ+D86bx6;c!f3)iFYz)T2e)HqM4(Q ziki4C-LsMGnx3|&5M5U?8x^6^$%?sF^txlet^t7S25{w9tGVg4`_qr#{Q1W(fBgB| zY(6fQGKJ!KQqBo-XbHw!7c&F2py|C51_Qw6l;Gvq@JIVKmmMfs4YgHLG@Heyd)f<7 zu}!75N^3o%mauu&{nV~CxGf1aA!G`2(G*bO+|WCaIPzdH%n;7ixGaC(x00}T7!^nl zL{K5z(s;8HuArf}E zSTYz17W(=$Gh$>$nq3#&1_6AAib^fm8ApfXOp!4&S5)S^5#&4Ob#GT3poc|7pWvu% z2?@3jXZaTlh6l$)Gyp6#qW)^N)k)j_1-`e_D`&FHG(IsBo;38<1gqxZ-OLGG!Qfdx z8MO;wFg$o6!q5wiX?j!IPwdu4f?<}_T$xRxZVd)AD5V>L(wJdJ)+R_urU|4A?_Nf7 zgp7S`q0$L1hu|&@nDgjt7)_autHOr&+pfq1wxMFct|Prv0K=##1H;pCdol_<*fH36 zaHCPER5FFai$cyu>JdE+-O=f!dz8)MUPk`(yS-j@;KL4SQ&q$B()D9=-{bhd_1$BU z%b1;xlflPoToH*w4Y=Jp?{#ycxmF2w(4~=wvEXh$Gjv-as=`06g zcw9jc{na;EUu9Hy0AL&)Oqb3DXlPkNA4*^AEB86DCaK*-j8otz4vH%^xQi;A(AV_J zUEJ#8YALXMe03!Z79QW-ZC<~=5mM^j<$9=JzqvE?JzPz0?^pZF@p9d_WU?ziGapPB zv;qJYkPCoyub}$sW+@2Y>_$S_$Hz;dFLs1M!_v)>ycf(~kFJeww=CSnXn_K-a2LO$ zC@DZk^xh?SA_)kIch8vFOo%DkSE5W3!$t5v(3fOB+E|s!nW9$9G>a$f4ra02EyG!{;XIyFBLOXs&HQbfQ7_9>1(-b ztA=DqR&u7zn>n>h~On&|V%r?XX-co)7V z#f&gm(92wMy;c$l{`vh6!r)gAH$vrFIn$`*a7TtIM*AZ$SSSSsQwDBp@hzVPp{`WY z)u!S7oJlGmlOZLm_}G@tq>kWr0$|UMn7GPtP@GOGLf_@05eXcfz=l96A*L^yEVpIp z(MEQ6`m~B!i|uKQCn0mO)xy2#(mfW^MY}bJ1Wh<4HnaFnBpg z6gm+GkJ`a9Ss#n2u%6$1MSWKa24m$5{Y6v~Jq;4nY%jQWn7si?BeF6R42tvMID^Es z7F~zqZ$W~Yhi2&Lmb6gNoim*TH6ozV{fLN|UN#{PEwW<6{UQK7Px&s8jFgo^573JT zagD(bw9zh1(_bMGjp!9q#Ws2Dw+H_1`RCAzH81N8hI)C>0!w_Xxj38Ur&F<_T(ETP zoHyEM`s5W2%P^mJJK0X#<`i8_Cy#5PU>N6MJ%;FXbF+C}k&2}2SI%h&(u!%mr*4RQ z|Fpii9?w^8ean~go;KaIDAO>t-H*jqX*L%6LVr!C?JzP4i~ZP}lb8387jHhld--q> zRTW+eLFsB%2s`zd)wTx!Zx2K9THRu0UJhn&b85XOaSg!#1 z_I8UagUuGZIg)M{05kH0>89yQrcOs3(GviDnLz@Z1-JBjvow%uvxUz^7ICvNyWC-g zPn)?z)G)LZ8lbumN4b2GB&QL8ttZ*72v8g&L&(glO&^uRfJE4US96QS;Fq7j7X$wN zAHPgzBXQqc_9OzZNoo{M^cSO(u1P5SMjn?K02sl=z?PbMG_b4%w3b)suheWZI1Bkk z-5x;<$G!DaOH z1&I{kFpm{BXWQ` zoKWnvkzfB<(B)v9hF)j_wyh&jWWTuVDXb*iOXwbmdfKC&k>E+ss@?i_308U6dYj8p z%``gtAs0Pvz0u|P$5$F9V3G;Z|8UTAXA3?6tV?3)4C&_S9U2eK`Uuws2 z&_cAEUhHRdFi-1S7?D}9}c`4>sarso-skJC!W zR5)^FcNeb2o-8dd%s#|vrPz&iZ1WH!&KG@D7(UKLA0zQ6THl4f;#&%>__gKxPMAq{LK5Qpz-N&0N5lN-%I3q?Vn@!1O=s&(S6g zpB9AcT)(RqFrBxB#IYAzN30BW#OXm`tgW%W++=lxzFHlYmcQyV=Fc9VGBEO!K{#{O zLA`RHCeVU7pC=*tlyKRjhI;JdD~f4iQbz#XXyiIV=yWpJ9PeFg2_rw)q$ALIs>y5s zDQGkX{PQ<|{PB|jcrqOdcLl(K1Q)b(e^JiA5XJz&RFN5Tq)&%IGV0LuU29p1V;IcQ zCP}7J2@4I1xT2({u;GbK;E=%{%p_9dhYV>?0GQ0JX+hKQm5N4T9*lR84c_=-3KYS` zc_k3Is%O-R<5>|JsdOR$&SgH+yVhEnIs1F|{8Ouxo0dqiQMYca+ndW@e*W>tAHIF{ zbT2ByFbS1lqv@_h7VH_^r$M9;47NF7H~8!8jaRdz!4b(~h8PBn#S^Vq0^oKhKM=mA zGK%`2x?ylr030Q*2)%1Cm=Y%6DBN&^IW9fwE?p9GyzW?a48UNpxfY6sIxR+g%}u4U z^r_*-NMAJRXcFvLBkPuh%XG~8$+%S*)U*ADMX#ReI!+6)^=#T>&Bx}d$qx15e*Nb4 z;ma?sU*0X@yOd)hqqXF)12Cc)Ts3hc8~doEwFBcxu^x#nCILbxlug!{(gi_W3K;=cMWWzYYfIr|%0 z98sVqDo95WX}Y)UtCe2Yo{?_Cg9*SGPJApg86~kIzJ638j{zEN<52i$neDqI0ot31$ozVa)CkMBCJ{Ibc-A zp!e9OcN}8HdV8IdZu^D!G0?kO5fx&ysqJ>==&)E-tdGfy){4=vNLf0jh^=1h?a;A% znGlPebn}V`!11oYaeD>bHR%@2|H~8Cps)R+V=xj|3K(-tSugCbl%qFGm;?5~Br4ni zfHzIEh45B2-J&0LR4kWO{ERKzKP>ipxvs#NGJM-chpmHpR5sRIKhck~X%&H<>7=5& zMnhW;umK0B6^1icsxA2}4IB zz7c@+oXfRnbXQMnh2(qPzR^*Liw6T#*c^r3w1g%s#5Y(S09w`yMB{WBYaPLr0gxss z4PObm0lxlX&#v?6V^go5yZAP{<8zmW&m#w2t)2^vL0?^vS{JmHF}gFVGVX%odgzXJ z!Mq?EP|dB^y8QO_>H>0P)tPk3J^$wT>t6t3D-!OP=MbZn;rUvV&G-+HVSm(a913EA+|$?2@M6Hi;McGAX+z?N@ga5+;a}{d1b8KJiIF-YM;%M%RCDOVLYjj- zlP8}=f4lQpbuup7EbFYwFUE%Om^qlQ+QejTTtXi#ZiZ3y;sYN=)-AYQsDCia6vH|e2Y`Pgj-^-=|SPWRW zBKm71zXI%$wJxW<)5d+731%vZ)HLE1R7v&tPV4!gcLJr30IWX;^eWblzLQzeJcj+R z1chpvydc4jktkI~!b%sFNbR_j!!B@^wpK-OHDvANqXRZv8Muv)2`KLP9a^a=Gn3PH zNQM(LXY4)FCCA|UZq?YW+X_Gz00x7pplh3Anw?W^nTs^UiTn0#KD#W$70R}nX9%&9 z|KU=Z&$L^&O{I_{h@X+G@wI?ms(9^wKUr;i53kJaz?3wwz}yQF2eU;-T-N%q?ss>0 zHqojWh(tufddpfGZ87RjS(sRc`fh+h6IMgWd#eD)_Q zS@O>nw>@Ar@djyowW2}rPFrzAMoqf!T>A+)J+=+nVbtr{2*9SLoB}YtX?l-wX+~kY z=^1-hFRJ@Tl!58Slho$noN}*an4M?SZA6=l?h+M_0E}K{vtFoH3U{{`KfnJ$B>3U} zx?U>zl$0sj9{q+1L?nX@gXXGNz-U!a*U@ThsM#5@wJ}#j{x-RNT8XtJ-)a5r8MX zs@^pgjboRq#LGb^dYjGUyk0tm_v=%lk3mNOSg58;;Pz%N41V>r6AX(G(_Iy@^Vq^c zZ;j3gsys2z{6V$KKbENSfu@JJH7Z)ElcTmK6(o%p^SXOX1!oBU#Lmmi#LE9Vj>21C z(1d5`W@yXXF?X^u!v)4`b@Yp7k5pHI09YX^jFAHv{82iZTy*T9 zwk(VG(A`P|U62*%jh$H$m5%`!NRFCW^kf|y3^OSFNk{atpJ(dSdwRAh`j1q}dC zQXCyQ{RMrG!PRds#BiyR8UibpdOo(-li|Kdp@ZO|1)|wKvx-4-b1p zGmOFtUp;&C@^%fEy?@-letXTJ5%pT#etB*B&t^k(vx572xAQ{aXL46tYpv1)guWhw z`O@4Mo?c&CAC~K00j1*5?#(ddSFZ0C`^&M=cQk3}MrMC?q6j_>E}Ql6bSbzM*6O!J zfAx|?eDyj7z@FcpF?<{WSl?#hw3Vww^@@K}RY zHMiYPfBof$-+uj306ZM^%B3tdU`s*gGm2{IM94&cua;NxjS+yyJ#*p%z`!s(Vd82+ z2^I%8q@H2G)^9awnIi)EH{0eHuy~@REik6J%(nklz_uK+y%Ipzv#HGLgpM0;JJ*Wb zbLV-hAdalv8sSVtF=5!+%EXCG(&@Z@>;+M%Zdgy&nJ_qe{wcy(-aAtWGr`||`Tpnc zzWwHl)pFuAI*Zeksm(OAhBVczJ{HukT%58W2l^tGsO0_A;D7M%x1mud1+30VdhF3rD6rN+IJ&J7wa-7Or>d0$``|54Fey9G;Hju4|=&P?R z*F1^}0#_4k^QBPt>S6ktioY^AdwaV!O{?prKXQ6^vq4??%dhVRb@~z*upK6Xx;LNS z*z}Q0UOYY?Aj*hx2%&|$x>rC*CRw3xk8XeYaCmxsts{-i%oO3x;5}9jz_&(fN0Sz` znBFUpn1(E&FVCYtA>1XWt#iG?&`s?-gV3kF8C&)DYR=c!hK3K*D3v9|6}}2(MRsu> zq;|!g9rPttNUDt;H{F{8-K)dc`qVbY4DL+Qa=2Wzbg>DF>h(geS6j_G8|^KoZJYFU z@L(yQjuPw8aZ6g7lIS!}Ia#^aD79)r%5v3hePO^qz5n)?Uw;q)4~AXgZma<(#hgO0 zXY)TjD`y(z)%xNXtfSF8mst=x>aQ>+_wAP=!TNQkrG>$sjZgO| z-f+Z-&Y+zeSqZ7SU36BHws^2UN$qArs=1x#O*tVh2ytWk2mp-6XY>qq<&6f$4CGqL zox~|4;D^CB1S!E_=(SErT+?qHd!ZEo@N(Xpde#*5jeHIOCUsBppx;aetqM|EhPA0} zuuUSh3xF{&9EPDAwl86FOy6F8hYy>Pj_epv$a;F*#;Kv$FvTD*mkA@hv1fuCnX2Gn z2ySpooD$YiPb&<*f4R81o?z@K3>Fn$Eyeq5w(nUsh0Q`}!LUGgxoAYw3ossFMqmf? z0}7~uRefSM5Im?mNezR%pf9-l|LZyr-ZrvqTlY_R)7@~81d$TK2!Q(5={pbDD3mBtVyd&w+F`9_PJ)^5@?j*q2DQlpg8^XB zH+XRd9_(Ru>`XC;b_2lFhQW9@EFYs%pr`j=G5D`Uw3paSLVrDE75xd*1tFp(pS|%1 zQ^Ib%*B=&zYC=15zh`GXOaFSscfG1E7iAif&rag2i{$d6dvP9#{t7r}F8eG1PIVkr z^q0l64Ti^MMIw&t1FvGh*hn~iE*L2toWHV8&!)5pMQLDA3aYeHHrEtA{I8H2`2Cs~~nd?^^-*WGsNEW!m%GmYo(b zi#H2>JwZK1_E|^$1^peMT7Mbt3*i>(>j+tguhY-PkDTicU@%MdYD~)?Ip|yQ(x<~a(Sy~6i%Fb)%2?M8VTlr zX@sUv?R1kc06Lzu1ij(`6PH)C?%$ayeuy-P@?u8_`ZD-LN4K^kX}^We7Y%DTNl@=p z(2&LYh|7~=G97;V{_)G#kH5cvt1mMEtamlbuevJ(0IaK6SF5f^ooEwtH17ex;=z_b z7&QfoG-2@xTEX53v8k^RItP`-cZI(G#V|q2<8|!*ND0ot*be}}L61Ujg3)4cTMN=9 z3aZY*aEWmp>ph;uMoHHr060l(o)tbvUDLgNGCf7JjcS#}gSD$O40adcrBh*{Z`v)5 zx>eyZ4u+6^n!_{I%vExIzIeDl(^3CD=w1Q603IDx+rk>q-$43tUjV8Z>I*8Bv|N$L zrtgG5etR<)07G*(M*`O_WY?#;Iy!gHN8`uBV9^YU$~o1Jbq6kOUA(r*cHYUzmNqW7 zcY*IN6UA)S-v(d>3ev)9FB>0E?8W7h-E)S;DL*0T)k^oFk$r`Yoi2`_w9DOPM8tVmm<3kI_T>?k5 zZS);>54e%*Ilrnc9Zi?Nz*zT8gA>c3m<|v066~n|;x2@?2^iN$!!kozdT!IyT$?=f zJWJEDg}tSVioZZ@EVR8iT(6=RxAV9(x-Al^M*KR#T(etB_s zdvblbG)n-VFJzYg@@j6Xt+yK?D4opuTA2RXYP4D;_b*OAe|&g&bN=?7u=5NO{OaLC zm}k?s-u5gc698kq0EK=1=8|q?-5&>}*&=pYd~x&Q1Yr#l%X6*l>r{wKBQ$u46eX!? z?2nLu){S&v(Haf9>mhnRdTx4@o)Q$C*(5V&aJbdcTe?Qv$GX70aZC)D5^w0eq9jah zI5>zceHTyl7vpq$-`MOQ4Yf{b?J&8YoB741sgd}eSNqu*2CSo*6SzDUsYR{tf?loo zORE~TY+6)s=;R}A9Wp~g*D-6TF8=e=g#h@^e}4bx|NIaD(*>QQZ>8C&(y_Tc4#d$L zn6q)3em;VXK^xk(T5E*Cv^{G}Aff+IAqpHmv2dE9s~)8aJ~QXA&JBr6_IbpX%w6e9qLEJuS~v)p*#MBvB?0 znKNLQhAwp)#`6TgmC}yht6crcqTQ+8zr6nT{qv{K@83M!btB6t#9mw%nWm9j0PMp# zW%kp4J-3>xTlT_CTbdNlqYQidS^IZnD)jzi{Icq~*F`U--C6OIvxiACbu6j7`fJg*Mszadh7+brQI?I;0%%jA=bIo zcf3cMqA#=?uQoXDiT8_98>ZhXNO@R2c#|^c$yzE5{)zlBHDG~d-=NnTp0)Z53D!ro zqfLEt+|bEtSrO|M@&SHEJ*TFaaeNes1fOg=LSJgV<9W?!?x>QCt4Uf(T;IcR-J7{Y ztQCXgVC1qM3aYl#QEkvGcH6sxVg7PZoizOoM_&je;iBkIT8Q~&YpZ?~>PIj1tMudD!=VlXhQ6K17+{#eh!=&yDR zV!AXr>#czAA~s^ZW6p`gJW{6bvo*DuIlUYW#ahUlonMTPPprBrfHCWpQFlET10Dgu zBEdHG>$5IL^T-x5!j9!=vfEeY4_2y29Mto_B zva)o`M4{WR#K|m{!ep_dOq4@!%VIwI{N;m4@TZTzua+|m<`DYG9Q|m*$^qE-%~frW zHj7xFRMsl&63Rl*;8ciejowd7)Vq_QK14{cU(pr4YP^9_bO&o0oQ3C+g(5?nL51Tk z1z?aPjKFSVaMpRWF>wi9#TevieUGi*-n7hm{kkGBHlGnM)JnS*YnU&fk3AVQt+p+4 z7FBw!f+=rwtB~V${(9MJ=ySpL`ynX2o{eYozZhq5Ndk0fg9=_rV6f%e^yD2@ne;^- zizN1TUi$xVXk)$j9XamybaHh$5$-xCHUJK=opndrd6tf5yBsvdmh)Jz#rm_3($ixb z6h1qdop`NkrQM8h*ZoDrk5}%Vf~T38eOd9?Fqn)BEms^tVlen`+R~9KbT1>~qk-w!tuXYt2 z0bsq!dIv5phWGb#EE9CiC=&J*ctZU~eYUo9Ua^ z*DvqR-aX!a`~K$TtCP(6(#;Y;U&I{+z_ee1zMv@p%$99DjRd-PFVBHqlF!1_Ei^UU z1%UPU6?9G0AU&DI={OoBEyZ}+(*qI4;+cqQ1HkBE31#&iMICw@fT8B}ZDH6T(oez} z0A_fR&TUfA&|*?pAyw!AtaVUSCO%q5qBxVZ#)kc9(_buY>*}uE9mQ%k*ep{4urLY# z9}EE2vknaeV!-GnZ38f)KFmBc#DJTJt#RwuF}7z6NPC- z&3jBG(UxVLc-7bQ?{yD=UTqYj_5pmIbo3SmSMq?rhQa<7VxE<5qo4oXNm|s^08V9HZBk8RJbL&xmrd!>C6m+GfyX66kT7POp;+R zt_iukC5h;)OqRPLQ5&X;jNlhJYU;Ze=ObaTQ(?W6x-bU_jnSNC%G>@}fLw1HevZ`9 zZSsCOU`|Pk;oa><;d&j@&1NDP7Wy99ap1xox%Ow$3}f*$E6{aSDLoJBl|ivG1U#5< zDtr){v!J=#E`+o?2g%88P0GKyGW;|an$D}!rDNx$q%dq-Rt3F6g7NG?A)F9exTk`Z zU7fdO9Z$mD%_cH)q=i1e%wlgiJxpdLTCM{6_T%DkSQG+f#tE(w4HA=Z9*?SKBj4L| z9m)oxS0P}Bi)Goufoi>URJM`gDlJa)NrMFMY*azwgAv})fhELEqJrYT0x;3<6yo;2 zj)GntISKF_ZYL3~BX_nt^u$Ywz0Q8Oy@y$Xy_~oxS}#tFvjs6o_L5N{ofSv(gXy9) zTb8w}&{5~aWNu0I)v9rJ*1x_Uy|`W6-ppyLBJS@`6~dVDMAuAwd$Sa&6|(;R`yEZf z`mnK2pgZ8z{kdyCPk(!R^X2Pnp%MEvdaQ)I2tmV`gC~-3j*5kKN59yJ{>~P$VEE?6 ziO?4}1!1RP74*f35X`22tUFT!7Uk8Q1-Hql6ZNX`pds{S7>R#GdinL6%ZEoxj|*{K zJZtPC(i`yD44Q7%%qA&xANsWQ&X{qNFAW5fNH~6ze9rRHc~*@P3uhr(Wg?-k!sbjy zbw~i}xS9Noo7ijR5)_FJ;zDTBSEGh|O-9~BP&sl9%K*T-K0OCp280Bt^?FelEC9Z_ zJ^%d2=O6$6@#jCkCTR}<)~{T_%4UVN%WfMU*kf_X306y1QuV~LuOm&mc(h~-LdZh1 zxR6FB3%6N|m0H0}01S{o=CrEXWNO-(dH=1QIDyvoLQo3&0>DT;!=h*`%BHPc2?U#T zX!p?~QRts?%N78)lDLW4QJO{w2inx8cPsoUi4BO5Foo9xToRGy?t=IFh0bS@tvb`O4jR064HiLdPv9aJ>13Bb--Tt;8 zgiUOo&_z$-!Ga3CA(eyY)kERL&OzbH?#{3KdruFFJLS?oVkt~KTX$Y_f7mX8!Bd}5 zT1|TEX*^FmRNRF|$8IKO`}kKU3N0W$!Q655jo6j0mewQ%42LH+(U*KP*qo+1>J^>l zj=xaheCl@+&==vk$2aG=5wq(BgXyxyxk0fx(!1Jo4DQ2v1;&>bWAfX< z*1IPRzP?<(ygPaG`r^gS(bdIDFf8=-$Tl~0yA7L9UVoMk=Dn=(2;M}n+*7d2I=hx?u5ax;U|*G{jQ7(? zA?Io(tc^tAG8Q|o33LU$HiNrpPqzR#otH5f$h?(21)V(#;{>1IMOm7eVBJTEl??U~ zh|aUhbx8K0jU@hoN z0JNNQ(rfK0K;Ox*D%j4Tx|gA^pckV+q8Arqx3#cIYfrq#gT4N6KTdasll^4AtC%bg zW@}-v_Bw^>;$Si_vgy(1A`I5W;F%fgLL{pUuf22Q-iyoGiGRi4Je&zuKYYA<`}Rg? zBsA4$%&@G^wblLo-7VkI_rJXmhh`AXhJd|~3By7CL0yv<7pv>*4fR(DD8y7h3QdK< z0#qN^wPt2IpGhg>so>bW#Qum@EIr)yDQEOZi~b6F8AGD_%O8i}iqtAVR{eMSu%Ns` zT!=VUOS&^p-oW_g$flWn_7~AwD#5lo_%twal+QJ?R+7kKp;^t_ZUfx+Mw@|<#__BM z%T(y1#TiM*AeB5z>&MI9#qp3vzm1Kov?poSJnV{$ndO-)DwJ^iZFgz{;J|W_7nw*|Er~aYd@;;(6Up#ZIE?t5;Wl{P|5J`1PyX zs8erL1l#UuC^}d_7<3GDL%@KwPZChfA432D5CBO;K~(NqoBF7+oU{bM3>5Xcg+~2p zrM6eC?<;gtuRV)RRHQaD_1UJ&gJ;f2ZnO|9XbU3w%p5QVCxPK1!C|w-q;Q=ql6@fq z0RSTi1v%!^0aS2D(9Ul-Y-n+h<0|h}fZpfNet!DwAG>=`3dQH8@_uHP<(6D-ifsDN zX4udvkGfUr!NTCB=Qa$3lcq3Om%p~HH@7PR@Wbm<;aolo1QVrO3LwmS?rcjsZj7d_ z=^{EhNtpBt7KEgo;k&_lfod_sPFkk!?~c%|G?DGxB1!jgnmcgpH{4|siH%N>kM+9p zkO?Jk)H2E*+@(SmUF81p;ZjJ9;T!aq2n;wtFO$UV@bot33exuVqYM-jWSL^8kJ9V$ zmX5C1_ktuX%2`3QQs+$i27Ssfj1)w&41m+|p%LGi;U&;3iYfFJ=nm6;BWmN2EY0Ze zaJb*^?+ylgX=<5Lq3>+kn0REaJ`TW>Mb-Z7s2Uh>CT8gkN3>ssM6{SOl27TdfIxIs z`khrX70FrM9G2Ei+zS?_-Dn-r8A!W<;50QyLY-vBL~|2x)`CddIiN4l>($?~C#8)6 z{|#;f;&z+6M7#E^)7%lnS{c}TvUDHtSkN0s1wxm!BJLGUhk0nal1QDzgF>&r-|IiO zNS>y%{o!mU9zRW{d!u<_G}T6DPcajSuJ~3cx*7aTI zZ||-?e0cfs<158)zrDb|SNGTP&Ev(V&oAFTUf6Z6ZSUn06sL@uRe9Y|LEB;Lnsyco z=0ShKyu1b4WU$UJR}^%q{t91p)T7KC>Gn8`Bq25_=nZ*hpc(^U&{y|o;t0qGW$Cx# zxpBJ{dNa}KW8fKR=RVqquojrzf;$1D|I8Q?K1f+Fv@eLjFgtp!G6LZBqH}#QzP^~a z+v`vqi1|ObCUldsXl^iI(o~{WXGh7^X^K+m#*`ddqhZ-S7)t+N2HYv%yg2>(qiPgYY!JC!FcR#2;~4|4?$=5?==ZYN(GG3Ol%0x^;Q8>&_Ya@Hz5o2_{bD{5 zDYV?ImyI#8AQ4SNmU!@D+!g=}cNrAaCuJ5Xf|g~J3{BOw)+p4Q#YXF(**Q`SXjPAp9Z05?~`#gFPvi<|_sRqx28PT?SWiTrY z!iT`Hj(QVH2hVnQf8N>o$MfBP?CkwqICxsF?vbcBy_B?Vb8AUMuX=zEWpp_1)#k(2 zdfZj8uOfFca}3_LC%L_uUtfvBre2E`3JysEqa{ht#C+8g`i}L5U&q-Mx25w;(U*B> zI4d_od0)Le27~o0((=J231d(S!;0-{F@J&kgkNz_!7z$ifeqU{*m5AIAsAL%oXxbe zp-iJ-WWc8evJrDqGO^p1@I`Hzg7luKup;ZaGQq4$XweVt==#c4D$lFc9l@~Wt1;Ap|ZqyTy z>@vkWnboKwi~DBowzGqDekcI8AD#Xt-Uv<0)ns%i0NySG8~XM|8TW+KC}%-`|1SUw zcNabx%s{Y(ITf11vkm-s-8a{lZs}w?s-=UH5H}ECBA~DLWc>#K2N(u@BVCXlt?JXL zwJV7AzKqf~X%+w*1CA|#-mbd@;%w3N=yZ3Y-fnmJOwk)X8BCvdr%yWLU%JC5ar!JC zKJ6zuKJN{l0n#w$G%@#uVNx3mO(I+$>T;Q2MIZovd~>dg=k=@2#}7Ax-ar3*|Mlym zNU%O*?Ywm9iW5YYu|mk>EGSVZ!V{oXCp0Awo|w z=&PgX)cIz3d6J+Oe&VKe>7bl>{zRouq+fmqW-AS7gT4W?znxrAf{h3v#MQoox9u7WT)+Ffd z(Cq)19wxgR6d6Ny8b>B-@U@2L zag`s<=GNTitGa_&uho4WYmvta0Uj%KpI&db7wx3O14f(B<;d*|>p?0D(*gk4%!SNf z$n2FwniZyJnJY^x1je(pW*x|uXU<@l(0SIJY_}hV`Yt8jUT0retFV-^qpy&-Q-7}8 zhoa7dvLP-lTJE-+NfsCdF~>kfC)#hdcblypg%z1vJFU)>PS?;kPL22qgFEAYv`7E1 zJ@}Gpr^_Mb-alc@hp(T(>M*b!>~t0i*auF;Fd(Df+h0?wDOPVQeGzyJN_ z^QZf--yXjIcof{;-EXwpqBGu%0w2%r?$_E#dUeNEgtN=()$LMbSAXH*;Zo4c7>}W^ zD=jO~d1jUu@Y9ded2hCebt98Vi`BrB(k8osJus430$LCkDlD943`sY-`qdJS%OEm< z3eyFTY2eCT9~Qu^88qb>92^qyDz;Mhf%@oc%;Q00AA0!Xjoqvnq$MOU?U8{%Yto^|XT7k700g342CIL%5e5%Uh2yA?0J|4QyL_Ggvd;CQCd3zfJ$Brs zYiaFwwze#H&BBK&o2YgXS^f85j=S(?;|z>lMax^qn|xbDd=;h2ZZ-d&pthDxQl(8d zD6Ea5(x6=&^~%;Jt?m1`yPEWZu~pF81o?CoTwaU?z&F=|;VJS}&`_PfykF}Y$yy!H zM#A9bQGb0rr0W8>#pRRY?s48Gjpz;UkKwdS*HJBEmkik@z05s%Zvk2|(z*L#LjIXH zF@CEfUFdXcXFC{|h7}Uy-$3#iuZy|MX(dS}Hx`t)DGYlw5tFHwcZ9*B!ulqgGP&V& zp2f-ZL5rb5ng%XJW{^?=fP+#r($F?$ayc_4hMT2Megb+2qeByhbfM;ezLR|7D4=hW z6mt5z4@FZ96Cd_XEd;<5SCg2{Y78C0bcuktLSLb>0wf;l@AUUE6AW^aZbw)P04(%1 zvFO!bakOf0)*W*sG*6^5Cc#z`&IKR=;2`xZ(Cv5j2}rQ@Wc3cVDX$1FrChSj77o3_ zVEtA!SKK!hA{tJcEjD`Sw8mtN!51~5Z=?CV-gu^HHJ>Zm(XZWD0Q{tvJnfBt?T&sC z04uub^Um;TJN~uR`=!#_dwh?FYmW8$r1+ZQxs$hYaicUe*Ey_ z>z7xSXMT5u2qpNWqp0oei^av|n4U&`#ce-(J->djx)(OTzIgrmLVGbdF^>1BE+g0C z4a^ftxkB8@tc%D7Q{*~&Bp3;c(c*3d`s!T4Iiwl&EB))6yY=PGLPzZbbh16^MBbb9 zGH|OS7D;qDnV0zO>gIaERvG}Ni!~F2pbT3a*0kBsVo0~lM?v;4U~*2>;4u8Gc9rCd-T`<0!PwYu%|erA2+;>S4v7YnSv>v8iGY1h*QzN!KPR#dJ|6X|I2;DEt8(gGbCr%}`*!w)$Q@JzLs1dqPqy5frazZCX< zY19hTK>`c|zyX6P9#cBWl19B67@U}ElU0bZm)IN+&M(F{w+m6DpN8WS${0GqCV^RA zPNwtf+{b~0#6sVGe^<~eW)=?$6g3Tl2Zw`U$uu`cHqoTVPUrPBSHc2}0bP84NIQeU z05B{W`$7dyg#mh*2?l@(q3?R#h5;TUfsOzG15ZgrK~&R_g_H+=O2PLR8-}1pDYzB) z4V7R3*l#R`if;hm5V~Ce+^#*dwk!u=qsUhJJ;3f8zY)_1_LW*oTf4O<+^yB0R%=fx z)n6O+r_IK*PWMT#|6BkZ4Sww;{{Voa$9@;{Nieci|_7UrDagji08GFgWVfB7gH6xr=Q8V0}3Sw1%~#_L0_&xROMN zX|HA`QE5}aY}oAbZQ3v5^~6eHwy|z7ng$JGypK!1()45lefjZ?c^bK zGCg+9tRV=!MTLjkQ_CcxGk+8}4~F=L?DY1S5bzwZ*+fy8f%adC8SC4ASbVy_`?Ib- zOuDEadpa5wtpcejVX!V_eQz;x=r{%=)*%443UOK=>+{tYPg@5u`}5KN0u$v-Rr^f4 QKL7v#07*qoM6N<$f{mKoHUIzs From c1ceb730b06c524494511f809575183ca19b1b33 Mon Sep 17 00:00:00 2001 From: Adam Hines Date: Tue, 28 Nov 2023 16:38:34 +1000 Subject: [PATCH 59/69] Update README.md --- README.md | 8 ++++++++ 1 file changed, 8 insertions(+) diff --git a/README.md b/README.md index bef9aa9..3ef4a4f 100644 --- a/README.md +++ b/README.md @@ -20,6 +20,14 @@ In this repository, we provide two networks: To use VPRTempo, please follow the instructions below for installation and usage. +## :start: Update v1.1.0: What's new? + - Full integration of VPRTempo into torch.nn architecture + - Quantization Aware Training (QAT) enabled to train weights in int8 space + - Addition of tutorials in Jupyter Notebooks to learn how to use VPRTempo as well as explain the computational logic + - Simplification of weight operations, reducing to a single weight tensor - allowing positive and negative connections to change sign during training + - Easier dependency installation with PyPi/pip + - And more! + ## License & Citation This repository is licensed under the [MIT License](./LICENSE) From 210778f989084e749eaedc89eb26b1eb51727d10 Mon Sep 17 00:00:00 2001 From: Adam Hines Date: Tue, 28 Nov 2023 16:38:53 +1000 Subject: [PATCH 60/69] Update README.md --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index 3ef4a4f..3a4b5ab 100644 --- a/README.md +++ b/README.md @@ -20,7 +20,7 @@ In this repository, we provide two networks: To use VPRTempo, please follow the instructions below for installation and usage. -## :start: Update v1.1.0: What's new? +## :star: Update v1.1.0: What's new? - Full integration of VPRTempo into torch.nn architecture - Quantization Aware Training (QAT) enabled to train weights in int8 space - Addition of tutorials in Jupyter Notebooks to learn how to use VPRTempo as well as explain the computational logic From 65044584925161aee5927a84ed068dc4e9078df2 Mon Sep 17 00:00:00 2001 From: Adam Hines Date: Tue, 28 Nov 2023 16:41:59 +1000 Subject: [PATCH 61/69] Adding in scale files, will go to lfs though --- tutorials/mats/1_BasicDemo/summer.png | Bin 0 -> 309004 bytes 1 file changed, 0 insertions(+), 0 deletions(-) create mode 100644 tutorials/mats/1_BasicDemo/summer.png diff --git a/tutorials/mats/1_BasicDemo/summer.png b/tutorials/mats/1_BasicDemo/summer.png new file mode 100644 index 0000000000000000000000000000000000000000..72f953c56a133de6c6c65c6ff4259b9fc22bf6cd GIT binary patch literal 309004 zcmV*6Ky$x|P)H0c z57o^dzqWvAqx{=Qil7WnKH{`VP>ShE7yfW0#@ortYuJKShC+d?DZ-9Pva-)y^Aba6aAbcT9_zmlC55HB|=o}j8 z`Zd_~>lf(9uOX=cU+Ny}M|BPMiOXL?@C@w(eIVF?pAEdq_nsl~uDXZd>w+IM{^qM1 z;Rpc70XQbKf2wUoRo1n^RS;}c)O;u5t$a`Uw-($F_k?2$3XU_MYumrnbr`Cu@2slt zsBY-2ZtB8+I#){naxPh-iFAW=S#k1AHJxTCDd`@~c*m(NB>dCt=4_|+J z@Tvmz_sjD8FUs#d|9JP=hucry-Fp1?=A$<^9==9h`}-y6>irj}%YVPPbpJW%%7d4n zs}EmYd-Ur1*cTS(PaL(do zn|AHpuxH2m-P?DbJiO`9-X+^Mt=_wH?VjCBw``t0e_>(i#GJzX+@gZw$;F`YlL{wJ zFU`zP^(IGpQ^R6XLOsa=5lQ}$X+bH4-i+eZ_-t={R$NM6a$ZSRYIZ_wYFJcakSE?R zB5rJWR6wZ5FDz?>CI&kJ zj0`3biIKtoR{#@hjk_85L;!>6ph?G2eqbd4BZE<}-3-S;v44of0St$DCx8tS6M*s9 z^#5l7`=YFG`ubMiAjr5gfEK}kkWg>W0pN~-A#tl_21l;}V50Bv04BaV0qja*{<}f| z^B)X}!nvpji{_C+h#DB z01Sr|>j2Ww^|i4Z^{wd#siygd_$QM8P4u5-{+H>K16Kem3`+nLERnthImE3&Uld;D z42Eq)uOKdbO!=HB{M2xg0s08{6wlN629CgA8ee^?BV;0Rfu_J(6utz9?(hIcY{OF# zfRVuj;74yNk--RH5CHhj)As;iWbpL|uZX@^?mb5U19}m4xB-`!{{|Sp09}3f5@8A8 z$RI(BjW z=H1IyZCbs4^O_A?R&U?9c>T(G>z0CMty}P%1unojI#lllh|;>AT+@o!%hc0ybpE- zFo*!GWgQS*MaNUlT|AP~KN~)Y31cm^IOLD{QME~`1z4-q42KvJv%h$V|K9)@Huw?Y z|2qH!dQojX{r^h?~ zg#k$X>j>G;*bD&EuZ4avxZifR*V#+YiNbC5Ytg|Kc9u3k7{*Tum?Tm<0nFKKN3R87 zdUg3u;QjRKTYEtGKFi>g$OtN6nvp4Q-J#cj0w!N!1?OeHb3#Zz}6KdT|4Y>l&2iR+s}AWdN9K7zTd>{7Cd-I2wX+9Ru}(YW>dVQ3q?OdT|xNJP2y;9s)IW4K;QSqUcbF^d$%EZI^NXkLw`2fVsvo3d9s`oWmec)D03L#8 zK>E_Vh4-Mo6aC-Bzg4FhrT+{1r@%b~MT6P;A4mN~;Gd$YV*oCjI|p03hJ?BYzW*4M zKRk5`0$)BqMHYV`dA5yzcRVdH&H(78fsV*a1RIbK5s07#s&SDqrJK;C5)L_l1$P@d z&|yfm+T%WL3uzavKtOAYS_gwMl8bSJZp@0l~0=xe|j0Q~svXJ&#c9=!Sl z00yB6#wau}*ub!~yf1XH_leYFjPwexsf9>Jb4)OH+F}FAL|+s>5ChH#V6wj=1};ws znDKpr=skPuA?VEQho^5nIC1Uv-c#o{?kQWp>%h)^M^~-izIf@1nX~_zIDKOAwO zO{n zM~!&>sSd?S%!AUjVZ@~g!vx^}C5D|@Vax}koX5vu7|dhT%-?XF_c|Ol-eewsHSEP5 zfYuDy{q#Wfa){oxA0TJm*Y1FY;FGcsXdR4@xE#PlUrXBlB5@rgRsc50hw!5?uP^#? zr^`((_qfh%u3)f5T+#p!gBu}n#4U#_(wCn)ke&5~TTUj*$2-w$0ND7=xB}QUNw02d z`vHGzRIOAU{Pi`GnK3mmY@JUSl;tLv6I#l7wlQEZxS{i>oxc6fr}dQsMgS`}JkSpe zCTT-FWQ3q)4p?L;@Odayt^*H!6ilM8n#U5HL4IeX%1LPcCxHJo`fgi)4z>0Cf?rNY z->=U8AxroZ#Zv?w7^gr5zC-@f$Y6v$y&U2h_M-_#`^()e2Q5+A05DuqYL*hf1mG%o zU8yhH_oKcv!k(_r4e-((lqyE(qKM_3zVL)-*(qku;cfU}!wq8y8Ug(14P1VH__`7R zjDcumu#pT#3{wu6C0rHufWe4i+#n>AIYwJdIb9A~61(-ywMVZ}Jmbq9FxX#oz@Uq_ zpPaw>=+w=>Ph7u;06u-=@8ehQ96Wt-!|sDy_m&+wb8+{9!wZ(KES)$hzpyAPKP#sw z2lKn*3eywPy;%jx*+r=(lX9lc9G_Q`5uX+b==COtqjLoTI3uF{L1EsppwQ?5pf6b7 z*p$eG^cVmzdSXvp5IhR(a(JvC+)Z3Yjs>S15gioj@rR9&h|$1ZP*~JR!1IV#6}2Fa zVJ=^BX|lp-g2@NF#-fKe#8i`o8~oha$w;?~g48URK=`p3Ut^F@H{G7YSnStv~uwl2n80R;gu2GugnwKT?nt=-YFURT93}?oI z7V16-;2QX&g9Md(xh>{a*eKD`e~2Lizy^a6!+2-JoBdp5kbT}>?tq5}Fn7a-G>p*` z%iORgu^|jTBY>&=ja4bi_tw=9r-{y>l!`sDfC1;U`Y&$nHKany?LF|EaDFMy-uedG z`v*G)hB^m-VGdhXlL^r&Mf<=|D>z{IK6^#!MnhLm1N>3w42GSoQ`E{T+tk07npW}u z3v{HMv`p5jq#ISF!ljH6!hx}#U-Hl~3X{ReVBl^w92VgDb-4SJu)l2;4eg&AJ3cpe zRW^0Pc6ogp$FLE0=E8>?No&01J{ZMA&;Vd$Fb1N5#N>lPlnh1;gUAg7gMp(6R3Izm zTse1F_2pYrSAbNFR@bN2mcOO50_`;2|ckiFRefP+v>)?I& z96PoD{^QDOMqSuW)3H#I@+$EPV`blkvuB_n2M{N4w$^Jlkr;a@HUW1+{LqLtTfT56kQ}8 z;1VAbZpETAkcROOPG8Deq4#wHm}jij5n0#kV(qSonX{B69{N>~S(eZ6QYI{w;!;Ov zR`JAR(Hgy~>=`T+ZeSkQiZeUBxFKY)f-c)uXAeIH<%va~0-pw%000mGNklpNI^@LQX#_3B8Hq0@X&h+;qh6%&Et1M z$@0do9x3_PVP$ULJNrp(-Gl8vhUi31n%zO}afJZ7@Mfgi!SaGHhx41>!N%@h5J0!F zyT87(w^p7oVZ@?dCnLm$4o$|yGcpX**!*1q~u|E9X}?boLFH7!6^04*T)V_oZq+VAha zHG|+LxP)6_5A25x*n>Ms#vWdHMHU%1a1Y%2x~c(QngbZ?pA7+qfxZM_txuE>MiP@7 z1^@#-k--wc3a%9RB?fa6i-7RW2Urh9ZW!yfC_v4xG7<~=UVZomg#ecR`zaC~E-&AG zdPO9FAMZbXdDqF)r*7RjapOkW#f$sToZoxu?Diu^51u=J>gwgPGp81=T3$M1YGzS( zPHBGe^a+#aP8(O4otTl7m>L60O82B@MJHu>fW&YalN^NJ7ue~E2>|;G7>-Q}@g@d? zfVI(aV2i_ny9~hops2(kAa`V9kT*3fKEneW$?4Jg1ft0Y6NzzyXNZmX zGi7;+l!o7R#GlFRx_D~?+Z@1jmcUb1RN+bgsO0aBZThhE>GY|F6TkzeR1(@MB10Kf z;&>CLu0h&?i9<7S7ca%Zy2q@XQW)kX$GT;RnP5d<6arXk2mwqRZeeOGSgqgz^zF7~ zJ=JmCsxva>3%~?jJiMwZXekPc`byRN!Z4NXsH!4qUl7CU%t;5RePLKKm_xJ|v!|@y z-U(*Q1k+Wm z`L*srdaYfr6?TSaK6U;6kt^4>96q|~@PX|oj%+)Ac-QIUyHB0kbNckEo!eIL+P-1W zwq={vOr0}r%IvB6r3HB<`6W|J;W8;RIXNpOJ~cKj#T%Ov5t9^#_>4&w_BSRW2tW&# zH!Ny&c=Q;!gzd;!|EPqJ__WBR%s6jyWHfLW6ep6q2;hi#zp&Ubo`k^k{P==NnK>n? ziOslY@bk)iMqXrp? ztvY93sKpzsod8xf-apKWBs!W8C8 z9K$RkZHuKdvumR-WmpXW^Rz1=jd#tF{k0r0D<*f=lM|#}7(6uO1h8%kmM|V1;!Qi+K%{)te-P(%ge$XA$oaLMT2h|B8C@u^ROFLzN-ik9t<2?hhLPSC!wbsDAnB zE9v#;8X~lC;qn!EGME~Z2*3t|b#Kzgd(XiHzb6w+nP3DkGMGZp$X!IQ6Trk^3QbE4 zV=(!dQAACKSc3Tl6<)!k;CW77z5_ab@z&AvH})Jmvvk9@sf!m)oIh{c@`dv^u3ocu z_v$^nR_)%tx*0f52y zCT2yY=ETRRM|t9cM7=aBDj+y~Oi0A&;P6p_p+X~`fA|XG0CvUjTkBL#w5%C5St2h2 zB>wgtRPLybHq7xbCYaOLnLy>aSPBqN3rT#O3 zeSKKN5Z8({SfAN$!QPKiQbc=r-vwFWmLI=#V%X-ToHh$3Le_o495@+FZA+}2#|hwm zf-W9d71SAw`Rnr7vZ9NuGBW_o?UcN9Y38;X$@C>s(8vMvZW&%c$18C-gQ;lNo>Q=@ zcm$`vcljbQ%MJG#VdP={3dS556g|oSx#5F(uNQ7J`kJUF^rE$;ZNMt?!Tk=wO)3kk zPR08B+WUG{z(fCv=o8uEF3hGQZm}&2MDIaFl|{MrK&!o9i>E5U#Ug#t>>_%rnma&Z zTgEC7!$4n=GLZCbfYa8_0RXTx!F{cL15N-_839#P;HQ8;B8_&zp9h?WVJer`B$u;s zB4CawL#%iVEClYB!@>63^AFW11G>k}fGq%%3C2vY0bmf(_rk5mDDzIITj6LGRB3o) zAKZam!ta5^lELN73Ufp3S|-hVleon+WPnN^H!Z)*6024g*_j5eZ|^sZqqD1+BaNJs z25?Vx(@%21JiN?#Y-h83-I*(co&AnR37Bg=ngJO6EJjw?>A;LbJb@W4G7nd}hBvLj zRrY2i-reg=GaCTLH(*Z>50YF>Fb6P~QG`W?m_pD-`H!;>%W%dt(aG7hg6CVrX5_Rg zsg)!~7#kRNOz;>k+U(@3vnk6}hDGL>C$tk3-IKw3GMWv*zxsr5HkK-YQnRt>RE$W^ ze>0-m!2bM*Tf|=H;4ckeE3AS5#&RknDj+|UnupUM6TQOze((AU#@)cAOf&Zg=MT!*onmD24Jfq+HQhB7`;i< zm2~;;vrBiLk}lqULIMV#yYUb&&t883muP}XoW#18it4to!V81jkI&wE1WyRhf8wgB zv?@D)>A=|wyN@2yLUJc? z6pV68c0y8C96W8&)bVNg>A^7}L7uUo;ONmIF=N6Lf+Lf|q7uWgML0OhKOlTGSme;? zz`%&H!D0TONN-3~Y-o5?U`T|Y0`POjU|()nV^~OG7ywK@n3-Tu1p~0rD-4&MOitE1 zd~g@9h>^DAhe25bz|Kl8M1!0zQLcezN6;m|2{8adH_S2Y+O}kzj?i~vd~jz47Jdo3vZ+U3<)k+Y zwfMJ67TGwR;^_vgizYx4bh+estX}6Z7GAe3?6S1fR7ge5Q8Xk(R#XX!%W)qf#fuJD zW7zhC!RqTKDz?%Lrf-|i52)+-QQ!Hq5xyVzHY9rSN#IR(_7CA_#C$n?Cvvul{LRPdyW5ewR+?h{AO?rCk^&O24lq*k{I=-Qcb@C&x#n9u>3~S z7_NHw4j2q~sL_^5q8BCU`?R9UQu$Yd-^g`p2zJo-Gtrkq&`to;kSr|7QjJM>pJ7Wb z_62baqZJ1FIsptdtydHSWGC;H!xyMVC2Z4s8JDdAu)1nRzz%YxHkxH z@(Udml@JaJjui9_3iS&PABzeM9c=;lxf_NF##VJSV=y`3cap?pf>FZ&mU0Jf*4VU#DKd9uJO3$3H zqEEtj4BRT5=C+kjK%*&I)cNBRz^sWJ6A(b$AHV+n^WPZF79^%Pvrz?x^~^Mmw4E{7 zlI?dQLOU3RrgI(M@5Czd1XCq_f#vYDzwiVR-l{PADv&NZ@pMmiKLfB3Y=gi$gMqG* z_7@w{u)GTksxhUFGqLOBNKP8Y$!Be%8zyIr6QNc0R#k%x6xYgul$K!6i}D&EF&w3V zz6jvwbd<(;vUI>4!04xmz7OAh#-<|_)jw0%*_r)CVF;QgWPzwXNs{>WjfbzUKL8TH zAVbVOF)|8|&R#rv;mV55+o%1tVA;BjtG8^Py?D{& zdDE9|TD4>U&MC8}0&CNA)3Qs)>hIzM261?0vPt zU=jlOmHd4WfZu`-rgmW1pDq%?ROsZ-RgQ=7;H>Dc7z9A zhE8xW8%0L0+%@c)vjj<2%Jdk;w7wWDz5!XVW+cmbU9@XkuzB3 zz@k=THg_7Usrhh9GCUwS_R0ktgwPl9g%+F+n1~Ck<<-u71{N2g7r2YULCtqwd<5MV zS3lykEZr#l4j2pq245AUsh-iqN{UV^Hw+lofoKp=`N+8&tGDi7x8vaUgC`H1y#xS0 zaq0H43paNiKeg$=p zufSbYT&f3n9G4U>dVJ#o!0#e}fw&ZZ4vz{5i5QD}un-#8QAp16CT2v(Bu7RiMtI^v zLZbtMBgY6ujRJ+nj0uSz9TYhdw&CHy;bX$10#h>L5>sPD%ozb3I65$BjDOfD(1<7R z;O|rg7$*6`u!=}m)Y561ZC(d6!T9TO4y|#;geGm+9|{^`=0xaJOXtO zW4;y(rr1pBJ_Imke~ny&ef=fO?<(}#xvN)#f**_ylNbQTh_o=on!Z>nCHjR}-w|~j z)wWv>Rn}W^`zr+W?T|rlR42T>U%$Th^$~YLjXnLS=DtDfGj8qug;D4R`yf)e_Q{Yc zFqE|m&E3BmI|uo3qlV4LcAm_AV)LSD;uV{3r4FaWW33|Wy&#vA#87we->+yw~k5F(G7`$cQF`)16BWD4+$1mPG zaPrcjGgptEzfpGf?6$J9bqBW0-?((`p>4a)AKHE4`1Ui0w;wM%bouOw%jZ{YUO#RA z?2;Li^CuM*PoFSx_LOnOxf!_`rBl_KMX6wICuZjr=M+xJhy9@V)Y#bMnCQfCF)%Vd z7z9>W%&UqI5kn#qf&jo6XU6dwxNH&j?26QH#OR>#KSDesRe&1nv*JTzQ=`1e9s|HY zU)(?d$0kP1oI82JlGz#KQo=kzp5@+){zGRVgh2j10ETuv80! zG||t6*GM}TG~{4*ZBlYH(OUJWu7z5@oTxGF(ltHIlf+!inD*8hD;hN`aR58(#hmze zosP-U(q?AbnWY})4mRmY2n1l7ljTdkVxcT#ZQ<6rr^Vi!>gt~9KECS04ExI;ZqJeq zx~6_@K}fd+7+jFkz@)%)BxJAAiphfX#;BFhY zzsh=GYRGX$zd4edd@Lq`&JW?o$FtZmi~tssUJT3Fs_OVuTagMc+ZMB8H2sN;9FPfG zF;#4kX@8FE;lnfFDo&_o1U9AVaE8$ zvr9{+7Uve{fC?uTfCG+AiHc4PjYM&26abq%C#`cA4El<2!6&a0XypBF#D2i?iRk)P&(~t-*Nz zN2$hN2Y&c@y8TdV#+f)p3+;tl6 zYK@;Sa8)u1_(YD7Po)quq2$~s4Zk5OIN|_S7r&AoOE@-MiiO@*nqJr z!g?lz*K1y?*!f z)tf-yEqnLPT)1e$v`L`SnG;H8lunvAb>`AJOSY}qb-HZJ;oWQYY@RlMCIEQij7gxJ zqP(>1jKb35arwC^=}F0HiE&Ah8QDn_XB1AGTRLf0N%r`RywY*wibSF}CMhf~IaJQE z3XD$)!K5#a&VW5|>G6(%OSn%$YItl?2!a_Trc1{9d*TDcD!*|-q0wNAMI$d_I5>P1 z2(JnQ9X%!(9B}mLkZ8Z~*ucb$*sOxIv*e?LDz{{X*$K!32pX_-mjiGjol zzzV}!#9-J)D{Pi!v0?!N@Eb?3uyca6>l(v6K z4evU=(q)DN(zmvyhhovjoDEK2-dk)Cm-K(at+6fVUJV*(G+JXh-q^Z5zu2k0S@Oe+ zY-yCBVLDx(-|)m(y+sb#M|qJ|txa9L4D;+HKnf4pIA`A`jNGzzBVS`jo#o}e?!yDo z068aR$qHi{n857HV2)u<3+ElU&2>h$@txpKo8gwviBF5qj5DE7Kw@MtVpx5RayA7m z!3h+U!e(6XxW9D$omG6N1ISiQG7ryE&_!lpdk|MrYKc!=_Y;R$foMz>`e1m)jzJ-n zvK<&g05|KoSJb2+tfY3moW6Me!KZUjjGE?Q;Tup-sNaA(Bf;OH0&pLG6%-5y5rA8V z2HSoOfxZt8fUyR94ZgYlM=$zm`g$=o4)5X1_s-8P9hJ@PAM0CyyMS9jFX+wJ`q$NU zud5npNEU2>)S?cx%^z!;u#WmorJRq%CT$txK6qT3U_6W)X0hmUG`?~i^m~d$6M%0% zeTSu3gkcV2il6A6$0q+}^U22Tz%$hNI#j6MW^JZio)#tyx`D~z_CFA zV*&&G`~&?1!XradGm;ZiV#6bYN09w>1uzPr``qXiwgZ^S8pCF+s>J(-X_zISqD5BN z6~MNjwAN?11MJsVU0Z#8&31Ooi{@obR`A(q4YCg0xD0qp4>H(F2|MO!>N2Z7$}1ZH zriB)a6^l8T`Gk#OsLY9IbRQX4$!HqwvvL~WPeW98%h%aemR&neBNwX=#HOF-GlBK< zTZ{eix@G>^d0lHgQ-fo;zcajSjD4RLd! z&12EF@U;~3l9=jhn)zd$QEuC*fP6L*`d}Q*NCO(t6N_b?y86g{(z@3g!#1nhVuc_2 z*dk8IMRV0AesV@}T?{oF+@%qc=+W{0z^f|&52)Fb62OS_0qev|F5aNZo#aO|+&@mm z!igNzGDH(OKx$jQ8KSba^0)HJHUMMD8jU+#HvF_y*WClE?dk>9cm4!Xff#(}@P6Qp zeQIh0%M0`c^uGPp08;3!u6y~VhL6q=!4i5>^-&E5xN5NHnODM2k1z2G&bc(H7{Q)SV}9&tAKK>fFt< z7w??8e0T5Rvm19FSg>M!@x-Y)1;r&3CeNNbf7Yxy>FJrN>1oBKC9~$wpEhSsc42-- zZgx&#{-o(sm#$i|X5;#~3m2A5o}8YYm6@BJk(-f_mJpv56BFl&PK@v-M*@t!2@x?# zuq{?o0EzVk4Xq5Co3)}IC2bdR~AJFB7H+5 z#zw`4coV{Lok34rNK`@?IC43RS;R9#TPon4Fkr`+_2LP^9fT`482YO8?8PF zKj$h*u06rVV5|l5UihMO4>J5(z~mI1mp?x z>Yl9nW|)d`XDXMkeqqp;r-z55ug(EGy)V%hxyw~i+YCY&^ZN@(*MF~o{S3oArtNgw zE}?H+R#ra*pR-b<9Yi$ZxnY#k4I|z(hcHAuK%xp^ZSO!orIgzvE6GFLKqhpAG7;Nv zaF+t(v;numYhfVT)(|XPk9gz**G*D?Vm%y#R{cZn@{w3Lk%NSjDVw^**#>=HmC3f1 z0b0#ka%6O`j=`wqAL#Qco7?g8Ydf6Zz==*LS#Y%G_~#a0Rs!{1bv?~+e*L-TRpmE4 zaw19p1KjD03?L;U#d7dCuD2)1Dl><1#?t>nRhxEBm^ypbyd~3T&zm@P=8Rc$ z3yMmLib@L$OD0U3oL^W3J`$8SzHs@PRXg|ZU9xJ$yu}Nr&zS{C1_sBaBzTkJViKd` zQoI?tX~~(1@ySs!@!`>lLRf4C0G6yBi}VE&gBwN+BY-1f#=;&jzPKMYgydR;azS6D zY%thgS*sO_Wzs<3_~ZysYNj_OBPK2}Iwd_JF*zwGFL&jpjT?6Em@sozT3&uiW_o07 zOi*Y*m?tE{8xflv8=D#(5HZ#kf=1l(f-IL3E$ka+t>Osd7s?i^Ux3)qolBCzmJAqE zXxb>$qQtP#M*Kx{x3a#YlJG1s>@2x522%2|l)B={T+~u;gh^vPc~`hPduNSO9perb7xhwZu32Z- zJ?f?9VaxW$9Oo7^P?Kl43El)?vaPPoS_V*EW6r+puYq0?0ng&71G>ar678plh@J9? z{E1VOKVfaF=vqOn+8>LzqC|6x{r%A0kjgwiN;OL45h*my*-5ceE_8>KE|nbpA*~)= zwU#}wnAG(XM7JWPcmXrMG;XsHaUbPe!Gksn?5Rv`9i6U82VAG8Q+?AI=5jh-~C zCICB^Amk*5gE>Fi;}ISY=2p9@>~Ntb7n-?*OEkiMxC7cPcocB~*V)78C&U1Z|9)Bi z=uPDV@X%njpMSh^_u1*ow>IrMxMIWRO}qB~wP@MA#mkqhSo7DyrBkQP9+zEEm|t8} zP%?Gu^y$-Q&R#Hg*_svemo1tyd-}|IvnS7-IxasqDLobF8xL}dcnkuywbFisl^kfmnLOo6qJ^(+_ZW5hK(iDr=;a&$EU?b#D;sK zL&GD3!#qK;2~m;pVPk^-9KpXGWqF4MFfkZ0th&NwtN3%>7_L$gvQ`Vnt-Y$Kp&4wr zx&wE{JXP#m;DI*yx`)om(vg20YW@YSG9$FWbpb(Ar2=;KY>XR|z zXNS6x+jjm%C{$R_%B+SLosRf2%EMGX^Wo1l_lh@k8t6sJa@;xr%t=i5FP8!mS4d>i z9m>D8V5_JAtrO~c%94O1PvX3Z zr=p#Y#rqhq&h0XXx4HxSD;xjjF4H2}sthPvp#gn4&=dhIs<^f7790Kjt<*Y&?d)P9 zCS9wgf57l-Bmh%AwgPZNhwdqA#<3f`Vg}HQ07eNOf2O&=^>}CQbPeM2OM||K@g?+% zNtSe!mS%~%n_kOfGA(vTIYFyaRCM2UV2ptlHl_uMu}n<8XKB{q;QvAf!0|<~Wm%pF zR6UoO&D)RP?mu=G9Prv5+g5JbG;P7W#p~AmwQTv^rOPHxpPoB@{QQLrmaSO6a?Q%+ ztClZXv1I?Dj-B(CX+;!1G)}JM z+GhZmM`c|zrWQi%`B%h)foJZmHF}2-@Rqej0JC#&*VT>cWY>S~uywq3dPqo()G)Qy zMtc$g7)zXJu_b0PDQJ4n9MG%sK}DpxSnXDWi+{~<}EjBkt^l8)ItLZyLbC9D|4`6-va^9s!uXSlEC^mFsaLG)v^Ij+U#z*A+FGs2161IdStDywA$I z+fUx@I(&A?nvK)`S~Pe0;>GJ$&0Vo*{qC)6w{4%jcuDc(i4&$x*|m4a`AcVypE`Qt z^s$ZGH*Vj%eRtWOeMj~mI$5@0`TTKtNr|bEMU%639|9M>dB^^ZTX(G*m!Gh3>C8O` zHt#LlG=0wayzwcpbK|yUn|G{Ozhy~6YB(6*@aR#1XV?jXop6U4bBk&0MrhCxyi%hsUIZrsu~O&nlewSINxPa~Eu0GHvekjJ(Xq zxXADr(Si);2TAE3*~sJ{96ko@@2J4v)hJ38d64;C4q(n;1I84uaFrFKR{3KS!>?2; z8!fn0XONgDiIKt1W@5hVlG(OoPX$p73Pk{J?*8R0P-^Y9?Q{*pQuB`)ZdH^uy)_50 zQ3leeZ{pafCHgV|Qw;~d z;($c@qNOH#%>(J5^vm&VG}VPsVAj|}Z-8&pYJ-N2=4S)eiiCO{BwVTpQSqg*lM2FV ztt7Yuot^7qv|fyRV_Psy@X)r{Z8(>nZ4N(L_~EI-Y-}E5z2h_&8vbfPCL=qGwaU*b zgfN0g@#oh%*NgNr>YQ!iM%EBa-WQ)-d)zuXW2+gr^iQxT>jJCjP9+A;eu0T6_ZV+t0SLT$*|<7i(>3&nl%DpvP_fMEQd-4oX>b!8x ziY*6sAHHyE_rXJ@Q>T|qpE7gdyxnEnPhC8A#)aC5KKP1zo&x<>ZAk znK?-S#lnd>WheF?Jicq+k?p$=Z1`)@$F*fB)ev0BO+nJ!=xvB7ms^kWp4sFK#1}Rh_f!2?lHv@V5~* zYDxz4J+2sbMyKhX#BvM6tbof{@*EAjA1C1 z3er9p0BMAsdB;7aEuC{7sOs1NuxpjFAp)>vf*oOJqHm48j+c8iozWD~{n`R2{y&|K zRR(~0p1a9x=jG!Gt;tiv0NALt_9c6OLHca0wsmy<`jW0nwJLS-5Xs*Ix63?;O_6q9 z=4O4>n!(@LS4ztf8jBJVi8+HghKaaDU%U#p5-bhh>?-AqnFDsZUWHzYQETFIkLx0P zjWk!Kqk`I%kxIH=?2|O^L|pXoJh45@Q_)rKo+)@s)JMb3oiTOy@`P)ZZtFtyR?1ZZ zaf1rN#p~+uyER!)b|}@hcT=OVC~xlS!MbQ_1x9m>b2&N&|3@`Rt2GnF4_hqIBwTnG zt;;xPPe>L@rL16H~Dc6AEgwM_06%8Hb^=%(&&Doi-0WtvWH101dYmvUsOZ)0VB?xNQBpMXOhB*tKWh@sk^O?kk=;3jjQM&di+$H=nq02>5#F z1;hp=+wr}0JX4$I0_8#1V z4j8m_)okGF&VB1(d)w~Su}L97!IH`2_8r;`J9qEj1hk$stso>~w3>${XKv^MX~6Jk zgsxf{Ne8HLg<#PloD>|H7!;lu7@O&d$%qEUW_aT=W20h2L6P2&P>)y>NhstGzo6d& z!bb*qM*D@16ac14-%kI^G3*P#zIe>}?P81VUB%8N9}vAp1+~K>1B}1hJTZ{C7S8wK z9Ic)H{pc*1W0-8Bu)>aIYT&nMbtzyC6kA$Ol`_f0w@O&@@*+FueAO_UfoR9PNn1|K zZq8`IHN7p+>o#lJCxG!iH?ttHD}eu_31%byT|)Op*OT7v_XS{Qmz2q1i@t+cv&!wV z@gBqn)GH!8lL!WY`H7Bm9JDVt%o$81CO>M~UkzYoTanO`o%}u=y~+e@vT_qlzLw-% z7J~LvvGo&G1(|OfTIs0nw#vL6qP8om0GkTA?XH)*TW2`hH44pdA`;u~k8?=meq#iO z^&aZ2gMcjiDH7ZtdqbV0UBN= zNX+U9zUVay-^pPbF94Pjz?7He$y&bRFF9RBVhLcI7_D&|ut%}w&ti=bs}3A5^-yao z6o&^r*i+Nl^R@j)RcjYWbuBk_Ry4GKtZN1IqR99nhDD>4sq}?+000mGNklfMPMfw7IpM0#o_p1EzU9q@t*{RFRH|*TH>%h9rJ7>+AH-F)hxl5NVUAKM!=s*|0 z>H3W`7A_uFoS#vcvth@oBWL!Po!EW!%>E5K*34Wm_4MWAr!E~kbh2#!(S3g{m=l{2 zGjU4kv6DykmF?JjaQluu>w%_l2>=FzyJ73niPLhy77NxM*syiiDgbbNN*ItBu7V*3 zRIgsY2;D8x7jcWOH!99g#;etSl!`w`{D}@YHZ3$U%i~E16js<96cXhh5gQzp5C%jK z^^6G&{nJ1A_pyQh8WZqOkk|J;r8h*$w62$~l7qBxLY4~Ts#$;nhqf{e76Il{{ft%_tYoI; z-<=&bF6CP6wW!Y7NJ(NL30nqAZ{vPNVyE}DdY5_4CkL>Clg#6CH2$9e%mdL*nvx}T z4(MbUek-qGF^qJ5a-tW0g5z z?vg)B88y=Gsa$4lzpynBX`3?Ebh=q(U(m@}&P@fnm5!DwUm_SA9m&+V?2`9o-OPN( zh%N8S$7-@YwoxP;z4mD&#_Mt)tSg4h_kc6S)KaH%5*Yv(L{(r`CzTvTW3;myvsy8U z1NW@&5VJom0OK=j3?qZ#=kcMs=?!2>Cgvzy%nPP4WsCGR62@GwD!+-+Ef(g*|3q z@_gCpi|cpp-+S!L#hZ7w?Abqm$+9IYS1;eNe#OQOtG8`huzLBp;@r55#1$Ks96GiC z@Tmhw&y;Q6wQlmPk`ot>9zTENz_C61kM3T(ad~W_r+8xCp<{aw9@zyB7`U5~5tEe{ zzj(#WMayTTWJcwUPeHT0YybK!J66ZUhy1l@GKQl;yY_9&%1y-PB3gM6;2ISEM_}0R zWOjKhI>a*)ZbblxdB?^iheRa?MJ5Eo20Ten*hqjb2+S^^cXZIdKz>1gkVXf=&fkH) zBLn_5!li6V%3v^Im@jKJ41jr~n6El&BS4MgKDbdvBy$GyZ2&NsU@DR4h4O@9%u?Vu zH!{c4A1fGF87nWz^F%sHl#xjxqi58$Y1KNK4_^ai4>%iz%KYe0|F_)x;x?}@)79NR z#u~H#I;#1ih!eJU*cs`veC+UI_p}YCv;xAm=yAW4EssmMx>5rVmXo>-N1aFKCgx5mXs1>tkrfF5;%Dh7q9Zc*ECtv8oi0dR{AEymH1y1 zQ*M6p1t<7aP8;(1lrcAN{nb9slP`mT&rIt|u_dJVD$CY3k+{XNY9tPsk*h=Y(6SjK ze#>I!;(OM~iw|2q@zSX(3V4?^xD zdcpW2ec#u#=+T(6*b1&PLyWgljW>E?EFuHrD+A8ev@*n_w-x7Z-am5g(z+dcwv-(@ zcjxYzQ*W;BYIr#KNl(&mTeIzriJl{4Q)n#`lq2c4Y&g~ zG6Ay#LVpVg`2*04mKRv-A2up1#y>c643KzK;6H)8NZ&vG|7igjr)qHe4g+AEr80~O zCW{OJMh3h3V?K9UG1%T){DK9jjchTE-$Dk%CGS_Gb(v^=;_{kyDFI_-Fp>BRjjO?@;G$wq4*k23c2tBqD=wZ-@*xlAku(R*A~uIE9mbC4Kp}Eq{#3U0Xr5c(^n2OrF@nu+FnkFDyTe zF#4OV&w@i7-IjGS%&QtP?EosKW1SV$s%AsxoFBQlc!6iqo|BH@5dT*qg;I zu<3OvjMbm0Cd(Q&g8N&$>*dP9d}%4pU3_&`%4fqZY#5f8u5xpXw5G)(>vXdgP3gkm zL4`cQ`Y3Tl717Rsvns8U!CR6nU#fli*)qFk)K_;j!N&Wq4RCs=(g97KKwN|_=u@N0 z=Ax-pnR^*Bg#Ex>LhswJO>e3j-+gOFQ;X4N0x;}{Z33`rl+pt=Ma-Ek3xTt@?!SD0 z>F%R5*KQrZc=hfYBeLIfkc2H%wj`E7iN}qXrBssSe{G#^gfh6bL7MjUHd;PL5>fp`UNltMH0$)!k@B%PFAEkW))mk8;m? z{*i%00>DtX3-)1H#`#bkTMLWOC6)nT$za0)TXq4LUT4CoMmP%z2Qr}ENxiSGM}7F(0HUin zkO7x)$LHj#kZgv-`e*5Qc$Y{OGsoNzQ#f6%GlALGruMIn@UJO7R~hXc8egMH$yEeq z>M*8AFBRllCGkH7Te{7>hDa-P^*43)ff_q{Q4Q@qsQNZ@-A3n1j&=4HCSpGyO2g|R zXzT{9-_Ya+V7lrAFwvJ!!oqVeq$buV8H*aZ0$A4%n*c@ztEZBqJb=D9LaSU3dl7Z% zjU6CWk|xVy;Lt~*W0X27O8OFm0kJrhn)ffko#CFm6btvm8^gCJ-mo5li36x<>BGCv za3SFr`;MPov1!MmHJb`1P0lDN%$+oT$%a)+)-4@ZoE?)G6&V*1=?#gB4PCZ&(S9K7 z;hk`~a_!=@tb}DN7o9$L{P?NECr%$ZdG^rExs!4W0kPW!efMwKwSPT0U;rcrlL3wS z#i?M6x9wiNbKknHJJ%$oMQzx!9K0{^7{I)0-QtMoK(w=xxFaRGMFc{ zgU9G0>`|XNkBu4B$Y3K6P3Ht;e_z=B`g6Crm_%ZdBrzD`?>a_}rbNZ1EA11f$rDTN zc5%BPkHWTNC=f##IuW>^F4`IBl_E$hcQ_hEJXMtkbwP7>o{BT(X%* zyjchtY^(riENbMstZ$2oF!vKOX_x~dU-Vq*_%P*V;e+$3x%?Q-r$CTj=QH%JPEZY6 zqOYFGAd?6>RKP~ExDUf}e)-PCFt5hqeI__;0V_h)(M=A}rwF0gU?Y%d{*kaOQm^6Y z$+qb#dKzlqR7ONz;*a?gI|;DWA7LL3i&XQJwjt$`^}0+>S?f4SPs}T=u*}#hMP|!F z2=+9!RW!E3Wo2`FRcn_V)~Gsq>-8XUe%gl(7DjKl)p``)MM@=)= zKs0iTCXLX*FZvbP7Gq$`B{ee!<8Uq-n?>D9_?`_1Tr1B-@CyM7Qow^ITd5(G8o;h5 z7@=zj@WzwAWPhnd3!WKX2&bH?^0$_5FuvHAOnqn-jy@uBwXPMoi-K)%w?JQpj-g9K};`I|I%t=en zPS40m$x6#E%*`&$%E(Pi%!md13jp@S1TR=VXWx;XsFiD$W@e{OpEdQ^$s;FDA3JsS z#Hn+KSFBkGws_}W04i!@`nWh1Quc_^&H3Zg0kp7x_x?@WcCC$y4MI7J&IsXhJUy^CYr5_n`PTp9uQ*%L?bCXx1oq!Kp080g|+Q+0$56}mde6zE%pU^iM}M-!cl(8vL4mN$3ZbYM z<&?2O*p_A7gI$$a{rG`#CXsR*M`ppJeb*EzLp}fnXg@_*DO&0#;+0nF6eqG;KAo!VF?uUw*vx?A_J-F95wqF5cRA>hi&pm-Ze# zw|#5b(#0D}N~dJ!6sBipB&8&0WF=^#-&Di6Cxyl=k7bQ3v}Svo;4emu zpA9A$6T>_9tdC0$4h;JjKo`)9!mHfu;x=9acPZ?Q4E789ZET>RFGy#9g%t)cBZEm; zmZbnpFmnwiJHd(UGyqKFy!mn&bd|ttkeKFugM4)>J$G~uzpy8#dDWOsE+%45T)v)AiJsW+hCW-3vB%l$IiP~_LyVcw^dXYbh1#5+D^F|yh*WA@> z+%|sDaZ&6Qrlw)wF#r;vh_li-@UZn(M_i;c{;AZ~)8Ezu|3m|D350Ibjk&G%1|j&T zfNukXz<9FqxupY)IIX`#D}2yAYRTgslh<>Ht$`#X4|A`vvLZ=vc8$Q*(n*ZV)k-UM0{FwY@#P3I%vVN zdHW9UIdt^k;bUbRwyeq@pOu}Tx@p_$W2X)rI=1KV@!k6mZJRi?5YW4O{}vH~-nTI& zBL=uAdWWL?B!IK_m2C$+?>Vp)`+&ixCZvXg8x{cGzkdJWE%TR5g`Eggs;+`QZAYK}RJIJGnII^hociAk28B>)dWg{l|;xoFms+UGR z+j6~Rd8sxShj6LYPc6%9q;=7Pw2SfdgB^OAbd*}DMz09ltTVFkwA`MeSu|!NAS~%p zsvS;)?6N9~dCs0!v*V+%unuePD7=B^RqW1f)E7>&+I4v4u)V^ZSFzFg1UX=G5^B^D zOR8aV?mhSkVJTE9mq`3pQ`T~~EG3LNV1k_B+&63W1)90>$r`Yr)=Hv9f_cOkF|48^ z`W&&IEk=Y%N-SMAMp+qSzbyQ-!Pk7{W9N#+MuU?z=~{YadLcAw(g%x${P-X$=L#xH>l{pi5vV0b@d%IPgx z#1LL#3 z_$>7DOU)5O0la9%f=_lH{b6VMBS_kgXyvMtyzC~UOoP4fQ-2Bj?kJLR0e;o4=yGsM0^*1n?9PNIugv_>h$ zoQ)A$P5>L;*O?DCV$o=VE&HpNT|x)U=}W0T-U6hTb6|bIcJx|d+a460r1t}HJNt)} z1_rsh28TeffnbI^O9sn~mt!;|FI?j5(kR68wQ_As7YuNbrPlS&R{Jkc=-PtMaxqj~ zAiZs10E829^~x~)RQiPIaB94g-E8Urv7TY^P5+^gN!nG z_OvQd>ee7`V!6FJ z82f;+^4XZep?<4&?5Rdu-R(+&Wvc^+twh8H)S(%ZYB(jE{AGJl_A2y3_*!-L+GZLK zh35nom~jRc>r+x@U5=xo&Yu) zFjlv{{nqfIuDQJ7`=_QhV}1x_uW1Gd6(tzX7zFPY2#u;~>jIJeg^z|qNrnBD!H?IK z-<)GK_zFneeJUJE0F$16_{&FjhtN^UAL%!0?-|_3vw&)PyqDs!sJ&lsu+9 zG(4>W?T4x-AFFXB2o_R3d?$qa;qqy@IPk(j`^Nnj7p^}zaB%OMwJUcX+jQbu*@fqK zuD^S9=k4noFQ4Cd^5)v3R|w#1;DB#E-d%R?*x6e<4<28ldw9RWe~>eqm8^ zW^zJWLTsWKwj7%h0Rk)Ri3uv4n6q%j+@&iPf@aR03;+g~oL7_q44$`W+S~2}S@TTzyTi#ExM#MGH}_E25nMCK<_KIy&=p z9r&OF0x)LLc!dtn;L?J-_L!|)LlpgPzY?;xd*~MtSE^rX5bx98*N+TF3>)o0yw%58 z*qkpdZk7Z)0Bp4ai%EM!C|+G9le@YES`Maf?(1*qA3!zr3gHUmvl}!|~u~W(lG4WvS0}n zVVR?$<@75gs~UY}A0+uf6PlMdquF&Gab?Jwr-%a|SWgbM-_UF(1cP%4-Wt}f$^+4A z+@r3{qEf`KGH#ER!-QBOE}z?~d^Wx=>$^32hp4RxuL3Wdf7m*4sddddMfgx)e=){@p$LQ%Fc_>bU>HOR>iHJ_Q)^7)@x}}{it()Yj z1_Jn_D0r?D^aVg_pdvUe2D|n93L+wOrJlU61o6cLaX&trB6LO7vrhuUV1nT@zN=}( zUUOq&GsT=SjEwna>=%0UrV?|v4_;MZ2^F>v;rhXkK2$#b`1#@cPh#Wk=ld@{o;Y)5 z=iVb5*DhPSaQ4bgvvwR@aqRA?OE0cnd;U=9(JRpP2XAgXe0%l&tMfOX9J_F9-|>r^ z_8i!-Yu}npTNW-~IliPcD?2AMJ3V7unm0Mz6BiWb9Se#|3<3c!)3d$FS#b&JF=<)x z>Ei&>g3VxLJzhVY5D8!dg+&U&;WE7#Mn=$LK^E9h+y-b7U>0uWf zb$m+33pHUd zSXid&`wtK=^dR(7q>I|~sU+C0M(Q8aa=FhN`M2iz1r%af?!@ZQ24fvlDj4P%=5AQ` zq_sOE)lS(4ojMF64d|fZk@UN=O{~<*D$tLRR%_rtLaM9cr3pq`5jVITY}9&dNiQhm z3SbPw^1;i_<&&|--npK%F@{Wx@@EY>T)uW{tO^F(B#Q*GkV;kLaW^kNqfX@t^a26_ zhgHpOAlv|73lK8Tj)|gI~j=AM?Bi#BOH{^@5V7?5wm)F3L z5RO7{WD^j5{O;4Ew-s-_-hF-L?(2)UUL3!2cgegnkGA_vzpB4=mhCN`E<5R+75`y5Kk={T+ zFFXnyC$3y177EmB8371Eupfzt8CgvCB5o11NMF0V{SAw-sM;Bet?*J6Tge(Ll!!lv zh(I*(7!(lk2Lc#}a$xp%Y~b%8bigCW{ugM3o+@R{TSjRZt95*FRVfm#@<_`U%7q-N zt?}aAF}w8&`)Ug|#!x?Zm|(tU17Az{-4}TCbzH8)v*e?M;QpALGZ^eV{BZ|NuGd(` zKsU}x`pUu(!O?yZbM6}W#nDUlmxOr6;4^w(QA^TecKA4lUGQ!kcc;rMJRQqF&@2uW ziD0xIZtY7THh-dMlf{K8fYYIw*r{bPCFNSAzjjYN(*L3g;T*yxxR|G>jmJ zaqdOSy7AT>-f`g?j`qc13Q!vs8QYMY;uA9nrN(N8ip^LVgua$_?&`@_)({M5VY5n( z*yGGb&#QC#1kGup&Rsr{ia(Dte2tEi=!>x*xpW8b*|j=iow(&Y0k=e4J<740?;#9h zuA0A3ig?%SVTxdO!F>V+zcjUi2#tVM?Ej%MC}J>B8HE+vz5q4ue$z4qM5_*Z*58hRP^;DtYx27Jw{{lh) z1AQ?K3_=X6-Y4yPdG8ZOm=V2be385No`1OW;=}Fd??G5ab@}h-mmfU5{^aS+7cXwT zdt1P`f7LkC!tq4V2>p#br!BS z_@5xm^S)-&`IKmgiNPaq)kf-+;9V0WxC3q2d0b1b6p^f# z9c0#-jnN?Y{M2oMVLqagCwG-cSLhWYf>P8DHjHX-(GKvYyL>o#4u%Kaa7VW_eFGF<6tbme-j2Jpcd@07*na zRI}D~hC?X{TrW*08}8RuGtt$S}qiJB7@)t?j6nFu@`|9W=(^ z^G{h13=gqQ#UkheWjSayZn2d>+=TQc0K+}0RQn4X>Fu)yykcLBPfiaG#lqm-I| zf)&Wrhi#D9no7nnOb!^fZEn&|ZgadSqE{Ay!}GtY{01~d)&g{q!KA-meE{ZxaK6H$ z50xOn+V`Ijz4)lV-x_bN2*~^E{pFDZ(!j-@8Tz_=`#-nHFZ{6FudF$+{)Bl=YuxL)n zyt#!7=8c~|JA2)xIY(|BK6&@ViM!W8XKp^&dGzd-y+?N(6e}IgTDYuq`kcR(u3ETk z#q9YDr_GsBIAMHZdVG9pY(h#Dm|br|cywGSxM7qhCP*&F8w$krCWnJmk~k?0kSs#h z=yav)1@uP5jFw9n*@jh#bpT~I5f3$E1RF!j*v>0J8}SFHF9`O4unx=aeg6~;4){$< zt+jx{LC|oCf^881m*YWXEc&<6{{I4vFi`Y?>NZ&mBhrotO(qi84b-Mt0E%<3E zwrYa94^7fgEx!&?pqr**Spdc)u7oJQA5Be>!R66B5Zp>96Z`~%m*_wHVjOr&}b05{bSq)uV0+<1qx{MH< z2v?(*hBvwLhu}TA+2xj(i^{CHJH+OF?tPsACj0A1+v7puKa1)W2(-TH?+EY)gSi_v z(!lgth7UyZ(yeOEU{Q^QB|L70^i(Qk%zEU@1ITUFre%%JurEJQ&E_x@jCswoF`BVf z4@4y6i`f3gW=6sWPtY3n*YKLeU|NC`0Ex9u5~#8@P9j#&_j?De8(3qdifyi!(!B&= zcp%(CclD^JLTk%cZNhJo24vC<5OSXqhYbK=EWbhr%zJ@&_m>JvYZ4pDV0c<*5Zm=h zkjmDajn8TUK@lI;VPq7NSkPAj7_g_T=j#umfk%o%8u#CORet}q!Z2)*h{sq$C5ogf zO+EWm{iOVh(#LAynCJ8|UV;bWK196onx1u(<6+w zLS8mv&b_N@`tZeKGjSSM>MgGpci@6M%llia`67w=(njQ=?Pl5@bH*eet_}RTK|DE2 zo9X(gwo3c@tnhwNAFG&D^tYOid?`WA_He(h`ti@qYw=J4-1d7S#Qdce?7iD0WHVn`j{jbL03u2YAOgF3b zXvW$oBl1l2C7KSi9+z`bOJnYeF97T9T0XCUFii8R*ih2p62Q)za1URYh}YAqd?8z~ zh}wksLITzz2dbCXG}*3;4plkEMml*+)KsZcdjZt9@3!T24FEeUr?|0hU}aE}xXPrW z(8AV=dSG}|C!&{+e&qi|_BoDyGD0pM1($WYgov$$N^JE*T9cUOfuL2T z;ZxlEssUtdcrr4W3^BK}__VN-L-&=eYR2+os%plYU;|^wbSb)tWIUNmmj&nr{V^J8A*)g%D`X{;`Z@Jksb!(;;pcOz8UBX z=tZ-O#J%zK73u2z=a=q0xpe2@!BZDDZ`-_P{hB4qr*GQ2r0m4*;YSu-+cEy`cJZO-oFyAEGCbl}tp(9yG(4xhdN7@jg` zLCNIF>Dk%IY4Pb<$*DO>DcOn1S@8hi%$(%Z%y{^2pEh(X)wg1A4$*8QgvY-RS1R{9$~C7${A+rYYQQbpS_P4;Tq)*?z zqr_F&=L0JL_WeUOaJ^Zt<}2LuyGkb9U)k{XQ$1c%iub+1IlPv5b$sT^npTkHW&4-9 zj;ea0FLkipjvI(lxDVZ5y&v`_=}G8;pz4Osum3M)@8KFp*0k~Zf4GfJA(7w><4`QbOvtB=3G{`AM2&)<~f8#m9x2>A2w z|NQdp-*OZ8FTN8@tw&$~C4yj`zW?SU|2S(+Gg#uYY~Owriv*UIiO_3~V$F6F9L9>b z6q|VX8+WnbQ5w}-QOOmx7|E?)p3w4wW(!e9f5*>pe6&|5E?`03C8Mbiu%Xb-oN?osey@dfLro_zZ9=tF!f7tjk4 z?cEn|xcdh;-s0I{@_kgG%ekwB!hD@DAf_AAWmv>4+^wYRIat36U0a|H{FD#O*y<)yVT;BF}9sje?Y00Vl1QCA@1^ak^Ry8vKNfipv^ zv62aA0vj|TqbXxRN&Gw;VAgxu}KNS;z62$yK(QzTu34yt>X%g1Y^*H=bsS3ggS(u7EMaF z@!4%!oNWx35$clbA9SKaME;5R4KG1(a}G=7rO>-CB*Z72BqS4$RlWWMdh+J;)3-mN zh`z{Op-;bpUVr}W%}>8;w(o5BORqYS?Y|Phnj??w0M@FYC4jX~Ukrt1$rXA9ke8nH z!1|LKFetxARi@~EWgg^UwwzSrS|y6*MiXWcdbvXd;g$-KIGm`8*x2XrftrN|$T`3I zzcV&svN`TEcQ1);$U{6~=V{Y~?3l;6vPcOM_V{{+YTZ$IExE~2;p`D@gj zXRow*6-JTaC5^k_+r7%xuL59Zj`0Ew%kHopVkM-;JMcG}qhV^#RVtY=_641}-VXt; z!0JU!$1dDN0SifV5`<}CE;xfbwM1e-EXOSpmj}&&ZMYua2zS6{Aw=(ivsd?>zI^aB z#J-nTt=~Lj?!qY(dMAzRo;9^+;+U46-i8@7N6(otZd6xeS8MUup6ZF?o5qc)@9Aoo zIKFe*{|(XgB;C01nScO{5wPBsG<=X@JIdJV@Ki~EF;G2v^%3>(g0efjr=_lJAF z{P+u^7wL-tCI*W!EIJzBv60=1hZIJ`U;q5i&wu@|Ar6)s!xSZB*81}w-_T}HpKJDK zT+DuQpfQL_krW$6@H-hVCk$Oo|@1xO8YPK{?VHcnwjF;k5Arx!e4T&SCtK}=LJ@ZsK=MujR?Tpd0UxlglEt{ znFe^gW_DV9)B)dnmQ(J3ktF`@&CkES|Lu>j|N76*|NdVzazT>~z%z{udhqV^{kNa) zy?KB4^}GI8Z|}S`K=<}jh*MvHZa#hvM|i1JGAq*_Y3u=|mvNhxlG1b%X_~-@TfR~2 zre(1;kFY6vjvH$*&kYEIoCup)_hKuiV9ctl7ecR6w4Q_!sdy}OQ|-+ki3z7rSs96P^e?WQSHXHD#B zozUGfeRS)LF>Ry!>ZeZWm^Hm`bZ=vCYx(GrRik>Urc7!b)z>t3T-($s1eO% z?QWbpee{%ReSLi+r%xY0ch1alWBdBX_BFONhD)M>SSVB+3YUbVC4g9GsKg5ZF0CnP zXs<6Wi+TJmx4)pMEC`{nCs2qb&-JWDFTZ z+ePuZN^LZKd}B$g6Jg{dXaU1GJ`uoLkji+bjPH&=%fCq=jza-&Jc;oxgD#g+qJmxU zJWx<9@&5j^<7avC;b+7!0+=vN3>GudG)DeGNn<{t%!pw_Pq0|%k+GsaLps)97oQ^z!EGAAbX2qA&54$F5VKl-}6^1Fxe9ncR1V?;hVOo529)RwB% z53?hQH~wCOa37^ z?mwdmU!)JCK zJ-z$bnKi37j~hF6YHue*!IQe{XO3+fGrD2&r1m+p$4;Cua&%|Sn6BCh;~FPVgvhvV z%-H4$6S}&)8ylO7dPmidpVTpWT+% z^8W-~GTbms2v?@H7|XBtOECoVo~nz&8!zt7LYAo9uq7dwS%|DgztCBrNNTvNXL>eSygME7mrnQ3l_# zz426Z(Oi4{LijrAhKsnLO7>4EGLtfwA}eh|{GkVbKGe%gV|wrD6C>i18^FreGOz8T zBsQWKj{Hl-Vk?S$MYfru-g8$DoxKe7-FNal;uhjg(B9)0Ao@h@Jq~9sp>Pf1DUcG5 z7^=cLA%>B-7~R5=!dwCGlb7V3FYG>g4(@=r0_{9@ZpV=`oAw>su;<9O14nipJ-L3v z);V(*&6+f3QeS6Rb978+d0$WMl!@)LruX!8R&|do1C1NqII6p*qqAo8n3mq&)~2S) zy82jGcU|A;<}qVi$BpY6KfZh3qUoTiGbWFnFuJX$y`sLdxVFp{@w$UfZ`kb&6x6m< z!ugWw(nwJ#5cYY4c8GmFfdW~LCCjg*=@qZH;?N}+WAq7F#oA+xgXI*2Bo18^CW^Jb z-W*L>0xioH^$*V7_$XrL&+y#1eVbtClGQMqA;Ht3JTFRYAb+d)@E<+ltoUiL21JAD zDc=Al03&ok7y6%`zw-oS9+YXAC(ZiE6KxW|RCosF%66oxtH`43Zjd@<%r1u){?ochle>wxsx3fd|j9VFq0f zY2TC!ouuGMCQ!KfO5^BxG>j09ry1lAM0s4$1~f^bf20OuW4z0InUriZ?f5F_#qC~B zUkZHppSl3_-FxC3hb~BTsZDM zby+GN-R?SmVdt^)J0ZY5a#q~r&}p~>+zJHf-G2D=)`KTE?>V}1^X@gRCbK47&ESG+Kln-ZH+b6WwrIi zqsO+-nloY2l-};%meFH7#!v1ZHMXs_qpr5GEK=rg>uGH6st=ZUgHg9XEEwE0vY}&a zXGK$GQAIRV9Pmb*uAl(0+n)~rrbI5E2}lqngGmf<0e*m6JmP}(WeL5+W-6qjRI@;= zw3b8z4Xmre^LRtLEk)S)_3%Ao?GBRVJW}UhfV}z8L0EyQv=}P+XET7gh{Svwl`g{| zQeiL%Yd#Iq_k$n2cpuMc%agP~H1c<8DLCV;IC1&DFQ3Okf4pd}3+_oHl0{(g`V%sk zzDJDa4WV!%qaVdikD_525NjK~Sbn8XYtYive3F_T2mgzE`%xBJ^WdcswhX#7G#-1X zcn+D{Fj2vg64WXKx}|XbL3}QPF~)tX*lX~AG8v$w^GWRfuKNKf-dRYZG&qm zt11&_qFzO z);x^#xr9Iz)*MKHQL?Ob(p(tK*_<#9uCR(fZE$~yep3MyemYv;lcRqD+j8pPALuCg zMvO*)p!pM8WZZrI?#|1294RoSj|33qyLTQ4_X)+b;>KNal0p&-4EI09@j>FBSTY!7 zHo7wVY$*LplvltwxZgNKkRsh{x~nsHY1Z5vl?Goa(L{9R7N8gRZV#QgDw4@MefJzc zi_kR!_&m}Vg#g}p_$=TPgwzClVjK*J#f&tP7!%98Ph6D5JtyHRwBz7u(6;?2LE8@q z0dY}V4xHG$|2SyN-eU_^ZJxhs)vB#qSFc?HSRLC_IjW;{%*beOOK@a!psmr@Sm$hR zaF1*WceTeL_U-9ym_2Xyw3*ZDYHNy%VimQa?$M1Cr*w@P)7;(L)HbrFx-L{w?heNa zf{{FbB)7h$s9|JztkN4P_5p)KrT)f_y5`=d;<}=es-kd7Fj(yIgzXUi7P_)D7fI^j z(H)*SQ*lk6&q!Qp0GY%wjGM1$44IV&H?c^E$PpaC@l-QwF~X)J5;9xdR;I5p#f|hu zp>HKhuvxYjiw$6z7`NqHGV)T>a*{1sBL)$}_yjR!16619Po(D`zwno!r|&<5lnN=@ zMkN3fw)Liq_-{O-7X`ol@u{LO-V=k&%v66Xfv%unqpeL9+IuEf5y2duOt87D6#FpiF|jS(bGo6)8OGG}RX-kxXg zm4Ord$4jQ!32d8m7~f$QPMm_g!bqt?;!IKmA2PF?tdfOoGP@G7#OsRbE9B1s@RND= z@n_sQ#tb&_Sb9Ug;~_7f!FLUQPxPq(Xb^GsdjC0qu2JWS!M6nY_`ka{UzwXfD-S5# zwMyTE|3Co7sgX*BGqn{VXi@NWg0Q!THwd9{I~EhdKu16$Wt&B<)A6&rkDVdz%Ebkg z%sHbjQ5=i_rYKef#Ck4Tgu+@9Tf10Z50UN}5TbX>-s7A19D^fh)9$0Fjr$IQHtjjE zYU_{7)@__NZ{g&bQzy-sG9C!pQPtNG9n)3R+aB&{@-^4FLA4b*&2{#+=0JBxZ0xwU zNt3&#&zjyly0^NrDjW0oF&R)j}QWw zHw%$7hAdZ3#kysTbTyY|oxT8L?M&w2)Qs=ph$fW6vO`9$8r^e;i#B4J?k37ojkMVuGlLPmJT*^wp}Ll?K9i> zk^cai)H4hFKgr>lNSshcgN}cGFnZrpp%(5Co72<~8FLJ4zAMJ4mxZ?RK|_4Vfzd2p zi)8`8+WbmGVj*4S z(H{}5iQ~kTimw@fk-^$Oz3jeK=lw~U9~YD-68g)40|ak8e9j|Xw39r0zAacCIWJ5=5tgR{B(d-6wHo8XEJ6h{p4V49TmAQ>I1+_K#-Cf}c6Wbt0bXRYCb5mnkX-TZaQC#M#Y;ac8J4&k^#g&EOk{o~3<_+82!E}c=4V3Rm&vjV~ zy;;KBSuofWEcQmq0^Vpopw}DCaRf4Q-AS4Dp=d3M7{(4-Tu?a`ZMY(XIdpL!7fm7w zy%_rYLZ^$o8 zsDxoL^-76Qm{nHuyuC7KjVju>w;vhV^JZe>OheU^Qn8{m+GG9oH`3<8QKPVAu$Gs8 z`;|}4L-g|bpa@+u&_Fv2?##?>BdHRK@7)@c$&bk=kLE*@bgT*ycTuOV->1bX;nD}e z&;yK$Fy=tf+vUxLo38Q~IX>R}zacrHXBLu}KdG2^h!wsnoaWF~+O$}C+AGS{YZ-es z=as@QUS7*RAIuliekA7y4Z`F1p@Jr5`mA{Q@EOhq5HogY=AC{kWy0g9wg3PS07*na zR2&|zIqCW4E5+8_qY)pKXz)9afXSoyf}pG_0IE&o10x@-_y( zaIu_UMD0UZ!+i3}E%e0D%9v$$5T=y(Ng+OWpSUQc1*W(KD>q!v?K~#-V&S9vPhJLL z%u2=20>g6GcK?~H`+2!C;hEvqECMhIg5a(DPJl2VhBNE;9Ne`3$nve*7Ovm0Y}1DM zt5;56I0v*~*}Pc`X3SqWW7>@IV@5S}wpWbmEb3|tx7OR6YVzA^^E(?I?TyZcs@&?b ztg6z?(vpnos@%4bMPtX;clOjZwv;wCmDkk703bo%zRD{+v7*9~%DiZ4mM@aw4q82- zG&nka>2{A5U7E3$%Hg%S{8*n4Nx9&r zJYVoK7BPP%0OPDK1(0+^0N;D2>F(1vn0e#EeHv|VOkdM`@3QI@PHR%XzPomZW%lS@ zW`6V1Q?oPCQ==Jz*&~n-iQ_X(&E|aE6^k2VkwZOhGn19B&UHS=P1`M|s%b4j{qZ+s z@T1p15rfGF9OtFbIKRIKFyFpSxPz;tkuiz|Nsej@S_44|x=7rU*X|jPSMHv^dJk>u zl|gA|bv&aWa?*V58IK9c6e8378NOSr1joc+o~0+mlI@paLl<`(ja|`dX_b+_^iw4U zcy zS1j}V0nez5i{YD+g;c_aS=wc2ox2x=Ju;vdTZ1G!FU$Jmi&~YF6tH%OsFo5(I)j4C z_R4n=fQh~$($xU0H5%bdiklMxm};jnFUg${^p=a{szG>4(jTzh8(iCcK4tKTrJ6nBi4TX)>IiU7NI{>(@ zBD*Y>RvNVy7iE-|WY*R>n_K+VwZ5_nXIZ(YqS9Ac;faKEBSp4wEW_)!x;!aPzt!Qh z6uK=1uG9iYYQ8pLQFg{Keia!k{?TPR8n=XLl*Qe6N%MO? zvj~f-cr6v~=F-k9Rzf8tE(z1f#7GoSlLT-*ex-jP9ldn>_{G~NF5N+$yxfmRTmYL9 z&nO-u>nZDpIBDFBWcH^&!9H=qF-i$Lujopi#8$R=<2$>C)-3hMOOtBEuo{M2Dyik- z)k$dbfZ{LFQW&IsluRM$Lv$scL0@9f>6>@WqB5xXxOj$PU>MK(iip!t5C1}uhQr4% z?~o_66#TEeDMr>mM_m&s>n9|dWlKRb0hqoX{5mu=j>{>NQQ*KeFUd*+x)6S{jkCQceRW=!X#NqrN>b&cw2=^a(q z+E&`w;AyCLH#ZixHal7x3L0v1YAdtrs&X1@^I=g@oKX_7#KNh?QEO>gPH{y<~vgy?lf;8D-d!-i@b%dEN`%|y1ulb zrK+Sn>J2#UuDk+AjvVf5)3VJt<46ZEC7*f86#ge0UdmRSLP zfx+nEjN^U|5V)hBbb6nz(?~)bOsP^dW%W zVV3Vf$r(W9VS^|>Gk9(=472d=vzfvCCHe9sn)<@g3zrESfrqc-o3&={5+D@-eIwtc@EeglP@0-olPQ&AglGD(@Si#7u}ml!PzgEeK|~2{Bl|e>^@$QK*gE#?-<@p)iH` z<~fE`0gmG9gniG-cCyivL><4VVAud)%)~PE8mfZLBh&SbNg?Sij60MdTnk;fB_z#< z=^9)M(c7gI7z203Lc0HJ&o{U3Bi<+)Mz(2=%1qj02Xlm1X!p z5&zpFjA^ExM&H|yl^g(xNUY@H&8cY);7j@tU-5u)_3kP7K}nqi7+<(~?CkX;rv-x# zh!FNNGMJio@g=nq5t8-tW;J_^+q&k~pe+ZFfv946+o4n24;}}JKBB{C)@+|R+KQaI%G|0lTS+t( z09+KYl$7KY6=lVW3ae`Z6_tTNFfSU(kA(C5L5OkFT;6nt+iLfu$r-&Vz+kt}76|A1 zgLbdKAm5Q0h`8Fj8hgi#9NE1S4yI0gjYabQ!72u=E*1-yZk-kV=q%R;D1Z$c_DDEb! zw=j1N00#69P5o}T^#=ejXb>e%dEl#T11AJ9a?~V4_bruJ8%?R;uz3wR(U)@FxHi_f(Swc_2lJ*4e( zbrybBm-|n{Z!g5e=dMFQd`KjvH61*C^^jn5{0tBpw}*Mb6mk~}n*p~7T|g{Ipm*Pq zbwBP~y=~|EoqM%;K2}Zzpw~adwt=+b7&cfxR#!Z>OaKYO3>lQAW)7{hF-PhbVuDx%3Ywy_R-k#c~ z##mjoqo%SDg5CP+-1=&Wdb40%U7lH9lwKOOmX~BzmgQ8I*kBzErIf_dYHMB1&4Gsc zSbbfzx;zvO+QWgoqKG{Z$nbitPM6i;wBUeV5Rlm8&vbgyU9KFjH^0!8T~roq?`&=z z+1SwB5Q>I?zIJzx!;=dnhJZD_64C%*Kraf`A_5+O zqbg7dz;F^5Xho|V(u#$YYIc#(L>}#+Ieqz#Y&@l`16ZK<@hgy-yTn&c<%E3YOdW{6 z@c$VXoWvk}=*G{YB(VodRwpb3+jcr%zXI95sTCwx0MIWij|Y5zLd7OYQJ zK)z?5jnSi{8_1XCQ0k|d7f2iI^CzA%nn>Kn$%!6F3>^nLVN8(zt}k|^Zm+rT)2g4Z)E zCL|OJE2d!FpM)b>VQ^f!y#vqj3Y+pYI6ZW$;G6 zxyy~Hgt4M*EkhaFz2punSz%z$4>k7i=TQxx*cQe9zZ;%t8GZ4WS@+708)YDX`Cxg2 zSlZdVAFPyRQ8bJUR({%)$G!}Y8oI8)GY2egJ-!IP?eJrS2R?YX!LV3nr=_k--2}m} zDD>{QCmx_w%S`?RZv@zS5uJ% z(1l}dWp+)u$T^qAGD;$8#Zg;PBm)%=q!dNcswxXc^_F&Zl)-x&YQrTld(f8^4dnrV zU9J?nBNbHWw79$(fL>oPI})`+lpG2*FEW9{mIvN2?x#fWXjL^mOFEtub@)-nyEYdgG3fvtA0LCmdRYW6tMIDx4?GKXB z;$m1xeUBT!7&L>Fq%=jqI*GLuGzgQ=X*tQZe9PYf74yif-7BVrY!9<5ratz>CJ|*JZEmM=h8N_pTDJVIbqgXsqj*s zV90Mo`3dtoB=q-JoR7#j;^C{$-2IBTAt5L95KSB6`(NqH0eoKkReHdMXU+f@0lRmp>eB5e*YCf$Awery z`$kHnK;eidAsVBZ(>O62_sIG5XfoWOLE2cwCQ_;LR%YRc%oilI3{#XaU(M^K1zO~0 zHZL^Ouw<;;if3pwRy}2s`{Ht=)Lf&ai9Jd1d^>)WEHB7#3ZEmD-*Eiz&nw-YLGJ(n z5CBO;K~yNIz`}41bIc&!m-K~q!T-nW4-6&lR85WFIL74(tFiFAQ%cIIP>VW!afh3p zNbn@tZV2}e*)%1}wr@W^505X`?_-);!?65CJ#_xo!E+*`b3hDNxQ?~W`nK@}+|30H zZ`pfn%bug44Z98iGB@ttzh?WcwcEDOU$L^YZ)Df#j;^t-qbGMwTR3Imn)!29&Y!z# z!IF)u7jIZKZNcomDdR_u>z%oD{@T5}HyqfvY5yV7*Sr7FmV-xDZP~VD-G)s&cC6d7 zW%;V*(`QYeFt)e5qou96q_HkiQ|)i457*U)YwJSwwcg5ddwrF?raZr@G*hU|R#}<> zv2R%n(3=jpjfK;rp)^n=X!ZM&LqSVvNoHHCzoE`kTkY&_uPBSz1K!MVASdL{^10Jp zPOH;lak|n1!JN`EcSWVItlS3-uBeDqRz?G14*)n;5&`-;J$5(-qYhuFfRA3F=?l~f zJP?4n&lCo}h(^psXXROt!AM`pS1If8WXmuJaAhbwgq1)KqvSK<83YS}F-qb&UY3PP zY>a)eGZ<^IS>4vq5ov<~z?Q5LnFZEdr>)SNGl*DgPA?;X*#Lu&lsd+#EL{2-10m2d zo=3(B!{4~+3`-Y_#UmjzgZWFmM&T~ORpBT{wL;&70LGW_pPcTd#M4S_Z4R{+V8=JM zSt|Q)x{&!%2_snV)>|p@!&Iyo!~&D0W-}nk5~WEdzEz1dO4RimcVL#f3~?m<;f8=x z3SZL6%eS6fz4PoUyro|pL2wc%c%Bg&qvUf}@1MDR7bF%CF>AF{YO%CvRnimM80k`0 z8AYJQn&4(ho#fmeL_LPyXRsk-*aX7*cM;pP(Y$icy^-L~fxPz{k zP{L0Y?~Hddi#}089wUIYq9mQfR1`*0HRm)eG=4De5x$>oo{p#27~_>MnSZBzBij?@ zqYkv+F8P#3$p9P|!A&R?8)`m(#f)LvwSkvpC`%hygke5A;g0@?0{@4a8_eKHPaz2b ztT;((z_vuxhd z`O8-?oHcLCsGgSA=Bnm~XhUtNwk7}!uCDfg%1iB~#Rb*ng_WiG_re+RJ&rK@uWIOzM+4gh@Iy16U(zBASwhHj4KZH!_+aQY&Qm6J-yO90ld)ILO+C?)*G2$*oF!AvsPs28Z)kDd$qK2!r%g}AgH zDEZ9kn-IWw(tH6wsYpRSf3{G9=7haf2|JtlNu{XUY?x=xf@*(5<)2P1yfb+--DA>v zle7|FsmE_gcOJdH{qW7L2e08sf|H>B$M5t3SXbV6EzJAbWOMk)v*dXoe zk-_Uj-NXtx3UK8@&;oSLW}if2SfC*&EU?YmFiV@6MdPQ&lklnW3E&P(QxkyA%~8r^ zi@1T55x~mmCuP`eT-r5!KGjPEFfR{Q-75Hwxaq+Tt*6N#>~X>^6886jmqhSg6~kk? zaSCtzmt0tAJ>%goDGp#v1~9nt+_KWp#T&P%-tEk-ds^Mu4Y4ndXF%s}Ke~8VE1|!9 z=LrB9f?&k(*=zS82tFZ-2XDxRC6TScng$)lV(=et@ZEFl{EvrD|9JTL_Jc=PZQZC(xw#&z_y^o?!l>1%9kC=y$?H6alM zH$+;Ri|XqGRaNe?lER8IM|p8>X)L=qYLmjK*BT93Fzs9%$t()n0KfrXs^4n~`qKhF zD=6%@mPE5kW4V5Js@GxlyV4;D4*Ie@?lgxzrO=+@a9WCr9px2Xh=YTnT#qNm<;n_2 z-Q|@Lr#IK_&ksbLpjeqZTJb-1-IRqO2LoAc0}68+Zifs3lghsA?$C8fhvwgGJzrh^1^ceux8DkFZ7b4A8~C zBapuP`$LLt2s{~N6%LSsrrfe>*DRh%4dE}Y>7?2B5zjw(^-jv*xj~rW$=kmPTV+x@ zj^0}jpGmzS4FuqU#P@x9u$z#qcm`ptoKbW`4>dIN9TV(1iFu%GZiPyi+~$qTw~f6M z#y_lyTUt4Q$q$PxBN8?@3o#2Vd>2k`e)2-->C2yf`S(-v0{MJbm+3OqhQD z>Cv-~51+kz@bvAyM{n;+go7}y1=jXUQ$t;A=qZN_hI=oxuP?q$vUtw*YRz zL(kLqSQ!UveOF#<8m2ZXC0|VdRu~))b9rkJ`e3jQX~njJY_p8P@hjBb7jHoKUcS8# z|JmVh0{n@PqmUHANhu7GKRtQ>8TItTPftH+zj*QRSEnzHKv2g2#q;o{&0wVO#oH=w zc`X}7y0qYR=AxwhM*oRxw?W6R-a2;WCLD3%{h6C02qyE8Yr2Qm#aoZhUK3fIlVZo@ z7Pc*c^t!@pawO5!Jtr^eV~zxX*YDiFaLuMA>(?(>y?V~lMRS)eo;Z8T?4|P-E?L+* zvbCZjT3uaS*BGg)4OBOTYMUaJP2q-)(s9!}yT>R8F2fe$}RBbJi>!J9pZQ z#S2$#-Z*c`64106(|bnsjv3e0)zi|^Ro~iP4fL(6jWpF4HPl8cD?F_&#Z67Ysw$_T zZ>b$P3W&vc7k7Ly;T#R7$3ht(SO9l{z963`6$Fcr&jRP8L7M=uGd18z3;HrWPOGyp z)lrb*u&275R-ZpB5-lhxb@>C?Zck>R-D-EG2O|Z(K)%b~qU^v%l!y+tTs>Es%M#Hec?6fT> z6)u1?GCPea<)M?#+0Eq}x-7#S zkAMlc11L^kz1m2;<^IdJ0ANg(CQLq4m6H-&@-0{ao+mGj;qP-T1r79lpw>^B15ibr zuL?nxljdtQy8yi<5f=PBx8R}gB4Kcxa05Fbl?Qr^NZ<}Qfb}u=b)qm=&ei!$(~!({ zUff!QJ4?gj)#pFn|D@^T*FQgg{o})z-$7#Wix>knkUstP7al=B{rXJ`7Vz?4AAkKP z9C0C__4A)VFJKsu8?8)%?!fq`uRc9~@!`Sqk01=zF>n0r?a#n$^d85t84234^iY*x zjBzbaw%`rZSTqhl5acB}sGylBI+vlhDDSk!zB0Y5`x~=Z(R@P@+i-#AN~SZID!DW( zO6{LaK)3(dhr7?=Q3)QBeu4!yYRlrd_-1gzsf!%IiV3B*cgsU+xDU(U3cAQ&WAeJ< zd!_7G?&*z3@VNQx=HutLp1c6{KYvXy1`?xy$G9LoqZpgzs6_eKhL>mFVF@0NVFWN` z*RSY3!Bhy17^W6*nvtM%MZ+0_E;U1A|CN}aaOLLF%QsL2;8WKj0)Bik-n}OO-o(r%vyiFlolT8KAz2qsC1g zJATsGwvLwi+S11Q^2Vm3n%YoBji@v^ShHg8%B3^r&z`?*(Ui#(Mz*(fceITg-P_sG($n4E+uPdH)6&*lR$k&MD|Ob_ zg{o?t#ihBJf-Z?=%3wF1a0aqQ0%<6Sbb+-oeqn~o$mEygn~JtaGu9&b2!uU3sUp#7T~TokmL4cq3ljueqoxv>6-%5 z0h}sk?#f{dI9W)Wf{*~fT7$3dE}10lms4{b83mqf2!*o>(?GB&aAxJ%Z3tbAXmOov z9Wp%Sd)(rcRMz~W$z6-4Bw>;n7U*h8+r7AL48iWu)b9o-{{w^!MgRktQ!|A}w1|Ky zpG^C^N?c3&uK=cOGanufXJot4J0^o6Gj;Ux+Ni|guLLkjCvoDPU^*)M%KTGsrlRML z!cm2_bOEioApo7cX6*DI2=L~*YtCjRf6n)(6{06_D^#`s*(M@k7*Md=KK%B_yI+0-z5n%h(A%FyBn=@oPW5>9?(@^PpR|;w%WRe)J8iLEmoEj?6naZde97a)-2)V zUMUr#QxP0)9H1XHJ|R)h7)H#zd>W(G|LPje=M!+tYmNOtYe{t6Mn!-DhVf`l@M^I# z^RvWXd-C6){bTdc2tJ*OPejm$H8GnV?pduETvIm@eBR4RSptwHOWRv1r> z(byYJMe=l>!q%grBkl$bx<7v9&WWp94>auoV+Hs%`a=OfI-vfI2dA&}bLXtXXRjYT zeO2!jj$1mzV(Y%+OIB}PxnbwD=?f-Jo-=di?4?VWPo6dzV&CpjBRhNAx;vYCx|-`7 ziYh7tK;LjtZYXApmSjiEvx_QoBb7NtHTk7Y{`PS-eKYzxCU#6+G;7{!h=Lc)Sv-66 znC_n5k-c4=ptk0wu95A%eeDw_jq2*CD~`E~i|iHUo{9>4ES6nboL5$oUmPWqk3awb z5CBO;K~znTg{`_|$&~~!qBr2PQsC?JSl!MPyM2Vql>&ipz+(w`QUJg~uN4!~9zov} zklSGqa#_8ebeB8b?y#Vot~9StbR~ft?le$=!wM>NTJr5F2w*Mkj6J?=1~31Brorz(2RYz~RZogfk|eGjlD#;3Ui7VaeYCh9MM2 zFk=%D_sP;hD>{_m?dWPrg<6Z5 zPbMTTF8BpJ)r_TE{4M;WJPzh1&`Ka^u!?;0^6t}DC?knqVYd=sSm8GTIAQXcN3lvQ zn~<^u+N+}I^f4EHR9o=BN5-2BM0#_CO=sxqOc-a=pTGFuL6iG274=Y38mo=8vLpFd z82G7nB*8}&vDgBRK8EF4JUej{=Bk{1ai z982(fp@cJY3H_A}$dHt96YRZ)g^tzV$O;sW+@6eV&p~*-JRcv(fw3=$oL{L!jAj+^ zQ4sKtBD%%ie-X2IC4k{M3I4IP;SG9Dm_kxAT>KjV8>SKPSxgeZi1Pv4dvuFtk=kX2 zPQ2rm45w%#hO*X56rOOB#7*P>(*)&XdaW|;>Eb4?(tL#uXbOFiujnNy46P(+d9L_) zeDC)95z&c$9q9`?cKJ3i_~dnwmp*gro-pIQ{{&sK>3^R#C<#94wR<>%5N`zlhS-<5 zi!*&u!d_$d(ak##Z`iPV@#6J!XDyyTXK7DYcUw#Aq$#8O#&mRc);Bj-R8)G4OB}#m zpszoi7K~;DBI%LhtWa@gq%=ENmRr%}tM9F78eQEzxoh@{S<Ao-}jxlo{hzty{8q z$)Yi1NB52D?e6MqsIO{msqgD;E-&>L3F9hHESwh&<(3rX7RPd8(X?p93gK@wWQhc= zLXy66(>Dd8UJ$08Vc~Hldt9l2VK@Sh0lgt#8Uk30eG5}u_EavnD-8t!vD=dY47R(h zfL^;R9R%n_`U(ISCg&C;(GILPacfBzgVuNr=-!Jr$Y3*i%~Zx5a>BP5&vOF`Gul5WMOg7%lhTG{+VUj& zat2czoDjf&v-?X7RuIcYKC~pnExklT+Dl?0sp%Rltu%640ro(jR9Ps`0ZJ{2Dy0JD zZUUz#-UfpthHy&$#gE&GaQ_fuFyal6gZR;>Ieh~GcM-sX!IHQLV1>aD=~BoGFKPHO zguG~W{rc-~F9ER_xdOnx{0c`9d2_;NM<{9xh9fW!$S3(nmSHbH0|LLiFz9Ez)k__U zM)byKIrC2h_XNxnfR$m-^jN@6L*YurES+Lv;O@BysirQyyVoy(>aV z<;l`qIYk!M%J!{r*`%gtMqdhZId@4s{6z+11WW)%9lt6B7zPHPy?q}<-#A&Lz$b;z z2mlr{8#Dl4J1Cogcb~Y3URS~^Lmqb=IkWHN`5zCT+_C%Ex=nlL%w9Zo%A8SM-JNai z&COLUE!7Q;#Z}dz(sDhL{jQd1TZ(Mlq3fFj*xxBqG}o&nGnM|fQO*~ zt^i<+eFcL@d@7k6QDg~)fIv-P zCkXS#?|=QB^2Q+gkXib95k@0=kz@qdIKz;#dKjvVqb6%G9Q6@*6O%}e6IX{iNPOs% z%3uzAyoP@n_+87)v-YKGlB4FeU|l~Cphd*eoDy*>8Kc7y1X25w_h0xlc$x_h(khA( z!>kX74-(c&ko1v9Xvz`qf5idy_n#&xeg{YD5!k4>G zT-bU1%#X)T?>Kr2jvMzKT(x7@sx3QKY}&SR^}1Pe=J$4u>}+qTs)#faO`fP&1 zZmR^aKyQJ=ns2uNcR`qZ=D1Zd&kBrzvb0%Cg77z|z=Bm&*g%Y}!+G|!0%vA!VLFgi zcJ~ejxMpOhfTS~}p?_B|auzU7u?C@h6Mqbvd}tue~@<2 zVm*i`%L7?1JcEes*UKGI+8KsS9h`CFMx!AV-rO)i(9~KJXFT1XK8ph2IEjrW9()`4 z|56LhbG!-Zi=agzL5aRJ7LDeW@-uW^8K%a0%6kq3S_FLgHs+H#fDy@Xo`?&= znZ5u{RD96y`75MD7p@+@cnw$!M_d4UVFBk4oV&c|Fvi(tlqhO<&Le3)~;Q+X3dIKs~0RYQ`)lI?{SkkgR{0v6T?a^=+T5x`g! zjZ8)K>fJ=RA1vJ~4FDdDZqji52vPQ|VHg1n*8qCO)^94+LW^Bt9L4}2g)@VUyR-2m zGl{d10DSxD%iB6`(R&#e9KZ>CY0R??xP7BM4)A&L&NAfvzW_L4^UvQim{(Ep324Mc zj#xe({G7;l^^?wAy8}l$N#n!^f;68uPVZ7i*3i>EH{$1_G$2PZp1G)xY@?c*D>ACQCa8(Kq_{1%M73yudH-4Okok!HGw^Nx{WpRDCeg!$mP@A$w)ROir*5P#0XSZH zr1#q>6KZ)IE*3Q5ygc%epyDIs7VgfXrxjUDP!?C%N#1{wSTfQj5qc?*Mfw6<;fNA& zm88_-Z}~=IFbJn$;f$>F5azOCE=q307tFaEchEG(wW5GodU^wQAyh?C{S+^)BIxpR zD%|nK(3WSFc@`Sc3z05L?;5&7!vRTvQV@*`gbV0OqBXt?xVvfJv30u+Z9jY(xGUq` z!>S~DC(A1644=z_8RkN}H7`HKUa0jTxm{^+1bIE_;ZTk*km2@P z-J&Kd4IF{?aWUt^3*JHbR^#4w&8r1)F$ z-CuLsnV`tyT|WOnKWW&wHP22!?3t(eDiJUTF#n|ge*w%xVRK|mXLyM+1;LbmR(Q$9 z(W{6fnbxPT-sT@w-i{3t^ej((5gL;D^*W*Pj}&fzB@UW-Kr9n_S0Ox-A`&O`54oem zKx438vWFG#oWwNkNSN70a-Mt0~RPM0g{+=HD##y61ppV9qyu`(N^PYj8RexJ z6=gOQo+&BKtgOnbt8-UZJF2SOpo$7-S(&{gno|_ciiI-6{&b%&#p_K5c|1uN_2Nb^ zpx1660RsBs!f784NY;bkB)>N$=(mJ}Y0+?Yz?bf@TR{-`78a!1^OHfqW1rXNL1#*L zsy}G+_|jY+i$*g6x=nKY={7NI0m=~T}j;Gv=%$W62QP+We*tX%NvJy z7q2Y`;$TtmOkU9X{_b$*D=9FH6;*J=;YHFS8m!Kl$H4;u7->q}1;ip{4P=!kPhGi%3r$!0g>)pJk?7T?#o@>r znhK}i(+v2tlF$U>1Sx9`zz=A@84YZS!2n?HNs^!qOon25-XdOw$A4$|Zw@WU)|57D zWiIy@1;B7b0E1{l*F1C!?}Mpt9* z%yRSkEKH|!06+iqi&o66S6u;s(OZ#1TkLto3MqW(!Q2D6BEw4rFrSylBVaysfqoeT z=lIM9plts`5V|UAV~%7!5rUJ8Sj!W?7=xa?c8_LWi75^MT6rHl;z&xaQzCmT&Y!)d zIfom@5=*%9{aQXe5lO5>z?d->$z(}iL@W{akZ$^jzK^)TAe9Rpsd(^8#3lL?P?4!P zqj%>qZP4$o;}_(JUvUyY3MY3QIlFoP@%6h8FWIzp^1>yvR;`-1ZrzH_TNkZe-#KAI z*TjjF=gpe4eDSQsi>Az-Gilna$qSh{k?+=UY-Pa89C;^;Bm%`J6R)q&D7cX4rc zG-``P)5DQ8oU`i>rvZ9hzGOHC!q!+xR(XXG5LeK*B)t-j#hIXzSY~n57K>&S#o(A$ zQf#ZN$gip_s3^-XE6GLMjYuFP=(T!0DQ97R+Spk2h+a=~BdAu1A_<{h&5C_Zrb85alB`06o z=ruMP4aaP=B<_gp0!I1IyL zk~X{u0Bjqk&oYW57EPgtr+hDD0hTj-3N+*MUj`}?%xAgF}O%r8m*rJ;yzWnfRsifGMPIs9`+L_ zp9!&M;fGF%0dP#0?*MwW*`hcnj&T=t;_^){IYRE1!gzXlM*fB3ndjBK{@Vng(+xx@l$=9_OW!KQ9^mX6Rf;^VXX7QI2d<@;fP-t zeO1cVFPR(jy`7IGl8 zmNBNZGYYGvNN|lgZ;Wt7*JY3}ePkglVU>;?xA>CQ487V|-ye^jBjL;KhtJR)-wk_? z%v!N}`PLmPwr`ubVE&BdOJ=WHzHHN`g=^PNoj13or@OwZb<(^U%QmiGv3cX7RqGe8 z-mr4rmKk#wx3sl`8k?)iE2CxQ9sqExI5!x!`GZzaAe072U%=vlfYqNW&V;SONLq1; zt-K#9CgQR#s#!FS3=zGEhYkOE{1e2__dut))daP*EhKv?vRWu0p=FfX9M~ zWtR&mJ3<4npt8l~jLYLrvlk{8<_`k~gIo@6_cs)Dny3#-nrv=X7?yvCNC@>UT>FeQ=zQc3vNw_zRXOO`pc&W7^p>zOS zGKLU|@hD9zQ*rDPH^gugoYc@S&_ zaC{yx4}}x%4aw^ornBMz<f=OW!Srt zpw&Edq-YHbd^>)Ylkz16*73b(Df50aFT>^-Mh4?|O|8a?O_-9M=C0lJ{KR2QzZ>^u zQWwL@$1;j#JI4Sp;2EF}FbN<1fFZB$!uII_bKyr;k<~E3jEz11LL4QtLyTy--4dA{ z;&v~sF+6?6+J`9Q<>_wTe5}R37zZ1hjETfl%tgD)NKi7MP{w8`68Q!RV7&@mh^7%> zpp0)v7{?oR^nRiEEa5wGizo%aINz5dU22)-Jv>4*U< zUW02M>2mZEePz^pP9pXkYR3_c#5e>H&WQd}CKzU29|S_|dbMEm^xm3@n6 z!l|%Em#aun_-sVNX` zmR4`2OKkD-iw7tFKSNXhXGGffz+Fq$u++?*i`O}c>7M-lL}g?!J|E!MsgzsC zE3W0fpa||Ij0f@w;e}}+z_4OtLa0_U83q??_y>Z2FT^n0KYsic*6;8M4|iVmr@gpO z3ul#*kHyX?*+;7p7llrTluSnY5|a6O+UP}WfK!(OBep~v~ zfKT!?=9Y?xQeI|7XV{#Bx6<749S1i3aJU~hIaBfpeYoI_ydVx>9yBW*v}Z(gdygVc zW0CMp)RBv~2*x6Km2d^70$&NV@Df;yLgK>W;Ds9p&R<9EKXVm@6AN%HNB9X5VsXvF z+^Zy+Hg`3Q>}&0v+%sxQZ&OEO z*O<;RlgER)Cyt#kd;0iU(|RV2n=yZOM_+eCQ)Ov+I96m2NAiQ=EV*L}@vg-iOalRl z{lRohL<4t$zJOjh0!pKibcl3ueo-`(5)D~M`a~mGi`HIwCLI_Y^jmPOf&j291(VFM z0Lr>uR*kz59D6Jf4TF3>@e;V}v?qZ)uGB~*8|3q)fN(s6&z}W|1pvF8>BwNa2Hh|)A6t2;xLmQu989FR=2;b91&|;~xC1ZG6 zCfsBM#mB(fVU~XokL3pN{|je;wLo8Mj-YR9)?iDvh=T#fgS2{PY%9`9+;5Co34th% zRo46ahT}P*omN6@E0i^7o)yK@o;rY~-Xef8p60@$FmraAxjDw^d*$xKxa2M=#=aMC zKTs;46P8w)!(RoxDD5TDSN8;<`Vm25iC!*xdmQ16=$yey?902GF6ajIhWVy<9wxN< z;=AA&E~}24?0SllIf=Ca8~S*5693ny>UwD)tnmhCzOvH1xB$$|Y5bEcw)#vPC43Y5 zslI(nwbRtOgyQDsilbgQ;Fx z689k=I@+XJky?$VD8Y~c;f~jzShY+9_jznLvYYPFfOBO$SL<(B4*_lEL1k!>*h=5bY ztvpu0H_hwIw#&fR?aHthTEu2BymX4RGmscfHVPamh0fFh7ZyLG1Oetsy*XPRDYz};l6ODi$ zj}7R(3qj!n?sY{KSbx)clrZ@`5P-!(r!VT5UWZ8`FQNB194}luE*HloiHW;(LtfiO zy-(*7C8Bw&l0KOIp<*_on0zUQAsopZ%n2EMTc6X8$x_|^kQeC5-z%-djrj%}2Qt!3 zMmX}B({k96MpkN(qRnP(-o@TxE?&t@&K`!IW0ufn1AMet7Pw0#(*RczP&V)EyW#)< z5CBO;K~xUfC(mhd_0iKS51(9q@c7bwQG%|xDk6j7yXN@h_Kh-D#{ZbA!7`DUc8>XQ zj;n065x174PH~B0tsaUNShS2?L+3@l`Y9Z-q6$b%yS6f8e2XM!&fi2NAG&y(bQtJ+ zxgXaWXwP2Xd*<4n(^q$&x&p_zPF~r4;xY=>NMCvKB89WK=Fu$?7dZ+7vH~wj7_DwO z5GN=KIf@Ix&V9$$?>)M1@6q-9j&0BdXSDU6qp0<}kF48u7=$l3?mY&A%hv8bykhI# zX^YoPTeN7_vSs5ZjB9RbYHO-!t}m^u@{1t~6`|5ne_2JiyfRYLP}x+UCSzn6_^0btDrf6Id>@w zO#nX5q(!~JT`56g7WE#za1C@!*KrmHEBEI$S<2?L8NiCC$Hhc48-^tG@WNo4`c1Ey zrcDr!$@}n5JUh+)p$#qO@rrB2FuJGFj7v5p;wQdkt27H?bu{nIMdM7}KJzbJV+%4l zMB~jwwC|+Q-qRcR zoZ7GlBGlvScOL_-+jVs9&LgXL9tN%Y@xY4h`<8D%Kw6<`-^v~P;iF84#PvH5ul(`Q ziX8{Var@!r+YT*QyKTnOb@NxQZ5=hXzO}ituXj{$S6gdST}^RyWwfF)P*)#=pthmQE1TPEK#h$RrKLf@n8z!9Dnzl86&C)W zR5;BS(yFn5zQrZBSkw{@B@5%KpeTk4`o&bDNFWVIDPX*d7={G^7>y)>!Cto@tH+aq zkuJ#R&A?q=ZR;04Buk?q2-bR#3X=tZT_R{kFl$9y64hD^?S|)u?4p>%>&bLEMORXO zL8=UbtsrbV0s!j{l$!CRhFD45oP41?`_O#Humb0BIOaP>fbt5HbMi;%yT2NMk--wf z!-&CLxWB9K2WwN3EW#^8<1Q?;Jzd){Yql8S057pw2+4{;u)b9+gymNwQol#Z%f3rV z`$5}3mZ@yG72Fdmu;5k*V6hFHH8>?xOa&fp{cg~ed+>+gAshk2c+_~z1OXxn*UA~a zi0P@B)8gf$N2u!$A6~ov@cM&CbPZx#VJ)X7tvUGVyz$|HPx^bt-$h@ZQskU)k5fsy zN>u(Tg#z8L?U@eBl~giRaA#rXctP?FzGoB{PGSP}uCT zrI_fNZAK`Mt&mvzX~-~ICyMw*Lg6nGF8IG4#J=Q3$~)N%TOs_JOhOK~b>ms$ctQ0~ zFF${wg6em_{Pyv;-#`5N+xuUBg(Iwm6ZN-mKmGL==*vI`Lywqbe#sB_8o9+#DajFrZf&Q=o+f>LPn;xqAPpY&X*O$c2pNtoXBv z|HN?Gu5lj+6Hd79*G+N&)iSNch8*bQusDeYjHTBVciTV<4gfId;{E3r;Omz<*Z<_q z?MJB7w;rCl`QXI$dq=O_QHYD#X3{~%U`jZf0SwxC;u4oeW&JWZv*XwW)Q?9m>^O2> z33eg6-E`m-Xyd-qs118ht>1HU-R={hwY!c3J68fVcN|2%F59|q>6X2q#hdpm+O&Jo z#=Q$S>{+;B--7jf7p~upTD)=Z;!XR6Ht!MIv~S7g{isD-gy77A^}A;-ST$|#@@X?> zH#WDGm6z7kR=2b_v~@Jq)mK*6l-1Q%G}Ko$G*-8@H@3FdHMiDO)kMoGf~8fSqH<@n ztRP&HS5oDyX$m&ARW`O(bad1e6?p=|JOD6+i~wMW9U&kNgfcQe>j?01^sCOpVj9PVXh!?z#8_agJ_sw(5rbk`@N#<8B4AZpSag6IO-HJvE1~9 zlPQQ;pl?CJu)=~Q0I-HzY0UxW3k!!A+EeTfplqtgn*o7uFq9vQ7RWH#W-qi9T1N zqp=EDV}*6dm@Wo_V)>O=OCIAMFkXW@zQ9y0yh0=BB+Fm|uw<|RFqT%~{%%UVb4dsr zkVFZz?fayR??$A3F93WI!aJ!;{SWY{Bx5Nkgd-0V=_T%-B9D0y6JB}w?%lZh?_Ifj zpWcOZhriBxg!+__&kLhC?CC=&cAhuS7#;}NL&HCU;g!P(9i!C`sF|W0e$_~zmUOjF@X8wAAiu$L%5aJv-|1m6B+x$ zC)EqE-(szz)LVtV0|6N5Dtt#m6sYsk8X*Fwu?8S8$|opGIQfh)?r| zj?#~SSp*%xFGv(*$EQbQG^~Gx+;9UOtVE=HQwWKBLhmdh4Fq5<_Lb4F;O_aGn)C=5 z$%=5LHAgRBqky~HkDlLl9tY@>fV*pU9$U5J$Vv!R zw;o)!F1JTZ^8MkAK*Sa+%`2;N)Hg+&+e#{H0wv|{U?>M?70A{dF~!g0OB4PT zK5L;X+3rqq`vri7MEIMG0LF4EpD!g4u;9KdoB<>Y5(m=&$$oDN&M$(?+|DEfFs7HW z(FpCX;3e`{R%Q*i+lL9t77hpciWpaxYax2`3Wnw855>|d_#(xFLNKSe#0fF9+(=Hh z7pCOpCjEbuz4wn?Ww!pye{k>j%*eRAOBGeARZ*2%-4)bP-ECX8v1Mah#(+p80|O#z zNCFQdqKG02gOQDGIm(^XQJvLMZU;Fb6D%+wU}kjYgkSEJ?z7&t_o}z{F8iE2dbIV{ zu3R4av!C^@KutLmq1p9{{bd2byfI8O7>K?kEFf@KVc5gF!n_}>#h(rIa^h7q>8*gV zF+I?u^>cQy_ch7tF!yea0I~qsWN^8)r0$6g0Q**Z{cL~1?>Y!r4~rn~`I0WeB<=x!MHqaAi`MZiRIQTUrk3Juk~GhiomqB)98k0LK4e)W189 z{O`iq(VXQjld>2m=V<0@MOQUxw8He&TW(3pF?rt~ez|)6x9@-b=Z}A1%em`a!|Ie32nv+%lP42e9^$wA@MaCP%`} zkED%ZFlQXet}wjs_~}a~bj$U=Mse-*Qt!-i-|PyjXL{ML6O)T4DC?@s;EGHu5O;JQ zI;y-c$Di2&>+Tjh&_8JbFwXEv1~BOR#i>ycmvIZ$mZ5v3|D(fw(1(Y50bS-U>-_`0 z0^m1cUOzkj`lrWUC7XNXH9+*^LpZ(ytbTY10&y*R<%2`es~;X@fw<5cpB!PmxA*9q zAAR-wD{sH}+Pe?j|L`M!e)9QeUwGoNC%38p{rS`_4N+U%2758;a{T zmey^|cdgBJu1$8VNicwMZ10ZWao5_d+uK3qjx|*HTWnUjSA_sYZfP5s1p2}z;#h30 zZ|e-VvS&9=A2WAJ)N_N5co;y-`@0Z3 zU1__)pv9SN)&UGNs)1ya%1+QXnRaBdUS)!5#BXa$vZFo2G3|U)D3|r6Q|?UK!)3vo z2yFzMb6$4CinU%fg3z0yx?a@}i!rS21cSaRJK7@*j$}ObX?Hk93C7{12a*gdO2SIf zFknzwCiqI{NWm?$Spdu<1vNsKn>@RMH8^PwBCK`!ZgqK9xxKgY6S>-$YmHb8U@_Ai z<(A+!?5`_$>n$Vm%c9Zw<*|j+EUd@D=K0ei!LW!qjfdg!vS#rsjMB@_mo>Mb7;LfWjV z26{zu^Hik>!;0VKD71=ZOPh|WJwPlB*1K2gO)jP97_0dc|&XKBGzBOJ+3QIyKTVvR>tfUy~M?=4A@5KdxQ8hD#9q z8b7FdEo)CY0Wdz5?sp{%Z0^$6GZ!waJ>3Yea>%lM71X zcK)vb01yC4L_t)GTt{?bVgceLXI@hs5z8d*F%z_`Ltw2bJ>|+yUjeWVV=VYFSO|b& zd6~GtEsh@?G+LUalGv;fx>xk}7d@N9-+cSM zzy9sDM;>`%_wGOcjITypl_iR;QVLymn@FcHWmXV0966FqchyvM&o#?aaBG{V|QU*o2lOg9?xi`B3;T= z4pBV0!A+vbGligWp4)5i{;u?!BnE@2IbSa8&1O{mIp;PTQn~8L3)gzh1zU*7&*7Z8m(k7X>J+l#gP_^D-)(m)^V#dTV9GZvq+kqgN9~j zq2XC#u>MB8&|kTd@z%7U$~+*0e9D@aTRT;apX!y>B83x;FZf}j~9~}XRXt>zJnM%!rgNFi(g2fFOCf0AAbKA z0~q3ohX#ZH`@dzQ7tn=phV?Tn@4x;9fxh4U{<}`x%h!K~F8*-+0%&*bM=UB^Ltj@; z*VtH9hO%O+ywX+4UKIN30G1)`vh}M2STXoJ`DOTb0D1x4E7$RB{QUJ#zg+#9^18ub z!~1gNz|2|02aw!J2;7Av?|Sm=1@8Q;kMh;W)H8RvwT0GU!yHRs0$8L2xLm?JHmAE= z;i~}ElJKmDpmhN2mRBb+-(&!PesYAP&>VTzNo?rQz{iINc>`GXfF&rs_xSj}Q&R`} zroZZ+IXEzTXmAd~0>T*)9>9+|JTP~te^%17MVz61WN3Qd$>9(89ewGI5BI$K_Ge!n ze*688pLyZ0&%f~U-(Gq1l~>=|{oteb-+%w^-Me?}xNXy>Zg^h+7=E|8y&lH5tt-~r zk!)^@vr4To2r!1bmFlC$e8r9_)L01Rn?rb*(T<}nR4jT;#~Gw3v1&L)O{U-}GhRTk zy*&cZvL|lHIw7!=H+Mm00GQCL#AQgv&aR1GrY~e-m;jt>bY~k}nVcKKyFl3-JbFDR zQS*nPt{q@%iXM;yjB|c*y}TK$1GtP{)rvBaCQ)iM$-~UP34jg$B^*>}3ksS5das?7XiHE zE0s<{U)8CDi-uRRC&%wWR`FD|p-Weq7jkIpVYBQx`S9G;#VnwrHC zYZgC1-MctEy#Qf>cZc*V08p8Etd12E{dDi8kjxg`So2L4BEF~!W-4qnGg1$sb83~P z@TSsX>j1ta30eA!SRw&RXUA+kqU~|%!O8}c9W$J`Qy!qxA%C6#em3naa zTk2K$E5x~15bmP3(*OL|k09~C{_|&ZCm2%P{qLXttFqs%=y73=^D_qgRVFJ)j)JkJVu;2Cn)TM__!>nv#VaZT)Gs6Lwbed137;01 z1^AGZacy1)h}#zA<0zj^rX=YNpY=gQI(i4@miuRybmPk-Z%qI%+9f?SPKQuG=)Z~F4dIc(Q8k%Pv8D2O#vPeg*I7-$cvrHM+4b#w(ks1Aw z>dFIno}_xDgU1i{41Kik;NRZ<;H~#Qf?j^*^(UTs=B~T$+PQP*`i&iH*0px7X>4gv zx3nkQI@2(_4BhswbaPv(wIkEsm1%BE;AEkhx+PQAQj-q?sPwH<+*@b~lLPLELZy~a zQ^5yLL&Q#aR-lwJo~U>UYgl1Gx>Z&E778AsZ^n_$Isj3sJ~FeHxx}c@7=)S{ybW15 z=$lEq8Ng5`<75DXy9&KdDBIwHQfUtZxS=sz$io3gdG=9LV>p)$BvW1*O{hMP(3kr^ zGkRG9U}FG7$^!s%AX-^rssons3`USy(HG1EYq`ZE7JQTHZj~Z2cQo#a#(m+4;di-M zh}&ba8`d2#^U~PyH8Q1X515h6Iab`&lE*Yfv+h{V6UpErzyLo!0C&71X#lPmk>sm| zZqey004|ew*5IpQf{DRPy2j=f1-;B&p)Vxd)d6f0ni$LgmUoAE&Bj`XnI$RL-e1C2 zHgi_rueI-9YiI1$t`%iSk_BBAx)lKfQk5x5H*40R%q5v)Jy}}w#Jbb1p0uUa3fptF zBtR{)fVS7%Z)Tkwofe7V)?Z|>TFI0AyU>rOoZoyUgZ0f_W%4M*dj9(#E|AsZHqk#b zfFW*C$$Vu7^BL+`39G82vZ{p^*+epkzx)Ql*M9f=Kd$}rpFhIv{>Oj(NPd^N3+O_o z<^4@JxUz@3tYv}eySV~gZ9|umy;+P>oxbv|=T%*wf+Eq8ACId#Nl@V2!-}gD&iAfp zCr7{1*>CX)DL0MWt$IOuS;;v!YZ)$AG=*M1KeBXoc<~I5)bLqrZbj{#&9;#|L*5*I zu+l%d%<7pe_lB$zc2=(U_~@K!h%u|x?21!lm4bCwU`A8ZuEHz=+ ztV&`Gv->0|f*u=P;^XnLW$EuB0dT%DkV^zwXt>pNXb3ia3W&w=;NYYjdGXc21f-wg z#i8NpgVd`M7YAeej`klPocd({!Ixft>#Ywy+Vk2QdtQF^nde@->+UCEDo4G zZZd=OJ|4Z0XbeO$9&Th|WLmNPO}Lr95Y`-aHZ!nX;BI}?6N!04^)5XXO90IEMdc=x zWnR{r^}%j6g|JR-1J@8`)s8PW-eT_y%S(!Tq`{Wi+=D+DJ76`TA>eTO>l{8uowx25 z3wNz1cy`IcU=UZQF9CRNeq?rzk3cUpIyE;kIg8`ibOm?$@xpATH5SGm^TG;VpFab` zOo(eSTQ`wTWodeBA+arbe8CphUV$VY&OTeou(^U>OTa)~I#@e(@b2l2#v%!TEd|8= zT69{FY`LkkmJ+8;$E;i7s#Q;nRmSa!ktyi-@T5gJDHx_*XES}QuQCx#Co#Sz{pR># zO*mP6unu5A^t_UpaCDtbuvlSP{xkQjWG0>a_Im^2>UFf}@lTiWM1^GVn9VNE zD8CC6`Gb`3>Z!td0NEBpE+frwu`0V;|BiaKUPb!-g)4e2dS0u(GlzyeJ6Yx%=SOIu^tn$m{bI!Z0+HS0=H zzL;3MzWIUOJG<62H@7wvn&Exp#g=HkRBw!_&-)sS0jzaV3kx;KkLrzhi7(`MQf zWhSTGsiX@GrciK+I(Trq3@Iz(;ImZsg4sYXZv*Q9&ZRw>Bqccmx*1M*PP<8J-2?l`kg=mg4tpaAsRUng91XaOg#w|zD`AUKXTa0@XX=CoM-fWV0f*HW^2EP&M zO*(mhm+Wtx#|&d9Sm9PGgE{`Js*hZ%rxlG9bca@R zl@agtGJ3hP2uEpYDV;s|vVh-$dt)j3)`GrHzw;JL;*}l176;4#o>;(o3D7mTJ2T6B zy}Sl`iM}&)!dgxeB zz{cN7qfkl?+Bv|wSd zIN<)-B>>o*W>4sa4~BTnEhkmi$$4(k%wcB(y(2R!Fgt76(8Yoru&UYpvUi-crz z&~#tVFzMtF^?B~mq|UIuI5D{QSpVn82e4onclC}yc<|>Z2fsMh`_`vl!uUS-*T22= z#;c@PUjEacA9~=y`?hZ1+`YD?wY_QQu1&XX?rQ7EZ{4=Odwok&Db?E9wDYdbxGP^w z=SwlDsR;Vk15wOcz?fpr%@G61=GG~Ztl;N)x_B5@?t-tB8KIIC zD9)_V>sQ9t*wW@N$lnp)h3s$2#rBsQQZj?N5j1B$^HwV-SVhu4gTYA;ABDK$ea$&Y z9&SR(8CW9WE^h#nDl34sR#{Gme|3%LkG0-a&cG^8b>@UG>Mp5zTKPgXREZQbdQ2MJ z#m)LUf4J5kc6x(#@V@S#(;alX0xnO;01yC4L_t*0WdXg=^ulS-cWP+`M_r1_XZS7XXh6=I?_+VmmH`8ntz0TXJwr*k zdR?+!g{)UJnR6G)L1sPFEDqR`fM!ojGpVm{JR6@!N{1^Z2lL2r(qu2n}jl5~^H#zV;GkK;Gvl_EZpoJU$ih->@VX@FDT*=vC-4Y z%wA>;V~uC=#c`o9@y|KPJPzxvb*&ph|?i;w>0u}7YM^p1P)*mmc(&D+-9wslQQ zM{eD1tuVXyJ+OV_rcP+hhSrvj#^&~h_U=McAq4>E8Y2x&(L!^yr9BBmF?w-iR&mdY zY-2!emr_d#&J8w@*5qq$jdXNGTU*0mDwPtc1m;Z6*<{oj`J0==d2^rGR8Tc-R#NRX zn7#~P-U-fRoEcSX1o2)kGdPiS#uE-^Fxgz#ZrbPtfWzP}9!V)z8Gkb6P3Hoch9Hi) zrZ9~^%K2m)n2Uh%T{z`R(KjI7p|#mZL}G?6u{Q0CX8aJ}q`aqu8F1F-{u+T|<%!t= zi#;uu28Fnv#;xAqYH4eQqdB`*dD)P|x2UvaL&LN4EUZW87g=KqOM2GT=)wXtHow61wE%c* zW@dbL7Mhrwo19;qT3CXn7m2%~nZ*^B<&01n3zi_QYI8(AXw0!?gRd*#?&bNjSClSs zNepD!tJAxBnO3+;m9vDYB@Me0%oQb7)79FTFyI-$_B3fd#;%V~sM;7(o^A$?~cTCR{v0Q%h&3myI7`?#y|}=(3_D*05ao zOP2I&WAhb@%dm-8`N*|NID)}ChK0nsExvH=N0YwS*zZCL?cef|0lat#c)JA6ox?v$ zc@M&xNw)-Ct+1;86XRcV@%*JTSH8LU-4Cow-y2EG5;NymI_=;}gR0Bl=-t`$4l{bt zTXvWAW;OF>r&!BIwdQ><@Wq6>VmLEwUf2z5Bck;^U}LPk8brLI6E?j zN1nq180Ja6eG^MPV+*H7=TDBzofw`yJ~VS|aO&v5@#5IvH148%l~1L( zbl)U|HK03$>wx8pGz@Y1qMATl9`?X99zbO#F_4clI6ty{act%C_?at{=dN;RE}R*d zKg**GWkXtvFmtCZc=3rB-hKc6zdZZkU!T46=|{Fd_RxzTzqfy21SI|frj~rIF-PH3 zp!YEN+WX1j9;IH3xaTtf%u*Qcm#GXN9XR^V-UH9>*>lhC-G6%Y-p8N)^ApcKvi$#XFeO{$Od9(p#I5OXkcoNH8?#Fah9B(C?|Us zU=!&nt8 zea{%yw}j6r;);M_Q2DHO^7Pj*kyjb;cxAlH{CWJO7xW7+{R&JEq|5J5*Ao{muUx)* z_UmuK-EV*X?fYN<{{3&ifBVa?U;q3wboG~CaJ+o|`o$k`L4fzA&x}v5@A%4(p#2~6 z5`P$678vPNwhK6e$7)|0kCClt>142K)uxx^Dv#255#g8G!tW66B zjA?J!!0;S&a%A?zFb%!O5o?^GX(HNauYMK5=6E$0L-S`RRxWd&PH5uHMZHHDBN@J& z6R>-ymarb2J2SL+Ze;laG`w`)TwEAjIL8BqWzZp$m~xVbW+)fBZ~V}}xXT9?Bsk;a#{7nT z#|9xa<6-EFll>naJoeHXuRr|sQ+MBY$L8BNY~Q*5!H4gB?5PKC-?{GYd$-d43ypU7?iS<%uNFs}6k z{|LGK|F_fke>uqt*LwU8x3A9S4mq3whuh%|c=h^V0N4|9akCDi+q1SC&9QFKHyHCr z)AgywM4`Q*rMuABoWspq`X;8J-tkFZ^iNJh15-0YGjouTSj_S892NC~wS!aBtbxfX z7S==4Q&3e5Gl^-T0?|xm1~BMLhIskR%;~d?US69z&%z&f{`<}gi_E|K^oP}^Dh;cv zHoF$c>HRMSdwQoQ-SS$Rhp4}sxEB`?XH-6yQPXUxdeR-0{GqoOw8&M0d}e(Eo8M6| zJYs8xHC(A7t&XT1?w(oXY&%_A-n+2@L3;$s4(eAM{LAYyqYjtAD&xbmfz!r#=)XUE zI6z3JZ&erzi6utOJZ8wLRN-&HT5y-QgvAXDiSb~LY(sc8h2hH#IXypFYJ|+;o8R*j zVQQ~l{{`Ir?$_VI-D|)9{fEE*1Hw&k_sUN{34JeI!xaENgS_4M(hE%MKq5mnzu_wb zx;WrXVg+n`68Tp)E)W%Z8MhoTXNhZ99d%Z?*sP*Sxao!~0IZdL%fq->oSU@JUh?U) z<16R5oN0XVf=ZtzPt5Ka2Wwab%!^ra&nWOU<#*U6uhAjNVDOTP49T z#m1E=PCmENHw(}jZMh&GGt5JUB`aH13e8f`TU9IVKR)>0-b0(V?TDr_^$pQbw%*qi z?zm&^x(9Y`didV=kDU6vkNQaK!;y%=N13~Qx(xarACUQj5I3Oy^7zSD-~aI8Cm!5( z=hn?z+ShL=ZP-}YyrpH^PB>kxi)+?4wzVf)TI0q3R${c|%uWm>jLjg3iMh=e@Z` z5+jytd^w#;%6z%i1|1cW*+cU&k#vE+T+vING%_A=7xazBY8lMx0aR`Ti6LeHb0#wn z{RMp+@>Js7m@m&kqGBXn+~L{nU+r+YYw8?zUR5vTU#&3gg1iBDu-@;Fx}`~$j}oWd##kg3 zwU+v0yfyci4#fkRd@5T^rt@(YNK60*dZC`N35x(@V3?(wKmV6^^T20 zSPV=~3{FiBPfm_ZO_|~7dD#!V70hp<|Rwd)gsfZBE}cK zy>|Ya@6TQR?#z|)&NL^8LFcaGUZWe=*FXOJ%}>9wh`Yc1{@w4tU;D>De)#7oiL z{-2=tBGtpuOkX1wZ8km==<;r{OzEJMu9XYrV&Vlu9LFZsR`w$0r^uK~qZDfKJdE$~ z!nyI&mvk{`*4u#^*^Y?fID2+mbh- zDfPOShBUzbzQ6C#V=w%zbN$*-JX)U%hqECU{&p9l!RG8ke|z?$Q>UQMPY!)?${1N_ z#G*~sD)jb3I0ND4-V=jtmrV>)TGqRtefs2!FFde&=Z4$b)~?TWug!F=Nq2UqIyy5@ zYa7s;=omxF!0{9S?3PN|gvy5k6tfMk29@3nvx^0*k=8ybRbm0yKyM;dM?1S2C-a+xcT5|g z<=o~>+5?xYws?(tUlnsE0K*moz&M&)!cN`^RshDm&UoBQ4mjmcrtz_XTbN_NYHdwb z&gP{?KmpjNlC9VZQ_iz&11ko*rMELgZLQSM1-7}7m=|IUiw`FHCVll$mp@qJ3#^8) z;BFhz2wLlmL2aMS5ev0W@2w8^YNw~B&UY*5%K$be5{Aq381$ip`p^a5Y36imE;0_s zyqU&WJXc?z3IyX`D3S`-CquWK8Xboiy1bS%%x0GO1k+ehH|n-r)Mok-ZLJZn`aUej42&@8AxU-1HEE&b|@))=JRD_c*(l4f4ovrg+9=W5NB%`5ur z=m56#$JRSvTE31Lap^t6H{~QdkUHtC)rSE@&xYsmy;{tS{ zZ+`v-`u3M!alHD=Pv89d^S8hK^4;&he*gF1AfoRtaA;wL zL({x}%&&$gN`aP0Pa21Y7thdh7tc^FvI=GEO{b|7$n47C{AsR+($zb?aB6byQd^ z`^6_7e09%zCy#t`tbgxGV_L8gi#`Uw+h@4p!#$rK={21(NNk+>{P=)M!s>bR<1g;} z(|udEZMkhzsjEA?W=*oQGY053x4`cvOU(&(y+AU++}a)~wS-`Q0btM<5NgPifZq1b zMyRO}H}*%#1P6t|yh{q`a^b8|FPk!?a+g42;$KSnV8GSnuDhYh#Z8+HxT>06QBv*f za&{HvIdjY9EYR)%J3&x(y~I&PR^~AS7{rx4EG%$F?Fze8I}U2U#Q=s0jwjrVVVGdr z32q3e0gF5tDadhkd?~ZTGdJQelAoE%3}#}mndD4`Mmz+G+f2qikyttZnIE9`eZ9eO z9Sig&g(+Q`k;!>jmbt$abM~zksp_NEEVyBk?^c{-`X(}A9C?-lH`(BqV!$(iL&gYU z7do5+giu`$xfC6GvS?vanZP{1Bsp1newKu(B~opKuU7ybN}`cORy||c-aAt-E0Vfiy{ksGDkI|o z_L^z^WzDBAYPoC`{W=7eI#cC>Krd6SnkXcg$M>~>+0yOHzBw)3u;y&GVn@pD-KvrmgiC0=2YS_ zASeK7HtSHqXLEO1cg*?|rP(+=Q304ptSXN|-*W#;7~H9O7H}&9cTbGZ93PuLI>Ou? zJJ8P>Hwti7kuI0yLi>6~U}rx$c53g*zV{D&b?*~T7T0tn3JrxdrFbD3$^^Y}k3Z?d zG1L@m+uFVJnTH>Jd(W$1e)<0KSr}YaTWg}FIaVx1z}jMSxYSbL-Wls!lWgydG`CWVW@<2* z4@23;5F8=b{&sXXAp8kx^AH{TVicYwixP%Q_FSprMJFt>*UcisLP z+Vu6-GJpZyTJI_xYdn91aK>BjgqMwF!$7ITqTTeGMz1T6(QM1`!NG_d%!aqdD~A$3 zJU0;a`6J$2jt`AMz%Yw%>f)37z2(K=$jPBmKAs#NfrP;#cw%LXjZI=4`^PIZFflzi zIm6;LchS;2SxOTRvu;?E@|t2aaipmdfFBrX1LuusS}{FBYfHjC!Xyz%Z`;X9NtTMGF)uTT10jsl{dC zuG!D|>$6{fYmQ7%`uc0u@|7#*$#QOym{gs(mYbE*6V%IK)(x?~LoAW!a(49h-;*ke zgE`o%PJa8{xo^J3@xpiCU;O?WgayfjF))1j+I5I=OO*ZLN7j`euhZiCbxE+g^3zYe z*NY?0lYaaOuGhj{J)|uAyOriueVxmf@f(`1_j~c{x{24lvVmS>yx>(!H%c>)`jT|y z;I_}>l?;~2SJwP2bL-bKAdAD-l-s2erw68%Wz$zjIKQ$iWVQ!OJT8|V^MXAtqnB}u z;|c2WF>`cy`pD4Kk)i3sgHwkFCcf$$JJ36-H1<_r1%Mg7`;HB~{pnW^z3|e*FYej% z{(Bv_Z%yaY;b=IJQN}ms^F+O_dbcCw3}x$6&6&j7Vth?u_bV^_ZU3ix-v8`_gC{;X zc=G+PPJD2{P$hjyxcTvclb?Kb>aznU_q_h$)6e|nslPn^$Yb|!+S1+D5pQmdG?yYR z&Cyo4-sUI+*l2>$5>h=Q>q{*G1~5-I;>sLA2n1^DOg9zl%`Q=DMt!44&0U~z^fUxF zd-FwqbBhlErsmHL)XgfDs^ffS>Fvxjj&eCC z_q5`OG^5u{U@ij~=;b|NMPj!AIFobcV6vM$IU13qs)|)TaRv`i*9YoD;)=n;B}s|2 zOSOXzG#0`T)0b>LjX832@R>G)Rc02BlA^@`R-3^NYS5to44W(EzW^{XSnd8A*&A`tLnWXpqB*ziwTA;)^~+_$42|c%V$WV z6HwpSBqR&{CNK;!n;FB@+tSPklk{w91GG`YDXBHq{TiR{vvXnvVKxOoD zGBCu6!Hi)!smqRMenES;Ed6SrsxuZU>z%n|cUibgNwYLx`Mm6TOF(}9>;*6t()Ysg zu&Vp4g5jkLms!gfuYkKNm#;zq?U`@BS-ET@*@f$6fycn@ zH^2V+?Qg%~2n^%M3xmhkf98B_&F_{kR`8kS*U*E;#xHa6;^L)C{O$BK@5++sYkJa_ zUP)~0gvGJ~SReVUPrX>%9|fP_4JbuKD7J3`?qe|+*UG)iz6^xRD%#$?1O=4V7S;E#DX0#b!l!2 ztHfY}?rmF|+q=?ccSaxQUQu;#!JEr_04)j&Cw-7$nCUBm-ORy9sxl$2J0kmApb#`D zn@rX+dcj?;?iBzxn2nt|v6;$tGk(sc;?yb@1K7OjlwKSR-~y#s(~zZxtdr}Mi~zL) zFrW_MV=KD5q#GsYlo`(6G`lM7T;{G0U~U1;8POHJu9P_QSq2=bJ{vTn7u*#9OOp*1 za3%nok95jdBnB`@$pGeWMKFP7S@hidB9NRv-FxA3wHr#%PULKjy~U_qP>Y3qqYaYg~|+I4j>C? z8KM>otNnc^cCwLWh^jo~OZE^h|HT)o8M~?%F6#h3bLAU|0Ss9HY|vK;2(cSn`wni^ zLL()8ck^rER@rb@W?JbxzJ_bm0DS4kAInnhEdgB!9F<72F5cPY94prMzy1Eh-~YkI zMFxp~`9-(ChVi|A9dE&~XZp&=(=6}TdPcY9CIgtH`FqP3mv1eB>%~gf%jlJoB<|Z~ zZ-&MA)S+nMZg~==EpwikYCm69@)j0vT>)dQAvu@BNvk#L4>LR?IyN|cl!h^kEA)l>n}&SJ8o@VAfmes-ew^CSJbzBoGYkipGlXrniib8}vFp~){@u8gUIja~{S8#}vRPG)8YEYe||OgPfu zXj)Y$(L4qh09-23fMNA^Bp7Z`pAEX|L+NJ#C-Lz>-$E#@+E11zG35NJ1xHY;N-_o? z@sS1ZYm8xtS1_Ek_4NbOx)N!;D@#gDqe_K2X76 z-3PN3RvJ+n6M@rJ(JOdXK6tu!bV~d&8Ddo&Wy#96Cuv&%%(5FUKWIoaEfOQ62 z0K9bhG5~Bruk7GjQmgE~)>36uReFZA4&d?z@VDO@QE1HvgN~Pf{0R~-3z~BI5LXc4 zh?@{VOXrAccr0p2ihjB?^y7U+a zhN=IWsx4-zULVtk`^FFTj+qP|kt(45Cx*bt{U--LI&k!fm;Uy`8}GdJ{)hMc>A_4> zQ#c-X#{-Zjs^ZTf7ZgqeL-7FU3;7d)U@Da9EWGgUD<2&>vah%IaNmUJX#d2KzVYK& zA%j@}01yC4L_t(T6RI!G#HrEAzKI$2rvq2m%j46FdtP~K$Bx@JZ0K0Oq0rh!`BrW1 znby{9p^)GND-f6Je~R^Ni?MX1WPzp72bx^ThO{b@nCC;%jX8tGuryJaA?ynCr z+ePtQARik_(3eBIY(|ZJStA!(^=Ho3DmhY_x>U{uoO5<`p@{^yns4+-M`$1uhE<8u zrjiLK1hjMdm4;qApGrD;N)nGI#48kwULN)U>f<~$?ojzz_=FHHGO~>!wSn#9Ty6lE ztBkZXE065;8q<)}krz6E6@#5-ze$fubkYG_$KrNWpf9iarp4^~&8%hkOv5`bmOe*$LKlYGhbxly`_p?3L{p=9I2sX7E(c$fUWZkToY`bD6S{kF653 zd0k0mh1i(|F~LGjy~~7dcI`C%|0MyieV(HXShUEV2yJOq%^9uu%UiYfMvrjncQG=F znwJb1%ir-Tv^E2z#z~XD3}DCtU_JQE+$DHiyf}Zsn!U_soj0M`wO56)1vypCpUz-C zRamDo0DSJd?}WjOVIr{#L389;956$dF$}~S68rmW8NEzjm3VdCBG6p`%!Nkfa%A%} z--y9_nEfVU1N}Ni{g~yH_{z2$r&aAQn70I}J(p!m?XP*)vZX#)2ciAEUL0(fj%xe< zE{o6Ww%7t-+|&Wg3^rPyj?J^E-N*0@)C)Y1OaY3}iJ|G9QS!~lh>fKD`whir{9RA|%&p+7q@cnP? z|BNH#Y|4!`t5fqdJ5^mz+w*PhDcIk(&h&;&rH<}~VoL&` zmEB)4!2mEY+}f6a8^(FKVQSG_2sbnaR9_2!%^DqovQdJ=J0JXV*8 zJGjpV?*vmWRosz?*MYvgmz>ME$VMvw7mDs;$wLwECI|az-aN)fXahg}$5}CTsq7RkFY;5oNLF`qhR#C{0%Qn{T-7 zlulwSWDQu7A-;Z{^QUxiY+2S4ZMFoQIi_9SV^(4YGwh|shYnyI?OxXG`Fv>(h}C8b zN*0wqXHaae3EgsRS*M!GHooXw)Cp(txHkf@;CY~OQZ=6!pwiqV)8>}POKbbP+*#UA z;);Z?fvx}VikLdITqWkO_JZxxq zX7iRiy}4MrtMtG#kEJ_`-cZ0D@YM#~HGY@F?{o%?qciNHY^-|M)_b?T^Z9$N8{7R& z(U(7cbM(UU;F)>O-!%W@OtW=wBaPn9~ylJBvg#;Dzo_wQ=8eOHGio4Ei z#+w1c6K(()^i>X+04(%X*;sY70jw&Qc%m>n>0-fM$h(^Ibr5yfXz)Z6j&QUFM`;^U z0btd?n)^-auGc6oQoFoH$19%rt3=7qDl{EQI?Rq&#$Z8S>+xqjwya8oec_ll5)XzV zK2^NS#+No|)zPra0I)B7t2eX?40iihDN-5$=4Kt-wF6eT&iw~)ceQI319-Lj4-8RS|d#r{^3b#Pd}$@D$kHy{pJ0L=7d4C82Ma0t>FtixEd z$Q4m*2Cym3D347@X|isAnY%c{5ou+D=XG{k(xY@YY(H<=Emn(i@|UF-qZAtPf2a_r zWOL4xh_jdZUOCC>R62bLT?%GKsMchmV2{PDr5=YWG0GAjE^pilfOXs|aLPhn-%4NY z?HITE(<_Ycg$uLi&dr=XYq@|B^y<=tuQNS5F96j`q@AWzT10POx@Uc60S@U1@Y> z2`}q$W5rPez~WrZRK#Vw{T;NmDYc)GaW9(=e#On=kx+&m`TjfGNvu5Vk8!B zjx3$!S;buMt3Q!HJUl(VuVsSryxI7gL+;!H3;-USS{@mlyJOd%e32j&%+|Z(K6l9H z@VjfhPN>e5!{_2uth%tXsjJY~(NGtv4dlZ+AG>qk=&_*-Gvnt@kDXl}TRA;`W@X~+ z>5=7yvD0Tqm(NV#KU@4ayK;7PVd?P6<4?cv+?GvUEu{?4?rmvLbaZE0JCZazp%CVr zEC3kXRUX%eBW(tkBE{w)!~ix$#*_yHakmY|XCmVu2CHU`2^x#5rZ1=-9qNpmiA(9w zaYrOt8;;hg(6rGWD`J>eC+M4Pa&u*{8E|&1Ks4CtB>E=nRBLD#12`UYLS%Ny__7Hm z^x`cbZo84mICHe4Od|T`efhkblCbhl2;T?}7$2ZMR?A(wxMGT}a07l8O8oXK22&mu z?+tUX+UR(dpi#RD5bE*xgGnWM)JefL-2-^Iy9CX{W8#Zo~qIF*eh z(vd*e;}5xUgaBZGSz^~z!h{!(QR)^1B&#;jHFz}%WkcXJ`D6ELsLo4KXf98x2soS4 zV$rM13|7yo05ITcVX*xsKSqyH8_CiG!yJ(oF@}!~3_>>ouzk;%iHoBob}@jZ99b|d z0Jb>b8|5d1ow|ROxG{ig$&s$SxgZU(tL^44+d5vImULxZ7W4{zK`$257d&J8dlMoG zX)FxZt+0U8?ru5r_C_c9Svq&+E?%(l1$yNJ)8{umuFhTgnmU8+5ot^Gm2V2b?9SK% zW@2#Vg$UDEekES8ITnsGjAfylT03zqu9}H1V#f0u=^xJ$SXO}nVz8bzC8kQcOO{L6 zD|dFyIP+<{g%tqnxrdbeKW8BMe~DZB8N9MsTixACsFsI(==HlS!^@i4&cb8jw_>nS z7OcvPncwpI_?iq?JqAF(!|Agu;E;prQ2*2%z94>|FApBybo;JA(CZI)+##1U;HdMt zh`w%ToySGoH5pv%g(LBJqF#R@;DDQfZOZy$#mEDD{`_hGm;H<5r)GzbPYs-$89F$0 z;@EiK=$WOFmBo>Tg}$k&p3#v{zdG>z%P(%dV_QdCuDO`x1S?hSo8Sa1mf7(t$PC7U z#{w2gKB%F|m2Gh38r@X7qW}zhN^xe@dy)anaOIl-aC!Pd1I3ncCYq>YfpekA>iQVG zrr#(L<_?jmI!e4UNw3nfXv>y^#<0JQIR^loNjYGDlL@2whN5hpxgV_daTR^T(bae_ zdtFZ^%W0@;}jeCvKUL2h=*;fN_4L95fMcwI!NLyFFsg#N)aqSX=V1m5?Cj&SX z^+XbWY4L$0qc-l zpaECWO-QVJ;;H~X+BXOp>;3^qtZ>!Pv_azGF+HUVM}41I@7Sex>5>q%hT%C~_SmwX zDka%cRr_ynNLl7VS+;MLR_wA+M`&cBufZe}z#y3cGqnccm~%KGWl1Y$*`3 zdsdyGb}!4SdKYKv5*^Jmj9&i0(`U|DzNvoAVg0_kLt5bFNl7c}jD!mMvsqtwp-Aw!Aq1?3T(d*~c}b0;;K*DShstZga;fCo*wRRNu$7 zw|cIO9+&rDOe8PL5Dq=Ud=oKT@tWnxuwrDHsphEZo^k4!adKkTF0L6hMp;jbV4_5DNdAD+bO^N&3J=-v14Xzwnzw#1>9mVin= z3N|-OoeXAhQSRdUC2l#HRrN(pO_ZWsEP4UR#zrRu;|uiiF_&>cu)pybaTg4( zkJJFSTxi7O7TC+y$7=8vMw?8P&68LL1YDAnFDb6Nn*48~FKa>W4Vfxh5wE*}Sm>*HS7 zUjP_ZnA=JE6};6(vQfxHd%&SpfNm&Og9`|J41fJK2;gH-X_M;t9E{VH zLvOu%_xCW8usHu&0?T&F-Uz*VqL%ex3d5i;959EYS?r1B zCc)U`uAWwHEpV!AlWAdaWkS}Rox%1>Bt2)UYMzvtsBDChHGJxws;Zb>;mu7W9 zIU@`JyWwUy!Y15M;<&l(sy!Z?8{R}J~{kl&*bpL$~^ub zIC=W??#G{c`K@=~+52g}tHT%Zx`Ixw@c?ll*x%L8x>}C|Yhak7&}t_b74~;2rC>bne)>wtG#}hP91rIx`&|^{uTzp0>-WRWgen7*-4psbNH6t^>{&;Y3|J zfFW=z)96Y!I5Ul8a2dCt5%q;u+rT&ps&N#W?~SBtVwt*BgEyJ;usP;1wd!%Ey zmn>;Rg989A6etDSu)nHW*OZ$9oKpGEvA8P~uBngIanKm_t&gmRy$(lfAdonofd{4e z4FEihFT@GejXCwQ4X#Y44$hmzV+z%%M82@#&!$>s`K1fAjF(^^9Elr(p(h5%VWXW~ z^-HZK6`pY~7|boMbO4L%l_)gm3p7R&zCf!0#oHa&~>Vz8%4kvx}DH_kQJ*sR?Fiz`HWeYs?Od|acs}9tv1k!hZEk4*DrxgG*gBim* z7bQfj@8HS<1O_@^C1@=ERn}D{kEf4eYxiM%eMR5Nl@(}W+0eN8)5*_RwS|b~$JArd zmYrZ}SaB0o4b+!+%_|F;IBAQeU&Pq?ZAo*pL>FYSfGZXHxj3on;_SH#GxXz-rt$xf z%3>j5?I?}bUJ~dsYxSEtfF;RU2e1xZi*qfHn>58kpdmS9A#v3+@xNcJs>e`fsw%ptH$P2r^ z>i_ECz`;-UfB4o%ukU_nS4&&AyDQVy8t?2(w6#TB+he7cdJaT$2P>ZNqh=}?!;9c? zRX?mivDps*GZ!!Q1mLWbdSj_xR~+U|H+dSH zgW#?*!Q`01yiC@s>Vo{>F6av>drA>wV3Gy&n#lA})sO;kGUbgY-1YTN$Ot>vuMUP* z1;Su(Eu<=sYk}cZ&XuJMYM0tbrkBlS9CXB2$T+#hG(=M$6lj^jyce#lxrZ@q^uRLh zFZayio$LrXZzt~xtNbj=f94Ss_!#&w;b3jn+Qt9W2AUKx+!U20q$sHE#!#yq#glE^dX zUg?R@eB^~QP{Z+RqZK8$eYW(ZtWtNR*o=GiyNsIPp%F{4+5%t})3*#@$=Is&zCvFe zz|V(+=S6$|l*Q2+%+O-RLSG3o%NPcWghrMZx7q6o zPt5Pd5$PMnhmAaBCCfIgMLKu&XUTcX+EPuVZ}iHCA75T3;ae+>XN<;i7ynxhSa!k1JK#@V4zA>!nSW9B-Y(mc+LkWuh7X3KuWVQ8L;EK`*#Fh5tX$ zwUjX{P_G&?wKOunsJBgJ$pf_Ug3DTSH)}PK9lgR%ouJ&~LYiIhkr%>d9n!Mqr-*+Q z+p0TPHm?R~N2fqg5i=D6YY+C1Ltpg~ZV&g3e{$sbs~>;1_xP#9L!(Cq#*Pgck32Ry zacXjAaAxj`{G__*yV|O-4PGutM>$=zQ$s_ zy}N1chWxsXg|6;gTYIX#JKD7_v2I)AeUIMu{+DmQ{ND4=?0M|z7aw`#(OvX_wrERB zJy#P+l@ZXwC9 zkO|;AxMYyEwKWV!3$NLj_qVh~0pLiy)<9#@*^u+$F{M%f0M6y=ATU@=sw|3mAH;pK z7{FXO1o}oIt_aW-u7QG~)qzkgyr$thRq-*qaBkwkI0t}nvxtZz8Gxd| zl7|CAJRJc(6*iikt`Vaq$6Q;k8;;a~xV|vZTf+_*$6$1|ab7)M-9;%{co^kjdH#(z zeWfF`9(mTfL)UOBH809#NIG$w;1UC zUozOlu$8|02C&RX5CF?Yubq@uA8gW*qOYc_lWb?aPUQ@SB@2mpQ(54oyKUpWR#uq7 zw6|IbV+$tbIzWFwMRkx3uDZL`@3m8zUi=1mReE+eh-;d;Wrm9V>syl4s$Se!LetiP zk|uZcudGK1I8bl7D6uq=wx(5AhVGfWdPLzyF?`E4(Cqp1GxVw0@1A4&PMZJ6&~vHS z$Z~qr@Z17quDO1lRigs1R4ziIFM&rjBPF+ad-n6IYKO%YwY` z@FY-rba0%H5PRH10}~8j=*Ymx!QR1l_U?V+rI%j&=!1iOJ%?~DJ~n=AeERsr%&Ez# z-szbm1AWiD@^aUPb?dimN@POq-Gw{vXy37|dB@hmw#`jjw-xTXr}NS0?tbX$J0AMW z?gyX#Q#>1wq#}TBozKO%b%%Vo2>=J8p&E~)R_*?R!Hy7#F&vD0!b#ZEWOHk#xh>V+ zm22-vx3(o)JELt~v5t+&+jbW2{L^ha?_0lVYs-#Z-P?DzQ`_feia8tQyeiWQNBB9T z9+&$%@rb~z2ke21Ew+XVB_Fs8`oaenN&(4@%H@3&VOC*e$#ce$M*_2VHX0GyURAv$YdpTy zzJM`nfgLJO38a|~VR||cjtdK{xnDHafeNdO9C%;OBLjok8OuZmh$@u4e*k@< zTJI{U`qfjQWv%?KQO=~7A>sTj7P8)CDuWJVd%tJ_u-s+T6Zac+O2(G3DILI4NleEZ z09ZoM_CT}_U@bFiR^J2Wq9ZoJlG_Y1FL9K>DeFd7n4|!Se5d`Jd)SlvA4d5@AjmU*WDL=T7}%)ZI+zD?rs* zYq@EWmP<9yNxwHro3aFxbuX){R%`Q10)KeT`UK+lQE$>S3fCnm-Z^!GjY>YlqEx_{I5 zjm7qSp*ecnmX;mc3!67(H?2)Un>RFU+1R*!SKDn{^XWpkb7LVA4+g>>chKt!ctBsS z`h|Q!k3ZzC^*CzWb-=L0?^X%Y_|xq2)_WMhna28tLM&g3wX~;OJ5r_Ac&RPY+8J+K zA8+4~=vWtry4NPwZ_I4CE!*B1$9c6MV)2XBSyB^H!Kp9|B>S4O4iblsD*>FMnTABiSj^-1uLga?VMn;WHmVAf z%mitp2_>FO%DAYODP0RkE>jL;i5f0g;;mnN9kRkrL5h&4-882m?NRMVe5%7&d2hP{ zy-LQwiKL76gJXs$_#COFtzy6xMAZ6Q(PnU<7668faSIXJWnibvv2@whrsOg%I#O8m z1&GSD)s5=_nhaqy{eTr#qDVE5HT3vaK^&R}P?_{9wdz)Jx5f}d-zp8ge{=>`adQvu zoOO#%U$&SQ21~&CCY_>%%J!(W-ZQIAUkOTA)-37aXiF5@QkA6VMeB2ms{$D4)jBrM z+s8QwB*dFmN3RKB76Eu^iKGEZr|*c3MtBULugc~M7%wm5^&weUcx+i%@GP-w=F?5U ztQQpN=+z_S`qc@q<&*PQ8#Xnh`f}@IGvo{E*58g{dtBO%Uiqf_WrxmStD85otgB8! zw7252%#g6OqqCY(1YF#U^rmLFk4|}@Zo+6GGlSzRR3S!`QWvWK046T^V&OaJ@V8O zkN)Mc$DVoonK$=5`26D^9NG8P@TmhmM<0LbncH@(@7&n7d0TgTcT>lj)Y^>=pzp>F zMBk0wiH&PBx2?-=+?3n2r4h))pUYqbe_@^8fY%@LdqN%u%&yPj3b;IeS0L=G^VT^P zk5zQq?eODor4tLTZ;7OR>3pQA7;Wvyv~{MN+Y-gL7}VSuDRtDhbcR~H!foC4q>g&v zlXo#W@(k`4@?jP?l{6Yg=Dca6w}y`i!~y4g(Mtes3l~~~0B}R0V%`xCDv+tbCVgv} z7I45|Ie-eaH2Ydx{2(p>436U1-WG&fOP=O}tF77F-s0$!CHz)M;-A5b)!`6ILK%7<7Kvz@gipMITE`S zipIET*hyjetd|>-WU^jqnVHQQ^rdbgW}!3JK}Di9>glTZSS4f`X<5-aeN9$aSyI!O z5`F!_I>?;SOY+u(jx{*q-&znZ``PSqx#);Xp(L3+sk&})F%pY|&o~;_0m?md+7}!! z=T%8VN?!0q0C(4N2LAv7!w|q+0bn~PEDqR`)l4T96j@`7i;$38UY4w(`Qln1j|G|CBwNu{ zDMg=w(Y~}K@5R!Qtb^Geul`>e;)*TpGuHiV;jV7z^)Dq~gc96l=LfYR8C8E_%h$9g zYU%Xlm8h*A000mGNklsKK<7D*ZPL`HJOgCcxQKF!@3l7+q(3+u6S2Rth+P5W=(SA#@wdO z&BanA67z=YT`;?_yzU_N$A_@+hupz>FX#&@yYW}D-U&H_wY9!mJ(Mh6hd;{6oIl?Z zFSN#5yVBfGqtuR@(L!52sU-+rwseF`ZB$UC`Ybx&Ut3#Zg?y-3s0VtR8iNhoQ8MdO z7S;p$W>oT#WdHJrKxKaeJYoUfH{IYgyIdKGNHUxt(-2H%eA2~&*bH`-f~AtL2w&Um zZf*0mHV2A%+Jyy)JK6*7ZT>c#FS%NZZY3`S02iBFATGFDXmI6o&c;k#E>+Wzb#n!< z8mjLL59;Hsj;-UN6PqAg*r4^F12F9!?U<#7vGzohSG_eSd=7Fgz>ZR z_(h(Q!~o|0)lyr<)k@^}Qvh%cTW#2Gu%Bo8$_}*TNb3P%7PzZYvGmCbB=)ADU@%S- zg6RcKe$(ryU0wi~qTF1~Wwh{gsp-fL+F$3CE7;%q)erz2O}QyGEa9bqw#uWX#Cx;l zq}~)-_L!N$FwGo-uJ!)$h5+V-EPeOaJ__l717JIkDK6bRpr>V(Rk=@06-pX?#TJuB zDw3l0qb&L+W-L+Yp-MLB2rOG+2CBlIg>Xzhfg+B0p0a6N-o-|OWC->bJ%)k&=L7?N@$U7%^t__XNM7>EciPB0Wjz$8Dw1n{i9Ccgro zmwWX_AJQ0v?JwSf-^C*Q$B6&x-`o4y=Z6oy^6p!E-hA!7y`Mbu@=H%X|I`!DJ$dg# z_iWv@<(`M`+_-(+rk!hd+`D`Zx>?LXBA90^&$rGlv0x-`!D3&}e zFu2VD?t_6vYm2wJccopQ%wo@ms~!x(s2p)rUMepkh=L0@jI#WR=q6;vx}XAH*#o{OI)$fa4J zFQZqDDI~Tr@bC+mZLaAp*!wboiNP^Wu(gRr(IG z4rzNi6Z_pN7}m42IO*DKZz&6XKUhaEug$nL=V6r#lLj?5+{mR_0IZu%p)cQS&{x~* zwXnP@dUfdP;}ju#$XYNgpGq)n@x&T{R}^&5&R;lZ>ViEfTF)rf1H5#dp(S$LznXjt z`zR_I2Pro#7aTW=Hy93hWrefK%e6_SJGbPTRSmOO1@Qd2^PsN|U`DT@%6w+McB{-_ zEf-AB2CvxbH68FoWxRl@P-v-LoSzTf^jAg_4(?3V6ZFTQh{jL6bBDfPh*(6^=F%Qw_EW>;rYtF!4Et^-!KwT|~?X=_%Q zU^rkfSZxf`_#^3xrTRiU*u3T%{4|51;42h7JOPP3F~}OLCHh7k@whjU@FkKS9%~4S zvxim_56eoaJ#PvFWXsuP271k!VEzRNy=;G@F1Eh{U@k*4e6ZnwjYe7uehzMl1)oZ0 zS~*}lfJIW{6s)IIXYPch_Im$V=lg>*u*w&qjvRPpo|xqJ*ARD&GG7PJO;YqV=0I?L z6kY`Mb$b86!Dom7Y~T0Q%aAM%*aBnAc}p3w{up~uT5_Z%=4`1LrlR4>sl(+))7p+T zO9!xC9Bcuwu)#7;xNJig7OVi~Fs$i%tq%Bq0 z%FJg7pVks%mrAXQBrFAB9L4@JdY3O<*2QN|U%tX?cF8O}3s0XvdjXm|a~{$=U0dp# zr>wzeYfZUiv1tK@(-!FsP|Y8(N~7`{P37Wv53W9;9#9Z01b{W21cOI-${y*|C_M}h zwnU69!oB7mDWKl0SWJMX=H+g+RQ|MT5XKL6;` zFFuaN_FbFS-PW;oeKXX(rlGSd+uoIK>rAzGq*~h&E$s=cJGzpc-6;r*?ygK%XIf1F zj1`)rjfHSBN3-gJ3AYabuJ`dSuUm~thj?T0lQAwFth(ift5g z25SM}Tp^e#2GfN=vdNdq`?L7~pQM%-8i1*N6&2O^v&#OGR8B8XQ{aA2>{;P`A-+)H zS%jch((L4HX8(G)$d#1vic4c)L{;n*2yDtzHg&#ebaIA;RrNo0`9@c<;B0C3G?%<^ zz1(wyW&$Q^vT0{igBK1M$~QP5;%>T*(VNN`lND0DiED1_!V}9bFHiPm`m$&nIP1+d zawBWiRx{(GfOg!Oh}MC=kjmRC=T6h4CIw*X&XF;2D{B_-4dY=(@Hy_3na3<6Zme2x zFoU^@mvgd=ptNEh)lJ3RylcxC=4c1Uv31;<-j@@;TzDyvQt`4Z9#F{1Q=HWWQ9+S+ zl>+c;dW>qp0RVF*Hh1Hap-h~cP4f*se`NID>iR#>Etaic9l%xTYcEN%TuhJB$tHsgSZA!1}(gxM4D;T7=dTg|>&F zE&kg=DGRQQ9c4w|n*f+?tF{kH-WT*;x_r@Oa777?g}!<>De0g*T%whvwSl1M3N8mewNnx@RV+9()$)0=E{O`TD8=n2-EK1~Ajt zVDQR0`%bx?zIsxQ0dFqk-cJErhsdM|T+jiZv_1-`2 zyyt-(JMP@P>z>=U+`g`RZA)i&zH3bZt{3!$dOM8-Twk4sK z_H<(*lFkJ(4ZjX$!!sLLO7`=dUluUkQv#S>VmC^P6*v1kfJ2V%~6E|_nL0=@Zm zQe$f**9;zqKwL&|vWZ0Piwo+c31FC7Dy>l|MF22NFg}Kokvzo%70A^!y10yhnYT}+mR*m>-+{yct%oqjtg_e#40Vz$1wwl_l9|rF=er(+`?K#R@I6t;-m^9RX&7;FqjgX zqviZ8vaJyZHLV0|lU{Dw!HqRkWs!@a&Ov^muhI5P^`pk)-TqZP6<7^E0yt}Vj3At= zkx`{6s{jlKyqW{f?$ByaxCWv{;8yNl$qdGk=_|$;=w0O`-EwMd46^uOOB7lMaCx5K z(5R&}NPmT@F>QM-lO_3Cg3^Ww9v+4m#zsjJ`(P8g^7?vxu%$U=)tSLJ0Wb(>i9B24 zy^@?vZg_raVqqD_u{kSg>>I#UEjYVj-7)KsyAgopGe~)o8G|+KuiXLb&9HP&DalR7 zm(uE~Bq98Nyu8p^t8ekzWnt2kjD)I;AzO^Qe(7LoNMe~MQPHzg^SHYAUAgi#3(#fp zP5qI=V6xFVeJeYl+1skfgoMDpmTHGof`K%uE#wS87(I zdtVt(B2CfRk?TGiH@PFajMS9DByz7) z(b>U|NPD2eB4qW)Eub%quV8Jf%ij!vzRn;`uEj}6SnVcYSWFRUWe*1c2Lo+hUz^+0 zq7)IS%&<38_1@IvlCdP9uRS@hTE&!_z{bFU&Mv9m0=nR;7}d#Q?@*!Cig^-WcXa91LL9 z3M+vG4L{er000mGNklw)pzN%ig zvqrb0x=HcA8vy>|>{-UJA~}HQWF=6EbDE!O^Pc`agSGK(t;w#8Eo<_hX{`cyL)unZ zCo8kDD#kN>UkJJaz%qiW-3gZatXd3fbB`Io=SD~XFiVT!t@d{-dMlE`D#FeZz06$+ zVC|dP0^kjLRrHmtoL{shwOG5=T~T_pVTjedGr8D`;cYgpx2pr@xI)F7S0Fl@kQz(E zw!)Ia!p=Z^W_&I=k(!%Kr=)O`&)|rkLVP#z@D0n$3(4K7Om-@hX7TgzWBGyNMMWTb zdUhiUtqC4zuU(W7!sh;?@^jNBdxO3*z^-ldE#Dz&HZ_`<8<|PcOY=^)aNhmnQ(EpDZH&H_B-Ywo2D1z-Yg@%_ZH>->ap{b42hg{7e0p^y2Ku&8?W}N7c6SR&jM#Iyb<~S7Xrytx0i$TmNJg3WdX?Ees+l9` zs<3Hpt;J3L5j#Jif;}Sdk_wVFa=S->mV(KmkQX!sfSJ4OhIv1j>wv*sh?{bFT=ifu z`(QkeQ%o3CQ<~N0lz0_uy`{a@W>sEMvA+SMpnemJqS;~#8E?QQN{_^juTBgSZej;4 zQmOTzFV0}WCYWQ++`vShv5P*GaJ|57b6Yi}ZJNPXDik45<^eY-O{~ny070Xrw%J<8 z!Dq8wNC`4GvY*CHn^TXQe2K$VUigIZLi*O75XYPwHBtdg<-D9o)o7?{6w`ls$RIml z25@6b6$4mR4d`3fw4=81PC?&0s~UDl-SOqQa}XH3u{eEBY7>|Rs##y1J@@6AvlV$y zTLCPM_4k_N&267I_oC_WSC6D{`8& z{Mfjp*j(=okBSrk84xvRyYTu-ECC)3HP%p5eG zO+hocv=nZNAEhOg+35<_X89zJxWjZd!|26AN{e&xx*{k&lVlc>)KM0kzgEFu?F=Y( zz)W9Rv&3dscDGhLdnd=!8@?PGPm&Z2%dKct98u@|G6o*hKQRd&Q{}Pvcc>k#x%Gk% zNB(~y|98kp4BqqBfg-$PEw7(&UVF{7>32!ul4WK*k(ijBolGW1rY3&*>lY6m+JFDU zhwgpwuDcHHI&fDvh|Ah{pmXou=)L#uz3X7CyURnd<+wc(2XrmqE(16iY4?Xnfsh08 z`)z@ModMk0;R1v0&StCKV0JdQyIMe2(GH1*G4Qw>o1?`Su(@2V?IJCfw&F~+7I(8R zZ1P9U-VoevE8xmD7e^<>pW%I5A(y|^9cW|8hQ{0?gW79|LBE_o%=S)c8DZDcVx5?Jsq7;zsz1bA6FWX0B&P%kz=g z1as+;(uC5_BY|n&19g`aIb3)kj`&z;Yuu@00Gr!uMEaGEyIl%H%<0gSoF%r0b=&|% z&4RAOLpb2f05+PaEwj~W#KjE{4Rm_jJb`vOF=<1ht24OU?x2BDv}+(fHwJKX+s+nK zl>%dN(Zc}72X1Jl){LYpq+~E{o@pr0RGhDH zy<2mhTUFO6o23;+l=C#uE zT&?~Z6dg~+1gg1-ObWt68;}^C!>2Seo|-w{cjm44{_y0pKRR;X{<{zFhUJC!?2F^L z|6s@Ny^)?>{sRYN`}PL9yIftJ&JF-LY7GQU;fMt==AnMxfXNp$`-66%)aSE8p^!Zm zbH`(jP_P}qBQxYMnw-tB!X~R8=xrA5326?UuPqp|`1~e^lg8=LG#ifr2A82L-7N>1 zv9|k3HeWN2P9MqTZ4sNzM(tD|1~50QAfKlU(No$Mf~=gq>`{Ah@Dw1INOflViWU$Q zDOE-eXr=&hmM^v)95;#=rED)OK>apiaJ3Q@5bjnx5122Eln}I~ zQHnceSe%X2JKEhO08G`!JT(PKC zhff%>99~u%eNe|~^-+?(Aao4?T&t_rqIYNgo!a#sTC5UTdwY-f_I-1{7a|6q-y+^s zJ#!w?CLUL~;fm0-7RH-)j@8B*#9-}g;8Uk7Zt@w4WZeAX^cgAGank8?{Kjy7AjJSy z=qnbG_QGG%R{~fGmVQqw3~i4p2oTcx;H_V9THC?Y-*{=s=0Wi`l&(_BTiQxr?S62@ zC4#m+h19lZD!5w#TCLfYh8stI-L3D0FCF*|D=BH4LkRLYw|%!FdwE)JT{C(mfTa^< z@t3=#@3sKeFj%?6W*GDRa|~b{XA5~=v!oT)FgU5*8?I;sU6IkYX{fWhTdYN|>;$rT zf@D$xSPi77HQUk&j=eL9dCk(E;h6d0)Fj(t4p7T5HI7fzy9fe-+k?muRrtL<3}Di*x4Q2y*I|{ z*&PwbP*+c&tJ}M0Z)jJK2k7nWuy=Jjpjgy`^{yT_U@Uq#m;%9euV2V(@p#(7UD)4_ zs3YhzfxgYAI=#8UNG*T$Bs0E^xDx;a1v7axoJ7JPBYiW8bY4$YnbYV@l7hHI~$0K@D zike_i7EEz$Cay?t=Jr@LF3F~1o_}`+u%ItBz#;&fsv!=)b0QUYz~Es-+(MGY(|qBK z>1s^0jbs4B0h0-K)mt33W?Qw%TE%s}>LjHN2h6+0%48%l6gWZep2ZBFvP zk?bo;o60I^39j;_B(&zIOkV}MLfV^K0nE_d7Qm$b{u2WOn;fvZ->D_Xw!6X#z1Rc` z0BhsV6_q(#lfO2Sp9RCTYc25PC4&5smc&}lX?Ll&)-i8|t~Ri|DZ;Etr{XhPuLHDi zX=~c^R-#wXS0-6N)A;3xFS!xvc;I1 zOQoIlw9$S`H^sF<0=Yr1T`TEhV&9s>)Le^InaC|j%zMeW z$>%vyTpDrh=OAB#f2w}?^Z_P|1&9}^avsL_rQf}D_Yd#B_mM;QKY9;v3;IIcyTUkj zbOpM0hr9Pgx_UxbcXoNeVA$Vy%m(Q8bi2B{?a-b*?!9|GJw1-jPHQOK9t@d%0SkcY z^MS$UV9-VmIP47hEU>vEu&hj4HHuI(tgzG5Ox9T$%4?=-RF4tg-L00Ic1MHLXN0(4 zm4`NZ0b`soFmxTBR*2VbU$f|{(W2yD`Hbq+1PUh0=7=JhnZC_|Pn%t* z9BB%MnqWx<1t~FV!wvfySz-^E%a$5N6k5*=#u00{VVkwC9TyPh8j?U1b-=J2lq(D? zcZkHh((%LvF-wtlj%gR!UMr&0bwXlaS&Vi7eVq=q{8#jdma^Dt*zauFnVchuv4e4EaF}tR%ad5Zm%H*TWW+jznU|%>Qn~T@E8U$ zsjyK_M&j;QG$fd-ip5Do+YU%)s%mQ6$=S{@#Ef21Xrzd;t^{|bB!HR0n*a>@Zdl>- zeH>wy4VJg&TW!U#JpXU#D^0LArK=LR+evO1Gk`02EE!y3g4qE}Y4^Q=UZ(E`)iyW5 z&?Z1>6N@S}L}{OA21j@gcx%s!@5{U1whT!@+IG;DKhmD8c#~SkS@Ax%Zsk_Qy0z$) zA$0Yg147Ds;17-7!+=o#kkskHA^J47bHH17f4N;3l};r#;?HXG)J7C~G7bAnyT82k zyY238#ZK_|iIFU0(VOp|`5pi($y{0={C(|Bwzl~koTr zr?tNoS1J|PD-}s(vZh%|ZBa5gG(9CZm6^UGNi9{eHLmWgE8^=OINh0II<;6xEfkZb zJg=wIQ}6uw?IRE0weN7x;Ul{b-rc2eww?!lEp|BNR7AS>+Axk)7i-hc< zfYs}_nk{5}fnIKg07nA<%E`>!BE#b`S*`kZtHEk-#y70ZZEy$L2(;d2L0N*aJ7{qF zl?EDaUn}^{;yzYV0IE8}+nfYZ(U6h@p&Uk5>s}f}C#+4j zn8;zNHMiG*PvBfA+!%`+Vo@VaUl8+)!a=>DDT^wAqY;|805|OOHLy1&E(#wk^Q2Ut zs+9S1#F)yB98D~z2>>xixMG7=fz8%F5}PB#8_rc5Z5|vv zJ}{u|7*(rHX|%Vk{pbpK}w@w>0olAHEHM>HNSTh^t^& z70y&-jcMY~qrDSjeUsz;QxgneFkpCQTEPnFWPWZaIf>&ZC%^2S930O~ z|L=$Yef0UK4jt*0l!Px!-(eB;;j&4t+!wvLy^!Ra%cKRY6UfADA%mXj$_gkVd zYge}m^aX>vI!vAMw(fX)XVlc)X@OvZY5uP8!L%jpYf%^+v_bx$-RU-&oh_|4gU(dn z)K=-46_%?DwO2)R@c7xW6>lO5slYbb%WDV`r zzJNX+(~%;2i26#Z0*s?!qte^i-^jsdu#jtcxm6^W2`O34T=gq12tUKvxZ}(c9$|NPO z0OpZ}+~^7n7KXTyaVrw7$q@73QJHw5Og*A8z`W}$CjpBcU#j%QCk7+X>*u2pa>93iTdD=zd7;I*T+9Oe)1CyFDu45 zY?~UrQQD-UT{i3Z`0L{zef7;hzWD0HFTchD;vSaT5r^7}VI^~abHDlwtPY@yuS~<+X7fCoROX$ch=r#+xu4l zSh>Tdrd?uug>r{}0C?-eiM4|YhSkLYq(lWaCu9lx`@I0J@Nf(gM(=bgIW;$nBcx@p zmap65mhUVdqJ6CPq;%NgsCB)w8uT)^M7q;<{Y*65z|<2|N-%gvb`jZ(XU4XYh9;BI zv<%)_hy`ii-sTT&PJV9k+J)DQWE??UDLx~wZ{(*ZWBXt&Bp1nIZmyIAdNYgpGsEZq zb>@rz{`fC{{NTMOfBwuH@BjXH@4fz$qmMlH#6A1=2lws^?A_zvz02F(LpC=OcSJj! z9bLZ8ZhyR!>@NTujeA2Odmvy1fIB)JU0oJfULJM}`gTOxpm?}78Zt+Mrf|p<@V9t9 z)TTHbvV?-|LB9p^`6w>!@U&VShGq*Ka4je1a5siFGY|p>8?E*h92vk)cPsN%746Y# z0qhI5aaRqJ-{_`x9L+qRj)K)nJh_o;d1*6J1T$f0DdkGc<72t~dTQ%0wt=1!&^fx4_>0q?yPl)DTDwpo}V1B z@V=n0sjbS~R&Q#hSUTr$@wTp9gLZVm;iwe=)`{@@hW%v#x3tufl%CJ^JWNp32g4Ir zDI*1KB&(~@=`%RIdfN0=fGUcBMWGSzBJ-!p)1?^3!V1^mJiB2$p*jPY0vp^_g9X-# z5k?{lx~+y2o<+qGO&hG&?SQ~wDmM}i7|;cS>zZ(WXPv$V;w3n{Ep zW5OKrC5iRc4p|C%fm=b`Z5w(htur(u1+{H7wBDNO3+{rxS}}?F`0E3D%4V{{C4k8t ziu_)NN=3G_q{2*kP7B})X*sF@Tcxj-;@Y(ax3d+Ll5DF;bi$hy0oy4~bgC!;VyR~) z`X|P56dDtnkkYbQHV{=OXKXa_mLyg@@s@31nRvCu1kY}JwIP35Nn-hFNa#v~%dBPG zCg-ydpv&k@FXU$O$xl!I^Vsix`Rq$SdGcpZ{O~6a-~YtDKYaH7dmcNm?_julx3{y~ z-m}{UQ!6@3x~OKi!x`&ziGjOra2MVeVgN&ts0DZ4z1!B^-M(j+4cgsh+1rDo4Gazk z+Cu);NZ1SjLm+W9VxbYd0>ECc+2b+6)B>w*cA7BA-;dOJ-(~=PA#fJ}hAg&bo5P5E zvb%-TpMLEh%!f@cmBiN;oZbhyqpmst&kTRF{hR3J&5Ne6Yu> zM4ox3f*d#~$1TWVw~*S2iD%^1;ZgpeArfn&0Y`Bo>~Ckx$ob4+Sm6i-oJH1^Uc{D_ zY9dgOVaeXqNu4I^8J74F-AB+@iH(bTAqBvWCaySwe+4o*^~u;;1%Tmt1@_eKG4kFs z@B6wubxuNly)p)v7)-g-yzdLXQvOt1V@peYb2H5}Y%|qDOja0Nh<|0a)ck&=1LnK& zLkPoywb}{6ykDzy$P)AgdU*?2V2!(gBHLL{~Mc)SgqPM_l+Q6(`WeDiKD2b{le z5~6G$&E8jvZLu8WAghuf4n#A6CD+LWtK6j{zvs>LmG`d*p>Nw)MC;wPTj2i}v$r+^ zJhyptai6vkpsGqY{Jj9yrh2J}{Xb!>HPhOst)Ra2zJk7kXGe#LpyOk`V{`;&crA5) zbmaUfpgV{~1%TDYnTq|Db0f6$m31s)7j}-(o5-XfEF^#{P%7!75_ChG$+{7h-71YQ zOl+?FQKX`mq~&hk_yp8DhL2)GCGogMqe2^J`1*sTmT^x=0B;UZZx3K?=CjrZ%a2av zmu-`nRuM3eo8nB|4d~A2p;W1mE*CS4#p&GKaAGXCTuha-Fuqf%>5o4D_=RIf?|bO3 zd+*-|-Fqva}fk5|e4~_GSnd6<-&Ms=&4D`bOg1ewE7Emna26Tf#M>y>A z1EQ2sW!|;RdDq>ZJ$r3?_t^IBwX^o`cI@f4#-rv~#6(f(5YZQkgxeXwey`c>ZiAf8 z7OPdy`K#QOmy3~FL0^hL8=!V8?61-8Y!(1E0*Y|D-axCm?<)rJ`i-LHq)z0}HrYW? z(bEb?d^O`cn)9k~(1LyUkDiAuO81vN%bw&%vS}m8Ue$Q`lD)!JU8ut zz}hBbjXIv8M${lxGk_a(HT8yCXd3{Z>F+-~FmP^gP^cg39UAHz9_||+h5ARvSXiGM z96mcRg!_Zg3~3Phgs8aXvS6wV<}@hLrbFf@vwMcVJaOiWcsbV*pEOsl4?^+XR+3Z7K`&3Y4nc zWvGn8+YOG74~&hmR2UBn1}hGjw5b4TY?J*JwZH6oW%iRaWH(cm=km7VTewU%ET3B+oQ(E+Hk#cpS5O;h`D|`Y%+Ns796%5uo z;H{x%?KZhKRZW&!Nt9~Ekz|Ikw7DCBWkFm%va+ROt~_5@Dh*DIy#2R#2NRgjPDIN(2cz_ojqWmmTa4j35Tv)j6>r@g1!+|^-%I^s5%;83{T>ucfM zW&k+gYj?R?AuzSws^cMaJQz+%$ZBh7w>P(%8r#fGW{ckLr0gnD*GqLo{*XyBn0il& zE|L(Z^FSPv6g4ePWPe2p5@3vz+=ZCMyO`2bdSDq{dTK)FG{ zBZR$1+>IvU*{JIz3~nse5{v4?p~jHEF$}-!YjitnT#jlS*>`fnGq=v*K}Nj&Y!}U~ zc&45*{*S}Rg1cNp%&jxnJ#!Z=1~3TPZmu?iZB&C>-Q2bl&p>mZf(Ad;HF2>M*w4nd z7To3XUrNP-xugdQ|Jqg$wY1bSfU!^jY^sF=RvkZGYT!-ctt#o?nh8ZpSXh)}X>*k& zfO*#ze+yh8Ik?u#qn7~YzLjz(m;sDGBA9Kq<56l_mdK877gWX*HjAugU2_!!m=mnj zzE=cYp5qJj)}c83?EnA}07*naREZj24mESM82}bNEUS6^5!V5;_x)Z6+&?k|4U7&$ zay>LY3Jp(;jZRHKBa@TR@Wcc(G=cBj(Y}$PvjZC#K7RK6H)qa4U!Oh;Y1hzKr_Lxk zc^2rEf}fTac_Yv*^ySIZU!2(JzoBIyFy=l zk7VkWc6WShp4vuAmj=LJ0>DCF2mpT}Mzejc0(kSN)U!g$O*yfZMyQ_MG^O=x@K~Ka z_tp76sABwI#Xhtaz;c^ef?4}hZA4m4q3V}AxN71R0r(95;-f@X@O5BZ5x$xweIy4_uzj2o?VX4xVaK- z?;G&9ilZqQFnfJ%G;uay0@6U)=GJv0PEbMOsH%kGwv0xHYCY?n|vF2=NV_U6Y zaE+v|G_}lB-tpzgGwt#!_P3fw5Q;Q0PM_vG*XXLNn+Vlf`fem)jVC52W~Xq3#%3l) zrWELoO;196vO=TN<0I4K!&75}VfYW^bi_@o6`kvOBZ=45u1$|Ff z0Qif|a8(k}gnfs;K6hRzhVJbJu~=K}BTmvCxNiw3Vd0+r{a*phy~-{xqmTFx_P28-G08l1Dt>WpAxR7l8Icxo9?sMuQsiWLT#a^X4MfebgnI@!#UKZr5J6hWYIfG)Ed|4^ zq)-#hAr9-P^_8zdG~9swt=XIfO%ZI)wBlqdFu0|)np3*Cv9sLJ6`QZ*J9&3pZtjA+ zyzeX8U{zN@m$|EK0E?}6e4Y}(0=;!=t%^sR5IZqU_e@oZ?T5?Rw#Le)moP98o8`c?tDjkMUB2z^IpJ_V%;$(i)j zbZUBPZfYhyo5&=m=4PPj*-2<7IR)WILgIWX0Zk^SiQm%`<5S}xcZFb}VWREEBRe0IV`w(w6~zytfZJ(bq4f zqO0%ZU_bAgD>=Xe!&C^nxjlv0mmNB;X}!y5r0^rHD0f;2HkY0BSE3+W?lD(%P5HXF zw<4{YZfY(XDpYX+ak77a%XURB)zF4p6#-;rOJaBs>K_Gh$8hZhO(iBaG&4OpJq1ln zO^!}Yk*23v!)oAUWO5u5i^>6MUJZF*sHXg3kL~?o(xY8<#f1KMen1vrr%~7Y~v6(3dZwVTinqc8=%gYF9g{2$T zMwJ=5+8uEXcNNwG?QF7zW;B}BOey9#^QJc`bE#nZ+5JN@FrXEmoXcm^#eAxegRoFg zI-lp@GdtjI1^Q-6%KejN(rhVX+@wq^m~CP0*Td|e@G`wZ7Bw|Lq6a`2f0#Y{@>kp!Ih{H?K2OC(@aASd>K0a4&Q z95m9bAurJ}>^FpbN`RMMj%NNC#i#}yx9p%MS=1!CL7|lBOAKGmU;*GYHO0BTKIkm)U*+HD9@ka#U9rbrs zZO(#LI$!_Vl(X4c zFgr0f4LmcdCuhc46VqdpGsI@bGlZKEuUTW0V-Oa6H#`bo=rhTQ=~-If=J?d;*yPCQ z#PIOg;NS?@+{a>6GpEn?_mT$AL#O-BpXxow9$InIy&&lMug{%@zBzx6C8&IkB`q&= zm(k16tw1kWrNyw|ZvUo|8*aogJjgmVq?|uJG@>mO7Tumlq)t-rNkx3-^a$zf*w`6O zBjt)d%v;-0ZSB;dx?4)2Qj+X8H`t=)kpjKIEmMR;rh`-CjGSRmQ?PSvdU7h6NTlcH zGP9{{GLxOn=8~*Tc1|dr0v=Mc5bg<0&dy9Erh#WtVoLsFz(pG_-4dAuh|82!iJMFp z=OA1T;$NUpS}2<$B${+6YtmaisYpuCVALCRhMz3UTGM9lEx>7g; z05g4AoVv{PWmN>9*%0#rnk{BXr7SBkPv>!E^To-}-+b>6_dj@G&%WrcE_Y|l4%`Bq zU0pW#(T)xaN1h>^kH)OLr_1z>MeRUoFleJZ=a?%RcgMTjVR{A^OmJ7HqqD;f0K@op zbyz9#j2}g;c!&gWz~AB%0}nXH8w$2T!9c6eOLDoJoh~EG<~Go1KSwi9MryV+fxa!G z`G&=2wAl=HyOD?DF@Ql|yWhxdpBccMb;aF=Z4RT^(xlFkk9V5FLC)yUI)0b{eJ%4(;=B$}__(Xpu6 zq^q6;TWq5WU?7>(rp`4P+m*#Tw$@Kgzlqx3X3Nwl9 ziZM3wWY?2<<;JSi>WvbP1;-r zEyNhsE-D225>PcIyjwSb`Qf-*qL7}+r*LEpV=_s>3f;+aPtd-B192RpmF z12nKGMq9iBwCzwNW{!1O0Ar{lZU;5PAqy-l(91?P6l@O%ZLx@Ah@&w_C`^!!#hsup zHGdYaw!iDj@k zoABxZ;6FsUQ7+3g3;+NS07*naR9<(J!&VD`fn?wraI1>iRE0uDYC+{S3Nxy6I`mxR z!}(Thg4xE2+8D~r;?g6hM<4HK>FzPdW6c1tVt>UeGXKHr-|>+of_5Vm-V8Rv?9DT0L%>bc$n7{Gj9-S(z^WopZ8+1c8@1FtLStL()}^b%qLb&(Dxx^_^5 z4&E3xw(e*K>^JPMj=Q7Cd}dB>7F9-d+Adcb|5_ytZZowI*Xd2QqO`Y`Gp)pgK^iQ` z$HvwjhIZ}&LVTrGl&v+)X12(@;3sc1?5Nf6pozcQo*SD1yy1XXFBR7=&nvoETv^L6 ztz@MZRx*pLIOd?zQl_{--;xrI;9@c}DZX2$08}uTkBmtOFrG{d1Dqf<2%1Qa&CZR_ zr6<$b>2z*ZHQZ_b+6DWe@^YFrzc^Q1OcWMo@})#>ekNO-PUk06xd~EcaxOiQN=-s@ za}&wrcw%;9CPDZY>?hw$G4RRJ;j!VN(IE(nk?|20ZZf3%2M0t9d=TpGA2{DfcFv7o8p5qqYdkGgM%P3#ja(OZM8=xC6H@8 zH(w2$Jm1IH1ZVmOIYAwa>>VEN8yOlH8|fP#=^Y#9Ok*zi(dHW~7#`k`0$?G|sNyGN z@pA&bB-6IDR|bIg%E#MD_E4FgF zSV|S<=ki76Ux=bSuCZo0nnKrD;;ERjv;f8FY7fV>`fnh|*Mg+QytrE)DwJ|~Cz<&S zq>?zbRq0|HgyuU)v4NI0TC1e6)H5QuO;QuB8OiL7VUd+R+KqVfCSR*Al{`Tny zFaPcs^zaW49k{D=&u&5A4p$^v^BJv$a+$lsc04H@HSIZXt&<%(pkNF_+U}yYg9{*#IPMPg%`l) zd}%NkIPv zWt!SnP}3HXaiD5Z8}6sHYa3>AJNr@80$paw3K*kr#)txlptWq4p{4S8NGP8 znW~dTN|(sW=8=NDmyBm4`|E48yX#Z{D<)fR6>~Q$2C#}rO0ZJhZDT7nF|8H2-2kv0 z?ptpJP=6o{F}2+QUzxIOpf}LlvZJZ_PH??m_k-#t;PyXu2<}36*8PAxKLfoRSEQaZnw$}Oa_WkM-^ z&*o?5vQtE570k2g37i3{@uN&`2I$2R-_iK8##cGMbIZ&4!o^o@2G9lUmo8)$*U}5C zsq)I){L-w#;PP~?G?gh%qzmJu{3MjiO|i1s$t<2WGleGy-SN@{dvPhiR|8=4Y;rO= zHwC5AGjpkF)@*V*F*`Mzn1PbB(@-is3nk{JVb-T-#=v!4H1Kr;T{{OQ+nOKXMY z3q=+OW|me8(Bg7_VF`w~AV^H`h9_nTXPky|$Im$*> zF0>?O25Sv;1%M$=c}rvxZ@&BHkp~VOzHi_Dec|1^{5{=X#$+hm9*VSuqbBZM6^*x( zgdq+EO;9joVFAOupjOYF?v73;01U(mzFI(EsVF_OU5Mu{m_T0|olCRs+dP7=qDuoc z4fX}VU@EZ{qv^@}dc3VTGJs9iCXqzbAm%YpOZ_%;6UkId2z2S;ePMi=z6@Xob-8L` z0E<0fa?)mto-2kOt`=p2udN>V4~CoR3cv@@HZzuD@TUGopR3O6tmT|3*jC!C^|w$- zl1uNV94P9uD5lUib8`=yyUA>?;{+m55a^9W4Y0rQ4r45Cz%z$}P3&B`Nd@;_7KXA$ znMdTP6XXAs=|fJZ;*7x|o2%C8ZE*XWxNnBi2}?{R;%R_N2WEGpLSIW2`%xUhFuV{x zVfNp+4xqM|u;XF9nB_ntj~tGgc58K;d52P}#7&z;r7r`Ri=fC@+v(*@&+BYL)1j#qUhBnZ8_iRHM5Srj{FVa4!xXIH>F;w{DC9 z2AJ!b{sRE6YWx8oL1Gr4snPA=PSKp1b;qsmR;6yl=1a(-zkx44*FSjd*kbI|-kqO>?$Tu2tmvxQViBOGcr}0cI0HN{uNGD>%&%T5X;g$(F6Gv)&~vi**@Whym9_ch)gnj?3@g$2bR@t070$xX3+?`soe^LYXE?4zGjO@89Qk68N^Po5g6tyXbE5l55be*E1u+R zqW)HX1NB&THw68nA7q5`q{OUyN{nJ#%<|&`!lmk3`9I2K)^!M?IvS5yX3+3@5w2Ry28TP#aOzvbE)!T0E^c$bB=EkqK5y zotgSuaa9jBoq!t#M?qf(Ff$kqlB{#c$PF(e;U-ZBr4ttfjUHFM+u7i-5mR}rFBZn; zod)9$gMk>VOb!Njt<{WALEkDGYSgkrq(G}1w88;%uCgjkniXFth=C34gYgWlZB-n~ z=BMQu!#tM>zb^m`ob$K^p?al?%u=hSN7ZtSgaIsao2wbXG-R-~PEeWR(tJ}b`4tn5 z1UTyqpfC015cR=3$^N!gv8!hEHt6rH*X^in`~kC;#T}s~eKmuUs66QohOQRC3|$4i zS{Q%3D6|ZheD%fxq++tLVOy0iYuZuf-R0$rS$wwwv=^=xFI}C#a=i?zjVFlVgZrm(izfrnzbK%N{m)9~Y7t*U2Gi#T!7cS>mmo8>6U&>v&oWFdffQLgDFXb*= z%tC7yGKwzcwE}){#0&9H@q~C<{sc;^x%riBVJV#|&de1^sp1@zoW~a;z8qnOlK6_x zlyIN?{7P|tHD6rG74eYeOnEI2@kfURo~N{yhcZja^y2Iso{*jsNSGR%8;1rGqx~}@ zy~)w@vmQ?te7Tq%`a$P||a+mScA<3?~6qM8~+km;^9U9 z*s+jLh#&EDGT>Dnmq21+!Qqct1^&3$G0SWQKDlyn9s=WWl*U@xYyO7{I}TvOCBqr> zo^%?2uY!`2oy;X?vs4r?qlTtgGAn8$6*;HSiwP(9SvT=m1K@4jFK>-DYYTZd-0&6$ zTp@r~wvf~o_zGnqH3KUJ;h&}Wmzfp;YJ38@&p!X>&z?Ve-+c%6@9*4yAS(K1m>IxY z0hTyVo;chd2%5aU7AO#Gm-bhNqp9jwG~x)y?6M~%cjt(AsKz=>bcg*_)2t}#%I9sS z(i%71a0?@u(``g!DJdfa*4i9K4nenBbQVW5vD4M!aJ2!z78}vjN!3RtCN8I6VF3n9 zA55FU?iQLU+pc5l3=DJ6CMTsd(-i>u;9zqg0Gn%!hAIEq?^TA_E9pyO3a`@ULhFFV z)FYy=tC2&mV1_541At@k=6Hub8f)UozMObPDay_U&ST=-V2E;##Iy!VTBby3MJ|`J z@yUg-4iAY37U2l9izngHe%uvVw!LHowwQJrTkmW({Qv;-_!l!5*V?udFF_7iSb6?^6#$FI8rEvZODa6baItlcn~atY!vNYsu!CIx*!}s7ll(De-4vd`Y#9cS6cuuOKcS zg(rcBX0eSXSFI=Ap@NXn%i0FODt#CECa5V+E)#~YmBp2{+-74aNc=+w_mZ5LyA&`SC*FJ&3rpItMgfypk6x3jDJc@J{$L;_9{X zwd-^fC;2=c4j%9?wRU;_!j%$^^m~E0m-5n_QQTErUhwrtc`XZpSn~wbTz)B&EX^j0 zGvHaGFgsmHPUUAOa?{XcerCEjn<&lAmQyp!bBUGI)Z#2Ok{*G^vSa;;ek{gwiztS{^OtZe*NXZiH}cz_V&l`zxm;Ne>wT_Z$EhFx!)iA*;}t1 zc=DkKpMU0oqfg%bkc6fjMo&&)H-Cg$`yywY>e){T5U5EDk z@q_n2{Q93SzxnDLe|hJhr@k0WO$=wI-v8u(hLWRmE4jYe;jjCSC(EhDRe+74MKBW= zQuu4qpH%~3MkYQk31BrStt1oRCjWb2=;9B7PoA&j@PUiJ#k}|{(}$0r@)N3rR!lYv z>&sUcE?g?FT~ypN8EF28r>>d1(AwoPi*GWLSt^DV02dZ>9Lkmq)?hf56t&1QAz7v$ zYXQuCEwrMrc5y>;rjT}YM8#Z1Z8t&0&FFNFBOh5JP*YwpGx# zjp!?g%l)Jv9(s=>1p0!q{MCssS(?OPZ^BPqu2#x_wo@Xs%iH4dw=r~?yL@DE9v01S zur#)s8fEh=S!v1xk(?eqx1Wu#Z6AS|#2sA|^xVA9L?CVfK2jSNQgM|sMlL=g6ykH|ad#j!r zOl}6SNu4gtzLpcLxW$#B8K%&>;ilg=#qotPJD%dHEZ>@F{mn1^U_*aBG$Yzsu>ZrjcV~tARYO#e} z%f(1obIvoNmyK^D&0|nHLN_a2ExCuKY-w3*sHz08*6*rP*-Tr-i&6@}uFbET?7A{}0 z*A!IWbn&5>@+J8T;?3h%xN>6&TD@9Yx>Q)XT3EYIBrY$f#dcpM<7!v(OZ9TSz44lh9;2IX<5lDozg;ruwqu$ESKf8$bQt@qfJd?yJB0 z^Y0#g>BkQ~|HLEDKY7nH4?Xt6Ge>{>!cSiL*&{!D;?R#D+V`U)dw+On-=l{Q{^-F2 zk3VqVPaZ$`_yeG6$C3T}9=&hZLx+P0dwlyk-90g9SH#sBad$;M-7ze@opE1R2iA0^ z12>~MiJO6*j-JB@AOGo(|MTS+ci(&9?jPR!^skLYUM*j`QU(rjgxIPsUx53}@lhMHW=G3R#b+zi4*0r9 zUj1CXfuDlV^TH4pCEe+PR~P8Dt}Wm%f+Jr2;?+fH_38q&a;3~#zFdOj&6O()QmdCh z;_}Kxkhp}a3S3(Nz@?=ue!*NhqtI6kM6*Pqb($s1pA^5VDF@Pam6Gw^irlDe2Nl!F ze0rvkffB{+EFNCU&y@?T)Iw3NabA7qG;6Mu*(%x1O42vGRDkj;^Q_!*F~3q^<(Bh> zC00qO2qX`Vo_q6;uibO+o&$Gvc6RzgA$vGvjz%o8xQ)Fp=u5o`1Fh_U`3z?!1G+H2 zJh<2AH{l3=L%x8;AG9)nvG)4gy@A$n%o>YYKwkzhs0Qx~2E+Sua|y4<=o3%NrL+`} z6}Tnhic(#|u;}gFZa11}Bygj_Oidz9)~0rRFMADQ)`D8F#6uB8sM+G74PdL!(C*Q- zdvG*x3l1=eIwFaEK>)bjYTzk4z$X9}TSui*IRLhx^5Ht&~)zr4Lv2_QII#ZR{+@+FVrEPdi zbwx5Wl@h6&#Eo*Gg34X?zTA0(+delMlnF>O;7lRwMjCixr6_oP05-d=?+-CVkGec{5*^5xr07jKrAujJ=fbA{zhZY>9;S29p$C6ii8O)e(J z%hRVaW5@pb=83^GFup^jnZEqQr!(jNc>1F^zxeA*fBD_d-g)`xo5vo1<>);>eRSWG z_s1VR5IVdoc&I0Mu*csc6EmLbo;yG{;m$l*BN(3!>(A2gas++iHF^>2*l^z@u(|CJnlHSx8tro(fvJv zJzbFlyYb|qeLcawySzR0oJSsi++2tUE|*l5S&Nrwy>M|JDqkorTqu@S^YhCEHolaxwUE!Kd%zr$h2*XQgayM` z9wFwmw4R_Hcd^haF`t1r$5`$JZ-kn8vsT;_kDXh{rxpw8r6QzVu;>ozJR%mnEXc}7 z78_jcNf5WVRxYfTR28)UM z*tyAbFkH5A<+dASWC-wsxXp#j*GBE==_xu^>$?_kJ?8?9?~!Xfy8s zfMI_D;AqU~^HbK96fjJC+XBG&1?_eU6yxFm2A%T4Y197N3Gy1ZR^TjSK6k~Dx1|-lmftvUfwW@J=bvSFZ11 zjNMuXS(jLfl_XHD-CVx}-B@3{zP@^Wefh@v%GLG7Yjn4@+v^u_yv01D^D9@@m)E{4 z7cR|ZmJ{=rGM8?ZNVkiZ$;d81*VY$rtiz0wZhyA|U0I(`tqs5P>92nCm*?L2{f|HU z*BfU(`|q=#zn{zXUca7RzBQd$?awdve!HIgc0F@*J#}k61KqftC*8_HH`iyctxxxl z{Q0YszsqM%t>d2GE!?JGXCo-BiXHGO+g}nh_~r^p7_zJ1EeO%?$oIVZ-SU;&OIL2M zLKoH-FRm}G;n!SWUbwwnyiv|woljrNXRpquF6F1!(y6P(iR-zu3*#^R?GLVddw%== zn}7c7gI7NJ)6;ML^5An1#~wM*dGDU+q3+n--Qfcr-aTQ@?hwf8+Z_$>?F#Mb4DId+ z@97Neiu<~wp3X3iI0N}%WaA;o*Ae!1#60n+llU6(b_m77zIY_i8N6Et&=niNMh-!9O9w^^PZnYT1HHn@HMUUOXA-_!TdcZvkk8lR z^cmcNW>3iI4bzZ85v8QZN&wr0{WZIrKwpzf$3qvW2$<@L8`%kg>q_q`5$h(>iv}H_ zGCN%kJM$m}uAl`<9S*WI*c9`F#Xn_M^O`%wy_#4N=ody0cMj57|JoiMXkx zn??(Jd^99D80KU`?f?J~07*naRMb&J3}+35*Ai*T)IM67axW6Bc%PW_q__*T(rLN9 zk?GsqS}WtOREpD9hu=#r^wNbQ#z@ov0Qww!CeM0AkBTLxUoi4Yc)0TZg0S!n7d8_y$XFr7iiG~t40KwcXCda_>>sQ)LN4J zTk%3W16Tr>B{H_EIAd#LaG|kEPFUi_9hYyH!BocT@~u+t!d!ACnOI6pl&6Psqu&gl z{-Xc*H-q1NJ@ECJ@l&TpPyFSx_ul!(A3i-HEH^Y+9GxmpO)pFjWQM;QIsWcP z@4fu?D=+-^*z528;r$Q)=O15u{P*J@{_X1zJ~;mACuhDqKY4B3v>92 zoWGs^a_p0%zj@#%zrOe7S04ZHqt{M;`QH2Qyf8TQL8;vPuike)IPrS#=--wu4;7Y9 z&SXAK=DxhSo=D|RK$owMt*i|!t({oCbo%Di^9#j)r4t{oEuOx9efsw8xo^KK-d>;o z_PY{vYkh$vJpH$~mw4k@ES7~<;r@9$`P+3|i{L^54j$fm;o|!I<@F`#;`++!cZ&<_ zrTmTT#KoC^O?>&zXYc>{_}@P|`}t=B$N$y;&9C2m?TKF>ef!hDymj(_pLyq{z>!_e zaaYgb{d?}ctLGm0%Z}*2cnrrqu~1K#73_`#y29Shu%{yw=!!yE`??|!7V0_%Uki^5 z3(IlvezK$+$ywe+tKKsHi{(18A^in>voP)BeR~G27oyjHh_+ius#@Q z40!8o}{6NBIi#X_`)`@>o_b zX(kF|UCYi`Bve=5@#(p*|8e49pPc*Ze~-?PX5^JlNWboA9B@r{_M&mA)CC{-3YTyf!@k z{_3T(lhc1oraroMd2s#P$?v`^LU6;-t@RS?_WHv5`r_^N@~zu~&194p$&OQ8eepYT z_6yME_2Sa)x#Nj1-v0de!-f97^x1bl|I-_vy!orY{MV0OdFJk;4}|XTf`9ezi+0?# z=dMTY+x@_y(Ejew?pXXlclY7$=>Dj`JM5181F=xFJKnRur+Z&_$L@~!u6V2`7U_ya zyQ5I3BNU7WL0`r#7K+HKDssg_EJq{&IVFHY0r1j>qY#r=AUWcW1K6Fgxz13S0gOBQ zJK{jECmI5VVVVJQZzmWWc7+3c(j5s}13o;tLu}dELu7&-A!4v6-suE};~l}S?mhP& z`uO;l!*dgJi#aAxelf=)k};FO<`quu&cSq2$QLg8(mbRI4lBY*=}=hv01*8VO`SesS1!2LO zozKzMEN4Y2d#lX6ED?Pr5Aj7wW*JsB%X_ifm(Xt6Zp9}(WFbrBE@$Lowv>hv^C@2N zN##D`Nwm*aL0>?Zg*Bi%f2mx$ynti*%3}V?{8Ty7KR5KjiH{CHdBon~^c)Dp?(h2f zAAkLeKfV0$fBx{;+rNI}-Pd0E{jt|xd+E_f@9B!$^W< z>@U>?8N|FJg|alE$l3(-a(I@Lu*8e%W%6*lm^cJj!n1mOODN1CFM#&D=U&+%A$)(!gmMSa&Ib3x)Tqa{neM_sZwN1|s8?OZ$%4Szp zt(*^tg_zB-Q)mYOEH{Hi3&{rIfE##5p}D=5tDn{J$qm9NZ#ZDaFh@j`TX-~QycuOI!d-#!g+{``fb$A107tFJ!) z$}5jQ_vF2gJ@DXD4?OVX{f8bteE5-j?t1X>kw@=;@aZ4k|K!6@{o?4ON1wj;v4AUZL z98b09!N+zz`qcjWAM8AIPx#3v_dWaUp`$;)=jGr2=&kpTzWT-!FTVQ7vDY7a;+dYe z-#xlC-}~*g#O-xB;35O{)_NJoo9l}UmlK7R(QE4kVEE>GaqV{Q>U#O&dU5`0Vrp@4 zIDhtd;;Rq)|NiFZZ#?(rPxe2)r{|&0Lr)#v{qP>wuArma@5ZsqXA3)Baj&l{MCu6o zJ3~--SFCeS9O~W`>De9a?1{#^!m-W>1O|8R=>~m)UI4gjZx?R%?BCtBw+BCh@%6-l zZb4!kAy`r{lIR-^!k99K-71Wo!tyeP1uuhkjcfpC1dokFK&Ceq7qMiVtoau&e|Y$ISn%K}=G@EYVx5MYo^ zkYTYfwq+ZGFhOe@%V1mM@mMpqM^1<+7WVG%`@Bze&4InY(O0FK4%OA+)aU)a?-P7I z@XaWMU}V`zF@fhOu*G9k4`}y=Tp`*AgF#|5ik-9td)?XCxc-*++;P`eKl6pp zKX?8t+~nB{FP?e*1(H}1Kl8>}ViJtzYcH}BWjD+^_gm8W-@U}bK6CfnZ}H!AFaQ2L zG@mypLE(ry93xDiC$ zZGxHBLZ^9*BDQ}wdrT*JAydv{M(=KB^Ih|}ccb|Lp^w%D| z=k7ed4aqo_g=qJJ%g{N50iI&6c63hL-4%8f$7GhXeo08&16MpWpL= z559dc^x=KudA_d*d#-}JFu@RY(uL8qN_kTR;-Z!X05gLr6w9l6^UNh`my~Axj^dyZ zxK-CGnZgB%yk2U|&hgbatRPd7Ybk3K3r%eVb;?94GJs{Zi0f=tc(SolY_2kZ3-D5~ zlHR)J7qnnq_1E;ENc*DN28dhJmL;o5X-HC1`tow`%KD|tt9zi8 zHISHi3@U?{vbN40mKebE;?FqRK@2b8vvJHOE&WpQjbdeQp?n#hh3~?0ar+6Mou(u$~))r0T#|gXs@Vg#cRNeIe`BzqG}Fc3IfnpMN7vOo^57{m18RK$$h0* zJbs!7RW0NJRy?Shul`bxqg=b9nzN){u?Cz8|K(1=*j}7Q7EK9Zc16LBx9wlKba(nM zKc2IGnaUg&&G+tKy=>pgo=a|g-$$TpZ~O3-@A<%~cfaeJ_uYEkd)~Qm;>eNXN3Oa4 znwxKX&owt)w{v1+`}l0<=;Y|h&BLd*us=IA8E*||heyygZ@&UJj<$N^?fzu5J>F;y zHq!nq0fVQ9Cf&{1v1_kBcH<3)uDxdK^25{PTRT@C-M-?;Xv4J+nWsM>7}N*a>!yCdV)D^~Xl9r;J9% zdu~4R`8#gA=R2SN?tP!T|FOIN_Cm`H9KRJs z-8AeZaW9Fwv6}?AC2S>erB39rUORXG_4C-i z^x9eI#W&7m<%QQyL;L{V=h^%GuKd4vUGVbRSDuG{^D?aS zZ=ig{fC0pFFFy}><1wt~FTC&^crWxk*#Fwu(-;H@oq6;8`9Hk&%!Oy)_vsG?8?ir& zoJr6*Hn4iW92;t+YO$tAni1=IXsEuXI+|=LhTpU!C2r|Qj*qUsW?N+F*7K}ikcN08 z9I#;*O(%;_)(tAltm_p`E9c!2EV~K-)7Go_Q6q>deprr@8We_A>T4wE>zGALUl$oi z>)blmb}HnjMN*TVmBCu!GFUl)ISmQ0#8tk~SX!?yuGJQ>U9Buolui9W8Q?KjC2LJ` zmKASRc2=9#a>H1us*7cL0Sx9KES`J@eF?z&Dg{Ez>+GC>VXg(ur6|E#ykFZVaphq^ zf^P9J7AbRoq%1p@g0~A?tBcEMa1jr#;l&J|*Vdp84f$j66oy|Cm(rx1CdDK!gu%LF zFL3}=6ymNz;IDY@lJBkZ?VhtLLX;^=Syvaxe2b)H7O0s67_0*G7=CNT%Y^-96TBA! zgJF^JPPy2p>#lOoL5N#5NYVj_r=Y37LMTRZ*PW@j>M zVY_)~xUn;sZge61ce>HuI@I0RZck?kG@b;bvELuLy`ckqb|+ENkGqpjZ>tLpHe20k z+#1DU*K^u7B_s3~_6t#vSwop3opt$D*Z8L4#-M-)JyWO7C z?ik!3t=qG>J$TyEa7)_LhcmxB^S4h9j$F5O=$eh`RWoPoYN-TyLkrTnx;3=*zOD5v zvme^SI2a^eF9PaC?*9+552t(ZJCTS-QS{?)|9JB&I4Pk;ile9Z+^*1^YU~ELD z*9p^c$Ll3_JM`K~&}{|n7>oq_{chy81IX_tI7z@5B<5}Ij3w7@Iu^DxN9{SPXKOyT zF3@X6K2JE~umC*J9(E#(3DSO?^rE00x{2qu;B+Hw@fdz2Pf!zm!$|idFjyDiG@9jo z;KLt%`OORG-+1-u*Pi|5xu?$j@ue63aQ4}^PCxVdv!~xW4*{z$|KZiw|8n8AKhyTD zzrFG1|9$f;Ozodv5jy|!pU$0m>-2^HeB~D}J^9#kkALg2dms7rW4C?g1Gj(kb9X&> z_b<;q`Sh#5e(0%3e)IZsXMTV7!e3r~_0Q+wbpQ0~zw!J3 zy72m+UV7zsFM#f6UVrZSSD$_1wdc>g2`m4?={HV4eg5g6z3|Ily!gc9FFf(9SD$<4 z)#smm{mkh%UO10q{^eDiKaPCiPv>9x#$8UPmJTbQ`dVte6*-@Hb`$w0q(<1FjhH($c`xwp>!`nTtv z{r$_&|MAuDKk=iR|M}gpwiqd5yl6zW9$H#J#8o^MvQx*5E!ou|09dhA!>PL=)up2F zs6-Z}Hfp)D8dYKqn8CvU=2}$jN;#0qwkobuW8sOSewF}mRDpt^;`?RasStfdEHQ^5 zQK>1rG(RSZ5==#EDTuy%3R;vDCRl=$K<`TB0JK`=3W5uT`eIdCt7*hw_+SY1t*8fz z(t)zF&@|UHuMGM&j8)LLqEO^B5CS(0aUUcy)>Tkpg;JOV^6_RJzv@L*0TK@8hk^xPF}EpvgZQsKc9$Z`wL#;F0jpp z{|-vjbAswzF5_rfZ)2633WLG*`d&`Mr3xWbWa9w73(crQ)mjMvE|eA_9FP}-S@>`E ziiJH4U_6ludr232C*%zTWqpZLnYmD<$W5YY|0;Nl$B53p7wc9E08`)Rbk z`I=2ci>3=XfOAjGc6oQBBo4x2@B9A(u&7B{AO_DDfQ3YvNoH-n?#s$oh_S-}CI`HE z;_#8HPEL*it%J@+JDnumVFV{Sg$;$aNwclicoq-G@n95bcZ7k^lkUd-Vlb>Zw>vV??yc*B6iwNtec^xd9vC}x~*0_>v%b59?N$r# z*B|;-yIPRfp^8!jdh0@xQpOmt-}Q$5U_5eX(_lJ_Cex5Us7X2+rTu<19H;p7#?#Jl z-0JmH93Q5+Gl=@L)?lOE8MiTB0bj#@0@i}WI4fbDF^);w;{>Qq$C(7JZ77d|#@2}f z2+);mLv~Ey79JNCT=%T`p|W*oA0vQP5Vm~`2;!a}bv-w>oyc-wi(?;ygRmWA8?>UN z+YZv$OA;rFYz#4cxa0ta*l@%CWb^)?KJx4HFWmmEJKyoq_uTi(AA*{n{Q9Rq__+^# z<{O{?moI$sb9aCK-bcTC_IJ;|_SctAzxLG6pMB()FZ}qc|9iyBIJvp`2J2tuggYUfU(;qr{^VRS8$a_EW z)!QFG{qt`;c+a;Uxa-j;e)#>LeDl$#esIU#AHVy7FFg9I@Bix;Klr74|Lw7-e|YB2 zr_TNU*BActEMDY>ly`^C@Pea8py{P^2HcI%BFyY1L}uiLr# znrl9C3-r!UfB5E4f9PMn_HSQ(_?{oV@U!0o;s5={8~^pntABY3J{|(dVcB2((^*g% zc*Z`L`*`Dz=U@Hpi_j}?o#8?y7v6dfdgZsL&%gQHxi_B0_SH9^KmXcqIHm3B*Umio z%JV-z``Z+`KcKe_+z#~=9iFCY2NFCH3SdsK3pYM=y>5vO*TxTd2jmZCX?Tgjxq zLB*C;SHj;Twu;j<+^QWkI59V?wgEFlDwFpWsl6O*1s@EF`WO{>U$VaHoi>=KWw>XK|1sOqF!0)}haazkCN(>y2jUEl>^ z9Ft?azzp0j=GE8nekt?HuUcMFx3k%Djtj#{!o_m09-b-9!i7ZP2yVqg@lf&-7fl3) zsRDCWCW6yu4pK*fc~OoqEc(HU<1YH%V&E?Uz^=0h+`{rQePMiIi~lY`2v*o$;#$pu zmrL{d&omt^i}t{ImwP4_w%}i(ybrE47j6N@3~L1@*r7JV+2k|3Y7Pw}OWoXGYwWAm z_re4Nz;L(3zk0DLRRG{Zah1B$U!2x+)+$YEzRMM!;d=84=iMv5^J>ov{{Z0K>A$-z^6sWad2MGg`OM0SSgn)~ za$FVfaJ8)Yif=|=+&F(&mU^_Xz9*lHrYUO}<+Z(+fCrOVXR_H9q6y^DBCjJa&<7me$wv;!(lYtOyPY;(+HsL^Z{KPTW}WuhCpIyFb0NQI9Dr_F~k-F zZCx_erXk6elHUU1x&VR1*wVEiP@TkZQ`1Q_D^jdT^V>G4i7N&09Ciq?UZk3CL$j)` zFH^(OmYv}C9*E+(iJ{o_rdl>#dA2p$Iy8;Oq184s=(g>k1H&Z1$wF%w8C0r9V#^nHKkHjDrKoumy3!~>$lxu z*B|sPs5dbBLvt{6Mq_U>_NS8o!Vb*wXdDg(A-r^aU{G@Ge$;q@b2l!+3@J-#5IRDjt+-MdePXAMhP_D=^wl5&@CUn_G7o- z@~&HtU2)y$+8Z~IU*6j}+Pd+bM{d6D@?%#F4qrJqe(j`(!OhV@Z`vJg4cntmI%tK% zv^DF+laA93-Ch)qS|9)7r;puqdFOC{aD3d^Nk+$e!^6quss5qMhr{h?vK1XYHGJ3m zPrdg;SAFRATR-)cf7uub?8*QD5CBO;K~%o(7DU?eA$K&uel#5=8Gl77>9xO{z3|ubum9I8ul?=ibALSZ z%o|TX_WY0T{^^7N_V0Ip?CW3sr!U_5p3i>jouB;p^&k7l760`9qqn^K*sbq5b?bYt zc;Bs8zW=t%Z@cBhd*6NJUGF&jjvJ4>^QPnPynb}*NOyZQJGnDBJjG7D(UBtE3>3d* z@hlMrtd1u&v_>w~X=<({{%NPH#!|6KBo<9<7J2O!*Ju?Em6{z~g6c{W345{XdVk~o?AC4===~ZhBdH$;ikmg9J6<)j)>B}PBNYun&XUqj7 zxd|W`jQu&Dmu*;2dr>zI0Kj3e3;_Ecwriq2@ETwY5>p_wXb+qvBUwaf(>Ms1Y#DIF zt6ZsyJu9C{v9u53Q(~m;4oJ=?gaKyVTn2!7^;fj}Js>p~ME~Oz(HDX0Pr+C>gLascD^wo+aY zSlzoj?}*VW+BwkE!S91>7gvaRjvBgTHX}QG_)rIeW1|V=e$efDeW6azYj@pFFM!%z z5-<$m_HN%F&LXHc_S*v|=>UFq+I2`B6C|Dxb-dvOJhtI_8%DKhC_t}lVf3wH0GR%imrx-Y9vLo%zll$e1Uv>iA(__?GX zSa?Of(vT}nrK&j!`0Djtr)%3S-Dw+6M}xec5e%%L?}5rrLbf<*2LMvLm!_S#+XW+& z>Cm1Gtj&=_B^|fY{sh;j=DJD%UahYc>cz5DspE2{H|uJ(q1BQ|?{(Z>*XVZiR!?pB zHDGu!vPKhUGV>-AXFRrtLvu8;FgocEoG3BUw%r=SgW9-O0>f}Bam&Y#{ZY3yX}71H@kVDfYtN=3Bql||wCyD=SJ-{XooxoQnKhXh z)3LR+;cblVabF)#?b)U`-3lg~K8A64)@am%`n|MAGxjuAh`O;8yFm|j-#v8IiNT?n z*>WI^pTe%&?t8;>I0SQy;%H43CCWYcMgpGp{ps+tWd7(ocpM9(Ii|@H=fQZEIny zM6s5nj`(HcJC26KWIPN9J-3s1T}s97ZjJj}qxQ7d-53nE$Jk;&9kV*gs2vZwP_#Li zU3Ki1&wlvM@89*&Pviy!i*e_~E@j{@(phJo@;VC!udW_WipbyZ^o?fAW=wzxUxU-+t4-e&ob$@7}!e zUDNB{KDzd%!PPemueyG8^$nvduODA^1B9L7scWIh$!kW(uNodY28|By3=eJhrhS?t z!C&q$YPX#Rs6ORbkw+|Mk%%R z6`d6b!{9FH3xZO(uSI8~DwT%rpTw(JQG?lSDmBv3|)b%_0YB-Ezy6 zOf2eHac5r)4k!<&vREz?fNM1v&1G&Hfe#8+p2Ms}bt(!jWAqY(&DAWDYu*tE?9r@c zs*`0d84e{4E7}3D7WCy#MBI`H|8?vI*IA}1Xfff;Vjm0=Ys!9jR$*Hgx$iG611l?{ zG}VIW7)Wck#Iwf5${1{pxydffF;xW-orYC$97S2+f>sRgN_AhkvX>{%ImM_@-CvcK zg2>d(1_OAt2q(InJ75kWCNzpQ;N1?G0nF)P`JhCY-~&PndBX-SnF-Ph-XEOXUt%!( zU~Y<#Pa|^(74wxRnc4ehn$!3Huc0sNB8Isuut+23WsWRZdS0%Q9WVj7v~Lv-yGG5F z7~8yxoE54RHKJ*bdMyizzGSwQjA!A_q4xGp3q}@yq7lvFIuOiROIWm4$4lETtKId9 z#{<7R47ww)Go*`PtLKItnqdx8u)&HGrQ5T{V_?Q;53I1IG>ryqA}9sp%jlic*MMMu z!DbA}Wm8sdnkAD=JhDM^(ZpH}0&4|>L1I<+6)|bnREWN{rcsrxIy0CbY)3SqEg6l9 zR4O-%6}c>1k`ZfWqU&)}32JIs)uNh_NM9lcr85HAr2%)iwc0 zC)Vp`qbQeF>xGrtI#iI#RlU))F=A-qG(5j4n!Tt{+?K+$5vR>=UxyVI(t87~+gG7p z-)gnBq^)(}mB%hVDDDpvhFYryNGD+4=JsG?t3Mp4{b9^QpWY}Y)QKhe!6X%tYe`q! zi-%1&dXrhV)p7@e_{ibz_EtKcM6^7=)d8sb8|~p%cjL%-wAJg(y2X?@f|1M`L0tp+<5fpvC(zcAHC_uW#MAvyB)-H+V&8a~eUjNje$D<54gicvAp)Mq3O!CLe z8`Bn^HS9-Fr{m*8Xbs!2@?fXeZuwmb8g~;1!q1E*JX#jUg1wn>+I0}Y=*LCcc>0_wZ^MgSImmf}By(8nD>yET`x^_?R9d30dPH*Oo zcaqtW_QvI#o$apMx8rHJbN$J~H(q|^=C@z|zW1Jb-z^(AUbk`M4M*O6^Ypr#dY4~4 zyaI^5adgGoN!Ypa#_5&soLupa@#Sx4VSjeTP0;q`S9dmc@X7RNgTaJWF#uisW?*yi zEnu975l?^QM5&ylD)k_0NoiY-TS}{|d$DY|RSveY6B+cilcwKMTLY;xQZQJg_JRVy zJVngqAw{LhqGqlec2Ok$Qq?LEy9?*K&QZ`jEzEN4GSJJ>&e#TijX|DGYl~XSTzq3b z^IYWGjRL?W(3b`J3IH>`)`$TZ{pwZD2m*kq{gJd%k*TM8v9SU>0su?;y5-j`uShe- zBL11^>ttI7FqfhPr)8tS9gr%GRnWKET%)8E(X>ENVU25G8O}N-GHGjKVp#;-iePCj z?#R7oKqj80E>Kx!JxdV6e>H^yl_?8ZI)EKsyX79hTtB%|B?fb)3%m)cn}&ym>RJqrluL@!P~%F1Ag>F8`3SVU&Q@(S)Q3S9*79K%$~icKYBC%!}YEB zb}_?Dj{JW{U=g{i`?(DRgj3~3UmSrEo=*FjL#mJLrM1u7h>Au=U+6}buY3i^V|?HvUG#uk>eDwl!b8t@NJ z+YQBUH0(;lDM?;Ma%*bP!~vm(U9Vd;aGF-dY#HEpJeES0^Mr6f+=T~#=uF?`>KaH~ zlq)rZ=!?@Z?YbXQ!2z*2UH78~E`05t5qIUV-Awzq(rHjGje zBey@WdwqKVcx3Yjp_tP5U=Uf8t$5>5Yhydbun7Yu2={jSPPgw!WjFKcVcXkHX zU%PqJ4LjG}c=-C8jvTpiJlu|2(**GFV5z6Q)}*V4mgJgh;AC;sjtOb5Zul5#*yHW~ zi7U3Y4i7LCn{M^C4-Jl=+_>_Zty5Rd4jmg$HrxG;v@?m|K5sMeu{cFK}nOH5$78o;4icfUu?!FoR)1 z(2nC?E9?Y*%X1SG11vZ^k7B~W6}{EgG2p`}hXy)5v)j=lyv;~;L2bD6!?Pn-9mo3( zda=`W`iJ`c!-Hg&hGXC9SysouR!{Z1TW>lI`WZMi$#2SGQwkbdESoLONL9#e8Kgut zV#P`|r%k~G;Bh>O!DhGTI<&N*g~Ex3EUC3yNCCPzrl8D zCHRYrjZVw%_jMY7;D{Li~tpo-`6?vUXK)Yqm119=< zWQA2~x3H!VcR}CPhOtuD3Ds2kN?8}7vnyPokg7ma%b*nwzv76htgVn3E;N-@1~8|Y zVu!P&=E=$hbN(#OFXBR1+)N2)&I`kNCn9)00pL|C6{1s5Jw+4qz|IQ9fmh66(APBf z8~OpNPBk~ULI-)JRu!!MDrW!y5CBO;K~%hKNC&tg2UYwK5ETqQ(2(|Vqre=%7-y`P z_CTO70~mfZn<_U~xnZzGB_|hzZ$2m%kEzHM0~o>%94&4HHT+PQ7`}{?fU_QjyW+6s^(M38lyzlEFgUBBu^YoM!3R7r^59ti3eFT|FqKoyEfN>Ru{W zxw8Mj;$_hOg+2S0F5ADn7h722OF9F+H!?9^28nxvAZ^=GVnK5NySV;>zHy3eCc-dJ zH48;u7uFEhM8j8HUkxIICtbTk1xkjN=2rk(*k2&FrhviNm#cCU;>lakw<+$etAMTq z9s`6B01TR{jzWQ2k!GbPEG%FNtE#$EO)FQ`QifHhA=`DuX%dpf^cn~XUIOGbwOW=+ zKxRd&){MIB;W}Fddc{s%avQSO#I|Nut45`&*BVxnUmgBi6)?sD>uMEScJMNd4=^|{ ztyb37s_WQdzoyo+*EQ?-5Wrx^lQ;u1Y{_v)^;(i0*ZsB}c2x*FPSW&Ra@1F#bR@UN zN^fHHr{-W{g2&yl-Wh2ibkfzj16u@^+nv6d;#vvXO`ZPO>JCUS(Cr>Yh6}my%A4Cg z!1B~p<14S79loMJJDRj+ZZfe!2tCpLP6~OQSPSf?V<?w-X zN_{)>{8rQ+wg>QAo89iT6%Ks2V}n3$$HV}uGr=#%==9+1b!IJ`=wL#^AOq(Q~L@6Nq`;x@Ai@5#!jy@ZnuUh$7$o&2;+-!o)xNYs6pJ` z4g)?Mu+`SY!~=D>vpiYHU??!sLDJhEOpk9kJy%O~t8Ip(z-(JhUy=eDl7%E+sylW3 z1}b{FY?QGN9@m^&!;vIU;m0VUY@|8>Y`1i;YXyDBYZ)Ro&=t`Mx|^C&kA%0DqzXnJ z5N_0cJY9m6P|;$|>4vnh-ET$HL2Kvm@B}b?Jv2OdBgE*<_jghG9nkc|we8L0y$S4X z5XL$cD2t6K(&I>JrFyTYfx+#**6OJk_62b>X{%{R!xsPblP124sBd{~&1>NYsk$vV z;D(bl;=Z1C8*#gq7u=u(U!wpA>Y^G@qSS>+35lxM6)m1zZJj<4Zo2!yi$nrt;^^Bk@MP1dk z0#sF~1T@K6)7^DgUh=+Vb}ts86!Fi?RdtD<&Sf{aq$Nkv!u8^v+HR5Ttf)=xI0b7C zV7yZ<{vhfd9_0269J7rx(6##g>c(77iVKf%1d&Mj<)xOAU zL30AJKz`PaP%I}eaHuoah!*r+%yW=<(i`;U4o-6hFU}{WX@~7E3;R^XOcuqxMc)NM z-=%!5_o4|FzWjd%Kj*X17uS_*`&TM^=kd=}lw((O-@WsK8ySOh2fVO?0Reg6y$9a5 z@8D(7-bG?Crzc&4zsas={7W}rhvf>>@a}AEtq4X7p(AZ6Ku;g3oVd_ea%(X zKoMz+>v0oX*{`Zz6`za|)^L}VRPD6pwi|v|f+K-1anh!pG+@K z09^@)ZMt&ZZdT2DRd1Bl8dNiyHLHPJ>ZT;rz_3gU75x14RI)m%)6?BPjXy97u~Gwf zLD<2YawEy{Ykt&(HHSgRPYXY}s#V1+iWjW|_Q0^wG9fto+2O72Q`c{uyl#5=^^;TA z<-&ibmt%X~@YFTE<5%`iTno*PooY=syMr`LT>PQYKsh$3cxcdQx9D@gFbJcxD3vkt z!)XMmEPf#hhI)R2Ph0jos+}}-zo|Gi*{(LtvhI}dL!w3EHr1#CeJRwLW|gV%1=z_B zn8KiJ3U$tFQE|*LcdZwV>x*2A1CQaRM!sJLfVrx(pf6Dh#@F-f*m4CZMmsx2cEFrf z%sl3RCQ;FX=u48;WVOg?NSOr}KA5+lDK5vLtYENky<+B>7K7=(q85jZQTsY4AThJK zmR7kA?@QT7aJ2A$j#u(29d@1TSWzh}b5)#V*5+M=?^0u3nxkegOY5-g^LHTtEaq}e z8*Xxmt2%>Qc|j;f3%fmD@63!~b1$%JSt~e!&@XUXKuR05G>J07R)OR%s7#$Xo;wtD+Q_0PrHyogUxVM`6zb zpFC*bw=WDdE$HG+fxeniD->5(Ru@Z^rD}bZSC@H>mfb2Bp3M6(;0U5AGA-xl&5P#K z0}I^Ih#Aa%lOzgRUt#+4k}xZyEHk*Wk4jtDvue+L7sp5o`Yz=yDDstQo~HhX1f*SU z80diP;MeO10ALQSg7WoU&KS3lMfFc6xR1{>8Ulw*OLS?}0s}#modBSlM?8 z{`TnVIk3a7;m3v(s1C+5p`OM2L_}i2W0Ti+0br6qZ`g4lH!HCRv#S270SkrTGz8P(KE9y&Xz!n{}$@S9Khf)9#40vW!0>ku4GVBN7)JMSr~{{R@{;j)PUZ) zRfcfwgJg$gwmm55g}Bjaxp)9>#16Jx zB!qI7IuV?o5i62kZ@5)#<)8rp#yDZz?xczfYt`1UwOWdiNEmHk%i?=MESN|))kSKV z3<1v=Qm}$9o=cDjK{))hI&@+3NJdZRkmt%twbj#)ADDK5`FRMac5uCsZ#4)i^87sDQGH9 zC1y~wiP?ESBB&`-Mi6envjm|_JmJiZ>qTmB24K!I;!+!&#={PHp3=i5DK6f~IjkD> zv|r&B;-k)U@6W@pvSN_TRA3lZm?~RU_Hy-Uc|M_CZSJc{893(^n|FKJefZuxy#SV@hD+l5 zB6l6;2XLa%Jlcz@PU0o-EP9&?t$9PDPDti@d54RK%!_F9?NkN}0A|nvt6V;XyBbqr z=la1s4>(sAy4B#`i=t`AJSFL3DzE_X|4agAxUQA=a;pZeUJ1bCmfSJ(c6abs*4IIz za%`*BeM_Z1OKbb~E&T62``#w#yZ5sFmtD316TFu(dr>* zBnAgWVk1aQh_ZbWg9EjKj_bE6TZYQ$z^YnseiCdn#TKPX5KE95$_=B$=mK%e5{L_S zX5N(PJNLnOOcP)h4}jgQ)50wnY*PM`>?#mvE3z@g14_+eu>ts%n3OmUfl#hO9MUBg zn<-|hAQjh}1?+&bG}VktpP4YP{ z^R#jx(Hg24*6>V&M-7@*s!_Uj3ui@gQxhi; zf}jb|t6<0&bTG)kjtbk2p>lXxK;|8*POjllG3hAYN} zTA7G0K+Z1;KMl_f`KBB>TECUdhW%u=5lyDanB)%n-f-ae`*yo+C$PF;f>=V$`Y0E}2~}o6Hp)0bTCA%Z`>4mKeRe0nCWyQX6@H z1yq${m+{=hs3UY)qPd?MA*DZ0|!G^h7H&z-# z+=ihB3~N~c7q@f3^%~-7B69!$5CBO;K~!cMFo6TkdlFFeFRY>Eta(9+ z`yCm^5_kVqlmpxyh?jUlUtv|r`!VERUA`XiKq1o3mU$b6G^9S&(H9v*7`MucktK*hAfcNfO_+PNU`wjxV`}Q2% zd+C8o_Z%c23=@0_M#pX{v1f8q`inJi1^0nrVz3`rkQ-_+$8JJmHw*>?v;eT1T82-N zJ34qnrTev3hpKSIIAEe+WUYk?kw#4FGJt96S0w=F=;hlBQWaWnR91}>mLF9R4(mjNv3RiJ<@TP*%*@H*w)!b{NP zGY)IO7~!mnxE$kDaU)JZwi_jB9rT5O;X*yTSmT7jU|fZP3W|d1t5#B#-L<-1Y`SGZ zR-hLqxW@ZD4#;^7zTz&pB_1@8Dc4F>wL}ZvMupE)`1mqz=X>*aB%WRd>cBj_uY8&v zF9c42dAYY1>)#D=4zz=h6dx?FQ-b0(yP8eZdo>tbJcX$0+3YA zdRecQ4Lqv}V^??TFnQ$jjK7n3%Y4`dy_N?zsVF|hzTrluHIFUC0ztMkKoVyKX44$6 z$VO9w8b%dPD!IZybMg#^dVV5>0y(;0qiF+BCj#kZQ%oCxkzlYY!UD42Pd3b|vG}Jb zgr6KOD2N|e1u8Ym^b5?+kYWXD#NY;hbb3(7a0gq}tLkK;nlO$b91KgrN5nbn3~=En7^Sy7BKhL43h(YLA=y|7LT z#$hv<9}SR(clW&-1Vbz$uu5F1N*A6F66L5?S=guASi;vrTmE{!W zt~Y0J?tuCFJ6{W=9tjPZ3pJBugW4G>CU#aE%>`<9DjHPg*`WN`s&M|FZUv>s7qyewIl(+i*%W8E&}JCR|vy$A-ArSi_!S_V>|%Ub1V`* z0a!!RrAESd7G77pG)*9Lc?xVLZ4p)&FF|oq&HWtV%pHn2-AELx%39fT2ch{o?n3Tj zxtT5%nQ9zlhl&8CKwH1Z)5L?im>Fw|!y;2IY;>L)Bo=E$zur=PKfaXCAo64Q5_pmI zQe{C@f!?1x;JgbV$9%y7^V?(wb7VOCUB+!b9W7?~DQ#NPiNSScNr+r8zV2dkfhUJ^ z<4Zd{L9MRvPl6->jPI9AaO|#9xf{UjZV9pF1G}??cLO*_FLRgCOYvm_y8K_-=W1Nl zgS-;FZ~1Ne4qm!{VGq17&ZcU%_B{ zOojv|UqOJXfm;BxqEf&PO%)2LGk{rqvBp_J6$OSBUb6`onAm3q)eIO3sYm zj=av#Wf(&|!7eCX<&Ywl;9TaO*?;Fx$q~-aDr>lfj>B7F@ zuv5}1>v9pQ7&V4*Q7spg5>NPNlM3P`u$_-Q>KEsJ=Y-Cd0K{YPUw#bza^_2?4VoKh z;>*Ivh?CL$8YQsCs+Z~*=Xo(rw}QdAkzx)6yajg~3}X(^txidL-^3dg196NM)!}HxB^atZX zltzZBdOiWz@?;~ZYhKl~>$+J5|ESAQ+=N05L=p@~ns!jdutTERX0Fs$QuV5=SA)dz z636f~-EQDeA{ve+pQ+WLBN(j5c`;{ZYMHwW0HrkJN&sFLiJMt@UIwthEgWGr z2QZv&4sX$eZ&kFZpC=IS>IKBD2D#gyh`7m=vx*~ea3KbLReM#jh|@R+3>Or$Sl8EZ zsl{cNYCGdG4kaL|-nwLy@og9^LT@JgcMjl+vIYQGn=5sBP0R_e0>Hjs^zBt!U(}Tq zi2Doi6m-@dPd;c^Yp!2(ysYvwCsWmG%Mf?(VQ{MYLCsj;PQXmNtdyphKbQ|V2*8!* z0r*SysgkjT_Xs}04dXF*r#wwv6N{--A_^GZ1z^tB1%^d6u0^rGj{wa5ba&NNW(PdC zrw4fAmvU{zR5ROU4&Y)8b2$!K-Y-e}vIHSfK9gNF&KciGZ7FoT)6oCM6`;TNB3Ui?|oR~zawSK-J33}sGtzUWIBo&%T}j4>Gi%nV+y{f`K& zIe_ytBrupUoFxkHGPvAVc(rudN^wtyYGHYE&&>}LeT6CIX{Eftc}moJL4-Z?AX#+^yxw`~}vs#W3DHR7%!!Tu71h1-W;r7>}O3{-e!J|K2@h9GBc zPT%ZBvuXKC?yAN7B=MdTw_vP+J+Y-wHDTkj6;piR;K~}zB0eR(jxFfR0Ny>RKrbXl z9ykpqclMF0m3#n!^QQ;Q9W(EP>tH;#HLHOq(woA_fMyG-;4us_Y;iVljGAWH;MgJ_ zXXMd&L|RNRjFTujsCn6Qf4UJ}}ac)j*bjHcn z_GCEfY;6q>9hw|HIy-)R6T0Gx!|hhwN~u8Gc+zXP{U9)GUvdH&j8yEZZq|WSH>gFa z9JQKWRQ2KpWW^25ugG4VCjYHk)2LAJuv)|?FxcpHCTTLj_&7-VKCH875!moBrm^af zZZ|cn!2wgeo}D#F5Z-sU1LhjMpd&2+i`IL2cS6xPfm$S)qE#?Ip7UiHyvu$b z4A;0I1MCzowH)kPlU6TE)VIQwn%EC3X)fzd5rYf>IM3x31+Z}0T?BwZU(thMO#pbM zX|9s-6$L4&A(Bv4TLyqj@KS>AWaZ6eT731^#p>^xp)IQ5D3y9%QnSXoSzCBcA0qlX zYgy_MhKBM=xx7#;Qi7}~VNJ`}aFCj@#LwkvXYS>YPr&Al2XX+@@!9iQl_Uzj zb5Jqm9Vv}cy$qqVgT>r0t>H1Tr1fGG z1MT&?UgqUkyy8M>nE{N8H2}O`U56_2xj9W4u?*e?bwyl+ToROn9o9J#9VGZkg z1@9EZ63dn)d=zu9-)PXdK@3^cig;FyCsZl44Fis5c|N(yH(oqA&rjsy(-5=hBG5^I znO9hGBR`Q>NppBJqc2&#F3kouK zD@{RPUV+v^3H(#trfk>iauMPHJ=>OLxh$*HLbWNEEJqGgt3OW0v;JV*naz3t@YY6e zbJjg_Xn5?%_|WEH(4od28ymgRAPzh#ziK#jd@r=*Z#Fce4ge=@HB8}X%a&hpqq^6U z?YMzq0c86M95cMKW>i4p{;U-Z1G`1J`v7pOtw*sO$8|0e>DU=WTTu-PBZ+3AMec9z zeZ`_3dAM4GN>erQYuB=zqWQFQ)iBE(mc_NBGXSfwm@C|Qm*b@=lv-WODqGC~EQ#;SH#<_?HOXE9fSXkJYE6`bUIv>XFqmeZ zmBmcLO97CMTj9ok-1OcumUWe?FdBL`rOe4N^TZfxvB2e>d1;)=X~`5vy;j&)DDG`a zD{!S?75m_kBapcdXgBTEJYt!r z$Kic}UWiPv0B|h}LOzg}zG87Z1jawRUdDNr;3QfQX3ZEhDg>QPM2k!(t_zJ318hcj z7~{81IY@<--BZwcrmr~p1G)K3#9cK201yC4L_t)ZSAkv30z$vql~ZEi7+FV&Q$cr$V;ATVI6V&D?Em0rUlfiNsk=N@_mH0M4si{B#n$9MJ;dnG04*IjnbO)pK(RgcPb2^@2XLGhS z=nW^6S+6%pS}EiOe!JTV<3!aB#ncR5j7IDQ?D13>W6aHIK*0{NMMJWKZj3QPJVC?g3?NViRvAnWe!iyHz->g+upd7%E z>Xr4N+H}ih9V2l-j#$1v=Cgy1XrW2KlGW$_r{0*hj;y#y>7KCBf! z@FL7yT`OUHraBE=wefV4RuiXM7eVY*k}z|ueAvW3a+iw#ARaF8yQ|Q6BCDs(|K-mi z%ifl=XgHEy5hq{ZuLd6`PLkro{W@$A1DG8uf6jHG22gEKu~Mih2*j$z$G4kT?Jn`7a0d^(hA=K#34Cs z#QCgn1O=l6F-_gHmPzI+RMS?OwIyk>Bpt+a;eg2sYpYe7US9M3I^H`N47v6S_Y_ia zZtBW>eR`G68P#uUEKrdRtH87IT;Gb^o3us~uvGVvbAc9MjzM=(NckXcq>|BWYUjNN zsQw0q;@`(s%7#=)i#&KBQD)N%k|ZpI*b5z-X2 zNHTugdg;I8Zheyx`hpYei};oOeCSYh6`E8LZp~Q}c}ZZ(|6w)i+ccIkQnBe3uavsb?vZYakIZP3Io@f4JIcJ9XqtS^NElC z>vzBP?YqAG75uyN&O7hA>l@$x_Puv}{tI9J>euhQ^Gjd)(%0_(#&KUc>LNcidq9I>rEoD1ozX-;*Eh`P2w8MO{LxtQ`4OAQx)-9 zxM<=M36*QbVr9JogWV|Bnk9&qfu#zEL@^%VAccusucAJ0%E5AgTB;t1PaSji-a|I20c2giTzmRhSsRu9`L7Za}zQ zqnXKuZpoS{$y!rV8?siXL-Bw>uCQ<#EF2Ky1|B-(JLNi68mcyN%Nkc5s!6!EVqj5X z;jQI6`Ca_RaRN9Wx=YM7N;=gM4eBOwZmc3@5h}^&~E#!mWO>Rh&}5Jr|sS# z?hljEq#dV@7wBPZwc8$^)$Mxiw!;~~aiVp54i}!Jc0DeYxrh^)>x*&mmfnDB;|$04 zWabU}cCTx8+WK(d^hOji-5$zOrxvs-VY`~P>p@fs{IzbUe)-YbsUy|RiRBnewg;2l z#PI=OUZZ6kHdXv==&QsxMXA7g873QJ0@1~<%vniUs{=jjAvljbDsVh7UxGQgh-aZ0 zz?qj7odM@Flgoe{H6f-!fSBwBtE3F5xEA9~I5}7`*C_GVSy8N|hACu_E#_dWqO@3O zE)<#vV1jWw+%V?^V8!} zsGEzTeDs0{ieAoRo*BR_e*8QKmupe&6(HOLhniKPQm8B!=&PH{@WHZ}a|VE!zC0a0 zuMSNM%=y{kD+Yk^_X68hsTLW)BFT7f9`+37?8pA{+S`c1wI!Y~SX#Lh4Ca=I^urMC z7Uo*Y^Nx5Kf`1!X_R;^N(eJ`4P5g3G1d)|1nlY56wW?D1p8)21&dlIE%!<}}xdew` zZN6Zf*T%w2)9+vOWtx}Cz=QF{pDMneds#K}YE$i+&WP~L% zqLo^&C2^So#Vt{gq_wR21(;W%I!Ofe$WBp+CM5AEovV(&L#GVC3)XsVIqK`tKuyO+ zI@Xer3biJBJk)Sw*jIv{>~|%|ZApx0Gpe(AfBw2vU>k!2hzlvewU}N7vivH;63D^j z-iuTsN+NMh3>Fn(NF*tgSz1mmN*1yxTpZ8E(Xs>{zs~8ixEFlI z7B7Jp;$*p~t%|pUSFHPK9p{<$)x5fAd#LC8aaV?-jszt=1;V}EvB~8>vCq{&2Q#NL zwMY}EJ9VM{hCkeJh3vu18f`k`Ew?{4{j}=F<<>yyj`3UtPsfo}x5StAhEXztde}Ak zBX_b9O*X>O)Sqs~Leb8V&e5ak@#F37?Pxl6$CIExaKPFmaeCckIA{aIoet3#0*Slb za5!#(yVSFC5JUM6+2wA~?+0w7p~*Df*lgj2I(>^PUbWg9C*qIB-e}@Lv&~>*E8NoLp4{#$+gpu8JJN8dhhf4UH6~3BEen2^$SVjEgD$tQ@aI)vv5I09X?9(u`i_E=LRJZj8<|ixOJS0gPMn#ZLB@ zoXpBk=Sf!vIe^C#(b%ErDrrBjhKdr+S<)@9lJaMsE!m13Bre2Z7z>uQ#NCrPB?;7Q z2-~Wv2RTZa-7sUAZSj0^m;elW3IOwjHpe7`zPecS<=86`esz$=r7mffyOE_Dld5>p zB8IJ(_tzIsa7K8&nz%`!>WpcNo2@)e80N%^QU0vV5RyeS-wr_EH&+_V?^&-{G z5?||LuDsS&p7qP?z8smHhcxdhaYdaHxLgK1;H=|slYT1m#)Smn-R%OG%a^TG_U;b0 z%0smBlwSrggPF$!IeM$}YSnlldYIt)BJA%)0PlhJFYmo<;nKZ}dk?J85P<+3_YKhq zMUQ&sY}R}CyKlJVeK-HpKfmu|pZ&D-iIFe z+7G_-rSIKy=eO^=EAy6fzN*OqhI*k$G-UakAMD-&wTldpZU@k z?)=7GU;fTL_uT*QU%T(#dmg;++mHP4n-Bfq8$Z17JC8o}orfOy?jsL9^oyU~|I;6R z?`MzP{m6Y^y#MZ7Z~y0Ht6j3I4Uzn+*j0+d^eC~CFTt6!30PG#tl5-gOp9TvS>a1O zj4W<}FTq`WFWfCn0=pILJBdu?_fpA8nr^!x%1+gwsNaCXzQl}dPmN@x1CU|A(VD37 zRBml*?M$_oCqQ8%#M58mq*an zDcs`YztHrUJ3Z#p!;VL@V+k!T#on5IcviNLf3l((RMU)`^(K2cex4A%thqR@{#5?nm;Cv!lVru^8Gqf#b9` zkK+O9?&I*Q&!3p$k(}*ueoqJ{muMdIUEn{CI4~heA9O zFC^{?A^aDQ+&R_8dx7w#@S?1(lL54YkMvZS@8rTQnRo@-e%5{>w!?Ow zQwKJ+L=FZbvJ-F+y-s-Eje84wiFYX-(gV~*h zJqrwO&Bcvqd26li?D?IAojB)URWZEFk|_zmfK#ho=?|>Q)D!GYJk=Q6S9EM{uDVxO z&AYqqdKt{8&T`f1_AJ|~H0ln_?rhcrP2p&}Z3pVK>}K7751vlD>>CXeJRG;^hOxiZ za+*yG8173arv^K7&*z=Vq>1;B&&bFC01yC4L_t&%Z#{N<-5P8z2IG-E89TG7x0nae zeCDqfKCWRlF&8ttKddy{Io_tY%}mXeDOKFx;66rfS$g?yzkm+~0qV@sQWYmo;NeKq zQYE1p=t?W0eDNGV#B{)F>NiE`vej4|jQfEPzty2KFV4XlRwq}^WMK@$r%~M~UH@4ZTvToN z)C6!G#*wRkXQox}|ufpY{f zQ?4{w6H`#MZ5xmV|`Nhu8qNnfRHI^gZ2KR@sP2@K=mY3lHg#h2#v zCKzq}@fCjk+gDG6&13)Od35zW`SNS|__v3z|MC9$KYe@rk6)kv^Yh>S{cnH$_kVi% zZ{J`3>&w%Bd3yZMj}QOyaPv<$o1dHOzg}Z|^KT=e5x;>{PlBv^{s(12Ah}0`o-CNcQ@aC zX#L`0d-WrLZoW5ee>87iM7Q5t*UycsAC2puO>8&c>)7%k_rxD+-TZ23-Tt)=-TZ3l z0i<7b|EqoX1MkxK^0P(p;q7-%^uvMfe)vlDn3~aHp>AI4d=-xT@-u++!C!tha4^p- z`rZ<$J$QHhz8FJa|Ec}>&mC+Z{@Qx@Ye#ne>^%JHKK$xK_dk0a=!bY#6u!1g;f4CO zTG1Od?teA)`>Ge>N*b@1r!I^~sw?;7;zzsxRi~nda)#UQ!Oe?*_w0Xp2{4A#m+P*7 zxXTxN_1(ch9)@4KyZmZQ@5;05>f+W|UYm<60~p@iyU_gFfPL%@ic`4Eu{jyqAtgPuF=d&`CD^|@|;x#{2E4z5LL|tktsdTAWjQDo&c$B_!a zu)>!GQM!DTSIdhbd22PNtFnO(Rne#&HSc>wrSQwHd|o;$)iL99*!ZyGUsVDT=Zu+Y z94~*tz&m|yp>hcO3#Icrc)3h4=lILMmB{YUU4=Q!d07P%R>CUmsLq4?U@!m-6N~{E zoXviQipA}6dADNhm&F;wF-J4O`E7{p2w5D1%bBQfWwU)|DZm53`8;sW7w&TQH_Vh) zGt-<=&g4#T3eYW3HDb^uF^o0&D!cGjNuNsIBQy9rL_Lu+x+Nnehk;&2dkIv;#(V9K6fz2cKOnV zHZLs-3|oB*Ae?9Qg7Y^-Ph?wj^{usf?rgsI)M*EsALHv^)2o-!^0BvuZ-d==YFvG5 z>a#)M93Xe|(!TxP!9d2(ja#)70x6-Z?@cYuIZedtA1y6H6u+|&$2dkQiC1}eN~C_cwZfB#f_G=etN21SuK!jy0LJ$a70_G0)`{M@ zzPxz%-`~*aHumzH7ni`k`{_~|-iqaNevnBk{*FYQ;$kyo+h6@Jzr5(#);m;dTI&H3 z7@eURG4)m4qfV&r5B#?`7V-Ou*K5PYD@@h|odbp7H(7^pAZUw-$f#f!W8?m_%l z0j-|x`4_XlDs;xV?j+CVB9lpVHZvwOV?3?RW|s7Qn!A&UH3fQm2COHr2l{q91_8X7 z2G{Ej0K8c?Z#Lc8*t4vn& z_Xc$W7=jNbhI_pLZkT;DaR$dJxNZ^N7u*GgA<%a^@wny9!MJBm2ljm8L4%5EGU*$i3?`nHIX>r1DgmtWrO%n!q$R1{t^k;23%L$T@}A5@p?c1>o{7RqHUcp1 zY^HJq<&2|DHB7bwWkKJw>>fxA1}A}S6`Cf1VV%M9eC1eFI#R2HBv71AA7!)Bd5{y9 z7(lAGJba$iJgS(8u)6%0r8{)*WyQm3^+qWuN); z)D|!tHk?;E!<;i_hay;8F~JJGHDezG+d0Mn=q;7N=6&heP~C+H;Bb*rF0`|$%vL%h z#AStQE?X)Tk6`^x^F&wOD!}qa-dDB7!LdBY#U-knr$9V zF7^&j!{&pWfmTz?5{_0agb&ZsN4OZg`&s%BNZvcykxE#r@4@;z~2ZuQ~*BkYwT-e~92Ml)dmbKZDKB2HtV=qX~h> zFr%=flRJO}Mm6E};>wN^vXxlgf8_3q0>5{M1#+o)C}^q}>3G=2CXy8m8>F!(Ayz8+p` zblDMi)&8F@a2|Uqi1vq4e~svlLoWL(sjhtUMMx**{)?Tgp*!FsEyKU9$W~=3Nf!>DI zZraVd+3)(Jfuw6qr=8)r*&76sEZy_F{h-xxF#wf8Vqm!4c3roU&tDV@m+e*+Zv+Md zy0fVdO~(Fo65wKFf8W9ds|L(2XQM|$i*O}nrJti}>d@{;pGRhF^?GG!Fp!2z-Cm87 zmR9YObRF)L)%0_jON#5QQcy3sUfywYo?n0)W|d0G%u)+~xdJ#GtL$iY6Jqb6N~m+% zP$piP4j6pSj=4@CtCJ<7t9l=uXOAHOI8(Vum4&hZaJG7qDjlTDhxzJZw!DuqV4Ntx z=xhPNkQ^oeJ_U&>&T3~%hg^xvdQ1dxE_bTC|H?Ldg5TUk=HxOB5+9{9r(qaY%2vw) zUqz+^HMf1lYEyK;Djdyb!(nY?;5J;06t4Uci^=(5Jaw7cB7l_@-irXdS19eUxJM22 zwGKg9VA!&O&;4p`55fQ{NzafU;*&ua+J)a z7|a>*VtGF*jI{$tp3H86YQ?Iorpp%-$47@J$47}2{!k}OC1d;<^gX-Sp$`@wUwmfR z8Qg{aJv#Yxd@9Rox#maD^3w8#GqO?1i`O;`YVB{7ge6~!EPpujUf(yy$V00 z&=S9-KdcqTvJ*e7rhZEF!`=M!u%-0)4S7g3QxRbvUbZM}=lL-yN0*qbdO08u5CtDX!UT;2>Wc?4`*5~iM5(5P>Anx$^L2z5HecDn!uce|40rN#Q&?S8pCtYQnX z7dV*RsKX@}dwmmI*ULhlYBMb5Ev+=K6OGh9yXBp2^pD)r|0I-V5gFRaSFnn#XvI78zA!ucV zBke*s24cq~AXe%&Cq6?LK;6ao1DzfK01yC4L_t(109bMN7|Iupq@ghn z563lm-&HgF^MZ-n5G4)Y<6?beT9wXD)D4a+%x@p?k3-8P4h^ z22|Fbm?rq>{LkZyPoyuCocS%Vn;~m2)Ah3QhR(*qLuvXOtAQ1tBo=t*;A;=!3wgQt z=RC5x5`vBaI4VN9A6Gc(3(AH7-c{X#cQk{E>ci75wfuKSiw>AuvDBG^1n#a%VDQ03 zZU=97bh-V<{D(&^ehPqrMo0!fMa%DjSYevo&?1Y|C7vNgYo0-{jpL#4gfA|%R9d{) z(DcO_J{tW8WAN1+elZ7kM*qreFDvbZ(VEwqvuZFd+5MC=NH^z&@tqAq!vx1YG=51} z3bdjhE<^`2`))(?pBA+IVM2@VCaJtsE=M29@hZk_g8U2gX-$YU3FTb#LJ_e2HiR0$)`o)bK!MH)ZRRGpO+S|xdb7$OMztcw~$05qA z3b!%*GYqcBuQvpmzWR^A>x}(1u7CPBzk;}n4FmP+FByI#5pLB#28GY)OUK|NeW~zY zjyit%-GHKjJiB=|uU@R%ZyxmJYyI}#Utc@ZMRh!_4ab$y#F#Cd$;@H5ys~BF%v#oQO5Lsp;|l;|I~)d$Mhy-) z@I`RIZCK%k)or_Aa0i~a>kS6=@w6?AgJ)f}eko{z&Ak9p)4&cKu*Pt+ZZv`#tahVb zYBeiRvtDgCjc(iOcj16VDo$=N!D>8mlu`EJiK*GlS*?QQEEsfagI;Aekx6bv-$J{c zlWF6oY+InRLhoQ`0lM(bYzRG`+7icZmz%AU>d;(fgJiWw#6Hk0oay)(Sv|#O4^c}7 zR=tpQw^2U^;Moh3wtHdwm$1U6>Y2byn%f*P#0Q4~H;i9f{O01=UZ`AV3a2_xM{;~J z`-SqEZU9`8>FtwfqW3IbWCKuFvDrO|%&S^g^yomET7Y{}EFS{25|jpnvb!o#`SWSw z&$HwwTv*wZOf(^MX$QWx46_RdEOjmqV)WfN%sl~cZLd__B`lc>ok(tjzL$wD4A`oH z^rg7uNoP|R%dg9sV49QZ&v4JM(TsshZkH;{g+D^6mc$)l&CI7$$;9Oa0G!EQrZOj| z=ex{yCV&~k2an-*Ifp8PQzwAGm7~wfWBwR&=!-pY7y`;zuB-LWfYN)w+iOm zFl%7R1TgcZiBIK6!+GB@_li;CJ+he&SaX+2Rgl<5{?a|0-C= zLwXU4c2q*vXN*r$pU<;9&}n*$%?kgReRnA!lk}bba3|lL=?@%@6xp8E!qh4A6?c+Z3?D zn}hHQc`>m!<=q1gi%Xr^;alkO|9`y+t%uk7dNw|cpZRSx9+zju8M*#$YVlLxd%^wF zn_DQgXZ}*tT7aE$n`OKktbbZ@YYW6KaIn(+xe9TBEx5aQF{rC=?)9^G_Yhp&I=45$ z-EIAPa_K^#?|3T21$_YE}nuv26Ta5a2LX0JZ_IhEet^1x?c{wlJ6Grra*G5VM=;e%fx$iI|f7t z4+g^r_XlRLZ}664F>~>uuGeia7-RW#Giy3EN26-5R|I;4Mz+~5bo&+ggNzK|c{r@K zyCu+fI2K_iV2nM0v~apxlF8=CG1uGqpe3nZelyE0+%TjWthQ3ev1*)xN!Zp*X$_6XD#u(I%nWKU`%Jp} z?BRG89A*wPXKERFzDVrJBAN7|^t7;&FltP#VqbcU#imOUF?@tGfDO!+YfJ1&)LJd_ zVVadnKbGWSvBj!=6PE%5d$Rb)Jj3UWW`z&f1TcwfOKqKA`~|=MxI!>nvZG6~?x<>t z=yZWwj4Q@2RI~P>im?v>hvDMPE-Ww53#HOhI68!G*h5LJQO-+tRk3uUfN%SS4IJ2=&99em6b>m@Yj0Sy#XH??_B($NY}IVwF^) ztcJwucQMa+x>jhN-*Q?<&VO?xeRd3)Le>{^^=vaINCs+82;CP`OJi6rTRn`Q_8ooy zr{ZfR7!V7mbKX?{S>BAJ%hq~lJ@rFi68I!C=P#m=h~KKq=NfT1kAyD^-zGIxFPuGB zDKeN_Jy^yJu9jl0I_-09_6-cKY2o4GTW$VSUENq$U)Tj#GyH#li5t&}h)`oN}jS3vOF>zaPw}oyDw+?R4Dg zcl~DFWbKaOunFkG7ULvg2KBf#><7Rw80-AKt1=!~>4q6$vo@Da_ z%Z6i?x#V2_Smip&3Sd@*&R5RZ@jeU!*AkiXd04o=bPT`C#ta2hGPbgni=^seotQDms=q0Wq&>oY%D*h}|=6H`x z4cA_?NJ|uj)&P!ls+$DA1F%ZD+SkMdebpl1J)JY9Gp9J+bKywtnHXf9YJm~w`Vr89OzMO-2W~oG>Wi0NK5B0%N zh~5{Q78!$RLRuomak7T^d~taha&qN&`KtIC;@rir_DqGNm4ABuSq}}?Yh=<=muJUM z6<*KZ(R()kPWst5HaZs8jDA4`1Ejxf0_gs#4&5w8*Yn0^8q9{ysB5%>s$I)iMjir6LEp`4 zxLyu8`#YO72R#?|6o>^rEvty*+w~gu*k*n_Y$_60@j^IP&~!X(0KgE=GlkiO{q1_N zw%x7|3`5{?&@cnF2UZw{ShBQm@;XRd0f{M?V^Cka;a*ooq?I975-Yq~Hs&)wTtGaR zV8CkSfWeD}HJ_Uh26(t$yI0rV=E_|x&DGkTFRHV7Wiqb~C*{tdB+ZEj<*uwMmK3&n z8A}K+Gv; z?&s2BxvNkB=9#%FNlUL&dIhkSiYLA z@nNA^{D9jyAn8y+-1RpDB7J4gyIio?8I&?@0p5A z(!`BPUv?bH@6bEb=Ok_wdbJi$=H|(Pzzpbi(^^cNanD?gz4ffVnK!N$O>99RplC3( zdwml&5$LTq%FR}F&^5*b`)1wza^1OG*Kbz=w}AK6+{X)XlF86%H%j1WF@KTEUDRs1 zUN4xtnKA29| z_iOOJT&jd^8|Q48_)Ww+N@2@!dmzn)U7#8`$0a#d0Ry~?ic1?pV&#Sj;9j?eI}DXR z?S^y1Q+qaZNZjSh(gJ-6;G5ebJ&T|K01yC4L_t*G`o@LU8*8;TXUp1TUg?j^y-|s) zrMp7Ve4~>CfI(ac=!Me-M;omyo>Ft|RT^jv#^cIh083rPo65ScNfmeol3{{v{}P^9 z(Yg{evarr=Nez=5qo7$-7*1NQ@YoG`AeB5th+V0M2I5QmNxa;xL^)!NIAN zRHBeFPv?iCi@ikZ2xntZnmWJSWw$;6xL7?hoD&GvvsgXIR}XWQ1J;3}OICGf&)9^3 zE1KY>h0~RNFc@3dRxsGGa7nv`^0wq>$N0V8MhDC(Qi(9DrUhY-Kj|ifJ%574EcYm$ z_~O&y*F2>6gyIM{hGM&ccoC1F2ckt)Zl>tqRx)r`I__swp>uT6ZTvQ{dF{2Kt1 zwM3(qrmti&tI{9wWb7~zEV@^~jRKbr^Y$XFhZUh$Ll;|~6DR+JKef{rPsw=~OlH`b zh$R}y(I{`rRVForrH=Z>L(uQ&tHaTgXA_DTEU$`^q$KT&2fw55YZy6(-q|YHh?K=PqnIhrPThTeGO4f?iJqUg!&DG=BQDsYXX zzO|gy?{B)$mrY|cbD-74nhtDGd^U8Ue%o&P71u1*N@=r_Y5Fz5Qi9Jy-ySot08s*1 z;>iuyGRttl-6o8w0~1^+B|+#$V893Cty_&6)$7>fVE_gb!;0b(j`lsX(+>KB)?nD~ z_JexU0+{Rd&<*3T$*4I3q?KugA@4o`YL0qHX2H5 zG)N30QZU4uO|V*dVDR;IaC=t=hC?^JHm8d!d@ux>4n~qg4uP65vb{mI(<_s~jYhg7 zi@U_>0=f`aT0!!E&T50f!_YG#%X4ZaW>o};SLD^_Ud`Irob2g4hyFG z*je%Xg6(7-H;1idXLQpDi7HnTm0C)gD_a>51;6b083l&R)g%B6;==m^s9bQ8%bk|X ziK=;_)<@wC7liaB%&utf;zBAc;`rl}JqSMdB5}wxF6>nG7k5-)3h7S((^)Z34fnWe zAC`@SVs(!bz+viERFWdzaTfH#3k&5FU|0%C=69r{gG%F4mUmnFC`g}%T_#JbJ>r9j zPi1*`ITOtIGaay$gH`~B_oe;SXVW6W!z$2sTqc9r=RjFZS$vf(;o~1%X2O~z80(2%VwiDe-Hw;D z443)i3$@snsm`*^>{6%cu*)wO8ZjIlpYhcIpFm*0#y19Fsg@0+>Zi zFLJvowQ3JDtU>rr~LR>{Y+ z1Zq5(4ADkQ$`u2@QF!^?WH9&Ru<^GLz|>pX#gDhh-DvVSoJbBmuEH&^{~dsNLK(!6 zK&bE}agQ6mN|7d(?_+2$xR8LeyNFO7M_TClV$+J`?pxIq7vIo#`TS~dHFq_AS5GyG zjsntQq}qs!Cwx^br}wRcz|_L16*LV&UG_q#Kt-WDwr0HV~nm=05@~g9Ybgv)1np4zo zJZ^!MaKK6WJrx@&C zUpK&Gdg9g6S}x4x+*&W;n;liIL^NA?6TEgFjK-4o)ohhIonjv}?H7ha{1GbH_WLEC zd^D;~CZKPPYp-E{>rJ7r^pNORWU+Fu*6SNgw{Et|jb_QK=ln)KXcp9<0I5RaWxr8s z_smAK;s?c`F3XhbjWUEi*mB9T8%XglmJoqCmSAs5BGq8CWP7R5B3Hbyb%bdpEIaAe z(@v18)-EJ@yLbT%LrMI&pYD^s(D~(lIt!zGlFl81!P2ZSu_q2Yy)6rls|Ph(09>&S zO11q$MWV_g1>mp-me{PVOb znd21hCNbn>~H9qD*Nr+lM%gLt0DY^CNLTy5Wz%^*kOH7ATcT z!MDd~s~6{l=J6sX9btZ@Z#1o_HGirszJ=*U+7OezAElpST97uW>b+v=yXu6I+pCBo z3p;%s#~{ZU(C61lRw^Q&jFs^X6V-Yi?=f!ptx>9<TucH!ce@ZTzYjh8S{OXAy&G639eRVm<>0EP(`26vr7&xI|9IR70k!D5wZ zV08jR9L(n~*a_k;X7+mNZB{t(Q72&W+&Fdm!Zi94P7kR+38lM2$VFO63WwGiLHfY8v>n)OI$Gs@93=oz$EoIACRhr7#wo{zg))O^_dZ zTmu6ecbPttX;e1y%kKifpsy;>Az9GzWk^N#QBaxBT#?M8n5xR=9xH7z35)hOO2XR9 z6}GbZZ88`Lm&mi~!5~Rk3c!rYswQj&!>r^Bnajk9FjzHOV58rt3)7D3j3nI&31GHr zpa5WDFpFWSCc9jW1oSfRj77>+rIdqr0H)|f$yyCyS&2k2XZIxCJ*u{$djMaik1tY3 z=gGsfgl^9ePs@^44aw|Lws;oBA@+4_{0#0~0T^2Xm=nOPQhAv>A%hunX5$CGugo+j zK0_gZ2}Nl5Xvi9&R{#@xwgxTGOZsZ)!ZC|!jsUFnj>OSPY@Rb>q)o-rp*<*mygo+B zd>0~)Kcpenzy4a`FFui`ezJwT%*y#@#{KKx)4S~1*Jv{_5FNv;S}g)H4&acl@8Z>O zxz1Bfo+^-L>MJ-^#5F`O`Sf@7`WFCwHGtpZwyed6gKs4$+9^CHhCc#Whm_ytRlWPm zYs~Yr#CHCp@#{6mpc|t1Yi0RZ~5kwk{S@m z6!?X@TLKze^)mL%hVEkQ&qwZZ;$O|`i=i`Y86Cew@7wT1br;^ZBApd_{&d_RDc8&1 zQZldxi$!-bkqVTJhFPm+0btjyRI6FnEHq{Lug$IumXT`&#(dg!?ULj?D*!{dApkYO zMVuL@1yh-vCE3yaI{dC}RqBD=>ox}c7MCi)0k;~K%D}3Q2K69f|1w`hqb`~)HG)ko9mY#&=*^vcRH1-TRrL2WDG~n zc;b!5aM&hx((F#u)Nij>1azem$VkqQXIZ7I)hPyzY`b6X45S7KjBmSBRjY~%Y!qQT zDa%X1kAlGp!zFMxUY|>g<`_F6Jr=u+^9Z@cL#yK0A`Ikg?VQ)jy3GvaHBwHHXtc7p zA!zjq?S8S@Ey`l5K=>V2@~WjWxf6KbROSTql^zwQl>GwsxN=DqM*a-vDrSgh>i zOIxaK@Ifw5$@DFt8#P=KF0y8%s@NsVkjho+kgI`X@n>OtG=IDcNulP9R6>RW_8LZ` z<6T_d*lG58CDu%^XNul?Z?#Q(xC<;WM z=xz<+O5X^y5Lbk=4keeO$x5^QK{z+8;u(=-S|MEW8%3dGL20qAtPrBR6thCe8Ezvo z+dw{ja0vdCMBU-z@j;S>GuZ3>v+doJa52)`Jglu(2Ml3A5qmJE(B!d30c;_p6>f>) z@r$kW3g8d+H_qMA`!Z-8VfYPPHIn163ZI2h7O!l+v%d^ELIPC$a4R#U^(Hu}9>#Zy z(R{4voY;3-J=GWrey5O~k;fG(#26Vj!Fc$Z+#B<(Z=L9Cey`>tr(=OYeb{^d8l6Y) z=LJl@6{+cSDLmB^B`_mp3C<9%-^#l6s-R0U{U-?&8_0`JTEWEp`=KW3g?y9|+H&)YNISJrgSM$crrh9YUy}jw( z-S(j=crdW~o!YQxwi}g(U+gris%C}78k2P|*9;2XR;Aaj^gGr0*j~-N#n_wlt!dAi z082rw<5d)Qg>c=r<2p6dDEV#$t`wXDBf-4QYN+T-`|Gz_b`aDmmCShDcARppmUE0e z0L;!v?WP@g)k-n5Sxy?h6}S?b))~+kzXe2Sxf|F}|v(HAu`R6U>^Xn6w3m0;?=z$?}|1 z&134Z9yQBhvLrR!b62vZz|KmquNGCSDwtgU1VTeN10D*MMK()VciI)aMH|MqE9uaj z_icAe&2|A)mSnCV2M6pmG7=MRqybCzW>)sMq(SRR{c47$^X$Lr)N^dMh=cuB(Qg%? zdaFp9!VU9m1Ta@ELz2JU&O*&@9sq_UwOcuFm}8X%Ch%q*Y@pY$lh|1`!!F1Yi%#vr z1p-L<@xn}EE1=@?0K$6P zYV};d;a1Hu1JQ}pk!nh~qtP2@Owl@ERjl|rB0OY~mgqb?s#5o7 z2;NuC0q<+HgU83oPluPEPEy;K=_8ztO^_6WWj=W4_|N^bEzS6F4wwKYXo=q60oYK% z>bMWK-w77>ouiG@H#|QrX*hkW4pw}fJeu*he#_=4RZ68ng@y^IdaR8fD%9j_b@Eu& ze2u$O?8H-X;dfmBpuW9MaFb&t(O6p18rs=wzsRs<8AM5(*=NMV~;UsXtwa6&AK(8`JnG|767+6 z01O6k2VG+_bS6U^xCM7X-%hhMgy$O?qd^S-o(|1X*XRSu^-8}{?fTWWTlU>DET&=P zi^XKVkjmx~)k+>VbUJRY7K2qp-}zkDAocqmFbNQrN-0nfp0!pj*fjvy=(QZE-LwL) zV%3Vxz+OxTwo!r`29>)_v(qpnLhe@>iyjXfvq_utyWsI;RA+D-t{Pm2Ay#da*iJZL z?P%;b%>v#X=$+4TL(m(Iq*D`)!3iZTs{tb(&Vn=TYc{P<#y+#OI7!UuVJ=~UKuQL# zaTpFBNf!r;Jt0(+D9Nt|N}G)$q?lR*R>c!{Dw^EjuCm28U%~+nhVT|DhpRlDnzNZ0 z?ryi#YUQCuJzo!Ujb;&IeGeMkMzaJ3b-3ibYH2LE%?E|!fWwfgpe zb(^K?g>sEt2pcZoQ7|~U*gZJ;ynp=p=xis<=2f+#Wcs#x8WpkH)kP@TJt>vhlAa1G zg$lf3FGUpw-%|a0KOLX_2cQV0B`^=B1==5pBBwyYA+PA~WI9qk@(?;LGyAN>gogT7!e?60gXR^jeH6mg9(cpGBR zojy6hp%5`1P7EhpJ!0|Bm>N93j^kAR0N@bA+QD58Qb-&0s9L)tXG}&raha7t9vJ7M@mnO z-NjVuA+z?=Y+^4b5@DW}_-!6l%Y7*KEoHDpu zE~Kwk)4FGRPPr+SIt&816;$hf8G>Dg$&S_sx8i|im}c87;Ds>alTk}-u9_HTeijH# z48tX>&cwoCi8l9KxZ$33DYm+jfF_}D&H*dqYts{pE$+FjHLa$HUyDwIz63D4GXbUI zeVZkqSIR^Od5kqy0bu%Ix?TlxORq~Nwqbw8WUEr3oN1m-%wZp&z1ZvERAq=Pm&zWU z0vknyWiNxg0NBq_fvQuDJ*-eoIc^4902l&Ry+(=vhS|jld!rgCOTO}jK_lI4=Qsz9 z1GGS58gT%aAP=j3MGWSajh=wsig{YI&!v)v5f+s!mX5Pww}!A11=rCsa|b^7=u7~t z7`%OvlBK9BHB9PG)3XA@HS9gKH%@s0WO&BwQc^gLpz^cEpw64mP zq`_3Cu*(W%DRl+~VDY$N=}MKk%^-xLuY{o0`|fL-&gzoN{>tp~!TIOilTRwhyvsJg zx)EVKxJ`Q*ED)A?n^R65v!uw!||;Z&cA(<^K4y1DsPPeJlN^qB@}Tj=sNTur|c%DY>Nn*8-$X zt@gfg2h2D#xx4&o0I`evDg?_bU)G}u?n3OyySy{kU!2)hZM3ZQrlrBG+MATe(;5Ub z3QIcg8=|2J^va@Mz<6XW)fmq%XZ7jGB^%nE%4qD&=JgS{3ldM<`PA90>Ni)dyPMAS z3d|0^T({P9?6*dP3K)!^cvxWw=D1Za0=-bv!?xTBY7M7Uw~LTt)a}W% zzgkZr4PZFn>9jMMG~s|@L!oT;e7PK&MhO5`YnHOig$97@t~lUgF4^#{^>R-mcSNwNcgg3S+HsvA=%N2_w?K$`x~L)m9cfbjPGRv zU&>*6eikkklDsN4(d#$UfGBX@>XlTFWbw)XuxTY7FBvq%0W$>M8AwwK9ERgTU)z@i zY1{$O77Mu<9uHEK;anKbS*jAL`~sw6o+WXMgGWn2^j6G#=tj!;Z_U`>(V=Qe6mD^0Q<< z%M@~YSD9B(Y8&{0PX&NMU(3no3mNGLe0dB2gT7LVjHR_@OZRT8!&scp1ib{IxWFkksYH zy*0V1&Tne#d;9v)gMi!lwShgL@8Zf>UYqM{Z?U$+1_`rTZ&aGjO+1881wof!@X(~| zT}^|rv17w_*nQhRdgUa!0_*9~l!QyA+i zyl=aiR};XXZ@J+Ysld(Gy#nbQSOv(pORiafm$j{mto-Q(i^TwNg@E4m8UP-$p~7fX z?{*#AE}CXOm%G?(CU{k)oCAQ3a;EN<2;hcSb*+k7EtK*pnBbOg+tp&jE5jdyz9N;4 zRrjl4aJy;6W6@k9JnRRcDInSi4DcJgXLSw&SYw!T#<&>Is{q4ti!g$LcEMLVX`F$c zm@vkBv9czf0^ni6!(g?7E&$AGm)J60ixAZg7y!l=^yRkIEJB<}=A&5_IpPGG;2?z;V464#Ou_y6uq8+xFCL4SD{fab}P_?%( zmhg2Wi*37IfC%PhS89g9;NmbcwJALo^Q>9TfVS%<>h(;cm1XHJsT0yK1Jdxj0$`?Y zsrhF5W@V|9>}_ni=aA){LAHD5c<0!<{)OXR3XH9Uv{X{f5E=FqN+rTl{zQ&$2oFQd zUJxNb3b~nqg;7$})x=jkn+eS&CB6{<3_B3OjE>Oo8T0 zRNNTO^%F2`;{QV1Fs*7XpH3uCg~0&N*%onoawb(dVS-cH1GN%K3^CYzd@8*NaWldD z3AOzb*o)dNu=T>R&VObIx>!2}fOWkNLxS=;000mGNklS<`lH~2gL6mbYHwSE$7#8AC^|1J*aFw%O<8+eRW`;A!S&YomEP{5-^}B5Ooh^^&-{U-Nj1TkZ)D#^53U_IlnJ z;`l>>ee7c5=nZlERDj0nA*bp`ca`y%>ipiCeKA4b@pWZ!V_rRYw@>xutu@^k^J{Cq zF(IHATCQCXcQ7iCCRHi1G%io)_HbMq^@X*typw^koO=>Oo_hGP<}WV*EK|Aa2c1z( z{^&Ejxmq?L{A%O38}!AG_^>AbgC4d=_j67=1S=1Z}^(0JTvx52z3l*^sp-p=7ctJN&%iyyJT z36~MK0;BGkU~r|B3cM;9TrFkQ!eS|M2@S>~~DIXk>$A zidp5jgTWsy{L}gJXO!EBW(fjrAq{MNU+q?j;DqRa!wj#96s!h-8Qy?q6BA+@SD25j z4#rnM9pP^RuWSjkWq!e&jBwLd!56()Skq~Zz=lR6gSlP3QLQ_y!qoQ1)poZ4%CFI3){VL z{e%}J{d$TGCrtaou+Gc1P^y=(%-6ziNf1>vH{{CTY+f1_=Zois(gnP!>KrAdBD48j zsoPvSsMJpMOt4_Mc$CZT>6Q$vD5(dD%x5sESXC>djKi8K9-75B(iu4{k=&+8P@tCr zfNM^=J+OkNmoH^G2Yh}hRYzC_n$;*T5__x#MmG#FA0B@`IQq1A^l5wlKkOd<1pwYV z`t#^)JE}8vz*-!s{9d}an@+#d<1EHw1wLOd;~UTI6TF}&rv(VZD~lXrhda-!fBS6eyt3Us968dtfnv<2axN@M?#)D=H3+U|+OK`xwVPU?qmTMmj?zJoJMsYN#;YXG;xD&O&R8K47 zhZy#YKkhJCpzl!H@X1d(L(t=)p7!1((4cB9m)i|YkE zAlJ$`W*P!_n{Js57Wx|bYB2>lR&me^=JP&GFt#%LyB^LKJ=kCROOVX>tFBuv6fW=X z77Rg)Nwtaqx$4TmiC#mUwouGoT(4)~v0cll10)Hn5ro|aG4LE=Ff8e0)C7PPgQaLC z-b>*#04&u?q%sf-&~`fBWYWjB(#C;8R5FkIO=0e4A>0ky_&`O$?bSjd2$w9+=R0Y)Uf+WMasgsF`%1 zWX}lzSfyU8%9r)$`eF0+aVJ0*8i-={_^ob;u*Aj)Z^)%v9rgfV0VNyEE@0Am

kbt_Hs2VWtb`3$+Dp` ztaG_?3S4$!32lUP3v#2a+7-CxFc)?Cx z9+G{Ncwy37ICm^Xo1<6)2HR7R?YatyOcj*0%-Bd?v+=j3E`aZtOog74VP(T%b)knX}x8_rC zCw(hA5BYU!_JcDPxDujDabWA%bsVU1{T{%2C+Yh&3;K4xWC><&@xcf8`N2K5*dvPn zn~A?;_!j_uzZJvp=)N+#D^2fUd5z^)2d)>m9j~gRWeJ+BYoetw-`KOYCEJxdoEpn3 zZ*yCx_XT~$`woiGWM*95)UR&Zi&fBVl_#n+1W>wM)M0r$%FE zKJ#y`yZEKXPv>}8#Sb^O!+yEfDL~ye@L6G=GlU-&02m^ADc{UP;4T0h`QWlsl`yhz zmznvzTn?hrSK)X(ZjGgYGXQ3RnsBbQO8Wk8VbsdylJslYKd?M44#e~5ZrJdpl!P_(;$7Vl4;gW zR*D9F!DB6{pXHgBSq6!vMMT5G3yEO}1K48DF)NGg#{oR-*?I{z4Y9Vx5LbECy+Xfj zGn-5*j&=D3m79$s0L-4jY}3?embk!4RoArQ?PleIzM{1ct>^AyqWerpsV`Q??DxUfJp3`<6c^z6*?K)AuD4SJcX8V{ z?1y3PPOm7{LfUyHshY{GY0x+5u~uu8rDjN!M3yGAu{A*G+PP(&o9yl&6|!V05gafWoX_n; z97pSe4?+fKWZ9CcMtOvr00@J8co_R835Hob^5XKd%nBC{adY6ds`KkXs~Z%`nM^uy zaei`ox_ff6L+=|F4>{RVmRCgYi^2Zkr-Q?7FjxjhpSipW%u^9#7Fd>yXqez!S%S}y zqVLh$vXn=Kz>v~!T`Etbs0 zg{h@qduI}$KDbC7C9@~#{24n;N4=GlRG(m=_ab}970D;5&&SD6r|B(KxI+L;{V{$7 z7|LKRp^GhkTd^H~EotdI)yYFir>E)#JmIR@M5KNY3WAHOldvIMI*e<_Ev`}fA|OKov) zK=V6mat+*8hqF?DQW!5P^Nl%}7W9Y%9D3ius0{Dh?H6Ez z;eA(|fB=R)VpS$dr&=@yLum*P`ogtHmw46kmOt@b_@|K__VgVY%calQqpAX7^!uf5 zw=n3HI;~v0neTVYy=J)`6nf1H)M-`$58ug&_pN3;BNtc&K)2r-P2S zn02Mt#cBZ8i|u^bpD(-9d7B^vsBl8AxCMY8zAS6iQmL3Ts#!2N49qIQDdHiFwN=d) z(#bDZ>xOSxHMr!Gv`$i`Gw2{$su~P-tX!*6!@F=f&|==4&!iFv-dfq&px5z$Uc3<) zY}+L^5@sM;xnWr`OgHTNHPb9qDj96?66ruJ%Z2@6zm8Llhrqn7KUQp(%q(EF*RsNj z)>MRH(09~#u%#^?bev(=g>Z~K>{@idATH<|)C=&zU@!)B!(6bW^581nZi%Hoq)Wum zne?R@GhiI2FSS(3@Q}1;UV5vA3-1g1Vt|KNYZ0h?wGNh35WO~E7_)h8u{5W%Dgiv~ z7yI4(Xi$;p$O!*PD$Kjay&Cr5y~aahGBTlf-zSh5zF8VTH8aF2Got-=4m_qO=JH}f z8nlMM-DVrdr#KJ{w^9&rE)_pia+ws+ZsoaBIV>B}$U@+>U(eJV1=w`YOS*2t_fw8@ zS*;$I%ZJ!PwdxsEDW6m;rr!6(Oi$49%-M70zQIXo81?t!}?@#&WE>?9PtGUtgo zs|_LodtC67%wf9=`wQZxB(YhgO`WE9 zWY#u?hr3+qOXy~cd%4m+*JtB>VZM1Qz%rBPNuc)-#y3+q4@+^WmeNOw&o~tm?;zN$S%doZlsb^+3idLv<{JFqX>|v;^n!vC4u(Brday zS+;_?%CF-5ZUkm2PZ5>Km`3x;;i8&nS&sZ#xC$hW0hmP}by*3GJx$!#feN~QoQaH2 z@xG&=1f^fXZUox(egyFAsUF^+U;F7O4N9@_DbJbO-vapWdRzkdDIZ!}2{@NNC=5Zz z?gonStmgPF0_mtR%yY&;t3B@96NWRv`XcoW3eTy}{5m84{F>Cwovfg_dbB~`>5Vbk zRKQ(q2dm0h@~Yg?yh`YT!2~b`2KR@e$;=v#YYaOx=Na}FFkY;@>D*pz8UQf3D>io| zZHqQnU2Gf8qUr!ImKOlVp25)V_N?x}=nYMwGPpZ3MpD8_>I}2$VH-c1?HqnvoAoSQ zHGb$@^`d8|n?V8I7rcaTYX&83L0^dW7wGMH6>bAN*Kj4KI_i00ag5b~^aX~6zVkMW zDJ&zsAgI}>mnx;?x5q0(wKE5d4ba`n->vo6000mGNklE}HSIi`u zo^^M%XiB_J}h+* z7 zArrh1@10~p4U*fu%^u2kk?CrQ2baeTJfE;LkH8U8-ZF9V5f`vN4! zAn>!Vg17dPrhQR0PPz8CR5>DgZCBF4psIBS2uV)}nI+v*QjL}iN9-jGu{KuO$@XRq zzwPEKnL;s}$tKUwj^TsZl!5@}(kTG=@N}E~bXl%4s_-R>CQA3XY*&KJ(bR9*I*kKZ z$DfrBxK2rCiwk)9E)&G!^wn#Mq$5*mThmuEq%u+}3q}@hUZ&WI-r`QCu#K$@N_)Vt zs=u+tB(JC+gGvD_>;tRdE4Hc9A#i(g`6rHyiem1lYFRsp!XAb3Sq9JI-9P^k!L{@{ zWBO(SwHmJ;r3MvUk@zES#@k#6K=NQz9Zi5wwIp=mEf;k-;9lSE51iY(;b`pQhZ{fN?T!IWrgiM^^$k$D z-7oh>H8!xrNdWjxFAt)#4^Ok1f#7`uFV(6S8h$QtvsUfWcQRmb!!JtM*~tlp)ub;S zaNARI%T2rJn4onDMi7)`!@>D_0D->3;8`1c#^Xl6?{Q8PrW_8qn7?>_x~^7=1h84l z!t#bwylSFUg`kUeEpL=^rEK!+m#bFY0gs!0EnKjq958EElfi)}O@DDE@WJ3cu4gf8 zua~{mqPv`TKuT3cG*mjK|&s09FH zs|FI3o{bulLC|YCorZOv4)lxQO-~zn>Fz#vaN09uimIW(}zlq%CaH*1V zy+OU?dU?+Wl8d+*>NLyk1_p&zvse#sw^Wem#n>724X}AUus~mk-j~UD@W+d>C-hYU zk4FPZn3y z41vuR#$ugSpGWpu7Q5Wa%D-fFLrGx|)am5;5Cc4{$I`xlUXWPwznnAEJ;zQwMF6uN zH5ja{umqgJ-9qtLCZvnUT$q%vC7J^#XgU?6kj0a-vjW+R4ig9z5qAQ^|;%68^Qj4YLbrP{$6q1M&r1< z?L8E__jxEz(D?CW_PZHhCQ`ivtzL1&P=V}JLFVw;r<@LbkG_|{V2ZwcsMb4$Gx4fo zSG3ldtsqLWY+6M)77sO9#d~Kg?ycFCxwx@s8>c-ibjOv}porg#@!XoPo!+Pf0Jr*C zFc<^S7d{xac)X~o9(Ltujfc2ipclrsuNvcED-0ePQssXhzyZVW!USJk_xb~i^^ZW` zPS+gI>Z57U?bZAs*Bw^-V*|f;8o)q%PxYOJIvvTZ!SB28q(R@hm&L%UT>!&%FUNjC zftwcwM`_O>aW^P;{1Ra7R5Pxb14vYNgzkLaTdyVYN`lYQf3ODtPbN(OxYr9|gA)?K zPhU6XQodM#8BJM6P6Jp9Te>9`g)XZ_#)V2D*=zbwU#>aR9D2=`oJ#kN&^{PjfOayf z%MF1_$kMaIDzO3|hz9@+M-JhhK+0!!!k9C+A{CB?GZq-D6~ow$M^3M6GD;7za7P=^Y8E@~ zvXrH4m7=A?l5odbT2fX;krg~1^#OYe7I``GA*M_Nz%siZtsCaj;eNOL|MB%6JaU^$ zx2}J{z4-RF4a=4UO+rU7f)QksjgIJu4l|etjRGWFhVA|BjdMPnzkgTNBH!UiJ{Kqu z95y>l;=@&M)v5*lB$UCD-(I++sn$y;T0SkEP7t_%>PKuSO*zHXCod^|3{) z*DeC`cd@V#%t(X5(7`m$G-X@}h*XGCX(^TpYAD(+0n8{S7sFY5wCG99`UGt;?r&yG+rb;UbBpx%ey-4~L7lB8TrUA&9jeH|O)uE5 ztoB=y^yWB1R$wvn46%#A4uZ-UcL1;3PXPY=s8HJQpK1<2Z+a8b@#^q2MWAAE)2Y8H ze4iSN>yy8Ncay=5cye8CI!qbReq~|N1hBX>{_cHC=;qSzxB2030sM6(RAb@UES(aT zby!L`DOsx0zs-`U=j}j$8#R5cij=xz#I7lg7UD98Tvt&^A=PvAHt9>*EeG|?`KO+8 z7Xa=9!v?@O&Ga90R0DpD`#=2M@6P@Yw^{Ga^vUkM^cU^lhTD4|=)HVM_t)|5V|jT$ zSRcdHA)2h@lCjwM>wT~}K=K9@!LzkB-`FCB58-@G%U_`{FuB|YI3GK^Ln5u2b9=pw zcZZBM%s1C#T_B9aaQILzmhp5J0lm<~>&;-ZA8Zc=&lhnJzXhauOGNQ0=P(RsSO@Q%s=Bx0Jum+2giQTw_Cq` zykAW6G_-I6tB9qDiR;0Wm<(nj8t_xcj3F7!;w(yG2v&9pBLLT2tD{L)jxSu+=rtr( zzvyx{$p&Q@r%n*{6Woh%r*v)L*zokijvx|TW3kiuLoCV-c755b)F zVj5`p8*$T2gzIy8B804Fo|({2*uNy1YMoNd(GlC7x7oVbu5oj@umIiF%3~~-E(6DB zvtG5PtEE*48RRgvnM)sPr4_(TvVy_7ZBqveQ|Da-)orDuCv6-z3|0Xx0A>Lf0t}Yv zjS67CwX7@8yI?Tr%b3k8*b}$u@B)#I&eP!;z8s9&%HT6G>e3MNkW2<42k{w5Og|~? z<6w}s$BSq*%i`P(Lbum%x4UnIzB;mr;}agq<{M;iMaUKL(D&PWrs(q zc!Du2jjMX&Dhcc`<{#~^!W`#w=N~N%d-lOX;342slE%NOY$ZzTPmA}RzVFRG0KkrV zYdBxg*R&@Q!19?t_wiDj-zAp6_CR6=1uvD`{|lz0m25#SjofWe?IxGS1?8{nEk?;&jE z{56h<(-58x?s6RLW|v%Ejkde|=6VA3>Oya(Mb4szu?2t+$MNxc3;@rT;b`j4SJ7fE z^|SymUPNC?s%AJ257%5=dFK;A(HiA8usY0o5`%t`b%&)TovGsh$TSL=B6wN|EM?lD zP9o?f9D<|{oYtSeJqE57ND8`_L{=8{R0K;Oa5dmz5CFhg zBwm#OFzEaFTWE7VJ z9}M<9X``A?bF&g`0KC?iEsD`3&2Vzm2e!d%opo5S$O|u}7_KU%@h*IQne;FUO(i+L zciip(f$N1db3>{gcLM^r0<)S();6|)F-Q;4g1Cry zbQTRy+N0CA)A!jDebM=M7L9T{se3WG#E;QCgp zXPqIWOUF8aT6LrIC~pVpg%@A2iCI#?Iyi`?B5Y3riGgPtFXP2UaI0&T*kwn8Ug%&U zaU@mBedi@tg1-f@wC8rK3M~3*5Vr=vq;EiV000mGNklsUO9({PXvY4jL)v|jhMYwq?Lpt}i@o2%o;-@@C!vYRg%pbOQD*gr<=J8yIABX(E8 z=I9-+!t1;A>Ly=pgmar+wBDrP-)!Ms-3<3v$@Umw`|i^m+r>uw{GfEFbC=~R;y^U_ zK}~FdPe62cES9TS2e3<5DCoOC6vxXEVzo}8eYFHSlA4{RECBEJ!^72RwaxGf&=x?L8B z&E#r7r_ChjO9t=vvn$C(itMOKcU7_0+~B`FOBoTnC~Cmw|q=J-NvuZ}Yc zVh&Iuh7p`Y3>A)B0elk3Vse*>Xl$W?MFcMj#AKG2qqr!-D6&Goo5uD?W+~<@&f=Nu zB&I?wC+z*TCer-2TgjK#TS8qP-^={p%Z%3!$R~Rh&%40#Y6ilfj2bC^}3+__a zmh<*-(J|`QKzBH4A;!S-q*abDp3uAK%$8jucDA+%U`b```Z1SX=1W_MKI;pBCshEw zVR;r5rzvg=aDOnDzA3;sAGfiMi!(M&r9}$?BnQa}SSb60PMEc_(v5Qq4EE!mAGRgp z4kWJ|o%qRFG&uFs*Fk!&HX0`gfEgq^J^xXcfyMZOtHQJ#p#lba9bfD)rBW=aTqLoT zOt|-o+rBTkV%A|*mRQ|t<{;@SI<@msiCdXcsnJzE{^&x=n<2Yx@5FN7v_aF>KTpm? zl&k;7kF^o>kD7v(-XwaH$wIOQ2OxsSuUh|nc_FtHd|zT%o0onP48Qs3PcQ%9?|=En zKY#u&#E-AO|E_NNWiu41`E)h3UTc(jJC$}+FQmV7?Z8frRo`^SeuZ0cGp=6W zH^tb`Jh|#K%{lThfV~gh+4~N)Cbn#zX^PQi>*`m1HGH(n&{pfIlHgr_@DRkL;h*eO z=&eF24A0VgmVzXhc-jL)aUY9DwOM=)o+y4 z?y^o(o6csfsg^&9{f7Y1z4{Q}d`e}B_g!VC0q%;Q#!Yy*iw{@v_7EVhZnMkF1eYf; zRcenn>3k7FdLFNe^}&~#=R|CsLXZCavfV-2qOidpFy6Z&7 z-3+ba$mU2pFqp!3y%|hr5rpq#>KCO2&;r0x{Jc)43%r7lm*NNjwLnV0cRZ0}bFd=? zs56J_f3*S*%iKzn4kAh0S>7Fv9K7Hl?;==)#lk3PQxH^2e>cPJcA~glVT(8(7eKER zVJUs7fcN{!R{b{!;N?u1I89 z|LzX(F4CtDBNfryY8HAvO+*T75*u5{bm(AmmpYg`Ocd*Ig%Q1@A%zE-hc|+{4a0s3 zb-Nt0Mw+f2pznNHBCs=^=A%)9^Ap9e+(4vYXR+Df`<-$v844Ium@QcQ_3*G6u>om1 z@)1Cwm`%vm=3C z%`;bG7jMKVljN};lsB!`n6=xR$q77)liAdybyYrlpYW%mE*$m(cW+Rcke=iA6kODN zGCei%7qwjaRWf`T=rXfAp8~)Z$2Z|j?8`Fnq(2?^rekX|>eGm0qWNl~*R1SHHI}Mg z>ROPM+%*6mPR=LuHqkqo1I8EFS*-i>O@FfNfW8va(bUB&fWfncrEercyqxtA#k32` z0+Wcr1V=0Y7{@_hJVbMB8jQ%0C^fq_Fir=ZR79|o6#XFSg1b@LN%9`RENsrtg6uTR zPl8Nx$P($fM11b}Z*(%mFFosx!u5tqu=KU)2t==p^c5H5CPN%*yduFjfHAvb)5 zkjV<#F2&@tIB)b{)u8=}&K~v5!52UyHL*?tR(-4n9V{`UDfH`;A6~r?X^y8*F-td; zi0qfz94x8ks<5l7c76c>zixjo{Yd9O@GTf@Uec9sW$^1Cet7v$#EUmSerIeq*nots zX>`#-B*7l8zowX|)|$_3hviFh_Z!##re`4mZ(Kf1JPF+A82)y(81HT*=2w+XjgnxO z{)on{iCcn}wZ0X4LEQH)qvB;l(Nf@oreDPqafPGqf4|^UWTK&KUoH| zb;NfEdcp6pMlt9zV>z2jf6G$m^Wd7EX1y%$r&$M)4|)U9Rqn8?OepERLFTO%1r+2C z3Qtyf=VEkqxnSDa#1V4yQU)+=HbVlK1;BtSfSQFa0PNX405}PtaVrJPsLHIy0Yo`C zn#cVtaXhEx*_|(+-;K*O^!kHDmW`={*_gyGAoAFFPGJW~#vOx6L<7KFtmO_Etk#uM z9X%ZE6hW4GqK3o1G%OY1P`O^qC}Nsc zu9qcOh|TiwYLW9ULGBo|#S4MEoGJ>NK@ww!1=Ykb5X<0P2M#&}gL$ijquN&0LIbaoJL?#-U5apbG`61 zOxk#25VvGZZ#4%=3ZYd5SEB=aw#Iiv?ET^evOEke?nkGhhMm{IIaAOiF6oP4 zBX5(7!sE)FLu#qmYDE`o&=&#a+UmWo*Ogyz)ma@pWKIM1G`*c!Q~m1V2YPXk&D_UB zwtt=s>@e+N=k?i7KfnGbLEFX(Gc%*`^j)E}q*8uo=)p0d@=Shp#?K(|nFeq>lHGqXTi}yZa{?3~{x)qIT+1enk zJALakgSZ9!G~CgHGrreQRSNDRaGU`I;-S%X7#>GZQwbay$@#Z!uk7%`yj3n#MNie?dqN12z=?%<%;_NFk<~a z*n9|?WCnL7?jwoY`0_3}+@<^5zOS?C3Ng}#@Gcvl^Q&EDT^Z~>~EgC^kI zLahEayJWd>a2?s~qTBlsj%=YV)QlGZ7PoR`+~48-9HE;5!0rVfMfVNDP3* zrh^lc8vVpNyD(iZ2jCyk%XBpJ(m=8nFc0Z5Ih&-TGJ>=PP(80hDGc0#!L@s3!C>n! zwv$PQa|VMTmP%=;=U$$BcnW?>2##>TPe4eo3HkLJFCxX#obe#`UWKn(Uv4QX*Uwyn z>)Cl~34=!xY*=D&C3rCpDTQ$aCrJ9b^1pN`f4SVdnpYiAxL?5!jdL~l>ju9?SeH0x z(jVX8>sqoCh3|IG;l7+Ik=0 z;<DS zrG?0b{lVB)3$Px2u*33h0pK`4uWGhkk<_HG&`}f4)o7!7zCx`^UvR8~=@sUz;y0&1iu_fz`uglgt=v9^ zp5~OK%1%;!wW`cH&y)$-TC=TgWwN=Bq!32m*Bz3>Td6a{vGk07*naR5lwAYWV7A2p+FC zqJZ%Vbom)g0bm!z1%RP_LEk~?m7`!h0bf0E5iy@dP(qWjpC%mu`09E_0FTBF-)N{- z_~W@lyL`Ol7peF@+yN^7duZs;fIp%Rj7=;B?1pp8fpJJX53;Gg#YM0x5W zz!e$cr*+Po-DH29BiQvz`XXd0`Z&f`nw4nqcz`82gJ8B7clZ0t<}0y$rS30VY3U%aFLx?xipjec{OIDOlV;$kT?{O`ui!Ve-xTyLTTFe*Xf}wCiaxv4 zimX%0!bA^GLFkgUh4X=byp9=r3?u`b8`} zTmx1kYgs4Gq*=Mc!s&|2;-lH4_ci`=(?Lha9`{rb_r(xf0i2J!05IimgTZIfuq9D; zB=VM@oFT&OLbw~B0>IcuV8;tZ=3)z_3k56aj>)0oX8@ zfiJmKY{c=K^B=T4TNZA`JM;7hHbix-*OItaBQ1Jq)z6Z^e%F2j0RMbil~%nt`R9+X z{|j3ki}YhZIM0V(oLhJuyal-a;?;lAkmS4ZLr3DiXBIEbLgur)>+{u3?wI^7RVH?n zf+92_K#6LRQ}6B7J4@odt^2C9-g|=lw>CoP_+TMs_kG6nuE(tgj@#z=xAozaD9e|Hm!7zhkE(3Z_bz4 zwd4h_dW`I{ix-LaErh(_9&gc&_nq`uJ%pWT*EUD^l;XxJ0qh%VaE+~#Us>3K^ms4* z02g>WxmURD4{mz+E)c`ZesSpLyKc7a4EO!<(OzErE48NDKO_L{?yZzlt!~}TU9fwI zcK6}_0g^Y7mED^J0peoIZr$xs;_9wk?J6q+dH_N7u2wQAMzU>X-^@$j?FXPE{{I1B z`cK{5KtX29by$sYU3j(jbtm&+GLOcya5xS@-@I^(puXT71DGSVi+2C zHXAen46GV8%%n7k3pI>qiGX%{h$IG<;_0MVEhn`5fC2`9>nCQ@X~MTQ$#ePrDtc)x zVsx-bVHK~`vP>g0!_1^KQ_YmQ^HDGx`m>?S)-r5IxsAXpWN`;i9Hc$`Imx>W>@;fQ zAfS%t?$!gT1slmyF*LEVw!-bGun1j7p0o#PNB8?uDnE3g+Bx>P7T*pLE(}%}L--Dh z4z~CbP)Fd;Pw39nwA#W{tetfLQNofd#Iuz>S@g$qT`JbK;juvaxpJ^LSIfn z)*7w~z`2A7-(f2po(C$3HS|c)4hF4S6L$o|*(sTgZIoWH4+_B)G$4(WL0>LNOO=-U z%Jp9N>{snxweHJp6TMWx2(Xi*8hC;MFarz*UoX0^@CtYe`=Q$T`3vn!`icl13xlbBD|aMmjdcfccbHj;e>RBQn`L}+DU%q0 zd5*C&tVOVXl?!t05XA=;XI;)_=W3!{VS5nMf?mDQv#vOdEidSLe&2DsmfdwdD~f$T za5~+yUjJgTDp#8k=u7V2+-+(8e0{wHgRgJqpzn59LjG>H#d;%l6U>W>>(d~B-c4is zKmYx!({BO5NhA!W@#HA;r$s~vF^$aX>oW5Yc$Vk1T&w%rr}yjG$hSI7P;*K#h)eEL z1k+HOPnUu$?NGwE2Gr3b+Ax@9SsY?WKMly!^>VmSGc4woDQd9;#Ii;j0qD{{OY5a` zWw1o`tjNVJ3o#r9P?_;;S^~pdA*Oofvnavw;mt}mO+}2u7tjkqoF#q9s1H2OT;lpM zO+y)wzglS}KW6|KVd#tC8Z+lI;U^}8tu(ofBXMv+M>D!~u~%C<)0DUXEuMm)D>$I5 zM_LH%YxJbMtaJciJY_Kr2yg7;<1vU~@E8J`=*1tN=DqRjlWevuh;T&l!qHASn>ACc zf~FK^HJ0}K>YB0gl`0mxSxTVw9Qt0-1B+|SEcL2zTa#G!ReW=?*>oWj!^N~h?^7=N zIe`tnQJayBI}ACYxCn~#Ncxi7s+do!xs5=0 z302*r!gj+~w5(!-GHb!GpXOrh<@qOl?FQxqUj^j%O#qX@cnAPSwEM5jX`FhbgO9#v z0kiZko&UrdX5f>EeRT?n3@ZP?9mMOipYSCfW%m(iEnQXW>czGzAo<0s|L28HVEp;j z4=3j@ziSSkuhwXF`L@|U^sRAKvvb$<>^40no2AZAmCS!LdpP7ECIfHtg0jpub85n7?@Am!oFlEh$6&n==4*%6^ZR`Y$Q=&AYJ`yS2AWl- z_GQ)a&Fyrl)8%wZV9vJA!@gLpQ&Fy(b{E>q z3YxmA$i2|-B#}h`2W~G8!DC4>gTY1Ws+*%n`qG(FIqHMlgUk!Oj??d`2!0QEgV`dE z(;fkAg3G`r5seq5FBKRTco)lg#zJVImkhqXnjRt952GFK7*?4y|LCf)p()2R2!kUx z&%#>K4vl9P&YVm#en|{d3O6x~ow7(+T#Z<*Modj_w?bv;V8O6XSVFL<8w!{on}ItC zNzSYG)lzDYJ6!Q4`G{xJ*CZzwHiFgc{B>hrBrkIeN@e^d;AHw`)&q=1_=2x#bdiKD z1cyq zF{4&r5uA)5hCxkmw3zl0q%Q%?hzD(oU)wR#Q z+yCYszIaU+-{=NO+z+B>t5%5?XBW%z6WEONQgiDZ_9IajAy7p>do{Dc3? zYH@vXBi!cH1P!-YfNcuCs#Ro7lGh)gIbl$X!c^az1#I&%0Dcw;Yq(n;G}D3VTZgAN z)q4xxK;Z3`l91VllHKz#Ux?@al(L-Z~(@y3eSJs@?~P z{iB5R4n0QK5We^E@j5z4^|I!cwR9Q8QU@O}HNL(}cSnD3ortLl-iaRjGh3j`IljM?+gmUYTqhSh$#CI~%&-?&ZEX0P3q`w~5!w;QF$-Jmkl1 zxLbMqwXZu7LdG1;J*K0X8)sQoWizQOi`0wbVVtLK-|D1U1n72qEywP;PT%Txx}A$O z@z<*}5L6hD)`l@88bK4k1aMLO#fO()7U~KgTaI@ zj^IlKaZWJvI9{B;Xc^#9^*vL0cL`$vm};2X7XYU18n*09#{Ht)HL623`;P(3#mb>3 zmW5$m8=febWx;sXD@QG`R)nt_cGj8aF6*?(U;rc|DF6Tv07*naR4LNdNlkRZ;`oOO zz*_%IrkV;Y17KyU%u)n0S$jou%|R)X6A5MlRZbXpNngWYfRlw+RZ4k4T1%K(Yw_e_ zYZJ#c>IyVJRaF%BB&ln(YXY2xnh5L!(HqB;2~O?aPf`@!eZdu9C|wg=`ZdAcAoQOZP3 zao^ZJ*XGYnu0MUwrY)s8V)iSe#LBPu**V8A^-V_o?c+yr{N2^Sj(_!gbXmVRZ8&Mt zxvQN!}Tm&PGmBxjHcPwS4xXNOI+UHaRl3kGkO%3w7CrUUR&TSe=#URGXcoyi3pCm90HH?F+`DnYEuJQU)=~*(~AncFA=Rru1kh)&8YFZq= zG^J0aYeo*sy06~lRGPS6PR6&-YH${;(U6POqypxzob{N z!?uXpy4^_8STPu?*Yq7pH*nc8K_v581Y}*SC0e-&;Gj4UYOTyPHJ&AP*E&~`d2H5I zvEi6=CaBt_7K~zA<*y{D)xR1am~tH71sLpyV%DKvU9Wq#q@y{)sOO5$W#2vR+HacW zSM;DJAnBV?c}YqZTB@;VFlqAAI1QAA!0lKkI_{}b*x;_^pSaOE!%raedqLWE!ZS0$ zNyjMtg3|zC2T{BGdUUxm=8m-gtxTpGp1?GHb|8OqHs-88;TLEBn|=J^Xvp~6(id? z6VHatbu06e#}>tL(`n0KTc4;230<29cR}CF_sP|V)Swq}d7bSJ(f$aQB*$Y4+=8I^ z*JbD8YUKdNfbQjujN_GQfI2m3w|BQYxd+F;I_;WgkdjMr1={G`K%JcsA1<>46!0e9 z?FZ1l91BPQvv&w&#q|_d)%7aFk#Ri>79nlEqcBgcQ7Mz>aka&EG;|fi?rxjWPk+CT zIh7q)#g>y_v2$3atFeEzE03Va2C6qe?APIX?&HkEPP$6ykp%kUGDiSYGXaf7(i^6Z z#4rv+sNDDgI&;IoB-EO;(LML5CHaKDKT1c!cp${`xf=OQpO3rKmWw{c}U{5gHg%PaA0`s<# zAC@Mi%}Q7+7|ufGmcdjY87f%|q)S#~u^@}-WgdYPMu50!B1vh$8yJQl#w*~ZW>eg$ zj5aI0OG!-(_RDJYI!9oKCDRnd*umcqj#on+bif0CytBl@AwoK*6)t4=3j`5aP|*KbVdtYiTEG7K~}%LDx); zA6X`i;97F4`(vm7qVK#$$V7)&YPo~-JRY>uvde-pKRpTaGuo1{eC#{pmfW0H%c;6z z{9AckR8xJ-*xj$D{^>xvNEl4Ms*e1dCMQop?z8lZ|+aOs@5WQdF zwt0m3BxQBS7W)3#2#{F9dkVv2y=!3rmIt{rkl6p~96n3zKHJ#egS)?42LM$;ThkYm zwMgHZ!6qE#ZeL#Wi$iS7Q|h@)W>6p}`%+1>FRPh6uO>Htj&HtXx1Y1?kIC(a?CMdH z$+r*r{X=nkmm{ukKwNRj0C%shasXK9tL+dR(8fD!0Ql-Qqu#|ozl2)P%W~AX&Bh^` zGlRRJFK`a}?hYA5@OGCYl)hq0wb>R3h+U{#Yyn_nE(icmbQY}EFuTIzVE_PEGHwz} z1+4lD$_QAz_$mZPuMZjHa+h4~Q*1f+W;qJxrMF)sm+Snn2~_*~n}xTUd0;S9GKDf? zEnW?QG3B3)y)v=0pj#&HAhLmk*2SB%^H=8=uP<7sh$Qwl>)GM3(16CBa?Mgk{~i}q zz%0LF4-x>p-%n)zAcD5WD$!&iRvU_Z`(ipO{`~UU>Yhs>v^q&a2P3isbo96yErLwj ziU?p$AWI554qTAivb&S%@Q>er4Sc7vkc|6$qWl0yRa6y8lh8EzuraBckuZrlI*Hz1 z3;^%?a{h3))1kj(7EUYw#5N1xxGLQYcPeRY zSf)_JW^EWGX0h~Wm@OA$f*fjCk)N@BnWbTyRds}aKQz{00Kim}kdjOkvtF91U_3Pr4{r^(V|&HbIyGC959akHs}i^gQj3Gw!&lY3~$ZXH_+wN zP2L;9BzC<>Y&8K~uU-p=$zaZX64P?YGx;0s;sbrbSK47tbtzYBq!-p=CH`*EyEv}X znSA!*v-&}&Fv&_V6>~m3AB-;8iBy+abxoUZl}}daVq1>ws@*7SCuu9s+Jn3^D0&FW z<$98ms#4ZYE02@%G##ELV`&BU2NKZ$gl@CQi`cGKl&e?kH0g^N&n;<&orlm?5m29;a)rbkX?dT!(A zpg#(^HTkY`ZPc-JUs))BJF~qx`RA)I8N`es>sQHb?i*wp29v(jtcG^VMLx?ln5@Gi z$qa|;H>KiqYkB%Cns3^8sVXYmR@&Fl_j%N6*nF58s8p`{?f+`%OM=Qr0#o@Ro9EZK zwas&zN6Za}d5G!g=3>0@@jjU8RrM%91fYBWX>k93aQm3)M1&O3y}KVEZf-M(+T%4; zZwv<0ZXOJlf9z!->QKvu=Sz3F_HiZvyuXZeZCDlX)?3VF(%Di^KuqVhI4W;~%`Sr8 zh3Zw}ra&*Yi)D=9Y$7I^Cu3ix_e?{`7iOVpE(iuw3JZ_5>xLOr2w!c`l#xXHJw9`W z%h2H<6VY`jdWL}Tg&^Jny4zwkiswZD5qw-_hfRWqHj7|6b!S5dv7Uv;P0j)AkkPEn zlFksd1>4rDYIE{z>Pq3S8+^N?lG1jv{L?2#DdDzVxtsvg}|UdpaqI;Xxi5HH@D& zw!knTy;{nwL#W}ob|`5{whVXTje=y(wYiJEwyeDZfVlw9CiZl0szKN6ac^yk=McRg*+yhjrOG$mk$$m z<-Vt;G7ri-GViTQ-BbeV9e}6KAt5cSCHNOx4TO;TEQnpLz3P}MXaE>@!~Dm@qgucv zC5P;W=RUo_hD{S^I<30no{?y#&E}@+C zRU%uo6RF(6CU|Zu&QHDQrR8e)B2N)cNP{iuRsw@TUoSlOqYK+R!4b$}2x4rxT1=X`p+HrvKlTw{VWx?_CX$;+%<)>DRsjB%kwUUBcz4U77y6HH zN-ay;J#oD$vY(LbG=;B*g#cf{UG5{eud>+vyQer5soO8EnQrtISq+sdFgL#0=I1f{ zUp@3ZNnop7mT$S4gl`Uxy#5>_Za$@myN~(9=i=c*arZ8Nd{;ia9YFiu+-IaOweQt+ zg1Ej)Zm!eoOE4_q#8b{vh5TL0|Ejy*hFAAFLL4P8qr)MR2{0>nK9#2ag-$Yq4b;#TzU-Q zq5}Z$w-L}wh=Q+|yKKKoH;_S-V7E+nvwS&>#sdpH-Y(+ZGJ*C*%z@a#nvd=6(u_}+ zfC!#S6|^kQfxczhXAv@F83I%g7)(+GORlhm_ANkr5&!@Y07*naR5kmE>+3b^un?@e z0(Tkfbt&{+m%DATn9DR=W4H*ug0hS0cw_aUv?2+wI{V)`M(Wn~a! zQbwg1HTR+b3eSlH+p&9K@OV`G_rLz&2L>ttcxpS&{-c;FqJM8u$ zfJwNkXr#r`%W_p)TGrE+Bpr?08tJaq1T}LEVC{O5Zk7pf z3&JrKtalzk-OgK;I{|*wse)%+9dByT%A%4*c>^0~f~g>@Eo+86YlnE6p7VL#_a(AmQY-(ZJB6+z`r|EHe)iyxhZ$%Pl5f~I1J z*?j@A%avo=PjXnHJTa93iJkd?-RtsyTRj!^4^A;-DT_>N9j1%Z zW(xxY&t1 zQfc8)-1tNL0-wiyvfG5ZlS$b#B=yi`S=M%%ZNSUIRl})3!R%uT7*9)kI_v|+)kt<- z23Gp^DgZN87|ZA(uq}%{006>wvl)XQL;Dau9 zEY(bw)$bsF|MK~;U-f$zfZ31i&WXo5ldi8T{$5yRBP_;twIs*Y`7Sr*%n zKxI005Wq%{)={c^Wj3sBvv4zkZIU>XNw%1e5cH0&-J}a8cVPlB9u8wjXBtWeK@TJr z47+W$--?!MB|RM{lToY~u0DXcTknUg+}`g>wodIg1r4-WDn-8z)=0C`SSy|^%@g!B z(<{k|vaqwXn#X$9? z?v8pSw*naZUH*3Xm&Ob^-a@o>UFwA`6BziA_`m?L4s;4xrXcQ^s)L!120=OCK@!Wl z2ukz<%%XkO2(zwoc#6u-dg9{I>D--&Hx{05Lu)GeboG}ib07@P0ot?$$t#)Xylv(Z zW_cGu*L0kT^9_IzRYTE0+JC7InN=o$Yj6tqISrzog{(U|tC8!oy`0#{&S`$B5?m6(kg9(CMn)^DHjT0~T1m^7c{@rkh+&B1PG2OiX02b^ z!Rrd!GzQ7fSsiAUqVeLo?0w37zL~NN+=9Da^fSVbe*uZ{B~HtRr(p1RtaCPV=B23W zH-|F!Nd#-vk0}TeuGGK~8OloCPnJPZQ}F$r$g{r$J$R76GKFm&=x`XoFTwx0 zHUWDw-~Lcc7a{d4pgSCSB6e%{44`*3_Q&IBIu)1yVG#^6x5zzQ?qznK7CDzg8_&g= z?Du6}8YGUR7IwxX8y5=#n8VTmU}^B(=HTcYZ#S?OV<|A652M8hto3F?mPtpzFz9>O zBHo@F2s z&bhnW?e`M`Sa$Zq)jFq2!zG@&O0tVXp8&QxZ}ywzU%&s_xp<>%z#Vo5gTB~FV_f|` zok&PWj*#@lj*L+XdXaBI1c!mGdGhXhHUH1Q{}8hah_J+FHkDe6g~7}yur0WLHAzRa z#g>7)A`TTcbdTFMn zabw3p4*2T=fHgvB%E{1C5o{aCu{>>%_krFdZWF*+(r2wW7j8jNFcnG{aCPl-gkzmi z@=9nH8h!3a^igun~ zWRi0h3|AzUoi;-mENU1~L~veVm4L0z1g$$vU(-^fZYFLwxhuJ79m{CCkU1+tveR0v zJ)E@Yj|~840}1M5<0~TVRWf3^>S-o`i*ZYY>EJZU-bC360>ZTFUmCVp_03xieA+NN zV+A#!3&rflueE;aDF9I*cDi)%2}yD4T8LU;wU}IRibgq=E-z?b*Z;}!ezg4;Ui8vW zUk2GLlDGnJRfMHsK)CwcV{(!gaL3>m(+kR73WuY<3Ur1R4tmS z_+O_Z<5>mWS$YXuKIquchQ>a<7er2y7|q${o>tz!H$3TDZKp{+tMGpD1X^RL@#Baw-JC(yxMQE3`&{Nvy%7`0TD#rC_v&^cV$dwBTZUDSq%Jm4>6kb)QMKH?T zaqh{$qJaY*AHY8WuwWPr28jXSGHX?{ev7`!i;%(y2bmt^iXd3B-#)2Zq8C90%;^Q3 zwZO$-w*Rv4XtNm#hShvyvrc7byfz?lA(jJip!lp>*K=C9 zxJQB93V@WP=6sy0HAes>;|?ZI9o!^RK^t->etD4ejL^0IN%si0{=b zGb0Oi%y8wj1?ZY3VVXVyZ(u50lE605cfaM%&$|%B&Rn7{5yA0zvdvN?I+qAka;Mntyx1KZ1BB_{XKKi^0{v zF8sBx7Cr#XiHEy&%94H=XuS^c|2Ug^!d;#HwOU3H!PT=g`2S)^jKBZQIuRW_wZ#c* z+#l<-#Ckr2Wm=fZvNOm#1aO>GSWS~w5?>(b;X25>1TfRrNp>EmXT&z~T$FuTMK1di zRbNw^>b4wJ<{kv0lC@Qjg3ualP#I($UkHF_VEH*4f0_5@twS~6Nx0iFZeRLD>9)#? zGXNM*!Hcs@j7eh_f8o(MeH|sILG;E8#d?~vo9Kl}OOR;rCd^;QgV!QqRq0map~_Qy z9@3WpHkR5rGmKvXz?S!e?f++Q}bSoUC)-*M@5V$NX+Sj>O zlWu)hOvI>KhBOGCMwlw%Z%V74GQ-rnRJSGt-ON18O7QR2{*S6)>grFQ+^y;Bew9pa zsO@GpxT$MxqnMit^*JnElQ1{m?+!b4)s=qBwtjb>sl=|ju)gN*Q$@5<|5fIIeaYHS zToIkiz1nI_)qD3bzWoqAJf?`p`wa2np?G(fzq`X0^0$0^EA)MMTVCDd`(wO=WZcJ_ zU9^;v4U5APSkf%B6Ld9{1x>qMB*jga2~_g&I=a3~mA)R6&vfL0ME>K;@$r6v|9swG zi<{%bU9J+)7x;vbrHuxN3-pr21TgJ=(=``cTq5yAb|MYcHFqf(mL_0a ziPno0^u={Y#@O!;hc&XsMHdRV zcGB;u$Z%L_!;B@aePG^Vl7YTg$0b*Mfmr$`QtYbUl?rD<_wsV7LU{(3u>BV-!L~A? zT&FrfUTV#lY^T2x;EL<`&E@`&-#!t*pedOO5e)hw28lxjtdW4e1n?Mq%Dqw@IXFew zvpc@i-K`h@{_FS1?Pnq9MtHo4)7+S8SfZ%ulhv&A0(gKNu!lv_3fdVNj2$N4n^T0j zC4jl0Kq7**GE6BAAk#yyk1akVJ}}^F+LLN4Y3yV&7HN^!`*eqvLM>o8%RC*g)N`Dc zZC_xEeY`j@jNg$8>r}xnJ|6gBk|#fokB8BElOfpZMiSGngLTNJ1e$#1+PoS`TE(DO zO<~e`h+G)vnlUH~xVrr_MQn$u2$0x!TNQmhfizAC{T9@7JN!ZO8yzJ|ClYvs=uq|93z^|x-a5+TKK78 z%5b+qP|K|BGMW{|MwiRS_`{N@*LP{b@g$T@Bl53)v-qp3|N3MhjP^AO_}fbFuWnYF zeMC<`XI(xgXs)y8AL;C>sZrt~DXU~>$ijOTLQ7qLBfyS+~UFPHAe z_p1-@maAnv*OnpEyvwCuCY+gku4b&NtrbE%oOAj=SPVsoOjclzFRpqJz8o+&8QSU) zB!w_(bg^E+A;bl- zju6U{dERV`Y6y}}%G<2-#XMFo5m}2h3i$2a^_R~d0ASaW9;7^VL0=8&N0NJ#GBh3< zW;haV5oA5MjMxw?LxOcaQX2XH^Phk1S2N%0q|%RMbB-Y}V`_RU6{sydgfO!rZhq%5gHCCEWrg67OUZ=reRls3zo+h2Z#c%dC zw&I_qaE-!?z&~T6n|0LKBG{SD6KLzfL^N*@@$Z1Ya~gEeMy6J@@phFO27|Ra$|2xL8`rDEh+txy^gV3z}*$ZowaTC%_EU}H}`cK~gm>F6!n20q9Cy6P_5vE}3n^Gw< z_zAsriul_R z)wBCe-kx^`HGl=W*BTJJi2HXE?;Zz;k8ejG9){GrDtz;|Hxdsw#oOER;jX;98C+jy zG7xa%FSo&Zmn}Dtr@?BSux1JmEtmFq+?~xVkQn>gt5CNR9U}T(t+rzRtkze7^!_ir z^*X%0nJgEQXD&)>FtjG3fZfT|r^5zS>}(#h-`Av|A%D|MmeZ1`%RW~C209ob0~eZN zU||RU!?a}{sX;ETHJr?vCv99%z+GH)7Bk3bNgd1DmEOfe;|{Z4k@S|6h-Uhg>rm2x z>RpT>f4$lPxJSobDZ|mp?W~f8Qo*OH9EP=kMF2}*~QDATJ{82E9JwgOt;aD zBrs+&e;~!oY7K3j`%eG3TmR30{}s7*=z_tOIi=}vBuxTTI6(?-KCc`I4knzmd!vk5e;ANim!< zrqhHq=Q_2ps+}H<653D$!{9FH3n?sW7`or<=ebWmOZE*LK@6g=Rt0kvX7w81g;xA| zTpn%~JQK9_k*9UyY9f=~qA?K-^Z@ff48PJbR6NDPKBO=Ji~xOgN4kWA@FI%aV69`n z_S_TjIF4F?D}wuAZ5VcZ{qy652>=+!@f2+Ff5H1g`gw5;n5pBsB04gnRvDaeJ-A-g zmZ21cC^^c6Gc`2juh?v9NVaL_NSCk}0La+T#WKPbV>DwiMr;8rvF$2KFEf`EGEIY+XoV|+DmjrMazl7w4@U^_3oZx5dHxw`n zn8AjRPi?H4U+p9IzxFgN4W|Lx$^^PPY`>XWsGGT2q+lruKrDkdy zDpQm7R>sle9|@qPV>8f80ON@G<}4i6Pp-7h9}E`T=e>Wp3L%AYM4aEJ_Euj<|9`9; z_rfC?UWETl{C{%ww}x@DTxIGj>Er_o=*@6zuO%(G-)G%Q6sYwvu4qvk|HGQ}>&irQ zy@Q4V#)W25SPM^Lhp>ZyHVa-&%)JI7|beG zru8U!CCis~p$?@+#&1b7FzQR;QV~eYjV7E4U&jvj=Ok@6J%m5EkG4&6__RoDpN_01g5

Y_*n+_|NQ6A?P}`u&XPcMHc&wmkIIZfZ9SG#nfiw7U9Gq z3?`$PNnK``Nne8Y>T+^(J;M&Z1c1qD`chSWK~=BtknWP>VT`+kNIIB1#BieR!W?Tj z9w+pUR{0xGrMo^N&q|0y)1KqVKBJ4FpR*LP{TM47=|DQfT!aGp*3FvDs^Vd z0pO}?Ocw>fU|IUDr$w;>fMXsQ!d)G~)NJ16k}dnWrJ^d5KWspk;kYM2F9S3MeZgSY zd4q@W$41pl;p;~iUU*)~U(Hnj&%Sp`^$dwDt20_OU`nVoq#tRsOu$|2EN4$T80X;r zQboMXH{=Xs?$CFd>1cKpOVj@$ADrVRUfX@+3JB#EkPtxL4V(`WQ*b83x;m=+qOTS(q5k#-B{jN$Ei(Io! zH1uxo@LT@~ssVBgb$ViB4C%{#LigJh)@Sa@6_P7vA5@h}8der`o&6uKY@Y#W2J%y5L6^?Yjq35* z(Yh+LYOEz|&(de{umpM$x9{TXx8d#E2m$m8eIL?yZw0^-cjddA!NYZOe-(3kdzoGB z#mN~_xmIZaz#uDU|FOGQWbVoXfU(6*;#@s6a1PDcCkuPNmhoqcl>^BO5q!K(fMK>M zaEcMNuh6%&hWO7ML*3e1c;%_~4awluIt73Sg$)2FX*Z60v1Zr|fTdd_>~R*&AnizB zX4)ozb%d%TE4%8O!TWmLo=eTw#4EB6fjTK%kSvcnS=a{8rlpq#t0Sw6tM9G{%`vQD|a4ghy zQmdsxwhS5iO6hE3bAXb}P*S{E-E+ilJ^RnUzJ#9CXVE!}bRo!TPD$==7K7C+BaEL$ z@Mf||5Am&4a#-)KyE>;?y3eKmt?-1DuJ}J2W6P?2OQY)Rg?Lr6;)(d1 zFNbcNbV5kppz2w2tP>ZqI1ts#z&_|J;hzE3RnJn?0)Q!k!C+|zr~oY71$1fqWf+XD z89M<6<2V)PsOYoQUq%t@_+c*VFmF^jqOU{ooz+$)uy!5fRK4;$(0VWv{8E5u$yg zSBxlmgYQn`4Zi%Y0@bIUirsGkY$;p?y+#2y^UTK@w9jEl1~*oJ8^uju0oe5ZvgGP3 z&OLW(w7y+$W;`pIuKgXG8Eg&9q}HEAe`6umXjY?T_fOxZ)41W#gQ`|dhFQFtb-GdQ z!~CR%p8>covm$O0l5+Uu8V9S(4Z+MZSH8%NB>S@qZON zdL60S7Ntsa;zPnh_|7J__E(7H<=Atv5F*BcR^nd(!(yNjbz<*4k6Pn_CC$Fea4~Vp ztW~9a_0k48A_~I?050$`q!_ylRlF{4Z+Em^lp^O^_;L-n@_atdH#@PuVp*1Waa=7C zS^{nCvGC9o^j)s9rPy3Y(gU+dINpvIQ+#sVG(Z8{-IG7R{PzCs0|Cs{U%GH;{@D{R z4lTUWMPHZtj78em%C%m6tYoeOPR4T`>)h_21#a)(fBkmcEnTafMRpom>@)>j%~&Ls z1h3~gNz4wV+M`31HyMoJhzL4$(2)wn1-$@T`My>ezC>JKO`(ZzZ{~;nkYHxk9YMzx zCWk47+32j@R=7D66KUWUH$7sirTJ&GHq0#nypXAg9JOlt{;2=}5CBO;K~$9Dw>B8~ ztk0^}hV71+S$ZAzA5W+GVl`Z-XEmO}{5CO65sVKh#nMcnZwn~{ENn23cZZ%Me;)Yu z@fQMo_Pej}2ZJ913kkV4%(f-^h=J1_Bh5;3!FJN|gLB6@^SlcL=EN6h8dhafh_if*11FeGVLcuDgZXzwHZyr{Ze*p`Xj(BC|3?(TfUZpG zX8Z5NmCz<&8E{m?Y_gCBhtbrP-XTa{6}x~g*MNDuJjU&~!WaxTC1X|2c~G@c830Sn ze3prsA}>&oKs5{oYeC;2JPV_9M3T1Sq@_D8R&rrG(7>}~9Mhz)bD6Y`T3-z^7hIRM zsuCC$DJ=Qt;$k@H4bnEC?guAvdIp47mYkzD0w*A70Y(c+2w&|sKFbDDFdW*c>rl$}G_`K>(Ax>yO>lhaSSzOd-Dg zPQkyOmY9*L2W_>I9o93~AJTm6DtlbpFN3&TM`zD;&2oMW`ztkEiC}EyO|kX%AHBmT z|L`$H+`Nyk-&M8EmFm6E9&Qt$7u)+AFj(rGL0{_K;~_M`qAEg{3|_8Xal_GOeBA2d zhIhY>mUD*#x&htE%);L*gztJA%V>JNi=3@o0C={t7aNzaHl4fT3|HcI)tTZRR;8^p z?9PMPG8)hPLetTLK&af{BqxM7#|E!ttO zLNTV+m0&vOO=O0e{2SvQmV?ki+(Fz0eF0rySS%!?j(SP9i=;Ch_ND8$uts?gnosqj zOu+RVDNn@}R>JS#I*v;`hzt7e_j8u}a+UY;Fu&32DlixTMgYJFkie`BueamHO2A<3 zI4b`Qb^Zc|Co*$F%2P9Z!%c@r^yPUg+=W=ub(aUj3oEOBOl>snb zQ>GkB;kt~hpN=DJIi?UH72T77dKV17JWQ`I=h&M0MeKoQbu?FnvDFf8ndVewr2TFf z_SJ18R>#T`l&v$;X>*W6!$K>^36Rc+q6nCjX4^3_T(uxa_-jl!Z`cfnnCrMhc2BXH ziUTKPsawAze5b5bpu-0KP9RfN}L1 zh;6P4tG@>gKv=ZJBr{$a0UZnsvm6XyPSZ0g>?k`)i*t4>K_!FJP|4+hu9;_Q*Cn1- zl1$e1V8GR+otd)cmQ~Q;E`k8gOIZMxhU4T_&0uM5^266M9KwG?1|z;}uI&EbO0K?I z@f9p7sG4Sw2E95#$UlBV->0hM=PgN%_26elk4?~;Xtql+v{|`}Ey4g;==-6!eAgiw zn|ilu93pXREz5=YI9I$why14b&lU_cE`r z5enVo`v9u<@_mH3d5G^GMenk+2m$oo-^6#f@$F3{ju~Q_k<)?^G~MlGE&_BaV!8F^ zYX`EmnpU=UIVBXh{r~7X58p`E>&nkRuvqK8!JEJV*#Vsj6;V}PjgIJuj_5=%f?)>l zSrW9CY*@jN9AH~A?ES0v+tedqChimzHNq|<7l zMmbva^`+x6XPbWL^HcL>NH1Bsyt43v5E84#1$rm*1Q_m*d<$R}gJ00Af$NB91#OH{ z17vedqmo`P0^L9^jZrLdZC3GiEl2z@B+;2T2B?EP_n6{uc-YIgm$w|~$TTPdW(b^v zzAB5MhHK#N1XqD}W7u)nvV;q(Somszjoqqg>fnM7rY_gR+uI#PuqowkCkF-aw|xS5F;DFpU@0rMUEDX|`tH=v z|L*_%;{NU$00t~g?^V=@{c0N4v)G}-Fo;Nb%KY#PfVBn*I&y$mPwG&>o{MWx^2gu* z;{rclylm)cG1#LY6KlYBD3;z>wkON1d{6*WTa&@;(PcZ*eA<$tuPR*`v7Kk+F~^qJ z>x9n&$%p+=wDNkOLrQJ7D63~yOU+n9DP5}tG%Y)rKxX3=5eo(r#wR|~T|R+K)xC$Z zqL^J;aoi9SuAo6HZ@elG9GD*^|T|oXbmzOC&olm)5|!r`x*dNle>nFJXE{wa;L@VrZP1y z74T$GAN8sRz+F6{z#6dCvH&nZJDE8az!HOsNN08C8V)OiL3uDN4M%cBbUGJVcGhm6 zccllr*lriV{wymrn-_AT6Vh)^Cs~ayRQ+e^Yk@>YUg}aHD&W^sJ!%P=w_Lq=Lj5%W zTb5e@f9te-vc}*gPV&hw0Jikq{34LOijwt}!K%%V?rU|f&W=p{YFhZTdYzwpC&Je~ z{?eAZP4(IWm~Ne`d;_30*mj?{7fg&fRSW^j_a&mse>%xog&fu5|klG%kK8Bo?kT3ruR`xg(2EmZqs{ zE(PG^^V96h^L)3-_S+T>+-b`W=*n!;)Mt*G=IpYkY~msC$0_sgxQiT!3G*1F)Xrgc zS`8;57z_Xp#sTX?_^aSl(kXqrlB5d3V2*Hb(H@&lbsKre8Wk@S^!MR_F993{A7toA z`!o4&=hFa>u*d|mwiC$TLKYPXU&#p92N_cfY*5y=qiTV#E>DfL=uCio=827UCx+RYsMq&0#m@nnE+P+wydy zQN)=gkh0SXqM+(JQWkx76i*r(kR_$sPbwUkj*x^?(;DrwwLrFh)( zS!TA4>-38Tgv9r1)&yTKkFq>ihHjyQSADy);r3>ZNATI>VT7ZsEmH0h!z&OJGFKc$ z5=dd(H;}=gCf6F$B#Wz-bg#pUgETcUXR=Q{rDe-uFTvM}7pCr3B7kX%nP%Q_+~N#3 zjkkc|32qB;PoU1y2wH4%=@ZYHJm)`|8D`wZMM236ijH?t_s$#s1;P!BRKtn36tLsL zAT}(yegRL$5rHqnlf6iI3~~o)DQuRh?YK*r=*^|DsLWow-pQ)$UFTnu?bf!NhV8y# zX?Kv9Dl>y^bJ3K=?Eh~|8dknzZ`6<_Li+b^M{)^Z{ZIyb)a(eE1ux4`c<8C(K@L0`6i0@v*DSMhF_N{G&Veo6$C%dialygQ_<^VqFqWUY_6iyS}Oh?--LpIa9f9*^4 z3je0B`=vT-zFodF@Kshkf0M6r0KW)T-3ox0Kgw!eZsY}h)r_;T`DVQ!zAtwZU46+e zKQ}?#!&9=qO}5w3@h-V}YTZ0!i07vs;{FcAZ4EY6 zbG{CMTQ<yUzJ^)@=E6a`Um;kD#Pynu&^I?50-N(l zQuw>)9LG$pTPaK7TO!^MbvGNdrRoJnZ`u%g`$s|Y*@ ztxPu+{8!?2D6*N~Uf~8pd+Ru3h7SR04iFDDy$oHOWsc_+8t!@B`Glx7&bTwj2?{|X z#06#XS%Gd`a+5Nm5f$;wYW*Vu&nK|`xGc}to$YB$0ssRz^C6$QCZbJl79bI8bTx93 z(J3&v?^F2FJe4aSxPPhLgdQzXNy{CxwnO)2=&sVutustIS2qmeJ{vNZzES3SG8Ovf z%aN+hPKmR*cqiICK@l)V;@TOG*Lf=(+H4Td`x1hA$R#jumDTSDKFRD!vnNixzy6D0AlUk1)0 zf?KT%Fqo6golY6wmxIx7PG)Jo_BYlC-L2|Q>rQn#FPm#Y7GGsGP+kCj^*VNseeRIu zor>Ut*#;;ZkSu_Wi^c0*!ux#9@GCD14))~t5HEvIzeq|V?HT|85CBO;K~yA|4A1W* zwy%e7^XjboRiT#v&KuB94K?LkGwZ(i;?16&`J=OVa#zoiZ9Yv+zXouIxcl4zZm%C& zw@;m$`_|QM6Jqz_vGZ`>MzFW};kI{o-MPJza_`MGv~PBKY>Hj;v31;w$(-ykftFfk z^HsK3x0c&PZd8Y|7-Tqhsc2>07@jE(k+O*lJcFRTzU)K$f^f5m54Hiivr!!}AG_RC zzga}fX*eJI9Q7GZL;PB|p?ybrZ?pK-wYHniLWg}VfY+POcGshK6`Qbd&WQ!mw=WY5 z9`BUZ`au5V^1U=JXDZ~TSdBH5yJD}Q?-Q&IaHA?i6l#e#95%#eZ|qD)4K|e+Q{Rp= zz=ft+2hy5xISzoXLhP4PzuJx+Eu*?w>~yn$`j0~<0M)RY;OY+s><;sz=-1_bKNs$5 zgB3fl z(+G6z;s_}WnXC3#LQQsQorWw{nsmtEUN7drlGu0T7`A~Ir^wdYa1XDH=Z{7i)7s#! z+(>EQ9Q2hY`DqKsUN3C5+#o0!^eR&kmD-0=?Y&^wyTFHB?Ot}zYQY7f>Yvx#Pxx%P zDm(1(DSXIJ)xuA1T8x{eri{AEZUfxrva?B6>G?nrER+i^;bN zm_IQpVAg<%IzYD>OR5Yym;lxZsH!lyYo1JhE+(jrAGPs_E_D0icr}{TY0}97Dh@jt z(IQ(S8sIUh%;R)iXLh>RE33Ayh@ZA%SUg5r#W$}^GhSObS*>|GHG7JdybTIq4(Ma` zty;|y`!f7$0sNBheU*7WSxa#0LX~$g+0FANjm!$`sR0Pv#AG?{3w?7`p4FnAIHz1hmTKPiH9EI z>Av^;(Enm$hyZ{Qw^!|(%NDdR!Y)fV>{71dmaTT`FuYuKKw0+OOE2HV19y$@tF9XZ zWsm#T?KR{`mjZXQNf!s6?hP1U67`= zocA}Y(cyBrKQ69sw|lMi0;^yud#?np$N6G4u-lOESsenN+g*efz&HZHlW7X{0>j+H zs5Rgwg$p-K;G8b}z@+CCfB%QyZFieSwIItFf*L1xL0>L-r&=Y3Iei5B&LP^A!LvcS z7>Pe6Bt8L*dyakv82h1H25GvT^bf!N`^|C|G%6OrW`0K161}llS+uP^I9X2H0C2D4 zgR;F&IP50~?Fu$K8#t20&60~*o4b;je`bHvR26q_a22qVT_o|6H7OyFnP1>-Do*?PH_y33?X+1{X?i zEsQ}~2KBKBU-ulJy(oTvUU*w9zvpvG?)z$R<|Ln@PB{YxpbqneU_Et`vN&NEr1ff* zzfG0GY;v@|m6B>wfDu%=;f$n+B}*I^LEj`UaQhwsEDMWtdjZ!lsP$u++mK|WN1L4U zHBA-##o;w|^r$8|bNwylO#uD?@f@?|DXUrf=51wlb<487S5hRFt<1*ILl|ru%eyi< zVUo`(*6S<@GjLaVQ?1Dq@dGxN;mEbG7}(Z(%88DZ!vcLR=qSyiuDq)3lU{;S1Y z+F@pqBnE4Bm>58nRf+P1fyii@W)FvEqA9n|mUB=Uc*ckFC3sorY0<%wjwXrU7))vg zIN!qi%3xC4i5=}`s~4x#Tsy z%BQ;!zG@#koop8Es{=pgLj~}Q14f=6KXqm%fGv7O__Exqi;(A^T>U)dOT zeo1zp-x~S+P4qe-qm6F{CqqfXUnB@kxaw^!{b!kWa7z+&}CCb`qb=Zvx=`TyI02^ zxJwTyF5tVp>>an+VU--$>E#B;n6X`^i;46};+Im2LpeUB?RjA)S#bgYZ`N&^8?Tnx z)%9e)XtFJf0A>vsU(SUJxMc8#7f1XBLiLL9RYNOa7;i~Dt!?5>orJHfDW##b{SI&rm)>N`k)NkR)~0VTv=FP;%1Wn*{*yeBOr!y1ZU* z6||SvD>9W0Ryg7+Y!@)FKMRku1)7BBBdq?C!Q0(nw;vvkV;Muzjk!?3bbFYLg>BHC ze7Cf7`qLl(X}wwkz@QG^YC9EcL(Pyoba>!gP%hj>{;sDTa2F?&UJMvZf0-`Q(JyHL z#=TYuG3`2)H1Qwru7CFrzm9_j0(1wPnbx*jk{CRv#8 znGDt@=N9K{Sx<%by}Mc2y!6#^c6D4p0pp0^{szrLx7ZpD9ZdUZSt_jSC5TBYg}E3Q zf)ytU;0`w_*<3WU)3!UB0ic54LSo$v!Okq>q7_zysD>AZ8kSzX-4xtq>$Od8FP8(| zI4RDf94(v8GZ`%#rT7W>e$jExg~1IG#6WMQ^1fRA0HrI+*g3Nd#%DEUeF5}-y7(SZ ztbVAu7sBA$`?B`~7~JaD2e|v30I{;XL@eaGAep45>Gh~iQZM5MJmKv!6TfCmnN?UE z`|_NobVvz(A&XW1iV-b90O!%yPbPusgfpKIZ4c{fDQ`RsCs!E4RKBLDTNsXGXZSqJ8DeF4r^!J zKfxYsh6S+qvXW1C6P*syFx|TRTw6R>^QI?PiR*GB!pVZ(z`9vkBgSu)tBlF!N#GN6 zW_CNjxKMFGma+bVFT{g*DM;ZMNA@j$rFz+Wh1mV*Z9W^TNE4rhzC7l}7w+ET_QWN_ zZt%4gV$v7?>iL%jRId$im-N-y-$34;LjCYly#FyeewOy;tEcSxx%Kead3x>{rF+-= z>0$8G6ZCGM=)J#c-(9whk>pJm^kv*$b`-r5m%Gk!+up9)$6f#F>40nfeAOP$QvL;U zgbu$ApznH>iJi^B1Aw_-0fd`Pe4R!Y`MBF;$9+fC@FH5z!^0{9gDHZU_+^zBzxpG! zuTu}jR7W`z5|<(vC*Uzi4EoCKuX@zk86=gzjx1wQJ&oUZoJ__6?&awWKmaeN;c6C1 zWA@Bf?ly1~>$suxMDR8O&&Rzgx504Uku#259muV1>_)+bAdN~~HPejhx`!ZwpoE;_ zdR-hjRl;*9EnM+etI>8l1%P*l`OV!H0H)^yuC_p_b$&h_{AEKH(0hHoW-eNb!7Ca; z<4R30=&P#*#1mKMEha6nlUr%oheZoa?iKjwfBDmLwWwAuJXOF@>Hshsuh_H3v0cs% z$)wOA-9oN)qe07`_7j{8+d;1>bz=HRs6$gAK9^n@^cwcs5W&mYSiGjA1^`T=kGlSB z7+ZsAPPxd^i>0hCX02Ks5L5gsz}lAyoR&++i7c(-ar^^i##j5Ox68i7dcamD0GJI~ z2X%r(0K-tg`|ZSTFyuXo_Bxr8Fr=_BIC1cQ7wcYOGB{QPONw9sSevB>%pn7l2sTbz zQ!Tslfy&sJSvJEsa`Bq3TVhq%z}T+6 zO{8k01x~TAksPeHMyq417*2^BMqb>pg&wJfYU2_CMg>eW5QyMNY-fthAp^kp5Wyjz zAT1bNNj;FsxJoxag`!iU#h|3D0S)(S`*AfFT?I% z>aZ!=(AQLp)1-jVrtUKLHRTFelFxk;HS$&VRcIL-BEeo)8M*0)!+C3I6jcDT=?q`e z&&RhA&9uk`6>q+3FeYnpq|807@|wOU)wriyiR}6ASGJMrYoEn$0nFy9R}Ne{k870f zs|a^LMJMw-(O=cO7Qoxj{^r?xp|1kizM7qE-scMbwL8^ITNcA=U*MJ%UmTaurt{fA z{foZIFTwuDP-cogC$x}cl^3i9asT$N|I=;n#~U1>eFt=M26V4?&8uyCd(41gu=cP? za0Gp!fF+J?1n4UT+KE`UHpLow>f}gU8N@j{#+`+tw&5sGqFtLbzTb? zxP{+raq$XplZgAi#UjF;fz+{dB9QhP^RbWjuvsL)Fk7pLVf^|I`*q@$&NToqgztKh zv6)kZuex7x?uZ*^*jij#X|-0XQh& zx*vwMfBmvvW-*v)XK)uM%V}HF=|&dj+~FO0OrypdOpa>9P-5RDe(XR5CBO;K~yvYed!U+ zLLJ=`#VmR?Sj{?kZ*=LJjihauS!fo6aRiBhUYtM{;{-@1dg&T%hJSR2(qaZR+?6#- zYC@8#-z2>?Y(|>99GHk^s1)v7*N)S|u+2_G4Rghzcz2`$FwDIU1TaF7>_ejjAns-} z#xI6`7vdaZI+;u|wrB~DwR(;JUj&_{`#lfXh-0Arf@-)}eTM*I8~%kKmK^WG^GdE; ztk=)WIEflZgJIpCHyDOE0y)HO8&`8Rz_9>k zl2#p6>vX$p;XkYGHKmMNwX2G7!d_xAW^Xqn3*D+fc?*E?t#KUIZ2-Vfz-g;2Yw8t* zfSi6uvA45}Oz;OtXH7_I5!Ojr0Iz0q)V0lKLm15RZC(;)k2h1`>nXVl=vMd1RQO2Fsdb*p_mn>w;ny*Y#YZ`s9F-=6U zWSCjL&7D0UcDWl$r#7?-=90eZ_|ag-4kx_i%C%RYMga5snhjBHDG9$(w+b^ai{s+C zPO*Dx0GXRi`MJyuzTFjgYT#_!qpU5Ib!xO;Q7=0Q$lWhK0Ji(`!rhZ%YNSR{uK+A5 zWyS5w#1V-8qlxVo_w=*)Ub66i1L)TENEsWZ(?D;-P`>C_c}53YrR- zz0=UX-DaH)&uqMs3qf3CCKmVsb%0o0z9DnfPC26gFgK`!#A9uK#)TMHbMb!|WsB8t zf1EGZLjrhrm@L<(@e1^1{+X?_Cw1Q$)6v=&4H4F3y^z-b)JdFU0hVO!N4FGEZsOfW zUXcp*-~RnyN8=#@%$6}O*x{5BJ(V~EBaO#{*cwLS1Xq7(P?>A$xHb{32G>$Z4&Aa- zJ&yyo-^u>;$KTH(g1vGg=>b>v54Ob16967{LXNoP&Pq+X|Gy-t_4k20gVlIT_Eqp4 z?+5gS>V-zYu{Sir=B;q%T|3OG$?Vn0Gsx*aw2EPrAd)koIvLt41SuM0u)`q!W3D9+%BI(Pb z05J@0z2DE*>oMEDv_hQWf0@4_%u!PZ<9~KB&k$lcG6U%oAjkKMz%ZmR0@{}V2AjhW zq%T$~A4{e8I93{;iq#KA_lH_^7G8Pg=4O%&Z-ja083DZV^3n}isRM5k-livj^e-36>%xH%&7*ncn`|k z6WBK^tyGFW_+_h=Xc?Zv&GtsO4 z&o7B++%d>~L$k`;5goX2@FuNo7R@?rk+_?8S1Evv^#_yEU?IPSedQLuO8QUhxNxbZ zr8G}z$+idpOW#<dZ@;8oH&CLWqx05wUZHGnSl1=F_woT;XfJnSHL#ztm`^k-JsA zYy;#u0eq5e_P$lX)<5#Z2J*ymnMq(k>kCNC6MtpoqrsSv?8{f^H30rf0b8+aHLd}0 zZl9_4UhX#c3Bk!rn%eO7)g~g_V#Xr(>1v8R4KD9?1!4W!q_QD-MfiTkO@mdv61UG8 z;_0#b{A6mqKffRR;$isZPUs8O`*_p6zaHEiyT@%N9mtF5YMV(>b^`z>`*q5?FOER( z*2zV|P9exu6@|-EUg}n@~-G$6hD8zp|1_yGPCU z))zB>vx-S;)_Tp_TCKd&byny*%v(PcvC`fwz8ubE9I$B<0LIn9tOOo5#MWc#<5zY( zZs@9|NZy`~LV>=Ud6V?z`()UCy&&;o9M6X0xgo#DgMc9$jaqe1_j2w?d?>XFrJDm1 zT(Z0EfJVx)az}j}byHB4yB6@-H7=~%DY%PkZoLjsQXWEkLF_{QO0$(wu{bdq=EHoi zX-W1!TX$$CpJ~m3D>Ac`0&lGZ<1&rwH3xgxdM#TBaSiSHx(QgsIxh5J$-n={zYRx& zO7+6?C3&ve*H;m&G*vT5Yjy~nGaXIeB?w39L!M}TK`n?-c`eo zZuBW`m8BiJ4f<9xQEAf5DD@z@-;Mi&fZnbg!eRB-9NP`BO`I=-3ji2=B7j*5CVkn6 za9XS-!07x;Lq~Qq(d>dE60a{+0@swnOIt)>bTL-5LNe%}nwkrJD8VpiKt>OiU8M zco3hmx>*>ECwJ={ZDJzY>>=)yseq;HiZZ%u7|abE$N{0q{%v6(6^4UoTsDPu3HeZAIT~g|Z24mF8joCiC;>2tgmK z>*wap=j`sOjUalzJPi>)Jq&)l?<2n4ne_?KzKEO4(QzkJx&3Z+Jal%OOl+;z0A#|v z@nHwm3-q>t-t{_Oufxftj{i#tTy7bHZqUYB8K+}?f?iR^NowBQuiD#1wirk3F6Qc7 zAQtB|cjQ8E$lv+Yqw^HlEDz38yZe(4t~#n4n-(fX2>Yto5;7Ezj*vAW{xNeI1AfmY z6OXe)>}^Kq1e7v(7LmBjKjVZL#yJ=~8+kYaz##6VZ|KXBU&H{n^Q}5fD1i{cu&!(a zqSU7eKh+2#Z!~BEz|g)ETy6UhQV?(nQat>0k zTmZc{S1SZvI9T_k2*%0n?G~Xhmi#lm3PE^77y*{tGDN?AT>BtI(x}8{F#s4BdH~?h zfB8=UxK=HAZj}q(nMp=~XSBj#<1r|1=X3#M(Z0%H)|lBZEvs1j-l&(b3>>;8uTf4T zeCzhV{>vYC>qY1_*r+vVyOKyq9T_ZEYZUIvWfRtV(Z+{tkY+D5`>k+}@5sh0&=)F) z&K`J6VDM_v)~;;9@NAN?{faJ+6vTEUiOpH~l=Xwe>$5EjC+w^SjMc0orDs-CNy(rT zX8#mtlQ^e@|3{oNIJ~4LSqXPMXroqF$Aw$m>i`UQI>4}(rcS8!VEk5C43o9cLZ_Kj|vEY z%3#3MG8@)l&Mx=V>@i!AGMw~(4?lCb9uDtG|6ZEeWn6t(Cw85ocMQ%Aa0g})WDdPi>8Wo}amU~sO%0E9902jmPg8w2mX91W{V zx^CIjIsuGVGYVKC&AzSN*i!qqjlZVD>X;aMsO1P7%Eb3W1+fLN&4gP34+gUJfvx6m zC~A$dqV_W*a6%PJ=u#Te@p1LHb-S1yrtf*ql&pO`Zw-guw>A#t&Jl zr-;K((P=gJRj`Zdv$K9~;3$#9_1hg1{~s8Cy_eT!#U(LrG`dpx1i-r|Z~yEAw8~nD z-EjXLAP!IBAIZfDw~sBNS2y))-1QirZ@Wx8KU{a9eIKs}4_E!m<8Zs_42E7?MhiS? zo?1pUpdg09;Qc<^Y!dG175O`=%YN)>#QSR|Gr2lf2LycxUkNU#pEp6@)ijw3L4D~Q z*8DT1=VavK_XZ-EtIdE$K#{gnwBwLMuLdM9x0>J_3}&+;9iee8;N7>}n`<{9-@{PW zBH?Zw`WSE65%*>VFuny%Kltqg!;_ec0(pXWi}#Fk+%Yipv&noE0lm<{I01T)xE!EnpN6~CP}#Ai|cA|QO{(=IpkfxCb)NDKx;80~g|=mtlKCtO~u)laz2;tDRa zD7%RQc*?@zUi)=-n=yxH>{eiQN9W#?GLoc^3@L(f!3BMn+F>N}XxfGdW`P!v>$M$R zuw-B(7AtJWDOvzS0XuGmN}cp&`pztEY`Fxm9Z4Ec)+h)$B@E0%h~TIem4Oa2xe&o_ zU96$w$bGoK`u#utrWpr#kdZ}ummatz+^BDEOA2f4Psc^q~mTkYBpWgoALViuaPB7 z+5*N3G1TxxyY_G^mK$kxS#(&fyNBbL44zC=VXy)izXmk%z=sgT2#yiAbuXt3h0mH0 z%`&H_9$Pd()(onFE94+MnKj`QFz64ZK2Rny=|a+t1qxuUb^w66hg)7mZ~pL&D1X`I zWY;d?%Vn=9moW_LT$C&NkL18Nl1}Ujw}(j|fc~vf_0rjfHDLU%>N@0N;1v*Z5*L}5 zmZNrl8T=E#+Q-L@WCSg58t{gtKAnn~=KV?-6(#hg;${f}27{NGP&RkVf>w?$NNW%` z(=EcHjGM(Ids*awYm{Yh>valR#+`9zBMi>RoD{uz`?Stb8KX_wTWTw4z7d%KHtrvN zhc4V8F|*b^e z>JF(;t7oUd>~#-V9|) zutd{kECD1Lc=(F$Jx*e-kEs1hDT*rYUGkU>pM5;G|cZ7qf^$Ay}bilOv$Dy3h#e*?xc z|IJ6VT8wj|mygH*A?}&_kt9g86AeF7e8?ZBbWyeH3SEzVQY_Zu*y=jnfzSG@L4_u$ z`;b|Zak754IiD{GrLPhGwCO*hJdG3#Vmf-qSz?i_3>@XUdH&8@+DBCZARQ z)@hM)mVW1@YnM$@MRrH^0iRe$_nwBFQZ{{z@9z=9#U) z-TvgAs@SiB8uul=oTK+7^Q;AF&4-K3{rn=zrNsN}BX*DB{wX>1fi8eKRKphS)8 zT?8vtz&cXqNa8}JC-cL`4_5W)d=?`hH^Jb;E|YxnQi4N1to1?xzx3m&0tRIfOhlWy ztO9tm%w!9%Y_OL_p0ee8ZHmp)NyxcgDqyC7@b@XJRC31|{^sHLwcoFaZC#1u*dNm;d^6uivfK3IH%SB?G+)uKv2UJ`5rCbgn}Mu|T&Q z0QCo5SA( zE;?j+i1`n?O!IM^&_auMX|sHONgKbL{2B5-hLwIM7zkQw;xubCTMmw`j>p6)Z+|hBZ-4-1+cx-$H+c$RDquYB2Nx`C^Er90 zzDO?-Au$&hDuBb_LY6t|zlaz%>1)k1N(vY1E zEj5>J)znP8Ve`+YE&%jE3%}MUBG@>M7_*=*1Vh6nwB;xcCl$zFF!)Wr%)ljm6~Jcn z$gcJ~tptCy9YM!_Z-9c*&y8#f;z5HdWbG@?MKA+S5D^40;C6?K? zeJW(x-u0Tnf>_Jrbv{-6y7tUQs_^nl#1Fw;c~H@N`6$7OUO@MjYkHx2@7woxE$%G3 zziHoIW%pOv<4s%g%r{-27Xh&g+#U}p;&5mpE)UsZm*O57e=6*_>-K9y5x8O~DtiOh zF_#f7RuL31NIV?YSWy6L4gaJaT2{=e{0+HGdp3iTOS$ieo>nxKWC7T;TKU; za3IrG7oGxGWGh!c#YHc?AVf`Hw3dM-&#ax>IP(@X&474TK305&Iynt7R(g_5J@ z%>*?)6)i`w_>Ya7l_bjti1Q&RjvxcTL3oaTzWMH2SH@ikLe@ZaN;H>N&!75f3Yq|x z0&t6Nnzj<`s5(;P>z+Gkzp?@05{TZQjChj^U)FkGdV_6k_*H+_>(1faI^$)T60MT$ zetT=IVJwuDg4UDyt3>fDhv(cg>ubrYahgE>{{fhlW`=#jI`3ZIKL?Uqehd##w@fKN zhX}Ct_z?2(t0!Gm^eAz2-@3jtdiUu;!z>N#>f(g%?N$5!O6aQ}w)qISyWc^TrpJAg z0S52)>3r4h^u4UpX!p!UUI2JDbJp7ws&}&Rr^{fz3};&Xl`(Lwu+AWqWrwyXU>=79 z4@c0K_LBfGZ5`EAIi$a%X~NQqF9G~g0M@1VIAPiu=oL*ogHV%M+hGsa-%v8u>hD31 zE$ITA;$GWl&Y6}yeJyfGg(J6F7X{p{p6&pDc_$MIQkIC7LUrHc5qFCU-AH*HYQ*DS z0PYHXb^jXIzsN2>zX09Vj_WvrXE>473t|EljQeRC))4rRscBr%aP5Y`U2R6Z1n)NE zjrP;NNQ2u{(=6D~ubC=`fQ$ z4ch!nBP|47z*q_P>*d&!JqM2u*MIo!uc3fbA3rxSj&8>eeuf~insxh-yt=EZ!4533 zrPRfR_}1(xL*PWtwHwQ>3BrY#sZ`!50Kog@fcp*cR%H-t+5%HA57VuBEOTq}b~hk& zp?6s!rtoDEovmBevICD0z>vk0QLC>@7nm!iTBU0T7z{SECyTz&-EIUD%i;~`qB15~ zHVdtDN-ZTQ?X=pgALC0Pi1BK%jw3S*&8jfJ5iyKsQVr`(8^8~doyriJ4yUmUj9`nv zKoiajO+<@Y@ zK?IeIr-9itz94`((i6lNesqq&iJhs%Nlvx%P->_bdCs=PCz#P&mA`f!0;uNuMIhD+ zUt2oKv(U0ZnM)YGxPb7JB93lw4xqB8OQ70wHcs3AZL$*p#+RImU>p2Glc~->q+-sq z%2mFIgyyU5D3qOsYHAvQD@rNNo86iWgY_#C-7*(Zq~g?3;W#xb!SvDOVseJXuyy+y zs^IB&Y%`Y-+Bj$qDu_3E@|o)P1&VgR%cECzr<^%+GpCZrX1FR z@+E%qtg8O1r<&ULG~4`Du+mHWc*!3ZuU!jY>(&C{k4zAr_vNNqK@!p$9T2=K^q`5R|^g@7~JLJUK~eVmt9v7#|WHE2N3{_0D!sZ+qh1KrP#ZG zZbPJgnI{07t^l5yl^<`_V-o5XV8*BR$2kCOH{3xP zO;IE_oTB&d&bJpcN72>?UPfx!r99qKlwpaEdXKTlFN7?ZxzSKNzny8z%N zUa3|)pU?XMaJ$n2fE!L(<*)dJ0Kg`6Qkejj)?(!u?X2-3LT7?OxD*VA`lnws{>eD! z3W{DU#0g;RH;Q<{@i6=MfBD09HDx6j^aX=KU$N%U-LCYZEkQ@T}8s1sm{fHwd zWu&1#?)aaGM&db47$(!JT2nNonHthpW3v^|OYV}vCn8w;umIz*>P8oh;FDo+cp=|N zTeWfYv}No?*D6rScy>W^nIoTh%3w=whLzELS#5{5CLTiQD3g%RuY3rKvYxeVHltA` zr=9Az0H(>M1+eCyO$wTZxZE_Q8yMwrn%+anK=Ta5^RlMKTTD~yxjGoWIh}$vGBmf& zuzkWLrE%(ba_C3F+Uki~eP!BwI^J{2X1Y zMl*LJI{`f!d2aoneXo_6|*e=8- zYnhG)eSus3tT9{GAz*Q}#5ZD@S%R;l>0*8f%fsE=_gs9qh8`4fuTx=x*=lj|-&n-! zxiEM+4W&e_rC&Bx0k?y;0r0rzAtrsHFOH;dzvZycsFT%OX*CIpaZmtyfiVP5j1Ep+ zuqV?cNF1mok|(1KSN8d`4+RYFZgLgNFwIuVU^*Id<@v)6qSg;5pQohTfm5&a0PRE(V#!>;y2`EZo z`|X&N#^ZP=o6UryZu!=x%x0%)(z4n15%~3xPH*N*CYiRIwJCh@A&oz6iJcASQBcaa zEqyH4&q~fGMA`dL4bI%O7_=%;vleG~KQd|@1SLE2#JVXc2yzqNcpb2f8;e0iAQ=G+ zJN`$BP@)lhaHBInIY&fkA<0U{F-p_605F2CTO3H^3=$PE0USlr#NdSIb^ojpU&x!( zL^KsGVfmG`B_nxfU;)hg13vRqF`E>(0+}rl`oZ|4sNxpZ%)(2q$Vw&=8uipLmh#W z`BP1Rr`p$AS-mLZQ{0}+_E=Pth+J83xoeuCa<#3?4NuhbYq`v?vLOFf?{0sJzN!A2 zimxhQe9BrP$-9y0G-us99=<+e)DAB`1>;7Kodwbu!zmr1m)E*&@Ob0OlSm zJOKe1562Azbp@jVYQgIWR?8#V|=s ztTI6j`pzLtCo)dTv@kb!TE#41GJrM>wyTyj*>eq1{@)Tcrnx{qB4-;4a&< z)oMekzujilj`xNz^arc0+ul32}zd%9CW=SN^2J|Pyw@_i0&LL10%$dqwTXV8d7*RNLjFlAjTtHkwlwl)_Sim z=g*J(r-$9m)q?jlU@(W5NMGikSxD9ary&I~Vh%ol7RVF~>z8Vc z^J@JQqSBD4I%jq79KlV9JV!V|0YO<@b>G#z_jUJO!+T%zaQ?3Dzqbqy(hKNpZY~l- z>F}HYwvJbv<;90lP&rY+f`1EOuPKwk?8X9yt*$*~FuSzKR8i+aQT8kQ7kHm4&I_#2ey}&_#f_le_BlzJ{;>#^Wzb z6i!wwSe0zQ+`{{m-~5z(Rt+y-vGW^c%okKg%(?;giK1OTzZ7@#K4(8K{l2;b$j@;< zAzuahE+3rrlSl1)e26tdk-zup)q~*n?lwc*-ZXjSiFy3Gg}A@T5O%Cch|2~mrk6G0 zyxE3`?K;}5Lay3HY(=Naen56OPoa9H$+@`(Qx^eP3*zDgFrMnR=Yj6A!ZWRhGc~Ra z;?^o%nf=`~@d%f4&;(j=tSQRoYyQlpzk$c8HCkVB4jA<9w`%mF0x8*| zJd^CS$5i%E_ly$2Og>Ww<3n5bnkHyAh!>IDM$zyIgInpp}3%r59=(g22W6@&cE5?@5HR|7RO-Ozx03#Ogzh6Yai z7!OGOhjSnp|8@=<4O(G83jkUm->;Xm$ZN*lFMfLZ<8Ob{ihcY5A;-bRVLKqysn zaeuqMyIFB6>8K6T%s-RXJfW=wHz_e_n?;XF&I+?_ic*+9(i|5)ZHK0L7F{Y&CxiJ} z20qle@E$R2`>P3iVA!f*TN}1XX||83B--(B1^#j##9>DE+-MIjOOO+3ZLghUIPa}r8nu+uUi5o7S zY#y&T?^PTNdaK^|HUDij{GlGdZzLbw=2@7X$L#_UB3(=VnF!pVl$_W;1HgDB?_&@* zN&?u63t%t-Oj8avMFW$Ldv=;$#?hjb0G2QJ3gY7F7xE;z!aFER=!d8MSr)*W+?HH4 zj(+fo05)Z2Hh*c_ndlYw67Lf&Jflt}?uzyWdLe?de&yR5Fblv;K2y{(^Gs_FUKKg> z$(>7F>fCDAIBiS-1IcfoZl@0wK$l_BOK_e}%6?_wOnYYwS3;LxWzSDvb7}# zliu7U64xoX`xT6Nf=>~{OgMA6=x}K6b_rO!UIs$kbp#R%eHRkoE|(6iW&u;p;H&E0 z+I;SAHpzCI&K8ioH7WNBeW8XuYFy@TUwW5jq4B!Xpt9un5C?g8yB1WknHbIi%%h~K zSJI`055*WV2Qaxyt5Tg1_tf`Fynh$tbT*8K9j6%g z2w>=7eACdWMs5vU9}n7p{`Wua*0azpCxK+|`7qla3bSc||1K81c}rolDV&PtN@=KJ zFr!|3S1J8aF221ezdJAefFl@Ob@Pw6YL;Y*6a3SD+nf7_WQucM!}FNNbN z;8}9!8@6LhKrh16TLGbdtE?f58ab536-I2cGPAsGBX&EWa^8fcJ<>GjFba66K4NxI zn5}SBz-%>tL#b-H3kuo^+E=5ruhDBj$XcwXrme;$WvN_WlFzw{J*BU0V792%aKFN; z9VI&X!jmWD!SP}QxI6#s&7OS3@-YN@m-o@?AqIDMkLGxFmm+R%n^)J# z+~cmjd@ZxAbRG>Vi`VmK* zgT5fKQ$KIiJ|S=d`hvmiy@L2-jv6>wPP>T1ZnoP9Wv{Q-#4U|AICQjLk8W-@1S)qN z(G?4!xE+DJTviB8jB@~ZcbG5*jf*A$OfcYbnNMl^V%n#JJ)jp&vh6hh01yC4L_t(e zSg)N8Qpn9_Py-HKr*d<>|I2^hb-<+2GWxZ zws9sHFrykKec3IA2l3O8w(zFULN8=@tdT}8;+KE>{Exr+Wg0lKSI@$FPuCR6muspV z^kpR&BnEfai?&%3Jd`nX)+rH8KI4eDZI>0|L)*tIGfUd7E&mte7NqbJ`cjuCilc}+ zOM^G0IDUp)%)lD(^W)yG6Q-pldCZ?P3#EJ~%v1xwtO_$7on=0yur?xa0!B?<&FjYWSfZ|KPXI!p^xwauLMmj{lJWj*{vr zfDy8p(Y^4TbGPwH=9HoeBy1!2WC08XOaNOn+7m-uQe2TKo>p32HVi(2tNALgfX8iK z`n0-i0SqJ5CP(XzMH2I0fD=E2=OVZUeFiZRrDr^-DA3c zYF<8S+@!}Gy;s-3a1$RQt}bK2?MP z-zC7fV^T1dr<7&uky=Y0_Z61tOCa0kGte+XZMSO0|IIfO6hTd$wH;=EG~yb_QD*_Yuu z>sQjSHXpZFv)*Pgpph@lob6UYuy(s0=@jqe?rwKH&TenlP{4~t-`09@T&xDm_3-}j z08NZXNM&il(jj1O``PaXhy9S%UtS`+Q2E1<{m=N3BDkt=(o0)Wg8+sCzQ4N!fFlTA z+)TJd3t$l0cT0#k6kiT{TG^&5#jx;_S|386`;jCOjr*rA{);1kGj@xRwm>hwV;ip! z*70M}oPn%_nos%=!TZfT4jNh5=%&7GWzfw?#`-Gn-)8$5LUPf1V*&DUlGXO;l7(#F z26*d6(A=Oko?s;`Fbv^K7=yUL?Q-5h(5XX~3LnSE!^jlc zbxEQvqssKK_A#yS-zP#dv#ravZ}~+H2aQ%HmK~>ilk&pw%NAiPg}+)eY(K>`b*~qz zr*veg&!J)JZ|iMI-!8nd&1P~qEavl`Wv@=1c| zv>Q;F4wzbfU#)+1{gN;15M*BkFpOU(h+qj|xcKh8@D^$qnz&qr0>*Dz!SRYX@*Ko1 zH{KO%Z$$?;-U*Kz--E#==wSa{CH$e0eguPq_NOrY?2#7tD-Ckj_BNB>Cbyh>W?APcE2FnRMVt#_ zud?zu)JOc&1%;gD{VHCe7i@lVR}cRBG034CAcVUQ;pQ%qxDOE|?%_T`9PgW#583`P z-904x>kM&um1@L@!&NGA)7)Jphhqrn=8^0V(QY4acMo^ozX^i{(zApd7*dP-O^xGAC4QHUb)%2$l8T2MDWCc{GHF;)g}?= z4J9QlA?*S|@p06F9}aX&caI_&dR|;K?|UZt8IeWa7663V1vU(xe!;pJdN=SoI+;Ywz(Po?y+#Wz*I;V9zt1 z$GMRZUyfh9eyf&61sZV}0E?lO&{tjA1icKVpaEJu2>PBxz|=IoC&6I$Udh%oTw>e; z1Tk}5o>%gH{Bc%;prY<~#n2T7s|%xyMnDoB_p`g34b82%J&-Pv*27udtmgOkdjRQWpeYzmqHo{VFrZ7C(0&INVwgM}Cc zgQ0+LZw>@-1ybHE0+7z*Z1*L=8vF<6IxNnEgIYfb)B?P1^1rCWh&33MniSToVZ#3ue<9)6t8iau@WS zwPnY{IHpb55Vx(mAQC@Y?RzT8pMZ~V2jt5?6THWbsf5;p3zZKSWhn-iY9A|-qZS=3 zON*WNHSZ%7DuRjVQvLfv^=B9Lw?*e&5jxm^Uk=`a!ESUGq%tKOM(0$JG>N4Bq*8F(!cU+t%W+e77vek;>ql|fY~lB$<#Ja90qnSE+$xcz2J@7& zrff{yGBwTGuxebWXJ}bVTw4-$Aj(|>;~+d2|7Uh%#Z^dl=yj;}P`{i2ZnmqPzHVk5 z7}sdyht)3kI^uJHAc+BB(6^bgMO*-^hFOlKujZoNd|C+@E@d)fE%D|Qx~DBs)-J;; z-SwCH=0^)!m);truNB00REgEx)9P$aT)U1iAb=ImW?`_3V55D%%0)BQPZFDZfBO(9 zWesjO_c3C36Yp=6<3ozLylWzEZd06H^E}p&R1OAfnizio1h?Rpw+W|DITfPoxa@*IpDE|tW| zaP0CNAtG4Yte}Gz3zmlib<&7!Q#8dcJCJ41!NBFhK?YYZFe5#ly5R0&6#>9d((|SH ztfjBEM%TnqOE+g30IN`DLp4Z@o4YVLQzvmZ3eUa9M*z4T*CVIUDF5KqK4eLeHkLyv z_xf}j7hjIC85-u~5`GaoX&C?pZs((r`xRz5ANYugxUxA`1XJd642kHa=fg2Oa3SUr1-e<`Vh8z~yGV+m zl^Pg{nLYu`MTGd2h~w*(k-5kD?fniU<`@#xFi3oTy*wPIBFK~q05GV)Edp$QW}cQ! zSj^~37ja)aBk@z!!Q~nl?77vO>;0eq@}F@MnHsRLw${yLUjjrbv~N=^y&Ui|(+;fZ zFk4Q$+Fj+b&6rMD%s^6SxvfN z@D@_C7t21xftb4yr34RKlc;@hb8~mQAefz%R=Zu6H=JtMt03GVf?xy+T^7l)`lXAdKzG;YOoi zJEd)x7Jhs2%4XH{yu-T|7T1}R->9{?blR(<)_T)ht~$8$fYzrD=8^5__!4}%csi;m z1Z-H}1!bX+3#Iqxg&!`85|F|O_EDE=@5}WM3@G4274-f7qVnCR>UUu9MdN#o?+{h@ z2Pga(#L%E;oU-L+C(iz|3!3vtWH4nh=o_as@!wDdYyk}JLJHHGBZf5WIbzz?dRY+x z0E44YrR+>5)Y*__gseiB|59euO&(ioy2gh~m9Ejj`iO0i2GqN18HRTYz0RDuSs=k_ zC}6Tv1AS#ja!=Zr+wBs9o(JqUrTH_C(6yW@rUzL*3hb!!pvSdxoLOSZ8W;wBA%fpn zpfYvLg}5tat<}5v08(R}Yu|i#{VPiiDG8r6WZ6cl(`2&kv9cd3S+xxOP+#UXV1DhZ zRxC|B=fk_g-R*sh*xyMUZW6@RZR`53ee>A9erVm?O8~tL0QmZ@yFHjy2OJy%diR$J z=)2wp2+$YD<;KfH(90At$A@$?V7yyJhmGtF+^k}5(AzDN?OZnd?zBB>G>}yULv=P6 z216qbJ-VE?I_0cgLiD8^D-0%v5#%l&BrMsttoF+xb*e?LZN)OVWwr7EcX90FYsb2X zcMcc_6U{

30D6TjkIZK9mhb3u&ANLCJXB*?I2!mXsxGQajNEFD~D$s0IK#m3IX2 zc<6AS5`sQi%UMd{%jFG8c+pNu5W#f0qSeN<=g!sDnblv)Uk)ANq?gt3AV+>#c+R3S zBk>E7d!7bGB7w%UY=oxI0FIHQxo}033xRC>)g=TtU(C8USF5Lo18916wc@N1j({-% zEY6WKbTm*KjfFm8{P3{j)+5?(;K;bTS#uhAyA=mYK$mU0HaiOXf(kgA@n5ag;UwSA z>r?7Ui*o7!z@RKZ2mn7l-u%aZ{yPB7F(f>Qpm!CBOZkgW#v!h54x6wjf@yli{%3F( z(B*g%G0zRepl`3~W?=&W)-8t~8SK?cL8H=)Juvt;|L1T2>36^Bq+#e(32C*JZg4{| z%gnfqzzrFWx-eMxWzEf4Fc`dD56A!(eW`%iki{*E+Lk2%9`*1(qfX*ZdMW6;pZB)o z_M(^2YlS9XOf2K42bqgtGw|^+y1icFXU;}wu2DMdrrWhlb*m{ym(9}n)|}+QF8~>= z3k{o{R?yCTYGOk1v@?q)(f}|q41&@}nnOqG;PI7h)=Qe2eO1gtYuEH?i}C~!v{(L01yC4L_t)1 zhvQk{XP=7SU6kJYOJ&;4q%Q;M?- z96?`QJW{9E75lTeAyPwBvaZXhk0zc#bRH^GWq4`6jAzibApKI-B~5g07)QK4JON*b zSBBcg7vf7s`Oq-ipw_Dl#MKwCa}aqr@_V}D2){$F^Ik01^%vc5oYzY4BCm*Rakccb zM)hr$Ua%UC+lx-KI2kyLNg($h(?kZ7w3G{)Hp9Z8UFXb_n01UJpce{wDLf84X$8R! zEL|xGjawDboK=~jW%-$F&JcJ5ki4{2k_9Z9)ArnqKMX(P+CD0B_Yn zf-sQIpu>pyXIv8zfG)0sT4Z?;#5tX-H934?GtvgbQ4RMfyUpad zpRX2!`Ls&_vt5gewm2yV5xm*<@e9Txu>e?Snbsjc6sXrQ+qo!6r?N2ZE} z!G2Z@+vT+HWJ59VYPQ9GGSvLDq>-JEIAJZBLru+meUpSfV$e&)uSO!wJUi|gf@4K5 zUL3h$7I!sDkE8;a4kyMt)4eddSvMKy8-g3Mp&!WPbLUYDTc)yL$-s0PtOMxRt>nRktlb_vRWXZ6a=OWJX9VGVZ(gcO5F=oBJN( z_O2^&-MzkS@3$?40r0VT*e9E9IA1tA7Zj~F(P9-$m)>~pj3)KrxJG?B)AdAi|p7QA$T=Av9Y0#^6I^}k|L;!O+F40T+B4~gm$FZwq1uPvVtGNygM*xypYd};H2;42=!1#WMn!b>Exo8L42~f;Q_eE``$6x*Oo)*y~E`FBpk`5veBAL6AhM zfC=EAeti6wfBokm^lOa^$15=fO(PCy-$w1+cT3z$i1W}bF}tqANMbf}I{wQhFHZ5Y zMQb){sV#OLWCi~59yl8fu?q(KPA!f6G;$$=|M>gA$4TttwxERXqL}w+umxZb+U{%^ z)0R@{+gvZ&Vi2uuy6l+(XlZCHlfl}CW&x~;XzA<5KMf2XcN1l>BRd<$t;3?fgIet; zoJGb@Ol&%It{Oi~{A@vA$UB^a#H^3vhmRw^5ybcH^;&BDny|Hwm68V6BsrU#be(XU zYFL&E=Y3M9F)DHczm5n4v9)To0zev4m_qi{lhW3MSsNxDS;XZylQpwk>gEp|xnYUH zb}(|6iD(O8_VClsaV6x zE*3tXe|iT1zkm0$_aDCd@bUW(XFmgae|Yyd-@pA|Z-4mT@816m3`V^F^f#aWA6;+W z<2rU-ecvze{P7xr-F^Gw)*xsiNQwdn5gbHN6Es3op+?m0w$X`WB%WZ$ZNzpA$BB{W zTR&^>b$CjBofp_3SSpoDrIPqNYoEQ>zWImi-WST?fB5412mkQ#|9pA-gRAb3+TMqr zBdxp}r+6|m%@wIP@mA7LV! z!F+CJ}x(gsdP;rk#d*wcTZmrfm@nYvCL{OIp=`Y%SP<#45G)o zC2Ig(|O+p1hGx+vg5X{`|1|i2YrjIm8Lfc09b0K76U*uucVee&Thb9oQ$V}TdPo+ znr7fzlZ9W++;Y;#5$9r+wGP>&L@A7;Rl_*q_Q}Gn=gxFFn5_cBnB+!)uK=)=NiT=M zCjm^-PnX_m7vg8r@|NBmY1WmFb@vK{bGsh_U=RABch$Q7|9b5o=IN~zV^45V?oG%2 z&j1X{&P#VzI8eI#MN9xg_~Le)@0Q7NldWeF$NJK5k`5bCz$_pf>&$R^wBmyy?E(6! z19z*!v!3akNGdB|oi?gn|0aseqfL@{9G;dB58IcQBU_Ac4zau4R)DVR-8IcO#G!YS zzr1b_$9ldy*(1FzHjNB~2@XEAiVV|6f?F)qTPc343{BIfmI zw<<5YesKcQOV5wid~q9?N7haw#1%^c3?BRa8?WCQxYCleT}}V*fB*ToTjF+|T`29; zX1wFD%Z=nojs=!e=N?ng9GZ04mf}*Wh8PgO05H??Oi(lb+%PymFm28}IUW-)#k?5q zW*Gpy2VlmLzse)7$k?X&ch#!sB0ZfCf>-HBohYkjhd)~*s ze+2-${`IBTBl~Ki@H!IPDQzOs;%5LDC)_GBQy)eWL~jJ)o42E^ZEUB?9yym6{VazL zhGxBHH}Jr_4g41UwrF2v0UYUcVX2yqj8(OoUcEK`60{sGOa*MNAzE&22562PJTi;0 z41jTM8OY!YjgPd&jz%DHTS9Fqxr2K-+QCkD5D}bOV=U9QRGC4-td4f<6o+>kv$@;j zaNpgx{k=>Wbef^RZ^I94R@rJ?QWgNV4F2p6mo6OK8@5&(ro#Cmj5D*2Co)5dG~rD2 zLimdIeUKg@@Kq4|FhYFBV0`)Xm_I&b5V#U|83VWleGzxZ@o8V2cFElVD|e_^$p9}z zT>8611O~6S0RRm2j_bB6U?DNib$nwFYLy5iJ7uG{>d`H7QUf79Q?OokNLjED0k~#G z8#fYu1SIajY%_w826Vwu9HEZ^V_=x*t*2154&mA;V>Rw*0IcCdSW`peZgbfimM>>B zj~m8#s$jW*e>uRN0pQIcUTlJLf^|j@ILG_G?|jkkzQ?=J>3nQm{Rl_5d)2x5VfXe& z#prfcIfyFn;0O}0=Ybul0MLTIfG+5}n@0%Q^ex@B()YB@0bq9e(q4lO8>Sq(kRd!Q z8|JWXoXgx5_12;GWoH6=2Bfr7m#bV9H;(Xae2{QCriTOgdVjz9^yv&0GM#6Tvn*!8 z@$qp39&_9;u8$xtR4={qA(Zh`yB%&>bJKURDv#&oVwEF6Ux;7?{hzt-%S@mK=$qIv zz;6s_x_3n4YdYFYViVoTiu(QjRjc(SQ`3;eB7Zf2;rAbYaDDql*S+d_*B$4hI$6F4eQAObgzYdE zL8+EfV)Xb~;6~Dy3OJ5?qmk_I%4|d^&fGE6cE=J)(Gd)nT?9@>r7e1L6vHy|fkT#9 z9*EDltiLbJBXO0GLMok(3<<#wpI|7}(Xs;25y)UL77C`csHuIFymSUKuk~$lznXC9#hn2JupY;tFZ*Ey; zh#`*esCRcwm(gBZcx@sYC)^bl!>kK`N|RVtk7x^Erl3D_#kvIWrPtLZdZ~T2u-QL; z3T+U&2yu&iO71n`jG!ac!+rAi07l^U`@5KR&fuZ7^BM@Fm=cw^XnHqh9Aryb=5D5AEwOIyYZ-Z{N4C|Do6VB2R80 zd?9}U;Cbyr0TaMr?OFkB#O^%85w`%qYxU3CF5>-aq()jpT26A<5sy-hr4t4@NIZ#e z^Q=qvRJzVe<~eF}?}zVi=|<43lvxyq9V}y6JG$43Du`6b4xkhYSSY)xz)_(0c$`55 zKRm3D5EdKBGpixxV%bdQv7(tpSnN9z@96FLc%GBKIJtjZa}N@vp^Xu!V-+xyfzW>l zx%w|tmJmyCkM_cH4pPv+K>)!2^0ROM{O3OphhoIhcUqSKhW5=yJ{SxVLjjkPa|U7~ z$>NUV$2VI7pj=3wp`&@~#w#h=e@NCwTDq)%xYlF-fY#E2!_ zc+MQo2ptUcvMg&2TxHV2gdbr_pDLD#efmRzwU75JRzxG79@ZR*fpdbEWnBDm3PIT- z)g~oCOZ%omc}bf-B^j|W=!3xsQNv!B7zPvpXMs{f;YTHIBs$rbt2@t~^kx4bo@^5;faDl>YV4QGRIA3|Z z0-sfE$=V1jq1*=-0Z70e`0uo@u0DPN7$ZJj|FGTtz~&{#xyG}SSq@D(73dp}Oj36k zN>@@C0mE-YlMq%13w`r`S~yuLW16Zu7*~U$a?9GwYX>o^`$^SffX6b>Ndb&Vi!PJf zR;Sv6K2~WlfKpr&aJirn5N)SMiCF=#g^8|P%v~F|%fS_uG*jFxfyR+Tj%inkKO~5* z0bm3GtWwzgnL5_6rLG!gsxgJNH6+OrFt}@H6xxYNOj&apF;V^QGlvZxK~}<*hRgu) z;!|h-+D2T$_5TmIm&CRHR#N$V;a3IXO2S!7tC(#*J_m@y>k#NYze)=)6V4)eU(%Q7 zRQ#FmW5nmgJ;xv}0w;*OvrI%d9V2mRJ|*Y#=tF2;u3jkC5g1)$g0Hy-gZXzjZ27rk=-U6kI6KY(_UzSAK+NfH0VeO5= z;BgmBg)l`x#a6REpevbb5yT$Oi@JjwfmkvacgEci(64}Kz4XU(SAWnYp_%BW@+N?{ z+gN(|+)G)qf*^t0& z4{yQ85?9sN=iR55J!_tE1!Ni-Di-n=BA6AVVDtUGF~Gv*OglhifUDA1+JYaOj$zRE z_3QKF^PW?W9-p_=z63n3XlzKu1&$~C9l#)p4S@?Elple_3M{E03))i6G;+b4(7o|G z9}&3L|MD0A{HOo;qvyLl=i2T8OApde<^dzvj3n|mmm!0kaRlxzrz0iVfYT;4HEj~z z{6(ybW+oZWfzSoual%qH=wR{kbZ?=6^U)9@_z(Z~t1645fjD1sPB3CT5+g~_m&ZjN zO3#=UOaaE?@TG$brQ};ZIJpN2`AZTQ8%35z(`icqjOWIjIZnp0Gglofx#(pH*t23B zKhAAtVi@N*!HVbZJe3XjhqZOcqW0wgCE!`q;VK1t__Nf_n^nPXC7r)iYKc=uX*(Xr z>1a3%9MA3ax;NS*WGb^lod^l;;-1z>@&dORLu;qg%cf!8fjMe`lj&&dx@CPla%Ev; z%7)+Cg)N3fo%?O95{Tj5X0l!yyGnLmne&SmivJ7z3-E{IMbHIeW*t0;XRt6YTnKSQ z5)ZK8==W~Bo$GG*Bcjv!fFp!5RtBsz4#Ms*>H)w>>LghQa!|M{3>GPD;e^}cw3}o- z1n4XMMHO)C789?Y1(W%(nhprya_S*ugrW{oD<_6nY7&r zrU=Hju-;WST(fp(v6bDZwg9$2#X@WGz;Zq!aNT1caG>^EDs3gR4epY`ieZ`07(}-+ zwNPujSl$2yLHfS+JyqSLxJO!EdZB|2fY~ej24GreSnn#jO9Ho-bCAp}8lU+*|K0xX zoAIQb&2YKaPa2Cn?lyT1PXXv#6wsC(l^N0Xo#PKK$ zCWZmv<8idx#CA+xV|n4xG-Ik`h^k2s00wKzrYsrgMWp$SDRIIIZtMWPNqPg~Qrd#4 z_%a?{1HiJwsshwvm0i=bVHrQH)0S|u-o~p<1Q|Wbu16`}QrAr9 z62MTv1n|(gE=Qd@H|RC_=S7S-EE5FN&WtttjLG9 z#bTAOadn1Z(t>9us5yz2Yel>_KO? zfF%eN!So2Tp3-Eq+E)iK(1g;s zQPTfXJAm;7@H7ZuFZc?G~s`s<>@@FS+QW*EtSbr^DMq(TJ;%}e5{Y$WW9vq$qrkxe+W-ipB_GlQxZ&}GOVUNMXe2;k!(-0wp$7~DM^62xvNy+eR5gs+`bJD)lL zuxY@(U@+6mfZ3=Jr3=>5eWED)ITmP%Olig)SU-gm-p5uT6TLS7%-e;&MSD66&UZCn z%oH@4s&EytYXQs~d6dMmGMFlv0EYag$ZucZUfv{OOxJb)Z~s z_cf`EI|JDJL$z9G2%I2*VaVUZ-jx4vU>|fINW=L>G@zJ|BPhseF-!)a@2%U#a=ZWA z-~9aF|L}VP*wyN2(2>=`P`y(B?Dvw;gASfl38Egy_|~M9$JbvW0ItfAwMAtvkgjyF zp!KTck!?sEQz)weZP^lIEL_>08!#Tf<>x>9_7C6vdYneWV6P4N%Tb2okp~9XxrYFK zs|*XQXfq$-D1#&Gp;Tk(7$^{z*LoRQsBR?m&%#s1ih<9B@|OVSjxYVO@iqhCp@U^h zSamSIB{Q8gonTa~qLg0}uK2&-YgwEfB}7+Cd=~&_b-Ha5v+iB=(X7W3Y`wLUlvtbv z3PJ)px=4aDCWdi4?ncqf8fgSh8h=Wukh+}WV3W_1I&K)upqG{=t0MrI493C{m}i?Z zR{+dH^W5pTAX2G@7mHHVuuKpsxHoM6@P@L~yZjg6#4bc+N1W3g!0B}c3{S9NDxrgY z_8;Q~!FrA@a0Bla;WZ(4H`-PN4AWsF9`$XNll0DNKSGl9@n|d-EASaF2Lv$Cs}TbH zkirN880bYn76ZWf*n#|&jaAv%?J0n7hZkPcthy5DGB2&08a#650gp5TF)mth+cqN+ z-qg+ZJQ!F9X*J2x%4afo7++s7_=D~We{TXY74Rj1ErXfT<8_SrJdR}G<{JN;ca3>u zzv)NnT*_It6}>U|a<<_2v(2VP`fYBY(ZSo7K4SOkNGN*2-R+aVe+&@EhY)cVE9L}x z_wgyE2{VhW*kZ)eDsya_ju*Q4SlEpLfoGLPlWtdyqqwcEfXG48xvhlf+n zj4^0BS%9N`%`JBoz42Iz^SRG9 zBpP0>x6(SiS`9WTg(ow!8x00i+1Fxm<>Jo_{adH=zIzK1{KJ0hhe>b?h(fbM$X?PH zv0Fvj2_2Blo5hep4=e&0+@-rDPq+=NhR;KYU}#^wL1}27#;qv0Vt~i^7Q0IkxVX?} zmPJ@xtFog2>;!}9CVZN7A#;B)JI_q$(x_xs;@zRO_@G#fD(*6t(UX+s2aG7>GZ@Lh17 zMOEw@7U7!*P{3*jb|b4O&3iNDI~|8gGM5gW2=+1&z<&P*!9L^lqW;@o|8#%a%5U`A zBL#4k21G9%%J5&q`JxU1;MFw7mu2QGXE7KoUA(&Uim)OK0LJa0FWoV%RR}dYQ}jiK zb#TH8ZM;6q8alWN@b)0MB-(;lScHe19vLtcw+YbkEd7Eo- zmRLz|3mIs*MsXK0%3M%3%RC)hBoW5_1UM{*S%KAzgMbvSCkDW*PRB1bfATb}H6LD%eFRRJ z8&8_X9y_*(O4p*76%{PAm-hNxN=azCj_V2DNcbFa9)sq0$7O~2!joM0}8?UEC7IM^jK9r>DDb;RoSk`9qDi# zx5t8BQM91%D7%i*j|dB3aUIiCZJYtUZO}Ixw^+k$EhlX+(4`@UE!x6^6P);Qkd=y- zI+*!q^JtaUBPd*TyEmM#ht$3ZmQ34nEkas$e|2$CjvYa%mSWA9K2+~^AA`92eM~3L z-A>ZZTG8z>7cJRowb`0r9hyUaId1nW02ncFKY)cCTSS9Nrj!v!Sy)0JJlDD&+i^qY$o3A$D(?1O&9c5$^$8cW+_=U_St|$@=5n?+!bd{^;m`y z73{gUP#Czf|NgsQfA`&Yp69U$Yv|pm=a&>Jn{HrN!|!=+$LnK(A`DIwZ=3}nC@_o@ zTsm3cs>6@{NfpxciU7tl!4X1yInBUb{0QAVn5<^&5q=Q@+=U4K{lEP(O9HQV9jSeE znTRF*feFOF2}j! zInSXf^C5mC7`!$NE_btxzk)+1L{cwDY`>xV7^evVu}_anj-_J8mDvbdRp7fUj$_jf z;mzH8)<{cTQW-Hg;0R)u(lZJ@?hQ+sv;vr;g>g5y<6aq5RfwO`Y%oVVh=(Op;^3L?!nSN#mgjd}uhVm`+uaXXAK-3SG;B6PbiC*B z3UL2hGSb?WXH2&B1zE2WEs%aI+TxOts7cWf73gEp&?xu+=4l1dSbHJF(Uyd4# zqAtWPSX)*RBOZA}+->BgSPo_bED<6+2p*wuN!AM25X}!UrW#~0j||*1(v`)eAg z;x_BftfLkSwb#w*RskOXd>B=DY8VhsIC(t8X2;SnS#pK;4UkZ5gb`X-D&+aY%}g;Dh1Lsq-3)Yc$tkw z=}PCWmR6Cbl)U+*m(|^T+%Ie9rA6t2zLS;EH=lG65WC}v$6w8qHPh5wD44Bc9l^9* z`s+0oA`yF9z(DW3@~5S{s0ZBH zC5esMWbG~{9>)eVY{9c|xAyJWB|Zp84YEmwrvI~g0Q&AX88B?h^fOOCV4+?S;%PnN zg#aJCOqbQTY(Z_PQ|=g7A6(sLI+cB?@>c+?i9We1X?2yFa?I6>qdK2gIC47S^Yej2 z8gS9vY{tOt{o@({uBS1R*i1*`c7Pc_KA)!mFzAcpPD#KbTU=TA2?U14$Z1)KPh>U_ z)jKxJbD1#}^<<`#CVnBRpn!k(-M_h>)9c@|4GHp8=&O=fRIeIF#*vRZgT6%?az-Io z)yyT#8W*Y%ug_wZiQNR)rf!sM`{8s#HP-Mcf@S1`dTE7zCvaO_5Dfj^Vp{&!U;glT zw;%LncY-h|% zr;dJd@edUr=}8I(v&w8n22Zo&yx1?&#aP;_@EYO*ieJQZH}J`s_MFxy+*Jz>;}5Df zmh4C-u&K!H)t?$&Ag#5;RJ2SlPcQ7F)6o#?B&Xl%cCKlgB_-3%EC;~VRybewAmOM+ z93`-tWs+M4ZV6z}S{s6$q8MsHwE!D$D$tr~TLh@gpOOlx#HIZ0_pcG`P_p$|xP{Xl zfZ^kD$v1Xm!zl&Ncwxn-OtFVQp9Z2frO$i-i)fUW$Mdz!Z9 z+s`6Q+6eYCVa0EZy1qYwn0v_xF!(bCEPa(p7td`mHMaTUMp^We*cfsNfK3OH(w6|X zy7n{G`}g%$p9Ry@i`V}ArMGx?mM@^MhX8R!@}2|4Ndp8$$R_UJ>D|kQBCCKe0o-7C zr05M0o2`#nZGCZ+)LV!d@`eCj$lLG6^>P}v@F9FQZd4+PqkqJ6HEr<#9B@Q&tk`+(|ozbYv?-}aCk82 zi=Z_*R)Vu}08N9XD1s%>fG$Naf?CJS&&h{cd=$(kDJ}}Q5o>c$eDCGMG7M&h7<$A;JJ)z?kkF^meAE#05nSeH;W{BE$qrPFO3+4DJVWKr*K~ z`u%IW*$k!IYkk%4ew1pgp_|5ofBET;|NVEr0_h=$(+FBQVE&w0XaxRuoS8xGi;&8! zN`^_Z?|HY*w=1lrV%~^=3SZ4qieLbkVoQ>T&Ddbjg3}0qVUh1aZ;}S50Q=36LzX?Vi@U1~nF{W%-0)hmi!+RQ~a63{3=?vD~e#8NYcND8ExhUKm> z01Od~{}dRE0F2qN+tf(+($wcj29{zm_@x#W$orG;Ri>jk#Q_+$9ZF11tA$p^py!6x zXGJ>bFwll2CZ(?s6yhuy;}dhd+W`NjDuEh49TuBar6$<1oen9j*kBu!sJ=__=YO^_ zYy>fotSwuzDWFSUrlvu0{CBv`LEkRm8L}7}7cW8>JJ7q(z6b)??xrU)-OJ;1u+M~9 zB4U_DVYYQ@-e_Wa18_V86tML0XnEJT!WGpwe~2cc@j;U-hVE-SJus;n9dUe0{ z?i?{11}B`$dx>6xmbcuUhxd1(j4(PUoMLo1$D4gX=q`8ueB&;*-fAy9of`|t{i<$(UXJQ3it9A}00xi8f-V5qpm%hgYjY6*9A`HGEqiSN zU{KSNPs)$A1DN~4)@no4aP3h6OZAq5lU=+BHXTVNvm(>#Y1UOyE(?|CebAS?zoSVz zop#u3#D-wDA<;i8&aRjh#{<&0i$f1VT&_rPvXbeCrs`X!BCZCDg(v5g1QjsWXrB9J zzw@KO`xpgRG7mWGjnl3Lu-Z@h)oa%aiL!qtC9ew6vow1 zE1zeYf|iMdKrclwP5@nK-0i+Tp65?5JA4TMZ+4UEd<6QgHs$l{UI@Lbzxi~OvRh4N z5(9QR5I$_&2Bu=8Y6Lb|Xhr}l3%dhHOc4L@@4x-+zx@UP?z=a*hT^&g!giaZFUknO#C7+*v=ltBhwxF>HZ*dfR#3BXUPC z-&Ah^?fEoew=4Ia@lbf2-Ddpsuzq}4;6~e{Ovc!M9B$;s@LUtHoC(NWLM1)E2Ed3> zBE33vtYok7rHQodQ&Pvu(M9=Hs$J$2tOY55sf?MeVLKDy-K-!X#8X;MQU` zO5yHc04aRM-Xx~P9k(qT!|qL|Cmlq%r5?xIb$vcA_uHuydzT>>J>n8N6>lt#%8-Ka zMg&_oX;v4~cbbU`{&)Dw;2f(x$X~aAh2Yy2R0f7wEUmKG1A1|kkU0$wi--A;000mG zNkl7;MV0wdl+aKxF>erl2qPfX#RY zEhID(wF?iI0+WKCf73GyS@De)lVx@(3K>fP{D);6+XFeGfB{Z7^hTCi=pkEACU!WZbR z)*hl*^bzIE$!cx(m0e*cpO~Fs060oNio4{rH(LSWeVTcJyW(HH8ZbEf0m}|rT1x*F zo@XghmNIn<0QSB2zVlT$xK6_BGV7MP48r7qEvtYvnQTIH)ZE;aJoEPf?8&$!ZC~L4 zV8B=tGGgh#6f|LMrubK%kUbv z$O&M9v5E}fle@)Gy>~jT0o?uc=?n(T%m#%n_j)0M_s6NaaMU>2>?#Q2`$yS1KIr%( zu{P9(OHQI?cL&$<;=-64)eBb17N(}4#gr-({sD)?9;DTu{`k9J|K?XzzyL6`1%$

q>&D3uZEylx8lP zmLqsFVo|A$!U&vL(=JwJOGUIY;Ihgcmv~T_yV~<{QfI?_*sVw2YCPOd;{8ITFn(7S znb93A?gc{V35o!TWemn5!y`k(ef@fPec5okmvmuKw4GtVEn&i&8CoO76jZX8A>uV> zr|)EvR^v2|OnnyZtL#)IT6X9J!;HJUc2*MJcox9c6^k3dL^bcAGYusdOdrQxf_AklDM_&q7O>=LU8R;3`*tmT; znyYaK>C1`5lB=i#Km{1q_sp&A4J&{>@0NM#NR+Wd-%Xh`l>+|}3-udsa98rurDqw; z1U2LG7UR6u$Ymy|t7hCMfl6B#t#C9=@T@Ih&32OXX~>139l9|^A4%A z%v=T-_}?R1i^NMnJi(8Y&Zrl;#7+kjl@YtbuyaHW(lK>q63R;gPgr{68U zamZb3Xmtr%s@rB#?^|)!Wx{#=;wg7=^w*ExN>%UvF*rO85&OIFa368%-^nmI(U5WX z2=3n(F!#JClO87_0>*la?1n)^b&Ka(}z>N|}%<*E5>*-=H8=ooei~w|@dU09VYa=gp1|&s29hFstVf#IL#n}AD_240ddU;!s8V3S9x5sP>b%zEMQ@2E)6J{ z>SQUFNwAOlP>T2iEr6B2*P-75fN?bkfPeX`UswR+at0Pc<&R>?JVS#z-J4$fO8QT{ zE)+0siH5yGO_e1JtzOw&!LZGjoxT*fkiQ&O$l?^OPx0xAWpJWmAgZ*k7~NK%=WxGrR^$XMw(?=vLD>oVz1|!+EERd zAf?P=7FrFfjShz99t9m>c$Nq2Nwk}fpo8`OGa%Y!gLxX#jBF>(U;R!6AKKSOkx1F_rz z!IwDVJ&gA%`_~f%Fh1Ja_cf$7X_k3KF<`Jhi^Roehhfi!tj$ISmq$b|gC$qAg5mqn zCe^S^1+QYSwoCDmoQL&d+__}-6eXt8T`L)?p~7Es$mLWa2NFDUN2&!Ek<@m@9932daDc8 zs!ycRvb=@or-sl?bycuG4CJS@%ZQJ#I|e)9uD3e+>-}&JQ8?)VUF;pgIYZ5p-`asL zr|JU0oS=ZC@o=8>()0=ncs}pT=J9R-0E6N}U-i}yf2#}nGUrT9Y;wgHHP7r90zsuc zNi8HsuKju`W*VYv30kqf>fuI^l^AA4H0}e?PItjDfjUwb668z3bXG!7U7#`9oYaLck$gx z)!nRu<38DKLg~&bS~7`YCRmkZvVykG9W`^7)O3}15Ov<430YkN*xb3oJI|d?{PiMU z$?QT&P!qrq!Mf=i6Tp(Q)d{TQI*Af@wkURzJzn8PuBOvbR2FGjBt`mcPWon3UX;3TX+c@a?{hK_C z{`?=m|CfLLndiH%uiJQjOUhe-Pc_E?ZoPgB4CX!`X9MGUhhQtM$WU@f3Y}tvI#Z^I zNf`lk+hws?5IKmRS7%() z?PNplaI=YPR`_5rbudVeSkDsvF8m_Sq@n`eZ!0kPbeKLptRL>AG@1q-bg4Y-YSsyx zHsW1L8%s9u*oq`7X3<;CvqBV^sZNp{ton7>5x>?#5=UmFiD5cq*|uOiv%yMadqSCu zyDAJrTqpG$^>3_M0E>BN%~?!duHE=|B=8AhpV>o?o*stOTW zA|B|r?&kp39JOE%9~@g=APlaD*6UP$gs!WqfaP0Nz)zXk4_3IE(yeAL2&<-<&XElo z9iNbXZ>EA7bChRYcD{TMz-s2q*AoT`uEraEpQ<6+7TQ;`eeQ#W# z8A_=02fwd+-xAU4ssZ#0eP7)9vom{i=1)+-gVl4eeID*!!t+aVdXCQz>G3Wh(tuJh zRp|R*Hg_$I5$YT{G|&ZT@1os#2${P+_=wHk-yR0r1LzxqzBpg)Wz%=D3BZ+1OP4=O z_Ahvmn5<1Y68bmLSDz`KnH0j(*u@gm^w z)%l6iC5!-fE48a6fW>JEU?uUT z0>)8CMahdSejrO+C^<+cq&~)VQ%2g&b%I_U$c|1ijAI8P16MIzSvH%=c00wF2wZEj zGz5L8lLALvk2KFL-In}R*W+ldli(0cK{s8z)8%?RnL${W90q(mtJSksX+i$tgdSMH zu%x4(Hr9ya;c2G~UVzF_B%I}t=RPi2;``CaDXW0_!6SfqIgsMa!sEbs4m^ee)=7)v z!(3O{fBxkUKl_(|a=o721D3R&gZs4D^=o4&iQ+D_FL!zAD#ZjHk3jFd9yK1(f!bU| z+S@ZQqlo2d6+m3FfQu<>+S~)c;0gfD>4*5$G{$;;ItQMNPLh@+GmY3|-Kk{1bu-xS zy$`)B4s4)P2g|QWU)E&dD8(;{!}*N6l?)P4q|V=exmI+T!V5@ZF5sq;9gknWYH4;ZjfM=hbUPJLkK68H7N zW^wh>t2Un!r7*j6sO?OBa!*939i~K0jCX9)E-W<)oZN6ZRG9BoQkg@A=@Cr~^A48K z%G~?3glM)@s&48%vH^WTiC3u}wUvt!5WQ5!Y_hQYv&~ENL*<^a(X!g$L=s;P7Ua(ot9Z{h6{9Yz zy*Rl%3U27%XBe#dn|G7#Aq6llZt{R5na4nun{kAu&9`YKdK>+F(aXC5eXZy7tHkQn zlM3e-K-XV9dkbmv75W|?L!kHWF+1Il_WO9Xl4%F)1$4X5fm3f384ISBFvsy{3D;SJ( zj;SY*pzxM+59mD}{PWr=r>5pv%A1=F;3jUg%BjazADUKHlb&tHl~y7xq#}t& zWj7u7vZc<4Pfu8O`SpC^H2QPfg{0Om+R2F~Ax9m$;sT=(#$UM+&{I@&A~1+XNakayry000mG zNkl+VucQU0% z<&-V_A%MAwND-_SuC$6y3(dYsgdE9DHeaWjv^3nFhh(4LI_iZvzU2zTyqy z^sc~Q{JJa&e)G$p{qgs|8Rv1}bP#+@dSjJ|^d_;B8}c^^Zoxur4wiSttR86JMMP=N z;lTtju8(X<5^HEJ3*w3GN@BLqb|~RnxHEn*@@_--CL6Yi$sACqXo*CP9rE`VZ zcos$0fGw8h1;@$T}Tx zwvx?AgSd3jvU|h0kv`9yI*bp|T9VQQx4LCkqrO~xSuB7rjkGx2P1 z`xx7fan#)eAu-z)^3=zX8%&(b#BM8ma-o9@EWGl!eP1gaX?(Af!vkhs}aChBw^n$pE)w2Z9yLk>e4O)C);g^wF3KwwI`>a zPg+s_VVHi1i|f(&7DrC=WdOj^AXh<$WpUnM!}%BiM4xEtr~c-)ntA9W{& zbe{Ks-fZq5sBTLzSk$dEns!KEQhB-y0A^wstVIC5)xoQeKB8E4^JNE=jjQWHc4Yw^ zj&JZdpfVz#bVUBD(-zks_+Ln!^SD=)-Eq+=vX<0am6CZb@-BBfa1I?j9^V$l^|-i! z2&OqnUAefOt!&^cKnv|F@>hF#S>IcZq~?gDa+r3WPW#MzOQ`amR`{;lj9ch&D^bjZ zcQrmFqmh#&{VW^c@`THcXab!h%QZD(Zan{_@Cs3u0Y1ib@{{)5UCp^hAf=2yIxi2W z1u%T~uz7qG11x%A;Y$D*#HAqKG*#1gcT4rg+KD^IVFL8xC_4B-?6g37Jo2ZPJ)SCe z2Wh^s-9Qk;^VtwbJBb0GWNG=0JDj0QD+#*+nUt*U;g~>|M*Wo27p_g zufSl}y&3ATLKa5R;hA)FdLN;Tb)dqvG#9DrrT$CfRubN5epr&s%2zXy5EmC*m1sUi zLrM;B5X%cK$YO5~mIVkXU}m8uZI}f6&HR7<>pviZBflSdz0k*czejgy`dT-0o%`JC z1`cJsRpH`&vYJQSS>S#!uAaQ);mP1jUX?`3XmyXxMYBPZ)iE|T%|8LF2Qi1a{vj|- zBh1}01B1D&VXu*tg5!Fvmw5ckIREOPqm!V6Ij4cU1`~)mFh*g+^%G|sFcHlb9i}(1 zL=Ynj-B%{R@!)Er{o@$d8fmdyiG3RhLa?jsIC;s}J##tB>cQsaI$ zbICeO+s$D6INTEE3H?KW-cIMk?d_NC_E%U3a6!PnVGddVjPbR3$ zlGbF~s;eg^+pOhjOhn`T&n*}`cbU89{AlRjd9Hq+2`lqy*2az|k;{`9VH9xgr>V$O zQjk)W(v$d?in&#WAck4rXS&W*k+0_&Vl_*#R^z*!?=)loqE*~F6gl97Gq_2_dzxB( z)$}YA&T3ku9dMt%4gXv>$tFf%ZE=g?aw9U0~!2CIW#k;0`NTP9UmJ^Y= zpBx6utc;J<^8nE0asN6*9A2XxwC_V8&Q?$1`B?xgOjY9x8ZU3wo{T5D8!CN6=v~@n z&_;vZL<~?C0(7$O*Q?%i)n{QdPE4qMMC0#hDvcq6FZXDTne(*AHX%`>oRX`XzT6wW z91FNucbcRR<;A62Mg6Z21L%)1o`f zTc9t5FG91#;9^Jmh-PFkM6Hvpobhe|3T-Pzr6ehR9s z0{~}>HYhuq+y*&>FHX8(d{A70!D)r(d7W3c<)qEm1nUm~ScGrc1%MHpPnqW}k-TF^ zCmDCN#GtQ+gUD3XzFKc4ym&Bwi04&T_oz0(Z22+b2 z3@s;V@qv%QaVOJVn1Qsxb!%e+Ac-SfapqdUsRbSKF$RFaMY;&B*CnpGKrh`QaZc+D z0Qli)2k0U=E9voh4=_XK3XJd8l*=G7e)j2U%K~X=-{;r;!_(&e(b!dj=y=%Y#|{(A;U%<=4pw5>8msFuug%j2jJng?aG5lY2GhX&M zqo~gYA^J5s&NYkXm=k8PH0a2pXyB6=wq&*Ago!`~G0d%B>+)d}(U&B)BN2Ij{2~%p z<_s!pxkJpPv{l0_pN4!d^C6`0b~}Y8=CosZOHvq8`;+2H z0~~5Jwat!BN^mb{>*~b4PMVwcT*AhbL}~JwbBbsHshvfwi!V*fkb%1P<2Gf+F7v=Z z;B@V4$#EO97%*l{Q@wO2D^G5(@q2IiIA*?Y<%}mXYzy)?Dm&1=BcX4108CbG&^H1g zXZ>>J7aI@sO_zNffnLOT?I8eToHGkuEV>AYT@ZJA@E7Od>^Labl8zoJeUn=9&p>an zaPzt2CSQ7^_u06m2AQS=OkS4SM>GiRS28f9la5+i3huJ^w^6`ab5D~_EzZJE)mr$6 zZ?R4imt6=QD|~svd<%Wbo-U$K9Z!pnW;`-4yQ}O1+53AhFFU;d*gC)KB*d z=rhol$>-HH765A!m_^7#PexA7XXF3=umAYTw_gLm-ToB;jO#eWD2T`bsQ6>mGq1;H zN~r^ir6AchAhFy@(s4B|G^zCl!X0+25*Hv&{o{@ogDzSuB(W0=aXXul09rAE*5s;` zL;v+p&kx6N(8rDVR_u2mf&pL|j-)#gSXdzN2Liyd`yl(@rrm1y5PY+L$eqKZGMy7-0!J>-6;LR)pjHxp~0%i*Z88Yf}4oC({*~!-6iS^_ihb7Yvpb9ZgVEZ}GSU1?z+pGFY5E8hLEh#XpgK z+w2l%usDmv{cLKXO*OMf&;}FEB%&>)rj>`~^rer7-5a(h7*_i-Db4O-JLbV|58D9` zz%XDupBD!FrgJG~2e2@y>Dk3=!a;|ZMkwrMB8l1MrIR0Xu3&JqRnyJl(lutzS_VH= z<;_$uv(TiYeb~#EWuli=bqvmX#(RwD#XAj4z5QCi%=Hr|a8Sh4P!A!6*3HB%KFMZK zhi;3oB8;t5_z^4zu~KYIJgngcjiBvNLXLUB^$jE@eJO%%pPMxvd1oy(#C${Qs(PAX z_7KY_r$Mg|=mNJSu06SbO3n|^yD{Q?pV>H^((OLx4BGW_fY|K=)w|3*i+$CbjecR$?!E;e}bRt5V6YM{mAe80ZQQD?E73e$4u0d<~_QvLDtPAIi8|K=q15mO1w80ms@)8S}!S=SETXp?x`M z8j?4udc&d}S3QVeNMY#IxMI2TZN6}eCFtvo7EV0tASi!9-)iIISTwn4mRy0jhZSJ0()K911$Spt zV?W7yKiR0join*Zk#{wEqokFN+PG|OH|b&?0-|Cmt_c=)*H}kMC_lED+u33Cg`p*z zZjJP`j8L8f(>S=Q;zL4y%gpx7gTlitzx(w+{p=r~j<_Ps3)%?aBg#(*znp2ADA0=! z1~ZKyC9{t7wBnbC(`>aVH@gW`FQl-HXE@GxhuQPiIGw46`4^oYOiVQ;*J#ZYOH9Jb|YUje!tTCki%>sca`3{sCR zxv~fB-a5Uj<)Z%EfB*UGZ(ba?Yl^UR?i=oayIHGSyBkV7Kz#T`Iy9**3t+sGvbQRJ zlPRo|?C0sFng3RLE!h;v+fJ~S z$w;?}ihG=d?hT&6v>49E5gELhkD$VN$>tS&I!(B#2>|ni{u|&f=t}@|3!gzHXY|k_ zQbDAYsC5QiO z`-!%F*j95h6K>m-FQ;+fAIi~_ta7)qo8F@MwBnrG_WUlFdR$C!d55Jf4M|K-`S&4B z?s8Em-qGN$HWSBjPi9dx^4CJw&OtH&j>Np00Jc)wI-xS9|IW4*Njdb31kk&Al~gkV zG8d|s#Jvno?InO&+kCz+PIozk?`kt(Y&JtNK3sYTDqUk6soTBOyMXR=(P-RxS3;F8 zp=&#fSm-3B&YXs8W(U#TLM9@x=9wM3;0-h=lxUo`qLDajC;6=uQb8zZ*I98Z52du` zfZoYM>bXSh?t;lK0Cz!O#QZp1o+BKm`@!tsBj!5~vDyVoaC$R<2%c{PIhlFl+EI%9 zO~?IFDbNjzHUJ!!ooL*GNR9F<1TYM>I+_BXa!e*&k;QU?V<(&UAb$~K_1vHW&gUHl z@IRh+^F-zRHn_G7M;cxw@hzktU^AVFrv&@nc=e|U=G7KgRgU$&91OzX)(GS;D-jSJ zw*ZND+}5}ji^ZVUP=FKPyc~Z0^KXCkuRreGC}3P$ zp>?2dfKp&mGS8}Lxp4~(Bvn-ROR8SxqCsEX72e=S0O^;P{p;&N?>~bq27q@vsm8+X zM=bD9GG+(Rl?}qp_~CvoAA2+2E{6!liUe14UKE&U1#USeh{qU|b#O86@d}Hz_Q+FSa>x)WI9fG}VmPP`0(| zA;%%GBZ%%)BAV5Rs;N~8ScE056k(SDRwGOqNDKz2iI>EKr^nOZ{`w~|#_~H9!IwiC z*b1y2!0tHh)w!CT={7&!75I&SE{;qQH>EV8Ca7hf7#amKotH&2n7L?9XrM4My~4Ti z+?PQP>d7TznzG@#PGpMkvfR#dQ+lfU2@i!UFLNRLLnZyJI{63xue)=Ncd|10ZB#J3 zftgb^W)!MX?4_A&1@3OL7U@mTr6zQ&uP}Jv_e^QD-}7}%!y39~mV*N+%#<=S((DYj zb1xLRM>U~E%tce5a95kVzn8Ap?D2BK$j*JbZ+AAFV!vW8yN(u0dwtEQy&-xfI;73d`$~U+pvVkpDcX( zFwfURKy-bK7bQ4;ohxtSW`uqe)jbZYSMz)(3#Y@eLvpecXo*27tB2 z=oX>b?>6WQ2D1~XT=u|bb_o{~7XXgaw#=#=d=*C5v<)%E+j$oN&SZ#FM@I~qR4`M} zI8JJh&e#AgWUkcxmkz#_#5a)0dN*kp$7cX8KY952 zc@J5v1`g6YK`$!EU)I`yqf(;$df?bWddRYmfeX%ZqT0-DUa_+D$cFPPH#t|fD4-!~~ zg@sN!5>IAakvpyTyX^uB_|wwJW#EkLhBlQc(j%dlDt1S3Z`E2Z z%Za6L6|uhyfv1EQ)({%^Y`TDOx29OSi)UrVCTg9tm~ahbD!cR?s}bWLzWX&qFn5B% zV7156D(g|7f1O%liOHy`ich;T^+h)(D1!M`p$KM2ILB|`nMnRa^MRDVw8*Duy&z?cfb1)A;YiK zPsTcDB?&%y0$RJ#Yt^u|@1R8ftSiYX=IwUEDnk3MX0!u6(v6!3J*8EnzZFY!8`xS} zlE-$y!{yZB&1NFaRMV^;$E>tx!y6e{0kKX0G&j+)FlCwnAC2uM-EGZ+hMToqzA&|8 zo4*yw(yDvuM#)4m+jy)KmQ~f(SX3Td3+U`7z3ptqEzC}{HJs{}OFI5WzUz3Sgl5;d zPi%#+4QgKi7|`{7ylyvSFaaFmD%Z?GvN~A&u*l%1vRW(4txPJie`}7G0}Mkuyyy8oMZsx8yVETh9g%qoce71q=)~`@Zt{ zwmk_9W+7Fv=ugSrwO4L^#CYd1s=d#uW6*bgAFS?&^OHZ>xzoJ|L5yR)aiL93>yZLD zsd}TjFZ2b2^P5lx8eX%bNk$0gHvljTvLJ<1^|7Lrl{b3tXCDCIbOyvq9}y6n&7{&Q z(~hIdmZb5jk6$e>;IcoS`J=KMMmI7_I=V>!xx9l&i>^j5EBgR2ZcpReOh$SMYr$6p z(971W@wm&RG^uR-zi_uvo1SW%Dr3v*S!qT8NbzLQ91*+dsHDMr{5Xz@*pA;=bMq*; ziig+CghP8l06pKY!C*WZ9-J+Gt67TJuWJO@j9@VZKK8cNmHnMeEdrSj4_gRUP?L2x zoIFS!3E>m+4=-D-4}VzG`||g6h_0n{5;D-|qq2 zTbQyYblIC{ZKc`jqn;iE=E<3tW>VU!UbZiPwmpm!NM~S}Nojd{RidNGqy&rn(gAoytTWi$(yMUIa%w;Pz@peAM_`m*%eI$l|W4k}2Si?*&Q_LeMw(i^vAtt+i}DyEx=NC&_=k385>JuU8(6AaM$y$T^BFi4Mng8F!Rq= zdsqOQW@6df?$h)h@s8YOu(tV9^%AuA&y3KL`0gn}K>qGegX1wi9HQM$g59*+eYn{T zSK8G>??WBOD__oJjJyIU_QD^!qxTTOaRt>YHDBCvhVW$@QZ|SDmGh$)seplA0GN5{dg3FXKjdwvYk!Uzuo)Fr)wBLt zQk{B*qK^!#sf$v6DTq4^uNhb$c>Y%d|10QeU|426M7{gt{EQ{`qQq5|7Qui7y_1x< z5$Ct#M8@lCBf)xJ;Qr!+q0<9tb}zNfkGu7{!gYuH!2mGZikN~v-K{=-a|aARJng>y z_DM$&Lhmj#JH38-*}Z%^a5k`R2G8*bdz~z6iOY+KT(yt&-Fd1OhR{qIm-%<+8YgVT z!qp!qvL!j{0zmb z)&T$v(bnsHfPjON%hK@QfB&0*`|U4qGU&GvGOP(&Ip}0zk9}5bNfIlx!Xf^d6rmnv zGZHh;h^7%-1{X@Dw021`)oe3_Tz251OiK+W4=M4iD>ecG@6)8FBvTuDX^%w@ULf6EHj5>05zZOf@N>6 zNfc)h=!=&w9J&#}ruNZxegoyEEszG}Y@IU&?xkmzO*PwjN*2RSAH1pR(tYBDo$=Oc ziq8l1Rf>27u#Pb5+l^u7rRjb{YY|Fei)XAGAc7%<*Xw#V%WK*8Zd!m;aneDP*#=sL}(o()TTG%aNW{hR!G)-(U`ON3W zo^MlOFpH|Xsj}usQ+10Z*PF60I$k-3zHu`TIO;}fX=w)uN5eK}9eU13ieOGR!kt4M z)i6>Y4>jNDaSxcaffwruskV97pjV2m*w+i_N-Ghy?@M_98a+P8jQhv%?qP_~MqXds zGj<+_-XoO0BS>MKv#oZu@<8A9I^cdVNofriHQGhpVi3S!QmTUxWWIgXs_QoBJ6CUK zmMgPjnMKQFFdnv<>nC5@2}K-!AnuP!-)0xNCqJu`g}7HL4j6Mu0tdjihT4@??v3nTWH`I!` zQ~&@F07*naR4#52`0g;h!jXw$)2p&TcATZ_>Tv1M|p!@J?C42`>%}&%PoDcWGrJQR?oz9RrKeR!DgKt z_BntjiiEhW2I3U+{kAslZQxsJ*5^AlQ3n~R@-H1cv0!+`@CP4cx`X#V7<@o@{rCOO zkHCo^zaFV(*hH0dpP7P|rlY6j>3)WIdfn*wqY0-1o6&?#HWJrs+6CjBc1v{O z(1K5?g1$RepPpCi#fbS{(_%Ot$fWvdO!@*;0C4QLLRXxypd%k2j{ozwzdSzOT~+HBFbWqu2@4KZ<`P@?&bLoPxa~XB<0Y)OiQ#s!g?q+r*U2u{$vhj zV3hzvO*sY#i(vv-6tGrkf3Mv|6%w0+0g}bS%si&w0$Zx8)CYhee?zxbguQt&1a~hP zywI0j3enjIwHyJfr}OlDH)Ch;n=#gAZ0oS(KdzIW-}-7Av1N8B^~ka#)=ryIPTJQC zGL>ayJ*qet$byZgm8^cU29_KxjQcYM%_d-4VzKt>(vhRlyM-0Iw*1QW7GL%p+vGNh zuDR$TpVg(4CA*TS%kB2?<=!yP@gtxw)bMIm)slivY+pW}#zKpp@RDLp^MJMQ{TvGy z&9x4+Mc$NaaZDDsNVw9%LZ8cpLNzh}`}}v?jv(uhMGIF-^EZ%yKH zHINy@rI$C4V;!%QxLpQ)D3jRitWG2 zd)US&E+DMW7hsQgw|(+=5WZUKOzlemGagwsnPMD!5oW+yjObPS*}%wCNTH7xYcm zt#k=O_km$XvF&H89&RkR!Q>cM>%j;(EN;2ci)BPs_Nc-|0p}9TH(MN)oc0UTA=;rI$iqmSnv9%mTdaws$a9ETlQ+2wsi zR=Psp%tbH(qMacFEpnFrA~qW3d25{aq|qqr((Y4B&+HhAvV&QD-xc z@34qIPR@s#AJ?PKKbTdJ#pT^$0RVscbbNW)(|JSZ4Av}Kff{DJ@cF!Y`E+`EIY9L; z*W+rEZ1+=ecYmBezaGKhho{YtzrBC?dPe|1z6h!TU|dIVbz@T#E*TWN05C2nRKP64 zqERrX|4OCFEdKgsdv}HXG_N+QiE?aMVeM!r-ANxm-{U3i$5+=(t_SyFn1Z z^tGoG799*|e2C*n+%q6;p&H{!8R0d-Q7x_lIsvf?8gPaDWnHxKUY@1g0H)l;35ON3 zZArV5d`@VOZCIB`>Gw#3Djeje7 zDZe;j33ryBB`ul-|2S<>1uGOPbm~|~GRQn7`c=tjFTYKyVL3&IQCpk^!l{XLcA0|a zWDzVe@yNDJnq!0M8qNDtKwH}^K8bXILb0?U$cgPe`J`{Y_3~XGk#2j@QUJ^Vh5>2FRcsZV%HBegB7p=&QK6#pLaGT*H)(~!hyiJQKC833GkIF5_3%BAHOnAFU3 zm)%WNv^ZgsIS$$g=AT7e>gGD{DaN^6Jh5X~1H|RFZX9%}tpgVtU3My`G{j1@ZcPeD47X0O$1gC$C>~> z@23x^1p;fq^$Ku}aD-d~Bpx3YV6cqjTVygpOZ73^^hV$C{aA5l59R%0m~S;K6z z%0L|jF^4IEWZ*6qRrJ!L^yEe?Fbu+dW(0lN_^S_Svdwxl9v$Q^yM`Ft7``<6xTL!# z%#EQmW%00a^=h}j0&eNbLha5WjMhjCe+8Z-7`$GC^rg*#3y;+i+U&?S_S#I^vvt?q) zF4yl)4}-g>p%C{mJU=AIyXf>VB!dy4uedkgg`h7-1RnMt7`)&4$3t*B;+9A^fCa!> zX%*T4j~CJ->x%kRTSU^goO+0&a->DI>6WooyT4BhF`(`{`I%^UWcdUPJj)9rBbORN;>PT{aA~(1OVOT-ovrl zI?GeAI)~NCli}L4S3icU=Xi0EbaBjg!)(`2H{EpEAFl*}r+a6*53;qBRHNA; zsZR-0(9+mE>q(!p_FWs4)t81_*o1|^eVA!4v?h(`2871lW}<@G$KBlU6~Gwhz+L8? z5#zd@EjvKpxV*z_#2+3{leaHRyqAOim)`JJ#EhsXt{4oa3xpsLvgTh`0gk+JU5Dz| zYf5oo#kwNT9tY7SOW z$^!sA9rvgTE*=|=Zy?bZN0x_~fy5PiIL+A_Eqc)^GKJ-mYd6_2_z>%bti7>6i_T6n z^<)GFg9q2sWHlSlQfEGPS5uu$T8@Fi)Qe^&oQohnmcW4b@3wd!-##u8*g470K;Pfv z0gzB)vxVP2KCWraD_sQ&8^CNUDCcYYy`%OhW%b}kV z0XWfdVQc508R?K6SQL@wSP@TjDk-J_902%wR+xWcsW4&q+5_EWI4O7B>tY4htgX|iG56A-@NSL~GLBeO+oyA~%$Qytf8t{o+?Zc7M(VQg*= zQ|xu@IFkt#owglS#9)3TtW=~m3H~e{eGR}Sm7*Oj<7}WLL54CkA$L#o4WoMtz(8Nz z4)pch*Td24k@LoJZxF6~&vI{?4hg{87ujdtk?3o*!~Qn_=F#elk%E8m_!3G})r-s& zJ-^MLp0lUt7;)vA5Ydho0nj}iT@4?>xn3rp3BZ;C1Aw<%Z@Dz-Us7Hi5oEwRx;i8a z1W}~^|0=kqS1 zH>*0L?X2nOY}QJrcj^Yw2mL*rr+7P^(d%LN6&WyFkpX)ET8p>@V4wvs12_t}1+4DY zDPZ-m#oCwgMC<~a1{sPO;THS~0DRo#_!WzJZ1E+ln@vW7$_okOSzS2NXR*nofkImf zvG>HT6CYOTxlqw1U;{V@$BK+txel=~VMtF|rX|6gq)*4pEkv{v-$^|zSMlc>8~n>< z{qk}I7z2QD4(O%Kg04<<*e-vk=^|ss{7WnaSs>O`qaU+%BcY6c?n7#{u;TsUL zaR2}i07*naR1aSt-hbEwfFB;~^JVt(PT+RG%kYH(`r;f5^y9;vgBAo}+0&>R2JmcM zN%JjBo5C`+Nf<9j#TtjA8x;>#igE;y0|5Vj|L@NakEh|NC-m2q6f{V%84*!m1OjkA zcIRabJVxLTi_`^M6~`p4_=+V<(50LtwLXA|?2cx`GrN{p4@U60@pgh4?uj>rBzPPQ zvT#UuVfH)+ZXW;)9{l$C{Qv&@FE4K&Lm;%)o0T;8*b62U96Ug6Iix9CXOXQOG~Ed) zVNI1v{P=hVDx0DpGrHG`D_m;1^0HwSw@CA;w8CTg_X<`B)maK0xCCoXcq;VHU0IKm&Y{=pSFi{*Q1Yp{bH0kB( zb>sAPUb=B^7*n2ezn?LEt+LOiYs}6WgQ=4ii^)>ch~UeBT-zq4t%3&#F=eIkCt$;X zVa-d+=3~7q@Kv>qQFI-)uw(~*u7|rm3qlv0nJF`A8u6;sDplEDt!sIy&(x+^)W|u= zt7S5vY)teG?axQpXz zHL9xqVqvt10lHv&Hl$m4)-z;rYMO+>{Gzd-Zy4X;2&P-tE{%GMqBG9h2(jj!{+&0G zX>rP1T3Dq7V}}ZndD$|hEk?|C!F1zIR?c|QkEU%gTF|6Ar6{QcV(bXjSg_s%0ARLg5u|~>S}ks? zs7Q_$83Zl`eN+^?&7E%_mf0X<7R_(Gd^NT+6e;|!QrVf_E8KDt>|D~ ziTi?zA4%7r;B@l^lOxWnh*?nDxwHTIyr0W5s`m$B0su1$Ex4XLY}q9}qTCe?2QR0k zcmQjk)akSY?!JG2etzE5PY@@-VB82u2FIoIAP^U^+DvhdTY$d!k(0r|-Iwafo_{);Qj{f+E(bjWp41e?W}=0E#Y z#sMT;F1#G}MNiTJ=r02F7xCS<@4f%FI@cvWO*eP}{K2AtlgX!CMXK#3m0$qyqKGz&96UG=dSx==eDJ=?fWe@`yDGsG!}Z6i zhmWNQmYoE8`825YFQ0$qWMH~qf7s(Q@c1Md5lMjj632y$B4jHTB|9jx0qE61qlryWUt_TC zqqdZnNQ{3icATmfw*@!dn!jQ#nUKs)0{~TX=03$WJ+EWsqpkDtb*D687_hzDEl#J^ zayh}1w2~lf(PA*uP&e6TwW*h|GrnwjyPh(V+_g$sagdjS9_$ie3fjV(wF8Z_pzk_=++xkO<%5!7lj-ZfJeR8;6T*DD8@a_Cj)&w zR(XMrMBnWuAyJfP$$7|-V=2D~GuTuPoz{wUL z{h6rn()He4V+Hw_kZ@&Z~pez|9X5nD*)e*T&%+P2rHbVM03D0FfiDZ zgrgx%e5C?9jrZ%4Aj)JiJD*wE#nr}*$89P8yQ_ji76Q`E7&qQ`Y=d|^8MBaP{I6)h zs<1b_4;&%Ek=FwQ4ujG2)8(&!`Q!U{&%QU}=D=pT<&g_lW297gC^FINlS-);j-aqR znuTHPT7ZHCV6MNcTyW;cj*430es)LWe=+;5AGV0fnuux=g9mSBWAI?WuwZbR92VKJ z9-o%kb`dXfhhrglz1Wv9SHT3h?F*C5!FmjS%rrIjVMjpqc@7w6>pLxgY~9he*w_@e zBpbD=ZDCL5%P(t$e1H$2i9pIR$Ao}VKsc~WSIYn0G&nKM(ML6 zu~q7@0BnD>tyorQdUIt#xLl>p0C8b!!)(sNQ=)zdGtYE);4`#H%+@W=GT{%`>yn+) zxM8P^Oj25b%_5u~Am)#TaMOlC zs~8}`6ts$>UZ}mRO?%2MbrjNZm&&{3xJ+3Cw%HDCGT1s|Wc!)zbhzd5Ot9Nc#uYjC zZA#K~K|ef(245Qhe)}v%Uj$C@BY$-|d#9sI0N(GM)w*BR0NpmCs(XN5(BIA05p~Ip zJFog2;g!%5uSpc^91dkD;<}0{%qwMA73pq%e>P{pmDtoL^DMDuCX~_;}tM?S`PrX$>g4}t>}v_ zf;2*7J5s357hYNt-i6*9>_|lKS|6W%WW-%QK90DNqgnW%5P)O9!>JNbUd}V4ic-2MZ$8gA5uf2uLfFBakRMdTf$nrz-^)$$Rjxu?a}yzNo9u ze9qFbCSA@%Ci;9Rv0?%eu;@$jS(|{Yl_5|{WP~Lb?Xd<7TzPrk%H~)5Ke>eMh5jx+ zeth`Z&t3q!Uw{1|_Pxr3b$7o8B=abqgR1-t7{;%_i9ddP!u{XAJF*_klJIvweR==> zcswqo0Q?}hdwHt2pk;^2<5RUiNYgCVU+%;Ky>Fju@ZiUX`EEPbZ&WBbN$s>M$8J51 zXw}E-!*o4f8qhb7duh;4L(#qfu=%4F7%&02Kj=sScy!OI8*o<>l6^Kp(~*#^(EvQ& zsGV6J8=*mSsmno9Xz@w*WO~8b{LHeth*7IdJfKKeX*I@;b|guh4-y&h1+@rYJs*}@&S-Hy znA%t}o3x5?Nhy56#ni0PO+Ak-vLevYq}K7$=yjv5;D!f-1OtXMzl*3de^rFLS$e7q zVDKLJojceT-~}!U>@Ou;$bh%~f}EQAMS8U)%bwomI2S zTx9w7V{9B9O0TI9e~K^8kKwVQzn4cJe3$6U#w*VIYU$TMA0(K91_p08!_9iMUJXt1 zS+md;h~T_opR=B*NY*1Mjw)5P04)BslOBRvQLNxnF)B&haneEnfc@|_sBkjAPqP+N z&_rLhKsQ*+baY$WuYmXXNB2p7ljL`Cb}Ri#%iiMPiKW4IG~LMLF3^|e_SvQr%F+6BF5}RJfzWH8V+b9uTE{!FN2*Xf_>2-I+x>&bw{!;+IF&% z$0e1CPz0cYCJhIn3o{T17I#5yaZX!b93LOI0MwJxVrn=OeN8-WzWMeEe0O(P0EQ2z znnD~*LGO9urPM*GRGkMY&=H3N zchpKk{9zb{&NpAb{o7yv^v&1r01v66FM=&ybVkC51bZnq3a|l3jir(z&0su?CUW{ z4gdfU07*naR0SL3Li~s?6mR7GZu93xJd1g3{1*gazOf&UwNu)o-4hEXmJr((Ef$73 z$OITpu}54MtIZTJY}mP06X-u^bgeb3%w|SThckQ33u}cZm02bt_*%!DRNO&fQxBykH87_oI&h38Y^UXDj_Zf6A_96EQw}?nhDy1E*%sAx^a4!W_QK3 zW9De{J3K5Ktge&HYbiHCoEs5g-{17ywKjOt?)q z4kBLllQn)ErZ}!72*AYP`7S^JJLhYUjn;%-n--RBhna7d$>Vb2PG%!q2QcR9fWP%9 zEm<8R1i)A{CRK1_w~OoAjr`kD|0mdsRBL~^^+jf+9?fPwkYGYD1OE%?n@=QLB2Dvd z%W4X;stT+H;u3vv+$Yi zY8x_Nq+%NUksVkJ-iP^T-t*mu^Vc6A*@Q*Jl?<~MhJnO5;ubmq@AtFau6%e{No{Ob zP&ybGOrd%FYOOM}QiEKjPmeWV_(77=;5rfOnnrp;W~d?xL37u_OUGpFX8;W1_|xyd z{_ns2@$zsSj(R}fk!!{ZiN2=CSZxUaz__XeW7XvlNCs_MOk>sN%;;6XLOU%{nPtT} z?aFBq{P(;w69v#_14M~RIZvewJXXgAR)PVvG8PrNS>hwAS^mQxehU)3D6_!rHx>@k zgq0;d1XaMAbhKngsFuar2P@FPIc&%t&kG#4t3;;Y79rb@Ib+T4;!iS=^Vn+ka><^n zOtk68(cHVmU_?EQmSsE%`eig+=D~Uru`NqlqnBfBl|c0O%i{SYjnH(7001-2Ckh%D zRw)|Wg3qeIbPgs<oz$7qWN$t9A z79(trG#jAoxG-S2nJF5xpsV(a26Q=tWOXa8r=j(DAa8CahCfXeH`G}~F>P{N^U|4W zjKnlt3d8=jnG(n6J{uaAnWf>K<8{)^o#QjPnXb2@5W;RU>)J$bi6*1qU(IU-Oe%ab zH&pF8Ts@%I^|4uNAf=TAMO0;dvfRwPaRaJ%Z$rwULDYOrSj< zN_czG~A&m!+E=o^WP z(Ln;B`*4b%&&k6f6!cvQ{Y3zJrP*rMo2cCoP;)$K$uRC>1j1^ypTg`eDDDwa))wf^ zl^TxQKwJtJn>sPakaW0+<3o5fpf3U^dD#NZBe~SH$$?fNT)mUyL;y`?%^R%yvEW;!2>fDj(uELQe zK(56&k*e6#letV*6LpzxG=4+PB}!*ak#upKqyr&3AihN3un$}bMmLl%b~TUcj&75v z#~yv|4DiTw#1ovD1>)tPWlM4|rBFU#7)JvYLhMp}^8t`JVjUsPeR+QZrs7ACU~*re zFQ_oMGNIS1V!eBJVndeP&6ap|`be~(Uk;$cv@G0gCS1j6T}OQn1ipCKz0zofgNX;= z^tt92kJpgWR~CKus|?H!2n0yRIqB~;0OL|bUfUhq0b&Wjr}KU=>;iz50p9|Ham84{ z1*EaP8CM2aTcoa3e~Uo3I6{tbmDW|x1}iJuDW1E_96!>HoB~)hNoBd0C0NR0m^t9F z3qg3r)Q<0v^y80b0yY=Hpp9kVza(W^z5Yl{PM>#@n}_q!h>~0_yG8sgt)_DHF-GAnSbV7vOKG^m_2jKh^Bjw50%O* zmh8?2B)@;R{rJuC`DuyUDU?R)V@sGMK(=4ndiE)D%i|mKB^}h+ZAt_%SdHrgaALe2 zzHG=k%=4#B&6RUXwmC~#Z`zR8f(8tvzn_I2OrpU9|CS|T&J!c_p^9rV%|D?ym+h1W zYNn}UWi_w0J8VXpNK7zp+#P(KlV0ri6;3GK#lR!eJ+K*>8s+@i9kOoVXjw%O)O zZ4_9j6jy2Gv2=9vi{r^f><{kY=t-XW6kN{n`4rJW@UZu70C$1DPpA02^LJ}!vmCCL zgSrx*qO$CklMXD7Fg z$DJ%{7b-7~e}^?%#%UB(0{7M#ymE#&qrsbD|Mj5v%5&}rz+#!{cd#x40GhT{j|NKA zO2m!01G|dUo;EUagEI;4(5=V@fEEb4T#Me&%gd38XqqvQ{t}O$pZD}NV!;?EY{en~ z1A0M@*{*dy*8p8CUh{d(p--yXa#{m7*6OKpRAUBwwP=!q{V!=8FBIo}fwF`dT$9kb z1qnWFC$_1Zb;s22hHlFr-MNE%+k~~-uY3J=Z*U8`fD4GrNM*YT_yNeSPUSK~z z5=reDoZ&rr@M2#4_``30_uF63XOlP>C7}>y;5U=-L|i%q+tD(~ny8iw^Usz#Xh@qq z2i}0eIGSZn!HlaR+nvaO?MNusO*zp9G`5&=LJ6;;nuPl*0|uALC=Ysz%v+c7zD|L` zpu)JlQVec7|09ZaNjK0or)CoY7}!aawIrB>Oy7Nb{_uXs2_@0hYSglbvRr~K0Mjv= z#X`QW9UvKxwwo^3d4&yAE%usa8B(GFAAmR%HBhm{P}WO5OZGiA%2}>0>k>h!&aqK( zW-{RGT(s5Suoj1G&QiN15j;U$&k8pV#3`ScJh!PC9j2p$nhg)EMhAz3qei>qv(aHQ z_nf-)I$W>ICb=#1&2)bLx#_zo9ycL)z6uRY#u{At$7;yYYt!1HqHY_tq4HQ=QSq%UXA zIO}q7jYjSSIVs}KJlg%vXD(asW~DJQ!g7Ok2X|xDkd;>|7YZLzr(W<>`W-1=_R^>| z4uQb}z<~M4zZcs<_YPp=4sJ%h*I;i5;D?|u9Wgnm9`INGuRUU((<68GtIuL7YNSC$ds~62Y#spwYLmSJ3x%8~+vAC&F$LCOTo)s4m)D2%bUP(Y2HYHio;~ofm z8g`FUR|H3?0f&IJo~m2i1AqZ(V88(2&34Heu;lAB8i_|b1NI{&iqtZ0|t6CYs372y>d)$18&t~VMz4F3Emg{YdmMfXmHo- zybiG&$b%&I_~bu+^AbnCL^#M&S4@KQ@Y68&RSH@GSoV3;1Pcrb>_I2NIQJyRBe8kc z?+zsr0kmY0v`&gu6T^1M<3^>z0cU)vtwBOe0WWncDX)8^Im<-MquexsR_BaGYYdNu z@14b9ZQTlSd!D;Eg00$#WMHsrcQ|}vgkdWjO{RWrbZCh(?uNfwEHWy1ESD2bJyHKl z__}rx+sj2HwxY^ScU81r#WX2rG3dG-`kM7#n+zKEsXW*iaH)0>i@_#+Ju|APcHYT) zKUj=!df;P*J{g7N#`N0KVgN8mFl9z07p;O{1Yqp6zTjAqNirWp#9Fu}v zapRu0-gz6GHvV=sT2=i;)kREaonqP&%3E}bqLphuvoum^YgIUI0eykH7JX?B2)Y(V zcdqxwabG(kHS*QaedPu>ZXieu{)!_&6ftzalJNe~4Zj2u18Z%nSrNCVi2GWr&eFpL z(8b>ZeeqCHD*0_tY8`?yU0MQ-OLevf1}ps?R~=w*0cyK(v$c~iN6EYwm7QSH@{4-_ zupsWn0s0m?kBbvCQY;P-g1%OA3y5nn&x*eKR7D_@_n}T!vFuHy2;HCWNA<}=h_&#^ zU+npV07*naR6tH}PQ1`vsqzwlrw*rq3Bc4w0J2g($vWp?*|G~XNs{<@Xk>{x2?lKd zFkuG&EA;NX;cejD`>u(&k!r(dT0DRg*~rr|3IC3)7cjsMTdei2f0A)A$mf}amc01=FFWWkR&4)up$_oGnC$>kMjwUd(*-G68w;w)SaEmB) zygfWTtWGB}V8982N(F#ktX%X&I;vPd!iXPj3ld*yPd=RHoZ!++)MHXX?4hby8^vP+ zFrWyR4(OXlQUC@C2KuJq@L&Gpw)wlsAC4zc9*eyQ7L@_U zw#A7Qgh)o8oX>>&+1Y0`vBes>i~+H0CA-sj2ok)SM&QAqzvuPzxSsCn9KYQxBpWZ^ z3j(})A_4mW!0+E}0j{L2l<#0Ww9PhKby8|$@wawL*!J$)GO+dY0bT-tr?a@6C-Z7N zTcr3=hGf(Llr_%DBm%qhZEDMUH5~&7?FtB2{ho({$5k#!CEiQeF$p)}0Vv1Ws+xnV2wa+=X>R zz)b+F#f`{Ds1e(lG}9E_2)z-2NrEL2-2m`RpNRnQ`NSTpfMgd(fbMoJGR|u--Ias$ z!^+>)?tbZQ#l24CH8|r7R1@$6<<*eRDFtB3IcorSo#fU{?*PVP5Tx43K#KsxSD|<0 zywP|?Fh&50fyV>qtKRS@KwrQxxGzvP$#2FJ>BCZ5d?RziO$Hmd&S7GJH=tMkB)lO2 zgGMti4fHkU4eIent6h-M@uCa#)o{wK53&o&JFa@^qRSav9GQ70{pF7`o2wp5RN6B7 z(&|avu;C%~H37h80$5RevhEeDZocdQgBOS4d_P!hhxOh8`fd)vb{{S3QIfow&-;f% zh)Z2gdefqt1$T-2CQI+vOMkPASDO&%JFgsYUjzU+FZzJPz`X?`0*1-JsPL=;RigQ< z^GKeCtbUoYs0C5W2b8Kb0P zWJqw@NXaHlQCe`$EKtZ0|r52@LisW0M^)*9JTr&v3s0O zz-&ii^E2HS*qO!TGjHVR4!wlw`X_n`Isp~j2T;A8AU3-x zV!NG6H}ch_ljdnNASFkD1ja^P1PjB!U=Aq-L637vHY05f5}4YhK(rlUvKR~i{){o> zp4Z*f6s_ca*rH{_%1T?QFKYt@B<3WQtpO`1mPT$Xp=Fz;IXVp7-E3wwir8;wSOJKC zEd4MwZMC#mp3n=MHdaeg6$S$;`<6mgyf}DlZXz}H`?3$2IvdW#jgOj2$qm>#5rzMNN%OMF{Niq7r8H~ zDm`>LeJkiIq}H9RfR1jt@eBYj4DqE|uMGk=Li~Cg`zD$F-G&GPuvMKDh3e^GIv4jR zF@RD47W%6Uc(w!jj>;{-+gTr_2E09rmsDMkilS9jqA6Asclo%5NWGibc|Du<_uKez zNca1M7+ftqkl=b50)x{CeDnqY3?wGwq~cXw2?jR6cMEp=@Bj950N8p{kDR{abv^@N zS~9S$m+e2SD7l4g_{Ql>FGvFM$t<*@L3*c3&RP)x%?b(Y&{KUux4Ifs;~{MdsmC zA@fLDOpVx@uC~4!V4OW*UY7abkyVv{2E#T5&AM+>Wn!_>f@IbP+Q>HmXUH2K^GC<1^*^LgAM0E75aT9fi3QQY!_TihtYE-K}wQRds@Pf{UeWr^!eGA-0%(gy`q`bh| zblyP#Xs^+iPDF_DqCKhl+SuhwEQ49)sU6eMD1Vhhfqyk6oYrFQ%lTs*RfKB<0Iqf; zaNpIz-=3r0Ndn+n*DfwK02m}V&+oIOoksVO`zH2o7Sq9g9W_Q5>hQRYfW+GkHgWzq zZZiOlWiiyTOKpB$1PFiuwGnV)+n%NVr*&U^&+$2<=BiN)*7;yAM)Xc#Co|`a@h=F# zHVD9!eZYqppI|_56bd#2wkdbTVl#(un5o864#3#d1#tJguYkeW`Cd*-Hje;zL41$L zCF1F64-9^KdsuDCNf}kkobnn}Z~pfCr>D1DECh!`Mad4pFf}Owz@WT52k4S3?}T1& zX=n(z<@6E#2Z_g6XlAnr-*dKQ3H?2o;Z({RlcmvAfD9M`L}B}zu}s#1Y3l?G63iwn zA8cT7=k)IYz+}Li?Gga&`dtadU^ZB>>zJyO^eLk16Bc6CCc z`x@U|tBQr-G%x^|#u3}y@x3=9SXW+j;4 z4m<)DQ~VduUt%yLt;)AjmIv6U0Pw-C+Gr$d%ZWq;awnRUqjm| zZ3mV{!;XA@0<3!=<@o9?cAME^md?uhD#A7CNr-0$A4uQmaOxBH32jzV> z`@+T-mt%C?`MVWp?oe>I8Z4`kgrYB?7cre`iI;9gKu{gk1=_LZ>ct?tEwWysuN&P+ z<5lto;l{81^d=qyID3l0eHzGn;Vr_CfS@f3eTC7zE8^E*BJi++smYBKd^K?YY2<$i zFy?78i|+ctwD=f z4`%+^&W76ABs<(<37qw0q;?1X7hZ_i-X+~6?nqNb+9NZgEE?D_F*s@b8<^(x{T}C( zX0w!(*S0jetmzX0SR^*_F^*(tie>C> z_f5b1I?#z>PB94^9(94fh(X_UY2kI@MXj(k-(xA5fzXQ!XDMS5Sfh-|;4%>aW^J`` zTjInvg2UOI4cqT<{WAhE-UYm^bOOc^AFb;tZ8}3(l`iSkGLr?7hVBS8D`OoJZ32mQ z!r5dnnSuU!^E$W&V0@}Ya0XB2Fx{WZ-EqqJ;gMxH3)Te>wDi0`3d+wWbTA7p;_+)nD_Nx+lOLbUfF%5NghOfH11mCVG>y zOW8541Sypzn@$*enG^bwi#SPiwuin3g4r)UMPwFw+S zfk_fy9yxzp?_986;I6RVOLBZjkLP56jMnP_(3_@rMbQD20)QuR8#5CO1+*czb&&GV}0DT33b$>@SB@iR7 zcWlUF_pGFgoqMPMMps_I#ywyl4(yoNxG{<8~|9TMcIuelZE@T`nvEhz>g0Li4kST(dcYs2whDfcR&*=x4>>-R^jt;};`C8Z!O=S-x3QeA%8 zJ#^Ynt<^kk$7|t( z{PU2YONb=_W&bllT8Bj2fO7<{u=)|PNIYb7I~|JHZB8o5w~2*+c0@}0i|8~&3!Ey=o&9g{_vEKdn-~RmbpM4hwuIIGyXn50c1vuUY zz(Wx1sg}jcH0UM*R|c1ec?C+u?AGGY@N}tgc@4F#Op7Vs5q2iCEGNe1D(%9$ua*3j zCK}yGvVu+kF2{Z~iK~eSmT_-E5)A0wRS7V7HH|n(#uO3x5dJS`&txoE^@lmJdf1hS z({TdUOV3I+#NwXph{p3|U$kYw1YO%2Z8bWqjIedAlP;l|44?y#@mhcuQp#x@XYJSw z_RX3s8PYK@Zn};cfVULXe;P9#eVviEGrpVvuBy~xFu@gH6K+*GG;DeBH3n1DgR;^T zu(Y$nSKdknxyg@{WQ0$MGrZ$uFb9?bf9Sb=!Z5`w@fmZ5_jpD5*prg*zFKX{x$uNU z1F$DUQ}emmzFZqHY#Xf%tC52D=&;WT!)7B@$4u0zaoj*1T0gZ+8-`7_OEcaUsZ5aM znS>TkOe+@siMb^TRn=0fp92;j#R{+TfWfPEVtnV=$cfLA#_=@!0?-TAt4bQ3*|a+^ zdy82gN1P+*M3jv0rO;cnq_;V{1E7NAYJlwC4x^hv_+}Km8Tzk>{ws;#OB=vo1>i28 z7M>iaFvzaRTW4JWu;;&VJ?XuYJ}j9>x&9 zOrJCTWH^arJ7$?D1gZ6gw*cUN`;}tw8)-#%1J9764Xu`}73nx<8+`Pmjm_VYOP% zfx#fbr_1_qT8f6o(-!Fa@U%wYSp#0JD*&+LbsW{0q~iieFtC<=YB~xm^fYif5_&f#A(;>+%7Pzj4cM?u zJMl$`GQ3lFR|wnsj#-S|4FoK>N+CHl(wL%;QDwV2m&C8;=eey>k*tWip!VS}s9&&ytO5+W$#hF2$*;8H_fgs~yWqAqo5X#9>9 zS!5|$hEPOg7MeRYP~P(ipAc-(mX~v>BdQacCS7OC&ET(gli4X!YxTp;g!PkWqYz*i zA34gB*zr?4lf#N*y%>WOibjVPhII?oj+6v@UWe|1O;tFx-OKD-re3riPr9}-rqhFN zf)|{L$Jc~7ZIz{&h~{)Yp_-3>ot?JhPn5R=UQVZ=$W9#hJ+I|B(u8I0m6(yX(@NBo zMmSEJuEU}%y_sP%!7-}I#K)rnhQZoR&$;$ab2Qv~4_m=9PAeJb=4Pfyo1#bRP2_%N zFl=Sl3>DU9X`@@II=f7?;1=ePT=yO?DoQ~G0Y(6(0ZnPEg|}LUbf3d>z$Sq6-(_djrBVBhz3F*e0I^hG!iDFz+BFn5Mt_ z+*nJ-eE{L)%0%wJOJCRBeA#0qc(KAW6aZfBL^XQ54-Tgo=zGHP7;QHAFpcPcJTHcb z5^W={YB+-uak0RRvCuSbJ7zHRU_8=q zrM$|R)#w_Bhq@dVFOQpF{`+^o`Q^`_FDv5}Gaqy4==pKm2xx2{9#&LretCO&d^lVl z_D|2J^=1J8R@_~I{wflSn?k+H=pjfL-W_Hj!88_>u9jm>r$P#2QBzu_f6DW@Ry*MZ z-Cp0lY`*{Q^6{Ia>3`A0Bi+~8_zF}ui>WFY8^vI)Su$%1Uj5AUKAB9TKP^889HqR+P2Yp!)zk zH@`O?i^II@4Bovw{q;{j{_{`2HB`)(JpmKBoCD@SFw@S`<)^I%0{^N5!^A#TC?&ya zg1O5dP9;q{Xs2jrdn{tnMi5*X!Q`z?+hSRyK);dc7p;;+cbOhoFN?wQUTB58DqO^T z?5;E;Em`-tD`grLMr9igJ~M2O*EXe0Hf_&a*(_dWAXtE2kYId%m?`<@>jMIx8LP`- zl`ILLwyFEGDPj9tvO3&?KO~>FWZD|q+dgo781R`H4L}@kKrZ93-?U}*ndZd_sOMy2 zYz^7BY`LlJ$+8J*s%u$hj2BA_VKzb&hDo5=U(HRe%}ZPKwIj&Q<4cMgz&Rd|5~Ymn z&*Ee-Wja2yS7Hb!9^P|wc(+@u*QKp(b9#zfG&3@EWgE=CmS)G6GHCd5RgcFTk*KYi z*b}LBdT7Uv8OGIZ;_%x+47O&#Nrc_c{b+QHErsj1{IKIEZ3Hk2I91Nvg;>E#PnL=8 z7_r8a*=1kM=YZQ*K50wj_adpGtQS0NJicddbCAg74-2~2+}90mKwCLAL=Y8xOd``}a z!Mk0ky>DJs$<$C;49c`yDgdu)Z&|ql!)su0007?YVi1LmXc31v9@gn`GsY1?45t3` zL4;b8`P2dE+SD;vDaCl%!pF>{QCSN6U@D*pqR6lHT6JY_0eXqP1Yq`F0ewM;r8ex{ z19G@Pn|h>{*~p*7cBT@o#7&*87O9xP^BXcBO9$3|@!Sj%J-_V4k@wwE*zIY%Suf6) z-Ql=iuBSj>1ar~A;L~MQEpq@c5clcrmKaO`=8vaK&0!=Qsk6hx8r83`rT~4hq_X+> z!~5OOe)M3yONp3C@(PHM@Jw6^||0aFqgBoDhBNe^ft z91K|ZG_Cn0{*Pb$D*(7&&MgD>oEBD6TyVMp8ZQJ@V+Q)prZJ91<}YSgTnezC!)AWm zE)JU+E~Yj=OMvj5b~EgFfLnxH03Or7I1z>Id157?IR%6*+NugohrFgh09rbWJYf2o z>^Hyq#h-rs{cbZ0bck6!6Ge8EX#mQaVn>4OL%|TH z$BlM$=89&uZf>YvPR2k*Av|GhCajE^0-$ke42i)&-$CyNR2Y;o zk&T)o5}}QsQW*B*c$nutQI=I(pmI?JB*fR+lZ0EmOhBe}^JTu8bz)mr{;a5MZ?p{9 z+9pyBYFc_(J_HGlq8_`n2*X5KtKeZ_n7?AMS(-^{i^M=>?a#`wmEUiTv?o6dOjk4o z_>}mE6Wb7Ho3oCGg4&ji47Fz)p05Eo&jwWY<1q@%1g1N>?GN7!MmIz6jxqA@K~STt z10Fo9yhY{LOKHnmuHw}?!IAMrqv71qSza|iC^~U^7sfY!_}Y)(FudqB&{ycMjP~9E zO8sZqqZt4I5CBO;K~zRe14l#@x4>M(ajQY-8#ZAvT};4c%@_bYbOp9mf8#EQ+aSl_ z?70Tfm+H^}xwMdGE5JD($Ci7klSOR}ju-)ViM|xXumDUEY3wbu|Jk%dOBq;YEGbb* zJA`uU=F5Sg@ARHcSTsybr=6?Bveb83ji%xi{|iE%kKlC2_G(>^4vXsKa%9a4cZV3U zKPJcX_~D#BUU1CL$8^69cbkBU&;VT-0v`9kfM@w&Icoq|W4jI!n<`}58K8UKtQMzVwhYdSyT2?*0d#YRk zZV{Yx0^UUaedydqt^lxD4qQ3n5qfPKtvK8@dRz2_SCzz6%D~6^MM# zfH6+$GT+v-bya{*PsV^r=@!A?a@+`T%eH6yNa0WFY!g~ceM__GruoPeAlx*>yYGPP z5-hF7A)Y?~m`YwwU+Tf)oEVG(fB5m6_joP;`txt`4D}C3Mp;_h!B_jY%m1~na z6-v=sHVRr?2MJy-0=jj{G*K1vRbVj{K~TzXvAm+L8wgO{D;OXIdK0mI%|Mn5Ym*rAyEqb^r0QWR?0_JK8$u;KJEqZ)b3#*B}WikcMl zST#tZ0XJ~exM0470E}HxppqQ`JZdtN2RGBelGL?d6Q#Bjc1Qq&8CI`jHj4 zb(oIDyybdSNdO-FzK$ux2nHMgy28G8X-QKw;1&=oU0VHHQsMs7}PVy>;xwZB+~)hZ$YS9K_63|Y}i#1n?=BR405dzw}SAFKE}Y#Ebjp(nS~bm+W@dOOW)c6=#m8E z7{vE!-YaL$WI9Al%MnkCa-?0;U46he2q5%i=2!qG{*lE3cUL>(3}}k7Wrr3HtoRar z3B44nqEIu?7Z_|U0zqD*vX$zjFBou80Et_yd{f)YS~k&pnE$9D;%!!onR#X{naWx0 zwQkG`{mm{U`to==nK&Qg(=I-4qy07p!~$-C!LtJ7pi`B@<=g=Y-mHR6jkUmI#g`*S zz*^ug(D$^>NPh{;YJ3zOcNvZV;52Fl&b^o>she!$aM#Pn#=4Gth|{0f7J=916Gi2C{d?uA$5#(jAsxQGhPhHpsmIT5LvR9u@S? zZbt~foD#-w1NWARS-=u7Y|wcFkOKh!<~u+^kw4_y*;+3U`dFhx07A2oSkmF}V|Fd;vW{c-3b z5`T0pZ%OqPc4H|9gKxdTiXVlJ>-6es_PgKy`p4h@`f}W`bDOf&*|;yd2P%w8lLmge zI6_UC7d$aK7K=#8GF6iRNcpA9F<**P<(2em(xb`#zT?T_^f2@&-Zv1DY zlv{X`Gi;m_MaD$@EgW7MpseP520HQOFiEhfGfHWinz0I-EGul6m*BxHVc;XgNpY<5 z%yl1j(ld{+eOp}ONwb(wW<{g%*BdjvOe)-@rW3%x`82iaP5@)}@k;W!!F!tsrDOCY z_osLvV>j?RBcPPi=BACJm5fF?tEWS^F=eyJgPEYV%(dyRno!}A7!2s0h=-t0h_#y1 z2>xx8!A==EI$T%)rVKJLc(oqm96UI|LKF|v)E$pK4h`cg(CghGsQg6?w!_4DU86?6 z!yR_;UBEVUEy`KtsxGQI_9bE}wcC`e);C%lasioq#$^P`TC%JAo7A?cTYEuXYNi>8 z!Dco|+o#3;RS5}|cPW71?Y}~F2Cv%vuW;-RU-z6>L;prGxSN&3iS%SC2G=3cR{%KC zJTv%i5WPVN>(u}T3k-)>(ExBHEzNxZq?quCk8uZ(IbV3d(Rkb@;&Mhvlh1efLnoB1 zHQS#3s09p0gh?mM`_odioB+KH5O$q4>S`+cj-6Sc$oX`bO$Kax2JBH)1Dq1X7wB7W z9O-t}>Mwq)nP+L7F6Vtf@1k~Ri;?ws(B3PtNdN#dZ;ZeRz?gcI2*9VGi+vOO&I0UF zik9_jqT7W0$i^<}Q7?Mp?5kB|oa>Lh`Fcop&bBGUelMd$$0Hb6gaGa$E(eM8K0%yz z;Dw+sSSUyHNgo&t^abt$eTDdHn-$R)N0xq>d1eimzgnpe5=bzIl(3=+XHA$tq3$4M zbR>mB1*^qW%7-)=Bu{1E0Rb4`A@~t?q=r`*xho175n!;AQh%78I~4RM`i=uBe=?QF zb)S6Va$3HBIRa>3UQVauX1`k^wi{8M1SEqHi;CW5rA)W_=G!LH^Uh!9fwuGsv&b z3o&f3VoDa{B7nnD7)#2T>44ezO_i|r$pkMhe(2qq97E=ZZU+Diy!`dAegOa`1Ew?q z9e+X501UJpYzC8zCmohiEVB5O&Y~EBNiteIGW(3QFdQ-=L6<<|!H_krNxBoF_y8MB z06F*-?JU{E)ObJi$y3SlMG#Gg!r36^j=%s~oL5fb;Ja_X{_ns1@t=SC?Kt+5&}k$) zhAK`nDvKeVwaj#{euOAuKp;eLmnKcx`d5_40v1ZDyo}EKIRKcRIiD9IrP1R{lY+=B(LpJL(6b^Gb(-49M6+g$qj-O5hq*~?>Jm?*j)!xN z6N)pihnCexW|jG&qGyB6PP0*q8#_)eS>Xsu9G{N(yiI92K$AYEtSRxq+?5%~0S9da zD-bxxCxo5tq8F{)m)61rW5O`7O>GTh;wVePG$_=*syX@nH4i55*Y@MojtdjNv8k1w zWV|mbF+tN@(VEa!N2Z{u1GUlVzT;_z`v9Ajg&Xm#Ec1cKpy_~E#o&9_ZL7;+moQ9g z3U>sSf9DL^qkcUozV5uMqd$ukJcu;@IlFYK^|^danU|0O0X-001r*o?x(X zWl#W)k~fGTdgX^-5rYB7mI_PnRU+7o^Ehcm(xTkXr-Rwtn@mUS*PYD<>$N0KmrHL_ z_5nzu4XIPP(l!MO8yW!S#BdO|z3|=-ZpT@Vte3>Mm<$T(lSl zT40sE#}<7XO=f9sBKp$HL3^^Cd1XT8Yn3jO`_7kcwf0Gxr3Jcd7mGo;bU2Je0jzY| z0rZ+Hklbk6`4a$BlVmcHM)6761-G^dZS9?IPpU3W2FZOXoguBuyO3fUgkb{k8AvRV zXpE2B1Q-n5T}-hMkA(6r13>a_We}Gri*pOTI43qY${WUlaECi=MXXrZhAuxWANbfaRJtX?;FiW zIZ5*MhdowFrlB|tD%nESo}`gGbrX5Mt`kY*&O(-c*NYf<1JqeAq`XS)Cni5}k*S0= zpTxiY&9DCS#~%Q|Bgd%bV%-F!aiQn@422iK67oDCBy%1Vfwh2Fp6>#|l^dyb1wakS zHSM5|?WN+IYZWLpeJWGnY${>vFJ8Fp_hrZ65`ayzT|pg0SvsP9A?V;PSUSOj=d=9x zzxmZ4fB4;IxrhUoTGrfnO>+@YTTDDLPS(C<`f(X8p~lRZYSq&Hq-xbn^|KF)#Pql= z51XkK>lc(YHSB=8C?e^sW15uuqcjI)_t~D-I7$sj?!`Q+6cS9uF=~>7@=`gArouQU z64QTE$BV`FfqEwR5g(rC$2C6EB2P$>LWM?-FtG!RQdtNViSg;8$}~Py%!OW=$QpwI zOV>0b>Qmy_I^x+9rpUBuVOXo469ixwgg8|BZUh^o3BVjxvQ${)v@-vC#+Ne!?0*LO z+WFv_cB0{ngWIhEB7Q|$oa3`J@j3IlQQ;@f&^Hevf!oa>>_H62v;}ghC86nJkx@;W zHR%kW^LPm89Sm*}7KtsJClWhDprFhw;T$krP9pGNy!@4>$2B)DL>%ZlmnkDpyPZe4 zk}L*WCnbx)jQ>#{p0Z`yVsJL@M`3F;d?mPh|Br}H>z`V!FA;aGpCE4A5;whn00s~J z*Fe3b=m`nNQm`=A!sNjQfW!E;#tncLoS4ne(m9;BfO!C8xlsd%JD(3%3v5X7f;-jR z`11f-)@u(?H=PYQH58=x;J!MW^!gfrL2U&}la{nuQCF*w-Ydd(Gvh0F!?~(g4ulX# zg4uXjaTr|m=2d@DkE$hztfNSbqcvUV838Pytco=vaDwLs9<1&N!0ceT4S~V<5zw2@ zL4O?ttHCa0qu^Ia?XTawqG%{KPv_R z1BO?XkxS%EBuIcalmXw+ZQ&M^Efgo5zS7pAsOsww3%G(-{@N7xmz7I(p+(73$sZGm zpho~;z`3-QPC}X$;-RD!OGi$vTdnleY^OT;vwOU3o*s{v^X`1w0(#f0InLj|zno4h zDqGz~zM}vD5CBO;K~x=1^?F;bHU;?Z<#D6p8`YxDz>I;-ptgY9m-h#dUEBfaE4^2W zzGTBx>cAbo`R4NUv?1u8uv|WGfxGOZ`Pt82C_jYIiqV+%bKibEee?B!)jM(&{E9N4 z?0mNQPjx4Z>bZa1<(y>Qt`hNr6hDlR;@d#4rab_7%ND0BC=!HK z2`B8h<_xzy85Lb=iotC*h>=UhksAi1?>~O{>z{u7`S&05G-4hbA1axloVa*7+?sIL z0vM*HqmbanOOdQyHV3-H)7hkq7H`|-q@D>eB>>y89IMBR2V^nWO7PDc&lxj5tK*y0 zCo!*R>{VsLEsGW4lq!t2uZy2V?wfh#iL`~|$j>ut>TER^3|=J6JOc;`z&H`IuK7#~ zO4Bq6FwApcFnKU*ANGJ;xak-&ox18Y;88=-!h`hf9~V~`EbxQ9lunlgI-%61 zOE>m*6gR!jOPjH=WR&MJs>Ir@R%#~JB$(~cRD{Ou;+Bm~!#20~!LN*!p{AED21|RI za%gsA(InBDe(Jdl?z7utxda;?)1%1_4M))cxH}x)0fup8i8;$Q6#9cK9YzyJjc_i@NJa134 z&aCLIK+EP%Rd!d4L0x|e@;B$}xn0A5qyl`d!?A_y*Bg8;MuT|zI;0llkT1Plfh z#-q_PK{C=Ro`nGVj!T(+lHTt~I??conzrX5b`02L%&Vc%^q4cJJBBju8Oh<6dz0xDC$R;Ia$P+vu?J_rTg(j)zrv+QjE= za$MtflY&MF>s^JL+L!*UnRgAnl;Z&UvJY#I?=U`C707X1O??(<)eqnn=&SR-9Pt#N zoXBZ`xgvzNYQ~ZUQ1?gsk1!h*Y-E!PvA1CMtHDG4(*4b}?)MzHxA08AtX z=mLomxC4HL+uy$3QE!roHNr5?|K;cJzWwHMI?SIyj?Z%|_<(f{0E{5_wdrUe5E-!1 zP1Ffs1riyy79-nr`gEB;o@W4KY_PNB0iif=J5qN!$U)r2t_*27XAtD^8|`P+@k@nS?D%22^rZ0A^D(w?1b2Ru!Yz z|ICV}9c`rdiwq+vBm=7`M}QmI-D6YPc3cgg7QELqXwoScCy71Z8!Q*)55N1*AAkSr z&2lE9TG5ELRnyiN_NC3ZHsxDVVYxm^)A?)(z!Zo!nFhM6u1mZkd|ZLSln*3UG1bgB z1v??!9}g@09tB|Aip5@N$=vFIJ4fcU@*)>a(m!-EE`loe7XaXNz;cXqU}-Lz=E1lR zt^jv1cqlDD=M=KG7%VC1M#hqf6RzXdwUDg_OiJU(5hIcUPHWxg@4{+fUddtNmXb|j{J#KTkYE5X^(=kAi|>VH!}u{$ zp;pj(lacPXhQ0fK?|z_3X>2cwA_SuEb_>vJ5z?BO4Fq2iCA1prs!vvioB*~}VYYo- z^I!^nuv(9Ifu3)H*K&q8!~V@kcL|oV4;^WZ?hRh!#PRN3U$VbZ+RgIeWNNGrzo5?n zK$pVH3{kzv?&6|FwpVJdH6OPod8f>~0N{EmF`KsMrPX%?o$Ugg5P&N{SKs}zJ@|+A z;2(j(1YptDNLyLnW5QWkZ#PQYjV$FYMK-7?S(KuvECWb^2uA~eaeq8GFdqMoB)D1* z!F{*K5J3`*sMg}R0QQNnwtZm0fL;<`pf3Xam}5==U?!ynfS2mipfne+f*s(vAUKz_ zv%)iAp50!8_hpy!#DIL$ilu^`xEcUp^$qk`_XX%m5f`w!3K7R`ayg^~VDW$4`1`eY z+6emMcw7ta0&#)6h|4a0*pJy@1?VOB74!wE1d1y1(M0{0~MwQ3Jo z{W;CaagLXlyH?#HAwKU#$6YnBW&wa!lDZFYo| z9lR`O;zv`eJea0mroOSsz?*1;THn~u0Vf(BJZv!7_>zT<2C7V!=YjOtYhRU}wPg!5 z{SBFy2DlypOQ)GJyVYDY-H3_7);-B;aoBkz`^Y5Rv?yjH7%hsgEr$Wa*HpOId(-Iw z((aqiGI{2vQ+m)A4DQ{CSX;m4x&29ztXFev>sQO!VqVP3tof(9jo4&*{iW@k4h{6e zy4D_NvEK@ru`P?m_@-c=vL}vtDSoF4>|#s296wEmQPc~=ZV-UGcVt93>_l-VQ6WtH zuP++V(R*|)*MVA0vf{ErbJv`3u@hhAZ(~g8DY4K=o z_^LPjr|#e%JNC`hZui0F5C{+6fbu#BqA%cCa@6%mEQ40QgklK_#>QGa2)F_s z6CllAXe0GdMv_HT>AvHB@o*Lc!K1b`OH&n7&}zNF=I58Um-p`;0n&#<_457zSOwOC z1fL()ID-D-WL}LCxE<#ozk7aqy9WRx2-qLLd&D1t2Lpg-ix@}tUa|gk!oqi1h|%x4 z<`@Z%QW$=_e#G(z9;`VuEH0Oa>a59Utc>hyeSW9`u~_JFG+n`}2*$ZAz^z*8MVnkrd12Lo<*UlV}4B9<#8nBQk0E>now z3q4e!%8{M#jJz)OIzCBu=q-RuEj09~Qpuf=_C*gG7s#%*!AnP;K&+l%IpZ{obO|Jm z?cZtCxO)6UN@I#FW%mZry88)&ibZMURI=t+c{gFk+LXYY=e2(@Q>HpmBcju4wxe84+rilTJugFT`Ia3O{gR0* z^hW_!fu-TIgin!(oi)=Cba$Y*X@GYsb;~l*5nD58#Cj^ZFGV?|30%KQI7+XR3Up8w z!?a=H`ldY^jTvoqNEucDmiNZri$|{Z`nlcqX`2 z2!<=kb2lA&UT-{abzb!b=aJWTT#YjE!fmVd#(S?U7-8b+U=>=;LSK_{EwL&{xn)tru;qdh@(od!_Kf;@7Bl;96+%&YlD3Wv$J46soNefCaHk*6Mb)D1*B? z0C#Qc;8ZoFqu15N#u%{B7l^fNcI3X!Ze8BFh?_5!Z2eKeE#lHNe2wRMv2EeKQSEub zGvP(XoP6HNdcGX>iwIr@)ON=qm<1>QvbK)rL$R%}=#SRw8!NH+ONFAF`qI|^dObcMV7<6H+!X`wa^QL#d?$K8MsTIdD;t?lFuobQ4gUgH_=~;+ua8D^`woaGl&o9nC zt(4h;ol5`!5CBO;K~ye8o`$`qNbviIoB#Kpe~APOj{#uz1dKU_A-8VcW|PwSU@N=2 zYg2GC9%IQ>o=<8BZZi!`?pGjc^T93}MYcA2Ip}+Ndpo<@511i_$LIkJaXLwLO<*5e zA~Ru=c)bc66x~{`KE+^oFc$)OAZ;3{Go$aj12+mo9i)iO0;DK?cyMvC?pOZ$tYPeKf_Fa zA@?eueW{ZQ0FW;r|Z+qmk)@ zPXp*RvX`;;EU*-t3^os~0zIMnFGPheE}rXusa1m0FfHG@I&|KWloke)mo61Ejif9R zyjYIsi_vJ(>JO7Z+5IeveRKF7J#F0pX`eS^t3=~^Yy*rKY}&ed=l%-8HZe8Ov~$K9<2#x=rAzZLGkS|tE5al7q^G?TtQ z1>m{kt`;)gauAPkVgQEcHiB7(C5vrny<==66|ArM3~1J-gv%F#UM7g5XDUshcIyvj z`cS8o%^-R!DJvsQw##YPJAkTT$Z}A}Jx1s&=-q85itT%p zc<^d98jV^4>HCNMc0W~Yb`v44LWnCc_SWdJ?sP@yr8D5;7y`!a=VP zwM<&lV%^t9Y+V2nQA0Afa7O{~&3-Ka{^jSN0AQi7`7wxvR8zY~$6z60bYNDu= zbJa>-yL($-GA~Q!9+Lq+0aPm(yLNnZDTrGl8hsgug(u-Kqa{1ek_th4ZT+X+ZmXs{ zEko=2)q2|yYes2N2vI~;tX`)&=r-Do%52>G;U9nf_m6+yt!G{aE;K7ya|rg{F&xpu zTynoINJA})GZVc`+arqkSu=kvXl|$UcR6kE);)drFklwSz!9AU-`~vj?SRL$(u9UG z?;D@b>Sp1->3YXp(=roD)&STWTZBU9H1=1wCMrxJwLguq#_66f` zG<(<5X(e43g5I3NFi0#It|z78sIy#61jCa_XK2@fgk~72Qv0-A{Y1C^qYVU?sxNFJ zD0yL&v?Bl(48KU4pOL8+NwrStw1jMZTipvYZyp0M9%7?T8khFpRP2l6)5Z-LA!eXIKg%ExFq+ z6oZW?!&d9 z+FPSHqQAQR@Wu7}&#w+wGt{AN*627BxLWhYen>7F%4>#$*XD&Ttc~-F!fD;FJ9Uh6 zSx|y)=M~~Qw^!5srVrv`5A4b3X0%dHou+EAI(DA8kO)nU)hzH> zwQ)%;i&_(%HtEi;Al79s1*p`9eWIy?+YVf0bAKrUx7t_dku^9EI3 z;qGxaRG0{;uWqq@2BmI&7uScez8xM+J1fq?LVbOex}}krr)xK$PaBIHm#Ylh0>j`z zGV``9!7$BPx3+H{_+Q)j1tlin`FWr0GJ_Zz=R_1!j&1F(7C9imCBaXdol45PCs^ z&63h*&4aZ=@N%dObZ(?}4sl>9iey1jg~Zf}1)Pq-2vTAhnJ%9uA$M?c@5CG8j0#;1bY z80G5oV)+xIP_f9DJ}p*06GgTu+rjI4`+2qbNu&Eh;H{usN}CdW$T4xPFh$8h9uq@_ z@!DPv?kn^a{dM#`gZ>8e?LO%(1CtiGJ553%*5x(wq<E(9 zMj4MBkFmGc&nO0?tZ7xw%f^+xZ;Ko<01p5QZiT*p?s{9>?COYVumkWMxSnM@1Cr#^ zX>PeJ{RV&|`f^M0!9oCON$*x|w~Gqx;F4fWo565U=dmlYnjjwu zG4#-N{hM#hb}IDM?PfKa&->POIs1LD?#t)AMb>|V#Xi;aQBBV-wJvKz>n__G)TJ;hiN{G;0k5MYbjsd zzg^wlEvWS(>I>@?1}~OvJ^116O4m}WnV}=bjGmfVeZt6KX?-`>Snq&EGD3?l1Hs5k zG2u$1GX2Aj!N!2=rQE~KLFh{jSPU3_pHk_(Y=$}X-7r^dUZgL}Ct5{z0HP2&EmJ(h4+cXGcT0R5eeg2kJyL6+Dk>5sbBM=>CJm#Dzz zNpJYSlk=kTr72Su&dkcNRs?_-)4>nlfBUbW{&Cn$>t$`}^5!w@4OUD=)3PV%6#xr{ zg}$S%_KUhM`gUe^@;YO|V6%}~woraX{{;C-ph!!bK$MPX05}XUd7FA9g;=-Jkp$dY ziPY=Fw##Ycpe9s;83Go{iufu(-?5L#58bn2Blzi7b%BVu^ZrfYt5aYa3gC~XzwluF zEgjPrO%oZySOQ?rGdFw~rjDT@`Df$q-ebWPBmmZx1q{Qh;=qjUFkAyf57T3W**wz3 zI~|YL%K`Jj;EncGz%WBf`Rq%4kQojVx(4gJEaG@cW3t+;YG_GD$6xqGtvLf@pX}y#o#%JGo-ZLafs>f^Ps^s(n(d zn&W+`_B<$Fd0N=)jLOdyQCiYm4SHuu=d)Vt(`N6bkXY#3>b(Yi8PoyZ(43+ln1Zg0 zTczOI%TfBJ_o~@R-F$mb4@L_b>a4R|sqva17&D~bvz7cw@?JGT4n9QUVgT3jx1OP7wT9jv|xBWOCkWLF26N0pTXcL z4a5_u0wQie+e?rGbO7dr2$GYfbAntn1TvrZYo}hE95+tVun)>91JtdObQG7d{jiBqZk2*KgP<2qA!(TAucUf z0I&`y2E&7e!~n1sIBi-H#Ig48W>%jtZ9xndF&GnPlLQiEq)~@J&7UzXI?vHkt`)NY z@c;bh=Wef+FJ!C(%g2zcwWJ~dF47)Vujkxd?!3`372kHd+!Qu@bULMh8KX7?lhp9^ zEEq7DiXA=UJ(L*qHW*lPXVah|>``{NrE;8Fp*CzQuZ=Nvxml#!T-ijNm_Eimk~o_Ckipqz|&GHy2Lf9W0*j`lVs z7DpzbX|tm39{^SefQQ7CORL5g4F>Bg z4hrNhXTh0})JyeRG4vdGgESJhQ8HS$=t%eb^$5f1v=XKc1MRb8!*hgfP%TYdH%}~t z8!_cekjkc=n7S!7)G)uE>XTb##|y*E&3stR2o3s~+y`752sC0VxMYH?Lk=UX;JO?-f5T=+K4}^IlyHto9?TaV4 zg^xNk;_?gh1{OOqJ!|@n38AJ{YOy2qrY-&o&`ZOY`40|5`da8K4Au+Uh*A5J+_-^s z_e@y35F)N?2vn^$bpbGtoFM{8Y*rN;E)ww-{aw{TUm@;# zUOEYHhYsP17+Tl>01yC4L_t*9=~-nvErY=+5+?@0o7T;)bGz#wQ@M8=kD{bDiS+T~+lPl^G)}+? z{O)f1@Nm$r09dg!4)rS`>+Ud7=ziTJh}D7M`TlWzb8niI?>-zALS^B! zkQ)aiK`a^q0Il^xdzF{cukP2aj>V7lNd1alElP|EAu*pJ_=@ruCGcQ1Kd!^icz}sL zxkD7_%V&$NeYKEzygdql|MTm=+nq)(e+d91IG`mj0Ae%;xy4>nj*Iz%n& zH83rpdDhk#*5m35-c0V6^RIl4s9-(GVFblR3abSZj||P#_G+xTAv0Oc(mzE5myT&G zL#-MBR^%^V<}xqEJbLYV(}l4_g8%)me{R+@0dS{LLhpsshMu+1r`9cj!Q#QIN&B!G znzx4;S`@so->2z(qTMmL>x8&PB{&+pk`+X}*TlS>jN-{iCn}%|^FS?&;-C5YjqO+1 z3ELw(6-$G6f`zlyYrH3`pX3$7;Bm@>N9{tZa^`yl8*SqBKmc6(0}{?cM-ksByAe!{ zoCJr=xu>Zem4gh{_0J$OyjbVTwqM(Nc^UddvSUGyX@ts)$-Zt zMiwNF7@YHgrD8!BRDLkfnIPbt%%%gIS@LoZdjbN-LlP?FT{!EgXha9%IQboV=)4k7 z{XPOPMiKfd4S=2XzI^iWb)!JM0#h+aE6oanZ7$Ylc@tBVeB%SeuRveY(Qsn?f~ezS zpOA9jEc%qO+ZoUe-bbKs+I1DP$GX$#F9Slu4AC20qQlJJYMYU8h~TFL`nvEWlSRSY zu#-s|*3oSbcEHxF3224B`+XCM=H;?7^USsgu^?7JOF(%e1GanC6~XO%UWlO|b*H0m zP3WuGuM+{V$nI)ZUd@W2uMX&lj?fGG0>Fd-ct2|#=FO{hhd8+Eq$^=rGcy1jTB|(g z8OKst-J10arch$?6Cqqv<8uLboyROX+867D(3uTL2z}AeU=Grf&zS4^9HhCSE$zgz zoSwtExbMjIYs~V`#elH;7S=9iz3qCuSqX_pGq>}E`=U4L0DLc|iyPAI?TQKAyE}6< z0+R1t`FS*HZ1>ZLcSliMAu9rtS2qhm?`A((Zn}r-$<^&lalD!8SMNW+5>5-D%^3J- zjti!W=MXy=WAGXo(3H>3~ijE*>UUDgC-T{Ux9hY!7;+o8v?POc|Ij zrIlQgq6Y%$SQZ2R{NWY=Zs{A!Ut-6G+CU_rS~zOuoQn)x&Cj*c zMJXqseWmx0ml4iR0^m~a4FH_azA_nvcD>WAHj?t=!_CkC{{HK)J`THe7_c`{=Kx@2 z#q6`{6is8?`>@0&uXm%(yzQr4ZaOG0rgeo|1t)kV=|>$4;Yc`}VS@ut)Kaj9mq8`U zedvV5Avkuy=(HC~0m-0OFmj)?%p}Uoy~whn?6&lh@VHqTCWU@d95hPPZgoHJ?PlGH z@T`7m7(7VK^~;MC^kD0iK~OEn0^l$Ic>DQ>J<~@tJab+};ltFwp>;eA(9DXtO$L^z zBbrvsW=Nkclc_X0(U(QXA!li6f^BcMG-e-?A0O_ zrZo@d$_Ot-VtTLA=BcNIGqCz!@{o?f)>q}|i(4@LRsgU;BpwLdWR z82dK85^Ur0KKi8(f$l|xXt9u37@W(zV2aPKCYRwnrNY_Fo6P0wZ1$CYtW^txek;PT zc94@vhjA>Y_#SS32(M+ljdpiF_ESAeHeQq%=t9u>X@ETr7%VJ*hWJ$K)cX?j%@#fZ zfQ8C*CR>@d^*ZWgdGFPk7l6-1c?lis{#x^e7_*?7zG&*ZG+5CBO}Q79tHHQrsbdq# zEJh5DR5+xR2l>&oGM<;MXUbKV#eIdoU_7Hrg4;-Z0bqKVX|oFMgs$f$=&jXX1HhD- z$K#w3SH$;lXo0=~O}*S3i7%jQgm_z7@2cFn+t=2c@?ue(&GPeUaWN}J0N!s6djA`J z4S+q$%V}vdtGc+=69A_SxJK;f_1(O&UzirhVbvg6jq0S2^VXoh)N~OR7<7w>=G%y> zpM}hx#?cWQ6-_5kELsKaLm9)+s$?l;H(j6wnl*@J2tpt-v0vNZKbt`>EbC$C^buAV9hyeq@2#vXLM+JFpMXdFjOh;M_MkUGs zbyVX4HudWOtN?r1ZfXVOPCbR)m7y09<#O4yJ}`!a9JF|_;C9$71HfXy0^qf9$P?y_ z4DcWE#?Wku643A8Z3V!LA(51(e~Nb5IO2j85)Xhy=~p_|i^REMD!YJd?6VDp@YG+A z#;a)IK#Ne?Cfz}?lG=Z&z9J;92!@$()3%I>^Zz|7tTV^XE`2`zIt^KAOEaCro#@k` zv;`1rhme%^F0I%ptsl#!Y`axMm)>TU#$DcIaD^H+-1;yySfP-G z-bOPinB2GRPC;Z^vWaO-jyeufrRt#Jkb=S$CpzM1^*bX%;v060U&xbf1^uK!BW z9=z<1UUx@l77o4G|1pUKpH{>dA~utuseX_3};>2JiV)ZH&pIeBr-k*j zq(EbmZYk+r!o3=5C`~{Yu>T?YoVjR{;s8W{gVZhcEQ_wGdsn4)G-g zty^Y|bPvNw3oU}%J|y_zadYLn*SH9h8zlc}Wkpj1uFgiS{d&Bb^-#Ljf_vBwwC+;{ z5FYC`sh*K^B@10GUI?Ok&D!tZzy0->e*wUyavptrhCo>0;2#2D8*MD*OU0acun-qE zoXwmobZiHgFWiC7ye1K`qAwcA(feUKS)fJ#6u`+alKzXRUa93Q3Qmz!*WQAc}yBie9F7n7(k*A zOCb#2E;@&GpVM1NY>iHizN3B-JVs}my8CfAygrNtb?6znbd>oc#o=ImU;3}x&3tqa z(gLdG4=HSYN=AP@f6K~*j(Y?ui&UAg)+lG>%2f0y2H9wPY?6Va4fp~5!v)~&*8 zozyl`tZLIgCGG{?2NfXtBJ*|lTx*|v8wEtNLT9^jiyrR?8=a8{}-FB|svOXz1 z2N^2W8pKYP>|(WgQS*jd&Qv{y+Fqy-`=n!RI9$)WMA&;e00&cd_nD!`QtLirh{6Cv z-)=)O=`qJvmpVQwJ@x?|> z0SR8FO)f|PPA65}-d>Fl+n#N@?H{*};_Y&%TN`(t8x><{Rk#a0XeSf_n0l3%q5!y) zRQ~w+qX78lfBz@|E>{Yv`>A0tgI?`s2}AX^D=oL0)mBm#9@lF{MYWPw=uRyY`ZmRS zeVQWC9%wdcM;UspuveGppkOzRf% zrL^NQRSYBtbq;rP5{rUP>CI0k{qMg0^H1M@d)zIlH|rA+1_u?Yt|?QR?e3sT4LG>) z4yvnZb2UvY2>FZv01yC4L_t)%#lc#fp62UZox}6eVaG$=oow?d?phbL-=p`8ub0kP zn)7Ldp*9>kAz)Dm_v4i8t`$L`qgB!dRAkq&wlV7&64N6sDy-wBnsj(RgS#} zJEE^O4J~`oL&+zUgjmVRP1eDM1f{fG0k@~a zNHk%c3>g~+Tj%E1oeG!jC__y{7GNCpoKcm>^di_M&YNb(R?T`Yx506 zm|60Xzp~H%MKMd7r3w95(SN6}c&1&u=>l0{n1LmKSyCx_8}@ZD4eZdXPo7b4v&!&t zLz>&@#kpY$ThA(uH|4~-uJWZ9r|2sLWl~7T+0v)E^7CTtMWqpBHweVDO10ChRqzn_}~7Rb8#h*1fzgZ#R|Qwz}UL z7z>q8(HG(i2_^--TotD?W75;90q}NR#n(vmS8%(S6aipT&@f7^o*?9IuR9vt-Q{ccS^f^Cc;Vf;dmD1+Bbo3MFC=*tt==Wo2x-G?AF{j$y$X2Zn@auU|8w)iWtnXqvFdY%uRCIrpPVy6$aBC9qPf} z3npUG)SaDb%lm2Hzq|Y8U;q62kDu$!SIZ#*9-XpmhvzBWQ}h+$3U{^9bP{Zwvfs&R ze+ds}KYULL%MDLsbdb9zjdmNlsjPD+odc#}QAchb6@ zdU7=mu#rKr3Wy=D38IN9Rw_@D9gzx$8DgEW?xzH!^=9doaFJ~^!X3h0B(Y*2HIGk$ z8MVuv`;d+z52hPA!f==cN`X13UZkoWrdEv|p-)>e>=aB#+Lrjy1*IJW1JJ3%(gl9Q zzv<7)W?w0oSrwPD3Ry*-vCVLi+F}vuYgvN zDd^4Qe+K~TNA4jbZFg2bD<`io2x4H#^d>8xz;p$-`O>E_V4q@o!3a~R0Vi(|f;R9& z{$g05BRY0zMe`+v0CGAH^SFklUi59WqF2&ItD9}LGfCr|(BdfU>2@-`uDL-NW>0dh zo*5~&ItI*wXZ^PC28fR3Ha9GIt~Xw^+h^l(VLmS{m)21w02ca!!H0c)zpYz4)uv*Q z?A-V2*s%K#^@zT+d2T$p3;;YUZkH8eWB6K{n|oss9=ta6HMm9bYQL;)=Osnjb!Dtq zG}rpGguauCaCbSX%m<~#P{39+44%}Y{3LU|&;lVuuPe%X*+|Zkx?wP5Lc&+UEy_xC zV}S$=6_Ao_WZa4Mn?_LnAtMuk(DImnoOdOORNHJYOtU?DuU&VSm z_L<-@qR=A5aN>t|$JJ&u6EwPTv?28ML~;9e`SFi8??3DXz3<-d-af1!9yhv;JQ&2) zp9YonBZ66Dw{su#OZrsnwbx1gjn-}vL;p@TN85(#UzXu;Bw z)b9uF-_uz`IPtjG8g-k)uJ~&W;|()@?$-Fe^cCyN4O+^`7WPY>ZUNESez$7e+I6)e z0GsLk*ergTAn zU0QUX>Hmt1jn@pdWC5_}km*&nNXLbB;<=|`7MTl7K@#g`%AR&d>%0|=X;TRFl8$Ej zNc(K<5t##~HTpLW4RGRgZkQ3KZq%dJqV4{A(*_< zJ7-`imwV+S23bOvVQi2-4Z*N}D;O4wSg*$dV;zt@*K#KeR(R&g#Sgp^kBt&v8DHXV zYxM=Zt-#=CY5#L*zoPmJ=$=Ld;A-=YcrXcPST8NpLTjNfUcYHYISde+!BOkN(!$;t zWwS~B%K*CRaIhH^_A_R2?;!*gOmYlcO`5N(b-my#l(U4vjpju?ITPM!eeAX}ica&Q z-?2a8u80{g{hE}f09fd&3s0Av6@61;-RZn(Hea@zZw9@LVW(LKdi8f(1%SnX&8&Bq z0K@w6ct{L=cQpW5=(|`JjQ&n8N2Bayk~e}YOf~c^i?Etti}cYggGDjdgA42Hda z!wy#~yZhXkkB8_Hqm!^DJyNi(HJAO}VKc&ojga|Vp38b1ue-+e#g~8&!^JO2lH4+Jae76-C>qqy*ZU|^S=R7!Gjc)H|*EbU#Z+8Ob&UzC@ zT(r5-r>aj_?C|<9+^vI}Kg+S!ee1&Y88FnE2;}}F0NZevcOx^jQ_5d_^QS+E0e}C` z?`rjOxl$-CJ1Gi!89mZF zA<4lIQL~m4e>Ks{L51m6?Kx8OmTcV{s`Vc9NIfiC3%gs9l|1k$9JB;E#bza2FQ&7Y zJA!QHA=g(q!Tc!&edsduv11)^vu?RC*v5~t^9arB7xE70_` z80_(h9#g8n6!caaZwT?`eC4y81F&#W(AzX;-%BeSyMbW2@&XfIq3`Kra7Z;Xwu|Cb zKbQ!G*5#D)nnI-OL^j)J>5TGAFxcdyo%;%Od+kgsIcpgbUx?$HVUZgnniQ88hDDAC z{laKiv>4^*^U7i+Ze8ql&swcl0^ol4ayBWfmrnp3Q_%D?qi!!n4p-?2J zEz{(#MUvL@K4o2DGt!2N&B82N=i|1?GPJ9rL0aF}=D|4@{nZ(HI4s0{g}ypRb;^!? z+Fj_YTbH<6=)&uE^_h=+{MWi1%|3`+{>_%xJOmpV+65>E>phz}MCl@*eO1iA(H5cC zt~YAM?PmV{KmYdq_uuFQs1(i&_>+8WwntGx=-X{%PXSoCD-1@d1060D$3m-1+5$}$ zTE}D{$VLFYh?Mc;e%HG?4lT#tFK90=0A_|HR`M));Db!mgBh^}w6G-7OX*Y6Th;#? zO27SN(khP{MZ0Y|29KJ;VA`kII^aL1GlA2CqP0yhd)6TeJ}ZR5!dIcA_5r%{^AGzE z?{~Ol;t2BO0qnk+SP&9Awkvnha;z=PwVU5|4*Q;#dzaa2VhKP&lz&+pXtvQ&aLOs8 zjrNjpiD6aVLE_Gs7lqsl;Vxc*?#r8tb4svbZQXQE>P0{!-J;il=5r*zk^4prJ_TSp zu;9T_IV-|2=o{^d0pQr;{)E20N~cr8iHKYd*T@M5=Wz4QTs&9kjMbIZ)K;}oOp<~P zEER0_F9dn%%o}qZF6+8033`{yp?Jk~+GTDSb+Dj}of;RCY>1V9(3j4VCk9Np*P{Bu z!i6{hJjQmD&PBa_UTvO{vW^c()vU5sj;+5bmOd*KpX*lW+i05mZ?B)n{~#opyB5sp z>Q}>2$q8!+nwJCs01yC4L_t&z1`G^~xiU3m%~tI*ao_l6a1OS&L{7Vt6$aPJFPg?t z1ho0dtZY2np*M10ZFmK}irK8ZUMEOx^!pdW;BNa|F&*axz~Js~TUH#lwf&~LT~`f* z*JjxpFxUZjyQ^CM*#USq69yNiT2cfnXO7ohzkI_>(Nx#q^@3FpGa_s3L`{k8nDiQU6XQ#2@*V5SgT{*1L6+H z&FQ?W1JceBfW0s*g&yxO>=Zl^=fbeydwCKQxWOUCd?Ch=%1@Td%8uK6w!a9mi@8G9W`aF+c2TLE$4wQp7VNI< zr7$0KvqAx|SU8@(CZ!u363=zN9Xn?0)r7$SFxKL10%Aj-iI3JV9DVJi!a$I-LZ?C9 zWrVes6>_h&meCHa+dq8q`18;I_{xQ`^nkXAbuByYn(75D;+@1oJeblcAplkg$w*Km z{24qL#&xp&RDwlXduZSixHS`h#ZzRKkTLG|Q z)~SjCQw$afUXNQgkJPKBdR~@JXNwcHD%q%E7ZHbjgAK!eVp(FJB7J+mjB_j`s7Y+{ zBW=t?XpP)}!N&3@%5xnT=04~r#>F^`7ARFl*dEglY=9+rM55gmsZqn^)c)B7_qOPd!;L*OcQ zTXn6BQ+pz-*Y>l`p0ym4ua0ffR*n_=HqOO*OXU|rUxi386<>EXD2V$;=r#21nJchD z4;W7>qP)PZpjVLG@nE+UztF7Nye@=g;eb(z; zit_3#)MjwGNJM-Ut5towZLYV8k>H6S*}RPhy$fOIW>pcair12S4%OdamSE_6+$I8G zSJ*JFya?`x!2r>;J0^L(&U#ta7P%=579 z=vx@Ib132}CjAnuSFfqqE)xVP)1IsfR9IULkzl+?VJD0Qn-)Y0z$~(CTD44DuX3xT z15%gNed&c3A+`q5p(t+;aewApba4jD9X;2lS#)b-NRzfMs&>09UP}&YHXW>%69KT$ zSFBg)yIzmAThyg1>Za=rtt;WN0GQ?r=76ms%e$i)G{X1@TO^DbbWgWm69DTNJQhC& zfU#syi2Dk9?;chfDaxQfRkjcV{_d|||L51A{{G!x zl18;y%Ec5kZJDAG05G0$tQToh%mwqod0z;$(rGJGPGzt6~U_a6ApkoS@ zD6!CI#~01unf3?P?n@s)FfJ{(J$J`KtlKcu;c^Ektm%wu*3Xchz!ykcG4v^g_u~3C zaMi9Wl4@Z&8~*UaUw``P+x2p2s)x?1&Dmb>xt>FL&1i8WE6ND*r4>s*iUFHpa3jkn zkMtF$4xn1hGe;3niUNEuKsD80QnIP1eVh6y^GEO>;NxDh|b zHfGv?gxsLD_KW%-$0Pl}73z+0#RrBBiBm0zMcUky!f-`wb!93#eL9RHXqg6<_cRH# z%Ei|dN`NuY7Z?@*8wQ)-WlmI>S>coPthEj5dS}m#h;)>L)*|5Rz(fd5YgJU&qCS11 z9UV67+C#?z_IMohmMJAfXNV^+Me%Q8ypKvoY0@|}99p#8d9z$}d!<^A!Z2;pw8}sd?@1br{slHMO<8@nayh@s{6*kE0`R8ioMYCZkXfa^X+`gr+FYs4zPld{S zSz9hEh)o`kZG}lruBt-K(I6uXo=@`tuys4H%MpNa>J^}-jm?I>dgN+l^fz@RG(W`o zyd)kxn-n%HgKAfM27rsuUqwV;=r3957@JvjIWEom#c?M$Y-I<{i~txP1p%;;U{66C z1121OaRr`vMq1n6UN_h8<*g*#)+#BQav{(Kj0qSFYWqy?lCkXf^xOhtlw!bi`MT?f zb>F~rF|Y%$(RmQ`nnMoWJ3dxV=f!;9pUryxp0z-CyS3G7v~UGVkzoC(jk6x}_;|d( z--+hB-i=}K@i@D>n%~{6-@e_FRTl9DahL0%Kok)^j7QkX4~CtJJ&bkw-1Z=A2!QXODDEIPc3Aw3phP&dpF0? zao1nXL$~dI(?9NpqF>a56-Lgc4Xyi@sPt)Uve3wMFfSX1I%>sl{_^F2{^wuc{rxXu zzyjb><+7Nn9MGChqKv#5k{ZlvLq~+KWnU5ceOnXtc+@~AHYw4F&^sNsXOoW2VGk3U zw=svHF<3vwFWP=|nIy(!VGKGwv|u5$LNg21L~Se(It7XK|DxK6t@BjGmo%SD;w?%@n{SW{nJgy%Ht)R=H7qoUKM`HabejNOi`X!S- z@Wg}uy53Awe~entx{VB&{uOE3`S|IjxGWJZ52@q(|7dGB=TeZ%4!P9 zrQR*Z3=9EN55_lX=1wQ{ZOsM=!j|(vRWa>pdu=^sHl*acH;TKb)=8|_v}g%{6@avR z5%#0ZAyn9o9kBJ3>*MUWQY_62fjIF!aCnnrl_ytWQYz@;M>1^}_)V{D@&(Wy>`i3E*G`$=X z$f2Rh!BtDa^|fum=?;Mh|E44QH;q~YciSDM#)8zjV{0@y?SR?7Yl#Ygb~5*hXn?cV zWS~y}i-yuhUH1Kv_df4NVIzs-yNfNpbyF=JG$GoFnFSmk(O2KS{>Br z_AIrUO8~S&Spl$K7EX+mm4I1yGN-GT74!<)b*p0!BfferPqB`wL21-4Hj+00aIc#c z08b{tF$tSOEEcxnuZPyvRY!4s-PNt`SuDzvkyzm6Vpb5`9`34n#Z z7EXehfSe9Wu@cNJ2ZXnDminEXO>6WE))d_~f?_L$FOlGZjxDQfgo;LWl{{t!Q%4x$SZUU_IA+VajIy=mj|;V%^oDt$5~5>q$&b1f3#6MHzluLGPkLuB>E-+!{c^!+O31ZmKbOh#+{;| zR~Wo-TECh$w~Nkx)x(#NhG!kqnQR#Bqe>#LI`^mnBlV?Q`g-WzvS+#J0sxHa*6|>S zZCl!JrcFjeKk82UwuHMpoe8Cz>+!qC)$Pq>Yb}TF$dn3V(-9KgZK1-PS2)`0Wbgv2 zDZs#eais)+!QfKqoTLsgOeL5q?3#+$9`%32nKIb47R=3xYqYZyeQm3O-u zp&$Quv$S~~ma>B3;h+s09*^5v`i8@19L;ydz-n|LwmD$oZljxNxJN>&O!->)Dzp<2 znwi14EKn3W3SUdL=fM~_O({29m)>>tLYPgrvz{`Y)qvjC;8GFHeZ8Yf=*wU(-OiSy z9+mVI*sz|cKc^S*KWFGG+!Yt;_VRvfWn)Uk(`jioD^ImK@b}jAStDVve$<`O-Dt6@ zt~T|xiENnE#$lHn_YK9>p?TOf#a0E7lR;JhELc4r5^KEjCM;msa?YNArVI=KTNyYN zf_5!v;&8B&~ZRy~!NVZd>zYf5qv6g@ofEA-| z-VA+*dY$6T+o2W9NsW%^=}0S)HDMXkfUqTCha#X!M}F5`A4KUZti0*l%^IAO)q(-Dr@cZYP#&GWy$3*eVKud%e0& z$NT&J`}fxreIFhUUw-*c7_4J$b@d~f8~PDx==riQaNX|57%k}b_I~XO&sPFq{R&hL z6Gx_dwRNk8wKqkZVesxa67)WP*d4AX)PS#VW+bBH(2>wrLFcmoSkQZQJzA|>>rH24 zi91`880QcJPYgZ)01yC4L_t*X1%TZhuLA&^{==e&fUwPOrD@NYf(C7)mYQb3O5O2LY(KTZD*^J&;qBHMxvIU2lH zNG_kj^|dHRle?r|`u)duzx?t~QDIaMEeqW&!8zEb0Kll9V*Wu-7PIe2Wsze*VuG`J z(9LU;s{b(}?t0Pmmgyh~iAOK4z&h1ox^XlXL8$mYf<4iLC<3q*j8o=K6oPo}2Jcz)mC?TF!g$jGf0)%iF#?q4jXx&5Xp2F#$5wPJ<-=LV9_s5+ak(XP7Nn?Q%S zuU>FIFHrp*k8?ue&7unWGWZMn0>I>-nK%M{?{@9`P3wB$XD7kBQ#un{nu;?;2>c-F0TNRnH=8n3oJLFw^kil&ubfk7i=uw3!VB(Wae z9chymV?JEXXu=WzivjCJ#B_zeqP!x(Zy(lzVFiL4t96&oXPtfk@cz)(Jy+M-e{@&N zCQI0SQWN?Dz)Tsz8mHRcdWOI!Yi%x;9%;+U`WTY2rRpW4U-U*5^RKlp{`=qm^z$!2 zee>5p0l-!Ou7o*S+TY0b<6n!ie5~B-V%Fzet7Y*CrhbW%5qaa8k8*;(2=$SbWkiZO zZvYt3Rp`L9L>QUHlb~N?cvS0Sw_9e{MW1|-XYtZ03Tvi`?~Qw6MKpiGhmaIT8oFA^ ziy8dz)8GE_{a+5dnbinQ8oGemC8CdXM+X;b9}dQ{Ftz_ODomT3_KU`7Jqtb31rh|J z6Ch1rlbbiRpug4#?G;}E*b@mJ)~6@kvluq;A3;;XK=8z#Wi!N1yKN`hx35(ItgqY7 zfo@QyG}~ZrE9=(s7A`gd23sR{r#NaCM1qCE3%|#@%sf3#o}3Ib0vc#trR83$<3f2! zN0UH)>f3U0N~{+ES5zlMxi=NkLb!M~P4t>v)VLoCeeZ6k`V%%i?A_EnSSS_qw_$3? z)6uh&jwhGRDh1Cj^Y#dGk7;Xk_5_2^>5=YqDq29$jy@SHYQuo>H$=^Yh=V<+l32oB z0dUm%;H}1~Bs~(8-KIKOrxoS+A_m6m?sC-$o>8Nu4+&0rFfiO`m`)DWU)m%^g6Yzt zHtf0Rmx>@O?X}@t;Z3EM?e&}U#b~>oE*1mGiPwq3WcIUGH|yg=7jR#T`fG(SHTEz= zPk~QD^jF|Yy%w;j?EN70F0kfE%~h3emxv!gj-8t)v7MS zA@mh;i~I7o1pKZXslRTtm|rQV=~}^c8Du&Hz`CEIBfS}e_SS`UA2|Kh?Qkr*Y<9o1 zNlqcAyIKUh!2PzdUDsj2%UOQADg(O5ZPO9A7VEw#{WV)(6UK7MXv)Bb>$B2)TEvV2 z=#AnV5rApGf&m|wbw^)|n@w_D8Y+t)TLE~GpXxeq=X%YIqTkWhJ}0;p=#F~XVK>tk zk!@V)c4)#txl!M=I1~b4GS800g;p~o^oOoIeWKWe}VYq_)pFrIl%eDI*Biv;r`WHdIL z@%{Zy^cMiu@w<0d*7LlZuGb^1MrnRtZo2bTTj*;YRW}PEtAKelX`#y@^aXTMrRsu|%}h z+MVs0AGi(FmM4RT(ATAsvu5W$tkU&EgS0k4)#4jdpYTT1ol$zkm4g$G`pg>(2+hdZU`F7Hv?f~no$yic{&jN-EX>1f}3$HJ9_q+x|t_YW78~?IUGm7bfG)`LWW_J zgxm(N1Bz?Us!grc&IgH^1Z$(I&)fl63|Ii%sb&;3Leo|@YL&+AvWPNSYeR1TE|@9D z8%mtaBx2SB2J@Dyr$#M=g{c`M^+4;E5#r-a7%c3xuAki?_H6;@c+-N)^q0}(1;Z8w zbD1v}M)z$(X=9`uH!yn}4qc1X$l+AWle{#8!hG)~_tRvZNp+;Nz7?ZK+8PWSjRNDs z%+;LQ?P>y-Dk0d4Me$vC}s!(nJRWTDf6B@YwZ%IiX?X8OIRww|~S2U|vm;b+n8 zC_-h+#)YwDAp317YkF8&;iwVWRduGgj$f}}(g1Q^FaQqOW+S@+eK%Fz&s?wA zt%U=yP<%Nr>edg+dRc|ZL67pG;n~EWON)tBe-*;l&7>ssy1P*mSR_ov8#1YmvcHJifpB{No+NNXP5B&{|K~><4H}QuM|Ch~BH%1&u|L zRz2r@BZ$hsR z%WiRMEt+8=@Pp{{%IuH`3O!b>yXzgI!6qN@1A(EbNT|RPwPpRRH^H zHAA;N&Q9Xx9yt#?#0NDHyvq~76rJ^udtZ+`mz+neJCdSnim)ywF8 z2?iSp?i72?oS6hqo4@Ico(`&XfsF?x)HxIwCFw_fQ`#+w1TzF2CbQkD4|QeCToGuD ziqKIeI@-+95p8K(SGA1WQ^U)C$r{3woIbbJq-{;$j=?&x>b3qCZ6oSA0kHlB?ID<_ z!dF-@3;roMjEhj0=OZEFF;G2))rO=~T2boh0r?)++>!c1ck7h_5mE9Pf;A+R{aS z8#+Gp9VcyB>@ARFNB^r>e4WWWzqok*=FRUe&!3kHXIzyOhRdaFshCOorER7k5f3`0 zwIt4F!u#QT-k(f5qmj8GT_V(M80_d=q9+P>A=3b`=2))044RE&m2 zZ9903{(XH2BDDs(mDdVku#UCm@|_-SUQ6D0Dz-M2m&mIdl07-4(V zGaet0fB3`0mw$Np`1!3U>}oaCmBS1Jcr2iO`*!>IxM%cMG*ltD#a}Fp`R=ASH*39= z%Rz@>Bw?@~MlxCGD+X-ndmM@W3WI6O5&$!jMBNtv{_w@Ee&y}cW=ANrp3ber>!52% zW+s5W?KxOJL>Iz=mg8~F>%nFl3}ZN&7DrFZy07mYVXDyAHZj$+dgYD#JZ9pEt!|OK zvdm=K90Xbi4Xl!w!I=P9`{MDW_ub$B^6P(o`s0_M3xM;5jL^5>GVuVgHwhPgrl^3{ zL1dHA3vJ1@gw?90YNe>K1E2jssl!%;Qrgnxp3q2;q6eZk6O2?FdERqKAiGu?rV)ss zp`qr&SeGuDoADX8OGbxlm2;2F*a55Uh#4K0^-*L{y)WcmWiLO=XJ3(v)+w6*e?+|5b%$OCD%BH}K8Kv&Ga&k+X;GzI{DaPjZh3I5~ zvV&%>-^g~73=R!8UX^+pj@??@#HEL|ZX-)`89U%^uQ-_|uXlZWlm4~^r3hx> zq(ruvhAg2k-B<>|zdfZ=000mGNklP7I%4;AY|)B5I9e3PlsG&%c1!8NS}{76j7_o-YT_(pg)p@rD}I9a zkvSK+Q?C%z1S5MF!d+Z`4Sl=kZNXbV1J@i+P5m(#1$NG#bR`*K8fHaO1){>~?KV-Y z1fL6gmOvC9yqN1^s0oilZrKA51|0}}SDX6o&`_+mV!&lVuVTKg0>DOsy-&L??p{x8 z*zNOP=c3=e1b~H+0!vf8T2_Ulgb(b7K4+$W0pR~?yh;JsFxa0i`a7TIA;ADJ3|quk z4;F_$Y#Mr^(0wIzpIZL;xU4(z75cV`n@uA0-Oo)L8U`!?26rdj0+UFic8CVNfx84rTS>a}3S>^p$#8)VLbGM;K zS^zBc)tzr24}PZ+WzyXYIbiK@bv+iZy}q$_Xp!9%mCYOp5)Aq-yiACmpGd&faVQ3? z)ttsFZA!G_Q&}gmua65Y3*e0$gSaO7URt1SUKS-RPaxAyIhzj!z+%9E_~VD)q@c+{ z8vt8zwB&}YdF1gB{0p-9)q+P!fj<(hrvPwb4V;(3LA`oOb{B|^h-;16HZ1f;fj1H8 z%VaS6Rx~BKHB;WR&{;Als9PHeu3koeEmQ1r+hY_@wIivSa>$!}_N4$=8v^7rwL)#T z)9?TJw}1ZQueaChS_RAM3;--xiU4ebv+Y8ZsHCSUVlaF$=A21EBaIFZ7Ak|gFjte% z@)=@q2uL$(NH?ta!SdS(zz}7|f-QyXpw6%vv&h!%*v`#|joqR@6L=T^S4N$nQi)Qu z@RcmIad(&Lpe-wyK8=%^TR0d7dv~|?f+E2>OYP(o33eX5^hQWzqD?mIb|uP-ts$nF zx7UlinO?nG%iw%=w_xSl_!~*fKZzmGfX!Vq7A|crb%K=xPaf@!Um?>y+{Wz}||5pmZlD zmQPtP; zlO|vNG&k(--FhSn9(q8#E12s(6XH_w)oroznRzNyo|oz`Ypt_ZKcs@A?>*cX=v6$m zF^|oxx7)uUP2KLF_s3ZVfkv}}08%iy*wloe+kJDlYls2c{Ey@D@w&S|wr2*$B`3Zm zm^5P_C@)2t56OC8U+yZ4ZF#aN45wMW_;8v!3ionie$~p0O8K)|?XyPXRi|Y_ zR|4Q+KRX&^1e4;v0e6>G&nlNOP6!oWH%K_FsutdU1pxENCk&3xzSebRh)(`lNUWzE zx6SK)+q?+p=Dx5p5}eyki`VPAK==yh!vl0z34_IA-#)A#-)-rBA}!4HJy~eR4D>Jo ztzJa;GZ5^`lw-ZJ4dc79piox$YTa9h87)^P_3VPr0^Q^FGPYuYzV{DX9dNzvv=|*t zb_4pW9X$+#d*B&b>~s(97|#)6+;fBEqbzkhE!ln%fJ7gA2?Z$SWNvk)w5UVo(-1nL0m1%?6OIQ{_! zQ*}eh8RasRs$2mhi`EJ|1KlFZ!R8FLXCzsoEe8$H069M*a4oEjpbKp4emJ*_e`RRT zDY(8SD%MF=o06*N?~gxx_opwv=(X#5fZKCfgSY;ieQ1egZb4#&fSDw1v`aD)93`#{ zVyy;@NduK&?nwbSfhAjKmNzBE-hKi!jhSA&TAwo2>96o#0)T_s=)fvC`sfyu)}$u@ z76~?K^r#dq45p!M+PA4B>cj%w#jrNjW};hKj_R9fQ^(!0oG!w(R zlPB7zG;L|Kj?xxm!8*{3<71dMkOx!YDEDZ-_ij2wTNZMvF`aX2Ysgv3R7K>z(BBBa zr@hb-S%sr?LC0Am2<{^FN8<7D+Q@fLaXPk1Ly@7sX`R^rC<*yRpSew&k}ang6bk_;A(P z>>7gM;n*agT@l(ErhwjvzW$^2UafYu<+eK8mK1|Yt~bi`M&|Bd1>>l{e-{pf78*o0fENKsxS*3egeINeUXTbRcGoGE|t94Z;)!tn58g zZLwWVe{cZ){l|9^fSCi1J{fv2>dGzeSaAjXaJL zFgQBThzje?cvZWkcevjzfB62}@4o%>VZRa?@-Y>&@S^#vQ8{Z?&q3c)0Jb4ucT9@C z&_t@dVbGgeHMHE`xa&@Z^>`0mNIroRJXudQ0!jA5dQ)(+wr3z&1X?7R0zcTV`>h!p z1F>Er`U?XFfXyV>^+}j%w!tc0P0gZyg|)EZaj&u-C4yvuu`sybFeN*^fsU^6XZ|26w0#m(7D`1PN3U}Y$&jrA@H{!%&8(4Da)vY)&6q%|pg<8XZ8(v{J-i)095JU|{(2^0Q3l#WQgxT`x-1+0-I)TjC7jpEcH0!|7580l z6CtZWw?7Pi3<7e6?u-gnf@d8A=OVrq`^scp5X?sa?hgvgFWLW6c~L5US}y*sR(YP( zUI>E+oy+O4Ao>eT0>FmBv!VhF4(5Q%s6APy6>BeYd;-8e-CK2wg_5^fRbo<_qOx%J zYS&WeSBp_r=)0K}#i#G~4M8seECzhHYnl$_tg@X}P5gOe3X~IJYA4rkWxLLOBLLHE z6%x*li?m#syP_+4cFdgd(u)WtT7oI0h_68}1>lNBL|-~?;5X16nr=X7_qr)ZD?Mg0 zNj_8f5!u!CaCMkpr%;Nnx=zj8+tvO3Mwo}(D@|CaO9~^eZ`VRo8%DZb=_!Ih>Uv5qv@XK22#~KeCOtT7u)t}-6#yR(Hg~jJcf^1du^ZM? z^femR=pNUvDE$hC?W1!ecdUng1HkoiX0x0Cz+Zg+a0A*G`4npvY$@r{VGn?;YgBL#??4q4d) z^!U50gIIS8(Wf@HUX0DwcUyL(pR>14*nURl>?GWKpPSTD1} zwu{wH!ei_bT2aGNu^QGl!iH|Cmt@FAwc0st7KJqQE6}WfgEe^?h_b_EMcYI)t>{`X zdth&e7C(OfZu{_d#r#rqqGie`diAVVE$l`VG)wDOCerB^6rmx@#j{RDF-d)s%1)=b z{!6gdd-(IN%8~(tQBjQyIF^LL;3p3f7qE;~Vb>Mtdj8ovs^(2gS$Ur`{m)=<%qj=f zNxw68TE*Nl?AdfV-1miYGNETda8Ke`%AlySD!s&O8CHFMw8L(t&U zi7#x`$nmTcQqao^^w&hGy#IN-Z|X;p-QM6bwPEm><`t=gWDv2^vCtO)-d#6#H?843 zXU)=S42DJIy4sygz4EeBe6FaLJ`)BvlUM!r1pvI5m8b!4RyAk9Zfr0!WJNtAjf&G^ zAOF?yB6dNS9kT&olZ4#Pt$&JVxngAiVBOjz(kLqutXH_&)CIr~S8auOFuhm%Wn%6N zGi`pWGhIb}tt24T(Nama=@{F%afi9e{<;>i&MGz=i<;77`0| z>4=633vo9)Yt$0Y_FkKfDzH z7m8WxVS)a-ZA0{Iu}LI1pAk9GVgvw>$L)SU!4=pKwBA(&y(1H$ZO72}HP@{JFjkVn zT3UJ8Kp?%Mf6Y{^(`{LtO#+qmKkA7jhlALCIxcDR$Igj^8j0^n*w4{jZ!YLbfkjqp zkhTkYtD^E+l6Je<_y7FvyKld-cIa}hQMIvPc)!lcwzZF$TjD7I>sE*xrh!u!b`18h zy;gSE$xnu52jJFv(V#CHp;p}~NCuAqu;0+%2*AhsiG7Tx2R zr$JNG^&HAx#7!6%)=5hr8Fmhj4{HH1mP)5x)6xEcc_e4O4aeXHE&^aM)L#dl5bDO@ zM_$2fq+LHNop4R4NJqP`SE#l`HXP0n?yp`noB3X^LOqxUX}0)=owJ7R zm>nkL3{uP|$ILSrjDA*RwEu;{p7-LBVaO_l;h5;=HL-nU>?$^DVel}qK6Z20R&?#c zv{F%}atZoovoERpqKFWcrM*APnzI4}R@n0G1`N0_i1k|Yl&|ce<*I*a>1DSI98QbQ zeRJLZg~Iu34$hjEY^$dL%;c`C;&&LoZVs2$d9>1#D}Dns99XuKlr4Bw@s zhuBaz$%}B{5vzyUb{@e22NG2KO>c7EU(9-&)hH@Q>Xv*mC%UeIhlkzW-CD30(UdTG z4WHcAQ*_M45iA*~j(ySSb?C))9AzmLv`JgOI(1)|Eqda_7&F}5ZMOUWkF4|HapcO9 zwf@6f%t+mhG9+k`bf5(-XhDmzs4jyx5+t<*xfWzb(CqAB_Lsjn=ev2E>IDuGStN@^ zvY0n+91|fzJhFV<)#UPKc73-HzTVs}gu8GE+M9LN35KrpFe%y_(Ane| zjAmSMHcV0-$|ho1Q&&od0Ux$K*HLK#Eik-e5*)jr?cA%pF&7<+!TPKWgBKl}jB*S{ zngak116}Q~Z%~Z871;26*qGXga6y5Y(qd5Gj@yFXX*)3t9#nS z@-mKthuL#(hF%ix0Kgo*FkJDCT9{L!A)s75VLmOL6wk&+dSIAIVj&ruP5{{JTtSN? z7GmSDZ!G#o436i=6GtSOk^Y!_n|Dk~$I^0y@F<>zC<@+FQE$r|wS2?jB0Q$l>*bY> z!*EUSG@)7gxnXeTvvTp2+ECqRmY~9)2(eo2b3!oON(Xp^zMX!K8*PH9e{NcmZtE-7 zJDMg6;8Vvaye!;}Ra?5K!jB;xZM2wiVF5EmTnF7eVf1$*^v&`ktd}JAYE#)?G%v4v z+kG=I@0rKMybiS?u=ynyk#5vaDv9-BSu0lZS)=;AT|4PD&quxU=`aTXYZEY^2ftnc zp#n=HI-)~u*yG5m$V$KHTUqsYp7<^0h}jXjQ=(kbuX{gN{c_W|+SM+%)r(bfSeAKa z(ckqnS?imf(q91B#(e8%0f5_CW{q_0wlain1d>NX%SCqwc|}tUxUF5Y{)3rruc&Bu z^6n99MhnLPOllOYW!h5oR{)GntmqnDHt;zcN$Ms#zqwf5U2XQl%k>Cu3U=z;8>kzDQirdj*<;(}5y8FzZL49V!gNhBu=cjYhPNvqew1 z3k=`g?+=$V8x(c`7W$eH^v#^{U-Hkp{m@!TokJkLL3bE_40-_8Z^0e?dXCPs*dfA) zr0&HgU2vm7rc~JG*2sO-9-<*UkB=QmbOoCglIc*M7jn<`yXEh{{q&!I|M~cEQ!Hf) z#UR%gJ5!7bJ8wo?D!N~oikVl@#CnIrW{iHn-qH2nsr0+mVZW|>?E(F|{pj*3`p@e1 zi^%G~$v1%}Z2%ZEUAm~C^<<%8z@({Z*^2;d3Z|IFw#x3<(I7YAsgx3)OY}llOJPZ+ zgFd-@|`fG9)J{-kYRJ@RRBy5qUg9@>nG=#y{ zrRdHj^HC)=Uok}v&IjY)J(!6bRy>35D zrkZ<0ddWwUn5DJ?cDDi#782{d;QKV`Bou>pvo3~)vu=6bOTgf1&-@#JJzfkj2?p!S zeC@?ufD^-6Hqas%Li*>1OBKue%%7mXZfqK+7x>Tq>U_s#ztwHV$zpF=u590G#} z8#P{!Hg4;S%0v{Jptt;3;t{UcD&V=#OyhZ)n=0n5b2(t~mqcEVAs^8EZ$ zPfA;h76VHtdwgKPgwPk?h2z_yzaP+7Xg5tvox|BMxng2Ew~{aqqp4~owZQ-{Q>+*P+OjecAqO4;WLmCzgjr7VJCyn|G zn@6fX7Xuamcj~8u&gpEF7xXF?+7_fx3JFe8woHhjZs#RY*k~7c48T_XofUUSP)(hf zj;)B|y3rYM!=o0m+146uA@sGuUtP~B`cnOk0Bm6Fv!p`YR{gY5eW9bG(>zb@(@lQT zoFc78kZE9X+-zd|{1EH|Px^x@*gXOW~u|L>U;bJ!|Y7npWR-J$QP!yuMsv zkV3~YMxMe{XRG3`Q=zY*SI4WXh0xb?(T1ZmNeMyqc-$HUt7Ncgq89Yt-yejsj3GsT zB;5jpqu0TpFyp^t!NYoZbz_pz_m3Ao4ZO1HquV(i3?}-KHaY7=t5xhH&kApS$0UhG8)@!C9PV4G_o*8*cS4-j$zS{767JAiRoL%;C$VL z>rOM7PcIH@0r3C+=U)%^w*WAck-{hZfRWLNw!Tr@kDewvibZ)X^W3ZHDCiZf)RnJj zw-enGZ)`V9f?-;sDC;tfCXS^qQq)h@Kb_uYvLFy&zB56c!_+QoT6gIG^x@88!^+#n zT(uoB2GC$GE30?PUvv{>rRgQj=?R|vY^`d zSVUd0k9hDg0AuJIJDH=*Cz2hhu0<*Bkv?$@4qgt#aXLD(BPT|uI^GhQakLrc*Y!NwlHwwzw;6iPd~`77!OyZbH2m55 z>ED=%hbtQZx6M*8tLXMDmpd4jw4et<>{1&fp8;Uhm`xvJR%J*xnhptxk(~5NqzsIi zNn$I)NK@*WKw;4RD7%Xb}y731K_U>doI`=q+2mRh9Ewcj;)VdhVS!CD1S zbV>@(v1-@aLBkQ5)#beBu4H3toN1M~(&pZyk87B7Qvv5hh1b4EA;d!ZmoN8}gn?&MvfNKsn~~_Ro)!rXo!{K8 zZ(nZi9@aN6mzOs)Q;_!772p=(NvQD6?E*VO)}u@BCDBUsaKC1B5;lO!fsJGgjXs76 z+SF=|As>Apt69eynr2PJl8~PSfED^|wXH#Dg5DDWt@gr~SKHryHvoQlcU>xH1;E-J zyW0C{1Yqn7Eo<#80d-|$brmj&l}C`4+EVPgB-0Bznpg+Y94-<`N<8cdYG-<>NKDv( z?6@Y(V6sTB8IeUgtqiS&h$akVj&H8tQbLEzgz1xPt(+lkuBY|+;B$d4eP``zzERG= zc(kOtcEM*=t9BRkjS>moZsx!K^3yLr|M+lsDM&VfXan^RVjwg^Gt2|!#hnmHMyPTv z@;Wxd20^a?cqKIT(l43kI4Dd~+MA`#r-7E{DANenr0s|VFTsyAX9YLLesE->7cUG% z9SsnZ3?O+<~`f7tm#9DNRj#m3Q9cjUx@l=M%=G zH?~BqmjmW>5tXEcDs>qOLrTZ09W+Q6^UqP9A;Ck7R!mBR!ED`3z0y62LxI`K!vREf zqOWDd*EmfSxhw!2VbX-I{I_Dn-}*?Acflm3hFN4Lk=g)yVXF)s34P5t z!33&o0LhcjCRT+31LMLvTH@M$e@DaObYh9$&Bl76SDTt(c(xL|Ejk{Tyq`Ji)5E#> zvc%l5i0|&QE$F?t>e93&0&S^mQC0IhJ}Q_o+Y+E=bM|A(APV#3^h@+5?H!8^TIt6Yz`PGrFe|jm~Q;~>nC$S z@~1^bOE-!x>)yx5OQCg?>CmsE9c{JYhr`qBYx=G)uNM)3MSoY@&@zhP1_D@suGTCh zIE?=KYK5XbJm6Sj7by?zW6a^lQ}m#362eq%X+(-H>&Qf#L+zj@07hym2vZ&VxHvlmDvC-U(6f|XE2&Evcn76E5F?X62wJj@_3+ILWS*e&Qm$Jn| zfNV*wiirV}NQc+DLt+W>7G@vAltuBZ zlzWjBPO7CdL^pZ0h;#~oTh{oUF?~wUE{Xw&1Pf(F;%n7nt6BN#%eTM%`u>M+znly^ z`h=Ul^N9NoJg2Frg1GQt`k#ZGMbN6O2!jR20I-7OvrZ@giw(P;sQzDx&dG2@eJJd| zVwN?Qgt;ZcGa6W-19?;hhOL*)RWEp0u(I&27#|>2ZNcqg)D#aE^hVz&%TD*g=&;!d zw-Uvs-`J1Zt6@z%SbL7cx=#Zjqenq_@-WrL7nCJktXE4DgWe0@>fkr5Z}r8PuEW5F zodL%R@r?s>jN>PaR|NCHdgDwA=tq4Nn22NH5a}m>>>SohL<1)9dk zA2aFLVtuTr6>o`uD0X|%l13XE1~x&2q@EWZ*UghOLtgq5L)>8z^d;btBEII=>%Gl^ z^)g%(Sg+@wz4w?xFSiJB&2FLf9KkHhT|2QRvppC2Tl*;RzPaAlmfMPAwX=3D@9Oe_ zrL~oN1;BB7SPwSU$!!hME2|2x$_hd6c$174MFIva03P)7{a&uqJZsjB0XHkpbw27B z^w+fm5CAIz15PayA_Eqt3VjI@#m9rcG(V>dxDsJIG;Mi?dA}+vcFU4tyC`nv1wEc8 zcde^}Ld4hNXzCZ}C4{@3rXcpLRX6qKa^cgY_*p6ccby1^wYq6>L_8s2umiASI4Y+r zP75|hPmr}!rO9VwGwq^QQUP#M(&uy1sb>`J+BueaT616B@4t9`{dl+4MZR4RW|MYw z;6eO(CkmUYaEQeUAccQg3uwPW`59+lR5B3Ipa~1WroM~!ktu)}qQ3b;p4;2 zKYo87Q_#750N2O{P?hp(eG(+4@-MV^7Ic;JXSF2Xs+R@8ne*ogKo{H%zNAT})hhS< z^|nCH|1NBjtpHkAda1OG;o79vjH(w2XFZsirC7GmE~Md_lu?$_=(YEC7c$TE@&vJP zecrFO4gyZ%BfC1C-u=_$J+$ z!m4BSmp?(Joc?G17%_O`BRzB-19E+D8aPVDRq?b2mFelzmr7rFVQ}{R@60K+o#`IS zM;k~N&4wtXqaCL$-<#%s$s~u?s-qdCSj3H!NHO^wkyyVKlL}%E0Y?BfHay4@lz1cb64ra=>XO|-9tWgw z`^4svgxQVO3oHwxTqQJ`rvpbrf0l_}F$YWwv~U+fY_iYm1n5-+ z7h)FHESp;0(30KT0*HBfm+6UIvy(LC1VD zQ^ILi^M`aaly@_;Mra-%#U?H7JShj@XZ`<&Tnb23EFR_pq5Or(bZEBEUKa!U| z7Qhm?Vuhr=GcHMAd~vS_i2kltLp^}8CHFrWLw~>e>d{eu#gpi-Gggn|uVQyG0)Ux5 z64OQH3NRKASgtxuXlV7(!l8Y=t-lu&E4H~H2K@Zq0dJ4L$meY2>TQ(byX5Pgq%N{m%+-oJ((z#xt5Eq3@o!~HtryFC?2E)z+ z%1-5l#FW8|?-~hy{l{-VfB(%_lToYXyr0%_gKe`44n4>nX@UmZ@cdPK=MZdBh)uVl(HGcbb9h9q6 zvZW(i1k%X34GJLjQYlD*piJ4(|4*749!$3cl^Qs)u8t_*!TY6QEe>uSSBOao=*WD* zF`LBe;&@6p_A^_ici7N3lePwJJzZD%Q(XeI9Mbuf?v(2&L3+tqhdadEs$L(EF@gq%NyO4D%ppB3b@*Tq9 zPhhA5V5qPF*v5Q)u9q&VV?9Xo7jkDLE9*{^<4Q0#4C2kT#- zIbo_RKQ~N}@}hll)xEy%DGq{R8xgKKmY1RyNAU68)n2zOiclXl~@+sRDEWg4#l;Q6!|0ho5G&}p@5Y?t-pqAvivnN>`z z$~&+GrATF=nFS1cp4lP%h&^wo7U}I`z=_b;{EpmQVbaYHTb6AOvqqgf-OinMrlnWj zJZscXs+DKO!haQWe^Zq6&&cmZ07es$Hfdez+SHR&Qfu>eeYUMEPmqfpOY-n<8Dc`;xB*lWP~ zd?AAw12~O*0RSxQ5da4?N?jTBn0~kF(pNdRcsqrdRz$~rcmuCD{Hd5$6prFHsQ)r7 zN-vcFeXZ%;r@#^4(7sJy2?f1)`dyR2b!lis3A`!V%6lkW(zm6c3)*IR9es7wdBk8J zNwV&nYB|?wRuIM#3EpiNzy13D*I#~myuYwE=|+i}U8ld(n6Xi%c{IafZ|Hm;1N1J*~mB&&pq*gc5JEkMR$^0%`jR?S7_ddGxwk%x~(Fi=MM(d-{ zlbDIJSGd@Jkl)syHe=>qkvVB?+>hsWFr`)mrzvmVq|yW?Q5&}A;d(w+g=s>hEi3Zi zSQ19rRCj4N3-LADV^ex3mhnmcMaJ_E`fQgWZUY91T zqHtH}D1@&P9g7o`T-`yb$eCbVLKd zJDsQVzME;y!t&2m062~(rN!VhcReky$3-j%@j)VSy_l3|qvB+cANS4aNZgl+BZW?w zU({yV8lIbH&Bm#Md8(xRsc^TH3*4779srDTBy?G9c+kz`m6YD%jaqoDdW43Wb}<65 zo$}h2UcPyK5Q7v07VCxng2ZP1 zd%cA6Vwr$Yh5%SU-rpY>C^A^}erB|^=JOuy(85>YG2)a$+_g7d!+`ZN1iIv_O_#$( zE6pIq{ZnDO^o3qrPZ98=2}}11N_E0yux?*0+l)x+NS)6#ecZNP*gPCny1k-~Iu`)z z!qb(uTMZ7I5m^B?_-voK%$S0u1=^&bD9^XeO{kijM&LB;EN9yF;?v`;0Qlek`R}`z z*USNzN~Tl6igV0>ZMwgbMGBO9616d{S!i^)a+VcnG1VZyr$@$#%qSyZxk~rc3nFMp zDLDYsQUq6vvXr3OFvV}}JnYx&d5cCi zGT^@`Qw|%GUKN=RCWdhq5m^+zBAr1+2H}y|vMv(Luvv5*qJ0S+CrH?E!#4Oau385MsNfS7kVO=ox9f$4RSf{gLhRA>5$yKietrLPMK0RBo4SQ4-=T+*XTJ8%tZ3HBaD2=~ z1H;s|NeSQ(1)S4jjdUd+7pVd(s9(&mN8GLlK=0ZIYC%Wz@95}c%^3}}>{$OWv%<9O zMX~4zz>x=IcIgu0W~&P90h1_XDVQD7pF<6oKaFU?N0x;UT;0nA2M?xo>o}hrlg#{~ zD3x{GlNAfn5sc#laB*crtZP%t>?a}lJT~GR1D6GeuZ{N3YhdkIQ}^co9z=F^=yPcTShS)=U}w%<7=u|U@+ZPt4&RCi~5xdL4T0JG9|2C9SjD26+++9 zA`cA1fY~w3=Z3!1X=ywzOhy(u8M{WNUI{sH=74oHBo;s#YL+~8>;+&$-@0Jfka$)X z=tcluPpa_XZ8|#acO|i7i`FWk?`A@ib73*c+i_B!k4wQ)u#+3KvqVJSQMVxGstdK( z&9z(S5q;~m7q#RCws&*@MJpQtaIu;7ZuvE>QWK$ef@Ot`qf^ztN7ycD_z*SyiwlJSN7&+ zB^XA6)taK+CV}Q>q3p%g5Oum5 zFL$PKuXP0aOCJYQ7D!Y^K}s|z^!YdHXO-l6F!e+KHqk$&^!oMfAAkHL0KUDu!j6!h zDZtf?b=~6L`*#eqhTW>GS+&OfMzfl4RC1%9cxNIWtYu3WX0yLNoAe;#Cz9&f3j;{u zt}vM9OqNK>a*P#$F;;^}dj)`JeO1UsM|~?XNIoJYk?o!OHwxhnapjBcSSOyxE&;$y zOGAQnZr&2!&1X(Hh4XsF27>h#m+SRF7M_R>leOM{ zrJd`rlV>OhnGPYeFqjDf^9pphr9nLgUF*D~2*9!8dvO>n=Jm-qnN6$kU8aoCgbKzC zUK0(TLf+~K0|tZjU_l)NOQ?dgxiK-UZsk~`!@917$L(_8hlBghgF`V`jJcnP1W&X? zI0n0JPklZ}-@ET85F{7O8^uq(7NEZZNT%EMRfom$lA_KtX=hzB^iMDxf0NSR*rG`K znkFoGFi*lC(x1@7m{y9Pp|+|xBm%>DD{YR1s}%d~WVg{>19G!bz)~3OVjZW68S9!% zbmb^$PXLu7OUu?gpgKzm}%GVCm29|Xst>GwxVcd zygjOD#k-C(-f^OdOn^QIPYf9Q{{+OPdKynC*#=YIc|hD?y5ImzzM6BvvpvA+a&!;G zA}Jytu&OZAg<)nkD{eNm!=dG)y-gId82Js#8;i1T-0tg}T}{XJR=AtYR;Bs6GFv6{ zb(tP6A7`>4WowWuX|N7NdSDn>RZ`VO=S(np(LZ5=Z<=3|x zA?|WLba&pB85UhE+@4{{WU#Oq7bB8UuU=h0K3+z7OVZJ_N$beuF_mLMuO6(UXtBQf z`lDjKPp|eb@0YJ$?{p$0*0RFXV-ybpcTLrAH-IHm1A_`Y+%2vzMs(<`*6rEcGS7lx z9s7eaRU&ageOx+fr(*Q9neS`g-LC{g`%x8dT6e^&;1zEpWc9OZ&* z-2MLh5C8t3f8O0*6-&8X-klgeO#Pl)%droVnvinoOi(oH)h7M+xYrUjR0xa*9n;)! zxhqB_Ei+7`5GyR>5W1af9uG?0NG7@0Dd9+Oc-##N5)>>*mPFSqIId7iRPu5^a+wP= z_zNxH-hj56b;ws!0}grPdI5K!UPBbN7^O%|ilJ~`E$8Tkwr(sJ#(MYl+dqH*#VWyr zX04nd1zk78;4By%L^*sU2}_2>xN2M2VPYq4PDL~u=emMKf(1+DpTo?qE2VIwm44F! zZsa-XFgon}tEKR`I-k{q#AsaT$i2W!)QU1p@}fgjibje{=qQvD501WArhn3*n=I)! z%Zg#UGD};a$F4~?@Lcq$Rnjf1QB!a`71!_Ng~9Vd*)g~&9xPNga-0f}pxn+TfcK?c z1?|lONX&!Dmcvt{FCnF0T{2*>P8b;oB5~eng=rH0V8U!vN8r;#7jUJT!z?oLCZy{P z;N24fqvDV=*p6bgRrd;~#e;=LO!u-iq%cg6wAt?FpGW1asAS2Hz%ZQ?NOq8sJ}$(@ znP5DFV}hC@F=hQJy+-W$i@_iCrVs0Jz&v z=YY|9_5v_~nmQeoVn+Iy{)+oDkEDo2VmhU=G~bHZKSLb=zy1q-8Y zUWnVNpLQE(f%~@3y*_;kb8S>#gfQhuvriCbQs^YsdbN&3vtBcJubf2mO##?kkXy~u zcIylg5Vwc4%E?+T;=V1e#e zUpWMTRG@2=w_Oqa?KaB-V4WjBX>JWhe=BfYYfN^0 zY>23hLQ8@ef|G`ZevuhpPV^XqYHz0^a9qHVUPtVrQU20-^tfc&%>_8~G(ubdRIMNY z7UXn1rHm?;@tAT>VG_`_QoE6~>LyNkd9k4q{PN~tGr|50I#!CO!KdK}fT{H&!J(tI zK#!{SdKwvh?X~q`3md56ycO*W**)m>3w^<0rUq~ec52v(qKp8rel%xjpL|WN?CX?- zP0a(XG#{#tV_gD8p;WhHcG~8s?X7u1(j)dBlKK^(ksD?^ce2WYl~$= zfe2;DR8K$TwDpAI)2MR{$GN#fuVTNi3taaXO#!gr76vSKE4aP5YF}S>guZ&rc3WL- zlf}9u3|_A7UU6dU$=X!iHrPB66}(_Utgw~_D*>>AdEfc8Oh#IqIM@+-Yt?pMa{60! z^ld9rRp(@zCZ&T0R+@a)F+y*OzE<2F_j3xJEJw+DQdLa4d7-b@dJTPB)fWO_QqUr% zpl?$Ad$s(TpjStQ)(b7xN%@(gT>4B$z%`0*P*&8Bf@ixo;PkUv^|>K#^R&}GZ#G1o zp8>#Nuvx^kt;w058m+~Y7_A+;mR(F*SNo}sT9mOOIqasdUtfLs<;&M^E-pO3Bmn;A z-R;+3U5f#K{`OMw(s9nF`+cZaU#VcbYZ)FVtlRN?*~czWM^Rp8eCeDL`nq=2MtA8J zG1}L!Z>&6gw-xm6FQ#|*TRjPVSpNLlI8TJo3Wk?-oeT!nb?I6J3!$&#_HK^yGrlpx zT@zbhwCI0E28-FGOD}OD7^GF^)x+xMQVh7aU9}GT-rStE41l}Bu%0FDsdR!#C|U>| zL0|BR2D-t{{Q0LPY4e%~2U82@t zO3rQwZH?T6D$dXfonX$v)=lq)PCbM<+0_YSgj*tBjmkMQT2OZXe5`Go>~U(SP!R(L zO0}MPJGY6MXjP>vt>xl;olfQRFP?t><$HZT<8hm8fu6rod{HZ&Ff~gUl{5-yT5_iU z>=VG`V@W@RG*a?HFO?SMl$+L;vpT|9^go9#Xn%K%`7Rd?S5$7eJ5U3SWzk|`usaqs zDW4;x6bZh2yVC{ob>{|7=@9J)($nc ze+yrA;bL7K|38K1kO3FE>hhncob9ScN9fQ-x`7L1{= z$Hq#uc?LM2HNuRd8#x?nM@M)*9)F5A9xGyw$01)8q$nHBQ(f zUS4-zK8)_}hXP>ZzH7mJiOFCEC&FNC4fRKjqlffzVKT`pX0u|HYZk-`aRFeT{Y^Hj zda7nsLKy=9zT7l!_Fd6mJReBWasU7j07*naR27Z^IMQ5rEdU&Az_GPz)XVC)aCwc@ z*z5)816?Y*VDi1@xd0eFY5-V>D9{!9mh%5qF8#fde5Ru{Ta}-cik}t>e~-ri!(}ms z6B3v{HfIa8ZZV(1+G)M^LKrN>75XXy{dFp=9~o7m16Dw*V+Ve!cx_FdWwCy%GZ!1`B-;7enj?+1GQa2!J8Ppfd1$a3Nf>&;sCxyZO~& zaM*TNT5x9~H0DC1U#HI*63P5DpT9yV732ne>X!~U0r1qPu|R9U`zTL9O z(i83_-e=M#;{;u0 zg`k(?Zri=o7wmEr6RkwdOGj5F`szgx1-;FN_QdBc({;DqGp!i7PKDCA8%|L44Hzr} zcf^Cyixv!9=~tw`SDX*Z>q*UI-lJm#a?Vcoye&UHNuhLUM7nDwA-`?_HDZ6|>o zrbgAnm;iacL@l$YgN#H zPA7DINY_fg7u)839s8d@q@W|y1%MS1fJ2_y(RVtuW-EoDSGWrg)^U>Np9R1=i2y9V z3+M_v{b;Ve0^LIXZ!z>EQ7SwGaS5F#r56COA}I^1|4YOd5o`tMs~`Kl9K$fQ2tf{j zUIsduUey)5TUpnlE&x&3hll;u)#CPcEdYLFeE0C~>zki`eEQ-0hp*qge0jgNZR}x6 zYInIFis`O41EZ~X))XB^csC<~EA&@LyjTqoYNw6)@zoXa@N{|ma;Hb?0s0j^UJn-f z-rQLkSdVA?R{$)87W%sJ!<5k@Z9Gx468c_UPcE;<3Je&6Wt)#4>A3P*7to8D%+7~2 z{NnH3-OeHa3w`GkeNZKq5?v&%R-snQbULM`@Ts1yRL;u&UodYX7l@`tkPd?x0DBp@ ztj}DZyf`0f68ZB_b7!9lEOA8n;)@3{U;*%Uw<;&OZ0E|p%;{jP70e|gTLAijN(DreCIg1cM@Glu|{ zHW|zTL+rHSFh#cHg-)n^Cxz$C$g$fH7$*YP{EJfVGci}*zTOLzo%iDIu!3QeUr?Y- z*=&|-wS1>n{rt;^pMU-Kt9P%a<96LL&qcZj*$~*dbHr{V+o@;5C*LcA!K-N<_NfANLX&|#O5p{+>Iv}hr#vLI1ax?434R30GLv% z0GLex9Rrq&?iINn8Co0lY7u}ZodhMUg*QuMTu5LZyq$K|lZN+X6@%a905&g zQ8zoNk$Cf3oE{dt6%USJ&xFE09c0qtgJiU8X2E@3Ez1r5T=z8VI*y;|3!|^DH9z}M zKKsrfGgk^?u4JTj%W+}&7=|M~g{_i**19LGjrr`tV7oo2%7NYGxn%LNE*!rooE*vw|Td61;d%QtOR8__+E@0oXFnE+4HQ z175lbl9A?l$&oT|xVx{eH|71I_VT{}_U+=~VRU)f63Q+XMTM|-?P+JBufmJL73+?6 zJ!k8&npfzt5&+wCP6{?(G%hHFzJfy}FHF8lcsZ|v$}2-t91%iCmALO=(*S@?h2yWd zdyKx2UWBdgfM>(f2H_kla{G3*29Xsuej^*UDQdz85 zF#P{){MW*GaG~%_k0Yy|5t}G+B*05J3;SuJJQKlU*Em^=KkAn?!N!-{u|NXcekR& zE*WF)fnf`|8i?$|fQ78WNNT-TH*2PhET!!8LSn#n`_;WGXPlVyO>tDs}{^)yB^T8G<4A%*FZKr7LT;8x+`SiwX97Q)7TEZH5}=?53FVVn>2r33(J)}OXX*%|Xfl_(R9s0A~% zo_WUIuPc5tvmPP?U2V~Hq$;cvePI}ljh$|BE|wYD;{jrzmkdAc$HHKpP>N=Lnnbi> z+^x+9&H1p!z!II(0$`D2NbqLbTnwwjR({aTjXQbq;4mL7U>;USon$p>Ums>ydovN) zZ~Ae*8Ona#eidB~gEWU%n*JhG>B7+@qNDX;lu6f7Z;*8K!~I$h0E6Q$geRwU>qGar z^I+`AX#NVxs&wj_&&NI@vlR-}kQknS$|EP9Is02K^C_}fe92>BI3dzerLbGoCpr9J zR}3ODBNTmwwWNpygTWtBWPW76gN0?jXc-SqXNA%9z#cLFN*oksZ0VSM#~k%1jpkXU z`WzG4X6wA&F;~6Uo=gha#hx^EEZ)ntpWf~%hPdD z06d)*1i;gAem2SrfNdg340v2ppkoC?UFyQ~8Z8~pv8Efc%07eie*qZhBA$~DXF;#H zuh3UVZU>L&gHm|%X^sA8Kv&0!`S=P8wRoLa`;}8w{2#l6e4~9WhC=7ky-M)EyFr4%5eB6rIBno{k+q@gQ5cJMF zll!>;dNO$l0LLj_Bsi!I3wp;>bqOzP{D(2G?Plt@IVw5yffxBN#Z=k|CO| z7k0Q93V_9fg~z%==(Iv!fU8|6b7wX>3S1G}^B$A&{maFzXw9~}Tepq-&g(aqqn9_c z!?uTet}uAyT6en4gu!jEvo2x3EJSt;JbV973Cn>gWYtf7_l?RK39X2QqzlJK%jM|xZHtm zX*adHnM;x$NkVVXt4&5Ny)a}TZC!KGO8V!q2d2ar=UzA$s>N!tfnv9yuU4deS~rm% zB$b`|GkS|wNQ0j-ZNkT*S5>LyM1sHk`bi}C-Pdo&qb}WNCWd7@l05ZhtaB^K}>i|^5CTE1|=~&4u}C8WMYZ6d1`{BQqRf7&{|f3r~+W+Q3Y3q{4>5u4);j zu+hLG2jCs!L(<3*cjME-oB4|$vh?1QfkrHn>`^ik8qG$*J}XZ|$9BRPRE0@LN4<{F zE>JU-@+2(@$2Msy$53Ia!he}0^hqIFtLToV!#QGbRDrgcC0|k$+R&q08Rac`HsG9J zkKNIb=Vg)3>qF<}qJ7xZHmhW{C@ts3#jK#?c3s); ztyHYzLG*W>Y&Mnk+6Z(2VCT3vD~R|CdiBhsL2fe0TQih*BLkvL;wp3^bc_rYq(pBr zHC?EI)+^J!vRKdRiq*6Rax0AHj!UytQPQ4Pd+MPTgJ-Vr9G`qXN~XHn-Ea_@DjW7~ zXPMcBp^_(P4bJP`lSc2f**|M^&+8q5@oBYjQmI;$l9NK|dA|5ep_6hY%qhX1>&@rQ z_DQSt!a|7dVN}@Luc9IZtBkeJxXFyx(7WsT^~LCNZ&|g?y3NR-@XRi}o8{+U-hKP+ zt8cz}`s%BD5nn8R5zwGmGGB`R_U5bhde?XAxnT21@|n^vC)RuTOjM2^LJ z1>QPGFPaoI0DN&ZM=zQdYqplwHkpnZV}Qs2Qmp>c!x{J2v_r#&(c&16DoAi#y91J| z;7-JVg}D1oXT4}lN9E13DLfVcYw;BT)3$~S5Z74O3Gr&t#qS8FrB66$S(pG>Q2@a0 z7!iuXq6KZ)-AZoQtqFkt@%#J#{O`Zkn+0>gCGpWzDO&4@AX6){7HHI?7|GC%o(?S6 zNzMXA*3RR|%EFYY^p%`61Opibs}H_3!@f?;Em)XWujgAPC)Aivy9j+4UF#)bKjH6j zF=?3+*04g44>?|%eS{@YTlhg=Qvd)E07*naR5UmA$#mO67(^#}o(YDjsTZ|dSbtQ9kPH&6-B8**YCAmp{J$`iCFByuICNd(rd{!L2Fsym9jvN|QP!{MpIJ!FnNa zr+$WH2j6^NHacYpaH5;R+_s*?Tu*AJsBMrk1%Nlp7O|Mu3G==8CTfCDfZDTlUHP;E zAD#XvO~R=(iVGtTq1p{|{aX#(=`yI4=w#Fpk*zxVHWbE&d(}~^q@!i0ht>I@qT{qz z?$yr}PKArhVPidRt*0F`S@JxAp7yYDSIzxM7<_wWJXK%#<36dFE(S7n*UP)5Rse+4 zqgU9qD@8L396gee(~50bU@%#MV~;`tsE&!~*}O^hO4nwrF*70sVDowmwvn#%?Jr=Q zeu2&9THp4n8wOYWJ5LLAG&E$xs=Xay%4=Tc;Bp{otjn1$OIoI5vG%x`Il^$9BZ_j< z5anYxBt4Iw5DbpOThYrQwtYo-)&o9){t5|1aFL<}eF0s?V36(iGm1e!ug8eOLVpbc zQ~IkTq8WG#j%FpHua$c@0?z6p1!iHno=xa0m=s>FmlXl6*;8 zTjzs*A@qt*3!PE6+B>QBPwRs-9h<#Oe^MGvD~kT0-0tM-&0MXKt<=tw>RGw^qEbKA zV$rCZV3x^d34J@K-R@btZ7Jw_?KvY!0f7C2grKDUtkx9$`f>N&yZg6qOk3m5g<*A> z*_6@K#r5^_?tc5`^P8`~eo(x5bA5lm6T$T+=LK!g)}Oq#(y!3>;(96we0jeF9l>1z zs?bzn!$_MkrCdgPMS^ecwg9j|R}UarEie{ccKPVFLKv)ILV$sR+uJqRuNwhlZ5I?G zz5-y{IEA}Zd|5=;Yr}v6;FU`U0KhKvqc=Xez8H!D3wjsRs(7&Q_;TN$Pbyj>6##Iw zGaI_Ynn_#u)Qxx3lmWuf-RcWE`i^EgRLwv}0pMmeKkC)L{r2rY{_!Iz=%iBo2!N5B z7y1s($G2z`IEIS}dwj-uk(-9kk^cmA^#JRU9-0x2^=jF91KFMVw6mP|%t~_75!@=q z!)B+WErq_%?d80WE+FhyTSlXa)3(r;=~7bA47$MlfFD#lY)pAz=C1%SZPoe_M_6Xw z$QdBhp<}a}OGOo|7aC=07S?XR_Qh9^BEesO^IEU1;iTD-JNJPB`zJsX+_+a1`nIYk z4!vgRiA*%J0~lklfnXdc0j6U5|6O zOk@SaV4n%rT~UsMe%D~k=K#!%te|nX?&(8=0UHT!CF5=l!7Nc>VeoR;n(CIWwMo+j z9Wi*=%J=G-ej_`>RG9hTeq!(1s|Ne^P%wP49cv#cWEH{1UxAt~(96FSW~>|S(s1YO zb*j;ElX@k^K59s9%t!|#lT@_w*vgaC8g%*CaT)S$h^r65FGlC+)@1G({(dTB*~P}d z^Tu`m7)^3=Flh8mcBbY+;`vnJHE3oX12FcTm9$3VGVI~vvZqRUFc)nOU0PDEb>sY4aBP2Eeu2~JzN`{_)&IdCCC%!;tzn9a!FyIKi(b-;M zG}pV7CyRoDZfA2IT-ObKCqdg%Po)?QGUH)(HYo^zg|CO5)n9k3z(lvpM0k9;YnZX_ zvSRlhTDP}@o2%YtRZUeS-A@pR^`vnGU_AnDi6=K7KS#dn8Oy*TYiMzU}`bo2stG6=M#+gEkg+l1twyJ?SItzfC&F8i1vueeX z()x!&%UJ1`|gS#o1mBP!-*d2v z0S`vGMj`YiHAJ08FT@$f0Q+p#aQ}I@j)7V0`OYwN&c1FAN5N z#ei4y`gSGiBW5E)Qxffi0Z)8`%ud<*EJoJYi4Y(F922&-(P?Jum6KG*iuPTjeY7|U zV6=#Q_uc0L;D7zkpDXP;T?^XHfX^ZT3p)W|fJ(S%GVVSZ$($}`13>}NHTSVxg?Ew# zWhx0E6o**OJKOchF}S;!^&D~AeG%eeBZ}miFt3lwAie>_#v{0khBu` z5)U*Y1s820koRZV(P!v+B+v*+#lI-nC;0R*w~MpJ8CC$2D>vGl2#>vZTqW&{q81}e z5sA^nK-R;G#Qyy`jwohnBet`SCk9HRp@-yPXxmXFj#l# zmd&`aofrmB-KJvPD{mJa8xeM?FTB4VA2uer>MhW*rI{BQ87fI5E*wO%5UxSD6)Frv z1%olMP*~4|KQo>dbWt$x#3b?YABw$N+7Mj305yAJyBM#6AELgiE7yw#hP{8vH*-O< zqahv~orTKom{dN}$-=pW!9OY;UhFtUIZKz4zUnAQJ7kK;no-1f{K5D4*oZLpHXqv& zMxBk1v@L1B`k+90H2ZWsAFMC{h6F2`t@B>LVCXw20G394)1!cy>MsCniRfub=c2z3 zz$T_Ko)@RfvUv_FmSPE2D!#&U^3PUI9$NlcIBE=d+YrRk{lwtV#kMZ=71o+l?@Bzl zb$4Uvt4ErC5o16f^inU+5x^8FFs-Tw!H*HFKgKVpJX5Pu&lbC`Q z0E-j%M@5T4Suq^f$J1tSSQZA?n&-}dgK7r=+-#lIo6jq?Pm{`L^~T9ySX!>EL&Rnf zohx)|xpvhYZIi-tUGP7B_eS*h@#R{ZVg+M@=%8L+TkH;#!{rQTUty~752bQ^5rQ?Z z`}+!jZ*FH#ulBFsT!<)JX4oaJc%JoksHZ{>8egNwS66SpczJcRHWA9*1OV2r2$dE4 zi|KYh7WzIs9ROgVENYi}4UD>@y`}H5?xIGeH>-f};$=klrWv#NIzlFG?_2Wdwua0e z0DOBj-fud~nbuQroy0>_raw!?UQ1qtMj@XY#+uvo z7tIH^pdJ19-+%GPA3y!`zyDk;=Lm671I8-}(Fu~e__FnSwnp^36*r2ptY+%;+*C|P ztyGaCNN^yM095N`^Ww$Y#Vzdh`-@UZqX5Et<(P;u@<~x$^}R^ zW{JRy8#C}qT6N)KYc^_62F+A-qB!a#!BNVSF)i~kj4n@spor6iN^p|z_nO~+^Tp5a zzx(dp=d*DS`4JNGj3k9RG}_2!g;Wy{_7rr^Fxa)DKQvCaO^(Xcxy?q*3ig6eAQSoS z4_NLwcD=j9cAx-pb^UIZ;>2A{g)#jEzvCEj6!d@`1Hd1ef!(T|rmdKgH7;oXj%Kv1 z@KSe?PH*!McJpJfwo^Sb%IjL2sDSBS%e2?eC++;AUtW)@TfK4-eV63KqH(|KDfC82 zL<@sS`GTWyW*6QccLp(meB*tNFI`jmm1EQV4x{XkTAy)u^u)rP(AG`kXynRl~Tio{i)) z=-X?Z8VR=IYiOIYEVLJBNklK40W&Y8h)@mgaza6O=0cJlR>uW>Cw;q-T5ka0amfiZ zwPZ_)Lxm&yZpCKYew-zdTGgtNzW^ z;{I-PEne$Q_U0UNyHZ#a@@7Dt1NsX9lS4*Y^7iFUka=}GzrI^Auq5_uE?_>zdw0L( zc?84OQMDhN7vb&Z{_#S;MavbytPmbQJY9+w>tOG_|YE(E|j z7XXuCp3Up4wUv}?EXt>oV+R&)NO7)_y*Arz^!Wt9H`+s7jWuTT`7WU7Np3&tHAdqplVPf!k}PHLCIYZvre4=|)c)azFFyic41GfrR+2$Q z*_;@>P>R&877Oe7bj#k*zUvfR$j4NMWvaUc1=UA7fCSrGVuZw6y!1~;dlC^!Kex7& z`LyLzn1=Dgt~h-a)h+yXqJ%QY6sy0X|7g_E$AWSKTD}5N5ftqV#NdT|_CeM2HaK)t z3Zc8(NU*=_!>BHdxtN}*iJ-dyj0`T6^wzBdwVW#D>H6C>FGwVk>!G7iDm5%yD8 z0|59#a-x-^e_Q_`kzIXyh+112JGF#@8IzsXUEWUI1%P+!j=n7yhk@yp+J3qjXNV&V za|^0lHVCw6MS0}d{R99{+~zX63hMK>37k%aIyWDYwQx6!CXzL%D1@oeeo^PVWpkux zW);HVd9Nf4R-liq2M;^N&Ae?Gyy;)=N4Wp$`!B#dR?MI~j2`JI`wUCocs@z{*Ozxo zBH9$jS~4YJ;Fe!xcMBvdNJrDjMOvP}bv!u@3^QqMm*n+C>yk@JFAlqD3d1cA17iWO zLIB+BnX^#D;5f*KV-j=l4#OutahHh$1*EL8H5?4;LrZSkG0jD{$KznC7zdV)Y3@hT zT2UA)(%d-X^bwXvHY|D*02ulU_w9AFo%VUVbw*3A=__?khr?XpudcKl#T^}hMR^mt zlo?DC^wOUUF&z){(^1*N>!#MIJShZ8NRQO}ue@C*V!f+HLTy!di2;lI>cR7A-oxyS za5OUdyQ=FC1^PS4fxi9rnSs6)f&c&z07*naRP|wbqS!Lbeq00`Ed#*hpACJT&K?uo z1$k*FzJ|EtqP^_?QP}GIAq&l~uhLpF(jR*L3TwA^^aX$yCN28`fX7qU(VP{=^Wt!t z7Yw5pX1HsSYjv|Nt)bllC5m8PU3sPu{bhv7w4)oRBrvpv>JN$=mkU@en_7QOf(L0_ zCjki4)3V6bb#t|PdArs3dutk1HU@Y9xVI)`*GEP5lqxLEfkCO<0a!RH40a)^l|b>$ zn`i*u$ z4aK=hV(Ug1l%D8?jVHCC*4$}zx9>;v6%sQIjJ+D86bx6;c!f3)iFYz)T2e)HqM4(Q ziki4C-LsMGnx3|&5M5U?8x^6^$%?sF^txlet^t7S25{w9tGVg4`_qr#{Q1W(fBgB| zY(6fQGKJ!KQqBo-XbHw!7c&F2py|C51_Qw6l;Gvq@JIVKmmMfs4YgHLG@Heyd)f<7 zu}!75N^3o%mauu&{nV~CxGf1aA!G`2(G*bO+|WCaIPzdH%n;7ixGaC(x00}T7!^nl zL{K5z(s;8HuArf}E zSTYz17W(=$Gh$>$nq3#&1_6AAib^fm8ApfXOp!4&S5)S^5#&4Ob#GT3poc|7pWvu% z2?@3jXZaTlh6l$)Gyp6#qW)^N)k)j_1-`e_D`&FHG(IsBo;38<1gqxZ-OLGG!Qfdx z8MO;wFg$o6!q5wiX?j!IPwdu4f?<}_T$xRxZVd)AD5V>L(wJdJ)+R_urU|4A?_Nf7 zgp7S`q0$L1hu|&@nDgjt7)_autHOr&+pfq1wxMFct|Prv0K=##1H;pCdol_<*fH36 zaHCPER5FFai$cyu>JdE+-O=f!dz8)MUPk`(yS-j@;KL4SQ&q$B()D9=-{bhd_1$BU z%b1;xlflPoToH*w4Y=Jp?{#ycxmF2w(4~=wvEXh$Gjv-as=`06g zcw9jc{na;EUu9Hy0AL&)Oqb3DXlPkNA4*^AEB86DCaK*-j8otz4vH%^xQi;A(AV_J zUEJ#8YALXMe03!Z79QW-ZC<~=5mM^j<$9=JzqvE?JzPz0?^pZF@p9d_WU?ziGapPB zv;qJYkPCoyub}$sW+@2Y>_$S_$Hz;dFLs1M!_v)>ycf(~kFJeww=CSnXn_K-a2LO$ zC@DZk^xh?SA_)kIch8vFOo%DkSE5W3!$t5v(3fOB+E|s!nW9$9G>a$f4ra02EyG!{;XIyFBLOXs&HQbfQ7_9>1(-b ztA=DqR&u7zn>n>h~On&|V%r?XX-co)7V z#f&gm(92wMy;c$l{`vh6!r)gAH$vrFIn$`*a7TtIM*AZ$SSSSsQwDBp@hzVPp{`WY z)u!S7oJlGmlOZLm_}G@tq>kWr0$|UMn7GPtP@GOGLf_@05eXcfz=l96A*L^yEVpIp z(MEQ6`m~B!i|uKQCn0mO)xy2#(mfW^MY}bJ1Wh<4HnaFnBpg z6gm+GkJ`a9Ss#n2u%6$1MSWKa24m$5{Y6v~Jq;4nY%jQWn7si?BeF6R42tvMID^Es z7F~zqZ$W~Yhi2&Lmb6gNoim*TH6ozV{fLN|UN#{PEwW<6{UQK7Px&s8jFgo^573JT zagD(bw9zh1(_bMGjp!9q#Ws2Dw+H_1`RCAzH81N8hI)C>0!w_Xxj38Ur&F<_T(ETP zoHyEM`s5W2%P^mJJK0X#<`i8_Cy#5PU>N6MJ%;FXbF+C}k&2}2SI%h&(u!%mr*4RQ z|Fpii9?w^8ean~go;KaIDAO>t-H*jqX*L%6LVr!C?JzP4i~ZP}lb8387jHhld--q> zRTW+eLFsB%2s`zd)wTx!Zx2K9THRu0UJhn&b85XOaSg!#1 z_I8UagUuGZIg)M{05kH0>89yQrcOs3(GviDnLz@Z1-JBjvow%uvxUz^7ICvNyWC-g zPn)?z)G)LZ8lbumN4b2GB&QL8ttZ*72v8g&L&(glO&^uRfJE4US96QS;Fq7j7X$wN zAHPgzBXQqc_9OzZNoo{M^cSO(u1P5SMjn?K02sl=z?PbMG_b4%w3b)suheWZI1Bkk z-5x;<$G!DaOH z1&I{kFpm{BXWQ` zoKWnvkzfB<(B)v9hF)j_wyh&jWWTuVDXb*iOXwbmdfKC&k>E+ss@?i_308U6dYj8p z%``gtAs0Pvz0u|P$5$F9V3G;Z|8UTAXA3?6tV?3)4C&_S9U2eK`Uuws2 z&_cAEUhHRdFi-1S7?D}9}c`4>sarso-skJC!W zR5)^FcNeb2o-8dd%s#|vrPz&iZ1WH!&KG@D7(UKLA0zQ6THl4f;#&%>__gKxPMAq{LK5Qpz-N&0N5lN-%I3q?Vn@!1O=s&(S6g zpB9AcT)(RqFrBxB#IYAzN30BW#OXm`tgW%W++=lxzFHlYmcQyV=Fc9VGBEO!K{#{O zLA`RHCeVU7pC=*tlyKRjhI;JdD~f4iQbz#XXyiIV=yWpJ9PeFg2_rw)q$ALIs>y5s zDQGkX{PQ<|{PB|jcrqOdcLl(K1Q)b(e^JiA5XJz&RFN5Tq)&%IGV0LuU29p1V;IcQ zCP}7J2@4I1xT2({u;GbK;E=%{%p_9dhYV>?0GQ0JX+hKQm5N4T9*lR84c_=-3KYS` zc_k3Is%O-R<5>|JsdOR$&SgH+yVhEnIs1F|{8Ouxo0dqiQMYca+ndW@e*W>tAHIF{ zbT2ByFbS1lqv@_h7VH_^r$M9;47NF7H~8!8jaRdz!4b(~h8PBn#S^Vq0^oKhKM=mA zGK%`2x?ylr030Q*2)%1Cm=Y%6DBN&^IW9fwE?p9GyzW?a48UNpxfY6sIxR+g%}u4U z^r_*-NMAJRXcFvLBkPuh%XG~8$+%S*)U*ADMX#ReI!+6)^=#T>&Bx}d$qx15e*Nb4 z;ma?sU*0X@yOd)hqqXF)12Cc)Ts3hc8~doEwFBcxu^x#nCILbxlug!{(gi_W3K;=cMWWzYYfIr|%0 z98sVqDo95WX}Y)UtCe2Yo{?_Cg9*SGPJApg86~kIzJ638j{zEN<52i$neDqI0ot31$ozVa)CkMBCJ{Ibc-A zp!e9OcN}8HdV8IdZu^D!G0?kO5fx&ysqJ>==&)E-tdGfy){4=vNLf0jh^=1h?a;A% znGlPebn}V`!11oYaeD>bHR%@2|H~8Cps)R+V=xj|3K(-tSugCbl%qFGm;?5~Br4ni zfHzIEh45B2-J&0LR4kWO{ERKzKP>ipxvs#NGJM-chpmHpR5sRIKhck~X%&H<>7=5& zMnhW;umK0B6^1icsxA2}4IB zz7c@+oXfRnbXQMnh2(qPzR^*Liw6T#*c^r3w1g%s#5Y(S09w`yMB{WBYaPLr0gxss z4PObm0lxlX&#v?6V^go5yZAP{<8zmW&m#w2t)2^vL0?^vS{JmHF}gFVGVX%odgzXJ z!Mq?EP|dB^y8QO_>H>0P)tPk3J^$wT>t6t3D-!OP=MbZn;rUvV&G-+HVSm(a913EA+|$?2@M6Hi;McGAX+z?N@ga5+;a}{d1b8KJiIF-YM;%M%RCDOVLYjj- zlP8}=f4lQpbuup7EbFYwFUE%Om^qlQ+QejTTtXi#ZiZ3y;sYN=)-AYQsDCia6vH|e2Y`Pgj-^-=|SPWRW zBKm71zXI%$wJxW<)5d+731%vZ)HLE1R7v&tPV4!gcLJr30IWX;^eWblzLQzeJcj+R z1chpvydc4jktkI~!b%sFNbR_j!!B@^wpK-OHDvANqXRZv8Muv)2`KLP9a^a=Gn3PH zNQM(LXY4)FCCA|UZq?YW+X_Gz00x7pplh3Anw?W^nTs^UiTn0#KD#W$70R}nX9%&9 z|KU=Z&$L^&O{I_{h@X+G@wI?ms(9^wKUr;i53kJaz?3wwz}yQF2eU;-T-N%q?ss>0 zHqojWh(tufddpfGZ87RjS(sRc`fh+h6IMgWd#eD)_Q zS@O>nw>@Ar@djyowW2}rPFrzAMoqf!T>A+)J+=+nVbtr{2*9SLoB}YtX?l-wX+~kY z=^1-hFRJ@Tl!58Slho$noN}*an4M?SZA6=l?h+M_0E}K{vtFoH3U{{`KfnJ$B>3U} zx?U>zl$0sj9{q+1L?nX@gXXGNz-U!a*U@ThsM#5@wJ}#j{x-RNT8XtJ-)a5r8MX zs@^pgjboRq#LGb^dYjGUyk0tm_v=%lk3mNOSg58;;Pz%N41V>r6AX(G(_Iy@^Vq^c zZ;j3gsys2z{6V$KKbENSfu@JJH7Z)ElcTmK6(o%p^SXOX1!oBU#Lmmi#LE9Vj>21C z(1d5`W@yXXF?X^u!v)4`b@Yp7k5pHI09YX^jFAHv{82iZTy*T9 zwk(VG(A`P|U62*%jh$H$m5%`!NRFCW^kf|y3^OSFNk{atpJ(dSdwRAh`j1q}dC zQXCyQ{RMrG!PRds#BiyR8UibpdOo(-li|Kdp@ZO|1)|wKvx-4-b1p zGmOFtUp;&C@^%fEy?@-letXTJ5%pT#etB*B&t^k(vx572xAQ{aXL46tYpv1)guWhw z`O@4Mo?c&CAC~K00j1*5?#(ddSFZ0C`^&M=cQk3}MrMC?q6j_>E}Ql6bSbzM*6O!J zfAx|?eDyj7z@FcpF?<{WSl?#hw3Vww^@@K}RY zHMiYPfBof$-+uj306ZM^%B3tdU`s*gGm2{IM94&cua;NxjS+yyJ#*p%z`!s(Vd82+ z2^I%8q@H2G)^9awnIi)EH{0eHuy~@REik6J%(nklz_uK+y%Ipzv#HGLgpM0;JJ*Wb zbLV-hAdalv8sSVtF=5!+%EXCG(&@Z@>;+M%Zdgy&nJ_qe{wcy(-aAtWGr`||`Tpnc zzWwHl)pFuAI*Zeksm(OAhBVczJ{HukT%58W2l^tGsO0_A;D7M%x1mud1+30VdhF3rD6rN+IJ&J7wa-7Or>d0$``|54Fey9G;Hju4|=&P?R z*F1^}0#_4k^QBPt>S6ktioY^AdwaV!O{?prKXQ6^vq4??%dhVRb@~z*upK6Xx;LNS z*z}Q0UOYY?Aj*hx2%&|$x>rC*CRw3xk8XeYaCmxsts{-i%oO3x;5}9jz_&(fN0Sz` znBFUpn1(E&FVCYtA>1XWt#iG?&`s?-gV3kF8C&)DYR=c!hK3K*D3v9|6}}2(MRsu> zq;|!g9rPttNUDt;H{F{8-K)dc`qVbY4DL+Qa=2Wzbg>DF>h(geS6j_G8|^KoZJYFU z@L(yQjuPw8aZ6g7lIS!}Ia#^aD79)r%5v3hePO^qz5n)?Uw;q)4~AXgZma<(#hgO0 zXY)TjD`y(z)%xNXtfSF8mst=x>aQ>+_wAP=!TNQkrG>$sjZgO| z-f+Z-&Y+zeSqZ7SU36BHws^2UN$qArs=1x#O*tVh2ytWk2mp-6XY>qq<&6f$4CGqL zox~|4;D^CB1S!E_=(SErT+?qHd!ZEo@N(Xpde#*5jeHIOCUsBppx;aetqM|EhPA0} zuuUSh3xF{&9EPDAwl86FOy6F8hYy>Pj_epv$a;F*#;Kv$FvTD*mkA@hv1fuCnX2Gn z2ySpooD$YiPb&<*f4R81o?z@K3>Fn$Eyeq5w(nUsh0Q`}!LUGgxoAYw3ossFMqmf? z0}7~uRefSM5Im?mNezR%pf9-l|LZyr-ZrvqTlY_R)7@~81d$TK2!Q(5={pbDD3mBtVyd&w+F`9_PJ)^5@?j*q2DQlpg8^XB zH+XRd9_(Ru>`XC;b_2lFhQW9@EFYs%pr`j=G5D`Uw3paSLVrDE75xd*1tFp(pS|%1 zQ^Ib%*B=&zYC=15zh`GXOaFSscfG1E7iAif&rag2i{$d6dvP9#{t7r}F8eG1PIVkr z^q0l64Ti^MMIw&t1FvGh*hn~iE*L2toWHV8&!)5pMQLDA3aYeHHrEtA{I8H2`2Cs~~nd?^^-*WGsNEW!m%GmYo(b zi#H2>JwZK1_E|^$1^peMT7Mbt3*i>(>j+tguhY-PkDTicU@%MdYD~)?Ip|yQ(x<~a(Sy~6i%Fb)%2?M8VTlr zX@sUv?R1kc06Lzu1ij(`6PH)C?%$ayeuy-P@?u8_`ZD-LN4K^kX}^We7Y%DTNl@=p z(2&LYh|7~=G97;V{_)G#kH5cvt1mMEtamlbuevJ(0IaK6SF5f^ooEwtH17ex;=z_b z7&QfoG-2@xTEX53v8k^RItP`-cZI(G#V|q2<8|!*ND0ot*be}}L61Ujg3)4cTMN=9 z3aZY*aEWmp>ph;uMoHHr060l(o)tbvUDLgNGCf7JjcS#}gSD$O40adcrBh*{Z`v)5 zx>eyZ4u+6^n!_{I%vExIzIeDl(^3CD=w1Q603IDx+rk>q-$43tUjV8Z>I*8Bv|N$L zrtgG5etR<)07G*(M*`O_WY?#;Iy!gHN8`uBV9^YU$~o1Jbq6kOUA(r*cHYUzmNqW7 zcY*IN6UA)S-v(d>3ev)9FB>0E?8W7h-E)S;DL*0T)k^oFk$r`Yoi2`_w9DOPM8tVmm<3kI_T>?k5 zZS);>54e%*Ilrnc9Zi?Nz*zT8gA>c3m<|v066~n|;x2@?2^iN$!!kozdT!IyT$?=f zJWJEDg}tSVioZZ@EVR8iT(6=RxAV9(x-Al^M*KR#T(etB_s zdvblbG)n-VFJzYg@@j6Xt+yK?D4opuTA2RXYP4D;_b*OAe|&g&bN=?7u=5NO{OaLC zm}k?s-u5gc698kq0EK=1=8|q?-5&>}*&=pYd~x&Q1Yr#l%X6*l>r{wKBQ$u46eX!? z?2nLu){S&v(Haf9>mhnRdTx4@o)Q$C*(5V&aJbdcTe?Qv$GX70aZC)D5^w0eq9jah zI5>zceHTyl7vpq$-`MOQ4Yf{b?J&8YoB741sgd}eSNqu*2CSo*6SzDUsYR{tf?loo zORE~TY+6)s=;R}A9Wp~g*D-6TF8=e=g#h@^e}4bx|NIaD(*>QQZ>8C&(y_Tc4#d$L zn6q)3em;VXK^xk(T5E*Cv^{G}Aff+IAqpHmv2dE9s~)8aJ~QXA&JBr6_IbpX%w6e9qLEJuS~v)p*#MBvB?0 znKNLQhAwp)#`6TgmC}yht6crcqTQ+8zr6nT{qv{K@83M!btB6t#9mw%nWm9j0PMp# zW%kp4J-3>xTlT_CTbdNlqYQidS^IZnD)jzi{Icq~*F`U--C6OIvxiACbu6j7`fJg*Mszadh7+brQI?I;0%%jA=bIo zcf3cMqA#=?uQoXDiT8_98>ZhXNO@R2c#|^c$yzE5{)zlBHDG~d-=NnTp0)Z53D!ro zqfLEt+|bEtSrO|M@&SHEJ*TFaaeNes1fOg=LSJgV<9W?!?x>QCt4Uf(T;IcR-J7{Y ztQCXgVC1qM3aYl#QEkvGcH6sxVg7PZoizOoM_&je;iBkIT8Q~&YpZ?~>PIj1tMudD!=VlXhQ6K17+{#eh!=&yDR zV!AXr>#czAA~s^ZW6p`gJW{6bvo*DuIlUYW#ahUlonMTPPprBrfHCWpQFlET10Dgu zBEdHG>$5IL^T-x5!j9!=vfEeY4_2y29Mto_B zva)o`M4{WR#K|m{!ep_dOq4@!%VIwI{N;m4@TZTzua+|m<`DYG9Q|m*$^qE-%~frW zHj7xFRMsl&63Rl*;8ciejowd7)Vq_QK14{cU(pr4YP^9_bO&o0oQ3C+g(5?nL51Tk z1z?aPjKFSVaMpRWF>wi9#TevieUGi*-n7hm{kkGBHlGnM)JnS*YnU&fk3AVQt+p+4 z7FBw!f+=rwtB~V${(9MJ=ySpL`ynX2o{eYozZhq5Ndk0fg9=_rV6f%e^yD2@ne;^- zizN1TUi$xVXk)$j9XamybaHh$5$-xCHUJK=opndrd6tf5yBsvdmh)Jz#rm_3($ixb z6h1qdop`NkrQM8h*ZoDrk5}%Vf~T38eOd9?Fqn)BEms^tVlen`+R~9KbT1>~qk-w!tuXYt2 z0bsq!dIv5phWGb#EE9CiC=&J*ctZU~eYUo9Ua^ z*DvqR-aX!a`~K$TtCP(6(#;Y;U&I{+z_ee1zMv@p%$99DjRd-PFVBHqlF!1_Ei^UU z1%UPU6?9G0AU&DI={OoBEyZ}+(*qI4;+cqQ1HkBE31#&iMICw@fT8B}ZDH6T(oez} z0A_fR&TUfA&|*?pAyw!AtaVUSCO%q5qBxVZ#)kc9(_buY>*}uE9mQ%k*ep{4urLY# z9}EE2vknaeV!-GnZ38f)KFmBc#DJTJt#RwuF}7z6NPC- z&3jBG(UxVLc-7bQ?{yD=UTqYj_5pmIbo3SmSMq?rhQa<7VxE<5qo4oXNm|s^08V9HZBk8RJbL&xmrd!>C6m+GfyX66kT7POp;+R zt_iukC5h;)OqRPLQ5&X;jNlhJYU;Ze=ObaTQ(?W6x-bU_jnSNC%G>@}fLw1HevZ`9 zZSsCOU`|Pk;oa><;d&j@&1NDP7Wy99ap1xox%Ow$3}f*$E6{aSDLoJBl|ivG1U#5< zDtr){v!J=#E`+o?2g%88P0GKyGW;|an$D}!rDNx$q%dq-Rt3F6g7NG?A)F9exTk`Z zU7fdO9Z$mD%_cH)q=i1e%wlgiJxpdLTCM{6_T%DkSQG+f#tE(w4HA=Z9*?SKBj4L| z9m)oxS0P}Bi)Goufoi>URJM`gDlJa)NrMFMY*azwgAv})fhELEqJrYT0x;3<6yo;2 zj)GntISKF_ZYL3~BX_nt^u$Ywz0Q8Oy@y$Xy_~oxS}#tFvjs6o_L5N{ofSv(gXy9) zTb8w}&{5~aWNu0I)v9rJ*1x_Uy|`W6-ppyLBJS@`6~dVDMAuAwd$Sa&6|(;R`yEZf z`mnK2pgZ8z{kdyCPk(!R^X2Pnp%MEvdaQ)I2tmV`gC~-3j*5kKN59yJ{>~P$VEE?6 ziO?4}1!1RP74*f35X`22tUFT!7Uk8Q1-Hql6ZNX`pds{S7>R#GdinL6%ZEoxj|*{K zJZtPC(i`yD44Q7%%qA&xANsWQ&X{qNFAW5fNH~6ze9rRHc~*@P3uhr(Wg?-k!sbjy zbw~i}xS9Noo7ijR5)_FJ;zDTBSEGh|O-9~BP&sl9%K*T-K0OCp280Bt^?FelEC9Z_ zJ^%d2=O6$6@#jCkCTR}<)~{T_%4UVN%WfMU*kf_X306y1QuV~LuOm&mc(h~-LdZh1 zxR6FB3%6N|m0H0}01S{o=CrEXWNO-(dH=1QIDyvoLQo3&0>DT;!=h*`%BHPc2?U#T zX!p?~QRts?%N78)lDLW4QJO{w2inx8cPsoUi4BO5Foo9xToRGy?t=IFh0bS@tvb`O4jR064HiLdPv9aJ>13Bb--Tt;8 zgiUOo&_z$-!Ga3CA(eyY)kERL&OzbH?#{3KdruFFJLS?oVkt~KTX$Y_f7mX8!Bd}5 zT1|TEX*^FmRNRF|$8IKO`}kKU3N0W$!Q655jo6j0mewQ%42LH+(U*KP*qo+1>J^>l zj=xaheCl@+&==vk$2aG=5wq(BgXyxyxk0fx(!1Jo4DQ2v1;&>bWAfX< z*1IPRzP?<(ygPaG`r^gS(bdIDFf8=-$Tl~0yA7L9UVoMk=Dn=(2;M}n+*7d2I=hx?u5ax;U|*G{jQ7(? zA?Io(tc^tAG8Q|o33LU$HiNrpPqzR#otH5f$h?(21)V(#;{>1IMOm7eVBJTEl??U~ zh|aUhbx8K0jU@hoN z0JNNQ(rfK0K;Ox*D%j4Tx|gA^pckV+q8Arqx3#cIYfrq#gT4N6KTdasll^4AtC%bg zW@}-v_Bw^>;$Si_vgy(1A`I5W;F%fgLL{pUuf22Q-iyoGiGRi4Je&zuKYYA<`}Rg? zBsA4$%&@G^wblLo-7VkI_rJXmhh`AXhJd|~3By7CL0yv<7pv>*4fR(DD8y7h3QdK< z0#qN^wPt2IpGhg>so>bW#Qum@EIr)yDQEOZi~b6F8AGD_%O8i}iqtAVR{eMSu%Ns` zT!=VUOS&^p-oW_g$flWn_7~AwD#5lo_%twal+QJ?R+7kKp;^t_ZUfx+Mw@|<#__BM z%T(y1#TiM*AeB5z>&MI9#qp3vzm1Kov?poSJnV{$ndO-)DwJ^iZFgz{;J|W_7nw*|Er~aYd@;;(6Up#ZIE?t5;Wl{P|5J`1PyX zs8erL1l#UuC^}d_7<3GDL%@KwPZChfA432D5CBO;K~(NqoBF7+oU{bM3>5Xcg+~2p zrM6eC?<;gtuRV)RRHQaD_1UJ&gJ;f2ZnO|9XbU3w%p5QVCxPK1!C|w-q;Q=ql6@fq z0RSTi1v%!^0aS2D(9Ul-Y-n+h<0|h}fZpfNet!DwAG>=`3dQH8@_uHP<(6D-ifsDN zX4udvkGfUr!NTCB=Qa$3lcq3Om%p~HH@7PR@Wbm<;aolo1QVrO3LwmS?rcjsZj7d_ z=^{EhNtpBt7KEgo;k&_lfod_sPFkk!?~c%|G?DGxB1!jgnmcgpH{4|siH%N>kM+9p zkO?Jk)H2E*+@(SmUF81p;ZjJ9;T!aq2n;wtFO$UV@bot33exuVqYM-jWSL^8kJ9V$ zmX5C1_ktuX%2`3QQs+$i27Ssfj1)w&41m+|p%LGi;U&;3iYfFJ=nm6;BWmN2EY0Ze zaJb*^?+ylgX=<5Lq3>+kn0REaJ`TW>Mb-Z7s2Uh>CT8gkN3>ssM6{SOl27TdfIxIs z`khrX70FrM9G2Ei+zS?_-Dn-r8A!W<;50QyLY-vBL~|2x)`CddIiN4l>($?~C#8)6 z{|#;f;&z+6M7#E^)7%lnS{c}TvUDHtSkN0s1wxm!BJLGUhk0nal1QDzgF>&r-|IiO zNS>y%{o!mU9zRW{d!u<_G}T6DPcajSuJ~3cx*7aTI zZ||-?e0cfs<158)zrDb|SNGTP&Ev(V&oAFTUf6Z6ZSUn06sL@uRe9Y|LEB;Lnsyco z=0ShKyu1b4WU$UJR}^%q{t91p)T7KC>Gn8`Bq25_=nZ*hpc(^U&{y|o;t0qGW$Cx# zxpBJ{dNa}KW8fKR=RVqquojrzf;$1D|I8Q?K1f+Fv@eLjFgtp!G6LZBqH}#QzP^~a z+v`vqi1|ObCUldsXl^iI(o~{WXGh7^X^K+m#*`ddqhZ-S7)t+N2HYv%yg2>(qiPgYY!JC!FcR#2;~4|4?$=5?==ZYN(GG3Ol%0x^;Q8>&_Ya@Hz5o2_{bD{5 zDYV?ImyI#8AQ4SNmU!@D+!g=}cNrAaCuJ5Xf|g~J3{BOw)+p4Q#YXF(**Q`SXjPAp9Z05?~`#gFPvi<|_sRqx28PT?SWiTrY z!iT`Hj(QVH2hVnQf8N>o$MfBP?CkwqICxsF?vbcBy_B?Vb8AUMuX=zEWpp_1)#k(2 zdfZj8uOfFca}3_LC%L_uUtfvBre2E`3JysEqa{ht#C+8g`i}L5U&q-Mx25w;(U*B> zI4d_od0)Le27~o0((=J231d(S!;0-{F@J&kgkNz_!7z$ifeqU{*m5AIAsAL%oXxbe zp-iJ-WWc8evJrDqGO^p1@I`Hzg7luKup;ZaGQq4$XweVt==#c4D$lFc9l@~Wt1;Ap|ZqyTy z>@vkWnboKwi~DBowzGqDekcI8AD#Xt-Uv<0)ns%i0NySG8~XM|8TW+KC}%-`|1SUw zcNabx%s{Y(ITf11vkm-s-8a{lZs}w?s-=UH5H}ECBA~DLWc>#K2N(u@BVCXlt?JXL zwJV7AzKqf~X%+w*1CA|#-mbd@;%w3N=yZ3Y-fnmJOwk)X8BCvdr%yWLU%JC5ar!JC zKJ6zuKJN{l0n#w$G%@#uVNx3mO(I+$>T;Q2MIZovd~>dg=k=@2#}7Ax-ar3*|Mlym zNU%O*?Ywm9iW5YYu|mk>EGSVZ!V{oXCp0Awo|w z=&PgX)cIz3d6J+Oe&VKe>7bl>{zRouq+fmqW-AS7gT4W?znxrAf{h3v#MQoox9u7WT)+Ffd z(Cq)19wxgR6d6Ny8b>B-@U@2L zag`s<=GNTitGa_&uho4WYmvta0Uj%KpI&db7wx3O14f(B<;d*|>p?0D(*gk4%!SNf z$n2FwniZyJnJY^x1je(pW*x|uXU<@l(0SIJY_}hV`Yt8jUT0retFV-^qpy&-Q-7}8 zhoa7dvLP-lTJE-+NfsCdF~>kfC)#hdcblypg%z1vJFU)>PS?;kPL22qgFEAYv`7E1 zJ@}Gpr^_Mb-alc@hp(T(>M*b!>~t0i*auF;Fd(Df+h0?wDOPVQeGzyJN_ z^QZf--yXjIcof{;-EXwpqBGu%0w2%r?$_E#dUeNEgtN=()$LMbSAXH*;Zo4c7>}W^ zD=jO~d1jUu@Y9ded2hCebt98Vi`BrB(k8osJus430$LCkDlD943`sY-`qdJS%OEm< z3eyFTY2eCT9~Qu^88qb>92^qyDz;Mhf%@oc%;Q00AA0!Xjoqvnq$MOU?U8{%Yto^|XT7k700g342CIL%5e5%Uh2yA?0J|4QyL_Ggvd;CQCd3zfJ$Brs zYiaFwwze#H&BBK&o2YgXS^f85j=S(?;|z>lMax^qn|xbDd=;h2ZZ-d&pthDxQl(8d zD6Ea5(x6=&^~%;Jt?m1`yPEWZu~pF81o?CoTwaU?z&F=|;VJS}&`_PfykF}Y$yy!H zM#A9bQGb0rr0W8>#pRRY?s48Gjpz;UkKwdS*HJBEmkik@z05s%Zvk2|(z*L#LjIXH zF@CEfUFdXcXFC{|h7}Uy-$3#iuZy|MX(dS}Hx`t)DGYlw5tFHwcZ9*B!ulqgGP&V& zp2f-ZL5rb5ng%XJW{^?=fP+#r($F?$ayc_4hMT2Megb+2qeByhbfM;ezLR|7D4=hW z6mt5z4@FZ96Cd_XEd;<5SCg2{Y78C0bcuktLSLb>0wf;l@AUUE6AW^aZbw)P04(%1 zvFO!bakOf0)*W*sG*6^5Cc#z`&IKR=;2`xZ(Cv5j2}rQ@Wc3cVDX$1FrChSj77o3_ zVEtA!SKK!hA{tJcEjD`Sw8mtN!51~5Z=?CV-gu^HHJ>Zm(XZWD0Q{tvJnfBt?T&sC z04uub^Um;TJN~uR`=!#_dwh?FYmW8$r1+ZQxs$hYaicUe*Ey_ z>z7xSXMT5u2qpNWqp0oei^av|n4U&`#ce-(J->djx)(OTzIgrmLVGbdF^>1BE+g0C z4a^ftxkB8@tc%D7Q{*~&Bp3;c(c*3d`s!T4Iiwl&EB))6yY=PGLPzZbbh16^MBbb9 zGH|OS7D;qDnV0zO>gIaERvG}Ni!~F2pbT3a*0kBsVo0~lM?v;4U~*2>;4u8Gc9rCd-T`<0!PwYu%|erA2+;>S4v7YnSv>v8iGY1h*QzN!KPR#dJ|6X|I2;DEt8(gGbCr%}`*!w)$Q@JzLs1dqPqy5frazZCX< zY19hTK>`c|zyX6P9#cBWl19B67@U}ElU0bZm)IN+&M(F{w+m6DpN8WS${0GqCV^RA zPNwtf+{b~0#6sVGe^<~eW)=?$6g3Tl2Zw`U$uu`cHqoTVPUrPBSHc2}0bP84NIQeU z05B{W`$7dyg#mh*2?l@(q3?R#h5;TUfsOzG15ZgrK~&R_g_H+=O2PLR8-}1pDYzB) z4V7R3*l#R`if;hm5V~Ce+^#*dwk!u=qsUhJJ;3f8zY)_1_LW*oTf4O<+^yB0R%=fx z)n6O+r_IK*PWMT#|6BkZ4Sww;{{Voa$9@;{Nieci|_7UrDagji08GFgWVfB7gH6xr=Q8V0}3Sw1%~#_L0_&xROMN zX|HA`QE5}aY}oAbZQ3v5^~6eHwy|z7ng$JGypK!1()45lefjZ?c^bK zGCg+9tRV=!MTLjkQ_CcxGk+8}4~F=L?DY1S5bzwZ*+fy8f%adC8SC4ASbVy_`?Ib- zOuDEadpa5wtpcejVX!V_eQz;x=r{%=)*%443UOK=>+{tYPg@5u`}5KN0u$v-Rr^f4 QKL7v#07*qoM6N<$f{mKoHUIzs literal 0 HcmV?d00001 From 9ea19eb637b78659673c0d230be499e9fda9425a Mon Sep 17 00:00:00 2001 From: Adam Hines Date: Wed, 29 Nov 2023 15:46:04 +1000 Subject: [PATCH 62/69] Updating the tutorials --- .gitattributes | 3 + .gitignore | 2 - VPRTempo.egg-info/PKG-INFO | 126 +++++++ VPRTempo.egg-info/SOURCES.txt | 9 + VPRTempo.egg-info/dependency_links.txt | 1 + VPRTempo.egg-info/requires.txt | 8 + VPRTempo.egg-info/top_level.txt | 1 + dist/VPRTempo-0.2.0.tar.gz | Bin 0 -> 6831 bytes src/dataset.py | 1 - tutorials/0_BasicDemo.ipynb | 322 ---------------- ...o-Quantized.ipynb => 1111_BasicDemo.ipynb} | 8 +- tutorials/1_BasicDemo.ipynb | 354 ++++++++++++++++++ 12 files changed, 505 insertions(+), 330 deletions(-) create mode 100644 .gitattributes create mode 100644 VPRTempo.egg-info/PKG-INFO create mode 100644 VPRTempo.egg-info/SOURCES.txt create mode 100644 VPRTempo.egg-info/dependency_links.txt create mode 100644 VPRTempo.egg-info/requires.txt create mode 100644 VPRTempo.egg-info/top_level.txt create mode 100644 dist/VPRTempo-0.2.0.tar.gz delete mode 100644 tutorials/0_BasicDemo.ipynb rename tutorials/{1_BasicDemo-Quantized.ipynb => 1111_BasicDemo.ipynb} (96%) create mode 100644 tutorials/1_BasicDemo.ipynb diff --git a/.gitattributes b/.gitattributes new file mode 100644 index 0000000..5aeef22 --- /dev/null +++ b/.gitattributes @@ -0,0 +1,3 @@ +*.zip filter=lfs diff=lfs merge=lfs -text +*.pth filter=lfs diff=lfs merge=lfs -text +*.npy filter=lfs diff=lfs merge=lfs -text diff --git a/.gitignore b/.gitignore index 4052199..f7b6871 100644 --- a/.gitignore +++ b/.gitignore @@ -15,5 +15,3 @@ dataset/winter/ dataset/event.csv/ models/VPRTempo78415685001.pth models/VPRTempoQuant78415685001.pth -models/VPRTempo313662725001.pth -models/VPRTempoQuant313662725001.pth diff --git a/VPRTempo.egg-info/PKG-INFO b/VPRTempo.egg-info/PKG-INFO new file mode 100644 index 0000000..2d362b3 --- /dev/null +++ b/VPRTempo.egg-info/PKG-INFO @@ -0,0 +1,126 @@ +Metadata-Version: 2.1 +Name: VPRTempo +Version: 0.2.0 +Summary: VPRTempo: A Fast Temporally Encoded Spiking Neural Network for Visual Place Recognition +Home-page: https://github.com/QVPR/VPRTempo +Author: Adam D Hines, Peter G Stratton, Michael Milford and Tobias Fischer +Author-email: adam.hines@qut.edu.au +License: MIT +Keywords: python,place recognition,spiking neural networks,computer vision,robotics +Classifier: Development Status :: 4 - Beta +Classifier: Intended Audience :: Developers +Classifier: License :: OSI Approved :: MIT License +Classifier: Programming Language :: Python :: 3.6 +Classifier: Programming Language :: Python :: 3.7 +Classifier: Programming Language :: Python :: 3.8 +Classifier: Programming Language :: Python :: 3.9 +Requires-Python: >=3.6 +Description-Content-Type: text/markdown +License-File: LICENSE + +# VPRTempo - A Temporally Encoded Spiking Neural Network for Visual Place Recognition +![PyTorch](https://img.shields.io/badge/PyTorch-%23EE4C2C.svg?style=for-the-badge&logo=PyTorch&logoColor=white) +[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg?style=flat-square)](https://creativecommons.org/licenses/by-nc-sa/4.0/) +[![stars](https://img.shields.io/github/stars/QVPR/VPRTempo.svg?style=flat-square)](https://github.com/QVPR/VPRTempo/stargazers) +[![QUT Centre for Robotics](https://img.shields.io/badge/collection-QUT%20Robotics-%23043d71?style=flat-square)](https://qcr.ai) +![GitHub repo size](https://img.shields.io/github/repo-size/QVPR/VPRTempo.svg?style=flat-square) +[![PyPI downloads](https://img.shields.io/pypi/dw/VPRTempo.svg)](https://pypistats.org/packages/VPRTempo) + +This repository contains code for VPRTempo, a spiking neural network that uses temporally encoding to perform visual place recognition tasks. The network is based off of [BLiTNet](https://arxiv.org/pdf/2208.01204.pdf) and adapted to the [VPRSNN](https://github.com/QVPR/VPRSNN) framework. + +

+ VPRTempo method diagram +

+ +VPRTempo is built on a [torch.nn](https://pytorch.org/tutorials/beginner/blitz/neural_networks_tutorial.html) network that employs custom learning rules based on the temporal codes of spikes in order to train layer weights. + +In this repository, we provide two networks: + - `VPRTempo`: Our base network architecture to perform visual place recognition (fp32) + - `VPRTempoQuant`: A modified base network with [Quantization Aware Training (QAT)](https://pytorch.org/docs/stable/quantization.html) enabled (int8) + +To use VPRTempo, please follow the instructions below for installation and usage. + +## License & Citation +This repository is licensed under the [MIT License](./LICENSE) + +If you use our code, please cite the following [paper](https://arxiv.org/abs/2309.10225): +``` +@misc{hines2023vprtempo, + title={VPRTempo: A Fast Temporally Encoded Spiking Neural Network for Visual Place Recognition}, + author={Adam D. Hines and Peter G. Stratton and Michael Milford and Tobias Fischer}, + year={2023}, + eprint={2309.10225}, + archivePrefix={arXiv}, + primaryClass={cs.RO} +} +``` +## Installation and setup +VPRTempo uses [PyTorch](https://pytorch.org/) with the capability for [CUDA](https://developer.nvidia.com/cuda-toolkit) acceleration. Please use one of the following options below to install the required dependencies, and if desired follow the instructions to install CUDA for your hardware and operating system. +### Get the repository +Download the Github repository. +```console +git clone https://github.com/QVPR/VPRTempo.git +cd ~/VPRTempo +``` +Once downloaded, please install the required dependencies to run the network through one of the following options: + +### Option 1: Pip install +Dependencies for VPRTempo can downloaded from our [PyPi package](https://pypi.org/project/VPRTempo/). + +```python +pip3 install vprtempo +``` +If you wish to enable CUDA, please follow the instructions on the [PyTorch - Get Started](https://pytorch.org/get-started/locally/) page to install the required software versions for your hardware and operating system. + +### Option 2: Local requirements install +Dependencies can be installed either through our provided `requirements.txt` files. + +```python +pip3 install -r requirements.txt +``` +As above, if you wish to install CUDA please visit [PyTorch - Get Started](https://pytorch.org/get-started/locally/). +### Option 3: Conda install +>**:heavy_exclamation_mark: Recommended:** +> Use [Mambaforge](https://mamba.readthedocs.io/en/latest/installation.html) instead of conda. + +```console +# Windows/Linux - CUDA enabled +conda create -n vprtempo -c pytorch -c nvidia python torchvision torchaudio pytorch-cuda=11.7 cudatoolkit prettytable tqdm numpy pandas scikit-learn + +# Windows/Linux - CPU only +conda create -n vprtempo python pytorch torchvision torchaudio cpuonly prettytable tqdm numpy pandas scikit-learn -c pytorch + +# MacOS +conda create -n vprtempo -c conda-forge python prettytable tqdm numpy pandas scikit-learn -c pytorch pytorch::pytorch torchvision torchaudio +``` + +## Datasets +VPRTempo was developed to be simple to train and test a variety of datasets. Please see the information below about running a test with the Nordland traversal dataset and how to organize custom datasets. + +### Nordland +VPRTempo was developed and tested using the [Nordland](https://webdiis.unizar.es/~jmfacil/pr-nordland/#download-dataset) traversal dataset. This software will work for either the full-resolution or down-sampled datasets, however our paper details the full-resolution datasets. + +To simplify first usage, we have set the defaults in `VPRTempo.py` to train and test on a small subset of Nordland data. We recommend [downloading Nordland](https://webdiis.unizar.es/~jmfacil/pr-nordland/#download-dataset) and using the `./src/nordland.py` script to unzip and organize the images into the correct file and naming structure. + +### Custom datasets +For convenience, all data should be organised in the `./dataset` folder in the following way in order to train the network on multiple traversals of the same location. + +``` +--dataset + |--traversal_1 + |--traversal_2 + |-- ... + |--test_traversal +``` +Running `nordland.py` script will automatically do this for you. +## Usage +Running VPRTempo and VPRTempoQuant is handlded by `main.py`, which can be operated either through the command terminal or directly running the script. See below for more details. +### Pre-requisites +* Training and testing data is organized as above (see **Datasets** on how to set up the Nordland dataset) +* The VPRTempo dependencies have been installed and/or the conda environment has been activated + +### Pre-trained model + + +## Issues, bugs, and feature requests +If you encounter problems whilst running the code or if you have a suggestion for a feature or improvement, please report it as an [issue](https://github.com/QVPR/VPRTempo/issues). diff --git a/VPRTempo.egg-info/SOURCES.txt b/VPRTempo.egg-info/SOURCES.txt new file mode 100644 index 0000000..5b53485 --- /dev/null +++ b/VPRTempo.egg-info/SOURCES.txt @@ -0,0 +1,9 @@ +LICENSE +README.md +main.py +setup.py +VPRTempo.egg-info/PKG-INFO +VPRTempo.egg-info/SOURCES.txt +VPRTempo.egg-info/dependency_links.txt +VPRTempo.egg-info/requires.txt +VPRTempo.egg-info/top_level.txt \ No newline at end of file diff --git a/VPRTempo.egg-info/dependency_links.txt b/VPRTempo.egg-info/dependency_links.txt new file mode 100644 index 0000000..8b13789 --- /dev/null +++ b/VPRTempo.egg-info/dependency_links.txt @@ -0,0 +1 @@ + diff --git a/VPRTempo.egg-info/requires.txt b/VPRTempo.egg-info/requires.txt new file mode 100644 index 0000000..60165d6 --- /dev/null +++ b/VPRTempo.egg-info/requires.txt @@ -0,0 +1,8 @@ +torch +torchvision +torchaudio +numpy +pandas +tqdm +prettytable +scikit-learn diff --git a/VPRTempo.egg-info/top_level.txt b/VPRTempo.egg-info/top_level.txt new file mode 100644 index 0000000..8b13789 --- /dev/null +++ b/VPRTempo.egg-info/top_level.txt @@ -0,0 +1 @@ + diff --git a/dist/VPRTempo-0.2.0.tar.gz b/dist/VPRTempo-0.2.0.tar.gz new file mode 100644 index 0000000000000000000000000000000000000000..ce1fe3ee229e80e2c151d7af42e607dab54ca6a1 GIT binary patch literal 6831 zcma)(u0R zbc#%ZOTKIP;OQrM*(+7hGE7_@YcS$`;oN2c+sU7K2fu8fhTzeS)hO(&+l8d*(8ml9 z4hF#z7U*-a07QEElV$tUM;$d^D!AA046FI?b)lBQ)dn^5Jv8~<0a59fOK}A+7u^$| zpbDK?evSGf6$|!>Z{eBI2k+Zsneum;Lq5W9$Fn(ouF74UjJgx;`qhDa@8ZJ3y_+jD zl59ZERiG14piz0DODgZR1+18NJ(COhs=l|7jdj$lNnZfcX-|OU`y!^x7!dUpn4$*$ zmA{I=ZWr8NUzQp0RT^AFE3bjh)$?1qJdPyPtr$Ni_*b7793T!s!FsNG5Z_}A89b~!|WWn@}E2`uu0pw3amOqY z9sRQhQbxJ7DC;72%fQ&%b6)7Sp)hL}RV+s`#9%R*h#?eNG7o2h(3TH4Ly7u0Pt$bx zUb!H3djD63Cd=`@orYeoa8j~t@<)t*>?_NDqJ9g0EVwcpaBhezU*!qD zsopQ8(oa-q&+xYfZQC+SVwZ^!o-sOetk`${Xgew3GdcH3e$r-h6!~BB)V^AvG~llg zl}I(V=tcU->iJ_8RES>PV(BDtGxeRx?rtMBzr8CB=lGSI$Xkx)FN9=0zR#}(&Trl1 z<@LH`H9*BgvdaW=)Pnj6Eivf@Eb>XkON7Spw1~$szt8fY_Cu#gur9Z1$1X*)-wNal z0dZs0uJg-vCm(J2*mi;ViNpiLv}4Vx2)PtTUc9P{qf||bys*nwXu_ny;o(xoOgs1} z8VO?efOrwLzWCYFeL-COSmK}(Lt??-Ya`XTuVCe{`dl_Pw~^hTMx;mwVn9ryrz|DE z@!g9P^~IsD=e~9IVw-d2ZNnESnT}}RHCH=mmE23Qgzq#7i|S|pyX>fhr&MCME%@Y4 zxE^1IPd^8nF>ETcSapF?=(usRuo_!uh^jPF#R>0~IIVmUdi$Jg0?gd^Gy;g?UF_jI z|HO;mOhuM9T^y@`x#W|TcPPb6{t##V5_1m>4PI5NrKW&`+|>0Emx5jY$ObYsmt5?j z{*1f!77<#xR{XGxsH_=Tkzik;EEeB33}#p}GV=f)vj*tB zaAp<~`B|`be`xzDm{oNBY z)qY)tbCp1F5t7XGZ6Ilo9Hdj^eeVIO+#l{D61Riu7*VzLEL31*Aj?lLPyWyPl*;!qg% zO*C%>Z`Rv&j1C~Um#=Y^-ls8P&>(c_ThUAG3Ce8U^vZFTS?lGNv9*fR@DuFb0?q>; zDXK^bSv&(mILzN}nXg!h6V;m`@?em7_{|)GW=vUDS)s)kB9>+Ni^?FgG%?9zw~5NX zZLszO>7>S)$&Ty$7q^D#KcD ztop^*e6W?MKa`0Fp?JhhPmjG&LW?3!W3S8*Hfw+Y=v4`0p|UFmEza%q7WO$t#S`e( zOfC~GdGHCdJP-WZAIa7KVN%o0+s9abo^z>}&Z3=!KjbcpuqgV=jJ4S0!o)xPL6#fN zPZk>`jc907n)=Z8FiPlZCyVS;4?xP!+Q%u;rMlkxeklO^#dh+wUg}>A%#bjJT;%dm;n05GYwAc+sW=<%eXWj~BV*)@Ybyiqmev_8X zmfd2C?U$N>=RX9c0$k1s*yPr^xPjm1>02ZP*+Ok*nK+RJOm(10PcW1#Kg0szF75^w zW*NJeQFKGSZXkN(;@SPpLAHp_S4EwWn^GObIJ+I$Ns zPr}6_Po^60(qAegTqJ!Ls(XDD%hs}(Pwo4-DBS0zb)Bj&Hy4V$hxrYz#QFMsO5fBXHbAyXaQ7|y(e58BcubPAZiQe7gYZLZUz zVQDC|e&Lgv-fRxJmN7~f4dJmjEabDMH2De}se3k-wovgUZKb;u^L3n+D(-Bc?vEQ* zD?|^?eXY4%iDncW5+KPL78jV!Zc{Ttk96aSLH29J=$z~$DK3}^eFo#fDasisDRqJ} zEk4tyPW2ZTSp?A}j)I@LtZK7RSU8Lx3|{x1L^yqcXJ%( z!g$JIv#r0|JW>Sw^>w91l9Y1DKS+lN1wSzv58i%YRLF2wB8I^Ot8xp5Om{Zqu^r$! zis~1@>cGX3o8fyFUX;u^?w%R=KfKOZW#)$nx5_M;uCPB>1il1r;VJX{0UmNG;VWDthb}iG-_fkEVam4zB2C_AFC#PIHMCshlHY`pmnK4HiVX4OQTk4gBzk35uS6%kZ*Ph%k_tq zQwE)SO-S)iu-s{hBW@(-s}_o36NQvav(a`6)G)R`tTB*y(5*p-CmHGe#~$}IC~@~k zt=7lanX8z5-))>2V$fE^YJtpdeJx6&lLRJvXz1GhI*4USv*03R1_Rge0C{?kGc?3l z&l~E=u`@P+tFNNS*u_ z&;UE>N>@!;km(RC7&8E%vmzF5Yi8qE#ee6zh|r4V7&9f(UA2! z^YZ6ag}aq`bvTLNU&299k79-m-LeOK3(T2O25ti7L@6unE6j*SN56BTH zHv1r&B|_gSKsU@P3O5pqGxte~2MOOST?;Ra7!cog*Rj)F9WNV0v&b&>hsWa_-H2a^ zitFEW>F=b38r4b6P|ndsH6p1QEknvgCC~bJt=O#B5^!q|SmQs^j(E-3X0eY3VAh7d z!6QP3yUd5W5gGK zl(ROE58;w*yRz8-{!=s@ifUmdN+XU2)tnIyV3aZK{J4J`Pbm0P5tbTCx7|LXObqHU zs0zII3OBrbNY@nq99C{d7Yjf42@lT~@6lq++}urn1GfK`r0%m-Kkg?)bl3~iSyqyg}(L}1#;**Yrrig$ULE*B>$K;`R$veXJXHp^N1|C&&M#2s|~{-915r-c9p?#g`s?K!7LpD9}W1w&gnV5wLp@KZlT0oV-B1 zUX%ZWnPdRXUQZG*b1j|*m~P2s{oDlH^&%nUzzv$hCQx(%oq6avdNK9f%Eic?4fPOq zRYjaU?iC^z{0VpXzZG}IJzt}ffazn>7=Y-GBl>I-Y5lkc7tpBYuV|WhOzsbQd&~c< za2)LIeU)5@#wcAiu>#Y3s`i}etWw(RLGwH9~1iDtIZ1Frh7^E8n~)o^a6k~H`lT| zz=O8UIB%7M-~DCK;$}G|X9~etp0w@F&eDm&#N*2XU;sG0)y(EA1JKaH1%?;kvf01n zuIC=``upF^&$GaMxc!~ke^wV=pmJjKKT!U#281Y@9swsa8pRr7c$-kWqZi0`y0Zhd zSJI9%N~1WfA68TBIHEZ896G+IO(;JmMDP>VVdS*kvE!2JvU!VU>AuN-h3vW&>dOr3 zLu~1O3+@qFie~!yf3ZZm{m*YR#G)4vcTmUhK~&i=cHJqKlp}nEL-WjD^Akh}<>f{w za2Mm$T#WRO zA!pX4+6-_RonHj*f52P+f52OG6V*vAjfh*w24yevub#51F$gW&j5mH+WjoD0Q!8xf z;zy|MsW%70;W~zucfi@rSeo+%pC3GaKv2Ou`z5GR_#F3CqiOyup|&Z0vNi}IxmtJq z=KRrkbV=+iDPZZu4*Jo+YMLae<816^Aq9;+I{dv14wNg=(dB&MiL~y?F5Fdzye>s? z+!>0+ZLYrUbvokKtMl-;Qv84_5X$LI&2++Vr8ZN5&{(X;&=wjP}55n z`gi)?*FyYIB+aS7QS`?tv}#{-11e|93;c0Kf69)qpGByH0r6!tlXIc&b`94{I`5Y} za`1=w=+b29%JW4?YxEWO1~#$d*HiVZMNAuuAKr<$WIvu%my_EY`W+rt*-r}wDXMYC6gftH>YG4!O`ccStzt_z z`p3guVp=72-mqgAz+_xSqM2yDg({hznvCK$MMxl2(guI!UPa3GQ{Hp20BkN|dDHX- zVokx@=`9LX-HjDa;(4;|gVryZnDggpO|h(~eBBhd%NHjExEfqZ0olP@X|HLKG*X9L_EOs6h2oAUy40U{`HAH{@WHAK zpCfbUdDrD;39bO&?iVAu02_)9m1fK>OHxFnb;g98+vglH^^i2Y)d{UJ*?-XROsnR< z*|v<^7sz=qQz$6|O`Oxro>Y?><}cWSPE46wFcy~$wTu<3I|d>Zo;*Aq<2t;A&a)Do z%N{yD#e6}d@B%hmJBYD+niOs%S zNbF67Z`TBRdoOWtNpu_nYIMt78-!N;ihhTl>O1V@^GD}&U-`kQ9YtI##63rfeBku|ME=g;UD;x1g{%VHxRo5JTK|6F; zTfk$4dAwJR?e#f**=jY_NBk26mxK-9+$oyzN|Ypsg7!M$*l9uervNVb12?@o1KzT5 zJ_iKOSa%ZdyTM!U?^RDtesC@$e-c@cTlDI`J`z_lFiT$oLmQ-1Zyxbln|qnX{Bwmer6KOrq_`F zWPr_HRiqZH{h$bm!xLw@VzILvG|Wy-1yOs ziTBsI*GllQplz{ME;|&3_LYrsKY@QByce_IUkCU?8rKcYr)g z&TR^|zIbdu?S@4i(KQNBt!?&kgyJgN&3*lIe_~E~y`kdY%1#NN;*bpPt@jMf{*Y9a z65Rd;`Izb_aE-rrFE0)zhA@eWCSN1%^t0(O@b zUp?LDp5RYTyy}3!eWd{)F0aW&0mBiSMM{i7T?VSz-M2%F8DUB#zR6Q~uEXrd5+PP8 zs|s^1C4)Zv{TwZ8;o`*IXPh)zqQ|R~^V2y*m-5&Bx4n$DM>!K&T5mbDx^tX}xhayj z&%Li=r>!z5%RgizEtp=IKQ^QcG+d8KVM_8;Qp%s-J|1LpX%o z#UXK?YtpIahCu|i#RO;%<@Ss1c?7;QCZu&g4~!(8O008ltYL@ASsy$QqnaM$qS%Mz z&`z(7FPS)6jHyYh3|#w~pUtXQSl?Mk{XT?-I#&0^K4R!M)ZU3$RaoIjhDJNrD`Qjc zD(6JTpX*td2S_k5bqU-wvc-=Cl`^ER~^+vB3B#gS=`;=dox%NnPjCbyO zKwBal&39j*dIE1?v-T?%Yb@^yRqL(zqUH&&zX}X_p8vo0Gx4^k)f0FCU4lUW2Z(-H AGXMYp literal 0 HcmV?d00001 diff --git a/src/dataset.py b/src/dataset.py index bfc2a98..e51034e 100644 --- a/src/dataset.py +++ b/src/dataset.py @@ -1,6 +1,5 @@ import os import math -import cv2 import torch import pandas as pd diff --git a/tutorials/0_BasicDemo.ipynb b/tutorials/0_BasicDemo.ipynb deleted file mode 100644 index 97d7cc9..0000000 --- a/tutorials/0_BasicDemo.ipynb +++ /dev/null @@ -1,322 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "id": "b34c7b8a-e7bb-47f4-b558-be1bde9a7b37", - "metadata": {}, - "source": [ - "## VPRTempo - Basic Demo\n", - "\n", - "### By Adam D Hines (https://research.qut.edu.au/qcr/people/adam-hines/)\n", - "\n", - "VPRTempo is based on the following paper, if you use or find this code helpful for your research please consider citing the source:\n", - " \n", - "[Adam D Hines, Peter G Stratton, Michael Milford, & Tobias Fischer. \"VPRTempo: A Fast Temporally Encoded Spiking Neural Network for Visual Place Recognition. arXiv September 2023](https://arxiv.org/abs/2309.10225)\n", - "\n", - "### Introduction\n", - "\n", - "This is a basic, extremely simplified version of VPRTempo that highlights how images are transformed, spikes and weights are used, and the readout for performance. Although the proper implementation is in [PyTorch](https://pytorch.org/), we present a simple NumPy example to get started. As in the paper, we will present a simple example using the [Nordland](https://webdiis.unizar.es/~jmfacil/pr-nordland/#download-dataset) dataset with a pre-trained model.\n", - "\n", - "Before starting, make sure the following packages are installed and imported:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "c879cd02-82db-441d-9476-fff1925bf494", - "metadata": {}, - "outputs": [], - "source": [ - "# Imprt opencv-python, NumPy, and matplotlib.pyplot\n", - "try:\n", - " import cv2\n", - " import numpy as np\n", - " import matplotlib.pyplot as plt\n", - "except:\n", - " ! pip install numpy, opencv-python, matplotlib # pip install if modules not present\n", - " import cv2\n", - " import numpy as np\n", - " import matplotlib.pyplot as plt" - ] - }, - { - "cell_type": "markdown", - "id": "bb45df38-e333-46b2-9161-80e6ac367532", - "metadata": {}, - "source": [ - "### Image processing\n", - "\n", - "Let's have a look at how we process our images to run through VPRTempo. We utilize a technique called *patch normalization* to resize input images and normalize the pixel intensities. To start, let's see what the original image looks like before patch normalization." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "67f129b5-9a7a-4b50-9d94-b9bf512f8b70", - "metadata": {}, - "outputs": [], - "source": [ - "# Load the input image\n", - "raw_img = cv2.imread('./mats/0_basicdemo/summer.png')\n", - "rgb_img = cv2.cvtColor(raw_img, cv2.COLOR_BGR2RGB) # Convert to RGB\n", - "\n", - "# Plot the image\n", - "plt.imshow(rgb_img)\n", - "plt.title('Nordland Summer')\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "id": "b68cf25e-35ae-4885-9cf1-c1b09ce4ad42", - "metadata": {}, - "source": [ - "What we have here is a 360x640 RGB image, which for processing through neural networks is too big (230,400 total pixels). So instead, we'll use patch normalization to reduce the image size down to a grayscale 28x28 image to just 784 pixels in total." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "6f67656a-3ba4-4374-b780-4e8bac4ec2d2", - "metadata": {}, - "outputs": [], - "source": [ - "# Load the patch normalized image\n", - "patch_img = np.load('./mats/0_basicdemo/summer_patchnorm.npy', allow_pickle=True)\n", - "\n", - "# Plot the image\n", - "plt.matshow(patch_img)\n", - "plt.title('Nordland Summer Patch Normalized')\n", - "plt.colorbar(shrink=0.75, label=\"Pixel intensity\")\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "id": "d404dfd2-10bd-4981-96ef-6092a9866fc6", - "metadata": {}, - "source": [ - "The reduced image dimensions with patch normalization allows for a decent representation of the full scene, despite the smaller size.\n", - "\n", - "### Convert images to spikes\n", - "\n", - "'Spikes' in the context of VPRTempo are a little different than conventional spiking neural networks. Typically, spikes from image datasets are converted into Poisson spike trains where the pixel intensity determines the number of spikes to propagate throughout a network. VPRTempo only considers each pixel as a single spike, but considers the *amplitude* of the spike to determine the timing within a single timestep - where large amplitudes (high pixel intensity) spike early in a timestep, and vice versa for small amplitudes. \n", - "\n", - "Let's flatten the patch normalized image into a 1D-array so we can apply our network weights." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "2bd6ae95-2a79-4b45-8a60-503079339739", - "metadata": {}, - "outputs": [], - "source": [ - "# Convert 2D image to a 1D-array\n", - "patch_1d = np.reshape(patch_img, (784,))" - ] - }, - { - "cell_type": "markdown", - "id": "9d9a5eaf-1de3-461f-b138-3ac820da8bae", - "metadata": {}, - "source": [ - "### Load the pre-trained network weights\n", - "\n", - "Our network consists of the following architecture:\n", - "\n", - " - An input layer sparsely connected to a feature layer, 784 input neurons to 1568 feature neurons\n", - " - The feature layer fully connected to a one-hot-encoded output layer, 1568 feature neurons to 500 output neurons\n", - "\n", - "Each layer connection is trained separately and stored in different weight matrices for excitatory (positive) and inhibitory (negative) connections. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "6d98749a-8f28-477b-871c-93626e96786c", - "metadata": {}, - "outputs": [], - "source": [ - "# Load the input to feature excitatory and inhibitory network weights\n", - "if_exc = np.load('./mats/0_basicdemo/if_exc.npy')\n", - "if_inh = np.load('./mats/0_basicdemo/if_inh.npy')\n", - "\n", - "# Create a figure and a set of subplots\n", - "fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(10, 5)) # Adjust the figure size as needed\n", - "\n", - "# Plot the excitatory weights\n", - "exc_plot = axes[0].matshow(if_exc.T)\n", - "axes[0].set_title('Input > Feature Excitatory Weights')\n", - "fig.colorbar(exc_plot, ax=axes[0], shrink=0.4, label=\"Weight strength\")\n", - "\n", - "# Plot the inhibitory weights\n", - "inh_plot = axes[1].matshow(if_inh.T, cmap='viridis_r')\n", - "axes[1].set_title('Input > Feature Inhibitory Weights')\n", - "fig.colorbar(inh_plot, ax=axes[1], shrink=0.4, label=\"Weight strength\")\n", - "\n", - "# Display the plots\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "id": "826213d7-7721-440c-b1a8-47fb613339eb", - "metadata": {}, - "source": [ - "In this case, we have more inhibitory connections than we do excitatory for the input to feature layer. Let's load the feature to output layer spikes and visualise them." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "7609eae5-f584-4c98-9eb6-3c3cf1e2aa04", - "metadata": {}, - "outputs": [], - "source": [ - "# Load the input to feature excitatory and inhibitory network weights\n", - "fo_exc = np.load('./mats/0_basicdemo/fo_exc.npy')\n", - "fo_inh = np.load('./mats/0_basicdemo/fo_inh.npy')\n", - "\n", - "# Create a figure and a set of subplots\n", - "fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(10, 5)) # Adjust the figure size as needed\n", - "\n", - "# Plot the excitatory weights\n", - "exc_plot = axes[0].matshow(fo_exc)\n", - "axes[0].set_title('Feature > Output Excitatory Weights')\n", - "fig.colorbar(exc_plot, ax=axes[0], shrink=0.4, label=\"Weight strength\")\n", - "\n", - "# Plot the inhibitory weights\n", - "inh_plot = axes[1].matshow(fo_inh, cmap='viridis_r')\n", - "axes[1].set_title('Feature > Output Inhibitory Weights')\n", - "fig.colorbar(inh_plot, ax=axes[1], shrink=0.4, label=\"Weight strength\")\n", - "\n", - "# Display the plots\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "id": "d591969a-e72e-43b2-8c89-16a13bb29fe6", - "metadata": {}, - "source": [ - "### Propagate network spikes\n", - "\n", - "Now we'll propagate the input spikes across the layers to get the output. All we have to do is multiply the input spikes by the Input > Feature weights for both excitatory and inhibitory matrices and add them, then take the feature spikes and multiply them by the Feature > Output weights and do the smae thing. We'll also clamp spikes in the range of [0, 0.9] to prevent negative spikes and spike explosions.\n", - "\n", - "Let's do that and visualize the spikes as they're going through, we'll start with the Input to Feature layer." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "f6c84239-c176-48c3-8954-25da5f989d61", - "metadata": {}, - "outputs": [], - "source": [ - "# Calculate feature spikes (positive and negative weights)\n", - "feature_spikes = np.matmul(if_exc,patch_1d) + np.matmul(if_inh,patch_1d)\n", - "feature_spikes = np.clip(feature_spikes, 0, 0.9)\n", - "\n", - "# Now create the line plot\n", - "plt.plot(np.arange(len(feature_spikes)), feature_spikes)\n", - "\n", - "# Add title and labels if you wish\n", - "plt.title('Feature Layer Spikes')\n", - "plt.xlabel('Neuron ID')\n", - "plt.ylabel('Spike Amplitude')\n", - "\n", - "# Show the plot\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "id": "4ea0b0a3-66fc-4202-963c-cbd05114d283", - "metadata": {}, - "source": [ - "Now let's propagate the feature layer spikes through to the output layer." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "f5d4dc99-c7b9-4e9b-ba7c-58f6e30631cb", - "metadata": {}, - "outputs": [], - "source": [ - "# Calculate output spikes (positive and negative weights)\n", - "output_spikes = np.matmul(fo_exc,feature_spikes) + np.matmul(fo_inh,feature_spikes)\n", - "output_spikes = np.clip(output_spikes, 0, 0.9)\n", - "\n", - "# Now create the line plot\n", - "plt.plot(np.arange(len(output_spikes)), output_spikes)\n", - "\n", - "# Add title and labels if you wish\n", - "plt.title('Output Layer Spikes')\n", - "plt.xlabel('Neuron ID')\n", - "plt.ylabel('Spike Amplitude')\n", - "\n", - "# Show the plot\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "id": "54b4f5f6-017b-4d7d-812a-c96baf9cb39f", - "metadata": {}, - "source": [ - "Success! We have propagated our input spikes across the layers to reach this output. Clearly, one of the output spikes has the highest amplitude. Our network weights were trained on 500 locations from a Fall and Spring traversal of Nordland. For this example, we passed the first location from the Summer traversal through the network to achieve this output - which clearly looks to have spikes Neuron ID '0' the highest!\n", - "\n", - "Let's prove that." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "780371ca-9dfe-4dd7-857d-e35be73ffd23", - "metadata": {}, - "outputs": [], - "source": [ - "# Output the argmax from the output spikes\n", - "prediction = np.argmax(output_spikes)\n", - "print(f\"Neuron ID with the highest output is {prediction}\")" - ] - }, - { - "cell_type": "markdown", - "id": "7bc8a7fb-66b4-455b-922e-b0fdc38b53c5", - "metadata": {}, - "source": [ - "### Conclusions\n", - "\n", - "We have gone through a very basic demo of how VPRTempo takes input images, patch normalizes them, and propagates the spikes throughout the weights to achieve the desired matching output. Although this demonstration was performed using NumPy, the torch implementation is virtually the same except we use tensors with or without quantization. \n", - "\n", - "The purpose of splitting up excitatory and inhibitory weights is to allow for extra hometostatic normalization of inhibitory connections, which has proven to be critical in regulating overall system activity.\n", - "\n", - "If you would like to go more in-depth with training and inferencing, checkout some of the [other tutorials](https://github.com/AdamDHines/VPRTempo-quant/tree/main/tutorials) which show you how to train your own model and goes through the more sophisticated implementation of VPRTempo." - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.4" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} diff --git a/tutorials/1_BasicDemo-Quantized.ipynb b/tutorials/1111_BasicDemo.ipynb similarity index 96% rename from tutorials/1_BasicDemo-Quantized.ipynb rename to tutorials/1111_BasicDemo.ipynb index 2d87f15..3150d68 100644 --- a/tutorials/1_BasicDemo-Quantized.ipynb +++ b/tutorials/1111_BasicDemo.ipynb @@ -5,7 +5,7 @@ "id": "b34c7b8a-e7bb-47f4-b558-be1bde9a7b37", "metadata": {}, "source": [ - "## VPRTempoQuant - Basic Demo for a quantized version of VPRTempo\n", + "## VPRTempo & VPRTempoQuant - Basic Demo\n", "\n", "### By Adam D Hines (https://research.qut.edu.au/qcr/people/adam-hines/)\n", "\n", @@ -15,16 +15,14 @@ "\n", "### Introduction\n", "\n", - "This is a basic, extremely simplified version of VPRTempo that highlights how images are transformed, spikes and weights are used, and the readout for performance using a model trained using Quantized Aware Training (QAT). We will view the system through the lens of integer based weights and spikes to see how a quantized version of VPRTempo operates under the hood.\n", - "\n", - "*Note: In this example, we will lose some amount of precision because we are only using integers for all calculations. In the deployed version, PyTorch quantizes and dequantizes spikes and weights so that some calculations are performed in the floating point domain. As such, this tutorial should be taken purely for conceptual understanding of a quantized version of VPRTempo and not for implementation purposes.*\n", + "This is a basic, extremely simplified version of VPRTempo that highlights how images are transformed, spikes and weights are used, and the readout for performance using a model trained using our base system and the Quantized Aware Training (QAT) version. This is a basic, extremely simplified version of VPRTempo that highlights how images are transformed, spikes and weights are used, and the readout for performance. Although the proper implementation is in [PyTorch](https://pytorch.org/), we present a simple NumPy example to get started. As in the paper, we will present a simple example using the [Nordland](https://webdiis.unizar.es/~jmfacil/pr-nordland/#download-dataset) dataset with pre-trained set of weights.\n", "\n", "Before starting, make sure the following packages are installed and imported:" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "id": "c879cd02-82db-441d-9476-fff1925bf494", "metadata": {}, "outputs": [], diff --git a/tutorials/1_BasicDemo.ipynb b/tutorials/1_BasicDemo.ipynb new file mode 100644 index 0000000..b245d5e --- /dev/null +++ b/tutorials/1_BasicDemo.ipynb @@ -0,0 +1,354 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "b34c7b8a-e7bb-47f4-b558-be1bde9a7b37", + "metadata": {}, + "source": [ + "## VPRTempo & VPRTempoQuant - Basic Demo\n", + "\n", + "### By Adam D Hines (https://research.qut.edu.au/qcr/people/adam-hines/)\n", + "\n", + "VPRTempo is based on the following paper, if you use or find this code helpful for your research please consider citing the source:\n", + " \n", + "[Adam D Hines, Peter G Stratton, Michael Milford, & Tobias Fischer. \"VPRTempo: A Fast Temporally Encoded Spiking Neural Network for Visual Place Recognition. arXiv September 2023](https://arxiv.org/abs/2309.10225)\n", + "\n", + "### Introduction\n", + "\n", + "This is a basic, extremely simplified version of VPRTempo that highlights how images are transformed, spikes and weights are used, and the readout for performance using a model trained using our base system and the Quantized Aware Training (QAT) version. This is a basic, extremely simplified version of VPRTempo that highlights how images are transformed, spikes and weights are used, and the readout for performance. Although the proper implementation is in [PyTorch](https://pytorch.org/), we present a simple NumPy example to get started. As in the paper, we will present a simple example using the [Nordland](https://webdiis.unizar.es/~jmfacil/pr-nordland/#download-dataset) dataset with pre-trained set of weights.\n", + "\n", + "Before starting, make sure the following packages are installed and imported:" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "c879cd02-82db-441d-9476-fff1925bf494", + "metadata": {}, + "outputs": [], + "source": [ + "# Imprt opencv-python, NumPy, and matplotlib.pyplot\n", + "try:\n", + " import cv2\n", + " import numpy as np\n", + " import matplotlib.pyplot as plt\n", + "except:\n", + " ! pip install numpy, opencv-python, matplotlib # pip install if modules not present\n", + " import cv2\n", + " import numpy as np\n", + " import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "markdown", + "id": "66b11853-6e17-4884-ac92-d35d814add42", + "metadata": {}, + "source": [ + "Next, we will need to get the pretrained weights for the model. To get them and the other materials for the , we will use [Git Large File Storage](https://git-lfs.com/) to download " + ] + }, + { + "cell_type": "markdown", + "id": "bb45df38-e333-46b2-9161-80e6ac367532", + "metadata": {}, + "source": [ + "### Image processing\n", + "\n", + "Let's have a look at how we process our images to run through VPRTempo. We utilize a technique called *patch normalization* to resize input images and normalize the pixel intensities. To start, let's see what the original image looks like before patch normalization." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "67f129b5-9a7a-4b50-9d94-b9bf512f8b70", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAFXCAYAAACIkbUMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9edCtWVUfjn/W3s8573Cn7r5AN6hMKlGQKIpB9EswRkRUELVixIhYpZbGREOIghQkDkWBYhwjWmVSjgkVjFomFVNOQS1/sYImcRYFmRqa7r59x3c6w/PsvX5/rGGv5znv7W5UbFrP7rr9vu85z7CHtdf6rHETMzO2bdu2bdu2bdu2bds+hFp6qDuwbdu2bdu2bdu2bds2bVuAsm3btm3btm3btm0fcm0LULZt27Zt27Zt27btQ65tAcq2bdu2bdu2bdu2fci1LUDZtm3btm3btm3btg+5tgUo27Zt27Zt27Zt2/Yh17YAZdu2bdu2bdu2bds+5NoWoGzbtm3btm3btm3bh1zbApRt27Zt27Zt27Zt+5BrW4Cybdv219R+/Md/HESE3d1dvOc979n4/tM//dPxcR/3cX8tffn1X/91EBF+/dd/3T/7iq/4Cjz+8Y//a3n/g+nPzdpb3vIWfMEXfAEe+9jHYmdnB7fffjue+cxn4l/9q3/1we/otm3btv21tS1A2bZt+2tuq9UKr371qx/qbjws2y/8wi/gUz/1U3FwcIDXv/71+OVf/mV8//d/Pz7t0z4Nb3rTmx7q7m3btm3bX2HrHuoObNu2/W1rn/3Zn403vvGN+MZv/EZ8/Md//AftPYvFAnt7ex+05z8U7fWvfz2e8IQn4Jd+6ZfQdY19fcmXfAle//rXP4Q9e+jayckJ9vf3H+pubNu2/ZW3rQVl27btr7m9/OUvx8WLF/GKV7ziAa9dLpd45StfiSc84QmYz+f4sA/7MPyzf/bPcP369dF1j3/84/F5n/d5+Lmf+zk87WlPw+7uLr7t274NAPCnf/qn+OzP/mzs7+/jEY94BL72a78Wh4eHD6qvb3jDG/D3//7fx6Me9SicOXMGT33qU/H6178efd+PrjP31O/8zu/gWc96Fvb39/HEJz4R3/Ed34Fa6+jav0x/rly5gkc84hEjcGItpTE7IyJ867d+68Z1j3/84/EVX/EV/re53t785jfjq7/6q3Hx4kWcP38eX/7lX47j42Pcc889+OIv/mLccsstePSjH41v/MZvHI3/3e9+N4gI3/Vd34Xv/M7vxOMf/3js7e3h0z/90/G2t70Nfd/jm7/5m/GYxzwGFy5cwBd8wRfg0qVLG/1605vehGc+85k4c+YMzp49i+c+97n43d/93dE1X/EVX4GzZ8/iD//wD/FZn/VZOHfuHP7hP/yHD2rutm3bHm5tC1C2bdv+mtu5c+fw6le/Gr/0S7+EN7/5zTe9jpnxwhe+EP/23/5bvPjFL8Yv/MIv4GUvexl+4id+Ap/xGZ+B1Wo1uv7//b//h2/6pm/CN3zDN+AXf/EX8UVf9EW499578exnPxt/9Ed/hB/6oR/CT/3UT+Ho6Aj//J//8wfV13e84x340i/9UvzUT/0U/vt//+/4yq/8SnzXd30XvuZrvmbj2nvuuQf/5J/8E3zZl30Z/tt/+2943vOeh1e+8pX4j//xP/o1f9n+PPOZz8Rb3vIWfMM3fAPe8pa3bAClv0z7qq/6Kly4cAH/+T//Z7z61a/GG9/4Rnz1V381PvdzPxcf//Efj5/5mZ/BS17yEnz3d383/t2/+3cb97/hDW/A//pf/wtveMMb8B/+w3/An/7pn+L5z38+vvIrvxL33XcffvRHfxSvf/3r8au/+qv4qq/6qtG9r33ta/GiF70IT37yk/HTP/3T+Kmf+ikcHh7iWc96Fv7kT/5kdO16vcYLXvACfMZnfAb+63/9rw5Et23b/sY13rZt27a/lvZjP/ZjDIB/53d+h1erFT/xiU/kpz/96VxrZWbmZz/72fyUpzzFr//FX/xFBsCvf/3rR89505vexAD4R37kR/yzxz3ucZxz5j/7sz8bXfuKV7yCiYh/7/d+b/T5c57zHAbAv/Zrv+afveQlL+HHPe5xN+1/KYX7vuef/Mmf5JwzX7161b979rOfzQD4LW95y+ieJz/5yfzc5z73L9Sf09rly5f5//v//j8GwAB4Npvxp37qp/LrXvc6Pjw8HF0LgL/lW75l4xmPe9zj+CUveYn/bevy9V//9aPrXvjCFzIA/p7v+Z7R55/wCZ/An/iJn+h/v+td72IA/PEf//FcSvHPv+/7vo8B8Ate8ILR/S996UsZAN+4cYOZme+8807uum7j/YeHh3zHHXfwF3/xF/tnL3nJSxgA/+iP/uj9zNK2bdvfjLa1oGzbtj0EbT6f4zWveQ3+z//5P/jpn/7pU68x60p0RwDAP/pH/whnzpzB//yf/3P0+d/9u38XT3rSk0af/dqv/Rqe8pSnbMS6fOmXfumD6ufv/u7v4gUveAEuXryInDNmsxm+/Mu/HKUUvO1tbxtde8cdd+Dv/b2/t9GnmLH0l+3PxYsX8Zu/+Zv4nd/5HXzHd3wHPv/zPx9ve9vb8MpXvhJPfepTcfny5Qf1nNPa533e543+/tiP/VgAwOd+7udufH5aFtbnfM7njNxM93c/ANx5550AgF/6pV/CMAz48i//cgzD4P92d3fx7Gc/+9TMpi/6oi/6AEe3bdv28GtbgLJt2/YQtS/5ki/BJ37iJ+JVr3rVqa6KK1euoOs6PPKRjxx9TkS44447cOXKldHnj370o099xh133LHx+WmfTdudd96JZz3rWbjrrrvw/d///Q4M3vCGNwCQINzYLl68uPGMnZ2d0XV/mf7E9vSnPx2veMUr8F/+y3/B+9//fvzLf/kv8e53v/svFSh72223jf6ez+c3/Xy5XP6l7gfgz7j33nsBAJ/8yZ+M2Ww2+vemN71pA3Tt7+/j/PnzH9DYtm3bHo5tm8Wzbdv2EDUiwnd+53fiOc95Dn7kR35k4/uLFy9iGAbcd999I5DCzLjnnnvwyZ/8yRvPO+0Z99xzz8bnp302bT//8z+P4+Nj/NzP/Rwe97jH+ee/93u/94D33qz9ZfpzszabzfAt3/It+N7v/V780R/9kX++s7OzEacDYAPYPdTtEY94BADgZ37mZ0bzfLN22jpv27b9TWxbC8q2bdtD2D7zMz8Tz3nOc/Dt3/7tODo6Gn1n2RkxyBQAfvZnfxbHx8cPKnvjH/yDf4A//uM/xu///u+PPn/jG9/4gPeaINzZ2fHPmBn//t//+we894PRHwC4++67T/38rW99KwDgMY95jH/2+Mc/Hn/wB38wuu7Nb37zxjw/1O25z30uuq7DO97xDjz96U8/9d+2bdvfxra1oGzbtj3E7Tu/8zvxSZ/0Sbh06RKe8pSn+OfPec5z8NznPheveMUrcHBwgE/7tE/DH/zBH+BbvuVb8LSnPQ0vfvGLH/DZL33pS/GjP/qj+NzP/Vy85jWvwe23347/9J/+E/70T//0Ae99znOeg/l8jhe96EV4+ctfjuVyiR/+4R/GtWvX/sJj/cv0BxBh/uEf/uF4/vOfj4/5mI9BrRW/93u/h+/+7u/G2bNn8S/+xb/wa1/84hfjX//rf41/82/+DZ797GfjT/7kT/CDP/iDuHDhwl+4/x+M9vjHPx7f/u3fjle96lV45zvfic/+7M/GrbfeinvvvRe//du/jTNnzmwzdbbtb2XbWlC2bdse4va0pz0NL3rRizY+JyL8/M//PF72spfhx37sx/A5n/M5nnL85je/eWTZuFm744478Bu/8Rt48pOfjH/6T/8pvuzLvgy7u7v4wR/8wQe892M+5mPwsz/7s7h27Rq+8Au/EF//9V+PT/iET8AP/MAP/IXG+ZftDwC8+tWvxq233orv/d7vxQte8AI873nPww/8wA/gMz/zM/Hbv/3beOpTn+rXftM3fRO+6Zu+CT/+4z+O5z//+fjZn/1Z/PRP/zRuueWWv3D/P1jtla98JX7mZ34Gb3vb2/CSl7wEz33uc/Hyl78c73nPe/D3//7ff6i7t23b9pA0YmZ+qDuxbdu2bdu2bdu2bdsW29aCsm3btm3btm3btm0fcm0LULZt27Zt27Zt27btQ65tAcq2bdu2bdu2bdu2fci1hxSg/NAP/RCe8IQnYHd3F5/0SZ+E3/zN33wou7Nt27Zt27Zt27ZtHyLtIQMob3rTm/DSl74Ur3rVq/C7v/u7eNaznoXnPe95Xv5527Zt27Zt27Zt2/72tocsi+cZz3gGPvETPxE//MM/7J997Md+LF74whfida973UPRpW3btm3btm3btm37EGkPSaG29XqN//t//y+++Zu/efT5Z33WZ+G3fuu3HvD+Wive//7349y5c9uyz9u2bdu2bdu2bQ+Txsw4PDzEYx7zmNHhmqe1hwSgXL58GaUU3H777aPPb7/99lPP5FitVqMzNe666y48+clP/qD3c9u2bdu2bdu2bdv+6tt73/tefPiHf/j9XvOQlrqfWj+Y+VSLyOte97pTSz3/wq/9Ns6eOwcCwADS5F57FoEAkr/lM0IiQko0vpZO75fdo3+A0J6VckSA4/7H8RDCuyD3Vq56F2PsaSPIbXJP0lAhBkBgv4fI+la9b8wJKZG+A2CWfwDr4yrAjForKrN8X1t/Y7O/fd7sgdO5qe06AKAk88sgMBgJFURJ0PIpBi+iqmNucwsdn40L6XTasHmx/6PK+/27yqO1Z2b5TMfBNi1E/ggZd3wXIb6aAVRds0xJ6M/mWGkNBFRm/wgsa6ZPg6663tf6BjCYG02xLqD8TLJeYJDOrdHQTSeGMJo3IvZ5Hl1mnxldB81GtkYNfZ6st/V/g46BWm132ngAZvJx2fNBYa8oqQFASgmUxvOP0XiM/klojKt+be+crB23z5llVJUZXCu4ynrUCtTK4Cr9t3Gx08x4XWEzE8ZuM1xrBesaCR+yMbZ5pkRISM6/yAgoVSSSNUMCiBJKaf0FgEQZzMBQB9nTpb1v2mqtKFV+yr+CytVp18Zo/G5z3gg5J+SUwczSd2r9Tsn4q85T4Cuy5YRebU7sXeN/Cdn5hMxErdXnV+5lFH1GrRWoLHut9dbZFDOjlKJra/uF5DNmmQNfe/b9xczCVQn+zshnoqyhJHNAREKrYX1PlyWtb/ZOgJ0fQ/eIjUXmsiIBKFx9rJWFR9ba5EgpKxwdHuP44BDcDzi6cQMnR9dxvLyB4+NDnAyH6GYdbr3lAmoPrFdr9CdrpMQYasH169ewGpbgWkFU0a+FrpDg/IcoyZhTAkPXgBiJGLUM4GEAF2A23wWlGWodkHPGrOvAqDg8OMDv/9934Ny5c6fSaWwPCUB5xCMegZzzhrXk0qVLG1YVQMpAv+xlL/O/Dw4O8BEf8RHYP7OP/f19EAkztbUfgQEXru1zARUkGwGB0d4PSLEvhHmmDSI0wODvD7efRqTOwJiRFKxsCsbN+9kpuHXLvjbiSWSAJjDUMD+M0jZGHWOOCKrahpUNSakJ8TZWhL4IU0vJmJbNS1WingoW62MFKWgcCR97D+ncjqyB1N7duuVgKQoPACrkCFHIcEUT/t6SP2LabM0NoIDl7wQ40xCcYwAkCsSwYKO/oQNrAMWuif3iWsGcmhDBJiAYX9/mwWhN5r/6OkVxmqgxXUpK32F/EHGY0rIxN5HmjGG2sVn/9ApOOh7rQfX1kfclBa3yXGP69qjNvSlzRkQgBSj6SRAk43UQuk4CuyqjFBPU5OCEKymgGgMzm3+QvQWjtR7toToFLjDEh5QJXZeRAkAhYp2LcE8CmKyfjFoJpdjGzS6EwUDlimEYHEAkSs7XuDL6oUcpFUMpqKWghLUagQalr/Zd+z2l7PzAQFaihJRVCTH6V8EvY0iA7r9SBBjFveeAzfrrY2/zWKeAAg18CIiRhY1rUWsZgQ+AUSo7/Qloa4DJFJjKjOoKgAJXZgF/cStz66eDFFdec1C4Nml3qpS2Pp+yr/VfsTWqQF96DFyx03VgZvR9j361RL9c4bYL51GHHlfuuxvXrt6Hk/UxKDPO753HMKxx93vfj53dDjuzOc6e38PhyRGuXb+KoRZ0iVBB4Kr7JyVwquAKdN0Ms9kMXdehDAPW/Qo5Ad1sDiLGalVB8zkwsKx3lTlbr3v0vfDxlHljLm7WHhKAMp/P8Umf9En4lV/5FXzBF3yBf/4rv/Ir+PzP//yN63d2dk49d8SRLRcVPvJ5tHgYe7QNZ0Iq/hw1E3gTTTBSJXOVjRg1KoTNFNSrKVhpTzMitL4mAHW0Yf3aDe0gABTvkyEJRvH54I37XXfnJsRq1PDC9XJdsMRUbtpy0BwdAFIAhDb/lACk9j63hMT5FFBQE4GYXJsmYiTVpJBEeBMxwFn7KY8xuMdgiMqJAFTI52xk0SKAsmgqJgtMICUFIb4W1tOABH11VNNS0T+25rBOHLWxtnUh1XSNQqcApj2/teI2mKnAtEdsWMGUkZMyCxenWadI548TUBUIcq1OlQ2stulMlEVz4wZUomBLlLx/TdjZGFUzVy18Y5t5Cxp820432Zt2Udt5/gkbkHQVw6fZtW5it/iBZR8zAZwALrpXOIFJBNbIEpvkTX6NYUzYfohrH15PQM6E3CVQEhACQtgbKmir0KgAk+qAqdSie7EAYOSUUJmRkZDSDACQckb2gQtvST1jGCpST6hJAK9ZKwARjgYcxMpaRmCl1CIgAQSodSznjJQzOp3olATkmUCXJahqcSFwJnChtq4BzFfUtl0YoIIGsAJ/p6xgp1aZP25AsdYyoknR/gGohUwsUvL+Zp1OPmamCpQqfUED1gYu3ZoWybDK/jFCTTq3YlVJPodTK7+NZ8Q5iEAwZaTALWLUaLnnghuHN9DNOuRujvW6x2KxQL9e4baL57E773DpnntwfHKAo/URQIR5N8dqVbA4OUG/6AEskWgPJ/2AvqwwlJUoBzWhKuDtuoTKRQAaATMiJAaoMhIIs6T8T4eVuw61VqQu4cz+WQx9xdHxIJZU6kGk4PpBtofMxfOyl70ML37xi/H0pz8dz3zmM/EjP/IjuPPOO/G1X/u1D/4hVdBuFMaNv6vZixIowBRmdiFYVRg5QzOCvinTNIE81pL8jTV8FpgfuBFgUmK1Z9nPaEI+DVmOxhg+awxvDIROE1QAq9zmkVYYzd7CSE2AGrclNyemlMNrmjholqTJfI3kLsmaGW9SoMNVQFKqCW5ESQATgQ2k1AY8XR6rJrEBAJO+ywGjdIQYG/TRmJ8JT50DRDLg8K8JO3ERBKHIzYkDCNO0OTQmdLpwnc5ZExLxs9MsbG4pweaaT59JoABGxZUh46lCowRQCmb3Utrvbk0R8CHjJRg8Y6gdKDDb5qprawY0AEhEam0JkhtGS0oL4JHlTVBY+zWiEU4NTLcWQOUEGIuM0r+zAFUHq6yuEKgrqDKIxZRtOodYEBKYK4jZAU4D50AmFZ6JFPgocEuN9ogMJDRXiAhLqHWAUMpgSrR8V0QIm6mdUF1JyCkj54QuZxCZawOohcHIbvWoyj9TNuAsn9VagFJRakGpyV1CrO8zmjZ6K0WsGoUIqRQkIgxqaWAeK13Gx8zKFq21cf1hoEABLihC+QbMjZdUamuXKCm/Mt6k73Ns2tyZVUnPLKqUEory8VQTqu9wmK5zqngQUNSIsVZGzuoGC30pKm/Gc9Jc3+KBSg7ImatamyA0pqBvuTrCyfIAOzTH+sAsfsDx8gD90OFG7XHXXe/BelggzxLm8x0AjMODG+jXK1RirJYDlssbbeKqvG899BjKACISFzZl5G6OnOdCk6xWsFpkbggCblKHC7fcIp6JQZTNw/UJslqSCiex3g0PzAOtPWQA5R//43+MK1eu4Nu//dtx99134+M+7uPwP/7H/8DjHve4D+g5G0IbQqnMDdU18BI0bd0AtYognPrlp+00s/LYYtPexfpy09i41JGLoW0we05A5PfTCXFl1RFYmfbrNBll+73WMSDyXTAa03jubEywsbgQDs9W7cSAQbQLxOcbOCLtN9t/OnbRntQ8aiBOwQpNBQqa+T2+i0g1OzVwtXEYgDP3RtaPeTJpBkTM1BwRVtT4GRzAjJBUkJyMEP+S/DkPBqDcrI0sVxMAc3/3xOsNoKSaXDMzoCWm+ga+SRc3ETmTrdYPA5wB/PuahDUnmIUu3RRkRyAsZn7ye0dNL9tYLntWBbiFL7QO6Bj1DUoTwRGnN5jBy0eTEqiIaVs04ISsoNnogRRN11rdrWkv7RIhUXu+AQghC12XyuBUAbXeVc7NelHMYtFiL+SmAKIZDr7ccmmgmyrMZZTMOsgE5Nw0eWLkTuI+1utB428yaimgkkCF0JcBKakFjsndQmZ7KLU6byEaIiZ00F64jgD//dGuCW2jQ6M/cwW26xLY3PuJQLUx0GiXHCmvDLfwyUe17XMynpFk3hRceq8nvA/x2RDh3vZbRSk6B6SKsD6XJ/eLUhb4i8umilIG9Ku1gMlSsFwtcM+lu3Hf1XtQuMfemT2cP3cLCMDu7i6G9Qne++67cHx0gDqs0M0yElUcH97Aer2WWJZEKEVoZL3qwbUAXVKALusJJlQuKOotOLN/DmfPXsC6H3B8cIjVegFQRdcl9KUHc8VsnsFifMLi+Bjrfq10wc4DEObzwbSHNEj2677u6/B1X/d1f+H7zUQ78vmaLQqNOCtYrCgsTCRVYUzCaIuACSWgNLGMTBH+yDc7QcPWhL7YtUq/j5sftO1ijJ4PBiifvogi2MPmMu0CBjpUG5u0CKQ8EAvAzYLpbtZYmYRBgrHAIXDR3ZV8j7UhOt++HyuVCrekDN/dA0ziM7aNzOzTByIUm2t9LhE8WDaOkf0l1Pqkv2x2p/oFlMjXbwR6R0jNfhiwMnDyQBty83uzRLkb0SwNpkLDmLjcK9/F8YTnhOujkCsc40jks1oquLY4CNkXUCAm85uYRXBTBH/sM5bM/BXG53qlvtu02+Z2G6ca1rgXiJDcXTAxkft6h3GGrTWaeyc5UoEuL/CVpwCi0OIZ7HvB3hIPUwMvIAXl5r4Y8w40t6+uXdXfa+UG3jwOrAmpWuBxIma9MCtYpBkJ9J/Gb7RYCmzwErHkpCQuIMAMjYyUxZyfUgMzTBmzEHtmbhvje7VWpKGAs1roqlhezLJX1N1SaSrM7x9cE6pa5JJYUiG8jYvwharKCrnVmkTRVOUgWrJH29RpxeYlgaiMeCQpWEmUwOri8svNTQQgi+aEyupWb0SmPFrmhxL5DuENAW1ubBjV6fzKPA/LNU5WJyilYBhWuHzfvbjn7rtwfHQNnBjHRzPURY+uyzjJhGvX7sN9l+5Fv15hd07oM7DuF1ivlxhKASGDQOg6ALVDoYLVMABDaYHxMtkgzmAAXbeLlDpQyjh/4RwWiyX6kyMkDV6uANJsB8wZ16/dQCkFZSju6kOVudzd2QczY7Vc4cG2hxSg/GWbb9oJIx6BCZUz7CTS7kmT65tW3OjxNFfOtA/WJvIBghxZCL1WxD1pqJlUM4mt6ibckF1BNbRA3fYVwSxHox6MNG3TTAa9vjFEm4f7k6fOCLDZtfE1435MAtL9l6nlyT6rXN03bIDCJHBb21MgBbdAzkSTeTV10zVg64YjnQZgfCxNCxzLhTGN6AAE4OqnVVQ1f66Kpg3A24DQeEadLn28Y9qKcR7u77b5OYX312Bqb10eCwyxPqlQ1XiVlJVMiIAkvulUq2cuWF+NcNgmzp4b3zd6d/PNxf2nUxnmAShx/f1VAZyzLREj6WNFKJyCIMEwXz5Tg/fy/+p7wlVZCXAYPS8F4NF4epuL5raynWJuAgY4hTdav5LSGjvN+d4w5YlZAUULqBb+IY9ISf6J+ya4lxR82AjNfUupBaOay86syEV5FaWEzCQxJpqtI3EpVQN2CwYMLkWipYKTut8V3JDyQgc4E/7lGY2svE2BQrzG4mVMGWOwxo0FgAEF0nFlA3mNtwD7l2NXr/6dgExZXD2aPcNUobjO95qmXCC6zUWR1OsKo6CB4sLVA79r1f6qG2QYCoahqHsOuHZ0A+vlMUoZMPQrlGGJvf05zp+7HcfHh7h85T5cHXp0OeP4+Agnh4cYhh4pActFQak9ah1QUZCyzEstAxIx1mWtrhmIqy+Zlb2tBRjYmc8w6zKGocesDshJJmDgAhoqctehoxmILdmDUCpjPt9FrRXDStZnGCQ5IwZmP1B7WAMUIIAUTMFGa1HrnmpsHjdCwjQrSJHx/Uhqbgi59UK4wbQfdt24W40xSxDeZp8jMCITdOE6UR6NCbLfM32GX29aUIUjZdkvpi+ertG42RgtdsA+bz5eiz8JXMIUmAgSHNmM5/ZUQem3VI8zQmqWm/bAcWNA4wHGfQcbwGmuC9M0m5lL3B4SzKaWKmo01ubShtksaCbsAhQMwGys+TaXhvWYAXM5TVsQVIDF9m1m8Ixo32VsoAsjUZy+R+L1UQvkAneJGxGz+tWrCU8EGkiWgTO2JmDS31NpVffVKJYLFAS2msPtfaldY89nUpcAmnCE9T21FZJZN3dPc/uMrYqsGo18Tw5WxRUmsR9tb5cwRmYBO+bmE/bTQFV0pfka6jjEKpI8y5C1/7nrTrE+MlKGg5Sc1R0HtXSlBnBbOQCl/WAlFJAn72UuDfho2q+BlFoZZSgYyuBTX4sJNEahglTTSNhzZWQFJwXiqphagsy6V8Huttnc39JXWyGJu2hp1SYHGJKFYlNrWT8+Y2zjrQEYsa8HqSKX1DNbU0WqhJoMEDVAZXtNlGGLdTFeyAL0SdwnR8eHOD46RN6Z4dy5c2BmHB2egIhw/vwFzHY6VBQcLw4xlAE78zlWiyPcded7sLMzB1HB9YOr2NvfwZm9fbz/ve/BycEB+n4JAmFxdIJh3UPcdoRhWKHv10ARDn/u7DkgJSz6FVALhmGNWgcACkJTQhn6EY/PSdyaO/MOAzOuXbuC5eLY1blaK6iIa76W4tYTKytRNeCeS8W6ivvPgpgfTHt4AxS3DqimE9EvxgzXZGMzLVf1p2tONzftR+oSwJ91qgBlwNU1f4lyiXB9CmCo9S0CmIDa0bZkCmMgC0ZkuPZvzzEGC8Sfyn51szHZhhQNiibvt9iGxitDrA7Mf0r+BgN0Zvo09xiFd7cJGM/jA7k8Nl1qbVgb4IVPE4RtrU8Hq0EY2te1gQYzwVZuQXU2I2wz43UXGpOdjup0uNe01KqpBcxQTfPmczEdO1Fy0/lGC926mSvN119B+XSaTAQYPSaINmiaD1XNYpuAVPuZNXi0uTckgm8iV127FQ3e5t3WRX7ZEFFEHisTnEc+LiQNfodZlUKrrMLDBucrOoItbTVNSuv8axCuYWVC1bwqGu1jd+ewjUEC49t8tLFM58PviQO3lxoIVhrOWkPF1iFlQsot+NTcva2mjQb5evRImB9S4E0SNCt7Hv7cnAgJLNaslBXcJeSaUXN1C12uWTKdDETXZlUwNx1nETsWcOuBuToPkk6sezsoXzInEodnSwi1+gEaBK+0E+sDyburPz/GvY34sO9BASeaoIXEkmZbagGT1FCJu95lRFJ+XyWVGaoMca24995LODg8wP7+Hub7uyhrsSas18fo6xoDHWKv7GNvfx9pj3F8+Tr29m/Dzg7QzeS6a9cv4/jkCLeU87jnzvfi2rXLGIY1Bu6xM9/FLHfgXNH3a7FWlF7AIzMoJ5wsFqjDgGHoXVxyFS8DdYQyMIZi88qgJNaQfhhwfHyMfqgYhoJaekgsJNQSVLFaHamrWVLmd3Z2ccu58zg+PsbJeoEKQi2yfB9IYMHDGqBUjgGnoZYGGkOvtQVeMomAj1qfXRsszhKd7ABgfC0QGOokS5TJfKJB2nDzMcY2Bihml24xEzH00+Ix7AbfEJYh5KBlM2XVsgxaEqwxZVHrjJHUAMQiILE29a+7AMT0p10TUpcJo+uiC270nSOLzfmKfTBtOoKTqTAfF24adRvELQu5TZf1va2LzbUtcgS4BjLFG3K6ID2t/1brhbyPIhAYm0B4o7lQ59E1Iy18Smym4XEEpfE9AMhcGwKdDK0apZQ6DswGWv0etxqmSK8EouqmaxMG9Sbji64sDp9tAAwZrAqDcXaE3SsZM+xWN8HS0/E2sGGvlq1jbg/JyGCGCBqdSPL/s2Z8tEBtACqM0X5nCxq2sgQ0oTIE8A0X4CKw2bNsTKDyZN1rzuhU0qSUJBsOze1jaeS1WiArwJxcpptLqUsSNJYTAV2WInBhX85yUquOgNqUCal2qCW5u8d+igXMMnjYgYuY9pvN1/aSuXxqzQ7KSimStTRxfRtQJm7WRlM0fR3CLRvzVQNImXxn9D9al9p4Ccd/Boij9oTIG4Irl4DDg2OcnBxjf28Pt916GyoX9KuVKsI9To6u4N5L17B3/izOnj0PSp24aJYHuHblEq5dvYT1aoXVeoWcCPe+/15w32M+m2G1OsHefB878zk4ycymnHF8dIihWPZVRWagDhU8NMWm7yXtd2d3B7mbYbFYuPwstQBcQR1huTzG8mQB5A7dfC4gjGW2zCrI3FL1z5w5i4/6qI8GkPDnb3+HgJacxQKYgDTcv5Ia28MaoHhzIrM4BNFOacreTOttsh6mqVUI8iM1y5p5P1oJonLlpkAeV4AUAi4jQTFCjExRL0AUjOyC0oBLc12dPm6gGTxp9Ca7p05N1uFni3OwHkQAcErzsetoRxtUN6b605vp5JRu02RtHOzY5h/3M7zUgefYahN64IzndJxuFhL7aVpic7vE8Vt8jnWhgSECUALzmt4b8cVYY7ZxjkEfW6Ck/gtQoI2tNuvfeEw3QXSx2Thj1V/WCTA05pql/DMNt8VVjFvVwRERoFolUcj00doc46Js9s4JqHPmj9F3LtDM8hHm3AvKTdaFKrlbKoHUZaD1NYiapm1gBSFWLUioqkXRhKcIIdi25kSgorUvnFzb2ldO3lcppiaf58RacdVAGLQwl7ki0GqIVEkNriinzr+AGXmngEExq6fcqkmbxaBWeP2JpLWCnBodOEjfWF1XJmjTrFlUEutcaX0SqhLwYtaSWisqtSJotWggJUn8RktsgGTmWEaSulTc/VJJU3zR+HCgCRu/0Yatwaaq0L7fsKwH2gHgFjZTOFgWcqOIZnT/wuY48rSkfIyBfhhQuWB3d47ZrMNsllFqwXq1xL1334Nrl9+PxeoYBQOOj45wvH+IWx/xSMxyh/suXcd73/VuLE9OsDvfQVkNWNcKHhjrpdQtmXUZF86eQe5mODo6QTdP4B4ADUhUAc3kykmAH8hqxAgddF2H2VwKvXVdAjqhw8QdoDRUSgGXAtSKMgwCYFlswKakSCJKxqybYf/8ORwcr3D50mUcXD8W40FKOHt2B/tnzuDGjRsba3Sz9rAHKFHLGllNdPdtaO32N3RzMmC1AopaFJzRqXUhAhOn/6QbmoFo7bB3jNC8mrzl9mDqDmhbXhHZctMyYtnxm2nWckvrqM3FaDPaeOzhUQO1sZ8yx96HEUBpv9td4883571ZaE7xZwAauKcBeroGwoTGlpLGLBrYdHDIDGAsEEdr4eqrxhmxMMJmldGnUXN7OSNkRu7yqDpoc5GYgJdnk06IMWrTvGX1q7/LZRuLVrJRxMgCOjVQdJSxM21hjDcDmXFdiEhrAk0Yd7xG14UVaIBog67Cw13jBCBR/hNhYDRtc3racyLtjjJ+wnOYGUktB4YqkgIWMEuBMsQQZI0JskKADNf/mptYhA6ry6BaJVkVvETkcTdVrwGVMNfdSJN3CwYLeBPFn7TqqA1GHEBl0HcbHbJaU4PGHtfI56foPJJZ4QTksLp/orvJ9hXiTmfRsKHWPdI+SnG4AUQWF6JAhwWIFK0QKkMXi0algoqKAUVLslf0tVeFr4Z0aZ33qsGyRGLF0fkgaLxbanvexn6aVaWCkTrba61ybKRTUygBtDRx3eAcwZ9lVwUtYWShzDI3UVGaronxLQDIXUYtZ7E+PgQAnBwd4eq1+3D3XXfhrvfdCSpr7O7tYCg9Fv01XLj1FnSYo+syrtx3GYc3DpEpg7uEnfkOlosllqseORHW64K+H3D58n3oug6L5RJcGUO/xrBeChDVbL1aelUUTCFi5NyBKImbaCjIucX4JepAXQYXYN0XTU9O8hyW9cmzDkBFZQLlhJ3ZLuY7u9jZO4vaVxxeOwSvhDYpA0R5pCQ9mPawByjAafxaNRJVi6bV+8ZMMfp7NbWVbaEmyD1aF4KJt2g5ZCv5HOMF2vssqOomzB1AdA2JYJDgpdjn0WZxjXwMDowBjUUgWrpstc1nkeUGysYCyjcckWqrwixHwbJudQGQGH6AxaSZaTTO58Y8VBEaxqQqmjsujt3N/woi5DO1NNSWiWGZUyPg5EDGVGYtPEaAlVc3zdzBgwJeIkubNLBg89hihKA9t2k0M78cZ6BjtiBF5lB7o4I4+Zw4DbF9fxPApes6+nsy/00It7kDxta1DQDvwX7QcuJmHldxeRpwNtChz2lpx5vPP02b5baYavUYuzZGwCkA63h/dANadpOcGSIds9sKN3BJjnMN3NrvhHguksWH+LOVd6SwhgYGGiho856YwSwRrbOZ7l2jCRAIUlgNKYO4IlOSImo1gUktEZra6cLW+5fEwgapDVKZAAUvYk3RfusxHzZeD98OZyGJoIf+qxLIrwRmZdilArNYlix+ROp2FJRaMNh5P6XFp5glja06moLCRAlDrSogxXIUQZmDKpJKs1OlK8YLIiWtAEueRWSAJVEOBdwMlAKp6/S9likVd3/bM9NA22nW4BSwgBmlDiACbrvlkUAiXL56Batlj5PjBTIl7O6fw97OLq5cvg9l1aPuFlx9/xVcv34F/brH2bNn8WEf9mGYzWa4cuUqTk4WoERYD4xSCWUAjo6WsmdKUfBlAFcyZ4ik2q/xDWcfLAX/SM9UcgCrco8LXFYQEbpuhr4fADDm8znm87lUmQWBUsbe/Bz2z5zDRzz+o3B07Qh7l66jdGus1seYzTt0sxlW/Rp9HfBg298IgOLsOAhORks7rQHCkAswIHhhPEhR0H5RLYkDE1b3BZMKNEkpjYkEpZTmB0RwP9jrm8K/ibonglhAAY2+jyOO/n+Q2UaU3ZAw34TkpmYE6wllUt7QwJm9z7XaYJloIIiUkdkGaANjsHA0ZGfiscmGrlrlMcSnwJiRIWv5V4kAqn4NqJkT7Xk29jAIe5lqryGwFQhxEgJIrBZFWySjgWDl0nfyaK6EGjgGXcb6BgZaTsGhFJ4XX+ugKdzTBG6gF0jQ82nanc3TFB/auk/96O3nJlg0wBEZ7hRMWHGyEXC0783SIF8IA2XNaCAVuPq50bEfruhDMDDXGKqvtwVYxqGH6qQRrCSttgrmUBG3kU0DsQQrN9OsXMl70+qfQEzeBNTEXuuB0KxHEVgZUGKW1FwhgSDMmNX6gWYhs7fqvgTbvkpatAzKi+LSt/3koMd5ibq9yQCLDI9V8JPNicW/RHrQcv9gc78wKgmCkfiRNl4DKV59lo0vNDog5xs6xVSFbeg1DchToJtNkBtpzqxg0XJibvZ2BAmBgsXTDjpMbm1SK5yxnKgMApOCeWZFkj5laryzKQAM7hm33nqbZj8N6Iuk/h4e3MD5C+dwcngAALhw8SJ2jhdYHi+xXqwxTx129+a4cMsF7O3v4fr166AEzGYdTk4KFoslShnQdRnnz57BYnGC1dCrtVatW4GuZRkkv0nK+quSxdXsX7DgJVJYQJWRuzloJ6Hv1+g6+byWip2dOfb29zDfmaFyQk67WJ4U3HrrI3HbLY/A6mSN8xcv4OTwGspRAtcBy/USs50OQ13jwba/EQBl2pxJqqCNGpFsTGUiZIZ3Uf4BuNYKLxHNrqFabEnbO+RBtwA8rWrcmcaADQSMOmnARQl8GqAao88N2UYG53225yvncc3I/eIMO43S3ut6gvOLIChCc0ZP1uGxhqOTI/OhIsPqmMQ0Pvt7avaPrWklFdG9D9iZD+G9zliDFUe1o8zJGUabH2PashF9PKzjoRYgutEisxJ0M/7M6kqYdolNS5oFL5rfvQ3N3HynvHcyR6wuAavxzaoZ3+TWkebXTmVtf0ufCagGYMdWFQcnCPQyeb4HzKLNdyxlHkdrfbAu2zv9uT43pa3v+IXyo5QxODHBrWC96vk6RISa2/k5FAPOQ/8MGpsQaiMdz8doLQzwg4LlbrP5abPa9zIUDSQ2ENtM780diFAgL3n6qh00seFmhMZFBD5mgrRWcYSAGCmp8PGuqhXVEIsrAi02RpSx5t6RLR1OQ9efpTBqqX5uUDtll0bzCNMzRqd2S8yPKTsNdIzpMK6FDbd9vwmkzart/C3QaUpyMrPH7WhqrCsFMP3E1obVIlS8DkxRpYp07fwARhIx33VJ9588o3DFtWv34cy5fTANWKyPJAOnn6MvAzoecNstF7C7t6MAGLh06R4cnRyBGFivj1HKArMZ0M06EBh9f4yhX2A+n4ES4+joSMAEASl50Rbl7XBeTimDOWEoGmNVJV6FNdEj54ScuwDkq1SdzbJ0u/t76OYJZ85dwM7eORwdDdg7dxbHB0e4evkSbly/jFqX2N2bSfZQ6XFyuEC/6vFg298AgBKIboN9jom1ofBNvbnowpGvBlRw8KjcsbhrSQKhWALwYrxEM5Ers1RQIZhHhYH2YBpXwVxV85TOUoVbRFq8wGT0CSCqYQPqT5gWibbTmNwCZFelHM2X5kONz4kCcjx3Zj1wYIVWPn1UX0B+OXVN4iOdKenYWZlm9Js3iwqH74A2UBPYdm1jXJuTZ29NCrBsnmztbiL1bU48eyqPBXTV9+vzhNm1vsnHLQ2WAAU8oY9sv0vxo5FLwxg8AGhlyGYRgWudcOEhLP80l04zWyvg4eR9NWhCOr9RaMjsWjaFhjM6uLDJNNJTBs+micsTTGVwyNT+52PVhIHxWijNiBUjrpG6CHR+igpcqCXUrZQ3ASjW7DTgeM103qYtPlfceaffb9f5z4mSIcNrc9wkpa6nGyO4pZoT4CeUw1xC0HAbQrbnhbh1WQs9z8djplonkyAVfZnEXQifqlK23t2baMHbiu/91OUQT+VA2vdvU7Sc/0Q+GPkwhZ9hDSQWpmxYVlLKUuhMY/+yrb0GhdoJ2VbbRVhHW4vi1p/qtCd8XOiaK3l8j5Wu51rUMpWRspSukBOyE5AZOWWcHB3jXe96N971rnegLwvs7s+wd3YHF85dwNXL11HqGo+84zZ83JM/BrnLWK3WuHr9GnZ278BsNsNqtcAf/v7/w9HhZTzxIx+HJ/2dv4NSKo4PruM9774TH/3Rfwc7uzO89a1/gnPnzuHixYsgItx5551461v/GMyMj/7oJ+EjP/IjYda83/+938c9d18CqJ1kDRaLW63BelgHKfrGBbVm9MOAK9euIXeEgoSziXDm4i1IqeJ9730H7rv0fgzrJXb3MmYd4Xi9QBkI636tIREPrj2sAUrT7I15Ai4ETmEk7bNx/EL8foOZONMk52vMrLFH3AohKVCJ8S7m8z2d2VlpavY0aLPOAGjmSTVDMlmRLikFb1HjFpHfNAjasOS431VPQ/NxsVmDTNhWZVTTINZN7cVASTTry6gmwjLOexCaNj6rmTBaA2CyNs1KMBJUNDbHGraQv/U+//+0RcBkwX4R7DxAc+Gi4CneY9VXEWlJrhuZoCMISjQat7uwoABZ41MEA9h3whANjBgdTOfdrIKnAi6jHY4fBfDAVQ9s3Mzkaa4EICGPgI0BsVE/MKUkA6U0vs63SIh1YvOTN+HtVja/3idBXpba2E7LgvHxGkjQ/kg2zTSYvfUXHEDwZL8Dm3UeptdwsC75Cb9mgQkWPFs3B5maumxz1SxgQKHagKzF0MEEDUAzqfU0DIPGtalrCtQq0I6AL5Bzp3u2KTWJyK1TDENBBU5CpGXoLQaFOYDq5FURCHDXio1HUqVPsYYYWA97w1yTzY2XBXwk0sMSM8yCkD2zST63wnOUITQEEquWWn9sDSV1uqVJx30GKI9W95aDztzoz+ppMRJqAa5du4Z777kH1y5fwW2PvABiwqPuuAN7O/u4965LQJcw398BzYrU86Ee1w+u48POfgTOnTuPRz3qDrzvvXfivXfeiS7v4fzZWzCUHpkZT3ziE3HbbbeBUsXHfMzHYr1e4fz588g549KlSxiGgosXL+KpH/dU7O3vAwDe+c534sqVK5KWb+thxSq5SAXa9eAAmUhEAyVG5QHrvoBqwsHRAY6WS+zcOEbpBxxfvo7S90AdsFwNWC0HrFYrpG6OPMugB+/h+ZsBUGr4OwoBBAY6bW5d8N8bcBjdQ9GlY1cAvoGKMasKJIIdVB8FkWuifkKrcE9O1asVioWklZ+2oDbm4v58t9Yk9YUSA0WrRXLzrxc94MyYqfjq6wg82Um0iaeCpA00Ar1TwZvPAkZm8QhIfCaDSdoFaXtxfO1ICJ2KLSDMTn6xAFcDCgK0gOYui8GKpzdhiNMzYR64KUAxq0h84s00aJtTitYp7V9Im44gxri/sLsEtQ1Yt8c9okCdinhcs7QCXcrgR4AlQapBhloR8kBhWDcT8B4f4MGl7eaxVcBnS8dOI3AqAjLMv+4TB6bhOvvbYJqkEpsFynZbA10mXO4fpoZXm1C18YVg4Ck4mVpBTwOB92eJayDjJvTpVoXWH5ffFgcWgIUI0aJzpzVNEqEMAwqxZmJUj4uRG/XvwLsYkpuj0TENVCVW66aOXa1TfvZUIXBidFkzkIbBwQRz8f0ISMB59rrxE0AtCxGYgmE3BdsgUAJy6pCzgJNu1iFnASleLVvpSsBQS0tnaG0YLi0dmlnOQDJwpem0xHDg5IrFJDDd1sp4nvBcAYHr1RKL4xOcHB+h1oLbb78dlXsMixWuXb6Bk501KmWsVkscHN7Aul9h1s1AVEE0IHcFXcc4OTnE/u4ZdHkXM9oB1QweegxDxXo9oJSCBMZyudDAdkbRFPVZN8fHfuxTsLO7i1oqFosV/ugP/xjrfmgySNc+63lTksJu9EUN6Ccgd0mDXnucHJ2glgVyOgQxo18sUatkGA1aT4WZQQU+Nw+2PawBys1a9DO2NhUh4+8bAygjIWL3jHzqJlzCvczNFRSZlaXKSauBoXXIICkJ5QzKhK2eLGmo3N6r1pqapDKlaLVqRSBGSgx3VziDbhpJjcKc5Vo7C0LuKx4jYgTpc4oxA6bRnIUguDgnmGzsuBQ+I/p+BUdxvFOJwgjWIGMUVlyL9Wlkvdtc45u3TdoYfXsTsKGS0sc2fZM9dQp4T39WckB2ap/VVCBrnYByunCNa5DUxM3MrtbbGrazjuBBtyYsjfYdBJHVxSAwwuFpTXagzf0EjIRxNuOA0GMyWjfwMSkyNwV21ddcPxtZqMyCI8+P1h17+QPSgqe60sbea+M8pW+Tz1JQmuzvCNbjs61vdfK3/2rAMCgLk62pJQBqe6YCFiLJxmlhW6bYWKC/gDEvsDYBUsWzyuSfYCELtDWLHjv/SJRQU3WBllxhKl5Uc8pza0g1BmNyPEFz6VIGPGYlNT6cU0Y369R6ktx6slmwkMEYnKZrkQP+zF1lPKoMkMwW1uMuFOlTJonRMPU00JNZ4/0ZNWRclYrrV6/iypVLODw8xO13PAJn9uZ455//ObgM4Dpg3Z9g70yH9d1LXLvWY7XqMZvtuAWrVOHLfX+CC7ecxXyeUdGquTIz3vrWP8HR8QH2dnfx5+94Bz7qoz5K9kwVl9RHPPax+IiP+HCtgpvwZ3/6p7h27ZoX4GNmrIc1mFliWahtcFsnl4Eslq46FIndHHr0yzVWam2qQ/FjH8hPMCZ1eT2IfRjawxqgCIE2rRCYIrTmN9WLguZ4/wLJTKoGCloLwY88Pl21ROGpb2inbUrnLAc/JSuH3ACDIXMrRx85DpGc6goAldqx47la/AMD0JSxRJONZIyFYHbcqHGVMF9xo420Q7CDlMlsbWh/cf5s3k1z8aaYJNnnOtwILk/TwEemXWa08BuzXTWtVt3aD7gh2ntsQ2oHw/dRg0W83kzuGFMUT36GYY8sVsbcgLEbIl4jvn0CTgGCNV7NYb6nAta0JB4DTVurjeBlNEErYFPtftT5WyWjXEY0ynBBABRx8GzBim7zdNDiLs1A95H+AHNBKAjAmFaAFoDtaxFoPK7hyCIS5ygAjPhcmvAYv972f5hrc1VkIncTkc6TuV+oLYYfXZG5CUkD4nEOALR06Um/kz7Xr1OrBJGcPg02K1By0JosfspLnjOQxs81cDIG2NBTavXPnL0YHwhgBaopJ8xoJv3te3AZNjaDWTeIaOMEdy+kqP8jJLe2WAVmi6sqpTRXmVlG2oNUMJaQjizTX2HbV9Oqi6ZMG6AntVIrf/K6LKyAXuclKX0WlgBZHvQEagZq7bFeL7BeLVDQ41GPfjQWx0fYu7CPPdpDrT3uvftuXLl8CUcHV3Hu7D7AQKrAetVjdbzEjfuu4uK5WzBLGefPncGZs/vST0vQoIrLl+/Fe+58B3Lawc7ODj7qI58kc1iBvb19POIRjwSq0OW9ly7hbW9/uwT8ViBliTEB2E8gJhKayF0H5ophGHTuEtAXLPsTECV0XScHGQ69FNcrVYKEU8bO7i5yTlgulxLXpbF5f2sAyrTFYbdJiEKnCeJT7+cpMNCNGxhjq+JpQrClq0WBQOH+UWwrC1OoLBvW/MQm7FKwwgBotUv02HFoCnTixjRTiMUAQ4I0p/1g1XwA/V8Ulae3TZAQBdh4DqfCIloD3Bqit1v6dAmnNp9mBjdmj9DTxjSDJasyiGrTgEfDstiUFuwZ+3laC3gSQLAoBCEcOjn+hG5Gh+MxToXm1C02BhDwcuJ+Lww4jl698Rx7bzOb68CizNG5TF1yU3fUDuWU0nZTVAZsCgTCAEx64q1+l0YTasCavX/MBVkLOAnJjOcyu7BNI61Yt+Voz2XKDrZ8niGVWAlS76Jh/tN5gJ/SzKHgXM4b87nRdD0TUavAm8Z8ISlIIEXn5hax+yuzuEIRAL5OFxFZ4pbcG9dn2p9o3YnvJwrghf1St/gmdeqMLAObQMn0HAOv1qpZDbjAzm+mhBGwcC089N0py95H0Jg7O/ixAZlotRXHdQUxo1SI61t+ARWZY5C4vEsZPEQJYCRkSVUP5SVKGYQnQawAOWnAa9YO+trIGsjZPEKztRaNYykteFd/7u3t48Itt6JeZ9xz1z14953vwNHRDdxxx6MA7nH3XXfi2uUr6PsFzu3vqTVjQKkVy9US165dBzPQ5Rn29xMuXryoxwEYEFJaSxlyHKPOTdgHNVjizOVlcxHpyHiI8wA9FJKVz1m8ZykFzEUqy9r8QbKUuBSPAer7Hr2mP6c0wwfaHtYAhbm2wllG2FPt3a81XznD6lrHAC12VFybUAzCduQvT1MUKGl+Ufgx4Itp6Y/+TG4MUARscx9VtW642bOYMGJYfAUl0rzohFQhp21qFC1x9VQysAbXypaTjVWTn2mhM7MBEJwxBgYxBSejv/XejISqxZRc2PAY2LgZF5DCTCoMTCjbBpky3U2h0NbG1jau2fieZjECWj0VW6fpff5877tc21JkRWO1UvvM7V1yNkg4JbXWloIMjCxuCFq70YNVezRBJIwjNQsHa18D7Y56fcrcxfmw7ymR19wgXWNT94lE+kiQY23ppTbYanFNMk8EOTbPWpyntgJtzCOXGBEKqoNssygZiHXIQgxU3RsYg1oBFK1CcYxXMdsP+b4KzPe0OdJ1sABPswTF+ZuCS1BQVHJC1u1pwjdnAWDJFBH9J/3SrCmrJZKilSzsUwWq1We9zSuHObf9ZO+LfWYHIukUpSDEV5BancPzhJ9Zlt4mzRWtf2IZUN4fBWKUSBSJMAMOqCnUy5k81+6oqM632inEUoDM/iUiAR2QdzEziDWWhuGCFBArtBixWmqTW16D1VvOcoNbeGpf0A89lDW3cRQLshV3jNWDGfoBQ89YnKxw6b2XcPf77sI9974HBQOWB9cBHrA4PkStvaTi9gNW6zXmOztSjbcAh4cnGHpGN+swywm33Xor3n/33ViveplJlsqvteja6RJZuvhyucT777oLFy9eRGbGbRcv4glP+Ej8wR/+H+SUfLzVqsWGCtC1Vk/FZpYMJ8uyEuu7KYDSV7AVRmSslhKLwsz6DOWjD6AYx/YwByiT6HzVNGOAnFwXtzOcyKPjN2qyUVu0yrDhdk81dmMy2TPH2sYo1bB1cSzowud2+JkEoLUS2hKTUiFBU/IyCfrXbVuBSmIW9MrlzlzgZ6OIoG1fOYjwzamR/dSEVvLHULOKwISAomqNcxOljDXwNgYW2o+wo+PnJHquvMUjtuCngU5Ax82EC9fBNXFZS4vBEEjlgIvis/zBCB4pZaIqiAPTqaXIJFvsCzWmZ32zA9BskMksVg48m8ZiLkOj3arRzTEWyDO5OMxhnYAdnVYHz0RuZohTDmorhzBXQEJlO6eDHeyL71kEkL+PbY81kOK/hbWJ7jDvg+0zBK0taG9wIEHImZBD7IG7LpVuLV000rABEdY5dEBH1j9jskJfYG57XsHl2KXR+rVh7Yq0p59J7YjsawYi9Jo10uUsB+1F8KVjoSx7urLDKwdasq1E2cjxM59OwrrvnT7dzdRldCkH8MwjC0yrHqv7eFRBeeTvUcFS9RyW8bhrKRj6HsNEqx/PUwCNBlD9e5asyECP3mc0kGRrM7WG+rqnhJaXzh57QySxKpbeWktF8RRr0ngJiDAt1emvWMoDEYjFOleGAcdHN9APK+yePYOUZmAkUKnu3ihcsF4PWC+WOFoc4+joGLVf48KZc1iePY+DG3s4OTnE1XuuYDYbpGpwR+DSjfZ9ThmzeYdrV6/jZHGMW+YXUGvBrbfegkv33dfAItteZXSarSR8JguYqBXvfNe7cPuj78ATn/BEJGJ83Md9LO5879tx/dr1wC8BicHM8gzAFRSjmbGMY3BpYBEKuJEtPlJAe/PeqVylzf1zs/awBijGvG3HiHZAjSmF68JdG89xDcO1cpyqiW5oTjCBQY4Kp/ekyf1Trd01HIw3LwJTEQuNMKwcnt++a5qSfD29JmjJU+2ayJE2CMhJw1TMFI1mnSBCiBVA03SdaVZ3URnEE+Fr5fp1xhR/iPBUaesoj5z4m/pN9sYRaEOYSxlH2hiez8lonJvBvqw1Z6yKpR/WZpU1ayv/bWl4cj+NTKkR9MRaOA0NWwEyAScmpMaCMlhTgJCF0EQXYNV2/c0gAhInH68vAni0bpGxx6q0o3mrYT8kQkYD6mxHAhAjw4qLBaEZ5mJktQmfWW8SdZvxJ2xA24CJKQsI4A5aA0jmx2g72cF1eibNMAyjQmkGugBIvRCext9o+rLOUyv+FvZ2FPgTpYSrCdJWoyURiS9/NsOMMpjJTeAxbk3WCcrD214mkAeGGnO3PlsxNTALSBgUpKcEqgXz3GHWdQLAa8WgY7eKqRablnJWs7/1BT5GgNBqkxgAp1aYrIhro07AyRSgSL+AzMGqIy/xRY8lp4hlHEjKAad4R0F0UZdCZbEgt9g3OJi2IE/7V2qBVZI2hWKKOznB3XRpYNRBDss7PjjA5Sv34pEffhF7Z88DqQM0SJsB9P0ggbZEICQsFwv0yyUWJ4fY2esw29tBLgvszHZwfHyI9XqN+d4uiAaACQkddtIehtwjJcJieYQrV+/B/pkZai04c3YfZ8+e8Tovtra5a3SYKCNRB6aK1AGl9viDP/hdPPIRF3Hu/Dmcme/h4z/+E/G//tf/D8MwSEE33QtWO6Zy1eJ5FjyvSqTJLK7gJDwRrLVlUkKG0PdQJJ4npQ6VGUPtT6GL+29/AwCKCS/jB+ypUPfbnHk3YDD++uam8o1H1SqulNTM/jTZ6De917XkqWSFC4ipC8MKtrmVwxk+JupyG5+bvxVkNJO3fkdNc/DvkdwqAugprFYm2x26be6ZrY6BIHEGhUC01i3XXm18MYUhgBHX5YgcCDZzfQRbWstBN9Lp9VkCg3fBbnEQxvAVoFTxaXOVDWr+ZDH9C2NzKwLQXGIQcWLP9OEAvqHjmlCYP2tuveMgUNVy1twe0nezILAPiVBIU0zTGNRJ8TgR+q7B21i1bHvsW3SNyCLo2CqH4+6ldkdWwSZxASEInUn7p4GTZBastm5EGTSZAxiNasC4NaM4c40mnWR3L7FYIOLam6uDqwbvBQXA6lgkq8IKe29M94cL7mjt8TWdCGR7t+1rs0pYqX1J8W0nPnu8ig9d07oZIKtSSuQuBoLW6KhWx0Tcb0Mp/s8JIifULGfjEGhkuvcT2EmEcPaqsYGX8jgexsYl/TVw19xhNh+npfXriEe0pZMIgUkhdR5QRUHW0lzUNn6QpJizPpcrkErBDPp54CcGPsSyY/tXrR3mhtV+OPCvFbJdpDpxrQLQh77H8cEBDq7dh/ve/x7U2TXcUh+D3XO3YMZ7UpxuIHCpQJXnLQ6PMaMOJ+sFjpeHmrkjNUbW/RJDv5Y1Vngz9Gtcu34FVIFh6HFycoL1eo33vve96LrkFs3VaoV777kHlBJOTk4wDGI+F8BWce36dedxBwcHSCnjxo1D/NEf/TEe9/jHai2YhAsXLuDatevIOQkf4FgHKAhJwPe1gVYDz8ZPMgizrnPegjKgm82QU0Y/FGCQtXhwUlXawxqgAEBOQbMDAJ0wFyA8ZnCAMg/T1uSDIOykPRA4uZmFBSxbqdXgGz/LqkyOPsubwZ0bLiDfyHYGSvOdNi1OPoj3GgBxH7gJKWO2SRFySi4Mkh4M6PI8Hs+eDNDFWW3ap5xsz7B050Qhoj5kb0T+ZGCuCRVAXCgBnDFrQNppGRj2Sw4ftgBN05glqI01foN0M7IHs1FpNVO4kGoQ1d07sXKlMW0fR8zWAoU1aYBiU3OgNoMKTGw+WjVSBQpaBdinjyC+fR7ToFkVqU4+88J/FVKAdVxfw8CK8KCwNwBkSmohZMjRTgYgzTdt49IgS9NglVHZKabZa1FQqAW4uc/MvA0yi0J7XqRrazzdv0E5cNoysGDPYEj8QQe3FgmzTcidAatxXIatC6jFJI0yr+rYPWRAZ2TFpAZWJPaEm8BlQq2D8xEHmBABmXMWd0qp6tu38UuWhQVOEuAF/QB1dRFJXEagUwcpWvVUAkxtfidAOayPZHfVVqSsdcQLtJVJWQY/04wDACZqLKHql7aeEB5TUeXQulDbSPQbpWnNbCpcQWUQEB32RNy38Xwg+9tTjLVzbttLBJAqWZqqu1gscPf77sTVe9+Fgyt3YU33YMAat3WPxW66BSgZKHOvJD3UgtnODMt+CSRg/8weDm5cx7BagUvRs1Ur1sMa68MFctfheDngj/7w/2I225OTzWvFarXCO9/5Ttz53nfqYX1AvwqxkgDW65WDydVqid///d/1+beaJGDgz9/xdrzznX8OhsSFFJ0Pix3yQ1QpWuRV6bTYM42lYjS5AAAt5gmaDSWksVbLnoGrOokPvb/2sAYoKUtQmsgvZbYMn1xrEcBY+WKVT4KcbcItPu0m77uZaaoxf9OeRbPIQRNr3zOyF1wT071o76GOROMTPib5WyPUAUCtNpRScwBxY6Qmx6PGR0lSBFNufntDwhbAZ7qJxWrYs8ameZljQjwcDSNmZnMBzqLrNJkBOxPHp5NMdzFmp2OcVJkVfrnpZhN3j36mBx6O6ooxYQDkDA3WeB0S2VBLc60w06gmAkyTqKYlNqACIIz9dODRdH77fbPdzORZPfZJTK6mfRqwZLQCWVFoMxuMhX9m74nzNnonh7/dcqCH7CkhpXCPHfpICmS8jobWtGAaC3YALZ00CWB2i8UE5PtzYUJiDD5OtTbGGZ6CFQMHgGfYmBae7HAki6Ey8K6eDvKD4yZWExXKBIwAGuU8mW/vta8NM7v53+gZJJa7MpQGtkaghoBCKLWglN6BiL2DGaMaE559VBk1A1UVthTGQRSCf/W06o1KwQY+RrEq0PNdkltMoHNbINkdfcwuoUi3CSl1QbAq3XC01FS1uIoFd5TsQOzWWKuk3en8l1pGuNrL7wcgKTEixYPDPa7MXIAGyGydc0XKwhFTTTg5PsL1ey7h6j13o8sDbtxzBUeHxyhDj9se+UTM8z46BrjM5SDBKtmXd773TiQasDeXLLIzZ89gvtPhypXLqH1F4uSxjkTA6mSFk7IQRbfLAAsgLauKMlSUUsViYnF7REgkINz4YN+vFCgYaByQOgGivbv5sitGtoPcMq0f2enV8nsR3TPUp2EUVxwGZnBhSZYo4jIrQ1EXuBkOonL7wO1hDVBySm5B8doFivbG5ohAfGzBhvYdCzpn0tloixPTg92cOmWA2igyVu+LfufXKAPWA6ycYdcmUBmsBwLL+9SYAGFyY23GTO7CKQ3T6knK2nnzsWey40KjFj7RvvV9Zo51jVWvjaK2zXP2Psn5HKSAyepkjOfJzYMU5sfQ+ui5OijYBmrawuisDpAGhqjDRAOGzSTt4BWAHE0va+g5J8qDmUMdDftZWXywXJTRCYiNoKxZPsabfAQIjJ5MKIdJcVLdmCcNWK0MSqaNAmwuGpAErp5S3GzDPWPjBG+suU2h3evPIB71M7YudY1+CBqTQuO+kIJhZNe0wqtAjYp0RsYBzBzm1ADFpmsPI0Hu7haazK9+bwBlNCmBT8i+HFtMSIsbihAj0R683gqPeEl8qwtL/Wk8vzKjMsaxZBq0a9qsgR9Qs/pY9kQZ+lEmhfGlUrSP3MBhZQaVAqqqANys/ktoFuTapjfMh11DBeRBxw0AFP3nsShhTjxiiwqSZnTUVG1De79lb2qwPBs/snlS5SaZc5RUOZHA1z4cLkk1+XwKKKxuEfU+G0BROip6bb9eYblYoPAJdvbm2NnZRcIcq/US68UNLBY3cOZsRlmtcbJY4Or+Hs6cvw08r1gzIw0FRwdHGPoeh4fXcXD9KhJV0NkzGIaC3TO7WFw7wnI4wWw2h2ejFnEpn/RLcK3Is07SqJ1uEyhXEAbQMEhQu9Jn6tTSo6DFxp4oAbmlegPyuwf8R+HkhyoKDfvuM8sx9BqLR6u2OOz8vFAZBTN3iTDrhIb7Xvga/W0JknWAogz5VO2QTBMYCwh20MJgicJybckt6UHLESRZb2qeMouBsQAef6mxG+yna6Ys8SqJpOS9ZxyoJmrAY8OXe5rMCP3dEEyhM9VSB4v65Z0JKyOCBVMqk+Ms2nBtTMpESgM7DD8kzF81Pixt2hnhR7WBEtP6GBgDEZfsXowuprjZmEu0HNVWDZUnK3GatcK1NmX6Ouker2ACYwQ0Ro9ozzRtj7UKRMAsmLzVNd+WGaNrGCppxvHbGgsNqhsHmhJpa54AqIORIk1MLE43awKGyIUjK+ORAYzjL+zZGsQhf2MM0PUxusdMc+L2uVsKVJMOqJVgoINbtWEiCf5s0+XKia+jKRBuCRLgwUHoItwLZrdkbriNqtSTAJFaPTQQskpl1FoKKprbKKYRTwu4RbeoWxlhMRJaXCzEN9k9lvpp+8E02hgTJc/UuYyKxGSfELcTnm3MBkDserPO4CbPsJ9uBdGYE7dSaB9Szn7fKOW4MohUMAbpk7itR6VGN5YE0fbCuAryADmkb5R0BIB5ABflVnaEQw1gqpTmrtV1q7WiDgXXr17G0eE19P0V7O7v4Nwtt4B4jsXRAgc37ka/OsbBuoB2MogLrl+6G+duvwP753p0swGrgxu4fOkydmdz8SaXHkdHh1gd3cDi5BCHJzewXi9AqWI2m2kG1uD8wOYrh/mzz6zvXMrI3S7rpOtoKdZW70SpUo4AEHDS9wsJrNV1YrVsgpssE1pSQNiSEgUCVQ5HQtiCqWtUFVRP/+6UB1W5rwaw9EDtYQ1Quk5KHEdtq/m/2w8urEWOAkDRZ5AtQlSD7M+4cV1r0etOYfibYIIc7SeSKn5Ja3+YqdvM9xlhQ3OVJHv9nU95h5ur/TlNq4jPBwE5Selnr80zETIUhBBcK1EwUAIzMqHvcsX6iLBJWvZBs3REkWLBlOFAwzDAaIkYza11MWhaTfCyPrddvAFKw1o2INHA0oiJMqOhLg7vbALFgJYzT259Pw2cjcGzMV7J4shBsxXQtinoAbgLkrIBPFs/ZdkcxumzPt4Pozl23iLA1sCol4ZwQMpoKRSuu7a5N4Cr747HQhQuyjgN7FvHLDVxvDYe52FrNZlDtuyIkHHiB9KNJ9wGsbEW1pqFawJ4g9tC+qgRONzij6BgPqEdEkrGpN1aEyxCGnRoIKro5LtWD6DWAcMg4MCF8MRiZJldjSZNoDVAHWltwzWl8S9UK1hjgkxRcfcht0wnf0/VOBZ9nsVImaspvm9qSQabXi9N3DGEOrR3WMFu6aMCXyS0IJW2PqZISN+0wmwliNXR9rS4b1MCitWSqoy+DuG0Yg3MrQV1KOhXPYZhiYNr9+H6fe/Dyckl3HrbLTi6dhk3bhxid74D8DFABbOdObrdfVy/scTxcIR3vfUP8OgPewLO3/ZooOzh1gt76NIOrl2/hqGssVwe4r6DK8ipomYGkmQl7ezsitsFwGw2E2vdegVAMtCoSB+HOqAySzh3rWLICHQhGYYl8HyxqJRa/CDFnBP6vsdqtQYYyF1uVqg05bi+S9S4IgAjKQ0K8Ccwdxq7BKRsqcWMPCPMOsveFBpKKWG+MweoP/VNp7WHN0DJnZuufJPksWACAD+qfCQkgJbGqJchmpjbF8yMHMyqLpwjDzQNidnUv7ZZ9SM7xIomzMxMXgzTQhk1myC1PuuYwjubrz4cQkjN39vAB+A1LAO/Ni11qqFYsCNYgxRNZCqQcUwQ0HTrX/VU3Qj6rB4Jagga5DRaJ47/DwJDGE6r0WEgwzT8aCFw36gyWWPmBuDEWnOKrx025MCQ/X1tjC4MTrkvzut0s0e3zwgthP75s3CKK4bbL2bFa9eIW4O8H8LcK+DJVuaO2Xgey0WS0WJB2C3moFlR/E0SHAlo4aX2rAbcFEAq8JL+5smoS+vXpE1tHSOLjAWYRqE4uZbHN9/8dxXYgjPZ3+2wRMfTrHfwvcu6zykAlJTVOppM4Avdlirug1Kk2iiDUQa5v9QqYIFNU5bgwuJ1dm5u/TI6NUDln02AwmhuYyYPM5JaHIkIrLw0B+uIW6JM09Z9VcN82ltOy94xkMksbpYy2C6X7DRXIBxHk/qDNAV+tJrmRtR0cq4QF7M+kUNmUwBrpSjgBFDqIPZN5SFmgVwcH+HqfZdwfO0uDP0JFoeXcXx8gJ2cgcq4evkenDmzL6m8s4zZ7hnkfAbER7LT1gnLgxOkch/m3XlcvnwN655x9cZVrFbHKHWFVX+C3b05dnd2sFquAJphb28fJ8cnmM/nmM/nGPp+VCzNaaJWiTMZgXbWOBJLABA6NkuJySsD/BaoKnGIMxQ9jNEssMzc5sb2V6A/oQuScnlE6LqMOki5A1GIRSHpuoSuy8g5YRgagE3UqfXt5krDtD2sAUrK4nuTWIz2OZv0NKZiKTUMlCK55iMsAQSBHpkhPGBLYleS+3mbSg9lVHLNyE8+kVQ5N1AEBM0xWHvsXAdHyWiBj/Z/2ZEET91LTaAYkDAFUyaKTYFtrqwEL0vu2izJUeomk8QsbJEprQ8t6JW9uBx089gBmEKTQXMOAjZavEZtojEDGGlysCkPTC+hbSCZm+bimZZn5/CcuAkNFLADlAmAseh19rf4fac1Ms3e5qJ9AVujm8V3+P0bUzMGQHa7Way4VtSU0I6OMlfPCF0ocAiAzmpbMbeaKAZ0TgM13Ey44o6wr0TrHdWJdAuZgm5fD6EXczlYrBcpU5XWTNOZmsswAZ6aa893rMXsW458vvVntFLJxdNJH7l6WvAkScVQnm5n0xYLpOKrCMzczYRxu5YOPW22l+BGLcZX9KiLyhVUlFdVq8kCgAdYjYsY3yZdbRYKtp8B5I6sUDpW67fVrAGUZoIiZVlHZGcJOcAMB8VNrSMIoCgAGANPZmVpgarGQaKYlb2SQH7ODRJQtS5IVFZapkgLSG5CsO1t+2mueVc0QvzaoGfmZBBWxye4es/dOLr0ThAP6FJFRkUtA/plD1oPWPMRut058myGNVfMAeTZLsA99vduwep4QFkcYm+PcHj1Gg4WC1y5dgXr9Qq1FsxyxrBcY8EVOXc4c+Yc+sUapTLmO3OklFHKUteSNaifBb0ldj4E0srmTODE4EKwcxCkYrhlTGmCdhWgbCnXLp9sFQhOd+5CNHpSwk8pK0Bh0S1yRjebYeBBki60srlkmyWvVG3AGyDYydGr1RoPtj3MAQrJZABykBMTQKY1A1DhNS7wI4TNtepZMHJdbFYAytJrdXuIQKyudJ4qoFr9CWlcLaVZKq6OmZyz1sZoyEAG+2PIx2O/GLeksUAB5HRRkBYRtVgFI97Q4QoQaih/bQzSAvyEUSmvQJMiUILVWB0tDGbmazP9i9BMIQqc2ovRMhzku5iq2gbrQ668oZ2ZILMjAiODihr9qWbu8L1PR2BcUzN5XKdmcQpDOg1r2cc0fg8ANeiNqWBkBQgCxT4fWUu4MXkTpkSEVCtAuYFHUigxmQdPD9Xf28sNeuhH3NKO2xii4LPbFPzRTYAnAIysTgxwdWBuoJK0thnDYqHgoNIBJuB1TaYH6tkYmzVNrAQ+bmfM8DiLsUWzvcsBxiR2Zeq+s9PPc06YJ6kE2g+DaqsiIPteKq2WUiTTAVZbRxg2hbg2ZiN/GW2ywN2QfRTHTClpKXfe+N7mYkTnVifFmloWYwZSfL7NkdHYdL7BoRaKBl6W+NNiJriiFIYfrqn70Ha68L7wHbVYwAamE1JlL5kutN/GaJjaeUVtLjUR3e1Zsi49KjNmCeBa0C/WyIUwn83Q98fqHhqQ5xndfAfEFSlnsYbVHuvhBKvhGF1H6NcrDEPFzmwPs9kae2d2MYBR6624cXCgbp5eAoAr49y5syDKODo6ASCnypdhjb4fUOogAKUU3+NOH8pnrczEMAwA5xbaoK6dWnsQOq9A3SxLCYwC5qGdQxT2jWU12rvMA8CJoDUkgCzyopRejnZQdz3r4YHgCq5WqA5adkI9AnUijx+gPawBijF2SlrOzkYu0h6AaaptRjwfP2xsaS1a2ja3BbpV20kE9+GG3QXz1bfX6ALX6UInSYMNZtYWkLQpUDHqX3uXCwxlZJbGBcgUVGXgWWubSPytbXJynJHUB8BEQLXzhgT8ECDn+mjsDEFjWIjE+hIFv09EUrO2Mi6LeeHUQg6ogZNNZh/XDyL43HrRLBsUjh+YMuD4nJjJ45+bVgCMnrnxHB5/Nj3tdwQzuc1tvI8xXT9dX0wD/yKwbT128Kx9HgmIEfOWe5iS+Km5adWuMckVDiCtV0mtdd68sqxxL7GiIcyFW39MGKCt+Rha2lwA0/o1sl84CFT51IemlVhNE7ffyzC04mYTi2dcC5sn69tpVilAtDvLBLQxlDoGq6c9Wz8AJUZWV3PuLABxjVIGcAWGyiiD1inRA+AqN1N6KaUBlEA3ca3NjR3BVDtEkTa+Y1Zgk0Kcl/bfa7BM+UpKG2Nugv/0vy3+xK0mlsmjZ/K0yq1aJK2IVc/BCYeU6JQn+xSoxA7W5JwjBpNYCKoClWbtarTu/awMLlpagKu48xygFPR9j/VqjToXC8CF287hcL2Da9fvxTAcIM33MJ/NsF6LeyalhLpM6CtjvjvH0dExThZLnDmzhzJIMby+X6NQj26HMFsTkCu6HcLypGDd92IhmgH7Z87i6OhE6SZhGNbaf6Nb5UuWLAFjWwQDdHWyLnJBK5mRcjupvu0BoUdmKUYngF/ck1wZqYYMR9uLpIkUVXiXWEvEYihuHaXn2qP2BYkI3UzpkTVejCFWIOZozHzA9lcOUL71W78V3/Zt3zb67Pbbb8c999wDQCbq277t2/AjP/IjuHbtGp7xjGfgDW94A57ylKd8wO+SAjxVKkqSs00AUfOUv/zo97DxY5aUSIlg7gTg56awIlcIqi88ZtaVg6ZV230j5iaWYN+YsaPGxP2j+2G6+sFIa4Bm3thYvC8BBPnBhNxONK3AeEOPpsKsRcWLXHGVeJmGgGnkqjALEKuAtDMYqthvFdM1gGBjG8V0TOanjbO271FGfaYwRtbaKRwBQJw6n5qx62jsrpDfK5cxyHTrAQfwEwR+mTDySR8cgEYBrvEe/nMkTKlpuE6oDZxMzSyNSUX6aaCXA4a2dxWurbiu0yz5PMrktDmJlp+xhm4m9ADYyDLHRkuuragQsvgmrWWToKvX3DcFE61drR9m8m/AqL3blYubZe/AChJiFHhqgrZyW4/TGhGhyxk5zzCfS7XMWhllKFivRROWvjO4r3qibpHKxKVggAnu2jJYpHPyfAMcaCbyLqsPXzeWHY4X6eY0hcbpSQGB1bSJabhlCKfWcjtqIVound/oPvP7bf4UoIgVoHptlWaNipaOcYC7rWErO680pcTvRrBsoEuy2QCMAIqsITc+GAJqkS2eTcdVKhbHx1ierLG/k5FnPdb1AP1wCNQV1ssB69URVv0KXZ5hNtvBahhw5uxF7Oydw+V778SqLzh7IWN3fx/Hxyfo10scvf8Ax4sTnJwscLJc4FG33y6gapVQ+orZbEeyODsgzzMSMgoI3AvP8LOClIdUs3hasDmyZ/LJ/BdXbapZLkI2ZiMJQzqEaLXmKucOWSRzBCXidgNQGBVFLXkMSzPvWenGbuQqVu3B+mb8KIGTuHmGjSizm7cPigXlKU95Cn71V3/V/4452K9//evxPd/zPfjxH/9xPOlJT8JrXvMaPOc5z8Gf/dmf4dy5cx/Qexy9yx+jz4G4OauvTdzEKYcNbQeSuUAYB5QCEcwELUO5bxPwJoDkhR6jgcCsI5Pn8emRAEb+46neZ4xgxIaq+t7VHBckrSiiOj0xQMmOr6cQCBznz8CGXCubupCI/uSVZe1+ciA3lZ6J7H86W0waOiAuCU72t/ZXLSxmyjQDQq5Jk3dbto2teVWNy5jPaH3cfN4EnDzDXghlCirILeVQ14vdNKoauwtwWx3eeKf9PnB0ZSG8X8BOCtfGxTaLmzxP/bcKBskAYLBibLgoKjcDCE+BT3w2hb41qhQrGqNyljgRXc0InkT7PcXSwAEE6j+ZQjl1fFyvqCkNPkKNV2FgVLNkrCVaR0lM3DqSeP3NAm3jGIrux7hANyvVbs9IE/VPDmbLGEoFD4y+F3Bi8Q2lVgkkNFcnW/Esq6sjJdfdkmrPtfgazdASS4FZjRhMoh0bfzG3tQEbryob+tx4VmvuinFFoP0bna0DWdcKKwoX9hBsD1UtJlfdMrRhLbH1dV4R69+Q5u2EU5PZrpKS9kXp3WKtqs0nS8q1g6USMvNU+xe5rHFSQ8F6ucThjStYr66DhgWOr92DfnEfulwxFEbfLzGUQdwlO2fQzefY3T+D3b2zWCwHLE/WWAwLXL8xoO8PAGSUgXH9xjUsl0uxmtWKy/cVVMpYDwNAcijn4eENrFYrlNojJTlHZ71eY92v3bsvO1Q4hWWhNoUu+Rq48hD5YSj8KQpnBmWz1pO74+1FmgClfEVccokzQKT7RI9sAJx/SsE+2ZNWm8nkYakanFwLQElBdRLwQg/ehPJBAShd1+GOO+7Y+JyZ8X3f93141atehS/8wi8EAPzET/wEbr/9drzxjW/E13zN1/yF3zlllMKEb4LUaHwPISE6xgyBmhZni2jm7Gg6lgeNLmvWGm5aNwDPHomaJ6kmE99tZrn4mXZ4/N44fnufgxTJELA0DoIGLSmxK2WD6ibT9Wey/U81Xa8VYXErFjArFUSVxygeaVaAFrQtVqtkLiLLGvD3sQR8kTCnkQlTtSU5d2SQDAD93bQLt1iwZiuo9oHwfEtBiRYBDjEZZn2K5uWYXh7D+8h56JgO7F0RRnJY++p0EeAnwcvWmxtNZtc0QAWVCjQbPhkHHEppcFZLXlsDEwARpAqDsX1CMDqxACth7qH8/2hVA2iI66d9EZqWO+zIdZlXMadP7zXFYAQnb+KWMaAyBU2nxkhMrgkvDDEwUOC5OSadeH9G13We4l9rKzEf4y/MveE1RTiN6AfKHxITqvIeU4pGAMz7IOttQbnMPNq3EaBO3V7RVW1/25aw/g0hiBWAltO3g90skF686EWBaanRMmagt2IopdXhUOVAzgpTjdwUIgDsZ4IRyJQsAK3CY7Lph9OmBhTbGEbKne79nBIGYlRoDAxXDKVH5QHDsBQrcOlxcnSI2p/g+Mr7cXxwGaU/BPGJHDhYhC8M/RqgiuXqCPO9OWYdYd2fYLFYYWdvjvUx4eToSIKfqwVEr7AuAk7KUHH92hoDEwgZ8/kOlkt4ts6qPwZQMPRr9OUEFRWzNAObf9z1oCB7nERE+TalxC71NHkrCKrxRW4dq7Ku5M/nkAGowbm6f73qMwe6qs0laokcYoBpLrZiVi1oMK9W+uXACx5M+6AAlLe//e14zGMeg52dHTzjGc/Aa1/7WjzxiU/Eu971Ltxzzz34rM/6LL92Z2cHz372s/Fbv/VbNwUoq9UKq9XK/z44OAAgedzZ0gRPbS1g09qUoakRza8XS4Tpfq1VMoY4flZ41Simoml8gGW48On8dkMzvT8Xz8biTv7mCYMa9HuHIGaujwzLCFoZWRQO/j61HjgTJQKVVubYdNZEEv3fqgUGE2MQYPLn4ILXWjtORw6fMvDhRhYCOmRUIhSqyJy94BKA5pJh0/CbFDJGC4znUwSw/a2ZG+Zi2Jh7Az3sJze79g0DvGYlmMatRKFpWoibTdockBYOVA3Hi2upamUuRJsnm3dDiPb7acIKIHXVhT3Ard/RLTUuTMhuLQNoYorXe7lV6LTfp2uitqmRxcAsKRF8j/qlNBfH0jTyxrhNyE/dltPn+d8WbOnzz8FK0d4Z7+XwGdCEgQgJhOMQpCooWyqXzZIBRIaWNx+73jB5j62v0Z7MfRGmH+bn/kBKnfxtrSi4GvQk4kFjSopbTtR9UtgzjIoC8hb8rhZBp60YX5fQ5Sw8oRIy4BlkxIq7NPbKTqwWTb49z8h6uvYRDEcg3pcVMjrkWQZTQeEeq8Uhjo8OQNzj+PAA/XqJ3Y4ALlgtFlgcXQLqEl0qWC3XKEOPWdch5YzKPfr1gIGBvlzGwBkp7+D4aInKwHzGWKo1Zd33WK0GlxNlgFSwrQyiDrkDUHpgJjE0wwCsVwWVB3H3FbGWyNyTFlETt00cu/y0IzB075EVHG98uuvm472ga2hr65meE5lmlY25kByToHYTs7SZfCgsZe1bxg6j6zKImnXQLD+l7wEMMGXrwba/coDyjGc8Az/5kz+JJz3pSbj33nvxmte8Bp/6qZ+KP/7jP/Y4lNtvv310z+233473vOc9N33m6173uo24FqARLgEbVofxVad/1xiWMQH71SZxE6jI5DdN8v7QoJiLw9/tVZt9MIbNeggUheqXU9AQzAJW66P1jzYYFhDiTWqBlYXHRLuqEwYXZ45ZUkItgwI0Zoj2swJeMlzGHIW/MRR4HRPZKMGCY9daCrULe3sfg3KoLIoM0nNKJKCsabuEtCH47AXRHCpybpxl0sypOgoer3VzN5wGHlV4cbnpZmSNPajmckNQllA2tF4/gRhNCxX8otp1BBxarCkep2CNSOYSzBvjibVm/DOLjQHrmtp6iFSV6bGgvRbTEE37/izAAU8s3TU9ZC/S3ObcBgvJlPZ1gNPv49+O7AieNTJyjwmlIYcDNWPFVXebELkWbDQnlpJ2JELTOtVCosUSE3UjQGJZMNYHL2WgQjoYo9p8KuCOAige/mf7FzS2kE7BloE8ixkpKlArQ7NguMWSBBDmvFLnbGxfi42DmxXNukIEVLFygBqQmwajt8PHDUxSA0iVW2C6vj+ljL7vMaxWKKUH1wHH16/g2tUroGGF0q9Qhx49Khg9FstjHB9fRaKCrO6fwgV1YOTMaiWT7KvKjOvXLqPUBKAD1wywFHkbhrXM0VC1fAOjFEZCws5sjlm3rwXqEs6fuQW1Eo6OjlEHy0TKyNy5UG9uuerWEZvPcZP9nZVeckqYdZ3ENmlJ+2EYnL+4ksZmkUNw+5NYU2qSkDCN5WlW84I6aMG4JAXyhjKAB1n52XwOooQyDBJwC0KtGYXtkMCq4R430dRPaX/lAOV5z3ue//7Upz4Vz3zmM/GRH/mR+Imf+Al8yqd8CoAxGgaitnB6e+UrX4mXvexl/vfBwQE+4iM+Qjb2RAJMNaXT2pjxAS3XUgV1beZ4vSrcxxsMNT63CS4TYgiWGrQFp6ZtMOCo1ypLajkcYTTMG2QJ3LwwkjFQZ8D2nVBj01CYHbhMtZSRxqLP4FDUytMe7X4dk/S3ugXiZnPv1qVTEDUDKhgnAaOxqfyOZu6aKlLVlEiuMm9V/KF2jT3bAEfV2IgRYEFjwq65Vnah0YTEpN+jjCP2KsAGxFxY6dgrICefxmEZM4iChcw+Zf83hExuTfFD9pKaWhFcP9Xmq9F4XIug4DeAyG0sFlRS0YDraK30mg33CBkongZwKkCqQEVxsBTn0wr5+t6DWGxcMqrlwcbq/nRINLoDW5PzNjhq2igCzUbrJjO5ZCRqWVDMlvYrgea+B1SrLEYrVDXbOznEJoIc1knUYmUiMIrZNpbpo4AhrkfEAdO977ywlJbVo2vY3LPYpF+iECco/c3M4NTKvxflk5QAFNXY1bxhh/25BQ6S+ZikU+N1dZ6tEFXL0YsAK0prlqEE2ccKPBaLY/TDgL0z+8i5A5MIZvPkW+n3UhjL4xMc3LiKM/szDKsFVidHGNaHIAbOnNnD8Y1DnBzfwGp9DPBCgvtJ6tT0VaxLXWZQyqDcg9dSnG61WqPWDnt7u+gLY7VcgRgacwFwTajUgHjXZcxnc4AJQ6k4s7uHR158FICEYX03jg8PPSRDarskcC0oCOdsKa/29Ql7yXjvRjC4rikRYegHn/O2z5TmtNhiTkkBqCh9rrT5/hnTmLn0HHAmAe8WKO3WXo1t8foqMlA82PZBTzM+c+YMnvrUp+Ltb387XvjCFwIA7rnnHjz60Y/2ay5durRhVYltZ2cHOzs7m1+wmZk3vsBUoI1ByTgWRJoeFW+bVwPOrJlwMa16uunsZ8ugGX8fXTxTV5AxjuoaLCDJXoR4dLhpRPcHjmxMBjyA5iIwbS2mFI7Hd/O/ExFQpRiYMb54TSv1PW7Sn9KoPMov0wiDC8BARJyjjb7BlDcGq9bKBJAGoLXTUAHKImysXkKVSlEuWIk05oeaBm1ykcNCuxsiuC049C1aDqIlwXT8oumCgKR3xxFJGWl5c85Zy1U3S5CkuWv2lM2LapWUtJokQvwREYhyO1dH+5lTbmDSGjf6NSEv2m0A5L4WBrRSO/Y+Mr6brZluo6yWu1orQEmEuApiRODDENPwCDRUXWN1iRQAxMjcAvBZuSnBblagAXUVpAYODMQbsK6kwMSKLbIVhbP4iepMP6v2mHIeAfvsoEL2WfajLBpAGQF5s9AQeUaMnStUhkFdLtgUPqylDtLp8x2VFIT1NotLtLoA8JTklBI4MdC1Z1UWgFJLRV+HdiKw0aKum+wd4ZGFqwTwFgGUnuqq7j+1a4XA3IrSL3Fycgzmgr29XRFoSeaFAOzOdnDtxn04OTnB+f4Cbr34KORujlolWDQxMLAcpjisF7h++V4cXL+G3Ufdghn3WB1fA3JBzoSDoxMM6wWWqxso/QKEHlVquIOZUPoBQ18wJPbsRTCQcsa5c+fRdfvo1wz0a6wG5TGVpEpwNWt10jpdnVjaIPEg851d9H3Fer1GrZKoQUQoA/tYuS0k3JJ8EwXegYWChTIMvr6lsJ/jpFQi/atipa+smZpkrkpqAe4KkhNDDkw1zsiMlLMrT5UF/FDVuBqr7B7CJow+Xbn5APKMP+gAZbVa4a1vfSue9axn4QlPeALuuOMO/Mqv/Aqe9rSnAZDI5d/4jd/Ad37nd37Az5azMcop32xqirJpx+BtLKQbqIkgxTegPperbayxUJpqQbEki/1UORie1wSzCKT4flvYscZjo4oIejwnEeGqcGR2QibS7JE49g2hxe0z65sJTGNyaLUXQC1lO86oPzM+D2NQJn/HWIYGHjg851QrGzMkupwkMlf2j6c0ggBLRd/AdA4q4QFixHK9acW+jUaAVIQdqwl0BE5DnwGy7G/5K1kEfcvSArP3NYId0UrFipb0/dGSZBYTmRsx6SYPOLTzmeS6quPpcg7XkA1LxpkS4tEI1RmjxMJUzahwWrZUQvbOOXiOcztdNwNRMasPWrtlvDQMK7tvoEhoxKwZBM6NCXJcIJJaDVYt2l+jXctdq0Y6DQ7X0FV7jN+nYtcZs/3LGl+BsPbZ6o+wEiMLD5kWhDMgbiTi39ncSZUwX2NALIqjOTKu5Ir2RBiE+i7OA/XZMQW4zRGJsJW/ZL6QgW6GWitmbKnSLVNHMhMJkrso8TEZ1LLdVOhWvVbuV4scF7FaDD1qv8SV+96Hw4Or2NsXhXR3fx+FAUoZx6nD4cENHB8dYb0+xnx3jt39c8hV+kYAVssTyRqpPYjXSFjj8r3vx2p1HSeHV8Aka9j3PaisUfs1wHaSsAyZiwS2FgZ4aOf1DJXBQwXqgHkHDKsl9vZ2cHysBT+ZNE1XgOnuzi7m87kClIr5bA/LvoALcPnyVSwXCwzDgJ35DMPQo1BBSkpDSnTmYgEaz6i+9tA5DJY1wOnODgHs+96VazvJGWgWHuMZUCuy7zmYm1zXSenNLLWtC2qtV+Uq56wBsuaikp2VkhRxm81mzUX9INpfOUD5xm/8Rjz/+c/HYx/7WFy6dAmvec1rcHBwgJe85CUgIrz0pS/Fa1/7Wnz0R380PvqjPxqvfe1rsb+/jy/90i/9C74xCi3nUkFwiLlJtOegKW40Hj8KxgC0Frh9Gjb76Goeu5toQlhjyAQxhrKx/XFw4vS59vM0FH1/7qyROyW0UlodiaaRN+EShWXUEP0evc80SLvfwZONVbU4A2D2fZ2OxTQAmxkT9A4sCcwaeEutTwyoJUfPJOBmvfBzePTkWX+VuXfCvLTnNT++Sya/L2ndicbAazj51a0vCprioZX29pTDmQv6TmMa9i9lO4G0adfyfIvMF6GYVVhSIsy6zhlSXAuZO6k6OetmI5eRLVQ7P6YJs1qlBHqnwmoog5pv2ccZEZ8LPdsXAQCNLEyBKdqNRJ0DQXMHVU2RZJJaIcSSytveZ/frdTzuj3yoTFepkXR/U+IRQHGtjghutiEEa5J+FcCVWybV3TNSUMxCgZZhYi6hCIjs+shLfP5Deq/NywjsscRuiMKzuf/dimrBuhEwAoAGw8ZKuVP+IkkkCYk6dDmBKsk/WCaWFBUbihzG54cciIoMQtVK3FncNASkqscIpIJh6HF8dA2569D3a9y4dh+u3HsXjg+u4AqtcP7CBZy/9Vb0NWFv/xx2dvZBtWB9coLVcoHzt9yKxWKBedrB/t4+Uk4owxKrxTG4rHDmTMLypODqvZewWFxH6ZcYaoEkLFQM67WdVoVSEpgLqlqIRJFIvp8ryxhL6XHj4BAniyVm3QxdSuAiFYO7bg6aZ6z6FQZmdDnj3LlzqAVY1KXHe+zuzXF0uMBQ1pjNO3TzOYaeUE9W4KGIS4xTA/+o2peq/BAO2GXdGvg3i+1sPsfe7j6GYcByuYQdFyCPJA3OHgMPUQTMhZqQKDuf90rVKYejBvRzmEIkQLJUwCooC50qv9eDM4kYH8Bhxn/1AOV973sfXvSiF+Hy5ct45CMfiU/5lE/B//7f/xuPe9zjAAAvf/nLsVgs8HVf93VeqO2Xf/mXP+AaKK1FrcL+1uwNtonn0WaXazdUasA2KVlaJwCNejaQElNf7SdrUBvF7wH9u8l+6GfNLC6f8ClMZto2TPM3mw0X6Bw/PBWs+HVBqIx+v8l7jalPez0FKESktVP8xs15n4CRMu2nFycqQTNkPRo8iQC2VDeXz6QndQKwU6IVlHjGTlgDK1wVmbT1nxSoJEpS1llNpgxG1Qqhbqo2fywUoGY9aZUa3AU0Kj9oMmKOLc4IRDAmrQSsJ2DDMBM194JaPHLSwntqQgdCgCyRnpWhAcM2rdyqjbZ4jQbqK7O+X0zo/TBImXQHP2ON3Uz1AEkauAKvlqJs+0IWIro4YFYpVhDBLeB2CtRoFNA3qcgbKdHpBrq1LdLU1igEUztwCPdYMQohBJD20cGlkW8Am3Kgnvjtk61fqDU0cq0o8x7NUYg98fVgHr/NhVRQxio8ddvu29jvk30dwVGZ8MhECagEEKPLCTW6mZNUlgYInBiJxdpGLE7ygY0HibvI6m0kSl4aoNYBlXuUskQ/FJQy4PjgOq7edwlldYy8U3FQByyWx0Ca4+z5Bbr5LnIldKngzLkLQO1x5fJ17HZ7yLddBJhR1ivcuHoJ167fAwwrrBYLHB8fgMuArpshcUZFwWq1gBV2q6WXc5GUF1RNcZb9IsBA9quc/LxcrLFe9tiZzwFeYbVegiiBchLXV5E1XK8l8zQRYb1eYr06RjffwbCeY7E8RDfrAJLqs5WLZjrFoG9VfEK9E5NL0Xpmx4C4JUz357rvJSi161DWUtWYOPnxLWBGR53zD8nOMcupZMgCosy6QqTuTafZ4DKUa6uOv7rb3BQyroxh6FWmPrC8c3rj+1PBP0TbwcEBLly4gP/z1rfj7ATYjAXb9PP7G2pjTrLBACCmoIbNHRlA2Ogxo2Yk7ExQWLBhYObQc65ZuNpmr24CSqZWnMiIjOFOwYj11xiVgYyRaypov6LR56ZlntK3CIZMuzPN2TTTeO/NrETRdNnG0hh7fJ8ILPlu7LZowibnkMKLOI+CFrjC05MTJD7DgH1KXppMCgzlNAYJolKLZjWobVj/T1oymCirJjaOARAzt9TMYD2jRFI57SA5SWknksqhs5zRdVm1f3uJCWxqtMloJntlOm4p6No8c1E6JW5WGF2jGPhsWRtE5DU+BHMljWVREJQFsA0BwKxXg7gA6qTkeQnAx9/bLBl2dosX3FJg4wHANN4PZlHbtGYa/QUXhwImK4qWiJBCrEUE9hbIKs/QeLXgQjPLyQh8wEWGvt/o076VzzyQuhQHJjbu6X4WnsJWusev8SB+tfJITEHTov0aBSVxLzo4CvyjVAlqNyAv+0eq43Zdh1nuJJ7GhDgzhl7OGxqGAUXLBQBS1qCUqoqdjJNUcVz3a9x99/uwWByi9EsQBizXC8kOW1W8+11/jmF1gjQf0A89QIxCjLPnzmF//wyWJ0sAhMc98e9g5+wtuHrjCLeeuRUZhNL3OLpyFQcH15BSwXq9lHiUfgXUgsVyAUoVsznhZHECHhhlWKMMa0hVY3GxG50QJZ/zwQvrCc/uMqHLkiLe95KZg9Rhve7FfZUIedZhvrOD+XwHi8UJVqsBhSvOnj0rZxJp7ZtSgFW/UGuGyI+qSgFY6t1YPJjxVd2hshZFkgBMnoiVLyHNMlLqkChjtVzBLC45ZQcRUNcLIWHdrx2MiDsmw8okRNoR3jcuEWB0ZM8dQnmClsQgBVt3duaYzzr83lv+DDdu3MD58+dxf+3hfRaPayObnzc93oTK/QM30+CqbibToOHPcruAXt9cF1598tTnBgahTXx2oaZE6OuDGXP4Y1OoA6YGbNw30qbQLAqjfhmx2X0GaKK1BRidh3Ka1Saao2P/pqbk2Dee9M0Kl/nUBNelFAVKChQ0kyMngNvn8V2uLSstUE7oLFtA3SSz1MAPI6QtQ+OXQp/9WXsd0JwOodKsxXKY+05OcoWefFsKoRaN8SgVQx2QdXrFYCday6zLbh51EUj2P10zTwdUN4KBB7I589XUAnAIgxHatmygnDvXkETZqZC6JTpviSTyH4CdYADYUezQNFwVzEnSMUspPkNSFTV5rEZ0faRSJDgULN4WzxBQMNIoIxoDJqBF9lSCBg5DM+Og8ThVxjRwRepPj22S0vpVAdEY5CdKYp0jGYdbdjS1260QSYGAApmmSQYXZAAomyDLeJsIPFQ9P8UUJlNqdJ6GwqrtV3eT2fgjoN9IBYdU1PU8RgNfdl/KjZa0oFcGASxJBbUWz5LjqvyiFgXCxcEQiLBarTCsBqwOl1ieHOHc2Q5pYFy/fhXgit3dOahLWKwPUYclVsMCpaxR1ic4PJCU1m6+g/ffu4Pzq9uxHhhl/4zScsF6dQweBlDqwEOHndkOzpw9j9XJIa5dv47cMYYq1o2MrIBAgRw3EMDKUypbvRf5rKi1guzQPBXwzIw6yFhtn6CKG6kMA9bDoDwKKEM/qtvU67k4TcWBFLhjs+ITONWgRBIsGDlQJqAnlzOkll0dClIGZh2hm3dyPVec2TmLxWKB9XplOwkguCKRZzNXxsSiC9GMlO4EEAmQmc/nbjViZgxaVqHRl+w1C/qvxBiGgr4f8GDbwxqgVC9nPP48ajMAYHrhSNNHQKX2PGY4y7XAtHg9AtGEZ0UA0hhUavcSbWS9tCYaPJEE306K2N+0tc0UhHsYS2ynpWI74zjlOkPqQuyqUYbvhVdN5lL+2ECBEchFQBXv834ELUGY8yRwsKqQyJYyKTUHEiVhAB6QKGlymYPwitaXJIca2kaUgMcEyupLJRH2bjY1BqLDEAGp5Z0nVi+2eCUNqrNS3KVqGKHGl2S1HFRmoABdyToXQmcWF+IMz9wTk5WWeRfhSGptGEOpMZ0ChKqxHRJkrpYYAFbWX5i1anSMUeaS6nh6T0Ka1OIQQKtAiIGuk9ihkhgY9NA7dZd1s04wjKUM19BnTdVlD6iEa3Mp54k2OW0MRgFRhtpoBDCoP78WFUAhe8zvVFBk8T2gaYxGQdIDC2PK8KnWRFup8PtISVB6n1pP7Lq4Px3Q1OqB+uR8o4bvRYDEQPFoht+w0lQWb44RvtIfQ2mXBxQwKlp5eQmSFuFOicQlV6UUPSngLsMgDoPIm1LGIy4+Eud3z+Dg2jUMq2OUkyVWhyucu3UHdd5hVdZYrhZYrZboq1pBhl6soYnQr3vcPdyJk8UCs509zFLCI269FcuTI+yd28GjHn07rl2+AT48wmq9wmJ1jL2dGVLKGIYeWA8oA0CdFEhjBd8SuNsUC6ndIcskIFRrhhBpHaxWm0gq6MaKtkK3pVSxvkJ5DSUM/doVUlMFyS1f5soRBcvjFOOaGR9QUFU1mL2RWEWmLB0fBqSuA5iw6nvNEj3x4GZz4UKr3DZLCTC4m1HBOrS2yyCWVCZCPwwoZQBREjchmgtd+IYo/Jwk7qRWxnrdj+riPFB7eAMUboGvQBO8TGNtvh3uZ9rXhGGoACUK0KaGQLSRGXnMeMwNAjXTujx0LW/MRKPFwd7f7nngFu8nEgO0xcBAez+1qkzdQVNmFc14G9cAesbP6UR1cyHRWuzveLO17095MhAytKbxDt6/JL5tAEhad2KoVXznlccujChQ9H8WfiACMql7BV7i2ebG4QELiGEFHjQBX+YzLsqw7XTXGBtimm0LWiXVklmeTdAAvql7MeQnu2afXIiSpsqP10QtPTYGc5/UlhFjmT9qAgBg6YttjgE5er75mTUlVi0gVnW2cHUw0QCnAvYu9knGKynUUrvCTMTuqjDXB8bklzEp7ocxTRv7J5gLTICd1QVKOatQVaGAsBf0X6lVVNFYNyWoPpSSnsMT+UbQg6nRlT24YRPJ9LDTXf1aL17Ird+qsVvp8ZaaC0Q3djuIr+01NVeNrbdJ6drqk9hxFfYcZjBLVouk5lcMyc5hsVihBiZbTJ5ZDFksmejAddBgSdkLs50O83lC10l8ytW7j9Gv18gArtx7LxgFy/Ux+mGBUtdaEkB6X6vFPhWsVye4duVuzOZzlMUNzOnDUAbGxYuPxs48ozsCzmAXfNjj8L4DJN7F2TNncHDjOtZ9D0ACXiV1XeiQIf2slKRQm7qnQAnV95VDeQy1oOMMSh1Ac1AuKIPkGBPBaSI5rYjLqB+0uiozWtZmVTqUdHcPNmZ2RfBmTRTJRmQSL5LcJUUAck6Y1QzmcNBiqarEFSTKbgGVuZ66doSgSynKm4SG+r4XHkoAUtKcw+LnYyGRKJWJR/vhtAM8b9Ye1gAltqkLo8lU9o3fWgAiUeNh0YxB5CXj5XvZqPFdU2ErmvmoR7CDsfyVxsAmmhabr5wAC96L7/L+hXdZ83x0BSmR2cZ5GRWCokYt9r1XiJUXTGbJHzbuQxSEfHrsi/8+YZSj7+N3/kwGqp0DAY8BkHmyOg9J/e/GxFpRrVpb8SAHXyQHFKacwVyQWEpxm2Cu3Ey0BfEId7FKSF0J9qqtEUQZ6DBTix0+WDUt0zTighZoam6iWDYcsAPTADsJlMx0Q+OYm0jzlh5NWohPaoawz8XIHerAQUBSVreQCS0O8yW8x8bbATy0IE5IdoO5Ri16v1mexruOLZgC6vZS/zqYtDCbusLqMAoY5VDMjih5ubpYbdcAUc1hE+pJq2B9l1F0knIBUk6kZTgwC2Aitf6QWolIQZxkFammXC06paX/EomPn+ydCtQ8MykAlEotILoFRAo5VR7v42Q5MixuHLtYEgEwejbQ9mbbo9TOu4IIQHEbNHABm2u2uCPpWz/0bqmJe9CtN1VjjYqUie+6Tl137DQkKeliVTk6vo5+sUapPfbP7eDoKCHPEuqiYN0fo18fo1TT9hU8q7BniNWSawH3K5Q6YIEB990r9U0Wi+sgZPTrisc88rHoB6msulwusLe3i4MbFVJuvbQgbFYF1mKDqpztJUoFJFOHjQ+0fZ+0vDvVim42k7ylfpB5cT4IMEjLACQp98AMroNbT7iSuGSYQZQFzJVhtI5xBxFFKz60bsk4uD8C4WEokAQDeNzMct1jKINUjJ2Zdswqv4xHCGAyF1aB/BPZavJCYoQKR95HrrDJobI8igU00P1g28MaoCSKIAKIu9TNt/YTU+0K7meX79viA2gb3DTkqAIBG8VmLIBuCnyi2c9+RJOrNWVx43fE728CiqQruiEsm4hiEaTm974ZYVQVpFOBMh5/qN8RxhUFJdUWBDx61tT6ET6LzYS2AxbTyCBm1ZQ0nVjrVCFVJCTUYtlXEPCSGKVqFREO1hYitwZY0bMBQGKemOuhjN82pMUjNHBAagYHNwEu4y1+3oi73hR4as6JX0sq2KfWOe2aAAs/Pj2pkLI6HBHYtLstmNWsLaOMEJBrWK2wHuk4cTp9kJR9B9BqZJQiFkO93mIoYuDnCDyp8JtqTl5HBw1I19oOrmv02+ifsloRCo/OmLHvC5+mnQnYjWMi75dAstbHVv+BIO4LmCsvdUiJMQyDKCzFAhMtbbnxGGAsKEbl3pk9SFE60vpcSgAR+rXLDWZULiM+NZ1nUuXK+Bl0v5WwtDVYYuS5dTQPru6S9EQ2VgO0rlSQAXtxZ6zXaywWC+zu7YISsF6t/EDR5fIYi8Uxhv4EZV3Qr9bgxRo7u7uo5TzW/RGOTq5hKGtUXgvYo+SgTOqRMIgzEgMZjMwVZTngqK4gVgEGU8Lu3lkc7+9jsVyAcwXXAf2wAJIIakmFbXFZEisjB/3plkdVV38FievYF0+ASpc6gBKGCvSlYNVbADiZx1VpXMDMwIMrLfpWXeMQZB3qQY1ot5Gtr7N9M4qRgvHYqjiDMAwWEyYnbq9WEhcT2DpqrCUW6Mr2SVVLk/Fuw9UM4/PsoAmqyHmmtNNl2w/T0IL7aw9vgGJ1CMLom+ah2kA4jI2ADQKwyUq+6XWTm2l58k5bpFEqtwvgzYlvWr/24TQzwk3umbbpZ1OwwkA7G0S1djH1JpN4ME1++pzTnm1AwubN5lkAdg3uElLgN85ichAzBXP63I0xA+4ycbCCJtTF95skIIHkB1jN7FYBVBXlaO6GApDGlNVVwywxFEmsMRZXYBtu2r9m9WiBjymFlHQHpyT+bX2/n+USDngrVb3H1LJYjOmbABqGIVhrdOxaEMpAhcw+TIagsDBzK5PuWnhK0lcFO1nvETO2WCaMkQDBjWi0YCcgK8gj0rVCkkJV1n9uaY8NdNTxeug8jiwgZAChARTPRNHTgNszAKRAn+RwApXG5wm1ZpW4xiBb/kV6Ha99BiGpJY8TAwqApbpoE+bSX4CzrrkKflDLHgovHoM1wwO2iKqNEqlVymj2lEwfAy5uwQPAeTxGA8c+E4SNmjZxvzaLjM4FNR5pQaNRWJZa0fdrLFcnWJcefV2BS8H7734fzuzvAbXi6pX7sFosUNdr3HLLrei6GYpWHuXEOD45UuvFoEqBWTZaKn/OwktmSeMKi6Q3D4PMpWSzFJT1Ee5cvEOteWJlXSwG1GGtxRgrBg1UFWuYBYl3KBr0ayKF64BELcDeC/TljEQz9Ms1hvUgigoArgWpS8hZn8UDCidxj7oCZ89mFAcHUovF9oaSNhSGqDFKMo0A9gB+oRG4lbUyg0oDDbY3uQK56wSocEGXO1WkTIFxe6C4uCBnb/Ws1qYR+bKfMzau9syj/kevgwXhyyV/S1w80SRJ2awI4gNlOxIaU+ZjWtkmUCEVbOZjM+IA4EwM+ilrga520iw12HxK836SMaHT22lWkgc2iTUo1VDuJNamAqdZaG4KenhsTQG33Hf/qJi5WdlfanM4siDVOurLtG9xjDV8H5mqCCPT6JShqKsACp4SzIrV+hutJ/oyDMxItQW5mZyMGr3PFcHfY5aTcYBk+xnnymjMtPSWCggY4ycV9rPctdRmcjGD3CVkJncRGL0XFcaZxuONoNKKvRndJ40zISj4Tgkc1WpjGtSsWAI5BRDRNObARjK1duiae00HBYfc3oCu6xy4tSlrYDYFRucWFJ9Ljbepzc1nKiuTxZO0FGXpo0/7SFTbNadZfKAuDIa4fRPX0Z4QGS4CkWw+mCVWgpKcA8UMNveNTkDkIb4XSdx+OWV4hgaHcbBkz1SjqWmfJ6CllsaLXMYpLRugGykQ4e+2fkanWlMKcLBs7g5miUM4Pj7AUHpcvnIvcidVVDsQDq9dxX13n+DChbM4f/Ychp09lBVjb3cPi8UJrl+9jmE4wdHhVazWh2AMmnI9uBCv3ErAi1quQe5gMEmcECND3ISEioq+X2J1fILZbI6umwlwLOzAvQ5V4xIt1kL/88QIrd2SpXy9WG+h4D57kL2fb6TZTVDL6VArupk8EzVhGKrG0FBbENYkD44C3XiIZc01l7nIDzmElTKhEqEWhiVZAu1kbSF0UR4MaIISdnfmUunVqvkqOKdY8jruA2CUXh0t9dXvbdlrU2soAZ6BmDOp1RfgOlZY7689rAGKoN2ihYUAg2jE1JjxCNVZkJfUgaCwGEAQRDBo0s6sYVPN0RgHwvWnNreakMarCeN3QXJqE4ESNdmNxwaBzqoxA3mDQMaPJVh1TYu5np53Y4JlfJ8y5QZ//R3yi0VMAFwsYKv55Y3pxXsT0cg9x2ibVC4w86rxVFPXZDeygQdmC3jXtVNGGgWvAokofIgIBQBXAxcNjDo40voVrV/mZxXLC6ekmVkZxlCixaAyg+x0W9bMi2CVMxpIGWAetEKpvseHZ4K+xXaQAiayWiI6RgfUZIXbdH7VKiGALjTTyCyVN6yHXehCi9rcVEt3rc0lYgGFURmwFXDrGYv/vYZ3CS2MrZjIUnujanBxKaXFa/C4fzDa8OUm4/0yH5WcPxu9sLpI9GqdW4s3kjvNzWP8IqUsMSkG0gJtRUDf+tHSSKOlpDFuAyEGSOW9ZVTTx+Igwp6T3o6AmmVekb6+Vj3rxsdoVkUCF7PotX03qoQLA4JaY6O2vWu0ycyeSt73PY6OjnDvve/B+fNnwXWJk6M1qJ5B7Tp0qeLo4DpKv8CZ/bO47REXcXy0QmLGcDTg+o0rWK8OsFwcSjpxreiH6oLWlrkjybDLJDFlAxEyFbFWMAFcwGh7gIvEzdTSY10KJNZWgudLrWJlLJGvNUCeUufeeyJJjeU6QGKVxAJZdG4S9+hmHYgYq9VaLaUSm9EPBbBaJdyymST5QriJW6RHbkmTV3pkQki8sN8bSRiviBaztg+AVmI+pSx1m0qB82ejXwcpcEXWLEsOlsFI+jziDJBYBdk2HJrlUXhe0VIChE7T8i1+ahyTcv/tYQ5Q1IytRYpss4nJf6wpjWM+yBe9MYRoVmuaZxP00d/d0upA0CKzHO47pQXFHB6qMnYn2DsbkVK48QEaN/+/PAvC0E3bgsYmKCdzTZBbbMsUnIzGMgEnFDaXPwtx7C26fMP0Fz6bAgd7V4sDmIAU/Z6ZgVCLJSJ/hHvMgjNdl5QSakpe9juWKTd3CE0Aio0pZUllzgoATAMRE7we/AYJsJM1EVPqtAoxkbjiTBg3C04sK4/JuEg1loq+Lz7jBlQIQA31XHJOIEgtFRjoseHos6uCIJ9etTq7dcanfSxspfhay1SK3wHwM3dMy7dj2tt4lMkxeVaRVc+1InJegr8iWC3CAECoVleC2Q4h1rVS158G/MldE7oTclKBHy0TPquwMuU2J0w2F2ZlYdcqbV3jHOkfbnGUNPhWEMy2uZ/fo6BLxjVagmatsmdqXxvYCq5dmyESeq3VDiANmrmBW4b3yd1VzLCyCyJU7PuCYSi4dO9duHb1MpZHl8CrfSyXRzg4PMLx3h5mO3McXDvEmd0Z5rMdXL58SdOH15injBs3rqJfH+Dk+BrW/QKlrFBKj1IHzSxSVpkMJGoGHFeUXs7wIajVgNHURLI51cP7wKKSKTip1eKy1TXrR5moFZSq008iRtdljRWRYyjmOzsopddAbhHstnssxZ9J4jo8kyZbTp6uobN4QjstmwXccLyy8bCRlYubSzHyKMvEqSZbWA4S3dnZxTAUrNdrrPo15MBiU1jUta4JBwVaeoCN/FVWKh8DNIYtAay1U6zPdqaPyF/ZM12XkXPy2CmtPIUH2x7WAMUrK7IWJzJthAELbOTa/OemRZppd7qJ4+8mIKdCxYgnpaTBmmPBDZhWA7egtAdH4d4+I0ruMho31uKy4wPVpsIdRrCja+Q+rmaubX2PJuIPpEXNWF5ALkB5cp0ai8aCrzbTcMEk6BZwK5O5B1IUcGibVf9wIDPS2IPgcWgRAIoD2FpH73fNHmLKbqXko7VH4kZAFtleARR4PgdzW/tEKNTBXEijar2jObTgX/a4HnsXVKCDmiZvArzUCuQoKOVxZn6vVYqRDT0jdR0yZRcuDk5EKkkBqtA/OY22jg714qDpWfl7SaWWexMH95gJWcCtIaM4FBszkcYdhJOFw1pajFll0do5qTZX5aRWownTNIXWq1tOyW0Vuu/JuyXmZqWXhAYmUkqu+ADBwgCldqqabafxV17HReIMfGaDZcppr8h3JWRpiEUnwsypMGpB7+BWVmHMA5qW25QcKB80aivNsjJhNb6nCvs6N5AjAKrqvNdasFqtsFwd4fqVe3D98r3A6gaOLq8wlBX6AhyROEmGMuD2R92BnHdwdHyA1fIYy+UCO7MOhzduYL06QSkD1qsVpPS9pCVTBnKndt5aNW12AOWs0leyUWxfMATMlWFQa4GdDiyWgpQqShXXS+XksWuu0HrWTdUAXakPUmoSEJAsfoIxDGsoIpLCiwz0hb32Uq1sebegZNbG4m7hVlLe+qZ2e2ZUWMah8ohAP6fVyrE+EdiVJD2sXUGB3LtcrkA5SdXfmDCh/K6bzcTCtFyiWSgNcMD5ZZft6AsGKtAhSewYpNYRkczB4LZvXRsOp2gnyAFOD7I9rAHKMBRPl3KtTSWj1Q1ghlUyRvPut3gCEDlKd8Gh2nNM9xMNW75uWqyCITePTYQ+nyJcVXKaSVaYSgn3RZAxDjp1C80IECii3gAwcr3koNdYUsT7c3/tgcALh2tMmxv1nnjUd4q/B0vKab0QrXQ8ptO8lszswM7cHeU0oBdBTejDtF6OPScB4GDRYCKPowAEbBRdB4+j4GaFEA0CqHUAjMaoaTpuHdK/20m3avmxgNb4fJhVQa031QzF5P3WjigjLa7dRNOuHIbWrHY+jwGwShVNKcblVhcOLkH9rFSttstA4rYGBhqYyM8Y8mdbPJLFqNguiMcaGPO0+QHGwcIjEzH5PFRVSsDQKsTqgrVuCzLyuc56cSkS+NiyeAR4cti/DoKVbzjUD/MTa5HUkZCHcWoXAA5KOViwnEybBTcCkpaRtek6AifNDKp+r4EWuUbSZu2uqBqM+qjfjq2eAnjX6yVKv8b733cneDhCGnrUk2P0i0OshhWQGP2aAZIKwTs7c1y/fhXd4gA78zkOjhbouhkWawazpNoOg9TWYZDGziR0eho3U1FzB4srBQwms6Y17pEVQKSsPKOSH1rHYCSWcACLawHMSprV/UkQ94OBW3X5Wep+hvKzir5vLkqpoCugdj6fYbVaiewJcyfxkO14Bbf0GeWaZZWBnCCZcmFvmlXcrDq23qS0KLy/SuSzryFhKGNayZzBxY7CGCt60/0PLUxZqxRz6yQ6GQBQtCpua3amV6dWJAKZO5sl5qSdgFxUufhbAlBKKZ7nDcCFiTRuAGECTuxas2QYQt6UmE0zrpW9ZK/c2wqAmT8zapmKYNr7HBY3hmqWHA7uKNGmxlqS5aQHxagJXf01UQ4alL3Hrh4HME011fDy0XNjHww0jECJz6iNUTVLav0bgZQJKDIUb89HAAE0ucfe7YI93CtTVDeuG73L+mf32LviXKimwKaZcR3RDgh6WJaONOXgxsAonTuSkhdz8+dkZ1jyWtGkJPBWTbVkNUoaM/GzdXIGUTfqGwHgKsyqVKkNU4pYFYYiQD7GWoyBmWUH6NyxMBnA/OeNUYogVsZXQqq+oEO4eyYnDYwjZGVecYu1dZU94wpDo5jglpKqwFUrzjLLIXZymZrqM40tNWCtv9FSeiXw0cz59m4gdRlcdP4zJLMrp8BfmqY+PSreAxMDrbaDDuMebrwH3LRK2dZtXAyWUucwUNGscgJkZK3MUGcxI1BQWaoefFeFfq1IpbgcFBQhaeqsClsNdJRzAAh2crTv7AoMqyUWB9fB/Qmu3PUeLE9uYH9/B5QYPSeA5hJzsJswm88AMFb9AuvlCnXRA6jo+x5nzpzB7vws5jkj7+7i+OiG0J8K8a7rkLO8u1Z1z7HMEaqkeKeUvEAl14Kq1k5mtZQZcGfJ7LGfVqZe3CICkqoWKovGP2boeUKMnDtXRkUODLp/9TkMzGYzzOcdhn4NsKT2MpEE8RICXXDgo1qFV7MSZT01PiQZP4Fki42UVt1slN2NIp8Z4NB7i7r+lFz9TCwWy3FS4JJyBvcDSniH8WI7kqIqyDeFJ/IOk1dFD3MFZXDSYnHOM8y1VsAFGPOe+28Pb4AyDFK+GHAG145uczGPkS89CDbTiqmW8aQZKrUqkkoU5IKlHV7m/uSYFaQ0NXqmCRNqBNdcQazPb6Z90xJrrf7+qNnooMdCl1UAjICABrxYkggTvIy/Hi0eC5yN0PX0WQHUxGsiovf07rAR24SMn2cALwKNBgBD0GZsEZzEPkz6ZH2dApWoyVB4hoM+o4nETdskYSQ5ZTBV2LHjOXeYdZ2n1ZaGLeX9RMiKS5K7GQlOBiYgVKPuuoTZrPMYGE+jt4wVy1SLTM/cnEXLj5tAUy3aJsBcMexCPjKaljRvDNoAdMAL8ndlaIUztUKY5YNdwHRdp+MQRqVSWKwc0yBsoNUEQRMEDhx1HFKgK65p2ztukYK6FlkLjYE9C8QBwzA4gLR4BWbRsEe0Qu2nCTz7KGqQY83z/l2nTnMmRDisD0tabdWzTfx54Z1ecLImmEwya40c+6FZKmil7s31y2BwSb5logLgFikvODcoX1HLBANl3QN9j8MrV4BVj73UYXmyBOWMvbO3ggAsFwtcOL+PflhjsTzG0C+wXp8AkMP7QMCSC/IZYNbt4GR1AkoFwOCWjFLUFQXWVOCCnflM0mVrCZkkjGGoSB25KwiamSfWF6sxZOnHNqUSUEucFUgWpa/swKQddJddUSl2Sq/uxZwTZl3GbDbDzs4ci+MjiNVNXToanzIiqqAIqTlPQZbyr6ol6lOzcnBbrfYYEwmstZ6yKUYAa7kFsTQVoAr4LEonFOgGrBZoIk8XNouZ/RyK7JekMogZUlRHawPJ6e5qqdIKh1yaPCG0kgim2MSg3gdqD2uAMhQ5TVOnFAB8osg1FgKlOiYUu982qDFjZxyKFBEACpPkkVOWrAKvC2GpjSH7R0FIZAbyGNPMxwzMznqAAhQiuOm8WSzU6uJ3jQW0f7phpYACq8Y85Xcgd0JwcpaNErjGKjgBTwAdNmJdguXCtUm4oG/upjAR1Jh9BBxTQDE+fhwNsJxiAWpja5aA+HM0P6Y1hus35lE7QxALQNKTXXNu8SkWi2JrLQCUdVNqTI0CjZyzA1ui1g87SbmbdUhdaqnPygAIBMoNsMn0NtfA2K8MMeMyt6BNZq0nRmhpi2P6ANrcWdaQ3KoHoLGm2Rqj5+Yrd6MQyRizzY32ZxiKn+XEYB+3PKgxMRcggZZMiJO9TPeOaHSa/mqMU83+LWbMTlWtwXJUx1YWMiGsfv5T9lN1gC0dq2jKyOY9m+DEQN5UAYqWlUazrU6RgQ2NUPD1lUkxiyprH83WYeAzA1XAxawLfQ1Zp3H3JOeeLVbArcQAZhlAWWHYyUDO+LDHPg7zLuG++y7hZHGMWy88EqvVEswZlQdcuXIJ/XAMUNGS8oMD55PFArNuF6vVGicnRyilB9IgCkFV4VagsQ1NKxeLk/S0rKFZcQRWUDIMA8pQ0XUZO3NRGotp/Eo7cgp3Rt8Pzi/sZPnqVipq7vxUwahq3UFz0YEVIA1IlLDmlQcn2+GaXIGE3OjO9klw7dnz5IntfKXEWQFikB1W/4QINZviKp9JTSNSa4kscgegkrwfJJbhzDRyjxZ2CTmRS2MXY9a06hJoMqd2fpnIXHnGNDNUOm9uJFFgQx7cA7aHNUARbcNKhzeNm1FHZxgQYn2LthCnCVoATQOlgrb1E3gAWtS1EkfKwQJgeJf8t/AC2Imn8Vowg1PT6ls58NhXJSNnZONnu6up3eUjd+uLFxsy64EJCBYByLLpZdM2vyRhrK3rL+oaNutUfB8LelfAF/vlz1SQEYNUdSBNgIX32nes46zAKHW4zVNk/K3AVRwD1DycaiggMG1k2oEcNiexHxkJ7aBChmgo1icpgqZpgUhIJL7blHM7uZeaHt5cNYQuS5YNB+tTo6hmjbLgSmbWjATJnhlKEfdOjPVQjU/GrdkFLHUTWE295rocUY7T27i66LhqbQOB1t8U+8wSn5KhgbB6R9IzOZIVuaMk4El90iP3jFt8LFVO+HEd1YQR+qZiWWgNhMdj35uZeXywYQUUbI3dlyN6AtwEb5aTBuBDcLVKlA2K4s3njsCmfhdpPSn4NUBmwCvseAcQzJL+KSfSEXLu9J8KkHhEhAEc/WHgL5lPAWOXpoHlRFWUmdKj3HILHvmIizg+OsAtlXELPwKJEhYnJ9jb2cHJ4ghSb2RAPyzBXFQoJgd2BweHynslsNXKAhhobMpK1iy0lnHT9wPqoAGpqsnXCgyDuOS6WVLqVToZClhTXeUlAmrArAUac8uW8kKKMv5S2jEa5GXbpRaL8ELZ731dN5oQDu58qporx3i0rQPUJQkBJ9Cf5uFnpYkMSY+OimrDtsLfBrWyU8q2sMggKW2f4JZd1jFvWP2ojVloompMlioHBLW8A3mesZNnSF0GSLKVqqYmqxDR+DktGBrd3txA9INtD2uAwhbIZFbkiZAy7YMqqz9QNUNlyF4N0szdtpFrbUxH4I08f9DAQX06g1Fyi3+Jx6+HXGJvZIUUiEAezJZAPHiEvfh/xwCiaelR3JP/i5YDaUHrs/BSR69G4DYHOhuBaI1hR2YeTXZJi2nFk0pH9RTCZmU0xupART+LzMC1amaUAFDShJFbv2J/o7XHvw/3tPmXGiZSNh6eMUO+Ju06ZgUyZNqcZrAUKNizsYgwSSRahgSU6btS8hNDBdjAGQVDYkPAwFCaZmPWFre8JFIw1irDypHnYp62YFiLN2mnidbACMz0zJ4+6icVs/jxbdxAs+A1YdqouYb5tYPHjDK8wBXUgskC1mxc4hojn7tSK4bCGIZ+AkgwAk/2DKsnUStr6qfMRyr2fcvqK5XBVDylM9KlAT4TBCNrAoXS/6qlmjB3F5p9bzwDarW1irMB88lpsY2/+Gfkdnq/NtshQFlqV5Bm79VSA00JRyotCEW5QFKaASjPFXgY4DduBdljU4WKSLtR1A3Q4lBkfzC6nTlmuzs4e+Eczu7vYWDG+ZTREeHo6ACUCCfHh7hxeEOSFwYpGEdp7qfO59x5ETmpLSIWi1oIFYPvJdY5siMdhLY6DLWgL2qlMMA4wK1g5ho1egdacUlx+clZN21OnLLgFXvJ4joU6CuLshRx4Q3OUVBZ122UuaL2bg24VwYz4Y1Ge3B6J1YQrl8kshRmamtnrSaJv6kCJkCkQI811V6oopRmSZJA+qKyoPFdCz2ILnXW7wxIpUyYUVZXNOlR8azgXTrup4hRFfphSCxONZ4EVaT+lhRqA+DzHIURQSbCDpWrrBYVi/Uwwep1Bpp2YcTvKVb+TDMHBJBDUFu+Wh7KgKpZFs4QQp/sBFi1W/h30dzLHvDb0t9a48nvJuCbq0GagagMoIeDG52DaKI+zbRtsTanCXhogTKGZkxZ0zKB/jy9ZsPkPZmT05pXC6UQ9BzfNQGibeMH83v4XpiXMuvcAaVImrOmGregMHIQA5a0uWKnG2taKhcxecK1S4IdRw4rl+/p5+zspcXiyKe1VAlcLcFqolaVFgybNNhUEDgXs5wUD361Gisxa6cJd52uam7ICmarKxJdda0PmcJ5K4B/nvSEVAOWUtNEBGPWonGu8VPLLmIVwFaHQqbagEZFKXqEuwuEBp7iGhtdWL+tdLykg47L2zNDLVJCo8SaFWbAagSQMeIhdnAcdI6cseo8juiNyM/JaaTZAIcgh9pS1mGCEfCsiFqAYto80OWu0Sq14otuXYwgSQdrANvBRxhPo0OxODO4HblAbX3NUkOAguUSwL7EKOzt76FLhFnuxE6QgGW/Qs4Z8905Dg8H7O7t4uTkGOAMYIacMkqpyAk4e+Ysjg6X4NpLAGywKJq7DRO+yMxiYMsZteo5OmVAlzsB7euiWTRz5HkD8rXqERZddtArGWXwSuGkIMBdHFXc+imcw4NqsNyU0LbWYk0BhtLrHodb7AoDpDm/dp1YZlOjb5UlpOBTalUREmssRyIMTBiGHsySdcZhba2QHlGSmkzmxofMUzK3GSTGBtQwDiXCLM3gFdQDjY1OfIdl9WkMHltguJx7xWpJIj3yQhI+ktJpBbGmqVegHVmBB90e1gAlFnICmmZ32gww4EWczD3BCMxU70lsMQKArxwBzXenR8uzaE0pdfp8Rk1BKDh4CO+PfZQeT36G/jIJKiVhFs01IwwjGBwm9xVPsY5ZSE0HHgvwafEtQBila3vWdwNWBlwCCIlzTkTNdhS0Ve//xkgRxrUJaMZ9C0w3AKAobE8zmQNy6m5OSU4TtmcSae0ctPL1CooYAAqQsvi6CQwk8YOLtuMmFF++ylWj1O0LcbW49cnGCG5BjCZoQS7ITbsT07C5h5L7gM0aUkqzgnichQVFxnl0ENqAqstRZlAygJRGfVU90METsjBssRiQH9Pu9JGitQFyJkigI2PESUu6S7ChZkqEta21iJApUmnGxhXBr8VNCE0mjFMfbdyNdoyRA3DxIwGTCEHFjZ70CkC112gttEdbfwQ2aJqoD5a9h5TUEqcWJoB8f1ldG8lYasQkAKj6A1tl7MkeIaEnLxYZxiHBs1Ynqnqwtcco6nx7hFA1oKpgE+TuOFCrxXH12hUcHR6gqvummxG6ecLu/g6uXb0BIsLZs+dxeHiI3d19HB0dIXcZ587fiqPDuyUGBBXQ0vMij+1U7QagmRlDX0GkLknx7aJLQCIGZwEvdtxCyuaillU2+jJQDpgwFsueYz9ZLiQAhVLgcVAoa8dqwPeCxZawWjlEaROQkJQQxnV3mluvckLf94jn6UjNSAOO4n5uRxuYspZhIQBJi9mBIVlfpj8HugAlpA6NVwHwI2BURrApgcFialbrvhQMfQ+Q0HaFuLgKKriY1VbAp8froMlTT0it3iGIS/tvkwUlNOYWUGeJO5YWGE9sFBbb6gWY1kFolQuNIYAaUbIiF+aEPAIgYoa2yBNblw1hTBuftK8MtYZrLAicqR2W7pq2aT1oQMX5FunuuJ/m0GgUFyPf2LktItBkJMbcq1ZerZqOG0GKRdjXUkbjsLlwM7cJDIQNZd+F/k0Frb0X088m4OTU8Ro4CADAD5mkZlVz87/23AQCKyCFCYmikfZoYJR1vtIkriNGJjhd2ZzZ/Me1IxHKcLOyaYCDTh97CqwIIB4xdQ5rYkOEAnJAn42mJWVIqu18NnMXh4G1lFPLWtM1qTVmt8Er50LBUrQitCVhoLK6ugbAA4bJ3VjNdZRAVDCA1bSu1pZJBpDvsUgP5uYi9vVoUKYVB7S4i+ZSsgfoHOls+foqCjGQFd2fAlgZXSLkLo/W1wSlnQNjjLpCrCZdmiOTWckk7sFK/BuAkg6RC97/P3n/GmtblpSHgl/EGHOt/TiPfFVlVtaDosoF2C7MtbEbC7UvtsFAdWPLF2Qs+Y+N/APJkiUakCVkWTKSDTKWbP/yP2QQtE2r1deoacttCvu66l4XGEgooIqinllZ+Tp58jz2e6815xgR/SMixhhrn51VWd1Y6vSdqZPn7LXXmmvOMccY8UXEF18058rLikVNWdUpJMg8tXUhRRqoRUSAqE+4Nhu1e//sIKatBe4cHVk2uH/vDrbbM1QpKGXGydERLs5OsN1c4OT0CLdu38LNwxvGYWAC54xSCu7ff2DddN045uzASxnEqTkeI7HZqnsA8VYd7BorqylDhC0aoxYdqRCspuzz3vgh4g6D009trjVkq4BHM4jcGfE5YcAzt7c1PZLcRdtMgC3D1KOLRVz9npsMBXmKLnHjRVrJrzoA5GZzEoeDMswtsegEu3icDAC1AUu1yN94RA8c1e6QB9eGEJo62j1237/Q1GidGuFLXXLvxSM+laTCSMo+nzjGiAnkBOGixmmccgYRI+cJ282MN3u8pQGKaIF4LhM+MLHkrEu6h80UrZFYywcPh6qCIU2HIlIcnWAIQ61DxCNiAQGIot4k8psdyQY5S4f3wzbo2AIJoJBobl157aEbEB5IfA31d880yvJ29CQijEHx9dyrbIaQ5XjN9u8rDfOG99na8deGKhgKg+/vzWkcv6vAQduCb79rQEubV4cYeTeYcR3BP4mIAAss7TScP/5SeAi3bRg+cuG1RDTKCbGJYiy6sBoRg8f8siqaErQaHwTB64A9wzrobjwyztL1TAAXMUIff0uJjOCwDAB0TH3Yu4mtI7NozMBdtCq++8YYJoomgxi8N0ZmxipZqLw9+iD3RgpTwngyVFxx1gXgWsg5LpDCMIQRd9PsaTW0eUSQlHbHV8WatGkvu42UUBuABhJ8Pg9TjOzGoR7tjLnRnin3sU/wCEPx7wFDILY5N6+9r/VGOvXy5KUUKBRTnrC3t8J6b42Uknv1Dlw9whVaFLUKEhlfaZoy0jS5fLilAqpUzMuCZZ57hVZLNdg5I91159WX8PnPfwaVt7i4vMSzz74T3/BH/gRUfB+rQOhfkIO9ujtS/Sf3ylualAEh89ClCi7Oj/Hw7st4+aUXsFpX7K3XeP3111HmBdvNOebtBeZyjlpXOD6ZsdmeY723h4ODPWw2M5ayIOeMOpuBSilBi5UTx/pIyQTFVLSJghmASgAqlKN6RSK4FAgcPbJNUDGQVxaLGpqmRwdeLQWBSKfJDmAREScHu4yApyGtJcVk1T4qCBVgG9pIVVqUgIndPom1tIBFXmosTyZAk1+D2HpDpDJj94f9m91GIEqI7Z6bizzskcF9s+iF9WYK0MdNx8n2Cm0dzw2gCAlU122fZZ0MSImiFgG8k7fZE4Y6d4jamrTeSXC1aS2KaUrY3z/A4eEhmBmvv34fb/Z4SwOUshQPQbmPpB4+JgvBC3fvt7sJ/eGODzX8y5i8vkMjynNbtYqzmYP8xGBUVQx77k60pRn5RiCKq7dJ0SSz3VCQBmAZ9+KGSoZIgDOypeegU9rt8QE3mLHpS1jtcWMaPML2gl9PkCBDmEzVG9SpRl0IAnTbpp8aWNnN13YwQtS9lHGjVXVPXNEMUTPs6IBmZ0EGWJEABCMIdPBx5f4idQKK6IWBEeYQcDKQ1sGXNw50OXWba9zuSkf+Q/NMxSDsEBGK50hELe1DbOqnDbDsGPQ+H23j5kZwBSLSNzVvSNWMSK2CSkPaiHa/P6XswN3mTcoJ2Ym5Jji1ArE9g1KrA43QgLDmnN2jhJdP92fa9YB8zolCiMxI+OtjJCRUJ8fy3zZr3DCPnItWSebPrYGH1ksFHg2zqEZ8J7GnptiauzEzdMWmJqsKmUdOkOw8h77pp64a7c97WxKkVuQpY29vD+v1BErmEEix/Hy8X2RCKQXLYqTglGy+iJTB4HHYW/SO1AIhda/V+Ea1FGgtuPPFF/AbH/0ozvUEVSu+4YN/FBWKmweP451PvxfZPw9VCJORFIc1unO0YKrraziIVZ1xfPQaXvriZ/Dw9ZdxevwQe3sJN2/exPbyGAmMZXuO8/NTaC04PTlGrRXLvKDUBavVPm7dvAGihAf37kNhVT7brY+Lj3P2rt4N0Po6tGiDrfGkXmrsRjEcDSIGT9mpcKXNQ/YqH0BRdYZUAovJ0Pfbji7SANPU9qa2h/hatq7kgqaP5ftXrF0RBTkRN1K1KrG+Yx9F20MVnUBqKSdxvOUcMk83RbTOzk8uV/MoR7CtcfZ0cHFFad/vwvnqjip3UIrFfOVCKBCX6iCktLZ9p1ZoAnQosw+wY44l+d5of4cS72q1wt7eGtMqI2Ubj/X6zcOOtzRAiRJLAM1b5SQtbM4yMK5p2EB3PPYABzbRk4jzEcLjDnBjyJ1AkBRkV49sEHakxgF4D53dyEEsuHZJcd54q2jbPEaS47Ant8U78jnMmVZHsAYdzAgNSHm4lNh0O69mWGgtGoOmidFBjfZJCAdlLZ1ozbXMcAz3TtgdBr+/NqF98Am2IKU625wGRrkqolh1J10yvIcVGDso72y+AUbQPeD4fPSEiaNXDVHboCOI1ghnpG4c+xyKdKFV/vRyvp1U12BoiciiZSAIS7svA3DS5pZllToQbdeeUuNhNL4BC6r3HYlNu3v9qZWeWlMxj6hkK0kNEbjmpYGASgP4MdCfOVt6gszANl5H3JsG1B//DRjYZ1ijudIqkgho98bE7f0GkNXGxoMHZKzGHkWyQd0ZY5tPrpTpS5eDxAs0fhUzuVdq70uZzTPOtk+0HH/MVxr5GECIppE7BdM0Nbn8MFYR9QiODydCpgROhLIUJw5XByiuMeH9TGjgugVXSURQi3njKhUPXn8Nr999BfPmHEobVC144Qufx8Ojc/zZP/s/otKChMl6WvnzEdJ2Xy3F3dZUOCLmsdsgC7YXJ7j32ot4cPcFHD98DWXeYLtRnJw8sIja4p2FxdJcdZmxeERqe3GJeV5cg8R6LwFqEQ5FW+dSBUWtNUQ04GQQRNlWla9Hq2qy5x5KxcoGYETVOqqrydATAMoEqtb/SFQ8Ec+ulOwAAdVT5gF6go8GNI4exXCoRXHsEjyqzP19Ptfj90Se3oCVAxOZ6JkzQCAc6RS0SHlEtGUg6DKRRWF8LzaiL7e1Fo5MZiu3nufFo4gwRBrAenQCfC+3NZgtXVzNka5JwASkvEUm9kolhYpVLQVXJpwI4zFbBaoMtmNvNWGaEpayYHu8AVH634/UvbZNAG1jU7VNLY4x+qAWl949RxjB8L4ILnceBrC3uA7vwrlNDmTccIoglBiZk4GZxu8I7883rGa0e5TBKhPiOq6i49Bv8Dv1ew4+Q8uPDp+o8RXhTWLXYIpIL/bxceCQvB5CpupevW3S6oYiUi1o1SwxMaHa8pjxjPwLLArSNA8ccAU5iyPdENdp4+M2D5HLD1Azpt8IaOmZFnkYxqKlsHS49qvzA5Eqi9d9VgxtyckjcyPI9JvbnSPaybFX3xnPrX9SoSXIaXwl/eP3ir5RtohKIEPpn1VSmNwD7dwnJyvxjUoRf1r9uaH0+YpozieNfNj6Z1AfS7smatcVcxOEFoAkpjbHLFjlqbiMJnDYxgToTkNbL0NVlkfKStklRIuOAEXbvTNlROJoTEv2/YCcRFqd79NP4VzN1lF5Zy22qIr9mxMQkVYj9/Zrb2XSvLtH2WOzaqwqppwqNbrt2jOI9Rrro0UdHdCcnR7j05/7BM43J+CVgreWwjm59wCc9rC5PMXD09fx+P7bMfHkgKe0saUA1aI9KgRpJa5kb8Dm4hyf/9Tv4NWXv4iL01cxz+eotaAU8kgaQDCBtLxKmJel92iK+1wWnJ+fI+fJnnGQcYd9wlozVIT8un02ot+x7uHG0B0lhRc5GEAh78ETr7Q5CbQScfGbj/EttQJRUeTnB7nekc/rDprtOYdzIqIOWgNIEBQFKGw9eEis0lEjAux7e4B+KEI6olS1hps+X00qvjaNGGKYKJrY+SJKOK519vVWl2IR7oY7tf0QFcYxE4N0C7FRS9lIy7EKraePoLAic8KUM1arFbbbjav++lf4PaUoDScCQbBsN9gum0YmT5ybw/1mjrc0QImQ86O/6Bt5TER/qmiF7QB2XfvUWKnmzff84s671YlDvmi4EVhhE589AOm/Iyr917EI4oxhVEVhnZEtlzlGBsJDHl+LDfqq0FnwMsYrvj4MyM3bHS1553r4p5V8UyPfsNovbCExOwekRxIaEByPeF2kbRoDiPc3eD+MUE/dsfhhWGj4DLXXmHrSZTdqMYARH/vEqW84IISskuiQtmoj39M3DVQO0ZF2c9TP1jUGAtzugs3rfm5lxc752H3v+Ix7lKJSaI70cWEO0EbNY+9z3HqxVA8jBwk6OhLHmMazkareh6Z985C+gRvP3QqwkSPVRL7SyLGxHHZy0l+PzrWR3EnzsFcOtDLpiHhF1Ioaeh2uw06k2K0MU1hZufkFHh3xiicDzmjXHxABgJOqh3lP3SGQwZExo+xdSdW6LVsvnV5C3f/2ii9xXk9weQTt+elQgRdRlO3mEtvlEioLnvuN/4pPf/J3IJhRdMFcixNrge3ZKT7zB5/A0fkx3veeb8ATt9+Gqa4GccNdojlapZkbKyJQrTh+cA+X5w9wfnwP5yf3sd2cosac8CoyEyJTQCpILX1GLJbm8qqUWgXb+RKlzlYFIgXRMTj6XcHnpRSxyIB2MralqMi0iFSRp3WLnphwJpASoS5WDGFvj/0jwD5b6hI29lCFCLUISOxPEnL6OlTtAAAp8mQUgii5j4g6QKhmDswe2SQDCWy9DU7dzv7ULo+H9UO+fuHEaXEgzCCaDERWQVXTelESkJtxEYCciB7rU1SdraMNKJltCl6jrxXYfm5TQNt6J9/HtNrvV1OGECDEUPbqJR2j+uoRViDnCaVWLFsDxnsHBwYKl24Tv9LxlgYoY8i8bfph+IYQ+1UjTRERQJsPPmk7eDDJFEH0KWlAJ0L/sZlR9yAjqhI/JPZGYxxgJjZq9HNScC7gxp0QpXYUCLl/YOeo2r1Sm2x9c28emO6ClM6xueZoKrnxrcGDADrrFm0hheEg90DiW8bOve26I49M/ew2ft07Yi8XJaBzcYI5Pty85VkDeIRxRcOg4zCZ5+6ghxWug2f/a9Ex8c9Z2HQke+7cBo/XMN5cf5GipJHsfP3hwF+jBkxHcNL+zf157/CC1LUb0IElc3h5/lzENmzb4CKlwWihWG/nLvGMvLS6rRMJD9qqTuJZ76axbFbUGoa3S8WHOJbpVjGA1KJyjF4KTO7eEah72iKtEmHks7RoSdxTGqsLWpxwOEIL5spyIUsSxtoc94VEBGELX7f0o8AF+uwzzbBcWVPsYMOAzriOgxsFN9JR+cQNhEUEQgU90+uCWrHhq6eBqFS8/uqr+OQf/B4Ob+7h9OwE89kpzpcLLLpAlq6aWzczXvzC8/jSSy8CQrh34y6efeI9ePz2E9iNtDqw95QfqaeHQdCy4PToIc6OX0NKxrvYzKX1WSH0/caapYZhNm2e8DtinMoyA8jY2zvAdpu9wsbKjW2O2CKxyG78HIbVDab2VEaQtHN2Qx7CbBIdqUO5ueEFu0d3EEXsGac0+a/cVaG+l4UzQDSsRbLUB9jAgCdgwEQuDmiTQpy7p1pBYm1SYq02Z85ntkU/Qx8lnIRx//G9swEO33+BBqSiQox8/oPVTJdhR8RZ7GptPYYv1QQOvWpQ3OmM9hyq1uixLAs2MB6bDiA8QHmv8jGahSbXnvGqzmWeQcSQ+r8bgBKOgHvkIxAJvHKdgd7xsBwDKzy8556re25jaiWe6E40Y7geap48IaqFCLYQjBDZZdJtjtGVa1QoUvOeCAOCH69/HINR12O4zzHlFX9fB9Z2OBHov1d46Ne5IuP74m+NPSTuwf8WBLHQekqE4cXQC6JFSQZjDQAJyfcqB2f+/hDmAsIbGq+j31t40P06vTsw0HLV44DGdQOAwL2vcU4BO5GDXZByBTEaovLnZmd8xGtCh5wjD2j0qtTDyCNfBm44fU9pYHjnCgJN+o7cJOVdnr86IZligxuMbeOPaE8rtE2LsKPZMn5m7PE0AljjVoxE413tg7iTMMTVK00QBj+qaAYPLTbj9sx2roN276F5DD5CVyIhO8ZODdlyC4bG+XfXVPvtIw4PudJ8V36lMPR+Tew2SUUc6vd9oOyAHoLU6iJYxp2opUDLgr3VhIvX7+FTv/cC3vv+90JWhDpXWy/VgBanhLpUbOdT5NWE5z/9B7h160m898+9D1NOTaStrbeI2hEhsWs7JYZuNtC64PLsFGcXx1jmrZO0HaQFPy3GILr4wsiutgcY58OqSBTRS0e9GgxORmYGcs6AVhTyfRf92fkUbGR2FVMzIrK+NKUIVKop0qoCxMg5WRuS4O+olxGDPA1nTlGsp7AHrZNzgIiYG06ihwO8lMga8NXSgEjM00gNVm+AyMmitl2Q0FzkIOlrIwH3Kr2Yh0b6NTJqdwri+nwNDeT5UEunlrLV1gq0pWPQHcIW/cCwl3oFSGITgKvVmoJKVSx1gUx2XglaAw3UAQfqDGlRSU4ZBJPsT4lcWv/NHf+dABTq4KSB7itEyTA2AzjoGw05QjEftY9feIVXznH13PB8oJKj1V6x04yQeJoE3T52+07D3qltYcZm3PhqvjFHamcEOG90XGcgH/l9/JtpvKgdMEL9RbTgBVMzpHHBo8EIw5RzahyTnQjNMBBjSL5v7IO9HZyOqzyS4Am012V3PLr36ycageEwfjvG0N+624MmFv5w7cM42RdIW/wtuoBHx/8RoDkCQ8AlomUnwhSk11Dw5cG4dIAWG+t4gfGXk1+1l+w2cObgpcm8D3N9NNQj4A8Oi11LBxvjPTUgL7vrqAPoIN9p01NpirgDULLL8HU+jHd4nRFtiKdAdoFxIe217hUP4AW7a+nqutp5/kAwbdsUiHC5VFOsTu74gEIjhq3rbrWUUNyCwqJ6KtU8S7K29CqCBA/Dp4xFK1546WVorfjA138AZ5cn+Nzvfxrny3knT8M4AiklLB7lSGKK5H/mT/1JHN5c43B/H0wZgLY1nHKkSoCcE5gzEifI5QqXmzPcff1lbOcTbDaXSN6DZd7OUMw2fKQw0gI5JyPBGqouUFi6JDmA2l5eYp63TUspHoFpUtlcniayclag6W0QjJPBNJDY/f+1wtMd3seeyKp5yH5PDLB4+tMmBaoL2AFeHICIMGJI3wSMiGijk9/JU8rOESG1tJR4S4TQ+iAmE3qMkC5Rkyew71Kbt4ND5DMaPe4T6wzo0ZXuMLc1P6iP9xXd9+QoGqEgdtPgLAQD3f8dUfsoKhGfsDb+BlZKKf79fh0+15ujAGCRroXVba02MvibPd7iAEUH77aTCO2X2DEi8f4dkAEaZU6wszOjV+K0UzUDB+zIBPpkig2a/OHGJhSRg9Eo7UQuKLgEdq6W/47vJdq5ri8HOOK4usl+ufePvwkgMVg1xMKP940TL94SGjTj93duxaPaH+OhrZTZNyAd0D26N7z7/bGQhvPouKADDHaiaoDTGMvYLFooXvw6BnwT4c8+VtSVGSm8Eepg1B+VBAl1NPR+2d1rxy5RGc5hSh081wBe/g4iAy/E3FNsTF2+vE1xN1yeNmvGHk7OuwLixmPHWPMwHsOauhqZi6qz7tnFcgnA108SP4uIrw9/Dr6eu9z9GNkJw06DqGGPnF4FRvbwBo4MdkES++/VDUdf3+hARxWavPmc9vQn2jMhjDM5Nmfyf4s/4zBcxp0P4J16j69VQsoWj6/G8nRSM7AsBUSPQS9m/OIv/VvQTcIf+WNfhwfHD4HTU4tOwCIVSzESsTqh8smnnsb/+bu+C1/44gu49+Ae/uKf/27srffBlbrhtfBu8/RD92aWGTkBlxcXuNyeQyHYPziAKLDUGVTQ9sFxDbX55gCkjRt5WmFnLXenIlSRrYu3ravgS6RkJaocDgPgUUZ2QX72P6URwiNVnKhzMpqqbhUjmatFQSxNEc+e2txj8lJv115hjvywGshyACaJIUuBqPbnWGoDAuMe3PyHNsf7/ImtSZpMAJDJHNtajW7QIjBtXwG6blKbiT4zuTk2Fjm2Pjzd4ZQ2l5l71NLePxQcxD7PgIm9xdNTQKXzzIZjTPcgUsteUv3VVPHwV37L7vHRj34Uf/kv/2U8++yzICL84i/+4s7vVRX/8B/+Qzz77LPY39/Hn//zfx6f/OQnd96z3W7xd//u38VTTz2Fw8ND/JW/8lfw0ksvfbWXMhxXohzUDU+gYbmyWY3bc9sEBS1cZhtmZ5JHiWkYTMsxVkTBmB2hWxCApc+iq3oOwG4kQIfXYLcQyg5tw2sdcQdv+Wo04erP9pr/cZBE7JtRsuZtnAg5M1IiD/ma0FBOCTklU1/0UWvnIpuw7Q9ZKjsxkBKQmJAS0Jo9Nwvg4UwGKPkf/yz7PrMD5Hwwxu+N59BRfm0/g9SMAKPpnSiZAFFrNqe9G3AroxXpr2n/M6Yz+vtqM/rjhT7yvlobkTvKRK/9ewRBip3Px/mssd6CUguWWqySQiqWWrCUgrks9m8pKMOfRRaUWlHE0gb1yj2Lq5ZKEEhVh7FEMzIyaIO0W/YquloVVRSlevO/6q/FvyWuv/rPZkiLa3ospTbjWsXWmlRfj+6ZdyG6cExq0A6uPcII7KzxYT2BLPVQ4SRVBEAaxka1q7r6ve6kv8Q7JquajUiuE5ST/UmmY+GuPygl5JwxrSas1hn7h2vcvHWIxx67icdu38Rjj93GY4/dws1bN3BwuMbB4T4ODw6wnlZ4xzNPA1LxB7/3O/jkH/wuNvUCAp9jxcqPY0yr1PbMn/vN/4qPfORX8MUXPo3jy7vIBxWr/YRpPyHvJaS9BJrsmtnBQRXB8ekRLi7OraTZ+Ui1FtRqkREDGb03i811i3y10D/MOIEqmK2aidj0mgLM2fVXSAXqoqiLAxWC7x9GulW1iptSFizVqltqFdRZUGZBLbbxG8FV4CbWp4d4eXv197G3WxhTgQEm+pof+R6cLNplwCbmk7Y9VYbvKsUqmUBoxpvU02ceGdWq9ke6iFotzuuoaCqt0ARLOw16QV5Z4/gALcKogILBKWO9t4/Vao2UJ6xXe2Ckdq5oLGnVZVZ5k6eEPDHyKmFiNnVpkO/j1iCQE0Asns4M5wyDA9X3wN21qG18VHf8hq94fNURlPPzc3zTN30TfuAHfgDf933f98jvf+qnfgr/7J/9M/zMz/wMvu7rvg7/6B/9I/ylv/SX8OlPfxo3b94EAPzQD/0QfumXfgm/8Au/gCeffBI/8iM/gu/5nu/Bc88957XUX90RuhGPHIpd7xnde9fYVOwEu/tcC8IEgcteG9/VfICdaIaXmsXkbZ6oX4z0c7/hoUNgZrwkuobLEGBk8MzH+x4977HCo312OM/Od43lmO1eO6ExAiAxOXfcT4qUBvrrHvEYx5hU2ol2ogFhIFMvxxufYxumAaC1m8aut7LzzBykXuXhRGqgGTTtYYLrQvzjs2jnj1sfQp0jZn0kZQBtkZfxNfOc2bjZGtsddt83/M0iu9wOD9+M5Zst7Nruzau1fGO+dkMZxik2xXHM7T0dxBPgnugI/a+mXSJyQD1a0rxIj8C0seigvAEmwLz9VtLr3mesC1x/XL238ajjc6IOn2mIBlU8+vlHnAAHwwRqhHj158Eu8Bfvz4mQc0ZKqe11Vj69tLUjUk3hExZOT5xwdHqEWmbo6TleOT8zwFmopXh6ZMv+l1cJD+49wOt3XgVI8aUvfA4f+9hH8Of+x2/DkzffhmVZQCAsy4yDg1tYrfZR54p5s8Hx0RE+/+lP4pVXvoTt9gJVF1jfHQGUhxYMbeiswooIosWrVmoP5xNbtWPso1HLrGqpkWqOjaI7kpZ2svcFqVIcvCaO8m9xAqYa8JsmxE4T0XXbB2KN97lXtVeMcYvIdTBs4CIj5eROobYy/ZiqRS0dtCzF6SA9nUtEADvvpj2gFqbxMejRaqsCowZ2iciIs2SgSs1b9g2BocrxsO2U4UDCRBdv3LgBKHB6embqvdUcAbZQVqtmbC1MtHhlFEOFMC8F8LEJQCnOGwpOoW1TfR30CNNVexV7nbgJfPNxka8aoHzoQx/Chz70oWt/p6r4F//iX+Dv//2/j+/93u8FAPzsz/4snn76afzrf/2v8YM/+IM4Pj7GT//0T+Pnfu7n8B3f8R0AgJ//+Z/Hu9/9bvzKr/wKvuu7vuurvST77sEQXQdWfPu4NurQPu/7VeOgkPgGfP3251MMAPoGG4uWBtKpT8JmuHjX6AAj0NndbK/75h1g4kg2tVBFR/c2MezfIeve9UQ68LhmsB4ZHwBjIc+O0SXq+3xD81QMzV/lh8T1OUq3sXM+RHgzgJPb+uK7ztA8YlivGc8WbQoAhMgV+zWHB9z+oBnKnXNqH5fR6IfxaXMr1CJ3xuf6+XNdLlbEeAyxab6RgRURCzk52BjHPzQJ3ojnMrxwPUBpIMQiGqMWCRRXIks9FGyfGcP9u78j9IhknK8ZElArDaUr14GWGlB7XlESjF1Qc/V4o9dUjdfVUxG7YLEDFK8s+goOA3v7+EYGH8cC2jhRxISKbA6RWlnwdt7i81/6PG7evIm3P/12yGzAYW+1B6aEk9NjzMuC1x6+hlfuvQJw6E1YVCYiTmlyIrT3iCIlLJsZZSmY1glnRyf4/Y//Fp66dYhV2sPl5blJkN+8gXc8+148/fZ34fjuQ3zuM3+A+3dfw9H913D08FUQL0haQVJRZ4UoN6AgIacOQk5k0VD3l6t3Tlao9VPyqG0nQPeUHmhsZ2F7aa3iwLda/xswUKtHVbx/E2XwKnrjCFirq2lr75wtPfLGbJVwWkIZ2eZPVPtUcVl4wKMK2VOc1hAvEZoOkgEta3VQYZGV1okcLlugsNJzWI8mdYBu6e6I8FOfqYalXICRG9/GRCgTDC77nK+Axf90x+ArW6uNy8tLBP+NEyNlQipWhk0afZ08OutRMvbSbfezWkSRUsJqnQEk0FYhXWHIRRcrokWKyG4ftrhfs39e1cTXrczrjz9UDsrzzz+PO3fu4Du/8zvba+v1Gt/2bd+Gj33sY/jBH/xBPPfcc1iWZec9zz77LD74wQ/iYx/72LUAZbvdYrvdtp9PTk4ADA8bediodj21OHY4IOOOSWjEtdELoXiDdvATG/TOJqTjCTtgUVVUrQMwwM7370RjdoxZJ0PFmbn9azgHoU0K/6ER3zB+51Dp0StGIpKi2NXZiHvy6AR6kHRnt/frHyNEbZnFxEcHHqNHP95rk7kfvhe6e5+j9z5cYPOcG9q45hgNobQSWue3AMPz7htmL/dsN4qGTt4AXMYdB+dk9xk9+t7YGK41oG6gG0FWtXUEtnvtkvwq2vr+xO9lnPPtH1fGZwRg2B3bnbFQIKS41Q2tgcUBaKh2/gksIhIL69Eo1+59tjntG9h4Xbuk2niOPcLw5Y6vxM+KTRnurSo6sOz3YdU4MU927oNGEBfp3uFaFVCO9SWtDB8JKFTcK7XoyPHxET71+7+LJ598HMt8gqP797BaTXjXu96JJx5/B7aXp/gvH/kvmPYzpnVGMdMB42aY4Z7nBSLSIjLM1FIMia3fzXo14bGDQ9x7+WUcPzxCkS1SIjzx9NuwnjJuHR7i9OQeLs4e4sUXPgssl0goQE6AZPOWqzcnFNMQUS8fjXmfIoIkgZsDjFJLZ4ZzQmycFCKXuM8WVZgX8b5Efk7X5ZhWCXWhVgkTkY+UbN+rVRtJV5UAofFxoJX8I7ppG+AR0RZJqaVA/B6kKuZlARNhteqVPfY9nV/mLh9AhCklwKPBjHBSbZ7XKm2+jCn6mDessNR06tpBRGR6MwGkPUoXdRvNjLWl0zs0b+YtIIr9/X0c3lijnmyQJ7ZojMY6rT5fYPsKBVne9VyErFqqFqRKZm+YrUs5CJSsySP5xtrXfl8fHcgPy/vLL8+d4w8VoNy5cwcA8PTTT++8/vTTT+OFF15o71mtVnj88ccfeU98/urxkz/5k/jxH//xR14P/sSOQW8bZ39f8C7GiTEe15sKn9Q7wCcMQdSgA0GLG0HL7rn7v3YiMcPD2t3EY+PuRl0cVXfVwoiixAQAjOh1JTUTkRKi4TMOj0fvc7T9Q3nnI+PRcjvmSYRR1tpLi/t3xbWbRw90omy8Z+RYIAy2A5rek+PR67hqUHH1PeNqoGiN3sdchhXeN4ooc+3G1Z5ZfJ+Pv14BHFeilWpxo7aBxcYyzkt13lLDxI9E9Hx8rt6XEoBuFOjKvFP0yMbVeXBt9OQNxrTxrmq8bzfSYtUH/bUOilyDwUX3YgzViXlXYFHTXWiCdnFdw7VdjbbEoNu/nfyLANMdKMf62D2GNRbP3h2Uq85DSA7sDtnufBzHw6pCtLWYP9ucYFkW3Lx1ExNlN4qAkoA5Y3N+iS9+8Xm8eudlfOHTn0J519tw/8U/QF02mPZWOHrwdrzvj/wJlAIs5RK/+xu/j+3lZdOpYWHkaYW0tqiNcUMUJiTIti/C+J3racITt28ilYrXX3oFm4tLCLZWwZOA7TtO8cqXnsfJ/WOgbkB1xunpQ5RqcvxQgqhphxTvjgwO3Q4bpkyE5CJDqr36TEEI4RADFxZ6SDlhlaYGrJRkUD41kLLOE2plzPOM9TRhKwXLPJveDysyGXcC0JZitDTEsNOS8epAsN+1Z+d7ErHzsMTBjMsjkPfMSmx8KntzA1rkEQGmBFEDuylni2LFLHUnQoPYa6PjzS+jH9cADHwC29D1TwQfzdqvJBC7plCkzVqqy4TWhNh61Kki1wnHxw+x3WxRokxZ1XstqftdBkqi6weRVXSpwtJOoi0lWGvFslQoGGlaAQ6kpIk92tbbUjoRPRxA/RtlJK47/ptU8VwXWn4zXs0bvefHfuzH8MM//MPt55OTE7z73e9GR23XeE10/UBcV71wvZfbT7TrvRvSNaK1b4ox+PTInmYGi2xzEpVWnXI1BbD7/ePmSlcMf4SRw4AOhg4dke9suKORxG4KSaSDudiAr6rzBl9FtbbJCP/OJufvF6Gt18dgOAcjQ0TYKRW84vUDADcgeD1Aie/G1XG7Zt5Z9GT3Gtq4YAANGi3Ld983mn8rFd/9OhVnxA9GTmnwsgggGSJRfi7HLzv33gjQLSw6Am4FIe0IEBJol9cUGghx4aoeyr0i4PcGgDy+r5FSpb1os61Fs6hVU4jLmts1Bcisb7immqx6pPDU4cU1kbzxmnZ/lp3nFhu/jezw7GLN+P9UQxgQ3WgEaB20GZgpCiN270P0CsPPOSoSTgJMwl8Lju7fwdHREd79nnfhxq3Hscr74JSQSKGy4M6rX8LHf/NXcfTgPh6+/gJu0BlWSaDF+Awn917Fg3v3UCuDMmPenGHZXPSyVDajoTljygnbeesGz1NX1SIs00RYrRgZhNOjEzM8tUCoQgQ4PT7Cpz7xcSReY3t2gZwZ2+0pStlAFC7G1cF2by/SU6MpcSOkyyBXnzgjGuuJwlJSRUFC4Eqo7GkcsbRdFYUUBicTTlwlgnICSQLVAlbBlEzkLWfCNCkmBw3K1rRRaxB4B74dB+ge9k0VV2ollOI9wMiAdWpKNTC2ak0QinSWpYlCoTXmWHGuFicDEDll1GXphRfeMiPmF3RIWw7zyfY8oKt2u3DlsMdI8XMROgjwiJElgSzVJbViu92CXeWYoCC1qAcAcyw9jTlNVhTB3J3KiESpKGRRJ19bBM0KEfo6vw68j069anDfvqoAyh8uQHnmmWcAWJTkHe94R3v97t27LaryzDPPYJ5nPHz4cCeKcvfuXXzrt37rteddr9dYr9dv+L1XwckO12E4rv485p5bZCEMV3sPPOxPaEN73f4edu86kKJOlor3jWjyWjAX391k33rEpp3EjQl6dMJeC8C2SzZu93jFOw0v1r+xfX783Dhuu2qBNjjqO7116QzQ1uvjx4OIIG8Q8o/nYU2/6htO5GY0rjGA4+uiHZC2zfUKWIp0QZM83z3ZMA+iXWHXtDVPwT2RMaIUwkU6RK3sE/3/11x7lBRHd+CYCDubQNVu5NFTcTuDRbQTZvcX+6axc49oAmntfNSVTB+5zohGoQOF9p/0+TzyUMZno3V4HvG8Gmy+fl6Mf/dbtNLJxvPCsE6ufn54FjH22t8AgqVC/IGidXse5rqI9x3ZuR//n0sKLMuMy8059vdWOD8+wtH9uyjLOR5/5hncunkLjz/xFATAiy+8gE/93m9huznGxfl93DxMUN1iu5kh2wIQY9ksuLzc4PR8g7OLGRenl1g2WyvVDaOsFagFOZptqq171uiFQ1BWFKm4mDdYSQLRykxYNb2W7eUWdy5eAsP0dRJbP51tqbaAKIVNRwqtFrjBB0CJnQgMLLM4ODURU/ISbeshJI1cDzUwwk64lFqsAqlYqe7Km1fWamXDeUqQqkikyOuE1bRCVOZACxJbJKMm8kodaZEJrQvqkjDwzkGgoYTYiK6FbE5Z1RAQud7M1u27RQoViKQ0ef+gWitIGdvNFjlnMNsuMRLMw+lsisM+laxB36isSkBVSOxNPm+jmacBmAqAwUoesTOnJlJGnRcn/gwVlEJDxqqpRBUoBsYSCOuVcWjg11hKQUQYQYAW+/yUMpCNwxK7WWtPQeMY2/0ZqdiquqwfFK5vT/MGxx8qQPnar/1aPPPMM/jwhz+MP/kn/yQAYJ5nfOQjH8E/+Sf/BADwzd/8zZimCR/+8Ifx/d///QCAV199FZ/4xCfwUz/1U1/V9+1u/l/50GH0HiExvgFouM6Bvw6A2OvuaQznD8+jy8i3N3RA1Nxe+xmuRTIabbuueMPupm+GNsR2rsSN6Lr7GQx1I11QM1BXozrjuLR0jFrEYUT2Uf0BAGT7bDey8f3j9X2lqBqueMFf4b0aZFug52kHYKJ6pVpnHDcAUZLSDbCbTe5z5ZH0CVwmnwh0JTp27eGRjevA8ngvYTh3x8iNjrbdwV4NMDi+8xpwPjZw61/Uf+7r49EUx/V3dGX9DQhhRz9luEd1Q3p1WTl2fuS6x+vqc9I32tB3iOd15b4JUeYJN1iPRqVEQ7W3px/Hpdg4UMM9xHWY/82oKCAFTo7u4eWXX8Lb3vYUDvbWmBLh4euv4XJ7js9uLvC+978fq5Tw27/5HO7deRlMFSktYBXMm8vm85dagFpBWrBKk/UQqjOYFIm8eFci1WdjF1EMYjMExRVORdWDPiuXBLDImyijFAGJV2YQUJkgdcYyF5RlwZTXHv0d94FekcHJjZoIahXnhFi37HjWBobE1VsZ5G0XQszOPOsO7hOTe/IMQQW0mraIKrgqUkqYVgyt7poNkvhNDVzVjLMGkAqZCBth6/5AAJnWyTQRarVrsc7eEeHw0nq4AjO5Po1HYqw0uLQoZvTnYUqD0Y49RgCxaBGA3qYiPAmbrQAAUW9KCG5r2/a0gX/VNFRs/0059eo8WEk4AKxXE1LcQzgDvhfyxMhshNc8dQCFanta606mCsrAlCZ7LsUkBUCMRRWo7vj4OBARJo7mhYIKag6g2Zg3X2f8VQOUs7MzfO5zn2s/P//88/j4xz+OJ554Au95z3vwQz/0Q/iJn/gJfOADH8AHPvAB/MRP/AQODg7wN/7G3wAA3L59G3/7b/9t/MiP/AiefPJJPPHEE/jRH/1RfOM3fmOr6vn/9RgN+yMb3pvFM6M7FhurXDU+uvOBmNAUky3O4fNPuL21he3GlEO7XhFo8ElUvXdK3NtwTmBI3fjmGTE08nMMVxnqnA37Dl7BOHZvdES+fxyfJsT0CBcDlgajgRSGrrq5O9a7aazdsY2SXH7kM1cN/RjtUd+s1D2WEWy1f9druDZqFQCIFAoAr269ig3b+YjIK288ooJIpY2coCsG/w1SIOM5cWVMYnEnn1sBYBoWpv7O/kX+fF0j5qoy7rWAIPLhV681poqrLjdlZLsQRHpoBC7NW3TDgMCG/eTDNXiaSOMe+vn73jtMfuw+z6sPx/R5enXc7h97xlYVrO195lnbfAsCZRjwRqaHundIUKk4OX0AVcHp8T3cOFjh9PgB5ssz1Lrg7OwU83KJo+OHuDy+D4jg3ut3oXVGkeIROa+kIAIrMC+LVZJoAifBepUxrTKWsvWqFK9QcQPLiZE0IcJmRTo3JxNjlTKmydIXtS6m/6LOGxNPr5GRL+e5YpktSjhNGeqpl1K8MesA8iyRQs3oEjPSxE3KoSwFy1LgfGTvn2XPqNRqRp8ZiROmPLUu9FaQaCL50cSTCK7X5HwbMR5XlUhamoHMKQEpQ9XAQzh/RJFizz7/LHLCicA5QyagVNNeIXf/RYaKRzLglRJQq4MOITAyWhKmgWBqACWacSp1wBLgBDGdI3pI5ACHW6WLrTsjJIsoQKatI2oRZiayGm0ASS01s+NbiA/esAZi/Rmgs7lUg7KgahwTB46mcVNAOVkPHgDzYteSst1HTlaaXJ17ZBL5dnPi0dx2Hap4g23v2uOrBii/+Zu/ib/wF/5C+zm4IX/zb/5N/MzP/Az+3t/7e7i8vMTf+Tt/Bw8fPsS3fMu34Jd/+ZebBgoA/PN//s+Rc8b3f//34/LyEt/+7d+On/mZn/n/SgMFGDb0K69dPXbSOdcczcMDzJ4wdc6KWdeOWcJCNwQQxnvMho/emIe3A1kO7xwrf3avv7bz64CwdxoANbxgHsEj3yr2nWPn2fhYByePfv/OdbwBgBmJoCMX4mpKSKl/94DXvkwEzHtf0BhZuKI+O46VvdBeb8ZUHZSp7vyxaE+g+R5ybWV9YUmHp/0oqvryR3REjXGiK6dQ3S0l7lGyN0bQFFGVAMGE3TEaXf/x3/EjmwEUfz281riGR76vX2x7TzD17fnxzn0ZeTK0Sjw9uUMqjoqj3k01Ill27/atI+DpN6E9wjIAaztbpIh2V+fVc9POYFwdZwudiyuG2rwREIl3hY5ydVvzwWU5OzvDC1/6LBIT7t29g6eeepulM0hweXGGZZlxfvIAy7zB9vR+87pVrNNxKI8qyDlQCWDblueiWDaXJiRH2v6YMrWROwuZVDuzkVgDIKbEWE2M/b01VlO2Sg0oSi0GDshpC2ogBkSodcZ2niECZGIsVQ3EVzNSZmOkR+DQ5y67qBpztv471SI3tRptx4xgPMOYL3b+aiUsrcRV54qcPNrilT1x1FoBWoBo6ulVPqVUJDCyR0BKMdKwzUZ1IO9pMe9sbHhOfLwUzE5fl84N8wQgpmzCk6K96aNWDJzGDKiVHS+LzZmIKEfUKqILMX9UvTLHe+0A8PSwOECOvcunLXXOY4ZHD53gSmyK3cQEFoVqKAMHqh727eH/sY7my4jEm7Ciwu6tqECEMDGjCKBzwTwvTcpfA8AlwiTswN05j77c+97bRSLf7EH61bz7/0+Ok5MT3L59G//XX/x/4uDwsN3wmKu/6qG+IWnvy2zQ7fWrv9JdGNBPNvID7GB0IwRbh4/I3vOV6pto7jYegbqJuhcyXn8Q5KI/TvRoaRHwa1rTW537lXv9Mvd/bTRqWDztNR+AIM7tLI4GAnpYPV7vVT7a+8zEyQbSG9AZ+SOXYeePJ53bIvdP1ypXysSDh+PPNEAT9c2n8ZPG+7zyb1P55Z3nEPoEiZPVEV65TrOTni4YxqEBuKuCa3aj/TqHefQID8v/f230yDewgMiKUThN26bySOWbxoaOdg3jWPR7u7od9g2K2nXEfHpjQDZe8478/ajLEu9r/xvXQ4+kEo3zycZR2989RUZ0RelUvBx5B+ACLlOFF7/0WXzidz+Os+MjbJcNpmnC4eEhRBXnp2c4eXiEeb408FO3XpIsHq6P3jVxSQKGhernpWApC5ZSsF1mbIsb+2qpB2jf5zqYNi4I3Kk+2J9w48baemF5+wTx7rLV052iigTzekWsa62q9fVZTZPxI8Q/G07Qle/lDB8zF+sS41aUopiX2ZhCDojHKjgTJnMgOGgmrVeEg4M1FAUkirKUBoqmKcP8WEvJlOrRnVqRUzaAQgC0QEEo1SIK9scrm5yzQ7A0YaRzAI94KGx9+LLPeQLnqOJbTIenKsoSaQtqhFkbG8VqNaHU0psxDpvlzlqBNTusXtIeK5JcJapK8f5JBnhErbKIW5sHuG6LdR4WlFYRxGxK4CoV6pG6ZpeaHbEoyda5T9rWkF1f8X2gNUAsBbpUTyfyjhAltf0SjUcnAns+Wv1n+3PvpSMcHx/j1q1bX3b9v6V78Yyb81Xj+Yinj+4hAwOq9ffKTlhi9zseTQM4Kr1inMMjHw1aB094ZC9uQOrKBnndsRv5GTbm4dIaZNo5x1C100J99sHxkkZjobgydoOx3jFQ4w2RvRIcg5EQF7+/eoz8km5IvAEh7Y696niyfurm6VwxwhEajfu2MDE/QoTdIaBdva6wHHT9cxlBRVRXBXCINIHdG9q4xyYcAIuIQG4QR4+/pY6GqB97JEeHjS44EwFcw3DE5odH5kewjt7YL3kkkrfjgBGiz9QuGCDEfzvzp82p/v9GHtQ436PXsEPc9eoZcd0MpQ6Y+ve0p9JfIzTjEPyIeCbt/DFX0MEJx/MAkGrk4aWBJCYgU8LpyTE+9/ufwr3X7mCeL3Hz5k2QApenZ5jn2frowLQ7QNXlvqN7TlfQLcEnULjRtPtYZkuRlGrKpwayzPDHM4/GmqbYalUkUMVqPWG1n5EmMyLGAaiNeNnCaD5vumHq42DRHkGihJwyFgFEjchq09XGLgvc6/e9VAAVRpEKp2WYtkaNe/OmlDKkfjnIkwqiyYCFVEAZIgQgWQdhIZRi+1BK1q8oZ0bOkVrxvdQ5UGQP22TllQFik23IAFNywAz/LGEp1cuSGaTmzKwmtuclQdw346xYXKNo7CqubY1DqaVOUurrukdF+g4q0GFNaF8bUCiPe/+wB/i+Qg6mlCzaBRnG2ccje/WTiarB9zS0FhSiBrPU6+41HEy3TdbMs3oFDzWQHvNP1Stbfe9XsjRXKWjgpHu6j673Nzre0gCFE3n4FVYCOjwo2RkFW8gtJXGNwWEvH3tTBwHQ0SuIl/3J+0YDitC+7m4AjgU4vOy4HupGp33VI+Dqy1wTbCMQaKPAUAvxXX2/8SZ2Ih6IVOHuYnoUGHXeQzsUrY22RU52rNrOvcT3N4N89WRe0ictL7r7lhCAG8HJo9EfhfFfonrKricxt7nRvWFqBmIH2LrjEyAg7r3/y67d7Yn3MqEWHbLni51P+hRsaYOIHEXKoI2lv9/mDrWIi03xiDzZG3sjxhh3tI03tpg2XupGreV5bK6wj4Erk/s49I2yg8UOfNpXMrUmcwHSooNqghP8/LsjAiJDe/oxwqUAICaB3p53FVSxtEFLpGqk5jyn3gztqA7rES0Y+XKMcqVWURAaEtQMc3JjR0RA5j5PCNatGIpVzpgvLvDgwQOcnZ3h5o0DaFkgSlitVqi1Yt5usF7vYbN1OXTtIXt1LRdx4TNVgvW2MQOSE+Fwbx8X2KJoQXJyZCUxyfk2f41jUhcPx6uRI6dpjWkyAmtEEJo4HeA6JkDkiyN1BqDNyeDcKaLLsjr5VkFpDUCMG+HvjyifIgBJbXuf+uetp5I9N6kOhnLu1+ARpnlejOjpe/o0mRrqMi8m8a8KIku9qAZfz6NCtVjZMIBIQ7JLhoiKRRa4txkQL50OZdl43iADP9ay2CMQ2u8Hvp7JbZB4SXYn3ptom3jLlNG5i3EWJynDo2pjWpOJkNKq7Q3CyThILttvE1+8wtjGnhMByfd2sIM+AaeVXXclUPJeZMX4SnZ9k80T3zdBfb+CV2Gp78e44tDtOISqlvpCiOcJWp8iCSOFN328pQFKW0iA783hrRFojIgMRp81ZJWH8kTqnr+diobdEqNNuvL9Ydxi43aDFHOnv9O7mEamPEK78SW7DMxmyP37mSJasWuIg9swppbcGu9+f4ABwK6BBqIqxWt+BaNj2myUT1gTFNj5/nY9cR2DlP4Ibq56qm2jHO63GWGRR+Zwv96+AYxRE2CouBj4NkHk7N/m3xGb0NXD75fcIgVueCOuDBF6BQgTmHXoI2IDE58f9V/IeQZGzkSLOF0FqN2Ie+QCBI+r+hu8KRnFPXrY2g+JsVYFqbaKiTDyFuHWYdxkmCpDLhkuaiW2EZr3OkS9PELRQbZdE2koHFMDWuJt3UMUMO6nhb5FzNv156bM4FpR2du/N0NxFdiiG4hwAgje4Tb4CWlnviWhZihBxt1I2StRQnkZbuhg10YKgBVpnfD4E4/j8uIUtS44P7u078lG0lyWGQzBXp5Qt1sjHHoenl0mvpYgNXpJbtVmZHLOyKmAsbS0E5bSFjYD2FtPODjYR9lusZlnzKWCJjLeiVgzwxgchm0DtTlMQAphQgAMMT4K0IXBmCHFGlMKvGeMKiBzA+5MxscAkaV3VE1x1gXJBIxE5kyaoJ3vxcZQbqJuti+50Jk6OR4mO7+/tnJflAXkRFzmiOZ1ZB/7oa1javsR+ThktooXIrTUUK1oG4zCrp81ynEjXdLXhI0UOZCN35nE/OIl6SkRVKv/SahVnIszOnfRENSUZ6W9ThbRT4RpnV1ETnF4cIDtdot5nvuEB5BgUb3EXYUWqqjFHLlaC0IXpqfm4JwlAJTAObnIHZoKrt1wf7+l3slVkj06SWrsYumoTZVN0yb2m8HxuzYj8WWOtzxAacCDqaN3BZSuEm4dPMgV7BGfH0q64mihdNAjPyvUUSoAavvhI9GP+EkGw2cLZrwP+3S81hqA+XeN27DvAfG1trDHVET7z8+luvN5+L3HhjympewyqG2A0Ro+wulXvWhPYLhRijHtAlxvNBktpRaYxt4fRl6vGOg3Oh7hVVwTRRnzvDFe8fO119WA2JgqeRScjMBrV8Z/fC+1wO8bRcVisxq5JCMfSRvK1OH94fnanGGXO++vAP0T/TmTRxxYvJqMYDviICAV/ZHk6lhyx7eJMoilRW0a72YEdNQjh9Se9HDf7HN8+O74nK3dDtiJCJIEVACWULc0L+8N51YQMWDzisnGaZqmznNC16SQGsDKcvkRReEgAauClaAkqAK8du8uLs6Oce/1uxBZsJ03mLebFqHYggBY512VBZAC1WqpIRCKGglVoMYPGHQsIvVCU4J6BcVSFhRQA1fJx3K1ytjfW5n4W2aseQIKnMxfUeruPFO1kl/BEJGzkYDFSYY1VSsoG3BZRA1YkIOPWsFMyN60jxoJ3/4uEgqiURlFgHjFUbYxrSKt95I96wVMFtmIykDOjEyhFm6eOCUgaeyZ9cr69CpKRouQjWud4d3bAe+MbCmo4mAocTAGYQDTZeGJBZM14vFolEXcUpa2FiMimRgIGYkeMTMQGo4GDYq7EVWx2R72pBOGqxRfI4J52VgJOnWOSuxTlqoOwrVFZAQVIGlADldsIidCpuREV7NnJAoltFJxAnk6VNo6jXWVnAhcEfsv2l1U9TmDthTb3Ppqjrc0QImjh7cBn7HDb8M77OHk8diJSFwx5Vc92fH3Oz12YlK0c7CDli7qZRV244axS9jbhU24cg/9PqAdDNiG1kv8RgulOgIq7NwZEe1GKTq6QBjlCMU/AgSG6+h4hlp1Q+Oy8K4hv27cR0PNV4z+zthHGYDf2Ah8roKQq9/ha8cuiXpTsuuuabyv2LrbAMZ3DS8FOLkKQMZjJzp03Xuuee3qnDRgG68put4KdsBJfF/jbcTPaqjcUqDagSiP7Ce/Keam5LtT+RVzDkBCauAE6ABrZ9X5XBGPDfRIo3+1kzKvQL8B5PXfRG8WVXL1S0Vjf+/MXbSyzojihTov51DK7KDQwA6jpj4PE7NVpLB14B2jmZQEr7/6Ev7jf/p3eHD3dchS8Porr2C7NRVX8XnKzK0sVGUBaXVJd0ZOsMhINs+YaMI8S6ucaKZK4SXA1lumSnjg5uHmzFitE4gVkRZStbTAssyopOCc0SITYQxVkcjOafbE+SxDNExqxVKKecawSIM5JOx9Z9gqZsgIqdZx2VDsEhEWIpjkvBPAvdEt+WK0GhQBSDFlG5cpW8nx4ikCU2P39V0VSAzOFsWtxfgSPLaRGEplB1koJGYvhbbZuCwVs3N7FICygXzW5AEDBbRa/MU5TKFnqWL3G/MI/vZaiq1WHxP7bhenI2npVfIKIhM17AJw4qlGgKAemABZM76Yg9GPLkCfRW2BWtTSoksQ2y1GaoK1sZYoHkBbWkYi1zbXGYAk56OQgbBMVkIsYIsGRcNCEYg6ATcqtuA2J55HGwdqtuGrgyf/nQAUwAYmzPEY4gXQ9Tt2jPauR2uDp02K/urv4jvis1af76AIBCgP75C2acaZIjPSJ3VX07MHGOWbtPNwx3P4mRHRjJ2yYr+31mOCB5GdK967llG5EIF2gJYii/EMECBXxmS3BLh9h/ZPt1O/gZfbPgeY9zgaeVep1Tc4x5sCGjEm4UYRoCmub0ghDJonQZtpUaLBkA1nvbLIIirm59bGRNpFhYjv7umf/lg6EXYs4bxuzOL6w4j5025XFnL9EYqOc4/nMWPmUYb43XXYyY1OAxZAq0Zi3xzjmlRdmU9HdrTN49rmxZXzu/fXQO2waMc52/lXCkmByYO3AIwPiDXu0U2qkw+Cf9I0Nvy7kRRpuLSoHrPUkpWkbrdbTFPG+YP7+C8f+Y/4wu9/EigFZSnYbjfWOdd5VyKKUmGeqAqKLEikSDmBWQDnkmix57jKBFLGUowDIbDogTXlI+Rpwv7ePrDMKK5aqgnYX69BydRrTc8iYVnMS2bOyMn6pBhIEjNEyf/A1pvU2Cd7yXt7chp8E7iHDAMbKWFvtTa5fCndyF55ZmGUbN4YsUnRq7FiHhMBKSsODiZXxCVwoeYc1VEJusLOI4KlCjxOgoQgPNueJ4KWTgkQbQJkljoRNdKxwBRRZbFogBBcywOtEtLk8A3ImxCbAbBS4rrI1wi5sdd2jdHbK7h0IEXKFnk2pViFKpuRF2p7knG1fP8SB5Y7z4hMGZYN9cWoVwEg4nozAMi4V4rYLy1imCiByEBb8FuIqyWuGNYMUC09EyKUTIwqvracNrME+ZXIo4G+j7E7UQ0l7q77RxS7v8zx3wVA2TFQMpSWqgMO+GvYHasdToR7gHUADgAaYAhPFugwpEJ9iXSVvDBwofTYzh/7tUccGhEpPE/VplNhD9fQrhmtqzfcvUwi7Lw3rlmqdGrLeD8R7vVrbeOgAw/HLWyPQFwFbLIzHgBag7ywNdfHE3YGP27l2ohIjWdF3XjH5+TKRnjVANsYxGIPIwZI0MzHQWnPaHipn83HgHeiMJEzBwZ1YP9kEKBbKm/3a0A0RGYaiH3jdNjukI3PwV8TIPqdNCAW79Moxe7VEhj/bjnjR8cfQFNZNYMVY+enJv9fO1+EgS2EHdUo2saHdtdDu6dhMK70ieCd5+yvAe6V2jmlLQ5tgNcnVeMCEWgQbeOmQ9T+76HvqL4CFEcnxzg6OcY8z3j1lZfx9rc9hS999lN46fnPoWzOoNE0TxerjBACs3VVV7H+W6UsqEsFVkFCtpSOiEmjxxW0HjFqlSIga54XOuOrnK1X0GykWgahLgWLMOri5cpEbkQFmTM8Wdfnn0YaO8ijdm6p0ta78SQsJZCYUar4vbAbdkEiQs7s6qBW+xiZg1h5ba5zTAsFqO/JIAPWzEZ8Xa0ypqRWbSNLe9AML/kGsCwF87KYMRRqxlD7ZLR9LyLllggzsOJN8hJ6tRJ7rkirj7uagWdSF2RLbf4ITAmX4GmQcGjFtUpEAaTuMLYijc4dFLTCop11Fg0X0Wak8WYiSBjLp/msvvUEeBKpzakO2Qh1hyAla10gpAY+Ipo6fH+LuDiQqkJw5RjjEPnnjNTfG0RKkHqbYxpGQ9q+zYmH9fnoXv1mjrc0QAkj0AcdaKp17im6kk87+ubc4yHm/OgjxnDcrAmepgHvlCQr0MCJ+AKXRyIO1ECKnSc2Yve+g38hjmA8vIjYXP1aRiuq0QwhzhveAg0X9mXHDjvnA9AjT3HD4dUq7WhiXD15RHNGgBQbwZWvePQihjFuaafm1XcPf2dij7/H+PJ4XeONjOcIFc5H0zK885G+mRLFdw6Ao339YETb3z0E28YnUoBEg5ffI2s788XD1oYXtT/XESwOQOQRzsoj5+QdXklbLzspvF5t06CjwpvoXd0l1QS8RsDevjeuyf7dPDSKaixCdDfuR/f44thJpzWLh7YZB++KKRyDodxxlK0fibw+jq08nKm9P76+1gVf+MJn8Aef/jSOj49wfn6Gs7NTrFYJD199BWcnx5i3F4gOxkawDP5Fgdf0opKtYUu5xZwTcE5Iwg0nz3OxTIrvVUyuzOlRPpsHihUzkBNErbHdZrPFKq/aedQ96ogetXRO6p6sPWqPDqmRWCPSVp3cuZTFCPwBKM0D8idh11TKAohgyisHGwYKEjOEwvCiXXsDjgBCaRn+DKdpQp4mEFUDT0xo+RQKnRRbPVX6MxZv0JgYvh/bd0RUIIB1dDnmcOYwXJeEhL0Bm5SSXU8icPb9SBXQssMn4+BkEUBslTIqbNwU8ShK3C/bxOXk+lThNV7ZF/t5FWAxoTofAyXn5fiHcs7Gk/ILoeQVWuEgC7oOkyOceJQ7US648i4zymIAtWoH/iJe9UQGTmINizvk1Bx0t4Nsz9fpuAAxavI9hrXNwzdKh193vKUBSkqEqbGWYX948AadmVS1g4ho7AbQIA1uR/O+/JAxDRO/GzbJq0aCvR8GS5R3DecmasaGYCG6iMyM4dCm1DlEVgKlkiqUd/kjWjsJUQbF1ogcjfL05KGN9r2DwiGP8L6NQ38hFBsHH6AbRgfPcACXmC0hGbyJATeNIYVdm0Zo+jJhBN8k2m4boAOaq8TVdj/ki5ws9JkSDxEP38jDuPumGw+93/sIOjrQaTlh8koRjvCyAUvy0mnXmGo5crTvGe5naKgHABW7cyl+F2nJBps6DgJwRUvEN+XxvPYe36yxy7YPgNQ7Z48cK9mN6jUcGYMtbUMMWPdIThqP/nuc+33khzFOPb/fPpO0jcXweNr8DlAyrjPy6EqtBSenx3jssdsAgDLP+MynP4Nf+y//CS+/+BKkFiyygEix2V5gvtxg3m6hUpB41aoU4nqrFJAypEgTTFO1JnerKYETIKUajwJowF/nYtOuWpjfdENsXoT3ryKQUq2RnNpnl2Lec8rJ+S/aBbTUQu3smhSqfQ0LagMnCoCqIqaYBcoElAzs1KqoTgqdkjXpK8uCRAxKNq9LWfr4x3oxJNBmTDwY8/odUHhlFIlYE8Jq/WdMqkWhsI7LAawMSPTxiNCN3UdvHCkKJLY9IdmX+nAb0jFNFHEDq5Bk1UlFZqx05Wk+S/Fal2N2wz+mc4GlkUAJUaFRFotARdm9lKgiI4CqZUAFsBR/dzbABJJwbthVYU0YLaIVIDTBvThSYgMVsrt/E5HxAEnbdzITUhBcHLxyMnBaluoABc1u+NZl83wpvq+SR2kcDFF3uHOLyjnI0XF961gQ9KaPtzRA2U8Zezk7ZKRGauvecajZWehUvMTPyraAOnhdo7cchikIWMFPUF/l5EI+kc+Mz1H7h38W6GRFR9KW2bH3jMbNDgcjANxatA26QwwCPOxpxrz5mejS6u4dgro2CXzr2DEO/hsHBHGNcdgwUABzN2Tt0054U8D7Q9i7qpW1hXAZCCzU759ioxQPp5M/vl79AweUxHBJ6P7MaQCF7pK3aw2AEBvljsdA8f3WvZPJfMle3ivDWHgQzoHodThJYSHohs3INotEqeuhxPviDfEcBvAXz/E65kkDC8OoR05991oGA40OXtAAxy7Y6+ftvw+jcjWtp9JBCTXCne94UaGzA1YGfkc7s/0rNvdIc13lMo3CepaetfUUOjHsZZTj9zVvGAZwxihiS93uzAGrpGEQ5u2MT3zid/HYE4/hiaeewsXxMX7v47+JF7/wWZydnnq1ivfGESNBQtRAiHTPnsZrgRgQZmDKE1StFDjnhDIv1qCPTXBOxAiHOQOqCQoTISuluLRAryKiRNDFqjcYVqpdYedIMGKOMiHzZLLtAeg4CJ42RtWjAk052LkyTS8EwCplzFDMpULE9tVMjFVmqJjAGZNFjKsWV8RtO0wMBpo+CdAiFRyNAKUa2ZdsLca+XLV6Mzqr0AGbhx7qseaoJZhsvaBG9IkYpGwAD14m7PsN8dD4b3AoAXfMfG6LVnCC9ZjxCBhytlLk4II4QTyikAagCFf3G1uDFj2zggH2taRQNjCpaumjmPYCcZ6U9/KRsrNum23zJRsOOBAVWQolbftqRE/MoVUn5njdlp+2bhfvsxSgEuDB+4iKuupid3a+WEz2szWq9AiaKhbVRkDue9L47zePUt7SAGVvb4X9vakttrHksfEhAFg+0htIVUEt1fOr8HChOHN59OaCCR4b9RByhk96EIRjs9X2OUjLMoV9bwBmMDWISR1QlTyUZo6Hh0bJFxARrhYMtxBsu+h4HT0Ck9CNY7yG3Y9oXOgAWOwSdDyt56J1GNd+krFDpY2lAK3M0c7bSF5eUZBSB5KEXfLUTtoCY8TBz9exxM77gcBs3fD6avabcCTvPUuMm+AAFOM4WYRNAJALTME9gogYJYoSVpeaZkIy7GqbfdsM0aIJcUXs5Nuqcq1nMUZH4qkpet8gtFELwNvn8ggwAO+gOoC5ne/QSAe4CWteT1w7+8e4fZztBvwtQxWRwsFqJ9EGFyXmNzngIO2eV392O090Zy3H2mZ2wl9kAbinzAbWbouWBJ66uimKCE5OjvDw/l381nO/ioObB5DLLV58/nlcnj5sfIyqas3pyAyuiHXi1R2Q4ht1JiQH69YLZ4JWRmZFXSqWRbAsFtmwTd8AUOjEMJNxICjG1DVu2AY9JUYtFk8jj5DG6sl5AiDIrA68XcME3h3Zn/9ufxf2CiMzjpmAvfUae6sJZbN1dM1IEOytMtaZMQqWLW60c0qtj9riaRO0WeHr1+fthGwAYAFWk5NTa0X03grHZUWTNSkEehVflOgSIakBOdOwYRAn/3xUJdmjl1oBKUgpNYBC/nziGkudzZnKE1brycZbDWT2NFgAfetNUz1KYI5JzKnwryziWrXCLxfB4RIR44Vo9b0XPX3ja7BKaftyc7adskTDjkCAlXR7lI3bOnPZDZDrvLiGcUR/1OgEfb+1dgtKjV1s9+aVShEdFY15GvfOyJmQMwz4kEAXJwY7CI6tJOzDVfvzlY63NEC5dWsf671VI0Yx56YySl5aCYRjxrDbJQcqES4NdcPhUCC6vqpPGqnVN+HwfKlLSDjICI5GSHm3f7v30j1Fn8QDu7uH2t2kxsZN3Uu0rTBKTM0KhomC9lxvU0+Nfw9hydGyUxOOIRAnm7iAlwRqfGUbGxFpuemWS+5D0g5TCfVbjWoRKIIBb16N4srHdkCGfbYb1TDwO7cwghJ4aJTCm0nteaBFsWwsckrI2d5roqF+cuG2MdTmgQDKPUVCFNdt3mnOCezCXgr7fYrxHvBjgDSNjUhNKyIJtShcWPkuyAaMKUnb4gbvJkCEXU1P6Sh2BPeS2/MRYA8XhUfY1LEREu2UUvPwLDoWGCM6HHSMFv1quQOKZ+QRphrLxtNju1fQnimhd8dtUcy4f70K2eO2aOdviQiLf4NJeig2ZcEyz3jtlVexPTtCrQV1KaYroq4yG3uDEmrIqMMl0sV0UYgIKSfreeO2jEhRly2MUiHWIVYIqgm1BF/ClGGh8HRMajhSqhmfZhqrWERkIlBx0qfrdpgGVMy5at18CSgQaFXnJ6CtB1W1Jo6NAGWGmFcZqymDUJFUMZEVAgQvhkmgjVtjcy4BrjlFXiprWitBMhWvGLRqH4tkc2bs7yWsyKtM3EGSqgY0ElBLbc4Qp+QcBkvlRG8aYrJxYWDK9kyCjMq+f0oN3Rb3Gpysm9PUSoWzmoOaVwk5EYI0KyoeOemRvlqlgVeoASPm0CQxHg9x4EFyA27NJ5fFmuyRuHMLfx/YAVU4IrtHOHZjX7GIgolHdyS4N6OqtJ+/enSqS1vEvsEDCb5nEdhTo+yRkeIl1OwApa8zB8/u2BQfGysOY9/jIkrV1+ZXVEUfjrc2QLl9iL39fZTNAkN2ydGkdO+TwuBoQ4AiglIJXKO/RkJvMa9oUQzf0oJLEIi2e5qRxoDnDO26VACR2sKpNVqVo4fRAA9rOgBSmDRwN+zoob8ohXU0Gx1L433kLgM5yuYdT7JP/Hb4vdnHHC1HntW+sXmdzMlst1cm+I3v8DwasHIjbF5OJyNGOXZbBO1j2sYyLqvb6V0AQ1EFIEYGJDYQFs+EYaHikCm3RUZoeW6/vpwyppyRk228afDg1YGA5d3NezaBxAC92OkDQ9kWcUrRa6PBxRY1SBRCavH8yTlRyVRnA6AM4yGV+lgOi9vm6G4kbUfwj9nD5dqeffTOSD6P1OdvGLiYX7FJ9fF2Ly08OOobZQO2w7Sy1ErySJe0P8mJm3HOUEWOAEeEoyOitLs9+8wdInmqbfq2817d0G2sbLMNTw5DLxQpFffu3sWnP/UJvPiFz2NzcoJycY5FK0CEgopoQ8+eYqhRpATAMio2Jxhe8UFGXlX3kKkWe5YAStFWXSHDvFYFltlKNa1yxNajqXCipaQBC0bGuudELYKU7CEjKkjC21U4wFGCkV/G1gIEUrYGezmZjHyqWK9XHqGym7XAjYH4HCX63DYcezYeTSAyIBCy8cLqfCvyPdRSTQYWEvb29lHmrRlmpdYsD6rN6xdRUDYSba2zjQcZN6UZx6YvY2FrKyMnVFkAMYCbvQeTaLFUTuPfWKVLTtkq1piQ2aqiFhGUUtr+qgoHO4pSnBPCwMTc5647XiDTqQknrlbrXC1akZAHrltExgOojKq4kQVQAwjqXBYyzZJo7tgiRn6eMEKq1kqgVvXWANyyBMzZbKUKingE0OeWsjvkUDDZc83ZMgUayrOgnes0yoT13SnVDZeKVWWNCzR8rkez1G94vKUBCqtinRmrg1UPxWVHpzFjEJuJGMm0CkAVTBUg9Q0dRlqNqIkrK9rvQ6obLTRopYrJuw6zG0OAkvtpbtTEvWSpFaVWRGjNrF4QusxbDxQsvomIAiE/qBqVCXaNppdgEwY7qNauWakbEqLBiIVxwLDRB0dFS+dBRL8WBYDalCcFPW9NpUdwGjgZvACoXQd7eDJy6n2Di5BoJ0+NG7eCdibyro6MRchSpAjcy7MNxnkmbgxT5qZ2maJhHBOyb3ApdVgRnrK4FyBhUBpRT9v1ke+Qdl5q2hnwa7FzBicKcBEWI45FxYxY2NUetZrnFkagz3I/GdnFhgHaCVsNAEdTA4K26QbgtsoH8YHWCEON4RAd0pwNbFIDES0yEU/Kwa8OnzPv0ScDhtfjWVFEZkZAS2gTNVKNAwDSBuHR1k1HJXZPjduFTg6u0jli7E3/To6P8OKLX8SLL3wRn/jt53Dy8AHKdouinZ9h683nlA+vVrGuAszGj5AgY3paD9Wl0wXIaqRHQ0it5FT9tgIARGfXpSpqshTLlD387ntYDIM5VYJaEHpkUC2o1YAhZW9SRwmiljosEoRNW3si0dAP3oxPTDMlM2p1x00q2I0St/1OAHEirD+3qmYaRdS62PqmwiBQsojKUrxkmNi0YIgw5YRVTpgyg3RCcVW2quH4EEpRFFFACBMAKaVFy4z95CuNLE1kYMDAoPjcKA6Uw6gL7JwSjkctmIjByEgKdyRiDcRacoeldOexVvtDDhKIBWABqpfWwzl1icGc7RlJgcKjSol36AKxDCPNGoiIEGkSj8pQbzyaEgEkpjILi4xktvRjRMuiyLOUITfeQJQR+UsxEB1FU2HnBIDUYorHnOwZqyCipWP6XdTXgigWt00B5Hf2hRa9a/7Gmzre0gBlf3+Fg/1VC/31/Dw1lG8dORVLKVjqAsqAKCPXbINVjfxjDbF86qtVyoBDZY9bGbKVeGXfZGPTtv4ZxG5k1B462SmgicDVO+mqV3Nof8iqFu4T38xEvIeBAxTzNG1yhEiZQpv0RKdj2sKwuv1qhjt2WAcIpPa3whe61hZ5sbnEYHURLP+viGIpFdt5sU1SYKRYESRi55J4aFCD2GoG0vqJUNt84E3FilT3RF3Lok1c43gE6bZt0txlmllNjyB5SBNE3oLcIjuJCJkMrFiEw/qrTNn7x7BFFGzzHaqR4CA1E0RSY88X7VEJKLVnz5QaYG2oz0Gi2ePUjHCk8FIAU4EZIR9ncV2MIFqOYdrgUzXyG3Rnke+CJ/L51/WAYp6JmHUSB5niOcoWZYu/EQAsqr24gRefZY5fqEUyKP6N2KCojUuDxYTGJWmYOjxI6jOuL+HwLvsmG5nb/swU8Q0xfi2hM+AYUyQV3L97F7/6v34Exw/u4+jeXWy3lyhli6V6p18WJM5OcheU6vIBVSDwaFBzlwmcPdUwXKNdl6cLKfoHwfeo6oTQ4r3DzOTW4uvVjXukGUKxWqo1GzTQY0TbxLk7ObWCEgOJsEhtqWUCgXIQU4f9EYqUJhh4tTldSkGebD4nVqxWGZwACKEsBaVUpCkjGgmCCAsATtTC+sTeo4YUYDOCDEVmwt7eGtMEpKQodYGJ2omls3xIEyuWBViKp9OWgmnKiN5qBlTUIpkEA0PMzSCHQ1GqrSzO1ngxOvlWnwdgazdAlMDRiRnBMenlx6UIlqjKcoAiEqmUPpbRyjcAoLUUKGAXWIs5bw5r5EHts5GejvSxinV2tn0vIsbU9FlSIihV/87YA2L+V58T3aFWYo9Q+W4jAkVt6ciE0DyPPdcAGapaWwyfH+b6Rxrp3AABAABJREFUqzdH5LbWgsoQS4A8CtVO6X+anSK86eMtDVBWUzYiWhiGxpwLrz5K5SqWkrCZuZWppWry0sICzYBWtn4b6igYjOQle9a/wSZRShkpJ6QEpClqw7V56eHd1bqglGKeuBSoM/Yt35iQPaxpct8eRlZtQEX9T5SvZt9kqBkVe8oMAg9Gs4cjxcfBwr8xS9StgaUuFKqG7sEGikQB1ITWXhsAyLzUubjXpw4CmDG5/DR52CDZHQJSW35euRO5qhbUqphLso3JXw+PUShAmeXVE3lLcCk4Oz9HTgnPf+F5fOD978d04xBf+MLzeM+73o2EhGlaIafUohomVGSLNOeMlE1roD1PhqfodhvIhfhSKCdyJSuDdGOf3AOJv8c0jLdi89B1cBUivcjtGRh/waMbCADkBDXuVVpmpNgBin+XA4HuhpkRb+Mo3q3UG+cFmdPsivE/olqMgJZKHDlA0Qsk0hw9P+6Ap31vX3ZXKyTGiEm83vgkw3i3E/qG3W5LdfypcVVG8Na+I5Z+VCNcOVQVZZ5x/7W7OL73ACdHDzFvN5jnLeayAHDyql+Xhart/LU6eXAAyare8K8BujAedj3VSZFQMwjkxEsdUi3B8zHgaWBWagDQXe8z5wxUI/db48OMzAR42a546q9HsqyPTaRGq4P56PILmANUlmIAhS1KG03tWARsnoJFSvwPiXFMHKE6jyOk5KPs1YwhsSBP1qDvYD9jPRFAxVPgnoIoFbUoCpKDCzGZfSIkikKFMMD+HFUMjPm4xzNTMoAybxcUWHUJlFGKtC7M8VC1lTqL+7L+rFR9/7VISHQoTolRSvXomYMSWNRCa/CL0NebAKTZevMQ3HmlBpppXC8BJGPzJgBeNp045kX8bPMo5kWL9kCcC2MRPhNZBFLKaNXQY0RaxAfMxmFK2aJuVXf4lxjmlCLsXExthQSPU2IJd2eViFrUzv6oQ5w3n+N5SwOUdlCgWN+01APMUkEAMhPyKmM9ebMxj1KUsmApxcFA5Az7IFMyFJ2YPVKQeldRaP8zhMltfpkRF1mheXJqqSU46S8jtffDH6SooBTBZrvFvFRorcaQz+wek/EWmrCbuqOiMCHDSBeI8RhsAbhRbOpCXTfDSHLZ70KcG0F+7YI6R38IBsDI6+ST1yIn02SMfLB93iIj1u2VuHu3FYqCgu2yRd3ahhgkwO0y43K7Ba0yNtstNpstTk5OkVOCCjDPWyxLwWuv3cXJ6QlWe2t87tOfwf2H9/Ded70bH/3IR/B/+tCHMF9c4vDGTTzz7DuwXq9xfnGOw/09rFf72CwzDoiQkJuRpBQgwiwssz1XK2828Mi4YkgQfCN2wGh8AKLRKPOwyXBfyMEejeoPIq98sPfWiB4NhsnmR+xoBrbCLtuj7JY4Kg5ZLf+PSiCvuCD4PkRe8ULuBWo/RTeUw7KKCqcrSeOKrlCqCpNgGFHBNcAkxnB8fecefRZerTRr/77ms8xdzArsBkcIJPG9zn9SE/SqClyenUNFMc8zShVsvTMsEdzwAKVpVBCALk2QPEzvV92cnzq0iGB//opqxGkXTVMXdGMy48j+HgM62UW6jKvWqkcDnGk1PoWwkzCpOwSJgWKlz4nZSz1dV8VvQaLElzkcfZNdqC54BkFKLhDnRnTKpvNigM+UVEuNslgrhy01OjFrM0pNrdmjdOxev81Be5/tvRWsFo0RFtSlYi7e/I8ZK5ePaMRTB0RGfO1VXcviKanUU6hFBVV8zQqZ6q03A6qloNSC1Tp5BZUtiBYhpT7sUOMGTVN2kuGM6ABs32+RHXOAF+Rk5F1w6O9EKldMR8Q1a3qxxBi97Q4HkYmx9fmurQu29aNk77Fj3Db1YveouGvVeaA2d1thxUC1j5QdO5WhYXLq0Xr2iHdE/IMIH0CuSkQqI0pKINK2TuJ6WvRXo4rtzR1veYAS4Vxc8Sh7bKn/3kqpbL3bJmFhPk0AspH6GOyeqr2XtKNBKyU24plTDVFJMS8LLjYL6tkWt27exHovG6mI1PYWKRAnkBGRTfiUXE/FQl+UGAmKPCmmVbZ8ePWumT7xyQ1rhIhaRgGIBproKSZxwSMDT0stUBibXQrccwKQ7E5KVZ+gAqkFQgwhRokvcp0QYSMcb3UByoKyKdjUGQ+PHuLs5BSnRyfYXF64wBHhxo0b2M4zzi/PcXFxgWVePGKRsMoTTs/PcHp2hr2DfZydn+P4+ARnJ6cWAaraQrNlLk0bRUrBRx98FL916xDbi0v86q/+Gm4/dhsPHz7Arcdu42ve9z68ducOnnn6aTz2xOP4/Gc/i69973vxwfe9D4/dvg2ihAQHXg3Tko8lt9njYQxP33HDHMmjZaM2R0TSroKLiDCEiQ+jr8FRcKJ1qgrxd+3UlDnAaWmk5v8CzR1TjUTBTgqiYQYyHoEOn07Jwax3qe3AoPNbjF/FMd3c6Jkx7OvOv8LQwO7PA6iI9Jv9blzA4cWhTeZI1+wYiwGcRMQyeo5wsuZ3UAUlNSJii8yYx8YqkJrx+BO3rLRVFfNszknysg9relbdoHOr8ujkbm3nNf4GAE3euM6eUVXnS3AFT9nSMfCwug6Vfs0L5gYiRMQ4SXHp/n4mE+My7plFN0SKRwStiqzhXxnD+Gig2+ZRgYp5yZYCsUho7KJR/lIWU05NDETvoHgqKhb+FxjPQ8QqVdJk5ciWXjbCqlSPBsee4xUudqE+z8hIwUYE7XoqVrqfwSjtGYh/nzmgBv6XUppOTov4kUV7VIw/ou65myNghjWxdU6esj0jWaT5FaIWrWRy/hAp5jJDpGC9t4cprbHdzhCtnjrsUU57XskBR6TibeXtEN6vAHqzK/FDRAqB4AhyShAolmLzLk/ZOYjU9qwAWY1nI0ZyFUXjE0V0BBjK/xHXaxFwm0quCNsus89d479GPyNfom6EzHbaczVMktp+hAakdh2UL3e8tQGKimcvxgGA/5vNqA5hZyt1q9abgAHARHGUCZrMK0gg75MBKDsLHoSkblDUvQCqWHTBl+69gs986tM4uXuEg82Eb/of/gc8+/53g/edJIiKxGq5XXWgAXaNjYKKgtOzE0x5wuH6EIzJymDTCpj8bvzh2yITRBWH+obeo+RqctFkzHRk7jyHYtyblBk1WVfKZfGUEgjVwgmoVbFFwelmwSc+8fv44+95P/Yfu4FNnfH6yREePriP0+MTnJ2dYd5scXR8hNOTMzx8+BCbiw3KdsY8zw6uGOvVhATCdp4xL0vz0KDBA0m+OZvRqVIhzpK3qJKjc61tA4ISlk3F+ckliID/+l+fw82bhyC23O1v/ObHMc8z1us1mDMuL87xrmffgd9797vwf/jmb8af/KY/Aaxzi3bBZ07zjf071ev5x5AlJ7SFbaHvoaaGqC/WgANR9TPohaifrzXWIwcuMN2KCDXD39vP6Wfw5y3N1XZOyRBuNYKv9S2p7Vr6PAEpWIf78fcQ2ef8pm1tYOC8UMdF4RHHZbUUDrmYYQP23YA0lKR2HU3JF13Uq3mOYdDjoRC17yEvg+xDv7vpMbGvWfuoaMLJ2Sk+/6Uv4GRzhkpWVTXljJR8ow3eBvXUhfq8A5GRToevUctVQGECZETGuSi1YCLy0u8KqHr5paPVYTCt4sT4HQBAOSNUnZelQFDdUPpcczXdnBM4ufYKs61lqW4Mdcc1C7Aa3Ip4/tZSI/UIjlizSdOIqlhlM1JwAmrcPIfwmQSRlB3wKqQUu29YOb+VwgoW9+4Th7BXwjJbOqkUSxklJvDEXpmjSOz8QH/mo0MmtRNH1StuzNBaZFIdrBmYMgDG7qESGYcm0uLiEYpQcCYAKU+e5jFyclksui11hk72GXFNG1FCyrlFwftaC74JkCcra1YnbkdkgtrcTYgS6Ob+GsK0a2J2gObps2JRPpHON4lWKcZpNAfP/ITslWamxNvWSLJ1Z3ND3Z56ao+C16V96Wnw2uDVgFf2JgrBPxqcEGljAXcweTeS8GWPtzRAURaALd9mpXmKquwTtsKC0bapLGVGrQUHqwNMk5PDEqFCMJeKs7NzHB0dg8G4fXjoUQ7xBZywniasOJvGBQiSCHdO7uN/+cgv4+T1B3j28Encvv00Xn35c7jx1ARZCEenx3h8/wYev/0YSpmReAIhYymCKSUoFmja4vVXPouL0wt84Gv/KG4+9jSIpyuP0A1GC7PZpOcgKilA5G2wueFUr3E3Y8fTZKAEFXMiXJBig2LRJFUsS8HJ+SkObt7A8XKBX/+N38KH/98fxrf/qT8L7E949f5rePmFL+Hi+Awyz9BqueJSClScn+OcH4LX3kvFlqzNvVRB9bI9W0SMjdQu6CVAKM8uS0HKE5ZiIlK2TNxz8M2N0EvwlmXBsixYryeIVMzbEwQlLKmlxj5z8gV87jNfwCd+91P4vv/pf8Kf+jN/AgeH+1bqazgCQfQ0/k5336MXRRfQghEcDakgSvjsl+SeLNrPLSHS8ynNo4sKKdKokrL3RoWH5WzDT+nVNvFcGzO+Rcz83+HlXInGOL7rlzpGOcIAhTEMcDReOwxMNUKce6zG1QrA4KjHvydIghIPE81nR6QB+zi3Gd83Z/93pDabqxvvdeNFRFAiFCl4+OA+VvsTbuwfInECqmC9PyHljMdu3wRrQd2cQSq53oU6AVwxMSN0OwI8R1Cnj4GnrdgMMeL+PI1jZbme9iwVS6kOtL2zsRrHq9ZiYXK4ci68WoLIyYqCAovUxhOYEmGaLN2rXFFQm6iYq+QhwGb1VIuCwKIeGSAQBMtcULSAxFLISgwpCqkMYiu1zQS03mBiVSuhgmvSCeyRvwyxcIU9+iTGwVJzGqgGJ4FRnJtWi3r1pfO6MmNaZyTypDJZtMfuxdRdldyDB7x6yvYcE2yLyIDv0a5v0v4WQqKM/fU+1mszzMtS7HNke4wURZ4mAIRSC5bFVFYtyMceZbJIhCRAqyU8nUvqIKpip6s3UbtPW0raoh0KcxSSA/poA8DNG4v53dM4ALA4oDVQ0tPK7E5C9ggHQOBkQIrgaq++nzBzq8CRGlEdixhb6bTzcNSj/w147ToDj6SkLWTjr3NL9SkpvtrjLQ1QPvfSHRzeOMPR+SXOzs8xV0EtgsvLDS5OLiCyRVlm5KQ4OTnG0fERnnryKTz9zDPgnJBXByil4vj4GHdefBn3Xr+PVV7hsdtP4Oat26hZQTxhNa3wxGMHOFitMXHCaj1hOkx46d6X8OlPfg71YoN6a4u6Nc/k8JlbePn4Lu4d3cczjz2Jm4f72GwuMNGEJ594CvN2xtPPPAnRBeeXx7h9uMbjh2s8fPgSclYc3rgN4kO4JiRiQhAZITbkm0JV0aezbQCkWLRiUzd46fW7yGnCetrDa/cfYrNscXRyjFfu3cMLX3gB8/mMG3s3cbB/iPsP7uPVV1/B2595Oza6xec//QUc3XkdH73/n5BzQq3WtVXVdF0A2GYriqKWm0YQSYeojkAwu2dSI7yo3lMDrg7iE5wbW9PumzkhanwVikQJmbtmQYX6tRXr51EqlsWkm4mye9+uQ1AVKWe8/Mpd/N/+7/8zPv/i8/ju7/5O3L59w0CPuoKnwgSVoptpImQ1EpqqkQSj5BuRTpFeYRBe3niMpFF/YxOUEw29DTSOS2h4gMnKPzUqrrRtVG2T82voJXwhEBjhV9q5nJgn5CDJWiLAvLcxUoSu7RBS6XFjWqOKCi011Hv2xC32f9eoY7TfjFgHrbpBtQdAh9+NTRfbfdrsaCTnuLFlWXB+eYlPffpT+Pf/4d/j4PYhvv4bvgHveue7cfHwCDf2DrC3v4d3PvNOyGbBA1EDCG5kFB3khOcfwLNX+DnJ2jlLxJZaszGAqWoqYcqmkFqKVb6pG8mUE1JO0Grk0MjPsxO1pd2qz5HElnr1OSGeolFMFj2HVQQlJ9n2sY0wlYNsBUi5pR8sGjiSqJOnmyItIEAhIBEm1xaCRyQ4ofEwQAmMDFJC5owSz7jWTs6m3O5J1FR1CVFFw0jZr5Gt+m61su8ihfctsmqaiHpw8pSnRkqV2tiZffTvkdpSGlFSrcleX4qtJeLkUR2v0IpUmyyYZysMiCaFIFPsnfIK87xxaX2DZ9WrhjrXI6JN2R0W9b5p/swTMHIe7YkZuBAvQ7boh6dvfN/0D/j73WESaREPFbSIpcI8Fksru9Mi6vwlBjxC1B2diL71v1tOIjIQ6HtBVAl2npoBV2ayc3OXRbDQrG9XdRfgfLnjLQ1Q/l+//BuY9vaxLbNNqmWBbGer2ABwdvYAJycPwVwwbxfM84LP04u4cesmKDEOD29hc7nBvJ0xn5/i/PwMiRPuHtzHwY3b4L1D7B/cMIOIrbOiXXJaZzw8u4+HrxyhXFzgiE/wxS+9jtuP38arx6d4eHGKedlCF0GiiikxtueXuHnjBm4eHuDGEzdw6/ZNzMslllIxpQwtBd/+5/4CDvZugVbhWXqYDYSL+QK1zLh5cBME4FILmBLmsuDk4hQXm0scn5/j/tEDPP+lL+L3P/FprPIeoIwXXnwVpVRcXl7i4uQcdSleJZOxyhlVFUkFr3/xS0gQaFE8hoxyfgHJGSlPxjJUxcS5hfKWxSqUilQnF8I2cY+mhMicHT3018qltU/5ztgHQC6hTRYlMt0Fz2nDK7C8iRkDQK3uJXpkyY2JtiSMNlHTe/fu4X/5T/8rjh6e4o9/4x/H7RuH+KZv/KAVaSSAVxkuRQkFoVTzQKoVmrruA+2sPcCjCi16PxjWUPJ0lUooICwtJWKkaQu5Rm+QKoQiCloIWhmowOJemIamj7qseDNqZNUcDcR2WojGuPomSC437zgIocmtXhbZ4xrmI0ts0h6G6WTxuF33dIcBUdUerdEOsFRN4CyiIRGMauTttunR4In1TdL6y1S8cOdFbJctwIzN5SU+9anfx51XXsHnPvMZvPbqHQgBn/zt38XBwSHmiws8+/QzeM+z78Q+Ex48uIdSjdekZBt1fH+U4+56vZEiMeIkwbzMqtLIyymzPxvjs5TFlGmjQ2yADo00CtxQQHopKoJ0aJGnWquN4ZBbqqqYawFNDpSTkdgJgBbB4pUTTLYPiotmkU8EKQop3vclK3J2fSAoUkITVXNBD1v7DixqVaRqzzJPKx8vRamuJeIsbPJUtBFczZkyj10cGBBWexFZAyAuCcCEHA3uFEAiT/+aWqxVp3CLFhLZ/qK+P0QlpZGNvdy6RpzOhTFFQGSdiy2Va2syUiRLRKICHHhaJVIhIT1RltjbojrPokvE1IiksQ+Jp96iR1JibmuyOQy6y+yKdRoTopWya0SUIuJm61oErhgba5K6U1t871Q0ErkBCl/p3tsIsPGp7vBYdZiDrl5n0dZzrBXyyUXDeq+tUZKtJXNKyTTB3uTxlgYo9147gvIJSj3HemKcHx1BLy9x+9ZtpNWEo4evYTtfWjualEBVsMxbPLw4M+/riUscHx9j2c6ALJBasUBRli3Ozh6ApwPcuHUbRQRle4xA6tu5YFm2WJYNZHMBArAlxYPj+3j9wSnoS6+iltLC5lIXqBRorYCXDue1SWNPq4ScJxw9fAhWxWc/+RK+/hu+HrefehLrw0M88ba3QdYrzKXg13/j1/Hql17EN37wG3Hr1i187oUXsN7fx517r+PB/SMcH51ge7HF+fk5lu0MrgDUw7YLIU9eEVQX1O0WZVkAVWw4IVHGwXoFzhYCnghQtVbwcylIWUyyGbbhLXNpioZ7e4SlEBZv8FWrIK+ScyKs4gfkuUeyTbeiIpELPWkAlKgYgoleFRdaC++gmn6KlcBK24yYCVOaWim2VULNqNqNjrWgN1JkIaAcX+BX/7f/io9//Hexnyf8yA//X/B1X/9eLLR4hJ1alIQodePlVQqsVr2CcGzE41hMrTxZZEFZFogI1nsTMrJVlhGDQchIbhDE6VKe0iECJWPXJy/ZtEhTryARsTAyeWpzvVqDKaOoYPGUQq3mzyI7aCsW9p0m046IiE3inhNXCJQ7idNIcQVN2yVAVaso6m579BsJr081JMPHVSsWhYK2NIkCxncZG1tGhIfQ2z7Y27BIwXO/9ev4f/zi/4yjo4dGIFwUR0dH0GW2ZwbblE/PTnBcjzClgvn4COf37uLJxx/Dg6P7bQO1+7a5R/CUhJJfv5MfNZgVfttqfK2UyYegwmL+ZmTKbJFG1YF9xD0aYERMbnwPVfV+Or3CQtX66BQM5Fxv2FZKAc+5VaNVKZDinAtRM75qMLX6GjOeiHNHXEtltZqwmjJUXZ01WySmLgmlVudzdHmGKK1mnpy82wUmhV21lckiMp5sFo88qlaknLC/WoNIsL+XfV1mLIt1SVYkqFiKK9I74lFL9m7Etl9U/x4bsWjkB/SoQPTbMfDpzwgG4HM2SYLEBIh6dNhBvsT54NFNMi0RqVikYg/Awf4BTuYLXycKVK/QgkUKxKNNoTMVEbdpyojUaUQzI7XZms/66+ScFQzOXGhvkQMihz2uVu7XjCDwB0enAwr4OARAIuocE2ZuURp1B9AE9Ay8chDiBhTVieRyJZIS+wXaGouKItndEL7s8ZYGKGfHr+H44gTbzRlWiZBqxQrAfPEQvGJU5yaoKDhlQ9rFJkyF4sGdc6+WkaZTImIlYwJClYc4P7kDkEJrwVIEi4uVAWgbYUw0KRYuvnHzEJytOaFFRi2kWUqFVsH+tPLc5tZCYl4tQQr89u9+Fr/z+19wSWfCjZs3sX/rFuZa8frDB7g8PcWv/+rvIKWEonZfIgDphMwZ2Q35xGtMZMqUNS1YgZD2MmhKeLBd8PD4wkAMPP8pinKecePgADcO9zBN3uxMGCW4EGrVQQrF3mTlspwYiYD1OoPTGksVnJ1fIEGRJgsBJ00IRV7OQBWGaIaRChdslwUmGZ5b2NQ6iFaU2Rjs2VEMex+dXt1gHkNmQkoC1QqVgmlKmOCVI74AoXDvyEBWWQQnRwtOi+B/++h/wXu+9p14uDnC6w9exzvf+Q5cXFzg4uICe9NNMBSH+3t4+9seA5OpZCqA+/cf4PDwEHt7a7z+4B5UFeebGQ9PTnDn1Vfx8OFDHB8d46m3vQ1/5P3vx8XFJW7evIGn3/423NjfB9cFB3t7UAjOL8+8OiXh4uISt2/fxsH+Hsj7eWxm68jNTChzwdnZKfb3V5imjJJmMAsuLs+x2W5tvjtr//zsEnMpOL+4wPnlBvNSkKcV1qs11qsJ62nCrVuHuHnjBh47OIDC10CxHiIREVYvVQ7yqXWA1SE84x5jtCWAti7wCoaQlYgKAxEijghbztY/pkoITXnpY6nYzjPW+/seKVD8pw//Cj7yH/497r7yqlXhIaOWAktHmdQ82DgEFiVSQCp0AR68/hoe3nsNpSxorA4lqJjaqKiH+6tXfsC8VGEDoIlcHwlDCgpRrSFdJEw8LUdA0KgJu836RAzEMFvloA4N5HrKzsBikCejSoRgXXZXKQMKk0xYKogS1nt7bY5Ktevi6BmjALEJwtVSAO2tCFLOSMmiU6GyrWLOSC2ll5cuxTlHBkArLH0hKuCawaHNItXBm2CparpJzN7vRlHr1kMIcDC2GDhMaxOeI2rAgWMWca+gUhinpopCyfZP8bROYkvp5sxYyCuLPFrByZykUhk5T4h0afBMcjJCapXFAYbXtFACK7BsFzBZFFmrQmnga6lrgsQzRJd1iL43kd6N1/p68RSQRyFLtX5EKSVwTo1wG0kYcwA9ezIAkJ4yghdB7CZ6W7SuvT/ebWdX7cTiiOIPQXBXw4XxBlvk1KJnIWBnkbRwUrRHfAhNw+bNHG9pgHL64GUwKdayQBeTmS5sqVNZzGu05k4KLt4uvlbzyjNjXhbUWiAe3g2SJKS6jHrBMis2mxnzrE5aq22iW1iOPJxq11QFODk/x3q9MtCitrBTzgZKlgXEGZkE8zxjWRas8go5T+bFcoIoYXN5iYvzDS7PC96BfWzqjHK5YKKVqcEWYJVS0/aoi4C5Yi9N4LxyJdmCNSnyVMG8QLhi0YSLy0tsN1vURcyIZ5usG52R54SbB3vQWmySMSETe0ml3SNRlPEBtRYjbLHpEdZFsLdam45LqdBqUs/ICWnKOyFk8vrbuRQY0zxjmhJUGbyasF0WqAr29tZQKRaZyRk5lE3ZBbWgyGyNvogY05SsIVcjgBmResorZAAHhzdQasX5xQWWUsGZ8Ju/9eu4+fQhjk8f4qVXXsR7nn0HHh4/xNHxMRLvITPh7U8+gT/6x96LvfUKd+9Yyuzua3dx89ZjeNvb34bPf+FzEBAuNhXbpeL+aw+xLAUXZxfQRPj1J5/AdrMFp4T3v/99eOe7nsXLL30R69UEkS22mwuspgmJGSdHx3j6bU/jPe99J/YODnFw8xY+87mXUasiT2vcv38fr925gyefeLJpYuyt1zg7O8c8z7h18xA3b93GUgq+9NJLmLcLLi+2WBQ4P78AOShYr1ZYTRm3bh3ive99D/6Pf/bP4Km3PYHVekJiGAg63AdIMW+3mC9nPPXY46i14uHxER6//ZjpA3m6QqEQTm6AKi63Gzw8ucCD0y3Ozuc297al4HJzie12i8QGhgnU1oTUGYkJF2enOH54hJs3b6CKYilb/Pqv/RqW4yPcmBImTpgXxemyuJopoFzBycA5YEaW4WS/4h6pCIgtamIzKA0VMLGds8/52MwHDzY2apheEVSgYdhKpOKaDUARSxsEEblWbUbc0mWeKtHaImWcEri49xpKsGrKqIngGkh2jYknYErIKRtwdFLjKpn3T2BQlP0OvAPAwDp7is3EyGboEikBq1IRvyew86WkIsjhjS8jugPA4GkjEquQocTNyUmJsF2Ka5gYF2W1WpmTYqNqoE0MdJRaLCJCgML1qShDncwMj4GVUlBLtSKHAF4JLhPg0RF4VVWtELG9pIMUi3AaQAE4udaJczcUapGlSGGrejWZlySD/Pq82gle2YIexbB0l0dBfYqRV5Y2WhkiltY/F99HpCAl5zb1tOH43iHX4tNX2/4tIh7NQ0st9ffaXGciVAayupPnACP6+RjxPCInHiF37g2R9fFRDd5NkHzRuT5v8nhLAxRsz3FwsMa2LChOOlv8KRQA0QBPNBYVQaRAOCGJLZTF1VEN3NnD38uBDBXn2wVnZ5cQmdDJT66O52x5k6kWFyQydL7dLq6X4YI2dYGKhTu3c8HM4ux+waIL1mTiRBFq3y4VpQjOzy5x5/XXkfas5jgmv3pe10K4ZJtvLdDMjsNdmkgqKpbG0i9iJOJabdOooCamBK1YREx0CDAiH0sTlkspOXnSok7kJDeZC9S1KJalIqcJqVrqRb07qZW0FcwXSysRZGZMKeNgWgGw8Gf2FNNqtcJ2s0VeJSx1xrIp1r+DK1ZTwq3bt1FKwen5uS0yMS895wmP3TxEIpixV3XirAHR7XbG7duH2JYZCRsQr6EgLPMZ/uOH/4PJ1tUFx1/8PKoaeNpcCqaccXd/jc/+3m8gZ8K8ufAKOtu8eZUh5CXbxQFY8ehWsYLy+2eXuFwWgDOO7x3hS8+/iFdeeRG1LphYMRFhf70CUYXUii995vP47V8HNGVQXuH8cgUVRi2E8/NTgMi4KipIzFhPk6cVPZyv3o1XK/bWax93A3GlFFwqcAoAKnhFCZ//xGfwW899HO//wPvw9d/wATz79Nvw8d/5bTzz7NtxfO91nBwfY5kXfN0f+6OY5xmf/cxn8Kf/1Lfg4OAmDm7cwt7eHu4/uI8Ka3D08iuv4pU7r+Pe68c4PZ0xLwXLUqw0V4LMaykHAsAiqMsWWguAGVoWbC/PoOUSDEJdDNiUzQUO1hmrbMW30yphvTAuLubGWTHdBxsH9igeqvHUesjfNt3q5bmm0+IpSN8X2B0AVEBIISzINHk/FDMirdrbOSutJNareNS1IFRhuhxq323Ro9TeX4pVIeZMsMY/FglKwXGwUyIxdyEv50qxwpoIQlwfwwxnZtdp8UZ3JmRmgmXsQMsMlhlWqSbQqOKVKi1VYQaIQchpMjIwyMCkhjCXAjul+SEsB9easTLuWhUZCVI80sEmOZ9SGFnfwWKOBJAKonCQ7rlaF2aPQkCtaaPpzth74URq2wsDBPjY2o5vTQw96rEsCpCtk+JaTmnK3mrAwM2Ngz1AEi4v557uaAEJE7dkDv0PIGrpo8KROVmEihkKmxARaQnwa01BA3B4xU6LxUVKMgBmj0byADxqm5sGTiIIAj8v2vnVBTlhjp/Pq91SfzJALDAhyAF8g5ybyew95SpYPF1UW5zSgJnbrjd7vLUBChWoJsxLweVmaxsOLITnKw/Rz0Zd0wGulVG2S5uYpaqrbgrWGdBsHvfFrDg732K7rSaKNGg1ROhL/YEYuAkRJtvgpmDsqydO2XQFSp1Rl+rdTxWAYDPPWKqV81kuMEHco5wfHmF9sEaeGAKL+jAbQ5woWZi2mHe1zAWAdenco4SFPMiXGIsULFUgWwFVNi4J1Grf04SVb3CXywaTGqNfDOphPa28rLBvIgbGrPQwZ5hxqBYlymCsp33s7e2BEmPx9Ncqs4f0E7KHWpe1K/yKgqla2FUWaN3ixvoQ07TG9mCCMmNbChYhnG0vkDiDphUuLzfYbJ1vgUucnV9CZcbh/h6efOImHnv8NrQUHB2f4O2PPYGcGPsgHB48ieppn812i2XZgmqBLFsUVDBl7FPCes/Kl5fLU+him5Y4S49g1RpYFvdabLNdpQlgwVIL3H0HyMShqjK2FzNe+uKXoGVr3jcJCgGbpSBlgNmbyG2BooQiF1gdPIkbN25gb7WPl5cNLjeXyJmxN00ugT83T+XycsblxYVFDybCxYV5OTkRpmmFJmFeq/GlFChLxsUXjnDnpRfw3K/9GvYP1nhw/3WsEjBJQeKEabXG7/zW7+Po5ATzfInf/Z3PY//wNqb92+CUcHG58QgA4/JyC5JsIW51IwKrWIl8v/F7rDy3bs9wdnwXiQuozijzDEhFzoLVegL2FblatReja0woKdZ79hVw5eWojlqvCFMScE3YXNj6Wor4GvHoSQWqVpeGpxbdUAEou7YM23cVqVhT9tJqAomX1nPyiIK4iJ/pe1gBVN+kg5Fi+XlvXeHrSbQAWBtQEquqMkKuV/NphXoYfbWySIOwe9U+nnYu96JVUVok0dIs5FUiIHWF6r6bibgcvJOsKwxIKQQpM1aTRXpSNvAnEmTp0L7wdADIhcLEwYTp7eSU3dgyajUSr6VqehRDtXrE09O1mkyF18nyAEyADaaFAjXVVU6mOWOaltS/lxmEhHleuqFXI9paqbNxVxSKqpbmr0UsckK5CciRy1eAjbxP2bRFlmqRQvaKKtUKSkYSNgOf/Nna3llqBZWliQyqyxL4NGnpEHUEEJyOAL4RDVGPjEDUW6qIOWQTt3u0xIufe0An9sx7p2wD2doiKIkN2IKMBN46gnuRhLjIXpDeDau7MrqXLBt6IavYccCqyUUP3jw++eoBykc/+lH803/6T/Hcc8/h1Vdfxb/9t/8Wf/Wv/tX2+7/1t/4WfvZnf3bnM9/yLd+CX/u1X2s/b7db/OiP/ij+zb/5N7i8vMS3f/u341/+y3+Jd73rXV/VtSxlBs3mPcOrDIhg3jT5ovXoiMhQzeGh3KJWT15KRVaYImJmVDWAsoi11iZii0SQgil5e3HLg9oGYouxeTSee6vVwt7k/WpEe+h3ma3TZzS7q7XY5BVTjo3+MeLodnu5wbIkpMk1MhiA1lb1YRECU9GMPHnBYnl5T3HYIidkN5RSxBdkQeWECrv+ZTEymThBM2fju9g1W27XC2KhqEgTULBgYsJ6LwPivA+eMdcZZSFAQr7Z8/JcnedTWlxTxTbUWgpyztg/WOPw5j729jK2IrjYbnFxdomLjWC7KVivDkFEODu7RHHPUqRic7kFM+F8s+Dk/BKPnVyCoDg9u8SNsxn76xVWe8nLUjeYixn2vYlMpbOG/LmF30HJyrelYJnFnzn8OZvORYTUOScwi5P6BEU2AAh7BzexVCCDQMUAq9QZiy5ODiYQVQAW1o5mdaSMuQg2i4A297HUihu3bkJyQeUtpimDM3B5edlKwaO6apkXjxqYsBcAJE5IyXvPBJFOxUXyFFoWkBZczlsc31uQSDCTglVM/XgRXJxucXR6CoFis3kJe/sPsdq/hSqWfppWN8BpBeJsUumwiGQUIYgDFcA3aFHM20vU8yNsz48wpQoUk4E371pRxcjGpap5xQgyqVeppIRpb4XoiVWKcXUSEaRUlK2pOVclT2nY9xthz/LmAhhhUr28koGoCAFFWhd+PdX3l+jVQ1A1OXMjSnclV6KeCglDbvuFICVLn9YKRFvvVplFgjyRqVG7ujV8n7LIhGl7iKp10dBeBWICXmKcNIGVNIuakCMUecpYrzKmbAAmWmaoWmrJDLx1uyU2MnD2kt9aql+rVTRak20NewnAwJmRkP2KKOTkyct/vSIOGQSr0LHD+RUe0bDnkBpJ1zCQR3fcaBdP0atHwJkr8pQtChY2QR0ctNS8euTbUhLxfOGpO8uy9fYYpqti9yIiWE3snZLJJAmSlzSTiWQG/VtEei8c5+FJLRBhT5UYjAhAGZSBRNHTCD4/A8j6uZia0rbC9r6UjZ+nCuceeWhncJ7bSQhoWi1iKb6GGyKVZD/Yf4JAUOhNedEiNmH/elTHq9k0KoUcZI1Kh2/i+KoByvn5Ob7pm74JP/ADP4Dv+77vu/Y93/3d341/9a/+Vft5tVrt/P6HfuiH8Eu/9Ev4hV/4BTz55JP4kR/5EXzP93wPnnvuuaHXxVc+tkuBAKgLOYPZ+gm4HmfbEKJ8y+SRzXNUnzxSFDorKhkCjYEMUiinhAzyjqYKZXUA1EPUiYemgYimXLX93kBLhCmdpOkPnDnQLkOqet+E6huvbQIFFsJNok5MitnUJ10Q7pRMjn6pputBZHll9bRjyI3nlFGo2MZaFVIKhDOqEmYVENsEF7YNs5a5CVmxi/pItWqHnE0PgpNplVi6iCCLp89gIm5LNVGkqgIkCxerVCcUmpfNamWXooq0Ah6cHgPnwLbMWOaCzbzg4tLHark0UaHMSNUUN5tiKVm0bDNXvP7g1FNnhHo2Y7so5GLGsmyxmbdWacSEzcJYk/urYYxUASoWdfOqoBQVOw7iKsjDxoqJGGDFXBcL6cO8DJXaPA9iS3OQGEeHFJhWoSBqxkDVylSXAixFMC8CEka+OMciW2znGYKK7bbg9PQU2+3s0Qi7/epdYkM40toYWJ68UHUjxaCJgKTwoAfIU2K1WtqDJ/NMz5cZOU+gueB0rsbfAjDPCzaXZ1itjpHyBOaEG3uP49ZjbwchoUZtd9uk/fpgc52QkHVB2ZxAtieAVhccU0g1gy9gAxlVMM/FgLOXiIbnR2zAYntpgK+KRUOngz2wss9dr5pRWJXQEOYGsRtl51r4Jl88chKqtS3fT8Fv0lbFQsTIE/u1230b+VXbAFi/QQMKiKZ7lDx64kCuWwpzBJIikYEqI40SWnO6aB6K+Hvc3wCTnKCeHPAKqtWUsLfOYNe/ib4eJuwG34PMCWPvBm6lo2iiXtEYsRFqtaLMAkU0HdTW2sGa9lXA+RwGlioSJ6yy7RdBMgaM91CLlbsya5hJm0AKRM1rFUOJxk+JdEg0AITv9z2Fkth78ojxT2yvt7lu0UcvW/YoE7mKo1SLsCRP3czzFvN2BqAebahNX6RpAoVui5dCr1bZnM7aAUAAbHs69jkrZTa7UjX4Gx6dopAiAAjiBGhXinUukznpMQvQov5WkSdACtou+qLU0JThBgQtukVAqPa6bk5Wjktt4A7kfcmc7B39lqx3UL+GAD1v9viqAcqHPvQhfOhDH/qy71mv13jmmWeu/d3x8TF++qd/Gj/3cz+H7/iO7wAA/PzP/zze/e5341d+5VfwXd/1XW/6WkoVbzQV4mEeahRBdD6NHTu8FnhYV9SqapbZyvOm7KFJl0auKpi33mZd7PV2DDXjlp9DyyNbp0/7fZSsoYor2lITpGJiLGW28Kkj7rJUhLQ+e+fUmGbVw2vGXA+kqgYOAoRpZ/wHKzwlb7VOwfy2LqOcPP20VPdWtIkNkQJcqxsTY8DPxT0B53ssS21e15zgngsBbBsKYJ1Tay1OsjXjyV75YSqnXrqoEfY2IamcErJWXJ5ceMlrReYEpoy6AJkZQgqigpSMt7J4Y4iQdCa28G2V6huch5axYF4ElbbYbC8xLzMiFLydgUsyr3BqUucFFTKU8Nmzzi5SVUUaECTfcUqt1nk2yh3ZiMnRNyOzl9lCMAWjnQ0UmmdffE4Bi1TMtQIpocqC07MjYGPVJDlbaqdsjSQuVIfIjvMgPLZbFw9fSxhcSxEW2PxcHEgkf1ZlKf6zifSp95ISIsxbK2M2WxJjXZFWE5gI77gQPDXtoeACd/a96dyOJ1VR5gV1XrCqhC0VlGUDxgaoi4E6r9TI2arElMwQECdst5YOlYhcioJrRa0Vm62V5tZaoZmwv9prqQeLjCjgUZbu8GmrOCHY2izhJIilgqILM8xxNaUdFTMgvi2IiMsLWC7eNHpi7oQn72RPaDM+Ui2Nk5Ir+DKueL9oDg5H1QQbkCcCiJP1AIpIpBeQE4XQozu/fq6cGatVQmKxHkW+x4TUu2ptKbIpZ6xWxr+ry4Io+YWGOqoAXJ3o6vw4jQSRDVhE6hSejqiuJcKux8OpdX9Xv9gqJpIWAMj2cOeNaHB2TFAtzt8NHztvxj1456mkKYOTRU5rKR45IKQp9k9AXcdFam2CjMHFiSZ4B4eHxjFMBCkKZ4sC6lU5Hg0WrUauJcJqsnFkJhQ4cVg7qGwVPi19Y+nPGhpKTffEnUOx+ZnTNIgVdnBLHgkynFTbvqUUdaf2HhszQyOtZ1Cy7tvEQFL7DNhL94mHzwdK8aaVyZqsUhJQpQYCDbTAHfMRgH/l478JB+U//+f/jLe//e147LHH8G3f9m34x//4H+Ptb387AOC5557Dsiz4zu/8zvb+Z599Fh/84AfxsY997KsCKItUZGFUMhKiTTiXXPdNLXYdEmuoRhbDtBTOQtaJNMh0bB7K4l06l2IkwypOIfAF79pKDfTUKs4md42TpP4grC+FheMAoQotg9cltogsnE+wKwxiWkXIh5NHYqpYN1KlIOFViBjq9byJbTThGRIa67rW4iqDyaSkk/ERyhLgiv1cdrqswHpK4CSoKthuCxYlpDRZ1EXsfoUAcWXI5ADFWrxXj9woMot7EQDYUl0mntQNVlSihPGfcrLzOBucOIMQgCQMXsFmO/fQJQDRZMNRPMIDco4aOfPempwVtkoK0gkgQIp5SAuM/7FlAyem0xJjGmHMUBKNZo5OMxEFwbgoUj3iQoScwwu0TSgD1jJBFYoFKVtTRhEnmtUw5g5+mTxl5PnoUi1fXowHpIva/IIJoIV2UziR5B5heMDkHk91AAkAyrZJCikyKxJMZbVotaidEoqqrSl1zoCYYWNy4pxUVALu0DlO7r+C/b1DzOWwpSyWsoAALLPxS6hW0CwoSaEJIN5C1KXHYSTSom44CSCyai87l3nytSpYKuAlr1KNh6UqmNYZpOLk09CXsaSC8WIMxKONdDgc5j1zUk9hOACNiCyAUrGz0drYOpmUewS3ecr+QKIKJCKpAKNUU0S2/d7nWCLIsoBShmkHBf3f1n+JKEFEd93JsFRBbfPGSJuKSqazYU5EdGinlksxLTeL6HIGch3SZC6Pr8xIye5NakQcFMnXAUCYVqZDVNXBEQHsIoD2Xb55wqqLlJxPokA0y6xafe/1hoVtAOGcqR7hjpke/2aypnoqXfXUNMaMb8Nk9x7NFOM5GW+IMXkKsEVgANfA8ecdlY2TVV5WsfRwRC7g0QtVF5Os4pzIKLtOHhnp8w0ImGBAgf1ZdZG7qDQzEKQ+jhYgUsD5Lu09cL7lWFXl99raUXjUsWkXgbtQrXrzzRgbu1BLPQ2xHnM2gaaB4iKRFEjfoz1mi+FOx6Nd07/c8YcOUD70oQ/hr/21v4av+ZqvwfPPP49/8A/+Af7iX/yLeO6557Ber3Hnzh2sVis8/vjjO597+umncefOnWvPud1usd1u288nJycA4JLmXmbGES5Tm9QwBGfkKVg6AVYpoNT1CFKyhoFmXF1MJ6/MQ5urRR58khiy1lZ+a1kaIxJZSNQ26+hHURUQBylp8kXKgBZpYk1Eirm6gffywijFY/hkhC0eywePKTALDUa5okVXrDbfbFBUCtiEV6hLtavJTLsSsUAt3UCuBike+cgrTGsjkW5rgc6Wyy5lboheXQ48csCQ6NVhOiMiisK2+BhWaWCcHgtPh+HnIFmpYGFpm4RH8AEsBj6zYrudEU23xDcB4/+EV+a8GxFLxZA160pMXn0EFFiExdtDmgiTM/XzNIFJ2jlIgwDoYV8CmMRDqtQavVV/jhYVrc2zM8O19FAoudgZgCJWTrueEhInm6vSN0ll8uov+07ANzV1Q+x9kIrzplQt7Rbvi3BtiFpFr4+cV5hyRpHSWgFYAkvAU0L2+SpL9WolB+SRtq6C6hoaytTKeIkIF2tgbz1hpop9FZeZAw5WjPV6hWVOuH/v0jbEgwnL5QUSWV8scYEFKuaFc7HKAR86CKx3VimEZV485Gz3t1qvEX2aciIcHmQvU1VIZdRK0MRg33RDMKo56V4uCTcMEQXllN0x8PA6xcbc9SHGdFGkZsP0kEdzg9hoGj+9asN0QtzIpSCuumdqJVlYpPqcMoeFYddSxSOf4aJqT2hEOipKQRMH58HvDUbGLYuXElvMHiJwcG/gPACXCY6xFRfUCpBxF5iz0/o8FeFznHJq4X1bPepA2xaJiDcKZOOhRfR4qcWVTC3tQ0HEdFAdqsamTxJN+hwIUjh7/dCIGrrAICfGxFbxA+dGBTeFI4JMDYfbfp5cpdkfeESmk8srhGhaGr7Y+CmucSMG+CafY00hFgZoIrJpFAfbIzFEoQBLdwVfjzQ1viPF+XwuxTUrebn2MD/bvmBf3F+PCHisB3hEySNLRuSPSI5F7aw6ihopVoRNZE8zQIKUsxPQY64zcmavNntzxx86QPnrf/2vt39/8IMfxJ/+038aX/M1X4N/9+/+Hb73e7/3DT8XfJHrjp/8yZ/Ej//4jz/yep0JSWGKnhTeppNSxcpq20GGTqtUW1TkkQsiCAo2tUKWAhBhf38PtVxayZQ/oIiE9PQJLCwGR7/DtQdhiL1sUQTgouCVqWVSshr/pRSvBHCvBGjy42GZLWUz5CAHdyK67UbfCVtkhqgNxfdcIeIaNXC2GqEzK8q8gLSrZFayUOw8z1jKYvdZBLVo89pKNP5rxhu+noyoFkbPgKJHIcgnKgMY5JaV0QCHqiJZva7tEg4kbDz9vFoaYAg5clUCcW0cJvFS0uoE1IwMncyLt4VsKTUCXDciyikdMLGn9dQWK0fY3b1g9vBngMDQ0AB7qq1WJGvMYhwekQYSrMTaNpsiBSkl1EpY5YScgSZUX00VtlRLOWaKnksMcR2ERLCokgCyoEVKomNqTCVq4VW7zpQsxA+YQuRcCrbzgpQyVm5Y4kpEzbAkB5dVFpTay3UhBE02NpwYZdni8vIU+cYNrCZBLRXrVUb2MvK0P6FsNpjnBeu9FVYTcLm5cFK2GS2uVi4dRr6IAGSRpkVqI3SbrLwxXZ56/AkAQCkHZqLKhXM2LFVLCmhlVJmtgsVyR3YfHsGz8TESai2m12FA1gGaP+dIb8EcVat4CZ6Xj12r6vP1pr5POdPB1o6tTMBLYK1Nnb1/2lshpQml2LMPImMtBXlKEI3uxb6O2n7h14ruISsqVsmAcKZqcvJSvUliBTShOv9CwilKDER1iljkjJhQlwXzbPyL9d7Kje9iJbxVm3BaSgHqvZ2e9GgStf8bKd+k9z06tbhCqqo5B1CkyeZDnhjVOSHwtWtcNm29iSIFFGOzwzWCd6rGEJH0IWQ1MrkQ7YBIwIshRCHsrU4KEH3HLGLgKaZhv00p7QClAGXQIPxGqk67XdHgvYwRIou2sc95i5INACeiKsw+EY0rSdRFOMNm9bGPSxpsgkfSOFt6Kd4WTTNjR+DErttFWGZP/dZqq8LnN2D3pqoIlvB6PTnBu5Nsv9Lx37zM+B3veAe+5mu+Bp/97GcBAM888wzmecbDhw93oih3797Ft37rt157jh/7sR/DD//wD7efT05O8O53vxsEYOKMrYt4iQBTysi6tm7BzdoTUk5t8qgIhBTTijDXBZezAAIsruNxfnFiqHwGJlr5pllBmbDKExReslsKIs8ZRzC+AVsQ7KqTtVheV8zmIeeMUha4ejNMAdGk8BMzpogIEAOLo9fQFXDjTL4wmay7qYoA7vWHtktwWYjUoh0QkBCqMMyBKrCW8samVxEsYmH/zVLMS0pRARU1/t0ztVBxkM08bYUIe1h8lkjQsuH2RheG8q3bdiOwmCdHXqVRpDbSHMjBpRuSJuOuHspVAMUiQEqCVTbdmFIWX3gVkAwIufKlpamscsPHXWH8BH9IJH1JVy9NjUOFUL2zqwEkj8j5xicKSAEoWYTKFCcdZia7HhMyihx3RVU436K23HNR065pfTQA91o97IwQlwIQZDufg5FCjF4j8PdbM7jac/ghfAfTjlmtMhK7RwQ4OLFoUVXBtMomLrcUC4vnbCBncXVWJUzujc4uPS/CWDYbFAKmVcKtGyscHV0CYKxXCZvLKC8FbFvq4WC71gVECXm1Ak0TUhUvxwU0m34PoWJTCsqyYJ0zGAxGMY4ER1dixs0bpjd0WQjbZWnuspXFekq3MlTZdWfUejTFs0eQKG1NtDlBJsiWXEOiQn0zFg8s+Lr1tG2AQPLzWGdk25KlLJ6qKK5jIp4KNu9VPRIW5aTwtK94msm6m7ddCUw2t/bXEzLFGjLisShAiaBi5bYCT2lX20OK76MGVl1j1NPGIoLLy2pK0sw+pxSCCqJiFTG+7ANQJgcQouLdQmHl99Jl8y116s34POqSU0ZBgbL06FHxCh71PUp7OjMiAHEEFwqwaErTslGF1og1UIsSRNkZEZpuTzTzOzu/sKi+VnBy0Op7OLf8kEXYxMeYyaKh29lI6FNOtm/7cwwnhh18hJ6PwrMEQp220ACp7kTJKUBYgrV3aVGWaGWhw5hwV7VVIMqwAbgasDrRN8CmvdVSnh691uIVW+pAMvdoGQHEFrUXdzA4rVrU8c0c/80Byv379/Hiiy/iHe94BwDgm7/5mzFNEz784Q/j+7//+wEAr776Kj7xiU/gp37qp649x3q9xnq9fvT1/TXW+3vgjaAsFft7h1hNa7zvvV+L27duYZYFtQr29w6axkgpBVOeMM8L8ipjXmZUrTg/Pcfe/j6Ojo6hBNy7exfbsw2efvodODw8hJAaoGLF8fF9bOqMo9NjfO6Lz6Oxo9UNxxBiD6OhEl1IEW6hmfxIIQgwWdzWPC8RRG4zJ/eWtAIlwoYEaLEOv3kCsUleL6Vgu/XFlCw8G0RUpdhOrUJCq20yFhY2Ixdkp5TJCWze62bKoGxKsVDycmtBZqvaqaVCkYAUlUiWVIJaDjh5mDex5WCj/CyatfmAIcEUYXPOUEirurAqnAEQUA8f28IjgEysLrmnSATMKLDMqUlhT2SN+ZCsdLjzbrq4s0U9zGOxKgAHJw0JuXGJEhn/XCJGEo+QeLiVKtqmYGQ4dm8cXu5aAVQQUgNv0SkYIKzZFN6NkmIEEiZr8AZK3k/JlI8P9o0fVKVXZhBbw8UQciIIQIqcDSQZF4axToz9aQ2eGLUWU9EkYL3KTpStDpAYnIGnnngce1O2KjgLB6AUxfn5BaZphen/Q97fhdzWpWfB4HWPMeZcaz3P3vutequsP1PpLx+dRLuTg0ZEsEWTVuOJiD8Q+DxRyEHAJBCSIKgn5UkCHhghQo4k8YegJ4o2NGJEiITgh+ZDTNIxYHfUzk+lUlXv/n2eNeccY9x9cF33mHPtt1J5y6ahX3olu/a7n2etuebP+Lnu677u655pV35dH0h1e1dnWmB5rAIIK1A3ZDNM80zg3Mg2pZwwnyeYNawLgWrJCedUYCWNRn8GpmR7A7BckVvFlAGgwlNjGXvqKDM3irkYPvExpgJ/+8vAusqxVAxT611snAKL7jKbogV6AjcJ1667W4wfmU0f7sVcE25FnGYBvOL3sWnGeObe+LguGN4iHbQQSJGKAOB9sE7wLPZfdgbK95ciPYE2KQoW+fvW1Kk6ZfVc4ZiL9ad3RykEZAGiATZFnE8Tti1+xvnXGi0LGMwnmGf0yuq2aOo35pFTktJ7FxvEdTJbgksrMubV2JAF0g7pDFaWAIB8SowgokXQoPsEQExs0TEi3RTN6xxQQUAwGbFObbUdWDHaLeSUcD6dcF0YeMKVajMKyZNMLOFiqLCLXrelMqiACSSZAlAbz3+vqFFaMWVKCcLeXqtVdIxuraObghdTcJWAnAp6r4hAi+OT85XLLgOWHSjvYGaw051BSskZ01wGQ06JBFNl7Cm1A76bTsfUKkhb14br+gd5fc0A5fXr1/gv/+W/jH//6q/+Kv7jf/yPePfdd/Huu+/ic5/7HP7CX/gL+PSnP43/+l//K/76X//r+PjHP44/9+f+HADgnXfewXd913fhB3/wB/Gxj30M7777Ln7oh34I3/qt3zqqej7oK2WgesXJz/jm//kb8Pt+3/8R+Tzh677+s7jc34uZcJzPl+E2685qgGgBnxLr2R/fPMIArMuKZx99F1/87S/i+uYRn/7MZ/D06RNWkswF67pgWV7Ds+H5mxf4F/+3/yt+8Rd+AcvDVeiVCxGdLA0J0YSKaYmSD/XzzoZ4pYjOFOMRVtVwLsJTNsCYLmBKmggZLoRa2GujlILZC1IGXVinRvEdaCIFVRV1XzmQuuM0GVOG5sjFMc8JZSpSnc+q+EkwdFxA5iAYmsjhk0050N+qyomoY9CqBsyJQ65uscHQ2CzozqDJo+yW4sMmVfxtugsqtxz/1uabMhdWmCOnSRuQ1PJJJLr0RL01peq4QHkzLQDYFfQ3paL9LfoV4x7kpFI/QBoSXnvvTTb9WaZSaqvuHb0xh50z7zu7ykZqjhF/7zL1Q5Q/yysnJbQ6DWBVpsKNwqXpUZox61iO3e/g+viIZak4ny9DV9Bbx6vHK5ZlQ8oT7i8z7i4XXOY5MLU0UB1P7k6YC9Nky7KiNi6s03TGPJ10D2QBD6YAciKrRYO1hvP5QhEhOP5ONiMi0WkuyCXhuj5ysSuOomue5xmwaWz8Oee9kZkxen+4vkFPBbkBW+NmWcDqG7akY5Yx5agikY6rd7ofSzRcnRF9EqCmCRdNGyOdkowbbJTD5sSSeqZ6Wd7uI38bm0BU5IQXCss0c07YKu9ZllN0B8XL3Kg41JPE5pxvjt4MVWDRQRF3SuD4qRvHYaaLbHJQG9AFUIwjKHQQTF2wfL8bvaLGIA92wRpTKgrOamsjZR7BTehZsnQfdaOhWEpF6Tbufq1CTQol8u9MUWSJw3NW5Vs62jYAQGffnEThO3rey4O1BkcX9Ji/TIVkzTE+iyLRahja8flE+hwHjQhbDLTW8eTJE6AXrNuV1eKqRgJYKt0TEC2Xvat7tcrmWzAqjc07qQvaAUJkQEIr0seGL+FtDzuFI+AAjiDk6EnytnRirHXw4Q7cB+ORtT77AEoeqS6hhSFIFtLwRDC1WTA6sVbq+wEyuo0aRisJH/T1NQOU//Af/gO+/du/ffw7Ui9/6S/9Jfz4j/84fuEXfgH/4B/8Azx//hyf/vSn8e3f/u34J//kn+Dp06fjMz/6oz+KUgq+8zu/cxi1/eRP/uTX5IECQFF/xrOP3+GdTz3By/plnNMdfvUL/w8gn9E32sl/6jOfxvn+jMf1irpuqL1j2za8fs2eJNM0ITXHVCaUnLG8vGJ+dkJ+dsF1foPr8gB3oGzsfnl5ekH1inO5x//lT/1xvPvJj+J/+1//VywvXiKbkwFIeSyeAFDbcGcZQOR8OqFtdCHUijVK7+DUgdTaxsbGY1FEiASkRGvzLK8IdvPNePL0hG3byKAUAiIz2tSz6VWHMpqjbTkAgR/Sd9FQKnwMCKAcOZPZiEgDI3pMolodQ0Dre9TFlISNXH4o3S2HetwFUEJvsqfk+tCGHChbA4AwaAJC1T6qMPQKIyODBLQYcS4iZ8JARykz56IaUQSAUR7uHiCB382GYVrImhZ1LQatVuZyYWK/xB6VjDBdCpqWf7eDZsRHrjlwyrEiZBisKbUWZgMGLYwJI7ra6WAgWRl09v3TCwwXmCVFXmxQeF3eoJwKzvOJf9QbKBiGjEwRMWTwFU/eEt68eUBOE8odN7HamNqDO9brhhnAPJ9gmTn+iL7grOwx62Ocs/oq41TucfnIHbw1bOtCsABuUMkTmcFK8NVV3tp6x7Y29uTqjmXZ0HvF+XxCKgVfft1QLCOVE+4uFeu6EJR2LqT0ulBVhABhUO7xfEaUiBhD+0Ie2f4AISmZfES0hagkJADn6cy6otYaamU7gN4duTDtwcqezCZ38r5QqAoDxa/c1FhxZ56QpwmWMCzaAUd1w7Kt7PnrAii++7iMiNfCiNBQ14j0pUGSjspt39RSySNYYarBATVBDeZgsD29o5yyxhKU1lA6gup2QPYI85QH0AhrBYcqzDq/A5lB31QMWwPWtUpHoXLYboNVAkIXAZgnlCQ2YNsEmp1VY747zZolXl+NlBHw8PAAS5nVSftmNNoPRIl+pP9bc3g3bJ1sadK66vtI0Xq5B2QA1E4gQGCwdePrRtAQ70kptJXp8PMdcLm6yIcGhxFuJoPd9Byw6yx3RoX3kO0fVkD7bs55FEM0aul5Pb0dPsfBZokyhm3rMJvwQV/mb4eCH4LXy5cv8c477+BP/y//Z/ZvmdhoLiUKY6fphJzPI/Kdpgl5Koxqah29N2qtCFe8HLlO8mOA0HdKFAShdpRpwvl0xvnyFJbTqL5JZvjv/89fxevnX+Qmrm6hMChqx9jIo+ImqgHGojUmIQZI8d4UmaQBGHzksZXbdlb/9EHPxiLJqJR9Jfjd8aRTIHakIVZ1AD3K1caQ2KsU4t83/zI//MT2DTN+6GISXBMHwRTt2XxOIFGQBgBJVSj6Y5zo8eJaS88QHMp+40xMW6bCJv5OwcZOn+7XlgSOOPmTjsFd3g9HDeoyKqcolLWxIflh8djPNc4R4/7H/XSPn0WUMz4F93o4ykGErI2Sr4g2e5A66IkGaH0AH16zjUEG1GXD+rjCehqN5kopsJSwbRu2hyamw4AqYIZRPIBkBZdzwXyaqWtItLf/0vNHtNbw5Mk95ssMdODx4RGu8dtbRzeyH9PE0u5N/ZHMd9Dl7qh1k+hSpn9gRUlKbVzHCGZiMRXNbhmoDlzXFc3ZPK4HGEoJllnRU9Kkbt0V3hu2bcOqqqBdMWWqTvHBWphxoa2tom7c/FNON/MmJ3bp5jw1rSHlBrDvAIWdwFtnmpoW8Gr2V/jzrTV4NzJkTt1QKXln6QzwnrHVhuXKtNDpdNL9bCNtVZSqTe7jnrdKIbZ3wHslEBrPgaW+JSc5Fu+VHnVrWLeVqbhpwrZu0oX0sQ6MIMdYZl8rmduST6iVbSCamJeUoo8OYNZQMlNRGc70cgimFWFcr6tSUARubq7qIx8NRPn8CGbNyFBFIDLlCacTGwFGJ+jeWW+WEivqhqMvEn1/OjDNZ+Q8U0DfCtbtEbUtMNtQSqEuZhMFkkLT1AGXtmhUHAKWDafzhKmw6sWdKc66cX0rJd8gEQZ2skc4LMwhfjcjm0GGNSMrDdbMATkJt2CCxcAwle5MxTmDjaj0S/Laab3BW8gMXFkABsPsc6Y5HmubxvdITxrEHMmvzIEv/NqX8OLFCzx79gxf7fWh7sUz3yeU2WDo6LaiGR1X174g+SMiQn1cY+PFSBVw3CktQAzLKCSYATj790hgaDDgmvDiZZSAkarzvgsMn7wzc6tMPHZESqGaztBE8jx0Ku6Opv3a7AABZAc+oyDKGblOhoxNDIQZzBrMAxF3DJHuwLTQ36Jweywcfdd/wEn1+s4/BMU46H0viLwlGQh9cnwgDTpVMZgYadeCfPiu2PqH6EuLx9jU4xr2DTo2+Lifdjx3P3xGoGi8HDhCKfcdTDV9H8Wd0UBst232wE2yITdNOEfbPUV4Noevu3WG3KMRRWHjeg98Tpy/B7DhqweFEn+Ne93HM5NghZqaw3WHtinGQ6sd9epYHira2pFAqn0u2lQAZJthN4JRlfIHYJQfuteGao5rXfHi1Ws8PG54+vQe00TNy9rWPbUV47GTBUnG7t45Sp+dtLhFJVpKyJnlo9frFa9evcA8F3zknSc3viQBhnulwWGSxiLDMU/anI2lMUklQZ0xpAy1aFFm2XDKM6Z5EhCT3f1g1eL+8wtbpRC6ZPVqQWwee7lrEdPoIBgQ0rmZATFmeo+5S9uDqcy4Lgv9erYoQU5KM6n0vXHzIdnaD+waz6XWKnfRfX1KKQOdRnZwx5QnBmgdyMjoKbRKgIOMr5kaXzamuUpR92FF29mKtApvx/Q8L5dofj5lTPMM5YNh6EjmsJLl46J1OBEQWTZYt/HcYGQE+YxVFCBw2A/zwlJCconoXdG8S+Ok1TMAwt7vR2uJJWCs90kVeR3u6uzu1B5N0wRvG16/fiOvnAw3bt4BmPfJa4NJiqaHUarJtHcEa7HXaD3SXhXglzc0a21iVRQ/2rXP2J6aU9n/EAtDa4CBYyjSocnlj+WIirJ+s8hgH9vG79iZHp5qbxDjFsx7gBIbAb8lia1rw7oY1rXhg74+1ADFrQHJZMIUPwv+IOriYwMyRMM+gyoqTBub3z6SSDmQyuqIuLk7N/TUHV6B5c1KQyLng6mdplt35xnTeVJ1QBsDttqmzW2vcA/qHlpYuB9xQdo3ozT+c5AJsXOGYE8i1zjz+J9YNkZpGgKU3S6V+iK9ea9MYASOEdm871Na/LSL72Dm8D8m9mGAEQ/HyDTYhXE4sLQQzmjgBiHdLOsYfh/xq5iEN28a/zw8ZPPBKvjhmG47oNsxgu1gR/fcYeO9fJ/yKgBU66AblgaOu0lNOatoohUG9PtYPD3dgpTjS16ow8OBBh1xHvtFm6s03hOKsaPttjTUa4dXg3lBToVMQI8RacOFudcunyExgGD/llTUx6l3bLXi5etHvHz9Bnk6U18T6cmNC38Vu2OtIWU61BoMuTdM8yQ3Y1fKJ418O51y96aCy3XDcqooU6QyA+Ap9SQwXZsqIVJG9oR0nhF9aRg4ZPTN2TyuOwWvgBoHHhZXkJ1IJfRCnPNTmbAtK1o2TPOE63UhiIOxMkt7TCr01qljo3z/2GIJMmDWcZoLkKiHAii4XKMMuDqmiQt8bRsj2JSU7iIoVYNZCuojOFAaMKktBwUPkL7NsbnSP0bDNBvnBSDTIWhocyqBSVHXWndHC7E+wmhOmonONg1JjRupJeH7EoziTac4PqeCtW/ssCxwUNQyobYKc6ahM9hXKe6bDd0GN9cBoB3w5tJQECDlcGuOYMe4T9TWR/AU0aF3pxWBG1L2AfhCAOu9YZoK2kYgh2SYrABGMSx7vxkBeM7ovWLbNgJwkDWx1JFLxjxPfO4GAYU2NDZZzzhYqBHAqXLSUsJuMsjfRafhSEFH6q7rulXDc7NOoLuqFff1I0TVwTzzNwFc4j4rG+BKWVmHujiMNhKh58kJKhHHADcf9PWhBihVZGxsAAagGwcuUXpQE0BAgiMw2DdiMi+ASrVUZhplnA42FqyVIbMKL1ARfiPRdHBhZOEdnhzTzN4++5+G2JU8JhPC8I3/ZYq43NuIfHH4rx2YRG4xaNHbvfwIZFwb8SiBDq0DzUYG7RnfFP164j7Fb5hvV9R/O6bj3VrwdC7yMOC//YYx4F/yLMAOFhwYFRRxRTaAgAPdD/AqEH0A0gOoO7zs/aeJfqjauflIVGAdhGr9MKO6EeAddS6OEIMShMUjitEVnw+w52CVzS0I2fUoYzGyyBXHs9iNlfp4Bsd0zr75ZU/InmDdYC0x77EAxTOsnJFm6iyGQFmU72TSQwgk9d7grSFPBfNE9qJ1aqMeHjY8PizIlnGeJ0wTF9taNzQ1YESnWLYkbtglZ7IOWviZNj3Bp47rdYE3ikZ3I8WMT3zik6jbBu8N67JIr0LxKdNALHUiyKzwBlH6yq9nMgRmtHm3wvcmaSrWbUWXVUFzplhyyUi5oEi309GQTqq+6WQi3BvmuYDL6DHV5+joyD2j9KzNrA8r9976WPgBoG8VXoxpDQO2TVFt7eit6hmzwi2ZEXg5S5W3WtHAtDIsA+aYxDocNV3sZrwB2HVTW63IEq2zqodl3vM8ocwZ67ry2WXOwVJctvemIoAyig1YEtwwXFXFHk9lEhMh48TEz7kbkpjslBKsyh4BjtpmzMiAFfS2Sbclo7TuFBcf7t9opNegPjcYcyjlSBPu4AZO24eUIGHzMXbJMDTUtiIjY5oniXnBdg9mOJ/vgJ5xuXTUtgJm6J6wrQsc7KEDZ/q1qQRXZVdgqjLJuRyobRuakdZZ+VXKxI7jSg9HsUDvJmFyVCsZYv3WwrkzJ9JkMfidEAZuI9aC4ptkw9x3rEfONKYjsYRaAC4YFpYz8x4XAfiUM5vOdrpc72tzR247SIweUh/09aEGKLEYxKujj6i86SfAcXt3BJvCjXT/rBpxs2Z7LPwAxKAQFYvK4jqAec78BjckzEC6AwLLZzI24/caTKOEC13sTiBgoUvIv6AfgQKV9yQb2n7atl/HkTwOd9EABrBDhI5IOWmLjf4ZMXRjE/UdBjT4zYIqPD/+FemJiAiJY0y6APA+OEBtiCEmarAuAaAG0grmxXe9iktvM7Zr17keWRPsDM/xbQNUjbPf9SIcDUE9jRia1u16d7fDzw9DKTYkWAh1fZjuAaEXEpjQ5/X1XDgOhkW7/XOcn1wZrOP9QCbAw/G52ABHcNDLv2fUpSI5Bb0zaLvfQf3Hqq60URaacsL5MvE6q+FUDL1l9l1Cgsk9tNaOZdnQGhmFMk+4u7/HNClloOqdDKAmmggWY3dZ+nyweqqBtP35dEZOBDnLskhgPClybSpFLTCbWTmxrgRBTUZqzWFWGanLsDlnw1obzLhpTpnl7ebU3Nxd7tDR0L3hUk6oNQO2wToFmlNh/5lsjnWrEh8CsIZpNupzepgbSkTsDrc+yk4tU/ORE1NYOSdqymZqSULU6FDMkBLQ2K7gNE0wI5toOSNNjJpLn9BqQ9tk8mgFhjBq5Dzk5scqldbJFNTakdyBgpFKpL8Ib1jdKmqt2jzZobgkx3Ri/6O6bQhROqDouTnWhWXFuUSEzM0pGdeQWjfaIhjZnZxMjtAUbbp3tt1AQVcn87o1LJlVjxlFovUd5LOaNdarFBOKKcXuw9k0pYSSJ+SsFS/EwF3MWE4sTAAzcOZR1WVwb6zOaqxoaV2NUp2aGFyA87nhcWnY2oru62Djmnf0jSC6Q2y95j6LDrJiY1VzIgKLI4jiep0iePDQcvA9WQ3/HIB7Gi1BYp3vkbYJp/NxdK5brEKml8xYWewQkFro8YyGpz5WsAFAeT55Z/sTW7GMflGW4Ejq3qwSkUP15wd5fagBCnx/mHuYfLsRGYDw8yM8OQzuEYSSf2NOlQNJvjLjQTHHPfZXoU+XQTsnLktMJV40NsMLcyDvUoQrMnUjwmZEbQgNhQ9HQmkhsFcGcPNxRHMoc78Z3OO5K+KDPhtsAy/ZRykeq1l3BipeNn66//eBwxmUo6D2oFwRxznCdP21A6iGKGvEzTj1mG0EHgbqgaiwHe+iJkNwwXxsBtCPb9NcBIX7iff9+fgO0o5alv1e7XqOY172GG3dnH2wGFwJxz2yA/AY9x4Hbcv4/Fv3Qcc82m0dxcs8pb18NZ5Y6glt7UDlxr2twJToxFlSwQYHOns4RVfa1hwlc7M0pVpKNlie0Dswz+pi29lN+Lo0PDwsaEg4nU64v7/H+XzWwkjQE2XdFi0DEkfSuq6Ypol9eQzwXlHNMJ/OyDnjdDphXSVkB+l+fu8GN8dpmnG+3LMiYN0EVLjRVTEkOWfOK66WMGD3t4ADicJApn1jQy8jxWSGERWmxM0XUFTp7GtjSisBGJ5FZNL4MOP5JiRMp0ns1oSoquhOF+CpZDhMjsEVS19RpoRpLiirY02skkky3Wq1YVW0m1PG3flMQXBbARB8EfQYkhXU3OF9E3HrgGWyBqZy70x/iy4fiw6ZUgKj2oT3w9Aqxan0cGElHzU4hX4/OQ/30NDFrOuGVFhlM5VZ4tcIgGLjc4HKgpQKgZruX5eOKgDdVPauusfKltjw92PFetSxbS7dUhob5b5fcAwkMaO78aINUzamMlREkTOuj1emTNU8sbWG8JEaZIYZu4QriDCNBlZ70SBv8iKtVRv6GiSm1LpXCodzpibIj/Mfg+mDANBQOsb9cFfAG2vSLloNRjc6gXOwBsOxr4muQg5zh2WmlrjuYqTsFAXvu25ipWispK7u2/sydgwWf/fXhxyg+M217qZdXGDGpjHeH2/0MZiYPmhIHsYiNo7Fz8a/Jaj0Pfr2tKeGLNgAkHGIhSi+1s1hvSoaEHgagy42LTIGUa1jTt+KrlxqgKiwcE6ayJGLN/cRrR+/O7QtROUhrI3Uyf7+4WtyOPc8PEJcyD9y6QFQoHVB56TLGeIsfbclHFwQd5ZgnGSCrKUF/jTEY1N3RRFsiELWJlJ0t+BKsudA/KTBaLCVQ/onO+4YG6KMd+Y4JjBuju/u6jMciwNGeem4h+BCkDSRb56EYzhZHs8X49lgB2jjLPZziLQgqzB2DgsSExYU9MWRN0PqMx4erow4S8a28a2reg7RWIkNMV2bbXY2g0wAzZ0MWpyB6Ei6bBWvHxa8fvOAlCdc7u6Ry8zTkFkhG08egSwGVb1uG+bTpCo6Rv3XhRvA6TQj54TTaULvGY/XBdfHR0znE6bTTNHstgIOXE4nnO/uxCawJcO6rNh6h09p5OJTUirHbGw2Zts4J4IqIGdHLoYoHGXqlCmd82UmY9VYpQIJf7s6aLvoTasMbopJ+CkresvsZDuCJqOgNhmrKJj6SMBm2FpDtoTz6QzcJSzLglwKEgq6O5ZtxTRlnVtCKkXA6LKPJ9+DlWyGyRJSLmLlwvfCVH3SAQE6uLHX1taRnL48rBaUmNMNyzXK4Z3eI8iAs0LD2BUD3YMcjOult0ykNmtnABUdLRymNSTJXsBHBSOcdvrhtGzdUQTQCY5ocBj28CmFjCeabgo8ekLotThI2ScmZqGjY7g7C6TGysxOzIBl6kbee/5CzEpDc46lJsI5pVtha3jVmKJb72Dnae+otYzUR4iDGTh0GU4G2NOJeEKkea1z//EBuiTq7lH+jrGmxUpys6OJLUE4oR/W/Aissow6A9yUqEw1kxEh72eHhLOtAcZGhb3t2kvutTZY2l1o8bu/PtwA5bhRRlQ5EJ02fbCT6XhQUsT6+Az/7qp+uVGER4Tkom+H9kCbRY8S1nifouYRqe2sRQyK+E4/bK7HkjF3KbT1cFukqeJYnUCKC1EaExADdOjaiA5GhDK2e6WELLQfOocj7WYcvfyOiPgNYJi0RyaKCXaxxdtPx1VuDaXfDltuMC1HkBIUJo2RsAMyvSEa6I3MyA1VuI8BltkKHCUb7QTMTczVnnZJh8Oktw93PFe9svL3gxfRfY4S6g6Tjf8NOnlf4DA4myMrEguJjxEzwLBBugMYigPorMrwluFNXbQxYVsdp3zCslVsq3L/pwmmbqotzJ4A9GrwSlfgYhnn0xmlzHCVf9KHx7FVzRE31C0hIeMyn3E6zbg7z8gJEtpqLhivpWR26g02IecMbBuWZcH5fMb1eiXV745luaK3ivl0kp9ExuV8wrKsWB5X9huaZ5ymhG1b8fh4VcXLhPP5jDPOaHeN/aPWTZuXNA8uMzeVYNbqAiwNvSutUfaO5sAumu3NkSyLPTUka8hW2fAsG69P43EqilodjK4bm/NF5+qY5jllRPdzRuAS4rfGMuwyIVuBO3A6nTmPLAMq2T6fz2SFOsfJ6XRBcm4oVUh0p/uBlmlEFwxA6w2wDVvbdK+ZPkqzLPiTI2W60OaJhnk1Nyyo8FWlouhhv4Nov+FgiqRtlU1VLSwNHDmbetM0bbJsuZHBYKxpfW1dRmfSxORkSJtjW1l66/NEQIhgpTnm6KytVcaTAj1HrXsA51oLw0TO4KqwiXnIaH+Ai9alsRH7KTfl1ujnEUJQ6gXjPBJK+Ab5ralcpK8LEhoojL1exfikhGnOWrL3Iomj2SXXkOOaTU1kGz56se5JQCuWnjkxCZihvcR9nI95GuOFL67tU2J/h6Yea6EtqN5UjdrhN5YOOq8WjS1N3loENlkmcM1+hw3jK7w+1AAlNnoPO3LbK0bSjb5EG65hMBHAYSNHfG7fQ7ifyAnQCQnGZjF2F2pe9j16QN0R+Vucpz4SOcc4/x2c7DvYYDAO1zCQNLpcaHGwaN5PLEylblItXAYIU3TMJsEasDMnOz8Z92c/l9iIA9rF799mbOIXXWxOa1Vamn5jZHWsnHK4JhFwZKhuNnSBytY6joDu9r75zblrlUA3Pr90uKVDbHrICfW3jjruyeEl+6cdgPjxvRjfMSKwUMQPfYy/dUjecJa9HsXLOotGYJWtIFthw0BnMJi8oG1aYLoDlmHesGwVy7qCLrR0b3T1s4mUkSOCJtP3Mx/eG59N78ByrcPV9Lqs8G7IZcY0FZxOE07nCaXQr8eyKi8qXUVr6zidM9r1Km0AN41SCq7XK548eQp/vCLycmbyRXHH5XxBLpneGymhlIqHhyuWx455njFPZ3ghgLouC+rKiprLmZVEdabZ2bruVgNdXiBR2skNJQGe0bvBN5cWh4uqd1WKWGzA0QcLyJ41puksGvP7yByUPKFum5x76eTq7ti2hvNZnrYSjjZ1fHV3TOUEg3o/SQhca0Nvj6OFgVnW/A0mhaFCtjTGZVQWAgRitVedQyeYyezYbdC1pAlsCy1dkSpJSgbKnDEVCjtPp8IUXHPY2rGsVWXjxoaQMwgMDHLEbqT9sxhFTRYSogoWemyOZBhqJUhh12SOXfcMb5WlyRPbPVDIrCnqztk5Fld+yd4Qku+JtB5Zl71PWawio4ISdnBwZQNVB/D4+AbzdIe7uwu8Gh6vD6gbV8IUDIqZii0IbbT9UOzKR0U2LvrHTUWBHNfvaZqoeZJvi99ozfb1K9bYAGoOB1SGPaok5AXmh3UlWdHYEog1PZAwALQQ50apNX1szNSJ2/sAeQPo6P6F9ilYwdEhGSH0bYcd5Hd/fbgBCgKgcENMKTowxjIcZbW3G/YtrxExuh12msjPHUd7/O2HslM+jCNw2TftnVnYIcmRNUnKd0rfYWGQ8350aWYjzI9y2b2mXucleDwefqBu8H5EAy4/XE7vhzTTQaoRlN4urMX4dwzKcZY3t0131gTQgi7tRwM4P7wzvi7O+X2XjtjAd7CkDT6uBft3xSrDJ8poKikt5AC6LBXSzbcfvv/tb/X9X/vCH/09jvf3/Z/FAKWu/z8I1Q5fl6TV6KBOYiozXH2jzEj7u4MsByje7FvHtlSk5JhswjSf4CDbFnbhb968ppregK0+SgCZpU9Qf5BGZ2CzCiBh3VZs24qS2SCvVmDbFPmBUVBrdCeeL2e1IyA70bVRh16E3a4JKFtraLWMTS7njIc3D3jy9Clev37FSA1A+Hcs64JLOiOVPAzWYIaHxyse3rzBfJoJVGYyiG1b8fjwgHVZcP/kCc7nC0qpmKeJVQWtii2h46/BYZlrw7DrBrsXM9h0bYAA0IYXTO9dQs98MDvU1JPRWm0dKU8UmpbCakL1f4E8LFrrZERcYkmlglg0rLhHOrHemiJ5ngcyVGHG0vYsLUB3NgINg9CuCjmYwY3tKrjZkQUsJSNJvG4A0vkEZPmUBOMDR0kJecqAHFXryt4561oxnxLydcW6bDidZpxOE1LZNWnujrpsNAQEGYOSaIXvlWtadz/02yLa8KZz7xSc0kKBaQMDkNOEPCVZ6FOXwxJfVVNJqU+nXBx0X1w/shskMNS6IhbMY00OUW0EE3QXbgqezpcT7u+foW1Af69R1J2yNvG+p3hzpNpC7Mo1CGAaiq4XaraZIn0Tbt5HrUc4BR/W4fGKERgsEoOdrv0kKtwgDdnxU9HY1UfgvqelqcEK0MF7xFYFTfYPh/0EgHuFo6tqakKtTeyTJALxxhDyf8DXhxqgACxhhENOpb6zANBmLz0HTKVmsSEfw14e6HDUWw0A91W6WQYIMRzYCsQEOB7X9v/VxNgpuhAT7rQaqfG3wMlNtK+N2qu8XhB4aUf/AyyEODhyvHEefvgHz657O3wiwEPoTrTpaQMNcHSzAXucu27j8fJNYsBx3yOffdBPxP0bQNwk8A00zyjSenwZGZEUi8u4VQcAajvHsU9mB2RQp9M5fH88l/j8ze3ndaXD9UKdj8Hoev9cGtdGVqqPWwEI8GjBi4HUrGuHK3h8eUW5n5F8Yo6ZazOmXJj2ahV5pmrePGO9VmzWYevGTSRpQeuMnouqF9aVQGWaC5KFuypL4cvkjPyyw6yhVldzPucCHN2f2VsBj9cNU0+43CUkm7gJKy3X5cjaRPH2Hvefd4AeGIZpOuHN60c8e/ZRZLuOPkUmlmlbmaY4nbhpmSXMU4HhhMe04np9RG0V5/NMgDRRWLltG7783nOczifc3d0hTTNTpbUi9Q2tbqh1JT2PwlYFUKQKUuXUOxFkt3VTYMkIEqBTdbeEutG2PZdoNEjwVmuD1zrEqgFksxVYZrfi3nxUeCVVepg75jTDeyMVniIF1QDb2yBYJtgNky5HGlV3tR/mt+1BzGhJkHeNR4KRCWqdZdgFYJfyjmAxDR5WPqrCSfCidU/A7nS54PpIwFamaHfBFE5v3IB77+wIrdDBiNV2AODOaqNoPJiMTfHaHlglUZOWTaJhoPWKvnLt8p7FKnQJTstgCKPMuoXIuXecLAHFhsAZkNZE/h67Dk831FUFlQylJJSS2AbAElKiVocsKfUuEcyNnk1wRCUO++gk6pmso/sG9DRYh6iqc62tOScgSoZjX3M+Qx7Lx5ISvm+pm2xvaGqXTkzzta2iVbJpyNRQdhi8HFis8BeKvapJ3qB9rJQJkVUoRSXsTrDb3JFUJj/aoYDjkz5J5Uaz97u9PtQAJXlwJIbwwDiKTuMVm/ngSoIOO77n5p7tNzWOxRxysCfaHm1nGkbI7QFe9uMMatMV1wtNBH0HQNbtGMgZwWC48og6ydCHHJHzDi2O/wulNo6b8fG3eg/6YEEiWug6d0rZfHQi5lpy/HyAGCZQbsGW/m77O/u4DcFd6XfuFNDq3oVwLiKRYHIGCNfZOW5ZmXFNkZayvWInnlNzH711TA/nFpq+/x9H9i3+++htMiYhGH1B+pxR8jVulyF1G5Ft2Ov3xo7WuRe0xwpXVUTb2M8kTxI2Opss5hy+EByDpRjWumHrG++X0hNToqV8zvTDSGHu1FgRYVpsDcy3P24VrfaoEkY0hGzueNxWrOuG5o67ywWpnGB5Gq0XCNA5hghQxJp1/iGNH/eFpbzP33uO+yf3ePXqBbUipuffOpbrgt4c58tFFRmsxLicT8gpYVkXPLx5jdOJWpik9FGtDcuyYFmeY55nnM9nTNOE1rh6j4q4bmIZor9Q3hk/iKZujaDv4PbZYvq6qXrDxRQJlMmsqzngYbLljmoNGRlMQ3TNNZqThRallALPhilnTCXTTt6pa6JhNUt+W0i13fbAqu3PIJ55pCiC6em1kZrPoWuTURnofDtNE9Z1ZXqp7wGT9x51ishZLR5UiktX18vY3HrrmEC9QesdZeK6EA0DAW5e9M9Mgy1xqDmnA1bkHyUvGOKCgjwVdtOF2GY3IKkgInMMe2sKFJLOTyn4FhNY4zNLHJ1Y8s11Vz2kalMJf9BVMb87WZ9WUdcFj2/EFEpgCzQ2dZQ1Bdd2zseUCKzgjgY1C1THV6Z69jROAKoo34717u11Lq4HERg5xbVlKiL/5UBs0sVlG1VFvTPVF9xwrLEcTn3cp3iF6V8EuS3WZHWV92bwSl1UQxjWpTjB0U7DbA8AP8jrQw1QGNNE9L5HaqQYtYEAQq4CGvo/TWe+4ytR/Lzr4xiGADGxsfngFdIAPNgdHpP6aUB/HBy8GMv5iGoiT2ljsQdiCwakW3Eb1xqbPQI4WEQtB/Gmheok0O8+KnZm4QBtDr933yd5bBq34OYIFQjkgokZG3Yfvx5VTQEUIl0SqZYAUrqkAZTcWW3QfV8k3vqL9+ktkBIsxu7A2G/Ov/n+nrcfPTf+eG+AkV0Q/NXmVlQfJXWODnaIljR7F1MWTmRYc2ybem+gI3uBb1rY5PBoydFbZ98n44hba4WhyN+iAduq5mhJAJiixElulq1t6rHhWOsi6pYbTlelA8tMHZFO4rn66J7qDqSccZpnvPvRj+J8uej+hk5rp9C5wLfdYMo71pXls0XdngHH6zev8eTJEzrM1jo8KPhs+BmY4e7ubmwgJQM2AVPOWFayKX3rON2dkXJCKaZrrljXDS9fvqTvyd0Fp9MJLRFYcOSb+rBsBDCASj0pHM65xOgdY6fWCrO2A14ZlbXGslPTeLWwORc9HkpGs73MduigwubdXKW4NNwq2YFSCE4Qc8KxQWBqbPAEAAgRuMZiFsBvShkOpjKqM3RdOXPj7K1pMhrQga01YKb/U1LQES6yrELh8UoqBzNDR7EElOjngwFMqY1g3qChy/RvQ/RRgkN+MRhscG8u/5KOOU0gRuhAJmCNdgm6PUxZpkSQ7V36DN7b0NrlQuDBqqIQyQLBcLhK8JniU1NEPjxtF45tjXFDB1hHkyjWEelQWB/VLClnOBK6N7S2d353d8xzYaBg4SCbdcy9RDknG3PypmrwGOSa7X+05ofg2GINhpxqk1EHU9mYEtIxJZiWrmjlsbvaApzLbdt4TzL1W6029tlxCX5zZgl9um1+S9nErcnl7/b6UAMU0nnHLSO2/r7vPEKSDKr3njyAHigi8n2r9Mljfw1Gw8eeFQfgJthHiR7za50bmfvucqt304rAhFQjymf+/ZiKcPiwcd/ZFFX0hCAp2BVAEMj1HfrcwGv9hgHYv0OMkt9uujsbcLhXN2DmFghA17QDnT1tNcCEztNsB046s8AAb704GXisNs5XBxO42zmYACjCNaMKpre6p2v8Vmi2AxMf1xngyOGjMgEATE6QN7Bs0D87+0RCo4DlmuyYO08TDOyp0tUDJXlis75uTM+0TLJ+lI0rYgHYldYS+taxbhtSotW224a10Ydh2zbMpxnTPGOeJ9LWbSPzYA2GhpQLfcBaQjZj19bOhXvboheKtFy6rh556QRMyDjNCZe7E+4uJwQwiefJiK8rGqzKf4dLqaLGVumVAbqJptrw5uEN7s/3eP78PZQzl0h3aUS6k0npjru7i4zFEmwytFYxg52WHx6uWF5ecf/kCeZ5VspoQs5ZjMoVX/7yFWelfkpJTJdZhk279qv3PrQ5KanHSg8Gzgej0LVRmJHiPpb9h57BVUrrPdaFHWB5zAkJQLIliUh3oas7kJAxT0WOoEFFkoWjKRy1BiwK2NOXsflyLhRs26rxLS2IKyVeJmklEhsDbo62NbJtudB1WF5NWaFvB3s6kf0zmGc6vDpnNAWWrgaFjU6ksMF0h5NtShrvRhdutBBhdvTGZog5M03jThmFsYEOjRMTpG9SkJhZacU68URHcUuofVNhAnUk+3ogbcso45OfSefYcnempbT09Vh3nL2M7u6e4nxOqJU94KITsSsdklJCmQvgFZECXVY2OIwKRTiQMkHVVPJgciAQcQQesfJGZeJNVXD8HASQ+xorHZDSrbEXJOMcbO5oFajVUTJTkINdVIBOt2C+LwBKbw4rLC8Pdp+sLuQdZIMRSnAUpaBkyIubLft3eX2oAQo8tnNo9+iinNlYC8rvm4ys4o2x3bnv+wxfhzJdAKEc5aGdCBumSWhxAgBYLtfHm7nLjD3MOKn4zqBhbfwuzqofNAs7u8P33uhc9J4W/3H4+W7stV8v4MiHKw1KFYf7cLil1HhEjtyPv9lBCP9u+08PQCDuZbw/rLH38wxAYftGiB3w3BjBHd6N8fdtqiuAZACx/fb6uDbSrOGOeDhFHFJpseH67XXGug/47vwIDxoLKU37YgY1Y+ug/bpn1HXDujUtDGAJaQfaxo64st1ESgWtOtpaYXD6XRh1Ls181wO5Y902wEnltyZfglrRFLW01rCsi8zFOk4zWbi6dZhneGXfYwDD4pxCzQZYoV9GCv4PMOkh6pYRFtohRahtZ8fcd/V+KVQCWmbH7dEtOjEv3nvBw8MrPHv2FJYMtXZu+HqOLBHvWJYrcko4X85qDqfy4WRAMVwuJ1yvC968fIWr0jqlUDDJvj0XLAtLkx8eHnF/ucNpnmFa/ahD3Ouzoqqkt9AOaMz5QVYfVXBdmx84SNZtYxlu2qPZPNm4z5HaCWbJnNR/bx3o3CxYCRIMo7iu4QxNbVGLnkM2a9OSODMl9LaRwcpJx56wbTG+gbVVaVGo4WNQxcqMnAybGgOmKcOQaa4Wdu3uY0OnBX06jBuhCYGJ3mIXFeA6AIRsXPFm0NadLNsmk76KUyb4nOcTWZXElpPJDK2vTNP2hhrpE1Mj1kbgkdialddh0bspghCHJ+ncPGGaZD+8VbTNFDT6MC0LcAJzGeYB82VCaxMeHh5gVgDf4J7Qo3+bA6mSMRrW842VSewNxd5UXoF1i5LcrvWQTAzXq716IZmJpTBV10RVqMZGpLQc8J5oyOc0Ykw5Iacy2KAmJ2AyX0lrtErfjde+rl0ibBtVn/RDmVCmguaNfb2M1UsOpdl6rCsVMEdOE78fkZH84AjlQw1QmFpIN+xHbHLNgrAiZWljYdAgPRQGc4E5gJEBVPqBQYAWZMMhkTK2x2ZANMPbCYvbnT/y1cEAjK3OWePR4aPpl43Px3v4/U0oPvHrb8FFDN6bmwQEa3P8ERSBAftwCYR+3LT3LOLhcMfDG/bS3cPnIwd81KzE4hz37v0/e/tscPN5xHZ5ADkYTEp4x3AhiTQe2TNGHEGZjt8KUSobc9gQPMxq9zMxNg1OGk+9urqtZiTnAt5rkwkTUwWtO9ZeZehFlmSe2NuDHiNq1taB02nGPJ+xWUV92JCniVw32PumiyaG0bq6SxCZChuTlakMe/Tr9QHZmFVorbLKYRMj1tJe/g5uUK0zZzwu1MBoKpipRsvyy90Fz54+wZSjFf1ApQitVHKoqRy7GntXwFDSQfjn8kdgU7c3r17j3Y9+HL/9xd8cpmoxFCiGdDxeH9B7xf2TJ6NyiM63ezS+rhvePD5iW1c8eXKP0/k8/BjmeZZGpeK6bLguNDybpyKBLsdLzmXocvjsm3w/wNQIMI4J4IZu3/P9CfN0lm9PlIuGD41GlAWQ7CjA8AJBb0jORz94h9iEiBQBmFJlhhzif4ELjn12us05M/efgVPuqI2W+BQ2M01UK8EplFpIKSv67QQFicxDVK9F2wuCbTKcrmDA0u7WmtwBTBKRB6Tn+WXdp5zUH0bGcnPJWKcN3k8SYjqmeZa5XlLVi6Gp/XvvHdtKZ9uUgS08S5zfyGqY0D4odRsAxcE0EA+q/kBAr10GaQwA2U9npUh4yihlRplmnO/usT48ICosg2mDUS/jTtflI1O7L09ptzyQqdlWgaJue703lVBnpEgJ9mDc7WaNZ8C8VwARTOxjsnW1MslsCBn+MmQ8HVPJQGFlVVGlV+0O3wKsx3grI/1apiLgwiAr9jQWkXG855yp1+oV1ZvGuPbdW8HnV319qAEKEXuD2Z6HS+F37pAXSo//13oaeg5u0MSoipBs77XStXEkRdWD9z5CD7e9Etkw2JCYkGS27GZScACG09+ebhoipRHHAfBds9H5T0QembjjFoy8XYIWzqhjsdX373COHTBDkX+QjYwU1MBnBwD2ft7pwOjoUx2bIr44nwCAb6Pn0GhA9uT77weTIVHd3v+BT4wliOr07B1D0GbxPYZI4HukumBq6KhIxUzFXgdhMzHI/komjwND6hMjung2Ts8K36iQhzvKNLHkVOWppWR09W7JIC26bZtocpfAc+ainzrSREEgNScJqzQd7KCc2Z8lyYYbpFUZkdeRr88loXaCIDiwLQtSLrBOt9BIIXFQRYO9hJzUL4UDCt2pb7i7u+Dps2e0tM+inxMYRXmDeUOrbLqXU1cHU47v3S68IisdELqilAzvvfccH3v3EyjTCbU2zJO8OWQoU0pGaw0Pjw9wKN2jfjPZElLnuVsiCHq8PuLli5c4bxuePHmiZ9vVYyZhKuxYu20bHq+PmMqEu8uZfYKUGqAPRYLZhKVfmRLoTF2wDUaMK40pnScATNOELIEygRwBb5Ul/16ZUtB6x9YohjY4UDtaRODTzDlRI21goylizPcB2jV5A1QmI7gNFgApwdqGSGuYsXzZ4MiD1SDrle5O8K1K05OQ80R9ihmqV6QEdnTvHVAqIkTnUSoNExOUZAQ3gjwGPTR+tbFmEcYUnO9nJEin0sjqbFvFqORxwASk4MBUFFApRcdrMyQQnLkrVQf57GhjhsnnpRQBSKA3pp394IOTBAaTGUoi87htrIKp3lSVNmF7uMLAVF3KSSldV2BhI/2WjJFOpOQsk2Ek9BOTkbPK1CM81KYeDKTFDqN1M+3CXsDkHaPwTFWGC5hajvRcMnoHTTk8shpSUhNLJ+DtOQ8zvvAwYiqnSWCuOZ0TQVLnmEFJsET2pfc8gmEzLtOtvpWf+iqvDzVAiQZeZhkuND4ennQRZpCXGtMMwVCk2O20f3btkGN7F85JOmZHUH18cRJqSzbj4BppnT5otyPIOCYOufHvjQgde125igcHO9MjJIhF0Q7lvHqFSx97VOypItP57d9qyFpYXcDL414eN/aIeqyP+zSu/i0A3L7Cz+La9xBCJ/4WQwJAeXoxHv72gfZnCrAiBOmoQzl+jQ3KeVQS0daVnWB1XWNhtzxU7eN56z6y0kfiWCcblz0jtUKL6410dlCkpzyjOoWGFe1mgagV6BvH4LKstLEuBVPO2BwSiTb0tgLgglcbydj7+wn94Y2qYhI8ayPOho4NQ5znwFozvFdQEEhPka1WZLCfh8HYJHDbME8zLBU0lcR2uCod/DZK8w7LbJCWi6H1CsvT8LmI1gesRBHoUCSWQxDrPvrxeI50WsxXA9zxhS/8Jn7Pxz+Jz3/+14GZWgO5qzOKBxmD6/Uq181C2jjzvKhPoRdELrSIf3x8xPJ4xd2TJzidTohOu7kk5HLCPM9Y1xXLcsXzly9REnsBnU7ziOBLyawC6hUJhnVZB3tF8AFpKRwFzOU7HL1tCH0ZPNIbTY3TmB5plexWbx1zpjYoqiPayvfNZVZk33A6nRCC/+jLw2oQiUW7o3lDrQ1losZpU6lu9BHi4+jDa6MUNsRLpUg8SrdZK2TrhrEda5nhnR2oY51xgFUtzVAFjiMog9xtcylA0+8y379J2zL0EgIMKbreurNM3jHWq2CwvIpcVLohVodgegL8jfUBLDFOlcFEbxSfl5IJKFTyG2n4EUwakOeMKRogiHGqW8Xj4yPXzWRoiZqqbIWBmT470vopURuCiAX377ES+g3Ol5QNQFdqMg2A4cAIaI6sczSsbNJ/mZURQkepM5xi97apVxQSYJleKSAwzdID1coS/5INngGrsS4YLFXsTsC8xmkicOnuu2eS++jYnXMacoHW2uH8P9jrQw5QoAZGAG/6zmCEchjY92c3DOfQBhuoDtg331Fpok2sHtDqV7qxQzfhTo8ESGQYehg78i4Yi7IdPhsnufMTktfyTeP7BW/jCsf5AoxIj5qJwczE9xo/E0DoSKPz9/EfR50IhNr5bz+w+u9/udI9+3F00oDK2bioOw5Nb8SIBALR9w4go2dioof1HUGH7eDLQ1cr4IUBOBjJpcPNCLGbek3Ee1PUZPHEknel/ciSoPG59M2BntCWTflkNn3zM/OvTY34uHlqgc0ZqLSPd6G5KSVM0wx3YyO8DgAV80Rvj761sUEAKgtMGbCMXAq29YptWzCXCdu6SWnPlI0ZUA7XXHvnZmYUzNVaKRjULem903zMYnwC7FrsqL1hPs+4e3KHMk+ASjElQxAT5dpYMRipLovu1g/VW1GeKm1CSgYX2Hj95jV+zyc+gcvljLqtKEVzOIaoGA0YsCwLIzqkoR/JKSFN9PXJOeFyuSDngjcPD3j+/Dkulwvu7u4O3Y85B5j6ySyh3jY8PLzBuq64f3KPaZrJFLjBjLT2fDJYJqPTwJRJ3egz071gntJgBygSTUBnhVVJExdvcy3q4fJL4WSIFAE2+mu1o2WO3258FsmorWC/Ft9H7ACMRmp9rUipj/sfuqHo79JqZZrImP5OMsSLlIBlGxU7rW8AgiVxPXfR+lKxhv7FtQmxNUNG9oTUuLn2poZ4WuVYcXZbCdnRQ389UjtkEkzHdaQCBA8c61GyhNOZ5cnu+5xPRgHrVjuQMloW4wlnGx89q0gDkakCUhG3LvY2SoIdBKZ1WZFBxvFheyRrmZNs4xtZl7inlRs7mTQCPgjcb2tHzs7xqpi2H7jsIeCH0lIC96KbFSRx3uaUFTCx+jEqM5O1WGgROrDeAVRHLk7WLGte90JDQH1/yWlsAa03sVkEsblkTLN8gFoFRbNa11W95gfPH39rXf8grw81QMGRBYnr5mrGX48b4/tGqLdVZx199JKxdBCginaMJEdE9uPwb59GAJGo4LGYTBif3SNTPqhyOLdoMHdjG6//jGgkuJXjJnp8HV0CuVEERth1KX742c1X+f6eveHb298ghseihPt4jNgM925FN2MwAE+oiA/4x3IATN/POb78xoNAC9sAH8dnbAJWkeJRGkfVE2nca4zx4iDwMXlswIDUDDhEgN44kVNziIOGVxoVJXUdbRuNtNa0apHOYk0IVHLKWOuGXvfknSXDtlV4x9Ci5Fy4gfV4nhXzRPGnO8BuuxL7mYvWoQFYM4oCaXPNEsVhNZ0LIystDtkyelIayDLOdydcryva1pGNKRBLZH7WVnE5X/DkyRPk+cxFPKupZmfK40YjFBHe0bFSBofAsd+HKaInMMyZkeKLF+/hnWfP8Ftf+AIjdxegUflnPPOIYC92QU6s2Ij06ul0wrZW1NYwzxPM7mHpEY+PD6i14nw+U6uDnYVMKeN8zrDzCdu64XFb8eL1a0yl4O58HqCx6rrKlDHNBd5n1Lrher0S+G0bQlacS6YbZ8oqPwWmVDBNGbVVsUwEB3SW5XKWpNyNjbe3TrBQJlZdbBvn33Gd7xly0x9aiK2FEWTMZQF8sKcSN17pd3LRuK2DFdrTd6pGEiAJTUKshA4DEkGTtwZk09CIuZjBclcxjrXLgDuASjTzE1McY9WpB7FEM7ycyWj11iOJtC9BCg5HxSKAjnaI3g1NXgYpPG7Q92DLuA/MckaOdcWQ0Wq4/PIenmbqdygtIFs3zzNgFU2+MObUYFwuF1hOePnyFda18rzMI6PO+ZhmTCVj9ABWIDmAoNF7ph0XTUAsWgLUmHMsyb0KdPoILh2+M+we/eY4NnoK7SPXK5dQ271LWJt2EfLGdK4wJeNMD4E+A1gKcp1B5SFDwKvl+dT6/ycAxUFraopgNWNH+a6Nx8nnwZtjCq35szY2vtx3kMFc5g5m4H6Ykvu3v72J2+Hn/NNv3q/CWkQlBsyomPa9PPhWVBqVPfvg9OhZczyyh3od47xHZ2IA0KCNyOJYdnwLvrqGs8NEqQ+sMFiZHh8CkMCGifquAD/HexLg4AD69+/d740hbLd3caaBzdjIguys1tvXflOi7codS0XMPGn8+lDxA05Ub50UZyloI8oDWZK1w1tH32zQr24J63UBGjDn07DPhyKYeZqGWVhXoUAdLcdZ/koVf5dR2oli1q7meu6Yc8Y0zaRt1fwtS3MxzzM62rhXpHV3l2SWD0IpHdrje6pc4DoZhkhjNfVyypbQw1zKmR6yNOHJ0wuePHkKSzQIY98PRWOQQDK0Su4DJEfUOaUCqHEbAPol5C5aPuaaoaHCkuHFyxd456PvIJfMzcm6NpjoMbwHA603PD48onf25wlLfO+OMrGCpxlZp1IKzqcZy3XB69evsJYJ9/f3SOV2+cspoVwy0mnCuixYlgXvPV9wmmdcTifMpxMCSEfVwzRl5DLLqG3Dti6kya8uUSUbGppFCkIVOZ3Cxjjv8HlhKXgdYzq0BTFvt21DBAtM7WTAmFYMoa/B4M3Uq8tGAJIPZewG9SACjf5SAtalsW0BCAIBFyuncl55yMANOZ+Y9tFGb4DAa8JWG1LHiJwbGquFwO/11oEUrE1Wtce+FmXfx2ZCQq8N6C5nXlVmJsPAOJpbKAR0vauUP37NhwvroMld6gePO157soTJJpQJbHZXnc9jZtqotYZt3ZCSYZoztnqF9xlAQy6GOU1gks+RUsN8mllt1dmTKucZtVY2eNTGbmC6jk7GVefC54KuyiLZWySw6aQr6OqHvSwWVOrWVTXU/bBm6z4c/jvgQsl0PN5WNQfdurR9YNdxLW6xMwDEPQ6mu5q8Xnqt6LqmVttYh13tFJqqBk0g+oO+PtQApXeHV5Xw+rEgSxPGlLdLFFDGBLHh4oqx2cdvO0jvp0OxNqPtg3gVx40xIrxDlO6GW9t6bfvORkvBlJDsIVL38Z5jRMo3BV2GiIRMugk1ieNnRNG12/Z9gxI83DMicwEZfQ/TM3s6Jwb+2Ntjc4/vDPMdVXNE7fvxezl/oiQ4kLvdnAtpXJK749kdIoyocuE1ht6hY79Nu7g1GIys7yF7dKxaCf+Arms1VeKIvWgNXiGjpj6Eo+aGru6l3juubxbAMinwypLDlB2tV0w243I+oa7sy1J7w7KsMJX5hZ16646SaNe9LpVW876iTBM26U9qq0jJxLAkuFe0xm60rUZ/kkgRdPSeQF2UD+qaD43Ufa2kmUvJsMwy0Ot14b3Q80uWUOYJ0+mEUmbS4gCsN9HVDSnkVdi1J73W4IdAM66EXGbePyQ9O/43N0z6XDDnzee6rStevXqFj777Lr7w+c9jzhnWVKqcbIzbImCxrSse3rAXyuVyh3LivSFzBB2/6rvuUDLb29PA7QWm0wnn84UpuJi7Rk3H6XxGmSa0tWJdrnj1asV0vWI+nTDPJ6TsY/yyeWKB94K5FHapXa7wvldynFPC5h292RBIx3ftugsKcEfvGPiouOCz7ixh1/yaphlpStTHRUfk3jHPbNyY2u5cTeq/wXqSdoTHs8TqEW5mTgo/S4Ddq4TOXd2hITaEvjARBOwRcgQ3DCpMAQI1Dlzj4Iaq9Tfpmi3taexoIEgBNBk0CqwJtoYuLOU9jZbIHt4I2x0sjc57gJQtoUtvlZTm6r0DaaLQXACMrRPIShpYGpyLMWWr9WnbNpScqM86G2afBrHUsbJk2DoSEs7nAp8ZmKzrJov8qBzb0LaFDyHPWmeLHDKk8xHwT2M+G7p0ZbGP+QjuDMM92ILNLxQAj0yCgmfTM2tO1+K1ojUWfkwTBcat9fHfg6W3HfTCWKwQ1hQ5qSP2sOQwpr2d7Qz4ueNO/dVfH3qAAtiQnoQHiBhKTlwctBNj0z0IiOJYgxngX81jkRBXEIPgcAz+h4/JvYcB+3FNA4oTs1NhDUVE0IJue9XMAA+BnuOEYjDCh7nQAENiOsSM7jgGAZj2AeFym2S0zRhl+IeIhoX6n/D8fWcg4v6asbKgs+22WUG0mfe33zukQXG/YzEzRYttRI87+ou/bAc0bmh9U9QOROnlfp5QRZaNRTTuu8FgngYD496RO2nd1DNSFQBpRuOpTnCSVKge3FJ3h1famQOGVKI5VsZWH7C1VaLNCWYF6NsQQSbL0gmw/Le2jjVVgiLnphTVASzzTMNcqfcKgNH4tq3YeoUrIjd9traGhHBwTbDuSNbILOo2ujQOFYxSkyqBomXEWACj3FSgnFStaazvzOFYAKPMEjEXDGYskezqrxJg20HdRvQjgbq/IiX0AnzpS+/hG7/pm/HF9EVsaxUjAlWlyE9Dz7ykrFLTDSktShftbAs76XLudjhOM7vE5rzier1iuS7Ytg2Xyx3peC3cUX2XckGemYLa1hXbVrG8fo1cFlwuZ5zPJ7g2q9ZM6bGMU5kwTSe61LaK3hpWGfV1VQLpQjRHEnZmM9w3cSNs5c9sb/rm1PDA9z4zeipc7xKYRuq7dqU5U4rMDpKaLzMriazLA8NZKu5Oqp/POxq/EVi6sxLDJeikGFptJWo9rEkEcTnSuMSoBNsCMrEatFh/9aySxQZ7uxRyvewyk1N5LZyW9Yhbqjnb2YWYQmzb3XbBFgNm1FeEgNUgXSKMlUKxJlVpYTRfoO8xdOTEsZ+ySZDvgJWxH3Q4prDGdZby1lJhqaDkgto2PD4+AkaWAj368VCIH/2TWqsj2EtK7XYFpEjq+qwRsKepMMbPDi70TFMT+KvooFfKGJYpq6w4AnCxPsY2DehpBAy9udZYBjmhuzRQe3c5XWAAlnXFmzcLavuqQsb3vT7UACUozbEx+/jFSIwcjWECpcfgj2ZIA9JYgBIbPzd3iiVTPOT3a1GO2pXQOIwYcwAORoHZytiQQxvjsYFDFzN6HhwSJvoOtzaQMpz1+qwu6oer5IXzatJOg4xD2c2PIv0CGXOxwVX80g7gBSyJS6Ik434N8VMwMOPI+ufe0XLkns01iMu44zecJLgp7SCOuVtVCCpNwWtNoI+NMUgEsKfo0PeFLpiu7IkdTbvBVEbXNVYssd5nr68DIjVUtwqv+2ZZt4o8lUEre2Nevy0N0RuGEfYEpMLcfAhWu6NVilNzZv4/IqwAz/N0Qu8V0SMEBqzrguqMapLZiLCSH6LtYipx5pjo2EtyAUZCtTbM+UwTrsoF0yI8tAQrBTkXRLv5sKEfhqZagDmPgtnan7xpPoxn66TO+8Z0TjUHEE6tZAhKzni8LvjSb/82Pvmp34v/13//rzz7rLSdjO7CgTUaCbbesK4EKPM8K+0htiVltZhgN9aUE07zjGSGdduwiLXZthWXy2U0+Ys5TfExq12m2rFtK2pteP36FR4f3+B8vuB0muEAloUGYj5lVsUkQ68JyarmaIZ7Q4+hFSXIvYma530qM+XZETm7Oxs7lolamFp3AA4KH3cvKI4DU7sFRtSAW2d6AY6StMk7pGMw1I1AuTf2mmld6RLfNSLw6PkCRLfMrnJjNrTDYEmZxt4GcD2uCxwPzvmnKrsk/iUbGzKmFIqFPWU/7PRd41uANNgoi/SZ0iBwAxrT6N3lv4Jd7FtEBRpcPkA+xhZXkWB1XekTrSWhyejs7E2/viRWiYLbkAq41TgCAGq8ynweVaSpgvYAkE7EVAVnhq70LpxrV1SsAvQameaCum3whVVa7aAJi5T+TQp8AD4bIL9S6Y+6UZ8STyuXCUCnU26rw//LtL8FO8Ju2/vc90jFG4Hr+TSPFOb1cUXrTO190NeHGqBsq7w2lBMbUQVif4/oY9+QzZpskCOIGeUfY9HzQ5motz4WO7gPkWo70gWhjVDOiOZUO1oKAW6HjwlJpbqjJ4e10HpoSnpVrpGL1OiPAFCAhBCiqQTN9xLlSPkcN4t4jZ/rcj18QHQPTa6YXqX6H2JHxRdm8onavRwMQcHL5VQ+AzvLwfcLrqnqSvfW9+/fb2MwJg54G02+wlTRrQBw1FWCO6d+Zy5FlShS5HfAxvcAlpmqoQcOeM91nr0FQjMUqMR3Y+QYqKe1jrU2eJOtOOhX0GpFBVX7pZyR04ytbiMPm1LGWhuyA2G8FYZlrQHmrpRNxWniwlHrBssJ52fPcH1sY2HsrXKxyEAKQaA5ppkR2rLsHjvM9XI8RnRdsipH2oZ1qdhsYSVHB2jtXrBer7hLCXfpyWDskMSiHJg4BBfjDvfKaDKmwUhf2Jh/KRG8OYApTzK0kzZCQCiB/YN+6wu/hf/D7/8Enj19hjdvXqD3pMZ9dlORldQEsTu1OMt14RgsfVh3x/AtuUj7s8GsY5oyylRQpgmP14WMyrLifD7h/v6JUpYBEBiVThM3mFor1pWpt1evXuHNm4zz6YTT+cx5WR3ZN11bpt9Sd3R5S5jV0VhwiIehah3vLIU1MXyhKasdCU3dkx3dmDqBa/PVcWjEVemT44fI2alfscw2C7Wz1DyDuph1Zaotegv1FsDEb4K8rj5dxCEJm6zxRyNIzTmDTOQklqRweFJnXK11FtReRyp8lpZwq8eLihetF/va4WwncZpQRsFmhnlHhipbYrt1V4VaJXvFb6dA3yA3Xd0mG5eKcF1NEuBqTz4uieid+ppsBeOjBxYn0uZc1qjjQQpJAS9v1iYO9+HYmkqSP9QetHkIf1NBykBRz6kQotPB9ndgJ2xPxSVLcIilaTJu8z0lVEqIWRs2NlMCzOTmW0bQmC2hemXXYgG4ulWKmksajTpfv3mDVy9fSqzvkG/+B3p9qAGKpzQ6hsYGGIsjTA/C9w0cIH2eFZEOWq/H5NImDoY4HBxg1ANTRMJBGnbYRKp7d1K+DLt40Magjvdxg5JWQB+J5lHAftze/aajJMxgRf64DrRD7heDasfYeGMCBjvhUXmhUz129IXuBTECF8p6GJwpZXXFxShZhBNw5MxjhSV07z7uLQBVBROdr53iu3ACFa0iC3MfUWRK9CipyteXKXFxNh8UfIlI1x2oPiZt8YyoDuhKq1k7aIg6I4c9R8toqPcG7xV1rUh6bmQQEinQSrtqKwYkw93lglevXqL3NMSO6HxfrXJoBSc2oCZg7kp/kP+jjqrDKrC1DTmxv8fl7owCx1QKtnUdi/95nobYKqek9JHBUsE0QwtuXCk3rHWj1wm7GBdqYZxltYtvcKf3iqHh4fE10jwxLaCy4DCCs2BXUkdVl9ke91HnMnQp+j8K0Un9HpmJNIAqATxTUYYyZdRe8YXf/gLe/djH8Pr1S5ZvwwCvMJvoPaE8+8DhzrGyJMPUCzABc56xVUZ/DUoteD6kBxznRMblWjKWZcWDhLdhlx+AaLcfkLlXpJe2Fct1w+vXj3h8XEcHZQMrrpDUewWG5obTPNMAa6sj1VPDT8UMFdHVVz4dSJimMgSMWRFGkqlerDvd94gZgFyNd41QSgToxQp6W/msyr7RRylsdGUebOdhjo1IPJG1613rnGeYvueGMTaavFG/kmj13mJd5had1TvHAribjwaIo/w3MTBKRtOvBNlEgBVJCXSvtU7+l4yeAiUxtXvVX4plFrEQhss0gwf9zG1UxhCY7Gtz70BvFSmzrDl8aXjoAGwK0DwpUAHLmuH7qLVYS5iqTjBYr4BM+U65AD2LocpYtkd+LGv+iAmZTwW5u4IOH3vTnj634VkzGCABH7fD3qF73ppjWTbAO+qmAgwzpNSQRYC35tg2ro/J92yAmdGiwRK2bcGLdcWyrNRdqdzebtSiX/31oQYo59PM6FH0IEm0gML7oByjTC9TnnEg83QoCea04fv0L07CuKkRFSpnjBj4O6HC+Rzizx20wPM+yXF8ryPnPdo/RglEs/t5D+m6u0qVgzHpVKrnYGNMg2pnKLwdKi2CSpHY08YUjcNnAJMGHsFa+FLs7IqrDE0iqnFtPiZ/XDpTKAcgtO+hg6Hq3pkmYTEgYAlTPvEYKUSwAX3CeE8+BVCaxxJz6OpIimbqjsbFoCtiwIjeqbfYKqPHbXkEYLjMp8Nz4L10kC42o500rcS5YRooRNt6A4XEKm0EmZPQyrDiip/NKRY6AozeK9CrSgW5ySQ4JkU0uRRtsrxPKVFwyA6pLn0FGRF0blqtcrHgImI0CGtASjPKuahagz9nx2GalNVa2fsm0bZ+uV4pnvQuEIxhqR30e9O4qL2NSiUMNs8Gy9cUUcfimaQFSPH8UsXz58/x7rsfxeXuHsv1jd7fkFEQVHMsquGKG40T67bh9evXePfdj2GaphFFmwBQSqwC6o2b6FQyOuZxjuu6orWOeT7jIqDSehtBRAQZ+x825NvWRnO4ZcE8z7h/csdUXEpDDG5pAn1OAYtNIdIB8iwZgIBDidU4mivSpMMMalGgDT/ZWEvM946xXQK83jumXFTpZBpLFK5SfNvgYrWiaZ4NDyEbPkvU+IhdasacTjYAZEBaa7eluokVRZZ2QbcrUGRVX9JcSFpDO3oiw0TxbAAHBVgKRrNS196Uzve0r2kA32G8D91C46cUkmBCBKGmwDMWv6OuLTZ7mJrhCWBQmFy55+QsN1gfrNPYG5QSgUBqCLhNgNSN9Tuxbsb6Fl2N4YD3hNrYzZlzJlhqAu2SM7atom4sN1Y9Hq0ExFRZ2sv8W+u83xK0Wg99EderutF9Onot9aFv2tk1zqWCaZoUSHNOt85KsPN8RraMdVtRG3sEZREG5/MJH/T1oQYoybroKh/UfezGbgfKcTAE+t/BuADhhDl0HzgCm8NnkKCVH0FCDme/TlVabLoBKWJhPmKStxXMMX4PoeD43Q5mItLfldMGDlwuHKSKj2AkcoZJYCs0Kq1HPjmOy83PxrDeRWX86h1kJJTBKDC9FCzEjr7j6ilm3WHfAJGed6YrImgj5EjIBIseXxsT9vAkjNFjgknspxRF1wLYG6olhAeUbyxxy1NGKYalNtK7VlT66NQZ6X5dr49sXtb39FkqrM4wbKhORXoyH5UNcEML8WJn3xl3w2k6S0DZRsUDF6UOimUy4B3zTP1Hqw7vSZ1c6Z+BTjGoe8dZ5xUt3M33iqWIhpKYim6Ngr+hPeH39w6sy6YFHVjXDVPOWGuFe8fH3n0Xz549YYmsUllta2J7+nCDjKHKlF4FusoNuxxDjawMBF6mQTHzs1m28NHE0X1n9kopWJeKly9f4WMf/z34b//9FXN8FQCqWDv1iVG6gRtmQ13I3NTOTslhdZ8sIRVpYhLTDwZtbOiYjN2Pp6lg2yq2bcX1+gbbuuFyOeN0OsPRBsBnt2syffM8sZx4YinqulY8PDzg8fERp9MJz955Qht9dFSVCeeUaeHfOzUoUa3y+CgPH80IdbmN+0JmlaBy3DClg00ah1YbWt8OpfkCFAKBOc1cvxo9WCKyrlsEMFxTu6ovSikUr8pozVQ+Oyq4UlcpMfFKbGDuVSyPU9uVEra6jfHjDrI6qahbModysmmsFxSyBqAlm8C1PaHWhtQLIEuE7gt2QWcWU0n8VBt7wtCrKsJYG+cRMVWK4AlKq8e9FaNkmr9M+qhNgEW6nQcxLdC9ywYj2271H/aPHhobgq2RMhfojc7LZCOj4/Wk59/FKMW5M5AthdKD4iE/tgGiY77Gc6uax7017m5pXyOQfJwHNDayHJUBwMsOVLlGcx4kgcySE6b5LGDOo/aS2Qi1N7nlfrDXhxqgwLoW+0DEGi1GYWBschKPY1D8CBGtwyV4Mux78fHlMTBTRIIxrLixwXahFxDRTVQ/HM+Vg/Nw5DERjoBoF4zubIq7IzpNRqoETkbAFRlb6vtX2WHz13tDL5/V52K0D5eFdToCKbE0g1MxUa5o6luhunjf76cNEBWLk7rCIhJHPAdzRt57NYjv1SNia8KHKpxHzWxXPQMooGNjABO4odcOWieQpvXu2JaNTJDAlvckMagBoCGU14atBy1KJiPys7G5MoXGyL/MM70onN1XI89PYyRDzlwMeycdTwGkxLO1YioFc5lIqcvsaT7N8N5QsgCjk/FJaV9st+pAo0iVzdU6UmfOmRF+H+XUwmcEXdlQ1zZy780dW++kg7cNvTvmuzvM84SPfPQd3D0561mFgdiBGtSCV2sdbEKAkhwDPvCsJUQn14jpuvx4MMbkAYzDVX2iUkVUfPFLX8Q3vvtNuL97gsfrA38XKYzeB1XdPZRhGExmnOe6rpimia0BJCxtjeO4lJMEzmSqWDExowiorOuGbW14/foNtrXifDchPGTcIRCraFKMRM4ZU+lY1pWNCa9XrOuKu8sFd5cLcgkwZhJ8J+SJMXnKCRc7a4Pn+4ocPqtSVTH/e+uqCmyqqIj2AkXPehc0egQSiEBFDr9wpCEi3xcwIz0jhqmhp9C36HNG1i5E39TO6LkEOFGlYNc8j8Z0hqYAJdbjaOialPbM6JnaraHFa4fAUdVIGKl6iXM7qxuT0l4c7i4htbPbeJRipxDnR5B6WJV13i7gbzJMcZDJysGKwGFZWkZVUcU9Hmkk7Oyim6oCk2FMAQcbjSodDQgg9T0NMwzllLpvYiWZEsu8pxbpvQ5LTb14gKTmiVxDCeJSayNo6o16olwKTI0k3TuKRPtkWgAvHBtNPaOyAigeYx3jfj6X0Y8qZzUNnaKTNg0e+Vw+eIrng78TwI/8yI/gD/7BP4inT5/iE5/4BP7sn/2z+JVf+ZWb97g7Pve5z+Ezn/kMLpcLvu3bvg2/9Eu/dPOeZVnwfd/3ffj4xz+O+/t7/Jk/82fwa7/2a1/LqQAgc9/g/NvptleJ5dG9oTrbcUcZXpUPSe1VHWKb8veKQJW7dP0BAnAogWQ0jwomhc6PNijKnMNQa6evCW54DLMONtAi6rQEuUKqyVUG5GauplPQpANRbdbfCQJnDZaawAmPb5mtuqHjujW2Fk8NZg30bOd/W0TypkZ0STlJJ93Lko1Nf/dxD1iBExs374mlzuMm3avUUCZ2rGV3S/X1yI5cgFyAaQKmApTsSKkjF/aAyMVQJraVn1LCKU845xknmzB7QakZUysordCQqfMUkyckK/BmWJeG9aoN0QxrXeUrQtU/y+MEZNYVy+MVcMM8nxi1asNIWSxC63Kz5IJcygmW9tJXd0cuaXSuNXOs28LoI2WKouNP54Lae8U0ZzXWc5zOBedzwelc2DDPD9bkG/u2cAHkAtX67uyZrLCtucrX9xQeN7G2VfRKYHJ9eMSyXFEbK2ru7i/4+O/5GJ4+uRcz1wmgokQYuImmIioLwDycekFtj6tMum5tgNTeO+eocyGkkLgOtgVQ6nDoDzKu1wVf/PKX8enPfJal2b3L74Wgwp0CRUsOS45UNMZALRIArMp/12gUJ30FgZ5jPrFzbs4J2YBs3Egv5zMuF/6ZpoxlYQPCdV3FnKTxOYqATT/LmM8T7u5orX8+M5J88/CAL733Hp6/eIXrspFxc6j1QBf7B8zlhGli5+Wc1DQxcV0JwSngqG1FbRvWbaUpoFO70FsF0Ph+KIAy6jia7hdF7RiRbKTJ+J3RRJJBRhN931ROCk9AJ1CuVfbKivQDyO6VJNSsteaotQ+TsoAmjr3KqAkQDfWaJVVtJUx5QjF2xzZXx3chHMusaIF1CZkngcUyKv2qPINKYTNIBniHVIzY0/Bq6j3mKedVVFjF3MW4hkPUFKmgFJpErcmJzyEAxK41hCqc1DsIeQRqtN1XX6SUMKWEkpjEtqhOAv2bcuYzyylhnieczxPmE9lCxs2udFKs01o/vGMqGfNMd2MGdZzvpSS66uZgTtjCIScC02VZcL0+ImfD/d2Ey4V/6KfTULJzTc8d85xwvmTc3Rdc7ibcP5lxuUwfeI//mgDKz/zMz+B7vud78O/+3b/DT//0T6PWiu/4ju/Amzdvxnv+1t/6W/jbf/tv4+/+3b+Lf//v/z0+9alP4U/+yT+JV69ejfd8//d/P/7ZP/tn+Mf/+B/jZ3/2Z/H69Wv86T/9p28FoR/gVWPgN244Ub7JPhV0AQ1vD6ZiXLlk5XzdURtz1s0rN3S5p5i5gEgb/zbRLJHKCbYk5cTmXBljsRwbeWqD0XBrpIm9ofXKjqp1I5XaN7S6qoEY//QWgivfr0OUcOQwYiMa9tc4iNn2GAGKUfd/W/xe0WCwKo7hGnhU0NyUqwFgSiuDJnPgDTkMJx+TiO6YUX9vnYTsnCf+KRNKLphywikXnErBlCnknHzC1CdMbcJUCUxSzcgtM/JT5NQkcs6WUCKd4cA8n8bm55DeZDw3kTYbPU+YjnClphpgBUCB+YS6UfTKHHvfF1mnpiVqslOKqgbXghMOoYxks6hblhRTLDxNCalwoUUCU1zZgMSFdV0bvBl6S1iXRYxKQXd2TN3Whu1akY2+LAMkl6gIaah1G2wYPUMyTvOMZ0/u8PGPvYOPvfsRXC4nOFpsD7wGgQ92ASblvDf8OqT1DNhqGx1cXVE1X5wH13XFddGfdUWrnOutEaxQU5SwrPQmSeoT89tf+ALKNOGdj3wEtXW0XlH7NtJz0TE57n/MRyiq3Db6TFyXBdu6qUqCxnW8psTxNza2aIzXkI3i7MvlhPN5Arzj4fVrMirbNgKQJJFjAJec2V/odJpxd3c3gAoAPD4+4vnz5/jye8/x+LiCPX5UYaT1aWijchrjt3UGVuErM5UJk0qi6TRL+/1UoODHyXK0queRJTLd2ZIdVu5CUpYNm3QVaYAI1bOoDJn6GGNZ3dijh+6lO5iFUlo6Ab2xj0vvhi7befr3VBoaquVD9KvyRjDElEhhCwAPIBMaDLHAGWIzstadxGqlAR4zwowxujw3V4O92m5WxthHWqu07u8C4bB9KY1ZIvbW3chsaD9gxNJlUcH1LlqgsAlglgBd+0iSm6+ZKg2dgl8HktNhJo6TU8ZUpsHYdbCrckdDKYbTqeB0mlAKWYws8Eyxu2HK9GJJOWE+zbi7u+A0TyiZAWFJGPM9JwaK53PB+Tzhcik4nwrmkjHlhJIN58sJd3cnXO5mnE4ZUzkIjXuDoaEkuuDOU8JpTijlQFn9Lq+vKcXzL//lv7z590/8xE/gE5/4BH7+538ef/SP/lG4O/7O3/k7+Bt/42/gz//5Pw8A+Pt//+/jk5/8JH7qp34K3/3d340XL17g7/29v4d/+A//If7En/gTAIB/9I/+ET772c/iX//rf40/9af+1Ac+H4LUA4I3YGdAHDgohgNUxMSIqBfoSMYSQEu3eC0+46Kux2Z32KzNooV62rdzD8muxrOY7+Yu65BA8aoU2mEAgpoNVfRRiHuYIeM8+OpDLX64O3EVN9fjb322A3uPEYsF8fDGEdH44ThK2hxSU/s57eWlcR08igOydU6WBl19uByCjG4wj94UfH69duTOCpnwWEA8v870FHt5yf0SwGmeAQDLtg7q24oqOBIAJNrYU2EHiyhfIi+A+dMm8WwYE+0gLPrtsEII5lj6hhD7clFzwIL+9tH+/XpdUKYyUlEAF5+g0ZP6a2wr9UUlEcQt6yOsFJj0LnF/t7ogVSBPaYDmVrnoR6v6OI+UEi7nM/JUcH9/RikZZWJV2ejfo1yyqUQWZljXZVRpANJggKCrVYEZVSn0zbVhk62KiHc3UaOhmVlBOkgEKToO91dWsWy14jd+/Tfw6U//Xrx48YKdoM3giUDISuFzbw2llPH57kBX17nWGPW5O87n82AMAGBdybCUwrE/TRPqVrFuKwBqRSxnFPnVPF6vQwh7Pp9xuVzG/Yp5cjPukyHnGdNUUKZEH5vasFXa6E9lwv2TO5xOEzKMOiQQaIaLqwOYZgoLvffRrdg73T9dAc00nSm8ltOwJilaZ7fkMs+o2zaATgWYhtQzbQcAnhNnn2oNkXIaVUFKkNIsrFXU2tRPyQcLAXRgw25eBglOO3/XXR0BK5CMpfMGwFR6D4DVb4lnEGLNAUCwg+RoBcC+MBjAeWStBKJSKShg6o9WBNTOuEdLABN9EmO8A6hMacFlZwGEjXzIEpkVsl3AjKyyXbKJOSWUFKmPAopcu5aSfW1P4WDdgeqV0EyBJAOrjhTXop5Y7k3OrUpRmoEf4thlV3S5aSdTGpMgNmfDNMkZ/DQjF+p6LFh67UVTKRSXa41kU1SaVKZMNjzr/V2SA8DRWtVclp7Fk1i74z711V//H2lQXrx4AQB49913AQC/+qu/is9//vP4ju/4jvGe0+mEP/bH/hh+7ud+Dt/93d+Nn//5n8e2bTfv+cxnPoNv+ZZvwc/93M99TQAlKQdoZizXQkcwjVwktDCOPCfFjciKBDwAAY+3D+x94z1u+u/vrRNgBRQJWn//rT/8IBw5U+YmSwU5qVBg3+8tko7jZ/FQfVxbl/fA8EkISnGIVHFzbbfXsovnklOEGfgt9CM3H7RQsAQo2y/ubSHsXs63L9IjFaCz4zNr/JexFM/AyV5qgXmmuHfQsNR/pJRZieTBjDGtw5vi474lS1xAc8ZSF4pHs8F7k29GIwhwR86TJmRCb5xMLAvOXPyl83DpArr8LQgiuCDvHXsbmRjXRi2VPQAaW2Uq5FtvOJcZTB1isGQcsIZuNBFbFzrT9lYZ+Sltwo2LlRjJGpZ1wbosyD1az5vKRXmP+IhYnZFTwt39He6e3CMcK2OR772xuiQzwlyWZaQy9ufK8eCVwtlWHduyEtgo7QSPiJybUs6JPjWlKO/NW5ISF7TeXOjZaawGCZGVrnnv+Xv4zO/9DJ49e4ZXL76IIi1XMKGcIkwnJJVFHxoSMTLufbAefZpwOp3GPYogIJc8RLClFIJWzfluhpOdYJZwvS5Ytw1v3jygbhXn8x1O84yDFnmM2wBCuWSkfBo+KttWxR6tePFiwzRNZGpOZFqaDLCoH0goeRrpgpQ3DRVWUnRtTly7CkpxVFXk5FKQR9WUA4ksROsUejZpGwzQZpOxLRtT4x7arKZKMr6i71eUI1OuZWLFQidj0mxEl236k0BMLVzdjDvt+7NCNUsJFs+kGNdrMb4lT2RWzJBNVSopjeDRUIChB4t1EwpYgV6d7Q5mztluBisZUaQSYLx3MhjRm2scSkAkNIAJYfe/s468JlZKWWLHXxiDaYOz2zP2YNdwDHhN2rNY4xuq74xvik7MDqDv9hpmCU12CjlxXwkn2Nzo3VQFqthLaMJ8KgoSOf9ymrFthtUABOOSwh2ZsoVkwKlMKGXCsqzUnmUgmcPBdamM5pBMXY4qwZzRSyII++D45H8coLg7fuAHfgB/5I/8EXzLt3wLAODzn/88AOCTn/zkzXs/+clP4r/9t/823jPPMz760Y++7z3x+bdfixp3xevly5cAROmKThoEiYVN/Q4C8vsifVfZKhCD2N73ntjQj8Bg/93ObuzHVEk53iawduZFoirZLMeACb+W2GgRJcrj8Mcj7mXE0SJ878RsNxMTCKByZD+OPxdrcXPtqjTRL+k0+ZV8Xm7v0/FeAtiFZ4P21DlzjWS5nm6WNQc8g9KVpIhH4MR4na13WZ/rHteDd40Ek2G5PpWM8Jkpc0F2QykAG+24WIcKdGDKM1Jig78a/gkwFAszNUqsKUbsg7mgp0ceFHtvnQLITi1UpB7iWSelDsqUkRfD6TQLpLFkONpFtt6AbqO6olWKS1MiK2hy2Rw9laQZuC4rsFSK1U4zxZKiw4PWL1PCdLrgyZN79htBgIhD2kobwi0TsPdi4ebDXDYErMIZ0nIGWkUIpgMdRTTrrs3IE1pK8DJRdDelQdnHhurSCJVsaK3ixYvn+PjHP4HXL55jVIqBlVRkTqYBNmi9Tq2XAxIWcpzGdeScMc+zSjmNQHOY6xmyTYeyd3b2NRjmaWJEvEzYtg3b1tDbA+q24XKetJEe7QR4/+ifQhFuiApb60Mfw2NteJwW3F3OuDtfmBoRqwFv7C6bMYS6yAnnuwuK+rw4pIlLE8XRlU6knD8Ol6cQg5p9Y3eTVwp23VywgzGHCSIPc9wA9ChlJTO5Nyzd2Wg+H82lSgYkNlWXn5L1KGPYdRIxr7vpezuQwVQwBJK3tgGNLQmOnk52OEeDAT3zcjvbQ7SuTs2Q6WKK4IZj1gVMUJWucgFFB9cV3xkbDnEfbRe8Non8OaaYsuG1ImPMpwhOOwgQKS52lQMLCEkMb0mViwZUsPlp8gBoYV4o0NX3KsykwLBZR1GxAaukTG7FLN3eeuX6k9iDJ017RWgaGppdj0bfpITeE+CsFoOOH4C894RcDdVB2wHvMC9sRdA/uLLkfxigfO/3fi/+03/6T/jZn/3Z9/3u7c1+L0H9nV9f7T0/8iM/gr/5N//m+z/TN/XkEwAwlgxGuWvcXIsNPsI6BLu2i7ZicOvI+7XofwPFjt8ac4Xct338IjbrXfi3p4Oi9Tcnxg6qbsRWfgRG+6H3+6TzOp6rJuduOX979uP+HOjcoV05vtsMw7vFgoYHXCzFQZHyFrMUCof4W+p3ULlOHtRAjlTKcjekRsFd6gmpaTIj7ZulAGh3x7bJIt4VOdcNOayuewcakEDdQu11CC6L9AgpszGfd1dZX0fOBR/56LtoFXj+/DkMGV618BVS6AFIuEgrzxz3rzUKNxtp9eQJtRFIW5oOFHRVmS3PhW3gITAKrFsbwuo2hIdcGNu2MfpNsknvlRGKh2ssrzUZSwxra+iPC1IqEvg5aq+YSsb5fIfL/T3KPA2tQ9jjJ7nwxlbBVA+/8/HxYb/PCNFzRm0b50E+eCVY5NrLgXVJo3plmmaELTvB9XE8SsNR2Dm6bhu9a9aOL3/xi/imb/xm3N89wbI8aqx2MWsdOVOAHo3uAMA7S3R9yIR8AIJ5nvVs8zBtg4t9cYlwO+9rVKhQP8Zxc7mbUdaEdKWObL02tLbgdD4TVKt8f6RSYxyBjFIpZ7hz3CzLQh+Luo1g7HV5g6dP7nF3d4+c2e/HWkM1wzQVTHOBoyEXHy7J9HbpI23YRhpQ1LzK0Itl9EzBo7sEtSWr9MXZWqAn+vEoGp+micJmj4og9afqncaOcDSvqlKR7kQOv2F10NTVOx9F1mIeHC5L+i6TxEgBdwU7CT3x3nWPBH5WN28uK+H8Gm0uLNZapefMyFD0lfMuG0XIrWIv81VFZ04AMlM8kD6IFWP7WplTgbAAyNOQnTVww4aZUiv7uimicIj0u0P+VGBhQ2vsGWQRgBgshLXh69IarfUTKysYBEEu3ft86lFZpJOMprSW0hC2mwBLE9CgC6zWAqf8IYU7GwRYvElfFwrNqAKN7yQga6qEND17Ez1kN5mIr/76HwIo3/d934d/8S/+Bf7tv/23+Lqv+7rx80996lMAyJJ8+tOfHj//whe+MFiVT33qU1jXFe+9994Ni/KFL3wBf/gP/+Gv+H1/7a/9NfzAD/zA+PfLly/x2c9+liLYlHbiILE9d7ID4Bilx7cswgAQ/fZm3bIq8d+mTUI3W8lGt92munun5sAVC3s4q4otgUVjTQwhFbQwJz8Ak/czMxyAIQDD4T1dp+oII7lIAembAr+M1+itoTcnDda9t42Pv5kOCWCzAygcoIouFUctDdM5IAhxQBaK/F03ZGSknpiS6HEZZKBEDMiWxtGrY1k3LFsDTNqMhUZmW2u4JEZ7rXXMEwlYsoqcaFnnuyx1n/S6J5Yyttrw3vOXuF7XscAhFnvWgTJv6wnNwgOEv/fqqmTQvVelihkoTFUZMbraHHhlarFLDOhkPNa1jt49KdHwbb1SzLpiibVJG2cfDEp4jqRUyMYY79e1boBvKNNE8JoycimYzieUmZU+A6inNsY7nyUfFAEJ8+rhqMrSay74rW6ieCekTmAEV9QrAeoYz5DWSjuJWVIaqaF46F+kleky6csJwITeG7at4eHhDV69eoWv+72fxS//5/87JmdlmJmj5Qbf+F1hae89Irosep/mU/Ddz6XWimlSFFnb3sG1VkzzPFINLAHPQKGIt3tFtoL5xLLjvCZqWdYN21Yxn0643F3GJnyYfQNYAvRymabozbWO+Uv33w1ffv4Cr9484HK+4HyhXoiNBysdcmWbnmXrn3xCSx1uKyp20TDHJgCLsvnQnBW4dW26BlgW2EsUwaoaJkr9k6XhdzJsG5LBk1yFQX8SZFNasY3CgRhLKRk73yZtzAN8R+Qfeh4MxtDExLnWB26eXF96JeviHokcoKQydBkEwXKphQ+NFQ3TMs9zziMtFOO2tqYWEPRTQa2DoXLweIaMkljdEtWhlB3s8ylKyWM9RXdY0Z6hcRDFCcmZou+NgTYAZE+7Dtm4ZrmJpQXZwQwBq8O+EujHcoIZdS9ciQkXsyl4NqaiUgpJgSo0IxAjXMOUd22hQ+k9saxd5c+hUYFXpqKajDxzAWrF6Kb8O9nxf4XX11TF4+743u/9XvzTf/pP8W/+zb/BN3zDN9z8/hu+4RvwqU99Cj/90z89frauK37mZ35mgI8/8Af+AKZpunnPb/7mb+IXf/EXf0eAcjqd8OzZs5s/42VUNiTGzwOcGDoMjQuw7fSULgSRg2AsEBa8tv9tx5/toGLfqF3IFjr2vjkf84uhuxDxBUiUFaVojPD475tz1FUQlOTxPWEpP/60LmGY1PYunVffGRP3EO0eyp8RdHAS4o3P2sg9cyF3Kfehlt38rpgQcRwb1z6WLpgn9GawRrYk18Ty4Fow9Qm5sxonNrUm1F17x1Y7ttECnFE+c+WksEueKDxzE0Ch18fWOrbu2FpjdUBjE62IkADDWlXa2YEvv/cCbx4esW4rgiMKQay7D5YmZ4KsVlmN0DYem/0sJDpsVf1yNlYBuEtQJzBgzKlTwMuf162hbk0MkaM3w3rdKDxMeVQ6bJVVP6WQ1aq9Y2sNW20DwNWmXhxuil4d3RPm0xmX+yfD/K2N8cbqpaBlA4jEmImqunAKDhzjjdboTdUXXem3VqVJUCn2KAVFRPeNBlEazdHkzfXfjggeCPCaenaUKaN7w2/85q/j2TvPcP/kCbbaJEpkJRnHKMdMiPLCr6Ho+aUU4xO4Pj7ynBvvR2sbuw9vm0AYFPlKt1AKq/VKQSlkhHI2nM4TzpcTLpcTykTB7nK94vWrV1iuUXVlI1XTD2tGVBKWknG5nGQIN2GeZ8wzHYrrVvHq1Wu89957eHh44OaY6aa7bQ3bUrEubXTfnhINvXKZcb67x3SayQolG+tbbyZ6nqW82SK9uAtOcwGvM7OJY5QmszMxCxEaKtJkgMzyzLRR1+jpQy+F1riRNiP7kk3CTO+7fkvaIUb3/MOBYXzGEiJ3BU3R7K61hrquKh8nCGjbvmbEmuwytKxbHd3ImdHVek3PCDFBAtwQoxfCcR0rDPAiNgz20UBWpqSi9amodJudlLMCVaipaDCxTHU1jIJAZ6AdvavgxpRnlx5JrRZMlVkupspZiw9zGbupxYaBmjmDgKOlAfQGk5JNf5hGLCUjG8+75DTAbqS3qV/Z7wd67BOqpqUp1cggJEusNPS9x9UHeX1NDMr3fM/34Kd+6qfwz//5P8fTp0+HZuSdd95Ru3LD93//9+OHf/iH8Y3f+I34xm/8RvzwD/8w7u7u8Bf/4l8c7/2u7/ou/OAP/iA+9rGP4d1338UP/dAP4Vu/9VtHVc8HPvmSRxdNYGdGyDiE2RFTCrtV/b7QBtq8EXSC0Tzxu9A7cGAvfDjHdictmcPs7aAA30HKES1G+gJ4v1LFb/4V1tJ75Lm/5Sh2JdW5l9bGefI6uj4PIWiT+6DpvxNc+dHRfRPyYsEOPjrIWMYrUh77uQZrlAbflFuCdVMO3/ZSu6575QImraF51WQFamcDKkdoiQ7MUmMpHZLU67oho/meRwTaIC82tM6ce5T3LeuGbXVMaUKtHQ+PVzpShn9ICFbTweG0N0QfHUbYpKpLomtniOOY2lDeGEoJZR/lxuzQWpCngtYrb2rf1f/b2rChYV1WgpfW9F0NaZpQ5owoU6etO1XySOG6Sd8GN1K1l8sdSiq43F0QQrqI5jgCOQZTybDOTsDrej0sRntKMKWE7Fn+QbsWJ/oiTaUcPEzUJA92M1aqAMc0nbXgsz9L1T0MQXHYBHSd7zTRkv/Vyxf49d/4NXz9/+7r8Z//8y8j7Lt7d260Su8YknyEsvRJUd4N0uRGHcK6btxIDZimPMBCyiazPd7npHJkuOF0Og0dS90qcp7pGSFh4ZpXeq+sm9iOFXd3F1mCd401jFJMagY41k4nAlf6jhS0FiBwQ60dr1894M3rR5WHshFb1xhZvY/KjthQp1TQPMMnprbW627Q1TpQkxFoyVxrXR/hvdEZdyrSdB3i6JyQpwxTl91cZuSJLRKYUi8csxI9R0DQHWgKkMgyTNqJKaYcFSEjRbFrGViph1FV0iVspiGY7Wu3OkJzU9yAzvJxzrtdcyKiBO6G2nsUgY7NNzZXpmDYJoIg2ke/rU3soZkrQDlwyiLs02Cd+GP2xZHQXSLlfrOW81736OsjoMJCAr1D68Q8T4DS2dSEqSwa1FuGE3fId9hiZTdrtMxgnlGsNJp5HmARUHNFbgDjGsZaAMjBHWJETUGI9kaYnsVO8NNJmZmIHaT/7q+vCaD8+I//OADg277t225+/hM/8RP4y3/5LwMA/upf/at4fHzEX/krfwXvvfce/tAf+kP4V//qX+Hp06fj/T/6oz+KUgq+8zu/E4+Pj/jjf/yP4yd/8icPZYgf7NU7ads9aueLEyMoZo2YEd1jLKIuvn8vS94TFTscGd+mH+wDKprdBZAw7B+8pXbHmY33H2n15nvKxESVud7HyL/voEJIfrxfQMk86EcxN5x1UNr1cEXB3RknhO+N/0auvdueHUMbC824O2yiMXhH62Bu0TJy479zT1E7RfErWCbsTqwYTfy22kYZrkN+D3FO4zl3uZpmVtOMTZqphD1dkblAhhg5npcTRLWl4nqt8GooJxuGYikrStf3mLHcLxraMZI3mVXdjgMGX1zY5pJRitMpF6yOOk0zRnpRWLljYzM+S2NMtsYFFEEv6+A5JeW/MfwL1nVlWiexLfso5UNCN8dpPuHy5AmePn1KhgTA9XpVGs8H2Oqy7Q8tyvV6JZDpu0dEHuWM3HQi+mndR6TbWkcuBe4VdV1Jlad9LhtCU0AtU/j7RJ+cqEoabpyJ+q7JyBTAHblQ8/Lrv/7r+D998pP4yEc+ipfP35PnCY0GSzmpr5HYjyPNbxwfXYDFu2PdVrQrn0PKwDzPaG3C6TyNVA8MAjssF465HW60rS1kLJ2l7UWl0st1YXS/rHjdO+b5JNO3aTAnu3h+X5NYXaSeRjWTmatld/+sBHqPj4+4XC643J1ZHeUsibfoNE6IPNi/03xBvzQ8Xh9wvV7RHjcsWwU2qFGkYVkWGOgflPKEbh1WXJVekOaC+qK4j3E/tlZBDU+Ir9NIS7D5qkTfvaHLFp3OquwlU3LmOAZgmHQMVYXBKaQfayIgIxat41BDS9kBgCmS5pVpWE/8XgTDCLg1AXRDuM3CuHYFq4He0cMKwMUyJLIHrbK7NnJCa4cV+RBIxjUctV6msBEj+HXEYjsqv7gRcCNvLtZKiprqtM+XgzrnE5laWOhJdsFwF6VeW8PWGyY1XERSAKm0U4hcoTTstrIlQYJhdAj0XetoYsFiHUzaVyoQgi8Gt0ZnX296TmawrwF2fE0A5StvurcvM8PnPvc5fO5zn/sd33M+n/FjP/Zj+LEf+7Gv5eu/wnelHalF3o//wi3EiCoTIDxIopPo8HywOMZhI9ffQ1B6SN/wOzEi/7EhHl43ixB8iMEC0OwtvfbrASCBp6A+V9bxnhRfDC66fE8eULUIeIXvyH5vYjH0UebHcjCQQUEbiJmone9Llnc2SGmgIKEGaHIM06LUyJaUnoefgUs1D2cKKQmo1MqeKW47IAmaOc479ALmCWXihs8UCjezrXXV+ps0fofIxeOZJNS1Y7lSA5IsY1s30snJYDma8PmoBuJFJjU4i3QgSDU7PQzMbTTA8sQoHMZOyA7gdJrH5tZ7x5vHN6R+pRlovaufkCGEMS3M+QCV5KqUtDesK515XakN+rlRU5AsoYuuni8XnM4nCgBbZ/8T7CA6AfBEz4gEGyzZPv4c67rQ+E7RNdMgO+3N5yNRbmuKttWPh77egwWM3iFZC2bbKhl1OJKa6ZlBZd/RoEwbWqOwueSELSVsreLLX34PH//4J/D8vRdwEVHV2R14nme5qArwYK/EYH+TtIvbERucTNLUyZd9Tcoo92aUTuDOqp/Esstk6IkbxLZVwGykzJI+W7eq9N0jtq3icjkrAnalQRyRYh0sW9opdaCgFDIGLE2my2/vjseHKx4fF8zzhCdP7uStU1RNo3neuUhRK55wPt0hp4KUrjhJtFqlaQkfmTIRoBHsu5o7AgWNJoo5D1k/fTECt3MhTGL0HPscHAJWYx8v7u2hBaEYvtUKV2k8lDLpUUHofvPfTem62tXLCJxDJp8UuETjznQsAOSJaxSFvW3MCbI8zmobEACaA9HCpIe4N1ItzkWteRvi0BGo2s44jXETgMG55lsPH5coj2BKke8NF9o9XU/Gjak1uKFtDjdW8BBIM0D1BDQRLkneJ2R3K5DI9HtyiVoxPFXI3qiCTWL21htTRaq0I/MRbyeVk3RNHvtrAiYkVIljw++qKZ1HC38Cow/6+lD34rlJnwRcv9mUI6+9C4gcNqgvHwwI9BBiEw92w48H1+dxOD4A7KKucSojXfT+apf9dH38bM/tZQ2EPZI8Cho5O/c0kak6xkRT7Dl/fgMv+W2gFYDE4LYDjkD0pg0LFuXAgHkg6KR91IEWZYlJmyyFpOF+WHpGU9TUncZZzV3aD7Zp7a6cMarKan0seknmRtTDAFNmdPnk/h4vX7zENM1qXxB9O2TWlTOymyp2WD63mDQqVTRtULmo7EORTJt7AjVC3Hy4cR/DIcing4u6d/qKTCf2yqFMRdGO7Z1zI1Jat4Wgb87juRnI3sATem1odUNQLSyZ5Tjozelou1E826Hy3oUMT8osf81Twd3dhRS9O43HwConYVilaASYnTqV8BSptWI+sxR2EnDbthVQaXE2VckI0E8lY+uOBlXmpDQsy4fux0FBu747CUDEd+ZcBAAqvYQEZgOAd+/DrG7dOr74pS/hm/7334T7J0/x+tUrtAYByz4iurFpaDaY7ifLQ8HSSmd03FUFQR+bgut1xfkElImbdddxa2WK0WCYphnrxq7FDFAMtbpSiomdoHNGzRW2bljXDetCbdFpnnG+nNgscICiPcUxxr/6rFC4WjBN4bjK49WNfkDXa0OtK1M/93e4nE4DGG61EXzkSWORTNLlfEbRfb8u1xHhB7vTW8d1ubJKTc8xJcN5PiG3NHruANIS6f633lS0Zxrj+iMQmgWTXYARBqW9VCUj4b+7M3hp+wyMJpkcZ6YARc0HLaOo3PVYTt68Y1OLiyRzRLIM+7LOe94AVJBQqLCeMEXHZ4EwWNKWEOumQLQ7vFHkTcZFZndlFymzQWEbbHcAPNfYjK0sejBFNSgUeI1/C1OwxJlVkSEIDhZGFpGAXJ0NTEcjmVJaaVxDkCApMgTN1T+Je0GJlgGd+slAVZbpamuxh4FKyW4O5EhpqRpQa4ZlejdV++CO8R9ugGL7ABiMAvYSzI5dWyDOYQz+cEbl79IYq0S+b7NFB7DzFc/jVvgTrE62fHsc7RABJHp3TAd2JKjwGyW4zvGokRnHAcjDRB5wDPIdubsGIMa9EVIHTZoCrLFfx27Lj7gPAG3le6bAKY65EvKXKfxeDZOVwYBs4Sni6sEBpg2W1VGbQBkASBuxbZueixT9WcxR+IhI87FtG1a9t3klBWrMo448toMRAZj/XtcNDor9kipakqp/xgbalaaICE7naylSU8EGaMRwtUVKQJkSYNFdN6OlpvLmJhaAnylphin1GJwWQSY1LoaME04HoSrXhVbJDmSI6Un0rog+MHM5Yc4THOwiuq4buhnOM2nznNJgY9wwBMXjOtsyxvDd3R3HkYzbeofYDB8i27ouYsPAYDUZSqJBHYH+DjpiBEeE22vTuc1jjLdOBsYc8MoxAyQ1QCQQzmaYy4S6LXj96hVevH6Fz3zmM/iVX/5lyMJ2APlt28jQpDxA/TxPrHzJ4XArl2FgpLyimWNvHQ+Pj7jgREHuyhRa9PGJMugJ8yi39M6eSrV2MUGmLsdFYl0jqKgN176gthXn8xnTNO8aqhYeJTLVy8FUUUfB9W4aeqo1rcPpuFXHY7vi8XrFaZpxf3+P8/mElCCt0oKUMrsul4Iip+XWGso8YzZqK9Z1pYFcpxi89l27QTBRmZqTjsLM4EUg2gx92aRDANJUUMSIkZzVvVKAlMtEoKOtuoP3Nk8lllw4RXNDkxQl1BYl4Y1BWtN8Z78cimEDPEQzyW1t7HOWbKQkKFCtEuGPSmuB1y52tQzw2/flEV47K5iSDX2IqbVDQ4Mnmv2llBjpdRYOuAmAg6JR/YNMnsdQ3r2m4u+keU+yYt/3kgIYh4/UagQfbWtq37Az494dW6eJnhu1PCOVBgKcbHazRzYx5NxnY3+IddyU9XdqDcuEakcDy2AFd6H2B319yAGKoqP01gW7g3QY2ShPjqQZ5h76DjoJBrDJos88ZgZutRvdmQOMcTGAR4TB42Mh3OID1afH54YplhMYmSdECdgYcqKR2UW4B/dHwIE2BgU8jHf2+xF7gsf/xAZ8iCxdLqjsiEtQQK+fAGIEHwMiyZ9kxoRw7nTV9hckRkywQStSaV9HhNC7BmZnYosWAUU3uAOV/Wm8A/Npoj+BAJW5Yy5sGLZuFVjrSJWdphlbv8JHhM1cc936AHtLbejNBigJNfl0vjAv2+pwWL2/3OERD1iWLuFl0iYd/VHYdt5MugRNvJyN4KCQyTGlQkJM3eRCe76c0Vqk+qLrq+hb72T05N7YOsWiW62sTMFOz3prSDKNSznh7nRiVYMVTDOZhvP5Mkzkmqy9ORyot2hw9aoi8KA/CaO00OGwnJnnvq5XpXh8r5AwQ60LenecpknMuuaO0kusWCM7lXOW9Xsatvbh4eApokeg1455nuAAthqbB51PT6eCZVvxW5//PH7/7/v9uHtyj+ubNyN9VGsDG8cZyiTQn+RzkRhl5gSc5gy3aSygTU37aquYpxnTPDMl2N/gfDoPgWQwDMkmzOczlmVB3SpSmnRNTr+Qtu3VHjYjhMPrdcNaN2wrUOsbTNOCy+VCx+DewDjUEL4y708r816yPBlohaLRujEV6tVxrSuW64ppLrhcLuoDFF2oWWUTwvF4VhHUxXHdCa7qSifSWN/WRgEwfXBUGt7CyhzcAA1oWwV6QytqDpQ6ZnYGRUkZZZowzezqXRsQJfS0bqCglLYOjqimZClx29dJMyCnkSrJxvRM27axzrpprDuZiKwgLZqAsv8R9TPwjOgFm8Sujf5wAvYx/3PKBG/uShlKL9hjT7Ix78dcF1iKBp8AVIVDUMPgLyqP9j2NTGpCCGLh4gYtGBPtgcfAmiiGej+IuRKrRVYlhP0U7kavuZyjWoqFCL13+Kr7E0wIwp09w5Qqw+F8smUk6ZRq3QO7CPKiQuqDvD7UAMURVF88mNhgdcuUb7TuCB1TCvMxAEzPmI416nVGnXbnSLgRcY5hc0i79BrsSdoHokpib6uDIpbU4EzxX7solock+xCgRF8zjjBoFBMrFNc83h+DPya1BFjdEY2/fHxPXIqiikC4augVbojFCFDYUI6J0aGwHzHQrkL3lsViQJNa1HieSEFbIYW8LTQ6UwlOBmlFbx1eaWV9kWjv8fFRm3JGyYyKk8AbcaIzxZC4yS4bN/dSCoryofT3YI61KL1TQZ1H6FDinuSc0GR/P08TNwQ1uYvbbAZYpvYnFWOberEOYXrXahslrmadJYamxdcpxKXIUb0rdD/DVyKZvCKQsNWmFFxWdVGwUw52jk6j0V4XE9V7sDVhgU+9BDfv0E1IqNqYghvulKGDUclurQ0lFXQ0VmA0tmcPV1SKEXkOrYf1OYamgqyA2BmllrIYhCgH5vv3QGJPXyZMZcK6Vrx6/RKvXr3EN/xP/xN+6Rd/AeF/dAwcRhWJEvlRUdRdehqZSiVThFs4f5Z14bqS2FzRex/aDIyNfGIkum5w72o2mWAZOOWE5dpk+98FYvP4LluAdeXiv64benfM84zT6YSUJMZGMCdRdWUDPAaQDNDEFJCrMSSvLbrOrtuGZV1wOV9wOs1K2bEqaAR4xjEQFZC5sNlhzgnzw4SHx0d5P3G+8/j7PEGnhkErIMwSGhK2ZUOrdHO25Fjain5OuD9dkOfCq8rs0OttVdqx09fG5QCMCLx8uC3ESgXIA0aBmCOaekqFZ64ANVIyzveZ/EkAuO/3F+aqTiHzmrrz2gyDYQltioNjxnWwHXKQtQldHgOJYK77CBaHSWCJVPxx58K47hEg9+Nare9RoFDUfLAHSAp2OnFdg1JskL6OLDCZn+SAWQQLPgB9SWCxhMv6X+tFlHcH4AhfpnFiJkgZ3japw1uF+3YY04eL+F1eH2qAAsRmwUntop944zBKRpMiXJNJkFnU5DBiCZQL19AXANgptvhvpzjS9jxqAAPmGHe2gmPR4XbwZtGmxEnQBiMTwILlukGpH1+ksM0A5DiWNBtummSHh25ALOqu82xKtQS+MeLfgap18FE2aoLe2TOKJxTLXNB1rZaYmnGnYVp0sHU7UJKWWQ0T59k5mXMuQMroVzIYdVPTPVIzMBiFr61jujCSvl4f1fCtq5PrmTbjwoYl2bhebmkDhWKSM2JKZVRI6cEimhaaGV69ek33UkVkEb2XkqkXqNSdTPOEle1aRyRmBvoQgIxAk3Avooak3DLBCo+XbPdwqYfeOblkeIt7ktS5dELKmdU4h8olWpJTl5JyoTdCZm4/GTfZ67oOkBFeHAEaCMrohptSsARNCwmFmSkZpsIme6Vk1OUBSSmYXhtSIRMRt7Wr5FXL4GDSMBa43cxtRN7YmwnSi0NaLA38rs7iychYRUXPt3zLt+DJ02d48+YlSp4okHXHlGNpC5DD+8h7VqkPSADU0JDvJFW+VbrNXi4XzBKMrsuKoOsdwMPDA+7u7nSfo2KpqaopBKIKGvpur8/2HAlmV6YqO8uI2StoxeVywTTNgKL7UsLEjGd4rABig8Nds8BjVKxLxbataJ3i6Ov1iuvjI0opePbsGe7u7uDeZTJIqn7bKnLmM5/ziR2mPeM8nXA5n/Hw+IB1u2LdWJrbmzZuUGsxlh9nKocl0GTokqq31m2Bp4S78xmOim1LEid3pRQxxMCW2gCZIawFxEz0aAyxC1MtUc+zVXXPTQlbozIqgWOstYO27ejUOirpyNTFd8HSYDhLtuHTZE79HiuwtVjYLgFgRZp+Fj4rvgNLOBQ0OHpqI8XHLJJp7eb6QpBCNeAe3LrmLI/ZbF/H9EB575z7T7QyiTFCR+59vbYcJqLSY1WBI+f6EVolA5mnHsIVd4RTmIVYVnswGvcQGuAl0NV5X+M/6OtDDVBqa7CNQCBsyFkyqAZVQ5iVEGZCQ0Q7Eji0nR/6inH0SPbYvvjq+Xd5awSHONItIBOWhEKhb7ipMDLAIRMvfs3Ni5s4KVGdBjeTHEh/X6wCdY/CY+OWECjEsWtR0EzGcgJJifnI4wCzyBd2Cl6TJ0w9oyBjAvO9CgJQ016hESVpOSUJYZsiMojlYSO3Zbliq8CyyamTrCGZEwv7a5m2iR2AqFU2ndITc5Ynt8qKhnmesLWKdV2RS0Hrpq6hii5T2Grvos3wU2DxQce6rFjXZTAPrfcx6akjoDeGW6P/Q897BU6juNYy1ThudYhGIxdspjRWbNVJLEkn89DrPhCWZQHcMMmboAOo7piTYTqdYMZNtnUfAsPTnJHnmaDKHWtdcTqpA6433henCyiZIQGpRhaB7/Xx83VdDmwHyzOTyqmZOiK7M59mRBodxmZmAO3ja21imjhX9i7XeWy8QXcbotqGbESaMtrSdttyjbve2ZMGW8Wr16/whS9+EZ/9+q/HL//yL6K1hrkwMu+twRqZHllZ8DsOlDjngPo8bRta5fdNpQwa+jRxs35cHlE3uvPmqWBW1+NhdOcRvdL+IDQTHRXTdMK6rmTDckKymUxFTli3DVvrIxpu7Q2maZWvFOdMiJ1js47Sbz7b3a8HYCUZBbYJdZtQ+yYjwY51XfGlL30JL168xNOnT6Q3iuaFG9aVa87d3YW+FYXj95IMp/OMJgfkulVc14rrcmUPoaoKpjLRjbcRfNrJsK4ru5FPe0l9b07vkLrJTJBpkjLNKPM0jBupYYuQ47hGknHcto09sKaCnMlYlWnCXNimAesGO/rrDIt2QwhMHWNLYGB0mKMBtponoNfBOIdotWdXnydH6mIJsYOB4Qcjqb3xgKxy8xjPDKA7gil8O/0h3Q640YfYOMDJ8c/bqcB9y9rBHHcInkPy8DJx9J4E1oiUonO0e5LtbBrXNeQH2oPQJGkwh+V4H4aej+OxKPDe/as+yOtDDVBac5Si2hOjkOzopRKRG1F0UBAjUTJe1kdNjR62CRhwYQ1hFpxaFICUuplFbzUAN9XAh8ESi3IcQg6wEfoHKDCa53hyeJjMAWImdsDTPVqOx2NWXhL7gI3lOKnmLFBtCmQtap+MESMM84wMl8FPQvaC7BmT87yyJ1SAVtfoaNVG1Ud4htSmslOn5iduh7vO0BxVlOSmxmIZCc1s0LmOht6VUlCE2JTHZBM4eh5ExUFsMK1TgZ+lp+GETTLvYlkj2THe+yphcZjBoSsKSYlMiTtyYQfZ7g1VjcMiRzvPO9uUsLssGgBkiuNCjJptn7Q56NiIfiS8POoAyG5kTKcZuTmu6hxKwWuWj8cGwDGVgvPlgvv7e7x8/QaPj49IKeEj736EaQhdZ6DhkqfBhBydTLdtHWOWDpRNBlwY9zGqI8gSbOi1Ic/qd6No2SwqTxJa38bqn46TA3TrDKV/XEfzPiI7wJGnDBcysRDzNUfxjKWtqL7it3/rt/CN3/zNePbOO3j54jlKT8iJa0MWyA/x9KhUcR8GbiFkTpbgeRcZdmf6ZskLJnU/3raVINiZ8mmN2hNW4RT0bYNl9jspKp9et4WbdofWKT6KeZ7QMwWhaZE4Vc84xsX5fBKbws2YjNeeigydgPueDuLfqkLLCakC22bSnzDlVmvF8+fP8fDwiPv7e5xOJ5xOF/QeFUIrQqQZPZk4RlmGfDqdcHbDuqy4XinMZfNN6Zrchxtp7/TBQDdV7dA0LicC/A6CdepS6IfielbhO7SnXU2gAdjkrmzG+ddjI8w07CPb1ZF6JeubMqYpcwM1AFpHewt0susnGtpgy0IcHRVEhhDh7+aMx3JuAOhRpeKHSrb4jgA3nYy9Bft03Eh0rVGJymWLqaIQS3OONAWgYo/HUvZ+wDKOGfcRYBUnJAXALm0YwEOJq6OLd6SyGOxHqszJksd+CAU22utSIsuWnMD0/2tOsv+/9soqAwMw2IsoVo1KGUADAhGnaVPxt5iNASS6OIY9H5jkDRIVLONTfvyk2IBDyuYIhWLwuGg0td/ZhyRHjsbjAQknCphc1+FRZtyNM1UsCj/CRSXKgj1pErhJsX0ASx4AhV4eWYyJwVA8IVH+qhbp9BOIFuwAUHvGslbab7vj/u5ugDuTmKoLHA0L+7YCaljlSq9EZN1F+1EjxEWnOB1Oe+0j0ojywrptooST0L7LA4OmS2wjT/YAnQLUJoHZUlf1nyBr1LTpWgq2TCZkKaoO6CxpcEw5yrEhsKeHK7o3FqSknh4lmpQpnx108yiZ9P1Y/Cus9dWhNbOn0JQKat1oc50TgBOBg2j71hqW5Tq6fj9Z71Fnskuw6Cpb2OlZmorHZVH6iJttgMAQrwIR2Tf0rvvcolrCsa4bklc6qF6voD9IppwjZxi2wxxg7MbUDhm1js4Fd1DXvA+R888pI6nPCp1eG1Iq2Lyi5ITa2KPn9es3+Mynvw6vXr6WoV8azyzrehHPwciQtEpH3Fp9RHhe4/0EKstK47Kzn3GaZ6XkqBNalgX5chlOtKvs1o+6DgCYyqw0XR6eKk3i0mkqsMbS1ZxY5bMMgafjzZuG06lJRLuXJJvdrDoC60wVTFMZaU96qqixY2VFVxwDILuxrityznjy5AmePLnHPJ9GQ0V+T0YqE9cGAb5lXdF7Q5kynpQnuL9/gt4bHh4emVoS+5SzSfdCp93aKxrYgbhtDWkqyHKtjuolbooKzhzyYto3zm67LokMSKwbiaBQI4lr0e7o7N3ROkv/85RlLdDHOmRQKXDiPHWoDYgDamCsY+69t1LnRmxOvUw3R8pyfHEKSV3BS1eJUDgoD2M4bRrJsjoVC1THpnDoIReqNMjI0n3Xuo2Sb0SRQjQlZToKAlLHKqFYdm5gTAdZk1jXPGO3oNhZyOEGG3FH2oMwUyDaoiRK5EG0UVCH3w/0+lADlIhGArySruNi6O4HEHB8yA5YBv38BG5ik4i/4xPCGJIhkr73eKiKmN0HDe3RtMqP38cTdFGV8RvX5jcowfE/ACyNwRBLu3cw/ROfd9DbPT6CnS3hvxV19EjjZISUNWg6Q8YEU3VNQgFLiTOgsjoyDNpH5YfAe1C747pWvFkqSs6Yaod8BNVDRmyEetXQvrvDrahcsI1Ikfv77jvAvGWHOzUsdWt6xuoo5F0+B8xt0rRM4lyPu6FoIcnMSaBjqas2awI8CmY7XFU5vTUao2kx6k6GMwRryRKpy/FKCFdeICYgQRWc1vNkR8LAis9o66ty4qraaXsUnBKrpba6wNIEQ8L5dMLVyVDNSk/kXHD/9Anm04x1XTFNEx4fr4qIz0Pv4J3+MzkzwukSyk1l2sejFrvYCOM5jyHcD+6vrY/utjnZiPoNKon2Pa8fjGED04NwH9U9+2KNkRLh+utIVki3d+oj2rUOl9XaGkqZUNuK6/URv/X538A3f9M34+nTZ3jz+jlby4MCXDRTQzRWarXGtEw5nbCsK1BppjYJ3FZF5blk5Eawcn18BNxxPp1RSsHDmwd4o8BVBIcqwXZmb+hpIpod1Uum1NwKk01+yRknB5ZpQV5pld9k3b4sV7RWMc8nnM/UAW3bhrBY2JkUzqVpKgD8BrBE1dQ0TVjX9QaoRJfqFy+e49Wrl7i/v8f9/ROcz7Oidq4ZppL2aL64LAtcaQ16wfi4f+4y2Gs037mcT0g5C8SxW/gwAksxzjK8Q4Z3hzRBd3gG/LhOBgsMC7J4aJko0oaAoDQnoJ6srhXdJ5xywqSGhizzTzKSCyZCLOuWkJPDm8NbpGZckhCmSKJDepxwiG/hDHAt+a3vSrDfRja8WBnrawR4oV+ENSDLdNIAHCpNvXLzT8HCytsk5k/zBvesYEeVUKYUzsgUKHjufL5xHiPejYB33H2M8dZVSZkkFo6CEqaiuP6O3a7xunsyWGGw/EFfH2qA0sEoPW700GI4wJ6NIQJLh58z93jUGNAiObr5HvCkG6L8Krb8IDqSJknKoZ0AGiqi+ubmpXxdEqhxiwobbQyISPrAnAT7E/8bnNo+VPbrTtHQnFdsumbmAPkZs8z+C70zheT0FskelvTUqNCCOoAJJ0xVvwwqttmgr3XHum0ypoLq6vvIfTZFdeGvQT1CREYOb2RAqprgTWUakXvOGegEdB2N7d9drc6rSuQaYMlVbTFg/KC7TaZEvXICRhtxbD5ErxE+1NZZ3CkAMcTVUIRSDFNJw2xs6EgAOMSGjfsM9Lp3PQ6UG8+T6ZGogtjHVNCeAXBalWBWkf/j42OEL0OXcHpKFoUW9VDPlxnvvPMMORdqZrR4UsOQ8KiIOUTNvfH+m1gLRvcaSwezJXKKYSVOMDdjYuRpxpLvrWJbeTyKbXWfTNUDqhTqjfT4JADbTfnwsboDln1sxtpJsCzs+RI3P0s/8fLFczx/8QKf+bqvw6/80nNsySmMFsM4JV6va5zUbZNrKn8erQXKIXVYcsb5fGaDw1rxeGXPJpbtEtysjwEeZoLAviFP7IW0afOPaDWYsZQg0fF0cy0pGX1LjGxKbdRFsSVEw8PDA7Ztw+VyVrqq7vfW97Jw+glphRA7Gem1qCbaNjW3rBEk1DG3X716jTdvHvDs2TMxKhmtEcRR/0OgdTqdaBQnYBtsBACKh+HotaLJJM7MUFJHA8ddq3UIUGurAxjCGIbknHYmXGxAVqWJJ6CnqhRt9HnheazbCg9xsRmiNWXXmuq9o60bbDowXfu2McAJ5znZnJFOHhHrcR2WdYU3VophfzXvu2ldfBdsfEc/pK+CTUUEhMH5E2Nr8QiwmySE4ZqH3gfAGCCoQ8Jy3tOSfDh7x/o+1mcHoGrYaP1i7kg9wVQlGOmhAH+Woa0ugB0/bzI8td6RncZ1wbg4N+DBiH2Q14caoBxR4A1XotTB2NMjmvZj4sb2zcwCnMSxRI2lAYfVMdjH5g/pFagVYYQ46LmgJHVutEffabjYkHbVtn56oPNuII7d/DWOE9PBnOVisMPnHNKSCEjh/03ev8TalmVXoWjr4zPnWnufE5EZmTft/IbT3PuM9RJ4ElhCCPEXFySE+AhTtUTRWEI2FUBIUECWqFBwgRIyAoSghAAhgaBgEKKWhYsBCSGETX4iMh2RcT5777XmHGP0/gqt9zHXMX4QySuFvOzIOHHOPnuvNeeYY/TeevvEvzPEKO2jSod/KYhqUM+K8OvWXGHCHAt20lCg9YLdCZlqA6MLCaS5QEAXSABTbjbGQBgFTTdaxCxV/dA0INHkajhEz84szRGt2cH/CfdfkuYGRGgQFteo906TNjMsOQMJqEv1eyM3ngR86GfpF/NmN+1iIKVvdHZcf3YXhzw3utFQ7phhEkOjAIlDl4dH4bE/N3cnm40oZhOg5DMoBoZ2KhDGQK0Laq3zoOqdSp77e5Jd931zwhrfd8gIx+g3I5w0Dy9xEy2ReCbSJLIyD4i+Hr13bvLOPRKhIVO2MhESERaDMQePrmvO7wPlHCxORAwoUSCwmBxz5u/fP1f00RA24KPzsEwQtG3H+++9h6/95t+Mbz57joeHl8hpQXEYf9t2SDGs6wpzsii8YCglAuV4eCylMifJ+RwdgDg3ZOx8xp+d77AuK/Z9Q98bTIH1vJKzstHRdUpAS0ECZl4SPVoykAy1rETwXFUhoA9QcqVKThwLBSdkjI7Hx0fUWh1NwVxncd+4TG/5B2Hol3z0E6Ptikijbg3zGrA7Hnj16hUeHx9xOq24u7vjtbOB1nfnbTiC7A1iFGDz+4SCJ9HcD4Z5sJrRBTm4Dwme/eSNFAsT5SGdvCAR7t/Fk5k11q0naJsRkQgLAevR8B1FsjiHrTV6r4RPzVTYIJDQcPDGVG0OG3PP+dV97Nyvzde/oxlmA92c45SSo4ljIl6xH8zn34slc1Iw9+NjT1fxPT+yd8zPmmge5VB1cZTOv6vDybxq3H/5sdiY3YQ0csvnmWd+3umIvLM3z6Q4qmwCBMGbPOYVsTaDbsEvMzeF+3ivT3SBwks6HC0JCNAPr3kb4As+CEKYFeHty8wmYTLFaRhzvXnYACJ2w7gWDLv1OjkuvPyqnzFnhOYSvV8Nskj8Lbv5Dv7eNN4PIVEoRT6Hn4bQK8N1+goniJqDaQbIcL4JOA9ESKf932F+JgJEqJaqYu/teHjgRb4YmqoXCpmzaeGGIiVPc6QEOjwynZYbZUR3z1m6YQKIgYaMYRNBMPjhbtzs+AnCOC2SmPlAsnrnyGV2PcYMCr9BM6xteNcsAizrgpLLG11g8XFTl3bjHXBwi7hZYb7HlBI7Ind05KapECdRErKlDXzA5By/qEP+HYJM50yE9frBcTF1ImphR5cyk2ilVFyfnqBDcXc+YXfZclkXHzmMo5AYwws4my66ZiRgLsvinzlkqzqLR7hvSFzrMYYXfuqcE2HibmvcoG+6dovO1NdxzokFWEqURYP3Z13I1eidAaC9d5RcsK4ntCAtW+F6UiKSpVQAgt4GXr58ge9970N89as/hP/wi/8PnU69u0+J6GAQTcMLJoovjgd4OJsaFpdNhxNmfBaOT4CHpyc8u7vH+XzGZd+gY6BtO3LJWJc6C1yiczsLJdNZkGRfE7TOL7DkVurw8ag7FEsQdn0tR/EQUvFa61TLHQVRncTwuP6qLEBTCuJ49jEUfASQPNl5zAMunhEWRU+4uzvj7bffxrqcKedt2xxlRWESxSgQ8veBxSMpQqFXXbYdqcopZSwlY8hh/qfG8MGmA4aONAakJNSUIWlFSZmNlOS5PwRrMIkACRhKfxkRYfaQCCDkLYVCKIjEXpIce66PzxSgGVtSIvVqWIrMvTBGsubPJ99Mwki+ESdAneAffJXbcwo4Er5jH48/O1rZ4ySwwb2dnD0eJmFXpWOgSCjlAuswb8SEBw+id+fZKKbHOQB4CCGcg2MeOhj8k9v3fwhHhH0mr74Th+FrIaYbR/NFder3wZH9ZBcobwJtvL1FvJObiISTicZRuQswLYNtPlQy/5kX8CYzQPItUXWeSgDsRsZ6PKC3BYo5mhMYjyEcI/17T03yTYFz87CH3j6DG63cjBNgbgWuOfARTE8XSXT8k4QBtyEWgXiBFHUPEAesuTX0cGWMuhU1ESWiJQoTSugYhEefEdpbiIdDBeQbHzqUKWluWAJC7SmTec+9mAOq0Qe6G4CllKBhUf6rIPHo3gHvJAyYZk/+M2IEp44ClVy81iN/qKY0VR6t6bR8ju5BzVAk1BF5lpBRoFANwg2O7zsOBhoxBQrEexrs+sORVH3cGAjLnPm7cialw5eD3X5CLhWlciS260BJGblW5JSx1HRIaMEiSLUh3GHXM0MEE1hxk9TYgbTGwpv24wLgum0omYTOIODmlFEDbjeSk3ftMzBPhLECRDtsPhtREOVMeS/dejHvo2lHcLjmvVdDrQWjD5Qs6J0HTU6dzqww9N5guuO9b/0yfvNv+v/gnXc+gxcfvUSVIP2S/Lg5TyfnA9UjOuYH6sRWybcwJ9ymMofH8+89Pj3g+fO3cFpXbNuGtu3oLeHu7g5XV/OICNq+YxvM36m1oDe2p6mkWbwDmO8JYCgmYCi+bnImkhI+QCKJP7M11ErX4FoXJ4sr7A2fiVt1GDkwc9yYwtGXTsJjdLfF75OnEsX4w8MjHh4ecD7f4e2330Ktq3PLBsz6VLzEc1mXCrFC1aF25LISnbB0rDEvhpL4vjCGX5MBdelz08b3m0i6ba1hPZ0gmpzk3OdngdyMpceRx1OSYakVEBL2u3Y/LwxiMbYcc40KqC6MqJIg28bzESPLo5DALIAEBU03qKPCkqLwPc6SW0WbDoXKmGcA90z35bpBf/iHPD+G+vsJ4zVH9ifCDe7tccZlc4feebC9OXlQuLHcLJBu9rjgV87P6u/JfzY3XUzD1OSIfUzOqJgDkRsBTAU3l+J/+fpEFyg8stKBAhhw5DXYVNXAAkHh1x6/D4SaBcA8rA9I8uaHedqs/8cxZhGZN5T/4xUmjupxQt1vfM2x8AJaBXCzcHwx+dwy9F1BoooxCU2DEsRNyPj7hNqIoLB6Ds17yMTCTrGHlb7IfBiHh/vxB/Lnj/haECZMIlgqf05JcAWDW92P4QS5MDHLKJWbY8qCvdFrQBKQM5AyvADC3ExVFUMERcimB5yo6ReRrPjjXtDkTgEVFgleQL4p303o1o+i1uh/s+TCubx7gBydVHCF2JmERFBwO0cVPviBkKkeChz/b6JvecKdkzDsfZ+qTYlejDAQTY8pFU2lzs0iDu6IfM8lU35cMmSMY8YPm0VN8jU/VFFSmp1nEoE5crLvO8wG83KCE6DMI+F1dmddw4TryTFiEdFagW0NeeH7jVFR8CDM3CxLMtR4uJ3PJ4xu2GyHiPt9IAp8oPcdqhwtQQjBmycfWvDIDJOn8dGLF/jil6joieDHGF+13tDREFwAKo2c6SRuvJdIlMaNXUFKCSgF+7bNgriNgcfLE87nM9ZlwXVQQfXyxctDTWaMAFCPWSiFhFg6IgNLrbhu2xtIa5CRyaMqqKWQn5UzkhCWJ1pCrlDk+9yd7/xAPJ6TGO0AuJEZx7jRZlHBcV6a6+uWM6NvHGrA5XLB9XrF+XzC8+dvYVnOMKPJnFmbqqFaK5AUSRZcn7ivINDenFnAeEO3tx2K4RYK5Py0vc3UZhOBJS86RsO1sYBIEGgbCGm+v0tIIv8jSP3dDNaHR1foROCO0FibezmvoftnSYyWj9gBmMvTk3nTizdeHE3x/1TAkD74XmVv7vEy91zzexOjOXMU3AULmMeYPxheFNwgOdxXOB4PhMNoyjUbY3hDBDv2MY7hjgZaprXivO232yFiBBGEdkGMlPj9Tfh8x/djkrH/HBFI9jH2x3x9ogsUVSdBTle9QyUjQilxzmkaaN2SUAO2D9g6yGY2Dwkg3XQi4vAoDiEb30PA70pVENGSMTfBuBlcd1GhJ7zBN7lZD7eaefiNlah4Y6xjrFQDKRHJkCFz4UUhpNAjsfkNiM9HC4NdYxyc8XCRtMsTUiwqe7txWASAPu3PdTTCtcIMkYCjszCAT5vNDJw+dkdLOKwB/FKIoxpO9GNkd1Ty0R2oj6Ccc0KHluP933Q2kbtjQhmxdlr0S8rzwAriFiHr3b+/TFVW9wybcGC93VjGGLw2xu4/pXjw/WDIHndut0gaSaht99wUwVTZJPHDwHwvGwPoAwsEec3Op3CPGTDwkDbhrmqpdUL/sUn1tiMJx1VeVUw3VXIjhAR7o8phDOauxKimFJffggdTfI4WoxyheV3JhowyN//AmcZUO8mxyQnHlKJwZYgXOskt/YWhkLGGZtjnVCM1P3i9IHd/i23vGE3x/vvv40f+r/8Xnj27x8sXH7rs1tOASwUSP18utAAfY2BvfrCWAkkJ+xYKlKOD5NpMzEESmdfxerliXaiaaq3j8vjkktaBkgtyKTitJ7Te8PjwgLv7eyzriuvlSqSolEOWmzJgHQOKvTWs63mOm2stgJywtz55R2FqaGZ4fHzkzzqtLsk+TPBSytOcj4cgZrEoEshKnuaGtdpEUN6UJpsXpJQUXy5XnE6nGUx4PEdBuk1YFqp8YkSYU6ZiyhFbjllYPKIIkjHjx66+p8b+6kQUdXI+mwQn9DvJN0SOlNf6fuvE9z4GEugSq8YmK1BCFrxCErVQtRf2+PMaq6vwxPlCNyq1aJK4N3F0NCkF4VSbmE9keowM4xV7yxGmB4TbqgbSDwAu8Jh+JTdNbSB7mN4sCgj9a4YNFxIc50A0KOyivHsxJ8f6M2cefBlv92gOXakqYEjrdPF2rxSXQauvNSJm/t92vO+P8/pEFyht26GDnU5U/WluKr5oXH52gBu3N/OoZn/NIgHzLx2/tqhG4ZXhUUVH900EI1jNMv9e/Lxfq+qefzfhONgUPt9JdIEN2N7N00RdGtaFahf/kLQwPtAbAEcxg+N6GNil9zH8ABeE50s4oAIuWVPDEL0p6pS8BUnYEMUhQ+5gCTUldg8GRMDXdFUN2NDHH1IcGXALd26ocdmOQ35ZKWdsrd3cm+MB1SgUU4YZuSwJhBQvlyt9G+6fAWAHENK47pwBknSBnIrPx49Y+fAtySUUAzbNyUJZEAdJ5NjEREpNZ4bPGB3XvR2bkptK5Zwx1HkPN2swSLfBvRBJqGVxF1D6JyDzHofza4wBUsrY94b7+xV9+Jgs0UMmkKWSmRw7Rkf4K6SUsC4LQtWj2t2ULDv/ZMfd3dlJyANSmbUShX6S4mgLDyU1QUrsmJt2dlmJXirWY8ziRGUnp9r00vBAQQDwUVNrYdVdCGFn+mm01vHq1Ss8PD7iB7/4BXzvxQeQoUhpINfi647rjwaDntNUeL+Dy8DvmVlUl4x929FHQ3AOSi5UoLgaatuuOK0nPHt2j9evH3B9ekLaC8ri+T1e3LQ+pjInlzzHnZfLxdcWHXjTICmThz1HyESkspuUsbDbth3D35eaQtuO3hvWlesjwh6JtiREOnKa3JYxn3Heu6MAj6Rsjj7bHEFtG9VMy8L7dLlccLk8odZl2uj3PshJ6h2U15vb3xfADoNAjnh5T1P2tGiEmWHCw+sHXK+73xt/b56QrKokM5urRIbOEZ2ZoZYUYO+BVMC5Nd7cpAQgmcviHa0QcHSdzFEnQxvMjVpSnpbwnOgoD3EHUFMQ7aOr8rFPyQnWFQNH4TZPF68Wxc+F7OtLbpR+cXiICxXgqJJ/WNb/EqWNj5QcfQUcXfYUZ3EC84h7LwLoQB6MGkhzPGyurhN2TMlxIY9xSP6jzQ4Juhn303l8BifSm1/CwsdZ+HFen+gCJWZkkhK7stuZzKwxDka7+RzIQFKnTFhdIK7Y4U0OtcGbxYo4JB/fyzQufDwELg2TNH8v3kMstEDD4j3GgibciaPwMcxiIoEQffbFnCKiMlQTMGhSX55pqomO9xjfk9crIQ48Wsa31mnmJsJNXwQDnhMiBylPhWTIMRQ1CVAMrW1EE2b1z4cgZprByaBKwbtQf/DMSJpc/DDsowNCB8rb+Sft3PkQtObkOsmzq4nvDdCfpfocvO2UR8IMux9qbWVxE/bsknmQ9lDz+PcJvkkfDaMDJcLU1P08lL/ubo9uI0LhyvxsgdQkCLoXUOEZYjA/VEgUhMDNjTj3D3iexZFOGebbn3qLhxV4wNelwFLyeIHjcU4p4XQ6oTW6wdKDJooewxgNd3f3UB3IwiRd8ga4qdCzRRkB4cDZwUHx7JChWOuCZV3Qt45DnRFqAp0LPCXQjMpHDbVUFntesEaxbGpEvVTRW8e6LvN5YrdNPob2gzAMwP1FBrbrFe+99238yI/8CJ7fv43HxwcirYOqH8kyDQnNeAitpxOvkVI5lnxb7KOjeU5OvGJMEyNREUEbHU/XC07LiufPnmHfNuyDYwqql+CFCn/G5gZ567Jiu26zyBIRd19lVERvChhHdSZhcMcsq+GGhuFoSwk23x+9TgYDAk+Lr0cWrTFKiIPodsRwm6SbUqgcwyvKx66j3qDD3P9Syui94YMPfgXLsuD587dc9cOf2doG2IDpglKOvbGUiqG8xrFL5lyw5Oxo0AkPDw94fHzEdetozr0ohQGB+96OcbwkyBiU9gowRvIxrMy1ONUks6nk064CJAOGCiAMu+xIgIXzsBf8/n3e2CMICXiTEvlTRxAjXC0HcxR5zdNqIJxv1VVxNqjcKtkJpTooFb49h3wfJ4XRHAGJPzpUc3OE4/euK5+/7Nf+EEXw12P4M5r8mpjPChxpCv+K2OfN2KB1M2Q50J84d7IIJNNdHDejRY6TPj5L9hNdoJDgxQc/SDrzJUAwmQEePRZf5xXu7PgS/ztQjEAYBLdqhKO7gJBgyY42T8j0pio63oYEVOhViTpcHCMc2KRPUzMfhEKapolhJkiaGdKgR0jEXsN7PjN2c9nGLGE5FvFnxBnbCsbWm7DS7m1gtI4iifw1PzyHKjNCMLC3Prvb3QP0RCq68XvVupBcqphz/bCLh3cGBjLaZYzZJSdHS4YOH+kcD1i+CdMLe3k6XDZnmXsxmN2VMbHa79fueUwZW7tivzaUXKHDcBkNSJRO+s1BzTRpupXFBlFudCJLtrhSAUDvgZ55sTlHFy5L7d03rjRh5Nj8D9ibY6lpbR5EtxQFYvJ766GDg50YUkKuFafzCd34W+LX6JbvwW6O73lZKlojVF8EqKUiJcUYLOx2zzMppULHQM6CmillppHd8UCFR01KFWOSE4m+9FgXs+qOazQwU+UKn4XwZwkyrQiwLitCEpyzTJ4Al9DwgomFaU5EGICQS5sfSh3dFB+9+AjXbcMP/fAP4z/+h190E19uqFw79BoJI7vhY5tuHAeWtQAScnEeaClniAax0wnNExkTR1J2nE8nohfbhut2xYw7MD7XOVHa3FrD64fXrmo5uCIQQ10ybNfZUAAG1Y5SFo4b1WZmUBwKy3IoeQDMpqKP7t4pt2yGo2E5TrijrY2iI2eOwFhUkPRca50BlyyMwhSOBdO27WjtQ9RacXd3714qJ+zbhm1rR7MhHKmVxOysoTRF1G5QdCSh4u75s2c4rSdcLhuu2zb3ZRHBeRr30RUYnqAdpHNxrhZFCT76zQk18TMY1Emqvv86rtz2gSW727gxgR2WYMOAkEE7msZa9eALigDQPJtPqsFcsVjo5bLkwvGaUX3ZzVwxpEiqQA7SrfgeHk1MfFO8Afkn4b2H3D6vVIuK/x3zRjYlqizT4NqdSkEF4EUYHPWypK7MIb9vAgCBSkU5poAho2Y53iO4v2efCPDpVT8PPj6E8okuUCQlJKomMTM//M94JnuFL/Du8U1k4xgB8SBVdTRFDhhKfTOAV5oQzAJHRG64BsfKuL0B89de7EaHeuziQKQIZ2WHJwLKgl2Jk0j/xHXfsF9o811LonMt3GbZK+ZQofBbJ/cjoJkYf6ojJRGmJ0CWkFtyI9+7og8WQc0ANb4HMUr2aGVMxUpJGZmcsfmAjtHQ1R0hE2E9ATtuKfIG1KwwjE7OSco+U9awQM/zXpFY2hGZFABDHpHpExIOlmaGp+0J5wTsrTlHoiJJxr5taKnh5LH24ugLACx1cV4SVVF9dOzbxo4VZboliXIVUVR9pBSnG3luRLhH6FkcHKEwCL8AAdywK7oupkaL0JE1HmYzkkfPz+5wurvjNfVCiNdmTJ+T+DnrWqE6sG0NIhnn85nXenTkXLCumcoV5yWUnHjoq06zv5QOtRHgXBYLIjCLQCg5Q61tEzKeCjTxkSIoBV5SoWJjWY7nA95oVH7v6/UyR1wsptJ0VTUFNh+PBVKl6sVp5niktYF92/BL/+2/4bf8lt+Cb/z3X8brV69c/cO1VmpGXo78JB0DUih5TuLhbUqUdV3OjFUwQ67ViZbDk4g5Kk65oC4L2nUHtg3ACed15YG9cwzDjj65Bw7tyXtvLhXOjjR0CLih5ZwdQQnYXknmVRYu2Yv8nBKWWrH37oXicLWPISXF9XpBaw2n02kWKkGSjS7+lsh/i/rG10b6dnBSUhKUskKEWUGtUaK8bSGZzT5ue4nHxwfc39/h2bPnSAlo1ysTuUVQavV7nIHMsa6qoqQKmHNBfPRXlwXPxj3opGp4enrCtpNYnTOfS/LkvDAefP4GhJwsgWfcBZKt83Nr8AGVycDaOXaukVuVE3SIIwjJ+z/za5zmGqJjcQhyj8YMwNRh9NHd2bdwX7SG4A0KjGqfHCaDyYm+QTI+kD9V2mHE3eLvk0MTztUaIxx/RZaSDsNIhuHvUZxvaL6+gos0EgA3HzX3ChNgIrH0QOHzLX7tidCk2chn3wuSGZJG5tqvEwQlZGXiFvNE0wJ+PLpc48ryB5Cy2XB5DLTEfAYHDHbkCPIP/2xCZ16wiIWpUXfWPeCuPvPtmXdNAn59uVEbiXnwnQEzEyflIw9GDuQkCL9JEyFM/7+BsGofiITlMULFdMCyMHj8/E1VPtzpEHRiZMV+eFy00d2NlV29KTDkkB8n764HFObW22Tzb3wwzNGgdBgBZeeWiJsdxSEdHagJnQeDY5LdgZJqJfMZALCuJyarWodJmaS0qAL3rQGyuzV1Rttpb3652mSfZ+/mtQ8stRI1EMMeuR2do6R1XVwya8c9TQmtHxt85HoET6RWpnDsrc3EVYCbU1jZG+Iw92IlFSSH2lUZcV4KUTSF4v75M3z6M++w++7BB+nzYAn7/4D9497f3d1h23a/dPaGxHZoR4RIam8Qs5nNQgVHY7KvO68KCu9/6xhd0dsBZYuIy88HqneXsPCuYYdMJQ7XP31O2GmOMXC9XF39UtwzxLk+puQgeMc2eketi1vNs5SK4mypC0bboQp876OP8OLlS/zQV7+KX/x/fpE8isK1WGvFsixojUncrW24c/M1YIGKzHtL59XmqOCAykDY1/O+Hc97KQW9DzzpBenuhLVWFAg23TC2HWlZPRSwo9SM02mFWsO2GdbTGSkJLk90DK614nyqCFMvNd5b23b3CxJQzJS8eVJgMO16XVdcr9eJalFmPtBaw/39/VwDfF5vNZ8HIZKeNKGaw+SVkIR9SMCzy8l5Hp1mQXv4thg++ugFHh4ecX//DHenBefTvXMggD4M1uluHRLwcPINn5arF1zrslIdJIZcEsZHL7D3i6MMBjWiidrGDSKZuA8I5jPKc8AOJ3E4v054T7MfzDoMRTIscR8vbi73xhEUDZRRvSheJMQeyJgHQxVxxJNIKPuiaCh8tAaeBdzvnLqAaJzD4JJNYPa9KPAh7uuD0RreLAWnyIxNDx20C7r16QcV50PwR3pXJBl02gYReIF7PiWnwUrwKI+CVnw0hFm8eUMO7mV9UNqdHFn5uK9PdIFi2mNy4aWqTATkMPC6BTb9a/xX6sUCwk1VY8Ml62nMcQwrxdlhGBBEUf65V9V2Y7DjEliIm6OZIGn2b53m+AYx1pHkVvQc2Qw55qQwokFFMvMMHJlN5jr4YY5OFNA8zhf+4AeUlD22R72fLd7dYyqQIgRrqGLrJOcly46CMD/DTL0DyFiW1av67A+koo/w8/Dhk6NX4vwR9e48bP4B+hP03qfxUE5BU8QbHV7NGXlZOI5YCtq1oashq2EY59jBcQGYhVOk4mF/4IOSE4Y1YBrLySQG58R7ALPpzmtDsS4Lzqez33//c+/UpYeElWsklA4DAdOSm0CI2f1aJGE9nf3AUURm0753ZCN0HGhIrRmnZWVXUhjmxmyjUF0AQHYCY5oMfm4shqPQpilbHx2nuzNJj/uObWtUYU0/A24c67qAIxM6PkaeSfJRTHt64jOndK/NzskQocIgNj2qPdwN1JuDoc7uD1KLOEFZFbX8Kq6YX/NwI+WmO5BLJkk1A61f50Yvon64spAY2fDLv/RL+NEf/VG8/am38dFHH8BaJ2fHiMi1vcGs47SefITp4z0T1FzcPtz9jTzrSU3nyCCkuGMYLk8XiFE6PEKCvJ6w1AKoo5/7RtWRuxnHvS41s9EBOU8xbhtK99tSKtq+eVduE5EL8muti0tk6S/Tx0DxXJzWWGQaEq7XDaMPrKfVvy/5Kmk2EUcRHny64JHELhqH3IG0VIxRnAMjvp43XK/krlHtRJTtxYuPcKmFhcr9M9oHGMdQfcQ9pEpojIFcEpaSpudOymm6CZeSsJ4WKHQWHjYytNHLyQaJ/SpKfiEchdVYzxSv5CwQR4d0sKBI1dEIcwWoCeApyCaKMD0zSY68q48N0zxX0mySaRPAPfFAyC1xzyUXzcnwTtK3znDWlDgCitF3JNwP92eKCV042k80MpNTpo5UGNx1W4IniXmWxXMK38eI+L6JgpKgrMxsk2gGOZGIZeDYCotFi3M03KnZfBPZwvf1+mQXKLPA4AEfXVuMbuKxikMYEqm5/qDfVC4JONAL84qRP4XVoCjCZAjg3wsPwqAHOdgV2JcfE/CCBu7mSn19soix9m8mPl7IGUHEPYouokOiCTk5VVfNO31KaA3hj8LiSCd8zwKpGUl0SWjfzaJHZwUv3sn21jgLTcmN2Cj7E4HDf/nwqkjcfLrq4QmQMm79E+bmF7Mtz1zh6AyHOiURKRBL0/Y+SFx0oiyEnMfmwxVHDtze3tKAdkOt5Gn0nbNzUx9b7Z2d1LxfCbfW+HG9sxdSay1MsM3uxqpuGe6+IqUeLqMhO47XdOKFIdXkaEx0heKqACffgV1ZJNwm74bNlLbnuWBZV44XUsLlcnWnUHPfEkOtC8hF2bG3HffP7rBvO+/HRsfPUjhe2bfNuScbAJq9ZZdkRwet6jLT3mIJznRbUyp/zDf9g5R3zOHT3PgCSuc6iiBCA0ejp9OJjrRjzO65LhW9HcnABo63iA7yGnM9Jldc+eZvfC+lJu/2d7x8+QqXywWf/8IX8OrVR57Cy/vWGp8bEi4T+kZJNg95L8BdNSHCa7Kuq/NOdmyjTfRqmuL5flJqxugNl+sFcr5DyQU1Gy7bBgN/Zq5HLEL3ZGiLcYqjSJfLEwTAuq64jIF9u/L6ZoH2zoMrGQwuh/cxWfcQx2WpXlyT2wFResE8drS243Q6+biNhRbgIX9BDlUWk3SnZegcCdZ97reBSKkatm1DRBSE/06MUSahuA989PIlXrs77bO7e6zrCdguU04cGTWqimSFSjNHMZLQR0kEuLs7eRAhHZp7J3H2et3x+vVrH/F60TyUDacXoKG+SykQ5ExCvQA1V9RUIWowcMxSPKNmcp5AZCLQm3gWRASLlOh5oX5IM1vIUQYn9gJM6U4C7GKw4QWOo+Fsto5iXiTIzZnKSHFzzc7Pkh3xCwQF0Dkqm2RY5flmOjhGjobbjzeYoncWfCnWdvJxkY+BDoMIzM+tptNVlnu7j+DFT0f/Xtmbg4/7+kQXKLyAAIxmX+I1o+Go+rXrXEDHTfMOzaEIboReq9xA1phVoRcpAX/G/8bXmiApC48YNsaCmKFLEGQjkzpcEI/vBR812WFsg1gQYw4yqa3PUCcZtt6wN6IPqWBap8MiMdb8wB1uMCU+ZjHffNQZ1h5kRtgDEkRbv4bsdMiTSTnNalyE/gXmxEOIF1/e6QOGoR0p4Q3774ATyfUAJo4Mjqhu5Yb+walSKbSfHmZIJVNiK0Au3JyHcDPF04Zt3/ggzJGWqzNc5hbBfzLvNXDccmVw28wR4veRUqg8GGNKUGMmHCF/kdWhrjgIbw0kjuy6kybHHHfILOZkXoVA7gR3d2cYki83OoiaOEteoqNlSi1ANdtoJPqxS17Q+za9KHbvqIMgWsJ6vDNTXnvwfCLM7FArmPnnITCDDB4MM3pd3OMkHYcX3CsmGPwpJ5yWOnOUzqcTiamleNEJ53UdKi4dnss0mwVD71cW2N4QhNxW/CDZ2xWLVnz7vW/hN/yG/wvvv/8pvHz5YjYrakHio6xzgDyZ1lgoBk9mGLvjWivWU/UxR0JdMlpzBM59Wdp1p1GaKXKp6K3h6XLB+US04j4Jrq3h8nTBYiuWtdKQbDBBO/k4ae+GkgqePXs2N4d1qRCYq+J4HVKmdDf2C/7acE5EhJJzdfZ9x+g74KRPM8F2bWit43Q64XQ6uXrIkbTodi14XYrgTqWkuE1S7r3NYmV1G4AYS4VKat+bOxYT/YwR36tXr/Dw8IC7uzu89dZbWAs7f+boRMYX9y1tREJCzafq7ruJh/myENXpreLZszs8f36P3a//5XIlT8qzlHjYcn0VKVhyBTKw5AKikAVZEnLNrpwiCTc5shjFB4xNj93s+TR6qy68MKibCk5E0Mz9WsyNK5lblWtG24miJJRjH7UO2M5n0gzJSGgXpwP03pGTenAjScJJ4/74aAjcf6GK7pOA4QhwkkTztHB6jbGTDlfr8eeEIornVDTyh+qLe6gd4YjmQwQ/G27VsIE0fZzXJ7tAcde/ePWJSBhEePCyevYLdDsvE0fq/JA6WNP2P/ycKFZkHh3++8DUekMBS0EKBNBZuFQRJ5j613mRFAsHwPEzDTDrc6Pw33L43BePcYZNGJRrREDEZKAxwXM4O10H4HCsOpRD9QIh5bCWzp6nMsCHR4pX4okP7PHgyaEoUiNcCXq3CMjNONQwztYWhoU1n0EGXwMAKqp/Pvi9cra3dxgGL/rADY1mWwsG3J7aTdh6J+Eu50x4f/BQiUJI1T5A1pIAAQAASURBVAPiHHoMZvokSftdzSJQMSRP/mVx0lkIZzc9ciIiu6I8OyERccOv5L4MJJcJDCULxEhcG0ydBPya6jD//oeseFlWPHv2DHfnMyRn7FtjEZozSs3YWoOAmTEpJYfyWdSVQqdSIhJlqivGUOSacT7RNOzufObPjw3M7wNXHQ+bbXvyt5owOkPrTucTbBi9QXr39cfv33d/n941mca99fVs/HeQpVtvWBz9CTJxLcULDjrt5szCBebqHx+rmtLXIzxselcfjblEuA/0tuPDDz/EF7/wJbz7lXfxH//jAwa6e1mQNBg8Jwb4JQxlV9lao81/KagLOUPbZrher1y7pR4bsx1O0AGTqyiW84r9csX1SvRlqQvOOePpckHbd9Ac7ngmUqK8tpSCpTKpmgGEG681PEtqjOkaG/uHgeTx0bnGS+b7Sp7XsywL9q3NJGNufAWXyxN6bzidzkxl9jXP6xPqwejq4+cd3k8hUQ6nXEAm94XfQxx9Eez7BtUOQv8y9+fXrx/w9HTB/f0d7u/vUesCmCKNDLN+hCmqkQ+SjtGCKp/HdWX6tKBBbcfpXHA6FZxPFduzM9GUZuhNcb0yJkAS0S4ZzjEpUVgIJHP8mTNjEnR0hJdUFCjkuPiebwm5JKTCpjmlhCwJaqH68eY50CS4mZx7mpijHOJ7KUQpifdCqnXzz8vrv4Siy1HJDR3N06Vn9lcounyPonKzzxFtoIMioJdJdnqBN9ZhQiomUElw/0eiSG8UKDGCyt7gmWu3+fXduY7mrrM9GpqP8fpEFyjBfQacJDVszv9iRmPAhAdvqzh28PFrwiOzA5tFytHZi6Tp4jrLFfdTwCBsFlCWqMyCJCyZLWaMwM27js3leB8xp2eqpx+o5nCeciMmETaAoOSbkxFNgS9QAyILBnAZq28K+9YxRsPeOfbJN/PqGAfkknCQoY5XcEJa6ziVCssGdWiUB6LbksMm0kJ4j0st3F0BmYZJHB+NA26MTqMrLFNWXVxumXKwxumxMgnIKBjoeLo+0VulFiQpTJv1a5zMo9lNfITlkZKSAZMjVPDm3oxBUy2Dd/Iax/lR1Io/+L11SHAWlPPWITSpU3MfD4f8aLLH0WRduLnF3P98PuGddz6NJBmXvaP3Czd9v49xUyKkLazmaaJlzhGit8y2bRjWnaNQASvzwFBVaCcZcHSm8IplwF2ZSz74GkOpVtFueHj9dLifCt97KcUN/1wFkMQPe5uIiirvn6qhbw05ZYw8pgU2vLkI06d92/059kTlESnTB7kW8IPCOQIQcNQBrqnWGr717W/jR3/jb8T9s/+Ojz78kOhbwiyKghQv4N4xPUvG4HitcMzJgETMAznWMyX25v49vm6UfJl6WtGuG/RyRXh/nNcVry9PeHp6xOm8+giDRdGc/cNQ8koyMTgmHZ4kLSlhXVekBEdUYhxGp1SYeAE10Bwp5D0fGCo3xlk60YzHx0cWoI72xHtggZsnmkV07SDPsnkJdCUyq+oc6fAakzNSa/bx2+GtFCMy1YGXL185mfYO93f3OK3M7xnuewS4EMI9rJJ3+NyP2vSSCddcNYZqnvKCuhTo4O+f705sZDpVfuoNzfCReMqJDQUCGY5GxomqN+dCycXXuz/PXrSkRDQzRVMiGUX82vsJENw/FmB8TnQouu4oblPgP4ZnExKc9oLI1orRZox98eYR5yhJnJGhXHJPJCECKaBkPQd3JVDdgJhvuDX86P5nUWgk37OFI/JoBDPyfD9eXuGNN/gxXp/oAoUfWyenQcPrWKK4I3phoVP31+345vZ7HYdxXFV948+hAKcfNKpKMG7oXowEJ8VMkMzm7/H7ym0TifmwWRQtRA5u1SLh6kkI8WDFj+FdpLkqJcZQroQJZEA9/ZK5NYaSgkTWeZgMdhCcJjknIlEVkTxELd7brflb6w3rcsL5fIeHh1eAz0upCuAGxg3EDbjGQbgz8SIBQHfSau98SJMnCg+XDOfwEknibqEeQOfyuoIEFG5gzfgcCdhlZikwFexpOEyrHqa3uHsoN32ZSdgHaWzeA6Hc0HxsQK6YQ87B0wl3Uh+JhWJnKhl2nd+3lIpc6ixYnp4eDwWYHNkhy3rCtjeYbhiW8PR04dekhHUl1A87AuboEyNozS3s/YC/Xjc8e/YM5/sVr1+/hurA3d0zRwOu098DOiA5eS4MHJUZCDZUqIMECX33A9Bl2Yvn+MAM2Hi/U47O20dEcw5Nn5xhirGP2URMLyNH0eaG7Ijc0MGtLRdkbyDKVBqZF+uusAPXrypJsPu+4zvf+Q6++IUv4t1338XLFy+J3CzFoxkUvRtSNogf3sXcNM29Q2opLu/tOJ/P06yQYLc3IjljH2OOVkOCDAB1WbBdNzxerrg/8/o+O9/h8XLB5eGKulKmHEF74cJaSmd3LtlTjm1Knsk9IooUayB4FZGpZMbmSQDUkiCy8Hq6h0lrbEpKqcgpYTcGR55OJ6zraaIjzDQ6PFl+9etNefKBvMReypo6+dqkxPYoUgbC+TTW86uXD3h8uODu/oznz55h9THg6PRHEfdksYnS8DMROSRqWEo63r8kVBH01tEam7/1/g466AK87Y4GzsKB46Vkhj7UvZYK0WcvjFtndpOB63QtJxcK9LmXwJGSkm7PoJsmw8LDSm7O7igEb7g7EOf9ZR/tJucZqrt0iyPAGd1duwUy0ewETA4dfD9WM6g7T89CyMfQyY6EZvNChJYWVOH4/x9lWgCkSpeteI4Z4HrkJMVZ8v28PtEFClEmm1D+nG2JTBiTpKjDDj/+7aiXb4YGWLhfTuwSMjA3VnIX/EoPODM73SwOl/qF5M5dYKcLpf/12xt0W5CENwEiQnzoRDCi+DITtE70JGe4DNDhWvihKFSNmDOv1S2TxRJ9FMz/GYOwoxlJscKskpSTm5Lxc4ciIyeOajiiAEpNaH1Ht2DqB3kx3ovw4Z5QEdUoHCsohrIIGZ05FwH922DRp0ORqs+CMw+qIGDN9Gg5FEviNv6n9Yzh3jht39H3DNXdfSwyJAtKWXxrSXNNGAxd+MBHJwRwZKLj6GojbTgKEBfeAQDWZUEbRI8y6PhJpYgiZUpoS1m8ywaAJx5I2mGNyMO6LBiquG47ciYqknN2PgnVMjSiE+cQrNj3hpSImizL6j4YNwiDIz2XywW908NETckXgTAaAOoeF4lyd0mAOrzuJMPeO0iJGjOvp0MBodmWAsDNqIqL3s2yhCqx1ncMi/wRxdCEfef3Sr6GdNBjpy4LJIfPys6iEuxO12WhIql1dLD4VDkUCpHTYjrQ2hX/9b/+V/zm3/Kb8al3Po1f+e53uB6SkLsm6t4qmUiNjxpFBNt1c5JrBsz5WLkAoAw9OCixlkpJUE1TadM9iXu9P2G/bni8bOR91AXP7xKu2xV9NPR99xC9ZZKes6OFfVB2n3JCQUXrO7R3PD51LLXy75XqhVeESvKQbHtHKZXrQRk22HubIYMRy8AxMKWyrT2g947z+W6SyJnJY15ksEAgCTdh3/ubh5DvaaFujP+mwizBLKF3dcdbgGPtziLAr+2wgVevH/Hq4TXuzme8/dbbWNeFxbIZSl0wRgOcdI3wjwJHLEHajvcfAorY3kn+LcjlztHfw9JBVdGCM+dIQip0rpalYi0Jgh2tK7oKn4nWZ0hqXVjQmDCtO0mC+ngjwyDmvEgzTyL3+I44K2L/zn7IC91ng3MXTt0mieeSmlsUuOghBUmZ+3gCYJmFtqqgC8f7WdjssX+2ic5lcbsLWDg7zP8Jxaz5+xeAPkRezJsjQSVQtzhTjaOeUEN+3NcnukBR800RB8s7rqCvRwBHYcJfA290AQG5mb3x+2aAqMAiDtKPITGQCAQ2gOy/zQtROf4yvEKOhxW84XYDEToyjOCdiC/mY8zhkGoU3EFsBdNU22iY+SEB4wHs5JUQdxxSwR0J11YTRXViWaAxkew89Igejw1s/jngLq373Hwj34EbkiEIXaxVEiTbnFGHX4dBYR2wcltMghc0rkUWWGRAMBCCowph8rEkwb43n6O61K8m5ERS7BDBaV1wvVyQUsKyVh8NcMaeM6WNwDG6is44afCbHPmJ+5p8PTn6ZVNGzPFcLgU5Acu6IEkidN52iBQAyWXx/J61UtKbNQNJsK4n3N8HMVI81XXzLBYWbU0bllp8hOPJr62j1sNjJ+eKMTpqLbhcHjFsxVIrtm3D9Xql0+kNWtTbzjGQIzGqg4oGGJ4en3C5XLCsK31C3HSP14T/7GOnn4UXjXwO+QgcB5SvIXUuTTlg47EPrMsCJJtI2SoJuXrIIYh6reuCtrVZdGeJHBdzE7dtFovVwxPDt+eDDz/Aixcv8MUvfBHf++AD9DbYjQ5BfsN+nejL0+XCgq9Uju7cRJD29d71q0KTc9xA9MvAQhg3Y8uQhq+nO+xXOqImAEspuFtP2Dqw94697+it4Xx3x5HO6O7c2p2o7kWnAXVZkUsh2rLxXre9TdQ1bgBTo8mFb5N3kNzp9ezmcBx9hFIrlzTt8peF/JVa+bMO+XEomyr5OtcrRKjMYmHtPA9Hw+hOm+ZBFhEX8ezRQ6bfjN1i9AM8PDzgerngfD5Tonx3JoJnmOhZ7MGq8Hwcj8TIRJ8URPJKdvfqrmhjP1Bi4zirVrrz5t4cZWoc4SdAMlHpVBLWu3vIvrORSnny/g4VpfLvJHujcKaPSEIJg1FHVMwKtDdHqhIivyyeydsokalw5Dv1vdEwQLt8GwoVz/QBo00gGaZcU4GMGFikSxQdZp6B5UKIyk5qODLId+sViyMsIh5rIkB4UcWUgJYAeSo1dRgR9u8DRPn4dFoAP/uzP4sf+7Efw/Pnz/G5z30Of+yP/TH85//8n9/4mp/4iZ+YkF/889t/+29/42u2bcNP/dRP4bOf/Szu7+/xR//oH8U3v/nN7+etAPDFiTzVOEDYU/MwFbyZYBwXzywKGU6dIzlyuDvqaAobhCVFaZBWusx/smYkS8ghWY6SI2qcyaKy+Klzc4b/VPN5JNEE36h99scFS8RE5z9k8BPxGDPISoRQXsCLIYMzY3HC/2QHrcYDTgoliKVkeig4EZHqkiMvZhY90zPFuTjuB5FLdqtu+GiAKzNIvYCTa+lQhAjqGtpvnF/V/24+CJ3agRSmWCSkJr4RjxhgETScJSwBUxoh8IDIeW0Omd9tSFokA89RjD9AOswfNCpJyGty3xJYTIOI5gAO/fOAaZ6qGjkyZka3zLoilwVqTA3ujVwG2okXSCpYljNqPSFGhGMog/7u7nB3d0cC34ReGIQoknG9XjHcb6XFzywFp9MZ63rykUGfctDTidA9Q94uSEKEIkvGmheuzZAZh29EpvdFKq4qANE9RPFhNu+TOqHRh2IcxwmIV4XSKaU37kcoiqg2c4SuZMAG2k6CKCxgah5wjD3g83p5esTl8oh93+bBGJyqfd9nkf7ee+/hU5/+FD796XdIX3Zelymm8qy1xuTbnPmPc19G79O3ZlmW6QVySI1lPhdDY61QDbQudJVVG6jrgtY7Lk8XcmxMsdQ6RzXbtvOffUNr7HRLztjbjuvlCdt+dfM/jrmYZzOY6ZNuLBQGHWUpRVUMbagZOK8V53XhP6fVFTxlol5D1RPMuS6eni54fHzEtm1vEK8Z4igeTXAUJqEOzO6GGghsrYsXOsv0+VnXgru7lXLh8xl3d3c0RnREdvTmTrksZB4fL/jwg+/hux98gI9evIJaQiknACw49p3Xbt+aF1zDr+Xu+4yr3nLC6bRgPVWs54r7+zuc1tVluiRFr2v1tSaT3wgjKX/fNifdR9FhE0sPqFxALmLsKUTUuF8d2LuPYtypl8X5TaacjznDeyklEKVXBUTnuRJjxSjqps8WZI5so0GN7wuA62USvUFl4yAvRlx+XUtGda5bICGTx+Iy+Wi8o9ozoxcNm0hK9kOqDr9eH/f1fSEo//pf/2v85E/+JH7sx34MvXf8pb/0l/AH/+AfxH/6T/8J9/f38+v+0B/6Q/j5n//5+d+31tYA8Of+3J/DP/2n/xT/4B/8A3zmM5/Bz/zMz+CP/JE/gq9//etTj/9xXiaHC5+ZEfYCboCQgxjqFQP/cZ0kZ5kuXYRAhiEPN3sDQ8WSCu3NhWRMeOceN4pqktt3Rc7C7CBxW8Lkecj1YRNGDPIj+UWHdDWqZC5CjnkEhu5ulDlHyik/q+pAcfInD+80megQutCmkpx/IQc3wMm40Rmnmw/EmSq7R2ruB1IhOeywd6cypY/uMKQTDjMhdHM31IjoFic0ih1QKw8odmeROstQuQwgrOITcq6YMljvYm2+Q8Kd1vk75PUMSIY/+CQG9oHZkbplzRH658WruuafUOtxd2e6ccBaYKFRi7miRDGGF0puLiCpkg/kHhKt7dMcDAA3zGVxmbhLSU1xdz5jqQt2L7a6c3sAw+XyNA3acq7++RaHtLnuSy0wUTQvOM/nM/NQGonD8OK21oq704kFbd9casvNkKoYjjb2bfP8DjiaE1keXC85ZVg6yLvcNDFjAdZlwdPlgrF37NvOjbQWLI5axPeJcdoYHYqBdTkjvFlsuFeQDmxekHTnUTgVeo5WJAk4FDKYdbx69QKXywVffvcrePnqJdEjcGOuoAmYOl/pdDq5P83wmTvtzCGYz8584v3XyTf6dPQiU6J5yDcV67piv27AdgWwoq4Zp7qyCBtUHyXNVEwZc6JyKRi9Q3Rg3wdev36Nd955B/f3Z46itg01hasuC7zWWDjVSjnz9brPgqH3I7k6RgL39/fufzPQG5+5XMQLpUcGEJ5PPgo/8p9EDKVUz5gKwmrC3d29jxudfOq5JLEuQh0YTrcAyd4i4ggOFUdRFPF5Njw8PuDh9QNO64p33n4b5/t7LMuC6/XiBakiI6OU1TltA00UXufMRkhccSciOKcz2r4jSL85Lxx1ArheiWzpYKAmUsLl8RHJkSixzGLcOL4BKuamYVyVQwfPk6AXzOUjRwMWsl7ILOBzuXGG9UbJAJfpJ0AUHRQkHEnEgPg5SqrBcUbF6FCSzrPQEDXL0YDWEui6Pz9gfhAVQkThUkmOxMYoL65vOPgquiqquJrQMrL0I4n5Y7y+rwLln//zf/7Gf//8z/88Pve5z+HrX/86ftfv+l3z99d1xQ/+4A/+mt/j5cuX+Ft/62/h7/7dv4s/8Af+AADg7/29v4cvf/nL+Ff/6l/h//6//++P/X7UYfVQcpjfbMyLfTjnxUI4qkB45+cjmCFU5ZgrO+DOr+5MK4iNiGz5GN28IfxIsZHxIYzFGJCWCaFhFiTHgT87ThGI0WPD3PYt+Y0nN5R/N7r24gTF3ocf9BnLkmkmBsooibqAkjWH7ti56vRUiJm9VC8sEjedMXZ/gOlsqHKMoZJrzvjfPhZSIEJ/om7juGfQWk0FUjNnnJYg4+De9NGpfHBtWrhsJkeHxhjMAUo6nwRV+lZE+vHwPBKSpdmNS8o4nRYkyShVmN0khDwVNi2HwsmRYzzx7AkvqHDILWN6l6XMdaAYKDVjRiP4e0tSyFcQShm3fWM3pYptbzitd6hLmQUjUR0mBANGXsHo2NuONPhZU0rQwp8byAgQIyp+jloruSuF3Vf1tUvyJEcsp8zDb/dN+XK9ou07DJRtllLQlYXMup7Q9p1/biQvL+uC7IfRvm9ojSM4i0PPDpKfQygun13QoNiFJnAlF3qrwN/XemKnqhsgQJXszre7oyiKlBPuzhxxAHBfl0Kky8nLS6brMOTIZLper/jWN7+J3/ijP4q3334bLz76kM9+SbCaAXP/Hs+ayjfjWRGXq7vSJnKCggzZWmO+Ffg5bfQpgSbfhY3Dtm+wbFhPK/q+4fH6hJNW1HXBnaNbfXR6BHWiSSMPjgNLoTLCuhvmZSy1ot0kbUf44bbtRFhc2bIsC9FXN+fKmfEXWQoUMrvwMQau1x2X6xMLshG8GsP1SjXZ6XTywjUKSr7XWo8C83qNPKDYIKMoyQDaG+M0IjJjyvdDLj6GTjSsd09hloSSKlSoUHvvu7+CWl/grbee4/k9OTPDJdkACdi1gHvQ9NIZh6Iu1lRJWMsKbeGGTTXYs3KP013Fdu3YNz4PGeJkVcftB0cz4fRq6hldOEziuC/4fhJohO+PcbZwnTiSnBJmBlwg8IHYOAE1CZtodRO4W1VhFGDx7M1mSsLz60BUJo9OAFrL+fM4i8mEpSbGAaQ8far443ws7F8buU1RBFLR1qiOKxlDC/Z2xcd9/f/FQXn58iUA4J133nnj93/hF34Bn/vc5/CpT30Kv/t3/278tb/21/C5z30OAPD1r38drTX8wT/4B+fXf+ELX8DXvvY1/Lt/9+9+zQJl27YZ9Q4Ar169AgCv7rxiTOlQZb3R3dzciBiOOSQlI1EWGtwKE4a1uW/JtNA3o1IFvwqeSj7zdLgkeUU6bDgCEuFOOtODB6jWgCX0oWh7n1V2uHnShc8fdhlO0PXNUmx6PbDQSFDd/SBZsZ4WGEKdMKaDbkKMFDgf7532+Cm7SdsEHOG+DGSqizO9h5JvQTTGP2dAi3xj9EVxkwl16+rhB1RKTPIcRklykvnTYFB08xRSAQYMuRas5xUCw940wEOIQ5zJu8B4gLTT1GkMv7de2S814/mzT3EMs199BLJgOtqG06RGrHoUbJgbhPjaibDIlBNKypzta1wDc0WUH3IGqBUIsneeZ5zOJ1yeLtwQpQCpwJAxlETZ0+KeHCK4bpsTheuEVANV2HvjpjVoDZ4LN5eJHNx0/rkQUQgvDY6RnC9hhsenJxRJaNuOWg9lTHS69L+I0daBuo0+IJ44nXOBJiJt5vB+rIt041lx3TaYd3BLrehjOEKnQMn0fGmbfw9DXVioqTLteOYeDZ3jyXjeR1fnUzjMjYNkquD4a6jixcuXuFwu+MpXvoIXLz7iGKGwuMvJ05HToZLrvhmvywKYhzs6ehojK69qJyJAAzG39h9Uxolzm0gUp9Q+LwW9dTw8XXGC4YTFfWo60U4DRutofo3jUMuZ4Y+SSDalGzGfHYEgSUZK3vSYm2dBPE8J3gxRFm2mzK7xZ5kIoaIkgaZ0HI7+DASyEePCQMdjjQW6GCgYDzCuARYZwWdImPEQY0D1IKpydM11F+O01rqPHbm3Zo9eMGV21wcffoSH169xPp/w7P4ZzutKC/0+3B7fsNQ8R218BhMix2uaUFbBdu1voAGlVJT7ivP5xH3TJeUAoOa8igHUIghzmhi3zIgP/4YR/neMa+OIcSQawlwuL37j+ieEmZpM/xukufQAFw9Ul+CTW3KTku2I71DimbdNRJqW9LFv4s3m3f83S/bzwS0R5MbDCYBOmfmN+MAMo2v4Y/qnfVNV+z97/W8XKGaGn/7pn8bv/J2/E1/72tfm7//hP/yH8af+1J/Cu+++i//23/4b/vJf/sv4fb/v9+HrX/861nXF+++/j2VZ8OlPf/qN7/cDP/ADeP/993/Nn/WzP/uz+Kt/9a/+D78vak7QMUiYd9n/SKsxhyDicpvSiZCwMlGFDLpKZiRgJGin3FVwhGMl8IFQxEaNCXkZGHgrkmh45m444ggMvFBRHylpN7TNvTPCJ8K8ABoGSYM+FDAkGA4tV8gyWS6NMTBax/35jLv7O0AEeycRdh8NEHZasVAjswXmBYu4iZxD8ewA/MBGpOsKcjZodSMrkDUeh6JkHi7W4cgK4l2zcxBmlEhKUB8v0ELZJdPCDsDMKD2GYb1bkQrIBzLyLcTTj8UEYxgfmOKF37RPTn5I+dghC1TdZTTulP98tRuJupkTWB3uFJ1OtubQKnLMeeEM9ezSVEXJVDREroUlbpy6bdhbw2gNn37nHYTcmI89CWm9dyyro0U6sO0XRAaOtubrI+Puzl1fnStRS8W6LDTn0xg3pWkmB3C8qkmxacQUFPpKJODydEG94eWUvELy7bUMYzqXopaCImkieMk4GpjZIP77qxcWt/PpoQM6rjwkc0ZdCiqy79GGZeWYKgtHgJKiazQsdUVag8TcHIYuaL15ke2w9FI5gnQUgV3hkUMyRsO+X/DL//2X8bX/99fwzjufwXfef4+FbfIE7fmsEm14eHzEuqxY68k77+M5upXX9t7RGw9USQnZDmSOXiljjldKdRl0V5zOZ1zMcL1swDCsJ8YPeNwPuhdWqoq6LFjXFeZcudcPD1TxpITtSiQsSKG1CAmyjiIW8VHpLHYPf6XWmL21LAtKLlgWoOaM6nycMdQ9bhjSp9BZqCzLgvv7e+57gwgmxxO8jtFJ01iSewe9UPos5miWFwhLQs42CfW8DxzzMPBwd/Wi76Omk79z3Tds+07Tt7sznt0/4whG4MgRuRxICar0FQqCZxRKpRQ6Brfh79+LYiXhuFZvCr3gVC+WtNssxAlaGPOcHF1OXgzE2CqyraYLM4BpgJfKbFSGsoCAONqSE5Jnt1Ga7FWaNwQ58TlH0BCY58x7IhnSSZo2M0qfXTUa5QOvf57v5+jHg9QexeygLNljSSQJivNfYqcNVG8M5gqFijW4Zx/n9b9doPzZP/tn8e///b/Hv/23//aN3//Tf/pPz19/7Wtfw2/7bb8N7777Lv7ZP/tn+BN/4k/8//x+t6TMX/36C3/hL+Cnf/qn53+/evUKX/7yl13CBYfNgIARY9OLTifgMQAQ5OlPMpIRNYEgW0JGAYagbySdQYFlzW5pzgJHxQ8yrysHjgOO0iyPRJ+yd7LkhWQMkmHVeQohZfOhJOVoBwGJJl/EiY7ugl1bHAYJCc/un2E9s5PZW0fTjq5twt0Kd0K8QWHIIckQU4zeoCEJm/cD07Cp9wHzLkhSguSEbuSI0IHQWSvi3HMhbB5ybjNl2GBXN9Wi3FcbHQ9Nu9uG+/Mm7Eyue3MkhrBujocSOr1d1PkoCPg4HnKHXLuS1HY+nZByxj4j4fkZb1ExFmfEdJCIqMkANBFpClTUoDAZkzMS14hFTcJSVpg2XPoVgOC0MoX14dUr6Bg4LdVTVQ25CNayoubkSbeRTcTcH7qrcpM/nc4cySR16N6dRY3eNFlINKXsmG+2tx05FSxlYQK0F5jaKSl9/vw5HApCYH5k3hOdOZ1Ok5Ctqtg9l6lk2tVTKs/PrQhZeppqjN4HakpAhK4ZO6hQzgy3sd+vG3IRnE+Lm64lbNsVbd+wVKJZ/NoxDa2CYE2VS52F+OhhLz6mOoVmXCxMv/fBB3h8eJi+KPu2oSUqZWgxDsAPydNKgivER5U6iKKAo0fRkHQeida7Z/4UJxfP1FhgKlUC/m6jY1kXPI2OFw+vsVwS7p8/pwrMibtb29lwOA8iJ3rppFKwu8InDgQRoVTbFAPDD4+B8BcizesYQTMlmWP5dV0ncrvUisv1in3f6VKshqs1iAmWmdsz8PT0hDEoSa7T4K7PPSSMH4miDN9XDtsHEp8Po7HknT/37dtU6YQxeKinRAO+QBbpIkyPIxZ+Hd978RIfvXyF+/t7PH/+DMuyQtwJNoGuwYaBNoaP0bmfmRGh5s9jsb6kiroe1gYll2N/j+KmR1jqmJJ8fu3RMAeqC+X6ze57Q98ofl0uBXkpnj4PYDhL0K9HeJVQvh9xJpTYC4CSThPZGxguRmjcG+H2+okO3kg20fLp6yNpNmYUb0QkiEuY3arCzJimLW6r4fya4BySmAvKv92Mkzlt4Wr+8V7/WwXKT/3UT+Gf/JN/gn/zb/4NvvSlL/1Pv/bzn/883n33XfyX//JfAAA/+IM/iH3f8dFHH72Bonz3u9/F7/gdv+PX/B7x8PwPr6hnLLp2TPOe+fsqk5XuNf2EsTIAmCFrENyY5MjRCAClT4dW5oiow/ycmrBaHCoT0g/yZsB5h3EbK1ybfhpC7bqIx8j7Qe5noBrmYTg8K2dKON2EK35GqQWlJDQdzuNQ7H1H68OzJPJU84hfM/F5eLjm2iRz8iqJpYn0bMMRniwYg1Hv9E4+5u9d2cV0GFEtfyjDlyYIeapK7oK7wyo6JPk1VnX/Dc5it60hiZJY5j4dakBNeULnmPdD3XafVz26K6JlLNJIFGWQYEgTU06Meg8EBTI7opBqe73l93hA4ERWNywbQ72TJ/R+f3+PZSm47rt3OhwX1UK/D6KngyOhTEn0aA1QFih0WqXzZs7J1QTFvSs2925YYa4UUqVHg4yByFABMOHlODjpnFsnH8JwOH2WdLj5jtnpAmM0J+BSUZNLxdavXjLz8Gn7ztGfZOTKTV+COBVjItAbISNgb/osNFdcJfe6sdFnU6Fj+IGnM98npwRZ65RI85AH9kaDsX3fSWIUAKbIlfenJHFTKiBMFn/5l38ZP/IjP4JPf/rT+M53vsORVTJylMBxpFmfhN8gcWYPvzTzMSYMlnwcpRyjDO0QUVfHRRc55lqEOTERzjtSw+lMIvDrh0dIWVA8IJGH7sAwFjyPT4/IqSDlgvV0nu/v+fPniPDB63ZBa5t324nry5GsUjJKrbTsF/qEFOWzamoYPiffG9OXA4nLJaHYwQ8LMniS5OPDgWVZcHd3csnwIErhz1rxaICA9yd3wYu3GBerHmgvcCj2wqSSPLuKMZY5+t89DmBd16nyEiEa+fDw4NL6M+7PZ6znM4iADJiFcmyfIx2YYleq7CA8T3oWFOEZ1FrzfLE4U8SNH4EyBnp3F1tHOcfwMUvstR51ERET8T9ElZn1Fcgfr7sr3Qy0J1AfH3ljFaPcWxUPwIImQSA5Cg0iQFM1lAsiC4hcn+GFUrypoEPg8D6J3/X7yH04kESDpchgoyGjuj9KSsWbT36ucGr+OK/vq0AxM/zUT/0U/tE/+kf4hV/4BXz1q1/9X/6dDz/8EN/4xjfw+c9/HgDwW3/rb0WtFf/yX/5L/PiP/zgAyv/+w3/4D/jrf/2vfz9vB2GGFiBEoF3BWk4ejnU7YzOEbpuVrI0x549i7AhFMhizwjmbGvXhk0ymApEBgaKNA14b8Nhvr5Fs/k9ItGIE4AQnyRjWKdFMTlDFIceEUU9Pab3nK+CYTSZJGAPYdGBA6XiaACkVi1swJwiGa/rNDggveAKqnVW581ls6FRg90EfBwl78jFQhLb4uVTfgFlVIx6cODjUpp9KHMg5050zSXICJubGFEmcpRT0yxP2vuGuLvMhDoWPqUL3sPIPqbagJoYHMuvD/xJ7CmfrK0TTfJjhD3O3Mf1oJCAcgUtM3U7fu++h6sZQUQAcc3SvIwFkbPsVvZOkOPoA0sB5WZAMaEPR2kZELBEBvO5XXn85umDO3kPOqbOLNBiaS1BPJ8qSY20XD1vLOeD7CpGMSJ+ta2FB2TtMB+7OZ3omJCKP2Yvl4dlVYxhau6KUiufPniOnhJeOGEXhqwakVNG9C4sRC7x4yAH5esGSS0gpBaoJKa1TRmqckU75N/NGCmAeMNd2mCrKsmCpJ/Te5kYv4DgviPEpCXKqWGqCZsXYKEvWPjBSxwcf/gq+8Pgl/OAXvoAPPvyAzqaqSEoVB7xwj6A8ncVF8I44Rux9QFwKDB8HZDnuZRSNeQwM+P112WfvDXtjCuwigudvPQeEUvTtugOrOLH4hKfrI0bvyImS42IKbIc762XbXPFG+N1soDgHIUak3TiCEX/eI4AzeEoY3dWEvI7n04kogt/zuvZJyCfvwhwRlRueU8P5fHZH17C8T3PNcL0e/kpRhKTk2WGQWXQB5KGYFYTyJz7P4eScUWuQ43WiffRW4UEYhcrT4xNOpxPu7u/J4ZGM3sU/nzovzr//UBLyBZ6rRRSU3LeOSFxObqGQXXqdAt0DjSL3/bBsCGl+kji4WdADx3jHlHt4IJgxcpTkIo5yjCwD3UAGzyAv9MULBWU1AxnHyDIa3lRoHpkSeXOoCb3LLHINPK+iVgklHj8Aiyzxpo6fj75XkchtgDs/KCQS7b3b+36Uut9XgfKTP/mT+Pt//+/jH//jf4znz59Pzsjbb7+N8/mMh4cH/JW/8lfwJ//kn8TnP/95/NIv/RL+4l/8i/jsZz+LP/7H//j82j/zZ/4MfuZnfgaf+cxn8M477+DP//k/j9/0m37TVPV83BcPUpIcaEGfZyBfFvd6TWnyQAhVAcnIl+B/E6614VVmpFt7FyjZo6QV8L+NcBANPkBAY4G6iGEiEIdU2C3TfZbo/aUnWx6Vb5BKbShG44af3W6dBw3lesnJrgZDMxYVOWekklHTMVcUAJIFucs81LPPOE0NiIp9kHQqkjFAUpP6qEUGnV8DsSA5yrtI5xcIBosrh3OR9OgSbqWWrUP94YKBRE/nDWVx75HOnyOV15sbBr02YANoLrcVzMMsuWsi4JW6F61MQ+XaMAj2bce6nrCsC1NWRycC5F26DMKtxfN3+nZ1YhtmNxdmegBRmCVV9O6jqFLYvYJwbW8dz+/u8cNf/WF89OIFXnz0Eq8fXa2QU1TUSAmTlAZwdBN8ktiMgyDYld1fzMz3fXdEhIdTSkGqDJid318Auta6PHj0gbbvWE+Lz9qPDTqlhGU5UY2hhI+ZiSKTM8VDp/BSDM7WVYgyBKk35QPJCTUcu0JDRZm/z7GUK+T04P8cY98g7Q5cr1cff4QXUAIwJiE31BS3Kr9aqD5Q0EkVSfD+r3wX/+dXfxif+vSn8eEH38WwAQxMeF9SRvLNPw55g05eyLLQZ6btO8rd2dGxyKqJAzRNnggdcZvzuxThWWFe5IoI7u/ucXl6wrZtE6kpJeP+fI+Hpwekkt9wUo7rQ1uB6ICj4XDp982a6q25wodS4aHpRgVns3fOKTkfi6gomzTuaXHve28YOlDT4l0iYwMeHh6xrgvO59N0xSU/ZbwhQef9fXNPZ5FB59xYX7EOiLREY9PdCVewrhVjpGmfz9Ei1yMzi4Ifo3h4fGTC9PmEt956C6fTmetOjaNn+Kgnj6kKhHGUtbh7Mc9ZHyH3xuuY3B8mZbeEoE9UGh373jlaSkcDEioc+N8h0kRqABHMQqQyH1+PFAnvMnOpiIRHM8m9NufsTeUh3Q/ys+nAgKG4w7N4A67+jAe6E9SIcfvrEEWoN8izITiG5OZn58RgPAblNtT3zSiE//nr+ypQ/ubf/JsAgN/ze37PG7//8z//8/iJn/gJ5Jzxi7/4i/g7f+fv4MWLF/j85z+P3/t7fy/+4T/8h5x1++tv/I2/gVIKfvzHfxyXywW///f/fvztv/23v6/KCgCghjF4GEXVn7yzSRAP7PMngOcqBHliVuIchKGENEOeJvDiRJTue4CHNPHQHRN2jBwJA9ABJ/1FNRxkIfjMGeXoJmNcFMx/JgyzE08poe3jplJPVO9KqGEyxNGRXBLzSXymb8D0G4kHIkkCaj0CDH2EMwBUl2Pue3Nz1EFX0IAkYVBjei75KoqcKyJdVYTjKqRE9ZKTMeMzmfMG4IWaioO83qWmlHnPhEViazt0J8dCfa6pw7sswGFSRb6BM5MbbgWzUBUwGW4cpfPANaMChImw6ggA102tdY4IxQufgI8VOrs/LjsevhhksOdUoGngdDo7Kc8lwEa30OfP30LrimfPnuN8vsOnL2/j9etX2FpD7zzolqVg2/epiojAv8vlMt9fuHuu55UQdhQ0IlhKnXD56ezeGNdtfv4xFNoTdk/jhdIUrNQ8xzKjd3gl7rkmK3ISqAqTip0bEyOP+HnNOR4pJaAPzwDBAZMb798AYNZ4yBaBuHFRbPKsLhJqpntpH+PoFt1mPZe4p/zZKSeUcownc864buSA6D6OkR04LjED2qC1/ovvfYTx5Y4vf/nLePG9D9EH33CghTUxlI8HL8dREG8WuqJLw7Is2Nw7pNTia5rLIzgtT/t1kmUBJ2yCBUOtFaiurnH11P2ze4xGMiOsIQtQasWzu7dw3S/sZI009PNpBUTQx47W6S9TxHB/f4fr9crn179vThnr6YTFzLkdHJdSap5gA76eg+82/LO6ZFqIUkWWVc4LtuuO3jj+NNOpFNo87fp8PvuaZsbQGH1yUqJIKW6rGgF4wXcix+hAfHvvjkjEMy0HauFfH7yR3ikrjxGVWfjzELV9errget1wOq149uz5pBBwaOf7Y6faSCDQrriMKyTTW0qMGUvLsqD3fRKEUSrXoo9sVucwjTEH+Yj8J0CQK5sCjs7JH4KfKZYyChjcCglRBsegYzg64vDpJGLHONRLhm597uPxYqMgXkjR1Vu9qBoaRqd+bDoSHh5Ot4WxWEJO0ax68eIUhGiqzOgJFTEn5iPcj/v6vkc8/7PX+XzGv/gX/+J/+X1OpxN+7ud+Dj/3cz/3/fz4//HVozBJM3sjO2cAGngHIbIAqABHLmxANEEjTdLlhPCbSfkVHMoi7K1RoEzol90en39xWBdU45h6sq3OylodRYlpHgupwiwUv7aRgxOdURQYyaFBwsjsooZvCrkUQGSGqgUSJ3BVTTokn1ByQsCzgIZbvbmEjfNTk+M+JyOBEsAsqCB2zB5znsZqvXc0HTRtWlcy14P06Z/FghcRY4sls0MbGXvvGHtHBvMgAqEJQnK8B5jNiPIgH+bCTn3fB9DVRzbDizWhc6gqlvWEJBmXpw1BmgySoZkiV8bdb9eNviyZFyqg1vBtUd+00khIKx/48+mOJlz7lR1xzp6Nc8UHv/IrhJ1rxr5tPAR3QupB8DMvutb1NKXkcZAELL6s3KhL4eHZe8dSnVDZNsDdTAWcL/dpN86iY7TmHCGXgQ868dZa0ZwEx0aMHfZ+3SFIyAsPrZLzNLcCeKChwXkS4khAoFnHOgnUMIlArhu5SCVGZDoPLB2McRBhB1tqhY6OvbUpac6lzA56SXx+amHYofnhywLak6THAEAFx2j8eSQkv8Y3v/UtfPWrX8Vbn/o0PviV7wI20J1nlTMcUZN5CPbRIdFQ+Ea83KiW1H0tVBWWjcTk3mdBH0Z/0Yyp0riNh49CO+HzstRJHjYDTn7A3q8nbJ12+ykBpt2Jjuqj3OaqmOwFZkVHx+gN+2iOoHI9l6WiGjk8bW+4bhtqLShWfdzKrzvN4EDzETiRnaUqag7X2w3a+hzBmRcCj49P2PeG02mdaEjw3mKMEwdfkI3Dqj/4ehOJWioiMDQaRCYtYxbhKfG6pFQRyerhigyEx8oh3b9er7heyV959uze84cy1MeiEPgex41VEl24A83Lmc/uZptfswpVQBOR2Jx4Lm1t9+I1uWO3+z5ZPoIEBbgNWJ0CDwCWQw3lZFWV45wQf2+xR3qDfDhk6xxFx5kyuYewOa7S4PrMc965mikBxrNlItY+sokmVSBTzTPl7X5+DhuwDqh2pImufrzXJzqLR4zJiwx2dm5J/J8XLDR1vYG64CqcYYCGZp+mRRBMSV8s6ICLxxhzrjf8AocJGeDmZ+JyT7bifOgyCXe0f48HHEcgm2NhQ83hu+RjFEEqrNYXJ0oZfEQkysUyBnpTFH/fIgJxuJZQ3fCcED9YVGF9YHinCHATGVCGYQ0DEmVtyhQviNvbc4Tg+TROQDNwlEYilk65Yk48GLNQrphLQVf1DprXRm0guWkb3A+jtx067CBSutNvEvH8Guc/JKJkcUDUhaiF6SE95EYnON/dYQygtUFvjVp9Q20+C6aZGfNyEtbTSjt6J4yVpSKLy0h9I50zaqOEWy9XpLRgXU7obWB0o3LGfU32/YrWKJGM6jElwd47lrLyGsC8S+T9qZUpxvu+z+4urKLhY8GcMoYMnJy8p75BqClKYqbNvjXUeoyHIESJloXz+UAFICF/dbllLViWFW1raFsD1APNHM2prvBaRNAzQFDA3BgrT3VVHwMl0a22+piKXTA/D5VsQLRsuzEY8O58x3FC7mg7jdaWpWAMHlJ0aPWUX39eVBXXy+WmI3epMQQphdumRzrsGxYpeO+99/CVd9/Fl778Zbz86AWvoylUE/Z9YF2T5wa5A6cUpEK1iE4kIvHa3ThDE4XlXpGcUJ+SG6bNQ8ZHR45YiG/8qgPiRX3KGZfrhiwGESqVTrWidQG6Ynu6ck/jI49aaK1ffMRHtUhhppVHTEjlNWQz4zYKJ6oVI+ZiyqhhABqRChH0AXRt7L7d+CylRLM8MbQ+gMHRS6B3wQ05nVacTqt/Rh9ym81RTc5HfEAYqcVBuu9OXAUQfBTuX336IZk3hix4xL9ngghl/TFiY7GzIPhZkYR8vV5xOj3i/v5+5v2QFDtQ/PmLfKDkTSIA1MpnYds3EsZLcaSm04U8wUe/HnEhCfZrTAskUZU5nPM2ixQYitVZoJgZ90afY89xiu9ncVb10dF0RxiBsrFTwEfBYSQXsvNAUIjQkZaQ5x5ZfMRP2oEVuEdWPLlsnlMptBjVYzw7+TZ2jN8+7uuTXaDIYcrkPqkIhmpKR8GiFk6JSnmlm5GKuDGOOEchUBPADwFuTKqG7tLigV8lk7LDlEb94EpG8iMd9Q5WtXlnGw8XZZ3U5YsNjpTMOJ/ONsmEIkfmSyppHkJ0/MzkiAyaqhX3RlWDbyCUdG6jeVHmo654z0o0Ainz57cBbezacioT8ocBlrxIcofRnOiQqjC6ie5tdoYCboxJnKAqrhIwPqSmJAemypTQdm0Yu/rYLXlxEuiX82cMTP90bxbTQ4LYvHvLkmHCTI2lLljPJ4wBvH71BGgH1LtYODHaSW4pUfp8bbtHqQMZAsrzfBw0lQaD6Fiih8lohvv7FaUWfPDBB6iFeR7mo6Hz6UyuUsosOOoJBqAYZbwidOtMIjDjeOJyubqzZsblsqHWE5alIqyun56eAO9u+oiRAUMz975DrfvBpLhuVA/lzGsdB0Mpec77g7sxRvNDV5Al4Z1PfwYffvg9JrNWHlLlZnMNdIxRCCTa5pInqbnk4oeNy8sd6WOoYvaxivl6o5dJLQvO5zM/lwHlXNzHwrtveIEPesqQC6GopZCz5SgP1U44itYkRJ20Y6ihJiqnvvGNb+A3/PBvwHfe/w6++93vwLRjwDyNO9AOgSrJ4SUXdHQS7CdpM/hJcbBi7i2mOtGfIxOmTPnztjdeU4fIxU3MMMxDDweertdZnBaPB2jdOS3m96bQRTrXCpOEkiu2vs+fPW33vVAVSWj9yj0mZSckH10y1WQkQ7etM+ytK0qlIkeSolRxBDhBtSD34aMcmyPwiAy4XC5orc38H459YjPlfhRy41ti6ZEv5iiTb8ClsIimvX33AqKg1mWOibqncXMU06crbRRgM88s89eXC8Mx13XF8+fPcXd3BxmJ3A0lR9CcCF587xEUrKc7Gm+2bRbxOVMtpH1gKQlJFhrOGZPL6ZAN38O8CU1Oyna3YHJq1L1gMg4Dt4E31Ku+p+vwcYwO7GO/KWgMboUz+TmGAxmPotQM3gzSL8xyQoY/197khoIyA8hgMUbldqZFvt/NWEe3hRXmyPHjvT7RBUpGQvFQQEyMxLXySgVPuIX23WHWYciFoVUqmLP0A1I8ILJkYLiduYYmHl7Ay0ZhpQmHuUji4E0mQENCI4yHrt85dTfZOctzh76uBwSXs0z+TPxMyQnJCYaqirpmkj1787wgVyf76EN9jmOeUKzdkEHyW4o3k926fDlBfdbM9xClQUh8+5SQAYKa64SKxQa08fAvS0bNNPTC4PvuuDGog8KGHkXSALJUwDp6G6ipIEt2j4aQfwNAQhJ6Byy18gEbQPXRgymQUGhpX9Jk0+8bJdd97ERzkjihNWbSnidR6Slh4O+PaQYV0sbF5+rDu/+ChARLQFkzPvuZz+J73/ueEzzD4wUYpmhJkOsCATeuVDOubqwV0vGynnC5XBCjgtbc2jvlGRqX6hk2Bq5Pr9FawzoOfk2tFX24p4QXwrHxtLZjXRa6BicWDGEEF++h945t23G5PCEOVgzBs2fPWdB7scXN8diAArmjvTtXOguE8B05CmEpXqSEzbhgemdkH7WVnB0NGm7dze+xrCeMPrDv2/zMMZ7UmzHR6excAi8gSTqkymyMAfUmQIx8pyI0j/zKV97F57/4RXz40fcwtqNo62NgbwO10vl56A5Z8s3BltxhOSOniqE60UoRqsCQBEuOJG3uMVSZsNChHNXlvCKORgiaEYE6n8/Yrhds1w3ug4hSOapQNOzbTkoX+J62bUM+U4hafByVLGFrjaNtEYjR76N1Bu2VnJBFgOojAEfjgmxryriK5CTMKAJE7IYzQl7Tvmf/TO4F4vda1bDvDPKjE+3q9z/It458JzvGEzfdIFOYM0SWia4AMsPo4iAU58qYGWoNvqBNBRIVR/tEVAAW97V4aOrQKWFe1wV3d3fu3BvjJRZWw0eI+95QSwG9l4oXUhwR8h6zSK05Y1krrq05Aps8Pdh5OGYYCndLhquuaKw5vbQtGtfkvEhDcCpNvfi4QXmHEq2cmilj8YLhkwUJ1eWN3JvVq4+JEszNFaNYt+pjnpyQM5wIz+RiEuC5f8S6EODw/AJ+/RQoFRnJCmBO0hHjrNALE5sPDuEzyutI8JIUZmdR5fEBAHx0owNNFU2ZXWF+0MMyoDJn9UEo6hrsfXP31TyZ1ZIwNyyITeJZ/GEgJ4KQ0rnjoUT3x44nlTQ3/AhaixjuWtyBUoQwq3iaj4jbuZsjGM6+RsIYPKhO6wLrA31nx5qSy41BkliSBKTMRE/AmdkC+Lw0p4RTXVHTguW0QAS4Pm2AGNYTMCSs/zEPHBvmRUXC82dvwbrg9YvXPmd2jgQECY7UuEuw+EYMPwjDCMmESh5yW+ikaGbMYfFsmbsTUY6A/7OPktTlseKuu6b0wzC3VD+dTsiN0eUXI7pkSKiF3IFQRbXWUHIhaXSSUwFAYBstt9eTeyn0DkmZ/B8zbIMjJo6iWMiQa5Kxrm9RQjz5HOR7xUbjK8I9TGiiBhHsfUMSqhyWhWPG7CgEk165OdPlF8zv8RkyjE64r1+/pry18PNVLw4V4Bo2d/1URcEhO4SjZMFxaY5GMOTs8L2py0JyujmCowOPT49IicWLOPS8LAsgwLbvkNYo34YXGaVMeWyugtF0Ko2YwfPkB98xMuzaqdoRQdsKvv2tb+HzX/gCnj97C6/6Nu3EzWiCBxQfxQ7KxCut71V52C7LMuf8YXaWckKRQHqZiyVmczRg/uua80xdViHKkW9Q2b131OUEHR3b3lH5EDphtaIqDd+gbmzGbz4NJnlAuB2CiBNceaCs9YRNdx6uGSipYlnqdHsFDvUaDdXqvO4xjmmtz72PSkDcmNcNNB2el0QUVMfA1aH+02l1dYz4GOcYg3Kfi735RunoPiy3RNuDzzImN0QmefPYmw+uH0c/kWUW141rjq7gqorrlUT5p6cL7u7OuLu7x7KslLj79xxdkYRy2pKFoZNjh/p4G2CjEuGb62lBd+v+8IMZSkPP5JQCjk8SBD6KMZ3vPc6ryQl1ziAJrVEEOA/FCxF6XemkKUSrSX6Jj3+Mo58+bI59EzLG4BlTcpqFdazdlG+s7UXmGQpEwen38YY0i49fn3yyCxSG+wmSkYAq0IliDDNWiRYyKSAJq7vuMkCom6ghbjYfjIC7moJGas6biO4x0ABunoDagOmAjSBsgnNeifwMpvnCojoec2zBhTG8MIlRRihofO0AvjnI7DJUxf07FFK5oZmQlMeYe8Ippl6xutopTNfUN9eSCmHm68XZ48GcL1NBIQmAZFSraK1haztnnQ6XLpXclLVWLCuljG1rSDXRIjt7sSGed6LKTJ6Ye7rrIjv5gerXAGpOWnUY3WKj8gpfDSWVeRjN+2jwkET1kURBSRmlcqygVQ8IfrIU4C6ivG5jcKOoObwUDCVXnM8ZvXXyKnLBttEcjKZqK7b9gqQAJZ+8/9frFeKFMTdRqkQyPN4+CXprqHWle+npPDdV+lzcEuRswsH7vmNdnDPTaWwWnhSR1EqlyEpzud6x9YbFUYvHx0d89jOfgUEnDyCSukNKHwZcp/NKwucYaD4yCuQxrk/sO4c02CXJPnNkVk6MP8lZALiG9+uOkY8MkuLXvTt0H7EERyHOezYRGHEPkiToLjmutR4FlN2ghsGP6B7kpopvv/dtfO4HfgDvvvtD+PcvP/CdQADwazo6So7VAt5HVWS3PW9eYPTgbvk6LTls0TkOGd1zW5Y6u90chVvh996u16mMCHl8a0xYHvuOp8cr7gg/IaWMu+WMa7ui9YatdUrfa0HOZwDMzwHIfRi9QxOwrvRJyllAipNgKTKT0LtLbEOxtbfmScPBV4CjcB4CR24vO2q3945C+HK5oDtJNA7k7FyJINGez6c53jkkxMnzocJk78aITIks3B6IMQ4Pk8JlKfP7sRDRqRQiUZbb5BhKb6E91DjqSGBBzkB4vFyvV7x+/XDjTnuC+jMx3EyJe3kYH9qM9hjetOz7Pi0EyC18c1xKJIn8se58mYP3Nubz9maB5qs1YkYm9+dWianzjArlokKhMxfId0OhN0uQuSWzVbQkMxR5qid9NBVrfZLhZwEyd4RZzAJwUcXHe32iCxTtDqM79CjAUXyr56fguGg8lDuh2uMqzhsj/gAH38NoK+kFhc3uVX2wfRDd1NUl5EWMnLH4PJDurg7r5uzko9si0rxjT76B8hPNjJ6ckRcerIGoDIfPRwryk3uKKE3LWHjRvwBG6TXcYRGJ5Er+0qB9xx6z/sxwO7q30jsA4qoe4WGtpigW1tVAKGViJEQkiLRlgJ2jJB4OpgPZaLWsxYmwAlyuD4CyMtdO8mm8v+w2+vRgGJBcJ+8ouC23B2ISFkXBPQCikgdHfmGRbjHC4lgEyEiFfJnRFfDZb9vbDH+MUcZaF2Rzw6ycmY9iiqenR4i4Qy3gEt0Y2VFySEtI7ozhkKxmOC/nyY1aloVjmfXkneWOWhcWrEGE9VFCcBTCBdZMsK4LyBVSDAPcN2xer23fp1Prejrh8eH17NBCDcFCwo9o41oWA9HBGn4VRD6C2KsGcjTKEWwXxR9vUXDG/Hv75wh5MMDN63w6U566VlwvT1P6KGBY36FoWqbh2bbvyMiz4FtKRa1EZ06nlffU3OMiucMq2FX20fH0+IRvf+vb+OoP/zDe+uXP4OWLD5ET3IiL83tJRE+HDoyd+8LwkVRxyXB2lcaMC8h03WTScEGuPHj6ODbsuKdilBNvIYFXRcmCJAUQphyXZUHRgcvlijGUuUc5Yy0FUEXfNjQdeP3qgZYAiVk7SdyLwoC2Nx+XVJTKYp95ShliR9hfCAUOq3lFziQe1+Q54A77EwXxYsJYQPTR6Z4sK/ZNcHm6eDhj9uLRnzEfca3rgnVdkPOClHw0EQGnSNHoI1Q+01TMYmwWh2V2lKgiJXW0gVtgNJOxMvkZBVhWJL+XYs2VL92LlCDHcs2/fPkCj4+Ps1BJqaC1nanjkrCsZXKkkrCoCPNDgAGQmlyufeOqmlMUFAoI3b51frbYkw+PmIOWECiSF2le0BVV2BB0A2C00zD180uEyL0K4I0vUqG5aXbnYxzutOmmsKQsGq5ayr62DnnxBAViXQtAS/yQjv86GfHECAfwdFgESsAxgCGKBy84jFAoeQQKONdBPN56qKFNORZHCjohsQP2iqJACZ/AlwrMme07ussF3XvPCw0DOSAQwbCO6YHp5+tEWyZCQ5lykEuGY3bDO+Tex/R/MPicH8d4yxAy7DyJgyJCHopR5ZMAZmsE9Jm4CBOhIjRng0MAWeYlQCCD4VMwF2VnzguUIxwBia0sOliUZMlALXMji80X8JGU0qZ5qRXZR1TMeyEsnVw8jhjvqHcJ/vBxnHVsXGMMpGWZEGhCQko6odIoTlVJoh5dsbv9fkq8DtEZW0rICzfSfd+wrCtqKXi6XPgzxTCiy0nc4GuthORr5aEsA3JO7IiNhmDPnj2bI5eAfknO1bk53rp8ZklYzicstaKNgev1grbvyLng/tmC/Xp1jgBTfgEeTIvH2OdSkdrAq1ev2KV6J9dbd47AChlGLowBlyfO2UsNRr4fYq7UMd/s35CET9iYLLFcjmTbQEpIVoSPXH0NObwepL0YNQTZMjJbkm/y5sjatm1Qow15TglJyzFXF3/afH35O4TawPX6hPX8DO+9/x6+/JUv4913v4r/+PoVYG2aDLJIOHhLZoBJml1tSuQx5Zwx9h0dNosvRDGt7g6aGFYH+PoCpvoiyMDxeWstyKVOoiTMsKwn7LvzhXzEVCsL5wTBw3bFftmADtw9O3HkeXOQQQ37tuFSClU1jirvYwDN6MGiB7IcCrAoWKgA4n2rhQVZb1STzdQyNYze0LYrwkK9LmxA2lBsPi6ccRuqRFp6mzJ7Pr7B6QtS65toN6/drWzWJe83slqbyI1hqgTCLtvXQVyblNLMnwoL/Vqrj6z8syuJwC9evMDj4wPO5zs8e/YMd3d3My2YVvMs2nkvmeQuKdESAdzWxTgaCr+eiLpggaDOpTlyd6Ko5+F/a5cfPB4vGASu5DKIurGfZQxr8K6J4xkf9dFI092fEU7lcrO/H2h0ICa3HL4YCw+hbQdRG2PwbZwZQuO5XzcclGHGDyCcsyXL/iB5ZWnCC2QBERqt1oszxeWYkfU+sPuDmcBuQ4VoBcymN0jccMLX/vcNMBNYxjRjap3+BJREulOqK0U4XgoIOTp8c1hQJz/FTJDK4r8/JsxN9Y+zoQ1IFhZA5MlEoQMJxvSA6DF/1VwPozPL6KNPi30eHErylnaY0mHSQLQkl4xUSbzb993dIsucSZecMXYy0LWzqMhROIorrm5mkwYeinu4w8Kc6yJvQIE5s8hLoCul4LARDyj5QEyO8DRVokNQ8yBGXpPWPOHYCWmqht6YHzJM0TuvKa2+CcWr0ZJbanXpKQ8RMtttyhJV2bJ14XtdpLBTBdCVUtx1dZt65Wjlet29i1wPp9RxGMQFMXQ9rXh6fAJAbkTKaSo5uD4V18cLWrtyQykZl20j+jcUHc2vAc+sp6cn3N+fEVLAlDPWRD+Hcd1ncZ9LmvD/baekju1LzlNeeshAea3J/fLkbBzrfjgCaqZuLS7MnCkG1cqsIdP5M0MhE2gMxxB+3wV8HwDVPGNg3x4ZnDdCiWZTip4TyX/mY8UE4Hp5wnvvfRtf+cpX8f5738SHH35nDgEFjIxQkFzKrBx2/6kkN9MiX4oSVm7+ydGJ0TtKTgytE0c1UvHR23DiKcc+PKiIchZHZTiRZjFIF9sK04WZOsZ9J1eiIs+S4OHxQvRvLCi1uNy7TPWQ5IR9p+OxAfMamXH8qEp0xmD0iUoJOQchmsTW4Ty1nAWtDWzbFZvL/TkPYIbZ6Ep+R86QsiCPQe+V5lbxcWAClLU32uWv63muJyDW1PE+Az29tb8PEiwRk0gMVm+oiKaE+uUYGR1J37E/RFFyvYoXjg1hoR+HM0c2Da29wuVywel0wvn+DnWJ5ksBVbcXIIIv/jyYh+6xQWOaexeZaI0vaC92gG1n8OgRUQJXEsLv/zHeGd6sAbSXiPFKTgk6bgJhMy0b4NeEz9gcGHE07orEJAfyGa/JL7kZ3wCAFKHaCW3yH7mHx3X7dVKgBFeDAW7wPJpgH4OSUgMEdHTMDll1GfQS8UU9umJ3SRqdKX12acPRA4ECnsYqSHZUs7FhRufHwkhRUuVsVgkrwzvnjDDJEsyHzuIwtlm5i9BCPUsE991Cmc4N8YOLm64jL+6jMkcajsTAe1tznFTN4NaxLCK8sApFhBqvZc4Zd3XhaCQbwwmloPcd57sTclkwemPRooqaE7Q4vF0jTl0AUKqYiqckA6y4e6esV4BSk78lHvi95YMw7K9bslhIrVm0TRgKuTC9t7fuJki8fjM3R5mGStknvWTMgnxHMuswIl7k7DEozwQY28COhrHyPfQxoBvdWUWiQGTxRIVL9o7ZcL1uqKeTS975dpcTnSYvl+t8j9FNH14R3OyenZ/7iMoRoz4gqQECnE8nut660qU5T6i3Rpmrkxafnq4QSSgZENCQqndDSsxLGmPAhmE0ZrmUSmQlyKy3+UNvvBz1yyWk5TfwcBgjwKZHiUJ95OCcqmTTtl99TEPUj0Ubs5qIYvTeSZp15GR4ei+Wgpzp7rntNB9LkjlnTxz/qduh51IgPraoZ1q1JxF86xvfwBe/+GV88Ytfxkff+wiqOzUURv8IEYF0xdB2HHAGpMjZckJjSYXjF8At+Vmsszt/9PXiyKgyzG/yvpwLNAbdW9ugqVdKAvWojeu+YVmYDdM610CxSnfTWnF/J7hcNogmnJczemnYGxG2ZVnYKIEkcvXog3VdoRpcBwACnNYTQjIenT2t8Tla660TGU5sAIcXCblkLEvB3T3zfFobTkQnoTk4HUEYJ2m3IIugqeLp6Yp970fKcqJxYCQhA7HPH3wfeq8khPInRkExzql19QImCLMceYbVf4wZwzyQo6vqyqQdYTcwPA6Bvi1cG63x+j48PeB8PjM0dF24J3R1t2QgJcXeBKdThZiijR3hgG0qvu6pKGJqto/xsTDxXbh/DmFjYL6n+6DK11Vcn/CDcnzIhM9nNIianLdIVKmIzLEuQP5lnDMl8QydZwccrY8K11hOQXCMuM0AawiLfKpJZRJ0P87rE12gDDUkddd0CQJrEITgHRUJpNlJndOi29SJXozKVv9aHjJk/7cRkq2BuMvkPvAQTYOoSeQlSFGfz3nlPobLvMyt5A574qQu5ZTDmbE3xeiG3gmdplRgliBDvdIVqISbqyBbVKrshoOxDT8cDCxSWNDwQTVVaHNfDBy21oDzCkY8wPAsEoa7qRujtUbzn1KoMqJzpdvpN+/ETLHUjLIuWEoFMz8M2njAmSpGcCkcnTIQ+s7ZoVqRafbFbsznrCmCsgwYw71eWIQNjVm/oJ4WHFHh4tbSVBu0vvMzAi6P5iOpRlne3poL+0gwLI4YQeBW+CwoGJ7onZKFaqRxDUgFTFCW4ocoP2cFXA1DD4eUEi6XC0pKqPU0jaTC2Aign44qU2m3bZ8jkciLym4Bn/sAskJHn/LJ8Jvgnp1cUuqBeEnIcxGO4PZ9R9uad5CFXC3nqjw8PMBU8dZbb91I84FA+iIzSAfneuFeSZSFKbk1F1eWCLv3BE/rZTYNcBD2Zgc6kSH/cT4OMKV8WlyaLMYmpZmPg1JCKixAuhoqksc3HOPenDLa7l0eDLUsuF6u+Pa3vokvfenL+NQ7n8WHv/IeyMMhB6uWPA/iyCWK8ccYHUsFSqlMidWAxTN0qUwqH51kcX+uYPAUawGEpo9xQjgIBUBcds8DQDyXqzXF3emE3jO2y/Uwa0yZyiwIWtvx+AhIIWIVviTJifCwG4J14mfLJUMbD+i7u/vDCdcMuzdRwjfi+0xkwiQWsq42m+TWxINxjrSH0Ql5IZ+hgQW8GkeP2VHJ8OsYo3t4po+15ejeAyWJFwm6eRb70xTP1AuYceP9kyc/DQi6gPOU7PBnyd605mzoPU0vlVLgRUpG+GyZAZfHC9pG99zz+Q53d/fovbmRpav7umFZFlThuM/iCVB1I7xB1DgllJxwWleUQisGAxFAdS4d5CYPx2KfNA/rY2EQKGzIwlkbk4+YxGkQAiAS2FNGCWRkDHRT6OT7mf8cH2FKKI6o+uR4CNAUSfQyCynTiBD4eK9PdIFiQ2GJwXYQjllGoBuI51xmsdCdST1U0XWgdx97qM8K/cDcfQH2IFT6Ax3EytG50XVTpFhImZUqg6cw58k9FCoAUl0OiCthdqFJeGC3RldEys08ZVKjQuaDaTk5CYrjjt53mCOCArjvy3DEB9MHgZXvoUW/dUKcD42pp11i6t4hkc/gnh7+83IuM2CvloSMhG5CDgoMZcm4Oy8oRSBW8HTdMbpCSkcaiUTd5A6cZkhF0NzVVhDvOTExNbsTgGEa6QWMnJ14vG37lA6TR8KOrQ2qVsi54f3sjhKIc4T68NRl5T3vylEOHCWrNXuBxAc3l4zr/sRrqp5eagP398+Q5Ihup++I5wkVAXxsE66Zqopt3zBGRy2nyT0CeMjlzPvCmPeO6/UCsyg6fJzo44ruB60FEjjHdaH+id/L8zBI0e04oXH0gfu7e2z7BkBw3S/MNNk2z1U5ze8XmTgxyx8eJBdr+rZLtVnUC/a9O0zNsEK4Md1ExvzQa61h24arLzgu3Xe6YpJ8HsjZIdttrQM+dskpzVTYKNjfSBpXAyTQqYF9cLz77L7g/fffxxe+8AV86UtfwEff+xA6GlhCp1kss2ghVDvJj8PQpWPx/BVVpj1DvHs3o7pNEkqCK5zIo4m4BXVvCqK/xlGr3ydxyTZyQkqVSJcZiwIzbNcN2HeksiAljuVM/Lo0kPvkRZE1ZerwskTLjRgj1rpMk7B933Ab2Bcp1nFPJNHLw8yAxAYrEF8d5NttbXix63C/DpI9jXtjXTKum2JrHRXiMQ/G/X3wc/UeaMrih6xONQkNlg8SLT8LEC6xRH9sfobIoAE6SmFqeHBtVJubx8UI6Rgjxe+VcngTmbU5HgUO59sxBh4eHvH0xNHP/f0dTqcz4MV5Hwo0l19njqJL5qHOBnswtgPuEVTc38ubYSozbSZKv4Gmwxw9d7Qjin74ZMHCPVaRNU3bCQZLBrof5FaOUtFtqiWTZ2ix4MlIQq6b3Pwdhe8tdoRbMmvOR4Af8/WJLlAE2f9xua+y640uQbxmZ0HSWXh4N0/TpeSNuR0ZNv5ghmsovMrM3tn01glr+qwSaUwvjsN+PTZmg0gswgwIpW4ka8K7ZcqfxzD0ZjN0TbyD5uHizqaZiyGUNd39AJIVd4I1JFN0PyhExNVBOhcvHRBjLonZYbyhhAkZr4/AiN5whJVrdmKf0gE3saPtURi6fwuE4yABM2faTu+K1ARSaV1Pvprn7iRBk8aCzGmmQw0FDpOaPxTDK30jUdSi82/DjeMIPz89PWHbd6SM2ckDmDNqmEyunAhm0YJEh8iw787RMTvbP1fQ5dEloKMPQq/J/WdwEMhyySiVHIC1LhgjHC3puNvHIGE3ZzxeniBGRCGkh1HM9j6cM0M1xbJQ7i0B4xo77GWpGCM6wjrRmShWcs54/vw51xjgUm+GeV2uV+SU8Oz5c4gItn2HAR7Ql1Ftwbos7Pa8AWDYIpGIUhjUVtxGHY6WpVB7AE4c5CvlPF0t+eh5fABnBVREJLpB7/uOiJEP7lDycaypcybGQGsd57sV5vwcuGlWylT8jNahEocPHUJqJV/loPcarpcnfOc77+NLX/4yvv3Nb+LDD37F0UJWNzKcRxCjBOdHZSlQMEtokTTNr+LgB4DrvC4J7kQ4D8jgr7EIiENBJnqX/XsGCG9Jj+ekVGglMb/v5FwEeVbcTTVlD6NLMSbmePru7g4hh1/870Rzdb1c/WASP9z5HCQvVESmEQ+Ag0M3xnADL7r7qvGe5yKwIT6Gkcn1KDV5OOcGvw2wzsZFAH/GG1pb6EuUmdUVTWfOZSYnh2Q+io4xCfhORE0sGAGZNvn0ySGhOxy8GUSY3fvnGHNxH7HJgTpGngdRNzvZVVXx8PCAp6dHnE7naaN/JC4bbRqQAaEbMmDQURj/EVJ0AGFCV+uCWhJab+jSmULtqAfSwTVMIL+HSdeYz5AOQXhgjdFdaJH8GgYhmG62UeSxaYZ7aY2JyiQxmHiSOFECrm1v6i3ZvGZhJfH9vD7RBQoXoaI7KTG8GMw7UUNyJ1dCv8PYHQ91Iu0NyzuyXkZ3SBkcGxXf2Enmsgkxq2JuvjYOFcnQMW9SKXmmg6p2XC6UY4qTWQGBWMKI8QRwsKpdJkM40tw6mcUBkzZZaJG1LV4vFIw8fKHLZHHPhEq4pt+h5+RkMRpcFW6IUgAMn0UTEsxBDEsGs4hpV8gg6qAmJB8L55RNjvHD4+vXaJth7B3aFDgxxMySuASbxUJyjkEHH1rrwFLTJNQyc8UhTU//HGponppa6wnr6YTWnfwqiSSv5cY4LIrKgNF9PgtLSMbfF5f2LZmGSiknbG2j4knYMfTW/fsQjek2YLuh7Q3r6YT7u7vjYK8Vw0JpEcx3Xzsl43J5wu4pxtkRpbpUbNsG9EOdUEqdRUbOxQ8Km6oCejtktGbz7wAyw9HCCIzcDe/8gbl5RJdzvV6xXa+O3CyIcK/WOvZtQz6ts4sOnwQRgWiGapvvEXCEIHMdJ/jYZcLWeULw2RVuow8/sAug5pv8mAdSSoS6cy5T7QBf3wLgrbd4v3bnn0hJznsQ79QXh73dmMsMaWGuTRD9zBU/77/3Pv6Pz/4f+OoP/TBev3qF637Brh2LVCe2BfciOYjkYxgYnh4foctKfxsnvFe/Dzl7Jou7kNaFOTFBLL7Nj1FPvI2inByU7imyXD8cX7Kwp2EeC7ZQ+5WlIsjk5DnwXpZS0EtH9YyY7PvUtu9OzM3Yxw7L8Oyr5OgBcL1eACOBl6TeNJuIUhKWWknmHSzc11xgcgQBZhGMfgZuxijLqTjfo2DfiLYagtdE24auA/vepjcPxz4sQpurz45YAlf+5TCM01kY1nok64r0uTfyv33fTgKZ7/kIc401S9lsmQoXGh8yBJRrOiEMJ2PffXoKG/0F9/fPHJF0359a0fYNNsTH2H7dKw/7UsIBOgoG3xOd3xf3JxRRQdLOqvSlcp4Siy6u30A+YfSlGs7NW2rFelqnWeE8I11YYvDi3ABzD4NUyWHhte+Anwc2KQQcT+YoZD7m6xNdoOg4xjOx2ephAUm3yEGyJ225+bWzQFEn9hhoRBOchRSjBFceGA80n/IhiEdRbapDls1nsykn1KW4JGxHH4qkaY5VzI7u65gdAhErvtTqCAZlxNmlxMQt4f92W/NU4CUw2BnanF1PIqMcB52pzm6MDxiJedbDWddn9E4whpvf5RTGcn64JszRVRYemmGal+RQJOxbx2iHYqOWQkQmOawoglEMCSxAeg7CW3IDNP6skGfHGMDvuBcZ+Y2DuJwXFDPIJsiZZl+x2cUoQjyQXJyglhNvetwLIArB5jk/xsC1CSFzFsucFdCLYllx/+ye+TrgZzRxwyYvBOgO67yU3vD4+IhaiicS03K7LAWPj49eIPJhrjVMBY9ZOWFYIfm2Hm6xIpjKEHq0gGoPf0Z4z7hpt94hrlrovaPt+1znMOB6ufjYBfP9ixykwugeex8uTY3N3jDTr4EJ64ZcOlQ5gS4QDr6BpOd3Ss7BYZEdHXCQuWN0N00F4UaIxvHA8OINrVGc7gXKfI8is5tNKaH1HZIrXr9+hfe+/S380A//n3j70+/g4VvfAJR8K4EASkdmADxMFTNryAbVUcnHKeEmys+asS5nPF2eeL37oINrvg1U4wFXanJeWbj2eoK5dkhekIXy49Y47qqVDVH3dPaRiAiuq2cgdUOWDA3puVznc9PaERJ4vVyRc8W6nrmfpeTIH5Gs8/k8c7fiQEQyTDUNIsOII80x/5zvo+SM5XQCjEX93jrMOpIYahFAM7pQBRc8tKVUQMMVm1lVkesTqqlbcms0PHy53NaT5M3MP280s+QZsulwYYFzffjro4CN9Xwrgw8ye/gp9Y6ZAVRypimf0wXGoDttawPXy4b1tLBQScwR2q5X5xnFWMkVZIMjeCibrDH2+RmpqoqXc0wQ69Gf+XEUYiz8BUOY0wawQVP1Z2Z07Bum+jRJgsnxrME8KFMHVBr365ExxDmNnJ4iZ7e5cGKzRCEov07CAqnW9Zln/B5sLrrhs2pNhV87/NAZhJPNq07uWnoQ/+b3U6hW3igVjgUSu+wEgacRcsRnmOqZXGisFKSoWiuW9YQwUDOY/+xwSQDgI4G6lEkugx2bsek4KljvplKmEkED8jW6BXYnSKYbJCauCV8kNkkif4NBeJhdFgCM4CeKj29UaMOdaL5WvJAocDdfNyYajeMzVUHbDTpI7ux9OCFLfJ5vSEIjq+wGUZYLhisfiEAlzktVJt8lpMKEF9NxYIAQfClMKW3tyodzADroJdA9Vl7VSHCD4CDfhmTcORm9O3k3IFKbNLB5CPsBTMh1wdtvvY1SC4Yq9sYAuJwKMI5iMbgnaorrtuG0npyAlzFGw7ZdqY7o3Ud/kfSaobOoZRFZa3YovnmhTElj7x1QZfyC2cwgEh8PJi8okwEPjw/0wllWD19bnP+xYd/3OfuPzrEZDZ7CqdUU2DadhUDyLm6a48Vc2gvaaeQkNBHrncVjyRl7372IpDwzOtlbxUVrXug5bJ8TXWa3tmGMgfP5NKW49A5hQZXcx4GrXzFdS9WccNtuuBgFy7rg/e9+F5//0lfwxS99Cd/57nexXTaapRW3/QZHimo+wvD9oeTComXwoIi164MsGunJCY8Pjww3TAKDm16lOjOfJGX0bUPJ9UClLGNo51gx5ymbNrD4TiXDrN+MIsjZySJAAvOaSoHuO7RTGhzOryHPfXy8YF3UYycKgA6AxNHrdWORdTohJ6Il1+16MxI/OG3A0cSYo10Gw+6bS3cUbvSBbd/Q++48OUykg8UFn59aCpp/NhGiy09PNken4bQd2TtvOq3yuY3fCyFAzKei6Rzzc7AouOVyvSlpPng7x2iHf76u5Kjs+w7tHafTyb9HhkjH6Gyun54uuFyf8PhYcO9eKuv57ChRQ1KSTUWIeCJcekXm+DAlu1E28UXUTufnpY+S8foOde8mBj6O0b1x5iguxuFeh8z9MeWj4BuD/B4dQDNaHWQYLGeeTd5MSwIqfJyfjqDKXzcyY8rwzC3m+ZCZIx2qYbpmQOmwwTyKIBLOibN5ZRqpmuIbS1SwJebNfKiSZOSCiTaE1G6oQjxDhdDuDhgYfV4LDj6JjxLgDPT5aQx1ye6vwUM49PKmB4eCCI9LoY3vY5LSzBw+xgzySwDMnXPNjLHZALsRHTAZ/j3gFJxjjgofRaTMzY3mQgwhS5pQE/NpYmZrQ2E9+AA7ilSICU61YlQ64oZzYoRg8fuRxFtywd095+ECmZsrwHFOynmSoIFj84UI1Br2je93v16Imqi7uqpO0yVeH5LMSk1ISi5JyjxciOQY+tiJzIUPgxetdGBdsCwsXMcg8fDufH/MYR0hqnVx7lGee6SIYHfnTFObtvahhIiNu1R2p1mSy2837xjPPocmWhKKgtZ2tLbher0wiK0ulKYKcD6thIa1M2hxDHbnWibqkNwAoY9BzkcpEHdIPZ/PeHh45NrNB8xN2JlI17DgVB1chSDjFu+awy21NyVh09fbdt2wiUyvIaADwzBGhMOZS/b9GZoOpy7LhOcp6cB128DARnaJDLkj+TrUK9AOszzX7RG2yGDQph1VFrx89QrvvfcevvrVr+IHfuAH8c3//kh7e02UDoo3LRKZL1y3dV0hdYUZFWMAlwRTsBV9kEc01hOu20bXUz9EmL20uuqjO7HXmPeUE3kuQ91WoXupf+wN8T0Ab9A670nIysUU6mPQsHBXpY1+Tpm8fOcxdG/wwo01Dvdt23A+l2nTECOQW7LwFCrITVaL70HqTq172yEQ3N09Q10KHh7MAy8j8gCA8WDcto59Y05P8meR5oBvpiQvS70pIoiSxAgK8NHebEz5mZblOKzf8NbB0QykGVVxWEtEkOLcwW+uQTQO2+XiNgrJlVsFScjVCQPK7XpF23Y8PT3hfD7j7tkz1NNpJiGz4BtABwvjSIyEF3e2zWY0snJCTh1I6t3dHS6XJyKdlyeq0bypjM2pVHIlj5/JQoXqTkVxH5yhOq/T3hUp049sqKKoxx8krlHkDEGCWCDWMi0tPs7rE12gXJ1kasrCAYGmmGGYFySmTsryoKQbhdNwj4iDfYxjYcJlxwh7e/OOKEEcIoRDxMx9qI4QUK56Wk8OnxECHl4sJRHkknyh3UBwErP7g0Og6rb4g9U8YVNxZ1aOgGj4ZujG91xrmRAffBPi+nOpsbdbIavOhTAq0gFdx6EsRCznGIy8FSB1AzI5Aww2S3OZ88FNc+RTM30JRQx1ORJH1TMr6F5I6FIApiBzZ0JzcpfBkN2P49Z4iwcwO1Z1v5nuwWXTPEi8CB1MKoYwCHFIB3ry5GPn9AxFcXfG6rN7QEAtccDwBZ/+9Kfwmc98Fs+fP8e3vv0tPF6eYMqNez2d3APC76cIlrWy8+00ZVLrUAOt7/14oQS0c8TjyaatNU8AFlyvV2Q32lK9UaQNV3cZFRdU/2TabecVrTdc9yvUxrRiF/AeTZdMOaID1H1/aiGa1fedGUUiHoh5EN76GyRZc85BOq49v3L2r+IHaHSbdM8sXGOmk7ypqsiVPBUSSOEFueK0lmlYGIcNzI21KnOemipSzjivxfkQJANHjlHS6q67GXUheb31gn1zBUfi4Zay4Jvf+AY+//nP48tf+iI+/ODb2Lfr0XnzYfdgP/JldCBkJa7gCTKxc0h0oE9L9OXG3oBft230qYln+NmzZ8gi2F1eCg9yi+BPwJAykHCE0mVgcjOGNwumAtNO1GsH9r5jWVdHeiiNP5/vXVXHZzmaCbMdvXXUpeLZs+dMS3Zjs8vlgn2n9H1Zio8jIktHputzFDjBhzOYj+4MkhR35zNKJTn4GLvwoDdVrEsF4yQujopR6ab+fPfe8fT0hN4r1nWdqAL/bCClw2QtkMhQWrUG90IB1rWi9+TvI06Ko408PFfSG4VO/Fn8TAY5EpXJTvDtfQcLnOxIOwAUqLLRue4brvuO148POJ3OeP78Geq6eDEQhYKhSKJkP2WoAb0NwIvOXLKPkJOPraLAEkrGB/dHNkJO4EaCSAdMSJsQTLItUXs+b/vNs0+0ls+LGHlYKbPBqTlBCmkEQ4SjHRlAynNNftzXJ7pAab0jl4yIuAfgEjKOJdQfBO0OWVlwORyac6gx58SOEU5yBTeBLG7Ypo029mqzMtehyJ73sNTiUkf+eUlkpZt4cdI95C3RcZKW3wYD0YFcImGUHXHMWaOoimycXDhaMZBfE1wMEUp9CfMSHoyDCD6GYBCeqwOGS+iyF0BetAQsb77xTqkxL5grbc2JbsndZz0uwLhRq8tyc86w7oqoNmbWUDj1OrsS8KJIVX1k412JAblwYaeUSCJrzXkS7mOQMta7lQnCrc3K3sD3wwj5hGs8vF7IGEg6vDUTa615xc+Nc6nnSbCsUjlDlxhrGPM4nh5xeXriuosE1exEUGFhEUhdb85zKBzllEpiaPBMhnY/nEj2vbXql0yUwpSky8fHx8mZWBamz5rZHNOIeDeUBI9Pu5MgwzSP7227XicvJeU8iXW1VOREp8/dESd9+dLNnI45fEoJl+0KHUcnGejeXDM3fJR932GJIyRLNrt+8rXonZFTwroS+TkvhMVj3BXrJIy7np6emInTma2VsqMgPt5k02JIVVAXjnibx9yXurrXDaaTZvJ/G9iItG1DXRe8ePES3/zGN/DDX/0qPvvZz+Jb3/qmjwGBVDLE4wxSLmg7Db1i4zdwpFZydZQq+zNNZCVJRS1Mh04puZXAUbBnYdJxqQUGdvdwgnHHAFMpvYnyUdUYAwNGrlfN5H85WhcBo6VUFiFdUTJdZvdrw7oqzqcTcil4/fo1ni5XPHt2D0PFvm2wveF8LljXkx967MxJ1O1e5LqiyFUulvjfbJjgKhVgb7ujWPAQyStHD86F4nsWpCV58i/5HFSqRQGUkeuCMJw2pYV/7805Wat/vY9sTedzEPtm9qykbaN6iMikIKImQuHIQiY8q45nMyz4o1CJ4kr8+c8lIY8EszJHSAfR1vN45oiX5PvWOlp7hev1gru7Ozx79hzn8703JIcTdPDAUnKrA1+7mtgQBvJ7i/bk7C7HQoO/3sNITeeo8A06gLCZDL+pUHbCC42uHdIzi2U36+vFfcFygg0c18cl0KGG+zivT3SBwofMN0Jh1PfssJMgiJG0L8gwSSiKOW4pTlqttWKIMqBPQDTBF/0MKnPwITIqUiE5iYcxYTuNDjKTKzFax75zVr44t0KSAV6YBNqwOskrutMDQWFwXilUd/Az+5gouQKFtAnOl1tzq/Xg0nDEQ+Rc3zz03GQnfs+6wlIgDm9e5+QddHZpb/aZZSz05DJXVSCBhLZhhqZH7oMpoB1Iwefi3s0Hg80zORuuotGhMyAxYMvWKVW+XnekTLVL6y6qkMxxn5CMlQvRpgiPK1Jho9Egz8MScyJ7Pgonh6NIAnQ/B461ZPIT2r7jxb7P95WdZAiTiVDQnIgFlI6Bbdv94RSMplMxEX4l62mdai0Gcwm62SRdZv9s3YY7Uipizj4GC54xOg+LWLdj4OlpewNVEe+8r9t1qi/CibOrG4+J4HK54OpKHgEJtiLiiA/I2o7kVOOhCCGC0PeOJIFohbeJf52O6b6s7i8EAVVwgxJ2Jf2EaroCtE75cM40T7xcLlBl9hDlt+Jv6ZB11lo5jtMxw82u+87ZvwmuY+fPGGMWSiOItX5dQ96Z8oL3v/M+vvilL+Hdr3wVv/KdD6CjQU3gYBMi0DJnOkeHl1CYK/LgBkRZ5PbRAeswc4XhRufV892Z3aqjCAGno5EDQkMvJ9s7n+XgJfE9J2QSaZv54cegvd42TrElodQF93eMVDAdKDQaQtt2lJTx7K3nEEl4/ZoW7pIEbRt43C+4PDbcP78HpffD90jGcMAJvaVQzk6FGp1q12XluAo8sGol6dac4LztV6ip75PBIaQMdnqOKDlHQdLd2w6F4Hxaj+bSuO/23p0IezeLjltp8LIsOJLbiWi01g8jRDk4OTkI3BrcqoM0G4VGSnZTpITPiCGXhGocHwIhhCgkou47Lpero6YMt4wcoYjjePWK9+D+/h7P759hqQuRy9aIoBtRk1wSwizRGu0VxLlfcFTrkFMnmCTkTI6RuT9Wb2PuvXw2cKwtbW6wdmQBDR2eu9Rh5kxA4YF73XcgJWgmwupUXIIHbpT3cV6f6AKluacAwI0skAceBTdzLiXZLgefQg3q/A+mcCZc96tXm3JsnN6VxGu6FLqyYF0q1rogOBsx++zxYHl+w7quKHVh5DgOtQ7HPcU7xcPltnslnYVqoJjxqlICSV5IhrmJmg7nLzhKU11d0bremrD+KpLqDWHJMD+3JK98vTjKiYdplozsX5flIPeqKiw5nG1uH5eEzuaVxUJTumcmRyGSd3zA4YA4nVodVgxzsSBAJx0OByeUsvpmkHC97jC9IiUWOEspSKn4KMsA+IFlhgFFMQOMG1J1mDrn4v4jPkLyfweKdBCvufkw8It+KyGBruuK0/kOXXltyWdgzHpJdDW9bhtN7HJGXRaY7dOkqxsPqdP5PO91cTQpl4RtJ8+pLivu7+8niTWcMUNRFt3P9cqQttviBDjQjEiJLUU8p0mR6wrmi+xEAmuFub9IPCv7vnMNaWS2GEqmVFZ9lBZGTwCIUiZx9CljqQUXJ7EmAUQTmneFY1TfZDsuo6OOOnlGAvKtaJF+cWl5nUnSwRsI91aiPQBHL8C+EYXJufq4kh2yuVkfycNwJFTd8LAjl4qHh9f4zne+ix/6ypfwhS98Ed/85n+HDkOzhlwdjQQPumLgZp3dayWMwgb9SSQRBk/SkRIdgCnjVtzjDorMwgPdSSW8jiR10qcj9hrI0WzN/UcNtBRXmDVYyVjqAhkGHQ1NFWhXnPMJ63nBdr0AAAQJl6cL83T2Dc/feguLxxsIIn3YsO0b0hObOkrvDw6MJEfgckIpFSU/x+V6nWaVJGB3TNt3EdT1BCB8Tjaii2X1/Wl4eOVhvZ8yFUXresK2XXG97mjbhlzKNJQMrkxrDa9fv55Kn1IOeb7ZwXUhuZbPMhs8m88gkaJbbslhNx/Bj+5hzg0Qt7wUPuurIznb1v2QTzCrM9ohmspal0mIT8kwBpHg0TpevniFx1dPOJ1X3N+dsawrgidE48TIOfP4ljZw+LnwM/bW0ccOcZL8RKvB83E98SyLuBUWS96E+h7FkduNEMXvvi9LkpTbgAgtB2xZYBBkp2JMMt7HfH2iCxTyS4IgizkXdBD/OHgRGv6MmivUH5BaClaXuxk868JHcMMMA27g5BAVNyJFhuBUF9Qb9nSQbVuntHm4AdW6LCg5o+07xBnXQYqLDpmBdjo5BXx4aKudgh8Ad270UQ2lX4DaAPxBqiVDvTAzAKmpj6bc4Ccfs0mf5TBwCqxiko8oVODcHEOGITsSU/PxeXkEOSYYRVxU6EiufC5Q6Z6j4kWZoxcieR4ODLRy0y2HT2dx4oWGKTeUWld/CNlhJZBAu/cdmgg/s+OJxOo3Z8OA+744KgPfYPP/l7x/Cblt286C4af1yxhzzvdda+3r2vvs7ONHPhKFJAZEQY+VCOaikAtYSEEQBQsBIRCMKGolgokxBS+kcErBhAQJBLGQQoJJIakcAnKIoBYs/Pjl3Pb9stZ63znHGP3S/sLTWh9znRiz9//xffybzLBz9l7rvcw5Rh+9t/a055ITD7bi8Qd8EJN1Ox4UxkMuDL8az3Rxn5rom87KjXU+TIgxGZIRjVjYMOVks3kiFq0VUyLEYS0+TRO9JuxAVzAnKMaI083JCmbFNKXxvY52eOAilWQk9nI8RaRwmoMd5ByVwtZ9V6XqIMbhvjx3P4A4FoyWSOok72uIO0/5isNkvi826EqJ8nnySfiMuudDrQ21n8fa8kM2xogES00NdP1kLsp+T11mqc5NETUEiy2kj9sgQJ5ZDK+XAsYTwNCcwPGeUDIZlfb3wWDrt976Or7lc6/j9c+9gXfffQ+lXDiqBxuD0gsOE9OBayexHeLIohUotWCzFN+GhnlmcXo4HMb40jOT/BkutULUgyptTDqeH4yxEccFmd1vZUI4nxFAM9GUDifBm5mZjZ/8QI4SUNYNT5Ynhibb+LOTLH1zczMO1ZEwHQJyDnZgs+D3Ri3EiJubEwP17HuIOEW4VN55RM6ZqbWgVZo8xhQwy4QJXjgS8fOLczwccJkvON+fOaJVd3+V4evTejcSbcU0ZUtQDuMzcyTqqh83EqPv0PF4a4W+Fyhu/EY0az4a7zCQAO7Kl9aCBWRyhMTrMuN0ZKiiexIRNTF5v2UicYzk1gl7M9eMt3d/f4d1ueB4OuF4OAyekJtEws6wrkAvHGuFEFikjs+Hq6LW+TXc0YMEk20Ha1QqE9xjREzdzPKYfcVziectxSlAC8azbO5g3dHdZRZ/wozaALWQPTMA8lk4QEWAq3FgRNYUkUNAVcLvaUrImaOJac6QwA2hmha8tv4coiJiY4HATVphwXrmRMn5Mh8gN+kS8RlqxXxMBgfbyKh320j5rrloSPqMKSGNmHSQD6Mcl0QL0OtNQB8PQyBs1MLxCTvJ0iq0dQZuyZ5kSSQDGAy2FLm4e0NpDdI75pyRxA3Yrhey8Q3EggC1DZWTj69UqaDwMcg++32+ho4xALKPtDgHtZ7M35v9vpQiDgc6spatoWqwh5tBXmmiL0TXlcQsm++Jnb40puN4ISh4kJjUMVmeDWCQtSlB3FXTod1gbozJuq+UKElNib8bYp/BDuhpmtAa+SXTTJi79Yrz+Q4pzSbpXXBzczKYmcRtN0Lz8LyUEiST3Ek5cB7qruHhYTk+Dx8+xLMnT3jd+oaq1fwS+PnmeR75Pfd3d7iYHXe39Xg8HskxWc6YY8Y85wFpR8tVIEyfUGxU0+1ZYQKto5c72Zq9k6KUlcVyZmBkmia6I1uGVDC/nRizrWXKowmKhH2s4zC8km8hQVALJY8QQ/bs88RI9ZjCuSoRtSXUzdaICpybTTUTx44RLAIggo8//ghvv/023nzzTbz88st45+23DOlzYi+LucOUMaeI3il/rnUfg/izI2OMaiaEhvptW0VW3RPPzQLB/S9izkgxYh2ZLn2sM5gAPuUIaIJHDYhwxKPCYhswrkotjOq46qZ7b5imGdu2Yrksgx+Rc8K2LggxGGKlg9fENXVNnuS9ZLMlZlDI9OPlsoymw1ObWZTU0ekLSGoum41xczZ+XoT2naPnaFlOVJmt28Zi3JRYRMYTQmt85krBpRbUbIGK0wQPDfVso9HABPejYVBl6+Sn1WoZVXVHetXIpHRzDhZMCQDRuDE8X6AeTEjEligF3ZKZy5VH4ecoE78+I6bINVkbahestWB79hT35zPmecbp5shnOka0QkRduMlDDEEstZJ0PmwOmvE1jfQrXCMIYlyweaxVb2xCWIxgC2xWEO5HsXFyGouVJh1roDBBE4AozKxTypQ/6euzXaCIICTLrMFAQwck5eMcqNIQvzaEJMhBQBfghnXjBe+Nu2hXi9DeSKJLVx1NEEGaIuV4qqhlD9cb78e6HKa6CraF7O2Y0pCRcmGDi9rSX6u2K78E1gtRBOoVau8DktxHSRW9cQyTwr4pedGklZu0B8uJLb5e3XjNHCrNXrx05tegG9cEVK1E6wTRWc1z8fOdUXdE9YBRgQjdq/FnQrCxi4Xp1WYxfNaxgAhSLeak69D1uMW2qRtaE43cRuFoB91LgdPpFsEe/LIt6NWdIwUSZuQp4Xg4goGADcHvtfN1TK6qys8ZQsDhcNyhXBEb7XCun3MCQkDMGXk+ooMHa7VNB8DoJkPImOeDfS4eGpfLijzxM82HA9NeW8XphmvkeDwixoj783lEpve222q746sbVAHcNB/c3qK7/XfiM6BdxmEWzTjKC8YxGzfkcRyorQ3VR0oJ84HjH7kI1qUYysQRz5QnBvdBSBgfyGDDWjcbEcpQs8TItahNKXk1dZRD0t14ZN3uvww55z766o2weOg7x6WUMvJCFERhhidQYKS9qqI3EuCrFGaiqCIijCKLSptGUrWNoXoHvvKVP8DnXn8db7zxOj768D161hSODFUF21qRckPMXHfaZDyPelWgcLkFQ/EyVIWHWVFclgWHw248xqwpIzoK3UEnzVjW9Wo0G3a0MLBIadUM05QZXL0D2hjLYdsQau9owBhDhxCGp8hlWdj8VcU0J6pbNnoLOZ+u9YIQE1KaWFRXN+DajfV2TxzyvVzB5WvMRyYACbshBuSQiahVT3mm46p7aTTo4Dh1ZdF5OMyI7iJcCmopmGaKD4IhWK1XlG1FqwXaGubDPNCJUZxetU8sIMxJPAI5sCCNcTIJuLlpCx3IQzBbhmt2QdPhrSLi5FAZIzu/fy7XnqZgzUY1nsrKZjdlorXmadMa5fqlXLAuC+bDjNPpFsfTCSlkUy26PFwBEfQQMCd3ht7MTM6SvkMcyif6v3QrLHlOhswi/3A4YFtXbFu1/DMW0r53h+AO4Q1agNI6etpQYsWcWGAPxP0TvD7jBYrBfvYAw294ZN4MLZUrYHM0BUj2UVaZfZjHWGftKEitqJ12wlAzWwIscpqdRjO0pJZii8AeQoP5YbN+t3vOOZqcky8FZVjJipKcE1J8viIdfiQWirebiZF/M2DYYUgEblLASLmMIZqiIwzeiAR2aWx8XOLYIa0jQSAhGbRtXJHgBkgYowBY98DSQQdxKsBlwmI/w/JYBhJFZIUPjSmuihPuTOosMqzyR2UuPr/kRpCnhNYpL725uUGKEcu6IseEhkLr5tahGpF6Z8HlGRNWyHUoIhJKa9YtZnSxomGacZgPQ0EigehJTBHTPJODEiILDwhKrUSlgsXC5z3NNcZk6pSO+ZBxd3ce9xE2/rgsdGztDTgcZoNQgSlzY8op4f5MKLu2hmzQfhyIQYNIwNkIriEE5HjVXdaK8+ViPj17iOBhnjGPEMuGu2fPDEHi/LyUhuPpCNlo8uSjiF0KSj8LplhzrTpxdnSZ6KiqqDEgu3RbA9b1ApFiGSoAuPpQm0Lb7jbpLrGqHmZHLoFCEVUHT2FZtr0YlwBIYPijkf6YXtxR4mpuqywcmBRM/55wJYVsTVGUUPw8H3F/9wxf//rX8Mab34JHL76It996i4RmC5frrSIsKybNUK3Gg+HBxP3En4NgLtNmphWAupE0y0eL4xF/pIPzYmyfOxwPaNqwbiwKSXbm16YcqBTzrJbSTf1DbktTQIzgLs0JvR2tRUMVaHCXU0avDUg8CI+nA/KkOC9nuBpw2+jdcXt7Y0F4sGsoRgTldWGxwTGic+6mnFG2hstyJicFVEemRJ6cO+uKkPzfzUrCc6l8HF5r3wugxH1cJKJsLOJ99Am1Zs/W5uVyRqmVPlXTPvbh9bZr6Y7PrSGbY+tWCmCFrHb2xjKQkqs9GxjPh5NefWQG6NVIypFojt+dw0WUpWAzZVgpFZMh0SEEMLqHHmC1NpS7C873G043C25ubjimAdWB7pKrpaNAkROb7CZmzVA7QmjoLSJltWeA79PR5TYQ0slUg/RgIerjmVTRbBCouqrVokzERl+1/SFe5x/3+kwXKKqenumx5iRpJWPVt87NSZugiSIGzqe7wiSKHKlQLdIHvAYAk0njYoxIISIFXqra6pAvOzHPD14/hDl7q8akDiY3M4jruREcu1tu7mJkKyevgkQ5AEHiUFiobcjFlCQka+4dshMAWc0SdTnMM0ccISBIsHAx5gGpHyzBacViBj5WGPguaaMXHqiex9DRhxGvKXU4X6J/RWfXJzat5z+F1ZMVJ27q5F0VE2IJmV5fqmbGXvxKMWg0IOUjLe7XzTZ+L2P2r/MCMgQxlj4RNIggIOIwkRshiIhxn8cjGDRvZLhgks/5cOTGNci8jDmY58MYo/W6349aGtbVsjDSBFUm0Doq5gRcDPY/W9yUE8P97PQ5zDO2lY6pKZjRWDDeB4Sz4dasc7KrZahPbQ3LutAnwwzeLpcFh3m27pcKNM9Q8YDLUivksqCWYO6sLITYtQsEBdtmEm0IYjLCbN9n6cGKzf2/LVHZNr0WWMxsqytV9sJUFPvGLtjHFLa511YHkqgK418IQlR46mop2yhuRAKiBiyXlc+lhPHMh2Ho5Q6xfNa0K05HrrO33voGHr/2GN/yLW/ivXffh3ZTzQmAEA0RCECoiCGZvF/o9WKLM1jB33vDsl4QhIVgLeZp0/0AJMHYn0mAhdOUMw/4UkdQIQ+yFb1HTPOEqAGyAa0uKHVDyvM4bEOIyOZdo4X7px+iOdPorJUGFbr7Xi4X1FYYOWFkfFd69N5HIUA0yBR4NjbyPZSu3hVBWVjX3tmRywG1JgYMWmGMQG5IDmz2emuUhevzKJT4aN9yb1KecLlc4OrNbSu4nC/DIdlf7rVTrOieDE0JxhfxHWSMVkWwrgvc2h8ixnva9y4nhj839vhD55XCVWYcd7vbr/+ciNaIYhFREUQBUmQRvG4rYoiYTdgRDK5udTdmu3t2h+WyIE8Zx8ORXLUYaTxZK4vuWM2WIyJFYVNmVvYsZvkeeebtpOBm/Eoi/YJ0mDgSXDfUVncRigTMMwnHzdLtr71tmv4JUfGEYM9vB6AG+7WGorQ4rzbqYEUq6BogzTkNvFi0qdZh/hUhCEbmc4UGDwJDE2wW3swN1L0lABghzuaxkciGJDGGNTAG3d4p2bzWHwb3TvDZNq30bd6urJhbpUcFAOsMuEkTGXF3RPM9iRkxBzNI2+HW0Pz9iDn9GSrjnBgLBKy1IUdA3GZ7HP06vgedhGLBjnr4tb1+aClr5oMg/mCrjzyEkjS1v4MCzYsbcE9qViDZ89+VVXma2CVAdjMviCmlgltU7xJUH78oqKYotQx1CroOVQ0SYfvpcKASyjbDlPLomNgddjQBxGSwHDmwQJ3nGyg67s93WJYVDx7e2uzebKV7M96LYp4zYGTubVuRcoabz/F9MwNl2zY6NprFeq3b1divD7VFjE7I7SaZ5fpKSkLx+e6eh0bZyPhPCQ8fPsTDBw9wWS7D4bZWc3ztsC4wQiSa2zKfhRgCCZhGar0+QtgR78Rk2NdBiEZ1iBFDA9aloMO4NOgcRVlh4vLMHDlyi4ZobeuG1nwUlQdPy/NjFEQyxUZwrZEELFbECATnu3vQR2baR4r+/Bvs7Q3C+XLBO++8g89//vN4/NpjvPPW17n2FQgzifiKBjRyP2LKaFJsvOrcLD44bsuuJr+MHqRonBo3YnPjwaYCMYfeGDNyLMN3p1YiAOfzxcYwFvgmAU+ePKPdfTZOi8mvQ8rIxuWAAtoqE94DuSOX5cJCQwRlKVi2FYfjhAcPbxHTAdM8mVszC85SCgMmhSaAPNgyQztTwrauuNT7MaoWOMeB41cJ5Fwty4JmWWOerZMUWNfNnoXEINSsV50+my5K7Vk4B0fQKh2GuUc5qkvkvfaKujSUWjHNEw6HeexbtdJ3hAhTNyWYF8wROZskupOUfE0A/cOFijd8Ztuf6aHlz4MXKdySA1qz/T1H9EqfoK0UFgPbghDJC+PYWRFU0JugdqBU2k1cLhfc3d/heHPCze0NlVeNzud0cg6jcSUKa5wUCGrpCBPRk9UUgdfotkfEiAif08azTe1e8PnJKFLQjRrgis3WIj7p6zNdoBA+Bh8uVZTaUbZuKgJT5IhgmqMpD1gBinVxKeRRmCQncXYLElTOE11i2o10qgozuKnGddn5KYNMa66FTmYdWIDYmx1YwF6pd33ewKarmDx4D5pTd/pUPmQ+P3UyaohcOFF4YGg0qWpT9GC+In3XwrPw4XurzT+fQsH5pVf4HHAZNCGyH0CKQViDzXAFe6BXdDgf+wPr14j3jHyPAWXL7jfAcsRURsbdGOZI/vMUaFvEsK2mmzWrVloiQGz8sW17BoSqmgKKBRml3Q1q7zvFhJQnIBBOV9n9DiDuhaPjc6sTJe1a0EGSyBbHfN2Ip3FAu/R/oPIqhITNoN6uHcf5hK6K8/mM081xwLpDyRE4wmyN1fnu/5EsB6YZn2AvZlVJkpxSxkfPnmFdF6SYcLksgAI3OcMJmykmpg134HBgQm4x7wIZ987GN9oHKugjTlz9N9cTr5tiv/4An9MowfgP0UZvgpQD4wRyAjpl9ySOm2ICIP8pML+KkfGCbBs+gnfWvJ7jnitt1lsvCGFPAr+5uUHvzbyGmH8y5OSdHW2pBQISdN95+208fv11vPmn/hS5KBczvOMQgXsMnMy7E+2DCFKasKwLoB1JEqQD+cCu3UMvnUzeTe7MlGdba0qpr6f0OmLhdv3buuFyXu2AJw9umidsa0GCqdYcCYv76FgdFekVCILjfGDOzrYhDjNAfl/ZCp2WJaCLkZGFRez9/T1OxxOCCD+nP/PWwHTjWuU8DQdoFspmxxAnHGfmDZG7U1Er97uU9rTuaGaQjlgPvosEHCZBkIqa6+BKbWWzJoQHf05MD+/qkQCV1v7WsORMxdi+J+95PICPpP0+WACsdmsEd9NO90RRc84e96zve30wTyvVPYXZn7UQiXapKqacseWMrRZy1nqH9G68q4iUA/f6tifYb9uK2jZcLnc43dzg9nTD8U4rg7jNZpNkXhKG+7imrSUoojVKdYx7QnDOCXdkUrmsgIOnlnOtVZArRKmP4pOXJ5/xAmUrlbbv3qmDngLa9sMwGHqiQtlwSGF0csAO60bjXEgEJFKKB+ts3IdBQkCvbZDBqE4x9CS4g6aRRO0w8zCvECNE97m6GHem1Wod1F5hqgK90DMBAuSJ6EI3dYEaelELZ7z0byAc6C6mQ5IX9oArsWsio3vh+/Uih5/DQrJEqBoQZim4WmD4RmBQKCBmZx3Az+sVBxEnHV8odtC2bvGGI3tlvyrcBPgjtHtStR8uDqcqR1sQszGncZhASNa11owPmVixaR3KMOHbPUyqzUbZDXU0aejAIPcicM1wjJit8AnmwtiQ53mMMIYzqQiW5WKdeR6Be45CZXN6ZQFqCBqAWioO82ThdcDpeLRcD1p+A+zAgjiywHXkRauPGwYPpHv8gXWi5r9D1n8aHicuj14uF1uLvCMxRiDusmEoD6Kx8dp9UzP+Y2F2ZVjVO7pwA4zCglW7w74AJZ6OEvFn0d+EbrrrtqGZ4kNwHTgG1Lqa34/5Bh1YFGhzR+H9c/DA6EN2DYABgvYzMcYf+0HULbuL5N5u/KAj7u7u8P577+GNb/kWvPTyy/jG177Oa98AjeY0imZrb29gVHV48qzbeRS9vTUSoePe2fthq4aiXneg67KCh6OFfdr1EESkRGv0sla0SMQ0mUcImxKlek153Ym6Elnw7CStwIKVHkFBsFzucTgeMM00S6TMGwiJ4yS6mMKUKCsuy4LJRkVOpCSaSRRsGPiBKIkqUbPt2crmSWhMGSSiarN716z4T6iloZQVIR5wnG9sDfBZ7DZ2D+KjHEYBzIEk4LKxuUwxk0Ru90jBIqKsK/f4qTGfyKIWnJvDcVI0noYrpZzT1YyrsSuB9iLFEUeuxT2UENhrFRmo5Z6H5llgGOslRYsxqCSdM2KBKOiUEzQZObXtVg1lK3hanuByf8bNzQmn4wl5OsDN3Zwsy+d2b8qdS9arjn3FGyKqFLMJQKjaKiZtVrUzIUZOJYTuy/VKLfVJXuGP/5L99cUvfhHf/d3fTSj44UN84QtfwG/8xm+Mv1dV/NRP/RTeeOMNHI9H/JW/8lfw3//7f3/uZ6zrih//8R/HK6+8gpubG/zwD/8wvva1r32at3H1+8CkRAR0paaE3p+UxqYULd+hYds6tM8QTITCakdrK1QLVDe0tllHTXKdd+wcD8XBplfwRmZTcnhc+U7qorQr2Lx5jG0MbfB/SCKiqVspjbLZCrSto212YNqmLuIoAwuxVhvKWkfwYQg8TA95wiHvHBwAVrzA3F/Nr8A7W3UuDbNK/J8UI+bEwLmUKPcUvVq42tD1eeMoqKuH+iBCUXVC51M+tVRPRIkQJIi3haAYeHBgJNjPc4mmUv5dea1q66ilY9saio1KvNhwO/oQgxXs16S18f8AJaE3xzQ8Xhw58Xl9kDh4SiEkcgpSBkl4G5blMqSWKSbM04QH5sJ53T3l7OQ2X0vByLf8/LtSjB3Ytq0jZfb+fIfz5d58UDCI166aqENN0+EmfwLfSPZgtGBruvaO7MRBqG3AHINczmfcPTtjWTZcLivWpdK112SHQcYdsm7T3kdvz6XZAhhme9cI5M41MqO3WlEK4+eXZU9xLoV2/ufzGevKBOFaCXEv64p123BeFtyd77GuC7qRHu/vn2G5LDifL7g/n3E+X7BcVqxLsXTZOoh93BM2+4eqvXXZsC67S7C/d1VFKw3rekHv5KB99atfRWsNr7/xJubj0VBbDGWE2iildHJkvBmorQ7EaGz+vdkB2dGVRnW9FRtLcb/pyvvdQNnxWlazl+c+c22f7h5L08RxS5CIw0wicvLMItCefisVpe4Orxz1NMqQS8VhnpFzssKVGUerjWHKVtBrGwqgEAIePXo0xiwOlS7LQhI4FClNxnOREQ/hZmlELBou6xl3d89MAmwjRWWCbq0FkI7aCu7v77BtKxxlLtuG1Z4dxhowd6ZV5uq4sV/OGeu2YV23Qdh1V3GAv2ddLjjf35HrB4zP4uvTzwUA6H0f/QA6DOf250Hs61h8uN09Az49p4f76e4XxbOEYoxO1MQKIHRFjCREp8RzDtKxLGdczncAGuYcMc3udL4jN+u64uOPnuC9dz/AkydP0JsixxkpzhAkqO7oozf4U6Jrd0z0hCqljMKGPJMKxq1Q5UN+nYVGmkJKAsel80zTuk/6+lQIyptvvomf/dmfxbd927cBAH7pl34JP/IjP4Lf//3fx3d+53fi537u5/Cv/tW/wi/+4i/iT//pP41//s//Ob7v+74P/+N//A88ePAAAPATP/ET+PVf/3X86q/+Kl5++WX85E/+JH7wB38QX/7yl8cN/6SvGBIC9ll7b84mNhg80jSqdboyEoYHFDtE5d0SCUL00+BLBhrgJFh37WNctSlC9Hr22AZ64hWzKhcROyojRVnHY2wLSAvPbe6cjweETPKXmkKm9466MmE0xYiQOd/POZrfgGncK1NTo5Fig6kGBrQo+4wdnaMGjj9IfyV/Yy+MxJkh6ix1P2gs1NU8LLwg8xc5I+T+BO8wUcdn8c86Rjeqlrq8u+kSZaLNtUMrtQmaQecw07CgiqDW4aQZzeasKaYrlQjssytCSISU5wnteMDlfGEwnqlcmvKAWbcNKuzeaZa0js92ur01zsDuKqv2HnKeh0zQo+G3bcM8H7AtZL7f3EwMqwMRjARgU8VaLmZc1bCuZmcdCM+79M+hbZjleMppeFM4CXCgHtAxOqD8OA357WGesRjETbVMAlQsO6gg1YCbmyMUMsY8gKBZwJwjDUSp5LlIBlUjO7u3iB32RBYFrQg6MAjfgr6vUycKQi27ip2jG0RJ2A/8bNyTZV0RQhtoiAiJk0mcS8Y1VreCbrEGnkLODB27BuFgZF5/fpQW9DYWTCK4u7vDV7/6VXJRHr+Gt77+NSsSAPIs+WyTlF5RGiXQtW44HmeT8p5ZeCgDLLVxzu+fMWWxTJ44UqS1FCbXRprdQTrJwNg5QK6UyTnjUjiuzZMpiADklKly8yJSO0Jgk5WRUJUGbw0N8zTh4e0j3N3dYds2TNMBSYjIZFBNWOrdcPQNIeLhwyMulwWyLug9ovd1ePWQY5Ht93K/TnbwxWxZO51k164FKRysIOD+fT6zUJrnCTEGlLai9YhtK5BA08KW4ti7cze1ZbU0a3NQXjcWYPd3dyS9B0HUPWBQla7FboufjJjqyE+tzUa5wRCWdoUE7oozR2uJArFo84JMJA5khntqGEWUoxeUMxdIY/BikGAeNnXc896AeSbpvpSK5XKBCO0EpphQA++nI8q9Uc6+bBfcPbvH6XSDm9MNUs6QzmKHe3cfBZJ0MblzxFa2geoO4zsbJYs1iIeDGVZuHA/TniINJ+BP+vpUBcoP/dAPPfffP/3TP40vfvGL+L3f+z18x3d8B/7Nv/k3+Kf/9J/ib/yNvwGABcxrr72Gf//v/z1+7Md+DE+ePMEv/MIv4Jd/+Zfxvd/7vQCAX/mVX8HnP/95/PZv/zZ+4Ad+4NO8HcRAwqIa+9sdU0XikJTW2hAizJuAHaqPOAY/ojPUr9TG/7ARg8ALnTi+OqVk8KX9BL3mWHhFrTZT3BM0fZZJktw+X4apVbzr9ZNUEg/S2ioNudrunupIDpQdTXROCWDwdUOMMpxqiSqqGVep+SnYSCrY5LwrR2NXRFsf3RDe7s8VEs5E8YMCA+y3f5UdnKOrb7M0224jAiCENCRq/m0+FvA6sXcAEqHKEYdLuMe16p12y5uiiG0Y9l5TSsjRGPM2OnJuzPGWGR3FxgeAz1SdsJjgPg0pJ5M3VmDp5vDK9bVtlMl64bYsDdNEc6llrXbvq8G4inmesGwLbm5m61ICpeqQcQWnPCFPeQ8AU8WyrMhTxul0ggIoC+FwCBBMnu5dNLkaPmZhkcc1S5daGtDRqCokIIUbqJKzcjiQs0Ci43mM0krZ0GqzcQENrt311h12c57GtRwbtIUXUvEjtjasaIoRDTIkv6amtTEmAww1uGdI3NOwWzNH5oBSVkYctMmKKj6/KSUq+nJGDKZkg+ISAzYbc6mywDnMJM3GFgcaESO/XzsskFTHc9Ajcdp33noLn/vc5/D41dfw3jvvDsRPVegDNJ4RmiL6oeOp18MLw4pfz8UKMdg1tu7eeCKroUfio6LaBio14iMCSavOQWq9GcpKsn7v5MeEGDkONb5d8bF1jEgTAMs4c5uEeZ4hlfvElCcqPazblxDGml2XhV2zwsiwinl2OStThV0F4g1Qa3WgrzEyk2jKkx1sLMrdXOx0OvkGQwJ2iFRwdUVVc4uNHCewIQvICOiZPDOQT4/Tic/3+XyPZb3jWjF0uQ2kT0fAZKwNOSfkaTZZN+MJPCWZRNpmqGUchGeuhzrer6sWnQR83VD49VaL4iBKEyCSgZBMZszE7q1uNFvrjeZsxq9jQOKErZA8XrQR/b36PSJKibIRm58+eYr7+3scj0fc3t4imQnkUFWBxqJdzfB0mnA4HA1JaWM0uo+IXJLMVOm4peEQ3FodeXaf5PX/MweltYZf+7Vfw/39Pb7whS/gf/7P/4m3334b3//93z++Zp5nfM/3fA++9KUv4cd+7Mfw5S9/GaWU577mjTfewHd913fhS1/60h9ZoKzrOtImAeDp06cAYBC+jlEHoSTjmCjd7npryEgM6TN5q3MbSEqy8UuFGVr5gdwGtA3ADjzKTLl099GNkzK6owfSaUgV6F+h2hAlolq321vnaErNHMpSTGGH7h5ZzzljqwVBEjhqgNdVRIyiyYXV2f67ft+RHe8IRMhDCcaV8Hn3UDZ1Bd0CZIxcFDIOviAuFeYrWDUyZqxKFRRkx6H4+zva4Nzy2khI4/DcERmFO4oy5eHKD0Vc39ONGOnzUXa2rVMaGyOD+jxBld9hidUhQCuQJi9eCdcnK17cNtrlyWUriCkjAFi2jc69QkKxxA5pHtsOeCKo85ZaA2rd0HoBJKJ39zZoNkqixTUkodZu604Bk6W3yiKg1opWlcW4jYhSjDgcD6a0uAchbu+iG6ISAaswHoYREbeNBlXdErt7r4g543A8YFvMnMxMoVwOOR/ojbEVJkLnnFEvexQ9w9b2gmTnd1mBElwWzLGoOz9zc87MnjGoWEIYxXfOE7RXiLBb3h1JYRwCysxjcMUASaGz8nD3xiJEK4ayreGkyOBnhDkR+8+dQaStWhGnykM9dIEG5VzffCVijLgsZ7z77nt44/XX8NLLL+NrX/+qjQ4FKe6oqEPl5JIQ6ZmtgG6tQhusIOFT4+nl/r000eOYNqcE2HOmttbVipveGlqgIZojbCkmFKUMnIW/jt8TQxic8kG0Ttn4XDp4b7UQzk+ByMmyrJgP9KyBEaWbedHUUlC3YuhmGAftNM02SjYuhcJGEJSll3I3CrWwRqppQsC6bLbHukcShpyZI1MiXK0J1ksd6zaaKlBtHbrzcwhiiEwwU8GAZTmTO1EUYoRUwDl3RFJ102EgOB9nQyPFnnvgcGAGkTs/O1roRQb3qw53z3VlUIzR3GmLjYA6ROpzDQb5SGIgtSKkiBxmlFaAHpCsAXbPITdjrKb66V3RnMAa+Ow5KZdjGJ7nd3d3LJ6PM1U/00ySeqHlfTNqhGrCNAXkNCOlNj4nn7e9OBbxZt0ccaN5o6w7F/OPe33qAuW//tf/ii984QtYlgW3t7f4j//xP+I7vuM78KUvfQkA8Nprrz339a+99hr+4A/+AADw9ttvY5omvPjii3/oa95+++0/8nf+i3/xL/DP/tk/+0N/Xqu5wA6Cp1nAq6LaQrGnD2jC4DLwQWVF7uQzQsAKd9Dc7c99jDOIW5EOkb37rNkRAO9/yaGYjJdQ2zbeb2l9JEKKG1rZhuYPhEQgZRlpyK0WdCXJM0AsRdlMl3pBKUwgvSaeiQA7LuNKCrVrZGOjgWYYMQ5EItjc6jgoWsPeyXM7BAmRXilRqgfQGpxuvnz/jqaoYpD8GthhiBlhOdGSmyZJrk0bE1nVHTmvCkL/geC8XoQuuqpU4eQYUVTRK8ly153MLjWOY+M6TpTw5WlCWbkZxhDRLIX6OM34+NlTtK7kn8DtuZshBk5OLQNWX9fVvB/6CLR0f4x1W3kFbf1cLheiBzbKY/quqcdaY2YMgDDvpLzpcMCUMs7395j6NEZ3Hp3Oz9p23wbQE2JZF2h1KJqz5EcPHzHOINAwMGjHti1jBg2F5W8wj8X/PJs/hZMCYc8OSbIeqka0cIzXdCdsR8+Zss/bpmjjWI55bm5O4Mz8gjmR+0PZqP1cBPQWoT1zndaNzUkMhhIGRt0HoeOwdFStKL2iqwC9IaiOkZLzIkIAtgq0wvUYQiDaaV26BkHplZlVqvRFeeUVvPHmt+Cd997Gcj4TIQ0ZEcH8gTqqtjEqFliRla4Ooc6DkCm7Op7TEKlUWi4M3QsQxBxHUwR4cUPzwtIKWwxx1DbaIZghgc8fYGGgMSICJDEbYupPuMSAaHEV7gyaYqIT90Qeihes3ijElIzczfVBojJMvRStIGsDyRVhIR3miEePHuF8Jqm81oJSuI4U/QqBBFJOcNm1KlElH/nNMx1ey9bQI4zQypE/72Uy23geBRIC5pljky1tKBuVLVR6usBiD2rtpQ9C7jTPI/fLuSVeSBNZ6FdjX7Wxlu/Bgn3sw6YvJfraDBNJJzVfnS7F0BLK+n38bjEAWlF75a4beSdTnBAONKIUkx635hQI57m0wRVRKLZyQW0blssZh8MBDx48wDTPlLE3R/vE0CPh+BN2zAaO2r059sbW6Q4cYU3QTw6gfPoC5c/8mT+D//Jf/gs+/vhj/If/8B/wt//238bv/u7vjr+/1oIDGNXV/+71x33NP/7H/xh//+///fHfT58+xec//3ns8IXNbVWHY6FD41EjNFLfDWNr0y+FlaMvhJD2nBp1DkgktBtjQI7mIVA589sLAgDQYcomIoTTJQy0pDamQ7aGsYnCRlJRdgliMPQkBBkEL5GIZGTZGBMDzTK7u3peh0SuFOdC6JDrCvieHAmBjUBYHBHJ8BRlbnJWzDRFUyeo7shQtyjCAIz3G0SQvNtTL4hskzOSV28wuadwjg+bbzrLXJxTYXnt6uZFZiIH19ezJGoGbScJgLAoba0ZysIDQQJHJTHwUHNOwzRPCMmupWCYYuWcUbZiUmOgtIqHjx7hvC5oqnj46CHvdA94+vQJUt6JbPuBEodrJrsHoiDd1mWICWKFmxdPTlButRqBj6MXiGBb6SHAjYpfq0qflG1ZUEsd2SjuH+FESUf8AMv3MTNDWps3GlqpjdSgIDdcd+M+IWxdKg+iw8yOlkgHu/pt3cZ97V0NWfJi0JBJpd67G7nP5j1GYhb0VkZRCJhU3bp/dnpCPyPd5dIcFUQU82bovZq3h3G7ekfpiq7MOKHyOWArzQ4BQaumOoIgpW7Ij9goyopfUIGgHWaAxxeLL0qf7+/u8N4H7+ONN97Aa69+Dn/wB/8f7jGutOKHQjO1lKvC2Bnz+XS+DBEbFm7dYHI3Okw507FXATQZHj9eXE0TJdWlbtYUmQurOtEUyHlG7+tAJHlqBKBVIloIaNpQ6ooI8wNSa2CsC4+SkNME7TLQjZQi1mVFSo2FWzfpqyFvSJH7l4WkduVooWwVNTdDhGUUZ9cnwbAlsFevHEu6GWbvdYxmg6HCtVg2GDJCIEciBI59Wu9UDaCbOzVH4Rl5jHX53jZoEMQ4UZ/GhQVXx53PZ3hWD0nvHb1v1tTG54qLGJP9r32G7nllbFS2zdf67nS7Uxb2D39Nmr1+Nd1HMa5iVTWlnPgozIIfC00lK9w9OyFGJ3f7+J1Izt1dwbJccDyecHNDRIXqxQ2tU1llGisi7x1oyZy7DUlxafrY2B0V/4SvT12gTNM0SLJ/4S/8Bfzn//yf8W//7b/FP/pH/wgAUZLPfe5z4+vffffdgaq8/vrr2LYNH3300XMoyrvvvou//Jf/8h/5O+d5HqOW65fPuoCdbHktz+LIx0cddAYVNcIqYA/3NDJTmkGPXYhWiLIrSSntlbwq3D6VFABPbMV4H601lF5s87Rsn1KhKggG2UUhbpLH+1ZojOz4GuXEwTIt3B8hhAiVZllA7FwjwFl07wiShoxWr2b9IgJRc7FsgMoVFtLVveKImnRmoAQ3lVKqWboquT4Y5pY+MXuu81I4f8WVHhXaZMidDWOCBhIoORIyoyDraEX3h1sEgOhIJ2URo8a/sJFcYxGUMh9ABR1HDwda1a9n2lof5gPlqwDU5aPWTYgTebUPVVBIEev5HofDkYVDY2qtomOeT8+tu9Yq7u7ucDweoEr3Uk8JZgfl5lTyHEfE02E59iDJ2REYjvsoAaWlfGFY3LqirmWMJlQ7rbvNY8UzbYKZUnUNNgKZ0HNG2eJ478fjCaLAZb0MC3FeBwzi7DRNlNhbIWv7DN9b38ekKSXrcA0hUiYCU9XFtdOMiLojPR21tCsXV3JQtrIh54iuFaHHgd6JyHB+FQ1mx194UBlaFgOdWZlB0+jiXDec7y9YVj6HIsL4ihjRGw8ssSITUkaBHIWKsIiE3sjVUO3YWkM+nQAIPnj/fbz22mt47XOv4Z13v4GyLghWcDn6SMX9Nx0sXa0wckdqyrAlxEGIdNTPjepa9cbFxkaAqWHoVj0fb3B/p9jKNrp/VXpmxNFU7VL0kLwJASRylIAm2ErBlDKScDxSeiHyYMjYPE9Ylo6y1YGQreuKkCMyYBEghh5VHcjbzlECzndnpLTi9sEthuTeGjrpuyx+jMUNcUYPA9kDGlKazSOl2tiHcQnbxvDAPE2Yp9mahh1pbsbr61cS/mDFeErR1EAbpsMJiIGf3fbqrp2uztV+/jyhd4wRT4xu6rgfxru/SdjPKf6NcVLMu6crqC7dm3eS5veRYe99t0ZQ4HrU7s0aCddtfB85Nvz+1SwF5nlmrMc0sXA0t9je2ajU2vDs2TNczgsOhxmnmxMOh9kQ+DYIvqpET7ruYymiSzo+x3iPeP45+N+9/m/7oLh06Vu/9Vvx+uuv47d+67fw5/7cnwPAm/W7v/u7+Jf/8l8CAP78n//zyDnjt37rt/CjP/qjAIC33noL/+2//Tf83M/93Kf+3Q4leYIpV2DYEQm74TAYt9V9oQcJiFMk+1mBVs0+3jrbbPLhmNlVuKEb1DkKNm8P2Bf3FTHNDybO/us4uPdKkiRBUW7G7h4ZY0SpBb0ooEAKCdM82yFFm2sSFY3caQ2vdh1BfQC9UcR4DTzjbYsnCcUq7B2hCMLYcXFUyB4szzDaJz+7MkNGl+BsD/67ghtzKw3dPWlgo7LEAzfAfDG8QOOFhwZCw9Tw+z0ORrBl0CCBEwZmdVVDiDjiq6VaSF4YBVLrnoc0wbv9tW3w/B8AmPJEdMyuy8GCBWurSL3h/v6MeTpgXS+4ubnB8XgcD+L9/R2ePn2Kw+EwuqBaO6DBigQZs/beG6TtI6/a9g3ho48+wjzPpvaZbPwhI7BQPZMJuy9Ja7TATmYxv23bOOi5JunUiZxQtgr0guPxgONxhkBwe3ODjz76COfzmUWUFYutNtRSkacMCMb4aOfawN5LMF+8jnma2SF3zuWHkSLcHNAKgxRNBWDjNlWqMITFcCkdiB2tOX+La7ibMm34NqAPaFqVtvQ5Z7o4Bx6SZVtZDEYiMfCiHERKJQR7Nqh+C60iiKmJbAwyzTOSZgQ7fFrXIbNMMeHpkyf46IMP8PLjl/HK41fx1te/vh8mEPPoqONwGN21PZMhRtRtM6SJBPvauxlpgeOEacI8TViMaNu0ovqIysjzIfJASjmN72U2Csdvl8vF0CtfGwHzNCNIwrKsVCilbATtFa1XiETkSGGAc7ZIZlUc5sNuWhnMcn/1XCbdD9VOc0sfE/mOMc8zVSfLYk2ijSSbjK57v15Xh1onNyhpRtkqlmXF4eDclEr1Y9ptHbZtG89LcYSklFEURlsLaiToECNOpxOOhxlPnj7F+f4e82E2qwk+A8Gaz1rLiICYptlQbJiNAN+Tpzm3poOA7QUsn6c2/t6t9lnIySgE/HmD7LJmdy73/Q8hIgWaLarSRsEL+jqMFjMOMVDt1Ng8r+tCuwVDVILYpEBJHOzKQrTWgstyxjTNuLm5xel0gxQFW1nheT8Ojni6t6fUA87FCvgU9cmnK1D+yT/5J/jrf/2v4/Of/zyePXuGX/3VX8Xv/M7v4Dd/8zchIviJn/gJ/MzP/Ay+/du/Hd/+7d+On/mZn8HpdMLf/Jt/EwDw6NEj/N2/+3fxkz/5k3j55Zfx0ksv4R/8g3+AP/tn/+xQ9Xzal5jnhxcMXq86SU4CZ9Kl2IxO2SWknDFlEgDLug6SUUoRx+OBNtFBh7R4eIqJYwCUrDXdfQ7cFZEL1O2LHUjWQYIUJ2dALfukw55bIhjGdk9pQoosSPgG4kB7IIrDPKOGanb+PLjVaiCHjDlK4qY0DKmsi2i9syORAASBCKWOaoWfF15q6IlaMeBEKBnXQsf/V5giqjR7IFk1SVdu/M26xAjyeRQ7OXlc12DGdlb89WbXjdwdt+0f1ush4HSY7cA3ebdtHr3x4PSU21rb6IKdAKgAtloIwwuza0JOuCzr6IJEfLQE3N7eDjTn2bM7nM/3ePHFF/HCCy9YB8UD2YPKUmI6K4RdMwnfVwcVOHevrbHzyswOcT6Gd3Rb2b/Hi3OSaPfIBR/5eIS9iKfPCj7+6AnKuuLhwwc4HA5EkSrHJFOeTJ1Eq/x1XYlEWeFTa7PQtm7qMJobeiHeNQyvluCR8wOdZ1drkCZcMuxclGgW585HIdqovG6Fhbxb/6t2ZOFh4bydAMYW1FLNHyJjmiZTwJkBVRDLxhRo53WJ4iZ3fL9dWcyiuaweUDRAmSETA7llvSsKuB5y4nv/yle+gldeexlvfO4NvP/u+2h1A3qH1ELIvSkQE+f9vDRWKDXfVhg4WeMgfbetGgK7oR4O9DUJwbKHjLtlDQCRpIpSt6EOA6i4qU2xrcX2JqK4ITJvy9OsnS/UTc4vgXbnCBE50fEXCePrye8LFhPBBi9lwZx43dd1Ne6ejakk2EFpig+h31QQoX/JerGDTMazsSv8WOBrZwORYsLxNAOiWJeM8+WMbdtwPFKUUFtHhOUGqRM1+bwkCQhhYlFYqK65ORwHolRrHYnIOUU8eHCL8/lMA7fIkaFckT/d4sIN3vKcMU00QVQlYuhqoxj94HbENNrfWf6RjfXdDmDQD4LzoyLFHspgW5pSBmMD2j1lRzSKghjpPdJqM+uGOpQ3ObNIrLWjrhua8YcQI2KGoaOW8h722IxaK5bLgqf5KR48eIjj6Tg8bFqrQBfGrCQx/6LL2I9yTruY5BO8PlWB8s477+Bv/a2/hbfeeguPHj3Cd3/3d+M3f/M38X3f930AgH/4D/8hLpcL/t7f+3v46KOP8Bf/4l/Ef/pP/2l4oADAv/7X/xopJfzoj/4oLpcL/upf/av4xV/8xQH9faqXHTpjxMJyE0z/pfTNlRDozHmJYjPHaLb2pYyDYEoZ8zwxsjpGbH0dnYjPzdRmb4jRwggr0YGmgLZBuhsdpMJm0Xa4B/+Hc+QkcU98tI4854QuBtWHDg0dMYipVNhNJ+XChDJDxx9AGJw8fp51l1Bhl+DzS+9M7L12iMMQCFbhu1QPZiIVhBvVKAQVNHE1p1kVGZ3ftQsh5VYCDX6YKdBMhSQyNhGo5ynxdyEAKpzfd+Wc3glvqoopJ8zzkWZyMeLu/pkhNAoERcyCnKYxUqiGnvVa0XS3uW923eecMc2zdUQcHzK3JWBZVqzLPUKknTcNh2bEeMGLL76EV155BYDS/0Fg3Ac7jFPEsm0I3gEZ3JkjA/mwuRulMftTGmOqbPJgL0ioauItHAz/EMbmTpXCBhErMtQcPbcNW9kgQmg8pYRe9/HBPE+AhF1yXcrOQbiaefvheg0tdyi6GMlZFBrAzdPGjEGAKFSOGUXluc/BLr8h5YlFf6+QGHF7c8S2CKKZexElYSdIS3523FGAYwjDudedPunRwLUlgUVHiJSlus1+bbRB58HAxNpWNpvz29pszJLqhsSJWPZJpycRVPHs2TO8994HeOWll/Hq49fxjW98BcGu9W7cx3HXcl4HWTOa0ijGiGAorhpPItges9nYsrXGIMAQ0dRTg90CQYAuZum+jn0xRap13CqhN77nCB/j8pmLIRpBtMG7MfePqhrpwxPoxeHKSQ979G6/bAU5CfdWANLN8dl+f87JwhxtBG3o7RhBxDQKeNrRJyuGreHqRBwG5yQKWk6YG2W12jvmwxHBEo9JlPYAR8HxOKG1jsu68H0HutIu64WI+TQhBD63ZavkVEmwmIoVl8sC1T5QIHJEAqLttaUUFDMym6Z5BC96XhafWXdOxji0Q4h0rY3MkyIPhqpV/7yA2MTeR+8sBohI0nVXCNENtGhwJAOQpohQgWKOsAgK6UYot/DI2ljE1O5yeX67u6XTS8VHXA3rdkH9qOJyOeJ0OuFwnBFDxFoK1kInYheNjDFU3xHMT/L6VAXKL/zCL/xv/15E8FM/9VP4qZ/6qT/yaw6HA37+538eP//zP/9pfvX/8sVxh81Zex//xJDM0jtwTmb29CKUtoltmk6c9ANlsgNKArCUC6o26wjND8QKEmbsJLCpsHC2sHMI/GHxzTKaNFACLOSMMsQg3CyT7sxt7ewWg2Xn7FI660W1A9YBphDRYqSRmMhepFgyJesN89fwUUpXIMqQYneDItHZTUWxLJ9+vRgNorNOE9hno140cDaOYTXtx9h4KUceEJquNfv7EM363GD2agWKeEGlff95I5BLkELC6cEj5lOUgrWWQSwETDkQqBJIOXMGX12WLNDKjk4DuUYxMbAs5oTLcjGUy+3PgXVdGLx1pP7/9vYGp9MRrdF74XA4GHwbRlqpF2i1cvOSym5K0BFTtgc62dpklxhkL7iD/SwiQx0eTulFp7PjsxEog4SR/TPNNGPj5rxhWzccj0f0WgfPhY6UHpwXMey3iRcDLsPvz9tTO1eLtaf47A8pEw1pzUixo5Li+pMrTpj7xtRaIMlgfwdZIs0NQ+CYli7NXGuw9UjEkL9XBIhJqGIpbawBMd6TOPzpPCcomxP08Xvdkn+eJyMKd4TAcY7p2agGMj4HjK9UyoqcqQT72le/jpdefAlvvPk5vPfe26il8DDjHMeQxOtDB7tiJNA2nHEIgLYOSUSJKPOtaF3Qe7L9YefNBHuWQ+La8PwZIl/mlZSS2Z7Tyr5pRwzk241zTKh4ckQ6BKGhW+sQsVgAK4ZLreTJhYiOPQvMfYVySkM+PkeidUCwUUkaDr7k6YF7lghyjgAmnM8XtNZwOh6519o4ztOjS62IKmZkxj2nlIKYEnKahw1BRDQ+yYreszUcwPl85vg0ZHOoplHfNM9ACEjzhNjcmyYAs5g3UBlE8d4YR+IEVJgAo6yb2eXTdC0cZht3YOwrfRQB5JsU4wxRGfg8B8+LmOvxYO8Ks4TiszWUSjLQF9iZ5X8eUkQGR/RoREi4h3R0ROTAvTyaZw1asxgFNU5NYoxE38MNS91Q74iYHS4HHA4HzMcDQiQqHVTHOgliPJS+e1/9ca/PdBZPimkUDr6xRgs6E2MQ996h0iCJviRp4oYx4EKT7ebJLKC1Y90Kw8FiGIqY3nXkoeSUBzwn5pw5CgybkzeLACfMz5/LCHgzfzPiaesVMdOPofaGUMOovJ3PUEpFEG6sGnePkyBk2pdBRNFB9PPuJoB5HuN8EaILHbtWf2SvqEnyDJp0N1Aayu18EP9RwcYKQWFzeZJV/XeNs85GQM5UIfve80k4c21CjkprzeZURKBYRCogiqDGDO/82vVywd3dnZExWUChs7CbcoaHpc2HiRBzrZZ9pGit2EYaR2J1yBFbpcOmGCmaIXYKd5Q8HGacDNKkZBjw7oZFxoRpygZn0w132zZ0VctUKog5YMosQtZ1xbKsmOYJg3AdWDDEEFAVFvhH3kPOedwXd630omj41VjHSovvPXE0SEDdqFAopdgIzQ7gTiv1pVIJA1BOyOKJ3CG34Vb4yMCqbgA7LyU8d/+9G/cCIMILFBb1ZfMDUBAbixyOrgrO5zOL8N7opOmcsg6SQi1gsJQV7uBb6472jDTs4GMGFpy18x8RFsGlddQOTMG6eCkWQc9Dp3YOH2lTTm4UvBg2wjgAfPzxx3j/w/fx6uNX8fjxY3zj61/nOo+CKU2gfk2vro2bA+WBtIVAlK35s4CdtxJE0GpBnIKRkTnqsTILbjAYY0JTjjEp6wWcQEl0+Voi7sikkFjcG5LZNcScoKWgoSMJhikfp8IMaazbBlQS1PNkFvb2s1PiqGK5XBCSHzWKPE9G4HUzAsssMnJoShkPHz7Euq7Ytg1JdaRaSwB66bicz/bM0P3YCcHLUtAy4ERS8rlmpvKal1Y0iW1vbGanmwDVA0p1NQzgmVLdih9IRE5HpDxhXTcSZE2qHoSKQH6P5TdZM1QqkZic016ASzDvE97/ka7cu0VcuCJJBrkYxuPypnee/Trvza2P9nK+kkZ3R2xk/O6UAmKO0EJFHLl+zdBwnp0hRsaIrBvcgM6b7Qm7+hOgEKDWirv7pzhf7pDuM25uHuD25gYpBpSyITSSAOiJ9f8QgvL/by83nPIODo6kBLOHN0jcVROD4dxB1COya51mS9ZUxVabkfEixPIZiiVhio0VjnO2WWRABzscJ8f27p0AHSBjcvMpdnnRZZTKAinEwINX9ywV78Rd8iZiQYAAPI0zhoAe+tgsBrPbVDfo5AI4muKXCRBz6jQZG4gmqbLgQDelisHiY/8Vr/4BN+UhssN5effN1tJN++g8SdyVwKKi1zaKDt94xf5R+9nuBcev85k3u1hK4KjEqLUN7V40cpq2jqCOBhRmSdRsM/UNtTT00oDGkU6ep0GwjSGgBbXMCUv6NJ7H8Tjj5uaGReec0FFRVgbCNZORe5ECmHV6pdV9KRWPXnoBtbJrPOUTSYv1gmXZoNoxT4Sf53lCrc2KpgTV1XgUMKt0QzPG+MAQMlXjInkBEMxFOYwiq9bdVAmVn7PWimUlfN1qA5SF8zwdxswZUBxSRprI2WqVMHYtJJFKiKi9Y9J97DPGe4aOcaFGpCEDC2hdadk+JMlOwCV3aV0LkAVtuyBFRjm41DlnZjpp6yT4JvIDtAdIskO+Ew1QVXp9YFfVtdYQEn17StmoNAmCUgqWhdLyYMWW2s8RTjt3FCeQ8FfW1QieHW9/4y28+MIL+Pybb+Ljjz7CsydPEbpAcjIH1V1CLzYakMDu1OXpBhbSyweKw4FFL4skkhW9WOTMnz+vWvifQ+t+2SGGUCrHxxCu2daYa8VRUMaEjNbCGCXSK4prYMqZcmlHf1QHgb63iibBGr0JoVS00lC1j4KydDdpq1g3jjzCZIg1mNvSQBKMasWD21ucjkcs6zLQABa1HN3VKjC1rh3K+/6+bduQ1vZO8jT5Irx2XbzxpLtsTOQkhhzRilpjUY0PB/ROPxV3uj3MM4LQg6WZT0yWbMhHQg99FDa9NVzOFxTjlaVkidlGnr8CJrGHbGLsj2LmmF7UO0E8pTjGe/6sNUOvPR9tb0CfZ6UG5XQhBIWEbgrPTpRLjKvYaYKYs0uvV9RaEELElDLpBiGgVP4+V3ICfB4+3jbc3z3Fw9sXcDodECczJeweCvrJXp/pAsUhbsoY+yBlAeBIw+f96twHjg7EDp5sZLpk1tKt2lwP7t7IULjW2FVMmZbZPq+v3Uilxs/okYtuChF+tEfL0IjmyyGDmMcMHA0dUehhII2W9lupiEiAGpkpRGjg55Ho0LsXIAYxGpeDTVIfA5YB6/Z90fr8X202KxB0MT5GozeLuy/SYh5WyDinwtneGIUWABYWtoH7NSEHIezvpQPudFB7o6GQcXRg7wXdEYLKzRX0ZZEuHA2pmTAlJ/caNmOHhqqOkK8YI8JZgMBETyahKqB7jszp9gYPHzwEoFi3gqfPnuL+/gwAhoA13NwcOSKxXJXWO1IkUtLskAScT7FLGQFhYRMitkFObjauICF3Cm6stUsC+d53P4wYycW5nC8kjabdS6Ns5nNi6JkHka3rZmRRsvBbbZimBI0BvRE2Pp8X3J/PKIWeFhTfCnq/8J41OpzSgRW2eTuPCaaiwSiUEWgi6DbuqiSxdu0IRqQVL0gGFG2y9FJNpigQZBYp2tF7QZGKbWOxRdO4iLLS08Mt7re1IAhJ7tUPKiN0e8DbKOT54WgM2On/sK2dOScb5dqEzY2UDGXhb6MO9zqplfLb+XBAiglPnnyMp0+f4OUXX8VLL72Cu7s7qFbUqghpMm8anqw8QDl+3oDhySOQ8Qwq7DAyM0aPGeCaMCNJ7/qveAe7rT0L2wDsJNloPLPmKhKiqNlQYYBxAjFGU7Kxg57zjLUxVwc2qgYE0sNAP7N1+KJ0Q24gp0rQsC6L7VWcTWzbNkLoJCRs6wo11Kg2pgnPgPFJhM86MPYgfr6ALnu6rp0MlpWTkN16QC2zSBViIa90gmVBUk0cECQNgu7gcnSMUE4W0mqqwAypVGmVymYh5QQZmT7dRuXM1Kq1YppmU476mPP51+CaOe9G1UaUbryntk/v5neuHt3REox1cD0W2guWZuNz+ywCICYIKsTunyrIjQsZqglRdEwWtNahTqJ3jdj5CyuU2KRu64qPto9wdx9xOh1xPJ6Q8vRpRDyf7QIFTn6zTb+pDmKVQ2a1GaTfeXNduhlDsDwVYNtWVJubK0ziZfAweQAHpCA4zNOQOfpDmjyIrj+/QbCSJaLB2WJEnmj8ptWm34EoL2e+EQF0nl37itAakniX0qESuGGOAsyKDYB8FpdNWAcr+7/ayEQwBi59X6z+Of3AEDBMzA2jau2QwEPGocmckiP7cMO57t2zOuXAIOnOjVwMqpQYaH6lCmn8OjGGuoqyKDOVztaY6szqnA9NgJMuk/07cd/SKrsA6Pj+UZSuIL+lVONH8MDXrkACTqcbM4uLaH21iHhukC+++CLEisBpyli3C0rbiErUHYY/n8+2YUTUWsbmMzuc3Rh30CPdaKNEk11G62iviKi2iSwLU1GTweN1JXSeR3fI67csi/2uecygXc4oErCcLzbys6Kn7cZog8sCjitiFEA5YiHSRz+RWhyKN1+GnEHGgt3vvit+vC0MIXDdqiKYd4UttP0ZgcXSwwi7uneNRq0Yv7d1tffDHBRtFVOekPJkyALVby4jXdcNPZP86OM6Hs4WugYS6tldO3+Kz1ztHaHrIHa7gWIMvE5Bo3XxXGM+Aty2Dd/4xlt46cVX8fi11/D+B+/ifP9sDDjpt9SsfdkRuto8zyQMEzaXp/qY2fcW8lSsMPc0ccDcsBW1u5R1D3GERzD0Boku+w6juHHuC9GUYAiz8Z063aIPckSeMi6XC6QnrkMRtCaAXpmL2agSwiYEWuh2nSKN24IAQufudVkRT+Tn5GkyK4g61maKE7QBIXmDZQ0dOlAbi/yQqIwRW3OWK+VINDkoRP1KqJhapvIks6PSHsczU9CMQxZGMrsEQeiC7sTuupt0hhiRwPHXZblg6hYs6GRsoTCjNdpcrEqiLdGUOJ5Xsfd+7ZviSiz3+9pVf2JI8h4Cyj/zVHr/fv4sN01rzRsHP6MMgRfytIIkPqu2V6cUB0rVDxNKY45UKeSwlWVBts8hQRDUESH3crH058qomvv7M3OW/heeZn/U6zNdoHRzvdyMIBlzRswJSIEqDb0aAcFGIzB2u3FH3GWUclsjA0UfOwiO8WhGTUQCmvEKaFZ0gCqhaN5oIho8OK4loRx1dO2k2sWOuvLnQP0Bl8Gnaa0haUGIeSiVYF1TkF3JocbiJmGXBYHn6XD7i1C4i59L+AArdYmKqJHPAqA9IBlZ2Ds2dAv5046cleTFZD9Snf9zXfQIoHy/XpwQNmRx5UxzXh+L3bYiDEryXmmUKFcFtJtI295vs63eeRY+honThNbIu+itWsgc556tW4JydVkyXSu7dvRS8ezujuOqEHE+36N3Bv698MIj3N7e4Hy+YMS8l8oH2ezCd0IbN/3N0Ixd5htGsVBrwzQdcDreWPF8YWZOowReREa3WsoeeOhE4K7N3HHzQAHKtuHu/g6H+YDDYYbLH9d15QYYw/DYoNmckeZiQIxMdC61oBgKlVM25Vo3aS8Nq9w9lsUTkZYY6bvQagOiYIoJWQJHDi4ls/tFxMs7fjeS4mgOMDMuR9d0J7YOcqSOUmhs5DFGTBb0V00B43LMEDrylDFP8yjwgo1SfOOex4iCknTEOA7Jy+UChWKy0UsM9N4YoYeGgIQezT/JUA0J+PC9D/Dk44/x8OEjvPzSY9w9u0ON4DW1M661DappXCMWhjsc74F6gJiRWiPx2wn3IoPPwuvUIcKxK2XSGPJ21Q4YqThGV+HUcaA7ktXE2hjnmSml2JoSSqlYy+Z3cxRM7svD3ylo1dBhdKQcWPS3BpWO48xsl1I4lpJMNGyrxaz4A1JixlBtFaGQA1JLw4QD5kMErKC1oxetsICb8gG1bTT8s3UD5b1NKUEOAdsaUGrBZVnsAGYBWCp9qPIU0WrHttDALE9MaM45obeM1XxwaozwfKtqMuKW+Fno4UTH6pQSz5beEYIRQ7Wjrit6q0gm7ed40CcCMta9bdZQKEol7cALklqvVJL29W6778WZn0Ec7XFEqkreliNnHGH1MWqH4YMAkNMMyRzNl8aYFUZ5lMEvKqUO76VrMz63gqAJIdHhy+WCZVk+lWL3M12giOxknWQGZrtixg5o9YebYG1MFkeeInpt47CLnZBuivvYwLkTMTAht6uFkE0ZQQRbIXuZc3puqiwUwhUXwGDZqpAYKclUWglTcsXNPoWIYgdxbw1NxDJ6Et93iBhGRt5sK5nx/KyeK8RN3sceXpz5i4vGDdfdvdM+qxGGh1mXmYgBtLOe5jxIjL2xACm1Yzgy6s6taQY32htCD93GGoKReun/WCVPVjjtyBU6DgKXOrufDBEeS/Y0uFVMjSNBUWz+m3IeplSMsOdhmFOEmDMk3wrfIwO7/GHmrPv+/h7nM1U9rVknC36sPCUIMtZ1g6uotm0do7KcCUMfDvMYRU6JhlubbfZb2Uw6S3jYnSgFatkeE8c/tWI26SKLG0L9l+VicQzRDmY1O/duqJx5y0RuTLVxjq/W6aackYfjJdd66BzvDS8RtcRWEcDhY/UCxMsGGb9rX2d2/IY9tXWgnsJxGIwfw02tAIjD7dnfEzu8aAVNGoVSEHKhRIAU513tY7yz/brsm75zAPw5CEFwe3OLDz78ACEwPVhtfNB7H142vTeEKMiS0IrJuyUgJ7fz3sPfWq34+je+jgePHuHV1z6Hd999B+fzHQRADaauKQ0avWDya8iF5fw5J4lzzRmdNNJU0H1gAIE0Ix6KjkaHEQoR1x34XpwRZfEYDw8b1a5jXEIlUB3E5N7V4gSi+RfpeH5DisOgq1bLMgOgyPtYuzXjNs3QbTXTN8qpL5fL8Kbax7WCdVsZeLcVXGTBsU4WueDuzR3dpLKH+YDDaUYtBeu2jV7MSf0hBByOB8gKlK2bcRyL9pgSVuOtzNOMlC06AySUSlBMiTy2ZV2QDSEQU5ntfiVh8NHO5zPJudG7OeecmJ/ISqVMq0xDZ1BpMKQvjJgKXO2UrWH8Hhq6+bXaG/DrgsV5KW5x33unq3IICCOWZHef5frY0ee6LeP3eSMowv3XjepyyvSNsYgPqu1gk4MwGhKRndi/rgWf9PWZLlB845wiF1m42qAEnK917VYw2CEfo23WfXeHhdhCZAekJiHsUITG8QqRaY6QAMFaCi6XC2V84t4bsK6GhQMhapK5Ooiu5JSxLHRY9dLBM3iiQc9BAtDozhmEyELwB9fGGlyIlgjcwHyKUYUDPHQNwRmHqr+3aBtZMOMzsWRo2+OsCNpsFp+zueq6fbcdwMUY4ApC5PQaoSR2dw+0rhjWFewIptVO+tx/Dw6GF5b2wdxLQwCT4sXdS0PB2HhD1EJIttmb/4wEt2LhWC2SC5Fz5gGdPYejYprI39hzJCo8pbiZKRaMV5NiGnPh4IiTfU5XYvnBUErB6XTioW8p2z4qdBdK2kvruE7FUBgfxU15ArNptr0wA4YSbYeAq3Weiggxj4U4eDIi7MqhRDIodTZDM0MofLbta947MfepuX4GvUwhTWDf4Pzvhgyz8xkQQwTH9wuQEgm4aYQCwg5GQNQ9PaIZjIE/xypFEcU0sUNsvY6CN0QqS1Tp2GuP+pWKpQGdxXi6Gkm49DdGujufTkeSk9GpiOt1SO+HJb3w0A8pIqSEDz58H0+efIyHD1/E48ev4St/cIGAslgSHDPHSoZzGgQ77g8RALVmwAywoJAW6MKcTP1m1uRe0FOFx5GBW7/7i7wGwvDJig40QyNkP/RjUMYbwGWqVNG4vDqmMByaVb2I3G0OWgW0tRGVQP+kCE+JPuQZRQIuZUNpFSp0HRdQReWorPOFWqvQoDjflyHrdjOzUtwwLWGKB+5P2lHKVZHs1xWCw+FoaGaxEQS5Nv5cruuKlH1s0gexvwnHsfOcsa18voKN3UO4UmdGKvnc7M1HRDrWPjvloCCatG1otSJ3GrxROaSoFch5v3duPT+8V2IYiil/jrwY8c/siiu/Dr13tM1UW+LZV2HP/7JXNIm4nzO90cHbN++cEqKty951jIWquQqPfaKnYbnA91eHu+wnfX2mCxTvIrpa9LYERDGCVms0fAomh5XdV0F7Ry0k2IUYLYrbvRieRx7U1A9cHexMaqG5k6tJYCZQRDQETemy2VXG+ZtzxGE6WKW54wMelOcjHIcmCT1z/6ytIVbOhSXtJjwkru6psx5mBYBeKcFUDOOK8TRXxQ6D+sKz/XF0UbUPeDN7fLvuiZ697xkeqjzw6pUVuto1VNscXObpyoDR4Xh3CxgfUbyqwZR4ILfKuTMRgf3zNjPJ4ljLCqRaELIbKTUEWCdiBco8z5jyjAYg5TgSeke+yZj/T7YJZGxbGxu7r5EAMUjX7fK/SZlkRbFHw/PwTWMjqKVREm3jKVWaWnXrZNxwbbPspTxRwuhzZN90U8rgBOOKIBm56QQBDscD3EPhcJjh0QvbsiIEdriQhNYKegeCMfeH02tMmCY+J+uy2gjTx4XOD1KLIKA7KK/9TpD1eyXKA8gJ7c4RiCEi8OGCOP8p8jOF0NGrjHXsQWkCtWKaXITD4YDeK2rdxhqb8jQ63GZp0hoNiQgBMHRiWRZoYNGpYGpsV7WsKUXOHIeNwtBGrd7kUJkg8Jl7DBFlrXj7rbfx4PYB3njjDXz4wQfYtovtPZXydu+A/Ryy++fW8SIM4mRz4jJuejC1to9ynSDq/8QUoVUQxFyq406oDuGqyI7ct6R7cGUzJSN5T/M0kVjemyXo7sgRkaI2iiM+32kvyO3aFKk0QUsRwZVlSazhCbjfFub9SLBRe4GYBLl3xXw4EoUQR8yJqKS0h2KqArUVbJuP/tIoPoB9tLcrfBJSCvxsrVijK+bn1AxpSM/5kag2XIpZE0wTgpgMd5hKGlolCREyVHjbtpljLd8/Zby++WG8TxZidE/2JpjFEzD8f7pz3na/k29GTBzN2Ys8jD2ZTR2dvrtcnTdw7o4+9zOmnNFbQ/ExIbjXe+FMHhTH0GLPQDD5eSmVyHBn8+VNznA4/4Svz3SB4htFELEFFa1bYiotwk5u8+wY7QHaaXHMGX20h4sISdO+s+klggax1uWFgNI7tsqNKlgX75uWmHxXA9DgShbmXeSU0CuwrbQCJgdGR2Hg7PyQEoITeq1QqVuHoGCaElKO7LwUjLZGp9eJeZUAV8ZmVYkJw/NGxBQ39uBCjJhqRQ/4/XxILYBsELCcH2Gbsv0ZaSrPPyysuv0aAvCNvxQjCMpAk/z3Vht9OfRPFQPtzSXxM/JTyXMP48jPsAet945tWWxEkZEif0ezWfTpdMLxeIP7yz15RiI0bRIxkmkYfideUE1TtM9KT4woJFTe35/hVtI6IFPP0fD8mjaIaar0PRmpreKEUEGtprixhOJunAtFM6RIh5IA1imPDJSwe+b4c3E8HoYc0gPdppRROrAYobS3im3doKDBG1EaJuOGEOnZIgLnHADkRlRh8acw4VYnZF5avfLkII9FYCRLQwGDoSoeJghNzN70brmWfZwEntnNuq/o0l7eaCJrgd4gy7Ky2LgU8i1EIZND4EbibmXvpq3ghgJa7LqFXZrro01FhyxEgWp1xMtiJXof0QncW9hth5kH2Hvvv4eXXn4Zr71CX5Svf+0r8LKCZHw62cZuhYI9b54h5TN9Ztq0UYgQjeroAVa8cuznVRx5O4IAOtF6Fw+oFbc7GVOi8X3ExoBmZX5/f4fJSc/WREXjk3R0a4wCOsy/SQSoZioZiCxU46CFwDaBGT/8M/pJJdwejlfFIAv3qEDKtKxXAKcHD3hTekOpEWUzZWF01OaqOYkehBmGgtIPXh/vrSYLz9MElM14W56PY41nLYAmsy8Q+EjRi0gJCRLJivPzIkqCGtdEWschcOy4LMvYO4HOoNirdUiirg40RVNGmqfRMNoXXhFq/7BSR8bzsjdJXviIFUJuS/DN/7Cxwlhv1y7gQlgUQX1/UeOoKTTwfYcocNKzRl6ilIAmdC3WbWP45Mzx9jWq98e9PvMFim/yOSVaz5ukzOE0z32Qq/+DO7SGvXKs5jmigEHVEa3vsraYKLlx+2c6YoZxQEKAYJ0EZP+9h9l4A61jK9Vs9Z2jwt/VW4O2Dg1ASoGbdqcunUWK5c6EwIWgCpjLbbdq1POUB2XTZsZDIXN13QKscBi8DgyYF9cPBa8yf55alL0aGa55NDdQm/93f65Q8VdXoJUKN38LwVnl7pRiuxMIy08hGbzITdGVFFAd8HYzjwimnzZkk8Y1K466NIhMOBxnOhlKgIYAhIgnz57icjnjwYMH2JYVWy2Y54N1HoRs1eDUbdsQY7burY6H9LKyU88mWXTZ47JcBm/h6dPNZr8N2ZQm+1zWRgRCQrcz5+d5RsoZtWwIOQMmQd+2jQWwrb0YIqpWUw6RbNx7G11KTvwaOnau+8jCfr92YFlX7rd28PBedUxzRtc4ZvckA3rkA39+M1JvN/SkKygzFi/UeO+bj4DUCgDokPprBxoa1PgO3h2qYiBvXoTuG+9+YGhviCLQVvHs2VPEGLFtRHnmmSM253EAwLptKBaAeJjnYVZGgj3jBWpjiCFjEWhAWIv5EvU6pKZ7c9NGwQURbCbdn5Kgbhvef/c9vPLSK3jl1dfwwYcf4NndUxZV3Y0SOYkUgxBDCJijES5bs7Rjyt2deB3tupOcvIfI+QigG/oQQsScs1m2y0B5HH1lcyAcUVij4GO51hsu20oLAENxgshw/WU4qXD8ZvtTaRVAghMlVfnMlFYhLUA1kvvXee9aqaYGU/StIM2zhXyy4Ishjb1vmhIEdo+qGtLo657vv9s9IyptQoe+jxN89NpaM3SCSCOzn3y8yMaESr4Vk5I+wOLOUAhuiHx+g6Be8bJk/JXtxzHSPbdUbEaiFcCQ2zD2AfV8sdpwqRWhFpyOR/ObIqJUrxVXVwW8yK4ACuNsEduznndtvSbiAs4TccRll+IDHnjo59TzaIv7fbFIE6QkCBUQ7Qg5oadgIY2NY9+uWC8Lurm/f9LXZ7pAoXzXoKNgMKjouGEhxf3GifHPrTujZNE9GhRbrbSot4WXU4ZoRzJ4MI1iR1CvUJPWAhrc1Cfw+1IixJciJpupesgS1y6hMQliaiPb5nW3mUZX9p+qCEkRc4LEhH6lDjHTEci1Qsc3eBs3qX0+YDxTGJ4ONppQ+ylWnwzjNn7PlekW/ODei5Vu1/Ha+2NHTvjTPZ3Y5ZUcIwEAM0FEBIgkPEJJ4qQPTRiEztY8StCKIWUBtjXOeeMo+PwwCzgeTzgdbrCuTKkuXfHk4ye4P9/j5ubGugyDs2cG6vEZlAExkx9yYBKubXgKdoPJHGivZcVOsi02AuQm4N4kBY8ePbIO3RJJQ8BpPsJDLWNMaHUjYuAeB+ZgGrwYlR3RYOZMsm5JbTrJ+1WwoZiLbVCXszK7yTs6VdcJ+Fix4rwsqL0iRxlmbtUyZbw7h9036+Hgzspjb5Z9/UBhOTxhHIxRdh4YCb8CKI3/StnQtGNk2OD5Tdb5Pb1WNAGCqaYG10WdHEv34FoKajE0y8z+DqbAc8VDh5O+K0rZES/mFVnEgDZbHzx8Y0hQuVI+iUCDDmOzIAHvf/A+nj57hkcPH+Lll1/B3f0zjiUhRGdBeWewxsDjDJy31AxNcZ7U8zJR72YBJ/TyP67C+6YZUgotGIy7wSaOc14/wHyPVCuUtRpJXoCoakoUc4u1fBu3xW+qkNqHssRHKjnLKAaAAk2Wsm4Ez147elWSw/uGsq6YjkcEBbbzhjRxJIsOLEtBwO53orb26Qi78zBKrZAYMM/Zuvt4JWtnIUPieXWQDq4ycYO3aZoRhPlVpVbzcWHW0NpXTNMBKeZx3UcR3TsHnmpMRBMSuDlZzsmQ0Gr3nQozNpMmARaugbIVXIS5RpTSp6vx6vOSZNW9aPH/dTRkjNX7Pv4l78RDQMtVY7M/1yHsRne+5q59lnYE2J5nI/amGBkPocwaK5Yr5ohOqRWX+xWf9PWZLlB2hrF1WtChGEgjv+F5+Ku2Db2pmQMxrbFVdiO7NJTVeICgglVh7LxpKWZzmBwnODDxBrlHgqr5bzTBUtehbOkc/BDOFpgc86rCt4o2INCXBRxdhDRx7pkienGtO+c8buC2Ix026RGSvHZughcwYf9XmEIC7File6miJPwq0HrhwRF8rkt5tHcJ2gGt5h6rbv8tRiZk91q2OjpGboTX5VRAiOQyBLBDj+L5K9wYqipgvh+D46JuEKbmZOnci4xpZq7O48ePMc0TIPfoS8f27Ezk5PYWjx49GjkvHYKcSJjdtp14V2zmzM2c3Aw3/MopQZLgGjVyJ1gAePbsjsXH6QaqHR9//PE4QDYz//N1+uDBAyzLilI2dC1YlwVdG2Kgw+aYDSvn/xKo6unakYOPsCoOllq8LJx7T3miG2kM2Mz9FWag5YcIlJPArhhKn8tyQSkBp8MRE+yQbw1sfNrY5NRUWwDJuHOekLwIgXW26FaQ+6YJ0M4n0vTJvDM8byVG+sMw3VhGt+UFYM4ZxyPRrnW5AKqYIuWiPnYFeP+2wowTvz/TNOEwH8zozTlnlLIuxUiN4go+59NU1KUiREWebOQBGXbpIUekJogaqbyB2DNCs7RaCr76ta/g0Xd9Jx6/+hjvvf8OFnvfLsfm5+cD5wZhMRkB3hU1VoD4MyjWxaawR23UVoesmuhiI/9OFWqZW35wretCJZHaARR3ojURKmbQ5JyRY2SRf/Xi894ggRyWEAOy7KR7H5HTFwiAmgmeNSApJyAK3W8ricsKxbauVmQ2rJcLWi2YDweO+Wrl6DdhpOfaUB3LZTHJb0Jskc62OQHRIkUM3ekwpDHuakuihAHrumFZFojtP3R1JuIxTRMgHAev6wVyBGLMtg9axIR/blNFicWdQIi0aFcsQbBuRGhKKZjnGfM8D6TM0cKuHWUr6IGoXW4ZabIkewedwx4/4ff12v4ewODe7CoaBdAxz7y38zxR6r1tuEZL2Gi6bf6OsAI7id65mVx75DrFKSOoAl1s9H2yyUFDyoroxfEnfH2mCxQ/8LiBW5hVvEJNbBECnhVjBNHgaMFOLPQZqMAZ8gDcuh1AU8ZOiwBJ8uA8RFQaNimGMoMbZISGbuZq/GkSnQuiVgzwM2hV9AoEtRh6Go/sc2UrtAb7WfhYckrD4DSYz4g61gtgH/jA6C5cnIJ9xOTYsNVL8A1Y1eY3uhd4/stVFY3QzFUH7DBg8F8G5wir7P4OMi4GLzq74wDp5A2EuPu51L5BOwwSDuOg8Q1Qlcodp1DmeSKPRPJQb5zPF9yfz/AoggcPH+B0OiFE8jRyTihbZbaJoT1OjvOutDXCtzDmvKMG46PY5yabPzIfqDccDkfc3Jzw7NkzuCzQ5X6E4GH8Ah2W+PRAYfbOUOY4JG+/SzvnyYxwp63/tm30mQDJdbWSyyLiZF6OUEIMLLbmPSG4270nfF7RqqUxByJavomPA1N1v7c+Mghc5/vzKACCuXM68gKD5p6Pg79OeQ4RyIhQYeZQjF54RyPsTtb9AafjEQJBNrmuj8IG58RVFCCPIxjKI+LyZK6bmGboIle8D88TEsDInCnRbNGzS1zR5mMkcloMIRDzDQpAToKPPvwQH3/0BC++8CIeP34dX/mD/2neQjo63OroaTQkxe7XIFc3kmudjB9AknpQOsA6B6bUavyrGdu6YtsKg/uE3A+OLClTVS1sICpN7VJK5suxk03dNj+kALiZpSEVvbkrEdEusebK98brTl2USdQ+wgGAbEaCpdCTJcaIoJ7/xBG8I5EeJaAxkjgcPCeHz0nKyWIK6P9TG11bkyVat9ohaOhiooMQmXxuaIEqzBagsXiwApkoHMMBc0o4HA5YlguWywXz0QJrHVUYDd4uw+7YC/NWGw4ICJHXets2FiHdCN0hoKldN3tGtDN6pNSCqc6YJvdO2cd1XqCwcODndbNCvVpj/sxxFE0vmGmaRlbRsqy2x3rIab26Pr4PXJnUWdPIIoUk38GRMl5ZgOAQGN+xWZTDtWLoj3t9pguUHTXwomCHoJ0DAvimacY0skfKX9+IbeMYwGf63eE6YUGTYrBMH0JfPjLqjV3WIEJ64QDsGzv8gFEI2A01M9QCMA73JBExCqo2hEiVSZCINGWoCKvU59gkXmw5r8EKFXiZ4eoiwKUCA6aXvTjjtXBUBOb5YsIyr6gNvWjdYUsrIkxqRsfGDBWg1ALP/lCr/LiRw4ojPxxgc3MA2mivnTo09JFrBFi2kIUK8jPsRlEO207zhBdffBE5Z5zvF9Ta8P6HH9LgrHccTgfMhyMPXkNOTqejFXfusMjr4nwS70aq+Wk0gyhTItzK8RM70Nq4OXmWi48hPDTQU7d7d56FF23u58BEVfKgmJAM7G6e0cZfUPIkSqk43UxjA/VxBYAxK9erz1AKvQf854VIXxtXZ2yloJifT0qzjTUjoJ1GcTC1QaNE3jkO3s653BbYbXpIYIyW3M215GvMn415moEgZk2/sgFIzLBinDxIdkfAlGdI4AEFgMGfXLwk6pkrLITIzmg+QkCM+3zevoXPqdCme7IkZtrK05RLAUgUTPk0EJd+PkOv9tdgyiBVhZgMPUiANiX3KUZspeLtt9/Go0cv4PXXH+Pdd97Ccr7sB8xAiYiowD+fFa+E1rOR0/tYR83kxPMckGO0A6+imUldTHmsPRjK5ihDShlUXPSBwLl6w9fqtXRdYNcUCm3kgg00wkysRTDGkGqohRsHcvSRjBwNbCY59sKyGj8tZ47H2QRxdKvQEXzZSgUkD5UNDzzF6XSDeZrx7O4O60o3aEYdJEzzNBCQEIS+MYZgArCUdj/c5bmiXm2kDWzIp2w29STa1lIgoO3BYZ6fG+V7s4ywe02l2DGljLCS+zLPBxaRpWCzNGN/Nr6Z+Nq7WiIzSblpSmPcsq6roRU6vj+bL5jz5jzAkQUNv84LkMPhMGwFlmUdLtLcSxS9uxEpm1pHlfk8eeOvY+/xdTQc2R1xFkHvEdqeP8P+d6/PdIESItDVugrYjNGMhYLJmbRzocPRib4rTOhdwWreHfr88OEBz84gBXZUZdvQTTPPh5PEMDez8st+vbi8WBkHtjqj/CpDA5arYDM/CVT5OHGvK2W/MTJ1dMwa4d2po0nghqs2++97l399MKhZErP6dbJet0KBZN8xqur8Obu53HUlzmIlhjAImDRAugoL7IooCWmKhCXFCZSu5uDPVNv1YwsDEQkxEkFh7O5wy90/Bz9UniY8evQypnzAsiw4ny9Ytw21dRxPRzx64RGmecLd3RnH4wE3pyMkKGpbIeIcEqCrmy21sUEBgKSMbhC6+zo4suCeMH5YNAsmOx6P9IopxRQhgmlK5jnQn1sjQ3pcKxQNN7enQbyN1ilmg8BbpZKHSczZHGMTjsejFUMsVuZ5HrNfcSW0XffeO7oRIx0C5meuNoIJRs5ucLWJ1P291t6gaAgSzV+GY8IYxRDHXTrLNRsBy7raR7JqDQHNFWNtaFtFkN3LSM2kDtBRVLZO0l2pBTFORowtdNqMxumyQ1Ei17WIQCzaoBlfYF0ZD+ASaWZyUUETRFArs4HEoP6caa7H7/cOWanIsA3DGyNVyqHdQThIwAcffoCPnnyIV156GS+9/BjfOP8BdxjLmIqGCqEz0yQqVShcjwUiHTG5UzHHxL7vtLlx3Gh7S2sNfTX5J3beAuzfS6nD50NkJ3pjTIKvD0eM/YVqGzZ5VOYkNFRKzJWjVgJPAtHdVl2EfMCUIh2SO31mXP0UckK0ooucMEOmGpgkLXTaVYWZmxmCAljDyWd4miY8ePAAIQgul2WMo7sJE1KekCOLszGyEFcg7givwHLTIJYkzuuW84bT6TSs8Bk6aUaGczDJP4sCbwiG8zessQoBs85YrRgPckAwpU+rRMw7gHgFhIdI1RaRVu4nudIFepomoAHbspmqic9XsD3Zx8oiRFZ95Onuyv4z2bjF0Ri5QtCTkUlO34UCOxk3DEdeL3j83NiRd55pU4zoHnnxCV+f6QLF3f48F0bVMj8CrIOCHfjswPg1tmEFsrwDIuY0Y8Y8fgadPAUAfVa42WyAUhoXQBa2b1I2LxoQfAqEg4G9ouxG+osSME2c37XGyHuIW1179xs4WxZudJ5y6jNO6u6DqXH2lczOH3unczWa2d1bvZjbr6MqRhdPaMCMuSrlfDycd44OADPBsw0fQC8btNCqHqAnCl9GoHJjNchzPhjuEQAAIQqatmFW5+ZEfoyIRhIKI43sIgJ6iOaB0Wmc1xqWUnC+LDgcDnjw6BEevfACai24Pc148YWHyDljWc5G6HOyKDfMa36IOzaGEMaMNmUiE+taUCO7PkkBc8xUYrWOR48eIUbGu7NDDkigY6h3qjHGIWWuJutWdJyORxwPB97vQNSseECf7i6xVCPw/Xqux7asqLVhygk3pwPD2XJAjwmKbjJZyntbrSjm8LmuG03chJA1tENFUdWJ2zb7djQO4xwzV1GTc9o8Gp2jNx8HBSXE706r3Z6xWisulwXz4TiKVzdMg6GUnIXz94REyX1tHR5aeDweIQC2raKFYMUxr08OHNupFeqt70TtdV2tow578rgdFCFGxCQohZEDY7x11SW6XD6Yq2atDc2kwGonPQmiRADruuK9d97Fyy+8jM+9/gY+fP893N89G5EStXDMGMx80JuMAZmD+5gGSnGdJO7EXoenxPaia7LwIFZCzIRSLQyQqjVv1mjG5jwFDBQRgAUjVggS8mGCdMuPkTRQSihQtZLEDeyFnIKcvhC4b6LCuSO1VfK/UkLZuhXzDKNLMZgPB0dDeaZsdysFdSMfqYHP6mweP703K9gPgy/mxdc1gTemnaQdYgQaeTXNCOQhBByOzB5a1w3ruuLp02eoteHBg1scDjSFI+JAcQUdfrMpfRRNeV9iYnMGI6XHFBCbk1gVc2DBQ9v4Fb1WwPZACSzCEDj6UzF1oakIW20kLtueGIy4P86dvjcFAEbB4snHwagDblfviNd16KkY8nRNkh17e9xRSUdW/Ay95s6JmNJUYbrRT/b6TBcofSg7dHhqiMO7XTAUPSY5Y0w1XfQU5ssQIxRiB7F181cy2zo0+3F0WSF4UbD7bxDCC9R522bRbUP0MUQY0mS+d3SYwyCVKbS0l93UTOkPEAOt5Z3wKxCD1DnzBlgt02/EibiKIFc8l+uKxP6M/2soQGcYWwwBbrvamg5lQbF49uEwqn0UTwB2t0SH2M1unvulksQqCTFQKaCtPTdGMsgKzh3y0VuUSPqsUF3kro/0JOFnbb3hfL7Ho0cvACYDjTHg0aNHeOmlFzBNGaUsOBwnzvixEwZba7bBKnoPNqNPozhhvs7GrsX8JmqpaPa5gyEZIoLS2iC9kXDJcUyeMlrtWJfVUBeaF03TjFoZl3C53KO1gpiOUJNi19awLBs2s9KnE6OHyskoXN1bxTeQyUIDYfNeEld5v5sHoElDQcHaGratoNaCnLIVyeaVYeFjquYGatekXBoYG7DbvHOzSjZy6sYzMBdOQ+VUO1I35VznMb6sK5/FGDgODOD3FHqN8LAFpAGlAK1YQVw7JLTnNk0qWqgWEKEE2NUn3dYbwI2yXaFYwWTsy7rSdt3Gfykl3N1d0Gob3BUqqpx3I6g9IMfENV9Z+EH2aIGtMPUaAnz00Qf48OMP8fDhQ7z0yss4L/cjDb0WJp7LlQTTFRTXkH9O2fxWihV6FZfzGeH2djh/ckui+zEfcv6P82Va56HvCkh/BUNoyVciguT7E8m2bEDcTLBc7XEeRhngyEbEdbp57RwLpUCvnWrv3wmdGQkpzUQkuhVDmfk4feNeEyVgPh7Q7+8H+hJhgYMhIBup1XkZwE7o9D2vlD3lHLrbTHjDGtWNzhp6j3j48CGgwNOnT3G+kGTfe8PxeIKTur3YVlXEUEFPFe7JITLRPsWM3pw7xrEpC1h6o+TE/BoRKohK9XOD1IIEIp3u3cMmo+HSLiit2kgnIqRgruX7fu+ILZ//ZpyVNBAmb16b7fED9QoOAggbxMbNOkgcKLgXKztyshc1/uf+HjjJ70N59klen+kCxeenhGQdtgSCRgjCbogjtj0HRyHAji2wWyASsvsAPDdPgwW2TQdqvQH43J1f3xFEMc8HHI+sqpvlRzDx+Cqh0jkeXSHM9CXhTXz2LAYZK2AdGnsxVqo5Joh1teQO8m99wY0F7A5vO2bL32ufa3BfHBmx+SQMWXIDNgEJld2SSsegGQBgAW21ABKIZnT6tjTr9ll80AyuF/oXeB4IUSlCh+QbOhwf9hGWFStelCUjqR0PR5wv5wF1l1IwHU8DvjwcZuQp4dXXXqGsstXBgwlGdtOZcPH5fMblspA3oWT5T9lGfRAs5pNyOBwIl1/Nc0Ogaidls4YOEdmQk1KKjQE7pilhW8gv8XwephwHLMsVgXUUdjzkyYva18/uS+DyP14vcgvoxpkSRwqtNSNA1vHvMSbUouitwNODXcbatCMFruqmDZGmK9aYM4iOPAzBchF4COK6bkQfzP12IC0wvo02EsNFAHfbDc4HYZG51YKoYUDIZaPSzvlf4er58XFK0za4Uu4RwhUXx0Zbyt7ZESFkAe7I4v4+gvEKFqwbi8HJRi61VFRU1ErulKtsVBVBA1qwEL8YUZsR8ht5FrDRKWY6hN6f7/HW29/Ag4e3ePGVl/DBh+/j/u4Z8pzRqxfscVxzVSI4MblEez9suQZ4H0spKNuG2bp6PufsXNmIXcH+ycngxZSH8WoMbITTdBijBHfuzTnx/itHYtWQotrqcF/1UZo/+4FGU8ZdYkPnqeYpJRRr/tiMNMxTQswzSlutGGfRPOWM2on+zRA8ePAId3d3LERBD52npeDm4S2maeb7bg1u4kYUgYactbEw94M1T5n8GhMk+HkiZg9xf3/Go0eP8Oqrr+Lps2d49uzZ2Dd81AOkwc9SpeRaQhhBgL01NMDcZcUM6NpQdz7Hpws27rN9zRHmaeI+4wR70X28vJpbbU4JbWKqdohm0mcRLNf8K/8+34uccO88TRYYtDwgEkgPK4jY2ZUGquIvN3u79sEa+VvYEUGFQuOfFATFNmkFo6T5AFu6JqjcAXQQtyCADvTDxxy+OPafq7ZBxBgxpzSyGXozozXpwwk2QHG6vcXheARszLCu63gAwlWV3WtD7R0QhrhFETSbgZJAa2S5PrZ4HnwpmoU/D3/PO4F1sUBE00bTKyUhl2j8ztP4ZkKs8ye07865brHMw4UZLISP7fLJflh4teyqKQWQzPTIyZ/8OoGKgE4XYWx4fJ/+fmDza3YW2k1OazPVGBggF1NEaRvWpwstpG0jcEl5qYVkOYEVWoq7uzvMhxk3N7dIgRswDcMET57eoW7siOliK6OgnaYJ21axLCvm42H8PJeF+hx2PswQL4yNqHj37H4cnNPk/JXnvQZUQYfJ4dobkXJ8riMT8HMEi3531Y6PEZws6Z0xogNYXM+KXaaaYqT/gwbcGU+lO6Stjqpw/NZqQw9EG2PY0UbyGQCCtAFlXVDXgnxMtsnvI6BR7JoSxUM0+RgaUTcIQof5WLgrrKWLt2aoBJU9YsUx4w64vFpn6JoI+Ri9NYiQWNp6Nw5HHOo99Q3bEm9VOybk5+bmztHZtqs8pt4BRMQEO1jMRgARQEJtDYdjQmhWAJQCNbt8DzIFiOq9/8F7eO3ZYzx8+BCvvvIqlvMFUQRpsvtuhaofrBzVWvCh6nDM7qqYAUvXtlBUO2TVxq4SBGL8MYhAercChC6tVYEphfH5XSEWE5N+c25DXlxrG4RWAANBVVX0xnH4ruQCKEdn6ne1vCreFyVpOkYkkeEqq0pl0DxPyJLHOgTYeOYY0Trw7Okz3Jwe4OHtA1zWFZ7W7kUD917PR7v6XMoDNyVy5cYe2K4csPuOCDgyt20b3n//PTx8+BAPHtxCteN8f7amrhrSEBAj9wbtHb5At3VDg13vroAht04gZuPQxjiG5pPcZ6NxIetWjE/TcDwcbFzU0BEGLaAqHdBRy0Cz9oImEKkP7bl93D/nNGUjxy4DpQN21GWaMlqnVHzP/XH6xD5S8vt7rfa7drrelZFsVD7p6zNeoJDYScZ0AEwhAoBzdLgUFwb57v4l36ygAXRUwAAzTjzBUkDyY++E9mPkgoxBkOcZh2lCs/BA5x34IuMIyd6rJ/KZiVqUSHQBNoZyeN2gSW0OSZtHQmcRpoqrDJ9dssnDYc/p+ebi5BoZcgmjFwpjdDPgeldk6IAyxaFrpYTTzfBgn1WhzHjoALz7UrXRk8V228EbRJCTs/BZBKWQ9k7syr+ma0dQjNTffTbOjfx0OtqmF8hTqIqb04lIhxJRmecJUfieLuuG83nDuhY4YRjKWWyIgbP4pmN0Mk15OE+qdfHJSH+tunU3k4WdhxQQBun6cjlDQFkz7e8rluVsxQYLOhpbOYm2mmTVZrxlv/6+CUD3JO/j4UipqXDDkCD0P/EDMiUcjyeWwCEDrVtIG68lC5yO4+FALoQbB3YAnnZrh4BotOJXx3UgP8KI0hIBsWA7K1I43mRSeEoZUcKVhNELv45ghmcKR1lcuWQeMFGGGijEiCkRtYshMl8pOhtYILVCtSGnjJxnU5txnNLdmt0OFydDxhhxPJ7MlI5KiMPxsCO1CUC0bhFUweSc7Vp3xAAaOuZpGL8F2UmBIQSUbcW777yDhw8f4pVXX8V7772PYoRd92RpTggPjOVQO4Baa4iGdFYj4CqrJhYp3QnXfXwuVbXMGR5Qh+PR1Dk83MTHsGLmlfAmLBoRO1nBIwwAbJW/LxoyYM9rNMVPiDtqGxNHgrGaeRcUpbFBG0ZiQQfYK7Y30YImkCe1rBYEySC9IGw63FIgpomjw1ipCRBBrSu26kGJu3pLlUjQnGZICGZc6IaJnrbd0cQl3m2QyD/66ONBkJ0PB6gd6Ly5wcz6PFxUByLRKkwFaqaLNtIjDtWg0il8cBdm9euh0JjRUkRcybs5n884HA9D/g8QpYqqw1Or9joKrVnpYh6MW7I7DHMc6+gJ/VDmIUsGHKHrwzNonucdba1WPA80mXvhSJcXF3LsuWHXxY/HSHyS12e6QAEwtPpe8Tq8CZMeQwS9B8TY9/GEj3zgf6QDakMQY3onJAiadb9qlT7lxwJ0QYoZEQHnuzNKLWTVd1MS2SiDfgXmcSDM6CE5QG1UQ6kWfT/64JyIEsHwanQnutk8VcixUfcSsYNTrUhxQp+nFjtpGBCIWhdo1yDEBChzQaDX7ik7SztGNbdToJnqJedMf4TE4mCrBXEOSAgsHJsOuaXCRnL+k2OkTbJYARbYYYruG5zaphYk0pDODqvW9s87TRkPH96ye46CUpttXAF1XZGnCSlN7OSqYlkKLssFy1ptw6DygJmPimkKyFGwbevwUiCPYc9QgVgibldcLhcm2ZqC5ng8Itjm5wcEIe1oRDgfrVQ6S2K3cPfwyzLydtIglEbjPtW6kzbdBdRNnvg8uO+PGTb1jjhNlApvhYf5NKGt/Tk5qxO/e+sIEz1IfMymKqMYohMz70NKCcEkqQEyCJ9EJzirluwYn3sU7V/X7SBu5uabUkavhciZJL4f+5y1FRZs/vtsnOUjn5SfNySsldbiKU+YDwfEuqFWl/pHI8iHke3DbpijnRAYnRET/URqqRCJkASoFtp5m/dKSgndRpDO0wgdtK+3YrybwitJQEXAhx98iGevP8OD0wO89MoreOurXzE+xI5OoitCDoDYSAfGh2OFzE1erajxA09lrJdkyioWrBV1KcbZ2rvmaMom59x5cQiQ/MpGiRw9EeP8KUcPwYq2GAI0NiuOjf44ikiSrnsFLsY9ENWdlxfYUKaUoLWM0YOYkIHeHBu2jc7VOc/m4Npxvr/Hslxwc3OD+cCDWKHI5pOzLJRxNysevfhbV+6Dt7d0ktbqiPLeiEUbj/CALUPheblc4ARsJ6B6KGgIAUFJNF7XFdpZEHK/ZKjpNM1G7DXH4BCviNcNrRLBUtufoUAOAfN0QKkV67oMUcKeF0ccTwM9V7SbgmzbjKfSkaeEmN3fp6BWHedkayyarlOHrwmuXlCJGUSmOEF7Qb+qMTzOw7PM/EWZ/PMZYdeFyid5faYLlBQDDvN0xYsAdpMCO9QVCCHb1+iAqr32FRF0EUA7JJHImZNlwRgM15qSWW3IRLANqXVFN9WHXkGDU8pEDdTfJ91Kt1LMDY2Lzy3daw9YyjrQjKBA91koMGBAHhbWHQkPAREzfMJua3/No5FRblyjLcLhlDRIiNZJ+wICD6AI7GQzfr8GmzE2IE6J89sINJN9VnRIYpE0pcyRAgRta9hKs5l2GzBoADviIAGIRgJWRW/Xh28y2HpItcA3R9ThT735Jh4+eojLslC6t6z0gAh0ok1GVmwg456s+z6uV2sYgZI5C0nOEegrxy4SA3ptgLm3qnNjAtENZpkAZSuE962YYSfV0To78Sp13EMaxOWxZOmZQh6Dm3RBudlsZb2691dkZ1vyDqGOSwOqZfY5cBoF07JcEMPhapOQ8TUxcE17xEAvBb2S3CxQ86roCLmb9LkTbjY0iygJRyDqz4iNy/zp5J/t3kSMI5hRCkcUKQokZpt/s8ivvSFsYM6H0MK81YbW9xm3qg6XVVXvohsQvIiIEGTb1BtSTCb/pSmiBNrAt1qJzAwTN1j8AiwczszGjF8wUAAzV/P8mV3Hs/O1XHKcg2BbLnj33Xdx+3/e4vFrr+LjD97H/d0d5Js2c9iz4SM2oA4XWdjhK0EhkSRGApbduBkyzOS8e0dvKBtHNvM0cSQYk5nC0e3T0YbeC3QAoDZmtfRjyC6nn/KMkiq074ZeLLqBruSfHU4seC+XZXT3Egn1+3qIaUJrxXLJmjUBEYcD5fNl2yAIxvMCdIq4LAuePut4cPUM9aY4nY4IQawgJ8fOkfSmFZdzpfDBvEvcWdYLFPW1BB2SYY9VcRdrIisYhRSUe697f5RCXy0Y+tR6x6aK+XBg0ngIRI4hgFoQZVArPOnSy2sZ0IMiWwM+/Fk6m9NvPvB9jAoAZau2l5I/djgcn+NjOZeumSrOvVOAPWSR/05SvfSdCD9GzTY6u0ZjdqSXa//6/fk1/qSvz3SB0hXY1g0IlAqKz4bFuhCD750It99MN5rafQsgnfLgkEk+Nw+L2q4ZyeyyxwUXMcMyzmCnKBbvrmi9IpvtNABc1rNxB4DhRSrXhl0grNcVahBe6ztxNdjfMwRPBkkKCmiwhQpY5b0fZDyzrqB03WeFHB3ZR7ED0v+AC3B3mA1Ce361zjllKhMaLOvEeAToNvuO5gyLAMSEydJPS11p5Na7uemaT4Bw06XpGU3T5nkmdF8IlQaww3B79dc/9zrefPNN3N3vycS9K8rWOGYQSofPZ8bcb9s2rjUPMff9yMgpIuduHXREzgIY4iM+17f74f4h+UDZ4/l8GaNAXjv6oPTeEboM9U/XRrKtvc9tW607C2PkVlul1DWk4QgbYrCxzU7kS5GEYU/yhsu76x5I6IqOWipzRLYNk3VSfAp4f0dGSK2DIwTsckZ6TlRyQ8QShU2OWB3ZMxQNEDSXM/cO6c1CGmWs8dEhiIXuhXnIJnOmsZub+XmRzD7RYHE4suNNgSDnNDZbemMoso3hHKWiRjOCx7cgTLauDeXKUx5ogqutAKJ98ILORsUpmguvKSG84bF54eB3AUSQOCI0+boqPnz/A7z2+DU8uH2Ax48/h69c/i+OpVXG95P3wt8XwH2gbCtdfx0gVQU6r3kP++911NURgWma7BnBKAp47QKawJDKMCz8XcLsY7hrf42cFSWWIdHNkYWB6vXPZqG9gtlUeUqoJVIOrh3aKrqSKM3iB5AoaGVFMe6C71PTPNMYrW4IAYg5Y4oRmCYspWBbzhCQn6HoCClgnkkYXteOqCY/1zbQ1/PljFi2wQ/qtUFigqSEbBb1HgypWmwtRKQUBlfputAnJ8y4fGZBUWsx1Mkzthq2ZTVjtAyAKdVqI7OYxJDYCukeJGgj/yjoFr8gMaKUzTxxOpIpKBXmRQRuB/uYZk8nzomoN9+3E8Rh+1EZo+zRAY1T5NpjJe6fW/1z72j/7nXUn7tG4zkc84s//vWZLlBaa9gEZunNoqJj7x4Bs6QWA+etw+JFjONh4iKk/DhYkVCtq6DVezT5rcHx4wBwkzEfMov5EriXB2eKVHVsVgixc0CgyRWVMERnYEZSoXV0UOZlvDPai6sOtOi62PBRluIP802c70KAR+FMbVjRoTYWoqOqd2o7VMxFfDUdC4IkiYTc3s24iaFW3YfJygO99EKpaud8MsZEPwVt5gnAUQa9GGwTafydN7e3ePjwIcpacFfuWXSJwEMVj8cjTqcT3nr7Xdyf7zHNk4VzMcMINlvetg0XPQNdjd/hsriImDJpxokuoqqFA4CYINIArfa+xaLKuTmJBISYBiTqcK1DodNEme/9/TOiEcqCOMaMeaK88P7+HqpUf/ncet3WK35NQFcbubkaDfz3ZG6bAJDEs0T+MNm7e3fUzOOgdTSh86fYcyCdOTq99+FnwaIsMI5eYVC57mM6CZZkGoAC4xdgHICq+/p8rlnoO8GyGkfJ5aN8vw1hyvb9XLp10/H8Qjpa9ZDPZJ/1muxNRYf6RmojVlrfm8ePEer5XuhR4xumRLuH14iU/YzaK9wFmXyxQNK8KaSCBHTxe9DHCNK3YyJjbRz2y/2GD9/9CI9uXsALL7yA99874f7+GZ9jq+H8OfVCLcUITBm1dBMAmAdN5WcPhnB48jS7/gznjkW7BinGYTBH5IfPJQLoxRIjYotYdWOheLWfsNAjKtOsUCSyYbiR33tDkVhkd0SJyPMEBEEtNO3rWiEKVBErTCPvgWU/UfkSjPCZ0bYVrW7YwPF3igFJozmsdtzc3EABFCP2uiP42ujA6kUzoIgSza+H96TVirV3pHnmeM/QOffwqBbYCSjYc+4eL+7M6uveM8EAYG2rWffzGSbPg8nJOSVgjJYEMSSkEFBjouFl9fT0gG7InPFibT8WK9yqFRrdmm4Bgu7jcitU1mVFTXW460p0HTjg1gbXvJHdjE3G5/Miw43b+Of7tEBkV7n1qwLXR2F/ohAUgAVINqh5T2h1V1ULoTKvhmt5LV9GtLQFKyCr28lO6GLqGd5IHQe4MeZN0QvwgO+doUmtKWFfK062bcWYj5uc2Oe11yMZJ5WOilODTawUJCqK1+oYQypVQN0YaR9BKYxXI3wgPXKeb9bQR1z/kRgAonagmp+IyBXHwTapAH4O8eLEkjbHtVOg+cjJrpMECBpCB9AapNdxEAAw+3QWJ/M848GDB8gp4XJ/4YYfONIKMWI6ZDx89ADn5d4C54AYJ3O6ZbeRIhUHallBPpaotRlU2xBjpgrICL7SadynGrCa3XPKHBHFzutfFqIQEJIP3WbeSXiOyl3P2X1kkzPD/OiZIOTGSBjz3Mtlwbatw+TPHVFDkPGgu4yYDz8GoiMx8uAvSm+FRmm4y8N9g6itmmsnnT8BoFr+zzCjSxEpCpLznTpdd8N1x2SFvBev7n0hiOh9s2KN6JSagVm3n+VoU69EdsK8myT6S5WjotquAjzhAAUNrHqHQdVmsGdutTFZWCgMzbAxrcJGZa0xBbmx44bsBYFawQ34+Iy/oywF1UYeCMm6cQ/B3OWi+3Mi4zmD3bve6ePC5lTx/vvv4bXXX8fp5iFeefU1PHt2h96rQePkakjjnsFrEJHSBGhF74WoBdiotQ5ElZ3Ub/4+MUbMduiO4tcCRge/KbFoqo2J7lETPXFELOscw1zLG5Jgz1NvDSEnk+nvRQrUcGIvcHXFNE84nCa0oljXDdXS4xmN0YGJyNTxlLAsF0M7zA8pJcT5QLS20qU1W8q8BmBdF6gAx9ORXZ2N4mIgr0vL9dpyyT4LsoFiq6LZgR9jtCT7CMGEIJXpxia/ZhyArRuT2V+v4RgCNCW0VrGulpRsHLNaTUFXK2IOyNPM8VhlkT/NaWQLFRvxBuX97QhISVArME1iRc9GAYE91yTXP2+0BmsUStll4WmeDGG7OtMgbFbtVLiWEuso8lnoO8pyPWEAHPkxryPlSWP9PdhQ/AnxQUkpDZa5yzVdnhiMlKijoNCxaV7LPQUBSTjuYcNiG1ptgEZI2qs/+9vhjRBiQB5pojLkkWJujcu6oBsL3ztLiDPGneXcRxcOKEKK1om6dMsRGs8ZMdOdsSF6GQvTgMqwGefIS5mcbI2idlMwjU6N6MsYEVlXe03C8k+uaKPiJ2nUMlZgskMRqER0WIaFUt0iqnwohbNf5qIkmxmbVNFGFCGwQAGAZ0/vsS6rXQc+IA8f3uL04JaFAxTbUpBSZg5JbYOP44oh2BUKIaCUbRBjERKijc/yNKFuG1onhL9tdbd93wpaL0Yo5Cbmm7MIRpfjxZZvBh5p7wFtcz5ArOMpZZfftbZLslvtKFvD7e2trXASeN3DQcwszF1UCa+Yukp4Lbt2wsPNURtK1D0TSMQSjCvt/CUGbMuKbWXqdoyRRRpYfIcYCJuDiMkoCrrafN0PT+bF8FkrEJj9uV0nPwwdAnYeVzVvGBEz+sNOzusKtEbuAYKr4bgBN+3GriJH5HI+j46t1waZODKQAErJNxqDwWb/qjZ1Cj7u2uXOjji07qogclE8EqFpg9jM3a0MrqErvx7eZfuz1SxgLyaOCi6XM955521867d+G15++RW8887bePbkI6ip3tzqHXEfKydJY4Sw6QZtGC69UKFLaXJ32oJiIx7fK1trWKu51iqgtWOWTFWOZflIKMh55yAAgIo7YTsBn5Xptq3IdjFLrYiyWxVAd6PMpm5jnzAfMmKKWBZB2QrQKrZiHj/TjJiAeZqxrAvc/RUg4XaOAduyjCIFgAUmBiznC1GRQ0dsMw0LcximasvCZtGdVlvrWNcV2aIsVJU2B6q0MZCd0yG2L9UQmNOknpMFQ1dZ2PM+7EUK9yYq96q9V09i7l2x9o5YG+b5gByoSNJOUjbJuHVHI21thfG7fONng+kBkwAwRRaZ7vAs0egEduZs22acGSKyHHU5KufP4T4u3lEUz5DT8fVjjairY2WcW9+MpgD6J0fFIyGgQQf85iOQ0W01BVB3hYi4vl0gZkSl9mCnmPiQ9d2ciFIwEjlhWu9u8HAURos7691hNFb9NAlC2m2kB4EvyE5EKm08KOyo0y7VhLH/0W0n1b04wW6I4/Cvv7zKdSi2d0Xwrlu5WIP611r6KoTCDGf0dxZuYg6uaosxiEJCNOm0oyxknXNOaooIuCeGdaSwjltZvM3ThK6KbVvgJDP1z2HdmdtLK7npgLg3Q2ZWRZ7QymrIgeLu7hlinpBSHpk0TKDNxibnZw5RsKwX5EmgGhHEZHhKU75lXXE+n1FKRUoB27qiKY3aOHMn4RQSkFMYXhAphOFG2c38DsCAYE/HGzCeXkan4TNiHfeDhkx5yuYeS/SFhzrXTK1lt8ZXQJNxQbSjboVjhGhyU7tmtTWUuqJqB1rBqkCvhHKT8CCurQ0I1jkyEjBm7ilnsPI1dBFXagy77w4nqhpS2XWXhKmObnyw+QM79Fbb2Obc26hVfn03VYN05cFtfjX8QbZmwWK/2X0RU7SkLNAW6Efh0fBGZG29IXbysK6foW5+Mj4qcUQl5gQpjZw3NJq1d+bmOPvICaQiYo6k9CDpNgKslWPNSWbEOEEhePfdd/H6629gPh7w+LXP4e7ZExafMdhki77HyVRjpVREc7UGgM3UaLF3OMMtBiJIw+XZr7cdEG4BL0nQRbGVyjTdGIz7QDQPsEPWCkixxo/fz0MvJD5/Qa3g7NXGUldawAhEJCNqL3ReNkxGACs4+T4kRBwDP9s8MVuLJM3dmynljGpmmAp9bt8opULChgSurymxUJnnGcfjhqdPn8KN21Q7ylboHn21B/n+XGuBoHP8a2hATAmHEIzP1vavbc2k9mGsxeuCnGOQbgW+cwI56ixlQSkVN8cbjoqbR0zsRT2bWSv0dS/ifaQUwoQaI5rtfefzGcfjcSBnqiTV+r5PzslmjXJD62pE473ooJvutX+TiTK+qXn1h1EEO3Fc9v3NybiAfqrxDnCtKP0Ery9+8Yv47u/+bjx8+BAPHz7EF77wBfzGb/zG+Pu/83f+znMPg4jgL/2lv/Tcz1jXFT/+4z+OV155BTc3N/jhH/5hfO1rX/tUb3q8+X2FIyYSyoahVtuJYg4tUXnhszMzD0JHymLKD8/cYFEQg9AkKuwQPhAQJdHKGT775/vprZuBWKHFcXACKHXuYlCgBEHpDcWhZ6XEMyRaZg9EwjZjhbm7NnIBtnUPsnO4mNp6WNe5L+pg+T/QnbQHuIeMFxhuFGQhf/Y5vav1bj3YNSe/hhb0AcFIpgdMacacJxxyxmFKOEwZsylEPHE62X0ikU/NRO0GD25vcTwcMecJooJWfF4fQbJgxvF0HP4vJJOuuLm94TUz/xJVxseHQOfdw+FAgqAI8jRh3VZ7+Hfp7LO7p7i/vzdC2WbOig6fslNzya3A+Ch2Df3mO+zNu8H/15XW1sz+MCQictGqdb1Oju29I08Rh+N89eCbksBHMbUOJMTn6a0z76b1nXvgHAgvVIeiBmpyRbrjUsHiypFdZmltLzkoPoc2MlSUYJJpzuhdej7Ib1b4d1Ns1UpyLdQgYaEigA7KHCEG6ODS9KbozaByHQv8auzI9eoy6tb5s0T2oqK0irVsuCwr7s9nrNuK0pjW3Lo5eHojoi4Dv3JoBUi8t1DQpWyAwEi0NNSqraJ2dsHNnlX3qdthbRt/wjwotOzyb5DQuKwXvPfeuxAJePXxYzx4+IicHlsTEC9yKNdvtdPuX6lcoXdOxjTNptaxA0Ce987Z5fHfhMIpxu9KkerFaB2y2ti8OlmUFexA/oKE55Jwo60B+vjsGVvedXuQ3vl8weWyoFSabEpMRLZUR/Cji9On6TA+d61EYiVOiPkASERvglIVm/FyFELFYG2oW0VZWciI0C/pwYMHmOcD5nnC4XCkLYA1XD4aU/XDOoyxIYt8y8rpzbxZqFKMybk+vid0dK1YtwtKWRAjTMZL1Njl2ykmpJgtn0hxPt8TyTRC77KtWLdtJI3XWkzFw3969yR55pHd3JxwczpSoaWK+/s7LOsCtcKAIY/RfnccBUTZCtbLgnVZOCrT3b7+Wshx7X3i6iZPb/b3VpzHZuvPFT8hyPjefnUO/XGvT4WgvPnmm/jZn/1ZfNu3fRsA4Jd+6ZfwIz/yI/j93/99fOd3ficA4K/9tb+Gf/fv/t34Hq/0/fUTP/ET+PVf/3X86q/+Kl5++WX85E/+JH7wB38QX/7ylz91dSWy+yJ40JN2+k/EGJi7Eyn7TWl3tHPDpgCmBpPp78RQPsy8mYTricZUVGfrG2QdusWOC936mt3E6TDZz8SAwMdmrkCpnv/SEFJADgcE2U3aADxXTDiF4D/qAAAtWElEQVSa1m3Moa4usQKr25zXDwntrlIKluNTDYomVwb6zaiLjkXpPyfYA+sHcFfQ/rybeiJEk2la9yscGwX0XfLZgRLqcOWMIZrVPVmat7cPcDrd2MZV7H016zQVDx+9ZOO2Cgj9B8g5mrCuG25ubhGEAYnuyVJbwzQlzOb94Yd/SpHJ07XhcJjhUeqlVNRW8PDBQ8L6K5n9Iua2aD4ygghIx7JcUFs3Ah6xJZJYfQRkvKicUMoCiIwCyfkCzxOcTXqt3ayx5Qqp6YNcWaMbSglqI3rhfiLaG6F3QzKqIRI5MxTND+DSG9S4EyEw6TQbkbALyZM5sNCbZvJlvHh1yDYE8rIgvL/O82GBE6hq23FF7GPIgCAMwoQoYgC6jU7TMMnie8dASITo1u7YA1fXaHNvC3a40zxDlbwWR0Dp9klkSEfV2BlaNtb9FapjvzMmyssFgtQb1o0hjDFEolsbxxHBOSbAGE9BxUa07GzneTKvGH5d2YpdK9j3K9595x28/NLLON6c8Mqrj/H02VN0reaGymLBYfGxLjcgJsE0T/zc7YqQbKRiWs2Ledr08Z4mjeY3Ys+4wGzl47Cgp7y3wFN+6f8EG3GKNQnNssksu0avfq/vfspRVYxEY3KasW300ag+trCRNsnTbeQz5SsFEuMPGgm14LqYphmXfkVChQxjwFYbNNOfqBhqOU0Zp9MROSesK+0h5sMB0zxhWRaiZ70DhoyUEKFax2re1Xc2qprnUbDmPNkzX9GxWxG4pDenad8HdD8TnNvTtaMXCjOEPIBRFDVHVIbRp08KuM5CiEiJMmvJNLBLOeHpk6e4v6clv6MpMKRNbS/p3ZAcI+X6+DDZmemf2//XR9Pk8+0InT9H3tABGOc5uXz0FeJI/P+hAuWHfuiHnvvvn/7pn8YXv/hF/N7v/d4oUOZ5xuuvv/6//P4nT57gF37hF/DLv/zL+N7v/V4AwK/8yq/g85//PH77t38bP/ADP/Bp3g6JUwa3KXHbUdGmFDBP9MFwKScAwsWqtPrIMzuKQLlgayaBg9UEIaAatOdGZzFEplT2jikksznvA2mI1ilAPP7c0JCukGAWwa1xTi5ikkoj1gIWkKaAOROrwbw+w6fz4/PqAJ8Ja9+N0NyFlHNHvYJTbdF1h9uc3+GPoR0v4Xq6KAgq6MoHqvcKLX0UcPw+khpVduKkCiAm06b6hGZAUCClCfNETwCoy9Pi4PC89NILuLl9aMRNoG4bi4v5iKqKnGecjjd48uTJmLEfzNdAVZHN1bCUwlGCVe+3tw84N66LXdzAQunmZoxVkuca9d2Rk91Ux7bxIXZLcvJPrFi2A4kcG165wzyPzpFqGA/kMi5UIFqEcSazw3LCNjcPHd0Io+I7qu6z6W+GuHvvmFMevJg8ZdzEG8gi6A2oXZHjRAfalLiWWjd0xNRj0tAKRybdrhPvE4y3oYOPdE3E9esPKOWjYf88Eq6UNTEgWiE9Oq4AK0ZJJoR5gKD5KmRXVqr5y5gjakoR82SHhRriabNwrkXnc9mI8moPUbgRns/a7c97BwLdcT0MEtj5ayx6aRoGAN2eYR+HurV/TCQsugkiFAP9oiMocH++x3sfvIc/dft/4KWXX8aHH36Ajz56f/B9YnJOUef4TtmcoPGe55zQxEdUDTEHQ934nkut6GphhFBk8yASbWOUK+BnyjkZ3ylZyGbZ95jOSoN8HEpmewhD1ZhitPe5o43wDrzSRC1FoEYYP8z3Ljg0C3SifCSpsvlMMUKMyI7eUMHYDNhYnAKDBpGOENQMEM1t1RSZIbKTZ1Gv46B3jss0Tcy9EVfsXMj18PsuttfplQuumLN2J5eF9yLDKH4DORoZaZ3JzdEzdax49v14N7rbRzdEp2y032D7WEVTjP09pThQUomCHDIexAdIMeHu/g6lMAbgMBuabIgaEd+O3lxU0bGVDa1XaK7QaeJZFmDvx8MlxUbnTFTfDR11L6DhBVQY/jmiCgkZ0v5fIMm21vBrv/ZruL+/xxe+8IXx57/zO7+Dx48f44UXXsD3fM/34Kd/+qfx+PFjAMCXv/xllFLw/d///ePr33jjDXzXd30XvvSlL33qAoUVILtWV6mIGWjN1kXTZyFCux0MI2X3ymvBEjm9u+1KOLQW45tEC9QSEuRab4z6E0BBVKE2j0yfoMIud3SSVjF63DQLCR0bp8ebB3P0dK+PYKe8e5uYEngUE4SAYVXN7oESQoDC4bQdKaGKwojCkZu/X7fWqFLiE0MypXsREJoPQBeM+rt30+VT+gvQ5p5fygRP78Apd5zo22EL/KBAAEdl3ExNKaWK4+nm/9ve18bYVVXvP3vv83LvTIehQ2mnBaxVCVgLiK0vRSICiiGgUQyg8QWjX2oEIWCi1JjiBy3xgwaJoiJBiSb1Q8FgUKBEKBqjmEJDC6bWUKSQjpVC23m755y99/p/WGvvc4e2QPnlTzu4n6ShnXuZubPOOXuv/axnPQsDg3MiPUgEKSXw5F2vFI6dewyfNrRGERKUTocTGnnYe70KkHhZazE0NAQAmJqaiqcQYzQ6ZUf+2ep7rExV1SaMp2fr97LsSGeOAxn2kWl9ItoFqa5rKM0j251zsE0TO4mceB8oiKhMhzKMuHZyASk+8KzIF4YLbUmC73/RcGS8sFZVxUxIkYtmoUHRKVF0OzyDxEvJzOQo8gKZ0UDZASSZ5nsOMpk3lKS4dsHPD5/YvCTePpyCQ9lENpxYVqB2Uw8aHS4DhXuNohOl0vzsGfDhg4hgkIkPCjMBec4Cy6qq0OmUsmkbLkcB0FnO7CQRsqwT54EAYSiaRi4+MEoFUR8nAuwVoqSrScT2ykhLqAGbg0qXnJSJTbj2BDSah+IVphBdAGLsgr9KlnN3mbVWWtOZvdyz53ksGF2AvCgxd2QE4/v3Svs5m0fqTJg2fqpEn+BgLeuM+HQrPipKieaFmTLvHBrr4TMtTsB8KAqTjYNztrU14CCbUtiICt5wHPu9xCF8YU0hgvLEjJNW8JWNLFRoLyUiKM/3VWAWQsk8tMeGeyaUtysxOuPxCCauwaERgrxDMGLUJY8yIFgYJSMmTIFutwulNaarKUxNTnIZomDL9kaez1DGjVXVkNQ1Nbdgi1uw0Sw+BlR7XXTQ6DFzMD09zbOEcgO2TmjLviF5r5sGnajpIC6ryxobrAOYVeW1nTVgYpCGMCSUhyf2u7aGa9LPCpadEoQwgLNB3dRS7mnnirWMuUwTJ3ZVruQwYo3leWNSpuf5txmyTEu3YS6yhtaIMpRytOgtmQVFbL44HBx2grJlyxasXLkSvV4Pc+bMwV133YWlS5cCAC688EJceumlWLx4MXbs2IFvfetbOO+887Bp0yaUZYmxsTEURYG5c+fO+J4LFizA2NjYIX9mVVWoqir+e//+/QB4UWG7dM7eea/2KAtOUPJcbgTPZmI+CMm8bAGG4DXgvIVt+hw4lQFPweb2LnIOJL3uLnabSAknZI2WBU8m4wurdXshlNR/g1A2bPrcfskXPIwHJ8cdSdz+yJdHS+kJ/SxHuBFJgZTvY0Dk/UJpO+m0CEJdzx8IGRRIuhmiqt17dnjUbKQECyjiwV7QBAceeAiloGTeBz/ZIkBkJh9GscKcb1jCnDnDGB4+FmXJJmUgBe/FPbFp4P1UTJQyk8uAPQdXtxb/jeVauCWHY+cei05RoraEgU4H+ycmkOe8MTWNFUEuPyR5zqfXIJZtZPMK8QsPedM04s3g48CtQJsG9gWKdRmhQye0tM6kO+vY9lqUbORWy+kq1G5j10q4ZkRxKGCoRIQTWqiFRw8H2fB5siykZNOeYPje1CDFQtCmqVHYAibjhb4oSjSNA8/MQXx/p9PlJEG+7G07wC92EPC2iNo2kqT0d3vJZoT2cyiI9kVeJ5B4BFFfWzngIXqpwHDIZmTF8p9HLbRMKdPQLhrghcWek5cCSleo6or9LDSbHGqtkYl3g1Fh6KWC0rxJc92f2CJeaXjXsO9EZGIyFAWXRggENJyAKU1RV6CUATK2NnC+iUmvQkvNh5hY65AZJ9oNYHJiAnv27MHo6CLMHTkOe57fg/37XgBPjQaXnTjTYV0b3zax/p+ZAt5LKc82Um4QgzHF+jVYAhlhthTgiTcuLzYARq6pdRbaZzLioe145DXXM0snJ3xmxpi95bJHB03DTGS/5o8cp1V8tvFxzQj8axRnOxeZZ/gKNSBt0jxckMuI7JOiyEPrUmaeaenCaw+Y2hgMDAzA5Bp79+3F5MQkqrxGlhk+cDgXWWR+Jviu1VpzF1GvFzVkAXwYyWd03/H6aeAs6+Kc446YcLgAXBzN4JxDY2suC2uF3JRRUxZa6g24acE7LzOpmLXO85IrAQSevxOviYul+HC/hYNMWRTIhAWc7k1HgT3QsvBxWrjcmwqsPaybGsqKWWJuoog2dMR6H+aH8doa2O5QVm8a3l8yiL+O4k6v4FPzanDYCcopp5yCzZs3Y+/evVi/fj2uuOIKbNy4EUuXLsXll18e37ds2TKsWLECixcvxj333INLLrnkkN+z1U8cHGvXrsW3v/3tA76uFGfYjgDyFjxLJUNeZLLwCGviPLxXCGSCDg8V+ARiHWG6trElN140FmEIUyFdONRScYEyJqFHnfVwGaFo6x6yB0itV4fTgkOuNZTOYrISjLOC+ru/Lh9uxfDfaIccFlr5f4XrgBXFu+5LSEKcyfOi66iJlDnXhD3IiHeBZzMlPp1qZOThJMNmLwn5HBQ6P/pqqsIkWDlxGZ2hO1Ci0+0gjOnmOS1ALpqCyakpOOfR6XQwMDSAbmcASmns27cPYdgdM10enZJFYCxUK7D3xf1oqhqVbEAhSw9tgE6SQwCYnJxkRqZPGR+GCvLDJHoPWZSKsgDJ/JDQMqw1d1NoI8PMao/K9wCw1sT7gsuIWqNTlsIY8HWyco3C4K2o8BcjqizL0Ihex7tQx5bZM1LPLoQZCV1Z7TPEgs+Q/DQ124Z7x6JhqvlU6DxT69RXriGZgk0gaN9XZuy7fwkkow7k1BxSZWFCtM7RGh/KfaHDgq7iPdJYK7R5aMXlIYDtvA8drdWdYrZSIUeYGus9u/3mOS+8kAnDSnGpTZNCboAGIoAF4kbLZottBwJrofqF444Ta2J9DbyCzrl045RD1slQdkpJzMLMEg1m/9ibhV1/NahhttEoEjaTfUsQryknAoUuEHQ1u8fGMHLc8eh0BjDv+AWYmNiLYELnSYtBnIKKnXrBBdQDGa9RICA3XLYzWcZttVkGJ5uw8YTMkJQh+9g+pTHQZS2ccw5W/GGst+2cJEkoA/vUX8aBIljvUHY70unTyPvFQr3k5M42bDPgZKptEOUro2Aog22sJFWE2lpYR6isQ7dTolNwwqkU+9CQ47ZmJcJt1XdYIA9ow34ine4cjGQF9o/vRdWbjqV4gohu4zovCb8FdFmi7HZRVRV6TY0iz6FI98WeS7D9ST6yvlEVCsIes8bR2gZa3LGbhl2TQyJA8twKqQsS9tzL9wpsU1iXlNIos5bhbqyOSbaWC6SE2YIiKTkZdLvd2MQRmywA0RMqua6B2WrFsVVVwzgWRvNzB7Z4ED1bEEkXRRHbnIP+JJTZPXmZxaVnJHyvhMNOUIqiiCLZFStW4O9//ztuuukm/PSnPz3gvQsXLsTixYuxfft2AMDo6CjqusaLL744g0XZvXs3zjrrrEP+zOuvvx7XXntt/Pf+/ftx0kknQRtECpo8kGmNvGDzpcaSzH3wciINdJiJRmmkeLO3lkT4ygyL0goQES2XMQlwXmi+DKHlCqKzCOUNZYCizOSEQ5HGD+cEXrj7Wv4I3NIrFLGzLDgMpQ2ANR2kuB2QzbXkJB3LAq3WJZzIo7BNfmOFoBNo665eZsQ4KX9AKW6b9tyR4ILjKjR3KCDc7NLCDWmlNko6WGZ2DJBCFG8REapeTxKUVp/D9UqLxlZQChicM4C5IyMwJsee5/fEjJxv6Lbjp6oqdAdK9OppTE9Pc+lNHngvp6J4spafE0z8BkQERsSUfp6XsZvHe4fGNsyU5LkUWoCgOQACK8QxbRoe4KWkmyHQ+t5z90YQiOeiQeEaf94yDJLUcW0+JCLS3o22/BCSWCNj6r237f0TrznES4Y7AGC53dMTd9H0pnuomxpNHbq0COQdvMx/YdbIQWdM93ppJYZWTM8LmCULrEhYpBUPcxTTLBYPe0DxomQM35Nc59bw0WWZP4eSRFUZE+8jSBmSE13HJnoxoSAxuTOyGLeHHCIWVCsV2E5uYc0k5iYyAvIMag2ykmx5fo69+JV4x+6/obuENSdsPqe0FZsBSFmlfd607DTO9bXxS0mI5DOQaCRYG5KB4DE+sR8v7Pkv5i8YxfDcYzG4ew7279vLSYCzbBxmQkIUrklIlPj59uSZTdYKWaYxNW3ROAfyrKFCTcwwl1yGMhDBcyjxaQPSFO97a1lIXpZFvBcDM0C+7+AlCavznp29iZOb0NIamsOC7o48b/ZOiZBUYpUZg9o61vR4j9p6SewJUAUGyjKWkJqG71knDBo0ly7hnIiRp6CUwqBi0fecOXOQafafsa4WdggAwsGR4+q8xeTUFLKyQJZn4g5uRT/X+v7ExV1yNK0NdMYbddM04nnkpOxTyDrjURQdHlngPaBcXKmjrxfYq0krjUrWawUuvYTry7O7MkkKWDvC3Uv83IbyYdiqiDi2JEwGgBmdXCroNFtiJq7/AA88JBERO+laMjDClLQDFfvLWmGN895L67Tsw/4lP+Rl8H/2QSGiGeWXfuzZswc7d+7EwoULAQDLly9HnufYsGEDLrvsMgDArl27sHXrVnzve9875M8opY/9pWB7ds42dc6ugkxrW37AxLFMQxZhF07/fKKD1P8ctQ+7UsSdLzZUe1vavD8rhGo3fvIsAjPxlNZ/+mz/poG4CMjeyacicOYNsoBmxbMOxlQUBjqxAyDN+L78mUOmGz9bjI+KmzH/3cvP18iEXbCi6dBGShneSTIim6MsvFqSjsAmQfMwNqa4M0CLTqP/ZA3erKpeDe8UANOWrTQbHxEIeZmhLHMMDLLCvqlt32emOIRqaM4QelNT3F5qBzE+PoUo3pLMP0yYtVa8DpSPp6pQBiQpqYSFpK6beDonIhQyAdd7B1+3XTc8oj0MCvNRE9HpdtGV+RrGILaRBj0TJwBeauMmdj8ElkfHU4ZMsHZs+W/kRMYLe5/dfUhcJOGEnMC57suveCJpY8zgncfk1BSs81CQWjqxpsY7Je6cnKTlWS5zbYL/CuurgiskyeJnxMgsbGwvZUDjIo62nMb3LgtcdRRoy4KvjdDhPC5COWmJRVhI+YbKci1D7QAntXkonmFCIla33rKexZPU8CGaLu56CJu5dR6aZI4NHFSec2ca8cnVOo9ghGethakq+XnsS1L7ltIGgkcFj0FoHWYhlgShxOuZhYy+NoFuV/DWYvfuMYyMjKDT6eL4+aPYt2+cy60g1M4DlEObVrcWlheS5BTiAaOVkY2IvX08cjmfyLyYIoNRMl0609C6LTtquW5hPlcVBOqi8SKIQNObOAMG4FZ/vnZcUnUV3x9N9AwJYmPx2MkNQiVcKfGuKTLe2GuLxnFykpkMsBpZw2xMLmLUUI4lKReanGA0u6N68DM1NTUFD2CQBmEyjaFjjkGWGfR6U+0GDkkyAYTxFbbhqefBe4mHjhKiQ7I4tQb2myS27GdlUJYFyqLA5NQke7/kRfx/nGuneMdpzuGgSGw5wQMFG/B4BxUPUN571ORgvZXW+RwDA3MwWAzATPcwTWLpL1YKAYH1A3G5sFAFtGZmJ+wvSuXikCvPiJdqg1Ki0fR8ABAGJpfPCUDW0D7dSV9psPWhemkt4JVxWAnK6tWrceGFF+Kkk07C+Pg41q1bh4ceegj33nsvJiYmcMMNN+CTn/wkFi5ciKeffhqrV6/GvHnz8IlPfAIAMDw8jC996Uu47rrrcNxxx2FkZARf+9rXcNppp8WunsNBKGPkhhMOT461Co5iiSbUfAMV6n0D7w2AAgSZZgmAdHjAVcwCKZRJ0QpaFQDq2yzYsZFb0TJxG1WhY8gT4Dm91lkGr8R5EwCU/FdO/cGB0BgTO1CY3fGiXegbUR566VXoPPAzTvltfGQGCUFOr6IMl8XI2bCp6bjgKdUyM3zCVPGUzmWk4DtBMIr9SMgRvPaA9zHOvEjyKHrveuj1GgAaPCBMY3BwDrLMo8gzDA0OspgzL0CeNQdDQ9zBMzU1haLIMXdkGJnJsG/fHngLvPDCC6hEABq6uRRB/Ai0zOThlYMpX49ycLDP3CiH0kbcQCUGsqmXZcHul97KZ3ZQOuPFjLjbyHtCpyxRFKWMrzfSLSQD7JRi+3XnYokhnFxCQqnFZK6p2WY+z9n50buGNzFZ7JxvHXe10txO3UfRhiShaSwPA9QyCbbbRZZbVJVF1avgPdeClRX2CgBJgtY07Cw50C2lxTDMouLE01orCYa0ERO1p0dAWAvflsPCvejDQMFwbxKguYU0LOoAPzck6n9OEDyKkh1ObePhnLQvyiwcQoOmNmBjNgLISfLBDrQegNJetE4OUF68aNju30lpQUNKO+RAXgEqg84KKG3hxW03+H70qgpZFowVxUvHWThy0GCzPLIEpYV9IgdFQCFCfS2fh0XNnDD164YUFMb37cMLL+zB/NGFGDluPubsGsOLe/7bWtiTh3NaXHBb2/nApHjipIsPDZyE9+oGABspskswJ19Zzve7Ek8OLW6jTDwx6xPKq1VdIxdLhrBuAMwGOfnZRil4zdoJIwc6K+UO7i6jePpXPuiTgFwFZ1ceSTE4OIi9+/ZJIkcg5QDFz4q1DlkRdCJFFKCDPJRTIM3C9uDz0TQN/NQUAEJZ8uElMxkGpLTrrKzdGRtk8qBQh7rmtnzXf7hRzCf4sKb0lXuYteXDycTEBMqyRKfTwZAZwuTkJHrTvVjG5d2aO8TigEuto90FO01LguuJBccyUJTXV3Godg62qVHXFt1ul+0B8gxOEgi+lqLjIxUPS+xMDWSGE01nmTmuqwrOssBea640BIsBrbjEH0ZLOGnh57JPLslX6MpzyHOSJKst/ffvY68Wh5Wg/Oc//8HnPvc57Nq1C8PDwzj99NNx77334sMf/jCmp6exZcsW3HHHHdi7dy8WLlyIc889F7/5zW9i9wQA/OAHP0CWZbjsssswPT2N888/H7/4xS8O2wMFANOqnuAU9amDFbdOUvsmFayWw4ROk4GIXQ+9bL5wUpvm3ZwvqtTjc50jDhwMi7PAOTas0Yo7VVTchBAX8Agp+fAfUaVTS8/meR7LH2GRDy1qqm9zYzZTz/zaSxC+b3h/OC0Yk0EZDet52J+WuIeSF0eM2zW9c7zgSlLllYfOwJOKjUdDNSxZNA2bwSkRvPDH4SSqUUDWABBnFaU46w4nhqJgtmhwkE/uYbqom5wUIyCHoaEhGKMxOTkOa2ueA1gDWVHEhyO0mwNMrXtpjXSubmfxOBdr494DTV1HRX7Y7oPoKzASoVbMQlXLAjtibU5RdOMCzqUdO0NYaOXnhVk54ZrGhYKL3qIBcvCGhXbahJOudKAFuhyEQhdtR0iWgYRxCGPgAR6CWRRykvQEa6clwVBQrk1kNWz8TDw0TsFkKrJ7xmRSfgylO8lGwlgHEef1z+sIz0RkKXwTvx8QqkNyaIB0S4ETB6qD94e0addSpvVhgJmGslzq4lbQOrJIRkoo7LMiZVnNBwsWV0M6Swyca+LE7FB352ethvOETqeUhCKT2VKh3dtBqUZOp8KwxsRejMKIOIlXgCIPlWnWfGQawXMCSnQe3kamrShKsADUYc9//4u5c0eQ5wXmL1iAycn9cHIfsaeJA4zmUpIcIGJCSMGPiQWWXMZsYEjF6eqaLPLcoMjzeJiNLAhaTRJbH3gobaTl2KIochHFcmLnwVqXQEWEclZw4fUintWZeA41jWgReF3W4VoRu/42dQPT6WCOd5ia7rWzgHTr+Oscl4x0X9LgrEVja2Z9FLfYs88Isai2ruCbCka8gYIvlpbhnWHxC6XfoigwJeMfiALTBeS6LWMYk4t+rZHnkTUWTVNjapKZ3sCGENgDxzpOdiDlDiPO1N43YiUQnvmWXWQ2uB2y573n9UrWdda0OH5eVVCH8WvasOjcOg9vKTJFSvyMlFbMmjoWufaqGq7n0O10pUmA100vXV9KE0A8365pHLyv4axHnns+KJrgq0IA6mgBobVBUXIHHnr/nxKU22677ZCvdbtd3Hfffa/4PTqdDm6++WbcfPPNh/OjDwq2FgidGEa0AfJHtRu3907EVwSteMGvRake8gijuc2LKWUnIqt+34PIfcTMmb932PiFpiUF7UMnQ9vFADBd1vImUqdTTC+HtjxyIakQOk7z5FEnpj1MZYBLF1Jyid1HIHFk9HFUOi+i4jMhmbgCQC6wQqFpP7joOkn8nCwyvhVQZcwo8K8TOoR4I7WeACdxIcWZHXnZz4z4bRiJCVBVPDrdWhY1l52OnCga9HoVer1pWSyYFp6cGkdvmgcHZrlBlivonF0vC8PmUk0T6Mr2AWD/Cf53Je1wtbT8Ethgiu8ltpPn4ZLiHRE28rCgIBBqfOLKCy4Z8JA0fjXGSmt4YVBEpcYnYElKIAyGs1xHJyIZzQBoGJkUC7nHfNTUhA0xPPhW1YBt4IQVgbj8Qhs4D1jrhT1hVquhpl3s+TLyVqshQ/Y4wYldTpAOEN+KMlmN36ARVkMpBU18f2sFZhSjv0nQS3CEgmgWyoNghfEgMIHIMTLGQOWQ2UIK5Nm/RSkvHhgKzhMaz3oU8uy4zC7dzGA6IsAFYzp+j5bSA7Mo0pIbn0hG09g+XUVfBxcCjd9u5UQe8OE5pmgQF8qpgIdWLNbXQQAsYmF2aeXv6VBDBTdSrzAxMYH9+/fjuHnzMTwyF8e8cCz2vfifeLAhcBk/RJZFpax/IkBMKx2XebRBkRdoLA9sywuNHCWL1A2bHAajQEBFdtZ4nqDugkEYOOnnhDu0acvmSo1oqxCTeCiSMSJ8j2fi1F3VNeBYlxFZWo40yAAoMjir0O12QQBqG9iouIyK5sIjLzIUxoCUhoVCJRu1dQa5VuJ8Leyvs1B9jA6BtRzG6Fh68T6Iv7msVGQ5pqselLDOBIIVpoifdQ1TcNLQ1A2c4nvXGGaZqqpGbS3yomCNhzzLrVDdwXtJ0jzHzhguI2VZATamoL7yrXjrGB5oGkqGYc3jvaivAkDCsBkDbbhkZ62bIYhtJ6UX6HRLFL0KExNTGJ+YQFmUzMwYHpjrlYxtgMxc854Hfsr4l0wOWXzI1LLGa+Q5P+dKzCGNOVCucSjMylk8YZFomgYZmWiUFSgL0b7xw+tYhezEsyE6tqo+LxLZpwPb0FjbR1EGU62Z9HwAO7ZmADTqMASuvx6vEEsC8QlTAEG6hsiBrAcyTl54LklQUEM0CNyB5F2fnoR/OlN+zsebVZlQ2hHtAknXD8Cmcp7gbLAjNjELZ60JSSnIcQeUb6lsoxUyTSySajzIOjbgUTJl03nYuh0rwMFiNqbMc3Q6uXx+OUlZrmcSAV0qUGQ5JppJ1ko0DnVTc2lFKdSNZPaWN74s43IMOU6QGmcxPj4hnTheaMcSUEDdhBZf0fGEUkmhpQTjZeNUUODr3Yg9O1HwDGAFfb8NtnVeTOjkBG4liYCYOHmeLVJVFWtTJLFw/er5WHcW7xqq5b8cI2cUqqq1tNZaoarYdj3UdZlyJXGcpHi/orJQsKime5iampYTIHeFaU3RTLBpeLHMi0zKXEpKPo08ZxZV3bDg0wRRKLM+Loq+Cc5xYlJXDWsOLJsRhiFzJM+eJi6ROm0l6eaOr5YEVJJsaXjNvzcF1kcRt8pKCcdax15E8jwaAFZ5GORiJ8BdOeG+0NrASRybph0EGOAUoEMJ0xhY1875CutL/+cMc6tIBd+ioD8Lb/KoPJeeotOtJ0kKSLQxnNg31iLL+fmcnp7GrrExDMwZgjasm9i3778IXRpBeMoVaElGhFkKnj1Ka55fRMxuWuLNhGwGneUAeTTWRerfWp5ro2VtCfe/I54fFGLIbrqFuLUSpqd7UJrQHRiQLjaCbVjUaRuZRuxdy76B2aOqYs2CybhMx7orJ2sqp2JFUQLBIr1xM8ZusAeP43Icgu2DQt1YGFKI89DkalgxE/SOWDSdZ+IOrBAMIoOIva49KqqhdM5dcHUjByVOsIyU22rToNPpwpgcNfHBKtgCBMbEKaDw8ryJK7XzHt5ZEDXwjrNKT+xIC0ly8pzZ3HCwYCaUhxIabeRw5VsGlHPUyDKFTkZu+uCvMyMi4mwR3gYmXimS0iCPcNm/bz8mp6bQWC4ftfo9RAaYKw2A91wmLgoWFTfWCiPIwySrmpDXGfJKWDu0e+krQdHhFISOEjz77LM46aSTjvTHSEhISEhISHgN2LlzJ0488cSXfc+sTFC899i2bRuWLl2KnTt34phjjjnSH2lWILRnp5gdHlLcDh8pZq8NKW6HjxSz14YjFTciwvj4OBYtWjSjJflgmJUlHq01TjjhBACIk5UTXj1SzF4bUtwOHylmrw0pboePFLPXhiMRt+Hh4Vf1vpdPXxISEhISEhISjgBSgpKQkJCQkJBw1GHWJihlWWLNmjUHdZhNODhSzF4bUtwOHylmrw0pboePFLPXhtkQt1kpkk1ISEhISEh4Y2PWMigJCQkJCQkJb1ykBCUhISEhISHhqENKUBISEhISEhKOOqQEJSEhISEhIeGow6xMUH784x9jyZIl6HQ6WL58Of70pz8d6Y90xPDwww/jox/9KBYtWgSlFH7729/OeJ2IcMMNN2DRokXodrv44Ac/iCeeeGLGe6qqwlVXXYV58+ZhcHAQH/vYx/Dss8++jr/F64u1a9fi3e9+N4aGhjB//nx8/OMfx7Zt22a8J8XtQNxyyy04/fTTo7HTypUr8Yc//CG+nmL2yli7di2UUrjmmmvi11LcDsQNN9wQB9+FP6Ojo/H1FLOD47nnnsNnP/tZHHfccRgYGMA73/lObNq0Kb4+6+JGswzr1q2jPM/p1ltvpSeffJKuvvpqGhwcpH//+99H+qMdEfz+97+nb37zm7R+/XoCQHfdddeM12+88UYaGhqi9evX05YtW+jyyy+nhQsX0v79++N7Vq1aRSeccAJt2LCBHn30UTr33HPpjDPOIGvt6/zbvD74yEc+Qrfffjtt3bqVNm/eTBdddBG96U1voomJifieFLcDcffdd9M999xD27Zto23bttHq1aspz3PaunUrEaWYvRIeeeQRevOb30ynn346XX311fHrKW4HYs2aNfSOd7yDdu3aFf/s3r07vp5idiBeeOEFWrx4MX3hC1+gv/3tb7Rjxw564IEH6F//+ld8z2yL26xLUN7znvfQqlWrZnzt1FNPpW984xtH6BMdPXhpguK9p9HRUbrxxhvj13q9Hg0PD9NPfvITIiLau3cv5XlO69ati+957rnnSGtN99577+v22Y8kdu/eTQBo48aNRJTidjiYO3cu/fznP08xewWMj4/TySefTBs2bKBzzjknJigpbgfHmjVr6IwzzjjoaylmB8fXv/51Ovvssw/5+myM26wq8dR1jU2bNuGCCy6Y8fULLrgAf/nLX47Qpzp6sWPHDoyNjc2IV1mWOOecc2K8Nm3ahKZpZrxn0aJFWLZs2f9MTPft2wcAGBkZAZDi9mrgnMO6deswOTmJlStXppi9Ar7yla/goosuwoc+9KEZX09xOzS2b9+ORYsWYcmSJfjUpz6Fp556CkCK2aFw9913Y8WKFbj00ksxf/58nHnmmbj11lvj67MxbrMqQXn++efhnMOCBQtmfH3BggUYGxs7Qp/q6EWIycvFa2xsDEVRYO7cuYd8zxsZRIRrr70WZ599NpYtWwYgxe3lsGXLFsyZMwdlWWLVqlW46667sHTp0hSzl8G6devw6KOPYu3atQe8luJ2cLz3ve/FHXfcgfvuuw+33norxsbGcNZZZ2HPnj0pZofAU089hVtuuQUnn3wy7rvvPqxatQpf/epXcccddwCYnffarJxmrJSa8W8iOuBrCS1eS7z+V2J65ZVX4vHHH8ef//znA15LcTsQp5xyCjZv3oy9e/di/fr1uOKKK7Bx48b4eorZTOzcuRNXX3017r//fnQ6nUO+L8VtJi688ML499NOOw0rV67EW9/6Vvzyl7/E+973PgApZi+F9x4rVqzAd7/7XQDAmWeeiSeeeAK33HILPv/5z8f3zaa4zSoGZd68eTDGHJDJ7d69+4CsMAFR9f5y8RodHUVd13jxxRcP+Z43Kq666ircfffdePDBB3HiiSfGr6e4HRpFUeBtb3sbVqxYgbVr1+KMM87ATTfdlGJ2CGzatAm7d+/G8uXLkWUZsizDxo0b8cMf/hBZlsXfO8Xt5TE4OIjTTjsN27dvT/faIbBw4UIsXbp0xtfe/va345lnngEwO9e1WZWgFEWB5cuXY8OGDTO+vmHDBpx11llH6FMdvViyZAlGR0dnxKuua2zcuDHGa/ny5cjzfMZ7du3aha1bt75hY0pEuPLKK3HnnXfij3/8I5YsWTLj9RS3Vw8iQlVVKWaHwPnnn48tW7Zg8+bN8c+KFSvwmc98Bps3b8Zb3vKWFLdXgaqq8I9//AMLFy5M99oh8P73v/8Au4R//vOfWLx4MYBZuq697rLc/yNCm/Ftt91GTz75JF1zzTU0ODhITz/99JH+aEcE4+Pj9Nhjj9Fjjz1GAOj73/8+PfbYY7Ht+sYbb6Th4WG68847acuWLfTpT3/6oG1lJ554Ij3wwAP06KOP0nnnnfeGbsf78pe/TMPDw/TQQw/NaGOcmpqK70lxOxDXX389Pfzww7Rjxw56/PHHafXq1aS1pvvvv5+IUsxeLfq7eIhS3A6G6667jh566CF66qmn6K9//StdfPHFNDQ0FNf5FLMD8cgjj1CWZfSd73yHtm/fTr/+9a9pYGCAfvWrX8X3zLa4zboEhYjoRz/6ES1evJiKoqB3vetdsT30fxEPPvggATjgzxVXXEFE3Fq2Zs0aGh0dpbIs6QMf+ABt2bJlxveYnp6mK6+8kkZGRqjb7dLFF19MzzzzzBH4bV4fHCxeAOj222+P70lxOxBf/OIX43N3/PHH0/nnnx+TE6IUs1eLlyYoKW4HIvhz5HlOixYtoksuuYSeeOKJ+HqK2cHxu9/9jpYtW0ZlWdKpp55KP/vZz2a8PtvipoiIXn/eJiEhISEhISHh0JhVGpSEhISEhISE/w2kBCUhISEhISHhqENKUBISEhISEhKOOqQEJSEhISEhIeGoQ0pQEhISEhISEo46pAQlISEhISEh4ahDSlASEhISEhISjjqkBCUhISEhISHhqENKUBISEhISEhKOOqQEJSEhISEhIeGoQ0pQEhISEhISEo46pAQlISEhISEh4ajD/wO+W/M2eMzZYwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Load the input image\n", + "raw_img = cv2.imread('./mats/1_BasicDemo/summer.png')\n", + "rgb_img = cv2.cvtColor(raw_img, cv2.COLOR_BGR2RGB) # Convert to RGB\n", + "\n", + "# Plot the image\n", + "plt.imshow(rgb_img)\n", + "plt.title('Nordland Summer')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "b68cf25e-35ae-4885-9cf1-c1b09ce4ad42", + "metadata": {}, + "source": [ + "What we have here is a 360x640 RGB image, which for processing through neural networks is too big (230,400 total pixels). So instead, we'll use patch normalization to reduce the image size down to a grayscale 56x56 image to just 3136 pixels in total." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "6f67656a-3ba4-4374-b780-4e8bac4ec2d2", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAa0AAAFuCAYAAAAyKkctAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB1y0lEQVR4nO2deXyM1/fHP7NnXyRkEUuofd8lLaGtEKpUd62lulCqTVWVUsJXRbVfTVtbtdZvq7TVvYq0CC1qX4qihASJNEH2bWae3x9+GcY5w0wWJsl5e83rJWfufZ57n2XOc+/9POeoFEVRIAiCIAiVAPWdboAgCIIg2Is4LUEQBKHSIE5LEARBqDSI0xIEQRAqDeK0BEEQhEqDOC1BEASh0iBOSxAEQag0iNMSBEEQKg3itARBEIRKg9M5reXLl0OlUsHFxQVnz54l3/fo0QMtW7a8LW3ZsmULVCoVtmzZYrENHz4c9evXvy37t6c9tvjzzz/x0EMPoW7dujAYDAgICEBYWBhee+21im9oJaPkmiv5aLVahISE4JlnnsH58+cd3t6CBQuwfPnyUrXlzJkzUKlUeO+990pVv+QaUalU2LFjB/l++PDh8PDwKNW2nYGYmBioVCorW48ePdCjR4/b3haVSoWYmJjbvt/qjtM5rRIKCwsxZcqUO92MSsnPP/+M8PBwZGVlYc6cOdi4cSM++OAD3H333VizZs2dbp7TsmzZMuzYsQPx8fF4/vnn8cUXX6Bbt27Izc11aDtlcVrlyYQJE+50E24LCxYswIIFC+50M4TbhPZON8AWffr0wapVqzB+/Hi0adOmwvaTn58PV1fXCtv+nWDOnDkIDQ3Fhg0boNVeO8VPPPEE5syZcwdbdufIy8uDm5vbTcu0bNkSHTt2BAD07NkTJpMJ//nPf/Ddd9/hqaeeuh3NLDf69OmD9evX48cff0T//v0rbD/2HNeKpnnz5nd0/8LtxWlHWhMmTICfnx/eeOONW5YtKCjApEmTEBoaCr1ej9q1a2PMmDG4cuWKVbn69evjgQcewDfffIN27drBxcUF06dPBwD8/fff6NOnD9zc3ODv749Ro0YhOzvbrrbOnz8f3bt3R61ateDu7o5WrVphzpw5KC4utipXMrW5e/dudOvWDW5ubmjQoAFmz54Ns9lsVbYs7cnIyIC/v7+VwypBrbY+5bamOOrXr4/hw4db/i6ZQtu0aROef/55+Pn5wcvLC0OHDkVubi5SU1Px2GOPwcfHB0FBQRg/frxV/0umvd5991288847qF+/PlxdXdGjRw+cOHECxcXFmDhxIoKDg+Ht7Y2HHnoIaWlppF1r1qxBWFgY3N3d4eHhgd69e2P//v1WZUqmwA4fPozIyEh4enrivvvus+vYXU/Xrl0BwDJNPX36dHTp0gU1atSAl5cX2rdvjyVLluD6mNP169fHkSNHkJCQYJmmu346+cqVK3jttdfQoEEDGAwG1KpVC3379sXff/9N9j937lyEhobCw8MDYWFh2Llzp91tHz58OJo3b45JkybBZDLdtKzZbMacOXPQtGlTS5uGDh2Kc+fOWZUruX63bt2K8PBwuLm5YcSIEeVybtesWYPIyEgEBQXB1dUVzZo1w8SJE+0a5d44PTh8+HCr6d7rP9df61lZWRg/frzV70Z0dDTZZ1ZWluWa9/DwQJ8+fXDixIlbtkuoGJx2pOXp6YkpU6bglVdewaZNm3Dvvfey5RRFwcCBA/Hbb79h0qRJ6NatGw4dOoRp06Zhx44d2LFjBwwGg6X8vn37cOzYMUyZMgWhoaFwd3fHxYsXERERAZ1OhwULFiAgIACff/45XnrpJbvaeurUKQwePNhy8R88eBBvv/02/v77byxdutSqbGpqKp566im89tprmDZtGr799ltMmjQJwcHBGDp0KACUuT1hYWH49NNP8fLLL+Opp55C+/btodPp7Kp7K5577jkMGjQIq1evxv79+/Hmm2/CaDTi+PHjGDRoEF544QX8+uuveOeddxAcHIxx48ZZ1Z8/fz5at26N+fPnW37A+/fvjy5dukCn02Hp0qU4e/Ysxo8fj+eeew4//PCDpe6sWbMwZcoUPPPMM5gyZQqKiorw7rvvolu3bti1a5fVE3dRUREefPBBjBw5EhMnToTRaHS4r//88w8AoGbNmgCuOt6RI0eibt26AICdO3di7NixOH/+PKZOnQoA+Pbbb/HII4/A29vbMmVVcv1lZ2fjnnvuwZkzZ/DGG2+gS5cuyMnJwdatW5GSkoKmTZtaHaemTZsiLi4OAPDWW2+hb9++SExMhLe39y3brtFoEBsbiwEDBmDFihUYMWKEzbIvvvgiFi9ejJdeegkPPPAAzpw5g7feegtbtmzBvn374O/vbymbkpKCp59+GhMmTMCsWbOsHoLKcm5PnjyJvn37Ijo6Gu7u7vj777/xzjvvYNeuXdi0adMt+3s9b731FkaNGmVlmz9/Pj777DPLNZKXl4eIiAicO3cOb775Jlq3bo0jR45g6tSpOHz4MH799VeoVCrL78v27dsxdepUdOrUCX/88QeioqIcapNQjihOxrJlyxQAyu7du5XCwkKlQYMGSseOHRWz2awoiqJEREQoLVq0sJRfv369AkCZM2eO1XbWrFmjAFAWL15ssdWrV0/RaDTK8ePHrcq+8cYbikqlUg4cOGBl79WrlwJA2bx5s8U2bNgwpV69ejbbbzKZlOLiYmXlypWKRqNRLl26ZPkuIiJCAaD8+eefVnWaN2+u9O7du1Tt4UhPT1fuueceBYACQNHpdEp4eLgSGxurZGdnW5UFoEybNo1so169esqwYcMsf5ecl7Fjx1qVGzhwoAJAmTt3rpW9bdu2Svv27S1/JyYmKgCUNm3aKCaTyWKPi4tTACgPPvigVf3o6GgFgJKZmakoiqIkJSUpWq2W7D87O1sJDAxUHnvsMYtt2LBhCgBl6dKlNzlK1yjp286dO5Xi4mIlOztb+emnn5SaNWsqnp6eSmpqKqlTcp5nzJih+Pn5Wa5PRVGUFi1aKBEREaTOjBkzFABKfHy8zbaUHKdWrVopRqPRYt+1a5cCQPniiy9u2pfNmzcrAJSvvvpKURRFueeee5SQkBAlPz9fUZSrx8bd3d1S/tixYwoAZfTo0Vbb+fPPPxUAyptvvmmxlVy/v/32G9vm0p7bGzGbzUpxcbGSkJCgAFAOHjxo+W7atGnKjT9bERER7PEu4csvv1RUKpVVX2JjYxW1Wq3s3r3bquzXX3+tAFDWrVunKIqi/PLLLwoA5YMPPrAq9/bbb9u8d4SKxWmnBwFAr9dj5syZ2LNnD7788ku2TMlT2PVTWQDw6KOPwt3dHb/99puVvXXr1mjcuLGVbfPmzWjRogVZOxs8eLBd7dy/fz8efPBB+Pn5QaPRQKfTYejQoTCZTGQaITAwEJ07dyZtul4pWdb2+Pn5Ydu2bdi9ezdmz56NAQMG4MSJE5g0aRJatWqF9PR0u7bD8cADD1j93axZMwBAv379iJ1Tf/bt29fq6fxm9QEgKSkJALBhwwYYjUYMHToURqPR8nFxcUFERASrqHz44Ycd6lvXrl2h0+ng6emJBx54AIGBgfjll18QEBAA4Oq1dv/998Pb29tynqdOnYqMjAx2KvNGfvnlFzRu3Bj333//Lcv269cPGo3G8nfr1q0BgD2mN+Odd97BuXPn8MEHH7Dfb968GQC9fzp37oxmzZqR+8fX19fmrEdpzy0AnD59GoMHD0ZgYKDl2EZERAAAjh07dqtu2iQhIQFDhgzB008/jbffftti/+mnn9CyZUu0bdvW6nrq3bu3lUK35PjcuKZp770olD9OOz1YwhNPPIH33nsPkydPxqBBg8j3GRkZ0Gq1limcElQqFQIDA5GRkWFlDwoKYrcRGhpK7IGBgbdsX1JSErp164YmTZrggw8+QP369eHi4oJdu3ZhzJgxyM/Ptyrv5+dHtmEwGKzKlaU919OxY0eLsKC4uBhvvPEG3n//fcyZM6fUgowaNWpY/a3X623aCwoKylQfgGUbFy9eBAB06tSJbdeNa3Vubm7w8vKy3RGGlStXolmzZtBqtQgICLC6Vnbt2oXIyEj06NEDn3zyCUJCQqDX6/Hdd9/h7bffJueZ499//7VMLd6KG6+TkilGe/ZzPeHh4Rg4cCBmz56NF154gXxfcn9w90VwcDBxkly5Ekp7bnNyctCtWze4uLhg5syZaNy4Mdzc3JCcnIxBgwY53OcSjhw5goEDB6Jbt25YsmSJ1XcXL17EP//8Y3PavOTBruT35cbz4ei9KJQfTu+0VCoV3nnnHfTq1QuLFy8m3/v5+cFoNOLff/+1clyKoiA1NZX8yN34jkfJNlJTU4mds93Id999h9zcXHzzzTeoV6+exX7gwIFb1rVFWdpjC51Oh2nTpuH999/HX3/9ZbEbDAYUFhaS8jc6+ztNybrK119/bXWcbcGd51vRrFkzi5O/kdWrV0On0+Gnn36Ci4uLxf7dd9/Zvf2aNWsSccPtIDY2Fi1btsSsWbPIdyU/xikpKQgJCbH67sKFC1brWUDpjuut2LRpEy5cuIAtW7ZYRlcAiJDKEc6dO4c+ffqgbt26WLt2LXFO/v7+cHV1JWvO138PXPt9ycjIsHJcZbkXhbLh1NODJdx///3o1asXZsyYgZycHKvvSlRhn332mZV97dq1yM3NtUs11rNnTxw5cgQHDx60sq9ateqWdUtu4uvFHoqi4JNPPrll3YpoD3D1B4ijZJolODjYYqtfvz4OHTpkVW7Tpk3kON9pevfuDa1Wi1OnTllGkDd+KpKSl46vn7LLz8/H//73P1L2xpFzCVFRUThx4oTDwoKy0rRpU4wYMQIfffSR1ZQcAMtU3433z+7du3Hs2LFSqS4dhbuHAODjjz8u1fYyMzMRFRUFlUqFdevWsSPuBx54AKdOnYKfnx97LZUoPnv27AkA+Pzzz63q23svCuWP04+0SnjnnXfQoUMHpKWloUWLFhZ7r1690Lt3b7zxxhvIysrC3XffbVEPtmvXDkOGDLnltqOjo7F06VL069cPM2fOtKj1OBnyjfTq1Qt6vR5PPvkkJkyYgIKCAixcuBCXL18udV/L0h7g6g98SEgI+vfvj6ZNm8JsNuPAgQP473//Cw8PD7zyyiuWskOGDMFbb72FqVOnIiIiAkePHsW8efPsUqjdTurXr48ZM2Zg8uTJOH36NPr06QNfX19cvHgRu3btgru7u+X1hYqgX79+mDt3LgYPHowXXngBGRkZeO+998gPLQC0atUKq1evxpo1a9CgQQO4uLigVatWiI6Oxpo1azBgwABMnDgRnTt3Rn5+PhISEvDAAw9YfiArgpiYGHz++efYvHkz3N3dLfYmTZrghRdewEcffQS1Wo2oqCiLerBOnTp49dVXK6xNJYSHh8PX1xejRo3CtGnToNPp8Pnnn5OHNnsZPHgwjh49isWLFyM5ORnJycmW70JCQhASEoLo6GisXbsW3bt3x6uvvorWrVvDbDYjKSkJGzduxGuvvYYuXbogMjIS3bt3x4QJE5Cbm4uOHTvijz/+YB9WhNtDpRhpAUC7du3w5JNPErtKpcJ3332HcePGYdmyZejbty/ee+89DBkyBJs2bWJ/VG4kMDAQCQkJaN68OV588UU8/fTTcHFxwbx5825Zt2nTpli7di0uX76MQYMGYezYsWjbti0+/PDDUvWzrO0BgClTpsDX1xfvv/8+HnzwQURFReHDDz/E/fffj127dqFVq1aWsq+//jpef/11LF++HP3798fatWvx5ZdfwsfHp9TtrygmTZqEr7/+GidOnMCwYcPQu3dvTJgwAWfPnkX37t0rdN/33nsvli5disOHD6N///6YPHkyHnnkEUycOJGUnT59OiIiIvD888+jc+fOlpd7PT098fvvv+PZZ5/F4sWL0a9fPzz//PM4fvy41ei3IggODkZ0dDT73cKFCzF79mysW7cODzzwACZPnozIyEhs376dXYMtb/z8/PDzzz/Dzc0NTz/9NEaMGAEPD49SR285cuQIzGYznnvuOYSFhVl9Pv30UwCAu7s7tm3bhuHDh1vOxWOPPYYPP/wQISEhlpGWWq3GDz/8gKeeegpz5syxyN/XrVtXXt0XHESlKNe9GSkIgiAITkylGWkJgiAIgjgtQRAEodIgTksQBEGoNIjTEgRBECoN4rQEQRCESoM4LUEQBKHSIE5LEARBqDSI0xIEQRAqDU7ttBYsWIDQ0FC4uLigQ4cO2LZt251ukt1s3boV/fv3R3BwsCVqx/UoioKYmBgEBwdbsrweOXLkzjTWTmJjY9GpUyd4enqiVq1aGDhwII4fP25VprL1a+HChWjdujW8vLzg5eWFsLAw/PLLL5bvK1t/OGJjY6FSqawiYlS2fsXExJAsxNdHWq9s/RFKj9M6rTVr1iA6OhqTJ0/G/v370a1bN0RFRZGAn85Kbm4u2rRpYzP00pw5czB37lzMmzcPu3fvRmBgIHr16oXs7Ozb3FL7SUhIwJgxY7Bz507Ex8fDaDQiMjLSKj15ZetXSEgIZs+ejT179mDPnj249957MWDAAMsPXmXrz43s3r0bixcvtuTjKqEy9qtFixZISUmxfA4fPmz5rjL2Rygldyz95C3o3LmzMmrUKCtb06ZNlYkTJ96hFpUeAMq3335r+dtsNiuBgYHK7NmzLbaCggLF29tbWbRo0R1oYelIS0tTACgJCQmKolSdfvn6+iqffvpppe9Pdna20qhRIyU+Pl6JiIhQXnnlFUVRKud5mjZtmtKmTRv2u8rYH6H0OOVIq6ioCHv37kVkZKSVvSSIZ2UnMTERqampVv0zGAyIiIioVP3LzMwEcC3JX2Xvl8lkwurVq5Gbm4uwsLBK358xY8agX79+JFNyZe3XyZMnERwcjNDQUDzxxBM4ffo0gMrbH6F0OGVqkvT0dJhMJkua8xICAgKqRPK1kj5w/XM0nfqdQlEUjBs3Dvfccw9atmwJoPL26/DhwwgLC0NBQQE8PDzw7bffonnz5pYfvMrWH+Bq0sp9+/Zh9+7d5LvKeJ66dOmClStXonHjxrh48SJmzpyJ8PBwHDlypFL2Ryg9Tum0SrgxS6qiKBWSOfVOUZn799JLL+HQoUP4/fffyXeVrV9NmjTBgQMHcOXKFaxduxbDhg1DQkKC5fvK1p/k5GS88sor2Lhxo1WW5RupTP2Kioqy/L9Vq1YICwtDw4YNsWLFCnTt2hVA5eqPUHqccnrQ398fGo2GjKrS0tLI01RlpET1VFn7N3bsWPzwww/YvHmzVYr2ytovvV6Pu+66Cx07dkRsbCzatGmDDz74oNL2Z+/evUhLS0OHDh2g1Wqh1WqRkJCADz/8EFqt1tL2ytav63F3d0erVq1w8uTJSnuehNLhlE5Lr9ejQ4cOiI+Pt7LHx8cjPDz8DrWq/AgNDUVgYKBV/4qKipCQkODU/VMUBS+99BK++eYbbNq0CaGhoVbfV9Z+3YiiKCgsLKy0/bnvvvtw+PBhHDhwwPLp2LEjnnrqKRw4cAANGjSolP26nsLCQhw7dgxBQUGV9jwJpeSOSUBuwerVqxWdTqcsWbJEOXr0qBIdHa24u7srZ86cudNNs4vs7Gxl//79yv79+xUAyty5c5X9+/crZ8+eVRRFUWbPnq14e3sr33zzjXL48GHlySefVIKCgpSsrKw73HLbvPjii4q3t7eyZcsWJSUlxfLJy8uzlKls/Zo0aZKydetWJTExUTl06JDy5ptvKmq1Wtm4caOiKJWvP7a4Xj2oKJWvX6+99pqyZcsW5fTp08rOnTuVBx54QPH09LT8HlS2/gilx2mdlqIoyvz585V69eoper1ead++vUVaXRnYvHmzAoB8hg0bpijKVZnutGnTlMDAQMVgMCjdu3dXDh8+fGcbfQu4/gBQli1bZilT2fo1YsQIyzVWs2ZN5b777rM4LEWpfP2xxY1Oq7L16/HHH1eCgoIUnU6nBAcHK4MGDVKOHDli+b6y9UcoPSpFUZQ7M8YTBEEQBMdwyjUtQRAEQeAQpyUIgiBUGsRpCYIgCJUGcVqCIAhCpUGcliAIglBpEKclCIIgVBrEaQmCIAiVBqd2WoWFhYiJiUFhYeGdbkq5IX2qPFTFfkmfhMqOU79cnJWVBW9vb2RmZsLLy+tON6dckD5VHqpiv6RPQmXHqUdagiAIgnA9Fea0FixYgNDQULi4uKBDhw7Ytm1bRe1KEARBqCZUSBLINWvWIDo6GgsWLMDdd9+Njz/+GFFRUTh69Cjq1q1707pmsxkXLlyAp6cnsrOzAVwd/lcVSvoifXJ+qmK/pE/lg6IoyM7ORnBwMNRqmbC6nVTImlaXLl3Qvn17LFy40GJr1qwZBg4ciNjY2JvWPXfuHOrUqVPeTRIEQSh3kpOTrRKhChVPuY+0ioqKsHfvXkycONHKHhkZie3bt5PyhYWFVqqfEh96D/pCC53F/s+8dvwOFTvTaTvimh0oq87TOLDh0nPw4aV2l32ocSti+/bEYWJrs3bEbWtTWfdVVri2OmObAPvbZXYzsXaVC7WrNfSidnErIjZPlwJ2mz6MvZYhm9hqu15h69czpBNbfR21NdblsvVrqF2JTaOiIxyTYmbrt900jBoL6b0bvIn/PdHlWh9To7EAfybMhqenJ1teqDjK3Wmlp6fDZDKRNNcBAQEkHTYAxMbGYvr06UzDdNCqrjkttasLv8M77bTMt8dpeXnaPwVx/XG7WX21i41jWgFtKuu+ykpF9L+s2Dp+drfL1QGnpaUXtcaN3jtaV/7i17lQZ6B30RObwZVeewDgaqA/Ne562n9PHX9MvJgpON5psdX53w81vXe1Ov73RKu1caxVdv7+COVGhU3G3ngyFUVhT/CkSZOQmZlp+SQnJ1dUkwRBEIRKTrmPtPz9/aHRaMioKi0tjYy+AMBgMMBgMBD7P/PaWT8d2RpR2TsqcmikdWefnk49sYjYGq4eZf8G5lJT72D7ylVUm7j6tuC2W9b6FbHNimiTre2G/vACLchM+QGAWkdHRRoNM1LSGonNhbEBgJuWTiW6a+nLvB4afnrRU03tPozNW01HbwA/quJoP+cl1h6YRvuvZgZPuhy+/+YbRmBmyAjrTlHuIy29Xo8OHTogPj7eyh4fH4/w8PDy3p0gCIJgB1u3bkX//v0RHBwMlUqF77777pZ1EhIS0KFDB7i4uKBBgwZYtMj+B7WKokKmB8eNG4dPP/0US5cuxbFjx/Dqq68iKSkJo0Y5MFoQBEEQyo3c3Fy0adMG8+bNs6t8YmIi+vbti27dumH//v1488038fLLL2Pt2rUV3NKbUyHvaT3++OPIyMjAjBkzkJKSgpYtW2LdunWoV69eRexOEARBuAVRUVGIioqyu/yiRYtQt25dxMXFAbj62tKePXvw3nvv4eGHH66gVt6aCnFaADB69GiMHj26ojYvCIJQZSgoKEBREV03vBWcwM2WTsBRduzYgcjISCtb7969sWTJEhQXF0On45WiFU2FOS1BEATh1hQUFCC0ngdS03hZ/c3w8PBATk6OlW3atGmIiYkpc7tSU1PZV5eMRiPS09MRFBRU5n2UBud1WorKWsVXQe9Z3S6l4F3jdrL2DRcOEJtDSkEGVukHus3b2SZH1Hdcu7j2lxVH1HsV0SazG/8ibOhPz1Mjpwhk3scCAL2eKuB0zHtG7vpiatPxT/uejFLQV5dHbDU0/MvBfpocYquppu00qPh31FKMtP4934yn20znj6nn2XxiM7nQnz91MV9ff8n6WBlNvEqyNBQVFSE1zYTEvfUcevcxK9uM0A5nkZycbBXdvjxGWSVwry5x9tuJ8zotQRCEaoS7x9WPvZS8SO3l5VUhKVkCAwPZV5e0Wi38/PzKfX/2Ik5LEATBCTBDgdmBaSJHypaGsLAw/Pjjj1a2jRs3omPHjndsPQuQfFqCIAhOgbkU/xwhJycHBw4cwIEDBwBclbQfOHAASUlJAK5GJxo6dKil/KhRo3D27FmMGzcOx44dw9KlS7FkyRKMH0+nZW8nMtISBEFwAkyKApMDSTccKQsAe/bsQc+ePS1/jxs3DgAwbNgwLF++HCkpKRYHBgChoaFYt24dXn31VcyfPx/BwcH48MMP76jcHaig1CRloSR1dshH028I42Sjgt1hnCpm4VCdJ4NV4dawogtGXAEAKi0TcogJeKs3UCEFALgwAguDjooefF2oOMHfhQoeACCAi+huuExsDfRpbP1GTET3elr6zNziBz4ME5iAve7HacgnxcbtOOOZz4ht3tjHiE1bwItblBuEB0ZjAbZtm4HMzMwyryeV/Oad/TvYYSFGvaYXyqUNlQkZaQmCIDgBZigwOdGalrMiwwRBEASh0iAjLUEQBCfA2dSDzoo4LUEQBCegooUYVQXndVoKrEUWThjlwhZc9AQuyoQt7I0+YSuiRFnrl2WbtrbL1b/jUUJsbNPe82ervr2iC7WeX/RXM3mytDpalhNXAIAbI8Rw1VGbl57JcaWj4gwA8NXS6Bc1tVScUUtDbQAQyCT4dmNyZ2l9+IgcpiK6gdyGjOAkhX9/aPHTA4hN5UPLKWr+t8N8Q0ZlM5NJuayY///jSPnqiPM6LUEQhGqEyUEhhiNlqxLitARBEJwAk3ItNJO95asj4rQEQRCcAJketA9xWoIgCE6AGSqYYP96vNmBslUJcVqCIAhOgFm5+nGkfHWk8jutilAKlvFi+GduV2JruJraHMER9Zu9VIQiz9Z27c3xdbV+2Y6VvW0yu/ITLCcWdia20O+pDTbq26sU1DCKQADQMXY9kw/LzcAr7bicWO46mg/Lm1EKcjmyAKCGlsmHpclibDbUhxr7cm7U/IHPp5UZStV6QTuo+tHEV4fZYF/uLG0WPU4AkHKPt/V+Cs3Ab/y+SovJwZGWI2WrEpXfaQmCIFQBxGnZhzgtQRAEJ8CsqGB2YObIkbJVCYk9KAiCIFQaZKQlCILgBMj0oH04r9MiYZwq6ASVUXRhKxTRjXDiDFv1yxrGiBM99A5ue0fbZK84w1ZZR0Jj2S26YHJUOYStF2XUdLsqLjQTkzcLALQaaudCNrlo+TBOrloa3siDEWJ4aDgbFTcAgI+GCjQ4Ww0b4Y2afTya2I6NXEBsKhtvzHqfpsdE0dDfBG0On2PMrKdhoBQtrW/0NLD1a+217qvRWIBjbMnSY4IaJgcmv3gZT9XHeZ2WIAhCNUJxcE1LqaZrWuK0BEEQnACZHrQPcVqCIAhOgElRw6Q4MD0oLxcLgiAIdwozVDA7sKYlSSCFm+PA9cEJBHoH82U5MQRbdi41OSRkABUy2BKRlKVNttrliGiDa5fdbQJgXmin6MJUxukVPS+kUDMRMbRMRAsdYwPsF11wgguAF114aamNi35RQ5PLbrOGhkbE8FHTyBsdv3qNrW+uS8sOTuxJbMVu/I+2eyrtq9rIHH9GnAEAahMtmxNIRReeZ3khyo35tJQKeFtIpgftQ5yWIAiCE+D49KCMtARBEIQ7xNXpQYnyfivEaQmCIDgBZgff05I1LUEQBOGOIdOD9iGxBwVBEIRKg9OOtNR5GqjN10KvOKJ0KyuOqN/szp1lQ2nHwYdM4vZTtnxYjhw7e9t01W5/yCZ728XWf4Kvz+a+YkIr2cTOsmob+bC0XD4sPaP+0/PqP1cdtXvqGUWgjle6+Ruo0s9XS5WCQborxFZf/y+7zfraTLofDQ2NVHMfWx35fnpiO/djI2LzHnuOrV/4URCxqZjTxOXIAgCjC22rPouWLfSl7QSAIk/r53uTjf2UBTPUInm3A6d1WoIgCNUJk6KCyYHQTI6UrUqI0xIEQXACHA+YKyMtQRAE4Q5hVtQwOyDEMFdTIYY4LUEQBCdARlr24bROy+xmAlyvLWifWNyJL6jYmVXGgfnf0B9eoEY3Gwuv3HVTxmsp9Dtm/y7M/m11idl/WQUrXD4uR8I4OZLPy979n1jACC4APmQTc6xUev7aUbP1qU1nQ4ihZ8IwuRloGCMvRlwBAO5MGCZvPRVd1NDxIZdq6bOJLUBHhRT1denE9szG59htLuy1gtgenzmCtjOF9hMAijx5gcONZK0IYe0aF3r8FRV3UqngAgA0hVw+LruaxJa192fHEcxwbJ2q/KUglQOndVqCIAjVCcfVg9XzjSVxWoIgCE6A4y8Xi9MSBEEQ7hASe9A+HHbVW7duRf/+/REcHAyVSoXvvvvO6ntFURATE4Pg4GC4urqiR48eOHLkSHm1VxAEoUpSMtJy5FMdcXiklZubizZt2uCZZ57Bww8/TL6fM2cO5s6di+XLl6Nx48aYOXMmevXqhePHj8PT09Pu/bj65UNjS/xwC8xmejJtqUMVZuFTMTvwtGPnvmxuk7HbvX8HBB9MM/mQAjY48TEnhOFXo0N/fJ4aP2YKKvafX1aIY+ukaqhdpaH70jB5rwBAw+S50jD1ubxXAB/pgo1owYgrAMCbiXRRQ09FFwG6LLZ+iD6D2AKZiBbDNlHRRdOF/Danb3uG2Dyu0P4rNvJZ+Zyix8TI5M6ypUNQMWl6ja60cGoP/poM2kRVF7pc+68/wxXrssYKiIjhuHpQnJZdREVFISoqiv1OURTExcVh8uTJGDRoEABgxYoVCAgIwKpVqzBy5MiytVYQBEGo1pSrq05MTERqaioiIyMtNoPBgIiICGzfvp2tU1hYiKysLKuPIAhCdcOsqBz+VEfK1WmlpqYCAAICAqzsAQEBlu9uJDY2Ft7e3pZPnTp1yrNJgiAIlYKSfFr2fqqr5L1Ceq264aU/RVGIrYRJkyYhMzPT8klOTq6IJgmCIDg1JWGcHPlUR8pV8h4YGAjg6ogrKOhaKoG0tDQy+irBYDDAYDCUZzMEQRAqHSaoYHJAxu5I2apEuTqt0NBQBAYGIj4+Hu3atQMAFBUVISEhAe+8845D2/J2y4fWvXQKHRMjleNsAGDmlH4OzBUbWfUgowi0sU0zpx5kynLlyootlSK3f5UDSkN7j5/NbTL24nwdU99GdS2jFGTUf3oDr/7TaagCTcvU5/JeAYAHoxT00ecTWw09zXEFAH56mg/LX0ttwbrLbH0uPNMjv7xEbC4X6e2vGOhxBgB3JjwTF0bJrONPSnZdul1uoGBr8GDW0y80TBQsl/N8+83MNWF0tX+kcmMYKAeEr3bjeMBcGWnZRU5ODv755x/L34mJiThw4ABq1KiBunXrIjo6GrNmzUKjRo3QqFEjzJo1C25ubhg8eHC5NlwQBKEqYYJjo6cKCH9YKXDYae3Zswc9e/a0/D1u3DgAwLBhw7B8+XJMmDAB+fn5GD16NC5fvowuXbpg48aNDr2jJQiCUN2QkZZ9ONzrHj16QFEU8lm+fDmAqyKMmJgYpKSkoKCgAAkJCWjZsmV5t1sQBKFKcTsiYixYsAChoaFwcXFBhw4dsG3btpuW//zzz9GmTRu4ubkhKCgIzzzzDDIy6Mvrt5Pq6aoFQRCcDOX/Yw/a+1EcFGKsWbMG0dHRmDx5Mvbv349u3bohKioKSUlJbPnff/8dQ4cOxbPPPosjR47gq6++wu7du/Hcc3z6mtuF0wbM9XfNg8712kK5I8EhOXGELSEGR1n3xQopbAkxONGGneVsYe/+TRUg7nAEtY3dZ+dRNanWQGfwVWp+NVzLLLprmdBMLjbCMLloqd3A2Ny1fO4oLztFF7V0NO8VALioqcCjgeEisdXRXmHrD/zhFWLTFNGD7fs3PU5FvvYreRXmBBZ58veZLpde1UUezDWp5y+KYg9q0zI6FteLvLiHbas7U87GL2Ktr09a/W1U+HNfFio6yvvcuXPx7LPPWpxOXFwcNmzYgIULFyI2NpaU37lzJ+rXr4+XX34ZwFWh3ciRIzFnzhyH9lveyEhLEATBCShtRIwbIwoVFlJZZVFREfbu3WsVrQgAIiMjbUYrCg8Px7lz57Bu3TooioKLFy/i66+/Rr9+/cq/8w4gTksQBKESU6dOHauoQtyoKT09HSaTyaFoReHh4fj888/x+OOPQ6/XIzAwED4+Pvjoo48qpB/24rTTg4IgCNWJ0kZ5T05OhpeXl8V+s2ANjkQrOnr0KF5++WVMnToVvXv3RkpKCl5//XWMGjUKS5Yssbud5Y04LUEQBCfA0SC4JWW9vLysnBaHv78/NBoNGVXdLFpRbGws7r77brz++usAgNatW8Pd3R3dunXDzJkzraIe3U6c1mnV0OdCb+AjDlwPJ5ooNtPcOQ5dDI5kDy1jpGWuvpFrP9MmTgRia5vcou2djhKtthERo9DI9J+LcmFDiKFnRBd6RkjhZiOihUFDy7poaFku7xUA+OgY0YWeii7yzHq2Phf9pL6WRr9orOPrH394AbH1fYIqvrjcV7byYRX60J8KbQE9/raCnHACC6M7c506ENHNzAS/YAKXXN0uU5bbv8slGxuo5XfDBgsBPiBJqTE7GATXkbJ6vR4dOnRAfHw8HnroIYs9Pj4eAwYMYOvk5eVBq7U+7xrN1XtTsZXL7jbgtE5LEAShOmFSVDA58CDpSFngaiCIIUOGoGPHjggLC8PixYuRlJSEUaNGAbgavPz8+fNYuXIlAKB///54/vnnsXDhQsv0YHR0NDp37ozg4GCH9l2eiNMSBEFwAko7PWgvjz/+ODIyMjBjxgykpKSgZcuWWLduHerVqwcASElJsXpna/jw4cjOzsa8efPw2muvwcfHB/fee6/DcWTLG3FagiAIToDiYBgnpRQRMUaPHo3Ro0ez35VENbqesWPHYuzYsQ7vpyIRpyUIguAESGoS+3BapxXokgWDC59m4Hq4IXKhmXYrx8YKbxFTlhNyGG081XBiCKPC1LchmuAidXCiC66fZY2S4QhcGhFbQgrOrlNTcYSHjsktASC/mJ53bv5eZ0OIwaUW4cQVtvbPRbpwZYQYPlxIBgD+OppGpIBRDRhUfESO3x9tRWyTNh0lNo2Kv6bueXkk3RcT/cPEpOZQF/LH1OjK3Gde9N7RFPPXRLEbrc8E/kB+Lb6+NofW1xfSsq7pfPu9D9F4eQV1vIlN0fLHtDjQOuC30agDTrJFS41ZcVAwdue0EHcUp3VagiAI1QmJ8m4f4rQEQRCcgJJAuI6Ur46I0xIEQXACKlryXlUQpyUIguAEyPSgfVTPXguCIAiVEqcdaeWbdDBfF3vFViBJe0Me2UKrYnIvMbFgbKl69GouPBKnKLQ/5JL9trI9c5R1TlzNZv4C1Mwx5bClqPQy8OGRbkTPKBIBQG9nGCYvrS31ILW7qami0N9GPqxAbSax1WbCMHmr+f3/UdCY2DrPGENse6ctZOuzuaOYMEzFjCJQU0zvJwAwa+0Lw6TYOHVmRrzLCXr1V/hrklMaelyg55/rOwAg/RIxuXBlL9Fzx6Eyl38+LTMcfLlY1rQEQRCEO4XioBDD0czFVQVxWoIgCE5ARYdxqiqI0xIEQXACRIhhH+K0BEEQnAAZadmH0zqtA5dCoC28tlLbM+AEW46bA76duaOuGN2IzZVZtHdESMLB99ORC9yRJzj7tuvI/LsjbeXCK+kYcQcXmgkA9GomdxZzTnx1uWx9TzVVE7gxoolaWl6I8VV6J2I7l+tDbGfSa7D1azeiIZ/0WVT00mTJi2x9b1dqYzUrjI7GxKfoQqEvPX/aXLoBQyYvwjHrGHGSC92mazov7tFnU7uK6ZPKZCNHW9tQ1n4jLjn5rN2YfM7qb5Ny61x/jiIvF9uH0zotQRCE6oSMtOxDnJYgCIITIE7LPsRpCYIgOAHitOxDnJYgCIITIE7LPpzWaTX1uQi9x7VV4R0Z/EJqC+8UYkspoHlytDaiJ6TlexJbkFsWsXX0OsPWL2ZyZ3EXU10DfSPfVn0OTlySZ7axas6gY1atHRNSlE3cYkuIwqEBXczn8nHZykflprEvooW7jYgU3P7r69KJzVZEi037mhNbvZ+oQCDIxuHT5tK2apncVe4X+A2wac4Ymz6H9rPQi78eNfmc6ILaNEX2Cyk4GA3N1X1doV8UMlE+mLRlAPh8YIbLdJtKPi/EuB0ocOyerKbptCT2oCAIglB5cNqRliAIQnVCpgftQ5yWIAiCEyBOyz7EaQmCIDgB4rTsQ5yWIAiCEyBOyz6c1mmdzKoJ7XUJd67ku7DlNmY2JbZanjl27yevmMqNLuXT0EynMv3Z+jVc8oitoce/xBag4/P0FDByp+2ZdxFbqBtVr9lSHoboae4mA5OQ6LLRna1/ibF7a6iqytb+OaWip4aGRrI37xbAK/0uFlOVKAAkF9DwSK5MPq1mrhfY+sE6evyyzPT6e3LzSLZ+00VUfWp2oeeZVfkB4H6LDJdo+xUVL5VzTWfCiBnoueJCHhldeG0Wc/igLaDnz1Z9Do8Uep3YUi8WMfa8WnRfXI4uAAjYQ68//Tl6nk3pGfwGbgOKooLigCNypGxVwmmdliAIQnVCYg/ahzgtQRAEJ0CmB+1DnJYgCIITINOD9iFOSxAEwQmQkZZ9OK3TSrpYA2q3a4vfLq50cRkANBq6GJxVQBfN3fV8/doeVCCRXcQsutfexdY/lh9MbC6M6CHbxAtJkgr9iI0TDaQXexCbrYt2c0ZjYmvvk0xsjV1oCCwACGUWs3fnNCA2e0NQAcCFQh9iCzTw4pRTeTWJjcvHZbARmquGnubJqmugC+wuKvtzIr3y2fPE1mz+Sbvrq4OpkEedQQUbAGAMpkISRc30nwltBACFPlSgoSmkoosrDWk5RcVfU64Z9D4z62jZQh++vtGN2t1S6fEv8OavKa7/zC0BDX+bQ7eXnitz47p84TuEjLTsQ8I4CYIgOAHK/4+07P04u9PasmVLhWxXnJYgCIJQ7vTp0wcNGzbEzJkzkZxMZ3pKizgtQRAEJ0ABoCgOfO50g2/BhQsX8Morr+Cbb75BaGgoevfujS+//BJFRTbmcO3EIacVGxuLTp06wdPTE7Vq1cLAgQNx/PhxqzKKoiAmJgbBwcFwdXVFjx49cOTIkTI1UhAEoapT8p6WIx9npkaNGnj55Zexb98+7NmzB02aNMGYMWMQFBSEl19+GQcPHizVdh0SYiQkJGDMmDHo1KkTjEYjJk+ejMjISBw9ehTu7lejKMyZMwdz587F8uXL0bhxY8ycORO9evXC8ePH4elJc1fZwpyrs0qOk1dkI/qCK13MDQ6g0SNqGGjkCgBQM2EJGtY4R2xcPikACNJfITYud1OODSFGbQN9K7/QTE+Lh5ZGhDh4JYTdJhdpghNNXCj2ZetzkTIOXKb7Mpr5Y5JbRPN8ccdZr6EiFgAIdKcCBW8djWhgsJF86SnfncSWzeQeq6flrwnuSqsXu5ca3WjkFABQedDjp8pm8jTp+YgWGiafltGTtr+IybEF8Lmj1EYqWlE0tJxnMn9MuUgXBb7UZivIicc5Jh/anyeILXdgS7a+Swa9zy89TI+T2y+MOgOAykCPX0ZLL2LzZU7z7aIqCzHatm2LiRMnokaNGpg9ezaWLl2KBQsWICwsDIsWLUKLFi3s3pZDI63169dj+PDhaNGiBdq0aYNly5YhKSkJe/dePdOKoiAuLg6TJ0/GoEGD0LJlS6xYsQJ5eXlYtWqVY70UBEGoRjgiwnBUHn+nKC4uxtdff42+ffuiXr162LBhA+bNm4eLFy8iMTERderUwaOPPurQNsskec/MvCpZrlHjqkQ3MTERqampiIyMtJQxGAyIiIjA9u3bMXIkjdVWWFiIwsJro4isLF4GLAiCUJUpWatypLwzM3bsWHzxxRcAgKeffhpz5sxBy5bXRtLu7u6YPXs26tev79B2S+20FEXBuHHjcM8991gakpqaCgAICAiwKhsQEICzZ8+y24mNjcX06dNL2wxBEIQqQVWbHjx69Cg++ugjPPzww9Dr6fQsAAQHB2Pz5s0ObbfU6sGXXnoJhw4dsnjS61Hd8IKioijEVsKkSZOQmZlp+ZSnNFIQBKGyUOK0HPk4M9OmTcOjjz5KHJbRaMTWrVsBAFqtFhEREQ5tt1QjrbFjx+KHH37A1q1bERJybYE+MDAQwNURV1BQkMWelpZGRl8lGAwGGAw28gkIgiBUE8yKCqoqFMapZ8+eSElJQa1atazsmZmZ6NmzJ0wmPqLNrXDIaSmKgrFjx+Lbb7/Fli1bEBoaavV9aGgoAgMDER8fj3bt2gEAioqKkJCQgHfeecehhqncjFC5XlMy+fjQ0DwAr2C7UuBKbFyOLABo4ZdKbFzupw0ZvLqFU8UVmaj+7OgWmiMLAOp/S9fw1EWMgoubwM64wm7TnEEViT99S9vvaeDfl9Bp6MWUkUuPn5YJoQUAGjW1+7lSpV5uMT9lEOpOQy5x54TL8QUAv+Y0JzYuR1aumX9YOlpYm9g0NajSUvHk85GZGVWgwuSzskVBID3Wuhx6TXAqQQDgRJX5Neitrsm3P5+WyUD35b+HXrvn7+dznGV0pteE9yYm3FQxv1BzuQk9V4WZtK26mvwx4fJk1dxwmpbT8dekUly2d4vsoaqtadmaYcvIyLCozUuDQ05rzJgxWLVqFb7//nt4enpa1rC8vb3h6uoKlUqF6OhozJo1C40aNUKjRo0wa9YsuLm5YfDgwaVupCAIQlXnqtNyZE2rAhtTBgYNGgTg6jLR8OHDrWbSTCYTDh06hPDw8FJv3yGntXDhQgBAjx49rOzLli3D8OHDAQATJkxAfn4+Ro8ejcuXL6NLly7YuHGjQ+9oCYIgVDeqihDD2/vqaFtRFHh6esLV9drMl16vR9euXfH88zQAtb04PD14K1QqFWJiYhATE1PaNgmCIAiVlGXLlgEA6tevj/Hjx5dpKpDDaVOTCIIgVCcUOBZP0ElnBy1MmzatQrbrtE5LdUkPlcu1RdFaH9AwRgCgMtIF3tS7axFbrQXb2foX/WjuojOduhGbazL/0rNZzyxwX6JlQ32usPUVHV2gV+XTviq5VMhg6zUCFaPGDHyJihb6/nKArW9mQlZ9sqQfsfUflsDWb+xCxS3f/9uW2E7sqM/Wbz3od2L710inl7u50TBAAPB9Vjtim7TrYWILXcXf9moTE3LKnQo5bKG4MLcVc65MXDnwuaPyAug55cIoAYDPKRryqDiA7qvIm8mH5ctfU15nqTjH5EVFCy7p/DHNaUbtpss0n5prGp/j7HJT2n+XZCrkyGnAh6FSMyG3LvUMJTbfn3lxT0FEK6u/jcYCYPP3bNnScjumBxcsWIB3330XKSkpaNGiBeLi4tCtG/29K6GwsBAzZszAZ599htTUVISEhGDy5MkYMWIEW759+/b47bff4Ovri3bt2tn8jQKAffv2Odx+wImdliAIQrWigodaa9asQXR0NBYsWIC7774bH3/8MaKionD06FHUrcsnxHzsscdw8eJFLFmyBHfddRfS0tJgNPIPBgAwYMAAi/Bi4MCBjjXQTsRpCYIgOAOOvjDs4Ehr7ty5ePbZZ/Hcc88BAOLi4rBhwwYsXLgQsbGxpPz69euRkJCA06dPW0L13Srk0vVTghU1PSj5tARBEJwAh3JpXfdOV1ZWltXn+liuJRQVFWHv3r1WcWEBIDIyEtu380snP/zwAzp27Ig5c+agdu3aaNy4McaPH4/8fH4K9UaSk5Nx7ty1jBm7du1CdHQ0Fi9ebOcR4RGnJQiC4ASUNoxTnTp14O3tbflwo6b09HSYTCY2LmzJ+7Y3cvr0afz+++/466+/8O233yIuLg5ff/01xowZY1d/Bg8ebIkrmJqaivvvvx+7du3Cm2++iRkzZjhyaKxw2unBuz7LhPa6KAiq82lsOaWAPlXUOnjM7v2YMi4Rm349tTkScISb8VWl8tEXNLVqUqOZiktUavp8objTyB8AoGYWP41BNKLDusjWbH0w4VXqKKeIbc+aemz1P9NpTiO1F21/gyt88qLPP7uf2MyudNH9w5fvZevrE2nusnq76AK/yUb0ByMTvEIVSCM9mFz4KBfaPCZ6hRu91cwGG/t3pXZtPr0mFA1fP7UzPVZ1N+YQ2+WmVIrs/yfNRQfYEAxdpPeJm1d9tv74rhuI7QezH7GdH8VHnjCfoqIPoxtd1KnzC1sdxV2aElt+TXr8vGxkmdD9an2tqhReMFImFJVjU37/XzY5ORleXtdyg90sLJ4jcWHNZjNUKhU+//xzy7tXc+fOxSOPPIL58+dbvX/F8ddff6Fz584AgC+//BKtWrXCH3/8gY0bN2LUqFGYOnXqrfvI4LROSxAEoTpR2jBOXl5eVk6Lw9/fHxqNhoyqbhYXNigoCLVr17Y4LABo1qwZFEXBuXPn0KhRo5vus7i42OJAf/31Vzz44IMAgKZNmyIlJeWmdW+GTA8KgiA4A0opPnai1+vRoUMHxMfHW9nj4+NthlS6++67ceHCBeTkXBulnzhxAmq12ipQui1atGiBRYsWYdu2bYiPj0efPn0AABcuXICfHx1l24s4LUEQBCegolOTjBs3Dp9++imWLl2KY8eO4dVXX0VSUhJGjRoF4GqaqKFDh1rKDx48GH5+fnjmmWdw9OhRbN26Fa+//jpGjBhxy6lBAHjnnXfw8ccfo0ePHnjyySfRpk0bAFcFHiXThqVBpgcFQRCchQoMc/H4448jIyMDM2bMQEpKClq2bIl169ahXr2ra9MpKSlISkqylPfw8EB8fDzGjh2Ljh07ws/PD4899hhmzpxp1/569OiB9PR0ZGVlwdf32pr6Cy+8ADfmZW97EaclCIJQTRg9ejRGjx7Nfrd8+XJia9q0KZlSdASNRmPlsIBbv+t1K5zXaf1zFlBdUwyZCmg+JYAPWeQIaheqNFNMjHrPhd+POTub2LSBdGFTsdF+UwqVm6q0zGnRMOotJrQTACg6JrTUcZoRWlH4fFhQMbPGTJvYdgLQ+DPz1UyOKZWNY8IpBQv96XREwHpevVfkSR9X1YW0r1yOJgBwzaBlXczMNplwTwCgYspySkGzzoZqi+lWgS81uqfy5y8vkG63oCa9zmscoYpCMG0HAPOhv4mNC42kz+JVdcfzAolNGxpMbEUX+Sfw9vecJLYT3zam9alwFQDg8Q/Nx5fZjh4nXpJwe6gqUd5LuHjxIsaPH4/ffvsNaWlpJOD6bUkCKQiCIFQQVSxi7vDhw5GUlIS33noLQUFBN41D6AjitARBEJwC1f9/HCnvvPz+++/Ytm0b2rZtW67bFaclCILgDFSxkVadOnXsysHoKCJ5FwRBcAYq8D2tO0FcXBwmTpyIM2fOlOt2nXakZWrdCCrttcXjGu9RIQEA6NU0ZE6RmYan+XcqzZ0DAIU+TJ4hT+rLizxtDMUZM5OOCqrSrTlaUBfTK5TLuwQACrOQz7XJFipufd/OfgKAmbmqFMbme5wuzgOAink6U7h8VHq+/5w9vxYVd2iK+Ls+jwnvU+RBBQIaPuIQdHl0XwXedJtu6fxFoS1kck8x58TtAi9kaXCa3hOaFBpyScmmQgyVP80vBwBQM0IgRgSlTtjPVl93nOY4a5hIyzZdRAUjAHA8ioou3P5l8p7l8OKUgiCq0Gj6EhWXZD3Wla3v8eVO1l6ulDKMk7Py+OOPIy8vDw0bNoSbmxt0Ouv74tIlek3ag9M6LUEQhOpEacM4OStxcXEVsl1xWoIgCM5AFVvTGjZsWIVsV9a0BEEQnIGS6UFHPk7OqVOnMGXKFDz55JNIS7uaqWP9+vU4cuRIqbcpTksQBMEJUCmOf5yZhIQEtGrVCn/++Se++eYbS+DdQ4cOlSmrsdNOD6a3cYdGf21RNm0NzYcDACZ7A2K0580amo4Lxcxb9bYeajjRgiOiBw5OtKDNow3gBBcAYKY6AKiZQAUmmqLoKlxfmRvElriEOyauzKK5holSAQD5fvQAeJ2hogOjjSglWi6ihA89KQVMKjOAP1ZFPvSgaGwkcFWY6CVF3rT/OXX520/NCDwK/eix0hTxQUu12bStdWJpjjltPRqp23j6DLtNDtPly8RmvqctW9ZvAy+wINs8cpy1577YhdiKfOk5bbjsX7a+MYDmQwOTo+62CC5sUcWmBydOnIiZM2di3Lhx8PT0tNh79uyJDz74oNTblZGWIAiCUO4cPnwYDz30ELHXrFkTGRkZpd6uOC1BEARnoIqtafn4+LDJHvfv34/atWuXervitARBEJyBKvZy8eDBg/HGG28gNTUVKpUKZrMZf/zxB8aPH2+Vt8tRxGkJgiA4A1XMab399tuoW7cuateujZycHDRv3hzdu3dHeHg4pkyZUurtOq0QQxAEoVpRxYQYOp0On3/+Of7zn/9g3759MJvNaNeuHRo1alSm7Tqt0zLrAdV14rBiGpnpajlGKadoOKWa/SGPij2YfEjMfgCwulNOPag22to/sy/mrBR7Mbsu5repZlR9Rub4GV3tv+o5RZ1rGj9Q11+h29XlcseUbz8Xxii9FVXKceGeACCnDtOmTGor8uXVi+xSAXOe3c/x8k0TI+ozujPXid6B2F5MV8f23sgWnf9jFLElT6bqOx2TTivw/bPsNjU3JPIDePWgNpuR4wLwWXmAtdtLwHYujhg9KH+P5TNiNZuTRGxF7e8iNlthqG4LVSyM04wZMzB+/Hg0aNAADRo0sNjz8/Px7rvvYurUqaXarkwPCoIgOAFV7T2t6dOnW97Nup68vDxMnz691Nt12pGWIAhCtaKKTQ8qisImfjx48CBq1LARmNkOxGkJgiAI5Yavry9UKhVUKhUaN25s5bhMJhNycnIwatSoUm9fnJYgCIIToIJjU37OuqIVFxcHRVEwYsQITJ8+Hd7e16KR6PV61K9fH2FhYaXevtM6rQJ/BWqXa2fQ5GL/2TS78gvsHNosuphu8mBC5vjyC8zGKzQWkkcQncc1m/lLzGhk9p/NxFdyozmSjNm8OkRVSJcqFU9aH0X8kqYmm7ZJl8OUtXFKONGF0ZX2v9CHFzJwYYzyA+k2DRn8MfU/RM9fESNEsRXGyVCfnj/tdqqEKfTjD4BLiyt0X5doA/xrZbH1M07RqZPWbROJbfvlhmx9z+Y0T9HlDBqbTOVFQ2OlRDRjt1m8jwoxtFw6Lxu3Xt2senSbQT60TdsPsvXNWnqurzAitGaxp9n6l+6l+fS8T9DzfEdn3KqIEKMkuntoaCjCw8NJHq2y4rROSxAEoVpRxda0IiIiYDabceLECaSlpcFstn6i6d69e6m2K05LEARBKHd27tyJwYMH4+zZs1BueD1BpVLBZCpdOndxWoIgCM5AFRtpjRo1Ch07dsTPP/+MoKAgVklYGsRpCYIgOAGOvnvl7O9pnTx5El9//TXuuou+xF0WnNZpFfsboXa9Jh6oUzedLXcln+bpyU71JLY6oXyeHQ89FVj4u9AF2gBDNlt//Vm6cJ2bRdvk5skLOer700Xzf4qoQsCUyyxm6virVp3FiCaKaX2TLyPOAKDPpPVd0um+uCgZAKCo6RMVF1HE5ySjuACQ2oXmySoMpmWLfHkhh8sl2n4ux5f3Cf7JLzePXj85DelURp31/PFPCmBUH8yieUExf/v530XTNhzd3oDYmofzogOthna2R7MTxHYq05/Ykk/bUKeE0uvXw4cmFMu57MZWN/Wl19qZNHr8nv04l62/5Gdqu+vTVGIzpl5k63t9kUZsmuAgWr9ra7b+P49Z98tcUABM+p4tW2qq2EirS5cu+Oeff6qP0xIEQahWVDGnNXbsWLz22mtITU1Fq1atiIqwdWv+AeFWiNMSBEFwAqra9ODDDz8MABgxYoTFplKpLJEyRIghCIJQmaki72mVkJhI3y0sD8RpCYIgOANVbHqwXj36Qnl54JDTWrhwIRYuXIgzZ84AAFq0aIGpU6ciKupqKgRFUTB9+nQsXrwYly9fRpcuXTB//ny0aNGi3BsuCIJQlagK04M//PADoqKioNPp8MMPP9y07IMPPliqfTjktEJCQjB79myLGmTFihUYMGAA9u/fjxYtWmDOnDmYO3culi9fjsaNG2PmzJno1asXjh8/Dk9Pqsi6Ga5ndNAYri3cpWQEsuU0jABN7UXP5rm/+Tw7XJ6tU8w2TaFczBrAbKL1NTqq3spL5vvvXYsqoHo0OklsO8/Tp5a8f/kkY+aatANaA1Vv+f/EJH4C4HuYKhrVOUz/beSzSu8WTGwmAz1OGS2pShAANIzQUudOpYrL7l3M1p+4+UViS+1MFYUeyfz0iumuPGJT8umtkvww3/+g9VQqmfkoVZ8e7rKKrf9aSntiG9L8M2IbtJX2E+DbmpBBr7+29ZOJ7Y1ev7DbPFlI77/1F+nDaKEHr/4rNlOlZ8c6dP9BOpqjCwDuv4/mudrZnN4Tbito3jAAyGhF918QTK+pxzrtZus3MVmf06KcYnzCliwDVWCkNXDgQKSmpqJWrVoYOHCgzXJlWdNyKJ9W//790bdvXzRu3BiNGzfG22+/DQ8PD+zcuROKoiAuLg6TJ0/GoEGD0LJlS6xYsQJ5eXlYtYq/OQVBEIT/x9FcWk7otMxmM2rVqmX5v61PaR0WUIYkkCaTCatXr0Zubi7CwsKQmJiI1NRUREZGWsoYDAZERERg+/btNrdTWFiIrKwsq48gCEK1QynFpxrisNM6fPgwPDw8YDAYMGrUKHz77bdo3rw5UlOvTnMFBFhPwwUEBFi+44iNjYW3t7flU6cOkytdEARBEFAKp9WkSRMcOHAAO3fuxIsvvohhw4bh6NGjlu9vjC9lK3tlCZMmTUJmZqblk5xM57kFQRCqPDLSsguHJe96vd4ixOjYsSN2796NDz74AG+88QYAIDU1FUFB18KjpKWlkdHX9RgMBhgMdEHe64wZ2usEDZeb8P7V6E7PnKKmNv99fP1LvajAoCifLtq66PmQR0XnqRjCpKH7d0vh938+x5vYLmZQm6mQtin4N/5h4Mpd9Hh6JlFxgO/BK2x9VTGTu+sMfZi4NLwzX5+ZrlYX0WPifpFPvnTuAboBVQYNjXW3C39Mtbm0foOJfxLb5WF8IrqQlfRYpY+kAoOcK7yQ5fLDtGzRWSqEaJjMZ2/td89eYvv8cldia1yHD1l04q8QYlOYW33/CSpkmHLZj93m9OZUCfZEMBWsqG0k1Np8hYY7a+5xgdjyzLw4Z396bWLrX+8vYjs+jv+tSUumx6RNED1+a3/lr4kH7rUWaKgrQLpXFdSDt4NSr2mVoCgKCgsLERoaisDAQMTHx1u+KyoqQkJCAsLDw8u6G0EQBEFwbKT15ptvIioqCnXq1EF2djZWr16NLVu2YP369VCpVIiOjsasWbPQqFEjNGrUCLNmzYKbmxsGDx5cUe0XBEGoGlQBybsjQjovL5oN3B4ccloXL17EkCFDkJKSAm9vb7Ru3Rrr169Hr169AAATJkxAfn4+Ro8ebXm5eOPGjQ6/oyUIglDdqArTgz4+PrfMm3VbYw8uWbLkpt+rVCrExMQgJiamVI0RBEGo1jihI3KEzZs3V/g+nDf2oAZQrtMeuJ/nz2aRD/XqRV5UtJB+Lx/Rwu0wv5h+I2atnrVrDYwQREfblNeUz6eVe5rmNKq9idZ3TaX1NQV8n9zP0/7nhtjXTwAwHf+H2LR16EK232GadwwANOdo7rLiBjSiQuKDfJtcvOgCf1EWH/2DQ1tg3xOc/x/8qxinhtO2eutp9ASVL39Nen1Gpz1qvXyK2P46TyOHAMCHwTQqw6z0JsTWsybNkQUAF+rS/Rcd9CU29/Y0R92li/yUzbhdjxNbgF8msV3O4fNp9W9IRROJ+TR3V2M3/pzUdKPilpU76Vr5qPAtbP3dRio6OfgPfb3GvxnNZQYA3/9pHaXEnF8AYC1bttRUgenBiIiICt9HmYUYgiAIQtlxJBqGo1OJd4pt27bh6aefRnh4OM6fPw8A+N///offf/+91NsUpyUIguAMVLH3tNauXYvevXvD1dUV+/btQ2Hh1dmi7OxszJo1q9TbFaclCILgBNyOkdaCBQsQGhoKFxcXdOjQAdu2bbOr3h9//AGtVou2bdvava+ZM2di0aJF+OSTT6yyFoeHh2Pfvn2ONt2COC1BEARnoIJHWmvWrEF0dDQmT56M/fv3o1u3boiKikJSUtJN62VmZmLo0KG47777HNrf8ePH0b17d2L38vLClStXHNrW9YjTEgRBcAYq2GnNnTsXzz77LJ577jk0a9YMcXFxqFOnDhYuXHjTeiNHjsTgwYMRFsZHC7FFUFAQ/vmHirp+//13NGjQwKFtXY/TqgdzAtXQGK75VFtD4ZzWVEHH5RPSXeDDw+Q2pKowbQatb9bzDQhqnkZs/2Z60Dbl8OpDlZkqBdXFdF9XGlOlnXcir0g06+iziOdpqvRTOfCehCmQqs8udOPfv6t5kPY1pSs9/kZvPjSWn3s+seWet/9dP5WRHj/zPW2JTb2PV98Z3WgoIJ+3qSruzMv8NVHcnKo33btTRWXPXbz68sGTfYjt6K5QYvt00Mds/S1P1SI2c+4xYqu/i15T2xPasdvMD6Lhmcw16LWbf4lXhH51noahcqlN+3/Kl6ppAaCT31li0zen18/61OZs/d5NaP83/0jzlmXk0escAGpvsf7bWKzCObbk7efGF3q50HhFRUXYu3cvJk6caGWPjIy8aRaOZcuW4dSpU/jss88wc+ZMh9o1cuRIvPLKK1i6dClUKhUuXLiAHTt2YPz48Zg6dapD27oep3VagiAI1YnSvlx8Y2aMadOmkXdl09PTYTKZHMrCcfLkSUycOBHbtm2DVuu4q5gwYQIyMzPRs2dPFBQUoHv37jAYDBg/fjxeeuklh7dXgjgtQRAEZ6CU72klJydbhUTiApCXYG8WDpPJhMGDB2P69Olo3LixA42y5u2338bkyZNx9OhRmM1mNG/eHB4edCbKEWRNSxAEwRko5ZqWl5eX1YdzWv7+/tBoNGRUZSsLR3Z2Nvbs2YOXXnoJWq0WWq0WM2bMwMGDB6HVarFp06ZbdqckgpKbmxs6duyIzp07w8PDA0ajEZMmTbLzoFDEaQmCIDgBFSl51+v16NChg1UWDgCIj49ns3B4eXnh8OHDOHDggOUzatQoSz7FLl263HKfr732Gh5++GFcunTJYvv777/RuXNnfPnll/Y3/gacdnrQrANU16U10vCaA7j+TfMs5TehhY2uvH9WGagYoXZ7umh+Lt2HrZ9bSEUHOh3dpv5vXojh9xcVguTUpqdFU0TrmjV8YErDRRryRp1FQyMZE+niNgAU9utEbFyOqpoHbISmCqb5qBRqArR87qWcAka04UDMZdUfB4hN40Kvk19O72Tr9x50F7Glt6ZhpFx38Mff3OMKseWup2qpM51Ps/VPfNqC2Go2pyGXYhu2ZusPPf43sS1MpOF1Pg75hthSXo4nNgAYevJJYsv5lOa4cq/L32cBe+i1ktaOhow60ZyeJwA4eZ6KS3x86HVu3MLnA9vZg263IIgKOfTpVEQDAJ6nrENWGU02fpDKQgWHcRo3bhyGDBmCjh07IiwsDIsXL0ZSUhJGjbqa123SpEk4f/48Vq5cCbVajZYtW1rVr1WrFlxcXIjdFvv378eQIUPQqlUrLF++HCdOnMDrr7+ORx55BPPnz3es8dfhtE5LEAShOlHRUd4ff/xxZGRkYMaMGUhJSUHLli2xbt061Kt3NS5jSkrKLd/ZcoTQ0FBs3boVr776Kvr06QONRoOVK1fiiSeeKNN2ZXpQEATBGbgNYZxGjx6NM2fOoLCwEHv37rV6+Xf58uXYsmWLzboxMTE4cOCAQ/v76aef8MUXXyA8PBw+Pj745JNPcOECzVjtCOK0BEEQnIEqFntw5MiReOyxxzBhwgRs3boVhw4dgsFgQKtWrarmmpYgCEJ1QvX/H0fKOzN//PEH/vzzT7Rp0wYAEBgYiHXr1mH+/PkYMWIEHnvssVJt12mdVt11l6DVXFuQT+nBL7AWdKZv1evV9BFE68XnnvL3oIu5Bg1doA2swaeRvnCK5gTy20MHsCqFfyz6ty1VKHidpQIFQ6b90SvUl7KJzXjuvN318/3oZWEKpja/T3aw9WvUpMckrTMVIgSHXCI2AEhJpVEJ6m1nlCjPs9VZcvq2Ibbewfw1kfUkjX5R5M1ELuEDesB40IfYXniCPlkWHOPFOWub7SE21wQqS76ysT5bfyVNvYWMr6iQ5InEe4nt8t38OVEjmdi8GJt3p1ZsfRjpNR0ST8VBx+vz+bwURp9xOYWWbbiPP6dJnam4R1+Dli028RE9zAeOWv+tUAFVmalgIcbtZu/evaz8fsyYMbj//vtLvV2ndVqCIAjViYoWYtxubvaSc5MmzJOVnYjTEgRBEMqF9u3b47fffoOvry/atWvHRtsoobTpScRpCYIgOANVYHpwwIABlhHWgAEDbuq0Sos4LUEQBGfBCR2RI0ybNs3y/xuD9pYXInkXBEFwAm5H5uLbQV5eHsaMGYPatWujVq1aGDx4MNLTaUSX0uK0I62imm4wa69JhnyP82FTvAdQVZ+KOZv1PXlVlFZFVU2ZxVSqlHzZh62vyaZ+X80I/VQm/gqrt/AosaU9QnMCaYroftx/4eeELz9KwzB5rqHZf059zudOquFDLzC/fieJTRtCw/gAwL/31SW21m1oyKL7/Gm4IQD4w7MhsZ2tUfpI0wBg0jPTFGo+ZI/vPtr/gho0jJD3GV5B9taHS4ntaEEIseWZefVg2vdNiS14GFXaJb0ayNZf8M8vxPY+jUwF/Q6qvttw4QC7zd7BbVn7jSi7D7N2U0+auyqpF12oD97Mh/bKfJr2v0UtmlIj+yQfBkox0/MX6JdJbOmH+AjkOTeE4TLmFgKD2KKlpwpMDwJXR1vLly/HU089BRcXF3zxxRd48cUX8dVXX5XL9p3WaQmCIFQnqop68JtvvsGSJUss4Zqefvpp3H333TCZTNBo+AdFR5DpQUEQBGegikTESE5ORrdu3Sx/d+7cGVqttszhm0qQkZYgCIITUFVGWiaTCXq99dS3VquF0WjjbXwHEaclCILgDFSRNS1FUTB8+HCrl4sLCgowatQouLtfi8zyzTc0NY49OK3TSuqth9rlmrf2bcoLKWob8ont0UAaBqehLo2t/2EKDSeS8l+6au2r4983yGhB7V6JtE3qbfvZ+mYtPQU1d10mtistfIhNU4PaAKDBK1Tg8O8aWu6x5nvZ+pveo0nhjPfSRft/m/BCgq4jaF9r6Gi4rON5vJDg33y6GO79Nw1N5Qju52jIHm39OmzZYn+6f7d/qUDgYgcuSRgwfu5IYssLpr8w8UPeZevv96ft2jOGRhA4/ehCtv4PuTQMFX6jQpCLYVScAxszOMZfqbjm31/oNn1P8E/T5+6jKxGnHqPt79FxIFs/J8mf2Hbn1iM2/fN8GCbdMWrLukKPU/BhPgzUpUvWYbRMRXy5MlFFnNawYcOI7emnny637Tut0xIEQahOVJXpwWXLllXo9sVpCYIgOANVZKRV0Yh6UBAEQag0yEhLEATBCVApis0URrbKV0ec1mmZfI1QXK8t6tZwpW/EA8DiBlSB4q2mAoGIg0+y9fUf1yC2Qh86APU+wy+8eh+h7VJlUdGBLbGnmhEDFHvRt/qzQmmbarjwb/9v30MXyBvhT2I7GBXE1vcJoqIHsyu9VIJ++Zetn/qkJ7GdyqIL6cHuNCIBAKRcoaKPmrUZcUEZKQr2Ye2LPp9HbE9PHE9sRg/+R8NYQMU59dZRcY7/MF7I0syDRnrYE0xFB70HDWXrb/hmJbG9Z6SikWVnf6fbDL6H3ebZVfQ+qRdFhRztn6I5tgAg7bsw1n4jW1p+x3/Rkpp+zqPX//09ecHOy+e7E9v++W2JLSeEPyc1H7HulzG3EPiULVp6ZHrQLpzWaQmCIFQnqooQo6IRpyUIguAMyEjLLsRpCYIgOAEy0rIPcVqCIAjOgIy07EKcliAIghMgIy37cFqn5e6TD43btdA59wcwcVgArMpqQWyeaqr0q+Wew9ZPqkfz7GgK6dWgvcKrB7Oa+hCb9x6qKDTe24Gtrzl3hdhSu1KlnOESbZPZj6rsAMCjLs0xFndmO7FF16fhmgAgp3sosWmevUhsKfFUpQgAY/y/J7Y8M82d1MDAh9badprm07rUzP5LVdWBXhMZrWh4nyJvPjTX6HpUQefdiSpCrzSmKkkAKHantrNRdP/t/niOrT+i+Q5i43I/5U/nf7W43FdbL3xLbFPSqKKv5nYfdpuaZ+j9YzqeRGw/T+GvqZlDPyO2pp++SGx/P8eHpuLo50bvydb/fYUtm9eB3pMugfT8//WKffvPyjbD166SDiAjLbtwWqclCIJQ3aiuoydHEKclCILgDCjK1Y8j5ash4rQEQRCcAFnTso8yxR6MjY2FSqVCdHS0xaYoCmJiYhAcHAxXV1f06NEDR44cKWs7BUEQBKH0I63du3dj8eLFaN26tZV9zpw5mDt3LpYvX47GjRtj5syZ6NWrF44fPw5PT37hmsNoVEMxaix/a2ysOq74pyux1XCni655xXzuI7eLNE+SppjuK6uJN1s/pV8RsXkk+RCbdhOfu8rE2J4ZTvNRrfi0D7GdfZBfCn7mrg3E1kxPxR3n1lLBAgCEPLyT2E706Exs2vZ8aK2/cqlAI8zrH2LrYqDhigCg5o80PE+RJz0nhUoxWx/0lEKfzdT35YUYauY6VR0/S2y67kxsIQCFnRnRzz9UneG9jlFsAPjRuxWx/d6ahivrfewBtn5RPBPyKZiWO/lRF2Kr24QKbgBg1A+/Edu8yY8RW52ZVPADAIt6RlBjU3qcolM6svXfqLmF2K6Y6TN30H/5/U89vY/Y7u5B6790nh4TAOjsecrq7/wcI4DTbNlSI0IMuyjVSCsnJwdPPfUUPvnkE/j6XvvhVBQFcXFxmDx5MgYNGoSWLVtixYoVyMvLw6pVq8qt0YIgCFUNldnxT3WkVE5rzJgx6NevH+6/3zrrb2JiIlJTUxEZGWmxGQwGREREYPt2/gmosLAQWVlZVh9BEIRqh1KKTzXE4enB1atXY9++fdi9ezf5LjX16nRPQIB1auqAgACcPUunV4Cr62LTp093tBmCIAhVChFi2IdDI63k5GS88sor+Oyzz+BiIy0GAKhU1msFiqIQWwmTJk1CZmam5ZOczKc2EARBqNKUSN4d+VRDHBpp7d27F2lpaejQ4Vp0B5PJhK1bt2LevHk4fvw4gKsjrqCga7ma0tLSyOirBIPBAIOBRksozDJAXXzN/r9TVAgAAGo1ndg9e9GP2EI+47vq8itdoFU3qk9spqMn2Pq4hy7ccpEWtOFt2Or/tqOL8f87dYnYDk5YQGy9HhvObnNlfm9i+yKXifKh5x8kCqM6EZuqmD7fRDXmVaH3etPoJREuNPrFkFOPsvXza9J9cVFK9hRqiA0AVGZ6TSjMQ5NHMn/Tm7NpTqYNFw4QW/v/8EKWPCNtl2tzGtHiiooX92xqTvNhPXjyEdqmZj+x9TmBRs76BsTWqA/NsWZLnPNRYk9iqzn2DLGlGqgwCgC876PinsKl9Dfhl3+as/V/W03vfzNzSx+5QO+Tq9j3fD6vNj0mHFkqM0bbVdJ+ZKRlHw6NtO677z4cPnwYBw4csHw6duyIp556CgcOHECDBg0QGBiI+Ph4S52ioiIkJCQgPJwP7yIIgiBA1rTsxKGRlqenJ1q2tJb5uru7w8/Pz2KPjo7GrFmz0KhRIzRq1AizZs2Cm5sbBg8eXH6tFgRBqGLISMs+yj0ixoQJE5Cfn4/Ro0fj8uXL6NKlCzZu3OjQO1qCIAjVDgnjZBdldlpbtmyx+lulUiEmJgYxMTFl3bQgCEK1QUZa9uG0sQfVuVqoTdeaV3S6Blsurx6NihD6FV2I5xbnAUApphEtrrSm+/I8yrczcDtd4F++9ANiiz7zEFv/n/00DQcyafSKPg8+TWyX29F0FwBg9KC22pvp+2+aS3y6FiWHRrpwb9GI2F6tuZmt/3kmjWowkEkNc+RYHbY+mhmJKXgzXX49XMDXNx+kQhBvj7bE9m9bepwBQN2WigEaraRpPGrQbCUA+AfgZxpRIcKy7TTKCQA8NXocsWkKmNgpVK8BAPipKU0NE77/SWI78TEV3DR+mL7KAgDnJtE16fkvvE9sGTP4Yzp96IN0X733EBsneAGABwPpsarrdpnYejz/PFvf8DPtl6193TEkIoZdlCn2oCAIgiDcTpx2pCUIglCdkOlB+xCnJQiC4AyYlasfR8pXQ8RpCYIgOAOypmUX4rQEQRCcABUcnB6ssJY4N07rtPz2q6C5LsyQx4VCtlzuWZonS/crr4Cyl/TW9HLw/ZPmKAIAr5M05E/UwgnEVvMQn/sp4i0aCslVQ8v+8gLNsXSg71x2mw+MjSa2vDo0XJTrXj4MU9JXdF+fdYwjtuPFNFwWAEzx/5vYdjLqt3vb8ZLMv6/UIjZlC7UtONGdre/xOA2PVORJz6mOCW0FAKcfofUbvXuc2FKebMrW999I43LurB9KbKYufEaD3Cv0ncaMcHr8wg4+zNbf0WYtsa1tvZTY+hW/QGwn5/H5pBq9RLM0PN1pBLFNabGOrb+11bfE1upbGnCAy/sFABsurCe2u74YRWxPzdrG1t/5M/2d6B3cltiMv9Zl699T0zqfVmFOMco/n1bFv6e1YMECvPvuu0hJSUGLFi0QFxeHbt26sWW/+eYbLFy4EAcOHEBhYSFatGiBmJgY9O5Nw8TdTkQ9KAiC4ASUCDEc+TjCmjVrEB0djcmTJ2P//v3o1q0boqKikJSUxJbfunUrevXqhXXr1mHv3r3o2bMn+vfvj/37aZLa24k4LUEQBGeggmMPzp07F88++yyee+45NGvWDHFxcahTpw4WLlzIlo+Li8OECRPQqVMnS0i+Ro0a4ccffyxlB8sHcVqCIAhOgEpRHP4AIEl0CwvpUkpRURH27t1rlaAXACIjI20m6L0Rs9mM7Oxs1KjBB3q4XYjTEgRBcAbMpfgAqFOnDry9vS2f2NhYsun09HSYTCY2QW9J8t5b8d///he5ubl47LHHStW98sJphRg19qZDq7mWT8t0/B+2HJeRSOPlRWymLH7RO200DU/je4yOu888UZutHxJLn1IMnWjIn/SWdCEYAGJq/kFsX2TQxfB3enxJbPf+h4b7AQAtE8bJkEUX8vMH8jnKCrJoyKsOBj2xvXsphK3fx+0UsX2WQY/zmRz+iS3lOBVdhBTSNpl2+bL1PdfQc6JqR/NE/duJXicA4JJBRRvmTHr9+J6gIcAAICWMHqvUXLqvghQqjgGA/E40jJXXQZpzDvE12fq/Nab5vAoUf2LzdcsntsODVrHb7P1SW2KrPYgKeabOfoKtfyxqK7H1qUfDbX29kL8mOYFGQ9DQWD8/x4tzMlfRvhqv0PMU9An/HD/9/R+s/s5yMeNdtmTpuX70ZG954GpyXq/rfvO4/ISWOg4k6L2eL774AjExMfj+++9Rqxa9P28nTuu0BEEQqhWlfE/Ly8vLymlx+Pv7Q6PRkFHVzRL0lrBmzRo8++yz+Oqrr3D//fc70MCKQaYHBUEQqjh6vR4dOnSwStALAPHx8TdN0PvFF19g+PDhWLVqFfr161fRzbQLGWkJgiA4AxX8nta4ceMwZMgQdOzYEWFhYVi8eDGSkpIwatTV990mTZqE8+fPY+XKq+kDvvjiCwwdOhQffPABunbtahmlubq6wtubW5i5PYjTEgRBcAIqOmDu448/joyMDMyYMQMpKSlo2bIl1q1bh3r1rgZOSElJsXpn6+OPP4bRaMSYMWMwZswYi33YsGFYvny5YzsvR1SK4lzpL7OysuDt7Y0eGACtihcvlOv+BnclNp+jdNH9+HN85uXav1HbuUh6SBMHLGbrv3GxLbF9+Se/GH0jjUftsqucLU4spXmvACCxz6fEdtlEc2z5avjcSfayOpsXUkz56XFiq/8jFT3kBtGFdABwT6VlLzeii9NGV34B2iuZilaK3OlM+p/v8O+3hL9KIzXkPJlJbG0DzrP1d21sSWweyfSa0uXxt27AyERiyy6m/R8SQoUM7V34F01b62mUDy6ihC3CD9Jz4qah0uxGhots/RnH6NRUzQdplBJbFPWm17rv5LPEdvAsLy6q+5m1uMVoLMD2X2OQmZl5y/WkW1HymxcRNgVaLT3OtjAaC5CwY2a5tKEyISMtQRAEJ0BlvvpxpHx1RJyWIAiCM3AbYg9WBcRpCYIgOAOSmsQuxGkJgiA4AaV9ubi6IU5LEATBGZDpQbuoNk5L7cKrclJ7UqVY6v2MKq6Av0DO308VaCo3Goanw14+XlejGunE1uRTqtTTpF4mNlNHqjIDAGXPX8RW8ABVJOpSabgfAPjoMs0dtvK/fWm5KfPY+l1d+O3eyBOetE8AMLWYyX11iVEvHjvH1jeFBhKbmVG/5Xah2wSAIh96/oN2UPVbs8Wj2fp+JnpNZadS9WmWryu/fz9a/3IDuv/G/+VzzBVEXiE2z40+xKZT0f1cMfP3Cady/fYcVa8+FMIrX7e3oUrPE5/Sl1q/vW8+W79vXZp7bdU8Wr/RS3+y9fUb9hBbwZm7iM1lEH9Oms3cZ/V3UU4Rtv/KFi09CizxBO0uXw2pNk5LEATBmZHpQfsQpyUIguAMKHBwerDCWuLUSOxBQRAEodIgIy1BEARnQIQYdlFpnJa6dVPWbj70N7EVR9KQLYlP8ic4sfcnxPZE4r3EtudsXba+xw66aF9z4AViW3TXF2z9QXETiM21CV2N9WbEFTjHhwHiuPft34ltRUI3tuxYXxreZuxMLmQRL7hYmUVzN2mYQGnT9jzI1q+3kYoOVOfTaMEAuh8AUOfQ+t6niontSks+DJSpDq1/QUNDijVYTUU0AJDb0IfYXM/RW+1IZgO2PgLo/nWnqUAgKYoXDYQcoAKNS3OpuOa92g2Jbf+UBew2f8umx+/p0zS00okldD8A0PhZKoTgePUfXrCUfDCI2DqHnSC2Zky4KIAXgnA5+o6M/ZqtH/rDC1Z/m/MLANAcd2XCDODWqa2sy1dDKo3TEgRBqMqIEMM+xGkJgiA4AzI9aBfitARBEJwBcVp2IU5LEATBGRCnZReVxmkpx2mOIFsU+tBuHe4Vx5ade6k5sa0O3UQLhvL7eqTO/cT2dUP6qvw5GiQDADD1xc+IbfHTA/jCZWDF71R0MbnX92XapknhV4L35dYntnu9aESDegEZbH3D/mxiK+hARQu63/YRGwD2Znb5m14T3o346A0PjNhGbN99QY+f2Y0XciR8THOndZz6IrGpqF4HAFAvnAphDic3Ira8ejSiBQCYI9oRW5Enfbul5oFcYmu58yl2m391/ZzY2i/qTmzjXlrH1n9/Xh9ia/wcjV7xSRIVDAHAM6rBxBYb8gOxPXZ4BFvf+D3tf60BVMRlK0dY4gXrc5qVbYZvNFu09IgQwy4qjdMSBEGoyogQwz7EaQmCIDgDMj1oF+K0BEEQnAGzAjDvM960fDVEnJYgCIIzICMtu5DYg4IgCEKlwXlHWp1aANpruX3MKl5Wk9GahlEqqEHL3r3nGba+m4GGfRlX4zSxnTPmsPU5peDPeTQn0a7cFnz91RHEVmcfzVNU1mcqnX8+sT3rnWp3/RSm/8uudGDLxgXRkD1Dz1Kl2cVfQ9j6dfU0vI7LrpPEZnLgSVPtRq+TwG2ZbNnvXahSUEsPH8x6+/KGAUCNIzR3l9GThoYCgIyZ9Ymt+Ckamsn1JJ/7qvDNf4nNuzdV32ob0P3kXuZDYy26UpvYVH2p+nN1Mn9NnB70MbFFfj6M2J7no6XhtwtUKdhpH1UKZh30Y+trmlBF6qRTh4jtnbZ3s/VvVBUalWIA9HeibDg40qqmYd6d12kJgiBUJ2R60C7EaQmCIDgDZgUOjZ5EiCEIgiDcMRTz1Y8j5ashDgkxYmJioFKprD6BgYGW7xVFQUxMDIKDg+Hq6ooePXrgyJEj5d5oQRCEKkfJ9KAjn2qIwyOtFi1a4Ndfr4kPNJpri9Fz5szB3LlzsXz5cjRu3BgzZ85Er169cPz4cXh6ejq2n7lHYfC4tlB95Ema+wcA/A5TW6/FNBTM+lReCJFVwC9m30iI1sOucgCQYaRl1xxvz5ZVGahNMdqI+WQn2U90JbbiAio4+TybX7R+ypMusF8w0ZBFb/ofZ+uPPk/3H+59itiOpfHnRMmh4YXMudRmC+N9VAygSaEL8Wldvdj6JkYfoQ6/TNv0F5/PqvfAIdTIaDZcj/FCmL9fpQIVjwP0+bL+AF4IcGoDDXkVAirESHo4mNgCgy+y2/wkjuY+e+ilzcQ2xZ+GRgKARluGE9vJtcuJ7Z6xI9n6vWlTcWUVFdecfIbL+wa8nkpDWy1I6UlsHbYxedsA/DbHWqBhKi4AvixbGDSCTA/ahcNOS6vVWo2uSlAUBXFxcZg8eTIGDRoEAFixYgUCAgKwatUqjBzJX4yCIAgCRIhhJw6/p3Xy5EkEBwcjNDQUTzzxBE6fvvq0l5iYiNTUVERGRlrKGgwGREREYPv27Ta3V1hYiKysLKuPIAhCtUOBg9ODd7rBdwaHnFaXLl2wcuVKbNiwAZ988glSU1MRHh6OjIwMpKZeneoICAiwqhMQEGD5jiM2Nhbe3t6WT506dUrRDUEQhEqOrGnZhUPTg1FRUZb/t2rVCmFhYWjYsCFWrFiBrl2vrmOobngJWFEUYrueSZMmYdy4cZa/s7KyxHEJglD9MJvhUL4Rc/VUD5ZJ8u7u7o5WrVrh5MmTGDhwIAAgNTUVQUFBljJpaWlk9HU9BoMBBgNVIxzppkB7XfDIDRe+Zuv3DqGL7uvG30tsBa9cslH/GLFx0S/yFN7xPrTodWJzv4dGJFAd4YUobh3TiS3j2TBiUzPaDN8VO9htGq4weZayqbrgz2y6YA8Amy43I7aPQpgcYzZYUHsnsQ36pxexuT7Oj8BNx2nuKNUfB+zev8sJKiZI70EfhK604G96VRE91/kXqbjG3IGPaFE7jkZaSJzRidhc/3Vn69fdQEUzymv0Ojm2k0/ypmrNR2+5kZBFVMV0+QIvjqk3kkYpia5xgNiOFPFP/yE1qZCl+cLRxBb5Jo0GAwDH1lJbg8F0/03+Q/OWAUDDe2iOsnVN+NxfHMWvWytpCnOKsfdLu6vbh6xp2UWZYg8WFhbi2LFjCAoKQmhoKAIDAxEfH2/5vqioCAkJCQgPDy9zQwVBEKo0Mj1oFw6NtMaPH4/+/fujbt26SEtLw8yZM5GVlYVhw4ZBpVIhOjoas2bNQqNGjdCoUSPMmjULbm5uGDyYZh0VBEEQBEdxyGmdO3cOTz75JNLT01GzZk107doVO3fuRL169QAAEyZMQH5+PkaPHo3Lly+jS5cu2Lhxo8PvaAmCIFQ75D0tu3DIaa1evfqm36tUKsTExCAmJqYsbRIEQah2KIoZigOhmRwpW5WQ2IOCIAjOgKI4NnqSNS3nJqrPE6w9dWwNYtPm05O5tw0jPwKwJJNG97hgomrGiSN5VVLIRvritDa0Hi3Ynb/AfKefILbUaCpcMTIRg3SPdmG3+e+gAmLrXDeZ2Hak8uqzsXdRpaCbmoZxskXXA48Q24hQepwWfTCArW8Ook+Qni403Ja5gPYTAIzJ54itxnc0d1aRVyu2fq3dNORTVkOq9KuxnR5TADAyYbhODKfhhVq9T9VzAJDvT2/LK1foFLvhMq9ozdfR8EYnllGVbeNn9hKbysbD+31MeKaFV6jSsIkhha3fvgY9VpNeWEVs9ywbz9Y3vkfvn4bjqUq1/lu8ovbcOHpPtdhIj39+U/6aeq1TvHW54rKFWmNRHJweFKclCIIg3DHMZttPDRwyPSgIgiDcMWSkZRfitARBEJwAxWyG4sBIS4QYgiAIwp1DRlp2UWmclvkQn6cnkEbMQf6AzsTWbjcv5AgLPkNsszYMJLZar9LQTACQ+DANz9NsCt2mrZBLaje6aK70oCFviv72IbYN73/AbnNFFg2DpGFimv11MYjYAOApTy6nEA2e8loKnyPM01BIbIVmGvKo2IsXEnCRhBp9TRfIuWMHALirLjGZPKmQo9GTfD6wfXfTkE81fen5v+DLx8istYCKDsJeG0VsdXdQwQgAXOlMk0cZdlAhRotHaAgyAHg2cCuxjdlr3wv+xe78Odmc0YTYvm74K7GtzPJn608PoEIcDzUVt3TuxSeNXVmP9mlkdxru7EznfLZ+0Fy6/8TZtP6h+xaw9dv//oLV3+a8AgDb2LKlxqwAKnFat6LSOC1BEIQqjaLAoYC54rQEQRCEO4ViVqA4MNJSqqnTKlPAXEEQBKHysGDBAoSGhsLFxQUdOnTAtm03n+JMSEhAhw4d4OLiggYNGmDRokW3qaW2EaclCILgDChmxz8OsGbNGkRHR2Py5MnYv38/unXrhqioKCQlJbHlExMT0bdvX3Tr1g379+/Hm2++iZdffhlr1/KBGm4XlX56UOPjTWwXulFf7POjL1s/awTN6WR2oRfDDhsRNRqcHklspn950QaHOS+P2NzX0D65MmfKQ03FBQAwb3V/Yjs2ii4wr/ejOZoAoN9xWn9905+JrZsXjeYBAN/+ToUw55iICB7J/E2nqDWs/Ua4YwcAZm8aPkR7mS7Qp83i84mFMLMuF0dQ0Yc+kgpmACAvhUYq8d1Nc3wZz/A/FgWRtanNjzZq50m+/bu2NyU2DU3RhX9HUSFCzUW8YCj7U2o7dIaKY6ZtGsTW/18TGiljWaMviO33Xc3Z+utr/knLftuO2HweZXLJAfD4itYPnUj7GnH6Vba+u9ZaoGIqKv+fzoqeHpw7dy6effZZPPfccwCAuLg4bNiwAQsXLkRsbCwpv2jRItStWxdxcXEAgGbNmmHPnj1477338PDDDzu07/JERlqCIAhOgFEphNHswEe5qtLNysqy+hQWUvVuUVER9u7di8jISCt7ZGQktm+nykoA2LFjBynfu3dv7NmzB8XFxeXUa8ep9CMtQRCEyoxer0dgYCB+T7U/k3IJHh4eqFPH+tWLadOmkUwb6enpMJlMJIt8QEAAUlP5DOKpqalseaPRiPT0dKsM9bcTcVqCIAh3EBcXFyQmJqKoiJnDvQWKokClsp66NBhowO8SbizL1b9Vec5+OxGnJQiCcIdxcXGBC5PJoLzw9/eHRqMho6q0tDQymiohMDCQLa/VauHn51dhbb0VsqYlCIJQxdHr9ejQoQPi461TrMTHxyM8nKZtAYCwsDBSfuPGjejYsSN0Ohrh5nZR6Udapis0T1KDtVQpVuTD54Pae56G4hnXbQOx9Xj+ebZ+oEf5D5MVRjzn8z+qdHpnAg3XBABFjWn/CxW6cDo8+A+2/kD3nFu08CoNdLz60DWE5qP689/6xHalEf/MVHc9rc+hDaK50ACgUEvPydkBNO+aofMltn7uEao05fSMtTz543Sppg+xuf2TSGwbLhxg63d9vSuxaXPpsVK58dNJqlw6PVTciLkmcqjKUlOzJrvNfx+4i9hGvknbuebtj9j6gRoqDgjRehDbNw/yoclmX4giNl0uLfdW7HK2/mt3PUv3H0sFCP6LefXkicXW4drM+XdOiFBaxo0bhyFDhqBjx44ICwvD4sWLkZSUhFGjroYYmzRpEs6fP4+VK1cCAEaNGoV58+Zh3LhxeP7557Fjxw4sWbIEX3xBVZ+3k0rvtARBEIRb8/jjjyMjIwMzZsxASkoKWrZsiXXr1qFevatJa1NSUqze2QoNDcW6devw6quvYv78+QgODsaHH354R+XugDgtQRCEasPo0aMxejSfMXv58uXEFhERgX379lVwqxxD1rQEQRCESoPTjbRKJJVGFDuUWsZqG0b6pr6xmI++YMqjZQtyjEx9Wu6qna52GJn1I0cwFTHtZ7ZZkMPvx8z0KSub9j8vj48ekGW2LzxMTpGtY0rXL4xqajMV2jimzPkDd0zN/JoOV99Ed8+2EwDMBcz+mWNqZFKwAPafP+6c2KpvKqTPl9y1CwCqArpIzl0TpkK69me0cUy5NqmK6Q2aa6NP2Rpqz9JSW04hX784l7aLu37ysvlrmivryH1qzi9g/66uQWvvJCrFyY76uXPnyMtygiAIzkhycjJCQkLudDOqFU7ntMxmMy5cuABPT09kZ2ejTp06SE5OhpeX151uWrmQlZUlfaokVMV+SZ/KB0VRkJ2djeDgYKjVsspyO3G66UG1Wm15cil569rLy6vK3GAlSJ8qD1WxX9KnsuPtTQNbCxWPPCIIgiAIlQZxWoIgCEKlwamdlsFgwLRp024aALKyIX2qPFTFfkmfhMqO0wkxBEEQBMEWTj3SEgRBEITrEaclCIIgVBrEaQmCIAiVBnFagiAIQqVBnJYgCIJQaRCnJQiCIFQaxGkJgiAIlQZxWoIgCEKl4f8AY1rukSUDpIwAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Load the patch normalized image\n", + "patch_img = np.load('./mats/1_BasicDemo/summer_patchnorm.npy', allow_pickle=True)\n", + "\n", + "# Plot the image\n", + "plt.matshow(patch_img)\n", + "plt.title('Nordland Summer Patch Normalized')\n", + "plt.colorbar(shrink=0.75, label=\"Pixel intensity\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "d404dfd2-10bd-4981-96ef-6092a9866fc6", + "metadata": {}, + "source": [ + "The reduced image dimensions with patch normalization allows for a decent representation of the full scene, despite the smaller size.\n", + "\n", + "### Convert images to spikes\n", + "\n", + "'Spikes' in the context of VPRTempo are a little different than conventional spiking neural networks. Typically, spikes from image datasets are converted into Poisson spike trains where the pixel intensity determines the number of spikes to propagate throughout a network. VPRTempo only considers each pixel as a single spike, but considers the *amplitude* of the spike to determine the timing within a single timestep - where large amplitudes (high pixel intensity) spike early in a timestep, and vice versa for small amplitudes. \n", + "\n", + "Let's flatten the patch normalized image into a 1D-array so we can apply our network weights." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "2bd6ae95-2a79-4b45-8a60-503079339739", + "metadata": {}, + "outputs": [], + "source": [ + "# Convert 2D image to a 1D-array\n", + "patch_1d = np.reshape(patch_img, (3136,))" + ] + }, + { + "cell_type": "markdown", + "id": "9d9a5eaf-1de3-461f-b138-3ac820da8bae", + "metadata": {}, + "source": [ + "### Load the pre-trained network weights\n", + "\n", + "Our network consists of the following architecture:\n", + "\n", + " - An input layer sparsely connected to a feature layer, 784 input neurons to 1568 feature neurons\n", + " - The feature layer fully connected to a one-hot-encoded output layer, 1568 feature neurons to 500 output neurons\n", + "\n", + "Each layer connection is trained separately and stored in different weight matrices for excitatory (positive) and inhibitory (negative) connections. " + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "6d98749a-8f28-477b-871c-93626e96786c", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwcAAAFuCAYAAADUPGT0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9e3xV1Zk3/t37nJPbScC7iBdE5R4SQu4JJIAUSxG1lFfKYBGH0TJaRsd2xt7VqdWx7c9qbS2vDqNlZKi+lKoUKYhAArknJCHh7gXUKt6B5OR2ztnr98daz7PX2udAqx0Ko/v5fPJJcs7e6/KstZ713B9LCCHggw8++OCDDz744IMPPnzuwT7VA/DBBx988MEHH3zwwQcfTg/whQMffPDBBx988MEHH3zwAYAvHPjggw8++OCDDz744IMPCnzhwAcffPDBBx988MEHH3wA4AsHPvjggw8++OCDDz744IMCXzjwwQcffPDBBx988MEHHwD4woEPPvjggw8++OCDDz74oMAXDnzwwQcffPDBBx988MEHAL5w4IMPPvjggw8++OCDDz4o8IUDH3z4HMFTTz0Fy7LQ3Nx8qofCcP/99+O55547JX1PmTIFlmUl/ens7Dwpff73f/83Hn744ZPS9l8DP/vZz2BZFhoaGozPHcfBWWedBcuysG/fPuO7gYEBZGRkYM6cOZ+orylTpmDKlCmfapyLFi1CZmbmn32up6cH99xzD7Zu3fqp+vHBBx98+LxC8FQPwAcffPh8w/3334+5c+fiuuuuOyX9X3bZZVi5cmXC55dffvlJ6e+///u/0dnZiTvuuOOktP9pYerUqQCALVu2oLi4mD9vb2/Hxx9/jHA4jC1btmDUqFH8XUNDA3p7e/ndvxQee+yx/5lBnwB6enpw7733AsCnFkR88MEHHz6P4AsHPvjgw/8q2L9/P0aOHPk/1l56ejpKSkr+x9o7VdDT04OMjIxP/X5eXh7OOOMMbN26Fd/+9rf5861bt2Lo0KGorKzEli1bsGTJEuM7AJ9YOBg7duynHqcPPvjggw8nF3y3Ih98+JwDuWm88sor+NKXvoTMzExcfPHF+OY3v4n+/n5+7uDBg7AsCz/5yU/w4x//GJdccgnS0tJQUFCAl19+OaHNSy+9NKGve+65B5Zl8f+WZSESieA3v/kNu/P8OS3vjBkzMHr0aNx7773Yv3//XzX3vwSOHTuGb33rWxg+fDhSUlJw4YUX4o477kAkEjGe+9WvfoWKigqcd955CIfDGD9+PH7yk58gGo3yM1OmTMG6detw6NAhw4UJkIy2ZVkJbjCE96eeeoo/ozXr6OjAjBkzkJWVhSuvvBKAdPW57777MHr0aKSmpuLcc8/FTTfdhPfff/+E87RtGxUVFaipqUEsFuPPt27diilTpqCysjJhbFu3bsW5556LcePGfaK+k7kVvfXWW5g7dy6ysrJwxhlnYMGCBWhqakqYO8GJ9uvBgwdx7rnnAgDuvfdexvOiRYsAAO+//z5uueUWXHzxxTzO8vJybNq06YQ48sEHH3z4PIBvOfDBBx8QjUZxzTXXYPHixfjmN7+J6upq/OhHP8LgwYPxwx/+0Hj2l7/8JYYNG4aHH34YjuPgJz/5CWbOnImqqiqUlpZ+on7r6uowbdo0TJ06FT/4wQ8AAIMGDTrhO88++yxWrlyJ//t//y/uuece5OfnY/78+Zg3bx4uuuiiTzZxBTozDEhG2bZt9PT0oLKyEm+99Ra++93vIicnB7t27cIPf/hDdHR0YNOmTczcv/rqq/i7v/s7FiLa29vx4x//GHv37sV//ud/ApDuNLfccgteffVV/P73v/9UYyUYGBjANddcg69//ev49re/jVgsBsdxcO2112Lbtm3413/9V5SVleHQoUO4++67MWXKFDQ3NyM9Pf24bU6dOhUvvPACmpqaUFpaCsdxUF1djQcffBAVFRV47733sHv3bowdOxYDAwOoq6vD1VdfDcuy/qq+I5EIpk6dio8++ggPPvggrrjiCvzxj3/EvHnzkj7/5/brBRdcgD/+8Y/44he/iMWLF+Mf/uEfAIAFhq997WvYsWMHfvzjH2PkyJE4cuQIduzYgQ8//PCvWhMffPDBh88ECB988OFzA08++aQAIJqamvizG2+8UQAQzz77rPHsl770JTFq1Cj+//XXXxcAxNChQ0Vvby9/fuzYMXHWWWeJ6dOnG20OGzYsof+7775beMlOOBwWN9544yeeSzweF1u2bBFf//rXxTnnnCMsyxIVFRVi2bJl4oMPPviL2qisrBQAEn4WLFgghBDigQceELZtG/gSQojVq1cLAOLFF1887tii0ahYsWKFCAQC4qOPPuLvZs2alRQ3W7ZsEQDEli1bjM8J708++SR/Rmv2n//5n8azq1atEgDE7373O+PzpqYmAUA89thjJ8RHW1ubACDuv/9+IYQQLS0tAoDYu3evEEKI888/X/zyl78UQghRVVVltPlJ+q6srBSVlZX8/69+9SsBQKxfv9549+tf//px5/7n9uv7778vAIi77747YZ6ZmZnijjvuOCEufPDBBx8+r+C7Ffnggw+wLAuzZ882PsvJycGhQ4cSnp0zZw7S0tL4/6ysLMyePRvV1dWIx+MnfawEtm1jypQpWLZsGd555x28+OKLuOyyy3DXXXfhggsuwM9//vO/qJ3LL78cTU1Nxs+PfvQjAMAf/vAHZGdnY8KECYjFYvxz1VVXJbgAtba24pprrsHZZ5+NQCCAUCiEhQsXIh6PnzT3p6985SvG/3/4wx9wxhlnYPbs2cZ4J0yYgCFDhvzZzD05OTk4++yz+bmtW7diyJAhHIRcUVGBLVu28HeAG2/w1/RdVVWFrKwsfPGLXzQ+nz9/ftLnP8l+TQZFRUV46qmncN9996G+vt5w/fLBBx98+LyD71bkgw8+ICMjw2D4ASA1NRV9fX0Jzw4ZMiTpZwMDA+ju7sbgwYNP2jiPB/39/Th69CiOHDmCvr4+pKWlIRwO/0XvUtxEMnj33XfxyiuvIBQKJf3+gw8+AAC88cYbmDx5MkaNGoVHHnkEl156KdLS0tDY2IjbbrsNvb29n25iJ4CMjIwEF6x3330XR44cQUpKygnHezywLAuVlZXYsGEDotEotmzZgsrKSv6+srIS99xzD4QQ2LJlC4YMGYLRo0f/1X1/+OGHOP/88xM+T/YZ8Mn2azJ45plncN999+E//uM/8IMf/ACZmZn48pe/jJ/85CdJ97cPPvjgw+cJfOHABx98+ERw+PDhpJ+lpKRw/vm0tDQjmJngzzGnnwT6+vrw4osv4plnnsEf/vAHxONxzJw5E//1X/+Fq6+++oS+9X8pnHPOOUhPT+eYgWTfA8Bzzz2HSCSCNWvWYNiwYfx9W1vbX9wXMbtevB0PZ3pgtz6es88+G3/84x+TvpOVlfVnxzF16lSsWbMGDQ0N2LZtGx544AH+rrKyEh988AFaWlpQX1+PL3/5y/8jfZ999tlobGxM+DzZXvufgHPOOQcPP/wwHn74Ybzxxht44YUX8O1vfxvvvffeccfvgw8++PB5AV848MEHHz4RrFmzBj/96U+Zme3q6sLatWsxefJkBAIBAMCll16K9957D++++y5rfwcGBrBhw4aE9lJTUz+RZn3Dhg14+umn8fzzz6OnpwdTpkzBo48+iq985Sv/41aLq6++Gvfffz/OPvtsDB8+/LjPEaOemprKnwkh8MQTTyQ8e7z5UnannTt34qqrruLPX3jhhU803t/+9reIx+NGrYJPAuQm9POf/xxHjx41sgqNGzcOZ599Nh544AH09fUZKUz/mr4rKyvx7LPPYv369Zg5cyZ//tvf/vZTzQFw1+LP7a1LLrkE3/jGN/Dyyy+jpqbmU/fngw8++PBZAV848MEHHz4RBAIBfOELX8Cdd94Jx3Hw4IMP4tixY1xwCgDmzZuHH/7wh/jqV7+Kf/mXf0FfXx9+8YtfJI1JGD9+PLZu3Yq1a9figgsuQFZWllFoywtLlizBeeedhx/96EeYN2/eSXUDueOOO/C73/0OFRUV+Od//mfk5OTAcRy88cYb2LhxI775zW+iuLgYX/jCF5CSkoL58+fjX//1X9HX14df//rX+Pjjj5POd82aNfj1r3+N/Px82LaNgoICDBkyBNOnT8cDDzyAM888E8OGDcPLL7+MNWvW/MXj/epXv4qVK1fiS1/6Em6//XYUFRUhFArhrbfewpYtW3Dttdca2v5kMG7cOJx33nn4/e9/j3PPPRdjxozh7yzLQkVFBWda0oWDv6bvG2+8ET//+c9xww034L777sMVV1yB9evXszBp2588PC4rKwvDhg3D888/jyuvvBJnnXUWzjnnHJx55pmYOnUq/u7v/g6jR49GVlYWmpqa8Mc//vETV3r2wQcffPhMwqmOiPbBBx/+dnC8bEXhcDjhWW9mIcqa8+CDD4p7771XXHTRRSIlJUXk5eWJDRs2JLz/4osvigkTJoj09HRx2WWXiV/+8pdJsxW1tbWJ8vJykZGRIQAYWWySwdtvv/0JZ318qKysFOPGjTvhM93d3eL73/++GDVqlEhJSRGDBw8W48ePF//8z/8sDh8+zM+tXbtW5ObmirS0NHHhhReKf/mXfxHr169PyED00Ucfiblz54ozzjhDWJZl4OOdd94Rc+fOFWeddZYYPHiwuOGGG0Rzc3PSjD3J1kwIIaLRqPjZz37GY8nMzBSjR48WX//618WBAwf+Irxcf/31AoCYO3duwncPP/ywACAuvPDCT923N1uREEK88cYbYs6cOSIzM1NkZWWJr3zlK+LFF18UAMTzzz//Z+eebG9t2rRJ5OXlidTUVAFA3HjjjaKvr08sWbJE5OTkiEGDBon09HQxatQocffdd4tIJPIX4ccHH3zw4bMMlhBCnBKpxAcffPhfBQcPHsTw4cPx05/+FN/61rdO9XB8+BzA/fffj+9///t44403PnUNCx988MEHHz4Z+G5FPvjggw8+nHL45S9/CQAYPXo0otEoNm/ejF/84he44YYbfMHABx988OFvCL5w4IMPPvjgwymHjIwM/PznP8fBgwfR39+PSy65BHfddRe+//3vn+qh+eCDDz58rsB3K/LBBx988MEHH3zwwQcfAAB+hWQffPDBBx988MEHH3zwAYAvHPjggw8++OCDDz744IMPCnzhwAcffPDBBx988MEHH3wA4AsHPvjggw8++OCDDz744IMCXzjwwQcffPDBBx988MEHHwB8hoWDxx57DMOHD0daWhry8/Oxbdu2Uz2k/1VQXV2N2bNnY+jQobAsC88995zxvRAC99xzD4YOHYr09HRMmTIFu3btMp7p7+/H0qVLcc455yAcDuOaa67BW2+9ZTzz8ccf42tf+xoGDx6MwYMH42tf+xqOHDlykmd3+sIDDzyAwsJCZGVl4bzzzsN1112Hffv2Gc/4uD858Otf/xo5OTkYNGgQBg0ahNLSUqxfv56/9/H+t4MHHngAlmXhjjvu4M98/J8cuOeee2BZlvEzZMgQ/t7H+8mFP/3pT7jhhhtw9tlnIyMjAxMmTEBLSwt/7+Pfh1MCp6o088mE3/72tyIUCoknnnhC7N69W9x+++0iHA6LQ4cOneqh/a+BF198UXzve98Tv/vd7wQA8fvf/974/t///d9FVlaW+N3vfic6OjrEvHnzxAUXXCCOHTvGzyxZskRceOGF4qWXXhI7duwQU6dOFbm5uSIWi/EzX/ziF0V2draora0VtbW1Ijs7W1x99dV/q2mednDVVVeJJ598UnR2doq2tjYxa9Yscckll4ju7m5+xsf9yYEXXnhBrFu3Tuzbt0/s27dPfPe73xWhUEh0dnYKIXy8/62gsbFRXHrppSInJ0fcfvvt/LmP/5MDd999txg3bpx45513+Oe9997j7328nzz46KOPxLBhw8SiRYtEQ0ODeP3118WmTZvEK6+8ws/4+PfhVMBnUjgoKioSS5YsMT4bPXq0+Pa3v32KRvS/G7zCgeM4YsiQIeLf//3f+bO+vj4xePBgsWzZMiGEEEeOHBGhUEj89re/5Wf+9Kc/Cdu2xR//+EchhBC7d+8WAER9fT0/U1dXJwCIvXv3nuRZ/e+A9957TwAQVVVVQggf939rOPPMM8V//Md/+Hj/G0FXV5cYMWKEeOmll0RlZSULBz7+Tx7cfffdIjc3N+l3Pt5PLtx1111i0qRJx/3ex78Ppwo+c25FAwMDaGlpwYwZM4zPZ8yYgdra2lM0qs8WvP766zh8+LCB49TUVFRWVjKOW1paEI1GjWeGDh2K7Oxsfqaurg6DBw9GcXExP1NSUoLBgwf7a6Xg6NGjAICzzjoLgI/7vxXE43H89re/RSQSQWlpqY/3vxHcdtttmDVrFqZPn2587uP/5MKBAwcwdOhQDB8+HF/96lfx2muvAfDxfrLhhRdeQEFBAf7P//k/OO+885CXl4cnnniCv/fx78Opgs+ccPDBBx8gHo/j/PPPNz4///zzcfjw4VM0qs8WEB5PhOPDhw8jJSUFZ5555gmfOe+88xLaP++88/y1gvQ1vfPOOzFp0iRkZ2cD8HF/sqGjowOZmZlITU3FkiVL8Pvf/x5jx4718f43gN/+9rfYsWMHHnjggYTvfPyfPCguLsaKFSuwYcMGPPHEEzh8+DDKysrw4Ycf+ng/yfDaa6/h17/+NUaMGIENGzZgyZIl+Kd/+iesWLECgL/vfTh1EDzVAzhZYFmW8b8QIuEzH/46+DQ49j6T7Hl/rSR84xvfwM6dO7F9+/aE73zcnxwYNWoU2tracOTIEfzud7/DjTfeiKqqKv7ex/vJgTfffBO33347Nm7ciLS0tOM+5+P/fx5mzpzJf48fPx6lpaW4/PLL8Zvf/AYlJSUAfLyfLHAcBwUFBbj//vsBAHl5edi1axd+/etfY+HChfycj38f/tbwmbMcnHPOOQgEAgnS8HvvvZcgffvw6YAyWZwIx0OGDMHAwAA+/vjjEz7z7rvvJrT//vvvf+7XaunSpXjhhRewZcsWXHTRRfy5j/uTCykpKbjiiitQUFCABx54ALm5uXjkkUd8vJ9kaGlpwXvvvYf8/HwEg0EEg0FUVVXhF7/4BYLBIOPGx//Jh3A4jPHjx+PAgQP+vj/JcMEFF2Ds2LHGZ2PGjMEbb7wBwKf3Ppw6+MwJBykpKcjPz8dLL71kfP7SSy+hrKzsFI3qswXDhw/HkCFDDBwPDAygqqqKcZyfn49QKGQ8884776Czs5OfKS0txdGjR9HY2MjPNDQ04OjRo5/btRJC4Bvf+AbWrFmDzZs3Y/jw4cb3Pu7/tiCEQH9/v4/3kwxXXnklOjo60NbWxj8FBQVYsGAB2tracNlll/n4/xtBf38/9uzZgwsuuMDf9ycZysvLE1JV79+/H8OGDQPg03sfTiH8LaOf/1ZAqUyXL18udu/eLe644w4RDofFwYMHT/XQ/tdAV1eXaG1tFa2trQKAeOihh0Rrayung/33f/93MXjwYLFmzRrR0dEh5s+fnzS92kUXXSQ2bdokduzYIaZNm5Y0vVpOTo6oq6sTdXV1Yvz48Z/r9Gr/+I//KAYPHiy2bt1qpBbs6enhZ3zcnxz4zne+I6qrq8Xrr78udu7cKb773e8K27bFxo0bhRA+3v/WoGcrEsLH/8mCb37zm2Lr1q3itddeE/X19eLqq68WWVlZfF/6eD950NjYKILBoPjxj38sDhw4IFauXCkyMjLE008/zc/4+PfhVMBnUjgQQohf/epXYtiwYSIlJUVMnDiRU0H68JfBli1bBICEnxtvvFEIIVOs3X333WLIkCEiNTVVVFRUiI6ODqON3t5e8Y1vfEOcddZZIj09XVx99dXijTfeMJ758MMPxYIFC0RWVpbIysoSCxYsEB9//PHfaJanHyTDOQDx5JNP8jM+7k8O/P3f/z3TjHPPPVdceeWVLBgI4eP9bw1e4cDH/8kBypsfCoXE0KFDxZw5c8SuXbv4ex/vJxfWrl0rsrOzRWpqqhg9erR4/PHHje99/PtwKsASQohTY7PwwQcffPDBBx988MEHH04n+MzFHPjggw8++OCDDz744IMPnw584cAHH3zwwQcffPDBBx98AOALBz744IMPPvjggw8++OCDAl848MEHH3zwwQcffPDBBx8A+MKBDz744IMPPvjggw8++KDAFw588MEHH3zwwQcffPDBBwC+cOCDDz744IMPPvjggw8+KPjMCgf9/f2455570N/ff6qH8rkDH/enDnzcnzrwcX/qwMf9qQMf96cOfNz7cLLgtC+C9thjj+GnP/0p3nnnHYwbNw4PP/wwJk+e/GffO3bsGAYPHoyjR49i0KBBf4OR+kDg4/7UgY/7Uwc+7k8d+Lg/deDj/tSBj3sfThac1paDZ555BnfccQe+973vobW1FZMnT8bMmTPxxhtvnOqh+eCDDz744IMPPvjgw2cOTmvh4KGHHsLixYvxD//wDxgzZgwefvhhXHzxxfj1r399qofmgw8++OCDDz744IMPnzkInuoBHA8GBgbQ0tKCb3/728bnM2bMQG1tbcLz/f39ht/dkSNHAABHjx49qeP0IRGOHTtm/Pbhbwc+7k8d+Lg/deDj/tSBj/tTB38L3Ash0NXVhaFDh8K2Ty99cl9fHwYGBj7VuykpKUhLS/sfHtFnB05b4eCDDz5APB7H+eefb3x+/vnn4/DhwwnPP/DAA7j33nsTPr/kkktO2hh9ODFcfPHFp3oIn1vwcX/qwMf9qQMf96cOfNyfOvhb4P7NN9/ERRdddNL7+Uuhr68Pw4dl4vB78U/1/pAhQ/D666/7AsJx4LQVDggsyzL+F0IkfAYA3/nOd3DnnXfy/0ePHsUll1yCix75V5xzYQwfvD0YsADELcAWgGNhflE9jkQzkBaI4vndOfyu0x/EFZcexps1FyN6Wa/7eSwACGDa2D3Y3DEWCAggasPOiMrve4OABdhpMTgDAdgpcTj9QSBuwc6IwokGYIfkZ3ZqDE5vEHa69mw0AMQs2OkxiGMpuOiK93D5oA9Q/coVsv2+IGbmdmDDvjFyLANSirdiFqxBA7hkyEc4ePA85Ix8A51vDOV+8FEqcFY/zjmrGwPrz8GRiXK8dijO7cKCfFbBBecexTvvD3bH3BPifi5eZaPwRztgWwLPthTKttLcd2leOj4J73ZaDP+avwH/vu1q2L02cHY/Pz9z9G7EnABe2j/KfbcnJHHn+Q0AOcP+hLZXLgH6bSAoGO8Fow6iec9w2GkxFF12CPV7L5Nrr3DLc+sLGuOmsdqpMTiRkNwnQcFr9uzUZbh+2y1yvgEHTl8QXy+uwuOtk2HZTsLcnZ4QEHLk+9EA4FiAJTA7px1rWycAQu0L6lPNreKKV7B1zyheHx0XCDoIHAsinhU33uF1FOB2ec9G5bydvqCcTzCOsstfQ+2rl+HSCz7EwXfOlnsXkHiyINcqFIf4OBXWmWYmDCcaQMXo/dj+6uXc/7NlT2DuplslztR+uDm3Bv+3qULu05Dg/eX0BfGDSS/gx81fMtvtC6Js3AF82BfGgT+dh8dKVuLW+gUY+cN38cW1u/CL1mncvx2K87nRzx4AWP02rMEDmDuuFc82F8q5a3gy9tVAAFYkyHPU2+R2QwJ3Fm3EwzuuNPE9EJC41s6NgZtICHZYPiuOpCA393W07b4USHEAR75Hc9H3nzVgw8oawNiLD6Nz/0WABayc+ji+9uI/4oEZq3DX1nmww1G5nraA3R0Ezurn9bf6ArDO7MePC5/D95quY9zaaTH8uPA5fKd+DuyAw31ePvR9vPr2uai44hVUv3KFbEftBatP4lI/GxOHv4mg5aB+z+VyrVOT4JdoD8HHqQDhmHCv00tFX0RGHHbQXVM6S2fUpuFIWR+cviAmjDqEnYcuhBMLwA7GjfOi090p4/Yy7QQApzsEOzMKcTQFIiOOgpGSThSMeR07Xr+Y18sZkGfVToslzGPkRe9hf8fFPBcdt17Q99Lcca14tq1Ark9PANYZA7xfiC453SHp6GsJ2Okx3DqhGr+smybvg64UWFkD7vx6g0BAyL9V/05/ELCEe88JwIrasKKWpLNqf9jpMThxm/cA70F1Txh3lzBpuziWAmtQoqaWx6CfD0WvELdcmtgfRMmYV9H42jCJ54DgcUy6/FVsf/Vyt6+uFIigY94l2lyN/aXh/PwLjuDdd87AhBFvoG3PpbzX9HaKLjuE+v2XwQ7GE/Yu9W1lDUAIC6I36NLxHnkv3FhYgxXbJ0OEFL2jOWtn/rILPsArb52n1sKC1WvDOmNAtqHW2OkJwYpbcm2PQ6MYl4DkOWIW96HTj8su+ACvvXOOiQ8NT040YPIr6jxMHP4mdrwuhQs6U05vEBDyvnLivXj7zn9HVlZWAr5PJQwMDODwe3G83jIMg7I+mUXjWJeD4fmHMDAw4AsHx4HTNlvRwMAAMjIy8P/+3//Dl7/8Zf789ttvR1tbG6qqqk74PkXxX/TLe2BnpMlDEdYOXiSEKRP2oPqAvDzKr3gVNa9cjlljOjEx8xDu3X4N7NS4JNgW+NIYc9nb2PfW+SYTqBNsKOLbEwRsl7A6XSHYWVH3AupVF3uqJO6IW5JQpsX4mXGXvIOOPZcAlsDknH2oeeVyHjtCDhCzAAu4Nr8VzzdMlO9nuO8zoXo/FU5WHHZaDHOzW1H33nC8+dbZBhM0fdRebNo3Gk5/AHZq3OxHQF6Wal7n1gbx/pQB2EF1ufQEZb/qN+NYzZn/7w3KsTZNlB9Yarx9QUwZvxdbd47mC0+HmaN3Y11LrsQXMblq7gg6sPoCECHHGIPTH3DH3CcvTZ4XPdMXBByYY1brKj5OgXWmvIz1veP0yUvZ6g3wJenEbCBmy4s5pj1L66Bw6kRCWFxWjeU1FbAz5R6YPbENH/RnouG1S93nu0Moz92PPU+NwZHJfcaFw+NUDBzvr+MwKLnD3kL7oYsQeCsN0bNjzEAT4yDS4/LS0/YMQpJ5RdCBdSwEBEUCQzBnXBvW7Jpgjona6AvC6rchUuTeuW/KGmz6eCyqD1zB4xRHUgDHgnVWP783beR+bNo5VjEZ8nKyw1GM+rej2PPNc3j9AeC2vCr8qrUSAOR7reNk3z1BWDFbMhVqXZ1ISK5zllyLhYV1mJm1E/M3/COQ4sizGwlh6aRN+FVrpbHvac98t2A97qu52t1DHnx7mQ8viGMpEKlxwLFQOPY1tLyeaNGkNbX6bIhUB1Ny9mJrx2hjnY1n4xqT0B+QX8TsxL2iaJG+1wcN6sWRd7Pc80FKk5gl8ZRMcCZhJCURB05EMjnCFkBAYNil7+NrF9fj/uaZcv5HUwAHEKlqbwGwMzXaQPSxPyCFGxJIFF4zm9Mxb/HLWN5ehmkj92Pz/pHuu4qZhwNmaHQ6+JPi3+Fb1dfLc6z6vPj8j3Ho1fNwV+U6PFg9C3Y4ynta31tOr8KzNlZxJAWPzvwN/qluvrFPWdnTE8T8ogY805kv95Il3Og+S8DqV/Qq3T27105sxQv1+fjpF1bhzehZqD9yGRp2Xy7PQq88T9YZA3B6g5iVtxPr946Vax6TDU+bsBtbD4xIoMGEW6RKJn1azh5sPTDC2EMISBbA6gnAOit5SkwnEuK/vfvreMBzF9o+1QRCunPpWe+9uGrS45i34TYg6GDQrhQcGx3lO7X4soOobx0Ja/AARl30Lva8OlTSWFoDRXPvKtgAAHiw+Sq5VoBxTyzJq8ZjNdMYZ1cMfR/7X71A3nkWEs50MuGIPnN6g5KmBgTTIjsjhumj9mJja3bCuogjKXJNvfdkj7xj4FgYcvFHOHzwbHk2hWXQQG7no1ReNycSQun4A6jbc7nEB/EmkRCmTdiNzW1jXYXFsRRMzd/l7oeBANM8fb2daA/e+sY9p11GJOLx3tv36YSD80YdOu3mdDrB6eVApkFKSgry8/Px0ksvGZ+/9NJLKCsr+2SNKfGHNnzhZYcAS6D6wBWSSQGwbecoON0hrN0xAfduvY6ZAEAjhgLYs/9C+RkR9t4ga29IKwNIAmSnyYvXiYRgCUsSC8UsSs1hXBKGtJi8uD2X8a43LpB9Cws1r1zOxA0CmDZur+wjPYa1u8fDzopKohcNYG5RE8THKUxsRUjIixPA6s48/Om9M/iCdvoDcHqC2NiarZgo9bliVEpHvyqJkmPJS8YGui+S/y/MaQAA3Fq+WRIhdSE7PUHJOGRF3TErWLt7vJyTA8zOb5PfO0CKLRnXRQW1yLv0TTiREAovOwSnO4T1e6WVhrRrdloMFjEYqXHJSFhqfYX7OV3UEr8WHi9bAScSwpyCFh7PnZM2yvFGQkpbolAcEvJ/x2OlciT+v1pW5+4PpR2bPn4PYAtXSAyb85+ZvxPL6yYzo2Gnx7C2OQ91na52c/74ZkAAda8Ox5HJfcgfLjNz6e04XXTpwv1Ora9B1LtCaN13KQAgen7UvVQEML+wQV5ycYvHyr8t+czM7F1JBQMAWN2aD3EkBfPHNzP+ACk0QEhrlp0eAwICP9g4VwoG2tisMwYgUhyeFzP4JBxnxHhM+344WJ0Dt39m3iIhbGodBwSEOoPSukUMAABYccnwiqMpsFPjWFFbjgU1/yAvfxJEHdmm0x9Q+9MCYrbENYD7tl7DgrwTCfHZJpiWs0d+12fud6cniJmjd/Ola6fHDMHAGQjw33aapBkiVTKO1QeukHtXrZE4muLurbQY7qpYJ7WBkG1fn99sKkC6Q5g9tgN3TX5R7g9F7Z3+AI58kOkqMWgPpMf4zM6Z2AInEoL4KNWdjAAzGjQG/buvlDZiQWkd7PQYDh08F/c3z4TTG0ThZYdgDR7AF0vb3blmRo19w4qT1DhEwF1o2rPdBb1Y3l4GpzeITW1j5Tz6XHpop8Uwv6iB6SUALC6rBgB8a/NXJe4zXabo0KFzYWdG8WD1LN5XqxsL4fQH8GjdlXC6Q4qeAA9e+QyKLzsIJxJC8FAarDMG8I1NCxUjayy3XOuAwKrGYknbaTxxy11HdXadgQDTp7W7x8MaNIBvbZmHR2q+gKbXhhntiqDA3OxW2OkxKRj0BOWcwlHY4Sg2K5xAWLhq9B73rH2YCljAmMvehp0ew+bWseZ+C0el8JMWcxlMdW5or+m0Z3ZBa8IeF0dT+DOnS+Lttrwq14oBuRf5jkyLYdaYTnmnRd3973SF+F4EgPnbb4EdjmJWbge6hylhX61Vw2uXwho8gH8regF7Xh3q0n26f1PjEHEbDzZfhQebr8JPin+nLKqyb0DSqmWtFUDcYny98va5Ln7SY+b4eoKuQqhb3XMKN+JYCuz0mPt9nyukbdo3OlFgi4RY2LOzopib3aoh1GJacfiNs3Dv1DW4a/KLWFxWrVml3b6ts/ox5uLDEEfknd/w2qXyPuwOMb7scFQKAZbg9/9pygYpUKq55488yIKBHY5idoEck1dZd7qBA/Gpfnw4MZy2lgNApjL92te+hmXLlqG0tBSPP/44nnjiCezatQvDhg074bskVV7y+A8w5JIBvPfBIBRfdhB1u69gBgRI1ILoWuVkWlnXfOpK92TG1bXL08bv4YM3OXcva0iOB9NG7semjjFSE0Smw0zP2DzWCsQsQytzPNCtAZlZfTh2OEsSiaBgqwACAnkjDqH90EWutmEgAPTbmFHQgY3t2ax5FEdSINLjsu80VwuzMKcBTzWXuZpFDcdOr9L2BzyapL4gCsdITSprj9iVSbp0kNkdQKIbRiQk27QE8kcdROvBi1n7RJaDwssOoem1Ycgf/gYuTv8Yz+3ONfCTP/wNZth07R+CArNyOrCuJRf5416TbZMVgLR2KQ4wkFxbm3Ah9AVRPPZVvviPp20eceF72HdgqKv51i1SSoAhQRBRy9CWMk4EpJZJt4p49mzeqINo3T3ctUI5Fspz96Pu1eEJY6oY8Qpb2ZihDAnDTe941g12ZaD17ZFCF+3vZJYRY30F5F6NJ+nD4wZE78zKb8e6HTkJa2A81x1CfvZraNl/KXKveBMdbwx1z38ybR4gXX7OGJDjCpJEprtNqP3RE8Sikhrs6z6faY6BF2LWNYuWPn5D0+poVkW1/tNyFX2J2a4FT7f+BITbh6a0SIYDYtQREq6rISsiJM6t91IhzuvnPWSnxjFlxAFX69gjNcL5Y15Hy57hss/eAJzMGOzUOCpGvIKtbWPc8WkaUDprZKFLZnFLtj/oczrfOtyQ04gVDWVuH10hTJu4m2nyFSPewWtvn+Ouh9pbusXRiyMASDmQjr6Lo4bFxLAaqDGXXv46aptHwTrTFazJ8sLaWa/1R6313KImtsoRnTHw0aXWV1mDEBTIveJNZIb6UbNrhLnXuqTlm5Urqg+71wbOca12ZDmeMuIANneMMdugfpXFls8tfa7RJJqH16rObam15vvFFrx/kz6v7lv7nTQ4F/S5eAo5QH/A3Ee61ZvuaXUWkllVRdyG6AuYArW25wAAIQdzJuzAc7tzTTdGZY2WLsOua7A4lgKR4iT0Z9wxmiKx+LKDqOsYkbC/x13yDna9cYFcf9WHF/ie077XcaCPxVgTnZ/RP/f0ReN0+vrw1tK7TzstO/F4b++76FNZDoaOeuu0m9PpBKet5QAA5s2bh4cffhj/9m//hgkTJqC6uhovvvjinxUMdHB6gzj8pzPhdIekRK20NxCuYOBEQlLjCc3FxBYQH0urAl/K9DcxvUq6t9NiUmNMBMWBvISU5mhb+2ipmdZ+ACkQkOVi8/6RSkMPl+FSY3MiIakF0CFqm0y2apPcC8SxFPfzmA2nNwinP4DurjT5jg3AsTAzt5M1gu2HZLDRzJxOtoggIKTmIy3GloHQEVsSoLjFZncAWLGzGF7LA1/2SivJJnjNCnJOagRXjd7jChFKk2NnxGCH4pieu9vV2CoXGNLowlKEX1hoPSj9JmdPbDMsBw27L4fTH0DL65dgTVOBHJ/ScN2Q0+gSbTVO2gd2ShzrWnNgh6No2Tuc8e70alq7UJzH7XTLcY266F3WZAFSoCFtc9Nrw9i6AqGtr6ZF3ffKULZuBN5MU3EEiklJj8FSrgTlo19hlzdDMCAGJEPuW4PRU64tdloMrZ3D2ScYQl76NR0j4AwEMP6St419tbVtjLvvM2Iu46wEA68i5geF62CnxbCgsB5wLNfFgCAoeO8z/jQcOJEQbsqtAyyBcWPedJk3jyUKUZOEkRVlXUsu7IwYbshpdL8jbV9vkIWOlj3D5d7fM4zPmNMT5Pk5kRBbxSAs9hW3w1G5B1LjmD2xjfuYPn4P/71iZzHqdms+7x5XMDstlmDClw+6zLmdLrW7bFFJl+MgJtcOOnIvK4sHzYHOK53N2WM7DBrhDKg9SQoIYblnqzeIabl7AGFhTmGzfOfcAZeJV7FOpK12uqTFzk6PoWXXZS6jeHY/Mypb28YALg/o7gm4Zw2OxNHk3L1sRSi9/HV2VSM66PQqy6TaDw2dlydos5/eWcRzJ19+xlk4itfePgdOV0ha6nShM2a751LtFUuzHg6M6HUZq36XsVxSupXnNXP0btS2jIJIEbzXyEJgp8Rd9xeluadnaK1XNxRyf9fnN+P6YrmHDWu2skzbGdIq2r73EtR0jnDvNyh6lhWFNWBjzIg/sWXYDkeBc5T7kDqTm/aNdtfUkffHVaP3cL9Ev2ALiGMprksS7VGdeRUu3YBj4ba8KiOOBY6F2WM7YKfEkZ7lusPMy25hy5QTCeHuwrVyT0RCcC7oc7XrAu6aOZb0BFBrN33UXgBA8dhX5djo7Gj3J1m8hfLd53Ov8MNuiMqKuqapQO43EgyUtd9OjbvzJquQRxAh2t/y+iVshSOaKI6moOG1S/mOdHqCmDZyPwCg44AW+OtY7hjJmqOsLBAWxoz8k9xDXSHDCkJWGvFRqvy8R95RfC76gsZazcjZBQgLU0YcUPiUCqMp4/bidIa4EJ/qx4cTw2ktHADArbfeioMHD6K/vx8tLS2oqKj4RO9Pyt4viWpAGIwFm5iV+43Xf3r8FW/BHrCYCS0d90qiy0Cvy8wQg0BMrc5gLCipYyJMZmCnJ4jN+0eqACXVri1cpouYSzKxK42vro2fXdCaaAFxNNM1IJnnXpvN2mm706UAoQjs+tbxrhk+V6aI3bB3DAsnOtGfNnK/HL/uikJaXTX3WRN2SkafLj7N3YTcqmh+4qg0xa5vGy/HAbA/KuGr+LKDUnBSAXbOQACwBOYUN/PzsnOXoVq3J9sNsIXJhLEvaFYUsARW1JUzQ0TfzRnXhtljO+S481vYRE7MlKFVjIQkA5Ou/PltYM+BC12CHwm5jC25Lim8Em6JuV9SvoW1cGt25Mv2U5RWPiMGOzMqLzbFI9TsvsIVxiIheXmqQDdysyJmkvphporGkRrH3IJmw0fWTomj/ZWLzX0FGAIACXFLy16GHY7ikelPG4LvvZuvgxMJYWV9qXTrIXcltfb3Tv49u484PUF2QQKAKSMOwA5HsbxuMsrHH8ChdcN5HFaqpmWMhLCwtMb4f35RA+ysKO6cvAF3F67F0zuL3DPiscTZWe5a2uGoXNuMGOYWNrNrxpzCZjeeyHIVAPrvD/oz+e9NHWMMlwJyFaK/nV7JcBKNuPC8I/JdjbZYar3ZvYOsFjGJwEWl2wEAt0/eKC1pWVG2VtiZUWPNiIEKWXFe49Ixr0om1fuc+r207GVsbh8DAGxls8gypVy05IeSps4taXKRKpBUywlI9y7qY1Hp9gTGzFJC67bW0fh+5QtweoOoe3U4bshpRPAj1+WPFTJQfVnArAk7jb6cPokLp0sJQI45T/kPkGZHMW3CbiyduAUAkDf2dfdr5bYJoYSrPsmAsVCrxWY93jYJd0zczG4/FNSvuyWOv+RtzBnXxnSP3iWhAACv4bSR++H0BLG6Mw+rO/MgjqXwGBeU1eG6se2oGPEKC7k01pn5Lh44Buesfux763x5vxAdov1G94VSJvH6xSxs2DuG917x+FcYJyLosEIGUPEkCu4uXIuZEyXtpDPz6PbpxtrBEnihPh9OfwD9vSFMH7UXdjiKVXUlKj5GPpxiKeZb/f9scyHHeJSPfQVOTxALS2ukwkXRtQ/7wywwpu1Od+em3Gyc3iBW7Cxmtyy5MfWNI2mVnSX3Jil/2B1HJe/gs0mCn8cyR4oOVh6pdRDHUrCqo8CwnJP7j50RY5c5Gtulw96X32Wqs+JYEMdSMLekidvYc+BC5I0+yMo3QN6T1uABTBlxANZZ/fIMCAvzS+phh6Mov+JVthJQOxvbswFLYOuBEbgzfxPTEj2o34fPD5zWbkV/DZDJ6YbN81H9ei4Qs7GgpA6rOgoSA2fVRW/Fpb8yS94qQA82TOKdoTQRylRLgVWsnVDEJsEFgkzPui+7Mgsz8SQNsGbKJm3w9NzdRuAlafL1vpy+IBYXb8Pymgp2K9GDqq8b2441zfnczw05jVhRX2a6sDiaRiXkJLg9pO5Nx/QvN2FtUx63y3NU4y6+7CDqdo7gz3kumrl3YWmNZN400+YdEzfj4R3TEvAGmK4R3sCwMRcfxq69FzMDTAz5LRO24/G2SdLlqb48AWesNZnYgY07xpuWGAe4tngHnm+amLCW4lgKhArcNVwhPC4huquBMSd6vlsyRdagAWNN7XAUmTvS0T2xN+EdwrOOe8M8rK+hd68n+Y5+j7/kbelaE7MxZcx+bO0cxcGhCftMH4u6sAFwACL/Vu9MGXFAaiVt15VN398zJnaw9tLbV+CtNETPjGN63i4jEBWQMRohK84XPoQUIpdO3oQ3+s/C2t3juU0r6mr+k7mq/Ev+Rvy0ZQauGr1HCsga3nVGzw5LH+Fn64uYBvCzniB3L57ImoO45bp7aEkIyOXKWFuvG4569rsF63Ff3dVS46/Wf864NqxuLDTcd7416Y/42bYvyrFre2HpxC14dMdUY2+cKKj6eHSTx0kuGXpWoJCTICzcVbABDzZfZbaj3OBojN710YNveW8R7hTOF5duw5PtpW6b5FblQLpMKYFibnYrumJpxhonw/PssR1Yu3u8Mc/gwTQMnBN3mX8BQFhYOmkTHq25MgHHXrpguL5oLowJdKk7xBnYAPM+oP/nl9RjVUMJ75ul5S/j0e3TE2iY3a9ciKg/rZ/vFqznoPGEsapx3ZRbJ2OlaIwBgWsntuL5xonuOqc4mDGhEzmZb8m9JqyEM0PtXTe2XbrpaC6a1+a1MZ11+oJYVFSDp2onuZnTTrAvCfQ7wekNYuglH+LtQ2djafnLHKNkrLUGxl7TaCQAw8VQPwNXjd6DceE/IQCHg9qT3gPa37PGdGJtcx7scBSzxnSi3wliY/N4o32v2y0pxiiJBfEkNG7Cv50uXXtX7Cw2XeX0oHltjy+duAWP1HzB3RNJaLMcUx/euOVHp50LDvF4h/YO/VRuRcNGv33azel0gtPecvDXwlalAbPDUazqkC4lyTRbdjiKLxa180G2w0qrSEF8REzIbKsyGTiREAcL25lRLC6vNqwDunWBNa9EeGyB70z9g2uW1VxR7MwoZo7ezeOZmdeBzftHukRM08Lp7hZ2WgzL6yazJmLKiAPsQqVrrQme3ll0XH9GOzPq+pRq0D+6V6XiTBSAyL2qrmME7qzYgDsrNkiiRhcSmVwFsKKxDDfkNDIend4gHtp2lWuKV646MyZ0mowvgK9XbDYsQXveHCKtB1oQltMTxAfRTM333bS86JaMja3ZgC04WM1SWVu8goETCaFixCuwBg1gadnLuHXSywCAWflusCWvubL0JHMdYU1tZhQiIOQFROugtFTHxrj9Ls6tZc0rAEzL283MFOHTHYB7uSSsrQAWltYYDMm1Ba1weoLoeGOo7N4CtraPxuRx+6Vg0K006OEoMrP6XPwp16xFJTW8D+kSIo0UXUjnpHbz2MiFiaxydjiKTftGY2FOg/JdF1g6aRMAmUUrflEf7HAUm/eP5ABtglUdBXiqbpLJuAoZXExZseaPl1YmFgy6Nd98QllXCD9tmQEAzDRyUKq6THXB7NnmQqWRlmvC7ktKMNADBgH30qd9wQqENHfNyepoCAZKIzq/sIHbssPSgnRf1TUGLpxICKsbC3FzWZVy9QEQt1xmTT1D54EEA1aODNgJ7elwc2m18b/BhAKagCh/3Th5m+HaRufiga1XyyBWciXRrDZexpp+yI2Ps7YoVzvC+bTcPehzQpg2cj/mj2+WwZtZak/aMM7H6s48pNgelzNi4Ehn0xWS2m1lUaSzNnCeGxTL7njhKH7VWmmM39hb3a5LnW5tsNNjmD++GfOLGtz+bYEledUGc7Y4t9YN4CaNdGYUq5qK3XYzYnIMXmuQDdx05VbkXfqmaSVTz91XdQ1bSWfltxvuN7SPn2wvdQUDtaeeb85zUwcPHoCdHsOmfaPxUMt0dw0pVkajRU4khGOxdGlxHSNdfxCzsXb3eKalcICoCCTG3HW5LpjGHlGJAIQ6QyRgH35/MCAsPLpturGfDBDuXcDz1s96f4Czd101eo9hCVq/Yzx+VjUTD1bNMixvAHBzWZV8Pxow2v9Dw0Qey7o92dJlV3Nh1HkAwgWgWT0deS+RqxkAlOTt52QdPU6K8R4FzdvhKLtp0v59dMdUeUf1BJE/7jXAkmd8VoG7DxLcmU9DcCAQ/4Q/fkDyn4fPvOXgksd/gKHD+vH2QRl8Rkwy5dVfv3esPJSe9HdOXxChzAFEu6QJmAK2dHB6gphb2Iw1uyYkahs8WmDA1ZoDSNTwIQmjDUkQF5S5Fg9dOwZoKUj1QFXVtzia4qYEpD76bDgpjhuYqi5br0baMIl7NDeUGx8AbsqtM7R1uoaINW/UpoZjXgulEZuX3cKp/5LhgefgALdXbjQ1nkogWFS+XWpNvFptLaWsvnY6I2JYFvSgZIUjssBw8KZiUBaVbUePk4JnGwtN4Y7WlTQ+x5mXV8O0dNImPFp3JeAAV1xx2A2apIuZrExxr3YnMQDa24dxMdJaqEDS6wubsLozTzLyFx3BFy7cK9fjONrk6aP2YuOO8Zhb1ITVjYVYVKpw3x3CtUU7WKvoREK4tnAHa/CNcXWFcG3xDtbOssbUcvFnMKAq+4kVtV0LH7nPEe41fC8oqcPK+lIWZIxUwlrbc8a1wbYEz58+v25su4xREZrlS7fo6X7XauzTJ+7CpvaxoDgMOzMKEbdhUU55TUtO+F9SthXLaqbKM+kJuk5mNdPHcO7ZXXj3jbMY/wD4LAFSaHl6Z5HZd0BgzIg/Yc/+C909oLueEf1QAY2IWUBaXAbee2mafpbJIiqA6RNdKw/RKHEsBdeUtBx3vXUaQG0mgz/3/awxndK1MImF0EufARzXwjEvu0Uy4ADgyPiLrW9fgY/eGyRjXbz+5br1jgKBrcRxGlYNPZGAOou6FZn28aqOgoSzuCSvGt3xNLzVe6bMQpQkaJ+DoFXyCn0v81iIFmiWhVn57TJ9tCZ8JKw7pQf2WDHpezr33rO2ur4QlrCQk32QFRLcpjY+/f7ygp5i9qrRe7C+bbys56Ix2llDuhDpSkuYZ8JaCCTeT0RHyNJNv+kug8yGpd/F3nbtcJTTmBIOaU5zs1uxujMv6XsAGP9ey7BhZUqSCMJ75yTsL2VxS5rcQbcqR2Ta7Y+jGVjTPOq0thy8uncIsj6h5aCry8Hlow+fdnM6neAzbzlwukN4+62zDG0JMb3rWnIxL7sFcICFJbUuoQAAAcRjNhPLgO5vTEF/GTEpGETIt1symaQBZA2lFoh4W16V1PA1FLrj0TTdunbDiUiGhiweEBaW17oxF3PGtUnBoCeIKTl7AWFJ/3fV9zWlbspOOxyVwYVn90tmOSOGOUXkt+/OzQ1Q1DRM5Neuxhd35La5avQevN1/hhtQR0yXumiIIbQzNY2fGsu3KtYbhPaZznzclFvHTAbhMUHbYwOPbP+CiyPys86K4qn6cm6f8Ed4p79vyq2Tweear74TCWHFzuJElwkaL2v0FWOm/GDtzChW7CzG6s482BkxXF/c6NlncIWJ44FjMjuPbp/O/rwsGHSFMLugFXdWbMCtpZsBAczI7zDnmMTdA4CRnlU+6Grylk7cwoGkqzvzMHP0biwuq4YjgN/WlrrZMKBiRlS7t+VVSUFZyPSPEGDG1M6M4vnmPHcfWQLPN01kLfysMZ3umLPkszxWtZb6HAzcqbGSC9bismq2uBHe5xY3MS5ZMNDifxgN2sW4uqlACgbkR6xZ+3RtspyPua+M9baAM0I9LgNnS4uQpRUcoz3B882IYXCgR7bhCZCUD1kJwtmisu24IacRC3Ma8P6HMvMY4R+QZ4kCeLtjqca7JOjve+t8LCiu5/gHfR7MNBPzawGXXvRBglaT6Nv3K19waSDk/Mh3GgBeqpcFJkXIwfPNeTy/7xasZxw7kZBM/6ntOQLdWpSMydfpstMbxLo92e50SRmkWbHkYFyaJmxTaeH0yNiCVQ0lck6KYVrTko8jR8JuvIZuuDuWYqyTjGly8eREQka6St6PKth0XnYLBxfz2NS4V9aWMn71u+Gx7Vfi6Z1F2HpghKSBaa7Ge252q7TKqiBoVgBZ4OQblBSBGX+t/fV7xxp7wYv/mfk7mXtYMmmLQXPpmbW7x8vAY/2sNRYCAQEREGg/cDEH7NL9saC0zo2xUe6MPOf+AJwumahgYXEtn6MNe8cogdsdox2OsmAgFwhsuVuSV834XTppExaVbWerp+xYcNuz8ySu2PVPxa/cXFaF5bUVCbRWnwsAbOwcxzTK6QpBpDpwIiE821DkBhfr1hplPVrXkmvgfUFRvbEedC97GXyDXlHdD/pOnfNrJ7YeV7DW21leWyGDsXtCJ3z2VIMfkHxy4DMvHHhn6D2Iz3TmAzawor4MsAUzFzPzOjBokOvvvWHvGIMJuGPiZgDK5EsMiGIW+TnlYqMzp49um27kfwZcZsE4+NpvMpV6DzRltbAzYpxmsmbnSNlXQODC1I8N4kXBhWRipMw91C8VjLHDUc6WQxmXiOkHgDffPZNxsmHvGNxatjlhzEbwarcbdEf4/9nWmYxrABBHUvBke6kMhEqPSWZHC+I2fmuaEBKE9PE5ETfTjfdyW15bIYPPhVpDT30AQxBRGiWXodDWyqPJBSB90FUbt0zYzntvRl6nMQavEEjvLJ24JVHDDwA2MCTlGB7eMQ0BSCFLt2LR88R8GK4F6THTPK+ty6M7phoBvet25ODJ9lJ8/GGWZAzTY+wGoQuzj26XZnqYvKIhqIgjKXxG7LB0G7m+uFEybsJl+nUhWhceefza+hn7X1h4sr00Yd1WNxYmPJ/Un1sbsy78Mc7CUekX7VmjxWXVrjCfZM+s2TWBzyq5CBm4yTLn4PQEZa59wA0415hjQyuoxv1U3SSsqCvHU3WTuB1ACr7MnCiNNmfn6g5hblETPzvuknfQ75g+6IApjNlhVRsiHMUhZSmkueluB/c3z8RdFesAAEvKt7g4V+fyy+VNStNsYX5RA+PkvqprpCumoqF2RgyLimvMFKcAmjrNQlnUPwfQ61Y6clHsdi0Tdrr0m6c56bRUCvpu2/QZuyTBrZdg0LSI6zboREJucD0pNLq9dESwplinZ3amZOa8FhODbikLQ8K7Gh4A18rk9ATxbH0Rnt5Z5GYc8jDoBr30KLH09ee11HEfCWF9Sw4/t6xmqnueWaEkv8uwBxgXtAaz89v4vFPA7u2TN0oBsaNACq0RmUmOxjB4cA/IHW95bQUnGtCFQ76nkpwZK26xK86yVqlgs9NjeHT7dDxVN0laDz3vOZEQC5o0v3nZLYAFPFFbaQjU+h1H+8AASyUb0VxD3Sxu4Ex3upBN/RJeeFxdbtvXjW1P7M9xFYv8jvbe800TWUi6Y+Jm837Txm+Ho1g6aRO81aNPN3A+5Y8PJ4bPvnAg4FY6hmLuLE0bqjEpcCzOWrRh7xgcOyazHdjhKGtb5oxrw9yiJnTF0+BEQniitjJBA6BbFkhzpX9ObRIYF5MicJyyT313fZHLSDMQ4+G50O1wFNfmt+KxbVcy0Wf/aQXLayp4jNeNbYcdjuKBLVfzM2uaCiSjnmWOi8dMadEAPLZdBuLdlldlDM+JhDhbCL9LDFiWzBBFvpmUO/6hlulMuHRm3+kOuZYFjZlkbQ49pxg43cKSFM9ZUTy8YxoWltcoYU3w9wuLa9mn2dCoaoWbrhvb7gpt5DaU6ZpjH2+bxP1u2jfatM6oeS0p38LmeDscZVcpqf3RORHpg+tEQgl+xTrDQsKJjgv6233eMn4bLidwL3AvfKtyPf/NzKElXAZHG4sTkQV+Ht4xzVjDZxuKGE/MPPYEcXvFRrddbdzJtFujLnrX/CDJhcY40FOThrUYB5X5w/s8Wf8AmFpe7Znl2ysSfKGpb3dMrlXKzowinNWXODeOj7CM98mCpbd3y4TthlWFmE0A7NMMAKm2R4jWxr1k0hY3d35vELveuACDg70uY8lFvyxj34iMOG7Lq4LldS/JjBoWkAerpICzbPtUKRgDfNbXNBWYFhZym1H7KCPgprN8qm6Su7c8eIAlMC+7xT3zSnAn2kz9LSytcbO7qM/Y9bHbnSOvh2cPEU4W59ai9PLXWQjVkzYYZ1QAlC2N5kn3DGlyDcue2pfzslskndPwotNZOz3mCvxeXEDSWzpL9Dw9C0sqdjbsHWO8t6Ckzjwvah1vyq1TFsvEc+cVkGEJzC7QtM8BYQgaTrfrwvdMZz7TzeW1FYAAQpZUONhpMVwy5CMAUlFB+2GlCrK24QpER49mwE6P4c6KDe7Yw4rZtpIL0zr809QN0sKbhHm3w1FDqZBMSQHILGHPdOYbAj8LoplRYz9x2yo9sOH2GI4aeKb/F5bXmOtPApSHdtlZUb4LdYUf4Z/+53bUWfFaT6NOkJN/iGMppqItHMUdEzfLwpCnu+XgU8QcxP2Ygz8Ln33hAOB8vgR2hiybvmbXBEVIhdRy0oXrCcJxIiFEhawfsLq+EGt2TcATtZW4tnCHJGLpMSworneZYOEhPpq5nVKK0WHn57tDhuvGkklbjOwk5A9N/4tjKQmaHQrivCGnUVYiJqY1zQxynDWm00h5SNpFAJivtDbXFu7Az6pmun12u5oj6tPOjHJFX0BqlOn5OQUtfDHqwNou9dwTdRUGzqkfEjgAyHUJCENTTGOlNVtYWsMEly4hbwwAta+3saKuHBAWFpdu42dW1JUzESZ886Wn9sua5nxDw2cwkB7BhDSc1xc3utqhcNQQIJhJ6wrJlLL62LNci9TiXOn+5vQFTYYRMAO/j3MJGkIH3JzfN5dV4fqiJhYaIWBoEn+2dSb/vTi3Vvr+q+wx+iWkW5qciMwjT/OVmms1394gM03ewFjaZ8z0afPZ99b5HoYRfFFCuIHBhmAkLGZYdFzpgrj7hTAEGR3scFRqmdVZZY2yNmZ9rIB8tuvjDOMZFip1hhkwxnLn5A3cP+0T1pJqro/8Xk8QUSfI59c79sfbJrmMsMqg9WR7KTh1I9EDSxjzsHoDnOnFUGDoyhYVYD43uxV2prmv9TnOy27BqoYSHrvTE8Ti8mrGEzNMFnD7pJfcddF88L34ZcaOaHdvkAVeOhsLcxowN7sVTm8QD0z7fwmMmeHKpmXZeqK2Ej0xtY+L611FUrop2Om0gmD++GaXobdMYZ36W9VQgmWtFe53mi87aYT1FLQ8R9UOW/BoD+jJLygegFLwEn0Rlmup0RjIVDvKZ1Lvg3BE+4rckAzXLVUIk9Y/WbY+6Voj576mxbWSHHzzXHcOXaaih9xEdeXXQ9vcLFeAnKOdEUtwvSO6RmN5pGoGC1rJgmyTKRgMhYnluk5SDQSiOfp8WRj07FG2/GiKJDk+2txgawivTY9rCbq9cqNxdy2vcV2ayA2X2ifBDIBBo7x33xM1lcyHiPQ4JyEhfuShbVcpofj0thzExaf78eHE8LkQDmAJWMLiAilObxABCCaodkYMD9XMMLRiugbVDkfxfKM0xelBjWt3j08w+wGJEjq1wSBgHGASGsjdBZCX+XVj2w1Nj96OsAVKL38dTk8QpZe/DkBmaHF6g1hRW24wWs5AAHdO3sAERCfsJGTQ3J7pzDc05XY4yqZUJlYxG4WXHcINOY1YWV/Kl59kniRe1zTnY+bo3bi9YiO7JrjrAXyn8g8GobK0DE60ZgCkAKaIPxNOIrCa29DTO4uwZNIWmdM6IGS2IZ3A6rgOu5l2qK/l9ZMN1wPKc0/4sbQYBZ0xps9YW6renzWmM0FIfLahiHP5G8yVwgn9Xt5eZjDxTleIM748UasYtTRp6dLXjy0qcNfKy3zqa8Wa2oi0gD3bWAhYQGp4ALClvzllMtH36xM10nphDRrALRO2m/tT7X2Kv9DPxZpdE0y3LEtw7njjUlS4MbR5XtDcLJ5sL2VBSb9gdcvPzAI3/ztlpCKYkrfHNbs7bvwCpfZLEJAzo1jdXOAKgQLMmCVYXgRgBx0ubuR+bjH9oYwuujD90LarjP1rZDNTMUN3Vmxw87ALCxmBfsl86z77WjFFCMhMJP0Bw+rmREIsVM1VRc94mHr1Wt2FI9OkSU4khP9XU2zs97matdPpDWJVfYkriCiN95PtpXh0x1QsLq/G/JJ6bu/RHVMNYYHAcL9hJt1VVnhdvigeY3VnHiCA7zVe56aEtATXndCtvZwJRkAWhrQEB3gDrtBsRS32T7hj4ma+P5xICOeHjvFc6Lcddl13aJ94mXCnN4jldZOlS1tfECvrSrluBgsbnpoNvC/VmRLHUuR57Qpxxj1695nOfElfFMzKlxbQx2qmGWtph2X6YcIP3QvMvHsy2C0orsezTYUJzLUu8BoZdwgvIS17k34nKsWLrnXXaQTRCcp6lXfpm+76REIyDaqGI9gyS5U4miIF0mR1L+j9HhX3EhCuEA2Z6ljvQxxLMZRsXsWM/izdU3PGtbkCvOI95mW3uNXWdbAkHYUtLStLJ2/CA1P/H1squB8S6NTeImuUHY5ief1k5g9gyZTdBLpQawUdVwjPjOLm8ipNSDm9LQc+nBz47AsHFmCnxiECAoOCfarqooVftVZiyoQ9xgVDAVrTRu43tL90ic4vrjdTZdKhT+Yj7NHy6FK77h5wbeEOk1GFq5l7bncuVtaXJhAdItI1O2VV5bpX3SJR5GNuh6Nc2MZOiePhHdNcTYzGxFBeaPI9p76eb5rIVVXpYuAAxqCDpteGYUVduSzwpgP5VMYtrNuRgzQrCqFXj1bjf7D5Klkci4IfPRptOyOGxbm1uCDlKBf/oeJPxOiwH6a6hJZtnyrn4wB/X1kFpyeI+UUNmDl6t4E/0iLb4Sgo9aSdHuNL4IacRo4xIfxYgwZcFyAKiiUCH45Kv9tICFZcaqnX7cl2NUqaxpMtFGrP3JZXxf6qRPRvyGk0fY4tuOluNc3unKJmHp8uNBkXaq8nVoX2rqa5vrZwh/rQwsLSGqSEYpxt6vkW6Se9dOIWzC5QLg7UT09QZtlRQEyAnonD6QnyHtH3gAyUlkWv7KyovIhJo5dE8+hElCvXQIAZBwM8wbJzxrUZQrpe0GltywQWeuYWNcnqvRak4KaE4OvGtsOb79twj3NcxpDXJxzFf26rdJ9RRQ1F3ObMPcxUCVnEzE6P4Vvlf3RTVOraeYUj3a9c1/iSS4ATCQEBgV9svYrbZnwKjanKjMpAR4V3nlc4KosBdofYH53mMHNiB5ZO3MKZ0ggonoR9/8NRmdKSBO+eINbsmqCleLUSrIg6PNleilUNJSadSKJkIUul13pEeLi1fLPrRkZWo4jL+PN7Kg3p/MIGXmcSxp5tLHTdIXuDxt4668yI2+0ZAzzGh7Zd5cYyWMLUcKszN3P0bsY70RqD2Y1IOjC/qIHfszOjuL6gSeKfNP7e4HrPvhSWMFyq+LmwSx9IIFq/dywLlzTOuyrWwYmEsPXACEAAi4pr3HvMaz1Rn61sKIGe5IHjBYR7392Q02goJpz+AC4496jxWdKzrY3fO28SIFv2DNe+kAHFTsyWe1GLP7EGD2B5bUWiVVg7fySI2WkxWTVYwUexTNm8evfGSdvcNvpcOnvLhO0J9x09t2bXBBY0SeH1TGc+x3YZipb0GJ6tL+I986vWSnxny/9x+yTBS0i3U4o1OBqTlkoSDms6RvAeo1o+uuIBAlzkkPYGKaEW5jQYKbRPR/BjDk4OfOaFAzaJCZmV5O4tc/i76gNXuH79GTFOjeYttASAD3FS8FxWul8rvWtnyorGlK0IkMRt7e7x0Ius0ft8MQHmQdae8TL03tzqIiCYcOnaC1giIdMCm+LpUrWFdE3SCNvK+lK+AAhW1peyO5OOD5mSz8JPW2aYhFgThPQgPjvLTaFIc3iithKPt03CI9tk/vkPo+Gkmks282qfUW7uVY3FnHlDXwsGLW7jhpxGXDe2Hd2xVIijKUaAJzGTANwKqUpQcCJqLRw5pwStqlqXG3IaNbcduT9+1VrpMsPqkqeqzTrQ5XX7pJfk/31B9jfVLwq6kEmIuLVss9RM0XgpM40WC7B293jjEu86koEbchoRcwLc/6M7piZkgTneJf6s0vgTc7ayvpSzCwFICN4D4BZ7ioQMUzigghGh3N+SxNnQeOh9O+z6EJMQo+McAFsC1+yawFYOYpDmFLTgud255pn0MO+yU80KowQbofA+N7uV98Z55x3lcTBTZQEfRLMAAA+1TJd9azfW3OxWQ5Onr5cOFHOwuHgb/n6yjN9ZVFIjha7M5Gs0Z2ILV0k3gtipCJk2x/UtOXhk+xdYy08C4kPVVzEDnZApSyMROl3RhXN+vtvduwtLawzL1215VViY02C8RwoBriYOU9u9rLUi0Z3Qo3ggGmCHo4jDdY0zqqpnuWvKAltGDB+8NwiTs/e57/QE2XqWEPhOZ1Kdq/V7xzIt9iqN9P/7nSALCk5EurjZGTFD42/g27NmdpZrnXEiIczNl9Ygcr+z4hYLa8Z+UtwAFfSiOZNLI90hTrdLD88+qxt2Rgx3TX5RvqyY9RW15dKaqu2FFXWucko+a+FPb5/F50dfe8PioD4nJY8+ZqpdQri6bmy768YbdBgXelwA4TkBb0k0/hvbJc1bXLKN8U97jdJmQ4CVYk5EVstmuj8Q4OxI3jUj6xUgLfhMxyNudiuK16DMXgCwoNS1cBPOV9aX8r5fWVcqA9FtaUWg+BN6NiF7HtFU2v/qjv9uwXqs2FnM9/TpCg4sxD/hj3MiTYUPAD4HwoGX+Ol+qMSksIuCXowEgBUQCcTezoy6wZlajnUyResXD3eriN+6Pdl4tHq6wUwYY6XDSa4fOgOlXXjUx4qacm4fAGs8CEjTrqe4o+eIeSQth5fp8GYM0TVcPAb1/69aKw1GBpbUarMWUcOhnSVTH8o5aXNXF8/SiVuOqzletycb7Oqht6uZow2tOWkONa1OQsYRTbufGehDZrAfz+3Oxd9XVOHJ9lJ8p/IPsMNuMTQnEoIIuf7NhIendxbhzsoNCfihMSworpcF5+iC0uJbTnRBGWsSlu4Wui++sW7CnRMxKo9tvxK2x4pF60qMF72zOLcWK2rLYQUcPL2zSGoV0xMDIedmtyYwJfrla2fEeIy0BwEZi6ELvjrjzuMOSzchilUAgKNHNZ995YawqKQmOZI0TTnjzZvxSLgWgbnZrSzMAAAsYFCwz8CvV7PKY9HWelHZdhmQrwQGPTPNu+8OBrR0mfTeBSlHjD3EqRh7gswQ/qXwZHspa6NX7Cxmpp8KwBEu5xfXu0GMmVE8W1/E558ER4L545tlykqVVYnPIOFABUay0E+0QgkMtIZe+mJnRtkaqNMNYh7vzN8kY1G2T8eKncW4bmw7zjgj4grdtsCy7VMTqv3qwZS6tthrRdM16BSkaoejzBTZGTHXZcTjy26H4tjWMQpOdwjXFzdiSu5eI8aC3geQYD0GkJD+lu4K/swCC6Z6piGdoSPG2ekJcpYoXbjxKgtIUKb9IbR0xsa4tax6Tk+Q18h7/heW1XCa6g8/ktp0yrjFbWVG2arIli92ExOuIBpyK8frQsOdk2XxTJ1+JGPoaN4VI14BhBk/522Xfi8srQFnCKL9o6ey9ayXjjv9/N6UWyfTKWv3Pe0tShMNgONK7HAU141tl0k4HM0aDGmZJsXOzWXSpYfrIAiLq1hTQLfOj3CRP7XfFpVtx/odcn0e234lu5bR89cXNRn3JM81PYb5xfW4vrgRd07egPubZyblU043cMSn+/HhxPC5KIJmZ6QZ3y3Jq+Z0ZoDSItjC0M7pFz/B3KImrmtA2nFmrgDWvjoRVYCprhR2pgyspEwhgLx0dZcYAiYskzbhaDxdpldVJm+dsEWdAH5bWyq11EksDt45JPtf/5z77gq54qItpDaE6hOoQD3Gi14wRZk2b55UxdqVExWwMfpXhVl07V+y8emabUBqWlijQZYKDx6vL240Cs0kMLRaKlQjKJE78Vgo4GX6Zb/XFu5Ahj3AlqVZYzqxtjnPmMvc7FYZc6DtGwCMc2ZoaBza37R/jLGpQjZeSLbm+u85hc3Sn7knaOytBLx3hYCgW/yOiogR6MW19PHq406GNwIdR3T+vEWako6rPwBo8R7eczq/uB6rGouNvUrj43e0TDZefAHgwm7UPhe0QuJ+WJxb6+75Yyn4u/JaWbDKe/6oiJFab71omT7XZGfYS490muP9nGgLnc85hc1uyuIkbRzvM95zSc6nPkZyIUugoSfYXzqdYcZXW3snEjLwk2wfkFBHTB0XCutxi5sl24tOdwhzippxXkqXZF6dRKWQPkdat2kj92Pz/pE475xjeO+DQTxH6t+KWzI+Q2g0Mcn+8tKOBHqg4Vsfs3ce4lgKhC1cuueAzyu1r7+zMKfBxWePCjzWCl7JiQsWkOCo8fE9AGN9ku7tSAh3Tt6Ah3dMS0rLaFwLy2rQHUuVdCgaAAZso20d9LW4avQerG/JSTg7NAbE3HEmKz7nBWcgADslnpT+83r0B2S2Q22PAol0gNv03FejLnoXe/ZdlPRe473vueP1uVMhRnr/uwXrmWmfX1KPjMAAaj+8DPveOt/t34PLhLNOc0k2Tw99AYCZYxrwfyt+d9oVDCMer2HXEGR+wiJo3V0Oisf5RdBOBJ8bywFptu4q2IDHtl8p/ZdJ26UIJUFSrUpYBgx7/aLJpMyl39WzK+tLAVv6fhJjR9qclXWlrtZC8yGnsT66fbrUMmt50kmzNDLtMFY1lLCmgbQys8Z0uubBbpldQ2+TLnz6TM+VTJ/dNWWdq8VK19wSVKo6Ay+az7WdGcWCsjrD7CqCQma10dr3Ej/Go1ebT8/r+ciPYxKer7JEceC2pjmmwlakUVtUup2/p2wiN+Q0JrgB6SkIveOiv+l7Oyxdw0gwuGXCdqzbk40FJXWGhu/ZhiKJ18wodPcRZkySZB4iIMGS1maOChrl9VD4s2Ku2wzl7fYKn8/tzpV7ltId0oVN2T0IUhzOaqNrE2n+K+rKTetNZlT6VCszuPcdXVt7Z/4mrNWKn/E+U5c6a7I9jJUTCbFvrjF/+lsAq+pLAGG5cRS0XpluTnlac++5o7S6a3ZNMNvOcveg3uYNOY1Y3l7G7wtbsGCgt6uvEcW6kEuCt4BgMmv3gpI6E4/HcYlwIq7bjV6rgbXlGs1x+gMJ/ZCmeUleNVJtZeVIUmdCx8Oz9UUJ7kX0Hgefq/coyJ/jfSxZJE7P+kPPM34It3Hb+H91Zx7Hh1xf3Mg01Rhvpnu29H26pjkfy2pk6kwjgxWNSTuLxPQOTTsCAHjvg0EovOyQMe6FpTUc+wNI5c/c4ibYYWkh0fczF8T0WJd5DLqLlmZJJrgptw435DTK/mhPeeaxuKyaNePcFlxr6s2l1azFp+xiRPN5HFnyPE3L3eO27XVDAnDGGRHcXFLNn3OGm8wkdE0xrSvqy1zrlQqo161CerIBva0Ne8cAACdR8Gq17ayoCuBNru/0nks7Rfn5a3cL3SPctopbYNDWYs64NjhdIaNWAOHy1skvY864Nux5bWhSBQTgrq+dqdwQw5oFSQFZMWk8bEGwZLarJ9tLsWffRdx2wp5SqLhz8gYTV+EoYAvcMmG7tJKlxtmyZmRSEzDcck9H+KQuRfTjw4nhMy8c2OGolIpVyrMHqq52L031GSyBOUXNhumWU4OpwyY+lj6BC8tcv1g7HEWPI/3PH6uZlsBk2hkxzCzYyRllZuW3G0wKYJozqXotEUXKOqATwR9snIvZBa382ZJJ0g2HiksBktisaihJYBB1bSgTfPXO3KImfBDLghMJsasAz0UzN3OQs2KO6eLTLSE0hydqK3kevBY9Qc76MGdcm3Lrgut/qV0MbrYKOQ52k8p0A4UpNeKqjgKZFUkLLGQtoroon6qbxMJIb1yO29B+05wtJBTFYQFGCQ5S4+PWyiD3jcfbJmFxrtQeswChBCuOW1CnjoM1AbfoXHeI05Xq4PTKmIV/yd8oL1ZiYrS9KIKuu9Pq5oLjCp9UtIgvAAsGMybitqGdBzQhRvm463uI9iJV9ZQ1Q5TZvXQbZwlbUFIHCOljPzl3rzuurhD7wBODRuPVg8mpwBb9b+CHNLVq/dfuHm+cG6oVAMBYc2pr/vhm9IuggSujj4Aw6AM/p7mv6FpVL87JVcX4jNq3hBRWvUyECuRf1VFg+rNrjOV55xxL1HZ6UhZ630uWElT3fV7WWuHuX/WdcCwj0HJxbi3mjGvD7MJWgzGl8+r0BHntCCjI/3iuCkZ6Z8/49CrTrNxQCQ1Wd+ZhYVmNxFdPkM8ZtXP7pJeMuAM7I4ZFpdt5HAatowQJx1IgPk7h+a9oKPOkvAUL6byfLAAOsLKhhAV6o3aJhmud1tjhKLu56mPJHfWGUWHYiYTwZHsp/mubcmPyWI5JkFleWwE77GboqhjxCp7eWcRFFp+or3AZ/eNwACTEbT0wwhy/MMd/5EgYy9vL2L1JH6sTCXEQO6XPJhwnxNAZgrTU0HuLsunt2+Eo5pfIrD/lV7zKbZA7XjLBK0Gpos9VfUb32M3lUlFgRS03XWo4CivmBtav2TUBsCDruYRNWristYK/p7ldNXqPoRialrOH/17dmYfFubVM++cX12PWmE48VTcp6VwMUFt7yoQ9RmwcAFbWPFR1ldxfanzzxzfDTo/h8bZJEAGBURe9m5CiVwrAwILxjTidwRHWp/rx4cTwmRcOErQLYVezqeeUX9Ocb1zAv9k2GQDY71OkCMzM35ng5//0ziK2PjiRUEIhsA17x7D7y/q9Y5NefKTlt9NjXOvg5rIqPFYzzbiMARmApQsCy2qmGi4PV43e46a2U0WDpk1Ql7QnMK9ixCs8ltWNhRxw+GR7KRaWJmaocCIhQ0Pm1dCwdqxbMnXEJP26arrrD+9Y7J9KmVEggJtL3KCtWWM6DW0fze+p+nIu6KavJ4E12M0gBOFmQqLgTH5euH691IdejROQFYHJekHaK52ZkFmqgNXNBW7QrWrridpKtlKRtnBJXjVXptT3Do2JqvHamVGuvsl4VbExK+rKudiUnRrn+d1esZHbnV9cDzs9hoXFtZhT2Jxc8xuOGsG5DMLzjOrHHYjFRX2cniCmjdzPWj9mklnQlX66H0QzsXGHTPm7sr5UptKMhLCtY5Q7rqyo7Md2cUv9k9bKichAPxLKAPBlCriM7/zxrpCvC+td8TTYGTGjIjTv794gVnUUGAXhvJc9pcukC/aWCduNGBLdHYbf8fh2U4YrQNNmO3KfruooMGqG2GEZTA7A8OfXxw0Ah985E4A6M6ShTqKVTsaQ35DTyEXFKA5DaGea+xEWRCTIgZZ3TNwMB7Jg5NqmPEM4pv1gZ8QSNI7M7Am4Wn7dMqoLGb3JAsCFy+BRoKk67ytqymWtmYwY+8PTu4/umMpxMDSnp+omGbjmfnuCuL6oCdagAVhnKlpHlmVb4KwzI2h6bRjssJuvf252K2eGYYWTDsK0XtxcKlNpzstu4TOju8nQZ+37LmELjtMTxJLyLVg6cQsrATi7jKoxQLFVdljWQ/ljoxTWt3aOYjzIScqAZD0AnGBJ+RbcVbEugcnntbBcAYrpYTSAn7bMkEHi3aZw3BOXAtba5jxT208MaDTg3hsRLc7Ogpuk4Dh7f5UqllbzyuUGrr3g9Mh0yWta8nFXgatBd6IBF99aoLjTF2QrOAU80xi8rryGRbvXtZKYc5W/Nuwdw/FxSydtwuadYxiXC3MasLy9DMvby2CHo3ir7wysbZnAfS+ZJBUjuqKNx6GUCBemHeG9ryvVpHsYXOVJRiwhC+K+t85PSE9rZ0VhCQsrO0xlig+fD/jMxxxc9PN/gz1Ims2KLzuIus4rjMDASy/4EAffORsATP9a8icl01+6q1HSGWTS8OkFywCZP5qEAZ1p8moZy3P2o+7V4dwf+bbqcQpen1OnNwgrapuMOpQfblMhu4OwqTBdaS0dSezEkRRZkbhPauvJp9LOiEF8nMKX4rSR+7G5bjxwdr+LD+V7Tr7WTiSE6Xm7MDTtCFbUlWNWfjuGpB6VWXkCmg8sFReyhCRU5CObouW5JjyRz6Tuq6rHQADGGuogjqQANsw1Uv6oum9xgjbmw1Tg7H5+3k6PJfhmet8z4gWIGIccyfCp91kTeTQFIuTw2AFIbXnUlnNUueftNLl2iFsYdH43urtkvIzTJ5liOyMmmYA0+Rtxd79aURsiKFy/X20erK2zlSWo182cI46mQASTBynyXHVf7l7ZL0IOELWxqGw7B8E+21AEq9+GSHHk+qbFjDUlWJjTgKcays1zo/nKXl/cKGM0oGkju0JAqoM5E3ZIYUrNYf74ZqxsLEkIHvXCrDGdWLcnm+cyc/RurNuRA4SEERhJOCFhk9dfwwH5P0MAVLeE1un2spfw6I6pvE4ibsMKOG7ciQJKEWgNGjDWqHz8AdS9Ovy46zC3sBmvdp+D1j2Xumui7QV9vbz0C3DjRZxICFbMwheL27G+OQfXFu3A8zvysKioxoyH6FFtZ3niVuh8qjgQ7lvbW8liDypGvCIzxSn6V7NzJDNozBBqMS703vhL3kb7nmGYXdCKdXuyIY6kQKTHZapqRdOmjDiAze1jjPHCFtIf3TL3IM9Po8M8Zo1W6Wlf9e/tcJTptRMJIW/s67IuAnQrpHDXwbGOe8bofJdmv4K6jhGSdmrMMbXBdMnx0ELNZ3xxWTUH0AKAE7MxK7sT61pyXasnkCDEOAPK/z+gAoZjtjEOHV92OGqs0eLcWlZq8Pc9QdxcWp2QZYnG6m0TAGYXtOK8lC6ErHhCoDcg78LcsYfQvv8SLCisd934vDFYngrb0ybsxtFoGloPXmzSMsKbvvcIz31BWAPuPWsIMUnWUafxtH90em08eywFkybuQchysHnnGM6UyPPU4jjo7tTjxYhWzMjrxKZ9o82YkiTjI/oAyBi555smAkJ6HuzqvsAUsDwQey+Ot+784Wnnn088XlXnhZ8q5qAy+0+n3ZxOJ/jMWw5gASOHH4YTCUmiq2f96Qrh4Dtns/aFCMasMZ2uRF9ciyWlW5mgGto/OoQqXoGLpCg/PacniNsnb9Q0cPKXrmmlC4kIGV00qxukC5DTHWLNsDtwC8IWZtaabpV5g9K4pcZlLnJHZuuxBg1AhASGnHsUIig1DddObHXzK1PWhDNdpnrTjnHMMDOTrC4Dchmyw1Fsah0nqwqHozgj1IPlNRXKt14LeqL3M2KSUc+IsWDAz9DfnNHHxTG5H0FYsGI2u2jQ3Ak/37zyRblGupZfy9aQwOCTtihdGwsxUlpBLP1i0LXj1BYXToraEueUzpZSXIYcZS53fX8XFdbyXJcUV/EFYqfGgbjFgsGSvGr5He1dRyP2JNoLizWKnGM9ruFc/aY+FhS5lXSTBY6zBYZwovbn4ME9zOzZqXHYmVE8VTvJ3X/hKL5UJlPw8XzCUdZuAbK2w4qdxaaPczhqaJEBySgY6XptALasTk0M0tKJW6QrgMID5VJPNp+1jW72D6dL5XjPiAEDdkIMDuPEcd/XmY31LTlyrJlRTnvpREJAzMKjO6ZKS1SatDSQ+kUPjgekFpKLjJElR1io2TkyYQ5kwYSQGnsSDC4874iylGljpTgqgLXEuuXg6Z1FkikKR/H1ys1So5kpM3Ihbsn11GlcRswo/vjc7lzWwC7MaWDBgLSvnO++2409YCYHKoW0Rv9uLlO1PhS+ABipRAk63hiKm8uqpBa6OwSR6mBhoXSBpAxim9vHsFWP6aNjsQ+90x0y9gj9JgUN4ZhrsCicGtW61edOT1DS624ZkNx+6CJ5brpcGsMMOOGENNQazXIicu52RgwjMt+TNEdjJu+t/L38g5hfjZZyCtGYza6ZnFlH9TF/QpNhxZk1cWdi+lkAdkqcMzTZqXFQQngepxbr4kSkYHDu2V0AwBpv+n5xbi3sjJi8J7pDZjpP5bJ4xdD34UQDhivMuj3ZeLK9FMtqpiY9y3ZmFCOy3gPi0lrLIMw7xBtwu/XACAzL+Ijx5vQEXV972nuKD5hfqFyK02Q9G3EkJdENqtu1KjONT3FwbUGre+8RjmOmC4sTkRb4mlcul/s1PWYKBurOoj4XFNdjcVm1a11W7c4vasCmfaPh9AS56Js+Z4JZYzqxqKiG7zLKvAdLusFuaxsN4VgGvXci0jrqdIfw5aIWnM4Qh/2pfnw4MXzmMWRnRPHK2+cmuksoMzb7XpN2R0gCRUTp6Z1FUoOhn2/lIjM9bxe/70RCeLBqFpvVZd8xadJWh9LQWulBuDrRJbOsenZ+Sb00Bys/Tx5vpgyQnpctc5Yb5kxlGv351i9K7YW6aOYWNeHw+4PZ3WHt7vFc6Ex3tWIm2hNDQaZrcg/goE/yw4/IWgiGtp9A831nd4Bu6S9KhWr0i8C7XpLpkHizBg1wQB4JERRw9bMqN+XbVaP3JLgOGO1pfbHLiMYULy6XF9rc7FZmErxma2rn2QbpYjJ94i7XtUJzuZk5UfoOEyMEwNXOWoKLqNF3t1a4Ae6UWUsn+pOz9/H/Mp84BVGbePbOlS6clQ0lnKZVPiwMwWd63i5QQL2Op/5oEHdO3sBVhmmf8JpGQlIbD1NoszNiHDD96PbpRl8/KHT9lcUxWV9idWce1rZMwIqGMmPulqWq+CrN7SPbZhgX5oracsNS50S0gkxahhzYSKhdwOvfEzSYVN2Ebw1Y7Ltth90gf2JOFpXJuBhKy5kQ9+bZj9Mn7IYXri3cYbg/AcBHAxlmjIma75/eO0MyF5oAvLCkFuR/D1tqgWkv0LqRlvnxNikIkIsLu3Qk0ZASfVqcW4sHm6+SwaUqB76cq3ADXbVAVKc3iGRBorRGy9vLDPcswBVwKN1uRqZUUrDLncrUs6K+jMfNhdki0r2LFCywZSVkO0tWfn16Z5HB9Oo4lf0Kt7igwvPqxkLTB97WhO7MKL5R+ZJLmz0xGIxHVXUctsD8kvqEfepEQmzRAVxB4t6m2dwPjZf+frBqFgtedrqrQJiX3cLP6FWlnUgI61pzZPVj7Qw63W5wPK+NR1infPlzxrWxoPf+h1m8xux+2hVi10o7HMX1JY2IqtoNehzK/teHwA7FuZ4O7S9ag6d3FiVqwHuCRsIAXejQ46jscNRwGwJkmtM549q47osgy7qe2ScjZhTjc3qD0qrqjWNQiqqZ+Tt5rex05dLmyZRkZ0YhjqRgyogD7lg196p52S2uYK0B9bmqo4DrEjGONOVXafYrLr+gpYCmdMbr9mTLmLIud7/PH9/MNJ/veU2ov764UQbtZ0bx/O4cnM4gPkW8gfBjDv4sfObdii55/AdAIGy42NyUW4cn20uNNISAPOC3lm7GY9uvxMz8nVxV1dCyKFOqkY5UT+vZFcKtFS8jZMW5eFAyuC2vStYHgDzgSydtwqPbpxvuF8QQ6wXCAOC6se2sRQASNQWAZorW0u3Rc7PGdCIz0M8+m9SXV6MuGxfs/+nFhdGfRrgoCMrwTdUIZjIhwEgnp5tUBaTJ+DgmeS9zp7t4AMp9pbEccIDvV6zFfVXXuPOiDFWePnQrAbWtpxM9rmuAZz14/Ely3N+UW4c+J4SRae/g7q1uYb5k6+FNI+otVkPMGFeh9bi5cTtJ9kIy1ykrLQ5EghCpcUzJ3odzUrqxurEQpeMPoOG1Sxmvb/cPxqBgHzNhSdMc/jnXrJ4grJiN/1PW4FZVTjJmbssCu9Tp8/HiLxneeE3IxU17R3cjMtbPUvtf4XNJXjUe23alcUb1fa/3Q/Mddtl7ePPdM902cZwzS+9objk6nvQAfWZoUhzYoTi7Ci3Jq8Zj2690n9HPkjZfcqe4ZcJ2dt+gOei0LRkkS9MJKGsWBWxaZmpoOm+z8tvZvUVvz0jl6HFBA4BwVh8iXWZK6mS41hluLxB9tmIWRIpggd84W2q/LinfIgUnpTBK5h5C7nX6vqffc7NbZXVbilVKhi+dvqu9trCklq2wxr1CAoBGf+dlt8i0vYDczwHXjY/3sOaOyO5knnPjPZe0XkYVZN3NS5u3sX4e+mKsh6XoazK3rhOcHR6TcrVcXLotoeYA9/vn0sciyRrorsTHeVZ32UkYuwcv7Kp5JAVfKW/Eml0TcFteFR6tuTLh7rxq9B6sbx0POJaRdptppi2Ms8vuQGrP0HqSm54x326ZPOWN3rPYhe94969BYyMhTJuwG1sPjOB1ib0fx1v/fPq6FW3sGIbwJ3QrinQ5mDH+0Gk3p9MJPvOWAycS0vIUS0JEUjin3lSZbRC3WEu7vklJy+QGQn6aytytpyzUfX0BWfmUguDumLjZkPLpnUe3T8d1Y9s5G8WvWisNjZCrbYKRos+JhPDc7lyjSq/XvOlEpKbae0k6PUE4MRvr9mTLku1JCOH0UXtVITLlz5oeY8Fg5kTX/KubIMmdyomEYDkW7szfBCtqSw1HVyJRZg1lQGr0ZPEoreCcMql+q2I9M2bMAHvWFpbQUjSCtV2kgVqxs1he6HELu3uG4vbJG2XfmrCha+R0zZnOoFIa27lFTVI70xc0cHDHxM1GmXl5UQnOTMUWJrVGy2tlRph3omcammnS4Bn4ynKzL/EF5FF86KkjyZUMkK45LtNlJWqDM2Ic5Kl/Zw0aAGI2qg9cgdXNBbh98kbU7bqC3zsWS8OmfaNlQZ7MaMKlz77upHEjKwRl1lCaS+qr3wkyrpdO2mSclbQMze3JSvTRp7VLYLhtVewwYhbisjNihgVo+qi97EZEbVAmKTsj5gpa3bKoHFkHeK66xlvb79NH7QUsgTffPRPOQMA4a7dM0Io76QGXKvg8of0Mt7DcnCIt+DckaduKRknLlrVWuPsOMARII2OPZjmgPq4vkXPW3TWocis9QwKavpdZO64H/mfEOEgakO6ZAJAeGGCLI+NDvcOJE2xhfA8Aka40pk08DppLWBZj07NZUXuLSrfj5rIq1+3PBkSqI60+xc2SBmkuZZS9LsN2XROZkfbUFdHdQWjfLCipYxc7ypKmB4jnDnvLFIIUYzm3qAl2RswVDDy0DrbAreXSMjJnXBvEsRRO20tnjAUXtc5zs1vlZ0E5x3OC3cx4sisa3MxseoIKCLX2dDfa2vprMSRCBbI7vaZgcMfEzUmVAYB23wJwogHcXF4lteeK9ukZ62gfUMICurv1dtnqT/tSx51mqaPnrxvbbq63grlFTWxl1O+C32yfbKYB12gJWVOoL7qL/25yLccM/qq1EkvKtrpzVu+ubxvPd5vuckgFHtlFWI2b3YEU17airhxOJIStO8awFZ7pt2PhaCydhQYDLDMrIuGg8LJDsMMyQxXxS/8bIC7sT/Xjw4nh82E5sDNhp8VMbb+uqdY1Bkm0Vl5wCYNI0Ab8oHAd7t1yHRMq1uTBvFABWQyGLwMPI8/Psu8woAe/Hi+YMUEz7NECibiNL49vTbA8JCXiHhwlFELzFjPqdjWEcnBgArNk0haDEfFqjw0NsEfr6J2LztgntKU0OQnadjXWJeVbOMc5oCwLJ0gXZ6yLkHPyFlfTYV52C9c8IPwZn3m1mqrNZPgwxuHRwPPn2h45Hk687ega6OtLEgvFWWlxiH65sLwOWvC1Fz/efhOsbWrON5dVocdJ4eKA9Lw4lgKR4mBJyVYjCJG/VwG9yebh7UPfy7dM2M5rTdZCb/E277sUYHo8POqfkUZRf18P1KfPMrP60N2VliCIe9vXgzoNfGp4hbDwrYr1eKhlOm6ZsB2/fzMX7751Jmu3eZxKiJw9tsOo7r2wtEa6atmCg+H1M6Dvs2RWO2O9NY0xM4yeQGJjvpqG12tlOt5cCYi+eOmRMee/QIOdoJFW4+W1pH5Jo98bxOyJbUZlaCN4VZ0jYvTnj2+WrpXhxHEY+02j57RecFyLhfGsZiny3lNePOiCBwTMQoYejbGBs2SaZQdc4+Z4ay+EBdEXSG6d0taf9qH3fnWiAdxcsA1P1FQaCo+k2n8P3um8PVFXYe6D41kDlPWC+1EJFW4uqzI9CLT3Z43pxNrGPCPmhnHmsfAZ66KeufSCD/HaK0OMOc3LbsGq+hLD8qLTcOrHW/zSewaoz8LsV9HUcbk7L8/eAIAlZSZtNc68Z10T76M+vHHLj047LTvxeOt2XoZwVmLdlhNBpCuOWTmvnXZzOp3gcyE+5Y06CMDViJGWmXzyWAOhHQhKzcfPA64vMgU/KU3skjy3CMyPmmbxe7qJX2+HtMnkU6nHHLDPbsTUOCHgynB2OAqRxC82oeohCSKKaMwZ1wYr4BiCAY2LxqFrA2nO1CZp1fidLHe8PDalwZ5dqIq6KK0y+9RrhIi0MV5G2IrKbUn+xnowIBwrAZ/6uBP8fUmLZEst+rJtUw2NyFO1GlNE7ymtt56WT98juvsL/6j+n+nMl4F03SHcWSHjIMiHdc64NsYXaXJpjRnvXaFEwUAFN3s1Wvoe8Qqexvv68xkx3JZXxfPR5wJAxnQEHM4hzykls6KYW9RkPqvwsXTiFj4Xt+VVHdfVJyoC6I1rFytpuQYNAI4MjqMzqb9vBRx3Dv0BXivS7uuaX6oX4ERCcq1VW+SKsKKunPeLvh9pLJtaxxmf6+OgeiUJMSPaHJ+oqUwQVEgw4AJLSdp3IqGErC5kQdEZzblFTfhZ9UzclFuHuLDx/odZMmNTkcdCogR0Tm2ocpb3Oa71hjTbK3YW4/riRol7bxXYJFmsDDoG0xKjF/VLVtxQIpL6F2zZscNR9gXXcWqcPY/S5lrNKuZEpNWSxnNTbp1xZokh954RGu9TdZP4XTscxfenvsDpSfWCfQCkJbUrhOmj3Fod35/6AgDPHQMk3UdUpMygm4rJpBgQJ+LGPhnpMj2Cxncq/8Dz1dv/VuV6bpfSP5NlxQ5HZaxXRLqe0Gc63heW1jBuqAaDwfArBtiyhBvAq+4vwKWd9PfzLRKHt05+2aWFCvR9n0ypwZ/FrYTPnqitdOmUWlvSvKeHZaFQsmLIDEJgGmz1BLgNA3QFmLBhZ0U5Jkefu25RdBVbqjCqWrPXDp1nNK0/57V+3TrpZV7fG3KkS5JeHC1ZO3Y4ipbXLzHOxs3lVRxbRJalZdslLaTzxoKBtq56KlYACUkafPh8wefDcqBiDgiOp1n1+t4ZmpQkVgJ+jzQJpLXu1gioxngzkEbd45urjw9I1DDSb692U9foO5EQ7qpYh5+2zJAa2UDi5U6gl2antvV4hgRtl+Y36tVgEB6M2IKeIG4tlzEcCVYHD9PD2hMHsIRlpCKdm92KZ5sLE/xpE3BGGhMtbRunTo1rvrswx5igdYNpCTmRhlpvSxxLwdcmbUdc2Kw91N9L0H56td9JrFmBUBxxFVh3orEDwNKJW/DojqlsISOGVPcf92pIEzRHEWk5sAKOmT61S63t8TS+3SHcXF4lNYC2u9akoWKLEhkAPFaI48WzeDWbnHpQH7+urVbPGz7fnvgX0paT1t8OK+tFyMGConpj7ZZO3IJHts3gvaXHKRnr5flbD+pFahzod4Mjl+RVY1mrdI+w4hbuufJ3HHSaMP8T0IIT7QX92eP9n6w90lzfMmG7ZCjS5NiTahhhMuyzx3awMEJt31xWxcxXAj1J9hmdYc33X7f0GWNXmluvT7gu6HqDq2kf3zpZBvyTGylZ9050LvhvlYJY1/b+oHAdftQ0K0FTrVsO5mW34LWec9DQcQVbf4zxAonWEA+9MfDvnZueQlbtrS8U7pQZbTx0h9w1eY1qKjkdqDdWJdl+mz++GStrS3HWxUcw8bw/YVObzIZErrQPVV3lWrqT0DUAGHHhe9h38AJYvQGuBeTdEzTeE8UW0Z3lxRe/ryvJtFgcaUXwWF2EZK4NC153CEsmbZHnwRs754kR9AqC9P+Ckjr0xkNY05zv7i91Ty0q3W5o8fX3dKB+rxvbjjWNBaZ1QFiYW9SE1Y2FWFxWjeW1FfyenrqUztaikhqu9ZEQO6LHADmA09+Ht+44fWMOXth5+aeyHFyT8+ppN6fTCT7zlgNd46JreOlz0j5S6jUCy6OlILcd0pJyu7opm0yPyjJA77KGl340jZae2tLoLwlBpudIMNDHRpl77HAUP22ZIVO1aQSX2hJx223XShQcOI+yxnQwQVeal3PP7sKiMpnmjDUUUERGxXWQBvyx7VfCirl+sZyClMZLlyfhxZYp4VgDCqndvr6gycAn+ULra8qazDQqpCMMrSZpYfT9wBkavJkuaEzaxcGXgXYhU3vzslsgbIEVdeUGc6lbhahNtsZQhqTukKFFIosJABYMAOmWQ1WiJQ7NFJWP7piKJXnVUjBQ8/EGlnbHU429o2fbIk0Ra+rVpUOZXrxaJWIsnC45rzRbPkPVnhfmNOCp+nLZF5nfLUB3j6N5e7XAnMZQczW4bmx7gt83nTt6jy61Z+uK3GxW2hkj/D9VO8mwDlqDBnBtfqvU/FquH/oj22bI8atLc3l7GZ9/HR+kHDie9Yb3VZeMW6B5W4MGcG/TbDiREFtNqDq7d4/xmnk+nzOuLYGhLL7sYMIeJJgzrk1aYCKyZgHFP9jhKPocOYfH2ybJ/R90AEtWUNXbX1xezTghGmEIBmpfRYUULOYWNRnjkGfdzcDGNIZdI+Qfj7dNkpmz4NIwqrhN8FRDubt3yCKlmB59j0uEA6U5B/BxNMyCwZxxbZzRh+gUrX/epW+6cyJNvkrhOyvf9V2/d/N1hrVEp+1W3ILTE0RUBNCw+3LY4SgeanEzdi2dtCmp4ERz8X5HViC3sCRYk63fIyIgsLFduUMJjYYBmD2xjbXGy9vLZByNLvxrgsEtE7bj1kkvMy4p5s7OisJxbGzePxJ2Rkym8YSsGEyWWgBYOnkTvOBEQjjwp/Ngh+KwBg3gWxXrmWbTfuC9QlmhwlFWLizMaeAzRIIBP0+KHbhnXt7JQqYF75Z0n+/1iGbRDoiEIpSWY3HGQv3+uLmsyjgDSQuwDQSwoKQOK+tLudAq3/9p0hL/VM0kzCls5jEvLqs25+/ZA8/tzjVdiFSba3ZNwKLS7VheU8HZ++xwFC/U5+Pmsio5HhW/6GbKU/si6mY8NOhaVhR2RnLl4ukCfszByYHPvOXge3Uz8F+7pwExWxZWqityRSJNkqYsCMkyE+gaAZ3w0AEliZ3aM/xOvRo+j4ZxQanU7Hq11Mm0Vt4sRXMKm2FbggOfACT1g0ymiQGQ0Jde4C2ZT7eBA6+GQ88Ao/BAGiSvq8+3KtbjZ9Uzj+szzMWq6CJTRY+Sac70fr04JubUm+VJLzCXbK762vA6ev2dae7au+JYiqwwq2moKCsVjZe1Oppvqj6PpHvmBBopQ4vliUtJliGENWZA4vNqTCJuQ0TtBP/e4609j4EsZ0l8vucX17sMmDbm2ydvxCNVM0yf3uNobI310fqw4q6liTO4eKxUhhY5idWL2/WMgdfveJaNZBmR1GdeTfr88c1YWVdqKg6Ok02Ix+35jNpHQGBx6TYsb54kg5J1rXESrahegM0OR7lwWULbx8G9iNvStzzJd4yzvyAOhPe7Wo+5RU3GWTweDB7cg6NHM0y8eOKPeO4CsGKJRSL1MSTLMAQgeaxDRNFmrbAbubKcqPCeE5ExHkljXDxxBARG9qjeIFuydDzxuPWzrOJDdFcX49wniU3SIaG4pyd+Q8eNTl+Y9h0v2xdgFGWjfcia84DA4oLtbm0cfQ2OY6333gPJ6DLBdwvW4/7mmSbeaP+kOEDUMmjV7LEdGBzsdaula2tN9Qo4u5TmfufdWwAwc/RuWe9Iw/3coiZERUBq8gMC1xc0Jbh20vhvyGnEivoyYz/q33OfyYqsqfXgdimGRrMAe3GpA1mhASD2Qfy0thz8rn3kp7IcfCV3/2k3p9MJPvPi0391FLNL0erOPL7I7XCUGdGFJbVYXj8ZTkT64umXMj2r/+Yy5Or/1co1h4jEf9dItwPKu61ruxeVbXc1OBaQZmuXj1eLAVfb7XSHzFgBITUIqxsLE+ZM/R4P7IwYrzxrqbpDEHo8gYcof6tivYkDx8QLa0QEcFflOgBSg6QXiCKN+M+qZ5paQhqHJYn5uj3ZnEHDDke5jPzSSZt4rMZcFD6YuCrCxxUjlT/qc7tzsTi3ljMP8Too7Thnk+iRvpcr60t53qxhISacxkzFqwBXMFDPA+B0tXam9ONdvl0TDJSP57WFOwALrlXAMuV1Y/9RTQnlpqJbJignP4NKh2fgWJhtUv0M+aH82xv8C0iGlGIOaF1mjelkLevi3FrXR7mkFtNG7jfGvaqp2LhApWuDUDU8tH48hXi8fuvJNPM6U/NMZ35CNiI9ew9bDzzWmhtyGtmvmAQOJxLCo9umu7jUx6WAglABuRbzslsYD7pgAAAhK25oH+ePbzYKJFna31ybAQBlQdH7tDNieLK9FHYojpmjd5tMKs1djXludutxA+j1GCLC/U25dYwD+s4KOAYdI+sKWV4BeRZvmSDpG8cTeWgn002FB6rVwmMgeqRltAGAo0cz3LVX87NU0LyhaVYo/Nepf0iYl06/jf+1GCY7IyYtFaqmCmvvNfzOyOvEvOwWLCiqN3z9vXOww1EZ4+KZC+HBWGP1LsVmAdLaRgX+VjcVuGNU63BtvuuPbmdGuVo473Fl/XD6glg6eZOhgaZsZmQBFAHBNMUYn65A0s7VgpI62BkxnHt2F5y+IBdgNM6d+nt5TQW3QYUSnR6XoU21o+yDT/1IK0GildCIZVB3hnd9xVG3QOZ9W6/hvyljFd1TdijuurSq9tbuHm8Ic2y1SJeFAKk+in5/iWMpnHmPeACnK4R1zbmMS+neKrC6ucDNOhSzOEsbxTPROJxISAoGcSkk0d1gKMdojCoGht5dklfNhU7lA8Lk9LS7LKniJRJiwUCux+ltOXA+RQE057PP+v7V8JnHkNOT6MNHfzvdIazdMUEGBnsuV76kIiE3jWRP0DXpQmMSPJoma9AA5hfXS+ZYHb5bJ70MYQsMDvbwc3Y4Ki94xVzPHtuB+cX1Rtt0qRumPl1TqxOU7hBmTOjkCrkcbOQpsEJpWwnmFDbLy1oTnBbn1vL3M0fvlpp+DXSmf+nELcwUAMBPW2ZI1wVi5hS+KOiP21CXGeHcDkdZy5MRGHAL5ij8UvEsNhNr63VzuQyyvWPiZibOANxUlIpJpkwyeiAvjcWo4qzgZ9UzGY9k+razXCadfuaMa3PNsh4iT38/vbMIiydVM3GGkGlgn2+aCDs9hqfqJsmiPsKjDdUZDm/wucb0ElOn7wvv3jT+z3KFOvqO31OMqtPnFnb6XV2RMRbK4GJnRWUgrsL50zuLsKltLJyIZB5lETnZnp4iVJ8DXVR2egxUoIqYHmP86hKmOSfDEQBTmFP9sGldrT+ExUzsf22fhFVNUpicXdDKsTrJ1tSrGQ1ZcdYYZgb63fH0uEGS87JbErKDpNmK2VDtXFnYyUGJK2rLuV/dvQ1QbkFa2+t25LjnTZuvHZbWRqYhYdfNRu4Nc6+TFn55bQXscNRwSwRUoKWibxCy6rC3UBXFB+iFqo4HTk8Qi3NrjaJTOiwu3WbgmSumq7NLKUlpbuJYClca/mnLDDd5RHoMc7NbORhTF4ioXYJZYzqxqXWcOuPge2HOuDbeK5v2jcaqhhKs6ijAk+2lUrGiuUsaArcAB4UCLlN+y4TtvMaG0GtLRlBPtwkLbpYnusccKXzqwg+gAqIp8FrtLTsthke3TWeaToy5PkY7HOVqwYB8f0WNOz6vYEXW7vc/zGI3ThKUaD5eNxW+d9X+G3XRu7BDcTy2TWXzI5cuTyA2jWlOQYvxGRUKnJ5rFhIUQa14o+Uy0qs781ym2OMSSOOj8d9VsMGl3V1ugTiik7SPbp38MqxBAxIHWupROyvKwd5yUOpMqtSli3NrgYCQCgNIBYeeAAOQlZGp2J5ebNDpCuH2io28ToB5dz9W7WZHpD71hAH6mfHSzWR/LxjvKgBOR/Ddik4OfObdio4XkAyAg+W+U/kHPNh8FZyIrKx5XLci3ax6HNcE3f9dHFUBwR7z8bzsFqxqKDFf9AQ2Ae7hXTppEz6KhQ3/cXEsBSLocD7xtc1SI1N82UE0vHap0YY+BwAJRY70YGA9sJPm4XSHsHSyKtKmt6m7CNjCYDz1ttg1Q2estNSYFPD1eJtkjh+rncaMCrlbURaVWye/zL7CuhZtTmEzzgz1SM28x7WGAmpJoPEGBHvxze8KYFHZdjddZZI14vdICLIh00XWlbtaNM2NgvYXM2gU4H2ctIeEZz1jCQl8RjpFD8697+pwvKI8Ok7JzcDLDOtCtncvsLbSlmOhgmwJaQU9aVGd7hCnzOT3tK2kv+sdZ7L/jdSatH/ilunelgynnnlxkKrGaFhxC0JVHNZdAZOuG7WXGpfCeMxm9yrjOf0sqL3MAZbHC5zUca8CTL1F/Oi7pK6KmluR0VYklJDaEQCEY8GyTabXOAsOMKuwHeuac013Fs+eOe6aefeWnhLZ854RFP7n2u0KAUHT/YgDMmsnJYyVc+yf4Gw4fUFYA24hPsQt3DVlHR7c9iXYGVLhcSQqXaDW7x2bdJy0/8SRFIiQACyBJWVbsax2CmcUI6sjjdmbjtKLt6Ra5SRB8vxudwizC02XTT0A34pbECEnaXpscvVMhiM9tSv/r50TYy9HA7BD8ePPJaK5xHhwOC+7BZmBfhnwfoL9orenu9sAZoEzGiu5kwIALAErZkMEHcZ/Au1R9CshrSkAhBwsyG9w48B0d0utwB4VxdT7XVBsJke4M38TflY1k+8ZO2yma9bvFNlGIu10umU9E3LtIhCOBaFlkDNodaDrtE5l+t9t2cj4hG5FPV1x/N2EztNuTqcTfObFp1snVLNGRNewQMi0gwDwwNar+TAnq4RIjIIe+Ht7xUZDq8F/a0yNCAosmbQlgdhRAbLFZbL0+81lVVhcXs0p46hPMl/+qrUSKz3ChNCI4bo92dw+VbA1iFd/ABCu1pZrPRCxJc1JlhswPLuwFfNLpBVjRn4HHt0+nbUaF5//Mbve0Pu3T3pJahXjrl8mgVcwkA9ohCtTBi4CMnsIaVeo7bmFzfKCyIzisZppbhsqeA0OsKY5X1phNM3IrPx2DiR3q5BqQ9AC3XRtCv+2ZKpTfkZnhjyFenTt04q6crePzCiguRs9VasuF6U55/c0IcWrRaX4CUBaoACgfNyBBK0PzdGrQdfB6QlKpiNJIDy1L+I2REBI7Zaa53cL1rv9EL7IvUoxOjfl1rn4t1XfScrU0zNOxHVLYa1blhu0L9fA1V3ohcOSjZ1gYUmtqbUUFlM6Q+iNyFgIOywzCHnXlAV4zY1Q6AW61Px43TSmTC+mBEAGsYajnBHHiYRwW16VG+yt7bs1zW5NDDs9hpn5O80Jkna6WwYSXlvQmrSism5F0LXOTm+Qx6OPkcZv5Hyn/WSZTJbBdEKu2/q9Y7GgVBYBY6ufAurHG5S8OLc2QSizw9KCtKBEaqIpIJmKqj1RK+lJxYhX3HYjIbYaAm5Qt50VdYsoRkKyYKNjSSuOEspZmxxWljRNMMgd9pa0yHW7Z37K+L28D8iC8tOWGfxOvxPE+r1j2WXEC8Z+IRenjBgy7AHumxQxNLY5BS1Ytk26HM0e2wGnO4Q78zfxMwYzrcU8MQjzTpg9tgOwgLXNefz+lBEH8OiOqbh98kbcXF4Fa/CAgQsaixW32NXTOy+mk5Z5HvT1hbBkwoG+IC4c+hEnZQDgJkhQLnoADDcwXdu9qqGE9yqtsf6M0acCww8fSdIRW8DKhhI3QFplzrMzYpwa+XigJyoBpCJo2MUfYGV9qeQZJr2k0gWDff9n57cBAGe443lmxNx7WjH9D7VMx71T1xj0c9m2qZiet8uwlAMwXAKN9OOZUde1y3tP2NJV0OvC6MPnEz4XlgM7I40/JwJGhUi8GQim5+3C5v0jWTNL1gIrZuGr5XVGUGUybaHeB4ERZKZpQm7IacSKhjKuCIyASEzTqDR5VOjFG0zMfZJWQqWf1J+h0vPe4F9j7p7UdXo6TADJ56nGSZrGZFrqP6tdVW0sLK3BivoyY46z89s4xzgxEnQZeDU+yTSlx1uT462fN/iOTfmZydsWR1NczVoSfFpRm91TuKCNFsA6c/RuQ9PKhNzjVsR4gramalxcdEvTll81eg+ygn1sRp+cuxc1r1wOJxLizBmkESPrAPWrF3hLhrP08AB6IykyuLaxhAVUwuf84nqsaiw291pPEOXjD6Bm50h+lr9LEkhLbU3O3Ytt7aPdi0wACArMzmuTzInXGqBrnS0AUcsVQlXbc4ua4AgrIcOJd6+wtrI7hDlFzUi1Y/LskwUqEnJTBOqaUNLiCyTseXEsBV8tq5NCh7IkGYGuJ9CyAzJ24NXuc9B68GL32ZgtMwol2T+zxnRibesEUDpafX52WAZbH42nS/cWC5L+kDVKWTMKs19F0+7L5Pdxywjs5j2tBcby+C1hWDMAlw4xbdMDar2pjnWrnicwlQM9dXyRsiQka3RQPRTDKqed6dmFrWxtZbxoyQE4fW9QoHTcK9Ia2x2C3WsD5/azBtobyAuoVJMNBRg39k3s3nWJkeSBrGq3lm+W6WxVume2hnaHcG3RDrxQnw+R4iTQ8qT7VdNAJ3yn0SxvwTCnN+imLu0JSgtL1AxSN9ZIQTLtPltENauCl0E31ovWRqXzZGWYWvOlk1xLNb1ffsWr2NY22rhjFufW4okGlbYznjyImdMp07omCST3xoRwpql+m93XluRV49dV09liz+/2BbGoqMaIcTOsCJ4Adqdb1uQQqfGEpAB6QPzxrB8EV43eg/Wt45NWVAeAmfk7sWHvGE59zuvhSbGbtGCost7a4ehpH5D8X63jP5Xl4Gt5HafdnE4n+MxbDmaP6XCDryKuduKZznzWwNFnsAUuSvtYHhp1SdoZMt2YNXiAfZKZYCtCR+k8SQPiPdTL6qfw/3Y4ygfx6Z1F7qWaEXPN/CpTAyD9n5+ocTW9uq8299EbZA2mnRYzfVyVJmluYbMbcKsVO2Frin65d5nmzePB0nKpxabCTxSIrIOdGQXiFuPltrwqU2OhqpE+vbPIJbjKx5YsIoTP5e1lPN7fbJ+M0stfN1LIeQuIsVZQE5iMsXkFHq2oHaACzRSqZ43pdLWwvUHJ/GtaKE6bSNojxzKYgtVNBca8nR6pXUzwqU8iGLAWlALWBwIYN+ZN4xk9WHB9S44RgFrzyuX898rGEpdZ1XOLK7xRRhsKCHciUpP0nUoZ4NkbkZYlsmQtLquGHZbm7W9VrGdt+7SR+128Aah7dbg7dy0YmC626aP2Ao5lBN5tax8NPaAaFmCnyX0xv6gBsGHsJ92aMTuvzdWw9QTZ73Z1QyHWNLoaOd3SYgSO2u7ZeW53LgsGsFVKVUtg7e7xvGZcMEhYRgE5YuAB6VdMVkPGe7qZhMCJKBcFxXw7PUGpue4JYnVnHlp2XaZw4WquObWnh8FetycbdloMC0tqzYJGGk5XNGgFqLSMJ9Mm7gYcoOX1SySDr75bVCbXx4mEsLqhUI0BoAQFOjNPa3vV6D3y87ib0njWmE7TF1pL8ehEQjK1rdImz5zY4e6d3iDWNeeyVYv7o7Zilpk217OWd0zcDDszyrSF9qJ+hilFMFsdqB9bAOf2wxkI8NmnM3THxM2859c058POimLPm0PY9chglDNiUjBQaSUf236luzaWjCUgP3ZJH11670RCHI9AfvC6YKBbHymg2OkJYs64Ni4YBqjzqVkXFpbUmv30BGVgr7I4kBUngckHgIAwNPBrm/MMC7gbIE+MpxQcnf6AmqOioSTAhaOGS5UdllXGt3WMYgsW4eBQ31nyGe2+1hl9J+IW/GJhUyUbEEdS3DS+ZDESlrEXrbP6mYY8tu1KaTHSrHEAgKjFghEpaQztu0dYub6kUa6vst7NLmhlqxgp27xKK5rLDwrXMb1Y35Ij+4q4RfMoqYIdjmLD3jFweoJG6nMI4HqVWIItpV4FS8Atzqk/d7rCJw1Gph8fTgyfeQw93zLRTPNFGr0kJk8IMCEhmDl6t0tUiIH2uG/oFTTtTFUxVs/drYiR0x1yg+LoeY2hJMYckJolJxKS2q1M05wKwMypTmfXgek6ReBYMg2esDDuknfMwClPGkWa362TXpb+iURIAOM5JxJiVyPpVw43CNADeo78R7dNx81lVZxRaUFJXaLp0nMZ0nz1uQpbSE20ikVwIq72gyoU60SeGAT98jT+1nKhP1YzDXZGjLX+t0zYbrhuyaBZS14smnsOafMNE7/QLh41jlsmbOeAcBIomVn2rHMg6Mhc8boLVEocuw5cBMANsCY863jT50fvEv4kMwCjTzscxc1lVRBxm7OjSGRbeLD5KnONFNNCAZlREXD9YYXFmqp1e7Ilc0r41ZhBfayb9o0GkBi0PregGV5wItKlgJgIHWeEAwoMNvqibaW5ctCYWLCkFIq01rqgpqwQz+3ONZix64sb5f7SXJYAsFCcbPz0zHVj201XCMqSEwnJoF6VlYjcD1zNqyuQEO6MjEo9QRYqn95ZJJkqlZmGzv+j26fLs+axngLA5rax8p2oqZFjJpA0v90hLCnbagREEnNEe2rD3jFSiNTWXPdXT2aVfL7FpXsb9o5x8aaEgCdqK3kdqSKudOFzM7zNKZR7hwJmF5dsc5M10H7JjCbQG94TkRDKr3jVEGwBwE6JG/87kRB+vuWLvOfJ6sBnkFM8u/3clldluN7oAqLRV9jNgkcKlud258q/yf1SU1pQkK4djmJFTTlbslbXFxrnJNWOGfdghj3g1oeBPBvkVuR0hxIqP9O+Jfzq9GZxWXVCwC8LX1lRtlBSHKB0/QP3q8+VoLsrzbUGhaNYo5QtG3eMl/1r/vKG8ky4dyxnwFNjs84YwLLaKca8eE01N7IfFK6T9FK5F1LChJvLq+SYs1yhmIVzx3IDwBV9t9NjmDl6d0LmsHV7svl+WVK+RbrNeYQLohE2HJ7TtYU7eK0p8J6UGBzQrjLx6XuJFEA6noRjuZm5PMLMidL1ng7gCPtT/fhwYvjMY+jGYtdP2Q5Ln0Iqb25nuYy7znyxBgDgPMW6Bpvb4oBTt2iSE1FpwLxVNlU6RfJhB6RmmsfCUrpMG/rY9itxV4XUxN8xcbO87EtrWKtwZ+UG7o80jaTpun3yRiPbBWtVwlHseuMCJr66UOKFx6qvNP0Tu5M/BwBWzGaNDl3YTsTN+CCOpbjEzpIM7UPV8pJeWS+ZS8Lf4txaIOi4xFrLssAXryYU2eEo5pfW81icrhAzQy6i3Wd53XRNp+YCArh/31xWhXnZLTIIzaP9gyWwrG4K49VrLeLPM6PmxS8ggw7VfJZM2mLgbEletdFWPGYnxIjIf2RAHjOU3n71uerjUhfC0zuLkgb5cTVbTYtHMC+7RaYujLjngWJPnmwvNXzz9X21oq7c9VlXmaZYa6/1wQyq5rtLQgppLvk5pc3VGQnep9olyQJSt3IV8ghvc7NbmRZ4XbfscNQotqeDni2IgvvszChnRAJcIcEOOrLoGAm4WjabNc35xjm0s6KYnrubcXjHxM24KbdOumloAqQUyrWx9AWloE3rFbe4AB3vca1YnI5vYqJJq8tjyYxysKiIu2lDaW7UzrK6Ke5aaIKPrl2mPPfUP/tIay513nOiW3YuPv9jF68kiCimhdJPO5EQZue1MfPFQd1qrZbXT8btkze6iyi0PenZszT+bR2j3LXXbktv7IQ1eADTR+1152zD1LiSz7/66NGaKw1GlQqh3ZDTyHE4bBmA2xbtd4uKN2p02U6P4emdRfzO/NJ6UOFK2GZ63HU7cjB/fDP3v6xmKrevr5Ns2I3FoR8qlkljoLsKjpa9y3NfiKMpHEewujOPLfriWIqZaljd06wwi4Rw1pkRA186zXAiIczK2wknEjIKSOpgZ0axurHQ2PveNeR5K4HKzojhurHtuHfzdVhRX4YFJTIb3K0VymJe51YhpoJvtKcevPIZyeQPBKC71a5ryTVw7MU5rQOEJdPSeuIY9ErqnBIV4P0AyPNBAiQgFSxLJ25xlQO8R10aatkCC4vd+B+ynidVop5m4FsOTg585jH0Xx3FMpWntsnjwnaDoJK4VgAwmEtOG9YTZGaBnrHDUVxf1GRobelg6bBApSjVNSrCFmYsgvqe6gD8tGWGFCosBxAWVtSVswvPz7d+0dWApsbdy7U3iEeqZ3BQI4GXwaGgMVcocQnF0olbGC96phZjnBpDTO4zhmY4HMWDzVfJi9Pjk+vF7/ySeg6GfqK20hCsYEktFTF3NHYOeou4Ad7iaEpCMS0dr/rfRq5zbcwLS2uYYV3eXsYxJjSmedktuGr0HsONx+hD22dUTZu0ebPHKvcIpVm1w1Es2z5VaYvlgLh6rsZXsBCg4I6Jm2FnSAZ4vkp3R+ZxXbC9KbcOC0rr+LIFXCZbZzQJ6GKlCsl0Hmj8qxpK8N4Hg7gfvTIv41y7zPSx2Okx3Dl5w3EvG0MY1AMQVfssIKlc7HdNfpGrtlLKQGL0yI2CmWGFz7klTXC6Q6zRs8OuFs2JhLCopIbxMW3kfnlpDhowBUsCYrq08TvdIY7/MPaEEp4BsEXLmJ+uue8JYlPrOGboH9p2lbTOaK4FADhdLeVqR9zitIgAgJBw3WPCUViaH7Mdjro57QVYC7ugrI5dBakvEgqo9sWt5Zs1Da06i+TSo7uAMZ40HOl7zkrynKM953HvePPdMw2hzg6rmAViwNXvdXuyE2oP2BkxHidVvKZ9dnNZlSmUUPsaPSdhdOaEDnd8avxzi5r4fbLgMBOdYSZWkOMEn6252a28jo/WXgknIhUblGdfj0UxkhdkRiEsAXEkxaBBuoZ46cQtMqYOwPwC14KkK0CMgFdtnWjMi0q3G3SA11Frg8bz05YZLLAuq5nK8/yX/I28PsIWZpY+do1L7Ju+p3X56OMwfzwvu8WwFFhRS7pohqNsebwtr4rH5hWGaQ6UrEC33sj7wL1/ntudyymfV3XIekaPbb+SnyMhd23LBFkZXp3luzbPk32mxI3zrv823BgBQ8kBqGr2ap8tyat2FSFqTuSC6fQFOXYs4Y4XwOrGQq5bQElQ9LHQ35SW2ImEXFc37zk9DcEBEBfWJ/pJ4mXsgwc+88IBoMzKme6Ftry9TErzlD88IBKya+iH4tEdU5lICo//nRMJ4dmGIpfxE8Cvq6YbBaOc7hDnhdYZp4RUijqh0HyEf7btiwnMibAFrJjlFk6i+AnlJkCl7PkSBTBlwh6cdWbExUtYZ54sZo71AihsEdC0R/QduS0szGlgU2tCYTOAfV/JH1LiV7a3uKyaLwxr0ICcpzITEzy3OxezCtoBGxh/ydsG/omYlV7+Ov5uUi0zVTNH71a+rSJ5wBYxa/0B102sJygvZmFx1iYi2NcW7sCsMZ14pjOf3RzsjBgzzvwsaaZtWeBrcXk1E11ylYAtcHOpItKakGaHpcnazojh2qIdrFmj1JeEu4d3TON1W9Uk818vq5kKK27GKzzZXuoGlSsGVw8yB4ApI9ysR5QxKj2sYiVU/1wUSADp4X5AAHdO3iCDUSMh4MNUAHBrPZBbjnIxurZwB5zeoKz7QXuerF0ZMYijKVhUuh235VUZmYqcniDvA9I4kivCg9u+JP22FUNFcyKLGRcHpAratvzMzoziibqKBCHl1kkvG37Tm/ePdM8Oadh0Vz5t/+kMoJcRcXqCsCxINzIbhiDqREIQH6cY7ekxA3ocC2l/GRdafQRilHSXLHYRseT3nHZTrTmndg669TpWNpbg0e3TcX1xIwuv1hFTA0xMA9EviikhRuTmsiqIIykG48hj0lxGbi6vMjTPsIClFZs0gUmc0LIpjqVwbRKdEXciISyvm2xqwHUXDVI6qHVY3l7m7jdNS2/QanUO1u8Yj3PP7mLaUXr561izawLmFjW5690VStD20hrOHtshrbiKllJRTifiugjpQqDTJ/cej69PcxvKisI6Y8BIF6q7iD66YyrvH46Vg1yfawt3cD9zs1tZQOVMQaqNp2qli62svaIhX09pC0lDxbEU486iMT9YNUvhFEyf9DsJAETIMdrjNmgfREIYNKiX8bKqoYSTeDg9QVhnDEgrS5dkmJ2eID6IZvLztDZzs1uBgOAsVzTOBKE24N51ekE173raYTd+EDbw+/rCpP75+j4y9hngCiJdZjKPWfntXESRBBLCI9Ggp+omybs1LeYWUfPU8Li+pNH93wKW17rWDj1eQQiL9zmCjjHHpK7KpxE4qqjZJ/3x4cTwucAQacmuG9sOO1MGxeoaAzsthvV7x2LWmE5X46DFKRCBoYJddlgVfBEuE/B800T5XWYUN07ahtX1rgmTiM/i8mqDKBkmPpiWCzadKz9oXRNJjJcICLcypZZP3g5HEYDDF/fMvA7AFqg+cIWhgQEk47C4dJuhPQBgMinhaAKDPbugFcdiMgvUip3Fps+xhnOnO8RtGsWOhNSeP9leyhfedwvWu/PUUtM5kRDWteUAADreGOriSNNg1r06HCvrSlmbSdUpaY4U40A4Z61TX0Dzh7fYL1UEBDMtTkRWzkwPSCLudMk0ioB0mfESfLrsAdOdwk6PsW+7ESuQGWXrAOHx+SZPrAy1rWfV0IMVHSlcLcxpYJcgJ2JWsNWB3LMuSv+YLxUSHHojsgIu4vLCIAsIAgJ9PSlYOnkTCyh2OAonRephqPK07ss6PW8XLkz92GBc7LAsuLQwp0Fe7oMH8FRDOX7VWsmFpkhbSvN7pjMfSydtYrzT/qF1JHeeNXqshJqnV7Bm32EFU0YckBYbNb652a383fxCiU/YQmrfhXs506VuXvYuE0wWJivguP7hnsrkX5nUyMHeN+XWGWeOnmPtfEyeSQ5qFpB54hWjtKCkDrPHdhhWJClwmq6Tm3dqPvxprpseuTM921CE+UUyNspJMxk37/jWNuUZAfNP1FbiiyXtbL05HqRRVVxNoP5Va6URk6W7+5x9VreBN6EVw9M/JxcOes+bhYbPf1ZUCkFaGk2dsftW5XrcXFaFKy4/zIXV7IwY3v8wi/FU0znCzdhEfuVaKl6vImjt7vGSQdQsAvozcmJyraZM2AM7LYZFxTXudw44TTKlnOQzYCkhRphWBAAsiDsRmQb2+aaJck90h/BsnVsNGDbcgGGFf6cnKDMpKTo4L7sFcCxZQZwsQalx/P3kKlBMDvUlhVgXp9YZWhrRuIW8kYfk/s2IYVHpdt5Hxr2oaMmxY+nuMOk7x2J8UQVjEpC9ChUnoqozp8VQfeAKE++avz2dCR7z4AFOGct7qCuExeVSk0/pc+20GBcHNPqNBqTFtCfIcWZ8hjJiUqnWE8Sc4mam1XOzW7k+hm7J9ioNAGBFvUzSceOkbWpwluFatbozz1XsqfeuG9tu0mJFS3jeMdtVXuqJDHz4XMH/uHBwzz33wLIs42fIkCH8vRAC99xzD4YOHYr09HRMmTIFu3btMtro7+/H0qVLcc455yAcDuOaa67BW2+99anG4/SEWEs2KNgHJxLCu1HpGkGp1Mi3c92ebBmk5xH+6aCt6ijAzZMkE/Jkeynml9SbWlDFcDxVM4kxS4yG0x3iMvJ6u3olYnrO+F9jZg0mxJJ+hqxt0oMRlTmUgv427B0DPYMCayMhGdajsXTu28vkJvsbAC5MPSL9GtUFpxMRpyfopmjzpDbVGfprC1pZW+9EQriv6hp8v/IF1wqjg0crngzY3Ujr9/qiJtjpMWZm6fKk+VqDBwyhYM2uCfK94kbAguGjfEHKESyeVA07K4rqA1cA8PjCs+uA6R+cDIeslVHxFqsatQqYPUE2GRNQfQPKgkP98FoqbRf5mVMAq17BNkGbasnLhdol/Ii47e7ptBhrIalq8q9aK3mvMEMUlv7SXHhHxSJsahvLaRrtcNRY2zQ76qaLVQwT+QXr+4TG/mjNldjaMVoy3dpecLpCHCtx++SNhjbOu2+l8GJ8hM3tY6R7lkoJqgcMMpORri5/22RavcH0usl/WNqHSd2odBz8bnsRB3tTcLfua2/sec1H2LB+KVellXWleL5pIpbVTlF57DVrnwDXUbHTY8gd9hbj9eZy6Vqjpzska57BlKh1ZTcMJTz3OCly3IrB2rB3DOyMGK+ldz52ZpSDoe1MqZmmJAJUCdZQlISj+PCjTHcukFpoXTlD601zMqqEa9ZMHZ+rO/NAKRtJeJo/vhl2RgwPtUzHEzWVeO3tcwz6Jo6muIHH6THXeqbAibgWVT22JOk+VONZXFYNr8Y5PaDukgYlDPR4UorapuKIziozjjHX5WVmTqd5z5DV3JspzRLsQsPj87gUUSIA3VXU6QsaLm2Lc2ulxaJecyGiGAk11hn5HWg/dBGfxafqJsnYEc1VjPbe0kmbXBxq9Ju04rBdQXFJ+RZjvfU+dbDDUTgDAXf/aEk6ADcLmtMXxEMt0+X+JIY6S8ZYzS5o5Xtl/vhmzM1udcequf09VH1VQjYuru+i8P3c7ly+B1d35jEdoPTegLTA3z3lOY5FmFvUJM9QegwBy2GawJmTNEWbjovnduca53pJXrUscNjl7kmD30hSq+Z0Ar9C8smB//E6B/fccw9Wr16NTZtcaTsQCODcc88FADz44IP48Y9/jKeeegojR47Efffdh+rqauzbtw9ZWVkAgH/8x3/E2rVr8dRTT+Hss8/GN7/5TXz00UdoaWlBIPCX5bOlHLgXPfRvCJ4XYA0VQNoCGBpEIiALcxpk0LCqeMhajCS5kQFF5G03t/LSiVvwSNWM4wb/6X3R+wnBWJ73iCgmVLhU+Ylnj+1gE6TuIqS3Td/p+Y31PuePb8Y5oS48sm2G8d3C0hrDbUOfi0s81OfkVqFXuVWafKrk6H2WrDBU2Zhy2dtp8qLWC8PoONff1+fGef8jrgaMcrR730mGf8a5YnyY0eWMVTDWNkFo847Vm0Pau8Za9U99T+h7KhnkD38D47LewYqdxfiX/I0yUxTl4E+SKzuYEkdswD07TiSExWXVWF5b4TK64eQ4pXlcW7zD3WcRWTOB/ZYVHvVaFDoc9/xouL110svsKsTroI0BgMx13u76duvz0fHP+zCQWFnYeMbTDj3n/d47jmT4+m7BerwxcDZrdxmPWi2CP9sPfdalBL4kqW31udDZXdlYYtArwK3Eru+rRWXb8VRDOez0GG7IacTRWDrW7h6POyZuxtF4uhRQaAzdISDksHIl6TjpLGoVyCFcvDvdbhVeasNbJZravbmsCk/UVCbQQ6c7hDMvPIqP3x7MVe2JHi4p32JUDfYqSo5HT//s3oF0eeR4D2HBqElB89bPiHru2sIdGBzs5Ro29Pzc4iasbilIsAgyrXLcuIJktDphD7C7mbqrklXT7lXxEarmhxcnBv2yE10wdbgzfxMeapmOm3Lr0BNPwaqGEmSe343u98LGPnUiIV4nY4/QeJPUIrgptw7L6yZzO/+SvxEPVs1KuL8SNPOEJ29tAe/ctPvzeHeAXpVap/8nwv2fox0IOZzdyukJYtbEnQjacTzfODHpPtfH6K2SbDynJxjoM60S+v2o44r64ud0Wh8NAAN2wvNy3H2ndYXkX7SUID3zk7k+9XbH8E/59afdnE4nOCniUzAYxJAhQ/iHBAMhBB5++GF873vfw5w5c5CdnY3f/OY36OnpwX//938DAI4ePYrly5fj//v//j9Mnz4deXl5ePrpp9HR0WEIHH8pkHWAfG/5c2X+nTl6N26ZsJ0Ddcjv2M2VLcz/4Wp9yE1Jz3v8yLY/Ixh4szhoZldilHXQtW36Z/rfzzdNhNMj3T90kzpnylGWES9BJg2mE5Gp6h6pnmGOTUgzNmkE5xY18XidSAhLyrcojRPcwKnyLYZpnbRyr/ScBwC4s2JDQhzD8toK1+9e+S47kRBWKsaGCJ43OHq2sjzQ3G7IaTQZU7pI0t2YkwRCmUSrSFpvgpkTO1zzveYWQs+Tz3Gyi8K7XgazQoWi4GFWM6MJjCj9Jk1sy+uX4ONYBgDgwepZ8j3NFU0fy/zxzYgNBPhdiUNhujx5Los549owI6/THbvlus45kRDmFDazYEBjBsDVawFX+6bvafpf35PkyrCstSJpMKmOA71mg4FbJ4nGS73Pml/Nf5vmbIejMjDUI+B5++BxdCutn0h85v7mmW4wqWoXAOygw2fNm8qY0wdqY2IcCNcy6PQEXZcqgLXmTjQgz0mSok6r6kuMfWBnRqVmPj0Gpz+AFbXlLOw9tO0qLK+fLGmIvhdVsoMEECqWKFPOkzK4AMCi8u2wM2KylkFm1K0ToOZHGmU93SrBrZNfTqCbswtbcfRoBuywrKSu08NlNVMZP8Z7ljDWiOi73i7gaqN573DdF2B5TYVcH3We5hfKsZZf8apLT5QApGtdn2+aKC12eg2LzChWNxUYblyAZIoXlW5nv/9ZYzqVy6rG7EU0axGQuB6U4CA9lkCDqEaFnWVm0sod9hbHxbk4c1+bMuIAZ5mj/n5WPRMAsHx7BQudaaGY4R5DLm1P1FS6bStcUY0MPpP9rrLC8IWHpGl2plTWUYIPb0ZBQEtjq4qL6XiiZ2m/6GeM7sWbcutYyPsoFuY505gpMQHg3vvG+dVjU3pMq4exDMq6t64lV545soiqAnZeC7MddoOgE+IYdMFA279cSd2SCSpunfSytF5plruFpTUGHhj6bcMSZ8zvNI858C0HJwdOCoYOHDiAoUOHYvjw4fjqV7+K1157DQDw+uuv4/Dhw5gxwy01n5qaisrKStTWSrNnS0sLotGo8czQoUORnZ3NzySD/v5+HDt2zPgBIN2KVHDe9YVNCWb+dS25WFYzVWqIeoOun7mW1lA//DpTS1k+7LAkYnxhn0DL7tVS6387kRC64mkucdCYVac7xHmNAanJJRcn0tJRJg6nJ+gSCiAh2I3aXbt7PAftct5yD3Eld5VbJmzH6oZCw/zqpl2T/88Z18Z5o2k+djgKOMCmNplN4uEd01yCTQyNp2/3c9cUDUvGbOjA9SUE3GBiwHS7yUgsiuMyvMJdO7gEWl/zxbm1WL9jvGG+JyBT/eoG5T7RLQUmJ6KCD9WFSxlNCI+8LiqLis7gHi/oVV+7hSW1cPoDeL5BMus3l1Wx8JRs762s1YQA0kZ6MmjocxNxG6sbC7Fxx3g3OE8JbQRrGgoMxoH7dsDuFI9un85CyLX5rey6xWlPSSOvWVZIYNHxnJnV546zXzKH36n8AwtYVNFTd9UAXIvM/GKZDYv8rHXXGEC5l6gaIbq7F+9T0tYp4LoBEWnt4HkrsGJyrzxbr/ZjzGYmnNxmGDzVZ53ukAymtLV9ozL3bFUWE1oPpzvkZivS1pDWlwKGvWfa6Q0id8SbzBS5+8/CI9u/4O4FO5HR4UQLmVFpUewOIQDHdR1TAsi0kfuxtkm6R7C1qc9kMuyMmFTGWAKz8tvxRG0lt8NjjYSMOjJG0DUJAaotmTFJfamy+yzOlUkKnmwvNc6hji/OzKbRHpmPXz5HRebI2rFtl1tUivbevdPWJIybYi70O8Hpk4wnZb17sr1UuoEo5cO6Pdl8BpiOCfOcusXEkMA46jE/ZIEEpBWJgq+dniDaD10k6ZbmfkX1CgBgeMYHsAYNYFrunoR50Xm9ZcJ2fPRxWCrJVP2CZdunYn5xPa4vcdOm0tmhvW/UJICrMDOyO6nfGYF+c08It8aC0xPEU/XlHDSsJzPQ8eUVrOQdLy01H0cz4ERkPZ+V9aWyto1msdm0cyzTGl3BpLuvslBJMRCksApHYafEDUUdz9vW9pu6/4gmLp20CbPHdiTlEQDAEm4gMZ1TvqcUjpbVTMWy1gp2PSOhYEVtuYkLJdRa4VhCMpH545vlmE7zOgd+KtOTA//jGCouLsaKFSuwYcMGPPHEEzh8+DDKysrw4Ycf4vDhwwCA888/33jn/PPP5+8OHz6MlJQUnHnmmcd9Jhk88MADGDx4MP9cfPHFAAA7wyVCzzYXJpoClTaR07nR91phGWZAyHQqLGb+iDCk2TLIjXNUR6TbhvdS1rVbxPTqzAcxFEvyql2/xYwYZhbsZM0tIOMNiNjzVOhvYbkZddT49HEQMWUmMS4zHOnBq7PGdEpi4QBwLDzeNgnT8na7MRQKX1wdOuIWbSINNTMq5MfqJdDaXG6ZsB12WNNuaXfe9LxdsMNR1i4lCGC69UbDKY1TFxB4zTQTNfn1EqHXs1ksby9LMGXT32cFuzlHNwkCJDA935zHmtXeeAqPeVnNVKkZ1FLHcrvKAuON03ARJbVAK+rKpauHOr3L28uMi4suJ2ZOsszvCLyCRFKNm8Yw8OVhC9m3KhhG3xEO+JJ3XGFk7e7xWLNrAhbn1soAP2Km1SU5OWef0b9u1eruSnPHlRqH0/P/s/fvYVZVV7o4/K61966iahegxqgxUWMUgaKu1P1CcbGCPw4h8KM52ARTjYeDhzYPR4/Hbj/7lrY7X/KkO8foodumtWkJLU2H5hBtwiESRKj7/c5F0cRoEpOYqFC1q6jae6/1/THnGHPMtTamtZNuPuJ8Hh6gau+15nXMcXnHO6IKp0/wBNdcrkGvsxs3nmv2jgpaSH4nQS4I/hDx0Tj3jKEbdMzvAYDYwYjWUNKmMkmA/o7jKKOGDTi9BssXjihDYtzey+RZPHCyxOSVBOEr1IfAOsp1XpU/wsWVpGLs5qQwdPYG3FnQx7kpqqO+dY7c3BR7d2+9/i0AhgWKzrCbl7QgQtS/o0P5vCbENBXkD/QmokoB8R0c6lM4aMloFnSS0NisMWvDyUvEcO+iF3i/0ueealvMe3R/XyBZnfYIJcu7Zp/457PMmvqBGg/ZBl+/omIYbjyJLx5fa0UBAbV+lrIr5paY2YitKhjVJeeJdEyF5IS+G+CB9++6qh6sLBtSzxAGvVwjfpejaiGQvPamIir3BsZIPzY0n9+r8rB81Nzyfayu6Gc41wFR/f2hxYcwOzqpcPMTUStqL41QALjpxp9bRfbIGOKE+omoIgogj702rIh0gJLEb68YZcM+FF2he0Q7kJyUw5FZN66e5caTKkEeJsdMGkxf7b2DjSxvImocOHT+KGdKMLDxPk1GzPmNJ5UcCO7rqM/3KKCKEz7XsxAgUgyA5QAArspN/19w6480A6NhjCN5Tu/i3DLNJucllIyzcqYiPrP0ufGkFRm+lJvnOx/oz4ftvduv3DhYsWIFfuu3fguFhYVobGzEoUOHAADf+MY3+DOOYy+M7/uhnwXbL/vMww8/jHPnzvGfN954A4AROF4iFmIgoigBJaGR0LRoTX0AvgNHYCo3VnfgyuiEYePwgScH6/Fnlf+iqTBhKbMMHdBegqaiLuOxSZMGYXsk/uZEo3VwDw8UKuHMk6jHoVkQpHdEemy8RAx1BWfVz/X4nNnTtkKi37O7vY6/zxWBxZQfPzuHeeHJM3mwV7MhBDxYxHYC36wBCax761/AQ4sPmaHMmuaL5qn2xfAmowp+BOD3yo7g6GC+xSZBc04XLnuCaDwzUkYh0RRtQeNEJjjTJUzGkfTQ8jMDyrM3HsPrUx+BLwu2eWbut9Yex+zIJLzxGObHf2zWxVchdKlAU/vi0mcvahjI/SkVDnp3U1EXti06avWRkqu5zyJiII23IGWkE/HUBXjBRMruX3jMmi/1Dx9B+IObJ1i9MuRSPNWq4QakyOuKwJRHoJRFWDR+1hikseeZaI68cK2IRkLB07gFqP7omRurO1iBIOz10Zfm8bxTPx4oO8rjzMT/TjAH2XffBzDtsrJMUagbZryDzy9qVUqpNNombd754DuoQBLLhwCUgcYmYWD7uyuYtx4A5t/yY3xztAwHe0rNd4Wxxw4LHW05+yMFC3S0vOJ6GQlj7DBMRCdJqsEDe7urVIG2XFVUilmKBNc+9f2bo2UZGYb431pubajqNOumG3mY11X2wD+XZYp8kYwQHvi1Cwbhv6u896QQcdLsRBR/+em97Nk9OqiYY/jsXDAUrIf7C83eEx5WYvPxJg3kaVHxGXudxmPws4zSSe2uom6jLArooZkEWMatjHIcOFmiCncmNJxPfJdkYtWnXuM+/1N7DSu0y4tO2oxygCU393VWws1NoW34NjzXvdBENlyjuH71xEoF9Ro3jicl50ztACftYE3+EN74qXIAkqwnOUzRZ2YaI5mYdqxIB+2FYy/rSE4gp+AjV43bRr3v4P9z+0Fkars7laPt8ZblBoYj4Dibq1sYtttU16ai2CKJl/pPaxKMVrDszk5bSdX0Pbpv7yrq5oJ499YcM+vn24QiVJANAE6/cZ2ai7SjokHjgTsStvHJfZlh8skcx2fGJeo7Udh6EwEY2yXWvA8QNfiQyvSXt1/7DMXjcRQWFuLs2bPMWhSMAPzsZz/jaMJ1112H6elpvPPOOxf9TKaWnZ2NWbNmWX8ALXBEOJuUh/sWHcGG6k5sqmxDrquYFwj2QAVVAHWQ7q1/QVHn6cO5d6QcV0UTTGFHh+2Pjv2W+k6eraxYxWwcHRp3oS6li9g7v1PfYuNxPceUPQdM4bEMVI1BT2LHqzeHlI37Go7AjSeZ4lN+n5kayCMiMMPwgLmf+Cm/h71X0uMYT2Jvh1HIttUaHPGmmlbMdC8wTt6biLLCBQDE1/1oi2Jw+cu+5WqMGlMqYS62EWd79/d2VJu5mRH2ylnVTvW7d3fUGY+pFOyBublj3mmsqhjA3u4q9V4t7LcuepFD5DEnjb8eUMmVX2teYbw4AvvK79DC/JHjawAoRZ+8Z07Et7nTAx4Pugx3ddTjgmeH5+UFJdvm2mZWmNgAFEqzn1ZFuwiOR2xPoWel1NjvKWm1aDgn0zZ0ixVI7fF8tK/xoqHqvSPlFtRK0mGuyh8BXK3kOIKtBAgpDLLYj5urqoavXTCoQ/+2EkFKKhtgYi+z11KffSpQKM+mlzDsOLs66jMaIIj5tvcXykh8ZrjSMvxIIZVKQbBtqOrEHqHEubkpNuS8RIydCFakyDf5VN5kFKdfvd7aj5YnPuChhgOlPMSTrDzsHSk3WH3KG0m5YXYm/f29I+XwJqPsqaU5DeZg0R6Xc+XGk7jm6vNWouU3R8uwYuGIqrCeiFlz/vHsd+DMnrY9nwF4xP7uCvhRMyZ6D1WLfvCF3w4pVnfMUxAbd0aKeenXVfRaBj6zGumo1vqKHl7DluG56ruc95NZedvdUccJ3IZFTCZHIeS9Xlk6bHvnfai6JZ6DlfMVWxFFDzpGb+X3/natUTKPDBXgYo3uLmWUgwk7PnLVuKLKlvOsn72hsNeOnOj2n2u7uKaKG0vj0ZY7GP4Fx8dDi/6vZXRy843DgfZuKNdE//1Q+fOK4Uri6B0fXznxGQCKOIShn6LJ/3NUxlORFKr/s7utDk8P1ahzOzOJBxqeVzCgiShHheGTnA07liwoEmDJ6WeGKzkp+pzOKZO1PCi/ZU9HTca+r6vqMfJTO2A4ahmgJeV5k4QZwvgiCluJvviw/ea0X7txMDU1hdOnT+NjH/sYbr75Zlx33XX47ne/y7+fnp7GiRMnUFurwl5lZWWIxWLWZ958802Mjo7yZ95PI6tXHkb4Dh5vWY69ndXYPVzFSZRES2clB01EMTuiCrBIAS6pMQGwsCJOeKkAkpCTRWDkpUQ1E6i5cYXb5cs8YT8veJmyhxdGiSHhQG1Ddaf5zmSU8xMePXEHf488NH89sNjKA4AjqDRnJvHSD6+1OcbHwswtLHB8YHtLI39293CVqvysx0u0geSpdPNsTCqNSymGPsMG/PNZDEVw8xTukjzWXiIGx3dsBU7SL0J5Pv+s8l/UL0XyorxgyNNPvNBuPIntLY14/sx85ekhnLP+8+RgPc+ZHHPQeJM/JxgRJbN5iRh2tddzJMVPO6rgkcCme4mYHRGLGwhF8FJlbL5oTw/V8Lx5CUWJRxW8ARU54MjUpG1YW//W0mNHq8rZ2VDYq85RbxmPRZ4Zq2AcRZN0BIrhM2SU6n9zMTPoaELEV4ZfTgpTntonlPtB+8fNTWFnuyp0trW0WREFNC/nImhNtW2GClA3fkYwEiEvWkGVSXSBrCAL6FaI1SjqGQgUr7udMAuoM/jFJc+yLGFFQ8yZGxcwHt98jwy5DVWdmPKiJkeG3mnBoez1lPkVzJNP+4qUG0poTxiFlNiJWNYQLFO/a03+kEUFzJ55jZffWnucmczk3LMiJBS/n/18Fty8JEew7izoMxjrwNw+3rIcXiLGz814/oT3XX1I55H1KqNDQtSoz4cHChFsB06WwJ2ZxB9XHDJzQt58APu6Knm912nDgyInQbpi7oo06mDTKVvy1QEeXvJteBNR5dCSCck+5cb4yIkkLaIANzfFsD2irPUSJrJu3S/CW725tll9t1JBS+8q6sYv3s7D4b4iKyGb9q80zqTRsn+0FAf7S9S9lYzASSuILBwFV/zLvuUgSKI1L0HqVT0W64zo93yFSBokfFAbWJuL2/F4y3Im8pAOIfo3j2OmOttBMhN5nzzWvwzP9akIXNKPcL85d4TkWSCx16JPdcNjCEbV2JifmbTGJZmzDpwsCdD4+hY6ATD06kGHivp4IBKcod+XWvN89wP9+bC9d/uVz9CDDz6IEydO4Pvf/z66urqwbt06nD9/Hr/zO78Dx3Fw//3348tf/jK+9a1vYXR0FJs2bUJubi4+97nPAQBmz56NzZs343/+z/+JF154AQMDA7jrrrsYpvR+2+er2tjTs7xk1CiEMN5nujxIEK6qGLAMia+c+Az/3rowEjGeQSqo83jLcpNcG0hqliE7yb7z9FCNfdjpj7D0GYubAW5AQl2yUQQ9Nns7lKfx49e8a/dfe+KpFLylpNNlkpPCuE6U9iai8NOuSXLWApQYJQAhbLSwJ+XPem+GiAlHXHLCl9TBU4U8j48sOcCYXTbmBCSgqaYNn69vNQocYISvfu/ekXL8SfdneX0kPndDYS+W3fYyww2s5CXtPWPlNi+JlRVDiiteJMSGKPj0z2Veh+UZ01h9Nsr077JzDM5UGpYyAZfXSTKoBC5JOZ8PlT9vJc3t76zgCt6ASkjm0Hdgv/lp136eVgi9sZi5zMgTHsCY7+6og5unaArlHHhjMaxcqBPofTGOeDjK4sbSrIAdPKUgHbKgXBC/v2OgAcTrTr8n6B/z8E9GmeXKuhQnoszZ7uao3AYL5y+81ZYhKtZ1c20zPF3zw/Le6byHxrlnjKxIO3jk+Brug2STormR7CkAFGbbVzk7axcMYsqLqgJ6cXPm1ld1W0qEOyPFLETrCgawqbaVf7+xRsF0li9UyiNBPZyYZ9ZEJtHrtq6qh88Y5VU8e6oYP0/OtCBGkmmF8nOeHKwPOT14jsTP7irqxk+TszhyQP3h9ZBz7wE/uPAR+3f6zFqsTzD7/O5iBX1SdWFs+bO6SpBBiKrq1Fx4ITib7J+bm8J+KtCno1fS+ROcT/iqMFfj3DOqzkhcVevlvan3+Vd777DOOzcybnwHMScdmicJ2wsa/da4xDkmmOzB7lK4OSmLspfWlJi2MpEjSCXWzUmFI7pSZjgB+WiNTewzofRLp4Kbm4IfiGbTH6qJQuNeV9mjqrOTHpAw9xfnbcnovzW/2tjV9w/NiRXVzHAXyMrLXiLGCrx0hjGUNkAkIj/nxpOoKrL3c9BRQfebm5eENxazEAjUP5JRvoz00pxe8gnJzgf682F77/YrNw5++MMfYsOGDZg7dy7Wrl2LrKwsdHZ24qabbgIA/P7v/z7uv/9+3HvvvSgvL8ePfvQjHDlyhGscAMDXv/51rFmzBuvXr0ddXR1yc3Nx8ODBf3WNA9n+obtWYWEd4EhfIf6k+7NGCIzHFD6T2W3UgTp0uoAPxKryASWYz2fZiUZCOQBM4SRLKScqwgCGWHosG0tPwhuPGYy84ysPjRa42xa+CEAUYxIXM/89FQEcn5OS3HgS3gXlhaRGAuNHP7tC/YD6Q0JOUJRK5ZTGuLujTiUG56Yw54afhi6/HQMNtmC/EA15frgv8SRXhbXGISMk+vJ7sOGw/WXHxxePrVVDoJLx+pl7OmsA38HurloFEZqIMkwgE/zqofLn+TnUb0AZDsdevo0jO891LwQ8s+Z1hWcBz+HvHeorZn72raXNFlYVAO6tO8b/fma40vLEbK1X68sc9TT3+rKZmrTn2UvEGJfPhp1oG6o6Qx7YoCeQFArphaR3c9OQC5kU501EVT5CwuBx+SIK5hdoFiJvIqoiZuJ9TL1K/ZuZxKGBIstolKxOcvxlN7/O//cSMXz99n80ifuE6aexCkNhVf6I7TWfqTyhG6o64eaksHbBYAgq9OCi7yA3MsXjAQKGi/BWE60sKStEb/v0UA0cBwpr7IAl7tqKXngTURwZVFCOpup2Prsr5p2yImtfKD3BcCdi/QLEWOJJ7Ohcgv3dFQzbkQnM+0dLeX7WFQwwzNKNJ7GvsxK7OurhxpNwUg7+sU1hr48MFFhn3BGRDrnOBJEgMgJp3Eml3BuLYW1lrzFqNasVeTGlF91LxBim5iVUNXL/7Wzs7qrF1bGx0PgtyI1j/j7cV2QZenSmqIChHIubm8LTQzUC6w+LxpGUaQBYWTwSMma+eGyttfekUkeOHlqPzbXNWFkxZBwbAM8t3QNkkB59aR68ySjumHcavjC+JHyH2HuCjWTA3pFyc0YyObnGzT0iI5L8HElooM98JlkNKANiY7WiByVCDi+h2dvy7DkBlLHvR3wzbpEsTdEv7icl84po2KryAWvM8k5wHN/qGwCm6nXjSc6R2d9doQo7ZjLoROQyuOZNNW3YWNuh5LCIDHkTUaMPZAkqYM1mBOi8P/E+Ytai+1buN5oHvlfGVN4Gze356Rn23AEWzJB/Nh52ynEfqA6LZPuKJ7GhuhPrFthzfKm1DyMHv572Ky+Cdqk0LoL22J8henUE/vksVvaairqM14YxuXYRF6bBJA9xkEdcC4oNhb2Mp91S3WwX4BJFbbYtfBHb+5dm9JBZgnYshnsbXmAWFClA6HP3lLTiycF63DHvNLMScb9d9V64PtZX9GBfVyVWlg3hUF+x6lOWZxVkCgrETM1/NwvOFdOhgl78fU9xm9OcfqH0hKKx1E0WxJHfIWWIn6/nbeXCYdVfiEvWNRGSP644hEeOreEiUZKtAwAeWXIAj/SswrqCAavaLQA7KiLWyGKDCf5O95fZS6YiFmMJrRtcWONiz7sDXgMn7cCP+NhWf5QrDSul0RTdg+NjbXkfnj1VDMcF0ufMvG8tbQ7RPcqxcYREF2OipFTLIyYgY1KZ31zTgqeHauCnXfgXItZ6yf0nW1NRFyuX9H43V3Hcy8JXm2rM/uDcEV2wySr+xBSNMMmxglrQm44ASdc6nxmLqyViZo4nonBSLnwRQQi2TMXbqLjgPSWt2NGxBG5Oyi6UNGEbwLQHLGNMQuUu4oELzq+c5wfKjnKeAzNskVPCC7Au6XUlWSef56QcOLOncVdRN5JehJ0NUnlYWTbEyaxSHrkzk1aRpA1VnVZxtUxt2W0v4+jAAqvfmT7PezaQW7G2ohfPnirOOE/B8UrmMSftqLHrfq+Yd4rHhIhvFYvy38mCn+VjfVU3ywkr2hvYp0Fnx5r8IcOcI9dHy+BFxWe4Lgftg4Y5r+D40Dzj7ZcFy/T45F6k9SH5IddlbVUvV6lXpBCw2Jqairqwq6cWbnba3FMBeS+95BULvoe+799o5sE351Mm+8qia26OTRUdHEtQZniJGFaUDeP5M/OVcu4qAwGALTNILsr5EetMzFqZ7lIpqxvnnlGUzIC1HoCWXZ119t0/aYxIOU/y+W5c5TRQ/gI5AK25oH5meaqGgChqSXvhYs2biGJ1+UCosCm/S8sZLtJHa+jq/e0DiCkI7kPlz6Pr3Kdw/OyckC5B+5TPTPB80dq7Y5d0EbQ/6WrEjLzYL/+CaBfGk/izqqOX3JgupXb5m0+OD+9CFL6mqfPGY8yVvSZ/SHgqTLGQ9VXd5ueSeQPgZ9Ah4oQ4X2O+x1V1SIaq6O9MpLMtgXn/wmMhQQ0oobZjoCGEgefvjsdUGH48hiuiE5ZHgcP2cQX3oPDhoSEdQs5NwY16lvdGetO9sRh78gAlxDYU9rLiLkPpFi3rTJUjQWFeMgzceBJfWvp/FEONSGp+sOGwpUD7MUE16TvwoIQ1exN9xzArTEQV9ELzam+ubVYYTBFBeKRnFZqKukLhUyCD5zeTJ4UEufYeuvGkdVKChoH6IcBVt4VhQJCqw2cU44mvmT22tzTal6qsbus7rBj5VEE54AHzJqKGVnbMYMElu47lfQLwwKLnlac8z/SP11Dj9LlliErwu0Vf2DAgr7/2chE3PSWW7h6uwubidmt/0RoQbprnUXiEQwxNWWkep5w3Ok/k/W+qaWNvoJurWDj4PE6EaQ+lMkYOged6FsJLqPPWVKUSJre3NOILpSd4zqw5cezzajXfeMSDHj36TlNNmyUjvEQMj/Y1cp85UqDfe++iFywqSH5V1ECAKCnUma0cI7s76lQiPffZZ3lxRWyC+0U86+w1jqWNJ/qXGAYArAiHm5tS0CYBVWCGLEFDLOdC0mNSk95SjhQB5vs+8D+WfMfq9/XZ7/LcBqFCxBS0r6MypNRRwjHBJ52Ua51X/3wWn1F65uryASWD0w621R+1FFHq6/GRebDIAAQckhrlB8gCeYfP5Nt5aTOTxniiOjUiZ8Abi+EbrYtYVu3pCBQ81NEjjmL7DnpOfsram3Q+Q1h/Up713yRz7q07ZuClnn1n3VnQx8nMh/uK1PeEHPXGlcywInTaAJAyiu+rgGHgTUZNBDii7pPsnCSO9BVyf9hQ0+/YPVxl1jvgBHTjSevOks0/n6Wir/Ekj3NtWZ9xFjDlOfgOyAj9CjRvPKYiV77DTp01+UP23MMYPmQYVBS8ypEmOMCW+hO8F77aeweODc+32Loo0kRjpYhUKBLkOXhw8eFLn63ow8jBr6Vd9jPk5qSwYM4PLZYYEliu44e8Hm48aXubHZ+hPcqCVz8OXe7kxfMR8kACMKXkdXiXioFRY0VFXJrrCgassDP9nP62+MWJ8k4kHxHtINHIMd49kHQkG9VZABC6FKzP+vZFSx5f/pkWrITrX1vex5+lBGSeu8AcUOKfzBkgrPba8j5ev3WVPYYulqg5taLMBXdEfgBdfJkUM+sSkoo6jLAMzpXMs3DjguteKC/eeAyba1pMAiwZfaQU0X4ifOl4zErcpbauSl3iT7Terr6fm8L+0VKbrlDXDLBgTWKdHm25Q1FFJmIMt7LocfVYnYhn+jVh+kUc6CGDSs/PllqF211ZZmAOzLChFfD9o6WKKSsnxUnAXzn+GdsQg70vAJNEV/Wp10ziv1AUH21Rl/WudoVfl5WKGQcdUADpHZIWENDrP2Z7PJmiOC9pQRB4zxCmV/eJ4V0iD8SNJzMWeaPvEJWw8l6a37nxpNr3VsKpgydabudx2UafwS8TjSsp5KTwEaTCeLCNAunGk5y3QFCO+Tf8BPeUtHJ/KNGb4CCUjM5Ur7m2R3lfV+V7KkhBo8qNJzmPi35GeUZy7ihnTH0AzHJGYyZFe3dHHTZUdlnvomeRo8Fal0BODxXH+shV4/Amo8rTOmkbO8/1lsLNS2JL3Qm8PnUVAIXBpzFY2HEyzDWs06KalA4bsc9k3gy/l74bZDGbmcTv1Lfw/rCeNRFFTb7Cqe/vrrDGLJVvb8wmN5DnLRgRuH/hMewYaMATLbfzuPhzecqghOdYjhxAGZ1kiAGw9gidmQcWPW+NQ66TlOc+MWqlXLjxJKYmVe0Lmg8jEw1Mh6Nw0hfi+JrG0+QykEMBACMQ6LluPIkDfWUm2kRr5GhnBrT8cnyGV/GcTkQV4YWOJlDkZEvtCc7bYXgyjfN8FtMSu/GkifZoA+Cp1sW2Aa6NBnovRbsYyiWcJrQPttSegJuXVHf1Jc5W9O9VIfmJJ57AzTffjBkzZqCsrAwtLS0X/eybb76Jz33uc5g7dy5c18X999//bxjhf0y77I0DLxHDyVc+HrqU3Lwk9ncpPKGbq/iYg4KQfvd4y3LG0K+t1Bj2gBLDwi2QqOYlYlwcRXml9c9JiEwq4UAVWt28JHtz9nVVmkRZ7ckl6lHAYOXd3BRW69wIxLQXICdlLlPtIdjdURdOSIYRCu5MRYVGP99c3I6kH2GubutiFnSDQTiFG1dVfOn/2xqOaiFnlHyaA/6/KPISTM7aWvciK77srctL2hebr3MAXJiEtQDsw3wW4aZ/1lTTprxqdHlrWNCmmlZW2snrRoq6nE+rMqi+GCnhfH93hZrjggFsLm7Hgw2HdeVeWKFsUmxlC9YsoEbPZkVHK3+ca5Enog7iIjzQqwxLKlbE8+ODE84B4R33ESp2BYALLtGlBACzopM8fnUpGkXBG48xJeBTbYsNS5bAqpsJNXuTDPaOkwovPsMx45XRiKbaNmMUJpTyaoXedZOK/N6Rcqyu6Ofqy2quDLUxzd+2RUd5XPwcWuuxmIV3/uZomfldyjVFmrTRwTlGeu4sPnutRNHzvfGYBbFhJT8vCTeWxvrKHuztqeLPU54O7QUar5unHARSCeDPxZMh435dwQBq5r8K+MDJVz7ODFqA3vuOrkugk9HdeJIjHZkaGcDrqnrMnggYYeTd9xIxteayT/QRMf8MGUJYJq+u7Le+K/cvOwpEVWxAwVAMg5ZYH93SOpmY834oF8Mxz905VKvylCDIJoLwoYCSLPu9dsFgxjHxuPW7NtW2Ap6C46yr7OFoLp2HXW1qvVYsHDEFuvSe6BieYyn4wb7QfmwsOZX592IdvETMsPc54JyD4PMsWSTHLff6hSioGB39oWevKhu0jYHzWbwGbk6Kn+NHPX6PJaPFHdNU06bmBeacWPe2r6CLVP+EIsluPGlVLyaGPJbf2hlDMtmbVkb4vu4KXn+KotAz6G7kZ0EXthR9kmxqzqxpRj8ECRh4PsXZ9iZV3hc5SWgO9vbY1dpllJajVxnW6zexffOb38T999+PP/zDP8TAwAAWLVqEFStW4PXXX8/4+ampKXz0ox/FH/7hH6K4uDjjZy71dtkbB/BV+DKoxHuTUawoHzYXgCibDgSEoeNjSaFiFYm6nkni1c2bjFrsA1IJZi+RYLJhj9F4DCtKR5RwcIzHmpKgpOeFvP+PNivPmH8+iyEqAPBcl66enDZKJnkOONwK4I3XrmblSSrW9Pn9nRXYVn+UGVz2dVVCJlLJZiWPwZ6TZ4YrecwTnihvL4wnx3M48ZXp9TTFIMEh3HjSKCWOD28qgj+r/BdzMYnkXvboOArzbH4By+tJuGxAKZ8r5p3iffHMcCXjNp20wydkV2edUdrTDgtcwBgL8NUlQI2NCcEM5I3FEHPS8ODga63/j1JMJCzqIlhUaz/Rz6gYkzS4JpQhd6C7nJNemTmDvKN5AbiALLAzM6mSjslbxoWO1F+zZhnFf8mcszjUX4SNNR3W2lJ0AjDJsLz/LWPFRBacadeep0QMqyoHwkntOgT+1Zb/xP3YP1oK+AoKQ2wh1L45WsYRMyt3Qex/byKKg6cK0VTRwZEnNy9pDDL9ToLLUbKxnHN3ps2XT30DoHJ8dGRxVaWKBjKF5ETU1O5gJd23KgVvqm3ldZWNlMB93RVszHoJBUXKlFjqTUbN/JByLi9/oZRRZKqrey64IrZu/rtZlhECV8uaC1F7fgU9JBwfSKlzQ/NK3lWCyLEXH3bf+KwLI3ddwQCz98g5lwxSElZHURD/vPmOk1aQUUfXAgCgEoDFM8lhQ/9+9924otMdKWcY3YaazpDyvLxshKMugNh7AYYe2Xda4/3dFSjN/z7fB5KsQp6PXZ11Kpn/dIFKCNeRJSmDAOD5M/ND0Fgps70LdhVwcmjBVwXGyMtuKZLSUSRoOAFgT1e1Zfx6iRjWVfSGWPDmfuKn8JIRC2rnTBnHBMlXOr8He0uts+U7PhDxsaz4NLxJVW2bE7+Fcsx1PwSE+JnhSjUvuSkVoddni5xvO1qXqmhadzXvb5r3lBfh9aI8DjJsQjUDdOSA2NimvagyUn2HCT5oPqxn6XWh/jIaIaBLUB4LJ8+LCCzN9eqyAfxWTTd2tqooO9cHSjuWg472X1NRl72+l3jzoaDI7+eP/z7Zih599FFs3rwZ//W//lfMnz8fjz32GG644Qb8zd/8TcbPf/KTn8Tjjz+OpqYmzJ49+1cxzH/3dvkbBwFPPTfPweG+IltoBhQG2aKOB7i+Yf6Iq0RaehaxD5BiYSXu+gBcnzHFDPVwNKOGFszSkyM9JIAd7ga0IuyYwjw0TrpUKz71A/ZYSaVFhvtZWY4byJE7M4kLXgxUGRUA12e4u7jDqnZM7aHFh9gr45/LCjFwZPLcAlBl4LXHZXNxuxK6ehx7OmvsefDBRgoxTq0oG+aqmVaF5JwU4tEpM8YZKezoWAIAzO/93xqO8dodPpPPIWZWZFzg8/U658ENJyNSZAaAwfrmJTkC5SUUtIUUrRVlw7x+nu8oeIknYEUUBr6Ypybih/YEyBtEcKLxmEVdd6CnnJU89W7fLpSEwJ4bV9zwV12ZMAaETrIjSNH58zm8Z44NqWT4Pe0BPu+JqMrb0c/1z5lif964CPVrhQsO4FwxbfjF9TmkEDsgzqP2wocgKo5dEZgMobULBrG7s9a6VGlNeC31v3d317KhRhfl2gWD/HsnpdZ2f1eFBbmQzyIKQt5HUJEDMgAOaugJj8kBeyY5d8Sx+efJSygN9HUFAworn1RMbNb5T6jzq4rF+cYTLaqCL7jlR+rzwhhdWTrMzwCURxpXT5nIqt4rvo5OPtrXaCkiEgpFytDyharQ1PrKHjTVtVnPoWiGm5vCP7fbtJ5ksFtKisi52D9aqvIoApXZ6ZzYnna175cUvGRBkz5brRRYP+Lj0OkC1NzyfcuIB4CbPvmWUcaCCnZaJezu7azm/lFfj740TyXOA6HaN248yTkytNdk21jdgaEffIIjLbQXyEHEaySi3Rb1pDa4m+raLgoLomesLBvC6oUDcFIulhWeNns6O41lC08ZRTIAu2JZ9ItsUKVyLoToO5aDwI0n8X/aK9n4JEP29KvXw42lVcV4ulOzTMV5dcf57JTZWN0hoIFQ0eqcFI4NK+Nn70g5M6TJ+2lfV6UlVzmCo43ZKS/Ksuex/mUsPzdVtaFmwSvqWREfK+ePKrnUW8zPsQqLpQ1cyUuoaDrlBB3qV8xZhwcKeS9QZWd6fvC+Z0NSzD1HtMRZOz48L8zUNmlomJ/rK8WBkyXYVKfuM8p/o/MX1ALfSeVaUapLPefg3wIrOn/+vPVnamoq9Pzp6Wn09fVh+fLl1s+XL1+O9vb2f5cx/ke0y9442FipQ2nSWyyEFldg9ZXieU9JKxrnngnhqo+9fBvWV/Swt+ru4g5OpCXPyUMNh9TzCWMqvEZuruKFZouewum+fncgWY48iKxgkAdXCwX/fBY21zZbdH383bwker53k1L4fUd5sLRQ9dMu9wcARzyIg96bUBEDN55UYWuAk7l3tplEaYlr/8u+5dhSozDIflTAI8gwS8S4Yi319Q/KtddRe0mf6mjAod5iaxwSysSKhPC8He4rwqbaVqXQSa/wZBTPdS80yqZWltx4krnxd7QttTxolPxKl5sbT6rqtfEkV2f2EjE7QqTXhT34rOzZCZbehSizSrl5SVwdG4c3oap0y8gVsfQ0FXWFFAYZ8qWw9qaaVrUmeh6battMvxJGEWZB7ztsjFHiLs331trjgOvjycF6vP1OXH2XPVfA3s5q42Eat/c1edY2VHfCP6cof/d1VeKLFQfV17USR++iUL83FmOFa+X8UaufnFMwLvqu+7uunIpJ+dhU04rNxe3YUnvCQADiRqnc312hvLvVnWJfqk0svfOAMfJkP/Z3V/BcEe6cLmJpFJBsea5rIdycFJpq2vj3N1z/Np9bE60D1lf2KG8vPSeq+rW5ugVuXBcHoxwVuZcdHZEhL7vmjJeGFSuAmo6RFQv9M0/kJQAK0hBMej10ukDJQj03G6s72MPPxmiegXARlSl8pQwBYCrOfd0VeGt6Jo89aAT7rs/7a2N1Bw4NqO9fzFiWe5DIJADAESxbbjyJO+adVp/xHDSfvZXPg5eI4V/ayizK1I5Xbzbf1VGwH7z2UfbArl0wCC+pmcqoSrCIwEkufG/MwEkfb1kOOLAquj/Wv4z3hEmoVncQk1zw5NjOKs4fmSlgY7kp5SgS99bu9jpm9CLFlhr9+1BfMQ6eKoQf8XFsaL6RgQCOn52jiqvFDf+/ZWC4PvARo0w9PVTDjho2GslBEPMU/LWiXyukPsrmvqYHpP8KMAWtyR9Sckk3qmIOwM4hzEmh7tZXee6DFKhuPMnRIZn/QXuanAr8fd12ddQzjBE+cLCn1MAg6dnamdA49wzWVvRa9wccn5mYOJlaVD/PlO9I9/3W0maGGcm5p/9zBN43+44r2ovcR/mOXe31nBskmxtP4pMf+wU73w6eKrSiVJd6zoHnOx/oDwDccMMNmD17Nv/5yle+Enr+z3/+c6TTaVx77bXWz6+99lr85Cc/+XcZ439Eu+yNg72j5fxv8vRuqz/KguXAyRLrQn1ysB5H+gotQU8CaV93hVJ0PFNldlu9xiGPKSU5KIBljgB8cHIzhyrz1DOCuQrq84KthQSAVgicWdPY2dbAQnpdwUDo+5yUmZ023s+IXZnqvy9VyV73LTqCL5SegJMyW4KSeqHhS+urFYvTjde9bY0R0BhJIbCt5pnowaaaVnjjMXzpxGc5krG3q5pDwZTk68aT2FxjJ9QFmxtPGq+q6ItUcKxokJ4fKmtPfVMTIyIPgTEwrZ4PZn3hz+akDJTLc6zvszCfYXu5t7c2ws1NKey9VpQ2VnZyn3Z11GdUPElhpGTRXR317K10c1McqaDxZFqLjdVKGSJaUernjralfKn6aVdhr2ek7BodBH/JM8qhHO83R8vgC8/tIz2rzIuJoUXCplyzPodOF1j9pbwE/qj4HVUyd3NT2D1chSk/iqfaF6tok2OiKFKxJLx5U00b3JwUVsw7ZWPQxwMYYt9UM6c9FoR8SQPMj/iGhhXAeCqbkxjf+PFVVmL22gWDcPOSYTYtbcBSdecdbUttb2CG6BspHyEKRT1mgnfIufAuRFWV84RJfqdIXRAyeaSvkP+/p6MGV0UTdpfHjVFgMc34jlFutAH0/Jn5xsjXc/nHFYdM33Te0p7OGjRVtYf6I6MB1loIOSnPJ1E9B50nlNPlXDltFZqzImqBXAg3nsT+nnKebwkD5YjUhHHguDNNrhedn5zItFFidZ4W7yFKKo/bMpQTW6URIubPG4+x7D88UGgU5jylEBPF5sGeUn7minmnLppfF5wH7oOeA5If3oSh5rWMUZ3cLeFD8j3PdSsGMDcnhYHXbuDvbC1txubqFn4e5UXtaFnKWHnui68iZxIi1jIyN9QX+ryXUDj9Q6cLcF/DEbXntcyWVZzlWtGzVpfpfCbf4X1Nn6PIIqCM4AN9ZSoyWv8Cf4fGLWWFNNyZOW3cXoMnWm/nPJ7g/pVrsqXuBACTk2DGofuZdjiyQ3uG9r/Mcfje96418DktW/keu9QjB3A/0B8AeOONN3Du3Dn+8/DDD1/0PY5je4x93w/97HJql71x4E0o7N7aBYPsfSeecm5iFuQhkj+zrPyZJuy+vaXRSoYCVOIiJYSOpWdYl+b2/qWKsSCuvI/eZNSwn7i+LQgcXyUQJmIX9aABANIO9nVVGnYiwKa6FLh8bzpiCe3t/Us5SfSvBxazcudNRFkoLy9VeNx9uqLs6z+5yvZkBuYK0F6fOmEIJRSDy+7hKmypO4E/Wvwv1uepEYe/l4ipudNefzku2YJeFRZsAeYWKVyfHqpREYe4Df/yEjEWmGvyhyxFhNdrIsqeZ2Yr0obF5jo7OkLvpAuEva0BQe/mJbGnqzoMo9DNmTXN3usnB+s5GkEGQNBLBsDAbgKoi/OpGfx5KthGY5DvPjKgID2k2Ll5SWyqbuNxUL/pkiYllpN2dVjb6pfAwzI8jeA0VLQnyFgU6D9FMygSBcBEeMT3OJFfROQoGuSNxxgaINeAMMT0LFK6iFLXGk+A/Ywr/+r+Hugpx7qKXvU5ohbVciVYWEl6Y1VkwOQg3Fv/gv2eQPOS5jxTno6XiHHOTTog4lfOH1VGn06+lqxOwdZU1AXMMHSTbl5SRdxojaQHVCuw9y56gcdCGGqOQME+739Qfhh/3rMSxKQi+7C7s9byPs+ePWH1jRmohLy0lPtEDId7VfRhU00rwwnduKoIbhQfzUIjcPOZjDDpJPIuRJk9jPYa/Z4iO95YTMDLzPy2jGoldqa9pusqepHtpixZpj5gzri8AyTTzL6ewH6iKMqsaaPA55n3HT6Tb0UiQ+MUMoU85aQIkxG5saqToagbCns5R0k2a11EvhO1G697m/fvE623451krlFONdwMLmyKZSg5u6+r0mYNyklZ80Pv3lDdad0R2/uXKnkRYJbjfsJe/5QX0QaaKAZJctV32FGxcv4oKK+IGeXiKiGZIy8XovbcTkaxvHQ0xHQG6GKWAsLrTURxb/0Lal8JKNPOoVosmXNWJRBP2jLUS5h8NmJP29NRw31mhwCgdA/BaMYMjeOxyzpyMGvWLOtPdnZ26PlXX301IpFIKErws5/9LBRNuJzaZW8cAMpze+BkiYHEJGK2pe3ZFVmDAnpr3YuWd4p+d7Cn1PJskbK4vaURB7qVR+Kp9sVYXW68+t54jKEtIeVHK8HEow7fwVvTM+2LWCpPWqAw/CdiMOWEy3XjSfYceBNRuFlpI6D0u0mpBYznpbHkFHa2NsBLxIyiKL0JQqFhJgVxmR/oKTeJxBrqsberGveUtOKp9sX4cu+KsEfEN3PpxpOYHZk0l6/GeIdYJcQ4pIdJUXz6RpEWP/cSigPcuoS1sCCB6erv0r7gCqN6DzTMeQUT6Wz+rpdQsCv26CVi2FrajDsL+mymITIw5LKLy5O93oHP7OqotxRJ+OqCpjGQ8RBUbIJKrKw/IJk8gtSTTPcn6BrZgy72wP7RUpU7ov//1wOKsndTVVsorM1KO8B7gr3LBBcLJLfTJb52waCCtOjP7exYxJ8jA5reIZOrM0bkdDG0iymBK+adgjceU559x+coy1NtmsFjLAMlrmAKuadEGZ4HTpYo72bKhTcVwYp5p9iAD8K6uGmWGHqeLHhnsUoFxgPfYS+oG0/i6MACXh/qn5cwXPLEMZ8pKkfyYVdHPRs2PnkfycgT544jBxei2DHQYPfPAyzYiGhf7l0BbzwWqo5M50yu0blzuZa8CCqMqpOwcmpIgd89XMUyF4CtGOamsLmuWcM9fF4DCdlakz9kQZfgg9dW9pmjlBoPTzkcgDIspRwIenovxkZGzboDEnbSv6Qrprnzxm0iCitydDGo1kQU2+qP4vfKjvDnlhWrnDY3V92hRKG5p7MGMSeN2bMnlEGdl8SWmmbz3THb6KW+ybl6/SdXmT7HVd0GWSWYztGWWnUfUnK4XHt53uHDqnIOgO8c696i/AxtIFswzkCkjuBtnORMNSVmKgiQN6bOwcHeUs7LemDR82avZaWNo0nUflAvcDgB3huPGWea7rdFm+476mzNTGJ9TbdlZB0/O0c5QXIUbEvODa2jSoI2coANFr1GVfO/xwayl4jh8eblPKeXeuTAg/uB/vxrW1ZWFsrKyvDd737X+vl3v/td1NaGaesvl3bZGweW1UseaMdnqi7/nSzAd/DkYD2WzDmrviO9txqHbR1UhqKoEN1yTYn2RLP2GMjkIMdXGD66SPOMYu4lYlhSfIbfSY0iG248aSogC0gHAMP7X9HL8J9t9UctLzv319W5C0GccbUSZpkShrNdEw2RNQqsudV9fqp9Me4u7sBDiw/BS8QYyx1UPLbUnlAsEIAlsKlJzDwAPNXRYF3ohJ8NKUf6cmT8PZTywNAcgfcmONj/WPId+zmC+WlN/hD2d1fAP5eloB0AEPMt3ujjI/OUwh7Ii5BK6jvJuIGuOD7vE0Bc0I6939x4UtFxCliRl4jxBcmfdX3L87Oro54T0CS1J7Gw8P9lDYJ4Eusqeo1S5DsWrGv5whHep/IyojGur+q2LpolJaf597uHq9Q+0JEBgjIwOwYlnndVZ5ZCgRok+3vKTRXbSZuiliIHNK8bKrtM1GwiilXaOKe8BmIoCe8jBes51FdsxkuGtZ6DFWWa4SziAx5sVha9pk8O1rOhSobT+jKF6acCZQzZQ0DZz1R0kZVAh8/VF0pPqD7F0uBK0zSMc4pNSNawkOtEkUBplAbbtvqjqpq3fuecT/yMf6cUVeFp195ld0bKODboswIXTwnRMifLzUvalbNFo/0MANdcfZ7fFXQqUKEoyepGxpn8Dik/lDdEz+DaE9pAril4Bf75LEU5ORnlxP5VZYNW//yIH0p+5THTPtJ9IbYZMm4jjmcrzRNR3hP885yUhZ9np06AtUhCT3m/OMB/WXSCv7uk9DT/25GRWJ0j4MaT2FDZhb8eWGzgsQ6QE7HHtqujnufx6aEaZbRpQ+Cpjgbru3KOWY7EBQvVVITrHJAhs3Ools/cjo4l6rnti834hIHsn8+yyA4Q8S2nD1FSk5OK51bPqZudNvMuIilu3NRGcXNSDN2xjNaJKOA7eGDx85xDsbdL5WVRrQ0vEcOCG9/kugLqIT47f9y4iqCu1RFGjgoLA5n+TfBlAFYdJnLgrKtWhrDKF1C/48h2hmRnwBjrW2pPoGvoVobOAuosNRV1qYJql3jkIO07H+jP+2kPPPAA/u7v/g5///d/j9OnT+N//I//gddffx1bt24FADz88MNoamqyvjM4OIjBwUGMj4/jrbfewuDgIE6dOpXp8Zdkc3zf93/5x/7/r1Fp7Ruf/GMgErerMUphq5Og6N8kYPn3WjFjL2jaEYq/7UUlL4SF554wigxj1wEQLjXkPQf4GdQfQCkh3xwtw++VHcFf9i2Hfz6LS54j4ltMJPTMVfkjKtkq6mFLZYtVBVaOb2N1B/a018CdqTy5ezprrD6tmHeKL7rguOQldW/9C+yNXlfZw4mQIaw5zUXUZ+wnX3wALE7w8RhWV/Yj5qRVXQo955zwR5+jtRNzTIry/tFSa56Dcx6cDzZsdJEyot908xQbEyXXUfPPZ6lk1XiGMQJWNIH7MBHF1trjqtq19ADqi2dzTQueHqpBNCuN6V/MsKh2rbnS/b6npBVPDtbjC6Un8NPkLOwfLcWKeaeYmSLYgt+n8brxJPy0C18ndnoXVEEuN1fh9Dt+chPe/tEVljJu0WKSVy3D++RnEPUh2VdW5Y/g4KlCXq+L9ddaN3meELj0UrQJwPuJFKug4SUNZ2sPiD5vqm3FrnY790CuJ3GuB3NSLtbuLu7Az6Zn4tDpArPXqDlqbjbVtlrRGvrc+qpu5k33khEg6fD41lX2KNjAVMREB8S54vdEPYDyiwIc/HIeEPMU6052WlVXD6zDyvmjHI3i+ddnk/YTYf9pzYLz5yVieGDR83i0+Q7+XVCO0hxz8TGxdwB1nrbUNOOpjgbAd/BQwyH8Zd9y6x0ry4ZYjq0rGMA/t1Uxy5ycB3luim/6IQZO3WzPkZDLXkJ5fJ8crLdk/Yp5p/DRrDEu5OjGtWztqWZZfce807g26zxmRycUvDOw73hsun9NNW3IdaeVwyLD/VFzy/fRNnybjiTBOFNy7PtHykGSOWsXDGJ/b7lxLrm+ZaRyXwIyjZ5z36IjeLz10+acecCqygG1vwMymec76gEusHFhF/Z01GBzXbOKCgT3o2PLvruKurG7qxZuTgp/UH4YpyauxxuTV3IxMLm3LtbuX3gMj/Uve897QbZ7SlqZ3hQ+sLGmw8pXkMnUwTXk8XoiajURxeryAc4fI2ryoH4AwBqvXEdqwb0i59i6AzPcw9QXNzcF/1yWJb/oWamfp/HD+/8E586dw6xZsy46p//ejXS8321Zi+y89xfdmBpP4m8WHXhfY3riiSfwF3/xF3jzzTdRUFCAr3/962hoUA7JTZs24bXXXsPx48f585nyEW666Sa89tpr76uv/1HtsjcOPvH1P4M7MxtIOkpR8JFRwZSCfUNhLzyiY5uwvZQbCnttoUCHcTJqFN08WyjwYfVgQQZkY8+WvvRI2ct0YUihnkl48mc8qDFHfLgzUpbiZX2WhE3gwiFhwkYGwO/dWtqMHQMN1nuCChXBgdQkgOcCAB4oO4qfJWcx5tlSHiO+VaX4jnmnFX7YAVaVD4QoLoNjD65NcC2ofbHiIB7pWYXNxe2hqtaZLuhMF/bGanNJeOMx3NdwBOdSuUqpk2sEFW6mSr6slKZVwatMfaAWND5W5Y/guf5SrscQuvC1chny3ol+01ryWZB7NeUC025YuRBzsLW0GU+0LTPe7PEYmmrbFENKnrrAr4wmEHPS+FrzClZMg2sMKGXSnSn2TEKxWz09VMM/y2R00xg3VHUyzCJ4RkjhIAVOjiOkNAuv2Zr8ITx7qjh8TmCMxWCBLrlO1vdSLsNzgucDAP6s8l+4knjo/Fxk33HL8jhJ9p6SVvxseqbVb2n0BZWDu4q6Dd1uPBlSOjhC6iI0r9JgDhlTwuAKKl4kL1hJCiqs0tgURlMmg5gUsk01yogiJ45slnykPaNhPyzvguPWz+c9DoRyl4J7J7RGeo7uLu7AztYGHm/Zza+jZ/QWyzETc9LYPVzFMt/q/1gM9za8gCkvhqeHahSLl+9aeXOZZBt9l6k9c1O4u7iDo8RyvchLvrNjUchwDspb/p3YV/KsXFSmBBwj8B1lQEZ83Fv5ooq6ywhi4DluPIkV806hKO8NfLX3jnBfdII4YN/R1n7KcJduLW3GEy23h4ydizkhWG9wlezf01HDcCMJeaV53dlTz7UOgnvjYs6K+xYdUQxXCMtuer90wNTc8n10vHpzaN1D/9bndV3BgCqwKubC9x34FM0IzNOlbhz8t+bf+kDGwd82/J9LbkyXUrvsjYMbn/xjuLkzABjvpPTEsHI6GcXK0mH2GFn4dsfHioUjODxQmNFjFTQuMikf/DvNaMIGRMD4uLOgD3u7qtk72FTdzgoXoA74ivJh44lLZI4crK3oVeFwfYluqW7GzqFafOr6n+OVV65jXGpQweELJXCJy3HJRj8j5VZe4EGFDIAt9DPMWXBeqfnnsuBHfTSWnsTRgQWWIQMoBZH5wBGO6EhFBr5ieeBw9UW8dfctOsIePTg+mqrblTIl+30R40RevBe8WCgaQ/1mJTiD0sif1QmT9J61Fb040F/GLEjUfyftcJLexYxGa07GYlhb1WsudsfH1trj+Nu+BvgXImZuSKkS9R543BIKEogaXNRjKNcuw+VIn91Q1amqeAZrkYjzlskgoMt6U3VbxjwJeMDGWnWxZ5rrTIqCjCTBAc81KdiAyhUipY0Uvz3tNUBOGpiK8DPpTAbhQzTuVeUDONhj6iGwUheQSW5uCh/9yBje+sVMewyB/bmlphlPtS3ObGzocUkDy2pRD252Gn7aVcXxgr8XhgIcBUfa3tKIFeXDqo6MftedBX3Y211lnffg9y2niuNz9CxTC647yfLQeZfPlVHi9/AY8z4CNHzMWA5XXn8O7/xklhVh5jUNyKygsgwA3oUoNleZcfEzhLcfAHvyGUoToEcG1H7Ldafw1eaVGddUyu+1CwYNy5cwrIJOhW11L+Da2Dn80Yu/xfPUVNNmFxcMnNnQ2mgnyePNy0P3HDnB2DGQjBjGrUwG7cVklzQ8iEI67VgyPlNeUci4o6YdaJn2heUIAzg6F+qTpGIV6765uJ0jWhe7P+W9ezFnABvwCERugmsZMB5C6yPmmdbR9x38vwsGGQLlpByOIqR+kcIP7/viJadIk453z4n/jKz3aRxMjyfx5OJ/vuTGdCm1yz7nwJuIKZ7/8Rie6zPwEjeumUuomJHncKESLxGzhJ+bm8Lhfp03oLGTjD8nBSVXFEQhD6Q+rNKjsKmuFVwMRvYzoZhy9nZVw40nVTJxbgrnUjl2om5eEof7DAe4G0/a+RC6sWGQiMHNSeGp9sW4Y95pfO/HV/PYKGFPNilU1td0h4Wo6C9xZ/vnsyxFm/7e0b7E7qfuP1G90bxIge8lYiGjwZuIwpmtihcdHc63hCeNf29PFf8/+HvvQjSkGFkVJxN2MhgArK7ox/b+pQb37DvY3VFn7Y2gZ1MmtfN7Whssw8AbV4nKDzYcBnxgZ1sDJ2WqCzq8lpQbQu1An6HgXFU+wOMgmBnhiGXCMjXOB0moC4QuAzeeBNIOdrQtxcwrJtT/iTWHaBQpZ0WydgD4oyX/AqrRQPPiJWIhBhpaG3kJMltRBqaTvV3VlmJ2T0mrwQbnpuCfz2IDTJ6PdZU9cHNTYcOALtaZSYX5DjCE0PeD809r7sYFC5JutCe8hErGlowfe0fKsbG2A27Us+YBMF5OygkhesF761/Awb4S9V6NCd7Z3qA47MVeo3n46U+uCK3xxqpO1N36KvebziYz/IjqyRsqVQLn3q5qrCsYYBYoN55EU00bFi14WRmeEQ93FXWHzx69s0ZRXG5vacTGmg4c7i80Z3oyqtYyAIXIpCgB6uy5uSlOOpe/t5RC8X+uXk5JnwRP0nlMpJQG+y7Zs+SzAbUXqOow/fzcuVyLwtP6m4z3BYNcZVY6QohbH1CwqTX5Jv+HYUC6D1TxWP3O5FFsrO5gliDKD+BaOBeiVs6QbPs10xyPXydg0z1Gyuz21kb80Yu/Ze3xf2hWWHiWNZoiNXhGuDmKBU86tCxjQrDq0e+D83jfoiMhOlnG6QcV+FxVrHFzXbOiCaZzqp8pGb/kfePGk9hU06qSeOmOlUX19L85lzBucln4rtIJyV4ihlULB8385iXVXkxG8FT7YjV+wSIezK/ZUn8i43yyzKRxa/lj1WzyA+stk6oFucW2hS+aWjVCd3mo/Hnc8vG3cKCnnHPS/rXwyEuhpeF8oD8ftvdul71xAAC33awpqGRFWlJGIgbKs6z4dPjSogvFMUoSCf2VZUMsaPzzWcIbagwIAKZw0LhK1GSviI4iUFKjVCIpofK53lJdIMswCdDfK8uHeFxSmdta9yLg+vDfzTLKcTzJBdNo7AdOlvD7WHEQQovYjoLMFwDgJB3GGlPVUW4kX4W3Sybu7RhoMO/xYBtTPqwkvA1VnVhNlxLAF8u9DS+wUkiXOBdamzAF2gAoj5Ae85r8oTCsSyet8dwSm8V4zDIi5N6QCiMJXIqS3FXUbTHmOGlRlMdRl42C2qj/w/UVM0w8qYyGQPvmaBmI5ciNa/50X/2f8d7iMty66EXAdzA7OhG6XMk7vKJsOKwA60TKsXdz1f7zncwUo3lJ67L//x5bbV3I0uuXqfnnsvhceRNR5kbfUNhr7fOgB+3JwXrF/KOfS1ESVW0avGZJP2IpAPw8se7kZd5c2ww4fmh/X6zuhZdQ+QfOrGlLqZFz01SrKqE3zHkFe0fK4aeVmHVSgejegkGGbOzvrsCy215WEAdOpNd7vf4Fi8M+aNBIhhIvEcPekXKmzARUlWK4vkm8zUnBm1aRjG+OlnH//7mtiqvVeokY3knmovXsrXDjSZTd/Dp+MqU9bJ6Ituk53TtSzonJVKyK5ydHFIAS/afPq8lR8hTQSZV6/EHPKb2XDBWSe95EVCnNUZ+VcQDs8XbjSTWfdpkXk1yq59qbjFr9ov+vKh+ANxHFrFmT9vfFPqfzeeBkCbOL0ZotKT7D8vDpoRrsHq5SETtm2nFCBgwALJlz1hgvmmqXDVL9M2bD82FgULAdPcSkQ23l/FH7PvMRMnrozDtXTOPOgj5V3Vufcyfpms9NRbC17kUrWdhLxOxEcYCNeTcvqcgBdEKyjC7Qvni8ZbkNPQM4Yki1OWRfaV6pbhE1bzzGjF9S0aZGTFaSectLqErxTdXtPI9cZRy2Qq5Yi9S/Q/CrAJSWxnNnQZ/Z93q9Q5DSQOVvLxFjggF3ZtKmcSUn27g5Uzz/4j6lYnzyHD28+Nv4yonP4Hs/vhqI+DjUV2y98wulJ0KQu0uteT4+AJXpf3SvL/122RsHbm4SL3//OnMo9MHhg59risscG50XpnnTJeqDF5sbT+LQQBELbmIhAczh21TbigcWPa+SgfShXTLnLOBrg0DjJPd2VvP36EDu66rkfrq5pooqCzdflUHPFCLc0bYUbk4K/29tjxJkHpgi7uOf/Lkd+tZeRFIcNlR3Wh4Ub1KFbH3XNk78bA/EmgHAEsgsTMQBlJGA+xceM79zlNIEICOkY29ntVXBkoTp37zYyJR2tGY72xuskLRkvKH3X5M1xnR7bjypwslCsabPPtdbynuFKpuy0RBgTNpQ02kZg88MV1qG0Weq+nltN1Z3sBLOl3JuigX/o32NXLXValrIA8pwLJv/fWOcBJTwHR1L4MYV37ZVV8F3eAyH+wvNPAvDjZ71z22aOWVGii9jeTmyoZKXNLUxpLGh50iF/I0h4CVi+N0lR8PJjhFf4YTTpo/kBaS18RIxNg6JCrKpqEsZFa5Wkh2lXG6o6gwx53jj6oL1JqKsqOxsV+H+/7n0/wbm27HOFn0f0LSy4zGsq+qBG7cjF14iht2dtdhY3YGPz3gXALjwIHnj6NI+cLIEjXPP8HePDiywlGUau8rtALM+UeV0LxGDG0szVFIqo7KS+JH+whBmHj6squWAOuP0e4I2Ofo9fd+/EUdfmqeMa6l0ikJKQZphGTni+ZmMYkXZsNo7AWgKQzoTMTQVdWFtZW/I8KHGcFCSezqyx3Af37H3vm4PL/02P8uKWPkAHB/Lik7zd+X7Dp0ugJubwvnzOUyNTHJhY3UHe8eJuceNJ+EkHd4zzWdvDSnoNGf0fpIBrCRfiOL42TkK/lfWh3vrVEFNNy6Y6XxV0dY4DRzuP2BqrMg7BoChNCYHSqDuAnPv6/khyCadfT/mmfnPTqs7J4C5P9BTbskFqdCSIi3rdLi5KWVAa7m27LaXLQOU1vqZ4Up1/oWjj6vUJwJRfz0GuZ7euDasRL0Aeif1/cnBegtKtb+33Ja1F1EuLS9/PBkqUuhNKgfNXUXdKk+rytCASwSAFTnXz9rXWRl63+baZtTd+qrquysIBxwfB7rLsbqqn/u1rf4oNtW2Wmv0FQ1J8y7oqJao0AzHVzDJS1yR9nz3A/35sL13+82YIUEBSKFKghRZlYVFEic3B6xUSR5/bzzGni0Syn9Qfti6jHZ11OOxfuXJIcF5bCBfedc6qy1FmL63oaqTueIB4IInKnCSd0AITFZefNvL5iViePaUZhhygZir+vjmW7OtZ0nsrDcWY08iX645Bk5heV08B6vLB5SyNaaUtqDgzJR4DR+K6o3m2QF8TRMKR1VMlUIajqJrlcbH/QuPwblimqFAlCBN/ZbUnEGqxicH6xWLiZ7HzdUt2Fzcri6LcUXD2lTUZRljh8/kc+RIGVv2M785WqZrYdgKzANlR+GNK275DYW92FzbjD0dNRz6lwrlvq5KvqyCcAoaC106EXhcXVS2raXN8BIxbKjoMpeTTq7l+SSIgrwMxaW+ubYZV1w1Dj+qq25PRhVVaGCvWoqdhttZlyJ5IbVhSxe7G08yflde1rx/XHNRB7nfZf+JinhXRz0XLiPmDy+h9vH2lkb7uwDD9T5f32rGEk/ia8dXhAwcXqO0UbaosBocw03P+HH+jIOkH2GqWU9UHV+7YBDZbor3/xENv5FKBXkmpdIEKAXu8Jl8UM0VN55UbEU0Ps9WwuU5kkYMKXSUx0BtY62pEyK9oFKmEbUl9ZELnQl6xoyNHCKeg5nRC9wPmjdpRLjxJHZ11uFAT7ldn0CMh4xDSxGM2zS+lqNBO3gomZXkIjtedD7NsaH5/N1761/gIoCyrSgZwT0lrexljTlpI/NEDYXbK0et++Sbo2WWEmvtNddXZBGeqaezpPAMn4lnTxUzE5w3buqJ3LfoiP0coch5YzG42kEi4XIr54+CKDXlvIegQgIOZMnktGMII8TcsAwW62Ht64Djzc1Ow42lrUiAHzWOhmMv3wY3njTOHBGNiokzRLlADBHT78rO0cnWvq5uzHUsoOY5Uw0UOXbt+CPFnY3vQG4VAKsAGf8sEeMIHc3T+goFH3xmuBJwEMjlgL0edDZ1PQXO7RFtZ3sDWkbmhs4Ijfm57oXsUNve0hhiAKO7zMlKWw5GK4L5Pmk//72bB+cD/fmwvXf7jTAOyIumLgHjmYEjoDMBpY+gPhuqOtm7S4dTeeGFl0Bfil86/lk79Ki9brLSIe3JbYuOhqkutVeBvu+kHXVhSKyuVtIfKn/eFH8iyk3Rl7UVveYCcn2rONFFL3EHFxeWiXDhp+d6Fqr508WmpNdJKh1uXpK9bGzUBLz1X1z6LADgp8nZHEqndqCnHPAdVggebblDhYvblvLnZOjYGofjMzQGgDXn5DneOaRp4hx1gVusOAGPLL1DGpVeQkFenEASHUOHoJSop4dqVOi/9XbLa0XPZO9dwANrebjiSVM7AbZiNZ5WiffSywcoxUI2LxFTGHYYbyU9g7jL3XhSMVrk2MoXNVlwjpOA6d/6HbLQ04bKLr48ty18EcStDqi12FDVqdcuHE6Xf5fOfS00byHMsugnF2MSl6s3HsPutjp7P7tQybcZnuHOTLInVcHARP8ktEjsaXVu/dA67++u4LwiADzeOwv6LFgGVfDmPgT2BLUbPv4Lu58ZZBk1ggzJ6ItU7vZ01LAiZq2vaHs6RU0Ux8g5Ny+J9ZU9toc2EePnrKvqYccDU9US9WPA8GSlU/D5U6PnUx4F9ZU+Q9WC2dlS2BtKFA6+i6iDZfMSCo4SVJgB4Pkz8y1O+l0d9cwKRM9dV9nDyi1gimzSXUSF32h/EJsQvRtQ0YZMTc7X9n4jA73JKOd+uHmqWNb+0VLABUNMAR010NV86X3B+8CbiNr1EBIqMdkirAAQn3mBDdGJdDavjzcuigWOqz2ytf5F2ymgDSWKAt1V1I2N1R1mbfR8fvXESh4f0a7K+8yNJ1XEhx1Oaj9OTcYsw93NTRmjUn+Xo6KBKt40N8uKTmNL3QnjyR+PYWNN5rNB8y4hb4W3/tDaP0SrzXJbn38nbd8d7OiiJu60Owv64J/L4veUznvNXjsZMdPoBP98lu1QpHtN/8xx7STzzXXNF9UFPmy/Ge03wjiYf8NPOJRI8AzyAADgBC8A7CHY260URMZ7awV/dWU/Yq5dKRiuCa/LYiXsddFeFkrgBVTi19rKXuvABykjfVG8pHHuGf6dl4jhq713sFBlQac93l4ixgnJcHwg5RiDCICjPZmWZ23cJJDS+/9oyb8YT6OYL/lO/v6E8YjJsQNqbg4NFFneDb4gJqLYVNOKt1N5yqvctlSF0jN4C6lADglhukikAUaKkRS87oyUEbgi4ZfewXhzSjYPJMfC8a3Km2vyh0z1aRhPph/xLc8OvZMU8JXzRzW+HlxhM9iMsqovDVd/ViSxewmdZJ+wvUlcDExDJDI9m/pM+SeJVLa9fuMx+GnXgvRkuiSC0Q2p6NP/ZV0NjkjpZEWOdDkmYkVKmpVgHE/iox8Zw7KSU/ASMQz94BOhfeR4TghCtLm4HQ8uPqxqd1R1Wp4+Ny+JVZWmCBordaIWihwTtfsXHuNL3DKExbrI76zXScZu1INHbEXCeJLzqiqYmgjn7uEqFdES58RSknWf3/jRR0L7X/ZPGvXc55lJeFMRU5iLznxekmsDMGRvOqIqvAovJjeJ0x6PwfMdKwGXjG9vMqo82CJ/ZWN1B7bWGxIAL6GidrYXPEwRSh5gqTzubG9Qxvp4DOvKDcwJgMl/CMw3GYzEvCP3M52h4Ocv2vQ8NOo9CigjkNrm4naug0BthkvFDPXzx2JcoHFzbTNWV/Sj4lM/sM9ghrwz2ZYUnVGRHL0X9nVUankIOFdMW+eGFcSx8LjIOGPmMy1f0r4LJxChTozN4H/vHq4yEea8JDbUdFpG85OD9bhv0RF+99xbfsyRL29MwfEA2HBVocCSMbm/p9z20Gv4lXWviD5uqz/KDitZfK5hzivmDp1h7xGKkc2x8gABAABJREFU7h4/O0ex8Ok53Vr/okVlTvNJSdqAyWdakz+Ek69/LCRHLEeC3psUMZFjsL7nAMTA9M3RMvyXhhPc94FTN1vPorESpAywIV38bDnPY8Zh5I3FFK0tyYsPi6D9RrbfCCrTj980hR+9drWtDDgAUg6clAN/hsJPWtSCmmrwjnmnEY9MqQJcUZ89P5Jekr+TiBlKQIGf99/JgnPldEYPDbU/rjiEkcQnbJYhEhSaD5+KygDggkCAusCR1Aq/eD7zmItCVsFm0eT5RtlZXdGPa2JjVvE34gQvzv8Bhk7fZPWTxi9/dk9JK3a0LDWJt3ocwUQt6gd7Z6YiqkCT5Cen94t/P1T+PL7ae4eVVxCiz6TiaISppPeNxbC+phv7uoyBRXN6T0krdrQtxfoq5XmT322cewZHX5rHe0SyjNB4lt32Mo69fJvZJw7sNZ2IYl1Fr0qe0/uIi+vpBOWMBYgkfWjU5yTCkHd1LMZFxqiFjDmaF1r/AD2hLPYmL1p5ht6TJjVAp2mdE8m9LebWUnYyFSsTkmpTbSu+0bJI4eQDPN4Z54NqnFANDXF+6259FW2v3GLNM1xgZYmiNmalTq9RMC+Gal1wka4Mc8M/E/SxwfXgvJIInRNDlpCp3oQ3EQViPhd821DRpZwagQgWyxD9cyryRXNKygR5Vs+lc9S5IHpHSQMMey9LzvSLFgO8EDXVkeWcBM6GrJdyV1E3dnfUWbSRdPbo76Czx5oXL2Co5CoZ0FTZbpiNEDgHgFHCArJSOYF8zLpmHMtvPIP/01HJ7GBuXJESLFl4GscH5of2h6xvIvekO1Ot69aa44bymaLMGe4iuT+dpGsxysj7IDT3PlC14FVcnZXAoV6179y8JOpufRUtQ/PMnaUL51nzqJuBVMIytGfNmsT58zn8/3UFAwobr0XP2gpDlUz0v7x+UxF1LqeFrA/K6UQMzpQL56qp0BmgvcvPI9mvz01s9hSS57JDZ4HG1lhyiuW0NWeB+87xHPgRHyvKDIV4aB3pznLtGj1eMgJMuSZKMx2x6h7QWNy4eteqigFO/KZzA4DvolA/fUcVKkw5RuanwlGhYH2m4PvhQcmStG2Qq3vgPF6/588vOdpP0vF++4W7kJWX9cu/INr0+DT+6fZnLrkxXUrtso8ceBMx/OiHVxmPHeEoNebQn+EpXKlWINl7oIXb82fmKy9QxLeVGH2BrMofES8zkA55OP2YbxI0yVLX4VeC2/x5z8qQYQCQF8vBprrWixejCXgzvYRKZmNOfiFsr7giYb6nmxtXjDry/8/1LFS47smogWNpr8TQKzeELjpJM0eMIDtalqrLnrxJuSlsqT9hxgVzGTJNZiLGhsHacu1JTCvBRx5+upy+cvwzei1ErogILavn6jHNsDn5HU9DtgR7ye/Ut8BLxDihd/9oKVblj6jv6n4e6S800RSdayKxrgBw7OXbOFIjFYVFxWfU83JThnM8L4lFRS8xdIX6HPQKyrwSN08lCjNedNqx5tKdmQztCfkcLxGzcwLihlKU52f2dCgJnug26Xu0T79QGqDhEwUBpfEZ8gwD1t6kd/FzRBSHog5VRa/AzUtiV0c9/KhvRYJIgZXROwDq7MaTHI1hJVeP72MzzvMeJq8pPBhFKjclDFz9vnHjrX83mWv6LGkbdRKxl3LV2ml2MmkYcC5TTsoyoN140qKbJAVWzaf+su/AjaWxsbITcIC9HYLYIJBzIBXoQ/1F5uc6IkV9fqqjgZUQd0YKn7r+51Y0iPe5xnjLoop+1AN8k/vCEQuxxuyxFmeDZZEotra7s1adQUHBeWRAyb8j/YVKKdPnzxonzQtFQceMJ9idkcLu9jprawRzY5i1SL9zwY1vmrHnpDA+NgNnx65hRZzf6SgY0KoKk/Pgv5tlcqyg6ux4F9QaNtW18futqIJgDZKGgoz8urkpVdl5zMyxH/WMLKW9pXN53JwUrskeM7lTet7JIN7bU8VylKkuZVHP3BQ2FPaqsUaMhe5NRHHunbg1X5Nps67rq7qZKhmOz3N2RJMhuNlpFN/yhpLBJNsyOAr8bKIis/Pa6D3krKHmTCu1Jp1yrT0AwFBGew6OjppaQZwEPh7DffXftXMKfACubxkGvId1AUt4DpwpF25OyqaohennhsJeuFlpqz90TsnLz4naNBeafIAISmS0Z0Olost1s9Jqz2ellfEmE7h1PwgOSHfoqvwRe8/NTMKZNgxUTUVdKvE8wJ51KTYP75ep6MOcg39Nu+yNA/hKCG2tN1RrdLmtXTAYFjikUGnByPAKieHVh8kbj+HgqUKGnAQLhrEwz0uGPMF0gA/1F8Ebj1msH/Re7ivA1HhkVPDllJsycBj5Tq0Mb65pYQXfS8Tw7rtxFo5qLOpv3/XxQMPzdkjTB7bVvmD+T30Xng8OjUs2FNd4X4mvmtpTrYvZSwKIyzkQTnVzU3j2VLEKCc9U8+fMmrY8euurFeZybUWv5a3ZXNts4TVlvgO9g8K4UkYQL75c6+d6FrKBIhPS4TkG6+yYPcVr5jvG8HB9bC5uR9srt+C57oVmv2nF77b4z+z5FH3PmmGwyFLZX3bby/wuP0u/OO0YbHOGZHBSAkMGg+4PYYzjMy+EvgsA51MzrM831SjKzu2tjUIxAxveigPcKG9Mm6k9pgCYJECeTWsOfFtZ6xoyOGyae/63fv+EpznABZ77rqJuvSY2naiXiJm8GTpL2qAhbPE9Ja2WJ1pNFjhZ/6NZY6ZPYo/BUTKB6xy46mfeeIxhC2TY8pn07f6RostGlu9YyjqgoDNc9ZfOYQZ2tWASL/WTWHSkkUDtlR9ci1ATOSbeuKrRsbm2mY2oHQMNzInPnvu4WXPLaKV8roAhu6WmOfRaimwQTMybiGZkACIYn/qS+h4lwWdK6mSHjTjDJKNOvv4xozzq/g+9osgApIPlocWHACg8P8FUnSumrXP4XG+pUvg0sxLNnzXvvmPBXKVBIA0rUky31R8FV0TXz+Ohk4F0IYpDpwtCCcMsz3KMMct3mP439YuS6y3ygpoWVRhPzMOh0wXGeJTQDXGOZR+GXr2BjULaK8HP2Eau/qEj7jy9NoyfFxEVFSEURudwFT9jVfEQP5cdIXlJrk4MqDvGmT2dsWAhPfOptsUK15+ligQeELAnN5bm+drToQv6uSpPZsW8U3xvUXTMun+hoYkBpjFaI0IoWP2S51fQ8/IyaGfAwVOFZi19wPdVVIcgnbuHVcHC9yqmdqk0/wMkI/sfGge/tF3+xoHeAzvalrLXZFNNK9y8JHIj0xkxtIA5iIwdzeDNpWfv6qpTXtExEx6UTXol4CmB1VTUha11L/KFSowrdNnKapaWMufAeocUCMHogZunqRp1P2Wyl5uXtHjl4QCP9S+zlPR7F72gCjvpZK0ga1DIuy2SM1eXD+De+hdUwpzEe2uj6otLn7UuOkvxhskD2d7SqDzTMqcAwO+VHcH+0VJsLm7nsDV9l/HSWrkiA4yVIfKC6cYF0PjiMRvhvkVHFP1oXhIPNDzP6+nmJbGzrYE/78aTuK/hiD0OOl2+4rG+u7jDiihRIjlVSKZkWdm36QtRJP1ICDc95UVCSr6bl2R4gvVzcblKD6ScTy8Rw39brKgSE2Mz2KCi33ljMeOh02dBwjNkH3h/EpRHNL789KW4tfY4KyGWZxoBZUD/f8nC0xkT6inngPa8N24SJ6mvm2vDbCqAjmjQmXXA60JheEo+fXixosEkY40U/N3DVWywe4kYJ5sGZYEyKlUfn2i9XRun9gSFjOTgGgeUO/55Tnj+gkrWzqFaVtK9qQgrRVwZOTDX95S0ZsxdkaQCbl4SM9ykYT7SHz90usDITN/AnlgOBp5F/aW+P9UhCAZE2zlUa2Cbuu8bCg35gjcZ5WgGOXZIlvDcOBlkF0cvfK6r4uYZg2ZzTYuZH2Kv0uO6f+ExVYxMv+OZ4UqudSJlOMFmZF9o/HcVdbOTKdO5AhDaS95EVBnmuamMzgBAO0bSDpqKupjtSM69NxZm2AFg8kiEbA4qriT/MjkcAHN3Uo5JkB0JgKH6DBpJUEW75HsBcB4c9YPmNRMMM9ik0Q5HeOn1fRx81+bidoyRQ0Tvj20LX7SexUnkE1FQZNKNJzmfxpuOmMiAY87kzvYGpu4FTN6bVbBtIopcd9qWgz6smixuXjKUTM1OEb0n1pb1mfnKS2JLrcjP0oa+4yh0A+W98PMCusyl2N5/jQPHNlw/bBnb5W8cAAoP6IND4buHq+CNxwwfvT4YXEwGgr+bLkeCJGhc4x+Uq2JVdKkyQ4zG526qaTWRCFJ88pIMH9nVXs+KnCUwHaNskGeZBBKPhzxgCVNZV3qV6Hn+u1qIaIpDiTn0EjFVdC0AJwGMskzsNxTqPdBTHvI6WgaMuHQPniq0i53Re3VFyUeOr7E9QiJ86V2IcqEfOKoS6MbKTmuuKHFyyjeXOgDLy05/0+XpxhV8iugXH2pQ3r4dbUtZ4edLXLNtbO9fyvP2WP8y6/IwMCAlaB5vXp7RM0mNjBap9AX5xe9d9ILJQ9Btd1sdF9K7t179Xha5cuPmkrcMLvFHrpltbPrcH9qPftrli4sq+AYZszjZW3+3qajLZrhxfSv0L/emjBRQFW3+zHiMK2hL5Yn2d/PZWy1DiZS/7a2NobWxwveJmDHCEjGuOu3GNfuTb/by6op+OwKg21dOfAbeuGFAof3N86spD3d11FvsQ4BRLoh3nNdBJt1qdiMy4vm7BFWSycxjsZBCmGnfEY2tbG5OCm52OgTzCiZX72hbClzQCaOi+Bz3HQp+kO2KKJHsE0VadOIjsWzRe9gglvAGUpozsDPJPW79XORM8fwkYgxJImV7xbxTRqEMGoliHQ6eKgzJxKeHaoziqotpEszu0eY77HEAyHUN7MhS6jNArNx4Ers76rCro97a+/IzNJ885oTZE/Te9RU9FqRkQ2Gvolv11J2ypdbA/yj5lGFGvm1g2usXNjQB27C7f+GxzLJRt70j5YAjWLA8WIYSgJBRTR58CRP80onPWs/l/TppG10AMCN3mscWbG48yTSjcIBdnXWm/1pPOJfOwfNn5rMh6CViNjtUIqYMJAfs5CN5xHe7jrIfOFnCshaAWgsNE3TjinyEnAbcx9wUYk7auu/hqORiSZAhIaS0XhsKe9l5wZTmuu0cqsXW0mZlfAXWiZ77UPnz5r0Tl7aB8GGdg19Pu/xnSMOKJCadEpKZYq32ODZVtamwb1yE6gET0iPviBYAXzrxWUWDRslrvuIJJ+Vw93BViBnHG4tx0SM3L6nKmQvljZRXaiRw/vfxO0KCmb4z4WWhsfQkf18qGs4VAnokPIBBQS+Zc+4u7sCO1qUADAfznQV9NqMTzKUvx2f1T9DF0v/5XSLMKzmuV84fDeVIkLCXho3sC2OI9fBkhVc3rpIvpcLjC8zsX/YtD7FGyPWR9ITcKAFZ8JXTmrGgDTolgtAXmDUgryd97onW2y0Y2qxZk3BnGvrHJ9qWcc4BK9vjMauYm3yXXCf62T0lrYoJR1x63kSUL24n4vH4Dg6UsGFbc8v3+fkrFqpcG28iiqaiLnws611DG6gVly11KuLTMOcVLCo2bFsE9eB5HzeXMnxNS+v4/B1qBFVZlT+ioRQqAdJiaZJjn2l+tq3+KCvKqyv6sbezOsywpfcNV+gVNKP0+6DxRwalSvg1e+Cbo2XKA017Iaqele2GE7xJQXBzU9i66EXs6aq2zxM9IyLWMeLzOWDPuDSk9NiCic+ySUpV+bfl7aZn6iKPlrE5rmg8H29ejgeXHDYOClKU2bEi9r4PztMyP3MsWUHfk5HO6z56DgTLWl/Vbe11YpZz85LYWNlpyUEqouZNRq0ia7KRI8aScXRmc4zstGBRM3U+hDbSttSdwKqyQf7ck4P1FlTFavp5ZPAD4LWliJIbzwBF1eNykiLPIi/JuW/7eis4euLmphSMxfH52ZL+9fCA2uOcI+GAKy4HnUz0bpITgIG95s28AO9CNJRwDajzau0h7TFXEWtjKFEuzq7OOp6/h5d8mw327e1GYb5v0REFI5Wy9IKdsO3Gk2gsPYkLE1k8Nvq5NZ9acVfOKfkLTYXqRVlXkHsqSF/M501vdyvhPRnB5uJ2tdbCsbZzqNbkudD8BiI0gI6giTuL+rCrrZ6fVTj/dfO+CVOlnOi9mYUoYYzrJ1pvx+PtnwagyB18X+WmEHz5q73h9fyw/Wa13wi2IkTiFk0hXQYySQ+uzwJr2W0v4+hQvs2MIBhkKHrgpByVGDYZxcbKTtszL/igV5UPWCHMTbWt4WIkUFb7rs46wHewrrJHMSQhw+Winy9ZfxrnnlEJewKfuG3hi9jev9RmjpmOKHaIiI/G4lM4OpQPxthrJoo/rjhkefa9Ma186ihDkB0GgP0OUlononi44RC+8uJnsK66B9luiudIRjuCzDTB30ultufdmzDw2g0hBpVQwjjMhbas5FRGelT5nuD3ZJMMRfy9yajlkbKYdfQa7+qot/DZUvBb6xPcX4F+BLnFM82XHA83P7x3JLNTxnclYpjxkUlceHtGaEz0rCVzzqr5pEtSQkMEo0gmBpW7izuws60hxCoUVEYy/Z8ZTTL0Ofh/N57EFysO4pGeVSG2pNB8SGabDKxAwT6tyR/Cge5yENuRl4gxK4u1BsRcknJVkr1INpWNGH8AiER6B8S6QgmRAMLnJKnPM4RRkIECVM4de02TNrtKsLnxJPy0C3/Ktb/7HvN/Z0GfiqJK+Ur7lxStnBSairrwjdZFcGZNK/iPTrqUaxCUAVJuA1BKk2ZhayrqQsTxTC2HwJqFGLMy/LypqCskl8kgWFZ0mgtYcv/kXhHsV/7b2fBz0hYL0qKil9AyNA9uXOV+7ByqtdmapPycjGLVwkEc7C9h2RyUhXJdaU4piXhdVY+C9Gh5bkHmAP65fy4L/7muyySVB5iCAPB+2lZ/FNtbG1mesTIrmK68iSg2VHYZmFrwjpXtPWRYsFnMfIE58M9lwc/24M5IYV3BgJUgL5X5kLzRe3LtgkGr2GJor7kIzQmg7qIdrUttmKiUT7RPY55KQs5wz8D1sbpswCreaK2vYNkiZxBgzt0d807j+TPzsWTOWVydPa6Y9TRBCdW48MZjaFx4UlVfj6uicEk/gmeGK23WMnGWrPVPxABn7JJmK1p95L8gFn9/bEXJxDSeW/73l9yYLqV22UcOvIkYGwacmCOEFgD20pAQODqwgIUy45s9UyW1qbZNeXBmayq7nBQnbJFXltl94kmLgQAOOFTIDCmadUIlS6l+7e+uYEyv5a0LKH/UR1JepXDZ3q8iAMylPRE13pKclCrSQ8qK4+OBxSqU+MjxNZC8+hw2Bdgw+ELpCdtTnZuy4E8EhbgikgCgwqoWlVpAsZZeDe+CmnMq8uJNRLFkzlmcS+WYysDi+0tKTpu5GA8rnDNjF3hu2JM4llnBCf777uIOZkmhn98x7zQzpVC1WvlMOMCu9nrjNXN9e6/pMT3estx8RybGB3Hoes4fajikPeQO7ph32kSkxmMK4xzIV8iIQ9Z9lvMTDLtPJbLUmkwaL+K9i17g35OhpeBFZt6ZdYdeFfGNd16fvbH0DP4OwQh43oNJyYG1kF42GbWSXj3ZHulZBcAkt1L1XLnXJBRmQ2Ev4DmKyUO/956SVv48oKpeH+gu13AFh9//7Kli26MY9Px6ADyF/fYSCuO8dsEgNhT2csE0ih5wlFLLoPXV3Tx+KQt4XmhP0XjE3HkTUayr7LHnDjBRFkEIEPwDACWfeh3wHXzq+p+bRF8ij5EQH0+tnyzQt6REeSw558gBj2lXRz0rfAdOlrBhoJ7lcEQu5MHWc7OxuoOTe+l5Tw/VWF5W9U5jVLFXfMw8k88uwU1FTg7JdjcnheNn55jIDc2ZpsS9s6DPOmt+tmeUer2ekipXGgay0dpuqmpTdJYUtRCQt9Daa7w99zVP3x06uuFdiCqqS+tLup8xD/tHSzm6mpFSWO8nqsjMkTKISBUntjoGOkZ7Oaj0eqbf1CS8zaogreXPf2tQuVCSEY8+7wt6cTKwWTnnfyvYk5SrtCcpL0JGcJltyHf42VaS+JgqesmGAcFAZeIwnUMnvHZ8vjwHB08VYn2VLmbqIfP5DkTSqR3uK0JTUReODc3nsa8uH8AXlz3LxdbcvKRF1/r0UA1HNjyY8+XOSGFteR/881n2+wNb51JsH1ZI/vW0y944uL/ueS5AJGnr4AcOvGCjAOyQNzf9z2eGKy3l0puIKiy4FhpPtS02v5NKPUFfhmoVrt8F1lX0cmVT/3yWdRFYzTfKDQALMsFKilboqE/euCpswsKFxiKxqxNRrK3oBXwHj/Uv434T/hRQxhB/Xo9ne9vtIUE2wzEQCbgqX+LhrrXMgkM4fhJaTUVdNhTE1wVrdH+fGa5UBofv4PjZOZgdneR3PbjkMP/7+MB885w8+xLyEjE811vKihuxBRGlKo3Bmm9xsaiqxiay4iViCoeawZhgWjs9x1KplI0MJ7o84AkFjxIdhY5Dz6c8CziKVo8vGQe4MprI6I0PNkvRoos7z764rvzIGFO10uefaLnd5B/QXFwkt4KeZbFG6T2wr6sSG6s7cFdRtwphE5Vn3Fa2gzC20DhybVjVxeZ6XcGAUsYSMewjWkwZUaF59oA93dXYUNWpmDz03O5oUwY2fT4Cz5rn4DkNzrk3HlNsRVrm7OqoBxwfu9rrVbVknf8S9GpT0nxTTRv2dVZixcIRfqfEjhMbipRdlhKSm7IKcmVqVO2b5Asld3uJGAZeVvVMvvfjq9kru6muVSU1OmI/aQcCQ5xyU1aF37uLO1j+ErzLUsKFlxdQkCJn1jQ21bQaNjihGMactCEpkOuuDQoyVi1DmM6ca1eA3lzcbnnAOdoRT1rz2lh8CnmayevOgj41DkdByO5feMyisOUojlgTuVccz+DEt5Y2C2XSx+7hKmys7lCFLyUtq1AyJQSF51HAnraWNmuKTWBLZYvJpxJ7lvrLcKvJzExBJLNpHDTflBgraXNl8xIxdvCYgatcDZkLY+X8zEhxIjIxixF+X54BGrtMrmX5CQQUdeDRE3eEIqFcgG08xoQgcHymX3XjKrLgjasCbZzPJogOZG4KKflyndxY2vRR5tUlYvx/zk+ZadaH84wAhm421bQZIhK9/ruHq1CWb+Cez/UsxA+nr1JTLeikqT9ShzjcX4gHFhmGwmdPFXOdEi+hKtyriF9mOX+ptA8Tkn897bI3Dh5ru4MjB0F60N3tdUag5qbQWHwq9H0WbNr7S4Kyqa7NKAK+o8q5z0yGvwd1kWyubbaSo36eVBWB9/cYb7ozy1DfSewnKTPSM0KFrqTAJ+8RjcfNS6pKuBei6qAL77Xsu8Qly35Tktnurtrw7/XhIu+vl4jhq80rbY+ZHgvj/B1gc72hKKS8DDa0ZiaxvaWRf+8ldFKaTmh8clDhIX+v7Ai+dnyFURrykswwwkqBSIakd5MXyY0nWWFsqmkLJddaONBEDCvKhrl/66u6Qxzy5OEEFK43eAlbNLi6v1zR1wHgGu+ZZILJtCY0995UxFKKHm829HuyNkDQgLOMVd3uLOizPvvOL2aGEkLdvCQO9pdg1qxJfbHBVlryklhbqZL411aov3e2N9hJhvp5e0fKsbur1ngXJTxMKwmU7xLcs96UwvBKxiKZ62FFjsZiVmKoJAbgz9G+cNU6kedTXvL0vK11L+KrJ1ba75CsYXlJZTQJ/nmed6G4wRNFijQ8zVoX18fekXJsW/iiJk1QFzm9k1mHJqLwkpq1KpCUGMqVEevvJWIom/saf27/aCkeWPQ89nVXKKhbayNWzh9VbGrZaWwubsfHr3mX+zgzcoHx65SETWuY9l1rv5LhIteBq7cD4bnUR2VPtyJ42NVRb0F9aG/Rz9jApmqvmhc+mH8hq6kDwEQ6i2UFyQKKLgCwZDl959jLt2F8bAYKb/wx9nZWW4mej/UvM9/NM8qdgfRoh4OWxX7ERGZ3DIg8Kf2dvSPlODJYYGhmJ2yZQ+O7b9ERax7omU+03o7xdDbgOxypuKuoO2RIrJh3ig3RIKxRyuXgu9fkDxkOfNdU9+U50+v6zHClYSLSfdzfU45vdVZg/g0/gTcRxT0lrdhSd4LHSVBLN560Em/JISLPJo3NoAJg5oP6Qflj8kw6yrCWcwlog0nUQzlwsoR/n+1m8P7rZ61aOIh9wggnYoUbrn2HK5HL5HGSA95ElOGnbHAIh82a/CGsLh/A7uEqm8XKMZ8feO0GJXcmo1hVPoCdrSrXgCJzy0tHOb+FIgo01jSMI0reA4CSM01FXbjUKyR/aBz8etpln3Pwif/9CKJXaQ+TrNQpMesC5ys9NIAKN+7pNPRelpeLcP8XqWhLjQWSBxCNWvACDf5fYjvpZyvKhnG4ryijt5IPNVU1TcRMTkQQb0tYRqG8bK5tNlhwgZ8lBTrtuwo65fj41C0/xfdeuc7qgxQq3GeBf7YUzYDhJBMjg21raTNzlAPg/I0/KD+MkYlPmOTRwFxvrXtR09f6IY8RY2bFvBP+MvgcxmRL3C5hSyejrPhvqmnFrrZ6g60Wnis538H30j6U2Nemoi7s6lCwpPjMC0iMzQjjm2Me1pb2h3HuQGivrsofUQwsCcVuRYqVXC/ZR2dGGv6U8husWDiC58/MZ5w0AKu6K9JK0b2zoM8o1sHxyv2mFckNhb24OfstfLl3RSiP5WIJhIDId0jEVF6OhlDI8Yb+LfrJzxcKbfA9K+ePWgUHvckoNlW1GRYxEXkIjhGwZYaXiOHqT7yLt9+JZ14jsa4Srx/C/gZyejI9hys4X8SLG/y5XFNrLMJQy5SzItcy01mif69dMKiiFsTDH/HZGxzsD+XfBFvGPIBgPwN9DcpvgjPSGVs5f9RUoRXrR8x1wZyNTC2Y8xTcA1YfRd/mfuKneOmHpnYE3T/yvNA8Uy5BpjFbBhVBWkRFbdlWzh/FwZ5SuHmqovVYagYX9Mq0L7hvgVwnujfhg3PQqK9N1e1sCFj1EqBgmIf7iuCkVaVhqoSNqKcqMl9EJmfsU4a7Uv5/5fxRHOxWdUuyc5KYfCvXYvaTe0lWK850jpuKuhQ8VMgJebZJ5lFlcJlfRvN1xRUJU1sICO0v+nmmnKVM8/GF0hM4l85hQ2FDYS9eHr8GPcO3sC6ClGPkqd5HVn2XiSjLdX7+L7LhzVBFDKkitDPtwLlyGt7EhUs65+COw/d8oJyD51c8ecmN6VJql33kwMJRpsXFlGcEnQr525Zkw5xXABAFm29434WXz52ZxPKFIyGcq3VpwQ69r6/utsKL/B3hbWRvGIxn0o2rKMC2+qO2RzLoIfQMZlIaBuTBU59x4E1GVd91X3a2NzD8hxgwqD0zXIk9HTXsfX3tzY9oz4fxoJDXQQqypup2HsOGqk4LrkPjkhhlHoKGgQFgxgVAhUkP9pUAAL7cu0IpvJMCI0whXtfHjpaloUuE2oMNh3lOKUJD1XBDnqG0wwwQy8s0y4pQjrbUnoAbT1rsVCz8ybEWwHt/ccmz3BdKcJRJcfICS4zN0IMX8+b6cLPTfJk8VP48P5/Yn+Sl8lzPQv79rs463jOygBSvt+PDiXh8Jg4PKyX5qbbFZi+SYeA57PGjJEQ1LyKkL5qckz1d1fhy7wrzPL12BLfIRD8IAG9N5fGzKGHfOg96n1vKk/gdfZfmnX83bvZQyo/YnycWD2IVCiih6woGWJJaEAUAK8qGlWEwrjD0wTPiJF144zGsyh8xeG3JMS8SyKXBKtuy2142FZahDAVvMmpHNYQyQj+3vP96Xu6Yd9qSV4BiF/LPZSm2Kl8UAxT4c2Ih8sZjWF3RD29C7GnaDzk2Bl3ytVuRLyGr2CATjShEiQ2HknKpybFOeQZ6RNSmh04XMNTD9N9h+UY/I5Yq2Zj+0rf3kzcWiDzEk0ydSn1bkz8UNgz0u6Xyz2fIEfJd09zS+PnM69yX4BzIdT7YW2r2rO9YhoEFX9TVm81E6r0VT2JDVSffm2ureq2oiJubQraTMqQF+iwQS87zZ+YDHuDrvBqH9oOO6FNE3ZuI8rrQHpBrv3L+qCWzaT4Y3jSu1pYcNFOTtgHHRS6hjXKdKMz3RyIGeA7W5A/BSygmLujqzLQn9o6UKwhxIoZ/alF5hs6saf497UfKz3n7rVn8czdu5sZLKIjPusoeuPEkQ5mIyYv744q8rYQqOMk5Awkla3pGbzHRHSpAmdCQLg1npL31hdITSq73Fdnv+cgU3HgSqyv7GVrkZ3shSt9LsX0YOfj1tMveOAC0sumFLXFKFuXmmPDo8WGV4EuCg7P6A+3IQIFVMTiTpe9NqqRAOFDVWHNSLASkMUAChCpZKoXavMuNq8QwAHZCJXmUNG0dKY2r8kcyKmqOZkA50l9o4cqdWdMmSVpefCJJzBqnhFGR4j9hLuPdnSacKo0AUiz8c3YdBn7+tNmWsh++8Fb5b2fDP59l9Z93s+fwv5l2VIfx3bwkHu1rZLpFVgZEmJ8S9FRkyOeL8EifgnYsmXOWf06QBMDACQBwxU4al8SK/nnPSnu8fmD8MLSd3HwBoYDyQNLzSNB5CQPHCSovDo1fJ0h6E1FTm4MuW4HRpu/Bs6suz549of6dk4KTdoyCqTHaBHOg/gSjVmQIhJhKNNWn7ypKSXmp0z7xz2fh5OsfC8+J1JV9FeKn8TCHu4QeTRgjGVDnhL2DMzUUTxsCVO/EjSfx4KLvWGMjJXVfV6WhlqU11++gS9jNS4aYmwADJaQIGOUTqGRvkVQJI7/WV/RYRsaxl28zhkplDyfRWuso/x3x4U1FODlfwlGkN1Eal87saXS8erN6R1UPP48wzDQGNy+Ja2KqYjTVWaHzTg4XGgfBDXm8MPLwYpFYMjq8RAwHB0rMntZGmnchyvCZxtKT2N9VoQwNB6gqfMXK+yIZYOXSwOyPTI4LNyutxqHlC59T10RV7ph3GusKBlTxxYmocuhMRjPSytI8WzIcZl8vKz5tzqVW2g6cLMFXjn+G50tNtmM5wqSskMbS/u4KNrxWV/Qbg5IiHLn2vjk6qO49qm4OKGy6NxFlGlRvIooZroE1UV0CKzfLNdEEUqa9qQi86YiI5jmWPKXzSVj/gwMlCh4r87UA+NrIoIrmXiKGteXGsJOKO+fE6P21oarTGJg+ANfcn248aVU4BpSsIIeVc+W0MeITKppLe4Dyc0LrPcPcV/u6K7C/s8K6G0gOcJ/02sozKY15wCT+088kpAuAFZViximCOHn63/qOJ0cS77nfCA3xw5apXfZL701G4Wan2dsZDOdZSoqYDRIeG6s7rETfoHcGvhPy3rNCmIjhrwcWY32Fgj+sLBtiYUIwD/r8fQ1KqfLGYziXylUeyO6qcEGkhPHaSY8ACXZJ2SohN0RxBhgsInlhACgBQTCpgFXtzkgxnhoAbrj2HUv5BMBsTesqNOuDA2yqblN9pdC0CKd+seKgKXNPPOgeeUus14e8wQDw3xu/A2fWtCrWIjGtgA6vG+WUxyCVpLyk5aF1c1JsQB4+k89enk3VbRw5oLU/fnYOgmxWpIxuqO6EpKzky1/kEgSVPQuCpCNI12Wd577eVdQdSlR/6YfXYk3+EDbXNXN11pBBIZovomZy3SxvaSZniq8qBG9bpC78c+dy4SUU246v5xkAr7EsErS5VuWXUP0Kbg4sA1QlnVOHfFMAD0oxoH3iR3xjqE5EjQEo8OVunmIH4+iAVh7JeKHxSkKB53oWWgme9Jk7C/osFrKvnVCRDm9M0RMfOFnCzwl6YeE7psJryt7QQSeDZP3hfAJhyBETEO21fZ2V1ndo3gDFvuKfz0Ldra/aNIsQkTXdz4OnCjnKyHtvPGZYiQD4aZNDQHuHIjYAGMMs9xUZjM4V09Zzjw/NU4rbgkGuVk0J/MQWY3mGJ2zP8d3FHba89nTVdurXaCngqfosblyxtLh5hlyh53s3WQY8HBXdnBW9YI1RyoX5N/wktGaUaO3G1V6Te+auom4c7itS+WEazrG9tdEydrxxU5GXEnPZyNKeXpJJx8/O4XdJyBJV4JXGhfx/poRl/myOcph8LOscy8mgQSaNDum8YSeCln858Wm4uapYF71je2vje5IVsFz2HeVYc4AHFqlISFNRF+D4eKjhEO+Rne0NyJqRQmPRKSb7oDvGjSf5XjO1iYAD3eWqBkNAkSYyERof1cgARBRGPwMAVxIHlGHwXG8pP4/vXT2v68tURIX2dOica9ITZkPSBhMniwv4Eu1DhgN55nmOYE70EqowJN2RwXdy883fdJe5uSra6ObpujmMLFB/OWlHRUku8YRkH3jfTEWXJZb+V9wue+MAgIGpkEKX4QBtqmllz4sM7e3pVFVVV5QaesMttSesRDpJxXnfoiNYX9VtJeruHy1VSYVn8sOJpjrUStUg3bwk9nTWKLrU3BSzmUgFmAW0UOaIUUiOjT8/FcGDi75zcWpLwM6FkKFmeUlrz9AbP71SRR8CNGfkmVLPVXSe3BwfG6s7eBxffHEtXxSstNN4hEdxXWUPJyGSgkRKqJeI4SvNK01iLLPewIpqyP7dXdyBNflDnBBsJdXOTIYYeb7Ruog9N+zhv6AKPG0ubre8OhtrFIe09MTK9Vh228shr6z8N/XBjSctLPgFz/a0078P9JRz1V83nsTBnlLjeZS1B0Rf6F3rtddb7i3qj2xEk/jXA4s5oR9QIXpK9PPfzbLXEUoBoqJoB3tL7f5r6AHNu4U1F6wtK8qG+RncN4J5CfiHBR3S3mDrZxNRjljQfmZMLo2bIws+70vC/3uJGLMWAcCGmk5WCq0CX2Ld3XiSx0UFxGRypZeIiSrssH4u+60eoNZ8U7UiQeDLPZ5kxpX1Fcab78yaRsup2xTTijDKNtZqtpXcFIrnvAEAONCr4GB3FXXrYoiwkhadiMfPoOT9oBzhPRxgsOLzPTOJTbWt7M09cLKE1/WpNpXAH3PSljxV51jtBTr/ssI1GbMHesv4/YrtzUymNx6Dfy4LW0ubbcVWf+Te+hewu6POqr1C805jPPnyJxges65gAB/9yFh4fcR3pZIMz1EUwL75vHchynVuvESM4ST7R0UOhExWBzinB1BGqhs3DD4XVQodFXFbWTZkeZt5/makFB2nKIApx7Kl9oQyWAJwJeoPXB+HThdgMqGiQ4/1L7NkGoAQJMU/n8Vr5aRcuDNS+NT1P4cbT3IRtd3DVXBzU/jLvuW83vCA6QtRRTGeIRriXIig8MYfm3dG1R5Ney6aam2GH/Vl06em6na+26jdMe+0ceJ4jpIbk1FcGZ0I5ZRIKN++ngp4E1GW3RR5oLUn2lk6c/DsAmXWHAfkMFzlqPQSMfiufQYX3PimnaNI+432/KTZzxQxIMNU5sLwHLgm0vlEy+3IBIO+lNqHsKJfT7vsE5JlETRvKgI3O42tpc2IOWk8fmK58T7GDY7aUnIIsx8szPOvSLoEYP2fYQ6BJhUraQBsqT2BvzuxhCsdy88DABwfa8v7OAz6QNlRBZlJqCTiZ4YrQ0pb8Dnrq7pDIdCLJYjJf1MBlkxKZabnSuFHz3XSDvyYp+ZVJL8tKzmFT+S8w/3PlCTon8tij/J7JbRKzDY1mfwYUmoD/QSEEuDppD8ypCiML5JKAZXoKauRZpp/Gpebm1JJbl3V4YvnIk0ppb4FA7A8TnF778nk8osVH5LrOGvWJM6fz7GfSx64DEm8Xyg9gTenZzPGnJM7ad8HknX3jpTzWaN9GuzLxeYs016kiJccf6b5uOhcAlYyYaZ9czHjKfh8/1yW4l7P8E5KdPYmonBSroLxTUTxxcXPcdFBebbNQx1LPslCYDwHk1ErERGALZM8WEmKMpmU2JPknG2rP4rtzY0miTjwe54nkZhrFXuciGJjVadN5iAIIbiP+vucjA0hi33YUTVBlBBaQ5oTkZS7Jn+IITBWcq9MtBXnIdP5sIod6mdsKOxVOVgiwZ3GtOy2l3G0b4GVl/Ngw2E82mdY2L5QesLMbdqxknutMQULI4r/31XUbVfipUhayuE5ovHT9zOdB5lALAkWnLSj9mcGR1qmvf1A2VF8rXmFOUdCWc2UvE3tuo+ew3/7ZDO+eHytLbeAX3p+V+WPmAJi4n6W/eR360KegDrTXyg9ge1tt7OcYhk5EcWWmmZmnZNzF/w3zd8DDc/j0bblPHeW/KGio67/S+W7nCc5pov+PsPaADBy9z1k4XsZI5JIZHNxO57qWHhJJyQv+fbvIhrPfl/fTSWmcPwzf3PJjelSapd95GBt/iD/281W+MEn2pYp5VDg/L1EzBSdoc+TB3siasFEJAcxHyqJ1db42pBXUuDavYkoGueesSjq+Pn6EO8cqsV/qlb9l97fxtKT7EU90G28Xl87vkJ5dx3fMEc4PupufVV5l4LJy46vuN9F+J48V8Ybarz4BFvxEjFOaiMvL3kf/fNZgAfs61ERhFBCkwhjO7OmzbzONF6n42fncL4CFXAi7yG934/6IS8wz3XUs/CaQbaix1uWm+8KxYX6xV7QiSjj44ly081NWdWY1ZdVgjdhqp/qaMDail5sqmnFvfUvcFEtSyD7JuK0d6TcMEMVdRlq1F8YgUffvbu4A6sr+hVUIoAPpr/JQ9pU0wY3L4mVC4fhRHz2AtLYgxEDegYbBsT1TgqQgO9QXgYAbG9utLj0JUyJFdSJKNYuGFSGwXgMm6tblKewu9aaF28yymstIxXLbnuZMf7eZNRKpuYkv7GYwc8KakvKWbjoZQqxb+j4e46tQPtmju8q6r5oop4z2yQneuMxxVVPj/Rd5T3NTZn8Awf4856V/JmtdS+y15xw2HwWtWFAcD0A8JIKs+3mpFj5ubOgTyu1FBX0QZh4L6FhM9MReIkYNlZ12oqEPhPbWxvVvGovInPCBxQbNv7iBmJD8lEmZgPAskKT7MwQBu3JJMYy3m96/i0lSpwZL6FobfnMckK9OQPnU2ofEzyDzjhiQsZTThL/AFbkyc1JYVnxafb6Agq+InNYaK29Ce3djvrW+B7tazS1HS5EVd6YhhxJMosgRI0NA4ogCOWXqGFlv90ZKawsH+I5mhU1sBp+Lv1b3wdq3/u8h4g4wo/4WJU/gmUlp9BYepLlqYS5skf+QlQZP5JCNi/JNSos2J9Qam+49h2kPReP9Kyy11lH06V8zs4R+Vtafj3XtVDcU2IqhCwzjISw8q1emrjW2jMkFzdWdSrPv4DNOmmH94hUrsnr/1j/MsBzmJyEIoJ3FvQZuSnorGmPexNRq56LPEu03nLdNtXqopE+TJScCmwKeJObp9AC6yp7LOcOGcwE0ZXz5L+jZaSIyvrns7BzqBYr59k5OZda+zBy8Otpl71xsL9XKS0r5p0ybCPk8dceK2mpy6I5XtphgUJwE+n99xIxZjYIKmfNZ2/lw0dFhpjGT19+RwYKWFgRLpeVdM04cqi/yHquG1dY2jsL+jh8CgBOSl00B06WMPaVftcyOtdU9KWxkRDITSkFIeDJoDA2eaDk5e/Gk1yRV11kDtZXdWN3R51KGp6ZZPpPUx1Ve20CcB8aL60PJb9u1Mrf/p5ylYQo6kHIuZbeGK5sm3Y4F4Q+uyp/xNC6QUEkLG+dD42vjBovnO9gbVUvM1U1zj2jxp+V5vXhYkqeg+azt2Ll/FFsqOzCs6eKsau9HjsGGlSSlxbiZDS6eUmrQBAJ7N3DVYb94iNTiMQMTMFLxLCzvSFE38pzKas+O2AD6/CZfJVzIDGsgAWpAhDGsccUxp/yW+pufZXn+lBfsdmTggfdP59lG6EadrVy4bBV0+PpoRpOiGuqaTPzkpNib69kcDo6sIC/7+akFDuSVk7WVfZgfVU3aorPqktSV84lJfs/1xk4DwC7f3pdlFHr8AVtKRu5phaDNxHFM8OVljFL8xasLurmJXH0pXmYPXsC3mQUh8/kK2+sgIEwHEjriDtaFVyOk4VFo/FYzEmxNCs2JKeujo2zsUAKzMbqDqwjeN4FY+zs6aq2+ywpNR1hBE+7ljJB+0B+h1hjeA7F57yJqKKgnYwyuxLvHWEEqEq2CEFdANuBoAz4DDBRrmvi46qshPr9ZFQkXxuqZ3rnypJhNiSXFJ4BHOCRpQf4u8eGlSOEjH+CqbIBoGEe7DCihHBRz8J1fCy77WWUzn2N54i/4yuGHIpmkLLnXYgaw883MsJLKJhb0NlAe4zmaPdwlZ2rJOAmJCNJthF71zdHy3g9EqlsHD87R1XY1XfHlGegnWwgpR1TkI6iOFDQw5iTNvefmLMV807hB69fjZ/++Ap446p2jfm+vabbFr6omIf0um+o6lR9nKnIO7wLUSwqeInHLRvnGonIxR81HMSRfiND3bjJS9nTUcN3vBtPwrsQVYZ82mFDn+TO82fmWwr90ZfmwZ2RwmRazQEVd1P7LiB3tLHC0XFeRy0vBbyVxmRR+lKUU0fdg9AfNzuN/V0VcOMKKktr9eypYrg5KSyZc9ZyWPlkMOt1XlcwAD+m2IoO9mVOrr5U2ofGwa+nvW/joLm5GatWrcL1118Px3Hw7LPPWr/3fR9/+qd/iuuvvx45OTlYsmQJTp48aX1mamoK27Ztw9VXX414PI7Pfvaz+OEPf2h95p133sHnP/95zJ49G7Nnz8bnP/95vPvuu+97gIA6KIfP5MPNTakEVnFI93ZWs8BdtXAQgB2Cpf//3xOaZlAktLlxTUFGRVPGlYLvpGwlfP9oKXtD6BmcEKsvdSsxiS4+7SnbtvBFLmICKMG6t7Mabk4KK+adUgVpoiqsTh4hSryihEYAgOPjhmvfsQwkQHnC7i7usDzFshjUgS5bMfcmosh2UlaEYV9XJdx4khPL5OVBnkQ3nuSCO/QZaofP5AOew1jaPR01PDfBBGkvEWNKV/Yu+zCVbXVSH3wHVZ96Dd5kVP1O0LrtbqtTlUkBnTugqgDT+2gdnj1VjEODRfASMSX8yQujFYCnhwxsYkNhLw6dLmB4BI8x5inPpTYa6cKQlHSs6IwbnCgApJMBRSTQyEtFihYbNwCoyI5scl/z2MVauPEk/LRrFIi0mfu2V27BrFmTxrMncMyAgpr94bLnrL1Fnz18Jh+NJafgjcfw4OLDah9o43R3ex0+ln2On+ElYlwN1UoovIhAP3CyBPtHS9ExMkd5fgMRAoK33bfoCBuzgI5M6CiNH1FRFUmvSaw38hINwozUGNVfvi7AJRt/TyvD2xa+yAbaqvwR7OuoxEPlz1seVzeetFlLAs/iugEAe/QRUZSHB3tL8dcDi9Ew5xW4M1KqLkpuCns6a/B/OtQZdWekOIpKc7GhqhP+u1kmiVr8DgCK5/+A+yD3isyFkpSO1DYXt2NR8RljiHuOUjb1OIJY+Edbl4fkU3D8XMk3UwKtbm5uCvu6KvlsHTxVyEZj49wzVj+JgODeumO4KpbA8pJR/OkLvwUAKJv/fZ7rq2LK2KAz4eakFJ2q7gfRfgb77CVUMa1jL9+GgZc+aRnjgErcP9BdbhtpM5MWPJVghDTvkoyCIg3BFjTcJe6c7iySuwCwoULkxIzFcHRgATuuqO3vKTfylZpjII7SYbOk5DSeal+MfZ2VHOkjJZyNmOw03LwkkyrAUdCpbfVHeQ883vppa1x5kSl2Ij3RcjuQdtD2yi24u7iDjWE5j14ixrkaAJhCmfsOcU6JVpXWwldzsa3+KK7LPm8TeCQ0o53ncCVlb0zlkRBclOhSpfxi/YLldHj/EmW37BuPKQhNzvbYqAgaIABwsF89S561Y4P51iMc7aTcUNUJbzym7nNNjxzc05da833nA/35sL13e9/GQSKRQHFxMf7qr/4q4+//4i/+Ao8++ij+6q/+Cj09Pbjuuuvw6U9/GmNjJpHr/vvvx7e+9S380z/9E1pbWzE+Po7PfOYzSKcN087nPvc5DA4O4jvf+Q6+853vYHBwEJ///Oc/wBBN8yaj+MqJz7AQs5Qbx2e8rAxp0mf8a6b44N276AWbjUEoYZvrmpWiTo0ws7n2ReaNxwwPtv4ZKWrUBxKOMSdtqiOPx6zE5kO9xRb1msSXG1ytCRe+8dMr1XN0f8mYeHqoxnhsHNNPAOrnYrxubgox18ZP0kX1aMsdZg51NISYNQBwgnXG5hjqV9kHej5VxoWvoCwAjDc5wMxyX8MRuPEkPp7zrk2L6JhLkyjpnmpfbLGEcDVVUkwzMB2RgiLHsqdDJVluqmlVlHta0dtYZieiUh/uKWmFN268xLYibE8NXar31r8AQHkxm4q6VMK8SI5XGFpK6oWlZEmljvalxNZK2BvDHXT1U1rD8+dzONpFCguxEh3uK8KXTnyW+yMVhTsL+nC0bwEABbPgJFC9D/d2VQMeGK7Gxf4ukhFF88iXsrjMg5cZGZDb+5da3tMDJ0vYS01Ksx/1WD4wFaCIVPF6BAxcN55kL7hlUPjAO7/IY6+vzHX5WNY5uDOTiMBT46DvTdjKL9PuBuZU9sWdkbI88FmuLmhHimxcUQHfVdRtKRBb614EHB97u6rxXxcft+oNAIbWd+T16y1mI44aCTIAOu+A2Xc7h2rRMjKXZZtlnHq2skT7kqlzxXxfc/V5sw76LJAyLtdHsrVlVGo8ReEsDU9vXBnjT7TejgO9ZTgyUKAMPQB9p29mWcZyVhiIlEPijcWYUpaeac5kQMELeJNJ9obmB3Z0xkm5vEdIBvG4RZ+8RAz3Lzx2UaWOHFPB3+/truLvr6/p5vVYW2XofGXUXebl8PvHY7x+xwfns9c+Iy1stk0BLud2e2vjRY3DnUO17ESSyuvO9gamIfYSMeXkGFfy3ErgTphoNZ8l1xARuDNN1Xs3JwW4wPa227G7rU7J1ryAPHCA/X0KaraqUkNvJ6LMdMafI2Y30ivoHfp9PC9CPksdgfs/FoD2ZelkfjJ0xm2DcWNlJ0cP+B7XcpLq9PhTEbi5KiIbYjm7iGPqw3Z5t/dtHKxYsQJf+tKXsHbt2tDvfN/HY489hj/8wz/E2rVrUVBQgG984xuYmJjAP/7jPwIAzp07h507d+J//a//hcbGRpSWluKZZ57ByMgIjh5VdImnT5/Gd77zHfzd3/0dampqUFNTg6eeegrf/va38dJLL2Xs19TUFM6fP2/9AQA3N2kV1QoKavbWB3II6P+b65Tiw15s6HL3Oslpc22zSWJzdDGxtGMpSICJKhgvAqzCW248aXE8S2YTSmZjoSw9qkFBBRWGvbf+BeUFJS+j79gGDSmQ+ndbS5tB/MduPKloA+NJwINF40mNFGu6zPj7EOFTVynpO1qNQiQjB9b8aIF3VVRBIh5Y9Hzo8nqqbTFDPO5bfITnXXq2qD+khOVGwtzylsdNtPsWK4OCDBiaW6IZlMbkosKXrP6rOTUVXWktvUQshL2WSr6bl8RzXQvNWpKScJGk4SfalgEAjo/MgweHL99M4zMeYCBvpk3XaPGp01poZdSJeEbJ1pfWjtalDEGgs7By4TDcPEU1CCjoyrb6ozZTko5kZLvqkuWLZyKqPOa5KS58JmEVPAYBQ6MCSdwcBaOj4n2balpDrENwfOzvNQYp/94zCpybmzKQmNwUs0rJ+SH2MVJ8uGUwRkL/j3qsCDPG2FcUsd5EFF868VltqPjcH3utjLLNZ4v2SUzDNiaMseolYqqGSdzUVqC9+8xwpXrWVARbak8opUkrIhJrTe8/NKSe4/uOgnsl7LPGDg0HXKsCAGpu+b6lzHtQuG2K0qlfmD0o53tH21JrPADws5/P4vkg/P5R4f2kd1HkiQxvN66w79xvV8gd3Y/7Go6Y3KfcFFaVDSrFXcqVmUYZZ+ON+h3Ak28o7GWYD42THU6aFtowq4m8ENGIMW9dZQ+2LXxRGXo6MiONDqsJRfmx/mXWr2jfEE2tJf98s89I7u7rNGQWZBRtLm7H2gWD5mzKnByY+4kVd/n+hLn/MuW/ZTpDm2paWcbfeN3bqrheEPoIMJsQjYX65UQ8wNEOqTFDh01/DvUVh/pJY+NzM22oTNlg0nPN8skDK/5UedvKC6K9rWXZXUXd6ry44HX/fH2r9X76brZrnsEMewGmtYY5rwiUgHEGkIzY01nDjk8uxKjlIDErlc57DQAYZi2f8V+rm0PzdCm190tjSn8+bO/d/k1sRY7j4Fvf+hbWrFkDAPje976HW265Bf39/SgtNTi11atX44orrsA3vvENHDt2DLfffjvefvttXHnllfyZ4uJirFmzBo888gj+/u//Hg888EAIRnTFFVfg61//Ou6+++5QX/70T/8UjzzySOjnn3jsz+DOzFJhdMHGsK6yR2HyhLJi4W1121zcjp1DtVi7YBBvTF6JrpFbM3oNiaWE/g/AlFWPekDKtZU2YswQDEnBd1OTbDyAYD3Rn6+79VW0DM9FU3U7dnfVWgKy6lOvoet7n8QXSk9wATXr2YH3b6zusKj9LK9FgLFpXcEA9nVVcul3byKKDZVdijtaJFIG+08Ka+PCk8rbJlgZmIouRylpx16+zWbdyMA+tHbBIBdGYqU3yP5BDDoAM5sEPTJ82QdYQty4vU7UL+v5kvVDsMHweHULzifSNhMMtRXzTnHoPeOauT7vKTmnmRhC5GdIeXlrOg9HX5oXyg8AAGdGGk7Ew6r8Ea7HYfU7wNASnOdlxadxbCDfeDcpkVR/b0XZsKnSmoEhTM6ZG9fGPdUK0MngMtHZzU2hqagL76Ryke2aAkTyfLS9cgvWLhhUHP2/JFQeGq/eV1I+SFlCn72npJUVfulJxYw005lmer78mZeIYUnJaUQdT1M3Bthzgvs45qtCTUJ+ra3oxYHBhWpeZ4SNzOB6Sa/zusoewzol9qfVxwxrtiZ/CAf6y4CUg3VVPXweSSneWNVpeOjlszLs00zr4eSk4ARw1ZJVhcd/IWrlFNB5luximead/r2k5DSaz96Ke0pasaN9CZh5BzDv0n0m+e7Gk/jjikOcWE7zs6p8AAd7VHViYmqSZAZeImb2s+631TfB7sTebn12lFECSCrd4DPk81fMO8V5Qo1zz+DoS/PM58b153JSYdkl5ph/puU1yUE6nzQ3mc5XcK2s+0Hm8Ynka2r++SzO1QkyTgHAkjlncWxkvj32i9znVp8kw5GW+bIvdxd3YGd7AzbVtGJXV13oTrCeNRXB+rJezHCT2N1Za85UMsL5Oharnu4fyXkpYy76Dv0z1iugorY7e+uZMjX42eDPLCZF3QfSDbzJKFaXDeC5noUW2+Ed87rx1OL9lxyzD7EVVT373z8QW1HXmv99yY3p39qmp6fxs5/9DJ5n88zfeOON7/tZv9KE5J/8RBWMufbaa62fX3vttfy7n/zkJ8jKyrIMg0yfueaaa0LPv+aaa/gzwfbwww/j3Llz/OeNNxSPt5ubIfwfV1UmZZJSJjxzfOYF7ByqxRdKT+DAyRJVRCfgdaYD6MyeVsJaeyzvX3iMLw4WnKKQFwmJFaUjlheXPIteIsaeWrlKXyg9gYO9pczMAgAtQ/MA38Hujjo0Fp+yxtIxopIA/3pgsQkTBjwv1MhrDqjLnnGV0yryYjE2JWLY16kwzJQs7OamFDxE08Ox925mZk/90YEFHLplpZ+SmRMK87qhsBdTng1pktECbyJq1VYgWE1ojJ5RqMgzS/zn/JExxQS1rrwX3lgM/rtZIY//yvmjODpslHbpyWUDSLw/GEGSzUm6oUiWfz6LoWMAkJs3pSJUxe3Ga+Y5WFk8AjeuIjzeRFRBoXyV3OuNx7CqYiCUE0D/fms6D0cGCoy3SUKRRJNVe7l/adfKNeF1GDfniAo30ZpIKAKgK6cGwtuyn/JiW5M/hOs/8TYAKOw6KQAUCdN7fVdHPQ6eKsT+0VL2utIzWnTxLYIRravssRi6gnOUMRLgqaRR8rwStEUqbk8O1ltVyQGElB7JSOMlYlh228vWO914Es1nb1UFvOKmUB95y6koFUcYYmn457OwunyAkxgPdJer4lJpA9tZOX8U3phJdPSmIgpqEFBG2DDQ++y2236Mu4s74Iv9oaAWPhcu8xIaZz1DRU8PnCyxyACcpIt/bFORNIKB8Tv1/BAmPeQV1v8nw0Amtwadf954jA0DQDkNnLSSRZsq28znhKebf6bX5/jQPKwrGMCTg/W4r/67zApmORtcX+V5xTwe4/enPhrCux86XWAiuxqaKBVY+r+XMP22IlM+0Fh60vzMNxW34QNrq3rNfTRpjCJ5tlaVDsJLxDivwkvEbMNgLBZi0/ESqh4MRwd0boiXMBj7mlu+zw4SNzvN2HyL6U7Ptcw5o2euKh9QbFPJiBVppETue0paOZ+Ki3bmKCcAEUZQf46NqkRgirBINsEg579c93XlvQauR8aISIZWcC9fJQLL5HdhozIaIDuN/aOlqkK9JsPwEjG4MVO/o6mujZ+xuaZF7ZG+Yj57wbMoiQvkXpVFTJ8eqgGmXHsva5ZCmh9+jjYMWHfRcpkgukir3Bz4MIUoPeDwQBEu5fZhzgFw9uxZLFq0CDk5Objppptw88034+abb8YnP/lJ3HzzzR/omb8WtiLHsSfe9/3Qz4It+JlMn3+v52RnZ2PWrFnWH2pudhrrKnuwvGTUgtZsKOxlrCF/Vlz2ibEZjFe2MOYiLE54YOV9AAvBYFEYSYcKqAPsn89SHlQheCTO+fCZfGwtbbb6tL1VHWQqWOQlYli+cITfdXQo3/bYC8En+8PjzUlZz6f27Kli3LvoBfX9LNsrEXyGrMzLirAP5Xnz7c9LONSSEkNtSB4Mvuj0c/aOlCsBGsD4OyKXY3VFvzJgHPN+2b+V80f5d+s1vRugoFErygxTiTsziY9mjWF/b7nCgYr6EjSHB/tKbA+fb4qgMTRFKI1Bfm++wBI6dE1eNq38OLOmAdfnEPLEeDbgKHpU8mK68SQODSmP/tNDNcoo00bd7s5awFGKCSlPsuKtG08yU8cXlz1rrc2dBX1YV9mDmVdMqLXSc75zqJYvQSfi2TSeru354/XOM4oANQuH7RhvIs2PpEmkpNEDXeX4yVuz4caTSsnXCbhuXIXG761/gZ9Lz8l1p20lSX/eG4sxFGlteR/35QulJ8AUqLCNFG4RHwd6yjn3RzaKJgFQEDFRSG1V/ogFK1pX3aOcAdohcHRggXrXhGGBuWPeaetSd/OSgbwi824vGYHv+Dh4qpArQ1PfeQ/Gk6ritqtgD9QO9pZaeGLav3LcL3//Ojw9VAMnyB4UiJqE3inW3Y/67Ci5MjqBDdU2O9o9Ja1WjYPg8+TPiNxB9gEAww2lYfhuMhe/XduB++q/i12dddZn+d/0bBEJocjT483LUfEpk4jNcs53cKCrHOsrjCzZ3VaHw/2FCuuvZYV/zmav8sZjhk4VhhFOjvWcpl8FlMw59vJtDNMhetB1BQNw85I40FdmDOmUbZB6iRjWVfUwzCW4PoCCQHKkU6ybG0/Cha+K3unxstKv5VXHq0bhYPkmo8NUhVgk4T5QdlQVEE3EcLC/RCUjx9KWwUxw2h1tS61IE7Vd7fXsyKCzQKgArs7umLMs7x+O+uj5IGY/2aTslvtYftci2shLWsYC9yvtmNw1/Sx5t3NxR53M3VTUZd0TpC+srug3jjPdB2K5YwMuT0Gb+HN5STNHM5OhKF/o3yRPXF/LSM3mR9/PwBx2KbUP2YqATZs2wXVdfPvb30ZfXx/6+/vR39+PgYEB9PeHme/+Ne1Xahxcd911ABDy7v/sZz/jaMJ1112H6elpvPPOO+/5mZ/+9Keh57/11luhqMS/tu3vqlBsM3nGI7l3pJwPztoK5UXgqqUAsmakcOBkCba3NrISDRhvoJsjuO8BFhLknXuo/HnTASEk6UB/trqPnye9pQDY6HiibRm8RMwoseL3gDrcR19SntGN1R126HOmuQikl5ySEr2ESH4UApG+/0TL7Rb7TdDTSvNwsLvUfGZcXBSeY6IGY7ZgBVTCmnwmGz45JqlzQ2EvM1hQe6DsKHxSwCaimPaiyoDROPINhb1MK+klYpbSRJVIqR3uKbI486c8QcEoxu0lNNMMJUrL5GHHKPbSk07v4QrPCZMLEfJOCw5zNzelCvTIRoZPIBERAP644pDK+XBgQvfiomGF1vGtd0h+fTeukgYPnCzB2Lu5/POmmjbrWQB4TSlZLpTARmsavDR1ng43ccl7E1GT6yEMGKuGRTwJJIUHD5qtRCRzAlBJdfEk7ms4gjsL+qx+c5VeUR/ktQsfUc8QNTjk84IwGm8sZpT5McFvr98RTPb00wZSSFEuS+kIKCGHe4s4gvbLLmY3llYG2mSUk5qJ1lg6MiifgOaa10TABP3Au0jJAWDqHAhjQiZcbq17EfDBiotV20M/d03+EHYO1Soa2kSM8zh2tC7lpHb2UGeQSdwv7fGsK3rZ2uteIobn+tT5vrOgDzE3jb1d1ar6vGe8ucHIEtWGAYDlpaO8xm5eEj3fuwleQpEGpHydu6ZhSsTQRrIWMFh/N57kmhcky+H6FrnBXkEjK/euNGwtxTARw5QX5fPMjh2SU6JegxvX0XFhGEgnAQCu0syRLtdnauan2hcrWIk2HIjZbW1lr5lv3cfVFf2GpIGim8JRQ//+2vEVqjikzoPzLkTVvnLMuds9XGUZhNadFKAYlgx+BAninDZK8HVUDh43ERlYMucsj4PeQ/v7wYbD/H5AORBCuV2UOyIRCPSdiI89nTW47qPnOJeIDH9A7bm1CwaZCGOGq8bMdVF09EF58oVy7wD/0FqPOwv6sLO9AW48idJPvsGOSTNOc5ZXlA1zfyXpiWwqPxFKI/RMpW+a20u5fRg5AAYHB/G3f/u3WLFiBUpKSlBcXGz9+SDtV2oc3Hzzzbjuuuvw3e9+l382PT2NEydOoLZWJb6UlZUhFotZn3nzzTcxOjrKn6mpqcG5c+fQ3W2EWVdXF86dO8efeb9tfbWB6wAwUBjtUTzQV4b5t/2IK3p6iRh833iM1uQPWR7Kppq2MBex9oYeOl2AlfNH8ZUTn7F+H7wInutZyHSJUsgDMJVJtfAgjDY3LXApWdaNJzHDTaLs5tcZ/07Nm1BMHPTe3Z21aKpu5z6z0iggHizURUg9ZKCIxGO+YERRHzcviS+UnlBJUBnqG0hvDmCSpdR/lEDd01FjwzTiSXyteYXxaDhqbjYU9nI0Ze9IufbKa6GsvXUEzWgq6jIXtqMuZEdj2g/0KIPRm1R4TFIkAMV2w8qUZuvgmghi3bwxBeuhcUqvrzV/k1GsqhhgzmlAXVR0aVz30XPmuT74gnZzBBUlgB9MXc1J8nB8hhkFlVz2CkqFQly+0nsFAKvLBrC7o87sE7F2DzUcypzQJ/CsDEuTMJIAVz0p2JQ3QPOSqZESTVEFWj9iFpFJ/4Dy/KbF4txT0qpyY8bN+rnxJBuPIUYx6rtv1o69lfpckDHAy3TOUKHCV2fciXg8H248GYa9Oapo1vrKHjxQdtRWNuS8C0WRI1DJiCq+5IN5zf2YqE8gGahIB8zgLQW00TdmziUAVSAroeARXiJmRQykAbSjbSngGHpeohWWYySDDNAsSaI9PVTDCvn6qm4FOxm3HSZybdx4Eq7j2fMoICR7O6qVzKQoDVU2B5gAgD67v7MCbm4Kf1B+2ILcyPk5eKoQhwe0waqdQnB96xwtKdY8+IH9u23RUd4z3oWoTTfs+nxmARiYi85TCEY5vjlaxkYV/zw3hXsbXsDmqhamosw0X/tHSy3jl6CpvLc1NTMAy5EAAE+03g4voe5JwJA0AMBz/aU8L4CGiOm5ZqrkSVGs0lVrRXvUci68lc3/tgwjzaYjm1RgVeFDnXwsIG0AmApVwnoB4NhJvdaSVEDv76+1/T/8bgD40dQV/AzunzaCuI8JQZmq76ysSJo/31TThu90K5l54GSJqfvianKC8Rhijsf73km5LMslmYnv+uwA8SaizKglm5ubUs6CiSiyXDNvT7UvDpEXwAf8qGcMuplJPo9yzJdq8z9A1OByMw7y8/Px85///Ff6zPedkDw+Po5XXnkFAFBaWopHH30US5cuxVVXXYUbb7wRX/3qV/GVr3wFTz/9NObMmYMvf/nLOH78OF566SXMnDkTAPC7v/u7+Pa3v41du3bhqquuwoMPPohf/OIX6OvrQySivDMrVqzAj3/8Y/zt3/4tAOCee+7BTTfdhIMHD/6r+knJKjc++cdAJB5O3iQWHyph7wBwfU7IkZ+VigErFoEkKumBo7/vLu5gYUsevd9dchQ7BhqUAHftJEfZMiY3ZkoOk8I+2Fdt2BwcKIHKh1DJpn5AeAIm8Vo2+ezNxe12SXnRL0r0DCXATugkPFeESjMlV+oEYSflwJk9zUnU8nIKvtcyqHSxobULBuH5jlLwRWLyez2H/r26XK07ACuBnPs6GcW9tcfwRNsyKxE2OFecaJ5hreRnAfAeDPFWB+aeEq6t3+vkw7uLO7CztUExxaQdNNWqRLINhb3Ks+vBSoKDAyvx0EvEsKzklJ0nAMX6QnSiMhEw+P475p02ycX6XEnsLHGqWwm6jrlMOdFXJPhazxCeuWUlp9SFnnRDn9lQ3clVduW7mb4vEF2g+eD94QOI+NhW+4KJYAXOGf0sUxItJecHnw8AV37sPBo+/iqe6y0N739KeNV7Ze2CQRNd0EbAO6m48uIG1sE6axeiaq1pTigxV49xXcGApRx6UxHLwJTjtRRu17eiJkvmnLU50gWMjBNHaV5pnsZikImz1ILykc5P8LP8O5HcLltwHkjpbJx7BjHHQ45mLNvfW25XnRXJmfwsmjdSsClRVybDTkaxrfYFlccl9tCi4jNoGZhnn7eAY4Pmnd8XeC7n6JDTwYOdvCtkOyUk0zpZz/EcK7mcx+yZyJ+c4zsL+rC3p8o842LyLcNZ8qYjFvQ0FOkR7wnKMi8ZYcNzXWUP9ndW4KElh/DV5pVGNozHELtiCumUMfT9c1kqzy84h0EZJJOtA3fTioUjONxfqO6oLI/XxZIdwaihuG+C54Sjv/o+W1fZg/2DZVZCMiK+de+sq+jl+aC5obsWjo/V5QPwfAeHThdgXcEAro2dV/tOJjdPRYCka8GdAFVReVdHPfeH+rC2qlflCMXD+4AdizLRfeICXr/nzy+55F3S8RbufwCR95mQnE5MoX/do5fcmN5PI0ZOAOjt7cUf/dEf4ctf/jIKCwsRi9ln8IOM8X1HDnp7e1FaWspsRA888ABKS0vxJ3/yJwCA3//938f999+Pe++9F+Xl5fjRj36EI0eOsGEAAF//+texZs0arF+/HnV1dcjNzcXBgwfZMACAPXv2oLCwEMuXL8fy5ctRVFSEf/iHf3jfA/Qm1CRtqOpE8U0/tHi43bwk7q09ZvCUnmMZBgBYyScvEQuFDIanGzdFvrxEjCke6Xefqe5nCtCV5UMWXt1LxJhTHADT+UnlNghXWDl/NNTXsptfB6CUeTeexMG+EtTkv4KVC4exonSEscPs0dEKzFPti4033Zo/83sr+pFroD+c3C08xOTldQIwFwD2GgiPrTNbYcW7vvdJAFAeUQBwfS7vLsdKz4AD+O9mYX93BZ49VYzNtc22AkGJ4aJvwX8/119qvKEBwwBQCvUTrQrCcse805YCLKEr66p7TIEvPe5MXnryLq0sH0KwBekygxc8Jx9ORrGzrUEJcn05kud2PJ2tLgUZyclNWZSNtPeOn51jzQkAXJ/9rglN+3bfAeP14wRJahfxyBDkgGgdqd1X/11VFVf+PENCLwBcnT0OJ+Jbe4ZaqPAcgAcaFKxvfXU3Hl787dA+lFAeN09BbH6ezNPRAd86C0FPOY2F5iUIVwPAkbeI61tVra19EMgHujH7bb03wDhqgncwNnkiajyYyYiCKmilcuX8UXW2CYOu/9rXYSAiANgwoHGR8u2fz2J6Zvhg6ErZza/Dm4ji2GA+NlZ3mMiUY9bImTXNyqOEgKysGLIimYD6PXupoeRzKAoXbGkHKxcO28/JcJYBBZM4+tI8HD6TjwMnS5SMEnUjaG6CkEk2qHShypoFr3DEREZgxtIz9Isclvktw3NtmkmJjeeOOVZ0Syq1W2uOmztBR4wpIZifqT36bjzJCa5Ub4QqKpMnnIka9HxvqT3B82vJwwu6MrI2ggBYCqwas3rv6sp+cNFP+mwgJ82NJ9FU0wYn5agcg3GTR/P2dNyKOsi5Jzn31Zb/pB+kjZK8JBsGtM7/fenz7Nl2kq4au/7/lhoVYf3YR89hS90Jq5Ajec231h7H4Z4iEPSVag5I3L6XiCmni4hIBSM5Sm+A5djYWKVyavb3lHNCsjcWw6rKAevehO8Ylj2oyN+y215mimo44FwikjHbW0TOIfUjO81njUhMVpQPq/wMvZYED3VnJi3mPzeetGjT4fohqtRLPnIAwPff55//6E7/CtoVV1yBK6+8EldeeSU+/elPo7OzE7fffjuuueYa/jl95oO0fxOV6aXcyKqUVKZAwPOCzN6yoJebPEDLSk7h2EC+5fnMpDAQ9IGpIjV7T/B7MoIhPZFeIoatdS+qyIGmE8zk+Vwx7xQO9RTzYd628EU83v5pIO1ga92L2NGyFOtrurGvt8LyKlKjaIHsd6YmvXmZIhWhz2svWtsrt4R+ntEDFvEBD3CmXfhZOnkz4lteLC4mF5i/TN5diy5QKBwykZjoYAGFk5Zl7InOkDw9iPiWt88ak75MiKqRPFXOtMvGjqTuDM6HHNPm2mbsbGtgyIuT7SlISmCvWs8Yj+GLS581NIoJVfjKmaXevaX2BHYO1SJrRgrTGtIQpBEMhsaJyjT4HlICibaRvGoPNShPnzWOrkVwZ6SUR7K7ir2h6yt7OOFTzgMbyETVGOynjDJcZD/I8Vjf095vABzJgKfOFFH38ufoM+L5tM6h5Gq9TmvL+8yFK6IKRPHrp134U66KjtHaXMQze1dRN3Z31XL188Nn8q1nrqvsUUqf8OgHz8GGwl5O5iQ6RsswEnSwALCuotcoko6PTdVt2NVeDzcvaUeG9LxvrO7Anq5qu//Sk6n7I6MpVnJ4XkBmOuC5Cs5tRu91hmgHP+s95Jh8BgCL0lP+vKmoC7va67G6sl9R+ZKTZiKKGz75c7zx+tUq98UFnKQDP9szjGu+Y3nx5XslHe7qin4Fx5HRnoTKG5sZucBJyI1zz5j8m7iB0qn9K7zQunAkszWR5zsgYx5e/G1VCJSeFYhu3r/wGB7rXxaKAq3KH+HIKq+BGOcDZUcV3DPDHcHfoahqwlBmy8iB9L4H7+DgGgFKbhPsUUbK7q07pqLzF4wTJViLQkatMq3P5tpm7OxYFIrEUdK+LxxO/vksBcshRxjd2a6PRUUvoe2VWzLffXp8wfuH50v0n3IqrKir/hxTm8oIgZY/BJ8GoNb++GdCusZDDYfw1Y4VWJT/MloG5xnHp+Njc00LXv15HLuXfvOS87KTjle8/38ikvs+IwcTUxha978uuTG9n3bixIl/9WcXL178vp9/2RsHNz75x3BzlZdHhpwpzL6uYAD7OisZlgGYw5d91SSm3tbsEfIyDhQg44OmL6cNlV0W+4Z/Lgufq2/nfIbGuWdwpK+Q+cDpGXRpb1v4Irb3L8WdBX345miZddlTI+EdbMHLwLo8J6NqnDqps7HkFI4O5SvBKeABgFDIdWjzvfjuM4Xn75h3God7igyOOZhzEEzkEiHkZaWnLG92UCkmBZgE4oqFIwYCE7i0qAXnUAriTJcScZID4vIej2F52Yh1WdOzQgZlQiVc7mqvZ+VnVvQCdnXU815x84wCFYQFrCgdMUpZQOkhg0fypVuXRGDOQsaogHLRpS09tsHLh5QNWUPBUsD1WFbOHzW87qQMBvodhNFx3yQ0QDzfqmEB4LY5P0b11d/HM8OVBiojlA7aSyGDfCyGDTWdGE9nK8YewREv+0MKR6b1Dc4n7SkJyZMKF8HVvvPqfCz+5Cs40lfIuUSsvMnPkxIglNGgcrSqfMBiHJLGSzBqc1HHRyKWGTqXiGFb/VFsb2k0ciDlco0GL6GSWmdHJtmpIAsF7uuqxPqqbuzrrMTyshFcn31OwRrkuzMYo8Ex3Fv/AkdYLfimgIgACNc00J+9q6gb2U4KT7UvxpbaEwqiEZiT0LODziCRJyUNRzdH0Sg31bVxlI7eX/Wp19AxMgduPGnVFeD3iXMbNKbg+lbNE4K5yciCHEtGBxfVUsgwVmpkrMuaDRuqO3F1bNyqg0N3j2xbS5sVAQBgyX3aIxdzFsn55vNItVpcMEe/itAAcBV98lNti21FVtZTEDJtZdkQDg0UwYL/CJlIES1pcFryH5n3Iu2HbQtfxOMty8OOKHFn0T5iWGCmWjoCUvZec2UZTxerGyHeWXjjjzHy+vWmX75eGwEfk3WO6GfsHNQOIT/pqoijhhURBC318zR+eP+fXHKKNOl4Rf/84AcyDob/89cuuTF90Pb666/jhhtuyMgU+sYbb3ygOgeXvXHwiccfwQ3zEnjzrdnW7+kQOdor/1s13ZYSQnjNTArqxZQbVig928iA46Opul15BzLkLARx20Gvp7wgWDkQWHIgcNEFlRkh6PxzSoFcWT6kvJJCOfmD8sP40onPstB7oOyoVZ15fVV3Rq+vxL5agpuUNnkRStrLwDPkZ4KKKAtLqUyJ97CiJzGmFCLWcItDpwtsRdIJexlpLaQBuHL+qJpzYQRd7Dlr8ocMnvMigp3HTPMVMCro8x+5ahzjk9mYfCs3nM8hsNH0u001rciNTCn4U8DY4/cKJVwamLS+ue40vjFQozzdnmOUol/ijaW2qaYVu4erLIw7zRtfnJmiaNIjClvpLcv/PgZeu0H9X2LlheSyvNEZPMxBilXKwZHGA+2hu4q6FSUsVH+kAim96pkUDGte5F7Ve2Fl2VCouB15a4NFrFbMO4VD/UUhQ8HaO8kIe7FZMZRnSXz27uIOuPAx4WWFFA9ar+C68tpEfbhZ6dDcZnJCBBsb23q+g/NFeRWc/K5/RsxebMxoXHXQM879CeDpQ3IlgzERijLBjmIE20euGscv3s7L6ISQRt2qskElb4LrFlGYhrVlfdY73ktWACY/g+QLfGBznfJub6jsUixHgdy30BpeJF/Nm4jCSblGFhCUKOBEkN/JuMYXy40AQu9dX9WNfX3lat8mHVAkL9hX8qoH55eM/401HXjzwmxcEZvIWChTnmvpaHhg0fN4tPmO0B66mNMimO+ztbQZOwYaMjrurP2V7QFTLuqKX2b6V3JufbpiWKELRJ6a5QyYjKJs/vfRd/JT9vwF8nK8hB2dJvklox5IGwdgcM+T4RWMjlPx0Us956Bg3+99IONgdP1fXnJj+qAtEongzTffDNUH+8UvfoFrrrkG6XRm5MN7tV9LnYNLqvmOZRh4CUGv5wOfremDH/HZg+/GFY5wf39Z6FHeRJQLjHDT/95Y2cnKjRtXOEQWjLkpEzZ0YP8N4HBvEbxxUwBnQ6EpzkJYV/rswd5SLF84wjz/XiKmDnZQCZS5A5oWzZuIqiQuB6ygSGz8l178rKKl00Lla80r+HtuPGkpD6wYkZdBtAcWKay3O1N5J8hACBoGkoFBrg3lgHgJxdXtxpPY01PN/WXq0ACumr4b5D/3piLG2+oagRhKbByPYSqt5m15mWEpGkvNwJbaEyEPJgDrOV4ixgXbaI3pspNrSN+TireF7dWGyS/ezsPUpNkr1qWsMelsaMaT2NVRz6xUhJm2qEMB64KTkSc3nsQ/t1fZnt68pFZmFE66ce4Z5OZNmfkai4X6RQwiEQg4lE7s299dYfpGxqP4brDInpeIobHkFAZeu4FpOt3stDkbpGzS+tMcuj7ngfDzBTYeUDh4WbDJnWn23O6OOsNGFCgatHu46qKGAf3MG4+h6lOvcXXbj35kDMhS3nc6d7T3G+eewaMtd6hnBCrkHj6TbysLU6LGQzypmFFiadXPGSlsrXtRnd+Zpu6ClFVPD9XgqfbF2NNdjWDbP1oK/12T18NKw3REKWoaVy6VqJBCNaZ46glTTnTCysgEnwc3nsRDDYd4vrb3L2XD4IGyo/Amo3i87dNWP9zstMj38k3UBWBM9NZFL5pcDNojQjZRQTBeMymL9LMYCnYuC39W+S+Y+4mfKqa6hMr1+cXbeSoBN27kDD/T0bJBJ5AS/tvCbOt750BPORrnnrGj0Jq1imSupCYlCMyzp4oBH9hSd0L9zHewt7uK5Y1cI6IaBhRkk/oaVNjd3JSCxdC80N6PJ0FF96jej7zX+G8xPq5vQL93fayt6LUKxLnxpIK6Uks71ll0RESLonjULwAmQuYodqLjZ+fgp1Oz+J3Uf/oM5UvIRP/H+pdZcpUZ0MT+WDl/FEipu5NkEzHGRbSmvaejhr/jv5vFcmdrabOhPM9Lom10DgCV0O/Gk/hcXTtSHlHjmn7Lu8LNSaHv5KewrETlIsrcgPVV3bizoI/7T7lf3ngMad/lOfLGYyxX7l30AgCE2K68sZhFTkB9ONAb1oEuxfa+8w30n8upXawG2Pj4OGbMmPGBnnnZRw4kWxHDR7SnxI/4zJAD2J4JC8upE8O8C1H20mXyzAfhQPS7TdVt2D1cZUUIAHDBkSA2VLZMnhpiTHA8B79d2xFiacn0eWKEcXNSYcYMmXgZDLlGFAxpc73BYOaO5KB4zSm0jc7h54UgCgQfCEY4MjBbZArl0u8oH8HNVXjPooLXMPL69dzHxtKTODqwILQedYVnWSATFpefGWhy7ppq2hjznclTT2OA51hsML8MH2t5WvU6rMofQQQeDvSV2fUpRNSF5tLxTB6BxMZKT1vw+TR/QaWTvPRO0g1B06wxk5c+wGBhQcYu4nWjc1V366sqUVPMDXs/YRQZeFBrzXhXDb+4EFXjzbZpC2UlXPjA1nqdoyPnOUOUSobX36sRJMhKJBbRol923gCwNzbooWXaQOGRbCrqwq6Oemyo6uQcDeuZAciRxSZFeTWeMDTTDtZW9WrPn4HJ8Nk4fauKBGSYI7lO3+qsgB/1LM+yHHfwjGyqbFMFxwQuPgjRkXuUfqYWzTfYamJyC0QK4frYXN2iyB4od2IqguVFJy0a0j+r/Bf8Sfdn1V7rKrdkUMWnfoCuU7ew8Ua5RZQ3JKFl/I6AESQZiTJF1UKe52AEIUP0bF3BAPb1VGBjZSf+sa3WePIvRLGlqhlPtS4ORYsR9bGyZJiNzoY5r+D44Hx+PqDfodmsuML2TGNc0fzKHIwgexH1e0nJaWS5KRwZKrBlqk6Khu+gsfQkjr18W0YYIWDkyvwbfoIfnZuN8+dzLG+/NUcBaBWvgcD1w3fsPLMMe8t6v/49RU5X5Y+o+hj6O8tue1n1X8qSDJ51bzKKpiqFCAh+B76qCXFgaKHqJ91h72bBuWI6JEsy5dl4F7TukYFBSs55ptyfi+W/yIiXhBXRXqXnbS5ux1OdDfoMj13SkYP8f/r9DxQ5OPXbf3HJjen9tgceeAAA8Pjjj2PLli3IzTU1itLpNLq6uhCJRNDW1va+n335Rw4AzP3Um4pXmxQP38Hn6toVrGi28J4KzwQLTs8BfEd5TjSOL1hMxs1NwT+XxWHwvZ3V1u9+eOFKeImYihAI7+KyhaewrqrHHMpAeBuA5fkzgkeFYJ1Z05jybFpSyws/ZjyegBEyy4tO8rOW3faygt0sHA55sOEqw4B4j+EqwT5ROKlCpL5WhASTBD1zUckZ9txJTxIZBuSJs/qeq6sk00URT2J9eY/y8ExG4cc8DL18I7zJqGIycnwc1bSK3qRhcIED7p+bkwLSDnvxaGzkwaRLUT1E1YAgxXpDVacq5qSFNNWkaCw4DaQdVeHUV88OGgZfXPIsr7NSxk0hHFqH53oWKgiSSOpz4wqvjKhZd8dz4McEptd3eO7YUyaiVW5OyhQD0o+ZkTttXcBuTipjzopsfBkK+A0AHO4vtOoVSD56b1yFuD9b0wf/XBbaXrmFDevgvpYXEkVilhWdti4zd4aq6cAFi1IuuBoonQ1H8+xTC7g7vIRhIdne2hjigad2/8JjXHPCzU2xYeBN6OKIuo/EJa+SQMX5DJw3MgycGQSDUgYezT+t1T0lrYg5adQVvcyGAVXPJS9esL09rS4BL6n43xcVvGSUwVxVf+HNC7MVc5GvHBqNc8+gseQUG83eRDQjxI/eR/CVhxsOobz4Ff7MsttU8bH7Fx6zvuvOUJGVJcVnmOXIzU0BER8PlT///2Pvz8Okuq5zYfw9p6p6qm7QPM+M3fQ8D9AgRFAIJhDMhy6WgtGPT7pEvooVRflkOXZix459c6+vLduJriIZW5eIcEUIkYIxEUbM3U3PI90tBoHmeQC6eqqqc35/7L3WXvtUYVuK810+2ft5eIDuqnP2uPYa3vUuxfJFSr6GQNGzllb0GiU6N64oHGMRLK/sZtayVdXtWFQyiI3NjVhQqhiavFgESLhcCJLG8JV9nwWgPe0he0O09k/nPSIJCwge8nSfTUlLffRGw8C7mbz3G6afVGfxnCmgxeulI3sMkxNOl4cad2FldUfKmm49Ug14DjYfqeNkYC+mPL9PtjSy0sdRjuoOuFkJBQ8dU5EG4rRXVXKBhaVa7mnF3Y3GzdnNSaCh6DiPdXdPIfdlS2stkHTQOOOEiIz42N+Tj91dRXCzVMK87zlYWtFrKal7enQSvbxPdKubdorn5OiJa/HR+7mWt399SbNhQco1RfoAJWuIZc8qQOr4qMp/iWWt/A59j9dIyF8yDHYMFlkK+N5jM02HKUJMuQK6b2uLW+FmJ7CppQHeSAR7+gr4XRQV3t5ZgZuuf1fJML3+zkVK5pqaDz6vz90lLVb0gMbJ4xBMRw/Oe16RFpT3I//6t7jvDO/VdwLXntDFXaUj7smWRm1EiAXS0a+NveoeXFd3GJWaAfFCbb/JRdC6u7vR3d0N3/fR39/P/+/u7sbw8DBKSkrw1FNPfaJn/0YYB8dfvwKPN93KiWBwfGzpr2RIBh04We6eFWp9mLYfLeVDRPAaDgESXIeaD64QCoCFDV0IXkx5Cfb2FKhQp8ZbLs0fUAWwLPiIDSviMDT1S3tgOcSuPycL0QSViz0vzubv7+ktYGwzvY/H7zlA2EfNLacVnWvSASg8TQV6NPbznvoD/My9x2YiO2SHaCnM78Ui+GrVTrjROBoKj1uXHaBgKTIxcGtblRJwCYe99Ug67OEyirFjlAutcLHC7vqcX8HKtVAQQ1QTIS+ORaWDrHg/M1ChLo4sNRebWhoAx+f1pOjQruECLM0fwBfKDvAzv75/BY+fq66m8TI/3LiT/z2SzIIXi6hExuwEC7BbK46meM/mFb2YEt6n0+ydixgcrL6Ix0cz+HJhyImeY9rHRI17tS6+xh5wjVclpg7ek5qe1Cpi5Pp4fjgfOwaL4GsDxxvR2G899mcHSyxjSikyDtZUt2Jvr46sJRVFJF3GVIdh1o1vgYruqf1HiyiqP5PC6xi63/salCJLsKb1Jc2W0eDFIni0a6F6j6COJCVn85E67vMzAxWailjtv5Vzeqz95MUiWFfbxGvlhDwDwxlRcI+1xa18HnJD49jYW4+mvpk874whz0mo4oDZCTZi1xa3onVgmuXJbjoxDQxB1GNqfekmpiB2o6qS+p7uOVhUQgqjY0FXpFFOf/shH98+uBSdp26AF4tgVWE39nTNAWCqAVOfaK0OHp9uzQV8B+/Ep+D54Xy19yhf4FwEnt7jOztL+LNeLKIMM0dRwNJZ39ZeyZWoDx6fbgwQMjgYU60MTy4uSFWeYza0D46PZRW2vPXGjGK2oWEf3KwErsn6iPcBLp/gZx3qVXL0/sY9AIAlZf0G9uhrqCk9V58BbzyM73YuUkYLyR0yPATsCgCWlPer55fv48RXcgwBqso3r7c+57u7iozTIFfTFAtYDO0Xch419c5E3bRTKipQPAyrOXqeaX58A5mlNXNcX90dUtkSfWT5rFtT30wDH9QKtyzyJSt5A+beuPzSc/DGwnjy8Hz7PtSGRfvQLXhkwU+Vo07TXvtJ18x9AHJF7V9bKngO6Vn0f1LyrX2RVI7DKyNnxHiBJaX9VoVocgC4GtLkjYXZqWhBPfXzuPBYLKJkletjWVmPtRwsYzxz9nZ1FmNKZNxeH/F5GuvmFlNPZG1Ns1kvX0G6GqafVD/Xugh9b1NfDTpOffxk1t+2/3favn37sG/fPnz+85/Hrl27+P/79u3D888/j7//+7/HjBkzPtGzfyOMA28iZLzcjrnQAdhYx6mTiuNbWNJWeFgrB+tLmnFv6WGuiBkMK7t5qqLmQ427lNDVOEPyxLG3APZlsHOo0OKmBsACZV3dYayqbuf+3lXcZuAegAUrAYDLIiMG8xgQiNbYshNKGdWwKL5sKZqRnUDrSzdhamiMvU5zbnhTCbVzit0Erq9CkFACaUPZQWOAaEG/vu4Q9+Ub7UvxZxW71UWRY9ijACDiCCVYGx/eWBjrGg4bwcfeFpFboCMABJ96vOlWc3GKi4rmVGKWGa8ZiyDiJi1PPqC9Lo6olTAWVhVchbK/c6hQFachL7oe9z0NB9JWXaU+//fOxfz/J3oUkxFVTJ153dsAgIsio/x5WpumE9OwsHTQugw46VZyYOu1nzJljPcAKVjme+pSyXTVxfjGWxebi3IsrLzdeXGONPA7ZbLuiMnjSAnl6zNHBvOGsoPionM412ZLay0rhwAUXaYwirxYBC+evAZuVoIx6+QhVUnxZo2oUinR1T7e3cjGzdriVjzZNF+fdceOfGgF1UygXb2WxrpruABLtEd7anhMY8bN155qmavObGE3vIRrGQ87O0s4t8ONqorfPF9UFR1gD6gfUn24KvMs5z3IPq5rMBhi9tZDyK5YRNUv0LVP9vQWwM1IWpElL2ZyZGSlbPbO6rZtoMyONujvb+qrscYvmxvVis9oWO09+pwLZiWTOGipjFpyS+dzraputxQf/o6OMFLkd//xGVb0UkYLKSK8o6MM3kgED87dreZHJOsTnejTfdXW2KQnHQAXzctwE7x/3Ly4MtBFIryMBtL4+Hlp6sE8P5wPLxbhiLSbG1cRcG0IUD7WmmplaLpZRhG39rOInNA6w/G5onzLSVVh9+Dx6db719Qo4+bukhbG0vP35TpZYzK/kwo85yxQP0bDyL/+LbiRJDa31PE5DsK06N549/08tTaOwcxbzhYf+JuO27G2uBW/W9erlifksSEq73l6v39WFVILnhn4MMyFlISfneBcF/gOy226E3d1FFtjp3b6zUv5nDFBg2MiyvQ8cky60bhi6vL03pSQXz0GCTe9f+4etPRpZj9yaoxELGOT5CRFpjcdqVeGr5jnphPTOPFbGtzni7JeSO3jVkemP5+m9pOf/OTXDo/61OccUJ0DWUEQMEIgmCD70PxdzNfMPxfYySCXcNBS5/wBrcBuqNuvohYBQeqNRLCsqhs7Okv5kBIDAgArH4EaM+4QnpCwo2Nh3FmtefYFtpQ8Uiz4NHsC80oDQMjH+ppD7LXgS0WMJd1c0BxuaNiHxw/fan32y5W70Bu73qJcBMBYefoueVIlrnR9STOebG0EMyAlz8+AAYhLKA19KbXGGSdSvJnW5Sme40Y1DWF3se1tI+ww4d1FRVqLL/08rFGSYUMaJum8PXI+rHEH8ahJJ/0FLcb1cONOvsisXAQByWEKRcLiJl1VX0FX3kxbJVZiwUciuKfhAONX4auE7j0vzv6FmHbGx6bh76Y1SZmDhAuMqwT8ZQX9uCwygo3NjVhTc0R52+nsUZ7QREhVKM1LXRNAGRGPH75V1R+YaqBXyyu7VT6IrrZtPLcAV67V1U4lY8m9pYcVxEl+JyuJdeUthsaWPL16zA+U78V3D2tlg9aX6GXTMGqlnUuNwU7HvkI5K5KbnfeI43P+Q8P0k6m1SSZDQMKBk20qq6fIBL0vbp89hOnZ71g5HcEzYI0vZFNBeqNhrK87BBc+453T7W+Wx7R/ZD4QzZugJ07HEBXsT0pf09AvSzmSIou004fXXOseK6s6sL2t0sgEks+eg9W1bSkkD/TMJRV92NVdlAKrAezaFYC6F3a0laXSRY+KGgVt5XaED/ilMsWLGYa6IJuVZMRJkQtAWicBzcvi8n7s7i606seknFs5v3TPpSG04DmXla0DxgtVtP5h020p8pbfTbkloiJyyj4XOgP3N2FyeeRe5s9neLin8hBTHdMc3VN3kB1qnB/iOWrdO4pTkuVTcpDSULOmG5cbjacy24k8GJW3Aa5tQ/kX99XrWhEjEcC9sHMOZm7+0ifKOTh253+94Mb0SdvKlSvT/txxHGRlZWH69On43Oc+h1mzZv3Kz/yNiBww04XAPbOnSXqmQj6+27koVSkRECMKk0oDgD+Xa2MikXSMN1i3u0tacFex8lzvHCq0PICPdzca4ZqnQprsfRkLK0+C8DLBVYljbnYCEUd7OLKUt311TVuK58bNjeOWG96xsdIesLFlnkq40v38cuUuuLmm2jM9g6Inc254E4BiCyKstxRO3zy4jOlWJdxoeWW38UQQXlgrJoASeE82zecLQsF51MdXFXZb8yi9G25UYSvvKm7juZIej/MZBveX71OQGWp6TnYNF/ClTF5U6mNdwQn4ZzLgZiXgxNXxkZEBujjk3JMAX1LRh7X1TWYNcxTDDAADrwqlGjlBT6rJrTDwF3pGcIwyMsE4aGgllOaeLlPC4pJhQAqsnguCHWwoUxWouaqtAzzZNN/yNl8aiVmYdul1571E2GfBTqU+JKpjQ1U65XcBfO52DBaxkvTMQAVWFPSKsepKs5lJyzBYUqEq7PpnMuCNRNg7zLBAR313x2ARR/rWVLfq6BH9HlhW3c1Rh82iOvPjh5QjYHHZAMsEN+zhfx2cJ2Av0MnX6gePdi00UbJYBFW3vMznnyJ6Eu5CY/FiEXjxEO9PGSmUn4MD+CLnhaFE2vCg9SXDQHoM3QwF87vy8jOWV5r33Ig5G88P56ucjl9QUZXPRkgYPVR9PieBjc2NSpHyHDQUH1PQoNEwLrk4BkAzyMBW3peU9nOOBs2brFmzs7vYfj8x6mjZy3A5Ok9ib9JcebGISvSFLYso0kd7g9Z8XZ2KXFHOA+VEuVkJ/ix5kvlMkrIeVewzNK9LK3rZ++/FIvhJb50ll3cOFcLNU8Yy3T9SodwxWGQpm240zufLSRgVQEYe6HNkEGzVEe3bZw9hbXGr8jIL7cGcXcecPZobPY90znd3FKl9R4aBHjPdmSnsTiSfchXEivuno1reZMj0wfWtKO/a4lbAc5TBKvKmJJyOxs7niCOefopMNZBFLaddzWCk8/GIQY8/H0kqp4kY09raZlXDIVtXrPcdBUmLxrFL19Cx9BIdPbccJ3TWtQMk5cxDnFMpdwD77s1TUQ0qtvlceznc7ITSRUSU6EJuin3o4+Yc/J/u9a+3TZkyBXv37kVXVxezFnV3d2Pv3r1IJBJ45plnUFJS8rESkz/1xoGbEzcUgFr4eaNhA4PQnmIAqJlzkr/XMF39O+ghIzoxFmbQgk8/V11sSuCtrO5Q5dBJwIyF8ZPeOpwavdR00AnsUikINAuD8p44JiTu+lhWoITJlvYaeKNhPNXawIouCfU7a1vYmCGq1tNvXqq8QzpRUM2Rzi/QY/lWh4I5vDk+1cyjDsU3zjiBo69cDW8iBD/Dw5KKPoW/hlGE+fMhH1muufCeay/HsqpuVhpL8l+2vDtubhyIeHYCYdiHNxHC1o4qO6lYf0fOHxev0ooSXcgyN4S/B0Wh6Aslzbrs9Jqyt1dfQC19M+BnqUvNmTppqBP1ZbOsoF9faOIP0Vh2FXHeAkI+K6dSYQ8m03F/xH51s5XhtLhswORykBcIwPKqLl4DL6Zw4r5OSqXLj5g2vPEwoAsY0b7zk65KMg8ZZQk+WDl6rGkhvFgEp/U+pktT7RHV1y2d1XBzEii76VUTNQHU5X2eKA8pE25enAvNAcCb705V+R0BeBg9jzDGXA2UWHJ0q5t2iteT2MKI0heAWgstI6zkPF0d+5mBCkx42nDT8KGdQ4XsYCAjwYsZhXV3dyFDzwDg9+s7zXnLTrCBQ+9lBSkaR2HeG9yF9SXNClaioSCA3mMaQuVGkgqzPWZydzyqhE1Kko52eONh9s7KRrBHSZUqldEHK/bgnfemcD/VBKrfLyo/akN8HLO2XGFcNyfu8pkgLyvLthyTD0YFsqZExrG3pwDLK7vhblV7bUdnqVFq9FifH85PKdhFMonnm/5N8jzkK3jSeNgUydL7al7Ri9azHijfy3vTT7qWB73ohjc494XW1RsL438dnIeiG94wihrNyUTIKnZI62N53AnvDjCEjckGpLNmNKzGMKkMxOe6SzFw7hp+DgBVB0O322cPYdGsYSyceYwdGn7EgzceZsifJHawICX6XtrVWYynWuaqcVCVbd+Gr9BcWRF38kUJw4vWj3H+Y2GrThC9Vxo23z9goqD8t95XbjSu+fzN9zf11ag1CcJjfDU33mgYd9a2KIOc5Khuq6o6eB7lWV5W0K/uJb1+j3c3MnGCc5G6E+aVBPI3Eg5WFPSiccYJFXGR0VTHx672Yl43SfUMGF3DcmSJduMN71n3nBWpCaWe9yBEznIqaErbummnuG8XevtNTkimdtVVV+Fzn/scXnrpJfzzP/8ztm/fjpMnT+Kuu+7CtGnTMDQ0hM9//vN4+OGHf+VnfuqNA29CC5EJ4V3Q8A5qO7sVi1D7SzfyZ2R43Rs1AnNTX02KBw9JBzW3nDYRhjzl0Xh2sERhbHWiIF0Kh/pnwYtFFMaVwtC6sdFBwk4ncjpJkZjsg5lUlpX3sNIHgKMj/kcZmBoeTT8phKP2xWWUrYqe0UXlTYSwt6dAeYxnHGdjZH+f8JJnJ5DtTqrLi5LrchKiGJP22Ih8iJ1DhTxP/a9cw3NLsBXrYgBUHzOTcCZdTAmPcb9JqeD2fiYL92UF/dw/N1tzXmv6SFJevFiEPc0UAaDkMACmbL0W0m5Gko0ayQlN+2hB0TC8mEqkXFgyxJEBZ9JVlxfNDQlbKgql+wnPSbnAQq8JfmKhqNNFsOfF2UZR1sr/mqIO/OsRQ6MLKA+l4/h8mdN8u/DV/spMsqLrRlUCbUn+y4xL56hJ0XEzDgAtA9MtBg3AeG7dzCS8cxF0n77eTkrU4XNvLIyl+QMq6ZiiCaQo6FoiXkzV8KDEQp43CEPUc+BcTF5/cWZyElhffxDeRAhN/TMM5EDMCzU3O4EFhS/y2LivonDQ1RlnLEzxioJeLJk9yKxZbm6cWYwWzRoGcd3TsyY9LYcoGZEMeb2XJEvJT3rr1J7LTpjqvr6Zd2JX8WIRTJ06is1H6oznetTA3VgeyXoO+kx4kyGGhBDuf1lpL8sPhh1A1zuZCKm8IEdHK/W67z02UxlN9HxhuC0sH2Sl1otF8Lm5zaZuhvRK6pwKuDCRM8/B88P5WFzej+fay/He74yrPVPeZ1M7CkpbinisrOjkaIGMguD9TCVjNPZ/W0elUbopwjUWxqFeJeNunz0ENyuB7x66nRXdK64QiagAV6aVXlk3OwE/w8O03HctY8kyiB0R3RBrRf+nc+7ou0Ny/1OdBTcnoWqH0DnNTKJlQMOeRlSExI0kec89P6yYhvYem6kMCpIDWQlkumrfr6lqNXJV7ycyrGUCOFEcU9/J8KS1XlXVgTXVrSxDeew+DDscrb38TCCqBsdXuQFvZ9psPNnGMCF5Q8+TTSWCOynMR/AcuJEknISLzc11mEyGUjzl24+WskNqR1cpz/9zbeUKppxt7z1AFS50sxM41DubHYkUEd7eXomDx6cr0gv63rhACujPejFd8yjkW7LKohIWSeUvn76c7zlpPBId9EPz/s0yGmgdV1e1G2cpySVNONLUN5Mjlxd68z/hn09T27hxIx544AG4rogEui7uv/9+PPHEE3AcB//lv/wXDAwM/MrP/NQbB26msuhZmJFw04dx0axhpMO2poQds413PR28pWVguqUkAYpT3Y3GDa2neJYbjWNjb71FkeiNhU2idI65nL1YRHOjkyfQYQFL8B1ACQ/C3vqZngVTojbnhjcVDrWixwg3fQF958ASo0wLhT4ansCOwSJWWNzXs1gYX5/1gfX8L5QdUBhMUZjNCSp0EGFTXzGx3F3SYpT5jKQlxNXHlAeXvbdiHbyRCBpqBnnentO5DtKTioTLYyNB+exgiVKGp5pEW0sYaoWdPV0iQZK87/S8/T35oAJme3sK2IBxLppkw4eUWRLilndIe6Rlcmwix3hvyYDhfeiK8Yk13tJfaRKHcxKwoGlawVlVqViznmqeayfiaQPUT7roPWEqElP/XAFjsubKF2shmDiIx9t6f3ZCJbEnHVyb+RE2t9bii4271eepbkSuge8h6ajEQgD31e81EosgMVHzjtXV7fxeANjY3Ih1Vc3GWBUwwuDf+3vyjTcyphiF7qxt4TX/YfNtvE8BFaXYNVyA3Z1FfFZpf4Ycodzolu1OMgzBGw3jvoa9uKfuoOUBtSGLSO/B1f8neMWH7+Wp8+8B99e/gGUVPSbRddSGIqyt1pCT8bCVaOnFFC5/51AhR1f9s4rdykk6DH3b2lYFOODcDqlsBJs3FsbeblXEbVllNx6c97xiiJNc8ZRArqEoD857Hki41rOJfeeii2JwsxO4NGOEI1zpsNYLywYVlMcTyczkq8j0AM/BupomLCnttxQqCfug53FNGlFX5N3387Bk9iDv85VzeuyIpPawuzkJRVOck8BfVf8rM4TRPbSqqsNEj2gvCsgdsa/5YcV05etIoxdTjgrJDmXdO76K7rq5grKUKFDpPWNhRcfsOZYDATAMbP6ZDBveCQXDpGJmDdNP2tj6pAN4jkryB7CtrQqjXgYzNhk4qYPLM0b4OZdfeQZ3Vh9hSKgz7vJ9Bqj3O1Mm4V85YdZK5Gs5Wq6zki3PEGCiGuf03eP6nJgPQM1vXhzdwzeZvSha2E3yc+huvqfhgNkzwmEAKEjq/eX7AMdXEZZ4yLpLyaCW4wgahm40ruDIMh+Got/aIKCijW6eMbwWzRpmY5icJGuLW/Gdw7+r3hdgVNs2UKbm3XPgRBMc1eFItohwXcjtt5EDIJFIYHh4OOXnw8PDXB05KysrbaG087XfqIRk8oxSWXCALGw7URYAQx84NKoLoC0oH2J4BWAbCsGLipp/JsOmOk3TOJHuPM+1PPNASsJwMKnTSToMmaGCb/TMJbMHFbVnLIL19Qe5+iYAa7yc5CeSadfVH8b/OjiP+Zrp98sqelTI37cT2pyEgy/dtgPfPrgU8B2srWviatF1RcfR+tJNKXNXdtOr6D59Pc+LxIwj5KdNxKVCbBKyYq1d0rEuDUq043kciWDD3H04l8zi5FJpCATXgbxRsiAXKVX/97z9dgKamEu5dun+742GMa/4RatwWLp9pYw6pCQhpmsp7wvAE9QgdfjZd+BkJeGPhdImpMvv0zmS+GZKzg0aUZQsK78fPBdL8wewo6PMMvroO/eWHsaol8GMGl4sguVVXQojG01NzOO/9dxTAUKpLMv9wMZeukRw+lsmYcs5DL57VEZAwPO5vuEgs/a4OXYCcLr+Ub8AWEnva4tbOYJpyQmRjCnlBe/bNMmY9OzdXUWAD3yxcTe+f2ixUZ4+yISfncTMaW/ixBuXp4wRUGfvofrn8d3ORRzZtBJwAaXwifwV9py79vlaWdXBRQHvLmmxZBMVCZPPWFrex1Sa6cYm11IWVFxW0I/nOspSEojlnPtnM1Bf9iJaTt6cMtcrCnq5n7JIIY2ZabPF+EjuUsE7+S7uo5ZftN5Svp8vsZ8SjpdU9jHzGhwfi8sG2Lji55Ohk2av0x6RsmBBqX3fUZ+pX1ddfgZvvHKpfVcG5urukhZsPDJPGTu6CBgA5F//FoZevcpKrnXirilKSnei3k9UwNCLKXYrhnzKhGiRUCzHtr7+IDYemWfJIf79SAT3z9ujEpZpj4qzLp9zZ22LoYmGuZ/SnsWQD4R9Fb3Rc0OF17wRlayMhJNebgn5JfNnrH4L2XX77CHkhcextbU6dU+FPbiZSfhnM1gPCBKLIOyp+zNYYHMkAm98HK898BcXXPIu6Xi3bPoyQjkfrwpwcnQcL6391gU3pk/a/viP/xhbtmzBl7/8ZVRVVcFxHLS1teFb3/oWPve5z+H73/8+fvSjH+Gpp57C4cOHf6VnfuqNgy8cWoEdx2ptVgTAErheLIJ5JcNWQt75lP50bAhLZg8i7ru4KvOsUnwDTALyOeqLPgswqRCRkPtq1U58o30pvy/dpSAZK5gBA7YXAtCsEm0qDwIuUqvlkvdD0FLeX76PFQQSHMvLerBjsIgZO6wqtTIBMFjlMY2Czf9Ow7jTOOME9vfNtigs5fcBYawEmFzSKrLnWYMUpc9VnlVWPsX3VhT0IjsU1/CNXxxqZeGvDTRWGNIollSAxxuJYHFFP3Z3FCksdFUH54hwv2XlS6QxEgOQrHSK0l3FbWp/SiwwwEl/pHS5UUULy/s5YNwARulzs1KVOJ5nH2yw3j57CGEnaRisxDxuKDuIxw7fZnv80lWB1snA6vew9kja/aWVCyfpYH7FoNq3euz3lh5W+R7pmEACihPN87r6w/hfh+fBd31LBgT36KJZw9jdreBzi2YNY/fRAhW5ykrd06sKu7H1SHVadhKG2wlWHmK6ISxxsO93FHZaFZbTzc2Kgl5s7ynHosIhri5uKY7CCF5YMsQ1JqxzLfJIUgzNwNrxuMbDqqghRK2YNIZr8JnSCFtS3o/nh/Phn82wqsPznAkWJGpBpp20ay5lM+yzQI2U+4bpJ3Fl5jls66xko0cqpDQm/4NM+Jmegb5Q8mig0m5KH/T4pWJ4vnm11i3gqGDZEA9hdVmHcoYIBdxi15MOMr3vUljegrJ0LAwnK4n66S/h2uyPWDElZ8CSyj4TfYEygHd1FfHeVvlHgBvRd3OaisAATKXx0TBWVXUoum/ZXyGLvFgEq6rbsa2jMu0ayjEQKx2SjmFkk0aScL5YDibSAfS9J50o8vx542HkT38dQy9eZ9aLvPDie+Sgsxx9rjHuU/aJMEisfSHY6EwEMj3zHaBlhSZTILaioHECAIn3khe2cfC/PqFx8PlPj3GQTCbxX//rf8Xf/u3f4u23FQX6lVdeifvvvx8PP/wwQqEQXnnlFbiui+uuu+5Xeuan3ji44Ymvws3JSrn8LGU/7Kdc3EGaU2qSYpDYXAgjKYU+ewo+yoCf4WFlZaeJVgQuVlawHWgsuu7nZEgJkYCQsxRN4aUiOM99tfuYEtXqe4BybmVlJ7Z3l6tQt6Rwk4lMlJ8hohLyvb9qk+9eOacH23TI3RsPY3HJgKECFdEB/huBd5Mi7NoCPcUIkBd90FMmvfXid3cVt2FTUwNumvE2XnnrEv7s8uouVuTd3HjKJe/FVEVlEra0Vuzl1e8g75c1N/pCI4PAG4lgVY35Pyn19Fk3GkfJja+he/BmrKs7rJ6fxnMOx8ea6lZcFhnhdy6YcZwLIwUVbKLz435NhriidbC/ktLPUlSEd/a83rBYBAtLB1XBM18YyV2l9uWmsbpuZtJO2NR7r+aW0xx5kn2zlAGxTvzcQDSK+kTRJP6uzIUhD2Dg4uX9lc4w1dFGVuwTTooR4Ey68LOTyngQe1sarW5WIkXBpX1CxnhQvrg5Cawo6MXbE1PQcvJm5TUMe8Yz7PopSqp899L8AexoL2PI4zU3vI+33p1q1jlNhM7q01gYa6paGaaSLvoiKWDlnJC3mDDTKbKPklZ9YF7xi3Z+WDrDjt6t94IlY3S7s7ZF1dUIGFVBhTs4V3B8LK/sNtW09d6iqJgiTYAq4hhS835f7T6cGrtcMRJJw0bOYxrHSYryL8bqn83A/1XfqopGEiQ1EMUlStd0jgovpjjzSU6kRMHOQ518PmdPihND73+JY6+4+RUurgfgvGfTep+IxnijYdQUnkTr0C1Gmc9J3ZPW97XhIvuR9v4IRCC88TAWFQ9yAUwZHQzeI9acxBUVcPDnJIdT5jAw5ttnD5l9EpDtvM5h35LTD1c+j396owIrru7BdzsXqQT07jl8pqSMTteknGwoPYZDHdfjtfv/8oJTpNk4eOrP4X5M48AbHcdL6/76ghvTr6OdPXsWAP7d4/rU5xxYuQPBZKWYSdoBoJKKoxrLFww9xiJonHHCZkzRITpiKgCUl5kqWXoxhTm/s+YItrdWKqws1S/Q7/HPZHAYt67ghBIM+h3rqw4beskJs1TLK7sVpv1cxPAXE740M4nHDt/GmFiJS3ezE7jlmvcw49p3AM/B9o4K7qekcFtb3wQqXEVzwUbDeUxJ+R7pAaPEKQrVemNhbGurUnjrmOq/VSTM9VFXcIIVVTcaNywvUYNxdqNxS+DOK37RrCnAHiipKFChNS8WYdYk9nDrnxNF3+mTVwIA43d3DBYxHp7m2RtVOSLEmvTMQIUqWucYnD8p7vAc3F3SwgWTJMOLG41jW1sVvFiEvUbbOpTSJLGR1rz6LlZWdSg2DqhiQf7ZDJ4jKmC0pa3GvHPUJJ+6OSaHhudW50l4CdcyDLxYhOke3TeUEHZE/s2qwm6Tz6MrWFOSIVNP6jmi9drbXWApLzuHChk7zJej7xgFzleG+Ixr3+HchOyQ+tyXK3eZufPNPHmxiFqnYP5QnjHcKCfDjcbZs0p7mSvG+sq7uaqwG8ururBw5jHef0w2IJ0Neq7dLCUjvMlQSg4C5S44F00q2UFzk52woyP6fG9tr1LJ2yJnh3N6Jl1s77KT0AFVibqpRykzzpRJjrY1FB7HzJvfMnMQaN6ook1eUtmncl0SDt58+yIlv8hLm20S0S0lQyTZb2mt5bUgikepkAUNA/q9m5XgRFkynHM7sjkPws1McvLqof5Z1ridydQrjfeTiPYsK+sxsj4at/pyV3EbK5+rK9vVGDzj9fXORYzi6Dt4rr0cXkwRHJj8JGGoeMqQrip4Cbfc9A4ea17IHnVvLMyyi6mKYxEsLe3DhoZ99nrrff/I/J/yHAOKMekPatuxtaPKnGn995qiDh4z13oIGAYN00/CjcbZMKBiWbSX1xa3WnLfi0UsZitvQrH+SOPBzUlYleEXFg3xz4n5rX34Ztxw1QfWGpEhTQYozQfJ6vsaX2DDaHHZANpfuhFuZhJ3Vh2xcsLI+faFsgNGHozZBjqxPLlRkz+1oqBXFQPNTlhn1s1KqERuvQc21O+3zqAXi6Bk1it6n9mJxJyQHjX5UXt77Lob3rkIF24kWebFIirSIqKTnLxNZ84BnBFbvv1Nx+04ceIqXBVWyfNkGKypPaLmmZw3ek5ZRuv/L6noU2PLi6sCeZkXdlKyojL9+H8+rW3KlCm/FoPnUx85uO77X0f4UiNszpc8F/SkpXg7JQafFEoJLdDemJVVHXh2sAT+hxnwMz0bZyiUO4KckAfiwYo9+E7T7yJYwKyh6LiqJBz0oEhoSMRjNp100CHCGgJA+KMQvGvHTd6BDuVKiALBXEhpXzDjOC6KjCp8ufCmPtiwm8u4B/tlzWEaXGa6z9HPl1X0cGVb8njKvAkvZudUBD0gKTCC8TDur3uB8aqra9qMh+08Yf5gn+T75XqytxdGYZK4VMtjStCdce0xDns2vEcoherL6rJkr68onBUMc7u5Gi7SUYE7a46kVbwAFbXZfrTUjCniwc1OGMhRLGJCzNIrlgbeRh4s+A7uqT/ACfab22pZOaE5rJt2Ck19M5WH9kiddbbWlzTjycPzgYhvsc/ItQ3CZWhd2BNO9KWi0FxwLYMQHnkeqa8p2H/hobP+1s/0z2bgD2rb1dkQMob75gHITsINeyZqo+XHqpp2bCP6VWEo8f7SkD8aM0GhUvZqEJojYElLyhQMh6IsvP5SngW8/EGPvheLwMlOwBHVot2chFqTI7XMP//9Q4vNHg4Z6GQ6D3BwbVKiESJPRUa1vJjJNSEoqDcextLSPuwaLuCImqRLldAZzhWS8jPNvcCf15Ah3lva+8/FAXXU9r7GFwwBBEW7xP6SHmgrOhfwWq+c08OwmXSyPN28BaMIgI6AtjRYd9eyAsX85Ew68LO8FJw+j1H3l+EtFCEHUtYzJ3cCoyOZlqPD6me63AYAcH0UzXoV/SevM7CiNGsSjIA8UL4Xj3YttD9LTr+E6mdV4Ul0nrrhvPNG+2dB6ZApajcSwcPzd+L42JUqkTyqKM7DbhJTw2MY9yLmzhD5fXJM9H+SIYCOHGiD9YvzduP7BxefN/8LUA7KloHpBkoVkFHU+N3nIsy+xVF0HxYlrBuN46+q/xV/0fb7Zl/Tc/QcOjkJOOTUIlSE1nEu9JyDm378lU8UOTj9//vmBTemT9refvttPPTQQ3jhhRfwzjvvIKjWU1Lyx2mf+siBtNrp3wtnHmOqNwDKqq5o4+/wxS8oT6WQlt50Ptj6IvyXI1UqQe3iSRb4zB4jPFXOlEmlNOtL/DsHl1hJg8R40dQ3E1+ct1v1V1/MKwp6QUw6a+uamHlkVVUHH3z/bAZqbjkNbzSM2yoH+P3Jq5TSsbOn2AiSAEODmxvHNZlnmBFlb18+QxZY4GQn8N0Dt6sfCS/4fQ17+WfBMDFgvBNUfGdp/gDDM+4uUXUZdvSWsLfImTLJjBXE309zSh6UIJvL1s7KFI8oGQZuNI6Ik2RPvoScsIdKK2XrS1QdABLUdDH6GZ4l1JkeUgvWzUfqjFeVFHk9d14sAmjDhvaHjFa5udqzE1VMFJdcHFMYd6LjExcJv18nVG9vr8RXGndgc3utNSYAuPzSc/BiEaUY6p8pmIn63GXhEePlFYYBP0NsEXkZrq1tVsl+ujrylv5K43UT8qnl5M3GQ0s/197Yjb31ao8kjRd+aUUv76PwK1nICU2yMUf7iOeOIkk0nwEjZl2dSsDaNlAGq/ChZv+iP14swpc6RVKkh06yUxEdsB/xsL2jgp+5vvaQ8gDm6AiAC0D3eW9XgYrAuIpxa/vRUkTeD1uQPS8WMYZndoKVtaX5A3j88K1mXcdMhC4F/kjRpqSDXd1F8GIRtL50EzaUHVTrPxaABPqw6gQEDQPaZxvKDvJzvVgEzwxUsKL9/UOLeVxEG8l7lZh2xg0bGwCrwBhHAkeNoS1Zyai/bjTOSegMJ/KBnV3F8EYi6D52I5ZVdqesE+8PR+2plZWdZp0FvEieW1r71TVtcHMSWFnVofqRcFRkzleGlJsXZxinm5NQiZ0AF9xjeuhRkagMlZtC0QdAfWZbRyVDldh4C7DMWNFgIYNke7rPJKZSQv5zOrfNz/BNlPBcBItKBnm88izQ/FPNCDKwpdPk0uiouUcCfVU/UHuFWfjoznSAo69czWPiudON5OnySvW+yKks+Gcz8N2Dt6u+6fwSuTfo+e1HbzGe9sB8wQeeay8HoBnK9OfW1jfhv3cuNhG4c6q+xHMdZXi6rxpbOyuNcyAgh2kvUGPDQMhJNxpXeXzCMUHFy6iPKwp60frSTVhb28zsVMsqVbT7nvoD/Cz6NwCWm/Ac5VQQCde8lmNh/EXb7wMwe5nOAn3OcUStF2IEDGnj+EKvdeA7n+zPx2yPPfYYbr75ZmRlZaGiogKHDh36hZ8/cOAAKioqkJWVhVtuuQWPP/74Jx3hL23r1q1DV1cXvvrVr2Lbtm3Yvn279eeTtE+9cQBAhT2F0NrTU2BTveUkmJ5PemIcx0/vLU3TVte2wRuJKKUv18AWqHInoITT+pJmoZyA4T5uNA5MGi5rViQ94NXxS9Qzddh0e3slv4MLf0WVskHK7ucamtHSPwNuTgJ7BvKxStM8OiHPeAUALK/oVsKGCjlp6FPcD+GHXbda4+WiPXpsDnmZcuNYqLmbubIiQYHy4paAdnMSgOsrBWgixBECbySC9+K56kUJhy8Q+X7C9QYrAzMf94gOzWYm4cGuWUBt5ZwebOmvxNLKXk6iDXqJSTF5smk+3KyEEtQxwZceCLHz3zrqQ+tBxtGysh7j/fLEBanHzfNOl0leXPFcA/jgwyhW1bSzIPdGw5b3kYvy6QvrWx1L1MUvKFG9mKJg5L2llV43J2EZlNQvP2kKoBF07p76A1wYhy60VYXdeLqvmudxbV0THqzYw5f30speCxZBVHtfWfCvat/nGWhY0IO2s4tYV4ApJe9jY7NSvvKnvWH2ESlV2ji9ffYQP4OoIwHgqSMN1lq5URVl4dD6iAjpC1iRdfY1tSTPEyljmpqWom8/6a1j776bG8fyqi7u0xfn71ZGZrYxaOOXGcNS7ovg3zs6S1kRT9e88bDZQ67ihiclneaIzmZKsj/Ng1gr3ut6Hziuj3cmp6jxahpFVvTpFkkaWIcFLxT5A9vaK3FHYScbydYYdDSLvx8YK1dtJq92YAxUg4RkCq0P13/Q311UftR6rpxXPgNUNRkmefrZwRJ4ujjgMwMVgA92BPDr6P4YUYamG40rql4HSsaOh3m+qNAfrzVFDyo78VxHmak5EbiD3JwEy2zZFsw4buhQA7DSXZ2K0cmSw2EPd9a3YE/XHFuOAUYm5CRUxXh95qmqM0G8PhjNZoU06EmX542cEuyU89W9LFnkgh54MgS9kQjiN4/DD/m4s67FzAPlJmhj9/55RvbIZ3CkTyvEfM40iccdhZ2c0yWrRN9R2MlrJeuR0NhoLmWBRp5/Os+RZMq4uF8UsdaeenLAkWG3tFLRC8PxLfa7J5vmwxtRcKA7Cjt1dIugg/r5sqYDtKNrJIKtrdWmD0IOeOciXI8HCVfBHt2ArLtA2/8bsKJnnnkGDzzwAP78z/8c3d3dmDdvHpYsWYJXXnkl7edPnTqF3/u938O8efPQ3d2NL3/5y/jjP/5j/PM///OvYcSp7fDhw9i8eTP+6I/+CCtWrMDy5cutP5+kfephRd9oXYiffVSJN9+daiAxAgJEIURAUWh2Hr1FPUBDOggOsqhkELFEBlp6ZximAJ0rYEEdAmxGQcUzyGSUkrglLtQgVACAYVaQz/ol7AZWv0SF1GAC1rqaJsaw0zspqVpSlwJasMddE7LX4yW4ErU7CjtTqpcGE4qt39HlKudHJ1xRP9aXNOPJ5vnWZfTFebsthiUy8Cz4V7aij6QiR+rLgOM7DK8JNoaZEFPML6FMTBkHGUoBw0F+Jl0jaAmAFFhWMNmOQ8G6b0yDmCakX1ZwCr0vX2ezG8nkNopcpYFbnQ+KwXuLlEC5frQGmraSQ9ZhNSdW4vJYGMvKeyw60+CcTp/xJq7MPoemgRmpcAVKMhXwCIT8lERC9Q+HzwNfpGHPVA8PvjseAibMfj8fBfCXK3fhmweXmfM8FoaT4alozLkIFpQPWQwwshFzWToyBGaucRSb1bb2StX/iKdgCw5wT+1BViJo7TkxNqaijJta69OzPMm11zJvbU0zQ82Csuzr8/8FX3vhs3ZhpjSQGTeaSlkrn5dunRumn0xL5SvJIIKwKZbtQYIG/Z2aohNoHZiGdbVNeOpIQ8oaWzDHwLkhSBzBN/k7EyE2Gi2n0qRiA5p13dsov/hVbOmvNHCYiRDWVLQh7ocsRjLrbMGMMV2jvDUuGCe/r9eOYUICmiTHmEKV+gsSeN3shNmbwHllVtpzMR7GqgrFMCS/541EUFLwMk68fxnGYhlWP+DCIqJYX9KsIpNp7hy4PuYVBZLSAyQXVh8DFODyZ3Ic/LvJEO6v2cuRZzl+OpNOwoEzdZLhrMQCZBlLBEHT88mwXpLDkhlpJII1tUesZP7VNW0MiSRGrrW19vmUfQ/CH+mOcHMSWDmnB2PJDE5O532v9zMTkYR8IOFc8LCiG3/01U8EK3r5//7GrzymmpoalJeX43/+z//JP8vPz8eKFSvw7W9/O+XzDz/8MP71X/8VQ0ND/LMNGzagt7cXLS0tKZ//97aCggJs3rwZZWVlv/zDv2L71EcO/r5lgTIMYqqQlBQqVASLwtudwzer32mhCqjkXzc7gT19BWh96Sa4eSqBi5Uj7eFvnHHCNhhY0Pm29yLXeImUt9mxjYRonCEZ/pkMg2fPSaAs/zRXXwaAh+bv4mdKlgYvpkL4FTe/YhL19GXBhX8CF4GbnVBFW0TBk6Xlfcqbpw2DmltOm98n3LTFyJgNQzcWcGN2ojJXKhYh3wUzjpvETMoHyFFF0fyzxkBhBUi8h2AN1B9ZFIdZoAA0nZgGNxpXcKxoHI7n4LN1ClIWTFxdmj/A+PPl5d2WRwqADZGImaRdmVRLHqq6whMm4kHhWxGulWPxYhHOEQk2uvzJU8zP0cq5NxbGmXg2v2Np/oC1t7qHbjKVUcmDRknpenx+0lWeMv2MtcWtXA2VnkNKCSVsA7ZCa4wN7dXNE6F47emCoxIGaU7c7AR2dJcyDEPOC52ll964DM0ds5gLXjY3K8EGB41teXk3GwbUL6Vg0lkDV3d1M5NwcxIoufG11ImPO2yIu9G4rQDpcwwA3zy8zBhFUOfKj7vwEi7cvDj2H53FERhrXWMR7OgpAVVb9kZM0qf/UYaVjxJxkpy/AgCrq9vhZifwo0ML1LNIUZ4IWXCwTS0NtgEs4QIil4UiIZva9Ri1l5f3S9LB19uXwQ97WFbQb85NyOcEWDV4H3cUdsIP+wauB/WeBTOOK+9o/gAernyef1c37RQO9c5OCxfkPeSAk4J39ZoowarCbkPcQFFZrXC1v3Qj3JwEnjrSgKXlCu7D5zWw1ziapaN0TUdn6EUyCcN1005Z1br5vGcnlDF2LoIXX7sSp0cvBQBlGOh52tJWg22dlXxnSEN6cbmu7k7yfDxsQem80TDurG/R8EOxuCQvHJVIT3cOMV3RPqHKyz9vL+bzU3TDG+r942Ye2PutZTRX+3ZMMTZqXtwkJ288Ms9es6wE51B4o2FsKDvIBTL7X7kGsTNZppIwyfssIZsAvB+PmgdqGccF9Hwl070JVfHZG1GyOuGFTP9iEesu9WIRLC7vN/2WUB8tu1lGe45hl9MwRIr0ztNV1X2quC0Lyfl25ISjZHrNdnaWMGqA5DfJQoR8/O/mOuu8bG2tZhYw0gHemphi7T3/jNrPK+f0AL7DkVSO+Gs5v62jEjs7NUxYRJ/cTAW35YrnSeNAuaCb/wn/QBkY8s/ExETK4ycnJ9HZ2YnFixdbP1+8eDGam5vTdqmlpSXl87fffjs6OjoQj/9y5+LHbY8++ii+9KUv4fTp07+2Z37qjQOEfL7YZOVYK7ROFRk15GNNdSsL2+c6tSWWcFh4HuqfhVWVHerQaWxeLJFhBDIpSeLgEQMGhdQXzRo2Sh1sLz4pU74ukkKXVvfgzZZQ/s6h34VkdHASrlGMshK4InOEn+tneFZ/6KKRF6RDwkD/f2dnCRsx3lhYGUfpErpJCOZqwwlK0HNom4wg8v4JWcMKZ04C+4/P4HA3ACDp8MXGXvTJkIW1ZViNUFi9WEQpc5YiZBsoT/dVwxsL4zO1Xery8hxOeKTP7Rwq5HcRpGlFQS/8DzOYdSkFYwuY/UTNd9BydDrcHFUt1s1UFU6p6jErB+eM4UotmjeuPKDEBkR7N+Ggbs4JM4cU2s9OoP2lG+GMq8ttR0eZ2s9QURA3Rxm0ywr6VaiZLg7XT62EqffCpr4aU0tBrLc3Gsb+AcUW8/UF262LqmH6STU+3+Hqp4Bi+aBxLCvvwQ+bb1MMT7qyLDG7UO6K3B/kGfaz1ARbnkEyKvNU/QhSFJ5rK1cMYuLcWBjlLKWMLC3rY4Or9+XrWJn1YhHF3JSjvPCW15KeEY3zz5eV9aQYmTNveZOTEuE5ygsNtR8XzjxmnqfPLwCGyEjjnPY40eV6sQiuvPKMqlwMBSVkzzHUZf8HtYptZ2lFr4FvjIV5TN5omKukEiae117ABq0EW32W4CmmHsT15yJJbOmvVBWEx9XvyYNKBgc9Y2+vwmXv6CjD33Tczr9r6psJOL6CeZEcdXwjp0YizFRECgwpsVvbqjgfSO6dO2tbeL7hO/jZkVKlMDo+5zlZzhURXWKDU8vU0Dl1lzT1zQRVdydHEMmqpfkDWFLVh5IbX1MF1AS80c1Mqu9lJXDw+HQ+LwtmHIebncBFkTHbMw2YMep+/mNTPe8H3oM6yudmJ3B15hl4MYPzT3hq721tqwKxuPlhD7u1YdU7dCP3DwCWlPezU2NFQS8Q8tXfek6oQjAZF5RQzH2V8DSWL4p29vHuRpPnNaGqBxPsD77DSj61u4rbGG7jZiZNfY+Ac8DNTDIT0XNdZRZNKBwfzlQF53O0kr7nxdlp5DSMd1/3sa7gRKqRmquMkkP9s1Lw+DzmXG1ICcNJRVgNk92dmlEOABDxTF6cXh8kHGM8RnW+R7ap0l6dd8o4nMbCaozROLa1qigN509l67tFUC/Td1IcVD6wsHAYS/MHlPFe0WsboRdg+/dUSL7++usxdepU/pMuCvDee+8hmUziyiuvtH5+5ZVX4q233krbp7feeivt5xOJBN57771f08hNu+OOO7B//35MmzYNeXl5uOSSS6w/n6R96o2D24uO8kFnS1rgGyUsiBThZwYqzIVHCibx/uufbT9ayrR5blbC4mv+QtkBk7ilPR0U/qPLcrcuBiPDgVa/ABD8wvLy6z5QMjNFKdxonL3N9AwJ7yHBHz6dxcqom5MwsABfsSeRgkwJewAUplQo2tde8ZEyooo6TLhSX5BNJ6apZ2cm4ebF8dfVz8KNxvmChgsbLy7GTTh7+t3q6naFcR0LK89PLAI3I4n1dYfYk72pr4a9IxInbVVVdoyXifpJSgZBWKSnny/8mIGIebEI7i/fh+1tlcz0QUrh7bNV6JDmf2HJEH/HP5vBURJAYce9kQg29dUYqAVR8An4E/Undi7LgqotmjXMnjfi+F9R0Is761p43ZfmD+A/NbTwOyl6IwsS7RgswpPN843gF5h6AhoGaxwEKflk8uXJiSt5zCvn9OBQz2z85/lKwSc8LwCMegbLvaOjDG52AtsGygx9pd7rjzUttM4DK3xZiZScDy8WMZCYWATPtZdjZUUnG+4EHVxV2J0CDaC2s7MEaypbrVwCiHnwYhH8p4YWk2ivFaCVc3osfH3ESfJYqH8TyTDTOjoTrpm/7AReaDee72CfSJllD65WFBRETX3m3ffz4OYo5qDNR7SnP6mMPwDY3qrGThXR5ToC6ixuam7APfUH2FvPkRAPlmLEXkjtteaIkcB+e7EIdnaUWAZY1S0vq3+IHBEZWVo5p8fIQg07o7wN2mfs2CFICBlp2ulAuV28R4U3eHNbrfXZ2nKdj+KCc1no/ElD4ZEFPzVJ6GNhFTnN8qw9xB72nAS2tldhRUEvMt0Enh/OR/dRFYleW9vMUQiKSsk94+YksLdHrQ/R6QLAktJ+TjaVe8OXCp304I8bDLwbjWNqeAzeaBjbuyos44LeqcgozLoSpeUunQsBF9jeUQE3M2kIKVwfT7ao3BWuTXPOvrcYulR2lKMtSDoM5/TORdgAuPzKM6ZPmgZ5XU0TAAVJ3XSknp9NeQ50Jva8qCJMddNOwRsP4+EFO9XeCjA8SQcXV1+ORWwyivGwJX9p37e+dBPc3Dgr5IDZv0zmIaIpSyr6cE/tQb5DKefAGw3bxfk8YHNbLTvTZP4By1YXWFzer/LCoIw7LxbBxsNqz36rYwngOai65WWrz+sbDlr7wxs3+V2yLa/oNncPtFGYG8fengLs6FC5JbuGC3B76QAu+PYJogYA8Oqrr+LMmTP855FHHjnvKxzHNpJ830/52S/7fLqf/zrao48+iieeeAI//vGP8bd/+7f43ve+Z/35JO1Tn3NwwxNfBUJRVrTJg3c+3KRsXjxkEoo0jploKr1YBE7cgXPRpPE0pasYKis5aqV8WUE/bsp6Dz/supXpAGWFRonHJSwwXB/raw9hY8s8wHcUQ4yukMzvCr5bt/NiRMnLmHCwskZRsKbDnloFWwK/Z+xkTFF4/uOBBviZHhqKj6Hl5M2m5H2A/i2lL6L/C2Ycx5zcN6xiYf5HihrWKkyj+0+hb1Ju7mk4oBRfkVRHyW9MZSgK1gBg3KhsRA1qOmGvL/V7Yekg9vaopD2ZKwBoasLOSvZ2AUhhcOKq04G1x7uZwOUT1j7yYhEsKjtqQWUIkxucR/nvSy6O4b3Xp54fxyxw1l7CVQw7jo+FJUPMyZ2Ca5VUpxK7GsyJEHh2+f20/Qju4/Ew3JEQvJxkap4FkILNlueGFFA3J6EoVnWFa7jA6sp2lZynv090saQIBvMp5DO5X1n2enIUklwuGnroJ134cVUh+QtlB/DDptusvqU7G9bcivlKoemNh4Bx19pPsq0o6FXnWlJ6hnzcdNM7qLvsFLa01PJ3F8w4jr29+fZ8pikqRu3e0sN4vOlWyIrvcj7o3YChR7XmMKajiK6fsj9oXTaUHcRjTQtTcwTEnMizvKFhn6p8Hfg9fNjFygQls6R8ZGpnAakI4vppXrd3VqTKI0mtS1XpxZmWVYe9mM4DOVJvnR16hjQwqdhhuvHzz+SeTJeXRGMUhcRoP1lOKfFuzrfQ99/Kqg5s76w4757gu1LQnz4473l89/Biy4BH2EPFrNPoPn192nwXUrppDKHXsxC/KGlyyFyfc2yC8pTXPEClKytOS1kdlBkATH5L2DO1UgJFDPldQXw/6QMOMGv6G3jx2LXWWBbOPMbym3PgqNK2m16eybaioBcjyUyuws71h0Ji3ul5opK6dSbEXWMVvwtUX3ajcSTeT+C1L164RdCu//u/hJv9MXMOxsbx6n/++q80psnJSeTk5OCf/umf8Ad/8Af88y9+8Yvo6enBgQMHUr7T2NiIsrIyfP/73+ef/cu//AtWr16N0dFRRCJpEAcXWPvURw68Ub0ISQdLigYUhCFkoDhBz6T8uRtJWqG3ijkvsWEAH/i92h4A6uCtrOy0owDjYRaSMm+APJvfP6jwaFtaa9kTt6KgN1Vp0gLZibsK56yF6MamRswrEZhr8o4DFlNNOiXMGwsLLz0AB9iu+dYtwaQ9EXt7CgyWWEKTxsPKMNCf29JfCT9HeUCa+mZibXGrMgwE1EEWIpPzTd57LxbB3qOzLcNg0axhBa0QlWPJGxVMrnZz49jYW8+0p4z/9h2GfHkjBiNOnjMAJhw+rqAF2zsr+BkUDUgxvhxfwaF036l2BbVtrVX6PcpDs2jWMOAaOJQXi+CyjBF7rVxfeX4vn+CfE04ajm8ZBt54GD86tIBhMHIeF5Ud5fX+4MNoqoIlijpZ3uSwp/oS8vHm2BTug8xd8GIRLKlUffJGIlhfd8jMi3CMWN9Jx/YkIQjjdv8J5pJ7s/EuLphxHAAYJkNwLLke6h26E472HrfUKUiBTlDeNqCTnrXnzKcK5bRWY+aCR9gzMBzar6LmCSW+utE44+LluXNCHn/+9Pil1jqsL2lGkC6w6paXmbTAi6maHuSV36qhbDyvkaSlGN1R2MkREi8WwbODJVg5pwcb5u7jdYCnQvFbWmut7+4/PoP3mYwyBGFS9O7Hm25VMDkZaQOUfB0z5wcANjfXGY+obmtqjmBtfVOqwer4vJ8e7260ooz8kYTYZBR9iMbxePMCeLEIHpz3PAAtb3yAipVRu69+L2O+KWLBtRU0W9mSij642SoHhXMxdPsgHlVFrwRMRHUSDF+hvUAGGQArGd2NxhXbnMR9kxwTBgkcnw0Dmvv19QdT5oTpSfU8N84QkBjXR13RcTXGsNlrzF4jItDkuV85pwcJ3+VzAsfne0L2heXIaBgrqzp4PAtKVaT+u4duV3kxHI31saDwRXSfvp7HbEGkKPpD0SUAyWvHOVJLn9nYW6/WnSqQQxc9Gw2ryGHUFHj7QtkBzmVYWqFghn7ExhVZRivh7hMGHRAkCJH3+pLZg2YMdNdkJ3D89SuYRIDGskcUQKNEajcvzoaBpZOkgXs+O1hiDINYBHXFx7GsWuXESScDR/iEYUD3rxuNo+ymV+FG4/jhwUXqfeMmR0fec8QgdsG2f0fOwa/SMjIyUFFRgZ///OfWz3/+85+jvr4+7Xfq6upSPr97925UVlb+hxkGJ0+exFe+8hWsWbMG77zzDgDg3/7t33D06NFP9LwLfNV/DU2ffzdXYfC2tlbj/roXmJs4qETTRWEJKx2OJWG2rk7hYQm2442F8fLoJcYy12H/tJ5O/Q6Z3Ago7wp5qdkDqT/77GCJ8UZT9UVHYR4Zp64T8ChxU45JKmCAEqzEma4w/ma8S2YP8ndkwjFxn6+uMfhxwmfSZ1hp0vP3VLs6OE7C5T5tPVLNGEpSqBD2DG1fNK5gHAQlGg1z+Jq8P3SZVBWftIWpqE67Y7CIDYM7q4+wcuZ/lGF7f/QJsHIyqLQ8CdbxMEdOKOmLlWVdb4KrqhIUhJS33LiVYLfnxdlqblobeLzbj5ba8I3sBHJcO4pBe409RbSuPrgWBEVQ1peoJCm+hDwbwgWAFSFmB6HfC8PGGQ/hxdeuNJe6lBaObzCtuSpBl4xmNzvByfB0dqTRsKqm3UoYZ+XJV1GUpfkDymOnz8/IuSzu1/sTUZUP01tkrSFHMujMCXytG41jfcNBdYaSDvZ0z2EYAK0L5WvQ3lxeoS5RxdjhMrRIygz2fOs+cB0Aml+a9zGjRFEei5pDnVwfwC23DhjmFTcaVzASfekvLhtgAgJeS5Gc/sxABRs+1M/tR0sNTEfDG15+6Qpbodfto3i2wuFHFVXpghnH1TkXSbFuTgLrS5rhRuN4ZyLP/JxkpoRn0J5zbUdF44wT2NJaaygkxe9WVXWo/SQMS7mmAJiBqXHGCcBzTDE5TY1JNVi2tlSzQ0WOdySZZcnn1dXt7K2mRvu7e/BmlM06bc2TCx/9r1xj4CXQ94RWrvywUTz5TgDSJqPLRgb+ghnH1RnRXPNUVZganbegUk1GPQDs752t7pmJEJwJF9HwJH+upuiEeaeQ9feWmgjFttYqtA5O4zFwbQgdcXFzEiq6nm0cMAThW1d/WEVDx8NYV3eYo11k0O/XEKOcXOUA4bspRxVkXFd3mJ9pzY8eM0E5qW5H/vTXsTR/AD9sUVG5CS+C66/8EAlP0ZjLKvFEzSphkrKx00Hu6UBjeXvOQHilo4vepf7hYFtHpRUlBMy5pShGUHYhbDPoyXv8njota3ygZWgaLo3ErP45gXmjPr08egk/o/v09Sp61aCMwRQ4VlRBcZ08+y668JrzCf/86u3BBx/Ej370I/z4xz/G0NAQ/uRP/gSvvPIKNmzYAAB45JFHsHbtWv78hg0b8PLLL+PBBx/E0NAQfvzjH2Pjxo146KGH/r2DTdsOHDiAoqIitLa2Yvv27RgZUQ7Hvr4+/OVf/uUneuan3zgI+bj++vcBgBWSDxJRxmFTcik18roQZjfY1ha3YlNfDSdZEna9c/BmW4limkhYnjXLoyh4vh/tWmiH/lzTXy8WUUmVIuypvBqOsfQFC9G3F2yz2YF8BxvKDqpaBAnX4Ia113RBkYlA7Owu5u9IDwYlBJKQJ6/m4lKlrPhnM6xL0hsxmE7idgfA7wWUt8QbC2N99WGLXxoAvjJvh/Ls+I6lXMnLu71/mhnju5kGj6zn8QtlB7C+9hCGz13JgtXP0Le0ML68WID73bUjG2QEra1rAhXuIiNlWVU3Vte2GSWH2CfSeDulck77Y21xq4rKuD5fNEH6Vy8WsY0HMm5cIBjed3MSePJII6/hQ427eF4Xl/cbTyeF56XXUnsI/aSrCvlJfG7UFBsiJbzmltMpXmXqW154AvAdTg6Wytn2o6VYVdFhfy8rAbg+9vfkK25vvU8B4JKLY7wfe4dvUH1OOtZ8SgWH1wHG2P1Jbx3uKOzUWF7fJAwKY4gNu7Eww0/crATun7vHjMEyLH2LFvGxw7eZ5GsBNzHKExkUJs+D1kyuNf9f1x4hOkovFsHubpOjAEDBinRlWPIKAmBjm5OqhfJFCjQAk9CoP9vUOxMbmxt5nfYfn6HmljDRuk9PNqvkydb+6Vhb3MqGuBeLYFl5jzGaRKE5OdcyGZcS46mP29qqlIHrO4rAgbzltYGiQ3q/SLY2hkRENL43WOAxoOxRnRGOJIkcoyWzB3kPUpI6oCBSlFANmD0v75G1tc02m5Ze86ajM/g8k0OBE6bF/Ozty+cEZjdbMbbJ33+h7ACWVXZbcor7o8/putomlViaqdit9vQU8Llo7Z/Oyi8pwt5oGI8fWaC6S3UyhMJIEDGSlxRdX1bQb7OfQeQWJR0T9ZB91Os1OpJprQfVTnmqZS739c8qdot5VH9xXgTU+Ro6cS2yQ3Eg7nBl41ffvhhlU1+BmxvnSMuG+v08/954GMsK+rFyTo9xio2FOUrOcFTYa0tt4cxjeGjBLr4LgxFDGc1mCKukTvaMnPK1QXBHYaeRC5qQgKLOUj8gGKmbG0dd/knFNCiMGT/s4f7yfSn7vf2lG63/c/Qq0NjQSQOj+k1sd9xxBx599FH81V/9FUpLS3Hw4EH87Gc/w403qvl88803rZoHN998M372s59h//79KC0txTe+8Q384Ac/wGc/+9n/kP596Utfwje/+U38/Oc/R0aGyeu79dZbPzF16m9OzgGVuxf49IbpJ3Gof5bNjx2z8wSoWThk6R2InYdXeCSCLzbuVoXEKHchyMFNAkIr+GuLW/FUi/Lwnc9jQe+08KzBd0shJHD5AID3MoHLDF0XCZ90+GZAe+MjnkneGg8rj0bYrhLMWFkPKmztKo+rVS8CIlTsO8wbTnPOjTCnAO6fuwc/bLnNVmioXyKESphq4piW7yXvv8XBPhLBIwt+ilcmLsXmttoUrnI3W7HT+Dqqwl5jPU93Fbdh3Iswbt3C04r/p6ybfoY3ElERmyx7T1n7KRYyOQcC1+3FFGaXQ97kNQ/wd68vacY78TxcFhlJod50o4o//MkjjbZhBMDJSqpiebLfup1vX9L7VxV2YywZUUW7JK5e5OXIOebv68/5ZzNUYneaGhjp3smQHFK4aX5Hw9hQv5895muKOhByPEXnqT2ze/vy1ToT9jhNrgTtHSQdzvWwcnBGIlhc0a844wX2mcerccuIu5B85utLmvFkS2OqcUbvDuY96MjK6up2RJwk4/cR8ZVsoVonvyC3g/eWrmHB+4pw2GL/8JqHdZ5PdoIdI2nXgoyPqKlrkC5/qW7aKVySEbOKHzKcgvj79bm4t/Swyh8Q8i04T/L999QfwJNt89TYZK7IWBirKjusugIAUqu3yzyEhIN75h7g8xGcS/kMbmGD7w4+35KVJP/T3Bm0n6XMSuHhl/lSjo8l5f3YpQkuAKTuY/38Owo7ub4C/cw/m4HP1HRhR1cpqFAdgJSaAsGxL5k9CNfxzDqeZ22CsmNZQT883zHf03cjf5byNQBLHvLz6O7QHPxuroLHdA7fnLbGBgDLW5+ufpAlp8T9f766HcFG67GqsFtRjsp7IGLnOdZNO4UmXZzUGw9jUfEg9nTPATzgzvoWbG6tBXwHTlIRhFAEcnVNm3HMibOeMp7g+QVSZOmS2YOKylTvHUlUYckdPSeJd5N47U8u3DoH1//Pr32ynIM/+toFN6ZP2nJzc9Hf34+bb74ZeXl56O3txS233ILTp09j9uzZGB8f/9jP/NRHDjjngBJXtQV+d0mLYtahEGnW+S8A9SCHvUzS20YHcW1tgO825OP7BxerQzqupznpwDsXwcLyQfM5sQJ08RJ8RvXf/E2hVFmHAQAQ8dXvhDecLw9Nt+eNqsrHlmFAYVvhXFtQOsTvW5o/oH6n60N4MYXzd8Oe5cVaU9RhcKNhLYgSrhKyWhEiHCbNv/TSUW6Gm5PA/Q0vWOHxHx5eBGbUiClvm/RoeGNhdVHp/29pU+xFK2s6rD4GQ6ZwgG8f+Azencw1eyCq6PkaCo/Di0WYGo6SFPmd44p9attAGV8k7CWO2jUneK7p0sk1irw0DOD4DLPidRE5B5J+jjz8FvyNoBziYtjYW48dg0WWYQAAxKC1sbcea6pM7oNaE982DIQ3Kuj9lWOjudnaVqUYe/QcLCnvN1CUukNslFh0egAryT55mrONQXHRRTGlVOhxMTSDuM7JS69pUL3xMOoKT+CJnrlqv4yGsaW/Ek/3VWNlVQdWzulBZshUJuZLmNZC/A2ADdM93XPgxSKcoE3j3i28mIBg38nRnO1hwW6llcUnm+fznD7UuEs9jypljxvlz/Le+Q62DZRhS3+lHSUgRTgnYRnZy6u6UpSzDWUHWfnin+eaiMj6+oOWHCSnwLVXfGQ8wAFqR34HVVOeOmlgJ4H90tQ/g4tp8dhEJHFZVTfLYkosJqYnZhvT759zw5v87mWV3aowIlF6arpJ8nJv666w1pgihI0zDLyG5UC2ggc92Tz/FxoGC2ce46RPhxQ1OWYho+lcehMh3N+4R1M6OwZaqVtd0XHL0L27pIXnlZmkEsIQzklgV3cRf4dkrRwnPX9Lay22Hy1Vd4WOIPohHzs6S8FUznQedUI2wVSDEdBdwwX4aZOGwQbgN8E9t77+IOCpn+8YLFLQOnqPB5NDRjAafa5lrRZ+T46h6qb+kWHAZ3fE7quUjZJAAdC1fIg9i4wTKIigm6VyCdgA9FRko+aW0wBg2Pp0jtI/NRnDWc7H6po2vkdaTt4M+I4akwfs6S1gubClv5LHJ2USHN+ubKzPjDUecuwkzZ5aW9cEyZQn1059GFzHB0CKwyY4Jxds+w/OOfj/Qrvooovw5ptvpvy8u7sb11577Sd65qfeOHBzFEe3DKN7o2FsbG5kocNhu6i5hKl5Y2HGdiPsG7xvANv/D4eVh3JVdTsAoGjWqylUf+o/KmRsvCSpffZiEdxf94LuvzqsS8v7sKuryPbQ0AZPOnh+ON+iFLyjsNMWUNXtylsVN9hVSZlJjZNjcwzNJyhxSyijbk7CJHbr+bq/fJ+F46S+E646eMk6oyEW+KtqFB/733XPhzcRUgm75NHUHmU3GseZRDavISmRFk2jfuf27nL+P9VG4HAyKerRODzf5blYmq+qaracvJnnEYC5iOgdpNRr+rsgLE3OuX82w6bBi0XMvNGlSPtIQMTg+ojmjcOLh7CioBeLZg2zIqweBIbayGgD/XvJ7EFOmpMGJilkRH33zECF4kN30kvLWTPeMAYJgIyLbIxwMNzu5iTwLy1V/M4MN8GQEzJSnmyezxR+rMDRvggJRURDfD46eQnOxLN5DzUNT9cQM72PPKNcLpx5TOFw+xV84+m+aoa5eWNhPDtYgm3tldjVUWwZAgoOpvYtwT021O9n/P3Cmcdw/9w9xhs5Hjb0vFAwjLUNTfBiEcVORes9HuYz58UiCopFkT29V7/buUglcmolkPZX8GzK/2/tqAIAXHX1h2o9yaik946FTY0W8bPHmhcaBYAKEY6YeaA1onH7ZzPgZifw+jsXmX4Eaj0QnMIywMV2svaIb0OaZNTQi0XYcCCF1I3GDZSKlFVH5Q4dfeVqTiRmT/REyMr3ga+hZXHXeib92d+drwxIOuvaQFhb3MoKHc2tFSUAsPfYTL4PPj/3kIGRMCxMj/+coLLMTCqyBVJY9ZmvueU03Nw4WvpnqAJdWql9L55rot259hmRybk0pxt7622Pu04Ol0bIri5jTJCjQUZHUxwAWpkyRo8amJ+loWau2Qe85nS2xvW5D/lYXdPGDi6+JzKNIyFYkR06V+2qjLPw4iE0FB1Xz9QQKLpj2KjxYaIs4m4mpwcA/GXVDj0mB9OveVfBaB0YMgQNzyUq5V3DBUZLcpXzgyikNx+p42KabnYC1WXHbQeK/h4p9py74/iqqFxOAguKh3m+vHMR666A5+DO6iPgyvKiyeggfzweUnlV+r0k+2RbX3/Q2uuyzZn5muqHhCQD+J2So7igm+98sj+fova5z30ODz/8MN566y04jgPP89DU1ISHHnrIyoX4OO1Tbxx4oxHMueFN/e+wYsHQwpCSA9fVHYaTUHzBwbCcuUjBwgdQF4Az6fL/fS3Yth2pwtL8AfQPqroHMq+AkxnJ06kZLaTyBqjPyHLtgEp4WlbRoxS/8n4TgodQVsWhf2agQn9GJwK36jLrkaSlFAUZJyixj5OGYxFg0mVBzIXNRlW0ZXlVl3rXSERFSkYNxlkqBZTMJsfkTJ1k78Q/t1Rb3sqnWhuwqOwoez9/r7qHPU+EOec1Ju75c+ZCkpcORSUAsCJF378u60PuL3E7sycsTfGXFI9ydgIy4VcK8W0DZXCmTKrLUUCN6DK/p+4gG3kcbSAmGs9B7FwW3EiS2SlSPJiOunDX1jWp/5PHcNQUsLPGnmOzypCSt62jkg0N+qx/JgPeRAgvHr/G9GskgkQgMfKeWsOaQjhqP6TG+nDl83iuvVwZNhS90mvFLB3UJ1LqdETEi0WUxy07AVw6wQmMbjSu9mN2gtfwcw0marf32EzAc7C8qsuaKzfXJBm7OQmzD0gxpeJa0AXyzinPNSnLe3oKGEdNUQpiLltW2Q0/7Jl6DtpLunJODxYVD8LRjCNu1NSmkFCuu0tacDaRrfaR2EtrijrYWKF1NUmOahxvvXmxkUkWww1Yznijmp0sESgMGGB0kvP1k946eOcinKMT9MpKD751Jmi+tUH24FyFF5fVxAnfbVWpFrKP9r/F+S6e60bj8LMpQdyxnDtLS/pZppCCvbO9BG40jtWBPBdSuDc1N3CEgIqRbeqrUc8kQy07wXkM6fDnhPm25kDkBhEEhJuj2Jqo0b6Q8sPNSmDHYJE9BwShS2PLB6uhe+ciXHPD8R0mKiA5xHeTftaSij6O8HKitWB5I2MZCUftJ71/qFIwENgfsQif0aXlfdh6pBr/1lZi5SmR4SzvSRmtIVYiN5JEU/8M85lgdNbR8+2YZ/A7YhGsq1Uy8uvty7h/J964POVz3IQRS3tS7lXq36bmBt5rrf3TeU/S2GfeaIpkMUmB78A/m4FlBf3Y35OPhTOPGeNO193YUKbuhs1H6uBmJeAkXKyc04MHK/ZY/V1b18SGUdXMU+zIlOeV72My/rUeQmeS3n30+HW2fgIAHvDzHjvP6UJrvv/J/nya2l//9V/jhhtuwLXXXouRkREUFBSgsbER9fX1+MpXvvKJnvmpNw7cnDj6j1/H/6faANLTvKmvBp+p7ULr4DTb6yKfQ0qdhoV4sQiXTV9W0G/C2Xlx5XHPjWNDwz74Id8ws4iKn/R/ywOXYxQGeqdkpoklVPKWjBIA4rKSSqruiwxdW54dYkpyzNispFfNGkEhT/Js8Hs1Iw/RAzI0wfJIGeHE9QLE5UdJzjxPBNvSY9nTPQc7BouwuqYNO7uK2YNHffLPZlgeKva8ixAzACDpmAqfui2r7sb95fvwVPNc6xKQEQ+K6pDSLyutemMqckQUijxXOQaixEKZWHS0srO2uBXeuYiBlkjlR3sig2u1trbZeIvGwlxQZ9tAGRcKum/uC+Y5UXtvBRsl3K+qbufLQn7Hz0qyYsCQKr3f/TMZ/FnyVFKI++m+at5T3z7wGfaGqy/q/XnOViq9cyZ5Xc6/5F9fXtlt47PHjCeVi3/Rsx0f07LeNT/T5+O5tnIzPr33GKYQSLyTXN/0uY1NjZbcIIVhR0cZ1tY2m4J/NUcAx8f2o6XY0zVHfV6G62kd9Rnc2NzIuGNp5Mb9ELxYxE4YpAR9rYDMvPEtwPWxZPagKryYk1DrFoDRPX74Vgv/XjftFNxoPCXCKPvn5sVTohgks4I4eJpnVka00vZo10LAB8aSxrDa2VmSYmxQtdhfJA8pMZzkbUPxMSsKwJ7e4Fi0p31re5V1LtkgzjVyhXNJBMSPCt3BB/yky8nwPG4BqyEDbsnsQUuOS2gG/XxLWw28EVVckX7u5iSQ6SaM7NH9Wpo/YMkR8nbztjibgR1dpSYxXEPNSFY5UyZVTQBxtxkGPPXX88P5/LuG6Sc5aZ/G9XjTrer+zIvj8ZYF/Nmrs86aSvW59t7maMVwAeDAFNocDZtk33MRqzZM8P4Nnjmq+C6NJpkvSC0z28h1yuVbW9xq1j/QaL15zWQTBB1WboeYIx6vb5534o3LLWV9aVmfMm4dH891qSgZU1M7iqIZAM4kcvTPfF6rbW1V+M7BJfhC2QF+/qYj9UxI0D4wTZ19HTkh41jlJ9hjARTT07KCfoti2trXaYzgC7L9hsOKfN/HG2+8gSeffBLHjx/H1q1b8fTTT2N4eBj/8A//gFAo9MsfkqZ96o0DbzRiEtTSJIkC4LB0MO8gFPbU94hn/JzxuHIUwFHVZq2wsxbsT/QoxdPClsN41daXNENyG3ujYUUVKiIUxGLj5iT44pLt9tlDgA/2MgJGsPlnM7CssttgVs9FVAKYVoa8WMTyjgcpEqeGxtT3dJ5FukJL99Qf0PNM2HGYg+c7+M5t/1sLTPWee+oO8vOdKZNYX9KsFBc9l3B967IFlJK4rKKH+0ueUGfKpDFw9NoRC4VsSyr6bH7uWAQ7hwrx/UOLLbpW+t2S2YPqchOcz+vrDmFqeBTwASduoEiU5EheYy8WsTxfNK+kjLjROJ460mAnUwtlipoML7u5cYwkMo1Slp2wLqv7G16AG40rTniRTE9YVzluas9p+Ma21iorgZLfmZk050FcwAAM4xNUYras2UDz5Z9R7FXOuIvdXUXnZfsBtCI+Yu/FYEt4IX62lZAJ2IJeV+B+bfLilDHLOfedVBw1EPDO6/8vmjXMSqT8PM9LVBlFf962Al5M1VRgDHjDQfi+iaxY35d7T58vLxZhfvytbVUGyieiSzJh89jLVync+XCBMaZIQXJ9lnuLyo8aFpZoHKMJpSBtaaux1t2ak5EIfE95ib3JkNl/WtmVdLBqf6s5XlnVgQUlNlMPsaB5Y2EsLB1kDyWNZ3NzHffNzUmk5D4AwN91qxwAckg0Dcywz42AaFrOEBcpCsHDjTvtz+joA0NWhKzbfrSUI8dOyLPynWgfUN4VGdRKGTZ7zM1OYGlZH/dtXd1h9sj/sOtWSxHbOVQIuDD7fFTfT/q9D87drRwBSYfr1RAjnBeLqDoFmklLJrXzHg/8LZ0CNJ9NJ6bBOxdBQ9Fxo2TKHCdxVrcNlKlIi8zxElj4dMq4k3BFVWD9yHMRxdbj+ArPn0459R21ZymyrdeLvOfSoJwYU+/9atVO/vqmvho+b148ZOBJZEwnbRlEZ4NY39zsBBvUllNHyyWeK9Hc3DjW1BxhCCyNOcjQ5+Yaw5kcHjKirP4BqwaQm5Ow7in4ygBaXDpg9lm2iJQClgEla3/IZwDCoZEG+nxBtd9wWJHv+5gxYwZef/113HLLLVi1ahVWr16NGTNS9cWP0z71xoGbE8dNV79vHw4YJUElBjl88d1Z28JCLqkxj1R6nD3oFLYHrIPEhzTPViIYW+6DufupWNe6GoVT3tCwjz3B9OwFM45rT9F5hKwH7OoshpuTwEhSRRUs6sIkGNsIQHmbiRlCY2BJGbc8dlro/vDwIngxxcZCsKDg/G3srU+l2XSMUP1/Wj+rnq0VQVm5eGn+gPo/Ya21ESGVLuoXYYrVmibgOp4q8jMRMp/zjOEmkzF3dRelrL1aw1T3gRuNY2d7ibmwYgre8ZPeOq18i4uYEhwJmhWYQwCg5N9g5EauKRwfd9YcsXjyOYlY92N7ZwU2NOwDHFUUDj7YO/T6xEX8fvIcAsbzzl49OQcCF82XsOCil4qf/P9FF8XMpeH62NTSoBSDEaMkemNhBRnLjcPP8PhSBVTCJFHYSmWN943Y4/eWHub37+wssdbJG1OY//NFR7a2VRlYnVCm7y09rL6jixzR2q2vP6iM8+p2y0CG72B3ZxHP9bLKbh47zTn9TXkxSyr7OAKwsbkRDkXnAsmDgPD+atrOdM4LIgag9ZB7yY3YFJcSqiKVgr3HZmLzkTpen96XrzPnLc94P4PQF8f1lZMjI2kbd7oSa7r+bm+tVMW+xLlmjHl2Anu7C5T3nwx77d2ndQXU/pfPvuryM2ZcUUE/rCMpywr6GaIp9xDJXeVNNXP/3zsVWYQ3EeLzub7+ICsN/tkMO8cg4aQqalBwmLtLWkz0yvE5WdyJKzgmRThpD3uxCDb11bDRyWMRjeZG5bapnz1YsQdeLILvHl6M/3lgEVZVt6ukbYERX1XdjqfaGmzFNVsU8PID75BzSknksQhunz2ExZX9aDl5Myu2bk5CQMJEJIQiFbpJalb5jg0N+1iO/F/1rci//i1cf+37Zm/nxTGSzMTa2mYFpxFyRvbTwtET7Imi+np/u9E4pkxRzq2v71/B886wq5yEKiCox7tyTo9lsBMEixwX3+1cxK/c0lprxq6dPuo/pp4G7YMrLjsLLxZhamorHybQNpQdNA4dGbXWn19c3o/7Gl/gOVxR0GuKk2qKbTc3jqea5yr2tFiEIyaWs4mckWMCKiWdWpISOi81qvrbdmE113UxY8YMvP/++7/e5/5an3YBNm80gpdevkL/O5WRRHlpfL74iDEgGEIEtLJOFyoppK6fVjmU+Gonrpl7cuP4/LxDFnafPBlP9MxVtQxiEayvPwg3N469PQVGsaY+CoWGjBCCzLBXWXt4CPZEXj++3KiQWJaCjCwqHTRKDzWxM/a8OBth11OXwETICJYcI0wo5Oud00q6rA5KfM56DA/P+xlWzunBjh51WRKkKTh/MilQFoyjFvdCRjBrI84bV7jOHYNFwgiwQ9WMlxXedys/oqaDlTsAeHN8qr2nxsJqzs/DoU7ePC8WwfqGg1hd1c7rQ+vgRuOmoJyjoDGPHbrNRAPK97FiQ/klT/TMxeLyfsXnrT2hbjSOKeFxhjUtK+i3vF9uVF0WsnGBIf1uHoeEADlGCeMLwwM++ihqni0SIVdWd5h1yDaRsKBRSfzcgGYyCiY0R+NYVHZURUKabI+qNxq2ikFtbqlLjUZA7G8Nq5NJzueSWVa0jtbpJ711WFfbxHSB1BdWXJMO4PoqL2XEjg7Rc3z9nl1dRcb4hvI2c90BMgZ0Uv28whfZQGQFYkKcVwfY0V4GNzthonTjAWNeyKgt7TV8doPRqHV1h1lRv/7KD62cAVOBW3whYDw3TD+ZkkQv54qrylKCqjagOQmb+kS6FBn2Y4aFRp4p3nvRON56d6r1c0BVkqak6h2DRUxuAMfHmpojyrFR3m95QN1o3Mg6RyUIk8K8sWUe7w1fR3LmzHxNGWfibNBZgKfoJgmqCgALS4ZUoceYYjtbVditIDP6rNKYAXBxRwAM8+Ix6pwuTrglBVVHBv2Qj23tlZbM98bD2H60NAVSJkkJGHIyLogKBEyS1vL54Xxm4frfOqrjjYVtSBgZT66PNbVHeB9SwUz6/z31B/iOI2N165FqDL16FV5/5yLjgNAREs7dofnW68e1CMgJIpkDx8LwP8rQORnqM2fPZvN4jNIu9IBzESUvfR1BFf3Y2FtvzVk6x09K4nbIPhNb26rw1psXK5mma17UFZ5I+R7JyscO32ZyA4nqVsjg3R1FeOzQbSybt3dWmLnOEwyFjnIouNE456NR7RJGP0QloyHgxB2TfH/O5Ax6o+GUSPyF1hz/k/35NLX/9t/+G/7sz/4MAwMDv7ZnfuqNAzdHKVLLCvrhTAaGKzaITNxRX1S/vH32EP8sHaxH4YtheUKZylALFT/beCiYrlR6ubSw2N5dDjdqqs02FCvmlVVVHagqeEmMyQj/1TVt2N5eqZTh3Di8yZDxvFMkI8OwNflJ1748XChsf1epPW/acKDQ+LaBMqYolZ5AOX8AsKq2HesaDptf6FMok1Lfjk9Vl1hm0oTeA4fVzUmoJL9YhGn1ACOYHzt4GyeoKQNEfyDpcIRm5ZweLK/sxqJiU9rei0UY7iVZUlgJB+BSn7QnnQoerZzTA3hAyaxXsL210iiGDlB0wxvc9yd65uLukhasqzuMjc2N2NparS4h17f6QYWXFpWoS4+K9awvacb3m37HeIfz4qxE7nlxNp7rKsPS8j5e56da5vKFmvBCqYpbQHne1FdjJdrzewg2lHQVv72YbwWBA/edzgRdes8OltgeUB3iTwoRQ9/zz2YAnoNd7cVcZ8AbDbPyu6d7jumsD+D9TPYYuhlamZNKpEjoX1rRC/hKcZRYWifpqKq8/ZVYVt7DCjljcgGbw98Xz9aeZzaGxF6kPcNQGUBVMaakTk+cOcdnWlSCoIzEM1nhY1mgzxgAZlHyxsL40aEFykte1mOUBmJCGjfeWwkHk/kdEvrx8quXwc2NqyRUADu7ihWkQ6zVwpIhI6MmQzjUO5v3HNHSWk3D7VZVt7OjwM1OoGVwOlZWdVhKxnPt5QquSYbWiPFkerEIR40shVkYim40rgo6aVpINgyg9t3/blKG427N8Eb5GOwQgimIxXlS0tuuPcZDr15lR19Fo/WnKKU3piqpkwJcdcvLpjJwAJLGCdqeMtqa+maaeZ95zCZcCHhz6d1kPAKwYBLBaJqbrRJazQcccBV4/ftgMjxFsbzRMHzSpEQEjiNOANzMpDFspYNnRD0nLzRuR3IAZbBPCOa8qF2MLd1YGJIj8fRi3H7EV4xGUqZJZZfuCUGd+5zOD5RGMTu9ArAhQMEoG2ecYIN6Tc0RIweSdl7CutomjtSTIUiJ5zKxmNbCSTr2nqclIwizC8tpw+sVoBYGgB0dZbijsFPloxHkKmqiZ5axo6NqsgbT6po2SDKLC7r9KvkF6f58itpdd92FtrY2lJSUIDs7G5dccon155O0j20cHDx4EMuWLcM111wDx3Hw7LPPWr9ft24dHMex/tTW1lqfmZiYwP3334/LLrsM0WgUv//7v4/XXnvN+syHH36IP/zDP8TUqVMxdepU/OEf/iE++uijjz1AqnOwY7DIYKV9O3ogaQytkDWUd9qNxq2y9/LC2tJfqQ6eYB/Z1lZlnh2NK4UGsEOxOrlsZVWHEXAy0c1X1TTh+rg4PIrOUzfY44opr8cHk1GAGEVGw8CkqkkgE+Kkh8gJeRbfN+MehaDhEKQDxtrS54N9kMnV8B1cHB5VSoj28Lo5CaxrOGzKuzvAh4kceDH9Hl3wBWFbcZY5FIBSvmTVajePFCwSegIWEfLhu8qztmOwyFY2RePkPvFMQCVPqgtQ/ZySJbcfLcXqujb0v3INQ2PIUOp/5RorifEnvXVWQbvn2sstPOzqGkOfuPfYTB7rT3rr8GRLo6KwE/N8uaaYBZQQ39lVzFhbusTvLmlBpqvWgS7EYPNiEVamrMTpABzDzUxypOihxl2K811cuPROCl/fPntIQTN0OJ4iCVRpWFGP6oiWjoStrhMUkjkJhqilKJ2Xitoc8RBH7uDrcDld7I5SINzsBK7IPIcvNu7m9XGmTCqoCxREzUnqi08aGaIiueM5KQoCYC5ixpvnKQV7//EZnKhNioB/JgOLKo6auhG63+QBXV9/EL0vXwdK7r+ztsVEJWXSNm1tXZAs4QulShdXlJA6AByVsvDIug8AWNY8P5zPMuiZgQrLe5wdipsz4voq4qS9iym1MwDA9fFw5fPYdqRK/1//lZXA9o4KuFkJFUmiI6eTJwlmybk8UZXwmqLEZCdMNfFYBCU3vgY3qhLCnQlTi8WLRTiKs7auCWvrVESIInqLZg3jruI2PN68gN/HHlIp6yjCMRZO9RKLm5OilPTdFQW98MbDaD06zewXIqXQDhG6I9y8eEoF4T3dc6xiehRx8M5F2KB5sGIPy2k6W/QMVurPmkqplJ/FGHsBkfLPZPD8EtySlH2KwLFciAb2E6Ai05o+25o/18eW1lrEfXWHkoy4u6RFQa6C1KWAbXhLxjw9F3Q3r6zqsHMg9P3d1D8jFaKVJxRuX0dOaT3T0bDq+UxZcwCbWutZjuwaLjAQo4ifIreeam2AFw+x80Mat985uER0ELxneZy6ANuKgl5jDOl+0jzzWlBRTRqH/t0zAxWgOkYyv0k6fGh+OSFc0K8G2awu2PYbnnMAAN/73vfwxBNP4Mc//jEef/xxfO9737P+fJL2sSsk79q1C01NTSgvL8dnP/tZ/Mu//AtWrFjBv1+3bh3efvtt/OQnP+GfZWRkWNbLH/3RH2HHjh146qmncOmll+JP//RP8cEHH6Czs5Mzq5csWYLXXnsNTzzxBADg3nvvxU033YQdO3b8Sv2UFZJnzTiL469raNFIBKtq2jmR9PbZQ3aFwFh6poTF5f186QcFpfRaLSvoNww+gd+zZ1rkJCwr6MeOwSKsnNNjLgz9vZVzenBD5gf47sHbUzzn8hKA72BlVYcpbz8aNjSpEvrgmxBpigJ2niY/640opcmZMmmgBdKbJOdMeEM3NOxT2NhAVWPrPbLPlIh3LmIuYcfHqqoORbXqORpzbz+L51C8W/Z9UflRwwwBc4HJ5FZS7umC4WqvchwxYwSQh9zQL4Lfb62TXAe5jucizDwU7K/EqKf7Ls2bxeqi1+S+uS+oHAkAdxR2KrpZ/dkHyvfi0a6FeKB8r9lbYs6crCT88RDPTbA/wf0hq3xbYwiMPbinZN95D2gqU6m8WGF9sYeppcxvmu8DqoCRhA0F54zGS58j5XI0mcHywtono2Fr3byRCNbVH7YiEP7ZDPg5qhBacPwADL2hHEvguXKdgz+bOf1N3JT3PhtpgCoItqO7lFlh4DvWWgLA9GveRcUlr6h9Icd0nnUOzpncj8F9wlWrAZMDoyN6q2rbrQq9550Tig6JehArCnoV69n5iCXEebb6qc8m7xtNB7qquh3bOipTo6Bp5pr6dcnVZxhax8pj0knZ/ysKerG9syK1L+Mq8rOjo8zkQoh3UltR0ItnB0u44jvLG71XHmrche92LuL1oirfAFIq+9K6pMt5uaf+AEP9uCKzdCoQdSqEx9pXay7HvXJOD7YfLcW9pYfxePMCrK87ZMGtAEWaEfdDporwRAjXX/8+Xn/nImut1tcdwsamRqxvOJjeCA2sbYoBH5BBrNye7+5Jcx+S3E/5bJr38e/SyHIvHlIVkoVM4s8Hio6lyK7A3Q0HeGT+T/E3HbenyL90z5M/k2NcU9TBNRqe7qvGgxV78J3m27lqupSnqpJ7OV659xsXXDVhrpD83W/gE1VIfvCrF9yYLqT2sSMHS5YswTe/+U2sXLnyvJ/JzMzEVVddxX+kYXDmzBls3LgR/+N//A8sWrQIZWVlePrpp9Hf3489e1SobWhoCP/2b/+GH/3oR6irq0NdXR2efPJJ/PSnP8WLL754vteetx1//Qr2jrq5cVbCAUXfRjzijTNOWBcvYCzt3X1zrLA7cZkDsBSR5zrLsKyy23ijpPfBtQ0DbySiijvBYB7Zk6sjEI92LeQERwBmHPr/RHG5vbPChOZzErizvsUk/dHrczWLjIxgBPGPAs/sxSIMEQCAtfVNcKZMYvo171oeCnjgd/OcCUFIlWrpd+k82uyhEnhu+jz9flubYdZZ13DYzNWIijRsa6sChWjJK04VUFdWd2DvsZkmL4L6yThNH8zK4DlcBdMPG476J3o0dp+8qyIhkmBkwbHDD8yxgGr5ZzOUIqU9NA/Oe57rHNBFnpltPJL8PDnXgXfR5UCGAWAS6OjS+u6h2+GNhhXNZMAwIDpUmhteH6EwPlz5PM87YO9p8jbJPRpUAh+Z/1MAip6UcnOof5ZXM2YUmg0N+9TvhHFLf5bMHmTFNmVOHPPedIaB3McEb6HPLa/qwqaWBq79EWzplAT2Ao8aCknAwK/48j1nElHZm+cKhTpwmQMa2iUw1m5OAsdevgo3Zn0AbyLE0QKuQCyhNlIJGQ3j2OmrMOGJAo9p5mvRrGGraCKPW3h14QNra0ydiXsaDvAY3JyEwtJTQmzIt2Qv7SG5V5Sx6TBkhljKsqOTyvkRMAykV5nGKSMOdMYsz6mOhmw/WpqiTKkvGY+pXcAN+OCtqfbc+o4qfjcSUTkQem22B/YMGyl6fdxoHMuru6xzzDVOAHwUV1SWzwxU2Htb7xX2PFNXw6YeRYqCD/v8ksfdjSpSDKvugJBVNFd8L42G4SSUwba6uh3La7qsu8qLRfB4060phgH15R8P1ts5PZlJvPr6pfwumvuNR+YBjuH890bDCEVMlCF4/6XAagJw0SBsKCUiFeinF4vgj2993vo8N9+xWcdErpzj2WQa1vOJxlnMNe/VQHE9qXsE+/ntA5/hf3O/4yEeK8lTeR44wjSi4Gxb+hUkdlNLA+4o7MR39i+BMxqy3knPljliF2z7LawIoVAI77zzTsrP33///QuLynT//v244oorMHPmTNxzzz1Wpzs7OxGPx7F48WL+2TXXXIPCwkI0N6tLpqWlBVOnTkVNjfHA1dbWYurUqfyZYJuYmMDZs2etPwC4mJNUiNfUHGFOfS+mqqh6o2Hs7xORAa3kMBtAwlUUajGjEDlx9Zm1xa3mc45g1tEhvXvqDuLPKnanei1CPvb35DM0ghToVdXtkPh0WeI8qHxS38mbTgJn85E6plil7wHgwmOATujTQmvlnB545yJYX3OID44bVYbU2tpmM09jYcXdrMfnxSLMaEBhacLTktDzz2YoTLyALAAqaiMZekgpptA2s9q4Nu3k12/djqea51rJfZvbanldvFFDAXjw+HR4IxE8O1iCummnsKqqI5WSlTzHEVNBtfWlm0xVUcHo9IWyA3CzEyrJUs8tY9hpHPrff1axm3GxGxp0grG4pDhRUff50a6FKqnNM/CyibEIVlZ3mEs7ZCgKg5ccw+V8dQmtKuw2jBQwium6OpETQsaUfv5jh24zMBjAgtrQeN+cvMhMXeAC4/B0yMfdJS3cRy8WYcP0bzpuB6DgGIvLBiyF9N7SwymQJwBsmM267m240TgnbN9V3Iad7SWWIUHtq1U7jQdbGP20liur1JllvL+ueF1y42vwz2YoKJi+2DkR109VJixoHVTipJuT4P3uOIDnu7xfVxT0moR9oSxQ4jrPvZZPW/or0VB0XNWUCCj7biSJJ1sa4WYm2SPrRuOczCor43ojGv6ln/HsYImRJYF5AoDdXUVcNHH6Ne9aa8n90LUtaC64Qq/eK1RtXO4X+fe80mHr94vLlUODGLbI0BmLZVheTTLeaU3dnIRi85JjcHz4jo/lFd3WPN8+e4g98N5YmNmFqC0sHTRnlfamVAh1Xhft0amhMbi5cbQOTLPH52tefUF5Sr/zRiIK706RhXOG2AEA9vbmm7M3rp0FSQdfrdqZArkEFPSRPk+sWdRv6fBZMOM4iCbVDEjt5ar8l4x3XTgh5Pn2RX2V57SRQ3fVqup2ZXC0zLPXRvfFz/DNPQmYOgf6+VW3vIy1dU1YUtbP60ctqY3Uu0taLOfBpiP1Kef+wbm7LbnH6wE7SiBhV4C+dwHA9TGSzEpxxHG9oFyzv2m+6qadYkdS0DAj51PjjBMc0aF6C240bu65QPPGwrhvrqKpvm+ermEjINHcEnYeExzbcUGGWtAxurKqg+FjzsWT1vzId6yaY5+PC6791jjA+QBAExMTyMjISPu7X9Y+NqzI+rLjpMCKnnnmGeTm5uLGG2/EqVOn8NWvfhWJRAKdnZ3IzMzEP/7jP+Luu+/GxMSE9azFixfj5ptvxt///d/jW9/6Fp566ikcO3bM+szMmTNx991345FHHknpy9e+9jV8/etfT/n5DU98FXNmfYSjx67Tm8JUDXVzErjlmvfw0huXpYQWG2ecUIplILTHGNmcBPKvfwtHh69XXyBGE+GFlaF1QCn/m9rqOSkRMBcbQxlEoTEOIwvoC3ugfAdOwoEzdRKLZg1jLBlRCYPC8pcGhQWBIUHkOVhd04ZtA2W4u6QFP+mtUzAIonkkiICGjfBzdaiS+0xh+JEIK7cIe4BIgpOXFSdVBSAx6QS49e/RMOoKT6BFJyLPKxlWfNznW7s0MBVqLPwoRA6jJPMcJQxeU4Z2ZbVjbyyMmjknVXIkbMGdYgymabTeKX+nCXVb6xr2OAxs9Uf0n+lWqVKu/L6EX2jMek2hGkdO7gRGRzLNeMTzaQ2DkKfz/ZuNGgfcnzVVrXwpNUw/iUw3iT19BVadkeD4VxV2s/JrzYkcH0GQzhP6Twtb0sanm5lUyntmko3bnNAkNrU0WM+mc0LfJSM07fv08/ykCz/hYG1VC7o/uh79x65nyI+bk2BIhlznNTVHDORH59HQei2YcTwtOUJwrgENc+wsY5iOm6sMkltufhsvnbjKms+1xa0qT4bkjdhDzoSLW6uOYm9PgQ0ZigkI4XiYnSpB736Kt1+sAY2HDDaCR57v+/zzNGeF5pw/Q3tiLAxn3DVK0GjYmieWtZSknnTS7/GEqyp0SzicmKcghINgQSSrU+ZazFUKzI5gPgIu4sUiWFd3WDGQuQHIjz7H1lnVzyT4avA9PD+Bd3kTIawq70yBgLF8GQ3DmXThXKTG9NWqneiJ3aAcUmngSW5U5Rzs6ixWd0TchmLRPSTbolnDyHQT2DlUiKsvP4M3352atp4BjZ0U73TnKbj/llV2Y0d/Mdywl/J73o96jyChc+KoUKijipVRgjTlqsgK5WuqW7Glo8bMQzq4W0zDkLLOL0Oo1U07pfIpcszzaL+mu0Npj10SjuHRroXwRiK4p+EAnjw830CfaJ1GIlzgkpxFJG8XlA5h75Gb8NoX//KCg+AwrOg7nxBW9ND/92FFP/jBDwAAf/Inf4JvfOMbyM3N5d8lk0kcPHgQp0+fRnf3xzfwfu2RgzvuuANLly5FYWEhli1bhl27duHYsWPYuXPnL/ye7/twHONWlf8+32dke+SRR3DmzBn+8+qrr/Lvhl69iiEggBawtSoUfEP0Q/YOUGIWAOzvybdf4PhwKGFYP2dW3tsconXGXetgKo8KAN9hKr+n+6qxqqID6SBJW49o+jZXe3cApv9E0kHFza9Yl7KTcJiqdM+Ls3GobxZDOlgp81S/gxAUNzvBcAZ6709661ROgU5cW1bQbyAnIvlWXoAfaUjUyspOJSCFAHQzkxa1WzqPCntsR8Oc7OjFIlhQqhii/LMZXDFyyexBLK/sRkv/DLhRVX266cQ0eONhLKnoY7iQdy6CyzJG4J/NwIb6/WDaykDo2Y3GQfSyBIGQrWTWKyo65BmKN66GqY1ANTAHrYPT4I2F8UD5Xva6EQe/rHAdjC4wBe25CJZUKdaY5TVdAAxXeEqfoeAuSLjmkgDY08fj8I3SQtSN9P319QdtyFBWAovLBtDaq4zhRCLEfYYoeEZJ+aRMULujsNP2yJ3JAFztKaP+UHKb51g84U0npqk8kGT6cy1rNpzX2NLVtTkq45r5llBAgkhY1U41U4s3GsbKMjX327oqMJbMwIfxHGOoaEVxY3MjP3tVZYeqViq48bnfo2FLSXUzk3i6rxr9R28wCrS+oAm2JD3YZDzVFJ2wok0AsLffyKZLLxkxZ0vUCPEmVYGnfz1cafD7jlYgshJ46aUr+TxLWmUrN4EiWJ4D56JJxcRDEAm5XpS8TeQGmuN9TVEH71H5Hhn9XDRrmA0DQEUz7i1VVLsExVpYOmiN3xtVRRARMpA/QO//zKS95gRDy07AD/tYX9LMXnxLWcs2kDb5c0nxuaKgF5ddfo7lFkUviHGL3yn2Ke11Mgy8CbUuRGFt3RlCYbeaoxweJIeeaplrRRksb/J58jGeay+3YHcUdWMqbnE+qX0wqXIrnITDVXkpkZ0Mg4yT6g74+v4VyjCIRUwkovAk0+d6Y2Hs6ioyUa08nWStx/RPTRqOJzzoe16cjZ1DhfDGw3hTU9mmhYEF2rbOSuss8f4QNMI7hwrhnokYuJ94LxneFP1ztDeeKKXdaBw7u4pxV3Ebfz/IdvTMgErAp6Kj8MFJ5YBaYyfp2LJgzGYv5L9HImjqm4nFZQN2TaHAOrvRuGK60m1TXw2+e+B2jjw92dqoa5oYOUB9j7ynjSsty8gRc/D4dAOzu1Dbb3BCMiUc+76fkoj8+OOPY3R0FI8//vgnevZ/OJXp1VdfjRtvvBHHjyuF96qrrsLk5CQ+/PBD63PvvPMOrrzySv7M22+/nfKsd999lz8TbJmZmZgyZYr1hxqFL91oHA837sTDjTtZwO4/PoMPNiWepngaRhRtGSnj9LtnB0vw8LyfwYtF8J/mtlhVXjeUHQTxarcMTIcbjeMLZQew/Wgp7m9UuRX0LkBAEjTzCaAuIzc7gfvmvaDYigTe8Y9vfd6ODuQk8Pm5hwwrRo7heVeGkZmrpfmCC1cLCob0aCgDQypgLk9vJIKFxUM8B7u7FXxqe1sle6yspiMkj8z/qcF1i2J00oP41JEG3Fe3F4A2zBzFOLRruAC3zx7Czs4SleitlfIneubCGw3jkbk7lTcq6YCo3ra1VcEP+Xi86VbA1/MYoBKkqtPU1hR14MuVu1hx7H/lGsX4QZ4dMc9unsJPEzuNm6UUzEe7FvJaMouVLBoVyB14drAElIeyq11VkL0soliJNrfaDF/y8qK1caNxLk7k5tp8/25OQlVKhV1AzotFrCQ/GtfuriJQJdmJmFZ0tIcPUAYF0S0CsLz8jIuOKViQM3USzqRrIm8aP05wB+mFJC99umgBKabWPMQiFmsVPAduVgIPzxfOh6TDShJ5371zBkboRuOWgQ7NXMR0rJlJ7GwvYUgLK9EEA8hJYG1dE7YfLVVVe3Xffe2FJEWdjD/Zd/aWEpuUPjdeLKI4zgWMAQBa+6bzOjOOWOzH9z/ITYU6eQ6PyblkApSQLD/HRqXnQFLUkqK5oqDXGNCiP7yGwmMvWZLIQN02UMbYZjLAJOsNvY8SqWlfeDFNNZydYBrSYJRktS7+tbS8D4tLB8zc6v1P8E8ZOSXo5pPN81OgGUEla31Jsw1V0Qrcs4Ml+ODDKPeXaCm9WMQURkxTbdryShe+aMlJ6Tzg/ohIpTeqlLb9PflA0mGlV1K/cj5FVgJrao6kGMRq4YD75+1RxAyzhgEP+IdDc8HUno6pTO/FIlhZ1sXecz/s4++652tDTz2OIgaT08ZYwZfNjcbReeoGjo7cX/8C1tU2Gfw7GbNaQXWmTqp5z04oyA1Ri2vDZcqUMVNsTcP8rLkVa+pmJbC11a6VINeR5//SCezuKTR7lOZVy4s1RR1AwoXv+pqKWDzLd/B0XzV2dxSps5alojMpDjANywO0w0yw8jGDlIY4s2NNRo9ixulxVeZZNk7c7ATuKm5TcDLBprWne46hbqVIvh8wBoI00B5wfdXrnKOojD+H18rN+eUR8P+T7Te5zsGpU6dw6tQpzJ8/H729vfz/U6dO4cUXX8Tzzz9vwfM/TvsPNw7ef/99vPrqq7j66qsBABUVFYhEIvj5z3/On3nzzTcxMDCA+nqV/FJXV4czZ86gra2NP9Pa2oozZ87wZ37VRlSm1P7m4FL8987FLAwB2xtBlxTRDbpRpQjuGi6wL2B63qHfYyVEMqk83t1oQr45Kino77rnY1lBP5c/5wtRJDUlxcWxva0S60uaOblUXdbqd98/tFiz+ahd7p3TNRQSutrzuKay48qnRqBa1Yb1mCSGmJQIbySC+xr2mmeEfb6oLc7xNBzcPP+xiEqiEu+nn0sPopuTwGOHbzPzohXeu4rb8PxwvuGAFoLzvoa9+Pb+z6j3RXwsqehTSWF6zaQRR31m75Hk7D+ncN3fPLiMFSJAU5iSEhUyeQeNM5Q314941jzQZcaRGqmsC+X97pIWuLlxqyIuKY0bmxoZ+27Nqcwx0AWP2Os1Glb1OPR7yZMvee3l2qQkoVMlYT/Q58wke1moYm1GlgmdW8/QFKRED0mGNlfsDfmGTUV4MLd1VCrFWkcb7i5pYSUlaEhQ/59rL+e1oN/TObQgECJxW45fzrf6j89nBlDruLKmA5Q4Lj3L9P9NTQ38b8oVoufTO7a3V6YkePLfmvpwVZXCj9cVHTdRLkljqvtmYezHTR6OlxAQl7AHOD4nJnujYSZZIC8oR380fIow/vI8utE4J9QGI2rMVAZj0KlfIGWueQyB+U/5fpqbeuHMY8whH2wEP9k1XKCMC1HMjQrgwfFRVnCKZevGpkZDGCAYgjj3TBQFe2tyipkPUXm3YfpJPVaf10F6ylWUwR4rYObFi0Wwv382FpUdNWdA92VNdauZsxHzbpYDIV8ldBP0xgGWVxjv+KrqdnjjYTwzUMHRCt5H2nP8w8OL4OZqqt1MD37EM06bnIQV6T2b0AXE9H5gQyQaN3fOWBhTp46CiByo8BZDX8Qa/133fGzqq1GRt3Fj5AYbRVVYCc5Rjq2zZ7M5+iUZlGi+JBNR8J4xn0lTU0fkd/F6hFS0fHObYon6YuNuTW9qOzHuLT2s1ttT73yus8zsjYBxKqGetH63zx7iO1wmzNMYONKpDfRxL4Ivzttt5Upu6a8EJfDXTTul1sbV+0WjDvg+pwijLOin1/2lU1dyjqIbjcO5eJLRBEEd6oJrHzfXgP58itq+fftw8cUX8/+TySR6enpSnPAfp31s42BkZAQ9PT3o6ekBoCyXnp4evPLKKxgZGcFDDz2ElpYWnD59Gvv378eyZctw2WWX4Q/+4A8AAFOnTsX69evxp3/6p3jhhRfQ3d2Nu+66C0VFRVi0aBEAID8/H7/7u7+Le+65B0eOHMGRI0dwzz334DOf+QxmzZr18QaYE4ebmTRhUYCxx4StA5Ci5O1sLxGfNcLfSRhoEnlF+dCRvNLsPbIY1U966+B/kMmh1ztrW+Cdi3AYkJQ2WTXTzY3jjYmLLAYCEh4bGvbBzYtjZYX2EmmuZISVUFhYNKQ8EzkJeJMhZqGh9mDFHkvhYo/OOTux87GDt2FBiQ6dJh2jCAncp5rnRIriSeFUVvQCigYlzHJI3hG5Drovm44oY5ATXcUaSUYe+Cpx+z837lXzkAh4iQD2MkuFw43Gsbiyn4UxJZOuLW5Vnk/CEFPI1fEV/3uGUpxXVXbwZUEJbdLLy5eTuIA2ts6DF4uYS1xzjfMeSjq2d0dyWItx7O4uVJ5338Gu7iK+eLa0GcacDfX7LeWEPHZynVbXmUrNdxW3cUIynwmxjyfHFTzkK407uD/+2QxWoO5r2GutE3nuV1V0WLA96h81Z6ryvP6kt87aJ/6ZDDghowyw8u+APasALIYfO9lSRz7mHkyl6JRc5p5WVnRyZRIuf9eNxrl6Oe/lPGO8UF4CfMdKsKefUW2R22cPYeWcHrXHNM6YMN2tL91k1jwibi5fXe6tL91keYFXV6nkT0mRCm0obBso4zXb35PPSdhrqlvR1DeT99P2o6VKuQ6yBQHWPAb3cFBhZ2OOWIlEk4qlGRPstYT5/5qaI/BGw9h7bKYFP7PeJ6MPnGdh4HWA2g+9L19noICk0OrvOnEdXdIVgymBGwByQxOmj2NmfzSdmGYZYwuLhngvSllH7+Fq3knHzFFWAnu652Bd/WFrXrmIWNCYz04oj3pWAvfV7VW/12N5rtNg9KkyMsvOkQhXjJdK+KJZw4pBKkMV5lxS1cf7g2qbAKr2yso5PZYDLcXQzk5gbCKDz97OocKUyFAwEuYkjAz2JkLMtLOmqEMx4+gjYO0Xkj9ir1uGadiO7q6pbrUMTt63RBLgaJl7NoPPu4R98nz5Srb9sOtWVii90bCCdQKYGhpVPw/7bMTIRHU3GufxEUmGLKq6q6uIv5ti0Ah5R3f71tZq/LDrVri5cWUkiPPof5SBlpM3Y2WFdjgldERIQ5vVwxwDi4UaywPle1WEMTOp9k7C3DtfKDugk5sv7MjBbxvwwAMPYOPGjQCUYdDY2Ijy8nJcf/312L9//yd65sc2Djo6OlBWVoayMiWYHnzwQZSVleEv/uIvEAqF0N/fj+XLl2PmzJn4/Oc/j5kzZ6KlpQV5eXn8jO9973tYsWIFVq9ejYaGBuTk5GDHjh0W5dLmzZtRVFSExYsXY/HixSguLsY//MM/fOwBkleIvPXUqBrr1s5K9gxSU94R/W+NR19V3c64VUBjwh0fa4tbVXGemiMs8NkrqY2KVYXd8GIR/D+/Y2o0eLrC5J6eAlasVmn2FA6nQhd10l70NdWtKil32ik83nQrvFjEePjIK5mVwJ3VR1RRprOa4SMjiccO32YwraNhfOfgEuv/BDWhpNiVc3oAB3A8x8q/eLqvGrdc8571XR4TGUvSWyh181iEC8LA8bG1rYoLVNFcA8ooWpo/gHvmHmCFiYQ3eetovKtq2vXDlQfoiZ65JoKjL1LDLGEXk6GCXXuaFWvLn1Xsxs7OEnjjyntF4fmgZ3VXd5GCqrmKDpHWWVGpOopphQQyV/MUCp+OghDbFRyNSfbM/rMMmPPwzrs5CWxrF9ANWg8NI1lX24QneuZiVWUHIpmGklAqMG40rvD8OQmm7gQAbyKkPJNhD3dWa3YvDc9zfAffPPD7vBa/V93D8/pYk4JWkZLif6RgKO9N5jLumr1kMnwu95GOvqwo6IUzdRK+SOCHLm5FiujKys5UpVVDuL7YuBsLSpUCt/Fwo6UA0F5VCoOJJLjZKkH4ufZyVkpWFXYrZp9o3HYyCBaYlXN6VORERPnIQ3rFZWeBiIddXUXY1l5pKr36jolWEKRjLMxQLm5CmSYlY2urYQgir7flddT5DjLaSHz5lKArlSaJVZbyx5fGtetbXnr+scgd4j6RcUw1C0QLekml0bOlvYaN13Se93Q/JyYf9UMlB4jtiJ4f3GvORZOWIcH9HgtjS1uNVUtDynQ37PF8MzY9V7EruTkJYwD7UBWjtTJK+SXEWPVUy1wrkuTFDKXl4grlrKDo78beenijYZbhFMWaV6Rove8o7LQjEZ6QGbLIYzSOhBdCy8mbFVzobIaq8eOA5dXi0gE2mrcfLVVj+iiD5xaARTU9SVGAqL2mcu7lvP+XBQox4J2LWHt0S38lvPEwR0PIyL639LAxGDJtOlMeW9KxoE2WUamhvTQfTtxVDEC5cS6KyrIgaqL46u5QTin/bAYbkssqejAt610AwH/vXKzn20HZTa+yYcDOxNEw3EjScoxRTaUvztvNa+mNhrG2VheP1HJEGudkrEiDaDSZybk93kQIzkWTikK3QxmZC8qGlEPQs9eGDSS9NgSFdRxfRxvAsCSGTKaJCF5IjYJJH+vP/+lO/5rbP/3TP6GkRDm0d+zYgdOnT2N4eBgPPPAA/vzP//wTPfPfxVZ0ITdZBA2hqPK2CqEWZGABYDGfAEA0bxzn3spjXLxsUkGlAjTsQRZFlHgn+uYSIiFElzSzILimT/L5HAqULEfE1EEJc55j9Z084ZLZxBsN48rrP8S77+eZ6Im4aFMUTF/VB3h2sCRlbuQ8ALYyJPMP+PlifPCBryz4V3yrYwlWFPTibCJb1SAQY7qz+oi6MEbDWF7ZzUwbcu5XFXZja3sV98s/mwGfEqjl/BGLB2CYGFqqmbWBnyuZTeIu4CulnQoSAZr9pa1cRWg05/f5WCYsVh/h4T7v/NHeSONRtX4vGEimhscUTSw9y/Exr/hFHO7KV7CBwJ6QRovFfZ+GacXyxPsAsbvcUdipFCjBkgHAOlOyeJn1DLnn9O+oSNsvajS2otmvon/4ej5TFNZPgTII9g9rTL+omJtm2LLOnT5bSyr6lKdPr2HjjBPY3z/b7HU9Pwh7nPNwT/0BPNk0H0520kRj0vSRWFEk8xGNV8IRiHGGPrOioBfbe8uBcZdrhEhWI2t8woNM83FXcZuiggzKiVgkhV1H7pFf1uR+oPEtr+zmXBkqFgeopMml+QMW1JGfI8b57KAy2tOdOeucCWOE1z/Q76X5A1xrIOWdY2EsKhnEnq45QMhH/ozX8eJrV36ssac7u/x/kkWeA0Q8PNLwM3z7wGdMhCU7gZIbX8PFGWNmPdIUNZPPZrkpWYK0h5iMGmJNAtJEfnSxST6nae6RNUUdeHN8Kva1FsK5ZIKrTRPFcHDfUltZ2anWblTJVGfqJBbMOI69ffnnLbBo3Z+AYfSZDMHNUNENZ9I1Sd6xCBaVqQKX8txYc6TPsjPpwg/76dc+4GRYMOM49vbmW+NaVdVhCiLKqKU8wyMRrK5V7EtePKSYmQJ5BHxfkuyS5zN4N6dZTwmlmnHtO3jx2LXWmMpuehWdR29J2YvwoO4u3/Sb52pcGVxWMbRzEXiJMbx2/4XLVnTjf/1ruFkfk61ofBwvf+nPL7gxfdKWlZWFEydO4LrrrsO9996LnJwcPProozh16hRKSkqY2v/jtP/wnIP/080bVR4KEkT3zX0BcH2sqW5VfNY6vOiNhZUnhqz+8TBi59SGS1GCYIfd2fOtD9O2gTJmHOLPp0kyklSIQW7ioAIFD3bToUY3OwEkHQt/qjqlfr+3N99iK3rnvSmmP9Kb7TmMvyXB5ObGOUmTcYsyXM590Z6IrIRKzKroYc5rAHigfC/gAOvrDrEn81sdqojPs4MleKGj0BhAui+bW2u5L4QxB4A5N7zJ87y1pdpgwcd0wSnXXif1PD1eX3n1FexC/ez22SrBeuWcHmyYu0+NQ0cz6PL5l5Yq9uo9114ONzeOJaX9GpJg3keRGgrTc7L3WJi9lxz6FnzfFuPQuQizCwX3ghs1bBTeeBjPdZRh3IukFEU71DubEyTdaJyTfh+e9zMTOZBLr/cRQej8pBILC0qHeI9uqN9vYEuttay0yb0hlTFAQZS+OG83e7uld06Oa1rWOylwBADWGaLnH33laoO39k3iLZ0TYolKgSHRc0iJPGfnI1he3HPGc/7Fhp/DjcYxlhSRBuikeXkmCSOdmcTCkiHA8VX9gdy4VTdiQanab6xMTYRS4HmA4iCXHnUAyigFQAnM29sr4UaSag9qBctygAAKuhGz4QJr65pS3hdM+vVDJsrmjYXVngjsGf63Xk/K0+L51CxQcFVNC57j3Dg29dXgqVaVt7GjqzT1zMIoL1xQLOkYL3xMrJ9gE6J9hpCPhTOPWfBOeseO7lJIqByg9hp9f++xmewRfvG1K601CImk80WzhjlJNsiZDyAFUkP5HsxFn5nE33TcbuZFr911OR9ZhlqQFtSLGRY0QFWdXlXYbQwI7QEmgwEw7FfLq7qsqJE3EsHC8kFzFyRspbSh6Di8EVU3Z29PgUpwB/B48wI83rKA+/CVRhMVd3MSyhPuAFdknGPPPOUh7e0pMIZBPAQ310RxAWBrexUerNjDssoZV/JoSfEAr4Uf9tnDPa9kWDGeASn5CKtr2sxcaWcPoPY0RUIfrNiDu4rbrKjqvaWHVT/1+VhV3Q43J5FSKT2F+Qxqf1NuiBtJcj4JJQ6vqm7nHAiWXVk6EVsnYBN0ieWXbxL6pTG1ZPYgjr9+BQB1p9Ad3nn0FvX90bA6B2ywA5yErpsXi2DODW8qOZ6ZtPYGXMDN/OVG8W/b/9l25ZVXYnBwEMlkEv/2b//GEP3R0dFPXATtUx85uO4HX4cbzWQlIthUtr6T4k28ffYQFx9L54kEbAWePG3pePzZszMSgXaXz/gAAQAASURBVOM5+FxDs/KKBxQXq18BzytxN1seGh8p/TYYasfEzkTNAVKkV1e1p1aMHYlgWVU3dnSUYXF5vyqCFPQ8hD3cctM7eOmlK1VkobIT2zsrwHhpipQIzLyTcJQXG3b0JDiXPOaJEJaUDHAIlmkqfVhew6X5A9jRXsZzcFdxmyrIFPTCuBBMFalzBhjv3Pk8zsE5pnW9s74Fb09MQTQ8oYoCBWFVQMpY0/0OAHPoBz1pci+oHwDI8LC8rMe8U+8tZ8okVs7p4WI3bjRueWYXzDjOXPVWJEt4q/yki98pGLTyX0jJyrtyhI1mGVGx5kfm26Q5W9b6a0+vk3DhTJnEqsJuJDzXJJGLuh8N00+i6cQ0LJo1bPVNRu4AmLFJSkgRlaPnkrc02C/L26jn8N7Sw4ohS3Dr0+9kNBBh3zYaAvUhKNpxZ22LkgHEr899BEcizgcns2hbMzxg0mXvanB+5dg4uuEDc/JfxdCrV1lrkDbSQrUaPsiEn+kpxTPhsGe0YfpJHOqbpc5XMBKn53hVdbvFl58uQkafpUiNtS503tJEfeQ6LM0fUIo/eeapEe4AYLkYXF9vNIz1dYfU+dMKGkdmg/2JRbC2rgmbWhqwuLwfe16cbfZHIFJmwS91tABx95fWCQFsmSQjsXQXyPMXjJS6Wcrbv1kb8sGxykgOoCOixM6lP+8kHVV5Wexh/8MM3FYzgL3HZmJtcasiPZAe8IDnXvaN+lBXdBxXZ53Bqdil6H35OntvyuijfhbJhvN5171YRN1XnUUKaijqHHgjETw8f6ciIQnMk5904U+4KR502e4qbjO1TkR0gNqygn6GIP6iyJJ0BnD9HxqzB+vspD2/erzr6g6rORf1KcpmnUbvy9dZa5/23fo7rEsIOZJyz+v+KXjuOF659xsXnJedIwff/oSRg0c+PZGDr33ta3j00Udx9dVXY3R0FMeOHUNmZiZ+/OMf48knn0RLSyo1+i9rn/rIAV0SizRXNmGGZUiQBLX/YQZ7hUgxpUPjJFwDmwmYU4vL+y089arqdvaWsHKqf+dMmUylqRwxeFPCPDqeY4XIWdmTynXYN15qasR1rhOt3Ggcy0p7Ace3PNJkGDA2WAu+HZ2lgAemKU3BGyZcnH7zUlZitrdXGo7wqOEJ5/9H41yVmXMKAt5jmuP75r2gPGCZSWMYjIaZZeSehgMMs/DOqQQ4OEppXFPUwcnLKSF4ghlE48aLSFSSeoxMzZmTgP9BJjOGBD12XP0WyjO3+Ugd9h6bianhMfYiyTG5UQV/IvpY6bm/f+4eK4GQitCtrW+y3ruyusP0XzNpwHewY7AIq3US9Nr6JlauZQEgANjRZoxA4qpfWSnyKag+gp6brNwJXn8aN+GSyTDwxsIqqqT3Ls2nfzYDC8qGDJ2oUIIoqkIXrWQt8kM+7ipWCidHqwAuzuPFIkoJheI/l9h/maxOXjbpKXNz43hw7m4Luy8NeID2v6BzHDHr6I1EOMcnHRsN/b2m9oiV2JpiGOg9A8dXkTEdsbmztgVLKvqM15uMBJiq6dYZd+zLnPYTRYhkojUbSMRGpSOCQ69exdSL/F7A2ncAkD/tDfV17TGms7W1rQpeLIKmE9NUf/LiqYax7ue21io98cabLg0qLxbhBG9ZGZ5lT4CZRkYoaPx3FHayAayiouC1X1NzxERmHft7fMZdWBS/VgQyUKEdIR9P91XDmXCZbpWolXnOKSFUrh0ZfgBHq8/nOFhR0JtiGNw39wUrSrm9s4LPlNV81YfNLSK5n1h09POe6yozkeCxsKaJhiWj/UBFewBwLp7ERZFReGOaVQhQBRn12q+rO2xFEaSiS3+3HJ2OfzlSxQotRZOt6GMswgaHryPKy8u7DVWsOFtuNI7dPYUsv8gQDUWSWFXTjr85uNSaG/5n3DX3qYabWvJ+NIyn+wKFF0mGjJhIsvqBw7koXizCORNe3HhtlxX0KxRD1Ox1+MCy6m64OYoMQ8ojSzbpPSANg7XFrXCzEsYwoCjTSMTUGIGJwFGj+eE6RgFDhO9u7ZD6LVvRhd++9rWv4Uc/+hHuvfdeNDU1ITNTFTENhUL40pe+9Ime+ak3DijTfk/3HHixCH54eFEqzk43qp5JLaTZEdaXNCuYBiUG5doX/o1ZH1jf2360VAnXs4rJwZl0VPEdIdhkAuKa2iOqCNb7mSwkSTBTEmBQGfBiEY6GpPM4EE4UUNSlbk5CKf6ArSRBRUkI8kHhy4UlQwYaIDwJZl7NpePFtHKow7ReLGLNKwALakJzKOFJdxR24rGmhSrRcszQgcr3U2IecbN7o2HcWduCorzXsbm91vL8+B9lWOssvePqB0K5I48PoXuyk3Bz40rA06Wq12DXcIGdbKnbpiP1nOROF8T9c/cAUIoUcebzvDtQSfKO+b83ovjSn+6rtmAM29sqLfo/ObfE5/10X7WCWrVX2WwZo2Eg7CMSCA1v76gwl4eISmwoO4jxkUxLsSHlU0IxGL7ig+s+uFFl/B48Pp2p9Czoh7hYySiXMJhNTQ3WXEvub547vWeIYICMDqtpdhpZU+PRroXcf1JG1hR1MAkAJ2VyBEysFcBsX/S8lVXq8mVoFYBM176ErTObGzdeupwE1lS3YqV+9+a2WlyT+RHP9/31L3B0YtORenORQ+25DQ37+PluJMnrwUYhsZQATMELwMASYgoaKKE+BK8DVLIkoLDfQyevSVE+gzVDrBoMUQElpAJbpFxnesrJQkZ5IPpCfec19QMyTdMB7+wqZtm7uqYNXizC1JvOpGtqNPgqGvfMQIUxCgTVpLVOxOAyLigk6ffZgf/re+Cz81otA9LNUfUv3FzDZkVjcnMSzKoDaINWyFMqYAkow2B7Z4UlX1bXtOGxQ7dheVUXtrVV8fcfbtwJNydhw1CyTd0TLxZh6JpUvhcW6fX2zfgaCo9b8B46LwSZIrm27UiVdW7dsMd321Mtc/HNA79vPYOIHQi2CM+Bn+HxfcF7gFn/fMv5RXTIz3WV8c+CRpWbnVB7S/fjztoWJOMh1ddo3Ny9jviOcCJ5sQg7zJbmD/Ddbb1D3LVwfSOTo3Er18iNKmICLxbh87mutonzhXhOfRVt29FRBu9chMlHOIeQzjBFEnXUiPYKG2diDmmMm1trEYQ9sgwR82dFeMQ5l2fzQi8K8Jtc50C2VatW4U/+5E9w3XXX8c8+//nPY/ny5Z/oeZ9644Cx2CyoAx/wwUKJihZxWFi3J1saFdVkQJjRs4ZjpjAbM2uMhlnB9zM9PNnSaIXwJJ54S2utgjBleGbX6vClo0PQFTe/wl4efgZ5fgKMEXS5bulXWF1ZGO3SS0YM1En3g7z08hl7+wykii8/oWwRR7+bo5mc8uKGTcLxU3CypORvamngny8uOsq/3tJWwwqpM6G2JdGqknCXnlt69+YjdYohhi53rTRQkR7Cu1OTVaS5azHDzkRKiX82A48dus3AkUSdA5kkyl7QnASePDzfrK3j44eHF/G8B99pNR+oKjzJSpT/YQbvlWTCtYpMAeDcjuAzVUTBjEm+Oz6RyjhhVWEOqQvpscO3KYx82GPDQk0cUs6OG41jeU0XF5QjjLeaQwf317+g5pRyDmRVV5p7YcgQ9G5ppVa4BTsOz6tvG2Vyz1vKWLZ9sXvnTB4CtXcnc7GtrUoVVfPNs0i55P2fG1csTGL82zsrAMe3YFU5oQmsrW1mRTFI3crnNaZobBlLn3Asr/UPW24zkQs9X1UFL6lnZCesJFAAJq+AX+SjpuAkf57zXbSiDgD5t7xh5gWGRaWh+Bh+2KWiJFvbq+CEfUsh4qaVIM5f8B0j+0YieLRrIb/XzUmoXAvPwZ/e+jP23DkJx7CKUVRBUA2TQkuRAuOBNxGpCU/tn52dah2cKZO8Jm5u3LCwZamk62CiJzk2DOxIvecvqxRVL1F4Wh5lPc5YMpN/9mDj8wCUk2DlnJ6UfBn1RbX/llV1W0UYvVFVbJH6wHvKMXOwtbNSRXaFQQffwd8c+j14IxGlOCMQDaM9pOWyVPgk0xL9vOXkzXiyeb4VdaM5bZh+UuwD49nnMebFcU/9AT7LS/MH1L2j7zdvTFHpUh0BgtSU3PgavHOqVgjRcsu7cWl5n2KwArCgaNiKclFz3snEjGvfgTNlEkur1B1Odx/l47CmIyIoXsKFN6apSX2jNO/oKoUvapwA4MraPI++oGTVMDQnLuBQAJ+XZQX92NRXo2qV+A4qbn5FFVbT+4tlnzB04AB1BSdMlEyvxfajpYxSuLukJcXQ5iaSl2+fPaQINmitznMfcS4P1YTQ0d1lZT24oNtvIwf/Ie1TbxzAdyzKtBQFRbMYudE4tndU8GXkxF0kCaevk6modDw1N08xfhwamGU9j94rKcPgO3CIljNmEtikl4rgIjLkToKg89QN1vP9Mxks/FeWd9qhdqoXQMJNeL/ffXsqh/G59Dt1XWK0hSeLoD2UqOn7jqk8G4tYMBYFhTL4fgC4v3yfWA+jJO15cbbxVAnviB9R+E03z/BPu3lx3D93T0qdAppPhD2ljDm28rimupUv96XlfXCmTFpCddGsYbjROHObk0Lmh5Tn+cH56tKXCbUAOHlaemGcpPF6ujkJrK83nPdSaeewMtT7llV1q/XVFJzOxZO28TJivKj0DBk9eKB8r5WQDF9R9dLnKVn9wYo91sVPbFBBpcxPusbQi7spiZWUAN0w/aRKktVGFScF6ijC33XPt6AUdPGYcHUguqQNAlL0gDReak0u4I2GcVdxm12cib4jFCReI+3JJTiSG1XFoNxoHM91lMGZdHmf54YnLEWa1lN6HRcUD9s5G7EIHjt4m4Ih5MaxYMZxzrOhtnDmMcADF/fifSOiY25OApKKkua+ffCWlDkjaNiq8k6zTwDAc9D+0o3wxsJKSZPzrLnOh05eo96XF7eSaZv6Z/D8WBSqlC8RaE/3VZuogUjIpEZ1ZPb35ANxB9/Zv4Q/w2xIOtJBuGgvFrGSpi3q13MRjrh4Y2GuG0OKqjeuCr/Js7I0fwBeLGKxtgHAvJJhdmxYXloAf7lvpRkkySztHHKzVTI+sVcBwHcP3a5+p5NW93YXmCmnc1jVBW88jB1dpYZ1Rkc3V9e0qfETPa4PlMx8RfTBKJ5fKDvAzp2vNO5QRoTIN2EnVK5JSE5RHmXzbJniRtX+peJaADAt5z3eXyt14T43L45o3jjP50gyk2XMjvYyWExeAG7Kek+dlywNPc3QMsYFIk5S1RYJ2/SiOztLeF9RxXU5HjcaRzI3ieOvXwFvJMKyg+aB73wtE1ZXt3NOhBv24GYnlMEl9AJSzt1onBX+jb31fF5X17Qp5XnEyHq4gB8xkUkvFuEK9ZdFRuDFVC0TNxrnu5zutnTRTzcaR8vAdC6+ygatSH7f2NxonUlvPMznlCjJAWX4+yGjE6TbD15CGA+aGtjNSWDD3H3Y0VN6/r1zIbTfGgf/Ie1Tbxw4CQd1006x111esCRgvVHFXLC8shsbyg5iZ2cJPlvXhpzcCXgxgXENYF+XFfQrCEjcKD+ysWdIeyckNtqZMsnCRZa75+fHUpPvZLTAmTrJFYSfHSzBz1pL1fc0dIYVAlH0xM2NM+8yoIv9iH5LuJSMEnDCljZeHMdPFS6xCL5atRPwHFaK6Xk/7LrVCnnKtrG33oxNUl+OisJyrmKmYCjJaJgFH0MsMpNK2dDjpf49M1DBxl/YVZdR3A9hQ8M+NlC8WARPNc81SqvAAhMPNO8dHcFwM5LwRsNYVtFjRSuWVXbzd8lrSfkcXixieevJM7Ojo0y9U1RRtuApuXGjHBDLhQiJP9q10DIe1lS34snm+fx7SjT8zsElqRG0pMFGkxHH7Dq6oJ5JgHeQmR1n4XpoYBbjuvniCawvJXOygSGhPdLDTzzlmq53aUVvCoadL0g9n/9waC6CjT/vO5wYLZ0BvIdEFWJS/Ol9m1oa1D6PK88iVRxeXdMGR1cgP3h8uqVUk7JEbf/xGSkezr3HZsLNi6cUvHKmKmPQFANMjfwEoS2AgoZNv+ZdVTMlqjyya4o6lLI3rqI1VjX0nASWVvRa7/BGIsxMxFEx8W5fexxpDwLGI31XcZvFbgaAiykCikmFYG8UZZJzFDQ6ZBXap/uqTRSKmlZ6yLO+tqZZ4bj12AEASQf7e02yOjyVRyWN8aXlfXCjcVwUGcM2nTth1RgReWjeWBhLy/sAAHX5KhpTc8tphjEFmbd4XdNAOIiO2c1OsKOF1ndrexX3n/rQe+wGM9/6vN8/d4/in9ee5m8e+P200XBqbpZ61+LyfjaqaO75M6IuD8FE9/bl81j9sxl4qmUujynseiwnY+eyOJLwzEAFvtupo6Viv1DkUzIz+WcyMOeGN9F94kbAB84kslWCdKaSq3TmUvoq1pHr0IjIlvy93Fckv/JC4+yAS/d8fg/VRbho0uQP6M9tba1W7wz5xoiVtVh0e6pFySeqLm+9z/WBsM/3RdDBQeOSEFaSr5SD4UbjJjIbVQX25B0SzI+iu3VtcSsWl/dbkbNZN76FxhknzD3iqIjH44dvhZXcfwG238KK/mPap984mDKJlpM3Ax5MNWEdAnfz4vA/yMTySpUE+1x7ORcx2n60FPF4CGtqjuBnbaXGA0+byoFKQgVgQV2CXm0NqZDVLAFwVVk3GldhV/IeiERi/2yGwUqK5kaVV+COwk5m56kvf5EpM4mP2Y3GFabacyxsNHmZGdbg214MOCpxmwypFQWpitrqmjZLgLvROL7RrhK/3pnMSylcpD7kc7jSqmA5Zt7tRuOM+4XrY1WlvtBIgdGRiQfnPw8vpoueaWWIlBua16ByRpfzppYGPN50KwjGEzRMLG8MzQlFFfLiFuXqjo4ycwmNRDivwxsN21ERva7EUuXFIlhX2ySKFYl3joeRomTrtry6C/AdFTnSc/xnFbsN5GY0zMqnG41bylpQuZbeNS8WwWgyU+27pKu8pL7ykNN33WgcE2MRzklB3L4Q+ZKzvJgmesb7UzSi95Pnam1xq8KVxyJmrnW//aRKIvxiw89VQcLAxSUvQZnTIA1KbzQMR7C/pCiHdP60Z3Frq/KO/1NzDZypk1ioyQ3IG0drLxsnEsciaj5FAjY33QfyrpOSno71pGH6SZ5H+f0Tb1xuYCiegy39lVhTd4S9wdZcx5RnVcIKuEKwHvP6kmZrTZ0M40xgIy83zrInGNnZ2NzI55Q8/nS+dwwWWfKM3+8I5VrkBKjfmfUnTzjJk6TvWgw79EySfdJYZdk3avqlCA3U2O+sOWLki25LZg8if8brqjDiaBgtR6cDAFqGp6k6CBredF6nkFb+yYgi4oM7CjutKLHafxqW5SgsO8vPiRAQ8nmP/LDpNvM+T0UjEPIV7IUM7AB8zs1TUTKqN0DOj2AF7LU1zRakZ339QbS+dJPKt9Prs6yyG1vbqkDF3Zy3MyHzkb5QdgCPzP+p2usB+m3pIf9MbReOvnK1wuQ76r6FB4biySJ/9O5Vhd0WxIsrzOuoh8yzS+eJh+srb7t45vkiKivn9KjnToYUvFSMgdYWANeYkdF5AAyx8uIhlTdRpCrES+cFko6i8U1DhWuce/QDh99BuWxsZMgovzaoyYC/ffaQNWf3lh7GU0cabCZCBzj22pXY3zebz9ya2iNKZ3GAC75Csu98sj+/bb+wfeqNA8q0d/PiillHeE69kQicSyZwQ+YHab8bn1CKFlvqWvEkZZEFg+vbyncswrh5KWxlvgBFEUzirfr56irFdLRyTg9818fKmlRvj/SKAwCSjjaAdMVV31EesZGIqqCba499dVU794MZTqi2gVaO/657PpZXdWF5ZTe2t1daMAtAsR2lUKFqZW5HexmWlvXxzy3vp4ZYuTkJk8PhOYAn+Nd9Y1Rta1XJb5RAvLhUsf58b//vGuU+L45lZT1wEqkHvnHGCROFoLUh75wsApYmSYsTwTW9HkOcRGI6eUSDiqybk7CiIvAcq+KyWnLBbqRzNLxzEeWFkn0TfX+uTdEPOlMnsbSsD3cVtzEbh0x6pdyKn/QaxhLLG629/7KSKvXXCXkKvpOZVIW+9Fwws1JM1c9YWK6U5LXFrZaXl5RxGidVq2VFnQxGUZiOExwdlWjHEC7KJYlFcF/DXo5qfP/w71jzIy/5pRW9rIyT4u/mJEyV2xxTlZvmnyAB9Cz/owwL4nd/wwssB/Yfn2EZPveWHlYVV8UFT7k1ck+tqT1i+qwVNP9MhjlHBGOSCZfaqDnUP4ujlVJpIjYUUgzvLmnhOhQcwRPwJx5zRtJAeGqa+V1PtijlnqA5ju7TtVd8xN5XALgh832GaBGEjeAm8GDOv2+iHkqZ0Uq+qM3BBoAvopRRBQELGpPEBuXFVE4V7+1zut7HeNhEA3zA1VSVFHVzc1RtEzZS9P4ijDpHsnSC6NDxa9lDy2fS9bG2vkkZIoXdbDRZzTfzPu5FVDJytoINkTMIAB5q3GX2CMtH9e+agpMK3uc5hjdfw84AdaftGCyCm61kDed5ufZeXjjzmFFMRbTOSiqmaI2e+1VVHUzr+mDFHnbo7GgvA3wHS8r64WYl4F85ofqtn/l33fNxevwyEIMV7zcByVwye5AjWl48ZMafp6Fm+i5aVHYUa+sMc9u2gTIrgsZJ3MKA3NxSl5Lrw5Hz7IQVXeDIojCUqL85IW0Q6Zw/mXDP0aVsO8pGkS8vFsEl4RH180gSbk4CW/orOULoRuO6erGj/ri+ooyFMFZIefUclRMlfka5bHA0fWrYZ0IBjvjrfnA+oY4KPdEzl9diWUG/ekZuHP6ky2u4urrdirhf6BWSf9sUK9E777yT8vP333//t3UOgk1WSHZzshQfcWeZEf6ab9gdd4FLFbzG/zADfoaIOfm2Z9S6YM/DEcyfFfzswe+mfFY+V+Mit7ZWs1IKD3B8x4IlkRBpKFZFsSJuUrHEQBgcCZOUdG/pYTx++FZj3KSr+qwhSey9zwoozxJjHajDkPYZ2kPtxF2Fv3agBLXgMm+YfhKHemazwkAVigFwMiD9e+WcHmzrrmBIj3qhg6qik2g/eovNvDARYq9yMDnVeBV91BSeVPhszee+trgVT7U2AAkHy2u6ONrATEe+oqx8ZqAC3rkI5pUNo+nENFZGVE0H3xojAFPdluaPCuCJfUKGi1xnAKi65WW0DkyzLiA3yyRFn29PwfWtPQAo3PvlGedUkp+A/Fhc5kkX1139AV5/5yJMv+ZdnHjjcu53Vs4kRt+OMqY1yPkvG9Uj4L1Da+I5iv5QJkoKnnBvJIJF5UcBAHu65qTA3Xg9qJaH8FwyP72AbNRNO4Xm7ln4nao+9pjxOpBxcDYDftgznOrn9Pl2wGfFGw3z72V/eG84PhaUDGN/72zrrPhJF07IMxCUdOcm0B+eM/pbVIW1iidmeIotJlAbhOYof6au8HsuYpLLCdpF8z8eNt5HwSq1rKKHlTj/www4F0/C/yjDSvYPykhr/0Hh+ptOTOPPS0M1RW7AjozIsxLKjcNPOryHCPe/vaPCMuY52dVzrGrRUm7BUY4Iriw+mhrR4j5oObho1jB29xYaBVwY1ta+FHURpIykc33V5Wfw1rtTzWeTJilbwkjSzQOgPPN/1z3f4vLn+dPVwtWCqXsDIrrGip4DNphT9lugUnq6Ghg09uB3AeWMoXso2HdvJIL75r2Axw7dZuYr4Sref30vsMyn9Qty9p8ThlbgvuJ1D8gS2hM8hkBdBupfzS2n0frSTWY+fQeIeJwbISs389zo+h4AUmQx1xMI7D3rnAdkuLzXrLyjnIRVSV7K3Dk3vInrcj7Crs5iwPWxsHiIK1DLOVpR0Gs5CX/Rvpe/T7ybxGt/8hcXXE0A0vFu/tq3PlGdg1Nf+/IFN6ZP2lzXxVtvvYUrrrjC+vkbb7yBadOmYWxs7OM/89fVuQu1eaMR3HDVBwqXm20KIy0sHAY8wJtiBAYlgrJ3W3jaKm5+hS/NB8r38sGlzzD+VjdSmigczLR+gPHABr1NAOoKTygvkVZIHK3cBRVGem/LyZvRcvJmGwNNSdYiofelscusPqfFM5KX9lzEgoZIjzB7eXQxFRJ6XC064doeeM9hj6tViEwL9EN9s4yyQv3LTnBkR3qltrVVsaAmFhQ4Ollb72SKuriZSfbAyTmT8AU3J4HWgWlKQOvKkE8daQB8YGlVr6Km1GPncTkmnO3mxXGo3ySju7naA+34uKfWxqly4iStu45ySMUdQMo6A8AlGaOcrOlmJ1Ty7EQohUmFYEy0v5aU9QNh32JO2Xtspuk/XVLCq0fPevUlZRAcO3WV5ZUfH83gfYUMT89NgKVD92HPi7MZs82KELFzZCZtz7Gnqld7MaVQ7emegz19BXbejaMjGHSp+bpyKeGbfXFRU3LraBgtJ2+G7/qcgExedtlfXxvi5MGDC/YOm+ifw8XWFsw4zv1hbHVOIsUw4DVPuAzFsCID1AeRiyGfSW1RyaAyDEaFYQAow2Bc7d9d7cX885IbX4Obk8DQ0HUmX0jLBSRcqxKqqjysPKjLK7r5bBH9rjcaZppn56JJI+dkDlZM5HTFIlil628c0vh/LxbBqqoOC6PP8kd7tOcVv8jvI0+1ivw48LXsWFPRxnJ4e1cFzyftG8odccgIBazkfYJNbDpSz9GD8xoGOkrojYZV0b2EUbJJOSZ4qPmSY8lIwqv7GYr9iw2Dc4ZyVCppNYUn2Vss6+rQ3FLOzLa2KhtySkshcohozSUTl5udgKOjKTQWWssFM44bb7io7ZBi0DmG0Ut9wHSjIPcNqwYJnYENZQfh5iqKT1Z6J0IqKZgMAF1RmyMbaQwDN89EfBeXDZhfalm/puaIraRTxIciv6NhniMvHuI95sVUwrD/UYaBKNUcgTMe4r5eGTkLL6Yq2D9QvtckLuv7CoB1p27rqLTmWOZmGaeM7v4ZQ1AiyUzk/D8zUMHnZ0PDPn5u//D1yjDQjHP7j88QVNNKJv5ZxW5sb6/k6PrS/IG0+/6Owk7ed8sruxU88gJH4Pwm5xz84Ac/wA9+8AM4joMf/ehH/P8f/OAH+N73vocvfOELmD179i9/UJr2qTcO3Jw4XnnrEuwcKrRoRvcfn6GE56TLWFBq5B3hf0MpoCTUvnvo9hTP16bmBsuTRL/ncHB2gsuoS75zAJzkCPz/2fvzMLmu6lwYf8+pqp6qJdnGNp4nTa1Wz/OgmUamowg5+hQZIaMrR9eOY+OYzyHhckNCBhJCQmyICVFwdHEUCwVFV0EIRVjIGnueJ3W3NVjGNmDAg4aunqrqnO+Pvdfaa58qGeyQ308x7OfRI6m76pw9rr2Gd70LaH/xDoVJpd/NmmaKVeqPNx7WPMn2pSwTlYihgxKnDr2Qp9hSZCNlnS6QGYZSsjFvWHm8Ekbxobmjv3d3VJrkO50ETMoT/ZEKuRuNY3VFLzbXNPPFK/F/UlmT82QpndJYkbkLgqJ0d3cFjz0YEmU+d/3OLbUnbAMiR9HH3pX9U+xqMwVwuAKvENqNecO210cU9RpLZioO8stEi6j6Ks2z9C7dV6S42zP0nmRvMEXRZ04bBi7hGaU6EJQAmOEq4ywzZPpYO/tcIHdGJXvfk99vMMswSpRVtEf2P0cpmV5MJcdLhRAQIX/PURhvzX7BuS1k3JBi5Ph4pk1VIiW8PpKOvX6Or7yGel0bKwe4OCAALCsZwZbaE2a/OGbfUmG5dQW9Zt9LPPuMuGUIkGd5df4g192gi31NZQ8O9ygWkQfqjSJEsBVvPGwKIUbjCgqlmV/caNyCqEmvI8OvBBkA7dND/Tb7TX3haVXYDUKJctXnvYkwek/frt5PUSnR/xSPvaiWvberFHfnjTCUwZsOqT68nmkMklwDp2EDSBrijs+1Xqi/gC7k6AqKSM/Atpykg+Yzs5WB65hxr6/ugBuN81n45lA5Y8uV/BCySTg1LNhYkOHMd/BQ3VE7siscNQRJI0OysWwQ/sUMle9Dv6d+03sowTgat5R2ymGTxfGUHAF/TxJItA+pKAtHLMno0fNK73ejccVyJSCTALC2uovXpTFvmA0ZepY3HjYsUWK8btTQm5pfwDJE5XmxChV6JhF9a+8SNmCoudE4vtr0AetnXkwxj3nxEH6//CAIVns5Q+36ay9a/QWAg92FjL+fM/s16/eS5IOIR2StC3UOSRk3Crxz1TRHZXd2VsOZOa0U96SjEsGjcezrKGV2Kh5LjlDGAb5TgVTHIeXquTkJLs76PxafsOYrHSZeRbvVv7koI8B7ialVYxFDVR5VML+/6V4J+FB5WoBFVEDP9sYV5I3yYnJcVXPnys85eJd/3gPtySefxJNPPgnf97F161b+/5NPPomtW7difHwcW7dufVfPfs8bB954xKpPIC8eI9wCFKXROF8EsoJgsGaC9EitqephRX1tVRcnLZL30hsPY0zzYrvRuCW8fB32pES0bw6VW5cVJw5T/3IS+J2lSihuqm3Ggrk/sPsVM4mx6hfqQo64AkYAGPhFNK4SfqnarXi3H7YZIFYUj+Caq2NMV0mJw1ZY3TEJjjw/5SqZbP9IAbM4eJMqj2FNZc9lcY1WtCKqWWz0/5cVj1oeMOkJtRQg8ewD3UVWUbltrYuNN1r/zM/wVM4F7QGYC7ShWF243nQI+3uL7D3hmDXY2VmNLxxbZUePYF+AbnYC+zuL4UbjKM0/p36Wq7C/cHxMBwrJwVFRAG8ybO09YkBanT8INyeBJXPPwM2NI8dVkTAJNWk9e6eJuoj2reHi1NoUWtEMGm10kdBYKQmQYA4N80dNtEgrFOtrNOOPNiBWFIxaz2Nv3kRYVboWFzh9xs1R9R1WLRgCfKTU5zh+eg5ej+da+wVQZ1AxEGncsoxs6Wf7FzLU3Oqxbm+rY6pMGb0CNNe8jgw+3bZEVTcWfXVzEirXR3jHoVl/aD+vLu/j79B8PtNerz6jk7Qla5ZsbjSO1rN34ommlWqZyOtInyWvua7NoQw5I+O8mEq0ZCXEN8aSm6PqnjCzDiUkXztl5OZ4WMErhBOEalOkKHg+OMeHiztBJ9KK80LG97b+OqwqHeDnkHOFzoJ/MQP+xQzDYy90KGlw07tTIjRQUMytrcusOV1d3mfRAUuc+YGeQvhhD5luAiFdDZjgO/VzzhojTEcxyOAjqmjCzZNRTMY5KXtsMBIExjGGTn3RKWaecnNMrQYApvJ8VPPlZyWsu4JoPevnnE2pm2HtJzoHoiglPAcOGS0U7coxxp90JMC363TQfMvE6vXVHSmsfHfc+AYA4MfxWSkQXMA4W7yJMN44n2vlDAFAQ9lJNkTOvHgDvEuqfogTd1XdHICdXtb9TvKXotD67uJibZNhE2WDUai5hfxUGTNuUyrTXHvxELa312FjraHP3j1UynvrUJ8qqvnPTYv5OfcWdAOuz/uH/payQJKBWAnJ+gwuLh1VdWdiisJ77cI+VVW5ttk2hCk6RHtD78udrTXY2V5jF8W7Utu7iRq8R4yDc+fO4dy5c1i6dCn6+/v5/+fOncMLL7yA5557DtXV1T/7QWnae944IKvXi0VMMpPjs4IBgBUY/2IGsxTs1dy+Upi62QmL/UUeyr3dpSq5LFsJ6MN9+cpzk6uYMGSYfu3CPoZ2AGD6MTcrYQwVYcBsqG4zIXCtBG/tXQK4Pp4dqMILr76fDYDa2ef4smFPYUYSm2qbWZmyipqQEkcYWs03fmA038B/YkZIH+7Lx5tvRYGEy3AVDgOTghyMMlyKsJLFY46q8a4t7+ZckBRFSL9fJnoeGM1n5elonyrUVn3XS5Yitbm2yQg9HfqV82cpFNq4obkGACQcrCvoxbdbNb5TGJeHT81TF3dG0sAWLkWsCrPyvTJ6RFV2qZEH0bsUQf/3b7HZbAKeo3vy+wHfUfzpScfAvsbD2DlYgU8v/Q5Dl4gPnC/IQCNl1Hjt1c82FbUbT7eeK1LUALX+uTMmbQMnGseONkXVR5dYSCe5eTHFyASYSs672qvgJB1ckxHj+XdEwR6CAPDz0ygz+0cKAN8xyfTQ4fAxtc/uLei2lQGm9jM3gjQI3WgcfsjH4b78FAWbFXXhLZbNzU7gQG+hwXIDDEsgg8ZPuqoGxqTxLO/rKmXvOaBqFrjZCQW/EImpKdE0iJ/pPfI7yw7xz6marFLEIXIJYCsvGUkTIdWc7RZj1kTYor60xsxKIriP+7uLmaM+2Bgq55uoCBXzIqXZv5jBfZNc9VakUFcQ5ygegHUVXSnrQmxElLciZYMXiygDOYAP39dVqgwogp5Ar4nw+O8eKkUyoZm89Fyd6M+zHRNi7x7UdRCuDsdYK+GIX64qGmatsWsidQj7KL3jFUU0IZLyaY8Gma+8CdthwJHIqRCaz8y2ogcA2BC2oLCkLEfjWFk2aB5OhjvNeWWXFWmn/gT7RJEdANjVVoXrMxQsh2TlSz96H4DLV/rlvIbsBJIJFw3zR1l2ASofieV8VoL3OBlNAKzI3qbqFhsKR8n8+hmkDLtZCVPHRhiM3niYo5oPlog7RkQDAV13Rjva1EMc7GirteQPoIwxht7qs+PmJFRegecwzTb9LefGIgPRBfQUy506y81nZuOQ3iv7e4vYccMkKrIfYxH4vsN5G240joeXPA83quo7WDWUrsT2Sxw5oHbkyBFcffXVv9BnvueNgzX5A0bg6ubmKP5vK3wf8uHMnMbujkoFj0gYgUze39X5g0yFJhVnEmBPdDcohUWHSOmSomJTfLCppHtM4eO98TAbJQAJG/Is+djZWsNl4zl0LULThBUljyI9Q4a3pVBgxQRQRa60MfJHlft5zPcXtyrhPBUyHlBBp0ZhaIY4iUbPXlPRy14166IX4ek9nRVGySYlYNIorQAMDpxfoBS3FSXDgOOrJDJtANAznISo9eCB52pTUbsVnvfGw6oKdU7CGBUhXymxGi7jZiZN2BjKE7Vk7hnA9bGhUkFBqCASedFpj3gxXbRoTBl0lqKT1EmDEZ/rHNCekPv1vqIO7OkpZ4iAG9UVs0WS+Be6dJg7DfMLvfOR0mPwJsKqmJyMHmjGjmc6lOeaqDcBbYzRugmB6o0rilsJV6FL7LnRBawI08Uvx+OHPew5WaL2/GRYKXuinoDEO1MLKkRuNI7dnRV4eNHz8C9mqAtVf++bQ+WWMkhJlStLh8x5DRRD5LVAwKMLqNC/gAnQZxpKTzJGur7A5HUQTh0hnw0YPztpWK5mBDyMUcPd/8rkNQAE/C0Ajm0sG7Qij148xPvKjcbN2IniVdOjEgMY95+iaTLfR5xDNzuhoCPxUMpaWOtCMtSHSixN83vyYEo2L8DuD8MRBQ5bzhFFK4PV4CV8aUtxi4HZTYSV8igw7N5EWDErjRsmK8uInGHvCVoT6juzjWUmsbmuiT/HEKtsE1FYMe8U9+upnuXsNPGmQvyOp1uXmAgseZpjClYIH+h96VY9OYJyWSrOk4aeFwm7Yi9DVzKTTHvMsmc8jCPdC7GiZNgUtxTz4I2HcbCnUFdtBkMMN9a0wn8rA3tOlqD0jlfshabP0VzSneE7uDtvBPXFp7jezXOjC3gct9+iCqN5lyJM13tfkYKS3Z03YoxdAAcHFnJ0i+aAnlM7+xwaywdSIt/b+ut4Pre31jMjnjLMTV+pPd20lH/HidHi+nkrngM3R1cpd3ze2yoypj7zRNNKJVNnGN2C9wfAOUXrSnUkxfVT0Aw0fxtrWllpv+w5jDvsTEhxfAFA0sEnyg7zu2mfeRNhPLb4oMn10wYWAOuu2t9TnP69V0r7lXGAZDKJbdu24aMf/SgaGhqwYsUK68+7ae95tqJbvvRnCF8bsrxL1iHLTALTLsMxJNOC4wJJKpQmDq1/MUMlMIZVeBguLE/KqgVDyhOlBdmKeacQDU/h223lqYxDAu8rBSr9/PfLD+JvulfCmwhjWdGoYSTSyVnVd72E1v65piKiaws7qUBS/72JMNaU92JvVykrkMEkSlLGVpYPpjDOuJlJbCjswo7WWjDzxYxUBiMWwKJPFsONEGZb6o4j7odSPBvKCNJbNMC8Iz9DChPTu8rfT4fUGucaI8fiZ9dMHwyrkdz8aRgdSFnYXNWM7QPVZj84ZjxyDVbMO4VDffl2NEevA42JWFEeKT2GFyeuU4blTzOB66asdQTA8IMgG0VwPlYtGOJcm6CnNDgPaxf2qYRv+RzBvEKfOfhyHsYuZdnr5+m/6ZIjli3feP8ke5PF0KTHnc4rL8cS/D39/6HS48x+ctlnTISxrqKLvWesPIhaB8TCI+eKjAq5btToPf7FDAOhgoKQbG+tx+baJjzTXg83O8FsRdRqZ59Dc/+8lCKHxCYi37GluAVPtyy14Aty3d53zRh++upVhmDAc7CxthVnYtfhrpzXsbO9BvVFp9B69k5bxoR9pjOVe1aueWPeMPYPFgLTLq695byKGMKcSSvfhhQp0fe1C/uwu6vCZr+R+1j+W8gcZnTR8oTk8t15IzjQU2idR9r/TtKx604EWWDIOEnaZ9C/kAFn1jSKb38VvaN3pJ4T8qYGc4skXEXv/2DNB5Ugap7l5iRsphy512IRrCgZxuGBBWgoHlYRSn027ivqwPaOupQEXX4PNc3uw7JaFAFszBtmQz94jpglaCrEuUGAgrNkh1SUh+8lwFLQ5doF1zF4JuUZk3Il3blNd+6XzT2NG7MucK0Yli+S3S7gYQc0U5+uayP3Ysq7ArI0ZQ8JVqp0/eb8O89JK7MAxTzX+eLtvD8klNONxpnVLvi+dLKH1vly8iT4Hdqr1v3r+thU08L1ktwsQ9ryQP0x/NPxZfAjF/Hyg39+xTH7kI531x/+JULvkK0oOTmJF//ivcNW9PGPfxzPPPMMVq1ahRtvvBGOYyMPnnzyyXf8zPd85AAAe78pIdeNxrGxplVZ88QvPB5mOAYdKt8DK4pURt27pBN/XZjwf9Jh74sXi3BFThKgh/rzsW+40KqKTIdzS+0JCxNP1TgJg/o33QpX7GYncLRPYKy1ctX+4h3sHSSP5OPlBmZAOG7LUvYc7O0sM5e5UJJkc3PjONhdaBkPW6qa4F2KKCgJCaOQbwQjvSIWwZa64/jsim/ZRpmjhLWaVHC4/ev9tcwNL0P71F8ywnhtJJe1rwT5zjYD1aL3eeNhrCw8KeBTjiVwKSGQvbrRuEmejUUsw8ryXGclOHfCmTmN9bUdrNRIRdK7FMEtWW+xsuzFIpxER9CjDYVd/LskHI44sWEwpuAnXiyiqhiTYZCG1Ua2fV0K29pQbMLC7DknXHVMwQH2nCxhD6WfdE3/xL7Zc7IEY5eyzDxp49idEWfPM4XYKcrhTYRVFVDxLMKG+xczrETydNAE8hw2lJ7kKBu/H2D2E0tBkXsHADwHmW7C5H7oAkTyOazgS+92QsEpVlf08md5ffU7pGHgRuOKmCAaV3tDr6nvg4v0AUDzwLyUS9+LRRD3Q9hUqxiSHl10CBsKuxR/vX4fef2kEvDTH88ykA/fARxgR0st2odmI+4ruXdt5hhXv2aFgTyRRP0p5ormZH9nMVdUPz/8PngTYcNS45u9RHtldUWvpQzv7qjEJxd911pf9lrGInig9ji8WMQqXGVFc7VTgBwiz40uMEYQNb3Xfr26x5Zf+rxQYrUbNcX51hX08rMpObf/+7eYr1Jkgao3azlJnm1EPNtJoZ0Csl9uNK4Mf2Kf0c8lmJJ/MSMFZnm4X9FPHupVcBnq77MDVSl3DMFbZXSF55DILDyj6B8YzWeP/KoFhuXH0QxiXiyiGd4MfOjQC3nYq6u3W+/ShkewD2o9wKQIMrcLAGP3nWlXyZqpENc5uCe/36qjQntyTWUP9+dwX76pRxEVlYA9h2UcR7FoLWO6UKYPbKxqgzceZvkLGJkezHmTfZBnRjZyFN5b0M13pJLpqf7WJXPP4L6iDnS+eDsAlSdmWJrMHO7tLON+yQJ7G6rbeGyrFgyx7PdiEbT0zGdoKAAbQusZw8CNxtkw4PnzHWxvq4Pz40xsrmo2Y8tVkKKUfIsrsP0ysxVR+9d//Vfs2rUL3/zmN/GlL33JSkx+N4YB8EtgHLg5cT5Eh0/NSwnNUdEwVgIdnSBL4Vo9Q6QEbKzTOQeykmc0rmgdhceZfufFIjbXdm7c8C7nxvH1/lrULjzDwpIVQ9cHIp6iUAU4lyBFcQawuOgFy9vxRHeDSUCLxlG78Iy6KEhQU8KwDimT8PBiEcYt8qWaK/CUro9tzUtUbQj9LjKCmIkFSpFzo2psf965ylLo3Nw4xr0Mo2ilgbeQksPf0Z/bUnec30G0jgQzaCgetpII/QsZ/L1DL+QBroZ4+BpeQwwWLhAaM8fAGw+jvsQYkeqHMLAfwUgiL75dHZXmMhEXjTtDQWtYGId8TqK7O29EKXMdNbxHctxpsw70DFHc7Kme5SaSopPFH6g7BryRyf2Hq2BKK8sG4cRdHD41zzwraABG43h4scqFKF3wEuD4SpmdsCv6kiEV/r4yDh4tO6IuHuG5g+uz0eZNhRR0aso1zBgRoTmSTRPyBaWp8b5642F4UyHsbKvBHTe+gcOn5im2Gwc2tlq821ziqQbTzsEK7GqrUhR++pKE4zMTkUNc8BlJBdnSxvbm2iZVxVScOza6YxFORmbFifag9tiSA2JNWS9qC0/znNOzNtU2c07LRDID21vrsWzuafx971JWhPyLGSlGAY3djSic+LKSETxQd0y9I6I85K9P58IbV0nVBOlwo3EgIrDtnqOMPMeGct2T32+iO+NhJK5R/yaWGmKYIm8noHJBVpQNW/CwJ7ob1F6YDGNluSngtrGmFU+3LoEbjWNHe401h15MQ8Eudzs5JnmUZO7+kQJ4k2FU3vV9nlc3GjfK1niYZcKu9iou0uZNGhz5pxb9hzIoyvuMnHbM3jrRn4e5N/8EzmSIYTpuNI4NNW2WM4gNplyVh8PzLMZjRZApn0XIQcrfuLegW8kJMsKjccD1OQFYwlVlAvbahX1WboY3qRL9V+cPYl9PCc+TH9SSRJGwFfNOGTafnIQt81wf21oXmzHQmmnCjxXzTrEcYvlP9K8ZnoEG6f27p6PCyARNcOFNhHWVXh+5MybZ8JDsfcTIdPjUvJQ6InJ/uLmqOr2TcPFUi2BOIocOGWphz3yX1oueMUPA+YRz4JtD5YDvwH9L0JHCjpYfHczD9q5aXusdHcaRtbh0lBnqWEYEGKp2dlaz/kCQaDp/fpZhlFPRIrme+m+5zJRjNxUCPJVb479/Cs+012NTUbvFnuhG41d+zsGvGjIyMjBnzpyf/cF30N7zsCIqgva2oUtddOlQf74JCaaBYjBMQ4Q84fpYV9GF3T3lhjtcQIUsiErgd25U0TamhdL4wKqKfuzvLrY97zAeC6bRE+FQWbxMwqQopDhv/g9x6syNHP5cU2kKfQEmlEoh6bUV3djTpRKkGspOsqIZhAfAhQnZy0JAFL6/mAGfhH7Ay5su6XRTUTu2D1TDGw/jobqjeGXyGjacrJBywMNCLW2YWM6TXEMZnpYwkqmQYpkhOIK+7N+azkHn0Gwz1qRjoBDyuVCeuY8tasL2trq040w3Fyn9TlNkaWHeKzg5ojDJbwepCb6DfybedTmIAM817dkg5AZIgW5sqm1OGasM27s5CXyi7DCeaFmpsLKymFqa9WosG1Q5DAG4QBCSwhAOUfxKwq+4LxMqx+T3lv8HvnjiQ9YziL6Uz0CgIFS6Ob2/uBVxP4Sk7xoGHd2osBq/YyKMLTUnLGaX2tnnOE/Imw7ZicLaibChqt2Cy5EcAqA8r5GkvTaXgwkKSBIVgVxd0csyzSoeFXxGYC69mKJ0fXM6xxQ50314tOwInupZbhc19MSZErVQJKxpQ3UbM7XJObOU0xlGNktIESnCKXsXMDC3QGFC/2IGfmvxMWxrXWzLawf4zOJ9+NzRD7ORZ51TKhqnc46+OVSe8m4JB0vpV5ozt7ayC3u6yy8LjaEcFkpoDn6X8iOCv4Prg+F+SZWndXhwgQU/sr4joKkpdxmUJz8ET90JAQiOhJUBKu9L0qYG10u+kwzR1fmD2KuJO9LBYS8LpZS/A1LkZxA6lwI5A1LWKnh++LM+oBhyFJRtbWUXFxejvj1UfwRbW5alh6QKGBcXIhT/tj6r966cZzc7oeZJG76l+eesyBd/X0D05PNS9nNg7j61+D/wheOrjNNwcgKvPvbZKw6CQzre7E+/O1jR2c+/d2BFf/u3f4sXX3wRX/nKV1IgRe+2vecjB95k2NDHQYTe6G8tdG/JeiuFApOfob3q+0cK2FNBzc1OKFxtpmF6kJRvbk6CEyHZKw5zYLe31VnvWjb3NHuZOYoA20PkjYct4Sq99jJedqw73xJ8WxYdx5kfXmcl++4bLuSkSQ6jA+wB+ul0rtolro9oeIrp7iQ8QDEuqHesK+i1Qqvs6Z85bYWauXCa7gdDjaAqVT7Tsojfs7VlGaa8QMjeV94xhFSUgzwnG2taDXxFzwt5muQ8OUnDsc4F6jxH0aPSXMZdcJEbDd062FeAqzPGLX56Lm5zySiMAABfeZaeHahiTzP/Eew35DVKZzxQXwFwFMqNxjHyyg3McgWAoS+bitotVg25BtTkGQgyS7lRwykPKGWA+5UI9ENfsJLubntrfcozuR8ajvDEibvZE6p+AU5qt85WToITveH4FtuTNVc+GApGNR4AZTS52QmGUTTMH4WbncBv1rXjiyc+hDV6zrzJMB6qP2IZ6dZZ0J8hSKDs57amJXh2oMoyDIgJyZmpWFO8hIFpScPAGw/jxqwLJkKTEHuS9p3v4NrImMWGxYaBMIiDtTruzhthZ8HGmlaOdsjow4bqNpOTEo1z4qKlNGZ4JuIZcCPtGy5E85nZWDHvlNrzGmr05RMr+Wzfk9/P8sCLRThi4Y1F8GBJEzbUtKkkUcdnJRuuiAgJaAxDIshg09ELP2LYtXhuYxFLDtA+kYa7H/Hw9f5aNpI5UT87gevCF62IXWP5gGEtC3vsbSZGMKmASTgY/c6iMybZKc7Ht4aLTXGvskE0lg+YsRBMRN8xDMPSSf+y5oCEaD2++Dm1jzKTcKaVQXa4L185j97I5Hm5J7+fo5Ub61otWUZOgZVlg4DjIwRP9TUnwTKH1gmAdf9Q4Tc5bjcaZwIC8wswPGdvdyksel0xt0EYFiBkDOWu1Z4A5z3peWCoGrFyeQqyu2TuGTau0hkBD9Uf4fvOglZp2eWHPcDXieuOukO21J6AG41ja9NyNXfTIb4PGGaVsJU3LxZR9ZZidsFRaRh4sQj3fV1BL/a2lwGOj/XVHeg9dbtVgNC7pOvIiKJrhpzDseBbFuRY3zNfOL7K/Myz5/1KbL+ssKK1a9fyn+bmZuzYsQOzZ8/G6tWrrd+tXbv2XT3/PR85uOXv/hRuNBOIuylJqCQcG/OGsb+niJOSr80YA6Aw1pRARK1h/ign6K6v6sSu9iojTHXxsP/oKLGS4+h9q8v7zMWuPfPrqzqZliyY8ORfyEjB/ElvDOH8L3d4f7/8IL5w4tdSvb7kFUwTHQGEx8mzvTwcBfAdOAFYFXv19Lg44VEmx5F3PZiQdrl+iIQ6/lnCBYhBSXhCAJ34273Q7gdgkrYGUuE1MqLBY9e/9y5FsLGuFTs6atBYOogD3UWoLTyN9hfvYE9PSgQlXbIzbC8YAHx++b/hDzvuSbtuadcDAeWHvJd6/LwvpWcqMD/yWXB9ONMu17HwxsNoKBnGod6FcLKScEI6vB724GYmsa6gF6+MX63GHphbVm71+pbf+TI6R+6yqmzTfMoKxunGKMcp97f0ZG+saWX6VC8WweLiUZwYmq8iB8HIUDDC4PhYXd6HiJPEns4KrCgZVqxbMjlcRFUay9S6w/U5QsT7I+iBFB5QQMmKg30FcDI8ns/LOR+CnlE5P8vmnsbhgQWW157WEGGfoRlWhOkysoGVBDqfgT7TZ6R8CEYV7i9uxdnx63C0b4E1ntI7XkH3ybtS5p2TMEVU8+0a5y/paJ1FqkBRvqD3fTyMdZVdmPLC8HyXk28BBbkK9pXn0fU5MgHopPCucrXWlFuWZRJ6AaRGlqRsE8+sLzytEsHTeKrps+urOxTvvR7bitLh1GJkNCekMNMciORmwI5CybZs7mlmlgt63GUEun7OWTSfmZ3iMf+jyv34885VuDtvBNdlXMILY++37kQrMsUPNu9hQoY0v7vm6hhef/Uq6/tWxGo8zAmzNA+rygawv6fIcrTRHqPxyIgXRVbprHM3NFHAqgVDqi6Qb0eVrAR3nawdJB/htQn7WFPSh33DhdhU1M75aG40bpLBAwno9Hspuy8X/bXeF4uwHkDfoWcAsMYs7+aHSo8rFiKK8viwIwv6TJHe8fji5/ClnhXwxiev6ITkOf/rLxHKfIeRg6lJnPmr/96Rg/vvv//n/uzXv/71d/z8975x8OSfIXxdgK1IKqyApcxRo8+sK+g1BkAaWIr8/KeX7McXuu7GluIW/NOJZXBmqurGlw35kpCXDD6C6YXD4EK4He5fkKKA8jPHIurSJ6VMK2PyEiXFTVEPahxsAKIDKA/UrPA4V/iUbcGtr2HklRt4HBuq21Rlxah9kdP8kFCiPm2qbzbCXirjl4G4eDFF+/kbNZ3Y01/GypC1lgFl8O0UsXVVnVxZlyILe3rKmTliXVUn9pwsseaDmJBWLRjClBfGW9M56D53m2LLaV5hKaBWPy5FgIiPxpJBq2gXABtuMR4Iy2ujKCd3CuNjmdbFCRjIWNAAkIodGTRpw8oBWJE119I4COyN0CtZiL8vYSuPYxE8vPh5fLXpA+Zdl4EnyP2wrqAXuzor8XDdYXz1+AcsaFF90SlckxHDvp6Syxq/6wp6Lb5vyRIG38Fjiw/iyydW6skGx0nf7gIOMpZ5sQiWlYzwz+7OG1EwJ4IqeKoq7beGi9WYHaO80npddVUMb/5kJvPIAzAGVdgwzDSWDeJAT6HtRLic4azX7ZqrY3j9R7NSDTG9XmsX9qmCbDmqhsJXmz6g5ifsK4fJZebCWvu3UVrYUJTQh0sRNFYOpOx36reiRDY/k/0luETas0tFwujMaOWY2Yoc3zJ0pBFlGZjSYAwYVARje7z8EE7Gbja0vFmJFEOqfs5ZnOjPw5a644g4SXytbxHWFfTizekoDvUuNGNLB4MJng8gRX4xm42A3XG/L0WwrqaT19Yasz5r/sUM+BEPbrZizJM5d240bqCbAeP0kdJjKVWO6dkpfczwsL60yzJwLEeLb9+vQUY5gsWlgxP93Ipy0sHy8pOqBoxjn28vFuGzv766Q9VbkfA5LYMfqj+Cr/UtsuaHlfrLsBRZOoU0pJ1UB4j87Ip5pxSEWUPTaG+szh/E3o4yEFGHBXUTLHCW0RO4F4LRD/o3Occ21zYxvXRj3jDXFKHP3VvQzXc59/1KNw4+9S6Ngy/89zYO/qvbex5W9MFSBSkIwhUAmIucCh1ZIT31kd1DpSYGJQWP/hELk5wEc80/3bKUvTGSK5sKp1CSGl+8VAAqGrf65iREtMP1cfT0XPtn4v3s3dMK7qoFQ3Ao0XrMQFm6z92mGDOyE2wYyDHTPOwcrEgxDOhdCc+EQBvLB1RonWADgVyLx8sPWc9xZ8RVtVqoC+6xxQdN2FhEAIKeZGfmNPZ0VqBh4YjVl2DyqZuTYHaqYCOv856TJaDiT7xGvhGmRHlJ3/Emwnyh7estwaEX8tB97jZ442GlEOt+SygPF7PTuRgHuopSw8aSVz4ngY21rbwnHQ1FGR/L5HHRWn6i7LAxDHzgc8v22OPX7yA+8VULhuCTciIMEHovABNyB5h2c1V5P5gFw1HrkrhpmuecC1DlxpXSqZuq8AnA08XbpPESi/B+oMJo/3CsgZWfzTXNgK8qOe/rKrXmyBsPwz9vWKp2D5XiodLjDLnZP1IANxrnBH2ZhOvOiFsJmzwH4yoh2b+QAW8qhOOn5zCrGaA+f7RXKbmPlB5jhZdgNu6MOPZ0KmrF9bUCypVjEu3femMG04YumXvGfN8BnPEQK1vPjSrDf19XqXFcBKgUpXfWi0Xw5ltRbK5q5qRgbjpCo/a6msOvNq/gysSAog/m54q9SePm6JBQNu7OGzHwhRjBjYSBCwBhHwd6Ck0Ct0zQzzEwPPqzrqCXZc++4UILEuLFDINVY8UAw+q8iTAWF7zAY3NmToPYzKSCt766g4tXMjxJOIYeXvy8KgimmZTIGLgqNG6MG+LDl4bHWAQnBuajofQktjUvUYrleBi72qtw+NQ82yCXhbeItUrfvFw7gTy81MeogXFtqtfr64lE0Rlx5eAQ7EJEJgEH+FTFc4pEQ0NFDnUvtOqneJcibBg8uuiQJZeeampQ9WBEs5R1Uf3cjSTtglyOWYONNa14fMlz5hm6gnHKXoVm6dFQVp6PYIV40R4tO8J94jo4IjJt7WWdyE3yxppHvZ+2tizj55Hin+nGUw0DwcD0+GI1NpkHoNZNwaLWLuyDFw+l1AE6fGoeNlc3G3kfNUbx+poOO9rrCGID/TP/YgbP85qKXlWHBfY5ozmk1tyv9iStuReL4MBofoo8tAy38cvP/6/ae7+95yMHX+6qwZOjq20PkeTzdYwgWlk8xFUtEfHY0yc98t6lCB5bqjySLGgFV7vEO3vjYawoHuFQpuUhuhQxVJAB2A1gPGxubpwTOFO8gwGPDxDwKIukxnQwjhQPS8DLAxjPCl3YDSWagzsIl3EUX3LESWJbyxI4CUexUmSbMOXDi57HV49/gD1mNHfM+x3wTAEmMflt+64xuY7vMF0sJ6VOhFE4/xUMjtxmeXSCXsW1C/sso0DCySz8s+iffz4D/3PpUWzrr0tNGvZhlKZAYmtQCZOeuC11x/H1/toUL6XlmfKMoiI9SFIBbyg9yZ5Ca64EHOmxRd9T7EeBOfWTLvyEk5ogJ+AUjEkNQB0AtXeduItfq+5Tnje91524qxQWHc5OgTzRczWkg2B+RwfzOB+o8LYfYmDoDouJhaJsbk5C1d9or8HmmmZOaKdKvrT2gIFTEK+4hBGkiz7RvKUkWeq9v66yC7s7K+DoPBVn5rTZJxq+EEyMlC0YYZReX2rL5p5GZkhVZOYEwgyP6ZgZhkjnHrCiR2sX9mEimWHnMqXzggbkFO+14Gf0nD66+BB7muW5uhyXvZRbMpkfQMo5tL4XhIiJGiqX486XEAuZOCqfQSw0HP0MJN7zXOuEYG8qhC1VTYYxiJwhAsbljUXQWDGAA32FcLOU4vhy7Gok/BBOvnxj6lh021jTyvkr6Wos0LMthZXuEg3FQsjHlmqV+C6hXJeLgtHee7soFSDkZgDaRYn0/Fkt9+4vbsWlZJZtPMDAl2674U289Mp1wJRxeKWrjyDfg7ibAgWjuVpdaiJu1OQ5onoHwTMtz6KEABG5ARIO3/+yDgHNfbBmi7UnIj6PjyKLQags3XGrFgxhX2cp4Ki8k4N9BewcSdnX4r0SMivPMsOVRLK4jF5IFjtrvSc1xDJXQZHeuBDC39T9xxXnZScdb+4fvLvIwem/fu9EDkpLS9MmIjuOg6ysLMyZMwebN2/G8uXLf+5nvucjB3/b80EU3/6qFcaGpynQtAdrU1E73CxFeclebC3sGvOGLeUCDhiqwJeoLOKkhfSDJU1wcxKM9VS0lUb5eGjxEQvD/PDi51WSrBDEJDCfaFqJ2vwzVtKo9bcQ6FYRt4RjPK/jhvbTv5DBVHmy0fv8CxmmEml2AhJffqhHhcstj70WdguzX1UJftG4UlL0u31Nj7e1dwnvOC8WUVR5WQnbWwY7RPpM66IUryZRZq7OHzReuIiPX6vqU+NOOmgsHeT+D47chk8t2Q+iSCXvz0P1R1jZfXM6aq3ptRkx9lbDc6ykSp7fq6axrV8llFcXnTHd04mkfOl4qtbEuqpOMwZdQ4M8ljT+bS26MmXIV1VhRWPPlr4UJMUcPePegm640bjiStdJ7JYHiDi1HUWL2jB/lN9NY3NCHhqLh1LfrfcZ1/dwzDhkc3MScGZNY39PkbowZ6iIha8TOdMaBuL5yqBVZ+H46Tlc+RUA+kdvY8WbaBfdXONV29GmEky3D1SzJ5b6K41CWZ8AUMo8X6waekLrdV9RB9ysBNZXd8APmwiLepD6a8/JEh6379p1P666ZsyiX2RlFuAk1z2dFVgy9wwnL360viUlAfhIx0IVDZKMLeIcO7OmVbQHUFW/s5UhQeuz52QJ890Daq9YexKwaWJjChIHQNE0Oj7vOVpHNzeOv+9dap2LhtKTKhG8vN9EGLSiTkm0FDmTSqE3HlZwPnnWgZT/s+c54rNsYjk3FbKTYEURvm8NF/O7aQ7oLEnDIBgVJuWUSScyk6x48x2g95mMqDw3uoCVxb1dpegdvQODp29R943MU4KRfWwYjBtFk5KZVy0YUj8POHCkE8GNqnoO25qWKNki8PFuNI6jA3lYV6Aq1xMLWNjVCd3iHqF1ZiNGRCjo/TSGdaXd8GIRJXuE7P56fy12dVZiQ2GXFfEjdquXvn+dqqMhoJv0XVqnVQuGjGKboSk7NUGEnD9ARQ7XFfRaxAG+YNj6Wt8ibK5tMlE5qiitP3t/cSvDbAhqREoyPNWvfcOFKuF3ImxkG/UjaVOAujkJHp83HsaKsmFLVlHdjGeaF8G/mIF9XaWskxzsK7D2hTeuKWF95SSQrfXsnZZuQe1gT2H6Aphjhta9dvY563x542E0lgzymsS9cNrColdU89/ln/dQ+9CHPoQXX3wR0WgUy5cvx7Jly5Cbm4uzZ8+isrISP/rRj9DQ0IC9e/f+3M98zxsH3ngEvaduhxuNc0gfDrC/WzE8eFMh9kyTB3pTbTNfkvt7DGYbgF2kh94xETawmqwE4EFVZAQ4Efm50QUmZJqjyq8Tm4oXi+D1+Az4GeaiJ+UZABrLBnFt5piVeAaoQ76uoBfedIgPONVFcKNx+BHfhCN9BxQed2ZNM+0qhY+prDygBapOwmPhQh5PcTGRsrWpWrHVfOrIeqNcBOFKY0Zo0t+HT81jph7+LGCFYTfWaOYfKlan++PMmlYVnqNxLC4e5bXyxsOoKT1lwRoQ9vA33Sv5YiEM/df6FsGbCGNTdQsO9y+wvFW3Z7/OIWJptLByK9YJANqHZsO/mKH2FO0HqaRkJzjPIS0mdTwsai8o5Zgq0tL3afyAVoLg8FioMeMLREE9YSAG+36w27BV0c/8pIsD/bYHTiq0gFZYPF2x2rX3BV1kbk7CUCZGbQWG2J+s54uaI7RvrYvrksqHoLlzpl2rT+V3vgw3GmdYWhAGQkoWz2EsothR9O/JK0p9362rFf90eoaCjLRWwUk4KV7OxrL0kB4yCt96IxdTXsSae44CkUIR8nH89Bz2Ru9orWUDiY22q03EYkWxZiNKKIgfreH+7mIFS9OwRjJUvfGwMqbHFd+9NxnGzvYa7O6qMPAfrZA+VH/ErJOeJ+dqxbxEib6WZ3fCrO+m2mZlmE6EmYaZz4+GYlmRCVpfB9hY3abWJqj4uT58zVp0d94IQ4+caZehbQqPrRR32j+1s8+Zei90fvQZ295azyxOEipChqTk9Kf8Gm8ijJuvP2/6xQ4joWk4PlaUpOGF1w6GhsIRNlwBYFnxKKjeBil3ZPhR5GD3kCpmuH+kIMVbTmsfVAC5MCG0USFgNLuHStmIhOPDIyY1YuaJRbC/twgAsL6qUzkQHKpBA1aMqe3uL8Pm2iZ8c6hc3VkEC5tUjpWdgxXwM02x0bUL+wxjTty885tD5Vxzg/bH/JzXeJ7JKPTGw3Azk3YhTN12tVfhgfpjRt5IiNp4WCUK67oVy+aeZtm0rqAX48kMONMOrwXd0bQHHlt80BgEPtjwuq+ow9wN4l3BdnhggfW7E/2K2MSdEVfOCk8Yi9kJ1Bec5nngddfw4oeXPM/vAmCKOop+SCWYziEZrtQIbkRtTUUvDnQXwbuk4KtPtyx9W3jXldB+WdmKZHv99dfxe7/3ezhx4gT+9m//Fk888QSOHz+OT37yk4jFYjh48CA+85nP4M///M9/7me+540DNyfOivCM8KT5BQk7T1/A0yFWJp4dqEJ5nlLA11V2pTxzS3GLfekFPMWEcVydPwj4GkMsPGZ8GZMi6esiWh6wurxPPSMax/szLwIADnQVYV+38agxI4WjcdtJU8W1+9xt6tmTqjItvwO2R568NAS9eHagKsUzdGA0nz3rq8v67HkVFztTQGrjZ3W+8jxQdVuruJW4iNcV9OLZgSr2KtKJ9TMMs8uOtlqsKu83EBdBxbZeez1P9CvYCWE9W4fmWJhveA57yAGw982LRbC2vJv7L8e0tXdJKiRHz6XF+iRgKBS5YPpFiq64Pu4t6Ob1aCwbxMa6VhbU3oRWpEVZezcax/uuGeM5C9YVcDOTeG50gVIM9Fik0gUAb07n8HpGMvV8aLwtPyc3jt3tldbaOiHP8G9PhlPe7U2GsaujEstKRlih9MbMnpJz702GWamzWlIYLPTeaRePLT5ozbf8tzsjDsf12XPmh0Vi4VgEnUPKIykx3+zpzo3jhYvvNwaiOLtU4E4aZjJ5lfMMZsRt9jBt9JJcYaPWc1h5p3Ozv6eIjfPyO1/m/b6ydIi9vaSoSvgRXLDyKI3Aw5r9xdXRmN095cYoFYWnALMfGA7hGK8p7VUyhL1YxDg2hOfZ901Uk6rFs2Gv95R3KWLXbBHBSamcymKGq8r7WZbuaKtVyoz20vL59QHH9eFdimAskcG/+0DFEF6ZuNqMQxTk82IRtJ69k1l9KLdEJqXvaFWG2IrSYauPtNay7262OjuXJjMN5CxbGLG0Nr6josWTSoG+v7jVggEdGlxgPf/oQJ4dhfV0tPcySa30d8P8UV7DPSdLOAIlox3emHJ+TXmCBlv/fn9/oZY1DhvBVGODKpp7sQh2D5UqFhzqo46irygcMYb5tMsOtkO9C7XsgxXxY3mTk9DV2LUhF1G5OGsru9i5JufzhfEbeM32DRfi8fJDvE/9iKdylPQeARQz1dMtS818ihwGmXMCAEdPz+V/72qvws72GnxksaHkBWA5H758wkB7aQ94sQjn0Kn58dX+1gYlNTcnoaLZOmJKVMMWfNE1hug9+f1oPXsnNhR2mb1L770UwfDYTdb9xGQOADsKKB+IvvtI6TF7Lzm+7dSJRbC3swyLi0fRUH4SX+pZAfjAmtJeXNHtV5ED7Nq1Cxs2bEj5+Uc+8hHs2rULALBhwwa88MILP/cz3/PGgTcesSqQAsKbRgJeCzMSCPcWdKN7WCnguzsqlaKgGR8AMMbcm9BeEBEGVe9UgnnfcKFSECp6gaSjOL+lkCKPFuEnPcfCTO7orFFWu2Ac8mIRLLztR/x9ggXI73ljyiNJCZr8c6E8fnOo3FJs+TOXzAVEHp7G0kGuQBpUOmQok5ScvZ1l8MbD2NmpKgN/cskBfqYURpwgBhilTCjH1DjKQ8JQ31O7uirtd9OfQH4Fko7BXur/UyOct5uTUMptkKJVwLEsD6RQXhztvd3fU8QVc5WXXl/w2QnE/ZCiy4NKFN7RbipkWs8UStobb+aqD2gss7WWek/zxR6Nc7SC9lnryTnc96mYqSNA/VtT2aN+RkqVqI5KF5KblTBRIP1ONyuBFcUjuD7zkkicU9CMYKvNP8NjlsnQCpZkWFWq73oJfsg37EKirwCwomSY1/pwX35KaJ32hDS8ATBMwBuLYPDlm6yvSMXFv5hhRVZWlhpY1SOlx3icZPDSWrm5KtHRmwzD19WenaTD9Kj7RwrgOGDjz43GFSmAvrgP9ppz68QdxiTD0ZAZXdjNzU4AYd+si/S6QylaiwtVgm71wrOWZL87bwRujknKdbMVfntTUTvcaJzrQADAWu0MobGRB90X80rGuzSqV1f0Woq3m53A6qpeoZT77One1rKE12kiKbysej80lg3y5yX8bGNdq6qrUDIMLxbBof58tA8qGKWpKGv6wM/VOU3B6BsZhJQTJqNj0piR0c6LF7OtvUNtY20rwz4ArRhn6boWtDdjEdQuUFAS2m/8fF1NmGqXBGWY5RF2fFyn6ba5n5lJA5OhqF2ucox9r72IIZg8lswklpWMWNFR+v3+kQJ446ruA79Dy7LG8gGsLu+zKEHJiOY5JKeHjoIQZIxkuH8hA2sru3DXTa/zM5IQhfGmQpxwG7zDvni8kR17BB+kdfJiEQWrlYhZUTmdDPKg04f6vaq8Hzs7qtXchz3cnTeCxtJB6970xsMWtM6NxlmOUtL4ttbFKZERQBNE6Lk60FuIwtt+aJ4rvfO+qhjtjYdV9XCtG6zTBhRcoGzGy3x2+Tl6z9yYoWqnUE0mJ64O5lNNDdZelgYOy7NoHM1nZnNeoZsbx94eO2fkimu/Mg6QlZWFlpaWlJ+3tLQgSxeI8zwPmZmZP/cz3/PGgZtjw1j450Lx8GIRU5wnphgVWIH0wcraof58C34AXxkP8sCR0rihpg1eTIXm9nWX4JNLDmCPVuQkbIYOOwAFtSDmEK2YKZiSY/V5cOQ29tRR8h57HWM2fGFDYZdVlAywYRXyEnKjBs9OHim4vsKmEgY2jcc35SKjC0fTXMb9kDU/APBnVd8OrFMCjk4Os7C7UR2BEIortS3VJ6yIze+XH+RL6JHSY7i3oBurFgxhQ42OYOh53FTfbPoJwzK0kwSxXnfOB9Bj5mI2ev4eLz/EHixSYtjLHPCeM2uMb+bdjcYtYywYAqbGEaCYYW5h/DO9Q/fVzUlgT5eiXHWzE8bTFfZ4nPT+vR1l5qLTRc0Yz+3a3j75zkfLjuDo6bkq2kVNX8jeWIQN5g2FXaouAit/yvjkok76ovRdH62Dc1PGTXvcT7pKGWHvpY8bsy7ggbpjHK2geZORNwsaQtGVMaMoSE+sr/NmaMzMO56TsGgdpQHkTQgoWFKtrZudwP9YdILX04tF4Ou/aTxS2ZBGvx/xeR/xvpOFywJKrhuN47r3XWJoYPMZVbWbEukJRnWgR3mJtzUvsaKVxMVOyqCTdOA6voHyAUCmMgRCMZcTh5WyAi4U51/MwL5OBfG7t6Cbo6P7NDUlEo7Zi0KxA5CiZALgvAplmBphRnh8Vua1Y0V6VinqIGVbUMYFK/laTZ/Bh+qPWFHXxrxhyxgDwHkk3qUIdrTWskJO60l/u1ED/WsdVsaMM3Pa7kfCTa1jIRQYyR60vqqT58KNxvm8BeeRmnPVNEeN5OeOn54D/0KGdX/JZ9C+f2zxQZaBN2WeN+uaTJ3HIByLcpNkn/xMVUjtxR9ei6uuimF1Za+V5EuJ5W5UJcTymSV4YqCgJAA2yinCKI07Grdk1qLvyGccGM03UcPMJA50F+FAl4IV0/y7OQnL4fBgSRNXKt43XMjvoIR8HpLcD9oZOfjyTUY2xg3slyMvOfb+33OyRK13ZZeqP6CNJ3J6kCH28tQ1cHPj2N+l+ulH7Bor9DnKT5NyV8pT+CpK/6siaFd+e/TRR/HQQw/hsccew7PPPosdO3bgsccew+/8zu/gd3/3dwEAzz33HEpLf35D7z3PVnTb1/4IK0tfYs/xzyq2JS9uQHhNPAdBlgEABn4gON+tAiSCvYGfB2FIBBTe4GfuLeg2VThlCBKwlC7un+TzJg5yx3hW3GjcKnxD/ZNjfrTsiMXGJD8PADdedwE/OHdtKksO8ZCTkhucKz1H9+T3K0NJC9AVJcMGJiHG9viig7oISzjt87YUt+DppqWAqyr57hsuNGOX6xZgiGHYhuD8VwM1yqecb2KsYA+7MNbk/MGD4lvP9Gx2ItGnxxc/hyeaVuKB2uN4umUpVlf0WlGfB0uaOBeC9uq6gl78W3M1F70JUoNaYyMjQ/DBX65R/9YV9GJXRyXcHJvjXEJr0tXWoHl0ph0LDw8A/oWMFFYffldblcXsROPcVNSOZ5qVwtpYOYADXUXMOsVjC4k6HgGIF52zh0qP4/X4DOxqrUqBh6wq78d/dJRYbEdspEXUs7kYlGAhC85jcG3vLejGv7bUmkRnJ42sCHgg3ZwE8NNMeDmmwq9yFviGISVQPItYcUh5uOPGN/DimRtso2rc7FFZVCs4DuI5TyunAnINMPUpgkxazM+e6TFn/b7hQmu8skgTj4VunpAPZ9KFc7Up6rRi3ikc6l2Ihxc9z9S3VKxSnV1wPkuKfHVsWc4yUKylrDNgrZGQNbQWvMd04UNqd+eN4EBfITZXNeOtRA4ruEFGm7UL+ywnEvchUBRrY00rzsSuMyxpgf0nv0cF+9K1R0qP4ammBpaJl2sp5ydNgS/6nCXzLkXg+A4+XNNtM/fQ5wSbmjXeWASbalWNG+9SBMjw1DsjSat4WbAWCz8nDUvT2uou7OkqN3kiwYJ+6c5uuiRdvY821qiil0DAsBDz71/MwP+77LusoG+qbcb29rrUPRZY38vJ4rRyQfYLqXefnINgDQxqW4pb8HTL0pS7IV2NJKpdFGTqUnlTk3j1E398xTH7kI43//99d2xFLzz53mErAoAdO3bgK1/5CkOH5s+fj0cffRQf/ehHAQATExPMXvTztF8K48DNyVIHI8MDpl0jfNLRhwrOblbAghfQWASb65rY84awZ7x8gQsg2FIEnKhWmKJ8iaJK3A+t7JI3amX5IA4OLOS8iobSkzjUl59qSASMEi6ypg0LUqqYr15XhE2pUCppNANj9GKqWm3zmdnYUNiFnYMV/K61VapQ1NtVg+QKusEqw5cx6uR7ATB9p/W7n1FEir7fWD6AAz2FNv4XilLOUmrIGAj5QDz1gmaFRCgom2ub8Ex7fYqixx5F11b2SYkmCkD/QgZ+s75dwbCcVGNPzp/FniHGcrm9SEYSfy5HUG/GIlwhWfYtOBfpns0K4ngYG6raOVGa9yNRqrqK4lQan0EDWCp6C/NewcnRW+1+SGpVwp5LmmIy2GXhIM9BffEpzt+RFb4vVxSR5keeg7cz9rnvCRcN+aOqSmxAvsj1X7uwD3dkvY4nuhv4GQ+VHsdXW1aYBObAenrxEMrnvoTukTv5M2sqe9ibGfw8zdflFB+5BtwcH7fe8Tp+8JOrUtcnzR7h+dD7g2l1p0JYVTyITDeO3PAUtrfVgYgSpIIjC2XRz665OoY334oqhZwqVtN6S8XtfAacq6Yvu47cx8soSSyf9LpQleN04065J4KKlY9URU8o4ME5l0ZEOiVR3kfplEVpTDgJh6ufp/RdFPCTxTflMx8pPYanWj7AY7AMLZ0TcTnjFwA7KGROkKwiTU6RW9//Fr7/4vXWfSSLia2v6mQ5mO7uYDknjbg0RgUA6y4LUmTL85iu8F86J5o19stUwQZU5fDel2616ajFcxjOKA0weY6ClZWlc2gsguL872P+zB9bhegQ9k2SsujvPfn92NNewUn/W2pPYFvLEiAzCTesqkVzAUa9Zle8cfCJd2kcfOm9ZRz8ott7HlbETRdsoYOyrqBXXQ7EghPIyJfCZW1FNyf6AUrIPNO6yBw6mdQH+8Kl/3sxhbWEY97lxSLYWNWmwvm5cYvKDRBKuIBhqOJJPvfj0At5yjDQfTs0aHCNfEHTmKi/lIikoT/0c6pwq0K3MB538iBG49aOIbgLAH4f0dTtaKvln7m5plDU9zqLDC5c4zet8foOGspOWmuxomjEKkzFsChaj2gcTsKxKoACygtPaxssIEWC+L4iVXTmQHeRWUPHx8oyVdDmBp0UznOoP+NmJbC5vgkPljRZMDEO04q8kjfi0RTljulhA/hi8rLu6qrk8Tmzpq1ifNYlNB5muJNFaZiTwIbqthSFz9oPlITrO2pdqaBUiGitfMUrrt9D2FoOxWt8vAWN0p8lz/HD9Yc58kU5EV4sgnXlXTwWP2R+Ls8OsRcB4LGcfOEWe0xjEeVl1219jS5E5himqw01bYpEQCuDK0uHANdH89Bck1NCe11Sa8YUmxcljFOhLgCGkYh01Jiq1Cob56Q4KklaYrsZviDWf8/JEsswAIALiRwLRsSUhWIvdZ+8y/oM5Tqp82oURJIva8u7eZ1S9kfMMB8xVWxOAj/4yVVWvsMnyg6bTuqCff7FDPNe0Q4NKIYjJFwcGM3Ht4aLrXwFuGDaWSo4KKN53ngYb74VhReL4ECngnmsKe+FM+mmzIVz1bS1jsS4RmtK73yg/hh/z7+YwUncB/sLFLROQ2Gah+ZiS3ELvLEI1lcLWF7QMIhFDBxyMmxy2SAoh12VgxPc59T2nCzhwnS0761EVH1GrMJn4m+utRP2FCOdXActOx4tOwI4QH3RKSDss1wlZjPq21PNH2AZSWQacH2sKe+15Bv9XsKT1PvA0EwvphTudVWdCurm+oqkYyqEV358NeD4aKwYAOfW6DVycxSzEs0B1SCiuSflNXw+ZEFR11T02oxKrm8obZMO7ivqwDOti5jtSEWIyHjzzTs0GYMXMzDQdBFEAKgvOM3Jw7KPgDqfZADI/Bpu4h7mPSHOOZEmUHuo7qi5M3PjGHz5Js7fUzICnH8SdA7+e1ulikhqyBexo7lh5QzaP1IgHFy0DpePPl8R7Vc5B/8l7ZfCOPCmQka4jinhuqu9ioUFHQaZhCiF9reGizkpyLBSiMuQBJNOUnajcVXngA66ViTIk8M48Khi6CAoQtC7CuhLzoWlgKXzGhH+1pkKWZ+RSiq3gHdcjmlLcYu59Hz1XvK0SspCbyrEyWLyfaSIS4+TVJ59zWFPh3N/bxEniVE/D5+apy51ncB4uC/fjgiIfBAS3gS5kePc2rycsctb6o9jU02Lta7euGJpUoqfj/9dcYDH8r6IqnNASowXM1h5atsHqrG1ZZnh3RfPle+RTFOkoKfgi+m7sQgO9qjCSdfceIGfR2vJSWRTIYNPF5KO8yJiKneGlZDpUOqlTu/29B+9Dn7ShTcVwtqKbsvbtrezDFk50wY2phlcNtc3mfEF6jZs7V1i3ik8WYSflY0vRzIqdW0BADyW+XNV8t2W4hauFEpGJSkT9Cxio9nZWc31KADgYFdhANcLToBcV9BrJSY/07rIGHbCCbCpRid/+WreGssHVH0DkXxJjYwtGq8bjav5JgVQGFXy3wCQ42r4X5rqp7znXLP+bHjrsyMNybivZMOeLuWVl5A6Nmrl2uj1aswbVvsnJ4GVJUO4t6BbQSqIeYyQVDNtaJkTd/FA3TEFgZFeUvpbRrZ05GB9ZacZC8kEsZ821zehYf4o9naWMT3m2souFTUIVKL1YhGFD6fpEWJvLGkS83yiQc1JYHHBCxx1ofl7un2JSjzvqsT1114EIp7VL/VhcU6zEhZd5/6eIv552E1ifXUHnLjD+Hy5V7a1LrZlgucYVihxftKdHVLiN1VqGaCTUmVfCS7afHIu3OwEM3tx4S/ZaN6EvE2XuwDPxrUTLTY5s6ivu9srFXxRK8IL5/yAP3eguwjrazpSqnXLPUz0q9b9lp2Ad/Mkj92NxrG3u9TKt7Jr8oAZ8vxoQjkJtaxZW9FtR0l8YFnRqDEUgn0jB1wsguahudg5WGE7enISuPX9b6lkfY0OIHYyYkFkT79sBIfV/5Zz4Ebj2Nq0HPBUvQPrPpPRhjEzf2sX9rGhRrku8ntuNA4vHmKZ4sSdlLv0Sm6/rDkH11xzDV5//XUAwNVXX41rrrnmsn/eTfulMA4AdTBWFI/AzY0rj6JvvBMAuAgakBru9WJG6Xc8Bw+VHoebq8q2B0OEdIgvJLLhxSL41JL9aa14SUt4OW8EAKYnJOUl2C/r8w5MlVf5DM0yIwvRyPeuqephIbWtvw5IOipZKVclKEtBzF4w7S28r6iDhYl6mTZoQsYDQ32ylCNH0bZurGrThpfxWnnjYZUcJjyxlvFF1SZ9xwhR6PoU42FsKmpXnk3BPLStZYminPMVVCOYJAffweeOfZj7uLO9Bg8vCnBJ69NC9QzIw0qXFRsPMhGNlGXfvtSlFzMoqOkyOn8+yn2zPLoA87kDUFzU+t1f769V9KaBfUI0hfT/+4o6zHroNWZPd8gDPIcT6OE7iukmGsfkeAZf+DSGZ1pEFE0LXZkkuTp/UO0bFyahndZ6IoxPL/2ONX/ygt7VZjxibjSO0z+4Ht5EGE+3LuHCZbyEVGdCRIksQ4yUN4qwEExAeO12D5Ve1ktI67ahsAvbm+u1F1Q950BPoYEAaqgWzY+fVGxWtbPPCYUeqWskoo/W2o7Z53xTUbuKhOToIkvZtkJC3mPqL71zd7uCrGysbkstdkb/FvO2tqoL3nRIURpnJOGNh3HohbyUokhUSdWLqbmhd/phX8kTirIQI9mY8u7C8ZlZi9aDjDtJIU31ae7J78f2gWrckHmRZYgXi3BU0qcxCwXOjcaxpfaEJTu9mOLUbyg9yYYgzRsldfM51PAgIoj4yeszTbRoXHnMvViEz9C6qk5442E11wRlE3v7xNB87B4qhXPVNEN6LGeQdlTw/6OqJgN7hKOq8rBUYGmdSRlmWmoHiIanLMfFmsoeZURp5xbP16VIiteejSnfyDEyYKUxRrKDZNmzA1XMoifPYzBKevLMzfDiijULnmKvc3PjaCw3UQzpOMoOmTwhjvzTPGUlTLK/Vn4zNMUyRRClIftgSROQcHm/eeNhq0I5jZuLitK9BgCur+8X8VlRVJHGfF9RB2LTqrjZxtpWSw4RkYgbjVvj4PkUThkpa/+25t/UZ2bEcbgvn/fO6ope/jcVeKV+7+6oxKa6Znxq6X4zDzAJ9UxUoSO1zlXT1juv+PZLGjl48sknMWPGDADAl770JTz55JOX/fNu2ns+5+CWv/tThK8xRZkoaXZ9ZadSPFxfXfAe4Ey7HJamRt9bcOtrOHnqlrQYyrvzRlTyJGDlMGwpbmHaU4m/BMD4+hTcZiBUrYr7OPw3e+qlYqHLyvNlJlkwHB9OwmXvtpyDIHY0aOhQ8y9mwA8p7yix8QBgXDxHRxIOj9ObCll5GCvmnVKYa40p/f3yg/ib7pUWppzGRrhy6ks6PKdMGuYEZ8LQXopgVWW/KmB3mUQuQF346ys7VUhWF6GRUIADo/nWulgVXadDSmHSNI1IOipHI3DhB7Gq9xZ0czVWGosc4+U8NjJh73JKK+PpA7kGNMf3F7diW+tis94yRyG4p4I4V4CTga3xTYSxtrwbezorUsYncd8pOTxQrCu7Oip5fzbMH1XUnoS/fZs9f39xq8LKuva5Cs45ACv/I+jBJsy74zvKg+ym5q74FzPgZyYVo4zuy6ryfuzvLYKbnWAcvBtVe6+y6Cw6T96FyyV4yjl1o4oJxYIp6t9vrGnFWDITma6KiPhvZsK5ZgpeTOcW9ecrL/ZkiGETK8sGVeRJP2vZ3NOKVlWcL4okrS/rYuVIrlE6OeBfyIAf8eDmJFB910tof/EOMw6RJE75Agtv+xEGh2+z9mSKEyRNAin1o7FsEDPCk1wALJ2cpPmVOQrBsQAwVMRZASNReonFXku7Vo6P1eV92D9SgMLbfoj+kdtTDPsgHt+bCGNzdTOeaV2EdVWdiCUzLfkZ/G7KPqYcAjEWknUkMx6vV6QN/LuOCgtStX+wUOVG5djPqbzr+2gfmGNyAwSGPUi8QeOnn63OH8S328rZ6SM/93be5g2FXaqWBcmRqRAoIZn3pcz7o59RPtBUyJxBOuN63ebP+wFeeOFmuLmK3nNfZ2lKsULup/6uE3e4UGi6RjKQ8+fGw/jk4u/iie4GcwelI2qYUPlU62s6sHuoVMmqtsW8vlY+HlKdBLx/dI4OV23Wn6W7YHX+IPZ2lllGARMMSFk3GVZsSIJqWMoDAHByEvAnQ1hT3ouEF8J1GZdYJiXeTODV3/3sFYfPJx1vwcffXc7ByFf+a3IO3nrrLfzu7/4uvv1txcj44Q9/GE899RSuuuqqy35nz549+Md//Ed0d3fjjTfeQG9vL0pKSn6h/Xqn7T0fOWAhRMk+uioxeSnoM25OIsUwAMBFVkZeuQGrSgcMJ7gwAg50F8HNjWNLvcKL0oFjKANV/BQRA+mRty4J+lzgZ5J5hioCc0uKS41wgsLz6cycNpheqpuQnVDeBoKpxBSTDgkMqjILaCiQ4+NAn2CmiEWwq7WKIw6KphDsGV5b2gM3x1RbJcw1oBSWLxxfpWhWZT4DVN9HXrnBeO6ER4uiCoDxVgHAjyZnAa4Ph4uOAfu7ii3YRErIHMpI2T1UymFl2fb3FvH7VucPmnwP3WrzzsIbV5f/ujIVjn5g0bGUasOscLgKV/+vLbVs2EjvvQz1bik28CcvHlKhXjLuhMAP5g/Q+xgrTpeAnqdtLUssvDJBOdJe6iI3hopWUc0Cy7DJTlgeN66foZPpuX9in9HaqQRrBevwYhpOlZOwcM1WtEm0r/fXwo3Gsb6y06wxjUvCUGqbjKLji7OWdIyX1gX8sIdVlcqLfah3oT0VM1VFcYLduVEFw9hScwIA2DCgOe0cmq3WIQ3V49qFfabeif4OXcJ3541Y67FzsAIRJ4lLiSx4E2H4VB1a99HNTqgiaKL416EX8tgw82KRFBYwNqozktjVVsXVczn6NZ56TgAFG1lf1QlvIqzoaWX0U4xzZ1sNvEsRDI7eijVVPdZ6yHUiBwVXrab9rp0bB3oLLcOF+3ExQ3k8PQNNlDkKbAhI2Zp0sKVaRQ8eLGliCBpg6jrIZFmrn6JiM1F49p++1Rjdel4fXvS8yd8SNXSeaVGkFa7Oayq94xUji3xgc22TUgaDhkEswoU45Vi+NVxscls8hxlzAF2zxTey7sBoPtxIEkg6ytNOZ3AijPah2dhU18yQPO9SRO3LdDUWona18r3dpfgfi04YORAP8TvvLei2Il1yXXe01CpZkiWMMoBhqGS8bKhWNODrqxWc6tPLv6P6IZii1lZ0W+t2+gfXY1OduqvnZv/E9uo7sKNv+p74jbpOjl4F9z1FXrxYBDvaa/gOkDlBn12613oP7WtFHa4qWy+49TWF6/dMEUEyDKQcBWD2EzmTMpNqDaMaquUBf1H1LYYh7xsuVJGqmIi26/nkvazvZ9rDayp77FwjDalzHB9ryxX71P7OYjzTvMhEh6509/EVFjn46Ec/ir6+Pnz3u9/Fd7/7XfT19eFjH/vY234nFouhvr4ef/VXf/Wu33v27Fl85jOfwYYNG/CTn/wEAPDd734XJ0+efFfPe0fGwec//3lUVlZixowZuP7663HPPfekVFzzfR9/8id/gptuugnZ2dlYtmxZSuempqbw6KOP4tprr0U0GsWHP/xhvPrqq9Zn3nrrLXzsYx/DrFmzMGvWLHzsYx/D+fPn3/EAZRIxYCuYAFIuRMknDQDPtNXzv/d3F3MhK1lchQ4iKSzSq6omxUAXKGGSscmTtsJHCpGjkyydhKuUEmF4nOjP43C2TKLyxsPGO0awARI0xAaSZXjSE6L+gBuN44ljd6vvOD57TinRzM1RGE4ek4641BaetpIzaZ6/NawKl21tXm5BG9zsBA735eOh+iOMgV5f2ZlSfIiV35CPxrxhLugCgk0J/H/7i3fAzU7gd5YeMvPhqLWUkKi780bsS0lcXA3zR7nIjPIsGYVq33Ah4zu98TC8qRDaX7wDm2pa8EzrIlWh9FIE2/rrsLuj0ihgYl1XlQ7AzUmwYKfwuwV/0Er4061LjLIZSaJBFwDbXNNsJbSRYcVwnKiGzGlDhNcJUHk30biBWk3Y+4MSb7kllEcd0EYFgNbBudx3bzyMyoKz1gUka3SwsiWrhNJ8EMwgYNBS29tZZlW0ttYqbleC3dVeBa4Cqo0M+eztA9UcPuc+SWNCG29rK7qxv7PYrqQtlRsNP3m6eSkrAdvaFD6cinKZgdrrL9vu9ko+G9b4JsIq+ugobDX9fs/JEqt2RlDm8CsFsYAXixhcvI7msFMiR+Php1W0gWl0fbADQe4TwPx891BpihIbHCPlSLk5CeztUVHFJXPP2EpP1MA7KDJABbdIsbJqnQjl2Jk5rXLAcuOq6Jv+edAAJCgSGeYkm7c2LzdQHK1sk3wmQ4CfRbSxSQdcnE6ONSfBBv5XT3xA/MLH4uJRJc9z4/jUkv3KGRWNo/elW7G+spPzZZ5pXmTBjmQOSPfonbZzQ7/fp7uHIDf6vHuTYTyw6Bjc7AQ7sbzxMJDlmYKTIr/i2YEqlpfujDi+NVzMjol0cpKbD5wdv5b7tq6kW91RdceVc0Cw/bAcy05gTXWPSYClfUN3hgM+xxQFIuPw802rrNfTurnROFN3e5Mqf+y+og480bTS3peOD0cr59LZQE4Nyin0xg25w5rKHiX/NBMh7WWaUzcax593rrLeo84NLMjeyCs3mDnWzjkrijdhir9Jp4bcC/fk96vcNxf4w457+EwDpvYBFeIE1HyumHfKVB/PTvDZ2zdcyHejfCfNg4ocAXDBOQq/VX0Cv2o/XxsZGcF3v/td/NM//RNqa2tRW1uLp59+Gt/5znfetjrxxz72MfzxH/8xGhoaLvuZt2vHjh1DYWEh2tvbsWfPHoyNjQEABgYG8NnPfvZdPfMdGQfHjh3DI488gra2Nnzve99DIpHAypUrEYvF+DN//dd/jSeeeAJf+cpX0NnZiRtuuAEf/OAHcenSJf7MJz7xCfz7v/87/vVf/xVNTU0YGxvDr//6ryOZNJ6Bd2N9pW2+Y3kceODyUIsDQvRmrCToGSLvtlQ2AXWArUTdwIW9qagdMqGYEqHd3LjyXspQt8BjO7Omsa6qE87MaWyua0oRquTNd3MSzFbEkQHA5lsmYRXwchzoLrKLngCMLQ1WoA0mONLfrYNzWTGE6ys8v/48RzBybS8woJKF6cLa1V6VArniAki+g/3dxewV4bV0FKxJzvdXT3yAFYu1lV24Jmz2pTcdUkqWuN9lZOJgTyF2t1eqn2vPtncpAifhYsncM8wVv6X2BPfh2YEqgy0P+ZxgGIwIrSnrNaFhX3gCA/vm6/21lqITiqj3PN9ZAHiO2puiSI+MANAzdrTVWvuI14vmzUVaT+X2gWpsqTlhXTCsjJKiKJXepKM85I6vGFYctSZOQueB0F4LFAKi/UDjpznh9dBzIulj+XexiPKE0v/Jc03joUT3kF0VdU9PuUmepfWdoSqb0s++NVwMd0acPe/0DmlM8LxohRO+Gu/R03MtZXpzdTM21rRyFEAqC4tLRrlSKyDOSXaCo5rkLeR5S4P9VcaKbeg9WNKkPPGOz0UdAZ18KzDRsnAizR8piPTsyoUvAlB4/4eXPA8/UDiMFSGh6FC0cUvdcayYd4pzrY6fnmN7SsciWFfTaWRpTgJfOfpBI4s0q5Wcg9wZk/acxCI4MTSf++LFBG7e8XF0IE/lTSzsg5udQMP8UXhTIXxu+f9lT7Iz5bIsZoeAjCD6Wj6HPVVlloyDpMOGMLMu6egNGcrNZ2bzs75w4tfgRuPch11dlcb5QFCPGUrhk7DGhXNf5XNEyf9eLKI85B5MlFicZYpWf6e9jOeWWPosQ2tMEUWofC+H76dt/XVm32syCk4wFufnRH8ey5ndukaKC+OUoErivF7jhsHM2s+CaYyMxmAkWa6J3EP0XMDcd9tb6w10FsZw9MX+52dMh1hpps9ta1sMwCjRbmZSRfmzEnASjrVG0liQ99CGinaOBN76/rcAByjNewkA0FA0bMbu+vCyPeu7/DzK8dCGkBdTFMWPlysjOgij84VsvregG4dPzcPM8ISV28Z99hx2erIuQl3KFagDvTTPDNTiim7/icjBxYsXrT9TU1P/qa60trZi1qxZqK42NLk1NTWYNWtW2grGv6j2v/7X/8LnPvc5fO9730NGhsktXb58OVpbW9/mm5dv78g4+O53v4vNmzdj4cKFKC4uxte//nW8/PLL6O5WQt33fXzpS1/CH/7hH2Lt2rUoKCjAP//zP2N8fBzf+MY3AAAXLlzAtm3b8Ld/+7doaGhAaWkpnn32WQwODuLQIbXx3631lXaAObYwUT9TwiMdBSN5TQ72Ko8aMwtlK6yt9WypCApaTX5eLKJqIaTDoseUQslKuO+gsXzAXLZjqvqxF4vglow3LW8nK1gk2MbDTE8ox8OKDYVsZb4EAPgq8bYxb1h4pBXchZKdqJCVNGKKb38Vd+eN2JVUNd52a+8STo6TyY2ULMawLICjI3y5a6WpofykEZieqjVAayW9/1aFXgCO52BdRRcnlz3RtFI9YkrlBwDA6kpBvzoRtrjqgx5shHw4M6eVcqPHksImQjCenIR1mqTnjKglARNZkZc6z5NQYAEgqb3kfthXvNU81yYS4GYnWKniRHsBuZKKrReLMIROelbpnWSA0mdJAX1s0fesSpneRFjR4en9/3+OLQU88H6RnmHqQ5BO0qGKsL4wbsYMHSRVapZJkwDgv5Whnqc9+ZIVi89FwlXJpvric7MSKZjjdQV2VdYgFIJlAWGgA8btukoFiePCdL5hMts+UI2LiSxTrTkroSJ942E09SxQfdHK9sbKtpR3ysaXtw+eE28sgkfrn1fvjIfY6/21vkWcUC2fta+7JLVOQkbSyAfPYaMTUPPZfe42AMCF6Sxs7V0CRzMxESEBP4vW2Qee7yoAfLWPDvXZ+TpWFMkBdutkdxq7H/YZHkR79/HyQ3CjcdyT34+xS1lmL42H1X7TCadBI7mxbJCpRHe3V8IbD+NgbwHczCT+uOPD2FjTik11zfh/FivvKUFumLpzIqwoP3kADj5QMWRVJVcREt86XwQTSslzclS/D/YUKmUzy+ybhxc9z3Ows71GJRuPRbC/q5ihrMFo2KQXYScIAFbyJVzHD0Q5LNmioyBMqKGhdfcVdVh02gR93d5ex31Yu7APjXnDaCg9yfNNz93WX8djl5XEVYeEEaDzAubd+RoQoTAOeG4t2RFLZYljo5jJHnSUXVcpV2MC943OZWPZoPUYOgOPlB4zcyMMP+oHySBn1jR2ttYwFI6e7eYoA5LYC785VI77i1txoKcQ33/1WiDpoHf4Tlba2VDThiw9x8qDCjCQ0T3yxeONCDaKQpFRvbNNMbt9c6jcRJX0vlhX1Wnlj9A8+jqyImXRf5fmvMs/AHDrrbcyOmXWrFn4/Oc//5/qy2uvvYbrr78+5efXX389Xnvttf/Us9+uDQ4O4jd+4zdSfn7dddfhjTfeeFfP/E/lHFy4cAEAmCrp3LlzeO2117By5Ur+TGZmJpYuXcpWU3d3N+LxuPWZm266CQUFBfyZd2N9TU1NpViBgBYuUyqEXn7ny5aSRorhA3XH4I2HUZ5/zihLQvGmg9L+4h0pJdcBqETmuIs/qtyfCqOQvOQkuHQlXTcnwR5pAAwfqL7rJTRWDCjvVtzBX3Y1piTt0vPXLuyDm5MwzDJAqhIjwooEOXCjCqIDx1eeSu1NhWeo3kgwW0qL76D3zO14bnQBvtFcpzCz2sPP2Gcd9l5ZOqQwvp6jCtCFfKY/lYokCT/yVh8+NU8JR31pHewuVApxLIIDAwUm3A9hWEyG4Yd8BevhhdEGQGaSL/v9IwXYVNuswsda/q6p7GFPnjRoHqo7asOz0iQtSgPRSTopnhoAaZlhmFkDCj/rRuN4bMlBPFjSBG8ybKAw9I5AIjAXnRqLsBdp52CFBZ9zo5qpRY9pdUUvPE11y/2RBtx4GA/UHYOfdM24wr6iP5RJd0nH8lY6V03z+njjYcWKJaAPdOHTGt9X1IGP1LWmQMlkSH6vxndLeswVJcOqEnPSYMbhqAS/4JqkFMMTkCc3JwGPoEg0hiBNJCXSF4/ws+8r6oB/XnHik/edvgPAmvv9IwW81wGlWLg5CTMe7XX/6XSuek/JMD/LilQIhW5vbwkIMkdVrKn+yqpSzfCiz6tlzDiwxspzQvMuopDehDLkSCHqe/E2rgHg5sZNkj4pL3TGcuOoK33BMIk5Zk9xMmyQVWnMGNCW8QBgzpzX8ER3A+4r6mD4B3l3LeWbkmKFMnWgp9Dw01PUMifBkJEdnTXY3laHPSdL8EDdMQO5CfvqrshO4O+O3G1Fg4L7CYDNpqbHOeWZ+4IN8GzlOChc8LJ1/txoHP9wrAFuVGPKHR9vxXPY8ADAUSQJOVE1T0w3uNr9pDnLtA7eRBgbCrsQhETRGshnPztQZTzSYc/IMoo+5iSw52QJDozm41D3QktpDyqUVmQPsKKOXiyCfb0lOHXuBjhjygHSWDnAbHR2voBvRb34cblxy9HC8+DA7AkYJ5wbjeO50QV2PknCRf2cs+YsBZ5rOXuIInxGnEk47s4bMX3ITLKx5Y2H8fX+WjSUDKtIp6AqJ0Y1uQa0XkFYETkOV5UNpHUc1M4+By8WYda2+sLTcHMSWFdtcincnARKF7zEZ0zKLX6X68PRMGEnIZxdev8vmn02Zf6vqPafiBy88soruHDhAv/59Kc/nfYVf/InfwLHcd72T1eXyl9ynNRcM9/30/78F9Wuuuoq/OhHP0r5eW9vL26++eZ39cx3bRz4vo/HH38cixYtQkGB8rKTZfT+97/f+uz73/9+/t1rr72GjIwMXH311W/7mXdqfX3+85+3LMBbb1VsNx+raVYX1aUIOkfvBGAUohXzTgGOr0qM5yTQ/cIddqgd2pOhL0Cy9oPhbT8rCWfmNP706D0p2N+gV9ONKqOEmGekkkgQg9bBuYoaMezDj/gpQsGNxvGpiufgxSLmsBN1KHn4p0KKvUJQpnmxCJysJNOQkndNeq6lkgfHN4nTopgSQTucmdN4K5ED4sjnphlgDr2Qp2oN5MaVMpt0LIpLvjwIuiXGuba821xeucbIwpTLz7eEqYCmkJKj+qLW+8tNH4Q3Hmb85rbmJfyuayNjgOsr/LCAOmw9sdxSyoPeY8qLoPkL8rzzHpBQBdfniAX1eU+3upC/3PRBhYmOO5axx8aoY68xYCuk8m9a723Nps7AHVlvAJ6Dhxc9r2AX+iKWShfBEvidogItjZmTn6l/UsnLScCPGEWAsLANJcbj/OxAFZJwQfCjB+qOcR0GSq5PF5E73L9AfU54LN1onJlEpDIiPX+kvMpozZ6TJSYSMhnmCFnD/FGea28ibBnv21vr8eG6buNh1p5UAAy9IK+2jAT4SdeaU/YCOz4uxVX19sO6ejIAy8tKBg2gFJDqhWfVekyGzZ7PTmAiqZ87I259n35fu/BMShIeQwf0x1fMOwUqROVHPHiXIvC1IXj7nT+FF4sw7aFVmE0/t3lQsSLB1b8XRlwwXwIA7z2Zj0Sff/GH16J+zllsbzf1KSyFT0IkZVRU0zan7NuJMMP2yvPOKSpVQNUwEAbZ2lKVsEnGHOULeWPKyXTHjW8wNS3NHcv5ibDymPsO/PMZKuI4pmFlHnDy5RvtcYyH8Rs1nXwm3JwEywIJXZHYczJwGMop9glTZhOsRvdv52AFJ/BypCigcLvRuA0l1TAqmQPhjYdxd96I/gIgIbdWn8ciNlNZLGI7EwSc1rlanTsi9XCzTU7cinmn7LMwkaogy8ZGkDDa6Mzz3hN3hhv20HxmtjFKxFjgGgYuIiSg/bSpqB1wfGVsxCImyuTazqJDffkc2aPvBmm9aR/5FzPsnDjPwTUZMbjRuKoF5Dmq5gtFTcbDaB6ca91HzcMqwr3nZAnWV3WyUd3//Vv4XV4sgrUV3SkGiq/v1A9WDShY7sI+IKQMjOMavneltv9MnYOZM2dafzIzM9O+4+Mf/zhGRkbe9k9BQQFuuOEG/PjHP075/k9/+tMUvfgX2T760Y/iU5/6FF577TU4jgPP89Dc3IxPfvKT2LRp07t65rs2Dj7+8Y9jYGAAO3fuTPld0EL6eaym4GfeqfX16U9/2rIAX3nlFQDAv3Soy0V5xR2ud+CNhxUrifY0AMYbW3rHKzYuXAssS+mPGgUlXVl1+RkAXG2RoAGAVigyPIM/TZjiI25OAs6UqxRv3wgt8gx+oetu4zUfDwMaD8nKhGMK/dTPOauqQYZ8U/1W97F2trkopTdeMnrIMdQXiUrFYxEFzRBJfDRPjm8SwGRxuN1dFeYyDvt2RIWSZyfDrBxLqIMXiwC68NHqql5rHA5V8tXvWlfRhZUlQ8bTqMfDSjdd7BNhvDJ5tQqft9azsn9fUYdVqyE4D0QzmFIvAaYi6iOlxyyj6aHS4+x1vye/33jTshNWPQQngO/eWNPKUQuaE286ZEWx5H4kLn4aJ+2dv+9dCjc7ga82qeTJTdUtkCxYPJchD3B85U0320VFqYhaMWow1k4gr4DGvGzuaWUw+VC0m1DsMGsX9mFXdwXg+NhQ2Y6nW5ZaWGP2gE6ELYXWzUkwPIzXWkeNCOrBRo0P5plPx0zhxSKon6M8YtX5Z/lnlHOgzp6Itum5lRAxJB0F/RvTyeVjEVC1aYKXEHTOmzbJ/wAs7LLK2RARRh11IWcBJ95OKpaZJXPP8Phcze1/uFcYFyLpvX7OWWYYIqw9wynF/HLEjuaaEoM1XS9VspVFAd2oomEl+SGN53UFvSk0pZZCBFgOGAtWocd6Ymi+ZQTck9+v9obrY0NNW4rC58UiJrfGV557isjQM91oHN0n7+LIlJuVUPkRGpbDyamxCMMjD4zmKxmXmcRLP3offDozId/IbjlGD/hQTb9JRM0yRo+V/+Y7SoFzfDZqUiqp01pOh/Ct4WImB6B7iwqkrdSQmVULVLSWPeBaUf73tko7oiQMXNoLh4fyzP2haWvlerk5Ccv7zjJH53hJaCrnYAg4lDcWgX8hw7DnZSaZYED2ZcW8U+p+HtBRKmIazE7gs8u+lRIJ88aVPN45WAF4DjP4yL7Tv6Wx7U0pJjgVOQM7Q2j/kPNnQ2GXZZg807qIYYSLi0eV42kyjGWFo/Z7PYcdadKBQtE5NVc+6guUnHxudIF1X8T0/V278Azg+gpGS7pGjnHsMXmHvuNWLRiy6jdQf8ghsae73DJQ7y9uhaMjh5TrtedkCeCp/RnMT7vi2n8icvDztmuvvRZ5eXlv+ycrKwu1tbW4cOECOjo6+Lvt7e24cOEC6urq3uYN/7n2F3/xF7jttttw8803Y2xsDPn5+ViyZAnq6urwmc985l09810ZB48++ii+/e1v48iRI7jlllv45zfccAMApHj3f/KTn7DVdMMNN2B6ehpvvfXW237mnVpfmZmZKVYgoDC9pFBsrGrDA/XHjDdQb5LNVcLrB6D3pVsvO/YgBtryUNLPSHkaN8LRzUoACQd7O8s43Ly9rc4wYQCmuJQWYH5IhfrIoyI9+fSujTWtWFvRjZXlg8prRcmZnoODOrzefGa24igXlZnp7+bhOYy9dqNxPLb4IF9qXkwlrRXe9kM1Rg9oPWuiL40VCsogLxHCYzozpw10INd4bNkQ8B2sKhlgz46jlWZKRpZeP2puNA5Mqy27f6QA9xZ0s7eLlFB6156TJVZSK42ZEuXYi0zzJPGejlqbR+tVEbQlc8+YKqUA1zQA7MucsPjXZajk+6eaGozHLhZRSrnrw5sM432RmLn4dViZ9gBV0qa2c7CC94haG1jQHku518/aQbUU0oXk9di3t+iktEDCa3TGpPImhY2CsL66w0SpHLPX3aiJgpHhqxi2HD5ntCbemEqu291VwUXcdnZU44G6Y+r/ejwNRcNqbYtG08L7eBwUDQjQ0FK0ic+mY8bIxgOAE/1KGWo/OVuPy2fDxLl6Glz1VlzY9+QbJiF3hoJIcbEr3R9nysUzrYuU4TRrGk7Is4yaNRW9DN9o7Z+LbS1L2PMsoxtkiDWfmc3/B4C5OT8BfFPEiNb80UWHVE4P4bejcfVd3yjG66o74c6IY8GtrynK2JyEVSWecMs0ntX5gyk1Rvy3FLb68fJDeKZlERKeDVUj6Aut2Yp5xqHAz7kkkmNp/zsqr4IKjknCBkAnjWepM8u1Qi4DmXJz45gRnjSy3nOwtqyb+yc90s93FvDemnvzT+w9RPthSsmdq66KMS8/4g4cLY82FbULJ4eGiGrHgZW/oMfLdJM6d4ZhglKZntQkFfq8y6KLG6rbsLJkCK9NqXvuYF8BvMkw9o8UKIY4vR4El/twTbeJ1Ij8IVn9mOh63eyERfyQokgJaGXG2WzcV9SBPZ0VeKjuqBmjjha4OYolblNROxzPUflTAChvihOSdcVwbyyCw6fm4eH6w1wh3c2NY85NKnL1552rWG7zWgecM3tOllhnlhVjHf1eW97NhuSGqnbAc/Bw7WGeBxrjmjJ1Pna015jIecTju5ASz9dVdgE+cLRvAcvbxxYftGWvjhhz5EZEN+hO5f5q5x7BjFuH5hhnnQ/7XtSUyfIc35BxEd5EGJ+qeM6KlNC9y0xg42p/bWteAucnxmNOz19d1sf3+RXf/gsNg3fSFixYgA996EN44IEH0NbWhra2NjzwwAP49V//dcyfbyIweXl5+Pd//3f+/5tvvom+vj4MDytnxgsvvIC+vr6fmadw5ozSJSORCHbs2IFTp05h165dePbZZzE6Oop/+Zd/QSgUettnXK69I+PA9318/OMfx549e3D48GHceae9qe+8807ccMMN+N73vsc/m56exrFjx9hqKi8vRyQSsT7zox/9CENDQ/yZX6T1taPTJEZ9o7nO1B7QSjd8xQIjPXmld7xiJ1FqT7E3GWZ8Hx82wfzCSrd+zmeW7DNCEMCqSuUtPjo0XyV+aS+jG1VJd1TBmBWEYJBEKIjkkXxp/H3Y01umFGGiS4sZnKWbnYA3HcLKUpMIbBk2SQd/VvVtFhZfPr6SBQh8wA/5GBi6IwWqABjhJT1Ju7oU5p+8sm5unMdFVY1p/g6M5pvqzSGfhaJ/wWTbr9eVNkvvUJEgomgEVNKbrBLJnmLdpCJH/dzZYfJYfr/8oFLmph08Wv88e1YoR+PvexVt5dG+BdjeUm8ZVUFvofLcAEg4eKazjhU9Yprgy0kL8adbl5gLWAt12nMS5gDo+RBwGzcrgflzfmh56bkvAotPz07hUJ9Qe5kv/pBvGbJj53PsZwEGlw2oyy3icZK0NxHG6opeXBsZgxs1FbFJmSm+/VWzPhoCQl47NyeBp1uWsrfQu6SUg50d1Th+eo59pvSY1hX0GvgIwApc7exzHI2hWgKrq3rVHAT2Bjd5fvXamF85SnnQe5/w73J9JB0k7TU/0+O9xGuYdNU8T4WsRGiEfMVspGuxeBOKKlcqKRYsw9GMNNrrPP+WH/M6PXWiAfu6SlOSDWWS5+5uFTkbeeUG7O3R3nOxn8kjSUrl3vYyiwYVvoGCfPF4I+AA+/sLFZ2rXJOYSRY9NGgKfxGbmczPWVGsoSqeg2+3lVsGN8FoQpGkkck6H4nOnGWgxyJcXZloWskw2tNTznPy6aXf4X9/qLqfjQyqwB3cK36GBy8ewvnzUUMGMCOOX69VtRyeaa8HXDB9JABes6d6lqt36flZWToEmQMQzMWovOv76t9ZCYbgkMOD1mpnew0OvZCHg/0mr4WqBAPAJ5ccUIZcRPV733AhO2Hg6Arm42FOCGYlUjspCm/7oemba845edr9ixnwJsOYnj3BrG1f61tknGHCufPc6AI801FvVTSXc+TFInD0veDE1X7f2rsE3nhYGZmTYZz54XWmvgPtMYHDd7MS6s5xzXj8ixmqJpCGCBJrFZ3hv6j6FtdloWiqzGOg6BIgIj5xlw1sd4aSKbs7Kg2yQPfxqZ7lyuMPJb/dnISV+8d5Dfr/dC74c4KJjKI9BEGiuaufc9bM9XiYcwnHkplwsxP4/LFfV8+YDGPVgiF8Zum34UbjHNmGCyDiK9n4PlVkjiJzgDo/6WqN/Kq9fduxYwcKCwuxcuVKrFy5EkVFRfiXf/kX6zMvvPAC5+wCwLe//W2UlpZi1apVAICPfOQjKC0txdatW9/2XfPmzcOtt96KTZs24ZlnnkE4HMa6deuwfv16zJ07922/+7PaOzIOHnnkETz77LP4xje+gRkzZuC1117Da6+9homJCQAKCvSJT3wCf/mXf4l///d/x9DQEDZv3oycnBx89KMfBQDMmjULW7Zswe/93u/h+eefR29vL+677z4UFhYyx+vPa339XM13WCgzzn88bHnRvVjEMGXosDMfUvISB9gxZKi1Yf6o8UyKS+Vzxz7Mni5vPKzoLD0HSLjGy6+9g98aLuYibHQhNpSetEPxQmHwwz7uzhtB69k7sap40DC9TIWUYJkyS7uhrAM3ZV5Ql8WFDBPO18rmH3d8mMeing9WHtdU9rBQ31Kr+I79pKuMEMqXkHRwGqNP3k4vFuFxrawYTIHokNB9qP4IqNrkb9R2cv92D5Xi3oJuvC8zlpLsS38ThaIXEzjXMcOFbebPYeNp7cI+fOH4Ktxb0A3n6mk81dRgFBoYjxspz0GcfbAxdInyK4SHh8esYW007+bL4N+bsLa5CD9S32opn96lCE7/4HolxEVRM5kgaJRJ3+CEddtc3czeZfJuPVR3lPcyNYpgqRC56G40rjDJRAWZncC+zlK8Hs9lOle6NAGFeeWcHb1v3MwkK8NuNA6PktqJ1Uvil/U+ozHtHirleVpX0AtohSIv9zX+zM2Z5wFoph66iAVsjhViMX/0O5lDQsakNx7G9tZ6hmtZkAu9rx5f/Jx5hhiDn3Thj4eUDMlMWqF++I6KDFEhQx/YXNnCv39s8UH1b12Lg8ZHzGZegAVGNlImaD/cW9BtaG6nQumLUelGHl53hvKgU96EfMf6asXx72YmVc6Ehvatzh+0zqiE0mztXaKcDmGfIy0yr+Mjda14tOwIrw/BaJLxEMtkaShZirWOlO3uqLRYjNiQoEiQ6+MLXXcrmFxuHLdnvWE9lxwzJHN5LeNasctM8pmiujdudoIhSPfk93NBO57bcUWMMOemn+LQC3lcUE7mfFFrH5xj1iHIOhSUKSSnyAOvZckXT3yI4UONhcoxdG9BNxvuuzsVBIfGRM8mJ0H/yO3cb3rHlpoTah4SjroTsmyjRu75YKPPNuaZmiAEK+Lo43hYGZ6ObxikAJY9vnYMsbNFw7uIAa/5zGy+a9cV9MKZOa1+lnTwUO1RAMDBnkKO/n+6+f+xnudG44pAA3Zky80xyexwfJuMQO/h1fmDFiOUF4ugdWCugk2RU++SqonC6IAxIyu39i6x11e/u75A1ddRzkSz7vfk96N61jn783qdvjlUbura6Lnf11WKzx37MLyxCA6M5qOxfIDRDP7FDNx5y0/B1L2eY+kz3vjl770rof1ncg7+K9o111yDZ599lolxnn322ZTqyL7vY/Pmzfz/zZs3w/f9lD9/8id/8rbvOnbsGH77t38bP/zhD/HII4/grrvuwp133oktW7bg2WefxQ9+8IN3PY53ZBz8wz/8Ay5cuIBly5bhxhtv5D/f/OY3+TN/8Ad/gE984hN4+OGHUVFRgR/84Ac4ePAgZsyYwZ958skncc8992D9+vWor69HTk4O9u3bZ4U/fh7r6+ceJIVsBX8yYF+GhFvm/1NhKX34qwvOMusRfMX8QtU1c0NThlvdB1cdXae93hRetpQSAPAcWwhCCYcLiWwAhiFDJnzJy5w89/t7i9TnxsMm2Vh4Snd2VuOZ1kXYUN0GPydpsMf6MpBsL4xV1QJ5b2cZK97bWpYouNO0yxAawAgsGq8bjXNdBDmuIHe9NxnmsOXX+haxoGQPn/7+N4fKFRZcK95BVgyqaGt583MNrIsjPOL3VNNgZ1tNyncpQuRdiuAzy76tPPtTIXxm6bdTGHaY2nE8zJAlVsoc34ICADAXRSyCR0qP6WiKgTGwcur68PRank/kWHvEnRFnVhUp5YIYb9pbYUft/0dKj8GbDOOZtnrtifdZKfpa3yJ4lyKpUCzCVzsCxiLgOrzmuXHs7SwzfaBx6n3mxF04OqdmbXWXYejQCtnR03M52mAZdJp/f2XZoAXfkoZCQ/lJAIpmlvpIDCQE1+E9oyk5paG5prLHKkK1qmyA329FYhwfO1pqbecA9XU8jC/1rLDmjs6AE/IsXLObkzDeO2hDXCj52weqeS881bOcveOHXsjDpqJ2FN/+KlcrP/2D662q3DTnNFa5r3e21aTeio5IOpV85wEj/vabX0ew7R4qhXdJJWjS/gUUR3z9nLPwxiLct4dKj9tngLzRAYP7m0Pl+HLzB+3+XcYoZ3hETLC4kbLs+tbPKCJCRjAALl64tWk5M/sAan9trGlNcUKU558DoLzqjL3XxqXsY9ynmiqOwquLfXTqnILezghNAr6quE00sjJ6x/uL8mgmjBwDVNSTDHEAxsivP6JyWGAgSge6i+CNh3Exka0YyzS0xc1VkbVVC4YU9EtHNmXuiJuTwKrKfpPQLQ2eqRAbjdQHSbCRTgOTNTy8qRDDRO/J71fzoO9h8lgvm3vanEFBfa2er/7aP1JgMcJtqGpHRMs8L6YYhrY2Lef73w/p2jRJxzJkAXUPAcCjSw6xo8SLRXApmcXzweOPmTt0b1ep5UByo3FsrlOGBhFVuDPiODywwOgh+v5cX9PB5yR4D7WevRNwfKu4HAAk4eKLxxvhRuMovO2HJiJLcy+oiamtreziM0q6A0I+PraoCS/96H3qnUyWIL74X6lJ/yLa/w9yDq7UtnjxYnzmM5/BoUOHcP78eRw5cgT3338/zp07hwcffBC33XbbO3eo6+b4vv8emSa7Xbx4EbNmzcInmlZjz+gi45kLNII2bCpq5wJo7JkQv6efk1JEv7+/uJX54S2GhnFz4cv3biluMdAm0R4pPcYKTfAydKOqoAqxI9Dz7i3oVl6CmFEG4KcKsOC45ZgAW9nyJgybxZbqE8pzF/KxrrwLuzsrUuZiY20rvtFUZ+Hk5WXNP5Pv0N9dWT7Iyqicrw3VbZr1Q12OjXnDCoJESr7ow8OLnlch6DRzJtuDJU3Y2rwcayp7sG+4UDE5dVZY60wXpjWGcUHFGEzQi9qXgXcpkqKgU3E46QkPXiJyrTiRNhbBNTefVzCGmMIYBwvfBNcUnoNPLj2AJ7ob7Dn1kFpng7CvAbSYG1VeYn8ypPpNF45vlMcHS5rwtb5FKXPYmDeM/d3FbOTRObGUN5orvc/SnUl5pqwxXmY/XW5NZJ+9SxGdQOpgdUWvqQys52JtRbdiitEJjcTDz0q746cY57Lvm4ra4cHhqte0H+ACyExy4nDKGviCVUesPTyw6ybd52kNvHhIYeA1Pj1lP9FzxFwAOnJAhjb1IY3M8qZDnJRMF6qTcPEHy7+Dv+leab2LvuNfyFBeXoFND8qEFKIBD9hc34SXJt6nsNu094KyKnDGrPkUv0uZ25Bvebq9mCoqtbe7lPehF1Oe3cMDC6y9SWxDfIYnw5YnnOhdLRmhCyMGWZMQ8lPYdNLK6MDP5N0SbMFn29HS1IiS9T2ZFC7mzD+fwRFfQBt3vsvK8+Va2rMXNKTlPRlXBoLc0ynPvMzYpSyV543kyzU3XsD581H7O+Oq0vwzrYsUNHLaNRTcXvp1CcodTpAOnlu9/o+UHoPrePhy0wftZPk0Z8Ga/4CclHOWbp4fqj/C8xXcLySLrfHo80H9vL+4VeU7iWgEMRxJPSXxRgKvPvZZXLhwgXM5r4RGOl7h//xLhDKy3tF3k9OTGPyn/33FjekX0SYmJtDU1ITnnnsOTz/9NMbGxqwCwz9v+0/VOfjv0KKhKftSEImJgBH4z7TX82fI60e/l6wLQSG1rXUxe5weWnTEttZ1/EpCI+jAER6evBNPHW+whSh5k7WwONBbyF528obv7KxmLzMcH+srO03S2bjtubdacNV15U3vUgRrynsVO07SUQqahj4RRER6aOAAO9pqOVRN88rKH0wEht8h5vFgVyFWLRjiWg00dsKB0lxTZASAhf92o3EuukaewnVVnax80Bx4sYiiCIXiz/diBnIk11l66XiqchIqZ0JCp6ImskIGGXmoaH0As9esC0Jyc4uEZPoZXVRuNM4XG80Jr/1kmJPaKTwN3xgGxK4RfA99ntrDi583kSwdWdlS3KI83WEPbnbCYI9z46i86/uIzphUCY8TYTOHepxkGACwGHPoZ6sres1lK2hEATD0zxsPG0YW/f3rr73IY/EmwmjMG7a8ZBKGwmNGwBM+w0C5CArC/ctJMCuHG9Vc4ARz0mcx2DbWtFr7ZPtAtWK70hc+JY67UcUoxPvMUtwc9Rxd/E/ujQ21bQpeUdVpF4FyfDxSesxSou7J79cVxc36GocB8Kkl++HmxhkS5U2GOZpKyZQqSgMzz/T9aQMdI/iUM3MaXzi+yshSgoZNqJwRZ9a08rJ7il5S5lCsruhl/nU2DHy1PtsHqpVhAFiGAY9JK9zB6u08BxoDTmvKRojr45P13zV7TXvc93aWpRioR0/PtQ0DbRS5OQnDKETw0okw/qO9hPu3uEgU6HRTq5Azc1HUjiBvrGm1Pe76s7Juwaa6ZutRVgVg/aw1Zb3m9/pZK8sHbRgbzP1ANTNo/qTT67eWHuN3e5cU7CU3NJkSJeH3yciGjgrJ3DE5x+uqOzm35q7bfsJ9ej2ea7zxsQjj8B9bctDqP6AcCHReGkpV5NCdoeaBoockP638EZ1jCADOZIifQYxg8GCKewZqMwBgGbGpttl42YmeWkMm/753qaoNIyFWgWrmgGYrdGDdffzxpMNRM5rbTUXtfE+70TjLgNrZ53h+vJiKSJNhIHWIIGRzW/MSa2x7uoyj8emmpfhv036JIwcAMDk5icOHD+OP/uiPsHjxYlx99dX43d/9XYyNjeEf/uEf8PLLL7+r577nIwe3fOnP4M7IUF6yCTv0trJMea79ixmWghts6uJUtIs7W2ss6k7AHHg3W/Firy7tQ3YojnlZr+Evuxot7/MDtcctLnnyZLMCEHg2ewBc2wvFClf+ICc4pnhT38bbBKikNImf9MYi2FzXxMJTjo/GhqSDm+54HT/8/vtYudk5WGHmCcZLsbHO/I5+b3lkpnVY2fWxvqoTuzoqlTJ+IUNVEA14DeUzUp6pvV4rSoZxuH8Bf2/Z3NOWJzAYfQBgKSGX82rLvq+p7MHezjI8tvggvnxiJeCr0LBM3rLmQveNvsc/D3jSaW/Se8MZSSQ0BeaW4hZF+UkebOG9DHqa7ivqwPaWemyqa7Y82W83Fjg+6gtPo/XsnfCTrk15q/u/qryfIzjWOgb2mfRAyvkNNi8WwfrqjrRJbyke43TeVRGdSPcZ9izquZLz5CQdUzxKenxpHd7OCy1auj7J6GFKcrCYp3UFvYZyMDinpGjRe3WyftD7jQwPmHTZELHGrcfyUOlxlXApop7edAjQUC/Ccl8OLw6AIxTBfsu+L5t7GkdPz1XyVDNdkUIfjEzSuZDKv/yZNSeBz8nPUpST5fploqf2oilZyrJXRBY4QkIRo3RKPpD2vAajjKsWDGH/SAE+UXYYX+pZwQYjMfPQOj+66BCealuhIKHiffKMW+/WBpUcCxf/0vtcepXvK+pIKwf4ecyKZM/j5upmjIzdwDkQpHiTdzk4Fw+VHsfW3iVK/jTXs5c6WDiSvlM4/xWcfPnG1PMV2PcpEUIZPaY5nwyrXIhpV9UHov0X+DzdLQBM9CzgsU8nT7wJ9XxSsOHruZfnk/aN7L+OjFDuGn/GVUYUQ54vGeVddRRWVCTdnpNnpWH+KA69kJdyHwb1BK5/IfbOY4sP4svHVqaNyKmI6yW8/OCfX3FedtLxin7r3UUOBv7Pf//IwdKlS9HZ2YnZs2djyZIlWLp0KZYuXfoLqanwno8cuDlxFgBUGr2xXGGKCdISrDBZfddLqL7rJfUzUSXyjXgUjpfK/0+4bW8sAiQc7B8pwK72KnzuxGrrc2sruvF081J4lwwWly4nYj9oFNhqQGE0ydKlJETAeJv3dihl04tFsLGqzeKIZyWFvLJjEcycOcEehpRqiblxPNO8yOCv2fvo8/y50The++ks9eOoosy0nkFe2xmqONUnyg7bl78WOg+WNBnPje9gV3sVX6xkGFgFcLQHi/8fEOTkKTw8sMDylB89PdfC+VNlaq78HDQMtJdUXviNecOWF+nbzeVoLB/AUz3L2TNPytKDJU24v7hV4TvFhehGDUc+/fzRRYfgRuOonX3O7B8xNjIMALBBuUZjhiUzCT2fPGjbW+vh5saZk97yVov5hOOzYeAkXDT3zUNj3jCckAdv3FBQ0txKb5S1ngEDlPIZgkqZ9X5tUO/qrExZ101F7UjXggmelzMM6HOfXHoAgKIzpv7SH0qApP5ytCXpqGge7ZkJobjoiuX0HpIjlmdbstDofcW4bME25o1FFG85fZYudNGIGpL3esAYXFXeDzeSZI+pbKV3vMJK1eClm1mG0NlzM1RRJ2fWNOA7WFfZZXk1g2tF9J3pDANqhweU19+XDg6RNOzFIoDn8D6ln0nvZjpWNPLIBz3uwedLWRB8vlXEUZ/vfcOFjDnnYodUiM2HhbWWOVR+0jX0r554TyAp9zstZfAuRfBE88qUfvF+Sjp4qqlBKZAeLEXYzUpwsi15+ykn59PLvsNVdR0NywHA3uytzcs5t+bZgSr45zP4M+SB5jVJ2hEyNxoHPOVh73zxdt43XixiqlULb3z1wrPwYhFm/NneWo+VFYMpY6bqwFTAj4vCiRyH9dUdVtTn0brn7c3gm3PF0WktDx3PgXPNlKIAl7ViKGo9YYodArDy10jmEBEF3wfEwKWjWzQ/Ki9PQTbJmOK8Qto//H4YYgD6nefAzUwygsCdEeeIgBuNo6HspMWWCKi98b8rDuCBumO6T4ZcICT3qkimBtT53TdcqOBOuXHrHDz5gW/gy00f5JpDMmGc+3WFJyT/MkcOWlpacO2112L58uX4wAc+gBUrVvzCiq29540DqUQSl3aw2AiHB33FfNM6OBeto5pbXBymQy/k4beWHOPQnSyFzkJEJCZz0wJHFbxRQoZo6VbMO6WEkKZKPdBdxIKRwqMkiA70FFoXIFUxpPHtHKyAm5VQl3+2YcFgtpCQj/M/nGldlFzlN+BVpWcqajMgWMZeXoReLKLYHCSsQZebf+LE3ernAubixSL4Wt8i+FSBU0dtmHZRt2UlpmKkm5MwnlztDSKWImudsxNYU9pnQ4N0KB+Ob6oYUziXErdoP2jaOwlP2N+tICcPljRZHNRkZNFae5cUfOnr/bXY01lhir/RZTZuz/VTrR+ANx42lWVpn6bx7jXmDRsDQz9vVaVN1XqoL9+aY3l5ymJDai7AkRY3JwE/5GNx6Sjjp92chKrwScamVL4DHlz6mZxzR1dYvbdAccvfnTdif197j93sBHsYiXJy3Muw5ozWxcr50HuSCwBRCF7syS8eU1G7HW218MYiKvkzTfNiEexoq1V90XA3QzUolE79s2VzTwOOjwO9qo7IQ/VHjEcuwH4ERxQe1HtsVdkAG8UArOKItHarK3o5ST+4H+gz+3uL4MUV/aA3ZmqMuLlxrtXijSnmMDc3ztJ+a8syax3daJzpGIPnlObgqqtiAGxK25QoSpq6G3B0kuolVajLjcYRS2TwOslohywEJw2lEwPzVdE/Mp6FUSf7wUmZ4oyxDPMB/60MKwHbmwwjBC/F0VA7+xxHWeAYD/6aSkVbqmB3forC6E2EsaayB/fk92PVgiHNvGMbR2zgXVIKpZ+haW9d9a61C/vUvaL7uK+v2CSweo5iYopF8ML4DbxWzjVTqrhn4QgsRrRcAymk/AFvPIx/blrMY3XS5OI9VHrcdmzkxtXeoiTysQhWV/byvLWP3mXt03VVnezFZshZLMKsd/ULT6O24IxxWon9P5EUcsR3cCGZbe+zsLkz4JlEc2qmuJjZf3yHS+N8Mqzr96gfbh+ohhuN4yN1rSYpfCLMCdOyngbvTV2HCI7PRCDc17C5K4mmlQ1KB2xU7ukxBckaKwf4jjh8ap6hntX3qheL4HPHPoxt/XUmSgYACZcTjBvLB+wIBMz+I2pu2R4/uBHwHdx82xuWA8ii9PlVQvIV286fP4+vfe1ryMnJwRe+8AXcfPPNKCwsxMc//nHs3r0bP/3pT9/1s9/zxgFcxS1+X1EH03sRI4K5/BwO2RFDEBUtCnpzKYHnqaYGRTOnFZR1Zd2m/Hs0roRDUtGEyXCdFLpeLGKqkmohIJX/PV3l5iLUXiJvPMwsSbvbKu2QqxZedPk7cZe9Af6FjJQQvBeLqOqwFAqFuux+a+kxc8F6UHACTXMWVAxJad3WtthiIWHPDXlNfHGpC4+zm5OwhKYXM0wyx0/PUbhMGt8lcYl7DlfQvK+oAytKhpmGbt9woaH2k1tBeu5kyNZRDBfkuSQlMXhpfq1vkRLYV02ruhjkySTM6AzjAV1Vrg07DcdKp/CvLdO1NSjBTUJzJJNWLIL9PUW2YA/5ODCaj821Tfj00u+YfBRpZGQnDL47kjSKEsB77XD/AniTip3lxKBiNfCTat/UF56Gm6WS9TdUq4q0OQPZ1hgsrLSgwHNmTQOeo/JHchKGHYPWL5BvAYCNaPJMW3Obk8CyuaeZ+pCqzjLsIgBdYOWI6mrkxjHlm1wQy9NLnmsyNGhsZNiNRVTFbCgl6+jpuYALpjre2rYMbm5cefTEGfYvqlwVpgHVY9nfqWpfEG4ZnqM41enMhHzsHynAgyVNFrVs/Zyz1hlCUldg1RAE6dGn70lPKHk5Fxe9oIp9+fZ+kRFDeo+v8wzOn4/asmtc7GnXYKNpfq2o0wy13gd7C+DFImh/8Q7+LleMJ3iMbNrgc3MSiF49YaJ3OcaIIXgGGZzelKI8pfMHgNmK/GzPOAR0oTX2hIuzNTMyyTKrfuFp3mMM34yHGIZDc0GsY3vby7Cns0Ix6IyH7aiar5wmG6ra1c1L1JG6ubmqgvxv1rUzVMaZDFnygaIge7rKFUWnZoFycxUlLLPNQXuQs40xQmN0Zk7Dm1BV4H2qcUJKK4CvNq8w49K/2z1Uaoy/3Dj2jxQo5iOdsC7bnpMl7DSpzH+R/01GYvPAPLQOzTEVkhMOz+3+kQJsrm5mY/HZgSojKy5FsLq0z8wbzb+Wab6GlMHx2bvOTjQ9/+pv5fHvH73NivRtKOxieQXAOC50RInuKb5HRO2ZlCbrpVCUMuKB8gM5MTgrwU7A50YX8H1ActSPeDzvnE+nq74HjfG1C/twU+Z5i8UqGI3k/DiSUdox94OX32c9i84JzcOv2pXZotEoPvShD+Gv/uqv0N7ejtdffx1//dd/jZycHPz1X/81brnlFhQUFPzsB6Vp73njgKo9PjtQBarASJekG40r5V0rUuwJth5gPPPUPlF2mBWcLbUnFJNPVwU+VfGcKbzlKSH669U9/NwV805x2I6834Dt9W7MG4Y3piITcBQzCPEy31/cqoyGzgr17xnG08UCDODkOWeW4oze312M31pyjMfJQ4vG0fni7Tpq4rDSRBVbAbCAWFvZxUlsc25S1qh3KYL3ZYzpz5n55r/Js+Zrb6mG82wo7MJjiw9y1WEJFyBFzs1JYEtxi0ryJG8mKd/kpdXCeXtrPe7Med2qDOrOiHOZeoIEBNdXhle/OVTOnkupkMkmPZQ7O6uVh088nyAAblQVeCPaTP6uVrTIgMgNTymPem4cK0qGeU69WMTyPNE6sDcLUNz+YxFsH6jGF7ruxu6hUi7+JBsVYaN+c/XcnATvK/iqCjOtnRNS3szmEYU13j5QjasjynM8XjShlAIdXXFnxNVel4qiVpak95mS6ngNxEXrn8+wE0iB1L9jEVXwLmIoCnkdhQeakgktpVe/c3trvVHYHJ8pOFnh1gbHlkXHrSqybm4c2ztrGQ5Ec0a/IyfA0y1LjcISi8AP+ext5rHTnEHBLwBgc22TbbhqyNjW5uU42KsEu5udUBEAkRvB3lGtPMpEeIYZkFHuKi+nG1VVk0//4HodTRD7zIWJ6Gj4gx80lvR8bq4xRjs7REhJdxQNszRw0yVdehNh7O0sU5FOTQhgramYk4lYBuCCI1EEFakvOG3BAFcVqwTcmzLPp0QEJGwmpT6CqCNyoLuII4vB6rUzZ06AquOScbm2olvNrTaE2NByTM0aOtNuZtKwjokoBn8GwjjOSnA+yCfKDlvzTYX9vtr0AZYLEvrkxQLMaZSTouW8m53AswNVZm4E9IWVQoaGiSi7qB+xf6QgxTCg9vCi5wHXR+fJu9SzcuOKcliSV0yFGBZHsnNLcYvKeXMV1NFqYV/VLeE+OwZiOSmqzOckLEbAPSdLlBFKn9fOJTcnwfcUAJM7NxlQqImSWvZdMCVxYT6A6ax52iOCESwzqSKq/Fz115vxKMsWgjQS+5GsBUMwYEJAyPts1YIh7O6swPcn3of1teJeTZPzZEUFdbv19tdV4ruo9O0kHDZcruR2pdU5+P9ni0ajuOaaa3DNNdfg6quvRjgcxsjIyM/+Ypr2S5GQHL42lEozCiPcg17dFfNO4VB/vpWcJT0wqyr7sb+nyEQfwpoSTdCEAbCS8T5V8Ry+0HV3WipLq290aAnGo70k9XPOovnMbHixCMoXvojel25ljwxFKciTH3aTJpchajzk3lgETjQBfzxs/RwAU7kybahk6dBCKi2dHIU3k4YW040qZpv2wTkp77lcoikZVHCh5jPhYnVFL/Z1lVqJg0HvJVzYSZqBHAKrrzLxLQ3t7GOLD+KpnuV4tOwIVzXl74okz8bSQcNz7oAVKkBBF5yrp1Pmfl1Br8GYywiOoN8DTJI4jYOSgxvmj+JgT6FFyUhJaMG5pEbfkcm3/Fm5vpQMpxMTnaykojIF7MtwwgWumzJjEwmYaRN2ZSLgxQwgCfgZvone6UjUJ5colqUgXe9lE5npuzJpWJ4bz96L6fJKmKlFJ4c6SZ2YG6Az5HdqD6l/MYM9r/xZx2f4yJK5Z3Btxhj2nCyxkx/JoNX9W1PVo7jRRQIrOQyCPwt6AS+XOMx90u/YWNuKHe01cHMSWDHvlF03JeQDcYFVp7nRc0uf50Tkn2YC101ddq95MZXLJdfv3oJu/GhqFo72LOA9fm9BN3a211hGvtw3btQkvQYTfFMcN9R8gJJDg/AzedbT7gMx35woKqkqZQL1VAjXvP+iYcER9LGSKjddlNDqD8ltkTOTQq0ci1hn3RuL4KFFR7gKMZJOCm3y2zW5/+R4G0pPmn0h1nTFvFMGpkiRGh/W+Iju0pIDfCYAJ+FYGH8ARtZohdrNTFrEGOnkNgBkZscx8XoOr8uGwi5LmQ8mbl/uOTy3gHWvW7+X8kwnLctGyb0kC+S46Pvrqzqxq7PSIkAJnhdea5HsnO731lgDd7EXiyhSgrjD0SYqrEoOIGfmdFpyEmv/iruMGpGNeOOTV3RCcvGmd5eQ3L/9v39Csud56OrqwtGjR3HkyBE0NzcjFovh5ptvxvLly/nP7bff/o6f/d6PHOTEMf+WHytLW2McH1v0PT4EjeUDKaG3w6fmWRdE0DO3v6tYeT7pe9owAMAeNRbGngP/fAbeSkRVhVNBV8jKY65imJEVFglug6SD+4o6cKLXMBH0vnQrR0DIg76uqhNeLIL/aCtRhcvGAooQlMfBkWazMAu3D1TDG4sYzKFWHImObkON7REhCI8bjSsIj2RAADgisaW4hSM1NC4KL0sBqLx3+hFaGO/rKoUbjXMhNrqEvZj6fmPZICeZ3503gi3FLXyRudF4SmVg6WGm/q5aMMQC8stNHwQAPNWz3PLKrCvotSIjz40uYMiJhJEAgB8JRJq0F2ZXu4pcPbboe7xm3C8REdjdVmnWH2C8OhsBAi5FMA32aOt5vjtP5Woc7FGhej/kI0wwOcGsJZNGG/OGbVhb1EBteL5IOfTB9KkbCrsUTAKpFzIrDFChdedqoyjzZe74XJfhQJeBTlGkxfp/sOn9Qu9V+FyzF02Va0cV69IQNSfhwIm7HCmA46vwui4qpzystmfOzUhyNMCLRfBAzXHrrHIxt35jrAUVI/Lkubl27giNc01lD+fABA2AFJz9mKqa6sVDTPlI72gsGwRCPn48NROba5rhxSJ4vqPAjEdgbq3k1HFjsFFhQfia5lIbhfI93Dc9/9IwWDb3NHa21eD46TlwZyjIlTehIm5ciEsmCUcNjI+qW/P6+w7Dyag9tvig9R03R8FM0hoRIUX/StEGNsQru6zPr6vqxOqyPiv3oXrhWTP/CRfnz0cNlapn9pgjyRMuRaxCe/R/AAwxdBIK2kLzt6fL1DDhQoCE0NTRrq1Ny81YHXMm1i7sg38hg8+9HD/9e01VD393Q6Eat5N0LMNA5pQdPjUPROfrXYoYT7tYA/LOrypTRBmbalrw0KIjbPR8dFELy+rgOyii78VDNjFGoCL075crGtOpiYg5m4BFhLG2rDs1MpnG5enFIiYxWxeADJIfUDSTm6bylb8ndkEqlAnAjvT6DsOwGAYZtWGLbBhciqCheDjFyfFA3TGeOzYMxiLpnXT6rl6dP8j3yoaqduUMnDnNOoYcgxeLmGrpYszUVzcax442VWtmTf5A6mReQc3x/Xf1573QrrrqKtTW1uLv/u7v8L73vQ9PPPEETp06hZdffhn//M//jM2bN78rwwD4ZYocpPEkEE57V1clPln/XTzR3ZDe46w9TNI7yhSAwnPsjUVSKC0fKT2m2Cio+VCsCtqaJ5y+m62YKfZ1lqZa+MSYlBvHpqJ2PNO6KCUiANfHxuo2PtBBjxk1J9ODH3dZMNBYCVM9nsxQyYlpLn8rKpKuaAxRrQUVmUs6pC65y6WnRVLBpvGY8HcCtIiNecPY31PEHr90RZPo+TLy8/jS5wy1YMDTR+9fMvcMjp+ew9/fUNnOHk/ZZ3gOlpWMmM9exmOVtl86WkKeNGIscnPjXOBOfpcvKQ9AxGfcKb3Tv5ABP+ybZwa9uwHqT5qPYMSL5vbAaD6z00jPkyyQQxdxusJu/F3yygKpZ4v2kXiG5T0V6wqIPSW9sPq5XHRMN+kdpkuVxsFzJc+18BIGKRvpPVvqjuPr/bU2Dancn2J+01G8potqpRtLsEnPPwCmbpx54yVc/HEuQwk3V7aYYo76fWsX9nGdkuB75c/uK+pAbmhSsc6QhznhqghDdmq/aYwAOKr2QM1xPN2yNFVepPkuRejYyynWhAtV6f5ddVUMb756lY4SwOxx+Y5LESDip/UiW0XsRHSBvNYbCruwo7XWppsMzM1rUzNTqrwDaq/clf1TtF+4Eyf689gxQcYSPYeV40T6KCz3VZ8FWsOH6w+rei7ByIcs+hWIolrn6O0KqF2KYHWVKQoo5U7KZwMRLngOQmMhJGclIKOnaed93KbxBoyzzs1Mcg0OinQFC5wBthwPjkHKu01F7Qg5nqroHKCl9mIR9ogvmXsGR/sWpEbP5D0W8q3IQYq80xEgNnrE3ltX0ItdvRXAlGuihg6AhINHlxzC3/cuhf9mpkooFzIgncymwqDW72g9BM1wiswRd+bj5YfwRHcDthS34I14FHu6yq27mOV1oC+JNxN49Xev3CJoJff9xbuKHPQ9+4dX3JjeafvHf/xHLF++HPPmzfvZH36H7ZcichBsJIh2tVUhx50Gko5lGJA3lp8RVRi/9dUGy+fMmubkIen53dVeZXCxUAwBlocrN45fq+oDAGypP268m1AYzqDnhLxG66o74Y2HMT/rR6DCajLygKRj1RSgdwEwXn1oPDklc2nMqzcexvbWemxvqTfFzvR4KCdDKnjmYcZLvmrBENxsHWnwHfvC1hVayUPhxQSMBUrBfbjOYGrpQt3Rog0d8moEhN7+7mLjvc82yllKElbCsZ77pZ4VlrfEfysjhcbx+Ok5it1E948qNvPcavpaOD6ODualeOzkszhRc8LuF+0r9UsTjvfPZ9gXtFBU3KiivKXLWUabnFnT5vcwSgMrKAG8qTIqYc2xF1PUm8RaxJeFvgx9z7ErfOuL8qHS49hQ3WZdXv/WUs1jkmcAUMotMVw5Wlkib7KltNK8aC8m9TGdMk35LZL9irzDcFXxLNpDvutjfXUHG5beRJgpj71YBHs6KlKZmjwohWMsYgwDHUHhuZCGTci394TEPEPBE5bMPQNKvH2g7phZs8kw75dHSo8piI/Y1+V55wAHGLuUZYy6hAsPOndoOsR7a8oLp8w9NfnzZweq8NUTH7D2A/WbPuuNRTgJFoCFf15T3ott/XVGwcpJqOiGGDPvvYmwqhECYGXpkNpbYZ8x28QeQ9/jSreaHWZ9bYeSNcKDLr2vJMM3FbWbiIImpJC33p6TJfCmQkp2poFHUt7ShUQ2DnYXIti88TD2dFbgie4GnBiYz4nQB3oMDPJPl+0xfcxKYGNtq5WL5MUizDjlRuMp+UZEESojaQ+WNNmGcE7CMgzo73vy++HmGkw/oOCG5JV2kop6m+TUzgA1dVCWksLvJFRlYf+GSRPhiAWirbLPnoOnm5eqz+nob+HcV/H+m84DUHj/HW21lqwPnvP1lZ3cJ4vGlOA4+l58pr0e25pUIcVgjYSH6o8oh5OW8fL566o6dZ+F0RswDNxo3Ha40Zn3gMoFKvmaEqAnkgR1VH81lqm8B3dGHH/fuxQN80fhXKOisU7CMREWOef6u5ZjimSKnls3kuSicilGoCh098VjjbivqAPb+uuwp7OCz447Iw7fd7Crq5INHmmApqu1cSW1X+acg9/+7d/+LzEMgF8C40BehF5cRRB2dFUzxu6ZzjpzQVKyZtQk8rDHMjuB3UOlil5zzEBbzHfNpbKzo5rfe39xq7qoAU4O3N+jKv5+vb+W2Qg4POkaphFFwaceSqHXTx/+TYYm0KXrjYcVxdtEGIuLRxWzjDRusjUXdk4C82/5MSrv+r7Bj2pWgjWVPaw8ulHDdOOL8u6AguHcddPrWjE2ysW+LqUsKd501XdFf6dD7xqDSvOr/mGqgG7tXYL6OWexprLHMI3o+bw7b0TBXgClcI2HsaJ02DK4AKC++BQo/E3KgTcRNpctsURIIRz24Gd5fMGtqewBwore0Ll6moUuUeJRI7iVMhBJ0VdKaeVd3+f531DdpubKc1JqGXhTITYGeU58A02iRvMhEw7dzKTiiw8JakbBLmIWPz0EhOZX/m5dQS+IepP2rBeLoL7oFH/G0Yp0sH216QOsWJBy+7FFTWlrUwBKSdrWsgRwFSOHNxHGhqp2uNkJk/AslEpO3p9U3jylHPnmfVoxcXPjArJkErLdnAQO9+Wb8zxDsfsoZVEbWqQ8Ev2hxu5yzQaSlrKWgWC1emDRMbVeC4b4DMEHQ7qYnUv3ed9wIY72ahankK/w21qpdrOU8XlvQTdHHgky58Ui6H3pVrjROG59/1uWkfTsQJU6N9MuKJlxZnjSJBNrvDrBW3jPUBK5GE/9nLNwwyo5nRmXclVVcqtpeBAxzgBglq6dHdW4466fpHjQZRLxwf4C/t3O9hpOrPfGTKX3zOy42a+OMlr9kG95bWmfsAzLSagoSsAAX1USgElQ4qvvMOOco+eIckn2dtkRXVKmnSkXcHzck9+P6oKzBpYposmfPfYbPNbqu17CzsEK9XxxFqnCNf3bRAn1c/R6udE4GssH8LW+RagvOpU2yiR/RtGv/SMFfG8d7C9gI4QoTmm/kkHEZAWOUZTXa7Yc+E4KpIbe+eiiQ/Bi2njWa7G2sguOp4zwtQv78MAiZQSffPlG/PjVqy0WOu+SosWWRAT07F2axpWZwvSa0VyRwUIKuDcexqcqnmOmNTcaZyY/y9Gjx3xb5pssK+isWgm5cp9R5J3yJxyg+9xtgA/s7qrgOZfrcTGeZVWOpyiUF4vAz1aJ2Y3lA1hboWFSou4BGwbjYVbeU7RcQacq9w/Deh3lAKi86/uqX8JwKrnjFT7H9Ld/IcOM70pu/rv886v2tu29Dyt68s8Qvk4rOukSl8bDWFU2wAnG/PNAVVUZogXAF1U6j/qq8n7l1Q6GK9niD4QlA1AZ8toGv5vuIrjczwEVMt/dWYHGskFVIyFNIjAAK7xKYUj1odSKzPx9CVlyjKAJJv9dLtnMSmJzwd59uoApvK28TrZX8LPLvoU/PbaG18EKGwdCzDLcHlxLa37TVDzdVNSOZ1oW2VAR/bn6OWdxYmC+mqukg001LdjeUm+NnZ6v+imgLfr3q/MHsbe9zOKlTrvGtCY+2AhdmPcKRl654WfuAS8WwbqqTrsStlb4m/vnWfuYIylJF/6UywluTLN7ucq/tI/d1DECpsq33EsMYWleYUG7rD0SM7Ci4JjoMxsKu/CjyVk4enou7i9u1QaH6gf1eXX+IK6PXFJsQoBOxk1N6JQVU4PQLG8qpC5fAUnhhEx5vnVS/drKLg7bz5w5gYsXFQWshNNZ+09f9hur27CjqxpIuNZ8Ge53AL7D1d0BmGRRz8HqSgMRYZhP6xKsLu9jes10SfwNJcO4JiNm1TEA7P1IycTOtGMSy4XBV7zg+xh8+Sb+2bKSEVwTiWFPd7klS4DLwCTE/AVl64wbLuHDdwxZsMn6OWdxXcZYSsVenhMpF8T5vtxeZoUL4IRfmThbO/ucxV5kGTwaOilZjEg2yHnkSr5eKkmA7E+wIvbdeSOKRYneF7yXBOTmwZImbG1enrJ+1vN17Qcn7sKZOZ0CH5T9kHUaKMlYzhV9bkNlu4FCprk33dw4/Lcy4Gf41jlKWTeI+yQA/QzCIOmeLr/zZXQOzbbGm5GVwLR2qEh5wRj+hAtXO4JYdumzRvPC/QpUpJcyM3hHe7EIPrP02+gdu92+y2k/y/ssML9uVMmrvZ1lKXclP0fevUkHyPQ4J6q+6BRmR3+K7W111j4MnndLZ5GQOw9YVjaicqcoUjs5gVcfu3JhRaUffXewot5v/PeHFf1Xtvd85IAvdiDFMFi7sA/OtGvgKbp5MRNKI6vd4ofPFQIvx9D4UXhxf1dxSqVF+SwrKTlX0KjKhGCAubO98TBXFU2BzDi253jJ3DPK2zYVUhAh3zH8yYBKzgb4eVuKW3D89Bym0lTc8OrScKMqHP344ufgjYfxaNkRfm1t0WkAKgHbogUkXLd+356TJeyFsi4qR9HzranoVV5Szc9NlwpdMm40DmR6XFTNjcbxp0fv0R4Rh71dzJcOnT+hKTWtHAnHt7y+lOzmX8wAEo5VjZSb9orxvHvKo3iiL08pMZlJIOlge3udgTQ5Yv2g6TVFoiz1aW9nGeDCwAmokBfREmpP0OrKXq3sOmgoU+sWNAyC9HvkYaY1AGDNUfPQXJ5f8pbJ5uYkMPfmn2B9RSfvUy8WUVArkWsiC29RoiQApir1YqpGA3vftULx7EAVxpJZIMgZjcWJ23ksUknwxsMcsaEk7J2DFbg2cwzeRBjb2lVxpxVFI1akZ99wIZ5uVfVJGDogID/saSOaQddPgWaxgqIvzHUFvXi6RRUVouRBN2ogXXs6K4Cwj/uLW9kwAIzBQXAV5vKPxuEkXKW4aMNgXUEvagtPW4WdSN5I7DsllxP/vNyr2/rrsKmmBftHCjgRlZUcHeGBrxJTOZKi12h9dYe1J3Z2VivZcLWoMis8m/2jt1k/O9q3AN8aLsaKohHLwHGjccUnH41j7cI+bCjsUvAfwmSHVERxVdkAPyt2KUsZBp7x9DafmZ02L8QbD2NNea8tbyTBhGPWPJgT4eboJHW6GR11xr2xCM5Pm3WkM8uwUAHP8y8oKGZ1/lnLUwyAIZ3pDAMAWFY8auCWWSbSeKDPrq4u97I3bmPxZfE8ScvMdJ4TYTSWDCoYqO4f06cKOlAA1tl0o3FOspdzRQbXN4fK8amK5yyoIzVSZp2rp/m7AHDjdRcAqGibdJ4BMFG0aBw3X39ePYccKb6uIaT3cve52/g7BNGShgEl3lMOmxeLYF1xD4/FmTKqEM1LsJBm0OAh59dnl31LfSjkMwz3c0c/zAgBGWV2o3Gsq+k0MidATNGYN4x9w4WKOnwqpGCHLnhP/O+KA7weVFC1fsEZVuybB+Zhe3M9JOR0Q0V7ClTpofoj5qxrmeZog/j46TkmwV/I4Cu1/TLDiv4r23s/ciASkoNeSOKilp7hYJKSbCvmncKhnoXG20qeLoKtaO7p+4o6VHif3jMZBlEmpvX6BLzX/L1YBOurTYJz0HsUbP+74gA+d3x1SpKtfN7Nd7yOH7x0rfF2ifFzeFd6ZoIJfy7YE5ECFUg3Boq0hHysKe+1KEnvL27FttbFVn/vL25VuG6aW52wLXH3D5Y04Wt9i6y589/MxEeXNisFQnq0Asm8cl4+W7kPf9q5Om2y8M9qMiFben6DSXdy7jky46Su3+X2BKBpDjsqGDu8r7dEKb/k5fbFGgaTlwHbyyyeyzR39Axfrb2fdFXSOtGCEhuV66cY0ZyQJ7xhacc9HsaW2hPY1rwEjucopUR60MibJcZCUYH2H96OiVgGGw8Eu3p00SE81fwBE60QY95c24TtA9W4v7gV/+fEUlaCAGWs7WipZcMkCBdxo3E8Xn4IXzzxobQJxIDx3vH/AxEB67PCQ+lG42ws+2GNYxR72xuLYGX5oGKakt5Mva5EORxcS0AZxdtb68E0yHHXnhc53zoSQlEcqrmQTm6kUCkG+ivl4cOLnk9JnrUoOUWfP1F2GE8cv9v0kRQVeX4vFzEVBhvtra/316adF/oZPz9wD1DCtiXHgvTSAXglYGSAoXwM0FgD4ERUoknV0YAUyuM00ThyzhBrW0pUzRqgWVtJF0tN0urK55NM31Ddhm8OlVvf5fsmcEZo/tN6s8W8+RczzLkj77Sc16mQOoOTrokWXWbt5M+88TAeqjvKd4B/IUNVmr4MIUWwpTurQUIISaIRHHc6EgvgMlFfnSwcpM7m6BBFgwHjWAnsU0mOkDaqKShJ1y7sw+72SjtnIzA2wNCxbiluwdPNS9+eXv0KpzIt+8i7ixz0/OuvIgdv197zkQNqbjRu0UCuXdinCtZQkqb2SnKSEiUjau9BY94wDp+ah/U1HUaYR+NqBsVls6GwC7mhSfVd4S0ibLpSyE1InirtPlR6nKME8pBSmN+bCOO50QXYUmdoC6U3wLsUwV92NYLLuev3W96PaBw/+uks4/kQ4+f/k9ChxDApaKmSvFZKyTvFQg4wXh+ibXMAR3v493aWcTVeLxbBtuYl3C+iHY045tkryoatKAs1uhRk+0DNIHYOVqjq0a5K/uIKtwKvS/PmxSL4087Vus9OCq4yWBk73e/WVnZZnrzV5X2MG0+J8Oh5eXjx86z40nOWzT2tvdJmzVjxgsINr65UHvp9XaVqP5FhAHBRLx5LTFVo3lzbBDcaZ0pT6id9j2nuonGsreriy2nGVeP8Djdbe1EdWAnB9KxlpSPsMZeeW/qbL/ycBH4yPUNBCwSFJfdLROAoujOWzMThvnw2DNxoHAVF32eP11MnGuyIjFiL7QPVeLTsCLa1LYavcfP0+x1d1VysCg4YV0wRRgB4orvBwCrSXPpB4gBERCRCr9s9+f1qDiR0Qc+7M3PaOls8T7lxvE8XnLMUE0edcTIMqM29+SecWzOWyDRzmZnE6spek/8QjVuGgZuZZAOdimE9vOh5Xl9JA0yGAeOvHR+fWrLfeC913zdUt2Fr7xLLW91QehK1+WdSxvlgSRO+1LOC1+6TSw6YPaCbTAgHYMuynAQXvIOjKtfzWSWihZiiruQ8k5wEPrP02yBKU3o2kTAE18E/LyKevsNOIHo2RS0pwZUjhiT3ko4Fn1lWNMpGknP1tC0jgjJIn+f9IwW20SLlEXl2o3Gsqe7hnKSdHdX8WW88jBXzTuE369v5/zLxn84BRWopogOoir0UgeNIF5TxYRkG4+EUwwAAPlzTjY01rdhU24wttSfUfLo+VuerQnWFc19VwxCQUb5PoOBRJEOiM9SduqGwC/Ad6w7gvD1NDpAiy2OGStZ6XzDaSrl7BL0LOOr88xkIQtXYcHF84I1M6z3WWjkq2shQIL1+nOfC5CG+OQdaxHxruJjnn84x6Q0AsLJ4iP+9u1OdVYpWqI449v6MRTg/6OmWpSn06oC6U+7J71cUwFd4+1Xk4L+mvecjB7d97Y+AUFQpUxrvKTH+P6tJxTfokQVsb+1nK/fhs0fX8s/5GQFsYpAmEVBetC/16LL1ad5h9Un/noqDcT910hd56IPvX7VgyOCRhcdqVdmAhY2k57nZKmwa90OYFZ7AswNV8GIR3DXnNbx49v1YV9ml2D6COP9YRJWKj7vGaJDKlIygaFxu2qhDENMpPD6UT0Hrwt+RuSKOr/ItOovSe7V18Zn1tR1WwZq08y2KI1meUGatIO9PespEq0CVzpOQeQj8rnTFaoQXcf9IgfEESRy1ZhDhojw0dwHP7uWiCIC6eCNOEv/cW6uSktPgbAHjeSPPIP9cFvhzfJWH0VqfXrkJe0DSwYriERzuyVfUrKJ6M73TKtIkvcV67HfnjeCmzPP4en+twVpryf/4ooNMWUvPDFKCct7AWARb6o8b7zNF+/SZClJbSipTuXZEtUmfu6+oA//SW4NfWzjEZyyIh6cIjn8xQ0UTpGc+sNb0fblXvViEKVat30tsMhEmpNuTRBcr5M7lvPWlC15C//dv4fWRlaLJ6KCzGcSs31fUwXk5Kc+mMyZw9tIIlfjxYISB9gwpdesrOvFvLdU2Zjw4ZxNKSVtV0Y/9ncXGcy2KA1pz5NlKpYXhlmszpj3OWQlU3/USWk/OsdeC5FPA007RUG9CQaKoQB7NQ/A+2VDVjrhvagTI98o5TfFwS3kssfyU+5V0rPOarlFBzob5o/jeyAL4cZdZfbxLETi+Y8kFQOcddRVz9HP/SAEq7/o+Ol+8XdQEgpKtJD8vQ09t5avJfLeAp9z3HTgEZwzCgXPjdmRD5IdQFMWSWZqCVuoOwfsp2KxocchEAe8r6kDESWJbyxJLLh/sKTR7UBRF42idk7pmKXkhQkZK2vPgfpBje2zxQXy5+YP8Tjp3hFq40iMH5evfXeSge9evIgdv197zkYOHS4ynfXVpHwAYjL8uxrU6f/CyGfludgINJcOA73ChKMBY2eydjkXw2SNrLesbAHtNSXHwxiLY01lhe/0nwsYwGDdebsvbTdRtwmO/b7jQeCp81afG0kHs7Sq12R60YJWGAY8vJ6EqIoufydyC3Z0V2DdciO3tdYblx1d4f/a4uWBvVGPesPF6OL5iKCKstP7zUP0RM4dZCSOAhf1gzZuel/W1HYyb/7+tVVhZOpRisDFOVz/rudEFKQVmJIOOO0NFZ2hPbKhugzcRZjo6fra+NKHhMOSlozGtIyYPTVfJFJowyoMb1ThdTYEKx3houD+BuhQ0T7R+rOgB7BGi5/qhAHUmgE11zdZ+PPRCnvGkkndRf2fnYAWeaV2Eq64ZUx8WHlirhX3cV9RhGwbkPRxXSrWbk2CPNL2LcjrcaFx5rnMSONy/AI8tPWgUMoHBBVQxJv9ihrWPaewAcKC7iGkLyZtIa/LEibv1OMzXqLgXQXsIAuYkHcswcLMS2FTTohSuHLVem2ubACjoG1OZxiIqCqS9zSsrBq0zu72lHk7Iw/7uYi6etaGyHQ/UHePvk4LizJzmfcZrpqNJtD8b5o8CCUOJ6sVVtGNb++KUuWGFXeeCrKvqVOdlKqSw3lpZkQamVLiD9L7wHTYM/IsZRuEijneNzd/dUQlmufEcpq7c3l5nM35dNN5NJ+GosQvlliJJjXnDyjDQ7C1rKnp5z5Nsrp19jvMpdrVXpWD6DbuN+H/Ix4HRfPaeS+z+4+WHAACV+S+qfkR8lj0p1I5UJHMirKKkWga1v3iHmVtiFSN4Es2D9uBzAnF2QpEUBKJK9HxSiHe21xjaab33LJYj+T3KudPzubqyl73TlLtDRtmykpHLOkg2FHbBfzMTzWdmAwAOdhXC0QYdv9cFy4X7ijpYfhwYzWfHATHbtY/cxXNBHnGOWOuoHmAMtRXzTvF92zB/VEfjbcy+F4vwzxxpPEqD1FFz6Wd4HMVnSlJf59botVGDVwxXlB/I+RF6j9N7OWctKL/19+D6WLVgCNtb6vH1/lpLNn6vs0hF1Om7wstPdyblAZDM5rkKRBipP4qpy9wJdO/KonSfXHIAXz6+EpLhaXWFilLvaq1Klf1XaPtV1OAX397zkYNbnvwzuLMy4GYkbbzuZbCJXkxBMq6KjOP/ni5Rl1LQQ/E2RWVSnncZb7hs6wp62XO9rqAXuzoqYRW0EcWZUtg1wh4oMVe22tnn0Dwwz8a7AileDzlu5kQmxpCshMqzGFqg8MvS6JFFzMjLmnRQX3KKGT3IO0dJhg1Fw8zX7uYkLDwmQgpO4mYmUzxDCPlwqcJv0Bvjw45EuD4+uei7+GLzh0D1DwCliHyoqh/XZVxShd66Kux10bjNxvIBHOguSvGGW/MEEzGS73aj8VSvYizC8xmMKhCFLHkJJfZZNsrDeLtGc80esQjh2ZGy33heXVPgx5sMY0XhCI6enmuxFVnf0QWBvLEIFpeMovnMbAuywZ8di1hsLN54GMV5L1tMNjx/9MypEOA5cKZdxkZ7MZXse/C1BbhtxpuKHSriqz0zHTJ7YjyMxxZ9jytby2gDtYdKj+OrJz6QanwJb+n9xa0YuHgzJzfK9V5RMoyjp+fyz9J544LrwXsv6XKla2K/AdR7rXMu+sWYZABO3FWY6iwRLRIebpIDroD7yecFI2vE1BSUTSljSCOrSJGkSIWMkHnToRQ5AcBeKxnZi3jWuU7LTKX7kJM7hfGxTCtXgr63vroDu9qrsLqiVymel2PCCUYidfFIN0dVDX5/5KKKNGmWp239dUa2aflPY6Gfy/csm3sah/sXYHHRC6xAA6pOxd/3LlV9IEYsvbaP1x9kx1BKf8U7uB9Ic54pCjEVUhS2DqwoQsP8URMt1HPAXnM3jSd8IozGUsNwV33XS2gdmJuKmddryTlKEM4ZEaXiu0VGZOQ+FfebXCsaqzcZhhPx4IQ8Li4n+8FzlTRe9RXzTqHrtVstMgDZGuaPKgpdJ1DkLHgvJlw442Ejywh9IKCM8r6qLTiD+bk/NnpGPIQtFU18VoJ3KMIir0jMm6VvpGHaChYE5c+I/JuUiAIA+E4Kex2Ny81KGNYq67tXeOTgNz+HcOSdRQ4S8Ul0/9tnrrgxXUntPR85cKNxpvl6pq1eWd1CAPjnM7CluMX6/IHRfOwcrGDDgL29gGEQGjMeV+mlp3LsXAhNeJWILYS+Q31hL+REWOUY+A4aSwb5ObI4k/SUAFAXpVRyNasPKegWfpH6or2A1I/V+YNKSGYn4Ey67MHzYhEc6s+Hm5Fk4eWNRXDr+9+yPBubq5rVe2bE0TxoFCiGzLjK236od6Gd0BhJGkXVc+AIzDf10c1OsAIh28baVrjZCWysbkNt4WlmiVhT3osvHm/Ehop2wFdJ3HfnjeDjS7+HA91FeHagCntOlqTgSYkFhXC29PMH6o/xRb6pqB1uVDFbeFMhONP28fHGbcOAWEs4YV16ufS67Bs2FLN3ZL1uKT3U6GJ5pPQY48trZ5/j328o7MLDdYcZG+zMnOYibVLJ5D2kE3+tCznhsPLrhLyUQkybalrUGmkvMSs/ulYGRVqoOTMVptqbVOen/4XbDH7fF+srciecuIv/ueSomaNoHNv66/DKj69G85nZcHMSWF/axf2Vc/lUz3L+P8OQ6HyORfCT6Zl20h0pABoXvq6gFz+cugrd526zcMPUj8ODC6yf8foIz9yW4hbjDRdr7YRUHQcqFIiEgmGsrei2DAOKeDSWDQqohTayPFiebTKKvbiuzZBwzX4T8yLPPBc0Cvm4+frzcLMVBaQ1HjE+ywlBfdRe3m0tKlqzvrrDeDAD55QiBkiY6AGNd1V5P/4/9v48Oq7ruhOFf/fWLUwFkprnkeIEEPNAAAQnUQxlhGaoxzBUaMqM/BjpU+Tok9uf89zO6nTS3VnxykvasZee3WoraqsZM4zUfIxkmqZFURRHzDNAApw0zxMHoDBV1T3fH/vsfc65BSmx0l7NVnTW4iIJVN17xn328Nu/jZQve7Kpul9yruT7WtEBQIbBeIAttS1oLDvlMB8900YRqj1DJeQwiIhI+azA7JROxNXnXK/3947cLXPMBbuiUQIZY8YTD3aYJLl48PRc+AVpORv8czYMAHPm+HzahoEdSbHnKhyNy/tY2Q5HKYrElKcUydHGZmFKDIlwPMC+XgtKqr/vzaR6NN6Ej3A0jpXzTpkzoSDEFwAoAlIY2VfW3Cgd9dlad0Q86nTOLShe6BkGM103BiDlmWXAqvnDViTck/wpPy8NLxZi1fxhPD9cRBEEa7/eV9YuEWiAmI8OnJpn6IPHAirGx3JwlGoMRHO3nD2va2z4QYg/XP6CGbvFYsjt/vpjFMFTHloG5uKpliVGzsQzxohWmpWJo7E5epG0/FlVdVwiYva5ZaWfPgvZu/bPWS74BWnjSIreN/rOYTiuLR/9PDLChM72Emco+qL9+tvn3jgAYIobsbCyPAPeZVN4oo2S6MKpmAOzcJ7Bis4MSkJ+aMlLqCs94whcgCp7qvM5mAwDE74boQtye2uDeXbo6QvRI+NEAY0lpwVS8PxwEcLxwOH6B0x41Ibh2BfqipKTTriSlcmNmvbu+qsvSAVZbqygfrduF7zLptzCJ5YShoCS095473Jnbj5KJQT6wUXcBHY1og0aHZFYp0OW3FhgNZSeFliMGDRWnoKEUhMpbC1vxvYWEoAX03loe/k2mefnOqoAT0lBrr09pdjbVSaVqu35sr3YNoTJ/veTfYvB9H/HR66ni/WKSQqf2zSnmo1KXTAJkN6sKaPQWZUq7SrA9vi+17VKqnev14WgpHkKs2Jj4lFq7pwvxuWOgRpTmEoZZQgwik84FRMoC4/RfjdTe9r9kqRygLDi+WkoXfNA6PkSKYGhRUPizOkdjmkMbX4kGsSwPK3cejOnpG6AJE5G5mjnYCXUxRxs1pV0eb4AOMnDG0oIenJvSRfgEZ3rqvnDhl1Jz8EDiw/BL0jjmdZFdOaSxOUeJuOGEnc8cCEbmg1oTdGgEzl6sm8xFO9ZpqXlPZWfxp6hElHg7ytrNwwkmvqXlYbnh4vo8s9LGxhKASWGSxKkhhj4ca2sBqGJuIwFuHvBUNb8MbRlQ20n3nr/MgBEAdk45yzgKdq746b4HMPdRJ6wB9tqdqXocCrmyJXasrMAqAJylKFrT1c5HlmyX1iybLrlcMQ4cJ5sseBSiihwW87eTnvxYo5EYsIxggJ6E3SlcWVmnns564V0DwiERSeESnV53hsRZZir80rTkDuhlLXEZDgaF2eFTZsqv7f+z2MFIPAyu7imX5AWwgH+3paGY/ALic6W4YrezCmCwjUc03PlyZzJeWV6Z45wFqaIWrQwRRFdDZX85pJ98m672YnmPA4A4rFnDL1Nz2sXOINP8DGGFHK7ewGRGuzrK5F539JwTMtMmpOZM8dlriUqqMe4raVR+h4m4wY+m4rpCJtHCdfKyDoZw0Qgc+YnUmZPeWb8/8/B33AqTEerNz/V1kjnkIkWPA09jUKBC1N4f3KGPHdDVReWlp7EupoePNO6CPv7iqlqvN08i5JbZAvNeVaUYyTuUFjzu205zsYbN3Uxx+x1hnRGjOtLvX2RkPzraZ9742DJHWcx7/Z3hRFG4CeAYCL9vDQJWq5kyl5yy5PAeFbGGP64dwk6Xr5VFByp6gtAxRWuy71AhoSnyAsbM9jGcJwEM4dHn2hZBoSegeOIEkJ//bvlPzPsKtDKFuN9PYW11b3y7sOn5wg2VuoNKHOJv/XO5fDz0rivrF0UJ27fPnCv/Fsw8jNSqJv9qnhwwokAyqoGvbm+Bbu7KoQRZlNNm/FU2bSdCvBnpEh512MMJ2MitFoG5spFJnMQeli/sNewNOjxM8NCOB5gd3eF8YQFSuA6wmQCAHFii1k294ys5X1l7VmYe8SUVGLmeg+83n5+Gh2Dd5i8iLSHzQ0tZm/o9aEK0a7HhgZkEijtSqQyVi34mfnk2RPluE5zgNOm8vDnh37LQFXyQwMrGbMqI+uLg9um+laJvjzRQgbEhkUdWSxWJg9CUTXcSR8MaXAuEADwIIWQwmQcPziyGjvba8mDxpcQP58Nck5008YF5/8AcKIOMt8FaTy65AVnffwEQSe8mVMYzeQiTMYdik3b28X7/enBasHQ7uvRyodW/sOxwBQxKzQ5ESpOcIuf9i9y8mAcWEcI7O6qcCFlyTi8DBn7K8uHRDlUGV/kCcO9ftq/yPUG2l7L6KU/GhcDhffOqvnDxruo81DsPJjnh4sEThiOBcREpKuHA3CYmdjT7c2akmgTQLUaVMaXfrKHlvaZUVZZ0WwqIyw2K1gd/VSUiuUBV2bl9fxhz3KBt91T3Gd47T+BElbmQxswd9UMigd+TVU/drbXknMjP02MPQVpkYUPL3kxO4fio1ypqcAtWleDla1nOmrNd3VtCIE+gvbmirmnJbqi2Cusf8eyq/SWtwXnvn5hL2wWMNlLM+j+sRVSKI8cBp4S2llu9xT3iRG6rZVyaL659HlHEea1NZ2yFOSxgHLFtPf9+90rXfiLnm9mPbMdNddffQHra7qc/nAlZcpDo5+xw4iNZ9uz/vxwkcnJ0/P+0/5Fzl7kKMD6hb1OXp78W/edDR8ACPLSeLTxBfM+jpjaxmJeGtuaG+V8/v/u/IWRz/ozKlBSYdpeU/79Qw0H9URZCrsF+ZG5ANDWN0d+tut4BSYyccQQCqMfG8P2/K+t7nXy1pj0INpW1wxI7gRV955GE/asiIOv8H/Ud+AbVQecPWG/WxAQl3JTn/HPF+1T2+feODh69g54nsKBXs0UMmoutgvpfDD1mX1xSOKZBfFgQb2xvt0Js7NCtqeb+KD5MD3es8x4ATKeURgjuQvc7IiAHE5d9vwvOpumTXICACgPuzsrpU/L5p7B5cGYGCAsFFmIsuK4rXUxnh6sxtb6IxSmHQvMhQJzAayYexotJ+YYT1ZeGp5vqFi5YikrOE8PUjVUVrgkWU15BKuyLkrbg8SelU31rWbufYWdbbXyPDYozPyQsF9VedxSPMmLJf0CRGAePj1HfuQoZ4AoW8Ioo/u/blE3wvHAKfYVJuNYXTFoCuqMBaib/aokMdpGXNOCE7S3NAsH7w/bu7O2pgfrqun536zeTwVwxgK8+8Ess978zHEKkRNe3XiVJdoSes7Fv6O9jhQ2ZfZgSsUchg+A8hr4OQAI28/QO/ZosiIke89MsZ9I4aljS6Qffn4aWxcfdi4a+iDtFfbu+flpwr9qzv91i7pFcf/B4dXmskvGsaGkB7ULCE61+0SpeNWoLy49pb22nADppX1RviRaNGaiDbs7iE9+Ux0ZVFI0jC95S2l15sqaA2/WFJ5oXo6Dp+eKUas4WmFhsJl2kb/nzBOTH3DzgPXVXbIGYTKOfZ1aUUvFpI9OrgsrBz497/GeZXhoyUsIk3Hk+mmTa8IUiTacwlL+1JRPc5v2ha3Myxgj49Gl+8Qjy84OgbXZSr4COl6+1RmvFPsqSFPROK1c8c+iUVleWzaK2YNsV5UPJwKZuzBJlI3heECRtdAjakZPkcF45SQplRZURIxR5cHTkE3ez2JE+CbqZePcU8o3MD6rMvKDFUdlDAOv3yDyjIpUQiKJXytvMbKxMIXdPRVCpwpFlJZ+QRqrNeyM76xnT5Q790GYjGMs1N9L6/VjmAzvWZ0jwGPlgl3RiCa/28H285kcD/DOB7MM856OPub5hr6Yqbfton38WUB79xmulp92zlU04gLAwcqvLR4w8NjxAN+ueZ7mjuFYGQ8/OLLaiaRHc45smeYnUvhe1yoasgXR48KMLPulT3of/Lh3SbYcUmYvbyjpMfPOsCCQzO04MZuMcKY75nFzxKUgTU4Iy7DzZ6Rg57vw95w5TnsmMpabwcONB+R58nfoYVdnNb7fvRJKmbzF+8qo+OGWMlPx+lJuXvjZ/nzRPr197o2DJXecxcmXrzfC3IN4s6lCrSLspYUfJ8WD/r1q/jDgKeTHSFA49IVaEeU6Bn5hCju6CP+6ct4p/KSvgSoNW7UUNtaRcfFgxVHB49tKxtqaHuPVKEijqbqfBJWdyMUKxlhAVTItiMbh03PwVGujESbaS8Xf9yJY8okwjv3acPreobvhJ6gAFDyFpup+wqFHvEwACc91td3ak+G53hYNuwC0Uqvx/DsGaiQ0zZ42u4WjcRFGYVLziDOTBf+xlJpVlcfhF6Sxv2chKWac2DUZA3yiMfXz00Jj23DHK3JRh8k4CUxFc7Svj5RV8ZRoA/JnLdVA2hNcM/fdqVBbkMY1eSP4XtcqBzfsF6QNRawWRgx3sj1LuzsrhXr2rw83iRLgzA3jpvPTwkXuXKLihXbXl5V1j+sH+EoUJlkfAE+2LDVsKACaKojByzbGVlWcQMAJpNrT5ydSuL+B5nTrksPSlzAZF1y6XJQhHGXfvgwZ+8vz4ITRdT+f6ahFx6nbqV8TBqO/oaTHMVR4X8izdf9VPHQMfpYHK+edoss4HlLV5XZKJtzeXp8Fb4oqK/b/hVUpkULt7NfEa1l42TgQU1hdOSgQCpEJbCjYa5ZICYMYr9+zJ8rNmHVEz4kkwoVVsTFqQ5Meb1kBwNQtkDNmKx5aySya/ybNq94zdq0GTs70Eym8NXk5VpUbQ8b2qIocixoK/O68tKybn0hhRcWQuzaR9fML0mJg2R5NqSqvAKS1gZ9xI3VOtAIg2OeoOTfMvW8bat7MKckVAUjpDF7Nc3MrPANtOzIwX97XVN0vsCyuWAxQxGZF5RAZWHodOarISaT2+1RciaNnxdzTCJNxkT1RA7929mvS/x/3LqEK1xyxtmAyvE9kbi3l324SWdf3zcqKE/CmfKnSzpBTMZoyHh5Zsh/bmhulX4K3100gqxFWMtkzE5QD50QLeS9YkbEwGcdUGBA0V6/Ddw992TFu5ftjgetIiDzXzkVaNpegwkrfk41zzsK7jPYBw71WVw1k5VjVLnzZdXyx8yEVw1vjl8nnVlaekLvxyY4l8PPTWFpOjinnu3qels0940Siw6SujaSZhWznBsuHMEmEEPbZ+dExonS2c9VsZ2HwFkVi62a/ir87ugThKLEdcQ7lJd2+iBz8Wtrnn61IV0gGYJgixgJhCqEENmUYJCLUaDZTTFa4f8xlq+EmTB7Mp/xxLlR+xsBAktMzqkQVj8Yyi/lnJI4N9R2mkqd+trALRPpmV78V5Uj/zH6XEz6OCGQ/Pw11PoeEo37+irmnDWsLz5eCAzuJcooDVuXjsQBe2qfwsjfNHCfj5EVO+1QB9+gq9yL7hMbQConAjMRFQcr6rPUs9kSure0Rb7Y9TzKf53MIbhJlkuDLk5Vlzf//u4tbpNKow+wUubTWVvci7mVI+bPqRTh89BarijyDE9Ks73gZL6vfn8RII4nhETYrYc7Q74CvtPcRYtBkVY/lip2jlMD97tRMhMrHrfkf4kfHVmYp6jweeX/Gk3mz+39PcR8mQ6JBXDH3NA70Fsu82R7lf87+eKjyMB7vWeaynUTmObqefmGKKqb3FJnxT7efrP74CVMhXdYm7ZOnNu2yed1T3IddndVmLDa7izJKi3NGI++K/jy6xwBSfH92rBoqx4UN8HsAZEU2ZF61ApX/RhzjNxKmfVvrYvgFaXy98hAGRm/Ewd4iswf0fiAmsexK7TarlvNz3hv89zQyRD7LydrWGRA3l103RX93S1kbnmptNLLaZn/RY2Ymu2nrIegzMa1cOJdDuUf6fHPdjGgT+TcRECPXNOd086JWbG+rz5o3OasRORutemzPo91stiIApk6J/v50cw7oSuKtDc5enFbGTATYsqiZ9rwtGyxY6fqFvfA9JUU9ZQ9qxjqWr592hnkubLko74qyxNk1V7hFz7rFomV/z86PUedyBGaYdTYidy43rmNgM8w5d070rrKiZSvnnULFjNfxva5VMob7ytoxEcbxTOsiPQ7An/CBKycBUCHE029dkzU/6kIO/mDFfvzo6F2mz9FzpscT/ziG5Xf1Y3/3QnnH+tpOiuh5I5c0W9GidZ+Nraj9uS/Yij6tfe4jB06hHGZn4YQ07fVHmqahqXLAuizpH+z5iMJB2IMhz9YemM31LcZjqu2M31rSSUp06IkSyZSebqKQqXgJBRwbnGu8HT6FVO2w89riASNsI0KKDQNu4Vjg4j09k0wrSZMJKydDQwVU3EBXwmTcGAZjliEVMS8ddgXdWFByoS7xnI7GBWcpgldXb33s6CqCLUTeYdcpYC8ReRXNz2xPGWDgEvws9nCzF3fPUIk8S/kK4WhcoEQA4F2mL0QdJWFvoYRpC8nb842qA/hKY7NJgBs1igvnOUgfQw8/b6uSuhffXP689M9ZT09XfE4auAcr/JsaWgWOoBgHPmJBQz6BdUJgSODoDo2LufzZEOC1oE57uOyypKvYWcWh4FEC9+7OSuzpLsPjPcuyYSFWuJy9a48sIziWbbiGScq72NNJXuGDp+c6HuRvVu/XHlHlnElJwB6NO/vkR0fogmTDwJ5n/t7W8maJRDD84GBvkY7wQbxstteazoqHe4r7pH+MCZfCgJpuGD5wY/556e8uXSjMPMyTsxdt4ViA+8rasbXhSJZnnucEMMmd9rw811mJ31t+RMZs4+SjibdhkqhBZc0VnedMDhnGE2FcYCo/7FmOgz1FjkLHXs+6krNO3wXWYnm7OcrGe1pdzDH9zhjPZ9RpIoZMPin1fL44SglAclcAIolwDCeuA5FIiVd2W3+d1GUAqGIze01ZTkbhdeF4AO/yKcCHjO+J5uXZ/QWkFgcAk7TO86PP6fbWBjBRRZiMEyRR76/oWgGEhQ9HqU4P53lwZHpLWZskRu/rLhWmOQDidf7txe1OTRiW2w8sPgQv4+FimhQups68v+Eo/HEL4snyOi9t9rzdR2WU7F3HK0zUnedxIpCEeu+yqWwjMGnOMs+7k5djOYJWlw8637WpRmVf6H0r38/JSAVgO/+H76VwNI4vNfTJXfJgxVG3jwzXGnXP47aWRqdiN3+P52xDbaeB2wIOlGp/z0L89eEmMVLCZBzbWhopcl2YwqPL9hFa4MpJ+f5luePSJVueeLOmkArNWZd73Yo2sK6RKVDkrFRmDp49Uf6/h4ddqc/254v2qe1zbxxk8WaPZntW+P8XU3lGqFgYSz+Rwo7OOkehgqccWAx72HYM1GB11YD5eZIYdDYs6sDq6gEplc4KLb9nbU2PsxpRyJGjVOp2IZVPh36KWBmiIUAnzGnBNDwrpMtwKPu5klztGbhSlkdKh6tXVR4X5ZDxsRTGjUAM2AhRkQiJrcSHrrcSviLuejuRcDwQLzVAVaKFoQNGyEexpWyMyNwCzmXBbVXlcYGePdOyyOSVAIAi6sZwMobtHfUIR+OUIGc9452pWdjeVi9QADvh+6f9rtcMMYXfbmiXdfibg19y+2c1UWo9c7GunHcKgDG8OAF+VfVxA9/RxaNUhjZX5W1vmPUYiaOpys2v2dZfB5XxHYrNVfOHZf7On084/bIraooh7rlRDj9BSe0Co+AgxRjBln7Ys9woHKNxKiCn944Xerj6yhGEyTga55wVCMP3ulYJ5piVYQQh1tb2GMXBYorxMq5SYysXfoLO2hNty7Bi7ulpI3H0GXqeDUnhJNFd3RY2l41w6xJGTOGBxYfImNcMSPAUame/hm9UHXDkirNvrLySbW2LpXiSGAC6CBqfkb3dpabvDKWwFCX4Cmuq+p2EZGftFPBMe611BumvqZum4BeksXOwkiAxLMP47xnueWs7foc1JtrTK8uH5P8A8JXGZkc+/JsVvxSv/6b6VkeRueyypEmc5AjHRICnWpbI2NgpAF+JQms/n/vjReEwPNXWuRsLc6i6rMAz4cjSNUWDWFPZ7yiVlFxs5pKJHAAITKRy/qvg4lkPVhzNVtRiCqNpYhbaO1ws+8s2CKVooo6+PtddKYnu4xmKyj3VTpWovZlTsu5OsTIPFIWOyBq/II0nWpfBmzklCff8+W39dcgkQumnU/XeN7AdIfOwoqViqCsyJtYv7IWfl8bCW94RuJB8djyi0MYUrrxi1DmPnAS9qbQT/oxUdk6D1bWt5c20j3UklO/eFXNPOzSzsga8nr4iFi3djx/3LnEcZ4YUBHSeNPGFn9B5S4kUwlQMjx+7k+ZG35k7O2qMI85KehfdJKR38xm3nXY/OPob2NlW65w1zuUBSA7Y+ShPNC93IgUb6jpkngGOSoGMDc3GKLrGSNy5v75o/7ra5944CCcD3HztOWwo6XEug3CMsI3qvKHvazl7O5aWDxObi+UVASDCZs4NH4g3x/ZmelO+XJRFiXcMHZ2n4KU87OyoMYVoIiHGcCzAnqES+HlpohUECVhvIiafAWCwovo7nGDr52SA0MO2/jrcvWBIPmt7dwAS/CrjUwXLaZIpuW97usrFcAmTcXiTbtGhMBmHNx5Dwx2v4MCpeZLArex8htAkQXMfNta3Z4XB/UTK1JmIK7ngOfENANZU9pPgHSEPm7qQI5f/cx1VrtLN0AGeszHCp7OX0qa+5EvTjiJw/gU8DRXQXkqALoKdg5VYXXZcPCy7jldgU30r7l4whC1lbfgolZD9IuvsqSxFhD2cVE2Wfq+C6bOk/AQx6dhr4Oelsb+/GDs666T/fAEfODUPiCk8UvWS8Np7Mbq4el69mRKoS87i0eX7iCnE2l9ZGFPlZV28crHomhp2ZIG/I+PVF2bgZ4yy5hkvIMP5lpYPi9KxS/Nwb6xrhzdzCh98NAMAnMJSABzmK0682zNUIonGssYKsu/4onWiSrqKsJ+XlshY1CgHQFSwISWAslG7q6OGFJWUZWgqbYRZ8+DnpfG3h1dI1KepcgB+QRptx+/IquTMF/vW8mY3HyDi6PAL0uJ5Za8vJyEK808B5RRwUSaEHlVrLjlpokuFKawoHzZGvU5WVBdzjHGi92aYJGYwdoxEI6lhMi5GKxum66rJYDvQU2zmNDS5D34ihQ21ncT571H04+nBajCTTzgeIOYrqQkgsKq8tChRomT7ykQGClPYuviwzIVEKFhOZTxEKSd5vEINDEjEI5yMSQLtnqES7OkrNUaDjmRQjQEPjXPOouWEIUAAgJVlQ+g5dav07ce9SxxPOK+jvc93dVaL0cH9ZwjilrpmendGJ5PqRH9OTme5wHNm129BTImRhJhyq8brsdp5AbZjRXIGbOPAA+BTEqtD68rRWW0orK2laOyu4xUIJ2M4/vr1VHxrUYeBG+oIGlMP+/lpfPRxoTNPuzqrEY4HLvGEbmuKBh3Y4xNHl5O8ZrYuj4xz3o8sPwCdf6QpeZl2O2rAra7WVdCtcfq5GVMPKBI1F2+81iW8KZ8iPZpNUJLe2VCLKTqP4wEeWnxQ7vL1tZ0SIWdHZe3s14yBYUXzGR72zaXPO/fwzvZa+S4ncEvkTRdB4znxpoEFXortCyrTX0/73BsHyHhIhT6F5fLoYHHpdUk8ti6UI30LiBFBCz6httRVSc+8fbUcGFbkAeB3GttEeP/gyGopIuUXpOFdNkVFpBDxmgNgSjxutxd8JP9mPCjz7DuMGZbgXr+wV5RNLl7j56fF6wRAOJC9WOgm/kW8NuKF1c1PpCjnQAvrVZVUqEXlhWg5ezvCpGYEGTUXK0cp7AuZvY7CJGKFd+2CQ34iBaTo0ubv7x0uJuiXT/kAKocSRxvKTptw7XgAdSHHinrQ9+tKNIe7VlJthcQJ2RcY5Yq9xBtKeoglRnv61hYPIJyMYf/JBVhZNiRz9PRgNfZ2lWFbfx1R4rJSljARDr6sJZEtMAnJ1cWvYHNtq0Qy1Me5Wftkd0+F0z/G2ArTCsOq9F6BZuqwPeC257Pt+B1SOEz2n/YOctEuAKgtOWuUJ1YgeH9MuUajX5gyRnFGK8v6M0cG5luKFGS+w2QcDy8+gCPH5wm8gi9YrtTJLUzG4eVkpAjS5voW59IWg5hzgQqJGCCK3V+/sNfs+YnAJLlPkTH+tfIW+b3N7f5E83I8unyfs38k/K5rgPB89rx6s7N+4URA51nvh71dZWiccxZ+fhr/ZdV/d9cnnww6G7u+av6wUQTYGEzGDZc7zJz6iZQQLEjtAoY/+ApLy4fx0WRC3rls7hkcPj3H7C1RokOpBuy/k2fGPRoX9je730xXub9nIRUorG0FAmUK/dkJ5hrzzkrvruMVNOeBkuiHnQcjyiEbNAmCVd5fd8xg8gE0Fp9x5JeN+15VeZz+YZEl+DNSDrUjYKKc9nkJxwPUFb0MP56Bl6uFrVWA0okyFaZIwdcf+3rlIYRJA8kEYKIgYKPEeM05wjr7hg8FxhitE7Gy6oSwR/kJImHIqsxuwRMlUs1jyskITGo66MhDdYdM0qvlZHKihMx4NBkjdpw8MkJtr7gNKwyTcWEOs1s4FiDuZcSwWllBdwRVMDafW1M06M5zfjpLywuTcezuqnCdHDF9NmNmP/Gcrpx3ypnX/d0LZVw2OQIrzV8rbxFKV5HvOkIXdcYBIOPdzlEbD+BdNiXQWum3TadbkBbH3497dfRKkVNCPP26dbx8K+AbmQHAkXffO7pa9q8dgQCA7x5dA7+Aar147+Vi1fxhk9cQwmFQuqSb+ox/vmif2j73xoFfkMLleeNgWlAAuDKeRJgkTLk3a4qUg0jBLW7ChAHXc/ftZXtwpG8BHqo8jHAsIB5sZWjAWHlnIWVzU29Y1CG4ZVu52lDSYwQ+Q300zEAuoTzy6knIdizQxox+eBDKZbSro0a8HzZbyOHTc4ywyLNYhpQOwTK9a1JzlmvGmn3dpdjftVD64UBytMIn3NwKTjEf9tzvHS4WBVGdzwEXSHO8LXHXsAjHAmzSRa9UbkYSGlsG5iJMxqmQVX4a3qwpXJkzKlGHMBkn4WmzKUXwofbP7q838KQH6g7jmbZFQrHoF6bwXHuVGJEcNZI5sC4p+6LY3NDinLKdrbX0j7TBPfe8ejO26+RlvzAFlRti6+LDVLBON2J2MTdlbdHLEq6Xi1hD1ri/UQ+53TehxrS9psz/r5WecDKGjv47xJPHe0jWxoYU8fB5rHye+MKy6HttpQsgL+3ShaekH6zIbCqlXJ3Ym3kmQucrSZozhauUGNH8XF6b/T0LnXeGY4Ek9QMAMp4xFjT06EI6X+aGFQFeK7sSs831H2Vf4d8jQzSg3pRv4CC6HelbgDAZxx/s/z0yPJltZNQ8j+d3/8kFaOuf4xizACkf66p7nOJoYTIOb9YUFQWz+O39whTWVPXjyMB8DJy+SebjYN8CZy/w3Kyp0kwwIRBePwEAqL79damvwp9lZXb/sXLn+9vb6oHQQ8Mdr1CtDCuiEyaJEcaG+/F6sMOEzyzTYfKzWV7tPlFKzGyWUXPs+FzhhZczrpPo9/cXZ62VXfhQlEaVnTDt56fRNkAK25cWHseDFUcBX4m8s+XKhhJinNtST579x46uMs/ROTzf715JherGjbOHIiom+nbm7HWOsSZK9liAK3KSruJmU5Ny004NW7aGo3Gsq+0mGek4c1xZ8PjRO53o27rabrkjoHRhOw1lQsp3IHxGJhgZF44StE+cVWPGKPcL0sJSt7amR4yohxsOOHuDKbttT79NZSr7oyCNp5qX6N8bOSPGkwWzE1IQLtxms4gl4xLtzPNJxtrGJkBnSqpXW3Lt6cFq+m7KLQyI0NAUO4xcVpFFyUXUd5iTl6hlu+TxjMZRV3xWns1zLfuGx54fiaZa8/Fk32KoayfJsVVI1LvMouUnUri/LFKY7RJrX0QOfj3tc89WdMuP/wTwCyU8CUAE4zfrX8D3u1d+IuuACj14PkE+Zt/+Hq7NH0Hby7cZL771vXuK+7CrowZe2iMP4YQVeuXLKCfEw3Uv4Udtd5JHjj0rYwHW1fSQB972tgShSaLWLYuVwYItACDFLjDYR+e7mv3g5mvPSZXjcDKGVaVD2N9bbDwMlpfDz0+LZ1HCybmhwBmkv3q8cokFIR6ufwk/al4JKCrksrunQgqp+XnmXfNveg9DJ2/KGu8nMu3YYe1AAZO+YYVhLDVXJLbX3Zpb9jTzZbyq8riZA82gkfXe0bgUWmPqTS/tYXnNCRzsXwAvRcnWzIoFaG80K60Rz54orNwPxlLrfhZ252O0atxh3pCwNbPB5Ln7UMbIjC7MRhTXSbExsx/9PD33p24k75MujscwLZXx4cVcqJP/dh5+Z/UxPD1YjXtLuugSjDC8rJx3KouJy5lHXv/IHrWZYex/2+NSyoMaj0l/nedq9hFbmZLvM1NZ5N3R8zTtmsfNvmS2LnneZEwIDfxEypk/e6zrF/ai/9yNOPXqdbQuU75RzvLTuKe4z9CV5pnzz1Wm4QMNxWcEqsLnBzEFbyKWxUyGD3MR5oeyX9ZU9Rta3cha8BlZNvcMJWDb0QPNVgYg69ysqe4zzpOYcvJUbHlaN/tVzC98z2UDGomTHLHYYhw2Oc9Ea+194PSD58gDGovO4NjxuZ98xiYCmUdbBgHk0GEGJtlDmtHHXk+RCx/lIiy0akVMJ2un29u+xYoXUzJ2vjv48468BcC1S2Q++Gd6zwkEyDoTtvOjbvarcm892vgC5XFNxVA971XcVHCe7h1L8YcPMOOUA3uymPmi42UWMIrATHM2xwPcetsHeO3la+S73K+GO17Bsf55jsy2ZXeYjKPwTICx8nGH0tneMzJmzT7YVD4oFc/5fX9UvQ9/1bWaZHLKz9pTAIDcDI2T7ze+T617FSAH386uGjQuPE199xQeaDiM7gs3o2vodonyry4fxP6TC8zeHokDceUwVgkcKCc09QkAR64KG1j0/h8PEP8wQOrq9LRyjOWTOOnO5VABTQArSoed2j/OO8cCuutSPi51tqL63/yPn4mtqPUX//6SG9Ol1D73kQNACypOSGR2hpRvsL6RWQiTcYRTMeKGB2EEX33nSnw8WUCHhpUr6wLkQjBcGdPPI67rTbVtJkkuJ4MfHb1LLh/b+8H4aTsMa3P631fW7ni9wnHNWZxxPScYJ+U467LSCbI3X3sOr71ytflO6BHOnpPVbCpXLYBTYcz831e48YaPTR85WpDxXA9fboZwuxkPjy55gWhCQ4hX1BZCQ0M3kcdHX5yMn7Rp9ZyCcVz/oCCNdRW9JioyERPPIodi+Rl2rgG7DdZXd1HyeEg4fTEc4rQ+4USAcIpyK9irhLRHih1AtH6zpgiSkZ+Giimoj3OxsmRY9hGmfDKaphPc7PlnzGkBVXRlY2u0ilgonPAzwwNyMw6kSAr3safIjhx4tPf8vDSQ8oRfXl3Mwck3r6XP6H1kK7ZeLHQSV8PJGMIbJrCjlfj/pUAO7xnG8lqGgZw5vd/YS2avg72uXEiJ9x5X1QXoElW6P1ElCIB4T+1IGEDKlyhlKhItyZhiRdFGiYzKOROSk8Bez9yMNsDgzJ+cR/3zXccrcObtq7GmbMApnMXj3NVRg5XzTmF9VRe2lLVRNIyjZAW0Xi39c0lJsPKg/JyMJKPamPIwz9R0gEcROye5nudc74XGOWdxsLtI5lm+O9MyrhJEfsBygKMlv3U/AAD6KUlEQVSAAiOzPMYyx2MBWgbn4KkWSua8v+4YQetiChsqDQOcrMV4IJE+9p76iRQKZ0w4XtQtZW2kvGqsd8vZ2509cV9ZOxpKTzvjXFk+BD+PElHZqA6TcWxrW4zG0tMi28OxQGTKtvbFRiFlhTE/I0YMz9Wq+cMOfCsqf+HBGJH5aawuPS6/2tVZLZ+/e8EQDp+eg9Jb3pZ5FnnGY+FIkBX94pwZN3JAuQQtQ3fIfvnBkdUke3My6Dpxu9w79zccFcY1G/on+0HDwshwy/Yn7u1hA8Mzdy3L7mQcK8qG8cZ7l2NNdZ/kKrW9fBsAYuWzvdkNC89INfAwGcfqqgGMlY/L2B1nT25G8l/8RAoNxWfg52aEwMF2Lgwmb5I7j0ksGEIoc5n2Rb6HYwHAhRODUEgE/ESKoo95aaIlDolN7sm+xQQn1Pk6fl6aDIMRE5VkXWN5tVXkUJHTZk3ZgLzXloF+IgU7L0CiGvoOzdw8IWcYiNyVFttcOBagvvoU1lT0Y21lr0QMpVirnt/a2a/Reqd8IATumncya70vpfZF5ODX0/5VGAfhZMyErz04lzMwvUfXz8lAaaWAsXen37oGUB7WL+p0hDALu4eXvIgtdc3y8+eHi6SgkoTU9T3OzDIA6HsW445cuPz/fKKK27BIMw2MBUDaowtRQ4NYCVlaaSmmVuPLNjdmEo3XVPYL9lLqFdhQGd04t4CFf0Z5aCg9LZfmnqESQFmsOQmTNA3Axb5HLzsPBgsKI/zvrz9mwqPjgeRwcI5EOEKKguQ7YBolOp884fAUQl0hmA2gMBnHlfEkJdvqkLqtJPozNOQqJ4NjA3PNnPqG01yUMmvdvCsmcaDPXEzMOuWE22GFdhkepsew+0QpwpE41le5ZesFWsUK4FTM6e9zHHK3ErGlzxx6ty5rAOJtZohZNBk567tiBGhYgXxQ/608cCI6nwkaJPV5Uy09PxyJixEkj5jUlVLzrPB8ImWYOJRHeTsKkLwKWIZA5N8IzX7gBOd11T1g6AhduKZAYBQSEY4HeLJvscBb7DWSPtuQFC/yewXngg+1kjEZWs6FfFeZO3BqHnZ1VmNbfx2eaFlmxjRKz1lZSQqFwKCUR95sC/cuir2muZS+2vk0gORX8Hoe6VsAf0aK5JAyyh07SNgY+neLf05MM/qdjXPOyl5brel2bagkfRky39v664iSuSAt1W6bqvt1pWW3mCLn7gDA6EieA6dimk1JjB51z9a2lka0DM5x6IjZsOO/vZQvlL1ce0KSVvlZeW6ROO4XQ8C8lI9wPMANuRdMbgBX0rVkINKmQGM4FpDSaDlYGCbCSm3f0K0ov/VNiVDyGNkjbSt8ABEthBMGfskQpXV13SbKUGCqPd9T3Ed5KSEph0+1NhJ1KvdXFwTk7/HcsCEy3f2ytqbHObv2HjjYvwDhWCAF6tbXdjrfBYCt9US32zI4R0gq/ETKgfbZ62CvKye/t718m5Ncbb6gi+NxboSG+do1jOApR/4sLTvp4NMZcsb9EmM7UGIcrZo/DPhKyCXCVEyILfyEznsIgbqZLzuOFz8/7UT2JEJs/z/pMhoxXI6/L0X4rPoJfFcCwMONB9AyMBd7usso90Ofc5mDCXLMdbx8K539FEF+X+gtyZ7PS6l9kXPwa2mfe+MgHItj9m3vS0LuhkUdoqzIAZ+K4aHKw/IzboWztLeiIC1ebz+Rwq7OamIB4IMXevDSHn505C4pfsQHe7OmNHuw4qiu2mkJNp2A+njPMmxrbnQNjqjwTaTkMvUL0kZZ5kRD/awjfQsMO4EWDtW3vy40o6dO3WCU+h5KXhZjSVkK5Cd4U+EpvP/hTLQcnyNKdpjUVJE6aVeaFqSPLNlP3M6AXFS25wMeebHZu6/O51DRIt9gyddV6Uuead60Uv31ykMOMwX3f3N9C8LxAO9OzoRfkCYq2kQKjyzZL4JaOMk10wiHzR+sOOqsgVyqrEhO6MqVHLX5hGS0e0u6jILoKUkEt9fUzKuJJMAzkSgAGhLh6doJHG0yc2nP9daGI4Y/nplCxINMMIG1NT1GMdVe73AsEO+u3T/HS60v8abqfuzrdC9s512aOYiMcZM/klLkfV5VfVyS/XiefR3Ol6TicXf/+YkUtrUuBtNUcv9ZGbUNBPqHdYZiFNHYfaJUfn9PcZ9zQXhWDghA0UJW7kQJsM+HTu61+8DzYPdZ+qDP2P6ehWiq7ne8nfZn/YK0wSSzZ1ozxLBSu+t4BeApbFjUQVEuPV+PVL1kFLmUh6YazhnwHLy/s276DHI/trWZJGg/oaF6MOP+i84mkUMAGRV8btKhji6MWGsRmqiZn58mD7sVSVo1fxh7u8rcXA4Y2cwJ/EzFy+3ZE+Xk/Tw910T1eEyyrz1JaudcsEeqXqLPTASU82BFGzbqavOyvsC0+zCcMsm/3qwpIOMJG5SjHHswCbXa6+7nZmgtRuKy575RdUCiy+I1TqTQ9xrlhYhyynloXMvBMqC2d1DldYnmgd69+0SpIyc4H2JXZzXVFpiRwpNtSwHl4WI613xX31X2XPAzeXzqnKkGDwC7uyucOQCI4Uv2AUeZPc3CBBgqXq2kshFrJ+PbhoY4QKxcAm5rF9HY7Pw6kcse0HDHK26elIxJw6e4boE+J0f65xsGKsDJoeNIF0fN+AztP7nANSLiGYmCA8Dayl74BWn8Vddq1BW97EYxrSbw0PHAqcYspAcz3OioyCWbFY/ZhmKUG/OjYyuxrrZbKIVZXjsOlXzjYFCBchLCv2j/utrn3jhAEOLVd64E8xzv7KgBPAjHtDdBGNMTozc4XwvHA2QyvrnEZ6RM2XgP+N6Ru40nIKbokmDHatp4Vzhp8se9S8Sr5CeIIYQ9y+F4gI317a6CoeEV+CDXSWQ04U/9spgSZZcTBZkD2i9I4+ElL6LrlVug8kLDGMJeDEXCZGN9u4TS+Tm1C1/Omkd+psr4jkIBAPWVp4CYwnMdVU6UAB7ww57lxEZiKTo2hpax+jsGasjQuGzKYdjxEyk8p1kuOHGQ//3YUaokaXvTHqo8jL8/thh+fhq5vqblS9F3Hmu5y3i6Y8ZzLOs+FuDxNjIaNtdTuFWUNVZA84hNwq6XIJSKo3HikdewG1EWLAYK+1lmYXVfZhhKu2uuuki/y3jY3NAi3q0HK46SksEeSn1p+YkULqTzBcsavTx5T+4ZKjHzxWxZ+iJZX9sJlfEpQTYVE3gVPLocc/LSeH64CE21pHjeW9JFfS5IY2t5s6HbZdpSS0nf2VaLMBkX2JHUCdFK98a6dunr/XXHnHkKxwJUFr2K0rlv0v8nIuwbVvQpnIw5hZZWlg5lJQynVMyBTXiziA+eL1cVD81eUx7BLmaQx47xuLbRyAqIzfwEWMpibkbYfJ4fLiKldjyQgnX82XA0bjyIWrlU53OMYVY1oOENoHoLUzGJJrGCzcqNDa0IJ2PuRW95Q9cv7CXPs1UETMY0HnMSHPn5zOLEEQGA+kM/NF5Nu4JtOBnDvq5So+Dkp7MSvvn5JCOAnbpAoBcjKmOmV91Q0oPd3RUUgUqkcE9xn1PMUfDxOvdmLJPjzJEYBRFCATtp1Z53u3GuwPyb3qP/a1YswBAv8DPsqI5fkEblbW8gTMbRUH4av9PYhnuK+/C9Y6tln60oH0Zp0es0X6zo2SxPtryyqI+JiU+50T9NkWzvaylEFnrOO/xECkcG5zuQMIYJwqP78OElL+LhpS/K/vIud2mpOWpo9/WJVisCNhYg19d9Z5gMU/Fad8k3qg64SdSWh/3RpfvkHpVkcI3D391dQTJsYS/Jr1EjF/1ESiLAfiIlziMAaCg5A4AcSn5hCg0lZ0yEyIqA+jPIccTG2+oaDeW0jId7ivtcyvFUzJHDu3vL5XklM96WnzuOIw/w0hSRWlPZj53ttY4DwkywMhqcp+ClfAcFYd89u3soWrf7RKlUmue5Nc4jY3ACwPpFnXio8SVnn12K7QtY0a+nfe4Tkm/6/n+EPyNHkge/tfh5fK9rVdbnWaFtWnACKeU7NQkeXboPj+37EnDVZNYhlWRRnVTE/Pt2ATMHf6wTDKVokHKVlixLniEsF3KgAiUJzwAprXu6yqU/TvJgJClQPOQFaaIDjSnnMpYkVlgeKu4PJ/NFQqoyvtE4Hlm6Hz/sWY6GO16REL3t1Z12zrTnY92iblL+M960SXBexpP+On20Eoy9FH1mXV03dp8oxabSTnycSoiCxOPZsKgDKRVzPdejcYEX2PvBLnEvz9AJvbUlZ9H1yi1mfSNJk9GxZv074umOvm+6ZGyZT3u9Iv2OvpsNwVgQInUhF+tquyXxnRWor5W3SCVwAMi7chwT5/PgTfpCpzvt2KaB89ifu6e4D7u6qrPmJut8JOOoKz1D4ezIfEEByM8Aky7rRxZ8xSq8xo0TpqPzwYYpt5XzTiE/NoXdPRUG8hMdR2e1zLkdtme2LT9B1JyKaRMjfeQzx2d6Q0mPKGqPVL2EHxz9DePp4/7qNXpkyX48duyurPGFyTiQm4EfhJLQfG9JF3a01UtyfzgWEBlAZ6Wcn2j/NpV2Iu5l8FRbowN1kvnl8xr52+mLTuAVdjauq8DzDjjfua+sHdtaGmXvPLD4EJ44ulzk3b0lXSiITUm1eXut19d2kuc5kiDrjE335xtVByi3zIpgZUV5lGd+P2Jw4X4i5SaF8s84uZTfOxLHw8texOM9y0RGrK/qogRzjmIA8CZiUAWUR+JlPKciOHyFjbUdRCXpuePlRGq5N6bZ++truqgQX8ajc3vFZNZecfbWRIDNta3ivOI+wAM21bThH442EIX1NInIcj9FzlyUDIFlFRMh2KQF8p2UpkG1Za8mt9i6+DB+0tcAdTGHIJB2sqxl/InDKfSyZNG0e5XHMU1i8ifN2XTyzV4b+3PTycPofRx9T/Q5zu/0neOMVzuvdgzUaOeXj031rcKSBB0Vi+oSa4sHTH6j3rue8qDyqFYS0h68MHLf+pd2QvLi3/gPnykhufmFP73kxnQptc9/5MBSaleXHcf3ulY5tHM2/GfZ3DPYO1ychXH8wdHfIMNAhzPtxoLJLzDhR78whQcaDss7bKwmlFH4GecP0EFlujj2dAj3teZIBwAVKMy98X0ALs0qAKi4FZbWRsCDFUfFk8Gew5ryM6ZKqJU4KOPRfdjSoHH/eWnXSxrxhiCmpMrtbQUfOVCLreXN8DIe1hQNGrhBISkk7HXcfaIUXsrHhvqObIMqBO6sPm7C8lblWzu6wCHy59qrEI7Esb21Afn+lJOE6ScImuUUz9L9cSA6gMGR6z5L3/MIYtb1yi3Go6XX0a7dIOFs6//wyKBjZUgStO336bA2X5aJGRPSV744mqoGKPlMXxp/XLOXPmNjzLUC/sDiQwCATNrHd5b/HBdS+VlKPStg4gFOUjKd0nzuTiTAniPLa+xcmhoatKujhnDNXKmXm53sqPem5BZYeRySIBmEjvd0S1kbNtW1uoWb9H7nPq5f2IuC2FQkzA4HHsW/29+zED9vq5LcHT+RcuBxk6HZa569TyzK2HAkTso/QzGspN4w7VMkQp9pQFch1nvkB0dWY4OuCg1AyAf4zP2wZ7nzXIdyVMs2hqFxtEpYfwCpdMvwm3A8IA59QKKb2/rrRHn71rK90o/1C3uJXjfjS65VtKJ6OBqX+g/b+uvw348udX4nVeEnYwKD/Gn/ImfPfJRKGHmXjOPpwWq8PzUD9zccRV3pGekrQDkkEpnk91gebsDIWLtwmsyZtWfEEGB5FtdOE84Ny9cwL0U5FQAcJwm/60dH7pJ3b6zpwLMnyimZXivQWxuOQBVkpHAbGwYPVhwV42HnYCXWLeqWtRK6UR8QFiFAIm3frN4vkYRnT5RL9IANA3uN7Dm8ewElZm9vJyiSyLZ8Smre0V4nTibegwJVHQ/wUONLeo7MHUIwPc8xDGSudASFZRhDvMJJYn/Kcm5oA/3J5mUUNeJIKD/Dyp3xC1NEr5ufljXjWjezZo25jgaQIS59swwDkfMWjMxR1IPQ/b/+PUfb7ej+hpIec4fzZyNRCG4i1znSqaGETQtOmPyCjNET+I7wMh5Siu6fNeUD8AtTZBjoO1KgfIkUef41EuGW3I/lbqcPUO4ZUr4wACprrFHD6pJsX+Qc/Fra5984CBRuvJkUVk4C4w2/rrZbBP2OgRocHFggnilRZiwPpyRnjpjkRSf8aR38J5qXO3APABQCjwgrW5A+11FlwpG2kaDDu/y5wvgkha8VAE+h+vbX5b220q58hceP3WlC2/lp3HztOeT4GahASREm6GRdFjz8nm3NjfALU8THbSslUZpPZYTc9tYGrK3pkQvviWPLoWKKKnfOMEKUK1syFtqbNSVY5oY7XjH9iikKg+r/O4moY4EwLQjDUWGKKOFgFCYxaqJQHuhEvmm8iRzVEEPOirQIVEYndPkJDQVScLxapLyZCxaeEoPuiWPLBULEUAR+jr2GyZE8s9a6X3s7ynDkxDyak0Dhzw/9luwl4Xf3ACgPT7QskzF99/AaHOxbQFh17UVl6FQ4YbDnXix03gm4l0SYNDkBfn46i/HDhpypnFAgFY5REqUkZOPUpiW0f67x6gApoE8PVuPhZS86njpv5pS8d2d7LWbFxg3lp143B6KhPWtexsP/Ud8hie93Lxgy9I6AwHzCZBy/t+SImRSdKxMm47KWtlIUjlHFaT8IKUF4IkBj2Snr+wqrKo/jocaXZO+Ho3HB/U8nX2xYnRRgmjS4bfksJyAzljoZJ6YYbXj6ULJHueYK9+mvDzfRPB9rlH55sVDoNm1PPQAgUE7OAHt5bWOE1zYq/7jPz54oz5J3e4ZK8FRboxiOokR5htHKeP8h+wQgWWvLcABmnkbcdwuG36JYhqeLl03oJNqYwr7eEtxy3ccyTnUhx8lH4aRcjgi1DcwRo+6VsauIsWbSUBsDkCrJ3G+JaGr52Vhy2sgXmWCaiwvpApnLByuOalpazylsyS0/Rt9fU92HyUzgOCD8GSmCj8B1unDunMgTAKXz38CPe5cIvOuyy5JA2sOuzmqB5ch3tUdcIjCJFNTHuZKXJ2fdZjMbc435Jp3kHm32zziCixgl4XM0/eJIgZyhrY2HUXnbG0TjOmbdIZYxyetoOxSkP1auXLQf4Vggd83m+hZZf4YVuc+xvssMYBGyAL8gTfeEp5nW9L5fWzwAzrlSQUj5NEmCIaqLOQJtA2gMW8raaHxpX9b0saOrEI4Fwqom70yYnLpownk07+ZSax4+A6zof3Wn/zdov5Jx8N3vfhe1tbWYMWMGrrnmGtxzzz04edKlubr//vvheZ7zp76+3vnM5OQkHnnkEVx11VVIJBL4rd/6Lbz55pvOZ86dO4evfvWrmDVrFmbNmoWvfvWrOH/+/K8+Qg9454NZcggeWbIfYTKOLWVt5EFmXCUgnpeUimFzXStyIkwVouyxwshJoezJTpBHfE3RIP2Ok4Y1jejlwZgVkoV4KQHjaWy44xUXLwtIwhN/pufVm8m6L0xhVcUJdAzNpkfy5QNSsL3QI2wlX4qjcczMncCxPsJ8x70wC5fJ3nI7HLu3u1SUEkdoaMHIERGeoz1DJSYBUo+TlQVJtFXGSwjlOZ6XY/3zssPPkzE81PgSmioHHCH6k74GSoSu6hUliCnYWFFvuOOVrG2hLuTAT6QorM5FtIAsryBjV/mkCEzAN8wW/N2tSw5L/gGPbUN9BzaU9EhVbsktsKAdTH8rc6qx6Ny8mSafhb3PdQteNvUeLGxxFs2hVYGbBf+u4xWU65HxqFCV7yZmqowPFVOGXciK4tjwA24SebAa5Sko2bcEL9C/YwPMMjhXVw4SXte+uPXe4H7t6ymR6sjhWIDHe5ZNG4ZfMZcUqu8dvpuibikj5hzImn6Piim8NXEZ7eGMR8wj+uxxQcFwPMDm+hYHLsNrs7pqQJQodcEYeogpPNWyhJJpp3yhPiRPNBnk+3sWUj4S96+Qqhuzkszzv6Gm00RgfIXK294gJdGqDeLZhdNi5rvOftDt1KvXSXLwjrZ68VQ7HvZACcuSrAnTwVpOFumnXeVVJ+HfU9wn8lHmXedSRCNYzhnUhjZ7iz0f4vEWb7bOhWGlRuTMWIDnuiohrFZsD2ZMMb8wGcfKihNoqhjAlkaqsmwnTv/pnc/isaOrDDRDy+DX371Cnsd5Ziw3714w5BbqsvKquGiiKMT6fDNpQTgRRIw0+qvl7O2OYrl+YS/8BMHSJGnXAx5vX26+G9Je4DVfMfc01U0YC7Cnu4ycLRaMNJyM4ce9S5z1a7jjFbm/WK6EyTgGhm4hKMrMKSD0cP58AuvriEiCc8ZYRrFnndaU7h+Vp3MMZqRw4zXnSXn2SanfWNth5aqREvz8cJGzd21WP8CsdzgewJt0qYxVSHPB90TX8dlZMqWx5LTzPHiQfXBPcR+K5r0lP2djnNnC1hQNmr0HwHs/F9tbG9x7UTe/QNNPzzB73dAre4adqcBiHPMU5cxpOFWBbxU0jBAMeDOnsL9noYytesEr2NZfh9UVg24Ew+qvne80/6b3shi/pKlLXJVW6rP9+aJ9avuVjINDhw7h61//OlpbW/HCCy8gnU5j9erVSCaTzue+9KUv4Z133pE/v/jFL5zff+Mb38A//uM/4h/+4R9w9OhRjI6O4stf/jIyGeOR/spXvoLe3l788pe/xC9/+Uv09vbiq1/96q8+Qrsa5kSgQ/R0aQOupz0cD7ClvhlxL4PtzQ2YmggcNgUAJlfAU1KW3c9Lk2KuQ/S7OysBD0Yp0YKRS8tnhRL1Bb6ptFPoSUWBGjEeavZe1M1+FRsXdVA0pK8Ym2raJPy6qZpCtseOz5UkX/6el/Jw/PXr4U/6gNJVfi3aPU7ugw9SDHjMkeRg6ZfdPDjCihmUoICmmv6sBOa1tYb2Dr5CBoYVpbTodQnh+wVprKkmnvrHj92JvV1l5h3cv0JtkGiB6hemJGEUvkLL2dspwuCZy45pSNlTZlMAcoIzfIXC2CT8whS21h3BhpIeYt+wjCEJtyfjGMvkyEXKfdnZUYP/0VwnOSxLS09mh64t1iMo4KGGg87JZEPGjjB0vHwrXaKco2Hx9cu8aiiL/T6Zs/w0XfCaPvLuBUNm/fUznh6sJlwuy9GAIRee4wGTebMMR1bixBOpqKp3OBnD/fXHDIWubvtPLhDD0R6HjEXDMw6cmuecHef92kA6MFBklEJPQVn4cPl8AbFO8fp1vHyrgc4xQ0lIyfRN1f2oLnoF21mJZmNHEQ3kvu5SUYa8WVNSq6Ny3muArxDPN9AjAG59gMg4vlbeIhBCAAId23W8wqFADXwX5sCRE5krrsNgOTf2DhebfZXxNI2vgj9BxogNRWB54wehW7+Ea4xY795U3e4o1/YcU4Vx11jNWjdbbmgPs52PgphCTm5K8ofku/p9nOfAkEPxxHsAJ/ryux9e8qK840BvMZ4fLiKIE79PK8gtF+8Qo5u9tdw8vZ94jtYUDdI5hFZq9dquLNNJphHdio0JAPiH5gZ9piAFBakjVm0UrjI+I4Xrcy4gHI2T11hD/bw0yVm77olQaY4FOHB8QVaiMH+PcwKi69dy9nYpyJUVyfYBfJgrc/LsiXKS01pZlvtRz2f17a/T/HKSv17Xt96/zFSKL0zh46mEYc8qMBE/W678tH9RlhHK6+1d7jpR1Lkcl51Ir80Diw+JM+rYABEDcN9ri1+Wfu/qrMbJN68VQgqO6u5sr8X9DUfpntdzfNv1HyFTmDHrr2FEABy4Y93sV+EnUobKVedJPNm32ER9QZXI4Wv2KT0mhg1xPQ0xkrn2S8LAPHtevRkAyVV7/biFybhA6MLROIZevsGBC4bjgTAc+gWXNrToi4TkX0/7FyUkf/DBB7jmmmtw6NAhLFtG3sP7778f58+fx7PPPjvtdy5cuICrr74af/d3f4d7770XAPD222/j5ptvxi9+8QvcfffdGBoaQnFxMVpbW1FXR5661tZWNDQ0YHh4GPPnz/8n+2YnJAdXaQV/IiBhpKFCktxjVeZkhWZLwzFT0EiHG+EBDzW+RF6WkbgoZupiDpSnHEHkRATGYsBVk1I51v7MPcV9eGviMgmd2zAJ+xnra6wEN92yFLLEJx/icCSOh5a+hMc7l1GRF+VhY107kulc7Okucy9jfradOGy1T3sPP2NFxZBUW7V/zkquKDLTfDf6fLv6pp1UGP0/zxWvSfQdUU8lf0cS3uznWBcKPMAfiyHMC0VJtRsnecmlm/IomW+asTxYcVQ8xRTy9USxDEf1Re/DSRifdiwSNaDvfrvmebw1dblTxOyfauFIHE21/aJ01c5+DW0Dc+DlZagKsQdwETB7HFvLmzGayaXLKrJfbY+pM+++iSJEIUZOnyxYFo/TfpbK+FC62F10vT7tPKiLOaQwWUnfa4sHsPtEKVbNH8Y+zeW9rrpHIEV+Irvas7zHIiL4pERD2Vdpn/DN+a4jwp4PZ66mSZ4FyEhkFqXoXrarLfPz7f/b35V36TGoizn40qI+7O0p/cTk9n9Os6ukO3Ml0Ta4OR9WAusDjYdIQbKS1e25ufKKUXz0caGbdGwloa6Yexq3F3woifXfWraX4FEKbgI5R2U/IeE/a++Oc9J59rnnZ2wpa8NTx5aYmiXTnHvnezpZOhyhxNH11V1Si8PZw7rqtMCdNJ7fS1PCqKdznWRPWNVzo/sUAP7jop/h+Y8X4tiZO6bvl5V87chtK4/gocrD+NHhu6gfU5T43LTgBBXZs9dbz7v8TEe/dup8kaYFJzB04VqcH8/Dx29dBm/Kg8qhiCwTd0RlenSdHGYtPfZPkvuPLNmPx5rvwv11x/BUa2P280JgY0M7Ygixo63ekS9bytqciOHdC4awt6PMGNqaNjdLliXjBHHVkUB2WDjQ33M58C6fQuOcszjSu8CZM3UhB0rTdtuEFeEo3TG/2dDrEJJE381J77Ku00CZP6nZ+6d+bj+eueunl1zyLut4S1b+GYLgV0xITk/g6IE/u+TGdCm1f1HOwYULFwAAV1xxhfPzgwcP4pprrsG8efPwwAMP4P3335ffdXV1IZVKYfXq1fKzG264ASUlJWhuptBaS0sLZs2aJYYBANTX12PWrFnymWibnJzExYsXnT8A8H/WHxYM5oZqba0r460AQFUQtSXOByhLyfIIr/n4sTvl//wcb+aUw61s86FDeQgLyIu3v2chAGDr4sNyOJ89Ue4YBvy3c8HqhDPAHGr2RPL/19b00OcjeNMwGSfPgg/KPwi0guApPNO6iLCNoedUSQQgiYjyTjYhFV1u95W1G7y/FZ7kzx/sW+Aot/bvla8c3G903FLoTP8RSkYrgsHrdV9Zu/Hic72HZByKPVdjQZbny86roCUyCbN2f8SDGXpkGEQE+5ayNoTJuPDnq4s5QAhKDOcx8Tj18//r4ZXyjocXHxCvEMMtVFwnK1quDeVH+qcva46+hMk4/rLzbqmVYc+1A1Ww+gGQJ3KvlXwvScEANtR1yHpHv/tk32JhATIeYcjfq8pPEBwrGZdkaabMtFmWZH1GzVrbRuqm0k5EE8W9WJj1Tklu5zXjszNCz+CoGid9c2MjgLnJ/fy0YL75GWzMT2c0A2Y/3FfWLp427r/ylVOZm2XLfWXt8PPT1O8IvpfG5TnP4d+reOj8zk+kJLLp56edKvCUoEn/v6e4jzjLreJmAIyiMXOKzpiVyyD710ro5/yc6Vo4EncKSNkwMok2ZTzqEyspoUdzUEg1R9S5HEeu2v396ONCfL3ykMCRwmTciUYePD2XDIOJAFsajgkjXTShUpS+fLPP5G/bcLGSdKUv1tlRF3NEkX6qZYkj/3mPRGUAQPKZk7eZ8pVzOQC9N6JnimmrlYlOAXTv/Js7f4kmjrJGqoZHmXr+fftvSR0c9lJvKOlxCmk5d48eA0fRAODx/b9B/S5MCWGBEGN4Rq7ze5kQYWv9EexsrwWUhw0lPdjTVY6XX7kW588n6KtMixqRsUD2/wHg4cUH5KxvKOkR4+nLdd3ymcIZE3JHPnZ4FRB6hBhQLjyWI3jPtC3StWQg3wvHgywo4fPDRUJr7CdSBto5Es/aTzff+JGRTfkunn9t8QC8y6cQjsRxpGeBA839euUh/G5jC/wZKZETmxtaZE1/f8VBmXeb6tVudiI3z60UOuX71SaxGDNwVu7zw0tfRCsXCLxUm/qMf75on9o+s3GglMI3v/lNLFmyBCUlJfLzpqYmbN++HQcOHMB//s//GR0dHVi5ciUmJ4lB4d1330VOTg4uv/xy53nXXnst3n33XfnMNddck/XOa665Rj4Tbd/97nclP2HWrFm4+WYKq/235mUiNHcdr8gKiYsw5HBkYYqYUCIKq59IkYfdUg6m9RTAYH8BVqw9h72EcfKAUd7496urBhzlhj3kq+YPm0uR36sZCPwEwWrE65hwLyouSMWhVoCqJcJX+M7ynwOeZoawxrqzvda54PzCFJaWDwuDzLb2xVJZkeEmogiPxrFw/pvivVQaZy/Yfg94YAldGtzfreXNRiH2lXhCOXeAQ7t3Lxhy1mZb62LnAhRDxieKSr8g7XLga8y2UztC8/QLz35kDm0I2YaSHsGVM0yM+2IbiSJcl70oXh/ARAT8RAqP9yzD5oYWQAFrqvpljuyqrjz3fgFBf3iv+nlpWvMxC1Ot4M4zKBR9T3GfVPu2m+2RE2iG7vfOLqOwyLrEsiVqwx2viALBa7u/Z6Eo2X/R2SSX7E7tHeU8FEpcB9bU6LWIMB8xzaLT56SVDK3XfXtzgymeljQVn+HpZ+gCfeF44NRSsN9lPz/6f1YeBE6kFVRmNAqTcbw+fgW8y6ZkX22sawdiCjsGaighWUcew2RcHA/nUwWGhz4ZFxnAEEVey62LDws2GZ5yDGI/nrHWCc688D4jOtmIY2HCncNNpZ3YWNcuybgAhIWN14XzUwDKxZA5Ggsc5fjeki6CPGhq03AicM+oxeqWUobBReVpDdQy1u31eezIqqz1YiM0HImT8amr34bJOFZVHncU4ekYi5w1to4IyyebCMJuKmb26qa6VhrnGEExhDGG51t7fpfNJcagHxxZDXUxBxvr2h1jwE+knERRroa8uUEn/Fs0rxzx+X73ymy4VSLlQMF4jCLfraT2nYOVhn4bRNLBa8b5UTKG0Thw5aTsV77nnPtGs/fcV0ZQsyealwPQlYj186TWgqeI+c4yhjYu6pBzsGLuaee82wb6j47eJf/fOVgp+Sdxj3D895Z0UVXtGSmnX+I8CE39GgAGoqNlmacN6/XVXcIgF5UN9rNXlA+byJHuv1+YwlvvXzZtxWZ2Kq0pGkRTbT99lx0myTjemZpFlMQwcnDHQA2+tXyv6YeWDVEt7pMiV/6MlHxW5sG+Fjz6zMJb3qExj1CB1ku9eUp9pj9ftE9vn9k4+MM//EP09/djx44dzs/vvfderFmzBiUlJVi7di327t2LU6dOYc+ePZ/6PKUUPM/sVPvfn/QZu33nO9/BhQsX5M8bb7xBvwim3wTssZRmHcwd7XVoqtbVRT0Xe79s7hkHp8/fCZPEcsSeHRY0a4sHwElR/Fl6Lv0lHlgdRmdsOv2QB0744A2LOuBP+KIs88UtHi1PASld2XUyRhfVuEn6FE/FOCVzQnnoHb0FkgBmKbp2sTSeJw5H33jNeUnUY+WUFYQwGQfiIYbeuE6eJfSPFosPXxrcnmhdhm8t/SUNO0fT2+mQql+Qxp7eMoTjAZ4fLnJYMRzPq857WFl5An4iRV7f8cBU6+VpLdDF0ew1nAjootQCMxwPTNXsgjSQpsti52AlvFlTmHPDB/K8utmvAlYBIjs68XjPMipKF7iKL/d5x0ANVlbqsLyOhtyUcw5+QRqzZo3JO8LxAHu7yvBQpYk6kaGjPcAT9O9V84exunLQ/B4UnfL0PuEEO1b8uB/b+uuMcRvTeGVmVmFPrl3dOkl5GVxYSC4kZcYouGPtyfbSVmJwfhq7uyoAD9jTXSZeW1Hk9DOYcpfH40SxYPZd1BvEJAAADJNQfhrPtC0ySj5/1lJAAILgNM4560TmiOaUPN+stHO9CD+RooTPJCXcry0eIAXIdhIwG4k+K2uLB7Cnuwx1xWedz6yaPyyRIzbenmwhatCVFXTmf9q/SFjE7D6LEWPRMgp8xtp/j1S9lJUfsL21Ac901Io3XpTTtC/zuqJ8WPbAY82knK0pGsSaqn5nLnd0m6jrxXSe/NxLeVlg32Q6F/AVvIyHrfVH8M2lz0vi/AOLD1HBP8sZYv8dTgR4rrOSFCSPnD/hRECy21fYrxNvV5QNO/2rvv1119HiK3IkWDLCTvZlRTgqw8PJGMJxKnb4348uhV+QhnfZlJw/XgPu88HeIomueDOnsHOw0olQO0w9IDnrTfrY3trg9I2VRvYMrykaFGMvHCPF+Mljy7Ihodbcz57zLvwE0YCGkzH6bNrH7hOliHmhUG87VMBMtDBC94PKzSD2Rp7MhY2z39bSKHteCCFsB4XOi+EKwgDJsZ2DlXI3phTRIEvkxLfu4kQKKyqGsnIpdnXUwM9PyxzZURR7LCuqhgwLmUVBLXOk775nT5TD09WdOUcjTBIdrMz5RICDg/OlKJudLwHoys36Tl429wzWVPeJk2LPUAly/LR8lxL4FTkytcOtcc5ZGctfH27Cxrp2PHFsOaA8nB27GnYTB1Kk8TwsLTdORo5uSNPyanDwVpKddpX5S7mFn/HPF+1T22cyDh555BH87Gc/w0svvYSbbrrpUz97/fXX49Zbb8Xp06cBANdddx2mpqZw7tw553Pvv/8+rr32WvnMe++9l/WsDz74QD4Tbbm5uZg5c6bzBwCFsSdj2FTXKiF+9sKxd6dpwQk3BA5TXdTGEt5T3CesDxwR4O94GU9yAmzl47nOStfjypvSgr0AcCEV+me2BzFMxikseyVFYFiwransN0pe6BHUpCANpH3i/s83ybNCk2cJ6eeHi7Cuusf1IGhFjZN07d+F4wElkvHnOORr4T+bygeFaYQvwqzkMgVJAAcAZDyBAnCiKLONbCrtJCaK0EM4QknfNjSIoyub6loBDzjQVyR9zcJQ65Dyjla6PKLYU+63l/Id75RDZQrgzNtXy1q1vXwb/II0nmpeYtbSovR79kR5ljDiNQVMf1kRyegJv3ChALEghLqQg5VlQ2JsLJt7Ri5jUUA11nv/yQXYf3IBvClLqed3FqRx8s1rzfxbF+uWsjanT3XFZ4V6ksfNzB7idUqb2h3RcavzOQZC5NGaejOnyKi1Pd3acObaF1LISLOQ2Mm5a6t7UX7rmwKjoM5AIhbcV4YIcZ/sv6UQIUNw2MtnsTypQOFIzwJsqCdolXgYrcRUJ9naWlPAnDPZAxNUyTgciUsU6Ll2qrVhQ7kAGOeAMsmg/I4ZcVPzAoDjMeZ5WlfVYzya+uw3LTghkJEwGXdoR+2+Z2HwxwLUzXtF3n/49BwTsdBne89QianozHOQouqu6mIOnj1RjlVlJ2ReN+uoLI9h73AxEBI2+id9DVKXIBwP8ETrMvy4d4lU0uaq2VyPghXYn/Q1YEXlEHnhdQXvP132nOQeHT49x9nbXa/c4joL8tPY37PQyG4rMZSNKJUTOoopR2Q56dguaLb/5AJi5rmQYypF51KyKss2ew7Y0OY5Z2X1rfcvE0cTK4j8fvvs7u6ohJ+XFhYsTmKVu2MioCgds/SMBXj57LVQ53KIBlSTGfgBjfEnfQ3yDqeQlm7r6rpp/XMzyNxMe1KKwuW6NNfheOCwz9mONgC4+dpzWbCh1RWkKB8ZoIrN/gyqswFo+nHQmTp8eo7D2sNGXDhKOYN5J/KdaAAUYfzDsQAHe83ZWb+oU3SCzfrO82ZOSeRc6Qg9n7EHFh8iOKaWIch48HMzVCslYZ09AGEqJux9a8oHcPj0HOzpLiMnhTaknuuoojXU8GHH4eUDR/rnOw6TZ1pNdOnw6TlGl9DOM2dvWRWww2QcRyy4L0c3wmSckrd1DtVvN7SbApvTGBqXWvsicvDrab+ScaCUwh/+4R9i165dOHDgAG6//Z/Gon300Ud44403cP311wMAqqurEY/H8cILL8hn3nnnHQwODmLxYvLWNDQ04MKFC2hvNxCAtrY2XLhwQT7zz2764Dw9WE00Y4zH1bjCcCSOW/M/dGaCLf/Q8nSuKRrErs5qbW0b3CxfKMpTRmHVNIUSwlWeGCbr6wgD/dDig/IuwPIojwXCRMTFSNTFHMfjbAtTOxGMWXsA8rgKLCjjZXlYAEMLt/tEqaPgAVTIJe5nnLB6OKK5xbXHTJKnCtIObOD54SIsLTvpCCkuFGZfEF7KF8/ZukXdWRcyACDtYcdAjVyS0Hh+hvg8UvUSfU552NFS77Lg6NCwjfuWAj6WbNha3mzw0lYeCWAws1nKJoeZlSf0mrxP7m84akLJvuul/0bVAbOOOsKwvqZL1sVPpBzlLZOmKsUHeotlrx3sLZLLOPos/r93+VSWEsG/sy9oXg9h70rQRXxj3nkyQpJxw+wxSFECjqjYMBbu+4MVR2nvxpXzO2SIrpYjJDbUij33o5lcM8faW2eP6ZqcEfScuhX5vpVwqI2ijbWkyMvndbEtHp+wg3AyngdJJOS2qbRTeMX9GQStA4whnlUozzqTa4sHps2jAUAFlHIMjaHMS8SwWL+w1+C/ExEjJJIPESZpfJxz8GAF7Tm7PgM37v8jS/aLUS70xmMRo13/m/ND2oZnu2PmqGkyjq3lzYbqNfJOPz8t0Jv9/cXy3e1tLq11mKRaG18rb3HhGyGxaN1X1k57PxXDUy1L3PmLOG1sAon/cHgdfdaKPNmKju01DZNxA6HxgM2LWuEnCPctHmDbv2PlyBw8PdeBjWysaye+eQ9SXVzOSUFaIlBiYHPf8tJ4pPFFSL2ZiFHLUVuJeNgsQlr2JjPmnvATKZJDScoFmRlMmPdlPKwsHwJiumCX3ocPVR4GFByZasNh/YI0Nte34Lm2Kpl3ng+AculsA4rnmJw2JnJly6Q33rvczKn27rOBfH/dMRNBjFEhRC5giYznRnb13cIVyre1LoZXe8FZdz8/DZWTnVj+7IlybF5ERoFQkerEeEYDiJFRkKaokvJwf8NRx+kjDFGf4JnfO1wsxj4bl9w/hylIzznP0yONL7qGVaFb98LX711RNmx0Af48O0EiNZfsdfMTKcn5YDYmeDTH00GiLrn2Rc7Br6X9SmxFDz/8MP7+7/8ezz33nMMYNGvWLOTn52N0dBR/9md/ht/+7d/G9ddfj1dffRV//Md/jNdffx1DQ0OYMWMGAOAP/uAP8POf/xxPPfUUrrjiCnzrW9/CRx99hK6uLsRidGk1NTXh7bffxn/9r/8VAPDggw/i1ltvxe7du/9ZfeVM9lt+/CdAkCDuexhBsWLuaRHs/owUwqkYlbePh4Lptls4RXzMSPtZvwMwLeMNYFnu1nduvOY85s76AAcGipyfhxMBNlR3Unic2VCYLz5SHAqewurKQew/uQAq4xsoyJSGgnBVxZiCNx6DystgadlJHDtzh0lg8gE/nkHTghMoK3wD3z30ZcyZ+w5uSZzDwdMaLjIZozFHPAhh2hehxH1nLxN7q5yxTcWwYuFJiryMazyr5WWy+22/a8Xc0zh78Sq88d7lCMcCzJvzDs68fbXDShGOxoG8jHi+RGmbjBlGHy6Y5MN4wyxmEnm/bn6e67VlppPSotdx/PXrs9afITjX3fwx3v9wJr5btwttI3dgV1uN7C8/J+JVs58/HpCnJvIZ5/N6bMIOkqIKow5LyXiARxtfyPIOq/M5ULnhtAwtfoL6Bw9AipRydSEH3qwp/N91/y++deheiSZdcSAPHy7KOJdTdDz3FPdhV1+VFMv7k9o9+A9H1lGkodDsjXAsAAKFlQuH6SxOxuicaraaR6pewg9aVpm9b0WCbKYb5ITYXN1GESWLcYXZXqpvfx0dx2fDS5Ghxexk3NYWD+C5vgrcX92MpzoXA1M+bpvzHubNep+8wJG9/EfV+/BXXasRbcJ6NhonGE9ATCUNJWfQckor2Zb8mJYxZzJGbGKByj4jUdkyHqCx5DRx4dtzMxHAm/LxVNN/xdeeewhhYca8U5MTYMqniCbDuUbjWFoxjCOD852xeu/lQl07Kc+Vi9UDfnLXk/ja/q3wCyjZfGd3tSQdO0XzrPX2C9L4j4t+hn934LeBvAz1w8O0MpfX2a77YtcH8RPE9vbsifKsNQLImYG4worSYRwcnE9rMxkjeViQwZaaFvy0fxGdjZwwS2kMJwI80vAiHjuqk5sTKVx+KA/nlusIzlTMRO4UsLXhiMnDmqZdcXkSH747UyIesh4ZD17ap/vDkhPhhEnqRkCygd8ZPQfy+YwH5GaAidj0ZzRp2NTstbHn1F5rrhC9p4copB156SvkvZqLqctC4KpJWStmyZF38pmMnLs1RYM49s7tqLrmLYKARtaXXqiAQKHgTA7Gbk058pJzMgAIq1P1glfQdfo2ikjaZ0cbeTff+iHeePNKM8e6z9BMZogpVM97FV3HZwOeIua2MQNRLL3lbQy8foN5Lp/5EW0EWkVTw1TM6cd0zGZzbvgAp16+XvrPY5E+x5ToLvAVvrt8J77z0u8AvsLG2g6CAo7GgKsn3ZoeHmg8ug7KvSVdAmG21/qKy5P48M3LjDGha+748Qz1f8qHUkm88dB/uOSYfVjHW9b4J5+Jrejwsf90yY3pUmq/UuTgv/yX/4ILFy5gxYoVuP766+XP008/DQCIxWIYGBjAunXrMG/ePPze7/0e5s2bh5aWFjEMAOBv/uZvcM8992Djxo1obGxEQUEBdu/eLYYBAGzfvh2lpaVYvXo1Vq9ejbKyMvzd3/3dZxpk6Zw3HWs6TMZxVe4oHZAZKaq8mvLpgmDWj6hHTQFI+2iqGMh6fu3s1wwzQMJlqrD5p5nN4I1XriYoSSbiicxLS0VSSc7Unqb1C3ud5NMNtZ1S8RmjxhPTWHQGfh4l1zLO+vfvfAl+QdpQ2ClP8J4AeTS+e/DL8BMpVF3xBg70moqwjNe3MZSxN/PoUgeMV549dFy9NC/teq3THg72aNYhHZLmxN5wLCCqx7w0Hl26z5n7g6fnkmGgvfRn3r4aYTKO31zUa3CkHnlPopVP/dwMeWksxhE/L21yA/LThklJ84qvqein8POFHNezq/89MHRLVsIwz5OX8vHua1cCAL594F4KETPEIydjvL2W5148gflp+ozlqYlFKlHzxb2ns5xgO/GMzLV8Jj/tGAb8fO+yKcdTyvAJLgLo52QMTAjAokqCcvxfbb9Nz9dnYvRmb1qlQ8YzEseuzmrBEodjAf5TxxpjGIzE8XDDARNxysmQYcCQBA94aPFBhGMBjSP0oDI+efQjivTa4gFt0PhScZuhaBytCJNxdL1yC5qqBvCbdb2yL+wq57tPlMKPZyjBXCsNr569VjjCBT6g544NA/7Z3QuGyCDggmEe0FQxoBORPZw+dzWxhAVh1loJ3I7XI+2bPaPplYVnneFWvIdCjwyDpMu+s2VRM5Sn8LVjXyOmNEUeYvYkIu1h3ty3SXFhOFVhCkcG5juK4tbyZmSuNB5MXxeF5ITWr73w+7JfdrZRlIU93/yMtcUDpviY/uy/b/8tbG5okflxmJZ0FEneybkagAt91G1XR41E/ng9mhacENn+cMMBgp+wlzY3g/qqU3ig9gglLk8E+N0lLVhb3UuQH+vdq8sH8cOe5ZjPeTqTMZxbPkEQsbHA5EaFBt7Ezcln09/9+FyC+sERs7FAqtdy5NmOdMj49TkJk3FSFG0Yn+W8kOgn5xBEmNJoDhVUbmiiQzbDUTw0Hm8uvDkeIBFMClRvU2knVeNdOAxMxDA1ZxxhQcaJkESpROXc6kj8srlnUDv7NQycuwHnzycMVbCOmEhugFbYN1e1YaJoHH4BVWNfUzRomJXy0saAynjE7z/hZ8GbEHpYW9WLhmteIdhbkqJusr/SBFvdWNWJrqHbBTLraWpV3hvzZ7pwZz6jyNFOxYI0vlm9n3456WcjEnTeAe/VM29fLYQJrCuEY4E2DD3aY1bk4zsv/Y5AAHcOVlLfLkvL72W/MJOX1jF2tNVLJXuWj2Eyjo/PJQzsOaQ++3FCDHgjuqr11L+I1PKL9r9p+xfVObiUm13nYGHFhxgavilLqQmTcayp7hOuYPaWAq5HZdncMybXIIJRn47/mts3q/fj9Pi1+HCykIrKgNhdjp2YgzXlAw5WVzyh2qLfUNJjWB1ASa9tL99GPNPHVrqXgg4xb204gic7lohgXzV/mCILF3LwO41thFXURZUcrnDGYStkcYgDyPJWRiE2NjyDvUbM5297o6Le/sbyU5TQ6sFR/BxvGHu2+e+I98l+1o355/FMey2Q8bCurhvPdVZiRfmwJItOh58Ur6b+++4FQ9jbV0KXhQ6FP9L4In7YsxxhMo5Nda1SjIYT9laWDuFAfxE2L2rNSh7kdeRIBTIeHmg8hL89sgKKDcDpeNjHDK+1PQ/3lbVTIaBp5sFen0+rJWGvr0DMytrwVGsjoDxcd+tHeP/DmWhacAKTYSBePSg4rDSOp1GH0KP9Ze+nHY2w+xmOB7i/7phDF8hernAsMN5+q7/lt76J4pnvkkEwHf88v/sT9hFHFD5xbiwP5pqiQezursCq8hM4cGoe1Pkcp4aFKF66Urr9bPEq6iibPYat5c14omWZc+bt/gNw9v2m0k4ZL++RVfOHsW9wIV3mGiO8sbYDz7QuyvLAZkX+tIeaZZjDKx8dG+/JyGfDMcoZ2tbS6LzD4VW3Pan2zz2YsxTZO848eAory4dMJHO6ubLqQkhtAB5DZJ/ba6su5AgMxTZGHJmo5SUA8cJm7Scdxb06ZxQ7BmpEVq8pGhSYp+MVt6Je00VYnDnQUSCOaHNkVe6u7jKJhgJ0dna001lqqhrA3u5SeJO+oQqNNI6cA+TkiubAyOf02q1f2GscWFaTaKZdG+dT7sYwGZf5DJNxrK4awEgqD20v3yZzxNXmP6kehZfS0ZbovTxGDqO8yycwNRHgT2r34D91rCF5oiM0zvOsu9c+v+sX9uKV5JXoGpxNY7LuPr5beW6cPTYWYEX5MOU1xENSuGe4e3tTaWcWG5tALX06Y03V/djbXZoVveaI2a6OGjpDhxYjzM+YCHlkb5pigPQee79PV08iuj/DsQm8/uCl52VnHW/54s8WOTjUfOmN6VJqn3vj4JYf/wn8gjw5+Mjowxcp7ARMH/YD4Fw0XsrH7yxuE8XdeS7MBakuUgET+HRx7OsqNQmY0xRLi75fhCNffFoASWGT6CWpBaLAZ+x/M66an2VdhDKGaF8ikIfphJn93U+63Lc0HCPmioiyAQDlRa+h7+Qt9DNtsEQFW1S5c95rGSVRZfCTWnRcUQV3WoXCgkxJcZ/pLnJtPOzoqHMKlLGSuLZ4AM91VpoxRZQDbrYSLWO1lRQNFxMFhvcUQ+Q+SSGMGloR5Zm/wzC16Of4Uo5e1nxRbaxrJwPUc99tF35zxnmRCnM5xqpVXMze//Y8+Hnp6ZPNkb2XZU1a6x1FlX+3tqYHaRXDvIJ38YOjv5GlZDRVDUjiLz97TXVfliIU3Zv8fy605vTR2juNc85OW5SKzzB7MMPxAFvqmrPqr4SpGJDScLwZKYFLyu9tmBWf/0mGkLkeQcfQQ0QejJg9yIoOG6oATAJjvtknTZUDjnLzSc0xhsYCPNBwGE+0LCOvq1aGlfLgWWw7tlJrG97IofwO+2ytX9hLNLo+xFB1DCA9JllPbbA+1bzEQK8+Scm1CoSJfLOUtAcWHxLmozAZR2XxK+h77Sb6/zQyhNv6hb14bewKdByfLe/eWt6MJ/sWk1HYXZp9vq0idI4sS3uuUR9xREVhP/bZEseYHqeTpzONLOS5nk6hzZIn/D6+Q7QcY3kSLQZoj3s648Pu40OLDzoyJ3pfSN+1rOfiptykaCLDemJKnGWOE8Ta9/Z4AdB3Ygori4cJKWA5waZ1NHLzFLy0LzkMALLuwekcCPZdvKrqOF7sKIE3ayrr7s4ySvn709xHNG8jl7Zx0PDvPptx0PLnl9yYLqX2ryJeNP+m94iTWXN9r64YhJ9IZRX+8pPZxURsHN/S0pNQMUWeYE6csxKt5DtJzXmv6cD2dZWSoPAV4JNg8OxKouOusg4gSzHiMCEzJ7CQDccCNNzxCiU4ZzyEUzE8tPiggQsUpKlsfYKS7dTHuXi48YA894+q9wmEyQ6FO8IORLmpLupy6m/lObRwa6r7soQNhy63tTQSTOdiDpglhuds4PUbBFIAD25xMt9NFv0k5ctZP+3tCCdjCCcCgmIl44SP5e/lp4UC0hbIUT5znl91Icdc4ApYWkG0iKygAppKUEN0nh6sxoaaTkmYDMcDrCg5CYATv60CPDFT08AuFMfFhey2unxQoHG0r4yB688wVKbTzZVAwiJ1BCTx3saqApK/glwXLuAnUph5zWhWQisXcWLOdIG/6L3zeMsKhwGGf06UnUbBCMcC3L/4KNXiUB4ay05hRfmw1GjwEylnLQSSMx4YhitrfJzYt6O1Xgwpe9/6CUrg/2VbOR7rvtNJ8uT52dtVRrBD/U4/kZLiQ5sbXPnB883vXjb3DJ7rqBKmFQBSLExdzEE4SuwhjmIgH/QEpsDQvZ/2axpWTaTwSNVLIiMeWvoSwmTcMQy4zwCwqvI4EFIBKj83Q/Apz9Tc8BNEfEB5OUrGIhAaTSm8qvq49HdbS6ORGb4S+cnzv7e71GWWgitjtpY3m3VlJVUnfHpp34Fd2oYBfcnU2IBHytm6Rd0CC2MDM0zGsbOzhuqI5KUdAgimDuaxcu0AKOCp5iVZhe5kbXnfTQRoLD8l8mxF+XBWv4USFQBiCn2v3US5Zbpwl8zLuClAVTf7Vew6XoGOodnYUGsKzz3RSpzzXM3b3v8r551yIWuWsWI7DOzxcA0Zo/QyHowghGuLB3CwX7NnsewoSANBiBUVQ/ALU7jyilGRheFYQBScBbo4ZaT5iZTB5kd+zmsKUIKwn0gJ/a6XJqjg/pMLXBlt520ADubfMQxGzHn2EymB0agLOeJRtz/ftOCEKZqY9gWey/uU2de4JogdSbf31+ZaSnI+0FckUB++e2xaZ/qBkc1+QZqcJjEz5zY0jKlkpR6IxbTI98OBU/OgAoW1xQOSiyV9nKYwIP1Dn3tLBkJhevl0CTUv/Gx/vmif3v5VGAdDZ2/A7y05Igd3n64K+8bE5c7nVK7mcbYPA0caQIwRDD8SxoECg5d9ZMl+w5DCB0x7Rf38NNZW9dJBVMb7H44HeKD+sLzXwBSALfXN9DOLHeNPVzwLgJglGF94bGAuftxLl5mfk8HH6YS5yJJx+DkZqcrqXTGJx3uWyXv+qmv1tFEUMymeFGATSNCNE07oXhhoknHhaV5aetIU+PEgxb/ga6FuHU5hu4lAmtgbEo7Sc8NkHCvmnjbekgIjsDl/wS/ULBAZT7iibcV3/cJe7O0q05eUErpYh4mGBaLyqLIs6DJYt6jbsIZMxuRS2N1doRmwCDu663iF9BsZDwf7FxhmEUtxRcYjQ3M8kLl9sOKo1FSwG+eXOMo+P4f3qd1so5WVa/bqAg7u1WF40q1pwQlgMkZsTRbGeXQkj6hvGV9veQWdPcfVQMcCh0432tdNNTr/Qys2TzUvEQjEbQUf4WBvEeF+rSYKvlZi/Pw0Hqo/KOONGttspLNxEY4FDjPObywyPP22x5ONi/0nF0glX+lDMk7MJlahQlI29AeURzSDAJQ1f6yosfPAH/edPcHzyFVp+T2Sn8AKnA8yaHQS/o97l7hGYSpGBRY1jvvqnBH4hSmiUBQGHk/6FSbjpJBolqC1NVR924sUvtvfV2zORwg80HjIMN5cRYnL95Z0yXngcQGUm7Fl8TGRFU80L3eVVg05Uhd0ROmfiGm3nL0dm+tbxOC+Kj5qGF6qXpK96eenSUZNxpycHon6zDAsLkp7lx9oPES5DHZ0yuLA57N9bGCu7JnDp+fg95ceNBAUPhdWzgZ72QVqKAvmyW3M0Bo7B43PFM8TjyscJdm1v2chAG0EWs+UGg+WvOX+bGpohZfy8fCSF+n5dhQj9CgXh2Eqeox3LxiCn5vBwd4io3BaZA5s/EmEy4atjMTBVaFFVqRiWL+w1+kfFwZl2Js3ayoLymrfsd5YDNW3vy5zwncBN39GCt9c+jytxYgZJzPgRetBsPHP9M7Sd36/zg3gdXCqDCct9i3lUZFC2wmjP6OCUFj/wpE47q8/hnW13UaOhpQX2FQ14LDdfXvZHieiyFSv9rqGo3Gpd8BRy4cXH3DmhO9UQDumdP4FQIYLG3J+YQrepZ5zoNRn+/NF+9R2ia/6v7yJl6u/Tg7DN5c+D8BSuMYDbC1vdpOK9UFbU9PneLDvK2sXij7bU+knUvhhz3L5nHgpmIM4GUeub7wK9EMAGY9C6PxzhsnMSAmWF572zidS+E8da+AnUm7lwgif/c5BKgzEmF8AUjUU0OHsAiOgRZGMFs0B5RDsP7mAhBLgKKb2HLOCv0uHlI+duYM8nVqYbtD0rOK1tiEB+u9wLKCiR1roNi04QX3zFXJ9otGT5NWEKxDvrDmOR6pecpTwLIU1kRKDgT2h3swpKkhje86ZnSkEpB5AxhNuegBYWTIsz/Z04Tk/kcK6Rd102QE6+gHH8OB++AVpM9+cAM8eLA7fy5fc+famfHiTMfGSiSc+Y5Q9JwplPYvnhRVXO69kZcUJGdMv2mienuxbTNS61gX4s9Zq+Q5gIj52iNvuBxsR8jMd6QiTcYdBg5NZed13DNQ4Cq/Ma8bD+pouY5wDGMnkGQiCxek/nTJhPKekuOzrLpXxMdUsG978HabgtCkBJWpjP9OHMxeOEcxjsYwFXDVJlJkMM7Crc3P0MJESrn9+53rtUZ45c1zOOD8zTMbhxzN4erBaG35KcOhsLIq3Faa/tiOEK657MWLxmXvj+9lQLh94onk5GRwjxmjd0VIv5+H54SJZl+eHi6SAG8tGGw7x7ZrnyXtvwTT49zNnjos3+t4SWvtlc88QXEI/hxOCV80fxg8Or3b2IQBsqW3Jwn5nRSS1ofC3R1ZIoUb29voFaVxxeZKShhWcwmgAyYkn+xbja+Ut2FDTaebWlrWRd3M0NtoXjhZtKOlx+6jP+oaSHpchRxvFV+QkhV7WCz3h83fGrSNoO9rqoQKFx3uWkXzWRve3lu3Neh/3nyF2vI8++rjQRGsK0nh46YtZMle+78NEkX1TBG3X8QqZ93AswI72OufscoR/U2mn7Aem2t1U1wqVH6LjxGxR4CVHyVrX73evJDmvI/d2dIzHE44FhsYVwFOtjVKfZO2iHjN/0yTGr5x3Sv69Y6AG/+3IcuzopDPHjjl4bm0SLqoIn/ST3SdKsa6227nb9naVOffHjNgEOQ4sB4s4S/hHyn1PmIxjTNNE8z5Zt6ib6u9AO+4umGgB58Kxdvjlhq7sAV9KTX3GP7+mdu7cOXz1q1/FrFmzMGvWLHz1q1/F+fPnP/HzqVQK3/72t1FaWopEIoEbbrgBW7Zswdtvv/3r6+Q/o/2ryjnIugj4EFpJkzbu1IbW2Nhju0Wf6/wugitkzKjzbgt36fTPxo8y/jg0//emfKj8jKlkGUmo8/PTghO2k4wAC08JCB2qnYRkY8ZtbO8njdfGNUfnGICjAMh4IslmnKPBEJOmiuz5DpMaP95Wb54Teo5RI++KKa3ce5KUZXusbA/z+uouwrha/ctKcLPoFBEow8ZkJ2tqocPzFcWbT5cTYVPWOgWHbJpVCwt6X1k7trUuNgpHFHc7FqB8wevo77uNOL2t9dha3kwKj352NOmZv+/lhgZaBDeSA+ikR16DyNpH81mi68c0mPY8Z2Fg9bw+unSfw7ykLuZgQfEbOPnmtea9/9T79Joy5eV0LYr9XnjLO5g/4z3N963cPWb3fzzAt5f8An95mAx2Pt/yXH22VcaHSpMnMJwIiC52RiSXQ/dzS1kbnmqhKICD6Z+O9nQajLAkhlr5J7xudy8YykpwdJJ9/4mkU95vUQw5/07+zYoZKzUaS859A5CdM6AAhl0yTIUTcaN7hNdLfZwrELwsmWSdTXu+4AHelCdnYzoqT0f2jxvFy94j0+2nrIROa12nayvnnSKPP2PhuSo99yciE7Jkq+fK9nAiwKqyE9jfV+zQ2jIVdjgWYFWF+T3vzy1lbVQhXVMJO8nsLCsmAqyr6sFzHVVYWj7s5MncvWBIim/ZuP4ojv+TmrqYI5FlyQ8BMF1SrhAy8FqmPdkj0mcA0dyoMBnHutpuyfkKk0TpKvVYrHvWROkge4hx+zJGnTi8vqYLM4MJPNWyBHWlZyShW/aSppsG9F6y86s0fToXXHPu3WheyHT5JNPkLfAd5chTHdl5oO6wyX+Jfncaqm12xjxzpARv/n//9JLD57OOd2fNH3+mnIOXOv/i1zKmpqYmvPnmm/jxj38MgGj4b7vttk+k4b9w4QI2bNiABx54AOXl5Th37hy+8Y1vIJ1Oo7Oz839q336V9rmPHHATT7IVVmZv4drKXnNQPBa81peVR/hZrpRqfde+HB0v+DTQD/ZEORdqbkYKLzn9zUsDnF9QkMYD9YfNdwrSVP04N2MiDQUGTyuXsm8ZC5YgsIUpMy7Y4xevPSC4TxvzCEAw5BtKerKoHuXzn2B22nkU/CzGn3N4+/nhIqcAFkBFdiZD8vqwMF1b22O88TyHHinvG2o7deQB2FDTmTUGpiFkzDy/6/76YwiTcaF+s5UM9tqwcLWNDL8w5eB7pWAPj0FZdI16bJsbWuhZWiHgIm1iNGnFdMXc02IY2HszqhT7BWnckvgYKlDORQMQ/pk9fvQL17C6r6yd9hbXzJAEctfAY8MAQDYdL3vc9fjuKe4jGAnndOj9tXLeKTzS+CKNXdMuRj390VoN3swpMgwmjPLGsD7urx3+tz34u9pqHO+tvbf8PKvY2niAgaFbREHxC9J4aMlL5LXWUSwTFfCcegdPHFsuaxsm40Dax7K5ZyiCnaaqwX5e2hjbkZyacCJA3DNsONtaGhGOBfh6pQXtip7DlIkAqAs52NNdhjAZx4qqIXkut71dZSIPAIItHugvktwcT1M87myvNfuU83XYOxlRuLlPosAAYGiSN6lry+jx7h0utvJfIIWv2DCw4YZ+fhq/vbjdrJFVcZwNc++KSdMHPe8r553CmqJBp28yxzpiwQUCAYjsYk99VG41LDwDpjmWZ44HVFtBP5sjGqsr9Xv1snK0l58bJommk6mUD5ya55IqMKUr3y1cG4L38YiRHXyWAKoczm1/z0IHJ+7npY3zqYAqQUt9AA0NnAw1hE4zMfF4bDnk56XxXAdVAD7SR3cG54ywYeAnUri//hgVHIzg+Ke9H0D7V1lnyjYM+NnyjJG4YcYqpMiTChSikXM2DApnTMhcPrp0H8GkLIXbpnc2L6H98K0lvzTyXUcOZU5Z5iq6O7b118FPpNDWN0fG6Nyherx+PkWLG+ecpf/nZARebNP/AsC3lv7SzcGzDINNuso4y1l1MYeiMZyjoGX61vJmon3NoTon7Jjku4jz3cKROLyYEppkbjvba7GzrfZTmd0uiXYJwYqGhobwy1/+En/7t3+LhoYGNDQ04IknnsDPf/5znDx5ctrvzJo1Cy+88AI2btyI+fPno76+Ho899hi6urrw+uuv/1r6+c9p/yqMg3AyJiF+f0bKYAn1gSxPvCFhdlEC9YEov/VNrK4iPnWucBiOBdjaeJigEVEjgQ+XTiakEKbOEfgED9KuLoJWSOKjbsxbvWr+sGNYSFJikijgZJzWxRFOuAm2TiJmfqTA12ickvtG45LkJJWXoxhO60z5CcIwm+qiynAme/pPaHkVNbxF4CG6X+yp4c+wQuIXpgh/qsOcT7YupWQ1xrCHHpWmtzzWYTIuyuKu4xXg2gbsCbUVRjtRl9/vJ1J4b2om4Ck82byM3s0wMhas8VDWi+eI+9A456zx3ljzz/9+dOk+2XvhWECwCEvB5nyRytveoGn0yUA8eHouQTIKjEHlQI/0OoYTAXZ3Vgp0Z9ncM9leNW6eUQTCsQCvj1/h/DoKCeJx2/MN302Q5/ewMvfsiXInaQ8+7a/9g0V47NhdJtl5hoHq2I0v2DAZF3gHLPgUJ8vyBbu00j1DgIZ/zDCwKXUxBysqh7SnUDmeNuEHt9bs43TCzD1DwDyF1RoPLMmaOlHcL0yhtOh1IKZw+PQceB7NnY2bdrzUlsx5onm5VGXl9f1hz3JjUOs1sZlZ2CD6P5cdEoVGYGMw+SVrqglWycbhT/sXwc/XZ8PeS3ZyJENG8tJZ68ORDkmy1zVOmqr7ySjKo+9yBXEp0sXfL9TGolUtel2NVlgmAqqdwB51/g7XgLASP2WuFCnce4ZKnPmyWxQmw2PdMVCDtTU9dCN65rMtJ+Y43wMgWP+V5bQfWWHlRGH+PmPXuR/z572F+Xe8TV56SeSGM69+IlL9Vt8hTQtO0NiZmhIQWZxM51IUIJqQrGWcDSHjuWVl00+ksKOtHg80HJY1cRiodPvjmr3wEynUzX5V1oPvpHA8kLO1rb8Oz54oxyNL98t3G+eclXuKx7m2upf6HM8Yp1BC7wPPktPWPWVHmhgaS5E8JTDFDYs6AEVyY+RCvijKPzj6G04ekTQrCghQzoafSOGvDzfR51MxidDY67Sxvh1bGo45ThN/hptrsqe7TGoGwCPvvLqYg5vyzsuZWVNkEU1Yz//rQ01ZMF/uO0MxpUhaRjv8ODFcf+eJlmVCpWvvC36HUKV7gJqIOblnjXPOyn74PLeLFy86fyYnJ//pL31Ka2lpwaxZs1BXZ6i56+vrMWvWLDQ3N/+zn3PhwgV4nofLLrvsX9Sff0n7V2EcAPpQaOHyVMdiEkyJFGpnv4a/6GxyOeOtJLzel2/Be+Mzcfl1F8mLqz2j/61nMV2YhUSzF07FiLeZDxNTmxakMWf2uzgzdo2DL7WTnfiy3tfnHmRu+wYWoq70DGEm9TNZmZILCeZi4XC0FCjLeEBMoejmd+l1U+5l4eVnpN4A4i59XDgVI1pNvpDioVFM+J0Faam86k35JhydSJEHUwFh2pfqizt7q4F4CKU8XHfTx/Qg/ZlHl7wgrEsA8PRgNTytZHiaejGcCAxGVXtOPQ0v8FKevOfrlYfEUGpacMJRFNZU99E668J3dkEqxkmz50wu3SBE9cKXyRNTkKaoS2h56QrSOHpyLoWSC1OYe+P7Zg0Q8YYHoWHj0BjwMO1j52AlZl43QsV8rO8BFsQhRjSRXl5GFICZM8epSnRemuZAz+nBvgXGI6TnBfGQwsiJlNDM+gVpHBqe5xiR8u6cEJW3vQFvwrA+8Zr4BWkgJ3T2lH35Ns45a7zeGq7hF1BRJ05OjDZ7nfYMlNLeCULs7XfPh5f2nH14620fUAXwVEz2xoaSHvLOTcYIPuMpqII0Dg7NI8OxII1vL98jUcWQWURiCgtveQfqYo5Tb4QUNAC+jrrFQylcxUnq4ViAgVM3w9MeW6UAPycj5++2O94DdCIxAuXM3YqKIezq1RGnIJt6FQApsTkh/nLl01RILK5w3dUXMDx6nZv4qJXCw6fn0PwNFxNNbV5G8qwAqtzrF6ShYgqNZafovYkURSw+yjXv13NjK5tPtdH+QW5GCiY+P1xEhcf0GTpwah7Nk6dEPnqTPpSuI2BHWZ/rJ4WaZSs0HfT1z+aIYQdog2eKzozKUCExxBTUeTcZFTDyLpyMAXEypry8jEMsESbj+PmJUuRdNiHnkp/pJyhaqEIPtbNfk7V56SQV73qo8SXj5JiMwRv3HaOPZdTJ167D6beuof/r87Omol+YtngelOUJn3/Te/AL0jh98WoZpzh/9N440E80mfxOlgvIpSJtUshyKkYyQGk4TsanvsQUJYfrfvJ8VS58RZJm//zoWgA6Wdqi7a6d/Rr8/DTyYykjXwA81nKX7JNjZ+7Avh46u2xw7BkqATxg9g0f0jzFQ2OA6bFIblwqhpt3BJLv4xiLbFj6CsjNCFvS3uFi5J3Ok376BWmsLB/CvDnvSL+8d/Nkjcrnvw4ECgdOzSMnhGYL8mJUqE9ZuH8AeKa3miJ7Wo5+u4byGL0cPY6YqfIO7RyAoujn04PVZFg3HMPugTKEqZiJXOq+XXXzeXpeXsY1nKBJK3QBQz8/DX/SN3JUV3m2Px9GmJHYcVh6y9u44vIkGstPwU+k8M3q/TIfR3oWoLL4laz74JJsChRx/FX+6C108803S27ArFmz8N3vfvdf1JV3330X11xzTdbPr7nmGrz77rv/rGdMTEzg3/7bf4uvfOUr/0thXJ974yAcc6E+X688RMIyN4NV84fR8fKtxov8gU7asTwwXizEwOs34MKFAmFNCUfj8Hwl9JNqnPB6fm7GFIuyPAovv30V9nWXEkOB/tlTLUvokIMue4Y3SL9tWtGcDDpevhU7BysdA4OhDc54Na4xHAvw98cojEhczR6G3riOPjTlO95kNREz3hpddXdTXSv1QUMN+D1rygdIIOeZpE8ANKd5aUnqbiqnEPvh03PoIE7EhFnFjxOVoucpvPvalQaiE4R4rPtOYnXSXOVhMg7FrBRc8MYOc075FFodo+iQd9kUHq4nWkdOEPfz0tjTVe5APvZ0lhN/tYY+CKuObuJR159fWzwApHx0HZ/tQFK2LnEjQl4slD6dPHljFo2cwNrSvozRm0UQMZ6fi+8VYtqmQ95Ie3h+uAiKIQf5aVy8mE+KImCKdOnxrK/uIkVrypdwtjAiac95OErJp8h4LvXmeAA/nkHPqzc7xYOUpdA9vOglbKpqNx5k3baUteFI/3zDCmPlUAAwEQC7ojjPE/8/5VFl4dwM9d+KUqiAsL9sgHElbS4K5sczotgLn7ryqIJsEMoZ/asunbzqA2DFN+3j+OvXC3UwtwcrjmJTbZvBgk/ERIo+Un9An3+KVinLSxmOBXL+Xn/3CsJ2J1LwxmNOvYHDp+fQmRuJOz+3q3LvGSqBn5PBtw/cSwpdCLz7wSwc658nCgOPmZlfkNbnZCJGScb5aXyUoijVx+c0u5kCjvXNk2jBY0dXIZxhnbUJHYFlI33UROn8IHS86wyjkTblG4YrAF9dcYToSdOUlClQFv0c3hN+fhr31zbjnXsICsQwjMOn55DMDUKSXwAQevAum5K54vWV6IfeQ/6MFH6/6qhTS8RPpOB5Cv+f4iOCEad5MxBNNRUTTLmfl8ad808hHAuIKSrPzLnKJdYnMXp43+rz6cczwDjN5Z6ucppD5eGhhoN0DnUEJhwPCEY3Gsep0zc4eUCSlzCq56iGDL01RYNGLmh5Ek4EdG+kqPotFKBydF7RpG/kacoT+RAm4+gZuk0qOjv5UJ5Z39cuXo5wgiLNgq3X0Vs/N0PQTPsusz3RCjjz2rUAgEfr95sIQR7BPXlv/enin+GNTWmJEK6p7HfyRPh931y0Xyo4h2MBJuePy30ZjlL09czbV+M7jb+g1183IV3pO3mL7JPnh4tornIzUJMxQAF/UH1Ixr9+Ya/ID74/vnvoy/TMiZiJMI7GiVEsLy0yjPsbJuMUuQv0GnDkUjspP3zzMoLOxUI0VfebeQVwIZ3vaG6ZWWkTRU2kjLOC5WokcsRr2Td0Kz588zIp0Pq9rlVOFKTn+O1AynN0jkuxeUp9pj8A8MYbb+DChQvy5zvf+c607/izP/szeJ73qX84P8DzsjPWlVLT/jzaUqkUfvd3fxdhGOJHP/rRv2BW/uXtc28c+AVWiDY/jQ9ThSLY9nWZZNGmygHg6sks6AUzidgKC9Pxfbmu23jOmQmlMIVVVccBgKjJxjTG1FfYtKjN9CWRkgrCuzsrTRhYhz7hK+J7h3vRqrhFf6I9BFvK2oyBo4ynxJupsbWhy6phY9bX13bK3EhTwI6OOiOwLG8NK9nycxgBHY7EJSKzt7tUvJh2QnMUNmJ7OLi9PzlD+smQAQm767lev7BX4B2M9V9X2w0A+NHRu5xQsQNrUvxM/X6+rHwXdvPTfqJ85N/vPlEq9JJeypNnMkMKt0eqXpIIjl+YEnyxYIetnAQbfuPMCSeOayXd9qza8yVFfGD2yNpiE74vveVt+AVpkzipw+NfrzzkwC78whSgCCblJ1IuHFMbhfcU95n1TKSIDUsrgz86fJd4w+Ar8TaF8AwkKeLt4z7KHPsK95Z0OWsle54x2YUpNJSeduYCMYW/P7JYPruprpVC9YURikHb66gNIulD0sDxopAi7svKeaewct4pPH7sTuzQ+GNZZ/3ZH/YsN3UetOEFkMLLCaMCr9HzoeKh/HtTqcmLsek1w2Qcz3TUilFkoIv0vTVV/eIEYBnC3xM2KJ1IDU9ji6diTq4NPQ/0DAt+wQqTyvi4f/FRGbO6mCN7XBR56xzbHnleO3t+t7Uu1smy1DcHyqI8PLTkJXnWUy1LzO+stWG4qBgBhYTzlgKVowQljbZwRNOoRg0YED0sR9qcJHAFNFXQ2eL5PdBT7EZ2xi02LMs7ybkqDPHZUtbmwOgYniJMZXqMK8s0jC5QIqd5XbkfXM/hqbZG+Plp7BkqgZfxnLyBuuKzhkqa1ybfyBD6hxulspmY+HuPLt0ndSC4vf/hTKcAGs/VloZjAICf9DWYitRaaQ8nYwKb9OOUc8cR1erbX3feCQD/qWMNZs0ak6jN3uFifK28BXWzX5XzWbfwLL7fvRLbWxskpy4/Qcbf1ysPyRkLk3FR5EOdBwTApVfVf28o6ZE8gR81ryQn3piGu3HzQfc0yzfebzHlyHZ5D58BZjHUkCNeT3tP8vzv7S6VeyVMxvHB1AzUlpyVvgq1LSenF5rzgJim69b72WYV475QdFMzmNlRXn2vMp33JdsUPkPOAX115syZzp/c3NxpX/GHf/iHGBoa+tQ/JSUluO666/Dee+9lff+DDz7Atdde+6nDSKVS2LhxI1555RW88MIL/8uTvz/3bEVfefEreC1zI956/zIK+U7GDF9/JKtfXcwxCUIRtoMVc0/jQC8xbXDuAjeH3cJimJBLK6IQcwVcJ2QX6kse5BVmxhD72Q13vELeQeu5Tu6ApbQzEwUAYUwIR+KAZmdgzCl/b31tZ7ayoFv17a+jo/8OghvovmRV+7XGCwUgN5QoBACHPchPUHIdckKJtkQ55JkG1IY41c5+DW2Dd8jPti4+jJ/0NSAcjWPL4mP4uyNLoHJI2ZKx6xAvlEfP43XS87Nq/rCwNU1XSt5u0cqkJEw9Z72j+8HeE/bvwmQcqyqPY3/3QrmYo0aX3exn2kwpUSYlvzBlEpcBB+9vs6k4Px8PsKGmEzs7a7Cuugc/Gyh3vJRNC04IftpPpLChpAc7BytRdPO74g132DxCAD6wub4F29vrgdDDyooTeKljIVSclJRlc8/gYG8RVlQMEd2ixQrUcMcrODY4F06Vat5fNoNLqPeVb3lSJwJ3nZNUBXnPUInDbGQrBVlzzfPEjD8WgxPTA/MzNtR0yjnlgkp2xVQADltR1joEShTwcCzA2upeByccjgdYU9mPPb1l+mEgz2BMZe1PRxZo9hGZr/EA66u7ZN9cf/UFvPX6lY5SFGW/ATQkIWVgCyvnnSKYEIy8WV/bKYwtIgN8hZVlQzjQWyxyCsrDutpu7D5Rmn1G7PNj/zvKqmKzHNkMLnal4k95tt2YTcyWP41zzmIqDCRCYL8HMGfT1GLwnKrdayr7KV9rmjOvzuVAFWQcdrpohezo/RFtvM+8tIcv1fU5ycA8X96UT0qrZRB8UjVvu3/yf3v97btNf3fZ3DM42LeAqvjqd0SZl/wEGZAqJzTzMBLH+rpO7OqupvkMQjq7+p6Ybm/YbFGSr8IMSvadw2tgGXv2XqSkdxcVYDMJrS0ewOXBGLb11xGrV0cZ1td1Gjkbfa7ezwgpz0nq3+i+yL7ku1fnHvp5aayaP4wXOsqsZGSSfQ1lp9H28m1Z7Gl3LxjC3t5SpzK8w4gVhFhRchIHB+cDoUfywpLXzlpHGbX0XbCq/ISc66x1H5u4pCskryz/NoLY9Er9J7V0ZhIH+v7yf/qYhoaGUFxcjLa2NixaRA6PtrY21NfXY3h4GPPnz5/2e2wYnD59Gi+99BKuvvrq/2l9+qztcx85OHr2DszMnRA2BoamAKDwqMZUAoQHZF7p6OXCdH9e2tAQcnMKtFjVCgHgO8t/7vQnTBKMJEwSjEj+FBD0ZW8vRTOELUUnvy2be4ZC/pZHM3px2p45+30snDytyNrMB+whfPZEOXFdM4OI/m44GkfXK7eQp8uak+c6K7G5jipAShK0rtzoF6aACd+ZBz8vjY2LOkz/dDn6ab3nXP23IC2YTgBoG5hjBJv22ofjAWpLz+Kn/Yvw5fpuYSDiRNbVlYPwxmJStObuBUO0TmmC2DDHfVQBYdyrhKXHTIXOcJQSyZD2DXNKyhPPMDOgiAeWC29pw4n7v79noZOM6SdSjufGmRJr7nd11Ihh6RekpW4Hz+O2tsWS2OcWd/PkUuMLhoso7WyrBTKeQ70KACr0CDKQoIReAJSEDmDOjA8oKXs0jovpPGMYBgoIQine5SdSONBf5HigDg7QXB7sWyBKKScmCjxmmr3s5WZM8viMVNaF7+fp51iVe52kPA334PncWt6McDxA3exXnTkNk3FsqO+Q/ysNqaEoi2F72nW8Qhdx8kwkgessjAW4r6wdsy5PSp/sS91mWuL3cF8lElLbRhe9gvzxZ6SwvoaiLGHad/otz7ISiTeU9AAKRtGZCPDOB7OcWgLieYx40lcUnXL23oFT84xndRHNz67uamFs+UbVAfiJFNZU9uNAf5HrrU6YokzMqCNwKZ27Y5933qvsZRZjjSve5qUBj6rACvmBVZyQ5RcnwUf30nPtVU50EICr5Om2obpToo7XX30BYdrHXbWDgPKwsa7d2X9M1ersSZ3PxMX9ZLzjAY70LJBokgOZtBLEmxacoLOq8xo217fAmzVlmHxC2ls3X3uOIsaXTUExbE6Pm2ugcESO/2wq7aS14Gif3p92rlSYjFMuh+7Twd6irKjCgVPzHKUYoPuUFXZew11tNSa53crz8xMpTIUB4f1ZBnKkiPO+dB6bvW/tv1kurK3pcZ7LdN98N8teUObfz3VX4qmWJQhH40SdOoNq9ggigL39Oh/x/vpjlLw8I4Uj/fMRJuNonHMW9zfofAB9H7LxIVCjcbpzGK5oR7Ht4nd29G9vd6nZFxoOas//rbd8iIM9RVhX2SsF/zixmvfxH1Xvwzer92NFORfF47w0gvWJwT+R7TSZrrbRJdV+1XwD/vNraEVFRfjSl76EBx54AK2trWhtbcUDDzyAL3/5y45hsGDBAvzjP/4jACCdTmPDhg3o7OzE9u3bkclk8O677+Ldd9/F1NTUJ73q194+98YBAAy9cZ3rZVPGC8SYSoAO4jOtpPjYwpGbn0gJTlVYQxgGBIB5ke0mIUzbqx/x3oTJOB6qPExKccY9/GEyju+s+DlhbG3+acBlbeGQKB/klC/FgmTYTHVmC1VlqPOItcQdrw0b4D8q42Pjog5sb2kQhSlMxvHo8n3w89NUWZS9exZrzzNtxE+9tbzZhLYtAS3v1YWbAFJy7DCovX4cUu3ovwPhGLH08Pf5kt5/coFzKT8/TArLQ40vwS9IU/hbj/mRJfvpmdoQ8vPTRohbzE5+YcqBgkFpvuyUJ8Kela2o8UbeZdcLGY7GBZt7/+KjpPx8SjzPT1g5H6NxfO/I3fLvMBnH/XXHzDxGv2dHejSkaEvDMfiFKWxuoMqeXkxjlccDYUv6RtUBSjrUz9lS1obdJ0rJYCpMCWsUoHMc2EvOUAvNhCFe3tD0wabC3brY5HDY+5rfqyLK33R5OpzMGo6YXBmGq7DBxL97onk5/Pw02l6+LcvzyJSezlqNxJ0zHCaJ+hOgyOPW8mYHFrCtpRHnP04QPr7QUsCVKe5kvzOaf2HDgjiZ+6HKwxLl84Mwi042WrF152Clc2ZESeIzbcEmRSboPhw+PcfIFvszgGYTsqI2Vr/3DhfTPFt9sT/DxsIzrYu07NNznDJ5CQ800F64teBjIoNgSJ4NAVS6km9C54zYc6HPEMkZS1YyhKwwha31R7LmrePlWx25ubO9Vs7KOx/MAqZ8iviBGF82lXYK9j86Vumn3od1RS9Tn1jGMHxM5x3IfClPzs6ernJ6v96fOwZqJF+NHkaOAc65CccCeR/vN8mv0PPAOPbtLQ0S/bR/v725ge5AbfT+4Z0vYGsDzRUbHRyB58R2pK1qvZGKwj2v3kzr4yOLMhOgs3BtzkXs7S418rGQ5KWjzOv5vK+s3dxLo3FxegGQe4DXlO+whxYfpP42HKF9nGNRgXPOiH6n3XgvbK5rxQN1VFx0W38dGcojOu/GUzgyMB/b+ussKKXpA7d11T0G2srzk/GwbpGpjhyVeaJr8N1kKf1hMo433ruc7iTLscMVs/k9EyqOvz7cZFjMPLM29l53aJ1HCCq8trIXl3L7l+Qc/Dra9u3bUVpaitWrV2P16tUoKyvD3/3d3zmfOXnyJC5cuAAAePPNN/Gzn/0Mb775JioqKnD99dfLn1+F4eh/dvvcw4qkCNpUjDwIrFhYIUWAQv82lEJlfCgF1M59FZ1nbkM8P4XUZEBJdLpdecUoLs8bx3g6jjdeuwoPNRzE+1MziAPbDsulYpJ0JJ5DDg/a4XAOQU7GyCv9CSFB+f+UTiSOZ3D3giH88jgJBC8WmvB0pLjJNb/Ixfu/Oek8I1r8RGV8qIkYQY36quCNx4TxRWA0PA5mWtH9iD6DBZmXn8YN156ny5U/ozxKvuO+TrMmatKHl5+BSvnSTynaY3thEymo0CNldpoxAdorElOUHOkpgXQ4hWqmYvBiinD3oUe/H4nj/sajeKq9EQAJUHUuB97lUwJFc96T9iX5cEtZG55qb6TxWcmufiJloB/6Arv+6gsou/Jt7B0ogR/POJADe4xqKobYxRjUNZMOJCKc0phRnXQZpmJ0YeenkXsqH5PzxgFoeNowXRLOfOv5y1ofXUTHG/dxbYuHd5eH8ArSUEmNb9VJsVLRd5qifjz/jy5+gXDdNuxCr0vR7W/j5JvXYvYNH+Llt68iONNgicwlz5dAwXRIfmvDETzZpdcmCLOKeHH/uAhZlLfbmcNUzFQKVnBgiM53rD0mUIKYcpNZYfaq892UXqeUe8Y3lPTgmZ4aWbNwMqbJBHzaq7xHJwKCZFhwH/65KDlv5yG8YcJAGMcDeHlEAsDnCnF6Zjilk6IVaF01lAgh4E/4wNXZ9H5ROQYAeQVTmBjTkTaWb1O6kjevYbSoogV7uuqGC/j4XML9eWS9wpE4QRatcxtOxVA0+20MnblR9h/v3enat2uex1923g11Poe47vV4vHxyFCkFfKtuHyVopmJk9FtyN/ZmHjI3TTjPvK+sHds6GuicTPhQOZTb4uVlSCZpxhg/CLPkky2rvYCgSnwXzb/pPQy9fAPJpCl3vW+7/iO8+s6VZk9lXEXXbtGzzedzzg0f4MzbVzuwF/nMdNBUXve0D88Drn0+jveWKAPVtYr88bzCB7jIqN3CKboXGV6aNR+cm+MrXNGSg48rM5r1R59PfX6idze3/MF8jJeMZ/3cObvWHvJzMjSumKIk93go+1aFHtRkDLfd/j5ef/cKgQrChzmvyThKi17H8devl3cxBJPvSW+U6nOEYwH88Rhw5SQerDiKC+l8PD1YjXAyhvK5b2Dg9Rs+sbiozJ2+c/138hBeP+GcFYb9cqRjbUWfC1e0CjR6sRCzZo3hwoUCmRNM+agsfgU9J24HvJFLGlZ0V8n/9ZlgRS8O/t+X3Jgupfa5jxyEk9rrnJNBY8lpA6WJG5wvAKhxk9G/ct4pYvQIQnQcnw0vFmLqXJ5z2YRjAT5443J8+boBvPH6VfDz0/hx7xIKRWqvZDiuowopwiIzfCUcD7B5EUFy/MIU7m84ijAZx7ryXvEkCOzH8iT6BWlhSOIxMV7z+eEieLEQKu05RYAYd8x9fv83J83/2XvCY9LP9WIUki4ueBt+PIPfbmhHOB5gbUUf/Lw0gtfyDLwnJ+P0Ixyh+VVTvoE+JVLwfIW3Xr2K6Af1e5hlhAXa5iqdvMuUflM+eeWnfGH8AICn2hvF68wJ0OFIHL9fSR5zYWsYD5yaCptrW8Uw8AvSholE/722eAB+TobeZ7HI+DNSBJvQELBwPIBKkFKvYkoYYcKxAA13vCIsIQDwVGujMaYsukcA5CXVCWRfK2/BOx/MokJVOj/ExiJv0hAuNUUQqUwilP1jr7WfmzFc8PGM1KlgwyCcCAi2E884imw4EUDpBE+VoeJdst9TBJ9SOQrY8gHtEZ1keU9xHz1HQ6zE8xutwaBZtB7rvtPx+K8pGqR/K2Do5E0AiN0LIO8zX848PpXx8UIH4e85EvNk61JhIAqTcTEMxIvK1Ymt94YjcTknTTX9lOA+buSCn0OKop2f5EBuUr4kfQI6WsHYYhi5woaBnWi4vryb+pQwhcPC8YAK/KU9bKihqCWz6yD0xAHA84g0KYpXXjEqcBwnInDDBFbMPU05OCDvOa+nSmm2Ms20sqZsQPaS5yvpGwCEzIRiU6TqaBl7HrmxYcDva1pwQjOC0TlfOe+U4/UXr6v+vLAmAcbrr8+OyuizMiNlzm3KI6rItIehUzeagl/jgcP440RmknH8Zefd9B/9mE2lnYBHe5rl/ve6VtEv016WUpu5aSLrmdtaGuns5afhXT4lEcmvlHfQvguMoimsYzyXoVaIc4gdR03EZP8MnbkRSGnl1/Kch8k4Xj5znfGqRwwD8dxPxhCOxLF8PiXyy+c1ccDV+aP0XysyAWhZqOcyHNd3GIyC7weUg/P+b07Cmznl1iCJKScCIlERyzPOya9z5r+DNeVurR4ey5qKfjqHkzGcXzoBxEM8Un+A1jknIwQUtmGwoaRHov7JeVPyzHDM7F8/x5xTvreYoQkTMdIF0p4TxVIT1N/X372CZOSEduBpGRtOBFhVeRwDQ7c4tKQcWeJ7UiX0XvIBXElG9+NH7yTDYDQOPzeDyst0sjYbgtPUs7Hv3PRVBrrL45UCnKGHlSXD2N1TYYroTdBd1LTgBNR4DPcU9+HChQITeY3THdX32k3T5r1ccu0SKoL2eWqfe+PAvjCZskuw17C8GfoSDZNxCckBcNgj5JFWEuj3u1eKwvjHNXvBRWoEG6k8qtTrA5vqW/X7QRUXNeb7qTbyej6noSo2ntAvTMFLe6JccAJYmIxLcTI7fwBKFwbLS4vAXlk65EBj2Is93cFfMfe0QKX+/OBvEavJ8QrCo/dSRCR964RwUDNrkCRqzkgZTDtDOazmjcWM0WAlB8+/6T0KcQNYWkqVBBl3vrrsuHCvA8AjDS/KWglFJSAVINlwaaocoGTRUcKD7hioEYXynuI+WUsW7g7eXsMconhL8ZSmfMBX2LCoAzs6KYnNL0jLHuPv8pyvKB82awRjAHF10yePLhNli5Rr653JOHa01cva8fMb7niFfq+LnzUtOOHSpvLF5itio9DKMc/j1ysPUQGjeadMVE3LTA4/r5h72oJPAe+fvBpcKM8vSJMxbBdk88iQ4TV4sIIM31XlJwxUzDJ89wyVSD/ZALLxtnZFcwBQGVLYBfbn6VC9NaeyhLy/ObfFCsf7M1LiSXt+uAg7O2vMZczQFGVVi7VYiRiWsq11MVbMPS0YZ0qGNgsnCpN+Jr9/V2e18brzeuan8VwbXeg722oNXFEn0nM/JRdDy7WPPi4kOcGe0HHytoajcRzoK3ITjnVrXHha5g4A9nSXSf9F+eRaIjlEfenpeiDMkS4sZxG2nlXzhyXfZ09nueQzhMk4DpyaR3uD1yVQDqyQkiOVzIfsYe1J53dtqW+WdX1n6jL6uTIOAQeTHhojzK7PEI4FFFEZiePvjy2Wsck66jYd9podHvy5VZXH8d07/4djiHCBue2tDQ4mnvfC2poeciSwvOd5sCCJgKXw8V7wiELbTxATjdxPeebs2gxxfm4GG+o7CB6m5VE4EVDNmIyHY/3zpsWUJ9O5RkZzio02tu5eMERVfq199fxwkXmO8gTK40BWEpS3xHBePzeDl9++SpJnbfgow6lkHfVYftizXD7H8pprIqxf2Iudg5VEggDASxo2KyfPSu8pYUxiWc1zCgP7AtPPTkP6sbLiBO5eMESyPy9t9AaGoupoCMNveQy8XupcDm657mP4hSm6j/Q8n0trD77Oh5wuF4irmiM00d97S7pkbwqsNT+Ngy0lkovFsiMc0/SzhSnDZhdzc3Nsx8Ul3b4wDn4t7XNvHPj5aVx/9QURMFKhVrnemygMxaE4G4t4zWBhBsd0cZb8NP780G/R7wqpqjEfNPZkPj1YjXAsoERenXC7sb7deMKg6Qy1dc+Ni5Ctr+3E1sWH5f3erClSDDmJL/ScsPDzw0VouOMVHDw9lwpG8dgiSjVgFJ6Dp+cab48O3QIg5Vx7xgCIl2lnR41gXu0LdtncM65CxREEzcHPFTkBABkPw8dvltwFG0oTJuOEa7fG9dixu/Qa8gSRUbJs7hknL2FGMKHD2oQHlXEWUrKZkxOgce/rF/Y6ybAP1B92qvSKsqWjD2w4cXKgjd9mpTRMEi+7RCxgDB9WUBlL2lTTT15HqxCfnzAUnuw9DidjxOjDTemKrKEnuSYyFzEFpXGxst5jAdWBCD261HTdDtsoaVpwAgcGF0gfGstPAVdO6uQ+UynYxnR7Gc/g5DMeHj96J/wEJV87dRB0wUBJLs7JYEeLNoAs43h9Xaf0V13IEQ/fjoEa+cxz7VUmnwMQJU14+DlBcCLA+lqiC10575SjDHpTvqmkzs2j6recDBqOcGKmUdYOnp6L3V0VVGRPJ8iygfr8cJG5bLlegs0yFBqjnwYDoU7k99uKpW1c8pzYbU1VP1aVn8Cayn6hU14xV3uMWdaNB7JvROnS+H+pmst5IJycWJiCFwt1rQ+a439srZXvMwXr+uouxL3QJOXqcXytvMW8iykck3GKntq+A+XJjSQe7JoemdMNJT0IR4kfPkzSOX5G53uI4afXhokVRInPeGL0cdXwMEn5C19pbHaiSrZCPvfG92WPSONiX9qQP3BqHr5z4Hf0mmVDd+TOyDdOmT1DJWg5e7t4a9dXd6GpasCpcuu804PID2a5YZIFQHv6882+AiDP3tld7eRErK/qgjdzCh7nSPHndTXgcDzAgVPzHAPWL9AJwflp7O0uxR0FVLxs5sxxF1qaSBka4li2Anagr8jsRV34UXJ48ukd4VhAOWGWYZFXMGWMOytfB4AwFe3srJHfAxBmNPuceBMxYc7rOnOrc88vm3tG8nq4f54lEx5afNDB6B/oLcbzw0WUJ6HXfl0tkWKw8Tz7hg9demNA9AlVkMGrZ4necpcmILmvrJ3gQIDct+FkzI0eeJQHw844jqo9PVhtIjS2k2iGyadQF3McY9puLMfZ6eTnpSm3ZZrPXlLtC+Pg19I+98ZBOB7grTevENYZ5lNm5ZIP7Iq5p6Eu5mB11YAc/tx8k3Bqe5AcS155VOWUQ+w6KnFr3sdU7RfGm8ff3TFQA/gKW8ubKVkwpoQCbnsrec/XVfXI+9TFHGys7cCujho82byMnjkaF1YdUeDZc2QlSbMnWwVWJVLdlzXV2nseCZFvXUwJgo5QYK5k67Pinchii1Em8Uke7Ikn9U9XPEs843xpFqSFycZPmARoTk5lD3I4RkqxX2ByNeyICCfMAqSk7hzUVKsxi/qO8z6iURNfoam6Xwy5hyop8eyJY8vFs2obZqs0cw//3x4nK+b3Nxx1PKeOl5W9paMm5B0mCR7GXke7tQxSYugNueeFkYkLgLFhxm1HR53LplVARXjs0L7sYU+Jgs8QGs5Z2dNdRkZkZC/xPPIl81DlYfk5Ky7heICNDe102et1fnjJi2auMh5V5LTH6bsKb5iM4x9bahGOxrG2utdhO/qT2j1OX3gd7m84ai5wBXA1Y37nsycoufPAqXl4oE6vZ14a3qwpbKo2MCEA2FDT6SjL8EnhYIpdhrMBhqWGjV57bzt/W9ANOT+J7D25cVGHyKcNdfRvm3ueWUa4qi1AxuGBU/Owp6sc+/uLxXhZX9spz1pT2S8KR1SJ8BPENiT7IgLjfq6jShS+L9eZBMrtbfXwC9L4x5Za8fba7cm2pfLv7RwBS6R0Mmzkw2krWT+k5FKeo52DlXJ+NyzqgLqYgy31zWZPJ1JGkfUg8mFNRb+ZMwAHe4rMOwAxNMOxwCma9XDjAaponGQjU/ctCMlhYFHtyh5kekjr+X+64lnHq+4YhLrt6qzG3k4Nl4swdbECv76my/2ZXreV807hufYq+f9DjS+5fcrNYHODSX7nnDgVKIn4birtxIaKLvE2m/tN1zhJWkQHBWk81UrR7osX841jjZn6CtIUIbLw8hvr2g0rXAhTWEu5Set+fhoPNBzG480rHI/1xFiO3EFQntSXYYhNOEFJ2F8rbzF5aIVG7vJ8eVdMkhE8g5L5/XyiLN5S1kaUyrDuw7TvGANch+K+snZj+NmJ1crD5cGYmeORuBR5k2gT3wMZD95kTO7idbXd2FjXjm0tja7BrNePI8yiZ8BEtTiq5hCjeOZM245AoU+FewcBkAiwICwAzIqN4ZJvlxBb0eepfe6NAz8/jfmz3zHY4RFLwbU8cwdPz4U3cwr7Ty4gJTbjYXJce4gtQewnUk7FQIEPAdjaqJWNgjSeaF6OC+kCgkpohpS7FwwZOITy8MQxCpFuqO3E/fXHnGfaEBdv5hSeaVtEnndmM9IFSvjzG0p6HGW5qcrgOOkhpABedllSqPX2DhfT+xd1ONj1J5uXTQs5YkE598b3nbwGANmYbD1f4SjR5T205CW5/N6euhx2MTFRRqSv9Ffcyzg/8wsIU8webi9NXmEWbns7yxAm47i3pAuKi95orL/dJztqITkcofH+A1RI7VvL99KaauaQc6kCGdP+fpq7+8raHfiIPY9PNS8BQN5+x8ixlHNWsm2FQOYEgGJIjFYKn2xeZryEISk2DJGCAjbWtUtUiscvfeNwc8LsG/qeW9lYZXwxVqdbXx7LmqJB+IkUfnT0Lmd+WZlhylP2JvLnWEn4XtcqE2nRcBWEniioGxZ10DoGREf6rWV76SUxhf9w8B7zLugLeyxwkn83NfDZM+O35+TJvsWm32MBUiqW9ZktZW3aEFXO3IlCqmF0AMmWJ/sWu1EbntNzOVnzHo4F+HaNpqG1YAthMi6G7aNL92FnG7HlKF9JDo2f0LSpkQRou/kJKgqWUpS8CEVQH4AUjjXVfVlMR9/vXqk77Eniqf08bszWxQbO2uIBzfuvlUlLAXacB3qctufXJhWQxPDxAPc3HpU54b+5qOCu4xXwZk5J8TQAUuhJ5kcbiHuHi7FhUYcw9HAU557iPmdNSGmj9zy89EU83rPMeZY9fqb3BSDwTjbA/AKij+W1fHvq8iznkh3pkJ9FCvc5icWeEu8yy6BwPMADiw8RDaUHOUNcXHNLWZvMx98fM4UCw/EATIv7yFIy0HcM1GBnZ02WYQMAgU/ryiQQUUeHrJEFP4r7GcfgZcNuxdzT8Gek5D724xldh8as8xMty0x0MqmjdXqOnGialp9riwdkPOw8k/6HLivYH1XvEyNY5lnnlAFw+uwnqACYzLfeo9uaG83A2SGoFWsp2KejUlKtnaMwet23LD7mEB3k+mmRlw8vPuDsecBlYOL9ACDCCqUJIQpT2RWkLXg17+V1Gg4pRqSOmvAzt5Y3U/X4yUtbTbzU2Io+L+1zz1Z009/8RwRXx5yCLN+oOoDvd69EOBKHpwjDzB4UhJ5cpOx5ACDePS/t4yuNzeT10sLw4SUv4sPUDKJBjQgv/i63+8raTTVQMVKyi2BJfxhzbD23acEJ7OkoN9R+nsL99cdEMPmJFO4t6SIYk6VAcbNzJvj/UWEP0GW7uaFFPGvrF/YSrZ8FJ9je2uDMlXhHIgYVj40LlwGaUYETpwDjESnMnj8pWGQXQbLfMxaIRyja1hQNGv54DSvaWt6MJ5qXO+vzYMVRulh1UbVtzY3OvDvjmaY4kMN6Y3nenAJvo5ZCkEjhocrDpDRrGtvpKiaHI3Ep5Dat0WZ/znfn2Pm9Xs8rgiRBikA4Vc5n4H04c+Y4zr8z093HCpDiX9MVrYuMU35uFdbiImfqoi4gFXq4v+GouZitvbKprlXgSVlMGmkPD9QfxhPHlovyb1PnrlvUbfDIkdwikygJcY1sWNRBCnjhNPtqur08St58O/F5ujMvn0/7aCo5jr1dZdJX+Z2FJZ9O4XL23niAtVW9UtDNwUFbhaE21bViR7uhVGR5sKOtXp7HBeycvlsF3rL6MUasRfb+fWDxIcrzGY3j0WX7JCpr00dGoVG8x6eTjdHzHJWJsp52RFMruI8dXeV+TkdVtyw+JjCkhxpfwqzYGP6qa7U7Pqu/0bM67XkcI8y+0nlQdrE8hJ6R27pFz+zW8mbk+SnCz3/CXgOAutmvomVwjrN3nf5FmZ+iBbJsWTkSxzeXP4/vHbk7W37xnFp7yJnLaeT6dP2dbt6i391a3ixGuc2uY7O+hWMB/t2y3Qam+89453S/zyuYwtgHiayzyc/cUNIjTrdPGmc4GscDjYfwROsy3F93TAr9fVpznGRxYtb6WnmLE+1gmDBTElNExMgG7qPDZmhHDawzRBOYLX/vK6NIRJYct47PX658Gt9pW2/6rtfuj6r3yTlZc2sHfrj02UuO2Yd1vFVz/81nYivaf/pvLrkxXUrt0jYJ/yc0CSfOnJKD9f3uleLpEOvdcz0Tdll5TpQkLD5IIWYMaCKFH7WsFM+Ic7klDKSED/K2lkbn8LPH6r6ydhKeiw+TR9YqjgWdhMzJkXuHi+UyenTpPqyuHJQiRPx+Vqz8REowofLeAiqkIz+LeI7FO1SYwo6BGqiLObi3pAu7jldgVeVx3HLdx2QY6ARimSsrVLdq/rB5v+WtEAGZjOO5tir5+SNL9psLJeK9unvBkGMYSAK01VaUD8NhQrHGE41AhMk4nmhejr9c+TSFu7V36vFjd8p4ftq/yFlPfqafSEkI2+6nrTTxvgEoCd3x7nigsL+n8EfV+4zXnWEQDPOwkyJnGPiJ3ReAhDl7zRmf/2TzMvn9H1XvM88pTGF7ez0pJXqN/6G5weybjEe0eufoQl0x97Tw+vuFKRnf1sbDBofPiXxe9tyT59aKfHjUX6WVED+Rcmk+rWJVKRWTc3PhQoFEXRCSh+vJvsW6Twoee+70GMUw0B47BwaoqRE5x8NPpLDreIXkP9hJlOxxC8cCipRxsmxhyqFKtaNe0fMfjgXwPJBhAIjElbW0PMe8JveWdJlQv54D9vbu7qpwFGTGifNnN9e34OnBaqyt7qV3aBiQ5IHoNvTGdVgx9zQeXmKS++29xbC66ttfpx9ePSky4YHFhwBPGQKAwhR+cGS1ScjV+9iRh1oZtSFgtmyU/ICxAFvK2hwDxXZGyDnQBbHgK/ywZ7nzHvbaAsC21sX0zIZjODN2Df6qa7V5p95TrGhtbTxMPxsze0nOoy1vAkU1YyxqUPZOexmC/9CZoD46BcUmY3iibZkYBuLR1Z5nO2mai2IxGxo0rG5t8QB9NzDrHibtfCgN27HrQXh079nyS9adoZD6+99etsdx6EAhax5YLgBWciw3LQvWFpvo9dqaHqiLOU60zvZ+KzvHqiCNv+hscu4zABKpBIx85PXi/n1r2V5JzJ0Yy3HHYb03HNX1P6wx2RGDcCyg/udlSNbkp8X5JvNmzb39c+mzVsS/XnkII5k8Zy38BCUCy2d1pXfeK9zv1dUDTr/g0b60yUhYPofjgbPXbMNA5rbQyD0/kRLDYM4NH+gP0NzYBvRzXVX4ov3ra59740BoJpPxLE8v4IaEhf0laSWDKVfR9i6fwkONLwlVHXmLst/reN/0RRL1KgJG6HI04Sd9DcbLPRFQRWbdb/aA1c5+DV+vPAR4wA+OrMa+/oXyvGVzz8hruRqwn5OhwmOWoNje0kBJlJagsPtuX9zezCmZg5nBOF5/9wps76gXQSOUjizgFRUfk6ZAlINWe2TJfvl3mIzj/zn0G9Zl5Bore7vKSHnQXrAt9c2iGLKCevj0HHccnH8xHmBXF/VdkqJ1kuq3X9oonqPfrO/9RI8Q5wXY45HfWQoRQhh2ndDDprpWFMSmhAWC+/fj3iXwC9L4yyO/CT+RMlVWFcToyOLiHzd5JOEkcXDzHPHe2dVV7RoQYwH+8thvyue4Ui5g1li8dUmKTjx+7E7KORgLcKC3mPJprKqZOXlp/KSvQXJNGLMLQBSPrHm0lWfLyOB+PVhx1CSC63PDyrefSOHKK0a1IghAeaid/ZqsC5QHpavXcuML8pvLnpd5s89cQ4k5I4CGDmlSAdvjuaryOL0z9JDrZyfxRROCZYzTeLlZWeSET1EqLNw6PABBSB5+Vqx9Ze1pTWKwqEMucQCU/6IVjh0DRKUsnOZWgTlWesKJAFdeMYoDPcUudMZySPzo6F3wC1PoeuUWMSD8RAp3LxgiZUl/bsOiDkcGyjhB8KKV804hHA/wUMNBmhOL8YfGBDHYuDGenRsr3ttbGgRWxNBIwfAzVIYLWGl4RV3JWSwtI/Yzu7rzyooTlDxqQTN/0tcgzhqe2/lz3qbfRyiDOcocjhEz0JNHCQqj4iGePVFOxqRee468sgyUvBOtEPLd1FQ1IJXb7TmyE/wBSNG3FWXDEjUC6L5YW0NnXMVDbZzD6X+YjLswL21AspLtJ1L4OF0oa8oMShRR1/CfMcOGhI9yTQSNoWT6c7OCcXnnnqES/OaiXrlbs5KtQ0uW6mYzlanQc6qH26xt3iTR+n6zej/++nCTm5ibjBNV+EjcvR/4KHvG4LKbX5CmqHbaJ5jjuOXssw1Fi+xA5hPmPC2c/RYea75L7hmGKGaNUZMBkONR6SiwwrmpAskhFJ1hLHDyr+x5HM2QB51JKWxjl+du1XzaN2uKBuWZZ96+2rDr6UeLg6/g0yMl/8tbqD7bny/ap7bPvXGwo9N4Ju0DzJ4tEXaFKRzrnQd4iujWWPhYXkc+oD/uXSJJo35BWhSoqIfCrtg6XcXbMElJXnYCse2R4ETJqNDsePlW/LBnOWqLXyYhlJuRCyKZzhEFgKsBh0nCQocjcSy85R0SHIUpJDM5jgCWqpOWkPcTKaiPc2X8uzpqpG8sfAX3y8llMdcD5hem8IPm33DG+dixu4CcUNg7VBCKQPUsnvXN9S0oL3qNit8ACKdiZCRZc+vQDbIXTaIZpkDNZh0B8mZOAb5rBO0dLpakZ3mOxvXev/ioef5YIF7vLfXNJldAMyZxZMNPpLCjrZ4iJYzfjghp3lv/o7nO8bRGqeu+UXUAjza+QPM7EWBdZS88XWBOwsua6YYmRYnX3s9LY2k5CXnGsYsnWrdV84cFTiKXW0EadaXE3oGMiZIU5rsFsWyv24q5p4WXnp+/qvK4gylnb6mNOf9x7xIHorOxrl3GARBdJ79jdfkg5he+R0YIe6FnuJWft3cQTOr73SuxtqoX62u6hAEFAGbEJ8wajwUEFZhBcCfe/17K+/+39+7RUZ1XnujvnKpTepRAgMHGGDBvkND7gSReJpjgZmiCh2bsJk6IM1y7aWe54/Gkr29n7p0kd2Z1OpMsT2ecpN3J8rTHHQ+JLxfHzRDHDsa8JSEJvSXeYLANJrZBSKVXVZ1z/9jf3t/3VcnO2L085jq112IhqU6dc77X/va392//NmG5AyNS4NueQh5TS0eYm3EowENLD+CWyf2Yf8dVlBdcwPqKDmFlcaOahYpJC7gOBhtRAhMxclJ2dpWD4Y/Tpr1P75kkel6GoAkFqxE94M3fzU5Qn7rpSsmPecLoxm3iA4Qfo4R5P+ZJkmpeaATMMuTmJPBE1StwcxN4sOYIdjVVEetNTgJPH11FDzBZ0wZpbaXh8VOSep9pUAnNDvDsEe29dXOIbODRZa8J5aYz4spB0o95aDp3J46cmUsRhJg2zPafno9bvX6i8TXeR9aFes2TZ6dhc1Ergr6I6PhNi9s0xI93UFd5ttU85Irhls47/jlKDh3QydNQeg8gdjlms6ICYNBG7lBYor0s+9sKtDdZ3U+w6QHpczcvLrVleA1uWtwm7HU1cy5ILpnkNanDnztO33tNeTceX/6q6M37i1qICvQWiihtqWnQh2dVifznHUushN5fHyujQ2QA+4DC+XN+CmzSiCZwATceQx6nurnnqebMcFhqU3A72fHybP1yK6qbqufcvLgwBPkDHlbNP00OBlUI8T+//kd2pIVhPooyVg6c5lxSf+u9NBVuTgLLSk7JvsTzO+iLwOEkd6EzpfFfVdELNyeBlvMzLXYhNxqXg4ToSUBgtS+1lMMf8LCjodZqLx3yAmyqbsbloXy40Th2N9l5DMJEqA5+r7YWpUXob0rJsBV9IvKZzzmY+dP/C3DzpAIle0AWzL6Csklv4oWm6vSy93yIyE5g/h1XcfL87XBCASrmvoHWCzNQeuebaH9julyfWo3Tj3koLzyP9jem64q7w6pIUSigir8me4Hp7TWwoGbF3ztnvItL70zUtHw+KKwcCuB4PhX9iYfguIEUhfGHwrTZRJJYPPMyui/ejvENObheMUqFdXITVPBLJU7JO8RD2FR6nBgXUqoW+8NhTL7dqGQ6EgJcYOrt13Dl8kRg2NUbnKrCeH9RC37RXk1F2voiQF5izIqWkybG8O6bE4S9aeod13D13fFW/3Kla8Yucy6CjMP7EfjRJNxsMlS+e3C9TU0XVmOh6O+kMmbqOBhVjv1+D6srenBb1g3sOFZDHsL3sxCMj1OxNFUTgXGz5ncBiuCYyc4M/3j+eA1cL2lXak24mDS5H9evR5Hdm4PhgiELOxz4DoK4i43lbRbPd9aEYcRHwlZV07FEqh5zRVWuaKzmTqAKhuF3WcCUEalGbIo/FIaTldQbtmLMua+8WUL13N9WMviHvJs1xmosVs4/g/09C3XBQrOStcIrS2VaTv5TxvqW4mbx2M647RouvTMxbWwFox2zsbzWe3GFYT4EjNEGzvVAVlLuCzeAE/GpoJKqRGy1Ud2H8yn8eAhuXxj+eCrw5A+F8cjSfWKY83ckH0oVqLIOxmPkDi2c/g5Ovnmbbk+SrFmutitzlp0BxiHLjcYRXFe5WsYakqq5vBbVocYcI6lyq65n/cNjh4SdX2PCo8y1w8+880UHk/+P82i9MMN6Dld4nTPtXZw5f5tUHzer5hbPfBudF6dhxm3X8MbFyfKuPLZmRe0g6SII6B3WF3Th/dEoUY72e8iaPIQ5U97DyTdvS6/cPBLC1up6vDeaJ8xV5jrhStFcdd18Px5X/vtdi07h4Ol5KJhxBd2np8sa5T4vmPM2skNxtJ65k/rLrPA7HEbOxCEMvZdjzQVzHvC1ge8gSLq2fjf04LJ5Z/GVW4/g4aNbZRwlP0PdY/Kr2bi6jJxTUgdD9cv8O67i5Kk7aJ9T+wRUccwpt/TjnSsTrMr0XPWa2GQc2buCpIuJ9RFcXz5MeQLN1Vhb2kVV0o1qx2afplZNTsvXGAoj1BdGcqKOJJgVkrkyvNzbqDDNuWkFM66g+/w0YjVS68CJUHE4fyQEx/MRJFy5rxv2EVyLwJmYXnGd37lq3gU0nZwt+705Lgvmv40zb0/Rf0tQgcTQ9TCSUR8rSk/gUPsiC3rlZifS7BXW/W52guaAekf5XLVbV88evqkrJK+Z8xcIux8x58Afwd5z/+Wma9PNJJ/5yIFVaCiSpEWRlcSZt6eQIaNCtf5ISEKLbnZCaA5PnroDW6vq4YR8tPTMBgAy+g3Prmz46pS9sfo4WntnwY952FpVTwY4AIQCbK09CscJrIMBe3XuL2qBWT0zYC/WqEsHAzOcqjwtiLtSDdT1kvIsSY6Lu/CHw+g8QZvqjdoh4np2AgQDqmqvWdk15gGjrhRGkcrHMU9gKe9fiwom081KAiMurr47niorGglyj9YSI4TnJhEMkffKyR9FMBTCN6teJm+cEZV5980J2qOWcLH+jm7pX4ETRJJiWPgxD7t7iqUOQTAYJh5+1UcnB6faxlLClerPHPlwuEqzCfWKefpgoDxF+9oL8MuuSrnf3bWd2FrRgK3LjoB5vZkhaUtZEwDCmm4pbsbLbZp5ir2GzzfUSSXkwKPvP165F27Yx/XrdPAaLhjSY63exVGJy1bBNt/B+rndZKQa7DJme1i4ErjrJaWiLM+xYJCqfgZJSj4FgFcVh/fWkkYLChIYkQeutvxC4xLLs46Eaz2bmab8mCdjxn3Cc5jHAlCeUS+J26f00YUjLkV3hsPixf95xxLcV9kM10uq+Ul0hs836MJDF0+TUSSsThzV8rU3zs2Lp7HF+DFP2EoQOHRI+4CDwZrybjxa/Tp57JXxHgxpZ0TQF8HdC08K68mWSsp1uX5hgvQhJo/oqqy+Y7FAcf89UNmIx+t+S78bMEn+joy5cnD0nroDgIZaBcMhMprUXA1MuGPKweD+ohaqsGzAqTaWt+n3iSSJ7lX1yZdKjom+EKilgsmsnnxCe6+zE3igrh5+zMO20qN0qPGSUkXYisLEaE5f+tMEWrrnEJ6cdd2NCJyQj3sL26mqdsKVdv1F9Wtyn/beO7G9/CDeeGOKNrKVLgIIwsZz2wn5wEgI/oCH/9FQgfqzs7F6wSm44+IYuZ5NB4OYh/uqaI1z/pOblcRzDUuFypVhcmxQupEk7itT+n3A0wcD1T52UATDISpYFvPQfWo61ZVQ1eH9fg+Iu+g9dQdau2fTnBl1aV6PuuI4GrqaK3ls/D3zgCgG71AYzpBdGM7Ug0fOzMXfX14ljG+sCwHQPB0K4921wxT9UBGuR+tek6jrydPTdLQj6ZDjSMk7FyfRGo5TNWg3QhXAMerSOKpDlB/zgIEwri+naN8LjUvgZidELz1e+1u5ZzAYEj0aDBvtMiLJzHwE30HyFhV1j+v+x0jIqgzPUXsex81Frfhp23JsKW5G76WpwBBVrN9Q1YpHlu6jg4Ea0yAW1o6nsE8RqGxj3FWfs/xJyXE0dc0F4mq/V59xrsWZt6fY6ISREB6v/S2S42k8+WAgeQfKtuGDgaw/L4kHlxzR7VI1XgRapdiJzrw9Rdd2uZklEzn4ROQzfziQIiJA+qYDw1OYcPHS8XL5jBOn3ChVQgWgDxKGEuXwP8Mc/AGPijLlJvDo8r30XYeYPeA7BInhhN+ohqC40Th5pQ1c5JaaBoE8SeKnEi4sxMnS/Fl14TkAqmALdLjZ5JMOPB/b6g5ZhvyWJY2UxGaEgTnRjN/phUaDf9+his4EaUlZaMqYeOrI3fAHw1ZyLyV2Av/xwBfwxeVH9bioMD2HWxkDvLWkEZsWt+G51xW0YTSk31s9d2pWn9UHrNB3NatcA9PgG9CJiAAkEU4SAmMKFmWGUz0/Deqz79QCPNewlELngl8lJhJmifpx613kvQ4oMdg6UCZVjQJuS9jHDw6us5V/imytO6L6G8C7tqfkVz2lacwwJv4VgJ3IakKcmKpznJFAakLwYh6e66jBmrIehC9mw1HeWT6wsTHgRlU+h/F8hjFwu768nCBa7F2lhwTyrKAvovtejc3l3+XLOoAL4bLn+fJCA8HadnYRveYz9Susdw/CPvwBD7uaqugAbhxEUuFAXDyMqXoZb2/i01k2FHYq6EWAva2L4To+zXVlZK8qPUFQFwdw8kcJYqP0DYf9/3RFvTUeX1+hE8gfrDuMVHm+sRZ/e3w1Hq/cK+++te6IXoN+ikNEQQq4fop457lSa15cCA+sBPvBMHY01MpYM6XuSy3lpL/U+uEK5IDOiXKjcZtKOXDww8Ofpyinmh+Xh/MBl5KaLcpcw3PN82dNebf8zsxa/nAYtWWniChBUXwCVEzMHwxjnDusoZxugKuj4wXSxHObKYhZ/4iofIVAFTvbd2qBNQaPLt+LnV3lOlLD8BdFUuEPhrGruwzVc94QSJA/GCaqSkfnV/D4bVt6UKA5bjSuk30d0Hzndelq+I/pBd/VXCm/b607gu0rXoc/GJaE1NR5a65tk/feTJZfOf8M/JiHlvMz0/JW9I3U4do4MP+49S6VW0Nz7/ljtTSmCn4rdK8Mh407Ap16ubVYxpxhO3ACOcSZDiyeo08eXgu8l0VtUkP4ZMsa+z35dQfDVIRzMEyVjxU8yUySR5hqvDDEZ2Nlq5Xwv7OrHNtKj+r1pOBru1vL8HTrSmv+rqvu0M8eCpN+SoHAmpTTu7rL4EaJnMOPeVhf0QF/KIxEEJLcSaFzVu/7t8dXw81OEMRIObR2dFZZhAbm9Qyjfq6jBhurj9Pf8+KoKTinHU6qH79aWg+4GDu/4WaSTM7BJyJ/ELAiNzcbK+efIY8Mh0WNELz1s7G4zc8kTJ6iJO8tbCf4TYyw0iZMSZQYU1EmHWEb4M/Ne5mh/VTIwFiyblEP8Za7AVaX9mL/6fmSmCfGLCvqFPiBGOMMreB+4XdWXqhUJbu5qFWzPJh94gMba47jJVW0yKLRG6Mtqxecwt6WxdhYY9BOxjSUwZmg6GXDgRg66xb1UGGuMWhXAYwZsk2lHAUA4fBXfc2hasbLOwkXQdiX8Vpd3kOVo/meqXOEYSVqLJm2zo952Fh9nBLbVNid3+kby3+DHxxcJ9/xB8PYVndIvjfW5pbaLiQcgqxkf/DcReCgpvgMms7dSXSWChb1QeMCAF5WAiPv50giPeJUDMiJO3AmjqbDWQy6veBGBIsKL1meSr7GnPf31RwTY+k/rtqFf3/sC2mQneo5b6Dp3J3pbVfz7p5FvYiGRrCzsdqirFxWckoXbBsKY0XxSam6zf1iziEyDkGHwJTK4QDS1pAf87CussOCim0o7MQ/NVRSImiOvX4ZUnDPol683FqMjZWteKmp4gMNGDc3gXWLeigPhtfjEBk/JpTl4bLDeLp5pR3lAtLnAKDXe8yTcXUjSYJutRbApDDl9bx9xev4++MrxGu6pbgZzx+rhZtDff9yS4lARsQjn9q3Y0CdpH99iMErnymj5r7aY1rPsA5Wnm5n0ojVvyblp6VDjf4QXWUwnpn6f11FJxmnOZp2Fw5QU3wGjV1z6fcI0VLWzT2Po60LhY7XigLz/U39Z859s69SqEfT+of3DIV9N8fHSTr48vLDFi0296MJFbOcBTlav5mfm88zq0NznyPpWIUkAdIFQbafTpxg3PODdJhAlBTUyBkK0fvwM439KXUOmfsT7z3h6yEkbtHFOJfNO2vBa6zvmfcaA5YHIG3/sr4/RHPj6yuIujf1Ohk/piyOh4BRF07CQZCTBHwHdYVn0HhuFs3bTrWvGDrmg/rug/T7mO1UOtlJOmlzIe2+g2E42UkEIyFLx9UVn0Z953zcs+gYfnbXzpsOgiOwopmPfDxY0cWf3HRtupnkMx85YJGKvSqM/lDdQfEOfpCxycLsMczE8sTKPRJOZvgNQoF41tljxItUCiU5EJo3NjDMQ4bpgXdzEkQlqTya/DzxdPZ72NNeDIQDrK/o0MZrwsFDdQe1d8bwbAV9ESqCphgJeBMUryy0gcc/A9CRl8EwxoWG5WdLQgFeaqwQT4qTcHSStpnMpf7f27oYyPKRHx6SBGqBOkSY+iSQaE3QF6GDECfo9VPimJlYywcDZqBKVf7kjQvwUN1B6Rt/KCyhapkLPo2TO46gJubBgB6g/rsWUeOm7q1YP8waA+KNYRYV9f2LI7dYUaINlW36e8xWocT8WTdWvZ+RGO5G4xpKwMZkNI7GbjKMTVgUb3JjRSpGFQWgm53AhtJ28WIGucrbbPTphsJOi7LSGT+KuybreSsStmFDL7RUyYb47499gd4/K2kV15sciek+iHmomXOB5mKS5tbLLSXwnKRQz7JH1KzwiVAgBwPpp9wE6uaet95n27KDUmnc9F66UZUomXLA5MRc/v2lpgo5GHAfMVuYo4b+lRMFWFeucmSUh9kfDEuFaVM4siIbPehgsHjmZXmPn7YtJxjOINF/mlE/ABZ0C4COUmarvIYBD3E/JF5e0YfKS/10/So5GOQfyVY3ocbIwUBBaqxIFHt4VTVz828AJOH5vrpj4knmzzcuOQ64AV5orpYIIN/DzUnQwYCNdyWzct8bU4eLB3okhA0KDiXsRCZVam4CL7cWp5NGBET+IJ56BdmsPzsbzvhRSRIXvWYkqPIBYc1Cih4xuQHj9rk9bKyahbruqzmmI74McTFIHtjj/1y9ZnUyxz1wAns8hrUedHN1JXTLiHdSnAy5CV1czDHeVXmfuVK4PMNYS49X7pUx5z2rbu55eacNZe2y3uEEcMaPIrgegZuboKReIxHZ1E/CSAUAvmYYSkxKaD04GMah9kX2dwCdxGwy4Rn7kjnPauZcEMuIacAluqn68YeHP0+/p9SZEDH0HQKKHMJ3sLq4Vw4E9d3zxtQxqca+QO8MJyLv0Uw2wSLfVbogcO2+FHsiZjAy+g6C4RA2VLRZ92k8NwtwArxyUjtBMvKHI5/5w8EjZbTxmhST25YeJEYGDhcaipQVph/zEMkmphbZnJTy/N6B9bJhMKSCWRgA2lDgBNheftCmwDM4hgFF0ametauJ4Cem8trXVkj8/7kJOKOuhPv8mEfVQ+Mu3OyEDdEIB1Lci++zroQ2/T9ZegzXr0fFcBQxnunHiLrU3CjWl6pcjNyEGLAP1h4BEo5sLt9Y8RuaTQH9cyaO4pG6ffK72bf8M5KOwDBM1iHpb4NVIggH8s5srO5rL0jb0P2Yxom7ORQVACBYdzeXOPKFT9rw5vNGFnhB2oHG/JkjT87EUatqKXyCj6V6cMVIYaMgN5HGsc0sI8GNCOA7eGCpUUHWyDnwBzw8XHYYK4qIntGEggQ3IhpKkJPQBlTKJvjV0noxbDZUtWJrSSMeLjssxqGZyLent0hocE2vPvcnF7H7amm93P/pw58TT7S8X7ZBj6sMSpM2j716UyM3pP9ePlGITYvbMGkiHRLqO+cLdIPnZ354SG/u6hnbyw9qbngTrx3oOVh/dra11p85vBJuXlwMdevQZKw7c4OWcY1pY8+cKxxZMPvzN42l2hBRLFY/OUzwuy3FzRr2ZTgCti49Auaa7754O/x+T+pz8Hx6tnFZWkSS8e/mekpt1+3ZfUT1GPOw+3iZPXd9R5hu+pYNY0dnFbYtVQeZQOtUYr9xhT9fDO+4kXNi1AW5NDwJAMHAti49Ip8DiqaT54Xyyq+af9rqV/OA68c8u4YDzztVifzRiteBhKupXZUI/TJ/javDKkYnx3fwyIrXLCjLltoG3Dr5hubY79dwOvjAiuKT1F7lgHLHxbH35CLRVw5XmnUg8DlH5Qj9Q3ud6AKGyVE/K6Mx4ablu5hz0RzX7SteF49y0BeBM+rSfBqDeUYbk471t6AvQtEtQwczNFX2sTGijv6Ahx8cUBFRtUe60Tgd2NUYC5PTcFhyTAKPDjT7Ti3QkRUpWMgsSMaDAgf54SE6ZFY36bYY10bHDWsHiOpHc/8FQ+uicVoDihq58dwsfU3SfrYfo2J6lrMHxPhm9seDNUfoWV5S9MeWqkZxNMk86fcIXqoKc8pngEAzf1a/Mm0/+ldLqRbIofZFuo6RcTjZUqfgxnkKyhsAj694xepPcYgpBqU9vUXC2MYi0aObWTI5B5+I/EHAiubNG8C5tyePCaMQloQUT/iKEoIijBm6MyEDKawVW0sa8VxHDVWBVThuixEkMGBFKe+zesEp4uIe45mAUgwmowiHikdCYNpKfhYZmUCQ5Vvv6oy6Vtl2AGMzsHDoN+ZRwhkr7BFKWuW/rS/ogh+4BIFQMCDEHayr7tDeON+xIEuADmX+SXErdh6vFO9jGgTBYFbg568qOkkQMfZ8JB3MmP07vHV1wofCsZjuzawsvb6iQw5XzMzzgZVRlUKH51usNBYjjwHTSoVq8Ia4ubIZOxurgVCAH6z6Jf73xj8ZE24AAFk5cQxdzcWK8hM41LEQAKg6a0RDGsz3+32/ryg9oT3pKSHx26f04a0Lk+U7lbMvorl9HuVlOAHWVXSKwesPExMWEg4QAI8sI2Ydnh+WJ/NGBEE2Jf6NVQkYAIL3s+BMGiG4WVshbWDKgyjQNQMuYhpGCACEAvzd6ufw53u/Qt+JxnXF62GGYNGcDfoiurqtikTIQSak2JsYtmCOZ9j2rkqkTx1Y4FNfCMSMk96zkwjiLtaU9Oj1HaaoWBqswfTSmlATZilz6ZC8vXY/tS3hAkMhrK3qxKsdi7Gl8hh+2VVpQbIEGpLlW8w05hzwB8MEm1GRiOrF59DcPg/OqEOJ0oq9KhWyYkEjFFuT+UxeR2sWnkCWm8DulrIxdRtgVEwPBWDGmk1LmiU6y7DB4HqEDvAG9M/NSVgQTyfpIDByKdJ0ZiqkxNDjHFVL9Rb7MQ95Z8MYWEhsb1yMijHxafcx5ow/qKhJmR2Mjfmwj7qCs1LwTBj1ko7oWJ6jW5Y04vJIvqYwVcJwtTQ8ewq8h9/NrEYsz0wQ9p/3p81FrXihYYldiTdl7VpwqZR+9fs9IOJrggSGcjJL3HAY1QXn0HRqNjDi2gUw1XhuKW6G5yRxcuA23T+/B3IEQOBdiPhWArqlC4fDclhz8ketw5WlWyK+sG8hsOeCVZldvQezeyGg8YMLrCvuwsvHi/V7sm7hCFhI646xqofLvFbPuGdRLwpyL+PJI2sFhrSi9AQOdS8gHRvS85apxc1q2OIk4LGIeYi8F8LopCTWV7VjT4suzrZm4Qm82jrr5mYrumP7x4MVvfX0Tdemm0k+85EDf9DDmfO3iSeZvT2AUhgRraiZYxuBg+nZ1+kGqqy8dXgwq+MqRcfCFV8DVYUVoKRXUU7qXluKm+HEDWYhqCI9/Z6VbMnvuWbhCQonK2VL0QrlFfHJeN5efpCMMBA0x5kwahvKCn9o9c+AZmCR0PaAkaBnbGZ+zCNmmGgcm8qPY9X809jTW4Q9bRQB2bjkOHlvx8XJiFReRLPSKLcHDuC4AXY262TCsXC3zKojfexAckfMwktvXZ0gfcHff6xin9yPWGQcCvcyvCI3gT3NpfJuQtnppsB6+N05CmIwYfChRrzXjMs1DwbKkPZjHpBwsPNYNXlrchL4xmt/SjdSrC7+gLrHaAgTJsQwMkQGxqH2RXQ/V4WolV36eOVe8gqaFUP7iYfe9GqzLIhe1X07zphjg2G8dfEWaqaiu2w6MVuKKbm5CbxyogCht7Kp7xWLCgKaVz85fDceLjusmEa0V9cfDNOcSzpYW9FpjbFZvTnIpjm279QCfegxonHsFfRHQnDiKUnPqi+/Vv9FNUfoS08f/hx9N1vBQuLaGDDZdCyPOidf8udqPm2pbaDPBjwdSeHojKJ/3VLdqKNg2bQxc22FdWWd2NuuoEK5CTLGfN0O9oizjko1eFYVnyDml4Da89O25dojqjzUSLhIguZR07k7tY5Sxd2YlUygEjBgEYEjhr2bm0BTzxw6FE5WMJ4phPN3xo/i3sJ2SZpk6IH0nVorq0qodsayeWcBEOvVbpWPxG1mWV/QBX8ojJeOVch91pT1wM2jKrKaSCHA5qJWof1dVXSSrlNG6a7GKpkrzvhRgdkBilxhQOsHZg3yh8MaNmrUk5GoX0r+2GDJEMEIVfTQrOzLB6J7FvVK5WWev1trj9rsYKp4lpuVRH3XPF2sTzHqCZ0nIFG2HU012N++CGYBPAB4ua3YMv7uLWyHk9RRXYCgMnJYHU95Q9+sUsmtcVoDays6xTiNJbIoUXXOBa1nczV0B4AdFTdyNVi/M2yIv5ta36DpxGy5j0S5KzqlLWdiU/Bs/XI5GAQ3IlYkg9cMF0XkcTMP+Sybl1B0we9XkEufotGBuR9wJJDnBHv+Qe/txF3R9YDSnwM2JOnPVu3ThxffgeslCYKnPPAy1/hQY+SiSX869pxKCsZJJW43l+Bvj6+Wa2qKz+BQ10LSveoAIw6GPF352h/wJBKSejhPzByGmxfHntYSiXz5w2HMyL6Gm14ykYNPRD7zhwM3N64LCzEO22QnAAAnwIO1R6zwrISqmZs6N4GCGVesCoeioBW+3hK1afxl5av6UNDvUSEZhxgFnPGjhElVm+rqBafwxKo9VmIUv+errRQWF7yoWQZdLf6nW1fqw46iTwTI257mORlDwTNkyM2LixJfX9Fh5SBcj+cAAHY1VVECNHtuQZAAU3kCymt8YwwqNN6kTY50o/9TQ+ZuNuVg8LMeXHpYoiVmIS4WNxrHk0fWonL2RfiDYcUqxMkCmrnJTDSVIjbKwyXQjsD2FMtmFhi4boOBhI1p/l3ECbBpSbPV//qF6TCxcclxObS+/+YE+igngQdq6ym/gTf93ATWlHfjB4f+SMZL5sO4uDA1bahqtQyxZxpX2PN3jLwDEwbj5iSwZuEJqbydvGNY8h0kiW6cUflZPT8NIpaj6QcBmpPfb1kLQFUxD1GBHt7QpFonz4FBlZMSOEL9akHCTGpVhoekJv4bh1R3nGZDASBjtqr0BK3dwJHDhz8Yxo5jNWTQ5cUt2J4bjWN9VTv84bANb1Hy9BE6oLzcXGIZmpurm8XzngoZYIP9nkW98vyDp+dhR2eVNtC4EjVXCVe/v9C4REdB2KZQbV63qEfl1DgaipAyD2UNpkA4yGNLB91f9ZTiqaN3a8+0YbCxob6/gw6zh7opUrKx+riskU3VzfirFXsE2rent0giAFwtmQ9S/mAY66vaZfx2dpWLrj14eh5FmQDLCWJWYX6ufhnB+AxGIxlvw3iXe6j5sG5Rj4aS9Ov+8LLoYEdsNrb+ZBlJUt9LBALAc0coP8AfCUluAmAYvArWxDqI15DppOBrUtvpZqs8t+EwVpf2YsiP6KhJPAR/JITGc7MIYsnzPSeB/3jgCxrCEvMoaqqioRxNre+eZ0UX11V2aEM3dc8z+haO1qcyN0yveHaC+s9LWtdMCA/K+zR2zoPJLGZWc6cIA7VFSAsMJx7306bFbQAUq5bR7yxcvI3z43iep0WwRylp2jqcGHldfszD/Duu4t14HtaaTF1m+3MSFnzLzMkZqyAhf4fz1sRu4Tmn9qXGnrnUn24AhAOB0vK9rdwjV9stj9Tts95vQ2Gndnj49E7/9dBdY77XTSUBPsbh4NN+6Ztf/iBgRW5uthjMgPaAjBXaBmjBbahq1eXaORRnQG3MsGZqmHzT4jbyiPOGp8RJOvjfVuynasWDYWysaqXKjEb1Q3nWcBhbqhrxXjyKV9uKtGcmcLCmvJuiDCnv4ebaIWMu7sNh41Q2klQ2BvMdPuidUtkpAIzJ2JB6X4R9KoBjXFcw4wpxRcMwUsyQMYfGUxmHUsPb7Ol1gbUVnRIBMDeKxyr24clD9+h7M5wi9dCUAocAoJmu+H2MgkMmo9OHMbPwNfcXtWBHQ+2YRoUpZuE0ScQzx4QNAy6YdyNC0aoPuS8bjOwlZSaitMJfqoAQ1xMYE8rDh2bzbyxjQN/Mn/1+T1iWBC5jQNekzQDB4FQRMp4b6wu6sKe3aEyoAHtH3ajK8Qj0POf2wIE1xgwZgBtoGISaT9zf3H/OqIvACyyoxsaKVqvuxPqCLoz44Q+FqKWNjXrn7eUH8ZOjVNlZ9E/KXJU+cwINBfoAdjCr0JsaG7jUVua7T72G22YWB8N7WfBzyINdM+eCeHMBqlIr7FCGbrEYbxzIQZ490o3nZmm9rMZ22byzBOc02HWWFZ/GsTfuRDJh+7LY+Jb1oNbI+sp2XYjMmCPrC7qoKqw79vwca0wQCrCq+AR57JnxSUHnnFEHQSTAspJTONKxwJqLZvFAkyFPGIgMPWfCRsy/18y5gHHeMF5tLRI4yYLcK/jh4c+LPmZP8VhsVlZbFKOaGyVq4Z1NVR+6D1rMQb5eK5sWt2FieFCovp2rWUjmJ6w8AYv1bgxnD/chF19E3JGEeHPPBYgOmGFU/nAYmypadF+50OuZfU0GI5U5hgLjgTaax4LYWO9ojIcc9MaCNprz+0N0ozl3LPvBd7CqvBcHT8+TuWDOTUv/q3s7SQdB2Lf3wQ9q34CHZaWn7DUKyFw0dZmZ6/OXla/i+y1rcdMXQZv6MMLuR6vFkPBHsffKT2+6Nt1M8pmPHGws7MD8O66KkTNWcpM/GBYmCIAWsSgp5Rm7v6jFNl5iRjgx5dS/81i1rhxqhCuDUICfHb5LFMLunmLZzACIt5Q95b84WodXjxeneWEZt8zK1495WFPWAz/mITDwrDuPVYsX2lQibjQuMBdTcTkMC1AKUbCbrlI8CcPrwd65mIdHV+61PJCSDGo+L+FaMBYA6OmYaSXpmrUOxKPVb0ABAO3VNTxeFJkB4AOvtlD0YnNRq8DE1hd04ckj5KX2BxTUJXDG3hh9J82YY6YrNkyZ6YW99YBWzGbYXaIIxjPuyLqmOclLGsXLw5Ai/tmkyWSPoXUvFY6WhOuwTx5ss+9SIgLbl+7XSWg5ibSDAUeapJCP6UFTUzw3b4Q2SE5oLuzU10bjBKPhpFrl3d+0uE2KQvkxD99Y9bI24rMTAk2yvNhqk2I8t0DtYh6GkpE04wOAwH6strs0hzicz+3ZUtug35H7JCspaxbhwArv8/2dCaPWHHWztWfviapX4Mc87G4ux6vHiwVe4SfctOiZ+Z7by4k9a92iHor+5SQkQV3aMBjG11eoWhm8oQeOXgueflc3hwz49AiAEcmJJMWj6OYkpP6DOVd3dZdJ1BG3jOCRZeRpnJ93Vdrgxzwc6VhgR+/4UMWGVwAg7pCXXNWC4TwFjtjwczmvRigdcxOoPzsbSQW7M2VtWRc2Vh/HluJmfGvlS3IfTsReNf+0VSuC+3RjVav0PSd6pyYoc6Jx6YKL1voHIAdIZyLNhSMdC+z9RHnhZTzYY+5AxkzqgRiMd24uRS64Lkh99zzS/2rMXjlRgB8eWmvpv02VLdJfJtW2vEu/HY3yB4lPH46ts1hnr1tE+4gTd3VR0DwqrPW18gPY2ViNq/Fx9L3hMIJbR7ChrF2e9/jKV7T+MeA6qYcE7kPX03vTRG+Q1hUb5bkJ7G8rkL5ysxPY1VypDyyGLnMVeQgAbKpptp+n9q37ljTJnHy0QuupB+sOS9/dX9Si35H3IxVhNSPC3KbHKvZZfc9wIviwoj4cAWEUgyluXhz72wpobIwIl6wBM+Kg1n5g7IMMh1tT1iPXrVl4QutuBzjSRs7Eewvbsbqsh94habRP9a9JIMKR3dQ5ddOJ73+8fxn5UPnMHw5ebK7EybPTSBmqE7gfI+8GK78Hahrw9bq98h1zMbAS4MJW/DeT+cQ0Xk0Ig0WbBgBOoOj7KPmIDTuhLTSozPwBwoaam5u12auKrfwe+04tsDxw5vsDpKjTGDoMY1Ow4b6DR5fvNS6CLjqVijFVyvCpw2usw8cvuypxb2F7umc35ll98mef22exNDBOVop5mV5fQ4GRAra9ggJnUcwLLzQskefsPl6mvYPKA5OaeyEVmA3Dz6KOjRHLD3usmapOxjtXG57mBiJtV/c0C509W79cWIsQOPjGXS/rPjIMIXMO8eGDI1g7u8qpsnKuYq0yDHPzuYCGuLA8tOyAvmfMsxIr3WjcitawgTM4kGWFxm+P9GmIBiDQInNsdnWXaQ90APzgwDqdI2F6u1S7uQ/42YHvSGVcOAExmqRssJwvI++u3smNxvHgssNWXoGbkxAIEHtSBYvL8ySFjQRAGsNX6tz+m9c2jBmudsM+AoZycT6I4V19upUK/O05XgKAKmtLwTvVZ25uApdHJ2hjKxWWlrTft757nu5X7hNlmLvZBJHkOgp+zKPiYqn6CsDakm75+enWlfCHwrrYmQHLsXRDipeYoWepkEiA1vXmolZZb2kJ/LGxWXb8wTBebS3CS00VeL6hDv+haT393YCX7T89X3LAxKPrAJ6TtPrVzUngucal+Fo5rYdNi9vg5lG+QthNaicQQFTQSjetL+jSDoA8Y0ycQJwQ/oCHJ6pekfXkZifwYN1hwv0bXnbuCzc3gbzQiN1WNUap+xKSDnYdS4dLmXprw5JW6/MtSxq1welrJxCvB05GDdxAmKP8mIcdnVWk5/PiBB+NeWJ0mwfZdxN50j8IHHyt/ACtzSC9Hf5wmGBPanyfq18mtLoyZoCtq1XU5cGlh7WuTIGV7mqulJ+3lx+Udbuzq1z20B8eWivzi+fIQ0sPYEdjrRyUUosQpuphAHjywD3ifOBxl71oXFwlmENghAzPTF1n5sEDgDXned/etpTaIgc+01GkbIDNS5rgD3h4tbXIsld4H/1VTyn2tRnshoCGzynHIPfXmHDgjPzByGf+cODm2gYtb2KPVryOLJcW447OKjx1nAwnhiKwpBm4rIjyyNOXGjoEjENDqgQOMUCoxfpCI1HWMfbWVJ68abDiAkAJiY59SLA25dyEGM1p7xE4UjAHAB5fblfsNT3ETx1eAz/mYWtJo3UP3qjn33F1zHZK9eEBTxS0qbiZSo3//m48DwAEw81JhOvLO+S+XAlaaGO5f8bFLeOBN+LUTVTo4UylrZ5vVpt8tnGZXMuHN35X/t8qUObD8izzd8eaDw+XUX7Eg3WHrQMZ/7+lmDYOz0nKYc+q2BrY93uw9ogY1w+XHcaTLWvomcamwYmwqRSF5n2eaV+qjRvD4OSEZPN7T1S9Yv3OkuuOWgcpa/M3f07NcQns+8i9Uw5WbjQOxw2kMq7Zp9tKjwq15jNHV+KB2npsX/66PJdp+eJBaEwDk4UTxM3EcoCSSAF7zW8vPyhzideIvGf+qGX4Sr8mXGyubZKaJ1muAX0yInBSWfzQGqL4jeq+8gepHoc8c4w5yuLHPGyuIp3ChkWqkd17aWqaN9ecm2wgsQeco0qWI2TAw7ZlB8d8/obCTvn7+vIOpAr38/blr4seTM0R8WMeVZZ3gPHjhwQiwX3l5ibEgNtaYhi9sNcL6xA2hnd1l4kTQsY7UNV9QfOBaYFbL8yw+u/69aiMye7mcuuQw/Jg7RHaH1SC7/ea77EMYtHp6vlchZt13LNHlwNQSd0wKSiNOTXgpfe7cPprHes5ScspxHse5+RY+tukrFTY9HsLdVQgtV8tamkl5sGRHUf/0F5nrfvU72xdekS3R5xfdI1JDQ0AT6zaAzcax3MdNXrephBePFDTIOPxk0N3p+1DqWv0q6X12FzUSvTmUV2F29x7U/W6fF8dAkRvpexTfA07R6TeEt/Ld4QkxRxTKdQajcu+/Q/tddYepm+k1yTrMmv/YBljT2OdVDPnQhrVa+AGRBoxxq1uKskkJH8i8pEOB3/3d3+HkpISjB8/HuPHj0ddXR1eflkbWEEQ4Nvf/jamTZuGnJwcrFq1Ct3d3dY9RkZG8Oijj2Ly5MmIRqP4whe+gDfffNO65tq1a/jyl7+M/Px85Ofn48tf/jKuX7/+sRrI3kZWILwpP3X8c3ihcQlK73zTYqnYuvSIvRhMyJAPPLpCe9XNQkWpBp983fDMCz7SECfpaP7wMRYv88n7MU+XbFft4aRnYYYZCmN9RYf1TDFAFANBkKTw/N8eX60TUw0DxVEh0S01DXj26HKsnH9GDEdWrKffulUb6YZh6ebFJUmVYQ5unm7Dk4fXauXvkEdZWHVM9g3Vr9uXvy5J0swwIawTqi4BeyYZDuRG44Rfz4sDbkDY2KRDMBFA+M/dvDiebFkjCWvwHVxL5FISHWP3mbVBcb2njq+bm5CQN2Nwx7rup23LsXlJk+3FNP7f0Unev+813yPPdKNxzJz6PsKRpLWZIVCbloKAMGuNGN9qLJ4+8jn5zsbq4wAgLDv2BAysdwHshGQO81+Nj8fCBW8RdaaSVfNPyzwyk/xlPZiwHIew6fyzCZUzv8vtYA+bKTzW/nAYT9evQjwI4ZmGFdKO5xvqrHYHoQAIBch1yfO4oapVb9xqvn2p5JjuE8dey32JHPrZ04XGnm5dqROmo3E827DMgtFZRZfUsxwHlIOk1usvu7RnU7D+JqRHXbe9/KAchOGovzsBnuuoIaNYJXSaTFXcTzubqwAnQF8iR49tSgItG2PcFvwuS/r/l12Vcl8++Nxb2I61FZ1WRIAPzFIfQjlXXmopl3sJ/n/QPAjRfbsHbtf6yjjculG9ft1oHNffzbM49vm92Uh8rqNGDvsMm+A59EFVxx2GZzHNpnRMgCAUCMxS5nSeYWSOi8MxYJZcLIyN++BGBC+3Fcv6caMq+VzNC3F6RONU54ILRjL7UdgnQ9INSG/yHmY4j+4vapF3Mg9G0sdugF/1lJLBrt7huY4ai9oSTiARdPZAc189uPQw3hqeYO1LDIHl78rzBsPCTGWOJR/e/aEwnLiGbAbXI/R9rnWjjOEtS9RhO49yDN4YnmQlJX+/Za19oDbphJXs6KwymH+gyQyMdwUgSfnPHF0pUQU+1ArsbyRkGeoSFRrSsF59Y0eIAeSg4+hnmgdEvpebp7z6Huncexb1yvWSr5Pa16aTLGrYAQY0el0lHci5KCagoZTSd+pv/mAYDWbhSP7cof5Og1febJI5HHwi8pEOB9OnT8ff/M3foLm5Gc3NzVi9ejU2btwoB4D/9J/+E5588kn86Ec/QlNTE6ZOnYrPf/7z6O/vl3s89thjePHFF/GLX/wChw8fxsDAAP74j/8YyaTG83/xi19EW1sbfvOb3+A3v/kN2tra8OUvf/njtdCB5Aq4OQkqHmQcBtrfmC4nb384jLOxKVhTbhxojM/ccXHxqqeKbNDGAcT0NjANJaCVEwAEij5QmIKiegPgz7WiCQA3oPwCi25UKwOrIBpXP1bUZqKQcgmrvrX2KDYUdpKnXim/IEQUrDuO1YBpQwFYIc/gRiRNWaV6qK0hUBEBi7teXcMYy23L7OJTluGrPCxwVT4H078FkJC1yZNtjrew1hiFiUzlv7OpSp65q7uM2E+YwYeNB8XPz2HWTYvbJFkvMCqXjslkBWKB2NlcRZtfcTPgBvpQAh054n7mOXDxyiQkmFUm5hF8SLWzcuEFORS40bg1v6yEtGhcMPF8gAEUJMJIoJZ7gLy05hp5qO4gnjm6EqffupWSX5Uxsu94ofU8c9y3lx+Em5sgg3wwjM1Vzag/O9uKJMgm3e9JaH5dBW3OB0/PEyYe695uAEnChJHwPwZ3Pq+bnx29C3CgC2GpA+yW4mY817BUz7kcg24wquETTCX5XEeNfa2RuM9jzkbXAzUNeGjpATKsQ6rWiDIeJZql2v/I8tfGjBQ93bqS5oLqg/Vl2gP/XEcN9W08BARAXfFpDd3gxNfAkSJ1XAtC3nU0pI0m1nG5vjV3YMByg8DBruZK/PZYSZojxI0SNMofDhOLGD9PtSm4FrHzqaJx3Fd7DP5gWGpuPFBbLwd4ALL+JLcjkrQMQHJE0M+bFrfBHwxL8S2GTbDusuacYVQFBnXrWHOHaUpNY3LCtBtyjZM/irq55ykPSbEL8SGCC0ma67K+ax7pplBABxYjz0jgkgE5qEwdZubKmZGKHY212kBmaEjMI/IHUNV1NtKdhC5IZyYtu7kJvNRUQW1U/e1G4wiuR/Bs/XLcmtWvnSQxz3aI8VxR1LuHOhda3nI/ZlSL9w2WsWickvpVX4gEjrSJD5l7Ty6S8RHnQqB1mzPq0tzKNuZtyjgyQ5dEQTjfLGLX/NhU3YyXWggiJcX5eF1y3h07oXIS+Fr5AeuAsH3561beh+xJvBeYdVsUhExsCeVk4lwzSQY3+kZ0ZGWH2BecA8d9zPLKiQKJOrhRqlvB0DGOVAMQOKFjFIQ1HU3c9pta/ODj/cvIh8o/m61o0qRJ+P73v49//a//NaZNm4bHHnsMTzzxBACKEtx222343ve+hz/7sz9DX18fpkyZgn/8x3/E/fffDwB4++23MWPGDPz617/GPffcg97eXhQWFqKhoQE1NeRpbWhoQF1dHU6cOIGFCxf+T72XyVaEUBTOcAiFRRcpnG7gnMdiE7GKu/DiNfiI01hqDJYUAGKsmkWyCJMIbK/bj7dGJlA1wpQCOpsWt5Hxy99nRgeDZYbf6YHaevE4y3XDBgON4QECaNGvLe8iBpUxip5Z7R+LdcdgBuGCVRabgsnOYBRl21LcjOcb6qzNVzYIVcwodWMWT6oaH3g+4ADOYEg4zk0GEE46/h8NFcRsMxRG3eIzqO+eh601R8lzNhIS5enmJKSgksmKwp4aiykmpS+sIkcf1E8OxID9amn9B3ouWZiZiNsNAEg6iF4MY2jxkM2+YTzTZNsoLXgDnRenwR8MY0NlGy7GJqG99055xgc9W96ZvVzM/jJos1/x3M6dEsPgu7ni/efvpvUDrwk27g2DxGQBAQiyErgB1le362J6ilFm1fzTaHz7TnxlQYNg8/1+Smr+wcF1gA+srujBvq5FcLOSUoRQns9rg+fLEBnOqYZBWn+EAmypOIYdjbXYVK0LcW0o7MRLzeV4oKYBOzqr9FxOLSxljI2TnaQk70HbQPaHwhYbE/fh5qJW8mSqubm5qBXnY7eg5fxM+x3NNTcUxqoSzaqTysyWyrIijFtjzEuTpeqxin3CqS6HIYMS2NQvG6takRcaoX4xGJD4gJM6B2R9OwAccnrsO7WAPh/rvQZVf02gdVu88BJVjB4KY315B/a0lKaxuNyzqBcvtxXr5Euj77fXUSE5uf9oSArTpencQWJNEsYXPoD5TlrxL5M1Slhs+PMxGO8AMth2dFalFdsy+4plQ2GnxY5lsm2lFpP0B8NwElQ00WLyink2q5Mx5oC9B64v6JLidaZedvPiiI4bRqw/e8yIKR9cuBgXRzt2HKuxdWq/h5rSM2jsmitzKrXN7uVsJMYp2KUitvjWXS/hO/vvRXXRWTT1zpGxspiihsPYXrtfIormuPrxEFwvSftuQzUZwQGALMWsZxzEEA5QU3iW6FUDAOEAa0p6sPf4YtFVMi9SDnLSzgEPToIOSfABJ3AQRHw8sezXOvmXdXEosFmNPkjPpuzxG6uIOW0sFi6ruJ/vYNvSg2l7E0f14AbCFOUPDePNx/79Tcfswzbe3RO/8rHYil679t9uujbdTPKxz4TJZBK/+MUvEIvFUFdXh/Pnz+PKlStYu3atXJOVlYW77roLR4+Sp6ylpQXxeNy6Ztq0aSgqKpJr6uvrkZ+fLwcDAKitrUV+fr5cM5aMjIzgxo0b1j8A8BOkjJ38UaHNRDgAIj6FEBluxN7fkZCE+KgRSSDsw4moyp8DHpyIqpuQcKkoExsaYV+8A/PvuCreQgCS+PbTtuVieHJlRtNzvbaiU57vsCfNCzBl2nX9Tk6A5+tpUfsjIbnOzU4QM1GKZ49+gdRKgAsrBAxA8zzHQ3CyfCs6EvRFdOQBoIPBqG1sI+LrsGbCFUX9fFMt4AaYcds1BIGD4FpEv9d4xeKk7pM3blhDHEIBQVhCAZyIj9J5l3D3ki56V4PD3slOwh8KY09vEZz8UQTvU6XExnOzgFAgIXWEAjyx/Nea+jNqRBfMolA5VEbej4fgqwJZzB7CfQyQNzT10MDfd7NprAPfwTMNK8TLxdAL+U48BH84jN80lEpbnCwfTpYPeAFiczSuVahLc+l9g+sR7V1yAnRcuEM+332sHO0nZ1I/qkJiU27R0Tt/NKRZkkZC4p1cvOBNPXdU2xYUvEn9EwrgJBwMD0awsaoVTsQXHLqbSxutBU0aNVRLAAvGg4gvczxIknHsjotjTxfNz9LCN+DmJjDjtmt4/cRCDMUicjAAQJWl64mW1slNYv/p+aLJnuuoQfWcN2jzH6W1HyRtVqbieW9aY5YaCeSo1I6WJUAAvNhVJn11dXgc3NyEHAyyJg1RO0KBzBnuk0AZU07IRxBoKuGChW9SvlJOApNnv0/fYf2ScPFCWyWtJTdA4DvY2VWOptOz0uapG41j8czLdG0owP7ORWC6ynAfGUH+aIggLUW03uuKT9O8jhCNJB8ULGia8nj7Ax7+8/4/0s/MTdC4Rcj4/vqKV7FuUQ/BZSI+/qm7BM+31AjE5fYpfYCiqxQjmxlc2IBieGQoQNvv7tD5Lk5gtVf6lOGKOQl0X7wdQdLFgrmXsaezGPB8BIrrncf3lRMFFqvY1DvfUzrcx98foEPP5qJWMl4jSWFukvythCsJ6/VnZyN8IRvOlWzS51lJSwfeX9RCFZHfzhbjrGDeWzQGDKPjiEA0TvMDNEbs6EHYR/HCSxQRAukIhAJMmhiTfpCEYDVfhOPeHCfQ2nJzEwhyknCM594+pQ8I+/h1z2INEzQOBgCQeys977/U7cDutlIaI3XoWrPwBO2b8RCm/JdcgYaaUS4AAl9i/XHr5BvY0VhL72TkNbnj4mg6d6dECKrnvEH6fzREui7pYkKvmitqn9lU1YLvvH4vkJWkQzOvv5EQ9p5chM1FrZhwOBtudgItfTP1gTg3Aajq9lxjYVd3GZxc2jfnzL9CsEq1HgPfASI+nKwkjrXOF7gbwj4RI+TFNSJgKAwnh6Ihq8t6ZGylnXlxcW654+JwRsmB9v2WtbT+Ei7cnATKCy7QFzwfs25/DwDw6NLXMGX6dbmX6d0PrmvD+CWVHM7610+4MpfWlGp2Mng+nmlZBgCoLjJsAY8guZuqWnDgxAJ18Plgx9JNIcHHiBpkYEW/Vz7y4aCzsxN5eXnIysrC9u3b8eKLL6KwsBBXrlwBANx2223W9bfddpt8duXKFUQiEUycOPFDr7n11lvTnnvrrbfKNWPJd7/7XclRyM/Px4wZlEiGOFVVFQzhgEee9bAvIXemCls5/wxBCAyvuqv4152QL0ZpoBamMxgG4i4cVswJF5srmwEHhMsfCktVVgtvC0iI0zz1A5BKp37MQzBEi9r1knjv/Tz57urSXl0ETb2bFPAC8FjFPjHU7y1sF6/dGqWwMOziUPsi630EV+olBXPODDEc3WC8PgA7chLzqFoubzRuQJR4Q2Eg4WBjZSsuvTMRjhPAmUj3Cm5E4LxPuQjcfwP92drbkaAx+sby38BxArT33ileRb7mSyXH4HBE5106FARZvmyUuiAcsHZxD77fslaqJruRJL5ZRexA26oP60RvKKNx1JWKsTuPVVvhY3/AQ5BNdQDWF3RJcTKZX0ocN8CGijbyQhc3E/TCMJIfXbIPSDioraCx+zfVexEMh6j/AyA6eVAOTgIZGQpjTVEvghy12SvIQcB5J4NhrK9uBwJFZzeONrPfvTdOxuqByka8wDS3WUmB9fR0kGfa3LjnjHsPD1Q2AglNK7q7pxjBiIsgrCEprpe0+uhf1jbRz3HyrPKh+ecdS4CREBCnOf4nJVT0zR8NSX+391J135JJb+HzhT2Ycds16Vv37Ww1PwgC4YQI5sQb/fqCLqoOrIw9fyisqVmVdF+8XeYwDZQBZ1HVUZF0sK60C1zJm+dkfed8SYCHE2D0d7kanjPqAiMhgZ/9aXGzNoQMWsPek9Oxp4W42t97P4/6YyREEIGwLzrHzUrKszcUd0ifPVx2WMay++Lt5L3myrpJYohJTFFVoBUungtF1bfPl36GMiA4imIah/csIh0DLtbF4xxJyvefOv457GkpJbhM2MefVxwQ54Q/GMZbFyZjdcFJVC84L+/sjotLtXceU/hkNL97cYLOdwkcWb8mxS+PMetPJ+TjzNtTaP6p/BzWuWNBTa68cQsZaSEfgUdzZ2dXucbC90UkIdXNTcAN+5RMqg4ciVnDCKYOp0MvAFwcmgT4DhITExJNWJx/WdpROfsiFk5/RyB9vI/wuPqDYWAkhM6emcCoq/VQVhLvX4vKmJukGW5Y1SOJu3LgYkx8MBTSRvANPf8u/y4fm8qPIxgK0/eNiBbr/MH3aV7/Rf0WvScqOlkuluZ6SVz4qo9dx4lelCPqpiPl4bLDWFvcDTcngStv3CJtCAbtgx8fGv2Yh8buuXCzknigshFuhPaj91cP0z3Vu/yqp5TGbETvkRimvvKHKHn/+gr6TsE4ZTckHHJoDOvDmj8Uht/vIVBr4dyZqdQvSp84boAHq44iGAjbEb5Rg1qXK0jnJBDEaK8tG3dJdBDvOf5QmAp5cg6Fqj4e9JHDjNdVa89samckiXPnyJ76cetd+N2lifBjnlAQcz/PL3xLz1c+GGaplxoJ0bv2ezbLm7KB/KGwRCT94bDoglsj/XBCPrbVHkLQf5OzFmVyDj4R+ciHg4ULF6KtrQ0NDQ348z//c3zlK19BT4+uwOc4dsZtEARpf0uV1GvGuv733eev/uqv0NfXJ/8uXboEAFhepIxm9uAbcKEtNQ3a0+FDCl0BurKiPxTWhrwRHt1S3CwwgvJZlwiHHo1rQ7Lfk8q2APCtu14CAKwp74Y/GNaFTkzMOHSYkLGrJvabjRiuTGwaPL7aGO5Z1EvFvpTR96ueUikAI8a1MhhNMd+Vn5UbGrU9UlwVF9pA5/fdVK1xjAiAPa0lEjl5qalCPN8PlxEFnTN+FJhMlH1WdcoUebJljU7gAnSEJ+Zh2Nft33b36zo8mnDpcDIYxqZqwvO/2lKMNQtPEPWcwh7/dfM6uNE43o3nKWo/o/kJY5MzchQ4vLui+CSQdLCnt4iqEZvVkwfDMm6zst8DEq5OJlfy844lQg3IBaX+9vhqSJVPBxiKReBwrgTjoh0gGh7RcDPV3240ji01DdhU1SJQgb0nFym6W2PdOIFU2rXC7OPiBLMyDkB+zMMrJwro3R2I0csYY/EWxgx2DtWHu1pU0q3C6gpUg+eSimrs6i7TeR3GZ5uqWrD7eBn2nlyES++QM2FzTRP8acOyCXLkxGRd2d1cTnMkRVXI3PTtvuD2iyQdwYm/3FKCVHGjcTxQVw/mq7+7qkuigix/Ukd4+h0NtVhfQNEuqe7K612tefN3yYlQ4g+FJUFxT28RRQCKzwgURqI8Cr7G8+Cpw2vI0PAdqX8i0a8w5ciUz7qknxMz5jYItsIwN8Yi8+GA53VwTVdN31RFCdlWdMcB4AbYf3o+mnrnSP4QAKoBMRSm6ImiHiYICukvSf5U95eEdeXN39NbhKQaNNHThi7k73LfWfAUw6Fx35Immjv9WvcEET8tSX/1glMybwLfIWYXI1mUr6s3kjpXzj9Dc96AmLScn4nes9NonFVBLSFVYM+9yiuTolzKKbBm4Qn9/gZOf2tJI9xsqqwuvP8KE+/mxbG2rEvaxWt09YJTev8x6sgsKzklyfIcPSq9801sKW7WbG+qL++rbtJjzUXdshN4dPleS18+fXSVVEaXeW+0YeqUPvpsnDHeCo72/LFaqwaFP+DpQ4SR6C0FEw1aUwAIKacAMygBFOGTavacQ8DVqBnOaEKjRkJ4tn65fr/cBBE7sP5R81bmgdLXTx66R9rIsDw3J4F9HQVwFGTJH1bQzXDKXsw6VUWfVi84ZSU672kuBQKHco4GPJy6QIiI6jlvCFHH2tIuW9cYxUeZmIIjfABFGJB0hPWLdcwzR1dK7k1G/rDkIx8OIpEI5s2bh6qqKnz3u99FaWkpfvjDH2LqVJqgqd79q1evSjRh6tSpGB0dxbVr1z70mnfeeSftub/73e/SohKmZGVlCYsS/wOAKVkDaYVHyMgiekRnxIAB9EXkVP/uKNFsIiBDR0QtlOeZWjEUoOXkLKEqk01NJWQ931AHv9/Dd/bfC38ojL2tiwEYpeUNrKIwIKiNqnL2RfG6mlRtJoMGQ4v2n54PQCU0saE6Lo57C9sFgiLfV8aTuQkDoHfl5yhIjCgP9pYahibTOAKA6wT6IGOy0RgGDEBc+2Z5eTcal4Jx6ys65P1WlJ6w4DxyvREe5xoB/mAYP2taIWPnRuNkIDvKSFUb5attRYrxBdY7vNRYQZ5SVqBOgC/U6WI4/nBYIjWrS3pxX90xHDkz18LGmhVma4rOKlyqj6eO3E3h+GgcxTPfxtrKTt3HKTrXHyTsNG+0Vh9BHcSyE3ipscIygNk4/sWROuxqqbTmSupBcFXpCfgxYuWQdzc2WLnWI+iPeUBirn64ykhU33lo6QG5RnjVfUcS1yVhWf3PDE/rqjt0u6KUXMdez1/1lKZhZt8ZUdGPoTDuL2qxC/3wnFeHw9R5x89hw2/ZvLNkFKm+9gfDBAFwAjJAjMiY+Y6AYpdSzEH7Ti2wkphris/AVew366o6dO6KgpDxvR4uO4yCGVc00whHFs0Dsu9getY1aw00ds3FyvlnpO85efyZpuVS2FASH/NU/ZNQQLlM6p5IOmi9MENIDLhd68o74Y+ECLYyGMbqMjpgr15wSsOAFJwpyNFzY1dLpXW4XzX/tNXvgrlXz1lf2U7wvRbbQQLQgYwPTf5Q2IKpzL/jKunVAQ8vtZahfNYlaZd5SGUxCwnK+CvZUNWqa4w4em4yxM4f8MSxwH3oj4TguAHqu+eRTshJWO9u5gtwMrRZ7dYf1mQJcAM5VLHOBLT3181OYOH0d0TvcHFHABYBw7P1dOiychCMAntSjM3XuSLsJILnS20YAFYFXb5H64lZeP5YrVXHYd2iHlwe1jjt1WU9cm+mgzXZggCIQwaAhkyNhnDld/n6vYfCGobDh6QAmoKbGbtUe3jMQjdobTnjiUqYc3GSCVccAG40jrXlXXDz4qgrOqP72hw7VQeD57I/pMYr0AfnVfNPC/W2QD05t2nIlWdz3sCECTG9d4L+FmRTtKam8Cz8fg8bVFE+sx/caFwOYPtOLbAKkDLBxp7eIqvWSGPXXHDC9Ktdi3UkSUVDuf9/1rRC3kWeF/axcMFbFn2rPO9mhxVliqB9IvLPzkMPggAjIyOYPXs2pk6dit/+9rfy2ejoKA4cOIClS4klpbKyEp7nWddcvnwZXV1dck1dXR36+vpw7JjmZm5sbERfX59c81HkxTbyJAY3IjZns0MbipM/KhuQkz8qCVH7FexGEi9ZWQgFHGSDSE3uNQ0qNxqXkLSwWeQmpMqxeAhyEwSViOmCO03dc8QgNEvECzMFe0lYCQyGEVyLYE1pjxjqv+opRZDl2xGQrCTc7ATWlndZXkP22gCkgBijCFDBrC1LGgEnEJjHs43L4EapWNCu7jI8sKRBe35M7Clgsc5IstiQ/pubk9BMS4GDQ+2L8P8eJsy3m51IK8gS9EU0k0luAmuKeq1kum2lR6V6qD8cRnAjgo2VrShY8BbcnIR+B+Wlf1l5t/zBMFYVnSQDyWASYY/V/tPz8f5o1MKWm9EdP+YJfhbKG8PwlfYTM8mLxja2kfDnD4XxVyv3kFfogzw1/L1xcTgjOjR+z6JebKw+Tth9xUzFEDKuTMz9ffD0PLjRuC5wpKI2Mu7qfycW1vkrauNnY16uU+/JdJMAMOKrvgj7+DerfoN16hBmHliY4YmNNz4sZLl0z601R9OiSH7Mk+q5W2uOYkdTDRlMvNZyEkJdaR6mauZcsA5jYngGrjIGAhlHN5Kk9W/wiJsHp6Avotec8vT6MU/fd4AgETu7iP/+5XaVWxTyCV6l1rEbJSau7pPTJTl1fUUHYa2V3LOoFwgFVt/yeyyKXpHD6I0bObqglVHoT+BRgMakG3Sp/mhIogMMa3jlRIFmrMlNYF9bIZYVnyY4gpe05ribrSONJi0tAOxrL5D3kOtZhw54BKkyOd2NROlUMQ/JJ09P0/lGCZdqEHCkTSYX0uaOnkT6Ry5mSAdYOixaB5IAVrVaJB0smH1Ft5chaaoegD8UxsaKVji+Y+lUfyhMrDYqF0n6IzeBXS2VWFPRLRFB3gv4uyffvE0OPBxhMfvZHwrjkeWvCVWx9Bkn3vs0zpsWtylDWyf7AoAbSYqTKlVfC9lDjhEVU/vMnuMlOHJmrnxnXw8lwXN7JZJoQq8USQMAbCo9LuvNpEbeUNFGf2PCgqykPDMIdIVi1tkcSQhuUxHoAaKIrSs+beVocX9xzl19zzw9Jfhgn60PZcz0Je02yEj2dRRop5AZPc9Kwo8mcV/tMf2dSBLXr0ctJj2MuPKspnN3AuHAIr+QKOuAhxcal0gxUUDDfAFdGduPeTIXHSOJGiMuECh4YHZCj/1QGDWLzgl0kqMn/mgIJ0/eocbZmAdjrMmbTjKwok9EPtLh4Jvf/CYOHTqECxcuoLOzE//u3/077N+/Hw888AAcx8Fjjz2Gv/7rv8aLL76Irq4uPPjgg8jNzcUXv/hFAEB+fj62bduGf/tv/y1ee+01tLa24ktf+hKKi4uxZs0aAEBBQQH+6I/+CA899BAaGhrQ0NCAhx56CH/8x3/8P81UZDVQYeic8aMSAfBjnn0Sz07o5ErlgdrIp3l1Xap3GEnbuwtAqn2mVla0vJeGV0e8ngx1CAUSRpbvqvd5YtmvRSFYyXyB3kCJlYK8mZbnUyk33uy4sqfn+HLNA0s0BzLLvlNUct0fDuOZ9qVEhRY4eOP8FKtdP+9YguBGRLNtqP6RdvjQmHxj415VckKu+WbVy1Ll1s0mylkzf4BDm1xNNQgHEoZfX9BFFKTQYfdn2pdiV1OVbMrO+FG81FSBk2/q6BMZdo7QIjI97Myc9y1vnj8Y1gwkMY9gPWHD0vAdgVW50bguyMTh3EArYUoQVn2hDhy7j5cBvkN1DtR4WpAxLvzk6PkjMJUhSrp8qbFCJ3saYycFn9R7chtMw3FLjT32WdFRyWkAlPHW72lPbECG8ubyFus9AWgIQVYSTx66R1Pz5dht4gP1V0vr4YwnDv0sN4HNVUQvikBVRR4yDT8HfjyEn3cswYM1R9KoAid5OmmTseyN52bpKEag71N/drZlZAEQyBrDUYRuVkW2nPxROL5DVIAmVCWXGIUcZrphD/aoS2st4YqmdUZdbfCxsReNY8/xEjIW1Nx4uaUESDi6QOKgNnaePvI5YiZRRiHDufwBYjFj3WQe/sUjzs9lPeMEOqeII4NGpeQjJ8iQCl/M1u1VsBFOot20uA1OwsGahSdwf1EL7lO1SMz2ye/qcLS5pskaO9Zz8jfFnAWQt5a/b3rrhX2Fo5nsUU+pEq5fnP4zITrO+FFsqGrFoc6FWq9mJ6wDIjtOKiddBEAwUq5xIAe+nATl4oQMWIo6sD11eA0Zse9nCTwkuB6BE3ext2Wx1hXRuLR5bRk5DDh6wf1sSQBMCsUItqnayvPFzVFtiCQJupejKZJFDygcOgDUFZ6xoUuA6C3T2WXCFDnqzjTbbk4Cjy59TbfFLNSXk8BDyw4IpFZy4cI+wZZinkE1rJ/F78zwtq+VH5B5taG6VVswauz/ob0Ojedm4cGaIzIHZD0a4yuiIhBc68Ef8GxWLZXELA4gn6A3D9Ud1H3FkYUAUqiQdQJHSTg3zIT3MDuWH/M0vIv3ChUl+VVPqUDrdhyrkf7gytgm1MuZoGGhbh59h6GRDy09QPTSOQkr+dtRzIZIONSfqv///ySB73+sfxn5cPlIVKbbtm3Da6+9hsuXLyM/Px8lJSV44okn8PnPfx4ARRG+853v4O///u9x7do11NTU4Mc//jGKijSWdnh4GH/5l3+J//7f/zuGhoZw99134yc/+YlOIAbw/vvv4y/+4i/wT//0TwCAL3zhC/jRj36ECRMm/E83zKQydXNpYxM6OZU4JbhOQKjcxGtgKojhMEFDlEHIFGimyIIOgGXFp3GkfYHFkMIbuDuOWB6QIIODE6gerDmC5zpqsHrBKeztKASSDpycBBw3wNQpfbjyu3zLu/ZBdKR8jT/gwUlSEinTdgLArb/OwtV/MYKF09+xDWWDntWiwuMN1g2wrOg0jvTOw7hbYoj1Z2P1glNkhKbQIprvWTDjCrpPzLA8lnxgC3wHQdyVdqS2KUi6lDio/udrpk1/H29fmGx5iJ3cBJbMvYDG9nkC6Xpo6QGqAqzoBVMpaIX2kpPaspKYM+1dnO2ZhiBHJ6b7MQ/OqCN9yH9bvOgSUeP2e5g88zrevZyPvMkxDA5k6esMakMAmDn1fVy8Mkl/PqTeKS9l0wjofUJeEvctaqXQfo6m3/P7PSDLl6RbeDQ/mbKV5znTiTK0A56vDZDibszLvUqJ0sac9uMhOP1hYMKoTsZVwvMnSLoIRl2sK+8UD7lFvafGcvHMy+jquBNBbpLyCrJU4qzh6ZaEyBSa2M3VzdjZVgkn5FPuhfpcqF/NOWusbbkH0wKGA4WLhjwHScei90QWJdpK/46GhBK4Zs4FyQsx22bSovqjxC4kOsKc5yrB2wn5dFAIHJTPewPtb0yXOgV8rTUOxnow75cq/oCHBQvexpm3p6RR85rfDXyHcgeSjtzX1A2pEtyIwLvuonjlabRemGG9w72F7dh1vNIaj/z8QVy7Mt52hnBfJVzrQO3HPNwx61289cYtZLSpJGyZq+b7j4Qwa6eDiw9oqlC/3wOyfek7eY4yuITSOY+KoU2ODGBXd1m63lMHorUVndh7chHN66Qj92QDd/GCN9F9fhpK57yJzovT6LsJF05/WPpPoCkJMjiZSc7UXQCt65o5F1DfPS+NDjjwHZrrKeNHP6TsSyMhik4q58/9RS3EBmRAZdaU9OC15iIEKrnalFXzT2Nf9yIwvaXMQZMa2wn0HBwO631LraMp065TUj30/poqTOdszlc3j9iD8iYNYuBKHumluM0qZkrozWzEJyb1PDHm4lhRJ38khKy3IojPGYI/GsLWqnoNTxpDmHZ24dy3cfqtdEIUP+ECoy7qis5Q5MHsL1O/cl+m0ojyIcFLom7ueQ3hMvQ1y9fKD+DHrXcJy57oGkDPE5M6+d0syd+Texq6mP8m60PNI2Y5s+a0qT+VnRIEMVx6+P++6Wg/2cZbnXM/ws5HpDINRrFv6Jc3XZtuJvlIkYNnnnkGFy5cwMjICK5evYq9e/fKwQCgROJvf/vbuHz5MoaHh3HgwAHrYAAA2dnZeOqpp/Dee+9hcHAQu3fvtg4GANVO+PnPfy6UpD//+c8/0sHAFH+QWCLoBbVnwI3GbVy3Cr0JFARAbt6IfOaGfV1d10vfpN3chEBIjrQvoGep64WdQ4WOhcFFsVS4OQnB+u1tXSwGTzASwpbiZjkYUHvCEsa02ml4d+iHQLzt/3JZk3ye/BJRo/EGaXn3kRLRUHJfzTHAd1CYdxnwHQz05UiCsx/zJBQsniVH50iYBwMAwpACKBaYpOGmUCxNvBkyywwz0tALOnj7wmQ7whIAwahLHpFx2gP5TPtSUrAesQXxuLMn6dn65XJPhnecOX070SWqcPfXyglPbyXrKk8i18xwx8WJTSTuyMFA5sq4uBUtuXDaMEzUZmpWPuU+2lJJ4elkXNEccnuV59kdR7kamxa3Ab6DR6r3k+Gk6BV5npueMDcnIUxBbiSJV48X4yeH704bl/GTYggiPgIj+ZujDVf/hdqEYvTuL7eU0DPj9mbE/dl98Xai71PjvLGknZ4VkJdTIirQHj2BXXSXEXuWOqBsqmiBPxLCy63FOpxuJMgz5aQf88iDajDssMEGAJsrm7VnE7Rm7itroY2R13bCEa9tVf4bthc64UqSqhjsCUcfDGIeEHexrfSoRHOWzD9PcyXsw/WSaO0h48D1kgInBICv1+zVfaD6UNaYkWwp4xKnCq6nztwuECeTfcaMkgZDxH4jUbyYpw1bAzLEPzvjRzF6exytF2YQXWKcWE+2ljQSll71NUeH+vpyAd+xqlvzAZH75qul9VJR+q0Lk8EYbckl4rlq5GK5WUlcfED9nQ/aoQBrFvfSOzFEIqbpSDHqYtMSGr/9bQVSjb335HR5Ny5mCB8CMwxGFM2rWkvLFp8Gkg66T8wARkJ4Z5BY4/wBj9pkell9mmuiP+MuvlJeL4w0SLgonv8m/JgnES0xKJUw6xh7q9ct6qE5Fncloij5amaxxwHPqrwN0Dzfd2oBGZEjIVvHgCCSG8vahAKbZWu1juCKZ1tByczIjJudEBY9M2ppzafBMJ45utL6TBLMI0kMDmSRlzsrKVFiieQN6mTk5PRh66CCVMII/g5Xi85K0sFArcXn6pfpvJ6YZ1c1V3swkg5OnroDfozgScLApMYSgYOq/Dekv8x+kbYZ0R8AuH1KHznqBvSh33OT0j4o+lJTnjpMKAqhywXVR2Idtmlxm12gj4k9GCKVlUTl4nPWmpa5EknKXr+1uh7/Z+0etPfeSVGtIX0wCG5EsK3qMDEwDdnMUjedZIqgfSLyzy6CdrMKnyqn/+jbCE/QiooLuSwrPo0jnfOxrqLTZiVxAty3pAkvNCwR7KYU0voAz0iq50I86OzFGwlp7Lni9OaTvQkXGOv+wY0IMWgYRXwKFr4peFQ3GtfeTuXN7j453fLE+vEQ3D5SImbSnPm8VA8/APJudcyHO+ICt2jPRKAqKppF3Px+Ym3YUNWKPb1F5JVqK0yLJKS2sXL2RbScn4lV809LUjVL+axLaOmeI5vGmtIe7O0qsDxGG6pasbu53O5/teGuKuvF/rYCK0IEAMUz30Z7z50yvgJ5SfH4yHxRh5jUSJC0iT1hhgdpU2ULftVTqmETJu7UhRhoqR4v7oeCGVd0XY7UeRXzMHFaH65dHUcbUQCBNrCXWwzE31fwju/J1w+F4UR8FM1+S1N+quukOF9KXwV9EWLc4IJH5qY9HEZ1wTkpUsRj40bjVrE8a+yM9gCAl5VAfCRsvy97MZl9xHcgBac4CggQ7zzPlzHWF3vnEHcpwhB39IHOLPrEdT1MCl8ed6OQFxxgWdFpi7mGoyxW0TKjjx6v3IsnW9ZgzcITBMtS89Xy4o1RTI5lxm3XcOmdiToiwn1vep8N77Qp8++4ipNnphkY+sDqe6swWEpkcNPiNuxsIuarewvbNUZfwSPTdNn1CEEfjPcCiNlnf1uB9E2qLuDrZW6zPlVFyGQ+GXpX4CxGHlJasUvDMy6FxBxgQ3kbdjeXU0E1rmXAkWbW50p/c+HKzUuahJQi9T3MKOziRZfQfWq6XiccTTaK9PEzLI89R0MCqJ/TdYdEEpwAZgG3scRXTgKzgNeY16UUr+PxgAvdd8ZhlN9pW+lR/OzoXfL7vYXteLG+Gk7+KEXHWxbDHRdH6Z1vovXELDhxl/ra3BfVPFxf0CW1Z6ziZKqv5t9xFSfP3S5tt8g3OH/B1HGpBfl4vMw+N1jMUq9dV9mBl1uLwUne5hpzc3Qkzeoz9YyZU9/HhXO36ghmgvQWR054r0GECrEhFIg+EXYl1sHGOPtDVAQRgKwlmUspSIcx5xjrQWaeMtfT4DAuPvwfbjovu0QOIv8KYcf7/V8wJBHEsW/0/7np2nQzyc1eGPufLWIYDBj0i7kJHOlYAAQOBhIRjZH0fGyrO4QXjlVr70ZOQocj3UAYetiTarFVxDwqwBQlZhokHGE82Fhl4CNTmFBECSlFCEBC0M74USDuiIEMJ0jDzZvJgt0nZmgMLuNivST8XEo+c7MTlmeD73FjhKBXnLjtD4XJu+UAfrbyiA5SYq+jWIGCbO094c1qd2sZAGBfa6G0cW0FsaBYSVzqUNRyfib8oTD2dZAy9YfCcm1L72xSgCrsOj48ZI0nHErmqis+bfeHSpbtG83WmFDO9ej30H5qpmZ0ySHDxknoSqc6IkE5Auzdl/fjDYxDvXyvbKKdc3MSwlLC2E/Oafn68t/SuCicrunJ8wfDYhR191A0zQ0FliEJAPB89PXlSpTApNIU+IvvoHzWJbhZSdyzqBcOe5qM6IewY6mEeC7M5YR8TMkawJqFJ6RQE7eF30PgEFD5II4+LPB6Yq9ay/mZOo+CDTmTCUStGzLWYBu0AOIjYYvNi/uaKRulvoYPbXApjC+SDlbNPy2HG54DIoEjGy6cwIKAmdE+N5JMMxIQCig/QdEf8jgIZGBYMzrNmfMO3CgVeDJx9gDR9dbNPU8Jk3wwiHlYX6YTwLnNpjAWn6leCf8eWJTEnCyLpENMVUNhy7N/8gzBCRAO6CCVmxCP9j2LeuF4CrrzVjaYppHn7c7mKtE1u5qqZNy5CKAkpyqPJheAQuBIXgcASZJn2ddWKM9fOf8MihcR7eqt2f3KiHfgJFzxuvJhsab4jNYxho7jhFx/KEwMaMM6CRWBQ6xAijYUAbC7pUzyEQQ3bzoOlK4L3s+iw1E0jvwwFcOzkqEdutacb9aBP4BEOuXgwoeaLONAaxRxc3MTKo9Jja+Kkol3mI39JEUPuUidPxxG3dzzei6Z1xrCeiHoi+hIlLHXibGdTesuHKGiX/6Ah81LdIT6Z0fuovupCOqvekrFkbTv1ALAC7B45mW0v0EHpYCrTRv5DgwT3H28TBu4ipuf+8qPeTh5/nYsnveWrEEzwrapiljnKmdf1DkwxjoqvfNN4yCXkudkppUZOvjl48UWuQjnavA+8MqJAitXiiBL9NnFK5P0/uwDCAfEnKcir7zX3FfRLIdR1iduro4y86HTjAofPD0PB0/Pw+qyHilcCiAN6SAH06SmfpUohUvtoMOZ2jNSktVvNgn84GP9y8iHy2f+cLCpsA0A8EBdvaW4eSObnfuevjjuEjaSk4IACVNyuO65jhqtKAwmBD5lc7GhzovTqHfVJiUF15TRYoV4k46EMXerCodccMaEznC4ed2iHjGC+NkiJtONcQZwcxOYln1d2g5ormo3GsdbVycQPMcN0mgkxdDLTWico8qXEIOAlbpSOG5eHNtKj+LhssN4tbmYrlWJrRI2537MSViJa8xSkbrJm+whZni7vn2+hLbFQ5SdEOgGX39vYTsl6bHxosZgV1OVVKt2cxKazjIAbe4Mq1HGLYforQrRaq5IEreCHnAb/3QZGWxPHf+cJECbVHo0xkYiJdu7SccaZzZU+XeBSRkbIj+zRbFdvXKiAEHSPhByGF3aDGi2KAA5IWKV4kRAk85Pnm0wd6UdONX7bC1ptKn8jHGWe/hUpOvRutc0FMpkSQGsAxAAPFH1CvwYQVy2L3vdmitWImzSkQiWbMoGL7kbjWNLNb2jmWMinlCDkUT6mznfFazKbHvquobvwAn5OHeKIGjH2ubbESjVL/VnZ1tRFDcaJ1Yfvpevx5X/3396vmCZAUiyKNfUIHYxPT8Pnp4nRsTimZdlPB6sOWJBSKRtzSUELQsc+HcMw81RyevMHGOs21QiBX8wjIdqD9L1yrsvkI9oXJiSzDUCQJMSqOcfPD0Pnb1UpOmlYxXKuQEEinlJ+jvpSKKl7jNqz85j1XII3HmsWthi1hd0wc1OoPfUHfAHw9hWd0i1Sa/D6oJz1F41pyZMiIkzxpk0IsYoY+qZJIHpcDkSBYD+zhSoHG0y540iRDDXssWIkxKJ2VzUCjcax/MNdbb+5fY7tKYbz82Cm52wolk0ZilrVsGz3BzNvc9GsPSB4YXfvux1JDiylKdr/Mi7R4mQ4fEVr8jfGEroZlOFa5m/gRovw+HG4wrfoT4fCuPR2n1ynUDSIknJ/QKM6CY0lawU+jJ1OYDW3lnE+5+TwONLXyVoVo6uo8IHdbNdW5Y06vv0e1S3I6bhe7w3+DFPR96YZQmGk0et94LoZXsuA8R4ZkRh/7LyVbo3655UKCp0ov2+44Vw8kexvfygfP5Yxb6067fWHtWRTxgHUbU+UuGeGfnDks/84WBnczUASOEnU/x+u0AKb/xW+F0xJ7Ai3bS4DVxsyKTXTAvx8iYb1d7WTdXk4dm29KDcgw3EZ46s1F5VpvkLtCeFr/MHPDLiAuPdjAqvJq7ejcYl0vFw2WGJgLAyeKFBt128V8pT6g+FbbrBVDiEycqS2maluH529C48feRzeHTlXv1+yuvl91PCtCiwwNFFtlK9b+pvFnRIvdv9RS2aI3ycoehMha4+543CFGmXRYfopHmQ+bpN1c0WM5HZn6ZnXTOn0D1+2VUptHRmn5uVQZ9Yucfqc5aNNcet+eTHPIoKRLUXSfpJXXdf7TG40bjtRTa8vjzeVp+qvwdJF3uOl8jftpcfVBcYUQRjPsiYm5h4Fel6tmGZsGBYz+LDt8rZ8GMesbrE0o0m893457dGyVv+bP1yDPoRq//l+gEPW2ob9Lrm5zqBZgGKeZTEaRRHvK9G0REa64rXrPkc8qJqY8RiRGIJQJEmxVolh2sWA9NtFSE0vi9dGo1b6w0Abpt6Xd7bLCTlD4UFgy5rm/tmMIzO09Nl3XHuzQO19Xhk+WuUKxHzsHXpEctr7ccI184/c19YOsAw9keCsFy/ffnroq+EUtq32+fHPDxzdKX1zma/aO+6Y7X1wbrD2KwYkvhvPIceqK3X884NrD68xYvpduQmrKTZb1XvBqCNSpbr16P6GdwPqQUlczXbkalHLFH6/+Gyw1rH5un/Uw+CXEvEXLsvNC6x9AUn1UqfslNhOJx2CJPXuBGx/+5gzOv42aZhy4WyRP+q9vgxDw8uPSzfefLgPXJPcx/m6DgAPLqCiqdtrT1qtdvShQ7w1CHC42+rO2S/21DYyjczdbMY8mNQ3Lq5CcQDeg8uVmbqZSmyNxiWg80vuyrxjZUv6/E19nLz+VvrjqQ9K5X96d7Cdjx1/HNpbeX33lRNz/x+y1oLGve18gN6P1Djy1StPB4/OXy3jk4evMfaPwBdP0LWla91kcDcUhxPN6UE/sf7l5EPlc/84WAsEQVrbqYx28BLFV5ku7rL5Bqhk0w1kgdsg4b/MS3ZP7TXWSd/9iKZhWNYEdPmA3yp5Ji1YfK7+jHP8kBzKJ9/50Tnp498TpKw+HubljSLsehG41LmHdAeK5NbWQxRJY8sf03aO9aGwsrox613pbUVLsFRTAXmjB/FoxWv2xGPaJw2RoNe0ZQdqhidG43jq6X1OqIQGOOcbXt/U2EdrNhN8WOebFim7Gqqwq6mKqtf5EDVn7LJqrbypvSrnlIgAL6+4lXdvnH6MPj9lrXaADWe+9KxCguC5EYpSVSuc4yDrRqPnV3lZPh26mgLYEQrlOHLRjK9s0HDaCTr/uTw3bYRp8abPZf8N9MgkO/nJrC7uVxTA6trrTnbTwa5OR6yplL6g0Pcz9VTjY1Hl+9NO+Dz/25eHHkhRSpgGpa5CTxfXycGlylM68rePz4YyZpNoSJ28+J2McA8YwNWOQhyP6T/bGLHzbGSuWQ7d0VYH7xzZYLuM3MT91MSNo1nMoTAOuDGqGDjTw7fjZ8duQsP1I7N7pLaz18qOSZ9DSewDsTP1S+Ta3/atlzeY9exKtG/rIO3ljTK97aXH5Rrt9YdSZvD5nv4MQ/PddRIMTRL/znUp37Mw4N1h9M876wbLYy6Msi+07QB25e9Dn8wPOahzeprw9sv76V+54OWzBeDptiPeXj6yBiGofp85fwz8vdn2pemGWmWB5mjbYY+kP0tBQ5nzgVn/KjlgJL7Rg3oUn9KTl2/3UaTBvunbcuxbelBPHt0ueU44GrQ/J0vlRyjtehRoj3vET/vWAIEDh5Z/pr1zPz8Qasd/9BeZ+mbtWVdlqNF+ihPR7ZTqXV9FQF+9uhyWU9+zMOWmgbpO67g7uYmKCKnxvrJljXSB1wTIpWWN9X43lLcbDn8ANoTOOkagD5QqBymX/WUWo5K7n8+JLGONCPpps58uOywfNeKSBk61u/3rIrp5jtz9Pxmlgys6JORz2xCcl9fHyZMmIBp3/srlJVeRdfFaSmJXQ4+qPKfP+jJZ2YS47pFPRb0AoB1mufvURl2+tx8hiQCDaR68jzAH/tgEvRH4IwbFQ+VucHds7AXr5wsQO3c8zjauUBw3/4gKYENFa14Z2Q8mlO8X/5IGG6Wvg+3yx9U9KfjRq12+0OUnGV+R/4OWO+kqRRVX/D/xt+5X1bOO4P9KtfgvupjeKFpiXzGGNDUPkztd74fAsBJOBQOZ/yq8VyzP4NQoMfXGGsZCwM/H1yPACGNq+d5k0otaR7I1i/qwu7j5XBz49hS1IwdXVX63q7xbmrczQJ3Y72z2WZKwKWqoMGUkfRrhsLYUN6GPSeKdJ8b/5vjlTrPV5f0YF/7YjjZSTguYXtrF59F6bg38bP2ZWM+C1AJnKq9QX8EgUcsLm5WIn0+GP3E/fFBYWt/0FNUfsY89O3NNa0d5s98wE75nH6g9fb5BSfxSvtiIOngvppj2Nldbo0p842nzn2WB4qP4R+PLZU+fbCkHv/12AqrTYHvwnFV3g7rBpVL48QdBBE9H79Wvh8nYrfjt21FWFl8AofPzpX7bF7ciheaq611mZ5grftU2gp7XhFVriPjY67t1PGy7m14pseaQ+bvmpJU6wFJHAfGHi/jfT9f1oXXTlFdm+Vzz+Lw2blYNOMd9JycLvPISTj4mzW/wBMH74MkpKfoGrm38T40KEibh/AdnUxtGtRKJywpPIcLfZNw9eJE0dUyf3wHW2oasONYrdzb7OfUvjV1jPl+Vh+OqITpSNKm7R1r/zDbw21NXWvGM3kP8Ac9PL78N/jb43ePed1Y7ydzwXdw64xrePf9PNEFX1lyBP+tcTnc3DhWzT+F/acX6P41503MAzwfi+Zcxomz0+hdYh7lvWSlj93EqTfQdz1Xr0lADt/We6Ukdm9e3Iqd3eX2PHQCfHnJUfxjS51i2rPXCb/fv6xuwUs9JVrvBvaesrGwAyH42NVTJmPNOWryvEQIm0taCHJl7lfms1JsCNYNEpH6gH3QTDhG3LXXEc/BmIeywgto650l60aII9QeK3MtqdvHDjY3GkfiWgJvP/FdXL9+Hfn5+bhZhBOSl+NfIIyPFt1III7D+HUmIflD5DN7ODh37hzmzp37+y/MSEYykpGMZCQjGcnIB8qlS5cwffr0T/s1RIaHhzF79mxcuXLlY31/6tSpOH/+PLKzs3//xX+A8pk9HFy/fh0TJ07ExYsXb6rT7h+C3LhxAzNmzMClS5cyp/L/xZLp+09PMn3/6Umm7z89yfT9pyf/K/o+CAL09/dj2rRpcN2bC2M0PDyM0dGxizj+PolEIpmDwYfIzc1R9c8QnsT5+fkZhfUpyfjx4zN9/ylJpu8/Pcn0/acnmb7/9CTT95+efNJ9f7M6WLOzszMG/ickN9cxMCMZyUhGMpKRjGQkIxnJyKcmmcNBRjKSkYxkJCMZyUhGMpIRAJ/hw0FWVha+9a1vISsr69N+lT84yfT9pyeZvv/0JNP3n55k+v7Tk0zff3qS6fuMfFLymU1IzkhGMpKRjGQkIxnJSEYy8tHkMxs5yEhGMpKRjGQkIxnJSEYy8tEkczjISEYykpGMZCQjGclIRjICIHM4yEhGMpKRjGQkIxnJSEYyoiRzOMhIRjKSkYxkJCMZyUhGMgIgczjISEYykpGMZCQjGclIRjKiJHM4yEhGMpKRjGQkIxnJSEYyAiBzOMhIRjKSkYxkJCMZyUhGMqIkczjISEYykpGMZCQjGclIRjICAPj/AB3Rru/JZGdMAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Load the input to feature excitatory and inhibitory network weights\n", + "featureW = np.load('./mats/1_BasicDemo/featureW.npy')\n", + "\n", + "# Plot the weights\n", + "plt.matshow(featureW.T)\n", + "plt.title('Input > Feature Weights')\n", + "plt.colorbar(shrink=0.8, label=\"Weight strength\")\n", + "\n", + "# Display the plots\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "826213d7-7721-440c-b1a8-47fb613339eb", + "metadata": {}, + "source": [ + "In this case, we have more inhibitory connections than we do excitatory for the input to feature layer. Let's load the feature to output layer spikes and visualise them." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "7609eae5-f584-4c98-9eb6-3c3cf1e2aa04", + "metadata": {}, + "outputs": [], + "source": [ + "# Load the input to feature excitatory and inhibitory network weights\n", + "fo_exc = np.load('./mats/0_basicdemo/fo_exc.npy')\n", + "fo_inh = np.load('./mats/0_basicdemo/fo_inh.npy')\n", + "\n", + "# Create a figure and a set of subplots\n", + "fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(10, 5)) # Adjust the figure size as needed\n", + "\n", + "# Plot the excitatory weights\n", + "exc_plot = axes[0].matshow(fo_exc)\n", + "axes[0].set_title('Feature > Output Excitatory Weights')\n", + "fig.colorbar(exc_plot, ax=axes[0], shrink=0.4, label=\"Weight strength\")\n", + "\n", + "# Plot the inhibitory weights\n", + "inh_plot = axes[1].matshow(fo_inh, cmap='viridis_r')\n", + "axes[1].set_title('Feature > Output Inhibitory Weights')\n", + "fig.colorbar(inh_plot, ax=axes[1], shrink=0.4, label=\"Weight strength\")\n", + "\n", + "# Display the plots\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "d591969a-e72e-43b2-8c89-16a13bb29fe6", + "metadata": {}, + "source": [ + "### Propagate network spikes\n", + "\n", + "Now we'll propagate the input spikes across the layers to get the output. All we have to do is multiply the input spikes by the Input > Feature weights for both excitatory and inhibitory matrices and add them, then take the feature spikes and multiply them by the Feature > Output weights and do the smae thing. We'll also clamp spikes in the range of [0, 0.9] to prevent negative spikes and spike explosions.\n", + "\n", + "Let's do that and visualize the spikes as they're going through, we'll start with the Input to Feature layer." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "f6c84239-c176-48c3-8954-25da5f989d61", + "metadata": {}, + "outputs": [], + "source": [ + "# Calculate feature spikes (positive and negative weights)\n", + "feature_spikes = np.matmul(if_exc,patch_1d) + np.matmul(if_inh,patch_1d)\n", + "feature_spikes = np.clip(feature_spikes, 0, 0.9)\n", + "\n", + "# Now create the line plot\n", + "plt.plot(np.arange(len(feature_spikes)), feature_spikes)\n", + "\n", + "# Add title and labels if you wish\n", + "plt.title('Feature Layer Spikes')\n", + "plt.xlabel('Neuron ID')\n", + "plt.ylabel('Spike Amplitude')\n", + "\n", + "# Show the plot\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "4ea0b0a3-66fc-4202-963c-cbd05114d283", + "metadata": {}, + "source": [ + "Now let's propagate the feature layer spikes through to the output layer." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "f5d4dc99-c7b9-4e9b-ba7c-58f6e30631cb", + "metadata": {}, + "outputs": [], + "source": [ + "# Calculate output spikes (positive and negative weights)\n", + "output_spikes = np.matmul(fo_exc,feature_spikes) + np.matmul(fo_inh,feature_spikes)\n", + "output_spikes = np.clip(output_spikes, 0, 0.9)\n", + "\n", + "# Now create the line plot\n", + "plt.plot(np.arange(len(output_spikes)), output_spikes)\n", + "\n", + "# Add title and labels if you wish\n", + "plt.title('Output Layer Spikes')\n", + "plt.xlabel('Neuron ID')\n", + "plt.ylabel('Spike Amplitude')\n", + "\n", + "# Show the plot\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "54b4f5f6-017b-4d7d-812a-c96baf9cb39f", + "metadata": {}, + "source": [ + "Success! We have propagated our input spikes across the layers to reach this output. Clearly, one of the output spikes has the highest amplitude. Our network weights were trained on 500 locations from a Fall and Spring traversal of Nordland. For this example, we passed the first location from the Summer traversal through the network to achieve this output - which clearly looks to have spikes Neuron ID '0' the highest!\n", + "\n", + "Let's prove that." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "780371ca-9dfe-4dd7-857d-e35be73ffd23", + "metadata": {}, + "outputs": [], + "source": [ + "# Output the argmax from the output spikes\n", + "prediction = np.argmax(output_spikes)\n", + "print(f\"Neuron ID with the highest output is {prediction}\")" + ] + }, + { + "cell_type": "markdown", + "id": "7bc8a7fb-66b4-455b-922e-b0fdc38b53c5", + "metadata": {}, + "source": [ + "### Conclusions\n", + "\n", + "We have gone through a very basic demo of how VPRTempo takes input images, patch normalizes them, and propagates the spikes throughout the weights to achieve the desired matching output. Although this demonstration was performed using NumPy, the torch implementation is virtually the same except we use tensors with or without quantization. \n", + "\n", + "The purpose of splitting up excitatory and inhibitory weights is to allow for extra hometostatic normalization of inhibitory connections, which has proven to be critical in regulating overall system activity.\n", + "\n", + "If you would like to go more in-depth with training and inferencing, checkout some of the [other tutorials](https://github.com/AdamDHines/VPRTempo-quant/tree/main/tutorials) which show you how to train your own model and goes through the more sophisticated implementation of VPRTempo." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.4" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} From e0473a0e93ec4d1a6f701eb0cc38758a92a51b0e Mon Sep 17 00:00:00 2001 From: Adam Hines Date: Thu, 30 Nov 2023 10:34:58 +1000 Subject: [PATCH 63/69] Modified tutorials --- tutorials/1111_BasicDemo.ipynb | 488 ---------------------- tutorials/1_BasicDemo.ipynb | 380 ++++++++++++++--- tutorials/2_Introduction.ipynb | 734 --------------------------------- tutorials/3_Quantization.ipynb | 493 ---------------------- 4 files changed, 314 insertions(+), 1781 deletions(-) delete mode 100644 tutorials/1111_BasicDemo.ipynb delete mode 100644 tutorials/2_Introduction.ipynb delete mode 100644 tutorials/3_Quantization.ipynb diff --git a/tutorials/1111_BasicDemo.ipynb b/tutorials/1111_BasicDemo.ipynb deleted file mode 100644 index 3150d68..0000000 --- a/tutorials/1111_BasicDemo.ipynb +++ /dev/null @@ -1,488 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "id": "b34c7b8a-e7bb-47f4-b558-be1bde9a7b37", - "metadata": {}, - "source": [ - "## VPRTempo & VPRTempoQuant - Basic Demo\n", - "\n", - "### By Adam D Hines (https://research.qut.edu.au/qcr/people/adam-hines/)\n", - "\n", - "VPRTempo is based on the following paper, if you use or find this code helpful for your research please consider citing the source:\n", - " \n", - "[Adam D Hines, Peter G Stratton, Michael Milford, & Tobias Fischer. \"VPRTempo: A Fast Temporally Encoded Spiking Neural Network for Visual Place Recognition. arXiv September 2023](https://arxiv.org/abs/2309.10225)\n", - "\n", - "### Introduction\n", - "\n", - "This is a basic, extremely simplified version of VPRTempo that highlights how images are transformed, spikes and weights are used, and the readout for performance using a model trained using our base system and the Quantized Aware Training (QAT) version. This is a basic, extremely simplified version of VPRTempo that highlights how images are transformed, spikes and weights are used, and the readout for performance. Although the proper implementation is in [PyTorch](https://pytorch.org/), we present a simple NumPy example to get started. As in the paper, we will present a simple example using the [Nordland](https://webdiis.unizar.es/~jmfacil/pr-nordland/#download-dataset) dataset with pre-trained set of weights.\n", - "\n", - "Before starting, make sure the following packages are installed and imported:" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "id": "c879cd02-82db-441d-9476-fff1925bf494", - "metadata": {}, - "outputs": [], - "source": [ - "# Imprt opencv-python, NumPy, and matplotlib.pyplot\n", - "try:\n", - " import cv2\n", - " import numpy as np\n", - " import matplotlib.pyplot as plt\n", - "except:\n", - " ! pip install numpy, opencv-python, matplotlib # pip install if modules not present\n", - " import cv2\n", - " import numpy as np\n", - " import matplotlib.pyplot as plt" - ] - }, - { - "cell_type": "markdown", - "id": "bb45df38-e333-46b2-9161-80e6ac367532", - "metadata": {}, - "source": [ - "### Image processing\n", - "\n", - "As in the previous tutorial, we will load in a 360x640 image and show the patch-normalized version. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "67f129b5-9a7a-4b50-9d94-b9bf512f8b70", - "metadata": {}, - "outputs": [], - "source": [ - "# Load the input image\n", - "raw_img = cv2.imread('./mats/1_basicdemoquant/summer.png')\n", - "rgb_img = cv2.cvtColor(raw_img, cv2.COLOR_BGR2RGB) # Convert to RGB\n", - "\n", - "# Load the patch normalized image\n", - "patch_img = np.load('./mats/1_basicdemoquant/summer_patchnorm.npy', allow_pickle=True)\n", - "patch_img = patch_img.astype(np.int32)\n", - "# Create a figure to hold the subplots\n", - "plt.figure(figsize=(10, 4))\n", - "\n", - "# Plot the first image\n", - "plt.subplot(1, 2, 1) # 1 row, 2 columns, 1st subplot\n", - "plt.imshow(rgb_img)\n", - "plt.title('Nordland Summer')\n", - "\n", - "# Plot the second image\n", - "plt.subplot(1, 2, 2) # 1 row, 2 columns, 2nd subplot\n", - "plt.matshow(patch_img, fignum=False)\n", - "plt.title('Nordland Summer Patch Normalized')\n", - "plt.colorbar(shrink=0.75, label=\"Pixel intensity\")\n", - "\n", - "# Show the plot\n", - "plt.show()\n", - "max_int = np.max(patch_img)\n", - "print(f\"The maximum integer pixel value is {max_int}\")" - ] - }, - { - "cell_type": "markdown", - "id": "b68cf25e-35ae-4885-9cf1-c1b09ce4ad42", - "metadata": {}, - "source": [ - "The patch normalized image here are floating point values in the range [0, 1]. For the base VPRTempo system, this is fine because the entire system works using floating points. However, in our quantized model we will be using integers. To demonstrate the conversion from floating point to integer, we'll manually quantize our input spikes by dividing using the `scale_factor` determined from the QAT.\n", - "\n", - "Let's load in some model scale factors, we'll use some of these later for the weight calculations." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "6f67656a-3ba4-4374-b780-4e8bac4ec2d2", - "metadata": {}, - "outputs": [], - "source": [ - "# Load network scale factor\n", - "scale_factors = np.load('./mats/1_basicdemoquant/if_scales.npy',allow_pickle=True)" - ] - }, - { - "cell_type": "markdown", - "id": "82691809-7b06-4f0b-aca0-e19d293355b3", - "metadata": {}, - "source": [ - "Like in the previous tutorial, we will convert this to a 1D-array to pass through the layers." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "2bd6ae95-2a79-4b45-8a60-503079339739", - "metadata": {}, - "outputs": [], - "source": [ - "# Convert 2D image to a 1D-array\n", - "patch_1d = np.reshape(patch_img, (784,))" - ] - }, - { - "cell_type": "markdown", - "id": "9d9a5eaf-1de3-461f-b138-3ac820da8bae", - "metadata": {}, - "source": [ - "### Load the pre-trained network weights\n", - "\n", - "Our network consists of the same architecture as in the previous tutorial. The excitatory and inhibitory weights have been converted to the integer representations from the QAT and will be applied directly to the quantized input spikes." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "6d98749a-8f28-477b-871c-93626e96786c", - "metadata": {}, - "outputs": [], - "source": [ - "# Load the input to feature excitatory and inhibitory network weights\n", - "if_exc = np.load('./mats/1_basicdemoquant/if_exc.npy')\n", - "if_inh = np.load('./mats/1_basicdemoquant/if_inh.npy')\n", - "\n", - "# Create a figure and a set of subplots\n", - "fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(10, 5)) # Adjust the figure size as needed\n", - "\n", - "# Plot the excitatory weights\n", - "exc_plot = axes[0].matshow(if_exc.T)\n", - "axes[0].set_title('Input > Feature Excitatory Weights')\n", - "fig.colorbar(exc_plot, ax=axes[0], shrink=0.4, label=\"Weight strength\")\n", - "\n", - "# Plot the inhibitory weights\n", - "inh_plot = axes[1].matshow(if_inh.T, cmap='viridis_r')\n", - "axes[1].set_title('Input > Feature Inhibitory Weights')\n", - "fig.colorbar(inh_plot, ax=axes[1], shrink=0.4, label=\"Weight strength\")\n", - "\n", - "# Display the plots\n", - "plt.show()\n", - "\n", - "# Print dtype\n", - "print(f\"Excitatory weights integer type is {if_exc.dtype}\")\n", - "print(f\"Inhibitory weights integer type is {if_inh.dtype}\")" - ] - }, - { - "cell_type": "markdown", - "id": "6de0fada-374c-4289-8042-5347b6b2ba21", - "metadata": {}, - "source": [ - "In addition to this, we will set the zero points for these weights. From the QAT, the zero point for the excitatory weights was 0 and 127 for the inhibitory weights." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "b0405142-f8bd-4d83-a78e-d078f911d649", - "metadata": {}, - "outputs": [], - "source": [ - "# Set the zero point for the inhibitory weights\n", - "zeropoint_inh = 127" - ] - }, - { - "cell_type": "markdown", - "id": "d591969a-e72e-43b2-8c89-16a13bb29fe6", - "metadata": {}, - "source": [ - "### Propagate network spikes\n", - "\n", - "Now we'll propagate the input spikes across the feature to get the output, like in the previous tutorial. Let's start with the excitatory weights though first, since we will need to use different scaling of the output based on the zero point." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "f6c84239-c176-48c3-8954-25da5f989d61", - "metadata": {}, - "outputs": [], - "source": [ - "# Calculate feature spikes for the positive weight calculation\n", - "exc_feature_spikes = (np.matmul(if_exc,patch_1d))\n", - "\n", - "# Now create the line plot\n", - "plt.plot(np.arange(len(exc_feature_spikes)), exc_feature_spikes)\n", - "\n", - "# Add title and labels if you wish\n", - "plt.title('Excitatory Feature Layer Spikes')\n", - "plt.xlabel('Neuron ID')\n", - "plt.ylabel('Spike Amplitude')\n", - "# Show the plot\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "id": "4ea0b0a3-66fc-4202-963c-cbd05114d283", - "metadata": {}, - "source": [ - "We can see here that the spike values calculated for the feature layer are huge. That is because they need to be properly re-scaled after calculation. To do this, we need to take a couple of the scaling factors we imported earlier to transform the output to a reasonable range." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "1bd2b7f6-c698-4a7d-9099-da9cc59ed007", - "metadata": {}, - "outputs": [], - "source": [ - "# Get the required scale factors to transform the feature spikes\n", - "perslice_scale_exc = scale_factors[0]\n", - "perchannel_scale_exc = scale_factors[2]\n", - "\n", - "# Transform the feature layer spikes based on the scale factors\n", - "scaled_exc_feature_spikes = (exc_feature_spikes//(perslice_scale_exc*perchannel_scale_exc))//perchannel_scale_exc\n", - "scaled_exc_feature_spikes = scaled_exc_feature_spikes.astype(np.int32)\n", - "# Plot out the scaled feature layer spikes\n", - "# Now create the line plot\n", - "plt.plot(np.arange(len(scaled_exc_feature_spikes)), scaled_exc_feature_spikes)\n", - "\n", - "# Add title and labels if you wish\n", - "plt.title('Excitatory Feature Layer Spikes')\n", - "plt.xlabel('Neuron ID')\n", - "plt.ylabel('Spike Amplitude')\n", - "# Show the plot\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "id": "4d9d5a9e-05d3-475f-beec-1c6d29923cd5", - "metadata": {}, - "source": [ - "Now let's do the same thing for our inhibitory weights." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "e1059733-2b2b-4c49-8ba2-2a52531f483c", - "metadata": {}, - "outputs": [], - "source": [ - "# Calculate feature spikes for the negative weight calculation\n", - "inh_feature_spikes = (np.matmul(if_inh, patch_1d))\n", - "\n", - "# Get the required scale factors to transform the feature spikes\n", - "perslice_scale_inh = scale_factors[1]\n", - "perchannel_scale_inh = scale_factors[3]\n", - "\n", - "# Transform the feature layer spikes based on the scale factors\n", - "scaled_inh_feature_spikes = ((inh_feature_spikes - zeropoint_inh) // (perslice_scale_inh * perchannel_scale_inh)) // perchannel_scale_inh + zeropoint_inh\n", - "scaled_inh_feature_spikes = scaled_inh_feature_spikes.astype(np.int32)\n", - "\n", - "# Create a figure and a set of subplots\n", - "fig, axs = plt.subplots(1, 2, figsize=(10, 5)) # 'figsize' can be adjusted as needed\n", - "\n", - "# First subplot\n", - "axs[0].plot(np.arange(len(inh_feature_spikes)), inh_feature_spikes)\n", - "axs[0].set_title('Inhibitory Feature Layer Spikes')\n", - "axs[0].set_xlabel('Neuron ID')\n", - "axs[0].set_ylabel('Spike Amplitude')\n", - "\n", - "# Second subplot\n", - "axs[1].plot(np.arange(len(scaled_inh_feature_spikes)), scaled_inh_feature_spikes)\n", - "axs[1].set_title('Scaled Inhibitory Feature Layer Spikes')\n", - "axs[1].set_xlabel('Neuron ID')\n", - "axs[1].set_ylabel('Spike Amplitude')\n", - "\n", - "# Adjust the layout\n", - "plt.tight_layout()\n", - "# Show the plot\n", - "plt.show()\n" - ] - }, - { - "cell_type": "markdown", - "id": "8e8e56a1-591c-4617-b3f0-2b41082b9a31", - "metadata": {}, - "source": [ - "One thing you may notice is that although we used negative weights, we output positive spikes from in this operation. That is because of the `zeropoint_inh` of 127, which we add to the final spike calculation.\n", - "\n", - "Now that we separately calculated our positive and negative feature layer spikes, we need to add them together to get the final feature spikes. However, we'll note that because the scales and zero points for the two operations are different they will require to undergo additional transformation to match the scales. In the VPRTempoQuant model, we derive this addition scale and zero point from the `nn.quantized.FloatFunctional.add` function which learns these values during QAT. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "274df441-3015-4bab-a3bb-1498a2a7837a", - "metadata": {}, - "outputs": [], - "source": [ - "# Combined scale factors\n", - "combined_scale = 58\n", - "combined_zeropoint = 61\n", - "\n", - "# Remove zeropoint from inhibitory spikes\n", - "scaled_inh_feature_spikes_zero = scaled_inh_feature_spikes - zeropoint_inh\n", - "\n", - "# Combine the excitiatory and inhibitory feature spikes\n", - "exc_rescaled = (scaled_exc_feature_spikes/perchannel_scale_exc) * combined_scale\n", - "inh_rescaled = (scaled_inh_feature_spikes_zero/perchannel_scale_exc) * combined_scale\n", - "print(perchannel_scale_inh.dtype)\n", - "combined = (exc_rescaled.astype(np.int32) + inh_rescaled.astype(np.int32)) + combined_zeropoint\n", - "combined = np.clip(combined,0,max_int)\n", - "\n", - "# Plot the combined spikes\n", - "plt.plot(np.arange(len(combined)), combined)\n", - "\n", - "# Add title and labels if you wish\n", - "plt.title('Combined Feature Layer Spikes')\n", - "plt.xlabel('Neuron ID')\n", - "plt.ylabel('Spike Amplitude')\n", - "# Show the plot\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "id": "e557a0ee-5202-45ac-af53-c49ccc65b4aa", - "metadata": {}, - "source": [ - "Now we will apply the same process for the output layer to get the output spikes." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "f5d4dc99-c7b9-4e9b-ba7c-58f6e30631cb", - "metadata": {}, - "outputs": [], - "source": [ - "# Load the input to feature excitatory and inhibitory network weights\n", - "fo_exc = np.load('./mats/1_basicdemoquant/fo_exc.npy')\n", - "fo_inh = np.load('./mats/1_basicdemoquant/fo_inh.npy')\n", - "\n", - "# Create a figure and a set of subplots\n", - "fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(10, 5)) # Adjust the figure size as needed\n", - "\n", - "# Plot the excitatory weights\n", - "exc_plot = axes[0].matshow(fo_exc)\n", - "axes[0].set_title('Feature > Output Excitatory Weights')\n", - "fig.colorbar(exc_plot, ax=axes[0], shrink=0.4, label=\"Weight strength\")\n", - "\n", - "# Plot the inhibitory weights\n", - "inh_plot = axes[1].matshow(fo_inh, cmap='viridis_r')\n", - "axes[1].set_title('Feature > Output Inhibitory Weights')\n", - "fig.colorbar(inh_plot, ax=axes[1], shrink=0.4, label=\"Weight strength\")\n", - "\n", - "# Display the plots\n", - "plt.show()\n", - "\n", - "# Print dtype\n", - "print(f\"Excitatory weights integer type is {if_exc.dtype}\")\n", - "print(f\"Inhibitory weights integer type is {if_inh.dtype}\")" - ] - }, - { - "cell_type": "markdown", - "id": "54b4f5f6-017b-4d7d-812a-c96baf9cb39f", - "metadata": {}, - "source": [ - "We'll get our excitatory and inhibitory spikes for the output and scale them." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "780371ca-9dfe-4dd7-857d-e35be73ffd23", - "metadata": {}, - "outputs": [], - "source": [ - "# Load the output layer scales\n", - "fo_scales = np.load('./mats/1_basicdemoquant/fo_scales.npy',allow_pickle=True)\n", - "\n", - "# Calculate the excitatory and inhibitory spikes and scale them\n", - "exc_output_spikes = np.round(np.matmul(fo_exc,combined))\n", - "scaled_exc_output_spikes = exc_output_spikes // (fo_scales[0]) \n", - "\n", - "inh_output_spikes = (np.matmul(fo_inh,combined.astype(np.int32)))\n", - "scaled_inh_output_spikes = (inh_output_spikes - zeropoint_inh) // fo_scales[1]\n", - "\n", - "# Combine the excitiatory and inhibitory feature spikes\n", - "exc_rescaled = (scaled_exc_output_spikes/fo_scales[2]) * combined_scale\n", - "inh_rescaled = ((scaled_inh_output_spikes - zeropoint_inh)/fo_scales[3]) * combined_scale\n", - "\n", - "output_spikes = (exc_rescaled.astype(np.int32) + inh_rescaled.astype(np.int32)) + combined_zeropoint\n", - "output_spikes = np.clip(output_spikes,0,max_int)\n", - "\n", - "# Plot the combined spikes\n", - "plt.plot(np.arange(len(output_spikes)), output_spikes)\n", - "\n", - "# Add title and labels if you wish\n", - "plt.title('Combined Output Layer Spikes')\n", - "plt.xlabel('Neuron ID')\n", - "plt.ylabel('Spike Amplitude')\n", - "# Show the plot\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "id": "fcd7e8f1-d9fc-48cc-82f6-6ca17c478c37", - "metadata": {}, - "source": [ - "And now, as in the previous tutorial, we can clearly see that Neuron ID has the highest output spike amplitude corresponding to our first learned location.\n", - "\n", - "Let's quickly prove it." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "f2cf56e4-1bb8-47fd-869f-91e96c35f480", - "metadata": {}, - "outputs": [], - "source": [ - "# Output the argmax from the output spikes\n", - "prediction = np.argmax(output_spikes)\n", - "print(f\"Neuron ID with the highest output is {prediction}\")" - ] - }, - { - "cell_type": "markdown", - "id": "7bc8a7fb-66b4-455b-922e-b0fdc38b53c5", - "metadata": {}, - "source": [ - "### Conclusions\n", - "\n", - "We have gone through a very basic demo of how VPRTempoQuant works and the operations involved for quantizing floating points spikes and weights into the integer domain. Although this is isn't exactly how PyTorch performs these tasks (a lot of them are done in the FP space, especially with regards to rescaling for addition) - it should give you a good idea as to how we can perform these kinds of operations in whole integers. This is particularly useful for implementation on hardware such as neuromorphic processors.\n", - "\n", - "If you would like to go more in-depth with training and inferencing, checkout some of the [other tutorials](https://github.com/AdamDHines/VPRTempo-quant/tree/main/tutorials) which show you how to train your own model and goes through the more sophisticated implementation of VPRTempo." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "b780c62e-53da-46c4-b882-f2dac2ca75ea", - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.4" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} diff --git a/tutorials/1_BasicDemo.ipynb b/tutorials/1_BasicDemo.ipynb index b245d5e..d18bbf0 100644 --- a/tutorials/1_BasicDemo.ipynb +++ b/tutorials/1_BasicDemo.ipynb @@ -22,7 +22,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "id": "c879cd02-82db-441d-9476-fff1925bf494", "metadata": {}, "outputs": [], @@ -33,7 +33,7 @@ " import numpy as np\n", " import matplotlib.pyplot as plt\n", "except:\n", - " ! pip install numpy, opencv-python, matplotlib # pip install if modules not present\n", + " !pip3 install numpy, opencv-python, matplotlib # pip install if modules not present\n", " import cv2\n", " import numpy as np\n", " import matplotlib.pyplot as plt" @@ -44,7 +44,24 @@ "id": "66b11853-6e17-4884-ac92-d35d814add42", "metadata": {}, "source": [ - "Next, we will need to get the pretrained weights for the model. To get them and the other materials for the , we will use [Git Large File Storage](https://git-lfs.com/) to download " + "Next, we will need to get the pretrained weights for the model. To get them and the other materials for the , we will use [Git Large File Storage](https://git-lfs.com/) to download the required materials. Please ensure you have it downloaded on your local machine prior to running these tutorials." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "be03b081", + "metadata": {}, + "outputs": [], + "source": [ + "import subprocess\n", + "\n", + "# Run Git LFS pull command\n", + "try:\n", + " result = subprocess.run(\"git lfs pull\", shell=True, check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True)\n", + " print(\"Git LFS pull successful.\")\n", + "except subprocess.CalledProcessError as e:\n", + " print(f\"Git LFS pull failed with error:\\n{e.stderr}\")" ] }, { @@ -59,21 +76,10 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "id": "67f129b5-9a7a-4b50-9d94-b9bf512f8b70", "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAFXCAYAAACIkbUMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9edCtWVUfjn/W3s8573Cn7r5AN6hMKlGQKIpB9EswRkRUELVixIhYpZbGREOIghQkDkWBYhwjWmVSjgkVjFomFVNOQS1/sYImcRYFmRqa7r59x3c6w/PsvX5/rGGv5znv7W5UbFrP7rr9vu85z7CHtdf6rHETMzO2bdu2bdu2bdu2bds+hFp6qDuwbdu2bdu2bdu2bds2bVuAsm3btm3btm3btm0fcm0LULZt27Zt27Zt27btQ65tAcq2bdu2bdu2bdu2fci1LUDZtm3btm3btm3btg+5tgUo27Zt27Zt27Zt2/Yh17YAZdu2bdu2bdu2bds+5NoWoGzbtm3btm3btm3bh1zbApRt27Zt27Zt27Zt+5BrW4Cybdv219R+/Md/HESE3d1dvOc979n4/tM//dPxcR/3cX8tffn1X/91EBF+/dd/3T/7iq/4Cjz+8Y//a3n/g+nPzdpb3vIWfMEXfAEe+9jHYmdnB7fffjue+cxn4l/9q3/1we/otm3btv21tS1A2bZt+2tuq9UKr371qx/qbjws2y/8wi/gUz/1U3FwcIDXv/71+OVf/mV8//d/Pz7t0z4Nb3rTmx7q7m3btm3bX2HrHuoObNu2/W1rn/3Zn403vvGN+MZv/EZ8/Md//AftPYvFAnt7ex+05z8U7fWvfz2e8IQn4Jd+6ZfQdY19fcmXfAle//rXP4Q9e+jayckJ9vf3H+pubNu2/ZW3rQVl27btr7m9/OUvx8WLF/GKV7ziAa9dLpd45StfiSc84QmYz+f4sA/7MPyzf/bPcP369dF1j3/84/F5n/d5+Lmf+zk87WlPw+7uLr7t274NAPCnf/qn+OzP/mzs7+/jEY94BL72a78Wh4eHD6qvb3jDG/D3//7fx6Me9SicOXMGT33qU/H6178efd+PrjP31O/8zu/gWc96Fvb39/HEJz4R3/Ed34Fa6+jav0x/rly5gkc84hEjcGItpTE7IyJ867d+68Z1j3/84/EVX/EV/re53t785jfjq7/6q3Hx4kWcP38eX/7lX47j42Pcc889+OIv/mLccsstePSjH41v/MZvHI3/3e9+N4gI3/Vd34Xv/M7vxOMf/3js7e3h0z/90/G2t70Nfd/jm7/5m/GYxzwGFy5cwBd8wRfg0qVLG/1605vehGc+85k4c+YMzp49i+c+97n43d/93dE1X/EVX4GzZ8/iD//wD/FZn/VZOHfuHP7hP/yHD2rutm3bHm5tC1C2bdv+mtu5c+fw6le/Gr/0S7+EN7/5zTe9jpnxwhe+EP/23/5bvPjFL8Yv/MIv4GUvexl+4id+Ap/xGZ+B1Wo1uv7//b//h2/6pm/CN3zDN+AXf/EX8UVf9EW499578exnPxt/9Ed/hB/6oR/CT/3UT+Ho6Aj//J//8wfV13e84x340i/9UvzUT/0U/vt//+/4yq/8SnzXd30XvuZrvmbj2nvuuQf/5J/8E3zZl30Z/tt/+2943vOeh1e+8pX4j//xP/o1f9n+PPOZz8Rb3vIWfMM3fAPe8pa3bAClv0z7qq/6Kly4cAH/+T//Z7z61a/GG9/4Rnz1V381PvdzPxcf//Efj5/5mZ/BS17yEnz3d383/t2/+3cb97/hDW/A//pf/wtveMMb8B/+w3/An/7pn+L5z38+vvIrvxL33XcffvRHfxSvf/3r8au/+qv4qq/6qtG9r33ta/GiF70IT37yk/HTP/3T+Kmf+ikcHh7iWc96Fv7kT/5kdO16vcYLXvACfMZnfAb+63/9rw5Et23b/sY13rZt27a/lvZjP/ZjDIB/53d+h1erFT/xiU/kpz/96VxrZWbmZz/72fyUpzzFr//FX/xFBsCvf/3rR89505vexAD4R37kR/yzxz3ucZxz5j/7sz8bXfuKV7yCiYh/7/d+b/T5c57zHAbAv/Zrv+afveQlL+HHPe5xN+1/KYX7vuef/Mmf5JwzX7161b979rOfzQD4LW95y+ieJz/5yfzc5z73L9Sf09rly5f5//v//j8GwAB4Npvxp37qp/LrXvc6Pjw8HF0LgL/lW75l4xmPe9zj+CUveYn/bevy9V//9aPrXvjCFzIA/p7v+Z7R55/wCZ/An/iJn+h/v+td72IA/PEf//FcSvHPv+/7vo8B8Ate8ILR/S996UsZAN+4cYOZme+8807uum7j/YeHh3zHHXfwF3/xF/tnL3nJSxgA/+iP/uj9zNK2bdvfjLa1oGzbtj0EbT6f4zWveQ3+z//5P/jpn/7pU68x60p0RwDAP/pH/whnzpzB//yf/3P0+d/9u38XT3rSk0af/dqv/Rqe8pSnbMS6fOmXfumD6ufv/u7v4gUveAEuXryInDNmsxm+/Mu/HKUUvO1tbxtde8cdd+Dv/b2/t9GnmLH0l+3PxYsX8Zu/+Zv4nd/5HXzHd3wHPv/zPx9ve9vb8MpXvhJPfepTcfny5Qf1nNPa533e543+/tiP/VgAwOd+7udufH5aFtbnfM7njNxM93c/ANx5550AgF/6pV/CMAz48i//cgzD4P92d3fx7Gc/+9TMpi/6oi/6AEe3bdv28GtbgLJt2/YQtS/5ki/BJ37iJ+JVr3rVqa6KK1euoOs6PPKRjxx9TkS44447cOXKldHnj370o099xh133LHx+WmfTdudd96JZz3rWbjrrrvw/d///Q4M3vCGNwCQINzYLl68uPGMnZ2d0XV/mf7E9vSnPx2veMUr8F/+y3/B+9//fvzLf/kv8e53v/svFSh72223jf6ez+c3/Xy5XP6l7gfgz7j33nsBAJ/8yZ+M2Ww2+vemN71pA3Tt7+/j/PnzH9DYtm3bHo5tm8Wzbdv2EDUiwnd+53fiOc95Dn7kR35k4/uLFy9iGAbcd999I5DCzLjnnnvwyZ/8yRvPO+0Z99xzz8bnp302bT//8z+P4+Nj/NzP/Rwe97jH+ee/93u/94D33qz9ZfpzszabzfAt3/It+N7v/V780R/9kX++s7OzEacDYAPYPdTtEY94BADgZ37mZ0bzfLN22jpv27b9TWxbC8q2bdtD2D7zMz8Tz3nOc/Dt3/7tODo6Gn1n2RkxyBQAfvZnfxbHx8cPKnvjH/yDf4A//uM/xu///u+PPn/jG9/4gPeaINzZ2fHPmBn//t//+we894PRHwC4++67T/38rW99KwDgMY95jH/2+Mc/Hn/wB38wuu7Nb37zxjw/1O25z30uuq7DO97xDjz96U8/9d+2bdvfxra1oGzbtj3E7Tu/8zvxSZ/0Sbh06RKe8pSn+OfPec5z8NznPheveMUrcHBwgE/7tE/DH/zBH+BbvuVb8LSnPQ0vfvGLH/DZL33pS/GjP/qj+NzP/Vy85jWvwe23347/9J/+E/70T//0Ae99znOeg/l8jhe96EV4+ctfjuVyiR/+4R/GtWvX/sJj/cv0BxBh/uEf/uF4/vOfj4/5mI9BrRW/93u/h+/+7u/G2bNn8S/+xb/wa1/84hfjX//rf41/82/+DZ797GfjT/7kT/CDP/iDuHDhwl+4/x+M9vjHPx7f/u3fjle96lV45zvfic/+7M/GrbfeinvvvRe//du/jTNnzmwzdbbtb2XbWlC2bdse4va0pz0NL3rRizY+JyL8/M//PF72spfhx37sx/A5n/M5nnL85je/eWTZuFm744478Bu/8Rt48pOfjH/6T/8pvuzLvgy7u7v4wR/8wQe892M+5mPwsz/7s7h27Rq+8Au/EF//9V+PT/iET8AP/MAP/IXG+ZftDwC8+tWvxq233orv/d7vxQte8AI873nPww/8wA/gMz/zM/Hbv/3beOpTn+rXftM3fRO+6Zu+CT/+4z+O5z//+fjZn/1Z/PRP/zRuueWWv3D/P1jtla98JX7mZ34Gb3vb2/CSl7wEz33uc/Hyl78c73nPe/D3//7ff6i7t23b9pA0YmZ+qDuxbdu2bdu2bdu2bdsW29aCsm3btm3btm3btm0fcm0LULZt27Zt27Zt27btQ65tAcq2bdu2bdu2bdu2fci1hxSg/NAP/RCe8IQnYHd3F5/0SZ+E3/zN33wou7Nt27Zt27Zt27ZtHyLtIQMob3rTm/DSl74Ur3rVq/C7v/u7eNaznoXnPe95Xv5527Zt27Zt27Zt2/72tocsi+cZz3gGPvETPxE//MM/7J997Md+LF74whfida973UPRpW3btm3btm3btm37EGkPSaG29XqN//t//y+++Zu/efT5Z33WZ+G3fuu3HvD+Wive//7349y5c9uyz9u2bdu2bdu2bQ+Txsw4PDzEYx7zmNHhmqe1hwSgXL58GaUU3H777aPPb7/99lPP5FitVqMzNe666y48+clP/qD3c9u2bdu2bdu2bdv+6tt73/tefPiHf/j9XvOQlrqfWj+Y+VSLyOte97pTSz3/wq/9Ns6eOwcCwADS5F57FoEAkr/lM0IiQko0vpZO75fdo3+A0J6VckSA4/7H8RDCuyD3Vq56F2PsaSPIbXJP0lAhBkBgv4fI+la9b8wJKZG+A2CWfwDr4yrAjForKrN8X1t/Y7O/fd7sgdO5qe06AKAk88sgMBgJFURJ0PIpBi+iqmNucwsdn40L6XTasHmx/6PK+/27yqO1Z2b5TMfBNi1E/ggZd3wXIb6aAVRds0xJ6M/mWGkNBFRm/wgsa6ZPg6663tf6BjCYG02xLqD8TLJeYJDOrdHQTSeGMJo3IvZ5Hl1mnxldB81GtkYNfZ6st/V/g46BWm132ngAZvJx2fNBYa8oqQFASgmUxvOP0XiM/klojKt+be+crB23z5llVJUZXCu4ynrUCtTK4Cr9t3Gx08x4XWEzE8ZuM1xrBesaCR+yMbZ5pkRISM6/yAgoVSSSNUMCiBJKaf0FgEQZzMBQB9nTpb1v2mqtKFV+yr+CytVp18Zo/G5z3gg5J+SUwczSd2r9Tsn4q85T4Cuy5YRebU7sXeN/Cdn5hMxErdXnV+5lFH1GrRWoLHut9dbZFDOjlKJra/uF5DNmmQNfe/b9xczCVQn+zshnoqyhJHNAREKrYX1PlyWtb/ZOgJ0fQ/eIjUXmsiIBKFx9rJWFR9ba5EgpKxwdHuP44BDcDzi6cQMnR9dxvLyB4+NDnAyH6GYdbr3lAmoPrFdr9CdrpMQYasH169ewGpbgWkFU0a+FrpDg/IcoyZhTAkPXgBiJGLUM4GEAF2A23wWlGWodkHPGrOvAqDg8OMDv/9934Ny5c6fSaWwPCUB5xCMegZzzhrXk0qVLG1YVQMpAv+xlL/O/Dw4O8BEf8RHYP7OP/f19EAkztbUfgQEXru1zARUkGwGB0d4PSLEvhHmmDSI0wODvD7efRqTOwJiRFKxsCsbN+9kpuHXLvjbiSWSAJjDUMD+M0jZGHWOOCKrahpUNSakJ8TZWhL4IU0vJmJbNS1WingoW62MFKWgcCR97D+ncjqyB1N7duuVgKQoPACrkCFHIcEUT/t6SP2LabM0NoIDl7wQ40xCcYwAkCsSwYKO/oQNrAMWuif3iWsGcmhDBJiAYX9/mwWhN5r/6OkVxmqgxXUpK32F/EHGY0rIxN5HmjGG2sVn/9ApOOh7rQfX1kfclBa3yXGP69qjNvSlzRkQgBSj6SRAk43UQuk4CuyqjFBPU5OCEKymgGgMzm3+QvQWjtR7toToFLjDEh5QJXZeRAkAhYp2LcE8CmKyfjFoJpdjGzS6EwUDlimEYHEAkSs7XuDL6oUcpFUMpqKWghLUagQalr/Zd+z2l7PzAQFaihJRVCTH6V8EvY0iA7r9SBBjFveeAzfrrY2/zWKeAAg18CIiRhY1rUWsZgQ+AUSo7/Qloa4DJFJjKjOoKgAJXZgF/cStz66eDFFdec1C4Nml3qpS2Pp+yr/VfsTWqQF96DFyx03VgZvR9j361RL9c4bYL51GHHlfuuxvXrt6Hk/UxKDPO753HMKxx93vfj53dDjuzOc6e38PhyRGuXb+KoRZ0iVBB4Kr7JyVwquAKdN0Ms9kMXdehDAPW/Qo5Ad1sDiLGalVB8zkwsKx3lTlbr3v0vfDxlHljLm7WHhKAMp/P8Umf9En4lV/5FXzBF3yBf/4rv/Ir+PzP//yN63d2dk49d8SRLRcVPvJ5tHgYe7QNZ0Iq/hw1E3gTTTBSJXOVjRg1KoTNFNSrKVhpTzMitL4mAHW0Yf3aDe0gABTvkyEJRvH54I37XXfnJsRq1PDC9XJdsMRUbtpy0BwdAFIAhDb/lACk9j63hMT5FFBQE4GYXJsmYiTVpJBEeBMxwFn7KY8xuMdgiMqJAFTI52xk0SKAsmgqJgtMICUFIb4W1tOABH11VNNS0T+25rBOHLWxtnUh1XSNQqcApj2/teI2mKnAtEdsWMGUkZMyCxenWadI548TUBUIcq1OlQ2stulMlEVz4wZUomBLlLx/TdjZGFUzVy18Y5t5Cxp820432Zt2Udt5/gkbkHQVw6fZtW5it/iBZR8zAZwALrpXOIFJBNbIEpvkTX6NYUzYfohrH15PQM6E3CVQEhACQtgbKmir0KgAk+qAqdSie7EAYOSUUJmRkZDSDACQckb2gQtvST1jGCpST6hJAK9ZKwARjgYcxMpaRmCl1CIgAQSodSznjJQzOp3olATkmUCXJahqcSFwJnChtq4BzFfUtl0YoIIGsAJ/p6xgp1aZP25AsdYyoknR/gGohUwsUvL+Zp1OPmamCpQqfUED1gYu3ZoWybDK/jFCTTq3YlVJPodTK7+NZ8Q5iEAwZaTALWLUaLnnghuHN9DNOuRujvW6x2KxQL9e4baL57E773DpnntwfHKAo/URQIR5N8dqVbA4OUG/6AEskWgPJ/2AvqwwlJUoBzWhKuDtuoTKRQAaATMiJAaoMhIIs6T8T4eVuw61VqQu4cz+WQx9xdHxIJZU6kGk4PpBtofMxfOyl70ML37xi/H0pz8dz3zmM/EjP/IjuPPOO/G1X/u1D/4hVdBuFMaNv6vZixIowBRmdiFYVRg5QzOCvinTNIE81pL8jTV8FpgfuBFgUmK1Z9nPaEI+DVmOxhg+awxvDIROE1QAq9zmkVYYzd7CSE2AGrclNyemlMNrmjholqTJfI3kLsmaGW9SoMNVQFKqCW5ESQATgQ2k1AY8XR6rJrEBAJO+ywGjdIQYG/TRmJ8JT50DRDLg8K8JO3ERBKHIzYkDCNO0OTQmdLpwnc5ZExLxs9MsbG4pweaaT59JoABGxZUh46lCowRQCmb3Utrvbk0R8CHjJRg8Y6gdKDDb5qprawY0AEhEam0JkhtGS0oL4JHlTVBY+zWiEU4NTLcWQOUEGIuM0r+zAFUHq6yuEKgrqDKIxZRtOodYEBKYK4jZAU4D50AmFZ6JFPgocEuN9ogMJDRXiAhLqHWAUMpgSrR8V0QIm6mdUF1JyCkj54QuZxCZawOohcHIbvWoyj9TNuAsn9VagFJRakGpyV1CrO8zmjZ6K0WsGoUIqRQkIgxqaWAeK13Gx8zKFq21cf1hoEABLihC+QbMjZdUamuXKCm/Mt6k73Ns2tyZVUnPLKqUEory8VQTqu9wmK5zqngQUNSIsVZGzuoGC30pKm/Gc9Jc3+KBSg7ImatamyA0pqBvuTrCyfIAOzTH+sAsfsDx8gD90OFG7XHXXe/BelggzxLm8x0AjMODG+jXK1RirJYDlssbbeKqvG899BjKACISFzZl5G6OnOdCk6xWsFpkbggCblKHC7fcIp6JQZTNw/UJslqSCiex3g0PzAOtPWQA5R//43+MK1eu4Nu//dtx99134+M+7uPwP/7H/8DjHve4D+g5G0IbQqnMDdU18BI0bd0AtYognPrlp+00s/LYYtPexfpy09i41JGLoW0we05A5PfTCXFl1RFYmfbrNBll+73WMSDyXTAa03jubEywsbgQDs9W7cSAQbQLxOcbOCLtN9t/OnbRntQ8aiBOwQpNBQqa+T2+i0g1OzVwtXEYgDP3RtaPeTJpBkTM1BwRVtT4GRzAjJBUkJyMEP+S/DkPBqDcrI0sVxMAc3/3xOsNoKSaXDMzoCWm+ga+SRc3ETmTrdYPA5wB/PuahDUnmIUu3RRkRyAsZn7ye0dNL9tYLntWBbiFL7QO6Bj1DUoTwRGnN5jBy0eTEqiIaVs04ISsoNnogRRN11rdrWkv7RIhUXu+AQghC12XyuBUAbXeVc7NelHMYtFiL+SmAKIZDr7ccmmgmyrMZZTMOsgE5Nw0eWLkTuI+1utB428yaimgkkCF0JcBKakFjsndQmZ7KLU6byEaIiZ00F64jgD//dGuCW2jQ6M/cwW26xLY3PuJQLUx0GiXHCmvDLfwyUe17XMynpFk3hRceq8nvA/x2RDh3vZbRSk6B6SKsD6XJ/eLUhb4i8umilIG9Ku1gMlSsFwtcM+lu3Hf1XtQuMfemT2cP3cLCMDu7i6G9Qne++67cHx0gDqs0M0yElUcH97Aer2WWJZEKEVoZL3qwbUAXVKALusJJlQuKOotOLN/DmfPXsC6H3B8cIjVegFQRdcl9KUHc8VsnsFifMLi+Bjrfq10wc4DEObzwbSHNEj2677u6/B1X/d1f+H7zUQ78vmaLQqNOCtYrCgsTCRVYUzCaIuACSWgNLGMTBH+yDc7QcPWhL7YtUq/j5sftO1ijJ4PBiifvogi2MPmMu0CBjpUG5u0CKQ8EAvAzYLpbtZYmYRBgrHAIXDR3ZV8j7UhOt++HyuVCrekDN/dA0ziM7aNzOzTByIUm2t9LhE8WDaOkf0l1Pqkv2x2p/oFlMjXbwR6R0jNfhiwMnDyQBty83uzRLkb0SwNpkLDmLjcK9/F8YTnhOujkCsc40jks1oquLY4CNkXUCAm85uYRXBTBH/sM5bM/BXG53qlvtu02+Z2G6ca1rgXiJDcXTAxkft6h3GGrTWaeyc5UoEuL/CVpwCi0OIZ7HvB3hIPUwMvIAXl5r4Y8w40t6+uXdXfa+UG3jwOrAmpWuBxIma9MCtYpBkJ9J/Gb7RYCmzwErHkpCQuIMAMjYyUxZyfUgMzTBmzEHtmbhvje7VWpKGAs1roqlhezLJX1N1SaSrM7x9cE6pa5JJYUiG8jYvwharKCrnVmkTRVOUgWrJH29RpxeYlgaiMeCQpWEmUwOri8svNTQQgi+aEyupWb0SmPFrmhxL5DuENAW1ubBjV6fzKPA/LNU5WJyilYBhWuHzfvbjn7rtwfHQNnBjHRzPURY+uyzjJhGvX7sN9l+5Fv15hd07oM7DuF1ivlxhKASGDQOg6ALVDoYLVMABDaYHxMtkgzmAAXbeLlDpQyjh/4RwWiyX6kyMkDV6uANJsB8wZ16/dQCkFZSju6kOVudzd2QczY7Vc4cG2hxSg/GWbb9oJIx6BCZUz7CTS7kmT65tW3OjxNFfOtA/WJvIBghxZCL1WxD1pqJlUM4mt6ibckF1BNbRA3fYVwSxHox6MNG3TTAa9vjFEm4f7k6fOCLDZtfE1435MAtL9l6nlyT6rXN03bIDCJHBb21MgBbdAzkSTeTV10zVg64YjnQZgfCxNCxzLhTGN6AAE4OqnVVQ1f66Kpg3A24DQeEadLn28Y9qKcR7u77b5OYX312Bqb10eCwyxPqlQ1XiVlJVMiIAkvulUq2cuWF+NcNgmzp4b3zd6d/PNxf2nUxnmAShx/f1VAZyzLREj6WNFKJyCIMEwXz5Tg/fy/+p7wlVZCXAYPS8F4NF4epuL5raynWJuAgY4hTdav5LSGjvN+d4w5YlZAUULqBb+IY9ISf6J+ya4lxR82AjNfUupBaOay86syEV5FaWEzCQxJpqtI3EpVQN2CwYMLkWipYKTut8V3JDyQgc4E/7lGY2svE2BQrzG4mVMGWOwxo0FgAEF0nFlA3mNtwD7l2NXr/6dgExZXD2aPcNUobjO95qmXCC6zUWR1OsKo6CB4sLVA79r1f6qG2QYCoahqHsOuHZ0A+vlMUoZMPQrlGGJvf05zp+7HcfHh7h85T5cHXp0OeP4+Agnh4cYhh4pActFQak9ah1QUZCyzEstAxIx1mWtrhmIqy+Zlb2tBRjYmc8w6zKGocesDshJJmDgAhoqctehoxmILdmDUCpjPt9FrRXDStZnGCQ5IwZmP1B7WAMUIIAUTMFGa1HrnmpsHjdCwjQrSJHx/Uhqbgi59UK4wbQfdt24W40xSxDeZp8jMCITdOE6UR6NCbLfM32GX29aUIUjZdkvpi+ertG42RgtdsA+bz5eiz8JXMIUmAgSHNmM5/ZUQem3VI8zQmqWm/bAcWNA4wHGfQcbwGmuC9M0m5lL3B4SzKaWKmo01ubShtksaCbsAhQMwGys+TaXhvWYAXM5TVsQVIDF9m1m8Ixo32VsoAsjUZy+R+L1UQvkAneJGxGz+tWrCU8EGkiWgTO2JmDS31NpVffVKJYLFAS2msPtfaldY89nUpcAmnCE9T21FZJZN3dPc/uMrYqsGo18Tw5WxRUmsR9tb5cwRmYBO+bmE/bTQFV0pfka6jjEKpI8y5C1/7nrTrE+MlKGg5Sc1R0HtXSlBnBbOQCl/WAlFJAn72UuDfho2q+BlFoZZSgYyuBTX4sJNEahglTTSNhzZWQFJwXiqphagsy6V8Huttnc39JXWyGJu2hp1SYHGJKFYlNrWT8+Y2zjrQEYsa8HqSKX1DNbU0WqhJoMEDVAZXtNlGGLdTFeyAL0SdwnR8eHOD46RN6Z4dy5c2BmHB2egIhw/vwFzHY6VBQcLw4xlAE78zlWiyPcded7sLMzB1HB9YOr2NvfwZm9fbz/ve/BycEB+n4JAmFxdIJh3UPcdoRhWKHv10ARDn/u7DkgJSz6FVALhmGNWgcACkJTQhn6EY/PSdyaO/MOAzOuXbuC5eLY1blaK6iIa76W4tYTKytRNeCeS8W6ivvPgpgfTHt4AxS3DqimE9EvxgzXZGMzLVf1p2tONzftR+oSwJ91qgBlwNU1f4lyiXB9CmCo9S0CmIDa0bZkCmMgC0ZkuPZvzzEGC8Sfyn51szHZhhQNiibvt9iGxitDrA7Mf0r+BgN0Zvo09xiFd7cJGM/jA7k8Nl1qbVgb4IVPE4RtrU8Hq0EY2te1gQYzwVZuQXU2I2wz43UXGpOdjup0uNe01KqpBcxQTfPmczEdO1Fy0/lGC926mSvN119B+XSaTAQYPSaINmiaD1XNYpuAVPuZNXi0uTckgm8iV127FQ3e5t3WRX7ZEFFEHisTnEc+LiQNfodZlUKrrMLDBucrOoItbTVNSuv8axCuYWVC1bwqGu1jd+ewjUEC49t8tLFM58PviQO3lxoIVhrOWkPF1iFlQsot+NTcva2mjQb5evRImB9S4E0SNCt7Hv7cnAgJLNaslBXcJeSaUXN1C12uWTKdDETXZlUwNx1nETsWcOuBuToPkk6sezsoXzInEodnSwi1+gEaBK+0E+sDyburPz/GvY34sO9BASeaoIXEkmZbagGT1FCJu95lRFJ+XyWVGaoMca24995LODg8wP7+Hub7uyhrsSas18fo6xoDHWKv7GNvfx9pj3F8+Tr29m/Dzg7QzeS6a9cv4/jkCLeU87jnzvfi2rXLGIY1Bu6xM9/FLHfgXNH3a7FWlF7AIzMoJ5wsFqjDgGHoXVxyFS8DdYQyMIZi88qgJNaQfhhwfHyMfqgYhoJaekgsJNQSVLFaHamrWVLmd3Z2ccu58zg+PsbJeoEKQi2yfB9IYMHDGqBUjgGnoZYGGkOvtQVeMomAj1qfXRsszhKd7ABgfC0QGOokS5TJfKJB2nDzMcY2Bihml24xEzH00+Ix7AbfEJYh5KBlM2XVsgxaEqwxZVHrjJHUAMQiILE29a+7AMT0p10TUpcJo+uiC270nSOLzfmKfTBtOoKTqTAfF24adRvELQu5TZf1va2LzbUtcgS4BjLFG3K6ID2t/1brhbyPIhAYm0B4o7lQ59E1Iy18Smym4XEEpfE9AMhcGwKdDK0apZQ6DswGWv0etxqmSK8EouqmaxMG9Sbji64sDp9tAAwZrAqDcXaE3SsZM+xWN8HS0/E2sGGvlq1jbg/JyGCGCBqdSPL/s2Z8tEBtACqM0X5nCxq2sgQ0oTIE8A0X4CKw2bNsTKDyZN1rzuhU0qSUJBsOze1jaeS1WiArwJxcpptLqUsSNJYTAV2WInBhX85yUquOgNqUCal2qCW5u8d+igXMMnjYgYuY9pvN1/aSuXxqzQ7KSimStTRxfRtQJm7WRlM0fR3CLRvzVQNImXxn9D9al9p4Ccd/Boij9oTIG4Irl4DDg2OcnBxjf28Pt916GyoX9KuVKsI9To6u4N5L17B3/izOnj0PSp24aJYHuHblEq5dvYT1aoXVeoWcCPe+/15w32M+m2G1OsHefB878zk4ycymnHF8dIihWPZVRWagDhU8NMWm7yXtd2d3B7mbYbFYuPwstQBcQR1huTzG8mQB5A7dfC4gjGW2zCrI3FL1z5w5i4/6qI8GkPDnb3+HgJacxQKYgDTcv5Ia28MaoHhzIrM4BNFOacreTOttsh6mqVUI8iM1y5p5P1oJonLlpkAeV4AUAi4jQTFCjExRL0AUjOyC0oBLc12dPm6gGTxp9Ca7p05N1uFni3OwHkQAcErzsetoRxtUN6b605vp5JRu02RtHOzY5h/3M7zUgefYahN64IzndJxuFhL7aVpic7vE8Vt8jnWhgSECUALzmt4b8cVYY7ZxjkEfW6Ck/gtQoI2tNuvfeEw3QXSx2Thj1V/WCTA05pql/DMNt8VVjFvVwRERoFolUcj00doc46Js9s4JqHPmj9F3LtDM8hHm3AvKTdaFKrlbKoHUZaD1NYiapm1gBSFWLUioqkXRhKcIIdi25kSgorUvnFzb2ldO3lcppiaf58RacdVAGLQwl7ki0GqIVEkNriinzr+AGXmngEExq6fcqkmbxaBWeP2JpLWCnBodOEjfWF1XJmjTrFlUEutcaX0SqhLwYtaSWisqtSJotWggJUn8RktsgGTmWEaSulTc/VJJU3zR+HCgCRu/0Yatwaaq0L7fsKwH2gHgFjZTOFgWcqOIZnT/wuY48rSkfIyBfhhQuWB3d47ZrMNsllFqwXq1xL1334Nrl9+PxeoYBQOOj45wvH+IWx/xSMxyh/suXcd73/VuLE9OsDvfQVkNWNcKHhjrpdQtmXUZF86eQe5mODo6QTdP4B4ADUhUAc3kykmAH8hqxAgddF2H2VwKvXVdAjqhw8QdoDRUSgGXAtSKMgwCYFlswKakSCJKxqybYf/8ORwcr3D50mUcXD8W40FKOHt2B/tnzuDGjRsba3Sz9rAHKFHLGllNdPdtaO32N3RzMmC1AopaFJzRqXUhAhOn/6QbmoFo7bB3jNC8mrzl9mDqDmhbXhHZctMyYtnxm2nWckvrqM3FaDPaeOzhUQO1sZ8yx96HEUBpv9td4883571ZaE7xZwAauKcBeroGwoTGlpLGLBrYdHDIDGAsEEdr4eqrxhmxMMJmldGnUXN7OSNkRu7yqDpoc5GYgJdnk06IMWrTvGX1q7/LZRuLVrJRxMgCOjVQdJSxM21hjDcDmXFdiEhrAk0Yd7xG14UVaIBog67Cw13jBCBR/hNhYDRtc3racyLtjjJ+wnOYGUktB4YqkgIWMEuBMsQQZI0JskKADNf/mptYhA6ry6BaJVkVvETkcTdVrwGVMNfdSJN3CwYLeBPFn7TqqA1GHEBl0HcbHbJaU4PGHtfI56foPJJZ4QTksLp/orvJ9hXiTmfRsKHWPdI+SnG4AUQWF6JAhwWIFK0QKkMXi0algoqKAUVLslf0tVeFr4Z0aZ33qsGyRGLF0fkgaLxbanvexn6aVaWCkTrba61ybKRTUygBtDRx3eAcwZ9lVwUtYWShzDI3UVGaronxLQDIXUYtZ7E+PgQAnBwd4eq1+3D3XXfhrvfdCSpr7O7tYCg9Fv01XLj1FnSYo+syrtx3GYc3DpEpg7uEnfkOlosllqseORHW64K+H3D58n3oug6L5RJcGUO/xrBeChDVbL1aelUUTCFi5NyBKImbaCjIucX4JepAXQYXYN0XTU9O8hyW9cmzDkBFZQLlhJ3ZLuY7u9jZO4vaVxxeOwSvhDYpA0R5pCQ9mPawByjAafxaNRJVi6bV+8ZMMfp7NbWVbaEmyD1aF4KJt2g5ZCv5HOMF2vssqOomzB1AdA2JYJDgpdjn0WZxjXwMDowBjUUgWrpstc1nkeUGysYCyjcckWqrwixHwbJudQGQGH6AxaSZaTTO58Y8VBEaxqQqmjsujt3N/woi5DO1NNSWiWGZUyPg5EDGVGYtPEaAlVc3zdzBgwJeIkubNLBg89hihKA9t2k0M78cZ6BjtiBF5lB7o4I4+Zw4DbF9fxPApes6+nsy/00It7kDxta1DQDvwX7QcuJmHldxeRpwNtChz2lpx5vPP02b5baYavUYuzZGwCkA63h/dANadpOcGSIds9sKN3BJjnMN3NrvhHguksWH+LOVd6SwhgYGGiho856YwSwRrbOZ7l2jCRAIUlgNKYO4IlOSImo1gUktEZra6cLW+5fEwgapDVKZAAUvYk3RfusxHzZeD98OZyGJoIf+qxLIrwRmZdilArNYlix+ROp2FJRaMNh5P6XFp5glja06moLCRAlDrSogxXIUQZmDKpJKs1OlK8YLIiWtAEueRWSAJVEOBdwMlAKp6/S9likVd3/bM9NA22nW4BSwgBmlDiACbrvlkUAiXL56Batlj5PjBTIl7O6fw97OLq5cvg9l1aPuFlx9/xVcv34F/brH2bNn8WEf9mGYzWa4cuUqTk4WoERYD4xSCWUAjo6WsmdKUfBlAFcyZ4ik2q/xDWcfLAX/SM9UcgCrco8LXFYQEbpuhr4fADDm8znm87lUmQWBUsbe/Bz2z5zDRzz+o3B07Qh7l66jdGus1seYzTt0sxlW/Rp9HfBg298IgOLsOAhORks7rQHCkAswIHhhPEhR0H5RLYkDE1b3BZMKNEkpjYkEpZTmB0RwP9jrm8K/ibonglhAAY2+jyOO/n+Q2UaU3ZAw34TkpmYE6wllUt7QwJm9z7XaYJloIIiUkdkGaANjsHA0ZGfiscmGrlrlMcSnwJiRIWv5V4kAqn4NqJkT7Xk29jAIe5lqryGwFQhxEgJIrBZFWySjgWDl0nfyaK6EGjgGXcb6BgZaTsGhFJ4XX+ugKdzTBG6gF0jQ82nanc3TFB/auk/96O3nJlg0wBEZ7hRMWHGyEXC0783SIF8IA2XNaCAVuPq50bEfruhDMDDXGKqvtwVYxqGH6qQRrCSttgrmUBG3kU0DsQQrN9OsXMl70+qfQEzeBNTEXuuB0KxHEVgZUGKW1FwhgSDMmNX6gWYhs7fqvgTbvkpatAzKi+LSt/3koMd5ibq9yQCLDI9V8JPNicW/RHrQcv9gc78wKgmCkfiRNl4DKV59lo0vNDog5xs6xVSFbeg1DchToJtNkBtpzqxg0XJibvZ2BAmBgsXTDjpMbm1SK5yxnKgMApOCeWZFkj5laryzKQAM7hm33nqbZj8N6Iuk/h4e3MD5C+dwcngAALhw8SJ2jhdYHi+xXqwxTx129+a4cMsF7O3v4fr166AEzGYdTk4KFoslShnQdRnnz57BYnGC1dCrtVatW4GuZRkkv0nK+quSxdXsX7DgJVJYQJWRuzloJ6Hv1+g6+byWip2dOfb29zDfmaFyQk67WJ4U3HrrI3HbLY/A6mSN8xcv4OTwGspRAtcBy/USs50OQ13jwba/EQBl2pxJqqCNGpFsTGUiZIZ3Uf4BuNYKLxHNrqFabEnbO+RBtwA8rWrcmcaADQSMOmnARQl8GqAao88N2UYG53225yvncc3I/eIMO43S3ut6gvOLIChCc0ZP1uGxhqOTI/OhIsPqmMQ0Pvt7avaPrWklFdG9D9iZD+G9zliDFUe1o8zJGUabH2PashF9PKzjoRYgutEisxJ0M/7M6kqYdolNS5oFL5rfvQ3N3HynvHcyR6wuAavxzaoZ3+TWkebXTmVtf0ufCagGYMdWFQcnCPQyeb4HzKLNdyxlHkdrfbAu2zv9uT43pa3v+IXyo5QxODHBrWC96vk6RISa2/k5FAPOQ/8MGpsQaiMdz8doLQzwg4LlbrP5abPa9zIUDSQ2ENtM780diFAgL3n6qh00seFmhMZFBD5mgrRWcYSAGCmp8PGuqhXVEIsrAi02RpSx5t6RLR1OQ9efpTBqqX5uUDtll0bzCNMzRqd2S8yPKTsNdIzpMK6FDbd9vwmkzart/C3QaUpyMrPH7WhqrCsFMP3E1obVIlS8DkxRpYp07fwARhIx33VJ9588o3DFtWv34cy5fTANWKyPJAOnn6MvAzoecNstF7C7t6MAGLh06R4cnRyBGFivj1HKArMZ0M06EBh9f4yhX2A+n4ES4+joSMAEASl50Rbl7XBeTimDOWEoGmNVJV6FNdEj54ScuwDkq1SdzbJ0u/t76OYJZ85dwM7eORwdDdg7dxbHB0e4evkSbly/jFqX2N2bSfZQ6XFyuEC/6vFg298AgBKIboN9jom1ofBNvbnowpGvBlRw8KjcsbhrSQKhWALwYrxEM5Ers1RQIZhHhYH2YBpXwVxV85TOUoVbRFq8wGT0CSCqYQPqT5gWibbTmNwCZFelHM2X5kONz4kCcjx3Zj1wYIVWPn1UX0B+OXVN4iOdKenYWZlm9Js3iwqH74A2UBPYdm1jXJuTZ29NCrBsnmztbiL1bU48eyqPBXTV9+vzhNm1vsnHLQ2WAAU8oY9sv0vxo5FLwxg8AGhlyGYRgWudcOEhLP80l04zWyvg4eR9NWhCOr9RaMjsWjaFhjM6uLDJNNJTBs+micsTTGVwyNT+52PVhIHxWijNiBUjrpG6CHR+igpcqCXUrZQ3ASjW7DTgeM103qYtPlfceaffb9f5z4mSIcNrc9wkpa6nGyO4pZoT4CeUw1xC0HAbQrbnhbh1WQs9z8djplonkyAVfZnEXQifqlK23t2baMHbiu/91OUQT+VA2vdvU7Sc/0Q+GPkwhZ9hDSQWpmxYVlLKUuhMY/+yrb0GhdoJ2VbbRVhHW4vi1p/qtCd8XOiaK3l8j5Wu51rUMpWRspSukBOyE5AZOWWcHB3jXe96N971rnegLwvs7s+wd3YHF85dwNXL11HqGo+84zZ83JM/BrnLWK3WuHr9GnZ278BsNsNqtcAf/v7/w9HhZTzxIx+HJ/2dv4NSKo4PruM9774TH/3Rfwc7uzO89a1/gnPnzuHixYsgItx5551461v/GMyMj/7oJ+EjP/IjYda83/+938c9d18CqJ1kDRaLW63BelgHKfrGBbVm9MOAK9euIXeEgoSziXDm4i1IqeJ9730H7rv0fgzrJXb3MmYd4Xi9QBkI636tIREPrj2sAUrT7I15Ai4ETmEk7bNx/EL8foOZONMk52vMrLFH3AohKVCJ8S7m8z2d2VlpavY0aLPOAGjmSTVDMlmRLikFb1HjFpHfNAjasOS431VPQ/NxsVmDTNhWZVTTINZN7cVASTTry6gmwjLOexCaNj6rmTBaA2CyNs1KMBJUNDbHGraQv/U+//+0RcBkwX4R7DxAc+Gi4CneY9VXEWlJrhuZoCMISjQat7uwoABZ41MEA9h3whANjBgdTOfdrIKnAi6jHY4fBfDAVQ9s3Mzkaa4EICGPgI0BsVE/MKUkA6U0vs63SIh1YvOTN+HtVja/3idBXpba2E7LgvHxGkjQ/kg2zTSYvfUXHEDwZL8Dm3UeptdwsC75Cb9mgQkWPFs3B5maumxz1SxgQKHagKzF0MEEDUAzqfU0DIPGtalrCtQq0I6AL5Bzp3u2KTWJyK1TDENBBU5CpGXoLQaFOYDq5FURCHDXio1HUqVPsYYYWA97w1yTzY2XBXwk0sMSM8yCkD2zST63wnOUITQEEquWWn9sDSV1uqVJx30GKI9W95aDztzoz+ppMRJqAa5du4Z777kH1y5fwW2PvABiwqPuuAN7O/u4965LQJcw398BzYrU86Ee1w+u48POfgTOnTuPRz3qDrzvvXfivXfeiS7v4fzZWzCUHpkZT3ziE3HbbbeBUsXHfMzHYr1e4fz588g549KlSxiGgosXL+KpH/dU7O3vAwDe+c534sqVK5KWb+thxSq5SAXa9eAAmUhEAyVG5QHrvoBqwsHRAY6WS+zcOEbpBxxfvo7S90AdsFwNWC0HrFYrpG6OPMugB+/h+ZsBUGr4OwoBBAY6bW5d8N8bcBjdQ9GlY1cAvoGKMasKJIIdVB8FkWuifkKrcE9O1asVioWklZ+2oDbm4v58t9Yk9YUSA0WrRXLzrxc94MyYqfjq6wg82Um0iaeCpA00Ar1TwZvPAkZm8QhIfCaDSdoFaXtxfO1ICJ2KLSDMTn6xAFcDCgK0gOYui8GKpzdhiNMzYR64KUAxq0h84s00aJtTitYp7V9Im44gxri/sLsEtQ1Yt8c9okCdinhcs7QCXcrgR4AlQapBhloR8kBhWDcT8B4f4MGl7eaxVcBnS8dOI3AqAjLMv+4TB6bhOvvbYJqkEpsFynZbA10mXO4fpoZXm1C18YVg4Ck4mVpBTwOB92eJayDjJvTpVoXWH5ffFgcWgIUI0aJzpzVNEqEMAwqxZmJUj4uRG/XvwLsYkpuj0TENVCVW66aOXa1TfvZUIXBidFkzkIbBwQRz8f0ISMB59rrxE0AtCxGYgmE3BdsgUAJy6pCzgJNu1iFnASleLVvpSsBQS0tnaG0YLi0dmlnOQDJwpem0xHDg5IrFJDDd1sp4nvBcAYHr1RKL4xOcHB+h1oLbb78dlXsMixWuXb6Bk501KmWsVkscHN7Aul9h1s1AVEE0IHcFXcc4OTnE/u4ZdHkXM9oB1QweegxDxXo9oJSCBMZyudDAdkbRFPVZN8fHfuxTsLO7i1oqFosV/ugP/xjrfmgySNc+63lTksJu9EUN6Ccgd0mDXnucHJ2glgVyOgQxo18sUatkGA1aT4WZQQU+Nw+2PawBys1a9DO2NhUh4+8bAygjIWL3jHzqJlzCvczNFRSZlaXKSauBoXXIICkJ5QzKhK2eLGmo3N6r1pqapDKlaLVqRSBGSgx3VziDbhpJjcKc5Vo7C0LuKx4jYgTpc4oxA6bRnIUguDgnmGzsuBQ+I/p+BUdxvFOJwgjWIGMUVlyL9Wlkvdtc45u3TdoYfXsTsKGS0sc2fZM9dQp4T39WckB2ap/VVCBrnYByunCNa5DUxM3MrtbbGrazjuBBtyYsjfYdBJHVxSAwwuFpTXagzf0EjIRxNuOA0GMyWjfwMSkyNwV21ddcPxtZqMyCI8+P1h17+QPSgqe60sbea+M8pW+Tz1JQmuzvCNbjs61vdfK3/2rAMCgLk62pJQBqe6YCFiLJxmlhW6bYWKC/gDEvsDYBUsWzyuSfYCELtDWLHjv/SJRQU3WBllxhKl5Uc8pza0g1BmNyPEFz6VIGPGYlNT6cU0Y369R6ktx6slmwkMEYnKZrkQP+zF1lPKoMkMwW1uMuFOlTJonRMPU00JNZ4/0ZNWRclYrrV6/iypVLODw8xO13PAJn9uZ455//ObgM4Dpg3Z9g70yH9d1LXLvWY7XqMZvtuAWrVOHLfX+CC7ecxXyeUdGquTIz3vrWP8HR8QH2dnfx5+94Bz7qoz5K9kwVl9RHPPax+IiP+HCtgpvwZ3/6p7h27ZoX4GNmrIc1mFliWahtcFsnl4Eslq46FIndHHr0yzVWam2qQ/FjH8hPMCZ1eT2IfRjawxqgCIE2rRCYIrTmN9WLguZ4/wLJTKoGCloLwY88Pl21ROGpb2inbUrnLAc/JSuH3ACDIXMrRx85DpGc6goAldqx47la/AMD0JSxRJONZIyFYHbcqHGVMF9xo420Q7CDlMlsbWh/cf5s3k1z8aaYJNnnOtwILk/TwEemXWa08BuzXTWtVt3aD7gh2ntsQ2oHw/dRg0W83kzuGFMUT36GYY8sVsbcgLEbIl4jvn0CTgGCNV7NYb6nAta0JB4DTVurjeBlNEErYFPtftT5WyWjXEY0ynBBABRx8GzBim7zdNDiLs1A95H+AHNBKAjAmFaAFoDtaxFoPK7hyCIS5ygAjPhcmvAYv972f5hrc1VkIncTkc6TuV+oLYYfXZG5CUkD4nEOALR06Um/kz7Xr1OrBJGcPg02K1By0JosfspLnjOQxs81cDIG2NBTavXPnL0YHwhgBaopJ8xoJv3te3AZNjaDWTeIaOMEdy+kqP8jJLe2WAVmi6sqpTRXmVlG2oNUMJaQjizTX2HbV9Oqi6ZMG6AntVIrf/K6LKyAXuclKX0WlgBZHvQEagZq7bFeL7BeLVDQ41GPfjQWx0fYu7CPPdpDrT3uvftuXLl8CUcHV3Hu7D7AQKrAetVjdbzEjfuu4uK5WzBLGefPncGZs/vST0vQoIrLl+/Fe+58B3Lawc7ODj7qI58kc1iBvb19POIRjwSq0OW9ly7hbW9/uwT8ViBliTEB2E8gJhKayF0H5ophGHTuEtAXLPsTECV0XScHGQ69FNcrVYKEU8bO7i5yTlgulxLXpbF5f2sAyrTFYbdJiEKnCeJT7+cpMNCNGxhjq+JpQrClq0WBQOH+UWwrC1OoLBvW/MQm7FKwwgBotUv02HFoCnTixjRTiMUAQ4I0p/1g1XwA/V8Ulae3TZAQBdh4DqfCIloD3Bqit1v6dAmnNp9mBjdmj9DTxjSDJasyiGrTgEfDstiUFuwZ+3laC3gSQLAoBCEcOjn+hG5Gh+MxToXm1C02BhDwcuJ+Lww4jl698Rx7bzOb68CizNG5TF1yU3fUDuWU0nZTVAZsCgTCAEx64q1+l0YTasCavX/MBVkLOAnJjOcyu7BNI61Yt+Voz2XKDrZ8niGVWAlS76Jh/tN5gJ/SzKHgXM4b87nRdD0TUavAm8Z8ISlIIEXn5hax+yuzuEIRAL5OFxFZ4pbcG9dn2p9o3YnvJwrghf1St/gmdeqMLAObQMn0HAOv1qpZDbjAzm+mhBGwcC089N0py95H0Jg7O/ixAZlotRXHdQUxo1SI61t+ARWZY5C4vEsZPEQJYCRkSVUP5SVKGYQnQawAOWnAa9YO+trIGsjZPEKztRaNYykteFd/7u3t48Itt6JeZ9xz1z14953vwNHRDdxxx6MA7nH3XXfi2uUr6PsFzu3vqTVjQKkVy9US165dBzPQ5Rn29xMuXryoxwEYEFJaSxlyHKPOTdgHNVjizOVlcxHpyHiI8wA9FJKVz1m8ZykFzEUqy9r8QbKUuBSPAer7Hr2mP6c0wwfaHtYAhbm2wllG2FPt3a81XznD6lrHAC12VFybUAzCduQvT1MUKGl+Ufgx4Itp6Y/+TG4MUARscx9VtW642bOYMGJYfAUl0rzohFQhp21qFC1x9VQysAbXypaTjVWTn2mhM7MBEJwxBgYxBSejv/XejISqxZRc2PAY2LgZF5DCTCoMTCjbBpky3U2h0NbG1jau2fieZjECWj0VW6fpff5877tc21JkRWO1UvvM7V1yNkg4JbXWloIMjCxuCFq70YNVezRBJIwjNQsHa18D7Y56fcrcxfmw7ymR19wgXWNT94lE+kiQY23ppTbYanFNMk8EOTbPWpyntgJtzCOXGBEKqoNssygZiHXIQgxU3RsYg1oBFK1CcYxXMdsP+b4KzPe0OdJ1sABPswTF+ZuCS1BQVHJC1u1pwjdnAWDJFBH9J/3SrCmrJZKilSzsUwWq1We9zSuHObf9ZO+LfWYHIukUpSDEV5BancPzhJ9Zlt4mzRWtf2IZUN4fBWKUSBSJMAMOqCnUy5k81+6oqM632inEUoDM/iUiAR2QdzEziDWWhuGCFBArtBixWmqTW16D1VvOcoNbeGpf0A89lDW3cRQLshV3jNWDGfoBQ89YnKxw6b2XcPf77sI9974HBQOWB9cBHrA4PkStvaTi9gNW6zXmOztSjbcAh4cnGHpGN+swywm33Xor3n/33ViveplJlsqvteja6RJZuvhyucT777oLFy9eRGbGbRcv4glP+Ej8wR/+H+SUfLzVqsWGCtC1Vk/FZpYMJ8uyEuu7KYDSV7AVRmSslhKLwsz6DOWjD6AYx/YwByiT6HzVNGOAnFwXtzOcyKPjN2qyUVu0yrDhdk81dmMy2TPH2sYo1bB1cSzowud2+JkEoLUS2hKTUiFBU/IyCfrXbVuBSmIW9MrlzlzgZ6OIoG1fOYjwzamR/dSEVvLHULOKwISAomqNcxOljDXwNgYW2o+wo+PnJHquvMUjtuCngU5Ax82EC9fBNXFZS4vBEEjlgIvis/zBCB4pZaIqiAPTqaXIJFvsCzWmZ32zA9BskMksVg48m8ZiLkOj3arRzTEWyDO5OMxhnYAdnVYHz0RuZohTDmorhzBXQEJlO6eDHeyL71kEkL+PbY81kOK/hbWJ7jDvg+0zBK0taG9wIEHImZBD7IG7LpVuLV000rABEdY5dEBH1j9jskJfYG57XsHl2KXR+rVh7Yq0p59J7YjsawYi9Jo10uUsB+1F8KVjoSx7urLDKwdasq1E2cjxM59OwrrvnT7dzdRldCkH8MwjC0yrHqv7eFRBeeTvUcFS9RyW8bhrKRj6HsNEqx/PUwCNBlD9e5asyECP3mc0kGRrM7WG+rqnhJaXzh57QySxKpbeWktF8RRr0ngJiDAt1emvWMoDEYjFOleGAcdHN9APK+yePYOUZmAkUKnu3ihcsF4PWC+WOFoc4+joGLVf48KZc1iePY+DG3s4OTnE1XuuYDYbpGpwR+DSjfZ9ThmzeYdrV6/jZHGMW+YXUGvBrbfegkv33dfAItteZXSarSR8JguYqBXvfNe7cPuj78ATn/BEJGJ83Md9LO5879tx/dr1wC8BicHM8gzAFRSjmbGMY3BpYBEKuJEtPlJAe/PeqVylzf1zs/awBijGvG3HiHZAjSmF68JdG89xDcO1cpyqiW5oTjCBQY4Kp/ekyf1Trd01HIw3LwJTEQuNMKwcnt++a5qSfD29JmjJU+2ayJE2CMhJw1TMFI1mnSBCiBVA03SdaVZ3URnEE+Fr5fp1xhR/iPBUaesoj5z4m/pN9sYRaEOYSxlH2hiez8lonJvBvqw1Z6yKpR/WZpU1ayv/bWl4cj+NTKkR9MRaOA0NWwEyAScmpMaCMlhTgJCF0EQXYNV2/c0gAhInH68vAni0bpGxx6q0o3mrYT8kQkYD6mxHAhAjw4qLBaEZ5mJktQmfWW8SdZvxJ2xA24CJKQsI4A5aA0jmx2g72cF1eibNMAyjQmkGugBIvRCext9o+rLOUyv+FvZ2FPgTpYSrCdJWoyURiS9/NsOMMpjJTeAxbk3WCcrD214mkAeGGnO3PlsxNTALSBgUpKcEqgXz3GHWdQLAa8WgY7eKqRablnJWs7/1BT5GgNBqkxgAp1aYrIhro07AyRSgSL+AzMGqIy/xRY8lp4hlHEjKAad4R0F0UZdCZbEgt9g3OJi2IE/7V2qBVZI2hWKKOznB3XRpYNRBDss7PjjA5Sv34pEffhF7Z88DqQM0SJsB9P0ggbZEICQsFwv0yyUWJ4fY2esw29tBLgvszHZwfHyI9XqN+d4uiAaACQkddtIehtwjJcJieYQrV+/B/pkZai04c3YfZ8+e8Tovtra5a3SYKCNRB6aK1AGl9viDP/hdPPIRF3Hu/Dmcme/h4z/+E/G//tf/D8MwSEE33QtWO6Zy1eJ5FjyvSqTJLK7gJDwRrLVlUkKG0PdQJJ4npQ6VGUPtT6GL+29/AwCKCS/jB+ypUPfbnHk3YDD++uam8o1H1SqulNTM/jTZ6De917XkqWSFC4ipC8MKtrmVwxk+JupyG5+bvxVkNJO3fkdNc/DvkdwqAugprFYm2x26be6ZrY6BIHEGhUC01i3XXm18MYUhgBHX5YgcCDZzfQRbWstBN9Lp9VkCg3fBbnEQxvAVoFTxaXOVDWr+ZDH9C2NzKwLQXGIQcWLP9OEAvqHjmlCYP2tuveMgUNVy1twe0nezILAPiVBIU0zTGNRJ8TgR+q7B21i1bHvsW3SNyCLo2CqH4+6ldkdWwSZxASEInUn7p4GTZBastm5EGTSZAxiNasC4NaM4c40mnWR3L7FYIOLam6uDqwbvBQXA6lgkq8IKe29M94cL7mjt8TWdCGR7t+1rs0pYqX1J8W0nPnu8ig9d07oZIKtSSuQuBoLW6KhWx0Tcb0Mp/s8JIifULGfjEGhkuvcT2EmEcPaqsYGX8jgexsYl/TVw19xhNh+npfXriEe0pZMIgUkhdR5QRUHW0lzUNn6QpJizPpcrkErBDPp54CcGPsSyY/tXrR3mhtV+OPCvFbJdpDpxrQLQh77H8cEBDq7dh/ve/x7U2TXcUh+D3XO3YMZ7UpxuIHCpQJXnLQ6PMaMOJ+sFjpeHmrkjNUbW/RJDv5Y1Vngz9Gtcu34FVIFh6HFycoL1eo33vve96LrkFs3VaoV777kHlBJOTk4wDGI+F8BWce36dedxBwcHSCnjxo1D/NEf/TEe9/jHai2YhAsXLuDatevIOQkf4FgHKAhJwPe1gVYDz8ZPMgizrnPegjKgm82QU0Y/FGCQtXhwUlXawxqgAEBOQbMDAJ0wFyA8ZnCAMg/T1uSDIOykPRA4uZmFBSxbqdXgGz/LqkyOPsubwZ0bLiDfyHYGSvOdNi1OPoj3GgBxH7gJKWO2SRFySi4Mkh4M6PI8Hs+eDNDFWW3ap5xsz7B050Qhoj5kb0T+ZGCuCRVAXCgBnDFrQNppGRj2Sw4ftgBN05glqI01foN0M7IHs1FpNVO4kGoQ1d07sXKlMW0fR8zWAoU1aYBiU3OgNoMKTGw+WjVSBQpaBdinjyC+fR7ToFkVqU4+88J/FVKAdVxfw8CK8KCwNwBkSmohZMjRTgYgzTdt49IgS9NglVHZKabZa1FQqAW4uc/MvA0yi0J7XqRrazzdv0E5cNoysGDPYEj8QQe3FgmzTcidAatxXIatC6jFJI0yr+rYPWRAZ2TFpAZWJPaEm8BlQq2D8xEHmBABmXMWd0qp6tu38UuWhQVOEuAF/QB1dRFJXEagUwcpWvVUAkxtfidAOayPZHfVVqSsdcQLtJVJWQY/04wDACZqLKHql7aeEB5TUeXQulDbSPQbpWnNbCpcQWUQEB32RNy38Xwg+9tTjLVzbttLBJAqWZqqu1gscPf77sTVe9+Fgyt3YU33YMAat3WPxW66BSgZKHOvJD3UgtnODMt+CSRg/8weDm5cx7BagUvRs1Ur1sMa68MFctfheDngj/7w/2I225OTzWvFarXCO9/5Ttz53nfqYX1AvwqxkgDW65WDydVqid///d/1+beaJGDgz9/xdrzznX8OhsSFFJ0Pix3yQ1QpWuRV6bTYM42lYjS5AAAt5gmaDSWksVbLnoGrOokPvb/2sAYoKUtQmsgvZbYMn1xrEcBY+WKVT4KcbcItPu0m77uZaaoxf9OeRbPIQRNr3zOyF1wT071o76GOROMTPib5WyPUAUCtNpRScwBxY6Qmx6PGR0lSBFNufntDwhbAZ7qJxWrYs8ameZljQjwcDSNmZnMBzqLrNJkBOxPHp5NMdzFmp2OcVJkVfrnpZhN3j36mBx6O6ooxYQDkDA3WeB0S2VBLc60w06gmAkyTqKYlNqACIIz9dODRdH77fbPdzORZPfZJTK6mfRqwZLQCWVFoMxuMhX9m74nzNnonh7/dcqCH7CkhpXCPHfpICmS8jobWtGAaC3YALZ00CWB2i8UE5PtzYUJiDD5OtTbGGZ6CFQMHgGfYmBae7HAki6Ey8K6eDvKD4yZWExXKBIwAGuU8mW/vta8NM7v53+gZJJa7MpQGtkaghoBCKLWglN6BiL2DGaMaE559VBk1A1UVthTGQRSCf/W06o1KwQY+RrEq0PNdkltMoHNbINkdfcwuoUi3CSl1QbAq3XC01FS1uIoFd5TsQOzWWKuk3en8l1pGuNrL7wcgKTEixYPDPa7MXIAGyGydc0XKwhFTTTg5PsL1ey7h6j13o8sDbtxzBUeHxyhDj9se+UTM8z46BrjM5SDBKtmXd773TiQasDeXLLIzZ89gvtPhypXLqH1F4uSxjkTA6mSFk7IQRbfLAAsgLauKMlSUUsViYnF7REgkINz4YN+vFCgYaByQOgGivbv5sitGtoPcMq0f2enV8nsR3TPUp2EUVxwGZnBhSZYo4jIrQ1EXuBkOonL7wO1hDVBySm5B8doFivbG5ohAfGzBhvYdCzpn0tloixPTg92cOmWA2igyVu+LfufXKAPWA6ycYdcmUBmsBwLL+9SYAGFyY23GTO7CKQ3T6knK2nnzsWey40KjFj7RvvV9Zo51jVWvjaK2zXP2Psn5HKSAyepkjOfJzYMU5sfQ+ui5OijYBmrawuisDpAGhqjDRAOGzSTt4BWAHE0va+g5J8qDmUMdDftZWXywXJTRCYiNoKxZPsabfAQIjJ5MKIdJcVLdmCcNWK0MSqaNAmwuGpAErp5S3GzDPWPjBG+suU2h3evPIB71M7YudY1+CBqTQuO+kIJhZNe0wqtAjYp0RsYBzBzm1ADFpmsPI0Hu7haazK9+bwBlNCmBT8i+HFtMSIsbihAj0R683gqPeEl8qwtL/Wk8vzKjMsaxZBq0a9qsgR9Qs/pY9kQZ+lEmhfGlUrSP3MBhZQaVAqqqANys/ktoFuTapjfMh11DBeRBxw0AFP3nsShhTjxiiwqSZnTUVG1De79lb2qwPBs/snlS5SaZc5RUOZHA1z4cLkk1+XwKKKxuEfU+G0BROip6bb9eYblYoPAJdvbm2NnZRcIcq/US68UNLBY3cOZsRlmtcbJY4Or+Hs6cvw08r1gzIw0FRwdHGPoeh4fXcXD9KhJV0NkzGIaC3TO7WFw7wnI4wWw2h2ejFnEpn/RLcK3Is07SqJ1uEyhXEAbQMEhQu9Jn6tTSo6DFxp4oAbmlegPyuwf8R+HkhyoKDfvuM8sx9BqLR6u2OOz8vFAZBTN3iTDrhIb7Xvga/W0JknWAogz5VO2QTBMYCwh20MJgicJybckt6UHLESRZb2qeMouBsQAef6mxG+yna6Ys8SqJpOS9ZxyoJmrAY8OXe5rMCP3dEEyhM9VSB4v65Z0JKyOCBVMqk+Ms2nBtTMpESgM7DD8kzF81Pixt2hnhR7WBEtP6GBgDEZfsXowuprjZmEu0HNVWDZUnK3GatcK1NmX6Ouker2ACYwQ0Ro9ozzRtj7UKRMAsmLzVNd+WGaNrGCppxvHbGgsNqhsHmhJpa54AqIORIk1MLE43awKGyIUjK+ORAYzjL+zZGsQhf2MM0PUxusdMc+L2uVsKVJMOqJVgoINbtWEiCf5s0+XKia+jKRBuCRLgwUHoItwLZrdkbriNqtSTAJFaPTQQskpl1FoKKprbKKYRTwu4RbeoWxlhMRJaXCzEN9k9lvpp+8E02hgTJc/UuYyKxGSfELcTnm3MBkDserPO4CbPsJ9uBdGYE7dSaB9Szn7fKOW4MohUMAbpk7itR6VGN5YE0fbCuAryADmkb5R0BIB5ABflVnaEQw1gqpTmrtV1q7WiDgXXr17G0eE19P0V7O7v4Nwtt4B4jsXRAgc37ka/OsbBuoB2MogLrl+6G+duvwP753p0swGrgxu4fOkydmdz8SaXHkdHh1gd3cDi5BCHJzewXi9AqWI2m2kG1uD8wOYrh/mzz6zvXMrI3S7rpOtoKdZW70SpUo4AEHDS9wsJrNV1YrVsgpssE1pSQNiSEgUCVQ5HQtiCqWtUFVRP/+6UB1W5rwaw9EDtYQ1Quk5KHEdtq/m/2w8urEWOAkDRZ5AtQlSD7M+4cV1r0etOYfibYIIc7SeSKn5Ja3+YqdvM9xlhQ3OVJHv9nU95h5ur/TlNq4jPBwE5Selnr80zETIUhBBcK1EwUAIzMqHvcsX6iLBJWvZBs3REkWLBlOFAwzDAaIkYza11MWhaTfCyPrddvAFKw1o2INHA0oiJMqOhLg7vbALFgJYzT259Pw2cjcGzMV7J4shBsxXQtinoAbgLkrIBPFs/ZdkcxumzPt4Pozl23iLA1sCol4ZwQMpoKRSuu7a5N4Cr747HQhQuyjgN7FvHLDVxvDYe52FrNZlDtuyIkHHiB9KNJ9wGsbEW1pqFawJ4g9tC+qgRONzij6BgPqEdEkrGpN1aEyxCGnRoIKro5LtWD6DWAcMg4MCF8MRiZJldjSZNoDVAHWltwzWl8S9UK1hjgkxRcfcht0wnf0/VOBZ9nsVImaspvm9qSQabXi9N3DGEOrR3WMFu6aMCXyS0IJW2PqZISN+0wmwliNXR9rS4b1MCitWSqoy+DuG0Yg3MrQV1KOhXPYZhiYNr9+H6fe/Dyckl3HrbLTi6dhk3bhxid74D8DFABbOdObrdfVy/scTxcIR3vfUP8OgPewLO3/ZooOzh1gt76NIOrl2/hqGssVwe4r6DK8ipomYGkmQl7ezsitsFwGw2E2vdegVAMtCoSB+HOqAySzh3rWLICHQhGYYl8HyxqJRa/CDFnBP6vsdqtQYYyF1uVqg05bi+S9S4IgAjKQ0K8Ccwdxq7BKRsqcWMPCPMOsveFBpKKWG+MweoP/VNp7WHN0DJnZuufJPksWACAD+qfCQkgJbGqJchmpjbF8yMHMyqLpwjDzQNidnUv7ZZ9SM7xIomzMxMXgzTQhk1myC1PuuYwjubrz4cQkjN39vAB+A1LAO/Ni11qqFYsCNYgxRNZCqQcUwQ0HTrX/VU3Qj6rB4Jagga5DRaJ47/DwJDGE6r0WEgwzT8aCFw36gyWWPmBuDEWnOKrx025MCQ/X1tjC4MTrkvzut0s0e3zwgthP75s3CKK4bbL2bFa9eIW4O8H8LcK+DJVuaO2Xgey0WS0WJB2C3moFlR/E0SHAlo4aX2rAbcFEAq8JL+5smoS+vXpE1tHSOLjAWYRqE4uZbHN9/8dxXYgjPZ3+2wRMfTrHfwvcu6zykAlJTVOppM4Avdlirug1Kk2iiDUQa5v9QqYIFNU5bgwuJ1dm5u/TI6NUDln02AwmhuYyYPM5JaHIkIrLw0B+uIW6JM09Z9VcN82ltOy94xkMksbpYy2C6X7DRXIBxHk/qDNAV+tJrmRtR0cq4QF7M+kUNmUwBrpSjgBFDqIPZN5SFmgVwcH+HqfZdwfO0uDP0JFoeXcXx8gJ2cgcq4evkenDmzL6m8s4zZ7hnkfAbER7LT1gnLgxOkch/m3XlcvnwN655x9cZVrFbHKHWFVX+C3b05dnd2sFquAJphb28fJ8cnmM/nmM/nGPp+VCzNaaJWiTMZgXbWOBJLABA6NkuJySsD/BaoKnGIMxQ9jNEssMzc5sb2V6A/oQuScnlE6LqMOki5A1GIRSHpuoSuy8g5YRgagE3UqfXt5krDtD2sAUrK4nuTWIz2OZv0NKZiKTUMlCK55iMsAQSBHpkhPGBLYleS+3mbSg9lVHLNyE8+kVQ5N1AEBM0xWHvsXAdHyWiBj/Z/2ZEET91LTaAYkDAFUyaKTYFtrqwEL0vu2izJUeomk8QsbJEprQ8t6JW9uBx089gBmEKTQXMOAjZavEZtojEDGGlysCkPTC+hbSCZm+bimZZn5/CcuAkNFLADlAmAseh19rf4fac1Ms3e5qJ9AVujm8V3+P0bUzMGQHa7Way4VtSU0I6OMlfPCF0ocAiAzmpbMbeaKAZ0TgM13Ey44o6wr0TrHdWJdAuZgm5fD6EXczlYrBcpU5XWTNOZmsswAZ6aa893rMXsW458vvVntFLJxdNJH7l6WvAkScVQnm5n0xYLpOKrCMzczYRxu5YOPW22l+BGLcZX9KiLyhVUlFdVq8kCgAdYjYsY3yZdbRYKtp8B5I6sUDpW67fVrAGUZoIiZVlHZGcJOcAMB8VNrSMIoCgAGANPZmVpgarGQaKYlb2SQH7ODRJQtS5IVFZapkgLSG5CsO1t+2mueVc0QvzaoGfmZBBWxye4es/dOLr0ThAP6FJFRkUtA/plD1oPWPMRut058myGNVfMAeTZLsA99vduwep4QFkcYm+PcHj1Gg4WC1y5dgXr9Qq1FsxyxrBcY8EVOXc4c+Yc+sUapTLmO3OklFHKUteSNaifBb0ldj4E0srmTODE4EKwcxCkYrhlTGmCdhWgbCnXLp9sFQhOd+5CNHpSwk8pK0Bh0S1yRjebYeBBki60srlkmyWvVG3AGyDYydGr1RoPtj3MAQrJZABykBMTQKY1A1DhNS7wI4TNtepZMHJdbFYAytJrdXuIQKyudJ4qoFr9CWlcLaVZKq6OmZyz1sZoyEAG+2PIx2O/GLeksUAB5HRRkBYRtVgFI97Q4QoQaih/bQzSAvyEUSmvQJMiUILVWB0tDGbmazP9i9BMIQqc2ovRMhzku5iq2gbrQ668oZ2ZILMjAiODihr9qWbu8L1PR2BcUzN5XKdmcQpDOg1r2cc0fg8ANeiNqWBkBQgCxT4fWUu4MXkTpkSEVCtAuYFHUigxmQdPD9Xf28sNeuhH3NKO2xii4LPbFPzRTYAnAIysTgxwdWBuoJK0thnDYqHgoNIBJuB1TaYH6tkYmzVNrAQ+bmfM8DiLsUWzvcsBxiR2Zeq+s9PPc06YJ6kE2g+DaqsiIPteKq2WUiTTAVZbRxg2hbg2ZiN/GW2ywN2QfRTHTClpKXfe+N7mYkTnVifFmloWYwZSfL7NkdHYdL7BoRaKBl6W+NNiJriiFIYfrqn70Ha68L7wHbVYwAamE1JlL5kutN/GaJjaeUVtLjUR3e1Zsi49KjNmCeBa0C/WyIUwn83Q98fqHhqQ5xndfAfEFSlnsYbVHuvhBKvhGF1H6NcrDEPFzmwPs9kae2d2MYBR6624cXCgbp5eAoAr49y5syDKODo6ASCnypdhjb4fUOogAKUU3+NOH8pnrczEMAwA5xbaoK6dWnsQOq9A3SxLCYwC5qGdQxT2jWU12rvMA8CJoDUkgCzyopRejnZQdz3r4YHgCq5WqA5adkI9AnUijx+gPawBijF2SlrOzkYu0h6AaaptRjwfP2xsaS1a2ja3BbpV20kE9+GG3QXz1bfX6ALX6UInSYMNZtYWkLQpUDHqX3uXCwxlZJbGBcgUVGXgWWubSPytbXJynJHUB8BEQLXzhgT8ECDn+mjsDEFjWIjE+hIFv09EUrO2Mi6LeeHUQg6ogZNNZh/XDyL43HrRLBsUjh+YMuD4nJjJ45+bVgCMnrnxHB5/Nj3tdwQzuc1tvI8xXT9dX0wD/yKwbT128Kx9HgmIEfOWe5iS+Km5adWuMckVDiCtV0mtdd68sqxxL7GiIcyFW39MGKCt+Rha2lwA0/o1sl84CFT51IemlVhNE7ffyzC04mYTi2dcC5sn69tpVilAtDvLBLQxlDoGq6c9Wz8AJUZWV3PuLABxjVIGcAWGyiiD1inRA+AqN1N6KaUBlEA3ca3NjR3BVDtEkTa+Y1Zgk0Kcl/bfa7BM+UpKG2Nugv/0vy3+xK0mlsmjZ/K0yq1aJK2IVc/BCYeU6JQn+xSoxA7W5JwjBpNYCKoClWbtarTu/awMLlpagKu48xygFPR9j/VqjToXC8CF287hcL2Da9fvxTAcIM33MJ/NsF6LeyalhLpM6CtjvjvH0dExThZLnDmzhzJIMby+X6NQj26HMFsTkCu6HcLypGDd92IhmgH7Z87i6OhE6SZhGNbaf6Nb5UuWLAFjWwQDdHWyLnJBK5mRcjupvu0BoUdmKUYngF/ck1wZqYYMR9uLpIkUVXiXWEvEYihuHaXn2qP2BYkI3UzpkTVejCFWIOZozHzA9lcOUL71W78V3/Zt3zb67Pbbb8c999wDQCbq277t2/AjP/IjuHbtGp7xjGfgDW94A57ylKd8wO+SAjxVKkqSs00AUfOUv/zo97DxY5aUSIlg7gTg56awIlcIqi88ZtaVg6ZV230j5iaWYN+YsaPGxP2j+2G6+sFIa4Bm3thYvC8BBPnBhNxONK3AeEOPpsKsRcWLXHGVeJmGgGnkqjALEKuAtDMYqthvFdM1gGBjG8V0TOanjbO271FGfaYwRtbaKRwBQJw6n5qx62jsrpDfK5cxyHTrAQfwEwR+mTDySR8cgEYBrvEe/nMkTKlpuE6oDZxMzSyNSUX6aaCXA4a2dxWurbiu0yz5PMrktDmJlp+xhm4m9ADYyDLHRkuuragQsvgmrWWToKvX3DcFE61drR9m8m/AqL3blYubZe/AChJiFHhqgrZyW4/TGhGhyxk5zzCfS7XMWhllKFivRROWvjO4r3qibpHKxKVggAnu2jJYpHPyfAMcaCbyLqsPXzeWHY4X6eY0hcbpSQGB1bSJabhlCKfWcjtqIVound/oPvP7bf4UoIgVoHptlWaNipaOcYC7rWErO680pcTvRrBsoEuy2QCMAIqsITc+GAJqkS2eTcdVKhbHx1ierLG/k5FnPdb1AP1wCNQV1ssB69URVv0KXZ5hNtvBahhw5uxF7Oydw+V778SqLzh7IWN3fx/Hxyfo10scvf8Ax4sTnJwscLJc4FG33y6gapVQ+orZbEeyODsgzzMSMgoI3AvP8LOClIdUs3hasDmyZ/LJ/BdXbapZLkI2ZiMJQzqEaLXmKucOWSRzBCXidgNQGBVFLXkMSzPvWenGbuQqVu3B+mb8KIGTuHmGjSizm7cPigXlKU95Cn71V3/V/4452K9//evxPd/zPfjxH/9xPOlJT8JrXvMaPOc5z8Gf/dmf4dy5cx/Qexy9yx+jz4G4OauvTdzEKYcNbQeSuUAYB5QCEcwELUO5bxPwJoDkhR6jgcCsI5Pn8emRAEb+46neZ4xgxIaq+t7VHBckrSiiOj0xQMmOr6cQCBznz8CGXCubupCI/uSVZe1+ciA3lZ6J7H86W0waOiAuCU72t/ZXLSxmyjQDQq5Jk3dbto2teVWNy5jPaH3cfN4EnDzDXghlCirILeVQ14vdNKoauwtwWx3eeKf9PnB0ZSG8X8BOCtfGxTaLmzxP/bcKBskAYLBibLgoKjcDCE+BT3w2hb41qhQrGqNyljgRXc0InkT7PcXSwAEE6j+ZQjl1fFyvqCkNPkKNV2FgVLNkrCVaR0lM3DqSeP3NAm3jGIrux7hANyvVbs9IE/VPDmbLGEoFD4y+F3Bi8Q2lVgkkNFcnW/Esq6sjJdfdkmrPtfgazdASS4FZjRhMoh0bfzG3tQEbryob+tx4VmvuinFFoP0bna0DWdcKKwoX9hBsD1UtJlfdMrRhLbH1dV4R69+Q5u2EU5PZrpKS9kXp3WKtqs0nS8q1g6USMvNU+xe5rHFSQ8F6ucThjStYr66DhgWOr92DfnEfulwxFEbfLzGUQdwlO2fQzefY3T+D3b2zWCwHLE/WWAwLXL8xoO8PAGSUgXH9xjUsl0uxmtWKy/cVVMpYDwNAcijn4eENrFYrlNojJTlHZ71eY92v3bsvO1Q4hWWhNoUu+Rq48hD5YSj8KQpnBmWz1pO74+1FmgClfEVccokzQKT7RI9sAJx/SsE+2ZNWm8nkYakanFwLQElBdRLwQg/ehPJBAShd1+GOO+7Y+JyZ8X3f93141atehS/8wi8EAPzET/wEbr/9drzxjW/E13zN1/yF3zlllMKEb4LUaHwPISE6xgyBmhZni2jm7Gg6lgeNLmvWGm5aNwDPHomaJ6kmE99tZrn4mXZ4/N44fnufgxTJELA0DoIGLSmxK2WD6ibT9Wey/U81Xa8VYXErFjArFUSVxygeaVaAFrQtVqtkLiLLGvD3sQR8kTCnkQlTtSU5d2SQDAD93bQLt1iwZiuo9oHwfEtBiRYBDjEZZn2K5uWYXh7D+8h56JgO7F0RRnJY++p0EeAnwcvWmxtNZtc0QAWVCjQbPhkHHEppcFZLXlsDEwARpAqDsX1CMDqxACth7qH8/2hVA2iI66d9EZqWO+zIdZlXMadP7zXFYAQnb+KWMaAyBU2nxkhMrgkvDDEwUOC5OSadeH9G13We4l9rKzEf4y/MveE1RTiN6AfKHxITqvIeU4pGAMz7IOttQbnMPNq3EaBO3V7RVW1/25aw/g0hiBWAltO3g90skF686EWBaanRMmagt2IopdXhUOVAzgpTjdwUIgDsZ4IRyJQsAK3CY7Lph9OmBhTbGEbKne79nBIGYlRoDAxXDKVH5QHDsBQrcOlxcnSI2p/g+Mr7cXxwGaU/BPGJHDhYhC8M/RqgiuXqCPO9OWYdYd2fYLFYYWdvjvUx4eToSIKfqwVEr7AuAk7KUHH92hoDEwgZ8/kOlkt4ts6qPwZQMPRr9OUEFRWzNAObf9z1oCB7nERE+TalxC71NHkrCKrxRW4dq7Ku5M/nkAGowbm6f73qMwe6qs0laokcYoBpLrZiVi1oMK9W+uXACx5M+6AAlLe//e14zGMeg52dHTzjGc/Aa1/7WjzxiU/Eu971Ltxzzz34rM/6LL92Z2cHz372s/Fbv/VbNwUoq9UKq9XK/z44OAAgedzZ0gRPbS1g09qUoakRza8XS4Tpfq1VMoY4flZ41Simoml8gGW48On8dkMzvT8Xz8biTv7mCYMa9HuHIGaujwzLCFoZWRQO/j61HjgTJQKVVubYdNZEEv3fqgUGE2MQYPLn4ILXWjtORw6fMvDhRhYCOmRUIhSqyJy94BKA5pJh0/CbFDJGC4znUwSw/a2ZG+Zi2Jh7Az3sJze79g0DvGYlmMatRKFpWoibTdockBYOVA3Hi2upamUuRJsnm3dDiPb7acIKIHXVhT3Ard/RLTUuTMhuLQNoYorXe7lV6LTfp2uitqmRxcAsKRF8j/qlNBfH0jTyxrhNyE/dltPn+d8WbOnzz8FK0d4Z7+XwGdCEgQgJhOMQpCooWyqXzZIBRIaWNx+73jB5j62v0Z7MfRGmH+bn/kBKnfxtrSi4GvQk4kFjSopbTtR9UtgzjIoC8hb8rhZBp60YX5fQ5Sw8oRIy4BlkxIq7NPbKTqwWTb49z8h6uvYRDEcg3pcVMjrkWQZTQeEeq8Uhjo8OQNzj+PAA/XqJ3Y4ALlgtFlgcXQLqEl0qWC3XKEOPWdch5YzKPfr1gIGBvlzGwBkp7+D4aInKwHzGWKo1Zd33WK0GlxNlgFSwrQyiDrkDUHpgJjE0wwCsVwWVB3H3FbGWyNyTFlETt00cu/y0IzB075EVHG98uuvm472ga2hr65meE5lmlY25kByToHYTs7SZfCgsZe1bxg6j6zKImnXQLD+l7wEMMGXrwba/coDyjGc8Az/5kz+JJz3pSbj33nvxmte8Bp/6qZ+KP/7jP/Y4lNtvv310z+233473vOc9N33m6173uo24FqARLgEbVofxVad/1xiWMQH71SZxE6jI5DdN8v7QoJiLw9/tVZt9MIbNeggUheqXU9AQzAJW66P1jzYYFhDiTWqBlYXHRLuqEwYXZ45ZUkItgwI0Zoj2swJeMlzGHIW/MRR4HRPZKMGCY9daCrULe3sfg3KoLIoM0nNKJKCsabuEtCH47AXRHCpybpxl0sypOgoer3VzN5wGHlV4cbnpZmSNPajmckNQllA2tF4/gRhNCxX8otp1BBxarCkep2CNSOYSzBvjibVm/DOLjQHrmtp6iFSV6bGgvRbTEE37/izAAU8s3TU9ZC/S3ObcBgvJlPZ1gNPv49+O7AieNTJyjwmlIYcDNWPFVXebELkWbDQnlpJ2JELTOtVCosUSE3UjQGJZMNYHL2WgQjoYo9p8KuCOAige/mf7FzS2kE7BloE8ixkpKlArQ7NguMWSBBDmvFLnbGxfi42DmxXNukIEVLFygBqQmwajt8PHDUxSA0iVW2C6vj+ljL7vMaxWKKUH1wHH16/g2tUroGGF0q9Qhx49Khg9FstjHB9fRaKCrO6fwgV1YOTMaiWT7KvKjOvXLqPUBKAD1wywFHkbhrXM0VC1fAOjFEZCws5sjlm3rwXqEs6fuQW1Eo6OjlEHy0TKyNy5UG9uuerWEZvPcZP9nZVeckqYdZ3ENmlJ+2EYnL+4ksZmkUNw+5NYU2qSkDCN5WlW84I6aMG4JAXyhjKAB1n52XwOooQyDBJwC0KtGYXtkMCq4R430dRPaX/lAOV5z3ue//7Upz4Vz3zmM/GRH/mR+Imf+Al8yqd8CoAxGgaitnB6e+UrX4mXvexl/vfBwQE+4iM+Qjb2RAJMNaXT2pjxAS3XUgV1beZ4vSrcxxsMNT63CS4TYgiWGrQFp6ZtMOCo1ypLajkcYTTMG2QJ3LwwkjFQZ8D2nVBj01CYHbhMtZSRxqLP4FDUytMe7X4dk/S3ugXiZnPv1qVTEDUDKhgnAaOxqfyOZu6aKlLVlEiuMm9V/KF2jT3bAEfV2IgRYEFjwq65Vnah0YTEpN+jjCP2KsAGxFxY6dgrICefxmEZM4iChcw+Zf83hExuTfFD9pKaWhFcP9Xmq9F4XIug4DeAyG0sFlRS0YDraK30mg33CBkongZwKkCqQEVxsBTn0wr5+t6DWGxcMqrlwcbq/nRINLoDW5PzNjhq2igCzUbrJjO5ZCRqWVDMlvYrgea+B1SrLEYrVDXbOznEJoIc1knUYmUiMIrZNpbpo4AhrkfEAdO977ywlJbVo2vY3LPYpF+iECco/c3M4NTKvxflk5QAFNXY1bxhh/25BQ6S+ZikU+N1dZ6tEFXL0YsAK0prlqEE2ccKPBaLY/TDgL0z+8i5A5MIZvPkW+n3UhjL4xMc3LiKM/szDKsFVidHGNaHIAbOnNnD8Y1DnBzfwGp9DPBCgvtJ6tT0VaxLXWZQyqDcg9dSnG61WqPWDnt7u+gLY7VcgRgacwFwTajUgHjXZcxnc4AJQ6k4s7uHR158FICEYX03jg8PPSRDarskcC0oCOdsKa/29Ql7yXjvRjC4rikRYegHn/O2z5TmtNhiTkkBqCh9rrT5/hnTmLn0HHAmAe8WKO3WXo1t8foqMlA82PZBTzM+c+YMnvrUp+Ltb387XvjCFwIA7rnnHjz60Y/2ay5durRhVYltZ2cHOzs7m1+wmZk3vsBUoI1ByTgWRJoeFW+bVwPOrJlwMa16uunsZ8ugGX8fXTxTV5AxjuoaLCDJXoR4dLhpRPcHjmxMBjyA5iIwbS2mFI7Hd/O/ExFQpRiYMb54TSv1PW7Sn9KoPMov0wiDC8BARJyjjb7BlDcGq9bKBJAGoLXTUAHKImysXkKVSlEuWIk05oeaBm1ykcNCuxsiuC049C1aDqIlwXT8oumCgKR3xxFJGWl5c85Zy1U3S5CkuWv2lM2LapWUtJokQvwREYhyO1dH+5lTbmDSGjf6NSEv2m0A5L4WBrRSO/Y+Mr6brZluo6yWu1orQEmEuApiRODDENPwCDRUXWN1iRQAxMjcAvBZuSnBblagAXUVpAYODMQbsK6kwMSKLbIVhbP4iepMP6v2mHIeAfvsoEL2WfajLBpAGQF5s9AQeUaMnStUhkFdLtgUPqylDtLp8x2VFIT1NotLtLoA8JTklBI4MdC1Z1UWgFJLRV+HdiKw0aKum+wd4ZGFqwTwFgGUnuqq7j+1a4XA3IrSL3Fycgzmgr29XRFoSeaFAOzOdnDtxn04OTnB+f4Cbr34KORujlolWDQxMLAcpjisF7h++V4cXL+G3Ufdghn3WB1fA3JBzoSDoxMM6wWWqxso/QKEHlVquIOZUPoBQ18wJPbsRTCQcsa5c+fRdfvo1wz0a6wG5TGVpEpwNWt10jpdnVjaIPEg851d9H3Fer1GrZKoQUQoA/tYuS0k3JJ8EwXegYWChTIMvr6lsJ/jpFQi/atipa+smZpkrkpqAe4KkhNDDkw1zsiMlLMrT5UF/FDVuBqr7B7CJow+Xbn5APKMP+gAZbVa4a1vfSue9axn4QlPeALuuOMO/Mqv/Aqe9rSnAZDI5d/4jd/Ad37nd37Az5azMcop32xqirJpx+BtLKQbqIkgxTegPperbayxUJpqQbEki/1UORie1wSzCKT4flvYscZjo4oIejwnEeGqcGR2QibS7JE49g2hxe0z65sJTGNyaLUXQC1lO86oPzM+D2NQJn/HWIYGHjg851QrGzMkupwkMlf2j6c0ggBLRd/AdA4q4QFixHK9acW+jUaAVIQdqwl0BE5DnwGy7G/5K1kEfcvSArP3NYId0UrFipb0/dGSZBYTmRsx6SYPOLTzmeS6quPpcg7XkA1LxpkS4tEI1RmjxMJUzahwWrZUQvbOOXiOcztdNwNRMasPWrtlvDQMK7tvoEhoxKwZBM6NCXJcIJJaDVYt2l+jXctdq0Y6DQ7X0FV7jN+nYtcZs/3LGl+BsPbZ6o+wEiMLD5kWhDMgbiTi39ncSZUwX2NALIqjOTKu5Ir2RBiE+i7OA/XZMQW4zRGJsJW/ZL6QgW6GWitmbKnSLVNHMhMJkrso8TEZ1LLdVOhWvVbuV4scF7FaDD1qv8SV+96Hw4Or2NsXhXR3fx+FAUoZx6nD4cENHB8dYb0+xnx3jt39c8hV+kYAVssTyRqpPYjXSFjj8r3vx2p1HSeHV8Aka9j3PaisUfs1wHaSsAyZiwS2FgZ4aOf1DJXBQwXqgHkHDKsl9vZ2cHysBT+ZNE1XgOnuzi7m87kClIr5bA/LvoALcPnyVSwXCwzDgJ35DMPQo1BBSkpDSnTmYgEaz6i+9tA5DJY1wOnODgHs+96VazvJGWgWHuMZUCuy7zmYm1zXSenNLLWtC2qtV+Uq56wBsuaikp2VkhRxm81mzUX9INpfOUD5xm/8Rjz/+c/HYx/7WFy6dAmvec1rcHBwgJe85CUgIrz0pS/Fa1/7Wnz0R380PvqjPxqvfe1rsb+/jy/90i/9C74xCi3nUkFwiLlJtOegKW40Hj8KxgC0Frh9Gjb76Goeu5toQlhjyAQxhrKx/XFw4vS59vM0FH1/7qyROyW0UlodiaaRN+EShWXUEP0evc80SLvfwZONVbU4A2D2fZ2OxTQAmxkT9A4sCcwaeEutTwyoJUfPJOBmvfBzePTkWX+VuXfCvLTnNT++Sya/L2ndicbAazj51a0vCprioZX29pTDmQv6TmMa9i9lO4G0adfyfIvMF6GYVVhSIsy6zhlSXAuZO6k6OetmI5eRLVQ7P6YJs1qlBHqnwmoog5pv2ccZEZ8LPdsXAQCNLEyBKdqNRJ0DQXMHVU2RZJJaIcSSytveZ/frdTzuj3yoTFepkXR/U+IRQHGtjghutiEEa5J+FcCVWybV3TNSUMxCgZZhYi6hCIjs+shLfP5Deq/NywjsscRuiMKzuf/dimrBuhEwAoAGw8ZKuVP+IkkkCYk6dDmBKsk/WCaWFBUbihzG54cciIoMQtVK3FncNASkqscIpIJh6HF8dA2569D3a9y4dh+u3HsXjg+u4AqtcP7CBZy/9Vb0NWFv/xx2dvZBtWB9coLVcoHzt9yKxWKBedrB/t4+Uk4owxKrxTG4rHDmTMLypODqvZewWFxH6ZcYaoEkLFQM67WdVoVSEpgLqlqIRJFIvp8ryxhL6XHj4BAniyVm3QxdSuAiFYO7bg6aZ6z6FQZmdDnj3LlzqAVY1KXHe+zuzXF0uMBQ1pjNO3TzOYaeUE9W4KGIS4xTA/+o2peq/BAO2GXdGvg3i+1sPsfe7j6GYcByuYQdFyCPJA3OHgMPUQTMhZqQKDuf90rVKYejBvRzmEIkQLJUwCooC50qv9eDM4kYH8Bhxn/1AOV973sfXvSiF+Hy5ct45CMfiU/5lE/B//7f/xuPe9zjAAAvf/nLsVgs8HVf93VeqO2Xf/mXP+AaKK1FrcL+1uwNtonn0WaXazdUasA2KVlaJwCNejaQElNf7SdrUBvF7wH9u8l+6GfNLC6f8ClMZto2TPM3mw0X6Bw/PBWs+HVBqIx+v8l7jalPez0FKESktVP8xs15n4CRMu2nFycqQTNkPRo8iQC2VDeXz6QndQKwU6IVlHjGTlgDK1wVmbT1nxSoJEpS1llNpgxG1Qqhbqo2fywUoGY9aZUa3AU0Kj9oMmKOLc4IRDAmrQSsJ2DDMBM194JaPHLSwntqQgdCgCyRnpWhAcM2rdyqjbZ4jQbqK7O+X0zo/TBImXQHP2ON3Uz1AEkauAKvlqJs+0IWIro4YFYpVhDBLeB2CtRoFNA3qcgbKdHpBrq1LdLU1igEUztwCPdYMQohBJD20cGlkW8Am3Kgnvjtk61fqDU0cq0o8x7NUYg98fVgHr/NhVRQxio8ddvu29jvk30dwVGZ8MhECagEEKPLCTW6mZNUlgYInBiJxdpGLE7ygY0HibvI6m0kSl4aoNYBlXuUskQ/FJQy4PjgOq7edwlldYy8U3FQByyWx0Ca4+z5Bbr5LnIldKngzLkLQO1x5fJ17HZ7yLddBJhR1ivcuHoJ167fAwwrrBYLHB8fgMuArpshcUZFwWq1gBV2q6WXc5GUF1RNcZb9IsBA9quc/LxcrLFe9tiZzwFeYbVegiiBchLXV5E1XK8l8zQRYb1eYr06RjffwbCeY7E8RDfrAJLqs5WLZjrFoG9VfEK9E5NL0Xpmx4C4JUz357rvJSi161DWUtWYOPnxLWBGR53zD8nOMcupZMgCosy6QqTuTafZ4DKUa6uOv7rb3BQyroxh6FWmPrC8c3rj+1PBP0TbwcEBLly4gP/z1rfj7ATYjAXb9PP7G2pjTrLBACCmoIbNHRlA2Ogxo2Yk7ExQWLBhYObQc65ZuNpmr24CSqZWnMiIjOFOwYj11xiVgYyRaypov6LR56ZlntK3CIZMuzPN2TTTeO/NrETRdNnG0hh7fJ8ILPlu7LZowibnkMKLOI+CFrjC05MTJD7DgH1KXppMCgzlNAYJolKLZjWobVj/T1oymCirJjaOARAzt9TMYD2jRFI57SA5SWknksqhs5zRdVm1f3uJCWxqtMloJntlOm4p6No8c1E6JW5WGF2jGPhsWRtE5DU+BHMljWVREJQFsA0BwKxXg7gA6qTkeQnAx9/bLBl2dosX3FJg4wHANN4PZlHbtGYa/QUXhwImK4qWiJBCrEUE9hbIKs/QeLXgQjPLyQh8wEWGvt/o076VzzyQuhQHJjbu6X4WnsJWusev8SB+tfJITEHTov0aBSVxLzo4CvyjVAlqNyAv+0eq43Zdh1nuJJ7GhDgzhl7OGxqGAUXLBQBS1qCUqoqdjJNUcVz3a9x99/uwWByi9EsQBizXC8kOW1W8+11/jmF1gjQf0A89QIxCjLPnzmF//wyWJ0sAhMc98e9g5+wtuHrjCLeeuRUZhNL3OLpyFQcH15BSwXq9lHiUfgXUgsVyAUoVsznhZHECHhhlWKMMa0hVY3GxG50QJZ/zwQvrCc/uMqHLkiLe95KZg9Rhve7FfZUIedZhvrOD+XwHi8UJVqsBhSvOnj0rZxJp7ZtSgFW/UGuGyI+qSgFY6t1YPJjxVd2hshZFkgBMnoiVLyHNMlLqkChjtVzBLC45ZQcRUNcLIWHdrx2MiDsmw8okRNoR3jcuEWB0ZM8dQnmClsQgBVt3duaYzzr83lv+DDdu3MD58+dxf+3hfRaPayObnzc93oTK/QM30+CqbibToOHPcruAXt9cF1598tTnBgahTXx2oaZE6OuDGXP4Y1OoA6YGbNw30qbQLAqjfhmx2X0GaKK1BRidh3Ka1Saao2P/pqbk2Dee9M0Kl/nUBNelFAVKChQ0kyMngNvn8V2uLSstUE7oLFtA3SSz1MAPI6QtQ+OXQp/9WXsd0JwOodKsxXKY+05OcoWefFsKoRaN8SgVQx2QdXrFYCday6zLbh51EUj2P10zTwdUN4KBB7I589XUAnAIgxHatmygnDvXkETZqZC6JTpviSTyH4CdYADYUezQNFwVzEnSMUspPkNSFTV5rEZ0faRSJDgULN4WzxBQMNIoIxoDJqBF9lSCBg5DM+Og8ThVxjRwRepPj22S0vpVAdEY5CdKYp0jGYdbdjS1260QSYGAApmmSQYXZAAomyDLeJsIPFQ9P8UUJlNqdJ6GwqrtV3eT2fgjoN9IBYdU1PU8RgNfdl/KjZa0oFcGASxJBbUWz5LjqvyiFgXCxcEQiLBarTCsBqwOl1ieHOHc2Q5pYFy/fhXgit3dOahLWKwPUYclVsMCpaxR1ic4PJCU1m6+g/ffu4Pzq9uxHhhl/4zScsF6dQweBlDqwEOHndkOzpw9j9XJIa5dv47cMYYq1o2MrIBAgRw3EMDKUypbvRf5rKi1guzQPBXwzIw6yFhtn6CKG6kMA9bDoDwKKEM/qtvU67k4TcWBFLhjs+ITONWgRBIsGDlQJqAnlzOkll0dClIGZh2hm3dyPVec2TmLxWKB9XplOwkguCKRZzNXxsSiC9GMlO4EEAmQmc/nbjViZgxaVqHRl+w1C/qvxBiGgr4f8GDbwxqgVC9nPP48ajMAYHrhSNNHQKX2PGY4y7XAtHg9AtGEZ0UA0hhUavcSbWS9tCYaPJEE306K2N+0tc0UhHsYS2ynpWI74zjlOkPqQuyqUYbvhVdN5lL+2ECBEchFQBXv834ELUGY8yRwsKqQyJYyKTUHEiVhAB6QKGlymYPwitaXJIca2kaUgMcEyupLJRH2bjY1BqLDEAGp5Z0nVi+2eCUNqrNS3KVqGKHGl2S1HFRmoABdyToXQmcWF+IMz9wTk5WWeRfhSGptGEOpMZ0ChKqxHRJkrpYYAFbWX5i1anSMUeaS6nh6T0Ka1OIQQKtAiIGuk9ihkhgY9NA7dZd1s04wjKUM19BnTdVlD6iEa3Mp54k2OW0MRgFRhtpoBDCoP78WFUAhe8zvVFBk8T2gaYxGQdIDC2PK8KnWRFup8PtISVB6n1pP7Lq4Px3Q1OqB+uR8o4bvRYDEQPFoht+w0lQWb44RvtIfQ2mXBxQwKlp5eQmSFuFOicQlV6UUPSngLsMgDoPIm1LGIy4+Eud3z+Dg2jUMq2OUkyVWhyucu3UHdd5hVdZYrhZYrZboq1pBhl6soYnQr3vcPdyJk8UCs509zFLCI269FcuTI+yd28GjHn07rl2+AT48wmq9wmJ1jL2dGVLKGIYeWA8oA0CdFEhjBd8SuNsUC6ndIcskIFRrhhBpHaxWm0gq6MaKtkK3pVSxvkJ5DSUM/doVUlMFyS1f5soRBcvjFOOaGR9QUFU1mL2RWEWmLB0fBqSuA5iw6nvNEj3x4GZz4UKr3DZLCTC4m1HBOrS2yyCWVCZCPwwoZQBREjchmgtd+IYo/Jwk7qRWxnrdj+riPFB7eAMUboGvQBO8TGNtvh3uZ9rXhGGoACUK0KaGQLSRGXnMeMwNAjXTujx0LW/MRKPFwd7f7nngFu8nEgO0xcBAez+1qkzdQVNmFc14G9cAesbP6UR1cyHRWuzveLO17095MhAytKbxDt6/JL5tAEhad2KoVXznlccujChQ9H8WfiACMql7BV7i2ebG4QELiGEFHjQBX+YzLsqw7XTXGBtimm0LWiXVklmeTdAAvql7MeQnu2afXIiSpsqP10QtPTYGc5/UlhFjmT9qAgBg6YttjgE5er75mTUlVi0gVnW2cHUw0QCnAvYu9knGKynUUrvCTMTuqjDXB8bklzEp7ocxTRv7J5gLTICd1QVKOatQVaGAsBf0X6lVVNFYNyWoPpSSnsMT+UbQg6nRlT24YRPJ9LDTXf1aL17Ird+qsVvp8ZaaC0Q3djuIr+01NVeNrbdJ6drqk9hxFfYcZjBLVouk5lcMyc5hsVihBiZbTJ5ZDFksmejAddBgSdkLs50O83lC10l8ytW7j9Gv18gArtx7LxgFy/Ux+mGBUtdaEkB6X6vFPhWsVye4duVuzOZzlMUNzOnDUAbGxYuPxs48ozsCzmAXfNjj8L4DJN7F2TNncHDjOtZ9D0ACXiV1XeiQIf2slKRQm7qnQAnV95VDeQy1oOMMSh1Ac1AuKIPkGBPBaSI5rYjLqB+0uiozWtZmVTqUdHcPNmZ2RfBmTRTJRmQSL5LcJUUAck6Y1QzmcNBiqarEFSTKbgGVuZ66doSgSynKm4SG+r4XHkoAUtKcw+LnYyGRKJWJR/vhtAM8b9Ye1gAltqkLo8lU9o3fWgAiUeNh0YxB5CXj5XvZqPFdU2ErmvmoR7CDsfyVxsAmmhabr5wAC96L7/L+hXdZ83x0BSmR2cZ5GRWCokYt9r1XiJUXTGbJHzbuQxSEfHrsi/8+YZSj7+N3/kwGqp0DAY8BkHmyOg9J/e/GxFpRrVpb8SAHXyQHFKacwVyQWEpxm2Cu3Ey0BfEId7FKSF0J9qqtEUQZ6DBTix0+WDUt0zTighZoam6iWDYcsAPTADsJlMx0Q+OYm0jzlh5NWohPaoawz8XIHerAQUBSVreQCS0O8yW8x8bbATy0IE5IdoO5Ri16v1mexruOLZgC6vZS/zqYtDCbusLqMAoY5VDMjih5ubpYbdcAUc1hE+pJq2B9l1F0knIBUk6kZTgwC2Aitf6QWolIQZxkFammXC06paX/EomPn+ydCtQ8MykAlEotILoFRAo5VR7v42Q5MixuHLtYEgEwejbQ9mbbo9TOu4IIQHEbNHABm2u2uCPpWz/0bqmJe9CtN1VjjYqUie+6Tl137DQkKeliVTk6vo5+sUapPfbP7eDoKCHPEuqiYN0fo18fo1TT9hU8q7BniNWSawH3K5Q6YIEB990r9U0Wi+sgZPTrisc88rHoB6msulwusLe3i4MbFVJuvbQgbFYF1mKDqpztJUoFJFOHjQ+0fZ+0vDvVim42k7ylfpB5cT4IMEjLACQp98AMroNbT7iSuGSYQZQFzJVhtI5xBxFFKz60bsk4uD8C4WEokAQDeNzMct1jKINUjJ2Zdswqv4xHCGAyF1aB/BPZavJCYoQKR95HrrDJobI8igU00P1g28MaoCSKIAKIu9TNt/YTU+0K7meX79viA2gb3DTkqAIBG8VmLIBuCnyi2c9+RJOrNWVx43fE728CiqQruiEsm4hiEaTm974ZYVQVpFOBMh5/qN8RxhUFJdUWBDx61tT6ET6LzYS2AxbTyCBm1ZQ0nVjrVCFVJCTUYtlXEPCSGKVqFREO1hYitwZY0bMBQGKemOuhjN82pMUjNHBAagYHNwEu4y1+3oi73hR4as6JX0sq2KfWOe2aAAs/Pj2pkLI6HBHYtLstmNWsLaOMEJBrWK2wHuk4cTp9kJR9B9BqZJQiFkO93mIoYuDnCDyp8JtqTl5HBw1I19oOrmv02+ifsloRCo/OmLHvC5+mnQnYjWMi75dAstbHVv+BIO4LmCsvdUiJMQyDKCzFAhMtbbnxGGAsKEbl3pk9SFE60vpcSgAR+rXLDWZULiM+NZ1nUuXK+Bl0v5WwtDVYYuS5dTQPru6S9EQ2VgO0rlSQAXtxZ6zXaywWC+zu7YISsF6t/EDR5fIYi8Uxhv4EZV3Qr9bgxRo7u7uo5TzW/RGOTq5hKGtUXgvYo+SgTOqRMIgzEgMZjMwVZTngqK4gVgEGU8Lu3lkc7+9jsVyAcwXXAf2wAJIIakmFbXFZEisjB/3plkdVV38FievYF0+ASpc6gBKGCvSlYNVbADiZx1VpXMDMwIMrLfpWXeMQZB3qQY1ot5Gtr7N9M4qRgvHYqjiDMAwWEyYnbq9WEhcT2DpqrCUW6Mr2SVVLk/Fuw9UM4/PsoAmqyHmmtNNl2w/T0IL7aw9vgGJ1CMLom+ah2kA4jI2ADQKwyUq+6XWTm2l58k5bpFEqtwvgzYlvWr/24TQzwk3umbbpZ1OwwkA7G0S1djH1JpN4ME1++pzTnm1AwubN5lkAdg3uElLgN85ichAzBXP63I0xA+4ycbCCJtTF95skIIHkB1jN7FYBVBXlaO6GApDGlNVVwywxFEmsMRZXYBtu2r9m9WiBjymFlHQHpyT+bX2/n+USDngrVb3H1LJYjOmbABqGIVhrdOxaEMpAhcw+TIagsDBzK5PuWnhK0lcFO1nvETO2WCaMkQDBjWi0YCcgK8gj0rVCkkJV1n9uaY8NdNTxeug8jiwgZAChARTPRNHTgNszAKRAn+RwApXG5wm1ZpW4xiBb/kV6Ha99BiGpJY8TAwqApbpoE+bSX4CzrrkKflDLHgovHoM1wwO2iKqNEqlVymj2lEwfAy5uwQPAeTxGA8c+E4SNmjZxvzaLjM4FNR5pQaNRWJZa0fdrLFcnWJcefV2BS8H7734fzuzvAbXi6pX7sFosUNdr3HLLrei6GYpWHuXEOD45UuvFoEqBWTZaKn/OwktmSeMKi6Q3D4PMpWSzFJT1Ee5cvEOteWJlXSwG1GGtxRgrBg1UFWuYBYl3KBr0ayKF64BELcDeC/TljEQz9Ms1hvUgigoArgWpS8hZn8UDCidxj7oCZ89mFAcHUovF9oaSNhSGqDFKMo0A9gB+oRG4lbUyg0oDDbY3uQK56wSocEGXO1WkTIFxe6C4uCBnb/Ws1qYR+bKfMzau9syj/kevgwXhyyV/S1w80SRJ2awI4gNlOxIaU+ZjWtkmUCEVbOZjM+IA4EwM+ilrga520iw12HxK836SMaHT22lWkgc2iTUo1VDuJNamAqdZaG4KenhsTQG33Hf/qJi5WdlfanM4siDVOurLtG9xjDV8H5mqCCPT6JShqKsACp4SzIrV+hutJ/oyDMxItQW5mZyMGr3PFcHfY5aTcYBk+xnnymjMtPSWCggY4ycV9rPctdRmcjGD3CVkJncRGL0XFcaZxuONoNKKvRndJ40zISj4Tgkc1WpjGtSsWAI5BRDRNObARjK1duiae00HBYfc3oCu6xy4tSlrYDYFRucWFJ9Ljbepzc1nKiuTxZO0FGXpo0/7SFTbNadZfKAuDIa4fRPX0Z4QGS4CkWw+mCVWgpKcA8UMNveNTkDkIb4XSdx+OWV4hgaHcbBkz1SjqWmfJ6CllsaLXMYpLRugGykQ4e+2fkanWlMKcLBs7g5miUM4Pj7AUHpcvnIvcidVVDsQDq9dxX13n+DChbM4f/Ychp09lBVjb3cPi8UJrl+9jmE4wdHhVazWh2AMmnI9uBCv3ErAi1quQe5gMEmcECND3ISEioq+X2J1fILZbI6umwlwLOzAvQ5V4xIt1kL/88QIrd2SpXy9WG+h4D57kL2fb6TZTVDL6VArupk8EzVhGKrG0FBbENYkD44C3XiIZc01l7nIDzmElTKhEqEWhiVZAu1kbSF0UR4MaIISdnfmUunVqvkqOKdY8jruA2CUXh0t9dXvbdlrU2soAZ6BmDOp1RfgOlZY7689rAGKoN2ihYUAg2jE1JjxCNVZkJfUgaCwGEAQRDBo0s6sYVPN0RgHwvWnNreakMarCeN3QXJqE4ESNdmNxwaBzqoxA3mDQMaPJVh1TYu5np53Y4JlfJ8y5QZ//R3yi0VMAFwsYKv55Y3pxXsT0cg9x2ibVC4w86rxVFPXZDeygQdmC3jXtVNGGgWvAokofIgIBQBXAxcNjDo40voVrV/mZxXLC6ekmVkZxlCixaAyg+x0W9bMi2CVMxpIGWAetEKpvseHZ4K+xXaQAiayWiI6RgfUZIXbdH7VKiGALjTTyCyVN6yHXehCi9rcVEt3rc0lYgGFURmwFXDrGYv/vYZ3CS2MrZjIUnujanBxKaXFa/C4fzDa8OUm4/0yH5WcPxu9sLpI9GqdW4s3kjvNzWP8IqUsMSkG0gJtRUDf+tHSSKOlpDFuAyEGSOW9ZVTTx+Igwp6T3o6AmmVekb6+Vj3rxsdoVkUCF7PotX03qoQLA4JaY6O2vWu0ycyeSt73PY6OjnDvve/B+fNnwXWJk6M1qJ5B7Tp0qeLo4DpKv8CZ/bO47REXcXy0QmLGcDTg+o0rWK8OsFwcSjpxreiH6oLWlrkjybDLJDFlAxEyFbFWMAFcwGh7gIvEzdTSY10KJNZWgudLrWJlLJGvNUCeUufeeyJJjeU6QGKVxAJZdG4S9+hmHYgYq9VaLaUSm9EPBbBaJdyymST5QriJW6RHbkmTV3pkQki8sN8bSRiviBaztg+AVmI+pSx1m0qB82ejXwcpcEXWLEsOlsFI+jziDJBYBdk2HJrlUXhe0VIChE7T8i1+ahyTcv/tYQ5Q1IytRYpss4nJf6wpjWM+yBe9MYRoVmuaZxP00d/d0upA0CKzHO47pQXFHB6qMnYn2DsbkVK48QEaN/+/PAvC0E3bgsYmKCdzTZBbbMsUnIzGMgEnFDaXPwtx7C26fMP0Fz6bAgd7V4sDmIAU/Z6ZgVCLJSJ/hHvMgjNdl5QSakpe9juWKTd3CE0Aio0pZUllzgoATAMRE7we/AYJsJM1EVPqtAoxkbjiTBg3C04sK4/JuEg1loq+Lz7jBlQIQA31XHJOIEgtFRjoseHos6uCIJ9etTq7dcanfSxspfhay1SK3wHwM3dMy7dj2tt4lMkxeVaRVc+1InJegr8iWC3CAECoVleC2Q4h1rVS158G/MldE7oTclKBHy0TPquwMuU2J0w2F2ZlYdcqbV3jHOkfbnGUNPhWEMy2uZ/fo6BLxjVagmatsmdqXxvYCq5dmyESeq3VDiANmrmBW4b3yd1VzLCyCyJU7PuCYSi4dO9duHb1MpZHl8CrfSyXRzg4PMLx3h5mO3McXDvEmd0Z5rMdXL58SdOH15injBs3rqJfH+Dk+BrW/QKlrFBKj1IHzSxSVpkMJGoGHFeUXs7wIajVgNHURLI51cP7wKKSKTip1eKy1TXrR5moFZSq008iRtdljRWRYyjmOzsopddAbhHstnssxZ9J4jo8kyZbTp6uobN4QjstmwXccLyy8bCRlYubSzHyKMvEqSZbWA4S3dnZxTAUrNdrrPo15MBiU1jUta4JBwVaeoCN/FVWKh8DNIYtAay1U6zPdqaPyF/ZM12XkXPy2CmtPIUH2x7WAMUrK7IWJzJthAELbOTa/OemRZppd7qJ4+8mIKdCxYgnpaTBmmPBDZhWA7egtAdH4d4+I0ruMho31uKy4wPVpsIdRrCja+Q+rmaubX2PJuIPpEXNWF5ALkB5cp0ai8aCrzbTcMEk6BZwK5O5B1IUcGibVf9wIDPS2IPgcWgRAIoD2FpH73fNHmLKbqXko7VH4kZAFtleARR4PgdzW/tEKNTBXEijar2jObTgX/a4HnsXVKCDmiZvArzUCuQoKOVxZn6vVYqRDT0jdR0yZRcuDk5EKkkBqtA/OY22jg714qDpWfl7SaWWexMH95gJWcCtIaM4FBszkcYdhJOFw1pajFll0do5qTZX5aRWownTNIXWq1tOyW0Vuu/JuyXmZqWXhAYmUkqu+ADBwgCldqqabafxV17HReIMfGaDZcppr8h3JWRpiEUnwsypMGpB7+BWVmHMA5qW25QcKB80aivNsjJhNb6nCvs6N5AjAKrqvNdasFqtsFwd4fqVe3D98r3A6gaOLq8wlBX6AhyROEmGMuD2R92BnHdwdHyA1fIYy+UCO7MOhzduYL06QSkD1qsVpPS9pCVTBnKndt5aNW12AOWs0leyUWxfMATMlWFQa4GdDiyWgpQqShXXS+XksWuu0HrWTdUAXakPUmoSEJAsfoIxDGsoIpLCiwz0hb32Uq1sebegZNbG4m7hVlLe+qZ2e2ZUWMah8ohAP6fVyrE+EdiVJD2sXUGB3LtcrkA5SdXfmDCh/K6bzcTCtFyiWSgNcMD5ZZft6AsGKtAhSewYpNYRkczB4LZvXRsOp2gnyAFOD7I9rAHKMBRPl3KtTSWj1Q1ghlUyRvPut3gCEDlKd8Gh2nNM9xMNW75uWqyCITePTYQ+nyJcVXKaSVaYSgn3RZAxDjp1C80IECii3gAwcr3koNdYUsT7c3/tgcALh2tMmxv1nnjUd4q/B0vKab0QrXQ8ptO8lszswM7cHeU0oBdBTejDtF6OPScB4GDRYCKPowAEbBRdB4+j4GaFEA0CqHUAjMaoaTpuHdK/20m3avmxgNb4fJhVQa031QzF5P3WjigjLa7dRNOuHIbWrHY+jwGwShVNKcblVhcOLkH9rFSttstA4rYGBhqYyM8Y8mdbPJLFqNguiMcaGPO0+QHGwcIjEzH5PFRVSsDQKsTqgrVuCzLyuc56cSkS+NiyeAR4cti/DoKVbzjUD/MTa5HUkZCHcWoXAA5KOViwnEybBTcCkpaRtek6AifNDKp+r4EWuUbSZu2uqBqM+qjfjq2eAnjX6yVKv8b733cneDhCGnrUk2P0i0OshhWQGP2aAZIKwTs7c1y/fhXd4gA78zkOjhbouhkWawazpNoOg9TWYZDGziR0eho3U1FzB4srBQwms6Y17pEVQKSsPKOSH1rHYCSWcACLawHMSprV/UkQ94OBW3X5Wep+hvKzir5vLkqpoCugdj6fYbVaiewJcyfxkO14Bbf0GeWaZZWBnCCZcmFvmlXcrDq23qS0KLy/SuSzryFhKGNayZzBxY7CGCt60/0PLUxZqxRz6yQ6GQBQtCpua3amV6dWJAKZO5sl5qSdgFxUufhbAlBKKZ7nDcCFiTRuAGECTuxas2QYQt6UmE0zrpW9ZK/c2wqAmT8zapmKYNr7HBY3hmqWHA7uKNGmxlqS5aQHxagJXf01UQ4alL3Hrh4HME011fDy0XNjHww0jECJz6iNUTVLav0bgZQJKDIUb89HAAE0ucfe7YI93CtTVDeuG73L+mf32LviXKimwKaZcR3RDgh6WJaONOXgxsAonTuSkhdz8+dkZ1jyWtGkJPBWTbVkNUoaM/GzdXIGUTfqGwHgKsyqVKkNU4pYFYYiQD7GWoyBmWUH6NyxMBnA/OeNUYogVsZXQqq+oEO4eyYnDYwjZGVecYu1dZU94wpDo5jglpKqwFUrzjLLIXZymZrqM40tNWCtv9FSeiXw0cz59m4gdRlcdP4zJLMrp8BfmqY+PSreAxMDrbaDDuMebrwH3LRK2dZtXAyWUucwUNGscgJkZK3MUGcxI1BQWaoefFeFfq1IpbgcFBQhaeqsClsNdJRzAAh2crTv7AoMqyUWB9fB/Qmu3PUeLE9uYH9/B5QYPSeA5hJzsJswm88AMFb9AuvlCnXRA6jo+x5nzpzB7vws5jkj7+7i+OiG0J8K8a7rkLO8u1Z1z7HMEaqkeKeUvEAl14Kq1k5mtZQZcGfJ7LGfVqZe3CICkqoWKovGP2boeUKMnDtXRkUODLp/9TkMzGYzzOcdhn4NsKT2MpEE8RICXXDgo1qFV7MSZT01PiQZP4Fki42UVt1slN2NIp8Z4NB7i7r+lFz9TCwWy3FS4JJyBvcDSniH8WI7kqIqyDeFJ/IOk1dFD3MFZXDSYnHOM8y1VsAFGPOe+28Pb4AyDFK+GHAG145uczGPkS89CDbTiqmW8aQZKrUqkkoU5IKlHV7m/uSYFaQ0NXqmCRNqBNdcQazPb6Z90xJrrf7+qNnooMdCl1UAjICABrxYkggTvIy/Hi0eC5yN0PX0WQHUxGsiovf07rAR24SMn2cALwKNBgBD0GZsEZzEPkz6ZH2dApWoyVB4hoM+o4nETdskYSQ5ZTBV2LHjOXeYdZ2n1ZaGLeX9RMiKS5K7GQlOBiYgVKPuuoTZrPMYGE+jt4wVy1SLTM/cnEXLj5tAUy3aJsBcMexCPjKaljRvDNoAdMAL8ndlaIUztUKY5YNdwHRdp+MQRqVSWKwc0yBsoNUEQRMEDhx1HFKgK65p2ztukYK6FlkLjYE9C8QBwzA4gLR4BWbRsEe0Qu2nCTz7KGqQY83z/l2nTnMmRDisD0tabdWzTfx54Z1ecLImmEwya40c+6FZKmil7s31y2BwSb5logLgFikvODcoX1HLBANl3QN9j8MrV4BVj73UYXmyBOWMvbO3ggAsFwtcOL+PflhjsTzG0C+wXp8AkMP7QMCSC/IZYNbt4GR1AkoFwOCWjFLUFQXWVOCCnflM0mVrCZkkjGGoSB25KwiamSfWF6sxZOnHNqUSUEucFUgWpa/swKQddJddUSl2Sq/uxZwTZl3GbDbDzs4ci+MjiNVNXToanzIiqqAIqTlPQZbyr6ol6lOzcnBbrfYYEwmstZ6yKUYAa7kFsTQVoAr4LEonFOgGrBZoIk8XNouZ/RyK7JekMogZUlRHawPJ6e5qqdIKh1yaPCG0kgim2MSg3gdqD2uAMhQ5TVOnFAB8osg1FgKlOiYUu982qDFjZxyKFBEACpPkkVOWrAKvC2GpjSH7R0FIZAbyGNPMxwzMznqAAhQiuOm8WSzU6uJ3jQW0f7phpYACq8Y85Xcgd0JwcpaNErjGKjgBTwAdNmJdguXCtUm4oG/upjAR1Jh9BBxTQDE+fhwNsJxiAWpja5aA+HM0P6Y1hus35lE7QxALQNKTXXNu8SkWi2JrLQCUdVNqTI0CjZyzA1ui1g87SbmbdUhdaqnPygAIBMoNsMn0NtfA2K8MMeMyt6BNZq0nRmhpi2P6ANrcWdaQ3KoHoLGm2Rqj5+Yrd6MQyRizzY32ZxiKn+XEYB+3PKgxMRcggZZMiJO9TPeOaHSa/mqMU83+LWbMTlWtwXJUx1YWMiGsfv5T9lN1gC0dq2jKyOY9m+DEQN5UAYqWlUazrU6RgQ2NUPD1lUkxiyprH83WYeAzA1XAxawLfQ1Zp3H3JOeeLVbArcQAZhlAWWHYyUDO+LDHPg7zLuG++y7hZHGMWy88EqvVEswZlQdcuXIJ/XAMUNGS8oMD55PFArNuF6vVGicnRyilB9IgCkFV4VagsQ1NKxeLk/S0rKFZcQRWUDIMA8pQ0XUZO3NRGotp/Eo7cgp3Rt8Pzi/sZPnqVipq7vxUwahq3UFz0YEVIA1IlLDmlQcn2+GaXIGE3OjO9klw7dnz5IntfKXEWQFikB1W/4QINZviKp9JTSNSa4kscgegkrwfJJbhzDRyjxZ2CTmRS2MXY9a06hJoMqd2fpnIXHnGNDNUOm9uJFFgQx7cA7aHNUARbcNKhzeNm1FHZxgQYn2LthCnCVoATQOlgrb1E3gAWtS1EkfKwQJgeJf8t/AC2Imn8Vowg1PT6ls58NhXJSNnZONnu6up3eUjd+uLFxsy64EJCBYByLLpZdM2vyRhrK3rL+oaNutUfB8LelfAF/vlz1SQEYNUdSBNgIX32nes46zAKHW4zVNk/K3AVRwD1DycaiggMG1k2oEcNiexHxkJ7aBChmgo1icpgqZpgUhIJL7blHM7uZeaHt5cNYQuS5YNB+tTo6hmjbLgSmbWjATJnhlKEfdOjPVQjU/GrdkFLHUTWE295rocUY7T27i66LhqbQOB1t8U+8wSn5KhgbB6R9IzOZIVuaMk4El90iP3jFt8LFVO+HEd1YQR+qZiWWgNhMdj35uZeXywYQUUbI3dlyN6AtwEb5aTBuBDcLVKlA2K4s3njsCmfhdpPSn4NUBmwCvseAcQzJL+KSfSEXLu9J8KkHhEhAEc/WHgL5lPAWOXpoHlRFWUmdKj3HILHvmIizg+OsAtlXELPwKJEhYnJ9jb2cHJ4ghSb2RAPyzBXFQoJgd2BweHynslsNXKAhhobMpK1iy0lnHT9wPqoAGpqsnXCgyDuOS6WVLqVToZClhTXeUlAmrArAUac8uW8kKKMv5S2jEa5GXbpRaL8ELZ731dN5oQDu58qporx3i0rQPUJQkBJ9Cf5uFnpYkMSY+OimrDtsLfBrWyU8q2sMggKW2f4JZd1jFvWP2ojVloompMlioHBLW8A3mesZNnSF0GSLKVqqYmqxDR+DktGBrd3txA9INtD2uAwhbIZFbkiZAy7YMqqz9QNUNlyF4N0szdtpFrbUxH4I08f9DAQX06g1Fyi3+Jx6+HXGJvZIUUiEAezJZAPHiEvfh/xwCiaelR3JP/i5YDaUHrs/BSR69G4DYHOhuBaI1hR2YeTXZJi2nFk0pH9RTCZmU0xupART+LzMC1amaUAFDShJFbv2J/o7XHvw/3tPmXGiZSNh6eMUO+Ju06ZgUyZNqcZrAUKNizsYgwSSRahgSU6btS8hNDBdjAGQVDYkPAwFCaZmPWFre8JFIw1irDypHnYp62YFiLN2mnidbACMz0zJ4+6icVs/jxbdxAs+A1YdqouYb5tYPHjDK8wBXUgskC1mxc4hojn7tSK4bCGIZ+AkgwAk/2DKsnUStr6qfMRyr2fcvqK5XBVDylM9KlAT4TBCNrAoXS/6qlmjB3F5p9bzwDarW1irMB88lpsY2/+Gfkdnq/NtshQFlqV5Bm79VSA00JRyotCEW5QFKaASjPFXgY4DduBdljU4WKSLtR1A3Q4lBkfzC6nTlmuzs4e+Eczu7vYWDG+ZTREeHo6ACUCCfHh7hxeEOSFwYpGEdp7qfO59x5ETmpLSIWi1oIFYPvJdY5siMdhLY6DLWgL2qlMMA4wK1g5ho1egdacUlx+clZN21OnLLgFXvJ4joU6CuLshRx4Q3OUVBZ122UuaL2bg24VwYz4Y1Ge3B6J1YQrl8kshRmamtnrSaJv6kCJkCkQI811V6oopRmSZJA+qKyoPFdCz2ILnXW7wxIpUyYUVZXNOlR8azgXTrup4hRFfphSCxONZ4EVaT+lhRqA+DzHIURQSbCDpWrrBYVi/Uwwep1Bpp2YcTvKVb+TDMHBJBDUFu+Wh7KgKpZFs4QQp/sBFi1W/h30dzLHvDb0t9a48nvJuCbq0GagagMoIeDG52DaKI+zbRtsTanCXhogTKGZkxZ0zKB/jy9ZsPkPZmT05pXC6UQ9BzfNQGibeMH83v4XpiXMuvcAaVImrOmGregMHIQA5a0uWKnG2taKhcxecK1S4IdRw4rl+/p5+zspcXiyKe1VAlcLcFqolaVFgybNNhUEDgXs5wUD361Gisxa6cJd52uam7ICmarKxJdda0PmcJ5K4B/nvSEVAOWUtNEBGPWonGu8VPLLmIVwFaHQqbagEZFKXqEuwuEBp7iGhtdWL+tdLykg47L2zNDLVJCo8SaFWbAagSQMeIhdnAcdI6cseo8juiNyM/JaaTZAIcgh9pS1mGCEfCsiFqAYto80OWu0Sq14otuXYwgSQdrANvBRxhPo0OxODO4HblAbX3NUkOAguUSwL7EKOzt76FLhFnuxE6QgGW/Qs4Z8905Dg8H7O7t4uTkGOAMYIacMkqpyAk4e+Ysjg6X4NpLAGywKJq7DRO+yMxiYMsZteo5OmVAlzsB7euiWTRz5HkD8rXqERZddtArGWXwSuGkIMBdHFXc+imcw4NqsNyU0LbWYk0BhtLrHodb7AoDpDm/dp1YZlOjb5UlpOBTalUREmssRyIMTBiGHsySdcZhba2QHlGSmkzmxofMUzK3GSTGBtQwDiXCLM3gFdQDjY1OfIdl9WkMHltguJx7xWpJIj3yQhI+ktJpBbGmqVegHVmBB90e1gAlFnICmmZ32gww4EWczD3BCMxU70lsMQKArxwBzXenR8uzaE0pdfp8Rk1BKDh4CO+PfZQeT36G/jIJKiVhFs01IwwjGBwm9xVPsY5ZSE0HHgvwafEtQBila3vWdwNWBlwCCIlzTkTNdhS0Ve//xkgRxrUJaMZ9C0w3AKAobE8zmQNy6m5OSU4TtmcSae0ctPL1CooYAAqQsvi6CQwk8YOLtuMmFF++ylWj1O0LcbW49cnGCG5BjCZoQS7ITbsT07C5h5L7gM0aUkqzgnichQVFxnl0ENqAqstRZlAygJRGfVU90METsjBssRiQH9Pu9JGitQFyJkigI2PESUu6S7ChZkqEta21iJApUmnGxhXBr8VNCE0mjFMfbdyNdoyRA3DxIwGTCEHFjZ70CkC112gttEdbfwQ2aJqoD5a9h5TUEqcWJoB8f1ldG8lYasQkAKj6A1tl7MkeIaEnLxYZxiHBs1Ynqnqwtcco6nx7hFA1oKpgE+TuOFCrxXH12hUcHR6gqvummxG6ecLu/g6uXb0BIsLZs+dxeHiI3d19HB0dIXcZ587fiqPDuyUGBBXQ0vMij+1U7QagmRlDX0GkLknx7aJLQCIGZwEvdtxCyuaillU2+jJQDpgwFsueYz9ZLiQAhVLgcVAoa8dqwPeCxZawWjlEaROQkJQQxnV3mluvckLf94jn6UjNSAOO4n5uRxuYspZhIQBJi9mBIVlfpj8HugAlpA6NVwHwI2BURrApgcFialbrvhQMfQ+Q0HaFuLgKKriY1VbAp8froMlTT0it3iGIS/tvkwUlNOYWUGeJO5YWGE9sFBbb6gWY1kFolQuNIYAaUbIiF+aEPAIgYoa2yBNblw1hTBuftK8MtYZrLAicqR2W7pq2aT1oQMX5FunuuJ/m0GgUFyPf2LktItBkJMbcq1ZerZqOG0GKRdjXUkbjsLlwM7cJDIQNZd+F/k0Frb0X088m4OTU8Ro4CADAD5mkZlVz87/23AQCKyCFCYmikfZoYJR1vtIkriNGJjhd2ZzZ/Me1IxHKcLOyaYCDTh97CqwIIB4xdQ5rYkOEAnJAn42mJWVIqu18NnMXh4G1lFPLWtM1qTVmt8Er50LBUrQitCVhoLK6ugbAA4bJ3VjNdZRAVDCA1bSu1pZJBpDvsUgP5uYi9vVoUKYVB7S4i+ZSsgfoHOls+foqCjGQFd2fAlgZXSLkLo/W1wSlnQNjjLpCrCZdmiOTWckk7sFK/BuAkg6RC97/P3n/GmtblpSHgl/EGHOt/TiPfFVlVtaDosoF2C7MtbEbC7UvtsFAdWPLF2Qs+Y+N/APJkiUakCVkWTKSDTKWbP/yP2QQtE2r1deoacttCvu66l4XGEgooIqinllZ+Tp58jz2e6815xgR/SMixhhrn51VWd1Y6vSdqZPn7LXXmmvOMccY8UXEF18058rLikVNWdUpJMg8tXUhRRqoRUSAqE+4Nhu1e//sIKatBe4cHVk2uH/vDrbbM1QpKGXGydERLs5OsN1c4OT0CLdu38LNwxvGYWAC54xSCu7ff2DddN045uzASxnEqTkeI7HZqnsA8VYd7BorqylDhC0aoxYdqRCspuzz3vgh4g6D009trjVkq4BHM4jcGfE5YcAzt7c1PZLcRdtMgC3D1KOLRVz9npsMBXmKLnHjRVrJrzoA5GZzEoeDMswtsegEu3icDAC1AUu1yN94RA8c1e6QB9eGEJo62j1237/Q1GidGuFLXXLvxSM+laTCSMo+nzjGiAnkBOGixmmccgYRI+cJ282MN3u8pQGKaIF4LhM+MLHkrEu6h80UrZFYywcPh6qCIU2HIlIcnWAIQ61DxCNiAQGIot4k8psdyQY5S4f3wzbo2AIJoJBobl157aEbEB5IfA31d880yvJ29CQijEHx9dyrbIaQ5XjN9u8rDfOG99na8deGKhgKg+/vzWkcv6vAQduCb79rQEubV4cYeTeYcR3BP4mIAAss7TScP/5SeAi3bRg+cuG1RDTKCbGJYiy6sBoRg8f8siqaErQaHwTB64A9wzrobjwyztL1TAAXMUIff0uJjOCwDAB0TH3Yu4mtI7NozMBdtCq++8YYJoomgxi8N0ZmxipZqLw9+iD3RgpTwngyVFxx1gXgWsg5LpDCMIQRd9PsaTW0eUSQlHbHV8WatGkvu42UUBuABhJ8Pg9TjOzGoR7tjLnRnin3sU/wCEPx7wFDILY5N6+9r/VGOvXy5KUUKBRTnrC3t8J6b42Uknv1Dlw9whVaFLUKEhlfaZoy0jS5fLilAqpUzMuCZZ57hVZLNdg5I91159WX8PnPfwaVt7i4vMSzz74T3/BH/gRUfB+rQOhfkIO9ujtS/Sf3ylualAEh89ClCi7Oj/Hw7st4+aUXsFpX7K3XeP3111HmBdvNOebtBeZyjlpXOD6ZsdmeY723h4ODPWw2M5ayIOeMOpuBSilBi5UTx/pIyQTFVLSJghmASgAqlKN6RSK4FAgcPbJNUDGQVxaLGpqmRwdeLQWBSKfJDmAREScHu4yApyGtJcVk1T4qCBVgG9pIVVqUgIndPom1tIBFXmosTyZAk1+D2HpDpDJj94f9m91GIEqI7Z6bizzskcF9s+iF9WYK0MdNx8n2Cm0dzw2gCAlU122fZZ0MSImiFgG8k7fZE4Y6d4jamrTeSXC1aS2KaUrY3z/A4eEhmBmvv34fb/Z4SwOUshQPQbmPpB4+JgvBC3fvt7sJ/eGODzX8y5i8vkMjynNbtYqzmYP8xGBUVQx77k60pRn5RiCKq7dJ0SSz3VCQBmAZ9+KGSoZIgDOypeegU9rt8QE3mLHpS1jtcWMaPML2gl9PkCBDmEzVG9SpRl0IAnTbpp8aWNnN13YwQtS9lHGjVXVPXNEMUTPs6IBmZ0EGWJEABCMIdPBx5f4idQKK6IWBEeYQcDKQ1sGXNw50OXWba9zuSkf+Q/NMxSDsEBGK50hELe1DbOqnDbDsGPQ+H23j5kZwBSLSNzVvSNWMSK2CSkPaiHa/P6XswN3mTcoJ2Ym5Jji1ArE9g1KrA43QgLDmnN2jhJdP92fa9YB8zolCiMxI+OtjJCRUJ8fy3zZr3DCPnItWSebPrYGH1ksFHg2zqEZ8J7GnptiauzEzdMWmJqsKmUdOkOw8h77pp64a7c97WxKkVuQpY29vD+v1BErmEEix/Hy8X2RCKQXLYqTglGy+iJTB4HHYW/SO1AIhda/V+Ea1FGgtuPPFF/AbH/0ozvUEVSu+4YN/FBWKmweP451PvxfZPw9VCJORFIc1unO0YKrraziIVZ1xfPQaXvriZ/Dw9ZdxevwQe3sJN2/exPbyGAmMZXuO8/NTaC04PTlGrRXLvKDUBavVPm7dvAGihAf37kNhVT7brY+Lj3P2rt4N0Po6tGiDrfGkXmrsRjEcDSIGT9mpcKXNQ/YqH0BRdYZUAovJ0Pfbji7SANPU9qa2h/hatq7kgqaP5ftXrF0RBTkRN1K1KrG+Yx9F20MVnUBqKSdxvOUcMk83RbTOzk8uV/MoR7CtcfZ0cHFFad/vwvnqjip3UIrFfOVCKBCX6iCktLZ9p1ZoAnQosw+wY44l+d5of4cS72q1wt7eGtMqI2Ubj/X6zcOOtzRAiRJLAM1b5SQtbM4yMK5p2EB3PPYABzbRk4jzEcLjDnBjyJ1AkBRkV49sEHakxgF4D53dyEEsuHZJcd54q2jbPEaS47Ant8U78jnMmVZHsAYdzAgNSHm4lNh0O69mWGgtGoOmidFBjfZJCAdlLZ1ozbXMcAz3TtgdBr+/NqF98Am2IKU625wGRrkqolh1J10yvIcVGDso72y+AUbQPeD4fPSEiaNXDVHboCOI1ghnpG4c+xyKdKFV/vRyvp1U12BoiciiZSAIS7svA3DS5pZllToQbdeeUuNhNL4BC6r3HYlNu3v9qZWeWlMxj6hkK0kNEbjmpYGASgP4MdCfOVt6gszANl5H3JsG1B//DRjYZ1ijudIqkgho98bE7f0GkNXGxoMHZKzGHkWyQd0ZY5tPrpTpS5eDxAs0fhUzuVdq70uZzTPOtk+0HH/MVxr5GECIppE7BdM0Nbn8MFYR9QiODydCpgROhLIUJw5XByiuMeH9TGjgugVXSURQi3njKhUPXn8Nr999BfPmHEobVC144Qufx8Ojc/zZP/s/otKChMl6WvnzEdJ2Xy3F3dZUOCLmsdsgC7YXJ7j32ot4cPcFHD98DWXeYLtRnJw8sIja4p2FxdJcdZmxeERqe3GJeV5cg8R6LwFqEQ5FW+dSBUWtNUQ04GQQRNlWla9Hq2qy5x5KxcoGYETVOqqrydATAMoEqtb/SFQ8Ec+ulOwAAdVT5gF6go8GNI4exXCoRXHsEjyqzP19Ptfj90Se3oCVAxOZ6JkzQCAc6RS0SHlEtGUg6DKRRWF8LzaiL7e1Fo5MZiu3nufFo4gwRBrAenQCfC+3NZgtXVzNka5JwASkvEUm9kolhYpVLQVXJpwI4zFbBaoMtmNvNWGaEpayYHu8AVH634/UvbZNAG1jU7VNLY4x+qAWl949RxjB8L4ILnceBrC3uA7vwrlNDmTccIoglBiZk4GZxu8I7883rGa0e5TBKhPiOq6i49Bv8Dv1ew4+Q8uPDp+o8RXhTWLXYIpIL/bxceCQvB5CpupevW3S6oYiUi1o1SwxMaHa8pjxjPwLLArSNA8ccAU5iyPdENdp4+M2D5HLD1Azpt8IaOmZFnkYxqKlsHS49qvzA5Eqi9d9VgxtyckjcyPI9JvbnSPaybFX3xnPrX9SoSXIaXwl/eP3ir5RtohKIEPpn1VSmNwD7dwnJyvxjUoRf1r9uaH0+YpozieNfNj6Z1AfS7smatcVcxOEFoAkpjbHLFjlqbiMJnDYxgToTkNbL0NVlkfKStklRIuOAEXbvTNlROJoTEv2/YCcRFqd79NP4VzN1lF5Zy22qIr9mxMQkVYj9/Zrb2XSvLtH2WOzaqwqppwqNbrt2jOI9Rrro0UdHdCcnR7j05/7BM43J+CVgreWwjm59wCc9rC5PMXD09fx+P7bMfHkgKe0saUA1aI9KgRpJa5kb8Dm4hyf/9Tv4NWXv4iL01cxz+eotaAU8kgaQDCBtLxKmJel92iK+1wWnJ+fI+fJnnGQcYd9wlozVIT8un02ot+x7uHG0B0lhRc5GEAh78ETr7Q5CbQScfGbj/EttQJRUeTnB7nekc/rDprtOYdzIqIOWgNIEBQFKGw9eEis0lEjAux7e4B+KEI6olS1hps+X00qvjaNGGKYKJrY+SJKOK519vVWl2IR7oY7tf0QFcYxE4N0C7FRS9lIy7EKraePoLAic8KUM1arFbbbjav++lf4PaUoDScCQbBsN9gum0YmT5ybw/1mjrc0QImQ86O/6Bt5TER/qmiF7QB2XfvUWKnmzff84s671YlDvmi4EVhhE589AOm/Iyr917EI4oxhVEVhnZEtlzlGBsJDHl+LDfqq0FnwMsYrvj4MyM3bHS1553r4p5V8UyPfsNovbCExOwekRxIaEByPeF2kbRoDiPc3eD+MUE/dsfhhWGj4DLXXmHrSZTdqMYARH/vEqW84IISskuiQtmoj39M3DVQO0ZF2c9TP1jUGAtzugs3rfm5lxc752H3v+Ix7lKJSaI70cWEO0EbNY+9z3HqxVA8jBwk6OhLHmMazkareh6Z985C+gRvP3QqwkSPVRL7SyLGxHHZy0l+PzrWR3EnzsFcOtDLpiHhF1Ioaeh2uw06k2K0MU1hZufkFHh3xiicDzmjXHxABgJOqh3lP3SGQwZExo+xdSdW6LVsvnV5C3f/2ii9xXk9weQTt+elQgRdRlO3mEtvlEioLnvuN/4pPf/J3IJhRdMFcixNrge3ZKT7zB5/A0fkx3veeb8ATt9+Gqa4GccNdojlapZkbKyJQrTh+cA+X5w9wfnwP5yf3sd2cosac8CoyEyJTQCpILX1GLJbm8qqUWgXb+RKlzlYFIgXRMTj6XcHnpRSxyIB2MralqMi0iFSRp3WLnphwJpASoS5WDGFvj/0jwD5b6hI29lCFCLUISOxPEnL6OlTtAAAp8mQUgii5j4g6QKhmDswe2SQDCWy9DU7dzv7ULo+H9UO+fuHEaXEgzCCaDERWQVXTelESkJtxEYCciB7rU1SdraMNKJltCl6jrxXYfm5TQNt6J9/HtNrvV1OGECDEUPbqJR2j+uoRViDnCaVWLFsDxnsHBwYKl24Tv9LxlgYoY8i8bfph+IYQ+1UjTRERQJsPPmk7eDDJFEH0KWlAJ0L/sZlR9yAjqhI/JPZGYxxgJjZq9HNScC7gxp0QpXYUCLl/YOeo2r1Sm2x9c28emO6ClM6xueZoKrnxrcGDADrrFm0hheEg90DiW8bOve26I49M/ew2ft07Yi8XJaBzcYI5Pty85VkDeIRxRcOg4zCZ5+6ghxWug2f/a9Ex8c9Z2HQke+7cBo/XMN5cf5GipJHsfP3hwF+jBkxHcNL+zf157/CC1LUb0IElc3h5/lzENmzb4CKlwWihWG/nLvGMvLS6rRMJD9qqTuJZ76axbFbUGoa3S8WHOJbpVjGA1KJyjF4KTO7eEah72iKtEmHks7RoSdxTGqsLWpxwOEIL5spyIUsSxtoc94VEBGELX7f0o8AF+uwzzbBcWVPsYMOAzriOgxsFN9JR+cQNhEUEQgU90+uCWrHhq6eBqFS8/uqr+OQf/B4Ob+7h9OwE89kpzpcLLLpAlq6aWzczXvzC8/jSSy8CQrh34y6efeI9ePz2E9iNtDqw95QfqaeHQdCy4PToIc6OX0NKxrvYzKX1WSH0/caapYZhNm2e8DtinMoyA8jY2zvAdpu9wsbKjW2O2CKxyG78HIbVDab2VEaQtHN2Qx7CbBIdqUO5ueEFu0d3EEXsGac0+a/cVaG+l4UzQDSsRbLUB9jAgCdgwEQuDmiTQpy7p1pBYm1SYq02Z85ntkU/Qx8lnIRx//G9swEO33+BBqSiQox8/oPVTJdhR8RZ7GptPYYv1QQOvWpQ3OmM9hyq1uixLAs2MB6bDiA8QHmv8jGahSbXnvGqzmWeQcSQ+r8bgBKOgHvkIxAJvHKdgd7xsBwDKzy8556re25jaiWe6E40Y7geap48IaqFCLYQjBDZZdJtjtGVa1QoUvOeCAOCH69/HINR12O4zzHlFX9fB9Z2OBHov1d46Ne5IuP74m+NPSTuwf8WBLHQekqE4cXQC6JFSQZjDQAJyfcqB2f+/hDmAsIbGq+j31t40P06vTsw0HLV44DGdQOAwL2vcU4BO5GDXZByBTEaovLnZmd8xGtCh5wjD2j0qtTDyCNfBm44fU9pYHjnCgJN+o7cJOVdnr86IZligxuMbeOPaE8rtE2LsKPZMn5m7PE0AljjVoxE413tg7iTMMTVK00QBj+qaAYPLTbj9sx2roN276F5DD5CVyIhO8ZODdlyC4bG+XfXVPvtIw4PudJ8V36lMPR+Tew2SUUc6vd9oOyAHoLU6iJYxp2opUDLgr3VhIvX7+FTv/cC3vv+90JWhDpXWy/VgBanhLpUbOdT5NWE5z/9B7h160m898+9D1NOTaStrbeI2hEhsWs7JYZuNtC64PLsFGcXx1jmrZO0HaQFPy3GILr4wsiutgcY58OqSBTRS0e9GgxORmYGcs6AVhTyfRf92fkUbGR2FVMzIrK+NKUIVKop0qoCxMg5WRuS4O+olxGDPA1nTlGsp7AHrZNzgIiYG06ihwO8lMga8NXSgEjM00gNVm+AyMmitl2Q0FzkIOlrIwH3Kr2Yh0b6NTJqdwri+nwNDeT5UEunlrLV1gq0pWPQHcIW/cCwl3oFSGITgKvVmoJKVSx1gUx2XglaAw3UAQfqDGlRSU4ZBJPsT4lcWv/NHf+dABTq4KSB7itEyTA2AzjoGw05QjEftY9feIVXznH13PB8oJKj1V6x04yQeJoE3T52+07D3qltYcZm3PhqvjFHamcEOG90XGcgH/l9/JtpvKgdMEL9RbTgBVMzpHHBo8EIw5RzahyTnQjNMBBjSL5v7IO9HZyOqzyS4Am012V3PLr36ycageEwfjvG0N+624MmFv5w7cM42RdIW/wtuoBHx/8RoDkCQ8AlomUnwhSk11Dw5cG4dIAWG+t4gfGXk1+1l+w2cObgpcm8D3N9NNQj4A8Oi11LBxvjPTUgL7vrqAPoIN9p01NpirgDULLL8HU+jHd4nRFtiKdAdoFxIe217hUP4AW7a+nqutp5/kAwbdsUiHC5VFOsTu74gEIjhq3rbrWUUNyCwqJ6KtU8S7K29CqCBA/Dp4xFK1546WVorfjA138AZ5cn+Nzvfxrny3knT8M4AiklLB7lSGKK5H/mT/1JHN5c43B/H0wZgLY1nHKkSoCcE5gzEifI5QqXmzPcff1lbOcTbDaXSN6DZd7OUMw2fKQw0gI5JyPBGqouUFi6JDmA2l5eYp63TUspHoFpUtlcniayclag6W0QjJPBNJDY/f+1wtMd3seeyKp5yH5PDLB4+tMmBaoL2AFeHICIMGJI3wSMiGijk9/JU8rOESG1tJR4S4TQ+iAmE3qMkC5Rkyew71Kbt4ND5DMaPe4T6wzo0ZXuMLc1P6iP9xXd9+QoGqEgdtPgLAQD3f8dUfsoKhGfsDb+BlZKKf79fh0+15ujAGCRroXVba02MvibPd7iAEUH77aTCO2X2DEi8f4dkAEaZU6wszOjV+K0UzUDB+zIBPpkig2a/OHGJhSRg9Eo7UQuKLgEdq6W/47vJdq5ri8HOOK4usl+ufePvwkgMVg1xMKP940TL94SGjTj93duxaPaH+OhrZTZNyAd0D26N7z7/bGQhvPouKADDHaiaoDTGMvYLFooXvw6BnwT4c8+VtSVGSm8Eepg1B+VBAl1NPR+2d1rxy5RGc5hSh081wBe/g4iAy/E3FNsTF2+vE1xN1yeNmvGHk7OuwLixmPHWPMwHsOauhqZi6qz7tnFcgnA108SP4uIrw9/Dr6eu9z9GNkJw06DqGGPnF4FRvbwBo4MdkES++/VDUdf3+hARxWavPmc9vQn2jMhjDM5Nmfyf4s/4zBcxp0P4J16j69VQsoWj6/G8nRSM7AsBUSPQS9m/OIv/VvQTcIf+WNfhwfHD4HTU4tOwCIVSzESsTqh8smnnsb/+bu+C1/44gu49+Ae/uKf/27srffBlbrhtfBu8/RD92aWGTkBlxcXuNyeQyHYPziAKLDUGVTQ9sFxDbX55gCkjRt5WmFnLXenIlSRrYu3ravgS6RkJaocDgPgUUZ2QX72P6URwiNVnKhzMpqqbhUjmatFQSxNEc+e2txj8lJv115hjvywGshyACaJIUuBqPbnWGoDAuMe3PyHNsf7/ImtSZpMAJDJHNtajW7QIjBtXwG6blKbiT4zuTk2Fjm2Pjzd4ZQ2l5l71NLePxQcxD7PgIm9xdNTQKXzzIZjTPcgUsteUv3VVPHwV37L7vHRj34Uf/kv/2U8++yzICL84i/+4s7vVRX/8B/+Qzz77LPY39/Hn//zfx6f/OQnd96z3W7xd//u38VTTz2Fw8ND/JW/8lfw0ksvfbWXMhxXohzUDU+gYbmyWY3bc9sEBS1cZhtmZ5JHiWkYTMsxVkTBmB2hWxCApc+iq3oOwG4kQIfXYLcQyg5tw2sdcQdv+Wo04erP9pr/cZBE7JtRsuZtnAg5M1IiD/ma0FBOCTklU1/0UWvnIpuw7Q9ZKjsxkBKQmJAS0Jo9Nwvg4UwGKPkf/yz7PrMD5Hwwxu+N59BRfm0/g9SMAKPpnSiZAFFrNqe9G3AroxXpr2n/M6Yz+vtqM/rjhT7yvlobkTvKRK/9ewRBip3Px/mssd6CUguWWqySQiqWWrCUgrks9m8pKMOfRRaUWlHE0gb1yj2Lq5ZKEEhVh7FEMzIyaIO0W/YquloVVRSlevO/6q/FvyWuv/rPZkiLa3ospTbjWsXWmlRfj+6ZdyG6cExq0A6uPcII7KzxYT2BLPVQ4SRVBEAaxka1q7r6ve6kv8Q7JquajUiuE5ST/UmmY+GuPygl5JwxrSas1hn7h2vcvHWIxx67icdu38Rjj93GY4/dws1bN3BwuMbB4T4ODw6wnlZ4xzNPA1LxB7/3O/jkH/wuNvUCAp9jxcqPY0yr1PbMn/vN/4qPfORX8MUXPo3jy7vIBxWr/YRpPyHvJaS9BJrsmtnBQRXB8ekRLi7OraTZ+Ui1FtRqkREDGb03i811i3y10D/MOIEqmK2aidj0mgLM2fVXSAXqoqiLAxWC7x9GulW1iptSFizVqltqFdRZUGZBLbbxG8FV4CbWp4d4eXv197G3WxhTgQEm+pof+R6cLNplwCbmk7Y9VYbvKsUqmUBoxpvU02ceGdWq9ke6iFotzuuoaCqt0ARLOw16QV5Z4/gALcKogILBKWO9t4/Vao2UJ6xXe2Ckdq5oLGnVZVZ5k6eEPDHyKmFiNnVpkO/j1iCQE0Asns4M5wyDA9X3wN21qG18VHf8hq94fNURlPPzc3zTN30TfuAHfgDf933f98jvf+qnfgr/7J/9M/zMz/wMvu7rvg7/6B/9I/ylv/SX8OlPfxo3b94EAPzQD/0QfumXfgm/8Au/gCeffBI/8iM/gu/5nu/Bc88957XUX90RuhGPHIpd7xnde9fYVOwEu/tcC8IEgcteG9/VfICdaIaXmsXkbZ6oX4z0c7/hoUNgZrwkuobLEGBk8MzH+x4977HCo312OM/Od43lmO1eO6ExAiAxOXfcT4qUBvrrHvEYx5hU2ol2ogFhIFMvxxufYxumAaC1m8aut7LzzBykXuXhRGqgGTTtYYLrQvzjs2jnj1sfQp0jZn0kZQBtkZfxNfOc2bjZGtsddt83/M0iu9wOD9+M5Zst7Nruzau1fGO+dkMZxik2xXHM7T0dxBPgnugI/a+mXSJyQD1a0rxIj8C0seigvAEmwLz9VtLr3mesC1x/XL238ajjc6IOn2mIBlU8+vlHnAAHwwRqhHj158Eu8Bfvz4mQc0ZKqe11Vj69tLUjUk3hExZOT5xwdHqEWmbo6TleOT8zwFmopXh6ZMv+l1cJD+49wOt3XgVI8aUvfA4f+9hH8Of+x2/DkzffhmVZQCAsy4yDg1tYrfZR54p5s8Hx0RE+/+lP4pVXvoTt9gJVF1jfHQGUhxYMbeiswooIosWrVmoP5xNbtWPso1HLrGqpkWqOjaI7kpZ2svcFqVIcvCaO8m9xAqYa8JsmxE4T0XXbB2KN97lXtVeMcYvIdTBs4CIj5eROobYy/ZiqRS0dtCzF6SA9nUtEADvvpj2gFqbxMejRaqsCowZ2iciIs2SgSs1b9g2BocrxsO2U4UDCRBdv3LgBKHB6embqvdUcAbZQVqtmbC1MtHhlFEOFMC8F8LEJQCnOGwpOoW1TfR30CNNVexV7nbgJfPNxka8aoHzoQx/Chz70oWt/p6r4F//iX+Dv//2/j+/93u8FAPzsz/4snn76afzrf/2v8YM/+IM4Pj7GT//0T+Pnfu7n8B3f8R0AgJ//+Z/Hu9/9bvzKr/wKvuu7vuurvST77sEQXQdWfPu4NurQPu/7VeOgkPgGfP3251MMAPoGG4uWBtKpT8JmuHjX6AAj0NndbK/75h1g4kg2tVBFR/c2MezfIeve9UQ68LhmsB4ZHwBjIc+O0SXq+3xD81QMzV/lh8T1OUq3sXM+RHgzgJPb+uK7ztA8YlivGc8WbQoAhMgV+zWHB9z+oBnKnXNqH5fR6IfxaXMr1CJ3xuf6+XNdLlbEeAyxab6RgRURCzk52BjHPzQJ3ojnMrxwPUBpIMQiGqMWCRRXIks9FGyfGcP9u78j9IhknK8ZElArDaUr14GWGlB7XlESjF1Qc/V4o9dUjdfVUxG7YLEDFK8s+goOA3v7+EYGH8cC2jhRxISKbA6RWlnwdt7i81/6PG7evIm3P/12yGzAYW+1B6aEk9NjzMuC1x6+hlfuvQJw6E1YVCYiTmlyIrT3iCIlLJsZZSmY1glnRyf4/Y//Fp66dYhV2sPl5blJkN+8gXc8+148/fZ34fjuQ3zuM3+A+3dfw9H913D08FUQL0haQVJRZ4UoN6AgIacOQk5k0VD3l6t3Tlao9VPyqG0nQPeUHmhsZ2F7aa3iwLda/xswUKtHVbx/E2XwKnrjCFirq2lr75wtPfLGbJVwWkIZ2eZPVPtUcVl4wKMK2VOc1hAvEZoOkgEta3VQYZGV1okcLlugsNJzWI8mdYBu6e6I8FOfqYalXICRG9/GRCgTDC77nK+Axf90x+ArW6uNy8tLBP+NEyNlQipWhk0afZ08OutRMvbSbfezWkSRUsJqnQEk0FYhXWHIRRcrokWKyG4ftrhfs39e1cTXrczrjz9UDsrzzz+PO3fu4Du/8zvba+v1Gt/2bd+Gj33sY/jBH/xBPPfcc1iWZec9zz77LD74wQ/iYx/72LUAZbvdYrvdtp9PTk4ADA8bediodj21OHY4IOOOSWjEtdELoXiDdvATG/TOJqTjCTtgUVVUrQMwwM7370RjdoxZJ0PFmbn9azgHoU0K/6ER3zB+51Dp0StGIpKi2NXZiHvy6AR6kHRnt/frHyNEbZnFxEcHHqNHP95rk7kfvhe6e5+j9z5cYPOcG9q45hgNobQSWue3AMPz7htmL/dsN4qGTt4AXMYdB+dk9xk9+t7YGK41oG6gG0FWtXUEtnvtkvwq2vr+xO9lnPPtH1fGZwRg2B3bnbFQIKS41Q2tgcUBaKh2/gksIhIL69Eo1+59tjntG9h4Xbuk2niOPcLw5Y6vxM+KTRnurSo6sOz3YdU4MU927oNGEBfp3uFaFVCO9SWtDB8JKFTcK7XoyPHxET71+7+LJ598HMt8gqP797BaTXjXu96JJx5/B7aXp/gvH/kvmPYzpnVGMdMB42aY4Z7nBSLSIjLM1FIMia3fzXo14bGDQ9x7+WUcPzxCkS1SIjzx9NuwnjJuHR7i9OQeLs4e4sUXPgssl0goQE6AZPOWqzcnFNMQUS8fjXmfIoIkgZsDjFJLZ4ZzQmycFCKXuM8WVZgX8b5Efk7X5ZhWCXWhVgkTkY+UbN+rVRtJV5UAofFxoJX8I7ppG+AR0RZJqaVA/B6kKuZlARNhteqVPfY9nV/mLh9AhCklwKPBjHBSbZ7XKm2+jCn6mDessNR06tpBRGR6MwGkPUoXdRvNjLWl0zs0b+YtIIr9/X0c3lijnmyQJ7ZojMY6rT5fYPsKBVne9VyErFqqFqRKZm+YrUs5CJSsySP5xtrXfl8fHcgPy/vLL8+d4w8VoNy5cwcA8PTTT++8/vTTT+OFF15o71mtVnj88ccfeU98/urxkz/5k/jxH//xR14P/sSOQW8bZ39f8C7GiTEe15sKn9Q7wCcMQdSgA0GLG0HL7rn7v3YiMcPD2t3EY+PuRl0cVXfVwoiixAQAjOh1JTUTkRKi4TMOj0fvc7T9Q3nnI+PRcjvmSYRR1tpLi/t3xbWbRw90omy8Z+RYIAy2A5rek+PR67hqUHH1PeNqoGiN3sdchhXeN4ooc+3G1Z5ZfJ+Pv14BHFeilWpxo7aBxcYyzkt13lLDxI9E9Hx8rt6XEoBuFOjKvFP0yMbVeXBt9OQNxrTxrmq8bzfSYtUH/bUOilyDwUX3YgzViXlXYFHTXWiCdnFdw7VdjbbEoNu/nfyLANMdKMf62D2GNRbP3h2Uq85DSA7sDtnufBzHw6pCtLWYP9ucYFkW3Lx1ExNlN4qAkoA5Y3N+iS9+8Xm8eudlfOHTn0J519tw/8U/QF02mPZWOHrwdrzvj/wJlAIs5RK/+xu/j+3lZdOpYWHkaYW0tqiNcUMUJiTIti/C+J3racITt28ilYrXX3oFm4tLCLZWwZOA7TtO8cqXnsfJ/WOgbkB1xunpQ5RqcvxQgqhphxTvjgwO3Q4bpkyE5CJDqr36TEEI4RADFxZ6SDlhlaYGrJRkUD41kLLOE2plzPOM9TRhKwXLPJveDysyGXcC0JZitDTEsNOS8epAsN+1Z+d7ErHzsMTBjMsjkPfMSmx8KntzA1rkEQGmBFEDuylni2LFLHUnQoPYa6PjzS+jH9cADHwC29D1TwQfzdqvJBC7plCkzVqqy4TWhNh61Kki1wnHxw+x3WxRokxZ1XstqftdBkqi6weRVXSpwtJOoi0lWGvFslQoGGlaAQ6kpIk92tbbUjoRPRxA/RtlJK47/ptU8VwXWn4zXs0bvefHfuzH8MM//MPt55OTE7z73e9GR23XeE10/UBcV71wvZfbT7TrvRvSNaK1b4ox+PTInmYGi2xzEpVWnXI1BbD7/ePmSlcMf4SRw4AOhg4dke9suKORxG4KSaSDudiAr6rzBl9FtbbJCP/OJufvF6Gt18dgOAcjQ0TYKRW84vUDADcgeD1Aie/G1XG7Zt5Z9GT3Gtq4YAANGi3Ld983mn8rFd/9OhVnxA9GTmnwsgggGSJRfi7HLzv33gjQLSw6Am4FIe0IEBJol9cUGghx4aoeyr0i4PcGgDy+r5FSpb1os61Fs6hVU4jLmts1Bcisb7immqx6pPDU4cU1kbzxmnZ/lp3nFhu/jezw7GLN+P9UQxgQ3WgEaB20GZgpCiN270P0CsPPOSoSTgJMwl8Lju7fwdHREd79nnfhxq3Hscr74JSQSKGy4M6rX8LHf/NXcfTgPh6+/gJu0BlWSaDF+Awn917Fg3v3UCuDMmPenGHZXPSyVDajoTljygnbeesGz1NX1SIs00RYrRgZhNOjEzM8tUCoQgQ4PT7Cpz7xcSReY3t2gZwZ2+0pStlAFC7G1cF2by/SU6MpcSOkyyBXnzgjGuuJwlJSRUFC4Eqo7GkcsbRdFYUUBicTTlwlgnICSQLVAlbBlEzkLWfCNCkmBw3K1rRRaxB4B74dB+ge9k0VV2ollOI9wMiAdWpKNTC2ak0QinSWpYlCoTXmWHGuFicDEDll1GXphRfeMiPmF3RIWw7zyfY8oKt2u3DlsMdI8XMROgjwiJElgSzVJbViu92CXeWYoCC1qAcAcyw9jTlNVhTB3J3KiESpKGRRJ19bBM0KEfo6vw68j069anDfvqoAyh8uQHnmmWcAWJTkHe94R3v97t27LaryzDPPYJ5nPHz4cCeKcvfuXXzrt37rteddr9dYr9dv+L1XwckO12E4rv485p5bZCEMV3sPPOxPaEN73f4edu86kKJOlor3jWjyWjAX391k33rEpp3EjQl6dMJeC8C2SzZu93jFOw0v1r+xfX783Dhuu2qBNjjqO7116QzQ1uvjx4OIIG8Q8o/nYU2/6htO5GY0rjGA4+uiHZC2zfUKWIp0QZM83z3ZMA+iXWHXtDVPwT2RMaIUwkU6RK3sE/3/11x7lBRHd+CYCDubQNVu5NFTcTuDRbQTZvcX+6axc49oAmntfNSVTB+5zohGoQOF9p/0+TzyUMZno3V4HvG8Gmy+fl6Mf/dbtNLJxvPCsE6ufn54FjH22t8AgqVC/IGidXse5rqI9x3ZuR//n0sKLMuMy8059vdWOD8+wtH9uyjLOR5/5hncunkLjz/xFATAiy+8gE/93m9huznGxfl93DxMUN1iu5kh2wIQY9ksuLzc4PR8g7OLGRenl1g2WyvVDaOsFagFOZptqq171uiFQ1BWFKm4mDdYSQLRykxYNb2W7eUWdy5eAsP0dRJbP51tqbaAKIVNRwqtFrjBB0CJnQgMLLM4ODURU/ISbeshJI1cDzUwwk64lFqsAqlYqe7Km1fWamXDeUqQqkikyOuE1bRCVOZACxJbJKMm8kodaZEJrQvqkjDwzkGgoYTYiK6FbE5Z1RAQud7M1u27RQoViKQ0ef+gWitIGdvNFjlnMNsuMRLMw+lsisM+laxB36isSkBVSOxNPm+jmacBmAqAwUoesTOnJlJGnRcn/gwVlEJDxqqpRBUoBsYSCOuVcWjg11hKQUQYQYAW+/yUMpCNwxK7WWtPQeMY2/0ZqdiquqwfFK5vT/MGxx8qQPnar/1aPPPMM/jwhz+MP/kn/yQAYJ5nfOQjH8E/+Sf/BADwzd/8zZimCR/+8Ifx/d///QCAV199FZ/4xCfwUz/1U1/V9+1u/l/50GH0HiExvgFouM6Bvw6A2OvuaQznD8+jy8i3N3RA1Nxe+xmuRTIabbuueMPupm+GNsR2rsSN6Lr7GQx1I11QM1BXozrjuLR0jFrEYUT2Uf0BAGT7bDey8f3j9X2lqBqueMFf4b0aZFug52kHYKJ6pVpnHDcAUZLSDbCbTe5z5ZH0CVwmnwh0JTp27eGRjevA8ngvYTh3x8iNjrbdwV4NMDi+8xpwPjZw61/Uf+7r49EUx/V3dGX9DQhhRz9luEd1Q3p1WTl2fuS6x+vqc9I32tB3iOd15b4JUeYJN1iPRqVEQ7W3px/Hpdg4UMM9xHWY/82oKCAFTo7u4eWXX8Lb3vYUDvbWmBLh4euv4XJ7js9uLvC+978fq5Tw27/5HO7deRlMFSktYBXMm8vm85dagFpBWrBKk/UQqjOYFIm8eFci1WdjF1EMYjMExRVORdWDPiuXBLDImyijFAGJV2YQUJkgdcYyF5RlwZTXHv0d94FekcHJjZoIahXnhFi37HjWBobE1VsZ5G0XQszOPOsO7hOTe/IMQQW0mraIKrgqUkqYVgyt7poNkvhNDVzVjLMGkAqZCBth6/5AAJnWyTQRarVrsc7eEeHw0nq4AjO5Po1HYqw0uLQoZvTnYUqD0Y49RgCxaBGA3qYiPAmbrQAAUW9KCG5r2/a0gX/VNFRs/0059eo8WEk4AKxXE1LcQzgDvhfyxMhshNc8dQCFanta606mCsrAlCZ7LsUkBUCMRRWo7vj4OBARJo7mhYIKag6g2Zg3X2f8VQOUs7MzfO5zn2s/P//88/j4xz+OJ554Au95z3vwQz/0Q/iJn/gJfOADH8AHPvAB/MRP/AQODg7wN/7G3wAA3L59G3/7b/9t/MiP/AiefPJJPPHEE/jRH/1RfOM3fmOr6vn/9RgN+yMb3pvFM6M7FhurXDU+uvOBmNAUky3O4fNPuL21he3GlEO7XhFo8ElUvXdK3NtwTmBI3fjmGTE08nMMVxnqnA37Dl7BOHZvdES+fxyfJsT0CBcDlgajgRSGrrq5O9a7aazdsY2SXH7kM1cN/RjtUd+s1D2WEWy1f9druDZqFQCIFAoAr269ig3b+YjIK288ooJIpY2coCsG/w1SIOM5cWVMYnEnn1sBYBoWpv7O/kX+fF0j5qoy7rWAIPLhV681poqrLjdlZLsQRHpoBC7NW3TDgMCG/eTDNXiaSOMe+vn73jtMfuw+z6sPx/R5enXc7h97xlYVrO195lnbfAsCZRjwRqaHundIUKk4OX0AVcHp8T3cOFjh9PgB5ssz1Lrg7OwU83KJo+OHuDy+D4jg3ut3oXVGkeIROa+kIAIrMC+LVZJoAifBepUxrTKWsvWqFK9QcQPLiZE0IcJmRTo3JxNjlTKmydIXtS6m/6LOGxNPr5GRL+e5YpktSjhNGeqpl1K8MesA8iyRQs3oEjPSxE3KoSwFy1LgfGTvn2XPqNRqRp8ZiROmPLUu9FaQaCL50cSTCK7X5HwbMR5XlUhamoHMKQEpQ9XAQzh/RJFizz7/LHLCicA5QyagVNNeIXf/RYaKRzLglRJQq4MOITAyWhKmgWBqACWacSp1wBLgBDGdI3pI5ACHW6WLrTsjJIsoQKatI2oRZiayGm0ASS01s+NbiA/esAZi/Rmgs7lUg7KgahwTB46mcVNAOVkPHgDzYteSst1HTlaaXJ17ZBL5dnPi0dx2Hap4g23v2uOrBii/+Zu/ib/wF/5C+zm4IX/zb/5N/MzP/Az+3t/7e7i8vMTf+Tt/Bw8fPsS3fMu34Jd/+ZebBgoA/PN//s+Rc8b3f//34/LyEt/+7d+On/mZn/n/SgMFGDb0K69dPXbSOdcczcMDzJ4wdc6KWdeOWcJCNwQQxnvMho/emIe3A1kO7xwrf3avv7bz64CwdxoANbxgHsEj3yr2nWPn2fhYByePfv/OdbwBgBmJoCMX4mpKSKl/94DXvkwEzHtf0BhZuKI+O46VvdBeb8ZUHZSp7vyxaE+g+R5ybWV9YUmHp/0oqvryR3REjXGiK6dQ3S0l7lGyN0bQFFGVAMGE3TEaXf/x3/EjmwEUfz281riGR76vX2x7TzD17fnxzn0ZeTK0Sjw9uUMqjoqj3k01Ill27/atI+DpN6E9wjIAaztbpIh2V+fVc9POYFwdZwudiyuG2rwREIl3hY5ydVvzwWU5OzvDC1/6LBIT7t29g6eeepulM0hweXGGZZlxfvIAy7zB9vR+87pVrNNxKI8qyDlQCWDblueiWDaXJiRH2v6YMrWROwuZVDuzkVgDIKbEWE2M/b01VlO2Sg0oSi0GDshpC2ogBkSodcZ2niECZGIsVQ3EVzNSZmOkR+DQ5y67qBpztv471SI3tRptx4xgPMOYL3b+aiUsrcRV54qcPNrilT1x1FoBWoBo6ulVPqVUJDCyR0BKMdKwzUZ1IO9pMe9sbHhOfLwUzE5fl84N8wQgpmzCk6K96aNWDJzGDKiVHS+LzZmIKEfUKqILMX9UvTLHe+0A8PSwOECOvcunLXXOY4ZHD53gSmyK3cQEFoVqKAMHqh727eH/sY7my4jEm7Ciwu6tqECEMDGjCKBzwTwvTcpfA8AlwiTswN05j77c+97bRSLf7EH61bz7/0+Ok5MT3L59G//XX/x/4uDwsN3wmKu/6qG+IWnvy2zQ7fWrv9JdGNBPNvID7GB0IwRbh4/I3vOV6pto7jYegbqJuhcyXn8Q5KI/TvRoaRHwa1rTW537lXv9Mvd/bTRqWDztNR+AIM7tLI4GAnpYPV7vVT7a+8zEyQbSG9AZ+SOXYeePJ53bIvdP1ypXysSDh+PPNEAT9c2n8ZPG+7zyb1P55Z3nEPoEiZPVEV65TrOTni4YxqEBuKuCa3aj/TqHefQID8v/f230yDewgMiKUThN26bySOWbxoaOdg3jWPR7u7od9g2K2nXEfHpjQDZe8478/ajLEu9r/xvXQ4+kEo3zycZR2989RUZ0RelUvBx5B+ACLlOFF7/0WXzidz+Os+MjbJcNpmnC4eEhRBXnp2c4eXiEeb408FO3XpIsHq6P3jVxSQKGhernpWApC5ZSsF1mbIsb+2qpB2jf5zqYNi4I3Kk+2J9w48baemF5+wTx7rLV052iigTzekWsa62q9fVZTZPxI8Q/G07Qle/lDB8zF+sS41aUopiX2ZhCDojHKjgTJnMgOGgmrVeEg4M1FAUkirKUBoqmKcP8WEvJlOrRnVqRUzaAQgC0QEEo1SIK9scrm5yzQ7A0YaRzAI94KGx9+LLPeQLnqOJbTIenKsoSaQtqhFkbG8VqNaHU0psxDpvlzlqBNTusXtIeK5JcJapK8f5JBnhErbKIW5sHuG6LdR4WlFYRxGxK4CoV6pG6ZpeaHbEoyda5T9rWkF1f8X2gNUAsBbpUTyfyjhAltf0SjUcnAns+Wv1n+3PvpSMcHx/j1q1bX3b9v6V78Yyb81Xj+Yinj+4hAwOq9ffKTlhi9zseTQM4Kr1inMMjHw1aB094ZC9uQOrKBnndsRv5GTbm4dIaZNo5x1C100J99sHxkkZjobgydoOx3jFQ4w2RvRIcg5EQF7+/eoz8km5IvAEh7Y696niyfurm6VwxwhEajfu2MDE/QoTdIaBdva6wHHT9cxlBRVRXBXCINIHdG9q4xyYcAIuIQG4QR4+/pY6GqB97JEeHjS44EwFcw3DE5odH5kewjt7YL3kkkrfjgBGiz9QuGCDEfzvzp82p/v9GHtQ436PXsEPc9eoZcd0MpQ6Y+ve0p9JfIzTjEPyIeCbt/DFX0MEJx/MAkGrk4aWBJCYgU8LpyTE+9/ufwr3X7mCeL3Hz5k2QApenZ5jn2frowLQ7QNXlvqN7TlfQLcEnULjRtPtYZkuRlGrKpwayzPDHM4/GmqbYalUkUMVqPWG1n5EmMyLGAaiNeNnCaD5vumHq42DRHkGihJwyFgFEjchq09XGLgvc6/e9VAAVRpEKp2WYtkaNe/OmlDKkfjnIkwqiyYCFVEAZIgQgWQdhIZRi+1BK1q8oZ0bOkVrxvdQ5UGQP22TllQFik23IAFNywAz/LGEp1cuSGaTmzKwmtuclQdw346xYXKNo7CqubY1DqaVOUurrukdF+g4q0GFNaF8bUCiPe/+wB/i+Qg6mlCzaBRnG2ccje/WTiarB9zS0FhSiBrPU6+41HEy3TdbMs3oFDzWQHvNP1Stbfe9XsjRXKWjgpHu6j673Nzre0gCFE3n4FVYCOjwo2RkFW8gtJXGNwWEvH3tTBwHQ0SuIl/3J+0YDitC+7m4AjgU4vOy4HupGp33VI+Dqy1wTbCMQaKPAUAvxXX2/8SZ2Ih6IVOHuYnoUGHXeQzsUrY22RU52rNrOvcT3N4N89WRe0ictL7r7lhCAG8HJo9EfhfFfonrKricxt7nRvWFqBmIH2LrjEyAg7r3/y67d7Yn3MqEWHbLni51P+hRsaYOIHEXKoI2lv9/mDrWIi03xiDzZG3sjxhh3tI03tpg2XupGreV5bK6wj4Erk/s49I2yg8UOfNpXMrUmcwHSooNqghP8/LsjAiJDe/oxwqUAICaB3p53FVSxtEFLpGqk5jyn3gztqA7rES0Y+XKMcqVWURAaEtQMc3JjR0RA5j5PCNatGIpVzpgvLvDgwQOcnZ3h5o0DaFkgSlitVqi1Yt5usF7vYbN1OXTtIXt1LRdx4TNVgvW2MQOSE+Fwbx8X2KJoQXJyZCUxyfk2f41jUhcPx6uRI6dpjWkyAmtEEJo4HeA6JkDkiyN1BqDNyeDcKaLLsjr5VkFpDUCMG+HvjyifIgBJbXuf+uetp5I9N6kOhnLu1+ARpnlejOjpe/o0mRrqMi8m8a8KIku9qAZfz6NCtVjZMIBIQ7JLhoiKRRa4txkQL50OZdl43iADP9ay2CMQ2u8Hvp7JbZB4SXYn3ptom3jLlNG5i3EWJynDo2pjWpOJkNKq7Q3CyThILttvE1+8wtjGnhMByfd2sIM+AaeVXXclUPJeZMX4SnZ9k80T3zdBfb+CV2Gp78e44tDtOISqlvpCiOcJWp8iCSOFN328pQFKW0iA783hrRFojIgMRp81ZJWH8kTqnr+diobdEqNNuvL9Ydxi43aDFHOnv9O7mEamPEK78SW7DMxmyP37mSJasWuIg9swppbcGu9+f4ABwK6BBqIqxWt+BaNj2myUT1gTFNj5/nY9cR2DlP4Ibq56qm2jHO63GWGRR+Zwv96+AYxRE2CouBj4NkHk7N/m3xGb0NXD75fcIgVueCOuDBF6BQgTmHXoI2IDE58f9V/IeQZGzkSLOF0FqN2Ie+QCBI+r+hu8KRnFPXrY2g+JsVYFqbaKiTDyFuHWYdxkmCpDLhkuaiW2EZr3OkS9PELRQbZdE2koHFMDWuJt3UMUMO6nhb5FzNv156bM4FpR2du/N0NxFdiiG4hwAgje4Tb4CWlnviWhZihBxt1I2StRQnkZbuhg10YKgBVpnfD4E4/j8uIUtS44P7u078lG0lyWGQzBXp5Qt1sjHHoenl0mvpYgNXpJbtVmZHLOyKmAsbS0E5bSFjYD2FtPODjYR9lusZlnzKWCJjLeiVgzwxgchm0DtTlMQAphQgAMMT4K0IXBmCHFGlMKvGeMKiBzA+5MxscAkaV3VE1x1gXJBIxE5kyaoJ3vxcZQbqJuti+50Jk6OR4mO7+/tnJflAXkRFzmiOZ1ZB/7oa1javsR+ThktooXIrTUUK1oG4zCrp81ynEjXdLXhI0UOZCN35nE/OIl6SkRVKv/SahVnIszOnfRENSUZ6W9ThbRT4RpnV1ETnF4cIDtdot5nvuEB5BgUb3EXYUWqqjFHLlaC0IXpqfm4JwlAJTAObnIHZoKrt1wf7+l3slVkj06SWrsYumoTZVN0yb2m8HxuzYj8WWOtzxAacCDqaN3BZSuEm4dPMgV7BGfH0q64mihdNAjPyvUUSoAavvhI9GP+EkGw2cLZrwP+3S81hqA+XeN27DvAfG1trDHVET7z8+luvN5+L3HhjympewyqG2A0Ro+wulXvWhPYLhRijHtAlxvNBktpRaYxt4fRl6vGOg3Oh7hVVwTRRnzvDFe8fO119WA2JgqeRScjMBrV8Z/fC+1wO8bRcVisxq5JCMfSRvK1OH94fnanGGXO++vAP0T/TmTRxxYvJqMYDviICAV/ZHk6lhyx7eJMoilRW0a72YEdNQjh9Se9HDf7HN8+O74nK3dDtiJCJIEVACWULc0L+8N51YQMWDzisnGaZqmznNC16SQGsDKcvkRReEgAauClaAkqAK8du8uLs6Oce/1uxBZsJ03mLebFqHYggBY512VBZAC1WqpIRCKGglVoMYPGHQsIvVCU4J6BcVSFhRQA1fJx3K1ytjfW5n4W2aseQIKnMxfUeruPFO1kl/BEJGzkYDFSYY1VSsoG3BZRA1YkIOPWsFMyN60jxoJ3/4uEgqiURlFgHjFUbYxrSKt95I96wVMFtmIykDOjEyhFm6eOCUgaeyZ9cr69CpKRouQjWud4d3bAe+MbCmo4mAocTAGYQDTZeGJBZM14vFolEXcUpa2FiMimRgIGYkeMTMQGo4GDYq7EVWx2R72pBOGqxRfI4J52VgJOnWOSuxTlqoOwrVFZAQVIGlADldsIidCpuREV7NnJAoltFJxAnk6VNo6jXWVnAhcEfsv2l1U9TmDthTb3Ppqjrc0QImjh7cBn7HDb8M77OHk8diJSFwx5Vc92fH3Oz12YlK0c7CDli7qZRV244axS9jbhU24cg/9PqAdDNiG1kv8RgulOgIq7NwZEe1GKTq6QBjlCMU/AgSG6+h4hlp1Q+Oy8K4hv27cR0PNV4z+zthHGYDf2Ah8roKQq9/ha8cuiXpTsuuuabyv2LrbAMZ3DS8FOLkKQMZjJzp03Xuuee3qnDRgG68put4KdsBJfF/jbcTPaqjcUqDagSiP7Ce/Keam5LtT+RVzDkBCauAE6ABrZ9X5XBGPDfRIo3+1kzKvQL8B5PXfRG8WVXL1S0Vjf+/MXbSyzojihTov51DK7KDQwA6jpj4PE7NVpLB14B2jmZQEr7/6Ev7jf/p3eHD3dchS8Porr2C7NRVX8XnKzK0sVGUBaXVJd0ZOsMhINs+YaMI8S6ucaKZK4SXA1lumSnjg5uHmzFitE4gVkRZStbTAssyopOCc0SITYQxVkcjOafbE+SxDNExqxVKKecawSIM5JOx9Z9gqZsgIqdZx2VDsEhEWIpjkvBPAvdEt+WK0GhQBSDFlG5cpW8nx4ikCU2P39V0VSAzOFsWtxfgSPLaRGEplB1koJGYvhbbZuCwVs3N7FICygXzW5AEDBbRa/MU5TKFnqWL3G/MI/vZaiq1WHxP7bhenI2npVfIKIhM17AJw4qlGgKAemABZM76Yg9GPLkCfRW2BWtTSoksQ2y1GaoK1sZYoHkBbWkYi1zbXGYAk56OQgbBMVkIsYIsGRcNCEYg6ATcqtuA2J55HGwdqtuGrgyf/nQAUwAYmzPEY4gXQ9Tt2jPauR2uDp02K/urv4jvis1af76AIBCgP75C2acaZIjPSJ3VX07MHGOWbtPNwx3P4mRHRjJ2yYr+31mOCB5GdK967llG5EIF2gJYii/EMECBXxmS3BLh9h/ZPt1O/gZfbPgeY9zgaeVep1Tc4x5sCGjEm4UYRoCmub0ghDJonQZtpUaLBkA1nvbLIIirm59bGRNpFhYjv7umf/lg6EXYs4bxuzOL6w4j5025XFnL9EYqOc4/nMWPmUYb43XXYyY1OAxZAq0Zi3xzjmlRdmU9HdrTN49rmxZXzu/fXQO2waMc52/lXCkmByYO3AIwPiDXu0U2qkw+Cf9I0Nvy7kRRpuLSoHrPUkpWkbrdbTFPG+YP7+C8f+Y/4wu9/EigFZSnYbjfWOdd5VyKKUmGeqAqKLEikSDmBWQDnkmix57jKBFLGUowDIbDogTXlI+Rpwv7ePrDMKK5aqgnYX69BydRrTc8iYVnMS2bOyMn6pBhIEjNEyf/A1pvU2Cd7yXt7chp8E7iHDAMbKWFvtTa5fCndyF55ZmGUbN4YsUnRq7FiHhMBKSsODiZXxCVwoeYc1VEJusLOI4KlCjxOgoQgPNueJ4KWTgkQbQJkljoRNdKxwBRRZbFogBBcywOtEtLk8A3ImxCbAbBS4rrI1wi5sdd2jdHbK7h0IEXKFnk2pViFKpuRF2p7knG1fP8SB5Y7z4hMGZYN9cWoVwEg4nozAMi4V4rYLy1imCiByEBb8FuIqyWuGNYMUC09EyKUTIwqvracNrME+ZXIo4G+j7E7UQ0l7q77RxS7v8zx3wVA2TFQMpSWqgMO+GvYHasdToR7gHUADgAaYAhPFugwpEJ9iXSVvDBwofTYzh/7tUccGhEpPE/VplNhD9fQrhmtqzfcvUwi7Lw3rlmqdGrLeD8R7vVrbeOgAw/HLWyPQFwFbLIzHgBag7ywNdfHE3YGP27l2ohIjWdF3XjH5+TKRnjVANsYxGIPIwZI0MzHQWnPaHipn83HgHeiMJEzBwZ1YP9kEKBbKm/3a0A0RGYaiH3jdNjukI3PwV8TIPqdNCAW79Moxe7VEhj/bjnjR8cfQFNZNYMVY+enJv9fO1+EgS2EHdUo2saHdtdDu6dhMK70ieCd5+yvAe6V2jmlLQ5tgNcnVeMCEWgQbeOmQ9T+76HvqL4CFEcnxzg6OcY8z3j1lZfx9rc9hS999lN46fnPoWzOoNE0TxerjBACs3VVV7H+W6UsqEsFVkFCtpSOiEmjxxW0HjFqlSIga54XOuOrnK1X0GykWgahLgWLMOri5cpEbkQFmTM8Wdfnn0YaO8ijdm6p0ta78SQsJZCYUar4vbAbdkEiQs7s6qBW+xiZg1h5ba5zTAsFqO/JIAPWzEZ8Xa0ypqRWbSNLe9AML/kGsCwF87KYMRRqxlD7ZLR9LyLllggzsOJN8hJ6tRJ7rkirj7uagWdSF2RLbf4ITAmX4GmQcGjFtUpEAaTuMLYijc4dFLTCop11Fg0X0Wak8WYiSBjLp/msvvUEeBKpzakO2Qh1hyAla10gpAY+Ipo6fH+LuDiQqkJw5RjjEPnnjNTfG0RKkHqbYxpGQ9q+zYmH9fnoXv1mjrc0QAkj0AcdaKp17im6kk87+ubc4yHm/OgjxnDcrAmepgHvlCQr0MCJ+AKXRyIO1ECKnSc2Yve+g38hjmA8vIjYXP1aRiuq0QwhzhveAg0X9mXHDjvnA9AjT3HD4dUq7WhiXD15RHNGgBQbwZWvePQihjFuaafm1XcPf2dij7/H+PJ4XeONjOcIFc5H0zK885G+mRLFdw6Ao339YETb3z0E28YnUoBEg5ffI2s788XD1oYXtT/XESwOQOQRzsoj5+QdXklbLzspvF5t06CjwpvoXd0l1QS8RsDevjeuyf7dPDSKaixCdDfuR/f44thJpzWLh7YZB++KKRyDodxxlK0fibw+jq08nKm9P76+1gVf+MJn8Aef/jSOj49wfn6Gs7NTrFYJD199BWcnx5i3F4gOxkawDP5Fgdf0opKtYUu5xZwTcE5Iwg0nz3OxTIrvVUyuzOlRPpsHihUzkBNErbHdZrPFKq/aedQ96ogetXRO6p6sPWqPDqmRWCPSVp3cuZTFCPwBKM0D8idh11TKAohgyisHGwYKEjOEwvCiXXsDjgBCaRn+DKdpQp4mEFUDT0xo+RQKnRRbPVX6MxZv0JgYvh/bd0RUIIB1dDnmcOYwXJeEhL0Bm5SSXU8icPb9SBXQssMn4+BkEUBslTIqbNwU8ShK3C/bxOXk+lThNV7ZF/t5FWAxoTofAyXn5fiHcs7Gk/ILoeQVWuEgC7oOkyOceJQ7US648i4zymIAtWoH/iJe9UQGTmINizvk1Bx0t4Nsz9fpuAAxavI9hrXNwzdKh193vKUBSkqEqbGWYX948AadmVS1g4ho7AbQIA1uR/O+/JAxDRO/GzbJq0aCvR8GS5R3DecmasaGYCG6iMyM4dCm1DlEVgKlkiqUd/kjWjsJUQbF1ogcjfL05KGN9r2DwiGP8L6NQ38hFBsHH6AbRgfPcACXmC0hGbyJATeNIYVdm0Zo+jJhBN8k2m4boAOaq8TVdj/ki5ws9JkSDxEP38jDuPumGw+93/sIOjrQaTlh8koRjvCyAUvy0mnXmGo5crTvGe5naKgHABW7cyl+F2nJBps6DgJwRUvEN+XxvPYe36yxy7YPgNQ7Z48cK9mN6jUcGYMtbUMMWPdIThqP/nuc+33khzFOPb/fPpO0jcXweNr8DlAyrjPy6EqtBSenx3jssdsAgDLP+MynP4Nf+y//CS+/+BKkFiyygEix2V5gvtxg3m6hUpB41aoU4nqrFJAypEgTTFO1JnerKYETIKUajwJowF/nYtOuWpjfdENsXoT3ryKQUq2RnNpnl2Lec8rJ+S/aBbTUQu3smhSqfQ0LagMnCoCqIqaYBcoElAzs1KqoTgqdkjXpK8uCRAxKNq9LWfr4x3oxJNBmTDwY8/odUHhlFIlYE8Jq/WdMqkWhsI7LAawMSPTxiNCN3UdvHCkKJLY9IdmX+nAb0jFNFHEDq5Bk1UlFZqx05Wk+S/Fal2N2wz+mc4GlkUAJUaFRFotARdm9lKgiI4CqZUAFsBR/dzbABJJwbthVYU0YLaIVIDTBvThSYgMVsrt/E5HxAEnbdzITUhBcHLxyMnBaluoABc1u+NZl83wpvq+SR2kcDFF3uHOLyjnI0XF961gQ9KaPtzRA2U8Zezk7ZKRGauvecajZWehUvMTPyraAOnhdo7cchikIWMFPUF/l5EI+kc+Mz1H7h38W6GRFR9KW2bH3jMbNDgcjANxatA26QwwCPOxpxrz5mejS6u4dgro2CXzr2DEO/hsHBHGNcdgwUABzN2Tt0054U8D7Q9i7qpW1hXAZCCzU759ioxQPp5M/vl79AweUxHBJ6P7MaQCF7pK3aw2AEBvljsdA8f3WvZPJfMle3ivDWHgQzoHodThJYSHohs3INotEqeuhxPviDfEcBvAXz/E65kkDC8OoR05991oGA40OXtAAxy7Y6+ftvw+jcjWtp9JBCTXCne94UaGzA1YGfkc7s/0rNvdIc13lMo3CepaetfUUOjHsZZTj9zVvGAZwxihiS93uzAGrpGEQ5u2MT3zid/HYE4/hiaeewsXxMX7v47+JF7/wWZydnnq1ivfGESNBQtRAiHTPnsZrgRgQZmDKE1StFDjnhDIv1qCPTXBOxAiHOQOqCQoTISuluLRAryKiRNDFqjcYVqpdYedIMGKOMiHzZLLtAeg4CJ42RtWjAk052LkyTS8EwCplzFDMpULE9tVMjFVmqJjAGZNFjKsWV8RtO0wMBpo+CdAiFRyNAKUa2ZdsLca+XLV6Mzqr0AGbhx7qseaoJZhsvaBG9IkYpGwAD14m7PsN8dD4b3AoAXfMfG6LVnCC9ZjxCBhytlLk4II4QTyikAagCFf3G1uDFj2zggH2taRQNjCpaumjmPYCcZ6U9/KRsrNum23zJRsOOBAVWQolbftqRE/MoVUn5njdlp+2bhfvsxSgEuDB+4iKuupid3a+WEz2szWq9AiaKhbVRkDue9L47zePUt7SAGVvb4X9vakttrHksfEhAFg+0htIVUEt1fOr8HChOHN59OaCCR4b9RByhk96EIRjs9X2OUjLMoV9bwBmMDWISR1QlTyUZo6Hh0bJFxARrhYMtxBsu+h4HT0Ck9CNY7yG3Y9oXOgAWOwSdDyt56J1GNd+krFDpY2lAK3M0c7bSF5eUZBSB5KEXfLUTtoCY8TBz9exxM77gcBs3fD6avabcCTvPUuMm+AAFOM4WYRNAJALTME9gogYJYoSVpeaZkIy7GqbfdsM0aIJcUXs5Nuqcq1nMUZH4qkpet8gtFELwNvn8ggwAO+gOoC5ne/QSAe4CWteT1w7+8e4fZztBvwtQxWRwsFqJ9EGFyXmNzngIO2eV392O090Zy3H2mZ2wl9kAbinzAbWbouWBJ66uimKCE5OjvDw/l381nO/ioObB5DLLV58/nlcnj5sfIyqas3pyAyuiHXi1R2Q4ht1JiQH69YLZ4JWRmZFXSqWRbAsFtmwTd8AUOjEMJNxICjG1DVu2AY9JUYtFk8jj5DG6sl5AiDIrA68XcME3h3Zn/9ufxf2CiMzjpmAvfUae6sJZbN1dM1IEOytMtaZMQqWLW60c0qtj9riaRO0WeHr1+fthGwAYAFWk5NTa0X03grHZUWTNSkEehVflOgSIakBOdOwYRAn/3xUJdmjl1oBKUgpNYBC/nziGkudzZnKE1brycZbDWT2NFgAfetNUz1KYI5JzKnwryziWrXCLxfB4RIR44Vo9b0XPX3ja7BKaftyc7adskTDjkCAlXR7lI3bOnPZDZDrvLiGcUR/1OgEfb+1dgtKjV1s9+aVShEdFY15GvfOyJmQMwz4kEAXJwY7CI6tJOzDVfvzlY63NEC5dWsf671VI0Yx56YySl5aCYRjxrDbJQcqES4NdcPhUCC6vqpPGqnVN+HwfKlLSDjICI5GSHm3f7v30j1Fn8QDu7uH2t2kxsZN3Uu0rTBKTM0KhomC9lxvU0+Nfw9hydGyUxOOIRAnm7iAlwRqfGUbGxFpuemWS+5D0g5TCfVbjWoRKIIBb16N4srHdkCGfbYb1TDwO7cwghJ4aJTCm0nteaBFsWwsckrI2d5roqF+cuG2MdTmgQDKPUVCFNdt3mnOCezCXgr7fYrxHvBjgDSNjUhNKyIJtShcWPkuyAaMKUnb4gbvJkCEXU1P6Sh2BPeS2/MRYA8XhUfY1LEREu2UUvPwLDoWGCM6HHSMFv1quQOKZ+QRphrLxtNju1fQnimhd8dtUcy4f70K2eO2aOdviQiLf4NJeig2ZcEyz3jtlVexPTtCrQV1KaYroq4yG3uDEmrIqMMl0sV0UYgIKSfreeO2jEhRly2MUiHWIVYIqgm1BF/ClGGh8HRMajhSqhmfZhqrWERkIlBx0qfrdpgGVMy5at18CSgQaFXnJ6CtB1W1Jo6NAGWGmFcZqymDUJFUMZEVAgQvhkmgjVtjcy4BrjlFXiprWitBMhWvGLRqH4tkc2bs7yWsyKtM3EGSqgY0ElBLbc4Qp+QcBkvlRG8aYrJxYWDK9kyCjMq+f0oN3Rb3Gpysm9PUSoWzmoOaVwk5EYI0KyoeOemRvlqlgVeoASPm0CQxHg9x4EFyA27NJ5fFmuyRuHMLfx/YAVU4IrtHOHZjX7GIgolHdyS4N6OqtJ+/enSqS1vEvsEDCb5nEdhTo+yRkeIl1OwApa8zB8/u2BQfGysOY9/jIkrV1+ZXVEUfjrc2QLl9iL39fZTNAkN2ydGkdO+TwuBoQ4AiglIJXKO/RkJvMa9oUQzf0oJLEIi2e5qRxoDnDO26VACR2sKpNVqVo4fRAA9rOgBSmDRwN+zoob8ohXU0Gx1L433kLgM5yuYdT7JP/Hb4vdnHHC1HntW+sXmdzMlst1cm+I3v8DwasHIjbF5OJyNGOXZbBO1j2sYyLqvb6V0AQ1EFIEYGJDYQFs+EYaHikCm3RUZoeW6/vpwyppyRk228afDg1YGA5d3NezaBxAC92OkDQ9kWcUrRa6PBxRY1SBRCavH8yTlRyVRnA6AM4yGV+lgOi9vm6G4kbUfwj9nD5dqeffTOSD6P1OdvGLiYX7FJ9fF2Ly08OOobZQO2w7Sy1ErySJe0P8mJm3HOUEWOAEeEoyOitLs9+8wdInmqbfq2817d0G2sbLMNTw5DLxQpFffu3sWnP/UJvPiFz2NzcoJycY5FK0CEgopoQ8+eYqhRpATAMio2Jxhe8UFGXlX3kKkWe5YAStFWXSHDvFYFltlKNa1yxNajqXCipaQBC0bGuudELYKU7CEjKkjC21U4wFGCkV/G1gIEUrYGezmZjHyqWK9XHqGym7XAjYH4HCX63DYcezYeTSAyIBCy8cLqfCvyPdRSTQYWEvb29lHmrRlmpdYsD6rN6xdRUDYSba2zjQcZN6UZx6YvY2FrKyMnVFkAMYCbvQeTaLFUTuPfWKVLTtkq1piQ2aqiFhGUUtr+qgoHO4pSnBPCwMTc5647XiDTqQknrlbrXC1akZAHrltExgOojKq4kQVQAwjqXBYyzZJo7tgiRn6eMEKq1kqgVvXWANyyBMzZbKUKingE0OeWsjvkUDDZc83ZMgUayrOgnes0yoT13SnVDZeKVWWNCzR8rkez1G94vKUBCqtinRmrg1UPxWVHpzFjEJuJGMm0CkAVTBUg9Q0dRlqNqIkrK9rvQ6obLTRopYrJuw6zG0OAkvtpbtTEvWSpFaVWRGjNrF4QusxbDxQsvomIAiE/qBqVCXaNppdgEwY7qNauWakbEqLBiIVxwLDRB0dFS+dBRL8WBYDalCcFPW9NpUdwGjgZvACoXQd7eDJy6n2Di5BoJ0+NG7eCdibyro6MRchSpAjcy7MNxnkmbgxT5qZ2maJhHBOyb3ApdVgRnrK4FyBhUBpRT9v1ke+Qdl5q2hnwa7FzBicKcBEWI45FxYxY2NUetZrnFkagz3I/GdnFhgHaCVsNAEdTA4K26QbgtsoH8YHWCEON4RAd0pwNbFIDES0yEU/Kwa8OnzPv0ScDhtfjWVFEZkZAS2gTNVKNAwDSBuHR1k1HJXZPjduFTg6u0jli7E3/To6P8OKLX8SLL3wRn/jt53Dy8AHKdouinZ9h683nlA+vVrGuAszGj5AgY3paD9Wl0wXIaqRHQ0it5FT9tgIARGfXpSpqshTLlD387ntYDIM5VYJaEHpkUC2o1YAhZW9SRwmiljosEoRNW3si0dAP3oxPTDMlM2p1x00q2I0St/1OAHEirD+3qmYaRdS62PqmwiBQsojKUrxkmNi0YIgw5YRVTpgyg3RCcVW2quH4EEpRFFFACBMAKaVFy4z95CuNLE1kYMDAoPjcKA6Uw6gL7JwSjkctmIjByEgKdyRiDcRacoeldOexVvtDDhKIBWABqpfWwzl1icGc7RlJgcKjSol36AKxDCPNGoiIEGkSj8pQbzyaEgEkpjILi4xktvRjRMuiyLOUITfeQJQR+UsxEB1FU2HnBIDUYorHnOwZqyCipWP6XdTXgigWt00B5Hf2hRa9a/7Gmzre0gBlf3+Fg/1VC/31/Dw1lG8dORVLKVjqAsqAKCPXbINVjfxjDbF86qtVyoBDZY9bGbKVeGXfZGPTtv4ZxG5k1B462SmgicDVO+mqV3Nof8iqFu4T38xEvIeBAxTzNG1yhEiZQpv0RKdj2sKwuv1qhjt2WAcIpPa3whe61hZ5sbnEYHURLP+viGIpFdt5sU1SYKRYESRi55J4aFCD2GoG0vqJUNt84E3FilT3RF3Lok1c43gE6bZt0txlmllNjyB5SBNE3oLcIjuJCJkMrFiEw/qrTNn7x7BFFGzzHaqR4CA1E0RSY88X7VEJKLVnz5QaYG2oz0Gi2ePUjHCk8FIAU4EZIR9ncV2MIFqOYdrgUzXyG3Rnke+CJ/L51/WAYp6JmHUSB5niOcoWZYu/EQAsqr24gRefZY5fqEUyKP6N2KCojUuDxYTGJWmYOjxI6jOuL+HwLvsmG5nb/swU8Q0xfi2hM+AYUyQV3L97F7/6v34Exw/u4+jeXWy3lyhli6V6p18WJM5OcheU6vIBVSDwaFBzlwmcPdUwXKNdl6cLKfoHwfeo6oTQ4r3DzOTW4uvVjXukGUKxWqo1GzTQY0TbxLk7ObWCEgOJsEhtqWUCgXIQU4f9EYqUJhh4tTldSkGebD4nVqxWGZwACKEsBaVUpCkjGgmCCAsATtTC+sTeo4YUYDOCDEVmwt7eGtMEpKQodYGJ2omls3xIEyuWBViKp9OWgmnKiN5qBlTUIpkEA0PMzSCHQ1GqrSzO1ngxOvlWnwdgazdAlMDRiRnBMenlx6UIlqjKcoAiEqmUPpbRyjcAoLUUKGAXWIs5bw5r5EHts5GejvSxinV2tn0vIsbU9FlSIihV/87YA2L+V58T3aFWYo9Q+W4jAkVt6ciE0DyPPdcAGapaWwyfH+b6Rxrp3AABAABJREFUqzdH5LbWgsoQS4A8CtVO6X+anSK86eMtDVBWUzYiWhiGxpwLrz5K5SqWkrCZuZWppWry0sICzYBWtn4b6igYjOQle9a/wSZRShkpJ6QEpClqw7V56eHd1bqglGKeuBSoM/Yt35iQPaxpct8eRlZtQEX9T5SvZt9kqBkVe8oMAg9Gs4cjxcfBwr8xS9StgaUuFKqG7sEGikQB1ITWXhsAyLzUubjXpw4CmDG5/DR52CDZHQJSW35euRO5qhbUqphLso3JXw+PUShAmeXVE3lLcCk4Oz9HTgnPf+F5fOD978d04xBf+MLzeM+73o2EhGlaIafUohomVGSLNOeMlE1roD1PhqfodhvIhfhSKCdyJSuDdGOf3AOJv8c0jLdi89B1cBUivcjtGRh/waMbCADkBDXuVVpmpNgBin+XA4HuhpkRb+Mo3q3UG+cFmdPsivE/olqMgJZKHDlA0Qsk0hw9P+6Ap31vX3ZXKyTGiEm83vgkw3i3E/qG3W5LdfypcVVG8Na+I5Z+VCNcOVQVZZ5x/7W7OL73ACdHDzFvN5jnLeayAHDyql+Xhart/LU6eXAAyare8K8BujAedj3VSZFQMwjkxEsdUi3B8zHgaWBWagDQXe8z5wxUI/db48OMzAR42a546q9HsqyPTaRGq4P56PILmANUlmIAhS1KG03tWARsnoJFSvwPiXFMHKE6jyOk5KPs1YwhsSBP1qDvYD9jPRFAxVPgnoIoFbUoCpKDCzGZfSIkikKFMMD+HFUMjPm4xzNTMoAybxcUWHUJlFGKtC7M8VC1lTqL+7L+rFR9/7VISHQoTolRSvXomYMSWNRCa/CL0NebAKTZevMQ3HmlBpppXC8BJGPzJgBeNp045kX8bPMo5kWL9kCcC2MRPhNZBFLKaNXQY0RaxAfMxmFK2aJuVXf4lxjmlCLsXExthQSPU2IJd2eViFrUzv6oQ5w3n+N5SwOUdlCgWN+01APMUkEAMhPyKmM9ebMxj1KUsmApxcFA5Az7IFMyFJ2YPVKQeldRaP8zhMltfpkRF1mheXJqqSU46S8jtffDH6SooBTBZrvFvFRorcaQz+wek/EWmrCbuqOiMCHDSBeI8RhsAbhRbOpCXTfDSHLZ70KcG0F+7YI6R38IBsDI6+ST1yIn02SMfLB93iIj1u2VuHu3FYqCgu2yRd3ahhgkwO0y43K7Ba0yNtstNpstTk5OkVOCCjDPWyxLwWuv3cXJ6QlWe2t87tOfwf2H9/Ded70bH/3IR/B/+tCHMF9c4vDGTTzz7DuwXq9xfnGOw/09rFf72CwzDoiQkJuRpBQgwiwssz1XK2828Mi4YkgQfCN2wGh8AKLRKPOwyXBfyMEejeoPIq98sPfWiB4NhsnmR+xoBrbCLtuj7JY4Kg5ZLf+PSiCvuCD4PkRe8ULuBWo/RTeUw7KKCqcrSeOKrlCqCpNgGFHBNcAkxnB8fecefRZerTRr/77ms8xdzArsBkcIJPG9zn9SE/SqClyenUNFMc8zShVsvTMsEdzwAKVpVBCALk2QPEzvV92cnzq0iGB//opqxGkXTVMXdGMy48j+HgM62UW6jKvWqkcDnGk1PoWwkzCpOwSJgWKlz4nZSz1dV8VvQaLElzkcfZNdqC54BkFKLhDnRnTKpvNigM+UVEuNslgrhy01OjFrM0pNrdmjdOxev81Be5/tvRWsFo0RFtSlYi7e/I8ZK5ePaMRTB0RGfO1VXcviKanUU6hFBVV8zQqZ6q03A6qloNSC1Tp5BZUtiBYhpT7sUOMGTVN2kuGM6ABs32+RHXOAF+Rk5F1w6O9EKldMR8Q1a3qxxBi97Q4HkYmx9fmurQu29aNk77Fj3Db1YveouGvVeaA2d1thxUC1j5QdO5WhYXLq0Xr2iHdE/IMIH0CuSkQqI0pKINK2TuJ6WvRXo4rtzR1veYAS4Vxc8Sh7bKn/3kqpbL3bJmFhPk0AspH6GOyeqr2XtKNBKyU24plTDVFJMS8LLjYL6tkWt27exHovG6mI1PYWKRAnkBGRTfiUXE/FQl+UGAmKPCmmVbZ8ePWumT7xyQ1rhIhaRgGIBproKSZxwSMDT0stUBibXQrccwKQ7E5KVZ+gAqkFQgwhRokvcp0QYSMcb3UByoKyKdjUGQ+PHuLs5BSnRyfYXF64wBHhxo0b2M4zzi/PcXFxgWVePGKRsMoTTs/PcHp2hr2DfZydn+P4+ARnJ6cWAaraQrNlLk0bRUrBRx98FL916xDbi0v86q/+Gm4/dhsPHz7Arcdu42ve9z68ducOnnn6aTz2xOP4/Gc/i69973vxwfe9D4/dvg2ihAQHXg3Tko8lt9njYQxP33HDHMmjZaM2R0TSroKLiDCEiQ+jr8FRcKJ1qgrxd+3UlDnAaWmk5v8CzR1TjUTBTgqiYQYyHoEOn07Jwax3qe3AoPNbjF/FMd3c6Jkx7OvOv8LQwO7PA6iI9Jv9blzA4cWhTeZI1+wYiwGcRMQyeo5wsuZ3UAUlNSJii8yYx8YqkJrx+BO3rLRVFfNszknysg9relbdoHOr8ujkbm3nNf4GAE3euM6eUVXnS3AFT9nSMfCwug6Vfs0L5gYiRMQ4SXHp/n4mE+My7plFN0SKRwStiqzhXxnD+Gig2+ZRgYp5yZYCsUho7KJR/lIWU05NDETvoHgqKhb+FxjPQ8QqVdJk5ciWXjbCqlSPBsee4xUudqE+z8hIwUYE7XoqVrqfwSjtGYh/nzmgBv6XUppOTov4kUV7VIw/ou65myNghjWxdU6esj0jWaT5FaIWrWRy/hAp5jJDpGC9t4cprbHdzhCtnjrsUU57XskBR6TibeXtEN6vAHqzK/FDRAqB4AhyShAolmLzLk/ZOYjU9qwAWY1nI0ZyFUXjE0V0BBjK/xHXaxFwm0quCNsus89d479GPyNfom6EzHbaczVMktp+hAakdh2UL3e8tQGKimcvxgGA/5vNqA5hZyt1q9abgAHARHGUCZrMK0gg75MBKDsLHoSkblDUvQCqWHTBl+69gs986tM4uXuEg82Eb/of/gc8+/53g/edJIiKxGq5XXWgAXaNjYKKgtOzE0x5wuH6EIzJymDTCpj8bvzh2yITRBWH+obeo+RqctFkzHRk7jyHYtyblBk1WVfKZfGUEgjVwgmoVbFFwelmwSc+8fv44+95P/Yfu4FNnfH6yREePriP0+MTnJ2dYd5scXR8hNOTMzx8+BCbiw3KdsY8zw6uGOvVhATCdp4xL0vz0KDBA0m+OZvRqVIhzpK3qJKjc61tA4ISlk3F+ckliID/+l+fw82bhyC23O1v/ObHMc8z1us1mDMuL87xrmffgd9797vwf/jmb8af/KY/Aaxzi3bBZ07zjf071ev5x5AlJ7SFbaHvoaaGqC/WgANR9TPohaifrzXWIwcuMN2KCDXD39vP6Wfw5y3N1XZOyRBuNYKv9S2p7Vr6PAEpWIf78fcQ2ef8pm1tYOC8UMdF4RHHZbUUDrmYYQP23YA0lKR2HU3JF13Uq3mOYdDjoRC17yEvg+xDv7vpMbGvWfuoaMLJ2Sk+/6Uv4GRzhkpWVTXljJR8ow3eBvXUhfq8A5GRToevUctVQGECZETGuSi1YCLy0u8KqHr5paPVYTCt4sT4HQBAOSNUnZelQFDdUPpcczXdnBM4ufYKs61lqW4Mdcc1C7Aa3Ip4/tZSI/UIjlizSdOIqlhlM1JwAmrcPIfwmQSRlB3wKqQUu29YOb+VwgoW9+4Th7BXwjJbOqkUSxklJvDEXpmjSOz8QH/mo0MmtRNH1StuzNBaZFIdrBmYMgDG7qESGYcm0uLiEYpQcCYAKU+e5jFyclksui11hk72GXFNG1FCyrlFwftaC74JkCcra1YnbkdkgtrcTYgS6Ob+GsK0a2J2gObps2JRPpHON4lWKcZpNAfP/ITslWamxNvWSLJ1Z3ND3Z56ao+C16V96Wnw2uDVgFf2JgrBPxqcEGljAXcweTeS8GWPtzRAURaALd9mpXmKquwTtsKC0bapLGVGrQUHqwNMk5PDEqFCMJeKs7NzHB0dg8G4fXjoUQ7xBZywniasOJvGBQiSCHdO7uN/+cgv4+T1B3j28Encvv00Xn35c7jx1ARZCEenx3h8/wYev/0YSpmReAIhYymCKSUoFmja4vVXPouL0wt84Gv/KG4+9jSIpyuP0A1GC7PZpOcgKilA5G2wueFUr3E3Y8fTZKAEFXMiXJBig2LRJFUsS8HJ+SkObt7A8XKBX/+N38KH/98fxrf/qT8L7E949f5rePmFL+Hi+Awyz9BqueJSClScn+OcH4LX3kvFlqzNvVRB9bI9W0SMjdQu6CVAKM8uS0HKE5ZiIlK2TNxz8M2N0EvwlmXBsixYryeIVMzbEwQlLKmlxj5z8gV87jNfwCd+91P4vv/pf8Kf+jN/AgeH+1bqazgCQfQ0/k5336MXRRfQghEcDakgSvjsl+SeLNrPLSHS8ynNo4sKKdKokrL3RoWH5WzDT+nVNvFcGzO+Rcz83+HlXInGOL7rlzpGOcIAhTEMcDReOwxMNUKce6zG1QrA4KjHvydIghIPE81nR6QB+zi3Gd83Z/93pDabqxvvdeNFRFAiFCl4+OA+VvsTbuwfInECqmC9PyHljMdu3wRrQd2cQSq53oU6AVwxMSN0OwI8R1Cnj4GnrdgMMeL+PI1jZbme9iwVS6kOtL2zsRrHq9ZiYXK4ci68WoLIyYqCAovUxhOYEmGaLN2rXFFQm6iYq+QhwGb1VIuCwKIeGSAQBMtcULSAxFLISgwpCqkMYiu1zQS03mBiVSuhgmvSCeyRvwyxcIU9+iTGwVJzGqgGJ4FRnJtWi3r1pfO6MmNaZyTypDJZtMfuxdRdldyDB7x6yvYcE2yLyIDv0a5v0v4WQqKM/fU+1mszzMtS7HNke4wURZ4mAIRSC5bFVFYtyMceZbJIhCRAqyU8nUvqIKpip6s3UbtPW0raoh0KcxSSA/poA8DNG4v53dM4ALA4oDVQ0tPK7E5C9ggHQOBkQIrgaq++nzBzq8CRGlEdixhb6bTzcNSj/w147ToDj6SkLWTjr3NL9SkpvtrjLQ1QPvfSHRzeOMPR+SXOzs8xV0EtgsvLDS5OLiCyRVlm5KQ4OTnG0fERnnryKTz9zDPgnJBXByil4vj4GHdefBn3Xr+PVV7hsdtP4Oat26hZQTxhNa3wxGMHOFitMXHCaj1hOkx46d6X8OlPfg71YoN6a4u6Nc/k8JlbePn4Lu4d3cczjz2Jm4f72GwuMNGEJ594CvN2xtPPPAnRBeeXx7h9uMbjh2s8fPgSclYc3rgN4kO4JiRiQhAZITbkm0JV0aezbQCkWLRiUzd46fW7yGnCetrDa/cfYrNscXRyjFfu3cMLX3gB8/mMG3s3cbB/iPsP7uPVV1/B2595Oza6xec//QUc3XkdH73/n5BzQq3WtVXVdF0A2GYriqKWm0YQSYeojkAwu2dSI7yo3lMDrg7iE5wbW9PumzkhanwVikQJmbtmQYX6tRXr51EqlsWkm4mye9+uQ1AVKWe8/Mpd/N/+7/8zPv/i8/ju7/5O3L59w0CPuoKnwgSVoptpImQ1EpqqkQSj5BuRTpFeYRBe3niMpFF/YxOUEw29DTSOS2h4gMnKPzUqrrRtVG2T82voJXwhEBjhV9q5nJgn5CDJWiLAvLcxUoSu7RBS6XFjWqOKCi011Hv2xC32f9eoY7TfjFgHrbpBtQdAh9+NTRfbfdrsaCTnuLFlWXB+eYlPffpT+Pf/4d/j4PYhvv4bvgHveue7cfHwCDf2DrC3v4d3PvNOyGbBA1EDCG5kFB3khOcfwLNX+DnJ2jlLxJZaszGAqWoqYcqmkFqKVb6pG8mUE1JO0Grk0MjPsxO1pd2qz5HElnr1OSGeolFMFj2HVQQlJ9n2sY0wlYNsBUi5pR8sGjiSqJOnmyItIEAhIBEm1xaCRyQ4ofEwQAmMDFJC5owSz7jWTs6m3O5J1FR1CVFFw0jZr5Gt+m61su8ihfctsmqaiHpw8pSnRkqV2tiZffTvkdpSGlFSrcleX4qtJeLkUR2v0IpUmyyYZysMiCaFIFPsnfIK87xxaX2DZ9WrhjrXI6JN2R0W9b5p/swTMHIe7YkZuBAvQ7boh6dvfN/0D/j73WESaREPFbSIpcI8Fksru9Mi6vwlBjxC1B2diL71v1tOIjIQ6HtBVAl2npoBV2ayc3OXRbDQrG9XdRfgfLnjLQ1Q/l+//BuY9vaxLbNNqmWBbGer2ABwdvYAJycPwVwwbxfM84LP04u4cesmKDEOD29hc7nBvJ0xn5/i/PwMiRPuHtzHwY3b4L1D7B/cMIOIrbOiXXJaZzw8u4+HrxyhXFzgiE/wxS+9jtuP38arx6d4eHGKedlCF0GiiikxtueXuHnjBm4eHuDGEzdw6/ZNzMslllIxpQwtBd/+5/4CDvZugVbhWXqYDYSL+QK1zLh5cBME4FILmBLmsuDk4hQXm0scn5/j/tEDPP+lL+L3P/FprPIeoIwXXnwVpVRcXl7i4uQcdSleJZOxyhlVFUkFr3/xS0gQaFE8hoxyfgHJGSlPxjJUxcS5hfKWxSqUilQnF8I2cY+mhMicHT3018qltU/5ztgHQC6hTRYlMt0Fz2nDK7C8iRkDQK3uJXpkyY2JtiSMNlHTe/fu4X/5T/8rjh6e4o9/4x/H7RuH+KZv/KAVaSSAVxkuRQkFoVTzQKoVmrruA+2sPcCjCi16PxjWUPJ0lUooICwtJWKkaQu5Rm+QKoQiCloIWhmowOJemIamj7qseDNqZNUcDcR2WojGuPomSC437zgIocmtXhbZ4xrmI0ts0h6G6WTxuF33dIcBUdUerdEOsFRN4CyiIRGMauTttunR4In1TdL6y1S8cOdFbJctwIzN5SU+9anfx51XXsHnPvMZvPbqHQgBn/zt38XBwSHmiws8+/QzeM+z78Q+Ex48uIdSjdekZBt1fH+U4+56vZEiMeIkwbzMqtLIyymzPxvjs5TFlGmjQ2yADo00CtxQQHopKoJ0aJGnWquN4ZBbqqqYawFNDpSTkdgJgBbB4pUTTLYPiotmkU8EKQop3vclK3J2fSAoUkITVXNBD1v7DixqVaRqzzJPKx8vRamuJeIsbPJUtBFczZkyj10cGBBWexFZAyAuCcCEHA3uFEAiT/+aWqxVp3CLFhLZ/qK+P0QlpZGNvdy6RpzOhTFFQGSdiy2Va2syUiRLRKICHHhaJVIhIT1RltjbojrPokvE1IiksQ+Jp96iR1JibmuyOQy6y+yKdRoTopWya0SUIuJm61oErhgba5K6U1t871Q0ErkBCl/p3tsIsPGp7vBYdZiDrl5n0dZzrBXyyUXDeq+tUZKtJXNKyTTB3uTxlgYo9147gvIJSj3HemKcHx1BLy9x+9ZtpNWEo4evYTtfWjualEBVsMxbPLw4M+/riUscHx9j2c6ALJBasUBRli3Ozh6ApwPcuHUbRQRle4xA6tu5YFm2WJYNZHMBArAlxYPj+3j9wSnoS6+iltLC5lIXqBRorYCXDue1SWNPq4ScJxw9fAhWxWc/+RK+/hu+HrefehLrw0M88ba3QdYrzKXg13/j1/Hql17EN37wG3Hr1i187oUXsN7fx517r+PB/SMcH51ge7HF+fk5lu0MrgDUw7YLIU9eEVQX1O0WZVkAVWw4IVHGwXoFzhYCnghQtVbwcylIWUyyGbbhLXNpioZ7e4SlEBZv8FWrIK+ScyKs4gfkuUeyTbeiIpELPWkAlKgYgoleFRdaC++gmn6KlcBK24yYCVOaWim2VULNqNqNjrWgN1JkIaAcX+BX/7f/io9//Hexnyf8yA//X/B1X/9eLLR4hJ1alIQodePlVQqsVr2CcGzE41hMrTxZZEFZFogI1nsTMrJVlhGDQchIbhDE6VKe0iECJWPXJy/ZtEhTryARsTAyeWpzvVqDKaOoYPGUQq3mzyI7aCsW9p0m046IiE3inhNXCJQ7idNIcQVN2yVAVaso6m579BsJr081JMPHVSsWhYK2NIkCxncZG1tGhIfQ2z7Y27BIwXO/9ev4f/zi/4yjo4dGIFwUR0dH0GW2ZwbblE/PTnBcjzClgvn4COf37uLJxx/Dg6P7bQO1+7a5R/CUhJJfv5MfNZgVfttqfK2UyYegwmL+ZmTKbJFG1YF9xD0aYERMbnwPVfV+Or3CQtX66BQM5Fxv2FZKAc+5VaNVKZDinAtRM75qMLX6GjOeiHNHXEtltZqwmjJUXZ01WySmLgmlVudzdHmGKK1mnpy82wUmhV21lckiMp5sFo88qlaknLC/WoNIsL+XfV1mLIt1SVYkqFiKK9I74lFL9m7Etl9U/x4bsWjkB/SoQPTbMfDpzwgG4HM2SYLEBIh6dNhBvsT54NFNMi0RqVikYg/Awf4BTuYLXycKVK/QgkUKxKNNoTMVEbdpyojUaUQzI7XZms/66+ScFQzOXGhvkQMihz2uVu7XjCDwB0enAwr4OARAIuocE2ZuURp1B9AE9Ay8chDiBhTVieRyJZIS+wXaGouKItndEL7s8ZYGKGfHr+H44gTbzRlWiZBqxQrAfPEQvGJU5yaoKDhlQ9rFJkyF4sGdc6+WkaZTImIlYwJClYc4P7kDkEJrwVIEi4uVAWgbYUw0KRYuvnHzEJytOaFFRi2kWUqFVsH+tPLc5tZCYl4tQQr89u9+Fr/z+19wSWfCjZs3sX/rFuZa8frDB7g8PcWv/+rvIKWEonZfIgDphMwZ2Q35xGtMZMqUNS1YgZD2MmhKeLBd8PD4wkAMPP8pinKecePgADcO9zBN3uxMGCW4EGrVQQrF3mTlspwYiYD1OoPTGksVnJ1fIEGRJgsBJ00IRV7OQBWGaIaRChdslwUmGZ5b2NQ6iFaU2Rjs2VEMex+dXt1gHkNmQkoC1QqVgmlKmOCVI74AoXDvyEBWWQQnRwtOi+B/++h/wXu+9p14uDnC6w9exzvf+Q5cXFzg4uICe9NNMBSH+3t4+9seA5OpZCqA+/cf4PDwEHt7a7z+4B5UFeebGQ9PTnDn1Vfx8OFDHB8d46m3vQ1/5P3vx8XFJW7evIGn3/423NjfB9cFB3t7UAjOL8+8OiXh4uISt2/fxsH+Hsj7eWxm68jNTChzwdnZKfb3V5imjJJmMAsuLs+x2W5tvjtr//zsEnMpOL+4wPnlBvNSkKcV1qs11qsJ62nCrVuHuHnjBh47OIDC10CxHiIREVYvVQ7yqXWA1SE84x5jtCWAti7wCoaQlYgKAxEijghbztY/pkoITXnpY6nYzjPW+/seKVD8pw//Cj7yH/497r7yqlXhIaOWAktHmdQ82DgEFiVSQCp0AR68/hoe3nsNpSxorA4lqJjaqKiH+6tXfsC8VGEDoIlcHwlDCgpRrSFdJEw8LUdA0KgJu836RAzEMFvloA4N5HrKzsBikCejSoRgXXZXKQMKk0xYKogS1nt7bY5Ktevi6BmjALEJwtVSAO2tCFLOSMmiU6GyrWLOSC2ll5cuxTlHBkArLH0hKuCawaHNItXBm2CparpJzN7vRlHr1kMIcDC2GDhMaxOeI2rAgWMWca+gUhinpopCyfZP8bROYkvp5sxYyCuLPFrByZykUhk5T4h0afBMcjJCapXFAYbXtFACK7BsFzBZFFmrQmnga6lrgsQzRJd1iL43kd6N1/p68RSQRyFLtX5EKSVwTo1wG0kYcwA9ezIAkJ4yghdB7CZ6W7SuvT/ebWdX7cTiiOIPQXBXw4XxBlvk1KJnIWBnkbRwUrRHfAhNw+bNHG9pgHL64GUwKdayQBeTmS5sqVNZzGu05k4KLt4uvlbzyjNjXhbUWiAe3g2SJKS6jHrBMis2mxnzrE5aq22iW1iOPJxq11QFODk/x3q9MtCitrBTzgZKlgXEGZkE8zxjWRas8go5T+bFcoIoYXN5iYvzDS7PC96BfWzqjHK5YKKVqcEWYJVS0/aoi4C5Yi9N4LxyJdmCNSnyVMG8QLhi0YSLy0tsN1vURcyIZ5usG52R54SbB3vQWmySMSETe0ml3SNRlPEBtRYjbLHpEdZFsLdam45LqdBqUs/ICWnKOyFk8vrbuRQY0zxjmhJUGbyasF0WqAr29tZQKRaZyRk5lE3ZBbWgyGyNvogY05SsIVcjgBmResorZAAHhzdQasX5xQWWUsGZ8Ju/9eu4+fQhjk8f4qVXXsR7nn0HHh4/xNHxMRLvITPh7U8+gT/6x96LvfUKd+9Yyuzua3dx89ZjeNvb34bPf+FzEBAuNhXbpeL+aw+xLAUXZxfQRPj1J5/AdrMFp4T3v/99eOe7nsXLL30R69UEkS22mwuspgmJGSdHx3j6bU/jPe99J/YODnFw8xY+87mXUasiT2vcv38fr925gyefeLJpYuyt1zg7O8c8z7h18xA3b93GUgq+9NJLmLcLLi+2WBQ4P78AOShYr1ZYTRm3bh3ive99D/6Pf/bP4Km3PYHVekJiGAg63AdIMW+3mC9nPPXY46i14uHxER6//ZjpA3m6QqEQTm6AKi63Gzw8ucCD0y3Ozuc297al4HJzie12i8QGhgnU1oTUGYkJF2enOH54hJs3b6CKYilb/Pqv/RqW4yPcmBImTpgXxemyuJopoFzBycA5YEaW4WS/4h6pCIgtamIzKA0VMLGds8/52MwHDzY2apheEVSgYdhKpOKaDUARSxsEEblWbUbc0mWeKtHaImWcEri49xpKsGrKqIngGkh2jYknYErIKRtwdFLjKpn3T2BQlP0OvAPAwDp7is3EyGboEikBq1IRvyew86WkIsjhjS8jugPA4GkjEquQocTNyUmJsF2Ka5gYF2W1WpmTYqNqoE0MdJRaLCJCgML1qShDncwMj4GVUlBLtSKHAF4JLhPg0RF4VVWtELG9pIMUi3AaQAE4udaJczcUapGlSGGrejWZlySD/Pq82gle2YIexbB0l0dBfYqRV5Y2WhkiltY/F99HpCAl5zb1tOH43iHX4tNX2/4tIh7NQ0st9ffaXGciVAayupPnACP6+RjxPCInHiF37g2R9fFRDd5NkHzRuT5v8nhLAxRsz3FwsMa2LChOOlv8KRQA0QBPNBYVQaRAOCGJLZTF1VEN3NnD38uBDBXn2wVnZ5cQmdDJT66O52x5k6kWFyQydL7dLq6X4YI2dYGKhTu3c8HM4ux+waIL1mTiRBFq3y4VpQjOzy5x5/XXkfas5jgmv3pe10K4ZJtvLdDMjsNdmkgqKpbG0i9iJOJabdOooCamBK1YREx0CDAiH0sTlkspOXnSok7kJDeZC9S1KJalIqcJqVrqRb07qZW0FcwXSysRZGZMKeNgWgGw8Gf2FNNqtcJ2s0VeJSx1xrIp1r+DK1ZTwq3bt1FKwen5uS0yMS895wmP3TxEIpixV3XirAHR7XbG7duH2JYZCRsQr6EgLPMZ/uOH/4PJ1tUFx1/8PKoaeNpcCqaccXd/jc/+3m8gZ8K8ufAKOtu8eZUh5CXbxQFY8ehWsYLy+2eXuFwWgDOO7x3hS8+/iFdeeRG1LphYMRFhf70CUYXUii995vP47V8HNGVQXuH8cgUVRi2E8/NTgMi4KipIzFhPk6cVPZyv3o1XK/bWax93A3GlFFwqcAoAKnhFCZ//xGfwW899HO//wPvw9d/wATz79Nvw8d/5bTzz7NtxfO91nBwfY5kXfN0f+6OY5xmf/cxn8Kf/1Lfg4OAmDm7cwt7eHu4/uI8Ka3D08iuv4pU7r+Pe68c4PZ0xLwXLUqw0V4LMaykHAsAiqMsWWguAGVoWbC/PoOUSDEJdDNiUzQUO1hmrbMW30yphvTAuLubGWTHdBxsH9igeqvHUesjfNt3q5bmm0+IpSN8X2B0AVEBIISzINHk/FDMirdrbOSutJNareNS1IFRhuhxq323Ro9TeX4pVIeZMsMY/FglKwXGwUyIxdyEv50qxwpoIQlwfwwxnZtdp8UZ3JmRmgmXsQMsMlhlWqSbQqOKVKi1VYQaIQchpMjIwyMCkhjCXAjul+SEsB9easTLuWhUZCVI80sEmOZ9SGFnfwWKOBJAKonCQ7rlaF2aPQkCtaaPpzth74URq2wsDBPjY2o5vTQw96rEsCpCtk+JaTmnK3mrAwM2Ngz1AEi4v557uaAEJE7dkDv0PIGrpo8KROVmEihkKmxARaQnwa01BA3B4xU6LxUVKMgBmj0byADxqm5sGTiIIAj8v2vnVBTlhjp/Pq91SfzJALDAhyAF8g5ybyew95SpYPF1UW5zSgJnbrjd7vLUBChWoJsxLweVmaxsOLITnKw/Rz0Zd0wGulVG2S5uYpaqrbgrWGdBsHvfFrDg732K7rSaKNGg1ROhL/YEYuAkRJtvgpmDsqydO2XQFSp1Rl+rdTxWAYDPPWKqV81kuMEHco5wfHmF9sEaeGAKL+jAbQ5woWZi2mHe1zAWAdenco4SFPMiXGIsULFUgWwFVNi4J1Grf04SVb3CXywaTGqNfDOphPa28rLBvIgbGrPQwZ5hxqBYlymCsp33s7e2BEmPx9Ncqs4f0E7KHWpe1K/yKgqla2FUWaN3ixvoQ07TG9mCCMmNbChYhnG0vkDiDphUuLzfYbJ1vgUucnV9CZcbh/h6efOImHnv8NrQUHB2f4O2PPYGcGPsgHB48ieppn812i2XZgmqBLFsUVDBl7FPCes/Kl5fLU+him5Y4S49g1RpYFvdabLNdpQlgwVIL3H0HyMShqjK2FzNe+uKXoGVr3jcJCgGbpSBlgNmbyG2BooQiF1gdPIkbN25gb7WPl5cNLjeXyJmxN00ugT83T+XycsblxYVFDybCxYV5OTkRpmmFJmFeq/GlFChLxsUXjnDnpRfw3K/9GvYP1nhw/3WsEjBJQeKEabXG7/zW7+Po5ATzfInf/Z3PY//wNqb92+CUcHG58QgA4/JyC5JsIW51IwKrWIl8v/F7rDy3bs9wdnwXiQuozijzDEhFzoLVegL2FblatReja0woKdZ79hVw5eWojlqvCFMScE3YXNj6Wor4GvHoSQWqVpeGpxbdUAEou7YM23cVqVhT9tJqAomX1nPyiIK4iJ/pe1gBVN+kg5Fi+XlvXeHrSbQAWBtQEquqMkKuV/NphXoYfbWySIOwe9U+nnYu96JVUVok0dIs5FUiIHWF6r6bibgcvJOsKwxIKQQpM1aTRXpSNvAnEmTp0L7wdADIhcLEwYTp7eSU3dgyajUSr6VqehRDtXrE09O1mkyF18nyAEyADaaFAjXVVU6mOWOaltS/lxmEhHleuqFXI9paqbNxVxSKqpbmr0UsckK5CciRy1eAjbxP2bRFlmqRQvaKKtUKSkYSNgOf/Nna3llqBZWliQyqyxL4NGnpEHUEEJyOAL4RDVGPjEDUW6qIOWQTt3u0xIufe0An9sx7p2wD2doiKIkN2IKMBN46gnuRhLjIXpDeDau7MrqXLBt6IavYccCqyUUP3jw++eoBykc/+lH803/6T/Hcc8/h1Vdfxb/9t/8Wf/Wv/tX2+7/1t/4WfvZnf3bnM9/yLd+CX/u1X2s/b7db/OiP/ij+zb/5N7i8vMS3f/u341/+y3+Jd73rXV/VtSxlBs3mPcOrDIhg3jT5ovXoiMhQzeGh3KJWT15KRVaYImJmVDWAsoi11iZii0SQgil5e3HLg9oGYouxeTSee6vVwt7k/WpEe+h3ma3TZzS7q7XY5BVTjo3+MeLodnu5wbIkpMk1MhiA1lb1YRECU9GMPHnBYnl5T3HYIidkN5RSxBdkQeWECrv+ZTEymThBM2fju9g1W27XC2KhqEgTULBgYsJ6LwPivA+eMdcZZSFAQr7Z8/JcnedTWlxTxTbUWgpyztg/WOPw5j729jK2IrjYbnFxdomLjWC7KVivDkFEODu7RHHPUqRic7kFM+F8s+Dk/BKPnVyCoDg9u8SNsxn76xVWe8nLUjeYixn2vYlMpbOG/LmF30HJyrelYJnFnzn8OZvORYTUOScwi5P6BEU2AAh7BzexVCCDQMUAq9QZiy5ODiYQVQAW1o5mdaSMuQg2i4A297HUihu3bkJyQeUtpimDM3B5edlKwaO6apkXjxqYsBcAJE5IyXvPBJFOxUXyFFoWkBZczlsc31uQSDCTglVM/XgRXJxucXR6CoFis3kJe/sPsdq/hSqWfppWN8BpBeJsUumwiGQUIYgDFcA3aFHM20vU8yNsz48wpQoUk4E371pRxcjGpap5xQgyqVeppIRpb4XoiVWKcXUSEaRUlK2pOVclT2nY9xthz/LmAhhhUr28koGoCAFFWhd+PdX3l+jVQ1A1OXMjSnclV6KeCglDbvuFICVLn9YKRFvvVplFgjyRqVG7ujV8n7LIhGl7iKp10dBeBWICXmKcNIGVNIuakCMUecpYrzKmbAAmWmaoWmrJDLx1uyU2MnD2kt9aql+rVTRak20NewnAwJmRkP2KKOTkyct/vSIOGQSr0LHD+RUe0bDnkBpJ1zCQR3fcaBdP0atHwJkr8pQtChY2QR0ctNS8euTbUhLxfOGpO8uy9fYYpqti9yIiWE3snZLJJAmSlzSTiWQG/VtEei8c5+FJLRBhT5UYjAhAGZSBRNHTCD4/A8j6uZia0rbC9r6UjZ+nCuceeWhncJ7bSQhoWi1iKb6GGyKVZD/Yf4JAUOhNedEiNmH/elTHq9k0KoUcZI1Kh2/i+KoByvn5Ob7pm74JP/ADP4Dv+77vu/Y93/3d341/9a/+Vft5tVrt/P6HfuiH8Eu/9Ev4hV/4BTz55JP4kR/5EXzP93wPnnvuuaHXxVc+tkuBAKgLOYPZ+gm4HmfbEKJ8y+SRzXNUnzxSFDorKhkCjYEMUiinhAzyjqYKZXUA1EPUiYemgYimXLX93kBLhCmdpOkPnDnQLkOqet+E6huvbQIFFsJNok5MitnUJ10Q7pRMjn6pputBZHll9bRjyI3nlFGo2MZaFVIKhDOqEmYVENsEF7YNs5a5CVmxi/pItWqHnE0PgpNplVi6iCCLp89gIm5LNVGkqgIkCxerVCcUmpfNamWXooq0Ah6cHgPnwLbMWOaCzbzg4tLHark0UaHMSNUUN5tiKVm0bDNXvP7g1FNnhHo2Y7so5GLGsmyxmbdWacSEzcJYk/urYYxUASoWdfOqoBQVOw7iKsjDxoqJGGDFXBcL6cO8DJXaPA9iS3OQGEeHFJhWoSBqxkDVylSXAixFMC8CEka+OMciW2znGYKK7bbg9PQU2+3s0Qi7/epdYkM40toYWJ68UHUjxaCJgKTwoAfIU2K1WtqDJ/NMz5cZOU+gueB0rsbfAjDPCzaXZ1itjpHyBOaEG3uP49ZjbwchoUZtd9uk/fpgc52QkHVB2ZxAtieAVhccU0g1gy9gAxlVMM/FgLOXiIbnR2zAYntpgK+KRUOngz2wss9dr5pRWJXQEOYGsRtl51r4Jl88chKqtS3fT8Fv0lbFQsTIE/u1230b+VXbAFi/QQMKiKZ7lDx64kCuWwpzBJIikYEqI40SWnO6aB6K+Hvc3wCTnKCeHPAKqtWUsLfOYNe/ib4eJuwG34PMCWPvBm6lo2iiXtEYsRFqtaLMAkU0HdTW2sGa9lXA+RwGlioSJ6yy7RdBMgaM91CLlbsya5hJm0AKRM1rFUOJxk+JdEg0AITv9z2Fkth78ojxT2yvt7lu0UcvW/YoE7mKo1SLsCRP3czzFvN2BqAebahNX6RpAoVui5dCr1bZnM7aAUAAbHs69jkrZTa7UjX4Gx6dopAiAAjiBGhXinUukznpMQvQov5WkSdACtou+qLU0JThBgQtukVAqPa6bk5Wjktt4A7kfcmc7B39lqx3UL+GAD1v9viqAcqHPvQhfOhDH/qy71mv13jmmWeu/d3x8TF++qd/Gj/3cz+H7/iO7wAA/PzP/zze/e5341d+5VfwXd/1XW/6WkoVbzQV4mEeahRBdD6NHTu8FnhYV9SqapbZyvOm7KFJl0auKpi33mZd7PV2DDXjlp9DyyNbp0/7fZSsoYor2lITpGJiLGW28Kkj7rJUhLQ+e+fUmGbVw2vGXA+kqgYOAoRpZ/wHKzwlb7VOwfy2LqOcPP20VPdWtIkNkQJcqxsTY8DPxT0B53ssS21e15zgngsBbBsKYJ1Tay1OsjXjyV75YSqnXrqoEfY2IamcErJWXJ5ceMlrReYEpoy6AJkZQgqigpSMt7J4Y4iQdCa28G2V6huch5axYF4ElbbYbC8xLzMiFLydgUsyr3BqUucFFTKU8Nmzzi5SVUUaECTfcUqt1nk2yh3ZiMnRNyOzl9lCMAWjnQ0UmmdffE4Bi1TMtQIpocqC07MjYGPVJDlbaqdsjSQuVIfIjvMgPLZbFw9fSxhcSxEW2PxcHEgkf1ZlKf6zifSp95ISIsxbK2M2WxJjXZFWE5gI77gQPDXtoeACd/a96dyOJ1VR5gV1XrCqhC0VlGUDxgaoi4E6r9TI2arElMwQECdst5YOlYhcioJrRa0Vm62V5tZaoZmwv9prqQeLjCjgUZbu8GmrOCHY2izhJIilgqILM8xxNaUdFTMgvi2IiMsLWC7eNHpi7oQn72RPaDM+Ui2Nk5Ir+DKueL9oDg5H1QQbkCcCiJP1AIpIpBeQE4XQozu/fq6cGatVQmKxHkW+x4TUu2ptKbIpZ6xWxr+ry4Io+YWGOqoAXJ3o6vw4jQSRDVhE6hSejqiuJcKux8OpdX9Xv9gqJpIWAMj2cOeNaHB2TFAtzt8NHztvxj1456mkKYOTRU5rKR45IKQp9k9AXcdFam2CjMHFiSZ4B4eHxjFMBCkKZ4sC6lU5Hg0WrUauJcJqsnFkJhQ4cVg7qGwVPi19Y+nPGhpKTffEnUOx+ZnTNIgVdnBLHgkynFTbvqUUdaf2HhszQyOtZ1Cy7tvEQFL7DNhL94mHzwdK8aaVyZqsUhJQpQYCDbTAHfMRgH/l478JB+U//+f/jLe//e147LHH8G3f9m34x//4H+Ptb387AOC5557Dsiz4zu/8zvb+Z599Fh/84AfxsY997KsCKItUZGFUMhKiTTiXXPdNLXYdEmuoRhbDtBTOQtaJNMh0bB7K4l06l2IkwypOIfAF79pKDfTUKs4md42TpP4grC+FheMAoQotg9cltogsnE+wKwxiWkXIh5NHYqpYN1KlIOFViBjq9byJbTThGRIa67rW4iqDyaSkk/ERyhLgiv1cdrqswHpK4CSoKthuCxYlpDRZ1EXsfoUAcWXI5ADFWrxXj9woMot7EQDYUl0mntQNVlSihPGfcrLzOBucOIMQgCQMXsFmO/fQJQDRZMNRPMIDco4aOfPempwVtkoK0gkgQIp5SAuM/7FlAyem0xJjGmHMUBKNZo5OMxEFwbgoUj3iQoScwwu0TSgD1jJBFYoFKVtTRhEnmtUw5g5+mTxl5PnoUi1fXowHpIva/IIJoIV2UziR5B5heMDkHk91AAkAyrZJCikyKxJMZbVotaidEoqqrSl1zoCYYWNy4pxUVALu0DlO7r+C/b1DzOWwpSyWsoAALLPxS6hW0CwoSaEJIN5C1KXHYSTSom44CSCyai87l3nytSpYKuAlr1KNh6UqmNYZpOLk09CXsaSC8WIMxKONdDgc5j1zUk9hOACNiCyAUrGz0drYOpmUewS3ecr+QKIKJCKpAKNUU0S2/d7nWCLIsoBShmkHBf3f1n+JKEFEd93JsFRBbfPGSJuKSqazYU5EdGinlksxLTeL6HIGch3SZC6Pr8xIye5NakQcFMnXAUCYVqZDVNXBEQHsIoD2Xb55wqqLlJxPokA0y6xafe/1hoVtAOGcqR7hjpke/2aypnoqXfXUNMaMb8Nk9x7NFOM5GW+IMXkKsEVgANfA8ecdlY2TVV5WsfRwRC7g0QtVF5Os4pzIKLtOHhnp8w0ImGBAgf1ZdZG7qDQzEKQ+jhYgUsD5Lu09cL7lWFXl99raUXjUsWkXgbtQrXrzzRgbu1BLPQ2xHnM2gaaB4iKRFEjfoz1mi+FOx6Nd07/c8YcOUD70oQ/hr/21v4av+ZqvwfPPP49/8A/+Af7iX/yLeO6557Ber3Hnzh2sVis8/vjjO597+umncefOnWvPud1usd1u288nJycA4JLmXmbGES5Tm9QwBGfkKVg6AVYpoNT1CFKyhoFmXF1MJ6/MQ5urRR58khiy1lZ+a1kaIxJZSNQ26+hHURUQBylp8kXKgBZpYk1Eirm6gffywijFY/hkhC0eywePKTALDUa5okVXrDbfbFBUCtiEV6hLtavJTLsSsUAt3UCuBike+cgrTGsjkW5rgc6Wyy5lboheXQ48csCQ6NVhOiMiisK2+BhWaWCcHgtPh+HnIFmpYGFpm4RH8AEsBj6zYrudEU23xDcB4/+EV+a8GxFLxZA160pMXn0EFFiExdtDmgiTM/XzNIFJ2jlIgwDoYV8CmMRDqtQavVV/jhYVrc2zM8O19FAoudgZgCJWTrueEhInm6vSN0ll8uov+07ANzV1Q+x9kIrzplQt7Rbvi3BtiFpFr4+cV5hyRpHSWgFYAkvAU0L2+SpL9WolB+SRtq6C6hoaytTKeIkIF2tgbz1hpop9FZeZAw5WjPV6hWVOuH/v0jbEgwnL5QUSWV8scYEFKuaFc7HKAR86CKx3VimEZV485Gz3t1qvEX2aciIcHmQvU1VIZdRK0MRg33RDMKo56V4uCTcMEQXllN0x8PA6xcbc9SHGdFGkZsP0kEdzg9hoGj+9asN0QtzIpSCuumdqJVlYpPqcMoeFYddSxSOf4aJqT2hEOipKQRMH58HvDUbGLYuXElvMHiJwcG/gPACXCY6xFRfUCpBxF5iz0/o8FeFznHJq4X1bPepA2xaJiDcKZOOhRfR4qcWVTC3tQ0HEdFAdqsamTxJN+hwIUjh7/dCIGrrAICfGxFbxA+dGBTeFI4JMDYfbfp5cpdkfeESmk8srhGhaGr7Y+CmucSMG+CafY00hFgZoIrJpFAfbIzFEoQBLdwVfjzQ1viPF+XwuxTUrebn2MD/bvmBf3F+PCHisB3hEySNLRuSPSI5F7aw6ihopVoRNZE8zQIKUsxPQY64zcmavNntzxx86QPnrf/2vt39/8IMfxJ/+038aX/M1X4N/9+/+Hb73e7/3DT8XfJHrjp/8yZ/Ej//4jz/yep0JSWGKnhTeppNSxcpq20GGTqtUW1TkkQsiCAo2tUKWAhBhf38PtVxayZQ/oIiE9PQJLCwGR7/DtQdhiL1sUQTgouCVqWVSshr/pRSvBHCvBGjy42GZLWUz5CAHdyK67UbfCVtkhqgNxfdcIeIaNXC2GqEzK8q8gLSrZFayUOw8z1jKYvdZBLVo89pKNP5rxhu+noyoFkbPgKJHIcgnKgMY5JaV0QCHqiJZva7tEg4kbDz9vFoaYAg5clUCcW0cJvFS0uoE1IwMncyLt4VsKTUCXDciyikdMLGn9dQWK0fY3b1g9vBngMDQ0AB7qq1WJGvMYhwekQYSrMTaNpsiBSkl1EpY5YScgSZUX00VtlRLOWaKnksMcR2ERLCokgCyoEVKomNqTCVq4VW7zpQsxA+YQuRcCrbzgpQyVm5Y4kpEzbAkB5dVFpTay3UhBE02NpwYZdni8vIU+cYNrCZBLRXrVUb2MvK0P6FsNpjnBeu9FVYTcLm5cFK2GS2uVi4dRr6IAGSRpkVqI3SbrLwxXZ56/AkAQCkHZqLKhXM2LFVLCmhlVJmtgsVyR3YfHsGz8TESai2m12FA1gGaP+dIb8EcVat4CZ6Xj12r6vP1pr5POdPB1o6tTMBLYK1Nnb1/2lshpQml2LMPImMtBXlKEI3uxb6O2n7h14ruISsqVsmAcKZqcvJSvUliBTShOv9CwilKDER1iljkjJhQlwXzbPyL9d7Kje9iJbxVm3BaSgHqvZ2e9GgStf8bKd+k9z06tbhCqqo5B1CkyeZDnhjVOSHwtWtcNm29iSIFFGOzwzWCd6rGEJH0IWQ1MrkQ7YBIwIshRCHsrU4KEH3HLGLgKaZhv00p7QClAGXQIPxGqk67XdHgvYwRIou2sc95i5INACeiKsw+EY0rSdRFOMNm9bGPSxpsgkfSOFt6Kd4WTTNjR+DErttFWGZP/dZqq8LnN2D3pqoIlvB6PTnBu5Nsv9Lx37zM+B3veAe+5mu+Bp/97GcBAM888wzmecbDhw93oih3797Ft37rt157jh/7sR/DD//wD7efT05O8O53vxsEYOKMrYt4iQBTysi6tm7BzdoTUk5t8qgIhBTTijDXBZezAAIsruNxfnFiqHwGJlr5pllBmbDKExReslsKIs8ZRzC+AVsQ7KqTtVheV8zmIeeMUha4ejNMAdGk8BMzpogIEAOLo9fQFXDjTL4wmay7qYoA7vWHtktwWYjUoh0QkBCqMMyBKrCW8samVxEsYmH/zVLMS0pRARU1/t0ztVBxkM08bYUIe1h8lkjQsuH2RheG8q3bdiOwmCdHXqVRpDbSHMjBpRuSJuOuHspVAMUiQEqCVTbdmFIWX3gVkAwIufKlpamscsPHXWH8BH9IJH1JVy9NjUOFUL2zqwEkj8j5xicKSAEoWYTKFCcdZia7HhMyihx3RVU436K23HNR065pfTQA91o97IwQlwIQZDufg5FCjF4j8PdbM7jac/ghfAfTjlmtMhK7RwQ4OLFoUVXBtMomLrcUC4vnbCBncXVWJUzujc4uPS/CWDYbFAKmVcKtGyscHV0CYKxXCZvLKC8FbFvq4WC71gVECXm1Ak0TUhUvxwU0m34PoWJTCsqyYJ0zGAxGMY4ER1dixs0bpjd0WQjbZWnuspXFekq3MlTZdWfUejTFs0eQKG1NtDlBJsiWXEOiQn0zFg8s+Lr1tG2AQPLzWGdk25KlLJ6qKK5jIp4KNu9VPRIW5aTwtK94msm6m7ddCUw2t/bXEzLFGjLisShAiaBi5bYCT2lX20OK76MGVl1j1NPGIoLLy2pK0sw+pxSCCqJiFTG+7ANQJgcQouLdQmHl99Jl8y116s34POqSU0ZBgbL06FHxCh71PUp7OjMiAHEEFwqwaErTslGF1og1UIsSRNkZEZpuTzTzOzu/sKi+VnBy0Op7OLf8kEXYxMeYyaKh29lI6FNOtm/7cwwnhh18hJ6PwrMEQp220ACp7kTJKUBYgrV3aVGWaGWhw5hwV7VVIMqwAbgasDrRN8CmvdVSnh691uIVW+pAMvdoGQHEFrUXdzA4rVrU8c0c/80Byv379/Hiiy/iHe94BwDgm7/5mzFNEz784Q/j+7//+wEAr776Kj7xiU/gp37qp649x3q9xnq9fvT1/TXW+3vgjaAsFft7h1hNa7zvvV+L27duYZYFtQr29w6axkgpBVOeMM8L8ipjXmZUrTg/Pcfe/j6Ojo6hBNy7exfbsw2efvodODw8hJAaoGLF8fF9bOqMo9NjfO6Lz6Oxo9UNxxBiD6OhEl1IEW6hmfxIIQgwWdzWPC8RRG4zJ/eWtAIlwoYEaLEOv3kCsUleL6Vgu/XFlCw8G0RUpdhOrUJCq20yFhY2Ixdkp5TJCWze62bKoGxKsVDycmtBZqvaqaVCkYAUlUiWVIJaDjh5mDex5WCj/CyatfmAIcEUYXPOUEirurAqnAEQUA8f28IjgEysLrmnSATMKLDMqUlhT2SN+ZCsdLjzbrq4s0U9zGOxKgAHJw0JuXGJEhn/XCJGEo+QeLiVKtqmYGQ4dm8cXu5aAVQQUgNv0SkYIKzZFN6NkmIEEiZr8AZK3k/JlI8P9o0fVKVXZhBbw8UQciIIQIqcDSQZF4axToz9aQ2eGLUWU9EkYL3KTpStDpAYnIGnnngce1O2KjgLB6AUxfn5BaZphen/Q97fhdzWpWfB4HWPMeZcaz3P3vutequsP1PpLx+dRLuTg0ZEsEWTVuOJiD8Q+DxRyEHAJBCSIKgn5UkCHhghQo4k8YegJ4o2NGJEiITgh+ZDTNIxYHfUzk+lUlXv/n2eNeccY9x9cF33mHPtt1J5y6ahX3olu/a7n2etuebP+Lnu677u655pV35dH0h1e1dnWmB5rAIIK1A3ZDNM80zg3Mg2pZwwnyeYNawLgWrJCedUYCWNRn8GpmR7A7BckVvFlAGgwlNjGXvqKDM3irkYPvExpgJ/+8vAusqxVAxT611snAKL7jKbogV6AjcJ1667W4wfmU0f7sVcE25FnGYBvOL3sWnGeObe+LguGN4iHbQQSJGKAOB9sE7wLPZfdgbK95ciPYE2KQoW+fvW1Kk6ZfVc4ZiL9ad3RykEZAGiATZFnE8Tti1+xvnXGi0LGMwnmGf0yuq2aOo35pFTktJ7FxvEdTJbgksrMubV2JAF0g7pDFaWAIB8SowgokXQoPsEQExs0TEi3RTN6xxQQUAwGbFObbUdWDHaLeSUcD6dcF0YeMKVajMKyZNMLOFiqLCLXrelMqiACSSZAlAbz3+vqFFaMWVKCcLeXqtVdIxuraObghdTcJWAnAp6r4hAi+OT85XLLgOWHSjvYGaw051BSskZ01wGQ06JBFNl7Cm1A76bTsfUKkhb14br+gd5fc0A5fXr1/gv/+W/jH//6q/+Kv7jf/yPePfdd/Huu+/ic5/7HP7CX/gL+PSnP43/+l//K/76X//r+PjHP44/9+f+HADgnXfewXd913fhB3/wB/Gxj30M7777Ln7oh34I3/qt3zqqej7oK2WgesXJz/jm//kb8Pt+3/8R+Tzh677+s7jc34uZcJzPl+E2685qgGgBnxLr2R/fPMIArMuKZx99F1/87S/i+uYRn/7MZ/D06RNWkswF67pgWV7Ds+H5mxf4F/+3/yt+8Rd+AcvDVeiVCxGdLA0J0YSKaYmSD/XzzoZ4pYjOFOMRVtVwLsJTNsCYLmBKmggZLoRa2GujlILZC1IGXVinRvEdaCIFVRV1XzmQuuM0GVOG5sjFMc8JZSpSnc+q+EkwdFxA5iAYmsjhk0050N+qyomoY9CqBsyJQ65uscHQ2CzozqDJo+yW4sMmVfxtugsqtxz/1uabMhdWmCOnSRuQ1PJJJLr0RL01peq4QHkzLQDYFfQ3paL9LfoV4x7kpFI/QBoSXnvvTTb9WaZSaqvuHb0xh50z7zu7ykZqjhF/7zL1Q5Q/yysnJbQ6DWBVpsKNwqXpUZox61iO3e/g+viIZak4ny9DV9Bbx6vHK5ZlQ8oT7i8z7i4XXOY5MLU0UB1P7k6YC9Nky7KiNi6s03TGPJ10D2QBD6YAciKrRYO1hvP5QhEhOP5ONiMi0WkuyCXhuj5ysSuOomue5xmwaWz8Oee9kZkxen+4vkFPBbkBW+NmWcDqG7akY5Yx5agikY6rd7ofSzRcnRF9EqCmCRdNGyOdkowbbJTD5sSSeqZ6Wd7uI38bm0BU5IQXCss0c07YKu9ZllN0B8XL3Kg41JPE5pxvjt4MVWDRQRF3SuD4qRvHYaaLbHJQG9AFUIwjKHQQTF2wfL8bvaLGIA92wRpTKgrOamsjZR7BTehZsnQfdaOhWEpF6Tbufq1CTQol8u9MUWSJw3NW5Vs62jYAQGffnEThO3rey4O1BkcX9Ji/TIVkzTE+iyLRahja8flE+hwHjQhbDLTW8eTJE6AXrNuV1eKqRgJYKt0TEC2Xvat7tcrmWzAqjc07qQvaAUJkQEIr0seGL+FtDzuFI+AAjiDk6EnytnRirHXw4Q7cB+ORtT77AEoeqS6hhSFIFtLwRDC1WTA6sVbq+wEyuo0aRisJH/T1NQOU//Af/gO+/du/ffw7Ui9/6S/9Jfz4j/84fuEXfgH/4B/8Azx//hyf/vSn8e3f/u34J//kn+Dp06fjMz/6oz+KUgq+8zu/cxi1/eRP/uTX5IECQFF/xrOP3+GdTz3By/plnNMdfvUL/w8gn9E32sl/6jOfxvn+jMf1irpuqL1j2za8fs2eJNM0ITXHVCaUnLG8vGJ+dkJ+dsF1foPr8gB3oGzsfnl5ekH1inO5x//lT/1xvPvJj+J/+1//VywvXiKbkwFIeSyeAFDbcGcZQOR8OqFtdCHUijVK7+DUgdTaxsbGY1FEiASkRGvzLK8IdvPNePL0hG3byKAUAiIz2tSz6VWHMpqjbTkAgR/Sd9FQKnwMCKAcOZPZiEgDI3pMolodQ0Dre9TFlISNXH4o3S2HetwFUEJvsqfk+tCGHChbA4AwaAJC1T6qMPQKIyODBLQYcS4iZ8JARykz56IaUQSAUR7uHiCB382GYVrImhZ1LQatVuZyYWK/xB6VjDBdCpqWf7eDZsRHrjlwyrEiZBisKbUWZgMGLYwJI7ra6WAgWRl09v3TCwwXmCVFXmxQeF3eoJwKzvOJf9QbKBiGjEwRMWTwFU/eEt68eUBOE8odN7HamNqDO9brhhnAPJ9gmTn+iL7grOwx62Ocs/oq41TucfnIHbw1bOtCsABuUMkTmcFK8NVV3tp6x7Y29uTqjmXZ0HvF+XxCKgVfft1QLCOVE+4uFeu6EJR2LqT0ulBVhABhUO7xfEaUiBhD+0Ie2f4AISmZfES0hagkJADn6cy6otYaamU7gN4duTDtwcqezCZ38r5QqAoDxa/c1FhxZ56QpwmWMCzaAUd1w7Kt7PnrAii++7iMiNfCiNBQ14j0pUGSjspt39RSySNYYarBATVBDeZgsD29o5yyxhKU1lA6gup2QPYI85QH0AhrBYcqzDq/A5lB31QMWwPWtUpHoXLYboNVAkIXAZgnlCQ2YNsEmp1VY747zZolXl+NlBHw8PAAS5nVSftmNNoPRIl+pP9bc3g3bJ1sadK66vtI0Xq5B2QA1E4gQGCwdePrRtAQ70kptJXp8PMdcLm6yIcGhxFuJoPd9Byw6yx3RoX3kO0fVkD7bs55FEM0aul5Pb0dPsfBZokyhm3rMJvwQV/mb4eCH4LXy5cv8c477+BP/y//Z/ZvmdhoLiUKY6fphJzPI/Kdpgl5Koxqah29N2qtCFe8HLlO8mOA0HdKFAShdpRpwvl0xvnyFJbTqL5JZvjv/89fxevnX+Qmrm6hMChqx9jIo+ImqgHGojUmIQZI8d4UmaQBGHzksZXbdlb/9EHPxiLJqJR9Jfjd8aRTIHakIVZ1AD3K1caQ2KsU4t83/zI//MT2DTN+6GISXBMHwRTt2XxOIFGQBgBJVSj6Y5zo8eJaS88QHMp+40xMW6bCJv5OwcZOn+7XlgSOOPmTjsFd3g9HDeoyKqcolLWxIflh8djPNc4R4/7H/XSPn0WUMz4F93o4ykGErI2Sr4g2e5A66IkGaH0AH16zjUEG1GXD+rjCehqN5kopsJSwbRu2hyamw4AqYIZRPIBkBZdzwXyaqWtItLf/0vNHtNbw5Mk95ssMdODx4RGu8dtbRzeyH9PE0u5N/ZHMd9Dl7qh1k+hSpn9gRUlKbVzHCGZiMRXNbhmoDlzXFc3ZPK4HGEoJllnRU9Kkbt0V3hu2bcOqqqBdMWWqTvHBWphxoa2tom7c/FNON/MmJ3bp5jw1rSHlBrDvAIWdwFtnmpoW8Gr2V/jzrTV4NzJkTt1QKXln6QzwnrHVhuXKtNDpdNL9bCNtVZSqTe7jnrdKIbZ3wHslEBrPgaW+JSc5Fu+VHnVrWLeVqbhpwrZu0oX0sQ6MIMdYZl8rmduST6iVbSCamJeUoo8OYNZQMlNRGc70cgimFWFcr6tSUARubq7qIx8NRPn8CGbNyFBFIDLlCacTGwFGJ+jeWW+WEivqhqMvEn1/OjDNZ+Q8U0DfCtbtEbUtMNtQSqEuZhMFkkLT1AGXtmhUHAKWDafzhKmw6sWdKc66cX0rJd8gEQZ2skc4LMwhfjcjm0GGNSMrDdbMATkJt2CCxcAwle5MxTmDjaj0S/Laab3BW8gMXFkABsPsc6Y5HmubxvdITxrEHMmvzIEv/NqX8OLFCzx79gxf7fWh7sUz3yeU2WDo6LaiGR1X174g+SMiQn1cY+PFSBVw3CktQAzLKCSYATj790hgaDDgmvDiZZSAkarzvgsMn7wzc6tMPHZESqGaztBE8jx0Ku6Opv3a7AABZAc+oyDKGblOhoxNDIQZzBrMAxF3DJHuwLTQ36Jweywcfdd/wEn1+s4/BMU46H0viLwlGQh9cnwgDTpVMZgYadeCfPiu2PqH6EuLx9jU4xr2DTo2+Lifdjx3P3xGoGi8HDhCKfcdTDV9H8Wd0UBst232wE2yITdNOEfbPUV4Noevu3WG3KMRRWHjeg98Tpy/B7DhqweFEn+Ne93HM5NghZqaw3WHtinGQ6sd9epYHira2pFAqn0u2lQAZJthN4JRlfIHYJQfuteGao5rXfHi1Ws8PG54+vQe00TNy9rWPbUV47GTBUnG7t45Sp+dtLhFJVpKyJnlo9frFa9evcA8F3zknSc3viQBhnulwWGSxiLDMU/anI2lMUklQZ0xpAy1aFFm2XDKM6Z5EhCT3f1g1eL+8wtbpRC6ZPVqQWwee7lrEdPoIBgQ0rmZATFmeo+5S9uDqcy4Lgv9erYoQU5KM6n0vXHzIdnaD+waz6XWKnfRfX1KKQOdRnZwx5QnBmgdyMjoKbRKgIOMr5kaXzamuUpR92FF29mKtApvx/Q8L5dofj5lTPMM5YNh6EjmsJLl46J1OBEQWTZYt/HcYGQE+YxVFCBw2A/zwlJCconoXdG8S+Ok1TMAwt7vR2uJJWCs90kVeR3u6uzu1B5N0wRvG16/fiOvnAw3bt4BmPfJa4NJiqaHUarJtHcEa7HXaD3SXhXglzc0a21iVRQ/2rXP2J6aU9n/EAtDa4CBYyjSocnlj+WIirJ+s8hgH9vG79iZHp5qbxDjFsx7gBIbAb8lia1rw7oY1rXhg74+1ADFrQHJZMIUPwv+IOriYwMyRMM+gyoqTBub3z6SSDmQyuqIuLk7N/TUHV6B5c1KQyLng6mdplt35xnTeVJ1QBsDttqmzW2vcA/qHlpYuB9xQdo3ozT+c5AJsXOGYE8i1zjz+J9YNkZpGgKU3S6V+iK9ea9MYASOEdm871Na/LSL72Dm8D8m9mGAEQ/HyDTYhXE4sLQQzmjgBiHdLOsYfh/xq5iEN28a/zw8ZPPBKvjhmG47oNsxgu1gR/fcYeO9fJ/yKgBU66AblgaOu0lNOatoohUG9PtYPD3dgpTjS16ow8OBBh1xHvtFm6s03hOKsaPttjTUa4dXg3lBToVMQI8RacOFudcunyExgGD/llTUx6l3bLXi5etHvHz9Bnk6U18T6cmNC38Vu2OtIWU61BoMuTdM8yQ3Y1fKJ418O51y96aCy3XDcqooU6QyA+Ap9SQwXZsqIVJG9oR0nhF9aRg4ZPTN2TyuOwWvgBoHHhZXkJ1IJfRCnPNTmbAtK1o2TPOE63UhiIOxMkt7TCr01qljo3z/2GIJMmDWcZoLkKiHAii4XKMMuDqmiQt8bRsj2JSU7iIoVYNZCuojOFAaMKktBwUPkL7NsbnSP0bDNBvnBSDTIWhocyqBSVHXWndHC7E+wmhOmonONg1JjRupJeH7EoziTac4PqeCtW/ssCxwUNQyobYKc6ahM9hXKe6bDd0GN9cBoB3w5tJQECDlcGuOYMe4T9TWR/AU0aF3pxWBG1L2AfhCAOu9YZoK2kYgh2SYrABGMSx7vxkBeM7ovWLbNgJwkDWx1JFLxjxPfO4GAYU2NDZZzzhYqBHAqXLSUsJuMsjfRafhSEFH6q7rulXDc7NOoLuqFff1I0TVwTzzNwFc4j4rG+BKWVmHujiMNhKh58kJKhHHADcf9PWhBihVZGxsAAagGwcuUXpQE0BAgiMw2DdiMi+ASrVUZhplnA42FqyVIbMKL1ARfiPRdHBhZOEdnhzTzN4++5+G2JU8JhPC8I3/ZYq43NuIfHH4rx2YRG4xaNHbvfwIZFwb8SiBDq0DzUYG7RnfFP164j7Fb5hvV9R/O6bj3VrwdC7yMOC//YYx4F/yLMAOFhwYFRRxRTaAgAPdD/AqEH0A0gOoO7zs/aeJfqjauflIVGAdhGr9MKO6EeAddS6OEIMShMUjitEVnw+w52CVzS0I2fUoYzGyyBXHs9iNlfp4Bsd0zr75ZU/InmDdYC0x77EAxTOsnJFm6iyGQFmU72TSQwgk9d7grSFPBfNE9qJ1aqMeHjY8PizIlnGeJ0wTF9taNzQ1YESnWLYkbtglZ7IOWviZNj3Bp47rdYE3ikZ3I8WMT3zik6jbBu8N67JIr0LxKdNALHUiyKzwBlH6yq9nMgRmtHm3wvcmaSrWbUWXVUFzplhyyUi5oEi309GQTqq+6WQi3BvmuYDL6DHV5+joyD2j9KzNrA8r9976WPgBoG8VXoxpDQO2TVFt7eit6hmzwi2ZEXg5S5W3WtHAtDIsA+aYxDocNV3sZrwB2HVTW63IEq2zqodl3vM8ocwZ67ry2WXOwVJctvemIoAyig1YEtwwXFXFHk9lEhMh48TEz7kbkpjslBKsyh4BjtpmzMiAFfS2Sbclo7TuFBcf7t9opNegPjcYcyjlSBPu4AZO24eUIGHzMXbJMDTUtiIjY5oniXnBdg9mOJ/vgJ5xuXTUtgJm6J6wrQsc7KEDZ/q1qQRXZVdgqjLJuRyobRuakdZZ+VXKxI7jSg9HsUDvJmFyVCsZYv3WwrkzJ9JkMfidEAZuI9aC4ptkw9x3rEfONKYjsYRaAC4YFpYz8x4XAfiUM5vOdrpc72tzR247SIweUh/09aEGKLEYxKujj6i86SfAcXt3BJvCjXT/rBpxs2Z7LPwAxKAQFYvK4jqAec78BjckzEC6AwLLZzI24/caTKOEC13sTiBgoUvIv6AfgQKV9yQb2n7atl/HkTwOd9EABrBDhI5IOWmLjf4ZMXRjE/UdBjT4zYIqPD/+FemJiAiJY0y6APA+OEBtiCEmarAuAaAG0grmxXe9iktvM7Zr17keWRPsDM/xbQNUjbPf9SIcDUE9jRia1u16d7fDzw9DKTYkWAh1fZjuAaEXEpjQ5/X1XDgOhkW7/XOcn1wZrOP9QCbAw/G52ABHcNDLv2fUpSI5Bb0zaLvfQf3Hqq60URaacsL5MvE6q+FUDL1l9l1Cgsk9tNaOZdnQGhmFMk+4u7/HNClloOqdDKAmmggWY3dZ+nyweqqBtP35dEZOBDnLskhgPClybSpFLTCbWTmxrgRBTUZqzWFWGanLsDlnw1obzLhpTpnl7ebU3Nxd7tDR0L3hUk6oNQO2wToFmlNh/5lsjnWrEh8CsIZpNupzepgbSkTsDrc+yk4tU/ORE1NYOSdqymZqSULU6FDMkBLQ2K7gNE0wI5toOSNNjJpLn9BqQ9tk8mgFhjBq5Dzk5scqldbJFNTakdyBgpFKpL8Ib1jdKmqt2jzZobgkx3Ri/6O6bQhROqDouTnWhWXFuUSEzM0pGdeQWjfaIhjZnZxMjtAUbbp3tt1AQVcn87o1LJlVjxlFovUd5LOaNdarFBOKKcXuw9k0pYSSJ+SsFS/EwF3MWE4sTAAzcOZR1WVwb6zOaqxoaV2NUp2aGFyA87nhcWnY2oru62Djmnf0jSC6Q2y95j6LDrJiY1VzIgKLI4jiep0iePDQcvA9WQ3/HIB7Gi1BYp3vkbYJp/NxdK5brEKml8xYWewQkFro8YyGpz5WsAFAeT55Z/sTW7GMflGW4Ejq3qwSkUP15wd5fagBCnx/mHuYfLsRGYDw8yM8OQzuEYSSf2NOlQNJvjLjQTHHPfZXoU+XQTsnLktMJV40NsMLcyDvUoQrMnUjwmZEbQgNhQ9HQmkhsFcGcPNxRHMoc78Z3OO5K+KDPhtsAy/ZRykeq1l3BipeNn66//eBwxmUo6D2oFwRxznCdP21A6iGKGvEzTj1mG0EHgbqgaiwHe+iJkNwwXxsBtCPb9NcBIX7iff9+fgO0o5alv1e7XqOY172GG3dnH2wGFwJxz2yA/AY9x4Hbcv4/Fv3Qcc82m0dxcs8pb18NZ5Y6glt7UDlxr2twJToxFlSwQYHOns4RVfa1hwlc7M0pVpKNlie0Dswz+pi29lN+Lo0PDwsaEg4nU64v7/H+XzWwkjQE2XdFi0DEkfSuq6Ypol9eQzwXlHNMJ/OyDnjdDphXSVkB+l+fu8GN8dpmnG+3LMiYN0EVLjRVTEkOWfOK66WMGD3t4ADicJApn1jQy8jxWSGERWmxM0XUFTp7GtjSisBGJ5FZNL4MOP5JiRMp0ns1oSoquhOF+CpZDhMjsEVS19RpoRpLiirY02skkky3Wq1YVW0m1PG3flMQXBbARB8EfQYkhXU3OF9E3HrgGWyBqZy70x/iy4fiw6ZUgKj2oT3w9Aqxan0cGElHzU4hX4/OQ/30NDFrOuGVFhlM5VZ4tcIgGLjc4HKgpQKgZruX5eOKgDdVPauusfKltjw92PFetSxbS7dUhob5b5fcAwkMaO78aINUzamMlREkTOuj1emTNU8sbWG8JEaZIYZu4QriDCNBlZ70SBv8iKtVRv6GiSm1LpXCodzpibIj/Mfg+mDANBQOsb9cFfAG2vSLloNRjc6gXOwBsOxr4muQg5zh2WmlrjuYqTsFAXvu25ipWispK7u2/sydgwWf/fXhxyg+M217qZdXGDGpjHeH2/0MZiYPmhIHsYiNo7Fz8a/Jaj0Pfr2tKeGLNgAkHGIhSi+1s1hvSoaEHgagy42LTIGUa1jTt+KrlxqgKiwcE6ayJGLN/cRrR+/O7QtROUhrI3Uyf7+4WtyOPc8PEJcyD9y6QFQoHVB56TLGeIsfbclHFwQd5ZgnGSCrKUF/jTEY1N3RRFsiELWJlJ0t+BKsudA/KTBaLCVQ/onO+4YG6KMd+Y4JjBuju/u6jMciwNGeem4h+BCkDSRb56EYzhZHs8X49lgB2jjLPZziLQgqzB2DgsSExYU9MWRN0PqMx4erow4S8a28a2reg7RWIkNMV2bbXY2g0wAzZ0MWpyB6Ei6bBWvHxa8fvOAlCdc7u6Ry8zTkFkhG08egSwGVb1uG+bTpCo6Rv3XhRvA6TQj54TTaULvGY/XBdfHR0znE6bTTNHstgIOXE4nnO/uxCawJcO6rNh6h09p5OJTUirHbGw2Zts4J4IqIGdHLoYoHGXqlCmd82UmY9VYpQIJf7s6aLvoTasMbopJ+CkresvsZDuCJqOgNhmrKJj6SMBm2FpDtoTz6QzcJSzLglwKEgq6O5ZtxTRlnVtCKkXA6LKPJ9+DlWyGyRJSLmLlwvfCVH3SAQE6uLHX1taRnL48rBaUmNMNyzXK4Z3eI8iAs0LD2BUD3YMcjOult0ykNmtnABUdLRymNSTJXsBHBSOcdvrhtGzdUQTQCY5ocBj28CmFjCeabgo8ekLotThI2ScmZqGjY7g7C6TGysxOzIBl6kbee/5CzEpDc46lJsI5pVtha3jVmKJb72Dnae+otYzUR4iDGTh0GU4G2NOJeEKkea1z//EBuiTq7lH+jrGmxUpys6OJLUE4oR/W/Aissow6A9yUqEw1kxEh72eHhLOtAcZGhb3t2kvutTZY2l1o8bu/PtwA5bhRRlQ5EJ02fbCT6XhQUsT6+Az/7qp+uVGER4Tkom+H9kCbRY8S1nifouYRqe2sRQyK+E4/bK7HkjF3KbT1cFukqeJYnUCKC1EaExADdOjaiA5GhDK2e6WELLQfOocj7WYcvfyOiPgNYJi0RyaKCXaxxdtPx1VuDaXfDltuMC1HkBIUJo2RsAMyvSEa6I3MyA1VuI8BltkKHCUb7QTMTczVnnZJh8Oktw93PFe9svL3gxfRfY4S6g6Tjf8NOnlf4DA4myMrEguJjxEzwLBBugMYigPorMrwluFNXbQxYVsdp3zCslVsq3L/pwmmbqotzJ4A9GrwSlfgYhnn0xmlzHCVf9KHx7FVzRE31C0hIeMyn3E6zbg7z8gJEtpqLhivpWR26g02IecMbBuWZcH5fMb1eiXV745luaK3ivl0kp9ExuV8wrKsWB5X9huaZ5ymhG1b8fh4VcXLhPP5jDPOaHeN/aPWTZuXNA8uMzeVYNbqAiwNvSutUfaO5sAumu3NkSyLPTUka8hW2fAsG69P43EqilodjK4bm/NF5+qY5jllRPdzRuAS4rfGMuwyIVuBO3A6nTmPLAMq2T6fz2SFOsfJ6XRBcm4oVUh0p/uBlmlEFwxA6w2wDVvbdK+ZPkqzLPiTI2W60OaJhnk1Nyyo8FWlouhhv4Nov+FgiqRtlU1VLSwNHDmbetM0bbJsuZHBYKxpfW1dRmfSxORkSJtjW1l66/NEQIhgpTnm6KytVcaTAj1HrXsA51oLw0TO4KqwiXnIaH+Ai9alsRH7KTfl1ujnEUJQ6gXjPBJK+Ab5ralcpK8LEhoojL1exfikhGnOWrL3Iomj2SXXkOOaTU1kGz56se5JQCuWnjkxCZihvcR9nI95GuOFL67tU2J/h6Yea6EtqN5UjdrhN5YOOq8WjS1N3loENlkmcM1+hw3jK7w+1AAlNnoPO3LbK0bSjb5EG65hMBHAYSNHfG7fQ7ifyAnQCQnGZjF2F2pe9j16QN0R+Vucpz4SOcc4/x2c7DvYYDAO1zCQNLpcaHGwaN5PLEylblItXAYIU3TMJsEasDMnOz8Z92c/l9iIA9rF799mbOIXXWxOa1Vamn5jZHWsnHK4JhFwZKhuNnSBytY6joDu9r75zblrlUA3Pr90uKVDbHrICfW3jjruyeEl+6cdgPjxvRjfMSKwUMQPfYy/dUjecJa9HsXLOotGYJWtIFthw0BnMJi8oG1aYLoDlmHesGwVy7qCLrR0b3T1s4mUkSOCJtP3Mx/eG59N78ByrcPV9Lqs8G7IZcY0FZxOE07nCaXQr8eyKi8qXUVr6zidM9r1Km0AN41SCq7XK548eQp/vCLycmbyRXHH5XxBLpneGymhlIqHhyuWx455njFPZ3ghgLouC+rKiprLmZVEdabZ2bruVgNdXiBR2skNJQGe0bvBN5cWh4uqd1WKWGzA0QcLyJ41puksGvP7yByUPKFum5x76eTq7ti2hvNZnrYSjjZ1fHV3TOUEg3o/SQhca0Nvj6OFgVnW/A0mhaFCtjTGZVQWAgRitVedQyeYyezYbdC1pAlsCy1dkSpJSgbKnDEVCjtPp8IUXHPY2rGsVWXjxoaQMwgMDHLEbqT9sxhFTRYSogoWemyOZBhqJUhh12SOXfcMb5WlyRPbPVDIrCnqztk5Fld+yd4Qku+JtB5Zl71PWawio4ISdnBwZQNVB/D4+AbzdIe7uwu8Gh6vD6gbV8IUDIqZii0IbbT9UOzKR0U2LvrHTUWBHNfvaZqoeZJvi99ozfb1K9bYAGoOB1SGPaok5AXmh3UlWdHYEog1PZAwALQQ50apNX1szNSJ2/sAeQPo6P6F9ilYwdEhGSH0bYcd5Hd/fbgBCgKgcENMKTowxjIcZbW3G/YtrxExuh12msjPHUd7/O2HslM+jCNw2TftnVnYIcmRNUnKd0rfYWGQ8350aWYjzI9y2b2mXucleDwefqBu8H5EAy4/XE7vhzTTQaoRlN4urMX4dwzKcZY3t0131gTQgi7tRwM4P7wzvi7O+X2XjtjAd7CkDT6uBft3xSrDJ8poKikt5AC6LBXSzbcfvv/tb/X9X/vCH/09jvf3/Z/FAKWu/z8I1Q5fl6TV6KBOYiozXH2jzEj7u4MsByje7FvHtlSk5JhswjSf4CDbFnbhb968ppregK0+SgCZpU9Qf5BGZ2CzCiBh3VZs24qS2SCvVmDbFPmBUVBrdCeeL2e1IyA70bVRh16E3a4JKFtraLWMTS7njIc3D3jy9Clev37FSA1A+Hcs64JLOiOVPAzWYIaHxyse3rzBfJoJVGYyiG1b8fjwgHVZcP/kCc7nC0qpmKeJVQWtii2h46/BYZlrw7DrBrsXM9h0bYAA0IYXTO9dQs98MDvU1JPRWm0dKU8UmpbCakL1f4E8LFrrZERcYkmlglg0rLhHOrHemiJ5ngcyVGHG0vYsLUB3NgINg9CuCjmYwY3tKrjZkQUsJSNJvG4A0vkEZPmUBOMDR0kJecqAHFXryt4561oxnxLydcW6bDidZpxOE1LZNWnujrpsNAQEGYOSaIXvlWtadz/02yLa8KZz7xSc0kKBaQMDkNOEPCVZ6FOXwxJfVVNJqU+nXBx0X1w/shskMNS6IhbMY00OUW0EE3QXbgqezpcT7u+foW1Af69R1J2yNvG+p3hzpNpC7Mo1CGAaiq4XaraZIn0Tbt5HrUc4BR/W4fGKERgsEoOdrv0kKtwgDdnxU9HY1UfgvqelqcEK0MF7xFYFTfYPh/0EgHuFo6tqakKtTeyTJALxxhDyf8DXhxqgACxhhENOpb6zANBmLz0HTKVmsSEfw14e6HDUWw0A91W6WQYIMRzYCsQEOB7X9v/VxNgpuhAT7rQaqfG3wMlNtK+N2qu8XhB4aUf/AyyEODhyvHEefvgHz657O3wiwEPoTrTpaQMNcHSzAXucu27j8fJNYsBx3yOffdBPxP0bQNwk8A00zyjSenwZGZEUi8u4VQcAajvHsU9mB2RQp9M5fH88l/j8ze3ndaXD9UKdj8Hoev9cGtdGVqqPWwEI8GjBi4HUrGuHK3h8eUW5n5F8Yo6ZazOmXJj2ahV5pmrePGO9VmzWYevGTSRpQeuMnouqF9aVQGWaC5KFuypL4cvkjPyyw6yhVldzPucCHN2f2VsBj9cNU0+43CUkm7gJKy3X5cjaRPH2Hvefd4AeGIZpOuHN60c8e/ZRZLuOPkUmlmlbmaY4nbhpmSXMU4HhhMe04np9RG0V5/NMgDRRWLltG7783nOczifc3d0hTTNTpbUi9Q2tbqh1JT2PwlYFUKQKUuXUOxFkt3VTYMkIEqBTdbeEutG2PZdoNEjwVmuD1zrEqgFksxVYZrfi3nxUeCVVepg75jTDeyMVniIF1QDb2yBYJtgNky5HGlV3tR/mt+1BzGhJkHeNR4KRCWqdZdgFYJfyjmAxDR5WPqrCSfCidU/A7nS54PpIwFamaHfBFE5v3IB77+wIrdDBiNV2AODOaqNoPJiMTfHaHlglUZOWTaJhoPWKvnLt8p7FKnQJTstgCKPMuoXIuXecLAHFhsAZkNZE/h67Dk831FUFlQylJJSS2AbAElKiVocsKfUuEcyNnk1wRCUO++gk6pmso/sG9DRYh6iqc62tOScgSoZjX3M+Qx7Lx5ISvm+pm2xvaGqXTkzzta2iVbJpyNRQdhi8HFis8BeKvapJ3qB9rJQJkVUoRSXsTrDb3JFUJj/aoYDjkz5J5Uaz97u9PtQAJXlwJIbwwDiKTuMVm/ngSoIOO77n5p7tNzWOxRxysCfaHm1nGkbI7QFe9uMMatMV1wtNBH0HQNbtGMgZwWC48og6ydCHHJHzDi2O/wulNo6b8fG3eg/6YEEiWug6d0rZfHQi5lpy/HyAGCZQbsGW/m77O/u4DcFd6XfuFNDq3oVwLiKRYHIGCNfZOW5ZmXFNkZayvWInnlNzH711TA/nFpq+/x9H9i3+++htMiYhGH1B+pxR8jVulyF1G5Ft2Ov3xo7WuRe0xwpXVUTb2M8kTxI2Opss5hy+EByDpRjWumHrG++X0hNToqV8zvTDSGHu1FgRYVpsDcy3P24VrfaoEkY0hGzueNxWrOuG5o67ywWpnGB5Gq0XCNA5hghQxJp1/iGNH/eFpbzP33uO+yf3ePXqBbUipuffOpbrgt4c58tFFRmsxLicT8gpYVkXPLx5jdOJWpik9FGtDcuyYFmeY55nnM9nTNOE1rh6j4q4bmIZor9Q3hk/iKZujaDv4PbZYvq6qXrDxRQJlMmsqzngYbLljmoNGRlMQ3TNNZqThRallALPhilnTCXTTt6pa6JhNUt+W0i13fbAqu3PIJ55pCiC6em1kZrPoWuTURnofDtNE9Z1ZXqp7wGT9x51ishZLR5UiktX18vY3HrrmEC9QesdZeK6EA0DAW5e9M9Mgy1xqDmnA1bkHyUvGOKCgjwVdtOF2GY3IKkgInMMe2sKFJLOTyn4FhNY4zNLHJ1Y8s11Vz2kalMJf9BVMb87WZ9WUdcFj2/EFEpgCzQ2dZQ1Bdd2zseUCKzgjgY1C1THV6Z69jROAKoo34717u11Lq4HERg5xbVlKiL/5UBs0sVlG1VFvTPVF9xwrLEcTn3cp3iF6V8EuS3WZHWV92bwSl1UQxjWpTjB0U7DbA8AP8jrQw1QGNNE9L5HaqQYtYEAQq4CGvo/TWe+4ytR/Lzr4xiGADGxsfngFdIAPNgdHpP6aUB/HBy8GMv5iGoiT2ljsQdiCwakW3Eb1xqbPQI4WEQtB/Gmheok0O8+KnZm4QBtDr933yd5bBq34OYIFQjkgokZG3Yfvx5VTQEUIl0SqZYAUrqkAZTcWW3QfV8k3vqL9+ktkBIsxu7A2G/Ov/n+nrcfPTf+eG+AkV0Q/NXmVlQfJXWODnaIljR7F1MWTmRYc2ybem+gI3uBb1rY5PBoydFbZ98n44hba4WhyN+iAduq5mhJAJiixElulq1t6rHhWOsi6pYbTlelA8tMHZFO4rn66J7qDqSccZpnvPvRj+J8uej+hk5rp9C5wLfdYMo71pXls0XdngHH6zev8eTJEzrM1jo8KPhs+BmY4e7ubmwgJQM2AVPOWFayKX3rON2dkXJCKaZrrljXDS9fvqTvyd0Fp9MJLRFYcOSb+rBsBDCASj0pHM65xOgdY6fWCrO2A14ZlbXGslPTeLWwORc9HkpGs73MduigwubdXKW4NNwq2YFSCE4Qc8KxQWBqbPAEAAgRuMZiFsBvShkOpjKqM3RdOXPj7K1pMhrQga01YKb/U1LQES6yrELh8UoqBzNDR7EElOjngwFMqY1g3qChy/RvQ/RRgkN+MRhscG8u/5KOOU0gRuhAJmCNdgm6PUxZpkSQ7V36DN7b0NrlQuDBqqIQyQLBcLhK8JniU1NEPjxtF45tjXFDB1hHkyjWEelQWB/VLClnOBK6N7S2d353d8xzYaBg4SCbdcy9RDknG3PypmrwGOSa7X+05ofg2GINhpxqk1EHU9mYEtIxJZiWrmjlsbvaApzLbdt4TzL1W6029tlxCX5zZgl9um1+S9nErcnl7/b6UAMU0nnHLSO2/r7vPEKSDKr3njyAHigi8n2r9Mljfw1Gw8eeFQfgJthHiR7za50bmfvucqt304rAhFQjymf+/ZiKcPiwcd/ZFFX0hCAp2BVAEMj1HfrcwGv9hgHYv0OMkt9uujsbcLhXN2DmFghA17QDnT1tNcCEztNsB046s8AAb704GXisNs5XBxO42zmYACjCNaMKpre6p2v8Vmi2AxMf1xngyOGjMgEATE6QN7Bs0D87+0RCo4DlmuyYO08TDOyp0tUDJXlis75uTM+0TLJ+lI0rYgHYldYS+taxbhtSotW224a10Ydh2zbMpxnTPGOeJ9LWbSPzYA2GhpQLfcBaQjZj19bOhXvboheKtFy6rh556QRMyDjNCZe7E+4uJwQwiefJiK8rGqzKf4dLqaLGVumVAbqJptrw5uEN7s/3eP78PZQzl0h3aUS6k0npjru7i4zFEmwytFYxg52WHx6uWF5ecf/kCeZ5VspoQs5ZjMoVX/7yFWelfkpJTJdZhk279qv3PrQ5KanHSg8Gzgej0LVRmJHiPpb9h57BVUrrPdaFHWB5zAkJQLIliUh3oas7kJAxT0WOoEFFkoWjKRy1BiwK2NOXsflyLhRs26rxLS2IKyVeJmklEhsDbo62NbJtudB1WF5NWaFvB3s6kf0zmGc6vDpnNAWWrgaFjU6ksMF0h5NtShrvRhdutBBhdvTGZog5M03jThmFsYEOjRMTpG9SkJhZacU68URHcUuofVNhAnUk+3ogbcso45OfSefYcnempbT09Vh3nL2M7u6e4nxOqJU94KITsSsdklJCmQvgFZECXVY2OIwKRTiQMkHVVPJgciAQcQQesfJGZeJNVXD8HASQ+xorHZDSrbEXJOMcbO5oFajVUTJTkINdVIBOt2C+LwBKbw4rLC8Pdp+sLuQdZIMRSnAUpaBkyIubLft3eX2oAQo8tnNo9+iinNlYC8rvm4ys4o2x3bnv+wxfhzJdAKEc5aGdCBumSWhxAgBYLtfHm7nLjD3MOKn4zqBhbfwuzqofNAs7u8P33uhc9J4W/3H4+W7stV8v4MiHKw1KFYf7cLil1HhEjtyPv9lBCP9u+08PQCDuZbw/rLH38wxAYftGiB3w3BjBHd6N8fdtqiuAZACx/fb6uDbSrOGOeDhFHFJpseH67XXGug/47vwIDxoLKU37YgY1Y+ug/bpn1HXDujUtDGAJaQfaxo64st1ESgWtOtpaYXD6XRh1Ls181wO5Y902wEnltyZfglrRFLW01rCsi8zFOk4zWbi6dZhneGXfYwDD4pxCzQZYoV9GCv4PMOkh6pYRFtohRahtZ8fcd/V+KVQCWmbH7dEtOjEv3nvBw8MrPHv2FJYMtXZu+HqOLBHvWJYrcko4X85qDqfy4WRAMVwuJ1yvC968fIWr0jqlUDDJvj0XLAtLkx8eHnF/ucNpnmFa/ahD3Ouzoqqkt9AOaMz5QVYfVXBdmx84SNZtYxlu2qPZPNm4z5HaCWbJnNR/bx3o3CxYCRIMo7iu4QxNbVGLnkM2a9OSODMl9LaRwcpJx56wbTG+gbVVaVGo4WNQxcqMnAybGgOmKcOQaa4Wdu3uY0OnBX06jBuhCYGJ3mIXFeA6AIRsXPFm0NadLNsmk76KUyb4nOcTWZXElpPJDK2vTNP2hhrpE1Mj1kbgkdialddh0bspghCHJ+ncPGGaZD+8VbTNFDT6MC0LcAJzGeYB82VCaxMeHh5gVgDf4J7Qo3+bA6mSMRrW842VSewNxd5UXoF1i5LcrvWQTAzXq716IZmJpTBV10RVqMZGpLQc8J5oyOc0Ykw5Iacy2KAmJ2AyX0lrtErfjde+rl0ibBtVn/RDmVCmguaNfb2M1UsOpdl6rCsVMEdOE78fkZH84AjlQw1QmFpIN+xHbHLNgrAiZWljYdAgPRQGc4E5gJEBVPqBQYAWZMMhkTK2x2ZANMPbCYvbnT/y1cEAjK3OWePR4aPpl43Px3v4/U0oPvHrb8FFDN6bmwQEa3P8ERSBAftwCYR+3LT3LOLhcMfDG/bS3cPnIwd81KzE4hz37v0/e/tscPN5xHZ5ADkYTEp4x3AhiTQe2TNGHEGZjt8KUSobc9gQPMxq9zMxNg1OGk+9urqtZiTnAt5rkwkTUwWtO9ZeZehFlmSe2NuDHiNq1taB02nGPJ+xWUV92JCniVw32PumiyaG0bq6SxCZChuTlakMe/Tr9QHZmFVorbLKYRMj1tJe/g5uUK0zZzwu1MBoKpipRsvyy90Fz54+wZSjFf1ApQitVHKoqRy7GntXwFDSQfjn8kdgU7c3r17j3Y9+HL/9xd8cpmoxFCiGdDxeH9B7xf2TJ6NyiM63ezS+rhvePD5iW1c8eXKP0/k8/BjmeZZGpeK6bLguNDybpyKBLsdLzmXocvjsm3w/wNQIMI4J4IZu3/P9CfN0lm9PlIuGD41GlAWQ7CjA8AJBb0jORz94h9iEiBQBmFJlhhzif4ELjn12us05M/efgVPuqI2W+BQ2M01UK8EplFpIKSv67QQFicxDVK9F2wuCbTKcrmDA0u7WmtwBTBKRB6Tn+WXdp5zUH0bGcnPJWKcN3k8SYjqmeZa5XlLVi6Gp/XvvHdtKZ9uUgS08S5zfyGqY0D4odRsAxcE0EA+q/kBAr10GaQwA2U9npUh4yihlRplmnO/usT48ICosg2mDUS/jTtflI1O7L09ptzyQqdlWgaJue703lVBnpEgJ9mDc7WaNZ8C8VwARTOxjsnW1MslsCBn+MmQ8HVPJQGFlVVGlV+0O3wKsx3grI/1apiLgwiAr9jQWkXG855yp1+oV1ZvGuPbdW8HnV319qAEKEXuD2Z6HS+F37pAXSo//13oaeg5u0MSoipBs77XStXEkRdWD9z5CD7e9Etkw2JCYkGS27GZScACG09+ebhoipRHHAfBds9H5T0QembjjFoy8XYIWzqhjsdX373COHTBDkX+QjYwU1MBnBwD2ft7pwOjoUx2bIr44nwCAb6Pn0GhA9uT77weTIVHd3v+BT4wliOr07B1D0GbxPYZI4HukumBq6KhIxUzFXgdhMzHI/komjwND6hMjung2Ts8K36iQhzvKNLHkVOWppWR09W7JIC26bZtocpfAc+ainzrSREEgNScJqzQd7KCc2Z8lyYYbpFUZkdeRr88loXaCIDiwLQtSLrBOt9BIIXFQRYO9hJzUL4UDCt2pb7i7u+Dps2e0tM+inxMYRXmDeUOrbLqXU1cHU47v3S68IisdELqilAzvvfccH3v3EyjTCbU2zJO8OWQoU0pGaw0Pjw9wKN2jfjPZElLnuVsiCHq8PuLli5c4bxuePHmiZ9vVYyZhKuxYu20bHq+PmMqEu8uZfYKUGqAPRYLZhKVfmRLoTF2wDUaMK40pnScATNOELIEygRwBb5Ul/16ZUtB6x9YohjY4UDtaRODTzDlRI21goylizPcB2jV5A1QmI7gNFgApwdqGSGuYsXzZ4MiD1SDrle5O8K1K05OQ80R9ihmqV6QEdnTvHVAqIkTnUSoNExOUZAQ3gjwGPTR+tbFmEcYUnO9nJEin0sjqbFvFqORxwASk4MBUFFApRcdrMyQQnLkrVQf57GhjhsnnpRQBSKA3pp394IOTBAaTGUoi87htrIKp3lSVNmF7uMLAVF3KSSldV2BhI/2WjJFOpOQsk2Ek9BOTkbPK1CM81KYeDKTFDqN1M+3CXsDkHaPwTFWGC5hajvRcMnoHTTk8shpSUhNLJ+DtOQ8zvvAwYiqnSWCuOZ0TQVLnmEFJsET2pfc8gmEzLtOtvpWf+iqvDzVAiQZeZhkuND4ennQRZpCXGtMMwVCk2O20f3btkGN7F85JOmZHUH18cRJqSzbj4BppnT5otyPIOCYOufHvjQgde125igcHO9MjJIhF0Q7lvHqFSx97VOypItP57d9qyFpYXcDL414eN/aIeqyP+zSu/i0A3L7Cz+La9xBCJ/4WQwJAeXoxHv72gfZnCrAiBOmoQzl+jQ3KeVQS0daVnWB1XWNhtzxU7eN56z6y0kfiWCcblz0jtUKL6410dlCkpzyjOoWGFe1mgagV6BvH4LKstLEuBVPO2BwSiTb0tgLgglcbydj7+wn94Y2qYhI8ayPOho4NQ5znwFozvFdQEEhPka1WZLCfh8HYJHDbME8zLBU0lcR2uCod/DZK8w7LbJCWi6H1CsvT8LmI1gesRBHoUCSWQxDrPvrxeI50WsxXA9zxhS/8Jn7Pxz+Jz3/+14GZWgO5qzOKBxmD6/Uq181C2jjzvKhPoRdELrSIf3x8xPJ4xd2TJzidTohOu7kk5HLCPM9Y1xXLcsXzly9REnsBnU7ziOBLyawC6hUJhnVZB3tF8AFpKRwFzOU7HL1tCH0ZPNIbTY3TmB5plexWbx1zpjYoqiPayvfNZVZk33A6nRCC/+jLw2oQiUW7o3lDrQ1losZpU6lu9BHi4+jDa6MUNsRLpUg8SrdZK2TrhrEda5nhnR2oY51xgFUtzVAFjiMog9xtcylA0+8y379J2zL0EgIMKbreurNM3jHWq2CwvIpcVLohVodgegL8jfUBLDFOlcFEbxSfl5IJKFTyG2n4EUwakOeMKRogiHGqW8Xj4yPXzWRoiZqqbIWBmT470vopURuCiAX377ES+g3Ol5QNQFdqMg2A4cAIaI6sczSsbNJ/mZURQkepM5xi97apVxQSYJleKSAwzdID1coS/5INngGrsS4YLFXsTsC8xmkicOnuu2eS++jYnXMacoHW2uH8P9jrQw5QoAZGAG/6zmCEchjY92c3DOfQBhuoDtg331Fpok2sHtDqV7qxQzfhTo8ESGQYehg78i4Yi7IdPhsnufMTktfyTeP7BW/jCsf5AoxIj5qJwczE9xo/E0DoSKPz9/EfR50IhNr5bz+w+u9/udI9+3F00oDK2bioOw5Nb8SIBALR9w4go2dioof1HUGH7eDLQ1cr4IUBOBjJpcPNCLGbek3Ee1PUZPHEknel/ciSoPG59M2BntCWTflkNn3zM/OvTY34uHlqgc0ZqLSPd6G5KSVM0wx3YyO8DgAV80Rvj761sUEAKgtMGbCMXAq29YptWzCXCdu6SWnPlI0ZUA7XXHvnZmYUzNVaKRjULem903zMYnwC7FrsqL1hPs+4e3KHMk+ASjElQxAT5dpYMRipLovu1g/VW1GeKm1CSgYX2Hj95jV+zyc+gcvljLqtKEVzOIaoGA0YsCwLIzqkoR/JKSFN9PXJOeFyuSDngjcPD3j+/Dkulwvu7u4O3Y85B5j6ySyh3jY8PLzBuq64f3KPaZrJFLjBjLT2fDJYJqPTwJRJ3egz071gntJgBygSTUBnhVVJExdvcy3q4fJL4WSIFAE2+mu1o2WO3258FsmorWC/Ft9H7ACMRmp9rUipj/sfuqHo79JqZZrImP5OMsSLlIBlGxU7rW8AgiVxPXfR+lKxhv7FtQmxNUNG9oTUuLn2poZ4WuVYcXZbCdnRQ389UjtkEkzHdaQCBA8c61GyhNOZ5cnu+5xPRgHrVjuQMloW4wlnGx89q0gDkakCUhG3LvY2SoIdBKZ1WZFBxvFheyRrmZNs4xtZl7inlRs7mTQCPgjcb2tHzs7xqpi2H7jsIeCH0lIC96KbFSRx3uaUFTCx+jEqM5O1WGgROrDeAVRHLk7WLGte90JDQH1/yWlsAa03sVkEsblkTLN8gFoFRbNa11W95gfPH39rXf8grw81QMGRBYnr5mrGX48b4/tGqLdVZx199JKxdBCginaMJEdE9uPwb59GAJGo4LGYTBif3SNTPqhyOLdoMHdjG6//jGgkuJXjJnp8HV0CuVEERth1KX742c1X+f6eveHb298ghseihPt4jNgM925FN2MwAE+oiA/4x3IATN/POb78xoNAC9sAH8dnbAJWkeJRGkfVE2nca4zx4iDwMXlswIDUDDhEgN44kVNziIOGVxoVJXUdbRuNtNa0apHOYk0IVHLKWOuGXvfknSXDtlV4x9Ci5Fy4gfV4nhXzRPGnO8BuuxL7mYvWoQFYM4oCaXPNEsVhNZ0LIystDtkyelIayDLOdydcryva1pGNKRBLZH7WVnE5X/DkyRPk+cxFPKupZmfK40YjFBHe0bFSBofAsd+HKaInMMyZkeKLF+/hnWfP8Ftf+AIjdxegUflnPPOIYC92QU6s2Ij06ul0wrZW1NYwzxPM7mHpEY+PD6i14nw+U6uDnYVMKeN8zrDzCdu64XFb8eL1a0yl4O58HqCx6rrKlDHNBd5n1Lrher0S+G0bQlacS6YbZ8oqPwWmVDBNGbVVsUwEB3SW5XKWpNyNjbe3TrBQJlZdbBvn33Gd7xly0x9aiK2FEWTMZQF8sKcSN17pd3LRuK2DFdrTd6pGEiAJTUKshA4DEkGTtwZk09CIuZjBclcxjrXLgDuASjTzE1McY9WpB7FEM7ycyWj11iOJtC9BCg5HxSKAjnaI3g1NXgYpPG7Q92DLuA/MckaOdcWQ0Wq4/PIenmbqdygtIFs3zzNgFU2+MObUYFwuF1hOePnyFda18rzMI6PO+ZhmTCVj9ABWIDmAoNF7ph0XTUAsWgLUmHMsyb0KdPoILh2+M+we/eY4NnoK7SPXK5dQ271LWJt2EfLGdK4wJeNMD4E+A1gKcp1B5SFDwKvl+dT6/ycAxUFraopgNWNH+a6Nx8nnwZtjCq35szY2vtx3kMFc5g5m4H6Ykvu3v72J2+Hn/NNv3q/CWkQlBsyomPa9PPhWVBqVPfvg9OhZczyyh3od47xHZ2IA0KCNyOJYdnwLvrqGs8NEqQ+sMFiZHh8CkMCGifquAD/HexLg4AD69+/d740hbLd3caaBzdjIguys1tvXflOi7codS0XMPGn8+lDxA05Ub50UZyloI8oDWZK1w1tH32zQr24J63UBGjDn07DPhyKYeZqGWVhXoUAdLcdZ/koVf5dR2oli1q7meu6Yc8Y0zaRt1fwtS3MxzzM62rhXpHV3l2SWD0IpHdrje6pc4DoZhkhjNfVyypbQw1zKmR6yNOHJ0wuePHkKSzQIY98PRWOQQDK0Su4DJEfUOaUCqHEbAPol5C5aPuaaoaHCkuHFyxd456PvIJfMzcm6NpjoMbwHA603PD48onf25wlLfO+OMrGCpxlZp1IKzqcZy3XB69evsJYJ9/f3SOV2+cspoVwy0mnCuixYlgXvPV9wmmdcTifMpxMCSEfVwzRl5DLLqG3Dti6kya8uUSUbGppFCkIVOZ3Cxjjv8HlhKXgdYzq0BTFvt21DBAtM7WTAmFYMoa/B4M3Uq8tGAJIPZewG9SACjf5SAtalsW0BCAIBFyuncl55yMANOZ+Y9tFGb4DAa8JWG1LHiJwbGquFwO/11oEUrE1Wtce+FmXfx2ZCQq8N6C5nXlVmJsPAOJpbKAR0vauUP37NhwvroMld6gePO157soTJJpQJbHZXnc9jZtqotYZt3ZCSYZoztnqF9xlAQy6GOU1gks+RUsN8mllt1dmTKucZtVY2eNTGbmC6jk7GVefC54KuyiLZWySw6aQr6OqHvSwWVOrWVTXU/bBm6z4c/jvgQsl0PN5WNQfdurR9YNdxLW6xMwDEPQ6mu5q8Xnqt6LqmVttYh13tFJqqBk0g+oO+PtQApXeHV5Xw+rEgSxPGlLdLFFDGBLHh4oqx2cdvO0jvp0OxNqPtg3gVx40xIrxDlO6GW9t6bfvORkvBlJDsIVL38Z5jRMo3BV2GiIRMugk1ieNnRNG12/Z9gxI83DMicwEZfQ/TM3s6Jwb+2Ntjc4/vDPMdVXNE7fvxezl/oiQ4kLvdnAtpXJK749kdIoyocuE1ht6hY79Nu7g1GIys7yF7dKxaCf+Arms1VeKIvWgNXiGjpj6Eo+aGru6l3juubxbAMinwypLDlB2tV0w243I+oa7sy1J7w7KsMJX5hZ16646SaNe9LpVW876iTBM26U9qq0jJxLAkuFe0xm60rUZ/kkgRdPSeQF2UD+qaD43Ufa2kmUvJsMwy0Ot14b3Q80uWUOYJ0+mEUmbS4gCsN9HVDSnkVdi1J73W4IdAM66EXGbePyQ9O/43N0z6XDDnzee6rStevXqFj777Lr7w+c9jzhnWVKqcbIzbImCxrSse3rAXyuVyh3LivSFzBB2/6rvuUDLb29PA7QWm0wnn84UpuJi7Rk3H6XxGmSa0tWJdrnj1asV0vWI+nTDPJ6TsY/yyeWKB94K5FHapXa7wvldynFPC5h292RBIx3ftugsKcEfvGPiouOCz7ixh1/yaphlpStTHRUfk3jHPbNyY2u5cTeq/wXqSdoTHs8TqEW5mTgo/S4Ddq4TOXd2hITaEvjARBOwRcgQ3DCpMAQI1Dlzj4Iaq9Tfpmi3taexoIEgBNBk0CqwJtoYuLOU9jZbIHt4I2x0sjc57gJQtoUtvlZTm6r0DaaLQXACMrRPIShpYGpyLMWWr9WnbNpScqM86G2afBrHUsbJk2DoSEs7nAp8ZmKzrJov8qBzb0LaFDyHPWmeLHDKk8xHwT2M+G7p0ZbGP+QjuDMM92ILNLxQAj0yCgmfTM2tO1+K1ojUWfkwTBcat9fHfg6W3HfTCWKwQ1hQ5qSP2sOQwpr2d7Qz4ueNO/dVfH3qAAtiQnoQHiBhKTlwctBNj0z0IiOJYgxngX81jkRBXEIPgcAz+h4/JvYcB+3FNA4oTs1NhDUVE0IJue9XMAA+BnuOEYjDCh7nQAENiOsSM7jgGAZj2AeFym2S0zRhl+IeIhoX6n/D8fWcg4v6asbKgs+22WUG0mfe33zukQXG/YzEzRYttRI87+ou/bAc0bmh9U9QOROnlfp5QRZaNRTTuu8FgngYD496RO2nd1DNSFQBpRuOpTnCSVKge3FJ3h1famQOGVKI5VsZWH7C1VaLNCWYF6NsQQSbL0gmw/Le2jjVVgiLnphTVASzzTMNcqfcKgNH4tq3YeoUrIjd9traGhHBwTbDuSNbILOo2ujQOFYxSkyqBomXEWACj3FSgnFStaazvzOFYAKPMEjEXDGYskezqrxJg20HdRvQjgbq/IiX0AnzpS+/hG7/pm/HF9EVsaxUjAlWlyE9Dz7ykrFLTDSktShftbAs76XLudjhOM7vE5rzier1iuS7Ytg2Xyx3peC3cUX2XckGemYLa1hXbVrG8fo1cFlwuZ5zPJ7g2q9ZM6bGMU5kwTSe61LaK3hpWGfV1VQLpQjRHEnZmM9w3cSNs5c9sb/rm1PDA9z4zeipc7xKYRuq7dqU5U4rMDpKaLzMriazLA8NZKu5Oqp/POxq/EVi6sxLDJeikGFptJWo9rEkEcTnSuMSoBNsCMrEatFh/9aySxQZ7uxRyvewyk1N5LZyW9Yhbqjnb2YWYQmzb3XbBFgNm1FeEgNUgXSKMlUKxJlVpYTRfoO8xdOTEsZ+ySZDvgJWxH3Q4prDGdZby1lJhqaDkgto2PD4+AkaWAj368VCIH/2TWqsj2EtK7XYFpEjq+qwRsKepMMbPDi70TFMT+KvooFfKGJYpq6w4AnCxPsY2DehpBAy9udZYBjmhuzRQe3c5XWAAlnXFmzcLavuqQsb3vT7UACUozbEx+/jFSIwcjWECpcfgj2ZIA9JYgBIbPzd3iiVTPOT3a1GO2pXQOIwYcwAORoHZytiQQxvjsYFDFzN6HhwSJvoOtzaQMpz1+qwu6oer5IXzatJOg4xD2c2PIv0CGXOxwVX80g7gBSyJS6Ik434N8VMwMOPI+ufe0XLkns01iMu44zecJLgp7SCOuVtVCCpNwWtNoI+NMUgEsKfo0PeFLpiu7IkdTbvBVEbXNVYssd5nr68DIjVUtwqv+2ZZt4o8lUEre2Nevy0N0RuGEfYEpMLcfAhWu6NVilNzZv4/IqwAz/N0Qu8V0SMEBqzrguqMapLZiLCSH6LtYipx5pjo2EtyAUZCtTbM+UwTrsoF0yI8tAQrBTkXRLv5sKEfhqZagDmPgtnan7xpPoxn66TO+8Z0TjUHEE6tZAhKzni8LvjSb/82Pvmp34v/13//rzz7rLSdjO7CgTUaCbbesK4EKPM8K+0htiVltZhgN9aUE07zjGSGdduwiLXZthWXy2U0+Ys5TfExq12m2rFtK2pteP36FR4f3+B8vuB0muEAloUGYj5lVsUkQ68JyarmaIZ7Q4+hFSXIvYma530qM+XZETm7Oxs7lolamFp3AA4KH3cvKI4DU7sFRtSAW2d6AY6StMk7pGMw1I1AuTf2mmld6RLfNSLw6PkCRLfMrnJjNrTDYEmZxt4GcD2uCxwPzvmnKrsk/iUbGzKmFIqFPWU/7PRd41uANNgoi/SZ0iBwAxrT6N3lv4Jd7FtEBRpcPkA+xhZXkWB1XekTrSWhyejs7E2/viRWiYLbkAq41TgCAGq8ynweVaSpgvYAkE7EVAVnhq70LpxrV1SsAvQameaCum3whVVa7aAJi5T+TQp8AD4bIL9S6Y+6UZ8STyuXCUCnU26rw//LtL8FO8Ju2/vc90jFG4Hr+TSPFOb1cUXrTO190NeHGqBsq7w2lBMbUQVif4/oY9+QzZpskCOIGeUfY9HzQ5motz4WO7gPkWo70gWhjVDOiOZUO1oKAW6HjwlJpbqjJ4e10HpoSnpVrpGL1OiPAFCAhBCiqQTN9xLlSPkcN4t4jZ/rcj18QHQPTa6YXqX6H2JHxRdm8onavRwMQcHL5VQ+AzvLwfcLrqnqSvfW9+/fb2MwJg54G02+wlTRrQBw1FWCO6d+Zy5FlShS5HfAxvcAlpmqoQcOeM91nr0FQjMUqMR3Y+QYqKe1jrU2eJOtOOhX0GpFBVX7pZyR04ytbiMPm1LGWhuyA2G8FYZlrQHmrpRNxWniwlHrBssJ52fPcH1sY2HsrXKxyEAKQaA5ppkR2rLsHjvM9XI8RnRdsipH2oZ1qdhsYSVHB2jtXrBer7hLCXfpyWDskMSiHJg4BBfjDvfKaDKmwUhf2Jh/KRG8OYApTzK0kzZCQCiB/YN+6wu/hf/D7/8Enj19hjdvXqD3pMZ9dlORldQEsTu1OMt14RgsfVh3x/AtuUj7s8GsY5oyylRQpgmP14WMyrLifD7h/v6JUpYBEBiVThM3mFor1pWpt1evXuHNm4zz6YTT+cx5WR3ZN11bpt9Sd3R5S5jV0VhwiIehah3vLIU1MXyhKasdCU3dkx3dmDqBa/PVcWjEVemT44fI2alfscw2C7Wz1DyDuph1Zaotegv1FsDEb4K8rj5dxCEJm6zxRyNIzTmDTOQklqRweFJnXK11FtReRyp8lpZwq8eLihetF/va4WwncZpQRsFmhnlHhipbYrt1V4VaJXvFb6dA3yA3Xd0mG5eKcF1NEuBqTz4uieid+ppsBeOjBxYn0uZc1qjjQQpJAS9v1iYO9+HYmkqSP9QetHkIf1NBykBRz6kQotPB9ndgJ2xPxSVLcIilaTJu8z0lVEqIWRs2NlMCzOTmW0bQmC2hemXXYgG4ulWKmksajTpfv3mDVy9fSqzvkG/+B3p9qAGKpzQ6hsYGGIsjTA/C9w0cIH2eFZEOWq/H5NImDoY4HBxg1ANTRMJBGnbYRKp7d1K+DLt40Magjvdxg5JWQB+J5lHAftze/aajJMxgRf64DrRD7heDasfYeGMCBjvhUXmhUz129IXuBTECF8p6GJwpZXXFxShZhBNw5MxjhSV07z7uLQBVBROdr53iu3ACFa0iC3MfUWRK9CipyteXKXFxNh8UfIlI1x2oPiZt8YyoDuhKq1k7aIg6I4c9R8toqPcG7xV1rUh6bmQQEinQSrtqKwYkw93lglevXqL3NMSO6HxfrXJoBSc2oCZg7kp/kP+jjqrDKrC1DTmxv8fl7owCx1QKtnUdi/95nobYKqek9JHBUsE0QwtuXCk3rHWj1wm7GBdqYZxltYtvcKf3iqHh4fE10jwxLaCy4DCCs2BXUkdVl9ke91HnMnQp+j8K0Un9HpmJNIAqATxTUYYyZdRe8YXf/gLe/djH8Pr1S5ZvwwCvMJvoPaE8+8DhzrGyJMPUCzABc56xVUZ/DUoteD6kBxznRMblWjKWZcWDhLdhlx+AaLcfkLlXpJe2Fct1w+vXj3h8XEcHZQMrrpDUewWG5obTPNMAa6sj1VPDT8UMFdHVVz4dSJimMgSMWRFGkqlerDvd94gZgFyNd41QSgToxQp6W/msyr7RRylsdGUebOdhjo1IPJG1613rnGeYvueGMTaavFG/kmj13mJd5had1TvHAribjwaIo/w3MTBKRtOvBNlEgBVJCXSvtU7+l4yeAiUxtXvVX4plFrEQhss0gwf9zG1UxhCY7Gtz70BvFSmzrDl8aXjoAGwK0DwpUAHLmuH7qLVYS5iqTjBYr4BM+U65AD2LocpYtkd+LGv+iAmZTwW5u4IOH3vTnj634VkzGCABH7fD3qF73ppjWTbAO+qmAgwzpNSQRYC35tg2ro/J92yAmdGiwRK2bcGLdcWyrNRdqdzebtSiX/31oQYo59PM6FH0IEm0gML7oByjTC9TnnEg83QoCea04fv0L07CuKkRFSpnjBj4O6HC+Rzizx20wPM+yXF8ryPnPdo/RglEs/t5D+m6u0qVgzHpVKrnYGNMg2pnKLwdKi2CSpHY08YUjcNnAJMGHsFa+FLs7IqrDE0iqnFtPiZ/XDpTKAcgtO+hg6Hq3pkmYTEgYAlTPvEYKUSwAX3CeE8+BVCaxxJz6OpIimbqjsbFoCtiwIjeqbfYKqPHbXkEYLjMp8Nz4L10kC42o500rcS5YRooRNt6A4XEKm0EmZPQyrDiip/NKRY6AozeK9CrSgW5ySQ4JkU0uRRtsrxPKVFwyA6pLn0FGRF0blqtcrHgImI0CGtASjPKuahagz9nx2GalNVa2fsm0bZ+uV4pnvQuEIxhqR30e9O4qL2NSiUMNs8Gy9cUUcfimaQFSPH8UsXz58/x7rsfxeXuHsv1jd7fkFEQVHMsquGKG40T67bh9evXePfdj2GaphFFmwBQSqwC6o2b6FQyOuZxjuu6orWOeT7jIqDSehtBRAQZ+x825NvWRnO4ZcE8z7h/csdUXEpDDG5pAn1OAYtNIdIB8iwZgIBDidU4mivSpMMMalGgDT/ZWEvM946xXQK83jumXFTpZBpLFK5SfNvgYrWiaZ4NDyEbPkvU+IhdasacTjYAZEBaa7eluokVRZZ2QbcrUGRVX9JcSFpDO3oiw0TxbAAHBVgKRrNS196Uzve0r2kA32G8D91C46cUkmBCBKGmwDMWv6OuLTZ7mJrhCWBQmFy55+QsN1gfrNPYG5QSgUBqCLhNgNSN9Tuxbsb6Fl2N4YD3hNrYzZlzJlhqAu2SM7atom4sN1Y9Hq0ExFRZ2sv8W+u83xK0Wg99EderutF9Onot9aFv2tk1zqWCaZoUSHNOt85KsPN8RraMdVtRG3sEZREG5/MJH/T1oQYoybroKh/UfezGbgfKcTAE+t/BuADhhDl0HzgCm8NnkKCVH0FCDme/TlVabLoBKWJhPmKStxXMMX4PoeD43Q5mItLfldMGDlwuHKSKj2AkcoZJYCs0Kq1HPjmOy83PxrDeRWX86h1kJJTBKDC9FCzEjr7j6ilm3WHfAJGed6YrImgj5EjIBIseXxsT9vAkjNFjgknspxRF1wLYG6olhAeUbyxxy1NGKYalNtK7VlT66NQZ6X5dr49sXtb39FkqrM4wbKhORXoyH5UNcEML8WJn3xl3w2k6S0DZRsUDF6UOimUy4B3zTP1Hqw7vSZ1c6Z+BTjGoe8dZ5xUt3M33iqWIhpKYim6Ngr+hPeH39w6sy6YFHVjXDVPOWGuFe8fH3n0Xz549YYmsUllta2J7+nCDjKHKlF4FusoNuxxDjawMBF6mQTHzs1m28NHE0X1n9kopWJeKly9f4WMf/z34b//9FXN8FQCqWDv1iVG6gRtmQ13I3NTOTslhdZ8sIRVpYhLTDwZtbOiYjN2Pp6lg2yq2bcX1+gbbuuFyOeN0OsPRBsBnt2syffM8sZx4YinqulY8PDzg8fERp9MJz955Qht9dFSVCeeUaeHfOzUoUa3y+CgPH80IdbmN+0JmlaBy3DClg00ah1YbWt8OpfkCFAKBOc1cvxo9WCKyrlsEMFxTu6ovSikUr8pozVQ+Oyq4UlcpMfFKbGDuVSyPU9uVEra6jfHjDrI6qahbModysmmsFxSyBqAlm8C1PaHWhtQLIEuE7gt2QWcWU0n8VBt7wtCrKsJYG+cRMVWK4AlKq8e9FaNkmr9M+qhNgEW6nQcxLdC9ywYj2271H/aPHhobgq2RMhfojc7LZCOj4/Wk59/FKMW5M5AthdKD4iE/tgGiY77Gc6uax7017m5pXyOQfJwHNDayHJUBwMsOVLlGcx4kgcySE6b5LGDOo/aS2Qi1N7nlfrDXhxqgwLoW+0DEGi1GYWBschKPY1D8CBGtwyV4Mux78fHlMTBTRIIxrLixwXahFxDRTVQ/HM+Vg/Nw5DERjoBoF4zubIq7IzpNRqoETkbAFRlb6vtX2WHz13tDL5/V52K0D5eFdToCKbE0g1MxUa5o6luhunjf76cNEBWLk7rCIhJHPAdzRt57NYjv1SNia8KHKpxHzWxXPQMooGNjABO4odcOWieQpvXu2JaNTJDAlvckMagBoCGU14atBy1KJiPys7G5MoXGyL/MM70onN1XI89PYyRDzlwMeycdTwGkxLO1YioFc5lIqcvsaT7N8N5QsgCjk/FJaV9st+pAo0iVzdU6UmfOmRF+H+XUwmcEXdlQ1zZy780dW++kg7cNvTvmuzvM84SPfPQd3D0561mFgdiBGtSCV2sdbEKAkhwDPvCsJUQn14jpuvx4MMbkAYzDVX2iUkVUfPFLX8Q3vvtNuL97gsfrA38XKYzeB1XdPZRhGExmnOe6rpimia0BJCxtjeO4lJMEzmSqWDExowiorOuGbW14/foNtrXifDchPGTcIRCraFKMRM4ZU+lY1pWNCa9XrOuKu8sFd5cLcgkwZhJ8J+SJMXnKCRc7a4Pn+4ocPqtSVTH/e+uqCmyqqIj2AkXPehc0egQSiEBFDr9wpCEi3xcwIz0jhqmhp9C36HNG1i5E39TO6LkEOFGlYNc8j8Z0hqYAJdbjaOialPbM6JnaraHFa4fAUdVIGKl6iXM7qxuT0l4c7i4htbPbeJRipxDnR5B6WJV13i7gbzJMcZDJysGKwGFZWkZVUcU9Hmkk7Oyim6oCk2FMAQcbjSodDQgg9T0NMwzllLpvYiWZEsu8pxbpvQ5LTb14gKTmiVxDCeJSayNo6o16olwKTI0k3TuKRPtkWgAvHBtNPaOyAigeYx3jfj6X0Y8qZzUNnaKTNg0e+Vw+eIrng78TwI/8yI/gD/7BP4inT5/iE5/4BP7sn/2z+JVf+ZWb97g7Pve5z+Ezn/kMLpcLvu3bvg2/9Eu/dPOeZVnwfd/3ffj4xz+O+/t7/Jk/82fwa7/2a1/LqQAgc9/g/NvptleJ5dG9oTrbcUcZXpUPSe1VHWKb8veKQJW7dP0BAnAogWQ0jwomhc6PNijKnMNQa6evCW54DLMONtAi6rQEuUKqyVUG5GauplPQpANRbdbfCQJnDZaawAmPb5mtuqHjujW2Fk8NZg30bOd/W0TypkZ0STlJJ93Lko1Nf/dxD1iBExs374mlzuMm3avUUCZ2rGV3S/X1yI5cgFyAaQKmApTsSKkjF/aAyMVQJraVn1LCKU845xknmzB7QakZUysordCQqfMUkyckK/BmWJeG9aoN0QxrXeUrQtU/y+MEZNYVy+MVcMM8nxi1asNIWSxC63Kz5IJcygmW9tJXd0cuaXSuNXOs28LoI2WKouNP54Lae8U0ZzXWc5zOBedzwelc2DDPD9bkG/u2cAHkAtX67uyZrLCtucrX9xQeN7G2VfRKYHJ9eMSyXFEbK2ru7i/4+O/5GJ4+uRcz1wmgokQYuImmIioLwDycekFtj6tMum5tgNTeO+eocyGkkLgOtgVQ6nDoDzKu1wVf/PKX8enPfJal2b3L74Wgwp0CRUsOS45UNMZALRIArMp/12gUJ30FgZ5jPrFzbs4J2YBs3Egv5zMuF/6ZpoxlYQPCdV3FnKTxOYqATT/LmM8T7u5orX8+M5J88/CAL733Hp6/eIXrspFxc6j1QBf7B8zlhGli5+Wc1DQxcV0JwSngqG1FbRvWbaUpoFO70FsF0Ph+KIAy6jia7hdF7RiRbKTJ+J3RRJJBRhN931ROCk9AJ1CuVfbKivQDyO6VJNSsteaotQ+TsoAmjr3KqAkQDfWaJVVtJUx5QjF2xzZXx3chHMusaIF1CZkngcUyKv2qPINKYTNIBniHVIzY0/Bq6j3mKedVVFjF3MW4hkPUFKmgFJpErcmJzyEAxK41hCqc1DsIeQRqtN1XX6SUMKWEkpjEtqhOAv2bcuYzyylhnieczxPmE9lCxs2udFKs01o/vGMqGfNMd2MGdZzvpSS66uZgTtjCIScC02VZcL0+ImfD/d2Ey4V/6KfTULJzTc8d85xwvmTc3Rdc7ibcP5lxuUwfeI//mgDKz/zMz+B7vud78O/+3b/DT//0T6PWiu/4ju/Amzdvxnv+1t/6W/jbf/tv4+/+3b+Lf//v/z0+9alP4U/+yT+JV69ejfd8//d/P/7ZP/tn+Mf/+B/jZ3/2Z/H69Wv86T/9p28FoR/gVWPgN244Ub7JPhV0AQ1vD6ZiXLlk5XzdURtz1s0rN3S5p5i5gEgb/zbRLJHKCbYk5cTmXBljsRwbeWqD0XBrpIm9ofXKjqp1I5XaN7S6qoEY//QWgivfr0OUcOQwYiMa9tc4iNn2GAGKUfd/W/xe0WCwKo7hGnhU0NyUqwFgSiuDJnPgDTkMJx+TiO6YUX9vnYTsnCf+KRNKLphywikXnErBlCnknHzC1CdMbcJUCUxSzcgtM/JT5NQkcs6WUCKd4cA8n8bm55DeZDw3kTYbPU+YjnClphpgBUCB+YS6UfTKHHvfF1mnpiVqslOKqgbXghMOoYxks6hblhRTLDxNCalwoUUCU1zZgMSFdV0bvBl6S1iXRYxKQXd2TN3Whu1akY2+LAMkl6gIaah1G2wYPUMyTvOMZ0/u8PGPvYOPvfsRXC4nOFpsD7wGgQ92ASblvDf8OqT1DNhqGx1cXVE1X5wH13XFddGfdUWrnOutEaxQU5SwrPQmSeoT89tf+ALKNOGdj3wEtXW0XlH7NtJz0TE57n/MRyiq3Db6TFyXBdu6qUqCxnW8psTxNza2aIzXkI3i7MvlhPN5Arzj4fVrMirbNgKQJJFjAJec2V/odJpxd3c3gAoAPD4+4vnz5/jye8/x+LiCPX5UYaT1aWijchrjt3UGVuErM5UJk0qi6TRL+/1UoODHyXK0queRJTLd2ZIdVu5CUpYNm3QVaYAI1bOoDJn6GGNZ3dijh+6lO5iFUlo6Ab2xj0vvhi7befr3VBoaquVD9KvyRjDElEhhCwAPIBMaDLHAGWIzstadxGqlAR4zwowxujw3V4O92m5WxthHWqu07u8C4bB9KY1ZIvbW3chsaD9gxNJlUcH1LlqgsAlglgBd+0iSm6+ZKg2dgl8HktNhJo6TU8ZUpsHYdbCrckdDKYbTqeB0mlAKWYws8Eyxu2HK9GJJOWE+zbi7u+A0TyiZAWFJGPM9JwaK53PB+Tzhcik4nwrmkjHlhJIN58sJd3cnXO5mnE4ZUzkIjXuDoaEkuuDOU8JpTijlQFn9Lq+vKcXzL//lv7z590/8xE/gE5/4BH7+538ef/SP/lG4O/7O3/k7+Bt/42/gz//5Pw8A+Pt//+/jk5/8JH7qp34K3/3d340XL17g7/29v4d/+A//If7En/gTAIB/9I/+ET772c/iX//rf40/9af+1Ac+H4LUA4I3YGdAHDgohgNUxMSIqBfoSMYSQEu3eC0+46Kux2Z32KzNooV62rdzD8muxrOY7+Yu65BA8aoU2mEAgpoNVfRRiHuYIeM8+OpDLX64O3EVN9fjb322A3uPEYsF8fDGEdH44ThK2hxSU/s57eWlcR08igOydU6WBl19uByCjG4wj94UfH69duTOCpnwWEA8v870FHt5yf0SwGmeAQDLtg7q24oqOBIAJNrYU2EHiyhfIi+A+dMm8WwYE+0gLPrtsEII5lj6hhD7clFzwIL+9tH+/XpdUKYyUlEAF5+g0ZP6a2wr9UUlEcQt6yOsFJj0LnF/t7ogVSBPaYDmVrnoR6v6OI+UEi7nM/JUcH9/RikZZWJV2ejfo1yyqUQWZljXZVRpANJggKCrVYEZVSn0zbVhk62KiHc3UaOhmVlBOkgEKToO91dWsWy14jd+/Tfw6U//Xrx48YKdoM3giUDISuFzbw2llPH57kBX17nWGPW5O87n82AMAGBdybCUwrE/TRPqVrFuKwBqRSxnFPnVPF6vQwh7Pp9xuVzG/Yp5cjPukyHnGdNUUKZEH5vasFXa6E9lwv2TO5xOEzKMOiQQaIaLqwOYZgoLvffRrdg73T9dAc00nSm8ltOwJilaZ7fkMs+o2zaATgWYhtQzbQcAnhNnn2oNkXIaVUFKkNIsrFXU2tRPyQcLAXRgw25eBglOO3/XXR0BK5CMpfMGwFR6D4DVb4lnEGLNAUCwg+RoBcC+MBjAeWStBKJSKShg6o9WBNTOuEdLABN9EmO8A6hMacFlZwGEjXzIEpkVsl3AjKyyXbKJOSWUFKmPAopcu5aSfW1P4WDdgeqV0EyBJAOrjhTXop5Y7k3OrUpRmoEf4thlV3S5aSdTGpMgNmfDNMkZ/DQjF+p6LFh67UVTKRSXa41kU1SaVKZMNjzr/V2SA8DRWtVclp7Fk1i74z711V//H2lQXrx4AQB49913AQC/+qu/is9//vP4ju/4jvGe0+mEP/bH/hh+7ud+Dt/93d+Nn//5n8e2bTfv+cxnPoNv+ZZvwc/93M99TQAlKQdoZizXQkcwjVwktDCOPCfFjciKBDwAAY+3D+x94z1u+u/vrRNgBRQJWn//rT/8IBw5U+YmSwU5qVBg3+8tko7jZ/FQfVxbl/fA8EkISnGIVHFzbbfXsovnklOEGfgt9CM3H7RQsAQo2y/ubSHsXs63L9IjFaCz4zNr/JexFM/AyV5qgXmmuHfQsNR/pJRZieTBjDGtw5vi474lS1xAc8ZSF4pHs8F7k29GIwhwR86TJmRCb5xMLAvOXPyl83DpArr8LQgiuCDvHXsbmRjXRi2VPQAaW2Uq5FtvOJcZTB1isGQcsIZuNBFbFzrT9lYZ+Sltwo2LlRjJGpZ1wbosyD1az5vKRXmP+IhYnZFTwt39He6e3CMcK2OR772xuiQzwlyWZaQy9ufK8eCVwtlWHduyEtgo7QSPiJybUs6JPjWlKO/NW5ISF7TeXOjZaawGCZGVrnnv+Xv4zO/9DJ49e4ZXL76IIi1XMKGcIkwnJJVFHxoSMTLufbAefZpwOp3GPYogIJc8RLClFIJWzfluhpOdYJZwvS5Ytw1v3jygbhXn8x1O84yDFnmM2wBCuWSkfBo+KttWxR6tePFiwzRNZGpOZFqaDLCoH0goeRrpgpQ3DRVWUnRtTly7CkpxVFXk5FKQR9WUA4ksROsUejZpGwzQZpOxLRtT4x7arKZKMr6i71eUI1OuZWLFQidj0mxEl236k0BMLVzdjDvt+7NCNUsJFs+kGNdrMb4lT2RWzJBNVSopjeDRUIChB4t1EwpYgV6d7Q5mztluBisZUaQSYLx3MhjRm2scSkAkNIAJYfe/s468JlZKWWLHXxiDaYOz2zP2YNdwDHhN2rNY4xuq74xvik7MDqDv9hpmCU12CjlxXwkn2Nzo3VQFqthLaMJ8KgoSOf9ymrFthtUABOOSwh2ZsoVkwKlMKGXCsqzUnmUgmcPBdamM5pBMXY4qwZzRSyII++D45H8coLg7fuAHfgB/5I/8EXzLt3wLAODzn/88AOCTn/zkzXs/+clP4r/9t/823jPPMz760Y++7z3x+bdfixp3xevly5cAROmKThoEiYVN/Q4C8vsifVfZKhCD2N73ntjQj8Bg/93ObuzHVEk53iawduZFoirZLMeACb+W2GgRJcrj8Mcj7mXE0SJ878RsNxMTCKByZD+OPxdrcXPtqjTRL+k0+ZV8Xm7v0/FeAtiFZ4P21DlzjWS5nm6WNQc8g9KVpIhH4MR4na13WZ/rHteDd40Ek2G5PpWM8Jkpc0F2QykAG+24WIcKdGDKM1Jig78a/gkwFAszNUqsKUbsg7mgp0ceFHtvnQLITi1UpB7iWSelDsqUkRfD6TQLpLFkONpFtt6AbqO6olWKS1MiK2hy2Rw9laQZuC4rsFSK1U4zxZKiw4PWL1PCdLrgyZN79htBgIhD2kobwi0TsPdi4ebDXDYErMIZ0nIGWkUIpgMdRTTrrs3IE1pK8DJRdDelQdnHhurSCJVsaK3ixYvn+PjHP4HXL55jVIqBlVRkTqYBNmi9Tq2XAxIWcpzGdeScMc+zSjmNQHOY6xmyTYeyd3b2NRjmaWJEvEzYtg3b1tDbA+q24XKetJEe7QR4/+ifQhFuiApb60Mfw2NteJwW3F3OuDtfmBoRqwFv7C6bMYS6yAnnuwuK+rw4pIlLE8XRlU6knD8Ol6cQg5p9Y3eTVwp23VywgzGHCSIPc9wA9ChlJTO5Nyzd2Wg+H82lSgYkNlWXn5L1KGPYdRIxr7vpezuQwVQwBJK3tgGNLQmOnk52OEeDAT3zcjvbQ7SuTs2Q6WKK4IZj1gVMUJWucgFFB9cV3xkbDnEfbRe8Non8OaaYsuG1ImPMpwhOOwgQKS52lQMLCEkMb0mViwZUsPlp8gBoYV4o0NX3KsykwLBZR1GxAaukTG7FLN3eeuX6k9iDJ017RWgaGppdj0bfpITeE+CsFoOOH4C894RcDdVB2wHvMC9sRdA/uLLkfxigfO/3fi/+03/6T/jZn/3Z9/3u7c1+L0H9nV9f7T0/8iM/gr/5N//m+z/TN/XkEwAwlgxGuWvcXIsNPsI6BLu2i7ZicOvI+7XofwPFjt8ac4Xct338IjbrXfi3p4Oi9Tcnxg6qbsRWfgRG+6H3+6TzOp6rJuduOX979uP+HOjcoV05vtsMw7vFgoYHXCzFQZHyFrMUCof4W+p3ULlOHtRAjlTKcjekRsFd6gmpaTIj7ZulAGh3x7bJIt4VOdcNOayuewcakEDdQu11CC6L9AgpszGfd1dZX0fOBR/56LtoFXj+/DkMGV618BVS6AFIuEgrzxz3rzUKNxtp9eQJtRFIW5oOFHRVmS3PhW3gITAKrFsbwuo2hIdcGNu2MfpNsknvlRGKh2ssrzUZSwxra+iPC1IqEvg5aq+YSsb5fIfL/T3KPA2tQ9jjJ7nwxlbBVA+/8/HxYb/PCNFzRm0b50E+eCVY5NrLgXVJo3plmmaELTvB9XE8SsNR2Dm6bhu9a9aOL3/xi/imb/xm3N89wbI8aqx2MWsdOVOAHo3uAMA7S3R9yIR8AIJ5nvVs8zBtg4t9cYlwO+9rVKhQP8Zxc7mbUdaEdKWObL02tLbgdD4TVKt8f6RSYxyBjFIpZ7hz3CzLQh+Luo1g7HV5g6dP7nF3d4+c2e/HWkM1wzQVTHOBoyEXHy7J9HbpI23YRhpQ1LzK0Itl9EzBo7sEtSWr9MXZWqAn+vEoGp+micJmj4og9afqncaOcDSvqlKR7kQOv2F10NTVOx9F1mIeHC5L+i6TxEgBdwU7CT3x3nWPBH5WN28uK+H8Gm0uLNZapefMyFD0lfMuG0XIrWIv81VFZ04AMlM8kD6IFWP7WplTgbAAyNOQnTVww4aZUiv7uimicIj0u0P+VGBhQ2vsGWQRgBgshLXh69IarfUTKysYBEEu3ft86lFZpJOMprSW0hC2mwBLE9CgC6zWAqf8IYU7GwRYvElfFwrNqAKN7yQga6qEND17Ez1kN5mIr/76HwIo3/d934d/8S/+Bf7tv/23+Lqv+7rx80996lMAyJJ8+tOfHj//whe+MFiVT33qU1jXFe+9994Ni/KFL3wBf/gP/+Gv+H1/7a/9NfzAD/zA+PfLly/x2c9+liLYlHbiILE9d7ID4Bilx7cswgAQ/fZm3bIq8d+mTUI3W8lGt92munun5sAVC3s4q4otgUVjTQwhFbQwJz8Ak/czMxyAIQDD4T1dp+oII7lIAembAr+M1+itoTcnDda9t42Pv5kOCWCzAygcoIouFUctDdM5IAhxQBaK/F03ZGSknpiS6HEZZKBEDMiWxtGrY1k3LFsDTNqMhUZmW2u4JEZ7rXXMEwlYsoqcaFnnuyx1n/S6J5Yyttrw3vOXuF7XscAhFnvWgTJv6wnNwgOEv/fqqmTQvVelihkoTFUZMbraHHhlarFLDOhkPNa1jt49KdHwbb1SzLpiibVJG2cfDEp4jqRUyMYY79e1boBvKNNE8JoycimYzieUmZU+A6inNsY7nyUfFAEJ8+rhqMrSay74rW6ieCekTmAEV9QrAeoYz5DWSjuJWVIaqaF46F+kleky6csJwITeG7at4eHhDV69eoWv+72fxS//5/87JmdlmJmj5Qbf+F1hae89Irosep/mU/Ddz6XWimlSFFnb3sG1VkzzPFINLAHPQKGIt3tFtoL5xLLjvCZqWdYN21Yxn0643F3GJnyYfQNYAvRymabozbWO+Uv33w1ffv4Cr9484HK+4HyhXoiNBysdcmWbnmXrn3xCSx1uKyp20TDHJgCLsvnQnBW4dW26BlgW2EsUwaoaJkr9k6XhdzJsG5LBk1yFQX8SZFNasY3CgRhLKRk73yZtzAN8R+Qfeh4MxtDExLnWB26eXF96JeviHokcoKQydBkEwXKphQ+NFQ3TMs9zziMtFOO2tqYWEPRTQa2DoXLweIaMkljdEtWhlB3s8ylKyWM9RXdY0Z6hcRDFCcmZou+NgTYAZE+7Dtm4ZrmJpQXZwQwBq8O+EujHcoIZdS9ciQkXsyl4NqaiUgpJgSo0IxAjXMOUd22hQ+k9saxd5c+hUYFXpqKajDxzAWrF6Kb8O9nxf4XX11TF4+743u/9XvzTf/pP8W/+zb/BN3zDN9z8/hu+4RvwqU99Cj/90z89frauK37mZ35mgI8/8Af+AKZpunnPb/7mb+IXf/EXf0eAcjqd8OzZs5s/42VUNiTGzwOcGDoMjQuw7fSULgSRg2AsEBa8tv9tx5/toGLfqF3IFjr2vjkf84uhuxDxBUiUFaVojPD475tz1FUQlOTxPWEpP/60LmGY1PYunVffGRP3EO0eyp8RdHAS4o3P2sg9cyF3Kfehlt38rpgQcRwb1z6WLpgn9GawRrYk18Ty4Fow9Qm5sxonNrUm1F17x1Y7ttECnFE+c+WksEueKDxzE0Ch18fWOrbu2FpjdUBjE62IkADDWlXa2YEvv/cCbx4esW4rgiMKQay7D5YmZ4KsVlmN0DYem/0sJDpsVf1yNlYBuEtQJzBgzKlTwMuf162hbk0MkaM3w3rdKDxMeVQ6bJVVP6WQ1aq9Y2sNW20DwNWmXhxuil4d3RPm0xmX+yfD/K2N8cbqpaBlA4jEmImqunAKDhzjjdboTdUXXem3VqVJUCn2KAVFRPeNBlEazdHkzfXfjggeCPCaenaUKaN7w2/85q/j2TvPcP/kCbbaJEpkJRnHKMdMiPLCr6Ho+aUU4xO4Pj7ynBvvR2sbuw9vm0AYFPlKt1AKq/VKQSlkhHI2nM4TzpcTLpcTykTB7nK94vWrV1iuUXVlI1XTD2tGVBKWknG5nGQIN2GeZ8wzHYrrVvHq1Wu89957eHh44OaY6aa7bQ3bUrEubXTfnhINvXKZcb67x3SayQolG+tbbyZ6nqW82SK9uAtOcwGvM7OJY5QmszMxCxEaKtJkgMzyzLRR1+jpQy+F1riRNiP7kk3CTO+7fkvaIUb3/MOBYXzGEiJ3BU3R7K61hrquKh8nCGjbvmbEmuwytKxbHd3ImdHVek3PCDFBAtwQoxfCcR0rDPAiNgz20UBWpqSi9amodJudlLMCVaipaDCxTHU1jIJAZ6AdvavgxpRnlx5JrRZMlVkupspZiw9zGbupxYaBmjmDgKOlAfQGk5JNf5hGLCUjG8+75DTAbqS3qV/Z7wd67BOqpqUp1cggJEusNPS9x9UHeX1NDMr3fM/34Kd+6qfwz//5P8fTp0+HZuSdd95Ru3LD93//9+OHf/iH8Y3f+I34xm/8RvzwD/8w7u7u8Bf/4l8c7/2u7/ou/OAP/iA+9rGP4d1338UP/dAP4Vu/9VtHVc8HPvmSRxdNYGdGyDiE2RFTCrtV/b7QBtq8EXSC0Tzxu9A7cGAvfDjHdictmcPs7aAA30HKES1G+gJ4v1LFb/4V1tJ75Lm/5Sh2JdW5l9bGefI6uj4PIWiT+6DpvxNc+dHRfRPyYsEOPjrIWMYrUh77uQZrlAbflFuCdVMO3/ZSu6575QImraF51WQFamcDKkdoiQ7MUmMpHZLU67oho/meRwTaIC82tM6ce5T3LeuGbXVMaUKtHQ+PVzpShn9ICFbTweG0N0QfHUbYpKpLomtniOOY2lDeGEoJZR/lxuzQWpCngtYrb2rf1f/b2rChYV1WgpfW9F0NaZpQ5owoU6etO1XySOG6Sd8GN1K1l8sdSiq43F0QQrqI5jgCOQZTybDOTsDrej0sRntKMKWE7Fn+QbsWJ/oiTaUcPEzUJA92M1aqAMc0nbXgsz9L1T0MQXHYBHSd7zTRkv/Vyxf49d/4NXz9/+7r8Z//8y8j7Lt7d260Su8YknyEsvRJUd4N0uRGHcK6btxIDZimPMBCyiazPd7npHJkuOF0Og0dS90qcp7pGSFh4ZpXeq+sm9iOFXd3F1mCd401jFJMagY41k4nAlf6jhS0FiBwQ60dr1894M3rR5WHshFb1xhZvY/KjthQp1TQPMMnprbW627Q1TpQkxFoyVxrXR/hvdEZdyrSdB3i6JyQpwxTl91cZuSJLRKYUi8csxI9R0DQHWgKkMgyTNqJKaYcFSEjRbFrGViph1FV0iVspiGY7Wu3OkJzU9yAzvJxzrtdcyKiBO6G2nsUgY7NNzZXpmDYJoIg2ke/rU3soZkrQDlwyiLs02Cd+GP2xZHQXSLlfrOW81736OsjoMJCAr1D68Q8T4DS2dSEqSwa1FuGE3fId9hiZTdrtMxgnlGsNJp5HmARUHNFbgDjGsZaAMjBHWJETUGI9kaYnsVO8NNJmZmIHaT/7q+vCaD8+I//OADg277t225+/hM/8RP4y3/5LwMA/upf/at4fHzEX/krfwXvvfce/tAf+kP4V//qX+Hp06fj/T/6oz+KUgq+8zu/E4+Pj/jjf/yP4yd/8icPZYgf7NU7ads9aueLEyMoZo2YEd1jLKIuvn8vS94TFTscGd+mH+wDKprdBZAw7B+8pXbHmY33H2n15nvKxESVud7HyL/voEJIfrxfQMk86EcxN5x1UNr1cEXB3RknhO+N/0auvdueHUMbC824O2yiMXhH62Bu0TJy479zT1E7RfErWCbsTqwYTfy22kYZrkN+D3FO4zl3uZpmVtOMTZqphD1dkblAhhg5npcTRLWl4nqt8GooJxuGYikrStf3mLHcLxraMZI3mVXdjgMGX1zY5pJRitMpF6yOOk0zRnpRWLljYzM+S2NMtsYFFEEv6+A5JeW/MfwL1nVlWiexLfso5UNCN8dpPuHy5AmePn1KhgTA9XpVGs8H2Oqy7Q8tyvV6JZDpu0dEHuWM3HQi+mndR6TbWkcuBe4VdV1Jlad9LhtCU0AtU/j7RJ+cqEoabpyJ+q7JyBTAHblQ8/Lrv/7r+D998pP4yEc+ipfP35PnCY0GSzmpr5HYjyPNbxwfXYDFu2PdVrQrn0PKwDzPaG3C6TyNVA8MAjssF465HW60rS1kLJ2l7UWl0st1YXS/rHjdO+b5JNO3aTAnu3h+X5NYXaSeRjWTmatld/+sBHqPj4+4XC643J1ZHeUsibfoNE6IPNi/03xBvzQ8Xh9wvV7RHjcsWwU2qFGkYVkWGOgflPKEbh1WXJVekOaC+qK4j3E/tlZBDU+Ir9NIS7D5qkTfvaHLFp3OquwlU3LmOAZgmHQMVYXBKaQfayIgIxat41BDS9kBgCmS5pVpWE/8XgTDCLg1AXRDuM3CuHYFq4He0cMKwMUyJLIHrbK7NnJCa4cV+RBIxjUctV6msBEj+HXEYjsqv7gRcCNvLtZKiprqtM+XgzrnE5laWOhJdsFwF6VeW8PWGyY1XERSAKm0U4hcoTTstrIlQYJhdAj0XetoYsFiHUzaVyoQgi8Gt0ZnX296TmawrwF2fE0A5StvurcvM8PnPvc5fO5zn/sd33M+n/FjP/Zj+LEf+7Gv5eu/wnelHalF3o//wi3EiCoTIDxIopPo8HywOMZhI9ffQ1B6SN/wOzEi/7EhHl43ixB8iMEC0OwtvfbrASCBp6A+V9bxnhRfDC66fE8eULUIeIXvyH5vYjH0UebHcjCQQUEbiJmone9Llnc2SGmgIKEGaHIM06LUyJaUnoefgUs1D2cKKQmo1MqeKW47IAmaOc479ALmCWXihs8UCjezrXXV+ps0fofIxeOZJNS1Y7lSA5IsY1s30snJYDma8PmoBuJFJjU4i3QgSDU7PQzMbTTA8sQoHMZOyA7gdJrH5tZ7x5vHN6R+pRlovaufkCGEMS3M+QCV5KqUtDesK515XakN+rlRU5AsoYuuni8XnM4nCgBbZ/8T7CA6AfBEz4gEGyzZPv4c67rQ+E7RNdMgO+3N5yNRbmuKttWPh77egwWM3iFZC2bbKhl1OJKa6ZlBZd/RoEwbWqOwueSELSVsreLLX34PH//4J/D8vRdwEVHV2R14nme5qArwYK/EYH+TtIvbERucTNLUyZd9Tcoo92aUTuDOqp/Esstk6IkbxLZVwGykzJI+W7eq9N0jtq3icjkrAnalQRyRYh0sW9opdaCgFDIGLE2my2/vjseHKx4fF8zzhCdP7uStU1RNo3neuUhRK55wPt0hp4KUrjhJtFqlaQkfmTIRoBHsu5o7AgWNJoo5D1k/fTECt3MhTGL0HPscHAJWYx8v7u2hBaEYvtUKV2k8lDLpUUHofvPfTem62tXLCJxDJp8UuETjznQsAOSJaxSFvW3MCbI8zmobEACaA9HCpIe4N1ItzkWteRvi0BGo2s44jXETgMG55lsPH5coj2BKke8NF9o9XU/Gjak1uKFtDjdW8BBIM0D1BDQRLkneJ2R3K5DI9HtyiVoxPFXI3qiCTWL21htTRaq0I/MRbyeVk3RNHvtrAiYkVIljw++qKZ1HC38Cow/6+lD34rlJnwRcv9mUI6+9C4gcNqgvHwwI9BBiEw92w48H1+dxOD4A7KKucSojXfT+apf9dH38bM/tZQ2EPZI8Cho5O/c0kak6xkRT7Dl/fgMv+W2gFYDE4LYDjkD0pg0LFuXAgHkg6KR91IEWZYlJmyyFpOF+WHpGU9TUncZZzV3aD7Zp7a6cMarKan0seknmRtTDAFNmdPnk/h4vX7zENM1qXxB9O2TWlTOymyp2WD63mDQqVTRtULmo7EORTJt7AjVC3Hy4cR/DIcing4u6d/qKTCf2yqFMRdGO7Z1zI1Jat4Wgb87juRnI3sATem1odUNQLSyZ5Tjozelou1E826Hy3oUMT8osf81Twd3dhRS9O43HwConYVilaASYnTqV8BSptWI+sxR2EnDbthVQaXE2VckI0E8lY+uOBlXmpDQsy4fux0FBu747CUDEd+ZcBAAqvYQEZgOAd+/DrG7dOr74pS/hm/7334T7J0/x+tUrtAYByz4iurFpaDaY7ifLQ8HSSmd03FUFQR+bgut1xfkElImbdddxa2WK0WCYphnrxq7FDFAMtbpSiomdoHNGzRW2bljXDetCbdFpnnG+nNgscICiPcUxxr/6rFC4WjBN4bjK49WNfkDXa0OtK1M/93e4nE4DGG61EXzkSWORTNLlfEbRfb8u1xHhB7vTW8d1ubJKTc8xJcN5PiG3NHruANIS6f633lS0Zxrj+iMQmgWTXYARBqW9VCUj4b+7M3hp+wyMJpkcZ6YARc0HLaOo3PVYTt68Y1OLiyRzRLIM+7LOe94AVJBQqLCeMEXHZ4EwWNKWEOumQLQ7vFHkTcZFZndlFymzQWEbbHcAPNfYjK0sejBFNSgUeI1/C1OwxJlVkSEIDhZGFpGAXJ0NTEcjmVJaaVxDkCApMgTN1T+Je0GJlgGd+slAVZbpamuxh4FKyW4O5EhpqRpQa4ZlejdV++CO8R9ugGL7ABiMAvYSzI5dWyDOYQz+cEbl79IYq0S+b7NFB7DzFc/jVvgTrE62fHsc7RABJHp3TAd2JKjwGyW4zvGokRnHAcjDRB5wDPIdubsGIMa9EVIHTZoCrLFfx27Lj7gPAG3le6bAKY65EvKXKfxeDZOVwYBs4Sni6sEBpg2W1VGbQBkASBuxbZueixT9WcxR+IhI87FtG1a9t3klBWrMo448toMRAZj/XtcNDor9kipakqp/xgbalaaICE7naylSU8EGaMRwtUVKQJkSYNFdN6OlpvLmJhaAnylphin1GJwWQSY1LoaME04HoSrXhVbJDmSI6Un0rog+MHM5Yc4THOwiuq4buhnOM2nznNJgY9wwBMXjOtsyxvDd3R3HkYzbeofYDB8i27ouYsPAYDUZSqJBHYH+DjpiBEeE22vTuc1jjLdOBsYc8MoxAyQ1QCQQzmaYy4S6LXj96hVevH6Fz3zmM/iVX/5lyMJ2APlt28jQpDxA/TxPrHzJ4XArl2FgpLyimWNvHQ+Pj7jgREHuyhRa9PGJMugJ8yi39M6eSrV2MUGmLsdFYl0jqKgN176gthXn8xnTNO8aqhYeJTLVy8FUUUfB9W4aeqo1rcPpuFXHY7vi8XrFaZpxf3+P8/mElCCt0oKUMrsul4Iip+XWGso8YzZqK9Z1pYFcpxi89l27QTBRmZqTjsLM4EUg2gx92aRDANJUUMSIkZzVvVKAlMtEoKOtuoP3Nk8lllw4RXNDkxQl1BYl4Y1BWtN8Z78cimEDPEQzyW1t7HOWbKQkKFCtEuGPSmuB1y52tQzw2/flEV47K5iSDX2IqbVDQ4Mnmv2llBjpdRYOuAmAg6JR/YNMnsdQ3r2m4u+keU+yYt/3kgIYh4/UagQfbWtq37Az494dW6eJnhu1PCOVBgKcbHazRzYx5NxnY3+IddyU9XdqDcuEakcDy2AFd6H2B319yAGKoqP01gW7g3QY2ShPjqQZ5h76DjoJBrDJos88ZgZutRvdmQOMcTGAR4TB42Mh3OID1afH54YplhMYmSdECdgYcqKR2UW4B/dHwIE2BgU8jHf2+xF7gsf/xAZ8iCxdLqjsiEtQQK+fAGIEHwMiyZ9kxoRw7nTV9hckRkywQStSaV9HhNC7BmZnYosWAUU3uAOV/Wm8A/Npoj+BAJW5Yy5sGLZuFVjrSJWdphlbv8JHhM1cc936AHtLbejNBigJNfl0vjAv2+pwWL2/3OERD1iWLuFl0iYd/VHYdt5MugRNvJyN4KCQyTGlQkJM3eRCe76c0Vqk+qLrq+hb72T05N7YOsWiW62sTMFOz3prSDKNSznh7nRiVYMVTDOZhvP5Mkzkmqy9ORyot2hw9aoi8KA/CaO00OGwnJnnvq5XpXh8r5AwQ60LenecpknMuuaO0kusWCM7lXOW9Xsatvbh4eApokeg1455nuAAthqbB51PT6eCZVvxW5//PH7/7/v9uHtyj+ubNyN9VGsDG8cZyiTQn+RzkRhl5gSc5gy3aSygTU37aquYpxnTPDMl2N/gfDoPgWQwDMkmzOczlmVB3SpSmnRNTr+Qtu3VHjYjhMPrdcNaN2wrUOsbTNOCy+VCx+DewDjUEL4y708r816yPBlohaLRujEV6tVxrSuW64ppLrhcLuoDFF2oWWUTwvF4VhHUxXHdCa7qSifSWN/WRgEwfXBUGt7CyhzcAA1oWwV6QytqDpQ6ZnYGRUkZZZowzezqXRsQJfS0bqCglLYOjqimZClx29dJMyCnkSrJxvRM27axzrpprDuZiKwgLZqAsv8R9TPwjOgFm8Sujf5wAvYx/3PKBG/uShlKL9hjT7Ix78dcF1iKBp8AVIVDUMPgLyqP9j2NTGpCCGLh4gYtGBPtgcfAmiiGej+IuRKrRVYlhP0U7kavuZyjWoqFCL13+Kr7E0wIwp09w5Qqw+F8smUk6ZRq3QO7CPKiQuqDvD7UAMURVF88mNhgdcuUb7TuCB1TCvMxAEzPmI416nVGnXbnSLgRcY5hc0i79BrsSdoHokpib6uDIpbU4EzxX7solock+xCgRF8zjjBoFBMrFNc83h+DPya1BFjdEY2/fHxPXIqiikC4augVbojFCFDYUI6J0aGwHzHQrkL3lsViQJNa1HieSEFbIYW8LTQ6UwlOBmlFbx1eaWV9kWjv8fFRm3JGyYyKk8AbcaIzxZC4yS4bN/dSCoryofT3YI61KL1TQZ1H6FDinuSc0GR/P08TNwQ1uYvbbAZYpvYnFWOberEOYXrXahslrmadJYamxdcpxKXIUb0rdD/DVyKZvCKQsNWmFFxWdVGwUw52jk6j0V4XE9V7sDVhgU+9BDfv0E1IqNqYghvulKGDUclurQ0lFXQ0VmA0tmcPV1SKEXkOrYf1OYamgqyA2BmllrIYhCgH5vv3QGJPXyZMZcK6Vrx6/RKvXr3EN/xP/xN+6Rd/AeF/dAwcRhWJEvlRUdRdehqZSiVThFs4f5Z14bqS2FzRex/aDIyNfGIkum5w72o2mWAZOOWE5dpk+98FYvP4LluAdeXiv64benfM84zT6YSUJMZGMCdRdWUDPAaQDNDEFJCrMSSvLbrOrtuGZV1wOV9wOs1K2bEqaAR4xjEQFZC5sNlhzgnzw4SHx0d5P3G+8/j7PEGnhkErIMwSGhK2ZUOrdHO25Fjain5OuD9dkOfCq8rs0OttVdqx09fG5QCMCLx8uC3ESgXIA0aBmCOaekqFZ64ANVIyzveZ/EkAuO/3F+aqTiHzmrrz2gyDYQltioNjxnWwHXKQtQldHgOJYK77CBaHSWCJVPxx58K47hEg9+Nare9RoFDUfLAHSAp2OnFdg1JskL6OLDCZn+SAWQQLPgB9SWCxhMv6X+tFlHcH4AhfpnFiJkgZ3japw1uF+3YY04eL+F1eH2qAAsRmwUntop944zBKRpMiXJNJkFnU5DBiCZQL19AXANgptvhvpzjS9jxqAAPmGHe2gmPR4XbwZtGmxEnQBiMTwILlukGpH1+ksM0A5DiWNBtummSHh25ALOqu82xKtQS+MeLfgap18FE2aoLe2TOKJxTLXNB1rZaYmnGnYVp0sHU7UJKWWQ0T59k5mXMuQMroVzIYdVPTPVIzMBiFr61jujCSvl4f1fCtq5PrmTbjwoYl2bhebmkDhWKSM2JKZVRI6cEimhaaGV69ek33UkVkEb2XkqkXqNSdTPOEle1aRyRmBvoQgIxAk3Avooak3DLBCo+XbPdwqYfeOblkeIt7ktS5dELKmdU4h8olWpJTl5JyoTdCZm4/GTfZ67oOkBFeHAEaCMrohptSsARNCwmFmSkZpsIme6Vk1OUBSSmYXhtSIRMRt7Wr5FXL4GDSMBa43cxtRN7YmwnSi0NaLA38rs7iychYRUXPt3zLt+DJ02d48+YlSp4okHXHlGNpC5DD+8h7VqkPSADU0JDvJFW+VbrNXi4XzBKMrsuKoOsdwMPDA+7u7nSfo2KpqaopBKIKGvpur8/2HAlmV6YqO8uI2StoxeVywTTNgKL7UsLEjGd4rABig8Nds8BjVKxLxbataJ3i6Ov1iuvjI0opePbsGe7u7uDeZTJIqn7bKnLmM5/ziR2mPeM8nXA5n/Hw+IB1u2LdWJrbmzZuUGsxlh9nKocl0GTokqq31m2Bp4S78xmOim1LEid3pRQxxMCW2gCZIawFxEz0aAyxC1MtUc+zVXXPTQlbozIqgWOstYO27ejUOirpyNTFd8HSYDhLtuHTZE79HiuwtVjYLgFgRZp+Fj4rvgNLOBQ0OHpqI8XHLJJp7eb6QpBCNeAe3LrmLI/ZbF/H9EB575z7T7QyiTFCR+59vbYcJqLSY1WBI+f6EVolA5mnHsIVd4RTmIVYVnswGvcQGuAl0NV5X+M/6OtDDVBqa7CNQCBsyFkyqAZVQ5iVEGZCQ0Q7Eji0nR/6inH0SPbYvvjq+Xd5awSHONItIBOWhEKhb7ipMDLAIRMvfs3Ni5s4KVGdBjeTHEh/X6wCdY/CY+OWECjEsWtR0EzGcgJJifnI4wCzyBd2Cl6TJ0w9oyBjAvO9CgJQ016hESVpOSUJYZsiMojlYSO3Zbliq8CyyamTrCGZEwv7a5m2iR2AqFU2ndITc5Ynt8qKhnmesLWKdV2RS0Hrpq6hii5T2Grvos3wU2DxQce6rFjXZTAPrfcx6akjoDeGW6P/Q897BU6juNYy1ThudYhGIxdspjRWbNVJLEkn89DrPhCWZQHcMMmboAOo7piTYTqdYMZNtnUfAsPTnJHnmaDKHWtdcTqpA6433henCyiZIQGpRhaB7/Xx83VdDmwHyzOTyqmZOiK7M59mRBodxmZmAO3ja21imjhX9i7XeWy8QXcbotqGbESaMtrSdttyjbve2ZMGW8Wr16/whS9+EZ/9+q/HL//yL6K1hrkwMu+twRqZHllZ8DsOlDjngPo8bRta5fdNpQwa+jRxs35cHlE3uvPmqWBW1+NhdOcRvdL+IDQTHRXTdMK6rmTDckKymUxFTli3DVvrIxpu7Q2maZWvFOdMiJ1js47Sbz7b3a8HYCUZBbYJdZtQ+yYjwY51XfGlL30JL168xNOnT6Q3iuaFG9aVa87d3YW+FYXj95IMp/OMJgfkulVc14rrcmUPoaoKpjLRjbcRfNrJsK4ru5FPe0l9b07vkLrJTJBpkjLNKPM0jBupYYuQ47hGknHcto09sKaCnMlYlWnCXNimAesGO/rrDIt2QwhMHWNLYGB0mKMBtponoNfBOIdotWdXnydH6mIJsYOB4Qcjqb3xgKxy8xjPDKA7gil8O/0h3Q640YfYOMDJ8c/bqcB9y9rBHHcInkPy8DJx9J4E1oiUonO0e5LtbBrXNeQH2oPQJGkwh+V4H4aej+OxKPDe/as+yOtDDVBac5Si2hOjkOzopRKRG1F0UBAjUTJe1kdNjR62CRhwYQ1hFpxaFICUuplFbzUAN9XAh8ESi3IcQg6wEfoHKDCa53hyeJjMAWImdsDTPVqOx2NWXhL7gI3lOKnmLFBtCmQtap+MESMM84wMl8FPQvaC7BmT87yyJ1SAVtfoaNVG1Ud4htSmslOn5iduh7vO0BxVlOSmxmIZCc1s0LmOht6VUlCE2JTHZBM4eh5ExUFsMK1TgZ+lp+GETTLvYlkj2THe+yphcZjBoSsKSYlMiTtyYQfZ7g1VjcMiRzvPO9uUsLssGgBkiuNCjJptn7Q56NiIfiS8POoAyG5kTKcZuTmu6hxKwWuWj8cGwDGVgvPlgvv7e7x8/QaPj49IKeEj736EaQhdZ6DhkqfBhBydTLdtHWOWDpRNBlwY9zGqI8gSbOi1Ic/qd6No2SwqTxJa38bqn46TA3TrDKV/XEfzPiI7wJGnDBcysRDzNUfxjKWtqL7it3/rt/CN3/zNePbOO3j54jlKT8iJa0MWyA/x9KhUcR8GbiFkTpbgeRcZdmf6ZskLJnU/3raVINiZ8mmN2hNW4RT0bYNl9jspKp9et4WbdofWKT6KeZ7QMwWhaZE4Vc84xsX5fBKbws2YjNeeigydgPueDuLfqkLLCakC22bSnzDlVmvF8+fP8fDwiPv7e5xOJ5xOF/QeFUIrQqQZPZk4RlmGfDqdcHbDuqy4XinMZfNN6Zrchxtp7/TBQDdV7dA0LicC/A6CdepS6IfielbhO7SnXU2gAdjkrmzG+ddjI8w07CPb1ZF6JeubMqYpcwM1AFpHewt0susnGtpgy0IcHRVEhhDh7+aMx3JuAOhRpeKHSrb4jgA3nYy9Bft03Eh0rVGJymWLqaIQS3OONAWgYo/HUvZ+wDKOGfcRYBUnJAXALm0YwEOJq6OLd6SyGOxHqszJksd+CAU22utSIsuWnMD0/2tOsv+/9soqAwMw2IsoVo1KGUADAhGnaVPxt5iNASS6OIY9H5jkDRIVLONTfvyk2IBDyuYIhWLwuGg0td/ZhyRHjsbjAQknCphc1+FRZtyNM1UsCj/CRSXKgj1pErhJsX0ASx4AhV4eWYyJwVA8IVH+qhbp9BOIFuwAUHvGslbab7vj/u5ugDuTmKoLHA0L+7YCaljlSq9EZN1F+1EjxEWnOB1Oe+0j0ojywrptooST0L7LA4OmS2wjT/YAnQLUJoHZUlf1nyBr1LTpWgq2TCZkKaoO6CxpcEw5yrEhsKeHK7o3FqSknh4lmpQpnx108yiZ9P1Y/Cus9dWhNbOn0JQKat1oc50TgBOBg2j71hqW5Tq6fj9Z71Fnskuw6Cpb2OlZmorHZVH6iJttgMAQrwIR2Tf0rvvcolrCsa4bklc6qF6voD9IppwjZxi2wxxg7MbUDhm1js4Fd1DXvA+R888pI6nPCp1eG1Iq2Lyi5ITa2KPn9es3+Mynvw6vXr6WoV8azyzrehHPwciQtEpH3Fp9RHhe4/0EKstK47Kzn3GaZ6XkqBNalgX5chlOtKvs1o+6DgCYyqw0XR6eKk3i0mkqsMbS1ZxY5bMMgafjzZuG06lJRLuXJJvdrDoC60wVTFMZaU96qqixY2VFVxwDILuxrityznjy5AmePLnHPJ9GQ0V+T0YqE9cGAb5lXdF7Q5kynpQnuL9/gt4bHh4emVoS+5SzSfdCp93aKxrYgbhtDWkqyHKtjuolbooKzhzyYto3zm67LokMSKwbiaBQI4lr0e7o7N3ROkv/85RlLdDHOmRQKXDiPHWoDYgDamCsY+69t1LnRmxOvUw3R8pyfHEKSV3BS1eJUDgoD2M4bRrJsjoVC1THpnDoIReqNMjI0n3Xuo2Sb0SRQjQlZToKAlLHKqFYdm5gTAdZk1jXPGO3oNhZyOEGG3FH2oMwUyDaoiRK5EG0UVCH3w/0+lADlIhGArySruNi6O4HEHB8yA5YBv38BG5ik4i/4xPCGJIhkr73eKiKmN0HDe3RtMqP38cTdFGV8RvX5jcowfE/ACyNwRBLu3cw/ROfd9DbPT6CnS3hvxV19EjjZISUNWg6Q8YEU3VNQgFLiTOgsjoyDNpH5YfAe1C747pWvFkqSs6Yaod8BNVDRmyEetXQvrvDrahcsI1Ikfv77jvAvGWHOzUsdWt6xuoo5F0+B8xt0rRM4lyPu6FoIcnMSaBjqas2awI8CmY7XFU5vTUao2kx6k6GMwRryRKpy/FKCFdeICYgQRWc1vNkR8LAis9o66ty4qraaXsUnBKrpba6wNIEQ8L5dMLVyVDNSk/kXHD/9Anm04x1XTFNEx4fr4qIz0Pv4J3+MzkzwukSyk1l2sejFrvYCOM5jyHcD+6vrY/utjnZiPoNKon2Pa8fjGED04NwH9U9+2KNkRLh+utIVki3d+oj2rUOl9XaGkqZUNuK6/URv/X538A3f9M34+nTZ3jz+jlby4MCXDRTQzRWarXGtEw5nbCsK1BppjYJ3FZF5blk5Eawcn18BNxxPp1RSsHDmwd4o8BVBIcqwXZmb+hpIpod1Uum1NwKk01+yRknB5ZpQV5pld9k3b4sV7RWMc8nnM/UAW3bhrBY2JkUzqVpKgD8BrBE1dQ0TVjX9QaoRJfqFy+e49Wrl7i/v8f9/ROcz7Oidq4ZppL2aL64LAtcaQ16wfi4f+4y2Gs037mcT0g5C8SxW/gwAksxzjK8Q4Z3hzRBd3gG/LhOBgsMC7J4aJko0oaAoDQnoJ6srhXdJ5xywqSGhizzTzKSCyZCLOuWkJPDm8NbpGZckhCmSKJDepxwiG/hDHAt+a3vSrDfRja8WBnrawR4oV+ENSDLdNIAHCpNvXLzT8HCytsk5k/zBvesYEeVUKYUzsgUKHjufL5xHiPejYB33H2M8dZVSZkkFo6CEqaiuP6O3a7xunsyWGGw/EFfH2qA0sEoPW700GI4wJ6NIQJLh58z93jUGNAiObr5HvCkG6L8Krb8IDqSJknKoZ0AGiqi+ubmpXxdEqhxiwobbQyISPrAnAT7E/8bnNo+VPbrTtHQnFdsumbmAPkZs8z+C70zheT0FskelvTUqNCCOoAJJ0xVvwwqttmgr3XHum0ypoLq6vvIfTZFdeGvQT1CREYOb2RAqprgTWUakXvOGegEdB2N7d9drc6rSuQaYMlVbTFg/KC7TaZEvXICRhtxbD5ErxE+1NZZ3CkAMcTVUIRSDFNJw2xs6EgAOMSGjfsM9Lp3PQ6UG8+T6ZGogtjHVNCeAXBalWBWkf/j42OEL0OXcHpKFoUW9VDPlxnvvPMMORdqZrR4UsOQ8KiIOUTNvfH+m1gLRvcaSwezJXKKYSVOMDdjYuRpxpLvrWJbeTyKbXWfTNUDqhTqjfT4JADbTfnwsboDln1sxtpJsCzs+RI3P0s/8fLFczx/8QKf+bqvw6/80nNsySmMFsM4JV6va5zUbZNrKn8erQXKIXVYcsb5fGaDw1rxeGXPJpbtEtysjwEeZoLAviFP7IW0afOPaDWYsZQg0fF0cy0pGX1LjGxKbdRFsSVEw8PDA7Ztw+VyVrqq7vfW97Jw+glphRA7Gem1qCbaNjW3rBEk1DG3X716jTdvHvDs2TMxKhmtEcRR/0OgdTqdaBQnYBtsBACKh+HotaLJJM7MUFJHA8ddq3UIUGurAxjCGIbknHYmXGxAVqWJJ6CnqhRt9HnheazbCg9xsRmiNWXXmuq9o60bbDowXfu2McAJ5znZnJFOHhHrcR2WdYU3VophfzXvu2ldfBdsfEc/pK+CTUUEhMH5E2Nr8QiwmySE4ZqH3gfAGCCoQ8Jy3tOSfDh7x/o+1mcHoGrYaP1i7kg9wVQlGOmhAH+Woa0ugB0/bzI8td6RncZ1wbg4N+DBiH2Q14caoBxR4A1XotTB2NMjmvZj4sb2zcwCnMSxRI2lAYfVMdjH5g/pFagVYYQ46LmgJHVutEffabjYkHbVtn56oPNuII7d/DWOE9PBnOVisMPnHNKSCEjh/03ev8TalmVXoWjr4zPnWnufE5EZmTft/IbT3PuM9RJ4ElhCCPEXFySE+AhTtUTRWEI2FUBIUECWqFBwgRIyAoSghAAhgaBgEKKWhYsBCSGETX4iMh2RcT5777XmHGP0/gqt9zHXMX4QySuFvOzIOHHOPnuvNeeYY/TeevvEvzPEKO2jSod/KYhqUM+K8OvWXGHCHAt20lCg9YLdCZlqA6MLCaS5QEAXSABTbjbGQBgFTTdaxCxV/dA0INHkajhEz84szRGt2cH/CfdfkuYGRGgQFteo906TNjMsOQMJqEv1eyM3ngR86GfpF/NmN+1iIKVvdHZcf3YXhzw3utFQ7phhEkOjAIlDl4dH4bE/N3cnm40oZhOg5DMoBoZ2KhDGQK0Laq3zoOqdSp77e5Jd931zwhrfd8gIx+g3I5w0Dy9xEy2ReCbSJLIyD4i+Hr13bvLOPRKhIVO2MhESERaDMQePrmvO7wPlHCxORAwoUSCwmBxz5u/fP1f00RA24KPzsEwQtG3H+++9h6/95t+Mbz57joeHl8hpQXEYf9t2SDGs6wpzsii8YCglAuV4eCylMifJ+RwdgDg3ZOx8xp+d77AuK/Z9Q98bTIH1vJKzstHRdUpAS0ECZl4SPVoykAy1rETwXFUhoA9QcqVKThwLBSdkjI7Hx0fUWh1NwVxncd+4TG/5B2Hol3z0E6Ptikijbg3zGrA7Hnj16hUeHx9xOq24u7vjtbOB1nfnbTiC7A1iFGDz+4SCJ9HcD4Z5sJrRBTm4Dwme/eSNFAsT5SGdvCAR7t/Fk5k11q0naJsRkQgLAevR8B1FsjiHrTV6r4RPzVTYIJDQcPDGVG0OG3PP+dV97Nyvzde/oxlmA92c45SSo4ljIl6xH8zn34slc1Iw9+NjT1fxPT+yd8zPmmge5VB1cZTOv6vDybxq3H/5sdiY3YQ0csvnmWd+3umIvLM3z6Q4qmwCBMGbPOYVsTaDbsEvMzeF+3ivT3SBwks6HC0JCNAPr3kb4As+CEKYFeHty8wmYTLFaRhzvXnYACJ2w7gWDLv1OjkuvPyqnzFnhOYSvV8Nskj8Lbv5Dv7eNN4PIVEoRT6Hn4bQK8N1+goniJqDaQbIcL4JOA9ESKf932F+JgJEqJaqYu/teHjgRb4YmqoXCpmzaeGGIiVPc6QEOjwynZYbZUR3z1m6YQKIgYaMYRNBMPjhbtzs+AnCOC2SmPlAsnrnyGV2PcYMCr9BM6xteNcsAizrgpLLG11g8XFTl3bjHXBwi7hZYb7HlBI7Ind05KapECdRErKlDXzA5By/qEP+HYJM50yE9frBcTF1ImphR5cyk2ilVFyfnqBDcXc+YXfZclkXHzmMo5AYwws4my66ZiRgLsvinzlkqzqLR7hvSFzrMYYXfuqcE2HibmvcoG+6dovO1NdxzokFWEqURYP3Z13I1eidAaC9d5RcsK4ntCAtW+F6UiKSpVQAgt4GXr58ge9970N89as/hP/wi/8PnU69u0+J6GAQTcMLJoovjgd4OJsaFpdNhxNmfBaOT4CHpyc8u7vH+XzGZd+gY6BtO3LJWJc6C1yiczsLJdNZkGRfE7TOL7DkVurw8ag7FEsQdn0tR/EQUvFa61TLHQVRncTwuP6qLEBTCuJ49jEUfASQPNl5zAMunhEWRU+4uzvj7bffxrqcKedt2xxlRWESxSgQ8veBxSMpQqFXXbYdqcopZSwlY8hh/qfG8MGmA4aONAakJNSUIWlFSZmNlOS5PwRrMIkACRhKfxkRYfaQCCDkLYVCKIjEXpIce66PzxSgGVtSIvVqWIrMvTBGsubPJ99Mwki+ESdAneAffJXbcwo4Er5jH48/O1rZ4ySwwb2dnD0eJmFXpWOgSCjlAuswb8SEBw+id+fZKKbHOQB4CCGcg2MeOhj8k9v3fwhHhH0mr74Th+FrIaYbR/NFder3wZH9ZBcobwJtvL1FvJObiISTicZRuQswLYNtPlQy/5kX8CYzQPItUXWeSgDsRsZ6PKC3BYo5mhMYjyEcI/17T03yTYFz87CH3j6DG63cjBNgbgWuOfARTE8XSXT8k4QBtyEWgXiBFHUPEAesuTX0cGWMuhU1ESWiJQoTSugYhEefEdpbiIdDBeQbHzqUKWluWAJC7SmTec+9mAOq0Qe6G4CllKBhUf6rIPHo3gHvJAyYZk/+M2IEp44ClVy81iN/qKY0VR6t6bR8ju5BzVAk1BF5lpBRoFANwg2O7zsOBhoxBQrEexrs+sORVH3cGAjLnPm7cialw5eD3X5CLhWlciS260BJGblW5JSx1HRIaMEiSLUh3GHXM0MEE1hxk9TYgbTGwpv24wLgum0omYTOIODmlFEDbjeSk3ftMzBPhLECRDtsPhtREOVMeS/dejHvo2lHcLjmvVdDrQWjD5Qs6J0HTU6dzqww9N5guuO9b/0yfvNv+v/gnXc+gxcfvUSVIP2S/Lg5TyfnA9UjOuYH6sRWybcwJ9ymMofH8+89Pj3g+fO3cFpXbNuGtu3oLeHu7g5XV/OICNq+YxvM36m1oDe2p6mkWbwDmO8JYCgmYCi+bnImkhI+QCKJP7M11ErX4FoXJ4sr7A2fiVt1GDkwc9yYwtGXTsJjdLfF75OnEsX4w8MjHh4ecD7f4e2330Ktq3PLBsz6VLzEc1mXCrFC1aF25LISnbB0rDEvhpL4vjCGX5MBdelz08b3m0i6ba1hPZ0gmpzk3OdngdyMpceRx1OSYakVEBL2u3Y/LwxiMbYcc40KqC6MqJIg28bzESPLo5DALIAEBU03qKPCkqLwPc6SW0WbDoXKmGcA90z35bpBf/iHPD+G+vsJ4zVH9ifCDe7tccZlc4feebC9OXlQuLHcLJBu9rjgV87P6u/JfzY3XUzD1OSIfUzOqJgDkRsBTAU3l+J/+fpEFyg8stKBAhhw5DXYVNXAAkHh1x6/D4SaBcA8rA9I8uaHedqs/8cxZhGZN5T/4xUmjupxQt1vfM2x8AJaBXCzcHwx+dwy9F1BoooxCU2DEsRNyPj7hNqIoLB6Ds17yMTCTrGHlb7IfBiHh/vxB/Lnj/haECZMIlgqf05JcAWDW92P4QS5MDHLKJWbY8qCvdFrQBKQM5AyvADC3ExVFUMERcimB5yo6ReRrPjjXtDkTgEVFgleQL4p303o1o+i1uh/s+TCubx7gBydVHCF2JmERFBwO0cVPviBkKkeChz/b6JvecKdkzDsfZ+qTYlejDAQTY8pFU2lzs0iDu6IfM8lU35cMmSMY8YPm0VN8jU/VFFSmp1nEoE5crLvO8wG83KCE6DMI+F1dmddw4TryTFiEdFagW0NeeH7jVFR8CDM3CxLMtR4uJ3PJ4xu2GyHiPt9IAp8oPcdqhwtQQjBmycfWvDIDJOn8dGLF/jil6joieDHGF+13tDREFwAKo2c6SRuvJdIlMaNXUFKCSgF+7bNgriNgcfLE87nM9ZlwXVQQfXyxctDTWaMAFCPWSiFhFg6IgNLrbhu2xtIa5CRyaMqqKWQn5UzkhCWJ1pCrlDk+9yd7/xAPJ6TGO0AuJEZx7jRZlHBcV6a6+uWM6NvHGrA5XLB9XrF+XzC8+dvYVnOMKPJnFmbqqFaK5AUSRZcn7ivINDenFnAeEO3tx2K4RYK5Py0vc3UZhOBJS86RsO1sYBIEGgbCGm+v0tIIv8jSP3dDNaHR1foROCO0FibezmvoftnSYyWj9gBmMvTk3nTizdeHE3x/1TAkD74XmVv7vEy91zzexOjOXMU3AULmMeYPxheFNwgOdxXOB4PhMNoyjUbY3hDBDv2MY7hjgZaprXivO232yFiBBGEdkGMlPj9Tfh8x/djkrH/HBFI9jH2x3x9ogsUVSdBTle9QyUjQilxzmkaaN2SUAO2D9g6yGY2Dwkg3XQi4vAoDiEb30PA70pVENGSMTfBuBlcd1GhJ7zBN7lZD7eaefiNlah4Y6xjrFQDKRHJkCFz4UUhpNAjsfkNiM9HC4NdYxyc8XCRtMsTUiwqe7txWASAPu3PdTTCtcIMkYCjszCAT5vNDJw+dkdLOKwB/FKIoxpO9GNkd1Ty0R2oj6Ccc0KHluP933Q2kbtjQhmxdlr0S8rzwAriFiHr3b+/TFVW9wybcGC93VjGGLw2xu4/pXjw/WDIHndut0gaSaht99wUwVTZJPHDwHwvGwPoAwsEec3Op3CPGTDwkDbhrmqpdUL/sUn1tiMJx1VeVUw3VXIjhAR7o8phDOauxKimFJffggdTfI4WoxyheV3JhowyN//AmcZUO8mxyQnHlKJwZYgXOskt/YWhkLGGZtjnVCM1P3i9IHd/i23vGE3x/vvv40f+r/8Xnj27x8sXH7rs1tOASwUSP18utAAfY2BvfrCWAkkJ+xYKlKOD5NpMzEESmdfxerliXaiaaq3j8vjkktaBkgtyKTitJ7Te8PjwgLv7eyzriuvlSqSolEOWmzJgHQOKvTWs63mOm2stgJywtz55R2FqaGZ4fHzkzzqtLsk+TPBSytOcj4cgZrEoEshKnuaGtdpEUN6UJpsXpJQUXy5XnE6nGUx4PEdBuk1YFqp8YkSYU6ZiyhFbjllYPKIIkjHjx66+p8b+6kQUdXI+mwQn9DvJN0SOlNf6fuvE9z4GEugSq8YmK1BCFrxCErVQtRf2+PMaq6vwxPlCNyq1aJK4N3F0NCkF4VSbmE9keowM4xV7yxGmB4TbqgbSDwAu8Jh+JTdNbSB7mN4sCgj9a4YNFxIc50A0KOyivHsxJ8f6M2cefBlv92gOXakqYEjrdPF2rxSXQauvNSJm/t92vO+P8/pEFyht26GDnU5U/WluKr5oXH52gBu3N/OoZn/NIgHzLx2/tqhG4ZXhUUVH900EI1jNMv9e/Lxfq+qefzfhONgUPt9JdIEN2N7N00RdGtaFahf/kLQwPtAbAEcxg+N6GNil9zH8ABeE50s4oAIuWVPDEL0p6pS8BUnYEMUhQ+5gCTUldg8GRMDXdFUN2NDHH1IcGXALd26ocdmOQ35ZKWdsrd3cm+MB1SgUU4YZuSwJhBQvlyt9G+6fAWAHENK47pwBknSBnIrPx49Y+fAtySUUAzbNyUJZEAdJ5NjEREpNZ4bPGB3XvR2bkptK5Zwx1HkPN2swSLfBvRBJqGVxF1D6JyDzHofza4wBUsrY94b7+xV9+Jgs0UMmkKWSmRw7Rkf4K6SUsC4LQtWj2t2ULDv/ZMfd3dlJyANSmbUShX6S4mgLDyU1QUrsmJt2dlmJXirWY8ziRGUnp9r00vBAQQDwUVNrYdVdCGFn+mm01vHq1Ss8PD7iB7/4BXzvxQeQoUhpINfi647rjwaDntNUeL+Dy8DvmVlUl4x929FHQ3AOSi5UoLgaatuuOK0nPHt2j9evH3B9ekLaC8ri+T1e3LQ+pjInlzzHnZfLxdcWHXjTICmThz1HyESkspuUsbDbth3D35eaQtuO3hvWlesjwh6JtiREOnKa3JYxn3Heu6MAj6Rsjj7bHEFtG9VMy8L7dLlccLk8odZl2uj3PshJ6h2U15vb3xfADoNAjnh5T1P2tGiEmWHCw+sHXK+73xt/b56QrKokM5urRIbOEZ2ZoZYUYO+BVMC5Nd7cpAQgmcviHa0QcHSdzFEnQxvMjVpSnpbwnOgoD3EHUFMQ7aOr8rFPyQnWFQNH4TZPF68Wxc+F7OtLbpR+cXiICxXgqJJ/WNb/EqWNj5QcfQUcXfYUZ3EC84h7LwLoQB6MGkhzPGyurhN2TMlxIY9xSP6jzQ4Juhn303l8BifSm1/CwsdZ+HFen+gCJWZkkhK7stuZzKwxDka7+RzIQFKnTFhdIK7Y4U0OtcGbxYo4JB/fyzQufDwELg2TNH8v3kMstEDD4j3GgibciaPwMcxiIoEQffbFnCKiMlQTMGhSX55pqomO9xjfk9crIQ48Wsa31mnmJsJNXwQDnhMiBylPhWTIMRQ1CVAMrW1EE2b1z4cgZprByaBKwbtQf/DMSJpc/DDsowNCB8rb+Sft3PkQtObkOsmzq4nvDdCfpfocvO2UR8IMux9qbWVxE/bsknmQ9lDz+PcJvkkfDaMDJcLU1P08lL/ubo9uI0LhyvxsgdQkCLoXUOEZYjA/VEgUhMDNjTj3D3iexZFOGebbn3qLhxV4wNelwFLyeIHjcU4p4XQ6oTW6wdKDJooewxgNd3f3UB3IwiRd8ga4qdCzRRkB4cDZwUHx7JChWOuCZV3Qt45DnRFqAp0LPCXQjMpHDbVUFntesEaxbGpEvVTRW8e6LvN5YrdNPob2gzAMwP1FBrbrFe+99238yI/8CJ7fv43HxwcirYOqH8kyDQnNeAitpxOvkVI5lnxb7KOjeU5OvGJMEyNREUEbHU/XC07LiufPnmHfNuyDYwqql+CFCn/G5gZ567Jiu26zyBIRd19lVERvChhHdSZhcMcsq+GGhuFoSwk23x+9TgYDAk+Lr0cWrTFKiIPodsRwm6SbUqgcwyvKx66j3qDD3P9Syui94YMPfgXLsuD587dc9cOf2doG2IDpglKOvbGUiqG8xrFL5lyw5Oxo0AkPDw94fHzEdetozr0ohQGB+96OcbwkyBiU9gowRvIxrMy1ONUks6nk064CJAOGCiAMu+xIgIXzsBf8/n3e2CMICXiTEvlTRxAjXC0HcxR5zdNqIJxv1VVxNqjcKtkJpTooFb49h3wfJ4XRHAGJPzpUc3OE4/euK5+/7Nf+EEXw12P4M5r8mpjPChxpCv+K2OfN2KB1M2Q50J84d7IIJNNdHDejRY6TPj5L9hNdoJDgxQc/SDrzJUAwmQEePRZf5xXu7PgS/ztQjEAYBLdqhKO7gJBgyY42T8j0pio63oYEVOhViTpcHCMc2KRPUzMfhEKapolhJkiaGdKgR0jEXsN7PjN2c9nGLGE5FvFnxBnbCsbWm7DS7m1gtI4iifw1PzyHKjNCMLC3Prvb3QP0RCq68XvVupBcqphz/bCLh3cGBjLaZYzZJSdHS4YOH+kcD1i+CdMLe3k6XDZnmXsxmN2VMbHa79fueUwZW7tivzaUXKHDcBkNSJRO+s1BzTRpupXFBlFudCJLtrhSAUDvgZ55sTlHFy5L7d03rjRh5Nj8D9ibY6lpbR5EtxQFYvJ766GDg50YUkKuFafzCd34W+LX6JbvwW6O73lZKlojVF8EqKUiJcUYLOx2zzMppULHQM6CmillppHd8UCFR01KFWOSE4m+9FgXs+qOazQwU+UKn4XwZwkyrQiwLitCEpyzTJ4Al9DwgomFaU5EGICQS5sfSh3dFB+9+AjXbcMP/fAP4z/+h190E19uqFw79BoJI7vhY5tuHAeWtQAScnEeaClniAax0wnNExkTR1J2nE8nohfbhut2xYw7MD7XOVHa3FrD64fXrmo5uCIQQ10ybNfZUAAG1Y5SFo4b1WZmUBwKy3IoeQDMpqKP7t4pt2yGo2E5TrijrY2iI2eOwFhUkPRca50BlyyMwhSOBdO27WjtQ9RacXd3714qJ+zbhm1rR7MhHKmVxOysoTRF1G5QdCSh4u75s2c4rSdcLhuu2zb3ZRHBeRr30RUYnqAdpHNxrhZFCT76zQk18TMY1Emqvv86rtz2gSW727gxgR2WYMOAkEE7msZa9eALigDQPJtPqsFcsVjo5bLkwvGaUX3ZzVwxpEiqQA7SrfgeHk1MfFO8Afkn4b2H3D6vVIuK/x3zRjYlqizT4NqdSkEF4EUYHPWypK7MIb9vAgCBSkU5poAho2Y53iO4v2efCPDpVT8PPj6E8okuUCQlJKomMTM//M94JnuFL/Du8U1k4xgB8SBVdTRFDhhKfTOAV5oQzAJHRG64BsfKuL0B89de7EaHeuziQKQIZ2WHJwLKgl2Jk0j/xHXfsF9o811LonMt3GbZK+ZQofBbJ/cjoJkYf6ojJRGmJ0CWkFtyI9+7og8WQc0ANb4HMUr2aGVMxUpJGZmcsfmAjtHQ1R0hE2E9ATtuKfIG1KwwjE7OSco+U9awQM/zXpFY2hGZFABDHpHpExIOlmaGp+0J5wTsrTlHoiJJxr5taKnh5LH24ugLACx1cV4SVVF9dOzbxo4VZboliXIVUVR9pBSnG3luRLhH6FkcHKEwCL8AAdywK7oupkaL0JE1HmYzkkfPz+5wurvjNfVCiNdmTJ+T+DnrWqE6sG0NIhnn85nXenTkXLCumcoV5yWUnHjoq06zv5QOtRHgXBYLIjCLQCg5Q61tEzKeCjTxkSIoBV5SoWJjWY7nA95oVH7v6/UyR1wsptJ0VTUFNh+PBVKl6sVp5niktYF92/BL/+2/4bf8lt+Cb/z3X8brV69c/cO1VmpGXo78JB0DUih5TuLhbUqUdV3OjFUwQ67ViZbDk4g5Kk65oC4L2nUHtg3ACed15YG9cwzDjj65Bw7tyXtvLhXOjjR0CLih5ZwdQQnYXknmVRYu2Yv8nBKWWrH37oXicLWPISXF9XpBaw2n02kWKkGSjS7+lsh/i/rG10b6dnBSUhKUskKEWUGtUaK8bSGZzT5ue4nHxwfc39/h2bPnSAlo1ysTuUVQavV7nIHMsa6qoqQKmHNBfPRXlwXPxj3opGp4enrCtpNYnTOfS/LkvDAefP4GhJwsgWfcBZKt83Nr8AGVycDaOXaukVuVE3SIIwjJ+z/za5zmGqJjcQhyj8YMwNRh9NHd2bdwX7SG4A0KjGqfHCaDyYm+QTI+kD9V2mHE3eLvk0MTztUaIxx/RZaSDsNIhuHvUZxvaL6+gos0EgA3HzX3ChNgIrH0QOHzLX7tidCk2chn3wuSGZJG5tqvEwQlZGXiFvNE0wJ+PLpc48ryB5Cy2XB5DLTEfAYHDHbkCPIP/2xCZ16wiIWpUXfWPeCuPvPtmXdNAn59uVEbiXnwnQEzEyflIw9GDuQkCL9JEyFM/7+BsGofiITlMULFdMCyMHj8/E1VPtzpEHRiZMV+eFy00d2NlV29KTDkkB8n764HFObW22Tzb3wwzNGgdBgBZeeWiJsdxSEdHagJnQeDY5LdgZJqJfMZALCuJyarWodJmaS0qAL3rQGyuzV1Rttpb3652mSfZ+/mtQ8stRI1EMMeuR2do6R1XVwya8c9TQmtHxt85HoET6RWpnDsrc3EVYCbU1jZG+Iw92IlFSSH2lUZcV4KUTSF4v75M3z6M++w++7BB+nzYAn7/4D9497f3d1h23a/dPaGxHZoR4RIam8Qs5nNQgVHY7KvO68KCu9/6xhd0dsBZYuIy88HqneXsPCuYYdMJQ7XP31O2GmOMXC9XF39UtwzxLk+puQgeMc2eketi1vNs5SK4mypC0bboQp876OP8OLlS/zQV7+KX/x/fpE8isK1WGvFsixojUncrW24c/M1YIGKzHtL59XmqOCAykDY1/O+Hc97KQW9DzzpBenuhLVWFAg23TC2HWlZPRSwo9SM02mFWsO2GdbTGSkJLk90DK614nyqCFMvNd5b23b3CxJQzJS8eVJgMO16XVdcr9eJalFmPtBaw/39/VwDfF5vNZ8HIZKeNKGaw+SVkIR9SMCzy8l5Hp1mQXv4thg++ugFHh4ecX//DHenBefTvXMggD4M1uluHRLwcPINn5arF1zrslIdJIZcEsZHL7D3i6MMBjWiidrGDSKZuA8I5jPKc8AOJ3E4v054T7MfzDoMRTIscR8vbi73xhEUDZRRvSheJMQeyJgHQxVxxJNIKPuiaCh8tAaeBdzvnLqAaJzD4JJNYPa9KPAh7uuD0RreLAWnyIxNDx20C7r16QcV50PwR3pXJBl02gYReIF7PiWnwUrwKI+CVnw0hFm8eUMO7mV9UNqdHFn5uK9PdIFi2mNy4aWqTATkMPC6BTb9a/xX6sUCwk1VY8Ml62nMcQwrxdlhGBBEUf65V9V2Y7DjEliIm6OZIGn2b53m+AYx1pHkVvQc2Qw55qQwokFFMvMMHJlN5jr4YY5OFNA8zhf+4AeUlD22R72fLd7dYyqQIgRrqGLrJOcly46CMD/DTL0DyFiW1av67A+koo/w8/Dhk6NX4vwR9e48bP4B+hP03qfxUE5BU8QbHV7NGXlZOI5YCtq1oashq2EY59jBcQGYhVOk4mF/4IOSE4Y1YBrLySQG58R7ALPpzmtDsS4Lzqez33//c+/UpYeElWsklA4DAdOSm0CI2f1aJGE9nf3AUURm0753ZCN0HGhIrRmnZWVXUhjmxmyjUF0AQHYCY5oMfm4shqPQpilbHx2nuzNJj/uObWtUYU0/A24c67qAIxM6PkaeSfJRTHt64jOndK/NzskQocIgNj2qPdwN1JuDoc7uD1KLOEFZFbX8Kq6YX/NwI+WmO5BLJkk1A61f50Yvon64spAY2fDLv/RL+NEf/VG8/am38dFHH8BaJ2fHiMi1vcGs47SefITp4z0T1FzcPtz9jTzrSU3nyCCkuGMYLk8XiFE6PEKCvJ6w1AKoo5/7RtWRuxnHvS41s9EBOU8xbhtK99tSKtq+eVduE5EL8muti0tk6S/Tx0DxXJzWWGQaEq7XDaMPrKfVvy/5Kmk2EUcRHny64JHELhqH3IG0VIxRnAMjvp43XK/krlHtRJTtxYuPcKmFhcr9M9oHGMdQfcQ9pEpojIFcEpaSpudOymm6CZeSsJ4WKHQWHjYytNHLyQaJ/SpKfiEchdVYzxSv5CwQR4d0sKBI1dEIcwWoCeApyCaKMD0zSY68q48N0zxX0mySaRPAPfFAyC1xzyUXzcnwTtK3znDWlDgCitF3JNwP92eKCV042k80MpNTpo5UGNx1W4IniXmWxXMK38eI+L6JgpKgrMxsk2gGOZGIZeDYCotFi3M03KnZfBPZwvf1+mQXKLPA4AEfXVuMbuKxikMYEqm5/qDfVC4JONAL84qRP4XVoCjCZAjg3wsPwqAHOdgV2JcfE/CCBu7mSn19soix9m8mPl7IGUHEPYouokOiCTk5VVfNO31KaA3hj8LiSCd8zwKpGUl0SWjfzaJHZwUv3sn21jgLTcmN2Cj7E4HDf/nwqkjcfLrq4QmQMm79E+bmF7Mtz1zh6AyHOiURKRBL0/Y+SFx0oiyEnMfmwxVHDtze3tKAdkOt5Gn0nbNzUx9b7Z2d1LxfCbfW+HG9sxdSay1MsM3uxqpuGe6+IqUeLqMhO47XdOKFIdXkaEx0heKqACffgV1ZJNwm74bNlLbnuWBZV44XUsLlcnWnUHPfEkOtC8hF2bG3HffP7rBvO+/HRsfPUjhe2bfNuScbAJq9ZZdkRwet6jLT3mIJznRbUyp/zDf9g5R3zOHT3PgCSuc6iiBCA0ejp9OJjrRjzO65LhW9HcnABo63iA7yGnM9Jldc+eZvfC+lJu/2d7x8+QqXywWf/8IX8OrVR57Cy/vWGp8bEi4T+kZJNg95L8BdNSHCa7Kuq/NOdmyjTfRqmuL5flJqxugNl+sFcr5DyQU1Gy7bBgN/Zq5HLEL3ZGiLcYqjSJfLEwTAuq64jIF9u/L6ZoH2zoMrGQwuh/cxWfcQx2WpXlyT2wFResE8drS243Q6+biNhRbgIX9BDlUWk3SnZegcCdZ97reBSKkatm1DRBSE/06MUSahuA989PIlXrs77bO7e6zrCdguU04cGTWqimSFSjNHMZLQR0kEuLs7eRAhHZp7J3H2et3x+vVrH/F60TyUDacXoKG+SykQ5ExCvQA1V9RUIWowcMxSPKNmcp5AZCLQm3gWRASLlOh5oX5IM1vIUQYn9gJM6U4C7GKw4QWOo+Fsto5iXiTIzZnKSHFzzc7Pkh3xCwQF0Dkqm2RY5flmOjhGjobbjzeYoncWfCnWdvJxkY+BDoMIzM+tptNVlnu7j+DFT0f/Xtmbg4/7+kQXKLyAAIxmX+I1o+Go+rXrXEDHTfMOzaEIboReq9xA1phVoRcpAX/G/8bXmiApC48YNsaCmKFLEGQjkzpcEI/vBR812WFsg1gQYw4yqa3PUCcZtt6wN6IPqWBap8MiMdb8wB1uMCU+ZjHffNQZ1h5kRtgDEkRbv4bsdMiTSTnNalyE/gXmxEOIF1/e6QOGoR0p4Q3774ATyfUAJo4Mjqhu5Yb+walSKbSfHmZIJVNiK0Au3JyHcDPF04Zt3/ggzJGWqzNc5hbBfzLvNXDccmVw28wR4veRUqg8GGNKUGMmHCF/kdWhrjgIbw0kjuy6kybHHHfILOZkXoVA7gR3d2cYki83OoiaOEteoqNlSi1ANdtoJPqxS17Q+za9KHbvqIMgWsJ6vDNTXnvwfCLM7FArmPnnITCDDB4MM3pd3OMkHYcX3CsmGPwpJ5yWOnOUzqcTiamleNEJ53UdKi4dnss0mwVD71cW2N4QhNxW/CDZ2xWLVnz7vW/hN/yG/wvvv/8pvHz5YjYrakHio6xzgDyZ1lgoBk9mGLvjWivWU/UxR0JdMlpzBM59Wdp1p1GaKXKp6K3h6XLB+US04j4Jrq3h8nTBYiuWtdKQbDBBO/k4ae+GkgqePXs2N4d1qRCYq+J4HVKmdDf2C/7acE5EhJJzdfZ9x+g74KRPM8F2bWit43Q64XQ6uXrIkbTodi14XYrgTqWkuE1S7r3NYmV1G4AYS4VKat+bOxYT/YwR36tXr/Dw8IC7uzu89dZbWAs7f+boRMYX9y1tREJCzafq7ruJh/myENXpreLZszs8f36P3a//5XIlT8qzlHjYcn0VKVhyBTKw5AKikAVZEnLNrpwiCTc5shjFB4xNj93s+TR6qy68MKibCk5E0Mz9WsyNK5lblWtG24miJJRjH7UO2M5n0gzJSGgXpwP03pGTenAjScJJ4/74aAjcf6GK7pOA4QhwkkTztHB6jbGTDlfr8eeEIornVDTyh+qLe6gd4YjmQwQ/G27VsIE0fZzXJ7tAcde/ePWJSBhEePCyevYLdDsvE0fq/JA6WNP2P/ycKFZkHh3++8DUekMBS0EKBNBZuFQRJ5j613mRFAsHwPEzDTDrc6Pw33L43BePcYZNGJRrREDEZKAxwXM4O10H4HCsOpRD9QIh5bCWzp6nMsCHR4pX4okP7PHgyaEoUiNcCXq3CMjNONQwztYWhoU1n0EGXwMAKqp/Pvi9cra3dxgGL/rADY1mWwsG3J7aTdh6J+Eu50x4f/BQiUJI1T5A1pIAAQAASURBVAPiHHoMZvokSftdzSJQMSRP/mVx0lkIZzc9ciIiu6I8OyERccOv5L4MJJcJDCULxEhcG0ydBPya6jD//oeseFlWPHv2DHfnMyRn7FtjEZozSs3YWoOAmTEpJYfyWdSVQqdSIhJlqivGUOSacT7RNOzufObPjw3M7wNXHQ+bbXvyt5owOkPrTucTbBi9QXr39cfv33d/n941mca99fVs/HeQpVtvWBz9CTJxLcULDjrt5szCBebqHx+rmtLXIzxselcfjblEuA/0tuPDDz/EF7/wJbz7lXfxH//jAwa6e1mQNBg8Jwb4JQxlV9lao81/KagLOUPbZrher1y7pR4bsx1O0AGTqyiW84r9csX1SvRlqQvOOePpckHbd9Ac7ngmUqK8tpSCpTKpmgGEG681PEtqjOkaG/uHgeTx0bnGS+b7Sp7XsywL9q3NJGNufAWXyxN6bzidzkxl9jXP6xPqwejq4+cd3k8hUQ6nXEAm94XfQxx9Eez7BtUOQv8y9+fXrx/w9HTB/f0d7u/vUesCmCKNDLN+hCmqkQ+SjtGCKp/HdWX6tKBBbcfpXHA6FZxPFduzM9GUZuhNcb0yJkAS0S4ZzjEpUVgIJHP8mTNjEnR0hJdUFCjkuPiebwm5JKTCpjmlhCwJaqH68eY50CS4mZx7mpijHOJ7KUQpifdCqnXzz8vrv4Siy1HJDR3N06Vn9lcounyPonKzzxFtoIMioJdJdnqBN9ZhQiomUElw/0eiSG8UKDGCyt7gmWu3+fXduY7mrrM9GpqP8fpEFyjBfQacJDVszv9iRmPAhAdvqzh28PFrwiOzA5tFytHZi6Tp4jrLFfdTwCBsFlCWqMyCJCyZLWaMwM27js3leB8xp2eqpx+o5nCeciMmETaAoOSbkxFNgS9QAyILBnAZq28K+9YxRsPeOfbJN/PqGAfkknCQoY5XcEJa6ziVCssGdWiUB6LbksMm0kJ4j0st3F0BmYZJHB+NA26MTqMrLFNWXVxumXKwxumxMgnIKBjoeLo+0VulFiQpTJv1a5zMo9lNfITlkZKSAZMjVPDm3oxBUy2Dd/Iax/lR1Io/+L11SHAWlPPWITSpU3MfD4f8aLLH0WRduLnF3P98PuGddz6NJBmXvaP3Czd9v49xUyKkLazmaaJlzhGit8y2bRjWnaNQASvzwFBVaCcZcHSm8IplwF2ZSz74GkOpVtFueHj9dLifCt97KcUN/1wFkMQPe5uIiirvn6qhbw05ZYw8pgU2vLkI06d92/059kTlESnTB7kW8IPCOQIQcNQBrqnWGr717W/jR3/jb8T9s/+Ojz78kOhbwiyKghQv4N4xPUvG4HitcMzJgETMAznWMyX25v49vm6UfJl6WtGuG/RyRXh/nNcVry9PeHp6xOm8+giDRdGc/cNQ8koyMTgmHZ4kLSlhXVekBEdUYhxGp1SYeAE10Bwp5D0fGCo3xlk60YzHx0cWoI72xHtggZsnmkV07SDPsnkJdCUyq+oc6fAakzNSa/bx2+GtFCMy1YGXL185mfYO93f3OK3M7xnuewS4EMI9rJJ3+NyP2vSSCddcNYZqnvKCuhTo4O+f705sZDpVfuoNzfCReMqJDQUCGY5GxomqN+dCycXXuz/PXrSkRDQzRVMiGUX82vsJENw/FmB8TnQouu4oblPgP4ZnExKc9oLI1orRZox98eYR5yhJnJGhXHJPJCECKaBkPQd3JVDdgJhvuDX86P5nUWgk37OFI/JoBDPyfD9eXuGNN/gxXp/oAoUfWyenQcPrWKK4I3phoVP31+345vZ7HYdxXFV948+hAKcfNKpKMG7oXowEJ8VMkMzm7/H7ym0TifmwWRQtRA5u1SLh6kkI8WDFj+FdpLkqJcZQroQJZEA9/ZK5NYaSgkTWeZgMdhCcJjknIlEVkTxELd7brflb6w3rcsL5fIeHh1eAz0upCuAGxg3EDbjGQbgz8SIBQHfSau98SJMnCg+XDOfwEknibqEeQOfyuoIEFG5gzfgcCdhlZikwFexpOEyrHqa3uHsoN32ZSdgHaWzeA6Hc0HxsQK6YQ87B0wl3Uh+JhWJnKhl2nd+3lIpc6ixYnp4eDwWYHNkhy3rCtjeYbhiW8PR04dekhHUl1A87AuboEyNozS3s/YC/Xjc8e/YM5/sVr1+/hurA3d0zRwOu098DOiA5eS4MHJUZCDZUqIMECX33A9Bl2Yvn+MAM2Hi/U47O20dEcw5Nn5xhirGP2URMLyNH0eaG7Ijc0MGtLRdkbyDKVBqZF+uusAPXrypJsPu+4zvf+Q6++IUv4t1338XLFy+J3CzFoxkUvRtSNogf3sXcNM29Q2opLu/tOJ/P06yQYLc3IjljH2OOVkOCDAB1WbBdNzxerrg/8/o+O9/h8XLB5eGKulKmHEF74cJaSmd3LtlTjm1Knsk9IooUayB4FZGpZMbmSQDUkiCy8Hq6h0lrbEpKqcgpYTcGR55OJ6zraaIjzDQ6PFl+9etNefKBvMReypo6+dqkxPYoUgbC+TTW86uXD3h8uODu/oznz55h9THg6PRHEfdksYnS8DMROSRqWEo63r8kVBH01tEam7/1/g466AK87Y4GzsKB46Vkhj7UvZYK0WcvjFtndpOB63QtJxcK9LmXwJGSkm7PoJsmw8LDSm7O7igEb7g7EOf9ZR/tJucZqrt0iyPAGd1duwUy0ewETA4dfD9WM6g7T89CyMfQyY6EZvNChJYWVOH4/x9lWgCkSpeteI4Z4HrkJMVZ8v28PtEFClEmm1D+nG2JTBiTpKjDDj/+7aiXb4YGWLhfTuwSMjA3VnIX/EoPODM73SwOl/qF5M5dYKcLpf/12xt0W5CENwEiQnzoRDCi+DITtE70JGe4DNDhWvihKFSNmDOv1S2TxRJ9FMz/GYOwoxlJscKskpSTm5Lxc4ciIyeOajiiAEpNaH1Ht2DqB3kx3ovw4Z5QEdUoHCsohrIIGZ05FwH922DRp0ORqs+CMw+qIGDN9Gg5FEviNv6n9Yzh3jht39H3DNXdfSwyJAtKWXxrSXNNGAxd+MBHJwRwZKLj6GojbTgKEBfeAQDWZUEbRI8y6PhJpYgiZUpoS1m8ywaAJx5I2mGNyMO6LBiquG47ciYqknN2PgnVMjSiE+cQrNj3hpSImizL6j4YNwiDIz2XywW908NETckXgTAaAOoeF4lyd0mAOrzuJMPeO0iJGjOvp0MBodmWAsDNqIqL3s2yhCqx1ncMi/wRxdCEfef3Sr6GdNBjpy4LJIfPys6iEuxO12WhIql1dLD4VDkUCpHTYjrQ2hX/9b/+V/zm3/Kb8al3Po1f+e53uB6SkLsm6t4qmUiNjxpFBNt1c5JrBsz5WLkAoAw9OCixlkpJUE1TadM9iXu9P2G/bni8bOR91AXP7xKu2xV9NPR99xC9ZZKes6OFfVB2n3JCQUXrO7R3PD51LLXy75XqhVeESvKQbHtHKZXrQRk22HubIYMRy8AxMKWyrT2g947z+W6SyJnJY15ksEAgCTdh3/ubh5DvaaFujP+mwizBLKF3dcdbgGPtziLAr+2wgVevH/Hq4TXuzme8/dbbWNeFxbIZSl0wRgOcdI3wjwJHLEHajvcfAorY3kn+LcjlztHfw9JBVdGCM+dIQip0rpalYi0Jgh2tK7oKn4nWZ0hqXVjQmDCtO0mC+ngjwyDmvEgzTyL3+I44K2L/zn7IC91ng3MXTt0mieeSmlsUuOghBUmZ+3gCYJmFtqqgC8f7WdjssX+2ic5lcbsLWDg7zP8Jxaz5+xeAPkRezJsjQSVQtzhTjaOeUEN+3NcnukBR800RB8s7rqCvRwBHYcJfA290AQG5mb3x+2aAqMAiDtKPITGQCAQ2gOy/zQtROf4yvEKOhxW84XYDEToyjOCdiC/mY8zhkGoU3EFsBdNU22iY+SEB4wHs5JUQdxxSwR0J11YTRXViWaAxkew89Igejw1s/jngLq373Hwj34EbkiEIXaxVEiTbnFGHX4dBYR2wcltMghc0rkUWWGRAMBCCowph8rEkwb43n6O61K8m5ERS7BDBaV1wvVyQUsKyVh8NcMaeM6WNwDG6is44afCbHPmJ+5p8PTn6ZVNGzPFcLgU5Acu6IEkidN52iBQAyWXx/J61UtKbNQNJsK4n3N8HMVI81XXzLBYWbU0bllp8hOPJr62j1sNjJ+eKMTpqLbhcHjFsxVIrtm3D9Xql0+kNWtTbzjGQIzGqg4oGGJ4en3C5XLCsK31C3HSP14T/7GOnn4UXjXwO+QgcB5SvIXUuTTlg47EPrMsCJJtI2SoJuXrIIYh6reuCtrVZdGeJHBdzE7dtFovVwxPDt+eDDz/Aixcv8MUvfBHf++AD9DbYjQ5BfsN+nejL0+XCgq9Uju7cRJD29d71q0KTc9xA9MvAQhg3Y8uQhq+nO+xXOqImAEspuFtP2Dqw94697+it4Xx3x5HO6O7c2p2o7kWnAXVZkUsh2rLxXre9TdQ1bgBTo8mFb5N3kNzp9ezmcBx9hFIrlzTt8peF/JVa+bMO+XEomyr5OtcrRKjMYmHtPA9Hw+hOm+ZBFhEX8ezRQ6bfjN1i9AM8PDzgerngfD5Tonx3JoJnmOhZ7MGq8Hwcj8TIRJ8URPJKdvfqrmhjP1Bi4zirVrrz5t4cZWoc4SdAMlHpVBLWu3vIvrORSnny/g4VpfLvJHujcKaPSEIJg1FHVMwKtDdHqhIivyyeydsokalw5Dv1vdEwQLt8GwoVz/QBo00gGaZcU4GMGFikSxQdZp6B5UKIyk5qODLId+sViyMsIh5rIkB4UcWUgJYAeSo1dRgR9u8DRPn4dFoAP/uzP4sf+7Efw/Pnz/G5z30Of+yP/TH85//8n9/4mp/4iZ+YkF/889t/+29/42u2bcNP/dRP4bOf/Szu7+/xR//oH8U3v/nN7+etAPDFiTzVOEDYU/MwFbyZYBwXzywKGU6dIzlyuDvqaAobhCVFaZBWusx/smYkS8ghWY6SI2qcyaKy+Klzc4b/VPN5JNEE36h99scFS8RE5z9k8BPxGDPISoRQXsCLIYMzY3HC/2QHrcYDTgoliKVkeig4EZHqkiMvZhY90zPFuTjuB5FLdqtu+GiAKzNIvYCTa+lQhAjqGtpvnF/V/24+CJ3agRSmWCSkJr4RjxhgETScJSwBUxoh8IDIeW0Omd9tSFokA89RjD9AOswfNCpJyGty3xJYTIOI5gAO/fOAaZ6qGjkyZka3zLoilwVqTA3ujVwG2okXSCpYljNqPSFGhGMog/7u7nB3d0cC34ReGIQoknG9XjHcb6XFzywFp9MZ63rykUGfctDTidA9Q94uSEKEIkvGmheuzZAZh29EpvdFKq4qANE9RPFhNu+TOqHRh2IcxwmIV4XSKaU37kcoiqg2c4SuZMAG2k6CKCxgah5wjD3g83p5esTl8oh93+bBGJyqfd9nkf7ee+/hU5/+FD796XdIX3Zelymm8qy1xuTbnPmPc19G79O3ZlmW6QVySI1lPhdDY61QDbQudJVVG6jrgtY7Lk8XcmxMsdQ6RzXbtvOffUNr7HRLztjbjuvlCdt+dfM/jrmYZzOY6ZNuLBQGHWUpRVUMbagZOK8V53XhP6fVFTxlol5D1RPMuS6eni54fHzEtm1vEK8Z4igeTXAUJqEOzO6GGghsrYsXOsv0+VnXgru7lXLh8xl3d3c0RnREdvTmTrksZB4fL/jwg+/hux98gI9evIJaQiknACw49p3Xbt+aF1zDr+Xu+4yr3nLC6bRgPVWs54r7+zuc1tVluiRFr2v1tSaT3wgjKX/fNifdR9FhE0sPqFxALmLsKUTUuF8d2LuPYtypl8X5TaacjznDeyklEKVXBUTnuRJjxSjqps8WZI5so0GN7wuA62USvUFl4yAvRlx+XUtGda5bICGTx+Iy+Wi8o9ozoxcNm0hK9kOqDr9eH/f1fSEo//pf/2v85E/+JH7sx34MvXf8pb/0l/AH/+AfxH/6T/8J9/f38+v+0B/6Q/j5n//5+d+31tYA8Of+3J/DP/2n/xT/4B/8A3zmM5/Bz/zMz+CP/JE/gq9//etTj/9xXiaHC5+ZEfYCboCQgxjqFQP/cZ0kZ5kuXYRAhiEPN3sDQ8WSCu3NhWRMeOceN4pqktt3Rc7C7CBxW8Lkecj1YRNGDPIj+UWHdDWqZC5CjnkEhu5ulDlHyik/q+pAcfInD+80megQutCmkpx/IQc3wMm40Rmnmw/EmSq7R2ruB1IhOeywd6cypY/uMKQTDjMhdHM31IjoFic0ih1QKw8odmeROstQuQwgrOITcq6YMljvYm2+Q8Kd1vk75PUMSIY/+CQG9oHZkbplzRH658WruuafUOtxd2e6ccBaYKFRi7miRDGGF0puLiCpkg/kHhKt7dMcDAA3zGVxmbhLSU1xdz5jqQt2L7a6c3sAw+XyNA3acq7++RaHtLnuSy0wUTQvOM/nM/NQGonD8OK21oq704kFbd9casvNkKoYjjb2bfP8DjiaE1keXC85ZVg6yLvcNDFjAdZlwdPlgrF37NvOjbQWLI5axPeJcdoYHYqBdTkjvFlsuFeQDmxekHTnUTgVeo5WJAk4FDKYdbx69QKXywVffvcrePnqJdEjcGOuoAmYOl/pdDq5P83wmTvtzCGYz8584v3XyTf6dPQiU6J5yDcV67piv27AdgWwoq4Zp7qyCBtUHyXNVEwZc6JyKRi9Q3Rg3wdev36Nd955B/f3Z46itg01hasuC7zWWDjVSjnz9brPgqH3I7k6RgL39/fufzPQG5+5XMQLpUcGEJ5PPgo/8p9EDKVUz5gKwmrC3d29jxudfOq5JLEuQh0YTrcAyd4i4ggOFUdRFPF5Njw8PuDh9QNO64p33n4b5/t7LMuC6/XiBakiI6OU1TltA00UXufMRkhccSciOKcz2r4jSL85Lxx1ArheiWzpYKAmUsLl8RHJkSixzGLcOL4BKuamYVyVQwfPk6AXzOUjRwMWsl7ILOBzuXGG9UbJAJfpJ0AUHRQkHEnEgPg5SqrBcUbF6FCSzrPQEDXL0YDWEui6Pz9gfhAVQkThUkmOxMYoL65vOPgquiqquJrQMrL0I4n5Y7y+rwLln//zf/7Gf//8z/88Pve5z+HrX/86ftfv+l3z99d1xQ/+4A/+mt/j5cuX+Ft/62/h7/7dv4s/8Af+AADg7/29v4cvf/nL+Ff/6l/h//6//++P/X7UYfVQcpjfbMyLfTjnxUI4qkB45+cjmCFU5ZgrO+DOr+5MK4iNiGz5GN28IfxIsZHxIYzFGJCWCaFhFiTHgT87ThGI0WPD3PYt+Y0nN5R/N7r24gTF3ocf9BnLkmkmBsooibqAkjWH7ti56vRUiJm9VC8sEjedMXZ/gOlsqHKMoZJrzvjfPhZSIEJ/om7juGfQWk0FUjNnnJYg4+De9NGpfHBtWrhsJkeHxhjMAUo6nwRV+lZE+vHwPBKSpdmNS8o4nRYkyShVmN0khDwVNi2HwsmRYzzx7AkvqHDILWN6l6XMdaAYKDVjRiP4e0tSyFcQShm3fWM3pYptbzitd6hLmQUjUR0mBANGXsHo2NuONPhZU0rQwp8byAgQIyp+jloruSuF3Vf1tUvyJEcsp8zDb/dN+XK9ou07DJRtllLQlYXMup7Q9p1/biQvL+uC7IfRvm9ojSM4i0PPDpKfQygun13QoNiFJnAlF3qrwN/XemKnqhsgQJXszre7oyiKlBPuzhxxAHBfl0Kky8nLS6brMOTIZLper/jWN7+J3/ijP4q3334bLz76kM9+SbCaAXP/Hs+ayjfjWRGXq7vSJnKCggzZWmO+Ffg5bfQpgSbfhY3Dtm+wbFhPK/q+4fH6hJNW1HXBnaNbfXR6BHWiSSMPjgNLoTLCuhvmZSy1ot0kbUf44bbtRFhc2bIsC9FXN+fKmfEXWQoUMrvwMQau1x2X6xMLshG8GsP1SjXZ6XTywjUKSr7XWo8C83qNPKDYIKMoyQDaG+M0IjJjyvdDLj6GTjSsd09hloSSKlSoUHvvu7+CWl/grbee4/k9OTPDJdkACdi1gHvQ9NIZh6Iu1lRJWMsKbeGGTTXYs3KP013Fdu3YNz4PGeJkVcftB0cz4fRq6hldOEziuC/4fhJohO+PcbZwnTiSnBJmBlwg8IHYOAE1CZtodRO4W1VhFGDx7M1mSsLz60BUJo9OAFrL+fM4i8mEpSbGAaQ8far443ws7F8buU1RBFLR1qiOKxlDC/Z2xcd9/f/FQXn58iUA4J133nnj93/hF34Bn/vc5/CpT30Kv/t3/278tb/21/C5z30OAPD1r38drTX8wT/4B+fXf+ELX8DXvvY1/Lt/9+9+zQJl27YZ9Q4Ar169AgCv7rxiTOlQZb3R3dzciBiOOSQlI1EWGtwKE4a1uW/JtNA3o1IFvwqeSj7zdLgkeUU6bDgCEuFOOtODB6jWgCX0oWh7n1V2uHnShc8fdhlO0PXNUmx6PbDQSFDd/SBZsZ4WGEKdMKaDbkKMFDgf7532+Cm7SdsEHOG+DGSqizO9h5JvQTTGP2dAi3xj9EVxkwl16+rhB1RKTPIcRklykvnTYFB08xRSAQYMuRas5xUCw940wEOIQ5zJu8B4gLTT1GkMv7de2S814/mzT3EMs199BLJgOtqG06RGrHoUbJgbhPjaibDIlBNKypzta1wDc0WUH3IGqBUIsneeZ5zOJ1yeLtwQpQCpwJAxlETZ0+KeHCK4bpsTheuEVANV2HvjpjVoDZ4LN5eJHNx0/rkQUQgvDY6RnC9hhsenJxRJaNuOWg9lTHS69L+I0daBuo0+IJ44nXOBJiJt5vB+rIt041lx3TaYd3BLrehjOEKnQMn0fGmbfw9DXVioqTLteOYeDZ3jyXjeR1fnUzjMjYNkquD4a6jixcuXuFwu+MpXvoIXLz7iGKGwuMvJ05HToZLrvhmvywKYhzs6ehojK69qJyJAAzG39h9Uxolzm0gUp9Q+LwW9dTw8XXGC4YTFfWo60U4DRutofo3jUMuZ4Y+SSDalGzGfHYEgSUZK3vSYm2dBPE8J3gxRFm2mzK7xZ5kIoaIkgaZ0HI7+DASyEePCQMdjjQW6GCgYDzCuARYZwWdImPEQY0D1IKpydM11F+O01rqPHbm3Zo9eMGV21wcffoSH169xPp/w7P4ZzutKC/0+3B7fsNQ8R218BhMix2uaUFbBdu1voAGlVJT7ivP5xH3TJeUAoOa8igHUIghzmhi3zIgP/4YR/neMa+OIcSQawlwuL37j+ieEmZpM/xukufQAFw9Ul+CTW3KTku2I71DimbdNRJqW9LFv4s3m3f83S/bzwS0R5MbDCYBOmfmN+MAMo2v4Y/qnfVNV+z97/W8XKGaGn/7pn8bv/J2/E1/72tfm7//hP/yH8af+1J/Cu+++i//23/4b/vJf/sv4fb/v9+HrX/861nXF+++/j2VZ8OlPf/qN7/cDP/ADeP/993/Nn/WzP/uz+Kt/9a/+D78vak7QMUiYd9n/SKsxhyDicpvSiZCwMlGFDLpKZiRgJGin3FVwhGMl8IFQxEaNCXkZGHgrkmh45m444ggMvFBRHylpN7TNvTPCJ8K8ABoGSYM+FDAkGA4tV8gyWS6NMTBax/35jLv7O0AEeycRdh8NEHZasVAjswXmBYu4iZxD8ewA/MBGpOsKcjZodSMrkDUeh6JkHi7W4cgK4l2zcxBmlEhKUB8v0ELZJdPCDsDMKD2GYb1bkQrIBzLyLcTTj8UEYxgfmOKF37RPTn5I+dghC1TdZTTulP98tRuJupkTWB3uFJ1OtubQKnLMeeEM9ezSVEXJVDREroUlbpy6bdhbw2gNn37nHYTcmI89CWm9dyyro0U6sO0XRAaOtubrI+Puzl1fnStRS8W6LDTn0xg3pWkmB3C8qkmxacQUFPpKJODydEG94eWUvELy7bUMYzqXopaCImkieMk4GpjZIP77qxcWt/PpoQM6rjwkc0ZdCiqy79GGZeWYKgtHgJKiazQsdUVag8TcHIYuaL15ke2w9FI5gnQUgV3hkUMyRsO+X/DL//2X8bX/99fwzjufwXfef4+FbfIE7fmsEm14eHzEuqxY68k77+M5upXX9t7RGw9USQnZDmSOXiljjldKdRl0V5zOZ1zMcL1swDCsJ8YPeNwPuhdWqoq6LFjXFeZcudcPD1TxpITtSiQsSKG1CAmyjiIW8VHpLHYPf6XWmL21LAtKLlgWoOaM6nycMdQ9bhjSp9BZqCzLgvv7e+57gwgmxxO8jtFJ01iSewe9UPos5miWFwhLQs42CfW8DxzzMPBwd/Wi76Omk79z3Tds+07Tt7sznt0/4whG4MgRuRxICar0FQqCZxRKpRQ6Brfh79+LYiXhuFZvCr3gVC+WtNssxAlaGPOcHF1OXgzE2CqyraYLM4BpgJfKbFSGsoCAONqSE5Jnt1Ga7FWaNwQ58TlH0BCY58x7IhnSSZo2M0qfXTUa5QOvf57v5+jHg9QexeygLNljSSQJivNfYqcNVG8M5gqFijW4Zx/n9b9doPzZP/tn8e///b/Hv/23//aN3//Tf/pPz19/7Wtfw2/7bb8N7777Lv7ZP/tn+BN/4k/8//x+t6TMX/36C3/hL+Cnf/qn53+/evUKX/7yl13CBYfNgIARY9OLTifgMQAQ5OlPMpIRNYEgW0JGAYagbySdQYFlzW5pzgJHxQ8yrysHjgOO0iyPRJ+yd7LkhWQMkmHVeQohZfOhJOVoBwGJJl/EiY7ugl1bHAYJCc/un2E9s5PZW0fTjq5twt0Kd0K8QWHIIckQU4zeoCEJm/cD07Cp9wHzLkhSguSEbuSI0IHQWSvi3HMhbB5ybjNl2GBXN9Wi3FcbHQ9Nu9uG+/Mm7Eyue3MkhrBujocSOr1d1PkoCPg4HnKHXLuS1HY+nZByxj4j4fkZb1ExFmfEdJCIqMkANBFpClTUoDAZkzMS14hFTcJSVpg2XPoVgOC0MoX14dUr6Bg4LdVTVQ25CNayoubkSbeRTcTcH7qrcpM/nc4cySR16N6dRY3eNFlINKXsmG+2tx05FSxlYQK0F5jaKSl9/vw5HApCYH5k3hOdOZ1Ok5Ctqtg9l6lk2tVTKs/PrQhZeppqjN4HakpAhK4ZO6hQzgy3sd+vG3IRnE+Lm64lbNsVbd+wVKJZ/NoxDa2CYE2VS52F+OhhLz6mOoVmXCxMv/fBB3h8eJi+KPu2oSUqZWgxDsAPydNKgivER5U6iKKAo0fRkHQeida7Z/4UJxfP1FhgKlUC/m6jY1kXPI2OFw+vsVwS7p8/pwrMibtb29lwOA8iJ3rppFKwu8InDgQRoVTbFAPDD4+B8BcizesYQTMlmWP5dV0ncrvUisv1in3f6VKshqs1iAmWmdsz8PT0hDEoSa7T4K7PPSSMH4miDN9XDtsHEp8Po7HknT/37dtU6YQxeKinRAO+QBbpIkyPIxZ+Hd978RIfvXyF+/t7PH/+DMuyQtwJNoGuwYaBNoaP0bmfmRGh5s9jsb6kiroe1gYll2N/j+KmR1jqmJJ8fu3RMAeqC+X6ze57Q98ofl0uBXkpnj4PYDhL0K9HeJVQvh9xJpTYC4CSThPZGxguRmjcG+H2+okO3kg20fLp6yNpNmYUb0QkiEuY3arCzJimLW6r4fya4BySmAvKv92Mkzlt4Wr+8V7/WwXKT/3UT+Gf/JN/gn/zb/4NvvSlL/1Pv/bzn/883n33XfyX//JfAAA/+IM/iH3f8dFHH72Bonz3u9/F7/gdv+PX/B7x8PwPr6hnLLp2TPOe+fsqk5XuNf2EsTIAmCFrENyY5MjRCAClT4dW5oiow/ycmrBaHCoT0g/yZsB5h3EbK1ybfhpC7bqIx8j7Qe5noBrmYTg8K2dKON2EK35GqQWlJDQdzuNQ7H1H68OzJPJU84hfM/F5eLjm2iRz8iqJpYn0bMMRniwYg1Hv9E4+5u9d2cV0GFEtfyjDlyYIeapK7oK7wyo6JPk1VnX/Dc5it60hiZJY5j4dakBNeULnmPdD3XafVz26K6JlLNJIFGWQYEgTU06Meg8EBTI7opBqe73l93hA4ERWNywbQ72TJ/R+f3+PZSm47rt3OhwX1UK/D6KngyOhTEn0aA1QFih0WqXzZs7J1QTFvSs2925YYa4UUqVHg4yByFABMOHlODjpnFsnH8JwOH2WdLj5jtnpAmM0J+BSUZNLxdavXjLz8Gn7ztGfZOTKTV+COBVjItAbISNgb/osNFdcJfe6sdFnU6Fj+IGnM98npwRZ65RI85AH9kaDsX3fSWIUAKbIlfenJHFTKiBMFn/5l38ZP/IjP4JPf/rT+M53vsORVTJylMBxpFmfhN8gcWYPvzTzMSYMlnwcpRyjDO0QUVfHRRc55lqEOTERzjtSw+lMIvDrh0dIWVA8IJGH7sAwFjyPT4/IqSDlgvV0nu/v+fPniPDB63ZBa5t324nry5GsUjJKrbTsF/qEFOWzamoYPiffG9OXA4nLJaHYwQ8LMniS5OPDgWVZcHd3csnwIErhz1rxaICA9yd3wYu3GBerHmgvcCj2wqSSPLuKMZY5+t89DmBd16nyEiEa+fDw4NL6M+7PZ6znM4iADJiFcmyfIx2YYleq7CA8T3oWFOEZ1FrzfLE4U8SNH4EyBnp3F1tHOcfwMUvstR51ERET8T9ElZn1Fcgfr7sr3Qy0J1AfH3ljFaPcWxUPwIImQSA5Cg0iQFM1lAsiC4hcn+GFUrypoEPg8D6J3/X7yH04kESDpchgoyGjuj9KSsWbT36ucGr+OK/vq0AxM/zUT/0U/tE/+kf4hV/4BXz1q1/9X/6dDz/8EN/4xjfw+c9/HgDwW3/rb0WtFf/yX/5L/PiP/zgAyv/+w3/4D/jrf/2vfz9vB2GGFiBEoF3BWk4ejnU7YzOEbpuVrI0x549i7AhFMhizwjmbGvXhk0ymApEBgaKNA14b8Nhvr5Fs/k9ItGIE4AQnyRjWKdFMTlDFIceEUU9Pab3nK+CYTSZJGAPYdGBA6XiaACkVi1swJwiGa/rNDggveAKqnVW581ls6FRg90EfBwl78jFQhLb4uVTfgFlVIx6cODjUpp9KHMg5050zSXICJubGFEmcpRT0yxP2vuGuLvMhDoWPqUL3sPIPqbagJoYHMuvD/xJ7CmfrK0TTfJjhD3O3Mf1oJCAcgUtM3U7fu++h6sZQUQAcc3SvIwFkbPsVvZOkOPoA0sB5WZAMaEPR2kZELBEBvO5XXn85umDO3kPOqbOLNBiaS1BPJ8qSY20XD1vLOeD7CpGMSJ+ta2FB2TtMB+7OZ3omJCKP2Yvl4dlVYxhau6KUiufPniOnhJeOGEXhqwakVNG9C4sRC7x4yAH5esGSS0gpBaoJKa1TRmqckU75N/NGCmAeMNd2mCrKsmCpJ/Te5kYv4DgviPEpCXKqWGqCZsXYKEvWPjBSxwcf/gq+8Pgl/OAXvoAPPvyAzqaqSEoVB7xwj6A8ncVF8I44Rux9QFwKDB8HZDnuZRSNeQwM+P112WfvDXtjCuwigudvPQeEUvTtugOrOLH4hKfrI0bvyImS42IKbIc762XbXPFG+N1soDgHIUak3TiCEX/eI4AzeEoY3dWEvI7n04kogt/zuvZJyCfvwhwRlRueU8P5fHZH17C8T3PNcL0e/kpRhKTk2WGQWXQB5KGYFYTyJz7P4eScUWuQ43WiffRW4UEYhcrT4xNOpxPu7u/J4ZGM3sU/nzovzr//UBLyBZ6rRRSU3LeOSFxObqGQXXqdAt0DjSL3/bBsCGl+kji4WdADx3jHlHt4IJgxcpTkIo5yjCwD3UAGzyAv9MULBWU1AxnHyDIa3lRoHpkSeXOoCb3LLHINPK+iVgklHj8Aiyzxpo6fj75XkchtgDs/KCQS7b3b+36Uut9XgfKTP/mT+Pt//+/jH//jf4znz59Pzsjbb7+N8/mMh4cH/JW/8lfwJ//kn8TnP/95/NIv/RL+4l/8i/jsZz+LP/7H//j82j/zZ/4MfuZnfgaf+cxn8M477+DP//k/j9/0m37TVPV83BcPUpIcaEGfZyBfFvd6TWnyQAhVAcnIl+B/E6614VVmpFt7FyjZo6QV8L+NcBANPkBAY4G6iGEiEIdU2C3TfZbo/aUnWx6Vb5BKbShG44af3W6dBw3lesnJrgZDMxYVOWekklHTMVcUAJIFucs81LPPOE0NiIp9kHQqkjFAUpP6qEUGnV8DsSA5yrtI5xcIBosrh3OR9OgSbqWWrUP94YKBRE/nDWVx75HOnyOV15sbBr02YANoLrcVzMMsuWsi4JW6F61MQ+XaMAj2bce6nrCsC1NWRycC5F26DMKtxfN3+nZ1YhtmNxdmegBRmCVV9O6jqFLYvYJwbW8dz+/u8cNf/WF89OIFXnz0Eq8fXa2QU1TUSAmTlAZwdBN8ktiMgyDYld1fzMz3fXdEhIdTSkGqDJid318Auta6PHj0gbbvWE+Lz9qPDTqlhGU5UY2hhI+ZiSKTM8VDp/BSDM7WVYgyBKk35QPJCTUcu0JDRZm/z7GUK+T04P8cY98g7Q5cr1cff4QXUAIwJiE31BS3Kr9aqD5Q0EkVSfD+r3wX/+dXfxif+vSn8eEH38WwAQxMeF9SRvLNPw55g05eyLLQZ6btO8rd2dGxyKqJAzRNnggdcZvzuxThWWFe5IoI7u/ucXl6wrZtE6kpJeP+fI+Hpwekkt9wUo7rQ1uB6ICj4XDp982a6q25wodS4aHpRgVns3fOKTkfi6gomzTuaXHve28YOlDT4l0iYwMeHh6xrgvO59N0xSU/ZbwhQef9fXNPZ5FB59xYX7EOiLREY9PdCVewrhVjpGmfz9Ei1yMzi4Ifo3h4fGTC9PmEt956C6fTmetOjaNn+Kgnj6kKhHGUtbh7Mc9ZHyH3xuuY3B8mZbeEoE9UGh373jlaSkcDEioc+N8h0kRqABHMQqQyH1+PFAnvMnOpiIRHM8m9NufsTeUh3Q/ys+nAgKG4w7N4A67+jAe6E9SIcfvrEEWoN8izITiG5OZn58RgPAblNtT3zSiE//nr+ypQ/ubf/JsAgN/ze37PG7//8z//8/iJn/gJ5Jzxi7/4i/g7f+fv4MWLF/j85z+P3/t7fy/+4T/8h5x1++tv/I2/gVIKfvzHfxyXywW///f/fvztv/23v6/KCgCghjF4GEXVn7yzSRAP7PMngOcqBHliVuIchKGENEOeJvDiRJTue4CHNPHQHRN2jBwJA9ABJ/1FNRxkIfjMGeXoJmNcFMx/JgyzE08poe3jplJPVO9KqGEyxNGRXBLzSXymb8D0G4kHIkkCaj0CDH2EMwBUl2Pue3Nz1EFX0IAkYVBjei75KoqcKyJdVYTjKqRE9ZKTMeMzmfMG4IWaioO83qWmlHnPhEViazt0J8dCfa6pw7sswGFSRb6BM5MbbgWzUBUwGW4cpfPANaMChImw6ggA102tdY4IxQufgI8VOrs/LjsevhhksOdUoGngdDo7Kc8lwEa30OfP30LrimfPnuN8vsOnL2/j9etX2FpD7zzolqVg2/epiojAv8vlMt9fuHuu55UQdhQ0IlhKnXD56ezeGNdtfv4xFNoTdk/jhdIUrNQ8xzKjd3gl7rkmK3ISqAqTip0bEyOP+HnNOR4pJaAPzwDBAZMb798AYNZ4yBaBuHFRbPKsLhJqpntpH+PoFt1mPZe4p/zZKSeUcownc864buSA6D6OkR04LjED2qC1/ovvfYTx5Y4vf/nLePG9D9EH33CghTUxlI8HL8dREG8WuqJLw7Is2Nw7pNTia5rLIzgtT/t1kmUBJ2yCBUOtFaiurnH11P2ze4xGMiOsIQtQasWzu7dw3S/sZI009PNpBUTQx47W6S9TxHB/f4fr9crn179vThnr6YTFzLkdHJdSap5gA76eg+82/LO6ZFqIUkWWVc4LtuuO3jj+NNOpFNo87fp8PvuaZsbQGH1yUqJIKW6rGgF4wXcix+hAfHvvjkjEMy0HauFfH7yR3ikrjxGVWfjzELV9errget1wOq149uz5pBBwaOf7Y6faSCDQrriMKyTTW0qMGUvLsqD3fRKEUSrXoo9sVucwjTEH+Yj8J0CQK5sCjs7JH4KfKZYyChjcCglRBsegYzg64vDpJGLHONRLhm597uPxYqMgXkjR1Vu9qBoaRqd+bDoSHh5Ot4WxWEJO0ax68eIUhGiqzOgJFTEn5iPcj/v6vkc8/7PX+XzGv/gX/+J/+X1OpxN+7ud+Dj/3cz/3/fz4//HVozBJM3sjO2cAGngHIbIAqABHLmxANEEjTdLlhPCbSfkVHMoi7K1RoEzol90en39xWBdU45h6sq3OylodRYlpHgupwiwUv7aRgxOdURQYyaFBwsjsooZvCrkUQGSGqgUSJ3BVTTokn1ByQsCzgIZbvbmEjfNTk+M+JyOBEsAsqCB2zB5znsZqvXc0HTRtWlcy14P06Z/FghcRY4sls0MbGXvvGHtHBvMgAqEJQnK8B5jNiPIgH+bCTn3fB9DVRzbDizWhc6gqlvWEJBmXpw1BmgySoZkiV8bdb9eNviyZFyqg1vBtUd+00khIKx/48+mOJlz7lR1xzp6Nc8UHv/IrhJ1rxr5tPAR3QupB8DMvutb1NKXkcZAELL6s3KhL4eHZe8dSnVDZNsDdTAWcL/dpN86iY7TmHCGXgQ868dZa0ZwEx0aMHfZ+3SFIyAsPrZLzNLcCeKChwXkS4khAoFnHOgnUMIlArhu5SCVGZDoPLB2McRBhB1tqhY6OvbUpac6lzA56SXx+amHYofnhywLak6THAEAFx2j8eSQkv8Y3v/UtfPWrX8Vbn/o0PviV7wI20J1nlTMcUZN5CPbRIdFQ+Ea83KiW1H0tVBWWjcTk3mdBH0Z/0Yyp0riNh49CO+HzstRJHjYDTn7A3q8nbJ12+ykBpt2Jjuqj3OaqmOwFZkVHx+gN+2iOoHI9l6WiGjk8bW+4bhtqLShWfdzKrzvN4EDzETiRnaUqag7X2w3a+hzBmRcCj49P2PeG02mdaEjw3mKMEwdfkI3Dqj/4ehOJWioiMDQaRCYtYxbhKfG6pFQRyerhigyEx8oh3b9er7heyV959uze84cy1MeiEPgex41VEl24A83Lmc/uZptfswpVQBOR2Jx4Lm1t9+I1uWO3+z5ZPoIEBbgNWJ0CDwCWQw3lZFWV45wQf2+xR3qDfDhk6xxFx5kyuYewOa7S4PrMc965mikBxrNlItY+sokmVSBTzTPl7X5+DhuwDqh2pImufrzXJzqLR4zJiwx2dm5J/J8XLDR1vYG64CqcYYCGZp+mRRBMSV8s6ICLxxhzrjf8AocJGeDmZ+JyT7bifOgyCXe0f48HHEcgm2NhQ83hu+RjFEEqrNYXJ0oZfEQkysUyBnpTFH/fIgJxuJZQ3fCcED9YVGF9YHinCHATGVCGYQ0DEmVtyhQviNvbc4Tg+TROQDNwlEYilk65Yk48GLNQrphLQVf1DprXRm0guWkb3A+jtx067CBSutNvEvH8Guc/JKJkcUDUhaiF6SE95EYnON/dYQygtUFvjVp9Q20+C6aZGfNyEtbTSjt6J4yVpSKLy0h9I50zaqOEWy9XpLRgXU7obWB0o3LGfU32/YrWKJGM6jElwd47lrLyGsC8S+T9qZUpxvu+z+4urKLhY8GcMoYMnJy8p75BqClKYqbNvjXUeoyHIESJloXz+UAFICF/dbllLViWFW1raFsD1APNHM2prvBaRNAzQFDA3BgrT3VVHwMl0a22+piKXTA/D5VsQLRsuzEY8O58x3FC7mg7jdaWpWAMHlJ0aPWUX39eVBXXy+WmI3epMQQphdumRzrsGxYpeO+99/CVd9/Fl778Zbz86AWvoylUE/Z9YF2T5wa5A6cUpEK1iE4kIvHa3ThDE4XlXpGcUJ+SG6bNQ8ZHR45YiG/8qgPiRX3KGZfrhiwGESqVTrWidQG6Ynu6ck/jI49aaK1ffMRHtUhhppVHTEjlNWQz4zYKJ6oVI+ZiyqhhABqRChH0AXRt7L7d+CylRLM8MbQ+gMHRS6B3wQ05nVacTqt/Rh9ym81RTc5HfEAYqcVBuu9OXAUQfBTuX336IZk3hix4xL9ngghl/TFiY7GzIPhZkYR8vV5xOj3i/v5+5v2QFDtQ/PmLfKDkTSIA1MpnYds3EsZLcaSm04U8wUe/HnEhCfZrTAskUZU5nPM2ixQYitVZoJgZ90afY89xiu9ncVb10dF0RxiBsrFTwEfBYSQXsvNAUIjQkZaQ5x5ZfMRP2oEVuEdWPLlsnlMptBjVYzw7+TZ2jN8+7uuTXaDIYcrkPqkIhmpKR8GiFk6JSnmlm5GKuDGOOEchUBPADwFuTKqG7tLigV8lk7LDlEb94EpG8iMd9Q5WtXlnGw8XZZ3U5YsNjpTMOJ/ONsmEIkfmSyppHkJ0/MzkiAyaqhX3RlWDbyCUdG6jeVHmo654z0o0Ainz57cBbezacioT8ocBlrxIcofRnOiQqjC6ie5tdoYCboxJnKAqrhIwPqSmJAemypTQdm0Yu/rYLXlxEuiX82cMTP90bxbTQ4LYvHvLkmHCTI2lLljPJ4wBvH71BGgH1LtYODHaSW4pUfp8bbtHqQMZAsrzfBw0lQaD6Fiih8lohvv7FaUWfPDBB6iFeR7mo6Hz6UyuUsosOOoJBqAYZbwidOtMIjDjeOJyubqzZsblsqHWE5alIqyun56eAO9u+oiRAUMz975DrfvBpLhuVA/lzGsdB0Mpec77g7sxRvNDV5Al4Z1PfwYffvg9JrNWHlLlZnMNdIxRCCTa5pInqbnk4oeNy8sd6WOoYvaxivl6o5dJLQvO5zM/lwHlXNzHwrtveIEPesqQC6GopZCz5SgP1U44itYkRJ20Y6ihJiqnvvGNb+A3/PBvwHfe/w6++93vwLRjwDyNO9AOgSrJ4SUXdHQS7CdpM/hJcbBi7i2mOtGfIxOmTPnztjdeU4fIxU3MMMxDDweertdZnBaPB2jdOS3m96bQRTrXCpOEkiu2vs+fPW33vVAVSWj9yj0mZSckH10y1WQkQ7etM+ytK0qlIkeSolRxBDhBtSD34aMcmyPwiAy4XC5orc38H459YjPlfhRy41ti6ZEv5iiTb8ClsIimvX33AqKg1mWOibqncXMU06crbRRgM88s89eXC8Mx13XF8+fPcXd3BxmJ3A0lR9CcCF587xEUrKc7Gm+2bRbxOVMtpH1gKQlJFhrOGZPL6ZAN38O8CU1Oyna3YHJq1L1gMg4Dt4E31Ku+p+vwcYwO7GO/KWgMboUz+TmGAxmPotQM3gzSL8xyQoY/197khoIyA8hgMUbldqZFvt/NWEe3hRXmyPHjvT7RBUpGQvFQQEyMxLXySgVPuIX23WHWYciFoVUqmLP0A1I8ILJkYLiduYYmHl7Ay0ZhpQmHuUji4E0mQENCI4yHrt85dTfZOctzh76uBwSXs0z+TPxMyQnJCYaqirpmkj1787wgVyf76EN9jmOeUKzdkEHyW4o3k926fDlBfdbM9xClQUh8+5SQAYKa64SKxQa08fAvS0bNNPTC4PvuuDGog8KGHkXSALJUwDp6G6ipIEt2j4aQfwNAQhJ6Byy18gEbQPXRgymQUGhpX9Jk0+8bJdd97ERzkjihNWbSnidR6Slh4O+PaQYV0sbF5+rDu/+ChARLQFkzPvuZz+J73/ueEzzD4wUYpmhJkOsCATeuVDOubqwV0vGynnC5XBCjgtbc2jvlGRqX6hk2Bq5Pr9FawzoOfk2tFX24p4QXwrHxtLZjXRa6BicWDGEEF++h945t23G5PCEOVgzBs2fPWdB7scXN8diAArmjvTtXOguE8B05CmEpXqSEzbhgemdkH7WVnB0NGm7dze+xrCeMPrDv2/zMMZ7UmzHR6excAi8gSTqkymyMAfUmQIx8pyI0j/zKV97F57/4RXz40fcwtqNo62NgbwO10vl56A5Z8s3BltxhOSOniqE60UoRqsCQBEuOJG3uMVSZsNChHNXlvCKORgiaEYE6n8/Yrhds1w3ug4hSOapQNOzbTkoX+J62bUM+U4hafByVLGFrjaNtEYjR76N1Bu2VnJBFgOojAEfjgmxryriK5CTMKAJE7IYzQl7Tvmf/TO4F4vda1bDvDPKjE+3q9z/It458JzvGEzfdIFOYM0SWia4AMsPo4iAU58qYGWoNvqBNBRIVR/tEVAAW97V4aOrQKWFe1wV3d3fu3BvjJRZWw0eI+95QSwG9l4oXUhwR8h6zSK05Y1krrq05Aps8Pdh5OGYYCndLhquuaKw5vbQtGtfkvEhDcCpNvfi4QXmHEq2cmilj8YLhkwUJ1eWN3JvVq4+JEszNFaNYt+pjnpyQM5wIz+RiEuC5f8S6EODw/AJ+/RQoFRnJCmBO0hHjrNALE5sPDuEzyutI8JIUZmdR5fEBAHx0owNNFU2ZXWF+0MMyoDJn9UEo6hrsfXP31TyZ1ZIwNyyITeJZ/GEgJ4KQ0rnjoUT3x44nlTQ3/AhaixjuWtyBUoQwq3iaj4jbuZsjGM6+RsIYPKhO6wLrA31nx5qSy41BkliSBKTMRE/AmdkC+Lw0p4RTXVHTguW0QAS4Pm2AGNYTMCSs/zEPHBvmRUXC82dvwbrg9YvXPmd2jgQECY7UuEuw+EYMPwjDCMmESh5yW+ikaGbMYfFsmbsTUY6A/7OPktTlseKuu6b0wzC3VD+dTsiN0eUXI7pkSKiF3IFQRbXWUHIhaXSSUwFAYBstt9eTeyn0DkmZ/B8zbIMjJo6iWMiQa5Kxrm9RQjz5HOR7xUbjK8I9TGiiBhHsfUMSqhyWhWPG7CgEk165OdPlF8zv8RkyjE64r1+/pry18PNVLw4V4Bo2d/1URcEhO4SjZMFxaY5GMOTs8L2py0JyujmCowOPT49IicWLOPS8LAsgwLbvkNYo34YXGaVMeWyugtF0Ko2YwfPkB98xMuzaqdoRQdsKvv2tb+HzX/gCnj97C6/6Nu3EzWiCBxQfxQ7KxCut71V52C7LMuf8YXaWckKRQHqZiyVmczRg/uua80xdViHKkW9Q2b131OUEHR3b3lH5EDphtaIqDd+gbmzGbz4NJnlAuB2CiBNceaCs9YRNdx6uGSipYlnqdHsFDvUaDdXqvO4xjmmtz72PSkDcmNcNNB2el0QUVMfA1aH+02l1dYz4GOcYg3Kfi735RunoPiy3RNuDzzImN0QmefPYmw+uH0c/kWUW141rjq7gqorrlUT5p6cL7u7OuLu7x7KslLj79xxdkYRy2pKFoZNjh/p4G2CjEuGb62lBd+v+8IMZSkPP5JQCjk8SBD6KMZ3vPc6ryQl1ziAJrVEEOA/FCxF6XemkKUSrSX6Jj3+Mo58+bI59EzLG4BlTcpqFdazdlG+s7UXmGQpEwen38YY0i49fn3yyCxSG+wmSkYAq0IliDDNWiRYyKSAJq7vuMkCom6ghbjYfjIC7moJGas6biO4x0ABunoDagOmAjSBsgnNeifwMpvnCojoec2zBhTG8MIlRRihofO0AvjnI7DJUxf07FFK5oZmQlMeYe8Ippl6xutopTNfUN9eSCmHm68XZ48GcL1NBIQmAZFSraK1haztnnQ6XLpXclLVWLCuljG1rSDXRIjt7sSGed6LKTJ6Ye7rrIjv5gerXAGpOWnUY3WKj8gpfDSWVeRjN+2jwkET1kURBSRmlcqygVQ8IfrIU4C6ivG5jcKOoObwUDCVXnM8ZvXXyKnLBttEcjKZqK7b9gqQAJZ+8/9frFeKFMTdRqkQyPN4+CXprqHWle+npPDdV+lzcEuRswsH7vmNdnDPTaWwWnhSR1EqlyEpzud6x9YbFUYvHx0d89jOfgUEnDyCSukNKHwZcp/NKwucYaD4yCuQxrk/sO4c02CXJPnNkVk6MP8lZALiG9+uOkY8MkuLXvTt0H7EERyHOezYRGHEPkiToLjmutR4FlN2ghsGP6B7kpopvv/dtfO4HfgDvvvtD+PcvP/CdQADwazo6So7VAt5HVWS3PW9eYPTgbvk6LTls0TkOGd1zW5Y6u90chVvh996u16mMCHl8a0xYHvuOp8cr7gg/IaWMu+WMa7ui9YatdUrfa0HOZwDMzwHIfRi9QxOwrvRJyllAipNgKTKT0LtLbEOxtbfmScPBV4CjcB4CR24vO2q3945C+HK5oDtJNA7k7FyJINGez6c53jkkxMnzocJk78aITIks3B6IMQ4Pk8JlKfP7sRDRqRQiUZbb5BhKb6E91DjqSGBBzkB4vFyvV7x+/XDjTnuC+jMx3EyJe3kYH9qM9hjetOz7Pi0EyC18c1xKJIn8se58mYP3Nubz9maB5qs1YkYm9+dWianzjArlokKhMxfId0OhN0uQuSWzVbQkMxR5qid9NBVrfZLhZwEyd4RZzAJwUcXHe32iCxTtDqM79CjAUXyr56fguGg8lDuh2uMqzhsj/gAH38NoK+kFhc3uVX2wfRDd1NUl5EWMnLH4PJDurg7r5uzko9si0rxjT76B8hPNjJ6ckRcerIGoDIfPRwryk3uKKE3LWHjRvwBG6TXcYRGJ5Er+0qB9xx6z/sxwO7q30jsA4qoe4WGtpigW1tVAKGViJEQkiLRlgJ2jJB4OpgPZaLWsxYmwAlyuD4CyMtdO8mm8v+w2+vRgGJBcJ+8ouC23B2ISFkXBPQCikgdHfmGRbjHC4lgEyEiFfJnRFfDZb9vbDH+MUcZaF2Rzw6ycmY9iiqenR4i4Qy3gEt0Y2VFySEtI7ozhkKxmOC/nyY1aloVjmfXkneWOWhcWrEGE9VFCcBTCBdZMsK4LyBVSDAPcN2xer23fp1Prejrh8eH17NBCDcFCwo9o41oWA9HBGn4VRD6C2KsGcjTKEWwXxR9vUXDG/Hv75wh5MMDN63w6U566VlwvT1P6KGBY36FoWqbh2bbvyMiz4FtKRa1EZ06nlffU3OMiucMq2FX20fH0+IRvf+vb+OoP/zDe+uXP4OWLD5ET3IiL83tJRE+HDoyd+8LwkVRxyXB2lcaMC8h03WTScEGuPHj6ODbsuKdilBNvIYFXRcmCJAUQphyXZUHRgcvlijGUuUc5Yy0FUEXfNjQdeP3qgZYAiVk7SdyLwoC2Nx+XVJTKYp95ShliR9hfCAUOq3lFziQe1+Q54A77EwXxYsJYQPTR6Z4sK/ZNcHm6eDhj9uLRnzEfca3rgnVdkPOClHw0EQGnSNHoI1Q+01TMYmwWh2V2lKgiJXW0gVtgNJOxMvkZBVhWJL+XYs2VL92LlCDHcs2/fPkCj4+Ps1BJqaC1nanjkrCsZXKkkrCoCPNDgAGQmlyufeOqmlMUFAoI3b51frbYkw+PmIOWECiSF2le0BVV2BB0A2C00zD180uEyL0K4I0vUqG5aXbnYxzutOmmsKQsGq5ayr62DnnxBAViXQtAS/yQjv86GfHECAfwdFgESsAxgCGKBy84jFAoeQQKONdBPN56qKFNORZHCjohsQP2iqJACZ/AlwrMme07ussF3XvPCw0DOSAQwbCO6YHp5+tEWyZCQ5lykEuGY3bDO+Tex/R/MPicH8d4yxAy7DyJgyJCHopR5ZMAZmsE9Jm4CBOhIjRng0MAWeYlQCCD4VMwF2VnzguUIxwBia0sOliUZMlALXMji80X8JGU0qZ5qRXZR1TMeyEsnVw8jhjvqHcJ/vBxnHVsXGMMpGWZEGhCQko6odIoTlVJoh5dsbv9fkq8DtEZW0rICzfSfd+wrCtqKXi6XPgzxTCiy0nc4GuthORr5aEsA3JO7IiNhmDPnj2bI5eAfknO1bk53rp8ZklYzicstaKNgev1grbvyLng/tmC/Xp1jgBTfgEeTIvH2OdSkdrAq1ev2KV6J9dbd47AChlGLowBlyfO2UsNRr4fYq7UMd/s35CET9iYLLFcjmTbQEpIVoSPXH0NObwepL0YNQTZMjJbkm/y5sjatm1Qow15TglJyzFXF3/afH35O4TawPX6hPX8DO+9/x6+/JUv4913v4r/+PoVYG2aDLJIOHhLZoBJml1tSuQx5Zwx9h0dNosvRDGt7g6aGFYH+PoCpvoiyMDxeWstyKVOoiTMsKwn7LvzhXzEVCsL5wTBw3bFftmADtw9O3HkeXOQQQ37tuFSClU1jirvYwDN6MGiB7IcCrAoWKgA4n2rhQVZb1STzdQyNYze0LYrwkK9LmxA2lBsPi6ccRuqRFp6mzJ7Pr7B6QtS65toN6/drWzWJe83slqbyI1hqgTCLtvXQVyblNLMnwoL/Vqrj6z8syuJwC9evMDj4wPO5zs8e/YMd3d3My2YVvMs2nkvmeQuKdESAdzWxTgaCr+eiLpggaDOpTlyd6Ko5+F/a5cfPB4vGASu5DKIurGfZQxr8K6J4xkf9dFI092fEU7lcrO/H2h0ICa3HL4YCw+hbQdRG2PwbZwZQuO5XzcclGHGDyCcsyXL/iB5ZWnCC2QBERqt1oszxeWYkfU+sPuDmcBuQ4VoBcymN0jccMLX/vcNMBNYxjRjap3+BJREulOqK0U4XgoIOTp8c1hQJz/FTJDK4r8/JsxN9Y+zoQ1IFhZA5MlEoQMJxvSA6DF/1VwPozPL6KNPi30eHErylnaY0mHSQLQkl4xUSbzb993dIsucSZecMXYy0LWzqMhROIorrm5mkwYeinu4w8Kc6yJvQIE5s8hLoCul4LARDyj5QEyO8DRVokNQ8yBGXpPWPOHYCWmqht6YHzJM0TuvKa2+CcWr0ZJbanXpKQ8RMtttyhJV2bJ14XtdpLBTBdCVUtx1dZt65Wjlet29i1wPp9RxGMQFMXQ9rXh6fAJAbkTKaSo5uD4V18cLWrtyQykZl20j+jcUHc2vAc+sp6cn3N+fEVLAlDPWRD+Hcd1ncZ9LmvD/baekju1LzlNeeshAea3J/fLkbBzrfjgCaqZuLS7MnCkG1cqsIdP5M0MhE2gMxxB+3wV8HwDVPGNg3x4ZnDdCiWZTip4TyX/mY8UE4Hp5wnvvfRtf+cpX8f5738SHH35nDgEFjIxQkFzKrBx2/6kkN9MiX4oSVm7+ydGJ0TtKTgytE0c1UvHR23DiKcc+PKiIchZHZTiRZjFIF9sK04WZOsZ9J1eiIs+S4OHxQvRvLCi1uNy7TPWQ5IR9p+OxAfMamXH8qEp0xmD0iUoJOQchmsTW4Ty1nAWtDWzbFZvL/TkPYIbZ6Ep+R86QsiCPQe+V5lbxcWAClLU32uWv63muJyDW1PE+Az29tb8PEiwRk0gMVm+oiKaE+uUYGR1J37E/RFFyvYoXjg1hoR+HM0c2Da29wuVywel0wvn+DnWJ5ksBVbcXIIIv/jyYh+6xQWOaexeZaI0vaC92gG1n8OgRUQJXEsLv/zHeGd6sAbSXiPFKTgk6bgJhMy0b4NeEz9gcGHE07orEJAfyGa/JL7kZ3wCAFKHaCW3yH7mHx3X7dVKgBFeDAW7wPJpgH4OSUgMEdHTMDll1GfQS8UU9umJ3SRqdKX12acPRA4ECnsYqSHZUs7FhRufHwkhRUuVsVgkrwzvnjDDJEsyHzuIwtlm5i9BCPUsE991Cmc4N8YOLm64jL+6jMkcajsTAe1tznFTN4NaxLCK8sApFhBqvZc4Zd3XhaCQbwwmloPcd57sTclkwemPRooqaE7Q4vF0jTl0AUKqYiqckA6y4e6esV4BSk78lHvi95YMw7K9bslhIrVm0TRgKuTC9t7fuJki8fjM3R5mGStknvWTMgnxHMuswIl7k7DEozwQY28COhrHyPfQxoBvdWUWiQGTxRIVL9o7ZcL1uqKeTS975dpcTnSYvl+t8j9FNH14R3OyenZ/7iMoRoz4gqQECnE8nut660qU5T6i3Rpmrkxafnq4QSSgZENCQqndDSsxLGmPAhmE0ZrmUSmQlyKy3+UNvvBz1yyWk5TfwcBgjwKZHiUJ95OCcqmTTtl99TEPUj0Ubs5qIYvTeSZp15GR4ei+Wgpzp7rntNB9LkjlnTxz/qduh51IgPraoZ1q1JxF86xvfwBe/+GV88Ytfxkff+wiqOzUURv8IEYF0xdB2HHAGpMjZckJjSYXjF8At+Vmsszt/9PXiyKgyzG/yvpwLNAbdW9ugqVdKAvWojeu+YVmYDdM610CxSnfTWnF/J7hcNogmnJczemnYGxG2ZVnYKIEkcvXog3VdoRpcBwACnNYTQjIenT2t8Tla660TGU5sAIcXCblkLEvB3T3zfFobTkQnoTk4HUEYJ2m3IIugqeLp6Yp970fKcqJxYCQhA7HPH3wfeq8khPInRkExzql19QImCLMceYbVf4wZwzyQo6vqyqQdYTcwPA6Bvi1cG63x+j48PeB8PjM0dF24J3R1t2QgJcXeBKdThZiijR3hgG0qvu6pKGJqto/xsTDxXbh/DmFjYL6n+6DK11Vcn/CDcnzIhM9nNIianLdIVKmIzLEuQP5lnDMl8QydZwccrY8K11hOQXCMuM0AawiLfKpJZRJ0P87rE12gDDUkddd0CQJrEITgHRUJpNlJndOi29SJXozKVv9aHjJk/7cRkq2BuMvkPvAQTYOoSeQlSFGfz3nlPobLvMyt5A574qQu5ZTDmbE3xeiG3gmdplRgliBDvdIVqISbqyBbVKrshoOxDT8cDCxSWNDwQTVVaHNfDBy21oDzCkY8wPAsEoa7qRujtUbzn1KoMqJzpdvpN+/ETLHUjLIuWEoFMz8M2njAmSpGcCkcnTIQ+s7ZoVqRafbFbsznrCmCsgwYw71eWIQNjVm/oJ4WHFHh4tbSVBu0vvMzAi6P5iOpRlne3poL+0gwLI4YQeBW+CwoGJ7onZKFaqRxDUgFTFCW4ocoP2cFXA1DD4eUEi6XC0pKqPU0jaTC2Aign44qU2m3bZ8jkciLym4Bn/sAskJHn/LJ8Jvgnp1cUuqBeEnIcxGO4PZ9R9uad5CFXC3nqjw8PMBU8dZbb91I84FA+iIzSAfneuFeSZSFKbk1F1eWCLv3BE/rZTYNcBD2Zgc6kSH/cT4OMKV8WlyaLMYmpZmPg1JCKixAuhoqksc3HOPenDLa7l0eDLUsuF6u+Pa3vokvfenL+NQ7n8WHv/IeyMMhB6uWPA/iyCWK8ccYHUsFSqlMidWAxTN0qUwqH51kcX+uYPAUawGEpo9xQjgIBUBcds8DQDyXqzXF3emE3jO2y/Uwa0yZyiwIWtvx+AhIIWIVviTJifCwG4J14mfLJUMbD+i7u/vDCdcMuzdRwjfi+0xkwiQWsq42m+TWxINxjrSH0Ql5IZ+hgQW8GkeP2VHJ8OsYo3t4po+15ejeAyWJFwm6eRb70xTP1AuYceP9kyc/DQi6gPOU7PBnyd605mzoPU0vlVLgRUpG+GyZAZfHC9pG99zz+Q53d/fovbmRpav7umFZFlThuM/iCVB1I7xB1DgllJxwWleUQisGAxFAdS4d5CYPx2KfNA/rY2EQKGzIwlkbk4+YxGkQAiAS2FNGCWRkDHRT6OT7mf8cH2FKKI6o+uR4CNAUSfQyCynTiBD4eK9PdIFiQ2GJwXYQjllGoBuI51xmsdCdST1U0XWgdx97qM8K/cDcfQH2IFT6Ax3EytG50XVTpFhImZUqg6cw58k9FCoAUl0OiCthdqFJeGC3RldEys08ZVKjQuaDaTk5CYrjjt53mCOCArjvy3DEB9MHgZXvoUW/dUKcD42pp11i6t4hkc/gnh7+83IuM2CvloSMhG5CDgoMZcm4Oy8oRSBW8HTdMbpCSkcaiUTd5A6cZkhF0NzVVhDvOTExNbsTgGEa6QWMnJ14vG37lA6TR8KOrQ2qVsi54f3sjhKIc4T68NRl5T3vylEOHCWrNXuBxAc3l4zr/sRrqp5eagP398+Q5Ihup++I5wkVAXxsE66Zqopt3zBGRy2nyT0CeMjlzPvCmPeO6/UCsyg6fJzo44ruB60FEjjHdaH+id/L8zBI0e04oXH0gfu7e2z7BkBw3S/MNNk2z1U5ze8XmTgxyx8eJBdr+rZLtVnUC/a9O0zNsEK4Md1ExvzQa61h24arLzgu3Xe6YpJ8HsjZIdttrQM+dskpzVTYKNjfSBpXAyTQqYF9cLz77L7g/fffxxe+8AV86UtfwEff+xA6GlhCp1kss2ghVDvJj8PQpWPx/BVVpj1DvHs3o7pNEkqCK5zIo4m4BXVvCqK/xlGr3ydxyTZyQkqVSJcZiwIzbNcN2HeksiAljuVM/Lo0kPvkRZE1ZerwskTLjRgj1rpMk7B933Ab2Bcp1nFPJNHLw8yAxAYrEF8d5NttbXix63C/DpI9jXtjXTKum2JrHRXiMQ/G/X3wc/UeaMrih6xONQkNlg8SLT8LEC6xRH9sfobIoAE6SmFqeHBtVJubx8UI6Rgjxe+VcngTmbU5HgUO59sxBh4eHvH0xNHP/f0dTqcz4MV5Hwo0l19njqJL5qHOBnswtgPuEVTc38ubYSozbSZKv4Gmwxw9d7Qjin74ZMHCPVaRNU3bCQZLBrof5FaOUtFtqiWTZ2ix4MlIQq6b3Pwdhe8tdoRbMmvOR4Af8/WJLlAE2f9xua+y640uQbxmZ0HSWXh4N0/TpeSNuR0ZNv5ghmsovMrM3tn01glr+qwSaUwvjsN+PTZmg0gswgwIpW4ka8K7ZcqfxzD0ZjN0TbyD5uHizqaZiyGUNd39AJIVd4I1JFN0PyhExNVBOhcvHRBjLonZYbyhhAkZr4/AiN5whJVrdmKf0gE3saPtURi6fwuE4yABM2faTu+K1ARSaV1Pvprn7iRBk8aCzGmmQw0FDpOaPxTDK30jUdSi82/DjeMIPz89PWHbd6SM2ckDmDNqmEyunAhm0YJEh8iw787RMTvbP1fQ5dEloKMPQq/J/WdwEMhyySiVHIC1LhgjHC3puNvHIGE3ZzxeniBGRCGkh1HM9j6cM0M1xbJQ7i0B4xo77GWpGCM6wjrRmShWcs54/vw51xjgUm+GeV2uV+SU8Oz5c4gItn2HAR7Ql1Ftwbos7Pa8AWDYIpGIUhjUVtxGHY6WpVB7AE4c5CvlPF0t+eh5fABnBVREJLpB7/uOiJEP7lDycaypcybGQGsd57sV5vwcuGlWylT8jNahEocPHUJqJV/loPcarpcnfOc77+NLX/4yvv3Nb+LDD37F0UJWNzKcRxCjBOdHZSlQMEtokTTNr+LgB4DrvC4J7kQ4D8jgr7EIiENBJnqX/XsGCG9Jj+ekVGglMb/v5FwEeVbcTTVlD6NLMSbmePru7g4hh1/870Rzdb1c/WASP9z5HCQvVESmEQ+Ag0M3xnADL7r7qvGe5yKwIT6Gkcn1KDV5OOcGvw2wzsZFAH/GG1pb6EuUmdUVTWfOZSYnh2Q+io4xCfhORE0sGAGZNvn0ySGhOxy8GUSY3fvnGHNxH7HJgTpGngdRNzvZVVXx8PCAp6dHnE7naaN/JC4bbRqQAaEbMmDQURj/EVJ0AGFCV+uCWhJab+jSmULtqAfSwTVMIL+HSdeYz5AOQXhgjdFdaJH8GgYhmG62UeSxaYZ7aY2JyiQxmHiSOFECrm1v6i3ZvGZhJfH9vD7RBQoXoaI7KTG8GMw7UUNyJ1dCv8PYHQ91Iu0NyzuyXkZ3SBkcGxXf2Enmsgkxq2JuvjYOFcnQMW9SKXmmg6p2XC6UY4qTWQGBWMKI8QRwsKpdJkM40tw6mcUBkzZZaJG1LV4vFIw8fKHLZHHPhEq4pt+h5+RkMRpcFW6IUgAMn0UTEsxBDEsGs4hpV8gg6qAmJB8L55RNjvHD4+vXaJth7B3aFDgxxMySuASbxUJyjkEHH1rrwFLTJNQyc8UhTU//HGponppa6wnr6YTWnfwqiSSv5cY4LIrKgNF9PgtLSMbfF5f2LZmGSiknbG2j4knYMfTW/fsQjek2YLuh7Q3r6YT7u7vjYK8Vw0JpEcx3Xzsl43J5wu4pxtkRpbpUbNsG9EOdUEqdRUbOxQ8Km6oCejtktGbz7wAyw9HCCIzcDe/8gbl5RJdzvV6xXa+O3CyIcK/WOvZtQz6ts4sOnwQRgWiGapvvEXCEIHMdJ/jYZcLWeULw2RVuow8/sAug5pv8mAdSSoS6cy5T7QBf3wLgrbd4v3bnn0hJznsQ79QXh73dmMsMaWGuTRD9zBU/77/3Pv6Pz/4f+OoP/TBev3qF637Brh2LVCe2BfciOYjkYxgYnh4foctKfxsnvFe/Dzl7Jou7kNaFOTFBLL7Nj1FPvI2inByU7imyXD8cX7Kwp2EeC7ZQ+5WlIsjk5DnwXpZS0EtH9YyY7PvUtu9OzM3Yxw7L8Oyr5OgBcL1eACOBl6TeNJuIUhKWWknmHSzc11xgcgQBZhGMfgZuxijLqTjfo2DfiLYagtdE24auA/vepjcPxz4sQpurz45YAlf+5TCM01kY1nok64r0uTfyv33fTgKZ7/kIc401S9lsmQoXGh8yBJRrOiEMJ2PffXoKG/0F9/fPHJF0359a0fYNNsTH2H7dKw/7UsIBOgoG3xOd3xf3JxRRQdLOqvSlcp4Siy6u30A+YfSlGs7NW2rFelqnWeE8I11YYvDi3ABzD4NUyWHhte+Anwc2KQQcT+YoZD7m6xNdoOg4xjOx2ephAUm3yEGyJ225+bWzQFEn9hhoRBOchRSjBFceGA80n/IhiEdRbapDls1nsykn1KW4JGxHH4qkaY5VzI7u65gdAhErvtTqCAZlxNmlxMQt4f92W/NU4CUw2BnanF1PIqMcB52pzm6MDxiJedbDWddn9E4whpvf5RTGcn64JszRVRYemmGal+RQJOxbx2iHYqOWQkQmOawoglEMCSxAeg7CW3IDNP6skGfHGMDvuBcZ+Y2DuJwXFDPIJsiZZl+x2cUoQjyQXJyglhNvetwLIArB5jk/xsC1CSFzFsucFdCLYllx/+ye+TrgZzRxwyYvBOgO67yU3vD4+IhaiicS03K7LAWPj49eIPJhrjVMBY9ZOWFYIfm2Hm6xIpjKEHq0gGoPf0Z4z7hpt94hrlrovaPt+1znMOB6ufjYBfP9ixykwugeex8uTY3N3jDTr4EJ64ZcOlQ5gS4QDr6BpOd3Ss7BYZEdHXCQuWN0N00F4UaIxvHA8OINrVGc7gXKfI8is5tNKaH1HZIrXr9+hfe+/S380A//n3j70+/g4VvfAJR8K4EASkdmADxMFTNryAbVUcnHKeEmys+asS5nPF2eeL37oINrvg1U4wFXanJeWbj2eoK5dkhekIXy49Y47qqVDVH3dPaRiAiuq2cgdUOWDA3puVznc9PaERJ4vVyRc8W6nrmfpeTIH5Gs8/k8c7fiQEQyTDUNIsOII80x/5zvo+SM5XQCjEX93jrMOpIYahFAM7pQBRc8tKVUQMMVm1lVkesTqqlbcms0PHy53NaT5M3MP280s+QZsulwYYFzffjro4CN9Xwrgw8ye/gp9Y6ZAVRypimf0wXGoDttawPXy4b1tLBQScwR2q5X5xnFWMkVZIMjeCibrDH2+RmpqoqXc0wQ69Gf+XEUYiz8BUOY0wawQVP1Z2Z07Bum+jRJgsnxrME8KFMHVBr365ExxDmNnJ4iZ7e5cGKzRCEov07CAqnW9Zln/B5sLrrhs2pNhV87/NAZhJPNq07uWnoQ/+b3U6hW3igVjgUSu+wEgacRcsRnmOqZXGisFKSoWiuW9YQwUDOY/+xwSQDgI4G6lEkugx2bsek4KljvplKmEkED8jW6BXYnSKYbJCauCV8kNkkif4NBeJhdFgCM4CeKj29UaMOdaL5WvJAocDdfNyYajeMzVUHbDTpI7ux9OCFLfJ5vSEIjq+wGUZYLhisfiEAlzktVJt8lpMKEF9NxYIAQfClMKW3tyodzADroJdA9Vl7VSHCD4CDfhmTcORm9O3k3IFKbNLB5CPsBTMh1wdtvvY1SC4Yq9sYAuJwKMI5iMbgnaorrtuG0npyAlzFGw7ZdqY7o3Ud/kfSaobOoZRFZa3YovnmhTElj7x1QZfyC2cwgEh8PJi8okwEPjw/0wllWD19bnP+xYd/3OfuPzrEZDZ7CqdUU2DadhUDyLm6a48Vc2gvaaeQkNBHrncVjyRl7372IpDwzOtlbxUVrXug5bJ8TXWa3tmGMgfP5NKW49A5hQZXcx4GrXzFdS9WccNtuuBgFy7rg/e9+F5//0lfwxS99Cd/57nexXTaapRW3/QZHimo+wvD9oeTComXwoIi164MsGunJCY8Pjww3TAKDm16lOjOfJGX0bUPJ9UClLGNo51gx5ymbNrD4TiXDrN+MIsjZySJAAvOaSoHuO7RTGhzOryHPfXy8YF3UYycKgA6AxNHrdWORdTohJ6Il1+16MxI/OG3A0cSYo10Gw+6bS3cUbvSBbd/Q++48OUykg8UFn59aCpp/NhGiy09PNken4bQd2TtvOq3yuY3fCyFAzKei6Rzzc7AouOVyvSlpPng7x2iHf76u5Kjs+w7tHafTyb9HhkjH6Gyun54uuFyf8PhYcO9eKuv57ChRQ1KSTUWIeCJcekXm+DAlu1E28UXUTufnpY+S8foOde8mBj6O0b1x5iguxuFeh8z9MeWj4BuD/B4dQDNaHWQYLGeeTd5MSwIqfJyfjqDKXzcyY8rwzC3m+ZCZIx2qYbpmQOmwwTyKIBLOibN5ZRqpmuIbS1SwJebNfKiSZOSCiTaE1G6oQjxDhdDuDhgYfV4LDj6JjxLgDPT5aQx1ye6vwUM49PKmB4eCCI9LoY3vY5LSzBw+xgzySwDMnXPNjLHZALsRHTAZ/j3gFJxjjgofRaTMzY3mQgwhS5pQE/NpYmZrQ2E9+AA7ilSICU61YlQ64oZzYoRg8fuRxFtywd095+ECmZsrwHFOynmSoIFj84UI1Br2je93v16Imqi7uqpO0yVeH5LMSk1ISi5JyjxciOQY+tiJzIUPgxetdGBdsCwsXMcg8fDufH/MYR0hqnVx7lGee6SIYHfnTFObtvahhIiNu1R2p1mSy2837xjPPocmWhKKgtZ2tLbher0wiK0ulKYKcD6thIa1M2hxDHbnWibqkNwAoY9BzkcpEHdIPZ/PeHh45NrNB8xN2JlI17DgVB1chSDjFu+awy21NyVh09fbdt2wiUyvIaADwzBGhMOZS/b9GZoOpy7LhOcp6cB128DARnaJDLkj+TrUK9AOszzX7RG2yGDQph1VFrx89QrvvfcevvrVr+IHfuAH8c3//kh7e02UDoo3LRKZL1y3dV0hdYUZFWMAlwRTsBV9kEc01hOu20bXUz9EmL20uuqjO7HXmPeUE3kuQ91WoXupf+wN8T0Ab9A670nIysUU6mPQsHBXpY1+Tpm8fOcxdG/wwo01Dvdt23A+l2nTECOQW7LwFCrITVaL70HqTq172yEQ3N09Q10KHh7MAy8j8gCA8WDcto59Y05P8meR5oBvpiQvS70pIoiSxAgK8NHebEz5mZblOKzf8NbB0QykGVVxWEtEkOLcwW+uQTQO2+XiNgrJlVsFScjVCQPK7XpF23Y8PT3hfD7j7tkz1NNpJiGz4BtABwvjSIyEF3e2zWY0snJCTh1I6t3dHS6XJyKdlyeq0bypjM2pVHIlj5/JQoXqTkVxH5yhOq/T3hUp049sqKKoxx8krlHkDEGCWCDWMi0tPs7rE12gXJ1kasrCAYGmmGGYFySmTsryoKQbhdNwj4iDfYxjYcJlxwh7e/OOKEEcIoRDxMx9qI4QUK56Wk8OnxECHl4sJRHkknyh3UBwErP7g0Og6rb4g9U8YVNxZ1aOgGj4ZujG91xrmRAffBPi+nOpsbdbIavOhTAq0gFdx6EsRCznGIy8FSB1AzI5Aww2S3OZ88FNc+RTM30JRQx1ORJH1TMr6F5I6FIApiBzZ0JzcpfBkN2P49Z4iwcwO1Z1v5nuwWXTPEi8CB1MKoYwCHFIB3ry5GPn9AxFcXfG6rN7QEAtccDwBZ/+9Kfwmc98Fs+fP8e3vv0tPF6eYMqNez2d3APC76cIlrWy8+00ZVLrUAOt7/14oQS0c8TjyaatNU8AFlyvV2Q32lK9UaQNV3cZFRdU/2TabecVrTdc9yvUxrRiF/AeTZdMOaID1H1/aiGa1fedGUUiHoh5EN76GyRZc85BOq49v3L2r+IHaHSbdM8sXGOmk7ypqsiVPBUSSOEFueK0lmlYGIcNzI21KnOemipSzjivxfkQJANHjlHS6q67GXUheb31gn1zBUfi4Zay4Jvf+AY+//nP48tf+iI+/ODb2Lfr0XnzYfdgP/JldCBkJa7gCTKxc0h0oE9L9OXG3oBft230qYln+NmzZ8gi2F1eCg9yi+BPwJAykHCE0mVgcjOGNwumAtNO1GsH9r5jWVdHeiiNP5/vXVXHZzmaCbMdvXXUpeLZs+dMS3Zjs8vlgn2n9H1Zio8jIktHputzFDjBhzOYj+4MkhR35zNKJTn4GLvwoDdVrEsF4yQujopR6ab+fPfe8fT0hN4r1nWdqAL/bCClw2QtkMhQWrUG90IB1rWi9+TvI06Ko408PFfSG4VO/Fn8TAY5EpXJTvDtfQcLnOxIOwAUqLLRue4brvuO148POJ3OeP78Geq6eDEQhYKhSKJkP2WoAb0NwIvOXLKPkJOPraLAEkrGB/dHNkJO4EaCSAdMSJsQTLItUXs+b/vNs0+0ls+LGHlYKbPBqTlBCmkEQ4SjHRlAynNNftzXJ7pAab0jl4yIuAfgEjKOJdQfBO0OWVlwORyac6gx58SOEU5yBTeBLG7Ypo029mqzMtehyJ73sNTiUkf+eUlkpZt4cdI95C3RcZKW3wYD0YFcImGUHXHMWaOoimycXDhaMZBfE1wMEUp9CfMSHoyDCD6GYBCeqwOGS+iyF0BetAQsb77xTqkxL5grbc2JbsndZz0uwLhRq8tyc86w7oqoNmbWUDj1OrsS8KJIVX1k412JAblwYaeUSCJrzXkS7mOQMta7lQnCrc3K3sD3wwj5hGs8vF7IGEg6vDUTa615xc+Nc6nnSbCsUjlDlxhrGPM4nh5xeXriuosE1exEUGFhEUhdb85zKBzllEpiaPBMhnY/nEj2vbXql0yUwpSky8fHx8mZWBamz5rZHNOIeDeUBI9Pu5MgwzSP7227XicvJeU8iXW1VOREp8/dESd9+dLNnI45fEoJl+0KHUcnGejeXDM3fJR932GJIyRLNrt+8rXonZFTwroS+TkvhMVj3BXrJIy7np6emInTma2VsqMgPt5k02JIVVAXjnibx9yXurrXDaaTZvJ/G9iItG1DXRe8ePES3/zGN/DDX/0qPvvZz+Jb3/qmjwGBVDLE4wxSLmg7Db1i4zdwpFZydZQq+zNNZCVJRS1Mh04puZXAUbBnYdJxqQUGdvdwgnHHAFMpvYnyUdUYAwNGrlfN5H85WhcBo6VUFiFdUTJdZvdrw7oqzqcTcil4/fo1ni5XPHt2D0PFvm2wveF8LljXkx967MxJ1O1e5LqiyFUulvjfbJjgKhVgb7ujWPAQyStHD86F4nsWpCV58i/5HFSqRQGUkeuCMJw2pYV/7805Wat/vY9sTedzEPtm9qykbaN6iMikIKImQuHIQiY8q45nMyz4o1CJ4kr8+c8lIY8EszJHSAfR1vN45oiX5PvWOlp7hev1gru7Ozx79hzn8703JIcTdPDAUnKrA1+7mtgQBvJ7i/bk7C7HQoO/3sNITeeo8A06gLCZDL+pUHbCC42uHdIzi2U36+vFfcFygg0c18cl0KGG+zivT3SBwofMN0Jh1PfssJMgiJG0L8gwSSiKOW4pTlqttWKIMqBPQDTBF/0MKnPwITIqUiE5iYcxYTuNDjKTKzFax75zVr44t0KSAV6YBNqwOskrutMDQWFwXilUd/Az+5gouQKFtAnOl1tzq/Xg0nDEQ+Rc3zz03GQnfs+6wlIgDm9e5+QddHZpb/aZZSz05DJXVSCBhLZhhqZH7oMpoB1Iwefi3s0Hg80zORuuotGhMyAxYMvWKVW+XnekTLVL6y6qkMxxn5CMlQvRpgiPK1Jho9Egz8MScyJ7Pgonh6NIAnQ/B461ZPIT2r7jxb7P95WdZAiTiVDQnIgFlI6Bbdv94RSMplMxEX4l62mdai0Gcwm62SRdZv9s3YY7Uipizj4GC54xOg+LWLdj4OlpewNVEe+8r9t1qi/CibOrG4+J4HK54OpKHgEJtiLiiA/I2o7kVOOhCCGC0PeOJIFohbeJf52O6b6s7i8EAVVwgxJ2Jf2EaroCtE75cM40T7xcLlBl9hDlt+Jv6ZB11lo5jtMxw82u+87ZvwmuY+fPGGMWSiOItX5dQ96Z8oL3v/M+vvilL+Hdr3wVv/KdD6CjQU3gYBMi0DJnOkeHl1CYK/LgBkRZ5PbRAeswc4XhRufV892Z3aqjCAGno5EDQkMvJ9s7n+XgJfE9J2QSaZv54cegvd42TrElodQF93eMVDAdKDQaQtt2lJTx7K3nEEl4/ZoW7pIEbRt43C+4PDbcP78HpffD90jGcMAJvaVQzk6FGp1q12XluAo8sGol6dac4LztV6ip75PBIaQMdnqOKDlHQdLd2w6F4Hxaj+bSuO/23p0IezeLjltp8LIsOJLbiWi01g8jRDk4OTkI3BrcqoM0G4VGSnZTpITPiCGXhGocHwIhhCgkou47Lpero6YMt4wcoYjjePWK9+D+/h7P759hqQuRy9aIoBtRk1wSwizRGu0VxLlfcFTrkFMnmCTkTI6RuT9Wb2PuvXw2cKwtbW6wdmQBDR2eu9Rh5kxA4YF73XcgJWgmwupUXIIHbpT3cV6f6AKluacAwI0skAceBTdzLiXZLgefQg3q/A+mcCZc96tXm3JsnN6VxGu6FLqyYF0q1rogOBsx++zxYHl+w7quKHVh5DgOtQ7HPcU7xcPltnslnYVqoJjxqlICSV5IhrmJmg7nLzhKU11d0bremrD+KpLqDWHJMD+3JK98vTjKiYdplozsX5flIPeqKiw5nG1uH5eEzuaVxUJTumcmRyGSd3zA4YA4nVodVgxzsSBAJx0OByeUsvpmkHC97jC9IiUWOEspSKn4KMsA+IFlhgFFMQOMG1J1mDrn4v4jPkLyfweKdBCvufkw8It+KyGBruuK0/kOXXltyWdgzHpJdDW9bhtN7HJGXRaY7dOkqxsPqdP5PO91cTQpl4RtJ8+pLivu7+8niTWcMUNRFt3P9cqQttviBDjQjEiJLUU8p0mR6wrmi+xEAmuFub9IPCv7vnMNaWS2GEqmVFZ9lBZGTwCIUiZx9CljqQUXJ7EmAUQTmneFY1TfZDsuo6OOOnlGAvKtaJF+cWl5nUnSwRsI91aiPQBHL8C+EYXJufq4kh2yuVkfycNwJFTd8LAjl4qHh9f4zne+ix/6ypfwhS98Ed/85n+HDkOzhlwdjQQPumLgZp3dayWMwgb9SSQRBk/SkRIdgCnjVtzjDorMwgPdSSW8jiR10qcj9hrI0WzN/UcNtBRXmDVYyVjqAhkGHQ1NFWhXnPMJ63nBdr0AAAQJl6cL83T2Dc/feguLxxsIIn3YsO0b0hObOkrvDw6MJEfgckIpFSU/x+V6nWaVJGB3TNt3EdT1BCB8Tjaii2X1/Wl4eOVhvZ8yFUXresK2XXG97mjbhlzKNJQMrkxrDa9fv55Kn1IOeb7ZwXUhuZbPMhs8m88gkaJbbslhNx/Bj+5hzg0Qt7wUPuurIznb1v2QTzCrM9ohmspal0mIT8kwBpHg0TpevniFx1dPOJ1X3N+dsawrgidE48TIOfP4ljZw+LnwM/bW0ccOcZL8RKvB83E98SyLuBUWS96E+h7FkduNEMXvvi9LkpTbgAgtB2xZYBBkp2JMMt7HfH2iCxTyS4IgizkXdBD/OHgRGv6MmivUH5BaClaXuxk868JHcMMMA27g5BAVNyJFhuBUF9Qb9nSQbVuntHm4AdW6LCg5o+07xBnXQYqLDpmBdjo5BXx4aKudgh8Ad270UQ2lX4DaAPxBqiVDvTAzAKmpj6bc4Ccfs0mf5TBwCqxiko8oVODcHEOGITsSU/PxeXkEOSYYRVxU6EiufC5Q6Z6j4kWZoxcieR4ODLRy0y2HT2dx4oWGKTeUWld/CNlhJZBAu/cdmgg/s+OJxOo3Z8OA+744KgPfYPP/l7x/Cblt286C4af1yxhzzvdda+3r2vvs7ONHPhKFJAZEQY+VCOaikAtYSEEQBQsBIRCMKGolgokxBS+kcErBhAQJBLGQQoJJIakcAnKIoBYs/Pjl3Pb9stZ63znHGP3S/sLTWh9znRiz9//xffybzLBz9l7rvcw5Rh+9t/a055ITD7bi8Qd8EJN1Ox4UxkMuDL8az3Rxn5rom87KjXU+TIgxGZIRjVjYMOVks3kiFq0VUyLEYS0+TRO9JuxAVzAnKMaI083JCmbFNKXxvY52eOAilWQk9nI8RaRwmoMd5ByVwtZ9V6XqIMbhvjx3P4A4FoyWSOok72uIO0/5isNkvi826EqJ8nnySfiMuudDrQ21n8fa8kM2xogES00NdP1kLsp+T11mqc5NETUEiy2kj9sgQJ5ZDK+XAsYTwNCcwPGeUDIZlfb3wWDrt976Or7lc6/j9c+9gXfffQ+lXDiqBxuD0gsOE9OBayexHeLIohUotWCzFN+GhnlmcXo4HMb40jOT/BkutULUgyptTDqeH4yxEccFmd1vZUI4nxFAM9GUDifBm5mZjZ/8QI4SUNYNT5Ynhibb+LOTLH1zczMO1ZEwHQJyDnZgs+D3Ri3EiJubEwP17HuIOEW4VN55RM6ZqbWgVZo8xhQwy4QJXjgS8fOLczwccJkvON+fOaJVd3+V4evTejcSbcU0ZUtQDuMzcyTqqh83EqPv0PF4a4W+Fyhu/EY0az4a7zCQAO7Kl9aCBWRyhMTrMuN0ZKiiexIRNTF5v2UicYzk1gl7M9eMt3d/f4d1ueB4OuF4OAyekJtEws6wrkAvHGuFEFikjs+Hq6LW+TXc0YMEk20Ha1QqE9xjREzdzPKYfcVziectxSlAC8azbO5g3dHdZRZ/wozaALWQPTMA8lk4QEWAq3FgRNYUkUNAVcLvaUrImaOJac6QwA2hmha8tv4coiJiY4HATVphwXrmRMn5Mh8gN+kS8RlqxXxMBgfbyKh320j5rrloSPqMKSGNmHSQD6Mcl0QL0OtNQB8PQyBs1MLxCTvJ0iq0dQZuyZ5kSSQDGAy2FLm4e0NpDdI75pyRxA3Yrhey8Q3EggC1DZWTj69UqaDwMcg++32+ho4xALKPtDgHtZ7M35v9vpQiDgc6spatoWqwh5tBXmmiL0TXlcQsm++Jnb40puN4ISh4kJjUMVmeDWCQtSlB3FXTod1gbozJuq+UKElNib8bYp/BDuhpmtAa+SXTTJi79Yrz+Q4pzSbpXXBzczKYmcRtN0Lz8LyUEiST3Ek5cB7qruHhYTk+Dx8+xLMnT3jd+oaq1fwS+PnmeR75Pfd3d7iYHXe39Xg8HskxWc6YY8Y85wFpR8tVIEyfUGxU0+1ZYQKto5c72Zq9k6KUlcVyZmBkmia6I1uGVDC/nRizrWXKowmKhH2s4zC8km8hQVALJY8QQ/bs88RI9ZjCuSoRtSXUzdaICpybTTUTx44RLAIggo8//ghvv/023nzzTbz88st45+23DOlzYi+LucOUMaeI3il/rnUfg/izI2OMaiaEhvptW0VW3RPPzQLB/S9izkgxYh2ZLn2sM5gAPuUIaIJHDYhwxKPCYhswrkotjOq46qZ7b5imGdu2Yrksgx+Rc8K2LggxGGKlg9fENXVNnuS9ZLMlZlDI9OPlsoymw1ObWZTU0ekLSGoum41xczZ+XoT2naPnaFlOVJmt28Zi3JRYRMYTQmt85krBpRbUbIGK0wQPDfVso9HABPejYVBl6+Sn1WoZVXVHetXIpHRzDhZMCQDRuDE8X6AeTEjEligF3ZKZy5VH4ecoE78+I6bINVkbahestWB79hT35zPmecbp5shnOka0QkRduMlDDEEstZJ0PmwOmvE1jfQrXCMIYlyweaxVb2xCWIxgC2xWEO5HsXFyGouVJh1roDBBE4AozKxTypQ/6euzXaCIICTLrMFAQwck5eMcqNIQvzaEJMhBQBfghnXjBe+Nu2hXi9DeSKJLVx1NEEGaIuV4qqhlD9cb78e6HKa6CraF7O2Y0pCRcmGDi9rSX6u2K78E1gtRBOoVau8DktxHSRW9cQyTwr4pedGklZu0B8uJLb5e3XjNHCrNXrx05tegG9cEVK1E6wTRWc1z8fOdUXdE9YBRgQjdq/FnQrCxi4Xp1WYxfNaxgAhSLeak69D1uMW2qRtaE43cRuFoB91LgdPpFsEe/LIt6NWdIwUSZuQp4Xg4goGADcHvtfN1TK6qys8ZQsDhcNyhXBEb7XCun3MCQkDMGXk+ooMHa7VNB8DoJkPImOeDfS4eGpfLijzxM82HA9NeW8XphmvkeDwixoj783lEpve222q746sbVAHcNB/c3qK7/XfiM6BdxmEWzTjKC8YxGzfkcRyorQ3VR0oJ84HjH7kI1qUYysQRz5QnBvdBSBgfyGDDWjcbEcpQs8TItahNKXk1dZRD0t14ZN3uvww55z766o2weOg7x6WUMvJCFERhhidQYKS9qqI3EuCrFGaiqCIijCKLSptGUrWNoXoHvvKVP8DnXn8db7zxOj768D161hSODFUF21qRckPMXHfaZDyPelWgcLkFQ/EyVIWHWVFclgWHw248xqwpIzoK3UEnzVjW9Wo0G3a0MLBIadUM05QZXL0D2hjLYdsQau9owBhDhxCGp8hlWdj8VcU0J6pbNnoLOZ+u9YIQE1KaWFRXN+DajfV2TxzyvVzB5WvMRyYACbshBuSQiahVT3mm46p7aTTo4Dh1ZdF5OMyI7iJcCmopmGaKD4IhWK1XlG1FqwXaGubDPNCJUZxetU8sIMxJPAI5sCCNcTIJuLlpCx3IQzBbhmt2QdPhrSLi5FAZIzu/fy7XnqZgzUY1nsrKZjdlorXmadMa5fqlXLAuC+bDjNPpFsfTCSlkUy26PFwBEfQQMCd3ht7MTM6SvkMcyif6v3QrLHlOhswi/3A4YFtXbFu1/DMW0r53h+AO4Q1agNI6etpQYsWcWGAPxP0TvD7jBYrBfvYAw294ZN4MLZUrYHM0BUj2UVaZfZjHWGftKEitqJ12wlAzWwIscpqdRjO0pJZii8AeQoP5YbN+t3vOOZqcky8FZVjJipKcE1J8viIdfiQWirebiZF/M2DYYUgEblLASLmMIZqiIwzeiAR2aWx8XOLYIa0jQSAhGbRtXJHgBkgYowBY98DSQQdxKsBlwmI/w/JYBhJFZIUPjSmuihPuTOosMqzyR2UuPr/kRpCnhNYpL725uUGKEcu6IseEhkLr5tahGpF6Z8HlGRNWyHUoIhJKa9YtZnSxomGacZgPQ0EigehJTBHTPJODEiILDwhKrUSlgsXC5z3NNcZk6pSO+ZBxd3ce9xE2/rgsdGztDTgcZoNQgSlzY8op4f5MKLu2hmzQfhyIQYNIwNkIriEE5HjVXdaK8+ViPj17iOBhnjGPEMuGu2fPDEHi/LyUhuPpCNlo8uSjiF0KSj8LplhzrTpxdnSZ6KiqqDEgu3RbA9b1ApFiGSoAuPpQm0Lb7jbpLrGqHmZHLoFCEVUHT2FZtr0YlwBIYPijkf6YXtxR4mpuqywcmBRM/55wJYVsTVGUUPw8H3F/9wxf//rX8Mab34JHL76It996i4RmC5frrSIsKybNUK3Gg+HBxP3En4NgLtNmphWAupE0y0eL4xF/pIPzYmyfOxwPaNqwbiwKSXbm16YcqBTzrJbSTf1DbktTQIzgLs0JvR2tRUMVaHCXU0avDUg8CI+nA/KkOC9nuBpw2+jdcXt7Y0F4sGsoRgTldWGxwTGic+6mnFG2hstyJicFVEemRJ6cO+uKkPzfzUrCc6l8HF5r3wugxH1cJKJsLOJ99Am1Zs/W5uVyRqmVPlXTPvbh9bZr6Y7PrSGbY+tWCmCFrHb2xjKQkqs9GxjPh5NefWQG6NVIypFojt+dw0WUpWAzZVgpFZMh0SEEMLqHHmC1NpS7C873G043C25ubjimAdWB7pKrpaNAkROb7CZmzVA7QmjoLSJltWeA79PR5TYQ0slUg/RgIerjmVTRbBCouqrVokzERl+1/SFe5x/3+kwXKKqenumx5iRpJWPVt87NSZugiSIGzqe7wiSKHKlQLdIHvAYAk0njYoxIISIFXqra6pAvOzHPD14/hDl7q8akDiY3M4jruREcu1tu7mJkKyevgkQ5AEHiUFiobcjFlCQka+4dshMAWc0SdTnMM0ccISBIsHAx5gGpHyzBacViBj5WGPguaaMXHqiex9DRhxGvKXU4X6J/RWfXJzat5z+F1ZMVJ27q5F0VE2IJmV5fqmbGXvxKMWg0IOUjLe7XzTZ+L2P2r/MCMgQxlj4RNIggIOIwkRshiIhxn8cjGDRvZLhgks/5cOTGNci8jDmY58MYo/W6349aGtbVsjDSBFUm0Doq5gRcDPY/W9yUE8P97PQ5zDO2lY6pKZjRWDDeB4Sz4dasc7KrZahPbQ3LutAnwwzeLpcFh3m27pcKNM9Q8YDLUivksqCWYO6sLITYtQsEBdtmEm0IYjLCbN9n6cGKzf2/LVHZNr0WWMxsqytV9sJUFPvGLtjHFLa511YHkqgK418IQlR46mop2yhuRAKiBiyXlc+lhPHMh2Ho5Q6xfNa0K05HrrO33voGHr/2GN/yLW/ivXffh3ZTzQmAEA0RCECoiCGZvF/o9WKLM1jB33vDsl4QhIVgLeZp0/0AJMHYn0mAhdOUMw/4UkdQIQ+yFb1HTPOEqAGyAa0uKHVDyvM4bEOIyOZdo4X7px+iOdPorJUGFbr7Xi4X1FYYOWFkfFd69N5HIUA0yBR4NjbyPZSu3hVBWVjX3tmRywG1JgYMWmGMQG5IDmz2emuUhevzKJT4aN9yb1KecLlc4OrNbSu4nC/DIdlf7rVTrOieDE0JxhfxHWSMVkWwrgvc2h8ixnva9y4nhj839vhD55XCVWYcd7vbr/+ciNaIYhFREUQBUmQRvG4rYoiYTdgRDK5udTdmu3t2h+WyIE8Zx8ORXLUYaTxZK4vuWM2WIyJFYVNmVvYsZvkeeebtpOBm/Eoi/YJ0mDgSXDfUVncRigTMMwnHzdLtr71tmv4JUfGEYM9vB6AG+7WGorQ4rzbqYEUq6BogzTkNvFi0qdZh/hUhCEbmc4UGDwJDE2wW3swN1L0lABghzuaxkciGJDGGNTAG3d4p2bzWHwb3TvDZNq30bd6urJhbpUcFAOsMuEkTGXF3RPM9iRkxBzNI2+HW0Pz9iDn9GSrjnBgLBKy1IUdA3GZ7HP06vgedhGLBjnr4tb1+aClr5oMg/mCrjzyEkjS1v4MCzYsbcE9qViDZ89+VVXma2CVAdjMviCmlgltU7xJUH78oqKYotQx1CroOVQ0SYfvpcKASyjbDlPLomNgddjQBxGSwHDmwQJ3nGyg67s93WJYVDx7e2uzebKV7M96LYp4zYGTubVuRcoabz/F9MwNl2zY6NprFeq3b1divD7VFjE7I7SaZ5fpKSkLx+e6eh0bZyPhPCQ8fPsTDBw9wWS7D4bZWc3ztsC4wQiSa2zKfhRgCCZhGar0+QtgR78Rk2NdBiEZ1iBFDA9aloMO4NOgcRVlh4vLMHDlyi4ZobeuG1nwUlQdPy/NjFEQyxUZwrZEELFbECATnu3vQR2baR4r+/Bvs7Q3C+XLBO++8g89//vN4/NpjvPPW17n2FQgzifiKBjRyP2LKaFJsvOrcLD44bsuuJr+MHqRonBo3YnPjwaYCMYfeGDNyLMN3p1YiAOfzxcYwFvgmAU+ePKPdfTZOi8mvQ8rIxuWAAtoqE94DuSOX5cJCQwRlKVi2FYfjhAcPbxHTAdM8mVszC85SCgMmhSaAPNgyQztTwrauuNT7MaoWOMeB41cJ5Fwty4JmWWOerZMUWNfNnoXEINSsV50+my5K7Vk4B0fQKh2GuUc5qkvkvfaKujSUWjHNEw6HeexbtdJ3hAhTNyWYF8wROZskupOUfE0A/cOFijd8Ztuf6aHlz4MXKdySA1qz/T1H9EqfoK0UFgPbghDJC+PYWRFU0JugdqBU2k1cLhfc3d/heHPCze0NlVeNzud0cg6jcSUKa5wUCGrpCBPRk9UUgdfotkfEiAif08azTe1e8PnJKFLQjRrgis3WIj7p6zNdoBA+Bh8uVZTaUbZuKgJT5IhgmqMpD1gBinVxKeRRmCQncXYLElTOE11i2o10qgozuKnGddn5KYNMa66FTmYdWIDYmx1YwF6pd33ewKarmDx4D5pTd/pUPmQ+P3UyaohcOFF4YGg0qWpT9GC+In3XwrPw4XurzT+fQsH5pVf4HHAZNCGyH0CKQViDzXAFe6BXdDgf+wPr14j3jHyPAWXL7jfAcsRURsbdGOZI/vMUaFvEsK2mmzWrVloiQGz8sW17BoSqmgKKBRml3Q1q7zvFhJQnIBBOV9n9DiDuhaPjc6sTJe1a0EGSyBbHfN2Ip3FAu/R/oPIqhITNoN6uHcf5hK6K8/mM081xwLpDyRE4wmyN1fnu/5EsB6YZn2AvZlVJkpxSxkfPnmFdF6SYcLksgAI3OcMJmykmpg134HBgQm4x7wIZ987GN9oHKugjTlz9N9cTr5tiv/4An9MowfgP0UZvgpQD4wRyAjpl9ySOm2ICIP8pML+KkfGCbBs+gnfWvJ7jnitt1lsvCGFPAr+5uUHvzbyGmH8y5OSdHW2pBQISdN95+208fv11vPmn/hS5KBczvOMQgXsMnMy7E+2DCFKasKwLoB1JEqQD+cCu3UMvnUzeTe7MlGdba0qpr6f0OmLhdv3buuFyXu2AJw9umidsa0GCqdYcCYv76FgdFekVCILjfGDOzrYhDjNAfl/ZCp2WJaCLkZGFRez9/T1OxxOCCD+nP/PWwHTjWuU8DQdoFspmxxAnHGfmDZG7U1Er97uU9rTuaGaQjlgPvosEHCZBkIqa6+BKbWWzJoQHf05MD+/qkQCV1v7WsORMxdi+J+95PICPpP0+WACsdmsEd9NO90RRc84e96zve30wTyvVPYXZn7UQiXapKqacseWMrRZy1nqH9G68q4iUA/f6tifYb9uK2jZcLnc43dzg9nTD8U4rg7jNZpNkXhKG+7imrSUoojVKdYx7QnDOCXdkUrmsgIOnlnOtVZArRKmP4pOXJ5/xAmUrlbbv3qmDngLa9sMwGHqiQtlwSGF0csAO60bjXEgEJFKKB+ts3IdBQkCvbZDBqE4x9CS4g6aRRO0w8zCvECNE97m6GHem1Wod1F5hqgK90DMBAuSJ6EI3dYEaelELZ7z0byAc6C6mQ5IX9oArsWsio3vh+/Uih5/DQrJEqBoQZim4WmD4RmBQKCBmZx3Az+sVBxEnHV8odtC2bvGGI3tlvyrcBPgjtHtStR8uDqcqR1sQszGncZhASNa11owPmVixaR3KMOHbPUyqzUbZDXU0aejAIPcicM1wjJit8AnmwtiQ53mMMIYzqQiW5WKdeR6Be45CZXN6ZQFqCBqAWioO82ThdcDpeLRcD1p+A+zAgjiywHXkRauPGwYPpHv8gXWi5r9D1n8aHicuj14uF1uLvCMxRiDusmEoD6Kx8dp9UzP+Y2F2ZVjVO7pwA4zCglW7w74AJZ6OEvFn0d+EbrrrtqGZ4kNwHTgG1Lqa34/5Bh1YFGhzR+H9c/DA6EN2DYABgvYzMcYf+0HULbuL5N5u/KAj7u7u8P577+GNb/kWvPTyy/jG177Oa98AjeY0imZrb29gVHV48qzbeRS9vTUSoePe2fthq4aiXneg67KCh6OFfdr1EESkRGv0sla0SMQ0mUcImxKlek153Ym6Elnw7CStwIKVHkFBsFzucTgeMM00S6TMGwiJ4yS6mMKUKCsuy4LJRkVOpCSaSRRsGPiBKIkqUbPt2crmSWhMGSSiarN716z4T6iloZQVIR5wnG9sDfBZ7DZ2D+KjHEYBzIEk4LKxuUwxk0Ru90jBIqKsK/f4qTGfyKIWnJvDcVI0noYrpZzT1YyrsSuB9iLFEUeuxT2UENhrFRmo5Z6H5llgGOslRYsxqCSdM2KBKOiUEzQZObXtVg1lK3hanuByf8bNzQmn4wl5OsDN3Zwsy+d2b8qdS9arjn3FGyKqFLMJQKjaKiZtVrUzIUZOJYTuy/VKLfVJXuGP/5L99cUvfhHf/d3fTSj44UN84QtfwG/8xm+Mv1dV/NRP/RTeeOMNHI9H/JW/8lfw3//7f3/uZ6zrih//8R/HK6+8gpubG/zwD/8wvva1r32at3H1+8CkRAR0paaE3p+UxqYULd+hYds6tM8QTITCakdrK1QLVDe0tllHTXKdd+wcD8XBplfwRmZTcnhc+U7qorQr2Lx5jG0MbfB/SCKiqVspjbLZCrSto212YNqmLuIoAwuxVhvKWkfwYQg8TA95wiHvHBwAVrzA3F/Nr8A7W3UuDbNK/J8UI+bEwLmUKPcUvVq42tD1eeMoqKuH+iBCUXVC51M+tVRPRIkQJIi3haAYeHBgJNjPc4mmUv5dea1q66ilY9saio1KvNhwO/oQgxXs16S18f8AJaE3xzQ8Xhw58Xl9kDh4SiEkcgpSBkl4G5blMqSWKSbM04QH5sJ53T3l7OQ2X0vByLf8/LtSjB3Ytq0jZfb+fIfz5d58UDCI166aqENN0+EmfwLfSPZgtGBruvaO7MRBqG3AHINczmfcPTtjWTZcLivWpdK112SHQcYdsm7T3kdvz6XZAhhme9cI5M41MqO3WlEK4+eXZU9xLoV2/ufzGevKBOFaCXEv64p123BeFtyd77GuC7qRHu/vn2G5LDifL7g/n3E+X7BcVqxLsXTZOoh93BM2+4eqvXXZsC67S7C/d1VFKw3rekHv5KB99atfRWsNr7/xJubj0VBbDGWE2iildHJkvBmorQ7EaGz+vdkB2dGVRnW9FRtLcb/pyvvdQNnxWlazl+c+c22f7h5L08RxS5CIw0wicvLMItCefisVpe4Orxz1NMqQS8VhnpFzssKVGUerjWHKVtBrGwqgEAIePXo0xiwOlS7LQhI4FClNxnOREQ/hZmlELBou6xl3d89MAmwjRWWCbq0FkI7aCu7v77BtKxxlLtuG1Z4dxhowd6ZV5uq4sV/OGeu2YV23Qdh1V3GAv2ddLjjf35HrB4zP4uvTzwUA6H0f/QA6DOf250Hs61h8uN09Az49p4f76e4XxbOEYoxO1MQKIHRFjCREp8RzDtKxLGdczncAGuYcMc3udL4jN+u64uOPnuC9dz/AkydP0JsixxkpzhAkqO7oozf4U6Jrd0z0hCqljMKGPJMKxq1Q5UN+nYVGmkJKAsel80zTuk/6+lQIyptvvomf/dmfxbd927cBAH7pl34JP/IjP4Lf//3fx3d+53fi537u5/Cv/tW/wi/+4i/iT//pP41//s//Ob7v+74P/+N//A88ePAAAPATP/ET+PVf/3X86q/+Kl5++WX85E/+JH7wB38QX/7yl8cN/6SvGBIC9ll7b84mNhg80jSqdboyEoYHFDtE5d0SCUL00+BLBhrgJFh37WNctSlC9Hr22AZ64hWzKhcROyojRVnHY2wLSAvPbe6cjweETPKXmkKm9466MmE0xYiQOd/POZrfgGncK1NTo5Fig6kGBrQo+4wdnaMGjj9IfyV/Yy+MxJkh6ix1P2gs1NU8LLwg8xc5I+T+BO8wUcdn8c86Rjeqlrq8u+kSZaLNtUMrtQmaQecw07CgiqDW4aQZzeasKaYrlQjssytCSISU5wnteMDlfGEwnqlcmvKAWbcNKuzeaZa0js92ur01zsDuKqv2HnKeh0zQo+G3bcM8H7AtZL7f3EwMqwMRjARgU8VaLmZc1bCuZmcdCM+79M+hbZjleMppeFM4CXCgHtAxOqD8OA357WGesRjETbVMAlQsO6gg1YCbmyMUMsY8gKBZwJwjDUSp5LlIBlUjO7u3iB32RBYFrQg6MAjfgr6vUycKQi27ip2jG0RJ2A/8bNyTZV0RQhtoiAiJk0mcS8Y1VreCbrEGnkLODB27BuFgZF5/fpQW9DYWTCK4u7vDV7/6VXJRHr+Gt77+NSsSAPIs+WyTlF5RGiXQtW44HmeT8p5ZeCgDLLVxzu+fMWWxTJ44UqS1FCbXRprdQTrJwNg5QK6UyTnjUjiuzZMpiADklKly8yJSO0Jgk5WRUJUGbw0N8zTh4e0j3N3dYds2TNMBSYjIZFBNWOrdcPQNIeLhwyMulwWyLug9ovd1ePWQY5Ht93K/TnbwxWxZO51k164FKRysIOD+fT6zUJrnCTEGlLai9YhtK5BA08KW4ti7cze1ZbU0a3NQXjcWYPd3dyS9B0HUPWBQla7FboufjJjqyE+tzUa5wRCWdoUE7oozR2uJArFo84JMJA5khntqGEWUoxeUMxdIY/BikGAeNnXc896AeSbpvpSK5XKBCO0EpphQA++nI8q9Uc6+bBfcPbvH6XSDm9MNUs6QzmKHe3cfBZJ0MblzxFa2geoO4zsbJYs1iIeDGVZuHA/TniINJ+BP+vpUBcoP/dAPPfffP/3TP40vfvGL+L3f+z18x3d8B/7Nv/k3+Kf/9J/ib/yNvwGABcxrr72Gf//v/z1+7Md+DE+ePMEv/MIv4Jd/+Zfxvd/7vQCAX/mVX8HnP/95/PZv/zZ+4Ad+4NO8HcRAwqIa+9sdU0XikJTW2hAizJuAHaqPOAY/ojPUr9TG/7ARg8ALnTi+OqVk8KX9BL3mWHhFrTZT3BM0fZZJktw+X4apVbzr9ZNUEg/S2ioNudrunupIDpQdTXROCWDwdUOMMpxqiSqqGVep+SnYSCrY5LwrR2NXRFsf3RDe7s8VEs5E8YMCA+y3f5UdnKOrb7M0224jAiCENCRq/m0+FvA6sXcAEqHKEYdLuMe16p12y5uiiG0Y9l5TSsjRGPM2OnJuzPGWGR3FxgeAz1SdsJjgPg0pJ5M3VmDp5vDK9bVtlMl64bYsDdNEc6llrXbvq8G4inmesGwLbm5m61ICpeqQcQWnPCFPeQ8AU8WyrMhTxul0ggIoC+FwCBBMnu5dNLkaPmZhkcc1S5daGtDRqCokIIUbqJKzcjiQs0Ci43mM0krZ0GqzcQENrt311h12c57GtRwbtIUXUvEjtjasaIoRDTIkv6amtTEmAww1uGdI3NOwWzNH5oBSVkYctMmKKj6/KSUq+nJGDKZkg+ISAzYbc6mywDnMJM3GFgcaESO/XzsskFTHc9Ajcdp33noLn/vc5/D41dfw3jvvDsRPVegDNJ4RmiL6oeOp18MLw4pfz8UKMdg1tu7eeCKroUfio6LaBio14iMCSavOQWq9GcpKsn7v5MeEGDkONb5d8bF1jEgTAMs4c5uEeZ4hlfvElCcqPazblxDGml2XhV2zwsiwinl2OStThV0F4g1Qa3WgrzEyk2jKkx1sLMrdXOx0OvkGQwJ2iFRwdUVVc4uNHCewIQvICOiZPDOQT4/Tic/3+XyPZb3jWjF0uQ2kT0fAZKwNOSfkaTZZN+MJPCWZRNpmqGUchGeuhzrer6sWnQR83VD49VaL4iBKEyCSgZBMZszE7q1uNFvrjeZsxq9jQOKErZA8XrQR/b36PSJKibIRm58+eYr7+3scj0fc3t4imQnkUFWBxqJdzfB0mnA4HA1JaWM0uo+IXJLMVOm4peEQ3FodeXaf5PX/MweltYZf+7Vfw/39Pb7whS/gf/7P/4m3334b3//93z++Zp5nfM/3fA++9KUv4cd+7Mfw5S9/GaWU577mjTfewHd913fhS1/60h9ZoKzrOtImAeDp06cAYBC+jlEHoSTjmCjd7npryEgM6TN5q3MbSEqy8UuFGVr5gdwGtA3ADjzKTLl099GNkzK6owfSaUgV6F+h2hAlolq321vnaErNHMpSTGGH7h5ZzzljqwVBEjhqgNdVRIyiyYXV2f67ft+RHe8IRMhDCcaV8Hn3UDZ1Bd0CZIxcFDIOviAuFeYrWDUyZqxKFRRkx6H4+zva4Nzy2khI4/DcERmFO4oy5eHKD0Vc39ONGOnzUXa2rVMaGyOD+jxBld9hidUhQCuQJi9eCdcnK17cNtrlyWUriCkjAFi2jc69QkKxxA5pHtsOeCKo85ZaA2rd0HoBJKJ39zZoNkqixTUkodZu604Bk6W3yiKg1opWlcW4jYhSjDgcD6a0uAchbu+iG6ISAaswHoYREbeNBlXdErt7r4g543A8YFvMnMxMoVwOOR/ojbEVJkLnnFEvexQ9w9b2gmTnd1mBElwWzLGoOz9zc87MnjGoWEIYxXfOE7RXiLBb3h1JYRwCysxjcMUASaGz8nD3xiJEK4ayreGkyOBnhDkR+8+dQaStWhGnykM9dIEG5VzffCVijLgsZ7z77nt44/XX8NLLL+NrX/+qjQ4FKe6oqEPl5JIQ6ZmtgG6tQhusIOFT4+nl/r000eOYNqcE2HOmttbVipveGlqgIZojbCkmFKUMnIW/jt8TQxic8kG0Ttn4XDp4b7UQzk+ByMmyrJgP9KyBEaWbedHUUlC3YuhmGAftNM02SjYuhcJGEJSll3I3CrWwRqppQsC6bLbHukcShpyZI1MiXK0J1ksd6zaaKlBtHbrzcwhiiEwwU8GAZTmTO1EUYoRUwDl3RFJ102EgOB9nQyPFnnvgcGAGkTs/O1roRQb3qw53z3VlUIzR3GmLjYA6ROpzDQb5SGIgtSKkiBxmlFaAHpCsAXbPITdjrKb66V3RnMAa+Ow5KZdjGJ7nd3d3LJ6PM1U/00ySeqHlfTNqhGrCNAXkNCOlNj4nn7e9OBbxZt0ccaN5o6w7F/OPe33qAuW//tf/ii984QtYlgW3t7f4j//xP+I7vuM78KUvfQkA8Nprrz339a+99hr+4A/+AADw9ttvY5omvPjii3/oa95+++0/8nf+i3/xL/DP/tk/+0N/Xqu5wA6Cp1nAq6LaQrGnD2jC4DLwQWVF7uQzQsAKd9Dc7c99jDOIW5EOkb37rNkRAO9/yaGYjJdQ2zbeb2l9JEKKG1rZhuYPhEQgZRlpyK0WdCXJM0AsRdlMl3pBKUwgvSaeiQA7LuNKCrVrZGOjgWYYMQ5EItjc6jgoWsPeyXM7BAmRXilRqgfQGpxuvnz/jqaoYpD8GthhiBlhOdGSmyZJrk0bE1nVHTmvCkL/geC8XoQuuqpU4eQYUVTRK8ly153MLjWOY+M6TpTw5WlCWbkZxhDRLIX6OM34+NlTtK7kn8DtuZshBk5OLQNWX9fVvB/6CLR0f4x1W3kFbf1cLheiBzbKY/quqcdaY2YMgDDvpLzpcMCUMs7395j6NEZ3Hp3Oz9p23wbQE2JZF2h1KJqz5EcPHzHOINAwMGjHti1jBg2F5W8wj8X/PJs/hZMCYc8OSbIeqka0cIzXdCdsR8+Zss/bpmjjWI55bm5O4Mz8gjmR+0PZqP1cBPQWoT1zndaNzUkMhhIGRt0HoeOwdFStKL2iqwC9IaiOkZLzIkIAtgq0wvUYQiDaaV26BkHplZlVqvRFeeUVvPHmt+Cd997Gcj4TIQ0ZEcH8gTqqtjEqFliRla4Ooc6DkCm7Op7TEKlUWi4M3QsQxBxHUwR4cUPzwtIKWwxx1DbaIZghgc8fYGGgMSICJDEbYupPuMSAaHEV7gyaYqIT90Qeihes3ijElIzczfVBojJMvRStIGsDyRVhIR3miEePHuF8Jqm81oJSuI4U/QqBBFJOcNm1KlElH/nNMx1ey9bQI4zQypE/72Uy23geBRIC5pljky1tKBuVLVR6usBiD2rtpQ9C7jTPI/fLuSVeSBNZ6FdjX7Wxlu/Bgn3sw6YvJfraDBNJJzVfnS7F0BLK+n38bjEAWlF75a4beSdTnBAONKIUkx635hQI57m0wRVRKLZyQW0blssZh8MBDx48wDTPlLE3R/vE0CPh+BN2zAaO2r059sbW6Q4cYU3QTw6gfPoC5c/8mT+D//Jf/gs+/vhj/If/8B/wt//238bv/u7vjr+/1oIDGNXV/+71x33NP/7H/xh//+///fHfT58+xec//3ns8IXNbVWHY6FD41EjNFLfDWNr0y+FlaMvhJD2nBp1DkgktBtjQI7mIVA589sLAgDQYcomIoTTJQy0pDamQ7aGsYnCRlJRdgliMPQkBBkEL5GIZGTZGBMDzTK7u3peh0SuFOdC6JDrCvieHAmBjUBYHBHJ8BRlbnJWzDRFUyeo7shQtyjCAIz3G0SQvNtTL4hskzOSV28wuadwjg+bbzrLXJxTYXnt6uZFZiIH19ezJGoGbScJgLAoba0ZysIDQQJHJTHwUHNOwzRPCMmupWCYYuWcUbZiUmOgtIqHjx7hvC5oqnj46CHvdA94+vQJUt6JbPuBEodrJrsHoiDd1mWICWKFmxdPTlButRqBj6MXiGBb6SHAjYpfq0qflG1ZUEsd2SjuH+FESUf8AMv3MTNDWps3GlqpjdSgIDdcd+M+IWxdKg+iw8yOlkgHu/pt3cZ97V0NWfJi0JBJpd67G7nP5j1GYhb0VkZRCJhU3bp/dnpCPyPd5dIcFUQU82bovZq3h3G7ekfpiq7MOKHyOWArzQ4BQaumOoIgpW7Ij9goyopfUIGgHWaAxxeLL0qf7+/u8N4H7+ONN97Aa69+Dn/wB/8f7jGutOKHQjO1lKvC2Bnz+XS+DBEbFm7dYHI3Okw507FXATQZHj9eXE0TJdWlbtYUmQurOtEUyHlG7+tAJHlqBKBVIloIaNpQ6ooI8wNSa2CsC4+SkNME7TLQjZQi1mVFSo2FWzfpqyFvSJH7l4WkduVooWwVNTdDhGUUZ9cnwbAlsFevHEu6GWbvdYxmg6HCtVg2GDJCIEciBI59Wu9UDaCbOzVH4Rl5jHX53jZoEMQ4UZ/GhQVXx53PZ3hWD0nvHb1v1tTG54qLGJP9r32G7nllbFS2zdf67nS7Uxb2D39Nmr1+Nd1HMa5iVTWlnPgozIIfC00lK9w9OyFGJ3f7+J1Izt1dwbJccDyecHNDRIXqxQ2tU1llGisi7x1oyZy7DUlxafrY2B0V/4SvT12gTNM0SLJ/4S/8Bfzn//yf8W//7b/FP/pH/wgAUZLPfe5z4+vffffdgaq8/vrr2LYNH3300XMoyrvvvou//Jf/8h/5O+d5HqOW65fPuoCdbHktz+LIx0cddAYVNcIqYA/3NDJTmkGPXYhWiLIrSSntlbwq3D6VFABPbMV4H601lF5s87Rsn1KhKggG2UUhbpLH+1ZojOz4GuXEwTIt3B8hhAiVZllA7FwjwFl07wiShoxWr2b9IgJRc7FsgMoVFtLVveKImnRmoAQ3lVKqWboquT4Y5pY+MXuu81I4f8WVHhXaZMidDWOCBhIoORIyoyDraEX3h1sEgOhIJ2URo8a/sJFcYxGUMh9ABR1HDwda1a9n2lof5gPlqwDU5aPWTYgTebUPVVBIEev5HofDkYVDY2qtomOeT8+tu9Yq7u7ucDweoEr3Uk8JZgfl5lTyHEfE02E59iDJ2REYjvsoAaWlfGFY3LqirmWMJlQ7rbvNY8UzbYKZUnUNNgKZ0HNG2eJ478fjCaLAZb0MC3FeBwzi7DRNlNhbIWv7DN9b38ekKSXrcA0hUiYCU9XFtdOMiLojPR21tCsXV3JQtrIh54iuFaHHgd6JyHB+FQ1mx194UBlaFgOdWZlB0+jiXDec7y9YVj6HIsL4ihjRGw8ssSITUkaBHIWKsIiE3sjVUO3YWkM+nQAIPnj/fbz22mt47XOv4Z13v4GyLghWcDn6SMX9Nx0sXa0wckdqyrAlxEGIdNTPjepa9cbFxkaAqWHoVj0fb3B/p9jKNrp/VXpmxNFU7VL0kLwJASRylIAm2ErBlDKScDxSeiHyYMjYPE9Ylo6y1YGQreuKkCMyYBEghh5VHcjbzlECzndnpLTi9sEthuTeGjrpuyx+jMUNcUYPA9kDGlKazSOl2tiHcQnbxvDAPE2Yp9mahh1pbsbr61cS/mDFeErR1EAbpsMJiIGf3fbqrp2uztV+/jyhd4wRT4xu6rgfxru/SdjPKf6NcVLMu6crqC7dm3eS5veRYe99t0ZQ4HrU7s0aCddtfB85Nvz+1SwF5nlmrMc0sXA0t9je2ajU2vDs2TNczgsOhxmnmxMOh9kQ+DYIvqpET7ruYymiSzo+x3iPeP45+N+9/m/7oLh06Vu/9Vvx+uuv47d+67fw5/7cnwPAm/W7v/u7+Jf/8l8CAP78n//zyDnjt37rt/CjP/qjAIC33noL/+2//Tf83M/93Kf+3Q4leYIpV2DYEQm74TAYt9V9oQcJiFMk+1mBVs0+3jrbbPLhmNlVuKEb1DkKNm8P2Bf3FTHNDybO/us4uPdKkiRBUW7G7h4ZY0SpBb0ooEAKCdM82yFFm2sSFY3caQ2vdh1BfQC9UcR4DTzjbYsnCcUq7B2hCMLYcXFUyB4szzDaJz+7MkNGl+BsD/67ghtzKw3dPWlgo7LEAzfAfDG8QOOFhwZCw9Tw+z0ORrBl0CCBEwZmdVVDiDjiq6VaSF4YBVLrnoc0wbv9tW3w/B8AmPJEdMyuy8GCBWurSL3h/v6MeTpgXS+4ubnB8XgcD+L9/R2ePn2Kw+EwuqBaO6DBigQZs/beG6TtI6/a9g3ho48+wjzPpvaZbPwhI7BQPZMJuy9Ja7TATmYxv23bOOi5JunUiZxQtgr0guPxgONxhkBwe3ODjz76COfzmUWUFYutNtRSkacMCMb4aOfawN5LMF+8jnma2SF3zuWHkSLcHNAKgxRNBWDjNlWqMITFcCkdiB2tOX+La7ibMm34NqAPaFqVtvQ5Z7o4Bx6SZVtZDEYiMfCiHERKJQR7Nqh+C60iiKmJbAwyzTOSZgQ7fFrXIbNMMeHpkyf46IMP8PLjl/HK41fx1te/vh8mEPPoqONwGN21PZMhRtRtM6SJBPvauxlpgeOEacI8TViMaNu0ovqIysjzIfJASjmN72U2Csdvl8vF0CtfGwHzNCNIwrKsVCilbATtFa1XiETkSGGAc7ZIZlUc5sNuWhnMcn/1XCbdD9VOc0sfE/mOMc8zVSfLYk2ijSSbjK57v15Xh1onNyhpRtkqlmXF4eDclEr1Y9ptHbZtG89LcYSklFEURlsLaiToECNOpxOOhxlPnj7F+f4e82E2qwk+A8Gaz1rLiICYptlQbJiNAN+Tpzm3poOA7QUsn6c2/t6t9lnIySgE/HmD7LJmdy73/Q8hIgWaLarSRsEL+jqMFjMOMVDt1Ng8r+tCuwVDVILYpEBJHOzKQrTWgstyxjTNuLm5xel0gxQFW1nheT8Ojni6t6fUA87FCvgU9cmnK1D+yT/5J/jrf/2v4/Of/zyePXuGX/3VX8Xv/M7v4Dd/8zchIviJn/gJ/MzP/Ay+/du/Hd/+7d+On/mZn8HpdMLf/Jt/EwDw6NEj/N2/+3fxkz/5k3j55Zfx0ksv4R/8g3+AP/tn/+xQ9Xzal5jnhxcMXq86SU4CZ9Kl2IxO2SWknDFlEgDLug6SUUoRx+OBNtFBh7R4eIqJYwCUrDXdfQ7cFZEL1O2LHUjWQYIUJ2dALfukw55bIhjGdk9pQoosSPgG4kB7IIrDPKOGanb+PLjVaiCHjDlK4qY0DKmsi2i9syORAASBCKWOaoWfF15q6IlaMeBEKBnXQsf/V5giqjR7IFk1SVdu/M26xAjyeRQ7OXlc12DGdlb89WbXjdwdt+0f1ush4HSY7cA3ebdtHr3x4PSU21rb6IKdAKgAtloIwwuza0JOuCzr6IJEfLQE3N7eDjTn2bM7nM/3ePHFF/HCCy9YB8UD2YPKUmI6K4RdMwnfVwcVOHevrbHzyswOcT6Gd3Rb2b/Hi3OSaPfIBR/5eIS9iKfPCj7+6AnKuuLhwwc4HA5EkSrHJFOeTJ1Eq/x1XYlEWeFTa7PQtm7qMJobeiHeNQyvluCR8wOdZ1drkCZcMuxclGgW585HIdqovG6Fhbxb/6t2ZOFh4bydAMYW1FLNHyJjmiZTwJkBVRDLxhRo53WJ4iZ3fL9dWcyiuaweUDRAmSETA7llvSsKuB5y4nv/yle+gldeexlvfO4NvP/u+2h1A3qH1ELIvSkQE+f9vDRWKDXfVhg4WeMgfbetGgK7oR4O9DUJwbKHjLtlDQCRpIpSt6EOA6i4qU2xrcX2JqK4ITJvy9OsnS/UTc4vgXbnCBE50fEXCePrye8LFhPBBi9lwZx43dd1Ne6ejakk2EFpig+h31QQoX/JerGDTMazsSv8WOBrZwORYsLxNAOiWJeM8+WMbdtwPFKUUFtHhOUGqRM1+bwkCQhhYlFYqK65ORwHolRrHYnIOUU8eHCL8/lMA7fIkaFckT/d4sIN3vKcMU00QVQlYuhqoxj94HbENNrfWf6RjfXdDmDQD4LzoyLFHspgW5pSBmMD2j1lRzSKghjpPdJqM+uGOpQ3ObNIrLWjrhua8YcQI2KGoaOW8h722IxaK5bLgqf5KR48eIjj6Tg8bFqrQBfGrCQx/6LL2I9yTruY5BO8PlWB8s477+Bv/a2/hbfeeguPHj3Cd3/3d+M3f/M38X3f930AgH/4D/8hLpcL/t7f+3v46KOP8Bf/4l/Ef/pP/2l4oADAv/7X/xopJfzoj/4oLpcL/upf/av4xV/8xQH9faqXHTpjxMJyE0z/pfTNlRDozHmJYjPHaLb2pYyDYEoZ8zwxsjpGbH0dnYjPzdRmb4jRwggr0YGmgLZBuhsdpMJm0Xa4B/+Hc+QkcU98tI4854QuBtWHDg0dMYipVNhNJ+XChDJDxx9AGJw8fp51l1Bhl+DzS+9M7L12iMMQCFbhu1QPZiIVhBvVKAQVNHE1p1kVGZ3ftQsh5VYCDX6YKdBMhSQyNhGo5ynxdyEAKpzfd+Wc3glvqoopJ8zzkWZyMeLu/pkhNAoERcyCnKYxUqiGnvVa0XS3uW923eecMc2zdUQcHzK3JWBZVqzLPUKknTcNh2bEeMGLL76EV155BYDS/0Fg3Ac7jFPEsm0I3gEZ3JkjA/mwuRulMftTGmOqbPJgL0ioauItHAz/EMbmTpXCBhErMtQcPbcNW9kgQmg8pYRe9/HBPE+AhF1yXcrOQbiaefvheg0tdyi6GMlZFBrAzdPGjEGAKFSOGUXluc/BLr8h5YlFf6+QGHF7c8S2CKKZexElYSdIS3523FGAYwjDudedPunRwLUlgUVHiJSlus1+bbRB58HAxNpWNpvz29pszJLqhsSJWPZJpycRVPHs2TO8994HeOWll/Hq49fxjW98BcGu9W7cx3HXcl4HWTOa0ijGiGAorhpPItges9nYsrXGIMAQ0dRTg90CQYAuZum+jn0xRap13CqhN77nCB/j8pmLIRpBtMG7MfePqhrpwxPoxeHKSQ979G6/bAU5CfdWANLN8dl+f87JwhxtBG3o7RhBxDQKeNrRJyuGreHqRBwG5yQKWk6YG2W12jvmwxHBEo9JlPYAR8HxOKG1jsu68H0HutIu64WI+TQhBD63ZavkVEmwmIoVl8sC1T5QIHJEAqLttaUUFDMym6Z5BC96XhafWXdOxji0Q4h0rY3MkyIPhqpV/7yA2MTeR+8sBohI0nVXCNENtGhwJAOQpohQgWKOsAgK6UYot/DI2ljE1O5yeX67u6XTS8VHXA3rdkH9qOJyOeJ0OuFwnBFDxFoK1kInYheNjDFU3xHMT/L6VAXKL/zCL/xv/15E8FM/9VP4qZ/6qT/yaw6HA37+538eP//zP/9pfvX/8sVxh81Zex//xJDM0jtwTmb29CKUtoltmk6c9ANlsgNKArCUC6o26wjND8QKEmbsJLCpsHC2sHMI/GHxzTKaNFACLOSMMsQg3CyT7sxt7ewWg2Xn7FI660W1A9YBphDRYqSRmMhepFgyJesN89fwUUpXIMqQYneDItHZTUWxLJ9+vRgNorNOE9hno140cDaOYTXtx9h4KUceEJquNfv7EM363GD2agWKeEGlff95I5BLkELC6cEj5lOUgrWWQSwETDkQqBJIOXMGX12WLNDKjk4DuUYxMbAs5oTLcjGUy+3PgXVdGLx1pP7/9vYGp9MRrdF74XA4GHwbRlqpF2i1cvOSym5K0BFTtgc62dpklxhkL7iD/SwiQx0eTulFp7PjsxEog4SR/TPNNGPj5rxhWzccj0f0WgfPhY6UHpwXMey3iRcDLsPvz9tTO1eLtaf47A8pEw1pzUixo5Li+pMrTpj7xtRaIMlgfwdZIs0NQ+CYli7NXGuw9UjEkL9XBIhJqGIpbawBMd6TOPzpPCcomxP08Xvdkn+eJyMKd4TAcY7p2agGMj4HjK9UyoqcqQT72le/jpdefAlvvPk5vPfe26il8DDjHMeQxOtDB7tiJNA2nHEIgLYOSUSJKPOtaF3Qe7L9YefNBHuWQ+La8PwZIl/mlZSS2Z7Tyr5pRwzk241zTKh4ckQ6BKGhW+sQsVgAK4ZLreTJhYiOPQvMfYVySkM+PkeidUCwUUkaDr7k6YF7lghyjgAmnM8XtNZwOh6519o4ztOjS62IKmZkxj2nlIKYEnKahw1BRDQ+yYreszUcwPl85vg0ZHOoplHfNM9ACEjzhNjcmyYAs5g3UBlE8d4YR+IEVJgAo6yb2eXTdC0cZht3YOwrfRQB5JsU4wxRGfg8B8+LmOvxYO8Ks4TiszWUSjLQF9iZ5X8eUkQGR/RoREi4h3R0ROTAvTyaZw1asxgFNU5NYoxE38MNS91Q74iYHS4HHA4HzMcDQiQqHVTHOgliPJS+e1/9ca/PdBZPimkUDr6xRgs6E2MQ996h0iCJviRp4oYx4EKT7ebJLKC1Y90Kw8FiGIqY3nXkoeSUBzwn5pw5CgybkzeLACfMz5/LCHgzfzPiaesVMdOPofaGUMOovJ3PUEpFEG6sGnePkyBk2pdBRNFB9PPuJoB5HuN8EaILHbtWf2SvqEnyDJp0N1Aayu18EP9RwcYKQWFzeZJV/XeNs85GQM5UIfve80k4c21CjkprzeZURKBYRCogiqDGDO/82vVywd3dnZExWUChs7CbcoaHpc2HiRBzrZZ9pGit2EYaR2J1yBFbpcOmGCmaIXYKd5Q8HGacDNKkZBjw7oZFxoRpygZn0w132zZ0VctUKog5YMosQtZ1xbKsmOYJg3AdWDDEEFAVFvhH3kPOedwXd630omj41VjHSovvPXE0SEDdqFAopdgIzQ7gTiv1pVIJA1BOyOKJ3CG34Vb4yMCqbgA7LyU8d/+9G/cCIMILFBb1ZfMDUBAbixyOrgrO5zOL8N7opOmcsg6SQi1gsJQV7uBb6472jDTs4GMGFpy18x8RFsGlddQOTMG6eCkWQc9Dp3YOH2lTTm4UvBg2wjgAfPzxx3j/w/fx6uNX8fjxY3zj61/nOo+CKU2gfk2vro2bA+WBtIVAlK35s4CdtxJE0GpBnIKRkTnqsTILbjAYY0JTjjEp6wWcQEl0+Voi7sikkFjcG5LZNcScoKWgoSMJhikfp8IMaazbBlQS1PNkFvb2s1PiqGK5XBCSHzWKPE9G4HUzAsssMnJoShkPHz7Euq7Ytg1JdaRaSwB66bicz/bM0P3YCcHLUtAy4ERS8rlmpvKal1Y0iW1vbGanmwDVA0p1NQzgmVLdih9IRE5HpDxhXTcSZE2qHoSKQH6P5TdZM1QqkZic016ASzDvE97/ka7cu0VcuCJJBrkYxuPypnee/Trvza2P9nK+kkZ3R2xk/O6UAmKO0EJFHLl+zdBwnp0hRsaIrBvcgM6b7Qm7+hOgEKDWirv7pzhf7pDuM25uHuD25gYpBpSyITSSAOiJ9f8QgvL/by83nPIODo6kBLOHN0jcVROD4dxB1COya51mS9ZUxVabkfEixPIZiiVhio0VjnO2WWRABzscJ8f27p0AHSBjcvMpdnnRZZTKAinEwINX9ywV78Rd8iZiQYAAPI0zhoAe+tgsBrPbVDfo5AI4muKXCRBz6jQZG4gmqbLgQDelisHiY/8Vr/4BN+UhssN5effN1tJN++g8SdyVwKKi1zaKDt94xf5R+9nuBcev85k3u1hK4KjEqLUN7V40cpq2jqCOBhRmSdRsM/UNtTT00oDGkU6ep0GwjSGgBbXMCUv6NJ7H8Tjj5uaGReec0FFRVgbCNZORe5ECmHV6pdV9KRWPXnoBtbJrPOUTSYv1gmXZoNoxT4Sf53lCrc2KpgTV1XgUMKt0QzPG+MAQMlXjInkBEMxFOYwiq9bdVAmVn7PWimUlfN1qA5SF8zwdxswZUBxSRprI2WqVMHYtJJFKiKi9Y9J97DPGe4aOcaFGpCEDC2hdadk+JMlOwCV3aV0LkAVtuyBFRjm41DlnZjpp6yT4JvIDtAdIskO+Ew1QVXp9YFfVtdYQEn17StmoNAmCUgqWhdLyYMWW2s8RTjt3FCeQ8FfW1QieHW9/4y28+MIL+Pybb+Ljjz7CsydPEbpAcjIH1V1CLzYakMDu1OXpBhbSyweKw4FFL4skkhW9WOTMnz+vWvifQ+t+2SGGUCrHxxCu2daYa8VRUMaEjNbCGCXSK4prYMqZcmlHf1QHgb63iibBGr0JoVS00lC1j4KydDdpq1g3jjzCZIg1mNvSQBKMasWD21ucjkcs6zLQABa1HN3VKjC1rh3K+/6+bduQ1vZO8jT5Irx2XbzxpLtsTOQkhhzRilpjUY0PB/ROPxV3uj3MM4LQg6WZT0yWbMhHQg99FDa9NVzOFxTjlaVkidlGnr8CJrGHbGLsj2LmmF7UO0E8pTjGe/6sNUOvPR9tb0CfZ6UG5XQhBIWEbgrPTpRLjKvYaYKYs0uvV9RaEELElDLpBiGgVP4+V3ICfB4+3jbc3z3Fw9sXcDodECczJeweCvrJXp/pAsUhbsoY+yBlAeBIw+f96twHjg7EDp5sZLpk1tKt2lwP7t7IULjW2FVMmZbZPq+v3Uilxs/okYtuChF+tEfL0IjmyyGDmMcMHA0dUehhII2W9lupiEiAGpkpRGjg55Ho0LsXIAYxGpeDTVIfA5YB6/Z90fr8X202KxB0MT5GozeLuy/SYh5WyDinwtneGIUWABYWtoH7NSEHIezvpQPudFB7o6GQcXRg7wXdEYLKzRX0ZZEuHA2pmTAlJ/caNmOHhqqOkK8YI8JZgMBETyahKqB7jszp9gYPHzwEoFi3gqfPnuL+/gwAhoA13NwcOSKxXJXWO1IkUtLskAScT7FLGQFhYRMitkFObjauICF3Cm6stUsC+d53P4wYycW5nC8kjabdS6Ns5nNi6JkHka3rZmRRsvBbbZimBI0BvRE2Pp8X3J/PKIWeFhTfCnq/8J41OpzSgRW2eTuPCaaiwSiUEWgi6DbuqiSxdu0IRqQVL0gGFG2y9FJNpigQZBYp2tF7QZGKbWOxRdO4iLLS08Mt7re1IAhJ7tUPKiN0e8DbKOT54WgM2On/sK2dOScb5dqEzY2UDGXhb6MO9zqplfLb+XBAiglPnnyMp0+f4OUXX8VLL72Cu7s7qFbUqghpMm8anqw8QDl+3oDhySOQ8Qwq7DAyM0aPGeCaMCNJ7/qveAe7rT0L2wDsJNloPLPmKhKiqNlQYYBxAjFGU7Kxg57zjLUxVwc2qgYE0sNAP7N1+KJ0Q24gp0rQsC6L7VWcTWzbNkLoJCRs6wo11Kg2pgnPgPFJhM86MPYgfr6ALnu6rp0MlpWTkN16QC2zSBViIa90gmVBUk0cECQNgu7gcnSMUE4W0mqqwAypVGmVymYh5QQZmT7dRuXM1Kq1YppmU476mPP51+CaOe9G1UaUbryntk/v5neuHt3REox1cD0W2guWZuNz+ywCICYIKsTunyrIjQsZqglRdEwWtNahTqJ3jdj5CyuU2KRu64qPto9wdx9xOh1xPJ6Q8vRpRDyf7QIFTn6zTb+pDmKVQ2a1GaTfeXNduhlDsDwVYNtWVJubK0ziZfAweQAHpCA4zNOQOfpDmjyIrj+/QbCSJaLB2WJEnmj8ptWm34EoL2e+EQF0nl37itAakniX0qESuGGOAsyKDYB8FpdNWAcr+7/ayEQwBi59X6z+Of3AEDBMzA2jau2QwEPGocmckiP7cMO57t2zOuXAIOnOjVwMqpQYaH6lCmn8OjGGuoqyKDOVztaY6szqnA9NgJMuk/07cd/SKrsA6Pj+UZSuIL+lVONH8MDXrkACTqcbM4uLaH21iHhukC+++CLEisBpyli3C0rbiErUHYY/n8+2YUTUWsbmMzuc3Rh30CPdaKNEk11G62iviKi2iSwLU1GTweN1JXSeR3fI67csi/2uecygXc4oErCcLzbys6Kn7cZog8sCjitiFEA5YiHSRz+RWhyKN1+GnEHGgt3vvit+vC0MIXDdqiKYd4UttP0ZgcXSwwi7uneNRq0Yv7d1tffDHBRtFVOekPJkyALVby4jXdcNPZP86OM6Hs4WugYS6tldO3+Kz1ztHaHrIHa7gWIMvE5Bo3XxXGM+Aty2Dd/4xlt46cVX8fi11/D+B+/ifP9sDDjpt9SsfdkRuto8zyQMEzaXp/qY2fcW8lSsMPc0ccDcsBW1u5R1D3GERzD0Boku+w6juHHuC9GUYAiz8Z063aIPckSeMi6XC6QnrkMRtCaAXpmL2agSwiYEWuh2nSKN24IAQufudVkRT+Tn5GkyK4g61maKE7QBIXmDZQ0dOlAbi/yQqIwRW3OWK+VINDkoRP1KqJhapvIks6PSHsczU9CMQxZGMrsEQeiC7sTuupt0hhiRwPHXZblg6hYs6GRsoTCjNdpcrEqiLdGUOJ5Xsfd+7ZviSiz3+9pVf2JI8h4Cyj/zVHr/fv4sN01rzRsHP6MMgRfytIIkPqu2V6cUB0rVDxNKY45UKeSwlWVBts8hQRDUESH3crH058qomvv7M3OW/heeZn/U6zNdoHRzvdyMIBlzRswJSIEqDb0aAcFGIzB2u3FH3GWUclsjA0UfOwiO8WhGTUQCmvEKaFZ0gCqhaN5oIho8OK4loRx1dO2k2sWOuvLnQP0Bl8Gnaa0haUGIeSiVYF1TkF3JocbiJmGXBYHn6XD7i1C4i59L+AArdYmKqJHPAqA9IBlZ2Ds2dAv5046cleTFZD9Snf9zXfQIoHy/XpwQNmRx5UxzXh+L3bYiDEryXmmUKFcFtJtI295vs63eeRY+honThNbIu+itWsgc556tW4JydVkyXSu7dvRS8ezujuOqEHE+36N3Bv698MIj3N7e4Hy+YMS8l8oH2ezCd0IbN/3N0Ixd5htGsVBrwzQdcDreWPF8YWZOowReREa3WsoeeOhE4K7N3HHzQAHKtuHu/g6H+YDDYYbLH9d15QYYw/DYoNmckeZiQIxMdC61oBgKlVM25Vo3aS8Nq9w9lsUTkZYY6bvQagOiYIoJWQJHDi4ls/tFxMs7fjeS4mgOMDMuR9d0J7YOcqSOUmhs5DFGTBb0V00B43LMEDrylDFP8yjwgo1SfOOex4iCknTEOA7Jy+UChWKy0UsM9N4YoYeGgIQezT/JUA0J+PC9D/Dk44/x8OEjvPzSY9w9u0ON4DW1M661DappXCMWhjsc74F6gJiRWiPx2wn3IoPPwuvUIcKxK2XSGPJ21Q4YqThGV+HUcaA7ktXE2hjnmSml2JoSSqlYy+Z3cxRM7svD3ylo1dBhdKQcWPS3BpWO48xsl1I4lpJMNGyrxaz4A1JixlBtFaGQA1JLw4QD5kMErKC1oxetsICb8gG1bTT8s3UD5b1NKUEOAdsaUGrBZVnsAGYBWCp9qPIU0WrHttDALE9MaM45obeM1XxwaozwfKtqMuKW+Fno4UTH6pQSz5beEYIRQ7Wjrit6q0gm7ed40CcCMta9bdZQKEol7cALklqvVJL29W6778WZn0Ec7XFEqkreliNnHGH1MWqH4YMAkNMMyRzNl8aYFUZ5lMEvKqUO76VrMz63gqAJIdHhy+WCZVk+lWL3M12giOxknWQGZrtixg5o9YebYG1MFkeeInpt47CLnZBuivvYwLkTMTAht6uFkE0ZQQRbIXuZc3puqiwUwhUXwGDZqpAYKclUWglTcsXNPoWIYgdxbw1NxDJ6Et93iBhGRt5sK5nx/KyeK8RN3sceXpz5i4vGDdfdvdM+qxGGh1mXmYgBtLOe5jxIjL2xACm1Yzgy6s6taQY32htCD93GGoKReun/WCVPVjjtyBU6DgKXOrufDBEeS/Y0uFVMjSNBUWz+m3IeplSMsOdhmFOEmDMk3wrfIwO7/GHmrPv+/h7nM1U9rVknC36sPCUIMtZ1g6uotm0do7KcCUMfDvMYRU6JhlubbfZb2Uw6S3jYnSgFatkeE8c/tWI26SKLG0L9l+VicQzRDmY1O/duqJx5y0RuTLVxjq/W6aackYfjJdd66BzvDS8RtcRWEcDhY/UCxMsGGb9rX2d2/IY9tXWgnsJxGIwfw02tAIjD7dnfEzu8aAVNGoVSEHKhRIAU513tY7yz/brsm75zAPw5CEFwe3OLDz78ACEwPVhtfNB7H142vTeEKMiS0IrJuyUgJ7fz3sPfWq34+je+jgePHuHV1z6Hd999B+fzHQRADaauKQ0avWDya8iF5fw5J4lzzRmdNNJU0H1gAIE0Ix6KjkaHEQoR1x34XpwRZfEYDw8b1a5jXEIlUB3E5N7V4gSi+RfpeH5DisOgq1bLMgOgyPtYuzXjNs3QbTXTN8qpL5fL8Kbax7WCdVsZeLcVXGTBsU4WueDuzR3dpLKH+YDDaUYtBeu2jV7MSf0hBByOB8gKlK2bcRyL9pgSVuOtzNOMlC06AySUSlBMiTy2ZV2QDSEQU5ntfiVh8NHO5zPJudG7OeecmJ/ISqVMq0xDZ1BpMKQvjJgKXO2UrWH8Hhq6+bXaG/DrgsV5KW5x33unq3IICCOWZHef5frY0ee6LeP3eSMowv3XjepyyvSNsYgPqu1gk4MwGhKRndi/rgWf9PWZLlB845wiF1m42qAEnK917VYw2CEfo23WfXeHhdhCZAekJiHsUITG8QqRaY6QAMFaCi6XC2V84t4bsK6GhQMhapK5Ooiu5JSxLHRY9dLBM3iiQc9BAtDozhmEyELwB9fGGlyIlgjcwHyKUYUDPHQNwRmHqr+3aBtZMOMzsWRo2+OsCNpsFp+zueq6fbcdwMUY4ApC5PQaoSR2dw+0rhjWFewIptVO+tx/Dw6GF5b2wdxLQwCT4sXdS0PB2HhD1EJIttmb/4wEt2LhWC2SC5Fz5gGdPYejYprI39hzJCo8pbiZKRaMV5NiGnPh4IiTfU5XYvnBUErB6XTioW8p2z4qdBdK2kvruE7FUBgfxU15ArNptr0wA4YSbYeAq3Weiggxj4U4eDIi7MqhRDIodTZDM0MofLbta947MfepuX4GvUwhTWDf4Pzvhgyz8xkQQwTH9wuQEgm4aYQCwg5GQNQ9PaIZjIE/xypFEcU0sUNsvY6CN0QqS1Tp2GuP+pWKpQGdxXi6Gkm49DdGujufTkeSk9GpiOt1SO+HJb3w0A8pIqSEDz58H0+efIyHD1/E48ev4St/cIGAslgSHDPHSoZzGgQ77g8RALVmwAywoJAW6MKcTP1m1uRe0FOFx5GBW7/7i7wGwvDJig40QyNkP/RjUMYbwGWqVNG4vDqmMByaVb2I3G0OWgW0tRGVQP+kCE+JPuQZRQIuZUNpFSp0HRdQReWorPOFWqvQoDjflyHrdjOzUtwwLWGKB+5P2lHKVZHs1xWCw+FoaGaxEQS5Nv5cruuKlH1s0gexvwnHsfOcsa18voKN3UO4UmdGKvnc7M1HRDrWPjvloCCatG1otSJ3GrxROaSoFch5v3duPT+8V2IYiil/jrwY8c/siiu/Dr13tM1UW+LZV2HP/7JXNIm4nzO90cHbN++cEqKty951jIWquQqPfaKnYbnA91eHu+wnfX2mCxTvIrpa9LYERDGCVms0fAomh5XdV0F7Ry0k2IUYLYrbvRieRx7U1A9cHexMaqG5k6tJYCZQRDQETemy2VXG+ZtzxGE6WKW54wMelOcjHIcmCT1z/6ytIVbOhSXtJjwkru6psx5mBYBeKcFUDOOK8TRXxQ6D+sKz/XF0UbUPeDN7fLvuiZ697xkeqjzw6pUVuto1VNscXObpyoDR4Xh3CxgfUbyqwZR4ILfKuTMRgf3zNjPJ4ljLCqRaELIbKTUEWCdiBco8z5jyjAYg5TgSeke+yZj/T7YJZGxbGxu7r5EAMUjX7fK/SZlkRbFHw/PwTWMjqKVREm3jKVWaWnXrZNxwbbPspTxRwuhzZN90U8rgBOOKIBm56QQBDscD3EPhcJjh0QvbsiIEdriQhNYKegeCMfeH02tMmCY+J+uy2gjTx4XOD1KLIKA7KK/9TpD1eyXKA8gJ7c4RiCEi8OGCOP8p8jOF0NGrjHXsQWkCtWKaXITD4YDeK2rdxhqb8jQ63GZp0hoNiQgBMHRiWRZoYNGpYGpsV7WsKUXOHIeNwtBGrd7kUJkg8Jl7DBFlrXj7rbfx4PYB3njjDXz4wQfYtovtPZXydu+A/Ryy++fW8SIM4mRz4jJuejC1to9ynSDq/8QUoVUQxFyq406oDuGqyI7ct6R7cGUzJSN5T/M0kVjemyXo7sgRkaI2iiM+32kvyO3aFKk0QUsRwZVlSazhCbjfFub9SLBRe4GYBLl3xXw4EoUQR8yJqKS0h2KqArUVbJuP/tIoPoB9tLcrfBJSCvxsrVijK+bn1AxpSM/5kag2XIpZE0wTgpgMd5hKGlolCREyVHjbtpljLd8/Zby++WG8TxZidE/2JpjFEzD8f7pz3na/k29GTBzN2Ys8jD2ZTR2dvrtcnTdw7o4+9zOmnNFbQ/ExIbjXe+FMHhTH0GLPQDD5eSmVyHBn8+VNznA4/4Svz3SB4htFELEFFa1bYiotwk5u8+wY7QHaaXHMGX20h4sISdO+s+klggax1uWFgNI7tsqNKlgX75uWmHxXA9DgShbmXeSU0CuwrbQCJgdGR2Hg7PyQEoITeq1QqVuHoGCaElKO7LwUjLZGp9eJeZUAV8ZmVYkJw/NGxBQ39uBCjJhqRQ/4/XxILYBsELCcH2Gbsv0ZaSrPPyysuv0aAvCNvxQjCMpAk/z3Vht9OfRPFQPtzSXxM/JTyXMP48jPsAet945tWWxEkZEif0ezWfTpdMLxeIP7yz15RiI0bRIxkmkYfideUE1TtM9KT4woJFTe35/hVtI6IFPP0fD8mjaIaar0PRmpreKEUEGtprixhOJunAtFM6RIh5IA1imPDJSwe+b4c3E8HoYc0gPdppRROrAYobS3im3doKDBG1EaJuOGEOnZIgLnHADkRlRh8acw4VYnZF5avfLkII9FYCRLQwGDoSoeJghNzN70brmWfZwEntnNuq/o0l7eaCJrgd4gy7Ky2LgU8i1EIZND4EbibmXvpq3ghgJa7LqFXZrro01FhyxEgWp1xMtiJXof0QncW9hth5kH2Hvvv4eXXn4Zr71CX5Svf+0r8LKCZHw62cZuhYI9b54h5TN9Ztq0UYgQjeroAVa8cuznVRx5O4IAOtF6Fw+oFbc7GVOi8X3ExoBmZX5/f4fJSc/WREXjk3R0a4wCOsy/SQSoZioZiCxU46CFwDaBGT/8M/pJJdwejlfFIAv3qEDKtKxXAKcHD3hTekOpEWUzZWF01OaqOYkehBmGgtIPXh/vrSYLz9MElM14W56PY41nLYAmsy8Q+EjRi0gJCRLJivPzIkqCGtdEWschcOy4LMvYO4HOoNirdUiirg40RVNGmqfRMNoXXhFq/7BSR8bzsjdJXviIFUJuS/DN/7Cxwlhv1y7gQlgUQX1/UeOoKTTwfYcocNKzRl6ilIAmdC3WbWP45Mzx9jWq98e9PvMFim/yOSVaz5ukzOE0z32Qq/+DO7SGvXKs5jmigEHVEa3vsraYKLlx+2c6YoZxQEKAYJ0EZP+9h9l4A61jK9Vs9Z2jwt/VW4O2Dg1ASoGbdqcunUWK5c6EwIWgCpjLbbdq1POUB2XTZsZDIXN13QKscBi8DgyYF9cPBa8yf55alL0aGa55NDdQm/93f65Q8VdXoJUKN38LwVnl7pRiuxMIy08hGbzITdGVFFAd8HYzjwimnzZkk8Y1K466NIhMOBxnOhlKgIYAhIgnz57icjnjwYMH2JYVWy2Y54N1HoRs1eDUbdsQY7burY6H9LKyU88mWXTZ47JcBm/h6dPNZr8N2ZQm+1zWRgRCQrcz5+d5RsoZtWwIOQMmQd+2jQWwrb0YIqpWUw6RbNx7G11KTvwaOnau+8jCfr92YFlX7rd28PBedUxzRtc4ZvckA3rkA39+M1JvN/SkKygzFi/UeO+bj4DUCgDokPprBxoa1PgO3h2qYiBvXoTuG+9+YGhviCLQVvHs2VPEGLFtRHnmmSM253EAwLptKBaAeJjnYVZGgj3jBWpjiCFjEWhAWIv5EvU6pKZ7c9NGwQURbCbdn5Kgbhvef/c9vPLSK3jl1dfwwYcf4NndUxZV3Y0SOYkUgxBDCJijES5bs7Rjyt2deB3tupOcvIfI+QigG/oQQsScs1m2y0B5HH1lcyAcUVij4GO51hsu20oLAENxgshw/WU4qXD8ZvtTaRVAghMlVfnMlFYhLUA1kvvXee9aqaYGU/StIM2zhXyy4Ishjb1vmhIEdo+qGtLo657vv9s9IyptQoe+jxN89NpaM3SCSCOzn3y8yMaESr4Vk5I+wOLOUAhuiHx+g6Be8bJk/JXtxzHSPbdUbEaiFcCQ2zD2AfV8sdpwqRWhFpyOR/ObIqJUrxVXVwW8yK4ACuNsEduznndtvSbiAs4TccRll+IDHnjo59TzaIv7fbFIE6QkCBUQ7Qg5oadgIY2NY9+uWC8Lurm/f9LXZ7pAoXzXoKNgMKjouGEhxf3GifHPrTujZNE9GhRbrbSot4WXU4ZoRzJ4MI1iR1CvUJPWAhrc1Cfw+1IixJciJpupesgS1y6hMQliaiPb5nW3mUZX9p+qCEkRc4LEhH6lDjHTEci1Qsc3eBs3qX0+YDxTGJ4ONppQ+ylWnwzjNn7PlekW/ODei5Vu1/Ha+2NHTvjTPZ3Y5ZUcIwEAM0FEBIgkPEJJ4qQPTRiEztY8StCKIWUBtjXOeeMo+PwwCzgeTzgdbrCuTKkuXfHk4ye4P9/j5ubGugyDs2cG6vEZlAExkx9yYBKubXgKdoPJHGivZcVOsi02AuQm4N4kBY8ePbIO3RJJQ8BpPsJDLWNMaHUjYuAeB+ZgGrwYlR3RYOZMsm5JbTrJ+1WwoZiLbVCXszK7yTs6VdcJ+Fix4rwsqL0iRxlmbtUyZbw7h9036+Hgzspjb5Z9/UBhOTxhHIxRdh4YCb8CKI3/StnQtGNk2OD5Tdb5Pb1WNAGCqaYG10WdHEv34FoKajE0y8z+DqbAc8VDh5O+K0rZES/mFVnEgDZbHzx8Y0hQuVI+iUCDDmOzIAHvf/A+nj57hkcPH+Lll1/B3f0zjiUhRGdBeWewxsDjDJy31AxNcZ7U8zJR72YBJ/TyP67C+6YZUgotGIy7wSaOc14/wHyPVCuUtRpJXoCoakoUc4u1fBu3xW+qkNqHssRHKjnLKAaAAk2Wsm4Ez147elWSw/uGsq6YjkcEBbbzhjRxJIsOLEtBwO53orb26Qi78zBKrZAYMM/Zuvt4JWtnIUPieXWQDq4ycYO3aZoRhPlVpVbzcWHW0NpXTNMBKeZx3UcR3TsHnmpMRBMSuDlZzsmQ0Gr3nQozNpMmARaugbIVXIS5RpTSp6vx6vOSZNW9aPH/dTRkjNX7Pv4l78RDQMtVY7M/1yHsRne+5q59lnYE2J5nI/amGBkPocwaK5Yr5ohOqRWX+xWf9PWZLlB2hrF1WtChGEgjv+F5+Ku2Db2pmQMxrbFVdiO7NJTVeICgglVh7LxpKWZzmBwnODDxBrlHgqr5bzTBUtehbOkc/BDOFpgc86rCt4o2INCXBRxdhDRx7pkienGtO+c8buC2Ix026RGSvHZughcwYf9XmEIC7File6miJPwq0HrhwRF8rkt5tHcJ2gGt5h6rbv8tRiZk91q2OjpGboTX5VRAiOQyBLBDj+L5K9wYqipgvh+D46JuEKbmZOnci4xpZq7O48ePMc0TIPfoS8f27Ezk5PYWjx49GjkvHYKcSJjdtp14V2zmzM2c3Aw3/MopQZLgGjVyJ1gAePbsjsXH6QaqHR9//PE4QDYz//N1+uDBAyzLilI2dC1YlwVdG2Kgw+aYDSvn/xKo6unakYOPsCoOllq8LJx7T3miG2kM2Mz9FWag5YcIlJPArhhKn8tyQSkBp8MRE+yQbw1sfNrY5NRUWwDJuHOekLwIgXW26FaQ+6YJ0M4n0vTJvDM8byVG+sMw3VhGt+UFYM4ZxyPRrnW5AKqYIuWiPnYFeP+2wowTvz/TNOEwH8zozTlnlLIuxUiN4go+59NU1KUiREWebOQBGXbpIUekJogaqbyB2DNCs7RaCr76ta/g0Xd9Jx6/+hjvvf8OFnvfLsfm5+cD5wZhMRkB3hU1VoD4MyjWxaawR23UVoesmuhiI/9OFWqZW35wretCJZHaARR3ojURKmbQ5JyRY2SRf/Xi894ggRyWEAOy7KR7H5HTFwiAmgmeNSApJyAK3W8ricsKxbauVmQ2rJcLWi2YDweO+Wrl6DdhpOfaUB3LZTHJb0Jskc62OQHRIkUM3ekwpDHuakuihAHrumFZFojtP3R1JuIxTRMgHAev6wVyBGLMtg9axIR/blNFicWdQIi0aFcsQbBuRGhKKZjnGfM8D6TM0cKuHWUr6IGoXW4ZabIkewedwx4/4ff12v4ewODe7CoaBdAxz7y38zxR6r1tuEZL2Gi6bf6OsAI7id65mVx75DrFKSOoAl1s9H2yyUFDyoroxfEnfH2mCxQ/8LiBW5hVvEJNbBECnhVjBNHgaMFOLPQZqMAZ8gDcuh1AU8ZOiwBJ8uA8RFQaNimGMoMbZISGbuZq/GkSnQuiVgzwM2hV9AoEtRh6Go/sc2UrtAb7WfhYckrD4DSYz4g61gtgH/jA6C5cnIJ9xOTYsNVL8A1Y1eY3uhd4/stVFY3QzFUH7DBg8F8G5wir7P4OMi4GLzq74wDp5A2EuPu51L5BOwwSDuOg8Q1Qlcodp1DmeSKPRPJQb5zPF9yfz/AoggcPH+B0OiFE8jRyTihbZbaJoT1OjvOutDXCtzDmvKMG46PY5yabPzIfqDccDkfc3Jzw7NkzuCzQ5X6E4GH8Ah2W+PRAYfbOUOY4JG+/SzvnyYxwp63/tm30mQDJdbWSyyLiZF6OUEIMLLbmPSG4270nfF7RqqUxByJavomPA1N1v7c+Mghc5/vzKACCuXM68gKD5p6Pg79OeQ4RyIhQYeZQjF54RyPsTtb9AafjEQJBNrmuj8IG58RVFCCPIxjKI+LyZK6bmGboIle8D88TEsDInCnRbNGzS1zR5mMkcloMIRDzDQpAToKPPvwQH3/0BC++8CIeP34dX/mD/2neQjo63OroaTQkxe7XIFc3kmudjB9AknpQOsA6B6bUavyrGdu6YtsKg/uE3A+OLClTVS1sICpN7VJK5suxk03dNj+kALiZpSEVvbkrEdEusebK98brTl2USdQ+wgGAbEaCpdCTJcaIoJ7/xBG8I5EeJaAxkjgcPCeHz0nKyWIK6P9TG11bkyVat9ohaOhiooMQmXxuaIEqzBagsXiwApkoHMMBc0o4HA5YlguWywXz0QJrHVUYDd4uw+7YC/NWGw4ICJHXets2FiHdCN0hoKldN3tGtDN6pNSCqc6YJvdO2cd1XqCwcODndbNCvVpj/sxxFE0vmGmaRlbRsqy2x3rIab26Pr4PXJnUWdPIIoUk38GRMl5ZgOAQGN+xWZTDtWLoj3t9pguUHTXwomCHoJ0DAvimacY0skfKX9+IbeMYwGf63eE6YUGTYrBMH0JfPjLqjV3WIEJ64QDsGzv8gFEI2A01M9QCMA73JBExCqo2hEiVSZCINGWoCKvU59gkXmw5r8EKFXiZ4eoiwKUCA6aXvTjjtXBUBOb5YsIyr6gNvWjdYUsrIkxqRsfGDBWg1ALP/lCr/LiRw4ojPxxgc3MA2mivnTo09JFrBFi2kIUK8jPsRlEO207zhBdffBE5Z5zvF9Ta8P6HH9LgrHccTgfMhyMPXkNOTqejFXfusMjr4nwS70aq+Wk0gyhTItzK8RM70Nq4OXmWi48hPDTQU7d7d56FF23u58BEVfKgmJAM7G6e0cZfUPIkSqk43UxjA/VxBYAxK9erz1AKvQf854VIXxtXZ2yloJifT0qzjTUjoJ1GcTC1QaNE3jkO3s653BbYbXpIYIyW3M215GvMn415moEgZk2/sgFIzLBinDxIdkfAlGdI4AEFgMGfXLwk6pkrLITIzmg+QkCM+3zevoXPqdCme7IkZtrK05RLAUgUTPk0EJd+PkOv9tdgyiBVhZgMPUiANiX3KUZspeLtt9/Go0cv4PXXH+Pdd97Ccr7sB8xAiYiowD+fFa+E1rOR0/tYR83kxPMckGO0A6+imUldTHmsPRjK5ihDShlUXPSBwLl6w9fqtXRdYNcUCm3kgg00wkysRTDGkGqohRsHcvSRjBwNbCY59sKyGj8tZ47H2QRxdKvQEXzZSgUkD5UNDzzF6XSDeZrx7O4O60o3aEYdJEzzNBCQEIS+MYZgArCUdj/c5bmiXm2kDWzIp2w29STa1lIgoO3BYZ6fG+V7s4ywe02l2DGljLCS+zLPBxaRpWCzNGN/Nr6Z+Nq7WiIzSblpSmPcsq6roRU6vj+bL5jz5jzAkQUNv84LkMPhMGwFlmUdLtLcSxS9uxEpm1pHlfk8eeOvY+/xdTQc2R1xFkHvEdqeP8P+d6/PdIESItDVugrYjNGMhYLJmbRzocPRib4rTOhdwWreHfr88OEBz84gBXZUZdvQTTPPh5PEMDez8st+vbi8WBkHtjqj/CpDA5arYDM/CVT5OHGvK2W/MTJ1dMwa4d2po0nghqs2++97l399MKhZErP6dbJet0KBZN8xqur8Obu53HUlzmIlhjAImDRAugoL7IooCWmKhCXFCZSu5uDPVNv1YwsDEQkxEkFh7O5wy90/Bz9UniY8evQypnzAsiw4ny9Ytw21dRxPRzx64RGmecLd3RnH4wE3pyMkKGpbIeIcEqCrmy21sUEBgKSMbhC6+zo4suCeMH5YNAsmOx6P9IopxRQhgmlK5jnQn1sjQ3pcKxQNN7enQbyN1ilmg8BbpZKHSczZHGMTjsejFUMsVuZ5HrNfcSW0XffeO7oRIx0C5meuNoIJRs5ucLWJ1P291t6gaAgSzV+GY8IYxRDHXTrLNRsBy7raR7JqDQHNFWNtaFtFkN3LSM2kDtBRVLZO0l2pBTFORowtdNqMxumyQ1Ei17WIQCzaoBlfYF0ZD+ASaWZyUUETRFArs4HEoP6caa7H7/cOWanIsA3DGyNVyqHdQThIwAcffoCPnnyIV156GS+9/BjfOP8BdxjLmIqGCqEz0yQqVShcjwUiHTG5UzHHxL7vtLlx3Gh7S2sNfTX5J3beAuzfS6nD50NkJ3pjTIKvD0eM/YVqGzZ5VOYkNFRKzJWjVgJPAtHdVl2EfMCUIh2SO31mXP0UckK0ooucMEOmGpgkLXTaVYWZmxmCAljDyWd4miY8ePAAIQgul2WMo7sJE1KekCOLszGyEFcg7givwHLTIJYkzuuW84bT6TSs8Bk6aUaGczDJP4sCbwiG8zessQoBs85YrRgPckAwpU+rRMw7gHgFhIdI1RaRVu4nudIFepomoAHbspmqic9XsD3Zx8oiRFZ95Onuyv4z2bjF0Ri5QtCTkUlO34UCOxk3DEdeL3j83NiRd55pU4zoHnnxCV+f6QLF3f48F0bVMj8CrIOCHfjswPg1tmEFsrwDIuY0Y8Y8fgadPAUAfVa42WyAUhoXQBa2b1I2LxoQfAqEg4G9ouxG+osSME2c37XGyHuIW1179xs4WxZudJ5y6jNO6u6DqXH2lczOH3unczWa2d1bvZjbr6MqRhdPaMCMuSrlfDycd44OADPBsw0fQC8btNCqHqAnCl9GoHJjNchzPhjuEQAAIQqatmFW5+ZEfoyIRhIKI43sIgJ6iOaB0Wmc1xqWUnC+LDgcDnjw6BEevfACai24Pc148YWHyDljWc5G6HOyKDfMa36IOzaGEMaMNmUiE+taUCO7PkkBc8xUYrWOR48eIUbGu7NDDkigY6h3qjHGIWWuJutWdJyORxwPB97vQNSseECf7i6xVCPw/Xqux7asqLVhygk3pwPD2XJAjwmKbjJZyntbrSjm8LmuG03chJA1tENFUdWJ2zb7djQO4xwzV1GTc9o8Gp2jNx8HBSXE706r3Z6xWisulwXz4TiKVzdMg6GUnIXz94REyX1tHR5aeDweIQC2raKFYMUxr08OHNupFeqt70TtdV2tow578rgdFCFGxCQohZEDY7x11SW6XD6Yq2atDc2kwGonPQmiRADruuK9d97Fyy+8jM+9/gY+fP893N89G5EStXDMGMx80JuMAZmD+5gGSnGdJO7EXoenxPaia7LwIFZCzIRSLQyQqjVv1mjG5jwFDBQRgAUjVggS8mGCdMuPkTRQSihQtZLEDeyFnIKcvhC4b6LCuSO1VfK/UkLZuhXzDKNLMZgPB0dDeaZsdysFdSMfqYHP6mweP703K9gPgy/mxdc1gTemnaQdYgQaeTXNCOQhBByOzB5a1w3ruuLp02eoteHBg1scDjSFI+JAcQUdfrMpfRRNeV9iYnMGI6XHFBCbk1gVc2DBQ9v4Fb1WwPZACSzCEDj6UzF1oakIW20kLtueGIy4P86dvjcFAEbB4snHwagDblfviNd16KkY8nRNkh17e9xRSUdW/Ay95s6JmNJUYbrRT/b6TBcofSg7dHhqiMO7XTAUPSY5Y0w1XfQU5ssQIxRiB7F181cy2zo0+3F0WSF4UbD7bxDCC9R522bRbUP0MUQY0mS+d3SYwyCVKbS0l93UTOkPEAOt5Z3wKxCD1DnzBlgt02/EibiKIFc8l+uKxP6M/2soQGcYWwwBbrvamg5lQbF49uEwqn0UTwB2t0SH2M1unvulksQqCTFQKaCtPTdGMsgKzh3y0VuUSPqsUF3kro/0JOFnbb3hfL7Ho0cvACYDjTHg0aNHeOmlFzBNGaUsOBwnzvixEwZba7bBKnoPNqNPozhhvs7GrsX8JmqpaPa5gyEZIoLS2iC9kXDJcUyeMlrtWJfVUBeaF03TjFoZl3C53KO1gpiOUJNi19awLBs2s9KnE6OHyskoXN1bxTeQyUIDYfNeEld5v5sHoElDQcHaGratoNaCnLIVyeaVYeFjquYGatekXBoYG7DbvHOzSjZy6sYzMBdOQ+VUO1I35VznMb6sK5/FGDgODOD3FHqN8LAFpAGlAK1YQVw7JLTnNk0qWqgWEKEE2NUn3dYbwI2yXaFYwWTsy7rSdt3Gfykl3N1d0Gob3BUqqpx3I6g9IMfENV9Z+EH2aIGtMPUaAnz00Qf48OMP8fDhQ7z0yss4L/cjDb0WJp7LlQTTFRTXkH9O2fxWihV6FZfzGeH2djh/ckui+zEfcv6P82Va56HvCkh/BUNoyVciguT7E8m2bEDcTLBc7XEeRhngyEbEdbp57RwLpUCvnWrv3wmdGQkpzUQkuhVDmfk4feNeEyVgPh7Q7+8H+hJhgYMhIBup1XkZwE7o9D2vlD3lHLrbTHjDGtWNzhp6j3j48CGgwNOnT3G+kGTfe8PxeIKTur3YVlXEUEFPFe7JITLRPsWM3pw7xrEpC1h6o+TE/BoRKohK9XOD1IIEIp3u3cMmo+HSLiit2kgnIqRgruX7fu+ILZ//ZpyVNBAmb16b7fED9QoOAggbxMbNOkgcKLgXKztyshc1/uf+HjjJ70N59klen+kCxeenhGQdtgSCRgjCbogjtj0HRyHAji2wWyASsvsAPDdPgwW2TQdqvQH43J1f3xFEMc8HHI+sqpvlRzDx+Cqh0jkeXSHM9CXhTXz2LAYZK2AdGnsxVqo5Joh1teQO8m99wY0F7A5vO2bL32ufa3BfHBmx+SQMWXIDNgEJld2SSsegGQBgAW21ABKIZnT6tjTr9ll80AyuF/oXeB4IUSlCh+QbOhwf9hGWFStelCUjqR0PR5wv5wF1l1IwHU8DvjwcZuQp4dXXXqGsstXBgwlGdtOZcPH5fMblspA3oWT5T9lGfRAs5pNyOBwIl1/Nc0Ogaidls4YOEdmQk1KKjQE7pilhW8gv8XwephwHLMsVgXUUdjzkyYva18/uS+DyP14vcgvoxpkSRwqtNSNA1vHvMSbUouitwNODXcbatCMFruqmDZGmK9aYM4iOPAzBchF4COK6bkQfzP12IC0wvo02EsNFAHfbDc4HYZG51YKoYUDIZaPSzvlf4er58XFK0za4Uu4RwhUXx0Zbyt7ZESFkAe7I4v4+gvEKFqwbi8HJRi61VFRU1ErulKtsVBVBA1qwEL8YUZsR8ht5FrDRKWY6hN6f7/HW29/Ag4e3ePGVl/DBh+/j/u4Z8pzRqxfscVxzVSI4MblEez9suQZ4H0spKNuG2bp6PufsXNmIXcH+ycngxZSH8WoMbITTdBijBHfuzTnx/itHYtWQotrqcF/1UZo/+4FGU8ZdYkPnqeYpJRRr/tiMNMxTQswzSlutGGfRPOWM2on+zRA8ePAId3d3LERBD52npeDm4S2maeb7bg1u4kYUgYactbEw94M1T5n8GhMk+HkiZg9xf3/Go0eP8Oqrr+Lps2d49uzZ2Dd81AOkwc9SpeRaQhhBgL01NMDcZcUM6NpQdz7Hpws27rN9zRHmaeI+4wR70X28vJpbbU4JbWKqdohm0mcRLNf8K/8+34uccO88TRYYtDwgEkgPK4jY2ZUGquIvN3u79sEa+VvYEUGFQuOfFATFNmkFo6T5AFu6JqjcAXQQtyCADvTDxxy+OPafq7ZBxBgxpzSyGXozozXpwwk2QHG6vcXheARszLCu63gAwlWV3WtD7R0QhrhFETSbgZJAa2S5PrZ4HnwpmoU/D3/PO4F1sUBE00bTKyUhl2j8ztP4ZkKs8ye07865brHMw4UZLISP7fLJflh4teyqKQWQzPTIyZ/8OoGKgE4XYWx4fJ/+fmDza3YW2k1OazPVGBggF1NEaRvWpwstpG0jcEl5qYVkOYEVWoq7uzvMhxk3N7dIgRswDcMET57eoW7siOliK6OgnaYJ21axLCvm42H8PJeF+hx2PswQL4yNqHj37H4cnNPk/JXnvQZUQYfJ4dobkXJ8riMT8HMEi3531Y6PEZws6Z0xogNYXM+KXaaaYqT/gwbcGU+lO6Stjqpw/NZqQw9EG2PY0UbyGQCCtAFlXVDXgnxMtsnvI6BR7JoSxUM0+RgaUTcIQof5WLgrrKWLt2aoBJU9YsUx4w64vFpn6JoI+Ri9NYiQWNp6Nw5HHOo99Q3bEm9VOybk5+bmztHZtqs8pt4BRMQEO1jMRgARQEJtDYdjQmhWAJQCNbt8DzIFiOq9/8F7eO3ZYzx8+BCvvvIqlvMFUQRpsvtuhaofrBzVWvCh6nDM7qqYAUvXtlBUO2TVxq4SBGL8MYhAercChC6tVYEphfH5XSEWE5N+c25DXlxrG4RWAANBVVX0xnH4ruQCKEdn6ne1vCreFyVpOkYkkeEqq0pl0DxPyJLHOgTYeOYY0Trw7Okz3Jwe4OHtA1zWFZ7W7kUD917PR7v6XMoDNyVy5cYe2K4csPuOCDgyt20b3n//PTx8+BAPHtxCteN8f7amrhrSEBAj9wbtHb5At3VDg13vroAht04gZuPQxjiG5pPcZ6NxIetWjE/TcDwcbFzU0BEGLaAqHdBRy0Cz9oImEKkP7bl93D/nNGUjxy4DpQN21GWaMlqnVHzP/XH6xD5S8vt7rfa7drrelZFsVD7p6zNeoJDYScZ0AEwhAoBzdLgUFwb57v4l36ygAXRUwAAzTjzBUkDyY++E9mPkgoxBkOcZh2lCs/BA5x34IuMIyd6rJ/KZiVqUSHQBNoZyeN2gSW0OSZtHQmcRpoqrDJ9dssnDYc/p+ebi5BoZcgmjFwpjdDPgeldk6IAyxaFrpYTTzfBgn1WhzHjoALz7UrXRk8V228EbRJCTs/BZBKWQ9k7syr+ma0dQjNTffTbOjfx0OtqmF8hTqIqb04lIhxJRmecJUfieLuuG83nDuhY4YRjKWWyIgbP4pmN0Mk15OE+qdfHJSH+tunU3k4WdhxQQBun6cjlDQFkz7e8rluVsxQYLOhpbOYm2mmTVZrxlv/6+CUD3JO/j4UipqXDDkCD0P/EDMiUcjyeWwCEDrVtIG68lC5yO4+FALoQbB3YAnnZrh4BotOJXx3UgP8KI0hIBsWA7K1I43mRSeEoZUcKVhNELv45ghmcKR1lcuWQeMFGGGijEiCkRtYshMl8pOhtYILVCtSGnjJxnU5txnNLdmt0OFydDxhhxPJ7MlI5KiMPxsCO1CUC0bhFUweSc7Vp3xAAaOuZpGL8F2UmBIQSUbcW777yDhw8f4pVXX8V7772PYoRd92RpTggPjOVQO4Baa4iGdFYj4CqrJhYp3QnXfXwuVbXMGR5Qh+PR1Dk83MTHsGLmlfAmLBoRO1nBIwwAbJW/LxoyYM9rNMVPiDtqGxNHgrGaeRcUpbFBG0ZiQQfYK7Y30YImkCe1rBYEySC9IGw63FIgpomjw1ipCRBBrSu26kGJu3pLlUjQnGZICGZc6IaJnrbd0cQl3m2QyD/66ONBkJ0PB6gd6Ly5wcz6PFxUByLRKkwFaqaLNtIjDtWg0il8cBdm9euh0JjRUkRcybs5n884HA9D/g8QpYqqw1Or9joKrVnpYh6MW7I7DHMc6+gJ/VDmIUsGHKHrwzNonucdba1WPA80mXvhSJcXF3LsuWHXxY/HSHyS12e6QAEwtPpe8Tq8CZMeQwS9B8TY9/GEj3zgf6QDakMQY3onJAiadb9qlT7lxwJ0QYoZEQHnuzNKLWTVd1MS2SiDfgXmcSDM6CE5QG1UQ6kWfT/64JyIEsHwanQnutk8VcixUfcSsYNTrUhxQp+nFjtpGBCIWhdo1yDEBChzQaDX7ik7SztGNbdToJnqJedMf4TE4mCrBXEOSAgsHJsOuaXCRnL+k2OkTbJYARbYYYruG5zaphYk0pDODqvW9s87TRkPH96ye46CUpttXAF1XZGnCSlN7OSqYlkKLssFy1ptw6DygJmPimkKyFGwbevwUiCPYc9QgVgibldcLhcm2ZqC5ng8Itjm5wcEIe1oRDgfrVQ6S2K3cPfwyzLydtIglEbjPtW6kzbdBdRNnvg8uO+PGTb1jjhNlApvhYf5NKGt/Tk5qxO/e+sIEz1IfMymKqMYohMz70NKCcEkqQEyCJ9EJzirluwYn3sU7V/X7SBu5uabUkavhciZJL4f+5y1FRZs/vtsnOUjn5SfNySsldbiKU+YDwfEuqFWl/pHI8iHke3DbpijnRAYnRET/URqqRCJkASoFtp5m/dKSgndRpDO0wgdtK+3YrybwitJQEXAhx98iGevP8OD0wO89MoreOurXzE+xI5OoitCDoDYSAfGh2OFzE1erajxA09lrJdkyioWrBV1KcbZ2rvmaMom59x5cQiQ/MpGiRw9EeP8KUcPwYq2GAI0NiuOjf44ikiSrnsFLsY9ENWdlxfYUKaUoLWM0YOYkIHeHBu2jc7VOc/m4Npxvr/Hslxwc3OD+cCDWKHI5pOzLJRxNysevfhbV+6Dt7d0ktbqiPLeiEUbj/CALUPheblc4ARsJ6B6KGgIAUFJNF7XFdpZEHK/ZKjpNM1G7DXH4BCviNcNrRLBUtufoUAOAfN0QKkV67oMUcKeF0ccTwM9V7SbgmzbjKfSkaeEmN3fp6BWHedkayyarlOHrwmuXlCJGUSmOEF7Qb+qMTzOw7PM/EWZ/PMZYdeFyid5faYLlBQDDvN0xYsAdpMCO9QVCCHb1+iAqr32FRF0EUA7JJHImZNlwRgM15qSWW3IRLANqXVFN9WHXkGDU8pEDdTfJ91Kt1LMDY2Lzy3daw9YyjrQjKBA91koMGBAHhbWHQkPAREzfMJua3/No5FRblyjLcLhlDRIiNZJ+wICD6AI7GQzfr8GmzE2IE6J89sINJN9VnRIYpE0pcyRAgRta9hKs5l2GzBoADviIAGIRgJWRW/Xh28y2HpItcA3R9ThT735Jh4+eojLslC6t6z0gAh0ok1GVmwg456s+z6uV2sYgZI5C0nOEegrxy4SA3ptgLm3qnNjAtENZpkAZSuE962YYSfV0To78Sp13EMaxOWxZOmZQh6Dm3RBudlsZb2691dkZ1vyDqGOSwOqZfY5cBoF07JcEMPhapOQ8TUxcE17xEAvBb2S3CxQ86roCLmb9LkTbjY0iygJRyDqz4iNy/zp5J/t3kSMI5hRCkcUKQokZpt/s8ivvSFsYM6H0MK81YbW9xm3qg6XVVXvohsQvIiIEGTb1BtSTCb/pSmiBNrAt1qJzAwTN1j8AiwczszGjF8wUAAzV/P8mV3Hs/O1XHKcg2BbLnj33Xdx+3/e4vFrr+LjD97H/d0d5Js2c9iz4SM2oA4XWdjhK0EhkSRGApbduBkyzOS8e0dvKBtHNvM0cSQYk5nC0e3T0YbeC3QAoDZmtfRjyC6nn/KMkiq074ZeLLqBruSfHU4seC+XZXT3Egn1+3qIaUJrxXLJmjUBEYcD5fNl2yAIxvMCdIq4LAuePut4cPUM9aY4nY4IQawgJ8fOkfSmFZdzpfDBvEvcWdYLFPW1BB2SYY9VcRdrIisYhRSUe697f5RCXy0Y+tR6x6aK+XBg0ngIRI4hgFoQZVArPOnSy2sZ0IMiWwM+/Fk6m9NvPvB9jAoAZau2l5I/djgcn+NjOZeumSrOvVOAPWSR/05SvfSdCD9GzTY6u0ZjdqSXa//6/fk1/qSvz3SB0hXY1g0IlAqKz4bFuhCD750It99MN5rafQsgnfLgkEk+Nw+L2q4ZyeyyxwUXMcMyzmCnKBbvrmi9IpvtNABc1rNxB4DhRSrXhl0grNcVahBe6ztxNdjfMwRPBkkKCmiwhQpY5b0fZDyzrqB03WeFHB3ZR7ED0v+AC3B3mA1Ce361zjllKhMaLOvEeAToNvuO5gyLAMSEydJPS11p5Na7uemaT4Bw06XpGU3T5nkmdF8IlQaww3B79dc/9zrefPNN3N3vycS9K8rWOGYQSofPZ8bcb9s2rjUPMff9yMgpIuduHXREzgIY4iM+17f74f4h+UDZ4/l8GaNAXjv6oPTeEboM9U/XRrKtvc9tW607C2PkVlul1DWk4QgbYrCxzU7kS5GEYU/yhsu76x5I6IqOWipzRLYNk3VSfAp4f0dGSK2DIwTsckZ6TlRyQ8QShU2OWB3ZMxQNEDSXM/cO6c1CGmWs8dEhiIXuhXnIJnOmsZub+XmRzD7RYHE4suNNgSDnNDZbemMoso3hHKWiRjOCx7cgTLauDeXKUx5ogqutAKJ98ILORsUpmguvKSG84bF54eB3AUSQOCI0+boqPnz/A7z2+DU8uH2Ax48/h69c/i+OpVXG95P3wt8XwH2gbCtdfx0gVQU6r3kP++911NURgWma7BnBKAp47QKawJDKMCz8XcLsY7hrf42cFSWWIdHNkYWB6vXPZqG9gtlUeUqoJVIOrh3aKrqSKM3iB5AoaGVFMe6C71PTPNMYrW4IAYg5Y4oRmCYspWBbzhCQn6HoCClgnkkYXteOqCY/1zbQ1/PljFi2wQ/qtUFigqSEbBb1HgypWmwtRKQUBlfputAnJ8y4fGZBUWsx1Mkzthq2ZTVjtAyAKdVqI7OYxJDYCukeJGgj/yjoFr8gMaKUzTxxOpIpKBXmRQRuB/uYZk8nzomoN9+3E8Rh+1EZo+zRAY1T5NpjJe6fW/1z72j/7nXUn7tG4zkc84s//vWZLlBaa9gEZunNoqJj7x4Bs6QWA+etw+JFjONh4iKk/DhYkVCtq6DVezT5rcHx4wBwkzEfMov5EriXB2eKVHVsVgixc0CgyRWVMERnYEZSoXV0UOZlvDPai6sOtOi62PBRluIP802c70KAR+FMbVjRoTYWoqOqd2o7VMxFfDUdC4IkiYTc3s24iaFW3YfJygO99EKpaud8MsZEPwVt5gnAUQa9GGwTafydN7e3ePjwIcpacFfuWXSJwEMVj8cjTqcT3nr7Xdyf7zHNk4VzMcMINlvetg0XPQNdjd/hsriImDJpxokuoqqFA4CYINIArfa+xaLKuTmJBISYBiTqcK1DodNEme/9/TOiEcqCOMaMeaK88P7+HqpUf/ncet3WK35NQFcbubkaDfz3ZG6bAJDEs0T+MNm7e3fUzOOgdTSh86fYcyCdOTq99+FnwaIsMI5eYVC57mM6CZZkGoAC4xdgHICq+/p8rlnoO8GyGkfJ5aN8vw1hyvb9XLp10/H8Qjpa9ZDPZJ/1muxNRYf6RmojVlrfm8ePEer5XuhR4xumRLuH14iU/YzaK9wFmXyxQNK8KaSCBHTxe9DHCNK3YyJjbRz2y/2GD9/9CI9uXsALL7yA99874f7+GZ9jq+H8OfVCLcUITBm1dBMAmAdN5WcPhnB48jS7/gznjkW7BinGYTBH5IfPJQLoxRIjYotYdWOheLWfsNAjKtOsUCSyYbiR33tDkVhkd0SJyPMEBEEtNO3rWiEKVBErTCPvgWU/UfkSjPCZ0bYVrW7YwPF3igFJozmsdtzc3EABFCP2uiP42ujA6kUzoIgSza+H96TVirV3pHnmeM/QOffwqBbYCSjYc+4eL+7M6uveM8EAYG2rWffzGSbPg8nJOSVgjJYEMSSkEFBjouFl9fT0gG7InPFibT8WK9yqFRrdmm4Bgu7jcitU1mVFTXW460p0HTjg1gbXvJHdjE3G5/Miw43b+Of7tEBkV7n1qwLXR2F/ohAUgAVINqh5T2h1V1ULoTKvhmt5LV9GtLQFKyCr28lO6GLqGd5IHQe4MeZN0QvwgO+doUmtKWFfK062bcWYj5uc2Oe11yMZJ5WOilODTawUJCqK1+oYQypVQN0YaR9BKYxXI3wgPXKeb9bQR1z/kRgAonagmp+IyBXHwTapAH4O8eLEkjbHtVOg+cjJrpMECBpCB9AapNdxEAAw+3QWJ/M848GDB8gp4XJ/4YYfONIKMWI6ZDx89ADn5d4C54AYJ3O6ZbeRIhUHallBPpaotRlU2xBjpgrICL7SadynGrCa3XPKHBHFzutfFqIQEJIP3WbeSXiOyl3P2X1kkzPD/OiZIOTGSBjz3Mtlwbatw+TPHVFDkPGgu4yYDz8GoiMx8uAvSm+FRmm4y8N9g6itmmsnnT8BoFr+zzCjSxEpCpLznTpdd8N1x2SFvBev7n0hiOh9s2KN6JSagVm3n+VoU69EdsK8myT6S5WjotquAjzhAAUNrHqHQdVmsGdutTFZWCgMzbAxrcJGZa0xBbmx44bsBYFawQ34+Iy/oywF1UYeCMm6cQ/B3OWi+3Mi4zmD3bve6ePC5lTx/vvv4bXXX8fp5iFeefU1PHt2h96rQePkakjjnsFrEJHSBGhF74WoBdiotQ5ElZ3Ub/4+MUbMduiO4tcCRge/KbFoqo2J7lETPXFELOscw1zLG5Jgz1NvDSEnk+nvRQrUcGIvcHXFNE84nCa0oljXDdXS4xmN0YGJyNTxlLAsF0M7zA8pJcT5QLS20qU1W8q8BmBdF6gAx9ORXZ2N4mIgr0vL9dpyyT4LsoFiq6LZgR9jtCT7CMGEIJXpxia/ZhyArRuT2V+v4RgCNCW0VrGulpRsHLNaTUFXK2IOyNPM8VhlkT/NaWQLFRvxBuX97QhISVArME1iRc9GAYE91yTXP2+0BmsUStll4WmeDGG7OtMgbFbtVLiWEuso8lnoO8pyPWEAHPkxryPlSWP9PdhQ/AnxQUkpDZa5yzVdnhiMlKijoNCxaV7LPQUBSTjuYcNiG1ptgEZI2qs/+9vhjRBiQB5pojLkkWJujcu6oBsL3ztLiDPGneXcRxcOKEKK1om6dMsRGs8ZMdOdsSF6GQvTgMqwGefIS5mcbI2idlMwjU6N6MsYEVlXe03C8k+uaKPiJ2nUMlZgskMRqER0WIaFUt0iqnwohbNf5qIkmxmbVNFGFCGwQAGAZ0/vsS6rXQc+IA8f3uL04JaFAxTbUpBSZg5JbYOP44oh2BUKIaCUbRBjERKijc/yNKFuG1onhL9tdbd93wpaL0Yo5Cbmm7MIRpfjxZZvBh5p7wFtcz5ArOMpZZfftbZLslvtKFvD7e2trXASeN3DQcwszF1UCa+Yukp4Lbt2wsPNURtK1D0TSMQSjCvt/CUGbMuKbWXqdoyRRRpYfIcYCJuDiMkoCrrafN0PT+bF8FkrEJj9uV0nPwwdAnYeVzVvGBEz+sNOzusKtEbuAYKr4bgBN+3GriJH5HI+j46t1waZODKQAErJNxqDwWb/qjZ1Cj7u2uXOjji07qogclE8EqFpg9jM3a0MrqErvx7eZfuz1SxgLyaOCi6XM955521867d+G15++RW8887bePbkI6ip3tzqHXEfKydJY4Sw6QZtGC69UKFLaXJ32oJiIx7fK1trWKu51iqgtWOWTFWOZflIKMh55yAAgIo7YTsBn5Xptq3IdjFLrYiyWxVAd6PMpm5jnzAfMmKKWBZB2QrQKrZiHj/TjJiAeZqxrAvc/RUg4XaOAduyjCIFgAUmBiznC1GRQ0dsMw0LcximasvCZtGdVlvrWNcV2aIsVJU2B6q0MZCd0yG2L9UQmNOknpMFQ1dZ2PM+7EUK9yYq96q9V09i7l2x9o5YG+b5gByoSNJOUjbJuHVHI21thfG7fONng+kBkwAwRRaZ7vAs0egEduZs22acGSKyHHU5KufP4T4u3lEUz5DT8fVjjairY2WcW9+MpgD6J0fFIyGgQQf85iOQ0W01BVB3hYi4vl0gZkSl9mCnmPiQ9d2ciFIwEjlhWu9u8HAURos7691hNFb9NAlC2m2kB4EvyE5EKm08KOyo0y7VhLH/0W0n1b04wW6I4/Cvv7zKdSi2d0Xwrlu5WIP611r6KoTCDGf0dxZuYg6uaosxiEJCNOm0oyxknXNOaooIuCeGdaSwjltZvM3ThK6KbVvgJDP1z2HdmdtLK7npgLg3Q2ZWRZ7QymrIgeLu7hlinpBSHpk0TKDNxibnZw5RsKwX5EmgGhHEZHhKU75lXXE+n1FKRUoB27qiKY3aOHMn4RQSkFMYXhAphOFG2c38DsCAYE/HGzCeXkan4TNiHfeDhkx5yuYeS/SFhzrXTK1lt8ZXQJNxQbSjboVjhGhyU7tmtTWUuqJqB1rBqkCvhHKT8CCurQ0I1jkyEjBm7ilnsPI1dBFXagy77w4nqhpS2XWXhKmObnyw+QM79Fbb2Obc26hVfn03VYN05cFtfjX8QbZmwWK/2X0RU7SkLNAW6Efh0fBGZG29IXbysK6foW5+Mj4qcUQl5gQpjZw3NJq1d+bmOPvICaQiYo6k9CDpNgKslWPNSWbEOEEhePfdd/H6629gPh7w+LXP4e7ZExafMdhki77HyVRjpVREc7UGgM3UaLF3OMMtBiJIw+XZr7cdEG4BL0nQRbGVyjTdGIz7QDQPsEPWCkixxo/fz0MvJD5/Qa3g7NXGUldawAhEJCNqL3ReNkxGACs4+T4kRBwDP9s8MVuLJM3dmynljGpmmAp9bt8opULChgSurymxUJnnGcfjhqdPn8KN21Q7ylboHn21B/n+XGuBoHP8a2hATAmHEIzP1vavbc2k9mGsxeuCnGOQbgW+cwI56ixlQSkVN8cbjoqbR0zsRT2bWSv0dS/ifaQUwoQaI5rtfefzGcfjcSBnqiTV+r5PzslmjXJD62pE473ooJvutX+TiTK+qXn1h1EEO3Fc9v3NybiAfqrxDnCtKP0Ery9+8Yv47u/+bjx8+BAPHz7EF77wBfzGb/zG+Pu/83f+znMPg4jgL/2lv/Tcz1jXFT/+4z+OV155BTc3N/jhH/5hfO1rX/tUb3q8+X2FIyYSyoahVtuJYg4tUXnhszMzD0JHymLKD8/cYFEQg9AkKuwQPhAQJdHKGT775/vprZuBWKHFcXACKHXuYlCgBEHpDcWhZ6XEMyRaZg9EwjZjhbm7NnIBtnUPsnO4mNp6WNe5L+pg+T/QnbQHuIeMFxhuFGQhf/Y5vav1bj3YNSe/hhb0AcFIpgdMacacJxxyxmFKOEwZsylEPHE62X0ikU/NRO0GD25vcTwcMecJooJWfF4fQbJgxvF0HP4vJJOuuLm94TUz/xJVxseHQOfdw+FAgqAI8jRh3VZ7+Hfp7LO7p7i/vzdC2WbOig6fslNzya3A+Ch2Df3mO+zNu8H/15XW1sz+MCQictGqdb1Oju29I08Rh+N89eCbksBHMbUOJMTn6a0z76b1nXvgHAgvVIeiBmpyRbrjUsHiypFdZmltLzkoPoc2MlSUYJJpzuhdej7Ib1b4d1Ns1UpyLdQgYaEigA7KHCEG6ODS9KbozaByHQv8auzI9eoy6tb5s0T2oqK0irVsuCwr7s9nrNuK0pjW3Lo5eHojoi4Dv3JoBUi8t1DQpWyAwEi0NNSqraJ2dsHNnlX3qdthbRt/wjwotOzyb5DQuKwXvPfeuxAJePXxYzx4+IicHlsTEC9yKNdvtdPuX6lcoXdOxjTNptaxA0Ce987Z5fHfhMIpxu9KkerFaB2y2ti8OlmUFexA/oKE55Jwo60B+vjsGVvedXuQ3vl8weWyoFSabEpMRLZUR/Cji9On6TA+d61EYiVOiPkASERvglIVm/FyFELFYG2oW0VZWciI0C/pwYMHmOcD5nnC4XCkLYA1XD4aU/XDOoyxIYt8y8rpzbxZqFKMybk+vid0dK1YtwtKWRAjTMZL1Njl2ykmpJgtn0hxPt8TyTRC77KtWLdtJI3XWkzFw3969yR55pHd3JxwczpSoaWK+/s7LOsCtcKAIY/RfnccBUTZCtbLgnVZOCrT3b7+Wshx7X3i6iZPb/b3VpzHZuvPFT8hyPjefnUO/XGvT4WgvPnmm/jZn/1ZfNu3fRsA4Jd+6ZfwIz/yI/j93/99fOd3ficA4K/9tb+Gf/fv/t34Hq/0/fUTP/ET+PVf/3X86q/+Kl5++WX85E/+JH7wB38QX/7ylz91dSWy+yJ40JN2+k/EGJi7Eyn7TWl3tHPDpgCmBpPp78RQPsy8mYTricZUVGfrG2QdusWOC936mt3E6TDZz8SAwMdmrkCpnv/SEFJADgcE2U3aADxXTDiF4D/qAAAtWElEQVSa1m3Moa4usQKr25zXDwntrlIKluNTDYomVwb6zaiLjkXpPyfYA+sHcFfQ/rybeiJEk2la9yscGwX0XfLZgRLqcOWMIZrVPVmat7cPcDrd2MZV7H016zQVDx+9ZOO2Cgj9B8g5mrCuG25ubhGEAYnuyVJbwzQlzOb94Yd/SpHJ07XhcJjhUeqlVNRW8PDBQ8L6K5n9Iua2aD4ygghIx7JcUFs3Ah6xJZJYfQRkvKicUMoCiIwCyfkCzxOcTXqt3ayx5Qqp6YNcWaMbSglqI3rhfiLaG6F3QzKqIRI5MxTND+DSG9S4EyEw6TQbkbALyZM5sNCbZvJlvHh1yDYE8rIgvL/O82GBE6hq23FF7GPIgCAMwoQoYgC6jU7TMMnie8dASITo1u7YA1fXaHNvC3a40zxDlbwWR0Dp9klkSEfV2BlaNtb9FapjvzMmyssFgtQb1o0hjDFEolsbxxHBOSbAGE9BxUa07GzneTKvGH5d2YpdK9j3K9595x28/NLLON6c8Mqrj/H02VN0reaGymLBYfGxLjcgJsE0T/zc7YqQbKRiWs2Ledr08Z4mjeY3Ys+4wGzl47Cgp7y3wFN+6f8EG3GKNQnNssksu0avfq/vfspRVYxEY3KasW300ag+trCRNsnTbeQz5SsFEuMPGgm14LqYphmXfkVChQxjwFYbNNOfqBhqOU0Zp9MROSesK+0h5sMB0zxhWRaiZ70DhoyUEKFax2re1Xc2qprnUbDmPNkzX9GxWxG4pDenad8HdD8TnNvTtaMXCjOEPIBRFDVHVIbRp08KuM5CiEiJMmvJNLBLOeHpk6e4v6clv6MpMKRNbS/p3ZAcI+X6+DDZmemf2//XR9Pk8+0InT9H3tABGOc5uXz0FeJI/P+hAuWHfuiHnvvvn/7pn8YXv/hF/N7v/d4oUOZ5xuuvv/6//P4nT57gF37hF/DLv/zL+N7v/V4AwK/8yq/g85//PH77t38bP/ADP/Bp3g6JUwa3KXHbUdGmFDBP9MFwKScAwsWqtPrIMzuKQLlgayaBg9UEIaAatOdGZzFEplT2jikksznvA2mI1ilAPP7c0JCukGAWwa1xTi5ikkoj1gIWkKaAOROrwbw+w6fz4/PqAJ8Ja9+N0NyFlHNHvYJTbdF1h9uc3+GPoR0v4Xq6KAgq6MoHqvcKLX0UcPw+khpVduKkCiAm06b6hGZAUCClCfNETwCoy9Pi4PC89NILuLl9aMRNoG4bi4v5iKqKnGecjjd48uTJmLEfzNdAVZHN1bCUwlGCVe+3tw84N66LXdzAQunmZoxVkuca9d2Rk91Ux7bxIXZLcvJPrFi2A4kcG165wzyPzpFqGA/kMi5UIFqEcSazw3LCNjcPHd0Io+I7qu6z6W+GuHvvmFMevJg8ZdzEG8gi6A2oXZHjRAfalLiWWjd0xNRj0tAKRybdrhPvE4y3oYOPdE3E9esPKOWjYf88Eq6UNTEgWiE9Oq4AK0ZJJoR5gKD5KmRXVqr5y5gjakoR82SHhRriabNwrkXnc9mI8moPUbgRns/a7c97BwLdcT0MEtj5ayx6aRoGAN2eYR+HurV/TCQsugkiFAP9oiMocH++x3sfvIc/dft/4KWXX8aHH36Ajz56f/B9YnJOUef4TtmcoPGe55zQxEdUDTEHQ934nkut6GphhFBk8yASbWOUK+BnyjkZ3ylZyGbZ95jOSoN8HEpmewhD1ZhitPe5o43wDrzSRC1FoEYYP8z3Ljg0C3SifCSpsvlMMUKMyI7eUMHYDNhYnAKDBpGOENQMEM1t1RSZIbKTZ1Gv46B3jss0Tcy9EVfsXMj18PsuttfplQuumLN2J5eF9yLDKH4DORoZaZ3JzdEzdax49v14N7rbRzdEp2y032D7WEVTjP09pThQUomCHDIexAdIMeHu/g6lMAbgMBuabIgaEd+O3lxU0bGVDa1XaK7QaeJZFmDvx8MlxUbnTFTfDR11L6DhBVQY/jmiCgkZ0v5fIMm21vBrv/ZruL+/xxe+8IXx57/zO7+Dx48f44UXXsD3fM/34Kd/+qfx+PFjAMCXv/xllFLw/d///ePr33jjDXzXd30XvvSlL33qAoUVILtWV6mIGWjN1kXTZyFCux0MI2X3ymvBEjm9u+1KOLQW45tEC9QSEuRab4z6E0BBVKE2j0yfoMIud3SSVjF63DQLCR0bp8ebB3P0dK+PYKe8e5uYEngUE4SAYVXN7oESQoDC4bQdKaGKwojCkZu/X7fWqFLiE0MypXsREJoPQBeM+rt30+VT+gvQ5p5fygRP78Apd5zo22EL/KBAAEdl3ExNKaWK4+nm/9ve18bYVVXvP3vv83LvTIehQ2mnBaxVCVgLiK0vRSICiiGgUQyg8QWjX2oEIWCi1JjiBy3xgwaJoiJBiSb1Q8FgUKBEKBqjmEJDC6bWUKSQjpVC23m755y99/p/WGvvc4e2QPnlTzu4n6ShnXuZubPOOXuv/axnPQsDg3MiPUgEKSXw5F2vFI6dewyfNrRGERKUTocTGnnYe70KkHhZazE0NAQAmJqaiqcQYzQ6ZUf+2ep7rExV1SaMp2fr97LsSGeOAxn2kWl9ItoFqa5rKM0j251zsE0TO4mceB8oiKhMhzKMuHZyASk+8KzIF4YLbUmC73/RcGS8sFZVxUxIkYtmoUHRKVF0OzyDxEvJzOQo8gKZ0UDZASSZ5nsOMpk3lKS4dsHPD5/YvCTePpyCQ9lENpxYVqB2Uw8aHS4DhXuNohOl0vzsGfDhg4hgkIkPCjMBec4Cy6qq0OmUsmkbLkcB0FnO7CQRsqwT54EAYSiaRi4+MEoFUR8nAuwVoqSrScT2ykhLqAGbg0qXnJSJTbj2BDSah+IVphBdAGLsgr9KlnN3mbVWWtOZvdyz53ksGF2AvCgxd2QE4/v3Svs5m0fqTJg2fqpEn+BgLeuM+HQrPipKieaFmTLvHBrr4TMtTsB8KAqTjYNztrU14CCbUtiICt5wHPu9xCF8YU0hgvLEjJNW8JWNLFRoLyUiKM/3VWAWQsk8tMeGeyaUtysxOuPxCCauwaERgrxDMGLUJY8yIFgYJSMmTIFutwulNaarKUxNTnIZomDL9kaez1DGjVXVkNQ1Nbdgi1uw0Sw+BlR7XXTQ6DFzMD09zbOEcgO2TmjLviF5r5sGnajpIC6ryxobrAOYVeW1nTVgYpCGMCSUhyf2u7aGa9LPCpadEoQwgLNB3dRS7mnnirWMuUwTJ3ZVruQwYo3leWNSpuf5txmyTEu3YS6yhtaIMpRytOgtmQVFbL44HBx2grJlyxasXLkSvV4Pc+bMwV133YWlS5cCAC688EJceumlWLx4MXbs2IFvfetbOO+887Bp0yaUZYmxsTEURYG5c+fO+J4LFizA2NjYIX9mVVWoqir+e//+/QB4UWG7dM7eea/2KAtOUPJcbgTPZmI+CMm8bAGG4DXgvIVt+hw4lQFPweb2LnIOJL3uLnabSAknZI2WBU8m4wurdXshlNR/g1A2bPrcfskXPIwHJ8cdSdz+yJdHS+kJ/SxHuBFJgZTvY0Dk/UJpO+m0CEJdzx8IGRRIuhmiqt17dnjUbKQECyjiwV7QBAceeAiloGTeBz/ZIkBkJh9GscKcb1jCnDnDGB4+FmXJJmUgBe/FPbFp4P1UTJQyk8uAPQdXtxb/jeVauCWHY+cei05RoraEgU4H+ycmkOe8MTWNFUEuPyR5zqfXIJZtZPMK8QsPedM04s3g48CtQJsG9gWKdRmhQye0tM6kO+vY9lqUbORWy+kq1G5j10q4ZkRxKGCoRIQTWqiFRw8H2fB5siykZNOeYPje1CDFQtCmqVHYAibjhb4oSjSNA8/MQXx/p9PlJEG+7G07wC92EPC2iNo2kqT0d3vJZoT2cyiI9kVeJ5B4BFFfWzngIXqpwHDIZmTF8p9HLbRMKdPQLhrghcWek5cCSleo6or9LDSbHGqtkYl3g1Fh6KWC0rxJc92f2CJeaXjXsO9EZGIyFAWXRggENJyAKU1RV6CUATK2NnC+iUmvQkvNh5hY65AZJ9oNYHJiAnv27MHo6CLMHTkOe57fg/37XgBPjQaXnTjTYV0b3zax/p+ZAt5LKc82Um4QgzHF+jVYAhlhthTgiTcuLzYARq6pdRbaZzLioe145DXXM0snJ3xmxpi95bJHB03DTGS/5o8cp1V8tvFxzQj8axRnOxeZZ/gKNSBt0jxckMuI7JOiyEPrUmaeaenCaw+Y2hgMDAzA5Bp79+3F5MQkqrxGlhk+cDgXWWR+Jviu1VpzF1GvFzVkAXwYyWd03/H6aeAs6+Kc446YcLgAXBzN4JxDY2suC2uF3JRRUxZa6g24acE7LzOpmLXO85IrAQSevxOviYul+HC/hYNMWRTIhAWc7k1HgT3QsvBxWrjcmwqsPaybGsqKWWJuoog2dMR6H+aH8doa2O5QVm8a3l8yiL+O4k6v4FPzanDYCcopp5yCzZs3Y+/evVi/fj2uuOIKbNy4EUuXLsXll18e37ds2TKsWLECixcvxj333INLLrnkkN+z1U8cHGvXrsW3v/3tA76uFGfYjgDyFjxLJUNeZLLwCGviPLxXCGSCDg8V+ARiHWG6trElN140FmEIUyFdONRScYEyJqFHnfVwGaFo6x6yB0itV4fTgkOuNZTOYrISjLOC+ru/Lh9uxfDfaIccFlr5f4XrgBXFu+5LSEKcyfOi66iJlDnXhD3IiHeBZzMlPp1qZOThJMNmLwn5HBQ6P/pqqsIkWDlxGZ2hO1Ci0+0gjOnmOS1ALpqCyakpOOfR6XQwMDSAbmcASmns27cPYdgdM10enZJFYCxUK7D3xf1oqhqVbEAhSw9tgE6SQwCYnJxkRqZPGR+GCvLDJHoPWZSKsgDJ/JDQMqw1d1NoI8PMao/K9wCw1sT7gsuIWqNTlsIY8HWyco3C4K2o8BcjqizL0Ihex7tQx5bZM1LPLoQZCV1Z7TPEgs+Q/DQ124Z7x6JhqvlU6DxT69RXriGZgk0gaN9XZuy7fwkkow7k1BxSZWFCtM7RGh/KfaHDgq7iPdJYK7R5aMXlIYDtvA8drdWdYrZSIUeYGus9u/3mOS+8kAnDSnGpTZNCboAGIoAF4kbLZottBwJrofqF444Ta2J9DbyCzrl045RD1slQdkpJzMLMEg1m/9ibhV1/NahhttEoEjaTfUsQryknAoUuEHQ1u8fGMHLc8eh0BjDv+AWYmNiLYELnSYtBnIKKnXrBBdQDGa9RICA3XLYzWcZttVkGJ5uw8YTMkJQh+9g+pTHQZS2ccw5W/GGst+2cJEkoA/vUX8aBIljvUHY70unTyPvFQr3k5M42bDPgZKptEOUro2Aog22sJFWE2lpYR6isQ7dTolNwwqkU+9CQ47ZmJcJt1XdYIA9ow34ine4cjGQF9o/vRdWbjqV4gohu4zovCb8FdFmi7HZRVRV6TY0iz6FI98WeS7D9ST6yvlEVCsIes8bR2gZa3LGbhl2TQyJA8twKqQsS9tzL9wpsU1iXlNIos5bhbqyOSbaWC6SE2YIiKTkZdLvd2MQRmywA0RMqua6B2WrFsVVVwzgWRvNzB7Z4ED1bEEkXRRHbnIP+JJTZPXmZxaVnJHyvhMNOUIqiiCLZFStW4O9//ztuuukm/PSnPz3gvQsXLsTixYuxfft2AMDo6CjqusaLL744g0XZvXs3zjrrrEP+zOuvvx7XXntt/Pf+/ftx0kknQRtECpo8kGmNvGDzpcaSzH3wciINdJiJRmmkeLO3lkT4ygyL0goQES2XMQlwXmi+DKHlCqKzCOUNZYCizOSEQ5HGD+cEXrj7Wv4I3NIrFLGzLDgMpQ2ANR2kuB2QzbXkJB3LAq3WJZzIo7BNfmOFoBNo665eZsQ4KX9AKW6b9tyR4ILjKjR3KCDc7NLCDWmlNko6WGZ2DJBCFG8REapeTxKUVp/D9UqLxlZQChicM4C5IyMwJsee5/fEjJxv6Lbjp6oqdAdK9OppTE9Pc+lNHngvp6J4spafE0z8BkQERsSUfp6XsZvHe4fGNsyU5LkUWoCgOQACK8QxbRoe4KWkmyHQ+t5z90YQiOeiQeEaf94yDJLUcW0+JCLS3o22/BCSWCNj6r237f0TrznES4Y7AGC53dMTd9H0pnuomxpNHbq0COQdvMx/YdbIQWdM93ppJYZWTM8LmCULrEhYpBUPcxTTLBYPe0DxomQM35Nc59bw0WWZP4eSRFUZE+8jSBmSE13HJnoxoSAxuTOyGLeHHCIWVCsV2E5uYc0k5iYyAvIMag2ykmx5fo69+JV4x+6/obuENSdsPqe0FZsBSFmlfd607DTO9bXxS0mI5DOQaCRYG5KB4DE+sR8v7Pkv5i8YxfDcYzG4ew7279vLSYCzbBxmQkIUrklIlPj59uSZTdYKWaYxNW3ROAfyrKFCTcwwl1yGMhDBcyjxaQPSFO97a1lIXpZFvBcDM0C+7+AlCavznp29iZOb0NIamsOC7o48b/ZOiZBUYpUZg9o61vR4j9p6SewJUAUGyjKWkJqG71knDBo0ly7hnIiRp6CUwqBi0fecOXOQafafsa4WdggAwsGR4+q8xeTUFLKyQJZn4g5uRT/X+v7ExV1yNK0NdMYbddM04nnkpOxTyDrjURQdHlngPaBcXKmjrxfYq0krjUrWawUuvYTry7O7MkkKWDvC3Uv83IbyYdiqiDi2JEwGgBmdXCroNFtiJq7/AA88JBERO+laMjDClLQDFfvLWmGN895L67Tsw/4lP+Rl8H/2QSGiGeWXfuzZswc7d+7EwoULAQDLly9HnufYsGEDLrvsMgDArl27sHXrVnzve9875M8opY/9pWB7ds42dc6ugkxrW37AxLFMQxZhF07/fKKD1P8ctQ+7UsSdLzZUe1vavD8rhGo3fvIsAjPxlNZ/+mz/poG4CMjeyacicOYNsoBmxbMOxlQUBjqxAyDN+L78mUOmGz9bjI+KmzH/3cvP18iEXbCi6dBGShneSTIim6MsvFqSjsAmQfMwNqa4M0CLTqP/ZA3erKpeDe8UANOWrTQbHxEIeZmhLHMMDLLCvqlt32emOIRqaM4QelNT3F5qBzE+PoUo3pLMP0yYtVa8DpSPp6pQBiQpqYSFpK6beDonIhQyAdd7B1+3XTc8oj0MCvNRE9HpdtGV+RrGILaRBj0TJwBeauMmdj8ElkfHU4ZMsHZs+W/kRMYLe5/dfUhcJOGEnMC57suveCJpY8zgncfk1BSs81CQWjqxpsY7Je6cnKTlWS5zbYL/CuurgiskyeJnxMgsbGwvZUDjIo62nMb3LgtcdRRoy4KvjdDhPC5COWmJRVhI+YbKci1D7QAntXkonmFCIla33rKexZPU8CGaLu56CJu5dR6aZI4NHFSec2ca8cnVOo9ghGethakq+XnsS1L7ltIGgkcFj0FoHWYhlgShxOuZhYy+NoFuV/DWYvfuMYyMjKDT6eL4+aPYt2+cy60g1M4DlEObVrcWlheS5BTiAaOVkY2IvX08cjmfyLyYIoNRMl0609C6LTtquW5hPlcVBOqi8SKIQNObOAMG4FZ/vnZcUnUV3x9N9AwJYmPx2MkNQiVcKfGuKTLe2GuLxnFykpkMsBpZw2xMLmLUUI4lKReanGA0u6N68DM1NTUFD2CQBmEyjaFjjkGWGfR6U+0GDkkyAYTxFbbhqefBe4mHjhKiQ7I4tQb2myS27GdlUJYFyqLA5NQke7/kRfx/nGuneMdpzuGgSGw5wQMFG/B4BxUPUN571ORgvZXW+RwDA3MwWAzATPcwTWLpL1YKAYH1A3G5sFAFtGZmJ+wvSuXikCvPiJdqg1Ki0fR8ABAGJpfPCUDW0D7dSV9psPWhemkt4JVxWAnK6tWrceGFF+Kkk07C+Pg41q1bh4ceegj33nsvJiYmcMMNN+CTn/wkFi5ciKeffhqrV6/GvHnz8IlPfAIAMDw8jC996Uu47rrrcNxxx2FkZARf+9rXcNppp8WunsNBKGPkhhMOT461Co5iiSbUfAMV6n0D7w2AAgSZZgmAdHjAVcwCKZRJ0QpaFQDq2yzYsZFb0TJxG1WhY8gT4Dm91lkGr8R5EwCU/FdO/cGB0BgTO1CY3fGiXegbUR566VXoPPAzTvltfGQGCUFOr6IMl8XI2bCp6bjgKdUyM3zCVPGUzmWk4DtBMIr9SMgRvPaA9zHOvEjyKHrveuj1GgAaPCBMY3BwDrLMo8gzDA0OspgzL0CeNQdDQ9zBMzU1haLIMXdkGJnJsG/fHngLvPDCC6hEABq6uRRB/Ai0zOThlYMpX49ycLDP3CiH0kbcQCUGsqmXZcHul97KZ3ZQOuPFjLjbyHtCpyxRFKWMrzfSLSQD7JRi+3XnYokhnFxCQqnFZK6p2WY+z9n50buGNzFZ7JxvHXe10txO3UfRhiShaSwPA9QyCbbbRZZbVJVF1avgPdeClRX2CgBJgtY07Cw50C2lxTDMouLE01orCYa0ERO1p0dAWAvflsPCvejDQMFwbxKguYU0LOoAPzck6n9OEDyKkh1ObePhnLQvyiwcQoOmNmBjNgLISfLBDrQegNJetE4OUF68aNju30lpQUNKO+RAXgEqg84KKG3hxW03+H70qgpZFowVxUvHWThy0GCzPLIEpYV9IgdFQCFCfS2fh0XNnDD164YUFMb37cMLL+zB/NGFGDluPubsGsOLe/7bWtiTh3NaXHBb2/nApHjipIsPDZyE9+oGABspskswJ19Zzve7Ek8OLW6jTDwx6xPKq1VdIxdLhrBuAMwGOfnZRil4zdoJIwc6K+UO7i6jePpXPuiTgFwFZ1ceSTE4OIi9+/ZJIkcg5QDFz4q1DlkRdCJFFKCDPJRTIM3C9uDz0TQN/NQUAEJZ8uElMxkGpLTrrKzdGRtk8qBQh7rmtnzXf7hRzCf4sKb0lXuYteXDycTEBMqyRKfTwZAZwuTkJHrTvVjG5d2aO8TigEuto90FO01LguuJBccyUJTXV3Godg62qVHXFt1ul+0B8gxOEgi+lqLjIxUPS+xMDWSGE01nmTmuqwrOssBea640BIsBrbjEH0ZLOGnh57JPLslX6MpzyHOSJKst/ffvY68Wh5Wg/Oc//8HnPvc57Nq1C8PDwzj99NNx77334sMf/jCmp6exZcsW3HHHHdi7dy8WLlyIc889F7/5zW9i9wQA/OAHP0CWZbjsssswPT2N888/H7/4xS8O2wMFANOqnuAU9amDFbdOUvsmFayWw4ROk4GIXQ+9bL5wUpvm3ZwvqtTjc50jDhwMi7PAOTas0Yo7VVTchBAX8Agp+fAfUaVTS8/meR7LH2GRDy1qqm9zYzZTz/zaSxC+b3h/OC0Yk0EZDet52J+WuIeSF0eM2zW9c7zgSlLllYfOwJOKjUdDNSxZNA2bwSkRvPDH4SSqUUDWABBnFaU46w4nhqJgtmhwkE/uYbqom5wUIyCHoaEhGKMxOTkOa2ueA1gDWVHEhyO0mwNMrXtpjXSubmfxOBdr494DTV1HRX7Y7oPoKzASoVbMQlXLAjtibU5RdOMCzqUdO0NYaOXnhVk54ZrGhYKL3qIBcvCGhXbahJOudKAFuhyEQhdtR0iWgYRxCGPgAR6CWRRykvQEa6clwVBQrk1kNWz8TDw0TsFkKrJ7xmRSfgylO8lGwlgHEef1z+sIz0RkKXwTvx8QqkNyaIB0S4ETB6qD94e0addSpvVhgJmGslzq4lbQOrJIRkoo7LMiZVnNBwsWV0M6Swyca+LE7FB352ethvOETqeUhCKT2VKh3dtBqUZOp8KwxsRejMKIOIlXgCIPlWnWfGQawXMCSnQe3kamrShKsADUYc9//4u5c0eQ5wXmL1iAycn9cHIfsaeJA4zmUpIcIGJCSMGPiQWWXMZsYEjF6eqaLPLcoMjzeJiNLAhaTRJbH3gobaTl2KIochHFcmLnwVqXQEWEclZw4fUintWZeA41jWgReF3W4VoRu/42dQPT6WCOd5ia7rWzgHTr+Oscl4x0X9LgrEVja2Z9FLfYs88Isai2ruCbCka8gYIvlpbhnWHxC6XfoigwJeMfiALTBeS6LWMYk4t+rZHnkTUWTVNjapKZ3sCGENgDxzpOdiDlDiPO1N43YiUQnvmWXWQ2uB2y573n9UrWdda0OH5eVVCH8WvasOjcOg9vKTJFSvyMlFbMmjoWufaqGq7n0O10pUmA100vXV9KE0A8365pHLyv4axHnns+KJrgq0IA6mgBobVBUXIHHnr/nxKU22677ZCvdbtd3Hfffa/4PTqdDm6++WbcfPPNh/OjDwq2FgidGEa0AfJHtRu3907EVwSteMGvRake8gijuc2LKWUnIqt+34PIfcTMmb932PiFpiUF7UMnQ9vFADBd1vImUqdTTC+HtjxyIakQOk7z5FEnpj1MZYBLF1Jyid1HIHFk9HFUOi+i4jMhmbgCQC6wQqFpP7joOkn8nCwyvhVQZcwo8K8TOoR4I7WeACdxIcWZHXnZz4z4bRiJCVBVPDrdWhY1l52OnCga9HoVer1pWSyYFp6cGkdvmgcHZrlBlivonF0vC8PmUk0T6Mr2AWD/Cf53Je1wtbT8Ethgiu8ltpPn4ZLiHRE28rCgIBBqfOLKCy4Z8JA0fjXGSmt4YVBEpcYnYElKIAyGs1xHJyIZzQBoGJkUC7nHfNTUhA0xPPhW1YBt4IQVgbj8Qhs4D1jrhT1hVquhpl3s+TLyVqshQ/Y4wYldTpAOEN+KMlmN36ARVkMpBU18f2sFZhSjv0nQS3CEgmgWyoNghfEgMIHIMTLGQOWQ2UIK5Nm/RSkvHhgKzhMaz3oU8uy4zC7dzGA6IsAFYzp+j5bSA7Mo0pIbn0hG09g+XUVfBxcCjd9u5UQe8OE5pmgQF8qpgIdWLNbXQQAsYmF2aeXv6VBDBTdSrzAxMYH9+/fjuHnzMTwyF8e8cCz2vfifeLAhcBk/RJZFpax/IkBMKx2XebRBkRdoLA9sywuNHCWL1A2bHAajQEBFdtZ4nqDugkEYOOnnhDu0acvmSo1oqxCTeCiSMSJ8j2fi1F3VNeBYlxFZWo40yAAoMjir0O12QQBqG9iouIyK5sIjLzIUxoCUhoVCJRu1dQa5VuJ8Leyvs1B9jA6BtRzG6Fh68T6Iv7msVGQ5pqselLDOBIIVpoifdQ1TcNLQ1A2c4nvXGGaZqqpGbS3yomCNhzzLrVDdwXtJ0jzHzhguI2VZATamoL7yrXjrGB5oGkqGYc3jvaivAkDCsBkDbbhkZ62bIYhtJ6UX6HRLFL0KExNTGJ+YQFmUzMwYHpjrlYxtgMxc854Hfsr4l0wOWXzI1LLGa+Q5P+dKzCGNOVCucSjMylk8YZFomgYZmWiUFSgL0b7xw+tYhezEsyE6tqo+LxLZpwPb0FjbR1EGU62Z9HwAO7ZmADTqMASuvx6vEEsC8QlTAEG6hsiBrAcyTl54LklQUEM0CNyB5F2fnoR/OlN+zsebVZlQ2hHtAknXD8Cmcp7gbLAjNjELZ60JSSnIcQeUb6lsoxUyTSySajzIOjbgUTJl03nYuh0rwMFiNqbMc3Q6uXx+OUlZrmcSAV0qUGQ5JppJ1ko0DnVTc2lFKdSNZPaWN74s43IMOU6QGmcxPj4hnTheaMcSUEDdhBZf0fGEUkmhpQTjZeNUUODr3Yg9O1HwDGAFfb8NtnVeTOjkBG4liYCYOHmeLVJVFWtTJLFw/er5WHcW7xqq5b8cI2cUqqq1tNZaoarYdj3UdZlyJXGcpHi/orJQsKime5iampYTIHeFaU3RTLBpeLHMi0zKXEpKPo08ZxZV3bDg0wRRKLM+Loq+Cc5xYlJXDWsOLJsRhiFzJM+eJi6ROm0l6eaOr5YEVJJsaXjNvzcF1kcRt8pKCcdax15E8jwaAFZ5GORiJ8BdOeG+0NrASRybph0EGOAUoEMJ0xhY1875CutL/+cMc6tIBd+ioD8Lb/KoPJeeotOtJ0kKSLQxnNg31iLL+fmcnp7GrrExDMwZgjasm9i3778IXRpBeMoVaElGhFkKnj1Ka55fRMxuWuLNhGwGneUAeTTWRerfWp5ro2VtCfe/I54fFGLIbrqFuLUSpqd7UJrQHRiQLjaCbVjUaRuZRuxdy76B2aOqYs2CybhMx7orJ2sqp2JFUQLBIr1xM8ZusAeP43Icgu2DQt1YGFKI89DkalgxE/SOWDSdZ+IOrBAMIoOIva49KqqhdM5dcHUjByVOsIyU22rToNPpwpgcNfHBKtgCBMbEKaDw8ryJK7XzHt5ZEDXwjrNKT+xIC0ly8pzZ3HCwYCaUhxIabeRw5VsGlHPUyDKFTkZu+uCvMyMi4mwR3gYmXimS0iCPcNm/bz8mp6bQWC4ftfo9RAaYKw2A91wmLgoWFTfWCiPIwySrmpDXGfJKWDu0e+krQdHhFISOEjz77LM46aSTjvTHSEhISEhISHgN2LlzJ0488cSXfc+sTFC899i2bRuWLl2KnTt34phjjjnSH2lWILRnp5gdHlLcDh8pZq8NKW6HjxSz14YjFTciwvj4OBYtWjSjJflgmJUlHq01TjjhBACIk5UTXj1SzF4bUtwOHylmrw0pboePFLPXhiMRt+Hh4Vf1vpdPXxISEhISEhISjgBSgpKQkJCQkJBw1GHWJihlWWLNmjUHdZhNODhSzF4bUtwOHylmrw0pboePFLPXhtkQt1kpkk1ISEhISEh4Y2PWMigJCQkJCQkJb1ykBCUhISEhISHhqENKUBISEhISEhKOOqQEJSEhISEhIeGow6xMUH784x9jyZIl6HQ6WL58Of70pz8d6Y90xPDwww/jox/9KBYtWgSlFH7729/OeJ2IcMMNN2DRokXodrv44Ac/iCeeeGLGe6qqwlVXXYV58+ZhcHAQH/vYx/Dss8++jr/F64u1a9fi3e9+N4aGhjB//nx8/OMfx7Zt22a8J8XtQNxyyy04/fTTo7HTypUr8Yc//CG+nmL2yli7di2UUrjmmmvi11LcDsQNN9wQB9+FP6Ojo/H1FLOD47nnnsNnP/tZHHfccRgYGMA73/lObNq0Kb4+6+JGswzr1q2jPM/p1ltvpSeffJKuvvpqGhwcpH//+99H+qMdEfz+97+nb37zm7R+/XoCQHfdddeM12+88UYaGhqi9evX05YtW+jyyy+nhQsX0v79++N7Vq1aRSeccAJt2LCBHn30UTr33HPpjDPOIGvt6/zbvD74yEc+Qrfffjtt3bqVNm/eTBdddBG96U1voomJifieFLcDcffdd9M999xD27Zto23bttHq1aspz3PaunUrEaWYvRIeeeQRevOb30ynn346XX311fHrKW4HYs2aNfSOd7yDdu3aFf/s3r07vp5idiBeeOEFWrx4MX3hC1+gv/3tb7Rjxw564IEH6F//+ld8z2yL26xLUN7znvfQqlWrZnzt1FNPpW984xtH6BMdPXhpguK9p9HRUbrxxhvj13q9Hg0PD9NPfvITIiLau3cv5XlO69ati+957rnnSGtN99577+v22Y8kdu/eTQBo48aNRJTidjiYO3cu/fznP08xewWMj4/TySefTBs2bKBzzjknJigpbgfHmjVr6IwzzjjoaylmB8fXv/51Ovvssw/5+myM26wq8dR1jU2bNuGCCy6Y8fULLrgAf/nLX47Qpzp6sWPHDoyNjc2IV1mWOOecc2K8Nm3ahKZpZrxn0aJFWLZs2f9MTPft2wcAGBkZAZDi9mrgnMO6deswOTmJlStXppi9Ar7yla/goosuwoc+9KEZX09xOzS2b9+ORYsWYcmSJfjUpz6Fp556CkCK2aFw9913Y8WKFbj00ksxf/58nHnmmbj11lvj67MxbrMqQXn++efhnMOCBQtmfH3BggUYGxs7Qp/q6EWIycvFa2xsDEVRYO7cuYd8zxsZRIRrr70WZ599NpYtWwYgxe3lsGXLFsyZMwdlWWLVqlW46667sHTp0hSzl8G6devw6KOPYu3atQe8luJ2cLz3ve/FHXfcgfvuuw+33norxsbGcNZZZ2HPnj0pZofAU089hVtuuQUnn3wy7rvvPqxatQpf/epXcccddwCYnffarJxmrJSa8W8iOuBrCS1eS7z+V2J65ZVX4vHHH8ef//znA15LcTsQp5xyCjZv3oy9e/di/fr1uOKKK7Bx48b4eorZTOzcuRNXX3017r//fnQ6nUO+L8VtJi688ML499NOOw0rV67EW9/6Vvzyl7/E+973PgApZi+F9x4rVqzAd7/7XQDAmWeeiSeeeAK33HILPv/5z8f3zaa4zSoGZd68eTDGHJDJ7d69+4CsMAFR9f5y8RodHUVd13jxxRcP+Z43Kq666ircfffdePDBB3HiiSfGr6e4HRpFUeBtb3sbVqxYgbVr1+KMM87ATTfdlGJ2CGzatAm7d+/G8uXLkWUZsizDxo0b8cMf/hBZlsXfO8Xt5TE4OIjTTjsN27dvT/faIbBw4UIsXbp0xtfe/va345lnngEwO9e1WZWgFEWB5cuXY8OGDTO+vmHDBpx11llH6FMdvViyZAlGR0dnxKuua2zcuDHGa/ny5cjzfMZ7du3aha1bt75hY0pEuPLKK3HnnXfij3/8I5YsWTLj9RS3Vw8iQlVVKWaHwPnnn48tW7Zg8+bN8c+KFSvwmc98Bps3b8Zb3vKWFLdXgaqq8I9//AMLFy5M99oh8P73v/8Au4R//vOfWLx4MYBZuq697rLc/yNCm/Ftt91GTz75JF1zzTU0ODhITz/99JH+aEcE4+Pj9Nhjj9Fjjz1GAOj73/8+PfbYY7Ht+sYbb6Th4WG68847acuWLfTpT3/6oG1lJ554Ij3wwAP06KOP0nnnnfeGbsf78pe/TMPDw/TQQw/NaGOcmpqK70lxOxDXX389Pfzww7Rjxw56/PHHafXq1aS1pvvvv5+IUsxeLfq7eIhS3A6G6667jh566CF66qmn6K9//StdfPHFNDQ0FNf5FLMD8cgjj1CWZfSd73yHtm/fTr/+9a9pYGCAfvWrX8X3zLa4zboEhYjoRz/6ES1evJiKoqB3vetdsT30fxEPPvggATjgzxVXXEFE3Fq2Zs0aGh0dpbIs6QMf+ABt2bJlxveYnp6mK6+8kkZGRqjb7dLFF19MzzzzzBH4bV4fHCxeAOj222+P70lxOxBf/OIX43N3/PHH0/nnnx+TE6IUs1eLlyYoKW4HIvhz5HlOixYtoksuuYSeeOKJ+HqK2cHxu9/9jpYtW0ZlWdKpp55KP/vZz2a8PtvipoiIXn/eJiEhISEhISHh0JhVGpSEhISEhISE/w2kBCUhISEhISHhqENKUBISEhISEhKOOqQEJSEhISEhIeGoQ0pQEhISEhISEo46pAQlISEhISEh4ahDSlASEhISEhISjjqkBCUhISEhISHhqENKUBISEhISEhKOOqQEJSEhISEhIeGoQ0pQEhISEhISEo46pAQlISEhISEh4ajD/wO+W/M2eMzZYwAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "# Load the input image\n", "raw_img = cv2.imread('./mats/1_BasicDemo/summer.png')\n", @@ -95,21 +101,10 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": null, "id": "6f67656a-3ba4-4374-b780-4e8bac4ec2d2", "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAa0AAAFuCAYAAAAyKkctAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB1y0lEQVR4nO2deXyM1/fHP7NnXyRkEUuofd8lLaGtEKpUd62lulCqTVWVUsJXRbVfTVtbtdZvq7TVvYq0CC1qX4qihASJNEH2bWae3x9+GcY5w0wWJsl5e83rJWfufZ57n2XOc+/9POeoFEVRIAiCIAiVAPWdboAgCIIg2Is4LUEQBKHSIE5LEARBqDSI0xIEQRAqDeK0BEEQhEqDOC1BEASh0iBOSxAEQag0iNMSBEEQKg3itARBEIRKg9M5reXLl0OlUsHFxQVnz54l3/fo0QMtW7a8LW3ZsmULVCoVtmzZYrENHz4c9evXvy37t6c9tvjzzz/x0EMPoW7dujAYDAgICEBYWBhee+21im9oJaPkmiv5aLVahISE4JlnnsH58+cd3t6CBQuwfPnyUrXlzJkzUKlUeO+990pVv+QaUalU2LFjB/l++PDh8PDwKNW2nYGYmBioVCorW48ePdCjR4/b3haVSoWYmJjbvt/qjtM5rRIKCwsxZcqUO92MSsnPP/+M8PBwZGVlYc6cOdi4cSM++OAD3H333VizZs2dbp7TsmzZMuzYsQPx8fF4/vnn8cUXX6Bbt27Izc11aDtlcVrlyYQJE+50E24LCxYswIIFC+50M4TbhPZON8AWffr0wapVqzB+/Hi0adOmwvaTn58PV1fXCtv+nWDOnDkIDQ3Fhg0boNVeO8VPPPEE5syZcwdbdufIy8uDm5vbTcu0bNkSHTt2BAD07NkTJpMJ//nPf/Ddd9/hqaeeuh3NLDf69OmD9evX48cff0T//v0rbD/2HNeKpnnz5nd0/8LtxWlHWhMmTICfnx/eeOONW5YtKCjApEmTEBoaCr1ej9q1a2PMmDG4cuWKVbn69evjgQcewDfffIN27drBxcUF06dPBwD8/fff6NOnD9zc3ODv749Ro0YhOzvbrrbOnz8f3bt3R61ateDu7o5WrVphzpw5KC4utipXMrW5e/dudOvWDW5ubmjQoAFmz54Ns9lsVbYs7cnIyIC/v7+VwypBrbY+5bamOOrXr4/hw4db/i6ZQtu0aROef/55+Pn5wcvLC0OHDkVubi5SU1Px2GOPwcfHB0FBQRg/frxV/0umvd5991288847qF+/PlxdXdGjRw+cOHECxcXFmDhxIoKDg+Ht7Y2HHnoIaWlppF1r1qxBWFgY3N3d4eHhgd69e2P//v1WZUqmwA4fPozIyEh4enrivvvus+vYXU/Xrl0BwDJNPX36dHTp0gU1atSAl5cX2rdvjyVLluD6mNP169fHkSNHkJCQYJmmu346+cqVK3jttdfQoEEDGAwG1KpVC3379sXff/9N9j937lyEhobCw8MDYWFh2Llzp91tHz58OJo3b45JkybBZDLdtKzZbMacOXPQtGlTS5uGDh2Kc+fOWZUruX63bt2K8PBwuLm5YcSIEeVybtesWYPIyEgEBQXB1dUVzZo1w8SJE+0a5d44PTh8+HCr6d7rP9df61lZWRg/frzV70Z0dDTZZ1ZWluWa9/DwQJ8+fXDixIlbtkuoGJx2pOXp6YkpU6bglVdewaZNm3Dvvfey5RRFwcCBA/Hbb79h0qRJ6NatGw4dOoRp06Zhx44d2LFjBwwGg6X8vn37cOzYMUyZMgWhoaFwd3fHxYsXERERAZ1OhwULFiAgIACff/45XnrpJbvaeurUKQwePNhy8R88eBBvv/02/v77byxdutSqbGpqKp566im89tprmDZtGr799ltMmjQJwcHBGDp0KACUuT1hYWH49NNP8fLLL+Opp55C+/btodPp7Kp7K5577jkMGjQIq1evxv79+/Hmm2/CaDTi+PHjGDRoEF544QX8+uuveOeddxAcHIxx48ZZ1Z8/fz5at26N+fPnW37A+/fvjy5dukCn02Hp0qU4e/Ysxo8fj+eeew4//PCDpe6sWbMwZcoUPPPMM5gyZQqKiorw7rvvolu3bti1a5fVE3dRUREefPBBjBw5EhMnToTRaHS4r//88w8AoGbNmgCuOt6RI0eibt26AICdO3di7NixOH/+PKZOnQoA+Pbbb/HII4/A29vbMmVVcv1lZ2fjnnvuwZkzZ/DGG2+gS5cuyMnJwdatW5GSkoKmTZtaHaemTZsiLi4OAPDWW2+hb9++SExMhLe39y3brtFoEBsbiwEDBmDFihUYMWKEzbIvvvgiFi9ejJdeegkPPPAAzpw5g7feegtbtmzBvn374O/vbymbkpKCp59+GhMmTMCsWbOsHoLKcm5PnjyJvn37Ijo6Gu7u7vj777/xzjvvYNeuXdi0adMt+3s9b731FkaNGmVlmz9/Pj777DPLNZKXl4eIiAicO3cOb775Jlq3bo0jR45g6tSpOHz4MH799VeoVCrL78v27dsxdepUdOrUCX/88QeioqIcapNQjihOxrJlyxQAyu7du5XCwkKlQYMGSseOHRWz2awoiqJEREQoLVq0sJRfv369AkCZM2eO1XbWrFmjAFAWL15ssdWrV0/RaDTK8ePHrcq+8cYbikqlUg4cOGBl79WrlwJA2bx5s8U2bNgwpV69ejbbbzKZlOLiYmXlypWKRqNRLl26ZPkuIiJCAaD8+eefVnWaN2+u9O7du1Tt4UhPT1fuueceBYACQNHpdEp4eLgSGxurZGdnW5UFoEybNo1so169esqwYcMsf5ecl7Fjx1qVGzhwoAJAmTt3rpW9bdu2Svv27S1/JyYmKgCUNm3aKCaTyWKPi4tTACgPPvigVf3o6GgFgJKZmakoiqIkJSUpWq2W7D87O1sJDAxUHnvsMYtt2LBhCgBl6dKlNzlK1yjp286dO5Xi4mIlOztb+emnn5SaNWsqnp6eSmpqKqlTcp5nzJih+Pn5Wa5PRVGUFi1aKBEREaTOjBkzFABKfHy8zbaUHKdWrVopRqPRYt+1a5cCQPniiy9u2pfNmzcrAJSvvvpKURRFueeee5SQkBAlPz9fUZSrx8bd3d1S/tixYwoAZfTo0Vbb+fPPPxUAyptvvmmxlVy/v/32G9vm0p7bGzGbzUpxcbGSkJCgAFAOHjxo+W7atGnKjT9bERER7PEu4csvv1RUKpVVX2JjYxW1Wq3s3r3bquzXX3+tAFDWrVunKIqi/PLLLwoA5YMPPrAq9/bbb9u8d4SKxWmnBwFAr9dj5syZ2LNnD7788ku2TMlT2PVTWQDw6KOPwt3dHb/99puVvXXr1mjcuLGVbfPmzWjRogVZOxs8eLBd7dy/fz8efPBB+Pn5QaPRQKfTYejQoTCZTGQaITAwEJ07dyZtul4pWdb2+Pn5Ydu2bdi9ezdmz56NAQMG4MSJE5g0aRJatWqF9PR0u7bD8cADD1j93axZMwBAv379iJ1Tf/bt29fq6fxm9QEgKSkJALBhwwYYjUYMHToURqPR8nFxcUFERASrqHz44Ycd6lvXrl2h0+ng6emJBx54AIGBgfjll18QEBAA4Oq1dv/998Pb29tynqdOnYqMjAx2KvNGfvnlFzRu3Bj333//Lcv269cPGo3G8nfr1q0BgD2mN+Odd97BuXPn8MEHH7Dfb968GQC9fzp37oxmzZqR+8fX19fmrEdpzy0AnD59GoMHD0ZgYKDl2EZERAAAjh07dqtu2iQhIQFDhgzB008/jbffftti/+mnn9CyZUu0bdvW6nrq3bu3lUK35PjcuKZp770olD9OOz1YwhNPPIH33nsPkydPxqBBg8j3GRkZ0Gq1limcElQqFQIDA5GRkWFlDwoKYrcRGhpK7IGBgbdsX1JSErp164YmTZrggw8+QP369eHi4oJdu3ZhzJgxyM/Ptyrv5+dHtmEwGKzKlaU919OxY0eLsKC4uBhvvPEG3n//fcyZM6fUgowaNWpY/a3X623aCwoKylQfgGUbFy9eBAB06tSJbdeNa3Vubm7w8vKy3RGGlStXolmzZtBqtQgICLC6Vnbt2oXIyEj06NEDn3zyCUJCQqDX6/Hdd9/h7bffJueZ499//7VMLd6KG6+TkilGe/ZzPeHh4Rg4cCBmz56NF154gXxfcn9w90VwcDBxkly5Ekp7bnNyctCtWze4uLhg5syZaNy4Mdzc3JCcnIxBgwY53OcSjhw5goEDB6Jbt25YsmSJ1XcXL17EP//8Y3PavOTBruT35cbz4ei9KJQfTu+0VCoV3nnnHfTq1QuLFy8m3/v5+cFoNOLff/+1clyKoiA1NZX8yN34jkfJNlJTU4mds93Id999h9zcXHzzzTeoV6+exX7gwIFb1rVFWdpjC51Oh2nTpuH999/HX3/9ZbEbDAYUFhaS8jc6+ztNybrK119/bXWcbcGd51vRrFkzi5O/kdWrV0On0+Gnn36Ci4uLxf7dd9/Zvf2aNWsSccPtIDY2Fi1btsSsWbPIdyU/xikpKQgJCbH67sKFC1brWUDpjuut2LRpEy5cuIAtW7ZYRlcAiJDKEc6dO4c+ffqgbt26WLt2LXFO/v7+cHV1JWvO138PXPt9ycjIsHJcZbkXhbLh1NODJdx///3o1asXZsyYgZycHKvvSlRhn332mZV97dq1yM3NtUs11rNnTxw5cgQHDx60sq9ateqWdUtu4uvFHoqi4JNPPrll3YpoD3D1B4ijZJolODjYYqtfvz4OHTpkVW7Tpk3kON9pevfuDa1Wi1OnTllGkDd+KpKSl46vn7LLz8/H//73P1L2xpFzCVFRUThx4oTDwoKy0rRpU4wYMQIfffSR1ZQcAMtU3433z+7du3Hs2LFSqS4dhbuHAODjjz8u1fYyMzMRFRUFlUqFdevWsSPuBx54AKdOnYKfnx97LZUoPnv27AkA+Pzzz63q23svCuWP04+0SnjnnXfQoUMHpKWloUWLFhZ7r1690Lt3b7zxxhvIysrC3XffbVEPtmvXDkOGDLnltqOjo7F06VL069cPM2fOtKj1OBnyjfTq1Qt6vR5PPvkkJkyYgIKCAixcuBCXL18udV/L0h7g6g98SEgI+vfvj6ZNm8JsNuPAgQP473//Cw8PD7zyyiuWskOGDMFbb72FqVOnIiIiAkePHsW8efPsUqjdTurXr48ZM2Zg8uTJOH36NPr06QNfX19cvHgRu3btgru7u+X1hYqgX79+mDt3LgYPHowXXngBGRkZeO+998gPLQC0atUKq1evxpo1a9CgQQO4uLigVatWiI6Oxpo1azBgwABMnDgRnTt3Rn5+PhISEvDAAw9YfiArgpiYGHz++efYvHkz3N3dLfYmTZrghRdewEcffQS1Wo2oqCiLerBOnTp49dVXK6xNJYSHh8PX1xejRo3CtGnToNPp8Pnnn5OHNnsZPHgwjh49isWLFyM5ORnJycmW70JCQhASEoLo6GisXbsW3bt3x6uvvorWrVvDbDYjKSkJGzduxGuvvYYuXbogMjIS3bt3x4QJE5Cbm4uOHTvijz/+YB9WhNtDpRhpAUC7du3w5JNPErtKpcJ3332HcePGYdmyZejbty/ee+89DBkyBJs2bWJ/VG4kMDAQCQkJaN68OV588UU8/fTTcHFxwbx5825Zt2nTpli7di0uX76MQYMGYezYsWjbti0+/PDDUvWzrO0BgClTpsDX1xfvv/8+HnzwQURFReHDDz/E/fffj127dqFVq1aWsq+//jpef/11LF++HP3798fatWvx5ZdfwsfHp9TtrygmTZqEr7/+GidOnMCwYcPQu3dvTJgwAWfPnkX37t0rdN/33nsvli5disOHD6N///6YPHkyHnnkEUycOJGUnT59OiIiIvD888+jc+fOlpd7PT098fvvv+PZZ5/F4sWL0a9fPzz//PM4fvy41ei3IggODkZ0dDT73cKFCzF79mysW7cODzzwACZPnozIyEhs376dXYMtb/z8/PDzzz/Dzc0NTz/9NEaMGAEPD49SR285cuQIzGYznnvuOYSFhVl9Pv30UwCAu7s7tm3bhuHDh1vOxWOPPYYPP/wQISEhlpGWWq3GDz/8gKeeegpz5syxyN/XrVtXXt0XHESlKNe9GSkIgiAITkylGWkJgiAIgjgtQRAEodIgTksQBEGoNIjTEgRBECoN4rQEQRCESoM4LUEQBKHSIE5LEARBqDSI0xIEQRAqDU7ttBYsWIDQ0FC4uLigQ4cO2LZt251ukt1s3boV/fv3R3BwsCVqx/UoioKYmBgEBwdbsrweOXLkzjTWTmJjY9GpUyd4enqiVq1aGDhwII4fP25VprL1a+HChWjdujW8vLzg5eWFsLAw/PLLL5bvK1t/OGJjY6FSqawiYlS2fsXExJAsxNdHWq9s/RFKj9M6rTVr1iA6OhqTJ0/G/v370a1bN0RFRZGAn85Kbm4u2rRpYzP00pw5czB37lzMmzcPu3fvRmBgIHr16oXs7Ozb3FL7SUhIwJgxY7Bz507Ex8fDaDQiMjLSKj15ZetXSEgIZs+ejT179mDPnj249957MWDAAMsPXmXrz43s3r0bixcvtuTjKqEy9qtFixZISUmxfA4fPmz5rjL2Rygldyz95C3o3LmzMmrUKCtb06ZNlYkTJ96hFpUeAMq3335r+dtsNiuBgYHK7NmzLbaCggLF29tbWbRo0R1oYelIS0tTACgJCQmKolSdfvn6+iqffvpppe9Pdna20qhRIyU+Pl6JiIhQXnnlFUVRKud5mjZtmtKmTRv2u8rYH6H0OOVIq6ioCHv37kVkZKSVvSSIZ2UnMTERqampVv0zGAyIiIioVP3LzMwEcC3JX2Xvl8lkwurVq5Gbm4uwsLBK358xY8agX79+JFNyZe3XyZMnERwcjNDQUDzxxBM4ffo0gMrbH6F0OGVqkvT0dJhMJkua8xICAgKqRPK1kj5w/XM0nfqdQlEUjBs3Dvfccw9atmwJoPL26/DhwwgLC0NBQQE8PDzw7bffonnz5pYfvMrWH+Bq0sp9+/Zh9+7d5LvKeJ66dOmClStXonHjxrh48SJmzpyJ8PBwHDlypFL2Ryg9Tum0SrgxS6qiKBWSOfVOUZn799JLL+HQoUP4/fffyXeVrV9NmjTBgQMHcOXKFaxduxbDhg1DQkKC5fvK1p/k5GS88sor2Lhxo1WW5RupTP2Kioqy/L9Vq1YICwtDw4YNsWLFCnTt2hVA5eqPUHqccnrQ398fGo2GjKrS0tLI01RlpET1VFn7N3bsWPzwww/YvHmzVYr2ytovvV6Pu+66Cx07dkRsbCzatGmDDz74oNL2Z+/evUhLS0OHDh2g1Wqh1WqRkJCADz/8EFqt1tL2ytav63F3d0erVq1w8uTJSnuehNLhlE5Lr9ejQ4cOiI+Pt7LHx8cjPDz8DrWq/AgNDUVgYKBV/4qKipCQkODU/VMUBS+99BK++eYbbNq0CaGhoVbfV9Z+3YiiKCgsLKy0/bnvvvtw+PBhHDhwwPLp2LEjnnrqKRw4cAANGjSolP26nsLCQhw7dgxBQUGV9jwJpeSOSUBuwerVqxWdTqcsWbJEOXr0qBIdHa24u7srZ86cudNNs4vs7Gxl//79yv79+xUAyty5c5X9+/crZ8+eVRRFUWbPnq14e3sr33zzjXL48GHlySefVIKCgpSsrKw73HLbvPjii4q3t7eyZcsWJSUlxfLJy8uzlKls/Zo0aZKydetWJTExUTl06JDy5ptvKmq1Wtm4caOiKJWvP7a4Xj2oKJWvX6+99pqyZcsW5fTp08rOnTuVBx54QPH09LT8HlS2/gilx2mdlqIoyvz585V69eoper1ead++vUVaXRnYvHmzAoB8hg0bpijKVZnutGnTlMDAQMVgMCjdu3dXDh8+fGcbfQu4/gBQli1bZilT2fo1YsQIyzVWs2ZN5b777rM4LEWpfP2xxY1Oq7L16/HHH1eCgoIUnU6nBAcHK4MGDVKOHDli+b6y9UcoPSpFUZQ7M8YTBEEQBMdwyjUtQRAEQeAQpyUIgiBUGsRpCYIgCJUGcVqCIAhCpUGcliAIglBpEKclCIIgVBrEaQmCIAiVBqd2WoWFhYiJiUFhYeGdbkq5IX2qPFTFfkmfhMqOU79cnJWVBW9vb2RmZsLLy+tON6dckD5VHqpiv6RPQmXHqUdagiAIgnA9Fea0FixYgNDQULi4uKBDhw7Ytm1bRe1KEARBqCZUSBLINWvWIDo6GgsWLMDdd9+Njz/+GFFRUTh69Cjq1q1707pmsxkXLlyAp6cnsrOzAVwd/lcVSvoifXJ+qmK/pE/lg6IoyM7ORnBwMNRqmbC6nVTImlaXLl3Qvn17LFy40GJr1qwZBg4ciNjY2JvWPXfuHOrUqVPeTRIEQSh3kpOTrRKhChVPuY+0ioqKsHfvXkycONHKHhkZie3bt5PyhYWFVqqfEh96D/pCC53F/s+8dvwOFTvTaTvimh0oq87TOLDh0nPw4aV2l32ocSti+/bEYWJrs3bEbWtTWfdVVri2OmObAPvbZXYzsXaVC7WrNfSidnErIjZPlwJ2mz6MvZYhm9hqu15h69czpBNbfR21NdblsvVrqF2JTaOiIxyTYmbrt900jBoL6b0bvIn/PdHlWh9To7EAfybMhqenJ1teqDjK3Wmlp6fDZDKRNNcBAQEkHTYAxMbGYvr06UzDdNCqrjkttasLv8M77bTMt8dpeXnaPwVx/XG7WX21i41jWgFtKuu+ykpF9L+s2Dp+drfL1QGnpaUXtcaN3jtaV/7i17lQZ6B30RObwZVeewDgaqA/Ne562n9PHX9MvJgpON5psdX53w81vXe1Ov73RKu1caxVdv7+COVGhU3G3ngyFUVhT/CkSZOQmZlp+SQnJ1dUkwRBEIRKTrmPtPz9/aHRaMioKi0tjYy+AMBgMMBgMBD7P/PaWT8d2RpR2TsqcmikdWefnk49sYjYGq4eZf8G5lJT72D7ylVUm7j6tuC2W9b6FbHNimiTre2G/vACLchM+QGAWkdHRRoNM1LSGonNhbEBgJuWTiW6a+nLvB4afnrRU03tPozNW01HbwA/quJoP+cl1h6YRvuvZgZPuhy+/+YbRmBmyAjrTlHuIy29Xo8OHTogPj7eyh4fH4/w8PDy3p0gCIJgB1u3bkX//v0RHBwMlUqF77777pZ1EhIS0KFDB7i4uKBBgwZYtMj+B7WKokKmB8eNG4dPP/0US5cuxbFjx/Dqq68iKSkJo0Y5MFoQBEEQyo3c3Fy0adMG8+bNs6t8YmIi+vbti27dumH//v1488038fLLL2Pt2rUV3NKbUyHvaT3++OPIyMjAjBkzkJKSgpYtW2LdunWoV69eRexOEARBuAVRUVGIioqyu/yiRYtQt25dxMXFAbj62tKePXvw3nvv4eGHH66gVt6aCnFaADB69GiMHj26ojYvCIJQZSgoKEBREV03vBWcwM2WTsBRduzYgcjISCtb7969sWTJEhQXF0On45WiFU2FOS1BEATh1hQUFCC0ngdS03hZ/c3w8PBATk6OlW3atGmIiYkpc7tSU1PZV5eMRiPS09MRFBRU5n2UBud1WorKWsVXQe9Z3S6l4F3jdrL2DRcOEJtDSkEGVukHus3b2SZH1Hdcu7j2lxVH1HsV0SazG/8ibOhPz1Mjpwhk3scCAL2eKuB0zHtG7vpiatPxT/uejFLQV5dHbDU0/MvBfpocYquppu00qPh31FKMtP4934yn20znj6nn2XxiM7nQnz91MV9ff8n6WBlNvEqyNBQVFSE1zYTEvfUcevcxK9uM0A5nkZycbBXdvjxGWSVwry5x9tuJ8zotQRCEaoS7x9WPvZS8SO3l5VUhKVkCAwPZV5e0Wi38/PzKfX/2Ik5LEATBCTBDgdmBaSJHypaGsLAw/Pjjj1a2jRs3omPHjndsPQuQfFqCIAhOgbkU/xwhJycHBw4cwIEDBwBclbQfOHAASUlJAK5GJxo6dKil/KhRo3D27FmMGzcOx44dw9KlS7FkyRKMH0+nZW8nMtISBEFwAkyKApMDSTccKQsAe/bsQc+ePS1/jxs3DgAwbNgwLF++HCkpKRYHBgChoaFYt24dXn31VcyfPx/BwcH48MMP76jcHaig1CRloSR1dshH028I42Sjgt1hnCpm4VCdJ4NV4dawogtGXAEAKi0TcogJeKs3UCEFALgwAguDjooefF2oOMHfhQoeACCAi+huuExsDfRpbP1GTET3elr6zNziBz4ME5iAve7HacgnxcbtOOOZz4ht3tjHiE1bwItblBuEB0ZjAbZtm4HMzMwyryeV/Oad/TvYYSFGvaYXyqUNlQkZaQmCIDgBZigwOdGalrMiwwRBEASh0iAjLUEQBCfA2dSDzoo4LUEQBCegooUYVQXndVoKrEUWThjlwhZc9AQuyoQt7I0+YSuiRFnrl2WbtrbL1b/jUUJsbNPe82ervr2iC7WeX/RXM3mytDpalhNXAIAbI8Rw1VGbl57JcaWj4gwA8NXS6Bc1tVScUUtDbQAQyCT4dmNyZ2l9+IgcpiK6gdyGjOAkhX9/aPHTA4hN5UPLKWr+t8N8Q0ZlM5NJuayY///jSPnqiPM6LUEQhGqEyUEhhiNlqxLitARBEJwAk3ItNJO95asj4rQEQRCcAJketA9xWoIgCE6AGSqYYP96vNmBslUJcVqCIAhOgFm5+nGkfHWk8jutilAKlvFi+GduV2JruJraHMER9Zu9VIQiz9Z27c3xdbV+2Y6VvW0yu/ITLCcWdia20O+pDTbq26sU1DCKQADQMXY9kw/LzcAr7bicWO46mg/Lm1EKcjmyAKCGlsmHpclibDbUhxr7cm7U/IHPp5UZStV6QTuo+tHEV4fZYF/uLG0WPU4AkHKPt/V+Cs3Ab/y+SovJwZGWI2WrEpXfaQmCIFQBxGnZhzgtQRAEJ8CsqGB2YObIkbJVCYk9KAiCIFQaZKQlCILgBMj0oH04r9MiYZwq6ASVUXRhKxTRjXDiDFv1yxrGiBM99A5ue0fbZK84w1ZZR0Jj2S26YHJUOYStF2XUdLsqLjQTkzcLALQaaudCNrlo+TBOrloa3siDEWJ4aDgbFTcAgI+GCjQ4Ww0b4Y2afTya2I6NXEBsKhtvzHqfpsdE0dDfBG0On2PMrKdhoBQtrW/0NLD1a+217qvRWIBjbMnSY4IaJgcmv3gZT9XHeZ2WIAhCNUJxcE1LqaZrWuK0BEEQnACZHrQPcVqCIAhOgElRw6Q4MD0oLxcLgiAIdwozVDA7sKYlSSCFm+PA9cEJBHoH82U5MQRbdi41OSRkABUy2BKRlKVNttrliGiDa5fdbQJgXmin6MJUxukVPS+kUDMRMbRMRAsdYwPsF11wgguAF114aamNi35RQ5PLbrOGhkbE8FHTyBsdv3qNrW+uS8sOTuxJbMVu/I+2eyrtq9rIHH9GnAEAahMtmxNIRReeZ3khyo35tJQKeFtIpgftQ5yWIAiCE+D49KCMtARBEIQ7xNXpQYnyfivEaQmCIDgBZgff05I1LUEQBOGOIdOD9iGxBwVBEIRKg9OOtNR5GqjN10KvOKJ0KyuOqN/szp1lQ2nHwYdM4vZTtnxYjhw7e9t01W5/yCZ728XWf4Kvz+a+YkIr2cTOsmob+bC0XD4sPaP+0/PqP1cdtXvqGUWgjle6+Ruo0s9XS5WCQborxFZf/y+7zfraTLofDQ2NVHMfWx35fnpiO/djI2LzHnuOrV/4URCxqZjTxOXIAgCjC22rPouWLfSl7QSAIk/r53uTjf2UBTPUInm3A6d1WoIgCNUJk6KCyYHQTI6UrUqI0xIEQXACHA+YKyMtQRAE4Q5hVtQwOyDEMFdTIYY4LUEQBCdARlr24bROy+xmAlyvLWifWNyJL6jYmVXGgfnf0B9eoEY3Gwuv3HVTxmsp9Dtm/y7M/m11idl/WQUrXD4uR8I4OZLPy979n1jACC4APmQTc6xUev7aUbP1qU1nQ4ihZ8IwuRloGCMvRlwBAO5MGCZvPRVd1NDxIZdq6bOJLUBHhRT1denE9szG59htLuy1gtgenzmCtjOF9hMAijx5gcONZK0IYe0aF3r8FRV3UqngAgA0hVw+LruaxJa192fHEcxwbJ2q/KUglQOndVqCIAjVCcfVg9XzjSVxWoIgCE6A4y8Xi9MSBEEQ7hASe9A+HHbVW7duRf/+/REcHAyVSoXvvvvO6ntFURATE4Pg4GC4urqiR48eOHLkSHm1VxAEoUpSMtJy5FMdcXiklZubizZt2uCZZ57Bww8/TL6fM2cO5s6di+XLl6Nx48aYOXMmevXqhePHj8PT09Pu/bj65UNjS/xwC8xmejJtqUMVZuFTMTvwtGPnvmxuk7HbvX8HBB9MM/mQAjY48TEnhOFXo0N/fJ4aP2YKKvafX1aIY+ukaqhdpaH70jB5rwBAw+S50jD1ubxXAB/pgo1owYgrAMCbiXRRQ09FFwG6LLZ+iD6D2AKZiBbDNlHRRdOF/Danb3uG2Dyu0P4rNvJZ+Zyix8TI5M6ypUNQMWl6ja60cGoP/poM2kRVF7pc+68/wxXrssYKiIjhuHpQnJZdREVFISoqiv1OURTExcVh8uTJGDRoEABgxYoVCAgIwKpVqzBy5MiytVYQBEGo1pSrq05MTERqaioiIyMtNoPBgIiICGzfvp2tU1hYiKysLKuPIAhCdcOsqBz+VEfK1WmlpqYCAAICAqzsAQEBlu9uJDY2Ft7e3pZPnTp1yrNJgiAIlYKSfFr2fqqr5L1Ceq264aU/RVGIrYRJkyYhMzPT8klOTq6IJgmCIDg1JWGcHPlUR8pV8h4YGAjg6ogrKOhaKoG0tDQy+irBYDDAYDCUZzMEQRAqHSaoYHJAxu5I2apEuTqt0NBQBAYGIj4+Hu3atQMAFBUVISEhAe+8845D2/J2y4fWvXQKHRMjleNsAGDmlH4OzBUbWfUgowi0sU0zpx5kynLlyootlSK3f5UDSkN7j5/NbTL24nwdU99GdS2jFGTUf3oDr/7TaagCTcvU5/JeAYAHoxT00ecTWw09zXEFAH56mg/LX0ttwbrLbH0uPNMjv7xEbC4X6e2vGOhxBgB3JjwTF0bJrONPSnZdul1uoGBr8GDW0y80TBQsl/N8+83MNWF0tX+kcmMYKAeEr3bjeMBcGWnZRU5ODv755x/L34mJiThw4ABq1KiBunXrIjo6GrNmzUKjRo3QqFEjzJo1C25ubhg8eHC5NlwQBKEqYYJjo6cKCH9YKXDYae3Zswc9e/a0/D1u3DgAwLBhw7B8+XJMmDAB+fn5GD16NC5fvowuXbpg48aNDr2jJQiCUN2QkZZ9ONzrHj16QFEU8lm+fDmAqyKMmJgYpKSkoKCgAAkJCWjZsmV5t1sQBKFKcTsiYixYsAChoaFwcXFBhw4dsG3btpuW//zzz9GmTRu4ubkhKCgIzzzzDDIy6Mvrt5Pq6aoFQRCcDOX/Yw/a+1EcFGKsWbMG0dHRmDx5Mvbv349u3bohKioKSUlJbPnff/8dQ4cOxbPPPosjR47gq6++wu7du/Hcc3z6mtuF0wbM9XfNg8712kK5I8EhOXGELSEGR1n3xQopbAkxONGGneVsYe/+TRUg7nAEtY3dZ+dRNanWQGfwVWp+NVzLLLprmdBMLjbCMLloqd3A2Ny1fO4oLztFF7V0NO8VALioqcCjgeEisdXRXmHrD/zhFWLTFNGD7fs3PU5FvvYreRXmBBZ58veZLpde1UUezDWp5y+KYg9q0zI6FteLvLiHbas7U87GL2Ktr09a/W1U+HNfFio6yvvcuXPx7LPPWpxOXFwcNmzYgIULFyI2NpaU37lzJ+rXr4+XX34ZwFWh3ciRIzFnzhyH9lveyEhLEATBCShtRIwbIwoVFlJZZVFREfbu3WsVrQgAIiMjbUYrCg8Px7lz57Bu3TooioKLFy/i66+/Rr9+/cq/8w4gTksQBKESU6dOHauoQtyoKT09HSaTyaFoReHh4fj888/x+OOPQ6/XIzAwED4+Pvjoo48qpB/24rTTg4IgCNWJ0kZ5T05OhpeXl8V+s2ANjkQrOnr0KF5++WVMnToVvXv3RkpKCl5//XWMGjUKS5Yssbud5Y04LUEQBCfA0SC4JWW9vLysnBaHv78/NBoNGVXdLFpRbGws7r77brz++usAgNatW8Pd3R3dunXDzJkzraIe3U6c1mnV0OdCb+AjDlwPJ5ooNtPcOQ5dDI5kDy1jpGWuvpFrP9MmTgRia5vcou2djhKtthERo9DI9J+LcmFDiKFnRBd6RkjhZiOihUFDy7poaFku7xUA+OgY0YWeii7yzHq2Phf9pL6WRr9orOPrH394AbH1fYIqvrjcV7byYRX60J8KbQE9/raCnHACC6M7c506ENHNzAS/YAKXXN0uU5bbv8slGxuo5XfDBgsBPiBJqTE7GATXkbJ6vR4dOnRAfHw8HnroIYs9Pj4eAwYMYOvk5eVBq7U+7xrN1XtTsZXL7jbgtE5LEAShOmFSVDA58CDpSFngaiCIIUOGoGPHjggLC8PixYuRlJSEUaNGAbgavPz8+fNYuXIlAKB///54/vnnsXDhQsv0YHR0NDp37ozg4GCH9l2eiNMSBEFwAko7PWgvjz/+ODIyMjBjxgykpKSgZcuWWLduHerVqwcASElJsXpna/jw4cjOzsa8efPw2muvwcfHB/fee6/DcWTLG3FagiAIToDiYBgnpRQRMUaPHo3Ro0ez35VENbqesWPHYuzYsQ7vpyIRpyUIguAESGoS+3BapxXokgWDC59m4Hq4IXKhmXYrx8YKbxFTlhNyGG081XBiCKPC1LchmuAidXCiC66fZY2S4QhcGhFbQgrOrlNTcYSHjsktASC/mJ53bv5eZ0OIwaUW4cQVtvbPRbpwZYQYPlxIBgD+OppGpIBRDRhUfESO3x9tRWyTNh0lNo2Kv6bueXkk3RcT/cPEpOZQF/LH1OjK3Gde9N7RFPPXRLEbrc8E/kB+Lb6+NofW1xfSsq7pfPu9D9F4eQV1vIlN0fLHtDjQOuC30agDTrJFS41ZcVAwdue0EHcUp3VagiAI1QmJ8m4f4rQEQRCcgJJAuI6Ur46I0xIEQXACKlryXlUQpyUIguAEyPSgfVTPXguCIAiVEqcdaeWbdDBfF3vFViBJe0Me2UKrYnIvMbFgbKl69GouPBKnKLQ/5JL9trI9c5R1TlzNZv4C1Mwx5bClqPQy8OGRbkTPKBIBQG9nGCYvrS31ILW7qami0N9GPqxAbSax1WbCMHmr+f3/UdCY2DrPGENse6ctZOuzuaOYMEzFjCJQU0zvJwAwa+0Lw6TYOHVmRrzLCXr1V/hrklMaelyg55/rOwAg/RIxuXBlL9Fzx6Eyl38+LTMcfLlY1rQEQRCEO4XioBDD0czFVQVxWoIgCE5ARYdxqiqI0xIEQXACRIhhH+K0BEEQnAAZadmH0zqtA5dCoC28tlLbM+AEW46bA76duaOuGN2IzZVZtHdESMLB99ORC9yRJzj7tuvI/LsjbeXCK+kYcQcXmgkA9GomdxZzTnx1uWx9TzVVE7gxoolaWl6I8VV6J2I7l+tDbGfSa7D1azeiIZ/0WVT00mTJi2x9b1dqYzUrjI7GxKfoQqEvPX/aXLoBQyYvwjHrGHGSC92mazov7tFnU7uK6ZPKZCNHW9tQ1n4jLjn5rN2YfM7qb5Ny61x/jiIvF9uH0zotQRCE6oSMtOxDnJYgCIITIE7LPsRpCYIgOAHitOxDnJYgCIITIE7LPpzWaTX1uQi9x7VV4R0Z/EJqC+8UYkspoHlytDaiJ6TlexJbkFsWsXX0OsPWL2ZyZ3EXU10DfSPfVn0OTlySZ7axas6gY1atHRNSlE3cYkuIwqEBXczn8nHZykflprEvooW7jYgU3P7r69KJzVZEi037mhNbvZ+oQCDIxuHT5tK2apncVe4X+A2wac4Ymz6H9rPQi78eNfmc6ILaNEX2Cyk4GA3N1X1doV8UMlE+mLRlAPh8YIbLdJtKPi/EuB0ocOyerKbptCT2oCAIglB5cNqRliAIQnVCpgftQ5yWIAiCEyBOyz7EaQmCIDgB4rTsQ5yWIAiCEyBOyz6c1mmdzKoJ7XUJd67ku7DlNmY2JbZanjl27yevmMqNLuXT0EynMv3Z+jVc8oitoce/xBag4/P0FDByp+2ZdxFbqBtVr9lSHoboae4mA5OQ6LLRna1/ibF7a6iqytb+OaWip4aGRrI37xbAK/0uFlOVKAAkF9DwSK5MPq1mrhfY+sE6evyyzPT6e3LzSLZ+00VUfWp2oeeZVfkB4H6LDJdo+xUVL5VzTWfCiBnoueJCHhldeG0Wc/igLaDnz1Z9Do8Uep3YUi8WMfa8WnRfXI4uAAjYQ68//Tl6nk3pGfwGbgOKooLigCNypGxVwmmdliAIQnVCYg/ahzgtQRAEJ0CmB+1DnJYgCIITINOD9iFOSxAEwQmQkZZ9OK3TSrpYA2q3a4vfLq50cRkANBq6GJxVQBfN3fV8/doeVCCRXcQsutfexdY/lh9MbC6M6CHbxAtJkgr9iI0TDaQXexCbrYt2c0ZjYmvvk0xsjV1oCCwACGUWs3fnNCA2e0NQAcCFQh9iCzTw4pRTeTWJjcvHZbARmquGnubJqmugC+wuKvtzIr3y2fPE1mz+Sbvrq4OpkEedQQUbAGAMpkISRc30nwltBACFPlSgoSmkoosrDWk5RcVfU64Z9D4z62jZQh++vtGN2t1S6fEv8OavKa7/zC0BDX+bQ7eXnitz47p84TuEjLTsQ8I4CYIgOAHK/4+07P04u9PasmVLhWxXnJYgCIJQ7vTp0wcNGzbEzJkzkZxMZ3pKizgtQRAEJ0ABoCgOfO50g2/BhQsX8Morr+Cbb75BaGgoevfujS+//BJFRTbmcO3EIacVGxuLTp06wdPTE7Vq1cLAgQNx/PhxqzKKoiAmJgbBwcFwdXVFjx49cOTIkTI1UhAEoapT8p6WIx9npkaNGnj55Zexb98+7NmzB02aNMGYMWMQFBSEl19+GQcPHizVdh0SYiQkJGDMmDHo1KkTjEYjJk+ejMjISBw9ehTu7lejKMyZMwdz587F8uXL0bhxY8ycORO9evXC8ePH4elJc1fZwpyrs0qOk1dkI/qCK13MDQ6g0SNqGGjkCgBQM2EJGtY4R2xcPikACNJfITYud1OODSFGbQN9K7/QTE+Lh5ZGhDh4JYTdJhdpghNNXCj2ZetzkTIOXKb7Mpr5Y5JbRPN8ccdZr6EiFgAIdKcCBW8djWhgsJF86SnfncSWzeQeq6flrwnuSqsXu5ca3WjkFABQedDjp8pm8jTp+YgWGiafltGTtr+IybEF8Lmj1EYqWlE0tJxnMn9MuUgXBb7UZivIicc5Jh/anyeILXdgS7a+Swa9zy89TI+T2y+MOgOAykCPX0ZLL2LzZU7z7aIqCzHatm2LiRMnokaNGpg9ezaWLl2KBQsWICwsDIsWLUKLFi3s3pZDI63169dj+PDhaNGiBdq0aYNly5YhKSkJe/dePdOKoiAuLg6TJ0/GoEGD0LJlS6xYsQJ5eXlYtWqVY70UBEGoRjgiwnBUHn+nKC4uxtdff42+ffuiXr162LBhA+bNm4eLFy8iMTERderUwaOPPurQNsskec/MvCpZrlHjqkQ3MTERqampiIyMtJQxGAyIiIjA9u3bMXIkjdVWWFiIwsJro4isLF4GLAiCUJUpWatypLwzM3bsWHzxxRcAgKeffhpz5sxBy5bXRtLu7u6YPXs26tev79B2S+20FEXBuHHjcM8991gakpqaCgAICAiwKhsQEICzZ8+y24mNjcX06dNL2wxBEIQqQVWbHjx69Cg++ugjPPzww9Dr6fQsAAQHB2Pz5s0ObbfU6sGXXnoJhw4dsnjS61Hd8IKioijEVsKkSZOQmZlp+ZSnNFIQBKGyUOK0HPk4M9OmTcOjjz5KHJbRaMTWrVsBAFqtFhEREQ5tt1QjrbFjx+KHH37A1q1bERJybYE+MDAQwNURV1BQkMWelpZGRl8lGAwGGAw28gkIgiBUE8yKCqoqFMapZ8+eSElJQa1atazsmZmZ6NmzJ0wmPqLNrXDIaSmKgrFjx+Lbb7/Fli1bEBoaavV9aGgoAgMDER8fj3bt2gEAioqKkJCQgHfeecehhqncjFC5XlMy+fjQ0DwAr2C7UuBKbFyOLABo4ZdKbFzupw0ZvLqFU8UVmaj+7OgWmiMLAOp/S9fw1EWMgoubwM64wm7TnEEViT99S9vvaeDfl9Bp6MWUkUuPn5YJoQUAGjW1+7lSpV5uMT9lEOpOQy5x54TL8QUAv+Y0JzYuR1aumX9YOlpYm9g0NajSUvHk85GZGVWgwuSzskVBID3Wuhx6TXAqQQDgRJX5Neitrsm3P5+WyUD35b+HXrvn7+dznGV0pteE9yYm3FQxv1BzuQk9V4WZtK26mvwx4fJk1dxwmpbT8dekUly2d4vsoaqtadmaYcvIyLCozUuDQ05rzJgxWLVqFb7//nt4enpa1rC8vb3h6uoKlUqF6OhozJo1C40aNUKjRo0wa9YsuLm5YfDgwaVupCAIQlXnqtNyZE2rAhtTBgYNGgTg6jLR8OHDrWbSTCYTDh06hPDw8FJv3yGntXDhQgBAjx49rOzLli3D8OHDAQATJkxAfn4+Ro8ejcuXL6NLly7YuHGjQ+9oCYIgVDeqihDD2/vqaFtRFHh6esLV9drMl16vR9euXfH88zQAtb04PD14K1QqFWJiYhATE1PaNgmCIAiVlGXLlgEA6tevj/Hjx5dpKpDDaVOTCIIgVCcUOBZP0ElnBy1MmzatQrbrtE5LdUkPlcu1RdFaH9AwRgCgMtIF3tS7axFbrQXb2foX/WjuojOduhGbazL/0rNZzyxwX6JlQ32usPUVHV2gV+XTviq5VMhg6zUCFaPGDHyJihb6/nKArW9mQlZ9sqQfsfUflsDWb+xCxS3f/9uW2E7sqM/Wbz3od2L710inl7u50TBAAPB9Vjtim7TrYWILXcXf9moTE3LKnQo5bKG4MLcVc65MXDnwuaPyAug55cIoAYDPKRryqDiA7qvIm8mH5ctfU15nqTjH5EVFCy7p/DHNaUbtpss0n5prGp/j7HJT2n+XZCrkyGnAh6FSMyG3LvUMJTbfn3lxT0FEK6u/jcYCYPP3bNnScjumBxcsWIB3330XKSkpaNGiBeLi4tCtG/29K6GwsBAzZszAZ599htTUVISEhGDy5MkYMWIEW759+/b47bff4Ovri3bt2tn8jQKAffv2Odx+wImdliAIQrWigodaa9asQXR0NBYsWIC7774bH3/8MaKionD06FHUrcsnxHzsscdw8eJFLFmyBHfddRfS0tJgNPIPBgAwYMAAi/Bi4MCBjjXQTsRpCYIgOAOOvjDs4Ehr7ty5ePbZZ/Hcc88BAOLi4rBhwwYsXLgQsbGxpPz69euRkJCA06dPW0L13Srk0vVTghU1PSj5tARBEJwAh3JpXfdOV1ZWltXn+liuJRQVFWHv3r1WcWEBIDIyEtu380snP/zwAzp27Ig5c+agdu3aaNy4McaPH4/8fH4K9UaSk5Nx7ty1jBm7du1CdHQ0Fi9ebOcR4RGnJQiC4ASUNoxTnTp14O3tbflwo6b09HSYTCY2LmzJ+7Y3cvr0afz+++/466+/8O233yIuLg5ff/01xowZY1d/Bg8ebIkrmJqaivvvvx+7du3Cm2++iRkzZjhyaKxw2unBuz7LhPa6KAiq82lsOaWAPlXUOnjM7v2YMi4Rm349tTkScISb8VWl8tEXNLVqUqOZiktUavp8objTyB8AoGYWP41BNKLDusjWbH0w4VXqKKeIbc+aemz1P9NpTiO1F21/gyt88qLPP7uf2MyudNH9w5fvZevrE2nusnq76AK/yUb0ByMTvEIVSCM9mFz4KBfaPCZ6hRu91cwGG/t3pXZtPr0mFA1fP7UzPVZ1N+YQ2+WmVIrs/yfNRQfYEAxdpPeJm1d9tv74rhuI7QezH7GdH8VHnjCfoqIPoxtd1KnzC1sdxV2aElt+TXr8vGxkmdD9an2tqhReMFImFJVjU37/XzY5ORleXtdyg90sLJ4jcWHNZjNUKhU+//xzy7tXc+fOxSOPPIL58+dbvX/F8ddff6Fz584AgC+//BKtWrXCH3/8gY0bN2LUqFGYOnXqrfvI4LROSxAEoTpR2jBOXl5eVk6Lw9/fHxqNhoyqbhYXNigoCLVr17Y4LABo1qwZFEXBuXPn0KhRo5vus7i42OJAf/31Vzz44IMAgKZNmyIlJeWmdW+GTA8KgiA4A0opPnai1+vRoUMHxMfHW9nj4+NthlS6++67ceHCBeTkXBulnzhxAmq12ipQui1atGiBRYsWYdu2bYiPj0efPn0AABcuXICfHx1l24s4LUEQBCegolOTjBs3Dp9++imWLl2KY8eO4dVXX0VSUhJGjRoF4GqaqKFDh1rKDx48GH5+fnjmmWdw9OhRbN26Fa+//jpGjBhxy6lBAHjnnXfw8ccfo0ePHnjyySfRpk0bAFcFHiXThqVBpgcFQRCchQoMc/H4448jIyMDM2bMQEpKClq2bIl169ahXr2ra9MpKSlISkqylPfw8EB8fDzGjh2Ljh07ws/PD4899hhmzpxp1/569OiB9PR0ZGVlwdf32pr6Cy+8ADfmZW97EaclCIJQTRg9ejRGjx7Nfrd8+XJia9q0KZlSdASNRmPlsIBbv+t1K5zXaf1zFlBdUwyZCmg+JYAPWeQIaheqNFNMjHrPhd+POTub2LSBdGFTsdF+UwqVm6q0zGnRMOotJrQTACg6JrTUcZoRWlH4fFhQMbPGTJvYdgLQ+DPz1UyOKZWNY8IpBQv96XREwHpevVfkSR9X1YW0r1yOJgBwzaBlXczMNplwTwCgYspySkGzzoZqi+lWgS81uqfy5y8vkG63oCa9zmscoYpCMG0HAPOhv4mNC42kz+JVdcfzAolNGxpMbEUX+Sfw9vecJLYT3zam9alwFQDg8Q/Nx5fZjh4nXpJwe6gqUd5LuHjxIsaPH4/ffvsNaWlpJOD6bUkCKQiCIFQQVSxi7vDhw5GUlIS33noLQUFBN41D6AjitARBEJwC1f9/HCnvvPz+++/Ytm0b2rZtW67bFaclCILgDFSxkVadOnXsysHoKCJ5FwRBcAYq8D2tO0FcXBwmTpyIM2fOlOt2nXakZWrdCCrttcXjGu9RIQEA6NU0ZE6RmYan+XcqzZ0DAIU+TJ4hT+rLizxtDMUZM5OOCqrSrTlaUBfTK5TLuwQACrOQz7XJFipufd/OfgKAmbmqFMbme5wuzgOAink6U7h8VHq+/5w9vxYVd2iK+Ls+jwnvU+RBBQIaPuIQdHl0XwXedJtu6fxFoS1kck8x58TtAi9kaXCa3hOaFBpyScmmQgyVP80vBwBQM0IgRgSlTtjPVl93nOY4a5hIyzZdRAUjAHA8ioou3P5l8p7l8OKUgiCq0Gj6EhWXZD3Wla3v8eVO1l6ulDKMk7Py+OOPIy8vDw0bNoSbmxt0Ouv74tIlek3ag9M6LUEQhOpEacM4OStxcXEVsl1xWoIgCM5AFVvTGjZsWIVsV9a0BEEQnIGS6UFHPk7OqVOnMGXKFDz55JNIS7uaqWP9+vU4cuRIqbcpTksQBMEJUCmOf5yZhIQEtGrVCn/++Se++eYbS+DdQ4cOlSmrsdNOD6a3cYdGf21RNm0NzYcDACZ7A2K0580amo4Lxcxb9bYeajjRgiOiBw5OtKDNow3gBBcAYKY6AKiZQAUmmqLoKlxfmRvElriEOyauzKK5holSAQD5fvQAeJ2hogOjjSglWi6ihA89KQVMKjOAP1ZFPvSgaGwkcFWY6CVF3rT/OXX520/NCDwK/eix0hTxQUu12bStdWJpjjltPRqp23j6DLtNDtPly8RmvqctW9ZvAy+wINs8cpy1577YhdiKfOk5bbjsX7a+MYDmQwOTo+62CC5sUcWmBydOnIiZM2di3Lhx8PT0tNh79uyJDz74oNTblZGWIAiCUO4cPnwYDz30ELHXrFkTGRkZpd6uOC1BEARnoIqtafn4+LDJHvfv34/atWuXervitARBEJyBKvZy8eDBg/HGG28gNTUVKpUKZrMZf/zxB8aPH2+Vt8tRxGkJgiA4A1XMab399tuoW7cuateujZycHDRv3hzdu3dHeHg4pkyZUurtOq0QQxAEoVpRxYQYOp0On3/+Of7zn/9g3759MJvNaNeuHRo1alSm7Tqt0zLrAdV14rBiGpnpajlGKadoOKWa/SGPij2YfEjMfgCwulNOPag22to/sy/mrBR7Mbsu5repZlR9Rub4GV3tv+o5RZ1rGj9Q11+h29XlcseUbz8Xxii9FVXKceGeACCnDtOmTGor8uXVi+xSAXOe3c/x8k0TI+ozujPXid6B2F5MV8f23sgWnf9jFLElT6bqOx2TTivw/bPsNjU3JPIDePWgNpuR4wLwWXmAtdtLwHYujhg9KH+P5TNiNZuTRGxF7e8iNlthqG4LVSyM04wZMzB+/Hg0aNAADRo0sNjz8/Px7rvvYurUqaXarkwPCoIgOAFV7T2t6dOnW97Nup68vDxMnz691Nt12pGWIAhCtaKKTQ8qisImfjx48CBq1LARmNkOxGkJgiAI5Yavry9UKhVUKhUaN25s5bhMJhNycnIwatSoUm9fnJYgCIIToIJjU37OuqIVFxcHRVEwYsQITJ8+Hd7e16KR6PV61K9fH2FhYaXevtM6rQJ/BWqXa2fQ5GL/2TS78gvsHNosuphu8mBC5vjyC8zGKzQWkkcQncc1m/lLzGhk9p/NxFdyozmSjNm8OkRVSJcqFU9aH0X8kqYmm7ZJl8OUtXFKONGF0ZX2v9CHFzJwYYzyA+k2DRn8MfU/RM9fESNEsRXGyVCfnj/tdqqEKfTjD4BLiyt0X5doA/xrZbH1M07RqZPWbROJbfvlhmx9z+Y0T9HlDBqbTOVFQ2OlRDRjt1m8jwoxtFw6Lxu3Xt2senSbQT60TdsPsvXNWnqurzAitGaxp9n6l+6l+fS8T9DzfEdn3KqIEKMkuntoaCjCw8NJHq2y4rROSxAEoVpRxda0IiIiYDabceLECaSlpcFstn6i6d69e6m2K05LEARBKHd27tyJwYMH4+zZs1BueD1BpVLBZCpdOndxWoIgCM5AFRtpjRo1Ch07dsTPP/+MoKAgVklYGsRpCYIgOAGOvnvl7O9pnTx5El9//TXuuou+xF0WnNZpFfsboXa9Jh6oUzedLXcln+bpyU71JLY6oXyeHQ89FVj4u9AF2gBDNlt//Vm6cJ2bRdvk5skLOer700Xzf4qoQsCUyyxm6virVp3FiCaKaX2TLyPOAKDPpPVd0um+uCgZAKCo6RMVF1HE5ySjuACQ2oXmySoMpmWLfHkhh8sl2n4ux5f3Cf7JLzePXj85DelURp31/PFPCmBUH8yieUExf/v530XTNhzd3oDYmofzogOthna2R7MTxHYq05/Ykk/bUKeE0uvXw4cmFMu57MZWN/Wl19qZNHr8nv04l62/5Gdqu+vTVGIzpl5k63t9kUZsmuAgWr9ra7b+P49Z98tcUABM+p4tW2qq2EirS5cu+Oeff6qP0xIEQahWVDGnNXbsWLz22mtITU1Fq1atiIqwdWv+AeFWiNMSBEFwAqra9ODDDz8MABgxYoTFplKpLJEyRIghCIJQmaki72mVkJhI3y0sD8RpCYIgOANVbHqwXj36Qnl54JDTWrhwIRYuXIgzZ84AAFq0aIGpU6ciKupqKgRFUTB9+nQsXrwYly9fRpcuXTB//ny0aNGi3BsuCIJQlagK04M//PADoqKioNPp8MMPP9y07IMPPliqfTjktEJCQjB79myLGmTFihUYMGAA9u/fjxYtWmDOnDmYO3culi9fjsaNG2PmzJno1asXjh8/Dk9Pqsi6Ga5ndNAYri3cpWQEsuU0jABN7UXP5rm/+Tw7XJ6tU8w2TaFczBrAbKL1NTqq3spL5vvvXYsqoHo0OklsO8/Tp5a8f/kkY+aatANaA1Vv+f/EJH4C4HuYKhrVOUz/beSzSu8WTGwmAz1OGS2pShAANIzQUudOpYrL7l3M1p+4+UViS+1MFYUeyfz0iumuPGJT8umtkvww3/+g9VQqmfkoVZ8e7rKKrf9aSntiG9L8M2IbtJX2E+DbmpBBr7+29ZOJ7Y1ev7DbPFlI77/1F+nDaKEHr/4rNlOlZ8c6dP9BOpqjCwDuv4/mudrZnN4Tbito3jAAyGhF918QTK+pxzrtZus3MVmf06KcYnzCliwDVWCkNXDgQKSmpqJWrVoYOHCgzXJlWdNyKJ9W//790bdvXzRu3BiNGzfG22+/DQ8PD+zcuROKoiAuLg6TJ0/GoEGD0LJlS6xYsQJ5eXlYtYq/OQVBEIT/x9FcWk7otMxmM2rVqmX5v61PaR0WUIYkkCaTCatXr0Zubi7CwsKQmJiI1NRUREZGWsoYDAZERERg+/btNrdTWFiIrKwsq48gCEK1QynFpxrisNM6fPgwPDw8YDAYMGrUKHz77bdo3rw5UlOvTnMFBFhPwwUEBFi+44iNjYW3t7flU6cOkytdEARBEFAKp9WkSRMcOHAAO3fuxIsvvohhw4bh6NGjlu9vjC9lK3tlCZMmTUJmZqblk5xM57kFQRCqPDLSsguHJe96vd4ixOjYsSN2796NDz74AG+88QYAIDU1FUFB18KjpKWlkdHX9RgMBhgMdEHe64wZ2usEDZeb8P7V6E7PnKKmNv99fP1LvajAoCifLtq66PmQR0XnqRjCpKH7d0vh938+x5vYLmZQm6mQtin4N/5h4Mpd9Hh6JlFxgO/BK2x9VTGTu+sMfZi4NLwzX5+ZrlYX0WPifpFPvnTuAboBVQYNjXW3C39Mtbm0foOJfxLb5WF8IrqQlfRYpY+kAoOcK7yQ5fLDtGzRWSqEaJjMZ2/td89eYvv8cldia1yHD1l04q8QYlOYW33/CSpkmHLZj93m9OZUCfZEMBWsqG0k1Np8hYY7a+5xgdjyzLw4Z396bWLrX+8vYjs+jv+tSUumx6RNED1+a3/lr4kH7rUWaKgrQLpXFdSDt4NSr2mVoCgKCgsLERoaisDAQMTHx1u+KyoqQkJCAsLDw8u6G0EQBEFwbKT15ptvIioqCnXq1EF2djZWr16NLVu2YP369VCpVIiOjsasWbPQqFEjNGrUCLNmzYKbmxsGDx5cUe0XBEGoGlQBybsjQjovL5oN3B4ccloXL17EkCFDkJKSAm9vb7Ru3Rrr169Hr169AAATJkxAfn4+Ro8ebXm5eOPGjQ6/oyUIglDdqArTgz4+PrfMm3VbYw8uWbLkpt+rVCrExMQgJiamVI0RBEGo1jihI3KEzZs3V/g+nDf2oAZQrtMeuJ/nz2aRD/XqRV5UtJB+Lx/Rwu0wv5h+I2atnrVrDYwQREfblNeUz6eVe5rmNKq9idZ3TaX1NQV8n9zP0/7nhtjXTwAwHf+H2LR16EK232GadwwANOdo7rLiBjSiQuKDfJtcvOgCf1EWH/2DQ1tg3xOc/x/8qxinhtO2eutp9ASVL39Nen1Gpz1qvXyK2P46TyOHAMCHwTQqw6z0JsTWsybNkQUAF+rS/Rcd9CU29/Y0R92li/yUzbhdjxNbgF8msV3O4fNp9W9IRROJ+TR3V2M3/pzUdKPilpU76Vr5qPAtbP3dRio6OfgPfb3GvxnNZQYA3/9pHaXEnF8AYC1bttRUgenBiIiICt9HmYUYgiAIQtlxJBqGo1OJd4pt27bh6aefRnh4OM6fPw8A+N///offf/+91NsUpyUIguAMVLH3tNauXYvevXvD1dUV+/btQ2Hh1dmi7OxszJo1q9TbFaclCILgBNyOkdaCBQsQGhoKFxcXdOjQAdu2bbOr3h9//AGtVou2bdvava+ZM2di0aJF+OSTT6yyFoeHh2Pfvn2ONt2COC1BEARnoIJHWmvWrEF0dDQmT56M/fv3o1u3boiKikJSUtJN62VmZmLo0KG47777HNrf8ePH0b17d2L38vLClStXHNrW9YjTEgRBcAYq2GnNnTsXzz77LJ577jk0a9YMcXFxqFOnDhYuXHjTeiNHjsTgwYMRFsZHC7FFUFAQ/vmHirp+//13NGjQwKFtXY/TqgdzAtXQGK75VFtD4ZzWVEHH5RPSXeDDw+Q2pKowbQatb9bzDQhqnkZs/2Z60Dbl8OpDlZkqBdXFdF9XGlOlnXcir0g06+iziOdpqvRTOfCehCmQqs8udOPfv6t5kPY1pSs9/kZvPjSWn3s+seWet/9dP5WRHj/zPW2JTb2PV98Z3WgoIJ+3qSruzMv8NVHcnKo33btTRWXPXbz68sGTfYjt6K5QYvt00Mds/S1P1SI2c+4xYqu/i15T2xPasdvMD6Lhmcw16LWbf4lXhH51noahcqlN+3/Kl6ppAaCT31li0zen18/61OZs/d5NaP83/0jzlmXk0escAGpvsf7bWKzCObbk7efGF3q50HhFRUXYu3cvJk6caGWPjIy8aRaOZcuW4dSpU/jss88wc+ZMh9o1cuRIvPLKK1i6dClUKhUuXLiAHTt2YPz48Zg6dapD27oep3VagiAI1YnSvlx8Y2aMadOmkXdl09PTYTKZHMrCcfLkSUycOBHbtm2DVuu4q5gwYQIyMzPRs2dPFBQUoHv37jAYDBg/fjxeeuklh7dXgjgtQRAEZ6CU72klJydbhUTiApCXYG8WDpPJhMGDB2P69Olo3LixA42y5u2338bkyZNx9OhRmM1mNG/eHB4edCbKEWRNSxAEwRko5ZqWl5eX1YdzWv7+/tBoNGRUZSsLR3Z2Nvbs2YOXXnoJWq0WWq0WM2bMwMGDB6HVarFp06ZbdqckgpKbmxs6duyIzp07w8PDA0ajEZMmTbLzoFDEaQmCIDgBFSl51+v16NChg1UWDgCIj49ns3B4eXnh8OHDOHDggOUzatQoSz7FLl263HKfr732Gh5++GFcunTJYvv777/RuXNnfPnll/Y3/gacdnrQrANU16U10vCaA7j+TfMs5TehhY2uvH9WGagYoXZ7umh+Lt2HrZ9bSEUHOh3dpv5vXojh9xcVguTUpqdFU0TrmjV8YErDRRryRp1FQyMZE+niNgAU9utEbFyOqpoHbISmCqb5qBRqArR87qWcAka04UDMZdUfB4hN40Kvk19O72Tr9x50F7Glt6ZhpFx38Mff3OMKseWup2qpM51Ps/VPfNqC2Go2pyGXYhu2ZusPPf43sS1MpOF1Pg75hthSXo4nNgAYevJJYsv5lOa4cq/L32cBe+i1ktaOhow60ZyeJwA4eZ6KS3x86HVu3MLnA9vZg263IIgKOfTpVEQDAJ6nrENWGU02fpDKQgWHcRo3bhyGDBmCjh07IiwsDIsXL0ZSUhJGjbqa123SpEk4f/48Vq5cCbVajZYtW1rVr1WrFlxcXIjdFvv378eQIUPQqlUrLF++HCdOnMDrr7+ORx55BPPnz3es8dfhtE5LEAShOlHRUd4ff/xxZGRkYMaMGUhJSUHLli2xbt061Kt3NS5jSkrKLd/ZcoTQ0FBs3boVr776Kvr06QONRoOVK1fiiSeeKNN2ZXpQEATBGbgNYZxGjx6NM2fOoLCwEHv37rV6+Xf58uXYsmWLzboxMTE4cOCAQ/v76aef8MUXXyA8PBw+Pj745JNPcOECzVjtCOK0BEEQnIEqFntw5MiReOyxxzBhwgRs3boVhw4dgsFgQKtWrarmmpYgCEJ1QvX/H0fKOzN//PEH/vzzT7Rp0wYAEBgYiHXr1mH+/PkYMWIEHnvssVJt12mdVt11l6DVXFuQT+nBL7AWdKZv1evV9BFE68XnnvL3oIu5Bg1doA2swaeRvnCK5gTy20MHsCqFfyz6ty1VKHidpQIFQ6b90SvUl7KJzXjuvN318/3oZWEKpja/T3aw9WvUpMckrTMVIgSHXCI2AEhJpVEJ6m1nlCjPs9VZcvq2Ibbewfw1kfUkjX5R5M1ELuEDesB40IfYXniCPlkWHOPFOWub7SE21wQqS76ysT5bfyVNvYWMr6iQ5InEe4nt8t38OVEjmdi8GJt3p1ZsfRjpNR0ST8VBx+vz+bwURp9xOYWWbbiPP6dJnam4R1+Dli028RE9zAeOWv+tUAFVmalgIcbtZu/evaz8fsyYMbj//vtLvV2ndVqCIAjViYoWYtxubvaSc5MmzJOVnYjTEgRBEMqF9u3b47fffoOvry/atWvHRtsoobTpScRpCYIgOANVYHpwwIABlhHWgAEDbuq0Sos4LUEQBGfBCR2RI0ybNs3y/xuD9pYXInkXBEFwAm5H5uLbQV5eHsaMGYPatWujVq1aGDx4MNLTaUSX0uK0I62imm4wa69JhnyP82FTvAdQVZ+KOZv1PXlVlFZFVU2ZxVSqlHzZh62vyaZ+X80I/VQm/gqrt/AosaU9QnMCaYroftx/4eeELz9KwzB5rqHZf059zudOquFDLzC/fieJTRtCw/gAwL/31SW21m1oyKL7/Gm4IQD4w7MhsZ2tUfpI0wBg0jPTFGo+ZI/vPtr/gho0jJD3GV5B9taHS4ntaEEIseWZefVg2vdNiS14GFXaJb0ayNZf8M8vxPY+jUwF/Q6qvttw4QC7zd7BbVn7jSi7D7N2U0+auyqpF12oD97Mh/bKfJr2v0UtmlIj+yQfBkox0/MX6JdJbOmH+AjkOTeE4TLmFgKD2KKlpwpMDwJXR1vLly/HU089BRcXF3zxxRd48cUX8dVXX5XL9p3WaQmCIFQnqop68JtvvsGSJUss4Zqefvpp3H333TCZTNBo+AdFR5DpQUEQBGegikTESE5ORrdu3Sx/d+7cGVqttszhm0qQkZYgCIITUFVGWiaTCXq99dS3VquF0WjjbXwHEaclCILgDFSRNS1FUTB8+HCrl4sLCgowatQouLtfi8zyzTc0NY49OK3TSuqth9rlmrf2bcoLKWob8ont0UAaBqehLo2t/2EKDSeS8l+6au2r4983yGhB7V6JtE3qbfvZ+mYtPQU1d10mtistfIhNU4PaAKDBK1Tg8O8aWu6x5nvZ+pveo0nhjPfSRft/m/BCgq4jaF9r6Gi4rON5vJDg33y6GO79Nw1N5Qju52jIHm39OmzZYn+6f7d/qUDgYgcuSRgwfu5IYssLpr8w8UPeZevv96ft2jOGRhA4/ehCtv4PuTQMFX6jQpCLYVScAxszOMZfqbjm31/oNn1P8E/T5+6jKxGnHqPt79FxIFs/J8mf2Hbn1iM2/fN8GCbdMWrLukKPU/BhPgzUpUvWYbRMRXy5MlFFnNawYcOI7emnny637Tut0xIEQahOVJXpwWXLllXo9sVpCYIgOANVZKRV0Yh6UBAEQag0yEhLEATBCVApis0URrbKV0ec1mmZfI1QXK8t6tZwpW/EA8DiBlSB4q2mAoGIg0+y9fUf1yC2Qh86APU+wy+8eh+h7VJlUdGBLbGnmhEDFHvRt/qzQmmbarjwb/9v30MXyBvhT2I7GBXE1vcJoqIHsyu9VIJ++Zetn/qkJ7GdyqIL6cHuNCIBAKRcoaKPmrUZcUEZKQr2Ye2LPp9HbE9PHE9sRg/+R8NYQMU59dZRcY7/MF7I0syDRnrYE0xFB70HDWXrb/hmJbG9Z6SikWVnf6fbDL6H3ebZVfQ+qRdFhRztn6I5tgAg7bsw1n4jW1p+x3/Rkpp+zqPX//09ecHOy+e7E9v++W2JLSeEPyc1H7HulzG3EPiULVp6ZHrQLpzWaQmCIFQnqooQo6IRpyUIguAMyEjLLsRpCYIgOAEy0rIPcVqCIAjOgIy07EKcliAIghMgIy37cFqn5e6TD43btdA59wcwcVgArMpqQWyeaqr0q+Wew9ZPqkfz7GgK6dWgvcKrB7Oa+hCb9x6qKDTe24Gtrzl3hdhSu1KlnOESbZPZj6rsAMCjLs0xFndmO7FF16fhmgAgp3sosWmevUhsKfFUpQgAY/y/J7Y8M82d1MDAh9badprm07rUzP5LVdWBXhMZrWh4nyJvPjTX6HpUQefdiSpCrzSmKkkAKHantrNRdP/t/niOrT+i+Q5i43I/5U/nf7W43FdbL3xLbFPSqKKv5nYfdpuaZ+j9YzqeRGw/T+GvqZlDPyO2pp++SGx/P8eHpuLo50bvydb/fYUtm9eB3pMugfT8//WKffvPyjbD166SDiAjLbtwWqclCIJQ3aiuoydHEKclCILgDCjK1Y8j5ash4rQEQRCcAFnTso8yxR6MjY2FSqVCdHS0xaYoCmJiYhAcHAxXV1f06NEDR44cKWs7BUEQBKH0I63du3dj8eLFaN26tZV9zpw5mDt3LpYvX47GjRtj5syZ6NWrF44fPw5PT37hmsNoVEMxaix/a2ysOq74pyux1XCni655xXzuI7eLNE+SppjuK6uJN1s/pV8RsXkk+RCbdhOfu8rE2J4ZTvNRrfi0D7GdfZBfCn7mrg3E1kxPxR3n1lLBAgCEPLyT2E706Exs2vZ8aK2/cqlAI8zrH2LrYqDhigCg5o80PE+RJz0nhUoxWx/0lEKfzdT35YUYauY6VR0/S2y67kxsIQCFnRnRzz9UneG9jlFsAPjRuxWx/d6ahivrfewBtn5RPBPyKZiWO/lRF2Kr24QKbgBg1A+/Edu8yY8RW52ZVPADAIt6RlBjU3qcolM6svXfqLmF2K6Y6TN30H/5/U89vY/Y7u5B6790nh4TAOjsecrq7/wcI4DTbNlSI0IMuyjVSCsnJwdPPfUUPvnkE/j6XvvhVBQFcXFxmDx5MgYNGoSWLVtixYoVyMvLw6pVq8qt0YIgCFUNldnxT3WkVE5rzJgx6NevH+6/3zrrb2JiIlJTUxEZGWmxGQwGREREYPt2/gmosLAQWVlZVh9BEIRqh1KKTzXE4enB1atXY9++fdi9ezf5LjX16nRPQIB1auqAgACcPUunV4Cr62LTp093tBmCIAhVChFi2IdDI63k5GS88sor+Oyzz+BiIy0GAKhU1msFiqIQWwmTJk1CZmam5ZOczKc2EARBqNKUSN4d+VRDHBpp7d27F2lpaejQ4Vp0B5PJhK1bt2LevHk4fvw4gKsjrqCga7ma0tLSyOirBIPBAIOBRksozDJAXXzN/r9TVAgAAGo1ndg9e9GP2EI+47vq8itdoFU3qk9spqMn2Pq4hy7ccpEWtOFt2Or/tqOL8f87dYnYDk5YQGy9HhvObnNlfm9i+yKXifKh5x8kCqM6EZuqmD7fRDXmVaH3etPoJREuNPrFkFOPsvXza9J9cVFK9hRqiA0AVGZ6TSjMQ5NHMn/Tm7NpTqYNFw4QW/v/8EKWPCNtl2tzGtHiiooX92xqTvNhPXjyEdqmZj+x9TmBRs76BsTWqA/NsWZLnPNRYk9iqzn2DLGlGqgwCgC876PinsKl9Dfhl3+as/V/W03vfzNzSx+5QO+Tq9j3fD6vNj0mHFkqM0bbVdJ+ZKRlHw6NtO677z4cPnwYBw4csHw6duyIp556CgcOHECDBg0QGBiI+Ph4S52ioiIkJCQgPJwP7yIIgiBA1rTsxKGRlqenJ1q2tJb5uru7w8/Pz2KPjo7GrFmz0KhRIzRq1AizZs2Cm5sbBg8eXH6tFgRBqGLISMs+yj0ixoQJE5Cfn4/Ro0fj8uXL6NKlCzZu3OjQO1qCIAjVDgnjZBdldlpbtmyx+lulUiEmJgYxMTFl3bQgCEK1QUZa9uG0sQfVuVqoTdeaV3S6Blsurx6NihD6FV2I5xbnAUApphEtrrSm+/I8yrczcDtd4F++9ANiiz7zEFv/n/00DQcyafSKPg8+TWyX29F0FwBg9KC22pvp+2+aS3y6FiWHRrpwb9GI2F6tuZmt/3kmjWowkEkNc+RYHbY+mhmJKXgzXX49XMDXNx+kQhBvj7bE9m9bepwBQN2WigEaraRpPGrQbCUA+AfgZxpRIcKy7TTKCQA8NXocsWkKmNgpVK8BAPipKU0NE77/SWI78TEV3DR+mL7KAgDnJtE16fkvvE9sGTP4Yzp96IN0X733EBsneAGABwPpsarrdpnYejz/PFvf8DPtl6193TEkIoZdlCn2oCAIgiDcTpx2pCUIglCdkOlB+xCnJQiC4AyYlasfR8pXQ8RpCYIgOAOypmUX4rQEQRCcABUcnB6ssJY4N07rtPz2q6C5LsyQx4VCtlzuWZonS/crr4Cyl/TW9HLw/ZPmKAIAr5M05E/UwgnEVvMQn/sp4i0aCslVQ8v+8gLNsXSg71x2mw+MjSa2vDo0XJTrXj4MU9JXdF+fdYwjtuPFNFwWAEzx/5vYdjLqt3vb8ZLMv6/UIjZlC7UtONGdre/xOA2PVORJz6mOCW0FAKcfofUbvXuc2FKebMrW999I43LurB9KbKYufEaD3Cv0ncaMcHr8wg4+zNbf0WYtsa1tvZTY+hW/QGwn5/H5pBq9RLM0PN1pBLFNabGOrb+11bfE1upbGnCAy/sFABsurCe2u74YRWxPzdrG1t/5M/2d6B3cltiMv9Zl699T0zqfVmFOMco/n1bFv6e1YMECvPvuu0hJSUGLFi0QFxeHbt26sWW/+eYbLFy4EAcOHEBhYSFatGiBmJgY9O5Nw8TdTkQ9KAiC4ASUCDEc+TjCmjVrEB0djcmTJ2P//v3o1q0boqKikJSUxJbfunUrevXqhXXr1mHv3r3o2bMn+vfvj/37aZLa24k4LUEQBGeggmMPzp07F88++yyee+45NGvWDHFxcahTpw4WLlzIlo+Li8OECRPQqVMnS0i+Ro0a4ccffyxlB8sHcVqCIAhOgEpRHP4AIEl0CwvpUkpRURH27t1rlaAXACIjI20m6L0Rs9mM7Oxs1KjBB3q4XYjTEgRBcAbMpfgAqFOnDry9vS2f2NhYsun09HSYTCY2QW9J8t5b8d///he5ubl47LHHStW98sJphRg19qZDq7mWT8t0/B+2HJeRSOPlRWymLH7RO200DU/je4yOu888UZutHxJLn1IMnWjIn/SWdCEYAGJq/kFsX2TQxfB3enxJbPf+h4b7AQAtE8bJkEUX8vMH8jnKCrJoyKsOBj2xvXsphK3fx+0UsX2WQY/zmRz+iS3lOBVdhBTSNpl2+bL1PdfQc6JqR/NE/duJXicA4JJBRRvmTHr9+J6gIcAAICWMHqvUXLqvghQqjgGA/E40jJXXQZpzDvE12fq/Nab5vAoUf2LzdcsntsODVrHb7P1SW2KrPYgKeabOfoKtfyxqK7H1qUfDbX29kL8mOYFGQ9DQWD8/x4tzMlfRvhqv0PMU9An/HD/9/R+s/s5yMeNdtmTpuX70ZG954GpyXq/rfvO4/ISWOg4k6L2eL774AjExMfj+++9Rqxa9P28nTuu0BEEQqhWlfE/Ly8vLymlx+Pv7Q6PRkFHVzRL0lrBmzRo8++yz+Oqrr3D//fc70MCKQaYHBUEQqjh6vR4dOnSwStALAPHx8TdN0PvFF19g+PDhWLVqFfr161fRzbQLGWkJgiA4AxX8nta4ceMwZMgQdOzYEWFhYVi8eDGSkpIwatTV990mTZqE8+fPY+XKq+kDvvjiCwwdOhQffPABunbtahmlubq6wtubW5i5PYjTEgRBcAIqOmDu448/joyMDMyYMQMpKSlo2bIl1q1bh3r1rgZOSElJsXpn6+OPP4bRaMSYMWMwZswYi33YsGFYvny5YzsvR1SK4lzpL7OysuDt7Y0eGACtihcvlOv+BnclNp+jdNH9+HN85uXav1HbuUh6SBMHLGbrv3GxLbF9+Se/GH0jjUftsqucLU4spXmvACCxz6fEdtlEc2z5avjcSfayOpsXUkz56XFiq/8jFT3kBtGFdABwT6VlLzeii9NGV34B2iuZilaK3OlM+p/v8O+3hL9KIzXkPJlJbG0DzrP1d21sSWweyfSa0uXxt27AyERiyy6m/R8SQoUM7V34F01b62mUDy6ihC3CD9Jz4qah0uxGhots/RnH6NRUzQdplBJbFPWm17rv5LPEdvAsLy6q+5m1uMVoLMD2X2OQmZl5y/WkW1HymxcRNgVaLT3OtjAaC5CwY2a5tKEyISMtQRAEJ0BlvvpxpHx1RJyWIAiCM3AbYg9WBcRpCYIgOAOSmsQuxGkJgiA4AaV9ubi6IU5LEATBGZDpQbuoNk5L7cKrclJ7UqVY6v2MKq6Av0DO308VaCo3Goanw14+XlejGunE1uRTqtTTpF4mNlNHqjIDAGXPX8RW8ABVJOpSabgfAPjoMs0dtvK/fWm5KfPY+l1d+O3eyBOetE8AMLWYyX11iVEvHjvH1jeFBhKbmVG/5Xah2wSAIh96/oN2UPVbs8Wj2fp+JnpNZadS9WmWryu/fz9a/3IDuv/G/+VzzBVEXiE2z40+xKZT0f1cMfP3Cady/fYcVa8+FMIrX7e3oUrPE5/Sl1q/vW8+W79vXZp7bdU8Wr/RS3+y9fUb9hBbwZm7iM1lEH9Oms3cZ/V3UU4Rtv/KFi09CizxBO0uXw2pNk5LEATBmZHpQfsQpyUIguAMKHBwerDCWuLUSOxBQRAEodIgIy1BEARnQIQYdlFpnJa6dVPWbj70N7EVR9KQLYlP8ic4sfcnxPZE4r3EtudsXba+xw66aF9z4AViW3TXF2z9QXETiM21CV2N9WbEFTjHhwHiuPft34ltRUI3tuxYXxreZuxMLmQRL7hYmUVzN2mYQGnT9jzI1q+3kYoOVOfTaMEAuh8AUOfQ+t6niontSks+DJSpDq1/QUNDijVYTUU0AJDb0IfYXM/RW+1IZgO2PgLo/nWnqUAgKYoXDYQcoAKNS3OpuOa92g2Jbf+UBew2f8umx+/p0zS00okldD8A0PhZKoTgePUfXrCUfDCI2DqHnSC2Zky4KIAXgnA5+o6M/ZqtH/rDC1Z/m/MLANAcd2XCDODWqa2sy1dDKo3TEgRBqMqIEMM+xGkJgiA4AzI9aBfitARBEJwBcVp2IU5LEATBGRCnZReVxmkpx2mOIFsU+tBuHe4Vx5ade6k5sa0O3UQLhvL7eqTO/cT2dUP6qvw5GiQDADD1xc+IbfHTA/jCZWDF71R0MbnX92XapknhV4L35dYntnu9aESDegEZbH3D/mxiK+hARQu63/YRGwD2Znb5m14T3o346A0PjNhGbN99QY+f2Y0XciR8THOndZz6IrGpqF4HAFAvnAphDic3Ira8ejSiBQCYI9oRW5Enfbul5oFcYmu58yl2m391/ZzY2i/qTmzjXlrH1n9/Xh9ia/wcjV7xSRIVDAHAM6rBxBYb8gOxPXZ4BFvf+D3tf60BVMRlK0dY4gXrc5qVbYZvNFu09IgQwy4qjdMSBEGoyogQwz7EaQmCIDgDMj1oF+K0BEEQnAGzAjDvM960fDVEnJYgCIIzICMtu5DYg4IgCEKlwXlHWp1aANpruX3MKl5Wk9GahlEqqEHL3r3nGba+m4GGfRlX4zSxnTPmsPU5peDPeTQn0a7cFnz91RHEVmcfzVNU1mcqnX8+sT3rnWp3/RSm/8uudGDLxgXRkD1Dz1Kl2cVfQ9j6dfU0vI7LrpPEZnLgSVPtRq+TwG2ZbNnvXahSUEsPH8x6+/KGAUCNIzR3l9GThoYCgIyZ9Ymt+Ckamsn1JJ/7qvDNf4nNuzdV32ob0P3kXuZDYy26UpvYVH2p+nN1Mn9NnB70MbFFfj6M2J7no6XhtwtUKdhpH1UKZh30Y+trmlBF6qRTh4jtnbZ3s/VvVBUalWIA9HeibDg40qqmYd6d12kJgiBUJ2R60C7EaQmCIDgDZgUOjZ5EiCEIgiDcMRTz1Y8j5ashDgkxYmJioFKprD6BgYGW7xVFQUxMDIKDg+Hq6ooePXrgyJEj5d5oQRCEKkfJ9KAjn2qIwyOtFi1a4Ndfr4kPNJpri9Fz5szB3LlzsXz5cjRu3BgzZ85Er169cPz4cXh6ejq2n7lHYfC4tlB95Ema+wcA/A5TW6/FNBTM+lReCJFVwC9m30iI1sOucgCQYaRl1xxvz5ZVGahNMdqI+WQn2U90JbbiAio4+TybX7R+ypMusF8w0ZBFb/ofZ+uPPk/3H+59itiOpfHnRMmh4YXMudRmC+N9VAygSaEL8Wldvdj6JkYfoQ6/TNv0F5/PqvfAIdTIaDZcj/FCmL9fpQIVjwP0+bL+AF4IcGoDDXkVAirESHo4mNgCgy+y2/wkjuY+e+ilzcQ2xZ+GRgKARluGE9vJtcuJ7Z6xI9n6vWlTcWUVFdecfIbL+wa8nkpDWy1I6UlsHbYxedsA/DbHWqBhKi4AvixbGDSCTA/ahcNOS6vVWo2uSlAUBXFxcZg8eTIGDRoEAFixYgUCAgKwatUqjBzJX4yCIAgCRIhhJw6/p3Xy5EkEBwcjNDQUTzzxBE6fvvq0l5iYiNTUVERGRlrKGgwGREREYPv27Ta3V1hYiKysLKuPIAhCtUOBg9ODd7rBdwaHnFaXLl2wcuVKbNiwAZ988glSU1MRHh6OjIwMpKZeneoICAiwqhMQEGD5jiM2Nhbe3t6WT506dUrRDUEQhEqOrGnZhUPTg1FRUZb/t2rVCmFhYWjYsCFWrFiBrl2vrmOobngJWFEUYrueSZMmYdy4cZa/s7KyxHEJglD9MJvhUL4Rc/VUD5ZJ8u7u7o5WrVrh5MmTGDhwIAAgNTUVQUFBljJpaWlk9HU9BoMBBgNVIxzppkB7XfDIDRe+Zuv3DqGL7uvG30tsBa9cslH/GLFx0S/yFN7xPrTodWJzv4dGJFAd4YUobh3TiS3j2TBiUzPaDN8VO9htGq4weZayqbrgz2y6YA8Amy43I7aPQpgcYzZYUHsnsQ36pxexuT7Oj8BNx2nuKNUfB+zev8sJKiZI70EfhK604G96VRE91/kXqbjG3IGPaFE7jkZaSJzRidhc/3Vn69fdQEUzymv0Ojm2k0/ypmrNR2+5kZBFVMV0+QIvjqk3kkYpia5xgNiOFPFP/yE1qZCl+cLRxBb5Jo0GAwDH1lJbg8F0/03+Q/OWAUDDe2iOsnVN+NxfHMWvWytpCnOKsfdLu6vbh6xp2UWZYg8WFhbi2LFjCAoKQmhoKAIDAxEfH2/5vqioCAkJCQgPDy9zQwVBEKo0Mj1oFw6NtMaPH4/+/fujbt26SEtLw8yZM5GVlYVhw4ZBpVIhOjoas2bNQqNGjdCoUSPMmjULbm5uGDyYZh0VBEEQBEdxyGmdO3cOTz75JNLT01GzZk107doVO3fuRL169QAAEyZMQH5+PkaPHo3Lly+jS5cu2Lhxo8PvaAmCIFQ75D0tu3DIaa1evfqm36tUKsTExCAmJqYsbRIEQah2KIoZigOhmRwpW5WQ2IOCIAjOgKI4NnqSNS3nJqrPE6w9dWwNYtPm05O5tw0jPwKwJJNG97hgomrGiSN5VVLIRvritDa0Hi3Ynb/AfKefILbUaCpcMTIRg3SPdmG3+e+gAmLrXDeZ2Hak8uqzsXdRpaCbmoZxskXXA48Q24hQepwWfTCArW8Ook+Qni403Ja5gPYTAIzJ54itxnc0d1aRVyu2fq3dNORTVkOq9KuxnR5TADAyYbhODKfhhVq9T9VzAJDvT2/LK1foFLvhMq9ozdfR8EYnllGVbeNn9hKbysbD+31MeKaFV6jSsIkhha3fvgY9VpNeWEVs9ywbz9Y3vkfvn4bjqUq1/lu8ovbcOHpPtdhIj39+U/6aeq1TvHW54rKFWmNRHJweFKclCIIg3DHMZttPDRwyPSgIgiDcMWSkZRfitARBEJwAxWyG4sBIS4QYgiAIwp1DRlp2UWmclvkQn6cnkEbMQf6AzsTWbjcv5AgLPkNsszYMJLZar9LQTACQ+DANz9NsCt2mrZBLaje6aK70oCFviv72IbYN73/AbnNFFg2DpGFimv11MYjYAOApTy6nEA2e8loKnyPM01BIbIVmGvKo2IsXEnCRhBp9TRfIuWMHALirLjGZPKmQo9GTfD6wfXfTkE81fen5v+DLx8istYCKDsJeG0VsdXdQwQgAXOlMk0cZdlAhRotHaAgyAHg2cCuxjdlr3wv+xe78Odmc0YTYvm74K7GtzPJn608PoEIcDzUVt3TuxSeNXVmP9mlkdxru7EznfLZ+0Fy6/8TZtP6h+xaw9dv//oLV3+a8AgDb2LKlxqwAKnFat6LSOC1BEIQqjaLAoYC54rQEQRCEO4ViVqA4MNJSqqnTKlPAXEEQBKHysGDBAoSGhsLFxQUdOnTAtm03n+JMSEhAhw4d4OLiggYNGmDRokW3qaW2EaclCILgDChmxz8OsGbNGkRHR2Py5MnYv38/unXrhqioKCQlJbHlExMT0bdvX3Tr1g379+/Hm2++iZdffhlr1/KBGm4XlX56UOPjTWwXulFf7POjL1s/awTN6WR2oRfDDhsRNRqcHklspn950QaHOS+P2NzX0D65MmfKQ03FBQAwb3V/Yjs2ii4wr/ejOZoAoN9xWn9905+JrZsXjeYBAN/+ToUw55iICB7J/E2nqDWs/Ua4YwcAZm8aPkR7mS7Qp83i84mFMLMuF0dQ0Yc+kgpmACAvhUYq8d1Nc3wZz/A/FgWRtanNjzZq50m+/bu2NyU2DU3RhX9HUSFCzUW8YCj7U2o7dIaKY6ZtGsTW/18TGiljWaMviO33Xc3Z+utr/knLftuO2HweZXLJAfD4itYPnUj7GnH6Vba+u9ZaoGIqKv+fzoqeHpw7dy6effZZPPfccwCAuLg4bNiwAQsXLkRsbCwpv2jRItStWxdxcXEAgGbNmmHPnj1477338PDDDzu07/JERlqCIAhOgFEphNHswEe5qtLNysqy+hQWUvVuUVER9u7di8jISCt7ZGQktm+nykoA2LFjBynfu3dv7NmzB8XFxeXUa8ep9CMtQRCEyoxer0dgYCB+T7U/k3IJHh4eqFPH+tWLadOmkUwb6enpMJlMJIt8QEAAUlP5DOKpqalseaPRiPT0dKsM9bcTcVqCIAh3EBcXFyQmJqKoiJnDvQWKokClsp66NBhowO8SbizL1b9Vec5+OxGnJQiCcIdxcXGBC5PJoLzw9/eHRqMho6q0tDQymiohMDCQLa/VauHn51dhbb0VsqYlCIJQxdHr9ejQoQPi461TrMTHxyM8nKZtAYCwsDBSfuPGjejYsSN0Ohrh5nZR6Udapis0T1KDtVQpVuTD54Pae56G4hnXbQOx9Xj+ebZ+oEf5D5MVRjzn8z+qdHpnAg3XBABFjWn/CxW6cDo8+A+2/kD3nFu08CoNdLz60DWE5qP689/6xHalEf/MVHc9rc+hDaK50ACgUEvPydkBNO+aofMltn7uEao05fSMtTz543Sppg+xuf2TSGwbLhxg63d9vSuxaXPpsVK58dNJqlw6PVTciLkmcqjKUlOzJrvNfx+4i9hGvknbuebtj9j6gRoqDgjRehDbNw/yoclmX4giNl0uLfdW7HK2/mt3PUv3H0sFCP6LefXkicXW4drM+XdOiFBaxo0bhyFDhqBjx44ICwvD4sWLkZSUhFGjroYYmzRpEs6fP4+VK1cCAEaNGoV58+Zh3LhxeP7557Fjxw4sWbIEX3xBVZ+3k0rvtARBEIRb8/jjjyMjIwMzZsxASkoKWrZsiXXr1qFevatJa1NSUqze2QoNDcW6devw6quvYv78+QgODsaHH354R+XugDgtQRCEasPo0aMxejSfMXv58uXEFhERgX379lVwqxxD1rQEQRCESoPTjbRKJJVGFDuUWsZqG0b6pr6xmI++YMqjZQtyjEx9Wu6qna52GJn1I0cwFTHtZ7ZZkMPvx8z0KSub9j8vj48ekGW2LzxMTpGtY0rXL4xqajMV2jimzPkDd0zN/JoOV99Ed8+2EwDMBcz+mWNqZFKwAPafP+6c2KpvKqTPl9y1CwCqArpIzl0TpkK69me0cUy5NqmK6Q2aa6NP2Rpqz9JSW04hX784l7aLu37ysvlrmivryH1qzi9g/66uQWvvJCrFyY76uXPnyMtygiAIzkhycjJCQkLudDOqFU7ntMxmMy5cuABPT09kZ2ejTp06SE5OhpeX151uWrmQlZUlfaokVMV+SZ/KB0VRkJ2djeDgYKjVsspyO3G66UG1Wm15cil569rLy6vK3GAlSJ8qD1WxX9KnsuPtTQNbCxWPPCIIgiAIlQZxWoIgCEKlwamdlsFgwLRp024aALKyIX2qPFTFfkmfhMqO0wkxBEEQBMEWTj3SEgRBEITrEaclCIIgVBrEaQmCIAiVBnFagiAIQqVBnJYgCIJQaRCnJQiCIFQaxGkJgiAIlQZxWoIgCEKl4f8AY1rukSUDpIwAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "# Load the patch normalized image\n", "patch_img = np.load('./mats/1_BasicDemo/summer_patchnorm.npy', allow_pickle=True)\n", @@ -137,7 +132,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": null, "id": "2bd6ae95-2a79-4b45-8a60-503079339739", "metadata": {}, "outputs": [], @@ -155,29 +150,18 @@ "\n", "Our network consists of the following architecture:\n", "\n", - " - An input layer sparsely connected to a feature layer, 784 input neurons to 1568 feature neurons\n", - " - The feature layer fully connected to a one-hot-encoded output layer, 1568 feature neurons to 500 output neurons\n", + " - An input layer sparsely connected to a feature layer, 3136 input neurons to 6272 feature neurons\n", + " - The feature layer fully connected to a one-hot-encoded output layer, 6272 feature neurons to 500 output neurons\n", "\n", "Each layer connection is trained separately and stored in different weight matrices for excitatory (positive) and inhibitory (negative) connections. " ] }, { "cell_type": "code", - "execution_count": 15, + "execution_count": null, "id": "6d98749a-8f28-477b-871c-93626e96786c", "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwcAAAFuCAYAAADUPGT0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9e3xV1Zk3/t37nJPbScC7iBdE5R4SQu4JJIAUSxG1lFfKYBGH0TJaRsd2xt7VqdWx7c9qbS2vDqNlZKi+lKoUKYhAArknJCHh7gXUKt6B5OR2ztnr98daz7PX2udAqx0Ko/v5fPJJcs7e6/KstZ713B9LCCHggw8++OCDDz744IMPPnzuwT7VA/DBBx988MEHH3zwwQcfTg/whQMffPDBBx988MEHH3zwAYAvHPjggw8++OCDDz744IMPCnzhwAcffPDBBx988MEHH3wA4AsHPvjggw8++OCDDz744IMCXzjwwQcffPDBBx988MEHHwD4woEPPvjggw8++OCDDz74oMAXDnzwwQcffPDBBx988MEHAL5w4IMPPvjggw8++OCDDz4o8IUDH3z4HMFTTz0Fy7LQ3Nx8qofCcP/99+O55547JX1PmTIFlmUl/ens7Dwpff73f/83Hn744ZPS9l8DP/vZz2BZFhoaGozPHcfBWWedBcuysG/fPuO7gYEBZGRkYM6cOZ+orylTpmDKlCmfapyLFi1CZmbmn32up6cH99xzD7Zu3fqp+vHBBx98+LxC8FQPwAcffPh8w/3334+5c+fiuuuuOyX9X3bZZVi5cmXC55dffvlJ6e+///u/0dnZiTvuuOOktP9pYerUqQCALVu2oLi4mD9vb2/Hxx9/jHA4jC1btmDUqFH8XUNDA3p7e/ndvxQee+yx/5lBnwB6enpw7733AsCnFkR88MEHHz6P4AsHPvjgw/8q2L9/P0aOHPk/1l56ejpKSkr+x9o7VdDT04OMjIxP/X5eXh7OOOMMbN26Fd/+9rf5861bt2Lo0KGorKzEli1bsGTJEuM7AJ9YOBg7duynHqcPPvjggw8nF3y3Ih98+JwDuWm88sor+NKXvoTMzExcfPHF+OY3v4n+/n5+7uDBg7AsCz/5yU/w4x//GJdccgnS0tJQUFCAl19+OaHNSy+9NKGve+65B5Zl8f+WZSESieA3v/kNu/P8OS3vjBkzMHr0aNx7773Yv3//XzX3vwSOHTuGb33rWxg+fDhSUlJw4YUX4o477kAkEjGe+9WvfoWKigqcd955CIfDGD9+PH7yk58gGo3yM1OmTMG6detw6NAhw4UJkIy2ZVkJbjCE96eeeoo/ozXr6OjAjBkzkJWVhSuvvBKAdPW57777MHr0aKSmpuLcc8/FTTfdhPfff/+E87RtGxUVFaipqUEsFuPPt27diilTpqCysjJhbFu3bsW5556LcePGfaK+k7kVvfXWW5g7dy6ysrJwxhlnYMGCBWhqakqYO8GJ9uvBgwdx7rnnAgDuvfdexvOiRYsAAO+//z5uueUWXHzxxTzO8vJybNq06YQ48sEHH3z4PIBvOfDBBx8QjUZxzTXXYPHixfjmN7+J6upq/OhHP8LgwYPxwx/+0Hj2l7/8JYYNG4aHH34YjuPgJz/5CWbOnImqqiqUlpZ+on7r6uowbdo0TJ06FT/4wQ8AAIMGDTrhO88++yxWrlyJ//t//y/uuece5OfnY/78+Zg3bx4uuuiiTzZxBTozDEhG2bZt9PT0oLKyEm+99Ra++93vIicnB7t27cIPf/hDdHR0YNOmTczcv/rqq/i7v/s7FiLa29vx4x//GHv37sV//ud/ApDuNLfccgteffVV/P73v/9UYyUYGBjANddcg69//ev49re/jVgsBsdxcO2112Lbtm3413/9V5SVleHQoUO4++67MWXKFDQ3NyM9Pf24bU6dOhUvvPACmpqaUFpaCsdxUF1djQcffBAVFRV47733sHv3bowdOxYDAwOoq6vD1VdfDcuy/qq+I5EIpk6dio8++ggPPvggrrjiCvzxj3/EvHnzkj7/5/brBRdcgD/+8Y/44he/iMWLF+Mf/uEfAIAFhq997WvYsWMHfvzjH2PkyJE4cuQIduzYgQ8//PCvWhMffPDBh88ECB988OFzA08++aQAIJqamvizG2+8UQAQzz77rPHsl770JTFq1Cj+//XXXxcAxNChQ0Vvby9/fuzYMXHWWWeJ6dOnG20OGzYsof+7775beMlOOBwWN9544yeeSzweF1u2bBFf//rXxTnnnCMsyxIVFRVi2bJl4oMPPviL2qisrBQAEn4WLFgghBDigQceELZtG/gSQojVq1cLAOLFF1887tii0ahYsWKFCAQC4qOPPuLvZs2alRQ3W7ZsEQDEli1bjM8J708++SR/Rmv2n//5n8azq1atEgDE7373O+PzpqYmAUA89thjJ8RHW1ubACDuv/9+IYQQLS0tAoDYu3evEEKI888/X/zyl78UQghRVVVltPlJ+q6srBSVlZX8/69+9SsBQKxfv9549+tf//px5/7n9uv7778vAIi77747YZ6ZmZnijjvuOCEufPDBBx8+r+C7Ffnggw+wLAuzZ882PsvJycGhQ4cSnp0zZw7S0tL4/6ysLMyePRvV1dWIx+MnfawEtm1jypQpWLZsGd555x28+OKLuOyyy3DXXXfhggsuwM9//vO/qJ3LL78cTU1Nxs+PfvQjAMAf/vAHZGdnY8KECYjFYvxz1VVXJbgAtba24pprrsHZZ5+NQCCAUCiEhQsXIh6PnzT3p6985SvG/3/4wx9wxhlnYPbs2cZ4J0yYgCFDhvzZzD05OTk4++yz+bmtW7diyJAhHIRcUVGBLVu28HeAG2/w1/RdVVWFrKwsfPGLXzQ+nz9/ftLnP8l+TQZFRUV46qmncN9996G+vt5w/fLBBx98+LyD71bkgw8+ICMjw2D4ASA1NRV9fX0Jzw4ZMiTpZwMDA+ju7sbgwYNP2jiPB/39/Th69CiOHDmCvr4+pKWlIRwO/0XvUtxEMnj33XfxyiuvIBQKJf3+gw8+AAC88cYbmDx5MkaNGoVHHnkEl156KdLS0tDY2IjbbrsNvb29n25iJ4CMjIwEF6x3330XR44cQUpKygnHezywLAuVlZXYsGEDotEotmzZgsrKSv6+srIS99xzD4QQ2LJlC4YMGYLRo0f/1X1/+OGHOP/88xM+T/YZ8Mn2azJ45plncN999+E//uM/8IMf/ACZmZn48pe/jJ/85CdJ97cPPvjgw+cJfOHABx98+ERw+PDhpJ+lpKRw/vm0tDQjmJngzzGnnwT6+vrw4osv4plnnsEf/vAHxONxzJw5E//1X/+Fq6+++oS+9X8pnHPOOUhPT+eYgWTfA8Bzzz2HSCSCNWvWYNiwYfx9W1vbX9wXMbtevB0PZ3pgtz6es88+G3/84x+TvpOVlfVnxzF16lSsWbMGDQ0N2LZtGx544AH+rrKyEh988AFaWlpQX1+PL3/5y/8jfZ999tlobGxM+DzZXvufgHPOOQcPP/wwHn74Ybzxxht44YUX8O1vfxvvvffeccfvgw8++PB5AV848MEHHz4RrFmzBj/96U+Zme3q6sLatWsxefJkBAIBAMCll16K9957D++++y5rfwcGBrBhw4aE9lJTUz+RZn3Dhg14+umn8fzzz6OnpwdTpkzBo48+iq985Sv/41aLq6++Gvfffz/OPvtsDB8+/LjPEaOemprKnwkh8MQTTyQ8e7z5UnannTt34qqrruLPX3jhhU803t/+9reIx+NGrYJPAuQm9POf/xxHjx41sgqNGzcOZ599Nh544AH09fUZKUz/mr4rKyvx7LPPYv369Zg5cyZ//tvf/vZTzQFw1+LP7a1LLrkE3/jGN/Dyyy+jpqbmU/fngw8++PBZAV848MEHHz4RBAIBfOELX8Cdd94Jx3Hw4IMP4tixY1xwCgDmzZuHH/7wh/jqV7+Kf/mXf0FfXx9+8YtfJI1JGD9+PLZu3Yq1a9figgsuQFZWllFoywtLlizBeeedhx/96EeYN2/eSXUDueOOO/C73/0OFRUV+Od//mfk5OTAcRy88cYb2LhxI775zW+iuLgYX/jCF5CSkoL58+fjX//1X9HX14df//rX+Pjjj5POd82aNfj1r3+N/Px82LaNgoICDBkyBNOnT8cDDzyAM888E8OGDcPLL7+MNWvW/MXj/epXv4qVK1fiS1/6Em6//XYUFRUhFArhrbfewpYtW3Dttdca2v5kMG7cOJx33nn4/e9/j3PPPRdjxozh7yzLQkVFBWda0oWDv6bvG2+8ET//+c9xww034L777sMVV1yB9evXszBp2588PC4rKwvDhg3D888/jyuvvBJnnXUWzjnnHJx55pmYOnUq/u7v/g6jR49GVlYWmpqa8Mc//vETV3r2wQcffPhMwqmOiPbBBx/+dnC8bEXhcDjhWW9mIcqa8+CDD4p7771XXHTRRSIlJUXk5eWJDRs2JLz/4osvigkTJoj09HRx2WWXiV/+8pdJsxW1tbWJ8vJykZGRIQAYWWySwdtvv/0JZ318qKysFOPGjTvhM93d3eL73/++GDVqlEhJSRGDBw8W48ePF//8z/8sDh8+zM+tXbtW5ObmirS0NHHhhReKf/mXfxHr169PyED00Ucfiblz54ozzjhDWJZl4OOdd94Rc+fOFWeddZYYPHiwuOGGG0Rzc3PSjD3J1kwIIaLRqPjZz37GY8nMzBSjR48WX//618WBAwf+Irxcf/31AoCYO3duwncPP/ywACAuvPDCT923N1uREEK88cYbYs6cOSIzM1NkZWWJr3zlK+LFF18UAMTzzz//Z+eebG9t2rRJ5OXlidTUVAFA3HjjjaKvr08sWbJE5OTkiEGDBon09HQxatQocffdd4tIJPIX4ccHH3zw4bMMlhBCnBKpxAcffPhfBQcPHsTw4cPx05/+FN/61rdO9XB8+BzA/fffj+9///t44403PnUNCx988MEHHz4Z+G5FPvjggw8+nHL45S9/CQAYPXo0otEoNm/ejF/84he44YYbfMHABx988OFvCL5w4IMPPvjgwymHjIwM/PznP8fBgwfR39+PSy65BHfddRe+//3vn+qh+eCDDz58rsB3K/LBBx988MEHH3zwwQcfAAB+hWQffPDBBx988MEHH3zwAYAvHPjggw8++OCDDz744IMPCnzhwAcffPDBBx988MEHH3wA4AsHPvjggw8++OCDDz744IMCXzjwwQcffPDBBx988MEHHwB8hoWDxx57DMOHD0daWhry8/Oxbdu2Uz2k/1VQXV2N2bNnY+jQobAsC88995zxvRAC99xzD4YOHYr09HRMmTIFu3btMp7p7+/H0qVLcc455yAcDuOaa67BW2+9ZTzz8ccf42tf+xoGDx6MwYMH42tf+xqOHDlykmd3+sIDDzyAwsJCZGVl4bzzzsN1112Hffv2Gc/4uD858Otf/xo5OTkYNGgQBg0ahNLSUqxfv56/9/H+t4MHHngAlmXhjjvu4M98/J8cuOeee2BZlvEzZMgQ/t7H+8mFP/3pT7jhhhtw9tlnIyMjAxMmTEBLSwt/7+Pfh1MCp6o088mE3/72tyIUCoknnnhC7N69W9x+++0iHA6LQ4cOneqh/a+BF198UXzve98Tv/vd7wQA8fvf/974/t///d9FVlaW+N3vfic6OjrEvHnzxAUXXCCOHTvGzyxZskRceOGF4qWXXhI7duwQU6dOFbm5uSIWi/EzX/ziF0V2draora0VtbW1Ijs7W1x99dV/q2mednDVVVeJJ598UnR2doq2tjYxa9Yscckll4ju7m5+xsf9yYEXXnhBrFu3Tuzbt0/s27dPfPe73xWhUEh0dnYKIXy8/62gsbFRXHrppSInJ0fcfvvt/LmP/5MDd999txg3bpx45513+Oe9997j7328nzz46KOPxLBhw8SiRYtEQ0ODeP3118WmTZvEK6+8ws/4+PfhVMBnUjgoKioSS5YsMT4bPXq0+Pa3v32KRvS/G7zCgeM4YsiQIeLf//3f+bO+vj4xePBgsWzZMiGEEEeOHBGhUEj89re/5Wf+9Kc/Cdu2xR//+EchhBC7d+8WAER9fT0/U1dXJwCIvXv3nuRZ/e+A9957TwAQVVVVQggf939rOPPMM8V//Md/+Hj/G0FXV5cYMWKEeOmll0RlZSULBz7+Tx7cfffdIjc3N+l3Pt5PLtx1111i0qRJx/3ex78Ppwo+c25FAwMDaGlpwYwZM4zPZ8yYgdra2lM0qs8WvP766zh8+LCB49TUVFRWVjKOW1paEI1GjWeGDh2K7Oxsfqaurg6DBw9GcXExP1NSUoLBgwf7a6Xg6NGjAICzzjoLgI/7vxXE43H89re/RSQSQWlpqY/3vxHcdtttmDVrFqZPn2587uP/5MKBAwcwdOhQDB8+HF/96lfx2muvAfDxfrLhhRdeQEFBAf7P//k/OO+885CXl4cnnniCv/fx78Opgs+ccPDBBx8gHo/j/PPPNz4///zzcfjw4VM0qs8WEB5PhOPDhw8jJSUFZ5555gmfOe+88xLaP++88/y1gvQ1vfPOOzFp0iRkZ2cD8HF/sqGjowOZmZlITU3FkiVL8Pvf/x5jx4718f43gN/+9rfYsWMHHnjggYTvfPyfPCguLsaKFSuwYcMGPPHEEzh8+DDKysrw4Ycf+ng/yfDaa6/h17/+NUaMGIENGzZgyZIl+Kd/+iesWLECgL/vfTh1EDzVAzhZYFmW8b8QIuEzH/46+DQ49j6T7Hl/rSR84xvfwM6dO7F9+/aE73zcnxwYNWoU2tracOTIEfzud7/DjTfeiKqqKv7ex/vJgTfffBO33347Nm7ciLS0tOM+5+P/fx5mzpzJf48fPx6lpaW4/PLL8Zvf/AYlJSUAfLyfLHAcBwUFBbj//vsBAHl5edi1axd+/etfY+HChfycj38f/tbwmbMcnHPOOQgEAgnS8HvvvZcgffvw6YAyWZwIx0OGDMHAwAA+/vjjEz7z7rvvJrT//vvvf+7XaunSpXjhhRewZcsWXHTRRfy5j/uTCykpKbjiiitQUFCABx54ALm5uXjkkUd8vJ9kaGlpwXvvvYf8/HwEg0EEg0FUVVXhF7/4BYLBIOPGx//Jh3A4jPHjx+PAgQP+vj/JcMEFF2Ds2LHGZ2PGjMEbb7wBwKf3Ppw6+MwJBykpKcjPz8dLL71kfP7SSy+hrKzsFI3qswXDhw/HkCFDDBwPDAygqqqKcZyfn49QKGQ8884776Czs5OfKS0txdGjR9HY2MjPNDQ04OjRo5/btRJC4Bvf+AbWrFmDzZs3Y/jw4cb3Pu7/tiCEQH9/v4/3kwxXXnklOjo60NbWxj8FBQVYsGAB2tracNlll/n4/xtBf38/9uzZgwsuuMDf9ycZysvLE1JV79+/H8OGDQPg03sfTiH8LaOf/1ZAqUyXL18udu/eLe644w4RDofFwYMHT/XQ/tdAV1eXaG1tFa2trQKAeOihh0Rrayung/33f/93MXjwYLFmzRrR0dEh5s+fnzS92kUXXSQ2bdokduzYIaZNm5Y0vVpOTo6oq6sTdXV1Yvz48Z/r9Gr/+I//KAYPHiy2bt1qpBbs6enhZ3zcnxz4zne+I6qrq8Xrr78udu7cKb773e8K27bFxo0bhRA+3v/WoGcrEsLH/8mCb37zm2Lr1q3itddeE/X19eLqq68WWVlZfF/6eD950NjYKILBoPjxj38sDhw4IFauXCkyMjLE008/zc/4+PfhVMBnUjgQQohf/epXYtiwYSIlJUVMnDiRU0H68JfBli1bBICEnxtvvFEIIVOs3X333WLIkCEiNTVVVFRUiI6ODqON3t5e8Y1vfEOcddZZIj09XVx99dXijTfeMJ758MMPxYIFC0RWVpbIysoSCxYsEB9//PHfaJanHyTDOQDx5JNP8jM+7k8O/P3f/z3TjHPPPVdceeWVLBgI4eP9bw1e4cDH/8kBypsfCoXE0KFDxZw5c8SuXbv4ex/vJxfWrl0rsrOzRWpqqhg9erR4/PHHje99/PtwKsASQohTY7PwwQcffPDBBx988MEHH04n+MzFHPjggw8++OCDDz744IMPnw584cAHH3zwwQcffPDBBx98AOALBz744IMPPvjggw8++OCDAl848MEHH3zwwQcffPDBBx8A+MKBDz744IMPPvjggw8++KDAFw588MEHH3zwwQcffPDBBwC+cOCDDz744IMPPvjggw8+KPjMCgf9/f2455570N/ff6qH8rkDH/enDnzcnzrwcX/qwMf9qQMf96cOfNz7cLLgtC+C9thjj+GnP/0p3nnnHYwbNw4PP/wwJk+e/GffO3bsGAYPHoyjR49i0KBBf4OR+kDg4/7UgY/7Uwc+7k8d+Lg/deDj/tSBj3sfThac1paDZ555BnfccQe+973vobW1FZMnT8bMmTPxxhtvnOqh+eCDDz744IMPPvjgw2cOTmvh4KGHHsLixYvxD//wDxgzZgwefvhhXHzxxfj1r399qofmgw8++OCDDz744IMPnzkInuoBHA8GBgbQ0tKCb3/728bnM2bMQG1tbcLz/f39ht/dkSNHAABHjx49qeP0IRGOHTtm/Pbhbwc+7k8d+Lg/deDj/tSBj/tTB38L3Ash0NXVhaFDh8K2Ty99cl9fHwYGBj7VuykpKUhLS/sfHtFnB05b4eCDDz5APB7H+eefb3x+/vnn4/DhwwnPP/DAA7j33nsTPr/kkktO2hh9ODFcfPHFp3oIn1vwcX/qwMf9qQMf96cOfNyfOvhb4P7NN9/ERRdddNL7+Uuhr68Pw4dl4vB78U/1/pAhQ/D666/7AsJx4LQVDggsyzL+F0IkfAYA3/nOd3DnnXfy/0ePHsUll1yCix75V5xzYQwfvD0YsADELcAWgGNhflE9jkQzkBaI4vndOfyu0x/EFZcexps1FyN6Wa/7eSwACGDa2D3Y3DEWCAggasPOiMrve4OABdhpMTgDAdgpcTj9QSBuwc6IwokGYIfkZ3ZqDE5vEHa69mw0AMQs2OkxiGMpuOiK93D5oA9Q/coVsv2+IGbmdmDDvjFyLANSirdiFqxBA7hkyEc4ePA85Ix8A51vDOV+8FEqcFY/zjmrGwPrz8GRiXK8dijO7cKCfFbBBecexTvvD3bH3BPifi5eZaPwRztgWwLPthTKttLcd2leOj4J73ZaDP+avwH/vu1q2L02cHY/Pz9z9G7EnABe2j/KfbcnJHHn+Q0AOcP+hLZXLgH6bSAoGO8Fow6iec9w2GkxFF12CPV7L5Nrr3DLc+sLGuOmsdqpMTiRkNwnQcFr9uzUZbh+2y1yvgEHTl8QXy+uwuOtk2HZTsLcnZ4QEHLk+9EA4FiAJTA7px1rWycAQu0L6lPNreKKV7B1zyheHx0XCDoIHAsinhU33uF1FOB2ec9G5bydvqCcTzCOsstfQ+2rl+HSCz7EwXfOlnsXkHiyINcqFIf4OBXWmWYmDCcaQMXo/dj+6uXc/7NlT2DuplslztR+uDm3Bv+3qULu05Dg/eX0BfGDSS/gx81fMtvtC6Js3AF82BfGgT+dh8dKVuLW+gUY+cN38cW1u/CL1mncvx2K87nRzx4AWP02rMEDmDuuFc82F8q5a3gy9tVAAFYkyHPU2+R2QwJ3Fm3EwzuuNPE9EJC41s6NgZtICHZYPiuOpCA393W07b4USHEAR75Hc9H3nzVgw8oawNiLD6Nz/0WABayc+ji+9uI/4oEZq3DX1nmww1G5nraA3R0Ezurn9bf6ArDO7MePC5/D95quY9zaaTH8uPA5fKd+DuyAw31ePvR9vPr2uai44hVUv3KFbEftBatP4lI/GxOHv4mg5aB+z+VyrVOT4JdoD8HHqQDhmHCv00tFX0RGHHbQXVM6S2fUpuFIWR+cviAmjDqEnYcuhBMLwA7GjfOi090p4/Yy7QQApzsEOzMKcTQFIiOOgpGSThSMeR07Xr+Y18sZkGfVToslzGPkRe9hf8fFPBcdt17Q99Lcca14tq1Ark9PANYZA7xfiC453SHp6GsJ2Okx3DqhGr+smybvg64UWFkD7vx6g0BAyL9V/05/ELCEe88JwIrasKKWpLNqf9jpMThxm/cA70F1Txh3lzBpuziWAmtQoqaWx6CfD0WvELdcmtgfRMmYV9H42jCJ54DgcUy6/FVsf/Vyt6+uFIigY94l2lyN/aXh/PwLjuDdd87AhBFvoG3PpbzX9HaKLjuE+v2XwQ7GE/Yu9W1lDUAIC6I36NLxHnkv3FhYgxXbJ0OEFL2jOWtn/rILPsArb52n1sKC1WvDOmNAtqHW2OkJwYpbcm2PQ6MYl4DkOWIW96HTj8su+ACvvXOOiQ8NT040YPIr6jxMHP4mdrwuhQs6U05vEBDyvnLivXj7zn9HVlZWAr5PJQwMDODwe3G83jIMg7I+mUXjWJeD4fmHMDAw4AsHx4HTNlvRwMAAMjIy8P/+3//Dl7/8Zf789ttvR1tbG6qqqk74PkXxX/TLe2BnpMlDEdYOXiSEKRP2oPqAvDzKr3gVNa9cjlljOjEx8xDu3X4N7NS4JNgW+NIYc9nb2PfW+SYTqBNsKOLbEwRsl7A6XSHYWVH3AupVF3uqJO6IW5JQpsX4mXGXvIOOPZcAlsDknH2oeeVyHjtCDhCzAAu4Nr8VzzdMlO9nuO8zoXo/FU5WHHZaDHOzW1H33nC8+dbZBhM0fdRebNo3Gk5/AHZq3OxHQF6Wal7n1gbx/pQB2EF1ufQEZb/qN+NYzZn/7w3KsTZNlB9Yarx9QUwZvxdbd47mC0+HmaN3Y11LrsQXMblq7gg6sPoCECHHGIPTH3DH3CcvTZ4XPdMXBByYY1brKj5OgXWmvIz1veP0yUvZ6g3wJenEbCBmy4s5pj1L66Bw6kRCWFxWjeU1FbAz5R6YPbENH/RnouG1S93nu0Moz92PPU+NwZHJfcaFw+NUDBzvr+MwKLnD3kL7oYsQeCsN0bNjzEAT4yDS4/LS0/YMQpJ5RdCBdSwEBEUCQzBnXBvW7Jpgjona6AvC6rchUuTeuW/KGmz6eCyqD1zB4xRHUgDHgnVWP783beR+bNo5VjEZ8nKyw1GM+rej2PPNc3j9AeC2vCr8qrUSAOR7reNk3z1BWDFbMhVqXZ1ISK5zllyLhYV1mJm1E/M3/COQ4sizGwlh6aRN+FVrpbHvac98t2A97qu52t1DHnx7mQ8viGMpEKlxwLFQOPY1tLyeaNGkNbX6bIhUB1Ny9mJrx2hjnY1n4xqT0B+QX8TsxL2iaJG+1wcN6sWRd7Pc80FKk5gl8ZRMcCZhJCURB05EMjnCFkBAYNil7+NrF9fj/uaZcv5HUwAHEKlqbwGwMzXaQPSxPyCFGxJIFF4zm9Mxb/HLWN5ehmkj92Pz/pHuu4qZhwNmaHQ6+JPi3+Fb1dfLc6z6vPj8j3Ho1fNwV+U6PFg9C3Y4ynta31tOr8KzNlZxJAWPzvwN/qluvrFPWdnTE8T8ogY805kv95Il3Og+S8DqV/Qq3T27105sxQv1+fjpF1bhzehZqD9yGRp2Xy7PQq88T9YZA3B6g5iVtxPr946Vax6TDU+bsBtbD4xIoMGEW6RKJn1azh5sPTDC2EMISBbA6gnAOit5SkwnEuK/vfvreMBzF9o+1QRCunPpWe+9uGrS45i34TYg6GDQrhQcGx3lO7X4soOobx0Ja/AARl30Lva8OlTSWFoDRXPvKtgAAHiw+Sq5VoBxTyzJq8ZjNdMYZ1cMfR/7X71A3nkWEs50MuGIPnN6g5KmBgTTIjsjhumj9mJja3bCuogjKXJNvfdkj7xj4FgYcvFHOHzwbHk2hWXQQG7no1ReNycSQun4A6jbc7nEB/EmkRCmTdiNzW1jXYXFsRRMzd/l7oeBANM8fb2daA/e+sY9p11GJOLx3tv36YSD80YdOu3mdDrB6eVApkFKSgry8/Px0ksvGZ+/9NJLKCsr+2SNKfGHNnzhZYcAS6D6wBWSSQGwbecoON0hrN0xAfduvY6ZAEAjhgLYs/9C+RkR9t4ga29IKwNIAmSnyYvXiYRgCUsSC8UsSs1hXBKGtJi8uD2X8a43LpB9Cws1r1zOxA0CmDZur+wjPYa1u8fDzopKohcNYG5RE8THKUxsRUjIixPA6s48/Om9M/iCdvoDcHqC2NiarZgo9bliVEpHvyqJkmPJS8YGui+S/y/MaQAA3Fq+WRIhdSE7PUHJOGRF3TErWLt7vJyTA8zOb5PfO0CKLRnXRQW1yLv0TTiREAovOwSnO4T1e6WVhrRrdloMFjEYqXHJSFhqfYX7OV3UEr8WHi9bAScSwpyCFh7PnZM2yvFGQkpbolAcEvJ/x2OlciT+v1pW5+4PpR2bPn4PYAtXSAyb85+ZvxPL6yYzo2Gnx7C2OQ91na52c/74ZkAAda8Ox5HJfcgfLjNz6e04XXTpwv1Ora9B1LtCaN13KQAgen7UvVQEML+wQV5ycYvHyr8t+czM7F1JBQMAWN2aD3EkBfPHNzP+ACk0QEhrlp0eAwICP9g4VwoG2tisMwYgUhyeFzP4JBxnxHhM+344WJ0Dt39m3iIhbGodBwSEOoPSukUMAABYccnwiqMpsFPjWFFbjgU1/yAvfxJEHdmm0x9Q+9MCYrbENYD7tl7DgrwTCfHZJpiWs0d+12fud6cniJmjd/Ola6fHDMHAGQjw33aapBkiVTKO1QeukHtXrZE4muLurbQY7qpYJ7WBkG1fn99sKkC6Q5g9tgN3TX5R7g9F7Z3+AI58kOkqMWgPpMf4zM6Z2AInEoL4KNWdjAAzGjQG/buvlDZiQWkd7PQYDh08F/c3z4TTG0ThZYdgDR7AF0vb3blmRo19w4qT1DhEwF1o2rPdBb1Y3l4GpzeITW1j5Tz6XHpop8Uwv6iB6SUALC6rBgB8a/NXJe4zXabo0KFzYWdG8WD1LN5XqxsL4fQH8GjdlXC6Q4qeAA9e+QyKLzsIJxJC8FAarDMG8I1NCxUjayy3XOuAwKrGYknbaTxxy11HdXadgQDTp7W7x8MaNIBvbZmHR2q+gKbXhhntiqDA3OxW2OkxKRj0BOWcwlHY4Sg2K5xAWLhq9B73rH2YCljAmMvehp0ew+bWseZ+C0el8JMWcxlMdW5or+m0Z3ZBa8IeF0dT+DOnS+Lttrwq14oBuRf5jkyLYdaYTnmnRd3973SF+F4EgPnbb4EdjmJWbge6hylhX61Vw2uXwho8gH8regF7Xh3q0n26f1PjEHEbDzZfhQebr8JPin+nLKqyb0DSqmWtFUDcYny98va5Ln7SY+b4eoKuQqhb3XMKN+JYCuz0mPt9nyukbdo3OlFgi4RY2LOzopib3aoh1GJacfiNs3Dv1DW4a/KLWFxWrVml3b6ts/ox5uLDEEfknd/w2qXyPuwOMb7scFQKAZbg9/9pygYpUKq55488yIKBHY5idoEck1dZd7qBA/Gpfnw4MZy2lgNApjL92te+hmXLlqG0tBSPP/44nnjiCezatQvDhg074bskVV7y+A8w5JIBvPfBIBRfdhB1u69gBgRI1ILoWuVkWlnXfOpK92TG1bXL08bv4YM3OXcva0iOB9NG7semjjFSE0Smw0zP2DzWCsQsQytzPNCtAZlZfTh2OEsSiaBgqwACAnkjDqH90EWutmEgAPTbmFHQgY3t2ax5FEdSINLjsu80VwuzMKcBTzWXuZpFDcdOr9L2BzyapL4gCsdITSprj9iVSbp0kNkdQKIbRiQk27QE8kcdROvBi1n7RJaDwssOoem1Ycgf/gYuTv8Yz+3ONfCTP/wNZth07R+CArNyOrCuJRf5416TbZMVgLR2KQ4wkFxbm3Ah9AVRPPZVvviPp20eceF72HdgqKv51i1SSoAhQRBRy9CWMk4EpJZJt4p49mzeqINo3T3ctUI5Fspz96Pu1eEJY6oY8Qpb2ZihDAnDTe941g12ZaD17ZFCF+3vZJYRY30F5F6NJ+nD4wZE78zKb8e6HTkJa2A81x1CfvZraNl/KXKveBMdbwx1z38ybR4gXX7OGJDjCpJEprtNqP3RE8Sikhrs6z6faY6BF2LWNYuWPn5D0+poVkW1/tNyFX2J2a4FT7f+BITbh6a0SIYDYtQREq6rISsiJM6t91IhzuvnPWSnxjFlxAFX69gjNcL5Y15Hy57hss/eAJzMGOzUOCpGvIKtbWPc8WkaUDprZKFLZnFLtj/oczrfOtyQ04gVDWVuH10hTJu4m2nyFSPewWtvn+Ouh9pbusXRiyMASDmQjr6Lo4bFxLAaqDGXXv46aptHwTrTFazJ8sLaWa/1R6313KImtsoRnTHw0aXWV1mDEBTIveJNZIb6UbNrhLnXuqTlm5Urqg+71wbOca12ZDmeMuIANneMMdugfpXFls8tfa7RJJqH16rObam15vvFFrx/kz6v7lv7nTQ4F/S5eAo5QH/A3Ee61ZvuaXUWkllVRdyG6AuYArW25wAAIQdzJuzAc7tzTTdGZY2WLsOua7A4lgKR4iT0Z9wxmiKx+LKDqOsYkbC/x13yDna9cYFcf9WHF/ie077XcaCPxVgTnZ/RP/f0ReN0+vrw1tK7TzstO/F4b++76FNZDoaOeuu0m9PpBKet5QAA5s2bh4cffhj/9m//hgkTJqC6uhovvvjinxUMdHB6gzj8pzPhdIekRK20NxCuYOBEQlLjCc3FxBYQH0urAl/K9DcxvUq6t9NiUmNMBMWBvISU5mhb+2ipmdZ+ACkQkOVi8/6RSkMPl+FSY3MiIakF0CFqm0y2apPcC8SxFPfzmA2nNwinP4DurjT5jg3AsTAzt5M1gu2HZLDRzJxOtoggIKTmIy3GloHQEVsSoLjFZncAWLGzGF7LA1/2SivJJnjNCnJOagRXjd7jChFKk2NnxGCH4pieu9vV2CoXGNLowlKEX1hoPSj9JmdPbDMsBw27L4fTH0DL65dgTVOBHJ/ScN2Q0+gSbTVO2gd2ShzrWnNgh6No2Tuc8e70alq7UJzH7XTLcY266F3WZAFSoCFtc9Nrw9i6AqGtr6ZF3ffKULZuBN5MU3EEiklJj8FSrgTlo19hlzdDMCAGJEPuW4PRU64tdloMrZ3D2ScYQl76NR0j4AwEMP6St419tbVtjLvvM2Iu46wEA68i5geF62CnxbCgsB5wLNfFgCAoeO8z/jQcOJEQbsqtAyyBcWPedJk3jyUKUZOEkRVlXUsu7IwYbshpdL8jbV9vkIWOlj3D5d7fM4zPmNMT5Pk5kRBbxSAs9hW3w1G5B1LjmD2xjfuYPn4P/71iZzHqdms+7x5XMDstlmDClw+6zLmdLrW7bFFJl+MgJtcOOnIvK4sHzYHOK53N2WM7DBrhDKg9SQoIYblnqzeIabl7AGFhTmGzfOfcAZeJV7FOpK12uqTFzk6PoWXXZS6jeHY/Mypb28YALg/o7gm4Zw2OxNHk3L1sRSi9/HV2VSM66PQqy6TaDw2dlydos5/eWcRzJ19+xlk4itfePgdOV0ha6nShM2a751LtFUuzHg6M6HUZq36XsVxSupXnNXP0btS2jIJIEbzXyEJgp8Rd9xeluadnaK1XNxRyf9fnN+P6YrmHDWu2skzbGdIq2r73EtR0jnDvNyh6lhWFNWBjzIg/sWXYDkeBc5T7kDqTm/aNdtfUkffHVaP3cL9Ev2ALiGMprksS7VGdeRUu3YBj4ba8KiOOBY6F2WM7YKfEkZ7lusPMy25hy5QTCeHuwrVyT0RCcC7oc7XrAu6aOZb0BFBrN33UXgBA8dhX5djo7Gj3J1m8hfLd53Ov8MNuiMqKuqapQO43EgyUtd9OjbvzJquQRxAh2t/y+iVshSOaKI6moOG1S/mOdHqCmDZyPwCg44AW+OtY7hjJmqOsLBAWxoz8k9xDXSHDCkJWGvFRqvy8R95RfC76gsZazcjZBQgLU0YcUPiUCqMp4/bidIa4EJ/qx4cTw2ktHADArbfeioMHD6K/vx8tLS2oqKj4RO9Pyt4viWpAGIwFm5iV+43Xf3r8FW/BHrCYCS0d90qiy0Cvy8wQg0BMrc5gLCipYyJMZmCnJ4jN+0eqACXVri1cpouYSzKxK42vro2fXdCaaAFxNNM1IJnnXpvN2mm706UAoQjs+tbxrhk+V6aI3bB3DAsnOtGfNnK/HL/uikJaXTX3WRN2SkafLj7N3YTcqmh+4qg0xa5vGy/HAbA/KuGr+LKDUnBSAXbOQACwBOYUN/PzsnOXoVq3J9sNsIXJhLEvaFYUsARW1JUzQ0TfzRnXhtljO+S481vYRE7MlKFVjIQkA5Ou/PltYM+BC12CHwm5jC25Lim8Em6JuV9SvoW1cGt25Mv2U5RWPiMGOzMqLzbFI9TsvsIVxiIheXmqQDdysyJmkvphporGkRrH3IJmw0fWTomj/ZWLzX0FGAIACXFLy16GHY7ikelPG4LvvZuvgxMJYWV9qXTrIXcltfb3Tv49u484PUF2QQKAKSMOwA5HsbxuMsrHH8ChdcN5HFaqpmWMhLCwtMb4f35RA+ysKO6cvAF3F67F0zuL3DPiscTZWe5a2uGoXNuMGOYWNrNrxpzCZjeeyHIVAPrvD/oz+e9NHWMMlwJyFaK/nV7JcBKNuPC8I/JdjbZYar3ZvYOsFjGJwEWl2wEAt0/eKC1pWVG2VtiZUWPNiIEKWXFe49Ixr0om1fuc+r207GVsbh8DAGxls8gypVy05IeSps4taXKRKpBUywlI9y7qY1Hp9gTGzFJC67bW0fh+5QtweoOoe3U4bshpRPAj1+WPFTJQfVnArAk7jb6cPokLp0sJQI45T/kPkGZHMW3CbiyduAUAkDf2dfdr5bYJoYSrPsmAsVCrxWY93jYJd0zczG4/FNSvuyWOv+RtzBnXxnSP3iWhAACv4bSR++H0BLG6Mw+rO/MgjqXwGBeU1eG6se2oGPEKC7k01pn5Lh44Buesfux763x5vxAdov1G94VSJvH6xSxs2DuG917x+FcYJyLosEIGUPEkCu4uXIuZEyXtpDPz6PbpxtrBEnihPh9OfwD9vSFMH7UXdjiKVXUlKj5GPpxiKeZb/f9scyHHeJSPfQVOTxALS2ukwkXRtQ/7wywwpu1Od+em3Gyc3iBW7Cxmtyy5MfWNI2mVnSX3Jil/2B1HJe/gs0mCn8cyR4oOVh6pdRDHUrCqo8CwnJP7j50RY5c5Gtulw96X32Wqs+JYEMdSMLekidvYc+BC5I0+yMo3QN6T1uABTBlxANZZ/fIMCAvzS+phh6Mov+JVthJQOxvbswFLYOuBEbgzfxPTEj2o34fPD5zWbkV/DZDJ6YbN81H9ei4Qs7GgpA6rOgoSA2fVRW/Fpb8yS94qQA82TOKdoTQRylRLgVWsnVDEJsEFgkzPui+7Mgsz8SQNsGbKJm3w9NzdRuAlafL1vpy+IBYXb8Pymgp2K9GDqq8b2441zfnczw05jVhRX2a6sDiaRiXkJLg9pO5Nx/QvN2FtUx63y3NU4y6+7CDqdo7gz3kumrl3YWmNZN400+YdEzfj4R3TEvAGmK4R3sCwMRcfxq69FzMDTAz5LRO24/G2SdLlqb48AWesNZnYgY07xpuWGAe4tngHnm+amLCW4lgKhArcNVwhPC4huquBMSd6vlsyRdagAWNN7XAUmTvS0T2xN+EdwrOOe8M8rK+hd68n+Y5+j7/kbelaE7MxZcx+bO0cxcGhCftMH4u6sAFwACL/Vu9MGXFAaiVt15VN398zJnaw9tLbV+CtNETPjGN63i4jEBWQMRohK84XPoQUIpdO3oQ3+s/C2t3juU0r6mr+k7mq/Ev+Rvy0ZQauGr1HCsga3nVGzw5LH+Fn64uYBvCzniB3L57ImoO45bp7aEkIyOXKWFuvG4569rsF63Ff3dVS46/Wf864NqxuLDTcd7416Y/42bYvyrFre2HpxC14dMdUY2+cKKj6eHSTx0kuGXpWoJCTICzcVbABDzZfZbaj3OBojN710YNveW8R7hTOF5duw5PtpW6b5FblQLpMKYFibnYrumJpxhonw/PssR1Yu3u8Mc/gwTQMnBN3mX8BQFhYOmkTHq25MgHHXrpguL5oLowJdKk7xBnYAPM+oP/nl9RjVUMJ75ul5S/j0e3TE2iY3a9ciKg/rZ/vFqznoPGEsapx3ZRbJ2OlaIwBgWsntuL5xonuOqc4mDGhEzmZb8m9JqyEM0PtXTe2XbrpaC6a1+a1MZ11+oJYVFSDp2onuZnTTrAvCfQ7wekNYuglH+LtQ2djafnLHKNkrLUGxl7TaCQAw8VQPwNXjd6DceE/IQCHg9qT3gPa37PGdGJtcx7scBSzxnSi3wliY/N4o32v2y0pxiiJBfEkNG7Cv50uXXtX7Cw2XeX0oHltjy+duAWP1HzB3RNJaLMcUx/euOVHp50LDvF4h/YO/VRuRcNGv33azel0gtPecvDXwlalAbPDUazqkC4lyTRbdjiKLxa180G2w0qrSEF8REzIbKsyGTiREAcL25lRLC6vNqwDunWBNa9EeGyB70z9g2uW1VxR7MwoZo7ezeOZmdeBzftHukRM08Lp7hZ2WgzL6yazJmLKiAPsQqVrrQme3ll0XH9GOzPq+pRq0D+6V6XiTBSAyL2qrmME7qzYgDsrNkiiRhcSmVwFsKKxDDfkNDIend4gHtp2lWuKV646MyZ0mowvgK9XbDYsQXveHCKtB1oQltMTxAfRTM333bS86JaMja3ZgC04WM1SWVu8goETCaFixCuwBg1gadnLuHXSywCAWflusCWvubL0JHMdYU1tZhQiIOQFROugtFTHxrj9Ls6tZc0rAEzL283MFOHTHYB7uSSsrQAWltYYDMm1Ba1weoLoeGOo7N4CtraPxuRx+6Vg0K006OEoMrP6XPwp16xFJTW8D+kSIo0UXUjnpHbz2MiFiaxydjiKTftGY2FOg/JdF1g6aRMAmUUrflEf7HAUm/eP5ABtglUdBXiqbpLJuAoZXExZseaPl1YmFgy6Nd98QllXCD9tmQEAzDRyUKq6THXB7NnmQqWRlmvC7ktKMNADBgH30qd9wQqENHfNyepoCAZKIzq/sIHbssPSgnRf1TUGLpxICKsbC3FzWZVy9QEQt1xmTT1D54EEA1aODNgJ7elwc2m18b/BhAKagCh/3Th5m+HaRufiga1XyyBWciXRrDZexpp+yI2Ps7YoVzvC+bTcPehzQpg2cj/mj2+WwZtZak/aMM7H6s48pNgelzNi4Ehn0xWS2m1lUaSzNnCeGxTL7njhKH7VWmmM39hb3a5LnW5tsNNjmD++GfOLGtz+bYEledUGc7Y4t9YN4CaNdGYUq5qK3XYzYnIMXmuQDdx05VbkXfqmaSVTz91XdQ1bSWfltxvuN7SPn2wvdQUDtaeeb85zUwcPHoCdHsOmfaPxUMt0dw0pVkajRU4khGOxdGlxHSNdfxCzsXb3eKalcICoCCTG3HW5LpjGHlGJAIQ6QyRgH35/MCAsPLpturGfDBDuXcDz1s96f4Czd101eo9hCVq/Yzx+VjUTD1bNMixvAHBzWZV8Pxow2v9Dw0Qey7o92dJlV3Nh1HkAwgWgWT0deS+RqxkAlOTt52QdPU6K8R4FzdvhKLtp0v59dMdUeUf1BJE/7jXAkmd8VoG7DxLcmU9DcCAQ/4Q/fkDyn4fPvOXgksd/gKHD+vH2QRl8Rkwy5dVfv3esPJSe9HdOXxChzAFEu6QJmAK2dHB6gphb2Iw1uyYkahs8WmDA1ZoDSNTwIQmjDUkQF5S5Fg9dOwZoKUj1QFXVtzia4qYEpD76bDgpjhuYqi5br0baMIl7NDeUGx8AbsqtM7R1uoaINW/UpoZjXgulEZuX3cKp/5LhgefgALdXbjQ1nkogWFS+XWpNvFptLaWsvnY6I2JYFvSgZIUjssBw8KZiUBaVbUePk4JnGwtN4Y7WlTQ+x5mXV8O0dNImPFp3JeAAV1xx2A2apIuZrExxr3YnMQDa24dxMdJaqEDS6wubsLozTzLyFx3BFy7cK9fjONrk6aP2YuOO8Zhb1ITVjYVYVKpw3x3CtUU7WKvoREK4tnAHa/CNcXWFcG3xDtbOssbUcvFnMKAq+4kVtV0LH7nPEe41fC8oqcPK+lIWZIxUwlrbc8a1wbYEz58+v25su4xREZrlS7fo6X7XauzTJ+7CpvaxoDgMOzMKEbdhUU55TUtO+F9SthXLaqbKM+kJuk5mNdPHcO7ZXXj3jbMY/wD4LAFSaHl6Z5HZd0BgzIg/Yc/+C909oLueEf1QAY2IWUBaXAbee2mafpbJIiqA6RNdKw/RKHEsBdeUtBx3vXUaQG0mgz/3/awxndK1MImF0EufARzXwjEvu0Uy4ADgyPiLrW9fgY/eGyRjXbz+5br1jgKBrcRxGlYNPZGAOou6FZn28aqOgoSzuCSvGt3xNLzVe6bMQpQkaJ+DoFXyCn0v81iIFmiWhVn57TJ9tCZ8JKw7pQf2WDHpezr33rO2ur4QlrCQk32QFRLcpjY+/f7ygp5i9qrRe7C+bbys56Ix2llDuhDpSkuYZ8JaCCTeT0RHyNJNv+kug8yGpd/F3nbtcJTTmBIOaU5zs1uxujMv6XsAGP9ey7BhZUqSCMJ75yTsL2VxS5rcQbcqR2Ta7Y+jGVjTPOq0thy8uncIsj6h5aCry8Hlow+fdnM6neAzbzlwukN4+62zDG0JMb3rWnIxL7sFcICFJbUuoQAAAcRjNhPLgO5vTEF/GTEpGETIt1symaQBZA2lFoh4W16V1PA1FLrj0TTdunbDiUiGhiweEBaW17oxF3PGtUnBoCeIKTl7AWFJ/3fV9zWlbspOOxyVwYVn90tmOSOGOUXkt+/OzQ1Q1DRM5Neuxhd35La5avQevN1/hhtQR0yXumiIIbQzNY2fGsu3KtYbhPaZznzclFvHTAbhMUHbYwOPbP+CiyPys86K4qn6cm6f8Ed4p79vyq2Tweear74TCWHFzuJElwkaL2v0FWOm/GDtzChW7CzG6s482BkxXF/c6NlncIWJ44FjMjuPbp/O/rwsGHSFMLugFXdWbMCtpZsBAczI7zDnmMTdA4CRnlU+6Grylk7cwoGkqzvzMHP0biwuq4YjgN/WlrrZMKBiRlS7t+VVSUFZyPSPEGDG1M6M4vnmPHcfWQLPN01kLfysMZ3umLPkszxWtZb6HAzcqbGSC9bismq2uBHe5xY3MS5ZMNDifxgN2sW4uqlACgbkR6xZ+3RtspyPua+M9baAM0I9LgNnS4uQpRUcoz3B882IYXCgR7bhCZCUD1kJwtmisu24IacRC3Ma8P6HMvMY4R+QZ4kCeLtjqca7JOjve+t8LCiu5/gHfR7MNBPzawGXXvRBglaT6Nv3K19waSDk/Mh3GgBeqpcFJkXIwfPNeTy/7xasZxw7kZBM/6ntOQLdWpSMydfpstMbxLo92e50SRmkWbHkYFyaJmxTaeH0yNiCVQ0lck6KYVrTko8jR8JuvIZuuDuWYqyTjGly8eREQka6St6PKth0XnYLBxfz2NS4V9aWMn71u+Gx7Vfi6Z1F2HpghKSBaa7Ge252q7TKqiBoVgBZ4OQblBSBGX+t/fV7xxp7wYv/mfk7mXtYMmmLQXPpmbW7x8vAY/2sNRYCAQEREGg/cDEH7NL9saC0zo2xUe6MPOf+AJwumahgYXEtn6MNe8cogdsdox2OsmAgFwhsuVuSV834XTppExaVbWerp+xYcNuz8ySu2PVPxa/cXFaF5bUVCbRWnwsAbOwcxzTK6QpBpDpwIiE821DkBhfr1hplPVrXkmvgfUFRvbEedC97GXyDXlHdD/pOnfNrJ7YeV7DW21leWyGDsXtCJ3z2VIMfkHxy4DMvHHhn6D2Iz3TmAzawor4MsAUzFzPzOjBokOvvvWHvGIMJuGPiZgDK5EsMiGIW+TnlYqMzp49um27kfwZcZsE4+NpvMpV6DzRltbAzYpxmsmbnSNlXQODC1I8N4kXBhWRipMw91C8VjLHDUc6WQxmXiOkHgDffPZNxsmHvGNxatjlhzEbwarcbdEf4/9nWmYxrABBHUvBke6kMhEqPSWZHC+I2fmuaEBKE9PE5ETfTjfdyW15bIYPPhVpDT30AQxBRGiWXodDWyqPJBSB90FUbt0zYzntvRl6nMQavEEjvLJ24JVHDDwA2MCTlGB7eMQ0BSCFLt2LR88R8GK4F6THTPK+ty6M7phoBvet25ODJ9lJ8/GGWZAzTY+wGoQuzj26XZnqYvKIhqIgjKXxG7LB0G7m+uFEybsJl+nUhWhceefza+hn7X1h4sr00Yd1WNxYmPJ/Un1sbsy78Mc7CUekX7VmjxWXVrjCfZM+s2TWBzyq5CBm4yTLn4PQEZa59wA0415hjQyuoxv1U3SSsqCvHU3WTuB1ACr7MnCiNNmfn6g5hblETPzvuknfQ75g+6IApjNlhVRsiHMUhZSmkueluB/c3z8RdFesAAEvKt7g4V+fyy+VNStNsYX5RA+PkvqprpCumoqF2RgyLimvMFKcAmjrNQlnUPwfQ61Y6clHsdi0Tdrr0m6c56bRUCvpu2/QZuyTBrZdg0LSI6zboREJucD0pNLq9dESwplinZ3amZOa8FhODbikLQ8K7Gh4A18rk9ATxbH0Rnt5Z5GYc8jDoBr30KLH09ee11HEfCWF9Sw4/t6xmqnueWaEkv8uwBxgXtAaz89v4vFPA7u2TN0oBsaNACq0RmUmOxjB4cA/IHW95bQUnGtCFQ76nkpwZK26xK86yVqlgs9NjeHT7dDxVN0laDz3vOZEQC5o0v3nZLYAFPFFbaQjU+h1H+8AASyUb0VxD3Sxu4Ex3upBN/RJeeFxdbtvXjW1P7M9xFYv8jvbe800TWUi6Y+Jm837Txm+Ho1g6aRO81aNPN3A+5Y8PJ4bPvnAg4FY6hmLuLE0bqjEpcCzOWrRh7xgcOyazHdjhKGtb5oxrw9yiJnTF0+BEQniitjJBA6BbFkhzpX9ObRIYF5MicJyyT313fZHLSDMQ4+G50O1wFNfmt+KxbVcy0Wf/aQXLayp4jNeNbYcdjuKBLVfzM2uaCiSjnmWOi8dMadEAPLZdBuLdlldlDM+JhDhbCL9LDFiWzBBFvpmUO/6hlulMuHRm3+kOuZYFjZlkbQ49pxg43cKSFM9ZUTy8YxoWltcoYU3w9wuLa9mn2dCoaoWbrhvb7gpt5DaU6ZpjH2+bxP1u2jfatM6oeS0p38LmeDscZVcpqf3RORHpg+tEQgl+xTrDQsKJjgv6233eMn4bLidwL3AvfKtyPf/NzKElXAZHG4sTkQV+Ht4xzVjDZxuKGE/MPPYEcXvFRrddbdzJtFujLnrX/CDJhcY40FOThrUYB5X5w/s8Wf8AmFpe7Znl2ysSfKGpb3dMrlXKzowinNWXODeOj7CM98mCpbd3y4TthlWFmE0A7NMMAKm2R4jWxr1k0hY3d35vELveuACDg70uY8lFvyxj34iMOG7Lq4LldS/JjBoWkAerpICzbPtUKRgDfNbXNBWYFhZym1H7KCPgprN8qm6Su7c8eIAlMC+7xT3zSnAn2kz9LSytcbO7qM/Y9bHbnSOvh2cPEU4W59ai9PLXWQjVkzYYZ1QAlC2N5kn3DGlyDcue2pfzslskndPwotNZOz3mCvxeXEDSWzpL9Dw9C0sqdjbsHWO8t6Ckzjwvah1vyq1TFsvEc+cVkGEJzC7QtM8BYQgaTrfrwvdMZz7TzeW1FYAAQpZUONhpMVwy5CMAUlFB+2GlCrK24QpER49mwE6P4c6KDe7Yw4rZtpIL0zr809QN0sKbhHm3w1FDqZBMSQHILGHPdOYbAj8LoplRYz9x2yo9sOH2GI4aeKb/F5bXmOtPApSHdtlZUb4LdYUf4Z/+53bUWfFaT6NOkJN/iGMppqItHMUdEzfLwpCnu+XgU8QcxP2Ygz8Ln33hAOB8vgR2hiybvmbXBEVIhdRy0oXrCcJxIiFEhawfsLq+EGt2TcATtZW4tnCHJGLpMSworneZYOEhPpq5nVKK0WHn57tDhuvGkklbjOwk5A9N/4tjKQmaHQrivCGnUVYiJqY1zQxynDWm00h5SNpFAJivtDbXFu7Az6pmun12u5oj6tPOjHJFX0BqlOn5OQUtfDHqwNou9dwTdRUGzqkfEjgAyHUJCENTTGOlNVtYWsMEly4hbwwAta+3saKuHBAWFpdu42dW1JUzESZ886Wn9sua5nxDw2cwkB7BhDSc1xc3utqhcNQQIJhJ6wrJlLL62LNci9TiXOn+5vQFTYYRMAO/j3MJGkIH3JzfN5dV4fqiJhYaIWBoEn+2dSb/vTi3Vvr+q+wx+iWkW5qciMwjT/OVmms1394gM03ewFjaZ8z0afPZ99b5HoYRfFFCuIHBhmAkLGZYdFzpgrj7hTAEGR3scFRqmdVZZY2yNmZ9rIB8tuvjDOMZFip1hhkwxnLn5A3cP+0T1pJqro/8Xk8QUSfI59c79sfbJrmMsMqg9WR7KTh1I9EDSxjzsHoDnOnFUGDoyhYVYD43uxV2prmv9TnOy27BqoYSHrvTE8Ti8mrGEzNMFnD7pJfcddF88L34ZcaOaHdvkAVeOhsLcxowN7sVTm8QD0z7fwmMmeHKpmXZeqK2Ej0xtY+L611FUrop2Om0gmD++GaXobdMYZ36W9VQgmWtFe53mi87aYT1FLQ8R9UOW/BoD+jJLygegFLwEn0Rlmup0RjIVDvKZ1Lvg3BE+4rckAzXLVUIk9Y/WbY+6Voj576mxbWSHHzzXHcOXaaih9xEdeXXQ9vcLFeAnKOdEUtwvSO6RmN5pGoGC1rJgmyTKRgMhYnluk5SDQSiOfp8WRj07FG2/GiKJDk+2txgawivTY9rCbq9cqNxdy2vcV2ayA2X2ifBDIBBo7x33xM1lcyHiPQ4JyEhfuShbVcpofj0thzExaf78eHE8LkQDmAJWMLiAilObxABCCaodkYMD9XMMLRiugbVDkfxfKM0xelBjWt3j08w+wGJEjq1wSBgHGASGsjdBZCX+XVj2w1Nj96OsAVKL38dTk8QpZe/DkBmaHF6g1hRW24wWs5AAHdO3sAERCfsJGTQ3J7pzDc05XY4yqZUJlYxG4WXHcINOY1YWV/Kl59kniRe1zTnY+bo3bi9YiO7JrjrAXyn8g8GobK0DE60ZgCkAKaIPxNOIrCa29DTO4uwZNIWmdM6IGS2IZ3A6rgOu5l2qK/l9ZMN1wPKc0/4sbQYBZ0xps9YW6renzWmM0FIfLahiHP5G8yVwgn9Xt5eZjDxTleIM748UasYtTRp6dLXjy0qcNfKy3zqa8Wa2oi0gD3bWAhYQGp4ALClvzllMtH36xM10nphDRrALRO2m/tT7X2Kv9DPxZpdE0y3LEtw7njjUlS4MbR5XtDcLJ5sL2VBSb9gdcvPzAI3/ztlpCKYkrfHNbs7bvwCpfZLEJAzo1jdXOAKgQLMmCVYXgRgBx0ubuR+bjH9oYwuujD90LarjP1rZDNTMUN3Vmxw87ALCxmBfsl86z77WjFFCMhMJP0Bw+rmREIsVM1VRc94mHr1Wt2FI9OkSU4khP9XU2zs97matdPpDWJVfYkriCiN95PtpXh0x1QsLq/G/JJ6bu/RHVMNYYHAcL9hJt1VVnhdvigeY3VnHiCA7zVe56aEtATXndCtvZwJRkAWhrQEB3gDrtBsRS32T7hj4ma+P5xICOeHjvFc6Lcddl13aJ94mXCnN4jldZOlS1tfECvrSrluBgsbnpoNvC/VmRLHUuR57Qpxxj1695nOfElfFMzKlxbQx2qmGWtph2X6YcIP3QvMvHsy2C0orsezTYUJzLUu8BoZdwgvIS17k34nKsWLrnXXaQTRCcp6lXfpm+76REIyDaqGI9gyS5U4miIF0mR1L+j9HhX3EhCuEA2Z6ljvQxxLMZRsXsWM/izdU3PGtbkCvOI95mW3uNXWdbAkHYUtLStLJ2/CA1P/H1squB8S6NTeImuUHY5ief1k5g9gyZTdBLpQawUdVwjPjOLm8ipNSDm9LQc+nBz47AsHFmCnxiECAoOCfarqooVftVZiyoQ9xgVDAVrTRu43tL90ic4vrjdTZdKhT+Yj7NHy6FK77h5wbeEOk1GFq5l7bncuVtaXJhAdItI1O2VV5bpX3SJR5GNuh6Nc2MZOiePhHdNcTYzGxFBeaPI9p76eb5rIVVXpYuAAxqCDpteGYUVduSzwpgP5VMYtrNuRgzQrCqFXj1bjf7D5Klkci4IfPRptOyOGxbm1uCDlKBf/oeJPxOiwH6a6hJZtnyrn4wB/X1kFpyeI+UUNmDl6t4E/0iLb4Sgo9aSdHuNL4IacRo4xIfxYgwZcFyAKiiUCH45Kv9tICFZcaqnX7cl2NUqaxpMtFGrP3JZXxf6qRPRvyGk0fY4tuOluNc3unKJmHp8uNBkXaq8nVoX2rqa5vrZwh/rQwsLSGqSEYpxt6vkW6Se9dOIWzC5QLg7UT09QZtlRQEyAnonD6QnyHtH3gAyUlkWv7KyovIhJo5dE8+hElCvXQIAZBwM8wbJzxrUZQrpe0GltywQWeuYWNcnqvRak4KaE4OvGtsOb79twj3NcxpDXJxzFf26rdJ9RRQ1F3ObMPcxUCVnEzE6P4Vvlf3RTVOraeYUj3a9c1/iSS4ATCQEBgV9svYrbZnwKjanKjMpAR4V3nlc4KosBdofYH53mMHNiB5ZO3MKZ0ggonoR9/8NRmdKSBO+eINbsmqCleLUSrIg6PNleilUNJSadSKJkIUul13pEeLi1fLPrRkZWo4jL+PN7Kg3p/MIGXmcSxp5tLHTdIXuDxt4668yI2+0ZAzzGh7Zd5cYyWMLUcKszN3P0bsY70RqD2Y1IOjC/qIHfszOjuL6gSeKfNP7e4HrPvhSWMFyq+LmwSx9IIFq/dywLlzTOuyrWwYmEsPXACEAAi4pr3HvMaz1Rn61sKIGe5IHjBYR7392Q02goJpz+AC4496jxWdKzrY3fO28SIFv2DNe+kAHFTsyWe1GLP7EGD2B5bUWiVVg7fySI2WkxWTVYwUexTNm8evfGSdvcNvpcOnvLhO0J9x09t2bXBBY0SeH1TGc+x3YZipb0GJ6tL+I986vWSnxny/9x+yTBS0i3U4o1OBqTlkoSDms6RvAeo1o+uuIBAlzkkPYGKaEW5jQYKbRPR/BjDk4OfOaFAzaJCZmV5O4tc/i76gNXuH79GTFOjeYttASAD3FS8FxWul8rvWtnyorGlK0IkMRt7e7x0Ius0ft8MQHmQdae8TL03tzqIiCYcOnaC1giIdMCm+LpUrWFdE3SCNvK+lK+AAhW1peyO5OOD5mSz8JPW2aYhFgThPQgPjvLTaFIc3iithKPt03CI9tk/vkPo+Gkmks282qfUW7uVY3FnHlDXwsGLW7jhpxGXDe2Hd2xVIijKUaAJzGTANwKqUpQcCJqLRw5pwStqlqXG3IaNbcduT9+1VrpMsPqkqeqzTrQ5XX7pJfk/31B9jfVLwq6kEmIuLVss9RM0XgpM40WC7B293jjEu86koEbchoRcwLc/6M7piZkgTneJf6s0vgTc7ayvpSzCwFICN4D4BZ7ioQMUzigghGh3N+SxNnQeOh9O+z6EJMQo+McAFsC1+yawFYOYpDmFLTgud255pn0MO+yU80KowQbofA+N7uV98Z55x3lcTBTZQEfRLMAAA+1TJd9azfW3OxWQ5Onr5cOFHOwuHgb/n6yjN9ZVFIjha7M5Gs0Z2ILV0k3gtipCJk2x/UtOXhk+xdYy08C4kPVVzEDnZApSyMROl3RhXN+vtvduwtLawzL1215VViY02C8RwoBriYOU9u9rLUi0Z3Qo3ggGmCHo4jDdY0zqqpnuWvKAltGDB+8NwiTs/e57/QE2XqWEPhOZ1Kdq/V7xzIt9iqN9P/7nSALCk5EurjZGTFD42/g27NmdpZrnXEiIczNl9Ygcr+z4hYLa8Z+UtwAFfSiOZNLI90hTrdLD88+qxt2Rgx3TX5RvqyY9RW15dKaqu2FFXWucko+a+FPb5/F50dfe8PioD4nJY8+ZqpdQri6bmy768YbdBgXelwA4TkBb0k0/hvbJc1bXLKN8U97jdJmQ4CVYk5EVstmuj8Q4OxI3jUj6xUgLfhMxyNudiuK16DMXgCwoNS1cBPOV9aX8r5fWVcqA9FtaUWg+BN6NiF7HtFU2v/qjv9uwXqs2FnM9/TpCg4sxD/hj3MiTYUPAD4HwoGX+Ol+qMSksIuCXowEgBUQCcTezoy6wZlajnUyResXD3eriN+6Pdl4tHq6wUwYY6XDSa4fOgOlXXjUx4qacm4fAGs8CEjTrqe4o+eIeSQth5fp8GYM0TVcPAb1/69aKw1GBpbUarMWUcOhnSVTH8o5aXNXF8/SiVuOqzletycb7Oqht6uZow2tOWkONa1OQsYRTbufGehDZrAfz+3Oxd9XVOHJ9lJ8p/IPsMNuMTQnEoIIuf7NhIendxbhzsoNCfihMSworpcF5+iC0uJbTnRBGWsSlu4Wui++sW7CnRMxKo9tvxK2x4pF60qMF72zOLcWK2rLYQUcPL2zSGoV0xMDIedmtyYwJfrla2fEeIy0BwEZi6ELvjrjzuMOSzchilUAgKNHNZ995YawqKQmOZI0TTnjzZvxSLgWgbnZrSzMAAAsYFCwz8CvV7PKY9HWelHZdhmQrwQGPTPNu+8OBrR0mfTeBSlHjD3EqRh7gswQ/qXwZHspa6NX7Cxmpp8KwBEu5xfXu0GMmVE8W1/E558ER4L545tlykqVVYnPIOFABUay0E+0QgkMtIZe+mJnRtkaqNMNYh7vzN8kY1G2T8eKncW4bmw7zjgj4grdtsCy7VMTqv3qwZS6tthrRdM16BSkaoejzBTZGTHXZcTjy26H4tjWMQpOdwjXFzdiSu5eI8aC3geQYD0GkJD+lu4K/swCC6Z6piGdoSPG2ekJcpYoXbjxKgtIUKb9IbR0xsa4tax6Tk+Q18h7/heW1XCa6g8/ktp0yrjFbWVG2arIli92ExOuIBpyK8frQsOdk2XxTJ1+JGPoaN4VI14BhBk/522Xfi8srQFnCKL9o6ey9ayXjjv9/N6UWyfTKWv3Pe0tShMNgONK7HAU141tl0k4HM0aDGmZJsXOzWXSpYfrIAiLq1hTQLfOj3CRP7XfFpVtx/odcn0e234lu5bR89cXNRn3JM81PYb5xfW4vrgRd07egPubZyblU043cMSn+/HhxPC5KIJmZ6QZ3y3Jq+Z0ZoDSItjC0M7pFz/B3KImrmtA2nFmrgDWvjoRVYCprhR2pgyspEwhgLx0dZcYAiYskzbhaDxdpldVJm+dsEWdAH5bWyq11EksDt45JPtf/5z77gq54qItpDaE6hOoQD3Gi14wRZk2b55UxdqVExWwMfpXhVl07V+y8emabUBqWlijQZYKDx6vL240Cs0kMLRaKlQjKJE78Vgo4GX6Zb/XFu5Ahj3AlqVZYzqxtjnPmMvc7FYZc6DtGwCMc2ZoaBza37R/jLGpQjZeSLbm+u85hc3Sn7knaOytBLx3hYCgW/yOiogR6MW19PHq406GNwIdR3T+vEWako6rPwBo8R7eczq/uB6rGouNvUrj43e0TDZefAHgwm7UPhe0QuJ+WJxb6+75Yyn4u/JaWbDKe/6oiJFab71omT7XZGfYS490muP9nGgLnc85hc1uyuIkbRzvM95zSc6nPkZyIUugoSfYXzqdYcZXW3snEjLwk2wfkFBHTB0XCutxi5sl24tOdwhzippxXkqXZF6dRKWQPkdat2kj92Pz/pE475xjeO+DQTxH6t+KWzI+Q2g0Mcn+8tKOBHqg4Vsfs3ce4lgKhC1cuueAzyu1r7+zMKfBxWePCjzWCl7JiQsWkOCo8fE9AGN9ku7tSAh3Tt6Ah3dMS0rLaFwLy2rQHUuVdCgaAAZso20d9LW4avQerG/JSTg7NAbE3HEmKz7nBWcgADslnpT+83r0B2S2Q22PAol0gNv03FejLnoXe/ZdlPRe473vueP1uVMhRnr/uwXrmWmfX1KPjMAAaj+8DPveOt/t34PLhLNOc0k2Tw99AYCZYxrwfyt+d9oVDCMer2HXEGR+wiJo3V0Oisf5RdBOBJ8bywFptu4q2IDHtl8p/ZdJ26UIJUFSrUpYBgx7/aLJpMyl39WzK+tLAVv6fhJjR9qclXWlrtZC8yGnsT66fbrUMmt50kmzNDLtMFY1lLCmgbQys8Z0uubBbpldQ2+TLnz6TM+VTJ/dNWWdq8VK19wSVKo6Ay+az7WdGcWCsjrD7CqCQma10dr3Ej/Go1ebT8/r+ciPYxKer7JEceC2pjmmwlakUVtUup2/p2wiN+Q0JrgB6SkIveOiv+l7Oyxdw0gwuGXCdqzbk40FJXWGhu/ZhiKJ18wodPcRZkySZB4iIMGS1maOChrl9VD4s2Ku2wzl7fYKn8/tzpV7ltId0oVN2T0IUhzOaqNrE2n+K+rKTetNZlT6VCszuPcdXVt7Z/4mrNWKn/E+U5c6a7I9jJUTCbFvrjF/+lsAq+pLAGG5cRS0XpluTnlac++5o7S6a3ZNMNvOcveg3uYNOY1Y3l7G7wtbsGCgt6uvEcW6kEuCt4BgMmv3gpI6E4/HcYlwIq7bjV6rgbXlGs1x+gMJ/ZCmeUleNVJtZeVIUmdCx8Oz9UUJ7kX0Hgefq/coyJ/jfSxZJE7P+kPPM34It3Hb+H91Zx7Hh1xf3Mg01Rhvpnu29H26pjkfy2pk6kwjgxWNSTuLxPQOTTsCAHjvg0EovOyQMe6FpTUc+wNI5c/c4ibYYWkh0fczF8T0WJd5DLqLlmZJJrgptw435DTK/mhPeeaxuKyaNePcFlxr6s2l1azFp+xiRPN5HFnyPE3L3eO27XVDAnDGGRHcXFLNn3OGm8wkdE0xrSvqy1zrlQqo161CerIBva0Ne8cAACdR8Gq17ayoCuBNru/0nks7Rfn5a3cL3SPctopbYNDWYs64NjhdIaNWAOHy1skvY864Nux5bWhSBQTgrq+dqdwQw5oFSQFZMWk8bEGwZLarJ9tLsWffRdx2wp5SqLhz8gYTV+EoYAvcMmG7tJKlxtmyZmRSEzDcck9H+KQuRfTjw4nhMy8c2OGolIpVyrMHqq52L031GSyBOUXNhumWU4OpwyY+lj6BC8tcv1g7HEWPI/3PH6uZlsBk2hkxzCzYyRllZuW3G0wKYJozqXotEUXKOqATwR9snIvZBa382ZJJ0g2HiksBktisaihJYBB1bSgTfPXO3KImfBDLghMJsasAz0UzN3OQs2KO6eLTLSE0hydqK3kevBY9Qc76MGdcm3Lrgut/qV0MbrYKOQ52k8p0A4UpNeKqjgKZFUkLLGQtoroon6qbxMJIb1yO29B+05wtJBTFYQFGCQ5S4+PWyiD3jcfbJmFxrtQeswChBCuOW1CnjoM1AbfoXHeI05Xq4PTKmIV/yd8oL1ZiYrS9KIKuu9Pq5oLjCp9UtIgvAAsGMybitqGdBzQhRvm463uI9iJV9ZQ1Q5TZvXQbZwlbUFIHCOljPzl3rzuurhD7wBODRuPVg8mpwBb9b+CHNLVq/dfuHm+cG6oVAMBYc2pr/vhm9IuggSujj4Aw6AM/p7mv6FpVL87JVcX4jNq3hBRWvUyECuRf1VFg+rNrjOV55xxL1HZ6UhZ630uWElT3fV7WWuHuX/WdcCwj0HJxbi3mjGvD7MJWgzGl8+r0BHntCCjI/3iuCkZ6Z8/49CrTrNxQCQ1Wd+ZhYVmNxFdPkM8ZtXP7pJeMuAM7I4ZFpdt5HAatowQJx1IgPk7h+a9oKPOkvAUL6byfLAAOsLKhhAV6o3aJhmud1tjhKLu56mPJHfWGUWHYiYTwZHsp/mubcmPyWI5JkFleWwE77GboqhjxCp7eWcRFFp+or3AZ/eNwACTEbT0wwhy/MMd/5EgYy9vL2L1JH6sTCXEQO6XPJhwnxNAZgrTU0HuLsunt2+Eo5pfIrD/lV7zKbZA7XjLBK0Gpos9VfUb32M3lUlFgRS03XWo4CivmBtav2TUBsCDruYRNWristYK/p7ldNXqPoRialrOH/17dmYfFubVM++cX12PWmE48VTcp6VwMUFt7yoQ9RmwcAFbWPFR1ldxfanzzxzfDTo/h8bZJEAGBURe9m5CiVwrAwILxjTidwRHWp/rx4cTwmRcOErQLYVezqeeUX9Ocb1zAv9k2GQDY71OkCMzM35ng5//0ziK2PjiRUEIhsA17x7D7y/q9Y5NefKTlt9NjXOvg5rIqPFYzzbiMARmApQsCy2qmGi4PV43e46a2U0WDpk1Ql7QnMK9ixCs8ltWNhRxw+GR7KRaWJmaocCIhQ0Pm1dCwdqxbMnXEJP26arrrD+9Y7J9KmVEggJtL3KCtWWM6DW0fze+p+nIu6KavJ4E12M0gBOFmQqLgTH5euH691IdejROQFYHJekHaK52ZkFmqgNXNBW7QrWrridpKtlKRtnBJXjVXptT3Do2JqvHamVGuvsl4VbExK+rKudiUnRrn+d1esZHbnV9cDzs9hoXFtZhT2Jxc8xuOGsG5DMLzjOrHHYjFRX2cniCmjdzPWj9mklnQlX66H0QzsXGHTPm7sr5UptKMhLCtY5Q7rqyo7Md2cUv9k9bKichAPxLKAPBlCriM7/zxrpCvC+td8TTYGTGjIjTv794gVnUUGAXhvJc9pcukC/aWCduNGBLdHYbf8fh2U4YrQNNmO3KfruooMGqG2GEZTA7A8OfXxw0Ah985E4A6M6ShTqKVTsaQ35DTyEXFKA5DaGea+xEWRCTIgZZ3TNwMB7Jg5NqmPEM4pv1gZ8QSNI7M7Am4Wn7dMqoLGb3JAsCFy+BRoKk67ytqymWtmYwY+8PTu4/umMpxMDSnp+omGbjmfnuCuL6oCdagAVhnKlpHlmVb4KwzI2h6bRjssJuvf252K2eGYYWTDsK0XtxcKlNpzstu4TOju8nQZ+37LmELjtMTxJLyLVg6cQsrATi7jKoxQLFVdljWQ/ljoxTWt3aOYjzIScqAZD0AnGBJ+RbcVbEugcnntbBcAYrpYTSAn7bMkEHi3aZw3BOXAtba5jxT208MaDTg3hsRLc7Ogpuk4Dh7f5UqllbzyuUGrr3g9Mh0yWta8nFXgatBd6IBF99aoLjTF2QrOAU80xi8rryGRbvXtZKYc5W/Nuwdw/FxSydtwuadYxiXC3MasLy9DMvby2CHo3ir7wysbZnAfS+ZJBUjuqKNx6GUCBemHeG9ryvVpHsYXOVJRiwhC+K+t85PSE9rZ0VhCQsrO0xlig+fD/jMxxxc9PN/gz1Ims2KLzuIus4rjMDASy/4EAffORsATP9a8icl01+6q1HSGWTS8OkFywCZP5qEAZ1p8moZy3P2o+7V4dwf+bbqcQpen1OnNwgrapuMOpQfblMhu4OwqTBdaS0dSezEkRRZkbhPauvJp9LOiEF8nMKX4rSR+7G5bjxwdr+LD+V7Tr7WTiSE6Xm7MDTtCFbUlWNWfjuGpB6VWXkCmg8sFReyhCRU5CObouW5JjyRz6Tuq6rHQADGGuogjqQANsw1Uv6oum9xgjbmw1Tg7H5+3k6PJfhmet8z4gWIGIccyfCp91kTeTQFIuTw2AFIbXnUlnNUueftNLl2iFsYdH43urtkvIzTJ5liOyMmmYA0+Rtxd79aURsiKFy/X20erK2zlSWo182cI46mQASTBynyXHVf7l7ZL0IOELWxqGw7B8E+21AEq9+GSHHk+qbFjDUlWJjTgKcays1zo/nKXl/cKGM0oGkju0JAqoM5E3ZIYUrNYf74ZqxsLEkIHvXCrDGdWLcnm+cyc/RurNuRA4SEERhJOCFhk9dfwwH5P0MAVLeE1un2spfw6I6pvE4ibsMKOG7ciQJKEWgNGjDWqHz8AdS9Ovy46zC3sBmvdp+D1j2Xumui7QV9vbz0C3DjRZxICFbMwheL27G+OQfXFu3A8zvysKioxoyH6FFtZ3niVuh8qjgQ7lvbW8liDypGvCIzxSn6V7NzJDNozBBqMS703vhL3kb7nmGYXdCKdXuyIY6kQKTHZapqRdOmjDiAze1jjPHCFtIf3TL3IM9Po8M8Zo1W6Wlf9e/tcJTptRMJIW/s67IuAnQrpHDXwbGOe8bofJdmv4K6jhGSdmrMMbXBdMnx0ELNZ3xxWTUH0AKAE7MxK7sT61pyXasnkCDEOAPK/z+gAoZjtjEOHV92OGqs0eLcWlZq8Pc9QdxcWp2QZYnG6m0TAGYXtOK8lC6ErHhCoDcg78LcsYfQvv8SLCisd934vDFYngrb0ybsxtFoGloPXmzSMsKbvvcIz31BWAPuPWsIMUnWUafxtH90em08eywFkybuQchysHnnGM6UyPPU4jjo7tTjxYhWzMjrxKZ9o82YkiTjI/oAyBi555smAkJ6HuzqvsAUsDwQey+Ot+784Wnnn088XlXnhZ8q5qAy+0+n3ZxOJ/jMWw5gASOHH4YTCUmiq2f96Qrh4Dtns/aFCMasMZ2uRF9ciyWlW5mgGto/OoQqXoGLpCg/PacniNsnb9Q0cPKXrmmlC4kIGV00qxukC5DTHWLNsDtwC8IWZtaabpV5g9K4pcZlLnJHZuuxBg1AhASGnHsUIig1DddObHXzK1PWhDNdpnrTjnHMMDOTrC4Dchmyw1Fsah0nqwqHozgj1IPlNRXKt14LeqL3M2KSUc+IsWDAz9DfnNHHxTG5H0FYsGI2u2jQ3Ak/37zyRblGupZfy9aQwOCTtihdGwsxUlpBLP1i0LXj1BYXToraEueUzpZSXIYcZS53fX8XFdbyXJcUV/EFYqfGgbjFgsGSvGr5He1dRyP2JNoLizWKnGM9ruFc/aY+FhS5lXSTBY6zBYZwovbn4ME9zOzZqXHYmVE8VTvJ3X/hKL5UJlPw8XzCUdZuAbK2w4qdxaaPczhqaJEBySgY6XptALasTk0M0tKJW6QrgMID5VJPNp+1jW72D6dL5XjPiAEDdkIMDuPEcd/XmY31LTlyrJlRTnvpREJAzMKjO6ZKS1SatDSQ+kUPjgekFpKLjJElR1io2TkyYQ5kwYSQGnsSDC4874iylGljpTgqgLXEuuXg6Z1FkikKR/H1ys1So5kpM3Ihbsn11GlcRswo/vjc7lzWwC7MaWDBgLSvnO++2409YCYHKoW0Rv9uLlO1PhS+ABipRAk63hiKm8uqpBa6OwSR6mBhoXSBpAxim9vHsFWP6aNjsQ+90x0y9gj9JgUN4ZhrsCicGtW61edOT1DS624ZkNx+6CJ5brpcGsMMOOGENNQazXIicu52RgwjMt+TNEdjJu+t/L38g5hfjZZyCtGYza6ZnFlH9TF/QpNhxZk1cWdi+lkAdkqcMzTZqXFQQngepxbr4kSkYHDu2V0AwBpv+n5xbi3sjJi8J7pDZjpP5bJ4xdD34UQDhivMuj3ZeLK9FMtqpiY9y3ZmFCOy3gPi0lrLIMw7xBtwu/XACAzL+Ijx5vQEXV972nuKD5hfqFyK02Q9G3EkJdENqtu1KjONT3FwbUGre+8RjmOmC4sTkRb4mlcul/s1PWYKBurOoj4XFNdjcVm1a11W7c4vasCmfaPh9AS56Js+Z4JZYzqxqKiG7zLKvAdLusFuaxsN4VgGvXci0jrqdIfw5aIWnM4Qh/2pfnw4MXzmMWRnRPHK2+cmuksoMzb7XpN2R0gCRUTp6Z1FUoOhn2/lIjM9bxe/70RCeLBqFpvVZd8xadJWh9LQWulBuDrRJbOsenZ+Sb00Bys/Tx5vpgyQnpctc5Yb5kxlGv351i9K7YW6aOYWNeHw+4PZ3WHt7vFc6Ex3tWIm2hNDQaZrcg/goE/yw4/IWgiGtp9A831nd4Bu6S9KhWr0i8C7XpLpkHizBg1wQB4JERRw9bMqN+XbVaP3JLgOGO1pfbHLiMYULy6XF9rc7FZmErxma2rn2QbpYjJ94i7XtUJzuZk5UfoOEyMEwNXOWoKLqNF3t1a4Ae6UWUsn+pOz9/H/Mp84BVGbePbOlS6clQ0lnKZVPiwMwWd63i5QQL2Op/5oEHdO3sBVhmmf8JpGQlIbD1NoszNiHDD96PbpRl8/KHT9lcUxWV9idWce1rZMwIqGMmPulqWq+CrN7SPbZhgX5oracsNS50S0gkxahhzYSKhdwOvfEzSYVN2Ebw1Y7Ltth90gf2JOFpXJuBhKy5kQ9+bZj9Mn7IYXri3cYbg/AcBHAxlmjIma75/eO0MyF5oAvLCkFuR/D1tqgWkv0LqRlvnxNikIkIsLu3Qk0ZASfVqcW4sHm6+SwaUqB76cq3ADXbVAVKc3iGRBorRGy9vLDPcswBVwKN1uRqZUUrDLncrUs6K+jMfNhdki0r2LFCywZSVkO0tWfn16Z5HB9Oo4lf0Kt7igwvPqxkLTB97WhO7MKL5R+ZJLmz0xGIxHVXUctsD8kvqEfepEQmzRAVxB4t6m2dwPjZf+frBqFgtedrqrQJiX3cLP6FWlnUgI61pzZPVj7Qw63W5wPK+NR1infPlzxrWxoPf+h1m8xux+2hVi10o7HMX1JY2IqtoNehzK/teHwA7FuZ4O7S9ag6d3FiVqwHuCRsIAXejQ46jscNRwGwJkmtM549q47osgy7qe2ScjZhTjc3qD0qrqjWNQiqqZ+Tt5rex05dLmyZRkZ0YhjqRgyogD7lg196p52S2uYK0B9bmqo4DrEjGONOVXafYrLr+gpYCmdMbr9mTLmLIud7/PH9/MNJ/veU2ov764UQbtZ0bx/O4cnM4gPkW8gfBjDv4sfObdii55/AdAIGy42NyUW4cn20uNNISAPOC3lm7GY9uvxMz8nVxV1dCyKFOqkY5UT+vZFcKtFS8jZMW5eFAyuC2vStYHgDzgSydtwqPbpxvuF8QQ6wXCAOC6se2sRQASNQWAZorW0u3Rc7PGdCIz0M8+m9SXV6MuGxfs/+nFhdGfRrgoCMrwTdUIZjIhwEgnp5tUBaTJ+DgmeS9zp7t4AMp9pbEccIDvV6zFfVXXuPOiDFWePnQrAbWtpxM9rmuAZz14/Ely3N+UW4c+J4SRae/g7q1uYb5k6+FNI+otVkPMGFeh9bi5cTtJ9kIy1ykrLQ5EghCpcUzJ3odzUrqxurEQpeMPoOG1Sxmvb/cPxqBgHzNhSdMc/jnXrJ4grJiN/1PW4FZVTjJmbssCu9Tp8/HiLxneeE3IxU17R3cjMtbPUvtf4XNJXjUe23alcUb1fa/3Q/Mddtl7ePPdM902cZwzS+9objk6nvQAfWZoUhzYoTi7Ci3Jq8Zj2690n9HPkjZfcqe4ZcJ2dt+gOei0LRkkS9MJKGsWBWxaZmpoOm+z8tvZvUVvz0jl6HFBA4BwVh8iXWZK6mS41hluLxB9tmIWRIpggd84W2q/LinfIgUnpTBK5h5C7nX6vqffc7NbZXVbilVKhi+dvqu9trCklq2wxr1CAoBGf+dlt8i0vYDczwHXjY/3sOaOyO5knnPjPZe0XkYVZN3NS5u3sX4e+mKsh6XoazK3rhOcHR6TcrVcXLotoeYA9/vn0sciyRrorsTHeVZ32UkYuwcv7Kp5JAVfKW/Eml0TcFteFR6tuTLh7rxq9B6sbx0POJaRdptppi2Ms8vuQGrP0HqSm54x326ZPOWN3rPYhe94969BYyMhTJuwG1sPjOB1ib0fx1v/fPq6FW3sGIbwJ3QrinQ5mDH+0Gk3p9MJPvOWAycS0vIUS0JEUjin3lSZbRC3WEu7vklJy+QGQn6aytytpyzUfX0BWfmUguDumLjZkPLpnUe3T8d1Y9s5G8WvWisNjZCrbYKRos+JhPDc7lyjSq/XvOlEpKbae0k6PUE4MRvr9mTLku1JCOH0UXtVITLlz5oeY8Fg5kTX/KubIMmdyomEYDkW7szfBCtqSw1HVyJRZg1lQGr0ZPEoreCcMql+q2I9M2bMAHvWFpbQUjSCtV2kgVqxs1he6HELu3uG4vbJG2XfmrCha+R0zZnOoFIa27lFTVI70xc0cHDHxM1GmXl5UQnOTMUWJrVGy2tlRph3omcammnS4Bn4ynKzL/EF5FF86KkjyZUMkK45LtNlJWqDM2Ic5Kl/Zw0aAGI2qg9cgdXNBbh98kbU7bqC3zsWS8OmfaNlQZ7MaMKlz77upHEjKwRl1lCaS+qr3wkyrpdO2mSclbQMze3JSvTRp7VLYLhtVewwYhbisjNihgVo+qi97EZEbVAmKTsj5gpa3bKoHFkHeK66xlvb79NH7QUsgTffPRPOQMA4a7dM0Io76QGXKvg8of0Mt7DcnCIt+DckaduKRknLlrVWuPsOMARII2OPZjmgPq4vkXPW3TWocis9QwKavpdZO64H/mfEOEgakO6ZAJAeGGCLI+NDvcOJE2xhfA8Aka40pk08DppLWBZj07NZUXuLSrfj5rIq1+3PBkSqI60+xc2SBmkuZZS9LsN2XROZkfbUFdHdQWjfLCipYxc7ypKmB4jnDnvLFIIUYzm3qAl2RswVDDy0DrbAreXSMjJnXBvEsRRO20tnjAUXtc5zs1vlZ0E5x3OC3cx4sisa3MxseoIKCLX2dDfa2vprMSRCBbI7vaZgcMfEzUmVAYB23wJwogHcXF4lteeK9ukZ62gfUMICurv1dtnqT/tSx51mqaPnrxvbbq63grlFTWxl1O+C32yfbKYB12gJWVOoL7qL/25yLccM/qq1EkvKtrpzVu+ubxvPd5vuckgFHtlFWI2b3YEU17airhxOJIStO8awFZ7pt2PhaCydhQYDLDMrIuGg8LJDsMMyQxXxS/8bIC7sT/Xjw4nh82E5sDNhp8VMbb+uqdY1Bkm0Vl5wCYNI0Ab8oHAd7t1yHRMq1uTBvFABWQyGLwMPI8/Psu8woAe/Hi+YMUEz7NECibiNL49vTbA8JCXiHhwlFELzFjPqdjWEcnBgArNk0haDEfFqjw0NsEfr6J2LztgntKU0OQnadjXWJeVbOMc5oCwLJ0gXZ6yLkHPyFlfTYV52C9c8IPwZn3m1mqrNZPgwxuHRwPPn2h45Hk687ega6OtLEgvFWWlxiH65sLwOWvC1Fz/efhOsbWrON5dVocdJ4eKA9Lw4lgKR4mBJyVYjCJG/VwG9yebh7UPfy7dM2M5rTdZCb/E277sUYHo8POqfkUZRf18P1KfPMrP60N2VliCIe9vXgzoNfGp4hbDwrYr1eKhlOm6ZsB2/fzMX7751Jmu3eZxKiJw9tsOo7r2wtEa6atmCg+H1M6Dvs2RWO2O9NY0xM4yeQGJjvpqG12tlOt5cCYi+eOmRMee/QIOdoJFW4+W1pH5Jo98bxOyJbUZlaCN4VZ0jYvTnj2+WrpXhxHEY+02j57RecFyLhfGsZiny3lNePOiCBwTMQoYejbGBs2SaZQdc4+Z4ay+EBdEXSG6d0taf9qH3fnWiAdxcsA1P1FQaCo+k2n8P3um8PVFXYe6D41kDlPWC+1EJFW4uqzI9CLT3Z43pxNrGPCPmhnHmsfAZ66KeufSCD/HaK0OMOc3LbsGq+hLD8qLTcOrHW/zSewaoz8LsV9HUcbk7L8/eAIAlZSZtNc68Z10T76M+vHHLj047LTvxeOt2XoZwVmLdlhNBpCuOWTmvnXZzOp3gcyE+5Y06CMDViJGWmXzyWAOhHQhKzcfPA64vMgU/KU3skjy3CMyPmmbxe7qJX2+HtMnkU6nHHLDPbsTUOCHgynB2OAqRxC82oeohCSKKaMwZ1wYr4BiCAY2LxqFrA2nO1CZp1fidLHe8PDalwZ5dqIq6KK0y+9RrhIi0MV5G2IrKbUn+xnowIBwrAZ/6uBP8fUmLZEst+rJtUw2NyFO1GlNE7ymtt56WT98juvsL/6j+n+nMl4F03SHcWSHjIMiHdc64NsYXaXJpjRnvXaFEwUAFN3s1Wvoe8Qqexvv68xkx3JZXxfPR5wJAxnQEHM4hzykls6KYW9RkPqvwsXTiFj4Xt+VVHdfVJyoC6I1rFytpuQYNAI4MjqMzqb9vBRx3Dv0BXivS7uuaX6oX4ERCcq1VW+SKsKKunPeLvh9pLJtaxxmf6+OgeiUJMSPaHJ+oqUwQVEgw4AJLSdp3IqGErC5kQdEZzblFTfhZ9UzclFuHuLDx/odZMmNTkcdCogR0Tm2ocpb3Oa71hjTbK3YW4/riRol7bxXYJFmsDDoG0xKjF/VLVtxQIpL6F2zZscNR9gXXcWqcPY/S5lrNKuZEpNWSxnNTbp1xZokh954RGu9TdZP4XTscxfenvsDpSfWCfQCkJbUrhOmj3Fod35/6AgDPHQMk3UdUpMygm4rJpBgQJ+LGPhnpMj2Cxncq/8Dz1dv/VuV6bpfSP5NlxQ5HZaxXRLqe0Gc63heW1jBuqAaDwfArBtiyhBvAq+4vwKWd9PfzLRKHt05+2aWFCvR9n0ypwZ/FrYTPnqitdOmUWlvSvKeHZaFQsmLIDEJgGmz1BLgNA3QFmLBhZ0U5Jkefu25RdBVbqjCqWrPXDp1nNK0/57V+3TrpZV7fG3KkS5JeHC1ZO3Y4ipbXLzHOxs3lVRxbRJalZdslLaTzxoKBtq56KlYACUkafPh8wefDcqBiDgiOp1n1+t4ZmpQkVgJ+jzQJpLXu1gioxngzkEbd45urjw9I1DDSb692U9foO5EQ7qpYh5+2zJAa2UDi5U6gl2antvV4hgRtl+Y36tVgEB6M2IKeIG4tlzEcCVYHD9PD2hMHsIRlpCKdm92KZ5sLE/xpE3BGGhMtbRunTo1rvrswx5igdYNpCTmRhlpvSxxLwdcmbUdc2Kw91N9L0H56td9JrFmBUBxxFVh3orEDwNKJW/DojqlsISOGVPcf92pIEzRHEWk5sAKOmT61S63t8TS+3SHcXF4lNYC2u9akoWKLEhkAPFaI48WzeDWbnHpQH7+urVbPGz7fnvgX0paT1t8OK+tFyMGConpj7ZZO3IJHts3gvaXHKRnr5flbD+pFahzod4Mjl+RVY1mrdI+w4hbuufJ3HHSaMP8T0IIT7QX92eP9n6w90lzfMmG7ZCjS5NiTahhhMuyzx3awMEJt31xWxcxXAj1J9hmdYc33X7f0GWNXmluvT7gu6HqDq2kf3zpZBvyTGylZ9050LvhvlYJY1/b+oHAdftQ0K0FTrVsO5mW34LWec9DQcQVbf4zxAonWEA+9MfDvnZueQlbtrS8U7pQZbTx0h9w1eY1qKjkdqDdWJdl+mz++GStrS3HWxUcw8bw/YVObzIZErrQPVV3lWrqT0DUAGHHhe9h38AJYvQGuBeTdEzTeE8UW0Z3lxRe/ryvJtFgcaUXwWF2EZK4NC153CEsmbZHnwRs754kR9AqC9P+Ckjr0xkNY05zv7i91Ty0q3W5o8fX3dKB+rxvbjjWNBaZ1QFiYW9SE1Y2FWFxWjeW1FfyenrqUztaikhqu9ZEQO6LHADmA09+Ht+44fWMOXth5+aeyHFyT8+ppN6fTCT7zlgNd46JreOlz0j5S6jUCy6OlILcd0pJyu7opm0yPyjJA77KGl340jZae2tLoLwlBpudIMNDHRpl77HAUP22ZIVO1aQSX2hJx223XShQcOI+yxnQwQVeal3PP7sKiMpnmjDUUUERGxXWQBvyx7VfCirl+sZyClMZLlyfhxZYp4VgDCqndvr6gycAn+ULra8qazDQqpCMMrSZpYfT9wBkavJkuaEzaxcGXgXYhU3vzslsgbIEVdeUGc6lbhahNtsZQhqTukKFFIosJABYMAOmWQ1WiJQ7NFJWP7piKJXnVUjBQ8/EGlnbHU429o2fbIk0Ra+rVpUOZXrxaJWIsnC45rzRbPkPVnhfmNOCp+nLZF5nfLUB3j6N5e7XAnMZQczW4bmx7gt83nTt6jy61Z+uK3GxW2hkj/D9VO8mwDlqDBnBtfqvU/FquH/oj22bI8atLc3l7GZ9/HR+kHDie9Yb3VZeMW6B5W4MGcG/TbDiREFtNqDq7d4/xmnk+nzOuLYGhLL7sYMIeJJgzrk1aYCKyZgHFP9jhKPocOYfH2ybJ/R90AEtWUNXbX1xezTghGmEIBmpfRYUULOYWNRnjkGfdzcDGNIZdI+Qfj7dNkpmz4NIwqrhN8FRDubt3yCKlmB59j0uEA6U5B/BxNMyCwZxxbZzRh+gUrX/epW+6cyJNvkrhOyvf9V2/d/N1hrVEp+1W3ILTE0RUBNCw+3LY4SgeanEzdi2dtCmp4ERz8X5HViC3sCRYk63fIyIgsLFduUMJjYYBmD2xjbXGy9vLZByNLvxrgsEtE7bj1kkvMy4p5s7OisJxbGzePxJ2Rkym8YSsGEyWWgBYOnkTvOBEQjjwp/Ngh+KwBg3gWxXrmWbTfuC9QlmhwlFWLizMaeAzRIIBP0+KHbhnXt7JQqYF75Z0n+/1iGbRDoiEIpSWY3HGQv3+uLmsyjgDSQuwDQSwoKQOK+tLudAq3/9p0hL/VM0kzCls5jEvLqs25+/ZA8/tzjVdiFSba3ZNwKLS7VheU8HZ++xwFC/U5+Pmsio5HhW/6GbKU/si6mY8NOhaVhR2RnLl4ukCfszByYHPvOXge3Uz8F+7pwExWxZWqityRSJNkqYsCMkyE+gaAZ3w0AEliZ3aM/xOvRo+j4ZxQanU7Hq11Mm0Vt4sRXMKm2FbggOfACT1g0ymiQGQ0Jde4C2ZT7eBA6+GQ88Ao/BAGiSvq8+3KtbjZ9Uzj+szzMWq6CJTRY+Sac70fr04JubUm+VJLzCXbK762vA6ev2dae7au+JYiqwwq2moKCsVjZe1Oppvqj6PpHvmBBopQ4vliUtJliGENWZA4vNqTCJuQ0TtBP/e4609j4EsZ0l8vucX17sMmDbm2ydvxCNVM0yf3uNobI310fqw4q6liTO4eKxUhhY5idWL2/WMgdfveJaNZBmR1GdeTfr88c1YWVdqKg6Ok02Ix+35jNpHQGBx6TYsb54kg5J1rXESrahegM0OR7lwWULbx8G9iNvStzzJd4yzvyAOhPe7Wo+5RU3GWTweDB7cg6NHM0y8eOKPeO4CsGKJRSL1MSTLMAQgeaxDRNFmrbAbubKcqPCeE5ExHkljXDxxBARG9qjeIFuydDzxuPWzrOJDdFcX49wniU3SIaG4pyd+Q8eNTl+Y9h0v2xdgFGWjfcia84DA4oLtbm0cfQ2OY6333gPJ6DLBdwvW4/7mmSbeaP+kOEDUMmjV7LEdGBzsdaula2tN9Qo4u5TmfufdWwAwc/RuWe9Iw/3coiZERUBq8gMC1xc0Jbh20vhvyGnEivoyYz/q33OfyYqsqfXgdimGRrMAe3GpA1mhASD2Qfy0thz8rn3kp7IcfCV3/2k3p9MJPvPi0391FLNL0erOPL7I7XCUGdGFJbVYXj8ZTkT64umXMj2r/+Yy5Or/1co1h4jEf9dItwPKu61ruxeVbXc1OBaQZmuXj1eLAVfb7XSHzFgBITUIqxsLE+ZM/R4P7IwYrzxrqbpDEHo8gYcof6tivYkDx8QLa0QEcFflOgBSg6QXiCKN+M+qZ5paQhqHJYn5uj3ZnEHDDke5jPzSSZt4rMZcFD6YuCrCxxUjlT/qc7tzsTi3ljMP8Too7Thnk+iRvpcr60t53qxhISacxkzFqwBXMFDPA+B0tXam9ONdvl0TDJSP57WFOwALrlXAMuV1Y/9RTQnlpqJbJignP4NKh2fgWJhtUv0M+aH82xv8C0iGlGIOaF1mjelkLevi3FrXR7mkFtNG7jfGvaqp2LhApWuDUDU8tH48hXi8fuvJNPM6U/NMZ35CNiI9ew9bDzzWmhtyGtmvmAQOJxLCo9umu7jUx6WAglABuRbzslsYD7pgAAAhK25oH+ePbzYKJFna31ybAQBlQdH7tDNieLK9FHYojpmjd5tMKs1djXludutxA+j1GCLC/U25dYwD+s4KOAYdI+sKWV4BeRZvmSDpG8cTeWgn002FB6rVwmMgeqRltAGAo0cz3LVX87NU0LyhaVYo/Nepf0iYl06/jf+1GCY7IyYtFaqmCmvvNfzOyOvEvOwWLCiqN3z9vXOww1EZ4+KZC+HBWGP1LsVmAdLaRgX+VjcVuGNU63BtvuuPbmdGuVo473Fl/XD6glg6eZOhgaZsZmQBFAHBNMUYn65A0s7VgpI62BkxnHt2F5y+IBdgNM6d+nt5TQW3QYUSnR6XoU21o+yDT/1IK0GildCIZVB3hnd9xVG3QOZ9W6/hvyljFd1TdijuurSq9tbuHm8Ic2y1SJeFAKk+in5/iWMpnHmPeACnK4R1zbmMS+neKrC6ucDNOhSzOEsbxTPROJxISAoGcSkk0d1gKMdojCoGht5dklfNhU7lA8Lk9LS7LKniJRJiwUCux+ltOXA+RQE057PP+v7V8JnHkNOT6MNHfzvdIazdMUEGBnsuV76kIiE3jWRP0DXpQmMSPJoma9AA5hfXS+ZYHb5bJ70MYQsMDvbwc3Y4Ki94xVzPHtuB+cX1Rtt0qRumPl1TqxOU7hBmTOjkCrkcbOQpsEJpWwnmFDbLy1oTnBbn1vL3M0fvlpp+DXSmf+nELcwUAMBPW2ZI1wVi5hS+KOiP21CXGeHcDkdZy5MRGHAL5ij8UvEsNhNr63VzuQyyvWPiZibOANxUlIpJpkwyeiAvjcWo4qzgZ9UzGY9k+razXCadfuaMa3PNsh4iT38/vbMIiydVM3GGkGlgn2+aCDs9hqfqJsmiPsKjDdUZDm/wucb0ElOn7wvv3jT+z3KFOvqO31OMqtPnFnb6XV2RMRbK4GJnRWUgrsL50zuLsKltLJyIZB5lETnZnp4iVJ8DXVR2egxUoIqYHmP86hKmOSfDEQBTmFP9sGldrT+ExUzsf22fhFVNUpicXdDKsTrJ1tSrGQ1ZcdYYZgb63fH0uEGS87JbErKDpNmK2VDtXFnYyUGJK2rLuV/dvQ1QbkFa2+t25LjnTZuvHZbWRqYhYdfNRu4Nc6+TFn55bQXscNRwSwRUoKWibxCy6rC3UBXFB+iFqo4HTk8Qi3NrjaJTOiwu3WbgmSumq7NLKUlpbuJYClca/mnLDDd5RHoMc7NbORhTF4ioXYJZYzqxqXWcOuPge2HOuDbeK5v2jcaqhhKs6ijAk+2lUrGiuUsaArcAB4UCLlN+y4TtvMaG0GtLRlBPtwkLbpYnusccKXzqwg+gAqIp8FrtLTsthke3TWeaToy5PkY7HOVqwYB8f0WNOz6vYEXW7vc/zGI3ThKUaD5eNxW+d9X+G3XRu7BDcTy2TWXzI5cuTyA2jWlOQYvxGRUKnJ5rFhIUQa14o+Uy0qs781ym2OMSSOOj8d9VsMGl3V1ugTiik7SPbp38MqxBAxIHWupROyvKwd5yUOpMqtSli3NrgYCQCgNIBYeeAAOQlZGp2J5ebNDpCuH2io28ToB5dz9W7WZHpD71hAH6mfHSzWR/LxjvKgBOR/Ddik4OfObdio4XkAyAg+W+U/kHPNh8FZyIrKx5XLci3ax6HNcE3f9dHFUBwR7z8bzsFqxqKDFf9AQ2Ae7hXTppEz6KhQ3/cXEsBSLocD7xtc1SI1N82UE0vHap0YY+BwAJRY70YGA9sJPm4XSHsHSyKtKmt6m7CNjCYDz1ttg1Q2estNSYFPD1eJtkjh+rncaMCrlbURaVWye/zL7CuhZtTmEzzgz1SM28x7WGAmpJoPEGBHvxze8KYFHZdjddZZI14vdICLIh00XWlbtaNM2NgvYXM2gU4H2ctIeEZz1jCQl8RjpFD8697+pwvKI8Ok7JzcDLDOtCtncvsLbSlmOhgmwJaQU9aVGd7hCnzOT3tK2kv+sdZ7L/jdSatH/ilunelgynnnlxkKrGaFhxC0JVHNZdAZOuG7WXGpfCeMxm9yrjOf0sqL3MAZbHC5zUca8CTL1F/Oi7pK6KmluR0VYklJDaEQCEY8GyTabXOAsOMKuwHeuac013Fs+eOe6aefeWnhLZ854RFP7n2u0KAUHT/YgDMmsnJYyVc+yf4Gw4fUFYA24hPsQt3DVlHR7c9iXYGVLhcSQqXaDW7x2bdJy0/8SRFIiQACyBJWVbsax2CmcUI6sjjdmbjtKLt6Ra5SRB8vxudwizC02XTT0A34pbECEnaXpscvVMhiM9tSv/r50TYy9HA7BD8ePPJaK5xHhwOC+7BZmBfhnwfoL9orenu9sAZoEzGiu5kwIALAErZkMEHcZ/Au1R9CshrSkAhBwsyG9w48B0d0utwB4VxdT7XVBsJke4M38TflY1k+8ZO2yma9bvFNlGIu10umU9E3LtIhCOBaFlkDNodaDrtE5l+t9t2cj4hG5FPV1x/N2EztNuTqcTfObFp1snVLNGRNewQMi0gwDwwNar+TAnq4RIjIIe+Ht7xUZDq8F/a0yNCAosmbQlgdhRAbLFZbL0+81lVVhcXs0p46hPMl/+qrUSKz3ChNCI4bo92dw+VbA1iFd/ABCu1pZrPRCxJc1JlhswPLuwFfNLpBVjRn4HHt0+nbUaF5//Mbve0Pu3T3pJahXjrl8mgVcwkA9ohCtTBi4CMnsIaVeo7bmFzfKCyIzisZppbhsqeA0OsKY5X1phNM3IrPx2DiR3q5BqQ9AC3XRtCv+2ZKpTfkZnhjyFenTt04q6crePzCiguRs9VasuF6U55/c0IcWrRaX4CUBaoACgfNyBBK0PzdGrQdfB6QlKpiNJIDy1L+I2REBI7Zaa53cL1rv9EL7IvUoxOjfl1rn4t1XfScrU0zNOxHVLYa1blhu0L9fA1V3ohcOSjZ1gYUmtqbUUFlM6Q+iNyFgIOywzCHnXlAV4zY1Q6AW61Px43TSmTC+mBEAGsYajnBHHiYRwW16VG+yt7bs1zW5NDDs9hpn5O80Jkna6WwYSXlvQmrSism5F0LXOTm+Qx6OPkcZv5Hyn/WSZTJbBdEKu2/q9Y7GgVBYBY6ufAurHG5S8OLc2QSizw9KCtKBEaqIpIJmKqj1RK+lJxYhX3HYjIbYaAm5Qt50VdYsoRkKyYKNjSSuOEspZmxxWljRNMMgd9pa0yHW7Z37K+L28D8iC8tOWGfxOvxPE+r1j2WXEC8Z+IRenjBgy7AHumxQxNLY5BS1Ytk26HM0e2wGnO4Q78zfxMwYzrcU8MQjzTpg9tgOwgLXNefz+lBEH8OiOqbh98kbcXF4Fa/CAgQsaixW32NXTOy+mk5Z5HvT1hbBkwoG+IC4c+hEnZQDgJkhQLnoADDcwXdu9qqGE9yqtsf6M0acCww8fSdIRW8DKhhI3QFplzrMzYpwa+XigJyoBpCJo2MUfYGV9qeQZJr2k0gWDff9n57cBAGe443lmxNx7WjH9D7VMx71T1xj0c9m2qZiet8uwlAMwXAKN9OOZUde1y3tP2NJV0OvC6MPnEz4XlgM7I40/JwJGhUi8GQim5+3C5v0jWTNL1gIrZuGr5XVGUGUybaHeB4ERZKZpQm7IacSKhjKuCIyASEzTqDR5VOjFG0zMfZJWQqWf1J+h0vPe4F9j7p7UdXo6TADJ56nGSZrGZFrqP6tdVW0sLK3BivoyY46z89s4xzgxEnQZeDU+yTSlx1uT462fN/iOTfmZydsWR1NczVoSfFpRm91TuKCNFsA6c/RuQ9PKhNzjVsR4gramalxcdEvTll81eg+ygn1sRp+cuxc1r1wOJxLizBmkESPrAPWrF3hLhrP08AB6IykyuLaxhAVUwuf84nqsaiw291pPEOXjD6Bm50h+lr9LEkhLbU3O3Ytt7aPdi0wACArMzmuTzInXGqBrnS0AUcsVQlXbc4ua4AgrIcOJd6+wtrI7hDlFzUi1Y/LskwUqEnJTBOqaUNLiCyTseXEsBV8tq5NCh7IkGYGuJ9CyAzJ24NXuc9B68GL32ZgtMwol2T+zxnRibesEUDpafX52WAZbH42nS/cWC5L+kDVKWTMKs19F0+7L5Pdxywjs5j2tBcby+C1hWDMAlw4xbdMDar2pjnWrnicwlQM9dXyRsiQka3RQPRTDKqed6dmFrWxtZbxoyQE4fW9QoHTcK9Ia2x2C3WsD5/azBtobyAuoVJMNBRg39k3s3nWJkeSBrGq3lm+W6WxVume2hnaHcG3RDrxQnw+R4iTQ8qT7VdNAJ3yn0SxvwTCnN+imLu0JSgtL1AxSN9ZIQTLtPltENauCl0E31ovWRqXzZGWYWvOlk1xLNb1ffsWr2NY22rhjFufW4okGlbYznjyImdMp07omCST3xoRwpql+m93XluRV49dV09liz+/2BbGoqMaIcTOsCJ4Adqdb1uQQqfGEpAB6QPzxrB8EV43eg/Wt45NWVAeAmfk7sWHvGE59zuvhSbGbtGCost7a4ehpH5D8X63jP5Xl4Gt5HafdnE4n+MxbDmaP6XCDryKuduKZznzWwNFnsAUuSvtYHhp1SdoZMt2YNXiAfZKZYCtCR+k8SQPiPdTL6qfw/3Y4ygfx6Z1F7qWaEXPN/CpTAyD9n5+ocTW9uq8299EbZA2mnRYzfVyVJmluYbMbcKsVO2Frin65d5nmzePB0nKpxabCTxSIrIOdGQXiFuPltrwqU2OhqpE+vbPIJbjKx5YsIoTP5e1lPN7fbJ+M0stfN1LIeQuIsVZQE5iMsXkFHq2oHaACzRSqZ43pdLWwvUHJ/GtaKE6bSNojxzKYgtVNBca8nR6pXUzwqU8iGLAWlALWBwIYN+ZN4xk9WHB9S44RgFrzyuX898rGEpdZ1XOLK7xRRhsKCHciUpP0nUoZ4NkbkZYlsmQtLquGHZbm7W9VrGdt+7SR+128Aah7dbg7dy0YmC626aP2Ao5lBN5tax8NPaAaFmCnyX0xv6gBsGHsJ92aMTuvzdWw9QTZ73Z1QyHWNLoaOd3SYgSO2u7ZeW53LgsGsFVKVUtg7e7xvGZcMEhYRgE5YuAB6VdMVkPGe7qZhMCJKBcFxXw7PUGpue4JYnVnHlp2XaZw4WquObWnh8FetycbdloMC0tqzYJGGk5XNGgFqLSMJ9Mm7gYcoOX1SySDr75bVCbXx4mEsLqhUI0BoAQFOjNPa3vV6D3y87ib0njWmE7TF1pL8ehEQjK1rdImz5zY4e6d3iDWNeeyVYv7o7Zilpk217OWd0zcDDszyrSF9qJ+hilFMFsdqB9bAOf2wxkI8NmnM3THxM2859c058POimLPm0PY9chglDNiUjBQaSUf236luzaWjCUgP3ZJH11670RCHI9AfvC6YKBbHymg2OkJYs64Ni4YBqjzqVkXFpbUmv30BGVgr7I4kBUngckHgIAwNPBrm/MMC7gbIE+MpxQcnf6AmqOioSTAhaOGS5UdllXGt3WMYgsW4eBQ31nyGe2+1hl9J+IW/GJhUyUbEEdS3DS+ZDESlrEXrbP6mYY8tu1KaTHSrHEAgKjFghEpaQztu0dYub6kUa6vst7NLmhlqxgp27xKK5rLDwrXMb1Y35Ij+4q4RfMoqYIdjmLD3jFweoJG6nMI4HqVWIItpV4FS8Atzqk/d7rCJw1Gph8fTgyfeQw93zLRTPNFGr0kJk8IMCEhmDl6t0tUiIH2uG/oFTTtTFUxVs/drYiR0x1yg+LoeY2hJMYckJolJxKS2q1M05wKwMypTmfXgek6ReBYMg2esDDuknfMwClPGkWa362TXpb+iURIAOM5JxJiVyPpVw43CNADeo78R7dNx81lVZxRaUFJXaLp0nMZ0nz1uQpbSE20ikVwIq72gyoU60SeGAT98jT+1nKhP1YzDXZGjLX+t0zYbrhuyaBZS14smnsOafMNE7/QLh41jlsmbOeAcBIomVn2rHMg6Mhc8boLVEocuw5cBMANsCY863jT50fvEv4kMwCjTzscxc1lVRBxm7OjSGRbeLD5KnONFNNCAZlREXD9YYXFmqp1e7Ilc0r41ZhBfayb9o0GkBi0PregGV5wItKlgJgIHWeEAwoMNvqibaW5ctCYWLCkFIq01rqgpqwQz+3ONZix64sb5f7SXJYAsFCcbPz0zHVj201XCMqSEwnJoF6VlYjcD1zNqyuQEO6MjEo9QRYqn95ZJJkqlZmGzv+j26fLs+axngLA5rax8p2oqZFjJpA0v90hLCnbagREEnNEe2rD3jFSiNTWXPdXT2aVfL7FpXsb9o5x8aaEgCdqK3kdqSKudOFzM7zNKZR7hwJmF5dsc5M10H7JjCbQG94TkRDKr3jVEGwBwE6JG/87kRB+vuWLvOfJ6sBnkFM8u/3clldluN7oAqLRV9jNgkcKlud258q/yf1SU1pQkK4djmJFTTlbslbXFxrnJNWOGfdghj3g1oeBPBvkVuR0hxIqP9O+Jfzq9GZxWXVCwC8LX1lRtlBSHKB0/QP3q8+VoLsrzbUGhaNYo5QtG3eMl/1r/vKG8ky4dyxnwFNjs84YwLLaKca8eE01N7IfFK6T9FK5F1LChJvLq+SYs1yhmIVzx3IDwBV9t9NjmDl6d0LmsHV7svl+WVK+RbrNeYQLohE2HJ7TtYU7eK0p8J6UGBzQrjLx6XuJFEA6noRjuZm5PMLMidL1ng7gCPtT/fhwYvjMY+jGYtdP2Q5Ln0Iqb25nuYy7znyxBgDgPMW6Bpvb4oBTt2iSE1FpwLxVNlU6RfJhB6RmmsfCUrpMG/rY9itxV4XUxN8xcbO87EtrWKtwZ+UG7o80jaTpun3yRiPbBWtVwlHseuMCJr66UOKFx6qvNP0Tu5M/BwBWzGaNDl3YTsTN+CCOpbjEzpIM7UPV8pJeWS+ZS8Lf4txaIOi4xFrLssAXryYU2eEo5pfW81icrhAzQy6i3Wd53XRNp+YCArh/31xWhXnZLTIIzaP9gyWwrG4K49VrLeLPM6PmxS8ggw7VfJZM2mLgbEletdFWPGYnxIjIf2RAHjOU3n71uerjUhfC0zuLkgb5cTVbTYtHMC+7RaYujLjngWJPnmwvNXzz9X21oq7c9VlXmaZYa6/1wQyq5rtLQgppLvk5pc3VGQnep9olyQJSt3IV8ghvc7NbmRZ4XbfscNQotqeDni2IgvvszChnRAJcIcEOOrLoGAm4WjabNc35xjm0s6KYnrubcXjHxM24KbdOumloAqQUyrWx9AWloE3rFbe4AB3vca1YnI5vYqJJq8tjyYxysKiIu2lDaW7UzrK6Ke5aaIKPrl2mPPfUP/tIay513nOiW3YuPv9jF68kiCimhdJPO5EQZue1MfPFQd1qrZbXT8btkze6iyi0PenZszT+bR2j3LXXbktv7IQ1eADTR+1152zD1LiSz7/66NGaKw1GlQqh3ZDTyHE4bBmA2xbtd4uKN2p02U6P4emdRfzO/NJ6UOFK2GZ63HU7cjB/fDP3v6xmKrevr5Ns2I3FoR8qlkljoLsKjpa9y3NfiKMpHEewujOPLfriWIqZaljd06wwi4Rw1pkRA186zXAiIczK2wknEjIKSOpgZ0axurHQ2PveNeR5K4HKzojhurHtuHfzdVhRX4YFJTIb3K0VymJe51YhpoJvtKcevPIZyeQPBKC71a5ryTVw7MU5rQOEJdPSeuIY9ErqnBIV4P0AyPNBAiQgFSxLJ25xlQO8R10aatkCC4vd+B+ynidVop5m4FsOTg585jH0Xx3FMpWntsnjwnaDoJK4VgAwmEtOG9YTZGaBnrHDUVxf1GRobelg6bBApSjVNSrCFmYsgvqe6gD8tGWGFCosBxAWVtSVswvPz7d+0dWApsbdy7U3iEeqZ3BQI4GXwaGgMVcocQnF0olbGC96phZjnBpDTO4zhmY4HMWDzVfJi9Pjk+vF7/ySeg6GfqK20hCsYEktFTF3NHYOeou4Ad7iaEpCMS0dr/rfRq5zbcwLS2uYYV3eXsYxJjSmedktuGr0HsONx+hD22dUTZu0ebPHKvcIpVm1w1Es2z5VaYvlgLh6rsZXsBCg4I6Jm2FnSAZ4vkp3R+ZxXbC9KbcOC0rr+LIFXCZbZzQJ6GKlCsl0Hmj8qxpK8N4Hg7gfvTIv41y7zPSx2Okx3Dl5w3EvG0MY1AMQVfssIKlc7HdNfpGrtlLKQGL0yI2CmWGFz7klTXC6Q6zRs8OuFs2JhLCopIbxMW3kfnlpDhowBUsCYrq08TvdIY7/MPaEEp4BsEXLmJ+uue8JYlPrOGboH9p2lbTOaK4FADhdLeVqR9zitIgAgJBw3WPCUViaH7Mdjro57QVYC7ugrI5dBakvEgqo9sWt5Zs1Da06i+TSo7uAMZ40HOl7zkrynKM953HvePPdMw2hzg6rmAViwNXvdXuyE2oP2BkxHidVvKZ9dnNZlSmUUPsaPSdhdOaEDnd8avxzi5r4fbLgMBOdYSZWkOMEn6252a28jo/WXgknIhUblGdfj0UxkhdkRiEsAXEkxaBBuoZ46cQtMqYOwPwC14KkK0CMgFdtnWjMi0q3G3SA11Frg8bz05YZLLAuq5nK8/yX/I28PsIWZpY+do1L7Ju+p3X56OMwfzwvu8WwFFhRS7pohqNsebwtr4rH5hWGaQ6UrEC33sj7wL1/ntudyymfV3XIekaPbb+SnyMhd23LBFkZXp3luzbPk32mxI3zrv823BgBQ8kBqGr2ap8tyat2FSFqTuSC6fQFOXYs4Y4XwOrGQq5bQElQ9LHQ35SW2ImEXFc37zk9DcEBEBfWJ/pJ4mXsgwc+88IBoMzKme6Ftry9TErzlD88IBKya+iH4tEdU5lICo//nRMJ4dmGIpfxE8Cvq6YbBaOc7hDnhdYZp4RUijqh0HyEf7btiwnMibAFrJjlFk6i+AnlJkCl7PkSBTBlwh6cdWbExUtYZ54sZo71AihsEdC0R/QduS0szGlgU2tCYTOAfV/JH1LiV7a3uKyaLwxr0ICcpzITEzy3OxezCtoBGxh/ydsG/omYlV7+Ov5uUi0zVTNH71a+rSJ5wBYxa/0B102sJygvZmFx1iYi2NcW7sCsMZ14pjOf3RzsjBgzzvwsaaZtWeBrcXk1E11ylYAtcHOpItKakGaHpcnazojh2qIdrFmj1JeEu4d3TON1W9Uk818vq5kKK27GKzzZXuoGlSsGVw8yB4ApI9ysR5QxKj2sYiVU/1wUSADp4X5AAHdO3iCDUSMh4MNUAHBrPZBbjnIxurZwB5zeoKz7QXuerF0ZMYijKVhUuh235VUZmYqcniDvA9I4kivCg9u+JP22FUNFcyKLGRcHpAratvzMzoziibqKBCHl1kkvG37Tm/ePdM8Oadh0Vz5t/+kMoJcRcXqCsCxINzIbhiDqREIQH6cY7ekxA3ocC2l/GRdafQRilHSXLHYRseT3nHZTrTmndg669TpWNpbg0e3TcX1xIwuv1hFTA0xMA9EviikhRuTmsiqIIykG48hj0lxGbi6vMjTPsIClFZs0gUmc0LIpjqVwbRKdEXciISyvm2xqwHUXDVI6qHVY3l7m7jdNS2/QanUO1u8Yj3PP7mLaUXr561izawLmFjW5690VStD20hrOHtshrbiKllJRTifiugjpQqDTJ/cej69PcxvKisI6Y8BIF6q7iD66YyrvH46Vg1yfawt3cD9zs1tZQOVMQaqNp2qli62svaIhX09pC0lDxbEU486iMT9YNUvhFEyf9DsJAETIMdrjNmgfREIYNKiX8bKqoYSTeDg9QVhnDEgrS5dkmJ2eID6IZvLztDZzs1uBgOAsVzTOBKE24N51ekE173raYTd+EDbw+/rCpP75+j4y9hngCiJdZjKPWfntXESRBBLCI9Ggp+omybs1LeYWUfPU8Li+pNH93wKW17rWDj1eQQiL9zmCjjHHpK7KpxE4qqjZJ/3x4cTwucAQacmuG9sOO1MGxeoaAzsthvV7x2LWmE5X46DFKRCBoYJddlgVfBEuE/B800T5XWYUN07ahtX1rgmTiM/i8mqDKBkmPpiWCzadKz9oXRNJjJcICLcypZZP3g5HEYDDF/fMvA7AFqg+cIWhgQEk47C4dJuhPQBgMinhaAKDPbugFcdiMgvUip3Fps+xhnOnO8RtGsWOhNSeP9leyhfedwvWu/PUUtM5kRDWteUAADreGOriSNNg1r06HCvrSlmbSdUpaY4U40A4Z61TX0Dzh7fYL1UEBDMtTkRWzkwPSCLudMk0ioB0mfESfLrsAdOdwk6PsW+7ESuQGWXrAOHx+SZPrAy1rWfV0IMVHSlcLcxpYJcgJ2JWsNWB3LMuSv+YLxUSHHojsgIu4vLCIAsIAgJ9PSlYOnkTCyh2OAonRephqPK07ss6PW8XLkz92GBc7LAsuLQwp0Fe7oMH8FRDOX7VWsmFpkhbSvN7pjMfSydtYrzT/qF1JHeeNXqshJqnV7Bm32EFU0YckBYbNb652a383fxCiU/YQmrfhXs506VuXvYuE0wWJivguP7hnsrkX5nUyMHeN+XWGWeOnmPtfEyeSQ5qFpB54hWjtKCkDrPHdhhWJClwmq6Tm3dqPvxprpseuTM921CE+UUyNspJMxk37/jWNuUZAfNP1FbiiyXtbL05HqRRVVxNoP5Va6URk6W7+5x9VreBN6EVw9M/JxcOes+bhYbPf1ZUCkFaGk2dsftW5XrcXFaFKy4/zIXV7IwY3v8wi/FU0znCzdhEfuVaKl6vImjt7vGSQdQsAvozcmJyraZM2AM7LYZFxTXudw44TTKlnOQzYCkhRphWBAAsiDsRmQb2+aaJck90h/BsnVsNGDbcgGGFf6cnKDMpKTo4L7sFcCxZQZwsQalx/P3kKlBMDvUlhVgXp9YZWhrRuIW8kYfk/s2IYVHpdt5Hxr2oaMmxY+nuMOk7x2J8UQVjEpC9ChUnoqozp8VQfeAKE++avz2dCR7z4AFOGct7qCuExeVSk0/pc+20GBcHNPqNBqTFtCfIcWZ8hjJiUqnWE8Sc4mam1XOzW7k+hm7J9ioNAGBFvUzSceOkbWpwluFatbozz1XsqfeuG9tu0mJFS3jeMdtVXuqJDHz4XMH/uHBwzz33wLIs42fIkCH8vRAC99xzD4YOHYr09HRMmTIFu3btMtro7+/H0qVLcc455yAcDuOaa67BW2+99anG4/SEWEs2KNgHJxLCu1HpGkGp1Mi3c92ebBmk5xH+6aCt6ijAzZMkE/Jkeynml9SbWlDFcDxVM4kxS4yG0x3iMvJ6u3olYnrO+F9jZg0mxJJ+hqxt0oMRlTmUgv427B0DPYMCayMhGdajsXTu28vkJvsbAC5MPSL9GtUFpxMRpyfopmjzpDbVGfprC1pZW+9EQriv6hp8v/IF1wqjg0crngzY3Ujr9/qiJtjpMWZm6fKk+VqDBwyhYM2uCfK94kbAguGjfEHKESyeVA07K4rqA1cA8PjCs+uA6R+cDIeslVHxFqsatQqYPUE2GRNQfQPKgkP98FoqbRf5mVMAq17BNkGbasnLhdol/Ii47e7ptBhrIalq8q9aK3mvMEMUlv7SXHhHxSJsahvLaRrtcNRY2zQ76qaLVQwT+QXr+4TG/mjNldjaMVoy3dpecLpCHCtx++SNhjbOu2+l8GJ8hM3tY6R7lkoJqgcMMpORri5/22RavcH0usl/WNqHSd2odBz8bnsRB3tTcLfua2/sec1H2LB+KVellXWleL5pIpbVTlF57DVrnwDXUbHTY8gd9hbj9eZy6Vqjpzska57BlKh1ZTcMJTz3OCly3IrB2rB3DOyMGK+ldz52ZpSDoe1MqZmmJAJUCdZQlISj+PCjTHcukFpoXTlD601zMqqEa9ZMHZ+rO/NAKRtJeJo/vhl2RgwPtUzHEzWVeO3tcwz6Jo6muIHH6THXeqbAibgWVT22JOk+VONZXFYNr8Y5PaDukgYlDPR4UorapuKIziozjjHX5WVmTqd5z5DV3JspzRLsQsPj87gUUSIA3VXU6QsaLm2Lc2ulxaJecyGiGAk11hn5HWg/dBGfxafqJsnYEc1VjPbe0kmbXBxq9Ju04rBdQXFJ+RZjvfU+dbDDUTgDAXf/aEk6ADcLmtMXxEMt0+X+JIY6S8ZYzS5o5Xtl/vhmzM1udcequf09VH1VQjYuru+i8P3c7ly+B1d35jEdoPTegLTA3z3lOY5FmFvUJM9QegwBy2GawJmTNEWbjovnduca53pJXrUscNjl7kmD30hSq+Z0Ar9C8smB//E6B/fccw9Wr16NTZtcaTsQCODcc88FADz44IP48Y9/jKeeegojR47Efffdh+rqauzbtw9ZWVkAgH/8x3/E2rVr8dRTT+Hss8/GN7/5TXz00UdoaWlBIPCX5bOlHLgXPfRvCJ4XYA0VQNoCGBpEIiALcxpk0LCqeMhajCS5kQFF5G03t/LSiVvwSNWM4wb/6X3R+wnBWJ73iCgmVLhU+Ylnj+1gE6TuIqS3Td/p+Y31PuePb8Y5oS48sm2G8d3C0hrDbUOfi0s81OfkVqFXuVWafKrk6H2WrDBU2Zhy2dtp8qLWC8PoONff1+fGef8jrgaMcrR730mGf8a5YnyY0eWMVTDWNkFo847Vm0Pau8Za9U99T+h7KhnkD38D47LewYqdxfiX/I0yUxTl4E+SKzuYEkdswD07TiSExWXVWF5b4TK64eQ4pXlcW7zD3WcRWTOB/ZYVHvVaFDoc9/xouL110svsKsTroI0BgMx13u76duvz0fHP+zCQWFnYeMbTDj3n/d47jmT4+m7BerwxcDZrdxmPWi2CP9sPfdalBL4kqW31udDZXdlYYtArwK3Eru+rRWXb8VRDOez0GG7IacTRWDrW7h6POyZuxtF4uhRQaAzdISDksHIl6TjpLGoVyCFcvDvdbhVeasNbJZravbmsCk/UVCbQQ6c7hDMvPIqP3x7MVe2JHi4p32JUDfYqSo5HT//s3oF0eeR4D2HBqElB89bPiHru2sIdGBzs5Ro29Pzc4iasbilIsAgyrXLcuIJktDphD7C7mbqrklXT7lXxEarmhxcnBv2yE10wdbgzfxMeapmOm3Lr0BNPwaqGEmSe343u98LGPnUiIV4nY4/QeJPUIrgptw7L6yZzO/+SvxEPVs1KuL8SNPOEJ29tAe/ctPvzeHeAXpVap/8nwv2fox0IOZzdyukJYtbEnQjacTzfODHpPtfH6K2SbDynJxjoM60S+v2o44r64ud0Wh8NAAN2wvNy3H2ndYXkX7SUID3zk7k+9XbH8E/59afdnE4nOCniUzAYxJAhQ/iHBAMhBB5++GF873vfw5w5c5CdnY3f/OY36OnpwX//938DAI4ePYrly5fj//v//j9Mnz4deXl5ePrpp9HR0WEIHH8pkHWAfG/5c2X+nTl6N26ZsJ0Ddcjv2M2VLcz/4Wp9yE1Jz3v8yLY/Ixh4szhoZldilHXQtW36Z/rfzzdNhNMj3T90kzpnylGWES9BJg2mE5Gp6h6pnmGOTUgzNmkE5xY18XidSAhLyrcojRPcwKnyLYZpnbRyr/ScBwC4s2JDQhzD8toK1+9e+S47kRBWKsaGCJ43OHq2sjzQ3G7IaTQZU7pI0t2YkwRCmUSrSFpvgpkTO1zzveYWQs+Tz3Gyi8K7XgazQoWi4GFWM6MJjCj9Jk1sy+uX4ONYBgDgwepZ8j3NFU0fy/zxzYgNBPhdiUNhujx5Los549owI6/THbvlus45kRDmFDazYEBjBsDVawFX+6bvafpf35PkyrCstSJpMKmOA71mg4FbJ4nGS73Pml/Nf5vmbIejMjDUI+B5++BxdCutn0h85v7mmW4wqWoXAOygw2fNm8qY0wdqY2IcCNcy6PQEXZcqgLXmTjQgz0mSok6r6kuMfWBnRqVmPj0Gpz+AFbXlLOw9tO0qLK+fLGmIvhdVsoMEECqWKFPOkzK4AMCi8u2wM2KylkFm1K0ToOZHGmU93SrBrZNfTqCbswtbcfRoBuywrKSu08NlNVMZP8Z7ljDWiOi73i7gaqN573DdF2B5TYVcH3We5hfKsZZf8apLT5QApGtdn2+aKC12eg2LzChWNxUYblyAZIoXlW5nv/9ZYzqVy6rG7EU0axGQuB6U4CA9lkCDqEaFnWVm0sod9hbHxbk4c1+bMuIAZ5mj/n5WPRMAsHx7BQudaaGY4R5DLm1P1FS6bStcUY0MPpP9rrLC8IWHpGl2plTWUYIPb0ZBQEtjq4qL6XiiZ2m/6GeM7sWbcutYyPsoFuY505gpMQHg3vvG+dVjU3pMq4exDMq6t64lV545soiqAnZeC7MddoOgE+IYdMFA279cSd2SCSpunfSytF5plruFpTUGHhj6bcMSZ8zvNI858C0HJwdOCoYOHDiAoUOHYvjw4fjqV7+K1157DQDw+uuv4/Dhw5gxwy01n5qaisrKStTWSrNnS0sLotGo8czQoUORnZ3NzySD/v5+HDt2zPgBIN2KVHDe9YVNCWb+dS25WFYzVWqIeoOun7mW1lA//DpTS1k+7LAkYnxhn0DL7tVS6387kRC64mkucdCYVac7xHmNAanJJRcn0tJRJg6nJ+gSCiAh2I3aXbt7PAftct5yD3Eld5VbJmzH6oZCw/zqpl2T/88Z18Z5o2k+djgKOMCmNplN4uEd01yCTQyNp2/3c9cUDUvGbOjA9SUE3GBiwHS7yUgsiuMyvMJdO7gEWl/zxbm1WL9jvGG+JyBT/eoG5T7RLQUmJ6KCD9WFSxlNCI+8LiqLis7gHi/oVV+7hSW1cPoDeL5BMus3l1Wx8JRs762s1YQA0kZ6MmjocxNxG6sbC7Fxx3g3OE8JbQRrGgoMxoH7dsDuFI9un85CyLX5rey6xWlPSSOvWVZIYNHxnJnV546zXzKH36n8AwtYVNFTd9UAXIvM/GKZDYv8rHXXGEC5l6gaIbq7F+9T0tYp4LoBEWnt4HkrsGJyrzxbr/ZjzGYmnNxmGDzVZ53ukAymtLV9ozL3bFUWE1oPpzvkZivS1pDWlwKGvWfa6Q0id8SbzBS5+8/CI9u/4O4FO5HR4UQLmVFpUewOIQDHdR1TAsi0kfuxtkm6R7C1qc9kMuyMmFTGWAKz8tvxRG0lt8NjjYSMOjJG0DUJAaotmTFJfamy+yzOlUkKnmwvNc6hji/OzKbRHpmPXz5HRebI2rFtl1tUivbevdPWJIybYi70O8Hpk4wnZb17sr1UuoEo5cO6Pdl8BpiOCfOcusXEkMA46jE/ZIEEpBWJgq+dniDaD10k6ZbmfkX1CgBgeMYHsAYNYFrunoR50Xm9ZcJ2fPRxWCrJVP2CZdunYn5xPa4vcdOm0tmhvW/UJICrMDOyO6nfGYF+c08It8aC0xPEU/XlHDSsJzPQ8eUVrOQdLy01H0cz4ERkPZ+V9aWyto1msdm0cyzTGl3BpLuvslBJMRCksApHYafEDUUdz9vW9pu6/4gmLp20CbPHdiTlEQDAEm4gMZ1TvqcUjpbVTMWy1gp2PSOhYEVtuYkLJdRa4VhCMpH545vlmE7zOgd+KtOTA//jGCouLsaKFSuwYcMGPPHEEzh8+DDKysrw4Ycf4vDhwwCA888/33jn/PPP5+8OHz6MlJQUnHnmmcd9Jhk88MADGDx4MP9cfPHFAAA7wyVCzzYXJpoClTaR07nR91phGWZAyHQqLGb+iDCk2TLIjXNUR6TbhvdS1rVbxPTqzAcxFEvyql2/xYwYZhbsZM0tIOMNiNjzVOhvYbkZddT49HEQMWUmMS4zHOnBq7PGdEpi4QBwLDzeNgnT8na7MRQKX1wdOuIWbSINNTMq5MfqJdDaXG6ZsB12WNNuaXfe9LxdsMNR1i4lCGC69UbDKY1TFxB4zTQTNfn1EqHXs1ksby9LMGXT32cFuzlHNwkCJDA935zHmtXeeAqPeVnNVKkZ1FLHcrvKAuON03ARJbVAK+rKpauHOr3L28uMi4suJ2ZOsszvCLyCRFKNm8Yw8OVhC9m3KhhG3xEO+JJ3XGFk7e7xWLNrAhbn1soAP2Km1SU5OWef0b9u1eruSnPHlRqH0/P/s/fvYVZVV7o4/K61966iahegxqgxUWMUgaKu1P1CcbGCPw4h8KM52ARTjYeDhzYPR4/Hbj/7lrY7X/KkO8foodumtWkJLU2H5hBtwiESRKj7/c5F0cRoEpOYqFC1q6jae6/1/THnGHPMtTamtZNuPuJ8Hh6gau+15nXMcXnHO6IKp0/wBNdcrkGvsxs3nmv2jgpaSH4nQS4I/hDx0Tj3jKEbdMzvAYDYwYjWUNKmMkmA/o7jKKOGDTi9BssXjihDYtzey+RZPHCyxOSVBOEr1IfAOsp1XpU/wsWVpGLs5qQwdPYG3FnQx7kpqqO+dY7c3BR7d2+9/i0AhgWKzrCbl7QgQtS/o0P5vCbENBXkD/QmokoB8R0c6lM4aMloFnSS0NisMWvDyUvEcO+iF3i/0ueealvMe3R/XyBZnfYIJcu7Zp/457PMmvqBGg/ZBl+/omIYbjyJLx5fa0UBAbV+lrIr5paY2YitKhjVJeeJdEyF5IS+G+CB9++6qh6sLBtSzxAGvVwjfpejaiGQvPamIir3BsZIPzY0n9+r8rB81Nzyfayu6Gc41wFR/f2hxYcwOzqpcPMTUStqL41QALjpxp9bRfbIGOKE+omoIgogj702rIh0gJLEb68YZcM+FF2he0Q7kJyUw5FZN66e5caTKkEeJsdMGkxf7b2DjSxvImocOHT+KGdKMLDxPk1GzPmNJ5UcCO7rqM/3KKCKEz7XsxAgUgyA5QAArspN/19w6480A6NhjCN5Tu/i3DLNJucllIyzcqYiPrP0ufGkFRm+lJvnOx/oz4ftvduv3DhYsWIFfuu3fguFhYVobGzEoUOHAADf+MY3+DOOYy+M7/uhnwXbL/vMww8/jHPnzvGfN954A4AROF4iFmIgoigBJaGR0LRoTX0AvgNHYCo3VnfgyuiEYePwgScH6/Fnlf+iqTBhKbMMHdBegqaiLuOxSZMGYXsk/uZEo3VwDw8UKuHMk6jHoVkQpHdEemy8RAx1BWfVz/X4nNnTtkKi37O7vY6/zxWBxZQfPzuHeeHJM3mwV7MhBDxYxHYC36wBCax761/AQ4sPmaHMmuaL5qn2xfAmowp+BOD3yo7g6GC+xSZBc04XLnuCaDwzUkYh0RRtQeNEJjjTJUzGkfTQ8jMDyrM3HsPrUx+BLwu2eWbut9Yex+zIJLzxGObHf2zWxVchdKlAU/vi0mcvahjI/SkVDnp3U1EXti06avWRkqu5zyJiII23IGWkE/HUBXjBRMruX3jMmi/1Dx9B+IObJ1i9MuRSPNWq4QakyOuKwJRHoJRFWDR+1hikseeZaI68cK2IRkLB07gFqP7omRurO1iBIOz10Zfm8bxTPx4oO8rjzMT/TjAH2XffBzDtsrJMUagbZryDzy9qVUqpNNombd754DuoQBLLhwCUgcYmYWD7uyuYtx4A5t/yY3xztAwHe0rNd4Wxxw4LHW05+yMFC3S0vOJ6GQlj7DBMRCdJqsEDe7urVIG2XFVUilmKBNc+9f2bo2UZGYb431pubajqNOumG3mY11X2wD+XZYp8kYwQHvi1Cwbhv6u896QQcdLsRBR/+em97Nk9OqiYY/jsXDAUrIf7C83eEx5WYvPxJg3kaVHxGXudxmPws4zSSe2uom6jLArooZkEWMatjHIcOFmiCncmNJxPfJdkYtWnXuM+/1N7DSu0y4tO2oxygCU393VWws1NoW34NjzXvdBENlyjuH71xEoF9Ro3jicl50ztACftYE3+EN74qXIAkqwnOUzRZ2YaI5mYdqxIB+2FYy/rSE4gp+AjV43bRr3v4P9z+0Fkars7laPt8ZblBoYj4Dibq1sYtttU16ai2CKJl/pPaxKMVrDszk5bSdX0Pbpv7yrq5oJ499YcM+vn24QiVJANAE6/cZ2ai7SjokHjgTsStvHJfZlh8skcx2fGJeo7Udh6EwEY2yXWvA8QNfiQyvSXt1/7DMXjcRQWFuLs2bPMWhSMAPzsZz/jaMJ1112H6elpvPPOOxf9TKaWnZ2NWbNmWX8ALXBEOJuUh/sWHcGG6k5sqmxDrquYFwj2QAVVAHWQ7q1/QVHn6cO5d6QcV0UTTGFHh+2Pjv2W+k6eraxYxWwcHRp3oS6li9g7v1PfYuNxPceUPQdM4bEMVI1BT2LHqzeHlI37Go7AjSeZ4lN+n5kayCMiMMPwgLmf+Cm/h71X0uMYT2Jvh1HIttUaHPGmmlbMdC8wTt6biLLCBQDE1/1oi2Jw+cu+5WqMGlMqYS62EWd79/d2VJu5mRH2ylnVTvW7d3fUGY+pFOyBublj3mmsqhjA3u4q9V4t7LcuepFD5DEnjb8eUMmVX2teYbw4AvvK79DC/JHjawAoRZ+8Z07Et7nTAx4Pugx3ddTjgmeH5+UFJdvm2mZWmNgAFEqzn1ZFuwiOR2xPoWel1NjvKWm1aDgn0zZ0ixVI7fF8tK/xoqHqvSPlFtRK0mGuyh8BXK3kOIKtBAgpDLLYj5urqoavXTCoQ/+2EkFKKhtgYi+z11KffSpQKM+mlzDsOLs66jMaIIj5tvcXykh8ZrjSMvxIIZVKQbBtqOrEHqHEubkpNuS8RIydCFakyDf5VN5kFKdfvd7aj5YnPuChhgOlPMSTrDzsHSk3WH3KG0m5YXYm/f29I+XwJqPsqaU5DeZg0R6Xc+XGk7jm6vNWouU3R8uwYuGIqrCeiFlz/vHsd+DMnrY9nwF4xP7uCvhRMyZ6D1WLfvCF3w4pVnfMUxAbd0aKeenXVfRaBj6zGumo1vqKHl7DluG56ruc95NZedvdUccJ3IZFTCZHIeS9Xlk6bHvnfai6JZ6DlfMVWxFFDzpGb+X3/natUTKPDBXgYo3uLmWUgwk7PnLVuKLKlvOsn72hsNeOnOj2n2u7uKaKG0vj0ZY7GP4Fx8dDi/6vZXRy843DgfZuKNdE//1Q+fOK4Uri6B0fXznxGQCKOIShn6LJ/3NUxlORFKr/s7utDk8P1ahzOzOJBxqeVzCgiShHheGTnA07liwoEmDJ6WeGKzkp+pzOKZO1PCi/ZU9HTca+r6vqMfJTO2A4ahmgJeV5k4QZwvgiCluJvviw/ea0X7txMDU1hdOnT+NjH/sYbr75Zlx33XX47ne/y7+fnp7GiRMnUFurwl5lZWWIxWLWZ958802Mjo7yZ95PI6tXHkb4Dh5vWY69ndXYPVzFSZRES2clB01EMTuiCrBIAS6pMQGwsCJOeKkAkpCTRWDkpUQ1E6i5cYXb5cs8YT8veJmyhxdGiSHhQG1Ddaf5zmSU8xMePXEHf488NH89sNjKA4AjqDRnJvHSD6+1OcbHwswtLHB8YHtLI39293CVqvysx0u0geSpdPNsTCqNSymGPsMG/PNZDEVw8xTukjzWXiIGx3dsBU7SL0J5Pv+s8l/UL0XyorxgyNNPvNBuPIntLY14/sx85ekhnLP+8+RgPc+ZHHPQeJM/JxgRJbN5iRh2tddzJMVPO6rgkcCme4mYHRGLGwhF8FJlbL5oTw/V8Lx5CUWJRxW8ARU54MjUpG1YW//W0mNHq8rZ2VDYq85RbxmPRZ4Zq2AcRZN0BIrhM2SU6n9zMTPoaELEV4ZfTgpTntonlPtB+8fNTWFnuyp0trW0WREFNC/nImhNtW2GClA3fkYwEiEvWkGVSXSBrCAL6FaI1SjqGQgUr7udMAuoM/jFJc+yLGFFQ8yZGxcwHt98jwy5DVWdmPKiJkeG3mnBoez1lPkVzJNP+4qUG0poTxiFlNiJWNYQLFO/a03+kEUFzJ55jZffWnucmczk3LMiJBS/n/18Fty8JEew7izoMxjrwNw+3rIcXiLGz814/oT3XX1I55H1KqNDQtSoz4cHChFsB06WwJ2ZxB9XHDJzQt58APu6Knm912nDgyInQbpi7oo06mDTKVvy1QEeXvJteBNR5dCSCck+5cb4yIkkLaIANzfFsD2irPUSJrJu3S/CW725tll9t1JBS+8q6sYv3s7D4b4iKyGb9q80zqTRsn+0FAf7S9S9lYzASSuILBwFV/zLvuUgSKI1L0HqVT0W64zo93yFSBokfFAbWJuL2/F4y3Im8pAOIfo3j2OmOttBMhN5nzzWvwzP9akIXNKPcL85d4TkWSCx16JPdcNjCEbV2JifmbTGJZmzDpwsCdD4+hY6ATD06kGHivp4IBKcod+XWvN89wP9+bC9d/uVz9CDDz6IEydO4Pvf/z66urqwbt06nD9/Hr/zO78Dx3Fw//3348tf/jK+9a1vYXR0FJs2bUJubi4+97nPAQBmz56NzZs343/+z/+JF154AQMDA7jrrrsYpvR+2+er2tjTs7xk1CiEMN5nujxIEK6qGLAMia+c+Az/3rowEjGeQSqo83jLcpNcG0hqliE7yb7z9FCNfdjpj7D0GYubAW5AQl2yUQQ9Nns7lKfx49e8a/dfe+KpFLylpNNlkpPCuE6U9iai8NOuSXLWApQYJQAhbLSwJ+XPem+GiAlHXHLCl9TBU4U8j48sOcCYXTbmBCSgqaYNn69vNQocYISvfu/ekXL8SfdneX0kPndDYS+W3fYyww2s5CXtPWPlNi+JlRVDiiteJMSGKPj0z2Veh+UZ01h9Nsr077JzDM5UGpYyAZfXSTKoBC5JOZ8PlT9vJc3t76zgCt6ASkjm0Hdgv/lp136eVgi9sZi5zMgTHsCY7+6og5unaArlHHhjMaxcqBPofTGOeDjK4sbSrIAdPKUgHbKgXBC/v2OgAcTrTr8n6B/z8E9GmeXKuhQnoszZ7uao3AYL5y+81ZYhKtZ1c20zPF3zw/Le6byHxrlnjKxIO3jk+Brug2STormR7CkAFGbbVzk7axcMYsqLqgJ6cXPm1ld1W0qEOyPFLETrCgawqbaVf7+xRsF0li9UyiNBPZyYZ9ZEJtHrtq6qh88Y5VU8e6oYP0/OtCBGkmmF8nOeHKwPOT14jsTP7irqxk+TszhyQP3h9ZBz7wE/uPAR+3f6zFqsTzD7/O5iBX1SdWFs+bO6SpBBiKrq1Fx4ITib7J+bm8J+KtCno1fS+ROcT/iqMFfj3DOqzkhcVevlvan3+Vd777DOOzcybnwHMScdmicJ2wsa/da4xDkmmOzB7lK4OSmLspfWlJi2MpEjSCXWzUmFI7pSZjgB+WiNTewzofRLp4Kbm4IfiGbTH6qJQuNeV9mjqrOTHpAw9xfnbcnovzW/2tjV9w/NiRXVzHAXyMrLXiLGCrx0hjGUNkAkIj/nxpOoKrL3c9BRQfebm5eENxazEAjUP5JRvoz00pxe8gnJzgf682F77/YrNw5++MMfYsOGDZg7dy7Wrl2LrKwsdHZ24qabbgIA/P7v/z7uv/9+3HvvvSgvL8ePfvQjHDlyhGscAMDXv/51rFmzBuvXr0ddXR1yc3Nx8ODBf3WNA9n+obtWYWEd4EhfIf6k+7NGCIzHFD6T2W3UgTp0uoAPxKryASWYz2fZiUZCOQBM4SRLKScqwgCGWHosG0tPwhuPGYy84ysPjRa42xa+CEAUYxIXM/89FQEcn5OS3HgS3gXlhaRGAuNHP7tC/YD6Q0JOUJRK5ZTGuLujTiUG56Yw54afhi6/HQMNtmC/EA15frgv8SRXhbXGISMk+vJ7sOGw/WXHxxePrVVDoJLx+pl7OmsA38HurloFEZqIMkwgE/zqofLn+TnUb0AZDsdevo0jO891LwQ8s+Z1hWcBz+HvHeorZn72raXNFlYVAO6tO8b/fma40vLEbK1X68sc9TT3+rKZmrTn2UvEGJfPhp1oG6o6Qx7YoCeQFArphaR3c9OQC5kU501EVT5CwuBx+SIK5hdoFiJvIqoiZuJ9TL1K/ZuZxKGBIstolKxOcvxlN7/O//cSMXz99n80ifuE6aexCkNhVf6I7TWfqTyhG6o64eaksHbBYAgq9OCi7yA3MsXjAQKGi/BWE60sKStEb/v0UA0cBwpr7IAl7tqKXngTURwZVFCOpup2Prsr5p2yImtfKD3BcCdi/QLEWOJJ7Ohcgv3dFQzbkQnM+0dLeX7WFQwwzNKNJ7GvsxK7OurhxpNwUg7+sU1hr48MFFhn3BGRDrnOBJEgMgJp3Eml3BuLYW1lrzFqNasVeTGlF91LxBim5iVUNXL/7Wzs7qrF1bGx0PgtyI1j/j7cV2QZenSmqIChHIubm8LTQzUC6w+LxpGUaQBYWTwSMma+eGyttfekUkeOHlqPzbXNWFkxZBwbAM8t3QNkkB59aR68ySjumHcavjC+JHyH2HuCjWTA3pFyc0YyObnGzT0iI5L8HElooM98JlkNKANiY7WiByVCDi+h2dvy7DkBlLHvR3wzbpEsTdEv7icl84po2KryAWvM8k5wHN/qGwCm6nXjSc6R2d9doQo7ZjLoROQyuOZNNW3YWNuh5LCIDHkTUaMPZAkqYM1mBOi8P/E+Ytai+1buN5oHvlfGVN4Gze356Rn23AEWzJB/Nh52ynEfqA6LZPuKJ7GhuhPrFthzfKm1DyMHv572Ky+Cdqk0LoL22J8henUE/vksVvaairqM14YxuXYRF6bBJA9xkEdcC4oNhb2Mp91S3WwX4BJFbbYtfBHb+5dm9JBZgnYshnsbXmAWFClA6HP3lLTiycF63DHvNLMScb9d9V64PtZX9GBfVyVWlg3hUF+x6lOWZxVkCgrETM1/NwvOFdOhgl78fU9xm9OcfqH0hKKx1E0WxJHfIWWIn6/nbeXCYdVfiEvWNRGSP644hEeOreEiUZKtAwAeWXIAj/SswrqCAavaLQA7KiLWyGKDCf5O95fZS6YiFmMJrRtcWONiz7sDXgMn7cCP+NhWf5QrDSul0RTdg+NjbXkfnj1VDMcF0ufMvG8tbQ7RPcqxcYREF2OipFTLIyYgY1KZ31zTgqeHauCnXfgXItZ6yf0nW1NRFyuX9H43V3Hcy8JXm2rM/uDcEV2wySr+xBSNMMmxglrQm44ASdc6nxmLqyViZo4nonBSLnwRQQi2TMXbqLjgPSWt2NGxBG5Oyi6UNGEbwLQHLGNMQuUu4oELzq+c5wfKjnKeAzNskVPCC7Au6XUlWSef56QcOLOncVdRN5JehJ0NUnlYWTbEyaxSHrkzk1aRpA1VnVZxtUxt2W0v4+jAAqvfmT7PezaQW7G2ohfPnirOOE/B8UrmMSftqLHrfq+Yd4rHhIhvFYvy38mCn+VjfVU3ywkr2hvYp0Fnx5r8IcOcI9dHy+BFxWe4Lgftg4Y5r+D40Dzj7ZcFy/T45F6k9SH5IddlbVUvV6lXpBCw2Jqairqwq6cWbnba3FMBeS+95BULvoe+799o5sE351Mm+8qia26OTRUdHEtQZniJGFaUDeP5M/OVcu4qAwGALTNILsr5EetMzFqZ7lIpqxvnnlGUzIC1HoCWXZ119t0/aYxIOU/y+W5c5TRQ/gI5AK25oH5meaqGgChqSXvhYs2biGJ1+UCosCm/S8sZLtJHa+jq/e0DiCkI7kPlz6Pr3Kdw/OyckC5B+5TPTPB80dq7Y5d0EbQ/6WrEjLzYL/+CaBfGk/izqqOX3JgupXb5m0+OD+9CFL6mqfPGY8yVvSZ/SHgqTLGQ9VXd5ueSeQPgZ9Ah4oQ4X2O+x1V1SIaq6O9MpLMtgXn/wmMhQQ0oobZjoCGEgefvjsdUGH48hiuiE5ZHgcP2cQX3oPDhoSEdQs5NwY16lvdGetO9sRh78gAlxDYU9rLiLkPpFi3rTJUjQWFeMgzceBJfWvp/FEONSGp+sOGwpUD7MUE16TvwoIQ1exN9xzArTEQV9ELzam+ubVYYTBFBeKRnFZqKukLhUyCD5zeTJ4UEufYeuvGkdVKChoH6IcBVt4VhQJCqw2cU44mvmT22tzTal6qsbus7rBj5VEE54AHzJqKGVnbMYMElu47lfQLwwKLnlac8z/SP11Dj9LlliErwu0Vf2DAgr7/2chE3PSWW7h6uwubidmt/0RoQbprnUXiEQwxNWWkep5w3Ok/k/W+qaWNvoJurWDj4PE6EaQ+lMkYOged6FsJLqPPWVKUSJre3NOILpSd4zqw5cezzajXfeMSDHj36TlNNmyUjvEQMj/Y1cp85UqDfe++iFywqSH5V1ECAKCnUma0cI7s76lQiPffZZ3lxRWyC+0U86+w1jqWNJ/qXGAYArAiHm5tS0CYBVWCGLEFDLOdC0mNSk95SjhQB5vs+8D+WfMfq9/XZ7/LcBqFCxBS0r6MypNRRwjHBJ52Ua51X/3wWn1F65uryASWD0w621R+1FFHq6/GRebDIAAQckhrlB8gCeYfP5Nt5aTOTxniiOjUiZ8Abi+EbrYtYVu3pCBQ81NEjjmL7DnpOfsram3Q+Q1h/Up713yRz7q07ZuClnn1n3VnQx8nMh/uK1PeEHPXGlcywInTaAJAyiu+rgGHgTUZNBDii7pPsnCSO9BVyf9hQ0+/YPVxl1jvgBHTjSevOks0/n6Wir/Ekj3NtWZ9xFjDlOfgOyAj9CjRvPKYiV77DTp01+UP23MMYPmQYVBS8ypEmOMCW+hO8F77aeweODc+32Loo0kRjpYhUKBLkOXhw8eFLn63ow8jBr6Vd9jPk5qSwYM4PLZYYEliu44e8Hm48aXubHZ+hPcqCVz8OXe7kxfMR8kACMKXkdXiXioFRY0VFXJrrCgassDP9nP62+MWJ8k4kHxHtINHIMd49kHQkG9VZABC6FKzP+vZFSx5f/pkWrITrX1vex5+lBGSeu8AcUOKfzBkgrPba8j5ev3WVPYYulqg5taLMBXdEfgBdfJkUM+sSkoo6jLAMzpXMs3DjguteKC/eeAyba1pMAiwZfaQU0X4ifOl4zErcpbauSl3iT7Terr6fm8L+0VKbrlDXDLBgTWKdHm25Q1FFJmIMt7LocfVYnYhn+jVh+kUc6CGDSs/PllqF211ZZmAOzLChFfD9o6WKKSsnxUnAXzn+GdsQg70vAJNEV/Wp10ziv1AUH21Rl/WudoVfl5WKGQcdUADpHZIWENDrP2Z7PJmiOC9pQRB4zxCmV/eJ4V0iD8SNJzMWeaPvEJWw8l6a37nxpNr3VsKpgydabudx2UafwS8TjSsp5KTwEaTCeLCNAunGk5y3QFCO+Tf8BPeUtHJ/KNGb4CCUjM5Ur7m2R3lfV+V7KkhBo8qNJzmPi35GeUZy7ihnTH0AzHJGYyZFe3dHHTZUdlnvomeRo8Fal0BODxXH+shV4/Amo8rTOmkbO8/1lsLNS2JL3Qm8PnUVAIXBpzFY2HEyzDWs06KalA4bsc9k3gy/l74bZDGbmcTv1Lfw/rCeNRFFTb7Cqe/vrrDGLJVvb8wmN5DnLRgRuH/hMewYaMATLbfzuPhzecqghOdYjhxAGZ1kiAGw9gidmQcWPW+NQ66TlOc+MWqlXLjxJKYmVe0Lmg8jEw1Mh6Nw0hfi+JrG0+QykEMBACMQ6LluPIkDfWUm2kRr5GhnBrT8cnyGV/GcTkQV4YWOJlDkZEvtCc7bYXgyjfN8FtMSu/GkifZoA+Cp1sW2Aa6NBnovRbsYyiWcJrQPttSegJuXVHf1Jc5W9O9VIfmJJ57AzTffjBkzZqCsrAwtLS0X/eybb76Jz33uc5g7dy5c18X999//bxjhf0y77I0DLxHDyVc+HrqU3Lwk9ncpPKGbq/iYg4KQfvd4y3LG0K+t1Bj2gBLDwi2QqOYlYlwcRXml9c9JiEwq4UAVWt28JHtz9nVVmkRZ7ckl6lHAYOXd3BRW69wIxLQXICdlLlPtIdjdURdOSIYRCu5MRYVGP99c3I6kH2GubutiFnSDQTiFG1dVfOn/2xqOaiFnlHyaA/6/KPISTM7aWvciK77srctL2hebr3MAXJiEtQDsw3wW4aZ/1lTTprxqdHlrWNCmmlZW2snrRoq6nE+rMqi+GCnhfH93hZrjggFsLm7Hgw2HdeVeWKFsUmxlC9YsoEbPZkVHK3+ca5Enog7iIjzQqwxLKlbE8+ODE84B4R33ESp2BYALLtGlBACzopM8fnUpGkXBG48xJeBTbYsNS5bAqpsJNXuTDPaOkwovPsMx45XRiKbaNmMUJpTyaoXedZOK/N6Rcqyu6Ofqy2quDLUxzd+2RUd5XPwcWuuxmIV3/uZomfldyjVFmrTRwTlGeu4sPnutRNHzvfGYBbFhJT8vCTeWxvrKHuztqeLPU54O7QUar5unHARSCeDPxZMh435dwQBq5r8K+MDJVz7ODFqA3vuOrkugk9HdeJIjHZkaGcDrqnrMnggYYeTd9xIxteayT/QRMf8MGUJYJq+u7Le+K/cvOwpEVWxAwVAMg5ZYH93SOpmY834oF8Mxz905VKvylCDIJoLwoYCSLPu9dsFgxjHxuPW7NtW2Ap6C46yr7OFoLp2HXW1qvVYsHDEFuvSe6BieYyn4wb7QfmwsOZX592IdvETMsPc54JyD4PMsWSTHLff6hSioGB39oWevKhu0jYHzWbwGbk6Kn+NHPX6PJaPFHdNU06bmBeacWPe2r6CLVP+EIsluPGlVLyaGPJbf2hlDMtmbVkb4vu4KXn+KotAz6G7kZ0EXthR9kmxqzqxpRj8ECRh4PsXZ9iZV3hc5SWgO9vbY1dpllJajVxnW6zexffOb38T999+PP/zDP8TAwAAWLVqEFStW4PXXX8/4+ampKXz0ox/FH/7hH6K4uDjjZy71dtkbB/BV+DKoxHuTUawoHzYXgCibDgSEoeNjSaFiFYm6nkni1c2bjFrsA1IJZi+RYLJhj9F4DCtKR5RwcIzHmpKgpOeFvP+PNivPmH8+iyEqAPBcl66enDZKJnkOONwK4I3XrmblSSrW9Pn9nRXYVn+UGVz2dVVCJlLJZiWPwZ6TZ4YrecwTnihvL4wnx3M48ZXp9TTFIMEh3HjSKCWOD28qgj+r/BdzMYnkXvboOArzbH4By+tJuGxAKZ8r5p3iffHMcCXjNp20wydkV2edUdrTDgtcwBgL8NUlQI2NCcEM5I3FEHPS8ODga63/j1JMJCzqIlhUaz/Rz6gYkzS4JpQhd6C7nJNemTmDvKN5AbiALLAzM6mSjslbxoWO1F+zZhnFf8mcszjUX4SNNR3W2lJ0AjDJsLz/LWPFRBacadeep0QMqyoHwkntOgT+1Zb/xP3YP1oK+AoKQ2wh1L45WsYRMyt3Qex/byKKg6cK0VTRwZEnNy9pDDL9ToLLUbKxnHN3ps2XT30DoHJ8dGRxVaWKBjKF5ETU1O5gJd23KgVvqm3ldZWNlMB93RVszHoJBUXKlFjqTUbN/JByLi9/oZRRZKqrey64IrZu/rtZlhECV8uaC1F7fgU9JBwfSKlzQ/NK3lWCyLEXH3bf+KwLI3ddwQCz98g5lwxSElZHURD/vPmOk1aQUUfXAgCgEoDFM8lhQ/9+9924otMdKWcY3YaazpDyvLxshKMugNh7AYYe2Xda4/3dFSjN/z7fB5KsQp6PXZ11Kpn/dIFKCNeRJSmDAOD5M/ND0Fgps70LdhVwcmjBVwXGyMtuKZLSUSRoOAFgT1e1Zfx6iRjWVfSGWPDmfuKn8JIRC2rnTBnHBMlXOr8He0uts+U7PhDxsaz4NLxJVW2bE7+Fcsx1PwSE+JnhSjUvuSkVoddni5xvO1qXqmhadzXvb5r3lBfh9aI8DjJsQjUDdOSA2NimvagyUn2HCT5oPqxn6XWh/jIaIaBLUB4LJ8+LCCzN9eqyAfxWTTd2tqooO9cHSjuWg472X1NRl72+l3jzoaDI7+eP/z7Zih599FFs3rwZ//W//lfMnz8fjz32GG644Qb8zd/8TcbPf/KTn8Tjjz+OpqYmzJ49+1cxzH/3dvkbBwFPPTfPweG+IltoBhQG2aKOB7i+Yf6Iq0RaehaxD5BiYSXu+gBcnzHFDPVwNKOGFszSkyM9JIAd7ga0IuyYwjw0TrpUKz71A/ZYSaVFhvtZWY4byJE7M4kLXgxUGRUA12e4u7jDqnZM7aHFh9gr45/LCjFwZPLcAlBl4LXHZXNxuxK6ehx7OmvsefDBRgoxTq0oG+aqmVaF5JwU4tEpM8YZKezoWAIAzO/93xqO8dodPpPPIWZWZFzg8/U658ENJyNSZAaAwfrmJTkC5SUUtIUUrRVlw7x+nu8oeIknYEUUBr6Ypybih/YEyBtEcKLxmEVdd6CnnJU89W7fLpSEwJ4bV9zwV12ZMAaETrIjSNH58zm8Z44NqWT4Pe0BPu+JqMrb0c/1z5lif964CPVrhQsO4FwxbfjF9TmkEDsgzqP2wocgKo5dEZgMobULBrG7s9a6VGlNeC31v3d317KhRhfl2gWD/HsnpdZ2f1eFBbmQzyIKQt5HUJEDMgAOaugJj8kBeyY5d8Sx+efJSygN9HUFAworn1RMbNb5T6jzq4rF+cYTLaqCL7jlR+rzwhhdWTrMzwCURxpXT5nIqt4rvo5OPtrXaCkiEgpFytDyharQ1PrKHjTVtVnPoWiGm5vCP7fbtJ5ksFtKisi52D9aqvIoApXZ6ZzYnna175cUvGRBkz5brRRYP+Lj0OkC1NzyfcuIB4CbPvmWUcaCCnZaJezu7azm/lFfj740TyXOA6HaN248yTkytNdk21jdgaEffIIjLbQXyEHEaySi3Rb1pDa4m+raLgoLomesLBvC6oUDcFIulhWeNns6O41lC08ZRTIAu2JZ9ItsUKVyLoToO5aDwI0n8X/aK9n4JEP29KvXw42lVcV4ulOzTMV5dcf57JTZWN0hoIFQ0eqcFI4NK+Nn70g5M6TJ+2lfV6UlVzmCo43ZKS/Ksuex/mUsPzdVtaFmwSvqWREfK+ePKrnUW8zPsQqLpQ1cyUuoaDrlBB3qV8xZhwcKeS9QZWd6fvC+Z0NSzD1HtMRZOz48L8zUNmlomJ/rK8WBkyXYVKfuM8p/o/MX1ALfSeVaUapLPefg3wIrOn/+vPVnamoq9Pzp6Wn09fVh+fLl1s+XL1+O9vb2f5cx/ke0y9442FipQ2nSWyyEFldg9ZXieU9JKxrnngnhqo+9fBvWV/Swt+ru4g5OpCXPyUMNh9TzCWMqvEZuruKFZouewum+fncgWY48iKxgkAdXCwX/fBY21zZbdH383bwker53k1L4fUd5sLRQ9dMu9wcARzyIg96bUBEDN55UYWuAk7l3tplEaYlr/8u+5dhSozDIflTAI8gwS8S4Yi319Q/KtddRe0mf6mjAod5iaxwSysSKhPC8He4rwqbaVqXQSa/wZBTPdS80yqZWltx4krnxd7QttTxolPxKl5sbT6rqtfEkV2f2EjE7QqTXhT34rOzZCZbehSizSrl5SVwdG4c3oap0y8gVsfQ0FXWFFAYZ8qWw9qaaVrUmeh6battMvxJGEWZB7ztsjFHiLs331trjgOvjycF6vP1OXH2XPVfA3s5q42Eat/c1edY2VHfCP6cof/d1VeKLFQfV17USR++iUL83FmOFa+X8UaufnFMwLvqu+7uunIpJ+dhU04rNxe3YUnvCQADiRqnc312hvLvVnWJfqk0svfOAMfJkP/Z3V/BcEe6cLmJpFJBsea5rIdycFJpq2vj3N1z/Np9bE60D1lf2KG8vPSeq+rW5ugVuXBcHoxwVuZcdHZEhL7vmjJeGFSuAmo6RFQv9M0/kJQAK0hBMej10ukDJQj03G6s72MPPxmiegXARlSl8pQwBYCrOfd0VeGt6Jo89aAT7rs/7a2N1Bw4NqO9fzFiWe5DIJADAESxbbjyJO+adVp/xHDSfvZXPg5eI4V/ayizK1I5Xbzbf1VGwH7z2UfbArl0wCC+pmcqoSrCIwEkufG/MwEkfb1kOOLAquj/Wv4z3hEmoVncQk1zw5NjOKs4fmSlgY7kp5SgS99bu9jpm9CLFlhr9+1BfMQ6eKoQf8XFsaL6RgQCOn52jiqvFDf+/ZWC4PvARo0w9PVTDjho2GslBEPMU/LWiXyukPsrmvqYHpP8KMAWtyR9Sckk3qmIOwM4hzEmh7tZXee6DFKhuPMnRIZn/QXuanAr8fd12ddQzjBE+cLCn1MAg6dnamdA49wzWVvRa9wccn5mYOJlaVD/PlO9I9/3W0maGGcm5p/9zBN43+44r2ovcR/mOXe31nBskmxtP4pMf+wU73w6eKrSiVJd6zoHnOx/oDwDccMMNmD17Nv/5yle+Enr+z3/+c6TTaVx77bXWz6+99lr85Cc/+XcZ439Eu+yNg72j5fxv8vRuqz/KguXAyRLrQn1ysB5H+gotQU8CaV93hVJ0PFNldlu9xiGPKSU5KIBljgB8cHIzhyrz1DOCuQrq84KthQSAVgicWdPY2dbAQnpdwUDo+5yUmZ023s+IXZnqvy9VyV73LTqCL5SegJMyW4KSeqHhS+urFYvTjde9bY0R0BhJIbCt5pnowaaaVnjjMXzpxGc5krG3q5pDwZTk68aT2FxjJ9QFmxtPGq+q6ItUcKxokJ4fKmtPfVMTIyIPgTEwrZ4PZn3hz+akDJTLc6zvszCfYXu5t7c2ws1NKey9VpQ2VnZyn3Z11GdUPElhpGTRXR317K10c1McqaDxZFqLjdVKGSJaUernjralfKn6aVdhr2ek7BodBH/JM8qhHO83R8vgC8/tIz2rzIuJoUXCplyzPodOF1j9pbwE/qj4HVUyd3NT2D1chSk/iqfaF6tok2OiKFKxJLx5U00b3JwUVsw7ZWPQxwMYYt9UM6c9FoR8SQPMj/iGhhXAeCqbkxjf+PFVVmL22gWDcPOSYTYtbcBSdecdbUttb2CG6BspHyEKRT1mgnfIufAuRFWV84RJfqdIXRAyeaSvkP+/p6MGV0UTdpfHjVFgMc34jlFutAH0/Jn5xsjXc/nHFYdM33Te0p7OGjRVtYf6I6MB1loIOSnPJ1E9B50nlNPlXDltFZqzImqBXAg3nsT+nnKebwkD5YjUhHHguDNNrhedn5zItFFidZ4W7yFKKo/bMpQTW6URIubPG4+x7D88UGgU5jylEBPF5sGeUn7minmnLppfF5wH7oOeA5If3oSh5rWMUZ3cLeFD8j3PdSsGMDcnhYHXbuDvbC1txubqFn4e5UXtaFnKWHnui68iZxIi1jIyN9QX+ryXUDj9Q6cLcF/DEbXntcyWVZzlWtGzVpfpfCbf4X1Nn6PIIqCM4AN9ZSoyWv8Cf4fGLWWFNNyZOW3cXoMnWm/nPJ7g/pVrsqXuBACTk2DGofuZdjiyQ3uG9r/Mcfje96418DktW/keu9QjB3A/0B8AeOONN3Du3Dn+8/DDD1/0PY5je4x93w/97HJql71x4E0o7N7aBYPsfSeecm5iFuQhkj+zrPyZJuy+vaXRSoYCVOIiJYSOpWdYl+b2/qWKsSCuvI/eZNSwn7i+LQgcXyUQJmIX9aABANIO9nVVGnYiwKa6FLh8bzpiCe3t/Us5SfSvBxazcudNRFkoLy9VeNx9uqLs6z+5yvZkBuYK0F6fOmEIJRSDy+7hKmypO4E/Wvwv1uepEYe/l4ipudNefzku2YJeFRZsAeYWKVyfHqpREYe4Df/yEjEWmGvyhyxFhNdrIsqeZ2Yr0obF5jo7OkLvpAuEva0BQe/mJbGnqzoMo9DNmTXN3usnB+s5GkEGQNBLBsDAbgKoi/OpGfx5KthGY5DvPjKgID2k2Ll5SWyqbuNxUL/pkiYllpN2dVjb6pfAwzI8jeA0VLQnyFgU6D9FMygSBcBEeMT3OJFfROQoGuSNxxgaINeAMMT0LFK6iFLXGk+A/Ywr/+r+Hugpx7qKXvU5ohbVciVYWEl6Y1VkwOQg3Fv/gv2eQPOS5jxTno6XiHHOTTog4lfOH1VGn06+lqxOwdZU1AXMMHSTbl5SRdxojaQHVCuw9y56gcdCGGqOQME+739Qfhh/3rMSxKQi+7C7s9byPs+ePWH1jRmohLy0lPtEDId7VfRhU00rwwnduKoIbhQfzUIjcPOZjDDpJPIuRJk9jPYa/Z4iO95YTMDLzPy2jGoldqa9pusqepHtpixZpj5gzri8AyTTzL6ewH6iKMqsaaPA55n3HT6Tb0UiQ+MUMoU85aQIkxG5saqToagbCns5R0k2a11EvhO1G697m/fvE623451krlFONdwMLmyKZSg5u6+r0mYNyklZ80Pv3lDdad0R2/uXKnkRYJbjfsJe/5QX0QaaKAZJctV32FGxcv4oKK+IGeXiKiGZIy8XovbcTkaxvHQ0xHQG6GKWAsLrTURxb/0Lal8JKNPOoVosmXNWJRBP2jLUS5h8NmJP29NRw31mhwCgdA/BaMYMjeOxyzpyMGvWLOtPdnZ26PlXX301IpFIKErws5/9LBRNuJzaZW8cAMpze+BkiYHEJGK2pe3ZFVmDAnpr3YuWd4p+d7Cn1PJskbK4vaURB7qVR+Kp9sVYXW68+t54jKEtIeVHK8HEow7fwVvTM+2LWCpPWqAw/CdiMOWEy3XjSfYceBNRuFlpI6D0u0mpBYznpbHkFHa2NsBLxIyiKL0JQqFhJgVxmR/oKTeJxBrqsberGveUtOKp9sX4cu+KsEfEN3PpxpOYHZk0l6/GeIdYJcQ4pIdJUXz6RpEWP/cSigPcuoS1sCCB6erv0r7gCqN6DzTMeQUT6Wz+rpdQsCv26CVi2FrajDsL+mymITIw5LKLy5O93oHP7OqotxRJ+OqCpjGQ8RBUbIJKrKw/IJk8gtSTTPcn6BrZgy72wP7RUpU7ov//1wOKsndTVVsorM1KO8B7gr3LBBcLJLfTJb52waCCtOjP7exYxJ8jA5reIZOrM0bkdDG0iymBK+adgjceU559x+coy1NtmsFjLAMlrmAKuadEGZ4HTpYo72bKhTcVwYp5p9iAD8K6uGmWGHqeLHhnsUoFxgPfYS+oG0/i6MACXh/qn5cwXPLEMZ8pKkfyYVdHPRs2PnkfycgT544jBxei2DHQYPfPAyzYiGhf7l0BbzwWqo5M50yu0blzuZa8CCqMqpOwcmpIgd89XMUyF4CtGOamsLmuWcM9fF4DCdlakz9kQZfgg9dW9pmjlBoPTzkcgDIspRwIenovxkZGzboDEnbSv6Qrprnzxm0iCitydDGo1kQU2+qP4vfKjvDnlhWrnDY3V92hRKG5p7MGMSeN2bMnlEGdl8SWmmbz3THb6KW+ybl6/SdXmT7HVd0GWSWYztGWWnUfUnK4XHt53uHDqnIOgO8c696i/AxtIFswzkCkjuBtnORMNSVmKgiQN6bOwcHeUs7LemDR82avZaWNo0nUflAvcDgB3huPGWea7rdFm+476mzNTGJ9TbdlZB0/O0c5QXIUbEvODa2jSoI2coANFr1GVfO/xwayl4jh8eblPKeXeuTAg/uB/vxrW1ZWFsrKyvDd737X+vl3v/td1NaGaesvl3bZGweW1UseaMdnqi7/nSzAd/DkYD2WzDmrviO9txqHbR1UhqKoEN1yTYn2RLP2GMjkIMdXGD66SPOMYu4lYlhSfIbfSY0iG248aSogC0gHAMP7X9HL8J9t9UctLzv319W5C0GccbUSZpkShrNdEw2RNQqsudV9fqp9Me4u7sBDiw/BS8QYyx1UPLbUnlAsEIAlsKlJzDwAPNXRYF3ohJ8NKUf6cmT8PZTywNAcgfcmONj/WPId+zmC+WlN/hD2d1fAP5eloB0AEPMt3ujjI/OUwh7Ii5BK6jvJuIGuOD7vE0Bc0I6939x4UtFxCliRl4jxBcmfdX3L87Oro54T0CS1J7Gw8P9lDYJ4Eusqeo1S5DsWrGv5whHep/IyojGur+q2LpolJaf597uHq9Q+0JEBgjIwOwYlnndVZ5ZCgRok+3vKTRXbSZuiliIHNK8bKrtM1GwiilXaOKe8BmIoCe8jBes51FdsxkuGtZ6DFWWa4SziAx5sVha9pk8O1rOhSobT+jKF6acCZQzZQ0DZz1R0kZVAh8/VF0pPqD7F0uBK0zSMc4pNSNawkOtEkUBplAbbtvqjqpq3fuecT/yMf6cUVeFp195ld0bKODboswIXTwnRMifLzUvalbNFo/0MANdcfZ7fFXQqUKEoyepGxpn8Dik/lDdEz+DaE9pAril4Bf75LEU5ORnlxP5VZYNW//yIH0p+5THTPtJ9IbYZMm4jjmcrzRNR3hP885yUhZ9np06AtUhCT3m/OMB/WXSCv7uk9DT/25GRWJ0j4MaT2FDZhb8eWGzgsQ6QE7HHtqujnufx6aEaZbRpQ+Cpjgbru3KOWY7EBQvVVITrHJAhs3Ools/cjo4l6rnti834hIHsn8+yyA4Q8S2nD1FSk5OK51bPqZudNvMuIilu3NRGcXNSDN2xjNaJKOA7eGDx85xDsbdL5WVRrQ0vEcOCG9/kugLqIT47f9y4iqCu1RFGjgoLA5n+TfBlAFYdJnLgrKtWhrDKF1C/48h2hmRnwBjrW2pPoGvoVobOAuosNRV1qYJql3jkIO07H+jP+2kPPPAA/u7v/g5///d/j9OnT+N//I//gddffx1bt24FADz88MNoamqyvjM4OIjBwUGMj4/jrbfewuDgIE6dOpXp8Zdkc3zf93/5x/7/r1Fp7Ruf/GMgErerMUphq5Og6N8kYPn3WjFjL2jaEYq/7UUlL4SF554wigxj1wEQLjXkPQf4GdQfQCkh3xwtw++VHcFf9i2Hfz6LS54j4ltMJPTMVfkjKtkq6mFLZYtVBVaOb2N1B/a018CdqTy5ezprrD6tmHeKL7rguOQldW/9C+yNXlfZw4mQIaw5zUXUZ+wnX3wALE7w8RhWV/Yj5qRVXQo955zwR5+jtRNzTIry/tFSa56Dcx6cDzZsdJEyot908xQbEyXXUfPPZ6lk1XiGMQJWNIH7MBHF1trjqtq19ADqi2dzTQueHqpBNCuN6V/MsKh2rbnS/b6npBVPDtbjC6Un8NPkLOwfLcWKeaeYmSLYgt+n8brxJPy0C18ndnoXVEEuN1fh9Dt+chPe/tEVljJu0WKSVy3D++RnEPUh2VdW5Y/g4KlCXq+L9ddaN3meELj0UrQJwPuJFKug4SUNZ2sPiD5vqm3FrnY790CuJ3GuB3NSLtbuLu7Az6Zn4tDpArPXqDlqbjbVtlrRGvrc+qpu5k33khEg6fD41lX2KNjAVMREB8S54vdEPYDyiwIc/HIeEPMU6052WlVXD6zDyvmjHI3i+ddnk/YTYf9pzYLz5yVieGDR83i0+Q7+XVCO0hxz8TGxdwB1nrbUNOOpjgbAd/BQwyH8Zd9y6x0ry4ZYjq0rGMA/t1Uxy5ycB3luim/6IQZO3WzPkZDLXkJ5fJ8crLdk/Yp5p/DRrDEu5OjGtWztqWZZfce807g26zxmRycUvDOw73hsun9NNW3IdaeVwyLD/VFzy/fRNnybjiTBOFNy7PtHykGSOWsXDGJ/b7lxLrm+ZaRyXwIyjZ5z36IjeLz10+acecCqygG1vwMymec76gEusHFhF/Z01GBzXbOKCgT3o2PLvruKurG7qxZuTgp/UH4YpyauxxuTV3IxMLm3LtbuX3gMj/Uve897QbZ7SlqZ3hQ+sLGmw8pXkMnUwTXk8XoiajURxeryAc4fI2ryoH4AwBqvXEdqwb0i59i6AzPcw9QXNzcF/1yWJb/oWamfp/HD+/8E586dw6xZsy46p//ejXS8321Zi+y89xfdmBpP4m8WHXhfY3riiSfwF3/xF3jzzTdRUFCAr3/962hoUA7JTZs24bXXXsPx48f585nyEW666Sa89tpr76uv/1HtsjcOPvH1P4M7MxtIOkpR8JFRwZSCfUNhLzyiY5uwvZQbCnttoUCHcTJqFN08WyjwYfVgQQZkY8+WvvRI2ct0YUihnkl48mc8qDFHfLgzUpbiZX2WhE3gwiFhwkYGwO/dWtqMHQMN1nuCChXBgdQkgOcCAB4oO4qfJWcx5tlSHiO+VaX4jnmnFX7YAVaVD4QoLoNjD65NcC2ofbHiIB7pWYXNxe2hqtaZLuhMF/bGanNJeOMx3NdwBOdSuUqpk2sEFW6mSr6slKZVwatMfaAWND5W5Y/guf5SrscQuvC1chny3ol+01ryWZB7NeUC025YuRBzsLW0GU+0LTPe7PEYmmrbFENKnrrAr4wmEHPS+FrzClZMg2sMKGXSnSn2TEKxWz09VMM/y2R00xg3VHUyzCJ4RkjhIAVOjiOkNAuv2Zr8ITx7qjh8TmCMxWCBLrlO1vdSLsNzgucDAP6s8l+4knjo/Fxk33HL8jhJ9p6SVvxseqbVb2n0BZWDu4q6Dd1uPBlSOjhC6iI0r9JgDhlTwuAKKl4kL1hJCiqs0tgURlMmg5gUsk01yogiJ45slnykPaNhPyzvguPWz+c9DoRyl4J7J7RGeo7uLu7AztYGHm/Zza+jZ/QWyzETc9LYPVzFMt/q/1gM9za8gCkvhqeHahSLl+9aeXOZZBt9l6k9c1O4u7iDo8RyvchLvrNjUchwDspb/p3YV/KsXFSmBBwj8B1lQEZ83Fv5ooq6ywhi4DluPIkV806hKO8NfLX3jnBfdII4YN/R1n7KcJduLW3GEy23h4ydizkhWG9wlezf01HDcCMJeaV53dlTz7UOgnvjYs6K+xYdUQxXCMtuer90wNTc8n10vHpzaN1D/9bndV3BgCqwKubC9x34FM0IzNOlbhz8t+bf+kDGwd82/J9LbkyXUrvsjYMbn/xjuLkzABjvpPTEsHI6GcXK0mH2GFn4dsfHioUjODxQmNFjFTQuMikf/DvNaMIGRMD4uLOgD3u7qtk72FTdzgoXoA74ivJh44lLZI4crK3oVeFwfYluqW7GzqFafOr6n+OVV65jXGpQweELJXCJy3HJRj8j5VZe4EGFDIAt9DPMWXBeqfnnsuBHfTSWnsTRgQWWIQMoBZH5wBGO6EhFBr5ieeBw9UW8dfctOsIePTg+mqrblTIl+30R40RevBe8WCgaQ/1mJTiD0sif1QmT9J61Fb040F/GLEjUfyftcJLexYxGa07GYlhb1WsudsfH1trj+Nu+BvgXImZuSKkS9R543BIKEogaXNRjKNcuw+VIn91Q1amqeAZrkYjzlskgoMt6U3VbxjwJeMDGWnWxZ5rrTIqCjCTBAc81KdiAyhUipY0Uvz3tNUBOGpiK8DPpTAbhQzTuVeUDONhj6iGwUheQSW5uCh/9yBje+sVMewyB/bmlphlPtS3ObGzocUkDy2pRD252Gn7aVcXxgr8XhgIcBUfa3tKIFeXDqo6MftedBX3Y211lnffg9y2niuNz9CxTC647yfLQeZfPlVHi9/AY8z4CNHzMWA5XXn8O7/xklhVh5jUNyKygsgwA3oUoNleZcfEzhLcfAHvyGUoToEcG1H7Ldafw1eaVGddUyu+1CwYNy5cwrIJOhW11L+Da2Dn80Yu/xfPUVNNmFxcMnNnQ2mgnyePNy0P3HDnB2DGQjBjGrUwG7cVklzQ8iEI67VgyPlNeUci4o6YdaJn2heUIAzg6F+qTpGIV6765uJ0jWhe7P+W9ezFnABvwCERugmsZMB5C6yPmmdbR9x38vwsGGQLlpByOIqR+kcIP7/viJadIk453z4n/jKz3aRxMjyfx5OJ/vuTGdCm1yz7nwJuIKZ7/8Rie6zPwEjeumUuomJHncKESLxGzhJ+bm8Lhfp03oLGTjD8nBSVXFEQhD6Q+rNKjsKmuFVwMRvYzoZhy9nZVw40nVTJxbgrnUjl2om5eEof7DAe4G0/a+RC6sWGQiMHNSeGp9sW4Y95pfO/HV/PYKGFPNilU1td0h4Wo6C9xZ/vnsyxFm/7e0b7E7qfuP1G90bxIge8lYiGjwZuIwpmtihcdHc63hCeNf29PFf8/+HvvQjSkGFkVJxN2MhgArK7ox/b+pQb37DvY3VFn7Y2gZ1MmtfN7Whssw8AbV4nKDzYcBnxgZ1sDJ2WqCzq8lpQbQu1An6HgXFU+wOMgmBnhiGXCMjXOB0moC4QuAzeeBNIOdrQtxcwrJtT/iTWHaBQpZ0WydgD4oyX/AqrRQPPiJWIhBhpaG3kJMltRBqaTvV3VlmJ2T0mrwQbnpuCfz2IDTJ6PdZU9cHNTYcOALtaZSYX5DjCE0PeD809r7sYFC5JutCe8hErGlowfe0fKsbG2A27Us+YBMF5OygkhesF761/Awb4S9V6NCd7Z3qA47MVeo3n46U+uCK3xxqpO1N36KvebziYz/IjqyRsqVQLn3q5qrCsYYBYoN55EU00bFi14WRmeEQ93FXWHzx69s0ZRXG5vacTGmg4c7i80Z3oyqtYyAIXIpCgB6uy5uSlOOpe/t5RC8X+uXk5JnwRP0nlMpJQG+y7Zs+SzAbUXqOow/fzcuVyLwtP6m4z3BYNcZVY6QohbH1CwqTX5Jv+HYUC6D1TxWP3O5FFsrO5gliDKD+BaOBeiVs6QbPs10xyPXydg0z1Gyuz21kb80Yu/Ze3xf2hWWHiWNZoiNXhGuDmKBU86tCxjQrDq0e+D83jfoiMhOlnG6QcV+FxVrHFzXbOiCaZzqp8pGb/kfePGk9hU06qSeOmOlUX19L85lzBucln4rtIJyV4ihlULB8385iXVXkxG8FT7YjV+wSIezK/ZUn8i43yyzKRxa/lj1WzyA+stk6oFucW2hS+aWjVCd3mo/Hnc8vG3cKCnnHPS/rXwyEuhpeF8oD8ftvdul71xAAC33awpqGRFWlJGIgbKs6z4dPjSogvFMUoSCf2VZUMsaPzzWcIbagwIAKZw0LhK1GSviI4iUFKjVCIpofK53lJdIMswCdDfK8uHeFxSmdta9yLg+vDfzTLKcTzJBdNo7AdOlvD7WHEQQovYjoLMFwDgJB3GGlPVUW4kX4W3Sybu7RhoMO/xYBtTPqwkvA1VnVhNlxLAF8u9DS+wUkiXOBdamzAF2gAoj5Ae85r8oTCsSyet8dwSm8V4zDIi5N6QCiMJXIqS3FXUbTHmOGlRlMdRl42C2qj/w/UVM0w8qYyGQPvmaBmI5ciNa/50X/2f8d7iMty66EXAdzA7OhG6XMk7vKJsOKwA60TKsXdz1f7zncwUo3lJ67L//x5bbV3I0uuXqfnnsvhceRNR5kbfUNhr7fOgB+3JwXrF/KOfS1ESVW0avGZJP2IpAPw8se7kZd5c2ww4fmh/X6zuhZdQ+QfOrGlLqZFz01SrKqE3zHkFe0fK4aeVmHVSgejegkGGbOzvrsCy215WEAdOpNd7vf4Fi8M+aNBIhhIvEcPekXKmzARUlWK4vkm8zUnBm1aRjG+OlnH//7mtiqvVeokY3knmovXsrXDjSZTd/Dp+MqU9bJ6Ituk53TtSzonJVKyK5ydHFIAS/afPq8lR8hTQSZV6/EHPKb2XDBWSe95EVCnNUZ+VcQDs8XbjSTWfdpkXk1yq59qbjFr9ov+vKh+ANxHFrFmT9vfFPqfzeeBkCbOL0ZotKT7D8vDpoRrsHq5SETtm2nFCBgwALJlz1hgvmmqXDVL9M2bD82FgULAdPcSkQ23l/FH7PvMRMnrozDtXTOPOgj5V3Vufcyfpms9NRbC17kUrWdhLxOxEcYCNeTcvqcgBdEKyjC7Qvni8ZbkNPQM4Yki1OWRfaV6pbhE1bzzGjF9S0aZGTFaSectLqErxTdXtPI9cZRy2Qq5Yi9S/Q/CrAJSWxnNnQZ/Z93q9Q5DSQOVvLxFjggF3ZtKmcSUn27g5Uzz/4j6lYnzyHD28+Nv4yonP4Hs/vhqI+DjUV2y98wulJ0KQu0uteT4+AJXpf3SvL/122RsHbm4SL3//OnMo9MHhg59risscG50XpnnTJeqDF5sbT+LQQBELbmIhAczh21TbigcWPa+SgfShXTLnLOBrg0DjJPd2VvP36EDu66rkfrq5pooqCzdflUHPFCLc0bYUbk4K/29tjxJkHpgi7uOf/Lkd+tZeRFIcNlR3Wh4Ub1KFbH3XNk78bA/EmgHAEsgsTMQBlJGA+xceM79zlNIEICOkY29ntVXBkoTp37zYyJR2tGY72xuskLRkvKH3X5M1xnR7bjypwslCsabPPtdbynuFKpuy0RBgTNpQ02kZg88MV1qG0Weq+nltN1Z3sBLOl3JuigX/o32NXLXValrIA8pwLJv/fWOcBJTwHR1L4MYV37ZVV8F3eAyH+wvNPAvDjZ71z22aOWVGii9jeTmyoZKXNLUxpLGh50iF/I0h4CVi+N0lR8PJjhFf4YTTpo/kBaS18RIxNg6JCrKpqEsZFa5Wkh2lXG6o6gwx53jj6oL1JqKsqOxsV+H+/7n0/wbm27HOFn0f0LSy4zGsq+qBG7cjF14iht2dtdhY3YGPz3gXALjwIHnj6NI+cLIEjXPP8HePDiywlGUau8rtALM+UeV0LxGDG0szVFIqo7KS+JH+whBmHj6squWAOuP0e4I2Ofo9fd+/EUdfmqeMa6l0ikJKQZphGTni+ZmMYkXZsNo7AWgKQzoTMTQVdWFtZW/I8KHGcFCSezqyx3Af37H3vm4PL/02P8uKWPkAHB/Lik7zd+X7Dp0ugJubwvnzOUyNTHJhY3UHe8eJuceNJ+EkHd4zzWdvDSnoNGf0fpIBrCRfiOL42TkK/lfWh3vrVEFNNy6Y6XxV0dY4DRzuP2BqrMg7BoChNCYHSqDuAnPv6/khyCadfT/mmfnPTqs7J4C5P9BTbskFqdCSIi3rdLi5KWVAa7m27LaXLQOU1vqZ4Up1/oWjj6vUJwJRfz0GuZ7euDasRL0Aeif1/cnBegtKtb+33Ja1F1EuLS9/PBkqUuhNKgfNXUXdKk+rytCASwSAFTnXz9rXWRl63+baZtTd+qrquysIBxwfB7rLsbqqn/u1rf4oNtW2Wmv0FQ1J8y7oqJao0AzHVzDJS1yR9nz3A/35sL13+82YIUEBSKFKghRZlYVFEic3B6xUSR5/bzzGni0Syn9Qfti6jHZ11OOxfuXJIcF5bCBfedc6qy1FmL63oaqTueIB4IInKnCSd0AITFZefNvL5iViePaUZhhygZir+vjmW7OtZ0nsrDcWY08iX645Bk5heV08B6vLB5SyNaaUtqDgzJR4DR+K6o3m2QF8TRMKR1VMlUIajqJrlcbH/QuPwblimqFAlCBN/ZbUnEGqxicH6xWLiZ7HzdUt2Fzcri6LcUXD2lTUZRljh8/kc+RIGVv2M785WqZrYdgKzANlR+GNK275DYW92FzbjD0dNRz6lwrlvq5KvqyCcAoaC106EXhcXVS2raXN8BIxbKjoMpeTTq7l+SSIgrwMxaW+ubYZV1w1Dj+qq25PRhVVaGCvWoqdhttZlyJ5IbVhSxe7G08yflde1rx/XHNRB7nfZf+JinhXRz0XLiPmDy+h9vH2lkb7uwDD9T5f32rGEk/ia8dXhAwcXqO0UbaosBocw03P+HH+jIOkH2GqWU9UHV+7YBDZbor3/xENv5FKBXkmpdIEKAXu8Jl8UM0VN55UbEU0Ps9WwuU5kkYMKXSUx0BtY62pEyK9oFKmEbUl9ZELnQl6xoyNHCKeg5nRC9wPmjdpRLjxJHZ11uFAT7ldn0CMh4xDSxGM2zS+lqNBO3gomZXkIjtedD7NsaH5/N1761/gIoCyrSgZwT0lrexljTlpI/NEDYXbK0et++Sbo2WWEmvtNddXZBGeqaezpPAMn4lnTxUzE5w3buqJ3LfoiP0coch5YzG42kEi4XIr54+CKDXlvIegQgIOZMnktGMII8TcsAwW62Ht64Djzc1Ow42lrUiAHzWOhmMv3wY3njTOHBGNiokzRLlADBHT78rO0cnWvq5uzHUsoOY5Uw0UOXbt+CPFnY3vQG4VAKsAGf8sEeMIHc3T+goFH3xmuBJwEMjlgL0edDZ1PQXO7RFtZ3sDWkbmhs4Ijfm57oXsUNve0hhiAKO7zMlKWw5GK4L5Pmk//72bB+cD/fmwvXf7jTAOyIumLgHjmYEjoDMBpY+gPhuqOtm7S4dTeeGFl0Bfil86/lk79Ki9brLSIe3JbYuOhqkutVeBvu+kHXVhSKyuVtIfKn/eFH8iyk3Rl7UVveYCcn2rONFFL3EHFxeWiXDhp+d6Fqr508WmpNdJKh1uXpK9bGzUBLz1X1z6LADgp8nZHEqndqCnHPAdVggebblDhYvblvLnZOjYGofjMzQGgDXn5DneOaRp4hx1gVusOAGPLL1DGpVeQkFenEASHUOHoJSop4dqVOi/9XbLa0XPZO9dwANrebjiSVM7AbZiNZ5WiffSywcoxUI2LxFTGHYYbyU9g7jL3XhSMVrk2MoXNVlwjpOA6d/6HbLQ04bKLr48ty18EcStDqi12FDVqdcuHE6Xf5fOfS00byHMsugnF2MSl6s3HsPutjp7P7tQybcZnuHOTLInVcHARP8ktEjsaXVu/dA67++u4LwiADzeOwv6LFgGVfDmPgT2BLUbPv4Lu58ZZBk1ggzJ6ItU7vZ01LAiZq2vaHs6RU0Ux8g5Ny+J9ZU9toc2EePnrKvqYccDU9US9WPA8GSlU/D5U6PnUx4F9ZU+Q9WC2dlS2BtKFA6+i6iDZfMSCo4SVJgB4Pkz8y1O+l0d9cwKRM9dV9nDyi1gimzSXUSF32h/EJsQvRtQ0YZMTc7X9n4jA73JKOd+uHmqWNb+0VLABUNMAR010NV86X3B+8CbiNr1EBIqMdkirAAQn3mBDdGJdDavjzcuigWOqz2ytf5F2ymgDSWKAt1V1I2N1R1mbfR8fvXESh4f0a7K+8yNJ1XEhx1Oaj9OTcYsw93NTRmjUn+Xo6KBKt40N8uKTmNL3QnjyR+PYWNN5rNB8y4hb4W3/tDaP0SrzXJbn38nbd8d7OiiJu60Owv64J/L4veUznvNXjsZMdPoBP98lu1QpHtN/8xx7STzzXXNF9UFPmy/Ge03wjiYf8NPOJRI8AzyAADgBC8A7CHY260URMZ7awV/dWU/Yq5dKRiuCa/LYiXsddFeFkrgBVTi19rKXuvABykjfVG8pHHuGf6dl4jhq713sFBlQac93l4ixgnJcHwg5RiDCICjPZmWZ23cJJDS+/9oyb8YT6OYL/lO/v6E8YjJsQNqbg4NFFneDb4gJqLYVNOKt1N5yqvctlSF0jN4C6lADglhukikAUaKkRS87oyUEbgi4ZfewXhzSjYPJMfC8a3Km2vyh0z1aRhPph/xLc8OvZMU8JXzRzW+HlxhM9iMsqovDVd/ViSxewmdZJ+wvUlcDExDJDI9m/pM+SeJVLa9fuMx+GnXgvRkuiSC0Q2p6NP/ZV0NjkjpZEWOdDkmYkVKmpVgHE/iox8Zw7KSU/ASMQz94BOhfeR4TghCtLm4HQ8uPqxqd1R1Wp4+Ny+JVZWmCBordaIWihwTtfsXHuNL3DKExbrI76zXScZu1INHbEXCeJLzqiqYmgjn7uEqFdES58RSknWf3/jRR0L7X/ZPGvXc55lJeFMRU5iLznxekmsDMGRvOqIqvAovJjeJ0x6PwfMdKwGXjG9vMqo82CJ/ZWN1B7bWGxIAL6GidrYXPEwRSh5gqTzubG9Qxvp4DOvKDcwJgMl/CMw3GYzEvCP3M52h4Ocv2vQ8NOo9CigjkNrm4naug0BthkvFDPXzx2JcoHFzbTNWV/Sj4lM/sM9ghrwz2ZYUnVGRHL0X9nVUankIOFdMW+eGFcSx8LjIOGPmMy1f0r4LJxChTozN4H/vHq4yEea8JDbUdFpG85OD9bhv0RF+99xbfsyRL29MwfEA2HBVocCSMbm/p9z20Gv4lXWviD5uqz/KDitZfK5hzivmDp1h7xGKkc2x8gABAABJREFU7h4/O0ex8Ok53Vr/okVlTvNJSdqAyWdakz+Ek69/LCRHLEeC3psUMZFjsL7nAMTA9M3RMvyXhhPc94FTN1vPorESpAywIV38bDnPY8Zh5I3FFK0tyYsPi6D9RrbfCCrTj980hR+9drWtDDgAUg6clAN/hsJPWtSCmmrwjnmnEY9MqQJcUZ89P5Jekr+TiBlKQIGf99/JgnPldEYPDbU/rjiEkcQnbJYhEhSaD5+KygDggkCAusCR1Aq/eD7zmItCVsFm0eT5RtlZXdGPa2JjVvE34gQvzv8Bhk7fZPWTxi9/dk9JK3a0LDWJt3ocwUQt6gd7Z6YiqkCT5Cen94t/P1T+PL7ae4eVVxCiz6TiaISppPeNxbC+phv7uoyBRXN6T0krdrQtxfoq5XmT322cewZHX5rHe0SyjNB4lt32Mo69fJvZJw7sNZ2IYl1Fr0qe0/uIi+vpBOWMBYgkfWjU5yTCkHd1LMZFxqiFjDmaF1r/AD2hLPYmL1p5ht6TJjVAp2mdE8m9LebWUnYyFSsTkmpTbSu+0bJI4eQDPN4Z54NqnFANDXF+6259FW2v3GLNM1xgZYmiNmalTq9RMC+Gal1wka4Mc8M/E/SxwfXgvJIInRNDlpCp3oQ3EQViPhd821DRpZwagQgWyxD9cyryRXNKygR5Vs+lc9S5IHpHSQMMey9LzvSLFgO8EDXVkeWcBM6GrJdyV1E3dnfUWbSRdPbo76Czx5oXL2Co5CoZ0FTZbpiNEDgHgFHCArJSOYF8zLpmHMtvPIP/01HJ7GBuXJESLFl4GscH5of2h6xvIvekO1Ot69aa44bymaLMGe4iuT+dpGsxysj7IDT3PlC14FVcnZXAoV6179y8JOpufRUtQ/PMnaUL51nzqJuBVMIytGfNmsT58zn8/3UFAwobr0XP2gpDlUz0v7x+UxF1LqeFrA/K6UQMzpQL56qp0BmgvcvPI9mvz01s9hSS57JDZ4HG1lhyiuW0NWeB+87xHPgRHyvKDIV4aB3pznLtGj1eMgJMuSZKMx2x6h7QWNy4eteqigFO/KZzA4DvolA/fUcVKkw5RuanwlGhYH2m4PvhQcmStG2Qq3vgPF6/588vOdpP0vF++4W7kJWX9cu/INr0+DT+6fZnLrkxXUrtso8ceBMx/OiHVxmPHeEoNebQn+EpXKlWINl7oIXb82fmKy9QxLeVGH2BrMofES8zkA55OP2YbxI0yVLX4VeC2/x5z8qQYQCQF8vBprrWixejCXgzvYRKZmNOfiFsr7giYb6nmxtXjDry/8/1LFS47smogWNpr8TQKzeELjpJM0eMIDtalqrLnrxJuSlsqT9hxgVzGTJNZiLGhsHacu1JTCvBRx5+upy+cvwzei1ErogILavn6jHNsDn5HU9DtgR7ye/Ut8BLxDihd/9oKVblj6jv6n4e6S800RSdayKxrgBw7OXbOFIjFYVFxWfU83JThnM8L4lFRS8xdIX6HPQKyrwSN08lCjNedNqx5tKdmQztCfkcLxGzcwLihlKU52f2dCgJnug26Xu0T79QGqDhEwUBpfEZ8gwD1t6kd/FzRBSHog5VRa/AzUtiV0c9/KhvRYJIgZXROwDq7MaTHI1hJVeP72MzzvMeJq8pPBhFKjclDFz9vnHjrX83mWv6LGkbdRKxl3LV2ml2MmkYcC5TTsoyoN140qKbJAVWzaf+su/AjaWxsbITcIC9HYLYIJBzIBXoQ/1F5uc6IkV9fqqjgZUQd0YKn7r+51Y0iPe5xnjLoop+1AN8k/vCEQuxxuyxFmeDZZEotra7s1adQUHBeWRAyb8j/YVKKdPnzxonzQtFQceMJ9idkcLu9jprawRzY5i1SL9zwY1vmrHnpDA+NgNnx65hRZzf6SgY0KoKk/Pgv5tlcqyg6ux4F9QaNtW18futqIJgDZKGgoz8urkpVdl5zMyxH/WMLKW9pXN53JwUrskeM7lTet7JIN7bU8VylKkuZVHP3BQ2FPaqsUaMhe5NRHHunbg1X5Nps67rq7qZKhmOz3N2RJMhuNlpFN/yhpLBJNsyOAr8bKIis/Pa6D3krKHmTCu1Jp1yrT0AwFBGew6OjppaQZwEPh7DffXftXMKfACubxkGvId1AUt4DpwpF25OyqaohennhsJeuFlpqz90TsnLz4naNBeafIAISmS0Z0Olost1s9Jqz2ellfEmE7h1PwgOSHfoqvwRe8/NTMKZNgxUTUVdKvE8wJ51KTYP75ep6MOcg39Nu+yNA/hKCG2tN1RrdLmtXTAYFjikUGnByPAKieHVh8kbj+HgqUKGnAQLhrEwz0uGPMF0gA/1F8Ebj1msH/Re7ivA1HhkVPDllJsycBj5Tq0Mb65pYQXfS8Tw7rtxFo5qLOpv3/XxQMPzdkjTB7bVvmD+T30Xng8OjUs2FNd4X4mvmtpTrYvZSwKIyzkQTnVzU3j2VLEKCc9U8+fMmrY8euurFeZybUWv5a3ZXNts4TVlvgO9g8K4UkYQL75c6+d6FrKBIhPS4TkG6+yYPcVr5jvG8HB9bC5uR9srt+C57oVmv2nF77b4z+z5FH3PmmGwyFLZX3bby/wuP0u/OO0YbHOGZHBSAkMGg+4PYYzjMy+EvgsA51MzrM831SjKzu2tjUIxAxveigPcKG9Mm6k9pgCYJECeTWsOfFtZ6xoyOGyae/63fv+EpznABZ77rqJuvSY2naiXiJm8GTpL2qAhbPE9Ja2WJ1pNFjhZ/6NZY6ZPYo/BUTKB6xy46mfeeIxhC2TY8pn07f6RostGlu9YyjqgoDNc9ZfOYQZ2tWASL/WTWHSkkUDtlR9ci1ATOSbeuKrRsbm2mY2oHQMNzInPnvu4WXPLaKV8roAhu6WmOfRaimwQTMybiGZkACIYn/qS+h4lwWdK6mSHjTjDJKNOvv4xozzq/g+9osgApIPlocWHACg8P8FUnSumrXP4XG+pUvg0sxLNnzXvvmPBXKVBIA0rUky31R8FV0TXz+Ohk4F0IYpDpwtCCcMsz3KMMct3mP439YuS6y3ygpoWVRhPzMOh0wXGeJTQDXGOZR+GXr2BjULaK8HP2Eau/qEj7jy9NoyfFxEVFSEURudwFT9jVfEQP5cdIXlJrk4MqDvGmT2dsWAhPfOptsUK15+ligQeELAnN5bm+drToQv6uSpPZsW8U3xvUXTMun+hoYkBpjFaI0IoWP2S51fQ8/IyaGfAwVOFZi19wPdVVIcgnbuHVcHC9yqmdqk0/wMkI/sfGge/tF3+xoHeAzvalrLXZFNNK9y8JHIj0xkxtIA5iIwdzeDNpWfv6qpTXtExEx6UTXol4CmB1VTUha11L/KFSowrdNnKapaWMufAeocUCMHogZunqRp1P2Wyl5uXtHjl4QCP9S+zlPR7F72gCjvpZK0ga1DIuy2SM1eXD+De+hdUwpzEe2uj6otLn7UuOkvxhskD2d7SqDzTMqcAwO+VHcH+0VJsLm7nsDV9l/HSWrkiA4yVIfKC6cYF0PjiMRvhvkVHFP1oXhIPNDzP6+nmJbGzrYE/78aTuK/hiD0OOl2+4rG+u7jDiihRIjlVSKZkWdm36QtRJP1ICDc95UVCSr6bl2R4gvVzcblKD6ScTy8Rw39brKgSE2Mz2KCi33ljMeOh02dBwjNkH3h/EpRHNL789KW4tfY4KyGWZxoBZUD/f8nC0xkT6inngPa8N24SJ6mvm2vDbCqAjmjQmXXA60JheEo+fXixosEkY40U/N3DVWywe4kYJ5sGZYEyKlUfn2i9XRun9gSFjOTgGgeUO/55Tnj+gkrWzqFaVtK9qQgrRVwZOTDX95S0ZsxdkaQCbl4SM9ykYT7SHz90usDITN/AnlgOBp5F/aW+P9UhCAZE2zlUa2Cbuu8bCg35gjcZ5WgGOXZIlvDcOBlkF0cvfK6r4uYZg2ZzTYuZH2Kv0uO6f+ExVYxMv+OZ4UqudSJlOMFmZF9o/HcVdbOTKdO5AhDaS95EVBnmuamMzgBAO0bSDpqKupjtSM69NxZm2AFg8kiEbA4qriT/MjkcAHN3Uo5JkB0JgKH6DBpJUEW75HsBcB4c9YPmNRMMM9ik0Q5HeOn1fRx81+bidoyRQ0Tvj20LX7SexUnkE1FQZNKNJzmfxpuOmMiAY87kzvYGpu4FTN6bVbBtIopcd9qWgz6smixuXjKUTM1OEb0n1pb1mfnKS2JLrcjP0oa+4yh0A+W98PMCusyl2N5/jQPHNlw/bBnb5W8cAAoP6IND4buHq+CNxwwfvT4YXEwGgr+bLkeCJGhc4x+Uq2JVdKkyQ4zG526qaTWRCFJ88pIMH9nVXs+KnCUwHaNskGeZBBKPhzxgCVNZV3qV6Hn+u1qIaIpDiTn0EjFVdC0AJwGMskzsNxTqPdBTHvI6WgaMuHQPniq0i53Re3VFyUeOr7E9QiJ86V2IcqEfOKoS6MbKTmuuKHFyyjeXOgDLy05/0+XpxhV8iugXH2pQ3r4dbUtZ4edLXLNtbO9fyvP2WP8y6/IwMCAlaB5vXp7RM0mNjBap9AX5xe9d9ILJQ9Btd1sdF9K7t179Xha5cuPmkrcMLvFHrpltbPrcH9qPftrli4sq+AYZszjZW3+3qajLZrhxfSv0L/emjBRQFW3+zHiMK2hL5Yn2d/PZWy1DiZS/7a2NobWxwveJmDHCEjGuOu3GNfuTb/by6op+OwKg21dOfAbeuGFAof3N86spD3d11FvsQ4BRLoh3nNdBJt1qdiMy4vm7BFWSycxjsZBCmGnfEY2tbG5OCm52OgTzCiZX72hbClzQCaOi+Bz3HQp+kO2KKJHsE0VadOIjsWzRe9gglvAGUpozsDPJPW79XORM8fwkYgxJImV7xbxTRqEMGoliHQ6eKgzJxKeHaoziqotpEszu0eY77HEAyHUN7MhS6jNArNx4Ers76rCro97a+/IzNJ885oTZE/Te9RU9FqRkQ2Gvolv11J2ypdbA/yj5lGFGvm1g2usXNjQB27C7f+GxzLJRt70j5YAjWLA8WIYSgJBRTR58CRP80onPWs/l/TppG10AMCN3mscWbG48yTSjcIBdnXWm/1pPOJfOwfNn5rMh6CViNjtUIqYMJAfs5CN5xHe7jrIfOFnCshaAWgsNE3TjinyEnAbcx9wUYk7auu/hqORiSZAhIaS0XhsKe9l5wZTmuu0cqsXW0mZlfAXWiZ77UPnz5r0Tl7aB8GGdg19Pu/xnSMOKJCadEpKZYq32ODZVtamwb1yE6gET0iPviBYAXzrxWUWDRslrvuIJJ+Vw93BViBnHG4tx0SM3L6nKmQvljZRXaiRw/vfxO0KCmb4z4WWhsfQkf18qGs4VAnokPIBBQS+Zc+4u7sCO1qUADAfznQV9NqMTzKUvx2f1T9DF0v/5XSLMKzmuV84fDeVIkLCXho3sC2OI9fBkhVc3rpIvpcLjC8zsX/YtD7FGyPWR9ITcKAFZ8JXTmrGgDTolgtAXmDUgryd97onW2y0Y2qxZk3BnGvrHJ9qWcc4BK9vjMauYm3yXXCf62T0lrYoJR1x63kSUL24n4vH4Dg6UsGFbc8v3+fkrFqpcG28iiqaiLnws611DG6gVly11KuLTMOcVLCo2bFsE9eB5HzeXMnxNS+v4/B1qBFVZlT+ioRQqAdJiaZJjn2l+tq3+KCvKqyv6sbezOsywpfcNV+gVNKP0+6DxRwalSvg1e+Cbo2XKA017Iaqele2GE7xJQXBzU9i66EXs6aq2zxM9IyLWMeLzOWDPuDSk9NiCic+ySUpV+bfl7aZn6iKPlrE5rmg8H29ejgeXHDYOClKU2bEi9r4PztMyP3MsWUHfk5HO6z56DgTLWl/Vbe11YpZz85LYWNlpyUEqouZNRq0ia7KRI8aScXRmc4zstGBRM3U+hDbSttSdwKqyQf7ck4P1FlTFavp5ZPAD4LWliJIbzwBF1eNykiLPIi/JuW/7eis4euLmphSMxfH52ZL+9fCA2uOcI+GAKy4HnUz0bpITgIG95s28AO9CNJRwDajzau0h7TFXEWtjKFEuzq7OOp6/h5d8mw327e1GYb5v0REFI5Wy9IKdsO3Gk2gsPYkLE1k8Nvq5NZ9acVfOKfkLTYXqRVlXkHsqSF/M501vdyvhPRnB5uJ2tdbCsbZzqNbkudD8BiI0gI6giTuL+rCrrZ6fVTj/dfO+CVOlnOi9mYUoYYzrJ1pvx+PtnwagyB18X+WmEHz5q73h9fyw/Wa13wi2IkTiFk0hXQYySQ+uzwJr2W0v4+hQvs2MIBhkKHrgpByVGDYZxcbKTtszL/igV5UPWCHMTbWt4WIkUFb7rs46wHewrrJHMSQhw+Winy9ZfxrnnlEJewKfuG3hi9jev9RmjpmOKHaIiI/G4lM4OpQPxthrJoo/rjhkefa9Ma186ihDkB0GgP0OUlononi44RC+8uJnsK66B9luiudIRjuCzDTB30ultufdmzDw2g0hBpVQwjjMhbas5FRGelT5nuD3ZJMMRfy9yajlkbKYdfQa7+qot/DZUvBb6xPcX4F+BLnFM82XHA83P7x3JLNTxnclYpjxkUlceHtGaEz0rCVzzqr5pEtSQkMEo0gmBpW7izuws60hxCoUVEYy/Z8ZTTL0Ofh/N57EFysO4pGeVSG2pNB8SGabDKxAwT6tyR/Cge5yENuRl4gxK4u1BsRcknJVkr1INpWNGH8AiER6B8S6QgmRAMLnJKnPM4RRkIECVM4de02TNrtKsLnxJPy0C3/Ktb/7HvN/Z0GfiqJK+Ur7lxStnBSairrwjdZFcGZNK/iPTrqUaxCUAVJuA1BKk2ZhayrqQsTxTC2HwJqFGLMy/LypqCskl8kgWFZ0mgtYcv/kXhHsV/7b2fBz0hYL0qKil9AyNA9uXOV+7ByqtdmapPycjGLVwkEc7C9h2RyUhXJdaU4piXhdVY+C9Gh5bkHmAP65fy4L/7muyySVB5iCAPB+2lZ/FNtbG1mesTIrmK68iSg2VHYZmFrwjpXtPWRYsFnMfIE58M9lwc/24M5IYV3BgJUgL5X5kLzRe3LtgkGr2GJor7kIzQmg7qIdrUttmKiUT7RPY55KQs5wz8D1sbpswCreaK2vYNkiZxBgzt0d807j+TPzsWTOWVydPa6Y9TRBCdW48MZjaFx4UlVfj6uicEk/gmeGK23WMnGWrPVPxABn7JJmK1p95L8gFn9/bEXJxDSeW/73l9yYLqV22UcOvIkYGwacmCOEFgD20pAQODqwgIUy45s9UyW1qbZNeXBmayq7nBQnbJFXltl94kmLgQAOOFTIDCmadUIlS6l+7e+uYEyv5a0LKH/UR1JepXDZ3q8iAMylPRE13pKclCrSQ8qK4+OBxSqU+MjxNZC8+hw2Bdgw+ELpCdtTnZuy4E8EhbgikgCgwqoWlVpAsZZeDe+CmnMq8uJNRLFkzlmcS+WYysDi+0tKTpu5GA8rnDNjF3hu2JM4llnBCf777uIOZkmhn98x7zQzpVC1WvlMOMCu9nrjNXN9e6/pMT3estx8RybGB3Hoes4fajikPeQO7ph32kSkxmMK4xzIV8iIQ9Z9lvMTDLtPJbLUmkwaL+K9i17g35OhpeBFZt6ZdYdeFfGNd16fvbH0DP4OwQh43oNJyYG1kF42GbWSXj3ZHulZBcAkt1L1XLnXJBRmQ2Ev4DmKyUO/956SVv48oKpeH+gu13AFh9//7Kli26MY9Px6ADyF/fYSCuO8dsEgNhT2csE0ih5wlFLLoPXV3Tx+KQt4XmhP0XjE3HkTUayr7LHnDjBRFkEIEPwDACWfeh3wHXzq+p+bRF8ij5EQH0+tnyzQt6REeSw558gBj2lXRz0rfAdOlrBhoJ7lcEQu5MHWc7OxuoOTe+l5Tw/VWF5W9U5jVLFXfMw8k88uwU1FTg7JdjcnheNn55jIDc2ZpsS9s6DPOmt+tmeUer2ekipXGgay0dpuqmpTdJYUtRCQt9Daa7w99zVP3x06uuFdiCqqS+tLup8xD/tHSzm6mpFSWO8nqsjMkTKISBUntjoGOkZ7Oaj0eqbf1CS8zaogreXPf2tQuVCSEY8+7wt6cTKwWTnnfyvYk5SrtCcpL0JGcJltyHf42VaS+JgqesmGAcFAZeIwnUMnvHZ8vjwHB08VYn2VLmbqIfP5DkTSqR3uK0JTUReODc3nsa8uH8AXlz3LxdbcvKRF1/r0UA1HNjyY8+XOSGFteR/881n2+wNb51JsH1ZI/vW0y944uL/ueS5AJGnr4AcOvGCjAOyQNzf9z2eGKy3l0puIKiy4FhpPtS02v5NKPUFfhmoVrt8F1lX0cmVT/3yWdRFYzTfKDQALMsFKilboqE/euCpswsKFxiKxqxNRrK3oBXwHj/Uv434T/hRQxhB/Xo9ne9vtIUE2wzEQCbgqX+LhrrXMgkM4fhJaTUVdNhTE1wVrdH+fGa5UBofv4PjZOZgdneR3PbjkMP/7+MB885w8+xLyEjE811vKihuxBRGlKo3Bmm9xsaiqxiay4iViCoeawZhgWjs9x1KplI0MJ7o84AkFjxIdhY5Dz6c8CziKVo8vGQe4MprI6I0PNkvRoos7z764rvzIGFO10uefaLnd5B/QXFwkt4KeZbFG6T2wr6sSG6s7cFdRtwphE5Vn3Fa2gzC20DhybVjVxeZ6XcGAUsYSMewjWkwZUaF59oA93dXYUNWpmDz03O5oUwY2fT4Cz5rn4DkNzrk3HlNsRVrm7OqoBxwfu9rrVbVknf8S9GpT0nxTTRv2dVZixcIRfqfEjhMbipRdlhKSm7IKcmVqVO2b5Asld3uJGAZeVvVMvvfjq9kru6muVSU1OmI/aQcCQ5xyU1aF37uLO1j+ErzLUsKFlxdQkCJn1jQ21bQaNjihGMactCEpkOuuDQoyVi1DmM6ca1eA3lzcbnnAOdoRT1rz2lh8CnmayevOgj41DkdByO5feMyisOUojlgTuVccz+DEt5Y2C2XSx+7hKmys7lCFLyUtq1AyJQSF51HAnraWNmuKTWBLZYvJpxJ7lvrLcKvJzExBJLNpHDTflBgraXNl8xIxdvCYgatcDZkLY+X8zEhxIjIxixF+X54BGrtMrmX5CQQUdeDRE3eEIqFcgG08xoQgcHymX3XjKrLgjasCbZzPJogOZG4KKflyndxY2vRR5tUlYvx/zk+ZadaH84wAhm421bQZIhK9/ruHq1CWb+Cez/UsxA+nr1JTLeikqT9ShzjcX4gHFhmGwmdPFXOdEi+hKtyriF9mOX+ptA8Tkn897bI3Dh5ru4MjB0F60N3tdUag5qbQWHwq9H0WbNr7S4Kyqa7NKAK+o8q5z0yGvwd1kWyubbaSo36eVBWB9/cYb7ozy1DfSewnKTPSM0KFrqTAJ+8RjcfNS6pKuBei6qAL77Xsu8Qly35Tktnurtrw7/XhIu+vl4jhq80rbY+ZHgvj/B1gc72hKKS8DDa0ZiaxvaWRf+8ldFKaTmh8clDhIX+v7Ai+dnyFURrykswwwkqBSIakd5MXyY0nWWFsqmkLJddaONBEDCvKhrl/66u6Qxzy5OEEFK43eAlbNLi6v1zR1wHgGu+ZZILJtCY0995UxFKKHm829HuyNkDQgLOMVd3uLOizPvvOL2aGEkLdvCQO9pdg1qxJfbHBVlryklhbqZL411aov3e2N9hJhvp5e0fKsbur1ngXJTxMKwmU7xLcs96UwvBKxiKZ62FFjsZiVmKoJAbgz9G+cNU6kedTXvL0vK11L+KrJ1ba75CsYXlJZTQJ/nmed6G4wRNFijQ8zVoX18fekXJsW/iiJk1QFzm9k1mHJqLwkpq1KpCUGMqVEevvJWIom/saf27/aCkeWPQ89nVXKKhbayNWzh9VbGrZaWwubsfHr3mX+zgzcoHx65SETWuY9l1rv5LhIteBq7cD4bnUR2VPtyJ42NVRb0F9aG/Rz9jApmqvmhc+mH8hq6kDwEQ6i2UFyQKKLgCwZDl959jLt2F8bAYKb/wx9nZWW4mej/UvM9/NM8qdgfRoh4OWxX7ERGZ3DIg8Kf2dvSPlODJYYGhmJ2yZQ+O7b9ERax7omU+03o7xdDbgOxypuKuoO2RIrJh3ig3RIKxRyuXgu9fkDxkOfNdU9+U50+v6zHClYSLSfdzfU45vdVZg/g0/gTcRxT0lrdhSd4LHSVBLN560Em/JISLPJo3NoAJg5oP6Qflj8kw6yrCWcwlog0nUQzlwsoR/n+1m8P7rZ61aOIh9wggnYoUbrn2HK5HL5HGSA95ElOGnbHAIh82a/CGsLh/A7uEqm8XKMZ8feO0GJXcmo1hVPoCdrSrXgCJzy0tHOb+FIgo01jSMI0reA4CSM01FXbjUKyR/aBz8etpln3Pwif/9CKJXaQ+TrNQpMesC5ys9NIAKN+7pNPRelpeLcP8XqWhLjQWSBxCNWvACDf5fYjvpZyvKhnG4ryijt5IPNVU1TcRMTkQQb0tYRqG8bK5tNlhwgZ8lBTrtuwo65fj41C0/xfdeuc7qgxQq3GeBf7YUzYDhJBMjg21raTNzlAPg/I0/KD+MkYlPmOTRwFxvrXtR09f6IY8RY2bFvBP+MvgcxmRL3C5hSyejrPhvqmnFrrZ6g60Wnis538H30j6U2Nemoi7s6lCwpPjMC0iMzQjjm2Me1pb2h3HuQGivrsofUQwsCcVuRYqVXC/ZR2dGGv6U8husWDiC58/MZ5w0AKu6K9JK0b2zoM8o1sHxyv2mFckNhb24OfstfLl3RSiP5WIJhIDId0jEVF6OhlDI8Yb+LfrJzxcKbfA9K+ePWgUHvckoNlW1GRYxEXkIjhGwZYaXiOHqT7yLt9+JZ14jsa4Srx/C/gZyejI9hys4X8SLG/y5XFNrLMJQy5SzItcy01mif69dMKiiFsTDH/HZGxzsD+XfBFvGPIBgPwN9DcpvgjPSGVs5f9RUoRXrR8x1wZyNTC2Y8xTcA1YfRd/mfuKneOmHpnYE3T/yvNA8Uy5BpjFbBhVBWkRFbdlWzh/FwZ5SuHmqovVYagYX9Mq0L7hvgVwnujfhg3PQqK9N1e1sCFj1EqBgmIf7iuCkVaVhqoSNqKcqMl9EJmfsU4a7Uv5/5fxRHOxWdUuyc5KYfCvXYvaTe0lWK850jpuKuhQ8VMgJebZJ5lFlcJlfRvN1xRUJU1sICO0v+nmmnKVM8/GF0hM4l85hQ2FDYS9eHr8GPcO3sC6ClGPkqd5HVn2XiSjLdX7+L7LhzVBFDKkitDPtwLlyGt7EhUs65+COw/d8oJyD51c8ecmN6VJql33kwMJRpsXFlGcEnQr525Zkw5xXABAFm29434WXz52ZxPKFIyGcq3VpwQ69r6/utsKL/B3hbWRvGIxn0o2rKMC2+qO2RzLoIfQMZlIaBuTBU59x4E1GVd91X3a2NzD8hxgwqD0zXIk9HTXsfX3tzY9oz4fxoJDXQQqypup2HsOGqk4LrkPjkhhlHoKGgQFgxgVAhUkP9pUAAL7cu0IpvJMCI0whXtfHjpaloUuE2oMNh3lOKUJD1XBDnqG0wwwQy8s0y4pQjrbUnoAbT1rsVCz8ybEWwHt/ccmz3BdKcJRJcfICS4zN0IMX8+b6cLPTfJk8VP48P5/Yn+Sl8lzPQv79rs463jOygBSvt+PDiXh8Jg4PKyX5qbbFZi+SYeA57PGjJEQ1LyKkL5qckz1d1fhy7wrzPL12BLfIRD8IAG9N5fGzKGHfOg96n1vKk/gdfZfmnX83bvZQyo/YnycWD2IVCiih6woGWJJaEAUAK8qGlWEwrjD0wTPiJF144zGsyh8xeG3JMS8SyKXBKtuy2142FZahDAVvMmpHNYQyQj+3vP96Xu6Yd9qSV4BiF/LPZSm2Kl8UAxT4c2Ih8sZjWF3RD29C7GnaDzk2Bl3ytVuRLyGr2CATjShEiQ2HknKpybFOeQZ6RNSmh04XMNTD9N9h+UY/I5Yq2Zj+0rf3kzcWiDzEk0ydSn1bkz8UNgz0u6Xyz2fIEfJd09zS+PnM69yX4BzIdT7YW2r2rO9YhoEFX9TVm81E6r0VT2JDVSffm2ureq2oiJubQraTMqQF+iwQS87zZ+YDHuDrvBqH9oOO6FNE3ZuI8rrQHpBrv3L+qCWzaT4Y3jSu1pYcNFOTtgHHRS6hjXKdKMz3RyIGeA7W5A/BSygmLujqzLQn9o6UKwhxIoZ/alF5hs6saf497UfKz3n7rVn8czdu5sZLKIjPusoeuPEkQ5mIyYv744q8rYQqOMk5Awkla3pGbzHRHSpAmdCQLg1npL31hdITSq73Fdnv+cgU3HgSqyv7GVrkZ3shSt9LsX0YOfj1tMveOAC0sumFLXFKFuXmmPDo8WGV4EuCg7P6A+3IQIFVMTiTpe9NqqRAOFDVWHNSLASkMUAChCpZKoXavMuNq8QwAHZCJXmUNG0dKY2r8kcyKmqOZkA50l9o4cqdWdMmSVpefCJJzBqnhFGR4j9hLuPdnSacKo0AUiz8c3YdBn7+tNmWsh++8Fb5b2fDP59l9Z93s+fwv5l2VIfx3bwkHu1rZLpFVgZEmJ8S9FRkyOeL8EifgnYsmXOWf06QBMDACQBwxU4al8SK/nnPSnu8fmD8MLSd3HwBoYDyQNLzSNB5CQPHCSovDo1fJ0h6E1FTm4MuW4HRpu/Bs6suz549of6dk4KTdoyCqTHaBHOg/gSjVmQIhJhKNNWn7ypKSXmp0z7xz2fh5OsfC8+J1JV9FeKn8TCHu4QeTRgjGVDnhL2DMzUUTxsCVO/EjSfx4KLvWGMjJXVfV6WhlqU11++gS9jNS4aYmwADJaQIGOUTqGRvkVQJI7/WV/RYRsaxl28zhkplDyfRWuso/x3x4U1FODlfwlGkN1Eal87saXS8erN6R1UPP48wzDQGNy+Ja2KqYjTVWaHzTg4XGgfBDXm8MPLwYpFYMjq8RAwHB0rMntZGmnchyvCZxtKT2N9VoQwNB6gqfMXK+yIZYOXSwOyPTI4LNyutxqHlC59T10RV7ph3GusKBlTxxYmocuhMRjPSytI8WzIcZl8vKz5tzqVW2g6cLMFXjn+G50tNtmM5wqSskMbS/u4KNrxWV/Qbg5IiHLn2vjk6qO49qm4OKGy6NxFlGlRvIooZroE1UV0CKzfLNdEEUqa9qQi86YiI5jmWPKXzSVj/gwMlCh4r87UA+NrIoIrmXiKGteXGsJOKO+fE6P21oarTGJg+ANfcn248aVU4BpSsIIeVc+W0MeITKppLe4Dyc0LrPcPcV/u6K7C/s8K6G0gOcJ/02sozKY15wCT+088kpAuAFZViximCOHn63/qOJ0cS77nfCA3xw5apXfZL701G4Wan2dsZDOdZSoqYDRIeG6s7rETfoHcGvhPy3rNCmIjhrwcWY32Fgj+sLBtiYUIwD/r8fQ1KqfLGYziXylUeyO6qcEGkhPHaSY8ACXZJ2SohN0RxBhgsInlhACgBQTCpgFXtzkgxnhoAbrj2HUv5BMBsTesqNOuDA2yqblN9pdC0CKd+seKgKXNPPOgeeUus14e8wQDw3xu/A2fWtCrWIjGtgA6vG+WUxyCVpLyk5aF1c1JsQB4+k89enk3VbRw5oLU/fnYOgmxWpIxuqO6EpKzky1/kEgSVPQuCpCNI12Wd577eVdQdSlR/6YfXYk3+EDbXNXN11pBBIZovomZy3SxvaSZniq8qBG9bpC78c+dy4SUU246v5xkAr7EsErS5VuWXUP0Kbg4sA1QlnVOHfFMAD0oxoH3iR3xjqE5EjQEo8OVunmIH4+iAVh7JeKHxSkKB53oWWgme9Jk7C/osFrKvnVCRDm9M0RMfOFnCzwl6YeE7psJryt7QQSeDZP3hfAJhyBETEO21fZ2V1ndo3gDFvuKfz0Ldra/aNIsQkTXdz4OnCjnKyHtvPGZYiQD4aZNDQHuHIjYAGMMs9xUZjM4V09Zzjw/NU4rbgkGuVk0J/MQWY3mGJ2zP8d3FHba89nTVdurXaCngqfosblyxtLh5hlyh53s3WQY8HBXdnBW9YI1RyoX5N/wktGaUaO3G1V6Te+auom4c7itS+WEazrG9tdEydrxxU5GXEnPZyNKeXpJJx8/O4XdJyBJV4JXGhfx/poRl/myOcph8LOscy8mgQSaNDum8YSeCln858Wm4uapYF71je2vje5IVsFz2HeVYc4AHFqlISFNRF+D4eKjhEO+Rne0NyJqRQmPRKSb7oDvGjSf5XjO1iYAD3eWqBkNAkSYyERof1cgARBRGPwMAVxIHlGHwXG8pP4/vXT2v68tURIX2dOica9ITZkPSBhMniwv4Eu1DhgN55nmOYE70EqowJN2RwXdy883fdJe5uSra6ObpujmMLFB/OWlHRUku8YRkH3jfTEWXJZb+V9wue+MAgIGpkEKX4QBtqmllz4sM7e3pVFVVV5QaesMttSesRDpJxXnfoiNYX9VtJeruHy1VSYVn8sOJpjrUStUg3bwk9nTWKLrU3BSzmUgFmAW0UOaIUUiOjT8/FcGDi75zcWpLwM6FkKFmeUlrz9AbP71SRR8CNGfkmVLPVXSe3BwfG6s7eBxffHEtXxSstNN4hEdxXWUPJyGSgkRKqJeI4SvNK01iLLPewIpqyP7dXdyBNflDnBBsJdXOTIYYeb7Ruog9N+zhv6AKPG0ubre8OhtrFIe09MTK9Vh228shr6z8N/XBjSctLPgFz/a0078P9JRz1V83nsTBnlLjeZS1B0Rf6F3rtddb7i3qj2xEk/jXA4s5oR9QIXpK9PPfzbLXEUoBoqJoB3tL7f5r6AHNu4U1F6wtK8qG+RncN4J5CfiHBR3S3mDrZxNRjljQfmZMLo2bIws+70vC/3uJGLMWAcCGmk5WCq0CX2Ld3XiSx0UFxGRypZeIiSrssH4u+60eoNZ8U7UiQeDLPZ5kxpX1Fcab78yaRsup2xTTijDKNtZqtpXcFIrnvAEAONCr4GB3FXXrYoiwkhadiMfPoOT9oBzhPRxgsOLzPTOJTbWt7M09cLKE1/WpNpXAH3PSljxV51jtBTr/ssI1GbMHesv4/YrtzUymNx6Dfy4LW0ubbcVWf+Te+hewu6POqr1C805jPPnyJxges65gAB/9yFh4fcR3pZIMz1EUwL75vHchynVuvESM4ST7R0UOhExWBzinB1BGqhs3DD4XVQodFXFbWTZkeZt5/makFB2nKIApx7Kl9oQyWAJwJeoPXB+HThdgMqGiQ4/1L7NkGoAQJMU/n8Vr5aRcuDNS+NT1P4cbT3IRtd3DVXBzU/jLvuW83vCA6QtRRTGeIRriXIig8MYfm3dG1R5Ney6aam2GH/Vl06em6na+26jdMe+0ceJ4jpIbk1FcGZ0I5ZRIKN++ngp4E1GW3RR5oLUn2lk6c/DsAmXWHAfkMFzlqPQSMfiufQYX3PimnaNI+432/KTZzxQxIMNU5sLwHLgm0vlEy+3IBIO+lNqHsKJfT7vsE5JlETRvKgI3O42tpc2IOWk8fmK58T7GDY7aUnIIsx8szPOvSLoEYP2fYQ6BJhUraQBsqT2BvzuxhCsdy88DABwfa8v7OAz6QNlRBZlJqCTiZ4YrQ0pb8Dnrq7pDIdCLJYjJf1MBlkxKZabnSuFHz3XSDvyYp+ZVJL8tKzmFT+S8w/3PlCTon8tij/J7JbRKzDY1mfwYUmoD/QSEEuDppD8ypCiML5JKAZXoKauRZpp/Gpebm1JJbl3V4YvnIk0ppb4FA7A8TnF778nk8osVH5LrOGvWJM6fz7GfSx64DEm8Xyg9gTenZzPGnJM7ad8HknX3jpTzWaN9GuzLxeYs016kiJccf6b5uOhcAlYyYaZ9czHjKfh8/1yW4l7P8E5KdPYmonBSroLxTUTxxcXPcdFBebbNQx1LPslCYDwHk1ErERGALZM8WEmKMpmU2JPknG2rP4rtzY0miTjwe54nkZhrFXuciGJjVadN5iAIIbiP+vucjA0hi33YUTVBlBBaQ5oTkZS7Jn+IITBWcq9MtBXnIdP5sIod6mdsKOxVOVgiwZ3GtOy2l3G0b4GVl/Ngw2E82mdY2L5QesLMbdqxknutMQULI4r/31XUbVfipUhayuE5ovHT9zOdB5lALAkWnLSj9mcGR1qmvf1A2VF8rXmFOUdCWc2UvE3tuo+ew3/7ZDO+eHytLbeAX3p+V+WPmAJi4n6W/eR360KegDrTXyg9ge1tt7OcYhk5EcWWmmZmnZNzF/w3zd8DDc/j0bblPHeW/KGio67/S+W7nCc5pov+PsPaADBy9z1k4XsZI5JIZHNxO57qWHhJJyQv+fbvIhrPfl/fTSWmcPwzf3PJjelSapd95GBt/iD/281W+MEn2pYp5VDg/L1EzBSdoc+TB3siasFEJAcxHyqJ1db42pBXUuDavYkoGueesSjq+Pn6EO8cqsV/qlb9l97fxtKT7EU90G28Xl87vkJ5dx3fMEc4PupufVV5l4LJy46vuN9F+J48V8Ybarz4BFvxEjFOaiMvL3kf/fNZgAfs61ERhFBCkwhjO7OmzbzONF6n42fncL4CFXAi7yG934/6IS8wz3XUs/CaQbaix1uWm+8KxYX6xV7QiSjj44ly081NWdWY1ZdVgjdhqp/qaMDail5sqmnFvfUvcFEtSyD7JuK0d6TcMEMVdRlq1F8YgUffvbu4A6sr+hVUIoAPpr/JQ9pU0wY3L4mVC4fhRHz2AtLYgxEDegYbBsT1TgqQgO9QXgYAbG9utLj0JUyJFdSJKNYuGFSGwXgMm6tblKewu9aaF28yymstIxXLbnuZMf7eZNRKpuYkv7GYwc8KakvKWbjoZQqxb+j4e46tQPtmju8q6r5oop4z2yQneuMxxVVPj/Rd5T3NTZn8Awf4856V/JmtdS+y15xw2HwWtWFAcD0A8JIKs+3mpFj5ubOgTyu1FBX0QZh4L6FhM9MReIkYNlZ12oqEPhPbWxvVvGovInPCBxQbNv7iBmJD8lEmZgPAskKT7MwQBu3JJMYy3m96/i0lSpwZL6FobfnMckK9OQPnU2ofEzyDzjhiQsZTThL/AFbkyc1JYVnxafb6Agq+InNYaK29Ce3djvrW+B7tazS1HS5EVd6YhhxJMosgRI0NA4ogCOWXqGFlv90ZKawsH+I5mhU1sBp+Lv1b3wdq3/u8h4g4wo/4WJU/gmUlp9BYepLlqYS5skf+QlQZP5JCNi/JNSos2J9Qam+49h2kPReP9Kyy11lH06V8zs4R+Vtafj3XtVDcU2IqhCwzjISw8q1emrjW2jMkFzdWdSrPv4DNOmmH94hUrsnr/1j/MsBzmJyEIoJ3FvQZuSnorGmPexNRq56LPEu03nLdNtXqopE+TJScCmwKeJObp9AC6yp7LOcOGcwE0ZXz5L+jZaSIyvrns7BzqBYr59k5OZda+zBy8Otpl71xsL9XKS0r5p0ybCPk8dceK2mpy6I5XtphgUJwE+n99xIxZjYIKmfNZ2/lw0dFhpjGT19+RwYKWFgRLpeVdM04cqi/yHquG1dY2jsL+jh8CgBOSl00B06WMPaVftcyOtdU9KWxkRDITSkFIeDJoDA2eaDk5e/Gk1yRV11kDtZXdWN3R51KGp6ZZPpPUx1Ve20CcB8aL60PJb9u1Mrf/p5ylYQo6kHIuZbeGK5sm3Y4F4Q+uyp/xNC6QUEkLG+dD42vjBovnO9gbVUvM1U1zj2jxp+V5vXhYkqeg+azt2Ll/FFsqOzCs6eKsau9HjsGGlSSlxbiZDS6eUmrQBAJ7N3DVYb94iNTiMQMTMFLxLCzvSFE38pzKas+O2AD6/CZfJVzIDGsgAWpAhDGsccUxp/yW+pufZXn+lBfsdmTggfdP59lG6EadrVy4bBV0+PpoRpOiGuqaTPzkpNib69kcDo6sIC/7+akFDuSVk7WVfZgfVU3aorPqktSV84lJfs/1xk4DwC7f3pdlFHr8AVtKRu5phaDNxHFM8OVljFL8xasLurmJXH0pXmYPXsC3mQUh8/kK2+sgIEwHEjriDtaFVyOk4VFo/FYzEmxNCs2JKeujo2zsUAKzMbqDqwjeN4FY+zs6aq2+ywpNR1hBE+7ljJB+0B+h1hjeA7F57yJqKKgnYwyuxLvHWEEqEq2CEFdANuBoAz4DDBRrmvi46qshPr9ZFQkXxuqZ3rnypJhNiSXFJ4BHOCRpQf4u8eGlSOEjH+CqbIBoGEe7DCihHBRz8J1fCy77WWUzn2N54i/4yuGHIpmkLLnXYgaw883MsJLKJhb0NlAe4zmaPdwlZ2rJOAmJCNJthF71zdHy3g9EqlsHD87R1XY1XfHlGegnWwgpR1TkI6iOFDQw5iTNvefmLMV807hB69fjZ/++Ap446p2jfm+vabbFr6omIf0um+o6lR9nKnIO7wLUSwqeInHLRvnGonIxR81HMSRfiND3bjJS9nTUcN3vBtPwrsQVYZ82mFDn+TO82fmWwr90ZfmwZ2RwmRazQEVd1P7LiB3tLHC0XFeRy0vBbyVxmRR+lKUU0fdg9AfNzuN/V0VcOMKKktr9eypYrg5KSyZc9ZyWPlkMOt1XlcwAD+m2IoO9mVOrr5U2ofGwa+nvW/joLm5GatWrcL1118Px3Hw7LPPWr/3fR9/+qd/iuuvvx45OTlYsmQJTp48aX1mamoK27Ztw9VXX414PI7Pfvaz+OEPf2h95p133sHnP/95zJ49G7Nnz8bnP/95vPvuu+97gIA6KIfP5MPNTakEVnFI93ZWs8BdtXAQgB2Cpf//3xOaZlAktLlxTUFGRVPGlYLvpGwlfP9oKXtD6BmcEKsvdSsxiS4+7SnbtvBFLmICKMG6t7Mabk4KK+adUgVpoiqsTh4hSryihEYAgOPjhmvfsQwkQHnC7i7usDzFshjUgS5bMfcmosh2UlaEYV9XJdx4khPL5OVBnkQ3nuSCO/QZaofP5AOew1jaPR01PDfBBGkvEWNKV/Yu+zCVbXVSH3wHVZ96Dd5kVP1O0LrtbqtTlUkBnTugqgDT+2gdnj1VjEODRfASMSX8yQujFYCnhwxsYkNhLw6dLmB4BI8x5inPpTYa6cKQlHSs6IwbnCgApJMBRSTQyEtFihYbNwCoyI5scl/z2MVauPEk/LRrFIi0mfu2V27BrFmTxrMncMyAgpr94bLnrL1Fnz18Jh+NJafgjcfw4OLDah9o43R3ex0+ln2On+ElYlwN1UoovIhAP3CyBPtHS9ExMkd5fgMRAoK33bfoCBuzgI5M6CiNH1FRFUmvSaw38hINwozUGNVfvi7AJRt/TyvD2xa+yAbaqvwR7OuoxEPlz1seVzeetFlLAs/iugEAe/QRUZSHB3tL8dcDi9Ew5xW4M1KqLkpuCns6a/B/OtQZdWekOIpKc7GhqhP+u1kmiVr8DgCK5/+A+yD3isyFkpSO1DYXt2NR8RljiHuOUjb1OIJY+Edbl4fkU3D8XMk3UwKtbm5uCvu6KvlsHTxVyEZj49wzVj+JgODeumO4KpbA8pJR/OkLvwUAKJv/fZ7rq2LK2KAz4eakFJ2q7gfRfgb77CVUMa1jL9+GgZc+aRnjgErcP9BdbhtpM5MWPJVghDTvkoyCIg3BFjTcJe6c7iySuwCwoULkxIzFcHRgATuuqO3vKTfylZpjII7SYbOk5DSeal+MfZ2VHOkjJZyNmOw03LwkkyrAUdCpbfVHeQ883vppa1x5kSl2Ij3RcjuQdtD2yi24u7iDjWE5j14ixrkaAJhCmfsOcU6JVpXWwldzsa3+KK7LPm8TeCQ0o53ncCVlb0zlkRBclOhSpfxi/YLldHj/EmW37BuPKQhNzvbYqAgaIABwsF89S561Y4P51iMc7aTcUNUJbzym7nNNjxzc05da833nA/35sL13e9/GQSKRQHFxMf7qr/4q4+//4i/+Ao8++ij+6q/+Cj09Pbjuuuvw6U9/GmNjJpHr/vvvx7e+9S380z/9E1pbWzE+Po7PfOYzSKcN087nPvc5DA4O4jvf+Q6+853vYHBwEJ///Oc/wBBN8yaj+MqJz7AQs5Qbx2e8rAxp0mf8a6b44N276AWbjUEoYZvrmpWiTo0ws7n2ReaNxwwPtv4ZKWrUBxKOMSdtqiOPx6zE5kO9xRb1msSXG1ytCRe+8dMr1XN0f8mYeHqoxnhsHNNPAOrnYrxubgox18ZP0kX1aMsdZg51NISYNQBwgnXG5hjqV9kHej5VxoWvoCwAjDc5wMxyX8MRuPEkPp7zrk2L6JhLkyjpnmpfbLGEcDVVUkwzMB2RgiLHsqdDJVluqmlVlHta0dtYZieiUh/uKWmFN268xLYibE8NXar31r8AQHkxm4q6VMK8SI5XGFpK6oWlZEmljvalxNZK2BvDHXT1U1rD8+dzONpFCguxEh3uK8KXTnyW+yMVhTsL+nC0bwEABbPgJFC9D/d2VQMeGK7Gxf4ukhFF88iXsrjMg5cZGZDb+5da3tMDJ0vYS01Ksx/1WD4wFaCIVPF6BAxcN55kL7hlUPjAO7/IY6+vzHX5WNY5uDOTiMBT46DvTdjKL9PuBuZU9sWdkbI88FmuLmhHimxcUQHfVdRtKRBb614EHB97u6rxXxcft+oNAIbWd+T16y1mI44aCTIAOu+A2Xc7h2rRMjKXZZtlnHq2skT7kqlzxXxfc/V5sw76LJAyLtdHsrVlVGo8ReEsDU9vXBnjT7TejgO9ZTgyUKAMPQB9p29mWcZyVhiIlEPijcWYUpaeac5kQMELeJNJ9obmB3Z0xkm5vEdIBvG4RZ+8RAz3Lzx2UaWOHFPB3+/truLvr6/p5vVYW2XofGXUXebl8PvHY7x+xwfns9c+Iy1stk0BLud2e2vjRY3DnUO17ESSyuvO9gamIfYSMeXkGFfy3ErgTphoNZ8l1xARuDNN1Xs3JwW4wPa227G7rU7J1ryAPHCA/X0KaraqUkNvJ6LMdMafI2Y30ivoHfp9PC9CPksdgfs/FoD2ZelkfjJ0xm2DcWNlJ0cP+B7XcpLq9PhTEbi5KiIbYjm7iGPqw3Z5t/dtHKxYsQJf+tKXsHbt2tDvfN/HY489hj/8wz/E2rVrUVBQgG984xuYmJjAP/7jPwIAzp07h507d+J//a//hcbGRpSWluKZZ57ByMgIjh5VdImnT5/Gd77zHfzd3/0dampqUFNTg6eeegrf/va38dJLL2Xs19TUFM6fP2/9AQA3N2kV1QoKavbWB3II6P+b65Tiw15s6HL3Oslpc22zSWJzdDGxtGMpSICJKhgvAqzCW248aXE8S2YTSmZjoSw9qkFBBRWGvbf+BeUFJS+j79gGDSmQ+ndbS5tB/MduPKloA+NJwINF40mNFGu6zPj7EOFTVynpO1qNQiQjB9b8aIF3VVRBIh5Y9Hzo8nqqbTFDPO5bfITnXXq2qD+khOVGwtzylsdNtPsWK4OCDBiaW6IZlMbkosKXrP6rOTUVXWktvUQshL2WSr6bl8RzXQvNWpKScJGk4SfalgEAjo/MgweHL99M4zMeYCBvpk3XaPGp01poZdSJeEbJ1pfWjtalDEGgs7By4TDcPEU1CCjoyrb6ozZTko5kZLvqkuWLZyKqPOa5KS58JmEVPAYBQ6MCSdwcBaOj4n2balpDrENwfOzvNQYp/94zCpybmzKQmNwUs0rJ+SH2MVJ8uGUwRkL/j3qsCDPG2FcUsd5EFF868VltqPjcH3utjLLNZ4v2SUzDNiaMseolYqqGSdzUVqC9+8xwpXrWVARbak8opUkrIhJrTe8/NKSe4/uOgnsl7LPGDg0HXKsCAGpu+b6lzHtQuG2K0qlfmD0o53tH21JrPADws5/P4vkg/P5R4f2kd1HkiQxvN66w79xvV8gd3Y/7Go6Y3KfcFFaVDSrFXcqVmUYZZ+ON+h3Ak28o7GWYD42THU6aFtowq4m8ENGIMW9dZQ+2LXxRGXo6MiONDqsJRfmx/mXWr2jfEE2tJf98s89I7u7rNGQWZBRtLm7H2gWD5mzKnByY+4kVd/n+hLn/MuW/ZTpDm2paWcbfeN3bqrheEPoIMJsQjYX65UQ8wNEOqTFDh01/DvUVh/pJY+NzM22oTNlg0nPN8skDK/5UedvKC6K9rWXZXUXd6ry44HX/fH2r9X76brZrnsEMewGmtYY5rwiUgHEGkIzY01nDjk8uxKjlIDErlc57DQAYZi2f8V+rm0PzdCm190tjSn8+bO/d/k1sRY7j4Fvf+hbWrFkDAPje976HW265Bf39/SgtNTi11atX44orrsA3vvENHDt2DLfffjvefvttXHnllfyZ4uJirFmzBo888gj+/u//Hg888EAIRnTFFVfg61//Ou6+++5QX/70T/8UjzzySOjnn3jsz+DOzFJhdMHGsK6yR2HyhLJi4W1121zcjp1DtVi7YBBvTF6JrpFbM3oNiaWE/g/AlFWPekDKtZU2YswQDEnBd1OTbDyAYD3Rn6+79VW0DM9FU3U7dnfVWgKy6lOvoet7n8QXSk9wATXr2YH3b6zusKj9LK9FgLFpXcEA9nVVcul3byKKDZVdijtaJFIG+08Ka+PCk8rbJlgZmIouRylpx16+zWbdyMA+tHbBIBdGYqU3yP5BDDoAM5sEPTJ82QdYQty4vU7UL+v5kvVDsMHweHULzifSNhMMtRXzTnHoPeOauT7vKTmnmRhC5GdIeXlrOg9HX5oXyg8AAGdGGk7Ew6r8Ea7HYfU7wNASnOdlxadxbCDfeDcpkVR/b0XZsKnSmoEhTM6ZG9fGPdUK0MngMtHZzU2hqagL76Ryke2aAkTyfLS9cgvWLhhUHP2/JFQeGq/eV1I+SFlCn72npJUVfulJxYw005lmer78mZeIYUnJaUQdT1M3Bthzgvs45qtCTUJ+ra3oxYHBhWpeZ4SNzOB6Sa/zusoewzol9qfVxwxrtiZ/CAf6y4CUg3VVPXweSSneWNVpeOjlszLs00zr4eSk4ARw1ZJVhcd/IWrlFNB5luximead/r2k5DSaz96Ke0pasaN9CZh5BzDv0n0m+e7Gk/jjikOcWE7zs6p8AAd7VHViYmqSZAZeImb2s+631TfB7sTebn12lFECSCrd4DPk81fMO8V5Qo1zz+DoS/PM58b153JSYdkl5ph/puU1yUE6nzQ3mc5XcK2s+0Hm8Ynka2r++SzO1QkyTgHAkjlncWxkvj32i9znVp8kw5GW+bIvdxd3YGd7AzbVtGJXV13oTrCeNRXB+rJezHCT2N1Za85UMsL5Oharnu4fyXkpYy76Dv0z1iugorY7e+uZMjX42eDPLCZF3QfSDbzJKFaXDeC5noUW2+Ed87rx1OL9lxyzD7EVVT373z8QW1HXmv99yY3p39qmp6fxs5/9DJ5n88zfeOON7/tZv9KE5J/8RBWMufbaa62fX3vttfy7n/zkJ8jKyrIMg0yfueaaa0LPv+aaa/gzwfbwww/j3Llz/OeNNxSPt5ubIfwfV1UmZZJSJjxzfOYF7ByqxRdKT+DAyRJVRCfgdaYD6MyeVsJaeyzvX3iMLw4WnKKQFwmJFaUjlheXPIteIsaeWrlKXyg9gYO9pczMAgAtQ/MA38Hujjo0Fp+yxtIxopIA/3pgsQkTBjwv1MhrDqjLnnGV0yryYjE2JWLY16kwzJQs7OamFDxE08Ox925mZk/90YEFHLplpZ+SmRMK87qhsBdTng1pktECbyJq1VYgWE1ojJ5RqMgzS/zn/JExxQS1rrwX3lgM/rtZIY//yvmjODpslHbpyWUDSLw/GEGSzUm6oUiWfz6LoWMAkJs3pSJUxe3Ga+Y5WFk8AjeuIjzeRFRBoXyV3OuNx7CqYiCUE0D/fms6D0cGCoy3SUKRRJNVe7l/adfKNeF1GDfniAo30ZpIKAKgK6cGwtuyn/JiW5M/hOs/8TYAKOw6KQAUCdN7fVdHPQ6eKsT+0VL2utIzWnTxLYIRravssRi6gnOUMRLgqaRR8rwStEUqbk8O1ltVyQGElB7JSOMlYlh228vWO914Es1nb1UFvOKmUB95y6koFUcYYmn457OwunyAkxgPdJer4lJpA9tZOX8U3phJdPSmIgpqEFBG2DDQ++y2236Mu4s74Iv9oaAWPhcu8xIaZz1DRU8PnCyxyACcpIt/bFORNIKB8Tv1/BAmPeQV1v8nw0Amtwadf954jA0DQDkNnLSSRZsq28znhKebf6bX5/jQPKwrGMCTg/W4r/67zApmORtcX+V5xTwe4/enPhrCux86XWAiuxqaKBVY+r+XMP22IlM+0Fh60vzMNxW34QNrq3rNfTRpjCJ5tlaVDsJLxDivwkvEbMNgLBZi0/ESqh4MRwd0boiXMBj7mlu+zw4SNzvN2HyL6U7Ptcw5o2euKh9QbFPJiBVppETue0paOZ+Ki3bmKCcAEUZQf46NqkRgirBINsEg579c93XlvQauR8aISIZWcC9fJQLL5HdhozIaIDuN/aOlqkK9JsPwEjG4MVO/o6mujZ+xuaZF7ZG+Yj57wbMoiQvkXpVFTJ8eqgGmXHsva5ZCmh9+jjYMWHfRcpkgukir3Bz4MIUoPeDwQBEu5fZhzgFw9uxZLFq0CDk5Objppptw88034+abb8YnP/lJ3HzzzR/omb8WtiLHsSfe9/3Qz4It+JlMn3+v52RnZ2PWrFnWH2pudhrrKnuwvGTUgtZsKOxlrCF/Vlz2ibEZjFe2MOYiLE54YOV9AAvBYFEYSYcKqAPsn89SHlQheCTO+fCZfGwtbbb6tL1VHWQqWOQlYli+cITfdXQo3/bYC8En+8PjzUlZz6f27Kli3LvoBfX9LNsrEXyGrMzLirAP5Xnz7c9LONSSEkNtSB4Mvuj0c/aOlCsBGsD4OyKXY3VFvzJgHPN+2b+V80f5d+s1vRugoFErygxTiTsziY9mjWF/b7nCgYr6EjSHB/tKbA+fb4qgMTRFKI1Bfm++wBI6dE1eNq38OLOmAdfnEPLEeDbgKHpU8mK68SQODSmP/tNDNcoo00bd7s5awFGKCSlPsuKtG08yU8cXlz1rrc2dBX1YV9mDmVdMqLXSc75zqJYvQSfi2TSeru354/XOM4oANQuH7RhvIs2PpEmkpNEDXeX4yVuz4caTSsnXCbhuXIXG761/gZ9Lz8l1p20lSX/eG4sxFGlteR/35QulJ8AUqLCNFG4RHwd6yjn3RzaKJgFQEDFRSG1V/ogFK1pX3aOcAdohcHRggXrXhGGBuWPeaetSd/OSgbwi824vGYHv+Dh4qpArQ1PfeQ/Gk6ritqtgD9QO9pZaeGLav3LcL3//Ojw9VAMnyB4UiJqE3inW3Y/67Ci5MjqBDdU2O9o9Ja1WjYPg8+TPiNxB9gEAww2lYfhuMhe/XduB++q/i12dddZn+d/0bBEJocjT483LUfEpk4jNcs53cKCrHOsrjCzZ3VaHw/2FCuuvZYV/zmav8sZjhk4VhhFOjvWcpl8FlMw59vJtDNMhetB1BQNw85I40FdmDOmUbZB6iRjWVfUwzCW4PoCCQHKkU6ybG0/Cha+K3unxstKv5VXHq0bhYPkmo8NUhVgk4T5QdlQVEE3EcLC/RCUjx9KWwUxw2h1tS61IE7Vd7fXsyKCzQKgArs7umLMs7x+O+uj5IGY/2aTslvtYftci2shLWsYC9yvtmNw1/Sx5t3NxR53M3VTUZd0TpC+srug3jjPdB2K5YwMuT0Gb+HN5STNHM5OhKF/o3yRPXF/LSM3mR9/PwBx2KbUP2YqATZs2wXVdfPvb30ZfXx/6+/vR39+PgYEB9PeHme/+Ne1Xahxcd911ABDy7v/sZz/jaMJ1112H6elpvPPOO+/5mZ/+9Keh57/11luhqMS/tu3vqlBsM3nGI7l3pJwPztoK5UXgqqUAsmakcOBkCba3NrISDRhvoJsjuO8BFhLknXuo/HnTASEk6UB/trqPnye9pQDY6HiibRm8RMwoseL3gDrcR19SntGN1R126HOmuQikl5ySEr2ESH4UApG+/0TL7Rb7TdDTSvNwsLvUfGZcXBSeY6IGY7ZgBVTCmnwmGz45JqlzQ2EvM1hQe6DsKHxSwCaimPaiyoDROPINhb1MK+klYpbSRJVIqR3uKbI486c8QcEoxu0lNNMMJUrL5GHHKPbSk07v4QrPCZMLEfJOCw5zNzelCvTIRoZPIBERAP644pDK+XBgQvfiomGF1vGtd0h+fTeukgYPnCzB2Lu5/POmmjbrWQB4TSlZLpTARmsavDR1ng43ccl7E1GT6yEMGKuGRTwJJIUHD5qtRCRzAlBJdfEk7ms4gjsL+qx+c5VeUR/ktQsfUc8QNTjk84IwGm8sZpT5McFvr98RTPb00wZSSFEuS+kIKCGHe4s4gvbLLmY3llYG2mSUk5qJ1lg6MiifgOaa10TABP3Au0jJAWDqHAhjQiZcbq17EfDBiotV20M/d03+EHYO1Soa2kSM8zh2tC7lpHb2UGeQSdwv7fGsK3rZ2uteIobn+tT5vrOgDzE3jb1d1ar6vGe8ucHIEtWGAYDlpaO8xm5eEj3fuwleQpEGpHydu6ZhSsTQRrIWMFh/N57kmhcky+H6FrnBXkEjK/euNGwtxTARw5QX5fPMjh2SU6JegxvX0XFhGEgnAQCu0syRLtdnauan2hcrWIk2HIjZbW1lr5lv3cfVFf2GpIGim8JRQ//+2vEVqjikzoPzLkTVvnLMuds9XGUZhNadFKAYlgx+BAninDZK8HVUDh43ERlYMucsj4PeQ/v7wYbD/H5AORBCuV2UOyIRCPSdiI89nTW47qPnOJeIDH9A7bm1CwaZCGOGq8bMdVF09EF58oVy7wD/0FqPOwv6sLO9AW48idJPvsGOSTNOc5ZXlA1zfyXpiWwqPxFKI/RMpW+a20u5fRg5AAYHB/G3f/u3WLFiBUpKSlBcXGz9+SDtV2oc3Hzzzbjuuuvw3e9+l382PT2NEydOoLZWJb6UlZUhFotZn3nzzTcxOjrKn6mpqcG5c+fQ3W2EWVdXF86dO8efeb9tfbWB6wAwUBjtUTzQV4b5t/2IK3p6iRh833iM1uQPWR7Kppq2MBex9oYeOl2AlfNH8ZUTn7F+H7wInutZyHSJUsgDMJVJtfAgjDY3LXApWdaNJzHDTaLs5tcZ/07Nm1BMHPTe3Z21aKpu5z6z0iggHizURUg9ZKCIxGO+YERRHzcviS+UnlBJUBnqG0hvDmCSpdR/lEDd01FjwzTiSXyteYXxaDhqbjYU9nI0Ze9IufbKa6GsvXUEzWgq6jIXtqMuZEdj2g/0KIPRm1R4TFIkAMV2w8qUZuvgmghi3bwxBeuhcUqvrzV/k1GsqhhgzmlAXVR0aVz30XPmuT74gnZzBBUlgB9MXc1J8nB8hhkFlVz2CkqFQly+0nsFAKvLBrC7o87sE7F2DzUcypzQJ/CsDEuTMJIAVz0p2JQ3QPOSqZESTVEFWj9iFpFJ/4Dy/KbF4txT0qpyY8bN+rnxJBuPIUYx6rtv1o69lfpckDHAy3TOUKHCV2fciXg8H248GYa9Oapo1vrKHjxQdtRWNuS8C0WRI1DJiCq+5IN5zf2YqE8gGahIB8zgLQW00TdmziUAVSAroeARXiJmRQykAbSjbSngGHpeohWWYySDDNAsSaI9PVTDCvn6qm4FOxm3HSZybdx4Eq7j2fMoICR7O6qVzKQoDVU2B5gAgD67v7MCbm4Kf1B+2ILcyPk5eKoQhwe0waqdQnB96xwtKdY8+IH9u23RUd4z3oWoTTfs+nxmARiYi85TCEY5vjlaxkYV/zw3hXsbXsDmqhamosw0X/tHSy3jl6CpvLc1NTMAy5EAAE+03g4voe5JwJA0AMBz/aU8L4CGiOm5ZqrkSVGs0lVrRXvUci68lc3/tgwjzaYjm1RgVeFDnXwsIG0AmApVwnoB4NhJvdaSVEDv76+1/T/8bgD40dQV/AzunzaCuI8JQZmq76ysSJo/31TThu90K5l54GSJqfvianKC8Rhijsf73km5LMslmYnv+uwA8SaizKglm5ubUs6CiSiyXDNvT7UvDpEXwAf8qGcMuplJPo9yzJdq8z9A1OByMw7y8/Px85///Ff6zPedkDw+Po5XXnkFAFBaWopHH30US5cuxVVXXYUbb7wRX/3qV/GVr3wFTz/9NObMmYMvf/nLOH78OF566SXMnDkTAPC7v/u7+Pa3v41du3bhqquuwoMPPohf/OIX6OvrQySivDMrVqzAj3/8Y/zt3/4tAOCee+7BTTfdhIMHD/6r+knJKjc++cdAJB5O3iQWHyph7wBwfU7IkZ+VigErFoEkKumBo7/vLu5gYUsevd9dchQ7BhqUAHftJEfZMiY3ZkoOk8I+2Fdt2BwcKIHKh1DJpn5AeAIm8Vo2+ezNxe12SXnRL0r0DCXATugkPFeESjMlV+oEYSflwJk9zUnU8nIKvtcyqHSxobULBuH5jlLwRWLyez2H/r26XK07ACuBnPs6GcW9tcfwRNsyKxE2OFecaJ5hreRnAfAeDPFWB+aeEq6t3+vkw7uLO7CztUExxaQdNNWqRLINhb3Ks+vBSoKDAyvx0EvEsKzklJ0nAMX6QnSiMhEw+P475p02ycX6XEnsLHGqWwm6jrlMOdFXJPhazxCeuWUlp9SFnnRDn9lQ3clVduW7mb4vEF2g+eD94QOI+NhW+4KJYAXOGf0sUxItJecHnw8AV37sPBo+/iqe6y0N739KeNV7Ze2CQRNd0EbAO6m48uIG1sE6axeiaq1pTigxV49xXcGApRx6UxHLwJTjtRRu17eiJkvmnLU50gWMjBNHaV5pnsZikImz1ILykc5P8LP8O5HcLltwHkjpbJx7BjHHQ45mLNvfW25XnRXJmfwsmjdSsClRVybDTkaxrfYFlccl9tCi4jNoGZhnn7eAY4Pmnd8XeC7n6JDTwYOdvCtkOyUk0zpZz/EcK7mcx+yZyJ+c4zsL+rC3p8o842LyLcNZ8qYjFvQ0FOkR7wnKMi8ZYcNzXWUP9ndW4KElh/DV5pVGNozHELtiCumUMfT9c1kqzy84h0EZJJOtA3fTioUjONxfqO6oLI/XxZIdwaihuG+C54Sjv/o+W1fZg/2DZVZCMiK+de+sq+jl+aC5obsWjo/V5QPwfAeHThdgXcEAro2dV/tOJjdPRYCka8GdAFVReVdHPfeH+rC2qlflCMXD+4AdizLRfeICXr/nzy+55F3S8RbufwCR95mQnE5MoX/do5fcmN5PI0ZOAOjt7cUf/dEf4ctf/jIKCwsRi9ln8IOM8X1HDnp7e1FaWspsRA888ABKS0vxJ3/yJwCA3//938f999+Pe++9F+Xl5fjRj36EI0eOsGEAAF//+texZs0arF+/HnV1dcjNzcXBgwfZMACAPXv2oLCwEMuXL8fy5ctRVFSEf/iHf3jfA/Qm1CRtqOpE8U0/tHi43bwk7q09ZvCUnmMZBgBYyScvEQuFDIanGzdFvrxEjCke6Xefqe5nCtCV5UMWXt1LxJhTHADT+UnlNghXWDl/NNTXsptfB6CUeTeexMG+EtTkv4KVC4exonSEscPs0dEKzFPti4033Zo/83sr+pFroD+c3C08xOTldQIwFwD2GgiPrTNbYcW7vvdJAFAeUQBwfS7vLsdKz4AD+O9mYX93BZ49VYzNtc22AkGJ4aJvwX8/119qvKEBwwBQCvUTrQrCcse805YCLKEr66p7TIEvPe5MXnryLq0sH0KwBekygxc8Jx9ORrGzrUEJcn05kud2PJ2tLgUZyclNWZSNtPeOn51jzQkAXJ/9rglN+3bfAeP14wRJahfxyBDkgGgdqd1X/11VFVf+PENCLwBcnT0OJ+Jbe4ZaqPAcgAcaFKxvfXU3Hl787dA+lFAeN09BbH6ezNPRAd86C0FPOY2F5iUIVwPAkbeI61tVra19EMgHujH7bb03wDhqgncwNnkiajyYyYiCKmilcuX8UXW2CYOu/9rXYSAiANgwoHGR8u2fz2J6Zvhg6ErZza/Dm4ji2GA+NlZ3mMiUY9bImTXNyqOEgKysGLIimYD6PXupoeRzKAoXbGkHKxcO28/JcJYBBZM4+tI8HD6TjwMnS5SMEnUjaG6CkEk2qHShypoFr3DEREZgxtIz9Isclvktw3NtmkmJjeeOOVZ0Syq1W2uOmztBR4wpIZifqT36bjzJCa5Ub4QqKpMnnIka9HxvqT3B82vJwwu6MrI2ggBYCqwas3rv6sp+cNFP+mwgJ82NJ9FU0wYn5agcg3GTR/P2dNyKOsi5Jzn31Zb/pB+kjZK8JBsGtM7/fenz7Nl2kq4au/7/lhoVYf3YR89hS90Jq5Ajec231h7H4Z4iEPSVag5I3L6XiCmni4hIBSM5Sm+A5djYWKVyavb3lHNCsjcWw6rKAevehO8Ylj2oyN+y215mimo44FwikjHbW0TOIfUjO81njUhMVpQPq/wMvZYED3VnJi3mPzeetGjT4fohqtRLPnIAwPff55//6E7/CtoVV1yBK6+8EldeeSU+/elPo7OzE7fffjuuueYa/jl95oO0fxOV6aXcyKqUVKZAwPOCzN6yoJebPEDLSk7h2EC+5fnMpDAQ9IGpIjV7T/B7MoIhPZFeIoatdS+qyIGmE8zk+Vwx7xQO9RTzYd628EU83v5pIO1ga92L2NGyFOtrurGvt8LyKlKjaIHsd6YmvXmZIhWhz2svWtsrt4R+ntEDFvEBD3CmXfhZOnkz4lteLC4mF5i/TN5diy5QKBwykZjoYAGFk5Zl7InOkDw9iPiWt88ak75MiKqRPFXOtMvGjqTuDM6HHNPm2mbsbGtgyIuT7SlISmCvWs8Yj+GLS581NIoJVfjKmaXevaX2BHYO1SJrRgrTGtIQpBEMhsaJyjT4HlICibaRvGoPNShPnzWOrkVwZ6SUR7K7ir2h6yt7OOFTzgMbyETVGOynjDJcZD/I8Vjf095vABzJgKfOFFH38ufoM+L5tM6h5Gq9TmvL+8yFK6IKRPHrp134U66KjtHaXMQze1dRN3Z31XL188Nn8q1nrqvsUUqf8OgHz8GGwl5O5iQ6RsswEnSwALCuotcoko6PTdVt2NVeDzcvaUeG9LxvrO7Anq5qu//Sk6n7I6MpVnJ4XkBmOuC5Cs5tRu91hmgHP+s95Jh8BgCL0lP+vKmoC7va67G6sl9R+ZKTZiKKGz75c7zx+tUq98UFnKQDP9szjGu+Y3nx5XslHe7qin4Fx5HRnoTKG5sZucBJyI1zz5j8m7iB0qn9K7zQunAkszWR5zsgYx5e/G1VCJSeFYhu3r/wGB7rXxaKAq3KH+HIKq+BGOcDZUcV3DPDHcHfoahqwlBmy8iB9L4H7+DgGgFKbhPsUUbK7q07pqLzF4wTJViLQkatMq3P5tpm7OxYFIrEUdK+LxxO/vksBcshRxjd2a6PRUUvoe2VWzLffXp8wfuH50v0n3IqrKir/hxTm8oIgZY/BJ8GoNb++GdCusZDDYfw1Y4VWJT/MloG5xnHp+Njc00LXv15HLuXfvOS87KTjle8/38ikvs+IwcTUxha978uuTG9n3bixIl/9WcXL178vp9/2RsHNz75x3BzlZdHhpwpzL6uYAD7OisZlgGYw5d91SSm3tbsEfIyDhQg44OmL6cNlV0W+4Z/Lgufq2/nfIbGuWdwpK+Q+cDpGXRpb1v4Irb3L8WdBX345miZddlTI+EdbMHLwLo8J6NqnDqps7HkFI4O5SvBKeABgFDIdWjzvfjuM4Xn75h3God7igyOOZhzEEzkEiHkZaWnLG92UCkmBZgE4oqFIwYCE7i0qAXnUAriTJcScZID4vIej2F52Yh1WdOzQgZlQiVc7mqvZ+VnVvQCdnXU815x84wCFYQFrCgdMUpZQOkhg0fypVuXRGDOQsaogHLRpS09tsHLh5QNWUPBUsD1WFbOHzW87qQMBvodhNFx3yQ0QDzfqmEB4LY5P0b11d/HM8OVBiojlA7aSyGDfCyGDTWdGE9nK8YewREv+0MKR6b1Dc4n7SkJyZMKF8HVvvPqfCz+5Cs40lfIuUSsvMnPkxIglNGgcrSqfMBiHJLGSzBqc1HHRyKWGTqXiGFb/VFsb2k0ciDlco0GL6GSWmdHJtmpIAsF7uuqxPqqbuzrrMTyshFcn31OwRrkuzMYo8Ex3Fv/AkdYLfimgIgACNc00J+9q6gb2U4KT7UvxpbaEwqiEZiT0LODziCRJyUNRzdH0Sg31bVxlI7eX/Wp19AxMgduPGnVFeD3iXMbNKbg+lbNE4K5yciCHEtGBxfVUsgwVmpkrMuaDRuqO3F1bNyqg0N3j2xbS5sVAQBgyX3aIxdzFsn55vNItVpcMEe/itAAcBV98lNti21FVtZTEDJtZdkQDg0UwYL/CJlIES1pcFryH5n3Iu2HbQtfxOMty8OOKHFn0T5iWGCmWjoCUvZec2UZTxerGyHeWXjjjzHy+vWmX75eGwEfk3WO6GfsHNQOIT/pqoijhhURBC318zR+eP+fXHKKNOl4Rf/84AcyDob/89cuuTF90Pb666/jhhtuyMgU+sYbb3ygOgeXvXHwiccfwQ3zEnjzrdnW7+kQOdor/1s13ZYSQnjNTArqxZQbVig928iA46Opul15BzLkLARx20Gvp7wgWDkQWHIgcNEFlRkh6PxzSoFcWT6kvJJCOfmD8sP40onPstB7oOyoVZ15fVV3Rq+vxL5agpuUNnkRStrLwDPkZ4KKKAtLqUyJ97CiJzGmFCLWcItDpwtsRdIJexlpLaQBuHL+qJpzYQRd7Dlr8ocMnvMigp3HTPMVMCro8x+5ahzjk9mYfCs3nM8hsNH0u001rciNTCn4U8DY4/cKJVwamLS+ue40vjFQozzdnmOUol/ijaW2qaYVu4erLIw7zRtfnJmiaNIjClvpLcv/PgZeu0H9X2LlheSyvNEZPMxBilXKwZHGA+2hu4q6FSUsVH+kAim96pkUDGte5F7Ve2Fl2VCouB15a4NFrFbMO4VD/UUhQ8HaO8kIe7FZMZRnSXz27uIOuPAx4WWFFA9ar+C68tpEfbhZ6dDcZnJCBBsb23q+g/NFeRWc/K5/RsxebMxoXHXQM879CeDpQ3IlgzERijLBjmIE20euGscv3s7L6ISQRt2qskElb4LrFlGYhrVlfdY73ktWACY/g+QLfGBznfJub6jsUixHgdy30BpeJF/Nm4jCSblGFhCUKOBEkN/JuMYXy40AQu9dX9WNfX3lat8mHVAkL9hX8qoH55eM/401HXjzwmxcEZvIWChTnmvpaHhg0fN4tPmO0B66mNMimO+ztbQZOwYaMjrurP2V7QFTLuqKX2b6V3JufbpiWKELRJ6a5QyYjKJs/vfRd/JT9vwF8nK8hB2dJvklox5IGwdgcM+T4RWMjlPx0Us956Bg3+99IONgdP1fXnJj+qAtEongzTffDNUH+8UvfoFrrrkG6XRm5MN7tV9LnYNLqvmOZRh4CUGv5wOfremDH/HZg+/GFY5wf39Z6FHeRJQLjHDT/95Y2cnKjRtXOEQWjLkpEzZ0YP8N4HBvEbxxUwBnQ6EpzkJYV/rswd5SLF84wjz/XiKmDnZQCZS5A5oWzZuIqiQuB6ygSGz8l178rKKl00Lla80r+HtuPGkpD6wYkZdBtAcWKay3O1N5J8hACBoGkoFBrg3lgHgJxdXtxpPY01PN/WXq0ACumr4b5D/3piLG2+oagRhKbByPYSqt5m15mWEpGkvNwJbaEyEPJgDrOV4ixgXbaI3pspNrSN+TireF7dWGyS/ezsPUpNkr1qWsMelsaMaT2NVRz6xUhJm2qEMB64KTkSc3nsQ/t1fZnt68pFZmFE66ce4Z5OZNmfkai4X6RQwiEQg4lE7s299dYfpGxqP4brDInpeIobHkFAZeu4FpOt3stDkbpGzS+tMcuj7ngfDzBTYeUDh4WbDJnWn23O6OOsNGFCgatHu46qKGAf3MG4+h6lOvcXXbj35kDMhS3nc6d7T3G+eewaMtd6hnBCrkHj6TbysLU6LGQzypmFFiadXPGSlsrXtRnd+Zpu6ClFVPD9XgqfbF2NNdjWDbP1oK/12T18NKw3REKWoaVy6VqJBCNaZ46glTTnTCysgEnwc3nsRDDYd4vrb3L2XD4IGyo/Amo3i87dNWP9zstMj38k3UBWBM9NZFL5pcDNojQjZRQTBeMymL9LMYCnYuC39W+S+Y+4mfKqa6hMr1+cXbeSoBN27kDD/T0bJBJ5AS/tvCbOt750BPORrnnrGj0Jq1imSupCYlCMyzp4oBH9hSd0L9zHewt7uK5Y1cI6IaBhRkk/oaVNjd3JSCxdC80N6PJ0FF96jej7zX+G8xPq5vQL93fayt6LUKxLnxpIK6Uks71ll0RESLonjULwAmQuYodqLjZ+fgp1Oz+J3Uf/oM5UvIRP/H+pdZcpUZ0MT+WDl/FEipu5NkEzHGRbSmvaejhr/jv5vFcmdrabOhPM9Lom10DgCV0O/Gk/hcXTtSHlHjmn7Lu8LNSaHv5KewrETlIsrcgPVV3bizoI/7T7lf3ngMad/lOfLGYyxX7l30AgCE2K68sZhFTkB9ONAb1oEuxfa+8w30n8upXawG2Pj4OGbMmPGBnnnZRw4kWxHDR7SnxI/4zJAD2J4JC8upE8O8C1H20mXyzAfhQPS7TdVt2D1cZUUIAHDBkSA2VLZMnhpiTHA8B79d2xFiacn0eWKEcXNSYcYMmXgZDLlGFAxpc73BYOaO5KB4zSm0jc7h54UgCgQfCEY4MjBbZArl0u8oH8HNVXjPooLXMPL69dzHxtKTODqwILQedYVnWSATFpefGWhy7ppq2hjznclTT2OA51hsML8MH2t5WvU6rMofQQQeDvSV2fUpRNSF5tLxTB6BxMZKT1vw+TR/QaWTvPRO0g1B06wxk5c+wGBhQcYu4nWjc1V366sqUVPMDXs/YRQZeFBrzXhXDb+4EFXjzbZpC2UlXPjA1nqdoyPnOUOUSobX36sRJMhKJBbRol923gCwNzbooWXaQOGRbCrqwq6Oemyo6uQcDeuZAciRxSZFeTWeMDTTDtZW9WrPn4HJ8Nk4fauKBGSYI7lO3+qsgB/1LM+yHHfwjGyqbFMFxwQuPgjRkXuUfqYWzTfYamJyC0QK4frYXN2iyB4od2IqguVFJy0a0j+r/Bf8Sfdn1V7rKrdkUMWnfoCuU7ew8Ua5RZQ3JKFl/I6AESQZiTJF1UKe52AEIUP0bF3BAPb1VGBjZSf+sa3WePIvRLGlqhlPtS4ORYsR9bGyZJiNzoY5r+D44Hx+PqDfodmsuML2TGNc0fzKHIwgexH1e0nJaWS5KRwZKrBlqk6Khu+gsfQkjr18W0YYIWDkyvwbfoIfnZuN8+dzLG+/NUcBaBWvgcD1w3fsPLMMe8t6v/49RU5X5Y+o+hj6O8tue1n1X8qSDJ51bzKKpiqFCAh+B76qCXFgaKHqJ91h72bBuWI6JEsy5dl4F7TukYFBSs55ptyfi+W/yIiXhBXRXqXnbS5ux1OdDfoMj13SkYP8f/r9DxQ5OPXbf3HJjen9tgceeAAA8Pjjj2PLli3IzTU1itLpNLq6uhCJRNDW1va+n335Rw4AzP3Um4pXmxQP38Hn6toVrGi28J4KzwQLTs8BfEd5TjSOL1hMxs1NwT+XxWHwvZ3V1u9+eOFKeImYihAI7+KyhaewrqrHHMpAeBuA5fkzgkeFYJ1Z05jybFpSyws/ZjyegBEyy4tO8rOW3faygt0sHA55sOEqw4B4j+EqwT5ROKlCpL5WhASTBD1zUckZ9txJTxIZBuSJs/qeq6sk00URT2J9eY/y8ExG4cc8DL18I7zJqGIycnwc1bSK3qRhcIED7p+bkwLSDnvxaGzkwaRLUT1E1YAgxXpDVacq5qSFNNWkaCw4DaQdVeHUV88OGgZfXPIsr7NSxk0hHFqH53oWKgiSSOpz4wqvjKhZd8dz4McEptd3eO7YUyaiVW5OyhQD0o+ZkTttXcBuTipjzopsfBkK+A0AHO4vtOoVSD56b1yFuD9b0wf/XBbaXrmFDevgvpYXEkVilhWdti4zd4aq6cAFi1IuuBoonQ1H8+xTC7g7vIRhIdne2hjigad2/8JjXHPCzU2xYeBN6OKIuo/EJa+SQMX5DJw3MgycGQSDUgYezT+t1T0lrYg5adQVvcyGAVXPJS9esL09rS4BL6n43xcVvGSUwVxVf+HNC7MVc5GvHBqNc8+gseQUG83eRDQjxI/eR/CVhxsOobz4Ff7MsttU8bH7Fx6zvuvOUJGVJcVnmOXIzU0BER8PlT///2Pvz8Okuq5zYfw9p6p6qm7QPM+M3fQ8D9AgRFAIJhDMhy6WgtGPT7pEvooVRflkOXZix459c6+vLduJriIZW5eIcEUIkYIxEUbM3U3PI90tBoHmeQC6eqqqc35/7L3WXvtUYVuK810+2ft5eIDuqnP2uPYa3vUuxfJFSr6GQNGzllb0GiU6N64oHGMRLK/sZtayVdXtWFQyiI3NjVhQqhiavFgESLhcCJLG8JV9nwWgPe0he0O09k/nPSIJCwge8nSfTUlLffRGw8C7mbz3G6afVGfxnCmgxeulI3sMkxNOl4cad2FldUfKmm49Ug14DjYfqeNkYC+mPL9PtjSy0sdRjuoOuFkJBQ8dU5EG4rRXVXKBhaVa7mnF3Y3GzdnNSaCh6DiPdXdPIfdlS2stkHTQOOOEiIz42N+Tj91dRXCzVMK87zlYWtFrKal7enQSvbxPdKubdorn5OiJa/HR+7mWt399SbNhQco1RfoAJWuIZc8qQOr4qMp/iWWt/A59j9dIyF8yDHYMFlkK+N5jM02HKUJMuQK6b2uLW+FmJ7CppQHeSAR7+gr4XRQV3t5ZgZuuf1fJML3+zkVK5pqaDz6vz90lLVb0gMbJ4xBMRw/Oe16RFpT3I//6t7jvDO/VdwLXntDFXaUj7smWRm1EiAXS0a+NveoeXFd3GJWaAfFCbb/JRdC6u7vR3d0N3/fR39/P/+/u7sbw8DBKSkrw1FNPfaJn/0YYB8dfvwKPN93KiWBwfGzpr2RIBh04We6eFWp9mLYfLeVDRPAaDgESXIeaD64QCoCFDV0IXkx5Cfb2FKhQp8ZbLs0fUAWwLPiIDSviMDT1S3tgOcSuPycL0QSViz0vzubv7+ktYGwzvY/H7zlA2EfNLacVnWvSASg8TQV6NPbznvoD/My9x2YiO2SHaCnM78Ui+GrVTrjROBoKj1uXHaBgKTIxcGtblRJwCYe99Ug67OEyirFjlAutcLHC7vqcX8HKtVAQQ1QTIS+ORaWDrHg/M1ChLo4sNRebWhoAx+f1pOjQruECLM0fwBfKDvAzv75/BY+fq66m8TI/3LiT/z2SzIIXi6hExuwEC7BbK46meM/mFb2YEt6n0+ydixgcrL6Ix0cz+HJhyImeY9rHRI17tS6+xh5wjVclpg7ek5qe1Cpi5Pp4fjgfOwaL4GsDxxvR2G899mcHSyxjSikyDtZUt2Jvr46sJRVFJF3GVIdh1o1vgYruqf1HiyiqP5PC6xi63/salCJLsKb1Jc2W0eDFIni0a6F6j6COJCVn85E67vMzAxWailjtv5Vzeqz95MUiWFfbxGvlhDwDwxlRcI+1xa18HnJD49jYW4+mvpk874whz0mo4oDZCTZi1xa3onVgmuXJbjoxDQxB1GNqfekmpiB2o6qS+p7uOVhUQgqjY0FXpFFOf/shH98+uBSdp26AF4tgVWE39nTNAWCqAVOfaK0OHp9uzQV8B+/Ep+D54Xy19yhf4FwEnt7jOztL+LNeLKIMM0dRwNJZ39ZeyZWoDx6fbgwQMjgYU60MTy4uSFWeYza0D46PZRW2vPXGjGK2oWEf3KwErsn6iPcBLp/gZx3qVXL0/sY9AIAlZf0G9uhrqCk9V58BbzyM73YuUkYLyR0yPATsCgCWlPer55fv48RXcgwBqso3r7c+57u7iozTIFfTFAtYDO0Xch419c5E3bRTKipQPAyrOXqeaX58A5mlNXNcX90dUtkSfWT5rFtT30wDH9QKtyzyJSt5A+beuPzSc/DGwnjy8Hz7PtSGRfvQLXhkwU+Vo07TXvtJ18x9AHJF7V9bKngO6Vn0f1LyrX2RVI7DKyNnxHiBJaX9VoVocgC4GtLkjYXZqWhBPfXzuPBYLKJkletjWVmPtRwsYzxz9nZ1FmNKZNxeH/F5GuvmFlNPZG1Ns1kvX0G6GqafVD/Xugh9b1NfDTpOffxk1t+2/3favn37sG/fPnz+85/Hrl27+P/79u3D888/j7//+7/HjBkzPtGzfyOMA28iZLzcjrnQAdhYx6mTiuNbWNJWeFgrB+tLmnFv6WGuiBkMK7t5qqLmQ427lNDVOEPyxLG3APZlsHOo0OKmBsACZV3dYayqbuf+3lXcZuAegAUrAYDLIiMG8xgQiNbYshNKGdWwKL5sKZqRnUDrSzdhamiMvU5zbnhTCbVzit0Erq9CkFACaUPZQWOAaEG/vu4Q9+Ub7UvxZxW71UWRY9ijACDiCCVYGx/eWBjrGg4bwcfeFpFboCMABJ96vOlWc3GKi4rmVGKWGa8ZiyDiJi1PPqC9Lo6olTAWVhVchbK/c6hQFachL7oe9z0NB9JWXaU+//fOxfz/J3oUkxFVTJ153dsAgIsio/x5WpumE9OwsHTQugw46VZyYOu1nzJljPcAKVjme+pSyXTVxfjGWxebi3IsrLzdeXGONPA7ZbLuiMnjSAnl6zNHBvOGsoPionM412ZLay0rhwAUXaYwirxYBC+evAZuVoIx6+QhVUnxZo2oUinR1T7e3cjGzdriVjzZNF+fdceOfGgF1UygXb2WxrpruABLtEd7anhMY8bN155qmavObGE3vIRrGQ87O0s4t8ONqorfPF9UFR1gD6gfUn24KvMs5z3IPq5rMBhi9tZDyK5YRNUv0LVP9vQWwM1IWpElL2ZyZGSlbPbO6rZtoMyONujvb+qrscYvmxvVis9oWO09+pwLZiWTOGipjFpyS+dzraputxQf/o6OMFLkd//xGVb0UkYLKSK8o6MM3kgED87dreZHJOsTnejTfdXW2KQnHQAXzctwE7x/3Ly4MtBFIryMBtL4+Hlp6sE8P5wPLxbhiLSbG1cRcG0IUD7WmmplaLpZRhG39rOInNA6w/G5onzLSVVh9+Dx6db719Qo4+bukhbG0vP35TpZYzK/kwo85yxQP0bDyL/+LbiRJDa31PE5DsK06N549/08tTaOwcxbzhYf+JuO27G2uBW/W9erlifksSEq73l6v39WFVILnhn4MMyFlISfneBcF/gOy226E3d1FFtjp3b6zUv5nDFBg2MiyvQ8cky60bhi6vL03pSQXz0GCTe9f+4etPRpZj9yaoxELGOT5CRFpjcdqVeGr5jnphPTOPFbGtzni7JeSO3jVkemP5+m9pOf/OTXDo/61OccUJ0DWUEQMEIgmCD70PxdzNfMPxfYySCXcNBS5/wBrcBuqNuvohYBQeqNRLCsqhs7Okv5kBIDAgArH4EaM+4QnpCwo2Nh3FmtefYFtpQ8Uiz4NHsC80oDQMjH+ppD7LXgS0WMJd1c0BxuaNiHxw/fan32y5W70Bu73qJcBMBYefoueVIlrnR9STOebG0EMyAlz8+AAYhLKA19KbXGGSdSvJnW5Sme40Y1DWF3se1tI+ww4d1FRVqLL/08rFGSYUMaJum8PXI+rHEH8ahJJ/0FLcb1cONOvsisXAQByWEKRcLiJl1VX0FX3kxbJVZiwUciuKfhAONX4auE7j0vzv6FmHbGx6bh76Y1SZmDhAuMqwT8ZQX9uCwygo3NjVhTc0R52+nsUZ7QREhVKM1LXRNAGRGPH75V1R+YaqBXyyu7VT6IrrZtPLcAV67V1U4lY8m9pYcVxEl+JyuJdeUthsaWPL16zA+U78V3D2tlg9aX6GXTMGqlnUuNwU7HvkI5K5KbnfeI43P+Q8P0k6m1SSZDQMKBk20qq6fIBL0vbp89hOnZ71g5HcEzYI0vZFNBeqNhrK87BBc+453T7W+Wx7R/ZD4QzZugJ07HEBXsT0pf09AvSzmSIou004fXXOseK6s6sL2t0sgEks+eg9W1bSkkD/TMJRV92NVdlAKrAezaFYC6F3a0laXSRY+KGgVt5XaED/ilMsWLGYa6IJuVZMRJkQtAWicBzcvi8n7s7i606seknFs5v3TPpSG04DmXla0DxgtVtP5h020p8pbfTbkloiJyyj4XOgP3N2FyeeRe5s9neLin8hBTHdMc3VN3kB1qnB/iOWrdO4pTkuVTcpDSULOmG5cbjacy24k8GJW3Aa5tQ/kX99XrWhEjEcC9sHMOZm7+0ifKOTh253+94Mb0SdvKlSvT/txxHGRlZWH69On43Oc+h1mzZv3Kz/yNiBww04XAPbOnSXqmQj6+27koVSkRECMKk0oDgD+Xa2MikXSMN1i3u0tacFex8lzvHCq0PICPdzca4ZqnQprsfRkLK0+C8DLBVYljbnYCEUd7OLKUt311TVuK58bNjeOWG96xsdIesLFlnkq40v38cuUuuLmm2jM9g6Inc254E4BiCyKstxRO3zy4jOlWJdxoeWW38UQQXlgrJoASeE82zecLQsF51MdXFXZb8yi9G25UYSvvKm7juZIej/MZBveX71OQGWp6TnYNF/ClTF5U6mNdwQn4ZzLgZiXgxNXxkZEBujjk3JMAX1LRh7X1TWYNcxTDDAADrwqlGjlBT6rJrTDwF3pGcIwyMsE4aGgllOaeLlPC4pJhQAqsnguCHWwoUxWouaqtAzzZNN/yNl8aiVmYdul1571E2GfBTqU+JKpjQ1U65XcBfO52DBaxkvTMQAVWFPSKsepKs5lJyzBYUqEq7PpnMuCNRNg7zLBAR313x2ARR/rWVLfq6BH9HlhW3c1Rh82iOvPjh5QjYHHZAMsEN+zhfx2cJ2Av0MnX6gePdi00UbJYBFW3vMznnyJ6Eu5CY/FiEXjxEO9PGSmUn4MD+CLnhaFE2vCg9SXDQHoM3QwF87vy8jOWV5r33Ig5G88P56ucjl9QUZXPRkgYPVR9PieBjc2NSpHyHDQUH1PQoNEwLrk4BkAzyMBW3peU9nOOBs2brFmzs7vYfj8x6mjZy3A5Ok9ib9JcebGISvSFLYso0kd7g9Z8XZ2KXFHOA+VEuVkJ/ix5kvlMkrIeVewzNK9LK3rZ++/FIvhJb50ll3cOFcLNU8Yy3T9SodwxWGQpm240zufLSRgVQEYe6HNkEGzVEe3bZw9hbXGr8jIL7cGcXcecPZobPY90znd3FKl9R4aBHjPdmSnsTiSfchXEivuno1reZMj0wfWtKO/a4lbAc5TBKvKmJJyOxs7niCOefopMNZBFLaddzWCk8/GIQY8/H0kqp4kY09raZlXDIVtXrPcdBUmLxrFL19Cx9BIdPbccJ3TWtQMk5cxDnFMpdwD77s1TUQ0qtvlceznc7ITSRUSU6EJuin3o4+Yc/J/u9a+3TZkyBXv37kVXVxezFnV3d2Pv3r1IJBJ45plnUFJS8rESkz/1xoGbEzcUgFr4eaNhA4PQnmIAqJlzkr/XMF39O+ghIzoxFmbQgk8/V11sSuCtrO5Q5dBJwIyF8ZPeOpwavdR00AnsUikINAuD8p44JiTu+lhWoITJlvYaeKNhPNXawIouCfU7a1vYmCGq1tNvXqq8QzpRUM2Rzi/QY/lWh4I5vDk+1cyjDsU3zjiBo69cDW8iBD/Dw5KKPoW/hlGE+fMhH1muufCeay/HsqpuVhpL8l+2vDtubhyIeHYCYdiHNxHC1o4qO6lYf0fOHxev0ooSXcgyN4S/B0Wh6Aslzbrs9Jqyt1dfQC19M+BnqUvNmTppqBP1ZbOsoF9faOIP0Vh2FXHeAkI+K6dSYQ8m03F/xH51s5XhtLhswORykBcIwPKqLl4DL6Zw4r5OSqXLj5g2vPEwoAsY0b7zk65KMg8ZZQk+WDl6rGkhvFgEp/U+pktT7RHV1y2d1XBzEii76VUTNQHU5X2eKA8pE25enAvNAcCb705V+R0BeBg9jzDGXA2UWHJ0q5t2iteT2MKI0heAWgstI6zkPF0d+5mBCkx42nDT8KGdQ4XsYCAjwYsZhXV3dyFDzwDg9+s7zXnLTrCBQ+9lBSkaR2HeG9yF9SXNClaioSCA3mMaQuVGkgqzPWZydzyqhE1Kko52eONh9s7KRrBHSZUqldEHK/bgnfemcD/VBKrfLyo/akN8HLO2XGFcNyfu8pkgLyvLthyTD0YFsqZExrG3pwDLK7vhblV7bUdnqVFq9FifH85PKdhFMonnm/5N8jzkK3jSeNgUydL7al7Ri9azHijfy3vTT7qWB73ohjc494XW1RsL438dnIeiG94wihrNyUTIKnZI62N53AnvDjCEjckGpLNmNKzGMKkMxOe6SzFw7hp+DgBVB0O322cPYdGsYSyceYwdGn7EgzceZsifJHawICX6XtrVWYynWuaqcVCVbd+Gr9BcWRF38kUJw4vWj3H+Y2GrThC9Vxo23z9goqD8t95XbjSu+fzN9zf11ag1CcJjfDU33mgYd9a2KIOc5Khuq6o6eB7lWV5W0K/uJb1+j3c3MnGCc5G6E+aVBPI3Eg5WFPSiccYJFXGR0VTHx672Yl43SfUMGF3DcmSJduMN71n3nBWpCaWe9yBEznIqaErbummnuG8XevtNTkimdtVVV+Fzn/scXnrpJfzzP/8ztm/fjpMnT+Kuu+7CtGnTMDQ0hM9//vN4+OGHf+VnfuqNA29CC5EJ4V3Q8A5qO7sVi1D7SzfyZ2R43Rs1AnNTX02KBw9JBzW3nDYRhjzl0Xh2sERhbHWiIF0Kh/pnwYtFFMaVwtC6sdFBwk4ncjpJkZjsg5lUlpX3sNIHgKMj/kcZmBoeTT8phKP2xWWUrYqe0UXlTYSwt6dAeYxnHGdjZH+f8JJnJ5DtTqrLi5LrchKiGJP22Ih8iJ1DhTxP/a9cw3NLsBXrYgBUHzOTcCZdTAmPcb9JqeD2fiYL92UF/dw/N1tzXmv6SFJevFiEPc0UAaDkMACmbL0W0m5Gko0ayQlN+2hB0TC8mEqkXFgyxJEBZ9JVlxfNDQlbKgql+wnPSbnAQq8JfmKhqNNFsOfF2UZR1sr/mqIO/OsRQ6MLKA+l4/h8mdN8u/DV/spMsqLrRlUCbUn+y4xL56hJ0XEzDgAtA9MtBg3AeG7dzCS8cxF0n77eTkrU4XNvLIyl+QMq6ZiiCaQo6FoiXkzV8KDEQp43CEPUc+BcTF5/cWZyElhffxDeRAhN/TMM5EDMCzU3O4EFhS/y2LivonDQ1RlnLEzxioJeLJk9yKxZbm6cWYwWzRoGcd3TsyY9LYcoGZEMeb2XJEvJT3rr1J7LTpjqvr6Zd2JX8WIRTJ06is1H6oznetTA3VgeyXoO+kx4kyGGhBDuf1lpL8sPhh1A1zuZCKm8IEdHK/W67z02UxlN9HxhuC0sH2Sl1otF8Lm5zaZuhvRK6pwKuDCRM8/B88P5WFzej+fay/He74yrPVPeZ1M7CkpbinisrOjkaIGMguD9TCVjNPZ/W0elUbopwjUWxqFeJeNunz0ENyuB7x66nRXdK64QiagAV6aVXlk3OwE/w8O03HctY8kyiB0R3RBrRf+nc+7ou0Ny/1OdBTcnoWqH0DnNTKJlQMOeRlSExI0kec89P6yYhvYem6kMCpIDWQlkumrfr6lqNXJV7ycyrGUCOFEcU9/J8KS1XlXVgTXVrSxDeew+DDscrb38TCCqBsdXuQFvZ9psPNnGMCF5Q8+TTSWCOynMR/AcuJEknISLzc11mEyGUjzl24+WskNqR1cpz/9zbeUKppxt7z1AFS50sxM41DubHYkUEd7eXomDx6cr0gv63rhACujPejFd8yjkW7LKohIWSeUvn76c7zlpPBId9EPz/s0yGmgdV1e1G2cpySVNONLUN5Mjlxd68z/hn09T27hxIx544AG4rogEui7uv/9+PPHEE3AcB//lv/wXDAwM/MrP/NQbB26msuhZmJFw04dx0axhpMO2poQds413PR28pWVguqUkAYpT3Y3GDa2neJYbjWNjb71FkeiNhU2idI65nL1YRHOjkyfQYQFL8B1ACQ/C3vqZngVTojbnhjcVDrWixwg3fQF958ASo0wLhT4ansCOwSJWWNzXs1gYX5/1gfX8L5QdUBhMUZjNCSp0EGFTXzGx3F3SYpT5jKQlxNXHlAeXvbdiHbyRCBpqBnnentO5DtKTioTLYyNB+exgiVKGp5pEW0sYaoWdPV0iQZK87/S8/T35oAJme3sK2IBxLppkw4eUWRLilndIe6Rlcmwix3hvyYDhfeiK8Yk13tJfaRKHcxKwoGlawVlVqViznmqeayfiaQPUT7roPWEqElP/XAFjsubKF2shmDiIx9t6f3ZCJbEnHVyb+RE2t9bii4271eepbkSuge8h6ajEQgD31e81EosgMVHzjtXV7fxeANjY3Ih1Vc3GWBUwwuDf+3vyjTcyphiF7qxt4TX/YfNtvE8BFaXYNVyA3Z1FfFZpf4Ycodzolu1OMgzBGw3jvoa9uKfuoOUBtSGLSO/B1f8neMWH7+Wp8+8B99e/gGUVPSbRddSGIqyt1pCT8bCVaOnFFC5/51AhR1f9s4rdykk6DH3b2lYFOODcDqlsBJs3FsbeblXEbVllNx6c97xiiJNc8ZRArqEoD857Hki41rOJfeeii2JwsxO4NGOEI1zpsNYLywYVlMcTyczkq8j0AM/BupomLCnttxQqCfug53FNGlFX5N3387Bk9iDv85VzeuyIpPawuzkJRVOck8BfVf8rM4TRPbSqqsNEj2gvCsgdsa/5YcV05etIoxdTjgrJDmXdO76K7rq5grKUKFDpPWNhRcfsOZYDATAMbP6ZDBveCQXDpGJmDdNP2tj6pAN4jkryB7CtrQqjXgYzNhk4qYPLM0b4OZdfeQZ3Vh9hSKgz7vJ9Bqj3O1Mm4V85YdZK5Gs5Wq6zki3PEGCiGuf03eP6nJgPQM1vXhzdwzeZvSha2E3yc+huvqfhgNkzwmEAKEjq/eX7AMdXEZZ4yLpLyaCW4wgahm40ruDIMh+Got/aIKCijW6eMbwWzRpmY5icJGuLW/Gdw7+r3hdgVNs2UKbm3XPgRBMc1eFItohwXcjtt5EDIJFIYHh4OOXnw8PDXB05KysrbaG087XfqIRk8oxSWXCALGw7URYAQx84NKoLoC0oH2J4BWAbCsGLipp/JsOmOk3TOJHuPM+1PPNASsJwMKnTSToMmaGCb/TMJbMHFbVnLIL19Qe5+iYAa7yc5CeSadfVH8b/OjiP+Zrp98sqelTI37cT2pyEgy/dtgPfPrgU8B2srWviatF1RcfR+tJNKXNXdtOr6D59Pc+LxIwj5KdNxKVCbBKyYq1d0rEuDUq043kciWDD3H04l8zi5FJpCATXgbxRsiAXKVX/97z9dgKamEu5dun+742GMa/4RatwWLp9pYw6pCQhpmsp7wvAE9QgdfjZd+BkJeGPhdImpMvv0zmS+GZKzg0aUZQsK78fPBdL8wewo6PMMvroO/eWHsaol8GMGl4sguVVXQojG01NzOO/9dxTAUKpLMv9wMZeukRw+lsmYcs5DL57VEZAwPO5vuEgs/a4OXYCcLr+Ub8AWEnva4tbOYJpyQmRjCnlBe/bNMmY9OzdXUWAD3yxcTe+f2ixUZ4+yISfncTMaW/ixBuXp4wRUGfvofrn8d3ORRzZtBJwAaXwifwV9py79vlaWdXBRQHvLmmxZBMVCZPPWFrex1Sa6cYm11IWVFxW0I/nOspSEojlnPtnM1Bf9iJaTt6cMtcrCnq5n7JIIY2ZabPF+EjuUsE7+S7uo5ZftN5Svp8vsZ8SjpdU9jHzGhwfi8sG2Lji55Ohk2av0x6RsmBBqX3fUZ+pX1ddfgZvvHKpfVcG5urukhZsPDJPGTu6CBgA5F//FoZevcpKrnXirilKSnei3k9UwNCLKXYrhnzKhGiRUCzHtr7+IDYemWfJIf79SAT3z9ujEpZpj4qzLp9zZ22LoYmGuZ/SnsWQD4R9Fb3Rc0OF17wRlayMhJNebgn5JfNnrH4L2XX77CHkhcextbU6dU+FPbiZSfhnM1gPCBKLIOyp+zNYYHMkAm98HK898BcXXPIu6Xi3bPoyQjkfrwpwcnQcL6391gU3pk/a/viP/xhbtmzBl7/8ZVRVVcFxHLS1teFb3/oWPve5z+H73/8+fvSjH+Gpp57C4cOHf6VnfuqNgy8cWoEdx2ptVgTAErheLIJ5JcNWQt75lP50bAhLZg8i7ru4KvOsUnwDTALyOeqLPgswqRCRkPtq1U58o30pvy/dpSAZK5gBA7YXAtCsEm0qDwIuUqvlkvdD0FLeX76PFQQSHMvLerBjsIgZO6wqtTIBMFjlMY2Czf9Ow7jTOOME9vfNtigs5fcBYawEmFzSKrLnWYMUpc9VnlVWPsX3VhT0IjsU1/CNXxxqZeGvDTRWGNIollSAxxuJYHFFP3Z3FCksdFUH54hwv2XlS6QxEgOQrHSK0l3FbWp/SiwwwEl/pHS5UUULy/s5YNwARulzs1KVOJ5nH2yw3j57CGEnaRisxDxuKDuIxw7fZnv80lWB1snA6vew9kja/aWVCyfpYH7FoNq3euz3lh5W+R7pmEACihPN87r6w/hfh+fBd31LBgT36KJZw9jdreBzi2YNY/fRAhW5ykrd06sKu7H1SHVadhKG2wlWHmK6ISxxsO93FHZaFZbTzc2Kgl5s7ynHosIhri5uKY7CCF5YMsQ1JqxzLfJIUgzNwNrxuMbDqqghRK2YNIZr8JnSCFtS3o/nh/Phn82wqsPznAkWJGpBpp20ay5lM+yzQI2U+4bpJ3Fl5jls66xko0cqpDQm/4NM+Jmegb5Q8mig0m5KH/T4pWJ4vnm11i3gqGDZEA9hdVmHcoYIBdxi15MOMr3vUljegrJ0LAwnK4n66S/h2uyPWDElZ8CSyj4TfYEygHd1FfHeVvlHgBvRd3OaisAATKXx0TBWVXUoum/ZXyGLvFgEq6rbsa2jMu0ayjEQKx2SjmFkk0aScL5YDibSAfS9J50o8vx542HkT38dQy9eZ9aLvPDie+Sgsxx9rjHuU/aJMEisfSHY6EwEMj3zHaBlhSZTILaioHECAIn3khe2cfC/PqFx8PlPj3GQTCbxX//rf8Xf/u3f4u23FQX6lVdeifvvvx8PP/wwQqEQXnnlFbiui+uuu+5Xeuan3ji44Ymvws3JSrn8LGU/7Kdc3EGaU2qSYpDYXAgjKYU+ewo+yoCf4WFlZaeJVgQuVlawHWgsuu7nZEgJkYCQsxRN4aUiOM99tfuYEtXqe4BybmVlJ7Z3l6tQt6Rwk4lMlJ8hohLyvb9qk+9eOacH23TI3RsPY3HJgKECFdEB/huBd5Mi7NoCPcUIkBd90FMmvfXid3cVt2FTUwNumvE2XnnrEv7s8uouVuTd3HjKJe/FVEVlEra0Vuzl1e8g75c1N/pCI4PAG4lgVY35Pyn19Fk3GkfJja+he/BmrKs7rJ6fxnMOx8ea6lZcFhnhdy6YcZwLIwUVbKLz435NhriidbC/ktLPUlSEd/a83rBYBAtLB1XBM18YyV2l9uWmsbpuZtJO2NR7r+aW0xx5kn2zlAGxTvzcQDSK+kTRJP6uzIUhD2Dg4uX9lc4w1dFGVuwTTooR4Ey68LOTyngQe1sarW5WIkXBpX1CxnhQvrg5Cawo6MXbE1PQcvJm5TUMe8Yz7PopSqp899L8AexoL2PI4zU3vI+33p1q1jlNhM7q01gYa6paGaaSLvoiKWDlnJC3mDDTKbKPklZ9YF7xi3Z+WDrDjt6t94IlY3S7s7ZF1dUIGFVBhTs4V3B8LK/sNtW09d6iqJgiTYAq4hhS835f7T6cGrtcMRJJw0bOYxrHSYryL8bqn83A/1XfqopGEiQ1EMUlStd0jgovpjjzSU6kRMHOQ518PmdPihND73+JY6+4+RUurgfgvGfTep+IxnijYdQUnkTr0C1Gmc9J3ZPW97XhIvuR9v4IRCC88TAWFQ9yAUwZHQzeI9acxBUVcPDnJIdT5jAw5ttnD5l9EpDtvM5h35LTD1c+j396owIrru7BdzsXqQT07jl8pqSMTteknGwoPYZDHdfjtfv/8oJTpNk4eOrP4X5M48AbHcdL6/76ghvTr6OdPXsWAP7d4/rU5xxYuQPBZKWYSdoBoJKKoxrLFww9xiJonHHCZkzRITpiKgCUl5kqWXoxhTm/s+YItrdWKqws1S/Q7/HPZHAYt67ghBIM+h3rqw4beskJs1TLK7sVpv1cxPAXE740M4nHDt/GmFiJS3ezE7jlmvcw49p3AM/B9o4K7qekcFtb3wQqXEVzwUbDeUxJ+R7pAaPEKQrVemNhbGurUnjrmOq/VSTM9VFXcIIVVTcaNywvUYNxdqNxS+DOK37RrCnAHiipKFChNS8WYdYk9nDrnxNF3+mTVwIA43d3DBYxHp7m2RtVOSLEmvTMQIUqWucYnD8p7vAc3F3SwgWTJMOLG41jW1sVvFiEvUbbOpTSJLGR1rz6LlZWdSg2DqhiQf7ZDJ4jKmC0pa3GvHPUJJ+6OSaHhudW50l4CdcyDLxYhOke3TeUEHZE/s2qwm6Tz6MrWFOSIVNP6jmi9drbXWApLzuHChk7zJej7xgFzleG+Ixr3+HchOyQ+tyXK3eZufPNPHmxiFqnYP5QnjHcKCfDjcbZs0p7mSvG+sq7uaqwG8ururBw5jHef0w2IJ0Neq7dLCUjvMlQSg4C5S44F00q2UFzk52woyP6fG9tr1LJ2yJnh3N6Jl1s77KT0AFVibqpRykzzpRJjrY1FB7HzJvfMnMQaN6ook1eUtmncl0SDt58+yIlv8hLm20S0S0lQyTZb2mt5bUgikepkAUNA/q9m5XgRFkynHM7sjkPws1McvLqof5Z1ridydQrjfeTiPYsK+sxsj4at/pyV3EbK5+rK9vVGDzj9fXORYzi6Dt4rr0cXkwRHJj8JGGoeMqQrip4Cbfc9A4ea17IHnVvLMyyi6mKYxEsLe3DhoZ99nrrff/I/J/yHAOKMekPatuxtaPKnGn995qiDh4z13oIGAYN00/CjcbZMKBiWbSX1xa3WnLfi0UsZitvQrH+SOPBzUlYleEXFg3xz4n5rX34Ztxw1QfWGpEhTQYozQfJ6vsaX2DDaHHZANpfuhFuZhJ3Vh2xcsLI+faFsgNGHozZBjqxPLlRkz+1oqBXFQPNTlhn1s1KqERuvQc21O+3zqAXi6Bk1it6n9mJxJyQHjX5UXt77Lob3rkIF24kWebFIirSIqKTnLxNZ84BnBFbvv1Nx+04ceIqXBVWyfNkGKypPaLmmZw3ek5ZRuv/L6noU2PLi6sCeZkXdlKyojL9+H8+rW3KlCm/FoPnUx85uO77X0f4UiNszpc8F/SkpXg7JQafFEoJLdDemJVVHXh2sAT+hxnwMz0bZyiUO4KckAfiwYo9+E7T7yJYwKyh6LiqJBz0oEhoSMRjNp100CHCGgJA+KMQvGvHTd6BDuVKiALBXEhpXzDjOC6KjCp8ufCmPtiwm8u4B/tlzWEaXGa6z9HPl1X0cGVb8njKvAkvZudUBD0gKTCC8TDur3uB8aqra9qMh+08Yf5gn+T75XqytxdGYZK4VMtjStCdce0xDns2vEcoherL6rJkr68onBUMc7u5Gi7SUYE7a46kVbwAFbXZfrTUjCniwc1OGMhRLGJCzNIrlgbeRh4s+A7uqT/ACfab22pZOaE5rJt2Ck19M5WH9kiddbbWlzTjycPzgYhvsc/ItQ3CZWhd2BNO9KWi0FxwLYMQHnkeqa8p2H/hobP+1s/0z2bgD2rb1dkQMob75gHITsINeyZqo+XHqpp2bCP6VWEo8f7SkD8aM0GhUvZqEJojYElLyhQMh6IsvP5SngW8/EGPvheLwMlOwBHVot2chFqTI7XMP//9Q4vNHg4Z6GQ6D3BwbVKiESJPRUa1vJjJNSEoqDcextLSPuwaLuCImqRLldAZzhWS8jPNvcCf15Ah3lva+8/FAXXU9r7GFwwBBEW7xP6SHmgrOhfwWq+c08OwmXSyPN28BaMIgI6AtjRYd9eyAsX85Ew68LO8FJw+j1H3l+EtFCEHUtYzJ3cCoyOZlqPD6me63AYAcH0UzXoV/SevM7CiNGsSjIA8UL4Xj3YttD9LTr+E6mdV4Ul0nrrhvPNG+2dB6ZApajcSwcPzd+L42JUqkTyqKM7DbhJTw2MY9yLmzhD5fXJM9H+SIYCOHGiD9YvzduP7BxefN/8LUA7KloHpBkoVkFHU+N3nIsy+xVF0HxYlrBuN46+q/xV/0fb7Zl/Tc/QcOjkJOOTUIlSE1nEu9JyDm378lU8UOTj9//vmBTemT9refvttPPTQQ3jhhRfwzjvvIKjWU1Lyx2mf+siBtNrp3wtnHmOqNwDKqq5o4+/wxS8oT6WQlt50Ptj6IvyXI1UqQe3iSRb4zB4jPFXOlEmlNOtL/DsHl1hJg8R40dQ3E1+ct1v1V1/MKwp6QUw6a+uamHlkVVUHH3z/bAZqbjkNbzSM2yoH+P3Jq5TSsbOn2AiSAEODmxvHNZlnmBFlb18+QxZY4GQn8N0Dt6sfCS/4fQ17+WfBMDFgvBNUfGdp/gDDM+4uUXUZdvSWsLfImTLJjBXE309zSh6UIJvL1s7KFI8oGQZuNI6Ik2RPvoScsIdKK2XrS1QdABLUdDH6GZ4l1JkeUgvWzUfqjFeVFHk9d14sAmjDhvaHjFa5udqzE1VMFJdcHFMYd6LjExcJv18nVG9vr8RXGndgc3utNSYAuPzSc/BiEaUY6p8pmIn63GXhEePlFYYBP0NsEXkZrq1tVsl+ujrylv5K43UT8qnl5M3GQ0s/197Yjb31ao8kjRd+aUUv76PwK1nICU2yMUf7iOeOIkk0nwEjZl2dSsDaNlAGq/ChZv+iP14swpc6RVKkh06yUxEdsB/xsL2jgp+5vvaQ8gDm6AiAC0D3eW9XgYrAuIpxa/vRUkTeD1uQPS8WMYZndoKVtaX5A3j88K1mXcdMhC4F/kjRpqSDXd1F8GIRtL50EzaUHVTrPxaABPqw6gQEDQPaZxvKDvJzvVgEzwxUsKL9/UOLeVxEG8l7lZh2xg0bGwCrwBhHAkeNoS1Zyai/bjTOSegMJ/KBnV3F8EYi6D52I5ZVdqesE+8PR+2plZWdZp0FvEieW1r71TVtcHMSWFnVofqRcFRkzleGlJsXZxinm5NQiZ0AF9xjeuhRkagMlZtC0QdAfWZbRyVDldh4C7DMWNFgIYNke7rPJKZSQv5zOrfNz/BNlPBcBItKBnm88izQ/FPNCDKwpdPk0uiouUcCfVU/UHuFWfjoznSAo69czWPiudON5OnySvW+yKks+Gcz8N2Dt6u+6fwSuTfo+e1HbzGe9sB8wQeeay8HoBnK9OfW1jfhv3cuNhG4c6q+xHMdZXi6rxpbOyuNcyAgh2kvUGPDQMhJNxpXeXzCMUHFy6iPKwp60frSTVhb28zsVMsqVbT7nvoD/Cz6NwCWm/Ac5VQQCde8lmNh/EXb7wMwe5nOAn3OcUStF2IEDGnj+EKvdeA7n+zPx2yPPfYYbr75ZmRlZaGiogKHDh36hZ8/cOAAKioqkJWVhVtuuQWPP/74Jx3hL23r1q1DV1cXvvrVr2Lbtm3Yvn279eeTtE+9cQBAhT2F0NrTU2BTveUkmJ5PemIcx0/vLU3TVte2wRuJKKUv18AWqHInoITT+pJmoZyA4T5uNA5MGi5rViQ94NXxS9Qzddh0e3slv4MLf0WVskHK7ucamtHSPwNuTgJ7BvKxStM8OiHPeAUALK/oVsKGCjlp6FPcD+GHXbda4+WiPXpsDnmZcuNYqLmbubIiQYHy4paAdnMSgOsrBWgixBECbySC9+K56kUJhy8Q+X7C9QYrAzMf94gOzWYm4cGuWUBt5ZwebOmvxNLKXk6iDXqJSTF5smk+3KyEEtQxwZceCLHz3zrqQ+tBxtGysh7j/fLEBanHzfNOl0leXPFcA/jgwyhW1bSzIPdGw5b3kYvy6QvrWx1L1MUvKFG9mKJg5L2llV43J2EZlNQvP2kKoBF07p76A1wYhy60VYXdeLqvmudxbV0THqzYw5f30speCxZBVHtfWfCvat/nGWhY0IO2s4tYV4ApJe9jY7NSvvKnvWH2ESlV2ji9ffYQP4OoIwHgqSMN1lq5URVl4dD6iAjpC1iRdfY1tSTPEyljmpqWom8/6a1j776bG8fyqi7u0xfn71ZGZrYxaOOXGcNS7ovg3zs6S1kRT9e88bDZQ67ihiclneaIzmZKsj/Ng1gr3ut6Hziuj3cmp6jxahpFVvTpFkkaWIcFLxT5A9vaK3FHYScbydYYdDSLvx8YK1dtJq92YAxUg4RkCq0P13/Q311UftR6rpxXPgNUNRkmefrZwRJ4ujjgMwMVgA92BPDr6P4YUYamG40rql4HSsaOh3m+qNAfrzVFDyo78VxHmak5EbiD3JwEy2zZFsw4buhQA7DSXZ2K0cmSw2EPd9a3YE/XHFuOAUYm5CRUxXh95qmqM0G8PhjNZoU06EmX542cEuyU89W9LFnkgh54MgS9kQjiN4/DD/m4s67FzAPlJmhj9/55RvbIZ3CkTyvEfM40iccdhZ2c0yWrRN9R2MlrJeuR0NhoLmWBRp5/Os+RZMq4uF8UsdaeenLAkWG3tFLRC8PxLfa7J5vmwxtRcKA7Cjt1dIugg/r5sqYDtKNrJIKtrdWmD0IOeOciXI8HCVfBHt2ArLtA2/8bsKJnnnkGDzzwAP78z/8c3d3dmDdvHpYsWYJXXnkl7edPnTqF3/u938O8efPQ3d2NL3/5y/jjP/5j/PM///OvYcSp7fDhw9i8eTP+6I/+CCtWrMDy5cutP5+kfephRd9oXYiffVSJN9+daiAxAgJEIURAUWh2Hr1FPUBDOggOsqhkELFEBlp6ZximAJ0rYEEdAmxGQcUzyGSUkrglLtQgVACAYVaQz/ol7AZWv0SF1GAC1rqaJsaw0zspqVpSlwJasMddE7LX4yW4ErU7CjtTqpcGE4qt39HlKudHJ1xRP9aXNOPJ5vnWZfTFebsthiUy8Cz4V7aij6QiR+rLgOM7DK8JNoaZEFPML6FMTBkHGUoBw0F+Jl0jaAmAFFhWMNmOQ8G6b0yDmCakX1ZwCr0vX2ezG8nkNopcpYFbnQ+KwXuLlEC5frQGmraSQ9ZhNSdW4vJYGMvKeyw60+CcTp/xJq7MPoemgRmpcAVKMhXwCIT8lERC9Q+HzwNfpGHPVA8PvjseAibMfj8fBfCXK3fhmweXmfM8FoaT4alozLkIFpQPWQwwshFzWToyBGaucRSb1bb2StX/iKdgCw5wT+1BViJo7TkxNqaijJta69OzPMm11zJvbU0zQ82Csuzr8/8FX3vhs3ZhpjSQGTeaSlkrn5dunRumn0xL5SvJIIKwKZbtQYIG/Z2aohNoHZiGdbVNeOpIQ8oaWzDHwLkhSBzBN/k7EyE2Gi2n0qRiA5p13dsov/hVbOmvNHCYiRDWVLQh7ocsRjLrbMGMMV2jvDUuGCe/r9eOYUICmiTHmEKV+gsSeN3shNmbwHllVtpzMR7GqgrFMCS/541EUFLwMk68fxnGYhlWP+DCIqJYX9KsIpNp7hy4PuYVBZLSAyQXVh8DFODyZ3Ic/LvJEO6v2cuRZzl+OpNOwoEzdZLhrMQCZBlLBEHT88mwXpLDkhlpJII1tUesZP7VNW0MiSRGrrW19vmUfQ/CH+mOcHMSWDmnB2PJDE5O532v9zMTkYR8IOFc8LCiG3/01U8EK3r5//7GrzymmpoalJeX43/+z//JP8vPz8eKFSvw7W9/O+XzDz/8MP71X/8VQ0ND/LMNGzagt7cXLS0tKZ//97aCggJs3rwZZWVlv/zDv2L71EcO/r5lgTIMYqqQlBQqVASLwtudwzer32mhCqjkXzc7gT19BWh96Sa4eSqBi5Uj7eFvnHHCNhhY0Pm29yLXeImUt9mxjYRonCEZ/pkMg2fPSaAs/zRXXwaAh+bv4mdKlgYvpkL4FTe/YhL19GXBhX8CF4GbnVBFW0TBk6Xlfcqbpw2DmltOm98n3LTFyJgNQzcWcGN2ojJXKhYh3wUzjpvETMoHyFFF0fyzxkBhBUi8h2AN1B9ZFIdZoAA0nZgGNxpXcKxoHI7n4LN1ClIWTFxdmj/A+PPl5d2WRwqADZGImaRdmVRLHqq6whMm4kHhWxGulWPxYhHOEQk2uvzJU8zP0cq5NxbGmXg2v2Np/oC1t7qHbjKVUcmDRknpenx+0lWeMv2MtcWtXA2VnkNKCSVsA7ZCa4wN7dXNE6F47emCoxIGaU7c7AR2dJcyDEPOC52ll964DM0ds5gLXjY3K8EGB41teXk3GwbUL6Vg0lkDV3d1M5NwcxIoufG11ImPO2yIu9G4rQDpcwwA3zy8zBhFUOfKj7vwEi7cvDj2H53FERhrXWMR7OgpAVVb9kZM0qf/UYaVjxJxkpy/AgCrq9vhZifwo0ML1LNIUZ4IWXCwTS0NtgEs4QIil4UiIZva9Ri1l5f3S9LB19uXwQ97WFbQb85NyOcEWDV4H3cUdsIP+wauB/WeBTOOK+9o/gAernyef1c37RQO9c5OCxfkPeSAk4J39ZoowarCbkPcQFFZrXC1v3Qj3JwEnjrSgKXlCu7D5zWw1ziapaN0TUdn6EUyCcN1005Z1br5vGcnlDF2LoIXX7sSp0cvBQBlGOh52tJWg22dlXxnSEN6cbmu7k7yfDxsQem80TDurG/R8EOxuCQvHJVIT3cOMV3RPqHKyz9vL+bzU3TDG+r942Ye2PutZTRX+3ZMMTZqXtwkJ288Ms9es6wE51B4o2FsKDvIBTL7X7kGsTNZppIwyfssIZsAvB+PmgdqGccF9Hwl070JVfHZG1GyOuGFTP9iEesu9WIRLC7vN/2WUB8tu1lGe45hl9MwRIr0ztNV1X2quC0Lyfl25ISjZHrNdnaWMGqA5DfJQoR8/O/mOuu8bG2tZhYw0gHemphi7T3/jNrPK+f0AL7DkVSO+Gs5v62jEjs7NUxYRJ/cTAW35YrnSeNAuaCb/wn/QBkY8s/ExETK4ycnJ9HZ2YnFixdbP1+8eDGam5vTdqmlpSXl87fffjs6OjoQj/9y5+LHbY8++ii+9KUv4fTp07+2Z37qjQOEfL7YZOVYK7ROFRk15GNNdSsL2+c6tSWWcFh4HuqfhVWVHerQaWxeLJFhBDIpSeLgEQMGhdQXzRo2Sh1sLz4pU74ukkKXVvfgzZZQ/s6h34VkdHASrlGMshK4InOEn+tneFZ/6KKRF6RDwkD/f2dnCRsx3lhYGUfpErpJCOZqwwlK0HNom4wg8v4JWcMKZ04C+4/P4HA3ACDp8MXGXvTJkIW1ZViNUFi9WEQpc5YiZBsoT/dVwxsL4zO1Xery8hxOeKTP7Rwq5HcRpGlFQS/8DzOYdSkFYwuY/UTNd9BydDrcHFUt1s1UFU6p6jErB+eM4UotmjeuPKDEBkR7N+Ggbs4JM4cU2s9OoP2lG+GMq8ttR0eZ2s9QURA3Rxm0ywr6VaiZLg7XT62EqffCpr4aU0tBrLc3Gsb+AcUW8/UF262LqmH6STU+3+Hqp4Bi+aBxLCvvwQ+bb1MMT7qyLDG7UO6K3B/kGfaz1ARbnkEyKvNU/QhSFJ5rK1cMYuLcWBjlLKWMLC3rY4Or9+XrWJn1YhHF3JSjvPCW15KeEY3zz5eV9aQYmTNveZOTEuE5ygsNtR8XzjxmnqfPLwCGyEjjnPY40eV6sQiuvPKMqlwMBSVkzzHUZf8HtYptZ2lFr4FvjIV5TN5omKukEiae117ABq0EW32W4CmmHsT15yJJbOmvVBWEx9XvyYNKBgc9Y2+vwmXv6CjD33Tczr9r6psJOL6CeZEcdXwjp0YizFRECgwpsVvbqjgfSO6dO2tbeL7hO/jZkVKlMDo+5zlZzhURXWKDU8vU0Dl1lzT1zQRVdydHEMmqpfkDWFLVh5IbX1MF1AS80c1Mqu9lJXDw+HQ+LwtmHIebncBFkTHbMw2YMep+/mNTPe8H3oM6yudmJ3B15hl4MYPzT3hq721tqwKxuPlhD7u1YdU7dCP3DwCWlPezU2NFQS8Q8tXfek6oQjAZF5RQzH2V8DSWL4p29vHuRpPnNaGqBxPsD77DSj61u4rbGG7jZiZNfY+Ac8DNTDIT0XNdZRZNKBwfzlQF53O0kr7nxdlp5DSMd1/3sa7gRKqRmquMkkP9s1Lw+DzmXG1ICcNJRVgNk92dmlEOABDxTF6cXh8kHGM8RnW+R7ap0l6dd8o4nMbCaozROLa1qigN509l67tFUC/Td1IcVD6wsHAYS/MHlPFe0WsboRdg+/dUSL7++usxdepU/pMuCvDee+8hmUziyiuvtH5+5ZVX4q233krbp7feeivt5xOJBN57771f08hNu+OOO7B//35MmzYNeXl5uOSSS6w/n6R96o2D24uO8kFnS1rgGyUsiBThZwYqzIVHCibx/uufbT9ayrR5blbC4mv+QtkBk7ilPR0U/qPLcrcuBiPDgVa/ABD8wvLy6z5QMjNFKdxonL3N9AwJ7yHBHz6dxcqom5MwsABfsSeRgkwJewAUplQo2tde8ZEyooo6TLhSX5BNJ6apZ2cm4ebF8dfVz8KNxvmChgsbLy7GTTh7+t3q6naFcR0LK89PLAI3I4n1dYfYk72pr4a9IxInbVVVdoyXifpJSgZBWKSnny/8mIGIebEI7i/fh+1tlcz0QUrh7bNV6JDmf2HJEH/HP5vBURJAYce9kQg29dUYqAVR8An4E/Undi7LgqotmjXMnjfi+F9R0Is761p43ZfmD+A/NbTwOyl6IwsS7RgswpPN843gF5h6AhoGaxwEKflk8uXJiSt5zCvn9OBQz2z85/lKwSc8LwCMegbLvaOjDG52AtsGygx9pd7rjzUttM4DK3xZiZScDy8WMZCYWATPtZdjZUUnG+4EHVxV2J0CDaC2s7MEaypbrVwCiHnwYhH8p4YWk2ivFaCVc3osfH3ESfJYqH8TyTDTOjoTrpm/7AReaDee72CfSJllD65WFBRETX3m3ffz4OYo5qDNR7SnP6mMPwDY3qrGThXR5ToC6ixuam7APfUH2FvPkRAPlmLEXkjtteaIkcB+e7EIdnaUWAZY1S0vq3+IHBEZWVo5p8fIQg07o7wN2mfs2CFICBlp2ulAuV28R4U3eHNbrfXZ2nKdj+KCc1no/ElD4ZEFPzVJ6GNhFTnN8qw9xB72nAS2tldhRUEvMt0Enh/OR/dRFYleW9vMUQiKSsk94+YksLdHrQ/R6QLAktJ+TjaVe8OXCp304I8bDLwbjWNqeAzeaBjbuyos44LeqcgozLoSpeUunQsBF9jeUQE3M2kIKVwfT7ao3BWuTXPOvrcYulR2lKMtSDoM5/TORdgAuPzKM6ZPmgZ5XU0TAAVJ3XSknp9NeQ50Jva8qCJMddNOwRsP4+EFO9XeCjA8SQcXV1+ORWwyivGwJX9p37e+dBPc3Dgr5IDZv0zmIaIpSyr6cE/tQb5DKefAGw3bxfk8YHNbLTvTZP4By1YXWFzer/LCoIw7LxbBxsNqz36rYwngOai65WWrz+sbDlr7wxs3+V2yLa/oNncPtFGYG8fengLs6FC5JbuGC3B76QAu+PYJogYA8Oqrr+LMmTP855FHHjnvKxzHNpJ830/52S/7fLqf/zrao48+iieeeAI//vGP8bd/+7f43ve+Z/35JO1Tn3NwwxNfBUJRVrTJg3c+3KRsXjxkEoo0jploKr1YBE7cgXPRpPE0pasYKis5aqV8WUE/bsp6Dz/supXpAGWFRonHJSwwXB/raw9hY8s8wHcUQ4yukMzvCr5bt/NiRMnLmHCwskZRsKbDnloFWwK/Z+xkTFF4/uOBBviZHhqKj6Hl5M2m5H2A/i2lL6L/C2Ycx5zcN6xiYf5HihrWKkyj+0+hb1Ju7mk4oBRfkVRHyW9MZSgK1gBg3KhsRA1qOmGvL/V7Yekg9vaopD2ZKwBoasLOSvZ2AUhhcOKq04G1x7uZwOUT1j7yYhEsKjtqQWUIkxucR/nvSy6O4b3Xp54fxyxw1l7CVQw7jo+FJUPMyZ2Ca5VUpxK7GsyJEHh2+f20/Qju4/Ew3JEQvJxkap4FkILNlueGFFA3J6EoVnWFa7jA6sp2lZynv090saQIBvMp5DO5X1n2enIUklwuGnroJ134cVUh+QtlB/DDptusvqU7G9bcivlKoemNh4Bx19pPsq0o6FXnWlJ6hnzcdNM7qLvsFLa01PJ3F8w4jr29+fZ8pikqRu3e0sN4vOlWyIrvcj7o3YChR7XmMKajiK6fsj9oXTaUHcRjTQtTcwTEnMizvKFhn6p8Hfg9fNjFygQls6R8ZGpnAakI4vppXrd3VqTKI0mtS1XpxZmWVYe9mM4DOVJvnR16hjQwqdhhuvHzz+SeTJeXRGMUhcRoP1lOKfFuzrfQ99/Kqg5s76w4757gu1LQnz4473l89/Biy4BH2EPFrNPoPn192nwXUrppDKHXsxC/KGlyyFyfc2yC8pTXPEClKytOS1kdlBkATH5L2DO1UgJFDPldQXw/6QMOMGv6G3jx2LXWWBbOPMbym3PgqNK2m16eybaioBcjyUyuws71h0Ji3ul5opK6dSbEXWMVvwtUX3ajcSTeT+C1L164RdCu//u/hJv9MXMOxsbx6n/++q80psnJSeTk5OCf/umf8Ad/8Af88y9+8Yvo6enBgQMHUr7T2NiIsrIyfP/73+ef/cu//AtWr16N0dFRRCJpEAcXWPvURw68Ub0ISQdLigYUhCFkoDhBz6T8uRtJWqG3ijkvsWEAH/i92h4A6uCtrOy0owDjYRaSMm+APJvfP6jwaFtaa9kTt6KgN1Vp0gLZibsK56yF6MamRswrEZhr8o4DFlNNOiXMGwsLLz0AB9iu+dYtwaQ9EXt7CgyWWEKTxsPKMNCf29JfCT9HeUCa+mZibXGrMgwE1EEWIpPzTd57LxbB3qOzLcNg0axhBa0QlWPJGxVMrnZz49jYW8+0p4z/9h2GfHkjBiNOnjMAJhw+rqAF2zsr+BkUDUgxvhxfwaF036l2BbVtrVX6PcpDs2jWMOAaOJQXi+CyjBF7rVxfeX4vn+CfE04ajm8ZBt54GD86tIBhMHIeF5Ud5fX+4MNoqoIlijpZ3uSwp/oS8vHm2BTug8xd8GIRLKlUffJGIlhfd8jMi3CMWN9Jx/YkIQjjdv8J5pJ7s/EuLphxHAAYJkNwLLke6h26E472HrfUKUiBTlDeNqCTnrXnzKcK5bRWY+aCR9gzMBzar6LmCSW+utE44+LluXNCHn/+9Pil1jqsL2lGkC6w6paXmbTAi6maHuSV36qhbDyvkaSlGN1R2MkREi8WwbODJVg5pwcb5u7jdYCnQvFbWmut7+4/PoP3mYwyBGFS9O7Hm25VMDkZaQOUfB0z5wcANjfXGY+obmtqjmBtfVOqwer4vJ8e7260ooz8kYTYZBR9iMbxePMCeLEIHpz3PAAtb3yAipVRu69+L2O+KWLBtRU0W9mSij642SoHhXMxdPsgHlVFrwRMRHUSDF+hvUAGGQArGd2NxhXbnMR9kxwTBgkcnw0Dmvv19QdT5oTpSfU8N84QkBjXR13RcTXGsNlrzF4jItDkuV85pwcJ3+VzAsfne0L2heXIaBgrqzp4PAtKVaT+u4duV3kxHI31saDwRXSfvp7HbEGkKPpD0SUAyWvHOVJLn9nYW6/WnSqQQxc9Gw2ryGHUFHj7QtkBzmVYWqFghn7ExhVZRivh7hMGHRAkCJH3+pLZg2YMdNdkJ3D89SuYRIDGskcUQKNEajcvzoaBpZOkgXs+O1hiDINYBHXFx7GsWuXESScDR/iEYUD3rxuNo+ymV+FG4/jhwUXqfeMmR0fec8QgdsG2f0fOwa/SMjIyUFFRgZ///OfWz3/+85+jvr4+7Xfq6upSPr97925UVlb+hxkGJ0+exFe+8hWsWbMG77zzDgDg3/7t33D06NFP9LwLfNV/DU2ffzdXYfC2tlbj/roXmJs4qETTRWEJKx2OJWG2rk7hYQm2442F8fLoJcYy12H/tJ5O/Q6Z3Ago7wp5qdkDqT/77GCJ8UZT9UVHYR4Zp64T8ChxU45JKmCAEqzEma4w/ma8S2YP8ndkwjFxn6+uMfhxwmfSZ1hp0vP3VLs6OE7C5T5tPVLNGEpSqBD2DG1fNK5gHAQlGg1z+Jq8P3SZVBWftIWpqE67Y7CIDYM7q4+wcuZ/lGF7f/QJsHIyqLQ8CdbxMEdOKOmLlWVdb4KrqhIUhJS33LiVYLfnxdlqblobeLzbj5ba8I3sBHJcO4pBe409RbSuPrgWBEVQ1peoJCm+hDwbwgWAFSFmB6HfC8PGGQ/hxdeuNJe6lBaObzCtuSpBl4xmNzvByfB0dqTRsKqm3UoYZ+XJV1GUpfkDymOnz8/IuSzu1/sTUZUP01tkrSFHMujMCXytG41jfcNBdYaSDvZ0z2EYAK0L5WvQ3lxeoS5RxdjhMrRIygz2fOs+cB0Aml+a9zGjRFEei5pDnVwfwC23DhjmFTcaVzASfekvLhtgAgJeS5Gc/sxABRs+1M/tR0sNTEfDG15+6Qpbodfto3i2wuFHFVXpghnH1TkXSbFuTgLrS5rhRuN4ZyLP/JxkpoRn0J5zbUdF44wT2NJaaygkxe9WVXWo/SQMS7mmAJiBqXHGCcBzTDE5TY1JNVi2tlSzQ0WOdySZZcnn1dXt7K2mRvu7e/BmlM06bc2TCx/9r1xj4CXQ94RWrvywUTz5TgDSJqPLRgb+ghnH1RnRXPNUVZganbegUk1GPQDs752t7pmJEJwJF9HwJH+upuiEeaeQ9feWmgjFttYqtA5O4zFwbQgdcXFzEiq6nm0cMAThW1d/WEVDx8NYV3eYo11k0O/XEKOcXOUA4bspRxVkXFd3mJ9pzY8eM0E5qW5H/vTXsTR/AD9sUVG5CS+C66/8EAlP0ZjLKvFEzSphkrKx00Hu6UBjeXvOQHilo4vepf7hYFtHpRUlBMy5pShGUHYhbDPoyXv8njota3ygZWgaLo3ErP45gXmjPr08egk/o/v09Sp61aCMwRQ4VlRBcZ08+y668JrzCf/86u3BBx/Ej370I/z4xz/G0NAQ/uRP/gSvvPIKNmzYAAB45JFHsHbtWv78hg0b8PLLL+PBBx/E0NAQfvzjH2Pjxo146KGH/r2DTdsOHDiAoqIitLa2Yvv27RgZUQ7Hvr4+/OVf/uUneuan3zgI+bj++vcBgBWSDxJRxmFTcik18roQZjfY1ha3YlNfDSdZEna9c/BmW4limkhYnjXLoyh4vh/tWmiH/lzTXy8WUUmVIuypvBqOsfQFC9G3F2yz2YF8BxvKDqpaBAnX4Ia113RBkYlA7Owu5u9IDwYlBJKQJ6/m4lKlrPhnM6xL0hsxmE7idgfA7wWUt8QbC2N99WGLXxoAvjJvh/Ls+I6lXMnLu71/mhnju5kGj6zn8QtlB7C+9hCGz13JgtXP0Le0ML68WID73bUjG2QEra1rAhXuIiNlWVU3Vte2GSWH2CfSeDulck77Y21xq4rKuD5fNEH6Vy8WsY0HMm5cIBjed3MSePJII6/hQ427eF4Xl/cbTyeF56XXUnsI/aSrCvlJfG7UFBsiJbzmltMpXmXqW154AvAdTg6Wytn2o6VYVdFhfy8rAbg+9vfkK25vvU8B4JKLY7wfe4dvUH1OOtZ8SgWH1wHG2P1Jbx3uKOzUWF7fJAwKY4gNu7Eww0/crATun7vHjMEyLH2LFvGxw7eZ5GsBNzHKExkUJs+D1kyuNf9f1x4hOkovFsHubpOjAEDBinRlWPIKAmBjm5OqhfJFCjQAk9CoP9vUOxMbmxt5nfYfn6HmljDRuk9PNqvkydb+6Vhb3MqGuBeLYFl5jzGaRKE5OdcyGZcS46mP29qqlIHrO4rAgbzltYGiQ3q/SLY2hkRENL43WOAxoOxRnRGOJIkcoyWzB3kPUpI6oCBSlFANmD0v75G1tc02m5Ze86ajM/g8k0OBE6bF/Ozty+cEZjdbMbbJ33+h7ACWVXZbcor7o8/putomlViaqdit9vQU8Llo7Z/Oyi8pwt5oGI8fWaC6S3UyhMJIEDGSlxRdX1bQb7OfQeQWJR0T9ZB91Os1OpJprQfVTnmqZS739c8qdot5VH9xXgTU+Ro6cS2yQ3Eg7nBl41ffvhhlU1+BmxvnSMuG+v08/954GMsK+rFyTo9xio2FOUrOcFTYa0tt4cxjeGjBLr4LgxFDGc1mCKukTvaMnPK1QXBHYaeRC5qQgKLOUj8gGKmbG0dd/knFNCiMGT/s4f7yfSn7vf2lG63/c/Qq0NjQSQOj+k1sd9xxBx599FH81V/9FUpLS3Hw4EH87Gc/w403qvl88803rZoHN998M372s59h//79KC0txTe+8Q384Ac/wGc/+9n/kP596Utfwje/+U38/Oc/R0aGyeu79dZbPzF16m9OzgGVuxf49IbpJ3Gof5bNjx2z8wSoWThk6R2InYdXeCSCLzbuVoXEKHchyMFNAkIr+GuLW/FUi/Lwnc9jQe+08KzBd0shJHD5AID3MoHLDF0XCZ90+GZAe+MjnkneGg8rj0bYrhLMWFkPKmztKo+rVS8CIlTsO8wbTnPOjTCnAO6fuwc/bLnNVmioXyKESphq4piW7yXvv8XBPhLBIwt+ilcmLsXmttoUrnI3W7HT+Dqqwl5jPU93Fbdh3Iswbt3C04r/p6ybfoY3ElERmyx7T1n7KRYyOQcC1+3FFGaXQ97kNQ/wd68vacY78TxcFhlJod50o4o//MkjjbZhBMDJSqpiebLfup1vX9L7VxV2YywZUUW7JK5e5OXIOebv68/5ZzNUYneaGhjp3smQHFK4aX5Hw9hQv5895muKOhByPEXnqT2ze/vy1ToT9jhNrgTtHSQdzvWwcnBGIlhc0a844wX2mcerccuIu5B85utLmvFkS2OqcUbvDuY96MjK6up2RJwk4/cR8ZVsoVonvyC3g/eWrmHB+4pw2GL/8JqHdZ5PdoIdI2nXgoyPqKlrkC5/qW7aKVySEbOKHzKcgvj79bm4t/Swyh8Q8i04T/L999QfwJNt89TYZK7IWBirKjusugIAUqu3yzyEhIN75h7g8xGcS/kMbmGD7w4+35KVJP/T3Bm0n6XMSuHhl/lSjo8l5f3YpQkuAKTuY/38Owo7ub4C/cw/m4HP1HRhR1cpqFAdgJSaAsGxL5k9CNfxzDqeZ22CsmNZQT883zHf03cjf5byNQBLHvLz6O7QHPxuroLHdA7fnLbGBgDLW5+ufpAlp8T9f766HcFG67GqsFtRjsp7IGLnOdZNO4UmXZzUGw9jUfEg9nTPATzgzvoWbG6tBXwHTlIRhFAEcnVNm3HMibOeMp7g+QVSZOmS2YOKylTvHUlUYckdPSeJd5N47U8u3DoH1//Pr32ynIM/+toFN6ZP2nJzc9Hf34+bb74ZeXl56O3txS233ILTp09j9uzZGB8f/9jP/NRHDjjngBJXtQV+d0mLYtahEGnW+S8A9SCHvUzS20YHcW1tgO825OP7BxerQzqupznpwDsXwcLyQfM5sQJ08RJ8RvXf/E2hVFmHAQAQ8dXvhDecLw9Nt+eNqsrHlmFAYVvhXFtQOsTvW5o/oH6n60N4MYXzd8Oe5cVaU9RhcKNhLYgSrhKyWhEiHCbNv/TSUW6Gm5PA/Q0vWOHxHx5eBGbUiClvm/RoeGNhdVHp/29pU+xFK2s6rD4GQ6ZwgG8f+Azencw1eyCq6PkaCo/Di0WYGo6SFPmd44p9attAGV8k7CWO2jUneK7p0sk1irw0DOD4DLPidRE5B5J+jjz8FvyNoBziYtjYW48dg0WWYQAAxKC1sbcea6pM7oNaE982DIQ3Kuj9lWOjudnaVqUYe/QcLCnvN1CUukNslFh0egAryT55mrONQXHRRTGlVOhxMTSDuM7JS69pUL3xMOoKT+CJnrlqv4yGsaW/Ek/3VWNlVQdWzulBZshUJuZLmNZC/A2ADdM93XPgxSKcoE3j3i28mIBg38nRnO1hwW6llcUnm+fznD7UuEs9jypljxvlz/Le+Q62DZRhS3+lHSUgRTgnYRnZy6u6UpSzDWUHWfnin+eaiMj6+oOWHCSnwLVXfGQ8wAFqR34HVVOeOmlgJ4H90tQ/g4tp8dhEJHFZVTfLYkosJqYnZhvT759zw5v87mWV3aowIlF6arpJ8nJv666w1pgihI0zDLyG5UC2ggc92Tz/FxoGC2ce46RPhxQ1OWYho+lcehMh3N+4R1M6OwZaqVtd0XHL0L27pIXnlZmkEsIQzklgV3cRf4dkrRwnPX9Lay22Hy1Vd4WOIPohHzs6S8FUznQedUI2wVSDEdBdwwX4aZOGwQbgN8E9t77+IOCpn+8YLFLQOnqPB5NDRjAafa5lrRZ+T46h6qb+kWHAZ3fE7quUjZJAAdC1fIg9i4wTKIigm6VyCdgA9FRko+aW0wBg2Pp0jtI/NRnDWc7H6po2vkdaTt4M+I4akwfs6S1gubClv5LHJ2USHN+ubKzPjDUecuwkzZ5aW9cEyZQn1059GFzHB0CKwyY4Jxds+w/OOfj/Qrvooovw5ptvpvy8u7sb11577Sd65qfeOHBzFEe3DKN7o2FsbG5kocNhu6i5hKl5Y2HGdiPsG7xvANv/D4eVh3JVdTsAoGjWqylUf+o/KmRsvCSpffZiEdxf94LuvzqsS8v7sKuryPbQ0AZPOnh+ON+iFLyjsNMWUNXtylsVN9hVSZlJjZNjcwzNJyhxSyijbk7CJHbr+bq/fJ+F46S+E646eMk6oyEW+KtqFB/733XPhzcRUgm75NHUHmU3GseZRDavISmRFk2jfuf27nL+P9VG4HAyKerRODzf5blYmq+qaracvJnnEYC5iOgdpNRr+rsgLE3OuX82w6bBi0XMvNGlSPtIQMTg+ojmjcOLh7CioBeLZg2zIqweBIbayGgD/XvJ7EFOmpMGJilkRH33zECF4kN30kvLWTPeMAYJgIyLbIxwMNzu5iTwLy1V/M4MN8GQEzJSnmyezxR+rMDRvggJRURDfD46eQnOxLN5DzUNT9cQM72PPKNcLpx5TOFw+xV84+m+aoa5eWNhPDtYgm3tldjVUWwZAgoOpvYtwT021O9n/P3Cmcdw/9w9xhs5Hjb0vFAwjLUNTfBiEcVORes9HuYz58UiCopFkT29V7/buUglcmolkPZX8GzK/2/tqAIAXHX1h2o9yaik946FTY0W8bPHmhcaBYAKEY6YeaA1onH7ZzPgZifw+jsXmX4Eaj0QnMIywMV2svaIb0OaZNTQi0XYcCCF1I3GDZSKlFVH5Q4dfeVqTiRmT/REyMr3ga+hZXHXeib92d+drwxIOuvaQFhb3MoKHc2tFSUAsPfYTL4PPj/3kIGRMCxMj/+coLLMTCqyBVJY9ZmvueU03Nw4WvpnqAJdWql9L55rot259hmRybk0pxt7622Pu04Ol0bIri5jTJCjQUZHUxwAWpkyRo8amJ+loWau2Qe85nS2xvW5D/lYXdPGDi6+JzKNIyFYkR06V+2qjLPw4iE0FB1Xz9QQKLpj2KjxYaIs4m4mpwcA/GXVDj0mB9OveVfBaB0YMgQNzyUq5V3DBUZLcpXzgyikNx+p42KabnYC1WXHbQeK/h4p9py74/iqqFxOAguKh3m+vHMR666A5+DO6iPgyvKiyeggfzweUnlV+r0k+2RbX3/Q2uuyzZn5muqHhCQD+J2So7igm+98sj+fova5z30ODz/8MN566y04jgPP89DU1ISHHnrIyoX4OO1Tbxx4oxHMueFN/e+wYsHQwpCSA9fVHYaTUHzBwbCcuUjBwgdQF4Az6fL/fS3Yth2pwtL8AfQPqroHMq+AkxnJ06kZLaTyBqjPyHLtgEp4WlbRoxS/8n4TgodQVsWhf2agQn9GJwK36jLrkaSlFAUZJyixj5OGYxFg0mVBzIXNRlW0ZXlVl3rXSERFSkYNxlkqBZTMJsfkTJ1k78Q/t1Rb3sqnWhuwqOwoez9/r7qHPU+EOec1Ju75c+ZCkpcORSUAsCJF378u60PuL3E7sycsTfGXFI9ydgIy4VcK8W0DZXCmTKrLUUCN6DK/p+4gG3kcbSAmGs9B7FwW3EiS2SlSPJiOunDX1jWp/5PHcNQUsLPGnmOzypCSt62jkg0N+qx/JgPeRAgvHr/G9GskgkQgMfKeWsOaQjhqP6TG+nDl83iuvVwZNhS90mvFLB3UJ1LqdETEi0WUxy07AVw6wQmMbjSu9mN2gtfwcw0marf32EzAc7C8qsuaKzfXJBm7OQmzD0gxpeJa0AXyzinPNSnLe3oKGEdNUQpiLltW2Q0/7Jl6DtpLunJODxYVD8LRjCNu1NSmkFCuu0tacDaRrfaR2EtrijrYWKF1NUmOahxvvXmxkUkWww1Yznijmp0sESgMGGB0kvP1k946eOcinKMT9MpKD751Jmi+tUH24FyFF5fVxAnfbVWpFrKP9r/F+S6e60bj8LMpQdyxnDtLS/pZppCCvbO9BG40jtWBPBdSuDc1N3CEgIqRbeqrUc8kQy07wXkM6fDnhPm25kDkBhEEhJuj2Jqo0b6Q8sPNSmDHYJE9BwShS2PLB6uhe+ciXHPD8R0mKiA5xHeTftaSij6O8HKitWB5I2MZCUftJ71/qFIwENgfsQif0aXlfdh6pBr/1lZi5SmR4SzvSRmtIVYiN5JEU/8M85lgdNbR8+2YZ/A7YhGsq1Uy8uvty7h/J964POVz3IQRS3tS7lXq36bmBt5rrf3TeU/S2GfeaIpkMUmB78A/m4FlBf3Y35OPhTOPGeNO193YUKbuhs1H6uBmJeAkXKyc04MHK/ZY/V1b18SGUdXMU+zIlOeV72My/rUeQmeS3n30+HW2fgIAHvDzHjvP6UJrvv/J/nya2l//9V/jhhtuwLXXXouRkREUFBSgsbER9fX1+MpXvvKJnvmpNw7cnDj6j1/H/6faANLTvKmvBp+p7ULr4DTb6yKfQ0qdhoV4sQiXTV9W0G/C2Xlx5XHPjWNDwz74Id8ws4iKn/R/ywOXYxQGeqdkpoklVPKWjBIA4rKSSqruiwxdW54dYkpyzNispFfNGkEhT/Js8Hs1Iw/RAzI0wfJIGeHE9QLE5UdJzjxPBNvSY9nTPQc7BouwuqYNO7uK2YNHffLPZlgeKva8ixAzACDpmAqfui2r7sb95fvwVPNc6xKQEQ+K6pDSLyutemMqckQUijxXOQaixEKZWHS0srO2uBXeuYiBlkjlR3sig2u1trbZeIvGwlxQZ9tAGRcKum/uC+Y5UXtvBRsl3K+qbufLQn7Hz0qyYsCQKr3f/TMZ/FnyVFKI++m+at5T3z7wGfaGqy/q/XnOViq9cyZ5Xc6/5F9fXtlt47PHjCeVi3/Rsx0f07LeNT/T5+O5tnIzPr33GKYQSLyTXN/0uY1NjZbcIIVhR0cZ1tY2m4J/NUcAx8f2o6XY0zVHfV6G62kd9Rnc2NzIuGNp5Mb9ELxYxE4YpAR9rYDMvPEtwPWxZPagKryYk1DrFoDRPX74Vgv/XjftFNxoPCXCKPvn5sVTohgks4I4eJpnVka00vZo10LAB8aSxrDa2VmSYmxQtdhfJA8pMZzkbUPxMSsKwJ7e4Fi0p31re5V1LtkgzjVyhXNJBMSPCt3BB/yky8nwPG4BqyEDbsnsQUuOS2gG/XxLWw28EVVckX7u5iSQ6SaM7NH9Wpo/YMkR8nbztjibgR1dpSYxXEPNSFY5UyZVTQBxtxkGPPXX88P5/LuG6Sc5aZ/G9XjTrer+zIvj8ZYF/Nmrs86aSvW59t7maMVwAeDAFNocDZtk33MRqzZM8P4Nnjmq+C6NJpkvSC0z28h1yuVbW9xq1j/QaL15zWQTBB1WboeYIx6vb5534o3LLWV9aVmfMm4dH891qSgZU1M7iqIZAM4kcvTPfF6rbW1V+M7BJfhC2QF+/qYj9UxI0D4wTZ19HTkh41jlJ9hjARTT07KCfoti2trXaYzgC7L9hsOKfN/HG2+8gSeffBLHjx/H1q1b8fTTT2N4eBj/8A//gFAo9MsfkqZ96o0DbzRiEtTSJIkC4LB0MO8gFPbU94hn/JzxuHIUwFHVZq2wsxbsT/QoxdPClsN41daXNENyG3ujYUUVKiIUxGLj5iT44pLt9tlDgA/2MgJGsPlnM7CssttgVs9FVAKYVoa8WMTyjgcpEqeGxtT3dJ5FukJL99Qf0PNM2HGYg+c7+M5t/1sLTPWee+oO8vOdKZNYX9KsFBc9l3B967IFlJK4rKKH+0ueUGfKpDFw9NoRC4VsSyr6bH7uWAQ7hwrx/UOLLbpW+t2S2YPqchOcz+vrDmFqeBTwASduoEiU5EheYy8WsTxfNK+kjLjROJ460mAnUwtlipoML7u5cYwkMo1Slp2wLqv7G16AG40rTniRTE9YVzluas9p+Ma21iorgZLfmZk050FcwAAM4xNUYras2UDz5Z9R7FXOuIvdXUXnZfsBtCI+Yu/FYEt4IX62lZAJ2IJeV+B+bfLilDHLOfedVBw1EPDO6/8vmjXMSqT8PM9LVBlFf962Al5M1VRgDHjDQfi+iaxY35d7T58vLxZhfvytbVUGyieiSzJh89jLVync+XCBMaZIQXJ9lnuLyo8aFpZoHKMJpSBtaaux1t2ak5EIfE95ib3JkNl/WtmVdLBqf6s5XlnVgQUlNlMPsaB5Y2EsLB1kDyWNZ3NzHffNzUmk5D4AwN91qxwAckg0Dcywz42AaFrOEBcpCsHDjTvtz+joA0NWhKzbfrSUI8dOyLPynWgfUN4VGdRKGTZ7zM1OYGlZH/dtXd1h9sj/sOtWSxHbOVQIuDD7fFTfT/q9D87drRwBSYfr1RAjnBeLqDoFmklLJrXzHg/8LZ0CNJ9NJ6bBOxdBQ9Fxo2TKHCdxVrcNlKlIi8zxElj4dMq4k3BFVWD9yHMRxdbj+ArPn0459R21ZymyrdeLvOfSoJwYU+/9atVO/vqmvho+b148ZOBJZEwnbRlEZ4NY39zsBBvUllNHyyWeK9Hc3DjW1BxhCCyNOcjQ5+Yaw5kcHjKirP4BqwaQm5Ow7in4ygBaXDpg9lm2iJQClgEla3/IZwDCoZEG+nxBtd9wWJHv+5gxYwZef/113HLLLVi1ahVWr16NGTNS9cWP0z71xoGbE8dNV79vHw4YJUElBjl88d1Z28JCLqkxj1R6nD3oFLYHrIPEhzTPViIYW+6DufupWNe6GoVT3tCwjz3B9OwFM45rT9F5hKwH7OoshpuTwEhSRRUs6sIkGNsIQHmbiRlCY2BJGbc8dlro/vDwIngxxcZCsKDg/G3srU+l2XSMUP1/Wj+rnq0VQVm5eGn+gPo/Ya21ESGVLuoXYYrVmibgOp4q8jMRMp/zjOEmkzF3dRelrL1aw1T3gRuNY2d7ibmwYgre8ZPeOq18i4uYEhwJmhWYQwCg5N9g5EauKRwfd9YcsXjyOYlY92N7ZwU2NOwDHFUUDj7YO/T6xEX8fvIcAsbzzl49OQcCF82XsOCil4qf/P9FF8XMpeH62NTSoBSDEaMkemNhBRnLjcPP8PhSBVTCJFHYSmWN943Y4/eWHub37+wssdbJG1OY//NFR7a2VRlYnVCm7y09rL6jixzR2q2vP6iM8+p2y0CG72B3ZxHP9bLKbh47zTn9TXkxSyr7OAKwsbkRDkXnAsmDgPD+atrOdM4LIgag9ZB7yY3YFJcSqiKVgr3HZmLzkTpen96XrzPnLc94P4PQF8f1lZMjI2kbd7oSa7r+bm+tVMW+xLlmjHl2Anu7C5T3nwx77d2ndQXU/pfPvuryM2ZcUUE/rCMpywr6GaIp9xDJXeVNNXP/3zsVWYQ3EeLzub7+ICsN/tkMO8cg4aQqalBwmLtLWkz0yvE5WdyJKzgmRThpD3uxCDb11bDRyWMRjeZG5bapnz1YsQdeLILvHl6M/3lgEVZVt6ukbYERX1XdjqfaGmzFNVsU8PID75BzSknksQhunz2ExZX9aDl5Myu2bk5CQMJEJIQiFbpJalb5jg0N+1iO/F/1rci//i1cf+37Zm/nxTGSzMTa2mYFpxFyRvbTwtET7Imi+np/u9E4pkxRzq2v71/B886wq5yEKiCox7tyTo9lsBMEixwX3+1cxK/c0lprxq6dPuo/pp4G7YMrLjsLLxZhamorHybQNpQdNA4dGbXWn19c3o/7Gl/gOVxR0GuKk2qKbTc3jqea5yr2tFiEIyaWs4mckWMCKiWdWpISOi81qvrbdmE113UxY8YMvP/++7/e5/5an3YBNm80gpdevkL/O5WRRHlpfL74iDEgGEIEtLJOFyoppK6fVjmU+Gonrpl7cuP4/LxDFnafPBlP9MxVtQxiEayvPwg3N469PQVGsaY+CoWGjBCCzLBXWXt4CPZEXj++3KiQWJaCjCwqHTRKDzWxM/a8OBth11OXwETICJYcI0wo5Oud00q6rA5KfM56DA/P+xlWzunBjh51WRKkKTh/MilQFoyjFvdCRjBrI84bV7jOHYNFwgiwQ9WMlxXedys/oqaDlTsAeHN8qr2nxsJqzs/DoU7ePC8WwfqGg1hd1c7rQ+vgRuOmoJyjoDGPHbrNRAPK97FiQ/klT/TMxeLyfsXnrT2hbjSOKeFxhjUtK+i3vF9uVF0WsnGBIf1uHoeEADlGCeMLwwM++ihqni0SIVdWd5h1yDaRsKBRSfzcgGYyCiY0R+NYVHZURUKabI+qNxq2ikFtbqlLjUZA7G8Nq5NJzueSWVa0jtbpJ711WFfbxHSB1BdWXJMO4PoqL2XEjg7Rc3z9nl1dRcb4hvI2c90BMgZ0Uv28whfZQGQFYkKcVwfY0V4GNzthonTjAWNeyKgt7TV8doPRqHV1h1lRv/7KD62cAVOBW3whYDw3TD+ZkkQv54qrylKCqjagOQmb+kS6FBn2Y4aFRp4p3nvRON56d6r1c0BVkqak6h2DRUxuAMfHmpojyrFR3m95QN1o3Mg6RyUIk8K8sWUe7w1fR3LmzHxNGWfibNBZgKfoJgmqCgALS4ZUoceYYjtbVditIDP6rNKYAXBxRwAM8+Ix6pwuTrglBVVHBv2Qj23tlZbM98bD2H60NAVSJkkJGHIyLogKBEyS1vL54Xxm4frfOqrjjYVtSBgZT66PNbVHeB9SwUz6/z31B/iOI2N165FqDL16FV5/5yLjgNAREs7dofnW68e1CMgJIpkDx8LwP8rQORnqM2fPZvN4jNIu9IBzESUvfR1BFf3Y2FtvzVk6x09K4nbIPhNb26rw1psXK5mma17UFZ5I+R7JyscO32ZyA4nqVsjg3R1FeOzQbSybt3dWmLnOEwyFjnIouNE456NR7RJGP0QloyHgxB2TfH/O5Ax6o+GUSPyF1hz/k/35NLX/9t/+G/7sz/4MAwMDv7ZnfuqNAzdHKVLLCvrhTAaGKzaITNxRX1S/vH32EP8sHaxH4YtheUKZylALFT/beCiYrlR6ubSw2N5dDjdqqs02FCvmlVVVHagqeEmMyQj/1TVt2N5eqZTh3Di8yZDxvFMkI8OwNflJ1748XChsf1epPW/acKDQ+LaBMqYolZ5AOX8AsKq2HesaDptf6FMok1Lfjk9Vl1hm0oTeA4fVzUmoJL9YhGn1ACOYHzt4GyeoKQNEfyDpcIRm5ZweLK/sxqJiU9rei0UY7iVZUlgJB+BSn7QnnQoerZzTA3hAyaxXsL210iiGDlB0wxvc9yd65uLukhasqzuMjc2N2NparS4h17f6QYWXFpWoS4+K9awvacb3m37HeIfz4qxE7nlxNp7rKsPS8j5e56da5vKFmvBCqYpbQHne1FdjJdrzewg2lHQVv72YbwWBA/edzgRdes8OltgeUB3iTwoRQ9/zz2YAnoNd7cVcZ8AbDbPyu6d7jumsD+D9TPYYuhlamZNKpEjoX1rRC/hKcZRYWifpqKq8/ZVYVt7DCjljcgGbw98Xz9aeZzaGxF6kPcNQGUBVMaakTk+cOcdnWlSCoIzEM1nhY1mgzxgAZlHyxsL40aEFykte1mOUBmJCGjfeWwkHk/kdEvrx8quXwc2NqyRUADu7ihWkQ6zVwpIhI6MmQzjUO5v3HNHSWk3D7VZVt7OjwM1OoGVwOlZWdVhKxnPt5QquSYbWiPFkerEIR40shVkYim40rgo6aVpINgyg9t3/blKG427N8Eb5GOwQgimIxXlS0tuuPcZDr15lR19Fo/WnKKU3piqpkwJcdcvLpjJwAJLGCdqeMtqa+maaeZ95zCZcCHhz6d1kPAKwYBLBaJqbrRJazQcccBV4/ftgMjxFsbzRMHzSpEQEjiNOANzMpDFspYNnRD0nLzRuR3IAZbBPCOa8qF2MLd1YGJIj8fRi3H7EV4xGUqZJZZfuCUGd+5zOD5RGMTu9ArAhQMEoG2ecYIN6Tc0RIweSdl7CutomjtSTIUiJ5zKxmNbCSTr2nqclIwizC8tpw+sVoBYGgB0dZbijsFPloxHkKmqiZ5axo6NqsgbT6po2SDKLC7r9KvkF6f58itpdd92FtrY2lJSUIDs7G5dccon155O0j20cHDx4EMuWLcM111wDx3Hw7LPPWr9ft24dHMex/tTW1lqfmZiYwP3334/LLrsM0WgUv//7v4/XXnvN+syHH36IP/zDP8TUqVMxdepU/OEf/iE++uijjz1AqnOwY7DIYKV9O3ogaQytkDWUd9qNxq2y9/LC2tJfqQ6eYB/Z1lZlnh2NK4UGsEOxOrlsZVWHEXAy0c1X1TTh+rg4PIrOUzfY44opr8cHk1GAGEVGw8CkqkkgE+Kkh8gJeRbfN+MehaDhEKQDxtrS54N9kMnV8B1cHB5VSoj28Lo5CaxrOGzKuzvAh4kceDH9Hl3wBWFbcZY5FIBSvmTVajePFCwSegIWEfLhu8qztmOwyFY2RePkPvFMQCVPqgtQ/ZySJbcfLcXqujb0v3INQ2PIUOp/5RorifEnvXVWQbvn2sstPOzqGkOfuPfYTB7rT3rr8GRLo6KwE/N8uaaYBZQQ39lVzFhbusTvLmlBpqvWgS7EYPNiEVamrMTpABzDzUxypOihxl2K811cuPROCl/fPntIQTN0OJ4iCVRpWFGP6oiWjoStrhMUkjkJhqilKJ2Xitoc8RBH7uDrcDld7I5SINzsBK7IPIcvNu7m9XGmTCqoCxREzUnqi08aGaIiueM5KQoCYC5ixpvnKQV7//EZnKhNioB/JgOLKo6auhG63+QBXV9/EL0vXwdK7r+ztsVEJWXSNm1tXZAs4QulShdXlJA6AByVsvDIug8AWNY8P5zPMuiZgQrLe5wdipsz4voq4qS9iym1MwDA9fFw5fPYdqRK/1//lZXA9o4KuFkJFUmiI6eTJwlmybk8UZXwmqLEZCdMNfFYBCU3vgY3qhLCnQlTi8WLRTiKs7auCWvrVESIInqLZg3jruI2PN68gN/HHlIp6yjCMRZO9RKLm5OilPTdFQW98MbDaD06zewXIqXQDhG6I9y8eEoF4T3dc6xiehRx8M5F2KB5sGIPy2k6W/QMVurPmkqplJ/FGHsBkfLPZPD8EtySlH2KwLFciAb2E6Ai05o+25o/18eW1lrEfXWHkoy4u6RFQa6C1KWAbXhLxjw9F3Q3r6zqsHMg9P3d1D8jFaKVJxRuX0dOaT3T0bDq+UxZcwCbWutZjuwaLjAQo4ifIreeam2AFw+x80Mat985uER0ELxneZy6ANuKgl5jDOl+0jzzWlBRTRqH/t0zAxWgOkYyv0k6fGh+OSFc0K8G2awu2PYbnnMAAN/73vfwxBNP4Mc//jEef/xxfO9737P+fJL2sSsk79q1C01NTSgvL8dnP/tZ/Mu//AtWrFjBv1+3bh3efvtt/OQnP+GfZWRkWNbLH/3RH2HHjh146qmncOmll+JP//RP8cEHH6Czs5Mzq5csWYLXXnsNTzzxBADg3nvvxU033YQdO3b8Sv2UFZJnzTiL469raNFIBKtq2jmR9PbZQ3aFwFh6poTF5f186QcFpfRaLSvoNww+gd+zZ1rkJCwr6MeOwSKsnNNjLgz9vZVzenBD5gf47sHbUzzn8hKA72BlVYcpbz8aNjSpEvrgmxBpigJ2niY/640opcmZMmmgBdKbJOdMeEM3NOxT2NhAVWPrPbLPlIh3LmIuYcfHqqoORbXqORpzbz+L51C8W/Z9UflRwwwBc4HJ5FZS7umC4WqvchwxYwSQh9zQL4Lfb62TXAe5jucizDwU7K/EqKf7Ls2bxeqi1+S+uS+oHAkAdxR2KrpZ/dkHyvfi0a6FeKB8r9lbYs6crCT88RDPTbA/wf0hq3xbYwiMPbinZN95D2gqU6m8WGF9sYeppcxvmu8DqoCRhA0F54zGS58j5XI0mcHywtono2Fr3byRCNbVH7YiEP7ZDPg5qhBacPwADL2hHEvguXKdgz+bOf1N3JT3PhtpgCoItqO7lFlh4DvWWgLA9GveRcUlr6h9Icd0nnUOzpncj8F9wlWrAZMDoyN6q2rbrQq9550Tig6JehArCnoV69n5iCXEebb6qc8m7xtNB7qquh3bOipTo6Bp5pr6dcnVZxhax8pj0knZ/ysKerG9syK1L+Mq8rOjo8zkQoh3UltR0ItnB0u44jvLG71XHmrche92LuL1oirfAFIq+9K6pMt5uaf+AEP9uCKzdCoQdSqEx9pXay7HvXJOD7YfLcW9pYfxePMCrK87ZMGtAEWaEfdDporwRAjXX/8+Xn/nImut1tcdwsamRqxvOJjeCA2sbYoBH5BBrNye7+5Jcx+S3E/5bJr38e/SyHIvHlIVkoVM4s8Hio6lyK7A3Q0HeGT+T/E3HbenyL90z5M/k2NcU9TBNRqe7qvGgxV78J3m27lqupSnqpJ7OV659xsXXDVhrpD83W/gE1VIfvCrF9yYLqT2sSMHS5YswTe/+U2sXLnyvJ/JzMzEVVddxX+kYXDmzBls3LgR/+N//A8sWrQIZWVlePrpp9Hf3489e1SobWhoCP/2b/+GH/3oR6irq0NdXR2efPJJ/PSnP8WLL754vteetx1//Qr2jrq5cVbCAUXfRjzijTNOWBcvYCzt3X1zrLA7cZkDsBSR5zrLsKyy23ijpPfBtQ0DbySiijvBYB7Zk6sjEI92LeQERwBmHPr/RHG5vbPChOZzErizvsUk/dHrczWLjIxgBPGPAs/sxSIMEQCAtfVNcKZMYvo171oeCnjgd/OcCUFIlWrpd+k82uyhEnhu+jz9flubYdZZ13DYzNWIijRsa6sChWjJK04VUFdWd2DvsZkmL4L6yThNH8zK4DlcBdMPG476J3o0dp+8qyIhkmBkwbHDD8yxgGr5ZzOUIqU9NA/Oe57rHNBFnpltPJL8PDnXgXfR5UCGAWAS6OjS+u6h2+GNhhXNZMAwIDpUmhteH6EwPlz5PM87YO9p8jbJPRpUAh+Z/1MAip6UcnOof5ZXM2YUmg0N+9TvhHFLf5bMHmTFNmVOHPPedIaB3McEb6HPLa/qwqaWBq79EWzplAT2Ao8aCknAwK/48j1nElHZm+cKhTpwmQMa2iUw1m5OAsdevgo3Zn0AbyLE0QKuQCyhNlIJGQ3j2OmrMOGJAo9p5mvRrGGraCKPW3h14QNra0ydiXsaDvAY3JyEwtJTQmzIt2Qv7SG5V5Sx6TBkhljKsqOTyvkRMAykV5nGKSMOdMYsz6mOhmw/WpqiTKkvGY+pXcAN+OCtqfbc+o4qfjcSUTkQem22B/YMGyl6fdxoHMuru6xzzDVOAHwUV1SWzwxU2Htb7xX2PFNXw6YeRYqCD/v8ksfdjSpSDKvugJBVNFd8L42G4SSUwba6uh3La7qsu8qLRfB4060phgH15R8P1ts5PZlJvPr6pfwumvuNR+YBjuH890bDCEVMlCF4/6XAagJw0SBsKCUiFeinF4vgj2993vo8N9+xWcdErpzj2WQa1vOJxlnMNe/VQHE9qXsE+/ntA5/hf3O/4yEeK8lTeR44wjSi4Gxb+hUkdlNLA+4o7MR39i+BMxqy3knPljliF2z7LawIoVAI77zzTsrP33///QuLynT//v244oorMHPmTNxzzz1Wpzs7OxGPx7F48WL+2TXXXIPCwkI0N6tLpqWlBVOnTkVNjfHA1dbWYurUqfyZYJuYmMDZs2etPwC4mJNUiNfUHGFOfS+mqqh6o2Hs7xORAa3kMBtAwlUUajGjEDlx9Zm1xa3mc45g1tEhvXvqDuLPKnanei1CPvb35DM0ghToVdXtkPh0WeI8qHxS38mbTgJn85E6plil7wHgwmOATujTQmvlnB545yJYX3OID44bVYbU2tpmM09jYcXdrMfnxSLMaEBhacLTktDzz2YoTLyALAAqaiMZekgpptA2s9q4Nu3k12/djqea51rJfZvbanldvFFDAXjw+HR4IxE8O1iCummnsKqqI5WSlTzHEVNBtfWlm0xVUcHo9IWyA3CzEyrJUs8tY9hpHPrff1axm3GxGxp0grG4pDhRUff50a6FKqnNM/CyibEIVlZ3mEs7ZCgKg5ccw+V8dQmtKuw2jBQwium6OpETQsaUfv5jh24zMBjAgtrQeN+cvMhMXeAC4/B0yMfdJS3cRy8WYcP0bzpuB6DgGIvLBiyF9N7SwymQJwBsmM267m240TgnbN9V3Iad7SWWIUHtq1U7jQdbGP20liur1JllvL+ueF1y42vwz2YoKJi+2DkR109VJixoHVTipJuT4P3uOIDnu7xfVxT0moR9oSxQ4jrPvZZPW/or0VB0XNWUCCj7biSJJ1sa4WYm2SPrRuOczCor43ojGv6ln/HsYImRJYF5AoDdXUVcNHH6Ne9aa8n90LUtaC64Qq/eK1RtXO4X+fe80mHr94vLlUODGLbI0BmLZVheTTLeaU3dnIRi85JjcHz4jo/lFd3WPN8+e4g98N5YmNmFqC0sHTRnlfamVAh1Xhft0amhMbi5cbQOTLPH52tefUF5Sr/zRiIK706RhXOG2AEA9vbmm7M3rp0FSQdfrdqZArkEFPSRPk+sWdRv6fBZMOM4iCbVDEjt5ar8l4x3XTgh5Pn2RX2V57SRQ3fVqup2ZXC0zLPXRvfFz/DNPQmYOgf6+VW3vIy1dU1YUtbP60ctqY3Uu0taLOfBpiP1Kef+wbm7LbnH6wE7SiBhV4C+dwHA9TGSzEpxxHG9oFyzv2m+6qadYkdS0DAj51PjjBMc0aF6C240bu65QPPGwrhvrqKpvm+ermEjINHcEnYeExzbcUGGWtAxurKqg+FjzsWT1vzId6yaY5+PC6791jjA+QBAExMTyMjISPu7X9Y+NqzI+rLjpMCKnnnmGeTm5uLGG2/EqVOn8NWvfhWJRAKdnZ3IzMzEP/7jP+Luu+/GxMSE9azFixfj5ptvxt///d/jW9/6Fp566ikcO3bM+szMmTNx991345FHHknpy9e+9jV8/etfT/n5DU98FXNmfYSjx67Tm8JUDXVzErjlmvfw0huXpYQWG2ecUIplILTHGNmcBPKvfwtHh69XXyBGE+GFlaF1QCn/m9rqOSkRMBcbQxlEoTEOIwvoC3ugfAdOwoEzdRKLZg1jLBlRCYPC8pcGhQWBIUHkOVhd04ZtA2W4u6QFP+mtUzAIonkkiICGjfBzdaiS+0xh+JEIK7cIe4BIgpOXFSdVBSAx6QS49e/RMOoKT6BFJyLPKxlWfNznW7s0MBVqLPwoRA6jJPMcJQxeU4Z2ZbVjbyyMmjknVXIkbMGdYgymabTeKX+nCXVb6xr2OAxs9Uf0n+lWqVKu/L6EX2jMek2hGkdO7gRGRzLNeMTzaQ2DkKfz/ZuNGgfcnzVVrXwpNUw/iUw3iT19BVadkeD4VxV2s/JrzYkcH0GQzhP6Twtb0sanm5lUyntmko3bnNAkNrU0WM+mc0LfJSM07fv08/ykCz/hYG1VC7o/uh79x65nyI+bk2BIhlznNTVHDORH59HQei2YcTwtOUJwrgENc+wsY5iOm6sMkltufhsvnbjKms+1xa0qT4bkjdhDzoSLW6uOYm9PgQ0ZigkI4XiYnSpB736Kt1+sAY2HDDaCR57v+/zzNGeF5pw/Q3tiLAxn3DVK0GjYmieWtZSknnTS7/GEqyp0SzicmKcghINgQSSrU+ZazFUKzI5gPgIu4sUiWFd3WDGQuQHIjz7H1lnVzyT4avA9PD+Bd3kTIawq70yBgLF8GQ3DmXThXKTG9NWqneiJ3aAcUmngSW5U5Rzs6ixWd0TchmLRPSTbolnDyHQT2DlUiKsvP4M3352atp4BjZ0U73TnKbj/llV2Y0d/Mdywl/J73o96jyChc+KoUKijipVRgjTlqsgK5WuqW7Glo8bMQzq4W0zDkLLOL0Oo1U07pfIpcszzaL+mu0Npj10SjuHRroXwRiK4p+EAnjw830CfaJ1GIlzgkpxFJG8XlA5h75Gb8NoX//KCg+AwrOg7nxBW9ND/92FFP/jBDwAAf/Inf4JvfOMbyM3N5d8lk0kcPHgQp0+fRnf3xzfwfu2RgzvuuANLly5FYWEhli1bhl27duHYsWPYuXPnL/ye7/twHONWlf8+32dke+SRR3DmzBn+8+qrr/Lvhl69iiEggBawtSoUfEP0Q/YOUGIWAOzvybdf4PhwKGFYP2dW3tsconXGXetgKo8KAN9hKr+n+6qxqqID6SBJW49o+jZXe3cApv9E0kHFza9Yl7KTcJiqdM+Ls3GobxZDOlgp81S/gxAUNzvBcAZ6709661ROgU5cW1bQbyAnIvlWXoAfaUjUyspOJSCFAHQzkxa1WzqPCntsR8Oc7OjFIlhQqhii/LMZXDFyyexBLK/sRkv/DLhRVX266cQ0eONhLKnoY7iQdy6CyzJG4J/NwIb6/WDaykDo2Y3GQfSyBIGQrWTWKyo65BmKN66GqY1ANTAHrYPT4I2F8UD5Xva6EQe/rHAdjC4wBe25CJZUKdaY5TVdAAxXeEqfoeAuSLjmkgDY08fj8I3SQtSN9P319QdtyFBWAovLBtDaq4zhRCLEfYYoeEZJ+aRMULujsNP2yJ3JAFztKaP+UHKb51g84U0npqk8kGT6cy1rNpzX2NLVtTkq45r5llBAgkhY1U41U4s3GsbKMjX327oqMJbMwIfxHGOoaEVxY3MjP3tVZYeqViq48bnfo2FLSXUzk3i6rxr9R28wCrS+oAm2JD3YZDzVFJ2wok0AsLffyKZLLxkxZ0vUCPEmVYGnfz1cafD7jlYgshJ46aUr+TxLWmUrN4EiWJ4D56JJxcRDEAm5XpS8TeQGmuN9TVEH71H5Hhn9XDRrmA0DQEUz7i1VVLsExVpYOmiN3xtVRRARMpA/QO//zKS95gRDy07AD/tYX9LMXnxLWcs2kDb5c0nxuaKgF5ddfo7lFkUviHGL3yn2Ke11Mgy8CbUuRGFt3RlCYbeaoxweJIeeaplrRRksb/J58jGeay+3YHcUdWMqbnE+qX0wqXIrnITDVXkpkZ0Mg4yT6g74+v4VyjCIRUwkovAk0+d6Y2Hs6ioyUa08nWStx/RPTRqOJzzoe16cjZ1DhfDGw3hTU9mmhYEF2rbOSuss8f4QNMI7hwrhnokYuJ94LxneFP1ztDeeKKXdaBw7u4pxV3Ebfz/IdvTMgErAp6Kj8MFJ5YBaYyfp2LJgzGYv5L9HImjqm4nFZQN2TaHAOrvRuGK60m1TXw2+e+B2jjw92dqoa5oYOUB9j7ynjSsty8gRc/D4dAOzu1Dbb3BCMiUc+76fkoj8+OOPY3R0FI8//vgnevZ/OJXp1VdfjRtvvBHHjyuF96qrrsLk5CQ+/PBD63PvvPMOrrzySv7M22+/nfKsd999lz8TbJmZmZgyZYr1hxqFL91oHA837sTDjTtZwO4/PoMPNiWepngaRhRtGSnj9LtnB0vw8LyfwYtF8J/mtlhVXjeUHQTxarcMTIcbjeMLZQew/Wgp7m9UuRX0LkBAEjTzCaAuIzc7gfvmvaDYigTe8Y9vfd6ODuQk8Pm5hwwrRo7heVeGkZmrpfmCC1cLCob0aCgDQypgLk9vJIKFxUM8B7u7FXxqe1sle6yspiMkj8z/qcF1i2J00oP41JEG3Fe3F4A2zBzFOLRruAC3zx7Czs4SleitlfIneubCGw3jkbk7lTcq6YCo3ra1VcEP+Xi86VbA1/MYoBKkqtPU1hR14MuVu1hx7H/lGsX4QZ4dMc9unsJPEzuNm6UUzEe7FvJaMouVLBoVyB14drAElIeyq11VkL0soliJNrfaDF/y8qK1caNxLk7k5tp8/25OQlVKhV1AzotFrCQ/GtfuriJQJdmJmFZ0tIcPUAYF0S0CsLz8jIuOKViQM3USzqRrIm8aP05wB+mFJC99umgBKabWPMQiFmsVPAduVgIPzxfOh6TDShJ5371zBkboRuOWgQ7NXMR0rJlJ7GwvYUgLK9EEA8hJYG1dE7YfLVVVe3Xffe2FJEWdjD/Zd/aWEpuUPjdeLKI4zgWMAQBa+6bzOjOOWOzH9z/ITYU6eQ6PyblkApSQLD/HRqXnQFLUkqK5oqDXGNCiP7yGwmMvWZLIQN02UMbYZjLAJOsNvY8SqWlfeDFNNZydYBrSYJRktS7+tbS8D4tLB8zc6v1P8E8ZOSXo5pPN81OgGUEla31Jsw1V0Qrcs4Ml+ODDKPeXaCm9WMQURkxTbdryShe+aMlJ6Tzg/ohIpTeqlLb9PflA0mGlV1K/cj5FVgJrao6kGMRq4YD75+1RxAyzhgEP+IdDc8HUno6pTO/FIlhZ1sXecz/s4++652tDTz2OIgaT08ZYwZfNjcbReeoGjo7cX/8C1tU2Gfw7GbNaQXWmTqp5z04oyA1Ri2vDZcqUMVNsTcP8rLkVa+pmJbC11a6VINeR5//SCezuKTR7lOZVy4s1RR1AwoXv+pqKWDzLd/B0XzV2dxSps5alojMpDjANywO0w0yw8jGDlIY4s2NNRo9ixulxVeZZNk7c7ATuKm5TcDLBprWne46hbqVIvh8wBoI00B5wfdXrnKOojD+H18rN+eUR8P+T7Te5zsGpU6dw6tQpzJ8/H729vfz/U6dO4cUXX8Tzzz9vwfM/TvsPNw7ef/99vPrqq7j66qsBABUVFYhEIvj5z3/On3nzzTcxMDCA+nqV/FJXV4czZ86gra2NP9Pa2oozZ87wZ37VRlSm1P7m4FL8987FLAwB2xtBlxTRDbpRpQjuGi6wL2B63qHfYyVEMqk83t1oQr45Kino77rnY1lBP5c/5wtRJDUlxcWxva0S60uaOblUXdbqd98/tFiz+ahd7p3TNRQSutrzuKay48qnRqBa1Yb1mCSGmJQIbySC+xr2mmeEfb6oLc7xNBzcPP+xiEqiEu+nn0sPopuTwGOHbzPzohXeu4rb8PxwvuGAFoLzvoa9+Pb+z6j3RXwsqehTSWF6zaQRR31m75Hk7D+ncN3fPLiMFSJAU5iSEhUyeQeNM5Q314941jzQZcaRGqmsC+X97pIWuLlxqyIuKY0bmxoZ+27Nqcwx0AWP2Os1Glb1OPR7yZMvee3l2qQkoVMlYT/Q58wke1moYm1GlgmdW8/QFKRED0mGNlfsDfmGTUV4MLd1VCrFWkcb7i5pYSUlaEhQ/59rL+e1oN/TObQgECJxW45fzrf6j89nBlDruLKmA5Q4Lj3L9P9NTQ38b8oVoufTO7a3V6YkePLfmvpwVZXCj9cVHTdRLkljqvtmYezHTR6OlxAQl7AHOD4nJnujYSZZIC8oR380fIow/vI8utE4J9QGI2rMVAZj0KlfIGWueQyB+U/5fpqbeuHMY8whH2wEP9k1XKCMC1HMjQrgwfFRVnCKZevGpkZDGCAYgjj3TBQFe2tyipkPUXm3YfpJPVaf10F6ylWUwR4rYObFi0Wwv382FpUdNWdA92VNdauZsxHzbpYDIV8ldBP0xgGWVxjv+KrqdnjjYTwzUMHRCt5H2nP8w8OL4OZqqt1MD37EM06bnIQV6T2b0AXE9H5gQyQaN3fOWBhTp46CiByo8BZDX8Qa/133fGzqq1GRt3Fj5AYbRVVYCc5Rjq2zZ7M5+iUZlGi+JBNR8J4xn0lTU0fkd/F6hFS0fHObYon6YuNuTW9qOzHuLT2s1ttT73yus8zsjYBxKqGetH63zx7iO1wmzNMYONKpDfRxL4Ivzttt5Upu6a8EJfDXTTul1sbV+0WjDvg+pwijLOin1/2lU1dyjqIbjcO5eJLRBEEd6oJrHzfXgP58itq+fftw8cUX8/+TySR6enpSnPAfp31s42BkZAQ9PT3o6ekBoCyXnp4evPLKKxgZGcFDDz2ElpYWnD59Gvv378eyZctw2WWX4Q/+4A8AAFOnTsX69evxp3/6p3jhhRfQ3d2Nu+66C0VFRVi0aBEAID8/H7/7u7+Le+65B0eOHMGRI0dwzz334DOf+QxmzZr18QaYE4ebmTRhUYCxx4StA5Ci5O1sLxGfNcLfSRhoEnlF+dCRvNLsPbIY1U966+B/kMmh1ztrW+Cdi3AYkJQ2WTXTzY3jjYmLLAYCEh4bGvbBzYtjZYX2EmmuZISVUFhYNKQ8EzkJeJMhZqGh9mDFHkvhYo/OOTux87GDt2FBiQ6dJh2jCAncp5rnRIriSeFUVvQCigYlzHJI3hG5Drovm44oY5ATXcUaSUYe+Cpx+z837lXzkAh4iQD2MkuFw43Gsbiyn4UxJZOuLW5Vnk/CEFPI1fEV/3uGUpxXVXbwZUEJbdLLy5eTuIA2ts6DF4uYS1xzjfMeSjq2d0dyWItx7O4uVJ5338Gu7iK+eLa0GcacDfX7LeWEPHZynVbXmUrNdxW3cUIynwmxjyfHFTzkK407uD/+2QxWoO5r2GutE3nuV1V0WLA96h81Z6ryvP6kt87aJ/6ZDDghowyw8u+APasALIYfO9lSRz7mHkyl6JRc5p5WVnRyZRIuf9eNxrl6Oe/lPGO8UF4CfMdKsKefUW2R22cPYeWcHrXHNM6YMN2tL91k1jwibi5fXe6tL91keYFXV6nkT0mRCm0obBso4zXb35PPSdhrqlvR1DeT99P2o6VKuQ6yBQHWPAb3cFBhZ2OOWIlEk4qlGRPstYT5/5qaI/BGw9h7bKYFP7PeJ6MPnGdh4HWA2g+9L19noICk0OrvOnEdXdIVgymBGwByQxOmj2NmfzSdmGYZYwuLhngvSllH7+Fq3knHzFFWAnu652Bd/WFrXrmIWNCYz04oj3pWAvfV7VW/12N5rtNg9KkyMsvOkQhXjJdK+KJZw4pBKkMV5lxS1cf7g2qbAKr2yso5PZYDLcXQzk5gbCKDz97OocKUyFAwEuYkjAz2JkLMtLOmqEMx4+gjYO0Xkj9ir1uGadiO7q6pbrUMTt63RBLgaJl7NoPPu4R98nz5Srb9sOtWVii90bCCdQKYGhpVPw/7bMTIRHU3GufxEUmGLKq6q6uIv5ti0Ah5R3f71tZq/LDrVri5cWUkiPPof5SBlpM3Y2WFdjgldERIQ5vVwxwDi4UaywPle1WEMTOp9k7C3DtfKDugk5sv7MjBbxvwwAMPYOPGjQCUYdDY2Ijy8nJcf/312L9//yd65sc2Djo6OlBWVoayMiWYHnzwQZSVleEv/uIvEAqF0N/fj+XLl2PmzJn4/Oc/j5kzZ6KlpQV5eXn8jO9973tYsWIFVq9ejYaGBuTk5GDHjh0W5dLmzZtRVFSExYsXY/HixSguLsY//MM/fOwBkleIvPXUqBrr1s5K9gxSU94R/W+NR19V3c64VUBjwh0fa4tbVXGemiMs8NkrqY2KVYXd8GIR/D+/Y2o0eLrC5J6eAlasVmn2FA6nQhd10l70NdWtKil32ik83nQrvFjEePjIK5mVwJ3VR1RRprOa4SMjiccO32YwraNhfOfgEuv/BDWhpNiVc3oAB3A8x8q/eLqvGrdc8571XR4TGUvSWyh181iEC8LA8bG1rYoLVNFcA8ooWpo/gHvmHmCFiYQ3eetovKtq2vXDlQfoiZ65JoKjL1LDLGEXk6GCXXuaFWvLn1Xsxs7OEnjjyntF4fmgZ3VXd5GCqrmKDpHWWVGpOopphQQyV/MUCp+OghDbFRyNSfbM/rMMmPPwzrs5CWxrF9ANWg8NI1lX24QneuZiVWUHIpmGklAqMG40rvD8OQmm7gQAbyKkPJNhD3dWa3YvDc9zfAffPPD7vBa/V93D8/pYk4JWkZLif6RgKO9N5jLumr1kMnwu95GOvqwo6IUzdRK+SOCHLm5FiujKys5UpVVDuL7YuBsLSpUCt/Fwo6UA0F5VCoOJJLjZKkH4ufZyVkpWFXYrZp9o3HYyCBaYlXN6VORERPnIQ3rFZWeBiIddXUXY1l5pKr36jolWEKRjLMxQLm5CmSYlY2urYQgir7flddT5DjLaSHz5lKArlSaJVZbyx5fGtetbXnr+scgd4j6RcUw1C0QLekml0bOlvYaN13Se93Q/JyYf9UMlB4jtiJ4f3GvORZOWIcH9HgtjS1uNVUtDynQ37PF8MzY9V7EruTkJYwD7UBWjtTJK+SXEWPVUy1wrkuTFDKXl4grlrKDo78beenijYZbhFMWaV6Rove8o7LQjEZ6QGbLIYzSOhBdCy8mbFVzobIaq8eOA5dXi0gE2mrcfLVVj+iiD5xaARTU9SVGAqL2mcu7lvP+XBQox4J2LWHt0S38lvPEwR0PIyL639LAxGDJtOlMeW9KxoE2WUamhvTQfTtxVDEC5cS6KyrIgaqL46u5QTin/bAYbkssqejAt610AwH/vXKzn20HZTa+yYcDOxNEw3EjScoxRTaUvztvNa+mNhrG2VheP1HJEGudkrEiDaDSZybk93kQIzkWTikK3QxmZC8qGlEPQs9eGDSS9NgSFdRxfRxvAsCSGTKaJCF5IjYJJH+vP/+lO/5rbP/3TP6GkRDm0d+zYgdOnT2N4eBgPPPAA/vzP//wTPfPfxVZ0ITdZBA2hqPK2CqEWZGABYDGfAEA0bxzn3spjXLxsUkGlAjTsQRZFlHgn+uYSIiFElzSzILimT/L5HAqULEfE1EEJc55j9Z084ZLZxBsN48rrP8S77+eZ6Im4aFMUTF/VB3h2sCRlbuQ8ALYyJPMP+PlifPCBryz4V3yrYwlWFPTibCJb1SAQY7qz+oi6MEbDWF7ZzUwbcu5XFXZja3sV98s/mwGfEqjl/BGLB2CYGFqqmbWBnyuZTeIu4CulnQoSAZr9pa1cRWg05/f5WCYsVh/h4T7v/NHeSONRtX4vGEimhscUTSw9y/Exr/hFHO7KV7CBwJ6QRovFfZ+GacXyxPsAsbvcUdipFCjBkgHAOlOyeJn1DLnn9O+oSNsvajS2otmvon/4ej5TFNZPgTII9g9rTL+omJtm2LLOnT5bSyr6lKdPr2HjjBPY3z/b7HU9Pwh7nPNwT/0BPNk0H0520kRj0vSRWFEk8xGNV8IRiHGGPrOioBfbe8uBcZdrhEhWI2t8woNM83FXcZuiggzKiVgkhV1H7pFf1uR+oPEtr+zmXBkqFgeopMml+QMW1JGfI8b57KAy2tOdOeucCWOE1z/Q76X5A1xrIOWdY2EsKhnEnq45QMhH/ozX8eJrV36ssac7u/x/kkWeA0Q8PNLwM3z7wGdMhCU7gZIbX8PFGWNmPdIUNZPPZrkpWYK0h5iMGmJNAtJEfnSxST6nae6RNUUdeHN8Kva1FsK5ZIKrTRPFcHDfUltZ2anWblTJVGfqJBbMOI69ffnnLbBo3Z+AYfSZDMHNUNENZ9I1Sd6xCBaVqQKX8txYc6TPsjPpwg/76dc+4GRYMOM49vbmW+NaVdVhCiLKqKU8wyMRrK5V7EtePKSYmQJ5BHxfkuyS5zN4N6dZTwmlmnHtO3jx2LXWmMpuehWdR29J2YvwoO4u3/Sb52pcGVxWMbRzEXiJMbx2/4XLVnTjf/1ruFkfk61ofBwvf+nPL7gxfdKWlZWFEydO4LrrrsO9996LnJwcPProozh16hRKSkqY2v/jtP/wnIP/080bVR4KEkT3zX0BcH2sqW5VfNY6vOiNhZUnhqz+8TBi59SGS1GCYIfd2fOtD9O2gTJmHOLPp0kyklSIQW7ioAIFD3bToUY3OwEkHQt/qjqlfr+3N99iK3rnvSmmP9Kb7TmMvyXB5ObGOUmTcYsyXM590Z6IrIRKzKroYc5rAHigfC/gAOvrDrEn81sdqojPs4MleKGj0BhAui+bW2u5L4QxB4A5N7zJ87y1pdpgwcd0wSnXXif1PD1eX3n1FexC/ez22SrBeuWcHmyYu0+NQ0cz6PL5l5Yq9uo9114ONzeOJaX9GpJg3keRGgrTc7L3WJi9lxz6FnzfFuPQuQizCwX3ghs1bBTeeBjPdZRh3IukFEU71DubEyTdaJyTfh+e9zMTOZBLr/cRQej8pBILC0qHeI9uqN9vYEuttay0yb0hlTFAQZS+OG83e7uld06Oa1rWOylwBADWGaLnH33laoO39k3iLZ0TYolKgSHRc0iJPGfnI1he3HPGc/7Fhp/DjcYxlhSRBuikeXkmCSOdmcTCkiHA8VX9gdy4VTdiQanab6xMTYRS4HmA4iCXHnUAyigFQAnM29sr4UaSag9qBctygAAKuhGz4QJr65pS3hdM+vVDJsrmjYXVngjsGf63Xk/K0+L51CxQcFVNC57j3Dg29dXgqVaVt7GjqzT1zMIoL1xQLOkYL3xMrJ9gE6J9hpCPhTOPWfBOeseO7lJIqByg9hp9f++xmewRfvG1K601CImk80WzhjlJNsiZDyAFUkP5HsxFn5nE33TcbuZFr911OR9ZhlqQFtSLGRY0QFWdXlXYbQwI7QEmgwEw7FfLq7qsqJE3EsHC8kFzFyRspbSh6Di8EVU3Z29PgUpwB/B48wI83rKA+/CVRhMVd3MSyhPuAFdknGPPPOUh7e0pMIZBPAQ310RxAWBrexUerNjDssoZV/JoSfEAr4Uf9tnDPa9kWDGeASn5CKtr2sxcaWcPoPY0RUIfrNiDu4rbrKjqvaWHVT/1+VhV3Q43J5FSKT2F+Qxqf1NuiBtJcj4JJQ6vqm7nHAiWXVk6EVsnYBN0ieWXbxL6pTG1ZPYgjr9+BQB1p9Ad3nn0FvX90bA6B2ywA5yErpsXi2DODW8qOZ6ZtPYGXMDN/OVG8W/b/9l25ZVXYnBwEMlkEv/2b//GEP3R0dFPXATtUx85uO4HX4cbzWQlIthUtr6T4k28ffYQFx9L54kEbAWePG3pePzZszMSgXaXz/gAAQAASURBVOM5+FxDs/KKBxQXq18BzytxN1seGh8p/TYYasfEzkTNAVKkV1e1p1aMHYlgWVU3dnSUYXF5vyqCFPQ8hD3cctM7eOmlK1VkobIT2zsrwHhpipQIzLyTcJQXG3b0JDiXPOaJEJaUDHAIlmkqfVhew6X5A9jRXsZzcFdxmyrIFPTCuBBMFalzBhjv3Pk8zsE5pnW9s74Fb09MQTQ8oYoCBWFVQMpY0/0OAHPoBz1pci+oHwDI8LC8rMe8U+8tZ8okVs7p4WI3bjRueWYXzDjOXPVWJEt4q/yki98pGLTyX0jJyrtyhI1mGVGx5kfm26Q5W9b6a0+vk3DhTJnEqsJuJDzXJJGLuh8N00+i6cQ0LJo1bPVNRu4AmLFJSkgRlaPnkrc02C/L26jn8N7Sw4ohS3Dr0+9kNBBh3zYaAvUhKNpxZ22LkgHEr899BEcizgcns2hbMzxg0mXvanB+5dg4uuEDc/JfxdCrV1lrkDbSQrUaPsiEn+kpxTPhsGe0YfpJHOqbpc5XMBKn53hVdbvFl58uQkafpUiNtS503tJEfeQ6LM0fUIo/eeapEe4AYLkYXF9vNIz1dYfU+dMKGkdmg/2JRbC2rgmbWhqwuLwfe16cbfZHIFJmwS91tABx95fWCQFsmSQjsXQXyPMXjJS6Wcrbv1kb8sGxykgOoCOixM6lP+8kHVV5Wexh/8MM3FYzgL3HZmJtcasiPZAe8IDnXvaN+lBXdBxXZ53Bqdil6H35OntvyuijfhbJhvN5171YRN1XnUUKaijqHHgjETw8f6ciIQnMk5904U+4KR502e4qbjO1TkR0gNqygn6GIP6iyJJ0BnD9HxqzB+vspD2/erzr6g6rORf1KcpmnUbvy9dZa5/23fo7rEsIOZJyz+v+KXjuOF659xsXnJedIwff/oSRg0c+PZGDr33ta3j00Udx9dVXY3R0FMeOHUNmZiZ+/OMf48knn0RLSyo1+i9rn/rIAV0SizRXNmGGZUiQBLX/YQZ7hUgxpUPjJFwDmwmYU4vL+y089arqdvaWsHKqf+dMmUylqRwxeFPCPDqeY4XIWdmTynXYN15qasR1rhOt3Ggcy0p7Ace3PNJkGDA2WAu+HZ2lgAemKU3BGyZcnH7zUlZitrdXGo7wqOEJ5/9H41yVmXMKAt5jmuP75r2gPGCZSWMYjIaZZeSehgMMs/DOqQQ4OEppXFPUwcnLKSF4ghlE48aLSFSSeoxMzZmTgP9BJjOGBD12XP0WyjO3+Ugd9h6bianhMfYiyTG5UQV/IvpY6bm/f+4eK4GQitCtrW+y3ruyusP0XzNpwHewY7AIq3US9Nr6JlauZQEgANjRZoxA4qpfWSnyKag+gp6brNwJXn8aN+GSyTDwxsIqqqT3Ls2nfzYDC8qGDJ2oUIIoqkIXrWQt8kM+7ipWCidHqwAuzuPFIkoJheI/l9h/maxOXjbpKXNz43hw7m4Luy8NeID2v6BzHDHr6I1EOMcnHRsN/b2m9oiV2JpiGOg9A8dXkTEdsbmztgVLKvqM15uMBJiq6dYZd+zLnPYTRYhkojUbSMRGpSOCQ69exdSL/F7A2ncAkD/tDfV17TGms7W1rQpeLIKmE9NUf/LiqYax7ue21io98cabLg0qLxbhBG9ZGZ5lT4CZRkYoaPx3FHayAayiouC1X1NzxERmHft7fMZdWBS/VgQyUKEdIR9P91XDmXCZbpWolXnOKSFUrh0ZfgBHq8/nOFhR0JtiGNw39wUrSrm9s4LPlNV81YfNLSK5n1h09POe6yozkeCxsKaJhiWj/UBFewBwLp7ERZFReGOaVQhQBRn12q+rO2xFEaSiS3+3HJ2OfzlSxQotRZOt6GMswgaHryPKy8u7DVWsOFtuNI7dPYUsv8gQDUWSWFXTjr85uNSaG/5n3DX3qYabWvJ+NIyn+wKFF0mGjJhIsvqBw7koXizCORNe3HhtlxX0KxRD1Ox1+MCy6m64OYoMQ8ojSzbpPSANg7XFrXCzEsYwoCjTSMTUGIGJwFGj+eE6RgFDhO9u7ZD6LVvRhd++9rWv4Uc/+hHuvfdeNDU1ITNTFTENhUL40pe+9Ime+ak3DijTfk/3HHixCH54eFEqzk43qp5JLaTZEdaXNCuYBiUG5doX/o1ZH1jf2360VAnXs4rJwZl0VPEdIdhkAuKa2iOqCNb7mSwkSTBTEmBQGfBiEY6GpPM4EE4UUNSlbk5CKf6ArSRBRUkI8kHhy4UlQwYaIDwJZl7NpePFtHKow7ReLGLNKwALakJzKOFJdxR24rGmhSrRcszQgcr3U2IecbN7o2HcWduCorzXsbm91vL8+B9lWOssvePqB0K5I48PoXuyk3Bz40rA06Wq12DXcIGdbKnbpiP1nOROF8T9c/cAUIoUcebzvDtQSfKO+b83ovjSn+6rtmAM29sqLfo/ObfE5/10X7WCWrVX2WwZo2Eg7CMSCA1v76gwl4eISmwoO4jxkUxLsSHlU0IxGL7ig+s+uFFl/B48Pp2p9Czoh7hYySiXMJhNTQ3WXEvub547vWeIYICMDqtpdhpZU+PRroXcf1JG1hR1MAkAJ2VyBEysFcBsX/S8lVXq8mVoFYBM176ErTObGzdeupwE1lS3YqV+9+a2WlyT+RHP9/31L3B0YtORenORQ+25DQ37+PluJMnrwUYhsZQATMELwMASYgoaKKE+BK8DVLIkoLDfQyevSVE+gzVDrBoMUQElpAJbpFxnesrJQkZ5IPpCfec19QMyTdMB7+wqZtm7uqYNXizC1JvOpGtqNPgqGvfMQIUxCgTVpLVOxOAyLigk6ffZgf/re+Cz81otA9LNUfUv3FzDZkVjcnMSzKoDaINWyFMqYAkow2B7Z4UlX1bXtOGxQ7dheVUXtrVV8fcfbtwJNydhw1CyTd0TLxZh6JpUvhcW6fX2zfgaCo9b8B46LwSZIrm27UiVdW7dsMd321Mtc/HNA79vPYOIHQi2CM+Bn+HxfcF7gFn/fMv5RXTIz3WV8c+CRpWbnVB7S/fjztoWJOMh1ddo3Ny9jviOcCJ5sQg7zJbmD/Ddbb1D3LVwfSOTo3Er18iNKmICLxbh87mutonzhXhOfRVt29FRBu9chMlHOIeQzjBFEnXUiPYKG2diDmmMm1trEYQ9sgwR82dFeMQ5l2fzQi8K8Jtc50C2VatW4U/+5E9w3XXX8c8+//nPY/ny5Z/oeZ9644Cx2CyoAx/wwUKJihZxWFi3J1saFdVkQJjRs4ZjpjAbM2uMhlnB9zM9PNnSaIXwJJ54S2utgjBleGbX6vClo0PQFTe/wl4efgZ5fgKMEXS5bulXWF1ZGO3SS0YM1En3g7z08hl7+wykii8/oWwRR7+bo5mc8uKGTcLxU3CypORvamngny8uOsq/3tJWwwqpM6G2JdGqknCXnlt69+YjdYohhi53rTRQkR7Cu1OTVaS5azHDzkRKiX82A48dus3AkUSdA5kkyl7QnASePDzfrK3j44eHF/G8B99pNR+oKjzJSpT/YQbvlWTCtYpMAeDcjuAzVUTBjEm+Oz6RyjhhVWEOqQvpscO3KYx82GPDQk0cUs6OG41jeU0XF5QjjLeaQwf317+g5pRyDmRVV5p7YcgQ9G5ppVa4BTsOz6tvG2Vyz1vKWLZ9sXvnTB4CtXcnc7GtrUoVVfPNs0i55P2fG1csTGL82zsrAMe3YFU5oQmsrW1mRTFI3crnNaZobBlLn3Asr/UPW24zkQs9X1UFL6lnZCesJFAAJq+AX+SjpuAkf57zXbSiDgD5t7xh5gWGRaWh+Bh+2KWiJFvbq+CEfUsh4qaVIM5f8B0j+0YieLRrIb/XzUmoXAvPwZ/e+jP23DkJx7CKUVRBUA2TQkuRAuOBNxGpCU/tn52dah2cKZO8Jm5u3LCwZamk62CiJzk2DOxIvecvqxRVL1F4Wh5lPc5YMpN/9mDj8wCUk2DlnJ6UfBn1RbX/llV1W0UYvVFVbJH6wHvKMXOwtbNSRXaFQQffwd8c+j14IxGlOCMQDaM9pOWyVPgk0xL9vOXkzXiyeb4VdaM5bZh+UuwD49nnMebFcU/9AT7LS/MH1L2j7zdvTFHpUh0BgtSU3PgavHOqVgjRcsu7cWl5n2KwArCgaNiKclFz3snEjGvfgTNlEkur1B1Odx/l47CmIyIoXsKFN6apSX2jNO/oKoUvapwA4MraPI++oGTVMDQnLuBQAJ+XZQX92NRXo2qV+A4qbn5FFVbT+4tlnzB04AB1BSdMlEyvxfajpYxSuLukJcXQ5iaSl2+fPaQINmitznMfcS4P1YTQ0d1lZT24oNtvIwf/Ie1TbxzAdyzKtBQFRbMYudE4tndU8GXkxF0kCaevk6modDw1N08xfhwamGU9j94rKcPgO3CIljNmEtikl4rgIjLkToKg89QN1vP9Mxks/FeWd9qhdqoXQMJNeL/ffXsqh/G59Dt1XWK0hSeLoD2UqOn7jqk8G4tYMBYFhTL4fgC4v3yfWA+jJO15cbbxVAnviB9R+E03z/BPu3lx3D93T0qdAppPhD2ljDm28rimupUv96XlfXCmTFpCddGsYbjROHObk0Lmh5Tn+cH56tKXCbUAOHlaemGcpPF6ujkJrK83nPdSaeewMtT7llV1q/XVFJzOxZO28TJivKj0DBk9eKB8r5WQDF9R9dLnKVn9wYo91sVPbFBBpcxPusbQi7spiZWUAN0w/aRKktVGFScF6ijC33XPt6AUdPGYcHUguqQNAlL0gDReak0u4I2GcVdxm12cib4jFCReI+3JJTiSG1XFoNxoHM91lMGZdHmf54YnLEWa1lN6HRcUD9s5G7EIHjt4m4Ih5MaxYMZxzrOhtnDmMcADF/fifSOiY25OApKKkua+ffCWlDkjaNiq8k6zTwDAc9D+0o3wxsJKSZPzrLnOh05eo96XF7eSaZv6Z/D8WBSqlC8RaE/3VZuogUjIpEZ1ZPb35ANxB9/Zv4Q/w2xIOtJBuGgvFrGSpi3q13MRjrh4Y2GuG0OKqjeuCr/Js7I0fwBeLGKxtgHAvJJhdmxYXloAf7lvpRkkySztHHKzVTI+sVcBwHcP3a5+p5NW93YXmCmnc1jVBW88jB1dpYZ1Rkc3V9e0qfETPa4PlMx8RfTBKJ5fKDvAzp2vNO5QRoTIN2EnVK5JSE5RHmXzbJniRtX+peJaADAt5z3eXyt14T43L45o3jjP50gyk2XMjvYyWExeAG7Kek+dlywNPc3QMsYFIk5S1RYJ2/SiOztLeF9RxXU5HjcaRzI3ieOvXwFvJMKyg+aB73wtE1ZXt3NOhBv24GYnlMEl9AJSzt1onBX+jb31fF5X17Qp5XnEyHq4gB8xkUkvFuEK9ZdFRuDFVC0TNxrnu5zutnTRTzcaR8vAdC6+ygatSH7f2NxonUlvPMznlCjJAWX4+yGjE6TbD15CGA+aGtjNSWDD3H3Y0VN6/r1zIbTfGgf/Ie1Tbxw4CQd1006x111esCRgvVHFXLC8shsbyg5iZ2cJPlvXhpzcCXgxgXENYF+XFfQrCEjcKD+ysWdIeyckNtqZMsnCRZa75+fHUpPvZLTAmTrJFYSfHSzBz1pL1fc0dIYVAlH0xM2NM+8yoIv9iH5LuJSMEnDCljZeHMdPFS6xCL5atRPwHFaK6Xk/7LrVCnnKtrG33oxNUl+OisJyrmKmYCjJaJgFH0MsMpNK2dDjpf49M1DBxl/YVZdR3A9hQ8M+NlC8WARPNc81SqvAAhMPNO8dHcFwM5LwRsNYVtFjRSuWVXbzd8lrSfkcXixieevJM7Ojo0y9U1RRtuApuXGjHBDLhQiJP9q10DIe1lS34snm+fx7SjT8zsElqRG0pMFGkxHH7Dq6oJ5JgHeQmR1n4XpoYBbjuvniCawvJXOygSGhPdLDTzzlmq53aUVvCoadL0g9n/9waC6CjT/vO5wYLZ0BvIdEFWJS/Ol9m1oa1D6PK88iVRxeXdMGR1cgP3h8uqVUk7JEbf/xGSkezr3HZsLNi6cUvHKmKmPQFANMjfwEoS2AgoZNv+ZdVTMlqjyya4o6lLI3rqI1VjX0nASWVvRa7/BGIsxMxFEx8W5fexxpDwLGI31XcZvFbgaAiykCikmFYG8UZZJzFDQ6ZBXap/uqTRSKmlZ6yLO+tqZZ4bj12AEASQf7e02yOjyVRyWN8aXlfXCjcVwUGcM2nTth1RgReWjeWBhLy/sAAHX5KhpTc8tphjEFmbd4XdNAOIiO2c1OsKOF1ndrexX3n/rQe+wGM9/6vN8/d4/in9ee5m8e+P200XBqbpZ61+LyfjaqaO75M6IuD8FE9/bl81j9sxl4qmUujynseiwnY+eyOJLwzEAFvtupo6Viv1DkUzIz+WcyMOeGN9F94kbAB84kslWCdKaSq3TmUvoq1pHr0IjIlvy93Fckv/JC4+yAS/d8fg/VRbho0uQP6M9tba1W7wz5xoiVtVh0e6pFySeqLm+9z/WBsM/3RdDBQeOSEFaSr5SD4UbjJjIbVQX25B0SzI+iu3VtcSsWl/dbkbNZN76FxhknzD3iqIjH44dvhZXcfwG238KK/mPap984mDKJlpM3Ax5MNWEdAnfz4vA/yMTySpUE+1x7ORcx2n60FPF4CGtqjuBnbaXGA0+byoFKQgVgQV2CXm0NqZDVLAFwVVk3GldhV/IeiERi/2yGwUqK5kaVV+COwk5m56kvf5EpM4mP2Y3GFabacyxsNHmZGdbg214MOCpxmwypFQWpitrqmjZLgLvROL7RrhK/3pnMSylcpD7kc7jSqmA5Zt7tRuOM+4XrY1WlvtBIgdGRiQfnPw8vpoueaWWIlBua16ByRpfzppYGPN50KwjGEzRMLG8MzQlFFfLiFuXqjo4ycwmNRDivwxsN21ERva7EUuXFIlhX2ySKFYl3joeRomTrtry6C/AdFTnSc/xnFbsN5GY0zMqnG41bylpQuZbeNS8WwWgyU+27pKu8pL7ykNN33WgcE2MRzklB3L4Q+ZKzvJgmesb7UzSi95Pnam1xq8KVxyJmrnW//aRKIvxiw89VQcLAxSUvQZnTIA1KbzQMR7C/pCiHdP60Z3Frq/KO/1NzDZypk1ioyQ3IG0drLxsnEsciaj5FAjY33QfyrpOSno71pGH6SZ5H+f0Tb1xuYCiegy39lVhTd4S9wdZcx5RnVcIKuEKwHvP6kmZrTZ0M40xgIy83zrInGNnZ2NzI55Q8/nS+dwwWWfKM3+8I5VrkBKjfmfUnTzjJk6TvWgw79EySfdJYZdk3avqlCA3U2O+sOWLki25LZg8if8brqjDiaBgtR6cDAFqGp6k6CBredF6nkFb+yYgi4oM7CjutKLHafxqW5SgsO8vPiRAQ8nmP/LDpNvM+T0UjEPIV7IUM7AB8zs1TUTKqN0DOj2AF7LU1zRakZ339QbS+dJPKt9Prs6yyG1vbqkDF3Zy3MyHzkb5QdgCPzP+p2usB+m3pIf9MbReOvnK1wuQ76r6FB4biySJ/9O5Vhd0WxIsrzOuoh8yzS+eJh+srb7t45vkiKivn9KjnToYUvFSMgdYWANeYkdF5AAyx8uIhlTdRpCrES+cFko6i8U1DhWuce/QDh99BuWxsZMgovzaoyYC/ffaQNWf3lh7GU0cabCZCBzj22pXY3zebz9ya2iNKZ3GAC75Csu98sj+/bb+wfeqNA8q0d/PiillHeE69kQicSyZwQ+YHab8bn1CKFlvqWvEkZZEFg+vbyncswrh5KWxlvgBFEUzirfr56irFdLRyTg9818fKmlRvj/SKAwCSjjaAdMVV31EesZGIqqCba499dVU794MZTqi2gVaO/657PpZXdWF5ZTe2t1daMAtAsR2lUKFqZW5HexmWlvXxzy3vp4ZYuTkJk8PhOYAn+Nd9Y1Rta1XJb5RAvLhUsf58b//vGuU+L45lZT1wEqkHvnHGCROFoLUh75wsApYmSYsTwTW9HkOcRGI6eUSDiqybk7CiIvAcq+KyWnLBbqRzNLxzEeWFkn0TfX+uTdEPOlMnsbSsD3cVtzEbh0x6pdyKn/QaxhLLG629/7KSKvXXCXkKvpOZVIW+9Fwws1JM1c9YWK6U5LXFrZaXl5RxGidVq2VFnQxGUZiOExwdlWjHEC7KJYlFcF/DXo5qfP/w71jzIy/5pRW9rIyT4u/mJEyV2xxTlZvmnyAB9Cz/owwL4nd/wwssB/Yfn2EZPveWHlYVV8UFT7k1ck+tqT1i+qwVNP9MhjlHBGOSCZfaqDnUP4ujlVJpIjYUUgzvLmnhOhQcwRPwJx5zRtJAeGqa+V1PtijlnqA5ju7TtVd8xN5XALgh832GaBGEjeAm8GDOv2+iHkqZ0Uq+qM3BBoAvopRRBQELGpPEBuXFVE4V7+1zut7HeNhEA3zA1VSVFHVzc1RtEzZS9P4ijDpHsnSC6NDxa9lDy2fS9bG2vkkZIoXdbDRZzTfzPu5FVDJytoINkTMIAB5q3GX2CMtH9e+agpMK3uc5hjdfw84AdaftGCyCm61kDed5ufZeXjjzmFFMRbTOSiqmaI2e+1VVHUzr+mDFHnbo7GgvA3wHS8r64WYl4F85ofqtn/l33fNxevwyEIMV7zcByVwye5AjWl48ZMafp6Fm+i5aVHYUa+sMc9u2gTIrgsZJ3MKA3NxSl5Lrw5Hz7IQVXeDIojCUqL85IW0Q6Zw/mXDP0aVsO8pGkS8vFsEl4RH180gSbk4CW/orOULoRuO6erGj/ri+ooyFMFZIefUclRMlfka5bHA0fWrYZ0IBjvjrfnA+oY4KPdEzl9diWUG/ekZuHP6ky2u4urrdirhf6BWSf9sUK9E777yT8vP333//t3UOgk1WSHZzshQfcWeZEf6ab9gdd4FLFbzG/zADfoaIOfm2Z9S6YM/DEcyfFfzswe+mfFY+V+Mit7ZWs1IKD3B8x4IlkRBpKFZFsSJuUrHEQBgcCZOUdG/pYTx++FZj3KSr+qwhSey9zwoozxJjHajDkPYZ2kPtxF2Fv3agBLXgMm+YfhKHemazwkAVigFwMiD9e+WcHmzrrmBIj3qhg6qik2g/eovNvDARYq9yMDnVeBV91BSeVPhszee+trgVT7U2AAkHy2u6ONrATEe+oqx8ZqAC3rkI5pUNo+nENFZGVE0H3xojAFPdluaPCuCJfUKGi1xnAKi65WW0DkyzLiA3yyRFn29PwfWtPQAo3PvlGedUkp+A/Fhc5kkX1139AV5/5yJMv+ZdnHjjcu53Vs4kRt+OMqY1yPkvG9Uj4L1Da+I5iv5QJkoKnnBvJIJF5UcBAHu65qTA3Xg9qJaH8FwyP72AbNRNO4Xm7ln4nao+9pjxOpBxcDYDftgznOrn9Pl2wGfFGw3z72V/eG84PhaUDGN/72zrrPhJF07IMxCUdOcm0B+eM/pbVIW1iidmeIotJlAbhOYof6au8HsuYpLLCdpF8z8eNt5HwSq1rKKHlTj/www4F0/C/yjDSvYPykhr/0Hh+ptOTOPPS0M1RW7AjozIsxLKjcNPOryHCPe/vaPCMuY52dVzrGrRUm7BUY4Iriw+mhrR4j5oObho1jB29xYaBVwY1ta+FHURpIykc33V5Wfw1rtTzWeTJilbwkjSzQOgPPN/1z3f4vLn+dPVwtWCqXsDIrrGip4DNphT9lugUnq6Ghg09uB3AeWMoXso2HdvJIL75r2Axw7dZuYr4Sref30vsMyn9Qty9p8ThlbgvuJ1D8gS2hM8hkBdBupfzS2n0frSTWY+fQeIeJwbISs389zo+h4AUmQx1xMI7D3rnAdkuLzXrLyjnIRVSV7K3Dk3vInrcj7Crs5iwPWxsHiIK1DLOVpR0Gs5CX/Rvpe/T7ybxGt/8hcXXE0A0vFu/tq3PlGdg1Nf+/IFN6ZP2lzXxVtvvYUrrrjC+vkbb7yBadOmYWxs7OM/89fVuQu1eaMR3HDVBwqXm20KIy0sHAY8wJtiBAYlgrJ3W3jaKm5+hS/NB8r38sGlzzD+VjdSmigczLR+gPHABr1NAOoKTygvkVZIHK3cBRVGem/LyZvRcvJmGwNNSdYiofelscusPqfFM5KX9lzEgoZIjzB7eXQxFRJ6XC064doeeM9hj6tViEwL9EN9s4yyQv3LTnBkR3qltrVVsaAmFhQ4Ollb72SKuriZSfbAyTmT8AU3J4HWgWlKQOvKkE8daQB8YGlVr6Km1GPncTkmnO3mxXGo3ySju7naA+34uKfWxqly4iStu45ySMUdQMo6A8AlGaOcrOlmJ1Ty7EQohUmFYEy0v5aU9QNh32JO2Xtspuk/XVLCq0fPevUlZRAcO3WV5ZUfH83gfYUMT89NgKVD92HPi7MZs82KELFzZCZtz7Gnqld7MaVQ7emegz19BXbejaMjGHSp+bpyKeGbfXFRU3LraBgtJ2+G7/qcgExedtlfXxvi5MGDC/YOm+ifw8XWFsw4zv1hbHVOIsUw4DVPuAzFsCID1AeRiyGfSW1RyaAyDEaFYQAow2Bc7d9d7cX885IbX4Obk8DQ0HUmX0jLBSRcqxKqqjysPKjLK7r5bBH9rjcaZppn56JJI+dkDlZM5HTFIlil628c0vh/LxbBqqoOC6PP8kd7tOcVv8jvI0+1ivw48LXsWFPRxnJ4e1cFzyftG8odccgIBazkfYJNbDpSz9GD8xoGOkrojYZV0b2EUbJJOSZ4qPmSY8lIwqv7GYr9iw2Dc4ZyVCppNYUn2Vss6+rQ3FLOzLa2KhtySkshcohozSUTl5udgKOjKTQWWssFM44bb7io7ZBi0DmG0Ut9wHSjIPcNqwYJnYENZQfh5iqKT1Z6J0IqKZgMAF1RmyMbaQwDN89EfBeXDZhfalm/puaIraRTxIciv6NhniMvHuI95sVUwrD/UYaBKNUcgTMe4r5eGTkLL6Yq2D9QvtckLuv7CoB1p27rqLTmWOZmGaeM7v4ZQ1AiyUzk/D8zUMHnZ0PDPn5u//D1yjDQjHP7j88QVNNKJv5ZxW5sb6/k6PrS/IG0+/6Owk7ed8sruxU88gJH4Pwm5xz84Ac/wA9+8AM4joMf/ehH/P8f/OAH+N73vocvfOELmD179i9/UJr2qTcO3Jw4XnnrEuwcKrRoRvcfn6GE56TLWFBq5B3hf0MpoCTUvnvo9hTP16bmBsuTRL/ncHB2gsuoS75zAJzkCPz/2fvzMLmu6lwYf8+pqp6qJdnGNp4nTa1Wz/OgmUamowg5+hQZIaMrR9eOY+OYzyHhckNCBhJCQmyICVFwdHEUCwVFV0EIRVjIGnueJ3W3NVjGNmDAg4aunqrqnO+Pvdfaa58qGeyQ308x7OfRI6m76pw9rr2Gd70LaH/xDoVJpd/NmmaKVeqPNx7WPMn2pSwTlYihgxKnDr2Qp9hSZCNlnS6QGYZSsjFvWHm8Ekbxobmjv3d3VJrkO50ETMoT/ZEKuRuNY3VFLzbXNPPFK/F/UlmT82QpndJYkbkLgqJ0d3cFjz0YEmU+d/3OLbUnbAMiR9HH3pX9U+xqMwVwuAKvENqNecO210cU9RpLZioO8stEi6j6Ks2z9C7dV6S42zP0nmRvMEXRZ04bBi7hGaU6EJQAmOEq4ywzZPpYO/tcIHdGJXvfk99vMMswSpRVtEf2P0cpmV5MJcdLhRAQIX/PURhvzX7BuS1k3JBi5Ph4pk1VIiW8PpKOvX6Or7yGel0bKwe4OCAALCsZwZbaE2a/OGbfUmG5dQW9Zt9LPPuMuGUIkGd5df4g192gi31NZQ8O9ygWkQfqjSJEsBVvPGwKIUbjCgqlmV/caNyCqEmvI8OvBBkA7dND/Tb7TX3haVXYDUKJctXnvYkwek/frt5PUSnR/xSPvaiWvberFHfnjTCUwZsOqT68nmkMklwDp2EDSBrijs+1Xqi/gC7k6AqKSM/Atpykg+Yzs5WB65hxr6/ugBuN81n45lA5Y8uV/BCySTg1LNhYkOHMd/BQ3VE7siscNQRJI0OysWwQ/sUMle9Dv6d+03sowTgat5R2ymGTxfGUHAF/TxJItA+pKAtHLMno0fNK73ejccVyJSCTALC2uovXpTFvmA0ZepY3HjYsUWK8btTQm5pfwDJE5XmxChV6JhF9a+8SNmCoudE4vtr0AetnXkwxj3nxEH6//CAIVns5Q+36ay9a/QWAg92FjL+fM/s16/eS5IOIR2StC3UOSRk3Crxz1TRHZXd2VsOZOa0U96SjEsGjcezrKGV2Kh5LjlDGAb5TgVTHIeXquTkJLs76PxafsOYrHSZeRbvVv7koI8B7ialVYxFDVR5VML+/6V4J+FB5WoBFVEDP9sYV5I3yYnJcVXPnys85eJd/3gPtySefxJNPPgnf97F161b+/5NPPomtW7difHwcW7dufVfPfs8bB954xKpPIC8eI9wCFKXROF8EsoJgsGaC9EitqephRX1tVRcnLZL30hsPY0zzYrvRuCW8fB32pES0bw6VW5cVJw5T/3IS+J2lSihuqm3Ggrk/sPsVM4mx6hfqQo64AkYAGPhFNK4SfqnarXi3H7YZIFYUj+Caq2NMV0mJw1ZY3TEJjjw/5SqZbP9IAbM4eJMqj2FNZc9lcY1WtCKqWWz0/5cVj1oeMOkJtRQg8ewD3UVWUbltrYuNN1r/zM/wVM4F7QGYC7ShWF243nQI+3uL7D3hmDXY2VmNLxxbZUePYF+AbnYC+zuL4UbjKM0/p36Wq7C/cHxMBwrJwVFRAG8ybO09YkBanT8INyeBJXPPwM2NI8dVkTAJNWk9e6eJuoj2reHi1NoUWtEMGm10kdBYKQmQYA4N80dNtEgrFOtrNOOPNiBWFIxaz2Nv3kRYVboWFzh9xs1R9R1WLRgCfKTU5zh+eg5ej+da+wVQZ1AxEGncsoxs6Wf7FzLU3Oqxbm+rY6pMGb0CNNe8jgw+3bZEVTcWfXVzEirXR3jHoVl/aD+vLu/j79B8PtNerz6jk7Qla5ZsbjSO1rN34ommlWqZyOtInyWvua7NoQw5I+O8mEq0ZCXEN8aSm6PqnjCzDiUkXztl5OZ4WMErhBOEalOkKHg+OMeHiztBJ9KK80LG97b+OqwqHeDnkHOFzoJ/MQP+xQzDYy90KGlw07tTIjRQUMytrcusOV1d3mfRAUuc+YGeQvhhD5luAiFdDZjgO/VzzhojTEcxyOAjqmjCzZNRTMY5KXtsMBIExjGGTn3RKWaecnNMrQYApvJ8VPPlZyWsu4JoPevnnE2pm2HtJzoHoiglPAcOGS0U7coxxp90JMC363TQfMvE6vXVHSmsfHfc+AYA4MfxWSkQXMA4W7yJMN44n2vlDAFAQ9lJNkTOvHgDvEuqfogTd1XdHICdXtb9TvKXotD67uJibZNhE2WDUai5hfxUGTNuUyrTXHvxELa312FjraHP3j1UynvrUJ8qqvnPTYv5OfcWdAOuz/uH/payQJKBWAnJ+gwuLh1VdWdiisJ77cI+VVW5ttk2hCk6RHtD78udrTXY2V5jF8W7Utu7iRq8R4yDc+fO4dy5c1i6dCn6+/v5/+fOncMLL7yA5557DtXV1T/7QWnae944IKvXi0VMMpPjs4IBgBUY/2IGsxTs1dy+Upi62QmL/UUeyr3dpSq5LFsJ6MN9+cpzk6uYMGSYfu3CPoZ2AGD6MTcrYQwVYcBsqG4zIXCtBG/tXQK4Pp4dqMILr76fDYDa2ef4smFPYUYSm2qbWZmyipqQEkcYWs03fmA038B/YkZIH+7Lx5tvRYGEy3AVDgOTghyMMlyKsJLFY46q8a4t7+ZckBRFSL9fJnoeGM1n5elonyrUVn3XS5Yitbm2yQg9HfqV82cpFNq4obkGACQcrCvoxbdbNb5TGJeHT81TF3dG0sAWLkWsCrPyvTJ6RFV2qZEH0bsUQf/3b7HZbAKeo3vy+wHfUfzpScfAvsbD2DlYgU8v/Q5Dl4gPnC/IQCNl1Hjt1c82FbUbT7eeK1LUALX+uTMmbQMnGseONkXVR5dYSCe5eTHFyASYSs672qvgJB1ckxHj+XdEwR6CAPDz0ygz+0cKAN8xyfTQ4fAxtc/uLei2lQGm9jM3gjQI3WgcfsjH4b78FAWbFXXhLZbNzU7gQG+hwXIDDEsgg8ZPuqoGxqTxLO/rKmXvOaBqFrjZCQW/EImpKdE0iJ/pPfI7yw7xz6marFLEIXIJYCsvGUkTIdWc7RZj1kTYor60xsxKIriP+7uLmaM+2Bgq55uoCBXzIqXZv5jBfZNc9VakUFcQ5ygegHUVXSnrQmxElLciZYMXiygDOYAP39dVqgwogp5Ar4nw+O8eKkUyoZm89Fyd6M+zHRNi7x7UdRCuDsdYK+GIX64qGmatsWsidQj7KL3jFUU0IZLyaY8Gma+8CdthwJHIqRCaz8y2ogcA2BC2oLCkLEfjWFk2aB5OhjvNeWWXFWmn/gT7RJEdANjVVoXrMxQsh2TlSz96H4DLV/rlvIbsBJIJFw3zR1l2ASofieV8VoL3OBlNAKzI3qbqFhsKR8n8+hmkDLtZCVPHRhiM3niYo5oPlog7RkQDAV13Rjva1EMc7GirteQPoIwxht7qs+PmJFRegecwzTb9LefGIgPRBfQUy506y81nZuOQ3iv7e4vYccMkKrIfYxH4vsN5G240joeXPA83quo7WDWUrsT2Sxw5oHbkyBFcffXVv9BnvueNgzX5A0bg6ubmKP5vK3wf8uHMnMbujkoFj0gYgUze39X5g0yFJhVnEmBPdDcohUWHSOmSomJTfLCppHtM4eO98TAbJQAJG/Is+djZWsNl4zl0LULThBUljyI9Q4a3pVBgxQRQRa60MfJHlft5zPcXtyrhPBUyHlBBp0ZhaIY4iUbPXlPRy14166IX4ek9nRVGySYlYNIorQAMDpxfoBS3FSXDgOOrJDJtANAznISo9eCB52pTUbsVnvfGw6oKdU7CGBUhXymxGi7jZiZN2BjKE7Vk7hnA9bGhUkFBqCASedFpj3gxXbRoTBl0lqKT1EmDEZ/rHNCekPv1vqIO7OkpZ4iAG9UVs0WS+Be6dJg7DfMLvfOR0mPwJsKqmJyMHmjGjmc6lOeaqDcBbYzRugmB6o0rilsJV6FL7LnRBawI08Uvx+OHPew5WaL2/GRYKXuinoDEO1MLKkRuNI7dnRV4eNHz8C9mqAtVf++bQ+WWMkhJlStLh8x5DRRD5LVAwKMLqNC/gAnQZxpKTzJGur7A5HUQTh0hnw0YPztpWK5mBDyMUcPd/8rkNQAE/C0Ajm0sG7Qij148xPvKjcbN2IniVdOjEgMY95+iaTLfR5xDNzuhoCPxUMpaWOtCMtSHSixN83vyYEo2L8DuD8MRBQ5bzhFFK4PV4CV8aUtxi4HZTYSV8igw7N5EWDErjRsmK8uInGHvCVoT6juzjWUmsbmuiT/HEKtsE1FYMe8U9+upnuXsNPGmQvyOp1uXmAgseZpjClYIH+h96VY9OYJyWSrOk4aeFwm7Yi9DVzKTTHvMsmc8jCPdC7GiZNgUtxTz4I2HcbCnUFdtBkMMN9a0wn8rA3tOlqD0jlfshabP0VzSneE7uDtvBPXFp7jezXOjC3gct9+iCqN5lyJM13tfkYKS3Z03YoxdAAcHFnJ0i+aAnlM7+xwaywdSIt/b+ut4Pre31jMjnjLMTV+pPd20lH/HidHi+nkrngM3R1cpd3ze2yoypj7zRNNKJVNnGN2C9wfAOUXrSnUkxfVT0Aw0fxtrWllpv+w5jDvsTEhxfAFA0sEnyg7zu2mfeRNhPLb4oMn10wYWAOuu2t9TnP69V0r7lXGAZDKJbdu24aMf/SgaGhqwYsUK68+7ae95tqJbvvRnCF8bsrxL1iHLTALTLsMxJNOC4wJJKpQmDq1/MUMlMIZVeBguLE/KqgVDyhOlBdmKeacQDU/h223lqYxDAu8rBSr9/PfLD+JvulfCmwhjWdGoYSTSyVnVd72E1v65piKiaws7qUBS/72JMNaU92JvVykrkMEkSlLGVpYPpjDOuJlJbCjswo7WWjDzxYxUBiMWwKJPFsONEGZb6o4j7odSPBvKCNJbNMC8Iz9DChPTu8rfT4fUGucaI8fiZ9dMHwyrkdz8aRgdSFnYXNWM7QPVZj84ZjxyDVbMO4VDffl2NEevA42JWFEeKT2GFyeuU4blTzOB66asdQTA8IMgG0VwPlYtGOJcm6CnNDgPaxf2qYRv+RzBvEKfOfhyHsYuZdnr5+m/6ZIjli3feP8ke5PF0KTHnc4rL8cS/D39/6HS48x+ctlnTISxrqKLvWesPIhaB8TCI+eKjAq5btToPf7FDAOhgoKQbG+tx+baJjzTXg83O8FsRdRqZ59Dc/+8lCKHxCYi37GluAVPtyy14Aty3d53zRh++upVhmDAc7CxthVnYtfhrpzXsbO9BvVFp9B69k5bxoR9pjOVe1aueWPeMPYPFgLTLq695byKGMKcSSvfhhQp0fe1C/uwu6vCZr+R+1j+W8gcZnTR8oTk8t15IzjQU2idR9r/TtKx604EWWDIOEnaZ9C/kAFn1jSKb38VvaN3pJ4T8qYGc4skXEXv/2DNB5Ugap7l5iRsphy512IRrCgZxuGBBWgoHlYRSn027ivqwPaOupQEXX4PNc3uw7JaFAFszBtmQz94jpglaCrEuUGAgrNkh1SUh+8lwFLQ5doF1zF4JuUZk3Il3blNd+6XzT2NG7MucK0Yli+S3S7gYQc0U5+uayP3Ysq7ArI0ZQ8JVqp0/eb8O89JK7MAxTzX+eLtvD8klNONxpnVLvi+dLKH1vly8iT4Hdqr1v3r+thU08L1ktwsQ9ryQP0x/NPxZfAjF/Hyg39+xTH7kI531x/+JULvkK0oOTmJF//ivcNW9PGPfxzPPPMMVq1ahRtvvBGOYyMPnnzyyXf8zPd85AAAe78pIdeNxrGxplVZ88QvPB5mOAYdKt8DK4pURt27pBN/XZjwf9Jh74sXi3BFThKgh/rzsW+40KqKTIdzS+0JCxNP1TgJg/o33QpX7GYncLRPYKy1ctX+4h3sHSSP5OPlBmZAOG7LUvYc7O0sM5e5UJJkc3PjONhdaBkPW6qa4F2KKCgJCaOQbwQjvSIWwZa64/jsim/ZRpmjhLWaVHC4/ev9tcwNL0P71F8ywnhtJJe1rwT5zjYD1aL3eeNhrCw8KeBTjiVwKSGQvbrRuEmejUUsw8ryXGclOHfCmTmN9bUdrNRIRdK7FMEtWW+xsuzFIpxER9CjDYVd/LskHI44sWEwpuAnXiyiqhiTYZCG1Ua2fV0K29pQbMLC7DknXHVMwQH2nCxhD6WfdE3/xL7Zc7IEY5eyzDxp49idEWfPM4XYKcrhTYRVFVDxLMKG+xczrETydNAE8hw2lJ7kKBu/H2D2E0tBkXsHADwHmW7C5H7oAkTyOazgS+92QsEpVlf08md5ffU7pGHgRuOKmCAaV3tDr6nvg4v0AUDzwLyUS9+LRRD3Q9hUqxiSHl10CBsKuxR/vX4fef2kEvDTH88ykA/fARxgR0st2odmI+4ruXdt5hhXv2aFgTyRRP0p5ormZH9nMVdUPz/8PngTYcNS45u9RHtldUWvpQzv7qjEJxd911pf9lrGInig9ji8WMQqXGVFc7VTgBwiz40uMEYQNb3Xfr26x5Zf+rxQYrUbNcX51hX08rMpObf/+7eYr1Jkgao3azlJnm1EPNtJoZ0Csl9uNK4Mf2Kf0c8lmJJ/MSMFZnm4X9FPHupVcBnq77MDVSl3DMFbZXSF55DILDyj6B8YzWeP/KoFhuXH0QxiXiyiGd4MfOjQC3nYq6u3W+/ShkewD2o9wKQIMrcLAGP3nWlXyZqpENc5uCe/36qjQntyTWUP9+dwX76pRxEVlYA9h2UcR7FoLWO6UKYPbKxqgzceZvkLGJkezHmTfZBnRjZyFN5b0M13pJLpqf7WJXPP4L6iDnS+eDsAlSdmWJrMHO7tLON+yQJ7G6rbeGyrFgyx7PdiEbT0zGdoKAAbQusZw8CNxtkw4PnzHWxvq4Pz40xsrmo2Y8tVkKKUfIsrsP0ysxVR+9d//Vfs2rUL3/zmN/GlL33JSkx+N4YB8EtgHLg5cT5Eh0/NSwnNUdEwVgIdnSBL4Vo9Q6QEbKzTOQeykmc0rmgdhceZfufFIjbXdm7c8C7nxvH1/lrULjzDwpIVQ9cHIp6iUAU4lyBFcQawuOgFy9vxRHeDSUCLxlG78Iy6KEhQU8KwDimT8PBiEcYt8qWaK/CUro9tzUtUbQj9LjKCmIkFSpFzo2psf965ylLo3Nw4xr0Mo2ilgbeQksPf0Z/bUnec30G0jgQzaCgetpII/QsZ/L1DL+QBroZ4+BpeQwwWLhAaM8fAGw+jvsQYkeqHMLAfwUgiL75dHZXmMhEXjTtDQWtYGId8TqK7O29EKXMdNbxHctxpsw70DFHc7Kme5SaSopPFH6g7BryRyf2Hq2BKK8sG4cRdHD41zzwraABG43h4scqFKF3wEuD4SpmdsCv6kiEV/r4yDh4tO6IuHuG5g+uz0eZNhRR0aso1zBgRoTmSTRPyBaWp8b5642F4UyHsbKvBHTe+gcOn5im2Gwc2tlq821ziqQbTzsEK7GqrUhR++pKE4zMTkUNc8BlJBdnSxvbm2iZVxVScOza6YxFORmbFifag9tiSA2JNWS9qC0/znNOzNtU2c07LRDID21vrsWzuafx971JWhPyLGSlGAY3djSic+LKSETxQd0y9I6I85K9P58IbV0nVBOlwo3EgIrDtnqOMPMeGct2T32+iO+NhJK5R/yaWGmKYIm8noHJBVpQNW/CwJ7ob1F6YDGNluSngtrGmFU+3LoEbjWNHe401h15MQ8Eudzs5JnmUZO7+kQJ4k2FU3vV9nlc3GjfK1niYZcKu9iou0uZNGhz5pxb9hzIoyvuMnHbM3jrRn4e5N/8EzmSIYTpuNI4NNW2WM4gNplyVh8PzLMZjRZApn0XIQcrfuLegW8kJMsKjccD1OQFYwlVlAvbahX1WboY3qRL9V+cPYl9PCc+TH9SSRJGwFfNOGTafnIQt81wf21oXmzHQmmnCjxXzTrEcYvlP9K8ZnoEG6f27p6PCyARNcOFNhHWVXh+5MybZ8JDsfcTIdPjUvJQ6InJ/uLmqOr2TcPFUi2BOIocOGWphz3yX1oueMUPA+YRz4JtD5YDvwH9L0JHCjpYfHczD9q5aXusdHcaRtbh0lBnqWEYEGKp2dlaz/kCQaDp/fpZhlFPRIrme+m+5zJRjNxUCPJVb479/Cs+012NTUbvFnuhG41d+zsGvGjIyMjBnzpyf/cF30N7zsCIqgva2oUtddOlQf74JCaaBYjBMQ4Q84fpYV9GF3T3lhjtcQIUsiErgd25U0TamhdL4wKqKfuzvLrY97zAeC6bRE+FQWbxMwqQopDhv/g9x6syNHP5cU2kKfQEmlEoh6bUV3djTpRKkGspOsqIZhAfAhQnZy0JAFL6/mAGfhH7Ay5su6XRTUTu2D1TDGw/jobqjeGXyGjacrJBywMNCLW2YWM6TXEMZnpYwkqmQYpkhOIK+7N+azkHn0Gwz1qRjoBDyuVCeuY8tasL2trq040w3Fyn9TlNkaWHeKzg5ojDJbwepCb6DfybedTmIAM817dkg5AZIgW5sqm1OGasM27s5CXyi7DCeaFmpsLKymFqa9WosG1Q5DAG4QBCSwhAOUfxKwq+4LxMqx+T3lv8HvnjiQ9YziL6Uz0CgIFS6Ob2/uBVxP4Sk7xoGHd2osBq/YyKMLTUnLGaX2tnnOE/Imw7ZicLaibChqt2Cy5EcAqA8r5GkvTaXgwkKSBIVgVxd0csyzSoeFXxGYC69mKJ0fXM6xxQ50314tOwInupZbhc19MSZErVQJKxpQ3UbM7XJObOU0xlGNktIESnCKXsXMDC3QGFC/2IGfmvxMWxrXWzLawf4zOJ9+NzRD7ORZ51TKhqnc46+OVSe8m4JB0vpV5ozt7ayC3u6yy8LjaEcFkpoDn6X8iOCv4Prg+F+SZWndXhwgQU/sr4joKkpdxmUJz8ET90JAQiOhJUBKu9L0qYG10u+kwzR1fmD2KuJO9LBYS8LpZS/A1LkZxA6lwI5A1LWKnh++LM+oBhyFJRtbWUXFxejvj1UfwRbW5alh6QKGBcXIhT/tj6r966cZzc7oeZJG76l+eesyBd/X0D05PNS9nNg7j61+D/wheOrjNNwcgKvPvbZKw6CQzre7E+/O1jR2c+/d2BFf/u3f4sXX3wRX/nKV1IgRe+2vecjB95k2NDHQYTe6G8tdG/JeiuFApOfob3q+0cK2FNBzc1OKFxtpmF6kJRvbk6CEyHZKw5zYLe31VnvWjb3NHuZOYoA20PkjYct4Sq99jJedqw73xJ8WxYdx5kfXmcl++4bLuSkSQ6jA+wB+ul0rtolro9oeIrp7iQ8QDEuqHesK+i1Qqvs6Z85bYWauXCa7gdDjaAqVT7Tsojfs7VlGaa8QMjeV94xhFSUgzwnG2taDXxFzwt5muQ8OUnDsc4F6jxH0aPSXMZdcJEbDd062FeAqzPGLX56Lm5zySiMAABfeZaeHahiTzP/Eew35DVKZzxQXwFwFMqNxjHyyg3McgWAoS+bitotVg25BtTkGQgyS7lRwykPKGWA+5UI9ENfsJLubntrfcozuR8ajvDEibvZE6p+AU5qt85WToITveH4FtuTNVc+GApGNR4AZTS52QmGUTTMH4WbncBv1rXjiyc+hDV6zrzJMB6qP2IZ6dZZ0J8hSKDs57amJXh2oMoyDIgJyZmpWFO8hIFpScPAGw/jxqwLJkKTEHuS9p3v4NrImMWGxYaBMIiDtTruzhthZ8HGmlaOdsjow4bqNpOTEo1z4qKlNGZ4JuIZcCPtGy5E85nZWDHvlNrzGmr05RMr+Wzfk9/P8sCLRThi4Y1F8GBJEzbUtKkkUcdnJRuuiAgJaAxDIshg09ELP2LYtXhuYxFLDtA+kYa7H/Hw9f5aNpI5UT87gevCF62IXWP5gGEtC3vsbSZGMKmASTgY/c6iMybZKc7Ht4aLTXGvskE0lg+YsRBMRN8xDMPSSf+y5oCEaD2++Dm1jzKTcKaVQXa4L185j97I5Hm5J7+fo5Ub61otWUZOgZVlg4DjIwRP9TUnwTKH1gmAdf9Q4Tc5bjcaZwIC8wswPGdvdyksel0xt0EYFiBkDOWu1Z4A5z3peWCoGrFyeQqyu2TuGTau0hkBD9Uf4fvOglZp2eWHPcDXieuOukO21J6AG41ja9NyNXfTIb4PGGaVsJU3LxZR9ZZidsFRaRh4sQj3fV1BL/a2lwGOj/XVHeg9dbtVgNC7pOvIiKJrhpzDseBbFuRY3zNfOL7K/Myz5/1KbL+ssKK1a9fyn+bmZuzYsQOzZ8/G6tWrrd+tXbv2XT3/PR85uOXv/hRuNBOIuylJqCQcG/OGsb+niJOSr80YA6Aw1pRARK1h/ign6K6v6sSu9iojTHXxsP/oKLGS4+h9q8v7zMWuPfPrqzqZliyY8ORfyEjB/ElvDOH8L3d4f7/8IL5w4tdSvb7kFUwTHQGEx8mzvTwcBfAdOAFYFXv19Lg44VEmx5F3PZiQdrl+iIQ6/lnCBYhBSXhCAJ34273Q7gdgkrYGUuE1MqLBY9e/9y5FsLGuFTs6atBYOogD3UWoLTyN9hfvYE9PSgQlXbIzbC8YAHx++b/hDzvuSbtuadcDAeWHvJd6/LwvpWcqMD/yWXB9ONMu17HwxsNoKBnGod6FcLKScEI6vB724GYmsa6gF6+MX63GHphbVm71+pbf+TI6R+6yqmzTfMoKxunGKMcp97f0ZG+saWX6VC8WweLiUZwYmq8iB8HIUDDC4PhYXd6HiJPEns4KrCgZVqxbMjlcRFUay9S6w/U5QsT7I+iBFB5QQMmKg30FcDI8ns/LOR+CnlE5P8vmnsbhgQWW157WEGGfoRlWhOkysoGVBDqfgT7TZ6R8CEYV7i9uxdnx63C0b4E1ntI7XkH3ybtS5p2TMEVU8+0a5y/paJ1FqkBRvqD3fTyMdZVdmPLC8HyXk28BBbkK9pXn0fU5MgHopPCucrXWlFuWZRJ6AaRGlqRsE8+sLzytEsHTeKrps+urOxTvvR7bitLh1GJkNCekMNMciORmwI5CybZs7mlmlgt63GUEun7OWTSfmZ3iMf+jyv34885VuDtvBNdlXMILY++37kQrMsUPNu9hQoY0v7vm6hhef/Uq6/tWxGo8zAmzNA+rygawv6fIcrTRHqPxyIgXRVbprHM3NFHAqgVDqi6Qb0eVrAR3nawdJB/htQn7WFPSh33DhdhU1M75aG40bpLBAwno9Hspuy8X/bXeF4uwHkDfoWcAsMYs7+aHSo8rFiKK8viwIwv6TJHe8fji5/ClnhXwxiev6ITkOf/rLxHKfIeRg6lJnPmr/96Rg/vvv//n/uzXv/71d/z8975x8OSfIXxdgK1IKqyApcxRo8+sK+g1BkAaWIr8/KeX7McXuu7GluIW/NOJZXBmqurGlw35kpCXDD6C6YXD4EK4He5fkKKA8jPHIurSJ6VMK2PyEiXFTVEPahxsAKIDKA/UrPA4V/iUbcGtr2HklRt4HBuq21Rlxah9kdP8kFCiPm2qbzbCXirjl4G4eDFF+/kbNZ3Y01/GypC1lgFl8O0UsXVVnVxZlyILe3rKmTliXVUn9pwsseaDmJBWLRjClBfGW9M56D53m2LLaV5hKaBWPy5FgIiPxpJBq2gXABtuMR4Iy2ujKCd3CuNjmdbFCRjIWNAAkIodGTRpw8oBWJE119I4COyN0CtZiL8vYSuPYxE8vPh5fLXpA+Zdl4EnyP2wrqAXuzor8XDdYXz1+AcsaFF90SlckxHDvp6Syxq/6wp6Lb5vyRIG38Fjiw/iyydW6skGx0nf7gIOMpZ5sQiWlYzwz+7OG1EwJ4IqeKoq7beGi9WYHaO80npddVUMb/5kJvPIAzAGVdgwzDSWDeJAT6HtRLic4azX7ZqrY3j9R7NSDTG9XmsX9qmCbDmqhsJXmz6g5ifsK4fJZebCWvu3UVrYUJTQh0sRNFYOpOx36reiRDY/k/0luETas0tFwujMaOWY2Yoc3zJ0pBFlGZjSYAwYVARje7z8EE7Gbja0vFmJFEOqfs5ZnOjPw5a644g4SXytbxHWFfTizekoDvUuNGNLB4MJng8gRX4xm42A3XG/L0WwrqaT19Yasz5r/sUM+BEPbrZizJM5d240bqCbAeP0kdJjKVWO6dkpfczwsL60yzJwLEeLb9+vQUY5gsWlgxP93Ipy0sHy8pOqBoxjn28vFuGzv766Q9VbkfA5LYMfqj+Cr/UtsuaHlfrLsBRZOoU0pJ1UB4j87Ip5pxSEWUPTaG+szh/E3o4yEFGHBXUTLHCW0RO4F4LRD/o3Occ21zYxvXRj3jDXFKHP3VvQzXc59/1KNw4+9S6Ngy/89zYO/qvbex5W9MFSBSkIwhUAmIucCh1ZIT31kd1DpSYGJQWP/hELk5wEc80/3bKUvTGSK5sKp1CSGl+8VAAqGrf65iREtMP1cfT0XPtn4v3s3dMK7qoFQ3Ao0XrMQFm6z92mGDOyE2wYyDHTPOwcrEgxDOhdCc+EQBvLB1RonWADgVyLx8sPWc9xZ8RVtVqoC+6xxQdN2FhEAIKeZGfmNPZ0VqBh4YjVl2DyqZuTYHaqYCOv856TJaDiT7xGvhGmRHlJ3/Emwnyh7estwaEX8tB97jZ442GlEOt+SygPF7PTuRgHuopSw8aSVz4ngY21rbwnHQ1FGR/L5HHRWn6i7LAxDHzgc8v22OPX7yA+8VULhuCTciIMEHovABNyB5h2c1V5P5gFw1HrkrhpmuecC1DlxpXSqZuq8AnA08XbpPESi/B+oMJo/3CsgZWfzTXNgK8qOe/rKrXmyBsPwz9vWKp2D5XiodLjDLnZP1IANxrnBH2ZhOvOiFsJmzwH4yoh2b+QAW8qhOOn5zCrGaA+f7RXKbmPlB5jhZdgNu6MOPZ0KmrF9bUCypVjEu3femMG04YumXvGfN8BnPEQK1vPjSrDf19XqXFcBKgUpXfWi0Xw5ltRbK5q5qRgbjpCo/a6msOvNq/gysSAog/m54q9SePm6JBQNu7OGzHwhRjBjYSBCwBhHwd6Ck0Ct0zQzzEwPPqzrqCXZc++4UILEuLFDINVY8UAw+q8iTAWF7zAY3NmToPYzKSCt766g4tXMjxJOIYeXvy8KgimmZTIGLgqNG6MG+LDl4bHWAQnBuajofQktjUvUYrleBi72qtw+NQ82yCXhbeItUrfvFw7gTy81MeogXFtqtfr64lE0Rlx5eAQ7EJEJgEH+FTFc4pEQ0NFDnUvtOqneJcibBg8uuiQJZeeampQ9WBEs5R1Uf3cjSTtglyOWYONNa14fMlz5hm6gnHKXoVm6dFQVp6PYIV40R4tO8J94jo4IjJt7WWdyE3yxppHvZ+2tizj55Hin+nGUw0DwcD0+GI1NpkHoNZNwaLWLuyDFw+l1AE6fGoeNlc3G3kfNUbx+poOO9rrCGID/TP/YgbP85qKXlWHBfY5ozmk1tyv9iStuReL4MBofoo8tAy38cvP/6/ae7+95yMHX+6qwZOjq20PkeTzdYwgWlk8xFUtEfHY0yc98t6lCB5bqjySLGgFV7vEO3vjYawoHuFQpuUhuhQxVJAB2A1gPGxubpwTOFO8gwGPDxDwKIukxnQwjhQPS8DLAxjPCl3YDSWagzsIl3EUX3LESWJbyxI4CUexUmSbMOXDi57HV49/gD1mNHfM+x3wTAEmMflt+64xuY7vMF0sJ6VOhFE4/xUMjtxmeXSCXsW1C/sso0DCySz8s+iffz4D/3PpUWzrr0tNGvZhlKZAYmtQCZOeuC11x/H1/toUL6XlmfKMoiI9SFIBbyg9yZ5Ca64EHOmxRd9T7EeBOfWTLvyEk5ogJ+AUjEkNQB0AtXeduItfq+5Tnje91524qxQWHc5OgTzRczWkg2B+RwfzOB+o8LYfYmDoDouJhaJsbk5C1d9or8HmmmZOaKdKvrT2gIFTEK+4hBGkiz7RvKUkWeq9v66yC7s7K+DoPBVn5rTZJxq+EEyMlC0YYZReX2rL5p5GZkhVZOYEwgyP6ZgZhkjnHrCiR2sX9mEimWHnMqXzggbkFO+14Gf0nD66+BB7muW5uhyXvZRbMpkfQMo5tL4XhIiJGiqX486XEAuZOCqfQSw0HP0MJN7zXOuEYG8qhC1VTYYxiJwhAsbljUXQWDGAA32FcLOU4vhy7Gok/BBOvnxj6lh021jTyvkr6Wos0LMthZXuEg3FQsjHlmqV+C6hXJeLgtHee7soFSDkZgDaRYn0/Fkt9+4vbsWlZJZtPMDAl2674U289Mp1wJRxeKWrjyDfg7ibAgWjuVpdaiJu1OQ5onoHwTMtz6KEABG5ARIO3/+yDgHNfbBmi7UnIj6PjyKLQags3XGrFgxhX2cp4Ki8k4N9BewcSdnX4r0SMivPMsOVRLK4jF5IFjtrvSc1xDJXQZHeuBDC39T9xxXnZScdb+4fvLvIwem/fu9EDkpLS9MmIjuOg6ysLMyZMwebN2/G8uXLf+5nvucjB3/b80EU3/6qFcaGpynQtAdrU1E73CxFeclebC3sGvOGLeUCDhiqwJeoLOKkhfSDJU1wcxKM9VS0lUb5eGjxEQvD/PDi51WSrBDEJDCfaFqJ2vwzVtKo9bcQ6FYRt4RjPK/jhvbTv5DBVHmy0fv8CxmmEml2AhJffqhHhcstj70WdguzX1UJftG4UlL0u31Nj7e1dwnvOC8WUVR5WQnbWwY7RPpM66IUryZRZq7OHzReuIiPX6vqU+NOOmgsHeT+D47chk8t2Q+iSCXvz0P1R1jZfXM6aq3ptRkx9lbDc6ykSp7fq6axrV8llFcXnTHd04mkfOl4qtbEuqpOMwZdQ4M8ljT+bS26MmXIV1VhRWPPlr4UJMUcPePegm640bjiStdJ7JYHiDi1HUWL2jB/lN9NY3NCHhqLh1LfrfcZ1/dwzDhkc3MScGZNY39PkbowZ6iIha8TOdMaBuL5yqBVZ+H46Tlc+RUA+kdvY8WbaBfdXONV29GmEky3D1SzJ5b6K41CWZ8AUMo8X6waekLrdV9RB9ysBNZXd8APmwiLepD6a8/JEh6379p1P666ZsyiX2RlFuAk1z2dFVgy9wwnL360viUlAfhIx0IVDZKMLeIcO7OmVbQHUFW/s5UhQeuz52QJ890Daq9YexKwaWJjChIHQNE0Oj7vOVpHNzeOv+9dap2LhtKTKhG8vN9EGLSiTkm0FDmTSqE3HlZwPnnWgZT/s+c54rNsYjk3FbKTYEURvm8NF/O7aQ7oLEnDIBgVJuWUSScyk6x48x2g95mMqDw3uoCVxb1dpegdvQODp29R943MU4KRfWwYjBtFk5KZVy0YUj8POHCkE8GNqnoO25qWKNki8PFuNI6jA3lYV6Aq1xMLWNjVCd3iHqF1ZiNGRCjo/TSGdaXd8GIRJXuE7P56fy12dVZiQ2GXFfEjdquXvn+dqqMhoJv0XVqnVQuGjGKboSk7NUGEnD9ARQ7XFfRaxAG+YNj6Wt8ibK5tMlE5qiitP3t/cSvDbAhqREoyPNWvfcOFKuF3ImxkG/UjaVOAujkJHp83HsaKsmFLVlHdjGeaF8G/mIF9XaWskxzsK7D2hTeuKWF95SSQrfXsnZZuQe1gT2H6Aphjhta9dvY563x542E0lgzymsS9cNrColdU89/ln/dQ+9CHPoQXX3wR0WgUy5cvx7Jly5Cbm4uzZ8+isrISP/rRj9DQ0IC9e/f+3M98zxsH3ngEvaduhxuNc0gfDrC/WzE8eFMh9kyTB3pTbTNfkvt7DGYbgF2kh94xETawmqwE4EFVZAQ4Efm50QUmZJqjyq8Tm4oXi+D1+Az4GeaiJ+UZABrLBnFt5piVeAaoQ76uoBfedIgPONVFcKNx+BHfhCN9BxQed2ZNM+0qhY+prDygBapOwmPhQh5PcTGRsrWpWrHVfOrIeqNcBOFKY0Zo0t+HT81jph7+LGCFYTfWaOYfKlan++PMmlYVnqNxLC4e5bXyxsOoKT1lwRoQ9vA33Sv5YiEM/df6FsGbCGNTdQsO9y+wvFW3Z7/OIWJptLByK9YJANqHZsO/mKH2FO0HqaRkJzjPIS0mdTwsai8o5Zgq0tL3afyAVoLg8FioMeMLREE9YSAG+36w27BV0c/8pIsD/bYHTiq0gFZYPF2x2rX3BV1kbk7CUCZGbQWG2J+s54uaI7RvrYvrksqHoLlzpl2rT+V3vgw3GmdYWhAGQkoWz2EsothR9O/JK0p9362rFf90eoaCjLRWwUk4KV7OxrL0kB4yCt96IxdTXsSae44CkUIR8nH89Bz2Ru9orWUDiY22q03EYkWxZiNKKIgfreH+7mIFS9OwRjJUvfGwMqbHFd+9NxnGzvYa7O6qMPAfrZA+VH/ErJOeJ+dqxbxEib6WZ3fCrO+m2mZlmE6EmYaZz4+GYlmRCVpfB9hY3abWJqj4uT58zVp0d94IQ4+caZehbQqPrRR32j+1s8+Zei90fvQZ295azyxOEipChqTk9Kf8Gm8ijJuvP2/6xQ4joWk4PlaUpOGF1w6GhsIRNlwBYFnxKKjeBil3ZPhR5GD3kCpmuH+kIMVbTmsfVAC5MCG0USFgNLuHStmIhOPDIyY1YuaJRbC/twgAsL6qUzkQHKpBA1aMqe3uL8Pm2iZ8c6hc3VkEC5tUjpWdgxXwM02x0bUL+wxjTty885tD5Vxzg/bH/JzXeJ7JKPTGw3Azk3YhTN12tVfhgfpjRt5IiNp4WCUK67oVy+aeZtm0rqAX48kMONMOrwXd0bQHHlt80BgEPtjwuq+ow9wN4l3BdnhggfW7E/2K2MSdEVfOCk8Yi9kJ1Bec5nngddfw4oeXPM/vAmCKOop+SCWYziEZrtQIbkRtTUUvDnQXwbuk4KtPtyx9W3jXldB+WdmKZHv99dfxe7/3ezhx4gT+9m//Fk888QSOHz+OT37yk4jFYjh48CA+85nP4M///M9/7me+540DNyfOivCM8KT5BQk7T1/A0yFWJp4dqEJ5nlLA11V2pTxzS3GLfekFPMWEcVydPwj4GkMsPGZ8GZMi6esiWh6wurxPPSMax/szLwIADnQVYV+38agxI4WjcdtJU8W1+9xt6tmTqjItvwO2R568NAS9eHagKsUzdGA0nz3rq8v67HkVFztTQGrjZ3W+8jxQdVuruJW4iNcV9OLZgSr2KtKJ9TMMs8uOtlqsKu83EBdBxbZeez1P9CvYCWE9W4fmWJhveA57yAGw982LRbC2vJv7L8e0tXdJKiRHz6XF+iRgKBS5YPpFiq64Pu4t6Ob1aCwbxMa6VhbU3oRWpEVZezcax/uuGeM5C9YVcDOTeG50gVIM9Fik0gUAb07n8HpGMvV8aLwtPyc3jt3tldbaOiHP8G9PhlPe7U2GsaujEstKRlih9MbMnpJz702GWamzWlIYLPTeaRePLT5ozbf8tzsjDsf12XPmh0Vi4VgEnUPKIykx3+zpzo3jhYvvNwaiOLtU4E4aZjJ5lfMMZsRt9jBt9JJcYaPWc1h5p3Ozv6eIjfPyO1/m/b6ydIi9vaSoSvgRXLDyKI3Aw5r9xdXRmN095cYoFYWnALMfGA7hGK8p7VUyhL1YxDg2hOfZ901Uk6rFs2Gv95R3KWLXbBHBSamcymKGq8r7WZbuaKtVyoz20vL59QHH9eFdimAskcG/+0DFEF6ZuNqMQxTk82IRtJ69k1l9KLdEJqXvaFWG2IrSYauPtNay7262OjuXJjMN5CxbGLG0Nr6josWTSoG+v7jVggEdGlxgPf/oQJ4dhfV0tPcySa30d8P8UV7DPSdLOAIlox3emHJ+TXmCBlv/fn9/oZY1DhvBVGODKpp7sQh2D5UqFhzqo46irygcMYb5tMsOtkO9C7XsgxXxY3mTk9DV2LUhF1G5OGsru9i5JufzhfEbeM32DRfi8fJDvE/9iKdylPQeARQz1dMtS818ihwGmXMCAEdPz+V/72qvws72GnxksaHkBWA5H758wkB7aQ94sQjn0Kn58dX+1gYlNTcnoaLZOmJKVMMWfNE1hug9+f1oPXsnNhR2mb1L770UwfDYTdb9xGQOADsKKB+IvvtI6TF7Lzm+7dSJRbC3swyLi0fRUH4SX+pZAfjAmtJeXNHtV5ED7Nq1Cxs2bEj5+Uc+8hHs2rULALBhwwa88MILP/cz3/PGgTcesSqQAsKbRgJeCzMSCPcWdKN7WCnguzsqlaKgGR8AMMbcm9BeEBEGVe9UgnnfcKFSECp6gaSjOL+lkCKPFuEnPcfCTO7orFFWu2Ac8mIRLLztR/x9ggXI73ljyiNJCZr8c6E8fnOo3FJs+TOXzAVEHp7G0kGuQBpUOmQok5ScvZ1l8MbD2NmpKgN/cskBfqYURpwgBhilTCjH1DjKQ8JQ31O7uirtd9OfQH4Fko7BXur/UyOct5uTUMptkKJVwLEsD6RQXhztvd3fU8QVc5WXXl/w2QnE/ZCiy4NKFN7RbipkWs8UStobb+aqD2gss7WWek/zxR6Nc7SC9lnryTnc96mYqSNA/VtT2aN+RkqVqI5KF5KblTBRIP1ONyuBFcUjuD7zkkicU9CMYKvNP8NjlsnQCpZkWFWq73oJfsg37EKirwCwomSY1/pwX35KaJ32hDS8ATBMwBuLYPDlm6yvSMXFv5hhRVZWlhpY1SOlx3icZPDSWrm5KtHRmwzD19WenaTD9Kj7RwrgOGDjz43GFSmAvrgP9ppz68QdxiTD0ZAZXdjNzU4AYd+si/S6QylaiwtVgm71wrOWZL87bwRujknKdbMVfntTUTvcaJzrQADAWu0MobGRB90X80rGuzSqV1f0Woq3m53A6qpeoZT77One1rKE12kiKbysej80lg3y5yX8bGNdq6qrUDIMLxbBof58tA8qGKWpKGv6wM/VOU3B6BsZhJQTJqNj0piR0c6LF7OtvUNtY20rwz4ArRhn6boWtDdjEdQuUFAS2m/8fF1NmGqXBGWY5RF2fFyn6ba5n5lJA5OhqF2ucox9r72IIZg8lswklpWMWNFR+v3+kQJ446ruA79Dy7LG8gGsLu+zKEHJiOY5JKeHjoIQZIxkuH8hA2sru3DXTa/zM5IQhfGmQpxwG7zDvni8kR17BB+kdfJiEQWrlYhZUTmdDPKg04f6vaq8Hzs7qtXchz3cnTeCxtJB6970xsMWtM6NxlmOUtL4ttbFKZERQBNE6Lk60FuIwtt+aJ4rvfO+qhjtjYdV9XCtG6zTBhRcoGzGy3x2+Tl6z9yYoWqnUE0mJ64O5lNNDdZelgYOy7NoHM1nZnNeoZsbx94eO2fkimu/Mg6QlZWFlpaWlJ+3tLQgSxeI8zwPmZmZP/cz3/PGgZtjw1j450Lx8GIRU5wnphgVWIH0wcraof58C34AXxkP8sCR0rihpg1eTIXm9nWX4JNLDmCPVuQkbIYOOwAFtSDmEK2YKZiSY/V5cOQ29tRR8h57HWM2fGFDYZdVlAywYRXyEnKjBs9OHim4vsKmEgY2jcc35SKjC0fTXMb9kDU/APBnVd8OrFMCjk4Os7C7UR2BEIortS3VJ6yIze+XH+RL6JHSY7i3oBurFgxhQ42OYOh53FTfbPoJwzK0kwSxXnfOB9Bj5mI2ev4eLz/EHixSYtjLHPCeM2uMb+bdjcYtYywYAqbGEaCYYW5h/DO9Q/fVzUlgT5eiXHWzE8bTFfZ4nPT+vR1l5qLTRc0Yz+3a3j75zkfLjuDo6bkq2kVNX8jeWIQN5g2FXaouAit/yvjkok76ovRdH62Dc1PGTXvcT7pKGWHvpY8bsy7ggbpjHK2geZORNwsaQtGVMaMoSE+sr/NmaMzMO56TsGgdpQHkTQgoWFKtrZudwP9YdILX04tF4Ou/aTxS2ZBGvx/xeR/xvpOFywJKrhuN47r3XWJoYPMZVbWbEukJRnWgR3mJtzUvsaKVxMVOyqCTdOA6voHyAUCmMgRCMZcTh5WyAi4U51/MwL5OBfG7t6Cbo6P7NDUlEo7Zi0KxA5CiZALgvAplmBphRnh8Vua1Y0V6VinqIGVbUMYFK/laTZ/Bh+qPWFHXxrxhyxgDwHkk3qUIdrTWskJO60l/u1ED/WsdVsaMM3Pa7kfCTa1jIRQYyR60vqqT58KNxvm8BeeRmnPVNEeN5OeOn54D/0KGdX/JZ9C+f2zxQZaBN2WeN+uaTJ3HIByLcpNkn/xMVUjtxR9ei6uuimF1Za+V5EuJ5W5UJcTymSV4YqCgJAA2yinCKI07Grdk1qLvyGccGM03UcPMJA50F+FAl4IV0/y7OQnL4fBgSRNXKt43XMjvoIR8HpLcD9oZOfjyTUY2xg3slyMvOfb+33OyRK13ZZeqP6CNJ3J6kCH28tQ1cHPj2N+l+ulH7Bor9DnKT5NyV8pT+CpK/6siaFd+e/TRR/HQQw/hsccew7PPPosdO3bgsccew+/8zu/gd3/3dwEAzz33HEpLf35D7z3PVnTb1/4IK0tfYs/xzyq2JS9uQHhNPAdBlgEABn4gON+tAiSCvYGfB2FIBBTe4GfuLeg2VThlCBKwlC7un+TzJg5yx3hW3GjcKnxD/ZNjfrTsiMXGJD8PADdedwE/OHdtKksO8ZCTkhucKz1H9+T3K0NJC9AVJcMGJiHG9viig7oISzjt87YUt+DppqWAqyr57hsuNGOX6xZgiGHYhuD8VwM1yqecb2KsYA+7MNbk/MGD4lvP9Gx2ItGnxxc/hyeaVuKB2uN4umUpVlf0WlGfB0uaOBeC9uq6gl78W3M1F70JUoNaYyMjQ/DBX65R/9YV9GJXRyXcHJvjXEJr0tXWoHl0ph0LDw8A/oWMFFYffldblcXsROPcVNSOZ5qVwtpYOYADXUXMOsVjC4k6HgGIF52zh0qP4/X4DOxqrUqBh6wq78d/dJRYbEdspEXUs7kYlGAhC85jcG3vLejGv7bUmkRnJ42sCHgg3ZwE8NNMeDmmwq9yFviGISVQPItYcUh5uOPGN/DimRtso2rc7FFZVCs4DuI5TyunAnINMPUpgkxazM+e6TFn/b7hQmu8skgTj4VunpAPZ9KFc7Up6rRi3ikc6l2Ihxc9z9S3VKxSnV1wPkuKfHVsWc4yUKylrDNgrZGQNbQWvMd04UNqd+eN4EBfITZXNeOtRA4ruEFGm7UL+ywnEvchUBRrY00rzsSuMyxpgf0nv0cF+9K1R0qP4ammBpaJl2sp5ydNgS/6nCXzLkXg+A4+XNNtM/fQ5wSbmjXeWASbalWNG+9SBMjw1DsjSat4WbAWCz8nDUvT2uou7OkqN3kiwYJ+6c5uuiRdvY821qiil0DAsBDz71/MwP+77LusoG+qbcb29rrUPRZY38vJ4rRyQfYLqXefnINgDQxqW4pb8HTL0pS7IV2NJKpdFGTqUnlTk3j1E398xTH7kI43//99d2xFLzz53mErAoAdO3bgK1/5CkOH5s+fj0cffRQf/ehHAQATExPMXvTztF8K48DNyVIHI8MDpl0jfNLRhwrOblbAghfQWASb65rY84awZ7x8gQsg2FIEnKhWmKJ8iaJK3A+t7JI3amX5IA4OLOS8iobSkzjUl59qSASMEi6ypg0LUqqYr15XhE2pUCppNANj9GKqWm3zmdnYUNiFnYMV/K61VapQ1NtVg+QKusEqw5cx6uR7ATB9p/W7n1FEir7fWD6AAz2FNv4XilLOUmrIGAj5QDz1gmaFRCgom2ub8Ex7fYqixx5F11b2SYkmCkD/QgZ+s75dwbCcVGNPzp/FniHGcrm9SEYSfy5HUG/GIlwhWfYtOBfpns0K4ngYG6raOVGa9yNRqrqK4lQan0EDWCp6C/NewcnRW+1+SGpVwp5LmmIy2GXhIM9BffEpzt+RFb4vVxSR5keeg7cz9rnvCRcN+aOqSmxAvsj1X7uwD3dkvY4nuhv4GQ+VHsdXW1aYBObAenrxEMrnvoTukTv5M2sqe9ibGfw8zdflFB+5BtwcH7fe8Tp+8JOrUtcnzR7h+dD7g2l1p0JYVTyITDeO3PAUtrfVgYgSpIIjC2XRz665OoY334oqhZwqVtN6S8XtfAacq6Yvu47cx8soSSyf9LpQleN04065J4KKlY9URU8o4ME5l0ZEOiVR3kfplEVpTDgJh6ufp/RdFPCTxTflMx8pPYanWj7AY7AMLZ0TcTnjFwA7KGROkKwiTU6RW9//Fr7/4vXWfSSLia2v6mQ5mO7uYDknjbg0RgUA6y4LUmTL85iu8F86J5o19stUwQZU5fDel2616ajFcxjOKA0weY6ClZWlc2gsguL872P+zB9bhegQ9k2SsujvPfn92NNewUn/W2pPYFvLEiAzCTesqkVzAUa9Zle8cfCJd2kcfOm9ZRz8ott7HlbETRdsoYOyrqBXXQ7EghPIyJfCZW1FNyf6AUrIPNO6yBw6mdQH+8Kl/3sxhbWEY97lxSLYWNWmwvm5cYvKDRBKuIBhqOJJPvfj0At5yjDQfTs0aHCNfEHTmKi/lIikoT/0c6pwq0K3MB538iBG49aOIbgLAH4f0dTtaKvln7m5plDU9zqLDC5c4zet8foOGspOWmuxomjEKkzFsChaj2gcTsKxKoACygtPaxssIEWC+L4iVXTmQHeRWUPHx8oyVdDmBp0UznOoP+NmJbC5vgkPljRZMDEO04q8kjfi0RTljulhA/hi8rLu6qrk8Tmzpq1ifNYlNB5muJNFaZiTwIbqthSFz9oPlITrO2pdqaBUiGitfMUrrt9D2FoOxWt8vAWN0p8lz/HD9Yc58kU5EV4sgnXlXTwWP2R+Ls8OsRcB4LGcfOEWe0xjEeVl1219jS5E5himqw01bYpEQCuDK0uHANdH89Bck1NCe11Sa8YUmxcljFOhLgCGkYh01Jiq1Cob56Q4KklaYrsZviDWf8/JEsswAIALiRwLRsSUhWIvdZ+8y/oM5Tqp82oURJIva8u7eZ1S9kfMMB8xVWxOAj/4yVVWvsMnyg6bTuqCff7FDPNe0Q4NKIYjJFwcGM3Ht4aLrXwFuGDaWSo4KKN53ngYb74VhReL4ECngnmsKe+FM+mmzIVz1bS1jsS4RmtK73yg/hh/z7+YwUncB/sLFLROQ2Gah+ZiS3ELvLEI1lcLWF7QMIhFDBxyMmxy2SAoh12VgxPc59T2nCzhwnS0761EVH1GrMJn4m+utRP2FCOdXActOx4tOwI4QH3RKSDss1wlZjPq21PNH2AZSWQacH2sKe+15Bv9XsKT1PvA0EwvphTudVWdCurm+oqkYyqEV358NeD4aKwYAOfW6DVycxSzEs0B1SCiuSflNXw+ZEFR11T02oxKrm8obZMO7ivqwDOti5jtSEWIyHjzzTs0GYMXMzDQdBFEAKgvOM3Jw7KPgDqfZADI/Bpu4h7mPSHOOZEmUHuo7qi5M3PjGHz5Js7fUzICnH8SdA7+e1ulikhqyBexo7lh5QzaP1IgHFy0DpePPl8R7Vc5B/8l7ZfCOPCmQka4jinhuqu9ioUFHQaZhCiF9reGizkpyLBSiMuQBJNOUnajcVXngA66ViTIk8M48Khi6CAoQtC7CuhLzoWlgKXzGhH+1pkKWZ+RSiq3gHdcjmlLcYu59Hz1XvK0SspCbyrEyWLyfaSIS4+TVJ59zWFPh3N/bxEniVE/D5+apy51ncB4uC/fjgiIfBAS3gS5kePc2rycsctb6o9jU02Lta7euGJpUoqfj/9dcYDH8r6IqnNASowXM1h5atsHqrG1ZZnh3RfPle+RTFOkoKfgi+m7sQgO9qjCSdfceIGfR2vJSWRTIYNPF5KO8yJiKneGlZDpUOqlTu/29B+9Dn7ShTcVwtqKbsvbtrezDFk50wY2phlcNtc3mfEF6jZs7V1i3ik8WYSflY0vRzIqdW0BADyW+XNV8t2W4hauFEpGJSkT9Cxio9nZWc31KADgYFdhANcLToBcV9BrJSY/07rIGHbCCbCpRid/+WreGssHVH0DkXxJjYwtGq8bjav5JgVQGFXy3wCQ42r4X5rqp7znXLP+bHjrsyMNybivZMOeLuWVl5A6Nmrl2uj1aswbVvsnJ4GVJUO4t6BbQSqIeYyQVDNtaJkTd/FA3TEFgZFeUvpbRrZ05GB9ZacZC8kEsZ821zehYf4o9naWMT3m2souFTUIVKL1YhGFD6fpEWJvLGkS83yiQc1JYHHBCxx1ofl7un2JSjzvqsT1114EIp7VL/VhcU6zEhZd5/6eIv552E1ifXUHnLjD+Hy5V7a1LrZlgucYVihxftKdHVLiN1VqGaCTUmVfCS7afHIu3OwEM3tx4S/ZaN6EvE2XuwDPxrUTLTY5s6ivu9srFXxRK8IL5/yAP3eguwjrazpSqnXLPUz0q9b9lp2Ad/Mkj92NxrG3u9TKt7Jr8oAZ8vxoQjkJtaxZW9FtR0l8YFnRqDEUgn0jB1wsguahudg5WGE7enISuPX9b6lkfY0OIHYyYkFkT79sBIfV/5Zz4Ebj2Nq0HPBUvQPrPpPRhjEzf2sX9rGhRrku8ntuNA4vHmKZ4sSdlLv0Sm6/rDkH11xzDV5//XUAwNVXX41rrrnmsn/eTfulMA4AdTBWFI/AzY0rj6JvvBMAuAgakBru9WJG6Xc8Bw+VHoebq8q2B0OEdIgvJLLhxSL41JL9aa14SUt4OW8EAKYnJOUl2C/r8w5MlVf5DM0yIwvRyPeuqephIbWtvw5IOipZKVclKEtBzF4w7S28r6iDhYl6mTZoQsYDQ32ylCNH0bZurGrThpfxWnnjYZUcJjyxlvFF1SZ9xwhR6PoU42FsKmpXnk3BPLStZYminPMVVCOYJAffweeOfZj7uLO9Bg8vCnBJ69NC9QzIw0qXFRsPMhGNlGXfvtSlFzMoqOkyOn8+yn2zPLoA87kDUFzU+t1f769V9KaBfUI0hfT/+4o6zHroNWZPd8gDPIcT6OE7iukmGsfkeAZf+DSGZ1pEFE0LXZkkuTp/UO0bFyahndZ6IoxPL/2ONX/ygt7VZjxibjSO0z+4Ht5EGE+3LuHCZbyEVGdCRIksQ4yUN4qwEExAeO12D5Ve1ktI67ahsAvbm+u1F1Q950BPoYEAaqgWzY+fVGxWtbPPCYUeqWskoo/W2o7Z53xTUbuKhOToIkvZtkJC3mPqL71zd7uCrGysbkstdkb/FvO2tqoL3nRIURpnJOGNh3HohbyUokhUSdWLqbmhd/phX8kTirIQI9mY8u7C8ZlZi9aDjDtJIU31ae7J78f2gWrckHmRZYgXi3BU0qcxCwXOjcaxpfaEJTu9mOLUbyg9yYYgzRsldfM51PAgIoj4yeszTbRoXHnMvViEz9C6qk5442E11wRlE3v7xNB87B4qhXPVNEN6LGeQdlTw/6OqJgN7hKOq8rBUYGmdSRlmWmoHiIanLMfFmsoeZURp5xbP16VIiteejSnfyDEyYKUxRrKDZNmzA1XMoifPYzBKevLMzfDiijULnmKvc3PjaCw3UQzpOMoOmTwhjvzTPGUlTLK/Vn4zNMUyRRClIftgSROQcHm/eeNhq0I5jZuLitK9BgCur+8X8VlRVJHGfF9RB2LTqrjZxtpWSw4RkYgbjVvj4PkUThkpa/+25t/UZ2bEcbgvn/fO6ope/jcVeKV+7+6oxKa6Znxq6X4zDzAJ9UxUoSO1zlXT1juv+PZLGjl48sknMWPGDADAl770JTz55JOX/fNu2ns+5+CWv/tThK8xRZkoaXZ9ZadSPFxfXfAe4Ey7HJamRt9bcOtrOHnqlrQYyrvzRlTyJGDlMGwpbmHaU4m/BMD4+hTcZiBUrYr7OPw3e+qlYqHLyvNlJlkwHB9OwmXvtpyDIHY0aOhQ8y9mwA8p7yix8QBgXDxHRxIOj9ObCll5GCvmnVKYa40p/f3yg/ib7pUWppzGRrhy6ks6PKdMGuYEZ8LQXopgVWW/KmB3mUQuQF346ys7VUhWF6GRUIADo/nWulgVXadDSmHSNI1IOipHI3DhB7Gq9xZ0czVWGosc4+U8NjJh73JKK+PpA7kGNMf3F7diW+tis94yRyG4p4I4V4CTga3xTYSxtrwbezorUsYncd8pOTxQrCu7Oip5fzbMH1XUnoS/fZs9f39xq8LKuva5Cs45ACv/I+jBJsy74zvKg+ym5q74FzPgZyYVo4zuy6ryfuzvLYKbnWAcvBtVe6+y6Cw6T96FyyV4yjl1o4oJxYIp6t9vrGnFWDITma6KiPhvZsK5ZgpeTOcW9ecrL/ZkiGETK8sGVeRJP2vZ3NOKVlWcL4okrS/rYuVIrlE6OeBfyIAf8eDmJFB910tof/EOMw6RJE75Agtv+xEGh2+z9mSKEyRNAin1o7FsEDPCk1wALJ2cpPmVOQrBsQAwVMRZASNReonFXku7Vo6P1eV92D9SgMLbfoj+kdtTDPsgHt+bCGNzdTOeaV2EdVWdiCUzLfkZ/G7KPqYcAjEWknUkMx6vV6QN/LuOCgtStX+wUOVG5djPqbzr+2gfmGNyAwSGPUi8QeOnn63OH8S328rZ6SM/93be5g2FXaqWBcmRqRAoIZn3pcz7o59RPtBUyJxBOuN63ebP+wFeeOFmuLmK3nNfZ2lKsULup/6uE3e4UGi6RjKQ8+fGw/jk4u/iie4GcwelI2qYUPlU62s6sHuoVMmqtsW8vlY+HlKdBLx/dI4OV23Wn6W7YHX+IPZ2lllGARMMSFk3GVZsSIJqWMoDAHByEvAnQ1hT3ouEF8J1GZdYJiXeTODV3/3sFYfPJx1vwcffXc7ByFf+a3IO3nrrLfzu7/4uvv1txcj44Q9/GE899RSuuuqqy35nz549+Md//Ed0d3fjjTfeQG9vL0pKSn6h/Xqn7T0fOWAhRMk+uioxeSnoM25OIsUwAMBFVkZeuQGrSgcMJ7gwAg50F8HNjWNLvcKL0oFjKANV/BQRA+mRty4J+lzgZ5J5hioCc0uKS41wgsLz6cycNpheqpuQnVDeBoKpxBSTDgkMqjILaCiQ4+NAn2CmiEWwq7WKIw6KphDsGV5b2gM3x1RbJcw1oBSWLxxfpWhWZT4DVN9HXrnBeO6ER4uiCoDxVgHAjyZnAa4Ph4uOAfu7ii3YRErIHMpI2T1UymFl2fb3FvH7VucPmnwP3WrzzsIbV5f/ujIVjn5g0bGUasOscLgKV/+vLbVs2EjvvQz1bik28CcvHlKhXjLuhMAP5g/Q+xgrTpeAnqdtLUssvDJBOdJe6iI3hopWUc0Cy7DJTlgeN66foZPpuX9in9HaqQRrBevwYhpOlZOwcM1WtEm0r/fXwo3Gsb6y06wxjUvCUGqbjKLji7OWdIyX1gX8sIdVlcqLfah3oT0VM1VFcYLduVEFw9hScwIA2DCgOe0cmq3WIQ3V49qFfabeif4OXcJ3541Y67FzsAIRJ4lLiSx4E2H4VB1a99HNTqgiaKL416EX8tgw82KRFBYwNqozktjVVsXVczn6NZ56TgAFG1lf1QlvIqzoaWX0U4xzZ1sNvEsRDI7eijVVPdZ6yHUiBwVXrab9rp0bB3oLLcOF+3ExQ3k8PQNNlDkKbAhI2Zp0sKVaRQ8eLGliCBpg6jrIZFmrn6JiM1F49p++1Rjdel4fXvS8yd8SNXSeaVGkFa7Oayq94xUji3xgc22TUgaDhkEswoU45Vi+NVxscls8hxlzAF2zxTey7sBoPtxIEkg6ytNOZ3AijPah2dhU18yQPO9SRO3LdDUWona18r3dpfgfi04YORAP8TvvLei2Il1yXXe01CpZkiWMMoBhqGS8bKhWNODrqxWc6tPLv6P6IZii1lZ0W+t2+gfXY1OduqvnZv/E9uo7sKNv+p74jbpOjl4F9z1FXrxYBDvaa/gOkDlBn12613oP7WtFHa4qWy+49TWF6/dMEUEyDKQcBWD2EzmTMpNqDaMaquUBf1H1LYYh7xsuVJGqmIi26/nkvazvZ9rDayp77FwjDalzHB9ryxX71P7OYjzTvMhEh6509/EVFjn46Ec/ir6+Pnz3u9/Fd7/7XfT19eFjH/vY234nFouhvr4ef/VXf/Wu33v27Fl85jOfwYYNG/CTn/wEAPDd734XJ0+efFfPe0fGwec//3lUVlZixowZuP7663HPPfekVFzzfR9/8id/gptuugnZ2dlYtmxZSuempqbw6KOP4tprr0U0GsWHP/xhvPrqq9Zn3nrrLXzsYx/DrFmzMGvWLHzsYx/D+fPn3/EAZRIxYCuYAFIuRMknDQDPtNXzv/d3F3MhK1lchQ4iKSzSq6omxUAXKGGSscmTtsJHCpGjkyydhKuUEmF4nOjP43C2TKLyxsPGO0awARI0xAaSZXjSE6L+gBuN44ljd6vvOD57TinRzM1RGE4ek4641BaetpIzaZ6/NawKl21tXm5BG9zsBA735eOh+iOMgV5f2ZlSfIiV35CPxrxhLugCgk0J/H/7i3fAzU7gd5YeMvPhqLWUkKi780bsS0lcXA3zR7nIjPIsGYVq33Ah4zu98TC8qRDaX7wDm2pa8EzrIlWh9FIE2/rrsLuj0ihgYl1XlQ7AzUmwYKfwuwV/0Er4061LjLIZSaJBFwDbXNNsJbSRYcVwnKiGzGlDhNcJUHk30biBWk3Y+4MSb7kllEcd0EYFgNbBudx3bzyMyoKz1gUka3SwsiWrhNJ8EMwgYNBS29tZZlW0ttYqbleC3dVeBa4Cqo0M+eztA9UcPuc+SWNCG29rK7qxv7PYrqQtlRsNP3m6eSkrAdvaFD6cinKZgdrrL9vu9ko+G9b4JsIq+ugobDX9fs/JEqt2RlDm8CsFsYAXixhcvI7msFMiR+Php1W0gWl0fbADQe4TwPx891BpihIbHCPlSLk5CeztUVHFJXPP2EpP1MA7KDJABbdIsbJqnQjl2Jk5rXLAcuOq6Jv+edAAJCgSGeYkm7c2LzdQHK1sk3wmQ4CfRbSxSQdcnE6ONSfBBv5XT3xA/MLH4uJRJc9z4/jUkv3KGRWNo/elW7G+spPzZZ5pXmTBjmQOSPfonbZzQ7/fp7uHIDf6vHuTYTyw6Bjc7AQ7sbzxMJDlmYKTIr/i2YEqlpfujDi+NVzMjol0cpKbD5wdv5b7tq6kW91RdceVc0Cw/bAcy05gTXWPSYClfUN3hgM+xxQFIuPw802rrNfTurnROFN3e5Mqf+y+og480bTS3peOD0cr59LZQE4Nyin0xg25w5rKHiX/NBMh7WWaUzcax593rrLeo84NLMjeyCs3mDnWzjkrijdhir9Jp4bcC/fk96vcNxf4w457+EwDpvYBFeIE1HyumHfKVB/PTvDZ2zdcyHejfCfNg4ocAXDBOQq/VX0Cv2o/XxsZGcF3v/td/NM//RNqa2tRW1uLp59+Gt/5znfetjrxxz72MfzxH/8xGhoaLvuZt2vHjh1DYWEh2tvbsWfPHoyNjQEABgYG8NnPfvZdPfMdGQfHjh3DI488gra2Nnzve99DIpHAypUrEYvF+DN//dd/jSeeeAJf+cpX0NnZiRtuuAEf/OAHcenSJf7MJz7xCfz7v/87/vVf/xVNTU0YGxvDr//6ryOZNJ6Bd2N9pW2+Y3kceODyUIsDQvRmrCToGSLvtlQ2AXWArUTdwIW9qagdMqGYEqHd3LjyXspQt8BjO7Omsa6qE87MaWyua0oRquTNd3MSzFbEkQHA5lsmYRXwchzoLrKLngCMLQ1WoA0mONLfrYNzWTGE6ys8v/48RzBybS8woJKF6cLa1V6VArniAki+g/3dxewV4bV0FKxJzvdXT3yAFYu1lV24Jmz2pTcdUkqWuN9lZOJgTyF2t1eqn2vPtncpAifhYsncM8wVv6X2BPfh2YEqgy0P+ZxgGIwIrSnrNaFhX3gCA/vm6/21lqITiqj3PN9ZAHiO2puiSI+MANAzdrTVWvuI14vmzUVaT+X2gWpsqTlhXTCsjJKiKJXepKM85I6vGFYctSZOQueB0F4LFAKi/UDjpznh9dBzIulj+XexiPKE0v/Jc03joUT3kF0VdU9PuUmepfWdoSqb0s++NVwMd0acPe/0DmlM8LxohRO+Gu/R03MtZXpzdTM21rRyFEAqC4tLRrlSKyDOSXaCo5rkLeR5S4P9VcaKbeg9WNKkPPGOz0UdAZ18KzDRsnAizR8piPTsyoUvAlB4/4eXPA8/UDiMFSGh6FC0cUvdcayYd4pzrY6fnmN7SsciWFfTaWRpTgJfOfpBI4s0q5Wcg9wZk/acxCI4MTSf++LFBG7e8XF0IE/lTSzsg5udQMP8UXhTIXxu+f9lT7Iz5bIsZoeAjCD6Wj6HPVVlloyDpMOGMLMu6egNGcrNZ2bzs75w4tfgRuPch11dlcb5QFCPGUrhk7DGhXNf5XNEyf9eLKI85B5MlFicZYpWf6e9jOeWWPosQ2tMEUWofC+H76dt/XVm32syCk4wFufnRH8ey5ndukaKC+OUoErivF7jhsHM2s+CaYyMxmAkWa6J3EP0XMDcd9tb6w10FsZw9MX+52dMh1hpps9ta1sMwCjRbmZSRfmzEnASjrVG0liQ99CGinaOBN76/rcAByjNewkA0FA0bMbu+vCyPeu7/DzK8dCGkBdTFMWPlysjOgij84VsvregG4dPzcPM8ISV28Z99hx2erIuQl3KFagDvTTPDNTiim7/icjBxYsXrT9TU1P/qa60trZi1qxZqK42NLk1NTWYNWtW2grGv6j2v/7X/8LnPvc5fO9730NGhsktXb58OVpbW9/mm5dv78g4+O53v4vNmzdj4cKFKC4uxte//nW8/PLL6O5WQt33fXzpS1/CH/7hH2Lt2rUoKCjAP//zP2N8fBzf+MY3AAAXLlzAtm3b8Ld/+7doaGhAaWkpnn32WQwODuLQIbXx3631lXaAObYwUT9TwiMdBSN5TQ72Ko8aMwtlK6yt9WypCApaTX5eLKJqIaTDoseUQslKuO+gsXzAXLZjqvqxF4vglow3LW8nK1gk2MbDTE8ox8OKDYVsZb4EAPgq8bYxb1h4pBXchZKdqJCVNGKKb38Vd+eN2JVUNd52a+8STo6TyY2ULMawLICjI3y5a6WpofykEZieqjVAayW9/1aFXgCO52BdRRcnlz3RtFI9YkrlBwDA6kpBvzoRtrjqgx5shHw4M6eVcqPHksImQjCenIR1mqTnjKglARNZkZc6z5NQYAEgqb3kfthXvNU81yYS4GYnWKniRHsBuZKKrReLMIROelbpnWSA0mdJAX1s0fesSpneRFjR4en9/3+OLQU88H6RnmHqQ5BO0qGKsL4wbsYMHSRVapZJkwDgv5Whnqc9+ZIVi89FwlXJpvric7MSKZjjdQV2VdYgFIJlAWGgA8btukoFiePCdL5hMts+UI2LiSxTrTkroSJ942E09SxQfdHK9sbKtpR3ysaXtw+eE28sgkfrn1fvjIfY6/21vkWcUC2fta+7JLVOQkbSyAfPYaMTUPPZfe42AMCF6Sxs7V0CRzMxESEBP4vW2Qee7yoAfLWPDvXZ+TpWFMkBdutkdxq7H/YZHkR79/HyQ3CjcdyT34+xS1lmL42H1X7TCadBI7mxbJCpRHe3V8IbD+NgbwHczCT+uOPD2FjTik11zfh/FivvKUFumLpzIqwoP3kADj5QMWRVJVcREt86XwQTSslzclS/D/YUKmUzy+ybhxc9z3Ows71GJRuPRbC/q5ihrMFo2KQXYScIAFbyJVzHD0Q5LNmioyBMqKGhdfcVdVh02gR93d5ex31Yu7APjXnDaCg9yfNNz93WX8djl5XEVYeEEaDzAubd+RoQoTAOeG4t2RFLZYljo5jJHnSUXVcpV2MC943OZWPZoPUYOgOPlB4zcyMMP+oHySBn1jR2ttYwFI6e7eYoA5LYC785VI77i1txoKcQ33/1WiDpoHf4Tlba2VDThiw9x8qDCjCQ0T3yxeONCDaKQpFRvbNNMbt9c6jcRJX0vlhX1Wnlj9A8+jqyImXRf5fmvMs/AHDrrbcyOmXWrFn4/Oc//5/qy2uvvYbrr78+5efXX389Xnvttf/Us9+uDQ4O4jd+4zdSfn7dddfhjTfeeFfP/E/lHFy4cAEAmCrp3LlzeO2117By5Ur+TGZmJpYuXcpWU3d3N+LxuPWZm266CQUFBfyZd2N9TU1NpViBgBYuUyqEXn7ny5aSRorhA3XH4I2HUZ5/zihLQvGmg9L+4h0pJdcBqETmuIs/qtyfCqOQvOQkuHQlXTcnwR5pAAwfqL7rJTRWDCjvVtzBX3Y1piTt0vPXLuyDm5MwzDJAqhIjwooEOXCjCqIDx1eeSu1NhWeo3kgwW0qL76D3zO14bnQBvtFcpzCz2sPP2Gcd9l5ZOqQwvp6jCtCFfKY/lYokCT/yVh8+NU8JR31pHewuVApxLIIDAwUm3A9hWEyG4Yd8BevhhdEGQGaSL/v9IwXYVNuswsda/q6p7GFPnjRoHqo7asOz0iQtSgPRSTopnhoAaZlhmFkDCj/rRuN4bMlBPFjSBG8ybKAw9I5AIjAXnRqLsBdp52CFBZ9zo5qpRY9pdUUvPE11y/2RBtx4GA/UHYOfdM24wr6iP5RJd0nH8lY6V03z+njjYcWKJaAPdOHTGt9X1IGP1LWmQMlkSH6vxndLeswVJcOqEnPSYMbhqAS/4JqkFMMTkCc3JwGPoEg0hiBNJCXSF4/ws+8r6oB/XnHik/edvgPAmvv9IwW81wGlWLg5CTMe7XX/6XSuek/JMD/LilQIhW5vbwkIMkdVrKn+yqpSzfCiz6tlzDiwxspzQvMuopDehDLkSCHqe/E2rgHg5sZNkj4pL3TGcuOoK33BMIk5Zk9xMmyQVWnMGNCW8QBgzpzX8ER3A+4r6mD4B3l3LeWbkmKFMnWgp9Dw01PUMifBkJEdnTXY3laHPSdL8EDdMQO5CfvqrshO4O+O3G1Fg4L7CYDNpqbHOeWZ+4IN8GzlOChc8LJ1/txoHP9wrAFuVGPKHR9vxXPY8ADAUSQJOVE1T0w3uNr9pDnLtA7eRBgbCrsQhETRGshnPztQZTzSYc/IMoo+5iSw52QJDozm41D3QktpDyqUVmQPsKKOXiyCfb0lOHXuBjhjygHSWDnAbHR2voBvRb34cblxy9HC8+DA7AkYJ5wbjeO50QV2PknCRf2cs+YsBZ5rOXuIInxGnEk47s4bMX3ITLKx5Y2H8fX+WjSUDKtIp6AqJ0Y1uQa0XkFYETkOV5UNpHUc1M4+By8WYda2+sLTcHMSWFdtcincnARKF7zEZ0zKLX6X68PRMGEnIZxdev8vmn02Zf6vqPafiBy88soruHDhAv/59Kc/nfYVf/InfwLHcd72T1eXyl9ynNRcM9/30/78F9Wuuuoq/OhHP0r5eW9vL26++eZ39cx3bRz4vo/HH38cixYtQkGB8rKTZfT+97/f+uz73/9+/t1rr72GjIwMXH311W/7mXdqfX3+85+3LMBbb1VsNx+raVYX1aUIOkfvBGAUohXzTgGOr0qM5yTQ/cIddqgd2pOhL0Cy9oPhbT8rCWfmNP706D0p2N+gV9ONKqOEmGekkkgQg9bBuYoaMezDj/gpQsGNxvGpiufgxSLmsBN1KHn4p0KKvUJQpnmxCJysJNOQkndNeq6lkgfHN4nTopgSQTucmdN4K5ED4sjnphlgDr2Qp2oN5MaVMpt0LIpLvjwIuiXGuba821xeucbIwpTLz7eEqYCmkJKj+qLW+8tNH4Q3Hmb85rbmJfyuayNjgOsr/LCAOmw9sdxSyoPeY8qLoPkL8rzzHpBQBdfniAX1eU+3upC/3PRBhYmOO5axx8aoY68xYCuk8m9a723Nps7AHVlvAJ6Dhxc9r2AX+iKWShfBEvidogItjZmTn6l/UsnLScCPGEWAsLANJcbj/OxAFZJwQfCjB+qOcR0GSq5PF5E73L9AfU54LN1onJlEpDIiPX+kvMpozZ6TJSYSMhnmCFnD/FGea28ibBnv21vr8eG6buNh1p5UAAy9IK+2jAT4SdeaU/YCOz4uxVX19sO6ejIAy8tKBg2gFJDqhWfVekyGzZ7PTmAiqZ87I259n35fu/BMShIeQwf0x1fMOwUqROVHPHiXIvC1IXj7nT+FF4sw7aFVmE0/t3lQsSLB1b8XRlwwXwIA7z2Zj0Sff/GH16J+zllsbzf1KSyFT0IkZVRU0zan7NuJMMP2yvPOKSpVQNUwEAbZ2lKVsEnGHOULeWPKyXTHjW8wNS3NHcv5ibDymPsO/PMZKuI4pmFlHnDy5RvtcYyH8Rs1nXwm3JwEywIJXZHYczJwGMop9glTZhOsRvdv52AFJ/BypCigcLvRuA0l1TAqmQPhjYdxd96I/gIgIbdWn8ciNlNZLGI7EwSc1rlanTsi9XCzTU7cinmn7LMwkaogy8ZGkDDa6Mzz3hN3hhv20HxmtjFKxFjgGgYuIiSg/bSpqB1wfGVsxCImyuTazqJDffkc2aPvBmm9aR/5FzPsnDjPwTUZMbjRuKoF5Dmq5gtFTcbDaB6ca91HzcMqwr3nZAnWV3WyUd3//Vv4XV4sgrUV3SkGiq/v1A9WDShY7sI+IKQMjOMavneltv9MnYOZM2dafzIzM9O+4+Mf/zhGRkbe9k9BQQFuuOEG/PjHP075/k9/+tMUvfgX2T760Y/iU5/6FF577TU4jgPP89Dc3IxPfvKT2LRp07t65rs2Dj7+8Y9jYGAAO3fuTPld0EL6eaym4GfeqfX16U9/2rIAX3nlFQDAv3Soy0V5xR2ud+CNhxUrifY0AMYbW3rHKzYuXAssS+mPGgUlXVl1+RkAXG2RoAGAVigyPIM/TZjiI25OAs6UqxRv3wgt8gx+oetu4zUfDwMaD8nKhGMK/dTPOauqQYZ8U/1W97F2trkopTdeMnrIMdQXiUrFYxEFzRBJfDRPjm8SwGRxuN1dFeYyDvt2RIWSZyfDrBxLqIMXiwC68NHqql5rHA5V8tXvWlfRhZUlQ8bTqMfDSjdd7BNhvDJ5tQqft9azsn9fUYdVqyE4D0QzmFIvAaYi6iOlxyyj6aHS4+x1vye/33jTshNWPQQngO/eWNPKUQuaE286ZEWx5H4kLn4aJ+2dv+9dCjc7ga82qeTJTdUtkCxYPJchD3B85U0320VFqYhaMWow1k4gr4DGvGzuaWUw+VC0m1DsMGsX9mFXdwXg+NhQ2Y6nW5ZaWGP2gE6ELYXWzUkwPIzXWkeNCOrBRo0P5plPx0zhxSKon6M8YtX5Z/lnlHOgzp6Itum5lRAxJB0F/RvTyeVjEVC1aYKXEHTOmzbJ/wAs7LLK2RARRh11IWcBJ95OKpaZJXPP8Phcze1/uFcYFyLpvX7OWWYYIqw9wynF/HLEjuaaEoM1XS9VspVFAd2oomEl+SGN53UFvSk0pZZCBFgOGAtWocd6Ymi+ZQTck9+v9obrY0NNW4rC58UiJrfGV557isjQM91oHN0n7+LIlJuVUPkRGpbDyamxCMMjD4zmKxmXmcRLP3offDozId/IbjlGD/hQTb9JRM0yRo+V/+Y7SoFzfDZqUiqp01pOh/Ct4WImB6B7iwqkrdSQmVULVLSWPeBaUf73tko7oiQMXNoLh4fyzP2haWvlerk5Ccv7zjJH53hJaCrnYAg4lDcWgX8hw7DnZSaZYED2ZcW8U+p+HtBRKmIazE7gs8u+lRIJ88aVPN45WAF4DjP4yL7Tv6Wx7U0pJjgVOQM7Q2j/kPNnQ2GXZZg807qIYYSLi0eV42kyjGWFo/Z7PYcdadKBQtE5NVc+6guUnHxudIF1X8T0/V278Azg+gpGS7pGjnHsMXmHvuNWLRiy6jdQf8ghsae73DJQ7y9uhaMjh5TrtedkCeCp/RnMT7vi2n8icvDztmuvvRZ5eXlv+ycrKwu1tbW4cOECOjo6+Lvt7e24cOEC6urq3uYN/7n2F3/xF7jttttw8803Y2xsDPn5+ViyZAnq6urwmc985l09810ZB48++ii+/e1v48iRI7jlllv45zfccAMApHj3f/KTn7DVdMMNN2B6ehpvvfXW237mnVpfmZmZKVYgoDC9pFBsrGrDA/XHjDdQb5LNVcLrB6D3pVsvO/YgBtryUNLPSHkaN8LRzUoACQd7O8s43Ly9rc4wYQCmuJQWYH5IhfrIoyI9+fSujTWtWFvRjZXlg8prRcmZnoODOrzefGa24igXlZnp7+bhOYy9dqNxPLb4IF9qXkwlrRXe9kM1Rg9oPWuiL40VCsogLxHCYzozpw10INd4bNkQ8B2sKhlgz46jlWZKRpZeP2puNA5Mqy27f6QA9xZ0s7eLlFB6156TJVZSK42ZEuXYi0zzJPGejlqbR+tVEbQlc8+YKqUA1zQA7MucsPjXZajk+6eaGozHLhZRSrnrw5sM432RmLn4dViZ9gBV0qa2c7CC94haG1jQHku518/aQbUU0oXk9di3t+iktEDCa3TGpPImhY2CsL66w0SpHLPX3aiJgpHhqxi2HD5ntCbemEqu291VwUXcdnZU44G6Y+r/ejwNRcNqbYtG08L7eBwUDQjQ0FK0ic+mY8bIxgOAE/1KGWo/OVuPy2fDxLl6Glz1VlzY9+QbJiF3hoJIcbEr3R9nysUzrYuU4TRrGk7Is4yaNRW9DN9o7Z+LbS1L2PMsoxtkiDWfmc3/B4C5OT8BfFPEiNb80UWHVE4P4bejcfVd3yjG66o74c6IY8GtrynK2JyEVSWecMs0ntX5gyk1Rvy3FLb68fJDeKZlERKeDVUj6Aut2Yp5xqHAz7kkkmNp/zsqr4IKjknCBkAnjWepM8u1Qi4DmXJz45gRnjSy3nOwtqyb+yc90s93FvDemnvzT+w9RPthSsmdq66KMS8/4g4cLY82FbULJ4eGiGrHgZW/oMfLdJM6d4ZhglKZntQkFfq8y6KLG6rbsLJkCK9NqXvuYF8BvMkw9o8UKIY4vR4El/twTbeJ1Ij8IVn9mOh63eyERfyQokgJaGXG2WzcV9SBPZ0VeKjuqBmjjha4OYolblNROxzPUflTAChvihOSdcVwbyyCw6fm4eH6w1wh3c2NY85NKnL1552rWG7zWgecM3tOllhnlhVjHf1eW97NhuSGqnbAc/Bw7WGeBxrjmjJ1Pna015jIecTju5ASz9dVdgE+cLRvAcvbxxYftGWvjhhz5EZEN+hO5f5q5x7BjFuH5hhnnQ/7XtSUyfIc35BxEd5EGJ+qeM6KlNC9y0xg42p/bWteAucnxmNOz19d1sf3+RXf/gsNg3fSFixYgA996EN44IEH0NbWhra2NjzwwAP49V//dcyfbyIweXl5+Pd//3f+/5tvvom+vj4MDytnxgsvvIC+vr6fmadw5ozSJSORCHbs2IFTp05h165dePbZZzE6Oop/+Zd/QSgUettnXK69I+PA9318/OMfx549e3D48GHceae9qe+8807ccMMN+N73vsc/m56exrFjx9hqKi8vRyQSsT7zox/9CENDQ/yZX6T1taPTJEZ9o7nO1B7QSjd8xQIjPXmld7xiJ1FqT7E3GWZ8Hx82wfzCSrd+zmeW7DNCEMCqSuUtPjo0XyV+aS+jG1VJd1TBmBWEYJBEKIjkkXxp/H3Y01umFGGiS4sZnKWbnYA3HcLKUpMIbBk2SQd/VvVtFhZfPr6SBQh8wA/5GBi6IwWqABjhJT1Ju7oU5p+8sm5unMdFVY1p/g6M5pvqzSGfhaJ/wWTbr9eVNkvvUJEgomgEVNKbrBLJnmLdpCJH/dzZYfJYfr/8oFLmph08Wv88e1YoR+PvexVt5dG+BdjeUm8ZVUFvofLcAEg4eKazjhU9Yprgy0kL8adbl5gLWAt12nMS5gDo+RBwGzcrgflzfmh56bkvAotPz07hUJ9Qe5kv/pBvGbJj53PsZwEGlw2oyy3icZK0NxHG6opeXBsZgxs1FbFJmSm+/VWzPhoCQl47NyeBp1uWsrfQu6SUg50d1Th+eo59pvSY1hX0GvgIwApc7exzHI2hWgKrq3rVHAT2Bjd5fvXamF85SnnQe5/w73J9JB0k7TU/0+O9xGuYdNU8T4WsRGiEfMVspGuxeBOKKlcqKRYsw9GMNNrrPP+WH/M6PXWiAfu6SlOSDWWS5+5uFTkbeeUG7O3R3nOxn8kjSUrl3vYyiwYVvoGCfPF4I+AA+/sLFZ2rXJOYSRY9NGgKfxGbmczPWVGsoSqeg2+3lVsGN8FoQpGkkck6H4nOnGWgxyJcXZloWskw2tNTznPy6aXf4X9/qLqfjQyqwB3cK36GBy8ewvnzUUMGMCOOX69VtRyeaa8HXDB9JABes6d6lqt36flZWToEmQMQzMWovOv76t9ZCYbgkMOD1mpnew0OvZCHg/0mr4WqBAPAJ5ccUIZcRPV733AhO2Hg6Arm42FOCGYlUjspCm/7oemba845edr9ixnwJsOYnj3BrG1f61tknGHCufPc6AI801FvVTSXc+TFInD0veDE1X7f2rsE3nhYGZmTYZz54XWmvgPtMYHDd7MS6s5xzXj8ixmqJpCGCBJrFZ3hv6j6FtdloWiqzGOg6BIgIj5xlw1sd4aSKbs7Kg2yQPfxqZ7lyuMPJb/dnISV+8d5Dfr/dC74c4KJjKI9BEGiuaufc9bM9XiYcwnHkplwsxP4/LFfV8+YDGPVgiF8Zum34UbjHNmGCyDiK9n4PlVkjiJzgDo/6WqN/Kq9fduxYwcKCwuxcuVKrFy5EkVFRfiXf/kX6zMvvPAC5+wCwLe//W2UlpZi1apVAICPfOQjKC0txdatW9/2XfPmzcOtt96KTZs24ZlnnkE4HMa6deuwfv16zJ07922/+7PaOzIOHnnkETz77LP4xje+gRkzZuC1117Da6+9homJCQAKCvSJT3wCf/mXf4l///d/x9DQEDZv3oycnBx89KMfBQDMmjULW7Zswe/93u/h+eefR29vL+677z4UFhYyx+vPa339XM13WCgzzn88bHnRvVjEMGXosDMfUvISB9gxZKi1Yf6o8UyKS+Vzxz7Mni5vPKzoLD0HSLjGy6+9g98aLuYibHQhNpSetEPxQmHwwz7uzhtB69k7sap40DC9TIWUYJkyS7uhrAM3ZV5Ql8WFDBPO18rmH3d8mMeing9WHtdU9rBQ31Kr+I79pKuMEMqXkHRwGqNP3k4vFuFxrawYTIHokNB9qP4IqNrkb9R2cv92D5Xi3oJuvC8zlpLsS38ThaIXEzjXMcOFbebPYeNp7cI+fOH4Ktxb0A3n6mk81dRgFBoYjxspz0GcfbAxdInyK4SHh8esYW007+bL4N+bsLa5CD9S32opn96lCE7/4HolxEVRM5kgaJRJ3+CEddtc3czeZfJuPVR3lPcyNYpgqRC56G40rjDJRAWZncC+zlK8Hs9lOle6NAGFeeWcHb1v3MwkK8NuNA6PktqJ1Uvil/U+ozHtHirleVpX0AtohSIv9zX+zM2Z5wFoph66iAVsjhViMX/0O5lDQsakNx7G9tZ6hmtZkAu9rx5f/Jx5hhiDn3Thj4eUDMlMWqF++I6KDFEhQx/YXNnCv39s8UH1b12Lg8ZHzGZegAVGNlImaD/cW9BtaG6nQumLUelGHl53hvKgU96EfMf6asXx72YmVc6Ehvatzh+0zqiE0mztXaKcDmGfIy0yr+Mjda14tOwIrw/BaJLxEMtkaShZirWOlO3uqLRYjNiQoEiQ6+MLXXcrmFxuHLdnvWE9lxwzJHN5LeNasctM8pmiujdudoIhSPfk93NBO57bcUWMMOemn+LQC3lcUE7mfFFrH5xj1iHIOhSUKSSnyAOvZckXT3yI4UONhcoxdG9BNxvuuzsVBIfGRM8mJ0H/yO3cb3rHlpoTah4SjroTsmyjRu75YKPPNuaZmiAEK+Lo43hYGZ6ObxikAJY9vnYMsbNFw7uIAa/5zGy+a9cV9MKZOa1+lnTwUO1RAMDBnkKO/n+6+f+xnudG44pAA3Zky80xyexwfJuMQO/h1fmDFiOUF4ugdWCugk2RU++SqonC6IAxIyu39i6x11e/u75A1ddRzkSz7vfk96N61jn783qdvjlUbura6Lnf11WKzx37MLyxCA6M5qOxfIDRDP7FDNx5y0/B1L2eY+kz3vjl770rof1ncg7+K9o111yDZ599lolxnn322ZTqyL7vY/Pmzfz/zZs3w/f9lD9/8id/8rbvOnbsGH77t38bP/zhD/HII4/grrvuwp133oktW7bg2WefxQ9+8IN3PY53ZBz8wz/8Ay5cuIBly5bhxhtv5D/f/OY3+TN/8Ad/gE984hN4+OGHUVFRgR/84Ac4ePAgZsyYwZ958skncc8992D9+vWor69HTk4O9u3bZ4U/fh7r6+ceJIVsBX8yYF+GhFvm/1NhKX34qwvOMusRfMX8QtU1c0NThlvdB1cdXae93hRetpQSAPAcWwhCCYcLiWwAhiFDJnzJy5w89/t7i9TnxsMm2Vh4Snd2VuOZ1kXYUN0GPydpsMf6MpBsL4xV1QJ5b2cZK97bWpYouNO0yxAawAgsGq8bjXNdBDmuIHe9NxnmsOXX+haxoGQPn/7+N4fKFRZcK95BVgyqaGt583MNrIsjPOL3VNNgZ1tNyncpQuRdiuAzy76tPPtTIXxm6bdTGHaY2nE8zJAlVsoc34ICADAXRSyCR0qP6WiKgTGwcur68PRank/kWHvEnRFnVhUp5YIYb9pbYUft/0dKj8GbDOOZtnrtifdZKfpa3yJ4lyKpUCzCVzsCxiLgOrzmuXHs7SwzfaBx6n3mxF04OqdmbXWXYejQCtnR03M52mAZdJp/f2XZoAXfkoZCQ/lJAIpmlvpIDCQE1+E9oyk5paG5prLHKkK1qmyA329FYhwfO1pqbecA9XU8jC/1rLDmjs6AE/IsXLObkzDeO2hDXCj52weqeS881bOcveOHXsjDpqJ2FN/+KlcrP/2D662q3DTnNFa5r3e21aTeio5IOpV85wEj/vabX0ew7R4qhXdJJWjS/gUUR3z9nLPwxiLct4dKj9tngLzRAYP7m0Pl+HLzB+3+XcYoZ3hETLC4kbLs+tbPKCJCRjAALl64tWk5M/sAan9trGlNcUKU558DoLzqjL3XxqXsY9ynmiqOwquLfXTqnILezghNAr6quE00sjJ6x/uL8mgmjBwDVNSTDHEAxsivP6JyWGAgSge6i+CNh3Exka0YyzS0xc1VkbVVC4YU9EtHNmXuiJuTwKrKfpPQLQ2eqRAbjdQHSbCRTgOTNTy8qRDDRO/J71fzoO9h8lgvm3vanEFBfa2er/7aP1JgMcJtqGpHRMs8L6YYhrY2Lef73w/p2jRJxzJkAXUPAcCjSw6xo8SLRXApmcXzweOPmTt0b1ep5UByo3FsrlOGBhFVuDPiODywwOgh+v5cX9PB5yR4D7WevRNwfKu4HAAk4eKLxxvhRuMovO2HJiJLcy+oiamtreziM0q6A0I+PraoCS/96H3qnUyWIL74X6lJ/yLa/w9yDq7UtnjxYnzmM5/BoUOHcP78eRw5cgT3338/zp07hwcffBC33XbbO3eo6+b4vv8emSa7Xbx4EbNmzcInmlZjz+gi45kLNII2bCpq5wJo7JkQv6efk1JEv7+/uJX54S2GhnFz4cv3biluMdAm0R4pPcYKTfAydKOqoAqxI9Dz7i3oVl6CmFEG4KcKsOC45ZgAW9nyJgybxZbqE8pzF/KxrrwLuzsrUuZiY20rvtFUZ+Hk5WXNP5Pv0N9dWT7Iyqicrw3VbZr1Q12OjXnDCoJESr7ow8OLnlch6DRzJtuDJU3Y2rwcayp7sG+4UDE5dVZY60wXpjWGcUHFGEzQi9qXgXcpkqKgU3E46QkPXiJyrTiRNhbBNTefVzCGmMIYBwvfBNcUnoNPLj2AJ7ob7Dn1kFpng7CvAbSYG1VeYn8ypPpNF45vlMcHS5rwtb5FKXPYmDeM/d3FbOTRObGUN5orvc/SnUl5pqwxXmY/XW5NZJ+9SxGdQOpgdUWvqQys52JtRbdiitEJjcTDz0q746cY57Lvm4ra4cHhqte0H+ACyExy4nDKGviCVUesPTyw6ybd52kNvHhIYeA1Pj1lP9FzxFwAOnJAhjb1IY3M8qZDnJRMF6qTcPEHy7+Dv+leab2LvuNfyFBeXoFND8qEFKIBD9hc34SXJt6nsNu094KyKnDGrPkUv0uZ25Bvebq9mCoqtbe7lPehF1Oe3cMDC6y9SWxDfIYnw5YnnOhdLRmhCyMGWZMQ8lPYdNLK6MDP5N0SbMFn29HS1IiS9T2ZFC7mzD+fwRFfQBt3vsvK8+Va2rMXNKTlPRlXBoLc0ynPvMzYpSyV543kyzU3XsD581H7O+Oq0vwzrYsUNHLaNRTcXvp1CcodTpAOnlu9/o+UHoPrePhy0wftZPk0Z8Ga/4CclHOWbp4fqj/C8xXcLySLrfHo80H9vL+4VeU7iWgEMRxJPSXxRgKvPvZZXLhwgXM5r4RGOl7h//xLhDKy3tF3k9OTGPyn/33FjekX0SYmJtDU1ITnnnsOTz/9NMbGxqwCwz9v+0/VOfjv0KKhKftSEImJgBH4z7TX82fI60e/l6wLQSG1rXUxe5weWnTEttZ1/EpCI+jAER6evBNPHW+whSh5k7WwONBbyF528obv7KxmLzMcH+srO03S2bjtubdacNV15U3vUgRrynsVO07SUQqahj4RRER6aOAAO9pqOVRN88rKH0wEht8h5vFgVyFWLRjiWg00dsKB0lxTZASAhf92o3EuukaewnVVnax80Bx4sYiiCIXiz/diBnIk11l66XiqchIqZ0JCp6ImskIGGXmoaH0As9esC0Jyc4uEZPoZXVRuNM4XG80Jr/1kmJPaKTwN3xgGxK4RfA99ntrDi583kSwdWdlS3KI83WEPbnbCYI9z46i86/uIzphUCY8TYTOHepxkGACwGHPoZ6sres1lK2hEATD0zxsPG0YW/f3rr73IY/EmwmjMG7a8ZBKGwmNGwBM+w0C5CArC/ctJMCuHG9Vc4ARz0mcx2DbWtFr7ZPtAtWK70hc+JY67UcUoxPvMUtwc9Rxd/E/ujQ21bQpeUdVpF4FyfDxSesxSou7J79cVxc36GocB8Kkl++HmxhkS5U2GOZpKyZQqSgMzz/T9aQMdI/iUM3MaXzi+yshSgoZNqJwRZ9a08rJ7il5S5lCsruhl/nU2DHy1PtsHqpVhAFiGAY9JK9zB6u08BxoDTmvKRojr45P13zV7TXvc93aWpRioR0/PtQ0DbRS5OQnDKETw0okw/qO9hPu3uEgU6HRTq5Azc1HUjiBvrGm1Pe76s7Juwaa6ZutRVgVg/aw1Zb3m9/pZK8sHbRgbzP1ANTNo/qTT67eWHuN3e5cU7CU3NJkSJeH3yciGjgrJ3DE5x+uqOzm35q7bfsJ9ej2ea7zxsQjj8B9bctDqP6AcCHReGkpV5NCdoeaBoockP638EZ1jCADOZIifQYxg8GCKewZqMwBgGbGpttl42YmeWkMm/753qaoNIyFWgWrmgGYrdGDdffzxpMNRM5rbTUXtfE+70TjLgNrZ53h+vJiKSJNhIHWIIGRzW/MSa2x7uoyj8emmpfhv036JIwcAMDk5icOHD+OP/uiPsHjxYlx99dX43d/9XYyNjeEf/uEf8PLLL7+r577nIwe3fOnP4M7IUF6yCTv0trJMea79ixmWghts6uJUtIs7W2ss6k7AHHg3W/Firy7tQ3YojnlZr+Evuxot7/MDtcctLnnyZLMCEHg2ewBc2wvFClf+ICc4pnhT38bbBKikNImf9MYi2FzXxMJTjo/GhqSDm+54HT/8/vtYudk5WGHmCcZLsbHO/I5+b3lkpnVY2fWxvqoTuzoqlTJ+IUNVEA14DeUzUp6pvV4rSoZxuH8Bf2/Z3NOWJzAYfQBgKSGX82rLvq+p7MHezjI8tvggvnxiJeCr0LBM3rLmQveNvsc/D3jSaW/Se8MZSSQ0BeaW4hZF+UkebOG9DHqa7ivqwPaWemyqa7Y82W83Fjg+6gtPo/XsnfCTrk15q/u/qryfIzjWOgb2mfRAyvkNNi8WwfrqjrRJbyke43TeVRGdSPcZ9izquZLz5CQdUzxKenxpHd7OCy1auj7J6GFKcrCYp3UFvYZyMDinpGjRe3WyftD7jQwPmHTZELHGrcfyUOlxlXApop7edAjQUC/Ccl8OLw6AIxTBfsu+L5t7GkdPz1XyVDNdkUIfjEzSuZDKv/yZNSeBz8nPUpST5fploqf2oilZyrJXRBY4QkIRo3RKPpD2vAajjKsWDGH/SAE+UXYYX+pZwQYjMfPQOj+66BCealuhIKHiffKMW+/WBpUcCxf/0vtcepXvK+pIKwf4ecyKZM/j5upmjIzdwDkQpHiTdzk4Fw+VHsfW3iVK/jTXs5c6WDiSvlM4/xWcfPnG1PMV2PcpEUIZPaY5nwyrXIhpV9UHov0X+DzdLQBM9CzgsU8nT7wJ9XxSsOHruZfnk/aN7L+OjFDuGn/GVUYUQ54vGeVddRRWVCTdnpNnpWH+KA69kJdyHwb1BK5/IfbOY4sP4svHVqaNyKmI6yW8/OCfX3FedtLxin7r3UUOBv7Pf//IwdKlS9HZ2YnZs2djyZIlWLp0KZYuXfoLqanwno8cuDlxFgBUGr2xXGGKCdISrDBZfddLqL7rJfUzUSXyjXgUjpfK/0+4bW8sAiQc7B8pwK72KnzuxGrrc2sruvF081J4lwwWly4nYj9oFNhqQGE0ydKlJETAeJv3dihl04tFsLGqzeKIZyWFvLJjEcycOcEehpRqiblxPNO8yOCv2fvo8/y50The++ks9eOoosy0nkFe2xmqONUnyg7bl78WOg+WNBnPje9gV3sVX6xkGFgFcLQHi/8fEOTkKTw8sMDylB89PdfC+VNlaq78HDQMtJdUXviNecOWF+nbzeVoLB/AUz3L2TNPytKDJU24v7hV4TvFhehGDUc+/fzRRYfgRuOonX3O7B8xNjIMALBBuUZjhiUzCT2fPGjbW+vh5saZk97yVov5hOOzYeAkXDT3zUNj3jCckAdv3FBQ0txKb5S1ngEDlPIZgkqZ9X5tUO/qrExZ101F7UjXggmelzMM6HOfXHoAgKIzpv7SH0qApP5ytCXpqGge7ZkJobjoiuX0HpIjlmdbstDofcW4bME25o1FFG85fZYudNGIGpL3esAYXFXeDzeSZI+pbKV3vMJK1eClm1mG0NlzM1RRJ2fWNOA7WFfZZXk1g2tF9J3pDANqhweU19+XDg6RNOzFIoDn8D6ln0nvZjpWNPLIBz3uwedLWRB8vlXEUZ/vfcOFjDnnYodUiM2HhbWWOVR+0jX0r554TyAp9zstZfAuRfBE88qUfvF+Sjp4qqlBKZAeLEXYzUpwsi15+ykn59PLvsNVdR0NywHA3uytzcs5t+bZgSr45zP4M+SB5jVJ2hEyNxoHPOVh73zxdt43XixiqlULb3z1wrPwYhFm/NneWo+VFYMpY6bqwFTAj4vCiRyH9dUdVtTn0brn7c3gm3PF0WktDx3PgXPNlKIAl7ViKGo9YYodArDy10jmEBEF3wfEwKWjWzQ/Ki9PQTbJmOK8Qto//H4YYgD6nefAzUwygsCdEeeIgBuNo6HspMWWCKi98b8rDuCBumO6T4ZcICT3qkimBtT53TdcqOBOuXHrHDz5gW/gy00f5JpDMmGc+3WFJyT/MkcOWlpacO2112L58uX4wAc+gBUrVvzCiq29540DqUQSl3aw2AiHB33FfNM6OBeto5pbXBymQy/k4beWHOPQnSyFzkJEJCZz0wJHFbxRQoZo6VbMO6WEkKZKPdBdxIKRwqMkiA70FFoXIFUxpPHtHKyAm5VQl3+2YcFgtpCQj/M/nGldlFzlN+BVpWcqajMgWMZeXoReLKLYHCSsQZebf+LE3ernAubixSL4Wt8i+FSBU0dtmHZRt2UlpmKkm5MwnlztDSKWImudsxNYU9pnQ4N0KB+Ob6oYUziXErdoP2jaOwlP2N+tICcPljRZHNRkZNFae5cUfOnr/bXY01lhir/RZTZuz/VTrR+ANx42lWVpn6bx7jXmDRsDQz9vVaVN1XqoL9+aY3l5ymJDai7AkRY3JwE/5GNx6Sjjp92chKrwScamVL4DHlz6mZxzR1dYvbdAccvfnTdif197j93sBHsYiXJy3Muw5ozWxcr50HuSCwBRCF7syS8eU1G7HW218MYiKvkzTfNiEexoq1V90XA3QzUolE79s2VzTwOOjwO9qo7IQ/VHjEcuwH4ERxQe1HtsVdkAG8UArOKItHarK3o5ST+4H+gz+3uL4MUV/aA3ZmqMuLlxrtXijSnmMDc3ztJ+a8syax3daJzpGIPnlObgqqtiAGxK25QoSpq6G3B0kuolVajLjcYRS2TwOslohywEJw2lEwPzVdE/Mp6FUSf7wUmZ4oyxDPMB/60MKwHbmwwjBC/F0VA7+xxHWeAYD/6aSkVbqmB3forC6E2EsaayB/fk92PVgiHNvGMbR2zgXVIKpZ+haW9d9a61C/vUvaL7uK+v2CSweo5iYopF8ML4DbxWzjVTqrhn4QgsRrRcAymk/AFvPIx/blrMY3XS5OI9VHrcdmzkxtXeoiTysQhWV/byvLWP3mXt03VVnezFZshZLMKsd/ULT6O24IxxWon9P5EUcsR3cCGZbe+zsLkz4JlEc2qmuJjZf3yHS+N8Mqzr96gfbh+ohhuN4yN1rSYpfCLMCdOyngbvTV2HCI7PRCDc17C5K4mmlQ1KB2xU7ukxBckaKwf4jjh8ap6hntX3qheL4HPHPoxt/XUmSgYACZcTjBvLB+wIBMz+I2pu2R4/uBHwHdx82xuWA8ii9PlVQvIV286fP4+vfe1ryMnJwRe+8AXcfPPNKCwsxMc//nHs3r0bP/3pT9/1s9/zxgFcxS1+X1EH03sRI4K5/BwO2RFDEBUtCnpzKYHnqaYGRTOnFZR1Zd2m/Hs0roRDUtGEyXCdFLpeLGKqkmohIJX/PV3l5iLUXiJvPMwsSbvbKu2QqxZedPk7cZe9Af6FjJQQvBeLqOqwFAqFuux+a+kxc8F6UHACTXMWVAxJad3WtthiIWHPDXlNfHGpC4+zm5OwhKYXM0wyx0/PUbhMGt8lcYl7DlfQvK+oAytKhpmGbt9woaH2k1tBeu5kyNZRDBfkuSQlMXhpfq1vkRLYV02ruhjkySTM6AzjAV1Vrg07DcdKp/CvLdO1NSjBTUJzJJNWLIL9PUW2YA/5ODCaj821Tfj00u+YfBRpZGQnDL47kjSKEsB77XD/AniTip3lxKBiNfCTat/UF56Gm6WS9TdUq4q0OQPZ1hgsrLSgwHNmTQOeo/JHchKGHYPWL5BvAYCNaPJMW3Obk8CyuaeZ+pCqzjLsIgBdYOWI6mrkxjHlm1wQy9NLnmsyNGhsZNiNRVTFbCgl6+jpuYALpjre2rYMbm5cefTEGfYvqlwVpgHVY9nfqWpfEG4ZnqM41enMhHzsHynAgyVNFrVs/Zyz1hlCUldg1RAE6dGn70lPKHk5Fxe9oIp9+fZ+kRFDeo+v8wzOn4/asmtc7GnXYKNpfq2o0wy13gd7C+DFImh/8Q7+LleMJ3iMbNrgc3MSiF49YaJ3OcaIIXgGGZzelKI8pfMHgNmK/GzPOAR0oTX2hIuzNTMyyTKrfuFp3mMM34yHGIZDc0GsY3vby7Cns0Ix6IyH7aiar5wmG6ra1c1L1JG6ubmqgvxv1rUzVMaZDFnygaIge7rKFUWnZoFycxUlLLPNQXuQs40xQmN0Zk7Dm1BV4H2qcUJKK4CvNq8w49K/2z1Uaoy/3Dj2jxQo5iOdsC7bnpMl7DSpzH+R/01GYvPAPLQOzTEVkhMOz+3+kQJsrm5mY/HZgSojKy5FsLq0z8wbzb+Wab6GlMHx2bvOTjQ9/+pv5fHvH73NivRtKOxieQXAOC50RInuKb5HRO2ZlCbrpVCUMuKB8gM5MTgrwU7A50YX8H1ActSPeDzvnE+nq74HjfG1C/twU+Z5i8UqGI3k/DiSUdox94OX32c9i84JzcOv2pXZotEoPvShD+Gv/uqv0N7ejtdffx1//dd/jZycHPz1X/81brnlFhQUFPzsB6Vp73njgKo9PjtQBarASJekG40r5V0rUuwJth5gPPPUPlF2mBWcLbUnFJNPVwU+VfGcKbzlKSH669U9/NwV805x2I6834Dt9W7MG4Y3piITcBQzCPEy31/cqoyGzgr17xnG08UCDODkOWeW4oze312M31pyjMfJQ4vG0fni7Tpq4rDSRBVbAbCAWFvZxUlsc25S1qh3KYL3ZYzpz5n55r/Js+Zrb6mG82wo7MJjiw9y1WEJFyBFzs1JYEtxi0ryJG8mKd/kpdXCeXtrPe7Med2qDOrOiHOZeoIEBNdXhle/OVTOnkupkMkmPZQ7O6uVh088nyAAblQVeCPaTP6uVrTIgMgNTymPem4cK0qGeU69WMTyPNE6sDcLUNz+YxFsH6jGF7ruxu6hUi7+JBsVYaN+c/XcnATvK/iqCjOtnRNS3szmEYU13j5QjasjynM8XjShlAIdXXFnxNVel4qiVpak95mS6ngNxEXrn8+wE0iB1L9jEVXwLmIoCnkdhQeakgktpVe/c3trvVHYHJ8pOFnh1gbHlkXHrSqybm4c2ztrGQ5Ec0a/IyfA0y1LjcISi8AP+ext5rHTnEHBLwBgc22TbbhqyNjW5uU42KsEu5udUBEAkRvB3lGtPMpEeIYZkFHuKi+nG1VVk0//4HodTRD7zIWJ6Gj4gx80lvR8bq4xRjs7REhJdxQNszRw0yVdehNh7O0sU5FOTQhgramYk4lYBuCCI1EEFakvOG3BAFcVqwTcmzLPp0QEJGwmpT6CqCNyoLuII4vB6rUzZ06AquOScbm2olvNrTaE2NByTM0aOtNuZtKwjokoBn8GwjjOSnA+yCfKDlvzTYX9vtr0AZYLEvrkxQLMaZSTouW8m53AswNVZm4E9IWVQoaGiSi7qB+xf6QgxTCg9vCi5wHXR+fJu9SzcuOKcliSV0yFGBZHsnNLcYvKeXMV1NFqYV/VLeE+OwZiOSmqzOckLEbAPSdLlBFKn9fOJTcnwfcUAJM7NxlQqImSWvZdMCVxYT6A6ax52iOCESwzqSKq/Fz115vxKMsWgjQS+5GsBUMwYEJAyPts1YIh7O6swPcn3of1teJeTZPzZEUFdbv19tdV4ruo9O0kHDZcruR2pdU5+P9ni0ajuOaaa3DNNdfg6quvRjgcxsjIyM/+Ypr2S5GQHL42lEozCiPcg17dFfNO4VB/vpWcJT0wqyr7sb+nyEQfwpoSTdCEAbCS8T5V8Ry+0HV3WipLq290aAnGo70k9XPOovnMbHixCMoXvojel25ljwxFKciTH3aTJpchajzk3lgETjQBfzxs/RwAU7kybahk6dBCKi2dHIU3k4YW040qZpv2wTkp77lcoikZVHCh5jPhYnVFL/Z1lVqJg0HvJVzYSZqBHAKrrzLxLQ3t7GOLD+KpnuV4tOwIVzXl74okz8bSQcNz7oAVKkBBF5yrp1Pmfl1Br8GYywiOoN8DTJI4jYOSgxvmj+JgT6FFyUhJaMG5pEbfkcm3/Fm5vpQMpxMTnaykojIF7MtwwgWumzJjEwmYaRN2ZSLgxQwgCfgZvone6UjUJ5colqUgXe9lE5npuzJpWJ4bz96L6fJKmKlFJ4c6SZ2YG6Az5HdqD6l/MYM9r/xZx2f4yJK5Z3Btxhj2nCyxkx/JoNX9W1PVo7jRRQIrOQyCPwt6AS+XOMx90u/YWNuKHe01cHMSWDHvlF03JeQDcYFVp7nRc0uf50Tkn2YC101ddq95MZXLJdfv3oJu/GhqFo72LOA9fm9BN3a211hGvtw3btQkvQYTfFMcN9R8gJJDg/AzedbT7gMx35woKqkqZQL1VAjXvP+iYcER9LGSKjddlNDqD8ltkTOTQq0ci1hn3RuL4KFFR7gKMZJOCm3y2zW5/+R4G0pPmn0h1nTFvFMGpkiRGh/W+Iju0pIDfCYAJ+FYGH8ARtZohdrNTFrEGOnkNgBkZscx8XoOr8uGwi5LmQ8mbl/uOTy3gHWvW7+X8kwnLctGyb0kC+S46Pvrqzqxq7PSIkAJnhdea5HsnO731lgDd7EXiyhSgrjD0SYqrEoOIGfmdFpyEmv/iruMGpGNeOOTV3RCcvGmd5eQ3L/9v39Csud56OrqwtGjR3HkyBE0NzcjFovh5ptvxvLly/nP7bff/o6f/d6PHOTEMf+WHytLW2McH1v0PT4EjeUDKaG3w6fmWRdE0DO3v6tYeT7pe9owAMAeNRbGngP/fAbeSkRVhVNBV8jKY65imJEVFglug6SD+4o6cKLXMBH0vnQrR0DIg76uqhNeLIL/aCtRhcvGAooQlMfBkWazMAu3D1TDG4sYzKFWHImObkON7REhCI8bjSsIj2RAADgisaW4hSM1NC4KL0sBqLx3+hFaGO/rKoUbjXMhNrqEvZj6fmPZICeZ3503gi3FLXyRudF4SmVg6WGm/q5aMMQC8stNHwQAPNWz3PLKrCvotSIjz40uYMiJhJEAgB8JRJq0F2ZXu4pcPbboe7xm3C8REdjdVmnWH2C8OhsBAi5FMA32aOt5vjtP5Woc7FGhej/kI0wwOcGsJZNGG/OGbVhb1EBteL5IOfTB9KkbCrsUTAKpFzIrDFChdedqoyjzZe74XJfhQJeBTlGkxfp/sOn9Qu9V+FyzF02Va0cV69IQNSfhwIm7HCmA46vwui4qpzystmfOzUhyNMCLRfBAzXHrrHIxt35jrAUVI/Lkubl27giNc01lD+fABA2AFJz9mKqa6sVDTPlI72gsGwRCPn48NROba5rhxSJ4vqPAjEdgbq3k1HFjsFFhQfia5lIbhfI93Dc9/9IwWDb3NHa21eD46TlwZyjIlTehIm5ciEsmCUcNjI+qW/P6+w7Dyag9tvig9R03R8FM0hoRIUX/StEGNsQru6zPr6vqxOqyPiv3oXrhWTP/CRfnz0cNlapn9pgjyRMuRaxCe/R/AAwxdBIK2kLzt6fL1DDhQoCE0NTRrq1Ny81YHXMm1i7sg38hg8+9HD/9e01VD393Q6Eat5N0LMNA5pQdPjUPROfrXYoYT7tYA/LOrypTRBmbalrw0KIjbPR8dFELy+rgOyii78VDNjFGoCL075crGtOpiYg5m4BFhLG2rDs1MpnG5enFIiYxWxeADJIfUDSTm6bylb8ndkEqlAnAjvT6DsOwGAYZtWGLbBhciqCheDjFyfFA3TGeOzYMxiLpnXT6rl6dP8j3yoaqduUMnDnNOoYcgxeLmGrpYszUVzcax442VWtmTf5A6mReQc3x/Xf1573QrrrqKtTW1uLv/u7v8L73vQ9PPPEETp06hZdffhn//M//jM2bN78rwwD4ZYocpPEkEE57V1clPln/XTzR3ZDe46w9TNI7yhSAwnPsjUVSKC0fKT2m2Cio+VCsCtqaJ5y+m62YKfZ1lqZa+MSYlBvHpqJ2PNO6KCUiANfHxuo2PtBBjxk1J9ODH3dZMNBYCVM9nsxQyYlpLn8rKpKuaAxRrQUVmUs6pC65y6WnRVLBpvGY8HcCtIiNecPY31PEHr90RZPo+TLy8/jS5wy1YMDTR+9fMvcMjp+ew9/fUNnOHk/ZZ3gOlpWMmM9exmOVtl86WkKeNGIscnPjXOBOfpcvKQ9AxGfcKb3Tv5ABP+ybZwa9uwHqT5qPYMSL5vbAaD6z00jPkyyQQxdxusJu/F3yygKpZ4v2kXiG5T0V6wqIPSW9sPq5XHRMN+kdpkuVxsFzJc+18BIGKRvpPVvqjuPr/bU2Dancn2J+01G8potqpRtLsEnPPwCmbpx54yVc/HEuQwk3V7aYYo76fWsX9nGdkuB75c/uK+pAbmhSsc6QhznhqghDdmq/aYwAOKr2QM1xPN2yNFVepPkuRejYyynWhAtV6f5ddVUMb756lY4SwOxx+Y5LESDip/UiW0XsRHSBvNYbCruwo7XWppsMzM1rUzNTqrwDaq/clf1TtF+4Eyf689gxQcYSPYeV40T6KCz3VZ8FWsOH6w+rei7ByIcs+hWIolrn6O0KqF2KYHWVKQoo5U7KZwMRLngOQmMhJGclIKOnaed93KbxBoyzzs1Mcg0OinQFC5wBthwPjkHKu01F7Qg5nqroHKCl9mIR9ogvmXsGR/sWpEbP5D0W8q3IQYq80xEgNnrE3ltX0ItdvRXAlGuihg6AhINHlxzC3/cuhf9mpkooFzIgncymwqDW72g9BM1wiswRd+bj5YfwRHcDthS34I14FHu6yq27mOV1oC+JNxN49Xev3CJoJff9xbuKHPQ9+4dX3JjeafvHf/xHLF++HPPmzfvZH36H7ZcichBsJIh2tVUhx50Gko5lGJA3lp8RVRi/9dUGy+fMmubkIen53dVeZXCxUAwBlocrN45fq+oDAGypP268m1AYzqDnhLxG66o74Y2HMT/rR6DCajLygKRj1RSgdwEwXn1oPDklc2nMqzcexvbWemxvqTfFzvR4KCdDKnjmYcZLvmrBENxsHWnwHfvC1hVayUPhxQSMBUrBfbjOYGrpQt3Rog0d8moEhN7+7mLjvc82yllKElbCsZ77pZ4VlrfEfysjhcbx+Ok5it1E948qNvPcavpaOD6ODualeOzkszhRc8LuF+0r9UsTjvfPZ9gXtFBU3KiivKXLWUabnFnT5vcwSgMrKAG8qTIqYc2xF1PUm8RaxJeFvgx9z7ErfOuL8qHS49hQ3WZdXv/WUs1jkmcAUMotMVw5Wlkib7KltNK8aC8m9TGdMk35LZL9irzDcFXxLNpDvutjfXUHG5beRJgpj71YBHs6KlKZmjwohWMsYgwDHUHhuZCGTci394TEPEPBE5bMPQNKvH2g7phZs8kw75dHSo8piI/Y1+V55wAHGLuUZYy6hAsPOndoOsR7a8oLp8w9NfnzZweq8NUTH7D2A/WbPuuNRTgJFoCFf15T3ott/XVGwcpJqOiGGDPvvYmwqhECYGXpkNpbYZ8x28QeQ9/jSreaHWZ9bYeSNcKDLr2vJMM3FbWbiIImpJC33p6TJfCmQkp2poFHUt7ShUQ2DnYXIti88TD2dFbgie4GnBiYz4nQB3oMDPJPl+0xfcxKYGNtq5WL5MUizDjlRuMp+UZEESojaQ+WNNmGcE7CMgzo73vy++HmGkw/oOCG5JV2kop6m+TUzgA1dVCWksLvJFRlYf+GSRPhiAWirbLPnoOnm5eqz+nob+HcV/H+m84DUHj/HW21lqwPnvP1lZ3cJ4vGlOA4+l58pr0e25pUIcVgjYSH6o8oh5OW8fL566o6dZ+F0RswDNxo3Ha40Zn3gMoFKvmaEqAnkgR1VH81lqm8B3dGHH/fuxQN80fhXKOisU7CMREWOef6u5ZjimSKnls3kuSicilGoCh098VjjbivqAPb+uuwp7OCz447Iw7fd7Crq5INHmmApqu1cSW1X+acg9/+7d/+LzEMgF8C40BehF5cRRB2dFUzxu6ZzjpzQVKyZtQk8rDHMjuB3UOlil5zzEBbzHfNpbKzo5rfe39xq7qoAU4O3N+jKv5+vb+W2Qg4POkaphFFwaceSqHXTx/+TYYm0KXrjYcVxdtEGIuLRxWzjDRusjUXdk4C82/5MSrv+r7Bj2pWgjWVPaw8ulHDdOOL8u6AguHcddPrWjE2ysW+LqUsKd501XdFf6dD7xqDSvOr/mGqgG7tXYL6OWexprLHMI3o+bw7b0TBXgClcI2HsaJ02DK4AKC++BQo/E3KgTcRNpctsURIIRz24Gd5fMGtqewBwore0Ll6moUuUeJRI7iVMhBJ0VdKaeVd3+f531DdpubKc1JqGXhTITYGeU58A02iRvMhEw7dzKTiiw8JakbBLmIWPz0EhOZX/m5dQS+IepP2rBeLoL7oFH/G0Yp0sH216QOsWJBy+7FFTWlrUwBKSdrWsgRwFSOHNxHGhqp2uNkJk/AslEpO3p9U3jylHPnmfVoxcXPjArJkErLdnAQO9+Wb8zxDsfsoZVEbWqQ8Ev2hxu5yzQaSlrKWgWC1emDRMbVeC4b4DMEHQ7qYnUv3ed9wIY72ahankK/w21qpdrOU8XlvQTdHHgky58Ui6H3pVrjROG59/1uWkfTsQJU6N9MuKJlxZnjSJBNrvDrBW3jPUBK5GE/9nLNwwyo5nRmXclVVcqtpeBAxzgBglq6dHdW4466fpHjQZRLxwf4C/t3O9hpOrPfGTKX3zOy42a+OMlr9kG95bWmfsAzLSagoSsAAX1USgElQ4qvvMOOco+eIckn2dtkRXVKmnSkXcHzck9+P6oKzBpYposmfPfYbPNbqu17CzsEK9XxxFqnCNf3bRAn1c/R6udE4GssH8LW+RagvOpU2yiR/RtGv/SMFfG8d7C9gI4QoTmm/kkHEZAWOUZTXa7Yc+E4KpIbe+eiiQ/Bi2njWa7G2sguOp4zwtQv78MAiZQSffPlG/PjVqy0WOu+SosWWRAT07F2axpWZwvSa0VyRwUIKuDcexqcqnmOmNTcaZyY/y9Gjx3xb5pssK+isWgm5cp9R5J3yJxyg+9xtgA/s7qrgOZfrcTGeZVWOpyiUF4vAz1aJ2Y3lA1hboWFSou4BGwbjYVbeU7RcQacq9w/Deh3lAKi86/uqX8JwKrnjFT7H9Ld/IcOM70pu/rv886v2tu29Dyt68s8Qvk4rOukSl8bDWFU2wAnG/PNAVVUZogXAF1U6j/qq8n7l1Q6GK9niD4QlA1AZ8toGv5vuIrjczwEVMt/dWYHGskFVIyFNIjAAK7xKYUj1odSKzPx9CVlyjKAJJv9dLtnMSmJzwd59uoApvK28TrZX8LPLvoU/PbaG18EKGwdCzDLcHlxLa37TVDzdVNSOZ1oW2VAR/bn6OWdxYmC+mqukg001LdjeUm+NnZ6v+imgLfr3q/MHsbe9zOKlTrvGtCY+2AhdmPcKRl654WfuAS8WwbqqTrsStlb4m/vnWfuYIylJF/6UywluTLN7ucq/tI/d1DECpsq33EsMYWleYUG7rD0SM7Ci4JjoMxsKu/CjyVk4enou7i9u1QaH6gf1eXX+IK6PXFJsQoBOxk1N6JQVU4PQLG8qpC5fAUnhhEx5vnVS/drKLg7bz5w5gYsXFQWshNNZ+09f9hur27CjqxpIuNZ8Ge53AL7D1d0BmGRRz8HqSgMRYZhP6xKsLu9jes10SfwNJcO4JiNm1TEA7P1IycTOtGMSy4XBV7zg+xh8+Sb+2bKSEVwTiWFPd7klS4DLwCTE/AVl64wbLuHDdwxZsMn6OWdxXcZYSsVenhMpF8T5vtxeZoUL4IRfmThbO/ucxV5kGTwaOilZjEg2yHnkSr5eKkmA7E+wIvbdeSOKRYneF7yXBOTmwZImbG1enrJ+1vN17Qcn7sKZOZ0CH5T9kHUaKMlYzhV9bkNlu4FCprk33dw4/Lcy4Gf41jlKWTeI+yQA/QzCIOmeLr/zZXQOzbbGm5GVwLR2qEh5wRj+hAtXO4JYdumzRvPC/QpUpJcyM3hHe7EIPrP02+gdu92+y2k/y/ssML9uVMmrvZ1lKXclP0fevUkHyPQ4J6q+6BRmR3+K7W111j4MnndLZ5GQOw9YVjaicqcoUjs5gVcfu3JhRaUffXewot5v/PeHFf1Xtvd85IAvdiDFMFi7sA/OtGvgKbp5MRNKI6vd4ofPFQIvx9D4UXhxf1dxSqVF+SwrKTlX0KjKhGCAubO98TBXFU2BzDi253jJ3DPK2zYVUhAh3zH8yYBKzgb4eVuKW3D89Bym0lTc8OrScKMqHP344ufgjYfxaNkRfm1t0WkAKgHbogUkXLd+356TJeyFsi4qR9HzranoVV5Szc9NlwpdMm40DmR6XFTNjcbxp0fv0R4Rh71dzJcOnT+hKTWtHAnHt7y+lOzmX8wAEo5VjZSb9orxvHvKo3iiL08pMZlJIOlge3udgTQ5Yv2g6TVFoiz1aW9nGeDCwAmokBfREmpP0OrKXq3sOmgoU+sWNAyC9HvkYaY1AGDNUfPQXJ5f8pbJ5uYkMPfmn2B9RSfvUy8WUVArkWsiC29RoiQApir1YqpGA3vftULx7EAVxpJZIMgZjcWJ23ksUknwxsMcsaEk7J2DFbg2cwzeRBjb2lVxpxVFI1akZ99wIZ5uVfVJGDogID/saSOaQddPgWaxgqIvzHUFvXi6RRUVouRBN2ogXXs6K4Cwj/uLW9kwAIzBQXAV5vKPxuEkXKW4aMNgXUEvagtPW4WdSN5I7DsllxP/vNyr2/rrsKmmBftHCjgRlZUcHeGBrxJTOZKi12h9dYe1J3Z2VivZcLWoMis8m/2jt1k/O9q3AN8aLsaKohHLwHGjccUnH41j7cI+bCjsUvAfwmSHVERxVdkAPyt2KUsZBp7x9DafmZ02L8QbD2NNea8tbyTBhGPWPJgT4eboJHW6GR11xr2xCM5Pm3WkM8uwUAHP8y8oKGZ1/lnLUwyAIZ3pDAMAWFY8auCWWSbSeKDPrq4u97I3bmPxZfE8ScvMdJ4TYTSWDCoYqO4f06cKOlAA1tl0o3FOspdzRQbXN4fK8amK5yyoIzVSZp2rp/m7AHDjdRcAqGibdJ4BMFG0aBw3X39ePYccKb6uIaT3cve52/g7BNGShgEl3lMOmxeLYF1xD4/FmTKqEM1LsJBm0OAh59dnl31LfSjkMwz3c0c/zAgBGWV2o3Gsq+k0MidATNGYN4x9w4WKOnwqpGCHLnhP/O+KA7weVFC1fsEZVuybB+Zhe3M9JOR0Q0V7ClTpofoj5qxrmeZog/j46TkmwV/I4Cu1/TLDiv4r23s/ciASkoNeSOKilp7hYJKSbCvmncKhnoXG20qeLoKtaO7p+4o6VHif3jMZBlEmpvX6BLzX/L1YBOurTYJz0HsUbP+74gA+d3x1SpKtfN7Nd7yOH7x0rfF2ifFzeFd6ZoIJfy7YE5ECFUg3Boq0hHysKe+1KEnvL27FttbFVn/vL25VuG6aW52wLXH3D5Y04Wt9i6y589/MxEeXNisFQnq0Asm8cl4+W7kPf9q5Om2y8M9qMiFben6DSXdy7jky46Su3+X2BKBpDjsqGDu8r7dEKb/k5fbFGgaTlwHbyyyeyzR39Axfrb2fdFXSOtGCEhuV66cY0ZyQJ7xhacc9HsaW2hPY1rwEjucopUR60MibJcZCUYH2H96OiVgGGw8Eu3p00SE81fwBE60QY95c24TtA9W4v7gV/+fEUlaCAGWs7WipZcMkCBdxo3E8Xn4IXzzxobQJxIDx3vH/AxEB67PCQ+lG42ws+2GNYxR72xuLYGX5oGKakt5Mva5EORxcS0AZxdtb68E0yHHXnhc53zoSQlEcqrmQTm6kUCkG+ivl4cOLnk9JnrUoOUWfP1F2GE8cv9v0kRQVeX4vFzEVBhvtra/316adF/oZPz9wD1DCtiXHgvTSAXglYGSAoXwM0FgD4ERUoknV0YAUyuM00ThyzhBrW0pUzRqgWVtJF0tN0urK55NM31Ddhm8OlVvf5fsmcEZo/tN6s8W8+RczzLkj77Sc16mQOoOTrokWXWbt5M+88TAeqjvKd4B/IUNVmr4MIUWwpTurQUIISaIRHHc6EgvgMlFfnSwcpM7m6BBFgwHjWAnsU0mOkDaqKShJ1y7sw+72SjtnIzA2wNCxbiluwdPNS9+eXv0KpzIt+8i7ixz0/OuvIgdv197zkQNqbjRu0UCuXdinCtZQkqb2SnKSEiUjau9BY94wDp+ah/U1HUaYR+NqBsVls6GwC7mhSfVd4S0ibLpSyE1InirtPlR6nKME8pBSmN+bCOO50QXYUmdoC6U3wLsUwV92NYLLuev3W96PaBw/+uks4/kQ4+f/k9ChxDApaKmSvFZKyTvFQg4wXh+ibXMAR3v493aWcTVeLxbBtuYl3C+iHY045tkryoatKAs1uhRk+0DNIHYOVqjq0a5K/uIKtwKvS/PmxSL4087Vus9OCq4yWBk73e/WVnZZnrzV5X2MG0+J8Oh5eXjx86z40nOWzT2tvdJmzVjxgsINr65UHvp9XaVqP5FhAHBRLx5LTFVo3lzbBDcaZ0pT6id9j2nuonGsreriy2nGVeP8Djdbe1EdWAnB9KxlpSPsMZeeW/qbL/ycBH4yPUNBCwSFJfdLROAoujOWzMThvnw2DNxoHAVF32eP11MnGuyIjFiL7QPVeLTsCLa1LYavcfP0+x1d1VysCg4YV0wRRgB4orvBwCrSXPpB4gBERCRCr9s9+f1qDiR0Qc+7M3PaOls8T7lxvE8XnLMUE0edcTIMqM29+SecWzOWyDRzmZnE6spek/8QjVuGgZuZZAOdimE9vOh5Xl9JA0yGAeOvHR+fWrLfeC913zdUt2Fr7xLLW91QehK1+WdSxvlgSRO+1LOC1+6TSw6YPaCbTAgHYMuynAQXvIOjKtfzWSWihZiiruQ8k5wEPrP02yBKU3o2kTAE18E/LyKevsNOIHo2RS0pwZUjhiT3ko4Fn1lWNMpGknP1tC0jgjJIn+f9IwW20SLlEXl2o3Gsqe7hnKSdHdX8WW88jBXzTuE369v5/zLxn84BRWopogOoir0UgeNIF5TxYRkG4+EUwwAAPlzTjY01rdhU24wttSfUfLo+VuerQnWFc19VwxCQUb5PoOBRJEOiM9SduqGwC/Ad6w7gvD1NDpAiy2OGStZ6XzDaSrl7BL0LOOr88xkIQtXYcHF84I1M6z3WWjkq2shQIL1+nOfC5CG+OQdaxHxruJjnn84x6Q0AsLJ4iP+9u1OdVYpWqI449v6MRTg/6OmWpSn06oC6U+7J71cUwFd4+1Xk4L+mvecjB7d97Y+AUFQpUxrvKTH+P6tJxTfokQVsb+1nK/fhs0fX8s/5GQFsYpAmEVBetC/16LL1ad5h9Un/noqDcT910hd56IPvX7VgyOCRhcdqVdmAhY2k57nZKmwa90OYFZ7AswNV8GIR3DXnNbx49v1YV9ml2D6COP9YRJWKj7vGaJDKlIygaFxu2qhDENMpPD6UT0Hrwt+RuSKOr/ItOovSe7V18Zn1tR1WwZq08y2KI1meUGatIO9PespEq0CVzpOQeQj8rnTFaoQXcf9IgfEESRy1ZhDhojw0dwHP7uWiCIC6eCNOEv/cW6uSktPgbAHjeSPPIP9cFvhzfJWH0VqfXrkJe0DSwYriERzuyVfUrKJ6M73TKtIkvcV67HfnjeCmzPP4en+twVpryf/4ooNMWUvPDFKCct7AWARb6o8b7zNF+/SZClJbSipTuXZEtUmfu6+oA//SW4NfWzjEZyyIh6cIjn8xQ0UTpGc+sNb0fblXvViEKVat30tsMhEmpNuTRBcr5M7lvPWlC15C//dv4fWRlaLJ6KCzGcSs31fUwXk5Kc+mMyZw9tIIlfjxYISB9gwpdesrOvFvLdU2Zjw4ZxNKSVtV0Y/9ncXGcy2KA1pz5NlKpYXhlmszpj3OWQlU3/USWk/OsdeC5FPA007RUG9CQaKoQB7NQ/A+2VDVjrhvagTI98o5TfFwS3kssfyU+5V0rPOarlFBzob5o/jeyAL4cZdZfbxLETi+Y8kFQOcddRVz9HP/SAEq7/o+Ol+8XdQEgpKtJD8vQ09t5avJfLeAp9z3HTgEZwzCgXPjdmRD5IdQFMWSWZqCVuoOwfsp2KxocchEAe8r6kDESWJbyxJLLh/sKTR7UBRF42idk7pmKXkhQkZK2vPgfpBje2zxQXy5+YP8Tjp3hFq40iMH5evfXeSge9evIgdv197zkYOHS4ynfXVpHwAYjL8uxrU6f/CyGfludgINJcOA73ChKMBY2eydjkXw2SNrLesbAHtNSXHwxiLY01lhe/0nwsYwGDdebsvbTdRtwmO/b7jQeCp81afG0kHs7Sq12R60YJWGAY8vJ6EqIoufydyC3Z0V2DdciO3tdYblx1d4f/a4uWBvVGPesPF6OL5iKCKstP7zUP0RM4dZCSOAhf1gzZuel/W1HYyb/7+tVVhZOpRisDFOVz/rudEFKQVmJIOOO0NFZ2hPbKhugzcRZjo6fra+NKHhMOSlozGtIyYPTVfJFJowyoMb1ThdTYEKx3houD+BuhQ0T7R+rOgB7BGi5/qhAHUmgE11zdZ+PPRCnvGkkndRf2fnYAWeaV2Eq64ZUx8WHlirhX3cV9RhGwbkPRxXSrWbk2CPNL2LcjrcaFx5rnMSONy/AI8tPWgUMoHBBVQxJv9ihrWPaewAcKC7iGkLyZtIa/LEibv1OMzXqLgXQXsIAuYkHcswcLMS2FTTohSuHLVem2ubACjoG1OZxiIqCqS9zSsrBq0zu72lHk7Iw/7uYi6etaGyHQ/UHePvk4LizJzmfcZrpqNJtD8b5o8CCUOJ6sVVtGNb++KUuWGFXeeCrKvqVOdlKqSw3lpZkQamVLiD9L7wHTYM/IsZRuEijneNzd/dUQlmufEcpq7c3l5nM35dNN5NJ+GosQvlliJJjXnDyjDQ7C1rKnp5z5Nsrp19jvMpdrVXpWD6DbuN+H/Ix4HRfPaeS+z+4+WHAACV+S+qfkR8lj0p1I5UJHMirKKkWga1v3iHmVtiFSN4Es2D9uBzAnF2QpEUBKJK9HxSiHe21xjaab33LJYj+T3KudPzubqyl73TlLtDRtmykpHLOkg2FHbBfzMTzWdmAwAOdhXC0QYdv9cFy4X7ijpYfhwYzWfHATHbtY/cxXNBHnGOWOuoHmAMtRXzTvF92zB/VEfjbcy+F4vwzxxpPEqD1FFz6Wd4HMVnSlJf59botVGDVwxXlB/I+RF6j9N7OWctKL/19+D6WLVgCNtb6vH1/lpLNn6vs0hF1Om7wstPdyblAZDM5rkKRBipP4qpy9wJdO/KonSfXHIAXz6+EpLhaXWFilLvaq1Klf1XaPtV1OAX397zkYNbnvwzuLMy4GYkbbzuZbCJXkxBMq6KjOP/ni5Rl1LQQ/E2RWVSnncZb7hs6wp62XO9rqAXuzoqYRW0EcWZUtg1wh4oMVe22tnn0Dwwz8a7AileDzlu5kQmxpCshMqzGFqg8MvS6JFFzMjLmnRQX3KKGT3IO0dJhg1Fw8zX7uYkLDwmQgpO4mYmUzxDCPlwqcJv0Bvjw45EuD4+uei7+GLzh0D1DwCliHyoqh/XZVxShd66Kux10bjNxvIBHOguSvGGW/MEEzGS73aj8VSvYizC8xmMKhCFLHkJJfZZNsrDeLtGc80esQjh2ZGy33heXVPgx5sMY0XhCI6enmuxFVnf0QWBvLEIFpeMovnMbAuywZ8di1hsLN54GMV5L1tMNjx/9MypEOA5cKZdxkZ7MZXse/C1BbhtxpuKHSriqz0zHTJ7YjyMxxZ9jytby2gDtYdKj+OrJz6QanwJb+n9xa0YuHgzJzfK9V5RMoyjp+fyz9J544LrwXsv6XKla2K/AdR7rXMu+sWYZABO3FWY6iwRLRIebpIDroD7yecFI2vE1BSUTSljSCOrSJGkSIWMkHnToRQ5AcBeKxnZi3jWuU7LTKX7kJM7hfGxTCtXgr63vroDu9qrsLqiVymel2PCCUYidfFIN0dVDX5/5KKKNGmWp239dUa2aflPY6Gfy/csm3sah/sXYHHRC6xAA6pOxd/3LlV9IEYsvbaP1x9kx1BKf8U7uB9Ic54pCjEVUhS2DqwoQsP8URMt1HPAXnM3jSd8IozGUsNwV33XS2gdmJuKmddryTlKEM4ZEaXiu0VGZOQ+FfebXCsaqzcZhhPx4IQ8Li4n+8FzlTRe9RXzTqHrtVstMgDZGuaPKgpdJ1DkLHgvJlw442Ejywh9IKCM8r6qLTiD+bk/NnpGPIQtFU18VoJ3KMIir0jMm6VvpGHaChYE5c+I/JuUiAIA+E4Kex2Ny81KGNYq67tXeOTgNz+HcOSdRQ4S8Ul0/9tnrrgxXUntPR85cKNxpvl6pq1eWd1CAPjnM7CluMX6/IHRfOwcrGDDgL29gGEQGjMeV+mlp3LsXAhNeJWILYS+Q31hL+REWOUY+A4aSwb5ObI4k/SUAFAXpVRyNasPKegWfpH6or2A1I/V+YNKSGYn4Ey67MHzYhEc6s+Hm5Fk4eWNRXDr+9+yPBubq5rVe2bE0TxoFCiGzLjK236od6Gd0BhJGkXVc+AIzDf10c1OsAIh28baVrjZCWysbkNt4WlmiVhT3osvHm/Ehop2wFdJ3HfnjeDjS7+HA91FeHagCntOlqTgSYkFhXC29PMH6o/xRb6pqB1uVDFbeFMhONP28fHGbcOAWEs4YV16ufS67Bs2FLN3ZL1uKT3U6GJ5pPQY48trZ5/j328o7MLDdYcZG+zMnOYibVLJ5D2kE3+tCznhsPLrhLyUQkybalrUGmkvMSs/ulYGRVqoOTMVptqbVOen/4XbDH7fF+srciecuIv/ueSomaNoHNv66/DKj69G85nZcHMSWF/axf2Vc/lUz3L+P8OQ6HyORfCT6Zl20h0pABoXvq6gFz+cugrd526zcMPUj8ODC6yf8foIz9yW4hbjDRdr7YRUHQcqFIiEgmGsrei2DAOKeDSWDQqohTayPFiebTKKvbiuzZBwzX4T8yLPPBc0Cvm4+frzcLMVBaQ1HjE+ywlBfdRe3m0tKlqzvrrDeDAD55QiBkiY6AGNd1V5P/4/9v48Oq7ruhOFf/fWLUwFkprnkeIEEPNAAAQnUQxlhGaoxzBUaMqM/BjpU+Tok9uf89zO6nTS3VnxykvasZee3WoraqsZM4zUfIxkmqZFURRHzDNAApw0zxMHoDBV1T3fH/vsfc65BSmx0l7NVnTW4iIJVN17xn328Nu/jZQve7Kpul9yruT7WtEBQIbBeIAttS1oLDvlMB8900YRqj1DJeQwiIhI+azA7JROxNXnXK/3947cLXPMBbuiUQIZY8YTD3aYJLl48PRc+AVpORv8czYMAHPm+HzahoEdSbHnKhyNy/tY2Q5HKYrElKcUydHGZmFKDIlwPMC+XgtKqr/vzaR6NN6Ej3A0jpXzTpkzoSDEFwAoAlIY2VfW3Cgd9dlad0Q86nTOLShe6BkGM103BiDlmWXAqvnDViTck/wpPy8NLxZi1fxhPD9cRBEEa7/eV9YuEWiAmI8OnJpn6IPHAirGx3JwlGoMRHO3nD2va2z4QYg/XP6CGbvFYsjt/vpjFMFTHloG5uKpliVGzsQzxohWmpWJo7E5epG0/FlVdVwiYva5ZaWfPgvZu/bPWS74BWnjSIreN/rOYTiuLR/9PDLChM72Emco+qL9+tvn3jgAYIobsbCyPAPeZVN4oo2S6MKpmAOzcJ7Bis4MSkJ+aMlLqCs94whcgCp7qvM5mAwDE74boQtye2uDeXbo6QvRI+NEAY0lpwVS8PxwEcLxwOH6B0x41Ibh2BfqipKTTriSlcmNmvbu+qsvSAVZbqygfrduF7zLptzCJ5YShoCS095473Jnbj5KJQT6wUXcBHY1og0aHZFYp0OW3FhgNZSeFliMGDRWnoKEUhMpbC1vxvYWEoAX03loe/k2mefnOqoAT0lBrr09pdjbVSaVqu35sr3YNoTJ/veTfYvB9H/HR66ni/WKSQqf2zSnmo1KXTAJkN6sKaPQWZUq7SrA9vi+17VKqnev14WgpHkKs2Jj4lFq7pwvxuWOgRpTmEoZZQgwik84FRMoC4/RfjdTe9r9kqRygLDi+WkoXfNA6PkSKYGhRUPizOkdjmkMbX4kGsSwPK3cejOnpG6AJE5G5mjnYCXUxRxs1pV0eb4AOMnDG0oIenJvSRfgEZ3rqvnDhl1Jz8EDiw/BL0jjmdZFdOaSxOUeJuOGEnc8cCEbmg1oTdGgEzl6sm8xFO9ZpqXlPZWfxp6hElHg7ytrNwwkmvqXlYbnh4vo8s9LGxhKASWGSxKkhhj4ca2sBqGJuIwFuHvBUNb8MbRlQ20n3nr/MgBEAdk45yzgKdq746b4HMPdRJ6wB9tqdqXocCrmyJXasrMAqAJylKFrT1c5HlmyX1iybLrlcMQ4cJ5sseBSiihwW87eTnvxYo5EYsIxggJ6E3SlcWVmnns564V0DwiERSeESnV53hsRZZir80rTkDuhlLXEZDgaF2eFTZsqv7f+z2MFIPAyu7imX5AWwgH+3paGY/ALic6W4YrezCmCwjUc03PlyZzJeWV6Z45wFqaIWrQwRRFdDZX85pJ98m672YnmPA4A4rFnDL1Nz2sXOINP8DGGFHK7ewGRGuzrK5F539JwTMtMmpOZM8dlriUqqMe4raVR+h4m4wY+m4rpCJtHCdfKyDoZw0Qgc+YnUmZPeWb8/8/B33AqTEerNz/V1kjnkIkWPA09jUKBC1N4f3KGPHdDVReWlp7EupoePNO6CPv7iqlqvN08i5JbZAvNeVaUYyTuUFjzu205zsYbN3Uxx+x1hnRGjOtLvX2RkPzraZ9742DJHWcx7/Z3hRFG4CeAYCL9vDQJWq5kyl5yy5PAeFbGGP64dwk6Xr5VFByp6gtAxRWuy71AhoSnyAsbM9jGcJwEM4dHn2hZBoSegeOIEkJ//bvlPzPsKtDKFuN9PYW11b3y7sOn5wg2VuoNKHOJv/XO5fDz0rivrF0UJ27fPnCv/Fsw8jNSqJv9qnhwwokAyqoGvbm+Bbu7KoQRZlNNm/FU2bSdCvBnpEh512MMJ2MitFoG5spFJnMQeli/sNewNOjxM8NCOB5gd3eF8YQFSuA6wmQCAHFii1k294ys5X1l7VmYe8SUVGLmeg+83n5+Gh2Dd5i8iLSHzQ0tZm/o9aEK0a7HhgZkEijtSqQyVi34mfnk2RPluE5zgNOm8vDnh37LQFXyQwMrGbMqI+uLg9um+laJvjzRQgbEhkUdWSxWJg9CUTXcSR8MaXAuEADwIIWQwmQcPziyGjvba8mDxpcQP58Nck5008YF5/8AcKIOMt8FaTy65AVnffwEQSe8mVMYzeQiTMYdik3b28X7/enBasHQ7uvRyodW/sOxwBQxKzQ5ESpOcIuf9i9y8mAcWEcI7O6qcCFlyTi8DBn7K8uHRDlUGV/kCcO9ftq/yPUG2l7L6KU/GhcDhffOqvnDxruo81DsPJjnh4sEThiOBcREpKuHA3CYmdjT7c2akmgTQLUaVMaXfrKHlvaZUVZZ0WwqIyw2K1gd/VSUiuUBV2bl9fxhz3KBt91T3Gd47T+BElbmQxswd9UMigd+TVU/drbXknMjP02MPQVpkYUPL3kxO4fio1ypqcAtWleDla1nOmrNd3VtCIE+gvbmirmnJbqi2Cusf8eyq/SWtwXnvn5hL2wWMNlLM+j+sRVSKI8cBp4S2llu9xT3iRG6rZVyaL659HlHEea1NZ2yFOSxgHLFtPf9+90rXfiLnm9mPbMdNddffQHra7qc/nAlZcpDo5+xw4iNZ9uz/vxwkcnJ0/P+0/5Fzl7kKMD6hb1OXp78W/edDR8ACPLSeLTxBfM+jpjaxmJeGtuaG+V8/v/u/IWRz/ozKlBSYdpeU/79Qw0H9URZCrsF+ZG5ANDWN0d+tut4BSYyccQQCqMfG8P2/K+t7nXy1pj0INpW1wxI7gRV955GE/asiIOv8H/Ud+AbVQecPWG/WxAQl3JTn/HPF+1T2+feODh69g54nsKBXs0UMmoutgvpfDD1mX1xSOKZBfFgQb2xvt0Js7NCtqeb+KD5MD3es8x4ATKeURgjuQvc7IiAHE5d9vwvOpumTXICACgPuzsrpU/L5p7B5cGYGCAsFFmIsuK4rXUxnh6sxtb6IxSmHQvMhQJzAayYexotJ+YYT1ZeGp5vqFi5YikrOE8PUjVUVrgkWU15BKuyLkrbg8SelU31rWbufYWdbbXyPDYozPyQsF9VedxSPMmLJf0CRGAePj1HfuQoZ4AoW8Ioo/u/blE3wvHAKfYVJuNYXTFoCuqMBaib/aokMdpGXNOCE7S3NAsH7w/bu7O2pgfrqun536zeTwVwxgK8+8Ess978zHEKkRNe3XiVJdoSes7Fv6O9jhQ2ZfZgSsUchg+A8hr4OQAI28/QO/ZosiIke89MsZ9I4aljS6Qffn4aWxcfdi4a+iDtFfbu+flpwr9qzv91i7pFcf/B4dXmskvGsaGkB7ULCE61+0SpeNWoLy49pb22nADppX1RviRaNGaiDbs7iE9+Ux0ZVFI0jC95S2l15sqaA2/WFJ5oXo6Dp+eKUas4WmFhsJl2kb/nzBOTH3DzgPXVXbIGYTKOfZ1aUUvFpI9OrgsrBz497/GeZXhoyUsIk3Hk+mmTa8IUiTacwlL+1JRPc5v2ha3Myxgj49Gl+8Qjy84OgbXZSr4COl6+1RmvFPsqSFPROK1c8c+iUVleWzaK2YNsV5UPJwKZuzBJlI3heECRtdAjakZPkcF45SQplRZURIxR5cHTkE3ez2JE+CbqZePcU8o3MD6rMvKDFUdlDAOv3yDyjIpUQiKJXytvMbKxMIXdPRVCpwpFlJZ+QRqrNeyM76xnT5Q790GYjGMs1N9L6/VjmAzvWZ0jwGPlgl3RiCa/28H285kcD/DOB7MM856OPub5hr6Yqbfton38WUB79xmulp92zlU04gLAwcqvLR4w8NjxAN+ueZ7mjuFYGQ8/OLLaiaRHc45smeYnUvhe1yoasgXR48KMLPulT3of/Lh3SbYcUmYvbyjpMfPOsCCQzO04MZuMcKY75nFzxKUgTU4Iy7DzZ6Rg57vw95w5TnsmMpabwcONB+R58nfoYVdnNb7fvRJKmbzF+8qo+OGWMlPx+lJuXvjZ/nzRPr197o2DJXecxcmXrzfC3IN4s6lCrSLspYUfJ8WD/r1q/jDgKeTHSFA49IVaEeU6Bn5hCju6CP+6ct4p/KSvgSoNW7UUNtaRcfFgxVHB49tKxtqaHuPVKEijqbqfBJWdyMUKxlhAVTItiMbh03PwVGujESbaS8Xf9yJY8okwjv3acPreobvhJ6gAFDyFpup+wqFHvEwACc91td3ak+G53hYNuwC0Uqvx/DsGaiQ0zZ42u4WjcRFGYVLziDOTBf+xlJpVlcfhF6Sxv2chKWac2DUZA3yiMfXz00Jj23DHK3JRh8k4CUxFc7Svj5RV8ZRoA/JnLdVA2hNcM/fdqVBbkMY1eSP4XtcqBzfsF6QNRawWRgx3sj1LuzsrhXr2rw83iRLgzA3jpvPTwkXuXKLihXbXl5V1j+sH+EoUJlkfAE+2LDVsKACaKojByzbGVlWcQMAJpNrT5ydSuL+B5nTrksPSlzAZF1y6XJQhHGXfvgwZ+8vz4ITRdT+f6ahFx6nbqV8TBqO/oaTHMVR4X8izdf9VPHQMfpYHK+edoss4HlLV5XZKJtzeXp8Fb4oqK/b/hVUpkULt7NfEa1l42TgQU1hdOSgQCpEJbCjYa5ZICYMYr9+zJ8rNmHVEz4kkwoVVsTFqQ5Meb1kBwNQtkDNmKx5aySya/ybNq94zdq0GTs70Eym8NXk5VpUbQ8b2qIocixoK/O68tKybn0hhRcWQuzaR9fML0mJg2R5NqSqvAKS1gZ9xI3VOtAIg2OeoOTfMvW8bat7MKckVAUjpDF7Nc3MrPANtOzIwX97XVN0vsCyuWAxQxGZF5RAZWHodOarISaT2+1RciaNnxdzTCJNxkT1RA7929mvS/x/3LqEK1xyxtmAyvE9kbi3l324SWdf3zcqKE/CmfKnSzpBTMZoyHh5Zsh/bmhulX4K3100gqxFWMtkzE5QD50QLeS9YkbEwGcdUGBA0V6/Ddw992TFu5ftjgetIiDzXzkVaNpegwkrfk41zzsK7jPYBw71WVw1k5VjVLnzZdXyx8yEVw1vjl8nnVlaekLvxyY4l8PPTWFpOjinnu3qels0940Siw6SujaSZhWznBsuHMEmEEPbZ+dExonS2c9VsZ2HwFkVi62a/ir87ugThKLEdcQ7lJd2+iBz8Wtrnn61IV0gGYJgixgJhCqEENmUYJCLUaDZTTFa4f8xlq+EmTB7Mp/xxLlR+xsBAktMzqkQVj8Yyi/lnJI4N9R2mkqd+trALRPpmV78V5Uj/zH6XEz6OCGQ/Pw11PoeEo37+irmnDWsLz5eCAzuJcooDVuXjsQBe2qfwsjfNHCfj5EVO+1QB9+gq9yL7hMbQConAjMRFQcr6rPUs9kSure0Rb7Y9TzKf53MIbhJlkuDLk5Vlzf//u4tbpNKow+wUubTWVvci7mVI+bPqRTh89BarijyDE9Ks73gZL6vfn8RII4nhETYrYc7Q74CvtPcRYtBkVY/lip2jlMD97tRMhMrHrfkf4kfHVmYp6jweeX/Gk3mz+39PcR8mQ6JBXDH3NA70Fsu82R7lf87+eKjyMB7vWeaynUTmObqefmGKKqb3FJnxT7efrP74CVMhXdYm7ZOnNu2yed1T3IddndVmLDa7izJKi3NGI++K/jy6xwBSfH92rBoqx4UN8HsAZEU2ZF61ApX/RhzjNxKmfVvrYvgFaXy98hAGRm/Ewd4iswf0fiAmsexK7TarlvNz3hv89zQyRD7LydrWGRA3l103RX93S1kbnmptNLLaZn/RY2Ymu2nrIegzMa1cOJdDuUf6fHPdjGgT+TcRECPXNOd086JWbG+rz5o3OasRORutemzPo91stiIApk6J/v50cw7oSuKtDc5enFbGTATYsqiZ9rwtGyxY6fqFvfA9JUU9ZQ9qxjqWr592hnkubLko74qyxNk1V7hFz7rFomV/z86PUedyBGaYdTYidy43rmNgM8w5d070rrKiZSvnnULFjNfxva5VMob7ytoxEcbxTOsiPQ7An/CBKycBUCHE029dkzU/6kIO/mDFfvzo6F2mz9FzpscT/ziG5Xf1Y3/3QnnH+tpOiuh5I5c0W9GidZ+Nraj9uS/Yij6tfe4jB06hHGZn4YQ07fVHmqahqXLAuizpH+z5iMJB2IMhz9YemM31LcZjqu2M31rSSUp06IkSyZSebqKQqXgJBRwbnGu8HT6FVO2w89riASNsI0KKDQNu4Vjg4j09k0wrSZMJKydDQwVU3EBXwmTcGAZjliEVMS8ddgXdWFByoS7xnI7GBWcpgldXb33s6CqCLUTeYdcpYC8ReRXNz2xPGWDgEvws9nCzF3fPUIk8S/kK4WhcoEQA4F2mL0QdJWFvoYRpC8nb842qA/hKY7NJgBs1igvnOUgfQw8/b6uSuhffXP689M9ZT09XfE4auAcr/JsaWgWOoBgHPmJBQz6BdUJgSODoDo2LufzZEOC1oE57uOyypKvYWcWh4FEC9+7OSuzpLsPjPcuyYSFWuJy9a48sIziWbbiGScq72NNJXuGDp+c6HuRvVu/XHlHlnElJwB6NO/vkR0fogmTDwJ5n/t7W8maJRDD84GBvkY7wQbxstteazoqHe4r7pH+MCZfCgJpuGD5wY/556e8uXSjMPMyTsxdt4ViA+8rasbXhSJZnnucEMMmd9rw811mJ31t+RMZs4+SjibdhkqhBZc0VnedMDhnGE2FcYCo/7FmOgz1FjkLHXs+6krNO3wXWYnm7OcrGe1pdzDH9zhjPZ9RpIoZMPin1fL44SglAclcAIolwDCeuA5FIiVd2W3+d1GUAqGIze01ZTkbhdeF4AO/yKcCHjO+J5uXZ/QWkFgcAk7TO86PP6fbWBjBRRZiMEyRR76/oWgGEhQ9HqU4P53lwZHpLWZskRu/rLhWmOQDidf7txe1OTRiW2w8sPgQv4+FimhQups68v+Eo/HEL4snyOi9t9rzdR2WU7F3HK0zUnedxIpCEeu+yqWwjMGnOMs+7k5djOYJWlw8637WpRmVf6H0r38/JSAVgO/+H76VwNI4vNfTJXfJgxVG3jwzXGnXP47aWRqdiN3+P52xDbaeB2wIOlGp/z0L89eEmMVLCZBzbWhopcl2YwqPL9hFa4MpJ+f5luePSJVueeLOmkArNWZd73Yo2sK6RKVDkrFRmDp49Uf6/h4ddqc/254v2qe1zbxxk8WaPZntW+P8XU3lGqFgYSz+Rwo7OOkehgqccWAx72HYM1GB11YD5eZIYdDYs6sDq6gEplc4KLb9nbU2PsxpRyJGjVOp2IZVPh36KWBmiIUAnzGnBNDwrpMtwKPu5klztGbhSlkdKh6tXVR4X5ZDxsRTGjUAM2AhRkQiJrcSHrrcSviLuejuRcDwQLzVAVaKFoQNGyEexpWyMyNwCzmXBbVXlcYGePdOyyOSVAIAi6sZwMobtHfUIR+OUIGc9452pWdjeVi9QADvh+6f9rtcMMYXfbmiXdfibg19y+2c1UWo9c7GunHcKgDG8OAF+VfVxA9/RxaNUhjZX5W1vmPUYiaOpys2v2dZfB5XxHYrNVfOHZf7On084/bIraooh7rlRDj9BSe0Co+AgxRjBln7Ys9woHKNxKiCn944Xerj6yhGEyTga55wVCMP3ulYJ5piVYQQh1tb2GMXBYorxMq5SYysXfoLO2hNty7Bi7ulpI3H0GXqeDUnhJNFd3RY2l41w6xJGTOGBxYfImNcMSPAUame/hm9UHXDkirNvrLySbW2LpXiSGAC6CBqfkb3dpabvDKWwFCX4Cmuq+p2EZGftFPBMe611BumvqZum4BeksXOwkiAxLMP47xnueWs7foc1JtrTK8uH5P8A8JXGZkc+/JsVvxSv/6b6VkeRueyypEmc5AjHRICnWpbI2NgpAF+JQms/n/vjReEwPNXWuRsLc6i6rMAz4cjSNUWDWFPZ7yiVlFxs5pKJHAAITKRy/qvg4lkPVhzNVtRiCqNpYhbaO1ws+8s2CKVooo6+PtddKYnu4xmKyj3VTpWovZlTsu5OsTIPFIWOyBq/II0nWpfBmzklCff8+W39dcgkQumnU/XeN7AdIfOwoqViqCsyJtYv7IWfl8bCW94RuJB8djyi0MYUrrxi1DmPnAS9qbQT/oxUdk6D1bWt5c20j3UklO/eFXNPOzSzsga8nr4iFi3djx/3LnEcZ4YUBHSeNPGFn9B5S4kUwlQMjx+7k+ZG35k7O2qMI85KehfdJKR38xm3nXY/OPob2NlW65w1zuUBSA7Y+ShPNC93IgUb6jpkngGOSoGMDc3GKLrGSNy5v75o/7ra5944CCcD3HztOWwo6XEug3CMsI3qvKHvazl7O5aWDxObi+UVASDCZs4NH4g3x/ZmelO+XJRFiXcMHZ2n4KU87OyoMYVoIiHGcCzAnqES+HlpohUECVhvIiafAWCwovo7nGDr52SA0MO2/jrcvWBIPmt7dwAS/CrjUwXLaZIpuW97usrFcAmTcXiTbtGhMBmHNx5Dwx2v4MCpeZLArex8htAkQXMfNta3Z4XB/UTK1JmIK7ngOfENANZU9pPgHSEPm7qQI5f/cx1VrtLN0AGeszHCp7OX0qa+5EvTjiJw/gU8DRXQXkqALoKdg5VYXXZcPCy7jldgU30r7l4whC1lbfgolZD9IuvsqSxFhD2cVE2Wfq+C6bOk/AQx6dhr4Oelsb+/GDs666T/fAEfODUPiCk8UvWS8Np7Mbq4el69mRKoS87i0eX7iCnE2l9ZGFPlZV28crHomhp2ZIG/I+PVF2bgZ4yy5hkvIMP5lpYPi9KxS/Nwb6xrhzdzCh98NAMAnMJSABzmK0682zNUIonGssYKsu/4onWiSrqKsJ+XlshY1CgHQFSwISWAslG7q6OGFJWUZWgqbYRZ8+DnpfG3h1dI1KepcgB+QRptx+/IquTMF/vW8mY3HyDi6PAL0uJ5Za8vJyEK808B5RRwUSaEHlVrLjlpokuFKawoHzZGvU5WVBdzjHGi92aYJGYwdoxEI6lhMi5GKxum66rJYDvQU2zmNDS5D34ihQ21ncT571H04+nBajCTTzgeIOYrqQkgsKq8tChRomT7ykQGClPYuviwzIVEKFhOZTxEKSd5vEINDEjEI5yMSQLtnqES7OkrNUaDjmRQjQEPjXPOouWEIUAAgJVlQ+g5dav07ce9SxxPOK+jvc93dVaL0cH9ZwjilrpmendGJ5PqRH9OTme5wHNm129BTImRhJhyq8brsdp5AbZjRXIGbOPAA+BTEqtD68rRWW0orK2laOyu4xUIJ2M4/vr1VHxrUYeBG+oIGlMP+/lpfPRxoTNPuzqrEY4HLvGEbmuKBh3Y4xNHl5O8ZrYuj4xz3o8sPwCdf6QpeZl2O2rAra7WVdCtcfq5GVMPKBI1F2+81iW8KZ8iPZpNUJLe2VCLKTqP4wEeWnxQ7vL1tZ0SIWdHZe3s14yBYUXzGR72zaXPO/fwzvZa+S4ncEvkTRdB4znxpoEFXortCyrTX0/73BsHyHhIhT6F5fLoYHHpdUk8ti6UI30LiBFBCz6httRVSc+8fbUcGFbkAeB3GttEeP/gyGopIuUXpOFdNkVFpBDxmgNgSjxutxd8JP9mPCjz7DuMGZbgXr+wV5RNLl7j56fF6wRAOJC9WOgm/kW8NuKF1c1PpCjnQAvrVZVUqEXlhWg5ezvCpGYEGTUXK0cp7AuZvY7CJGKFd+2CQ34iBaTo0ubv7x0uJuiXT/kAKocSRxvKTptw7XgAdSHHinrQ9+tKNIe7VlJthcQJ2RcY5Yq9xBtKeoglRnv61hYPIJyMYf/JBVhZNiRz9PRgNfZ2lWFbfx1R4rJSljARDr6sJZEtMAnJ1cWvYHNtq0Qy1Me5Wftkd0+F0z/G2ArTCsOq9F6BZuqwPeC257Pt+B1SOEz2n/YOctEuAKgtOWuUJ1YgeH9MuUajX5gyRnFGK8v6M0cG5luKFGS+w2QcDy8+gCPH5wm8gi9YrtTJLUzG4eVkpAjS5voW59IWg5hzgQqJGCCK3V+/sNfs+YnAJLlPkTH+tfIW+b3N7f5E83I8unyfs38k/K5rgPB89rx6s7N+4URA51nvh71dZWiccxZ+fhr/ZdV/d9cnnww6G7u+av6wUQTYGEzGDZc7zJz6iZQQLEjtAoY/+ApLy4fx0WRC3rls7hkcPj3H7C1RokOpBuy/k2fGPRoX9je730xXub9nIRUorG0FAmUK/dkJ5hrzzkrvruMVNOeBkuiHnQcjyiEbNAmCVd5fd8xg8gE0Fp9x5JeN+15VeZz+YZEl+DNSDrUjYKKc9nkJxwPUFb0MP56Bl6uFrVWA0okyFaZIwdcf+3rlIYRJA8kEYKIgYKPEeM05wjr7hg8FxhitE7Gy6oSwR/kJImHIqsxuwRMlUs1jyskITGo66MhDdYdM0qvlZHKihMx4NBkjdpw8MkJtr7gNKwyTcWEOs1s4FiDuZcSwWllBdwRVMDafW1M06M5zfjpLywuTcezuqnCdHDF9NmNmP/Gcrpx3ypnX/d0LZVw2OQIrzV8rbxFKV5HvOkIXdcYBIOPdzlEbD+BdNiXQWum3TadbkBbH3497dfRKkVNCPP26dbx8K+AbmQHAkXffO7pa9q8dgQCA7x5dA7+Aar147+Vi1fxhk9cQwmFQuqSb+ox/vmif2j73xoFfkMLleeNgWlAAuDKeRJgkTLk3a4qUg0jBLW7ChAHXc/ftZXtwpG8BHqo8jHAsIB5sZWjAWHlnIWVzU29Y1CG4ZVu52lDSYwQ+Q300zEAuoTzy6knIdizQxox+eBDKZbSro0a8HzZbyOHTc4ywyLNYhpQOwTK9a1JzlmvGmn3dpdjftVD64UBytMIn3NwKTjEf9tzvHS4WBVGdzwEXSHO8LXHXsAjHAmzSRa9UbkYSGlsG5iJMxqmQVX4a3qwpXJkzKlGHMBkn4WmzKUXwofbP7q838KQH6g7jmbZFQrHoF6bwXHuVGJEcNZI5sC4p+6LY3NDinLKdrbX0j7TBPfe8ejO26+RlvzAFlRti6+LDVLBON2J2MTdlbdHLEq6Xi1hD1ri/UQ+53TehxrS9psz/r5WecDKGjv47xJPHe0jWxoYU8fB5rHye+MKy6HttpQsgL+3ShaekH6zIbCqlXJ3Ym3kmQucrSZozhauUGNH8XF6b/T0LnXeGY4Ek9QMAMp4xFjT06EI6X+aGFQFeK7sSs831H2Vf4d8jQzSg3pRv4CC6HelbgDAZxx/s/z0yPJltZNQ8j+d3/8kFaOuf4xizACkf66p7nOJoYTIOb9YUFQWz+O39whTWVPXjyMB8DJy+SebjYN8CZy/w3Kyp0kwwIRBePwEAqL79damvwp9lZXb/sXLn+9vb6oHQQ8Mdr1CtDCuiEyaJEcaG+/F6sMOEzyzTYfKzWV7tPlFKzGyWUXPs+FzhhZczrpPo9/cXZ62VXfhQlEaVnTDt56fRNkAK25cWHseDFUcBX4m8s+XKhhJinNtST579x46uMs/ROTzf715JherGjbOHIiom+nbm7HWOsSZK9liAK3KSruJmU5Ny004NW7aGo3Gsq+0mGek4c1xZ8PjRO53o27rabrkjoHRhOw1lQsp3IHxGJhgZF44StE+cVWPGKPcL0sJSt7amR4yohxsOOHuDKbttT79NZSr7oyCNp5qX6N8bOSPGkwWzE1IQLtxms4gl4xLtzPNJxtrGJkBnSqpXW3Lt6cFq+m7KLQyI0NAUO4xcVpFFyUXUd5iTl6hlu+TxjMZRV3xWns1zLfuGx54fiaZa8/Fk32KoayfJsVVI1LvMouUnUri/LFKY7RJrX0QOfj3tc89WdMuP/wTwCyU8CUAE4zfrX8D3u1d+IuuACj14PkE+Zt/+Hq7NH0Hby7cZL771vXuK+7CrowZe2iMP4YQVeuXLKCfEw3Uv4Udtd5JHjj0rYwHW1fSQB972tgShSaLWLYuVwYItACDFLjDYR+e7mv3g5mvPSZXjcDKGVaVD2N9bbDwMlpfDz0+LZ1HCybmhwBmkv3q8cokFIR6ufwk/al4JKCrksrunQgqp+XnmXfNveg9DJ2/KGu8nMu3YYe1AAZO+YYVhLDVXJLbX3Zpb9jTzZbyq8riZA82gkfXe0bgUWmPqTS/tYXnNCRzsXwAvRcnWzIoFaG80K60Rz54orNwPxlLrfhZ252O0atxh3pCwNbPB5Ln7UMbIjC7MRhTXSbExsx/9PD33p24k75MujscwLZXx4cVcqJP/dh5+Z/UxPD1YjXtLuugSjDC8rJx3KouJy5lHXv/IHrWZYex/2+NSyoMaj0l/nedq9hFbmZLvM1NZ5N3R8zTtmsfNvmS2LnneZEwIDfxEypk/e6zrF/ai/9yNOPXqdbQuU75RzvLTuKe4z9CV5pnzz1Wm4QMNxWcEqsLnBzEFbyKWxUyGD3MR5oeyX9ZU9Rta3cha8BlZNvcMJWDb0QPNVgYg69ysqe4zzpOYcvJUbHlaN/tVzC98z2UDGomTHLHYYhw2Oc9Ea+194PSD58gDGovO4NjxuZ98xiYCmUdbBgHk0GEGJtlDmtHHXk+RCx/lIiy0akVMJ2un29u+xYoXUzJ2vjv48468BcC1S2Q++Gd6zwkEyDoTtvOjbvarcm892vgC5XFNxVA971XcVHCe7h1L8YcPMOOUA3uymPmi42UWMIrATHM2xwPcetsHeO3la+S73K+GO17Bsf55jsy2ZXeYjKPwTICx8nGH0tneMzJmzT7YVD4oFc/5fX9UvQ9/1bWaZHLKz9pTAIDcDI2T7ze+T617FSAH386uGjQuPE199xQeaDiM7gs3o2vodonyry4fxP6TC8zeHokDceUwVgkcKCc09QkAR64KG1j0/h8PEP8wQOrq9LRyjOWTOOnO5VABTQArSoed2j/OO8cCuutSPi51tqL63/yPn4mtqPUX//6SG9Ol1D73kQNACypOSGR2hpRvsL6RWQiTcYRTMeKGB2EEX33nSnw8WUCHhpUr6wLkQjBcGdPPI67rTbVtJkkuJ4MfHb1LLh/b+8H4aTsMa3P631fW7ni9wnHNWZxxPScYJ+U467LSCbI3X3sOr71ytflO6BHOnpPVbCpXLYBTYcz831e48YaPTR85WpDxXA9fboZwuxkPjy55gWhCQ4hX1BZCQ0M3kcdHX5yMn7Rp9ZyCcVz/oCCNdRW9JioyERPPIodi+Rl2rgG7DdZXd1HyeEg4fTEc4rQ+4USAcIpyK9irhLRHih1AtH6zpgiSkZ+Giimoj3OxsmRY9hGmfDKaphPc7PlnzGkBVXRlY2u0ilgonPAzwwNyMw6kSAr3safIjhx4tPf8vDSQ8oRfXl3Mwck3r6XP6H1kK7ZeLHQSV8PJGMIbJrCjlfj/pUAO7xnG8lqGgZw5vd/YS2avg72uXEiJ9x5X1QXoElW6P1ElCIB4T+1IGEDKlyhlKhItyZhiRdFGiYzKOROSk8Bez9yMNsDgzJ+cR/3zXccrcObtq7GmbMApnMXj3NVRg5XzTmF9VRe2lLVRNIyjZAW0Xi39c0lJsPKg/JyMJKPamPIwz9R0gEcROye5nudc74XGOWdxsLtI5lm+O9MyrhJEfsBygKMlv3U/AAD6KUlEQVSAAiOzPMYyx2MBWgbn4KkWSua8v+4YQetiChsqDQOcrMV4IJE+9p76iRQKZ0w4XtQtZW2kvGqsd8vZ2509cV9ZOxpKTzvjXFk+BD+PElHZqA6TcWxrW4zG0tMi28OxQGTKtvbFRiFlhTE/I0YMz9Wq+cMOfCsqf+HBGJH5aawuPS6/2tVZLZ+/e8EQDp+eg9Jb3pZ5FnnGY+FIkBX94pwZN3JAuQQtQ3fIfvnBkdUke3My6Dpxu9w79zccFcY1G/on+0HDwshwy/Yn7u1hA8Mzdy3L7mQcK8qG8cZ7l2NNdZ/kKrW9fBsAYuWzvdkNC89INfAwGcfqqgGMlY/L2B1nT25G8l/8RAoNxWfg52aEwMF2Lgwmb5I7j0ksGEIoc5n2Rb6HYwHAhRODUEgE/ESKoo95aaIlDolN7sm+xQQn1Pk6fl6aDIMRE5VkXWN5tVXkUJHTZk3ZgLzXloF+IgU7L0CiGvoOzdw8IWcYiNyVFttcOBagvvoU1lT0Y21lr0QMpVirnt/a2a/Reqd8IATumncya70vpfZF5ODX0/5VGAfhZMyErz04lzMwvUfXz8lAaaWAsXen37oGUB7WL+p0hDALu4eXvIgtdc3y8+eHi6SgkoTU9T3OzDIA6HsW445cuPz/fKKK27BIMw2MBUDaowtRQ4NYCVlaaSmmVuPLNjdmEo3XVPYL9lLqFdhQGd04t4CFf0Z5aCg9LZfmnqESQFmsOQmTNA3Axb5HLzsPBgsKI/zvrz9mwqPjgeRwcI5EOEKKguQ7YBolOp884fAUQl0hmA2gMBnHlfEkJdvqkLqtJPozNOQqJ4NjA3PNnPqG01yUMmvdvCsmcaDPXEzMOuWE22GFdhkepsew+0QpwpE41le5ZesFWsUK4FTM6e9zHHK3ErGlzxx6ty5rAOJtZohZNBk567tiBGhYgXxQ/608cCI6nwkaJPV5Uy09PxyJixEkj5jUlVLzrPB8ImWYOJRHeTsKkLwKWIZA5N8IzX7gBOd11T1g6AhduKZAYBQSEY4HeLJvscBb7DWSPtuQFC/yewXngg+1kjEZWs6FfFeZO3BqHnZ1VmNbfx2eaFlmxjRKz1lZSQqFwKCUR95sC/cuir2muZS+2vk0gORX8Hoe6VsAf0aK5JAyyh07SNgY+neLf05MM/qdjXPOyl5brel2bagkfRky39v664iSuSAt1W6bqvt1pWW3mCLn7gDA6EieA6dimk1JjB51z9a2lka0DM5x6IjZsOO/vZQvlL1ce0KSVvlZeW6ROO4XQ8C8lI9wPMANuRdMbgBX0rVkINKmQGM4FpDSaDlYGCbCSm3f0K0ov/VNiVDyGNkjbSt8ABEthBMGfskQpXV13SbKUGCqPd9T3Ed5KSEph0+1NhJ1KvdXFwTk7/HcsCEy3f2ytqbHObv2HjjYvwDhWCAF6tbXdjrfBYCt9US32zI4R0gq/ETKgfbZ62CvKye/t718m5Ncbb6gi+NxboSG+do1jOApR/4sLTvp4NMZcsb9EmM7UGIcrZo/DPhKyCXCVEyILfyEznsIgbqZLzuOFz8/7UT2JEJs/z/pMhoxXI6/L0X4rPoJfFcCwMONB9AyMBd7usso90Ofc5mDCXLMdbx8K539FEF+X+gtyZ7PS6l9kXPwa2mfe+MgHItj9m3vS0LuhkUdoqzIAZ+K4aHKw/IzboWztLeiIC1ebz+Rwq7OamIB4IMXevDSHn505C4pfsQHe7OmNHuw4qiu2mkJNp2A+njPMmxrbnQNjqjwTaTkMvUL0kZZ5kRD/awjfQsMO4EWDtW3vy40o6dO3WCU+h5KXhZjSVkK5Cd4U+EpvP/hTLQcnyNKdpjUVJE6aVeaFqSPLNlP3M6AXFS25wMeebHZu6/O51DRIt9gyddV6Uuead60Uv31ykMOMwX3f3N9C8LxAO9OzoRfkCYq2kQKjyzZL4JaOMk10wiHzR+sOOqsgVyqrEhO6MqVHLX5hGS0e0u6jILoKUkEt9fUzKuJJMAzkSgAGhLh6doJHG0yc2nP9daGI4Y/nplCxINMMIG1NT1GMdVe73AsEO+u3T/HS60v8abqfuzrdC9s512aOYiMcZM/klLkfV5VfVyS/XiefR3Ol6TicXf/+YkUtrUuBtNUcv9ZGbUNBPqHdYZiFNHYfaJUfn9PcZ9zQXhWDghA0UJW7kQJsM+HTu61+8DzYPdZ+qDP2P6ehWiq7ne8nfZn/YK0wSSzZ1ozxLBSu+t4BeApbFjUQVEuPV+PVL1kFLmUh6YazhnwHLy/s276DHI/trWZJGg/oaF6MOP+i84mkUMAGRV8btKhji6MWGsRmqiZn58mD7sVSVo1fxh7u8rcXA4Y2cwJ/EzFy+3ZE+Xk/Tw910T1eEyyrz1JaudcsEeqXqLPTASU82BFGzbqavOyvsC0+zCcMsm/3qwpIOMJG5SjHHswCbXa6+7nZmgtRuKy575RdUCiy+I1TqTQ9xrlhYhyynloXMvBMqC2d1DldYnmgd69+0SpIyc4H2JXZzXVFpiRwpNtSwHl4WI613xX31X2XPAzeXzqnKkGDwC7uyucOQCI4Uv2AUeZPc3CBBgqXq2kshFrJ+PbhoY4QKxcAm5rF9HY7Pw6kcse0HDHK26elIxJw6e4boE+J0f65xsGKsDJoeNIF0fN+AztP7nANSLiGYmCA8Dayl74BWn8Vddq1BW97EYxrSbw0PHAqcYspAcz3OioyCWbFY/ZhmKUG/OjYyuxrrZbKIVZXjsOlXzjYFCBchLCv2j/utrn3jhAEOLVd64E8xzv7KgBPAjHtDdBGNMTozc4XwvHA2QyvrnEZ6RM2XgP+N6Ru40nIKbokmDHatp4Vzhp8se9S8Sr5CeIIYQ9y+F4gI317a6CoeEV+CDXSWQ04U/9spgSZZcTBZkD2i9I4+ElL6LrlVug8kLDGMJeDEXCZGN9u4TS+Tm1C1/Omkd+psr4jkIBAPWVp4CYwnMdVU6UAB7ww57lxEZiKTo2hpax+jsGasjQuGzKYdjxEyk8p1kuOHGQ//3YUaokaXvTHqo8jL8/thh+fhq5vqblS9F3Hmu5y3i6Y8ZzLOs+FuDxNjIaNtdTuFWUNVZA84hNwq6XIJSKo3HikdewG1EWLAYK+1lmYXVfZhhKu2uuuki/y3jY3NAi3q0HK46SksEeSn1p+YkULqTzBcsavTx5T+4ZKjHzxWxZ+iJZX9sJlfEpQTYVE3gVPLocc/LSeH64CE21pHjeW9JFfS5IY2t5s6HbZdpSS0nf2VaLMBkX2JHUCdFK98a6dunr/XXHnHkKxwJUFr2K0rlv0v8nIuwbVvQpnIw5hZZWlg5lJQynVMyBTXiziA+eL1cVD81eUx7BLmaQx47xuLbRyAqIzfwEWMpibkbYfJ4fLiKldjyQgnX82XA0bjyIWrlU53OMYVY1oOENoHoLUzGJJrGCzcqNDa0IJ2PuRW95Q9cv7CXPs1UETMY0HnMSHPn5zOLEEQGA+kM/NF5Nu4JtOBnDvq5So+Dkp7MSvvn5JCOAnbpAoBcjKmOmV91Q0oPd3RUUgUqkcE9xn1PMUfDxOvdmLJPjzJEYBRFCATtp1Z53u3GuwPyb3qP/a1YswBAv8DPsqI5fkEblbW8gTMbRUH4av9PYhnuK+/C9Y6tln60oH0Zp0es0X6zo2SxPtryyqI+JiU+50T9NkWzvaylEFnrOO/xECkcG5zuQMIYJwqP78OElL+LhpS/K/vIud2mpOWpo9/WJVisCNhYg19d9Z5gMU/Fad8k3qg64SdSWh/3RpfvkHpVkcI3D391dQTJsYS/Jr1EjF/1ESiLAfiIlziMAaCg5A4AcSn5hCg0lZ0yEyIqA+jPIccTG2+oaDeW0jId7ivtcyvFUzJHDu3vL5XklM96WnzuOIw/w0hSRWlPZj53ttY4DwkywMhqcp+ClfAcFYd89u3soWrf7RKlUmue5Nc4jY3ACwPpFnXio8SVnn12K7QtY0a+nfe4Tkm/6/n+EPyNHkge/tfh5fK9rVdbnWaFtWnACKeU7NQkeXboPj+37EnDVZNYhlWRRnVTE/Pt2ATMHf6wTDKVokHKVlixLniEsF3KgAiUJzwAprXu6yqU/TvJgJClQPOQFaaIDjSnnMpYkVlgeKu4PJ/NFQqoyvtE4Hlm6Hz/sWY6GO16REL3t1Z12zrTnY92iblL+M960SXBexpP+On20Eoy9FH1mXV03dp8oxabSTnycSoiCxOPZsKgDKRVzPdejcYEX2PvBLnEvz9AJvbUlZ9H1yi1mfSNJk9GxZv074umOvm+6ZGyZT3u9Iv2OvpsNwVgQInUhF+tquyXxnRWor5W3SCVwAMi7chwT5/PgTfpCpzvt2KaB89ifu6e4D7u6qrPmJut8JOOoKz1D4ezIfEEByM8Aky7rRxZ8xSq8xo0TpqPzwYYpt5XzTiE/NoXdPRUG8hMdR2e1zLkdtme2LT9B1JyKaRMjfeQzx2d6Q0mPKGqPVL2EHxz9DePp4/7qNXpkyX48duyurPGFyTiQm4EfhJLQfG9JF3a01UtyfzgWEBlAZ6Wcn2j/NpV2Iu5l8FRbowN1kvnl8xr52+mLTuAVdjauq8DzDjjfua+sHdtaGmXvPLD4EJ44ulzk3b0lXSiITUm1eXut19d2kuc5kiDrjE335xtVByi3zIpgZUV5lGd+P2Jw4X4i5SaF8s84uZTfOxLHw8texOM9y0RGrK/qogRzjmIA8CZiUAWUR+JlPKciOHyFjbUdRCXpuePlRGq5N6bZ++truqgQX8ajc3vFZNZecfbWRIDNta3ivOI+wAM21bThH442EIX1NInIcj9FzlyUDIFlFRMh2KQF8p2UpkG1Za8mt9i6+DB+0tcAdTGHIJB2sqxl/InDKfSyZNG0e5XHMU1i8ifN2XTyzV4b+3PTycPofRx9T/Q5zu/0neOMVzuvdgzUaOeXj031rcKSBB0Vi+oSa4sHTH6j3rue8qDyqFYS0h68MHLf+pd2QvLi3/gPnykhufmFP73kxnQptc9/5MBSaleXHcf3ulY5tHM2/GfZ3DPYO1ychXH8wdHfIMNAhzPtxoLJLzDhR78whQcaDss7bKwmlFH4GecP0EFlujj2dAj3teZIBwAVKMy98X0ALs0qAKi4FZbWRsCDFUfFk8Gew5ryM6ZKqJU4KOPRfdjSoHH/eWnXSxrxhiCmpMrtbQUfOVCLreXN8DIe1hQNGrhBISkk7HXcfaIUXsrHhvqObIMqBO6sPm7C8lblWzu6wCHy59qrEI7Esb21Afn+lJOE6ScImuUUz9L9cSA6gMGR6z5L3/MIYtb1yi3Go6XX0a7dIOFs6//wyKBjZUgStO336bA2X5aJGRPSV744mqoGKPlMXxp/XLOXPmNjzLUC/sDiQwCATNrHd5b/HBdS+VlKPStg4gFOUjKd0nzuTiTAniPLa+xcmhoatKujhnDNXKmXm53sqPem5BZYeRySIBmEjvd0S1kbNtW1uoWb9H7nPq5f2IuC2FQkzA4HHsW/29+zED9vq5LcHT+RcuBxk6HZa569TyzK2HAkTso/QzGspN4w7VMkQp9pQFch1nvkB0dWY4OuCg1AyAf4zP2wZ7nzXIdyVMs2hqFxtEpYfwCpdMvwm3A8IA59QKKb2/rrRHn71rK90o/1C3uJXjfjS65VtKJ6OBqX+g/b+uvw348udX4nVeEnYwKD/Gn/ImfPfJRKGHmXjOPpwWq8PzUD9zccRV3pGekrQDkkEpnk91gebsDIWLtwmsyZtWfEEGB5FtdOE84Ny9cwL0U5FQAcJwm/60dH7pJ3b6zpwLMnyimZXivQWxuOQBVkpHAbGwYPVhwV42HnYCXWLeqWtRK6UR8QFiFAIm3frN4vkYRnT5RL9IANA3uN7Dm8ewElZm9vJyiSyLZ8Smre0V4nTibegwJVHQ/wUONLeo7MHUIwPc8xDGSudASFZRhDvMJJYn/Kcm5oA/3J5mUUNeJIKD/Dyp3xC1NEr5ufljXjWjezZo25jgaQIS59swwDkfMWjMxR1IPQ/b/+PUfb7ej+hpIec4fzZyNRCG4i1znSqaGETQtOmPyCjNET+I7wMh5Siu6fNeUD8AtTZBjoO1KgfIkUef41EuGW3I/lbqcPUO4ZUr4wACprrFHD6pJsX+Qc/Fra5984CBRuvJkUVk4C4w2/rrZbBP2OgRocHFggnilRZiwPpyRnjpjkRSf8aR38J5qXO3APABQCjwgrW5A+11FlwpG2kaDDu/y5wvgkha8VAE+h+vbX5b220q58hceP3WlC2/lp3HztOeT4GahASREm6GRdFjz8nm3NjfALU8THbSslUZpPZYTc9tYGrK3pkQvviWPLoWKKKnfOMEKUK1syFtqbNSVY5oY7XjH9iikKg+r/O4moY4EwLQjDUWGKKOFgFCYxaqJQHuhEvmm8iRzVEEPOirQIVEYndPkJDQVScLxapLyZCxaeEoPuiWPLBULEUAR+jr2GyZE8s9a6X3s7ynDkxDyak0Dhzw/9luwl4Xf3ACgPT7QskzF99/AaHOxbQFh17UVl6FQ4YbDnXix03gm4l0SYNDkBfn46i/HDhpypnFAgFY5REqUkZOPUpiW0f67x6gApoE8PVuPhZS86njpv5pS8d2d7LWbFxg3lp143B6KhPWtexsP/Ud8hie93Lxgy9I6AwHzCZBy/t+SImRSdKxMm47KWtlIUjlHFaT8IKUF4IkBj2Snr+wqrKo/jocaXZO+Ho3HB/U8nX2xYnRRgmjS4bfksJyAzljoZJ6YYbXj6ULJHueYK9+mvDzfRPB9rlH55sVDoNm1PPQAgUE7OAHt5bWOE1zYq/7jPz54oz5J3e4ZK8FRboxiOokR5htHKeP8h+wQgWWvLcABmnkbcdwuG36JYhqeLl03oJNqYwr7eEtxy3ccyTnUhx8lH4aRcjgi1DcwRo+6VsauIsWbSUBsDkCrJ3G+JaGr52Vhy2sgXmWCaiwvpApnLByuOalpazylsyS0/Rt9fU92HyUzgOCD8GSmCj8B1unDunMgTAKXz38CPe5cIvOuyy5JA2sOuzmqB5ch3tUdcIjCJFNTHuZKXJ2fdZjMbc435Jp3kHm32zziCixgl4XM0/eJIgZyhrY2HUXnbG0TjOmbdIZYxyetoOxSkP1auXLQf4Vggd83m+hZZf4YVuc+xvssMYBGyAL8gTfeEp5nW9L5fWzwAzrlSQUj5NEmCIaqLOQJtA2gMW8raaHxpX9b0saOrEI4Fwqom70yYnLpownk07+ZSax4+A6zof3Wn/zdov5Jx8N3vfhe1tbWYMWMGrrnmGtxzzz04edKlubr//vvheZ7zp76+3vnM5OQkHnnkEVx11VVIJBL4rd/6Lbz55pvOZ86dO4evfvWrmDVrFmbNmoWvfvWrOH/+/K8+Qg9454NZcggeWbIfYTKOLWVt5EFmXCUgnpeUimFzXStyIkwVouyxwshJoezJTpBHfE3RIP2Ok4Y1jejlwZgVkoV4KQHjaWy44xUXLwtIwhN/pufVm8m6L0xhVcUJdAzNpkfy5QNSsL3QI2wlX4qjcczMncCxPsJ8x70wC5fJ3nI7HLu3u1SUEkdoaMHIERGeoz1DJSYBUo+TlQVJtFXGSwjlOZ6XY/3zssPPkzE81PgSmioHHCH6k74GSoSu6hUliCnYWFFvuOOVrG2hLuTAT6QorM5FtIAsryBjV/mkCEzAN8wW/N2tSw5L/gGPbUN9BzaU9EhVbsktsKAdTH8rc6qx6Ny8mSafhb3PdQteNvUeLGxxFs2hVYGbBf+u4xWU65HxqFCV7yZmqowPFVOGXciK4tjwA24SebAa5Sko2bcEL9C/YwPMMjhXVw4SXte+uPXe4H7t6ymR6sjhWIDHe5ZNG4ZfMZcUqu8dvpuibikj5hzImn6Piim8NXEZ7eGMR8wj+uxxQcFwPMDm+hYHLsNrs7pqQJQodcEYeogpPNWyhJJpp3yhPiRPNBnk+3sWUj4S96+Qqhuzkszzv6Gm00RgfIXK294gJdGqDeLZhdNi5rvOftDt1KvXSXLwjrZ68VQ7HvZACcuSrAnTwVpOFumnXeVVJ+HfU9wn8lHmXedSRCNYzhnUhjZ7iz0f4vEWb7bOhWGlRuTMWIDnuiohrFZsD2ZMMb8wGcfKihNoqhjAlkaqsmwnTv/pnc/isaOrDDRDy+DX371Cnsd5Ziw3714w5BbqsvKquGiiKMT6fDNpQTgRRIw0+qvl7O2OYrl+YS/8BMHSJGnXAx5vX26+G9Je4DVfMfc01U0YC7Cnu4ycLRaMNJyM4ce9S5z1a7jjFbm/WK6EyTgGhm4hKMrMKSD0cP58AuvriEiCc8ZYRrFnndaU7h+Vp3MMZqRw4zXnSXn2SanfWNth5aqREvz8cJGzd21WP8CsdzgewJt0qYxVSHPB90TX8dlZMqWx5LTzPHiQfXBPcR+K5r0lP2djnNnC1hQNmr0HwHs/F9tbG9x7UTe/QNNPzzB73dAre4adqcBiHPMU5cxpOFWBbxU0jBAMeDOnsL9noYytesEr2NZfh9UVg24Ew+qvne80/6b3shi/pKlLXJVW6rP9+aJ9avuVjINDhw7h61//OlpbW/HCCy8gnU5j9erVSCaTzue+9KUv4Z133pE/v/jFL5zff+Mb38A//uM/4h/+4R9w9OhRjI6O4stf/jIyGeOR/spXvoLe3l788pe/xC9/+Uv09vbiq1/96q8+Qrsa5kSgQ/R0aQOupz0cD7ClvhlxL4PtzQ2YmggcNgUAJlfAU1KW3c9Lk2KuQ/S7OysBD0Yp0YKRS8tnhRL1Bb6ptFPoSUWBGjEeavZe1M1+FRsXdVA0pK8Ym2raJPy6qZpCtseOz5UkX/6el/Jw/PXr4U/6gNJVfi3aPU7ugw9SDHjMkeRg6ZfdPDjCihmUoICmmv6sBOa1tYb2Dr5CBoYVpbTodQnh+wVprKkmnvrHj92JvV1l5h3cv0JtkGiB6hemJGEUvkLL2dspwuCZy45pSNlTZlMAcoIzfIXC2CT8whS21h3BhpIeYt+wjCEJtyfjGMvkyEXKfdnZUYP/0VwnOSxLS09mh64t1iMo4KGGg87JZEPGjjB0vHwrXaKco2Hx9cu8aiiL/T6Zs/w0XfCaPvLuBUNm/fUznh6sJlwuy9GAIRee4wGTebMMR1bixBOpqKp3OBnD/fXHDIWubvtPLhDD0R6HjEXDMw6cmuecHef92kA6MFBklEJPQVn4cPl8AbFO8fp1vHyrgc4xQ0lIyfRN1f2oLnoF21mJZmNHEQ3kvu5SUYa8WVNSq6Ny3muArxDPN9AjAG59gMg4vlbeIhBCAAId23W8wqFADXwX5sCRE5krrsNgOTf2DhebfZXxNI2vgj9BxogNRWB54wehW7+Ea4xY795U3e4o1/YcU4Vx11jNWjdbbmgPs52PgphCTm5K8ofku/p9nOfAkEPxxHsAJ/ryux9e8qK840BvMZ4fLiKIE79PK8gtF+8Qo5u9tdw8vZ94jtYUDdI5hFZq9dquLNNJphHdio0JAPiH5gZ9piAFBakjVm0UrjI+I4Xrcy4gHI2T11hD/bw0yVm77olQaY4FOHB8QVaiMH+PcwKi69dy9nYpyJUVyfYBfJgrc/LsiXKS01pZlvtRz2f17a/T/HKSv17Xt96/zFSKL0zh46mEYc8qMBE/W678tH9RlhHK6+1d7jpR1Lkcl51Ir80Diw+JM+rYABEDcN9ri1+Wfu/qrMbJN68VQgqO6u5sr8X9DUfpntdzfNv1HyFTmDHrr2FEABy4Y93sV+EnUobKVedJPNm32ER9QZXI4Wv2KT0mhg1xPQ0xkrn2S8LAPHtevRkAyVV7/biFybhA6MLROIZevsGBC4bjgTAc+gWXNrToi4TkX0/7FyUkf/DBB7jmmmtw6NAhLFtG3sP7778f58+fx7PPPjvtdy5cuICrr74af/d3f4d7770XAPD222/j5ptvxi9+8QvcfffdGBoaQnFxMVpbW1FXR5661tZWNDQ0YHh4GPPnz/8n+2YnJAdXaQV/IiBhpKFCktxjVeZkhWZLwzFT0EiHG+EBDzW+RF6WkbgoZupiDpSnHEHkRATGYsBVk1I51v7MPcV9eGviMgmd2zAJ+xnra6wEN92yFLLEJx/icCSOh5a+hMc7l1GRF+VhY107kulc7Okucy9jfradOGy1T3sPP2NFxZBUW7V/zkquKDLTfDf6fLv6pp1UGP0/zxWvSfQdUU8lf0cS3uznWBcKPMAfiyHMC0VJtRsnecmlm/IomW+asTxYcVQ8xRTy9USxDEf1Re/DSRifdiwSNaDvfrvmebw1dblTxOyfauFIHE21/aJ01c5+DW0Dc+DlZagKsQdwETB7HFvLmzGayaXLKrJfbY+pM+++iSJEIUZOnyxYFo/TfpbK+FC62F10vT7tPKiLOaQwWUnfa4sHsPtEKVbNH8Y+zeW9rrpHIEV+Irvas7zHIiL4pERD2Vdpn/DN+a4jwp4PZ66mSZ4FyEhkFqXoXrarLfPz7f/b35V36TGoizn40qI+7O0p/cTk9n9Os6ukO3Ml0Ta4OR9WAusDjYdIQbKS1e25ufKKUXz0caGbdGwloa6Yexq3F3woifXfWraX4FEKbgI5R2U/IeE/a++Oc9J59rnnZ2wpa8NTx5aYmiXTnHvnezpZOhyhxNH11V1Si8PZw7rqtMCdNJ7fS1PCqKdznWRPWNVzo/sUAP7jop/h+Y8X4tiZO6bvl5V87chtK4/gocrD+NHhu6gfU5T43LTgBBXZs9dbz7v8TEe/dup8kaYFJzB04VqcH8/Dx29dBm/Kg8qhiCwTd0RlenSdHGYtPfZPkvuPLNmPx5rvwv11x/BUa2P280JgY0M7Ygixo63ekS9bytqciOHdC4awt6PMGNqaNjdLliXjBHHVkUB2WDjQ33M58C6fQuOcszjSu8CZM3UhB0rTdtuEFeEo3TG/2dDrEJJE381J77Ku00CZP6nZ+6d+bj+eueunl1zyLut4S1b+GYLgV0xITk/g6IE/u+TGdCm1f1HOwYULFwAAV1xxhfPzgwcP4pprrsG8efPwwAMP4P3335ffdXV1IZVKYfXq1fKzG264ASUlJWhuptBaS0sLZs2aJYYBANTX12PWrFnymWibnJzExYsXnT8A8H/WHxYM5oZqba0r460AQFUQtSXOByhLyfIIr/n4sTvl//wcb+aUw61s86FDeQgLyIu3v2chAGDr4sNyOJ89Ue4YBvy3c8HqhDPAHGr2RPL/19b00OcjeNMwGSfPgg/KPwi0guApPNO6iLCNoedUSQQgiYjyTjYhFV1u95W1G7y/FZ7kzx/sW+Aot/bvla8c3G903FLoTP8RSkYrgsHrdV9Zu/Hic72HZByKPVdjQZbny86roCUyCbN2f8SDGXpkGEQE+5ayNoTJuPDnq4s5QAhKDOcx8Tj18//r4ZXyjocXHxCvEMMtVFwnK1quDeVH+qcva46+hMk4/rLzbqmVYc+1A1Ww+gGQJ3KvlXwvScEANtR1yHpHv/tk32JhATIeYcjfq8pPEBwrGZdkaabMtFmWZH1GzVrbRuqm0k5EE8W9WJj1Tklu5zXjszNCz+CoGid9c2MjgLnJ/fy0YL75GWzMT2c0A2Y/3FfWLp427r/ylVOZm2XLfWXt8PPT1O8IvpfG5TnP4d+reOj8zk+kJLLp56edKvCUoEn/v6e4jzjLreJmAIyiMXOKzpiVyyD710ro5/yc6Vo4EncKSNkwMok2ZTzqEyspoUdzUEg1R9S5HEeu2v396ONCfL3ykMCRwmTciUYePD2XDIOJAFsajgkjXTShUpS+fLPP5G/bcLGSdKUv1tlRF3NEkX6qZYkj/3mPRGUAQPKZk7eZ8pVzOQC9N6JnimmrlYlOAXTv/Js7f4kmjrJGqoZHmXr+fftvSR0c9lJvKOlxCmk5d48eA0fRAODx/b9B/S5MCWGBEGN4Rq7ze5kQYWv9EexsrwWUhw0lPdjTVY6XX7kW588n6KtMixqRsUD2/wHg4cUH5KxvKOkR4+nLdd3ymcIZE3JHPnZ4FRB6hBhQLjyWI3jPtC3StWQg3wvHgywo4fPDRUJr7CdSBto5Es/aTzff+JGRTfkunn9t8QC8y6cQjsRxpGeBA839euUh/G5jC/wZKZETmxtaZE1/f8VBmXeb6tVudiI3z60UOuX71SaxGDNwVu7zw0tfRCsXCLxUm/qMf75on9o+s3GglMI3v/lNLFmyBCUlJfLzpqYmbN++HQcOHMB//s//GR0dHVi5ciUmJ4lB4d1330VOTg4uv/xy53nXXnst3n33XfnMNddck/XOa665Rj4Tbd/97nclP2HWrFm4+WYKq/235mUiNHcdr8gKiYsw5HBkYYqYUCIKq59IkYfdUg6m9RTAYH8BVqw9h72EcfKAUd7496urBhzlhj3kq+YPm0uR36sZCPwEwWrE65hwLyouSMWhVoCqJcJX+M7ynwOeZoawxrqzvda54PzCFJaWDwuDzLb2xVJZkeEmogiPxrFw/pvivVQaZy/Yfg94YAldGtzfreXNRiH2lXhCOXeAQ7t3Lxhy1mZb62LnAhRDxieKSr8g7XLga8y2UztC8/QLz35kDm0I2YaSHsGVM0yM+2IbiSJcl70oXh/ARAT8RAqP9yzD5oYWQAFrqvpljuyqrjz3fgFBf3iv+nlpWvMxC1Ot4M4zKBR9T3GfVPu2m+2RE2iG7vfOLqOwyLrEsiVqwx2viALBa7u/Z6Eo2X/R2SSX7E7tHeU8FEpcB9bU6LWIMB8xzaLT56SVDK3XfXtzgymeljQVn+HpZ+gCfeF44NRSsN9lPz/6f1YeBE6kFVRmNAqTcbw+fgW8y6ZkX22sawdiCjsGaighWUcew2RcHA/nUwWGhz4ZFxnAEEVey62LDws2GZ5yDGI/nrHWCc688D4jOtmIY2HCncNNpZ3YWNcuybgAhIWN14XzUwDKxZA5Ggsc5fjeki6CPGhq03AicM+oxeqWUobBReVpDdQy1u31eezIqqz1YiM0HImT8amr34bJOFZVHncU4ekYi5w1to4IyyebCMJuKmb26qa6VhrnGEExhDGG51t7fpfNJcagHxxZDXUxBxvr2h1jwE+knERRroa8uUEn/Fs0rxzx+X73ymy4VSLlQMF4jCLfraT2nYOVhn4bRNLBa8b5UTKG0Thw5aTsV77nnPtGs/fcV0ZQsyealwPQlYj186TWgqeI+c4yhjYu6pBzsGLuaee82wb6j47eJf/fOVgp+Sdxj3D895Z0UVXtGSmnX+I8CE39GgAGoqNlmacN6/XVXcIgF5UN9rNXlA+byJHuv1+YwlvvXzZtxWZ2Kq0pGkRTbT99lx0myTjemZpFlMQwcnDHQA2+tXyv6YeWDVEt7pMiV/6MlHxW5sG+Fjz6zMJb3qExj1CB1ku9eUp9pj9ftE9vn9k4+MM//EP09/djx44dzs/vvfderFmzBiUlJVi7di327t2LU6dOYc+ePZ/6PKUUPM/sVPvfn/QZu33nO9/BhQsX5M8bb7xBvwim3wTssZRmHcwd7XVoqtbVRT0Xe79s7hkHp8/fCZPEcsSeHRY0a4sHwElR/Fl6Lv0lHlgdRmdsOv2QB0744A2LOuBP+KIs88UtHi1PASld2XUyRhfVuEn6FE/FOCVzQnnoHb0FkgBmKbp2sTSeJw5H33jNeUnUY+WUFYQwGQfiIYbeuE6eJfSPFosPXxrcnmhdhm8t/SUNO0fT2+mQql+Qxp7eMoTjAZ4fLnJYMRzPq857WFl5An4iRV7f8cBU6+VpLdDF0ew1nAjootQCMxwPTNXsgjSQpsti52AlvFlTmHPDB/K8utmvAlYBIjs68XjPMipKF7iKL/d5x0ANVlbqsLyOhtyUcw5+QRqzZo3JO8LxAHu7yvBQpYk6kaGjPcAT9O9V84exunLQ/B4UnfL0PuEEO1b8uB/b+uuMcRvTeGVmVmFPrl3dOkl5GVxYSC4kZcYouGPtyfbSVmJwfhq7uyoAD9jTXSZeW1Hk9DOYcpfH40SxYPZd1BvEJAAADJNQfhrPtC0ySj5/1lJAAILgNM4560TmiOaUPN+stHO9CD+RooTPJCXcry0eIAXIdhIwG4k+K2uLB7Cnuwx1xWedz6yaPyyRIzbenmwhatCVFXTmf9q/SFjE7D6LEWPRMgp8xtp/j1S9lJUfsL21Ac901Io3XpTTtC/zuqJ8WPbAY82knK0pGsSaqn5nLnd0m6jrxXSe/NxLeVlg32Q6F/AVvIyHrfVH8M2lz0vi/AOLD1HBP8sZYv8dTgR4rrOSFCSPnD/hRECy21fYrxNvV5QNO/2rvv1119HiK3IkWDLCTvZlRTgqw8PJGMJxKnb4348uhV+QhnfZlJw/XgPu88HeIomueDOnsHOw0olQO0w9IDnrTfrY3trg9I2VRvYMrykaFGMvHCPF+Mljy7Ihodbcz57zLvwE0YCGkzH6bNrH7hOliHmhUG87VMBMtDBC94PKzSD2Rp7MhY2z39bSKHteCCFsB4XOi+EKwgDJsZ2DlXI3phTRIEvkxLfu4kQKKyqGsnIpdnXUwM9PyxzZURR7LCuqhgwLmUVBLXOk775nT5TD09WdOUcjTBIdrMz5RICDg/OlKJudLwHoys36Tl429wzWVPeJk2LPUAly/LR8lxL4FTkytcOtcc5ZGctfH27Cxrp2PHFsOaA8nB27GnYTB1Kk8TwsLTdORo5uSNPyanDwVpKddpX5S7mFn/HPF+1T22cyDh555BH87Gc/w0svvYSbbrrpUz97/fXX49Zbb8Xp06cBANdddx2mpqZw7tw553Pvv/8+rr32WvnMe++9l/WsDz74QD4Tbbm5uZg5c6bzBwCFsSdj2FTXKiF+9sKxd6dpwQk3BA5TXdTGEt5T3CesDxwR4O94GU9yAmzl47nOStfjypvSgr0AcCEV+me2BzFMxikseyVFYFiwransN0pe6BHUpCANpH3i/s83ybNCk2cJ6eeHi7Cuusf1IGhFjZN07d+F4wElkvHnOORr4T+bygeFaYQvwqzkMgVJAAcAZDyBAnCiKLONbCrtJCaK0EM4QknfNjSIoyub6loBDzjQVyR9zcJQ65Dyjla6PKLYU+63l/Id75RDZQrgzNtXy1q1vXwb/II0nmpeYtbSovR79kR5ljDiNQVMf1kRyegJv3ChALEghLqQg5VlQ2JsLJt7Ri5jUUA11nv/yQXYf3IBvClLqed3FqRx8s1rzfxbF+uWsjanT3XFZ4V6ksfNzB7idUqb2h3RcavzOQZC5NGaejOnyKi1Pd3acObaF1LISLOQ2Mm5a6t7UX7rmwKjoM5AIhbcV4YIcZ/sv6UQIUNw2MtnsTypQOFIzwJsqCdolXgYrcRUJ9naWlPAnDPZAxNUyTgciUsU6Ll2qrVhQ7kAGOeAMsmg/I4ZcVPzAoDjMeZ5WlfVYzya+uw3LTghkJEwGXdoR+2+Z2HwxwLUzXtF3n/49BwTsdBne89QianozHOQouqu6mIOnj1RjlVlJ2ReN+uoLI9h73AxEBI2+id9DVKXIBwP8ETrMvy4d4lU0uaq2VyPghXYn/Q1YEXlEHnhdQXvP132nOQeHT49x9nbXa/c4joL8tPY37PQyG4rMZSNKJUTOoopR2Q56dguaLb/5AJi5rmQYypF51KyKss2ew7Y0OY5Z2X1rfcvE0cTK4j8fvvs7u6ohJ+XFhYsTmKVu2MioCgds/SMBXj57LVQ53KIBlSTGfgBjfEnfQ3yDqeQlm7r6rpp/XMzyNxMe1KKwuW6NNfheOCwz9mONgC4+dpzWbCh1RWkKB8ZoIrN/gyqswFo+nHQmTp8eo7D2sNGXDhKOYN5J/KdaAAUYfzDsQAHe83ZWb+oU3SCzfrO82ZOSeRc6Qg9n7EHFh8iOKaWIch48HMzVCslYZ09AGEqJux9a8oHcPj0HOzpLiMnhTaknuuoojXU8GHH4eUDR/rnOw6TZ1pNdOnw6TlGl9DOM2dvWRWww2QcRyy4L0c3wmSckrd1DtVvN7SbApvTGBqXWvsicvDrab+ScaCUwh/+4R9i165dOHDgAG6//Z/Gon300Ud44403cP311wMAqqurEY/H8cILL8hn3nnnHQwODmLxYvLWNDQ04MKFC2hvNxCAtrY2XLhwQT7zz2764Dw9WE00Y4zH1bjCcCSOW/M/dGaCLf/Q8nSuKRrErs5qbW0b3CxfKMpTRmHVNIUSwlWeGCbr6wgD/dDig/IuwPIojwXCRMTFSNTFHMfjbAtTOxGMWXsA8rgKLCjjZXlYAEMLt/tEqaPgAVTIJe5nnLB6OKK5xbXHTJKnCtIObOD54SIsLTvpCCkuFGZfEF7KF8/ZukXdWRcyACDtYcdAjVyS0Hh+hvg8UvUSfU552NFS77Lg6NCwjfuWAj6WbNha3mzw0lYeCWAws1nKJoeZlSf0mrxP7m84akLJvuul/0bVAbOOOsKwvqZL1sVPpBzlLZOmKsUHeotlrx3sLZLLOPos/r93+VSWEsG/sy9oXg9h70rQRXxj3nkyQpJxw+wxSFECjqjYMBbu+4MVR2nvxpXzO2SIrpYjJDbUij33o5lcM8faW2eP6ZqcEfScuhX5vpVwqI2ijbWkyMvndbEtHp+wg3AyngdJJOS2qbRTeMX9GQStA4whnlUozzqTa4sHps2jAUAFlHIMjaHMS8SwWL+w1+C/ExEjJJIPESZpfJxz8GAF7Tm7PgM37v8jS/aLUS70xmMRo13/m/ND2oZnu2PmqGkyjq3lzYbqNfJOPz8t0Jv9/cXy3e1tLq11mKRaG18rb3HhGyGxaN1X1k57PxXDUy1L3PmLOG1sAon/cHgdfdaKPNmKju01DZNxA6HxgM2LWuEnCPctHmDbv2PlyBw8PdeBjWysaye+eQ9SXVzOSUFaIlBiYHPf8tJ4pPFFSL2ZiFHLUVuJeNgsQlr2JjPmnvATKZJDScoFmRlMmPdlPKwsHwJiumCX3ocPVR4GFByZasNh/YI0Nte34Lm2Kpl3ng+AculsA4rnmJw2JnJly6Q33rvczKn27rOBfH/dMRNBjFEhRC5giYznRnb13cIVyre1LoZXe8FZdz8/DZWTnVj+7IlybF5ERoFQkerEeEYDiJFRkKaokvJwf8NRx+kjDFGf4JnfO1wsxj4bl9w/hylIzznP0yONL7qGVaFb98LX711RNmx0Af48O0EiNZfsdfMTKcn5YDYmeDTH00GiLrn2Rc7Br6X9SmxFDz/8MP7+7/8ezz33nMMYNGvWLOTn52N0dBR/9md/ht/+7d/G9ddfj1dffRV//Md/jNdffx1DQ0OYMWMGAOAP/uAP8POf/xxPPfUUrrjiCnzrW9/CRx99hK6uLsRidGk1NTXh7bffxn/9r/8VAPDggw/i1ltvxe7du/9ZfeVM9lt+/CdAkCDuexhBsWLuaRHs/owUwqkYlbePh4Lptls4RXzMSPtZvwMwLeMNYFnu1nduvOY85s76AAcGipyfhxMBNlR3Unic2VCYLz5SHAqewurKQew/uQAq4xsoyJSGgnBVxZiCNx6DystgadlJHDtzh0lg8gE/nkHTghMoK3wD3z30ZcyZ+w5uSZzDwdMaLjIZozFHPAhh2hehxH1nLxN7q5yxTcWwYuFJiryMazyr5WWy+22/a8Xc0zh78Sq88d7lCMcCzJvzDs68fbXDShGOxoG8jHi+RGmbjBlGHy6Y5MN4wyxmEnm/bn6e67VlppPSotdx/PXrs9afITjX3fwx3v9wJr5btwttI3dgV1uN7C8/J+JVs58/HpCnJvIZ5/N6bMIOkqIKow5LyXiARxtfyPIOq/M5ULnhtAwtfoL6Bw9AipRydSEH3qwp/N91/y++deheiSZdcSAPHy7KOJdTdDz3FPdhV1+VFMv7k9o9+A9H1lGkodDsjXAsAAKFlQuH6SxOxuicaraaR6pewg9aVpm9b0WCbKYb5ITYXN1GESWLcYXZXqpvfx0dx2fDS5Ghxexk3NYWD+C5vgrcX92MpzoXA1M+bpvzHubNep+8wJG9/EfV+/BXXasRbcJ6NhonGE9ATCUNJWfQckor2Zb8mJYxZzJGbGKByj4jUdkyHqCx5DRx4dtzMxHAm/LxVNN/xdeeewhhYca8U5MTYMqniCbDuUbjWFoxjCOD852xeu/lQl07Kc+Vi9UDfnLXk/ja/q3wCyjZfGd3tSQdO0XzrPX2C9L4j4t+hn934LeBvAz1w8O0MpfX2a77YtcH8RPE9vbsifKsNQLImYG4worSYRwcnE9rMxkjeViQwZaaFvy0fxGdjZwwS2kMJwI80vAiHjuqk5sTKVx+KA/nlusIzlTMRO4UsLXhiMnDmqZdcXkSH747UyIesh4ZD17ap/vDkhPhhEnqRkCygd8ZPQfy+YwH5GaAidj0ZzRp2NTstbHn1F5rrhC9p4copB156SvkvZqLqctC4KpJWStmyZF38pmMnLs1RYM49s7tqLrmLYKARtaXXqiAQKHgTA7Gbk058pJzMgAIq1P1glfQdfo2ikjaZ0cbeTff+iHeePNKM8e6z9BMZogpVM97FV3HZwOeIua2MQNRLL3lbQy8foN5Lp/5EW0EWkVTw1TM6cd0zGZzbvgAp16+XvrPY5E+x5ToLvAVvrt8J77z0u8AvsLG2g6CAo7GgKsn3ZoeHmg8ug7KvSVdAmG21/qKy5P48M3LjDGha+748Qz1f8qHUkm88dB/uOSYfVjHW9b4J5+Jrejwsf90yY3pUmq/UuTgv/yX/4ILFy5gxYoVuP766+XP008/DQCIxWIYGBjAunXrMG/ePPze7/0e5s2bh5aWFjEMAOBv/uZvcM8992Djxo1obGxEQUEBdu/eLYYBAGzfvh2lpaVYvXo1Vq9ejbKyMvzd3/3dZxpk6Zw3HWs6TMZxVe4oHZAZKaq8mvLpgmDWj6hHTQFI+2iqGMh6fu3s1wwzQMJlqrD5p5nN4I1XriYoSSbiicxLS0VSSc7Unqb1C3ud5NMNtZ1S8RmjxhPTWHQGfh4l1zLO+vfvfAl+QdpQ2ClP8J4AeTS+e/DL8BMpVF3xBg70moqwjNe3MZSxN/PoUgeMV549dFy9NC/teq3THg72aNYhHZLmxN5wLCCqx7w0Hl26z5n7g6fnkmGgvfRn3r4aYTKO31zUa3CkHnlPopVP/dwMeWksxhE/L21yA/LThklJ84qvqein8POFHNezq/89MHRLVsIwz5OX8vHua1cCAL594F4KETPEIydjvL2W5148gflp+ozlqYlFKlHzxb2ns5xgO/GMzLV8Jj/tGAb8fO+yKcdTyvAJLgLo52QMTAjAokqCcvxfbb9Nz9dnYvRmb1qlQ8YzEseuzmrBEodjAf5TxxpjGIzE8XDDARNxysmQYcCQBA94aPFBhGMBjSP0oDI+efQjivTa4gFt0PhScZuhaBytCJNxdL1yC5qqBvCbdb2yL+wq57tPlMKPZyjBXCsNr569VjjCBT6g544NA/7Z3QuGyCDggmEe0FQxoBORPZw+dzWxhAVh1loJ3I7XI+2bPaPplYVnneFWvIdCjwyDpMu+s2VRM5Sn8LVjXyOmNEUeYvYkIu1h3ty3SXFhOFVhCkcG5juK4tbyZmSuNB5MXxeF5ITWr73w+7JfdrZRlIU93/yMtcUDpviY/uy/b/8tbG5okflxmJZ0FEneybkagAt91G1XR41E/ng9mhacENn+cMMBgp+wlzY3g/qqU3ig9gglLk8E+N0lLVhb3UuQH+vdq8sH8cOe5ZjPeTqTMZxbPkEQsbHA5EaFBt7Ezcln09/9+FyC+sERs7FAqtdy5NmOdMj49TkJk3FSFG0Yn+W8kOgn5xBEmNJoDhVUbmiiQzbDUTw0Hm8uvDkeIBFMClRvU2knVeNdOAxMxDA1ZxxhQcaJkESpROXc6kj8srlnUDv7NQycuwHnzycMVbCOmEhugFbYN1e1YaJoHH4BVWNfUzRomJXy0saAynjE7z/hZ8GbEHpYW9WLhmteIdhbkqJusr/SBFvdWNWJrqHbBTLraWpV3hvzZ7pwZz6jyNFOxYI0vlm9n3456WcjEnTeAe/VM29fLYQJrCuEY4E2DD3aY1bk4zsv/Y5AAHcOVlLfLkvL72W/MJOX1jF2tNVLJXuWj2Eyjo/PJQzsOaQ++3FCDHgjuqr11L+I1PKL9r9p+xfVObiUm13nYGHFhxgavilLqQmTcayp7hOuYPaWAq5HZdncMybXIIJRn47/mts3q/fj9Pi1+HCykIrKgNhdjp2YgzXlAw5WVzyh2qLfUNJjWB1ASa9tL99GPNPHVrqXgg4xb204gic7lohgXzV/mCILF3LwO41thFXURZUcrnDGYStkcYgDyPJWRiE2NjyDvUbM5297o6Le/sbyU5TQ6sFR/BxvGHu2+e+I98l+1o355/FMey2Q8bCurhvPdVZiRfmwJItOh58Ur6b+++4FQ9jbV0KXhQ6FP9L4In7YsxxhMo5Nda1SjIYT9laWDuFAfxE2L2rNSh7kdeRIBTIeHmg8hL89sgKKDcDpeNjHDK+1PQ/3lbVTIaBp5sFen0+rJWGvr0DMytrwVGsjoDxcd+tHeP/DmWhacAKTYSBePSg4rDSOp1GH0KP9Ze+nHY2w+xmOB7i/7phDF8hernAsMN5+q7/lt76J4pnvkkEwHf88v/sT9hFHFD5xbiwP5pqiQezursCq8hM4cGoe1Pkcp4aFKF66Urr9bPEq6iibPYat5c14omWZc+bt/gNw9v2m0k4ZL++RVfOHsW9wIV3mGiO8sbYDz7QuyvLAZkX+tIeaZZjDKx8dG+/JyGfDMcoZ2tbS6LzD4VW3Pan2zz2YsxTZO848eAory4dMJHO6ubLqQkhtAB5DZJ/ba6su5AgMxTZGHJmo5SUA8cJm7Scdxb06ZxQ7BmpEVq8pGhSYp+MVt6Je00VYnDnQUSCOaHNkVe6u7jKJhgJ0dna001lqqhrA3u5SeJO+oQqNNI6cA+TkiubAyOf02q1f2GscWFaTaKZdG+dT7sYwGZf5DJNxrK4awEgqD20v3yZzxNXmP6kehZfS0ZbovTxGDqO8yycwNRHgT2r34D91rCF5oiM0zvOsu9c+v+sX9uKV5JXoGpxNY7LuPr5beW6cPTYWYEX5MOU1xENSuGe4e3tTaWcWG5tALX06Y03V/djbXZoVveaI2a6OGjpDhxYjzM+YCHlkb5pigPQee79PV08iuj/DsQm8/uCl52VnHW/54s8WOTjUfOmN6VJqn3vj4JYf/wn8gjw5+Mjowxcp7ARMH/YD4Fw0XsrH7yxuE8XdeS7MBakuUgET+HRx7OsqNQmY0xRLi75fhCNffFoASWGT6CWpBaLAZ+x/M66an2VdhDKGaF8ikIfphJn93U+63Lc0HCPmioiyAQDlRa+h7+Qt9DNtsEQFW1S5c95rGSVRZfCTWnRcUQV3WoXCgkxJcZ/pLnJtPOzoqHMKlLGSuLZ4AM91VpoxRZQDbrYSLWO1lRQNFxMFhvcUQ+Q+SSGMGloR5Zm/wzC16Of4Uo5e1nxRbaxrJwPUc99tF35zxnmRCnM5xqpVXMze//Y8+Hnp6ZPNkb2XZU1a6x1FlX+3tqYHaRXDvIJ38YOjv5GlZDRVDUjiLz97TXVfliIU3Zv8fy605vTR2juNc85OW5SKzzB7MMPxAFvqmrPqr4SpGJDScLwZKYFLyu9tmBWf/0mGkLkeQcfQQ0QejJg9yIoOG6oATAJjvtknTZUDjnLzSc0xhsYCPNBwGE+0LCOvq1aGlfLgWWw7tlJrG97IofwO+2ytX9hLNLo+xFB1DCA9JllPbbA+1bzEQK8+Scm1CoSJfLOUtAcWHxLmozAZR2XxK+h77Sb6/zQyhNv6hb14bewKdByfLe/eWt6MJ/sWk1HYXZp9vq0idI4sS3uuUR9xREVhP/bZEseYHqeTpzONLOS5nk6hzZIn/D6+Q7QcY3kSLQZoj3s648Pu40OLDzoyJ3pfSN+1rOfiptykaCLDemJKnGWOE8Ta9/Z4AdB3Ygori4cJKWA5waZ1NHLzFLy0LzkMALLuwekcCPZdvKrqOF7sKIE3ayrr7s4ySvn709xHNG8jl7Zx0PDvPptx0PLnl9yYLqX2ryJeNP+m94iTWXN9r64YhJ9IZRX+8pPZxURsHN/S0pNQMUWeYE6csxKt5DtJzXmv6cD2dZWSoPAV4JNg8OxKouOusg4gSzHiMCEzJ7CQDccCNNzxCiU4ZzyEUzE8tPiggQsUpKlsfYKS7dTHuXi48YA894+q9wmEyQ6FO8IORLmpLupy6m/lObRwa6r7soQNhy63tTQSTOdiDpglhuds4PUbBFIAD25xMt9NFv0k5ctZP+3tCCdjCCcCgmIl44SP5e/lp4UC0hbIUT5znl91Icdc4ApYWkG0iKygAppKUEN0nh6sxoaaTkmYDMcDrCg5CYATv60CPDFT08AuFMfFhey2unxQoHG0r4yB688wVKbTzZVAwiJ1BCTx3saqApK/glwXLuAnUph5zWhWQisXcWLOdIG/6L3zeMsKhwGGf06UnUbBCMcC3L/4KNXiUB4ay05hRfmw1GjwEylnLQSSMx4YhitrfJzYt6O1Xgwpe9/6CUrg/2VbOR7rvtNJ8uT52dtVRrBD/U4/kZLiQ5sbXPnB883vXjb3DJ7rqBKmFQBSLExdzEE4SuwhjmIgH/QEpsDQvZ/2axpWTaTwSNVLIiMeWvoSwmTcMQy4zwCwqvI4EFIBKj83Q/Apz9Tc8BNEfEB5OUrGIhAaTSm8qvq49HdbS6ORGb4S+cnzv7e71GWWgitjtpY3m3VlJVUnfHpp34Fd2oYBfcnU2IBHytm6Rd0CC2MDM0zGsbOzhuqI5KUdAgimDuaxcu0AKOCp5iVZhe5kbXnfTQRoLD8l8mxF+XBWv4USFQBiCn2v3US5Zbpwl8zLuClAVTf7Vew6XoGOodnYUGsKzz3RSpzzXM3b3v8r551yIWuWsWI7DOzxcA0Zo/QyHowghGuLB3CwX7NnsewoSANBiBUVQ/ALU7jyilGRheFYQBScBbo4ZaT5iZTB5kd+zmsKUIKwn0gJ/a6XJqjg/pMLXBlt520ADubfMQxGzHn2EymB0agLOeJRtz/ftOCEKZqY9gWey/uU2de4JogdSbf31+ZaSnI+0FckUB++e2xaZ/qBkc1+QZqcJjEz5zY0jKlkpR6IxbTI98OBU/OgAoW1xQOSiyV9nKYwIP1Dn3tLBkJhevl0CTUv/Gx/vmif3v5VGAdDZ2/A7y05Igd3n64K+8bE5c7nVK7mcbYPA0caQIwRDD8SxoECg5d9ZMl+w5DCB0x7Rf38NNZW9dJBVMb7H44HeKD+sLzXwBSALfXN9DOLHeNPVzwLgJglGF94bGAuftxLl5mfk8HH6YS5yJJx+DkZqcrqXTGJx3uWyXv+qmv1tFEUMymeFGATSNCNE07oXhhoknHhaV5aetIU+PEgxb/ga6FuHU5hu4lAmtgbEo7Sc8NkHCvmnjbekgIjsDl/wS/ULBAZT7iibcV3/cJe7O0q05eUErpYh4mGBaLyqLIs6DJYt6jbsIZMxuRS2N1doRmwCDu663iF9BsZDwf7FxhmEUtxRcYjQ3M8kLl9sOKo1FSwG+eXOMo+P4f3qd1so5WVa/bqAg7u1WF40q1pwQlgMkZsTRbGeXQkj6hvGV9veQWdPcfVQMcCh0432tdNNTr/Qys2TzUvEQjEbQUf4WBvEeF+rSYKvlZi/Pw0Hqo/KOONGttspLNxEY4FDjPObywyPP22x5ONi/0nF0glX+lDMk7MJlahQlI29AeURzSDAJQ1f6yosfPAH/edPcHzyFVp+T2Sn8AKnA8yaHQS/o97l7hGYSpGBRY1jvvqnBH4hSmiUBQGHk/6FSbjpJBolqC1NVR924sUvtvfV2zORwg80HjIMN5cRYnL95Z0yXngcQGUm7Fl8TGRFU80L3eVVg05Uhd0ROmfiGm3nL0dm+tbxOC+Kj5qGF6qXpK96eenSUZNxpycHon6zDAsLkp7lx9oPES5DHZ0yuLA57N9bGCu7JnDp+fg95ceNBAUPhdWzgZ72QVqKAvmyW3M0Bo7B43PFM8TjyscJdm1v2chAG0EWs+UGg+WvOX+bGpohZfy8fCSF+n5dhQj9CgXh2Eqeox3LxiCn5vBwd4io3BaZA5s/EmEy4atjMTBVaFFVqRiWL+w1+kfFwZl2Js3ayoLymrfsd5YDNW3vy5zwncBN39GCt9c+jytxYgZJzPgRetBsPHP9M7Sd36/zg3gdXCqDCct9i3lUZFC2wmjP6OCUFj/wpE47q8/hnW13UaOhpQX2FQ14LDdfXvZHieiyFSv9rqGo3Gpd8BRy4cXH3DmhO9UQDumdP4FQIYLG3J+YQrepZ5zoNRn+/NF+9R2ia/6v7yJl6u/Tg7DN5c+D8BSuMYDbC1vdpOK9UFbU9PneLDvK2sXij7bU+knUvhhz3L5nHgpmIM4GUeub7wK9EMAGY9C6PxzhsnMSAmWF572zidS+E8da+AnUm7lwgif/c5BKgzEmF8AUjUU0OHsAiOgRZGMFs0B5RDsP7mAhBLgKKb2HLOCv0uHlI+duYM8nVqYbtD0rOK1tiEB+u9wLKCiR1roNi04QX3zFXJ9otGT5NWEKxDvrDmOR6pecpTwLIU1kRKDgT2h3swpKkhje86ZnSkEpB5AxhNuegBYWTIsz/Z04Tk/kcK6Rd102QE6+gHH8OB++AVpM9+cAM8eLA7fy5fc+famfHiTMfGSiSc+Y5Q9JwplPYvnhRVXO69kZcUJGdMv2mienuxbTNS61gX4s9Zq+Q5gIj52iNvuBxsR8jMd6QiTcYdBg5NZed13DNQ4Cq/Ma8bD+pouY5wDGMnkGQiCxek/nTJhPKekuOzrLpXxMdUsG978HabgtCkBJWpjP9OHMxeOEcxjsYwFXDVJlJkMM7Crc3P0MJESrn9+53rtUZ45c1zOOD8zTMbhxzN4erBaG35KcOhsLIq3Faa/tiOEK657MWLxmXvj+9lQLh94onk5GRwjxmjd0VIv5+H54SJZl+eHi6SAG8tGGw7x7ZrnyXtvwTT49zNnjos3+t4SWvtlc88QXEI/hxOCV80fxg8Or3b2IQBsqW3Jwn5nRSS1ofC3R1ZIoUb29voFaVxxeZKShhWcwmgAyYkn+xbja+Ut2FDTaebWlrWRd3M0NtoXjhZtKOlx+6jP+oaSHpchRxvFV+QkhV7WCz3h83fGrSNoO9rqoQKFx3uWkXzWRve3lu3Neh/3nyF2vI8++rjQRGsK0nh46YtZMle+78NEkX1TBG3X8QqZ93AswI72OufscoR/U2mn7Aem2t1U1wqVH6LjxGxR4CVHyVrX73evJDmvI/d2dIzHE44FhsYVwFOtjVKfZO2iHjN/0yTGr5x3Sv69Y6AG/+3IcuzopDPHjjl4bm0SLqoIn/ST3SdKsa6227nb9naVOffHjNgEOQ4sB4s4S/hHyn1PmIxjTNNE8z5Zt6ib6u9AO+4umGgB58Kxdvjlhq7sAV9KTX3GP7+mdu7cOXz1q1/FrFmzMGvWLHz1q1/F+fPnP/HzqVQK3/72t1FaWopEIoEbbrgBW7Zswdtvv/3r6+Q/o/2ryjnIugj4EFpJkzbu1IbW2Nhju0Wf6/wugitkzKjzbgt36fTPxo8y/jg0//emfKj8jKlkGUmo8/PTghO2k4wAC08JCB2qnYRkY8ZtbO8njdfGNUfnGICjAMh4IslmnKPBEJOmiuz5DpMaP95Wb54Teo5RI++KKa3ce5KUZXusbA/z+uouwrha/ctKcLPoFBEow8ZkJ2tqocPzFcWbT5cTYVPWOgWHbJpVCwt6X1k7trUuNgpHFHc7FqB8wevo77uNOL2t9dha3kwKj352NOmZv+/lhgZaBDeSA+ikR16DyNpH81mi68c0mPY8Z2Fg9bw+unSfw7ykLuZgQfEbOPnmtea9/9T79Joy5eV0LYr9XnjLO5g/4z3N963cPWb3fzzAt5f8An95mAx2Pt/yXH22VcaHSpMnMJwIiC52RiSXQ/dzS1kbnmqhKICD6Z+O9nQajLAkhlr5J7xudy8YykpwdJJ9/4mkU95vUQw5/07+zYoZKzUaS859A5CdM6AAhl0yTIUTcaN7hNdLfZwrELwsmWSdTXu+4AHelCdnYzoqT0f2jxvFy94j0+2nrIROa12nayvnnSKPP2PhuSo99yciE7Jkq+fK9nAiwKqyE9jfV+zQ2jIVdjgWYFWF+T3vzy1lbVQhXVMJO8nsLCsmAqyr6sFzHVVYWj7s5MncvWBIim/ZuP4ojv+TmrqYI5FlyQ8BMF1SrhAy8FqmPdkj0mcA0dyoMBnHutpuyfkKk0TpKvVYrHvWROkge4hx+zJGnTi8vqYLM4MJPNWyBHWlZyShW/aSppsG9F6y86s0fToXXHPu3WheyHT5JNPkLfAd5chTHdl5oO6wyX+Jfncaqm12xjxzpARv/n//9JLD57OOd2fNH3+mnIOXOv/i1zKmpqYmvPnmm/jxj38MgGj4b7vttk+k4b9w4QI2bNiABx54AOXl5Th37hy+8Y1vIJ1Oo7Oz839q336V9rmPHHATT7IVVmZv4drKXnNQPBa81peVR/hZrpRqfde+HB0v+DTQD/ZEORdqbkYKLzn9zUsDnF9QkMYD9YfNdwrSVP04N2MiDQUGTyuXsm8ZC5YgsIUpMy7Y4xevPSC4TxvzCEAw5BtKerKoHuXzn2B22nkU/CzGn3N4+/nhIqcAFkBFdiZD8vqwMF1b22O88TyHHinvG2o7deQB2FDTmTUGpiFkzDy/6/76YwiTcaF+s5UM9tqwcLWNDL8w5eB7pWAPj0FZdI16bJsbWuhZWiHgIm1iNGnFdMXc02IY2HszqhT7BWnckvgYKlDORQMQ/pk9fvQL17C6r6yd9hbXzJAEctfAY8MAQDYdL3vc9fjuKe4jGAnndOj9tXLeKTzS+CKNXdMuRj390VoN3swpMgwmjPLGsD7urx3+tz34u9pqHO+tvbf8PKvY2niAgaFbREHxC9J4aMlL5LXWUSwTFfCcegdPHFsuaxsm40Dax7K5ZyiCnaaqwX5e2hjbkZyacCJA3DNsONtaGhGOBfh6pQXtip7DlIkAqAs52NNdhjAZx4qqIXkut71dZSIPAIItHugvktwcT1M87myvNfuU83XYOxlRuLlPosAAYGiSN6lry+jx7h0utvJfIIWv2DCw4YZ+fhq/vbjdrJFVcZwNc++KSdMHPe8r553CmqJBp28yxzpiwQUCAYjsYk99VG41LDwDpjmWZ44HVFtBP5sjGqsr9Xv1snK0l58bJommk6mUD5ya55IqMKUr3y1cG4L38YiRHXyWAKoczm1/z0IHJ+7npY3zqYAqQUt9AA0NnAw1hE4zMfF4bDnk56XxXAdVAD7SR3cG54ywYeAnUri//hgVHIzg+Ke9H0D7V1lnyjYM+NnyjJG4YcYqpMiTChSikXM2DApnTMhcPrp0H8GkLIXbpnc2L6H98K0lvzTyXUcOZU5Z5iq6O7b118FPpNDWN0fG6Nyherx+PkWLG+ecpf/nZARebNP/AsC3lv7SzcGzDINNuso4y1l1MYeiMZyjoGX61vJmon3NoTon7Jjku4jz3cKROLyYEppkbjvba7GzrfZTmd0uiXYJwYqGhobwy1/+En/7t3+LhoYGNDQ04IknnsDPf/5znDx5ctrvzJo1Cy+88AI2btyI+fPno76+Ho899hi6urrw+uuv/1r6+c9p/yqMg3AyJiF+f0bKYAn1gSxPvCFhdlEC9YEov/VNrK4iPnWucBiOBdjaeJigEVEjgQ+XTiakEKbOEfgED9KuLoJWSOKjbsxbvWr+sGNYSFJikijgZJzWxRFOuAm2TiJmfqTA12ickvtG45LkJJWXoxhO60z5CcIwm+qiynAme/pPaHkVNbxF4CG6X+yp4c+wQuIXpgh/qsOcT7YupWQ1xrCHHpWmtzzWYTIuyuKu4xXg2gbsCbUVRjtRl9/vJ1J4b2om4Ck82byM3s0wMhas8VDWi+eI+9A456zx3ljzz/9+dOk+2XvhWECwCEvB5nyRytveoGn0yUA8eHouQTIKjEHlQI/0OoYTAXZ3Vgp0Z9ncM9leNW6eUQTCsQCvj1/h/DoKCeJx2/MN302Q5/ewMvfsiXInaQ8+7a/9g0V47NhdJtl5hoHq2I0v2DAZF3gHLPgUJ8vyBbu00j1DgIZ/zDCwKXUxBysqh7SnUDmeNuEHt9bs43TCzD1DwDyF1RoPLMmaOlHcL0yhtOh1IKZw+PQceB7NnY2bdrzUlsx5onm5VGXl9f1hz3JjUOs1sZlZ2CD6P5cdEoVGYGMw+SVrqglWycbhT/sXwc/XZ8PeS3ZyJENG8tJZ68ORDkmy1zVOmqr7ySjKo+9yBXEp0sXfL9TGolUtel2NVlgmAqqdwB51/g7XgLASP2WuFCnce4ZKnPmyWxQmw2PdMVCDtTU9dCN65rMtJ+Y43wMgWP+V5bQfWWHlRGH+PmPXuR/z572F+Xe8TV56SeSGM69+IlL9Vt8hTQtO0NiZmhIQWZxM51IUIJqQrGWcDSHjuWVl00+ksKOtHg80HJY1cRiodPvjmr3wEynUzX5V1oPvpHA8kLO1rb8Oz54oxyNL98t3G+eclXuKx7m2upf6HM8Yp1BC7wPPktPWPWVHmhgaS5E8JTDFDYs6AEVyY+RCvijKPzj6G04ekTQrCghQzoafSOGvDzfR51MxidDY67Sxvh1bGo45ThN/hptrsqe7TGoGwCPvvLqYg5vyzsuZWVNkEU1Yz//rQ01ZMF/uO0MxpUhaRjv8ODFcf+eJlmVCpWvvC36HUKV7gJqIOblnjXPOyn74PLeLFy86fyYnJ//pL31Ka2lpwaxZs1BXZ6i56+vrMWvWLDQ3N/+zn3PhwgV4nofLLrvsX9Sff0n7V2EcAPpQaOHyVMdiEkyJFGpnv4a/6GxyOeOtJLzel2/Be+Mzcfl1F8mLqz2j/61nMV2YhUSzF07FiLeZDxNTmxakMWf2uzgzdo2DL7WTnfiy3tfnHmRu+wYWoq70DGEm9TNZmZILCeZi4XC0FCjLeEBMoejmd+l1U+5l4eVnpN4A4i59XDgVI1pNvpDioVFM+J0Faam86k35JhydSJEHUwFh2pfqizt7q4F4CKU8XHfTx/Qg/ZlHl7wgrEsA8PRgNTytZHiaejGcCAxGVXtOPQ0v8FKevOfrlYfEUGpacMJRFNZU99E668J3dkEqxkmz50wu3SBE9cKXyRNTkKaoS2h56QrSOHpyLoWSC1OYe+P7Zg0Q8YYHoWHj0BjwMO1j52AlZl43QsV8rO8BFsQhRjSRXl5GFICZM8epSnRemuZAz+nBvgXGI6TnBfGQwsiJlNDM+gVpHBqe5xiR8u6cEJW3vQFvwrA+8Zr4BWkgJ3T2lH35Ns45a7zeGq7hF1BRJ05OjDZ7nfYMlNLeCULs7XfPh5f2nH14620fUAXwVEz2xoaSHvLOTcYIPuMpqII0Dg7NI8OxII1vL98jUcWQWURiCgtveQfqYo5Tb4QUNAC+jrrFQylcxUnq4ViAgVM3w9MeW6UAPycj5++2O94DdCIxAuXM3YqKIezq1RGnIJt6FQApsTkh/nLl01RILK5w3dUXMDx6nZv4qJXCw6fn0PwNFxNNbV5G8qwAqtzrF6ShYgqNZafovYkURSw+yjXv13NjK5tPtdH+QW5GCiY+P1xEhcf0GTpwah7Nk6dEPnqTPpSuI2BHWZ/rJ4WaZSs0HfT1z+aIYQdog2eKzozKUCExxBTUeTcZFTDyLpyMAXEypry8jEMsESbj+PmJUuRdNiHnkp/pJyhaqEIPtbNfk7V56SQV73qo8SXj5JiMwRv3HaOPZdTJ167D6beuof/r87Omol+YtngelOUJn3/Te/AL0jh98WoZpzh/9N440E80mfxOlgvIpSJtUshyKkYyQGk4TsanvsQUJYfrfvJ8VS58RZJm//zoWgA6Wdqi7a6d/Rr8/DTyYykjXwA81nKX7JNjZ+7Avh46u2xw7BkqATxg9g0f0jzFQ2OA6bFIblwqhpt3BJLv4xiLbFj6CsjNCFvS3uFi5J3Ok376BWmsLB/CvDnvSL+8d/Nkjcrnvw4ECgdOzSMnhGYL8mJUqE9ZuH8AeKa3miJ7Wo5+u4byGL0cPY6YqfIO7RyAoujn04PVZFg3HMPugTKEqZiJXOq+XXXzeXpeXsY1nKBJK3QBQz8/DX/SN3JUV3m2Px9GmJHYcVh6y9u44vIkGstPwU+k8M3q/TIfR3oWoLL4laz74JJsChRx/FX+6C108803S27ArFmz8N3vfvdf1JV3330X11xzTdbPr7nmGrz77rv/rGdMTEzg3/7bf4uvfOUr/0thXJ974yAcc6E+X688RMIyN4NV84fR8fKtxov8gU7asTwwXizEwOs34MKFAmFNCUfj8Hwl9JNqnPB6fm7GFIuyPAovv30V9nWXEkOB/tlTLUvokIMue4Y3SL9tWtGcDDpevhU7BysdA4OhDc54Na4xHAvw98cojEhczR6G3riOPjTlO95kNREz3hpddXdTXSv1QUMN+D1rygdIIOeZpE8ANKd5aUnqbiqnEPvh03PoIE7EhFnFjxOVoucpvPvalQaiE4R4rPtOYnXSXOVhMg7FrBRc8MYOc075FFodo+iQd9kUHq4nWkdOEPfz0tjTVe5APvZ0lhN/tYY+CKuObuJR159fWzwApHx0HZ/tQFK2LnEjQl4slD6dPHljFo2cwNrSvozRm0UQMZ6fi+8VYtqmQ95Ie3h+uAiKIQf5aVy8mE+KImCKdOnxrK/uIkVrypdwtjAiac95OErJp8h4LvXmeAA/nkHPqzc7xYOUpdA9vOglbKpqNx5k3baUteFI/3zDCmPlUAAwEQC7ojjPE/8/5VFl4dwM9d+KUqiAsL9sgHElbS4K5sczotgLn7ryqIJsEMoZ/asunbzqA2DFN+3j+OvXC3UwtwcrjmJTbZvBgk/ERIo+Un9An3+KVinLSxmOBXL+Xn/3CsJ2J1LwxmNOvYHDp+fQmRuJOz+3q3LvGSqBn5PBtw/cSwpdCLz7wSwc658nCgOPmZlfkNbnZCJGScb5aXyUoijVx+c0u5kCjvXNk2jBY0dXIZxhnbUJHYFlI33UROn8IHS86wyjkTblG4YrAF9dcYToSdOUlClQFv0c3hN+fhr31zbjnXsICsQwjMOn55DMDUKSXwAQevAum5K54vWV6IfeQ/6MFH6/6qhTS8RPpOB5Cv+f4iOCEad5MxBNNRUTTLmfl8ad808hHAuIKSrPzLnKJdYnMXp43+rz6cczwDjN5Z6ucppD5eGhhoN0DnUEJhwPCEY3Gsep0zc4eUCSlzCq56iGDL01RYNGLmh5Ek4EdG+kqPotFKBydF7RpG/kacoT+RAm4+gZuk0qOjv5UJ5Z39cuXo5wgiLNgq3X0Vs/N0PQTPsusz3RCjjz2rUAgEfr95sIQR7BPXlv/enin+GNTWmJEK6p7HfyRPh931y0Xyo4h2MBJuePy30ZjlL09czbV+M7jb+g1183IV3pO3mL7JPnh4tornIzUJMxQAF/UH1Ixr9+Ya/ID74/vnvoy/TMiZiJMI7GiVEsLy0yjPsbJuMUuQv0GnDkUjspP3zzMoLOxUI0VfebeQVwIZ3vaG6ZWWkTRU2kjLOC5WokcsRr2Td0Kz588zIp0Pq9rlVOFKTn+O1AynN0jkuxeUp9pj8A8MYbb+DChQvy5zvf+c607/izP/szeJ73qX84P8DzsjPWlVLT/jzaUqkUfvd3fxdhGOJHP/rRv2BW/uXtc28c+AVWiDY/jQ9ThSLY9nWZZNGmygHg6sks6AUzidgKC9Pxfbmu23jOmQmlMIVVVccBgKjJxjTG1FfYtKjN9CWRkgrCuzsrTRhYhz7hK+J7h3vRqrhFf6I9BFvK2oyBo4ynxJupsbWhy6phY9bX13bK3EhTwI6OOiOwLG8NK9nycxgBHY7EJSKzt7tUvJh2QnMUNmJ7OLi9PzlD+smQAQm767lev7BX4B2M9V9X2w0A+NHRu5xQsQNrUvxM/X6+rHwXdvPTfqJ85N/vPlEq9JJeypNnMkMKt0eqXpIIjl+YEnyxYIetnAQbfuPMCSeOayXd9qza8yVFfGD2yNpiE74vveVt+AVpkzipw+NfrzzkwC78whSgCCblJ1IuHFMbhfcU95n1TKSIDUsrgz86fJd4w+Ar8TaF8AwkKeLt4z7KHPsK95Z0OWsle54x2YUpNJSeduYCMYW/P7JYPruprpVC9YURikHb66gNIulD0sDxopAi7svKeaewct4pPH7sTuzQ+GNZZ/3ZH/YsN3UetOEFkMLLCaMCr9HzoeKh/HtTqcmLsek1w2Qcz3TUilFkoIv0vTVV/eIEYBnC3xM2KJ1IDU9ji6diTq4NPQ/0DAt+wQqTyvi4f/FRGbO6mCN7XBR56xzbHnleO3t+t7Uu1smy1DcHyqI8PLTkJXnWUy1LzO+stWG4qBgBhYTzlgKVowQljbZwRNOoRg0YED0sR9qcJHAFNFXQ2eL5PdBT7EZ2xi02LMs7ybkqDPHZUtbmwOgYniJMZXqMK8s0jC5QIqd5XbkfXM/hqbZG+Plp7BkqgZfxnLyBuuKzhkqa1ybfyBD6hxulspmY+HuPLt0ndSC4vf/hTKcAGs/VloZjAICf9DWYitRaaQ8nYwKb9OOUc8cR1erbX3feCQD/qWMNZs0ak6jN3uFifK28BXWzX5XzWbfwLL7fvRLbWxskpy4/Qcbf1ysPyRkLk3FR5EOdBwTApVfVf28o6ZE8gR81ryQn3piGu3HzQfc0yzfebzHlyHZ5D58BZjHUkCNeT3tP8vzv7S6VeyVMxvHB1AzUlpyVvgq1LSenF5rzgJim69b72WYV475QdFMzmNlRXn2vMp33JdsUPkPOAX115syZzp/c3NxpX/GHf/iHGBoa+tQ/JSUluO666/Dee+9lff+DDz7Atdde+6nDSKVS2LhxI1555RW88MIL/8uTvz/3bEVfefEreC1zI956/zIK+U7GDF9/JKtfXcwxCUIRtoMVc0/jQC8xbXDuAjeH3cJimJBLK6IQcwVcJ2QX6kse5BVmxhD72Q13vELeQeu5Tu6ApbQzEwUAYUwIR+KAZmdgzCl/b31tZ7ayoFv17a+jo/8OghvovmRV+7XGCwUgN5QoBACHPchPUHIdckKJtkQ55JkG1IY41c5+DW2Dd8jPti4+jJ/0NSAcjWPL4mP4uyNLoHJI2ZKx6xAvlEfP43XS87Nq/rCwNU1XSt5u0cqkJEw9Z72j+8HeE/bvwmQcqyqPY3/3QrmYo0aX3exn2kwpUSYlvzBlEpcBB+9vs6k4Px8PsKGmEzs7a7Cuugc/Gyh3vJRNC04IftpPpLChpAc7BytRdPO74g132DxCAD6wub4F29vrgdDDyooTeKljIVSclJRlc8/gYG8RVlQMEd2ixQrUcMcrODY4F06Vat5fNoNLqPeVb3lSJwJ3nZNUBXnPUInDbGQrBVlzzfPEjD8WgxPTA/MzNtR0yjnlgkp2xVQADltR1joEShTwcCzA2upeByccjgdYU9mPPb1l+mEgz2BMZe1PRxZo9hGZr/EA66u7ZN9cf/UFvPX6lY5SFGW/ATQkIWVgCyvnnSKYEIy8WV/bKYwtIgN8hZVlQzjQWyxyCsrDutpu7D5Rmn1G7PNj/zvKqmKzHNkMLnal4k95tt2YTcyWP41zzmIqDCRCYL8HMGfT1GLwnKrdayr7KV9rmjOvzuVAFWQcdrpohezo/RFtvM+8tIcv1fU5ycA8X96UT0qrZRB8UjVvu3/yf3v97btNf3fZ3DM42LeAqvjqd0SZl/wEGZAqJzTzMBLH+rpO7OqupvkMQjq7+p6Ybm/YbFGSr8IMSvadw2tgGXv2XqSkdxcVYDMJrS0ewOXBGLb11xGrV0cZ1td1Gjkbfa7ezwgpz0nq3+i+yL7ku1fnHvp5aayaP4wXOsqsZGSSfQ1lp9H28m1Z7Gl3LxjC3t5SpzK8w4gVhFhRchIHB+cDoUfywpLXzlpHGbX0XbCq/ISc66x1H5u4pCskryz/NoLY9Er9J7V0ZhIH+v7yf/qYhoaGUFxcjLa2NixaRA6PtrY21NfXY3h4GPPnz5/2e2wYnD59Gi+99BKuvvrq/2l9+qztcx85OHr2DszMnRA2BoamAKDwqMZUAoQHZF7p6OXCdH9e2tAQcnMKtFjVCgHgO8t/7vQnTBKMJEwSjEj+FBD0ZW8vRTOELUUnvy2be4ZC/pZHM3px2p45+30snDytyNrMB+whfPZEOXFdM4OI/m44GkfXK7eQp8uak+c6K7G5jipAShK0rtzoF6aACd+ZBz8vjY2LOkz/dDn6ab3nXP23IC2YTgBoG5hjBJv22ofjAWpLz+Kn/Yvw5fpuYSDiRNbVlYPwxmJStObuBUO0TmmC2DDHfVQBYdyrhKXHTIXOcJQSyZD2DXNKyhPPMDOgiAeWC29pw4n7v79noZOM6SdSjufGmRJr7nd11Ihh6RekpW4Hz+O2tsWS2OcWd/PkUuMLhoso7WyrBTKeQ70KACr0CDKQoIReAJSEDmDOjA8oKXs0jovpPGMYBgoIQine5SdSONBf5HigDg7QXB7sWyBKKScmCjxmmr3s5WZM8viMVNaF7+fp51iVe52kPA334PncWt6McDxA3exXnTkNk3FsqO+Q/ysNqaEoi2F72nW8Qhdx8kwkgessjAW4r6wdsy5PSp/sS91mWuL3cF8lElLbRhe9gvzxZ6SwvoaiLGHad/otz7ISiTeU9AAKRtGZCPDOB7OcWgLieYx40lcUnXL23oFT84xndRHNz67uamFs+UbVAfiJFNZU9uNAf5HrrU6YokzMqCNwKZ27Y5933qvsZRZjjSve5qUBj6rACvmBVZyQ5RcnwUf30nPtVU50EICr5Om2obpToo7XX30BYdrHXbWDgPKwsa7d2X9M1ersSZ3PxMX9ZLzjAY70LJBokgOZtBLEmxacoLOq8xo217fAmzVlmHxC2ls3X3uOIsaXTUExbE6Pm2ugcESO/2wq7aS14Gif3p92rlSYjFMuh+7Twd6irKjCgVPzHKUYoPuUFXZew11tNSa53crz8xMpTIUB4f1ZBnKkiPO+dB6bvW/tv1kurK3pcZ7LdN98N8teUObfz3VX4qmWJQhH40SdOoNq9ggigL39Oh/x/vpjlLw8I4Uj/fMRJuNonHMW9zfofAB9H7LxIVCjcbpzGK5oR7Ht4nd29G9vd6nZFxoOas//rbd8iIM9RVhX2SsF/zixmvfxH1Xvwzer92NFORfF47w0gvWJwT+R7TSZrrbRJdV+1XwD/vNraEVFRfjSl76EBx54AK2trWhtbcUDDzyAL3/5y45hsGDBAvzjP/4jACCdTmPDhg3o7OzE9u3bkclk8O677+Ldd9/F1NTUJ73q194+98YBAAy9cZ3rZVPGC8SYSoAO4jOtpPjYwpGbn0gJTlVYQxgGBIB5ke0mIUzbqx/x3oTJOB6qPExKccY9/GEyju+s+DlhbG3+acBlbeGQKB/klC/FgmTYTHVmC1VlqPOItcQdrw0b4D8q42Pjog5sb2kQhSlMxvHo8n3w89NUWZS9exZrzzNtxE+9tbzZhLYtAS3v1YWbAFJy7DCovX4cUu3ovwPhGLH08Pf5kt5/coFzKT8/TArLQ40vwS9IU/hbj/mRJfvpmdoQ8vPTRohbzE5+YcqBgkFpvuyUJ8Kela2o8UbeZdcLGY7GBZt7/+KjpPx8SjzPT1g5H6NxfO/I3fLvMBnH/XXHzDxGv2dHejSkaEvDMfiFKWxuoMqeXkxjlccDYUv6RtUBSjrUz9lS1obdJ0rJYCpMCWsUoHMc2EvOUAvNhCFe3tD0wabC3brY5HDY+5rfqyLK33R5OpzMGo6YXBmGq7DBxL97onk5/Pw02l6+LcvzyJSezlqNxJ0zHCaJ+hOgyOPW8mYHFrCtpRHnP04QPr7QUsCVKe5kvzOaf2HDgjiZ+6HKwxLl84Mwi042WrF152Clc2ZESeIzbcEmRSboPhw+PcfIFvszgGYTsqI2Vr/3DhfTPFt9sT/DxsIzrYu07NNznDJ5CQ800F64teBjIoNgSJ4NAVS6km9C54zYc6HPEMkZS1YyhKwwha31R7LmrePlWx25ubO9Vs7KOx/MAqZ8iviBGF82lXYK9j86Vumn3od1RS9Tn1jGMHxM5x3IfClPzs6ernJ6v96fOwZqJF+NHkaOAc65CccCeR/vN8mv0PPAOPbtLQ0S/bR/v725ge5AbfT+4Z0vYGsDzRUbHRyB58R2pK1qvZGKwj2v3kzr4yOLMhOgs3BtzkXs7S418rGQ5KWjzOv5vK+s3dxLo3FxegGQe4DXlO+whxYfpP42HKF9nGNRgXPOiH6n3XgvbK5rxQN1VFx0W38dGcojOu/GUzgyMB/b+ussKKXpA7d11T0G2srzk/GwbpGpjhyVeaJr8N1kKf1hMo433ruc7iTLscMVs/k9EyqOvz7cZFjMPLM29l53aJ1HCCq8trIXl3L7l+Qc/Dra9u3bUVpaitWrV2P16tUoKyvD3/3d3zmfOXnyJC5cuAAAePPNN/Gzn/0Mb775JioqKnD99dfLn1+F4eh/dvvcw4qkCNpUjDwIrFhYIUWAQv82lEJlfCgF1M59FZ1nbkM8P4XUZEBJdLpdecUoLs8bx3g6jjdeuwoPNRzE+1MziAPbDsulYpJ0JJ5DDg/a4XAOQU7GyCv9CSFB+f+UTiSOZ3D3giH88jgJBC8WmvB0pLjJNb/Ixfu/Oek8I1r8RGV8qIkYQY36quCNx4TxRWA0PA5mWtH9iD6DBZmXn8YN156ny5U/ozxKvuO+TrMmatKHl5+BSvnSTynaY3thEymo0CNldpoxAdorElOUHOkpgXQ4hWqmYvBiinD3oUe/H4nj/sajeKq9EQAJUHUuB97lUwJFc96T9iX5cEtZG55qb6TxWcmufiJloB/6Arv+6gsou/Jt7B0ogR/POJADe4xqKobYxRjUNZMOJCKc0phRnXQZpmJ0YeenkXsqH5PzxgFoeNowXRLOfOv5y1ofXUTHG/dxbYuHd5eH8ArSUEmNb9VJsVLRd5qifjz/jy5+gXDdNuxCr0vR7W/j5JvXYvYNH+Llt68iONNgicwlz5dAwXRIfmvDETzZpdcmCLOKeHH/uAhZlLfbmcNUzFQKVnBgiM53rD0mUIKYcpNZYfaq892UXqeUe8Y3lPTgmZ4aWbNwMqbJBHzaq7xHJwKCZFhwH/65KDlv5yG8YcJAGMcDeHlEAsDnCnF6Zjilk6IVaF01lAgh4E/4wNXZ9H5ROQYAeQVTmBjTkTaWb1O6kjevYbSoogV7uuqGC/j4XML9eWS9wpE4QRatcxtOxVA0+20MnblR9h/v3enat2uex1923g11Poe47vV4vHxyFCkFfKtuHyVopmJk9FtyN/ZmHjI3TTjPvK+sHds6GuicTPhQOZTb4uVlSCZpxhg/CLPkky2rvYCgSnwXzb/pPQy9fAPJpCl3vW+7/iO8+s6VZk9lXEXXbtGzzedzzg0f4MzbVzuwF/nMdNBUXve0D88Drn0+jveWKAPVtYr88bzCB7jIqN3CKboXGV6aNR+cm+MrXNGSg48rM5r1R59PfX6idze3/MF8jJeMZ/3cObvWHvJzMjSumKIk93go+1aFHtRkDLfd/j5ef/cKgQrChzmvyThKi17H8devl3cxBJPvSW+U6nOEYwH88Rhw5SQerDiKC+l8PD1YjXAyhvK5b2Dg9Rs+sbiozJ2+c/138hBeP+GcFYb9cqRjbUWfC1e0CjR6sRCzZo3hwoUCmRNM+agsfgU9J24HvJFLGlZ0V8n/9ZlgRS8O/t+X3Jgupfa5jxyEk9rrnJNBY8lpA6WJG5wvAKhxk9G/ct4pYvQIQnQcnw0vFmLqXJ5z2YRjAT5443J8+boBvPH6VfDz0/hx7xIKRWqvZDiuowopwiIzfCUcD7B5EUFy/MIU7m84ijAZx7ryXvEkCOzH8iT6BWlhSOIxMV7z+eEieLEQKu05RYAYd8x9fv83J83/2XvCY9LP9WIUki4ueBt+PIPfbmhHOB5gbUUf/Lw0gtfyDLwnJ+P0Ixyh+VVTvoE+JVLwfIW3Xr2K6Af1e5hlhAXa5iqdvMuUflM+eeWnfGH8AICn2hvF68wJ0OFIHL9fSR5zYWsYD5yaCptrW8Uw8AvSholE/722eAB+TobeZ7HI+DNSBJvQELBwPIBKkFKvYkoYYcKxAA13vCIsIQDwVGujMaYsukcA5CXVCWRfK2/BOx/MokJVOj/ExiJv0hAuNUUQqUwilP1jr7WfmzFc8PGM1KlgwyCcCAi2E884imw4EUDpBE+VoeJdst9TBJ9SOQrY8gHtEZ1keU9xHz1HQ6zE8xutwaBZtB7rvtPx+K8pGqR/K2Do5E0AiN0LIO8zX848PpXx8UIH4e85EvNk61JhIAqTcTEMxIvK1Ymt94YjcTknTTX9lOA+buSCn0OKop2f5EBuUr4kfQI6WsHYYhi5woaBnWi4vryb+pQwhcPC8YAK/KU9bKihqCWz6yD0xAHA84g0KYpXXjEqcBwnInDDBFbMPU05OCDvOa+nSmm2Ms20sqZsQPaS5yvpGwCEzIRiU6TqaBl7HrmxYcDva1pwQjOC0TlfOe+U4/UXr6v+vLAmAcbrr8+OyuizMiNlzm3KI6rItIehUzeagl/jgcP440RmknH8Zefd9B/9mE2lnYBHe5rl/ve6VtEv016WUpu5aSLrmdtaGuns5afhXT4lEcmvlHfQvguMoimsYzyXoVaIc4gdR03EZP8MnbkRSGnl1/Kch8k4Xj5znfGqRwwD8dxPxhCOxLF8PiXyy+c1ccDV+aP0XysyAWhZqOcyHNd3GIyC7weUg/P+b07Cmznl1iCJKScCIlERyzPOya9z5r+DNeVurR4ey5qKfjqHkzGcXzoBxEM8Un+A1jknIwQUtmGwoaRHov7JeVPyzHDM7F8/x5xTvreYoQkTMdIF0p4TxVIT1N/X372CZOSEduBpGRtOBFhVeRwDQ7c4tKQcWeJ7UiX0XvIBXElG9+NH7yTDYDQOPzeDyst0sjYbgtPUs7Hv3PRVBrrL45UCnKGHlSXD2N1TYYroTdBd1LTgBNR4DPcU9+HChQITeY3THdX32k3T5r1ccu0SKoL2eWqfe+PAvjCZskuw17C8GfoSDZNxCckBcNgj5JFWEuj3u1eKwvjHNXvBRWoEG6k8qtTrA5vqW/X7QRUXNeb7qTbyej6noSo2ntAvTMFLe6JccAJYmIxLcTI7fwBKFwbLS4vAXlk65EBj2Is93cFfMfe0QKX+/OBvEavJ8QrCo/dSRCR964RwUDNrkCRqzkgZTDtDOazmjcWM0WAlB8+/6T0KcQNYWkqVBBl3vrrsuHCvA8AjDS/KWglFJSAVINlwaaocoGTRUcKD7hioEYXynuI+WUsW7g7eXsMconhL8ZSmfMBX2LCoAzs6KYnNL0jLHuPv8pyvKB82awRjAHF10yePLhNli5Rr653JOHa01cva8fMb7niFfq+LnzUtOOHSpvLF5itio9DKMc/j1ysPUQGjeadMVE3LTA4/r5h72oJPAe+fvBpcKM8vSJMxbBdk88iQ4TV4sIIM31XlJwxUzDJ89wyVSD/ZALLxtnZFcwBQGVLYBfbn6VC9NaeyhLy/ObfFCsf7M1LiSXt+uAg7O2vMZczQFGVVi7VYiRiWsq11MVbMPS0YZ0qGNgsnCpN+Jr9/V2e18brzeuan8VwbXeg722oNXFEn0nM/JRdDy7WPPi4kOcGe0HHytoajcRzoK3ITjnVrXHha5g4A9nSXSf9F+eRaIjlEfenpeiDMkS4sZxG2nlXzhyXfZ09nueQzhMk4DpyaR3uD1yVQDqyQkiOVzIfsYe1J53dtqW+WdX1n6jL6uTIOAQeTHhojzK7PEI4FFFEZiePvjy2Wsck66jYd9podHvy5VZXH8d07/4djiHCBue2tDQ4mnvfC2poeciSwvOd5sCCJgKXw8V7wiELbTxATjdxPeebs2gxxfm4GG+o7CB6m5VE4EVDNmIyHY/3zpsWUJ9O5RkZzio02tu5eMERVfq199fxwkXmO8gTK40BWEpS3xHBePzeDl9++SpJnbfgow6lkHfVYftizXD7H8pprIqxf2Iudg5VEggDASxo2KyfPSu8pYUxiWc1zCgP7AtPPTkP6sbLiBO5eMESyPy9t9AaGoupoCMNveQy8XupcDm657mP4hSm6j/Q8n0trD77Oh5wuF4irmiM00d97S7pkbwqsNT+Ngy0lkovFsiMc0/SzhSnDZhdzc3Nsx8Ul3b4wDn4t7XNvHPj5aVx/9QURMFKhVrnemygMxaE4G4t4zWBhBsd0cZb8NP780G/R7wqpqjEfNPZkPj1YjXAsoERenXC7sb7deMKg6Qy1dc+Ni5Ctr+3E1sWH5f3erClSDDmJL/ScsPDzw0VouOMVHDw9lwpG8dgiSjVgFJ6Dp+cab48O3QIg5Vx7xgCIl2lnR41gXu0LdtncM65CxREEzcHPFTkBABkPw8dvltwFG0oTJuOEa7fG9dixu/Qa8gSRUbJs7hknL2FGMKHD2oQHlXEWUrKZkxOgce/rF/Y6ybAP1B92qvSKsqWjD2w4cXKgjd9mpTRMEi+7RCxgDB9WUBlL2lTTT15HqxCfnzAUnuw9DidjxOjDTemKrKEnuSYyFzEFpXGxst5jAdWBCD261HTdDtsoaVpwAgcGF0gfGstPAVdO6uQ+UynYxnR7Gc/g5DMeHj96J/wEJV87dRB0wUBJLs7JYEeLNoAs43h9Xaf0V13IEQ/fjoEa+cxz7VUmnwMQJU14+DlBcCLA+lqiC10575SjDHpTvqmkzs2j6recDBqOcGKmUdYOnp6L3V0VVGRPJ8iygfr8cJG5bLlegs0yFBqjnwYDoU7k99uKpW1c8pzYbU1VP1aVn8Cayn6hU14xV3uMWdaNB7JvROnS+H+pmst5IJycWJiCFwt1rQ+a439srZXvMwXr+uouxL3QJOXqcXytvMW8iykck3GKntq+A+XJjSQe7JoemdMNJT0IR4kfPkzSOX5G53uI4afXhokVRInPeGL0cdXwMEn5C19pbHaiSrZCPvfG92WPSONiX9qQP3BqHr5z4Hf0mmVDd+TOyDdOmT1DJWg5e7t4a9dXd6GpasCpcuu804PID2a5YZIFQHv6882+AiDP3tld7eRErK/qgjdzCh7nSPHndTXgcDzAgVPzHAPWL9AJwflp7O0uxR0FVLxs5sxxF1qaSBka4li2Anagr8jsRV34UXJ48ukd4VhAOWGWYZFXMGWMOytfB4AwFe3srJHfAxBmNPuceBMxYc7rOnOrc88vm3tG8nq4f54lEx5afNDB6B/oLcbzw0WUJ6HXfl0tkWKw8Tz7hg9demNA9AlVkMGrZ4necpcmILmvrJ3gQIDct+FkzI0eeJQHw844jqo9PVhtIjS2k2iGyadQF3McY9puLMfZ6eTnpSm3ZZrPXlLtC+Pg19I+98ZBOB7grTevENYZ5lNm5ZIP7Iq5p6Eu5mB11YAc/tx8k3Bqe5AcS155VOWUQ+w6KnFr3sdU7RfGm8ff3TFQA/gKW8ubKVkwpoQCbnsrec/XVfXI+9TFHGys7cCujho82byMnjkaF1YdUeDZc2QlSbMnWwVWJVLdlzXV2nseCZFvXUwJgo5QYK5k67Pinchii1Em8Uke7Ikn9U9XPEs843xpFqSFycZPmARoTk5lD3I4RkqxX2ByNeyICCfMAqSk7hzUVKsxi/qO8z6iURNfoam6Xwy5hyop8eyJY8vFs2obZqs0cw//3x4nK+b3Nxx1PKeOl5W9paMm5B0mCR7GXke7tQxSYugNueeFkYkLgLFhxm1HR53LplVARXjs0L7sYU+Jgs8QGs5Z2dNdRkZkZC/xPPIl81DlYfk5Ky7heICNDe102et1fnjJi2auMh5V5LTH6bsKb5iM4x9bahGOxrG2utdhO/qT2j1OX3gd7m84ai5wBXA1Y37nsycoufPAqXl4oE6vZ14a3qwpbKo2MCEA2FDT6SjL8EnhYIpdhrMBhqWGjV57bzt/W9ANOT+J7D25cVGHyKcNdfRvm3ueWUa4qi1AxuGBU/Owp6sc+/uLxXhZX9spz1pT2S8KR1SJ8BPENiT7IgLjfq6jShS+L9eZBMrtbfXwC9L4x5Za8fba7cm2pfLv7RwBS6R0Mmzkw2krWT+k5FKeo52DlXJ+NyzqgLqYgy31zWZPJ1JGkfUg8mFNRb+ZMwAHe4rMOwAxNMOxwCma9XDjAaponGQjU/ctCMlhYFHtyh5kekjr+X+64lnHq+4YhLrt6qzG3k4Nl4swdbECv76my/2ZXreV807hufYq+f9DjS+5fcrNYHODSX7nnDgVKIn4birtxIaKLvE2m/tN1zhJWkQHBWk81UrR7osX841jjZn6CtIUIbLw8hvr2g0rXAhTWEu5Set+fhoPNBzG480rHI/1xFiO3EFQntSXYYhNOEFJ2F8rbzF5aIVG7vJ8eVdMkhE8g5L5/XyiLN5S1kaUyrDuw7TvGANch+K+snZj+NmJ1crD5cGYmeORuBR5k2gT3wMZD95kTO7idbXd2FjXjm0tja7BrNePI8yiZ8BEtTiq5hCjeOZM245AoU+FewcBkAiwICwAzIqN4ZJvlxBb0eepfe6NAz8/jfmz3zHY4RFLwbU8cwdPz4U3cwr7Ty4gJTbjYXJce4gtQewnUk7FQIEPAdjaqJWNgjSeaF6OC+kCgkpohpS7FwwZOITy8MQxCpFuqO3E/fXHnGfaEBdv5hSeaVtEnndmM9IFSvjzG0p6HGW5qcrgOOkhpABedllSqPX2DhfT+xd1ONj1J5uXTQs5YkE598b3nbwGANmYbD1f4SjR5T205CW5/N6euhx2MTFRRqSv9Ffcyzg/8wsIU8webi9NXmEWbns7yxAm47i3pAuKi95orL/dJztqITkcofH+A1RI7VvL99KaauaQc6kCGdP+fpq7+8raHfiIPY9PNS8BQN5+x8ixlHNWsm2FQOYEgGJIjFYKn2xeZryEISk2DJGCAjbWtUtUiscvfeNwc8LsG/qeW9lYZXwxVqdbXx7LmqJB+IkUfnT0Lmd+WZlhylP2JvLnWEn4XtcqE2nRcBWEniioGxZ10DoGREf6rWV76SUxhf9w8B7zLugLeyxwkn83NfDZM+O35+TJvsWm32MBUiqW9ZktZW3aEFXO3IlCqmF0AMmWJ/sWu1EbntNzOVnzHo4F+HaNpqG1YAthMi6G7aNL92FnG7HlKF9JDo2f0LSpkQRou/kJKgqWUpS8CEVQH4AUjjXVfVlMR9/vXqk77Eniqf08bszWxQbO2uIBzfuvlUlLAXacB3qctufXJhWQxPDxAPc3HpU54b+5qOCu4xXwZk5J8TQAUuhJ5kcbiHuHi7FhUYcw9HAU557iPmdNSGmj9zy89EU83rPMeZY9fqb3BSDwTjbA/AKij+W1fHvq8iznkh3pkJ9FCvc5icWeEu8yy6BwPMADiw8RDaUHOUNcXHNLWZvMx98fM4UCw/EATIv7yFIy0HcM1GBnZ02WYQMAgU/ryiQQUUeHrJEFP4r7GcfgZcNuxdzT8Gek5D724xldh8as8xMty0x0MqmjdXqOnGialp9riwdkPOw8k/6HLivYH1XvEyNY5lnnlAFw+uwnqACYzLfeo9uaG83A2SGoFWsp2KejUlKtnaMwet23LD7mEB3k+mmRlw8vPuDsecBlYOL9ACDCCqUJIQpT2RWkLXg17+V1Gg4pRqSOmvAzt5Y3U/X4yUtbTbzU2Io+L+1zz1Z009/8RwRXx5yCLN+oOoDvd69EOBKHpwjDzB4UhJ5cpOx5ACDePS/t4yuNzeT10sLw4SUv4sPUDKJBjQgv/i63+8raTTVQMVKyi2BJfxhzbD23acEJ7OkoN9R+nsL99cdEMPmJFO4t6SIYk6VAcbNzJvj/UWEP0GW7uaFFPGvrF/YSrZ8FJ9je2uDMlXhHIgYVj40LlwGaUYETpwDjESnMnj8pWGQXQbLfMxaIRyja1hQNGv54DSvaWt6MJ5qXO+vzYMVRulh1UbVtzY3OvDvjmaY4kMN6Y3nenAJvo5ZCkEjhocrDpDRrGtvpKiaHI3Ep5Dat0WZ/znfn2Pm9Xs8rgiRBikA4Vc5n4H04c+Y4zr8z093HCpDiX9MVrYuMU35uFdbiImfqoi4gFXq4v+GouZitvbKprlXgSVlMGmkPD9QfxhPHlovyb1PnrlvUbfDIkdwikygJcY1sWNRBCnjhNPtqur08St58O/F5ujMvn0/7aCo5jr1dZdJX+Z2FJZ9O4XL23niAtVW9UtDNwUFbhaE21bViR7uhVGR5sKOtXp7HBeycvlsF3rL6MUasRfb+fWDxIcrzGY3j0WX7JCpr00dGoVG8x6eTjdHzHJWJsp52RFMruI8dXeV+TkdVtyw+JjCkhxpfwqzYGP6qa7U7Pqu/0bM67XkcI8y+0nlQdrE8hJ6R27pFz+zW8mbk+SnCz3/CXgOAutmvomVwjrN3nf5FmZ+iBbJsWTkSxzeXP4/vHbk7W37xnFp7yJnLaeT6dP2dbt6i391a3ixGuc2uY7O+hWMB/t2y3Qam+89453S/zyuYwtgHiayzyc/cUNIjTrdPGmc4GscDjYfwROsy3F93TAr9fVpznGRxYtb6WnmLE+1gmDBTElNExMgG7qPDZmhHDawzRBOYLX/vK6NIRJYct47PX658Gt9pW2/6rtfuj6r3yTlZc2sHfrj02UuO2Yd1vFVz/81nYivaf/pvLrkxXUrt0jYJ/yc0CSfOnJKD9f3uleLpEOvdcz0Tdll5TpQkLD5IIWYMaCKFH7WsFM+Ic7klDKSED/K2lkbn8LPH6r6ydhKeiw+TR9YqjgWdhMzJkXuHi+UyenTpPqyuHJQiRPx+Vqz8REowofLeAiqkIz+LeI7FO1SYwo6BGqiLObi3pAu7jldgVeVx3HLdx2QY6ARimSsrVLdq/rB5v+WtEAGZjOO5tir5+SNL9psLJeK9unvBkGMYSAK01VaUD8NhQrHGE41AhMk4nmhejr9c+TSFu7V36vFjd8p4ftq/yFlPfqafSEkI2+6nrTTxvgEoCd3x7nigsL+n8EfV+4zXnWEQDPOwkyJnGPiJ3ReAhDl7zRmf/2TzMvn9H1XvM88pTGF7ez0pJXqN/6G5weybjEe0eufoQl0x97Tw+vuFKRnf1sbDBofPiXxe9tyT59aKfHjUX6WVED+Rcmk+rWJVKRWTc3PhQoFEXRCSh+vJvsW6Twoee+70GMUw0B47BwaoqRE5x8NPpLDreIXkP9hJlOxxC8cCipRxsmxhyqFKtaNe0fMfjgXwPJBhAIjElbW0PMe8JveWdJlQv54D9vbu7qpwFGTGifNnN9e34OnBaqyt7qV3aBiQ5IHoNvTGdVgx9zQeXmKS++29xbC66ttfpx9ePSky4YHFhwBPGQKAwhR+cGS1ScjV+9iRh1oZtSFgtmyU/ICxAFvK2hwDxXZGyDnQBbHgK/ywZ7nzHvbaAsC21sX0zIZjODN2Df6qa7V5p95TrGhtbTxMPxsze0nOoy1vAkU1YyxqUPZOexmC/9CZoD46BcUmY3iibZkYBuLR1Z5nO2mai2IxGxo0rG5t8QB9NzDrHibtfCgN27HrQXh079nyS9adoZD6+99etsdx6EAhax5YLgBWciw3LQvWFpvo9dqaHqiLOU60zvZ+KzvHqiCNv+hscu4zABKpBIx85PXi/n1r2V5JzJ0Yy3HHYb03HNX1P6wx2RGDcCyg/udlSNbkp8X5JvNmzb39c+mzVsS/XnkII5k8Zy38BCUCy2d1pXfeK9zv1dUDTr/g0b60yUhYPofjgbPXbMNA5rbQyD0/kRLDYM4NH+gP0NzYBvRzXVX4ov3ra59740BoJpPxLE8v4IaEhf0laSWDKVfR9i6fwkONLwlVHXmLst/reN/0RRL1KgJG6HI04Sd9DcbLPRFQRWbdb/aA1c5+DV+vPAR4wA+OrMa+/oXyvGVzz8hruRqwn5OhwmOWoNje0kBJlJagsPtuX9zezCmZg5nBOF5/9wps76gXQSOUjizgFRUfk6ZAlINWe2TJfvl3mIzj/zn0G9Zl5Bore7vKSHnQXrAt9c2iGLKCevj0HHccnH8xHmBXF/VdkqJ1kuq3X9oonqPfrO/9RI8Q5wXY45HfWQoRQhh2ndDDprpWFMSmhAWC+/fj3iXwC9L4yyO/CT+RMlVWFcToyOLiHzd5JOEkcXDzHPHe2dVV7RoQYwH+8thvyue4Ui5g1li8dUmKTjx+7E7KORgLcKC3mPJprKqZOXlp/KSvQXJNGLMLQBSPrHm0lWfLyOB+PVhx1CSC63PDyrefSOHKK0a1IghAeaid/ZqsC5QHpavXcuML8pvLnpd5s89cQ4k5I4CGDmlSAdvjuaryOL0z9JDrZyfxRROCZYzTeLlZWeSET1EqLNw6PABBSB5+Vqx9Ze1pTWKwqEMucQCU/6IVjh0DRKUsnOZWgTlWesKJAFdeMYoDPcUudMZySPzo6F3wC1PoeuUWMSD8RAp3LxgiZUl/bsOiDkcGyjhB8KKV804hHA/wUMNBmhOL8YfGBDHYuDGenRsr3ttbGgRWxNBIwfAzVIYLWGl4RV3JWSwtI/Yzu7rzyooTlDxqQTN/0tcgzhqe2/lz3qbfRyiDOcocjhEz0JNHCQqj4iGePVFOxqRee468sgyUvBOtEPLd1FQ1IJXb7TmyE/wBSNG3FWXDEjUC6L5YW0NnXMVDbZzD6X+YjLswL21AspLtJ1L4OF0oa8oMShRR1/CfMcOGhI9yTQSNoWT6c7OCcXnnnqES/OaiXrlbs5KtQ0uW6mYzlanQc6qH26xt3iTR+n6zej/++nCTm5ibjBNV+EjcvR/4KHvG4LKbX5CmqHbaJ5jjuOXssw1Fi+xA5hPmPC2c/RYea75L7hmGKGaNUZMBkONR6SiwwrmpAskhFJ1hLHDyr+x5HM2QB51JKWxjl+du1XzaN2uKBuWZZ96+2rDr6UeLg6/g0yMl/8tbqD7bny/ap7bPvXGwo9N4Ju0DzJ4tEXaFKRzrnQd4iujWWPhYXkc+oD/uXSJJo35BWhSoqIfCrtg6XcXbMElJXnYCse2R4ETJqNDsePlW/LBnOWqLXyYhlJuRCyKZzhEFgKsBh0nCQocjcSy85R0SHIUpJDM5jgCWqpOWkPcTKaiPc2X8uzpqpG8sfAX3y8llMdcD5hem8IPm33DG+dixu4CcUNg7VBCKQPUsnvXN9S0oL3qNit8ACKdiZCRZc+vQDbIXTaIZpkDNZh0B8mZOAb5rBO0dLpakZ3mOxvXev/ioef5YIF7vLfXNJldAMyZxZMNPpLCjrZ4iJYzfjghp3lv/o7nO8bRGqeu+UXUAjza+QPM7EWBdZS88XWBOwsua6YYmRYnX3s9LY2k5CXnGsYsnWrdV84cFTiKXW0EadaXE3oGMiZIU5rsFsWyv24q5p4WXnp+/qvK4gylnb6mNOf9x7xIHorOxrl3GARBdJ79jdfkg5he+R0YIe6FnuJWft3cQTOr73SuxtqoX62u6hAEFAGbEJ8wajwUEFZhBcCfe/17K+/+39+7RUZ1XnujvnKpTepRAgMHGGDBvkND7gSReJpjgZmiCh2bsJk6IM1y7aWe54/Gkr29n7p0kd2Z1OpMsT2ecpN3J8rTHHQ+JLxfHzRDHDsa8JSEJvSXeYLANJrZBSKVXVZ1z/9jf3t/3VcnO2L085jq112IhqU6dc77X/va392//NmG5AyNS4NueQh5TS0eYm3EowENLD+CWyf2Yf8dVlBdcwPqKDmFlcaOahYpJC7gOBhtRAhMxclJ2dpWD4Y/Tpr1P75kkel6GoAkFqxE94M3fzU5Qn7rpSsmPecLoxm3iA4Qfo4R5P+ZJkmpeaATMMuTmJPBE1StwcxN4sOYIdjVVEetNTgJPH11FDzBZ0wZpbaXh8VOSep9pUAnNDvDsEe29dXOIbODRZa8J5aYz4spB0o95aDp3J46cmUsRhJg2zPafno9bvX6i8TXeR9aFes2TZ6dhc1Ergr6I6PhNi9s0xI93UFd5ttU85Irhls47/jlKDh3QydNQeg8gdjlms6ICYNBG7lBYor0s+9sKtDdZ3U+w6QHpczcvLrVleA1uWtwm7HU1cy5ILpnkNanDnztO33tNeTceX/6q6M37i1qICvQWiihtqWnQh2dVifznHUushN5fHyujQ2QA+4DC+XN+CmzSiCZwATceQx6nurnnqebMcFhqU3A72fHybP1yK6qbqufcvLgwBPkDHlbNP00OBlUI8T+//kd2pIVhPooyVg6c5lxSf+u9NBVuTgLLSk7JvsTzO+iLwOEkd6EzpfFfVdELNyeBlvMzLXYhNxqXg4ToSUBgtS+1lMMf8LCjodZqLx3yAmyqbsbloXy40Th2N9l5DMJEqA5+r7YWpUXob0rJsBV9IvKZzzmY+dP/C3DzpAIle0AWzL6Csklv4oWm6vSy93yIyE5g/h1XcfL87XBCASrmvoHWCzNQeuebaH9julyfWo3Tj3koLzyP9jem64q7w6pIUSigir8me4Hp7TWwoGbF3ztnvItL70zUtHw+KKwcCuB4PhX9iYfguIEUhfGHwrTZRJJYPPMyui/ejvENObheMUqFdXITVPBLJU7JO8RD2FR6nBgXUqoW+8NhTL7dqGQ6EgJcYOrt13Dl8kRg2NUbnKrCeH9RC37RXk1F2voiQF5izIqWkybG8O6bE4S9aeod13D13fFW/3Kla8Yucy6CjMP7EfjRJNxsMlS+e3C9TU0XVmOh6O+kMmbqOBhVjv1+D6srenBb1g3sOFZDHsL3sxCMj1OxNFUTgXGz5ncBiuCYyc4M/3j+eA1cL2lXak24mDS5H9evR5Hdm4PhgiELOxz4DoK4i43lbRbPd9aEYcRHwlZV07FEqh5zRVWuaKzmTqAKhuF3WcCUEalGbIo/FIaTldQbtmLMua+8WUL13N9WMviHvJs1xmosVs4/g/09C3XBQrOStcIrS2VaTv5TxvqW4mbx2M647RouvTMxbWwFox2zsbzWe3GFYT4EjNEGzvVAVlLuCzeAE/GpoJKqRGy1Ud2H8yn8eAhuXxj+eCrw5A+F8cjSfWKY83ckH0oVqLIOxmPkDi2c/g5Ovnmbbk+SrFmutitzlp0BxiHLjcYRXFe5WsYakqq5vBbVocYcI6lyq65n/cNjh4SdX2PCo8y1w8+880UHk/+P82i9MMN6Dld4nTPtXZw5f5tUHzer5hbPfBudF6dhxm3X8MbFyfKuPLZmRe0g6SII6B3WF3Th/dEoUY72e8iaPIQ5U97DyTdvS6/cPBLC1up6vDeaJ8xV5jrhStFcdd18Px5X/vtdi07h4Ol5KJhxBd2np8sa5T4vmPM2skNxtJ65k/rLrPA7HEbOxCEMvZdjzQVzHvC1ge8gSLq2fjf04LJ5Z/GVW4/g4aNbZRwlP0PdY/Kr2bi6jJxTUgdD9cv8O67i5Kk7aJ9T+wRUccwpt/TjnSsTrMr0XPWa2GQc2buCpIuJ9RFcXz5MeQLN1Vhb2kVV0o1qx2afplZNTsvXGAoj1BdGcqKOJJgVkrkyvNzbqDDNuWkFM66g+/w0YjVS68CJUHE4fyQEx/MRJFy5rxv2EVyLwJmYXnGd37lq3gU0nZwt+705Lgvmv40zb0/Rf0tQgcTQ9TCSUR8rSk/gUPsiC3rlZifS7BXW/W52guaAekf5XLVbV88evqkrJK+Z8xcIux8x58Afwd5z/+Wma9PNJJ/5yIFVaCiSpEWRlcSZt6eQIaNCtf5ISEKLbnZCaA5PnroDW6vq4YR8tPTMBgAy+g3Prmz46pS9sfo4WntnwY952FpVTwY4AIQCbK09CscJrIMBe3XuL2qBWT0zYC/WqEsHAzOcqjwtiLtSDdT1kvIsSY6Lu/CHw+g8QZvqjdoh4np2AgQDqmqvWdk15gGjrhRGkcrHMU9gKe9fiwom081KAiMurr47niorGglyj9YSI4TnJhEMkffKyR9FMBTCN6teJm+cEZV5980J2qOWcLH+jm7pX4ETRJJiWPgxD7t7iqUOQTAYJh5+1UcnB6faxlLClerPHPlwuEqzCfWKefpgoDxF+9oL8MuuSrnf3bWd2FrRgK3LjoB5vZkhaUtZEwDCmm4pbsbLbZp5ir2GzzfUSSXkwKPvP165F27Yx/XrdPAaLhjSY63exVGJy1bBNt/B+rndZKQa7DJme1i4ErjrJaWiLM+xYJCqfgZJSj4FgFcVh/fWkkYLChIYkQeutvxC4xLLs46Eaz2bmab8mCdjxn3Cc5jHAlCeUS+J26f00YUjLkV3hsPixf95xxLcV9kM10uq+Ul0hs836MJDF0+TUSSsThzV8rU3zs2Lp7HF+DFP2EoQOHRI+4CDwZrybjxa/Tp57JXxHgxpZ0TQF8HdC08K68mWSsp1uX5hgvQhJo/oqqy+Y7FAcf89UNmIx+t+S78bMEn+joy5cnD0nroDgIZaBcMhMprUXA1MuGPKweD+ohaqsGzAqTaWt+n3iSSJ7lX1yZdKjom+EKilgsmsnnxCe6+zE3igrh5+zMO20qN0qPGSUkXYisLEaE5f+tMEWrrnEJ6cdd2NCJyQj3sL26mqdsKVdv1F9Wtyn/beO7G9/CDeeGOKNrKVLgIIwsZz2wn5wEgI/oCH/9FQgfqzs7F6wSm44+IYuZ5NB4OYh/uqaI1z/pOblcRzDUuFypVhcmxQupEk7itT+n3A0wcD1T52UATDISpYFvPQfWo61ZVQ1eH9fg+Iu+g9dQdau2fTnBl1aV6PuuI4GrqaK3ls/D3zgCgG71AYzpBdGM7Ug0fOzMXfX14ljG+sCwHQPB0K4921wxT9UBGuR+tek6jrydPTdLQj6ZDjSMk7FyfRGo5TNWg3QhXAMerSOKpDlB/zgIEwri+naN8LjUvgZidELz1e+1u5ZzAYEj0aDBvtMiLJzHwE30HyFhV1j+v+x0jIqgzPUXsex81Frfhp23JsKW5G76WpwBBVrN9Q1YpHlu6jg4Ea0yAW1o6nsE8RqGxj3FWfs/xJyXE0dc0F4mq/V59xrsWZt6fY6ISREB6v/S2S42k8+WAgeQfKtuGDgaw/L4kHlxzR7VI1XgRapdiJzrw9Rdd2uZklEzn4ROQzfziQIiJA+qYDw1OYcPHS8XL5jBOn3ChVQgWgDxKGEuXwP8Mc/AGPijLlJvDo8r30XYeYPeA7BInhhN+ohqC40Th5pQ1c5JaaBoE8SeKnEi4sxMnS/Fl14TkAqmALdLjZ5JMOPB/b6g5ZhvyWJY2UxGaEgTnRjN/phUaDf9+his4EaUlZaMqYeOrI3fAHw1ZyLyV2Av/xwBfwxeVH9bioMD2HWxkDvLWkEZsWt+G51xW0YTSk31s9d2pWn9UHrNB3NatcA9PgG9CJiAAkEU4SAmMKFmWGUz0/Deqz79QCPNewlELngl8lJhJmifpx613kvQ4oMdg6UCZVjQJuS9jHDw6us5V/imytO6L6G8C7tqfkVz2lacwwJv4VgJ3IakKcmKpznJFAakLwYh6e66jBmrIehC9mw1HeWT6wsTHgRlU+h/F8hjFwu768nCBa7F2lhwTyrKAvovtejc3l3+XLOoAL4bLn+fJCA8HadnYRveYz9Susdw/CPvwBD7uaqugAbhxEUuFAXDyMqXoZb2/i01k2FHYq6EWAva2L4To+zXVlZK8qPUFQFwdw8kcJYqP0DYf9/3RFvTUeX1+hE8gfrDuMVHm+sRZ/e3w1Hq/cK+++te6IXoN+ikNEQQq4fop457lSa15cCA+sBPvBMHY01MpYM6XuSy3lpL/U+uEK5IDOiXKjcZtKOXDww8Ofpyinmh+Xh/MBl5KaLcpcw3PN82dNebf8zsxa/nAYtWWniChBUXwCVEzMHwxjnDusoZxugKuj4wXSxHObKYhZ/4iofIVAFTvbd2qBNQaPLt+LnV3lOlLD8BdFUuEPhrGruwzVc94QSJA/GCaqSkfnV/D4bVt6UKA5bjSuk30d0Hzndelq+I/pBd/VXCm/b607gu0rXoc/GJaE1NR5a65tk/feTJZfOf8M/JiHlvMz0/JW9I3U4do4MP+49S6VW0Nz7/ljtTSmCn4rdK8Mh407Ap16ubVYxpxhO3ACOcSZDiyeo08eXgu8l0VtUkP4ZMsa+z35dQfDVIRzMEyVjxU8yUySR5hqvDDEZ2Nlq5Xwv7OrHNtKj+r1pOBru1vL8HTrSmv+rqvu0M8eCpN+SoHAmpTTu7rL4EaJnMOPeVhf0QF/KIxEEJLcSaFzVu/7t8dXw81OEMRIObR2dFZZhAbm9Qyjfq6jBhurj9Pf8+KoKTinHU6qH79aWg+4GDu/4WaSTM7BJyJ/ELAiNzcbK+efIY8Mh0WNELz1s7G4zc8kTJ6iJO8tbCf4TYyw0iZMSZQYU1EmHWEb4M/Ne5mh/VTIwFiyblEP8Za7AVaX9mL/6fmSmCfGLCvqFPiBGOMMreB+4XdWXqhUJbu5qFWzPJh94gMba47jJVW0yKLRG6Mtqxecwt6WxdhYY9BOxjSUwZmg6GXDgRg66xb1UGGuMWhXAYwZsk2lHAUA4fBXfc2hasbLOwkXQdiX8Vpd3kOVo/meqXOEYSVqLJm2zo952Fh9nBLbVNid3+kby3+DHxxcJ9/xB8PYVndIvjfW5pbaLiQcgqxkf/DcReCgpvgMms7dSXSWChb1QeMCAF5WAiPv50giPeJUDMiJO3AmjqbDWQy6veBGBIsKL1meSr7GnPf31RwTY+k/rtqFf3/sC2mQneo5b6Dp3J3pbVfz7p5FvYiGRrCzsdqirFxWckoXbBsKY0XxSam6zf1iziEyDkGHwJTK4QDS1pAf87CussOCim0o7MQ/NVRSImiOvX4ZUnDPol683FqMjZWteKmp4gMNGDc3gXWLeigPhtfjEBk/JpTl4bLDeLp5pR3lAtLnAKDXe8yTcXUjSYJutRbApDDl9bx9xev4++MrxGu6pbgZzx+rhZtDff9yS4lARsQjn9q3Y0CdpH99iMErnymj5r7aY1rPsA5Wnm5n0ojVvyblp6VDjf4QXWUwnpn6f11FJxmnOZp2Fw5QU3wGjV1z6fcI0VLWzT2Po60LhY7XigLz/U39Z859s69SqEfT+of3DIV9N8fHSTr48vLDFi0296MJFbOcBTlav5mfm88zq0NznyPpWIUkAdIFQbafTpxg3PODdJhAlBTUyBkK0fvwM439KXUOmfsT7z3h6yEkbtHFOJfNO2vBa6zvmfcaA5YHIG3/sr4/RHPj6yuIujf1Ohk/piyOh4BRF07CQZCTBHwHdYVn0HhuFs3bTrWvGDrmg/rug/T7mO1UOtlJOmlzIe2+g2E42UkEIyFLx9UVn0Z953zcs+gYfnbXzpsOgiOwopmPfDxY0cWf3HRtupnkMx85YJGKvSqM/lDdQfEOfpCxycLsMczE8sTKPRJOZvgNQoF41tljxItUCiU5EJo3NjDMQ4bpgXdzEkQlqTya/DzxdPZ72NNeDIQDrK/o0MZrwsFDdQe1d8bwbAV9ESqCphgJeBMUryy0gcc/A9CRl8EwxoWG5WdLQgFeaqwQT4qTcHSStpnMpf7f27oYyPKRHx6SBGqBOkSY+iSQaE3QF6GDECfo9VPimJlYywcDZqBKVf7kjQvwUN1B6Rt/KCyhapkLPo2TO46gJubBgB6g/rsWUeOm7q1YP8waA+KNYRYV9f2LI7dYUaINlW36e8xWocT8WTdWvZ+RGO5G4xpKwMZkNI7GbjKMTVgUb3JjRSpGFQWgm53AhtJ28WIGucrbbPTphsJOi7LSGT+KuybreSsStmFDL7RUyYb47499gd4/K2kV15sciek+iHmomXOB5mKS5tbLLSXwnKRQz7JH1KzwiVAgBwPpp9wE6uaet95n27KDUmnc9F66UZUomXLA5MRc/v2lpgo5GHAfMVuYo4b+lRMFWFeucmSUh9kfDEuFaVM4siIbPehgsHjmZXmPn7YtJxjOINF/mlE/ABZ0C4COUmarvIYBD3E/JF5e0YfKS/10/So5GOQfyVY3ocbIwUBBaqxIFHt4VTVz828AJOH5vrpj4knmzzcuOQ64AV5orpYIIN/DzUnQwYCNdyWzct8bU4eLB3okhA0KDiXsRCZVam4CL7cWp5NGBET+IJ56BdmsPzsbzvhRSRIXvWYkqPIBYc1Cih4xuQHj9rk9bKyahbruqzmmI74McTFIHtjj/1y9ZnUyxz1wAns8hrUedHN1JXTLiHdSnAy5CV1czDHeVXmfuVK4PMNYS49X7pUx5z2rbu55eacNZe2y3uEEcMaPIrgegZuboKReIxHZ1E/CSAUAvmYYSkxKaD04GMah9kX2dwCdxGwy4Rn7kjnPauZcEMuIacAluqn68YeHP0+/p9SZEDH0HQKKHMJ3sLq4Vw4E9d3zxtQxqca+QO8MJyLv0Uw2wSLfVbogcO2+FHsiZjAy+g6C4RA2VLRZ92k8NwtwArxyUjtBMvKHI5/5w8EjZbTxmhST25YeJEYGDhcaipQVph/zEMkmphbZnJTy/N6B9bJhMKSCWRgA2lDgBNheftCmwDM4hgFF0ametauJ4Cem8trXVkj8/7kJOKOuhPv8mEfVQ+Mu3OyEDdEIB1Lci++zroQ2/T9ZegzXr0fFcBQxnunHiLrU3CjWl6pcjNyEGLAP1h4BEo5sLt9Y8RuaTQH9cyaO4pG6ffK72bf8M5KOwDBM1iHpb4NVIggH8s5srO5rL0jb0P2Yxom7ORQVACBYdzeXOPKFT9rw5vNGFnhB2oHG/JkjT87EUatqKXyCj6V6cMVIYaMgN5HGsc0sI8GNCOA7eGCpUUHWyDnwBzw8XHYYK4qIntGEggQ3IhpKkJPQBlTKJvjV0noxbDZUtWJrSSMeLjssxqGZyLent0hocE2vPvcnF7H7amm93P/pw58TT7S8X7ZBj6sMSpM2j716UyM3pP9ePlGITYvbMGkiHRLqO+cLdIPnZ354SG/u6hnbyw9qbngTrx3oOVh/dra11p85vBJuXlwMdevQZKw7c4OWcY1pY8+cKxxZMPvzN42l2hBRLFY/OUzwuy3FzRr2ZTgCti49Auaa7754O/x+T+pz8Hx6tnFZWkSS8e/mekpt1+3ZfUT1GPOw+3iZPXd9R5hu+pYNY0dnFbYtVQeZQOtUYr9xhT9fDO+4kXNi1AW5NDwJAMHAti49Ip8DiqaT54Xyyq+af9rqV/OA68c8u4YDzztVifzRiteBhKupXZUI/TJ/javDKkYnx3fwyIrXLCjLltoG3Dr5hubY79dwOvjAiuKT1F7lgHLHxbH35CLRVw5XmnUg8DlH5Qj9Q3ud6AKGyVE/K6Mx4ablu5hz0RzX7SteF49y0BeBM+rSfBqDeUYbk471t6AvQtEtQwczNFX2sTGijv6Ahx8cUBFRtUe60Tgd2NUYC5PTcFhyTAKPDjT7Ti3QkRUpWMgsSMaDAgf54SE6ZFY36bYY10bHDWsHiOpHc/8FQ+uicVoDihq58dwsfU3SfrYfo2J6lrMHxPhm9seDNUfoWV5S9MeWqkZxNMk86fcIXqoKc8pngEAzf1a/Mm0/+ldLqRbIofZFuo6RcTjZUqfgxnkKyhsAj694xepPcYgpBqU9vUXC2MYi0aObWTI5B5+I/EHAiubNG8C5tyePCaMQloQUT/iKEoIijBm6MyEDKawVW0sa8VxHDVWBVThuixEkMGBFKe+zesEp4uIe45mAUgwmowiHikdCYNpKfhYZmUCQ5Vvv6oy6Vtl2AGMzsHDoN+ZRwhkr7BFKWuW/rS/ogh+4BIFQMCDEHayr7tDeON+xIEuADmX+SXErdh6vFO9jGgTBYFbg568qOkkQMfZ8JB3MmP07vHV1wofCsZjuzawsvb6iQw5XzMzzgZVRlUKH51usNBYjjwHTSoVq8Ia4ubIZOxurgVCAH6z6Jf73xj8ZE24AAFk5cQxdzcWK8hM41LEQAKg6a0RDGsz3+32/ryg9oT3pKSHx26f04a0Lk+U7lbMvorl9HuVlOAHWVXSKwesPExMWEg4QAI8sI2Ydnh+WJ/NGBEE2Jf6NVQkYAIL3s+BMGiG4WVshbWDKgyjQNQMuYhpGCACEAvzd6ufw53u/Qt+JxnXF62GGYNGcDfoiurqtikTIQSak2JsYtmCOZ9j2rkqkTx1Y4FNfCMSMk96zkwjiLtaU9Oj1HaaoWBqswfTSmlATZilz6ZC8vXY/tS3hAkMhrK3qxKsdi7Gl8hh+2VVpQbIEGpLlW8w05hzwB8MEm1GRiOrF59DcPg/OqEOJ0oq9KhWyYkEjFFuT+UxeR2sWnkCWm8DulrIxdRtgVEwPBWDGmk1LmiU6y7DB4HqEDvAG9M/NSVgQTyfpIDByKdJ0ZiqkxNDjHFVL9Rb7MQ95Z8MYWEhsb1yMijHxafcx5ow/qKhJmR2Mjfmwj7qCs1LwTBj1ko7oWJ6jW5Y04vJIvqYwVcJwtTQ8ewq8h9/NrEYsz0wQ9p/3p81FrXihYYldiTdl7VpwqZR+9fs9IOJrggSGcjJL3HAY1QXn0HRqNjDi2gUw1XhuKW6G5yRxcuA23T+/B3IEQOBdiPhWArqlC4fDclhz8ketw5WlWyK+sG8hsOeCVZldvQezeyGg8YMLrCvuwsvHi/V7sm7hCFhI646xqofLvFbPuGdRLwpyL+PJI2sFhrSi9AQOdS8gHRvS85apxc1q2OIk4LGIeYi8F8LopCTWV7VjT4suzrZm4Qm82jrr5mYrumP7x4MVvfX0Tdemm0k+85EDf9DDmfO3iSeZvT2AUhgRraiZYxuBg+nZ1+kGqqy8dXgwq+MqRcfCFV8DVYUVoKRXUU7qXluKm+HEDWYhqCI9/Z6VbMnvuWbhCQonK2VL0QrlFfHJeN5efpCMMBA0x5kwahvKCn9o9c+AZmCR0PaAkaBnbGZ+zCNmmGgcm8qPY9X809jTW4Q9bRQB2bjkOHlvx8XJiFReRLPSKLcHDuC4AXY262TCsXC3zKojfexAckfMwktvXZ0gfcHff6xin9yPWGQcCvcyvCI3gT3NpfJuQtnppsB6+N05CmIwYfChRrzXjMs1DwbKkPZjHpBwsPNYNXlrchL4xmt/SjdSrC7+gLrHaAgTJsQwMkQGxqH2RXQ/V4WolV36eOVe8gqaFUP7iYfe9GqzLIhe1X07zphjg2G8dfEWaqaiu2w6MVuKKbm5CbxyogCht7Kp7xWLCgKaVz85fDceLjusmEa0V9cfDNOcSzpYW9FpjbFZvTnIpjm279QCfegxonHsFfRHQnDiKUnPqi+/Vv9FNUfoS08f/hx9N1vBQuLaGDDZdCyPOidf8udqPm2pbaDPBjwdSeHojKJ/3VLdqKNg2bQxc22FdWWd2NuuoEK5CTLGfN0O9oizjko1eFYVnyDml4Da89O25dojqjzUSLhIguZR07k7tY5Sxd2YlUygEjBgEYEjhr2bm0BTzxw6FE5WMJ4phPN3xo/i3sJ2SZpk6IH0nVorq0qodsayeWcBEOvVbpWPxG1mWV/QBX8ojJeOVch91pT1wM2jKrKaSCHA5qJWof1dVXSSrlNG6a7GKpkrzvhRgdkBilxhQOsHZg3yh8MaNmrUk5GoX0r+2GDJEMEIVfTQrOzLB6J7FvVK5WWev1trj9rsYKp4lpuVRH3XPF2sTzHqCZ0nIFG2HU012N++CGYBPAB4ua3YMv7uLWyHk9RRXYCgMnJYHU95Q9+sUsmtcVoDays6xTiNJbIoUXXOBa1nczV0B4AdFTdyNVi/M2yIv5ta36DpxGy5j0S5KzqlLWdiU/Bs/XI5GAQ3IlYkg9cMF0XkcTMP+Sybl1B0we9XkEufotGBuR9wJJDnBHv+Qe/txF3R9YDSnwM2JOnPVu3ThxffgeslCYKnPPAy1/hQY+SiSX869pxKCsZJJW43l+Bvj6+Wa2qKz+BQ10LSveoAIw6GPF352h/wJBKSejhPzByGmxfHntYSiXz5w2HMyL6Gm14ykYNPRD7zhwM3N64LCzEO22QnAAAnwIO1R6zwrISqmZs6N4GCGVesCoeioBW+3hK1afxl5av6UNDvUSEZhxgFnPGjhElVm+rqBafwxKo9VmIUv+errRQWF7yoWQZdLf6nW1fqw46iTwTI257mORlDwTNkyM2LixJfX9Fh5SBcj+cAAHY1VVECNHtuQZAAU3kCymt8YwwqNN6kTY50o/9TQ+ZuNuVg8LMeXHpYoiVmIS4WNxrHk0fWonL2RfiDYcUqxMkCmrnJTDSVIjbKwyXQjsD2FMtmFhi4boOBhI1p/l3ECbBpSbPV//qF6TCxcclxObS+/+YE+igngQdq6ym/gTf93ATWlHfjB4f+SMZL5sO4uDA1bahqtQyxZxpX2PN3jLwDEwbj5iSwZuEJqbydvGNY8h0kiW6cUflZPT8NIpaj6QcBmpPfb1kLQFUxD1GBHt7QpFonz4FBlZMSOEL9akHCTGpVhoekJv4bh1R3nGZDASBjtqr0BK3dwJHDhz8Yxo5jNWTQ5cUt2J4bjWN9VTv84bANb1Hy9BE6oLzcXGIZmpurm8XzngoZYIP9nkW98vyDp+dhR2eVNtC4EjVXCVe/v9C4REdB2KZQbV63qEfl1DgaipAyD2UNpkA4yGNLB91f9ZTiqaN3a8+0YbCxob6/gw6zh7opUrKx+riskU3VzfirFXsE2rent0giAFwtmQ9S/mAY66vaZfx2dpWLrj14eh5FmQDLCWJWYX6ufhnB+AxGIxlvw3iXe6j5sG5Rj4aS9Ov+8LLoYEdsNrb+ZBlJUt9LBALAc0coP8AfCUluAmAYvArWxDqI15DppOBrUtvpZqs8t+EwVpf2YsiP6KhJPAR/JITGc7MIYsnzPSeB/3jgCxrCEvMoaqqioRxNre+eZ0UX11V2aEM3dc8z+haO1qcyN0yveHaC+s9LWtdMCA/K+zR2zoPJLGZWc6cIA7VFSAsMJx7306bFbQAUq5bR7yxcvI3z43iep0WwRylp2jqcGHldfszD/Duu4t14HtaaTF1m+3MSFnzLzMkZqyAhf4fz1sRu4Tmn9qXGnrnUn24AhAOB0vK9rdwjV9stj9Tts95vQ2Gndnj49E7/9dBdY77XTSUBPsbh4NN+6Ztf/iBgRW5uthjMgPaAjBXaBmjBbahq1eXaORRnQG3MsGZqmHzT4jbyiPOGp8RJOvjfVuynasWDYWysaqXKjEb1Q3nWcBhbqhrxXjyKV9uKtGcmcLCmvJuiDCnv4ebaIWMu7sNh41Q2klQ2BvMdPuidUtkpAIzJ2JB6X4R9KoBjXFcw4wpxRcMwUsyQMYfGUxmHUsPb7Ol1gbUVnRIBMDeKxyr24clD9+h7M5wi9dCUAocAoJmu+H2MgkMmo9OHMbPwNfcXtWBHQ+2YRoUpZuE0ScQzx4QNAy6YdyNC0aoPuS8bjOwlZSaitMJfqoAQ1xMYE8rDh2bzbyxjQN/Mn/1+T1iWBC5jQNekzQDB4FQRMp4b6wu6sKe3aEyoAHtH3ajK8Qj0POf2wIE1xgwZgBtoGISaT9zf3H/OqIvACyyoxsaKVqvuxPqCLoz44Q+FqKWNjXrn7eUH8ZOjVNlZ9E/KXJU+cwINBfoAdjCr0JsaG7jUVua7T72G22YWB8N7WfBzyINdM+eCeHMBqlIr7FCGbrEYbxzIQZ490o3nZmm9rMZ22byzBOc02HWWFZ/GsTfuRDJh+7LY+Jb1oNbI+sp2XYjMmCPrC7qoKqw79vwca0wQCrCq+AR57JnxSUHnnFEHQSTAspJTONKxwJqLZvFAkyFPGIgMPWfCRsy/18y5gHHeMF5tLRI4yYLcK/jh4c+LPmZP8VhsVlZbFKOaGyVq4Z1NVR+6D1rMQb5eK5sWt2FieFCovp2rWUjmJ6w8AYv1bgxnD/chF19E3JGEeHPPBYgOmGFU/nAYmypadF+50OuZfU0GI5U5hgLjgTaax4LYWO9ojIcc9MaCNprz+0N0ozl3LPvBd7CqvBcHT8+TuWDOTUv/q3s7SQdB2Lf3wQ9q34CHZaWn7DUKyFw0dZmZ6/OXla/i+y1rcdMXQZv6MMLuR6vFkPBHsffKT2+6Nt1M8pmPHGws7MD8O66KkTNWcpM/GBYmCIAWsSgp5Rm7v6jFNl5iRjgx5dS/81i1rhxqhCuDUICfHb5LFMLunmLZzACIt5Q95b84WodXjxeneWEZt8zK1495WFPWAz/mITDwrDuPVYsX2lQibjQuMBdTcTkMC1AKUbCbrlI8CcPrwd65mIdHV+61PJCSDGo+L+FaMBYA6OmYaSXpmrUOxKPVb0ABAO3VNTxeFJkB4AOvtlD0YnNRq8DE1hd04ckj5KX2BxTUJXDG3hh9J82YY6YrNkyZ6YW99YBWzGbYXaIIxjPuyLqmOclLGsXLw5Ai/tmkyWSPoXUvFY6WhOuwTx5ss+9SIgLbl+7XSWg5ibSDAUeapJCP6UFTUzw3b4Q2SE5oLuzU10bjBKPhpFrl3d+0uE2KQvkxD99Y9bI24rMTAk2yvNhqk2I8t0DtYh6GkpE04wOAwH6strs0hzicz+3ZUtug35H7JCspaxbhwArv8/2dCaPWHHWztWfviapX4Mc87G4ux6vHiwVe4SfctOiZ+Z7by4k9a92iHor+5SQkQV3aMBjG11eoWhm8oQeOXgueflc3hwz49AiAEcmJJMWj6OYkpP6DOVd3dZdJ1BG3jOCRZeRpnJ93Vdrgxzwc6VhgR+/4UMWGVwAg7pCXXNWC4TwFjtjwczmvRigdcxOoPzsbSQW7M2VtWRc2Vh/HluJmfGvlS3IfTsReNf+0VSuC+3RjVav0PSd6pyYoc6Jx6YKL1voHIAdIZyLNhSMdC+z9RHnhZTzYY+5AxkzqgRiMd24uRS64Lkh99zzS/2rMXjlRgB8eWmvpv02VLdJfJtW2vEu/HY3yB4lPH46ts1hnr1tE+4gTd3VR0DwqrPW18gPY2ViNq/Fx9L3hMIJbR7ChrF2e9/jKV7T+MeA6qYcE7kPX03vTRG+Q1hUb5bkJ7G8rkL5ysxPY1VypDyyGLnMVeQgAbKpptp+n9q37ljTJnHy0QuupB+sOS9/dX9Si35H3IxVhNSPC3KbHKvZZfc9wIviwoj4cAWEUgyluXhz72wpobIwIl6wBM+Kg1n5g7IMMh1tT1iPXrVl4QutuBzjSRs7Eewvbsbqsh94habRP9a9JIMKR3dQ5ddOJ73+8fxn5UPnMHw5ebK7EybPTSBmqE7gfI+8GK78Hahrw9bq98h1zMbAS4MJW/DeT+cQ0Xk0Ig0WbBgBOoOj7KPmIDTuhLTSozPwBwoaam5u12auKrfwe+04tsDxw5vsDpKjTGDoMY1Ow4b6DR5fvNS6CLjqVijFVyvCpw2usw8cvuypxb2F7umc35ll98mef22exNDBOVop5mV5fQ4GRAra9ggJnUcwLLzQskefsPl6mvYPKA5OaeyEVmA3Dz6KOjRHLD3usmapOxjtXG57mBiJtV/c0C509W79cWIsQOPjGXS/rPjIMIXMO8eGDI1g7u8qpsnKuYq0yDHPzuYCGuLA8tOyAvmfMsxIr3WjcitawgTM4kGWFxm+P9GmIBiDQInNsdnWXaQ90APzgwDqdI2F6u1S7uQ/42YHvSGVcOAExmqRssJwvI++u3smNxvHgssNWXoGbkxAIEHtSBYvL8ySFjQRAGsNX6tz+m9c2jBmudsM+AoZycT6I4V19upUK/O05XgKAKmtLwTvVZ25uApdHJ2hjKxWWlrTft757nu5X7hNlmLvZBJHkOgp+zKPiYqn6CsDakm75+enWlfCHwrrYmQHLsXRDipeYoWepkEiA1vXmolZZb2kJ/LGxWXb8wTBebS3CS00VeL6hDv+haT393YCX7T89X3LAxKPrAJ6TtPrVzUngucal+Fo5rYdNi9vg5lG+QthNaicQQFTQSjetL+jSDoA8Y0ycQJwQ/oCHJ6pekfXkZifwYN1hwv0bXnbuCzc3gbzQiN1WNUap+xKSDnYdS4dLmXprw5JW6/MtSxq1welrJxCvB05GDdxAmKP8mIcdnVWk5/PiBB+NeWJ0mwfZdxN50j8IHHyt/ACtzSC9Hf5wmGBPanyfq18mtLoyZoCtq1XU5cGlh7WuTIGV7mqulJ+3lx+Udbuzq1z20B8eWivzi+fIQ0sPYEdjrRyUUosQpuphAHjywD3ifOBxl71oXFwlmENghAzPTF1n5sEDgDXned/etpTaIgc+01GkbIDNS5rgD3h4tbXIsld4H/1VTyn2tRnshoCGzynHIPfXmHDgjPzByGf+cODm2gYtb2KPVryOLJcW447OKjx1nAwnhiKwpBm4rIjyyNOXGjoEjENDqgQOMUCoxfpCI1HWMfbWVJ68abDiAkAJiY59SLA25dyEGM1p7xE4UjAHAB5fblfsNT3ETx1eAz/mYWtJo3UP3qjn33F1zHZK9eEBTxS0qbiZSo3//m48DwAEw81JhOvLO+S+XAlaaGO5f8bFLeOBN+LUTVTo4UylrZ5vVpt8tnGZXMuHN35X/t8qUObD8izzd8eaDw+XUX7Eg3WHrQMZ/7+lmDYOz0nKYc+q2BrY93uw9ogY1w+XHcaTLWvomcamwYmwqRSF5n2eaV+qjRvD4OSEZPN7T1S9Yv3OkuuOWgcpa/M3f07NcQns+8i9Uw5WbjQOxw2kMq7Zp9tKjwq15jNHV+KB2npsX/66PJdp+eJBaEwDk4UTxM3EcoCSSAF7zW8vPyhzideIvGf+qGX4Sr8mXGyubZKaJ1muAX0yInBSWfzQGqL4jeq+8gepHoc8c4w5yuLHPGyuIp3ChkWqkd17aWqaN9ecm2wgsQeco0qWI2TAw7ZlB8d8/obCTvn7+vIOpAr38/blr4seTM0R8WMeVZZ3gPHjhwQiwX3l5ibEgNtaYhi9sNcL6xA2hnd1l4kTQsY7UNV9QfOBaYFbL8yw+u/69aiMye7mcuuQw/Jg7RHaH1SC7/ea77EMYtHp6vlchZt13LNHlwNQSd0wKSiNOTXgpfe7cPprHes5ScspxHse5+RY+tukrFTY9HsLdVQgtV8tamkl5sGRHUf/0F5nrfvU72xdekS3R5xfdI1JDQ0AT6zaAzcax3MdNXrephBePFDTIOPxk0N3p+1DqWv0q6X12FzUSvTmUV2F29x7U/W6fF8dAkRvpexTfA07R6TeEt/Ld4QkxRxTKdQajcu+/Q/tddYepm+k1yTrMmv/YBljT2OdVDPnQhrVa+AGRBoxxq1uKskkJH8i8pEOB3/3d3+HkpISjB8/HuPHj0ddXR1eflkbWEEQ4Nvf/jamTZuGnJwcrFq1Ct3d3dY9RkZG8Oijj2Ly5MmIRqP4whe+gDfffNO65tq1a/jyl7+M/Px85Ofn48tf/jKuX7/+sRrI3kZWILwpP3X8c3ihcQlK73zTYqnYuvSIvRhMyJAPPLpCe9XNQkWpBp983fDMCz7SECfpaP7wMRYv88n7MU+XbFft4aRnYYYZCmN9RYf1TDFAFANBkKTw/N8eX60TUw0DxVEh0S01DXj26HKsnH9GDEdWrKffulUb6YZh6ebFJUmVYQ5unm7Dk4fXauXvkEdZWHVM9g3Vr9uXvy5J0swwIawTqi4BeyYZDuRG44Rfz4sDbkDY2KRDMBFA+M/dvDiebFkjCWvwHVxL5FISHWP3mbVBcb2njq+bm5CQN2Nwx7rup23LsXlJk+3FNP7f0Unev+813yPPdKNxzJz6PsKRpLWZIVCbloKAMGuNGN9qLJ4+8jn5zsbq4wAgLDv2BAysdwHshGQO81+Nj8fCBW8RdaaSVfNPyzwyk/xlPZiwHIew6fyzCZUzv8vtYA+bKTzW/nAYT9evQjwI4ZmGFdKO5xvqrHYHoQAIBch1yfO4oapVb9xqvn2p5JjuE8dey32JHPrZ04XGnm5dqROmo3E827DMgtFZRZfUsxwHlIOk1usvu7RnU7D+JqRHXbe9/KAchOGovzsBnuuoIaNYJXSaTFXcTzubqwAnQF8iR49tSgItG2PcFvwuS/r/l12Vcl8++Nxb2I61FZ1WRIAPzFIfQjlXXmopl3sJ/n/QPAjRfbsHbtf6yjjculG9ft1oHNffzbM49vm92Uh8rqNGDvsMm+A59EFVxx2GZzHNpnRMgCAUCMxS5nSeYWSOi8MxYJZcLIyN++BGBC+3Fcv6caMq+VzNC3F6RONU54ILRjL7UdgnQ9INSG/yHmY4j+4vapF3Mg9G0sdugF/1lJLBrt7huY4ai9oSTiARdPZAc189uPQw3hqeYO1LDIHl78rzBsPCTGWOJR/e/aEwnLiGbAbXI/R9rnWjjOEtS9RhO49yDN4YnmQlJX+/Za19oDbphJXs6KwymH+gyQyMdwUgSfnPHF0pUQU+1ArsbyRkGeoSFRrSsF59Y0eIAeSg4+hnmgdEvpebp7z6Huncexb1yvWSr5Pa16aTLGrYAQY0el0lHci5KCagoZTSd+pv/mAYDWbhSP7cof5Og1febJI5HHwi8pEOB9OnT8ff/M3foLm5Gc3NzVi9ejU2btwoB4D/9J/+E5588kn86Ec/QlNTE6ZOnYrPf/7z6O/vl3s89thjePHFF/GLX/wChw8fxsDAAP74j/8YyaTG83/xi19EW1sbfvOb3+A3v/kN2tra8OUvf/njtdCB5Aq4OQkqHmQcBtrfmC4nb384jLOxKVhTbhxojM/ccXHxqqeKbNDGAcT0NjANJaCVEwAEij5QmIKiegPgz7WiCQA3oPwCi25UKwOrIBpXP1bUZqKQcgmrvrX2KDYUdpKnXim/IEQUrDuO1YBpQwFYIc/gRiRNWaV6qK0hUBEBi7teXcMYy23L7OJTluGrPCxwVT4H078FkJC1yZNtjrew1hiFiUzlv7OpSp65q7uM2E+YwYeNB8XPz2HWTYvbJFkvMCqXjslkBWKB2NlcRZtfcTPgBvpQAh054n7mOXDxyiQkmFUm5hF8SLWzcuEFORS40bg1v6yEtGhcMPF8gAEUJMJIoJZ7gLy05hp5qO4gnjm6EqffupWSX5Uxsu94ofU8c9y3lx+Em5sgg3wwjM1Vzag/O9uKJMgm3e9JaH5dBW3OB0/PEyYe695uAEnChJHwPwZ3Pq+bnx29C3CgC2GpA+yW4mY817BUz7kcg24wquETTCX5XEeNfa2RuM9jzkbXAzUNeGjpATKsQ6rWiDIeJZql2v/I8tfGjBQ93bqS5oLqg/Vl2gP/XEcN9W08BARAXfFpDd3gxNfAkSJ1XAtC3nU0pI0m1nG5vjV3YMByg8DBruZK/PZYSZojxI0SNMofDhOLGD9PtSm4FrHzqaJx3Fd7DP5gWGpuPFBbLwd4ALL+JLcjkrQMQHJE0M+bFrfBHwxL8S2GTbDusuacYVQFBnXrWHOHaUpNY3LCtBtyjZM/irq55ykPSbEL8SGCC0ma67K+ax7pplBABxYjz0jgkgE5qEwdZubKmZGKHY212kBmaEjMI/IHUNV1NtKdhC5IZyYtu7kJvNRUQW1U/e1G4wiuR/Bs/XLcmtWvnSQxz3aI8VxR1LuHOhda3nI/ZlSL9w2WsWickvpVX4gEjrSJD5l7Ty6S8RHnQqB1mzPq0tzKNuZtyjgyQ5dEQTjfLGLX/NhU3YyXWggiJcX5eF1y3h07oXIS+Fr5AeuAsH3561beh+xJvBeYdVsUhExsCeVk4lwzSQY3+kZ0ZGWH2BecA8d9zPLKiQKJOrhRqlvB0DGOVAMQOKFjFIQ1HU3c9pta/ODj/cvIh8o/m61o0qRJ+P73v49//a//NaZNm4bHHnsMTzzxBACKEtx222343ve+hz/7sz9DX18fpkyZgn/8x3/E/fffDwB4++23MWPGDPz617/GPffcg97eXhQWFqKhoQE1NeRpbWhoQF1dHU6cOIGFCxf+T72XyVaEUBTOcAiFRRcpnG7gnMdiE7GKu/DiNfiI01hqDJYUAGKsmkWyCJMIbK/bj7dGJlA1wpQCOpsWt5Hxy99nRgeDZYbf6YHaevE4y3XDBgON4QECaNGvLe8iBpUxip5Z7R+LdcdgBuGCVRabgsnOYBRl21LcjOcb6qzNVzYIVcwodWMWT6oaH3g+4ADOYEg4zk0GEE46/h8NFcRsMxRG3eIzqO+eh601R8lzNhIS5enmJKSgksmKwp4aiykmpS+sIkcf1E8OxID9amn9B3ouWZiZiNsNAEg6iF4MY2jxkM2+YTzTZNsoLXgDnRenwR8MY0NlGy7GJqG99055xgc9W96ZvVzM/jJos1/x3M6dEsPgu7ni/efvpvUDrwk27g2DxGQBAQiyErgB1le362J6ilFm1fzTaHz7TnxlQYNg8/1+Smr+wcF1gA+srujBvq5FcLOSUoRQns9rg+fLEBnOqYZBWn+EAmypOIYdjbXYVK0LcW0o7MRLzeV4oKYBOzqr9FxOLSxljI2TnaQk70HbQPaHwhYbE/fh5qJW8mSqubm5qBXnY7eg5fxM+x3NNTcUxqoSzaqTysyWyrIijFtjzEuTpeqxin3CqS6HIYMS2NQvG6takRcaoX4xGJD4gJM6B2R9OwAccnrsO7WAPh/rvQZVf02gdVu88BJVjB4KY315B/a0lKaxuNyzqBcvtxXr5Euj77fXUSE5uf9oSArTpencQWJNEsYXPoD5TlrxL5M1Slhs+PMxGO8AMth2dFalFdsy+4plQ2GnxY5lsm2lFpP0B8NwElQ00WLyink2q5Mx5oC9B64v6JLidaZedvPiiI4bRqw/e8yIKR9cuBgXRzt2HKuxdWq/h5rSM2jsmitzKrXN7uVsJMYp2KUitvjWXS/hO/vvRXXRWTT1zpGxspiihsPYXrtfIormuPrxEFwvSftuQzUZwQGALMWsZxzEEA5QU3iW6FUDAOEAa0p6sPf4YtFVMi9SDnLSzgEPToIOSfABJ3AQRHw8sezXOvmXdXEosFmNPkjPpuzxG6uIOW0sFi6ruJ/vYNvSg2l7E0f14AbCFOUPDePNx/79Tcfswzbe3RO/8rHYil679t9uujbdTPKxz4TJZBK/+MUvEIvFUFdXh/Pnz+PKlStYu3atXJOVlYW77roLR4+Sp6ylpQXxeNy6Ztq0aSgqKpJr6uvrkZ+fLwcDAKitrUV+fr5cM5aMjIzgxo0b1j8A8BOkjJ38UaHNRDgAIj6FEBluxN7fkZCE+KgRSSDsw4moyp8DHpyIqpuQcKkoExsaYV+8A/PvuCreQgCS+PbTtuVieHJlRtNzvbaiU57vsCfNCzBl2nX9Tk6A5+tpUfsjIbnOzU4QM1GKZ49+gdRKgAsrBAxA8zzHQ3CyfCs6EvRFdOQBoIPBqG1sI+LrsGbCFUX9fFMt4AaYcds1BIGD4FpEv9d4xeKk7pM3blhDHEIBQVhCAZyIj9J5l3D3ki56V4PD3slOwh8KY09vEZz8UQTvU6XExnOzgFAgIXWEAjyx/Nea+jNqRBfMolA5VEbej4fgqwJZzB7CfQyQNzT10MDfd7NprAPfwTMNK8TLxdAL+U48BH84jN80lEpbnCwfTpYPeAFiczSuVahLc+l9g+sR7V1yAnRcuEM+332sHO0nZ1I/qkJiU27R0Tt/NKRZkkZC4p1cvOBNPXdU2xYUvEn9EwrgJBwMD0awsaoVTsQXHLqbSxutBU0aNVRLAAvGg4gvczxIknHsjotjTxfNz9LCN+DmJjDjtmt4/cRCDMUicjAAQJWl64mW1slNYv/p+aLJnuuoQfWcN2jzH6W1HyRtVqbieW9aY5YaCeSo1I6WJUAAvNhVJn11dXgc3NyEHAyyJg1RO0KBzBnuk0AZU07IRxBoKuGChW9SvlJOApNnv0/fYf2ScPFCWyWtJTdA4DvY2VWOptOz0uapG41j8czLdG0owP7ORWC6ynAfGUH+aIggLUW03uuKT9O8jhCNJB8ULGia8nj7Ax7+8/4/0s/MTdC4Rcj4/vqKV7FuUQ/BZSI+/qm7BM+31AjE5fYpfYCiqxQjmxlc2IBieGQoQNvv7tD5Lk5gtVf6lOGKOQl0X7wdQdLFgrmXsaezGPB8BIrrncf3lRMFFqvY1DvfUzrcx98foEPP5qJWMl4jSWFukvythCsJ6/VnZyN8IRvOlWzS51lJSwfeX9RCFZHfzhbjrGDeWzQGDKPjiEA0TvMDNEbs6EHYR/HCSxQRAukIhAJMmhiTfpCEYDVfhOPeHCfQ2nJzEwhyknCM594+pQ8I+/h1z2INEzQOBgCQeys977/U7cDutlIaI3XoWrPwBO2b8RCm/JdcgYaaUS4AAl9i/XHr5BvY0VhL72TkNbnj4mg6d6dECKrnvEH6fzREui7pYkKvmitqn9lU1YLvvH4vkJWkQzOvv5EQ9p5chM1FrZhwOBtudgItfTP1gTg3Aajq9lxjYVd3GZxc2jfnzL9CsEq1HgPfASI+nKwkjrXOF7gbwj4RI+TFNSJgKAwnh6Ihq8t6ZGylnXlxcW654+JwRsmB9v2WtbT+Ei7cnATKCy7QFzwfs25/DwDw6NLXMGX6dbmX6d0PrmvD+CWVHM7610+4MpfWlGp2Mng+nmlZBgCoLjJsAY8guZuqWnDgxAJ18Plgx9JNIcHHiBpkYEW/Vz7y4aCzsxN5eXnIysrC9u3b8eKLL6KwsBBXrlwBANx2223W9bfddpt8duXKFUQiEUycOPFDr7n11lvTnnvrrbfKNWPJd7/7XclRyM/Px4wZlEiGOFVVFQzhgEee9bAvIXemCls5/wxBCAyvuqv4152QL0ZpoBamMxgG4i4cVswJF5srmwEHhMsfCktVVgtvC0iI0zz1A5BKp37MQzBEi9r1knjv/Tz57urSXl0ETb2bFPAC8FjFPjHU7y1sF6/dGqWwMOziUPsi630EV+olBXPODDEc3WC8PgA7chLzqFoubzRuQJR4Q2Eg4WBjZSsuvTMRjhPAmUj3Cm5E4LxPuQjcfwP92drbkaAx+sby38BxArT33ileRb7mSyXH4HBE5106FARZvmyUuiAcsHZxD77fslaqJruRJL5ZRexA26oP60RvKKNx1JWKsTuPVVvhY3/AQ5BNdQDWF3RJcTKZX0ocN8CGijbyQhc3E/TCMJIfXbIPSDioraCx+zfVexEMh6j/AyA6eVAOTgIZGQpjTVEvghy12SvIQcB5J4NhrK9uBwJFZzeONrPfvTdOxuqByka8wDS3WUmB9fR0kGfa3LjnjHsPD1Q2AglNK7q7pxjBiIsgrCEprpe0+uhf1jbRz3HyrPKh+ecdS4CREBCnOf4nJVT0zR8NSX+391J135JJb+HzhT2Ycds16Vv37Ww1PwgC4YQI5sQb/fqCLqoOrIw9fyisqVmVdF+8XeYwDZQBZ1HVUZF0sK60C1zJm+dkfed8SYCHE2D0d7kanjPqAiMhgZ/9aXGzNoQMWsPek9Oxp4W42t97P4/6YyREEIGwLzrHzUrKszcUd0ifPVx2WMay++Lt5L3myrpJYohJTFFVoBUungtF1bfPl36GMiA4imIah/csIh0DLtbF4xxJyvefOv457GkpJbhM2MefVxwQ54Q/GMZbFyZjdcFJVC84L+/sjotLtXceU/hkNL97cYLOdwkcWb8mxS+PMetPJ+TjzNtTaP6p/BzWuWNBTa68cQsZaSEfgUdzZ2dXucbC90UkIdXNTcAN+5RMqg4ciVnDCKYOp0MvAFwcmgT4DhITExJNWJx/WdpROfsiFk5/RyB9vI/wuPqDYWAkhM6emcCoq/VQVhLvX4vKmJukGW5Y1SOJu3LgYkx8MBTSRvANPf8u/y4fm8qPIxgK0/eNiBbr/MH3aV7/Rf0WvScqOlkuluZ6SVz4qo9dx4lelCPqpiPl4bLDWFvcDTcngStv3CJtCAbtgx8fGv2Yh8buuXCzknigshFuhPaj91cP0z3Vu/yqp5TGbETvkRimvvKHKHn/+gr6TsE4ZTckHHJoDOvDmj8Uht/vIVBr4dyZqdQvSp84boAHq44iGAjbEb5Rg1qXK0jnJBDEaK8tG3dJdBDvOf5QmAp5cg6Fqj4e9JHDjNdVa89samckiXPnyJ76cetd+N2lifBjnlAQcz/PL3xLz1c+GGaplxoJ0bv2ezbLm7KB/KGwRCT94bDoglsj/XBCPrbVHkLQf5OzFmVyDj4R+ciHg4ULF6KtrQ0NDQ348z//c3zlK19BT4+uwOc4dsZtEARpf0uV1GvGuv733eev/uqv0NfXJ/8uXboEAFhepIxm9uAbcKEtNQ3a0+FDCl0BurKiPxTWhrwRHt1S3CwwgvJZlwiHHo1rQ7Lfk8q2APCtu14CAKwp74Y/GNaFTkzMOHSYkLGrJvabjRiuTGwaPL7aGO5Z1EvFvpTR96ueUikAI8a1MhhNMd+Vn5UbGrU9UlwVF9pA5/fdVK1xjAiAPa0lEjl5qalCPN8PlxEFnTN+FJhMlH1WdcoUebJljU7gAnSEJ+Zh2Nft33b36zo8mnDpcDIYxqZqwvO/2lKMNQtPEPWcwh7/dfM6uNE43o3nKWo/o/kJY5MzchQ4vLui+CSQdLCnt4iqEZvVkwfDMm6zst8DEq5OJlfy844lQg3IBaX+9vhqSJVPBxiKReBwrgTjoh0gGh7RcDPV3240ji01DdhU1SJQgb0nFym6W2PdOIFU2rXC7OPiBLMyDkB+zMMrJwro3R2I0csYY/EWxgx2DtWHu1pU0q3C6gpUg+eSimrs6i7TeR3GZ5uqWrD7eBn2nlyES++QM2FzTRP8acOyCXLkxGRd2d1cTnMkRVXI3PTtvuD2iyQdwYm/3FKCVHGjcTxQVw/mq7+7qkuigix/Ukd4+h0NtVhfQNEuqe7K612tefN3yYlQ4g+FJUFxT28RRQCKzwgURqI8Cr7G8+Cpw2vI0PAdqX8i0a8w5ciUz7qknxMz5jYItsIwN8Yi8+GA53VwTVdN31RFCdlWdMcB4AbYf3o+mnrnSP4QAKoBMRSm6ImiHiYICukvSf5U95eEdeXN39NbhKQaNNHThi7k73LfWfAUw6Fx35Immjv9WvcEET8tSX/1glMybwLfIWYXI1mUr6s3kjpXzj9Dc96AmLScn4nes9NonFVBLSFVYM+9yiuTolzKKbBm4Qn9/gZOf2tJI9xsqqwuvP8KE+/mxbG2rEvaxWt09YJTev8x6sgsKzklyfIcPSq9801sKW7WbG+qL++rbtJjzUXdshN4dPleS18+fXSVVEaXeW+0YeqUPvpsnDHeCo72/LFaqwaFP+DpQ4SR6C0FEw1aUwAIKacAMygBFOGTavacQ8DVqBnOaEKjRkJ4tn65fr/cBBE7sP5R81bmgdLXTx66R9rIsDw3J4F9HQVwFGTJH1bQzXDKXsw6VUWfVi84ZSU672kuBQKHco4GPJy6QIiI6jlvCFHH2tIuW9cYxUeZmIIjfABFGJB0hPWLdcwzR1dK7k1G/rDkIx8OIpEI5s2bh6qqKnz3u99FaWkpfvjDH2LqVJqgqd79q1evSjRh6tSpGB0dxbVr1z70mnfeeSftub/73e/SohKmZGVlCYsS/wOAKVkDaYVHyMgiekRnxIAB9EXkVP/uKNFsIiBDR0QtlOeZWjEUoOXkLKEqk01NJWQ931AHv9/Dd/bfC38ojL2tiwEYpeUNrKIwIKiNqnL2RfG6mlRtJoMGQ4v2n54PQCU0saE6Lo57C9sFgiLfV8aTuQkDoHfl5yhIjCgP9pYahibTOAKA6wT6IGOy0RgGDEBc+2Z5eTcal4Jx6ys65P1WlJ6w4DxyvREe5xoB/mAYP2taIWPnRuNkIDvKSFUb5attRYrxBdY7vNRYQZ5SVqBOgC/U6WI4/nBYIjWrS3pxX90xHDkz18LGmhVma4rOKlyqj6eO3E3h+GgcxTPfxtrKTt3HKTrXHyTsNG+0Vh9BHcSyE3ipscIygNk4/sWROuxqqbTmSupBcFXpCfgxYuWQdzc2WLnWI+iPeUBirn64ykhU33lo6QG5RnjVfUcS1yVhWf3PDE/rqjt0u6KUXMdez1/1lKZhZt8ZUdGPoTDuL2qxC/3wnFeHw9R5x89hw2/ZvLNkFKm+9gfDBAFwAjJAjMiY+Y6AYpdSzEH7Ti2wkphris/AVew366o6dO6KgpDxvR4uO4yCGVc00whHFs0Dsu9getY1aw00ds3FyvlnpO85efyZpuVS2FASH/NU/ZNQQLlM6p5IOmi9MENIDLhd68o74Y+ECLYyGMbqMjpgr15wSsOAFJwpyNFzY1dLpXW4XzX/tNXvgrlXz1lf2U7wvRbbQQLQgYwPTf5Q2IKpzL/jKunVAQ8vtZahfNYlaZd5SGUxCwnK+CvZUNWqa4w4em4yxM4f8MSxwH3oj4TguAHqu+eRTshJWO9u5gtwMrRZ7dYf1mQJcAM5VLHOBLT3181OYOH0d0TvcHFHABYBw7P1dOiychCMAntSjM3XuSLsJILnS20YAFYFXb5H64lZeP5YrVXHYd2iHlwe1jjt1WU9cm+mgzXZggCIQwaAhkyNhnDld/n6vYfCGobDh6QAmoKbGbtUe3jMQjdobTnjiUqYc3GSCVccAG40jrXlXXDz4qgrOqP72hw7VQeD57I/pMYr0AfnVfNPC/W2QD05t2nIlWdz3sCECTG9d4L+FmRTtKam8Cz8fg8bVFE+sx/caFwOYPtOLbAKkDLBxp7eIqvWSGPXXHDC9Ktdi3UkSUVDuf9/1rRC3kWeF/axcMFbFn2rPO9mhxVliqB9IvLPzkMPggAjIyOYPXs2pk6dit/+9rfy2ejoKA4cOIClS4klpbKyEp7nWddcvnwZXV1dck1dXR36+vpw7JjmZm5sbERfX59c81HkxTbyJAY3IjZns0MbipM/KhuQkz8qCVH7FexGEi9ZWQgFHGSDSE3uNQ0qNxqXkLSwWeQmpMqxeAhyEwSViOmCO03dc8QgNEvECzMFe0lYCQyGEVyLYE1pjxjqv+opRZDl2xGQrCTc7ATWlndZXkP22gCkgBijCFDBrC1LGgEnEJjHs43L4EapWNCu7jI8sKRBe35M7Clgsc5IstiQ/pubk9BMS4GDQ+2L8P8eJsy3m51IK8gS9EU0k0luAmuKeq1kum2lR6V6qD8cRnAjgo2VrShY8BbcnIR+B+Wlf1l5t/zBMFYVnSQDyWASYY/V/tPz8f5o1MKWm9EdP+YJfhbKG8PwlfYTM8mLxja2kfDnD4XxVyv3kFfogzw1/L1xcTgjOjR+z6JebKw+Tth9xUzFEDKuTMz9ffD0PLjRuC5wpKI2Mu7qfycW1vkrauNnY16uU+/JdJMAMOKrvgj7+DerfoN16hBmHliY4YmNNz4sZLl0z601R9OiSH7Mk+q5W2uOYkdTDRlMvNZyEkJdaR6mauZcsA5jYngGrjIGAhlHN5Kk9W/wiJsHp6Avotec8vT6MU/fd4AgETu7iP/+5XaVWxTyCV6l1rEbJSau7pPTJTl1fUUHYa2V3LOoFwgFVt/yeyyKXpHD6I0bObqglVHoT+BRgMakG3Sp/mhIogMMa3jlRIFmrMlNYF9bIZYVnyY4gpe05ribrSONJi0tAOxrL5D3kOtZhw54BKkyOd2NROlUMQ/JJ09P0/lGCZdqEHCkTSYX0uaOnkT6Ry5mSAdYOixaB5IAVrVaJB0smH1Ft5chaaoegD8UxsaKVji+Y+lUfyhMrDYqF0n6IzeBXS2VWFPRLRFB3gv4uyffvE0OPBxhMfvZHwrjkeWvCVWx9Bkn3vs0zpsWtylDWyf7AoAbSYqTKlVfC9lDjhEVU/vMnuMlOHJmrnxnXw8lwXN7JZJoQq8USQMAbCo9LuvNpEbeUNFGf2PCgqykPDMIdIVi1tkcSQhuUxHoAaKIrSs+beVocX9xzl19zzw9Jfhgn60PZcz0Je02yEj2dRRop5AZPc9Kwo8mcV/tMf2dSBLXr0ctJj2MuPKspnN3AuHAIr+QKOuAhxcal0gxUUDDfAFdGduPeTIXHSOJGiMuECh4YHZCj/1QGDWLzgl0kqMn/mgIJ0/eocbZmAdjrMmbTjKwok9EPtLh4Jvf/CYOHTqECxcuoLOzE//u3/077N+/Hw888AAcx8Fjjz2Gv/7rv8aLL76Irq4uPPjgg8jNzcUXv/hFAEB+fj62bduGf/tv/y1ee+01tLa24ktf+hKKi4uxZs0aAEBBQQH+6I/+CA899BAaGhrQ0NCAhx56CH/8x3/8P81UZDVQYeic8aMSAfBjnn0Sz07o5ErlgdrIp3l1Xap3GEnbuwtAqn2mVla0vJeGV0e8ngx1CAUSRpbvqvd5YtmvRSFYyXyB3kCJlYK8mZbnUyk33uy4sqfn+HLNA0s0BzLLvlNUct0fDuOZ9qVEhRY4eOP8FKtdP+9YguBGRLNtqP6RdvjQmHxj415VckKu+WbVy1Ll1s0mylkzf4BDm1xNNQgHEoZfX9BFFKTQYfdn2pdiV1OVbMrO+FG81FSBk2/q6BMZdo7QIjI97Myc9y1vnj8Y1gwkMY9gPWHD0vAdgVW50bguyMTh3EArYUoQVn2hDhy7j5cBvkN1DtR4WpAxLvzk6PkjMJUhSrp8qbFCJ3saYycFn9R7chtMw3FLjT32WdFRyWkAlPHW72lPbECG8ubyFus9AWgIQVYSTx66R1Pz5dht4gP1V0vr4YwnDv0sN4HNVUQvikBVRR4yDT8HfjyEn3cswYM1R9KoAid5OmmTseyN52bpKEag71N/drZlZAEQyBrDUYRuVkW2nPxROL5DVIAmVCWXGIUcZrphD/aoS2st4YqmdUZdbfCxsReNY8/xEjIW1Nx4uaUESDi6QOKgNnaePvI5YiZRRiHDufwBYjFj3WQe/sUjzs9lPeMEOqeII4NGpeQjJ8iQCl/M1u1VsBFOot20uA1OwsGahSdwf1EL7lO1SMz2ye/qcLS5pskaO9Zz8jfFnAWQt5a/b3rrhX2Fo5nsUU+pEq5fnP4zITrO+FFsqGrFoc6FWq9mJ6wDIjtOKiddBEAwUq5xIAe+nATl4oQMWIo6sD11eA0Zse9nCTwkuB6BE3ext2Wx1hXRuLR5bRk5DDh6wf1sSQBMCsUItqnayvPFzVFtiCQJupejKZJFDygcOgDUFZ6xoUuA6C3T2WXCFDnqzjTbbk4Cjy59TbfFLNSXk8BDyw4IpFZy4cI+wZZinkE1rJ/F78zwtq+VH5B5taG6VVswauz/ob0Ojedm4cGaIzIHZD0a4yuiIhBc68Ef8GxWLZXELA4gn6A3D9Ud1H3FkYUAUqiQdQJHSTg3zIT3MDuWH/M0vIv3ChUl+VVPqUDrdhyrkf7gytgm1MuZoGGhbh59h6GRDy09QPTSOQkr+dtRzIZIONSfqv///ySB73+sfxn5cPlIVKbbtm3Da6+9hsuXLyM/Px8lJSV44okn8PnPfx4ARRG+853v4O///u9x7do11NTU4Mc//jGKijSWdnh4GH/5l3+J//7f/zuGhoZw99134yc/+YlOIAbw/vvv4y/+4i/wT//0TwCAL3zhC/jRj36ECRMm/E83zKQydXNpYxM6OZU4JbhOQKjcxGtgKojhMEFDlEHIFGimyIIOgGXFp3GkfYHFkMIbuDuOWB6QIIODE6gerDmC5zpqsHrBKeztKASSDpycBBw3wNQpfbjyu3zLu/ZBdKR8jT/gwUlSEinTdgLArb/OwtV/MYKF09+xDWWDntWiwuMN1g2wrOg0jvTOw7hbYoj1Z2P1glNkhKbQIprvWTDjCrpPzLA8lnxgC3wHQdyVdqS2KUi6lDio/udrpk1/H29fmGx5iJ3cBJbMvYDG9nkC6Xpo6QGqAqzoBVMpaIX2kpPaspKYM+1dnO2ZhiBHJ6b7MQ/OqCN9yH9bvOgSUeP2e5g88zrevZyPvMkxDA5k6esMakMAmDn1fVy8Mkl/PqTeKS9l0wjofUJeEvctaqXQfo6m3/P7PSDLl6RbeDQ/mbKV5znTiTK0A56vDZDibszLvUqJ0sac9uMhOP1hYMKoTsZVwvMnSLoIRl2sK+8UD7lFvafGcvHMy+jquBNBbpLyCrJU4qzh6ZaEyBSa2M3VzdjZVgkn5FPuhfpcqF/NOWusbbkH0wKGA4WLhjwHScei90QWJdpK/46GhBK4Zs4FyQsx22bSovqjxC4kOsKc5yrB2wn5dFAIHJTPewPtb0yXOgV8rTUOxnow75cq/oCHBQvexpm3p6RR85rfDXyHcgeSjtzX1A2pEtyIwLvuonjlabRemGG9w72F7dh1vNIaj/z8QVy7Mt52hnBfJVzrQO3HPNwx61289cYtZLSpJGyZq+b7j4Qwa6eDiw9oqlC/3wOyfek7eY4yuITSOY+KoU2ODGBXd1m63lMHorUVndh7chHN66Qj92QDd/GCN9F9fhpK57yJzovT6LsJF05/WPpPoCkJMjiZSc7UXQCt65o5F1DfPS+NDjjwHZrrKeNHP6TsSyMhik4q58/9RS3EBmRAZdaU9OC15iIEKrnalFXzT2Nf9yIwvaXMQZMa2wn0HBwO631LraMp065TUj30/poqTOdszlc3j9iD8iYNYuBKHumluM0qZkrozWzEJyb1PDHm4lhRJ38khKy3IojPGYI/GsLWqnoNTxpDmHZ24dy3cfqtdEIUP+ECoy7qis5Q5MHsL1O/cl+m0ojyIcFLom7ueQ3hMvQ1y9fKD+DHrXcJy57oGkDPE5M6+d0syd+Texq6mP8m60PNI2Y5s+a0qT+VnRIEMVx6+P++6Wg/2cZbnXM/ws5HpDINRrFv6Jc3XZtuJvlIkYNnnnkGFy5cwMjICK5evYq9e/fKwQCgROJvf/vbuHz5MoaHh3HgwAHrYAAA2dnZeOqpp/Dee+9hcHAQu3fvtg4GANVO+PnPfy6UpD//+c8/0sHAFH+QWCLoBbVnwI3GbVy3Cr0JFARAbt6IfOaGfV1d10vfpN3chEBIjrQvoGep64WdQ4WOhcFFsVS4OQnB+u1tXSwGTzASwpbiZjkYUHvCEsa02ml4d+iHQLzt/3JZk3ye/BJRo/EGaXn3kRLRUHJfzTHAd1CYdxnwHQz05UiCsx/zJBQsniVH50iYBwMAwpACKBaYpOGmUCxNvBkyywwz0tALOnj7wmQ7whIAwahLHpFx2gP5TPtSUrAesQXxuLMn6dn65XJPhnecOX070SWqcPfXyglPbyXrKk8i18xwx8WJTSTuyMFA5sq4uBUtuXDaMEzUZmpWPuU+2lJJ4elkXNEccnuV59kdR7kamxa3Ab6DR6r3k+Gk6BV5npueMDcnIUxBbiSJV48X4yeH704bl/GTYggiPgIj+ZujDVf/hdqEYvTuL7eU0DPj9mbE/dl98Xai71PjvLGknZ4VkJdTIirQHj2BXXSXEXuWOqBsqmiBPxLCy63FOpxuJMgz5aQf88iDajDssMEGAJsrm7VnE7Rm7itroY2R13bCEa9tVf4bthc64UqSqhjsCUcfDGIeEHexrfSoRHOWzD9PcyXsw/WSaO0h48D1kgInBICv1+zVfaD6UNaYkWwp4xKnCq6nztwuECeTfcaMkgZDxH4jUbyYpw1bAzLEPzvjRzF6exytF2YQXWKcWE+2ljQSll71NUeH+vpyAd+xqlvzAZH75qul9VJR+q0Lk8EYbckl4rlq5GK5WUlcfED9nQ/aoQBrFvfSOzFEIqbpSDHqYtMSGr/9bQVSjb335HR5Ny5mCB8CMwxGFM2rWkvLFp8Gkg66T8wARkJ4Z5BY4/wBj9pkell9mmuiP+MuvlJeL4w0SLgonv8m/JgnES0xKJUw6xh7q9ct6qE5Fncloij5amaxxwHPqrwN0Dzfd2oBGZEjIVvHgCCSG8vahAKbZWu1juCKZ1tByczIjJudEBY9M2ppzafBMJ45utL6TBLMI0kMDmSRlzsrKVFiieQN6mTk5PRh66CCVMII/g5Xi85K0sFArcXn6pfpvJ6YZ1c1V3swkg5OnroDfozgScLApMYSgYOq/Dekv8x+kbYZ0R8AuH1KHznqBvSh33OT0j4o+lJTnjpMKAqhywXVR2Idtmlxm12gj4k9GCKVlUTl4nPWmpa5EknKXr+1uh7/Z+0etPfeSVGtIX0wCG5EsK3qMDEwDdnMUjedZIqgfSLyzy6CdrMKnyqn/+jbCE/QiooLuSwrPo0jnfOxrqLTZiVxAty3pAkvNCwR7KYU0voAz0iq50I86OzFGwlp7Lni9OaTvQkXGOv+wY0IMWgYRXwKFr4peFQ3GtfeTuXN7j453fLE+vEQ3D5SImbSnPm8VA8/APJudcyHO+ICt2jPRKAqKppF3Px+Ym3YUNWKPb1F5JVqK0yLJKS2sXL2RbScn4lV809LUjVL+axLaOmeI5vGmtIe7O0qsDxGG6pasbu53O5/teGuKuvF/rYCK0IEAMUz30Z7z50yvgJ5SfH4yHxRh5jUSJC0iT1hhgdpU2ULftVTqmETJu7UhRhoqR4v7oeCGVd0XY7UeRXzMHFaH65dHUcbUQCBNrCXWwzE31fwju/J1w+F4UR8FM1+S1N+quukOF9KXwV9EWLc4IJH5qY9HEZ1wTkpUsRj40bjVrE8a+yM9gCAl5VAfCRsvy97MZl9xHcgBac4CggQ7zzPlzHWF3vnEHcpwhB39IHOLPrEdT1MCl8ed6OQFxxgWdFpi7mGoyxW0TKjjx6v3IsnW9ZgzcITBMtS89Xy4o1RTI5lxm3XcOmdiToiwn1vep8N77Qp8++4ipNnphkY+sDqe6swWEpkcNPiNuxsIuarewvbNUZfwSPTdNn1CEEfjPcCiNlnf1uB9E2qLuDrZW6zPlVFyGQ+GXpX4CxGHlJasUvDMy6FxBxgQ3kbdjeXU0E1rmXAkWbW50p/c+HKzUuahJQi9T3MKOziRZfQfWq6XiccTTaK9PEzLI89R0MCqJ/TdYdEEpwAZgG3scRXTgKzgNeY16UUr+PxgAvdd8ZhlN9pW+lR/OzoXfL7vYXteLG+Gk7+KEXHWxbDHRdH6Z1vovXELDhxl/ra3BfVPFxf0CW1Z6ziZKqv5t9xFSfP3S5tt8g3OH/B1HGpBfl4vMw+N1jMUq9dV9mBl1uLwUne5hpzc3Qkzeoz9YyZU9/HhXO36ghmgvQWR054r0GECrEhFIg+EXYl1sHGOPtDVAQRgKwlmUspSIcx5xjrQWaeMtfT4DAuPvwfbjovu0QOIv8KYcf7/V8wJBHEsW/0/7np2nQzyc1eGPufLWIYDBj0i7kJHOlYAAQOBhIRjZH0fGyrO4QXjlVr70ZOQocj3UAYetiTarFVxDwqwBQlZhokHGE82Fhl4CNTmFBECSlFCEBC0M74USDuiIEMJ0jDzZvJgt0nZmgMLuNivST8XEo+c7MTlmeD73FjhKBXnLjtD4XJu+UAfrbyiA5SYq+jWIGCbO094c1qd2sZAGBfa6G0cW0FsaBYSVzqUNRyfib8oTD2dZAy9YfCcm1L72xSgCrsOj48ZI0nHErmqis+bfeHSpbtG83WmFDO9ej30H5qpmZ0ySHDxknoSqc6IkE5Auzdl/fjDYxDvXyvbKKdc3MSwlLC2E/Oafn68t/SuCicrunJ8wfDYhR191A0zQ0FliEJAPB89PXlSpTApNIU+IvvoHzWJbhZSdyzqBcOe5qM6IewY6mEeC7M5YR8TMkawJqFJ6RQE7eF30PgEFD5II4+LPB6Yq9ay/mZOo+CDTmTCUStGzLWYBu0AOIjYYvNi/uaKRulvoYPbXApjC+SDlbNPy2HG54DIoEjGy6cwIKAmdE+N5JMMxIQCig/QdEf8jgIZGBYMzrNmfMO3CgVeDJx9gDR9dbNPU8Jk3wwiHlYX6YTwLnNpjAWn6leCf8eWJTEnCyLpENMVUNhy7N/8gzBCRAO6CCVmxCP9j2LeuF4CrrzVjaYppHn7c7mKtE1u5qqZNy5CKAkpyqPJheAQuBIXgcASZJn2ddWKM9fOf8MihcR7eqt2f3KiHfgJFzxuvJhsab4jNYxho7jhFx/KEwMaMM6CRWBQ6xAijYUAbC7pUzyEQQ3bzoOlK4L3s+iw1E0jvwwFcOzkqEdutacb9aBP4BEOuXgwoeaLONAaxRxc3MTKo9Jja+Kkol3mI39JEUPuUidPxxG3dzzei6Z1xrCeiHoi+hIlLHXibGdTesuHKGiX/6Ah81LdIT6Z0fuovupCOqvekrFkbTv1ALAC7B45mW0v0EHpYCrTRv5DgwT3H28TBu4ipuf+8qPeTh5/nYsnveWrEEzwrapiljnKmdf1DkwxjoqvfNN4yCXkudkppUZOvjl48UWuQjnavA+8MqJAitXiiBL9NnFK5P0/uwDCAfEnKcir7zX3FfRLIdR1iduro4y86HTjAofPD0PB0/Pw+qyHilcCiAN6SAH06SmfpUohUvtoMOZ2jNSktVvNgn84GP9y8iHy2f+cLCpsA0A8EBdvaW4eSObnfuevjjuEjaSk4IACVNyuO65jhqtKAwmBD5lc7GhzovTqHfVJiUF15TRYoV4k46EMXerCodccMaEznC4ed2iHjGC+NkiJtONcQZwcxOYln1d2g5ormo3GsdbVycQPMcN0mgkxdDLTWico8qXEIOAlbpSOG5eHNtKj+LhssN4tbmYrlWJrRI2537MSViJa8xSkbrJm+whZni7vn2+hLbFQ5SdEOgGX39vYTsl6bHxosZgV1OVVKt2cxKazjIAbe4Mq1HGLYforQrRaq5IEreCHnAb/3QZGWxPHf+cJECbVHo0xkYiJdu7SccaZzZU+XeBSRkbIj+zRbFdvXKiAEHSPhByGF3aDGi2KAA5IWKV4kRAk85Pnm0wd6UdONX7bC1ptKn8jHGWe/hUpOvRutc0FMpkSQGsAxAAPFH1CvwYQVy2L3vdmitWImzSkQiWbMoGL7kbjWNLNb2jmWMinlCDkUT6mznfFazKbHvquobvwAn5OHeKIGjH2ubbESjVL/VnZ1tRFDcaJ1Yfvpevx5X/3396vmCZAUiyKNfUIHYxPT8Pnp4nRsTimZdlPB6sOWJBSKRtzSUELQsc+HcMw81RyevMHGOs21QiBX8wjIdqD9L1yrsvkI9oXJiSzDUCQJMSqOcfPD0Pnb1UpOmlYxXKuQEEinlJ+jvpSKKl7jNqz85j1XII3HmsWthi1hd0wc1OoPfUHfAHw9hWd0i1Sa/D6oJz1F41pyZMiIkzxpk0IsYoY+qZJIHpcDkSBYD+zhSoHG0y540iRDDXssWIkxKJ2VzUCjcax/MNdbb+5fY7tKYbz82Cm52wolk0ZilrVsGz3BzNvc9GsPSB4YXfvux1JDiylKdr/Mi7R4mQ4fEVr8jfGEroZlOFa5m/gRovw+HG4wrfoT4fCuPR2n1ynUDSIknJ/QKM6CY0lawU+jJ1OYDW3lnE+5+TwONLXyVoVo6uo8IHdbNdW5Y06vv0e1S3I6bhe7w3+DFPR96YZQmGk0et94LoZXsuA8R4ZkRh/7LyVbo3655UKCp0ov2+44Vw8kexvfygfP5Yxb6067fWHtWRTxgHUbU+UuGeGfnDks/84WBnczUASOEnU/x+u0AKb/xW+F0xJ7Ai3bS4DVxsyKTXTAvx8iYb1d7WTdXk4dm29KDcgw3EZ46s1F5VpvkLtCeFr/MHPDLiAuPdjAqvJq7ejcYl0vFw2WGJgLAyeKFBt128V8pT6g+FbbrBVDiEycqS2maluH529C48feRzeHTlXv1+yuvl91PCtCiwwNFFtlK9b+pvFnRIvdv9RS2aI3ycoehMha4+543CFGmXRYfopHmQ+bpN1c0WM5HZn6ZnXTOn0D1+2VUptHRmn5uVQZ9Yucfqc5aNNcet+eTHPIoKRLUXSfpJXXdf7TG40bjtRTa8vjzeVp+qvwdJF3uOl8jftpcfVBcYUQRjPsiYm5h4Fel6tmGZsGBYz+LDt8rZ8GMesbrE0o0m893457dGyVv+bP1yDPoRq//l+gEPW2ob9Lrm5zqBZgGKeZTEaRRHvK9G0REa64rXrPkc8qJqY8RiRGIJQJEmxVolh2sWA9NtFSE0vi9dGo1b6w0Abpt6Xd7bLCTlD4UFgy5rm/tmMIzO09Nl3XHuzQO19Xhk+WuUKxHzsHXpEctr7ccI184/c19YOsAw9keCsFy/ffnroq+EUtq32+fHPDxzdKX1zma/aO+6Y7X1wbrD2KwYkvhvPIceqK3X884NrD68xYvpduQmrKTZb1XvBqCNSpbr16P6GdwPqQUlczXbkalHLFH6/+Gyw1rH5un/Uw+CXEvEXLsvNC6x9AUn1UqfslNhOJx2CJPXuBGx/+5gzOv42aZhy4WyRP+q9vgxDw8uPSzfefLgPXJPcx/m6DgAPLqCiqdtrT1qtdvShQ7w1CHC42+rO2S/21DYyjczdbMY8mNQ3Lq5CcQDeg8uVmbqZSmyNxiWg80vuyrxjZUv6/E19nLz+VvrjqQ9K5X96d7Cdjx1/HNpbeX33lRNz/x+y1oLGve18gN6P1Djy1StPB4/OXy3jk4evMfaPwBdP0LWla91kcDcUhxPN6UE/sf7l5EPlc/84WAsEQVrbqYx28BLFV5ku7rL5Bqhk0w1kgdsg4b/MS3ZP7TXWSd/9iKZhWNYEdPmA3yp5Ji1YfK7+jHP8kBzKJ9/50Tnp498TpKw+HubljSLsehG41LmHdAeK5NbWQxRJY8sf03aO9aGwsrox613pbUVLsFRTAXmjB/FoxWv2xGPaJw2RoNe0ZQdqhidG43jq6X1OqIQGOOcbXt/U2EdrNhN8WOebFim7Gqqwq6mKqtf5EDVn7LJqrbypvSrnlIgAL6+4lXdvnH6MPj9lrXaADWe+9KxCguC5EYpSVSuc4yDrRqPnV3lZPh26mgLYEQrlOHLRjK9s0HDaCTr/uTw3bYRp8abPZf8N9MgkO/nJrC7uVxTA6trrTnbTwa5OR6yplL6g0Pcz9VTjY1Hl+9NO+Dz/25eHHkhRSpgGpa5CTxfXycGlylM68rePz4YyZpNoSJ28+J2McA8YwNWOQhyP6T/bGLHzbGSuWQ7d0VYH7xzZYLuM3MT91MSNo1nMoTAOuDGqGDjTw7fjZ8duQsP1I7N7pLaz18qOSZ9DSewDsTP1S+Ta3/atlzeY9exKtG/rIO3ljTK97aXH5Rrt9YdSZvD5nv4MQ/PddRIMTRL/znUp37Mw4N1h9M876wbLYy6Msi+07QB25e9Dn8wPOahzeprw9sv76V+54OWzBeDptiPeXj6yBiGofp85fwz8vdn2pemGWmWB5mjbYY+kP0tBQ5nzgVn/KjlgJL7Rg3oUn9KTl2/3UaTBvunbcuxbelBPHt0ueU44GrQ/J0vlRyjtehRoj3vET/vWAIEDh5Z/pr1zPz8Qasd/9BeZ+mbtWVdlqNF+ihPR7ZTqXV9FQF+9uhyWU9+zMOWmgbpO67g7uYmKCKnxvrJljXSB1wTIpWWN9X43lLcbDn8ANoTOOkagD5QqBymX/WUWo5K7n8+JLGONCPpps58uOywfNeKSBk61u/3rIrp5jtz9Pxmlgys6JORz2xCcl9fHyZMmIBp3/srlJVeRdfFaSmJXQ4+qPKfP+jJZ2YS47pFPRb0AoB1mufvURl2+tx8hiQCDaR68jzAH/tgEvRH4IwbFQ+VucHds7AXr5wsQO3c8zjauUBw3/4gKYENFa14Z2Q8mlO8X/5IGG6Wvg+3yx9U9KfjRq12+0OUnGV+R/4OWO+kqRRVX/D/xt+5X1bOO4P9KtfgvupjeKFpiXzGGNDUPkztd74fAsBJOBQOZ/yq8VyzP4NQoMfXGGsZCwM/H1yPACGNq+d5k0otaR7I1i/qwu7j5XBz49hS1IwdXVX63q7xbmrczQJ3Y72z2WZKwKWqoMGUkfRrhsLYUN6GPSeKdJ8b/5vjlTrPV5f0YF/7YjjZSTguYXtrF59F6bg38bP2ZWM+C1AJnKq9QX8EgUcsLm5WIn0+GP3E/fFBYWt/0FNUfsY89O3NNa0d5s98wE75nH6g9fb5BSfxSvtiIOngvppj2Nldbo0p842nzn2WB4qP4R+PLZU+fbCkHv/12AqrTYHvwnFV3g7rBpVL48QdBBE9H79Wvh8nYrfjt21FWFl8AofPzpX7bF7ciheaq611mZ5grftU2gp7XhFVriPjY67t1PGy7m14pseaQ+bvmpJU6wFJHAfGHi/jfT9f1oXXTlFdm+Vzz+Lw2blYNOMd9JycLvPISTj4mzW/wBMH74MkpKfoGrm38T40KEibh/AdnUxtGtRKJywpPIcLfZNw9eJE0dUyf3wHW2oasONYrdzb7OfUvjV1jPl+Vh+OqITpSNKm7R1r/zDbw21NXWvGM3kP8Ac9PL78N/jb43ePed1Y7ydzwXdw64xrePf9PNEFX1lyBP+tcTnc3DhWzT+F/acX6P41503MAzwfi+Zcxomz0+hdYh7lvWSlj93EqTfQdz1Xr0lADt/We6Ukdm9e3Iqd3eX2PHQCfHnJUfxjS51i2rPXCb/fv6xuwUs9JVrvBvaesrGwAyH42NVTJmPNOWryvEQIm0taCHJl7lfms1JsCNYNEpH6gH3QTDhG3LXXEc/BmIeywgto650l60aII9QeK3MtqdvHDjY3GkfiWgJvP/FdXL9+Hfn5+bhZhBOSl+NfIIyPFt1III7D+HUmIflD5DN7ODh37hzmzp37+y/MSEYykpGMZCQjGcnIB8qlS5cwffr0T/s1RIaHhzF79mxcuXLlY31/6tSpOH/+PLKzs3//xX+A8pk9HFy/fh0TJ07ExYsXb6rT7h+C3LhxAzNmzMClS5cyp/L/xZLp+09PMn3/6Umm7z89yfT9pyf/K/o+CAL09/dj2rRpcN2bC2M0PDyM0dGxizj+PolEIpmDwYfIzc1R9c8QnsT5+fkZhfUpyfjx4zN9/ylJpu8/Pcn0/acnmb7/9CTT95+efNJ9f7M6WLOzszMG/ickN9cxMCMZyUhGMpKRjGQkIxnJyKcmmcNBRjKSkYxkJCMZyUhGMpIRAJ/hw0FWVha+9a1vISsr69N+lT84yfT9pyeZvv/0JNP3n55k+v7Tk0zff3qS6fuMfFLymU1IzkhGMpKRjGQkIxnJSEYy8tHkMxs5yEhGMpKRjGQkIxnJSEYy8tEkczjISEYykpGMZCQjGclIRjICIHM4yEhGMpKRjGQkIxnJSEYyoiRzOMhIRjKSkYxkJCMZyUhGMgIgczjISEYykpGMZCQjGclIRjKiJHM4yEhGMpKRjGQkIxnJSEYyAiBzOMhIRjKSkYxkJCMZyUhGMqIkczjISEYykpGMZCQjGclIRjICAPj/AB3Rru/JZGdMAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "# Load the input to feature excitatory and inhibitory network weights\n", "featureW = np.load('./mats/1_BasicDemo/featureW.npy')\n", @@ -196,7 +180,60 @@ "id": "826213d7-7721-440c-b1a8-47fb613339eb", "metadata": {}, "source": [ - "In this case, we have more inhibitory connections than we do excitatory for the input to feature layer. Let's load the feature to output layer spikes and visualise them." + "Whilst it might be a little difficult to see, our excitatory connection amplitudes are on average a little higher than our inhibitiory. However, we overall have more inhibitiory connections that positive to balance the system.\n", + "\n", + "This is because when we set up our connections we use a probability of connections for both excitation and inbhition. In this case, we have a 10% connection probability for excitatory weights and a 50% probability for inhibitiory. This means as well there will be a high number of neurons without connections." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "94acb2f4", + "metadata": {}, + "outputs": [], + "source": [ + "# In this function, we will plot and visualize the distribution of weights and connections.\n", + "def count_and_plot(array):\n", + " # Flatten the 2D array and count positive, negative, and zero values\n", + " flattened_array = array.flatten()\n", + " positive_count = np.sum(flattened_array > 0)\n", + " negative_count = np.sum(flattened_array < 0)\n", + " zero_count = np.sum(flattened_array == 0)\n", + " \n", + " # Calculate percentages\n", + " total_count = flattened_array.size\n", + " positive_percentage = (positive_count / total_count) * 100\n", + " negative_percentage = (negative_count / total_count) * 100\n", + " zero_percentage = (zero_count / total_count) * 100\n", + "\n", + " # Print the results\n", + " print(f\"Excitatory Connections: {positive_count} ({positive_percentage:.2f}%)\")\n", + " print(f\"Inhibitory Conncetions: {negative_count} ({negative_percentage:.2f}%)\")\n", + " print(f\"Zero Connections: {zero_count} ({zero_percentage:.2f}%)\")\n", + "\n", + " # Create a bar plot of the percentages\n", + " categories = ['Excitatory', 'Inhibitory', 'Zero']\n", + " percentages = [positive_percentage, negative_percentage, zero_percentage]\n", + "\n", + " plt.bar(categories, percentages)\n", + " plt.xlabel('Category')\n", + " plt.ylabel('Percentage')\n", + " plt.title('Percentage of Excitatory, Inhibitiory, and Zero Connections')\n", + " plt.ylim(0, 60) # Set the y-axis limit to 0-60%\n", + " plt.show()\n", + "\n", + "if __name__ == \"__main__\":\n", + "\n", + " # Call the function to count and plot\n", + " count_and_plot(featureW)" + ] + }, + { + "cell_type": "markdown", + "id": "f180220e", + "metadata": {}, + "source": [ + "Now let's have a look at the feature to the output weights, and see how the distribution of excitiatory and inhibitory connections differs." ] }, { @@ -207,24 +244,18 @@ "outputs": [], "source": [ "# Load the input to feature excitatory and inhibitory network weights\n", - "fo_exc = np.load('./mats/0_basicdemo/fo_exc.npy')\n", - "fo_inh = np.load('./mats/0_basicdemo/fo_inh.npy')\n", - "\n", - "# Create a figure and a set of subplots\n", - "fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(10, 5)) # Adjust the figure size as needed\n", - "\n", - "# Plot the excitatory weights\n", - "exc_plot = axes[0].matshow(fo_exc)\n", - "axes[0].set_title('Feature > Output Excitatory Weights')\n", - "fig.colorbar(exc_plot, ax=axes[0], shrink=0.4, label=\"Weight strength\")\n", + "outputW = np.load('./mats/1_BasicDemo/outputW.npy')\n", "\n", - "# Plot the inhibitory weights\n", - "inh_plot = axes[1].matshow(fo_inh, cmap='viridis_r')\n", - "axes[1].set_title('Feature > Output Inhibitory Weights')\n", - "fig.colorbar(inh_plot, ax=axes[1], shrink=0.4, label=\"Weight strength\")\n", + "# Plot the weights\n", + "plt.matshow(outputW)\n", + "plt.title('Feature > Output Weights')\n", + "plt.colorbar(shrink=0.8, label=\"Weight strength\")\n", "\n", "# Display the plots\n", - "plt.show()" + "plt.show()\n", + "\n", + "# Plot the distributions\n", + "count_and_plot(outputW)" ] }, { @@ -247,7 +278,7 @@ "outputs": [], "source": [ "# Calculate feature spikes (positive and negative weights)\n", - "feature_spikes = np.matmul(if_exc,patch_1d) + np.matmul(if_inh,patch_1d)\n", + "feature_spikes = np.matmul(featureW,patch_1d)\n", "feature_spikes = np.clip(feature_spikes, 0, 0.9)\n", "\n", "# Now create the line plot\n", @@ -267,7 +298,9 @@ "id": "4ea0b0a3-66fc-4202-963c-cbd05114d283", "metadata": {}, "source": [ - "Now let's propagate the feature layer spikes through to the output layer." + "This looks a little homogenous, but this is the feature representation of our input image. \n", + "\n", + "Now let's propagate the feature layer spikes through to the output layer to get our corresponding place match." ] }, { @@ -278,7 +311,7 @@ "outputs": [], "source": [ "# Calculate output spikes (positive and negative weights)\n", - "output_spikes = np.matmul(fo_exc,feature_spikes) + np.matmul(fo_inh,feature_spikes)\n", + "output_spikes = np.matmul(outputW,feature_spikes)\n", "output_spikes = np.clip(output_spikes, 0, 0.9)\n", "\n", "# Now create the line plot\n", @@ -315,6 +348,221 @@ "print(f\"Neuron ID with the highest output is {prediction}\")" ] }, + { + "cell_type": "markdown", + "id": "0c8c82d7", + "metadata": {}, + "source": [ + "## Quantized model example\n", + "\n", + "Now that we have seen how our base model works, let's look at how our int8 quantized model performs by comparison. Working in the in8 space has a few benefits, like faster inferencing time and smaller model sizes. There are a couple differences however when feeding spikes throughout the system that PyTorch performs in the backend.\n", + "\n", + "Let's start by converting our input image into int8 spikes." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "5c893e76", + "metadata": {}, + "outputs": [], + "source": [ + "# Converting fp32 spikes to int8 uses a learned scale factor during quantization aware training\n", + "spike_scale = 133\n", + "patch_img_int = patch_img*spike_scale\n", + "\n", + "# Plot the converted int8 image\n", + "plt.matshow(patch_img_int)\n", + "plt.title('Nordland Summer Patch Normalized Int8')\n", + "plt.colorbar(shrink=0.75, label=\"Pixel intensity\")\n", + "plt.show()\n", + "\n", + "# Convert 2D image to a 1D-array\n", + "patch_1d_int = np.reshape(patch_img_int, (3136,))" + ] + }, + { + "cell_type": "markdown", + "id": "9f68d3dc", + "metadata": {}, + "source": [ + "Now we'll load in and plot our integer based weights, as well as some scale factors which will be important to reduce the size of our spikes after multiplying them with our weights." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "70c99f47", + "metadata": {}, + "outputs": [], + "source": [ + "# Load the scales for the feature and output spikes\n", + "feature_scales = np.load('./mats/1_BasicDemo/featureScales.npy',allow_pickle=True)\n", + "output_scales = np.load('./mats/1_BasicDemo/outputScales.npy',allow_pickle=True)\n", + "\n", + "# Load the int8 weights and plot them\n", + "featureQuantW = np.load('./mats/1_BasicDemo/featureQuantW.npy')\n", + "outputQuantW = np.load('./mats/1_BasicDemo/outputQuantW.npy')\n", + "\n", + "# Plot the feature weights\n", + "plt.matshow(featureQuantW.T)\n", + "plt.title('Input > Feature Weights')\n", + "plt.colorbar(shrink=0.8, label=\"Weight strength\")\n", + "\n", + "# Display the plots\n", + "plt.show()\n", + "\n", + "# Plot the output weights\n", + "plt.matshow(outputQuantW)\n", + "plt.title('Feature > Output Weights')\n", + "plt.colorbar(shrink=0.8, label=\"Weight strength\")\n", + "\n", + "# Display the plots\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "f185e3ff", + "metadata": {}, + "source": [ + "Now as above, let's propagate the input spikes throughout the network." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "ddb1ef65", + "metadata": {}, + "outputs": [], + "source": [ + "# Get the feature spikes\n", + "feature_spikes_int = np.matmul(featureQuantW,patch_1d_int)\n", + "\n", + "# Now create the line plot\n", + "plt.plot(np.arange(len(feature_spikes_int)), feature_spikes_int)\n", + "\n", + "# Add title and labels if you wish\n", + "plt.title('Output Layer Spikes')\n", + "plt.xlabel('Neuron ID')\n", + "plt.ylabel('Spike Amplitude')\n", + "\n", + "# Show the plot\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "6e9189aa", + "metadata": {}, + "source": [ + "Those are some big spikes! We're going to have to scale these spikes back down before we forward them to the output layer, otherwise we'll have some huge activations. Let's take those scales we loaded in earlier and apply them to the feature spikes.\n", + "\n", + "We have three things to consider here:\n", + " - A slice scale factor (per neuronal connection scale)\n", + " - A zero point (a factor to change where 'zero' is)\n", + " \n", + " Let's print out these three factors and see how they scale our spikes." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "95032ac7", + "metadata": {}, + "outputs": [], + "source": [ + "# Print out the individual scales\n", + "print(f\"The slice scale factor is {feature_scales[1]}\")\n", + "print(f\"The zero point is {feature_scales[2]}\")" + ] + }, + { + "cell_type": "markdown", + "id": "9f62b909", + "metadata": {}, + "source": [ + "Now we'll modify and scale our spikes to then pass them on to the feature layer." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "9a7dd83d", + "metadata": {}, + "outputs": [], + "source": [ + "# Scale the feature spikes\n", + "scaled_feature_spikes = (feature_spikes_int//(feature_scales[1]))+feature_scales[2]\n", + "scaled_feature_spikes = np.clip(scaled_feature_spikes,0,255)\n", + "\n", + "# Plot the scaled feature spikes\n", + "plt.plot(np.arange(len(scaled_feature_spikes)), scaled_feature_spikes)\n", + "\n", + "# Add title and labels if you wish\n", + "plt.title('Output Layer Spikes')\n", + "plt.xlabel('Neuron ID')\n", + "plt.ylabel('Spike Amplitude')\n", + "\n", + "# Show the plot\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "2a767c92", + "metadata": {}, + "source": [ + "Now that we've scaled our feature spikes, let's pass them through to the output layer and get our match!" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "7519c07f", + "metadata": {}, + "outputs": [], + "source": [ + "# Get the output spikes\n", + "output_spikes_int = np.matmul(outputQuantW,scaled_feature_spikes)\n", + "\n", + "# Scale the output spikes\n", + "scaled_output_spikes = output_spikes_int//(output_scales[1]) + output_scales[2]\n", + "\n", + "# Plot the scaled feature spikes\n", + "plt.plot(np.arange(len(scaled_output_spikes)), scaled_output_spikes)\n", + "\n", + "# Add title and labels if you wish\n", + "plt.title('Output Layer Spikes')\n", + "plt.xlabel('Neuron ID')\n", + "plt.ylabel('Spike Amplitude')\n", + "\n", + "# Show the plot\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "3cc4588a", + "metadata": {}, + "source": [ + "And once again, as in the base model, we can see that output neuron 0 is the highest respondant.\n", + "\n", + "Let's prove it!" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "67e457e4", + "metadata": {}, + "outputs": [], + "source": [ + "# Output the argmax from the output spikes\n", + "prediction = np.argmax(scaled_output_spikes)\n", + "print(f\"Neuron ID with the highest output is {prediction}\")" + ] + }, { "cell_type": "markdown", "id": "7bc8a7fb-66b4-455b-922e-b0fdc38b53c5", @@ -324,7 +572,7 @@ "\n", "We have gone through a very basic demo of how VPRTempo takes input images, patch normalizes them, and propagates the spikes throughout the weights to achieve the desired matching output. Although this demonstration was performed using NumPy, the torch implementation is virtually the same except we use tensors with or without quantization. \n", "\n", - "The purpose of splitting up excitatory and inhibitory weights is to allow for extra hometostatic normalization of inhibitory connections, which has proven to be critical in regulating overall system activity.\n", + "We also went through how the quantization version of the network handled weights and spikes in the integer domain.\n", "\n", "If you would like to go more in-depth with training and inferencing, checkout some of the [other tutorials](https://github.com/AdamDHines/VPRTempo-quant/tree/main/tutorials) which show you how to train your own model and goes through the more sophisticated implementation of VPRTempo." ] @@ -346,7 +594,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.4" + "version": "3.11.0" } }, "nbformat": 4, diff --git a/tutorials/2_Introduction.ipynb b/tutorials/2_Introduction.ipynb deleted file mode 100644 index d57c263..0000000 --- a/tutorials/2_Introduction.ipynb +++ /dev/null @@ -1,734 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "id": "70df0e83-9a35-41b3-81ec-cd12538045ed", - "metadata": {}, - "source": [ - "## VPRTempo - Introduction\n", - "\n", - "### By Adam D Hines (https://research.qut.edu.au/qcr/people/adam-hines/)\n", - "\n", - "VPRTempo is based on the following paper, if you use or find this code helpful for your research please consider citing the source:\n", - " \n", - "[Adam D Hines, Peter G Stratton, Michael Milford, & Tobias Fischer. \"VPRTempo: A Fast Temporally Encoded Spiking Neural Network for Visual Place Recognition. arXiv September 2023](https://arxiv.org/abs/2309.10225)\n", - "\n", - "### Introduction\n", - "\n", - "Traditional methods for visual place recognition (VPR) tasks typically employ the use of convolutional neural networks like ResNet to train large datasets for feature extraction of incoming query images, rather than specifically learning said query place. The networks are extremely effective at accurate localisation, but are are slow to train, inference, and store.\n", - "\n", - "Spiking neural networks (SNNs) by contrast are more energy efficient and have low latency computation, meaning their deployment capability for VPR is extremely promising. Specifically, networks can be trained on the exact location you wish to query which takes a fundamentally different approach to the VPR task.\n", - "\n", - "VPRTempo uses a temporal encoding scheme for spikes, where the amplitude of a spike is determined by an incoming training or query image's pixel intensity. This amplitude defines the 'timing' of the spike, similar to a latency code. As spikes propagate throughout the system, spike-timing dependent plasticity (STDP) learning rules train neuronal connections based off of the pixel intensity spike amplitudes. \n", - "\n", - "To get started, please ensure you have installed and currently have activated the `conda` environment for VPRTempo. For more information how to install and setup the environment, please see the [README.md](https://github.com/AdamDHines/VPRTempo-quant/blob/main/README.md)." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "0f846c03", - "metadata": {}, - "outputs": [], - "source": [ - "!conda activate vprtempo" - ] - }, - { - "cell_type": "markdown", - "id": "0928d7a4", - "metadata": {}, - "source": [ - "## 1. Get the Nordland dataset\n", - "\n", - "### 1.1 Download the dataset\n", - "\n", - "Please [download the Nordland datasets](https://webdiis.unizar.es/~jmfacil/pr-nordland/#download-dataset) (Summer, Spring, Fall, & Winter). There are two datasets available, the full size and downsampled versions. Either will work fine but our paper details the full size dataset. If disk space is a concern, please use the downsampled version.\n", - "\n", - "Save the data in the `./VPRTempo-quant/dataset/` subfolder." - ] - }, - { - "cell_type": "markdown", - "id": "f0a607d1", - "metadata": {}, - "source": [ - "### 1.2 Import modules\n", - "\n", - "Once we have downloaded the dataset, we'll start by importing all the necessary modules.\n", - "\n", - "For this tutorial, we use [Jupyter Dynamic Classes](https://alexhagen.github.io/jdc/) so if not already installed please install. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "ca1aa5e3-4537-4e1e-8629-bb134e749707", - "metadata": {}, - "outputs": [], - "source": [ - "!pip install jdc" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "d9caff25", - "metadata": {}, - "outputs": [], - "source": [ - "import jdc\n", - "import os\n", - "import torch\n", - "import gc\n", - "import sys\n", - "sys.path.append('../src')\n", - "sys.path.append('../models')\n", - "sys.path.append('../output')\n", - "sys.path.append('../dataset')\n", - "\n", - "import blitnet as bn\n", - "import numpy as np\n", - "import torch.nn as nn\n", - "import torch.quantization as quantization\n", - "\n", - "from settings import configure, image_csv, model_logger\n", - "from dataset import CustomImageDataset, ProcessImage\n", - "from torch.utils.data import DataLoader\n", - "from torch.ao.quantization import QuantStub, DeQuantStub\n", - "from tqdm import tqdm" - ] - }, - { - "cell_type": "markdown", - "id": "ffac2f0e", - "metadata": {}, - "source": [ - "### 1.3 Prepare the dataset for the model (optional)\n", - "\n", - "The datset seasons are downloaded in .zip format and need to be extracted into a single folder. The `nordland` function has been provided to automatically do this for you and to re-name the images to match those in the nordland.csv file.\n", - "\n", - "If you have already done this from the previous tutorial, you can skip this step." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "51f350d0", - "metadata": { - "scrolled": true - }, - "outputs": [], - "source": [ - "from os import walk\n", - "from nordland import nord_sort\n", - "\n", - "# unzip, re-organise, and re-name the Nordland datasets\n", - "nord_sort()" - ] - }, - { - "cell_type": "markdown", - "id": "f4d2f885", - "metadata": {}, - "source": [ - "## 2. Set up the network\n", - "\n", - "### 2.1 Define and initialize the VPRTempo model class\n", - "\n", - "We'll first define the VPRTempo class which handles the configuration as set in `./src/settings.py`, determining which images to load, and establishes the layers used for training. For this tutorial, leave the settings as the default.\n", - "\n", - "`__init__` is where we define the layers used for the model. In this case, we define a `feature_layer` and an `output_layer`. `dims` represents the number of neurons in the input and the layer itself, which in this case is `self.input`, `self.feature`, and `self.output`. Note that the size of the input for each proceeding layer is the size of previous layer. In this example, we have an input of 784 neurons (for 28x28 images) connected to a 1568 neuron feature layer which then connects to a final output layer of 500 neurons.\n", - "\n", - "The other hyperparameters for each layer are set here as well." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "99b5130c", - "metadata": {}, - "outputs": [], - "source": [ - "class VPRTempo(nn.Module):\n", - " def __init__(self):\n", - " super(VPRTempo, self).__init__()\n", - "\n", - " # Configure the network\n", - " configure(self)\n", - " \n", - " # Define the images to load (both training and inference)\n", - " image_csv(self)\n", - "\n", - " # Add quantization stubs for Quantization Aware Training (QAT)\n", - " self.quant = QuantStub()\n", - " self.dequant = DeQuantStub()\n", - " \n", - " # Define the add function for quantized addition\n", - " self.add = nn.quantized.FloatFunctional() \n", - "\n", - " # Layer dict to keep track of layer names and their order\n", - " self.layer_dict = {}\n", - " self.layer_counter = 0\n", - "\n", - " \"\"\"\n", - " Define trainable layers here\n", - " \"\"\"\n", - " self.add_layer(\n", - " 'feature_layer',\n", - " dims=[self.input, self.feature],\n", - " thr_range=[0, 0.5],\n", - " fire_rate=[0.2, 0.9],\n", - " ip_rate=0.15,\n", - " stdp_rate=0.005,\n", - " const_inp=[0, 0.1],\n", - " p=[0.1, 0.5]\n", - " )\n", - " self.add_layer(\n", - " 'output_layer',\n", - " dims=[self.feature, self.output],\n", - " ip_rate=0.15,\n", - " stdp_rate=0.005,\n", - " spk_force=True\n", - " )\n", - " \n", - " print('VPRTempo succesfully initialized')" - ] - }, - { - "cell_type": "markdown", - "id": "d9e3c15b", - "metadata": {}, - "source": [ - "### 2.2 Dynamically add layers\n", - "\n", - "As above, the only thing we need to do in order to add additional layers to our model is to include a self.add_layer(args) to the `__init__` component of the script. The actual handling of the layer generation is done by the blitnet.SNNLayer() class from `blitnet.py`. Here, hyperparameters are stored in the layer information and the initial weights are seeded and normalized for training." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "dabd3c7d", - "metadata": {}, - "outputs": [], - "source": [ - "%%add_to VPRTempo\n", - "def add_layer(self, name, **kwargs):\n", - " \"\"\"\n", - " Dynamically add a layer with given name and keyword arguments.\n", - "\n", - " :param name: Name of the layer to be added\n", - " :type name: str\n", - " :param kwargs: Hyperparameters for the layer\n", - " \"\"\"\n", - " # Check for layer name duplicates\n", - " if name in self.layer_dict:\n", - " raise ValueError(f\"Layer with name {name} already exists.\")\n", - "\n", - " # Add a new SNNLayer with provided kwargs\n", - " setattr(self, name, bn.SNNLayer(**kwargs))\n", - "\n", - " # Add layer name and index to the layer_dict\n", - " self.layer_dict[name] = self.layer_counter\n", - " self.layer_counter += 1 \n", - "\n", - " print('Succesfully added '+name)" - ] - }, - { - "cell_type": "markdown", - "id": "e3b92db1", - "metadata": {}, - "source": [ - "### 2.3 Set the training regime\n", - "\n", - "Training is also handled by the `VPRTempo()` class and recursively runs until all the defined layers are trained. The initial learning rates are copied out so that they can be annealed appropriately for the defined number of time steps. Training runs for the specified number of epochs and the total number of timesteps as set in the train_loader class (more later on that, a simple [PyTorch DataLoader](https://pytorch.org/tutorials/beginner/basics/data_tutorial.html)).\n", - "\n", - "Once a layer has been trained, the learning for that layer will be turned off and training deeper layers will propagate the input spikes through each trained layer until it reaches the one being currently learned. Learning involves spike-timing dependent plasticity (STDP) rules, firing threshold adjustments, and inhibitory connection normalization." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "623595aa", - "metadata": {}, - "outputs": [], - "source": [ - "%%add_to VPRTempo\n", - "def train_model(self, train_loader, layer, prev_layers=None):\n", - " \"\"\"\n", - " Train a layer of the network model.\n", - "\n", - " :param train_loader: Training data loader\n", - " :param layer: Layer to train\n", - " :param prev_layers: Previous layers to pass data through\n", - " \"\"\"\n", - "\n", - " # Initialize the tqdm progress bar\n", - " pbar = tqdm(total=int(self.T * self.epoch),\n", - " desc=\"Training \",\n", - " position=0)\n", - "\n", - " # Initialize the learning rates for each layer (used for annealment)\n", - " init_itp = layer.eta_ip.detach()\n", - " init_stdp = layer.eta_stdp.detach()\n", - "\n", - " # Run training for the specified number of epochs\n", - " for epoch in range(self.epoch):\n", - " mod = 0 # Used to determine the learning rate annealment, resets at each epoch\n", - " # Run training for the specified number of timesteps\n", - " for spikes, labels in train_loader:\n", - " spikes, labels = spikes.to(self.device), labels.to(self.device)\n", - " idx = labels / self.filter # Set output index for spike forcing\n", - " # Pass through previous layers if they exist\n", - " if prev_layers:\n", - " with torch.no_grad():\n", - " for prev_layer_name in prev_layers:\n", - " prev_layer = getattr(self, prev_layer_name) # Get the previous layer object\n", - " spikes = self.forward(spikes, prev_layer) # Pass spikes through the previous layer\n", - " spikes = bn.clamp_spikes(spikes, prev_layer) # Clamp spikes [0, 0.9]\n", - " else:\n", - " prev_layer = None\n", - " # Get the output spikes from the current layer\n", - " pre_spike = spikes.detach() # Previous layer spikes for STDP\n", - " spikes = self.forward(spikes, layer) # Current layer spikes\n", - " spikes_noclp = spikes.detach() # Used for inhibitory homeostasis\n", - " spikes = bn.clamp_spikes(spikes, layer) # Clamp spikes [0, 0.9]\n", - " # Calculate STDP\n", - " layer = bn.calc_stdp(pre_spike,spikes,spikes_noclp,layer, idx, prev_layer=prev_layer)\n", - " # Adjust learning rates\n", - " layer = self._anneal_learning_rate(layer, mod, init_itp, init_stdp)\n", - " # Update the annealing mod & progress bar \n", - " mod += 1\n", - " pbar.update(1)\n", - "\n", - " # Close the tqdm progress bar\n", - " pbar.close()" - ] - }, - { - "cell_type": "markdown", - "id": "bc5e068e", - "metadata": {}, - "source": [ - "### 2.4 Create the forward pass\n", - "\n", - "Layers in VPRTempo are defined as an [nn.Linear](https://pytorch.org/docs/stable/generated/torch.nn.Linear.html) layer, with incoming spikes being linearly transformed with the layer weights. The forward pass simply takes incoming spikes and caluclates the transform with positive and negative weights and adds them together, returning the transformed spikes." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "68a22d64", - "metadata": {}, - "outputs": [], - "source": [ - "%%add_to VPRTempo\n", - "def forward(self, spikes, layer):\n", - " \"\"\"\n", - " Compute the forward pass of the model.\n", - "\n", - " Parameters:\n", - " - spikes (Tensor): Input spikes.\n", - "\n", - " Returns:\n", - " - Tensor: Output after processing.\n", - " \"\"\"\n", - "\n", - " spikes = self.quant(spikes)\n", - " spikes = self.add.add(layer.exc(spikes), layer.inh(spikes))\n", - " spikes = self.dequant(spikes)\n", - "\n", - " return spikes" - ] - }, - { - "cell_type": "markdown", - "id": "9fb8e16d", - "metadata": {}, - "source": [ - "### 2.5 Learning rate annealment & model loader/saver\n", - "\n", - "Finally, the last thing we will add to the model is the learning rate annealment regime and the functions for loading and saving trained models." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "e99f6d13", - "metadata": {}, - "outputs": [], - "source": [ - "%%add_to VPRTempo\n", - "def _anneal_learning_rate(self, layer, mod, itp, stdp):\n", - " \"\"\"\n", - " Anneal the learning rate for the current layer.\n", - " \"\"\"\n", - " if np.mod(mod, 100) == 0: # Modify learning rate every 100 timesteps\n", - " pt = pow(float(self.T - mod) / self.T, self.annl_pow)\n", - " layer.eta_ip = torch.mul(itp, pt) # Anneal intrinsic threshold plasticity learning rate\n", - " layer.eta_stdp = torch.mul(stdp, pt) # Anneal STDP learning rate\n", - "\n", - " return layer\n", - "\n", - "def save_model(self, model_out): \n", - " \"\"\"\n", - " Save the trained model to models output folder.\n", - " \"\"\"\n", - " torch.save(self.state_dict(), model_out) \n", - "\n", - "def load_model(self, model_path):\n", - " \"\"\"\n", - " Load pre-trained model and set the state dictionary keys.\n", - " \"\"\"\n", - " self.load_state_dict(torch.load(model_path, map_location=self.device),\n", - " strict=True)" - ] - }, - { - "cell_type": "markdown", - "id": "a4d65918", - "metadata": {}, - "source": [ - "### 2.6 Initialize the model\n", - "\n", - "Now that the model has been defined, we can initialize it and start with the quantization process." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "55aa0e9b", - "metadata": {}, - "outputs": [], - "source": [ - "model = VPRTempo()\n", - "model_logger(model)\n", - "model.train()" - ] - }, - { - "cell_type": "markdown", - "id": "a88d4a18", - "metadata": {}, - "source": [ - "### 2.7 Generate unique model name\n", - "\n", - "We will finally set up a unique model name based on the network architecture so we can save and reload our trained model." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "dc786b3d", - "metadata": {}, - "outputs": [], - "source": [ - "def generate_model_name(model):\n", - " \"\"\"\n", - " Generate the model name based on its parameters.\n", - " \"\"\"\n", - " return (\"VPRTempo\" +\n", - " str(model.input) +\n", - " str(model.feature) +\n", - " str(model.output) +\n", - " str(model.number_modules) +\n", - " '.pth')\n", - "\n", - "model_name = generate_model_name(model)\n", - "\n", - "print(model_name)" - ] - }, - { - "cell_type": "markdown", - "id": "17640d20", - "metadata": {}, - "source": [ - "## 3. Define the DataLoader\n", - "\n", - "### 3.1 Set the DataLoader\n", - "\n", - "Now that we've defined the model, we will set up the DataLoaders. These utilise a PyTorch CustomImageDataset and ProcessImage to import images and process them for training or inference. In brief, images are loaded, gamma corrected, resized, and then patch-normalized before being converted into system spikes to be propagated throughout.\n", - "\n", - "Since we present the network with one image at a time, the `batch_size` is kept to 1." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "6714bc35", - "metadata": {}, - "outputs": [], - "source": [ - "from dataset import CustomImageDataset, ProcessImage\n", - "from torch.utils.data import DataLoader\n", - "\n", - "image_transform = ProcessImage(model.dims, model.patches)\n", - "train_dataset = CustomImageDataset(annotations_file=model.dataset_file, \n", - " img_dirs=model.training_dirs,\n", - " transform=image_transform,\n", - " skip=model.filter,\n", - " max_samples=model.number_training_images,\n", - " test=False)\n", - "# Initialize the data loader\n", - "train_loader = DataLoader(train_dataset, \n", - " batch_size=1, \n", - " shuffle=False,\n", - " num_workers=8,\n", - " persistent_workers=True)" - ] - }, - { - "cell_type": "markdown", - "id": "2f3f4bdb", - "metadata": {}, - "source": [ - "## 5. Set up and run the training \n", - "\n", - "### 5.1 Define and run the training regime\n", - "\n", - "The training will loop through each defined layer until every single one has trained. In order to propagate spikes throughout the system, trained layers are appended to a list so that they can be re-fed back into the network to calculate spikes based on learned weights.\n", - "\n", - "Run the below cell to train our `feature_layer` and `output_layer`!" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "0075638b", - "metadata": {}, - "outputs": [], - "source": [ - "# Keep track of trained layers to pass data through them\n", - "trained_layers = [] \n", - "\n", - "# Training each layer\n", - "for layer_name, _ in sorted(model.layer_dict.items(), key=lambda item: item[1]):\n", - " print(f\"Training layer: {layer_name}\")\n", - " # Retrieve the layer object\n", - " layer = getattr(model, layer_name)\n", - " # Train the layer\n", - " model.train_model(train_loader, layer, prev_layers=trained_layers)\n", - " # After training the current layer, add it to the list of trained layers\n", - " trained_layers.append(layer_name)\n", - " \n", - "print('All layers trained succesfully')" - ] - }, - { - "cell_type": "markdown", - "id": "5e6daea3", - "metadata": {}, - "source": [ - "### 5.2 Convert and save the model\n", - "\n", - "Now that the training has been completed, we can convert the QAT model over to be fully quantized. As the layers were trained, scale and zero-point factors will learned for all the elements of the model and can now be applied to the layers. Once converted, we will save the model for use in inferencing." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "53ededaa", - "metadata": {}, - "outputs": [], - "source": [ - "# Convert the model to eval mode\n", - "model.eval()\n", - "# Save the model\n", - "model.save_model(os.path.join('../models', model_name)) " - ] - }, - { - "cell_type": "markdown", - "id": "c0d69843", - "metadata": {}, - "source": [ - "## 6. Inferencing\n", - "\n", - "As in the previous tutorial, inferencing with a trained model is quite simple. The only additional thing we need to do is reinitialize the VPRTempo class and convert it to quantized before loading the model. Without pre-quantizing the inference model, state dictionary keys will not match since all the layers and associated components have new parameters such as scale and zero-point.\n", - "\n", - "### 6.1 Add the inference function to the VPRTempo class\n", - "\n", - "We will start by adding in the inference function to VPRTempo. It is similar to the training regime but omits the learning components `calc_stdp` and simply runs through all the layers until it reaches the output." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "a368c532", - "metadata": {}, - "outputs": [], - "source": [ - "%%add_to VPRTempo\n", - "def evaluate(self, model, test_loader, layers=None):\n", - " \"\"\"\n", - " Run the inferencing model and calculate the accuracy.\n", - "\n", - " :param test_loader: Testing data loader\n", - " :param layers: Layers to pass data through\n", - " \"\"\"\n", - "\n", - " # Initialize the number of correct predictions\n", - " numcorr = 0\n", - " idx = 0\n", - "\n", - " # Initialize the tqdm progress bar\n", - " pbar = tqdm(total=self.number_testing_images,\n", - " desc=\"Running the test network\",\n", - " position=0)\n", - "\n", - " # Run inference for the specified number of timesteps\n", - " for spikes, labels in test_loader:\n", - " # Set device\n", - " spikes, labels = spikes.to(self.device), labels.to(self.device)\n", - " # Pass through previous layers if they exist\n", - " if layers:\n", - " for layer_name in layers:\n", - " layer = getattr(self, layer_name)\n", - " spikes = self.forward(spikes, layer)\n", - " spikes = bn.clamp_spikes(spikes, layer)\n", - "\n", - " # Evaluate if the prediction is correct\n", - " if torch.argmax(spikes.reshape(1, self.number_training_images)) == idx:\n", - " numcorr += 1\n", - "\n", - " # Update the index and progress bar\n", - " idx += 1\n", - " pbar.update(1)\n", - "\n", - " # Close the tqdm progress bar\n", - " pbar.close()\n", - " # Calculate and record the accuracy\n", - " accuracy = round((numcorr/self.number_testing_images)*100,2)\n", - " model.logger.info(\"P@100R: \"+ str(accuracy) + '%')" - ] - }, - { - "cell_type": "markdown", - "id": "5e841fc7", - "metadata": {}, - "source": [ - "### 6.2 Define the inferencing DataLoader\n", - "\n", - "The only difference between the training and testing DataLoader is the directory with which it will import images from." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "f4a1adc8", - "metadata": {}, - "outputs": [], - "source": [ - "# Initialize the image transforms and datasets\n", - "image_transform = ProcessImage(model.dims, model.patches)\n", - "test_dataset = CustomImageDataset(annotations_file=model.dataset_file, \n", - " img_dirs=model.testing_dirs,\n", - " transform=image_transform,\n", - " skip=model.filter,\n", - " max_samples=model.number_testing_images)\n", - "# Initialize the data loader\n", - "test_loader = DataLoader(test_dataset, \n", - " batch_size=1, \n", - " shuffle=False,\n", - " num_workers=8,\n", - " persistent_workers=True)" - ] - }, - { - "cell_type": "markdown", - "id": "018de09a", - "metadata": {}, - "source": [ - "### 6.3 Re-initialize the model class, convert to quantization, and load the model\n", - "\n", - "Now we will re-initialize the VPRTempo class model, set to eval mode, and convert it over to quantized so that we can import our newly trained model." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "30d51e96", - "metadata": {}, - "outputs": [], - "source": [ - "# Set the model to evaluation mode and set configuration\n", - "model = VPRTempo()\n", - "model.model_logger()\n", - "model.eval()\n", - "\n", - "# Load the model\n", - "model.load_model(os.path.join('../models', model_name))\n", - "\n", - "# Retrieve layer names for inference\n", - "layer_names = list(model.layer_dict.keys())" - ] - }, - { - "cell_type": "markdown", - "id": "472d24e8", - "metadata": {}, - "source": [ - "### 6.4 Run the model inference\n", - "\n", - "Now we are ready to inference the model!" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "37aa84e1", - "metadata": {}, - "outputs": [], - "source": [ - "# Use evaluate method for inference accuracy\n", - "model.evaluate(model, test_loader, layers=layer_names)" - ] - }, - { - "cell_type": "markdown", - "id": "26f46e43", - "metadata": {}, - "source": [ - "## 7. Conslusions\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "id": "763e86c5", - "metadata": {}, - "source": [ - "This tutorial covered how we can convert the VPRTempo model to perform Quantized Aware Training (QAT) to keep the model size more lightweight. You might notice that if you compare the system between FP32 to Int8, the model works equally as well with a reduced bit-depth with the added benefit of a reduced model size.\n", - "\n", - "To read more about QAT and quantization in general, PyTorch provides many useful articles;\n", - "https://pytorch.org/docs/stable/quantization.html\n", - "https://pytorch.org/blog/quantization-in-practice/\n", - "\n", - "The key benefit to this is being able to perform fast training and inferencing on CPU architecture, which for resource limited compute scenarios is critical." - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.4" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} diff --git a/tutorials/3_Quantization.ipynb b/tutorials/3_Quantization.ipynb deleted file mode 100644 index 790dff6..0000000 --- a/tutorials/3_Quantization.ipynb +++ /dev/null @@ -1,493 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "id": "70df0e83-9a35-41b3-81ec-cd12538045ed", - "metadata": {}, - "source": [ - "## VPRTempo - Quantized Aware Training and Inferencing Tutorial\n", - "\n", - "### By Adam D Hines (https://research.qut.edu.au/qcr/people/adam-hines/)\n", - "\n", - "VPRTempo is based on the following paper, if you use or find this code helpful for your research please consider citing the source:\n", - " \n", - "[Adam D Hines, Peter G Stratton, Michael Milford, & Tobias Fischer. \"VPRTempo: A Fast Temporally Encoded Spiking Neural Network for Visual Place Recognition. arXiv September 2023](https://arxiv.org/abs/2309.10225)\n", - "\n", - "### Introduction\n", - "\n", - "In this tutorial, we are going to take the base VPRTempo model to train and inference a network with PyTorch's Quantized Aware Training ([QAT](https://pytorch.org/docs/stable/quantization.html)). Functionally, this tutorial is similar to the previous one but will be simplified. For a more detailed dive into how VPRTempo works, please see [Tutorial 1](https://github.com/AdamDHines/VPRTempo-quant/blob/main/tutorials/1_Introduction.ipynb)\n", - "\n", - "**Note: it does not appear that Apple Silicon is currently a supported backend for QAT**\n", - "\n", - "To get started, please ensure you have installed and currently have activated the `conda` environment for VPRTempo." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "0f846c03", - "metadata": {}, - "outputs": [], - "source": [ - "!conda activate vprtempo" - ] - }, - { - "cell_type": "markdown", - "id": "0928d7a4", - "metadata": {}, - "source": [ - "## 1. Get the Nordland dataset\n", - "\n", - "### 1.1 Download the dataset\n", - "\n", - "Please [download the Nordland datasets](https://webdiis.unizar.es/~jmfacil/pr-nordland/#download-dataset) (Summer, Spring, Fall, & Winter). There are two datasets available, the full size and downsampled versions. Either will work fine but our paper details the full size dataset. If disk space is a concern, please use the downsampled version.\n", - "\n", - "Save the data in the `./VPRTempo-quant/dataset/` subfolder." - ] - }, - { - "cell_type": "markdown", - "id": "f0a607d1", - "metadata": {}, - "source": [ - "### 1.2 Import modules\n", - "\n", - "Once we have downloaded the dataset, we'll start by importing all the necessary modules.\n", - "\n", - "For this tutorial, we use [Jupyter Dynamic Classes](https://alexhagen.github.io/jdc/) so if not already installed please install. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "e7bf4ad2-755b-40f1-8bd3-5b98376ed5df", - "metadata": {}, - "outputs": [], - "source": [ - "!pip install jdc" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "d9caff25", - "metadata": {}, - "outputs": [], - "source": [ - "import jdc\n", - "import os\n", - "import torch\n", - "import gc\n", - "import sys\n", - "sys.path.append('../')\n", - "sys.path.append('../src')\n", - "sys.path.append('../models')\n", - "sys.path.append('../output')\n", - "sys.path.append('../dataset')\n", - "\n", - "import blitnet as bn\n", - "import numpy as np\n", - "import torch.nn as nn\n", - "import torch.quantization as quantization\n", - "\n", - "from settings import configure, image_csv, model_logger\n", - "from dataset import CustomImageDataset, ProcessImage\n", - "from torch.utils.data import DataLoader\n", - "from torch.ao.quantization import QuantStub, DeQuantStub\n", - "from tqdm import tqdm" - ] - }, - { - "cell_type": "markdown", - "id": "ffac2f0e", - "metadata": {}, - "source": [ - "### 1.3 Prepare the dataset for the model (optional)\n", - "\n", - "The datset seasons are downloaded in .zip format and need to be extracted into a single folder. The `nordland` function has been provided to automatically do this for you and to re-name the images to match those in the nordland.csv file.\n", - "\n", - "If you have already done this from the previous tutorial, you can skip this step." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "51f350d0", - "metadata": { - "scrolled": true - }, - "outputs": [], - "source": [ - "from os import walk\n", - "from nordland import nord_sort\n", - "\n", - "# unzip, re-organise, and re-name the Nordland datasets\n", - "nord_sort()" - ] - }, - { - "cell_type": "markdown", - "id": "f4d2f885", - "metadata": {}, - "source": [ - "## 2. Set up the network\n", - "\n", - "### 2.1 Define and initialize the VPRTempo model class\n", - "\n", - "We'll now import the main network model class `VPRTempo`. Please see [Tutorial 1](https://github.com/AdamDHines/VPRTempo-quant/blob/main/tutorials/1_Introduction.ipynb) for a more detailed look at what this includes." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "99b5130c", - "metadata": {}, - "outputs": [], - "source": [ - "from VPRTempo import VPRTempo\n", - "model = VPRTempo()" - ] - }, - { - "cell_type": "markdown", - "id": "a88d4a18", - "metadata": {}, - "source": [ - "### 2.2 Generate unique model name\n", - "\n", - "We will set up a unique model name to save and load for inferencing." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "dc786b3d", - "metadata": {}, - "outputs": [], - "source": [ - "def generate_model_name(model):\n", - " \"\"\"\n", - " Generate the model name based on its parameters.\n", - " \"\"\"\n", - " return (\"VPRTempo\" +\n", - " str(model.input) +\n", - " str(model.feature) +\n", - " str(model.output) +\n", - " str(model.number_modules) +\n", - " \"Quantized\"+\n", - " '.pth')\n", - "\n", - "model_name = generate_model_name(model)\n", - "\n", - "print(model_name)" - ] - }, - { - "cell_type": "markdown", - "id": "17640d20", - "metadata": {}, - "source": [ - "## 3. Define the DataLoader\n", - "\n", - "### 3.1 Set the DataLoader\n", - "\n", - "Now that we've defined the model, we will set up the DataLoaders. These utilise a PyTorch CustomImageDataset and ProcessImage to import images and process them for training or inference. In brief, images are loaded, gamma corrected, resized, and then patch-normalized before being converted into system spikes to be propagated throughout.\n", - "\n", - "Since we present the network with one image at a time, the `batch_size` is kept to 1." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "6714bc35", - "metadata": {}, - "outputs": [], - "source": [ - "from dataset import CustomImageDataset, ProcessImage\n", - "from torch.utils.data import DataLoader\n", - "\n", - "image_transform = ProcessImage(model.dims, model.patches)\n", - "train_dataset = CustomImageDataset(annotations_file=model.dataset_file, \n", - " img_dirs=model.training_dirs,\n", - " transform=image_transform,\n", - " skip=model.filter,\n", - " max_samples=model.number_training_images,\n", - " test=False)\n", - "# Initialize the data loader\n", - "train_loader = DataLoader(train_dataset, \n", - " batch_size=1, \n", - " shuffle=False,\n", - " num_workers=8,\n", - " persistent_workers=True)" - ] - }, - { - "cell_type": "markdown", - "id": "a3067711", - "metadata": {}, - "source": [ - "## 4. Quantization\n", - "\n", - "### 4.1 Model quantization\n", - "\n", - "VPRTempoQuant makes use of Quantized Aware Training QAT and has a few simple steps to prepare the model to accomodate this. First, we will get the default quantization configuration for `fggbem`." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "36244802", - "metadata": {}, - "outputs": [], - "source": [ - "import torch.quantization as quantization\n", - "\n", - "# Set the quantization configuration\n", - "qconfig = quantization.get_default_qat_qconfig('fbgemm')" - ] - }, - { - "cell_type": "markdown", - "id": "47a292cc", - "metadata": {}, - "source": [ - "Next, we will set the model to be configured for network training and add our quantization configuration." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "a884ad96", - "metadata": {}, - "outputs": [], - "source": [ - "# Set the model to training mode and move to device\n", - "model.train()\n", - "model.to('cpu')\n", - "model.qconfig = qconfig" - ] - }, - { - "cell_type": "markdown", - "id": "ed34b802", - "metadata": {}, - "source": [ - "Now we will convert the model over to QAT." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "087f3b36", - "metadata": {}, - "outputs": [], - "source": [ - "# Apply quantization configurations to the model\n", - "model = quantization.prepare_qat(model, inplace=False)" - ] - }, - { - "cell_type": "markdown", - "id": "07f74ad2", - "metadata": {}, - "source": [ - "At this point, we are ready to start training our network!" - ] - }, - { - "cell_type": "markdown", - "id": "2f3f4bdb", - "metadata": {}, - "source": [ - "## 5. Set up and run the training \n", - "\n", - "### 5.1 Define and run the training regime\n", - "\n", - "The training will loop through each defined layer until every single one has trained. In order to propagate spikes throughout the system, trained layers are appended to a list so that they can be re-fed back into the network to calculate spikes based on learned weights.\n", - "\n", - "Run the below cell to train our `feature_layer` and `output_layer`!" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "0075638b", - "metadata": {}, - "outputs": [], - "source": [ - "# Keep track of trained layers to pass data through them\n", - "trained_layers = [] \n", - "\n", - "# Training each layer\n", - "for layer_name, _ in sorted(model.layer_dict.items(), key=lambda item: item[1]):\n", - " print(f\"Training layer: {layer_name}\")\n", - " # Retrieve the layer object\n", - " layer = getattr(model, layer_name)\n", - " # Train the layer\n", - " model.train_model(train_loader, layer, prev_layers=trained_layers)\n", - " # After training the current layer, add it to the list of trained layers\n", - " trained_layers.append(layer_name)\n", - " \n", - "print('All layers trained succesfully')" - ] - }, - { - "cell_type": "markdown", - "id": "5e6daea3", - "metadata": {}, - "source": [ - "### 5.2 Convert and save the model\n", - "\n", - "Now that the training has been completed, we can convert the QAT model over to be fully quantized. As the layers were trained, scale and zero-point factors will learned for all the elements of the model and can now be applied to the layers. Once converted, we will save the model for use in inferencing." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "53ededaa", - "metadata": {}, - "outputs": [], - "source": [ - "# Convert the model to a quantized model\n", - "model = quantization.convert(model, inplace=False)\n", - "model.eval()\n", - "# Save the model\n", - "model.save_model(os.path.join('../models', model_name)) " - ] - }, - { - "cell_type": "markdown", - "id": "018de09a", - "metadata": {}, - "source": [ - "### 6.3 Re-initialize the model class, convert to quantization, and load the model\n", - "\n", - "Now we will re-initialize the VPRTempo class model, set to eval mode, and convert it over to quantized so that we can import our newly trained model." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "30d51e96", - "metadata": {}, - "outputs": [], - "source": [ - "# Set the model to evaluation mode and set configuration\n", - "model = VPRTempo()\n", - "model.model_logger()\n", - "model.eval()\n", - "model.qconfig = qconfig\n", - "\n", - "# Apply quantization configurations to all layers in layer_dict\n", - "for layer_name, _ in model.layer_dict.items():\n", - " getattr(model, layer_name).qconfig = qconfig\n", - "# Prepare and convert the model to a quantized model\n", - "model = quantization.prepare(model, inplace=False)\n", - "model = quantization.convert(model, inplace=False)\n", - "# Load the model\n", - "model.load_model(os.path.join('../models', model_name))\n", - "\n", - "# Retrieve layer names for inference\n", - "layer_names = list(model.layer_dict.keys())" - ] - }, - { - "cell_type": "markdown", - "id": "5e841fc7", - "metadata": {}, - "source": [ - "### 6.2 Define the inferencing DataLoader\n", - "\n", - "The only difference between the training and testing DataLoader is the directory with which it will import images from." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "f4a1adc8", - "metadata": {}, - "outputs": [], - "source": [ - "# Initialize the image transforms and datasets\n", - "image_transform = ProcessImage(model.dims, model.patches)\n", - "test_dataset = CustomImageDataset(annotations_file=model.dataset_file, \n", - " img_dirs=model.testing_dirs,\n", - " transform=image_transform,\n", - " skip=model.filter,\n", - " max_samples=model.number_testing_images)\n", - "# Initialize the data loader\n", - "test_loader = DataLoader(test_dataset, \n", - " batch_size=1, \n", - " shuffle=False,\n", - " num_workers=8,\n", - " persistent_workers=True)" - ] - }, - { - "cell_type": "markdown", - "id": "472d24e8", - "metadata": {}, - "source": [ - "### 6.4 Run the model inference\n", - "\n", - "Now we are ready to inference the model!" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "37aa84e1", - "metadata": {}, - "outputs": [], - "source": [ - "# Use evaluate method for inference accuracy\n", - "model.evaluate(model, test_loader, layers=layer_names)" - ] - }, - { - "cell_type": "markdown", - "id": "26f46e43", - "metadata": {}, - "source": [ - "## 7. Conslusions\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "id": "763e86c5", - "metadata": {}, - "source": [ - "This tutorial covered how we can convert the VPRTempo model to perform Quantized Aware Training (QAT) to keep the model size more lightweight. You might notice that if you compare the system between FP32 to Int8, the model works equally as well with a reduced bit-depth with the added benefit of a reduced model size.\n", - "\n", - "To read more about QAT and quantization in general, PyTorch provides many useful articles;\n", - "https://pytorch.org/docs/stable/quantization.html\n", - "https://pytorch.org/blog/quantization-in-practice/\n", - "\n", - "The key benefit to this is being able to perform fast training and inferencing on CPU architecture, which for resource limited compute scenarios is critical." - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.4" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} From e6886b77b98be9b428f9fbeb16aef0d7ab0235be Mon Sep 17 00:00:00 2001 From: Adam Hines Date: Thu, 30 Nov 2023 17:19:23 +1000 Subject: [PATCH 64/69] Working on modules, current issue the second module doesn't output for some reason --- .DS_Store | Bin 10244 -> 10244 bytes dataset/.DS_Store | Bin 8196 -> 14340 bytes main.py | 51 ++++++++---- models/.DS_Store | Bin 6148 -> 6148 bytes networks/base/VPRTempo.py | 95 +++++++++++++---------- networks/base/VPRTempoTrain.py | 91 +++++++++++++--------- networks/quantized/VPRTempoQuant.py | 6 +- networks/quantized/VPRTempoQuantTrain.py | 6 +- src/blitnet.py | 2 + src/dataset.py | 9 ++- src/loggers.py | 68 +++++++--------- tutorials/.DS_Store | Bin 0 -> 6148 bytes tutorials/mats/.DS_Store | Bin 0 -> 6148 bytes 13 files changed, 186 insertions(+), 142 deletions(-) create mode 100644 tutorials/.DS_Store create mode 100644 tutorials/mats/.DS_Store diff --git a/.DS_Store b/.DS_Store index 2e3e8215ef405c688d92e1b551ce3ba13b846760..b9183bcce3be679eb9994ae6b0c29813116d3f44 100644 GIT binary patch delta 112 zcmZn(XbG6$&nU4mU^hRb#AY4=0j9}o#7a5Lj7)SC3@yzk>qyvdzAog?Gd3@lY;K~XU}S2!SxV(ZFfa%J@p>Sh_a6*4Caz@L%&zd8 NWiqp<3e;3ZCIFS^C941c diff --git a/dataset/.DS_Store b/dataset/.DS_Store index a321f0b86a27a4ebfe9a8a908a70828e9d4c93f7..ea74ea872093a8a770552a84473018d23402d961 100644 GIT binary patch literal 14340 zcmeGiZEPGzb>1en_mXYAZfxQNZ*%gcYT7ui<9yg@8ufg3n!5RLnzQ3`;^eY-ySBI4 z+r94Y-NkW@OjRn;Qc!+T6^g>IwzRYe2vqO`BuEKJ{3!t`e5(k=$B$NmKZT<3W@hhh z?`#VpxwL6_PBU+2-kUc&Z{Nqh+a-iRqM+>{q=yh9Vx>@)uz7-zD20JS@w6@~t8fOe zZpMmznGlnh#iV1Iwl%$odhvvSQ*`}mR;P$sw;t>aVvsF)6>IkmRb4$D}`|%E^x?P2R8H(p5o~vJS*6z z5A1X<>chAX7dS)=7T`+}@}=OX7{Hg~eAK6l`*49nzMKHt8Tt4-gP)-Q+a2eljGRE6 z!>|n{5K3UN1X^)QA{McULp034RqSh|n`DVgio>Rz&6t%ed;n>KS$Gp$m0g+|lsf80 znDLNXpZ8KButCqtP(k<(n<(6C5x3spjwS8)57w%ytdWu&s$n7iB%{>A7KR%EldwDCdzpMY$(*$3?hk zP3p9%W^{AJO4y!f=O$FgQLSk`F`F{7w#Bc!nX$#;F-NB?WB0wyMH!19DtET>j!a^_ zLr5(CGX1{@A84sk2Ma_-E!)y#@nd{8g284R86Zc<3385HAQ#DVG?~@qLxSCZ#jDHlz)Nb@TU`}))ZEHs9@;H3OUrV>)sO4Q z%P8tY$kDAB)M9gZW!;9&TefcR?YlRAVED*G*O;e~+N6`{`Yg|wGIVD`b+fvqp-UMn z8JagUUNl@IW9p-pn$sgK&=tAX+>Sn}Ls2+EbwQalRmd2R6bx@xj)@}MBdT;tlNw&! z5nH3XXrg=>`JkV>UFlR#QOuyDW2^ZK?o_r(qb>?YlvPgHE%ivF=g?e<6P-?*Kp}y00~`7FuBwY=JJ=4SmoLdm#ZMa10$;5+-2=UD?Cn!g-j5 zId~L41y90L@HBiDJ`c~qm*5h78NLEvhi|}T_!fK*uELMuC-5_P6aD~ygg?Ps@K5*` zyel*a8-#XYqtGdI3EPEkp-<=+?h*D0M}-j~C8)x~f-NxDhnYgzWu7h{kV9b>VZFKe zu~B$sX>;p1_`vXk(&3xN+^+Lb-imQNdiz~>@9N(_P*Fs#xn*SyngG-L8f#&C&-9{B zXRk3!ly2KxHodAba^oCBgVE26)NbV_pE|ZhM1zqV{NdI+ad=2>DS4d@7@-Axn zI#>_wa0m3DekU+YA7vVzgfTb+X*dfR4B0ubz=lUq*B^y>_yjD#W2ot$L0$hGT!d%g z3-CqM_vhgScoANLucEep8(xF&zz^Vua0Pzk>;11$>;DRW^EI}t$wz868U9hP$-&_M zwSx_h2ZDPg_~h(ra9@rl7~C(UqjcLEi&+%hOYAAzTO8cUb$m)S0#DkMS6D&`gcA5@ zN?;8hJA!_qh}9zA(z*PS@88+m`r6cidY78ifxf3_bRUwmp>m!ue}7N%_m`OwzR&r4 zW3v*E z;LMifV}33ez*qCYrSQQVu+$=xn*XeLvK{9C^dGJ;|8FE={!im)SV9Se5?EdW4II@& zzyCY1{P+LMGYB!E1VRbi^b&y8L&>289;5tXqy9wnTe~RMvsfw3_p#D~eYOM}_BkFx z_BkF7=;wI-jL2^g7pGl>3mjq(%m4jDK>Ah62mGDzieyGN`#a%EW`v(#g!%u9=l}l! Du1P2i delta 201 zcmZoEXmOBWU|?W$DortDU;r^WfEYvza8E20o2Vx_*}#NF63A!Z2VzE`ID=bA(wb{wTZEgf{CHg&>MC-~~m16_|I9V^t diff --git a/main.py b/main.py index 0459fbb..cb2945b 100644 --- a/main.py +++ b/main.py @@ -25,6 +25,7 @@ ''' import argparse import sys +sys.path.append('./src') sys.path.append('./networks/base') sys.path.append('./networks/quantized') @@ -34,14 +35,15 @@ from VPRTempo import VPRTempo, run_inference from VPRTempoQuantTrain import VPRTempoQuantTrain, generate_model_name_quant, train_new_model_quant from VPRTempoQuant import VPRTempoQuant, run_inference_quant +from loggers import model_logger, model_logger_quant -def initialize_and_run_model(args): +def initialize_and_run_model(args,dims): # If user wants to train a new network if args.train_new_model: # If using quantization aware training if args.quantize: # Initialize the quantized model - model = VPRTempoQuantTrain(args) + model = VPRTempoQuantTrain(args,dims) # Get the quantization config qconfig = quantization.get_default_qat_qconfig('fbgemm') # Generate the model name @@ -51,33 +53,45 @@ def initialize_and_run_model(args): # Train the model train_new_model_quant(model, model_name, qconfig) else: # Normal model - # Initialize the model - model = VPRTempoTrain(args) + models = [] + logger = model_logger() + for _ in range(args.num_modules): + # Initialize the model + model = VPRTempoTrain(args, dims, logger) + models.append(model) # Generate the model name model_name = generate_model_name(model) # Check if the model has been trained before check_pretrained_model(model_name) # Train the model - train_new_model(model, model_name) + train_new_model(models, model_name) # Run the inference network else: # Set the quantization configuration if args.quantize: - # Initialize the quantized model - model = VPRTempoQuant(args) + models = [] + logger = model_logger() + for _ in range(args.num_modules): + # Initialize the model + model = VPRTempo(args, dims, logger) + models.append(model) # Get the quantization config qconfig = quantization.get_default_qat_qconfig('fbgemm') # Generate the model name model_name = generate_model_name_quant(model) # Run the quantized inference model - run_inference_quant(model, model_name, qconfig) + run_inference_quant(models, model_name, qconfig) else: - # Initialize the model - model = VPRTempo(args) + models = [] + logger = model_logger() + for _ in range(args.num_modules): + # Initialize the model + model = VPRTempo(dims, args, logger) + models.append(model) # Generate the model name model_name = generate_model_name(model) # Run the inference model - run_inference(model, model_name) + run_inference(models, model_name) def parse_network(use_quantize=False, train_new_model=False): ''' @@ -90,10 +104,12 @@ def parse_network(use_quantize=False, train_new_model=False): help="Dataset to use for training and/or inferencing") parser.add_argument('--data_dir', type=str, default='./dataset/', help="Directory where dataset files are stored") - parser.add_argument('--num_places', type=int, default=500, + parser.add_argument('--num_places', type=int, default=1000, help="Number of places to use for training and/or inferencing") - parser.add_argument('--num_modules', type=int, default=1, + parser.add_argument('--num_modules', type=int, default=2, help="Number of expert modules to use split images into") + parser.add_argument('--max_module', type=int, default=500, + help="Maximum number of images per module") parser.add_argument('--database_dirs', nargs='+', default=['spring', 'fall'], help="Directories to use for training") parser.add_argument('--query_dir', nargs='+', default=['summer'], @@ -106,10 +122,10 @@ def parse_network(use_quantize=False, train_new_model=False): help="Number of epochs to train the model") # Define image transformation parameters - parser.add_argument('--patches', type=int, default=15, + parser.add_argument('--patches', type=int, default=7, help="Number of patches to generate for patch normalization image into") - parser.add_argument('--dims', nargs='+', type=int, default=[56,56], - help="Dimensions to resize the image to") + parser.add_argument('--dims', type=str, default="28,28", + help="Dimensions to resize the image to") # Define the network functionality parser.add_argument('--train_new_model', action='store_true', @@ -127,9 +143,10 @@ def parse_network(use_quantize=False, train_new_model=False): # Output base configuration args = parser.parse_args() + dims = [int(x) for x in args.dims.split(",")] # Run the network with the desired settings - initialize_and_run_model(args) + initialize_and_run_model(args,dims) if __name__ == "__main__": # User input to determine if using quantized network or to train new model diff --git a/models/.DS_Store b/models/.DS_Store index c57311ea80e8b15f67695fdfd2c7bc0a5de4731e..28b3c56f896fa8c0c5ff67d4e21152c0cdbb6e3d 100644 GIT binary patch delta 194 zcmZoMXfc@JFUrcmz`)4BAi%(o%8<)Yz>v>i%wV|Lk$E|zI!H=_A&en_A&4OaSsJLs z3v>i&S0^5A@g!ZMwZDjOo5Z*nba6fCtEP7 sPyWlKz-q)`z+gIAiCG;et}xk 0 self.havconnCombinedInh = self.w.weight < 0 + del self.exc, self.inh + def addWeights(self,W_range=[0,0],p=[0,0],dims=[0,0],device=None): # Get torch device diff --git a/src/dataset.py b/src/dataset.py index e51034e..9ed9112 100644 --- a/src/dataset.py +++ b/src/dataset.py @@ -159,21 +159,22 @@ def __call__(self, img): class CustomImageDataset(Dataset): def __init__(self, annotations_file, base_dir, img_dirs, transform=None, target_transform=None, - skip=1, max_samples=None, test=True): + skip=1, max_samples=None, test=True, img_range=None): self.transform = transform self.target_transform = target_transform self.skip = skip - + self.img_range = img_range + # Load image labels from each directory, apply the skip and max_samples, and concatenate self.img_labels = [] for img_dir in img_dirs: img_labels = pd.read_csv(annotations_file) img_labels['file_path'] = img_labels.apply(lambda row: os.path.join(base_dir,img_dir, row.iloc[0]), axis=1) - + if self.img_range is not None: + img_labels = img_labels.iloc[self.img_range[0]:self.img_range[1]+1] # Select specific rows based on the skip parameter img_labels = img_labels.iloc[::skip] - # Limit the number of samples to max_samples if specified if max_samples is not None: img_labels = img_labels.iloc[:max_samples] diff --git a/src/loggers.py b/src/loggers.py index 326eee7..6401e91 100644 --- a/src/loggers.py +++ b/src/loggers.py @@ -4,57 +4,49 @@ from datetime import datetime -def model_logger(model): +def model_logger(): """ Configure the model logger """ - if os.path.isdir('../output'): - now = datetime.now() - model.output_folder = '../output/' + now.strftime("%d%m%y-%H-%M-%S") - else: - now = datetime.now() - model.output_folder = './output/' + now.strftime("%d%m%y-%H-%M-%S") + now = datetime.now() + output_folder = './output/' + now.strftime("%d%m%y-%H-%M-%S") - os.mkdir(model.output_folder) + os.mkdir(output_folder) # Create the logger - model.logger = logging.getLogger("VPRTempo") - if (model.logger.hasHandlers()): - model.logger.handlers.clear() + logger = logging.getLogger("VPRTempo") + if (logger.hasHandlers()): + logger.handlers.clear() # Set the logger level - model.logger.setLevel(logging.DEBUG) - logging.basicConfig(filename=model.output_folder + "/logfile.log", + logger.setLevel(logging.DEBUG) + logging.basicConfig(filename=output_folder + "/logfile.log", filemode="a+", format="%(asctime)-15s %(levelname)-8s %(message)s") # Add the logger to the console (if specified) - model.logger.addHandler(logging.StreamHandler()) + logger.addHandler(logging.StreamHandler()) - model.logger.info('') - model.logger.info('██╗ ██╗██████╗ ██████╗ ████████╗███████╗███╗ ███╗██████╗ ██████╗') - model.logger.info('██║ ██║██╔══██╗██╔══██╗╚══██╔══╝██╔════╝████╗ ████║██╔══██╗██╔═══██╗') - model.logger.info('██║ ██║██████╔╝██████╔╝ ██║ █████╗ ██╔████╔██║██████╔╝██║ ██║') - model.logger.info('╚██╗ ██╔╝██╔═══╝ ██╔══██╗ ██║ ██╔══╝ ██║╚██╔╝██║██╔═══╝ ██║ ██║') - model.logger.info(' ╚████╔╝ ██║ ██║ ██║ ██║ ███████╗██║ ╚═╝ ██║██║ ╚██████╔╝') - model.logger.info(' ╚═══╝ ╚═╝ ╚═╝ ╚═╝ ╚═╝ ╚══════╝╚═╝ ╚═╝╚═╝ ╚═════╝ ') - model.logger.info('-----------------------------------------------------------------------') - model.logger.info('Temporally Encoded Spiking Neural Network for Visual Place Recognition v1.1.0') - model.logger.info('Queensland University of Technology, Centre for Robotics') - model.logger.info('') - model.logger.info('© 2023 Adam D Hines, Peter G Stratton, Michael Milford, Tobias Fischer') - model.logger.info('MIT license - https://github.com/QVPR/VPRTempo') - model.logger.info('\\\\\\\\\\\\\\\\\\\\\\\\') - model.logger.info('') + logger.info('') + logger.info('██╗ ██╗██████╗ ██████╗ ████████╗███████╗███╗ ███╗██████╗ ██████╗') + logger.info('██║ ██║██╔══██╗██╔══██╗╚══██╔══╝██╔════╝████╗ ████║██╔══██╗██╔═══██╗') + logger.info('██║ ██║██████╔╝██████╔╝ ██║ █████╗ ██╔████╔██║██████╔╝██║ ██║') + logger.info('╚██╗ ██╔╝██╔═══╝ ██╔══██╗ ██║ ██╔══╝ ██║╚██╔╝██║██╔═══╝ ██║ ██║') + logger.info(' ╚████╔╝ ██║ ██║ ██║ ██║ ███████╗██║ ╚═╝ ██║██║ ╚██████╔╝') + logger.info(' ╚═══╝ ╚═╝ ╚═╝ ╚═╝ ╚═╝ ╚══════╝╚═╝ ╚═╝╚═╝ ╚═════╝ ') + logger.info('-----------------------------------------------------------------------') + logger.info('Temporally Encoded Spiking Neural Network for Visual Place Recognition v1.1.0') + logger.info('Queensland University of Technology, Centre for Robotics') + logger.info('') + logger.info('© 2023 Adam D Hines, Peter G Stratton, Michael Milford, Tobias Fischer') + logger.info('MIT license - https://github.com/QVPR/VPRTempo') + logger.info('\\\\\\\\\\\\\\\\\\\\\\\\') + logger.info('') if torch.cuda.is_available(): - model.logger.info('CUDA available: ' + str(torch.cuda.is_available())) - device = "cuda:0" + logger.info('CUDA available: ' + str(torch.cuda.is_available())) current_device = torch.cuda.current_device() - model.logger.info('Current device is: ' + str(torch.cuda.get_device_name(current_device))) + logger.info('Current device is: ' + str(torch.cuda.get_device_name(current_device))) else: - model.logger.info('CUDA available: ' + str(torch.cuda.is_available())) - model.logger.info('Current device is: CPU') - device = "cpu" - model.logger.info('') - - return device + logger.info('CUDA available: ' + str(torch.cuda.is_available())) + logger.info('Current device is: CPU') + logger.info('') def model_logger_quant(model): """ diff --git a/tutorials/.DS_Store b/tutorials/.DS_Store new file mode 100644 index 0000000000000000000000000000000000000000..6cbab197bfe01d7a1bba7c4bacd81a6ed4589230 GIT binary patch literal 6148 zcmeHKL5mYH6n@zq?bJo6P+>1Zz-w9C?y|CY8OM6qqmJl7rOxaW9h{w%&eXD73Uk&U zOHy%LiwGjF!+**m_fdTd_S9bnolU*_^$CjZ_$vDr-s@wf6wzj=1R~vrA-|=5YZ`3TR;%Zuk z@#H!8o+y>n-`P5Z=2lP62=()LPKyT!MY1 z#lT{15F-#_T!F?_*c3w;cj%?H3oOzN4v literal 0 HcmV?d00001 diff --git a/tutorials/mats/.DS_Store b/tutorials/mats/.DS_Store new file mode 100644 index 0000000000000000000000000000000000000000..b2b0f537229c8fdbfc2772807bd4fdbbb908cc6d GIT binary patch literal 6148 zcmeHKO;5r=5S;~-5@NzZ6ONmBB?@RT#!Ibu@M?`7)L<(_8*A54kOLv zT)wcfT6Bs|*}3-b)yN+NgJJ3g{YyGJQz{OpaS)zIy-}yKex#B?5GB37CPdvHmRwy# zNmq?LHB7px=K5yBDLJK1r8*wBn!7dG*x#Gf%SOHdGc@(fKm{VS!Tjo1u1z3RvDM0Ik zL??7DW(M`rfrD-V5DS>rhB5st5=UBeEoKIB22B_$qM-`gVhBUWytH+$#mu0ggRsqq zuvZqgLlOGwcz&tNLAVBaWCd7(p9)a#hgPBe|9F1?uZwtK1z3UqsemZ7{kDhCX7|>a xr=-1BqTisCQC(*6i-LjPim{fq;wri}%u5OoU5lAP%%Jg)fR=#=R$!qDd;$SiTIT=& literal 0 HcmV?d00001 From a937ff16fc691439bc26e8f470cd0e95dc37aa37 Mon Sep 17 00:00:00 2001 From: Adam Hines Date: Fri, 1 Dec 2023 13:52:53 +1000 Subject: [PATCH 65/69] Completed modules for VPRTempo and VPRTempoQuant. --- main.py | 31 ++++--- networks/base/VPRTempoTrain.py | 5 +- networks/quantized/VPRTempoQuant.py | 88 ++++++++++--------- networks/quantized/VPRTempoQuantTrain.py | 103 +++++++++++++---------- output/.gitkeep | 0 src/loggers.py | 67 +++++++-------- 6 files changed, 160 insertions(+), 134 deletions(-) delete mode 100644 output/.gitkeep diff --git a/main.py b/main.py index cb2945b..a8f745a 100644 --- a/main.py +++ b/main.py @@ -42,16 +42,22 @@ def initialize_and_run_model(args,dims): if args.train_new_model: # If using quantization aware training if args.quantize: - # Initialize the quantized model - model = VPRTempoQuantTrain(args,dims) + models = [] + logger = model_logger_quant() # Get the quantization config qconfig = quantization.get_default_qat_qconfig('fbgemm') + for _ in range(args.num_modules): + # Initialize the model + model = VPRTempoQuantTrain(args, dims, logger) + model.train() + model.qconfig = qconfig + models.append(model) # Generate the model name model_name = generate_model_name_quant(model) # Check if the model has been trained before check_pretrained_model(model_name) # Train the model - train_new_model_quant(model, model_name, qconfig) + train_new_model_quant(models, model_name, qconfig) else: # Normal model models = [] logger = model_logger() @@ -70,13 +76,16 @@ def initialize_and_run_model(args,dims): # Set the quantization configuration if args.quantize: models = [] - logger = model_logger() + logger = model_logger_quant() + qconfig = quantization.get_default_qat_qconfig('fbgemm') for _ in range(args.num_modules): # Initialize the model - model = VPRTempo(args, dims, logger) + model = VPRTempoQuant(dims, args, logger) + model.eval() + model.qconfig = qconfig + model = quantization.prepare(model, inplace=False) + model = quantization.convert(model, inplace=False) models.append(model) - # Get the quantization config - qconfig = quantization.get_default_qat_qconfig('fbgemm') # Generate the model name model_name = generate_model_name_quant(model) # Run the quantized inference model @@ -104,9 +113,9 @@ def parse_network(use_quantize=False, train_new_model=False): help="Dataset to use for training and/or inferencing") parser.add_argument('--data_dir', type=str, default='./dataset/', help="Directory where dataset files are stored") - parser.add_argument('--num_places', type=int, default=1000, + parser.add_argument('--num_places', type=int, default=500, help="Number of places to use for training and/or inferencing") - parser.add_argument('--num_modules', type=int, default=2, + parser.add_argument('--num_modules', type=int, default=1, help="Number of expert modules to use split images into") parser.add_argument('--max_module', type=int, default=500, help="Maximum number of images per module") @@ -122,9 +131,9 @@ def parse_network(use_quantize=False, train_new_model=False): help="Number of epochs to train the model") # Define image transformation parameters - parser.add_argument('--patches', type=int, default=7, + parser.add_argument('--patches', type=int, default=15, help="Number of patches to generate for patch normalization image into") - parser.add_argument('--dims', type=str, default="28,28", + parser.add_argument('--dims', type=str, default="56,56", help="Dimensions to resize the image to") # Define the network functionality diff --git a/networks/base/VPRTempoTrain.py b/networks/base/VPRTempoTrain.py index 9d2a6d9..4170407 100644 --- a/networks/base/VPRTempoTrain.py +++ b/networks/base/VPRTempoTrain.py @@ -152,12 +152,15 @@ def train_model(self, train_loader, layer, model, model_num, prev_layers=None): init_stdp = layer.eta_stdp.detach() mod = 0 # Used to determine the learning rate annealment, resets at each epoch + # idx scale factor for different modules + idx_scale = (self.max_module*self.filter)*model_num + # Run training for the specified number of epochs for _ in range(self.epoch): # Run training for the specified number of timesteps for spikes, labels in train_loader: spikes, labels = spikes.to(self.device), labels.to(self.device) - idx = (torch.round(labels/(model_num+1))) / self.filter # Set output index for spike forcing + idx = torch.round((labels - idx_scale) / self.filter) # Set output index for spike forcing # Pass through previous layers if they exist if prev_layers: with torch.no_grad(): diff --git a/networks/quantized/VPRTempoQuant.py b/networks/quantized/VPRTempoQuant.py index 53194cd..22cb13e 100644 --- a/networks/quantized/VPRTempoQuant.py +++ b/networks/quantized/VPRTempoQuant.py @@ -50,7 +50,7 @@ #from main import parse_network class VPRTempoQuant(nn.Module): - def __init__(self, args, dims): + def __init__(self, dims, args=None, logger=None): super(VPRTempoQuant, self).__init__() # Set the arguments @@ -62,7 +62,8 @@ def __init__(self, args, dims): self.dataset_file = os.path.join('./dataset', self.dataset + '.csv') # Set the model logger and return the device - self.device = model_logger_quant(self) + self.logger = logger + self.device = "cpu" # Add quantization stubs for Quantization Aware Training (QAT) self.quant = QuantStub() @@ -73,7 +74,7 @@ def __init__(self, args, dims): self.layer_counter = 0 # Define layer architecture - self.input = int(self.dims[0]*self.dims[1]) + self.input = int(dims[0]*dims[1]) self.feature = int(self.input * 2) self.output = int(args.num_places / args.num_modules) @@ -112,7 +113,7 @@ def add_layer(self, name, **kwargs): self.layer_dict[name] = self.layer_counter self.layer_counter += 1 - def evaluate(self, model, test_loader): + def evaluate(self, models, test_loader, layers=None): """ Run the inferencing model and calculate the accuracy. @@ -120,16 +121,18 @@ def evaluate(self, model, test_loader): :param layers: Layers to pass data through """ # Determine the Hardtahn max value - maxSpike = (1//model.quant.scale).item() + maxSpike = (1//models[0].quant.scale).item() # Define the sequential inference model - self.inference = nn.Sequential( - self.feature_layer.w, - nn.Hardtanh(0, maxSpike), - nn.ReLU(), - self.output_layer.w, - nn.Hardtanh(0, maxSpike), - nn.ReLU() - ) + self.inferences = [] + for model in models: + self.inferences.append(nn.Sequential( + model.feature_layer.w, + nn.Hardtanh(0, maxSpike), + nn.ReLU(), + model.output_layer.w, + nn.Hardtanh(0, maxSpike), + nn.ReLU() + )) # Initialize the tqdm progress bar pbar = tqdm(total=self.num_places, desc="Running the test network", @@ -164,7 +167,7 @@ def evaluate(self, model, test_loader): table = PrettyTable() table.field_names = ["N", "1", "5", "10", "15", "20", "25"] table.add_row(["Recall", R[0], R[1], R[2], R[3], R[4], R[5]]) - model.logger.info(table) + print(table) def forward(self, spikes): """ @@ -176,19 +179,30 @@ def forward(self, spikes): Returns: - Tensor: Output after processing. """ - spikes = self.quant(spikes) - spikes = self.inference(spikes) - spikes = self.dequant(spikes) - + in_spikes = spikes.detach().clone() + outputs = [] # List to collect output tensors + + for inference in self.inferences: + out_spikes = inference(in_spikes) + outputs.append(out_spikes) # Append the output tensor to the list + + # Concatenate along the desired dimension + concatenated_output = torch.cat(outputs, dim=1) + spikes = self.dequant(concatenated_output) + return spikes - def load_model(self, model_path): + def load_model(self, models, model_path): """ Load pre-trained model and set the state dictionary keys. """ - self.load_state_dict(torch.load(model_path, map_location=self.device), - strict=False) + combined_state_dict = torch.load(model_path, map_location=self.device) + + for i, model in enumerate(models): # models_classes is a list of model classes + + model.load_state_dict(combined_state_dict[f'model_{i}']) + model.eval() # Set the model to inference mode def check_pretrained_model(model_name): """ @@ -201,7 +215,7 @@ def check_pretrained_model(model_name): pretrain = 'y' return pretrain -def run_inference_quant(model, model_name, qconfig): +def run_inference_quant(models, model_name, qconfig): """ Run inference on a pre-trained model. @@ -210,31 +224,23 @@ def run_inference_quant(model, model_name, qconfig): :param qconfig: Quantization configuration """ # Initialize the image transforms and datasets - image_transform = ProcessImage(model.dims, model.patches) - test_dataset = CustomImageDataset(annotations_file=model.dataset_file, - base_dir=model.data_dir, - img_dirs=model.query_dir, - transform=image_transform, - skip=model.filter, - max_samples=model.num_places) + image_transform = ProcessImage(models[0].dims, models[0].patches) + test_dataset = CustomImageDataset(annotations_file=models[0].dataset_file, + base_dir=models[0].data_dir, + img_dirs=models[0].query_dir, + transform=image_transform, + skip=models[0].filter, + max_samples=models[0].num_places) # Initialize the data loader test_loader = DataLoader(test_dataset, batch_size=1, shuffle=False, num_workers=8, persistent_workers=True) - # Set the model to evaluation mode and set configuration - model.eval() - model.qconfig = qconfig - - # Apply quantization configurations to all layers in layer_dict - for layer_name, _ in model.layer_dict.items(): - getattr(model, layer_name).qconfig = qconfig - # Prepare and convert the model to a quantized model - model = quantization.prepare(model, inplace=False) - model = quantization.convert(model, inplace=False) + # Load the model - model.load_model(os.path.join('./models', model_name)) + models[0].load_model(models, os.path.join('./models', model_name)) # Use evaluate method for inference accuracy - model.evaluate(model, test_loader) \ No newline at end of file + with torch.no_grad(): + models[0].evaluate(models, test_loader) \ No newline at end of file diff --git a/networks/quantized/VPRTempoQuantTrain.py b/networks/quantized/VPRTempoQuantTrain.py index 9ee3f87..c99af76 100644 --- a/networks/quantized/VPRTempoQuantTrain.py +++ b/networks/quantized/VPRTempoQuantTrain.py @@ -37,15 +37,15 @@ import numpy as np import torch.nn as nn import torch.quantization as quantization +import torchvision.transforms as transforms -from loggers import model_logger_quant from dataset import CustomImageDataset, ProcessImage from torch.utils.data import DataLoader from torch.ao.quantization import QuantStub, DeQuantStub from tqdm import tqdm class VPRTempoQuantTrain(nn.Module): - def __init__(self, args,dims): + def __init__(self, args, dims, logger): super(VPRTempoQuantTrain, self).__init__() # Set the arguments @@ -53,8 +53,12 @@ def __init__(self, args,dims): for arg in vars(args): setattr(self, arg, getattr(args, arg)) setattr(self, 'dims', dims) - # Configure the network - self.device = model_logger_quant(self) + + # Only CPU available for quantization + self.device = "cpu" + + # Set the logger + self.logger = logger # Set the dataset file self.dataset_file = os.path.join('./dataset', self.dataset + '.csv') @@ -68,7 +72,7 @@ def __init__(self, args,dims): self.layer_counter = 0 # Define layer architecture - self.input = int(self.dims[0]*self.dims[1]) + self.input = int(dims[0]*dims[1]) self.feature = int(self.input * 2) self.output = int(args.num_places / args.num_modules) @@ -129,7 +133,7 @@ def _anneal_learning_rate(self, layer, mod, itp, stdp): return layer - def train_model(self, train_loader, layer, prev_layers=None): + def train_model(self, train_loader, layer, model, model_num, prev_layers=None): """ Train a layer of the network model. @@ -147,12 +151,14 @@ def train_model(self, train_loader, layer, prev_layers=None): init_itp = layer.eta_ip.detach() init_stdp = layer.eta_stdp.detach() mod = 0 # Used to determine the learning rate annealment, resets at each epoch + # idx scale factor for different modules + idx_scale = (self.max_module*self.filter)*model_num # Run training for the specified number of epochs for epoch in range(self.epoch): # Run training for the specified number of timesteps for spikes, labels in train_loader: spikes, labels = spikes.to(self.device), labels.to(self.device) - idx = labels / self.filter # Set output index for spike forcing + idx = torch.round((labels - idx_scale) / self.filter) # Set output index for spike forcing # Pass through previous layers if they exist if prev_layers: with torch.no_grad(): @@ -195,11 +201,15 @@ def forward(self, spikes, layer): return spikes - def save_model(self, model_out): + def save_model(self, models, model_out): """ Save the trained model to models output folder. """ - torch.save(self.state_dict(), model_out) + state_dicts = {} + for i, model in enumerate(models): # Assuming models_list is your list of models + state_dicts[f'model_{i}'] = model.state_dict() + + torch.save(state_dicts, model_out) def generate_model_name_quant(model): """ @@ -222,7 +232,7 @@ def check_pretrained_model(model_name): return retrain == 'n' return False -def train_new_model_quant(model, model_name, qconfig): +def train_new_model_quant(models, model_name, qconfig): """ Train a new model. @@ -231,42 +241,47 @@ def train_new_model_quant(model, model_name, qconfig): :param qconfig: Quantization configuration """ # Initialize the image transforms and datasets - image_transform = ProcessImage(model.dims, model.patches) - train_dataset = CustomImageDataset(annotations_file=model.dataset_file, - base_dir=model.data_dir, - img_dirs=model.database_dirs, - transform=image_transform, - skip=model.filter, - max_samples=model.num_places, - test=False) - # Initialize the data loader - train_loader = DataLoader(train_dataset, - batch_size=1, - shuffle=True, - num_workers=8, - persistent_workers=True) - # Set the model to training mode and move to device - model.train() - model.to('cpu') - model.qconfig = qconfig + image_transform = transforms.Compose([ + ProcessImage(models[0].dims, models[0].patches) + ]) + # Automatically generate user_input_ranges + user_input_ranges = [] + start_idx = 0 - # Apply quantization configurations to the model - model = quantization.prepare_qat(model, inplace=False) + for _ in range(models[0].num_modules): + range_temp = [start_idx, start_idx+((models[0].max_module-1)*models[0].filter)] + user_input_ranges.append(range_temp) + start_idx = range_temp[1] + models[0].filter # Keep track of trained layers to pass data through them - trained_layers = [] - # Training each layer - for layer_name, _ in sorted(model.layer_dict.items(), key=lambda item: item[1]): - print(f"Training layer: {layer_name}") - # Retrieve the layer object - layer = getattr(model, layer_name) - # Train the layer - model.train_model(train_loader, layer, prev_layers=trained_layers) - # After training the current layer, add it to the list of trained layers - trained_layers.append(layer_name) - # Convert the model to a quantized model - model = quantization.convert(model, inplace=False) - model.eval() + trained_models = [] + for i, model in enumerate(models): + trained_layers = [] + img_range=user_input_ranges[i] + train_dataset = CustomImageDataset(annotations_file=models[0].dataset_file, + base_dir=models[0].data_dir, + img_dirs=models[0].database_dirs, + transform=image_transform, + skip=models[0].filter, + test=False, + img_range=img_range) + # Initialize the data loader + train_loader = DataLoader(train_dataset, + batch_size=1, + shuffle=True, + num_workers=8, + persistent_workers=True) + model = quantization.prepare_qat(model, inplace=False) + for layer_name, _ in sorted(models[0].layer_dict.items(), key=lambda item: item[1]): + print(f"Training layer: {layer_name}") + layer = (getattr(model, layer_name)) + + # Train the layers + model.train_model(train_loader, layer, model, i, prev_layers=trained_layers) + trained_layers.append(layer_name) + trained_models.append(quantization.convert(model, inplace=False)) + # After training the current layer, add it to the list of trained layer + # Save the model - model.save_model(os.path.join('./models', model_name)) \ No newline at end of file + model.save_model(trained_models,os.path.join('./models', model_name)) \ No newline at end of file diff --git a/output/.gitkeep b/output/.gitkeep deleted file mode 100644 index e69de29..0000000 diff --git a/src/loggers.py b/src/loggers.py index 6401e91..eace9ef 100644 --- a/src/loggers.py +++ b/src/loggers.py @@ -48,50 +48,43 @@ def model_logger(): logger.info('Current device is: CPU') logger.info('') -def model_logger_quant(model): +def model_logger_quant(): """ - Configure the model logger + Configure the logger """ - if os.path.isdir('../output'): - now = datetime.now() - model.output_folder = '../output/' + now.strftime("%d%m%y-%H-%M-%S") - else: - now = datetime.now() - model.output_folder = './output/' + now.strftime("%d%m%y-%H-%M-%S") + + now = datetime.now() + output_folder = './output/' + now.strftime("%d%m%y-%H-%M-%S") - os.mkdir(model.output_folder) + os.mkdir(output_folder) # Create the logger - model.logger = logging.getLogger("VPRTempo") - if (model.logger.hasHandlers()): - model.logger.handlers.clear() + logger = logging.getLogger("VPRTempo") + if (logger.hasHandlers()): + logger.handlers.clear() # Set the logger level - model.logger.setLevel(logging.DEBUG) - logging.basicConfig(filename=model.output_folder + "/logfile.log", + logger.setLevel(logging.DEBUG) + logging.basicConfig(filename=output_folder + "/logfile.log", filemode="a+", format="%(asctime)-15s %(levelname)-8s %(message)s") # Add the logger to the console (if specified) - model.logger.addHandler(logging.StreamHandler()) - - device = "cpu" + logger.addHandler(logging.StreamHandler()) - model.logger.info('') - - model.logger.info('██╗ ██╗██████╗ ██████╗ ████████╗███████╗███╗ ███╗██████╗ ██████╗ ██████╗ ██╗ ██╗ █████╗ ███╗ ██╗████████╗') - model.logger.info('██║ ██║██╔══██╗██╔══██╗╚══██╔══╝██╔════╝████╗ ████║██╔══██╗██╔═══██╗ ██╔═══██╗██║ ██║██╔══██╗████╗ ██║╚══██╔══╝') - model.logger.info('██║ ██║██████╔╝██████╔╝ ██║ █████╗ ██╔████╔██║██████╔╝██║ ██║█████╗██║ ██║██║ ██║███████║██╔██╗ ██║ ██║') - model.logger.info('╚██╗ ██╔╝██╔═══╝ ██╔══██╗ ██║ ██╔══╝ ██║╚██╔╝██║██╔═══╝ ██║ ██║╚════╝██║▄▄ ██║██║ ██║██╔══██║██║╚██╗██║ ██║') - model.logger.info(' ╚████╔╝ ██║ ██║ ██║ ██║ ███████╗██║ ╚═╝ ██║██║ ╚██████╔╝ ╚██████╔╝╚██████╔╝██║ ██║██║ ╚████║ ██║') - model.logger.info(' ╚═══╝ ╚═╝ ╚═╝ ╚═╝ ╚═╝ ╚══════╝╚═╝ ╚═╝╚═╝ ╚═════╝ ╚══▀▀═╝ ╚═════╝ ╚═╝ ╚═╝╚═╝ ╚═══╝ ╚═╝') - model.logger.info('-----------------------------------------------------------------------') - model.logger.info('Temporally Encoded Spiking Neural Network for Visual Place Recognition v1.1.0') - model.logger.info('Queensland University of Technology, Centre for Robotics') - model.logger.info('') - model.logger.info('© 2023 Adam D Hines, Peter G Stratton, Michael Milford, Tobias Fischer') - model.logger.info('MIT license - https://github.com/QVPR/VPRTempo') - model.logger.info('\\\\\\\\\\\\\\\\\\\\\\\\') - model.logger.info('') - model.logger.info('Quantization enabled') - model.logger.info('Current device is: CPU') - model.logger.info('') + logger.info('') - return device \ No newline at end of file + logger.info('██╗ ██╗██████╗ ██████╗ ████████╗███████╗███╗ ███╗██████╗ ██████╗ ██████╗ ██╗ ██╗ █████╗ ███╗ ██╗████████╗') + logger.info('██║ ██║██╔══██╗██╔══██╗╚══██╔══╝██╔════╝████╗ ████║██╔══██╗██╔═══██╗ ██╔═══██╗██║ ██║██╔══██╗████╗ ██║╚══██╔══╝') + logger.info('██║ ██║██████╔╝██████╔╝ ██║ █████╗ ██╔████╔██║██████╔╝██║ ██║█████╗██║ ██║██║ ██║███████║██╔██╗ ██║ ██║') + logger.info('╚██╗ ██╔╝██╔═══╝ ██╔══██╗ ██║ ██╔══╝ ██║╚██╔╝██║██╔═══╝ ██║ ██║╚════╝██║▄▄ ██║██║ ██║██╔══██║██║╚██╗██║ ██║') + logger.info(' ╚████╔╝ ██║ ██║ ██║ ██║ ███████╗██║ ╚═╝ ██║██║ ╚██████╔╝ ╚██████╔╝╚██████╔╝██║ ██║██║ ╚████║ ██║') + logger.info(' ╚═══╝ ╚═╝ ╚═╝ ╚═╝ ╚═╝ ╚══════╝╚═╝ ╚═╝╚═╝ ╚═════╝ ╚══▀▀═╝ ╚═════╝ ╚═╝ ╚═╝╚═╝ ╚═══╝ ╚═╝') + logger.info('-----------------------------------------------------------------------') + logger.info('Temporally Encoded Spiking Neural Network for Visual Place Recognition v1.1.0') + logger.info('Queensland University of Technology, Centre for Robotics') + logger.info('') + logger.info('© 2023 Adam D Hines, Peter G Stratton, Michael Milford, Tobias Fischer') + logger.info('MIT license - https://github.com/QVPR/VPRTempo') + logger.info('\\\\\\\\\\\\\\\\\\\\\\\\') + logger.info('') + logger.info('Quantization enabled') + logger.info('Current device is: CPU') + logger.info('') From c8e32d839b03c516d3333c0b18626f953f9ed662 Mon Sep 17 00:00:00 2001 From: Adam Hines Date: Fri, 1 Dec 2023 13:57:34 +1000 Subject: [PATCH 66/69] Update README.md --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index 3a4b5ab..37ee3d8 100644 --- a/README.md +++ b/README.md @@ -4,7 +4,7 @@ [![stars](https://img.shields.io/github/stars/QVPR/VPRTempo.svg?style=flat-square)](https://github.com/QVPR/VPRTempo/stargazers) [![QUT Centre for Robotics](https://img.shields.io/badge/collection-QUT%20Robotics-%23043d71?style=flat-square)](https://qcr.ai) ![GitHub repo size](https://img.shields.io/github/repo-size/QVPR/VPRTempo.svg?style=flat-square) -[![PyPI downloads](https://img.shields.io/pypi/dw/VPRTempo.svg)](https://pypistats.org/packages/VPRTempo) +[![PyPI downloads](https://img.shields.io/pypi/dw/VPRTempo.svg)](https://pypistats.org/packages/vprtempo) This repository contains code for VPRTempo, a spiking neural network that uses temporally encoding to perform visual place recognition tasks. The network is based off of [BLiTNet](https://arxiv.org/pdf/2208.01204.pdf) and adapted to the [VPRSNN](https://github.com/QVPR/VPRSNN) framework. From edbc96ca3706b1638abf9a42a4d8d71e577e81f1 Mon Sep 17 00:00:00 2001 From: Adam Hines Date: Fri, 1 Dec 2023 14:07:02 +1000 Subject: [PATCH 67/69] Readd outputs folder --- output/.gitkeep | 0 1 file changed, 0 insertions(+), 0 deletions(-) create mode 100644 output/.gitkeep diff --git a/output/.gitkeep b/output/.gitkeep new file mode 100644 index 0000000..e69de29 From 0d3b24776239aa4f8c0015603646df62ad8565a7 Mon Sep 17 00:00:00 2001 From: Adam Hines Date: Fri, 1 Dec 2023 16:17:10 +1000 Subject: [PATCH 68/69] Completed tutorials on using the network --- networks/base/VPRTempo.py | 4 +- networks/base/VPRTempoTrain.py | 8 +- networks/quantized/VPRTempoQuant.py | 3 +- networks/quantized/VPRTempoQuantTrain.py | 8 +- tutorials/1_BasicDemo.ipynb | 2 +- tutorials/2_Training.ipynb | 199 ++++++++++++++++++++++ tutorials/3_Modules.ipynb | 204 +++++++++++++++++++++++ 7 files changed, 421 insertions(+), 7 deletions(-) create mode 100644 tutorials/2_Training.ipynb create mode 100644 tutorials/3_Modules.ipynb diff --git a/networks/base/VPRTempo.py b/networks/base/VPRTempo.py index c201080..18f4d17 100644 --- a/networks/base/VPRTempo.py +++ b/networks/base/VPRTempo.py @@ -204,12 +204,14 @@ def run_inference(models, model_name): """ # Initialize the image transforms and datasets image_transform = ProcessImage(models[0].dims, models[0].patches) + max_samples=models[0].num_places + test_dataset = CustomImageDataset(annotations_file=models[0].dataset_file, base_dir=models[0].data_dir, img_dirs=models[0].query_dir, transform=image_transform, skip=models[0].filter, - max_samples=models[0].num_places) + max_samples=max_samples) # Initialize the data loader test_loader = DataLoader(test_dataset, batch_size=1, diff --git a/networks/base/VPRTempoTrain.py b/networks/base/VPRTempoTrain.py index 4170407..077ccf3 100644 --- a/networks/base/VPRTempoTrain.py +++ b/networks/base/VPRTempoTrain.py @@ -257,7 +257,10 @@ def train_new_model(models, model_name): range_temp = [start_idx, start_idx+((models[0].max_module-1)*models[0].filter)] user_input_ranges.append(range_temp) start_idx = range_temp[1] + models[0].filter - + if models[0].num_places < models[0].max_module: + max_samples=models[0].num_places + else: + max_samples = models[0].max_module # Keep track of trained layers to pass data through them trained_layers = [] # Training each layer @@ -274,7 +277,8 @@ def train_new_model(models, model_name): transform=image_transform, skip=models[0].filter, test=False, - img_range=img_range) + img_range=img_range, + max_samples=max_samples) # Initialize the data loader train_loader = DataLoader(train_dataset, batch_size=1, diff --git a/networks/quantized/VPRTempoQuant.py b/networks/quantized/VPRTempoQuant.py index 22cb13e..f616289 100644 --- a/networks/quantized/VPRTempoQuant.py +++ b/networks/quantized/VPRTempoQuant.py @@ -223,6 +223,7 @@ def run_inference_quant(models, model_name, qconfig): :param model_name: Name of the model to load :param qconfig: Quantization configuration """ + max_samples = models[0].num_places # Initialize the image transforms and datasets image_transform = ProcessImage(models[0].dims, models[0].patches) test_dataset = CustomImageDataset(annotations_file=models[0].dataset_file, @@ -230,7 +231,7 @@ def run_inference_quant(models, model_name, qconfig): img_dirs=models[0].query_dir, transform=image_transform, skip=models[0].filter, - max_samples=models[0].num_places) + max_samples=max_samples) # Initialize the data loader test_loader = DataLoader(test_dataset, batch_size=1, diff --git a/networks/quantized/VPRTempoQuantTrain.py b/networks/quantized/VPRTempoQuantTrain.py index c99af76..6c2448a 100644 --- a/networks/quantized/VPRTempoQuantTrain.py +++ b/networks/quantized/VPRTempoQuantTrain.py @@ -252,7 +252,10 @@ def train_new_model_quant(models, model_name, qconfig): range_temp = [start_idx, start_idx+((models[0].max_module-1)*models[0].filter)] user_input_ranges.append(range_temp) start_idx = range_temp[1] + models[0].filter - + if models[0].num_places < models[0].max_module: + max_samples=models[0].num_places + else: + max_samples = models[0].max_module # Keep track of trained layers to pass data through them # Training each layer trained_models = [] @@ -265,7 +268,8 @@ def train_new_model_quant(models, model_name, qconfig): transform=image_transform, skip=models[0].filter, test=False, - img_range=img_range) + img_range=img_range, + max_samples=max_samples) # Initialize the data loader train_loader = DataLoader(train_dataset, batch_size=1, diff --git a/tutorials/1_BasicDemo.ipynb b/tutorials/1_BasicDemo.ipynb index d18bbf0..0aa5780 100644 --- a/tutorials/1_BasicDemo.ipynb +++ b/tutorials/1_BasicDemo.ipynb @@ -594,7 +594,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.0" + "version": "3.11.4" } }, "nbformat": 4, diff --git a/tutorials/2_Training.ipynb b/tutorials/2_Training.ipynb new file mode 100644 index 0000000..0479320 --- /dev/null +++ b/tutorials/2_Training.ipynb @@ -0,0 +1,199 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "2a09c9e8-68f6-4edd-a8c1-1cc7f6b8bb00", + "metadata": {}, + "source": [ + "## Training a new VPRTempo & VPRTempoQuant network\n", + "\n", + "### By Adam D Hines (https://research.qut.edu.au/qcr/people/adam-hines/)\n", + "\n", + "VPRTempo is based on the following paper, if you use or find this code helpful for your research please consider citing the source:\n", + " \n", + "[Adam D Hines, Peter G Stratton, Michael Milford, & Tobias Fischer. \"VPRTempo: A Fast Temporally Encoded Spiking Neural Network for Visual Place Recognition. arXiv September 2023](https://arxiv.org/abs/2309.10225)\n", + "\n", + "### Introduction\n", + "\n", + "In this tutorial, we will go through how to train your own model for both the base and quantized version of VPRTempo. \n", + "\n", + "Before starting, make sure you have [installed the dependencies](https://github.com/AdamDHines/VPRTempo-quant#installation-and-setup) and/or activated the conda environment. You will also need the [Nordland](https://github.com/AdamDHines/VPRTempo-quant#nordland) dataset before proceeding, as this tutorial will cover training the network using this as an example.\n", + "\n", + "### Training new models for VPRTempo and VPRTempoQuant\n", + "\n", + "Let's start by training the base model with the default settings (if you have pre-trained a model, it will get removed for the purpose of the tutorial)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "a757316e-4aa8-41aa-b03f-1ce4489d3705", + "metadata": {}, + "outputs": [], + "source": [ + "# Change the working directory to the main folder from tutorials\n", + "import os\n", + "os.chdir('../')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "eff21590-9d00-4d8f-b860-ca1c0c849187", + "metadata": {}, + "outputs": [], + "source": [ + "# Train the base model with the default settings\n", + "# If the pre-trained model already exists, we will remove it for the tutorial\n", + "file_path = './models/VPRTempo313662725001.pth'\n", + "\n", + "if os.path.exists(file_path):\n", + " os.remove(file_path)\n", + " print(\"The file has been deleted.\")\n", + "\n", + "# Run the training paradigm\n", + "!python main.py --train_new_model" + ] + }, + { + "cell_type": "markdown", + "id": "285ca349-6295-4f04-bbe1-360d43111f82", + "metadata": {}, + "source": [ + "Now we'll run the inferencing model to check and make sure our model trained ok." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "1037e4ee-0361-4aa1-bfba-f979ffa51b88", + "metadata": {}, + "outputs": [], + "source": [ + "# Run the base inferencing network\n", + "!python main.py" + ] + }, + { + "cell_type": "markdown", + "id": "cbf8cd37-1af8-420f-ad76-481157a2920e", + "metadata": {}, + "source": [ + "Great! Now let's have a look at changing a few of the default settings and training different kinds of networks. The default settings train 500 places, so if we want to only look at a smaller number of places we can parse the `--num_places` argument and specify how many places to learn." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "81daf9c8-ea06-4e69-82a5-9179a7c38ea1", + "metadata": {}, + "outputs": [], + "source": [ + "# Train a new model with 250 places\n", + "!python main.py --num_places 250 --train_new_model" + ] + }, + { + "cell_type": "markdown", + "id": "a46cde0d-6343-48a4-87f8-aa5c9f56b231", + "metadata": {}, + "source": [ + "And we can now inference using this smaller model." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "559e2391-d0bc-4d58-bb35-8cf69ae08b5e", + "metadata": {}, + "outputs": [], + "source": [ + "# Run the inference for a model with 250 places\n", + "!python main.py --num_places 250" + ] + }, + { + "cell_type": "markdown", + "id": "aa835469-90cc-4f09-b7b4-688465321b18", + "metadata": {}, + "source": [ + "Arguments for the base network work the same for VPRTempoQuant, we just need to also parse the `--quantize` argument. Let's now train another 250 place network, but also change a couple of other parameters. The default VPRTempo settings is a little slow to train on CPU, so let's reduce the image size from 56x56 to 28x28 and change the number of patches for patch normalization." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "eee89998-d334-4cdf-ac5b-88aed367ceab", + "metadata": {}, + "outputs": [], + "source": [ + "# Train a 250 place network with VPRTempoQuant\n", + "!python main.py --quantize --num_places 250 --patches 7 --dims 28,28 --train_new_model" + ] + }, + { + "cell_type": "markdown", + "id": "42d5f3ce-acbb-435d-b197-f7e5841dcd70", + "metadata": {}, + "source": [ + "And now we can inference this model!" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "c6a9e948-5349-4714-b7d0-03ce694409b8", + "metadata": {}, + "outputs": [], + "source": [ + "# Run inference on newly trained VPRTempoQuant model\n", + "!python main.py --quantize --num_places 250 --patches 7 --dims 28,28" + ] + }, + { + "cell_type": "markdown", + "id": "2648e38e-a0d7-481a-9009-3c4cf3e3fff0", + "metadata": {}, + "source": [ + "### List of arguments you can parse\n", + "\n", + "The full list of arguments that can parsed to VPRTempo can be found in the `parse_network` function of `main.py`. Hyperparameters for VPRTempo are hardcoded into the layers and are not recommended to be changed since they generalize fairly well across multiple different datasets. \n", + "\n", + "### Conclusions\n", + "\n", + "This tutorial provided a simple overview of how you can train your own models for both VPRTempo and VPRTempoQuant, and changing a few of the network parameters.\n", + "\n", + "If you would like to go more in-depth, checkout some of the [other tutorials](https://github.com/AdamDHines/VPRTempo-quant/tree/main/tutorials) where we cover how to define your own custom dataset and work with expert modules." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "a2bdc6d1-4690-4b48-a75f-f9d716cb7154", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.4" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/tutorials/3_Modules.ipynb b/tutorials/3_Modules.ipynb new file mode 100644 index 0000000..bef58f5 --- /dev/null +++ b/tutorials/3_Modules.ipynb @@ -0,0 +1,204 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "7b7b7556-f8df-4e50-801b-7e215e46a415", + "metadata": {}, + "source": [ + "## Using modules with VPRTempo and VPRTempoQuant\n", + "\n", + "### By Adam D Hines (https://research.qut.edu.au/qcr/people/adam-hines/)\n", + "\n", + "VPRTempo is based on the following paper, if you use or find this code helpful for your research please consider citing the source:\n", + " \n", + "[Adam D Hines, Peter G Stratton, Michael Milford, & Tobias Fischer. \"VPRTempo: A Fast Temporally Encoded Spiking Neural Network for Visual Place Recognition. arXiv September 2023](https://arxiv.org/abs/2309.10225)\n", + "\n", + "### Introduction\n", + "\n", + "In this tutorial, we will go through how to use modules with VPRTempo. Modules break up the training data into multiple networks, which has been shown to [improve the overall performance](https://towardsdatascience.com/machine-learning-with-expert-models-a-primer-6c74585f223f) and accuracy of larger models.\n", + "\n", + "Before starting, make sure you have [installed the dependencies](https://github.com/AdamDHines/VPRTempo-quant#installation-and-setup) and/or activated the conda environment. You will also need the [Nordland](https://github.com/AdamDHines/VPRTempo-quant#nordland) dataset before proceeding, as this tutorial will cover training the network using this as an example.\n", + "\n", + "### Comparing results using expert modules for VPRTempo\n", + "\n", + "Let's start by training the base model with 1000 places, which is 500 more than the default settings. We will need to parse the `--train_new_model`, `--num_places`, as well as another argument we haven't seen yet `--max_module`. \n", + "\n", + "`--max_module` tells the network how many places each expert module should learn, which by default is set to `500`. So if we're training a new, singular network with 1000 places we need to increase `max_module` to 1000." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "9e0d1a7b-8788-436a-8dd5-27f60077c524", + "metadata": {}, + "outputs": [], + "source": [ + "# Change the working directory to the main folder from tutorials\n", + "import os\n", + "os.chdir('../')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "c0981001-fa1c-49e0-bbe3-e5a628098eba", + "metadata": {}, + "outputs": [], + "source": [ + "# Train a single network with 1000 places\n", + "!python main.py --num_places 1000 --max_module 1000 --train_new_model" + ] + }, + { + "cell_type": "markdown", + "id": "e7d8287b-b47b-4f7e-9d1c-4b309746b284", + "metadata": {}, + "source": [ + "Now let's see how this performs." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "32435d47-e583-4768-86ed-2998ec78fdd6", + "metadata": {}, + "outputs": [], + "source": [ + "# Run the inferencing network on the singular 1000 place trained model\n", + "!python main.py --num_places 1000 --max_module 1000" + ] + }, + { + "cell_type": "markdown", + "id": "845764ee-1492-449c-9816-a45ccfe043a1", + "metadata": {}, + "source": [ + "Performance here is still pretty good, but let's see if we can improve it by splitting up the network into modules!\n", + "\n", + "Now that splitting up our 1000 place network into 2 networks, we can remove the `--max_module` argument because the default is set to 500. Instead what we will parse is `--num_modules` to tell the network to split things up into two models." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "d7cf368b-2f7f-4345-b882-7bf51622c0d6", + "metadata": {}, + "outputs": [], + "source": [ + "# Train a new 1000 place model with 2 modules\n", + "!python main.py --num_places 1000 --num_modules 2 --train_new_model" + ] + }, + { + "cell_type": "markdown", + "id": "84ce9e04-ff62-45ce-83b3-89e4623f0fd1", + "metadata": {}, + "source": [ + "Now let's see how it compares with the singular model." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "c6ec3ec7-cca7-45a0-906b-cc3e6d14b5f8", + "metadata": {}, + "outputs": [], + "source": [ + "# Run the network with 2 modules\n", + "!python main.py --num_places 1000 --num_modules 2" + ] + }, + { + "cell_type": "markdown", + "id": "8da07161-81e9-4773-90f1-e9d675e8c071", + "metadata": {}, + "source": [ + "A modest boost to performance, however you have to imagine how this scales to much larger networks - especially when considering training times. Because the output layer is one-hot encoded, you need to increase the number of output neurons with each place you want to learn. Splitting up networks has a key benefit for VPRTempo to reduce overall training times with little impact on inference speeds. \n", + "\n", + "(Optional) Run a single network for 2500 places or 5 expert modules for 500 places each (reduced dimensionality to speed things up)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "ffd18263-190c-47f4-a37f-130a040d7a67", + "metadata": {}, + "outputs": [], + "source": [ + "# Optional: run a 2500 place comparison for singular vs modular networks\n", + "# Train networks\n", + "!python main.py --num_places 2500 --max_module 2500 --dims 28,28 --patches 7 --train_new_model\n", + "!python main.py --num_places 2500 --num_modules 5 --dims 28,28 --patches 7 --train_new_model\n", + "# Run inference\n", + "!python main.py --num_places 2500 --max_module 2500 --dims 28,28 --patches 7\n", + "!python main.py --num_places 2500 --num_modules 5 --dims 28,28 --patches 7" + ] + }, + { + "cell_type": "markdown", + "id": "02edb3da-9d34-4709-950d-d202c5e902e7", + "metadata": {}, + "source": [ + "As in the other tutorials, parsing the `--quantize` argument will run exactly the same but for VPRTempoQuant. Let's do a quick comparison." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "2e520f0a-7b6f-4546-8169-14f20f2f9d18", + "metadata": {}, + "outputs": [], + "source": [ + "# Train networks\n", + "#!python main.py --num_places 1500 --max_module 1500 --dims 28,28 --patches 7 --train_new_model --quantize\n", + "#!python main.py --num_places 1500 --num_modules 3 --dims 28,28 --patches 7 --train_new_model --quantize\n", + "# Run inference\n", + "!python main.py --num_places 1500 --max_module 1500 --dims 28,28 --patches 7 --quantize\n", + "!python main.py --num_places 1500 --num_modules 3 --dims 28,28 --patches 7 --quantize" + ] + }, + { + "cell_type": "markdown", + "id": "58581b5c-70a8-4708-bda1-1ccca1edc70b", + "metadata": {}, + "source": [ + "Once again, we can see that whilst there's a modest boost to the accuracy result the clear improve is the training speed. Because each network is smaller, the opeations on CPU are a lot less computationally heavy when splitting the networks up.\n", + "\n", + "### Conclusions\n", + "\n", + "This tutorial provided a simple overview of how you can train network models using expert modules. \n", + "\n", + "If you would like to go more in-depth, checkout some of the [other tutorials](https://github.com/AdamDHines/VPRTempo-quant/tree/main/tutorials)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "0309b80b-05c2-4577-8ea0-2e45bf2d6aef", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.4" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} From bbe4350b3610bc205b788315efafd81fa36ac976 Mon Sep 17 00:00:00 2001 From: Adam Hines Date: Fri, 1 Dec 2023 16:20:47 +1000 Subject: [PATCH 69/69] Updated release notes --- setup.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/setup.py b/setup.py index 85cc2ab..1252a7d 100644 --- a/setup.py +++ b/setup.py @@ -22,7 +22,7 @@ # define the setup setup( name="VPRTempo", - version="0.2.0", + version="1.1.0", description='VPRTempo: A Fast Temporally Encoded Spiking Neural Network for Visual Place Recognition', long_description=long_description, long_description_content_type='text/markdown', @@ -36,7 +36,7 @@ # 3 - Alpha # 4 - Beta # 5 - Production/Stable - 'Development Status :: 4 - Beta', + 'Development Status :: 5 - Production/Stable', # Indicate who your project is intended for 'Intended Audience :: Developers',

QG5T4kfAkn$& z&3FDK&*&_LN*%J8oo3kJbMZ9yunBi-AWT~K2%z5vgK#se9CG*``IOYQ-)#A}!)53) zKKYDrQ^3Is8Gc2K;QA58I7VfUnaXFiVffHjsz>hNlnOSR=K5r`?dm>}-r{mz&)}}w|>t5ciL~TTWV@ouM@8zG|d^NpY+s=4r&o7DI z24++n?3s^D#joqd$2}wmXL0=oez6hJuZv388f~_nli`aT3`e`aoXJ%w)0)f*sg{rm z&*`THj3JFt&opHQciOnd%XZ!TX=dhj6;B;?y)s6FwQ=kT(QHW>Q(<3dIf>tX0a!}4 zgnzPCaVj_KFSM%uY*@H@>#Z>5ki%>3Ze%?^P1Evgj5!{g@uw-lFbM)M!ca70dQ?ol z>tr7sqfelOG3-A^9i>aA^NM43E1i$N@xlv!RtsI=c1X#(U^7aBRY6xZEJi@2Bgy3< z-Zb_HSA+C4144=milOx5`9d0!A!jC=(^$NEwq$-!lNxL0HL4O_OO=?5DVjnxCIyEW zQYi8)_4JkP68;PNVH5&G4pFUI(S70;>MBb#qOq`_E?tBE93!Z0$L?zq7A|;gdoln| zY1UgjkF7$o8V!XG#Du`*bxw(a7~sus#Dbu@lJr%s2`X@Shd`dv(!?T(&Wlqdu`hZP zK!^dv@lhFeDZ%DOASDk@KV0Y%a)^LD##tVklvzMn53}J6jUh+Ib(<|TDSN1gbXcCQ z-n!wRlaBv*kpJBevlWbTHge_v(-fj<75`y2Vw3-m@_1|1eskRFT>`o=OGbma0plf> zLdFuizijyEwP;~D>69mfhYeEG&g?9-@~Z}+kjZ^N{{zpB?W;^8jSJR%@N)QhfV}|P z@Q-`?Qteihr38daJg0~Lil5Zj6Eg&iB;EELSEAx`{z; zWugaha(=NL?hA9S$+`Wq2*cHFGtb+$%*&c5*a4--H$Tgm_GGJ(>XelN)pV zEBc=th{}Ze#YMK{bo^js&mQzSCkz*N1J)?>ZcWkt^u%4!g~4iTP@sqsB9dh}!ar+! z0ooHThabsK^|(af6dQ?*EbYFMcuS|NlS!m}Ap4)l4(h zbkfXpno^nRqzH4Y={y~zh;33SLJ?wHW@^fmWI9L)oe&#a2{})x6k#H#b=V@rX1B<0 zEc!ks*6#1}-rdjZa{2uOTrSh|@p#-1x7+o$N0UT~{%*dQ5~P8aMm+#<##k%OHCxd$ zY6n>Hy%(bv%Ed}c4=z;jL^nhIJl8W+5F6x(;1tYBf%-j^$uT^!H!dG8inhFn*c>Se z-D7~XXq2nMKtr~^MhwiE3r52Fb*@6-CEbeuOP$Y0RvTkd{)kT|~JP!U(ZRA3D97g}z zn|3YfHv!>Thks0mnskvuC4TW>orvZCS3#ftSU@K++!C7LmJ}Wk^W;xGJB!rjo_h|z z_|xR(P*E&CJU1`G`P2RPAverqa|>cV%XAsL<8?3Y?=Ev%-W#0x8V$BPNeo;hJc`x! z(-}M5{2B#1!i}(_y#M<&B1R@0^xq4+#Xh(h_y8*TIHiewZB%ZH0H1FXus8l`OUGt? z%A7)iqhs&BSDQY3(&dp7FBR^p(X55ct#Sf?DkN2n9eKC)G3r;&J0(Gt%L-78J;-=@ z&xwUJJ2Iio?maQ*!RhtJd4zN4{`h_Sbwtt|Obo-_VJRjY&p4}$DHM{QMGoYcX-sbPWHt)igMuz_iRdbGI4l-t8(-(J&CP%qh4*@) zKIUT>2C6V*>V6c*oB{dTn!I|BKl#<-=Ps>mu@r@`E)6DGhiA`NA_Mhn2@ufSnQg>%Y!sZa-tl0O9vAw4PEV%~JrV~>f9oYrC-thk!V0{J z7m#}-LaM}jVE0N}?tXY@QYQ_f?K2 z67BEv@zhuwSq%PPKYEkhZgdz1*i~X2uz_;uwbgba(>Q<2*XV~+$E-;VZq^4!k=(AU za>}L?)}97dh7P`kNy+oWr|5yyK-15Go3UHrPN&9qixs!ft=BZtYP$`0uaA9Ldz`vy zZl!pDu}TL|Gpr#L6hTZF)nEMj$@7rd>1foY6Q2V&XDoKqezN$Y(q!`z$8I)@{cQ7` zx+K}54h3n;%)~wgqQ7e!g|BEPDg;;BAD&bd&B(s_(`@k6_H5nb_@Nh?`S_+ORzgN< z`Y)V|J~#}QDnFq+QJ*-(JG`=L?@D@-O_wrHP}d`UGPS}MBt;F(qZ7BZJH;@iU9Nhu zB_(NHK_h7JYtSU9l1erQ=_r)xnbevt6Hm>$l%!yY|BRoeTM)Jon*~B&W*XM4Dll8+ zd<7o(9EIb}njwcC61J#GcKJ6-`GDa+TA^S|+mcZ6X2i=SJfr zmPP%T8CST)@Zl(*NH6W(YIYCJfe@A?l*-gVNXO_VXFMiY`<}H|V|MnPx;lsU@un^& z(vfLXH+10p6~SF2t9)=;W2<}_ot`kJ8a3dhHUwX*vd6bPOq%zx+9UbuKu*`RuAX9! z)4B4RxV)2iIbK(gcDlpJ0X{5d^va^#I+Tz|o`D7p7f-V;Il78O;~*Em7%~(rAlkNr z6FWvzo0?PpiYVmXnn$OEcKFPZOEz09i=`u{B!POhxjv~;XvB_i%Hhl=pt}ix_9no$ zv)SqKQCAJ9Qn!P1pA?XkJBlLC8CRl#_4)B*WOtmCGQv+jQVp?5sXNJYq*&O2-FZvY zEec0SA7$E=&ZjI;`(Pd;*Jy};L{Q**hI!(Sgm^nMJ7>Wuu??nfgcg0{38nj>&7{j2-&JC-PdgRe)Y!Vm3fkqcA4 z^!ip?sazP57S8b5?Y162_sN_L&tFp03~~?M(ZpIf`JtpmQ-bqF$CLMKmsmvB4>Jw= z4)ifXdVceC*{&@$(asr6A6og-g%yZuw^pyo+OT7z$N<{9sS$kZRff$vjg#7bTSt9Un2>^6WuRTdz)+^}QZbi&Va^dC=`iVNqP5b;zRB zfIMbINwwt7sI6wY6onjh1ArB$K$M}oQFgt-(_EYBNlvvwo-e!n7}@ZBsO5cKC4D;r!98roil_^ z&87J7U;4|bA!lo>0jO`tGFl0;a&Yohv|J2CEfEr=evLu`x7;w>z|08&cp<2fY$De>D2FGtr__tQ6l+ZlXY`Di;u&gI2W2)` zdn}*mcuQjpx)-qqs*T|e{bRhqvodaoiDh_!#8~YTT{4pXk*kNf|rx9 zUppG1G6@+{2`F=af2HA|ITIHO2{Q6x?>}rc9JIX$9u=I?aM1LPzkPgM!^`J?afVGE z@qcQ~CXb&BJbvbX1=IgId?1wg{3CWrbNuYnN;nSI7$3z5LWm65?p*sdt|F!F7>p5| zVfmWy&UL62k}3O$cLz~HC9i(;a}_AA?=-ddNEwne!yIf4A?@y9zmhJvVelgQx1U2! z7;n}K+)Y{`wDrCS8kz+CAr6t_H$M2bu#SQyZBYo9&#jpqft)>BXu-{5NmkWd*0YKP zBelg|xQCUY)iAFn!O75$&j{n1w0Bc_XQcOZMnQtUO~45d`(Y%H1o*t#*sL{Jh{?(H zwCw)j{rR8&`0(nFbvj(CgHK_=#FUWpXV>o@m{_F^32O!Vu61CvNQhHca27{k4Ho<0 z90CJJ9|~NDD!(Djg3DT8`@#N7&eE~BYNC%~6+zdnnGtNOdu#CeX4(q7E$hPM>mI>< zU0oc{PuoqlNI)QUY8|pBBTc*0n-HcqM0~u#jG%QrW-G_Dw%XE%=JuMUn!nMtVpdx3 z5cuQeJ`N|w=&DO8>@^)}pG6duRHMQl=0 zhY|LJ>?(^auGV8CKvNGcT27KdGFwqV@X>x`m%Da@mI~^4k-g6C^>kl{A2W7DEHI+0 zuDI+-;o!km&P2M2u|4b#%cbZ|d3^icq>Bfg>-l14+j^A(;pX=9#W(h1CKqM!fX* z8%{B1X7&bvqTxwj30)WZN?133_&9d#p_4+$9&R*WH=O3ff?^wVn*|AJ^HVurpN4CJ z3ahm8=t2lBg_%>tGnxWIfx2OWT7IKoYE60CRuh0L@zX)Qs1~0A^=YjZ_sW$*BZK+1 z!Ss7LHGz%GAhSrIYX^4PXw++!bHCWihr4Ioz+i3q&lj&NBq9X3XZiaCBz$Vom6|TP zUv2;cb%wEp&HNC0J`Jja5d}zq^o8?KFwc>%c4xfh=DBwdLVNXUHG|~&kXbEqzR|Tx zhIq_zP%k$~Zd&4WrTo|>EOI%IYYpnN#N>$K$;MTNG+o;~(q=Y4b%qjYWtbQRBq;-O zq7~R2SB95ek9J*SAY*JkF6-%=`1|_=7JTIoB zo3tDO(ASF2=iC@M?@kybcV9LY6ccl2)pOBnITy7G)ySCu@K=|kczsRT)IJ(ELd?UT zP#c#9ZZ(%Hy?!9p`3eMJLh6DSaHH%H01YG+$ zcMH(kjGUW5g$v2x6)2>|Swl|fx$0712mr#RsEWgGsL9>nCwD`*%BVU=?N z0!~F-OYJ_4P8EpaLmi9D?$rtlg=(44-qf;?y>=`KE|GOT7Q?7b#HUd9yX@%hNi4(^ z<(c13`0%>q4^N26?>XS%=d%CYp@iN2goB=!4iWkJ2kZs|56-xgS0epP$e6qtKVN`f zi8Fs*fQ}j6*Z$QUw<^9CXY;pRL&ZB*hY^^OWPAFe*0s&rZl7mUp&+Q(!>?tm?&fB9 zIs6qGV3i;#6Sq3N`KeAfsg1dQayAveQr!4hepyM6toLRYQ;q~U1T`mVm$lojO$UMEx=PNes_9g@MpuH$!}p#L05h(= zoXe+`D}1o$^~QAdOm`}6!dF1SLfT`JX!*?CXIl1)XRold-1#E9iG{kAS>6&T*cCZ8 zI6gs2`Z-}Fv}8}j-fQR2{jn4MAwBBAi>pVW;|RigU!LnYQiKzzJdH9|ciX*+DURX^ zh;%WP4f=af4m57CRa_r~XaQow_WD1EB<1W+8bXGJ1aZ;wy1LN^d+uy18qbV#lQ}<- zzv(okNbJOD2iTD_Sec^*oIfnGIbNu@sNy-F4g}Vp~TDZcG(59vZ6t)gB2D z_hZQgR+CP29BmK_hJh3^8)MeXIIQ8g%QLseABO4%ahqj0a^VnNtow~7a1r^IbaT%4 zfzV?a%yJlR*l8ibR5C!n4-KeNHQsZW=nGMe0z;5a;&C?))|%#f-9kY18g$MWy0-NC z=r{q@W?m3;fG>|3XRTZwA{Z)$sX9+YxDZd0VW!@NT3I@wCAf$&V zpt`m-W zWx;>f3(2sJfB4rj+EeoHtGQk{m$KmJ4~`c}XcVizjtj$@SEA_IZJf-2r249JEC~>_ zej%XcSF|Nu(z6I&hbyRZJ46Jt)_SwsgiO4tS1ps9biG@7c#?ot_O#H(D=a1Y#_c46 z12Qz;>xOz!(Xlm}SRLw-MyJyAemcL`vU+q;Y}uLZ@%_7q+OKBWBX3OVd**r5#9Q-Y zPR_VpS=lii3neu}ORn9AUsD6}@_WT|KE_R>h2 zod-8_k}D8*xF2ocmH>>aHSFHrdl}J{y%@L+ljWE?HN#W{H(ETwd5&Tp)co(dBhUry zoNS{x1RJ8^0;xo47-7+fA%D0!axp6yD6CGL?oc-)-OoEo^Av)|#90^9h?V&ng1^QHMT;PU@Zf~NvVkI4QxibNy*l0mDX zAc+~+TJ)Fn%gZCVSSh-+=`gY4p24w$pIJjM8+`R4KR57&Wd9`<(d^^9`@e@!vRGkq zZ~A9D$eB*4Mb?s9&Pl9Q$kMgJjId7sM&|azbL)e1<)8Oh1~dI;8s+LYuPhX2)Gv5@ zxRfCT0dTD85-7TSASmfg&H~1aq%3znQPN)?gS2~_g#ltg=eqrnYjo-av>Mt3FF;iq zot({Nbe}=jbV8+zc`y{Zl<_*f8lOSd(1ztg7TVnEgiq_f6}Z>np@O0O(Hk^Pq0eQ; z_1~8LF*dqo&z;jy?VcAbO$e;0_L-blAh%;VIw+@$*EkR&tLKUI+D;6f=Y)vf2*;XL zzVk(0GLwz{FoAxpCKvrVEds;;tBGOIVNhOS3>^O*Tds-1ogEKNv`H`_S;Kq%yzLK) zD8le0JwRm;&SXP1OOm}BZ3e)B^2IL<2Vp0-lTQQ<+A4C0a=L*jh~h$OrEQ1zFLyInt<$bPM=THd`O(!g zznVne=B3S)%41e;bJ#0e(Ae3+iKwE^zxJ(055+bdM6z11x=4^atFEaELvylL?#8x( z)GasLHr+%F+k{*=|1qy0P};T=_Wx1(yI;g*=NA;0R$GYh( z0Pxv{omB<*Mo`407a*E@aT{`v5UYF5J%M2tRz<@mrio zh)p+KPvW9?!%x9(ZHOmZUbx9<=}?vQ?;T|d{1ZR;`X{cC`u_VvFp0v{ptadVOKWnW z{OjCC?kDf++3mFKWi1TuJ*Y1MeX1`H!O?o83MXZSR(m5F_=j#~3qibl9E4ihB6pY% z`bO@%t}V$OIr|wWG#%S$@PtpKv72xvNKVRwYBuQG!xh>9miEV2f7od!ksCH?Lgw!! zDTs2_IWH?+aOkpdK(tyO*Wn758BBZDOb-mwNZ$5Zq)`iIo$h>is^kc&oP|p|BbR7T zVN&Y>(SNIW^d4*5H#+-*&%Ix;oF(V}m}95woKPCqJ~3{ay5nsjDf86)?CM>u3n~aR zRuazTjlF?$n|1d@M)9C zj-r5{6iR|tCl1*1mRZmj>AH!zLV_O-{S2e=aS+0Bq&-2KB9|t|Z^Ixs#9gyV9s9K( z-hoVO1|>oaqSzgam9m#Fzi)U(SRyAycPxeZYHeSHZvS0dq`;BG&m+Kx!2waeMsi0@;CeIf$VQQWt`^ut4S5F`RIk(f6Ghb_~nh@5R zDP11~6+o$_vr~(_tr>=wQZw_m3_hVs*Y4wpP?gWJI6v#W(>~w2^W^Wp_WuwJA);G; z+(pe?o3N$#+?u0_Y42J7zS75KtjN*|33;ih)HtI){F2=(&n!7-(qpT$-{?^`(PyZ5 zQ(v07UYT^4-W`tu=SsdyD5W8KlE}kyLC0Ax=qxv6IVF_x-cwLZ58oTc8 z?u{6PASyp1jz)ns^$%35;LkO+_15CJW&J=c@~%^7J$5}Lpec6~>|xBSd@!qEn)cv8 z55^&dL$n5!45F8oZTvRet8VCudgR{NPFgtJNaw*9PKq>L0mBEl`IR)WVg4+v6bD*J zINJ33$w;U)Q~ngZwUD~@ZeypZbHA!x*NLbDbYY2oiPwp1#uE=UK~u+$JqL1#Y)5W~ z-t=)OoR=UP7A%YTKob*oAy`%dHv*!a%m-(yDI9gPaQi1Dk&nj-8{zmZ7u~)6Zql|LgPCynSEGAl(1s z?K9ltnapdd^-HsHot@sb3jaQ!eEp(x_`X8`TI(87HfV5VW)pf z1N^)boP|YCMLJ+f6KB9HJGsDWMuDec08F)ZvX7Gk9&8_N=2PF_UpMw^adV!=vt-8p zobDtcVyl*;zBf6oe7S(RO${m$v5pm1mPq~xoL>8v>z`ji9~#?gL@~S$>L-fyXjyHy zzO#xNoqq;ycSj_N>#bnmllHSvZKkXGrfN3p952vuO*+37!%5%@^&{mp2u1{|tJcqB z7|I-Em6e#FG#}GnwsDVaUZ!;!Y$$cUV_`j)*2&suKti_a$n$oH&DE#bNc za}h}EOM)AL7FPnRuTEuA)3+?GU-Q^BA1=C{ru3V#}mgH+s+qSbVtr^?Qx5!OqRb@Ft>O z&s(ZAS~lEhmIKlKOVCBo!k5R6)1=*i^gAxSa^a#~8hV*R)<%{zQ-nbxLLUR>Z6KsL zS&K@x7<;@?lhDc+;UWMqYXVx1EHDSxoJO`NS_r`-Lue1-HA;Q_}Co?^y0pyKtYz6>IkQn_n|hG5fzW z<(Q-q@;{;cCs#UQ{if*i^XcN$RKGuMug?T_o_p?QDpntCtC)cp8+*~HzmIeONB6LJ zQS4S0gs_Yl(*{XOZODvQS)9T>kk%|EL(C-tR2^Jxx_BKCF#0} zg3N_I=V0mvZ8L77$N&n6Z0!?kAz*#IvJVU?E$<0pOD!!E#odilq-FH=LABrDjtOP= zg>-?9nBdmT5mU9_HfM9_6=^!2wH1=>-(3;*iF(J%+#A21Pkn8;nIpYxwKl3fMW&QW0l^FBvKX_>L1PVS~~c9j_Xa$!V7OC$nnJHv6LyKt(om4 zl9U$&wzsKzjBkRiPbgSIbl_ce{>efId5egf3+8_i%>ZOQ5N6% zMn<+B(AlK+3;HAe==x{xV(vJp;Yw!)fCyD353P z(i&)U2P2}@IxBEvQj4_;@cZ1%r`PYS2_saE4*^2u$!0q7oQRH}R?fFlJk8~{SLsNl zT%8D|9#8?oRGz|eEea#6r0L|YSC|8k#a6G>XEn4MH?SO@5^DX|Ge!FOPq+_H$@D=6 z0?bCBrq(^9$I|9mOvH*E+*BM)<}%cSXO%>IRu$GAqUe-Xm_AvjUFW#a=-Bv{Z~6f) zg4Q;H7InI8Sc2+0O#t}-yl$su4_6^{}gl$zDCkTk& z5bhB8`u*WoR&02)yMOrFLUfp%F@AkhjD1j(smZmqr{C-usm-&0;&*++k8k#pLyczt z-i^J!G1nS?H=1qtf6vuYVLSEcud2b5c*DW>KVsu){1quTtgZIyGOx*rU%}_^imk8i zHp?TDl5R3C$Ugk2P#Pq55x>w`?R{#zfFq(`peXv@r(&r^7tBGK8qq8wd0KT9Hx9N2E&XwjDYW^QLoLnmI7o-FvS@Dc+Nb!@nI<~%sZtFC;%Twby6=t{VN(;N2|fAhNy& zRMU{>`t#V2nKwkv*P5X*6VOu8e3M1|$D9cSOJ;Lj5q43lb`ljHIJRv;j2N1NW_H;^m|YTgvWj#wkFB z;RTAT$d%c*mrh-n;6XA3+`D7)rMj<_+bgXtwlDKD-b2Cyi2yNtMC~(m`H>JjMesuq zbwAm!IrwLIXU5H27&1_{?3YtbZ~L5151;t?XyD(KyDsn}Ge>^qgZ{beh)EL9ZKVfwtu_hbpP-728gU$pD|P*_VAfk5m!cTu zts^6yGh+zz%^TZ|qTL$#aH*^GiJBXqR?3m|5FsXFFyUvSt9dILuZvPf53lu3orq%+?k{c)|eIVBQ(Bk9ne z5!unNEu|Yh6GzPbHK8pt4gw`(zc%Domg5O=@NSfi2liBEeI7X>h2$Tg$%^JX0 z>6UrNKJ`1C&{&c~_EwDr&2KRS=b@o7`}&M6X+fZB_eqWV+}Pl9HRFyGo)o6-7#>h* zx3Ce6$;vZU4Bo5@-|UX1wNq2$`lt^K^9E|JH5rs8)}KE4>reK}?!A$7pt+L$+WUL@ z2z3@XYn1GVi;E4+{_qRtsqR@=j#4fX4z@2=?LOen^4ywF8_D&O_2^v$smp0C%aPk? z!|NVvjYBt4mqt-I(rFUlmOLUSvDOPKU7?`*>!790VY_-IC`Cj9!?L1a8gQB)vSlDGPu&VNjzy6qET# zY3+6x0!J%bu)+RWxhlu++0LZde{UuJX~O*94{18Q<9__xbm_|Ve}z(wR*~)Cg38=p z6ZvQSuCmu4`)m812ve2~9yfP~KM4l5h*a6o%E}9yT5KzNdyh>bL;O1wt1sy}aI2a2 zVYQbED?wf0_RDDL9lKzdc#sv>Y2XlM{{G3yU-#8(OFBPCDHnup=us3czEsf4-jx)M zlopnjZCZZ~s9id?O)>oWkuKS~3A!cuzttAyI%D#}FRzluw<->PGzehGyrM6u3Igb3T6BKf_Q*KP6o0hM6dKK)+r}uDRDjGN?S*cx`_Zw@-zgEOVi{MIafSyEu2R1(!6r;BfC+BesA_B}Qa+7y-yh?Txv(jV;nF zyc-m59oG5CfFS=5>#_*e%qZ^Ak(L#89kDCzxh5b1%oQ5JU}U)H8JUsu!^K%%LXsP3 z5D>!Tjkn{2qMTwO^IsBsy#Z+OuOcXj*%9&Cy?B`0M6#U^$tVVos@@cztdQwJxdR#2Q4K@bdM7 zA~a)swaS7H#sH0^2#zI)bc0S(Q<{>O^viI2Bd(g%M?u1k7L8lTIo)&OihUEBAL!cP z_(n*O#6m!kZ)_uauso5j%}AwslVmz2ndj!x;!!^t11lVL_h; zf8Uc{*%@KFGy5mg(g+laU>QLUodKFv>e=td-^@=Dj3vP<$t42k+&RYPGHV3t?8HJG z0G?MsgO)NBi&?tdz{Ktpw7BZrlX z5B7NI>@I;g$cDG96yK0xC12m2R>UJh0~cRoPv^u=+8T2Z#8xc1 zlGULf==k&S1z_jCi{lBWJ7=(_T;Z9ry^}0N_lBuxn;n~W zE;Fop(FHAE8cXl+>nl`40;D9|A%y==pLGWOtgn7;Vkj9-L=04K{Hw-aGx+HywW@5a zzlsCGXQUY%dv?h-h+&Il)pSsHd3^DCK}hG6g$~3e9p5_3MUu~;>1p$$vu@@Q8L{L< zi_`o|TUp>lC1{ZQU)YFzCEV{4-*xv)#+#Q5O{}#5ZPQ}wcca;_7L~*0&`8l^E#2G? zplfUO(*})}W*Px?AiQCwq}IpUAOJS0Y?uW-1mBqYQAl8H$y@Kp;NrP*;VG6YFIeJapw9Ykl@n>gdl3TXS z^zlc|^+r99)jgHd;FYxVrN+rfs9N3O!cf9EZluO-p5chXNGT7sIOa~wSXc^X+*HPJ zM4`rVT5iSz>-!>q|_+Q~LW z-EK6$=@3en+XErR0njfSf)_Tl8gS9A&uWxdp*(CWazsEWa&{{rg{ZBK_>sd>a@5YU zr7sUfd{=ictnLKd39*Z`@eqS>J3sV)`fUF7k>3E{@;(F{w`(#%#}Vo}g47lm{MYxC zeiuC;DhjSh^0vy#?JoHmS>l;T3>`N(7_#rvr$g1mX9r<=5sWNxSk*8g1rsjKk`0c7rqWv5>R9T@g zcn3Z}vv&<5!Bjv9$uq$GN;v5Uz>6YcUYX*L4~KpvCbEBmmD~5v?q^53uRG+SbirbJ z!YKYO+;7{^oC1BQ1fRKqppu988#(xA;8i)*1pfEcXHLU4@?FU416pGsDM?UrgE8DStT~rJ$LMqzDKVX2U*UkK^hs7GJN9jx09Z1-Ec~aGX<$A z!4;ScGqP|Zd%$5?Y#dkNZv$dCiOA)acxfNuYP+#w8@cZK?tZstzaMd3xX@GM1D}0L zoa?GJKGNwps>o6?;pXXS5EiI{d1>Va+Z@atYqi0BRx>sznkfe}fab3J0p69l_@eA8 z-bDTD3jZXHXT&^DCZKwzj-WM5AuSwU)@l-zqS#ZF#a#g!It^Ehq@j%MQdsbhs%36-u^<-osN3{rR}%Te zwF|%P)ANc#auAxUa!>$DVP^!cyV}$xPBd(-~i6hS@>8sB9kV1&0BXIkovV&wJ$) z;KThH+oVQL!u(0kUv#x34j>v9YjK^!Dgs}mS^Jm%Fjw1u&=bueI0)i;?jq8CiY*tv z8%3#p_y+digAmW3Ao}STWTiebzo8ABH)ebKk*tJ;7Osi4cURS7q)=}dpT1$ePr-tL z6|Idq_x8;JpJ)LGQg$ALx+$+^CZ6;Hl|Ahj^-@DrvD-I6%+I%~gfV!8lV*o?||-#Gl(52~C;F`7*gl3TAl~N0hRgHBnGVbTp zy3Yo2uK1fXxKbbI8{%VHz%lm3^~(2weh(7nL)}!hRK>~R{Nd-SI}IDywAE9tf`G~> z6;LtBV?eqN$v$?CbBBPw=7H>fQEdi#p3}3;)=DdRrt`&$dyx}&vsLr#oT1F{^(nk6 z9;7sOplGLoRDW$cf~S*Q!R70r@*3rPv_=Q&^_Mpk@hFbEZbH(dTMaqO!&634hFRL5 zjYc}5oglVn+68KjKW@Hbs11}E)<;v22&B{~g31*bMYpS1hOUlPj+9WfHVDT=SKWY| zrO@XDg?)1$%$IW%>){Uew{H^!u@D#_fVMzOM=j}P?C-;G=DK>%AYPh@qKz%u`!PjK zl|)H8NJ-`rbdvYfYJs^xNETwn3TUr7u#E|6Y}@g@@wq*D}}~ z#}FKDyeeGuPT_rP8{s&wy%G_GPE+Z2Wm*l z_Mn1X!pv}7l)CFuic(Pb0h;?_Y|yps-0biMLn&?v?dWd{-oDh7!4m{h@7M1Hgp`r%E`W&!SUwJad=E?fUO$ih&4QxTAkP}=wf-$YtL zg0SrLy1h{OL@Z)oh+S5|`SCp|+ekgajSo2_;*3mQ{PJ>;PU zL^tV~;HqjUvV8v{5pi}ovUzJ3GIT#Eoj{27q?6;ZZm%Fi5WKlOXa2$5!ZRE^Yv+Pv zvdCl3pnrrP&C`y!vpU0FR=S4ZF%%n2!ntuZQ4UuTBBiU?TB|i{QbZ6CP?r&=0vVcExJ1s^Qv{We*_DT8!@3_F}cLuXwQJjUDp?ndsUqj42%9W;&0lxcU9X zftEPA%VjJw&4%dOY@>N3EMzxk+yzR6>+`zDreGse2^SYq17FrH(3H%7W1WgJ3?gu& z_ce6hJ$#U=b&I4$6T!!1Mm{Y~Y)r51Rq6+dmfV;U)iaW7!5WLrF^}^W=UODnQ?WGX zab*q)w74LQ=YEQV=|(gwf84AFhuZq#6EiJzXJBtzfyic>k~BBI$Ywq}#zV<xnrkJ3HAKNMJkg=e*`>nYTHIz0ysumbOyh9X1eJzQviq{+&Cylz`s&mhzcUWs9w)I=yxUmi?A(z-AeWRwjL zCC8~h<0qT^$Ops-Pn&Vd;}SZ66-(-%sJsq0!L1%K)R0DQ9&Ua;*PrSflN;-Pn(x$O z$7=~3cno6{%>!zg(V_$&f`k3yTEWlPf12GG|4M^aSjDpnqts-c7H-x93tq%yX&tY9 z9hkwNh9o$tz7u8*z5oIAoFbDm{eHWozpDK30f<&8bVDCneyOdZ=(hrjf$TA$y|`F7 z-ih0J{^71FrC+N>@=^N4)Hh39R{nGwh8#|?O#ntV!?DKN?mmjOgjiwVIZ5_0o#xTjxf~Xt~VC-0f#qYausz^R+C_3i#cA zKM~{#-sA&AKOoftNBbIktbZhCOTBb*Mlb*&xDfz;WrpRttzARCr-+C=HKhoA7{GX? zRW=C0rczB{5aII-v5OD4>1y(D8VLy=#)R6sAEh-Ai7Q7KYScAv2wo_CVRc(8G77pm z%3wS(;z|X1iY$j8xZzTPz!9d&ZTyw zOdB6n>7c$-+@4b^pgGob*70X~i zATZB(i3NL+4FjAA=;qL6r?T%F?LTFd!zq;l;I`2@p=VlW4~buW*|we){GE2YMM`s{ z4p^Q5G$hL$$z6kRLg&qDUoq*TL4)K2$}m{Hg-GI45mJ(~4h7vwk6=F!t60HlMcZAs z8EE5ZEez}NYS8}myvrtUBI$|47DKR#eq}gJMFPNR2ymC;`+vINEI z*ihj8?Gy`tCC+fm2(qFG%6o5q)@Ca6TkXTM#5+xV0=CiIvn%%(*Jv3!%q<`6V#jwa z*cVfg;S?sgq($?h{r0n+*a8W{Uanf$)6)1v=~dCAkRfqWqW#)ou)#X_IW=O~1yfw@ zyUhq$1aMDMM`nXuL=v4h*rWJ+JGrOpYB88y zgj%UvK{`Up2BmDZV@W;Q0{oEvr%%#g>%6@w{EVT&5^0`3iL0rKRl5N;zj0hpEO!*4O6ZGBgoFt{V6B z^G^&V(~_G0^O=!HWs8ogb4K~P0a36icbAKo5a*^eI{F8IO2H{NHB@9OOxUSMk+*Ia z8_r6V@lNSzNQ5zhG%hqruY+lMnZ#eanKQ9WkW}?lKw5z@4Ce)TcSN;@Q7Y6X-}ed@ zT;@Phk2>>VX`fn?7hKxxbX@biEWaN(CqQ$4e*e;_Po4lxCLZ-4G-`E9yrDDE%H^N? z@$M2ker?pLFq_MNMKgG6c_cH`c_DTto5XD1(`*&Z%L(h>oPLPTi_Ep&GdZesJr(lrG-fpVKN(h4l`ahHACp|g^TIcOtM{|c4%<_FNn6lG}0eh{kb_RC0- z!tK1APWO<<(up(O-!X`mm*gl89%*8Tb3;0@i>BR3&q9JA>L^th14cX9KLH}bo~qZ^ z1%o0eC^|^DQd#!Lk6g7yK6ELUMZ89te>3Q%;S_HuB>=R%cNcMm5P1!CrQ&hH)T=2_ zac0hBiA|2Tk6rRYzG}^N_z@@9asq)h{=!;ZxbJjgk|er};Fp#QE$ysA4CG&ED@1^% zKLgnTB~a{mXjPo*jnZ?I5NZ{%5vEB`XGz*8Fsi79@Iya>gTab~+Zb*R9-p}wr`M~1 zrsm36t1sJzGXmsI6M80tXq4N&*aZ~o71gk|u5+89_lSI^fxPnR%_#g{RmWUbR> zQeyTaB9$-;XqXDN#nyI!+)f8m9#+I|JxWd(K!N>YRK8t;|L9)*+oq@d}^Sp3ExTF%nVW>NJ;E4Wd2*FuPw=Mw&uW%a!n7W5FCkE!JS# zAYBWhNog~6Z?E0~Raz}4J8bYir~)=FuHc&w)iT{on)8WDw1YG!gW5w2-ZjGdO(dC# z>~1yK#mX^Z4!E$@S$$<3x2z~S*3~nMGM`!eLT(3tFXW9j<)JCw*J<-{+xUl*R?8o7 zs@G7~^F}tLqD_M(_*s&yci7jh*-QekY@avRmL54f8#&!ERN9$TW zP8V4V?gkPnJ(cEYncah(+x5PyR$4q@+RirFLjF|VZkK6;wM>QB!M0A>2q`<^lwRC5 zaT$vx(_YzAYdgK$PX({?)|%~GYiT)lc!ArV!2J&Mx-XY2o@N~>*zdT+?@InKdi(L7 z{m$$1ieSm{m6{@h*Vom*-f2%I{y*Po%W!$Qg!uKH)}#$+%}8s~P=c)&zxdpyn-*>2TTwMo0j4D~=(@Z-u>Ql04PW<~v6 z(xR-n8o5|B{v{UKdpZ#ZoF>eQ1_`a~Q%#FAFZ#rSmG!q{=}+~5QC@v=(7fvxE==Sb zi%{BlmWCm)swYdsj2yYjQGD1;vVW|Zh=gK1qNuz5p!>$shp#fhQ*qf;#D^lyM#l9E z_bvjh#o&d18HT95YNMLB&Hf-xxFwlxd&qjRuXQbN$}9CTU#m$|pOy@kq{DYlT61so zFnIQ7fLOu#S+oja4Jwhnb6Q${ds>lhi-m9@5bJ9ZHxA*xVw@aJnH3RwkSB_TB)asJ z$}Ak}ct2cWW!^9Qur;e!5bN>E({!?Z7--8QHXGZyl z2e(U1-?5o^N}T*p190mu4m0p@e0lZ$D-`<1`aeMSWes+h>W#}$QbrkLuVtyOjnR=wHGKO%Q_`3aak(H!cz8<2% zh*Kj0bFTl1fjMBpVCtvmzH-Wm9F1S>)HC8#{X?SerUZYAec0Z|wFdtmX>S_U)Vcoe zKbbcnKoSCkNfO2|nlL+O0>UI=P!UlX1r#kH4sEGTLV$pv0Z~z@21P~13W|z#Xn-&Z z8XU2;6%;L2w5V9oqWqs=PfyQU{hsq%>;D>GnZ2KVKllB)ughLU@mL1DYxpU@a&2S8 zW@|57fSofyvwV-izO!o>=LDFnsKaN~%yY>>6j5roDa~tFSjr4}NU1qU67ir+VkWBTNRRR0ukxrFMJ60H|Xo}4)B}2&|tP6i%eW52L{fT z)!Aaw9`1UKaaRCS<*ijyFb)?!up{FzC?~CHlNXuv*F@!Au-Ax_^ZQaoP#`8%!T`&JS=ACRHS~m5xJ?u?w$sX zLGtdSCF~|ZzDm4s=}eJPM$--jxU8xOWoPShM+N>a(ZJ7eK z*^1`qLf7YH4U}=EQ~3HfKx>!Bj&w|qy=v9o;fi>=)33T*h7yg&CFuLVV4d#JDYFB4 zwKr%`TA%(f)KLQxO1+hpJTj6|btcF(t*N2|)3rIO#CMHb3faD*70z$ z9y{s2+F>&?`HBb;tC(xVSSwAmLHg(`0@$hJm;lA(vG0FvG%Hl&VFUcIG}fzyc&(u( zgpFvZR|%ZWFMDB|2m@wrtsXiWf;3G%?3?}DEh&kO{ZO+NNvkp@&?428K=j>8lwL1k z{1qAjDUDbjzmy=E8!I`z6~&Tp2q1Klz16`uvqpw~kk?wtTPCkjJCCVsd-T6!3<! zWBz!)#_ap;^GmZ;1;%4#&nI8+^l>JixD<=&!4AjEVEnig?F#&=VEEw~P|pi~?032Y zd(az`4>m*P8n`<##C0FfbyM1*6Hb%-K`h4QVIz@};9;W2lg=(>>hl?yW*|#ASIpD* zCfP4LASSS=Y_d~WqFzQrz752bn34I|nRLV&s89W7lEEo?i6OL-u_O1!3WqbKHa`Fv zqjrcCO5bifC1w;l(3ldd*ls%Zbde7mhP>5$dUMmxc_0C|83?T(GVs3lVGklb-)jCC z)~~t6P!x*-@f?(go6)RwgBZfDECQHd8Vv9-^bu_#cc2Bgs!L!N_0YkDmV$VV7=l*v z-Y30-2nQ^j97!%+8AAoTCJP+h@8K=RL4-f)Fe^Js5D0|^cZc}K^rBfmPIeO)*0oUT zv%awtp?HjY{LR=LtjlBqq4}NGG*2tDOF`j$s(AXVSq02t1T1Fr4U)Kh2r-3#xrg@I zT~tHvRUrdUTQ*0LG45&>Ax_bnb45TNW)na|c~4A^ee z@OX1f9I*P&QT+5Ny%iqDZT~JGx>Em3BocO!jiYNP`mukN4-T!44k-UUPc^B0TVcXA zP4gLMnAGcQ4_XL^ve(=f4%U0%j#{CAwqxlrZx>3b(Cl|?T=beHB~z2}$Qg~I{OB~r zVR6mQGXeWY2Y83SrB!o)IPpSCvD$4Z7?C({IJnDh@vgbfIl@pQz{7j=pLPi8`_3o# z7O5h+yZlP@5q38f2go1_DujQzZu5OZ@@|s(jdQwH{W-ocAQMakoC^Em@+CbKd3oe6 zJUgFAp)Ea^8R=Q@aQh9-mvUeKXabSJ3qeomC1$~CiOrU<;+J+oh8D#@vXt6Uvt}Sg z|CgU(`S7)T&lw>$@_aKYp*D}*sh{9r7? zrofnRXUgv7k4(WO{Q^w#xU`j&rYpGSS7Q{X76EO*MVs!a?0jNs^H3lx#WZV46#1(i~Vo|e=3P& z#Su6D*s$vDi#f{zMI4MlOeU(G6c>vU5;;w9&pHYJyN1N8GlywtR%8Dn=vtT;HH&;c z%lOOSE-U^PJz>C#4Id<}6cNu>JAfR<1B09o0IJ}I&#w3^ri#zQN9A8qq6w@)*$2l4 zc=Jg>FHoV^j*VX=#*I01q`}7fxdo3|a%5$2xAA_4asFt4ZCcA!LbWQtpz1Kf=4|Cb za#G<$0P*RZd~WV$xgEk=X+}Cob}V8Ej}0dvvucQx-CY{T7s2@!xd&-SMeQGA3uKFW z51O8@tN8QgG2J*Rfk%ht-$4e}|G0UW2{dfv-yOokp}QAWCkz`u`qvJ@%~eWt=x+8LG94h5wKT?VQi+7~Tyi9e|IM>mZKoMT$ko#9r2 ziR-Lfpi1;5YQ6&JnEr>(>egF*?$EjlIuae6lQf&*5mjyhN=W5yTH=6$pWHDKd8lx^ zy>n#~49Ar0Qb^8+i^49RTl?d(_dp$pKpI@$9p3VX&n)d}VFkSm+O}$@M`tUF%fYeQ z&HI{q*I;LjiUA*+}_3X75h);-QUm_6hM2nB?;zoRzgwlSq<0f-eO*IB@ z{Q`RsI6kS*M!C1-HkRp!1=}yt4@!9yhy;}m70k)XMN8~3Eq2gk>4vTH&rdD*xy0?< z2*pz)NeXA(_m^n67b}~!cE5Mupt|g@LhH}^Qo#%{XV^#e`E3%*`Wzpnz=bOKoJls2 z79DOgt^-^m(M4CJtcjuhh)r}Gdbl_9TsQ1h)WGh>O8;ayw{n9JwLilR%kJ_6#Tg=?{A%DA#4SP}ke=Ai>tegx4iv-~__t|df~vY%a<+|@}SaV|j|6GN+nl&Bb9yD{R9un{G z{%$zVoN1htV9+lwnWMl-N`#pop)70Qxi$^Gc3~uau@$A`Sz>*N;N;J(+mo>qAGT0Xrsp&kXkEV~bqeW5*pREhE?3^-T^`TUX#feE0I%-6Qy&jPR14>E?XFJfcT2 z2P3JZgQ%45hjw~9oP)51Eq~C5mCTq`Dh0((1QCllqav)Du(M!ta?xet*{0tfsLwk- z;XhmENi&0Zh4*E?!8$@XcRM{@^zaZdFGoa$!LoZGCHsaR%K_)0(_KY5Y1Xe;I9 z9e9PBdMP3;_~kp$)zBO54Zd_+FEdR<Kv))zg6uLAK5`!BUa??T-NV)~#R!s7YDz z>&x7X;|I68uE`ry7B9J6G`uVRqc4nyktMe&OfK30dpCZl6glRN;eHx;ffNcQ2R(1- zA+EMdCYY5PMkcY?YH=BiRcO)Rk5NHYqQd#k#mFrB_&g<{9UOt}itX0gWh~PWFZ2y!4k4Eh9!9qQ#G6bt`UQ$2UZj zBSZ}~m!^MTkC&FDAs%ez^f?wd0DY=1fz%I-S}eam;9#&4Wi>-y8% zLAlwB{!rVkH$!@p}vAK7Lo-4oz@~orAz>Z)Wp@)pTr1og`+1j<Br3!ibVXH6G6`Y)In8iN) z(cEkmD?keSxelSAy8A}eaHJEQ091K8;3~=7FCc|}Rq)D!KLFYHz79^cET44jM#x~P zclYd?I{vS*rtIcm^gPe}?K7iTY{)-@3(I^%-1Wd}-4c+ErQTGGZ=m+OST^lxk7Jxv z4U%)D=SAn+zsWf>e9JsdWx)zZC-y57dT4>Tgx3yrgEIYohSnD-loHol>V`o4)h3mU z_Z_2ECFIJvB|hH@^V>YPUwT9&J(*j(JTb!k%}}Yg>@EPsSQtq%U8UWMFrh@*03GRN z1WwPDMVBE`Exa0MC8Ll%P$>j{o(qj{UE+j+$go0Z$K=yO40p!!x@eIVTy7(xtLeA+ zysHgfM|kXUsexxROVaIe>{f%6TM-X;-Rj(O`>=<6P*1*51`>Cq;!ZMVAe$x)nWiOVO(5Li>oQe)8^MF5a=Rsg56=Ux=tmtMxWK(poo~oZcZd@Euw4HkenC(4X~W%aL!LM_tt!S4Uvn^3ulKkZ)#VeqyN7aqnYb50b4!%_ z;1vCJ(B~`nkz;B}=IHY}37i+cyCwx+!U{^4uMpLW%4lBL-^PmB0SO))plk}pArf=W zt_cyEQL-A$uahT=?mf6Nr|Ph9dHCh;-dwlz4*ui!=N%Y`Z&XhWp1JmgPf%iB;3K_WZ0zdK$`ce#x3bhf2Z$H8VJ&fQ|`eS%tLZ}{l2Xm3$y#- z7OYVgNW?^+Q*N&d3?E3&piQ0T*D~_shH;N;6pp`Y@eTE-rEBqjT0Dh(Xz|=77K1D& z)`>x_q2bb$p?$p2Fv#-WtrYaZN$?cxDG;^%(&NbrmBimZa2;WDg0#SLor<#d2x#KA)$4ya=xyQEeAc{892CCG z=zfP1*I#In60j~PvqgTyt1F0B+R(TNLk!a3flLoGhRs3ac$)lh_7h7Ju__!!Fox3` zgf#ZYL9DR@MyqFGC9jclDIkl74M{KGajSC43R>6--tQ^K5pyYvG6P0bOkbe zymqB2@NRj}OU&9?`MBxsx<49y*FL%Z{1UveZD5DL{bNjHb}A;OB@_~5d;O;VV{<__ zET;a$-gFlXhPW91bE+sRSwSa<{tIV^BAGv|J+i|wJn2`gWJf}H;R5|YbGl&A2qG@e zT{>iU_{OxMD}-{CVi#jVWgcXU$Ws6FwxphhG`?L#y}a?XJQR9bn&jO-ls{OIfs9Ot z?gBkxFCd0q<6RV|fLc+_n)VX4bwqQf-mfX}UNmo`W}dEHQjL{@Iy4@bxu<nosa=3ogtJ956q5ve>4sXM)H7xRxqop5KX-?-0I96l!s0S-QZO0i zV#W=%v?I6srvfg0oRUc8?%{B98jV$A(+23ea0dY-$!OWD`1xQAgSFr!?Ja|uwrA@`qz?Lk~ z=2ymr2S~2YMQz#qZhKCb_uD6pU5@+mxdR}p4XX=EnU;59h@>+_DD|BVO1bwPCd(FZ1RaYusYcL~EY1~Oj&~<3gNQ#P=CQsIBRck6dh}DrE zv{Q@9)jp|QwAxh@rVb~puH&^)7XnrOW_0%y~eo$fmcOW zhJtFu(}JuP?oSgpkIbK>C%bj$y`3_!_UNitm-;mNKU8pFvqsIr?TIFnfY3|nKZsP) zf(ND>$z%+$e(g_v?YZ-&6n1RJoRz=MDnr3Ab)L%5vySZ9QVGV(w|X~EXSGIQQ|mE| zYVqCkqy)xtHc=g41p%8NZDQ?*H(xlz?n%Cu35!;hDv%eD(9MGj>I7KGs+0k@m}{A0 z8+N^t0CE&eyrrKTM__rkm`50eIb^#1>JqHOfQY)tZ564g@SI}~1Rt>&pFW>Yu4s<;qWP~et21%;?yS);kK*7t~ zrIaznQoU8R{9DZku$?=kw~)?{kTp~#zsx}28458V1dFQfXUma$sKu%ztYSdONHXuT z4W5wCoFPYIn(cV#+B1{fC}n}LE1n(gIU*!Q-UGU#y!3@d~gwmGq zSCT#y(pWE5&uR$XQOI%qA+riGB=7ha#ab#<4A1>F%Smt)U1Lb1YMgHuEiwQ2`tA0+ zg>0UJJ*|{FxL6tWG&`kBX&Z1b(|Pl*l5WTN{d0qVy>rCWIeau~h}!<7(wVS3eGfIY zyTUFGjEZ_7ePmxm>G%i**Ivrdd-wd=cSEJhGjLOCMOk*Snj8()+#I{0QnxwVRohSr z#T7ITAEKKYLA>)+4kYycA+A?GvqZ;Kdav4;q2flnNLDvq^x-28bx%spP8 zfAf5D+BMORz>x6w4p*-5N|>qdN&KOhMuLzVgo{*$&{<+xIMq+YD=@iQ zyq<{cl?(LAuI!loOA;D&$R&%%frR7~0b=!2wGsy-Xp)e!wCo(jtEL_{cz~|KGhE+@ za&EoVZ-D*4bQJ3&Qb{NKuBNerlE{5$VFl)%HUxVC7oj5Wypl4AN9vyJ&DIq5v6#!;QKek$clOv_PPi~$h;st=~CiYK>F`G#J!msrpr zgH~|+pulR@aM_dFpRethf&yZ)4`USxZ6zR)P(XZ*8_dd;`v>0kEOufyBtN!VEI|c; z!(go2#jz58;FrO zbz~kA*#ZAE;!A|YNE*Z3?aVe8*o%?a5L2iPcDv>ITR9M)-^)964aN0`qBnu{6O~lm zi8jwC0X?fG6oCC6DSwKw{?xKbh+Ha$2CP<%KkP?y=S#}3@iI1WydxtKdxEKR!&Wsd zPE_AYPNjTzXS}|{4 zmz!;~pj}3hN2!ZJIiJd~AJ>^i&J|F-%Ur}p^bR;CizGl@&uMo$hNy=T3;7uayf)HC zJ(@7TVg_#x$O->NnCcwXfWnyx*|}E=VOK^RhzNawDxj7YEgVe{QWgdqdFF(>Es^IE z?=@8hF0Q5&(jx6QOuidAdi}GNzCPuZF~4@soSIC#{M(kOr2bP=A194dcYGLob^s7W z+-=yuv2;IOP${39I|yuF{*O1<`Ut{F4*Ba1zUs){*IZq!E#9%64U@~2BMS}oP8ax1 z>EZkQ%1+z!hndk;1~m&O34;$f*t8TE-34{YxAE9twT*|NH8Em;N_W!OGokyOjiPe2 zD)@ere!i7nMca{bC&xBinuBvfB1Y0KGzxna)Z)SI#!+u%~k-1(Sv^jN} z39sJMlRPD?*l@vx1@GIEIieZ#Ev&!8Xc zV)!C^?2N3eB*knzu5@}GU}~w8HP@E^;JEb5==_FqX&kEQJvXG99B$1crOL#?7;dSg07pxY6MffgSRxctQn15;c97X7?2 z5L}Is0g%VaB68U5LAFO9q_C%cpIm zxthh546cFm8ciY)3;+q%z02RL2*7E7t@n@cwt-~KJtNz_Pt4U5PSNuhK{TcxbR;e) z!qN@vvkHmpnmI+tFI*kx=o4|AvNDo641GDP>&ms=Hce~-BS{4UEoP=jg@nybS5wVh zd$aPn?m!zT&^3!3Y-0PdO_U(_4UtQ$F3L}Y&K+tq0GPp8K_f8*2Eo?ulx+>~Webfs zR!wc$5IGY-;%I@|kPD=iG?vu{o`4oQsS+9|Iz-+jt=%yl17$*XbtW4&R{`P8t*W#a zR0`XD=*^db?1|wuQD=V=uM%jSZhi^;TPi8_PQw>y`;Brnl*Pj{c07Rv{vU0#hP48t zhF;gUa`-L1{MWbie_pi>qHELt-DbU! zuw!?4wSUH*F^9fg@-Ijix<6&0(Mo6SlL%X3;b^a-iPgP5#{QvKqcC*4bzp&xlJxA3 zGdP#oA1UvtaE#3RRr|8G%dkGeVK#Kv5rS)D4)VRDZk6n^3zg07r#Rpwc5v{yj5N4^ zt5sYno%!q8({PJ@9vWqfLv%N6fShSB>T!psA)D_|u${px)D+P7g_3O8X$vwvQ+q1N zoRB{dW(uRK@Z;pmHKPZQ5BI`q|A2?Mlk2U#@|FH3fvVZhZ5e4QjFW$z6V7Rkk&jEa zpIpeP^NxH^CYsoV*T;_qtl=L|yOKhQ%(*)By2|vk)PSF0G<3w+Z02yzRRWg@pYbE3 zQXJTm>8W=O?4+Gk>H#LoW8?C%6bL=%8X4+MKrY}g zHP~xSz0UMl&+N~6I|ww?dGzjKmE4qA?nF^jL$SInMmQ0nNoJl>tIKdV=|V!`eijx7 zW0jAH93;M^zyi2&jD?H_{=(VgnyG#n>Q0`gl>5c(CZqMrd1)i3)P@$}7EDB5g!);0 z8c#Yjf!)r%%R1D9MO!uX33iV+8hAEk0W>%kHqJAp^y&$mFIFAuI;q=4um$z4;sqZr z0j!DMuco6{CRd#s!eA~_I;gX1Z&EFjkdz|p0<{D)1JoxLB%;v`1S-edyN%?EJstQh z?HDT1G!cIGEk9RCWkh$#IWh3=9a7GmIihYimi>O>^|hTDHIC#+>|1vblbLN5lJOX* zjl4A4R!RtcBX%$5t1sj$^xD}NlZad7R*Ki4MZZzVuo_}{-6$AhU@WEG)az2Wu!G=$ zS7XmFR0-FinE~CeA4uNPkELv3aoE{}DUD2zsmjdb2Lv zD89PeW1n|o@asdNg>q8Mp2$D93w&5!ivB}_9Uk_4%?Q`U%lP9CA7-!N^uDLXtsY}A z=L@T+HIEghF40w@^47CQ!uEi@;{(|#ncJONn=QtFfr__9X03?)$8);bp*h|>UG7xo zxS&F#U>+{gnN{q6_t$jAIfqC94}}YW(zk8Mc;eWD1>c{TkNga0htF#Tpow_b1zWq} z_QaUf@g(KhRnhx~i)Amjso5Ols}oNQ4IHwYR@IZ~zqE4iZaH>sYSqFkm)>oEhCMPX zU~SoUKmRNrfy(lBOYr3c6v*9Da~KO}Sc^>)n;1mTnOR=Y-kA5$kU#jrVISqgB6yD` z_9uwZ$~;V;wT;mBx&zyaruPZt^I@r{(rCxp#sbWs7NvlZC;bivrFPDwt64O4vLHa1X6BXVNQfYHH1ZOBa&jLK|Yy~J9z+r;5Ac&o-O7Z zcCB8WSO$kM=352;-(pMCE-9Aw%iLkO^2ALf7_w4^gkR5Z*cE87tQIzEmntMdW;RF) z0l53SYG-zFsj}*$t4^GZ2nJk?nU7|yjkaKz$TbJ#$N&l9rG2|;X}d~ZFfSIi+Jfmm zZAQFdb^vi!Iz+{B>|wd-Olx}HO1gPVXvm}4L&LkUMQh04^#e9Kvfbo1`GQZ%XKnVo zGheO!`-Q3kKB|}g-#-E*_!0P9zZC{-9fMbd(G*%kTlVz4;Alkt!s`EfBei(b}9% z56*F1+8koDPCIQ{kOk()O48}U2N#@x43F^+CYq5?5jOg*1*pN`s-w;oIS*?-t5 z^~3O;HUplxW$9PsK>B^NY1ED^xJ&DZc}{La&QxMB4qCMYN4ky3flH0|`1Z{{-b1R- zEFgL!Mw^M@GMni)321b9mYtwO%^vRY{FDkt+2bv(v%m1~-Zcdhw0 zz-T`V*gpGza%bpd>C}G;$~GkO|4Xyc{NK$+811IMPKHwG&#qm1$}ZqqgHq8u@#|Du zf7aINY*zGEzhd$Q^POEcx6Ul~7PH7Vg#xl0%puUC%YK6VN` z0u-o(!U{S^JgMN=bw4cqFy68=^zAt~<=y8&q4TefS%nu?UAd6rZ|z*~iuvW3a5bOC zrD1{_3s&#gdNxR};064UXTwhpreQWaIY~1+?BlY)RU39jOQFcPCh zxzt|kG?ATwvq&=dfXjk#dRH&e?c3Z1ByWL5{r#LmL%+vtjQx#E6q(~t(<(6~f`r}5 z#tskR{1r&<)qK)V=YNd%*Db~CePgFI*k9QuLh@49OXz6~ww8VY3%y+|Re2x6&CHJF zuaT(qeYY_n#%XacC~_XDe2MnkQNLafyntpY-eS254Yq};B<@Xh;u3Dbw5c5|J+LkN z8`SW@()qC#fInYZ=5Q_D7C*B~?72^ZzU^;g;{o$pPV>jJ(I`C1oc(%3l+~6PgfbaMY06VsuiA7Vz*$t)vD$w41fCZ1I|tpLM_qhRM}< zZip8^#)5p&V66AAyq4h#c+n{KTZ3c;`8s7b7Vz43q9nGzF(g}^9-~z=znwXt3ax@4Te1kGMbn^|!X|qC+77r`y0B z?fQHf^Me2StqAdOGv244;T3d23%H&3FI8xnbFcCYfoF!;n*wR?%U1dlZ?xK)r9Xb% zJtv$a&q+Lba%1Qgv7T-+y*9{FqzOGt_l{{?NlF_SOf2FXHuD@1mx&=+6}SZO^mXwq zod!&74u%kPzgQWukc;{;D`w!U=QF$LGFe>OskQH)GI%KN`k>whtcgyti+pt1RbYbo zl$Ed1Bni~J#OX~LFb99+4Y!R{@@6pK$XV1V9RF3Xa)=j5?-v;1pIf4pG(hIvHr8k{ zKhzyPbtNz=^29ykE+?Vp_WA5P%AA6k zK2TQwYaodJ`z__zX}#cG?8w>K=yL5g>rVr1oo&gL%B0q&lMAQ7{bi~E2#n)Rg8hS69MRv>c5c{BCe8~MHcLsL(2I-;h4C1MhELqd{=E`p_kG9KhZ`! zTau=CHc+z<@eaX`0P?v%rd8j@TYeoK)x2SNXY6~qoSvDbZPSMrX#zqBFL&UJN%k`R zbTBB;=h>!^K*yjhnw$nBoWV;W7ueLBRRa}p_XqRgz&WduH!HUBE+r~cno2Trd6{n< zLDygbgadQ2mhohsam0nDUyjwSrrkX#1ls&P`p>`Ii4L$fAFG^rq9p|5+PZA(H>Td}Q?Z zGJcv>O)+lSlSn?&r(;m0+^f}V**_;A&EN|ekt*7U50*a6Qmt+r))#!ZnC!H$P*hH} z?Yy;%w`*>8l0)aV8S#6=cqj%U-15iAf`jBEBX@OJt_>r`+->GwV%97^M!m;P{KE^J zxz6bx*IbKm_)BNKcYOY%f!1aXxyJL6VN=##u|i^ht+*r&+yVZ$ zLD|iM?126Noib6G3cTZ9Ga!$Z00klJr~UyJo2Df#*S$8mi%?Sxd4TG>MSw4kqWisG z^=$0X)g^RhVP)Myt#;$|UPbnfYsh5pT2zW!%& z9>(Ao(14=Pi+SnD%iw0?fph||PQeX=I zy9*9raFmYZ(6Aa!xz}7cBl?(;*sq~--5~IIAz4Sz%A(+Kb_=sw2#7}8cB0Dhgqw&* z-ua9#oVz9^6*KQ879OxQ+9Oe!vz5^czsbffzN%wYN8XOXPP3{P2L1H@#ij8(`ywND z{%`^=9~u7tTRHl#4{*f4&rU@0e{Q*tu(5Cey4QP1^sgY@o*Tu+6@>_j-TE&gu(MJT zVN0DtHJCjt6z$h><$5ZIX&@BL%|4w9J3O(;Kw9_N2wd9VJCQl<{G1b=SISi4VWPNB zh~owkmpK!s-aWc|eTKw(Vc7D_po1EIW$>l$0hV8k zzp8fI?!F{DYjCwM6LN#lYc4O_JnQuXbutg?$-X@N<61PX3jNDMN~!22w}sLCETKOC z?By4LVVbVv4z0{&kj*XQGzqNlCT_ZO_ow+_zcBV+Q*J6>{-F%i{#i8`m zp=ETtK4(qS|=@#oik7dw37sPf{Eo(c*>;8q?_`%^1MMBDuIq3vzPvY-@+mNh3y~|-Oo0q*-ZRd)v5!7= zPrwZbDYp%u-jYl+c0qqRzWG(H!q6`8JEHrE-0pISlu6G(Z-OoHk5D-6H&aS;7TqS! z2y14yn>*kVD_=p_mz$EVpnmcO3$h4)^x;U_xTo|;l{w8@0eSJ2(e*5cC<}QH4piEu* z>H_@7S~wMZFlKOKbxrfEG2TMexA_eN3rfqmj8f!$oeXTkW*;Pf{^grRCSSbw8Bu+f zj(E42Tnozwkb%V@>rN&l*2p7;2#ix2(OzG{$&L^4Fovs-erl(k4^O6hvg!heSYg^+1RBmmXU#nrHr7e$Y|B^JbU#Ql5=JshPlB{Zxh z)u=)m6hP*Rd1mp!R=1{8Ay}L-IkyFGDPqdWVsj3hidmcY??~F(zgN3UF9XFjzT!c{ zR{+-GXK-$BNmF2-HwYp_+K-Pye&D|U=vw`skJmr_Vfulrg0UhBJCl6KW`0uZ8X zKi1>8V3h`FeFKQj-ZLJqeebP^>{JQ1&bJ7@-{_TAi((X{cy}|Ds{Eqc&)3cWPUeu##CfZ;KI5LWK6XF zt&9eAFzRJE2KKP5^?<2?ZaY_2oEWY2I!?dYYjKGo(4#u%*=aq>+2e|hrze+?&6tDC z>#kt>qp3*~v-BPlZl{?-*k3vsNC-&28q;F|mvzIT7(80XV$v_*m z&Ri7V9EhOEJ%Tpt9%Y%gqte8ybo_zQ0x>il1VNysX{cMjhBm)ft)W$%EY#64U_a7W zL%zB6s%d6JP@uRUOKx!IkwL^}XEC|K+O0ASi0ie~dpVg}il=#Gbvx{H<*c+dE_m1t z@xG@+{@(HWKc8k@`pN8{m`V*be2@Pl{q!oigdV=P@=w#_lG)i6Ijh3TedipZ`KNTX zJM!x8Te)b-Hr7JLr)4pPumUZ*V9ZrAB4!5ejJ*w|sY3beCQl764J3|JtR=GZ_yY!%9b$)I#F!89~)zRByr6ZPtOMBdG&tg0?$^e(PB)`#ku% zV~pF9er8OMsS8u$mO;n3N@(b>Camd+IRRTH@jZ{k@)t{fROjm#eQwfaG{9kWhzte= z3YP!`ZSK(k?Gqpgvf5*7D(ReqBB*oP&_fykO_M-r7sNZK|K$KR=vUI4(vR2|FMb++ z`vLOv>$DV13s=SU0}XwyMEa|;nHgGc31_~9sp3{*hfhop2Q_EEd% zei3|6rYD^TE2(Pw1;jgeW&;4C6;Hfp5kT{(w4D+p;%KFSg_eMeS+;7^Wm$KgN+;?-8J z`S>foK8rL}t8YsTPa=XdDH{l`H=C3C45HG@Qw+VyLPJ+1muldVmV(-E;u8jCgpOJ3 z5nqL=rkLkW@ZYYjub=XEzc`06iOKrn#l^Aj32Krm|KckQPUHToW!^7tVxW6AUX$gXsgYiLv#s2FFu+Oa;>M&U^k(}Xr$4Hen zvjJ#-rt5u2dre9NGmzj^f{m3{H(k9&F5oWJ4i(y5>QoafEbCOS?;-6lo$3P^P9Q>I zbe2;VR~|J|+d1=V{)RV+UO+%&1`rpdOLrON^hk~J7&335MizCUH)5&y@7)rKA#?>L ziOf4XDbbIq;?+Z?_0|W5RyiiNrhk6Wh%PbQX|3KA-!tt6USUASbrk6L-5W+do(DjIJr-VSK0gvRuCe zg8!fvF3UM_+hoNbub~BE#g%{(E2xhBBEcydhrV4XUTQsaC0#_5s_|-*GVQ zl`!u=m`fk_+)4IIPgx>*9Hg+FGfIx3#mRw$Hh)60lDF83h5>i-1PIYqn^Q`>BW=20 z*ta}i62B!?=Q`R?YlQ>(e7u!5L4cV06l@B0HTJhH^L|*}cpyN@+8pL;S?426$DlY` zQd(2aRZAFk$C6{>2ld^NCR@m#gDaic$Phyel#)ZCGaS}64dwLByL)$KD!f1L(~Gnv z`>t0tUiJUX>UD_CfP&n@O}&LSwnev)J2B_%y`)l;a*Tw+jI9WVT0#}hgynnQhGkY@unIY;O6@i)gI-SYTKi3sZ|}sK`j&SsTEe>w>QV!Ad!w_KvaIv zIC%yb%F8L5ql$fm5XHR!ZGS=Nd5U;La)^IezfXb(Uo*Jfp5N&tJs2rNd*B*Xn7Oyh z#qw1*>#j+==?wi_9o}a((M009QBMQ(=bu=Q(@Xpm!{Ck<(B|09P#5}qpMriq1062Y zUPFKNFnsoSeM>uaR(cB-%#L+Y&MCPhP|w_f0Im%qA;)K4c9ROss#OmffHf@plDVK^ z3hu&vKKBs-o?JmFcFzQw>-SN0>H4GX&t4n(ewjg8-UIhoVhlmGXP*O$kzbLYXFDZGtgfX23aiyrA#-f6rkF^{Qq1PM3EEVi&gkF$oZ)N0p=jSW24k6n^l z7>hkWbG}%cEN(tQOF3l;#-y$KLG=x-+%yu_^U3C)78#!23lEeqzp<7M{Ic{RuDN?H z3L*JP?r?W$8GA-i`WbX1`ZaRCfjy6rqvr4U0p!mZUd7;O`6gO&QAlbV!)T&)Du(Uv z%}7jh6=Ue@B!wP|7K0Tk3~?JozXHbGO${|L?+@OQ<;3VL8FlI$aImp**fM9bfU~7W z7?sB$0de2t5mEbg64S4&Uq-DR%cskE5;K~@B#E7GCt|`pPV(keY&ip)h`iRr+y-O$ z7O_ksevj0obPx-k;{m(E5R5#`x3EI_LRa0D3MKBE0}k;XLlGr#W~dn?_`OSJY1ODN z4dle*Oxa2qRo&=imc(_`-sF15)Q=Vi3{cvRya?f>ne2V7=rM25L`{OT5y77GM zcbSLbRG&X!=xHv7fZYX=edNs7VQqAKY{*!OyHO6_wOZ<)wpnIac)BlV@9XN3OC^?v z8yuNPqTAEbqjP@=zFsD;+dt8JbpG3WM3XhIULOEE)Be7y^iPG@bl>ft{xE&t&>g7% z1T%v=5dny|4Xl0D@DFftc+b^861&G%Q|j!T+%wHqDGAT1SoOVc;SUJ(nSgatU8rCQDA56lPgkQa_pq%4>lWFBC9HF_Q z3#=MFhl3ZN@}1KA{q1MBv94ScqycSydHq0i(&zv)AY`F4%3iHg!6gl zH9GjXpY*CSWZSJnUk)Qtw`$Tn!12sI=rajqC@P`XB&8Ocy3@XXJJNDESjkSgdSwL+ zjqRj!_fCrX=?>rjHu&!Olxtq>y0>sxd0_JCJEX=cY73DF;uhgDKS#`+aiKJaV3`3~$Gr`0~DY0Y;`a@Qbk5WE}rNs1(K}?!h zCPS18yLRpxtHWY5K*w-rs}P2$ocU(t(dI(tV$&n4!r3V)$>V$iSVphG(Ke61x@IA5 znzHMjvu?7+kb{8MFoIYvRdbVvsW)wY0bDM-v8%BRp^as44X{*thQoaqvH4Qun55gk zBEBJDb)-rvVBG|gPA^EL+h(VqL213TR=PEW)fc$|wV;9xGdks|F5mXI>MZzTpSC1fme=>Fh2&Acyjn zmGo!>kQ$@uwEPinoS+laQOk|I!I(wOx5I3yb5RyKFh7FuaG@JuJnHmXnb1!*NCWIH zY%Z(}=jGNi%lrVHp+xI>*|U#6MkQqZn0xoK#oFM#tCNhvgi{-fX0g-x3&GvVm)TuO zSfy?XCi(W?Q?TGnj0Bh_k5a?Uy1=1gqN&tY-|(@jJOJLUm}bU6JLU?$RI9yl4}M0; zO>Hat%dD@BCS7M*`sWho0_7_m0)D-VekW{OIic6S-u@H*`Jv0dzn}C9!6sG}eV7=| z*Zg4URr<2mJp4sN05y4pZ^X*gut><~O@at!2}4INrQ>*UY-MT#2EV=(_LXN*ye;Jyq>vK>WCiL$>Z8~|OIsjWu9lF$=i)tt2@;dJ0yH(I(@CTt_YW}1 z>&a5fQ5D*xwuK9-gzu)vwpF$VlhBDQ{_;Y&&L1aFG)=%;+Xk9D)H94EEFpRYP*_L? z4L3FjtThQmz6=x*Tf;M1^$@Sy>R*oV=&GB{t+i_W=do=TKwT!!;$qilyz2%o^-V?lr!l+We+oPv1GR*US9;DD7m{ zVZCLfkh_hVH{Tw7xH@;N=kDIhv-MvY)GKef_+2EPv;X^z{L`^+_-7>e?{#vGAU}Ra z$UieGTWJf!{#-jEL4o5)?W&L}$2B)DWkfpi4w&u3)_5wBYlrX{il?XXw90HYE@aWF z=woL2SZ3?(^nh>7>%dsba|820% zb&7@qfg~^>3MV_fpzpP>E$suz+_@5={K_Is=aZthg`UsV_r03(rok(`a<*}9axYyv z@Js*d-{mj&%IT|EKO-x18%iC&8g1=00IY-urfG_-5{_~D%LjZ43WntFm1YGZ-DC{L z6f_IE_=`y?os3>9S()`=p!}xLG%|f?YgnMO!{W9SwA$u|wsCq97EQ!FN6(^pPBDFYV-{o0)0%+#=o#Sd;Nfm;OT+0vt2c{o1$kWS zLUWzFs-nBF_d=$5bU9i}^vlS66KT_!y3z3Ip?pID$Q)}iI}De5^L4V7jlC#7FT%f< z$AfxuiP46`T&OHhsp$wvgUCA5U5Ht)bDq6s(Xt4sKVr$y~VGbGur-}-KQ$>qNEm~UM9c(>4 z*Z;hy=Q9`IvY);0b+5I4ksVr2nwn(TR|YJ#K7-N8#SX>$hD(t-W+0kmw)AY9n$d(~bvnLE0w%4S9tP~UaIex%b*Fj~e9>^^80&INe%FQ<&MIFjY-3~_DyZIf~D-&{Wb zEYdL`FJqR*o8^K1Y3j9gURl=KhN(NBU$!aE;vJC#dP4`|nlRAt>0b7xVF;vI-{!U<3>yc9Q@)*L7Z=Fz}yQ<~5Y> zFh8&hdlTAccLN@&Dqtwp8fs?zoW1Dsv62G3C8&f*EBd5?E2^R%yU7tk1VbrWu+(U? z!(j}7$B9o`0!SS=w4OF#U@kWE36X5FC>hOo-9}?7QDQv$4AP3UPe&CpEG6kmQm6(Z zXq#S)&0(j&MJ8o^Jrr2|U_;MrzehZe++qmgSgi(_sPu9qW?-n5yd5oDN^x(i<6zH! z!X=20NN%m)5EO?aOTu)?%`eVH@Ct5n6Ds-~$x#B1vgWeai?Iuf+LG0EYK{BLE^_b7 zOM}}s^ff%lbAHu?{_}@8`+%3jpH{^NLKp zkKsORDqIT<<(Y)X&kV#1$x(S4CH46=yO@K*=jn1mvFnOcK98>?2Ma+!g%8;$HwU85XfWV0@?(kdsYbRQ1#cQ+PonxEPA1P{#Od+qQpxXQ3| z_h?s0E*Sb!OP5two03M(S^$@gN!Y4vO$h;>oI6v~_EMh^GU3)NB#M^Wj8l>jo#yTz z?YAbz2r!q?zj3}`q-j4CV`H^+@B~eeX%A z5Lu$Ne~I3YU%u|yqrG9nB??EFQtGt5!h_5-09RW{-sKpvnMx6-HplxVskFC?atd9n z$`XmbI~8?ZoT;?Rz&!r8=c_|@4bstI*ATtMWLIMrmZoI^7u_qRT7U>Yl@LWTrQl^P zs+Dz^#%W4rGA@Z^tjmLnRUEm+1sC-19zjwZ+`Hm7IA-k7T0ran~=ttc6!-3 zF!A>__=iu^UpvizN+;wq5;M*J+%28TXt|LeQWkz>M`4#?BApAQSO45C8JM!HWYTMu z=F8gSowim-7C?T~g+tjPvJ(Q$PSYqwW(#UzR4*@NzXdul>bYrT&q3Gtq51iSFif1w zsU3aBIk~yiVqsHQRnOzDV)IBLKrN7cIkI!+N&b*w={XH!FM1LM@SqsnBFL>_eyUgJ zD0Bs46lE4EbJnAn*2)JLS!-d}CJqLU_1^a@N$nQ+IbS=-T1pgr)14i*?MRyl7J zwPqnTc+sEH-;QRafca@W1_f{yH(QVb0D=~jI7D}06I5@}z`9WeTP!QKcG>IRUAq_$ zl#^w{Rzw6Yg3`jwY#_MO_PPox7dZWaP9PE_ZoS zf?Uv%3+AJyv-3gbV0|EsATRDU>cOiEok7Y4*`nh7$~Nlzn=_6tYLDog5Oa27lT>pl zcs9oXeWu_~?OL(^ai{IDO;RBNNUcM#==(Ut^$w_m=De`zc7!=u9Qq-A3&vn>5$5qY z+?m1X1L=*oHvAmxmP=ydjWtJ&gTH)Q{ z>K($@P3E3Ssn!(&-oE4Bt7`^=Ss?%pfADucDcBNspbV03hsuFf&xCU&C zKSi@{C)-BaU`VF6-P)E5xjWpR@uVbs)|!;Q3F|gdUk3I4o7?3-9kvY#a$a?9dhKZ% zV_f{jY?+c^E_-u%nE6RP*aS7h5LhegS5V^eF=-=OV!NQk@%lhQU^$#TJKRivBsT!Cf_z~?J)1Dpa;_MKo|mx3!{d#8rl6gUE$=-QBY5Hh@Do?#Deh|SfJV) zrXcDTK&BRWz=XNF-~DbKT)!Lkz^uLv#At%{4owD+I4|41&d^6N#z48sNG^`dwn|WZqID z`W#A};u%>SXvi5g=C6lk8o34z;5&#=O-*5_1tV=~%~&^n8VAd0q%Z9+^!_7~%G{{~ zmt%gY&+a4oJmrqw$YCl7&Q#~59HC?x8AZ56$jC;y&@>i1NtfN&2YWPL_J*?p!{bL@ z{r0nBZQvKMM`QEV5I4QunjVdZ!v9Ix)SSw5DAHe(?td|4bwaAuzP~?=Y@RE1nh!ch zw+#ARc&sYO%uxP$siD{=AsH#^{Q;V}woJ-Bp}SY#Gf{#!sv*CKtlTn-X#du$YKy0U z;}+ApysVntNp@QBNPqR&m`sBH?6&HoCJ(6;zr-YiZg3)?l}*TZV2 zbea?4xs%@4?C#Vk=9XpB>(M@2M4Ui_7@w+Kda+KV+ zHukyoT@c$N^p>XWvG5rX=b3GSAeyWe@JsGH}GdqrC;!$>eB4e;NNH5f4m79yFNZ7HR_TrHz0-g&0mG=w`{mJ z)j#Ymagz+6nPrd%N2E6-Lp({$5oq2;BQm+g9(Gsp2~oLS_#S*0d9t~PEH%yYpRP<4O34-;*iVW&VNOp#9VEcO`J0eM zvhRa+w_}uuOXjW5PT@!Qu>}rt5^L(o9dGy*j>&m;y+N)M@Wt12Bd$&=9_>QY1Ptz#+ z3}y_5V8|@A5*mO((LO{~qlEz<2%;9l%Y1-hsMF_K6GO(bBu(hLU%^ANiM-;14o(+! zz+`8%-C2iF22Dqdca^7W=^=PYHZ4M@%hKWG}xaEwZ zE>#-;v96Ct^j22FqRi=WB?&0gco$$>CJA`@yxvHlhC$s1Y-Z+AmV0JBYrxwVMv^$R zbk~3dJ}!?*YjnJ2%YeeH&jfy!&bL4Y`9!3I@x}NogFLwNYsesHZphdI8RV%R;C~fI zbN{0_iXE~KYz{$N?~8YI*MbC$KX+b7=US8GXrxC$_sOvvwdU1m*w7DbxV$s{S@4lY zG?eEX7?Fa`MdeEG|@r5 zM>8bpP@v7)9PER$5BkzayT(R(E>Cabo!L@Y2k(rpOyGr4RJ<1{okZ&bvFb9(4826r zJ4eIDS#VuP0;@ZeAeiGOYvd3gVoMNL^eJ$6c%}LVAQRPp|sZujAk|CybVi(5{=s=8aSjDn;rV(=rwE1F}FoYYh@8HA_ znH*f>&+DhonG4K0ImitwYA)iot{6kwXoR)D+&(?AmxWF!UwfIl>RvV_1kb}6u|Pr_ zku^oCBQGiZ4OTr%P!opH$;5#}fhct=8FRf(LWw5D<(o?YKZ&BhKmO7tgiG!pfK0 zluTxNn{aa|kAhvuX;bKsi#MN+p#CC>4L2E$rYs5!kEE3yKKJ&=)D?eM0{)YFIV&@r zg0HDBKfb2^LA~tAb&Q%$nfRA_`B-6Rv#LGgF02yC%QCDYbD??(y8^$l;g;dUkD?QP zl-w%lK2Krj%$>iD8)RZVIWLJaWnaQA?-wPCe!4r*wfV) zHav8DAMTkdsq>o=<#UHf#5o(9cG3yC~lZ{GsH%d2CR(iq} z))s_o_2WHA7U<6=ia$J>2;D*=Kx@6K{eP8y^$*{fd#W{Sj#xwg#oj`R*^Y~IkT!Qa0h5W z;q^7@fC!9dn+op8_B4XZta^ego^1ktptW{r#g56Ie#`6_JCGV%Mnp&}QeVFaju^)( zjCHlQOVZftw0nrq+@_6c>{}f8ng811R^u2_#~`^_2Mhg5SXfp7Y~b}{CWO@9=;@(b zVeXe-dWD9Wur48?G}R6Ll{z*O^5QWsJM}utJ{$<<*Xbb-0QKT+&RTO$dBVIOG!ntq zAnfvZU!SJo1KVG{d&&;fe-8@`jz|4Z6U#|>#*TkHWB(w-1?90875pW`osBnvIznOQ z`nnIVCyyL#b64NV>xU@$cw2PjaRfr!$Ky2wh0^evXM=q?-J$jijxQgu;z^CpaB2j$ z^V9GL>_N?zyN{AXnk^P=8GZJeG*`?FZJezHim8Uiy=*>YaX6B~_ z!xCvvR%i)vI{mb%oRlCH=5qwgJ=0ca25-2m-b9m!d;#Nki;pLIBW~Rl=SyFT%U$u^ z7-(T^H_y2AR^+=yp8rA;Byzt733;AM6DMgl5eHON5$l7x?1v>(fQ}+pm+`l<0Yu)G8Ix_v~{p5kXVSvwCXv7@jT=K9eW-7l^%?c zgtf6`=+!>`C_?@Ro@g}zWE9z7v&|4C^}3ql2dufn0OVMYxOfC%fjI?DxLnuJZu%Ll z#3NgRx@(*_AT7_BPrIA-w6^iypoyBq7^-(86q3;wv$?d`#@H8ECqKucf&AR5w(lW* zF~E>s1`)(dk`vl?cnDF5F{78RHcgz?Rv0hx2@BNomXBjrpMEKik3|Qwgjh2f5jk6? zv*hP)mkpywLg%B#u@^0Rg5YteDTL05rYFmDLiF?o z`eT-EyeJ4=b?%p2@k{@wt44DS&iqSG6a3dkkD$H(Hbkt0EZu^L3R=eVElG5?)v^y9 zvg4k+w-h?Eo~i6uIffVAUq7rgNRX1qvlzws$NZKV+DVP<18RkRSw=}zyO_eJviU~C zCG>!ru;E0dG{$0nIkVm{d5@7>_qYp;tWfib1=H-pXT8uHzBIpR02^|nu=zEo zn^xvZ&zmQaw3Ii+B80ib>SU4e@<%D0nFOoxj-$!L>?(i?t{@u$>X~GTW8g1!d~Yu#!AA836tI=Siddids(|wNy)>>P7cWRR3ey=6mhp@F69GKqH zsuyvCFZDaG5QWpP7ou`_xr~EDMac)RteTgq<`Rh}E+=5aEzBJ5-uijsHB88L-R0ohX+u4S4JyO^ z4&Iw!(5KzcIuv$z&g3|8!?%F_tOk;mjP)TpAskl_t_wuZ?Wn>DS$TN;v*#Do4U^oQ zu$19FCalWzT(hlWnLb!GxA{vGdPM@1x_lb5jJHn>2bp@vQGoR1M+o6?s*$x5LdPI$ z12opd#mRJHn3+HCacU#cdyGuEk3s@T^~?J1S4@~DjF6!G@pVABl0HE+y*`fZV40`$ zME=PzGy$fEc$88U0#k~>3$m+)b5DWeU4#;e)SU#!Fa&A8ezk2D=>Bq?QZcC z1cp$Y(T7}2+>><i}Tmya(Ay#hxV%I;}|j6-z6+6JWg zYFelMmmX0mck4&iwV3#xs!UscE4c6;XjH;xlAdB7s1)?wP(SqVh&lI-9aO!xR;#ZG z-@gt2u_z~Qs`iUrbp`WMk0qwfd{#2P2U%|BwG$)8Ldv|yD}>_1=)b(eBUXwLKTdr; zvVU2dMvI>6bKYf9jzt_L+jio=3ul zitIKh6kQHvdIk>MYX*uB6pe!Pz)s&T^Ap+V>oqNE(*a&|n2A0&M{NDNa!aV*DP{nK z&7o_=R|_OZq_&S)e{Ev=HnI<$f^A%zC0hM^juV4#h{l_o#;`kaUUb9Tp2 z4I-Y)!^}aiYYwC`CO5PZpKR0=BT-{oQ?<|3w<5wyC_}ICal&bqI+!~i5>jg#OO3Q$ zMYG75fe+0p0BP0+VazQ37+&Q1t=Gibull}7|LK<#QJ_-Ys(;Lu4a>b~Sw7c!QqRL& zr6*^QlTeWkSI8QF2hOYb0P=Hq#QUFWFT0gRo&DDBx3R`As81hWeERiouMGa~{?JTA z)gQxn|5TK)hmk1!xOAU{qph4hWyI5Radu*7p$RLo{A4;4|3t!$2GaWEkkTt2 zM|p>{t@27qA&Ji%tj4>D;0F|7S)9m4n1u%Kx5j^c_FzA(b2Bhylr$wJOd%Ke_`MvP zop-`#EK?l9+|$cM=6Cy|*7R62_MxN*;hrmdz7p-bRTnvJ+JTH*v!@ICJ56<5e~n8n zEqXeXLs}EVcT@s}mRoNaK%4;qjNal@>An`Y{Je6clEZN|&T>M%x(xCUL15z<6Brc+kUuq4!3 z_2@jVgc^5R&1>6$_bxuqFW%vtzIm%|B{)L>gQd?7 zZNyYWPY9TsUOS97^+u|=Y3(Rx2hxr&BlI#Zzq}L@&4WRR6*jEaQvXq+#`&JJT1bjj zGFxG{1UY9NUs;KbU4~D_L9&e^khl|wJS%|oVxVz+r|Yi>$GjLza5YCM4Pvmb-yxor zIE9vmZqv5;_NH%xTUWcm9Z~IxRCDDU>=KV3n`MVkBKV6F--Ry?wkINvz-!L};&>qXr{J-&_&sd~_?4#Hy zMpwgQ1(lg}D&>aqPr}qX$UHbs+ldYrycw2cdB*75xHq0@Me-}PtTK4gSq8mra4EiD z^2ulVCS0bAxZ0?%`ldr;<+7ZhgObDCLm}noc4+@`@7rJJnv!GWqndR7E!*W-Qxu7> zOLkg*5UYb01@E_*e^TK1NJ2PtA+{Fp+HfhM*y>BO#iyQKOp)~m)uvQEvcUpV>}jQd zfDj63jwMs$EbIJ)%IOm4Ups#Oauqr1($$3#5OuH*;Y!r*wt;xZm^I27T7yq+R7Lo{ zF@axeW--a(b1b}Q-?Z8Vu2)VKXA{T`Mmi^zhM`KpTfGoJ8jz?(o@jO*l0n+%ZPerI zxpTaJtyt5)1hQ@E1l|xLXhfv!%y`f>Up=1H&bq-yw?@prW2_I-G5H%r}e+W@0PY$QdT`J+s zD?=}yt1}3fPzD6bUQa5C&3E&$0Kho|K6h!09K_@g-N@2}w=!eTt92?PhP=7g=4pI& z@Pd8xNFmV`Kfw2rUftSdGdNW(IAWdOWqw$Vno%>pYP@we+Bi}L#J=f%x+htyz^PaQ;w$6 z$y?jp(d;(_G$h&Q+224KB#0W~&tcDJZ(ZPT5{pZV{z#<-wyc6^ZhoS~&|sdkD5}V( zz+sD?R~29q0Kt3)h15U{o<4{x9MA)m(u5E{Af<~r;^aEjd>vnIr|A`bbu# z4pRrY^$l5xHGNARTA1Y))zE} zzNzUoEae-5gTd-Mtk=F`JTJh==PpBSx(SFn^d#uY9At|qeI9Y4`8=5=n1bP-&y>UG z5z62Jp@luFF55JrF2{m!8$GAjfpeLRx7_7Ua#V`6VnNGy1(!)l(}^qQT&={pO7}Vq zh!>@tsKo!km$(3tw{JN|Zw(!1s}y;~h`GcV^*P&A6nLeZv*RE$w<=5GuTz_~t6naW z*bgyx;p(|myj82E#s@CFPJ~TczcEJhdDaTcBgch2 zYnl%D-HZY3Ah0`i2)$i7g8PYOYmESrPU;e0CiE%j@?~z@eZl#+tB?&kjv$nr9z@^;*}$>^o+PUHM@$ z-tV!Su+pa#Uz{DAjpa;TpOeiD(DXAMusL97eTK%0x@jKr)b5!x@70~AEkXFb%P*Y_dhp4$ zX)klH3$n<9tVc)T!tBUWm0@<-#l?4&HIp)}O*pUxAMAhg+V{Ud@=1hx^;J*6Xf|9e;f&p-w3GAquGVbIACN0FEZ^Ml>Su zEWsQ=(sKt=VYk~8YC|QI`qR|@KlojY$@hC3S7PCMJR!(z`^jjvVeC{KNxxkOn`dA# ziUP)7qkTBT+$$(VSDS(9(hhcl`w64pg{_7O4iKG8FC&-lOhAk8!rfMV+wRSQ#n4?Q zgnm7&ZB~n6XjuAFgBT^XH5*hib5|zwo!0Rd`}L{yozp z;yL(3sQTNK_unOwJ%9H$jNVBe4asv|)onA-DphIPk_Pij@WscVXp;K8bZtwy@y}PD z)yq3cCtzFBvE?NN#*VCusl||PU25gMf&do}-TKziP33ya%T7}r<7>bjcNt&#h1KW6 zbyj6(VHpI*l82%b#0VTZ{%>HCkdz<`wFt98IibV4hbeAvn#?ASi`(z&VedH=k% z*!N!cTBQ-+4^{YTA!K9C1XublZ}G*neL~4$(-Eo<2#dwXQyx*px~-I5`mVn^{shZr z)`pG5SDxEc=ruTFXxw8u919T&own-Iuj9ab`B?P2A0?z6DZ#(oK!Gn8kNIRvke_PN zu#=z8K89ZaW#tt=209E&Fz5Pm(CCGVUaM;m-ptf|`;BM6{ltY)x}YIGhHq>(R9|Ry zeMzfePSlmea0|2u-D`5$gh~j|EilIB3haUt(03(b9iYs#((=}V)p&70=wYz;;3Qq2 z3z<7@yw$K7$#Qg{K8tomWQdqX;&Q~uJ{hL<*i8qG3&DJJ|H64hvXXSmaow}3Y~P_S zuY33mJ+A=$$v9o~%KAbM+|fpy0OrMgw)>Ph1lKrG3e~IoP6_btWCxsZevJR4YzP@8 zN`;HuR8X|=XTYMa$YU&6oGljRnF+)YvJ*Bb#DVm9x>^fOe)JdWuqme442+Sr!LD(J zFgfqJ+?<#`+il5S6J+9qXKM$v4{gDawxC}8{DXT{Pa82LjD@2vssT^q!DMKwf|a5f z(tJ|di2liC*wsKy3K0CRkHtkS#%Eyl7SW5j`Z2=D0KI4?)bHg(;uht=qF)CMIp#V* z0<>M(p${h3Q380fgVCM7xSIh6(dGwbIZ-|->a>K^1Z7{q_Lslh79>8wQdXo6Q=&wt z;i78yyGGA@klJ=R!nJDQulIL6-T7Ce%IvrC|NHd&Pk)&GkFVh&s{Gd>`tLepN8aDR zrdNHErHFk*Y!<7hb$QRDJlp1m%WFYU4 zKh7N?`hL6Z1k_auHo#g>FuQdZI)<6B@0cAW`UL%rIk z0?;a<4>G{m#-_#2OTl~&wC!a+IY!Fg$H`701zT?G)sFfG>73I%$~^kVjF0ixMgOL<%kp(xb^c0sA17@46*U2oco2-Vm(hUFf%{o_yErl-zjCB&ZX9IZIHG{? zuQjk}ji!#fSP#~5!_K%GU)X-Sx$#7&X)2(1u@AsGkH$z&EV6kVHl*jgLBuIoAmQP` z{Ig^_r4Vj zi_o?|eVpIOlsGo1&$d_()LEPzp7kwr#IPD151K%rF_5P_fo(`tJ8h|^&zs(qpryxV zPwr*q4XC$trkvhb66y(Hjqu*T~=Mz7+Ac zUG|2_8%EiB8F{e}%VemNA)$=3!gY&{Qo3Hjc6^VgJTjN3X~)m`<@2|L+kajd6yrDp z6OMnOVp85y?UYXnu8BDlZXc5HsBG%`L;o*y8(mn5*fW}K^FiW?)qBgB$yZ{| zB%a)JXYcZDV=}AUP|B5f+&8M?R)Ue;5+E#Y2&CUOTe5Ggyyaw&KEqOsjCE{&xP%Z2 z$#fH!V98dcf7+%J+xEhKkHi#|8qHSP@$#mp$Vq$SPlGZ(6k6K%LC$!}GCfhSY#=*J z>BCK`_TPQ*Wu&YDd-(;t-%i)I+bhqle-+g?!+P6WY>)*Rbwd{-e&ZaUC0Mi)mX=2} znd_t%-onP-Q$u+^yLX)L{ty~WVK;4d-d6R>TN3IkO{q8KJD~8{C6Vz>?oXmZU5a=C zC~yuBM=A7Y)uAq6a@f=tq^9$APa__vWii-v%Q=h;Xu8c%=ZKkr2gJty70rByTXaQ_ z`ymC1>^~i2WP!^`c=q_vs&-BryQ82sjINVK|`(x(qJ_FL+r6f(wg;_40Dto>H9!YlHAlqk>X?6x`L@o+1O&^q7Z zUM5hu3-L3&BIE){llbUlF=a-AV^9CawJ@Nf6@i3hZ9wHCwg0ba zvb$?uJ*oAGj2#qXw0kcOYZC-*TN@~KUc#8$#=2rIl?Bsmde8wVHpMiH+SW%1 zIc-0Uj#nzgvT>LgQTu8F-G%w$f$xJ48Hl}@p;8H7Jxl9esJqgv%Q_uoP zLTdTAE$FQ74SJhSUc$~&{*B8iN`@ph;R^2S>FLSa=PllIu&DmmZ-4!HW=3##RWuMN(56DWs53vJ OG<~%pHgs6d@c#hL60~pt literal 0 HcmV?d00001 From f643403a3dd2b5d48fa735a68c80334f123853c9 Mon Sep 17 00:00:00 2001 From: Adam Hines Date: Tue, 28 Nov 2023 15:21:41 +1000 Subject: [PATCH 55/69] Update README.md --- README.md | 18 ++++++++++++------ 1 file changed, 12 insertions(+), 6 deletions(-) diff --git a/README.md b/README.md index 3647da0..bef9aa9 100644 --- a/README.md +++ b/README.md @@ -82,17 +82,20 @@ VPRTempo was developed and tested using the [Nordland](https://webdiis.unizar.es To simplify first usage, we have set the defaults in `VPRTempo.py` to train and test on a small subset of Nordland data. We recommend [downloading Nordland](https://webdiis.unizar.es/~jmfacil/pr-nordland/#download-dataset) and using the `./src/nordland.py` script to unzip and organize the images into the correct file and naming structure. -### Custom datasets For convenience, all data should be organised in the `./dataset` folder in the following way in order to train the network on multiple traversals of the same location. ``` --dataset - |--traversal_1 - |--traversal_2 - |-- ... - |--test_traversal + |--summer + |--spring + |--fall + |--winter ``` -Running `nordland.py` script will automatically do this for you. +### Custom Datasets +To define your own custom dataset to use with VPRTempo, you will need to follow the conventions for [PyTorch Datasets & Dataloaders](https://pytorch.org/tutorials/beginner/basics/data_tutorial.html). We provide a simple script `./dataset/custom_dataset.py` which will rename images in user defined directories and generate the necessary `.csv` file to load into VPRTempo. + +To learn how to use custom datasets, please see the [CustomDatasets.ipynb](https://github.com/AdamDHines/VPRTempo-quant/tree/main/tutorials) tutorial. + ## Usage Running VPRTempo and VPRTempoQuant is handlded by `main.py`, which can be operated either through the command terminal or directly running the script. See below for more details. ### Prerequisites @@ -149,5 +152,8 @@ python main.py --train_new_model --quantize Similarly above, if you wish to run the training through an IDE then change the `bool` flag for `train_new_model` to `True`. +## Tutorials +We provide a series of Jupyter Notebook [tutorials](https://github.com/AdamDHines/VPRTempo-quant/tree/main/tutorials) that go through the basic operations and logic for VPRTempo and VPRTempoQuant. + ## Issues, bugs, and feature requests If you encounter problems whilst running the code or if you have a suggestion for a feature or improvement, please report it as an [issue](https://github.com/QVPR/VPRTempo/issues). From aa664e31ce9393b463a43b0e530ccfb1277f7e43 Mon Sep 17 00:00:00 2001 From: Adam Hines Date: Tue, 28 Nov 2023 16:25:56 +1000 Subject: [PATCH 56/69] Adding new weights for basic tutorial to git lfs From 046a1f051615ce47f20a68cf364a89017872e72e Mon Sep 17 00:00:00 2001 From: Adam Hines Date: Tue, 28 Nov 2023 16:28:30 +1000 Subject: [PATCH 57/69] Removed old files From a606c7b4203cace11c568c58901b4d3cdfdef543 Mon Sep 17 00:00:00 2001 From: Adam Hines Date: Tue, 28 Nov 2023 16:34:48 +1000 Subject: [PATCH 58/69] Remove old files --- tutorials/mats/0_basicdemo/summer.png | Bin 309004 -> 0 bytes tutorials/mats/1_basicdemoquant/summer.png | Bin 309004 -> 0 bytes 2 files changed, 0 insertions(+), 0 deletions(-) delete mode 100644 tutorials/mats/0_basicdemo/summer.png delete mode 100644 tutorials/mats/1_basicdemoquant/summer.png diff --git a/tutorials/mats/0_basicdemo/summer.png b/tutorials/mats/0_basicdemo/summer.png deleted file mode 100644 index 72f953c56a133de6c6c65c6ff4259b9fc22bf6cd..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 309004 zcmV*6Ky$x|P)H0c z57o^dzqWvAqx{=Qil7WnKH{`VP>ShE7yfW0#@ortYuJKShC+d?DZ-9Pva-)y^Aba6aAbcT9_zmlC55HB|=o}j8 z`Zd_~>lf(9uOX=cU+Ny}M|BPMiOXL?@C@w(eIVF?pAEdq_nsl~uDXZd>w+IM{^qM1 z;Rpc70XQbKf2wUoRo1n^RS;}c)O;u5t$a`Uw-($F_k?2$3XU_MYumrnbr`Cu@2slt zsBY-2ZtB8+I#){naxPh-iFAW=S#k1AHJxTCDd`@~c*m(NB>dCt=4_|+J z@Tvmz_sjD8FUs#d|9JP=hucry-Fp1?=A$<^9==9h`}-y6>irj}%YVPPbpJW%%7d4n zs}EmYd-Ur1*cTS(PaL(do zn|AHpuxH2m-P?DbJiO`9-X+^Mt=_wH?VjCBw``t0e_>(i#GJzX+@gZw$;F`YlL{wJ zFU`zP^(IGpQ^R6XLOsa=5lQ}$X+bH4-i+eZ_-t={R$NM6a$ZSRYIZ_wYFJcakSE?R zB5rJWR6wZ5FDz?>CI&kJ zj0`3biIKtoR{#@hjk_85L;!>6ph?G2eqbd4BZE<}-3-S;v44of0St$DCx8tS6M*s9 z^#5l7`=YFG`ubMiAjr5gfEK}kkWg>W0pN~-A#tl_21l;}V50Bv04BaV0qja*{<}f| z^B)X}!nvpji{_C+h#DB z01Sr|>j2Ww^|i4Z^{wd#siygd_$QM8P4u5-{+H>K16Kem3`+nLERnthImE3&Uld;D z42Eq)uOKdbO!=HB{M2xg0s08{6wlN629CgA8ee^?BV;0Rfu_J(6utz9?(hIcY{OF# zfRVuj;74yNk--RH5CHhj)As;iWbpL|uZX@^?mb5U19}m4xB-`!{{|Sp09}3f5@8A8 z$RI(BjW z=H1IyZCbs4^O_A?R&U?9c>T(G>z0CMty}P%1unojI#lllh|;>AT+@o!%hc0ybpE- zFo*!GWgQS*MaNUlT|AP~KN~)Y31cm^IOLD{QME~`1z4-q42KvJv%h$V|K9)@Huw?Y z|2qH!dQojX{r^h?~ zg#k$X>j>G;*bD&EuZ4avxZifR*V#+YiNbC5Ytg|Kc9u3k7{*Tum?Tm<0nFKKN3R87 zdUg3u;QjRKTYEtGKFi>g$OtN6nvp4Q-J#cj0w!N!1?OeHb3#Zz}6KdT|4Y>l&2iR+s}AWdN9K7zTd>{7Cd-I2wX+9Ru}(YW>dVQ3q?OdT|xNJP2y;9s)IW4K;QSqUcbF^d$%EZI^NXkLw`2fVsvo3d9s`oWmec)D03L#8 zK>E_Vh4-Mo6aC-Bzg4FhrT+{1r@%b~MT6P;A4mN~;Gd$YV*oCjI|p03hJ?BYzW*4M zKRk5`0$)BqMHYV`dA5yzcRVdH&H(78fsV*a1RIbK5s07#s&SDqrJK;C5)L_l1$P@d z&|yfm+T%WL3uzavKtOAYS_gwMl8bSJZp@0l~0=xe|j0Q~svXJ&#c9=!Sl z00yB6#wau}*ub!~yf1XH_leYFjPwexsf9>Jb4)OH+F}FAL|+s>5ChH#V6wj=1};ws znDKpr=skPuA?VEQho^5nIC1Uv-c#o{?kQWp>%h)^M^~-izIf@1nX~_zIDKOAwO zO{n zM~!&>sSd?S%!AUjVZ@~g!vx^}C5D|@Vax}koX5vu7|dhT%-?XF_c|Ol-eewsHSEP5 zfYuDy{q#Wfa){oxA0TJm*Y1FY;FGcsXdR4@xE#PlUrXBlB5@rgRsc50hw!5?uP^#? zr^`((_qfh%u3)f5T+#p!gBu}n#4U#_(wCn)ke&5~TTUj*$2-w$0ND7=xB}QUNw02d z`vHGzRIOAU{Pi`GnK3mmY@JUSl;tLv6I#l7wlQEZxS{i>oxc6fr}dQsMgS`}JkSpe zCTT-FWQ3q)4p?L;@Odayt^*H!6ilM8n#U5HL4IeX%1LPcCxHJo`fgi)4z>0Cf?rNY z->=U8AxroZ#Zv?w7^gr5zC-@f$Y6v$y&U2h_M-_#`^()e2Q5+A05DuqYL*hf1mG%o zU8yhH_oKcv!k(_r4e-((lqyE(qKM_3zVL)-*(qku;cfU}!wq8y8Ug(14P1VH__`7R zjDcumu#pT#3{wu6C0rHufWe4i+#n>AIYwJdIb9A~61(-ywMVZ}Jmbq9FxX#oz@Uq_ zpPaw>=+w=>Ph7u;06u-=@8ehQ96Wt-!|sDy_m&+wb8+{9!wZ(KES)$hzpyAPKP#sw z2lKn*3eywPy;%jx*+r=(lX9lc9G_Q`5uX+b==COtqjLoTI3uF{L1EsppwQ?5pf6b7 z*p$eG^cVmzdSXvp5IhR(a(JvC+)Z3Yjs>S15gioj@rR9&h|$1ZP*~JR!1IV#6}2Fa zVJ=^BX|lp-g2@NF#-fKe#8i`o8~oha$w;?~g48URK=`p3Ut^F@H{G7YSnStv~uwl2n80R;gu2GugnwKT?nt=-YFURT93}?oI z7V16-;2QX&g9Md(xh>{a*eKD`e~2Lizy^a6!+2-JoBdp5kbT}>?tq5}Fn7a-G>p*` z%iORgu^|jTBY>&=ja4bi_tw=9r-{y>l!`sDfC1;U`Y&$nHKany?LF|EaDFMy-uedG z`v*G)hB^m-VGdhXlL^r&Mf<=|D>z{IK6^#!MnhLm1N>3w42GSoQ`E{T+tk07npW}u z3v{HMv`p5jq#ISF!ljH6!hx}#U-Hl~3X{ReVBl^w92VgDb-4SJu)l2;4eg&AJ3cpe zRW^0Pc6ogp$FLE0=E8>?No&01J{ZMA&;Vd$Fb1N5#N>lPlnh1;gUAg7gMp(6R3Izm zTse1F_2pYrSAbNFR@bN2mcOO50_`;2|ckiFRefP+v>)?I& z96PoD{^QDOMqSuW)3H#I@+$EPV`blkvuB_n2M{N4w$^Jlkr;a@HUW1+{LqLtTfT56kQ}8 z;1VAbZpETAkcROOPG8Deq4#wHm}jij5n0#kV(qSonX{B69{N>~S(eZ6QYI{w;!;Ov zR`JAR(Hgy~>=`T+ZeSkQiZeUBxFKY)f-c)uXAeIH<%va~0-pw%000mGNklpNI^@LQX#_3B8Hq0@X&h+;qh6%&Et1M z$@0do9x3_PVP$ULJNrp(-Gl8vhUi31n%zO}afJZ7@Mfgi!SaGHhx41>!N%@h5J0!F zyT87(w^p7oVZ@?dCnLm$4o$|yGcpX**!*1q~u|E9X}?boLFH7!6^04*T)V_oZq+VAha zHG|+LxP)6_5A25x*n>Ms#vWdHMHU%1a1Y%2x~c(QngbZ?pA7+qfxZM_txuE>MiP@7 z1^@#-k--wc3a%9RB?fa6i-7RW2Urh9ZW!yfC_v4xG7<~=UVZomg#ecR`zaC~E-&AG zdPO9FAMZbXdDqF)r*7RjapOkW#f$sToZoxu?Diu^51u=J>gwgPGp81=T3$M1YGzS( zPHBGe^a+#aP8(O4otTl7m>L60O82B@MJHu>fW&YalN^NJ7ue~E2>|;G7>-Q}@g@d? zfVI(aV2i_ny9~hops2(kAa`V9kT*3fKEneW$?4Jg1ft0Y6NzzyXNZmX zGi7;+l!o7R#GlFRx_D~?+Z@1jmcUb1RN+bgsO0aBZThhE>GY|F6TkzeR1(@MB10Kf z;&>CLu0h&?i9<7S7ca%Zy2q@XQW)kX$GT;RnP5d<6arXk2mwqRZeeOGSgqgz^zF7~ zJ=JmCsxva>3%~?jJiMwZXekPc`byRN!Z4NXsH!4qUl7CU%t;5RePLKKm_xJ|v!|@y z-U(*Q1k+Wm z`L*srdaYfr6?TSaK6U;6kt^4>96q|~@PX|oj%+)Ac-QIUyHB0kbNckEo!eIL+P-1W zwq={vOr0}r%IvB6r3HB<`6W|J;W8;RIXNpOJ~cKj#T%Ov5t9^#_>4&w_BSRW2tW&# zH!Ny&c=Q;!gzd;!|EPqJ__WBR%s6jyWHfLW6ep6q2;hi#zp&Ubo`k^k{P==NnK>n? ziOslY@bk)iMqXrp? ztvY93sKpzsod8xf-apKWBs!W8C8 z9K$RkZHuKdvumR-WmpXW^Rz1=jd#tF{k0r0D<*f=lM|#}7(6uO1h8%kmM|V1;!Qi+K%{)te-P(%ge$XA$oaLMT2h|B8C@u^ROFLzN-ik9t<2?hhLPSC!wbsDAnB zE9v#;8X~lC;qn!EGME~Z2*3t|b#Kzgd(XiHzb6w+nP3DkGMGZp$X!IQ6Trk^3QbE4 zV=(!dQAACKSc3Tl6<)!k;CW77z5_ab@z&AvH})Jmvvk9@sf!m)oIh{c@`dv^u3ocu z_v$^nR_)%tx*0f52y zCT2yY=ETRRM|t9cM7=aBDj+y~Oi0A&;P6p_p+X~`fA|XG0CvUjTkBL#w5%C5St2h2 zB>wgtRPLybHq7xbCYaOLnLy>aSPBqN3rT#O3 zeSKKN5Z8({SfAN$!QPKiQbc=r-vwFWmLI=#V%X-ToHh$3Le_o495@+FZA+}2#|hwm zf-W9d71SAw`Rnr7vZ9NuGBW_o?UcN9Y38;X$@C>s(8vMvZW&%c$18C-gQ;lNo>Q=@ zcm$`vcljbQ%MJG#VdP={3dS556g|oSx#5F(uNQ7J`kJUF^rE$;ZNMt?!Tk=wO)3kk zPR08B+WUG{z(fCv=o8uEF3hGQZm}&2MDIaFl|{MrK&!o9i>E5U#Ug#t>>_%rnma&Z zTgEC7!$4n=GLZCbfYa8_0RXTx!F{cL15N-_839#P;HQ8;B8_&zp9h?WVJer`B$u;s zB4CawL#%iVEClYB!@>63^AFW11G>k}fGq%%3C2vY0bmf(_rk5mDDzIITj6LGRB3o) zAKZam!ta5^lELN73Ufp3S|-hVleon+WPnN^H!Z)*6024g*_j5eZ|^sZqqD1+BaNJs z25?Vx(@%21JiN?#Y-h83-I*(co&AnR37Bg=ngJO6EJjw?>A;LbJb@W4G7nd}hBvLj zRrY2i-reg=GaCTLH(*Z>50YF>Fb6P~QG`W?m_pD-`H!;>%W%dt(aG7hg6CVrX5_Rg zsg)!~7#kRNOz;>k+U(@3vnk6}hDGL>C$tk3-IKw3GMWv*zxsr5HkK-YQnRt>RE$W^ ze>0-m!2bM*Tf|=H;4ckeE3AS5#&RknDj+|UnupUM6TQOze((AU#@)cAOf&Zg=MT!*onmD24Jfq+HQhB7`;i< zm2~;;vrBiLk}lqULIMV#yYUb&&t883muP}XoW#18it4to!V81jkI&wE1WyRhf8wgB zv?@D)>A=|wyN@2yLUJc? z6pV68c0y8C96W8&)bVNg>A^7}L7uUo;ONmIF=N6Lf+Lf|q7uWgML0OhKOlTGSme;? zz`%&H!D0TONN-3~Y-o5?U`T|Y0`POjU|()nV^~OG7ywK@n3-Tu1p~0rD-4&MOitE1 zd~g@9h>^DAhe25bz|Kl8M1!0zQLcezN6;m|2{8adH_S2Y+O}kzj?i~vd~jz47Jdo3vZ+U3<)k+Y zwfMJ67TGwR;^_vgizYx4bh+estX}6Z7GAe3?6S1fR7ge5Q8Xk(R#XX!%W)qf#fuJD zW7zhC!RqTKDz?%Lrf-|i52)+-QQ!Hq5xyVzHY9rSN#IR(_7CA_#C$n?Cvvul{LRPdyW5ewR+?h{AO?rCk^&O24lq*k{I=-Qcb@C&x#n9u>3~S z7_NHw4j2q~sL_^5q8BCU`?R9UQu$Yd-^g`p2zJo-Gtrkq&`to;kSr|7QjJM>pJ7Wb z_62baqZJ1FIsptdtydHSWGC;H!xyMVC2Z4s8JDdAu)1nRzz%YxHkxH z@(Udml@JaJjui9_3iS&PABzeM9c=;lxf_NF##VJSV=y`3cap?pf>FZ&mU0Jf*4VU#DKd9uJO3$3H zqEEtj4BRT5=C+kjK%*&I)cNBRz^sWJ6A(b$AHV+n^WPZF79^%Pvrz?x^~^Mmw4E{7 zlI?dQLOU3RrgI(M@5Czd1XCq_f#vYDzwiVR-l{PADv&NZ@pMmiKLfB3Y=gi$gMqG* z_7@w{u)GTksxhUFGqLOBNKP8Y$!Be%8zyIr6QNc0R#k%x6xYgul$K!6i}D&EF&w3V zz6jvwbd<(;vUI>4!04xmz7OAh#-<|_)jw0%*_r)CVF;QgWPzwXNs{>WjfbzUKL8TH zAVbVOF)|8|&R#rv;mV55+o%1tVA;BjtG8^Py?D{& zdDE9|TD4>U&MC8}0&CNA)3Qs)>hIzM261?0vPt zU=jlOmHd4WfZu`-rgmW1pDq%?ROsZ-RgQ=7;H>Dc7z9A zhE8xW8%0L0+%@c)vjj<2%Jdk;w7wWDz5!XVW+cmbU9@XkuzB3 zz@k=THg_7Usrhh9GCUwS_R0ktgwPl9g%+F+n1~Ck<<-u71{N2g7r2YULCtqwd<5MV zS3lykEZr#l4j2pq245AUsh-iqN{UV^Hw+lofoKp=`N+8&tGDi7x8vaUgC`H1y#xS0 zaq0H43paNiKeg$=p zufSbYT&f3n9G4U>dVJ#o!0#e}fw&ZZ4vz{5i5QD}un-#8QAp16CT2v(Bu7RiMtI^v zLZbtMBgY6ujRJ+nj0uSz9TYhdw&CHy;bX$10#h>L5>sPD%ozb3I65$BjDOfD(1<7R z;O|rg7$*6`u!=}m)Y561ZC(d6!T9TO4y|#;geGm+9|{^`=0xaJOXtO zW4;y(rr1pBJ_Imke~ny&ef=fO?<(}#xvN)#f**_ylNbQTh_o=on!Z>nCHjR}-w|~j z)wWv>Rn}W^`zr+W?T|rlR42T>U%$Th^$~YLjXnLS=DtDfGj8qug;D4R`yf)e_Q{Yc zFqE|m&E3BmI|uo3qlV4LcAm_AV)LSD;uV{3r4FaWW33|Wy&#vA#87we->+yw~k5F(G7`$cQF`)16BWD4+$1mPG zaPrcjGgptEzfpGf?6$J9bqBW0-?((`p>4a)AKHE4`1Ui0w;wM%bouOw%jZ{YUO#RA z?2;Li^CuM*PoFSx_LOnOxf!_`rBl_KMX6wICuZjr=M+xJhy9@V)Y#bMnCQfCF)%Vd z7z9>W%&UqI5kn#qf&jo6XU6dwxNH&j?26QH#OR>#KSDesRe&1nv*JTzQ=`1e9s|HY zU)(?d$0kP1oI82JlGz#KQo=kzp5@+){zGRVgh2j10ETuv80! zG||t6*GM}TG~{4*ZBlYH(OUJWu7z5@oTxGF(ltHIlf+!inD*8hD;hN`aR58(#hmze zosP-U(q?AbnWY})4mRmY2n1l7ljTdkVxcT#ZQ<6rr^Vi!>gt~9KECS04ExI;ZqJeq zx~6_@K}fd+7+jFkz@)%)BxJAAiphfX#;BFhY zzsh=GYRGX$zd4edd@Lq`&JW?o$FtZmi~tssUJT3Fs_OVuTagMc+ZMB8H2sN;9FPfG zF;#4kX@8FE;lnfFDo&_o1U9AVaE8$ zvr9{+7Uve{fC?uTfCG+AiHc4PjYM&26abq%C#`cA4El<2!6&a0XypBF#D2i?iRk)P&(~t-*Nz zN2$hN2Y&c@y8TdV#+f)p3+;tl6 zYK@;Sa8)u1_(YD7Po)quq2$~s4Zk5OIN|_S7r&AoOE@-MiiO@*nqJr z!g?lz*K1y?*!f z)tf-yEqnLPT)1e$v`L`SnG;H8lunvAb>`AJOSY}qb-HZJ;oWQYY@RlMCIEQij7gxJ zqP(>1jKb35arwC^=}F0HiE&Ah8QDn_XB1AGTRLf0N%r`RywY*wibSF}CMhf~IaJQE z3XD$)!K5#a&VW5|>G6(%OSn%$YItl?2!a_Trc1{9d*TDcD!*|-q0wNAMI$d_I5>P1 z2(JnQ9X%!(9B}mLkZ8Z~*ucb$*sOxIv*e?LDz{{X*$K!32pX_-mjiGjol zzzV}!#9-J)D{Pi!v0?!N@Eb?3uyca6>l(v6K z4evU=(q)DN(zmvyhhovjoDEK2-dk)Cm-K(at+6fVUJV*(G+JXh-q^Z5zu2k0S@Oe+ zY-yCBVLDx(-|)m(y+sb#M|qJ|txa9L4D;+HKnf4pIA`A`jNGzzBVS`jo#o}e?!yDo z068aR$qHi{n857HV2)u<3+ElU&2>h$@txpKo8gwviBF5qj5DE7Kw@MtVpx5RayA7m z!3h+U!e(6XxW9D$omG6N1ISiQG7ryE&_!lpdk|MrYKc!=_Y;R$foMz>`e1m)jzJ-n zvK<&g05|KoSJb2+tfY3moW6Me!KZUjjGE?Q;Tup-sNaA(Bf;OH0&pLG6%-5y5rA8V z2HSoOfxZt8fUyR94ZgYlM=$zm`g$=o4)5X1_s-8P9hJ@PAM0CyyMS9jFX+wJ`q$NU zud5npNEU2>)S?cx%^z!;u#WmorJRq%CT$txK6qT3U_6W)X0hmUG`?~i^m~d$6M%0% zeTSu3gkcV2il6A6$0q+}^U22Tz%$hNI#j6MW^JZio)#tyx`D~z_CFA zV*&&G`~&?1!XradGm;ZiV#6bYN09w>1uzPr``qXiwgZ^S8pCF+s>J(-X_zISqD5BN z6~MNjwAN?11MJsVU0Z#8&31Ooi{@obR`A(q4YCg0xD0qp4>H(F2|MO!>N2Z7$}1ZH zriB)a6^l8T`Gk#OsLY9IbRQX4$!HqwvvL~WPeW98%h%aemR&neBNwX=#HOF-GlBK< zTZ{eix@G>^d0lHgQ-fo;zcajSjD4RLd! z&12EF@U;~3l9=jhn)zd$QEuC*fP6L*`d}Q*NCO(t6N_b?y86g{(z@3g!#1nhVuc_2 z*dk8IMRV0AesV@}T?{oF+@%qc=+W{0z^f|&52)Fb62OS_0qev|F5aNZo#aO|+&@mm z!igNzGDH(OKx$jQ8KSba^0)HJHUMMD8jU+#HvF_y*WClE?dk>9cm4!Xff#(}@P6Qp zeQIh0%M0`c^uGPp08;3!u6y~VhL6q=!4i5>^-&E5xN5NHnODM2k1z2G&bc(H7{Q)SV}9&tAKK>fFt< z7w??8e0T5Rvm19FSg>M!@x-Y)1;r&3CeNNbf7Yxy>FJrN>1oBKC9~$wpEhSsc42-- zZgx&#{-o(sm#$i|X5;#~3m2A5o}8YYm6@BJk(-f_mJpv56BFl&PK@v-M*@t!2@x?# zuq{?o0EzVk4Xq5Co3)}IC2bdR~AJFB7H+5 z#zw`4coV{Lok34rNK`@?IC43RS;R9#TPon4Fkr`+_2LP^9fT`482YO8?8PF zKj$h*u06rVV5|l5UihMO4>J5(z~mI1mp?x z>Yl9nW|)d`XDXMkeqqp;r-z55ug(EGy)V%hxyw~i+YCY&^ZN@(*MF~o{S3oArtNgw zE}?H+R#ra*pR-b<9Yi$ZxnY#k4I|z(hcHAuK%xp^ZSO!orIgzvE6GFLKqhpAG7;Nv zaF+t(v;numYhfVT)(|XPk9gz**G*D?Vm%y#R{cZn@{w3Lk%NSjDVw^**#>=HmC3f1 z0b0#ka%6O`j=`wqAL#Qco7?g8Ydf6Zz==*LS#Y%G_~#a0Rs!{1bv?~+e*L-TRpmE4 zaw19p1KjD03?L;U#d7dCuD2)1Dl><1#?t>nRhxEBm^ypbyd~3T&zm@P=8Rc$ z3yMmLib@L$OD0U3oL^W3J`$8SzHs@PRXg|ZU9xJ$yu}Nr&zS{C1_sBaBzTkJViKd` zQoI?tX~~(1@ySs!@!`>lLRf4C0G6yBi}VE&gBwN+BY-1f#=;&jzPKMYgydR;azS6D zY%thgS*sO_Wzs<3_~ZysYNj_OBPK2}Iwd_JF*zwGFL&jpjT?6Em@sozT3&uiW_o07 zOi*Y*m?tE{8xflv8=D#(5HZ#kf=1l(f-IL3E$ka+t>Osd7s?i^Ux3)qolBCzmJAqE zXxb>$qQtP#M*Kx{x3a#YlJG1s>@2x522%2|l)B={T+~u;gh^vPc~`hPduNSO9perb7xhwZu32Z- zJ?f?9VaxW$9Oo7^P?Kl43El)?vaPPoS_V*EW6r+puYq0?0ng&71G>ar678plh@J9? z{E1VOKVfaF=vqOn+8>LzqC|6x{r%A0kjgwiN;OL45h*my*-5ceE_8>KE|nbpA*~)= zwU#}wnAG(XM7JWPcmXrMG;XsHaUbPe!Gksn?5Rv`9i6U82VAG8Q+?AI=5jh-~C zCICB^Amk*5gE>Fi;}ISY=2p9@>~Ntb7n-?*OEkiMxC7cPcocB~*V)78C&U1Z|9)Bi z=uPDV@X%njpMSh^_u1*ow>IrMxMIWRO}qB~wP@MA#mkqhSo7DyrBkQP9+zEEm|t8} zP%?Gu^y$-Q&R#Hg*_svemo1tyd-}|IvnS7-IxasqDLobF8xL}dcnkuywbFisl^kfmnLOo6qJ^(+_ZW5hK(iDr=;a&$EU?b#D;sK zL&GD3!#qK;2~m;pVPk^-9KpXGWqF4MFfkZ0th&NwtN3%>7_L$gvQ`Vnt-Y$Kp&4wr zx&wE{JXP#m;DI*yx`)om(vg20YW@YSG9$FWbpb(Ar2=;KY>XR|z zXNS6x+jjm%C{$R_%B+SLosRf2%EMGX^Wo1l_lh@k8t6sJa@;xr%t=i5FP8!mS4d>i z9m>D8V5_JAtrO~c%94O1PvX3Z zr=p#Y#rqhq&h0XXx4HxSD;xjjF4H2}sthPvp#gn4&=dhIs<^f7790Kjt<*Y&?d)P9 zCS9wgf57l-Bmh%AwgPZNhwdqA#<3f`Vg}HQ07eNOf2O&=^>}CQbPeM2OM||K@g?+% zNtSe!mS%~%n_kOfGA(vTIYFyaRCM2UV2ptlHl_uMu}n<8XKB{q;QvAf!0|<~Wm%pF zR6UoO&D)RP?mu=G9Prv5+g5JbG;P7W#p~AmwQTv^rOPHxpPoB@{QQLrmaSO6a?Q%+ ztClZXv1I?Dj-B(CX+;!1G)}JM z+GhZmM`c|zrWQi%`B%h)foJZmHF}2-@Rqej0JC#&*VT>cWY>S~uywq3dPqo()G)Qy zMtc$g7)zXJu_b0PDQJ4n9MG%sK}DpxSnXDWi+{~<}EjBkt^l8)ItLZyLbC9D|4`6-va^9s!uXSlEC^mFsaLG)v^Ij+U#z*A+FGs2161IdStDywA$I z+fUx@I(&A?nvK)`S~Pe0;>GJ$&0Vo*{qC)6w{4%jcuDc(i4&$x*|m4a`AcVypE`Qt z^s$ZGH*Vj%eRtWOeMj~mI$5@0`TTKtNr|bEMU%639|9M>dB^^ZTX(G*m!Gh3>C8O` zHt#LlG=0wayzwcpbK|yUn|G{Ozhy~6YB(6*@aR#1XV?jXop6U4bBk&0MrhCxyi%hsUIZrsu~O&nlewSINxPa~Eu0GHvekjJ(Xq zxXADr(Si);2TAE3*~sJ{96ko@@2J4v)hJ38d64;C4q(n;1I84uaFrFKR{3KS!>?2; z8!fn0XONgDiIKt1W@5hVlG(OoPX$p73Pk{J?*8R0P-^Y9?Q{*pQuB`)ZdH^uy)_50 zQ3leeZ{pafCHgV|Qw;~d z;($c@qNOH#%>(J5^vm&VG}VPsVAj|}Z-8&pYJ-N2=4S)eiiCO{BwVTpQSqg*lM2FV ztt7Yuot^7qv|fyRV_Psy@X)r{Z8(>nZ4N(L_~EI-Y-}E5z2h_&8vbfPCL=qGwaU*b zgfN0g@#oh%*NgNr>YQ!iM%EBa-WQ)-d)zuXW2+gr^iQxT>jJCjP9+A;eu0T6_ZV+t0SLT$*|<7i(>3&nl%DpvP_fMEQd-4oX>b!8x ziY*6sAHHyE_rXJ@Q>T|qpE7gdyxnEnPhC8A#)aC5KKP1zo&x<>ZAk znK?-S#lnd>WheF?Jicq+k?p$=Z1`)@$F*fB)ev0BO+nJ!=xvB7ms^kWp4sFK#1}Rh_f!2?lHv@V5~* zYDxz4J+2sbMyKhX#BvM6tbof{@*EAjA1C1 z3er9p0BMAsdB;7aEuC{7sOs1NuxpjFAp)>vf*oOJqHm48j+c8iozWD~{n`R2{y&|K zRR(~0p1a9x=jG!Gt;tiv0NALt_9c6OLHca0wsmy<`jW0nwJLS-5Xs*Ix63?;O_6q9 z=4O4>n!(@LS4ztf8jBJVi8+HghKaaDU%U#p5-bhh>?-AqnFDsZUWHzYQETFIkLx0P zjWk!Kqk`I%kxIH=?2|O^L|pXoJh45@Q_)rKo+)@s)JMb3oiTOy@`P)ZZtFtyR?1ZZ zaf1rN#p~+uyER!)b|}@hcT=OVC~xlS!MbQ_1x9m>b2&N&|3@`Rt2GnF4_hqIBwTnG zt;;xPPe>L@rL16H~Dc6AEgwM_06%8Hb^=%(&&Doi-0WtvWH101dYmvUsOZ)0VB?xNQBpMXOhB*tKWh@sk^O?kk=;3jjQM&di+$H=nq02>5#F z1;hp=+wr}0JX4$I0_8#1V z4j8m_)okGF&VB1(d)w~Su}L97!IH`2_8r;`J9qEj1hk$stso>~w3>${XKv^MX~6Jk zgsxf{Ne8HLg<#PloD>|H7!;lu7@O&d$%qEUW_aT=W20h2L6P2&P>)y>NhstGzo6d& z!bb*qM*D@16ac14-%kI^G3*P#zIe>}?P81VUB%8N9}vAp1+~K>1B}1hJTZ{C7S8wK z9Ic)H{pc*1W0-8Bu)>aIYT&nMbtzyC6kA$Ol`_f0w@O&@@*+FueAO_UfoR9PNn1|K zZq8`IHN7p+>o#lJCxG!iH?ttHD}eu_31%byT|)Op*OT7v_XS{Qmz2q1i@t+cv&!wV z@gBqn)GH!8lL!WY`H7Bm9JDVt%o$81CO>M~UkzYoTanO`o%}u=y~+e@vT_qlzLw-% z7J~LvvGo&G1(|OfTIs0nw#vL6qP8om0GkTA?XH)*TW2`hH44pdA`;u~k8?=meq#iO z^&aZ2gMcjiDH7ZtdqbV0UBN= zNX+U9zUVay-^pPbF94Pjz?7He$y&bRFF9RBVhLcI7_D&|ut%}w&ti=bs}3A5^-yao z6o&^r*i+Nl^R@j)RcjYWbuBk_Ry4GKtZN1IqR99nhDD>4sq}?+000mGNklfMPMfw7IpM0#o_p1EzU9q@t*{RFRH|*TH>%h9rJ7>+AH-F)hxl5NVUAKM!=s*|0 z>H3W`7A_uFoS#vcvth@oBWL!Po!EW!%>E5K*34Wm_4MWAr!E~kbh2#!(S3g{m=l{2 zGjU4kv6DykmF?JjaQluu>w%_l2>=FzyJ73niPLhy77NxM*syiiDgbbNN*ItBu7V*3 zRIgsY2;D8x7jcWOH!99g#;etSl!`w`{D}@YHZ3$U%i~E16js<96cXhh5gQzp5C%jK z^^6G&{nJ1A_pyQh8WZqOkk|J;r8h*$w62$~l7qBxLY4~Ts#$;nhqf{e76Il{{ft%_tYoI; z-<=&bF6CP6wW!Y7NJ(NL30nqAZ{vPNVyE}DdY5_4CkL>Clg#6CH2$9e%mdL*nvx}T z4(MbUek-qGF^qJ5a-tW0g5z z?vg)B88y=Gsa$4lzpynBX`3?Ebh=q(U(m@}&P@fnm5!DwUm_SA9m&+V?2`9o-OPN( zh%N8S$7-@YwoxP;z4mD&#_Mt)tSg4h_kc6S)KaH%5*Yv(L{(r`CzTvTW3;myvsy8U z1NW@&5VJom0OK=j3?qZ#=kcMs=?!2>Cgvzy%nPP4WsCGR62@GwD!+-+Ef(g*|3q z@_gCpi|cpp-+S!L#hZ7w?Abqm$+9IYS1;eNe#OQOtG8`huzLBp;@r55#1$Ks96GiC z@Tmhw&y;Q6wQlmPk`ot>9zTENz_C61kM3T(ad~W_r+8xCp<{aw9@zyB7`U5~5tEe{ zzj(#WMayTTWJcwUPeHT0YybK!J66ZUhy1l@GKQl;yY_9&%1y-PB3gM6;2ISEM_}0R zWOjKhI>a*)ZbblxdB?^iheRa?MJ5Eo20Ten*hqjb2+S^^cXZIdKz>1gkVXf=&fkH) zBLn_5!li6V%3v^Im@jKJ41jr~n6El&BS4MgKDbdvBy$GyZ2&NsU@DR4h4O@9%u?Vu zH!{c4A1fGF87nWz^F%sHl#xjxqi58$Y1KNK4_^ai4>%iz%KYe0|F_)x;x?}@)79NR z#u~H#I;#1ih!eJU*cs`veC+UI_p}YCv;xAm=yAW4EssmMx>5rVmXo>-N1aFKCgx5mXs1>tkrfF5;%Dh7q9Zc*ECtv8oi0dR{AEymH1y1 zQ*M6p1t<7aP8;(1lrcAN{nb9slP`mT&rIt|u_dJVD$CY3k+{XNY9tPsk*h=Y(6SjK ze#>I!;(OM~iw|2q@zSX(3V4?^xD zdcpW2ec#u#=+T(6*b1&PLyWgljW>E?EFuHrD+A8ev@*n_w-x7Z-am5g(z+dcwv-(@ zcjxYzQ*W;BYIr#KNl(&mTeIzriJl{4Q)n#`lq2c4Y&g~ zG6Ay#LVpVg`2*04mKRv-A2up1#y>c643KzK;6H)8NZ&vG|7igjr)qHe4g+AEr80~O zCW{OJMh3h3V?K9UG1%T){DK9jjchTE-$Dk%CGS_Gb(v^=;_{kyDFI_-Fp>BRjjO?@;G$wq4*k23c2tBqD=wZ-@*xlAku(R*A~uIE9mbC4Kp}Eq{#3U0Xr5c(^n2OrF@nu+FnkFDyTe zF#4OV&w@i7-IjGS%&QtP?EosKW1SV$s%AsxoFBQlc!6iqo|BH@5dT*qg;I zu<3OvjMbm0Cd(Q&g8N&$>*dP9d}%4pU3_&`%4fqZY#5f8u5xpXw5G)(>vXdgP3gkm zL4`cQ`Y3Tl717Rsvns8U!CR6nU#fli*)qFk)K_;j!N&Wq4RCs=(g97KKwN|_=u@N0 z=Ax-pnR^*Bg#Ex>LhswJO>e3j-+gOFQ;X4N0x;}{Z33`rl+pt=Ma-Ek3xTt@?!SD0 z>F%R5*KQrZc=hfYBeLIfkc2H%wj`E7iN}qXrBssSe{G#^gfh6bL7MjUHd;PL5>fp`UNltMH0$)!k@B%PFAEkW))mk8;m? z{*i%00>DtX3-)1H#`#bkTMLWOC6)nT$za0)TXq4LUT4CoMmP%z2Qr}ENxiSGM}7F(0HUin zkO7x)$LHj#kZgv-`e*5Qc$Y{OGsoNzQ#f6%GlALGruMIn@UJO7R~hXc8egMH$yEeq z>M*8AFBRllCGkH7Te{7>hDa-P^*43)ff_q{Q4Q@qsQNZ@-A3n1j&=4HCSpGyO2g|R zXzT{9-_Ya+V7lrAFwvJ!!oqVeq$buV8H*aZ0$A4%n*c@ztEZBqJb=D9LaSU3dl7Z% zjU6CWk|xVy;Lt~*W0X27O8OFm0kJrhn)ffko#CFm6btvm8^gCJ-mo5li36x<>BGCv za3SFr`;MPov1!MmHJb`1P0lDN%$+oT$%a)+)-4@ZoE?)G6&V*1=?#gB4PCZ&(S9K7 z;hk`~a_!=@tb}DN7o9$L{P?NECr%$ZdG^rExs!4W0kPW!efMwKwSPT0U;rcrlL3wS z#i?M6x9wiNbKknHJJ%$oMQzx!9K0{^7{I)0-QtMoK(w=xxFaRGMFc{ zgU9G0>`|XNkBu4B$Y3K6P3Ht;e_z=B`g6Crm_%ZdBrzD`?>a_}rbNZ1EA11f$rDTN zc5%BPkHWTNC=f##IuW>^F4`IBl_E$hcQ_hEJXMtkbwP7>o{BT(X%* zyjchtY^(riENbMstZ$2oF!vKOX_x~dU-Vq*_%P*V;e+$3x%?Q-r$CTj=QH%JPEZY6 zqOYFGAd?6>RKP~ExDUf}e)-PCFt5hqeI__;0V_h)(M=A}rwF0gU?Y%d{*kaOQm^6Y z$+qb#dKzlqR7ONz;*a?gI|;DWA7LL3i&XQJwjt$`^}0+>S?f4SPs}T=u*}#hMP|!F z2=+9!RW!E3Wo2`FRcn_V)~Gsq>-8XUe%gl(7DjKl)p``)MM@=)= zKs0iTCXLX*FZvbP7Gq$`B{ee!<8Uq-n?>D9_?`_1Tr1B-@CyM7Qow^ITd5(G8o;h5 z7@=zj@WzwAWPhnd3!WKX2&bH?^0$_5FuvHAOnqn-jy@uBwXPMoi-K)%w?JQpj-g9K};`I|I%t=en zPS40m$x6#E%*`&$%E(Pi%!md13jp@S1TR=VXWx;XsFiD$W@e{OpEdQ^$s;FDA3JsS z#Hn+KSFBkGws_}W04i!@`nWh1Quc_^&H3Zg0kp7x_x?@WcCC$y4MI7J&IsXhJUy^CYr5_n`PTp9uQ*%L?bCXx1oq!Kp080g|+Q+0$56}mde6zE%pU^iM}M-!cl(8vL4mN$3ZbYM z<&?2O*p_A7gI$$a{rG`#CXsR*M`ppJeb*EzLp}fnXg@_*DO&0#;+0nF6eqG;KAo!VF?uUw*vx?A_J-F95wqF5cRA>hi&pm-Ze# zw|#5b(#0D}N~dJ!6sBipB&8&0WF=^#-&Di6Cxyl=k7bQ3v}Svo;4emu zpA9A$6T>_9tdC0$4h;JjKo`)9!mHfu;x=9acPZ?Q4E789ZET>RFGy#9g%t)cBZEm; zmZbnpFmnwiJHd(UGyqKFy!mn&bd|ttkeKFugM4)>J$G~uzpy8#dDWOsE+%45T)v)AiJsW+hCW-3vB%l$IiP~_LyVcw^dXYbh1#5+D^F|yh*WA@> z+%|sDaZ&6Qrlw)wF#r;vh_li-@UZn(M_i;c{;AZ~)8Ezu|3m|D350Ibjk&G%1|j&T zfNukXz<9FqxupY)IIX`#D}2yAYRTgslh<>Ht$`#X4|A`vvLZ=vc8$Q*(n*ZV)k-UM0{FwY@#P3I%vVN zdHW9UIdt^k;bUbRwyeq@pOu}Tx@p_$W2X)rI=1KV@!k6mZJRi?5YW4O{}vH~-nTI& zBL=uAdWWL?B!IK_m2C$+?>Vp)`+&ixCZvXg8x{cGzkdJWE%TR5g`Eggs;+`QZAYK}RJIJGnII^hociAk28B>)dWg{l|;xoFms+UGR z+j6~Rd8sxShj6LYPc6%9q;=7Pw2SfdgB^OAbd*}DMz09ltTVFkwA`MeSu|!NAS~%p zsvS;)?6N9~dCs0!v*V+%unuePD7=B^RqW1f)E7>&+I4v4u)V^ZSFzFg1UX=G5^B^D zOR8aV?mhSkVJTE9mq`3pQ`T~~EG3LNV1k_B+&63W1)90>$r`Yr)=Hv9f_cOkF|48^ z`W&&IEk=Y%N-SMAMp+qSzbyQ-!Pk7{W9N#+MuU?z=~{YadLcAw(g%x${P-X$=L#xH>l{pi5vV0b@d%IPgx z#1LL#3 z_$>7DOU)5O0la9%f=_lH{b6VMBS_kgXyvMtyzC~UOoP4fQ-2Bj?kJLR0e;o4=yGsM0^*1n?9PNIugv_>h$ zoQ)A$P5>L;*O?DCV$o=VE&HpNT|x)U=}W0T-U6hTb6|bIcJx|d+a460r1t}HJNt)} z1_rsh28TeffnbI^O9sn~mt!;|FI?j5(kR68wQ_As7YuNbrPlS&R{Jkc=-PtMaxqj~ zAiZs10E829^~x~)RQiPIaB94g-E8Urv7TY^P5+^gN!nG z_OvQd>ee7`V!6FJ z82f;+^4XZep?<4&?5Rdu-R(+&Wvc^+twh8H)S(%ZYB(jE{AGJl_A2y3_*!-L+GZLK zh35nom~jRc>r+x@U5=xo&Yu) zFjlv{{nqfIuDQJ7`=_QhV}1x_uW1Gd6(tzX7zFPY2#u;~>jIJeg^z|qNrnBD!H?IK z-<)GK_zFneeJUJE0F$16_{&FjhtN^UAL%!0?-|_3vw&)PyqDs!sJ&lsu+9 zG(4>W?T4x-AFFXB2o_R3d?$qa;qqy@IPk(j`^Nnj7p^}zaB%OMwJUcX+jQbu*@fqK zuD^S9=k4noFQ4Cd^5)v3R|w#1;DB#E-d%R?*x6e<4<28ldw9RWe~>eqm8^ zW^zJWLTsWKwj7%h0Rk)Ri3uv4n6q%j+@&iPf@aR03;+g~oL7_q44$`W+S~2}S@TTzyTi#ExM#MGH}_E25nMCK<_KIy&=p z9r&OF0x)LLc!dtn;L?J-_L!|)LlpgPzY?;xd*~MtSE^rX5bx98*N+TF3>)o0yw%58 z*qkpdZk7Z)0Bp4ai%EM!C|+G9le@YES`Maf?(1*qA3!zr3gHUmvl}!|~u~W(lG4WvS0}n zVVR?$<@75gs~UY}A0+uf6PlMdquF&Gab?Jwr-%a|SWgbM-_UF(1cP%4-Wt}f$^+4A z+@r3{qEf`KGH#ER!-QBOE}z?~d^Wx=>$^32hp4RxuL3Wdf7m*4sddddMfgx)e=){@p$LQ%Fc_>bU>HOR>iHJ_Q)^7)@x}}{it()Yj z1_Jn_D0r?D^aVg_pdvUe2D|n93L+wOrJlU61o6cLaX&trB6LO7vrhuUV1nT@zN=}( zUUOq&GsT=SjEwna>=%0UrV?|v4_;MZ2^F>v;rhXkK2$#b`1#@cPh#Wk=ld@{o;Y)5 z=iVb5*DhPSaQ4bgvvwR@aqRA?OE0cnd;U=9(JRpP2XAgXe0%l&tMfOX9J_F9-|>r^ z_8i!-Yu}npTNW-~IliPcD?2AMJ3V7unm0Mz6BiWb9Se#|3<3c!)3d$FS#b&JF=<)x z>Ei&>g3VxLJzhVY5D8!dg+&U&;WE7#Mn=$LK^E9h+y-b7U>0uWf zb$m+33pHUd zSXid&`wtK=^dR(7q>I|~sU+C0M(Q8aa=FhN`M2iz1r%af?!@ZQ24fvlDj4P%=5AQ` zq_sOE)lS(4ojMF64d|fZk@UN=O{~<*D$tLRR%_rtLaM9cr3pq`5jVITY}9&dNiQhm z3SbPw^1;i_<&&|--npK%F@{Wx@@EY>T)uW{tO^F(B#Q*GkV;kLaW^kNqfX@t^a26_ zhgHpOAlv|73lK8Tj)|gI~j=AM?Bi#BOH{^@5V7?5wm)F3L z5RO7{WD^j5{O;4Ew-s-_-hF-L?(2)UUL3!2cgegnkGA_vzpB4=mhCN`E<5R+75`y5Kk={T+ zFFXnyC$3y177EmB8371Eupfzt8CgvCB5o11NMF0V{SAw-sM;Bet?*J6Tge(Ll!!lv zh(I*(7!(lk2Lc#}a$xp%Y~b%8bigCW{ugM3o+@R{TSjRZt95*FRVfm#@<_`U%7q-N zt?}aAF}w8&`)Ug|#!x?Zm|(tU17Az{-4}TCbzH8)v*e?M;QpALGZ^eV{BZ|NuGd(` zKsU}x`pUu(!O?yZbM6}W#nDUlmxOr6;4^w(QA^TecKA4lUGQ!kcc;rMJRQqF&@2uW ziD0xIZtY7THh-dMlf{K8fYYIw*r{bPCFNSAzjjYN(*L3g;T*yxxR|G>jmJ zaqdOSy7AT>-f`g?j`qc13Q!vs8QYMY;uA9nrN(N8ip^LVgua$_?&`@_)({M5VY5n( z*yGGb&#QC#1kGup&Rsr{ia(Dte2tEi=!>x*xpW8b*|j=iow(&Y0k=e4J<740?;#9h zuA0A3ig?%SVTxdO!F>V+zcjUi2#tVM?Ej%MC}J>B8HE+vz5q4ue$z4qM5_*Z*58hRP^;DtYx27Jw{{lh) z1AQ?K3_=X6-Y4yPdG8ZOm=V2be385No`1OW;=}Fd??G5ab@}h-mmfU5{^aS+7cXwT zdt1P`f7LkC!tq4V2>p#br!BS z_@5xm^S)-&`IKmgiNPaq)kf-+;9V0WxC3q2d0b1b6p^f# z9c0#-jnN?Y{M2oMVLqagCwG-cSLhWYf>P8DHjHX-(GKvYyL>o#4u%Kaa7VW_eFGF<6tbme-j2Jpcd@07*na zRI}D~hC?X{TrW*08}8RuGtt$S}qiJB7@)t?j6nFu@`|9W=(^ z^G{h13=gqQ#UkheWjSayZn2d>+=TQc0K+}0RQn4X>Fu)yykcLBPfiaG#lqm-I| zf)&Wrhi#D9no7nnOb!^fZEn&|ZgadSqE{Ay!}GtY{01~d)&g{q!KA-meE{ZxaK6H$ z50xOn+V`Ijz4)lV-x_bN2*~^E{pFDZ(!j-@8Tz_=`#-nHFZ{6FudF$+{)Bl=YuxL)n zyt#!7=8c~|JA2)xIY(|BK6&@ViM!W8XKp^&dGzd-y+?N(6e}IgTDYuq`kcR(u3ETk z#q9YDr_GsBIAMHZdVG9pY(h#Dm|br|cywGSxM7qhCP*&F8w$krCWnJmk~k?0kSs#h z=yav)1@uP5jFw9n*@jh#bpT~I5f3$E1RF!j*v>0J8}SFHF9`O4unx=aeg6~;4){$< zt+jx{LC|oCf^881m*YWXEc&<6{{I4vFi`Y?>NZ&mBhrotO(qi84b-Mt0E%<3E zwrYa94^7fgEx!&?pqr**Spdc)u7oJQA5Be>!R66B5Zp>96Z`~%m*_wHVjOr&}b05{bSq)uV0+<1qx{MH< z2v?(*hBvwLhu}TA+2xj(i^{CHJH+OF?tPsACj0A1+v7puKa1)W2(-TH?+EY)gSi_v z(!lgth7UyZ(yeOEU{Q^QB|L70^i(Qk%zEU@1ITUFre%%JurEJQ&E_x@jCswoF`BVf z4@4y6i`f3gW=6sWPtY3n*YKLeU|NC`0Ex9u5~#8@P9j#&_j?De8(3qdifyi!(!B&= zcp%(CclD^JLTk%cZNhJo24vC<5OSXqhYbK=EWbhr%zJ@&_m>JvYZ4pDV0c<*5Zm=h zkjmDajn8TUK@lI;VPq7NSkPAj7_g_T=j#umfk%o%8u#CORet}q!Z2)*h{sq$C5ogf zO+EWm{iOVh(#LAynCJ8|UV;bWK196onx1u(<6+w zLS8mv&b_N@`tZeKGjSSM>MgGpci@6M%llia`67w=(njQ=?Pl5@bH*eet_}RTK|DE2 zo9X(gwo3c@tnhwNAFG&D^tYOid?`WA_He(h`ti@qYw=J4-1d7S#Qdce?7iD0WHVn`j{jbL03u2YAOgF3b zXvW$oBl1l2C7KSi9+z`bOJnYeF97T9T0XCUFii8R*ih2p62Q)za1URYh}YAqd?8z~ zh}wksLITzz2dbCXG}*3;4plkEMml*+)KsZcdjZt9@3!T24FEeUr?|0hU}aE}xXPrW z(8AV=dSG}|C!&{+e&qi|_BoDyGD0pM1($WYgov$$N^JE*T9cUOfuL2T z;ZxlEssUtdcrr4W3^BK}__VN-L-&=eYR2+os%plYU;|^wbSb)tWIUNmmj&nr{V^J8A*)g%D`X{;`Z@Jksb!(;;pcOz8UBX z=tZ-O#J%zK73u2z=a=q0xpe2@!BZDDZ`-_P{hB4qr*GQ2r0m4*;YSu-+cEy`cJZO-oFyAEGCbl}tp(9yG(4xhdN7@jg` zLCNIF>Dk%IY4Pb<$*DO>DcOn1S@8hi%$(%Z%y{^2pEh(X)wg1A4$*8QgvY-RS1R{9$~C7${A+rYYQQbpS_P4;Tq)*?z zqr_F&=L0JL_WeUOaJ^Zt<}2LuyGkb9U)k{XQ$1c%iub+1IlPv5b$sT^npTkHW&4-9 zj;ea0FLkipjvI(lxDVZ5y&v`_=}G8;pz4Osum3M)@8KFp*0k~Zf4GfJA(7w><4`QbOvtB=3G{`AM2&)<~f8#m9x2>A2w z|NQdp-*OZ8FTN8@tw&$~C4yj`zW?SU|2S(+Gg#uYY~Owriv*UIiO_3~V$F6F9L9>b z6q|VX8+WnbQ5w}-QOOmx7|E?)p3w4wW(!e9f5*>pe6&|5E?`03C8Mbiu%Xb-oN?osey@dfLro_zZ9=tF!f7tjk4 z?cEn|xcdh;-s0I{@_kgG%ekwB!hD@DAf_AAWmv>4+^wYRIat36U0a|H{FD#O*y<)yVT;BF}9sje?Y00Vl1QCA@1^ak^Ry8vKNfipv^ zv62aA0vj|TqbXxRN&Gw;VAgxu}KNS;z62$yK(QzTu34yt>X%g1Y^*H=bsS3ggS(u7EMaF z@!4%!oNWx35$clbA9SKaME;5R4KG1(a}G=7rO>-CB*Z72BqS4$RlWWMdh+J;)3-mN zh`z{Op-;bpUVr}W%}>8;w(o5BORqYS?Y|Phnj??w0M@FYC4jX~Ukrt1$rXA9ke8nH z!1|LKFetxARi@~EWgg^UwwzSrS|y6*MiXWcdbvXd;g$-KIGm`8*x2XrftrN|$T`3I zzcV&svN`TEcQ1);$U{6~=V{Y~?3l;6vPcOM_V{{+YTZ$IExE~2;p`D@gj zXRow*6-JTaC5^k_+r7%xuL59Zj`0Ew%kHopVkM-;JMcG}qhV^#RVtY=_641}-VXt; z!0JU!$1dDN0SifV5`<}CE;xfbwM1e-EXOSpmj}&&ZMYua2zS6{Aw=(ivsd?>zI^aB z#J-nTt=~Lj?!qY(dMAzRo;9^+;+U46-i8@7N6(otZd6xeS8MUup6ZF?o5qc)@9Aoo zIKFe*{|(XgB;C01nScO{5wPBsG<=X@JIdJV@Ki~EF;G2v^%3>(g0efjr=_lJAF z{P+u^7wL-tCI*W!EIJzBv60=1hZIJ`U;q5i&wu@|Ar6)s!xSZB*81}w-_T}HpKJDK zT+DuQpfQL_krW$6@H-hVCk$Oo|@1xO8YPK{?VHcnwjF;k5Arx!e4T&SCtK}=LJ@ZsK=MujR?Tpd0UxlglEt{ znFe^gW_DV9)B)dnmQ(J3ktF`@&CkES|Lu>j|N76*|NdVzazT>~z%z{udhqV^{kNa) zy?KB4^}GI8Z|}S`K=<}jh*MvHZa#hvM|i1JGAq*_Y3u=|mvNhxlG1b%X_~-@TfR~2 zre(1;kFY6vjvH$*&kYEIoCup)_hKuiV9ctl7ecR6w4Q_!sdy}OQ|-+ki3z7rSs96P^e?WQSHXHD#B zozUGfeRS)LF>Ry!>ZeZWm^Hm`bZ=vCYx(GrRik>Urc7!b)z>t3T-($s1eO% z?QWbpee{%ReSLi+r%xY0ch1alWBdBX_BFONhD)M>SSVB+3YUbVC4g9GsKg5ZF0CnP zXs<6Wi+TJmx4)pMEC`{nCs2qb&-JWDFTZ z+ePuZN^LZKd}B$g6Jg{dXaU1GJ`uoLkji+bjPH&=%fCq=jza-&Jc;oxgD#g+qJmxU zJWx<9@&5j^<7avC;b+7!0+=vN3>GudG)DeGNn<{t%!pw_Pq0|%k+GsaLps)97oQ^z!EGAAbX2qA&54$F5VKl-}6^1Fxe9ncR1V?;hVOo529)RwB% z53?hQH~wCOa37^ z?mwdmU!)JCK zJ-z$bnKi37j~hF6YHue*!IQe{XO3+fGrD2&r1m+p$4;Cua&%|Sn6BCh;~FPVgvhvV z%-H4$6S}&)8ylO7dPmidpVTpWT+% z^8W-~GTbms2v?@H7|XBtOECoVo~nz&8!zt7LYAo9uq7dwS%|DgztCBrNNTvNXL>eSygME7mrnQ3l_# zz426Z(Oi4{LijrAhKsnLO7>4EGLtfwA}eh|{GkVbKGe%gV|wrD6C>i18^FreGOz8T zBsQWKj{Hl-Vk?S$MYfru-g8$DoxKe7-FNal;uhjg(B9)0Ao@h@Jq~9sp>Pf1DUcG5 z7^=cLA%>B-7~R5=!dwCGlb7V3FYG>g4(@=r0_{9@ZpV=`oAw>su;<9O14nipJ-L3v z);V(*&6+f3QeS6Rb978+d0$WMl!@)LruX!8R&|do1C1NqII6p*qqAo8n3mq&)~2S) zy82jGcU|A;<}qVi$BpY6KfZh3qUoTiGbWFnFuJX$y`sLdxVFp{@w$UfZ`kb&6x6m< z!ugWw(nwJ#5cYY4c8GmFfdW~LCCjg*=@qZH;?N}+WAq7F#oA+xgXI*2Bo18^CW^Jb z-W*L>0xioH^$*V7_$XrL&+y#1eVbtClGQMqA;Ht3JTFRYAb+d)@E<+ltoUiL21JAD zDc=Al03&ok7y6%`zw-oS9+YXAC(ZiE6KxW|RCosF%66oxtH`43Zjd@<%r1u){?ochle>wxsx3fd|j9VFq0f zY2TC!ouuGMCQ!KfO5^BxG>j09ry1lAM0s4$1~f^bf20OuW4z0InUriZ?f5F_#qC~B zUkZHppSl3_-FxC3hb~BTsZDM zby+GN-R?SmVdt^)J0ZY5a#q~r&}p~>+zJHf-G2D=)`KTE?>V}1^X@gRCbK47&ESG+Kln-ZH+b6WwrIi zqsO+-nloY2l-};%meFH7#!v1ZHMXs_qpr5GEK=rg>uGH6st=ZUgHg9XEEwE0vY}&a zXGK$GQAIRV9Pmb*uAl(0+n)~rrbI5E2}lqngGmf<0e*m6JmP}(WeL5+W-6qjRI@;= zw3b8z4Xmre^LRtLEk)S)_3%Ao?GBRVJW}UhfV}z8L0EyQv=}P+XET7gh{Svwl`g{| zQeiL%Yd#Iq_k$n2cpuMc%agP~H1c<8DLCV;IC1&DFQ3Okf4pd}3+_oHl0{(g`V%sk zzDJDa4WV!%qaVdikD_525NjK~Sbn8XYtYive3F_T2mgzE`%xBJ^WdcswhX#7G#-1X zcn+D{Fj2vg64WXKx}|XbL3}QPF~)tX*lX~AG8v$w^GWRfuKNKf-dRYZG&qm zt11&_qFzO z);x^#xr9Iz)*MKHQL?Ob(p(tK*_<#9uCR(fZE$~yep3MyemYv;lcRqD+j8pPALuCg zMvO*)p!pM8WZZrI?#|1294RoSj|33qyLTQ4_X)+b;>KNal0p&-4EI09@j>FBSTY!7 zHo7wVY$*LplvltwxZgNKkRsh{x~nsHY1Z5vl?Goa(L{9R7N8gRZV#QgDw4@MefJzc zi_kR!_&m}Vg#g}p_$=TPgwzClVjK*J#f&tP7!%98Ph6D5JtyHRwBz7u(6;?2LE8@q z0dY}V4xHG$|2SyN-eU_^ZJxhs)vB#qSFc?HSRLC_IjW;{%*beOOK@a!psmr@Sm$hR zaF1*WceTeL_U-9ym_2Xyw3*ZDYHNy%VimQa?$M1Cr*w@P)7;(L)HbrFx-L{w?heNa zf{{FbB)7h$s9|JztkN4P_5p)KrT)f_y5`=d;<}=es-kd7Fj(yIgzXUi7P_)D7fI^j z(H)*SQ*lk6&q!Qp0GY%wjGM1$44IV&H?c^E$PpaC@l-QwF~X)J5;9xdR;I5p#f|hu zp>HKhuvxYjiw$6z7`NqHGV)T>a*{1sBL)$}_yjR!16619Po(D`zwno!r|&<5lnN=@ zMkN3fw)Liq_-{O-7X`ol@u{LO-V=k&%v66Xfv%unqpeL9+IuEf5y2duOt87D6#FpiF|jS(bGo6)8OGG}RX-kxXg zm4Ord$4jQ!32d8m7~f$QPMm_g!bqt?;!IKmA2PF?tdfOoGP@G7#OsRbE9B1s@RND= z@n_sQ#tb&_Sb9Ug;~_7f!FLUQPxPq(Xb^GsdjC0qu2JWS!M6nY_`ka{UzwXfD-S5# zwMyTE|3Co7sgX*BGqn{VXi@NWg0Q!THwd9{I~EhdKu16$Wt&B<)A6&rkDVdz%Ebkg z%sHbjQ5=i_rYKef#Ck4Tgu+@9Tf10Z50UN}5TbX>-s7A19D^fh)9$0Fjr$IQHtjjE zYU_{7)@__NZ{g&bQzy-sG9C!pQPtNG9n)3R+aB&{@-^4FLA4b*&2{#+=0JBxZ0xwU zNt3&#&zjyly0^NrDjW0oF&R)j}QWw zHw%$7hAdZ3#kysTbTyY|oxT8L?M&w2)Qs=ph$fW6vO`9$8r^e;i#B4J?k37ojkMVuGlLPmJT*^wp}Ll?K9i> zk^cai)H4hFKgr>lNSshcgN}cGFnZrpp%(5Co72<~8FLJ4zAMJ4mxZ?RK|_4Vfzd2p zi)8`8+WbmGVj*4S z(H{}5iQ~kTimw@fk-^$Oz3jeK=lw~U9~YD-68g)40|ak8e9j|Xw39r0zAacCIWJ5=5tgR{B(d-6wHo8XEJ6h{p4V49TmAQ>I1+_K#-Cf}c6Wbt0bXRYCb5mnkX-TZaQC#M#Y;ac8J4&k^#g&EOk{o~3<_+82!E}c=4V3Rm&vjV~ zy;;KBSuofWEcQmq0^Vpopw}DCaRf4Q-AS4Dp=d3M7{(4-Tu?a`ZMY(XIdpL!7fm7w zy%_rYLZ^$o8 zsDxoL^-76Qm{nHuyuC7KjVju>w;vhV^JZe>OheU^Qn8{m+GG9oH`3<8QKPVAu$Gs8 z`;|}4L-g|bpa@+u&_Fv2?##?>BdHRK@7)@c$&bk=kLE*@bgT*ycTuOV->1bX;nD}e z&;yK$Fy=tf+vUxLo38Q~IX>R}zacrHXBLu}KdG2^h!wsnoaWF~+O$}C+AGS{YZ-es z=as@QUS7*RAIuliekA7y4Z`F1p@Jr5`mA{Q@EOhq5HogY=AC{kWy0g9wg3PS07*na zR2&|zIqCW4E5+8_qY)pKXz)9afXSoyf}pG_0IE&o10x@-_y( zaIu_UMD0UZ!+i3}E%e0D%9v$$5T=y(Ng+OWpSUQc1*W(KD>q!v?K~#-V&S9vPhJLL z%u2=20>g6GcK?~H`+2!C;hEvqECMhIg5a(DPJl2VhBNE;9Ne`3$nve*7Ovm0Y}1DM zt5;56I0v*~*}Pc`X3SqWW7>@IV@5S}wpWbmEb3|tx7OR6YVzA^^E(?I?TyZcs@&?b ztg6z?(vpnos@%4bMPtX;clOjZwv;wCmDkk703bo%zRD{+v7*9~%DiZ4mM@aw4q82- zG&nka>2{A5U7E3$%Hg%S{8*n4Nx9&r zJYVoK7BPP%0OPDK1(0+^0N;D2>F(1vn0e#EeHv|VOkdM`@3QI@PHR%XzPomZW%lS@ zW`6V1Q?oPCQ==Jz*&~n-iQ_X(&E|aE6^k2VkwZOhGn19B&UHS=P1`M|s%b4j{qZ+s z@T1p15rfGF9OtFbIKRIKFyFpSxPz;tkuiz|Nsej@S_44|x=7rU*X|jPSMHv^dJk>u zl|gA|bv&aWa?*V58IK9c6e8378NOSr1joc+o~0+mlI@paLl<`(ja|`dX_b+_^iw4U zcy zS1j}V0nez5i{YD+g;c_aS=wc2ox2x=Ju;vdTZ1G!FU$Jmi&~YF6tH%OsFo5(I)j4C z_R4n=fQh~$($xU0H5%bdiklMxm};jnFUg${^p=a{szG>4(jTzh8(iCcK4tKTrJ6nBi4TX)>IiU7NI{>(@ zBD*Y>RvNVy7iE-|WY*R>n_K+VwZ5_nXIZ(YqS9Ac;faKEBSp4wEW_)!x;!aPzt!Qh z6uK=1uG9iYYQ8pLQFg{Keia!k{?TPR8n=XLl*Qe6N%MO? zvj~f-cr6v~=F-k9Rzf8tE(z1f#7GoSlLT-*ex-jP9ldn>_{G~NF5N+$yxfmRTmYL9 z&nO-u>nZDpIBDFBWcH^&!9H=qF-i$Lujopi#8$R=<2$>C)-3hMOOtBEuo{M2Dyik- z)k$dbfZ{LFQW&IsluRM$Lv$scL0@9f>6>@WqB5xXxOj$PU>MK(iip!t5C1}uhQr4% z?~o_66#TEeDMr>mM_m&s>n9|dWlKRb0hqoX{5mu=j>{>NQQ*KeFUd*+x)6S{jkCQceRW=!X#NqrN>b&cw2=^a(q z+E&`w;AyCLH#ZixHal7x3L0v1YAdtrs&X1@^I=g@oKX_7#KNh?QEO>gPH{y<~vgy?lf;8D-d!-i@b%dEN`%|y1ulb zrK+Sn>J2#UuDk+AjvVf5)3VJt<46ZEC7*f86#ge0UdmRSLP zfx+nEjN^U|5V)hBbb6nz(?~)bOsP^dW%W zVV3Vf$r(W9VS^|>Gk9(=472d=vzfvCCHe9sn)<@g3zrESfrqc-o3&={5+D@-eIwtc@EeglP@0-olPQ&AglGD(@Si#7u}ml!PzgEeK|~2{Bl|e>^@$QK*gE#?-<@p)iH` z<~fE`0gmG9gniG-cCyivL><4VVAud)%)~PE8mfZLBh&SbNg?Sij60MdTnk;fB_z#< z=^9)M(c7gI7z203Lc0HJ&o{U3Bi<+)Mz(2=%1qj02Xlm1X!p z5&zpFjA^ExM&H|yl^g(xNUY@H&8cY);7j@tU-5u)_3kP7K}nqi7+<(~?CkX;rv-x# zh!FNNGMJio@g=nq5t8-tW;J_^+q&k~pe+ZFfv946+o4n24;}}JKBB{C)@+|R+KQaI%G|0lTS+t( z09+KYl$7KY6=lVW3ae`Z6_tTNFfSU(kA(C5L5OkFT;6nt+iLfu$r-&Vz+kt}76|A1 zgLbdKAm5Q0h`8Fj8hgi#9NE1S4yI0gjYabQ!72u=E*1-yZk-kV=q%R;D1Z$c_DDEb! zw=j1N00#69P5o}T^#=ejXb>e%dEl#T11AJ9a?~V4_bruJ8%?R;uz3wR(U)@FxHi_f(Swc_2lJ*4e( zbrybBm-|n{Z!g5e=dMFQd`KjvH61*C^^jn5{0tBpw}*Mb6mk~}n*p~7T|g{Ipm*Pq zbwBP~y=~|EoqM%;K2}Zzpw~adwt=+b7&cfxR#!Z>OaKYO3>lQAW)7{hF-PhbVuDx%3Ywy_R-k#c~ z##mjoqo%SDg5CP+-1=&Wdb40%U7lH9lwKOOmX~BzmgQ8I*kBzErIf_dYHMB1&4Gsc zSbbfzx;zvO+QWgoqKG{Z$nbitPM6i;wBUeV5Rlm8&vbgyU9KFjH^0!8T~roq?`&=z z+1SwB5Q>I?zIJzx!;=dnhJZD_64C%*Kraf`A_5+O zqbg7dz;F^5Xho|V(u#$YYIc#(L>}#+Ieqz#Y&@l`16ZK<@hgy-yTn&c<%E3YOdW{6 z@c$VXoWvk}=*G{YB(VodRwpb3+jcr%zXI95sTCwx0MIWij|Y5zLd7OYQJ zK)z?5jnSi{8_1XCQ0k|d7f2iI^CzA%nn>Kn$%!6F3>^nLVN8(zt}k|^Zm+rT)2g4Z)E zCL|OJE2d!FpM)b>VQ^f!y#vqj3Y+pYI6ZW$;G6 zxyy~Hgt4M*EkhaFz2punSz%z$4>k7i=TQxx*cQe9zZ;%t8GZ4WS@+708)YDX`Cxg2 zSlZdVAFPyRQ8bJUR({%)$G!}Y8oI8)GY2egJ-!IP?eJrS2R?YX!LV3nr=_k--2}m} zDD>{QCmx_w%S`?RZv@zS5uJ% z(1l}dWp+)u$T^qAGD;$8#Zg;PBm)%=q!dNcswxXc^_F&Zl)-x&YQrTld(f8^4dnrV zU9J?nBNbHWw79$(fL>oPI})`+lpG2*FEW9{mIvN2?x#fWXjL^mOFEtub@)-nyEYdgG3fvtA0LCmdRYW6tMIDx4?GKXB z;$m1xeUBT!7&L>Fq%=jqI*GLuGzgQ=X*tQZe9PYf74yif-7BVrY!9<5ratz>CJ|*JZEmM=h8N_pTDJVIbqgXsqj*s zV90Mo`3dtoB=q-JoR7#j;^C{$-2IBTAt5L95KSB6`(NqH0eoKkReHdMXU+f@0lRmp>eB5e*YCf$Awery z`$kHnK;eidAsVBZ(>O62_sIG5XfoWOLE2cwCQ_;LR%YRc%oilI3{#XaU(M^K1zO~0 zHZL^Ouw<;;if3pwRy}2s`{Ht=)Lf&ai9Jd1d^>)WEHB7#3ZEmD-*Eiz&nw-YLGJ(n z5CBO;K~yNIz`}41bIc&!m-K~q!T-nW4-6&lR85WFIL74(tFiFAQ%cIIP>VW!afh3p zNbn@tZV2}e*)%1}wr@W^505X`?_-);!?65CJ#_xo!E+*`b3hDNxQ?~W`nK@}+|30H zZ`pfn%bug44Z98iGB@ttzh?WcwcEDOU$L^YZ)Df#j;^t-qbGMwTR3Imn)!29&Y!z# z!IF)u7jIZKZNcomDdR_u>z%oD{@T5}HyqfvY5yV7*Sr7FmV-xDZP~VD-G)s&cC6d7 zW%;V*(`QYeFt)e5qou96q_HkiQ|)i457*U)YwJSwwcg5ddwrF?raZr@G*hU|R#}<> zv2R%n(3=jpjfK;rp)^n=X!ZM&LqSVvNoHHCzoE`kTkY&_uPBSz1K!MVASdL{^10Jp zPOH;lak|n1!JN`EcSWVItlS3-uBeDqRz?G14*)n;5&`-;J$5(-qYhuFfRA3F=?l~f zJP?4n&lCo}h(^psXXROt!AM`pS1If8WXmuJaAhbwgq1)KqvSK<83YS}F-qb&UY3PP zY>a)eGZ<^IS>4vq5ov<~z?Q5LnFZEdr>)SNGl*DgPA?;X*#Lu&lsd+#EL{2-10m2d zo=3(B!{4~+3`-Y_#UmjzgZWFmM&T~ORpBT{wL;&70LGW_pPcTd#M4S_Z4R{+V8=JM zSt|Q)x{&!%2_snV)>|p@!&Iyo!~&D0W-}nk5~WEdzEz1dO4RimcVL#f3~?m<;f8=x z3SZL6%eS6fz4PoUyro|pL2wc%c%Bg&qvUf}@1MDR7bF%CF>AF{YO%CvRnimM80k`0 z8AYJQn&4(ho#fmeL_LPyXRsk-*aX7*cM;pP(Y$icy^-L~fxPz{k zP{L0Y?~Hddi#}089wUIYq9mQfR1`*0HRm)eG=4De5x$>oo{p#27~_>MnSZBzBij?@ zqYkv+F8P#3$p9P|!A&R?8)`m(#f)LvwSkvpC`%hygke5A;g0@?0{@4a8_eKHPaz2b ztT;((z_vuxhd z`O8-?oHcLCsGgSA=Bnm~XhUtNwk7}!uCDfg%1iB~#Rb*ng_WiG_re+RJ&rK@uWIOzM+4gh@Iy16U(zBASwhHj4KZH!_+aQY&Qm6J-yO90ld)ILO+C?)*G2$*oF!AvsPs28Z)kDd$qK2!r%g}AgH zDEZ9kn-IWw(tH6wsYpRSf3{G9=7haf2|JtlNu{XUY?x=xf@*(5<)2P1yfb+--DA>v zle7|FsmE_gcOJdH{qW7L2e08sf|H>B$M5t3SXbV6EzJAbWOMk)v*dXoe zk-_Uj-NXtx3UK8@&;oSLW}if2SfC*&EU?YmFiV@6MdPQ&lklnW3E&P(QxkyA%~8r^ zi@1T55x~mmCuP`eT-r5!KGjPEFfR{Q-75Hwxaq+Tt*6N#>~X>^6886jmqhSg6~kk? zaSCtzmt0tAJ>%goDGp#v1~9nt+_KWp#T&P%-tEk-ds^Mu4Y4ndXF%s}Ke~8VE1|!9 z=LrB9f?&k(*=zS82tFZ-2XDxRC6TScng$)lV(=et@ZEFl{EvrD|9JTL_Jc=PZQZC(xw#&z_y^o?!l>1%9kC=y$?H6alM zH$+;Ri|XqGRaNe?lER8IM|p8>X)L=qYLmjK*BT93Fzs9%$t()n0KfrXs^4n~`qKhF zD=6%@mPE5kW4V5Js@GxlyV4;D4*Ie@?lgxzrO=+@a9WCr9px2Xh=YTnT#qNm<;n_2 z-Q|@Lr#IK_&ksbLpjeqZTJb-1-IRqO2LoAc0}68+Zifs3lghsA?$C8fhvwgGJzrh^1^ceux8DkFZ7b4A8~C zBapuP`$LLt2s{~N6%LSsrrfe>*DRh%4dE}Y>7?2B5zjw(^-jv*xj~rW$=kmPTV+x@ zj^0}jpGmzS4FuqU#P@x9u$z#qcm`ptoKbW`4>dIN9TV(1iFu%GZiPyi+~$qTw~f6M z#y_lyTUt4Q$q$PxBN8?@3o#2Vd>2k`e)2-->C2yf`S(-v0{MJbm+3OqhQD z>Cv-~51+kz@bvAyM{n;+go7}y1=jXUQ$t;A=qZN_hI=oxuP?q$vUtw*YRz zL(kLqSQ!UveOF#<8m2ZXC0|VdRu~))b9rkJ`e3jQX~njJY_p8P@hjBb7jHoKUcS8# z|JmVh0{n@PqmUHANhu7GKRtQ>8TItTPftH+zj*QRSEnzHKv2g2#q;o{&0wVO#oH=w zc`X}7y0qYR=AxwhM*oRxw?W6R-a2;WCLD3%{h6C02qyE8Yr2Qm#aoZhUK3fIlVZo@ z7Pc*c^t!@pawO5!Jtr^eV~zxX*YDiFaLuMA>(?(>y?V~lMRS)eo;Z8T?4|P-E?L+* zvbCZjT3uaS*BGg)4OBOTYMUaJP2q-)(s9!}yT>R8F2fe$}RBbJi>!J9pZQ z#S2$#-Z*c`64106(|bnsjv3e0)zi|^Ro~iP4fL(6jWpF4HPl8cD?F_&#Z67Ysw$_T zZ>b$P3W&vc7k7Ly;T#R7$3ht(SO9l{z963`6$Fcr&jRP8L7M=uGd18z3;HrWPOGyp z)lrb*u&275R-ZpB5-lhxb@>C?Zck>R-D-EG2O|Z(K)%b~qU^v%l!y+tTs>Es%M#Hec?6fT> z6)u1?GCPea<)M?#+0Eq}x-7#S zkAMlc11L^kz1m2;<^IdJ0ANg(CQLq4m6H-&@-0{ao+mGj;qP-T1r79lpw>^B15ibr zuL?nxljdtQy8yi<5f=PBx8R}gB4Kcxa05Fbl?Qr^NZ<}Qfb}u=b)qm=&ei!$(~!({ zUff!QJ4?gj)#pFn|D@^T*FQgg{o})z-$7#Wix>knkUstP7al=B{rXJ`7Vz?4AAkKP z9C0C__4A)VFJKsu8?8)%?!fq`uRc9~@!`Sqk01=zF>n0r?a#n$^d85t84234^iY*x zjBzbaw%`rZSTqhl5acB}sGylBI+vlhDDSk!zB0Y5`x~=Z(R@P@+i-#AN~SZID!DW( zO6{LaK)3(dhr7?=Q3)QBeu4!yYRlrd_-1gzsf!%IiV3B*cgsU+xDU(U3cAQ&WAeJ< zd!_7G?&*z3@VNQx=HutLp1c6{KYvXy1`?xy$G9LoqZpgzs6_eKhL>mFVF@0NVFWN` z*RSY3!Bhy17^W6*nvtM%MZ+0_E;U1A|CN}aaOLLF%QsL2;8WKj0)Bik-n}OO-o(r%vyiFlolT8KAz2qsC1g zJATsGwvLwi+S11Q^2Vm3n%YoBji@v^ShHg8%B3^r&z`?*(Ui#(Mz*(fceITg-P_sG($n4E+uPdH)6&*lR$k&MD|Ob_ zg{o?t#ihBJf-Z?=%3wF1a0aqQ0%<6Sbb+-oeqn~o$mEygn~JtaGu9&b2!uU3sUp#7T~TokmL4cq3ljueqoxv>6-%5 z0h}sk?#f{dI9W)Wf{*~fT7$3dE}10lms4{b83mqf2!*o>(?GB&aAxJ%Z3tbAXmOov z9Wp%Sd)(rcRMz~W$z6-4Bw>;n7U*h8+r7AL48iWu)b9o-{{w^!MgRktQ!|A}w1|Ky zpG^C^N?c3&uK=cOGanufXJot4J0^o6Gj;Ux+Ni|guLLkjCvoDPU^*)M%KTGsrlRML z!cm2_bOEioApo7cX6*DI2=L~*YtCjRf6n)(6{06_D^#`s*(M@k7*Md=KK%B_yI+0-z5n%h(A%FyBn=@oPW5>9?(@^PpR|;w%WRe)J8iLEmoEj?6naZde97a)-2)V zUMUr#QxP0)9H1XHJ|R)h7)H#zd>W(G|LPje=M!+tYmNOtYe{t6Mn!-DhVf`l@M^I# z^RvWXd-C6){bTdc2tJ*OPejm$H8GnV?pduETvIm@eBR4RSptwHOWRv1r> z(byYJMe=l>!q%grBkl$bx<7v9&WWp94>auoV+Hs%`a=OfI-vfI2dA&}bLXtXXRjYT zeO2!jj$1mzV(Y%+OIB}PxnbwD=?f-Jo-=di?4?VWPo6dzV&CpjBRhNAx;vYCx|-`7 ziYh7tK;LjtZYXApmSjiEvx_QoBb7NtHTk7Y{`PS-eKYzxCU#6+G;7{!h=Lc)Sv-66 znC_n5k-c4=ptk0wu95A%eeDw_jq2*CD~`E~i|iHUo{9>4ES6nboL5$oUmPWqk3awb z5CBO;K~znTg{`_|$&~~!qBr2PQsC?JSl!MPyM2Vql>&ipz+(w`QUJg~uN4!~9zov} zklSGqa#_8ebeB8b?y#Vot~9StbR~ft?le$=!wM>NTJr5F2w*Mkj6J?=1~31Brorz(2RYz~RZogfk|eGjlD#;3Ui7VaeYCh9MM2 zFk=%D_sP;hD>{_m?dWPrg<6Z5 zPbMTTF8BpJ)r_TE{4M;WJPzh1&`Ka^u!?;0^6t}DC?knqVYd=sSm8GTIAQXcN3lvQ zn~<^u+N+}I^f4EHR9o=BN5-2BM0#_CO=sxqOc-a=pTGFuL6iG274=Y38mo=8vLpFd z82G7nB*8}&vDgBRK8EF4JUej{=Bk{1ai z982(fp@cJY3H_A}$dHt96YRZ)g^tzV$O;sW+@6eV&p~*-JRcv(fw3=$oL{L!jAj+^ zQ4sKtBD%%ie-X2IC4k{M3I4IP;SG9Dm_kxAT>KjV8>SKPSxgeZi1Pv4dvuFtk=kX2 zPQ2rm45w%#hO*X56rOOB#7*P>(*)&XdaW|;>Eb4?(tL#uXbOFiujnNy46P(+d9L_) zeDC)95z&c$9q9`?cKJ3i_~dnwmp*gro-pIQ{{&sK>3^R#C<#94wR<>%5N`zlhS-<5 zi!*&u!d_$d(ak##Z`iPV@#6J!XDyyTXK7DYcUw#Aq$#8O#&mRc);Bj-R8)G4OB}#m zpszoi7K~;DBI%LhtWa@gq%=ENmRr%}tM9F78eQEzxoh@{S<Ao-}jxlo{hzty{8q z$)Yi1NB52D?e6MqsIO{msqgD;E-&>L3F9hHESwh&<(3rX7RPd8(X?p93gK@wWQhc= zLXy66(>Dd8UJ$08Vc~Hldt9l2VK@Sh0lgt#8Uk30eG5}u_EavnD-8t!vD=dY47R(h zfL^;R9R%n_`U(ISCg&C;(GILPacfBzgVuNr=-!Jr$Y3*i%~Zx5a>BP5&vOF`Gul5WMOg7%lhTG{+VUj& zat2czoDjf&v-?X7RuIcYKC~pnExklT+Dl?0sp%Rltu%640ro(jR9Ps`0ZJ{2Dy0JD zZUUz#-UfpthHy&$#gE&GaQ_fuFyal6gZR;>Ieh~GcM-sX!IHQLV1>aD=~BoGFKPHO zguG~W{rc-~F9ER_xdOnx{0c`9d2_;NM<{9xh9fW!$S3(nmSHbH0|LLiFz9Ez)k__U zM)byKIrC2h_XNxnfR$m-^jN@6L*YurES+Lv;O@BysirQyyVoy(>aV z<;l`qIYk!M%J!{r*`%gtMqdhZId@4s{6z+11WW)%9lt6B7zPHPy?q}<-#A&Lz$b;z z2mlr{8#Dl4J1Cogcb~Y3URS~^Lmqb=IkWHN`5zCT+_C%Ex=nlL%w9Zo%A8SM-JNai z&COLUE!7Q;#Z}dz(sDhL{jQd1TZ(Mlq3fFj*xxBqG}o&nGnM|fQO*~ zt^i<+eFcL@d@7k6QDg~)fIv-P zCkXS#?|=QB^2Q+gkXib95k@0=kz@qdIKz;#dKjvVqb6%G9Q6@*6O%}e6IX{iNPOs% z%3uzAyoP@n_+87)v-YKGlB4FeU|l~Cphd*eoDy*>8Kc7y1X25w_h0xlc$x_h(khA( z!>kX74-(c&ko1v9Xvz`qf5idy_n#&xeg{YD5!k4>G zT-bU1%#X)T?>Kr2jvMzKT(x7@sx3QKY}&SR^}1Pe=J$4u>}+qTs)#faO`fP&1 zZmR^aKyQJ=ns2uNcR`qZ=D1Zd&kBrzvb0%Cg77z|z=Bm&*g%Y}!+G|!0%vA!VLFgi zcJ~ejxMpOhfTS~}p?_B|auzU7u?C@h6Mqbvd}tue~@<2 zVm*i`%L7?1JcEes*UKGI+8KsS9h`CFMx!AV-rO)i(9~KJXFT1XK8ph2IEjrW9()`4 z|56LhbG!-Zi=agzL5aRJ7LDeW@-uW^8K%a0%6kq3S_FLgHs+H#fDy@Xo`?&= znZ5u{RD96y`75MD7p@+@cnw$!M_d4UVFBk4oV&c|Fvi(tlqhO<&Le3)~;Q+X3dIKs~0RYQ`)lI?{SkkgR{0v6T?a^=+T5x`g! zjZ8)K>fJ=RA1vJ~4FDdDZqji52vPQ|VHg1n*8qCO)^94+LW^Bt9L4}2g)@VUyR-2m zGl{d10DSxD%iB6`(R&#e9KZ>CY0R??xP7BM4)A&L&NAfvzW_L4^UvQim{(Ep324Mc zj#xe({G7;l^^?wAy8}l$N#n!^f;68uPVZ7i*3i>EH{$1_G$2PZp1G)xY@?c*D>ACQCa8(Kq_{1%M73yudH-4Okok!HGw^Nx{WpRDCeg!$mP@A$w)ROir*5P#0XSZH zr1#q>6KZ)IE*3Q5ygc%epyDIs7VgfXrxjUDP!?C%N#1{wSTfQj5qc?*Mfw6<;fNA& zm88_-Z}~=IFbJn$;f$>F5azOCE=q307tFaEchEG(wW5GodU^wQAyh?C{S+^)BIxpR zD%|nK(3WSFc@`Sc3z05L?;5&7!vRTvQV@*`gbV0OqBXt?xVvfJv30u+Z9jY(xGUq` z!>S~DC(A1644=z_8RkN}H7`HKUa0jTxm{^+1bIE_;ZTk*km2@P z-J&Kd4IF{?aWUt^3*JHbR^#4w&8r1)F$ z-CuLsnV`tyT|WOnKWW&wHP22!?3t(eDiJUTF#n|ge*w%xVRK|mXLyM+1;LbmR(Q$9 z(W{6fnbxPT-sT@w-i{3t^ej((5gL;D^*W*Pj}&fzB@UW-Kr9n_S0Ox-A`&O`54oem zKx438vWFG#oWwNkNSN70a-Mt0~RPM0g{+=HD##y61ppV9qyu`(N^PYj8RexJ z6=gOQo+&BKtgOnbt8-UZJF2SOpo$7-S(&{gno|_ciiI-6{&b%&#p_K5c|1uN_2Nb^ zpx1660RsBs!f784NY;bkB)>N$=(mJ}Y0+?Yz?bf@TR{-`78a!1^OHfqW1rXNL1#*L zsy}G+_|jY+i$*g6x=nKY={7NI0m=~T}j;Gv=%$W62QP+We*tX%NvJy z7q2Y`;$TtmOkU9X{_b$*D=9FH6;*J=;YHFS8m!Kl$H4;u7->q}1;ip{4P=!kPhGi%3r$!0g>)pJk?7T?#o@>r znhK}i(+v2tlF$U>1Sx9`zz=A@84YZS!2n?HNs^!qOon25-XdOw$A4$|Zw@WU)|57D zWiIy@1;B7b0E1{l*F1C!?}Mpt9* z%yRSkEKH|!06+iqi&o66S6u;s(OZ#1TkLto3MqW(!Q2D6BEw4rFrSylBVaysfqoeT z=lIM9plts`5V|UAV~%7!5rUJ8Sj!W?7=xa?c8_LWi75^MT6rHl;z&xaQzCmT&Y!)d zIfom@5=*%9{aQXe5lO5>z?d->$z(}iL@W{akZ$^jzK^)TAe9Rpsd(^8#3lL?P?4!P zqj%>qZP4$o;}_(JUvUyY3MY3QIlFoP@%6h8FWIzp^1>yvR;`-1ZrzH_TNkZe-#KAI z*TjjF=gpe4eDSQsi>Az-Gilna$qSh{k?+=UY-Pa89C;^;Bm%`J6R)q&D7cX4rc zG-``P)5DQ8oU`i>rvZ9hzGOHC!q!+xR(XXG5LeK*B)t-j#hIXzSY~n57K>&S#o(A$ zQf#ZN$gip_s3^-XE6GLMjYuFP=(T!0DQ97R+Spk2h+a=~BdAu1A_<{h&5C_Zrb85alB`06o z=ruMP4aaP=B<_gp0!I1IyL zk~X{u0Bjqk&oYW57EPgtr+hDD0hTj-3N+*MUj`}?%xAgF}O%r8m*rJ;yzWnfRsifGMPIs9`+L_ zp9!&M;fGF%0dP#0?*MwW*`hcnj&T=t;_^){IYRE1!gzXlM*fB3ndjBK{@Vng(+xx@l$=9_OW!KQ9^mX6Rf;^VXX7QI2d<@;fP-t zeO1cVFPR(jy`7IGl8 zmNBNZGYYGvNN|lgZ;Wt7*JY3}ePkglVU>;?xA>CQ487V|-ye^jBjL;KhtJR)-wk_? z%v!N}`PLmPwr`ubVE&BdOJ=WHzHHN`g=^PNoj13or@OwZb<(^U%QmiGv3cX7RqGe8 z-mr4rmKk#wx3sl`8k?)iE2CxQ9sqExI5!x!`GZzaAe072U%=vlfYqNW&V;SONLq1; zt-K#9CgQR#s#!FS3=zGEhYkOE{1e2__dut))daP*EhKv?vRWu0p=FfX9M~ zWtR&mJ3<4npt8l~jLYLrvlk{8<_`k~gIo@6_cs)Dny3#-nrv=X7?yvCNC@>UT>FeQ=zQc3vNw_zRXOO`pc&W7^p>zOS zGKLU|@hD9zQ*rDPH^gugoYc@S&_ zaC{yx4}}x%4aw^ornBMz<f=OW!Srt zpw&Edq-YHbd^>)Ylkz16*73b(Df50aFT>^-Mh4?|O|8a?O_-9M=C0lJ{KR2QzZ>^u zQWwL@$1;j#JI4Sp;2EF}FbN<1fFZB$!uII_bKyr;k<~E3jEz11LL4QtLyTy--4dA{ z;&v~sF+6?6+J`9Q<>_wTe5}R37zZ1hjETfl%tgD)NKi7MP{w8`68Q!RV7&@mh^7%> zpp0)v7{?oR^nRiEEa5wGizo%aINz5dU22)-Jv>4*U< zUW02M>2mZEePz^pP9pXkYR3_c#5e>H&WQd}CKzU29|S_|dbMEm^xm3@n6 z!l|%Em#aun_-sVNX` zmR4`2OKkD-iw7tFKSNXhXGGffz+Fq$u++?*i`O}c>7M-lL}g?!J|E!MsgzsC zE3W0fpa||Ij0f@w;e}}+z_4OtLa0_U83q??_y>Z2FT^n0KYsic*6;8M4|iVmr@gpO z3ul#*kHyX?*+;7p7llrTluSnY5|a6O+UP}WfK!(OBep~v~ zfKT!?=9Y?xQeI|7XV{#Bx6<749S1i3aJU~hIaBfpeYoI_ydVx>9yBW*v}Z(gdygVc zW0CMp)RBv~2*x6Km2d^70$&NV@Df;yLgK>W;Ds9p&R<9EKXVm@6AN%HNB9X5VsXvF z+^Zy+Hg`3Q>}&0v+%sxQZ&OEO z*O<;RlgER)Cyt#kd;0iU(|RV2n=yZOM_+eCQ)Ov+I96m2NAiQ=EV*L}@vg-iOalRl z{lRohL<4t$zJOjh0!pKibcl3ueo-`(5)D~M`a~mGi`HIwCLI_Y^jmPOf&j291(VFM z0Lr>uR*kz59D6Jf4TF3>@e;V}v?qZ)uGB~*8|3q)fN(s6&z}W|1pvF8>BwNa2Hh|)A6t2;xLmQu989FR=2;b91&|;~xC1ZG6 zCfsBM#mB(fVU~XokL3pN{|je;wLo8Mj-YR9)?iDvh=T#fgS2{PY%9`9+;5Co34th% zRo46ahT}P*omN6@E0i^7o)yK@o;rY~-Xef8p60@$FmraAxjDw^d*$xKxa2M=#=aMC zKTs;46P8w)!(RoxDD5TDSN8;<`Vm25iC!*xdmQ16=$yey?902GF6ajIhWVy<9wxN< z;=AA&E~}24?0SllIf=Ca8~S*5693ny>UwD)tnmhCzOvH1xB$$|Y5bEcw)#vPC43Y5 zslI(nwbRtOgyQDsilbgQ;Fx z689k=I@+XJky?$VD8Y~c;f~jzShY+9_jznLvYYPFfOBO$SL<(B4*_lEL1k!>*h=5bY ztvpu0H_hwIw#&fR?aHthTEu2BymX4RGmscfHVPamh0fFh7ZyLG1Oetsy*XPRDYz};l6ODi$ zj}7R(3qj!n?sY{KSbx)clrZ@`5P-!(r!VT5UWZ8`FQNB194}luE*HloiHW;(LtfiO zy-(*7C8Bw&l0KOIp<*_on0zUQAsopZ%n2EMTc6X8$x_|^kQeC5-z%-djrj%}2Qt!3 zMmX}B({k96MpkN(qRnP(-o@TxE?&t@&K`!IW0ufn1AMet7Pw0#(*RczP&V)EyW#)< z5CBO;K~xUfC(mhd_0iKS51(9q@c7bwQG%|xDk6j7yXN@h_Kh-D#{ZbA!7`DUc8>XQ zj;n065x174PH~B0tsaUNShS2?L+3@l`Y9Z-q6$b%yS6f8e2XM!&fi2NAG&y(bQtJ+ zxgXaWXwP2Xd*<4n(^q$&x&p_zPF~r4;xY=>NMCvKB89WK=Fu$?7dZ+7vH~wj7_DwO z5GN=KIf@Ix&V9$$?>)M1@6q-9j&0BdXSDU6qp0<}kF48u7=$l3?mY&A%hv8bykhI# zX^YoPTeN7_vSs5ZjB9RbYHO-!t}m^u@{1t~6`|5ne_2JiyfRYLP}x+UCSzn6_^0btDrf6Id>@w zO#nX5q(!~JT`56g7WE#za1C@!*KrmHEBEI$S<2?L8NiCC$Hhc48-^tG@WNo4`c1Ey zrcDr!$@}n5JUh+)p$#qO@rrB2FuJGFj7v5p;wQdkt27H?bu{nIMdM7}KJzbJV+%4l zMB~jwwC|+Q-qRcR zoZ7GlBGlvScOL_-+jVs9&LgXL9tN%Y@xY4h`<8D%Kw6<`-^v~P;iF84#PvH5ul(`Q ziX8{Var@!r+YT*QyKTnOb@NxQZ5=hXzO}ituXj{$S6gdST}^RyWwfF)P*)#=pthmQE1TPEK#h$RrKLf@n8z!9Dnzl86&C)W zR5;BS(yFn5zQrZBSkw{@B@5%KpeTk4`o&bDNFWVIDPX*d7={G^7>y)>!Cto@tH+aq zkuJ#R&A?q=ZR;04Buk?q2-bR#3X=tZT_R{kFl$9y64hD^?S|)u?4p>%>&bLEMORXO zL8=UbtsrbV0s!j{l$!CRhFD45oP41?`_O#Humb0BIOaP>fbt5HbMi;%yT2NMk--wf z!-&CLxWB9K2WwN3EW#^8<1Q?;Jzd){Yql8S057pw2+4{;u)b9+gymNwQol#Z%f3rV z`$5}3mZ@yG72Fdmu;5k*V6hFHH8>?xOa&fp{cg~ed+>+gAshk2c+_~z1OXxn*UA~a zi0P@B)8gf$N2u!$A6~ov@cM&CbPZx#VJ)X7tvUGVyz$|HPx^bt-$h@ZQskU)k5fsy zN>u(Tg#z8L?U@eBl~giRaA#rXctP?FzGoB{PGSP}uCT zrI_fNZAK`Mt&mvzX~-~ICyMw*Lg6nGF8IG4#J=Q3$~)N%TOs_JOhOK~b>ms$ctQ0~ zFF${wg6em_{Pyv;-#`5N+xuUBg(Iwm6ZN-mKmGL==*vI`Lywqbe#sB_8o9+#DajFrZf&Q=o+f>LPn;xqAPpY&X*O$c2pNtoXBv z|HN?Gu5lj+6Hd79*G+N&)iSNch8*bQusDeYjHTBVciTV<4gfId;{E3r;Omz<*Z<_q z?MJB7w;rCl`QXI$dq=O_QHYD#X3{~%U`jZf0SwxC;u4oeW&JWZv*XwW)Q?9m>^O2> z33eg6-E`m-Xyd-qs118ht>1HU-R={hwY!c3J68fVcN|2%F59|q>6X2q#hdpm+O&Jo z#=Q$S>{+;B--7jf7p~upTD)=Z;!XR6Ht!MIv~S7g{isD-gy77A^}A;-ST$|#@@X?> zH#WDGm6z7kR=2b_v~@Jq)mK*6l-1Q%G}Ko$G*-8@H@3FdHMiDO)kMoGf~8fSqH<@n ztRP&HS5oDyX$m&ARW`O(bad1e6?p=|JOD6+i~wMW9U&kNgfcQe>j?01^sCOpVj9PVXh!?z#8_agJ_sw(5rbk`@N#<8B4AZpSag6IO-HJvE1~9 zlPQQ;pl?CJu)=~Q0I-HzY0UxW3k!!A+EeTfplqtgn*o7uFq9vQ7RWH#W-qi9T1N zqp=EDV}*6dm@Wo_V)>O=OCIAMFkXW@zQ9y0yh0=BB+Fm|uw<|RFqT%~{%%UVb4dsr zkVFZz?fayR??$A3F93WI!aJ!;{SWY{Bx5Nkgd-0V=_T%-B9D0y6JB}w?%lZh?_Ifj zpWcOZhriBxg!+__&kLhC?CC=&cAhuS7#;}NL&HCU;g!P(9i!C`sF|W0e$_~zmUOjF@X8wAAiu$L%5aJv-|1m6B+x$ zC)EqE-(szz)LVtV0|6N5Dtt#m6sYsk8X*Fwu?8S8$|opGIQfh)?r| zj?#~SSp*%xFGv(*$EQbQG^~Gx+;9UOtVE=HQwWKBLhmdh4Fq5<_Lb4F;O_aGn)C=5 z$%=5LHAgRBqky~HkDlLl9tY@>fV*pU9$U5J$Vv!R zw;o)!F1JTZ^8MkAK*Sa+%`2;N)Hg+&+e#{H0wv|{U?>M?70A{dF~!g0OB4PT zK5L;X+3rqq`vri7MEIMG0LF4EpD!g4u;9KdoB<>Y5(m=&$$oDN&M$(?+|DEfFs7HW z(FpCX;3e`{R%Q*i+lL9t77hpciWpaxYax2`3Wnw855>|d_#(xFLNKSe#0fF9+(=Hh z7pCOpCjEbuz4wn?Ww!pye{k>j%*eRAOBGeARZ*2%-4)bP-ECX8v1Mah#(+p80|O#z zNCFQdqKG02gOQDGIm(^XQJvLMZU;Fb6D%+wU}kjYgkSEJ?z7&t_o}z{F8iE2dbIV{ zu3R4av!C^@KutLmq1p9{{bd2byfI8O7>K?kEFf@KVc5gF!n_}>#h(rIa^h7q>8*gV zF+I?u^>cQy_ch7tF!yea0I~qsWN^8)r0$6g0Q**Z{cL~1?>Y!r4~rn~`I0WeB<=x!MHqaAi`MZiRIQTUrk3Juk~GhiomqB)98k0LK4e)W189 z{O`iq(VXQjld>2m=V<0@MOQUxw8He&TW(3pF?rt~ez|)6x9@-b=Z}A1%em`a!|Ie32nv+%lP42e9^$wA@MaCP%`} zkED%ZFlQXet}wjs_~}a~bj$U=Mse-*Qt!-i-|PyjXL{ML6O)T4DC?@s;EGHu5O;JQ zI;y-c$Di2&>+Tjh&_8JbFwXEv1~BOR#i>ycmvIZ$mZ5v3|D(fw(1(Y50bS-U>-_`0 z0^m1cUOzkj`lrWUC7XNXH9+*^LpZ(ytbTY10&y*R<%2`es~;X@fw<5cpB!PmxA*9q zAAR-wD{sH}+Pe?j|L`M!e)9QeUwGoNC%38p{rS`_4N+U%2758;a{T zmey^|cdgBJu1$8VNicwMZ10ZWao5_d+uK3qjx|*HTWnUjSA_sYZfP5s1p2}z;#h30 zZ|e-VvS&9=A2WAJ)N_N5co;y-`@0Z3 zU1__)pv9SN)&UGNs)1ya%1+QXnRaBdUS)!5#BXa$vZFo2G3|U)D3|r6Q|?UK!)3vo z2yFzMb6$4CinU%fg3z0yx?a@}i!rS21cSaRJK7@*j$}ObX?Hk93C7{12a*gdO2SIf zFknzwCiqI{NWm?$Spdu<1vNsKn>@RMH8^PwBCK`!ZgqK9xxKgY6S>-$YmHb8U@_Ai z<(A+!?5`_$>n$Vm%c9Zw<*|j+EUd@D=K0ei!LW!qjfdg!vS#rsjMB@_mo>Mb7;LfWjV z26{zu^Hik>!;0VKD71=ZOPh|WJwPlB*1K2gO)jP97_0dc|&XKBGzBOJ+3QIyKTVvR>tfUy~M?=4A@5KdxQ8hD#9q z8b7FdEo)CY0Wdz5?sp{%Z0^$6GZ!waJ>3Yea>%lM71X zcK)vb01yC4L_t)GTt{?bVgceLXI@hs5z8d*F%z_`Ltw2bJ>|+yUjeWVV=VYFSO|b& zd6~GtEsh@?G+LUalGv;fx>xk}7d@N9-+cSM zzy9sDM;>`%_wGOcjITypl_iR;QVLymn@FcHWmXV0966FqchyvM&o#?aaBG{V|QU*o2lOg9?xi`B3;T= z4pBV0!A+vbGligWp4)5i{;u?!BnE@2IbSa8&1O{mIp;PTQn~8L3)gzh1zU*7&*7Z8m(k7X>J+l#gP_^D-)(m)^V#dTV9GZvq+kqgN9~j zq2XC#u>MB8&|kTd@z%7U$~+*0e9D@aTRT;apX!y>B83x;FZf}j~9~}XRXt>zJnM%!rgNFi(g2fFOCf0AAbKA z0~q3ohX#ZH`@dzQ7tn=phV?Tn@4x;9fxh4U{<}`x%h!K~F8*-+0%&*bM=UB^Ltj@; z*VtH9hO%O+ywX+4UKIN30G1)`vh}M2STXoJ`DOTb0D1x4E7$RB{QUJ#zg+#9^18ub z!~1gNz|2|02aw!J2;7Av?|Sm=1@8Q;kMh;W)H8RvwT0GU!yHRs0$8L2xLm?JHmAE= z;i~}ElJKmDpmhN2mRBb+-(&!PesYAP&>VTzNo?rQz{iINc>`GXfF&rs_xSj}Q&R`} zroZZ+IXEzTXmAd~0>T*)9>9+|JTP~te^%17MVz61WN3Qd$>9(89ewGI5BI$K_Ge!n ze*688pLyZ0&%f~U-(Gq1l~>=|{oteb-+%w^-Me?}xNXy>Zg^h+7=E|8y&lH5tt-~r zk!)^@vr4To2r!1bmFlC$e8r9_)L01Rn?rb*(T<}nR4jT;#~Gw3v1&L)O{U-}GhRTk zy*&cZvL|lHIw7!=H+Mm00GQCL#AQgv&aR1GrY~e-m;jt>bY~k}nVcKKyFl3-JbFDR zQS*nPt{q@%iXM;yjB|c*y}TK$1GtP{)rvBaCQ)iM$-~UP34jg$B^*>}3ksS5das?7XiHE zE0s<{U)8CDi-uRRC&%wWR`FD|p-Weq7jkIpVYBQx`S9G;#VnwrHC zYZgC1-MctEy#Qf>cZc*V08p8Etd12E{dDi8kjxg`So2L4BEF~!W-4qnGg1$sb83~P z@TSsX>j1ta30eA!SRw&RXUA+kqU~|%!O8}c9W$J`Qy!qxA%C6#em3naa zTk2K$E5x~15bmP3(*OL|k09~C{_|&ZCm2%P{qLXttFqs%=y73=^D_qgRVFJ)j)JkJVu;2Cn)TM__!>nv#VaZT)Gs6Lwbed137;01 z1^AGZacy1)h}#zA<0zj^rX=YNpY=gQI(i4@miuRybmPk-Z%qI%+9f?SPKQuG=)Z~F4dIc(Q8k%Pv8D2O#vPeg*I7-$cvrHM+4b#w(ks1Aw z>dFIno}_xDgU1i{41Kik;NRZ<;H~#Qf?j^*^(UTs=B~T$+PQP*`i&iH*0px7X>4gv zx3nkQI@2(_4BhswbaPv(wIkEsm1%BE;AEkhx+PQAQj-q?sPwH<+*@b~lLPLELZy~a zQ^5yLL&Q#aR-lwJo~U>UYgl1Gx>Z&E778AsZ^n_$Isj3sJ~FeHxx}c@7=)S{ybW15 z=$lEq8Ng5`<75DXy9&KdDBIwHQfUtZxS=sz$io3gdG=9LV>p)$BvW1*O{hMP(3kr^ zGkRG9U}FG7$^!s%AX-^rssons3`USy(HG1EYq`ZE7JQTHZj~Z2cQo#a#(m+4;di-M zh}&ba8`d2#^U~PyH8Q1X515h6Iab`&lE*Yfv+h{V6UpErzyLo!0C&71X#lPmk>sm| zZqey004|ew*5IpQf{DRPy2j=f1-;B&p)Vxd)d6f0ni$LgmUoAE&Bj`XnI$RL-e1C2 zHgi_rueI-9YiI1$t`%iSk_BBAx)lKfQk5x5H*40R%q5v)Jy}}w#Jbb1p0uUa3fptF zBtR{)fVS7%Z)Tkwofe7V)?Z|>TFI0AyU>rOoZoyUgZ0f_W%4M*dj9(#E|AsZHqk#b zfFW*C$$Vu7^BL+`39G82vZ{p^*+epkzx)Ql*M9f=Kd$}rpFhIv{>Oj(NPd^N3+O_o z<^4@JxUz@3tYv}eySV~gZ9|umy;+P>oxbv|=T%*wf+Eq8ACId#Nl@V2!-}gD&iAfp zCr7{1*>CX)DL0MWt$IOuS;;v!YZ)$AG=*M1KeBXoc<~I5)bLqrZbj{#&9;#|L*5*I zu+l%d%<7pe_lB$zc2=(U_~@K!h%u|x?21!lm4bCwU`A8ZuEHz=+ ztV&`Gv->0|f*u=P;^XnLW$EuB0dT%DkV^zwXt>pNXb3ia3W&w=;NYYjdGXc21f-wg z#i8NpgVd`M7YAeej`klPocd({!Ixft>#Ywy+Vk2QdtQF^nde@->+UCEDo4G zZZd=OJ|4Z0XbeO$9&Th|WLmNPO}Lr95Y`-aHZ!nX;BI}?6N!04^)5XXO90IEMdc=x zWnR{r^}%j6g|JR-1J@8`)s8PW-eT_y%S(!Tq`{Wi+=D+DJ76`TA>eTO>l{8uowx25 z3wNz1cy`IcU=UZQF9CRNeq?rzk3cUpIyE;kIg8`ibOm?$@xpATH5SGm^TG;VpFab` zOo(eSTQ`wTWodeBA+arbe8CphUV$VY&OTeou(^U>OTa)~I#@e(@b2l2#v%!TEd|8= zT69{FY`LkkmJ+8;$E;i7s#Q;nRmSa!ktyi-@T5gJDHx_*XES}QuQCx#Co#Sz{pR># zO*mP6unu5A^t_UpaCDtbuvlSP{xkQjWG0>a_Im^2>UFf}@lTiWM1^GVn9VNE zD8CC6`Gb`3>Z!td0NEBpE+frwu`0V;|BiaKUPb!-g)4e2dS0u(GlzyeJ6Yx%=SOIu^tn$m{bI!Z0+HS0=H zzL;3MzWIUOJG<62H@7wvn&Exp#g=HkRBw!_&-)sS0jzaV3kx;KkLrzhi7(`MQf zWhSTGsiX@GrciK+I(Trq3@Iz(;ImZsg4sYXZv*Q9&ZRw>Bqccmx*1M*PP<8J-2?l`kg=mg4tpaAsRUng91XaOg#w|zD`AUKXTa0@XX=CoM-fWV0f*HW^2EP&M zO*(mhm+Wtx#|&d9Sm9PGgE{`Js*hZ%rxlG9bca@R zl@agtGJ3hP2uEpYDV;s|vVh-$dt)j3)`GrHzw;JL;*}l176;4#o>;(o3D7mTJ2T6B zy}Sl`iM}&)!dgxeB zz{cN7qfkl?+Bv|wSd zIN<)-B>>o*W>4sa4~BTnEhkmi$$4(k%wcB(y(2R!Fgt76(8Yoru&UYpvUi-crz z&~#tVFzMtF^?B~mq|UIuI5D{QSpVn82e4onclC}yc<|>Z2fsMh`_`vl!uUS-*T22= z#;c@PUjEacA9~=y`?hZ1+`YD?wY_QQu1&XX?rQ7EZ{4=Odwok&Db?E9wDYdbxGP^w z=SwlDsR;Vk15wOcz?fpr%@G61=GG~Ztl;N)x_B5@?t-tB8KIIC zD9)_V>sQ9t*wW@N$lnp)h3s$2#rBsQQZj?N5j1B$^HwV-SVhu4gTYA;ABDK$ea$&Y z9&SR(8CW9WE^h#nDl34sR#{Gme|3%LkG0-a&cG^8b>@UG>Mp5zTKPgXREZQbdQ2MJ z#m)LUf4J5kc6x(#@V@S#(;alX0xnO;01yC4L_t*0WdXg=^ulS-cWP+`M_r1_XZS7XXh6=I?_+VmmH`8ntz0TXJwr*k zdR?+!g{)UJnR6G)L1sPFEDqR`fM!ojGpVm{JR6@!N{1^Z2lL2r(qu2n}jl5~^H#zV;GkK;Gvl_EZpoJU$ih->@VX@FDT*=vC-4Y z%wA>;V~uC=#c`o9@y|KPJPzxvb*&ph|?i;w>0u}7YM^p1P)*mmc(&D+-9wslQQ zM{eD1tuVXyJ+OV_rcP+hhSrvj#^&~h_U=McAq4>E8Y2x&(L!^yr9BBmF?w-iR&mdY zY-2!emr_d#&J8w@*5qq$jdXNGTU*0mDwPtc1m;Z6*<{oj`J0==d2^rGR8Tc-R#NRX zn7#~P-U-fRoEcSX1o2)kGdPiS#uE-^Fxgz#ZrbPtfWzP}9!V)z8Gkb6P3Hoch9Hi) zrZ9~^%K2m)n2Uh%T{z`R(KjI7p|#mZL}G?6u{Q0CX8aJ}q`aqu8F1F-{u+T|<%!t= zi#;uu28Fnv#;xAqYH4eQqdB`*dD)P|x2UvaL&LN4EUZW87g=KqOM2GT=)wXtHow61wE%c* zW@dbL7Mhrwo19;qT3CXn7m2%~nZ*^B<&01n3zi_QYI8(AXw0!?gRd*#?&bNjSClSs zNepD!tJAxBnO3+;m9vDYB@Me0%oQb7)79FTFyI-$_B3fd#;%V~sM;7(o^A$?~cTCR{v0Q%h&3myI7`?#y|}=(3_D*05ao zOP2I&WAhb@%dm-8`N*|NID)}ChK0nsExvH=N0YwS*zZCL?cef|0lat#c)JA6ox?v$ zc@M&xNw)-Ct+1;86XRcV@%*JTSH8LU-4Cow-y2EG5;NymI_=;}gR0Bl=-t`$4l{bt zTXvWAW;OF>r&!BIwdQ><@Wq6>VmLEwUf2z5Bck;^U}LPk8brLI6E?j zN1nq180Ja6eG^MPV+*H7=TDBzofw`yJ~VS|aO&v5@#5IvH148%l~1L( zbl)U|HK03$>wx8pGz@Y1qMATl9`?X99zbO#F_4clI6ty{act%C_?at{=dN;RE}R*d zKg**GWkXtvFmtCZc=3rB-hKc6zdZZkU!T46=|{Fd_RxzTzqfy21SI|frj~rIF-PH3 zp!YEN+WX1j9;IH3xaTtf%u*Qcm#GXN9XR^V-UH9>*>lhC-G6%Y-p8N)^ApcKvi$#XFeO{$Od9(p#I5OXkcoNH8?#Fah9B(C?|Us zU=!&nt8 zea{%yw}j6r;);M_Q2DHO^7Pj*kyjb;cxAlH{CWJO7xW7+{R&JEq|5J5*Ao{muUx)* z_UmuK-EV*X?fYN<{{3&ifBVa?U;q3wboG~CaJ+o|`o$k`L4fzA&x}v5@A%4(p#2~6 z5`P$678vPNwhK6e$7)|0kCClt>142K)uxx^Dv#255#g8G!tW66B zjA?J!!0;S&a%A?zFb%!O5o?^GX(HNauYMK5=6E$0L-S`RRxWd&PH5uHMZHHDBN@J& z6R>-ymarb2J2SL+Ze;laG`w`)TwEAjIL8BqWzZp$m~xVbW+)fBZ~V}}xXT9?Bsk;a#{7nT z#|9xa<6-EFll>naJoeHXuRr|sQ+MBY$L8BNY~Q*5!H4gB?5PKC-?{GYd$-d43ypU7?iS<%uNFs}6k z{|LGK|F_fke>uqt*LwU8x3A9S4mq3whuh%|c=h^V0N4|9akCDi+q1SC&9QFKHyHCr z)AgywM4`Q*rMuABoWspq`X;8J-tkFZ^iNJh15-0YGjouTSj_S892NC~wS!aBtbxfX z7S==4Q&3e5Gl^-T0?|xm1~BMLhIskR%;~d?US69z&%z&f{`<}gi_E|K^oP}^Dh;cv zHoF$c>HRMSdwQoQ-SS$Rhp4}sxEB`?XH-6yQPXUxdeR-0{GqoOw8&M0d}e(Eo8M6| zJYs8xHC(A7t&XT1?w(oXY&%_A-n+2@L3;$s4(eAM{LAYyqYjtAD&xbmfz!r#=)XUE zI6z3JZ&erzi6utOJZ8wLRN-&HT5y-QgvAXDiSb~LY(sc8h2hH#IXypFYJ|+;o8R*j zVQQ~l{{`Ir?$_VI-D|)9{fEE*1Hw&k_sUN{34JeI!xaENgS_4M(hE%MKq5mnzu_wb zx;WrXVg+n`68Tp)E)W%Z8MhoTXNhZ99d%Z?*sP*Sxao!~0IZdL%fq->oSU@JUh?U) z<16R5oN0XVf=ZtzPt5Ka2Wwab%!^ra&nWOU<#*U6uhAjNVDOTP49T z#m1E=PCmENHw(}jZMh&GGt5JUB`aH13e8f`TU9IVKR)>0-b0(V?TDr_^$pQbw%*qi z?zm&^x(9Y`didV=kDU6vkNQaK!;y%=N13~Qx(xarACUQj5I3Oy^7zSD-~aI8Cm!5( z=hn?z+ShL=ZP-}YyrpH^PB>kxi)+?4wzVf)TI0q3R${c|%uWm>jLjg3iMh=e@Z` z5+jytd^w#;%6z%i1|1cW*+cU&k#vE+T+vING%_A=7xazBY8lMx0aR`Ti6LeHb0#wn z{RMp+@>Js7m@m&kqGBXn+~L{nU+r+YYw8?zUR5vTU#&3gg1iBDu-@;Fx}`~$j}oWd##kg3 zwU+v0yfyci4#fkRd@5T^rt@(YNK60*dZC`N35x(@V3?(wKmV6^^T20 zSPV=~3{FiBPfm_ZO_|~7dD#!V70hp<|Rwd)gsfZBE}cK zy>|Ya@6TQR?#z|)&NL^8LFcaGUZWe=*FXOJ%}>9wh`Yc1{@w4tU;D>De)#7oiL z{-2=tBGtpuOkX1wZ8km==<;r{OzEJMu9XYrV&Vlu9LFZsR`w$0r^uK~qZDfKJdE$~ z!nyI&mvk{`*4u#^*^Y?fID2+mbh- zDfPOShBUzbzQ6C#V=w%zbN$*-JX)U%hqECU{&p9l!RG8ke|z?$Q>UQMPY!)?${1N_ z#G*~sD)jb3I0ND4-V=jtmrV>)TGqRtefs2!FFde&=Z4$b)~?TWug!F=Nq2UqIyy5@ zYa7s;=omxF!0{9S?3PN|gvy5k6tfMk29@3nvx^0*k=8ybRbm0yKyM;dM?1S2C-a+xcT5|g z<=o~>+5?xYws?(tUlnsE0K*moz&M&)!cN`^RshDm&UoBQ4mjmcrtz_XTbN_NYHdwb z&gP{?KmpjNlC9VZQ_iz&11ko*rMELgZLQSM1-7}7m=|IUiw`FHCVll$mp@qJ3#^8) z;BFhz2wLlmL2aMS5ev0W@2w8^YNw~B&UY*5%K$be5{Aq381$ip`p^a5Y36imE;0_s zyqU&WJXc?z3IyX`D3S`-CquWK8Xboiy1bS%%x0GO1k+ehH|n-r)Mok-ZLJZn`aUej42&@8AxU-1HEE&b|@))=JRD_c*(l4f4ovrg+9=W5NB%`5ur z=m56#$JRSvTE31Lap^t6H{~QdkUHtC)rSE@&xYsmy;{tS{ zZ+`v-`u3M!alHD=Pv89d^S8hK^4;&he*gF1AfoRtaA;wL zL({x}%&&$gN`aP0Pa21Y7thdh7tc^FvI=GEO{b|7$n47C{AsR+($zb?aB6byQd^ z`^6_7e09%zCy#t`tbgxGV_L8gi#`Uw+h@4p!#$rK={21(NNk+>{P=)M!s>bR<1g;} z(|udEZMkhzsjEA?W=*oQGY053x4`cvOU(&(y+AU++}a)~wS-`Q0btM<5NgPifZq1b zMyRO}H}*%#1P6t|yh{q`a^b8|FPk!?a+g42;$KSnV8GSnuDhYh#Z8+HxT>06QBv*f za&{HvIdjY9EYR)%J3&x(y~I&PR^~AS7{rx4EG%$F?Fze8I}U2U#Q=s0jwjrVVVGdr z32q3e0gF5tDadhkd?~ZTGdJQelAoE%3}#}mndD4`Mmz+G+f2qikyttZnIE9`eZ9eO z9Sig&g(+Q`k;!>jmbt$abM~zksp_NEEVyBk?^c{-`X(}A9C?-lH`(BqV!$(iL&gYU z7do5+giu`$xfC6GvS?vanZP{1Bsp1newKu(B~opKuU7ybN}`cORy||c-aAt-E0Vfiy{ksGDkI|o z_L^z^WzDBAYPoC`{W=7eI#cC>Krd6SnkXcg$M>~>+0yOHzBw)3u;y&GVn@pD-KvrmgiC0=2YS_ zASeK7HtSHqXLEO1cg*?|rP(+=Q304ptSXN|-*W#;7~H9O7H}&9cTbGZ93PuLI>Ou? zJJ8P>Hwti7kuI0yLi>6~U}rx$c53g*zV{D&b?*~T7T0tn3JrxdrFbD3$^^Y}k3Z?d zG1L@m+uFVJnTH>Jd(W$1e)<0KSr}YaTWg}FIaVx1z}jMSxYSbL-Wls!lWgydG`CWVW@<2* z4@23;5F8=b{&sXXAp8kx^AH{TVicYwixP%Q_FSprMJFt>*UcisLP z+Vu6-GJpZyTJI_xYdn91aK>BjgqMwF!$7ITqTTeGMz1T6(QM1`!NG_d%!aqdD~A$3 zJU0;a`6J$2jt`AMz%Yw%>f)37z2(K=$jPBmKAs#NfrP;#cw%LXjZI=4`^PIZFflzi zIm6;LchS;2SxOTRvu;?E@|t2aaipmdfFBrX1LuusS}{FBYfHjC!Xyz%Z`;X9NtTMGF)uTT10jsl{dC zuG!D|>$6{fYmQ7%`uc0u@|7#*$#QOym{gs(mYbE*6V%IK)(x?~LoAW!a(49h-;*ke zgE`o%PJa8{xo^J3@xpiCU;O?WgayfjF))1j+I5I=OO*ZLN7j`euhZiCbxE+g^3zYe z*NY?0lYaaOuGhj{J)|uAyOriueVxmf@f(`1_j~c{x{24lvVmS>yx>(!H%c>)`jT|y z;I_}>l?;~2SJwP2bL-bKAdAD-l-s2erw68%Wz$zjIKQ$iWVQ!OJT8|V^MXAtqnB}u z;|c2WF>`cy`pD4Kk)i3sgHwkFCcf$$JJ36-H1<_r1%Mg7`;HB~{pnW^z3|e*FYej% z{(Bv_Z%yaY;b=IJQN}ms^F+O_dbcCw3}x$6&6&j7Vth?u_bV^_ZU3ix-v8`_gC{;X zc=G+PPJD2{P$hjyxcTvclb?Kb>aznU_q_h$)6e|nslPn^$Yb|!+S1+D5pQmdG?yYR z&Cyo4-sUI+*l2>$5>h=Q>q{*G1~5-I;>sLA2n1^DOg9zl%`Q=DMt!44&0U~z^fUxF zd-FwqbBhlErsmHL)XgfDs^ffS>Fvxjj&eCC z_q5`OG^5u{U@ij~=;b|NMPj!AIFobcV6vM$IU13qs)|)TaRv`i*9YoD;)=n;B}s|2 zOSOXzG#0`T)0b>LjX832@R>G)Rc02BlA^@`R-3^NYS5to44W(EzW^{XSnd8A*&A`tLnWXpqB*ziwTA;)^~+_$42|c%V$WV z6HwpSBqR&{CNK;!n;FB@+tSPklk{w91GG`YDXBHq{TiR{vvXnvVKxOoD zGBCu6!Hi)!smqRMenES;Ed6SrsxuZU>z%n|cUibgNwYLx`Mm6TOF(}9>;*6t()Ysg zu&Vp4g5jkLms!gfuYkKNm#;zq?U`@BS-ET@*@f$6fycn@ zH^2V+?Qg%~2n^%M3xmhkf98B_&F_{kR`8kS*U*E;#xHa6;^L)C{O$BK@5++sYkJa_ zUP)~0gvGJ~SReVUPrX>%9|fP_4JbuKD7J3`?qe|+*UG)iz6^xRD%#$?1O=4V7S;E#DX0#b!l!2 ztHfY}?rmF|+q=?ccSaxQUQu;#!JEr_04)j&Cw-7$nCUBm-ORy9sxl$2J0kmApb#`D zn@rX+dcj?;?iBzxn2nt|v6;$tGk(sc;?yb@1K7OjlwKSR-~y#s(~zZxtdr}Mi~zL) zFrW_MV=KD5q#GsYlo`(6G`lM7T;{G0U~U1;8POHJu9P_QSq2=bJ{vTn7u*#9OOp*1 za3%nok95jdBnB`@$pGeWMKFP7S@hidB9NRv-FxA3wHr#%PULKjy~U_qP>Y3qqYaYg~|+I4j>C? z8KM>otNnc^cCwLWh^jo~OZE^h|HT)o8M~?%F6#h3bLAU|0Ss9HY|vK;2(cSn`wni^ zLL()8ck^rER@rb@W?JbxzJ_bm0DS4kAInnhEdgB!9F<72F5cPY94prMzy1Eh-~YkI zMFxp~`9-(ChVi|A9dE&~XZp&=(=6}TdPcY9CIgtH`FqP3mv1eB>%~gf%jlJoB<|Z~ zZ-&MA)S+nMZg~==EpwikYCm69@)j0vT>)dQAvu@BNvk#L4>LR?IyN|cl!h^kEA)l>n}&SJ8o@VAfmes-ew^CSJbzBoGYkipGlXrniib8}vFp~){@u8gUIja~{S8#}vRPG)8YEYe||OgPfu zXj)Y$(L4qh09-23fMNA^Bp7Z`pAEX|L+NJ#C-Lz>-$E#@+E11zG35NJ1xHY;N-_o? z@sS1ZYm8xtS1_Ek_4NbOx)N!;D@#gDqe_K2X76 z-3PN3RvJ+n6M@rJ(JOdXK6tu!bV~d&8Ddo&Wy#96Cuv&%%(5FUKWIoaEfOQ62 z0K9bhG5~Bruk7GjQmgE~)>36uReFZA4&d?z@VDO@QE1HvgN~Pf{0R~-3z~BI5LXc4 zh?@{VOXrAccr0p2ihjB?^y7U+a zhN=IWsx4-zULVtk`^FFTj+qP|kt(45Cx*bt{U--LI&k!fm;Uy`8}GdJ{)hMc>A_4> zQ#c-X#{-Zjs^ZTf7ZgqeL-7FU3;7d)U@Da9EWGgUD<2&>vah%IaNmUJX#d2KzVYK& zA%j@}01yC4L_t(T6RI!G#HrEAzKI$2rvq2m%j46FdtP~K$Bx@JZ0K0Oq0rh!`BrW1 znby{9p^)GND-f6Je~R^Ni?MX1WPzp72bx^ThO{b@nCC;%jX8tGuryJaA?ynCr z+ePtQARik_(3eBIY(|ZJStA!(^=Ho3DmhY_x>U{uoO5<`p@{^yns4+-M`$1uhE<8u zrjiLK1hjMdm4;qApGrD;N)nGI#48kwULN)U>f<~$?ojzz_=FHHGO~>!wSn#9Ty6lE ztBkZXE065;8q<)}krz6E6@#5-ze$fubkYG_$KrNWpf9iarp4^~&8%hkOv5`bmOe*$LKlYGhbxly`_p?3L{p=9I2sX7E(c$fUWZkToY`bD6S{kF653 zd0k0mh1i(|F~LGjy~~7dcI`C%|0MyieV(HXShUEV2yJOq%^9uu%UiYfMvrjncQG=F znwJb1%ir-Tv^E2z#z~XD3}DCtU_JQE+$DHiyf}Zsn!U_soj0M`wO56)1vypCpUz-C zRamDo0DSJd?}WjOVIr{#L389;956$dF$}~S68rmW8NEzjm3VdCBG6p`%!Nkfa%A%} z--y9_nEfVU1N}Ni{g~yH_{z2$r&aAQn70I}J(p!m?XP*)vZX#)2ciAEUL0(fj%xe< zE{o6Ww%7t-+|&Wg3^rPyj?J^E-N*0@)C)Y1OaY3}iJ|G9QS!~lh>fKD`whir{9RA|%&p+7q@cnP? z|BNH#Y|4!`t5fqdJ5^mz+w*PhDcIk(&h&;&rH<}~VoL&` zmEB)4!2mEY+}f6a8^(FKVQSG_2sbnaR9_2!%^DqovQdJ=J0JXV*8 zJGjpV?*vmWRosz?*MYvgmz>ME$VMvw7mDs;$wLwECI|az-aN)fXahg}$5}CTsq7RkFY;5oNLF`qhR#C{0%Qn{T-7 zlulwSWDQu7A-;Z{^QUxiY+2S4ZMFoQIi_9SV^(4YGwh|shYnyI?OxXG`Fv>(h}C8b zN*0wqXHaae3EgsRS*M!GHooXw)Cp(txHkf@;CY~OQZ=6!pwiqV)8>}POKbbP+*#UA z;);Z?fvx}VikLdITqWkO_JZxxq zX7iRiy}4MrtMtG#kEJ_`-cZ0D@YM#~HGY@F?{o%?qciNHY^-|M)_b?T^Z9$N8{7R& z(U(7cbM(UU;F)>O-!%W@OtW=wBaPn9~ylJBvg#;Dzo_wQ=8eOHGio4Ei z#+w1c6K(()^i>X+04(%X*;sY70jw&Qc%m>n>0-fM$h(^Ibr5yfXz)Z6j&QUFM`;^U z0btd?n)^-auGc6oQoFoH$19%rt3=7qDl{EQI?Rq&#$Z8S>+xqjwya8oec_ll5)XzV zK2^NS#+No|)zPra0I)B7t2eX?40iihDN-5$=4Kt-wF6eT&iw~)ceQI319-Lj4-8RS|d#r{^3b#Pd}$@D$kHy{pJ0L=7d4C82Ma0t>FtixEd z$Q4m*2Cym3D347@X|isAnY%c{5ou+D=XG{k(xY@YY(H<=Emn(i@|UF-qZAtPf2a_r zWOL4xh_jdZUOCC>R62bLT?%GKsMchmV2{PDr5=YWG0GAjE^pilfOXs|aLPhn-%4NY z?HITE(<_Ycg$uLi&dr=XYq@|B^y<=tuQNS5F96j`q@AWzT10POx@Uc60S@U1@Y> z2`}q$W5rPez~WrZRK#Vw{T;NmDYc)GaW9(=e#On=kx+&m`TjfGNvu5Vk8!B zjx3$!S;buMt3Q!HJUl(VuVsSryxI7gL+;!H3;-USS{@mlyJOd%e32j&%+|Z(K6l9H z@VjfhPN>e5!{_2uth%tXsjJY~(NGtv4dlZ+AG>qk=&_*-Gvnt@kDXl}TRA;`W@X~+ z>5=7yvD0Tqm(NV#KU@4ayK;7PVd?P6<4?cv+?GvUEu{?4?rmvLbaZE0JCZazp%CVr zEC3kXRUX%eBW(tkBE{w)!~ix$#*_yHakmY|XCmVu2CHU`2^x#5rZ1=-9qNpmiA(9w zaYrOt8;;hg(6rGWD`J>eC+M4Pa&u*{8E|&1Ks4CtB>E=nRBLD#12`UYLS%Ny__7Hm z^x`cbZo84mICHe4Od|T`efhkblCbhl2;T?}7$2ZMR?A(wxMGT}a07l8O8oXK22&mu z?+tUX+UR(dpi#RD5bE*xgGnWM)JefL-2-^Iy9CX{W8#Zo~qIF*eh z(vd*e;}5xUgaBZGSz^~z!h{!(QR)^1B&#;jHFz}%WkcXJ`D6ELsLo4KXf98x2soS4 zV$rM13|7yo05ITcVX*xsKSqyH8_CiG!yJ(oF@}!~3_>>ouzk;%iHoBob}@jZ99b|d z0Jb>b8|5d1ow|ROxG{ig$&s$SxgZU(tL^44+d5vImULxZ7W4{zK`$257d&J8dlMoG zX)FxZt+0U8?ru5r_C_c9Svq&+E?%(l1$yNJ)8{umuFhTgnmU8+5ot^Gm2V2b?9SK% zW@2#Vg$UDEekES8ITnsGjAfylT03zqu9}H1V#f0u=^xJ$SXO}nVz8bzC8kQcOO{L6 zD|dFyIP+<{g%tqnxrdbeKW8BMe~DZB8N9MsTixACsFsI(==HlS!^@i4&cb8jw_>nS z7OcvPncwpI_?iq?JqAF(!|Agu;E;prQ2*2%z94>|FApBybo;JA(CZI)+##1U;HdMt zh`w%ToySGoH5pv%g(LBJqF#R@;DDQfZOZy$#mEDD{`_hGm;H<5r)GzbPYs-$89F$0 z;@EiK=$WOFmBo>Tg}$k&p3#v{zdG>z%P(%dV_QdCuDO`x1S?hSo8Sa1mf7(t$PC7U z#{w2gKB%F|m2Gh38r@X7qW}zhN^xe@dy)anaOIl-aC!Pd1I3ncCYq>YfpekA>iQVG zrr#(L<_?jmI!e4UNw3nfXv>y^#<0JQIR^loNjYGDlL@2whN5hpxgV_daTR^T(bae_ zdtFZ^%W0@;}jeCvKUL2h=*;fN_4L95fMcwI!NLyFFsg#N)aqSX=V1m5?Cj&SX z^+XbWY4L$0qc-l zpaECWO-QVJ;;H~X+BXOp>;3^qtZ>!Pv_azGF+HUVM}41I@7Sex>5>q%hT%C~_SmwX zDka%cRr_ynNLl7VS+;MLR_wA+M`&cBufZe}z#y3cGqnccm~%KGWl1Y$*`3 zdsdyGb}!4SdKYKv5*^Jmj9&i0(`U|DzNvoAVg0_kLt5bFNl7c}jD!mMvsqtwp-Aw!Aq1?3T(d*~c}b0;;K*DShstZga;fCo*wRRNu$7 zw|cIO9+&rDOe8PL5Dq=Ud=oKT@tWnxuwrDHsphEZo^k4!adKkTF0L6hMp;jbV4_5DNdAD+bO^N&3J=-v14Xzwnzw#1>9mVin= z3N|-OoeXAhQSRdUC2l#HRrN(pO_ZWsEP4UR#zrRu;|uiiF_&>cu)pybaTg4( zkJJFSTxi7O7TC+y$7=8vMw?8P&68LL1YDAnFDb6Nn*48~FKa>W4Vfxh5wE*}Sm>*HS7 zUjP_ZnA=JE6};6(vQfxHd%&SpfNm&Og9`|J41fJK2;gH-X_M;t9E{VH zLvOu%_xCW8usHu&0?T&F-Uz*VqL%ex3d5i;959EYS?r1B zCc)U`uAWwHEpV!AlWAdaWkS}Rox%1>Bt2)UYMzvtsBDChHGJxws;Zb>;mu7W9 zIU@`JyWwUy!Y15M;<&l(sy!Z?8{R}J~{kl&*bpL$~^ub zIC=W??#G{c`K@=~+52g}tHT%Zx`Ixw@c?ll*x%L8x>}C|Yhak7&}t_b74~;2rC>bne)>wtG#}hP91rIx`&|^{uTzp0>-WRWgen7*-4psbNH6t^>{&;Y3|J zfFW=z)96Y!I5Ul8a2dCt5%q;u+rT&ps&N#W?~SBtVwt*BgEyJ;usP;1wd!%Ey zmn>;Rg989A6etDSu)nHW*OZ$9oKpGEvA8P~uBngIanKm_t&gmRy$(lfAdonofd{4e z4FEihFT@GejXCwQ4X#Y44$hmzV+z%%M82@#&!$>s`K1fAjF(^^9Elr(p(h5%VWXW~ z^-HZK6`pY~7|boMbO4L%l_)gm3p7R&zCf!0#oHa&~>Vz8%4kvx}DH_kQJ*sR?Fiz`HWeYs?Od|acs}9tv1k!hZEk4*DrxgG*gBim* z7bQfj@8HS<1O_@^C1@=ERn}D{kEf4eYxiM%eMR5Nl@(}W+0eN8)5*_RwS|b~$JArd zmYrZ}SaB0o4b+!+%_|F;IBAQeU&Pq?ZAo*pL>FYSfGZXHxj3on;_SH#GxXz-rt$xf z%3>j5?I?}bUJ~dsYxSEtfF;RU2e1xZi*qfHn>58kpdmS9A#v3+@xNcJs>e`fsw%ptH$P2r^ z>i_ECz`;-UfB4o%ukU_nS4&&AyDQVy8t?2(w6#TB+he7cdJaT$2P>ZNqh=}?!;9c? zRX?mivDps*GZ!!Q1mLWbdSj_xR~+U|H+dSH zgW#?*!Q`01yiC@s>Vo{>F6av>drA>wV3Gy&n#lA})sO;kGUbgY-1YTN$Ot>vuMUP* z1;Su(Eu<=sYk}cZ&XuJMYM0tbrkBlS9CXB2$T+#hG(=M$6lj^jyce#lxrZ@q^uRLh zFZayio$LrXZzt~xtNbj=f94Ss_!#&w;b3jn+Qt9W2AUKx+!U20q$sHE#!#yq#glE^dX zUg?R@eB^~QP{Z+RqZK8$eYW(ZtWtNR*o=GiyNsIPp%F{4+5%t})3*#@$=Is&zCvFe zz|V(+=S6$|l*Q2+%+O-RLSG3o%NPcWghrMZx7q6o zPt5Pd5$PMnhmAaBCCfIgMLKu&XUTcX+EPuVZ}iHCA75T3;ae+>XN<;i7ynxhSa!k1JK#@V4zA>!nSW9B-Y(mc+LkWuh7X3KuWVQ8L;EK`*#Fh5tX$ zwUjX{P_G&?wKOunsJBgJ$pf_Ug3DTSH)}PK9lgR%ouJ&~LYiIhkr%>d9n!Mqr-*+Q z+p0TPHm?R~N2fqg5i=D6YY+C1Ltpg~ZV&g3e{$sbs~>;1_xP#9L!(Cq#*Pgck32Ry zacXjAaAxj`{G__*yV|O-4PGutM>$=zQ$s_ zy}N1chWxsXg|6;gTYIX#JKD7_v2I)AeUIMu{+DmQ{ND4=?0M|z7aw`#(OvX_wrERB zJy#P+l@ZXwC9 zkO|;AxMYyEwKWV!3$NLj_qVh~0pLiy)<9#@*^u+$F{M%f0M6y=ATU@=sw|3mAH;pK z7{FXO1o}oIt_aW-u7QG~)qzkgyr$thRq-*qaBkwkI0t}nvxtZz8Gxd| zl7|CAJRJc(6*iikt`Vaq$6Q;k8;;a~xV|vZTf+_*$6$1|ab7)M-9;%{co^kjdH#(z zeWfF`9(mTfL)UOBH809#NIG$w;1UC zUozOlu$8|02C&RX5CF?Yubq@uA8gW*qOYc_lWb?aPUQ@SB@2mpQ(54oyKUpWR#uq7 zw6|IbV+$tbIzWFwMRkx3uDZL`@3m8zUi=1mReE+eh-;d;Wrm9V>syl4s$Se!LetiP zk|uZcudGK1I8bl7D6uq=wx(5AhVGfWdPLzyF?`E4(Cqp1GxVw0@1A4&PMZJ6&~vHS z$Z~qr@Z17quDO1lRigs1R4ziIFM&rjBPF+ad-n6IYKO%YwY` z@FY-rba0%H5PRH10}~8j=*Ymx!QR1l_U?V+rI%j&=!1iOJ%?~DJ~n=AeERsr%&Ez# z-szbm1AWiD@^aUPb?dimN@POq-Gw{vXy37|dB@hmw#`jjw-xTXr}NS0?tbX$J0AMW z?gyX#Q#>1wq#}TBozKO%b%%Vo2>=J8p&E~)R_*?R!Hy7#F&vD0!b#ZEWOHk#xh>V+ zm22-vx3(o)JELt~v5t+&+jbW2{L^ha?_0lVYs-#Z-P?DzQ`_feia8tQyeiWQNBB9T z9+&$%@rb~z2ke21Ew+XVB_Fs8`oaenN&(4@%H@3&VOC*e$#ce$M*_2VHX0GyURAv$YdpTy zzJM`nfgLJO38a|~VR||cjtdK{xnDHafeNdO9C%;OBLjok8OuZmh$@u4e*k@< zTJI{U`qfjQWv%?KQO=~7A>sTj7P8)CDuWJVd%tJ_u-s+T6Zac+O2(G3DILI4NleEZ z09ZoM_CT}_U@bFiR^J2Wq9ZoJlG_Y1FL9K>DeFd7n4|!Se5d`Jd)SlvA4d5@AjmU*WDL=T7}%)ZI+zD?rs* zYq@EWmP<9yNxwHro3aFxbuX){R%`Q10)KeT`UK+lQE$>S3fCnm-Z^!GjY>YlqEx_{I5 zjm7qSp*ecnmX;mc3!67(H?2)Un>RFU+1R*!SKDn{^XWpkb7LVA4+g>>chKt!ctBsS z`h|Q!k3ZzC^*CzWb-=L0?^X%Y_|xq2)_WMhna28tLM&g3wX~;OJ5r_Ac&RPY+8J+K zA8+4~=vWtry4NPwZ_I4CE!*B1$9c6MV)2XBSyB^H!Kp9|B>S4O4iblsD*>FMnTABiSj^-1uLga?VMn;WHmVAf z%mitp2_>FO%DAYODP0RkE>jL;i5f0g;;mnN9kRkrL5h&4-882m?NRMVe5%7&d2hP{ zy-LQwiKL76gJXs$_#COFtzy6xMAZ6Q(PnU<7668faSIXJWnibvv2@whrsOg%I#O8m z1&GSD)s5=_nhaqy{eTr#qDVE5HT3vaK^&R}P?_{9wdz)Jx5f}d-zp8ge{=>`adQvu zoOO#%U$&SQ21~&CCY_>%%J!(W-ZQIAUkOTA)-37aXiF5@QkA6VMeB2ms{$D4)jBrM z+s8QwB*dFmN3RKB76Eu^iKGEZr|*c3MtBULugc~M7%wm5^&weUcx+i%@GP-w=F?5U ztQQpN=+z_S`qc@q<&*PQ8#Xnh`f}@IGvo{E*58g{dtBO%Uiqf_WrxmStD85otgB8! zw7252%#g6OqqCY(1YF#U^rmLFk4|}@Zo+6GGlSzRR3S!`QWvWK046T^V&OaJ@V8O zkN)Mc$DVoonK$=5`26D^9NG8P@TmhmM<0LbncH@(@7&n7d0TgTcT>lj)Y^>=pzp>F zMBk0wiH&PBx2?-=+?3n2r4h))pUYqbe_@^8fY%@LdqN%u%&yPj3b;IeS0L=G^VT^P zk5zQq?eODor4tLTZ;7OR>3pQA7;Wvyv~{MN+Y-gL7}VSuDRtDhbcR~H!foC4q>g&v zlXo#W@(k`4@?jP?l{6Yg=Dca6w}y`i!~y4g(Mtes3l~~~0B}R0V%`xCDv+tbCVgv} z7I45|Ie-eaH2Ydx{2(p>436U1-WG&fOP=O}tF77F-s0$!CHz)M;-A5b)!`6ILK%7<7Kvz@gipMITE`S zipIET*hyjetd|>-WU^jqnVHQQ^rdbgW}!3JK}Di9>glTZSS4f`X<5-aeN9$aSyI!O z5`F!_I>?;SOY+u(jx{*q-&znZ``PSqx#);Xp(L3+sk&})F%pY|&o~;_0m?md+7}!! z=T%8VN?!0q0C(4N2LAv7!w|q+0bn~PEDqR`)l4T96j@`7i;$38UY4w(`Qln1j|G|CBwNu{ zDMg=w(Y~}K@5R!Qtb^Geul`>e;)*TpGuHiV;jV7z^)Dq~gc96l=LfYR8C8E_%h$9g zYU%Xlm8h*A000mGNklsKK<7D*ZPL`HJOgCcxQKF!@3l7+q(3+u6S2Rth+P5W=(SA#@wdO z&BanA67z=YT`;?_yzU_N$A_@+hupz>FX#&@yYW}D-U&H_wY9!mJ(Mh6hd;{6oIl?Z zFSN#5yVBfGqtuR@(L!52sU-+rwseF`ZB$UC`Ybx&Ut3#Zg?y-3s0VtR8iNhoQ8MdO z7S;p$W>oT#WdHJrKxKaeJYoUfH{IYgyIdKGNHUxt(-2H%eA2~&*bH`-f~AtL2w&Um zZf*0mHV2A%+Jyy)JK6*7ZT>c#FS%NZZY3`S02iBFATGFDXmI6o&c;k#E>+Wzb#n!< z8mjLL59;Hsj;-UN6PqAg*r4^F12F9!?U<#7vGzohSG_eSd=7Fgz>ZR z_(h(Q!~o|0)lyr<)k@^}Qvh%cTW#2Gu%Bo8$_}*TNb3P%7PzZYvGmCbB=)ADU@%S- zg6RcKe$(ryU0wi~qTF1~Wwh{gsp-fL+F$3CE7;%q)erz2O}QyGEa9bqw#uWX#Cx;l zq}~)-_L!N$FwGo-uJ!)$h5+V-EPeOaJ__l717JIkDK6bRpr>V(Rk=@06-pX?#TJuB zDw3l0qb&L+W-L+Yp-MLB2rOG+2CBlIg>Xzhfg+B0p0a6N-o-|OWC->bJ%)k&=L7?N@$U7%^t__XNM7>EciPB0Wjz$8Dw1n{i9Ccgro zmwWX_AJQ0v?JwSf-^C*Q$B6&x-`o4y=Z6oy^6p!E-hA!7y`Mbu@=H%X|I`!DJ$dg# z_iWv@<(`M`+_-(+rk!hd+`D`Zx>?LXBA90^&$rGlv0x-`!D3&}e zFu2VD?t_6vYm2wJccopQ%wo@ms~!x(s2p)rUMepkh=L0@jI#WR=q6;vx}XAH*#o{OI)$fa4J zFQZqDDI~Tr@bC+mZLaAp*!wboiNP^Wu(gRr(IG z4rzNi6Z_pN7}m42IO*DKZz&6XKUhaEug$nL=V6r#lLj?5+{mR_0IZu%p)cQS&{x~* zwXnP@dUfdP;}ju#$XYNgpGq)n@x&T{R}^&5&R;lZ>ViEfTF)rf1H5#dp(S$LznXjt z`zR_I2Pro#7aTW=Hy93hWrefK%e6_SJGbPTRSmOO1@Qd2^PsN|U`DT@%6w+McB{-_ zEf-AB2CvxbH68FoWxRl@P-v-LoSzTf^jAg_4(?3V6ZFTQh{jL6bBDfPh*(6^=F%Qw_EW>;rYtF!4Et^-!KwT|~?X=_%Q zU^rkfSZxf`_#^3xrTRiU*u3T%{4|51;42h7JOPP3F~}OLCHh7k@whjU@FkKS9%~4S zvxim_56eoaJ#PvFWXsuP271k!VEzRNy=;G@F1Eh{U@k*4e6ZnwjYe7uehzMl1)oZ0 zS~*}lfJIW{6s)IIXYPch_Im$V=lg>*u*w&qjvRPpo|xqJ*ARD&GG7PJO;YqV=0I?L z6kY`Mb$b86!Dom7Y~T0Q%aAM%*aBnAc}p3w{up~uT5_Z%=4`1LrlR4>sl(+))7p+T zO9!xC9Bcuwu)#7;xNJig7OVi~Fs$i%tq%Bq0 z%FJg7pVks%mrAXQBrFAB9L4@JdY3O<*2QN|U%tX?cF8O}3s0XvdjXm|a~{$=U0dp# zr>wzeYfZUiv1tK@(-!FsP|Y8(N~7`{P37Wv53W9;9#9Z01b{W21cOI-${y*|C_M}h zwnU69!oB7mDWKl0SWJMX=H+g+RQ|MT5XKL6;` zFFuaN_FbFS-PW;oeKXX(rlGSd+uoIK>rAzGq*~h&E$s=cJGzpc-6;r*?ygK%XIf1F zj1`)rjfHSBN3-gJ3AYabuJ`dSuUm~thj?T0lQAwFth(ift5g z25SM}Tp^e#2GfN=vdNdq`?L7~pQM%-8i1*N6&2O^v&#OGR8B8XQ{aA2>{;P`A-+)H zS%jch((L4HX8(G)$d#1vic4c)L{;n*2yDtzHg&#ebaIA;RrNo0`9@c<;B0C3G?%<^ zz1(wyW&$Q^vT0{igBK1M$~QP5;%>T*(VNN`lND0DiED1_!V}9bFHiPm`m$&nIP1+d zawBWiRx{(GfOg!Oh}MC=kjmRC=T6h4CIw*X&XF;2D{B_-4dY=(@Hy_3na3<6Zme2x zFoU^@mvgd=ptNEh)lJ3RylcxC=4c1Uv31;<-j@@;TzDyvQt`4Z9#F{1Q=HWWQ9+S+ zl>+c;dW>qp0RVF*Hh1Hap-h~cP4f*se`NID>iR#>Etaic9l%xTYcEN%TuhJB$tHsgSZA!1}(gxM4D;T7=dTg|>&F zE&kg=DGRQQ9c4w|n*f+?tF{kH-WT*;x_r@Oa777?g}!<>De0g*T%whvwSl1M3N8mewNnx@RV+9()$)0=E{O`TD8=n2-EK1~Ajt zVDQR0`%bx?zIsxQ0dFqk-cJErhsdM|T+jiZv_1-`2 zyyt-(JMP@P>z>=U+`g`RZA)i&zH3bZt{3!$dOM8-Twk4sK z_H<(*lFkJ(4ZjX$!!sLLO7`=dUluUkQv#S>VmC^P6*v1kfJ2V%~6E|_nL0=@Zm zQe$f**9;zqKwL&|vWZ0Piwo+c31FC7Dy>l|MF22NFg}Kokvzo%70A^!y10yhnYT}+mR*m>-+{yct%oqjtg_e#40Vz$1wwl_l9|rF=er(+`?K#R@I6t;-m^9RX&7;FqjgX zqviZ8vaJyZHLV0|lU{Dw!HqRkWs!@a&Ov^muhI5P^`pk)-TqZP6<7^E0yt}Vj3At= zkx`{6s{jlKyqW{f?$ByaxCWv{;8yNl$qdGk=_|$;=w0O`-EwMd46^uOOB7lMaCx5K z(5R&}NPmT@F>QM-lO_3Cg3^Ww9v+4m#zsjJ`(P8g^7?vxu%$U=)tSLJ0Wb(>i9B24 zy^@?vZg_raVqqD_u{kSg>>I#UEjYVj-7)KsyAgopGe~)o8G|+KuiXLb&9HP&DalR7 zm(uE~Bq98Nyu8p^t8ekzWnt2kjD)I;AzO^Qe(7LoNMe~MQPHzg^SHYAUAgi#3(#fp zP5qI=V6xFVeJeYl+1skfgoMDpmTHGof`K%uE#wS87(I zdtVt(B2CfRk?TGiH@PFajMS9DByz7) z(b>U|NPD2eB4qW)Eub%quV8Jf%ij!vzRn;`uEj}6SnVcYSWFRUWe*1c2Lo+hUz^+0 zq7)IS%&<38_1@IvlCdP9uRS@hTE&!_z{bFU&Mv9m0=nR;7}d#Q?@*!Cig^-WcXa91LL9 z3M+vG4L{er000mGNklw)pzN%ig zvqrb0x=HcA8vy>|>{-UJA~}HQWF=6EbDE!O^Pc`agSGK(t;w#8Eo<_hX{`cyL)unZ zCo8kDD#kN>UkJJaz%qiW-3gZatXd3fbB`Io=SD~XFiVT!t@d{-dMlE`D#FeZz06$+ zVC|dP0^kjLRrHmtoL{shwOG5=T~T_pVTjedGr8D`;cYgpx2pr@xI)F7S0Fl@kQz(E zw!)Ia!p=Z^W_&I=k(!%Kr=)O`&)|rkLVP#z@D0n$3(4K7Om-@hX7TgzWBGyNMMWTb zdUhiUtqC4zuU(W7!sh;?@^jNBdxO3*z^-ldE#Dz&HZ_`<8<|PcOY=^)aNhmnQ(EpDZH&H_B-Ywo2D1z-Yg@%_ZH>->ap{b42hg{7e0p^y2Ku&8?W}N7c6SR&jM#Iyb<~S7Xrytx0i$TmNJg3WdX?Ees+l9` zs<3Hpt;J3L5j#Jif;}Sdk_wVFa=S->mV(KmkQX!sfSJ4OhIv1j>wv*sh?{bFT=ifu z`(QkeQ%o3CQ<~N0lz0_uy`{a@W>sEMvA+SMpnemJqS;~#8E?QQN{_^juTBgSZej;4 zQmOTzFV0}WCYWQ++`vShv5P*GaJ|57b6Yi}ZJNPXDik45<^eY-O{~ny070Xrw%J<8 z!Dq8wNC`4GvY*CHn^TXQe2K$VUigIZLi*O75XYPwHBtdg<-D9o)o7?{6w`ls$RIml z25@6b6$4mR4d`3fw4=81PC?&0s~UDl-SOqQa}XH3u{eEBY7>|Rs##y1J@@6AvlV$y zTLCPM_4k_N&267I_oC_WSC6D{`8& z{Mfjp*j(=okBSrk84xvRyYTu-ECC)3HP%p5eG zO+hocv=nZNAEhOg+35<_X89zJxWjZd!|26AN{e&xx*{k&lVlc>)KM0kzgEFu?F=Y( zz)W9Rv&3dscDGhLdnd=!8@?PGPm&Z2%dKct98u@|G6o*hKQRd&Q{}Pvcc>k#x%Gk% zNB(~y|98kp4BqqBfg-$PEw7(&UVF{7>32!ul4WK*k(ijBolGW1rY3&*>lY6m+JFDU zhwgpwuDcHHI&fDvh|Ah{pmXou=)L#uz3X7CyURnd<+wc(2XrmqE(16iY4?Xnfsh08 z`)z@ModMk0;R1v0&StCKV0JdQyIMe2(GH1*G4Qw>o1?`Su(@2V?IJCfw&F~+7I(8R zZ1P9U-VoevE8xmD7e^<>pW%I5A(y|^9cW|8hQ{0?gW79|LBE_o%=S)c8DZDcVx5?Jsq7;zsz1bA6FWX0B&P%kz=g z1as+;(uC5_BY|n&19g`aIb3)kj`&z;Yuu@00Gr!uMEaGEyIl%H%<0gSoF%r0b=&|% z&4RAOLpb2f05+PaEwj~W#KjE{4Rm_jJb`vOF=<1ht24OU?x2BDv}+(fHwJKX+s+nK zl>%dN(Zc}72X1Jl){LYpq+~E{o@pr0RGhDH zy<2mhTUFO6o23;+l=C#uE zT&?~Z6dg~+1gg1-ObWt68;}^C!>2Seo|-w{cjm44{_y0pKRR;X{<{zFhUJC!?2F^L z|6s@Ny^)?>{sRYN`}PL9yIftJ&JF-LY7GQU;fMt==AnMxfXNp$`-66%)aSE8p^!Zm zbH`(jP_P}qBQxYMnw-tB!X~R8=xrA5326?UuPqp|`1~e^lg8=LG#ifr2A82L-7N>1 zv9|k3HeWN2P9MqTZ4sNzM(tD|1~50QAfKlU(No$Mf~=gq>`{Ah@Dw1INOflViWU$Q zDOE-eXr=&hmM^v)95;#=rED)OK>apiaJ3Q@5bjnx5122Eln}I~ zQHnceSe%X2JKEhO08G`!JT(PKC zhff%>99~u%eNe|~^-+?(Aao4?T&t_rqIYNgo!a#sTC5UTdwY-f_I-1{7a|6q-y+^s zJ#!w?CLUL~;fm0-7RH-)j@8B*#9-}g;8Uk7Zt@w4WZeAX^cgAGank8?{Kjy7AjJSy z=qnbG_QGG%R{~fGmVQqw3~i4p2oTcx;H_V9THC?Y-*{=s=0Wi`l&(_BTiQxr?S62@ zC4#m+h19lZD!5w#TCLfYh8stI-L3D0FCF*|D=BH4LkRLYw|%!FdwE)JT{C(mfTa^< z@t3=#@3sKeFj%?6W*GDRa|~b{XA5~=v!oT)FgU5*8?I;sU6IkYX{fWhTdYN|>;$rT zf@D$xSPi77HQUk&j=eL9dCk(E;h6d0)Fj(t4p7T5HI7fzy9fe-+k?muRrtL<3}Di*x4Q2y*I|{ z*&PwbP*+c&tJ}M0Z)jJK2k7nWuy=Jjpjgy`^{yT_U@Uq#m;%9euV2V(@p#(7UD)4_ zs3YhzfxgYAI=#8UNG*T$Bs0E^xDx;a1v7axoJ7JPBYiW8bY4$YnbYV@l7hHI~$0K@D zike_i7EEz$Cay?t=Jr@LF3F~1o_}`+u%ItBz#;&fsv!=)b0QUYz~Es-+(MGY(|qBK z>1s^0jbs4B0h0-K)mt33W?Qw%TE%s}>LjHN2h6+0%48%l6gWZep2ZBFvP zk?bo;o60I^39j;_B(&zIOkV}MLfV^K0nE_d7Qm$b{u2WOn;fvZ->D_Xw!6X#z1Rc` z0BhsV6_q(#lfO2Sp9RCTYc25PC4&5smc&}lX?Ll&)-i8|t~Ri|DZ;Etr{XhPuLHDi zX=~c^R-#wXS0-6N)A;3xFS!xvc;I1 zOQoIlw9$S`H^sF<0=Yr1T`TEhV&9s>)Le^InaC|j%zMeW z$>%vyTpDrh=OAB#f2w}?^Z_P|1&9}^avsL_rQf}D_Yd#B_mM;QKY9;v3;IIcyTUkj zbOpM0hr9Pgx_UxbcXoNeVA$Vy%m(Q8bi2B{?a-b*?!9|GJw1-jPHQOK9t@d%0SkcY z^MS$UV9-VmIP47hEU>vEu&hj4HHuI(tgzG5Ox9T$%4?=-RF4tg-L00Ic1MHLXN0(4 zm4`NZ0b`soFmxTBR*2VbU$f|{(W2yD`Hbq+1PUh0=7=JhnZC_|Pn%t* z9BB%MnqWx<1t~FV!wvfySz-^E%a$5N6k5*=#u00{VVkwC9TyPh8j?U1b-=J2lq(D? zcZkHh((%LvF-wtlj%gR!UMr&0bwXlaS&Vi7eVq=q{8#jdma^Dt*zauFnVchuv4e4EaF}tR%ad5Zm%H*TWW+jznU|%>Qn~T@E8U$ zsjyK_M&j;QG$fd-ip5Do+YU%)s%mQ6$=S{@#Ef21Xrzd;t^{|bB!HR0n*a>@Zdl>- zeH>wy4VJg&TW!U#JpXU#D^0LArK=LR+evO1Gk`02EE!y3g4qE}Y4^Q=UZ(E`)iyW5 z&?Z1>6N@S}L}{OA21j@gcx%s!@5{U1whT!@+IG;DKhmD8c#~SkS@Ax%Zsk_Qy0z$) zA$0Yg147Ds;17-7!+=o#kkskHA^J47bHH17f4N;3l};r#;?HXG)J7C~G7bAnyT82k zyY238#ZK_|iIFU0(VOp|`5pi($y{0={C(|Bwzl~koTr zr?tNoS1J|PD-}s(vZh%|ZBa5gG(9CZm6^UGNi9{eHLmWgE8^=OINh0II<;6xEfkZb zJg=wIQ}6uw?IRE0weN7x;Ul{b-rc2eww?!lEp|BNR7AS>+Axk)7i-hc< zfYs}_nk{5}fnIKg07nA<%E`>!BE#b`S*`kZtHEk-#y70ZZEy$L2(;d2L0N*aJ7{qF zl?EDaUn}^{;yzYV0IE8}+nfYZ(U6h@p&Uk5>s}f}C#+4j zn8;zNHMiG*PvBfA+!%`+Vo@VaUl8+)!a=>DDT^wAqY;|805|OOHLy1&E(#wk^Q2Ut zs+9S1#F)yB98D~z2>>xixMG7=fz8%F5}PB#8_rc5Z5|vv zJ}{u|7*(rHX|%Vk{pbpK}w@w>0olAHEHM>HNSTh^t^& z70y&-jcMY~qrDSjeUsz;QxgneFkpCQTEPnFWPWZaIf>&ZC%^2S930O~ z|L=$Yef0UK4jt*0l!Px!-(eB;;j&4t+!wvLy^!Ra%cKRY6UfADA%mXj$_gkVd zYge}m^aX>vI!vAMw(fX)XVlc)X@OvZY5uP8!L%jpYf%^+v_bx$-RU-&oh_|4gU(dn z)K=-46_%?DwO2)R@c7xW6>lO5slYbb%WDV`r zzJNX+(~%;2i26#Z0*s?!qte^i-^jsdu#jtcxm6^W2`O34T=gq12tUKvxZ}(c9$|NPO z0OpZ}+~^7n7KXTyaVrw7$q@73QJHw5Og*A8z`W}$CjpBcU#j%QCk7+X>*u2pa>93iTdD=zd7;I*T+9Oe)1CyFDu45 zY?~UrQQD-UT{i3Z`0L{zef7;hzWD0HFTchD;vSaT5r^7}VI^~abHDlwtPY@yuS~<+X7fCoROX$ch=r#+xu4l zSh>Tdrd?uug>r{}0C?-eiM4|YhSkLYq(lWaCu9lx`@I0J@Nf(gM(=bgIW;$nBcx@p zmap65mhUVdqJ6CPq;%NgsCB)w8uT)^M7q;<{Y*65z|<2|N-%gvb`jZ(XU4XYh9;BI zv<%)_hy`ii-sTT&PJV9k+J)DQWE??UDLx~wZ{(*ZWBXt&Bp1nIZmyIAdNYgpGsEZq zb>@rz{`fC{{NTMOfBwuH@BjXH@4fz$qmMlH#6A1=2lws^?A_zvz02F(LpC=OcSJj! z9bLZ8ZhyR!>@NTujeA2Odmvy1fIB)JU0oJfULJM}`gTOxpm?}78Zt+Mrf|p<@V9t9 z)TTHbvV?-|LB9p^`6w>!@U&VShGq*Ka4je1a5siFGY|p>8?E*h92vk)cPsN%746Y# z0qhI5aaRqJ-{_`x9L+qRj)K)nJh_o;d1*6J1T$f0DdkGc<72t~dTQ%0wt=1!&^fx4_>0q?yPl)DTDwpo}V1B z@V=n0sjbS~R&Q#hSUTr$@wTp9gLZVm;iwe=)`{@@hW%v#x3tufl%CJ^JWNp32g4Ir zDI*1KB&(~@=`%RIdfN0=fGUcBMWGSzBJ-!p)1?^3!V1^mJiB2$p*jPY0vp^_g9X-# z5k?{lx~+y2o<+qGO&hG&?SQ~wDmM}i7|;cS>zZ(WXPv$V;w3n{Ep zW5OKrC5iRc4p|C%fm=b`Z5w(htur(u1+{H7wBDNO3+{rxS}}?F`0E3D%4V{{C4k8t ziu_)NN=3G_q{2*kP7B})X*sF@Tcxj-;@Y(ax3d+Ll5DF;bi$hy0oy4~bgC!;VyR~) z`X|P56dDtnkkYbQHV{=OXKXa_mLyg@@s@31nRvCu1kY}JwIP35Nn-hFNa#v~%dBPG zCg-ydpv&k@FXU$O$xl!I^Vsix`Rq$SdGcpZ{O~6a-~YtDKYaH7dmcNm?_julx3{y~ z-m}{UQ!6@3x~OKi!x`&ziGjOra2MVeVgN&ts0DZ4z1!B^-M(j+4cgsh+1rDo4Gazk z+Cu);NZ1SjLm+W9VxbYd0>ECc+2b+6)B>w*cA7BA-;dOJ-(~=PA#fJ}hAg&bo5P5E zvb%-TpMLEh%!f@cmBiN;oZbhyqpmst&kTRF{hR3J&5Ne6Yu> zM4ox3f*d#~$1TWVw~*S2iD%^1;ZgpeArfn&0Y`Bo>~Ckx$ob4+Sm6i-oJH1^Uc{D_ zY9dgOVaeXqNu4I^8J74F-AB+@iH(bTAqBvWCaySwe+4o*^~u;;1%Tmt1@_eKG4kFs z@B6wubxuNly)p)v7)-g-yzdLXQvOt1V@peYb2H5}Y%|qDOja0Nh<|0a)ck&=1LnK& zLkPoywb}{6ykDzy$P)AgdU*?2V2!(gBHLL{~Mc)SgqPM_l+Q6(`WeDiKD2b{le z5~6G$&E8jvZLu8WAghuf4n#A6CD+LWtK6j{zvs>LmG`d*p>Nw)MC;wPTj2i}v$r+^ zJhyptai6vkpsGqY{Jj9yrh2J}{Xb!>HPhOst)Ra2zJk7kXGe#LpyOk`V{`;&crA5) zbmaUfpgV{~1%TDYnTq|Db0f6$m31s)7j}-(o5-XfEF^#{P%7!75_ChG$+{7h-71YQ zOl+?FQKX`mq~&hk_yp8DhL2)GCGogMqe2^J`1*sTmT^x=0B;UZZx3K?=CjrZ%a2av zmu-`nRuM3eo8nB|4d~A2p;W1mE*CS4#p&GKaAGXCTuha-Fuqf%>5o4D_=RIf?|bO3 zd+*-|-Fqva}fk5|e4~_GSnd6<-&Ms=&4D`bOg1ewE7Emna26Tf#M>y>A z1EQ2sW!|;RdDq>ZJ$r3?_t^IBwX^o`cI@f4#-rv~#6(f(5YZQkgxeXwey`c>ZiAf8 z7OPdy`K#QOmy3~FL0^hL8=!V8?61-8Y!(1E0*Y|D-axCm?<)rJ`i-LHq)z0}HrYW? z(bEb?d^O`cn)9k~(1LyUkDiAuO81vN%bw&%vS}m8Ue$Q`lD)!JU8ut zz}hBbjXIv8M${lxGk_a(HT8yCXd3{Z>F+-~FmP^gP^cg39UAHz9_||+h5ARvSXiGM z96mcRg!_Zg3~3Phgs8aXvS6wV<}@hLrbFf@vwMcVJaOiWcsbV*pEOsl4?^+XR+3Z7K`&3Y4nc zWvGn8+YOG74~&hmR2UBn1}hGjw5b4TY?J*JwZH6oW%iRaWH(cm=km7VTewU%ET3B+oQ(E+Hk#cpS5O;h`D|`Y%+Ns796%5uo z;H{x%?KZhKRZW&!Nt9~Ekz|Ikw7DCBWkFm%va+ROt~_5@Dh*DIy#2R#2NRgjPDIN(2cz_ojqWmmTa4j35Tv)j6>r@g1!+|^-%I^s5%;83{T>ucfM zW&k+gYj?R?AuzSws^cMaJQz+%$ZBh7w>P(%8r#fGW{ckLr0gnD*GqLo{*XyBn0il& zE|L(Z^FSPv6g4ePWPe2p5@3vz+=ZCMyO`2bdSDq{dTK)FG{ zBZR$1+>IvU*{JIz3~nse5{v4?p~jHEF$}-!YjitnT#jlS*>`fnGq=v*K}Nj&Y!}U~ zc&45*{*S}Rg1cNp%&jxnJ#!Z=1~3TPZmu?iZB&C>-Q2bl&p>mZf(Ad;HF2>M*w4nd z7To3XUrNP-xugdQ|Jqg$wY1bSfU!^jY^sF=RvkZGYT!-ctt#o?nh8ZpSXh)}X>*k& zfO*#ze+yh8Ik?u#qn7~YzLjz(m;sDGBA9Kq<56l_mdK877gWX*HjAugU2_!!m=mnj zzE=cYp5qJj)}c83?EnA}07*naREZj24mESM82}bNEUS6^5!V5;_x)Z6+&?k|4U7&$ zay>LY3Jp(;jZRHKBa@TR@Wcc(G=cBj(Y}$PvjZC#K7RK6H)qa4U!Oh;Y1hzKr_Lxk zc^2rEf}fTac_Yv*^ySIZU!2(JzoBIyFy=l zk7VkWc6WShp4vuAmj=LJ0>DCF2mpT}Mzejc0(kSN)U!g$O*yfZMyQ_MG^O=x@K~Ka z_tp76sABwI#Xhtaz;c^ef?4}hZA4m4q3V}AxN71R0r(95;-f@X@O5BZ5x$xweIy4_uzj2o?VX4xVaK- z?;G&9ilZqQFnfJ%G;uay0@6U)=GJv0PEbMOsH%kGwv0xHYCY?n|vF2=NV_U6Y zaE+v|G_}lB-tpzgGwt#!_P3fw5Q;Q0PM_vG*XXLNn+Vlf`fem)jVC52W~Xq3#%3l) zrWELoO;196vO=TN<0I4K!&75}VfYW^bi_@o6`kvOBZ=45u1$|Ff z0Qif|a8(k}gnfs;K6hRzhVJbJu~=K}BTmvCxNiw3Vd0+r{a*phy~-{xqmTFx_P28-G08l1Dt>WpAxR7l8Icxo9?sMuQsiWLT#a^X4MfebgnI@!#UKZr5J6hWYIfG)Ed|4^ zq)-#hAr9-P^_8zdG~9swt=XIfO%ZI)wBlqdFu0|)np3*Cv9sLJ6`QZ*J9&3pZtjA+ zyzeX8U{zN@m$|EK0E?}6e4Y}(0=;!=t%^sR5IZqU_e@oZ?T5?Rw#Le)moP98o8`c?tDjkMUB2z^IpJ_V%;$(i)j zbZUBPZfYhyo5&=m=4PPj*-2<7IR)WILgIWX0Zk^SiQm%`<5S}xcZFb}VWREEBRe0IV`w(w6~zytfZJ(bq4f zqO0%ZU_bAgD>=Xe!&C^nxjlv0mmNB;X}!y5r0^rHD0f;2HkY0BSE3+W?lD(%P5HXF zw<4{YZfY(XDpYX+ak77a%XURB)zF4p6#-;rOJaBs>K_Gh$8hZhO(iBaG&4OpJq1ln zO^!}Yk*23v!)oAUWO5u5i^>6MUJZF*sHXg3kL~?o(xY8<#f1KMen1vrr%~7Y~v6(3dZwVTinqc8=%gYF9g{2$T zMwJ=5+8uEXcNNwG?QF7zW;B}BOey9#^QJc`bE#nZ+5JN@FrXEmoXcm^#eAxegRoFg zI-lp@GdtjI1^Q-6%KejN(rhVX+@wq^m~CP0*Td|e@G`wZ7Bw|Lq6a`2f0#Y{@>kp!Ih{H?K2OC(@aASd>K0a4&Q z95m9bAurJ}>^FpbN`RMMj%NNC#i#}yx9p%MS=1!CL7|lBOAKGmU;*GYHO0BTKIkm)U*+HD9@ka#U9rbrs zZO(#LI$!_Vl(X4c zFgr0f4LmcdCuhc46VqdpGsI@bGlZKEuUTW0V-Oa6H#`bo=rhTQ=~-If=J?d;*yPCQ z#PIOg;NS?@+{a>6GpEn?_mT$AL#O-BpXxow9$InIy&&lMug{%@zBzx6C8&IkB`q&= zm(k16tw1kWrNyw|ZvUo|8*aogJjgmVq?|uJG@>mO7Tumlq)t-rNkx3-^a$zf*w`6O zBjt)d%v;-0ZSB;dx?4)2Qj+X8H`t=)kpjKIEmMR;rh`-CjGSRmQ?PSvdU7h6NTlcH zGP9{{GLxOn=8~*Tc1|dr0v=Mc5bg<0&dy9Erh#WtVoLsFz(pG_-4dAuh|82!iJMFp z=OA1T;$NUpS}2<$B${+6YtmaisYpuCVALCRhMz3UTGM9lEx>7g; z05g4AoVv{PWmN>9*%0#rnk{BXr7SBkPv>!E^To-}-+b>6_dj@G&%WrcE_Y|l4%`Bq zU0pW#(T)xaN1h>^kH)OLr_1z>MeRUoFleJZ=a?%RcgMTjVR{A^OmJ7HqqD;f0K@op zbyz9#j2}g;c!&gWz~AB%0}nXH8w$2T!9c6eOLDoJoh~EG<~Go1KSwi9MryV+fxa!G z`G&=2wAl=HyOD?DF@Ql|yWhxdpBccMb;aF=Z4RT^(xlFkk9V5FLC)yUI)0b{eJ%4(;=B$}__(Xpu6 zq^q6;TWq5WU?7>(rp`4P+m*#Tw$@Kgzlqx3X3Nwl9 ziZM3wWY?2<<;JSi>WvbP1;-r zEyNhsE-D225>PcIyjwSb`Qf-*qL7}+r*LEpV=_s>3f;+aPtd-B192RpmF z12nKGMq9iBwCzwNW{!1O0Ar{lZU;5PAqy-l(91?P6l@O%ZLx@Ah@&w_C`^!!#hsup zHGdYaw!iDj@k zoABxZ;6FsUQ7+3g3;+NS07*naR9<(J!&VD`fn?wraI1>iRE0uDYC+{S3Nxy6I`mxR z!}(Thg4xE2+8D~r;?g6hM<4HK>FzPdW6c1tVt>UeGXKHr-|>+of_5Vm-V8Rv?9DT0L%>bc$n7{Gj9-S(z^WopZ8+1c8@1FtLStL()}^b%qLb&(Dxx^_^5 z4&E3xw(e*K>^JPMj=Q7Cd}dB>7F9-d+Adcb|5_ytZZowI*Xd2QqO`Y`Gp)pgK^iQ` z$HvwjhIZ}&LVTrGl&v+)X12(@;3sc1?5Nf6pozcQo*SD1yy1XXFBR7=&nvoETv^L6 ztz@MZRx*pLIOd?zQl_{--;xrI;9@c}DZX2$08}uTkBmtOFrG{d1Dqf<2%1Qa&CZR_ zr6<$b>2z*ZHQZ_b+6DWe@^YFrzc^Q1OcWMo@})#>ekNO-PUk06xd~EcaxOiQN=-s@ za}&wrcw%;9CPDZY>?hw$G4RRJ;j!VN(IE(nk?|20ZZf3%2M0t9d=TpGA2{DfcFv7o8p5qqYdkGgM%P3#ja(OZM8=xC6H@8 zH(w2$Jm1IH1ZVmOIYAwa>>VEN8yOlH8|fP#=^Y#9Ok*zi(dHW~7#`k`0$?G|sNyGN z@pA&bB-6IDR|bIg%E#MD_E4FgF zSV|S<=ki76Ux=bSuCZo0nnKrD;;ERjv;f8FY7fV>`fnh|*Mg+QytrE)DwJ|~Cz<&S zq>?zbRq0|HgyuU)v4NI0TC1e6)H5QuO;QuB8OiL7VUd+R+KqVfCSR*Al{`Tny zFaPcs^zaW49k{D=&u&5A4p$^v^BJv$a+$lsc04H@HSIZXt&<%(pkNF_+U}yYg9{*#IPMPg%`l) zd}%NkIPv zWt!SnP}3HXaiD5Z8}6sHYa3>AJNr@80$paw3K*kr#)txlptWq4p{4S8NGP8 znW~dTN|(sW=8=NDmyBm4`|E48yX#Z{D<)fR6>~Q$2C#}rO0ZJhZDT7nF|8H2-2kv0 z?ptpJP=6o{F}2+QUzxIOpf}LlvZJZ_PH??m_k-#t;PyXu2<}36*8PAxKLfoRSEQaZnw$}Oa_WkM-^ z&*o?5vQtE570k2g37i3{@uN&`2I$2R-_iK8##cGMbIZ&4!o^o@2G9lUmo8)$*U}5C zsq)I){L-w#;PP~?G?gh%qzmJu{3MjiO|i1s$t<2WGleGy-SN@{dvPhiR|8=4Y;rO= zHwC5AGjpkF)@*V*F*`Mzn1PbB(@-is3nk{JVb-T-#=v!4H1Kr;T{{OQ+nOKXMY z3q=+OW|me8(Bg7_VF`w~AV^H`h9_nTXPky|$Im$*> zF0>?O25Sv;1%M$=c}rvxZ@&BHkp~VOzHi_Dec|1^{5{=X#$+hm9*VSuqbBZM6^*x( zgdq+EO;9joVFAOupjOYF?v73;01U(mzFI(EsVF_OU5Mu{m_T0|olCRs+dP7=qDuoc z4fX}VU@EZ{qv^@}dc3VTGJs9iCXqzbAm%YpOZ_%;6UkId2z2S;ePMi=z6@Xob-8L` z0E<0fa?)mto-2kOt`=p2udN>V4~CoR3cv@@HZzuD@TUGopR3O6tmT|3*jC!C^|w$- zl1uNV94P9uD5lUib8`=yyUA>?;{+m55a^9W4Y0rQ4r45Cz%z$}P3&B`Nd@;_7KXA$ znMdTP6XXAs=|fJZ;*7x|o2%C8ZE*XWxNnBi2}?{R;%R_N2WEGpLSIW2`%xUhFuV{x zVfNp+4xqM|u;XF9nB_ntj~tGgc58K;d52P}#7&z;r7r`Ri=fC@+v(*@&+BYL)1j#qUhBnZ8_iRHM5Srj{FVa4!xXIH>F;w{DC9 z2AJ!b{sRE6YWx8oL1Gr4snPA=PSKp1b;qsmR;6yl=1a(-zkx44*FSjd*kbI|-kqO>?$Tu2tmvxQViBOGcr}0cI0HN{uNGD>%&%T5X;g$(F6Gv)&~vi**@Whym9_ch)gnj?3@g$2bR@t070$xX3+?`soe^LYXE?4zGjO@89Qk68N^Po5g6tyXbE5l55be*E1u+R zqW)HX1NB&THw68nA7q5`q{OUyN{nJ#%<|&`!lmk3`9I2K)^!M?IvS5yX3+3@5w2Ry28TP#aOzvbE)!T0E^c$bB=EkqK5y zotgSuaa9jBoq!t#M?qf(Ff$kqlB{#c$PF(e;U-ZBr4ttfjUHFM+u7i-5mR}rFBZn; zod)9$gMk>VOb!Njt<{WALEkDGYSgkrq(G}1w88;%uCgjkniXFth=C34gYgWlZB-n~ z=BMQu!#tM>zb^m`ob$K^p?al?%u=hSN7ZtSgaIsao2wbXG-R-~PEeWR(tJ}b`4tn5 z1UTyqpfC015cR=3$^N!gv8!hEHt6rH*X^in`~kC;#T}s~eKmuUs66QohOQRC3|$4i zS{Q%3D6|ZheD%fxq++tLVOy0iYuZuf-R0$rS$wwwv=^=xFI}C#a=i?zjVFlVgZrm(izfrnzbK%N{m)9~Y7t*U2Gi#T!7cS>mmo8>6U&>v&oWFdffQLgDFXb*= z%tC7yGKwzcwE}){#0&9H@q~C<{sc;^x%riBVJV#|&de1^sp1@zoW~a;z8qnOlK6_x zlyIN?{7P|tHD6rG74eYeOnEI2@kfURo~N{yhcZja^y2Iso{*jsNSGR%8;1rGqx~}@ zy~)w@vmQ?te7Tq%`a$P||a+mScA<3?~6qM8~+km;^9U9 z*s+jLh#&EDGT>Dnmq21+!Qqct1^&3$G0SWQKDlyn9s=WWl*U@xYyO7{I}TvOCBqr> zo^%?2uY!`2oy;X?vs4r?qlTtgGAn8$6*;HSiwP(9SvT=m1K@4jFK>-DYYTZd-0&6$ zTp@r~wvf~o_zGnqH3KUJ;h&}Wmzfp;YJ38@&p!X>&z?Ve-+c%6@9*4yAS(K1m>IxY z0hTyVo;chd2%5aU7AO#Gm-bhNqp9jwG~x)y?6M~%cjt(AsKz=>bcg*_)2t}#%I9sS z(i%71a0?@u(``g!DJdfa*4i9K4nenBbQVW5vD4M!aJ2!z78}vjN!3RtCN8I6VF3n9 zA55FU?iQLU+pc5l3=DJ6CMTsd(-i>u;9zqg0Gn%!hAIEq?^TA_E9pyO3a`@ULhFFV z)FYy=tC2&mV1_541At@k=6Hub8f)UozMObPDay_U&ST=-V2E;##Iy!VTBby3MJ|`J z@yUg-4iAY37U2l9izngHe%uvVw!LHowwQJrTkmW({Qv;-_!l!5*V?udFF_7iSb6?^6#$FI8rEvZODa6baItlcn~atY!vNYsu!CIx*!}s7ll(De-4vd`Y#9cS6cuuOKcS zg(rcBX0eSXSFI=Ap@NXn%i0FODt#CECa5V+E)#~YmBp2{+-74aNc=+w_mZ5LyA&`SC*FJ&3rpItMgfypk6x3jDJc@J{$L;_9{X zwd-^fC;2=c4j%9?wRU;_!j%$^^m~E0m-5n_QQTErUhwrtc`XZpSn~wbTz)B&EX^j0 zGvHaGFgsmHPUUAOa?{XcerCEjn<&lAmQyp!bBUGI)Z#2Ok{*G^vSa;;ek{gwiztS{^OtZe*NXZiH}cz_V&l`zxm;Ne>wT_Z$EhFx!)iA*;}t1 zc=DkKpMU0oqfg%bkc6fjMo&&)H-Cg$`yywY>e){T5U5EDk z@q_n2{Q93SzxnDLe|hJhr@k0WO$=wI-v8u(hLWRmE4jYe;jjCSC(EhDRe+74MKBW= zQuu4qpH%~3MkYQk31BrStt1oRCjWb2=;9B7PoA&j@PUiJ#k}|{(}$0r@)N3rR!lYv z>&sUcE?g?FT~ypN8EF28r>>d1(AwoPi*GWLSt^DV02dZ>9Lkmq)?hf56t&1QAz7v$ zYXQuCEwrMrc5y>;rjT}YM8#Z1Z8t&0&FFNFBOh5JP*YwpGx# zjp!?g%l)Jv9(s=>1p0!q{MCssS(?OPZ^BPqu2#x_wo@Xs%iH4dw=r~?yL@DE9v01S zur#)s8fEh=S!v1xk(?eqx1Wu#Z6AS|#2sA|^xVA9L?CVfK2jSNQgM|sMlL=g6ykH|ad#j!r zOl}6SNu4gtzLpcLxW$#B8K%&>;ilg=#qotPJD%dHEZ>@F{mn1^U_*aBG$Yzsu>ZrjcV~tARYO#e} z%f(1obIvoNmyK^D&0|nHLN_a2ExCuKY-w3*sHz08*6*rP*-Tr-i&6@}uFbET?7A{}0 z*A!IWbn&5>@+J8T;?3h%xN>6&TD@9Yx>Q)XT3EYIBrY$f#dcpM<7!v(OZ9TSz44lh9;2IX<5lDozg;ruwqu$ESKf8$bQt@qfJd?yJB0 z^Y0#g>BkQ~|HLEDKY7nH4?Xt6Ge>{>!cSiL*&{!D;?R#D+V`U)dw+On-=l{Q{^-F2 zk3VqVPaZ$`_yeG6$C3T}9=&hZLx+P0dwlyk-90g9SH#sBad$;M-7ze@opE1R2iA0^ z12>~MiJO6*j-JB@AOGo(|MTS+ci(&9?jPR!^skLYUM*j`QU(rjgxIPsUx53}@lhMHW=G3R#b+zi4*0r9 zUj1CXfuDlV^TH4pCEe+PR~P8Dt}Wm%f+Jr2;?+fH_38q&a;3~#zFdOj&6O()QmdCh z;_}Kxkhp}a3S3(Nz@?=ue!*NhqtI6kM6*Pqb($s1pA^5VDF@Pam6Gw^irlDe2Nl!F ze0rvkffB{+EFNCU&y@?T)Iw3NabA7qG;6Mu*(%x1O42vGRDkj;^Q_!*F~3q^<(Bh> zC00qO2qX`Vo_q6;uibO+o&$Gvc6RzgA$vGvjz%o8xQ)Fp=u5o`1Fh_U`3z?!1G+H2 zJh<2AH{l3=L%x8;AG9)nvG)4gy@A$n%o>YYKwkzhs0Qx~2E+Sua|y4<=o3%NrL+`} z6}Tnhic(#|u;}gFZa11}Bygj_Oidz9)~0rRFMADQ)`D8F#6uB8sM+G74PdL!(C*Q- zdvG*x3l1=eIwFaEK>)bjYTzk4z$X9}TSui*IRLhx^5Ht&~)zr4Lv2_QII#ZR{+@+FVrEPdi zbwx5Wl@h6&#Eo*Gg34X?zTA0(+delMlnF>O;7lRwMjCixr6_oP05-d=?+-CVkGec{5*^5xr07jKrAujJ=fbA{zhZY>9;S29p$C6ii8O)e(J z%hRVaW5@pb=83^GFup^jnZEqQr!(jNc>1F^zxeA*fBD_d-g)`xo5vo1<>);>eRSWG z_s1VR5IVdoc&I0Mu*csc6EmLbo;yG{;m$l*BN(3!>(A2gas++iHF^>2*l^z@u(|CJnlHSx8tro(fvJv zJzbFlyYb|qeLcawySzR0oJSsi++2tUE|*l5S&Nrwy>M|JDqkorTqu@S^YhCEHolaxwUE!Kd%zr$h2*XQgayM` z9wFwmw4R_Hcd^haF`t1r$5`$JZ-kn8vsT;_kDXh{rxpw8r6QzVu;>ozJR%mnEXc}7 z78_jcNf5WVRxYfTR28)UM z*tyAbFkH5A<+dASWC-wsxXp#j*GBE==_xu^>$?_kJ?8?9?~!Xfy8s zfMI_D;AqU~^HbK96fjJC+XBG&1?_eU6yxFm2A%T4Y197N3Gy1ZR^TjSK6k~Dx1|-lmftvUfwW@J=bvSFZ11 zjNMuXS(jLfl_XHD-CVx}-B@3{zP@^Wefh@v%GLG7Yjn4@+v^u_yv01D^D9@@m)E{4 z7cR|ZmJ{=rGM8?ZNVkiZ$;d81*VY$rtiz0wZhyA|U0I(`tqs5P>92nCm*?L2{f|HU z*BfU(`|q=#zn{zXUca7RzBQd$?awdve!HIgc0F@*J#}k61KqftC*8_HH`iyctxxxl z{Q0YszsqM%t>d2GE!?JGXCo-BiXHGO+g}nh_~r^p7_zJ1EeO%?$oIVZ-SU;&OIL2M zLKoH-FRm}G;n!SWUbwwnyiv|woljrNXRpquF6F1!(y6P(iR-zu3*#^R?GLVddw%== zn}7c7gI7NJ)6;ML^5An1#~wM*dGDU+q3+n--Qfcr-aTQ@?hwf8+Z_$>?F#Mb4DId+ z@97Neiu<~wp3X3iI0N}%WaA;o*Ae!1#60n+llU6(b_m77zIY_i8N6Et&=niNMh-!9O9w^^PZnYT1HHn@HMUUOXA-_!TdcZvkk8lR z^cmcNW>3iI4bzZ85v8QZN&wr0{WZIrKwpzf$3qvW2$<@L8`%kg>q_q`5$h(>iv}H_ zGCN%kJM$m}uAl`<9S*WI*c9`F#Xn_M^O`%wy_#4N=ody0cMj57|JoiMXkx zn??(Jd^99D80KU`?f?J~07*naRMb&J3}+35*Ai*T)IM67axW6Bc%PW_q__*T(rLN9 zk?GsqS}WtOREpD9hu=#r^wNbQ#z@ov0Qww!CeM0AkBTLxUoi4Yc)0TZg0S!n7d8_y$XFr7iiG~t40KwcXCda_>>sQ)LN4J zTk%3W16Tr>B{H_EIAd#LaG|kEPFUi_9hYyH!BocT@~u+t!d!ACnOI6pl&6Psqu&gl z{-Xc*H-q1NJ@ECJ@l&TpPyFSx_ul!(A3i-HEH^Y+9GxmpO)pFjWQM;QIsWcP z@4fu?D=+-^*z528;r$Q)=O15u{P*J@{_X1zJ~;mACuhDqKY4B3v>92 zoWGs^a_p0%zj@#%zrOe7S04ZHqt{M;`QH2Qyf8TQL8;vPuike)IPrS#=--wu4;7Y9 z&SXAK=DxhSo=D|RK$owMt*i|!t({oCbo%Di^9#j)r4t{oEuOx9efsw8xo^KK-d>;o z_PY{vYkh$vJpH$~mw4k@ES7~<;r@9$`P+3|i{L^54j$fm;o|!I<@F`#;`++!cZ&<_ zrTmTT#KoC^O?>&zXYc>{_}@P|`}t=B$N$y;&9C2m?TKF>ef!hDymj(_pLyq{z>!_e zaaYgb{d?}ctLGm0%Z}*2cnrrqu~1K#73_`#y29Shu%{yw=!!yE`??|!7V0_%Uki^5 z3(IlvezK$+$ywe+tKKsHi{(18A^in>voP)BeR~G27oyjHh_+ius#@Q z40!8o}{6NBIi#X_`)`@>o_b zX(kF|UCYi`Bve=5@#(p*|8e49pPc*Ze~-?PX5^JlNWboA9B@r{_M&mA)CC{-3YTyf!@k z{_3T(lhc1oraroMd2s#P$?v`^LU6;-t@RS?_WHv5`r_^N@~zu~&194p$&OQ8eepYT z_6yME_2Sa)x#Nj1-v0de!-f97^x1bl|I-_vy!orY{MV0OdFJk;4}|XTf`9ezi+0?# z=dMTY+x@_y(Ejew?pXXlclY7$=>Dj`JM5181F=xFJKnRur+Z&_$L@~!u6V2`7U_ya zyQ5I3BNU7WL0`r#7K+HKDssg_EJq{&IVFHY0r1j>qY#r=AUWcW1K6Fgxz13S0gOBQ zJK{jECmI5VVVVJQZzmWWc7+3c(j5s}13o;tLu}dELu7&-A!4v6-suE};~l}S?mhP& z`uO;l!*dgJi#aAxelf=)k};FO<`quu&cSq2$QLg8(mbRI4lBY*=}=hv01*8VO`SesS1!2LO zozKzMEN4Y2d#lX6ED?Pr5Aj7wW*JsB%X_ifm(Xt6Zp9}(WFbrBE@$Lowv>hv^C@2N zN##D`Nwm*aL0>?Zg*Bi%f2mx$ynti*%3}V?{8Ty7KR5KjiH{CHdBon~^c)Dp?(h2f zAAkLeKfV0$fBx{;+rNI}-Pd0E{jt|xd+E_f@9B!$^W< z>@U>?8N|FJg|alE$l3(-a(I@Lu*8e%W%6*lm^cJj!n1mOODN1CFM#&D=U&+%A$)(!gmMSa&Ib3x)Tqa{neM_sZwN1|s8?OZ$%4Szp zt(*^tg_zB-Q)mYOEH{Hi3&{rIfE##5p}D=5tDn{J$qm9NZ#ZDaFh@j`TX-~QycuOI!d-#!g+{``fb$A107tFJ!) z$}5jQ_vF2gJ@DXD4?OVX{f8bteE5-j?t1X>kw@=;@aZ4k|K!6@{o?4ON1wj;v4AUZL z98b09!N+zz`qcjWAM8AIPx#3v_dWaUp`$;)=jGr2=&kpTzWT-!FTVQ7vDY7a;+dYe z-#xlC-}~*g#O-xB;35O{)_NJoo9l}UmlK7R(QE4kVEE>GaqV{Q>U#O&dU5`0Vrp@4 zIDhtd;;Rq)|NiFZZ#?(rPxe2)r{|&0Lr)#v{qP>wuArma@5ZsqXA3)Baj&l{MCu6o zJ3~--SFCeS9O~W`>De9a?1{#^!m-W>1O|8R=>~m)UI4gjZx?R%?BCtBw+BCh@%6-l zZb4!kAy`r{lIR-^!k99K-71Wo!tyeP1uuhkjcfpC1dokFK&Ceq7qMiVtoau&e|Y$ISn%K}=G@EYVx5MYo^ zkYTYfwq+ZGFhOe@%V1mM@mMpqM^1<+7WVG%`@Bze&4InY(O0FK4%OA+)aU)a?-P7I z@XaWMU}V`zF@fhOu*G9k4`}y=Tp`*AgF#|5ik-9td)?XCxc-*++;P`eKl6pp zKX?8t+~nB{FP?e*1(H}1Kl8>}ViJtzYcH}BWjD+^_gm8W-@U}bK6CfnZ}H!AFaQ2L zG@mypLE(ry93xDiC$ zZGxHBLZ^9*BDQ}wdrT*JAydv{M(=KB^Ih|}ccb|Lp^w%D| z=k7ed4aqo_g=qJJ%g{N50iI&6c63hL-4%8f$7GhXeo08&16MpWpL= z559dc^x=KudA_d*d#-}JFu@RY(uL8qN_kTR;-Z!X05gLr6w9l6^UNh`my~Axj^dyZ zxK-CGnZgB%yk2U|&hgbatRPd7Ybk3K3r%eVb;?94GJs{Zi0f=tc(SolY_2kZ3-D5~ zlHR)J7qnnq_1E;ENc*DN28dhJmL;o5X-HC1`tow`%KD|tt9zi8 zHISHi3@U?{vbN40mKebE;?FqRK@2b8vvJHOE&WpQjbdeQp?n#hh3~?0ar+6Mou(u$~))r0T#|gXs@Vg#cRNeIe`BzqG}Fc3IfnpMN7vOo^57{m18RK$$h0* zJbs!7RW0NJRy?Shul`bxqg=b9nzN){u?Cz8|K(1=*j}7Q7EK9Zc16LBx9wlKba(nM zKc2IGnaUg&&G+tKy=>pgo=a|g-$$TpZ~O3-@A<%~cfaeJ_uYEkd)~Qm;>eNXN3Oa4 znwxKX&owt)w{v1+`}l0<=;Y|h&BLd*us=IA8E*||heyygZ@&UJj<$N^?fzu5J>F;y zHq!nq0fVQ9Cf&{1v1_kBcH<3)uDxdK^25{PTRT@C-M-?;Xv4J+nWsM>7}N*a>!yCdV)D^~Xl9r;J9% zdu~4R`8#gA=R2SN?tP!T|FOIN_Cm`H9KRJs z-8AeZaW9Fwv6}?AC2S>erB39rUORXG_4C-i z^x9eI#W&7m<%QQyL;L{V=h^%GuKd4vUGVbRSDuG{^D?aS zZ=ig{fC0pFFFy}><1wt~FTC&^crWxk*#Fwu(-;H@oq6;8`9Hk&%!Oy)_vsG?8?ir& zoJr6*Hn4iW92;t+YO$tAni1=IXsEuXI+|=LhTpU!C2r|Qj*qUsW?N+F*7K}ikcN08 z9I#;*O(%;_)(tAltm_p`E9c!2EV~K-)7Go_Q6q>deprr@8We_A>T4wE>zGALUl$oi z>)blmb}HnjMN*TVmBCu!GFUl)ISmQ0#8tk~SX!?yuGJQ>U9Buolui9W8Q?KjC2LJ` zmKASRc2=9#a>H1us*7cL0Sx9KES`J@eF?z&Dg{Ez>+GC>VXg(ur6|E#ykFZVaphq^ zf^P9J7AbRoq%1p@g0~A?tBcEMa1jr#;l&J|*Vdp84f$j66oy|Cm(rx1CdDK!gu%LF zFL3}=6ymNz;IDY@lJBkZ?VhtLLX;^=Syvaxe2b)H7O0s67_0*G7=CNT%Y^-96TBA! zgJF^JPPy2p>#lOoL5N#5NYVj_r=Y37LMTRZ*PW@j>M zVY_)~xUn;sZge61ce>HuI@I0RZck?kG@b;bvELuLy`ckqb|+ENkGqpjZ>tLpHe20k z+#1DU*K^u7B_s3~_6t#vSwop3opt$D*Z8L4#-M-)JyWO7C z?ik!3t=qG>J$TyEa7)_LhcmxB^S4h9j$F5O=$eh`RWoPoYN-TyLkrTnx;3=*zOD5v zvme^SI2a^eF9PaC?*9+552t(ZJCTS-QS{?)|9JB&I4Pk;ile9Z+^*1^YU~ELD z*9p^c$Ll3_JM`K~&}{|n7>oq_{chy81IX_tI7z@5B<5}Ij3w7@Iu^DxN9{SPXKOyT zF3@X6K2JE~umC*J9(E#(3DSO?^rE00x{2qu;B+Hw@fdz2Pf!zm!$|idFjyDiG@9jo z;KLt%`OORG-+1-u*Pi|5xu?$j@ue63aQ4}^PCxVdv!~xW4*{z$|KZiw|8n8AKhyTD zzrFG1|9$f;Ozodv5jy|!pU$0m>-2^HeB~D}J^9#kkALg2dms7rW4C?g1Gj(kb9X&> z_b<;q`Sh#5e(0%3e)IZsXMTV7!e3r~_0Q+wbpQ0~zw!J3 zy72m+UV7zsFM#f6UVrZSSD$_1wdc>g2`m4?={HV4eg5g6z3|Ily!gc9FFf(9SD$<4 z)#smm{mkh%UO10q{^eDiKaPCiPv>9x#$8UPmJTbQ`dVte6*-@Hb`$w0q(<1FjhH($c`xwp>!`nTtv z{r$_&|MAuDKk=iR|M}gpwiqd5yl6zW9$H#J#8o^MvQx*5E!ou|09dhA!>PL=)up2F zs6-Z}Hfp)D8dYKqn8CvU=2}$jN;#0qwkobuW8sOSewF}mRDpt^;`?RasStfdEHQ^5 zQK>1rG(RSZ5==#EDTuy%3R;vDCRl=$K<`TB0JK`=3W5uT`eIdCt7*hw_+SY1t*8fz z(t)zF&@|UHuMGM&j8)LLqEO^B5CS(0aUUcy)>Tkpg;JOV^6_RJzv@L*0TK@8hk^xPF}EpvgZQsKc9$Z`wL#;F0jpp z{|-vjbAswzF5_rfZ)2633WLG*`d&`Mr3xWbWa9w73(crQ)mjMvE|eA_9FP}-S@>`E ziiJH4U_6ludr232C*%zTWqpZLnYmD<$W5YY|0;Nl$B53p7wc9E08`)Rbk z`I=2ci>3=XfOAjGc6oQBBo4x2@B9A(u&7B{AO_DDfQ3YvNoH-n?#s$oh_S-}CI`HE z;_#8HPEL*it%J@+JDnumVFV{Sg$;$aNwclicoq-G@n95bcZ7k^lkUd-Vlb>Zw>vV??yc*B6iwNtec^xd9vC}x~*0_>v%b59?N$r# z*B|;-yIPRfp^8!jdh0@xQpOmt-}Q$5U_5eX(_lJ_Cex5Us7X2+rTu<19H;p7#?#Jl z-0JmH93Q5+Gl=@L)?lOE8MiTB0bj#@0@i}WI4fbDF^);w;{>Qq$C(7JZ77d|#@2}f z2+);mLv~Ey79JNCT=%T`p|W*oA0vQP5Vm~`2;!a}bv-w>oyc-wi(?;ygRmWA8?>UN z+YZv$OA;rFYz#4cxa0ta*l@%CWb^)?KJx4HFWmmEJKyoq_uTi(AA*{n{Q9Rq__+^# z<{O{?moI$sb9aCK-bcTC_IJ;|_SctAzxLG6pMB()FZ}qc|9iyBIJvp`2J2tuggYUfU(;qr{^VRS8$a_EW z)!QFG{qt`;c+a;Uxa-j;e)#>LeDl$#esIU#AHVy7FFg9I@Bix;Klr74|Lw7-e|YB2 zr_TNU*BActEMDY>ly`^C@Pea8py{P^2HcI%BFyY1L}uiLr# znrl9C3-r!UfB5E4f9PMn_HSQ(_?{oV@U!0o;s5={8~^pntABY3J{|(dVcB2((^*g% zc*Z`L`*`Dz=U@Hpi_j}?o#8?y7v6dfdgZsL&%gQHxi_B0_SH9^KmXcqIHm3B*Umio z%JV-z``Z+`KcKe_+z#~=9iFCY2NFCH3SdsK3pYM=y>5vO*TxTd2jmZCX?Tgjxq zLB*C;SHj;Twu;j<+^QWkI59V?wgEFlDwFpWsl6O*1s@EF`WO{>U$VaHoi>=KWw>XK|1sOqF!0)}haazkCN(>y2jUEl>^ z9Ft?azzp0j=GE8nekt?HuUcMFx3k%Djtj#{!o_m09-b-9!i7ZP2yVqg@lf&-7fl3) zsRDCWCW6yu4pK*fc~OoqEc(HU<1YH%V&E?Uz^=0h+`{rQePMiIi~lY`2v*o$;#$pu zmrL{d&omt^i}t{ImwP4_w%}i(ybrE47j6N@3~L1@*r7JV+2k|3Y7Pw}OWoXGYwWAm z_re4Nz;L(3zk0DLRRG{Zah1B$U!2x+)+$YEzRMM!;d=84=iMv5^J>ov{{Z0K>A$-z^6sWad2MGg`OM0SSgn)~ za$FVfaJ8)Yif=|=+&F(&mU^_Xz9*lHrYUO}<+Z(+fCrOVXR_H9q6y^DBCjJa&<7me$wv;!(lYtOyPY;(+HsL^Z{KPTW}WuhCpIyFb0NQI9Dr_F~k-F zZCx_erXk6elHUU1x&VR1*wVEiP@TkZQ`1Q_D^jdT^V>G4i7N&09Ciq?UZk3CL$j)` zFH^(OmYv}C9*E+(iJ{o_rdl>#dA2p$Iy8;Oq184s=(g>k1H&Z1$wF%w8C0r9V#^nHKkHjDrKoumy3!~>$lxu z*B|sPs5dbBLvt{6Mq_U>_NS8o!Vb*wXdDg(A-r^aU{G@Ge$;q@b2l!+3@J-#5IRDjt+-MdePXAMhP_D=^wl5&@CUn_G7o- z@~&HtU2)y$+8Z~IU*6j}+Pd+bM{d6D@?%#F4qrJqe(j`(!OhV@Z`vJg4cntmI%tK% zv^DF+laA93-Ch)qS|9)7r;puqdFOC{aD3d^Nk+$e!^6quss5qMhr{h?vK1XYHGJ3m zPrdg;SAFRATR-)cf7uub?8*QD5CBO;K~%o(7DU?eA$K&uel#5=8Gl77>9xO{z3|ubum9I8ul?=ibALSZ z%o|TX_WY0T{^^7N_V0Ip?CW3sr!U_5p3i>jouB;p^&k7l760`9qqn^K*sbq5b?bYt zc;Bs8zW=t%Z@cBhd*6NJUGF&jjvJ4>^QPnPynb}*NOyZQJGnDBJjG7D(UBtE3>3d* z@hlMrtd1u&v_>w~X=<({{%NPH#!|6KBo<9<7J2O!*Ju?Em6{z~g6c{W345{XdVk~o?AC4===~ZhBdH$;ikmg9J6<)j)>B}PBNYun&XUqj7 zxd|W`jQu&Dmu*;2dr>zI0Kj3e3;_Ecwriq2@ETwY5>p_wXb+qvBUwaf(>Ms1Y#DIF zt6ZsyJu9C{v9u53Q(~m;4oJ=?gaKyVTn2!7^;fj}Js>p~ME~Oz(HDX0Pr+C>gLascD^wo+aY zSlzoj?}*VW+BwkE!S91>7gvaRjvBgTHX}QG_)rIeW1|V=e$efDeW6azYj@pFFM!%z z5-<$m_HN%F&LXHc_S*v|=>UFq+I2`B6C|Dxb-dvOJhtI_8%DKhC_t}lVf3wH0GR%imrx-Y9vLo%zll$e1Uv>iA(__?GX zSa?Of(vT}nrK&j!`0Djtr)%3S-Dw+6M}xec5e%%L?}5rrLbf<*2LMvLm!_S#+XW+& z>Cm1Gtj&=_B^|fY{sh;j=DJD%UahYc>cz5DspE2{H|uJ(q1BQ|?{(Z>*XVZiR!?pB zHDGu!vPKhUGV>-AXFRrtLvu8;FgocEoG3BUw%r=SgW9-O0>f}Bam&Y#{ZY3yX}71H@kVDfYtN=3Bql||wCyD=SJ-{XooxoQnKhXh z)3LR+;cblVabF)#?b)U`-3lg~K8A64)@am%`n|MAGxjuAh`O;8yFm|j-#v8IiNT?n z*>WI^pTe%&?t8;>I0SQy;%H43CCWYcMgpGp{ps+tWd7(ocpM9(Ii|@H=fQZEIny zM6s5nj`(HcJC26KWIPN9J-3s1T}s97ZjJj}qxQ7d-53nE$Jk;&9kV*gs2vZwP_#Li zU3Ki1&wlvM@89*&Pviy!i*e_~E@j{@(phJo@;VC!udW_WipbyZ^o?fAW=wzxUxU-+t4-e&ob$@7}!e zUDNB{KDzd%!PPemueyG8^$nvduODA^1B9L7scWIh$!kW(uNodY28|By3=eJhrhS?t z!C&q$YPX#Rs6ORbkw+|Mk%%R z6`d6b!{9FH3xZO(uSI8~DwT%rpTw(JQG?lSDmBv3|)b%_0YB-Ezy6 zOf2eHac5r)4k!<&vREz?fNM1v&1G&Hfe#8+p2Ms}bt(!jWAqY(&DAWDYu*tE?9r@c zs*`0d84e{4E7}3D7WCy#MBI`H|8?vI*IA}1Xfff;Vjm0=Ys!9jR$*Hgx$iG611l?{ zG}VIW7)Wck#Iwf5${1{pxydffF;xW-orYC$97S2+f>sRgN_AhkvX>{%ImM_@-CvcK zg2>d(1_OAt2q(InJ75kWCNzpQ;N1?G0nF)P`JhCY-~&PndBX-SnF-Ph-XEOXUt%!( zU~Y<#Pa|^(74wxRnc4ehn$!3Huc0sNB8Isuut+23WsWRZdS0%Q9WVj7v~Lv-yGG5F z7~8yxoE54RHKJ*bdMyizzGSwQjA!A_q4xGp3q}@yq7lvFIuOiROIWm4$4lETtKId9 z#{<7R47ww)Go*`PtLKItnqdx8u)&HGrQ5T{V_?Q;53I1IG>ryqA}9sp%jlic*MMMu z!DbA}Wm8sdnkAD=JhDM^(ZpH}0&4|>L1I<+6)|bnREWN{rcsrxIy0CbY)3SqEg6l9 zR4O-%6}c>1k`ZfWqU&)}32JIs)uNh_NM9lcr85HAr2%)iwc0 zC)Vp`qbQeF>xGrtI#iI#RlU))F=A-qG(5j4n!Tt{+?K+$5vR>=UxyVI(t87~+gG7p z-)gnBq^)(}mB%hVDDDpvhFYryNGD+4=JsG?t3Mp4{b9^QpWY}Y)QKhe!6X%tYe`q! zi-%1&dXrhV)p7@e_{ibz_EtKcM6^7=)d8sb8|~p%cjL%-wAJg(y2X?@f|1M`L0tp+<5fpvC(zcAHC_uW#MAvyB)-H+V&8a~eUjNje$D<54gicvAp)Mq3O!CLe z8`Bn^HS9-Fr{m*8Xbs!2@?fXeZuwmb8g~;1!q1E*JX#jUg1wn>+I0}Y=*LCcc>0_wZ^MgSImmf}By(8nD>yET`x^_?R9d30dPH*Oo zcaqtW_QvI#o$apMx8rHJbN$J~H(q|^=C@z|zW1Jb-z^(AUbk`M4M*O6^Ypr#dY4~4 zyaI^5adgGoN!Ypa#_5&soLupa@#Sx4VSjeTP0;q`S9dmc@X7RNgTaJWF#uisW?*yi zEnu975l?^QM5&ylD)k_0NoiY-TS}{|d$DY|RSveY6B+cilcwKMTLY;xQZQJg_JRVy zJVngqAw{LhqGqlec2Ok$Qq?LEy9?*K&QZ`jEzEN4GSJJ>&e#TijX|DGYl~XSTzq3b z^IYWGjRL?W(3b`J3IH>`)`$TZ{pwZD2m*kq{gJd%k*TM8v9SU>0su?;y5-j`uShe- zBL11^>ttI7FqfhPr)8tS9gr%GRnWKET%)8E(X>ENVU25G8O}N-GHGjKVp#;-iePCj z?#R7oKqj80E>Kx!JxdV6e>H^yl_?8ZI)EKsyX79hTtB%|B?fb)3%m)cn}&ym>RJqrluL@!P~%F1Ag>F8`3SVU&Q@(S)Q3S9*79K%$~icKYBC%!}YEB zb}_?Dj{JW{U=g{i`?(DRgj3~3UmSrEo=*FjL#mJLrM1u7h>Au=U+6}buY3i^V|?HvUG#uk>eDwl!b8t@NJ z+YQBUH0(;lDM?;Ma%*bP!~vm(U9Vd;aGF-dY#HEpJeES0^Mr6f+=T~#=uF?`>KaH~ zlq)rZ=!?@Z?YbXQ!2z*2UH78~E`05t5qIUV-Awzq(rHjGje zBey@WdwqKVcx3Yjp_tP5U=Uf8t$5>5Yhydbun7Yu2={jSPPgw!WjFKcVcXkHX zU%PqJ4LjG}c=-C8jvTpiJlu|2(**GFV5z6Q)}*V4mgJgh;AC;sjtOb5Zul5#*yHW~ zi7U3Y4i7LCn{M^C4-Jl=+_>_Zty5Rd4jmg$HrxG;v@?m|K5sMeu{cFK}nOH5$78o;4icfUu?!FoR)1 z(2nC?E9?Y*%X1SG11vZ^k7B~W6}{EgG2p`}hXy)5v)j=lyv;~;L2bD6!?Pn-9mo3( zda=`W`iJ`c!-Hg&hGXC9SysouR!{Z1TW>lI`WZMi$#2SGQwkbdESoLONL9#e8Kgut zV#P`|r%k~G;Bh>O!DhGTI<&N*g~Ex3EUC3yNCCPzrl8D zCHRYrjZVw%_jMY7;D{Li~tpo-`6?vUXK)Yqm119=< zWQA2~x3H!VcR}CPhOtuD3Ds2kN?8}7vnyPokg7ma%b*nwzv76htgVn3E;N-@1~8|Y zVu!P&=E=$hbN(#OFXBR1+)N2)&I`kNCn9)00pL|C6{1s5Jw+4qz|IQ9fmh66(APBf z8~OpNPBk~ULI-)JRu!!MDrW!y5CBO;K~%hKNC&tg2UYwK5ETqQ(2(|Vqre=%7-y`P z_CTO70~mfZn<_U~xnZzGB_|hzZ$2m%kEzHM0~o>%94&4HHT+PQ7`}{?fU_QjyW+6s^(M38lyzlEFgUBBu^YoM!3R7r^59ti3eFT|FqKoyEfN>Ru{W zxw8Mj;$_hOg+2S0F5ADn7h722OF9F+H!?9^28nxvAZ^=GVnK5NySV;>zHy3eCc-dJ zH48;u7uFEhM8j8HUkxIICtbTk1xkjN=2rk(*k2&FrhviNm#cCU;>lakw<+$etAMTq z9s`6B01TR{jzWQ2k!GbPEG%FNtE#$EO)FQ`QifHhA=`DuX%dpf^cn~XUIOGbwOW=+ zKxRd&){MIB;W}Fddc{s%avQSO#I|Nut45`&*BVxnUmgBi6)?sD>uMEScJMNd4=^|{ ztyb37s_WQdzoyo+*EQ?-5Wrx^lQ;u1Y{_v)^;(i0*ZsB}c2x*FPSW&Ra@1F#bR@UN zN^fHHr{-W{g2&yl-Wh2ibkfzj16u@^+nv6d;#vvXO`ZPO>JCUS(Cr>Yh6}my%A4Cg z!1B~p<14S79loMJJDRj+ZZfe!2tCpLP6~OQSPSf?V<?w-X zN_{)>{8rQ+wg>QAo89iT6%Ks2V}n3$$HV}uGr=#%==9+1b!IJ`=wL#^AOq(Q~L@6Nq`;x@Ai@5#!jy@ZnuUh$7$o&2;+-!o)xNYs6pJ` z4g)?Mu+`SY!~=D>vpiYHU??!sLDJhEOpk9kJy%O~t8Ip(z-(JhUy=eDl7%E+sylW3 z1}b{FY?QGN9@m^&!;vIU;m0VUY@|8>Y`1i;YXyDBYZ)Ro&=t`Mx|^C&kA%0DqzXnJ z5N_0cJY9m6P|;$|>4vnh-ET$HL2Kvm@B}b?Jv2OdBgE*<_jghG9nkc|we8L0y$S4X z5XL$cD2t6K(&I>JrFyTYfx+#**6OJk_62b>X{%{R!xsPblP124sBd{~&1>NYsk$vV z;D(bl;=Z1C8*#gq7u=u(U!wpA>Y^G@qSS>+35lxM6)m1zZJj<4Zo2!yi$nrt;^^Bk@MP1dk z0#sF~1T@K6)7^DgUh=+Vb}ts86!Fi?RdtD<&Sf{aq$Nkv!u8^v+HR5Ttf)=xI0b7C zV7yZ<{vhfd9_0269J7rx(6##g>c(77iVKf%1d&Mj<)xOAU zL30AJKz`PaP%I}eaHuoah!*r+%yW=<(i`;U4o-6hFU}{WX@~7E3;R^XOcuqxMc)NM z-=%!5_o4|FzWjd%Kj*X17uS_*`&TM^=kd=}lw((O-@WsK8ySOh2fVO?0Reg6y$9a5 z@8D(7-bG?Crzc&4zsas={7W}rhvf>>@a}AEtq4X7p(AZ6Ku;g3oVd_ea%(X zKoMz+>v0oX*{`Zz6`za|)^L}VRPD6pwi|v|f+K-1anh!pG+@K z09^@)ZMt&ZZdT2DRd1Bl8dNiyHLHPJ>ZT;rz_3gU75x14RI)m%)6?BPjXy97u~Gwf zLD<2YawEy{Ykt&(HHSgRPYXY}s#V1+iWjW|_Q0^wG9fto+2O72Q`c{uyl#5=^^;TA z<-&ibmt%X~@YFTE<5%`iTno*PooY=syMr`LT>PQYKsh$3cxcdQx9D@gFbJcxD3vkt z!)XMmEPf#hhI)R2Ph0jos+}}-zo|Gi*{(LtvhI}dL!w3EHr1#CeJRwLW|gV%1=z_B zn8KiJ3U$tFQE|*LcdZwV>x*2A1CQaRM!sJLfVrx(pf6Dh#@F-f*m4CZMmsx2cEFrf z%sl3RCQ;FX=u48;WVOg?NSOr}KA5+lDK5vLtYENky<+B>7K7=(q85jZQTsY4AThJK zmR7kA?@QT7aJ2A$j#u(29d@1TSWzh}b5)#V*5+M=?^0u3nxkegOY5-g^LHTtEaq}e z8*Xxmt2%>Qc|j;f3%fmD@63!~b1$%JSt~e!&@XUXKuR05G>J07R)OR%s7#$Xo;wtD+Q_0PrHyogUxVM`6zb zpFC*bw=WDdE$HG+fxeniD->5(Ru@Z^rD}bZSC@H>mfb2Bp3M6(;0U5AGA-xl&5P#K z0}I^Ih#Aa%lOzgRUt#+4k}xZyEHk*Wk4jtDvue+L7sp5o`Yz=yDDstQo~HhX1f*SU z80diP;MeO10ALQSg7WoU&KS3lMfFc6xR1{>8Ulw*OLS?}0s}#modBSlM?8 z{`TnVIk3a7;m3v(s1C+5p`OM2L_}i2W0Ti+0br6qZ`g4lH!HCRv#S270SkrTGz8P(KE9y&Xz!n{}$@S9Khf)9#40vW!0>ku4GVBN7)JMSr~{{R@{;j)PUZ) zRfcfwgJg$gwmm55g}Bjaxp)9>#16Jx zB!qI7IuV?o5i62kZ@5)#<)8rp#yDZz?xczfYt`1UwOWdiNEmHk%i?=MESN|))kSKV z3<1v=Qm}$9o=cDjK{))hI&@+3NJdZRkmt%twbj#)ADDK5`FRMac5uCsZ#4)i^87sDQGH9 zC1y~wiP?ESBB&`-Mi6envjm|_JmJiZ>qTmB24K!I;!+!&#={PHp3=i5DK6f~IjkD> zv|r&B;-k)U@6W@pvSN_TRA3lZm?~RU_Hy-Uc|M_CZSJc{893(^n|FKJefZuxy#SV@hD+l5 zB6l6;2XLa%Jlcz@PU0o-EP9&?t$9PDPDti@d54RK%!_F9?NkN}0A|nvt6V;XyBbqr z=la1s4>(sAy4B#`i=t`AJSFL3DzE_X|4agAxUQA=a;pZeUJ1bCmfSJ(c6abs*4IIz za%`*BeM_Z1OKbb~E&T62``#w#yZ5sFmtD316TFu(dr>* zBnAgWVk1aQh_ZbWg9EjKj_bE6TZYQ$z^YnseiCdn#TKPX5KE95$_=B$=mK%e5{L_S zX5N(PJNLnOOcP)h4}jgQ)50wnY*PM`>?#mvE3z@g14_+eu>ts%n3OmUfl#hO9MUBg zn<-|hAQjh}1?+&bG}VktpP4YP{ z^R#jx(Hg24*6>V&M-7@*s!_Uj3ui@gQxhi; zf}jb|t6<0&bTG)kjtbk2p>lXxK;|8*POjllG3hAYN} zTA7G0K+Z1;KMl_f`KBB>TECUdhW%u=5lyDanB)%n-f-ae`*yo+C$PF;f>=V$`Y0E}2~}o6Hp)0bTCA%Z`>4mKeRe0nCWyQX6@H z1yq${m+{=hs3UY)qPd?MA*DZ0|!G^h7H&z-# z+=ihB3~N~c7q@f3^%~-7B69!$5CBO;K~!cMFo6TkdlFFeFRY>Eta(9+ z`yCm^5_kVqlmpxyh?jUlUtv|r`!VERUA`XiKq1o3mU$b6G^9S&(H9v*7`MucktK*hAfcNfO_+PNU`wjxV`}Q2% zd+C8o_Z%c23=@0_M#pX{v1f8q`inJi1^0nrVz3`rkQ-_+$8JJmHw*>?v;eT1T82-N zJ34qnrTev3hpKSIIAEe+WUYk?kw#4FGJt96S0w=F=;hlBQWaWnR91}>mLF9R4(mjNv3RiJ<@TP*%*@H*w)!b{NP zGY)IO7~!mnxE$kDaU)JZwi_jB9rT5O;X*yTSmT7jU|fZP3W|d1t5#B#-L<-1Y`SGZ zR-hLqxW@ZD4#;^7zTz&pB_1@8Dc4F>wL}ZvMupE)`1mqz=X>*aB%WRd>cBj_uY8&v zF9c42dAYY1>)#D=4zz=h6dx?FQ-b0(yP8eZdo>tbJcX$0+3YA zdRecQ4Lqv}V^??TFnQ$jjK7n3%Y4`dy_N?zsVF|hzTrluHIFUC0ztMkKoVyKX44$6 z$VO9w8b%dPD!IZybMg#^dVV5>0y(;0qiF+BCj#kZQ%oCxkzlYY!UD42Pd3b|vG}Jb zgr6KOD2N|e1u8Ym^b5?+kYWXD#NY;hbb3(7a0gq}tLkK;nlO$b91KgrN5nbn3~=En7^Sy7BKhL43h(YLA=y|7LT z#$hv<9}SR(clW&-1Vbz$uu5F1N*A6F66L5?S=guASi;vrTmE{!W zt~Y0J?tuCFJ6{W=9tjPZ3pJBugW4G>CU#aE%>`<9DjHPg*`WN`s&M|FZUv>s7qyewIl(+i*%W8E&}JCR|vy$A-ArSi_!S_V>|%Ub1V`* z0a!!RrAESd7G77pG)*9Lc?xVLZ4p)&FF|oq&HWtV%pHn2-AELx%39fT2ch{o?n3Tj zxtT5%nQ9zlhl&8CKwH1Z)5L?im>Fw|!y;2IY;>L)Bo=E$zur=PKfaXCAo64Q5_pmI zQe{C@f!?1x;JgbV$9%y7^V?(wb7VOCUB+!b9W7?~DQ#NPiNSScNr+r8zV2dkfhUJ^ z<4Zd{L9MRvPl6->jPI9AaO|#9xf{UjZV9pF1G}??cLO*_FLRgCOYvm_y8K_-=W1Nl zgS-;FZ~1Ne4qm!{VGq17&ZcU%_B{ zOojv|UqOJXfm;BxqEf&PO%)2LGk{rqvBp_J6$OSBUb6`onAm3q)eIO3sYm zj=av#Wf(&|!7eCX<&Ywl;9TaO*?;Fx$q~-aDr>lfj>B7F@ zuv5}1>v9pQ7&V4*Q7spg5>NPNlM3P`u$_-Q>KEsJ=Y-Cd0K{YPUw#bza^_2?4VoKh z;>*Ivh?CL$8YQsCs+Z~*=Xo(rw}QdAkzx)6yajg~3}X(^txidL-^3dg196NM)!}HxB^atZX zltzZBdOiWz@?;~ZYhKl~>$+J5|ESAQ+=N05L=p@~ns!jdutTERX0Fs$QuV5=SA)dz z636f~-EQDeA{ve+pQ+WLBN(j5c`;{ZYMHwW0HrkJN&sFLiJMt@UIwthEgWGr z2QZv&4sX$eZ&kFZpC=IS>IKBD2D#gyh`7m=vx*~ea3KbLReM#jh|@R+3>Or$Sl8EZ zsl{cNYCGdG4kaL|-nwLy@og9^LT@JgcMjl+vIYQGn=5sBP0R_e0>Hjs^zBt!U(}Tq zi2Doi6m-@dPd;c^Yp!2(ysYvwCsWmG%Mf?(VQ{MYLCsj;PQXmNtdyphKbQ|V2*8!* z0r*SysgkjT_Xs}04dXF*r#wwv6N{--A_^GZ1z^tB1%^d6u0^rGj{wa5ba&NNW(PdC zrw4fAmvU{zR5ROU4&Y)8b2$!K-Y-e}vIHSfK9gNF&KciGZ7FoT)6oCM6`;TNB3Ui?|oR~zawSK-J33}sGtzUWIBo&%T}j4>Gi%nV+y{f`K& zIe_ytBrupUoFxkHGPvAVc(rudN^wtyYGHYE&&>}LeT6CIX{Eftc}moJL4-Z?AX#+^yxw`~}vs#W3DHR7%!!Tu71h1-W;r7>}O3{-e!J|K2@h9GBc zPT%ZBvuXKC?yAN7B=MdTw_vP+J+Y-wHDTkj6;piR;K~}zB0eR(jxFfR0Ny>RKrbXl z9ykpqclMF0m3#n!^QQ;Q9W(EP>tH;#HLHOq(woA_fMyG-;4us_Y;iVljGAWH;MgJ_ zXXMd&L|RNRjFTujsCn6Qf4UJ}}ac)j*bjHcn z_GCEfY;6q>9hw|HIy-)R6T0Gx!|hhwN~u8Gc+zXP{U9)GUvdH&j8yEZZq|WSH>gFa z9JQKWRQ2KpWW^25ugG4VCjYHk)2LAJuv)|?FxcpHCTTLj_&7-VKCH875!moBrm^af zZZ|cn!2wgeo}D#F5Z-sU1LhjMpd&2+i`IL2cS6xPfm$S)qE#?Ip7UiHyvu$b z4A;0I1MCzowH)kPlU6TE)VIQwn%EC3X)fzd5rYf>IM3x31+Z}0T?BwZU(thMO#pbM zX|9s-6$L4&A(Bv4TLyqj@KS>AWaZ6eT731^#p>^xp)IQ5D3y9%QnSXoSzCBcA0qlX zYgy_MhKBM=xx7#;Qi7}~VNJ`}aFCj@#LwkvXYS>YPr&Al2XX+@@!9iQl_Uzj zb5Jqm9Vv}cy$qqVgT>r0t>H1Tr1fGG z1MT&?UgqUkyy8M>nE{N8H2}O`U56_2xj9W4u?*e?bwyl+ToROn9o9J#9VGZkg z1@9EZ63dn)d=zu9-)PXdK@3^cig;FyCsZl44Fis5c|N(yH(oqA&rjsy(-5=hBG5^I znO9hGBR`Q>NppBJqc2&#F3kouK zD@{RPUV+v^3H(#trfk>iauMPHJ=>OLxh$*HLbWNEEJqGgt3OW0v;JV*naz3t@YY6e zbJjg_Xn5?%_|WEH(4od28ymgRAPzh#ziK#jd@r=*Z#Fce4ge=@HB8}X%a&hpqq^6U z?YMzq0c86M95cMKW>i4p{;U-Z1G`1J`v7pOtw*sO$8|0e>DU=WTTu-PBZ+3AMec9z zeZ`_3dAM4GN>erQYuB=zqWQFQ)iBE(mc_NBGXSfwm@C|Qm*b@=lv-WODqGC~EQ#;SH#<_?HOXE9fSXkJYE6`bUIv>XFqmeZ zmBmcLO97CMTj9ok-1OcumUWe?FdBL`rOe4N^TZfxvB2e>d1;)=X~`5vy;j&)DDG`a zD{!S?75m_kBapcdXgBTEJYt!r z$Kic}UWiPv0B|h}LOzg}zG87Z1jawRUdDNr;3QfQX3ZEhDg>QPM2k!(t_zJ318hcj z7~{81IY@<--BZwcrmr~p1G)K3#9cK201yC4L_t)ZSAkv30z$vql~ZEi7+FV&Q$cr$V;ATVI6V&D?Em0rUlfiNsk=N@_mH0M4si{B#n$9MJ;dnG04*IjnbO)pK(RgcPb2^@2XLGhS z=nW^6S+6%pS}EiOe!JTV<3!aB#ncR5j7IDQ?D13>W6aHIK*0{NMMJWKZj3QPJVC?g3?NViRvAnWe!iyHz->g+upd7%E z>Xr4N+H}ih9V2l-j#$1v=Cgy1XrW2KlGW$_r{0*hj;y#y>7KCBf! z@FL7yT`OUHraBE=wefV4RuiXM7eVY*k}z|ueAvW3a+iw#ARaF8yQ|Q6BCDs(|K-mi z%ifl=XgHEy5hq{ZuLd6`PLkro{W@$A1DG8uf6jHG22gEKu~Mih2*j$z$G4kT?Jn`7a0d^(hA=K#34Cs z#QCgn1O=l6F-_gHmPzI+RMS?OwIyk>Bpt+a;eg2sYpYe7US9M3I^H`N47v6S_Y_ia zZtBW>eR`G68P#uUEKrdRtH87IT;Gb^o3us~uvGVvbAc9MjzM=(NckXcq>|BWYUjNN zsQw0q;@`(s%7#=)i#&KBQD)N%k|ZpI*b5z-X2 zNHTugdg;I8Zheyx`hpYei};oOeCSYh6`E8LZp~Q}c}ZZ(|6w)i+ccIkQnBe3uavsb?vZYakIZP3Io@f4JIcJ9XqtS^NElC z>vzBP?YqAG75uyN&O7hA>l@$x_Puv}{tI9J>euhQ^Gjd)(%0_(#&KUc>LNcidq9I>rEoD1ozX-;*Eh`P2w8MO{LxtQ`4OAQx)-9 zxM<=M36*QbVr9JogWV|Bnk9&qfu#zEL@^%VAccusucAJ0%E5AgTB;t1PaSji-a|I20c2giTzmRhSsRu9`L7Za}zQ zqnXKuZpoS{$y!rV8?siXL-Bw>uCQ<#EF2Ky1|B-(JLNi68mcyN%Nkc5s!6!EVqj5X z;jQI6`Ca_RaRN9Wx=YM7N;=gM4eBOwZmc3@5h}^&~E#!mWO>Rh&}5Jr|sS# z?hljEq#dV@7wBPZwc8$^)$Mxiw!;~~aiVp54i}!Jc0DeYxrh^)>x*&mmfnDB;|$04 zWabU}cCTx8+WK(d^hOji-5$zOrxvs-VY`~P>p@fs{IzbUe)-YbsUy|RiRBnewg;2l z#PI=OUZZ6kHdXv==&QsxMXA7g873QJ0@1~<%vniUs{=jjAvljbDsVh7UxGQgh-aZ0 zz?qj7odM@Flgoe{H6f-!fSBwBtE3F5xEA9~I5}7`*C_GVSy8N|hACu_E#_dWqO@3O zE)<#vV1jWw+%V?^V8!} zsGEzTeDs0{ieAoRo*BR_e*8QKmupe&6(HOLhniKPQm8B!=&PH{@WHZ}a|VE!zC0a0 zuMSNM%=y{kD+Yk^_X68hsTLW)BFT7f9`+37?8pA{+S`c1wI!Y~SX#Lh4Ca=I^urMC z7Uo*Y^Nx5Kf`1!X_R;^N(eJ`4P5g3G1d)|1nlY56wW?D1p8)21&dlIE%!<}}xdew` zZN6Zf*T%w2)9+vOWtx}Cz=QF{pDMneds#K}YE$i+&WP~L% zqLo^&C2^So#Vt{gq_wR21(;W%I!Ofe$WBp+CM5AEovV(&L#GVC3)XsVIqK`tKuyO+ zI@Xer3biJBJk)Sw*jIv{>~|%|ZApx0Gpe(AfBw2vU>k!2hzlvewU}N7vivH;63D^j z-iuTsN+NMh3>Fn(NF*tgSz1mmN*1yxTpZ8E(Xs>{zs~8ixEFlI z7B7Jp;$*p~t%|pUSFHPK9p{<$)x5fAd#LC8aaV?-jszt=1;V}EvB~8>vCq{&2Q#NL zwMY}EJ9VM{hCkeJh3vu18f`k`Ew?{4{j}=F<<>yyj`3UtPsfo}x5StAhEXztde}Ak zBX_b9O*X>O)Sqs~Leb8V&e5ak@#F37?Pxl6$CIExaKPFmaeCckIA{aIoet3#0*Slb za5!#(yVSFC5JUM6+2wA~?+0w7p~*Df*lgj2I(>^PUbWg9C*qIB-e}@Lv&~>*E8NoLp4{#$+gpu8JJN8dhhf4UH6~3BEen2^$SVjEgD$tQ@aI)vv5I09X?9(u`i_E=LRJZj8<|ixOJS0gPMn#ZLB@ zoXpBk=Sf!vIe^C#(b%ErDrrBjhKdr+S<)@9lJaMsE!m13Bre2Z7z>uQ#NCrPB?;7Q z2-~Wv2RTZa-7sUAZSj0^m;elW3IOwjHpe7`zPecS<=86`esz$=r7mffyOE_Dld5>p zB8IJ(_tzIsa7K8&nz%`!>WpcNo2@)e80N%^QU0vV5RyeS-wr_EH&+_V?^&-{G z5?||LuDsS&p7qP?z8smHhcxdhaYdaHxLgK1;H=|slYT1m#)Smn-R%OG%a^TG_U;b0 z%0smBlwSrggPF$!IeM$}YSnlldYIt)BJA%)0PlhJFYmo<;nKZ}dk?J85P<+3_YKhq zMUQ&sY}R}CyKlJVeK-HpKfmu|pZ&D-iIFe z+7G_-rSIKy=eO^=EAy6fzN*OqhI*k$G-UakAMD-&wTldpZU@k z?)=7GU;fTL_uT*QU%T(#dmg;++mHP4n-Bfq8$Z17JC8o}orfOy?jsL9^oyU~|I;6R z?`MzP{m6Y^y#MZ7Z~y0Ht6j3I4Uzn+*j0+d^eC~CFTt6!30PG#tl5-gOp9TvS>a1O zj4W<}FTq`WFWfCn0=pILJBdu?_fpA8nr^!x%1+gwsNaCXzQl}dPmN@x1CU|A(VD37 zRBml*?M$_oCqQ8%#M58mq*an zDcs`YztHrUJ3Z#p!;VL@V+k!T#on5IcviNLf3l((RMU)`^(K2cex4A%thqR@{#5?nm;Cv!lVru^8Gqf#b9` zkK+O9?&I*Q&!3p$k(}*ueoqJ{muMdIUEn{CI4~heA9O zFC^{?A^aDQ+&R_8dx7w#@S?1(lL54YkMvZS@8rTQnRo@-e%5{>w!?Ow zQwKJ+L=FZbvJ-F+y-s-Eje84wiFYX-(gV~*h zJqrwO&Bcvqd26li?D?IAojB)URWZEFk|_zmfK#ho=?|>Q)D!GYJk=Q6S9EM{uDVxO z&AYqqdKt{8&T`f1_AJ|~H0ln_?rhcrP2p&}Z3pVK>}K7751vlD>>CXeJRG;^hOxiZ za+*yG8173arv^K7&*z=Vq>1;B&&bFC01yC4L_t&%Z#{N<-5P8z2IG-E89TG7x0nae zeCDqfKCWRlF&8ttKddy{Io_tY%}mXeDOKFx;66rfS$g?yzkm+~0qV@sQWYmo;NeKq zQYE1p=t?W0eDNGV#B{)F>NiE`vej4|jQfEPzty2KFV4XlRwq}^WMK@$r%~M~UH@4ZTvToN z)C6!G#*wRkXQox}|ufpY{f zQ?4{w6H`#MZ5xmV|`Nhu8qNnfRHI^gZ2KR@sP2@K=mY3lHg#h2#v zCKzq}@fCjk+gDG6&13)Od35zW`SNS|__v3z|MC9$KYe@rk6)kv^Yh>S{cnH$_kVi% zZ{J`3>&w%Bd3yZMj}QOyaPv<$o1dHOzg}Z|^KT=e5x;>{PlBv^{s(12Ah}0`o-CNcQ@aC zX#L`0d-WrLZoW5ee>87iM7Q5t*UycsAC2puO>8&c>)7%k_rxD+-TZ23-Tt)=-TZ3l z0i<7b|EqoX1MkxK^0P(p;q7-%^uvMfe)vlDn3~aHp>AI4d=-xT@-u++!C!tha4^p- z`rZ<$J$QHhz8FJa|Ec}>&mC+Z{@Qx@Ye#ne>^%JHKK$xK_dk0a=!bY#6u!1g;f4CO zTG1Od?teA)`>Ge>N*b@1r!I^~sw?;7;zzsxRi~nda)#UQ!Oe?*_w0Xp2{4A#m+P*7 zxXTxN_1(ch9)@4KyZmZQ@5;05>f+W|UYm<60~p@iyU_gFfPL%@ic`4Eu{jyqAtgPuF=d&`CD^|@|;x#{2E4z5LL|tktsdTAWjQDo&c$B_!a zu)>!GQM!DTSIdhbd22PNtFnO(Rne#&HSc>wrSQwHd|o;$)iL99*!ZyGUsVDT=Zu+Y z94~*tz&m|yp>hcO3#Icrc)3h4=lILMmB{YUU4=Q!d07P%R>CUmsLq4?U@!m-6N~{E zoXviQipA}6dADNhm&F;wF-J4O`E7{p2w5D1%bBQfWwU)|DZm53`8;sW7w&TQH_Vh) zGt-<=&g4#T3eYW3HDb^uF^o0&D!cGjNuNsIBQy9rL_Lu+x+Nnehk;&2dkIv;#(V9K6fz2cKOnV zHZLs-3|oB*Ae?9Qg7Y^-Ph?wj^{usf?rgsI)M*EsALHv^)2o-!^0BvuZ-d==YFvG5 z>a#)M93Xe|(!TxP!9d2(ja#)70x6-Z?@cYuIZedtA1y6H6u+|&$2dkQiC1}eN~C_cwZfB#f_G=etN21SuK!jy0LJ$a70_G0)`{M@ zzPxz%-`~*aHumzH7ni`k`{_~|-iqaNevnBk{*FYQ;$kyo+h6@Jzr5(#);m;dTI&H3 z7@eURG4)m4qfV&r5B#?`7V-Ou*K5PYD@@h|odbp7H(7^pAZUw-$f#f!W8?m_%l z0j-|x`4_XlDs;xV?j+CVB9lpVHZvwOV?3?RW|s7Qn!A&UH3fQm2COHr2l{q91_8X7 z2G{Ej0K8c?Z#Lc8*t4vn& z_Xc$W7=jNbhI_pLZkT;DaR$dJxNZ^N7u*GgA<%a^@wny9!MJBm2ljm8L4%5EGU*$i3?`nHIX>r1DgmtWrO%n!q$R1{t^k;23%L$T@}A5@p?c1>o{7RqHUcp1 zY^HJq<&2|DHB7bwWkKJw>>fxA1}A}S6`Cf1VV%M9eC1eFI#R2HBv71AA7!)Bd5{y9 z7(lAGJba$iJgS(8u)6%0r8{)*WyQm3^+qWuN); z)D|!tHk?;E!<;i_hay;8F~JJGHDezG+d0Mn=q;7N=6&heP~C+H;Bb*rF0`|$%vL%h z#AStQE?X)Tk6`^x^F&wOD!}qa-dDB7!LdBY#U-knr$9V zF7^&j!{&pWfmTz?5{_0agb&ZsN4OZg`&s%BNZvcykxE#r@4@;z~2ZuQ~*BkYwT-e~92Ml)dmbKZDKB2HtV=qX~h> zFr%=flRJO}Mm6E};>wN^vXxlgf8_3q0>5{M1#+o)C}^q}>3G=2CXy8m8>F!(Ayz8+p` zblDMi)&8F@a2|Uqi1vq4e~svlLoWL(sjhtUMMx**{)?Tgp*!FsEyKU9$W~=3Nf!>DI zZraVd+3)(Jfuw6qr=8)r*&76sEZy_F{h-xxF#wf8Vqm!4c3roU&tDV@m+e*+Zv+Md zy0fVdO~(Fo65wKFf8W9ds|L(2XQM|$i*O}nrJti}>d@{;pGRhF^?GG!Fp!2z-Cm87 zmR9YObRF)L)%0_jON#5QQcy3sUfywYo?n0)W|d0G%u)+~xdJ#GtL$iY6Jqb6N~m+% zP$piP4j6pSj=4@CtCJ<7t9l=uXOAHOI8(Vum4&hZaJG7qDjlTDhxzJZw!DuqV4Ntx z=xhPNkQ^oeJ_U&>&T3~%hg^xvdQ1dxE_bTC|H?Ldg5TUk=HxOB5+9{9r(qaY%2vw) zUqz+^HMf1lYEyK;Djdyb!(nY?;5J;06t4Uci^=(5Jaw7cB7l_@-irXdS19eUxJM22 zwGKg9VA!&O&;4p`55fQ{NzafU;*&ua+J)a z7|a>*VtGF*jI{$tp3H86YQ?Iorpp%-$47@J$47}2{!k}OC1d;<^gX-Sp$`@wUwmfR z8Qg{aJv#Yxd@9Rox#maD^3w8#GqO?1i`O;`YVB{7ge6~!EPpujUf(yy$V00 z&=S9-KdcqTvJ*e7rhZEF!`=M!u%-0)4S7g3QxRbvUbZM}=lL-yN0*qbdO08u5CtDX!UT;2>Wc?4`*5~iM5(5P>Anx$^L2z5HecDn!uce|40rN#Q&?S8pCtYQnX z7dV*RsKX@}dwmmI*ULhlYBMb5Ev+=K6OGh9yXBp2^pD)r|0I-V5gFRaSFnn#XvI78zA!ucV zBke*s24cq~AXe%&Cq6?LK;6ao1DzfK01yC4L_t(109bMN7|Iupq@ghn z563lm-&HgF^MZ-n5G4)Y<6?beT9wXD)D4a+%x@p?k3-8P4h^ z22|Fbm?rq>{LkZyPoyuCocS%Vn;~m2)Ah3QhR(*qLuvXOtAQ1tBo=t*;A;=!3wgQt z=RC5x5`vBaI4VN9A6Gc(3(AH7-c{X#cQk{E>ci75wfuKSiw>AuvDBG^1n#a%VDQ03 zZU=97bh-V<{D(&^ehPqrMo0!fMa%DjSYevo&?1Y|C7vNgYo0-{jpL#4gfA|%R9d{) z(DcO_J{tW8WAN1+elZ7kM*qreFDvbZ(VEwqvuZFd+5MC=NH^z&@tqAq!vx1YG=51} z3bdjhE<^`2`))(?pBA+IVM2@VCaJtsE=M29@hZk_g8U2gX-$YU3FTb#LJ_e2HiR0$)`o)bK!MH)ZRRGpO+S|xdb7$OMztcw~$05qA z3b!%*GYqcBuQvpmzWR^A>x}(1u7CPBzk;}n4FmP+FByI#5pLB#28GY)OUK|NeW~zY zjyit%-GHKjJiB=|uU@R%ZyxmJYyI}#Utc@ZMRh!_4ab$y#F#Cd$;@H5ys~BF%v#oQO5Lsp;|l;|I~)d$Mhy-) z@I`RIZCK%k)or_Aa0i~a>kS6=@w6?AgJ)f}eko{z&Ak9p)4&cKu*Pt+ZZv`#tahVb zYBeiRvtDgCjc(iOcj16VDo$=N!D>8mlu`EJiK*GlS*?QQEEsfagI;Aekx6bv-$J{c zlWF6oY+InRLhoQ`0lM(bYzRG`+7icZmz%AU>d;(fgJiWw#6Hk0oay)(Sv|#O4^c}7 zR=tpQw^2U^;Moh3wtHdwm$1U6>Y2byn%f*P#0Q4~H;i9f{O01=UZ`AV3a2_xM{;~J z`-SqEZU9`8>FtwfqW3IbWCKuFvDrO|%&S^g^yomET7Y{}EFS{25|jpnvb!o#`SWSw z&$HwwTv*wZOf(^MX$QWx46_RdEOjmqV)WfN%sl~cZLd__B`lc>ok(tjzL$wD4A`oH z^rg7uNoP|R%dg9sV49QZ&v4JM(TsshZkH;{g+D^6mc$)l&CI7$$;9Oa0G!EQrZOj| z=ex{yCV&~k2an-*Ifp8PQzwAGm7~wfWBwR&=!-pY7y`;zuB-LWfYN)w+iOm zFl%7R1TgcZiBIK6!+GB@_li;CJ+he&SaX+2Rgl<5{?a|0-C= zLwXU4c2q*vXN*r$pU<;9&}n*$%?kgReRnA!lk}bba3|lL=?@%@6xp8E!qh4A6?c+Z3?D zn}hHQc`>m!<=q1gi%Xr^;alkO|9`y+t%uk7dNw|cpZRSx9+zju8M*#$YVlLxd%^wF zn_DQgXZ}*tT7aE$n`OKktbbZ@YYW6KaIn(+xe9TBEx5aQF{rC=?)9^G_Yhp&I=45$ z-EIAPa_K^#?|3T21$_YE}nuv26Ta5a2LX0JZ_IhEet^1x?c{wlJ6Grra*G5VM=;e%fx$iI|f7t z4+g^r_XlRLZ}664F>~>uuGeia7-RW#Giy3EN26-5R|I;4Mz+~5bo&+ggNzK|c{r@K zyCu+fI2K_iV2nM0v~apxlF8=CG1uGqpe3nZelyE0+%TjWthQ3ev1*)xN!Zp*X$_6XD#u(I%nWKU`%Jp} z?BRG89A*wPXKERFzDVrJBAN7|^t7;&FltP#VqbcU#imOUF?@tGfDO!+YfJ1&)LJd_ zVVadnKbGWSvBj!=6PE%5d$Rb)Jj3UWW`z&f1TcwfOKqKA`~|=MxI!>nvZG6~?x<>t z=yZWwj4Q@2RI~P>im?v>hvDMPE-Ww53#HOhI68!G*h5LJQO-+tRk3uUfN%SS4IJ2=&99em6b>m@Yj0Sy#XH??_B($NY}IVwF^) ztcJwucQMa+x>jhN-*Q?<&VO?xeRd3)Le>{^^=vaINCs+82;CP`OJi6rTRn`Q_8ooy zr{ZfR7!V7mbKX?{S>BAJ%hq~lJ@rFi68I!C=P#m=h~KKq=NfT1kAyD^-zGIxFPuGB zDKeN_Jy^yJu9jl0I_-09_6-cKY2o4GTW$VSUENq$U)Tj#GyH#li5t&}h)`oN}jS3vOF>zaPw}oyDw+?R4Dg zcl~DFWbKaOunFkG7ULvg2KBf#><7Rw80-AKt1=!~>4q6$vo@Da_ z%Z6i?x#V2_Smip&3Sd@*&R5RZ@jeU!*AkiXd04o=bPT`C#ta2hGPbgni=^seotQDms=q0Wq&>oY%D*h}|=6H`x z4cA_?NJ|uj)&P!ls+$DA1F%ZD+SkMdebpl1J)JY9Gp9J+bKywtnHXf9YJm~w`Vr89OzMO-2W~oG>Wi0NK5B0%N zh~5{Q78!$RLRuomak7T^d~taha&qN&`KtIC;@rir_DqGNm4ABuSq}}?Yh=<=muJUM z6<*KZ(R()kPWst5HaZs8jDA4`1Ejxf0_gs#4&5w8*Yn0^8q9{ysB5%>s$I)iMjir6LEp`4 zxLyu8`#YO72R#?|6o>^rEvty*+w~gu*k*n_Y$_60@j^IP&~!X(0KgE=GlkiO{q1_N zw%x7|3`5{?&@cnF2UZw{ShBQm@;XRd0f{M?V^Cka;a*ooq?I975-Yq~Hs&)wTtGaR zV8CkSfWeD}HJ_Uh26(t$yI0rV=E_|x&DGkTFRHV7Wiqb~C*{tdB+ZEj<*uwMmK3&n z8A}K+Gv; z?&s2BxvNkB=9#%FNlUL&dIhkSiYLA z@nNA^{D9jyAn8y+-1RpDB7J4gyIio?8I&?@0p5A z(!`BPUv?bH@6bEb=Ok_wdbJi$=H|(Pzzpbi(^^cNanD?gz4ffVnK!N$O>99RplC3( zdwml&5$LTq%FR}F&^5*b`)1wza^1OG*Kbz=w}AK6+{X)XlF86%H%j1WF@KTEUDRs1 zUN4xtnKA29| z_iOOJT&jd^8|Q48_)Ww+N@2@!dmzn)U7#8`$0a#d0Ry~?ic1?pV&#Sj;9j?eI}DXR z?S^y1Q+qaZNZjSh(gJ-6;G5ebJ&T|K01yC4L_t*G`o@LU8*8;TXUp1TUg?j^y-|s) zrMp7Ve4~>CfI(ac=!Me-M;omyo>Ft|RT^jv#^cIh083rPo65ScNfmeol3{{v{}P^9 z(Yg{evarr=Nez=5qo7$-7*1NQ@YoG`AeB5th+V0M2I5QmNxa;xL^)!NIAN zRHBeFPv?iCi@ikZ2xntZnmWJSWw$;6xL7?hoD&GvvsgXIR}XWQ1J;3}OICGf&)9^3 zE1KY>h0~RNFc@3dRxsGGa7nv`^0wq>$N0V8MhDC(Qi(9DrUhY-Kj|ifJ%574EcYm$ z_~O&y*F2>6gyIM{hGM&ccoC1F2ckt)Zl>tqRx)r`I__swp>uT6ZTvQ{dF{2Kt1 zwM3(qrmti&tI{9wWb7~zEV@^~jRKbr^Y$XFhZUh$Ll;|~6DR+JKef{rPsw=~OlH`b zh$R}y(I{`rRVForrH=Z>L(uQ&tHaTgXA_DTEU$`^q$KT&2fw55YZy6(-q|YHh?K=PqnIhrPThTeGO4f?iJqUg!&DG=BQDsYXX zzO|gy?{B)$mrY|cbD-74nhtDGd^U8Ue%o&P71u1*N@=r_Y5Fz5Qi9Jy-ySot08s*1 z;>iuyGRttl-6o8w0~1^+B|+#$V893Cty_&6)$7>fVE_gb!;0b(j`lsX(+>KB)?nD~ z_JexU0+{Rd&<*3T$*4I3q?KugA@4o`YL0qHX2H5 zG)N30QZU4uO|V*dVDR;IaC=t=hC?^JHm8d!d@ux>4n~qg4uP65vb{mI(<_s~jYhg7 zi@U_>0=f`aT0!!E&T50f!_YG#%X4ZaW>o};SLD^_Ud`Irob2g4hyFG z*je%Xg6(7-H;1idXLQpDi7HnTm0C)gD_a>51;6b083l&R)g%B6;==m^s9bQ8%bk|X ziK=;_)<@wC7liaB%&utf;zBAc;`rl}JqSMdB5}wxF6>nG7k5-)3h7S((^)Z34fnWe zAC`@SVs(!bz+viERFWdzaTfH#3k&5FU|0%C=69r{gG%F4mUmnFC`g}%T_#JbJ>r9j zPi1*`ITOtIGaay$gH`~B_oe;SXVW6W!z$2sTqc9r=RjFZS$vf(;o~1%X2O~z80(2%VwiDe-Hw;D z443)i3$@snsm`*^>{6%cu*)wO8ZjIlpYhcIpFm*0#y19Fsg@0+>Zi zFLJvowQ3JDtU>rr~LR>{Y+ z1Zq5(4ADkQ$`u2@QF!^?WH9&Ru<^GLz|>pX#gDhh-DvVSoJbBmuEH&^{~dsNLK(!6 zK&bE}agQ6mN|7d(?_+2$xR8LeyNFO7M_TClV$+J`?pxIq7vIo#`TS~dHFq_AS5GyG zjsntQq}qs!Cwx^br}wRcz|_L16*LV&UG_q#Kt-WDwr0HV~nm=05@~g9Ybgv)1np4zo zJZ^!MaKK6WJrx@&C zUpK&Gdg9g6S}x4x+*&W;n;liIL^NA?6TEgFjK-4o)ohhIonjv}?H7ha{1GbH_WLEC zd^D;~CZKPPYp-E{>rJ7r^pNORWU+Fu*6SNgw{Et|jb_QK=ln)KXcp9<0I5RaWxr8s z_smAK;s?c`F3XhbjWUEi*mB9T8%XglmJoqCmSAs5BGq8CWP7R5B3Hbyb%bdpEIaAe z(@v18)-EJ@yLbT%LrMI&pYD^s(D~(lIt!zGlFl81!P2ZSu_q2Yy)6rls|Ph(09>&S zO11q$MWV_g1>mp-me{PVOb znd21hCNbn>~H9qD*Nr+lM%gLt0DY^CNLTy5Wz%^*kOH7ATcT z!MDd~s~6{l=J6sX9btZ@Z#1o_HGirszJ=*U+7OezAElpST97uW>b+v=yXu6I+pCBo z3p;%s#~{ZU(C61lRw^Q&jFs^X6V-Yi?=f!ptx>9<TucH!ce@ZTzYjh8S{OXAy&G639eRVm<>0EP(`26vr7&xI|9IR70k!D5wZ zV08jR9L(n~*a_k;X7+mNZB{t(Q72&W+&Fdm!Zi94P7kR+38lM2$VFO63WwGiLHfY8v>n)OI$Gs@93=oz$EoIACRhr7#wo{zg))O^_dZ zTmu6ecbPttX;e1y%kKifpsy;>Az9GzWk^N#QBaxBT#?M8n5xR=9xH7z35)hOO2XR9 z6}GbZZ88`Lm&mi~!5~Rk3c!rYswQj&!>r^Bnajk9FjzHOV58rt3)7D3j3nI&31GHr zpa5WDFpFWSCc9jW1oSfRj77>+rIdqr0H)|f$yyCyS&2k2XZIxCJ*u{$djMaik1tY3 z=gGsfgl^9ePs@^44aw|Lws;oBA@+4_{0#0~0T^2Xm=nOPQhAv>A%hunX5$CGugo+j zK0_gZ2}Nl5Xvi9&R{#@xwgxTGOZsZ)!ZC|!jsUFnj>OSPY@Rb>q)o-rp*<*mygo+B zd>0~)Kcpenzy4a`FFui`ezJwT%*y#@#{KKx)4S~1*Jv{_5FNv;S}g)H4&acl@8Z>O zxz1Bfo+^-L>MJ-^#5F`O`Sf@7`WFCwHGtpZwyed6gKs4$+9^CHhCc#Whm_ytRlWPm zYs~Yr#CHCp@#{6mpc|t1Yi0RZ~5kwk{S@m z6!?X@TLKze^)mL%hVEkQ&qwZZ;$O|`i=i`Y86Cew@7wT1br;^ZBApd_{&d_RDc8&1 zQZldxi$!-bkqVTJhFPm+0btjyRI6FnEHq{Lug$IumXT`&#(dg!?ULj?D*!{dApkYO zMVuL@1yh-vCE3yaI{dC}RqBD=>ox}c7MCi)0k;~K%D}3Q2K69f|1w`hqb`~)HG)ko9mY#&=*^vcRH1-TRrL2WDG~n zc;b!5aM&hx((F#u)Nij>1azem$VkqQXIZ7I)hPyzY`b6X45S7KjBmSBRjY~%Y!qQT zDa%X1kAlGp!zFMxUY|>g<`_F6Jr=u+^9Z@cL#yK0A`Ikg?VQ)jy3GvaHBwHHXtc7p zA!zjq?S8S@Ey`l5K=>V2@~WjWxf6KbROSTql^zwQl>GwsxN=DqM*a-vDrSgh>i zOIxaK@Ifw5$@DFt8#P=KF0y8%s@NsVkjho+kgI`X@n>OtG=IDcNulP9R6>RW_8LZ` z<6T_d*lG58CDu%^XNul?Z?#Q(xC<;WM z=xz<+O5X^y5Lbk=4keeO$x5^QK{z+8;u(=-S|MEW8%3dGL20qAtPrBR6thCe8Ezvo z+dw{ja0vdCMBU-z@j;S>GuZ3>v+doJa52)`Jglu(2Ml3A5qmJE(B!d30c;_p6>f>) z@r$kW3g8d+H_qMA`!Z-8VfYPPHIn163ZI2h7O!l+v%d^ELIPC$a4R#U^(Hu}9>#Zy z(R{4voY;3-J=GWrey5O~k;fG(#26Vj!Fc$Z+#B<(Z=L9Cey`>tr(=OYeb{^d8l6Y) z=LJl@6{+cSDLmB^B`_mp3C<9%-^#l6s-R0U{U-?&8_0`JTEWEp`=KW3g?y9|+H&)YNISJrgSM$crrh9YUy}jw( z-S(j=crdW~o!YQxwi}g(U+gris%C}78k2P|*9;2XR;Aaj^gGr0*j~-N#n_wlt!dAi z082rw<5d)Qg>c=r<2p6dDEV#$t`wXDBf-4QYN+T-`|Gz_b`aDmmCShDcARppmUE0e z0L;!v?WP@g)k-n5Sxy?h6}S?b))~+kzXe2Sxf|F}|v(HAu`R6U>^Xn6w3m0;?=z$?}|1 z&134Z9yQBhvLrR!b62vZz|KmquNGCSDwtgU1VTeN10D*MMK()VciI)aMH|MqE9uaj z_icAe&2|A)mSnCV2M6pmG7=MRqybCzW>)sMq(SRR{c47$^X$Lr)N^dMh=cuB(Qg%? zdaFp9!VU9m1Ta@ELz2JU&O*&@9sq_UwOcuFm}8X%Ch%q*Y@pY$lh|1`!!F1Yi%#vr z1p-L<@xn}EE1=@?0K$6P zYV};d;a1Hu1JQ}pk!nh~qtP2@Owl@ERjl|rB0OY~mgqb?s#5o7 z2;NuC0q<+HgU83oPluPEPEy;K=_8ztO^_6WWj=W4_|N^bEzS6F4wwKYXo=q60oYK% z>bMWK-w77>ouiG@H#|QrX*hkW4pw}fJeu*he#_=4RZ68ng@y^IdaR8fD%9j_b@Eu& ze2u$O?8H-X;dfmBpuW9MaFb&t(O6p18rs=wzsRs<8AM5(*=NMV~;UsXtwa6&AK(8`JnG|767+6 z01O6k2VG+_bS6U^xCM7X-%hhMgy$O?qd^S-o(|1X*XRSu^-8}{?fTWWTlU>DET&=P zi^XKVkjmx~)k+>VbUJRY7K2qp-}zkDAocqmFbNQrN-0nfp0!pj*fjvy=(QZE-LwL) zV%3Vxz+OxTwo!r`29>)_v(qpnLhe@>iyjXfvq_utyWsI;RA+D-t{Pm2Ay#da*iJZL z?P%;b%>v#X=$+4TL(m(Iq*D`)!3iZTs{tb(&Vn=TYc{P<#y+#OI7!UuVJ=~UKuQL# zaTpFBNf!r;Jt0(+D9Nt|N}G)$q?lR*R>c!{Dw^EjuCm28U%~+nhVT|DhpRlDnzNZ0 z?ryi#YUQCuJzo!Ujb;&IeGeMkMzaJ3b-3ibYH2LE%?E|!fWwfgpe zb(^K?g>sEt2pcZoQ7|~U*gZJ;ynp=p=xis<=2f+#Wcs#x8WpkH)kP@TJt>vhlAa1G zg$lf3FGUpw-%|a0KOLX_2cQV0B`^=B1==5pBBwyYA+PA~WI9qk@(?;LGyAN>gogT7!e?60gXR^jeH6mg9(cpGBR zojy6hp%5`1P7EhpJ!0|Bm>N93j^kAR0N@bA+QD58Qb-&0s9L)tXG}&raha7t9vJ7M@mnO z-NjVuA+z?=Y+^4b5@DW}_-!6l%Y7*KEoHDpu zE~Kwk)4FGRPPr+SIt&816;$hf8G>Dg$&S_sx8i|im}c87;Ds>alTk}-u9_HTeijH# z48tX>&cwoCi8l9KxZ$33DYm+jfF_}D&H*dqYts{pE$+FjHLa$HUyDwIz63D4GXbUI zeVZkqSIR^Od5kqy0bu%Ix?TlxORq~Nwqbw8WUEr3oN1m-%wZp&z1ZvERAq=Pm&zWU z0vknyWiNxg0NBq_fvQuDJ*-eoIc^4902l&Ry+(=vhS|jld!rgCOTO}jK_lI4=Qsz9 z1GGS58gT%aAP=j3MGWSajh=wsig{YI&!v)v5f+s!mX5Pww}!A11=rCsa|b^7=u7~t z7`%OvlBK9BHB9PG)3XA@HS9gKH%@s0WO&BwQc^gLpz^cEpw64mP zq`_3Cu*(W%DRl+~VDY$N=}MKk%^-xLuY{o0`|fL-&gzoN{>tp~!TIOilTRwhyvsJg zx)EVKxJ`Q*ED)A?n^R65v!uw!||;Z&cA(<^K4y1DsPPeJlN^qB@}Tj=sNTur|c%DY>Nn*8-$X zt@gfg2h2D#xx4&o0I`evDg?_bU)G}u?n3OyySy{kU!2)hZM3ZQrlrBG+MATe(;5Ub z3QIcg8=|2J^va@Mz<6XW)fmq%XZ7jGB^%nE%4qD&=JgS{3ldM<`PA90>Ni)dyPMAS z3d|0^T({P9?6*dP3K)!^cvxWw=D1Za0=-bv!?xTBY7M7Uw~LTt)a}W% zzgkZr4PZFn>9jMMG~s|@L!oT;e7PK&MhO5`YnHOig$97@t~lUgF4^#{^>R-mcSNwNcgg3S+HsvA=%N2_w?K$`x~L)m9cfbjPGRv zU&>*6eikkklDsN4(d#$UfGBX@>XlTFWbw)XuxTY7FBvq%0W$>M8AwwK9ERgTU)z@i zY1{$O77Mu<9uHEK;anKbS*jAL`~sw6o+WXMgGWn2^j6G#=tj!;Z_U`>(V=Qe6mD^0Q<< z%M@~YSD9B(Y8&{0PX&NMU(3no3mNGLe0dB2gT7LVjHR_@OZRT8!&scp1ib{IxWFkksYH zy*0V1&Tne#d;9v)gMi!lwShgL@8Zf>UYqM{Z?U$+1_`rTZ&aGjO+1881wof!@X(~| zT}^|rv17w_*nQhRdgUa!0_*9~l!QyA+i zyl=aiR};XXZ@J+Ysld(Gy#nbQSOv(pORiafm$j{mto-Q(i^TwNg@E4m8UP-$p~7fX z?{*#AE}CXOm%G?(CU{k)oCAQ3a;EN<2;hcSb*+k7EtK*pnBbOg+tp&jE5jdyz9N;4 zRrjl4aJy;6W6@k9JnRRcDInSi4DcJgXLSw&SYw!T#<&>Is{q4ti!g$LcEMLVX`F$c zm@vkBv9czf0^ni6!(g?7E&$AGm)J60ixAZg7y!l=^yRkIEJB<}=A&5_IpPGG;2?z;V464#Ou_y6uq8+xFCL4SD{fab}P_?%( zmhg2Wi*37IfC%PhS89g9;NmbcwJALo^Q>9TfVS%<>h(;cm1XHJsT0yK1Jdxj0$`?Y zsrhF5W@V|9>}_ni=aA){LAHD5c<0!<{)OXR3XH9Uv{X{f5E=FqN+rTl{zQ&$2oFQd zUJxNb3b~nqg;7$})x=jkn+eS&CB6{<3_B3OjE>Oo8T0 zRNNTO^%F2`;{QV1Fs*7XpH3uCg~0&N*%onoawb(dVS-cH1GN%K3^CYzd@8*NaWldD z3AOzb*o)dNu=T>R&VObIx>!2}fOWkNLxS=;000mGNklS<`lH~2gL6mbYHwSE$7#8AC^|1J*aFw%O<8+eRW`;A!S&YomEP{5-^}B5Ooh^^&-{U-Nj1TkZ)D#^53U_IlnJ z;`l>>ee7c5=nZlERDj0nA*bp`ca`y%>ipiCeKA4b@pWZ!V_rRYw@>xutu@^k^J{Cq zF(IHATCQCXcQ7iCCRHi1G%io)_HbMq^@X*typw^koO=>Oo_hGP<}WV*EK|Aa2c1z( z{^&Ejxmq?L{A%O38}!AG_^>AbgC4d=_j67=1S=1Z}^(0JTvx52z3l*^sp-p=7ctJN&%iyyJT z36~MK0;BGkU~r|B3cM;9TrFkQ!eS|M2@S>~~DIXk>$A zidp5jgTWsy{L}gJXO!EBW(fjrAq{MNU+q?j;DqRa!wj#96s!h-8Qy?q6BA+@SD25j z4#rnM9pP^RuWSjkWq!e&jBwLd!56()Skq~Zz=lR6gSlP3QLQ_y!qoQ1)poZ4%CFI3){VL z{e%}J{d$TGCrtaou+Gc1P^y=(%-6ziNf1>vH{{CTY+f1_=Zois(gnP!>KrAdBD48j zsoPvSsMJpMOt4_Mc$CZT>6Q$vD5(dD%x5sESXC>djKi8K9-75B(iu4{k=&+8P@tCr zfNM^=J+OkNmoH^G2Yh}hRYzC_n$;*T5__x#MmG#FA0B@`IQq1A^l5wlKkOd<1pwYV z`t#^)JE}8vz*-!s{9d}an@+#d<1EHw1wLOd;~UTI6TF}&rv(VZD~lXrhda-!fBS6eyt3Us968dtfnv<2axN@M?#)D=H3+U|+OK`xwVPU?qmTMmj?zJoJMsYN#;YXG;xD&O&R8K47 zhZy#YKkhJCpzl!H@X1d(L(t=)p7!1((4cB9m)i|YkE zAlJ$`W*P!_n{Js57Wx|bYB2>lR&me^=JP&GFt#%LyB^LKJ=kCROOVX>tFBuv6fW=X z77Rg)Nwtaqx$4TmiC#mUwouGoT(4)~v0cll10)Hn5ro|aG4LE=Ff8e0)C7PPgQaLC z-b>*#04&u?q%sf-&~`fBWYWjB(#C;8R5FkIO=0e4A>0ky_&`O$?bSjd2$w9+=R0Y)Uf+WMasgsF`%1 zWX}lzSfyU8%9r)$`eF0+aVJ0*8i-={_^ob;u*Aj)Z^)%v9rgfV0VNyEE@0Am

q>&D3uZEylx8lP zmLqsFVo|A$!U&vL(=JwJOGUIY;Ihgcmv~T_yV~<{QfI?_*sVw2YCPOd;{8ITFn(7S znb93A?gc{V35o!TWemn5!y`k(ef@fPec5okmvmuKw4GtVEn&i&8CoO76jZX8A>uV> zr|)EvR^v2|OnnyZtL#)IT6X9J!;HJUc2*MJcox9c6^k3dL^bcAGYusdOdrQxf_AklDM_&q7O>=LU8R;3`*tmT; znyYaK>C1`5lB=i#Km{1q_sp&A4J&{>@0NM#NR+Wd-%Xh`l>+|}3-udsa98rurDqw; z1U2LG7UR6u$Ymy|t7hCMfl6B#t#C9=@T@Ih&32OXX~>139l9|^A4%A z%v=T-_}?R1i^NMnJi(8Y&Zrl;#7+kjl@YtbuyaHW(lK>q63R;gPgr{68U zamZb3Xmtr%s@rB#?^|)!Wx{#=;wg7=^w*ExN>%UvF*rO85&OIFa368%-^nmI(U5WX z2=3n(F!#JClO87_0>*la?1n)^b&Ka(}z>N|}%<*E5>*-=H8=ooei~w|@dU09VYa=gp1|&s29hFstVf#IL#n}AD_240ddU;!s8V3S9x5sP>b%zEMQ@2E)6J{ z>SQUFNwAOlP>T2iEr6B2*P-75fN?bkfPeX`UswR+at0Pc<&R>?JVS#z-J4$fO8QT{ zE)+0siH5yGO_e1JtzOw&!LZGjoxT*fkiQ&O$l?^OPx0xAWpJWmAgZ*k7~NK%=WxGrR^$XMw(?=vLD>oVz1|!+EERd zAf?P=7FrFfjShz99t9m>c$Nq2Nwk}fpo8`OGa%Y!gLxX#jBF>(U;R!6AKKSOkx1F_rz z!IwDVJ&gA%`_~f%Fh1Ja_cf$7X_k3KF<`Jhi^Roehhfi!tj$ISmq$b|gC$qAg5mqn zCe^S^1+QYSwoCDmoQL&d+__}-6eXt8T`L)?p~7Es$mLWa2NFDUN2&!Ek<@m@9932daDc8 zs!ycRvb=@or-sl?bycuG4CJS@%ZQJ#I|e)9uD3e+>-}&JQ8?)VUF;pgIYZ5p-`asL zr|JU0oS=ZC@o=8>()0=ncs}pT=J9R-0E6N}U-i}yf2#}nGUrT9Y;wgHHP7r90zsuc zNi8HsuKju`W*VYv30kqf>fuI^l^AA4H0}e?PItjDfjUwb668z3bXG!7U7#`9oYaLck$gx z)!nRu<38DKLg~&bS~7`YCRmkZvVykG9W`^7)O3}15Ov<430YkN*xb3oJI|d?{PiMU z$?QT&P!qrq!Mf=i6Tp(Q)d{TQI*Af@wkURzJzn8PuBOvbR2FGjBt`mcPWon3UX;3TX+c@a?{hK_C z{`?=m|CfLLndiH%uiJQjOUhe-Pc_E?ZoPgB4CX!`X9MGUhhQtM$WU@f3Y}tvI#Z^I zNf`lk+hws?5IKmRS7%() z?PNplaI=YPR`_5rbudVeSkDsvF8m_Sq@n`eZ!0kPbeKLptRL>AG@1q-bg4Y-YSsyx zHsW1L8%s9u*oq`7X3<;CvqBV^sZNp{ton7>5x>?#5=UmFiD5cq*|uOiv%yMadqSCu zyDAJrTqpG$^>3_M0E>BN%~?!duHE=|B=8AhpV>o?o*stOTW zA|B|r?&kp39JOE%9~@g=APlaD*6UP$gs!WqfaP0Nz)zXk4_3IE(yeAL2&<-<&XElo z9iNbXZ>EA7bChRYcD{TMz-s2q*AoT`uEraEpQ<6+7TQ;`eeQ#W# z8A_=02fwd+-xAU4ssZ#0eP7)9vom{i=1)+-gVl4eeID*!!t+aVdXCQz>G3Wh(tuJh zRp|R*Hg_$I5$YT{G|&ZT@1os#2${P+_=wHk-yR0r1LzxqzBpg)Wz%=D3BZ+1OP4=O z_Ahvmn5<1Y68bmLSDz`KnH0j(*u@gm^w z)%l6iC5!-fE48a6fW>JEU?uUT z0>)8CMahdSejrO+C^<+cq&~)VQ%2g&b%I_U$c|1ijAI8P16MIzSvH%=c00wF2wZEj zGz5L8lLALvk2KFL-In}R*W+ldli(0cK{s8z)8%?RnL${W90q(mtJSksX+i$tgdSMH zu%x4(Hr9ya;c2G~UVzF_B%I}t=RPi2;``CaDXW0_!6SfqIgsMa!sEbs4m^ee)=7)v z!(3O{fBxkUKl_(|a=o721D3R&gZs4D^=o4&iQ+D_FL!zAD#ZjHk3jFd9yK1(f!bU| z+S@ZQqlo2d6+m3FfQu<>+S~)c;0gfD>4*5$G{$;;ItQMNPLh@+GmY3|-Kk{1bu-xS zy$`)B4s4)P2g|QWU)E&dD8(;{!}*N6l?)P4q|V=exmI+T!V5@ZF5sq;9gknWYH4;ZjfM=hbUPJLkK68H7N zW^wh>t2Un!r7*j6sO?OBa!*939i~K0jCX9)E-W<)oZN6ZRG9BoQkg@A=@Cr~^A48K z%G~?3glM)@s&48%vH^WTiC3u}wUvt!5WQ5!Y_hQYv&~ENL*<^a(X!g$L=s;P7Ua(ot9Z{h6{9Yz zy*Rl%3U27%XBe#dn|G7#Aq6llZt{R5na4nun{kAu&9`YKdK>+F(aXC5eXZy7tHkQn zlM3e-K-XV9dkbmv75W|?L!kHWF+1Il_WO9Xl4%F)1$4X5fm3f384ISBFvsy{3D;SJ( zj;SY*pzxM+59mD}{PWr=r>5pv%A1=F;3jUg%BjazADUKHlb&tHl~y7xq#}t& zWj7u7vZc<4Pfu8O`SpC^H2QPfg{0Om+R2F~Ax9m$;sT=(#$UM+&{I@&A~1+XNakayry000mG zNkl+VucQU0% z<&-V_A%MAwND-_SuC$6y3(dYsgdE9DHeaWjv^3nFhh(4LI_iZvzU2zTyqy z^sc~Q{JJa&e)G$p{qgs|8Rv1}bP#+@dSjJ|^d_;B8}c^^Zoxur4wiSttR86JMMP=N z;lTtju8(X<5^HEJ3*w3GN@BLqb|~RnxHEn*@@_--CL6Yi$sACqXo*CP9rE`VZ zcos$0fGw8h1;@$T}Tx zwvx?AgSd3jvU|h0kv`9yI*bp|T9VQQx4LCkqrO~xSuB7rjkGx2P1 z`xx7fan#)eAu-z)^3=zX8%&(b#BM8ma-o9@EWGl!eP1gaX?(Af!vkhs}aChBw^n$pE)w2Z9yLk>e4O)C);g^wF3KwwI`>a zPg+s_VVHi1i|f(&7DrC=WdOj^AXh<$WpUnM!}%BiM4xEtr~c-)ntA9W{& zbe{Ks-fZq5sBTLzSk$dEns!KEQhB-y0A^wstVIC5)xoQeKB8E4^JNE=jjQWHc4Yw^ zj&JZdpfVz#bVUBD(-zks_+Ln!^SD=)-Eq+=vX<0am6CZb@-BBfa1I?j9^V$l^|-i! z2&OqnUAefOt!&^cKnv|F@>hF#S>IcZq~?gDa+r3WPW#MzOQ`amR`{;lj9ch&D^bjZ zcQrmFqmh#&{VW^c@`THcXab!h%QZD(Zan{_@Cs3u0Y1ib@{{)5UCp^hAf=2yIxi2W z1u%T~uz7qG11x%A;Y$D*#HAqKG*#1gcT4rg+KD^IVFL8xC_4B-?6g37Jo2ZPJ)SCe z2Wh^s-9Qk;^VtwbJBb0GWNG=0JDj0QD+#*+nUt*U;g~>|M*Wo27p_g zufSl}y&3ATLKa5R;hA)FdLN;Tb)dqvG#9DrrT$CfRubN5epr&s%2zXy5EmC*m1sUi zLrM;B5X%cK$YO5~mIVkXU}m8uZI}f6&HR7<>pviZBflSdz0k*czejgy`dT-0o%`JC z1`cJsRpH`&vYJQSS>S#!uAaQ);mP1jUX?`3XmyXxMYBPZ)iE|T%|8LF2Qi1a{vj|- zBh1}01B1D&VXu*tg5!Fvmw5ckIREOPqm!V6Ij4cU1`~)mFh*g+^%G|sFcHlb9i}(1 zL=Ynj-B%{R@!)Er{o@$d8fmdyiG3RhLa?jsIC;s}J##tB>cQsaI$ zbICeO+s$D6INTEE3H?KW-cIMk?d_NC_E%U3a6!PnVGddVjPbR3$ zlGbF~s;eg^+pOhjOhn`T&n*}`cbU89{AlRjd9Hq+2`lqy*2az|k;{`9VH9xgr>V$O zQjk)W(v$d?in&#WAck4rXS&W*k+0_&Vl_*#R^z*!?=)loqE*~F6gl97Gq_2_dzxB( z)$}YA&T3ku9dMt%4gXv>$tFf%ZE=g?aw9U0~!2CIW#k;0`NTP9UmJ^Y= zpBx6utc;J<^8nE0asN6*9A2XxwC_V8&Q?$1`B?xgOjY9x8ZU3wo{T5D8!CN6=v~@n z&_;vZL<~?C0(7$O*Q?%i)n{QdPE4qMMC0#hDvcq6FZXDTne(*AHX%`>oRX`XzT6wW z91FNucbcRR<;A62Mg6Z21L%)1o`f zTc9t5FG91#;9^Jmh-PFkM6Hvpobhe|3T-Pzr6ehR9s z0{~}>HYhuq+y*&>FHX8(d{A70!D)r(d7W3c<)qEm1nUm~ScGrc1%MHpPnqW}k-TF^ zCmDCN#GtQ+gUD3XzFKc4ym&Bwi04&T_oz0(Z22+b2 z3@s;V@qv%QaVOJVn1Qsxb!%e+Ac-SfapqdUsRbSKF$RFaMY;&B*CnpGKrh`QaZc+D z0Qli)2k0U=E9voh4=_XK3XJd8l*=G7e)j2U%K~X=-{;r;!_(&e(b!dj=y=%Y#|{(A;U%<=4pw5>8msFuug%j2jJng?aG5lY2GhX&M zqo~gYA^J5s&NYkXm=k8PH0a2pXyB6=wq&*Ago!`~G0d%B>+)d}(U&B)BN2Ij{2~%p z<_s!pxkJpPv{l0_pN4!d^C6`0b~}Y8=CosZOHvq8`;+2H z0~~5Jwat!BN^mb{>*~b4PMVwcT*AhbL}~JwbBbsHshvfwi!V*fkb%1P<2Gf+F7v=Z z;B@V4$#EO97%*l{Q@wO2D^G5(@q2IiIA*?Y<%}mXYzy)?Dm&1=BcX4108CbG&^H1g zXZ>>J7aI@sO_zNffnLOT?I8eToHGkuEV>AYT@ZJA@E7Od>^Labl8zoJeUn=9&p>an zaPzt2CSQ7^_u06m2AQS=OkS4SM>GiRS28f9la5+i3huJ^w^6`ab5D~_EzZJE)mr$6 zZ?R4imt6=QD|~svd<%Wbo-U$K9Z!pnW;`-4yQ}O1+53AhFFU;d*gC)KB*d z=rhol$>-HH765A!m_^7#PexA7XXF3=umAYTw_gLm-ToB;jO#eWD2T`bsQ6>mGq1;H zN~r^ir6AchAhFy@(s4B|G^zCl!X0+25*Hv&{o{@ogDzSuB(W0=aXXul09rAE*5s;` zL;v+p&kx6N(8rDVR_u2mf&pL|j-)#gSXdzN2Liyd`yl(@rrm1y5PY+L$eqKZGMy7-0!J>-6;LR)pjHxp~0%i*Z88Yf}4oC({*~!-6iS^_ihb7Yvpb9ZgVEZ}GSU1?z+pGFY5E8hLEh#XpgK z+w2l%usDmv{cLKXO*OMf&;}FEB%&>)rj>`~^rer7-5a(h7*_i-Db4O-JLbV|58D9` zz%XDupBD!FrgJG~2e2@y>Dk3=!a;|ZMkwrMB8l1MrIR0Xu3&JqRnyJl(lutzS_VH= z<;_$uv(TiYeb~#EWuli=bqvmX#(RwD#XAj4z5QCi%=Hr|a8Sh4P!A!6*3HB%KFMZK zhi;3oB8;t5_z^4zu~KYIJgngcjiBvNLXLUB^$jE@eJO%%pPMxvd1oy(#C${Qs(PAX z_7KY_r$Mg|=mNJSu06SbO3n|^yD{Q?pV>H^((OLx4BGW_fY|K=)w|3*i+$CbjecR$?!E;e}bRt5V6YM{mAe80ZQQD?E73e$4u0d<~_QvLDtPAIi8|K=q15mO1w80ms@)8S}!S=SETXp?x`M z8j?4udc&d}S3QVeNMY#IxMI2TZN6}eCFtvo7EV0tASi!9-)iIISTwn4mRy0jhZSJ0()K911$Spt zV?W7yKiR0join*Zk#{wEqokFN+PG|OH|b&?0-|Cmt_c=)*H}kMC_lED+u33Cg`p*z zZjJP`j8L8f(>S=Q;zL4y%gpx7gTlitzx(w+{p=r~j<_Ps3)%?aBg#(*znp2ADA0=! z1~ZKyC9{t7wBnbC(`>aVH@gW`FQl-HXE@GxhuQPiIGw46`4^oYOiVQ;*J#ZYOH9Jb|YUje!tTCki%>sca`3{sCR zxv~fB-a5Uj<)Z%EfB*UGZ(ba?Yl^UR?i=oayIHGSyBkV7Kz#T`Iy9**3t+sGvbQRJ zlPRo|?C0sFng3RLE!h;v+fJ~S z$w;?}ihG=d?hT&6v>49E5gELhkD$VN$>tS&I!(B#2>|ni{u|&f=t}@|3!gzHXY|k_ zQbDAYsC5QiO z`-!%F*j95h6K>m-FQ;+fAIi~_ta7)qo8F@MwBnrG_WUlFdR$C!d55Jf4M|K-`S&4B z?s8Em-qGN$HWSBjPi9dx^4CJw&OtH&j>Np00Jc)wI-xS9|IW4*Njdb31kk&Al~gkV zG8d|s#Jvno?InO&+kCz+PIozk?`kt(Y&JtNK3sYTDqUk6soTBOyMXR=(P-RxS3;F8 zp=&#fSm-3B&YXs8W(U#TLM9@x=9wM3;0-h=lxUo`qLDajC;6=uQb8zZ*I98Z52du` zfZoYM>bXSh?t;lK0Cz!O#QZp1o+BKm`@!tsBj!5~vDyVoaC$R<2%c{PIhlFl+EI%9 zO~?IFDbNjzHUJ!!ooL*GNR9F<1TYM>I+_BXa!e*&k;QU?V<(&UAb$~K_1vHW&gUHl z@IRh+^F-zRHn_G7M;cxw@hzktU^AVFrv&@nc=e|U=G7KgRgU$&91OzX)(GS;D-jSJ zw*ZND+}5}ji^ZVUP=FKPyc~Z0^KXCkuRreGC}3P$ zp>?2dfKp&mGS8}Lxp4~(Bvn-ROR8SxqCsEX72e=S0O^;P{p;&N?>~bq27q@vsm8+X zM=bD9GG+(Rl?}qp_~CvoAA2+2E{6!liUe14UKE&U1#USeh{qU|b#O86@d}Hz_Q+FSa>x)WI9fG}VmPP`0(| zA;%%GBZ%%)BAV5Rs;N~8ScE056k(SDRwGOqNDKz2iI>EKr^nOZ{`w~|#_~H9!IwiC z*b1y2!0tHh)w!CT={7&!75I&SE{;qQH>EV8Ca7hf7#amKotH&2n7L?9XrM4My~4Ti z+?PQP>d7TznzG@#PGpMkvfR#dQ+lfU2@i!UFLNRLLnZyJI{63xue)=Ncd|10ZB#J3 zftgb^W)!MX?4_A&1@3OL7U@mTr6zQ&uP}Jv_e^QD-}7}%!y39~mV*N+%#<=S((DYj zb1xLRM>U~E%tce5a95kVzn8Ap?D2BK$j*JbZ+AAFV!vW8yN(u0dwtEQy&-xfI;73d`$~U+pvVkpDcX( zFwfURKy-bK7bQ4;ohxtSW`uqe)jbZYSMz)(3#Y@eLvpecXo*27tB2 z=oX>b?>6WQ2D1~XT=u|bb_o{~7XXgaw#=#=d=*C5v<)%E+j$oN&SZ#FM@I~qR4`M} zI8JJh&e#AgWUkcxmkz#_#5a)0dN*kp$7cX8KY952 zc@J5v1`g6YK`$!EU)I`yqf(;$df?bWddRYmfeX%ZqT0-DUa_+D$cFPPH#t|fD4-!~~ zg@sN!5>IAakvpyTyX^uB_|wwJW#EkLhBlQc(j%dlDt1S3Z`E2Z z%Za6L6|uhyfv1EQ)({%^Y`TDOx29OSi)UrVCTg9tm~ahbD!cR?s}bWLzWX&qFn5B% zV7156D(g|7f1O%liOHy`ich;T^+h)(D1!M`p$KM2ILB|`nMnRa^MRDVw8*Duy&z?cfb1)A;YiK zPsTcDB?&%y0$RJ#Yt^u|@1R8ftSiYX=IwUEDnk3MX0!u6(v6!3J*8EnzZFY!8`xS} zlE-$y!{yZB&1NFaRMV^;$E>tx!y6e{0kKX0G&j+)FlCwnAC2uM-EGZ+hMToqzA&|8 zo4*yw(yDvuM#)4m+jy)KmQ~f(SX3Td3+U`7z3ptqEzC}{HJs{}OFI5WzUz3Sgl5;d zPi%#+4QgKi7|`{7ylyvSFaaFmD%Z?GvN~A&u*l%1vRW(4txPJie`}7G0}Mkuyyy8oMZsx8yVETh9g%qoce71q=)~`@Zt{ zwmk_9W+7Fv=ugSrwO4L^#CYd1s=d#uW6*bgAFS?&^OHZ>xzoJ|L5yR)aiL93>yZLD zsd}TjFZ2b2^P5lx8eX%bNk$0gHvljTvLJ<1^|7Lrl{b3tXCDCIbOyvq9}y6n&7{&Q z(~hIdmZb5jk6$e>;IcoS`J=KMMmI7_I=V>!xx9l&i>^j5EBgR2ZcpReOh$SMYr$6p z(971W@wm&RG^uR-zi_uvo1SW%Dr3v*S!qT8NbzLQ91*+dsHDMr{5Xz@*pA;=bMq*; ziig+CghP8l06pKY!C*WZ9-J+Gt67TJuWJO@j9@VZKK8cNmHnMeEdrSj4_gRUP?L2x zoIFS!3E>m+4=-D-4}VzG`||g6h_0n{5;D-|qq2 zTbQyYblIC{ZKc`jqn;iE=E<3tW>VU!UbZiPwmpm!NM~S}Nojd{RidNGqy&rn(gAoytTWi$(yMUIa%w;Pz@peAM_`m*%eI$l|W4k}2Si?*&Q_LeMw(i^vAtt+i}DyEx=NC&_=k385>JuU8(6AaM$y$T^BFi4Mng8F!Rq= zdsqOQW@6df?$h)h@s8YOu(tV9^%AuA&y3KL`0gn}K>qGegX1wi9HQM$g59*+eYn{T zSK8G>??WBOD__oJjJyIU_QD^!qxTTOaRt>YHDBCvhVW$@QZ|SDmGh$)seplA0GN5{dg3FXKjdwvYk!Uzuo)Fr)wBLt zQk{B*qK^!#sf$v6DTq4^uNhb$c>Y%d|10QeU|426M7{gt{EQ{`qQq5|7Qui7y_1x< z5$Ct#M8@lCBf)xJ;Qr!+q0<9tb}zNfkGu7{!gYuH!2mGZikN~v-K{=-a|aARJng>y z_DM$&Lhmj#JH38-*}Z%^a5k`R2G8*bdz~z6iOY+KT(yt&-Fd1OhR{qIm-%<+8YgVT z!qp!qvL!j{0zmb z)&T$v(bnsHfPjON%hK@QfB&0*`|U4qGU&GvGOP(&Ip}0zk9}5bNfIlx!Xf^d6rmnv zGZHh;h^7%-1{X@Dw021`)oe3_Tz251OiK+W4=M4iD>ecG@6)8FBvTuDX^%w@ULf6EHj5>05zZOf@N>6 zNfc)h=!=&w9J&#}ruNZxegoyEEszG}Y@IU&?xkmzO*PwjN*2RSAH1pR(tYBDo$=Oc ziq8l1Rf>27u#Pb5+l^u7rRjb{YY|Fei)XAGAc7%<*Xw#V%WK*8Zd!m;aneDP*#=sL}(o()TTG%aNW{hR!G)-(U`ON3W zo^MlOFpH|Xsj}usQ+10Z*PF60I$k-3zHu`TIO;}fX=w)uN5eK}9eU13ieOGR!kt4M z)i6>Y4>jNDaSxcaffwruskV97pjV2m*w+i_N-Ghy?@M_98a+P8jQhv%?qP_~MqXds zGj<+_-XoO0BS>MKv#oZu@<8A9I^cdVNofriHQGhpVi3S!QmTUxWWIgXs_QoBJ6CUK zmMgPjnMKQFFdnv<>nC5@2}K-!AnuP!-)0xNCqJu`g}7HL4j6Mu0tdjihT4@??v3nTWH`I!` zQ~&@F07*naR4#52`0g;h!jXw$)2p&TcATZ_>Tv1M|p!@J?C42`>%}&%PoDcWGrJQR?oz9RrKeR!DgKt z_BntjiiEhW2I3U+{kAslZQxsJ*5^AlQ3n~R@-H1cv0!+`@CP4cx`X#V7<@o@{rCOO zkHCo^zaFV(*hH0dpP7P|rlY6j>3)WIdfn*wqY0-1o6&?#HWJrs+6CjBc1v{O z(1K5?g1$RepPpCi#fbS{(_%Ot$fWvdO!@*;0C4QLLRXxypd%k2j{ozwzdSzOT~+HBFbWqu2@4KZ<`P@?&bLoPxa~XB<0Y)OiQ#s!g?q+r*U2u{$vhj zV3hzvO*sY#i(vv-6tGrkf3Mv|6%w0+0g}bS%si&w0$Zx8)CYhee?zxbguQt&1a~hP zywI0j3enjIwHyJfr}OlDH)Ch;n=#gAZ0oS(KdzIW-}-7Av1N8B^~ka#)=ryIPTJQC zGL>ayJ*qet$byZgm8^cU29_KxjQcYM%_d-4VzKt>(vhRlyM-0Iw*1QW7GL%p+vGNh zuDR$TpVg(4CA*TS%kB2?<=!yP@gtxw)bMIm)slivY+pW}#zKpp@RDLp^MJMQ{TvGy z&9x4+Mc$NaaZDDsNVw9%LZ8cpLNzh}`}}v?jv(uhMGIF-^EZ%yKH zHINy@rI$C4V;!%QxLpQ)D3jRitWG2 zd)US&E+DMW7hsQgw|(+=5WZUKOzlemGagwsnPMD!5oW+yjObPS*}%wCNTH7xYcm zt#k=O_km$XvF&H89&RkR!Q>cM>%j;(EN;2ci)BPs_Nc-|0p}9TH(MN)oc0UTA=;rI$iqmSnv9%mTdaws$a9ETlQ+2wsi zR=Psp%tbH(qMacFEpnFrA~qW3d25{aq|qqr((Y4B&+HhAvV&QD-xc z@34qIPR@s#AJ?PKKbTdJ#pT^$0RVscbbNW)(|JSZ4Av}Kff{DJ@cF!Y`E+`EIY9L; z*W+rEZ1+=ecYmBezaGKhho{YtzrBC?dPe|1z6h!TU|dIVbz@T#E*TWN05C2nRKP64 zqERrX|4OCFEdKgsdv}HXG_N+QiE?aMVeM!r-ANxm-{U3i$5+=(t_SyFn1Z z^tGoG799*|e2C*n+%q6;p&H{!8R0d-Q7x_lIsvf?8gPaDWnHxKUY@1g0H)l;35ON3 zZArV5d`@VOZCIB`>Gw#3Djeje7 zDZe;j33ryBB`ul-|2S<>1uGOPbm~|~GRQn7`c=tjFTYKyVL3&IQCpk^!l{XLcA0|a zWDzVe@yNDJnq!0M8qNDtKwH}^K8bXILb0?U$cgPe`J`{Y_3~XGk#2j@QUJ^Vh5>2FRcsZV%HBegB7p=&QK6#pLaGT*H)(~!hyiJQKC833GkIF5_3%BAHOnAFU3 zm)%WNv^ZgsIS$$g=AT7e>gGD{DaN^6Jh5X~1H|RFZX9%}tpgVtU3My`G{j1@ZcPeD47X0O$1gC$C>~> z@23x^1p;fq^$Ku}aD-d~Bpx3YV6cqjTVygpOZ73^^hV$C{aA5l59R%0m~S;K6z z%0L|jF^4IEWZ*6qRrJ!L^yEe?Fbu+dW(0lN_^S_Svdwxl9v$Q^yM`Ft7``<6xTL!# z%#EQmW%00a^=h}j0&eNbLha5WjMhjCe+8Z-7`$GC^rg*#3y;+i+U&?S_S#I^vvt?q) zF4yl)4}-g>p%C{mJU=AIyXf>VB!dy4uedkgg`h7-1RnMt7`)&4$3t*B;+9A^fCa!> zX%*T4j~CJ->x%kRTSU^goO+0&a->DI>6WooyT4BhF`(`{`I%^UWcdUPJj)9rBbORN;>PT{aA~(1OVOT-ovrl zI?GeAI)~NCli}L4S3icU=Xi0EbaBjg!)(`2H{EpEAFl*}r+a6*53;qBRHNA; zsZR-0(9+mE>q(!p_FWs4)t81_*o1|^eVA!4v?h(`2871lW}<@G$KBlU6~Gwhz+L8? z5#zd@EjvKpxV*z_#2+3{leaHRyqAOim)`JJ#EhsXt{4oa3xpsLvgTh`0gk+JU5Dz| zYf5oo#kwNT9tY7SOW z$^!sA9rvgTE*=|=Zy?bZN0x_~fy5PiIL+A_Eqc)^GKJ-mYd6_2_z>%bti7>6i_T6n z^<)GFg9q2sWHlSlQfEGPS5uu$T8@Fi)Qe^&oQohnmcW4b@3wd!-##u8*g470K;Pfv z0gzB)vxVP2KCWraD_sQ&8^CNUDCcYYy`%OhW%b}kV z0XWfdVQc508R?K6SQL@wSP@TjDk-J_902%wR+xWcsW4&q+5_EWI4O7B>tY4htgX|iG56A-@NSL~GLBeO+oyA~%$Qytf8t{o+?Zc7M(VQg*= zQ|xu@IFkt#owglS#9)3TtW=~m3H~e{eGR}Sm7*Oj<7}WLL54CkA$L#o4WoMtz(8Nz z4)pch*Td24k@LoJZxF6~&vI{?4hg{87ujdtk?3o*!~Qn_=F#elk%E8m_!3G})r-s& zJ-^MLp0lUt7;)vA5Ydho0nj}iT@4?>xn3rp3BZ;C1Aw<%Z@Dz-Us7Hi5oEwRx;i8a z1W}~^|0=kqS1 zH>*0L?X2nOY}QJrcj^Yw2mL*rr+7P^(d%LN6&WyFkpX)ET8p>@V4wvs12_t}1+4DY zDPZ-m#oCwgMC<~a1{sPO;THS~0DRo#_!WzJZ1E+ln@vW7$_okOSzS2NXR*nofkImf zvG>HT6CYOTxlqw1U;{V@$BK+txel=~VMtF|rX|6gq)*4pEkv{v-$^|zSMlc>8~n>< z{qk}I7z2QD4(O%Kg04<<*e-vk=^|ss{7WnaSs>O`qaU+%BcY6c?n7#{u;TsUL zaR2}i07*naR1aSt-hbEwfFB;~^JVt(PT+RG%kYH(`r;f5^y9;vgBAo}+0&>R2JmcM zN%JjBo5C`+Nf<9j#TtjA8x;>#igE;y0|5Vj|L@NakEh|NC-m2q6f{V%84*!m1OjkA zcIRabJVxLTi_`^M6~`p4_=+V<(50LtwLXA|?2cx`GrN{p4@U60@pgh4?uj>rBzPPQ zvT#UuVfH)+ZXW;)9{l$C{Qv&@FE4K&Lm;%)o0T;8*b62U96Ug6Iix9CXOXQOG~Ed) zVNI1v{P=hVDx0DpGrHG`D_m;1^0HwSw@CA;w8CTg_X<`B)maK0xCCoXcq;VHU0IKm&Y{=pSFi{*Q1Yp{bH0kB( zb>sAPUb=B^7*n2ezn?LEt+LOiYs}6WgQ=4ii^)>ch~UeBT-zq4t%3&#F=eIkCt$;X zVa-d+=3~7q@Kv>qQFI-)uw(~*u7|rm3qlv0nJF`A8u6;sDplEDt!sIy&(x+^)W|u= zt7S5vY)teG?axQpXz zHL9xqVqvt10lHv&Hl$m4)-z;rYMO+>{Gzd-Zy4X;2&P-tE{%GMqBG9h2(jj!{+&0G zX>rP1T3Dq7V}}ZndD$|hEk?|C!F1zIR?c|QkEU%gTF|6Ar6{QcV(bXjSg_s%0ARLg5u|~>S}ks? zs7Q_$83Zl`eN+^?&7E%_mf0X<7R_(Gd^NT+6e;|!QrVf_E8KDt>|D~ ziTi?zA4%7r;B@l^lOxWnh*?nDxwHTIyr0W5s`m$B0su1$Ex4XLY}q9}qTCe?2QR0k zcmQjk)akSY?!JG2etzE5PY@@-VB82u2FIoIAP^U^+DvhdTY$d!k(0r|-Iwafo_{);Qj{f+E(bjWp41e?W}=0E#Y z#sMT;F1#G}MNiTJ=r02F7xCS<@4f%FI@cvWO*eP}{K2AtlgX!CMXK#3m0$qyqKGz&96UG=dSx==eDJ=?fWe@`yDGsG!}Z6i zhmWNQmYoE8`825YFQ0$qWMH~qf7s(Q@c1Md5lMjj632y$B4jHTB|9jx0qE61qlryWUt_TC zqqdZnNQ{3icATmfw*@!dn!jQ#nUKs)0{~TX=03$WJ+EWsqpkDtb*D687_hzDEl#J^ zayh}1w2~lf(PA*uP&e6TwW*h|GrnwjyPh(V+_g$sagdjS9_$ie3fjV(wF8Z_pzk_=++xkO<%5!7lj-ZfJeR8;6T*DD8@a_Cj)&w zR(XMrMBnWuAyJfP$$7|-V=2D~GuTuPoz{wUL z{h6rn()He4V+Hw_kZ@&Z~pez|9X5nD*)e*T&%+P2rHbVM03D0FfiDZ zgrgx%e5C?9jrZ%4Aj)JiJD*wE#nr}*$89P8yQ_ji76Q`E7&qQ`Y=d|^8MBaP{I6)h zs<1b_4;&%Ek=FwQ4ujG2)8(&!`Q!U{&%QU}=D=pT<&g_lW297gC^FINlS-);j-aqR znuTHPT7ZHCV6MNcTyW;cj*430es)LWe=+;5AGV0fnuux=g9mSBWAI?WuwZbR92VKJ z9-o%kb`dXfhhrglz1Wv9SHT3h?F*C5!FmjS%rrIjVMjpqc@7w6>pLxgY~9he*w_@e zBpbD=ZDCL5%P(t$e1H$2i9pIR$Ao}VKsc~WSIYn0G&nKM(ML6 zu~q7@0BnD>tyorQdUIt#xLl>p0C8b!!)(sNQ=)zdGtYE);4`#H%+@W=GT{%`>yn+) zxM8P^Oj25b%_5u~Am)#TaMOlC zs~8}`6ts$>UZ}mRO?%2MbrjNZm&&{3xJ+3Cw%HDCGT1s|Wc!)zbhzd5Ot9Nc#uYjC zZA#K~K|ef(245Qhe)}v%Uj$C@BY$-|d#9sI0N(GM)w*BR0NpmCs(XN5(BIA05p~Ip zJFog2;g!%5uSpc^91dkD;<}0{%qwMA73pq%e>P{pmDtoL^DMDuCX~_;}tM?S`PrX$>g4}t>}v_ zf;2*7J5s357hYNt-i6*9>_|lKS|6W%WW-%QK90DNqgnW%5P)O9!>JNbUd}V4ic-2MZ$8gA5uf2uLfFBakRMdTf$nrz-^)$$Rjxu?a}yzNo9u ze9qFbCSA@%Ci;9Rv0?%eu;@$jS(|{Yl_5|{WP~Lb?Xd<7TzPrk%H~)5Ke>eMh5jx+ zeth`Z&t3q!Uw{1|_Pxr3b$7o8B=abqgR1-t7{;%_i9ddP!u{XAJF*_klJIvweR==> zcswqo0Q?}hdwHt2pk;^2<5RUiNYgCVU+%;Ky>Fju@ZiUX`EEPbZ&WBbN$s>M$8J51 zXw}E-!*o4f8qhb7duh;4L(#qfu=%4F7%&02Kj=sScy!OI8*o<>l6^Kp(~*#^(EvQ& zsGV6J8=*mSsmno9Xz@w*WO~8b{LHeth*7IdJfKKeX*I@;b|guh4-y&h1+@rYJs*}@&S-Hy znA%t}o3x5?Nhy56#ni0PO+Ak-vLevYq}K7$=yjv5;D!f-1OtXMzl*3de^rFLS$e7q zVDKLJojceT-~}!U>@Ou;$bh%~f}EQAMS8U)%bwomI2S zTx9w7V{9B9O0TI9e~K^8kKwVQzn4cJe3$6U#w*VIYU$TMA0(K91_p08!_9iMUJXt1 zS+md;h~T_opR=B*NY*1Mjw)5P04)BslOBRvQLNxnF)B&haneEnfc@|_sBkjAPqP+N z&_rLhKsQ*+baY$WuYmXXNB2p7ljL`Cb}Ri#%iiMPiKW4IG~LMLF3^|e_SvQr%F+6BF5}RJfzWH8V+b9uTE{!FN2*Xf_>2-I+x>&bw{!;+IF&% z$0e1CPz0cYCJhIn3o{T17I#5yaZX!b93LOI0MwJxVrn=OeN8-WzWMeEe0O(P0EQ2z znnD~*LGO9urPM*GRGkMY&=H3N zchpKk{9zb{&NpAb{o7yv^v&1r01v66FM=&ybVkC51bZnq3a|l3jir(z&0su?CUW{ z4gdfU07*naR0SL3Li~s?6mR7GZu93xJd1g3{1*gazOf&UwNu)o-4hEXmJr((Ef$73 z$OITpu}54MtIZTJY}mP06X-u^bgeb3%w|SThckQ33u}cZm02bt_*%!DRNO&fQxBykH87_oI&h38Y^UXDj_Zf6A_96EQw}?nhDy1E*%sAx^a4!W_QK3 zW9De{J3K5Ktge&HYbiHCoEs5g-{17ywKjOt?)q z4kBLllQn)ErZ}!72*AYP`7S^JJLhYUjn;%-n--RBhna7d$>Vb2PG%!q2QcR9fWP%9 zEm<8R1i)A{CRK1_w~OoAjr`kD|0mdsRBL~^^+jf+9?fPwkYGYD1OE%?n@=QLB2Dvd z%W4X;stT+H;u3vv+$Yi zY8x_Nq+%NUksVkJ-iP^T-t*mu^Vc6A*@Q*Jl?<~MhJnO5;ubmq@AtFau6%e{No{Ob zP&ybGOrd%FYOOM}QiEKjPmeWV_(77=;5rfOnnrp;W~d?xL37u_OUGpFX8;W1_|xyd z{_ns2@$zsSj(R}fk!!{ZiN2=CSZxUaz__XeW7XvlNCs_MOk>sN%;;6XLOU%{nPtT} z?aFBq{P(;w69v#_14M~RIZvewJXXgAR)PVvG8PrNS>hwAS^mQxehU)3D6_!rHx>@k zgq0;d1XaMAbhKngsFuar2P@FPIc&%t&kG#4t3;;Y79rb@Ib+T4;!iS=^Vn+ka><^n zOtk68(cHVmU_?EQmSsE%`eig+=D~Uru`NqlqnBfBl|c0O%i{SYjnH(7001-2Ckh%D zRw)|Wg3qeIbPgs<oz$7qWN$t9A z79(trG#jAoxG-S2nJF5xpsV(a26Q=tWOXa8r=j(DAa8CahCfXeH`G}~F>P{N^U|4W zjKnlt3d8=jnG(n6J{uaAnWf>K<8{)^o#QjPnXb2@5W;RU>)J$bi6*1qU(IU-Oe%ab zH&pF8Ts@%I^|4uNAf=TAMO0;dvfRwPaRaJ%Z$rwULDYOrSj< zN_czG~A&m!+E=o^WP z(Ln;B`*4b%&&k6f6!cvQ{Y3zJrP*rMo2cCoP;)$K$uRC>1j1^ypTg`eDDDwa))wf^ zl^TxQKwJtJn>sPakaW0+<3o5fpf3U^dD#NZBe~SH$$?fNT)mUyL;y`?%^R%yvEW;!2>fDj(uELQe zK(56&k*e6#letV*6LpzxG=4+PB}!*ak#upKqyr&3AihN3un$}bMmLl%b~TUcj&75v z#~yv|4DiTw#1ovD1>)tPWlM4|rBFU#7)JvYLhMp}^8t`JVjUsPeR+QZrs7ACU~*re zFQ_oMGNIS1V!eBJVndeP&6ap|`be~(Uk;$cv@G0gCS1j6T}OQn1ipCKz0zofgNX;= z^tt92kJpgWR~CKus|?H!2n0yRIqB~;0OL|bUfUhq0b&Wjr}KU=>;iz50p9|Ham84{ z1*EaP8CM2aTcoa3e~Uo3I6{tbmDW|x1}iJuDW1E_96!>HoB~)hNoBd0C0NR0m^t9F z3qg3r)Q<0v^y80b0yY=Hpp9kVza(W^z5Yl{PM>#@n}_q!h>~0_yG8sgt)_DHF-GAnSbV7vOKG^m_2jKh^Bjw50%O* zmh8?2B)@;R{rJuC`DuyUDU?R)V@sGMK(=4ndiE)D%i|mKB^}h+ZAt_%SdHrgaALe2 zzHG=k%=4#B&6RUXwmC~#Z`zR8f(8tvzn_I2OrpU9|CS|T&J!c_p^9rV%|D?ym+h1W zYNn}UWi_w0J8VXpNK7zp+#P(KlV0ri6;3GK#lR!eJ+K*>8s+@i9kOoVXjw%O)O zZ4_9j6jy2Gv2=9vi{r^f><{kY=t-XW6kN{n`4rJW@UZu70C$1DPpA02^LJ}!vmCCL zgSrx*qO$CklMXD7Fg z$DJ%{7b-7~e}^?%#%UB(0{7M#ymE#&qrsbD|Mj5v%5&}rz+#!{cd#x40GhT{j|NKA zO2m!01G|dUo;EUagEI;4(5=V@fEEb4T#Me&%gd38XqqvQ{t}O$pZD}NV!;?EY{en~ z1A0M@*{*dy*8p8CUh{d(p--yXa#{m7*6OKpRAUBwwP=!q{V!=8FBIo}fwF`dT$9kb z1qnWFC$_1Zb;s22hHlFr-MNE%+k~~-uY3J=Z*U8`fD4GrNM*YT_yNeSPUSK~z z5=reDoZ&rr@M2#4_``30_uF63XOlP>C7}>y;5U=-L|i%q+tD(~ny8iw^Usz#Xh@qq z2i}0eIGSZn!HlaR+nvaO?MNusO*zp9G`5&=LJ6;;nuPl*0|uALC=Ysz%v+c7zD|L` zpu)JlQVec7|09ZaNjK0or)CoY7}!aawIrB>Oy7Nb{_uXs2_@0hYSglbvRr~K0Mjv= z#X`QW9UvKxwwo^3d4&yAE%usa8B(GFAAmR%HBhm{P}WO5OZGiA%2}>0>k>h!&aqK( zW-{RGT(s5Suoj1G&QiN15j;U$&k8pV#3`ScJh!PC9j2p$nhg)EMhAz3qei>qv(aHQ z_nf-)I$W>ICb=#1&2)bLx#_zo9ycL)z6uRY#u{At$7;yYYt!1HqHY_tq4HQ=QSq%UXA zIO}q7jYjSSIVs}KJlg%vXD(asW~DJQ!g7Ok2X|xDkd;>|7YZLzr(W<>`W-1=_R^>| z4uQb}z<~M4zZcs<_YPp=4sJ%h*I;i5;D?|u9Wgnm9`INGuRUU((<68GtIuL7YNSC$ds~62Y#spwYLmSJ3x%8~+vAC&F$LCOTo)s4m)D2%bUP(Y2HYHio;~ofm z8g`FUR|H3?0f&IJo~m2i1AqZ(V88(2&34Heu;lAB8i_|b1NI{&iqtZ0|t6CYs372y>d)$18&t~VMz4F3Emg{YdmMfXmHo- zybiG&$b%&I_~bu+^AbnCL^#M&S4@KQ@Y68&RSH@GSoV3;1Pcrb>_I2NIQJyRBe8kc z?+zsr0kmY0v`&gu6T^1M<3^>z0cU)vtwBOe0WWncDX)8^Im<-MquexsR_BaGYYdNu z@14b9ZQTlSd!D;Eg00$#WMHsrcQ|}vgkdWjO{RWrbZCh(?uNfwEHWy1ESD2bJyHKl z__}rx+sj2HwxY^ScU81r#WX2rG3dG-`kM7#n+zKEsXW*iaH)0>i@_#+Ju|APcHYT) zKUj=!df;P*J{g7N#`N0KVgN8mFl9z07p;O{1Yqp6zTjAqNirWp#9Fu}v zapRu0-gz6GHvV=sT2=i;)kREaonqP&%3E}bqLphuvoum^YgIUI0eykH7JX?B2)Y(V zcdqxwabG(kHS*QaedPu>ZXieu{)!_&6ftzalJNe~4Zj2u18Z%nSrNCVi2GWr&eFpL z(8b>ZeeqCHD*0_tY8`?yU0MQ-OLevf1}ps?R~=w*0cyK(v$c~iN6EYwm7QSH@{4-_ zupsWn0s0m?kBbvCQY;P-g1%OA3y5nn&x*eKR7D_@_n}T!vFuHy2;HCWNA<}=h_&#^ zU+npV07*naR6tH}PQ1`vsqzwlrw*rq3Bc4w0J2g($vWp?*|G~XNs{<@Xk>{x2?lKd zFkuG&EA;NX;cejD`>u(&k!r(dT0DRg*~rr|3IC3)7cjsMTdei2f0A)A$mf}amc01=FFWWkR&4)up$_oGnC$>kMjwUd(*-G68w;w)SaEmB) zygfWTtWGB}V8982N(F#ktX%X&I;vPd!iXPj3ld*yPd=RHoZ!++)MHXX?4hby8^vP+ zFrWyR4(OXlQUC@C2KuJq@L&Gpw)wlsAC4zc9*eyQ7L@_U zw#A7Qgh)o8oX>>&+1Y0`vBes>i~+H0CA-sj2ok)SM&QAqzvuPzxSsCn9KYQxBpWZ^ z3j(})A_4mW!0+E}0j{L2l<#0Ww9PhKby8|$@wawL*!J$)GO+dY0bT-tr?a@6C-Z7N zTcr3=hGf(Llr_%DBm%qhZEDMUH5~&7?FtB2{ho({$5k#!CEiQeF$p)}0Vv1Ws+xnV2wa+=X>R zz)b+F#f`{Ds1e(lG}9E_2)z-2NrEL2-2m`RpNRnQ`NSTpfMgd(fbMoJGR|u--Ias$ z!^+>)?tbZQ#l24CH8|r7R1@$6<<*eRDFtB3IcorSo#fU{?*PVP5Tx43K#KsxSD|<0 zywP|?Fh&50fyV>qtKRS@KwrQxxGzvP$#2FJ>BCZ5d?RziO$Hmd&S7GJH=tMkB)lO2 zgGMti4fHkU4eIent6h-M@uCa#)o{wK53&o&JFa@^qRSav9GQ70{pF7`o2wp5RN6B7 z(&|avu;C%~H37h80$5RevhEeDZocdQgBOS4d_P!hhxOh8`fd)vb{{S3QIfow&-;f% zh)Z2gdefqt1$T-2CQI+vOMkPASDO&%JFgsYUjzU+FZzJPz`X?`0*1-JsPL=;RigQ< z^GKeCtbUoYs0C5W2b8Kb0P zWJqw@NXaHlQCe`$EKtZ0|r52@LisW0M^)*9JTr&v3s0O zz-&ii^E2HS*qO!TGjHVR4!wlw`X_n`Isp~j2T;A8AU3-x zV!NG6H}ch_ljdnNASFkD1ja^P1PjB!U=Aq-L637vHY05f5}4YhK(rlUvKR~i{){o> zp4Z*f6s_ca*rH{_%1T?QFKYt@B<3WQtpO`1mPT$Xp=Fz;IXVp7-E3wwir8;wSOJKC zEd4MwZMC#mp3n=MHdaeg6$S$;`<6mgyf}DlZXz}H`?3$2IvdW#jgOj2$qm>#5rzMNN%OMF{Niq7r8H~ zDm`>LeJkiIq}H9RfR1jt@eBYj4DqE|uMGk=Li~Cg`zD$F-G&GPuvMKDh3e^GIv4jR zF@RD47W%6Uc(w!jj>;{-+gTr_2E09rmsDMkilS9jqA6Asclo%5NWGibc|Du<_uKez zNca1M7+ftqkl=b50)x{CeDnqY3?wGwq~cXw2?jR6cMEp=@Bj950N8p{kDR{abv^@N zS~9S$m+e2SD7l4g_{Ql>FGvFM$t<*@L3*c3&RP)x%?b(Y&{KUux4Ifs;~{MdsmC zA@fLDOpVx@uC~4!V4OW*UY7abkyVv{2E#T5&AM+>Wn!_>f@IbP+Q>HmXUH2K^GC<1^*^LgAM0E75aT9fi3QQY!_TihtYE-K}wQRds@Pf{UeWr^!eGA-0%(gy`q`bh| zblyP#Xs^+iPDF_DqCKhl+SuhwEQ49)sU6eMD1Vhhfqyk6oYrFQ%lTs*RfKB<0Iqf; zaNpIz-=3r0Ndn+n*DfwK02m}V&+oIOoksVO`zH2o7Sq9g9W_Q5>hQRYfW+GkHgWzq zZZiOlWiiyTOKpB$1PFiuwGnV)+n%NVr*&U^&+$2<=BiN)*7;yAM)Xc#Co|`a@h=F# zHVD9!eZYqppI|_56bd#2wkdbTVl#(un5o864#3#d1#tJguYkeW`Cd*-Hje;zL41$L zCF1F64-9^KdsuDCNf}kkobnn}Z~pfCr>D1DECh!`Mad4pFf}Owz@WT52k4S3?}T1& zX=n(z<@6E#2Z_g6XlAnr-*dKQ3H?2o;Z({RlcmvAfD9M`L}B}zu}s#1Y3l?G63iwn zA8cT7=k)IYz+}Li?Gga&`dtadU^ZB>>zJyO^eLk16Bc6CCc z`x@U|tBQr-G%x^|#u3}y@x3=9SXW+j;4 z4m<)DQ~VduUt%yLt;)AjmIv6U0Pw-C+Gr$d%ZWq;awnRUqjm| zZ3mV{!;XA@0<3!=<@o9?cAME^md?uhD#A7CNr-0$A4uQmaOxBH32jzV> z`@+T-mt%C?`MVWp?oe>I8Z4`kgrYB?7cre`iI;9gKu{gk1=_LZ>ct?tEwWysuN&P+ z<5lto;l{81^d=qyID3l0eHzGn;Vr_CfS@f3eTC7zE8^E*BJi++smYBKd^K?YY2<$i zFy?78i|+ctwD=f z4`%+^&W76ABs<(<37qw0q;?1X7hZ_i-X+~6?nqNb+9NZgEE?D_F*s@b8<^(x{T}C( zX0w!(*S0jetmzX0SR^*_F^*(tie>C> z_f5b1I?#z>PB94^9(94fh(X_UY2kI@MXj(k-(xA5fzXQ!XDMS5Sfh-|;4%>aW^J`` zTjInvg2UOI4cqT<{WAhE-UYm^bOOc^AFb;tZ8}3(l`iSkGLr?7hVBS8D`OoJZ32mQ z!r5dnnSuU!^E$W&V0@}Ya0XB2Fx{WZ-EqqJ;gMxH3)Te>wDi0`3d+wWbTA7p;_+)nD_Nx+lOLbUfF%5NghOfH11mCVG>y zOW8541Sypzn@$*enG^bwi#SPiwuin3g4r)UMPwFw+S zfk_fy9yxzp?_986;I6RVOLBZjkLP56jMnP_(3_@rMbQD20)QuR8#5CO1+*czb&&GV}0DT33b$>@SB@iR7 zcWlUF_pGFgoqMPMMps_I#ywyl4(yoNxG{<8~|9TMcIuelZE@T`nvEhz>g0Li4kST(dcYs2whDfcR&*=x4>>-R^jt;};`C8Z!O=S-x3QeA%8 zJ#^Ynt<^kk$7|t( z{PU2YONb=_W&bllT8Bj2fO7<{u=)|PNIYb7I~|JHZB8o5w~2*+c0@}0i|8~&3!Ey=o&9g{_vEKdn-~RmbpM4hwuIIGyXn50c1vuUY zz(Wx1sg}jcH0UM*R|c1ec?C+u?AGGY@N}tgc@4F#Op7Vs5q2iCEGNe1D(%9$ua*3j zCK}yGvVu+kF2{Z~iK~eSmT_-E5)A0wRS7V7HH|n(#uO3x5dJS`&txoE^@lmJdf1hS z({TdUOV3I+#NwXph{p3|U$kYw1YO%2Z8bWqjIedAlP;l|44?y#@mhcuQp#x@XYJSw z_RX3s8PYK@Zn};cfVULXe;P9#eVviEGrpVvuBy~xFu@gH6K+*GG;DeBH3n1DgR;^T zu(Y$nSKdknxyg@{WQ0$MGrZ$uFb9?bf9Sb=!Z5`w@fmZ5_jpD5*prg*zFKX{x$uNU z1F$DUQ}emmzFZqHY#Xf%tC52D=&;WT!)7B@$4u0zaoj*1T0gZ+8-`7_OEcaUsZ5aM znS>TkOe+@siMb^TRn=0fp92;j#R{+TfWfPEVtnV=$cfLA#_=@!0?-TAt4bQ3*|a+^ zdy82gN1P+*M3jv0rO;cnq_;V{1E7NAYJlwC4x^hv_+}Km8Tzk>{ws;#OB=vo1>i28 z7M>iaFvzaRTW4JWu;;&VJ?XuYJ}j9>x&9 zOrJCTWH^arJ7$?D1gZ6gw*cUN`;}tw8)-#%1J9764Xu`}73nx<8+`Pmjm_VYOP% zfx#fbr_1_qT8f6o(-!Fa@U%wYSp#0JD*&+LbsW{0q~iieFtC<=YB~xm^fYif5_&f#A(;>+%7Pzj4cM?u zJMl$`GQ3lFR|wnsj#-S|4FoK>N+CHl(wL%;QDwV2m&C8;=eey>k*tWip!VS}s9&&ytO5+W$#hF2$*;8H_fgs~yWqAqo5X#9>9 zS!5|$hEPOg7MeRYP~P(ipAc-(mX~v>BdQacCS7OC&ET(gli4X!YxTp;g!PkWqYz*i zA34gB*zr?4lf#N*y%>WOibjVPhII?oj+6v@UWe|1O;tFx-OKD-re3riPr9}-rqhFN zf)|{L$Jc~7ZIz{&h~{)Yp_-3>ot?JhPn5R=UQVZ=$W9#hJ+I|B(u8I0m6(yX(@NBo zMmSEJuEU}%y_sP%!7-}I#K)rnhQZoR&$;$ab2Qv~4_m=9PAeJb=4Pfyo1#bRP2_%N zFl=Sl3>DU9X`@@II=f7?;1=ePT=yO?DoQ~G0Y(6(0ZnPEg|}LUbf3d>z$Sq6-(_djrBVBhz3F*e0I^hG!iDFz+BFn5Mt_ z+*nJ-eE{L)%0%wJOJCRBeA#0qc(KAW6aZfBL^XQ54-Tgo=zGHP7;QHAFpcPcJTHcb z5^W={YB+-uak0RRvCuSbJ7zHRU_8=q zrM$|R)#w_Bhq@dVFOQpF{`+^o`Q^`_FDv5}Gaqy4==pKm2xx2{9#&LretCO&d^lVl z_D|2J^=1J8R@_~I{wflSn?k+H=pjfL-W_Hj!88_>u9jm>r$P#2QBzu_f6DW@Ry*MZ z-Cp0lY`*{Q^6{Ia>3`A0Bi+~8_zF}ui>WFY8^vI)Su$%1Uj5AUKAB9TKP^889HqR+P2Yp!)zk zH@`O?i^II@4Bovw{q;{j{_{`2HB`)(JpmKBoCD@SFw@S`<)^I%0{^N5!^A#TC?&ya zg1O5dP9;q{Xs2jrdn{tnMi5*X!Q`z?+hSRyK);dc7p;;+cbOhoFN?wQUTB58DqO^T z?5;E;Em`-tD`grLMr9igJ~M2O*EXe0Hf_&a*(_dWAXtE2kYId%m?`<@>jMIx8LP`- zl`ILLwyFEGDPj9tvO3&?KO~>FWZD|q+dgo781R`H4L}@kKrZ93-?U}*ndZd_sOMy2 zYz^7BY`LlJ$+8J*s%u$hj2BA_VKzb&hDo5=U(HRe%}ZPKwIj&Q<4cMgz&Rd|5~Ymn z&*Ee-Wja2yS7Hb!9^P|wc(+@u*QKp(b9#zfG&3@EWgE=CmS)G6GHCd5RgcFTk*KYi z*b}LBdT7Uv8OGIZ;_%x+47O&#Nrc_c{b+QHErsj1{IKIEZ3Hk2I91Nvg;>E#PnL=8 z7_r8a*=1kM=YZQ*K50wj_adpGtQS0NJicddbCAg74-2~2+}90mKwCLAL=Y8xOd``}a z!Mk0ky>DJs$<$C;49c`yDgdu)Z&|ql!)su0007?YVi1LmXc31v9@gn`GsY1?45t3` zL4;b8`P2dE+SD;vDaCl%!pF>{QCSN6U@D*pqR6lHT6JY_0eXqP1Yq`F0ewM;r8ex{ z19G@Pn|h>{*~p*7cBT@o#7&*87O9xP^BXcBO9$3|@!Sj%J-_V4k@wwE*zIY%Suf6) z-Ql=iuBSj>1ar~A;L~MQEpq@c5clcrmKaO`=8vaK&0!=Qsk6hx8r83`rT~4hq_X+> z!~5OOe)M3yONp3C@(PHM@Jw6^||0aFqgBoDhBNe^ft z91K|ZG_Cn0{*Pb$D*(7&&MgD>oEBD6TyVMp8ZQJ@V+Q)prZJ91<}YSgTnezC!)AWm zE)JU+E~Yj=OMvj5b~EgFfLnxH03Or7I1z>Id157?IR%6*+NugohrFgh09rbWJYf2o z>^Hyq#h-rs{cbZ0bck6!6Ge8EX#mQaVn>4OL%|TH z$BlM$=89&uZf>YvPR2k*Av|GhCajE^0-$ke42i)&-$CyNR2Y;o zk&T)o5}}QsQW*B*c$nutQI=I(pmI?JB*fR+lZ0EmOhBe}^JTu8bz)mr{;a5MZ?p{9 z+9pyBYFc_(J_HGlq8_`n2*X5KtKeZ_n7?AMS(-^{i^M=>?a#`wmEUiTv?o6dOjk4o z_>}mE6Wb7Ho3oCGg4&ji47Fz)p05Eo&jwWY<1q@%1g1N>?GN7!MmIz6jxqA@K~STt z10Fo9yhY{LOKHnmuHw}?!IAMrqv71qSza|iC^~U^7sfY!_}Y)(FudqB&{ycMjP~9E zO8sZqqZt4I5CBO;K~zRe14l#@x4>M(ajQY-8#ZAvT};4c%@_bYbOp9mf8#EQ+aSl_ z?70Tfm+H^}xwMdGE5JD($Ci7klSOR}ju-)ViM|xXumDUEY3wbu|Jk%dOBq;YEGbb* zJA`uU=F5Sg@ARHcSTsybr=6?Bveb83ji%xi{|iE%kKlC2_G(>^4vXsKa%9a4cZV3U zKPJcX_~D#BUU1CL$8^69cbkBU&;VT-0v`9kfM@w&Icoq|W4jI!n<`}58K8UKtQMzVwhYdSyT2?*0d#YRk zZV{Yx0^UUaedydqt^lxD4qQ3n5qfPKtvK8@dRz2_SCzz6%D~6^MM# zfH6+$GT+v-bya{*PsV^r=@!A?a@+`T%eH6yNa0WFY!g~ceM__GruoPeAlx*>yYGPP z5-hF7A)Y?~m`YwwU+Tf)oEVG(fB5m6_joP;`txt`4D}C3Mp;_h!B_jY%m1~na z6-v=sHVRr?2MJy-0=jj{G*K1vRbVj{K~TzXvAm+L8wgO{D;OXIdK0mI%|Mn5Ym*rAyEqb^r0QWR?0_JK8$u;KJEqZ)b3#*B}WikcMl zST#tZ0XJ~exM0470E}HxppqQ`JZdtN2RGBelGL?d6Q#Bjc1Qq&8CI`jHj4 zb(oIDyybdSNdO-FzK$ux2nHMgy28G8X-QKw;1&=oU0VHHQsMs7}PVy>;xwZB+~)hZ$YS9K_63|Y}i#1n?=BR405dzw}SAFKE}Y#Ebjp(nS~bm+W@dOOW)c6=#m8E z7{vE!-YaL$WI9Al%MnkCa-?0;U46he2q5%i=2!qG{*lE3cUL>(3}}k7Wrr3HtoRar z3B44nqEIu?7Z_|U0zqD*vX$zjFBou80Et_yd{f)YS~k&pnE$9D;%!!onR#X{naWx0 zwQkG`{mm{U`to==nK&Qg(=I-4qy07p!~$-C!LtJ7pi`B@<=g=Y-mHR6jkUmI#g`*S zz*^ug(D$^>NPh{;YJ3zOcNvZV;52Fl&b^o>she!$aM#Pn#=4Gth|{0f7J=916Gi2C{d?uA$5#(jAsxQGhPhHpsmIT5LvR9u@S? zZbt~foD#-w1NWARS-=u7Y|wcFkOKh!<~u+^kw4_y*;+3U`dFhx07A2oSkmF}V|Fd;vW{c-3b z5`T0pZ%OqPc4H|9gKxdTiXVlJ>-6es_PgKy`p4h@`f}W`bDOf&*|;yd2P%w8lLmge zI6_UC7d$aK7K=#8GF6iRNcpA9F<**P<(2em(xb`#zT?T_^f2@&-Zv1DY zlv{X`Gi;m_MaD$@EgW7MpseP520HQOFiEhfGfHWinz0I-EGul6m*BxHVc;XgNpY<5 z%yl1j(ld{+eOp}ONwb(wW<{g%*BdjvOe)-@rW3%x`82iaP5@)}@k;W!!F!tsrDOCY z_osLvV>j?RBcPPi=BACJm5fF?tEWS^F=eyJgPEYV%(dyRno!}A7!2s0h=-t0h_#y1 z2>xx8!A==EI$T%)rVKJLc(oqm96UI|LKF|v)E$pK4h`cg(CghGsQg6?w!_4DU86?6 z!yR_;UBEVUEy`KtsxGQI_9bE}wcC`e);C%lasioq#$^P`TC%JAo7A?cTYEuXYNi>8 z!Dco|+o#3;RS5}|cPW71?Y}~F2Cv%vuW;-RU-z6>L;prGxSN&3iS%SC2G=3cR{%KC zJTv%i5WPVN>(u}T3k-)>(ExBHEzNxZq?quCk8uZ(IbV3d(Rkb@;&Mhvlh1efLnoB1 zHQS#3s09p0gh?mM`_odioB+KH5O$q4>S`+cj-6Sc$oX`bO$Kax2JBH)1Dq1X7wB7W z9O-t}>Mwq)nP+L7F6Vtf@1k~Ri;?ws(B3PtNdN#dZ;ZeRz?gcI2*9VGi+vOO&I0UF zik9_jqT7W0$i^<}Q7?Mp?5kB|oa>Lh`Fcop&bBGUelMd$$0Hb6gaGa$E(eM8K0%yz z;Dw+sSSUyHNgo&t^abt$eTDdHn-$R)N0xq>d1eimzgnpe5=bzIl(3=+XHA$tq3$4M zbR>mB1*^qW%7-)=Bu{1E0Rb4`A@~t?q=r`*xho175n!;AQh%78I~4RM`i=uBe=?QF zb)S6Va$3HBIRa>3UQVauX1`k^wi{8M1SEqHi;CW5rA)W_=G!LH^Uh!9fwuGsv&b z3o&f3VoDa{B7nnD7)#2T>44ezO_i|r$pkMhe(2qq97E=ZZU+Diy!`dAegOa`1Ew?q z9e+X501UJpYzC8zCmohiEVB5O&Y~EBNiteIGW(3QFdQ-=L6<<|!H_krNxBoF_y8MB z06F*-?JU{E)ObJi$y3SlMG#Gg!r36^j=%s~oL5fb;Ja_X{_ns1@t=SC?Kt+5&}k$) zhAK`nDvKeVwaj#{euOAuKp;eLmnKcx`d5_40v1ZDyo}EKIRKcRIiD9IrP1R{lY+=B(LpJL(6b^Gb(-49M6+g$qj-O5hq*~?>Jm?*j)!xN z6N)pihnCexW|jG&qGyB6PP0*q8#_)eS>Xsu9G{N(yiI92K$AYEtSRxq+?5%~0S9da zD-bxxCxo5tq8F{)m)61rW5O`7O>GTh;wVePG$_=*syX@nH4i55*Y@MojtdjNv8k1w zWV|mbF+tN@(VEa!N2Z{u1GUlVzT;_z`v9Ajg&Xm#Ec1cKpy_~E#o&9_ZL7;+moQ9g z3U>sSf9DL^qkcUozV5uMqd$ukJcu;@IlFYK^|^danU|0O0X-001r*o?x(X zWl#W)k~fGTdgX^-5rYB7mI_PnRU+7o^Ehcm(xTkXr-Rwtn@mUS*PYD<>$N0KmrHL_ z_5nzu4XIPP(l!MO8yW!S#BdO|z3|=-ZpT@Vte3>Mm<$T(lSl zT40sE#}<7XO=f9sBKp$HL3^^Cd1XT8Yn3jO`_7kcwf0Gxr3Jcd7mGo;bU2Je0jzY| z0rZ+Hklbk6`4a$BlVmcHM)6761-G^dZS9?IPpU3W2FZOXoguBuyO3fUgkb{k8AvRV zXpE2B1Q-n5T}-hMkA(6r13>a_We}Gri*pOTI43qY${WUlaECi=MXXrZhAuxWANbfaRJtX?;FiW zIZ5*MhdowFrlB|tD%nESo}`gGbrX5Mt`kY*&O(-c*NYf<1JqeAq`XS)Cni5}k*S0= zpTxiY&9DCS#~%Q|Bgd%bV%-F!aiQn@422iK67oDCBy%1Vfwh2Fp6>#|l^dyb1wakS zHSM5|?WN+IYZWLpeJWGnY${>vFJ8Fp_hrZ65`ayzT|pg0SvsP9A?V;PSUSOj=d=9x zzxmZ4fB4;IxrhUoTGrfnO>+@YTTDDLPS(C<`f(X8p~lRZYSq&Hq-xbn^|KF)#Pql= z51XkK>lc(YHSB=8C?e^sW15uuqcjI)_t~D-I7$sj?!`Q+6cS9uF=~>7@=`gArouQU z64QTE$BV`FfqEwR5g(rC$2C6EB2P$>LWM?-FtG!RQdtNViSg;8$}~Py%!OW=$QpwI zOV>0b>Qmy_I^x+9rpUBuVOXo469ixwgg8|BZUh^o3BVjxvQ${)v@-vC#+Ne!?0*LO z+WFv_cB0{ngWIhEB7Q|$oa3`J@j3IlQQ;@f&^Hevf!oa>>_H62v;}ghC86nJkx@;W zHR%kW^LPm89Sm*}7KtsJClWhDprFhw;T$krP9pGNy!@4>$2B)DL>%ZlmnkDpyPZe4 zk}L*WCnbx)jQ>#{p0Z`yVsJL@M`3F;d?mPh|Br}H>z`V!FA;aGpCE4A5;whn00s~J z*Fe3b=m`nNQm`=A!sNjQfW!E;#tncLoS4ne(m9;BfO!C8xlsd%JD(3%3v5X7f;-jR z`11f-)@u(?H=PYQH58=x;J!MW^!gfrL2U&}la{nuQCF*w-Ydd(Gvh0F!?~(g4ulX# zg4uXjaTr|m=2d@DkE$hztfNSbqcvUV838Pytco=vaDwLs9<1&N!0ceT4S~V<5zw2@ zL4O?ttHCa0qu^Ia?XTawqG%{KPv_R z1BO?XkxS%EBuIcalmXw+ZQ&M^Efgo5zS7pAsOsww3%G(-{@N7xmz7I(p+(73$sZGm zpho~;z`3-QPC}X$;-RD!OGi$vTdnleY^OT;vwOU3o*s{v^X`1w0(#f0InLj|zno4h zDqGz~zM}vD5CBO;K~x=1^?F;bHU;?Z<#D6p8`YxDz>I;-ptgY9m-h#dUEBfaE4^2W zzGTBx>cAbo`R4NUv?1u8uv|WGfxGOZ`Pt82C_jYIiqV+%bKibEee?B!)jM(&{E9N4 z?0mNQPjx4Z>bZa1<(y>Qt`hNr6hDlR;@d#4rab_7%ND0BC=!HK z2`B8h<_xzy85Lb=iotC*h>=UhksAi1?>~O{>z{u7`S&05G-4hbA1axloVa*7+?sIL z0vM*HqmbanOOdQyHV3-H)7hkq7H`|-q@D>eB>>y89IMBR2V^nWO7PDc&lxj5tK*y0 zCo!*R>{VsLEsGW4lq!t2uZy2V?wfh#iL`~|$j>ut>TER^3|=J6JOc;`z&H`IuK7#~ zO4Bq6FwApcFnKU*ANGJ;xak-&ox18Y;88=-!h`hf9~V~`EbxQ9lunlgI-%61 zOE>m*6gR!jOPjH=WR&MJs>Ir@R%#~JB$(~cRD{Ou;+Bm~!#20~!LN*!p{AED21|RI za%gsA(InBDe(Jdl?z7utxda;?)1%1_4M))cxH}x)0fup8i8;$Q6#9cK9YzyJjc_i@NJa134 z&aCLIK+EP%Rd!d4L0x|e@;B$}xn0A5qyl`d!?A_y*Bg8;MuT|zI;0llkT1Plfh z#-q_PK{C=Ro`nGVj!T(+lHTt~I??conzrX5b`02L%&Vc%^q4cJJBBju8Oh<6dz0xDC$R;Ia$P+vu?J_rTg(j)zrv+QjE= za$MtflY&MF>s^JL+L!*UnRgAnl;Z&UvJY#I?=U`C707X1O??(<)eqnn=&SR-9Pt#N zoXBZ`xgvzNYQ~ZUQ1?gsk1!h*Y-E!PvA1CMtHDG4(*4b}?)MzHxA08AtX z=mLomxC4HL+uy$3QE!roHNr5?|K;cJzWwHMI?SIyj?Z%|_<(f{0E{5_wdrUe5E-!1 zP1Ffs1riyy79-nr`gEB;o@W4KY_PNB0iif=J5qN!$U)r2t_*27XAtD^8|`P+@k@nS?D%22^rZ0A^D(w?1b2Ru!Yz z|ICV}9c`rdiwq+vBm=7`M}QmI-D6YPc3cgg7QELqXwoScCy71Z8!Q*)55N1*AAkSr z&2lE9TG5ELRnyiN_NC3ZHsxDVVYxm^)A?)(z!Zo!nFhM6u1mZkd|ZLSln*3UG1bgB z1v??!9}g@09tB|Aip5@N$=vFIJ4fcU@*)>a(m!-EE`loe7XaXNz;cXqU}-Lz=E1lR zt^jv1cqlDD=M=KG7%VC1M#hqf6RzXdwUDg_OiJU(5hIcUPHWxg@4{+fUddtNmXb|j{J#KTkYE5X^(=kAi|>VH!}u{$ zp;pj(lacPXhQ0fK?|z_3X>2cwA_SuEb_>vJ5z?BO4Fq2iCA1prs!vvioB*~}VYYo- z^I!^nuv(9Ifu3)H*K&q8!~V@kcL|oV4;^WZ?hRh!#PRN3U$VbZ+RgIeWNNGrzo5?n zK$pVH3{kzv?&6|FwpVJdH6OPod8f>~0N{EmF`KsMrPX%?o$Ugg5P&N{SKs}zJ@|+A z;2(j(1YptDNLyLnW5QWkZ#PQYjV$FYMK-7?S(KuvECWb^2uA~eaeq8GFdqMoB)D1* z!F{*K5J3`*sMg}R0QQNnwtZm0fL;<`pf3Xam}5==U?!ynfS2mipfne+f*s(vAUKz_ zv%)iAp50!8_hpy!#DIL$ilu^`xEcUp^$qk`_XX%m5f`w!3K7R`ayg^~VDW$4`1`eY z+6emMcw7ta0&#)6h|4a0*pJy@1?VOB74!wE1d1y1(M0{0~MwQ3Jo z{W;CaagLXlyH?#HAwKU#$6YnBW&wa!lDZFYo| z9lR`O;zv`eJea0mroOSsz?*1;THn~u0Vf(BJZv!7_>zT<2C7V!=YjOtYhRU}wPg!5 z{SBFy2DlypOQ)GJyVYDY-H3_7);-B;aoBkz`^Y5Rv?yjH7%hsgEr$Wa*HpOId(-Iw z((aqiGI{2vQ+m)A4DQ{CSX;m4x&29ztXFev>sQO!VqVP3tof(9jo4&*{iW@k4h{6e zy4D_NvEK@ru`P?m_@-c=vL}vtDSoF4>|#s296wEmQPc~=ZV-UGcVt93>_l-VQ6WtH zuP++V(R*|)*MVA0vf{ErbJv`3u@hhAZ(~g8DY4K=o z_^LPjr|#e%JNC`hZui0F5C{+6fbu#BqA%cCa@6%mEQ40QgklK_#>QGa2)F_s z6CllAXe0GdMv_HT>AvHB@o*Lc!K1b`OH&n7&}zNF=I58Um-p`;0n&#<_457zSOwOC z1fL()ID-D-WL}LCxE<#ozk7aqy9WRx2-qLLd&D1t2Lpg-ix@}tUa|gk!oqi1h|%x4 z<`@Z%QW$=_e#G(z9;`VuEH0Oa>a59Utc>hyeSW9`u~_JFG+n`}2*$ZAz^z*8MVnkrd12Lo<*UlV}4B9<#8nBQk0E>now z3q4e!%8{M#jJz)OIzCBu=q-RuEj09~Qpuf=_C*gG7s#%*!AnP;K&+l%IpZ{obO|Jm z?cZtCxO)6UN@I#FW%mZry88)&ibZMURI=t+c{gFk+LXYY=e2(@Q>HpmBcju4wxe84+rilTJugFT`Ia3O{gR0* z^hW_!fu-TIgin!(oi)=Cba$Y*X@GYsb;~l*5nD58#Cj^ZFGV?|30%KQI7+XR3Up8w z!?a=H`ldY^jTvoqNEucDmiNZri$|{Z`nlcqX`2 z2!<=kb2lA&UT-{abzb!b=aJWTT#YjE!fmVd#(S?U7-8b+U=>=;LSK_{EwL&{xn)tru;qdh@(od!_Kf;@7Bl;96+%&YlD3Wv$J46soNefCaHk*6Mb)D1*B? z0C#Qc;8ZoFqu15N#u%{B7l^fNcI3X!Ze8BFh?_5!Z2eKeE#lHNe2wRMv2EeKQSEub zGvP(XoP6HNdcGX>iwIr@)ON=qm<1>QvbK)rL$R%}=#SRw8!NH+ONFAF`qI|^dObcMV7<6H+!X`wa^QL#d?$K8MsTIdD;t?lFuobQ4gUgH_=~;+ua8D^`woaGl&o9nC zt(4h;ol5`!5CBO;K~ye8o`$`qNbviIoB#Kpe~APOj{#uz1dKU_A-8VcW|PwSU@N=2 zYg2GC9%IQ>o=<8BZZi!`?pGjc^T93}MYcA2Ip}+Ndpo<@511i_$LIkJaXLwLO<*5e zA~Ru=c)bc66x~{`KE+^oFc$)OAZ;3{Go$aj12+mo9i)iO0;DK?cyMvC?pOZ$tYPeKf_Fa zA@?eueW{ZQ0FW;r|Z+qmk)@ zPXp*RvX`;;EU*-t3^os~0zIMnFGPheE}rXusa1m0FfHG@I&|KWloke)mo61Ejif9R zyjYIsi_vJ(>JO7Z+5IeveRKF7J#F0pX`eS^t3=~^Yy*rKY}&ed=l%-8HZe8Ov~$K9<2#x=rAzZLGkS|tE5al7q^G?TtQ z1>m{kt`;)gauAPkVgQEcHiB7(C5vrny<==66|ArM3~1J-gv%F#UM7g5XDUshcIyvj z`cS8o%^-R!DJvsQw##YPJAkTT$Z}A}Jx1s&=-q85itT%p zc<^d98jV^4>HCNMc0W~Yb`v44LWnCc_SWdJ?sP@yr8D5;7y`!a=VP zwM<&lV%^t9Y+V2nQA0Afa7O{~&3-Ka{^jSN0AQi7`7wxvR8zY~$6z60bYNDu= zbJa>-yL($-GA~Q!9+Lq+0aPm(yLNnZDTrGl8hsgug(u-Kqa{1ek_th4ZT+X+ZmXs{ zEko=2)q2|yYes2N2vI~;tX`)&=r-Do%52>G;U9nf_m6+yt!G{aE;K7ya|rg{F&xpu zTynoINJA})GZVc`+arqkSu=kvXl|$UcR6kE);)drFklwSz!9AU-`~vj?SRL$(u9UG z?;D@b>Sp1->3YXp(=roD)&STWTZBU9H1=1wCMrxJwLguq#_66f` zG<(<5X(e43g5I3NFi0#It|z78sIy#61jCa_XK2@fgk~72Qv0-A{Y1C^qYVU?sxNFJ zD0yL&v?Bl(48KU4pOL8+NwrStw1jMZTipvYZyp0M9%7?T8khFpRP2l6)5Z-LA!eXIKg%ExFq+ z6oZW?!&d9 z+FPSHqQAQR@Wu7}&#w+wGt{AN*627BxLWhYen>7F%4>#$*XD&Ttc~-F!fD;FJ9Uh6 zSx|y)=M~~Qw^!5srVrv`5A4b3X0%dHou+EAI(DA8kO)nU)hzH> zwQ)%;i&_(%HtEi;Al79s1*p`9eWIy?+YVf0bAKrUx7t_dku^9EI3 z;qGxaRG0{;uWqq@2BmI&7uScez8xM+J1fq?LVbOex}}krr)xK$PaBIHm#Ylh0>j`z zGV``9!7$BPx3+H{_+Q)j1tlin`FWr0GJ_Zz=R_1!j&1F(7C9imCBaXdol45PCs^ z&63h*&4aZ=@N%dObZ(?}4sl>9iey1jg~Zf}1)Pq-2vTAhnJ%9uA$M?c@5CG8j0#;1bY z80G5oV)+xIP_f9DJ}p*06GgTu+rjI4`+2qbNu&Eh;H{usN}CdW$T4xPFh$8h9uq@_ z@!DPv?kn^a{dM#`gZ>8e?LO%(1CtiGJ553%*5x(wq<E(9 zMj4MBkFmGc&nO0?tZ7xw%f^+xZ;Ko<01p5QZiT*p?s{9>?COYVumkWMxSnM@1Cr#^ zX>PeJ{RV&|`f^M0!9oCON$*x|w~Gqx;F4fWo565U=dmlYnjjwu zG4#-N{hM#hb}IDM?PfKa&->POIs1LD?#t)AMb>|V#Xi;aQBBV-wJvKz>n__G)TJ;hiN{G;0k5MYbjsd zzg^wlEvWS(>I>@?1}~OvJ^116O4m}WnV}=bjGmfVeZt6KX?-`>Snq&EGD3?l1Hs5k zG2u$1GX2Aj!N!2=rQE~KLFh{jSPU3_pHk_(Y=$}X-7r^dUZgL}Ct5{z0HP2&EmJ(h4+cXGcT0R5eeg2kJyL6+Dk>5sbBM=>CJm#Dzz zNpJYSlk=kTr72Su&dkcNRs?_-)4>nlfBUbW{&Cn$>t$`}^5!w@4OUD=)3PV%6#xr{ zg}$S%_KUhM`gUe^@;YO|V6%}~woraX{{;C-ph!!bK$MPX05}XUd7FA9g;=-Jkp$dY ziPY=Fw##Ycpe9s;83Go{iufu(-?5L#58bn2Blzi7b%BVu^ZrfYt5aYa3gC~XzwluF zEgjPrO%oZySOQ?rGdFw~rjDT@`Df$q-ebWPBmmZx1q{Qh;=qjUFkAyf57T3W**wz3 zI~|YL%K`Jj;EncGz%WBf`Rq%4kQojVx(4gJEaG@cW3t+;YG_GD$6xqGtvLf@pX}y#o#%JGo-ZLafs>f^Ps^s(n(d zn&W+`_B<$Fd0N=)jLOdyQCiYm4SHuu=d)Vt(`N6bkXY#3>b(Yi8PoyZ(43+ln1Zg0 zTczOI%TfBJ_o~@R-F$mb4@L_b>a4R|sqva17&D~bvz7cw@?JGT4n9QUVgT3jx1OP7wT9jv|xBWOCkWLF26N0pTXcL z4a5_u0wQie+e?rGbO7dr2$GYfbAntn1TvrZYo}hE95+tVun)>91JtdObQG7d{jiBqZk2*KgP<2qA!(TAucUf z0I&`y2E&7e!~n1sIBi-H#Ig48W>%jtZ9xndF&GnPlLQiEq)~@J&7UzXI?vHkt`)NY z@c;bh=Wef+FJ!C(%g2zcwWJ~dF47)Vujkxd?!3`372kHd+!Qu@bULMh8KX7?lhp9^ zEEq7DiXA=UJ(L*qHW*lPXVah|>``{NrE;8Fp*CzQuZ=Nvxml#!T-ijNm_Eimk~o_Ckipqz|&GHy2Lf9W0*j`lVs z7DpzbX|tm39{^SefQQ7CORL5g4F>Bg z4hrNhXTh0})JyeRG4vdGgESJhQ8HS$=t%eb^$5f1v=XKc1MRb8!*hgfP%TYdH%}~t z8!_cekjkc=n7S!7)G)uE>XTb##|y*E&3stR2o3s~+y`752sC0VxMYH?Lk=UX;JO?-f5T=+K4}^IlyHto9?TaV4 zg^xNk;_?gh1{OOqJ!|@n38AJ{YOy2qrY-&o&`ZOY`40|5`da8K4Au+Uh*A5J+_-^s z_e@y35F)N?2vn^$bpbGtoFM{8Y*rN;E)ww-{aw{TUm@;# zUOEYHhYsP17+Tl>01yC4L_t*9=~-nvErY=+5+?@0o7T;)bGz#wQ@M8=kD{bDiS+T~+lPl^G)}+? z{O)f1@Nm$r09dg!4)rS`>+Ud7=ziTJh}D7M`TlWzb8niI?>-zALS^B! zkQ)aiK`a^q0Il^xdzF{cukP2aj>V7lNd1alElP|EAu*pJ_=@ruCGcQ1Kd!^icz}sL zxkD7_%V&$NeYKEzygdql|MTm=+nq)(e+d91IG`mj0Ae%;xy4>nj*Iz%n& zH83rpdDhk#*5m35-c0V6^RIl4s9-(GVFblR3abSZj||P#_G+xTAv0Oc(mzE5myT&G zL#-MBR^%^V<}xqEJbLYV(}l4_g8%)me{R+@0dS{LLhpsshMu+1r`9cj!Q#QIN&B!G znzx4;S`@so->2z(qTMmL>x8&PB{&+pk`+X}*TlS>jN-{iCn}%|^FS?&;-C5YjqO+1 z3ELw(6-$G6f`zlyYrH3`pX3$7;Bm@>N9{tZa^`yl8*SqBKmc6(0}{?cM-ksByAe!{ zoCJr=xu>Zem4gh{_0J$OyjbVTwqM(Nc^UddvSUGyX@ts)$-Zt zMiwNF7@YHgrD8!BRDLkfnIPbt%%%gIS@LoZdjbN-LlP?FT{!EgXha9%IQboV=)4k7 z{XPOPMiKfd4S=2XzI^iWb)!JM0#h+aE6oanZ7$Ylc@tBVeB%SeuRveY(Qsn?f~ezS zpOA9jEc%qO+ZoUe-bbKs+I1DP$GX$#F9Slu4AC20qQlJJYMYU8h~TFL`nvEWlSRSY zu#-s|*3oSbcEHxF3224B`+XCM=H;?7^USsgu^?7JOF(%e1GanC6~XO%UWlO|b*H0m zP3WuGuM+{V$nI)ZUd@W2uMX&lj?fGG0>Fd-ct2|#=FO{hhd8+Eq$^=rGcy1jTB|(g z8OKst-J10arch$?6Cqqv<8uLboyROX+867D(3uTL2z}AeU=Grf&zS4^9HhCSE$zgz zoSwtExbMjIYs~V`#elH;7S=9iz3qCuSqX_pGq>}E`=U4L0DLc|iyPAI?TQKAyE}6< z0+R1t`FS*HZ1>ZLcSliMAu9rtS2qhm?`A((Zn}r-$<^&lalD!8SMNW+5>5-D%^3J- zjti!W=MXy=WAGXo(3H>3~ijE*>UUDgC-T{Ux9hY!7;+o8v?POc|Ij zrIlQgq6Y%$SQZ2R{NWY=Zs{A!Ut-6G+CU_rS~zOuoQn)x&Cj*c zMJXqseWmx0ml4iR0^m~a4FH_azA_nvcD>WAHj?t=!_CkC{{HK)J`THe7_c`{=Kx@2 z#q6`{6is8?`>@0&uXm%(yzQr4ZaOG0rgeo|1t)kV=|>$4;Yc`}VS@ut)Kaj9mq8`U zedvV5Avkuy=(HC~0m-0OFmj)?%p}Uoy~whn?6&lh@VHqTCWU@d95hPPZgoHJ?PlGH z@T`7m7(7VK^~;MC^kD0iK~OEn0^l$Ic>DQ>J<~@tJab+};ltFwp>;eA(9DXtO$L^z zBbrvsW=Nkclc_X0(U(QXA!li6f^BcMG-e-?A0O_ zrZo@d$_Ot-VtTLA=BcNIGqCz!@{o?f)>q}|i(4@LRsgU;BpwLdWR z82dK85^Ur0KKi8(f$l|xXt9u37@W(zV2aPKCYRwnrNY_Fo6P0wZ1$CYtW^txek;PT zc94@vhjA>Y_#SS32(M+ljdpiF_ESAeHeQq%=t9u>X@ETr7%VJ*hWJ$K)cX?j%@#fZ zfQ8C*CR>@d^*ZWgdGFPk7l6-1c?lis{#x^e7_*?7zG&*ZG+5CBO}Q79tHHQrsbdq# zEJh5DR5+xR2l>&oGM<;MXUbKV#eIdoU_7Hrg4;-Z0bqKVX|oFMgs$f$=&jXX1HhD- z$K#w3SH$;lXo0=~O}*S3i7%jQgm_z7@2cFn+t=2c@?ue(&GPeUaWN}J0N!s6djA`J z4S+q$%V}vdtGc+=69A_SxJK;f_1(O&UzirhVbvg6jq0S2^VXoh)N~OR7<7w>=G%y> zpM}hx#?cWQ6-_5kELsKaLm9)+s$?l;H(j6wnl*@J2tpt-v0vNZKbt`>EbC$C^buAV9hyeq@2#vXLM+JFpMXdFjOh;M_MkUGs zbyVX4HudWOtN?r1ZfXVOPCbR)m7y09<#O4yJ}`!a9JF|_;C9$71HfXy0^qf9$P?y_ z4DcWE#?Wku643A8Z3V!LA(51(e~Nb5IO2j85)Xhy=~p_|i^REMD!YJd?6VDp@YG+A z#;a)IK#Ne?Cfz}?lG=Z&z9J;92!@$()3%I>^Zz|7tTV^XE`2`zIt^KAOEaCro#@k` zv;`1rhme%^F0I%ptsl#!Y`axMm)>TU#$DcIaD^H+-1;yySfP-G z-bOPinB2GRPC;Z^vWaO-jyeufrRt#Jkb=S$CpzM1^*bX%;v060U&xbf1^uK!BW z9=z<1UUx@l77o4G|1pUKpH{>dA~utuseX_3};>2JiV)ZH&pIeBr-k*j zq(EbmZYk+r!o3=5C`~{Yu>T?YoVjR{;s8W{gVZhcEQ_wGdsn4)G-g zty^Y|bPvNw3oU}%J|y_zadYLn*SH9h8zlc}Wkpj1uFgiS{d&Bb^-#Ljf_vBwwC+;{ z5FYC`sh*K^B@10GUI?Ok&D!tZzy0->e*wUyavptrhCo>0;2#2D8*MD*OU0acun-qE zoXwmobZiHgFWiC7ye1K`qAwcA(feUKS)fJ#6u`+alKzXRUa93Q3Qmz!*WQAc}yBie9F7n7(k*A zOCb#2E;@&GpVM1NY>iHizN3B-JVs}my8CfAygrNtb?6znbd>oc#o=ImU;3}x&3tqa z(gLdG4=HSYN=AP@f6K~*j(Y?ui&UAg)+lG>%2f0y2H9wPY?6Va4fp~5!v)~&*8 zozyl`tZLIgCGG{?2NfXtBJ*|lTx*|v8wEtNLT9^jiyrR?8=a8{}-FB|svOXz1 z2N^2W8pKYP>|(WgQS*jd&Qv{y+Fqy-`=n!RI9$)WMA&;e00&cd_nD!`QtLirh{6Cv z-)=)O=`qJvmpVQwJ@x?|> z0SR8FO)f|PPA65}-d>Fl+n#N@?H{*};_Y&%TN`(t8x><{Rk#a0XeSf_n0l3%q5!y) zRQ~w+qX78lfBz@|E>{Yv`>A0tgI?`s2}AX^D=oL0)mBm#9@lF{MYWPw=uRyY`ZmRS zeVQWC9%wdcM;UspuveGppkOzRf% zrL^NQRSYBtbq;rP5{rUP>CI0k{qMg0^H1M@d)zIlH|rA+1_u?Yt|?QR?e3sT4LG>) z4yvnZb2UvY2>FZv01yC4L_t)%#lc#fp62UZox}6eVaG$=oow?d?phbL-=p`8ub0kP zn)7Ldp*9>kAz)Dm_v4i8t`$L`qgB!dRAkq&wlV7&64N6sDy-wBnsj(RgS#} zJEE^O4J~`oL&+zUgjmVRP1eDM1f{fG0k@~a zNHk%c3>g~+Tj%E1oeG!jC__y{7GNCpoKcm>^di_M&YNb(R?T`Yx506 zm|60Xzp~H%MKMd7r3w95(SN6}c&1&u=>l0{n1LmKSyCx_8}@ZD4eZdXPo7b4v&!&t zLz>&@#kpY$ThA(uH|4~-uJWZ9r|2sLWl~7T+0v)E^7CTtMWqpBHweVDO10ChRqzn_}~7Rb8#h*1fzgZ#R|Qwz}UL z7z>q8(HG(i2_^--TotD?W75;90q}NR#n(vmS8%(S6aipT&@f7^o*?9IuR9vt-Q{ccS^f^Cc;Vf;dmD1+Bbo3MFC=*tt==Wo2x-G?AF{j$y$X2Zn@auU|8w)iWtnXqvFdY%uRCIrpPVy6$aBC9qPf} z3npUG)SaDb%lm2Hzq|Y8U;q62kDu$!SIZ#*9-XpmhvzBWQ}h+$3U{^9bP{Zwvfs&R ze+ds}KYULL%MDLsbdb9zjdmNlsjPD+odc#}QAchb6@ zdU7=mu#rKr3Wy=D38IN9Rw_@D9gzx$8DgEW?xzH!^=9doaFJ~^!X3h0B(Y*2HIGk$ z8MVuv`;d+z52hPA!f==cN`X13UZkoWrdEv|p-)>e>=aB#+Lrjy1*IJW1JJ3%(gl9Q zzv<7)W?w0oSrwPD3Ry*-vCVLi+F}vuYgvN zDd^4Qe+K~TNA4jbZFg2bD<`io2x4H#^d>8xz;p$-`O>E_V4q@o!3a~R0Vi(|f;R9& z{$g05BRY0zMe`+v0CGAH^SFklUi59WqF2&ItD9}LGfCr|(BdfU>2@-`uDL-NW>0dh zo*5~&ItI*wXZ^PC28fR3Ha9GIt~Xw^+h^l(VLmS{m)21w02ca!!H0c)zpYz4)uv*Q z?A-V2*s%K#^@zT+d2T$p3;;YUZkH8eWB6K{n|oss9=ta6HMm9bYQL;)=Osnjb!Dtq zG}rpGguauCaCbSX%m<~#P{39+44%}Y{3LU|&;lVuuPe%X*+|Zkx?wP5Lc&+UEy_xC zV}S$=6_Ao_WZa4Mn?_LnAtMuk(DImnoOdOORNHJYOtU?DuU&VSm z_L<-@qR=A5aN>t|$JJ&u6EwPTv?28ML~;9e`SFi8??3DXz3<-d-af1!9yhv;JQ&2) zp9YonBZ66Dw{su#OZrsnwbx1gjn-}vL;p@TN85(#UzXu;Bw z)b9uF-_uz`IPtjG8g-k)uJ~&W;|()@?$-Fe^cCyN4O+^`7WPY>ZUNESez$7e+I6)e z0GsLk*ergTAn zU0QUX>Hmt1jn@pdWC5_}km*&nNXLbB;<=|`7MTl7K@#g`%AR&d>%0|=X;TRFl8$Ej zNc(K<5t##~HTpLW4RGRgZkQ3KZq%dJqV4{A(*_< zJ7-`imwV+S23bOvVQi2-4Z*N}D;O4wSg*$dV;zt@*K#KeR(R&g#Sgp^kBt&v8DHXV zYxM=Zt-#=CY5#L*zoPmJ=$=Ld;A-=YcrXcPST8NpLTjNfUcYHYISde+!BOkN(!$;t zWwS~B%K*CRaIhH^_A_R2?;!*gOmYlcO`5N(b-my#l(U4vjpju?ITPM!eeAX}ica&Q z-?2a8u80{g{hE}f09fd&3s0Av6@61;-RZn(Hea@zZw9@LVW(LKdi8f(1%SnX&8&Bq z0K@w6ct{L=cQpW5=(|`JjQ&n8N2Bayk~e}YOf~c^i?Etti}cYggGDjdgA42Hda z!wy#~yZhXkkB8_Hqm!^DJyNi(HJAO}VKc&ojga|Vp38b1ue-+e#g~8&!^JO2lH4+Jae76-C>qqy*ZU|^S=R7!Gjc)H|*EbU#Z+8Ob&UzC@ zT(r5-r>aj_?C|<9+^vI}Kg+S!ee1&Y88FnE2;}}F0NZevcOx^jQ_5d_^QS+E0e}C` z?`rjOxl$-CJ1Gi!89mZF zA<4lIQL~m4e>Ks{L51m6?Kx8OmTcV{s`Vc9NIfiC3%gs9l|1k$9JB;E#bza2FQ&7Y zJA!QHA=g(q!Tc!&edsduv11)^vu?RC*v5~t^9arB7xE70_` z80_(h9#g8n6!caaZwT?`eC4y81F&#W(AzX;-%BeSyMbW2@&XfIq3`Kra7Z;Xwu|Cb zKbQ!G*5#D)nnI-OL^j)J>5TGAFxcdyo%;%Od+kgsIcpgbUx?$HVUZgnniQ88hDDAC z{laKiv>4^*^U7i+Ze8ql&swcl0^ol4ayBWfmrnp3Q_%D?qi!!n4p-?2J zEz{(#MUvL@K4o2DGt!2N&B82N=i|1?GPJ9rL0aF}=D|4@{nZ(HI4s0{g}ypRb;^!? z+Fj_YTbH<6=)&uE^_h=+{MWi1%|3`+{>_%xJOmpV+65>E>phz}MCl@*eO1iA(H5cC zt~YAM?PmV{KmYdq_uuFQs1(i&_>+8WwntGx=-X{%PXSoCD-1@d1060D$3m-1+5$}$ zTE}D{$VLFYh?Mc;e%HG?4lT#tFK90=0A_|HR`M));Db!mgBh^}w6G-7OX*Y6Th;#? zO27SN(khP{MZ0Y|29KJ;VA`kII^aL1GlA2CqP0yhd)6TeJ}ZR5!dIcA_5r%{^AGzE z?{~Ol;t2BO0qnk+SP&9Awkvnha;z=PwVU5|4*Q;#dzaa2VhKP&lz&+pXtvQ&aLOs8 zjrNjpiD6aVLE_Gs7lqsl;Vxc*?#r8tb4svbZQXQE>P0{!-J;il=5r*zk^4prJ_TSp zu;9T_IV-|2=o{^d0pQr;{)E20N~cr8iHKYd*T@M5=Wz4QTs&9kjMbIZ)K;}oOp<~P zEER0_F9dn%%o}qZF6+8033`{yp?Jk~+GTDSb+Dj}of;RCY>1V9(3j4VCk9Np*P{Bu z!i6{hJjQmD&PBa_UTvO{vW^c()vU5sj;+5bmOd*KpX*lW+i05mZ?B)n{~#opyB5sp z>Q}>2$q8!+nwJCs01yC4L_t&z1`G^~xiU3m%~tI*ao_l6a1OS&L{7Vt6$aPJFPg?t z1ho0dtZY2np*M10ZFmK}irK8ZUMEOx^!pdW;BNa|F&*axz~Js~TUH#lwf&~LT~`f* z*JjxpFxUZjyQ^CM*#USq69yNiT2cfnXO7ohzkI_>(Nx#q^@3FpGa_s3L`{k8nDiQU6XQ#2@*V5SgT{*1L6+H z&FQ?W1JceBfW0s*g&yxO>=Zl^=fbeydwCKQxWOUCd?Ch=%1@Td%8uK6w!a9mi@8G9W`aF+c2TLE$4wQp7VNI< zr7$0KvqAx|SU8@(CZ!u363=zN9Xn?0)r7$SFxKL10%Aj-iI3JV9DVJi!a$I-LZ?C9 zWrVes6>_h&meCHa+dq8q`18;I_{xQ`^nkXAbuByYn(75D;+@1oJeblcAplkg$w*Km z{24qL#&xp&RDwlXduZSixHS`h#ZzRKkTLG|Q z)~SjCQw$afUXNQgkJPKBdR~@JXNwcHD%q%E7ZHbjgAK!eVp(FJB7J+mjB_j`s7Y+{ zBW=t?XpP)}!N&3@%5xnT=04~r#>F^`7ARFl*dEglY=9+rM55gmsZqn^)c)B7_qOPd!;L*OcQ zTXn6BQ+pz-*Y>l`p0ym4ua0ffR*n_=HqOO*OXU|rUxi386<>EXD2V$;=r#21nJchD z4;W7>qP)PZpjVLG@nE+UztF7Nye@=g;eb(z; zit_3#)MjwGNJM-Ut5towZLYV8k>H6S*}RPhy$fOIW>pcair12S4%OdamSE_6+$I8G zSJ*JFya?`x!2r>;J0^L(&U#ta7P%=579 z=vx@Ib132}CjAnuSFfqqE)xVP)1IsfR9IULkzl+?VJD0Qn-)Y0z$~(CTD44DuX3xT z15%gNed&c3A+`q5p(t+;aewApba4jD9X;2lS#)b-NRzfMs&>09UP}&YHXW>%69KT$ zSFBg)yIzmAThyg1>Za=rtt;WN0GQ?r=76ms%e$i)G{X1@TO^DbbWgWm69DTNJQhC& zfU#syi2Dk9?;chfDaxQfRkjcV{_d|||L51A{{G!x zl18;y%Ec5kZJDAG05G0$tQToh%mwqod0z;$(rGJGPGzt6~U_a6ApkoS@ zD6!CI#~01unf3?P?n@s)FfJ{(J$J`KtlKcu;c^Ektm%wu*3Xchz!ykcG4v^g_u~3C zaMi9Wl4@Z&8~*UaUw``P+x2p2s)x?1&Dmb>xt>FL&1i8WE6ND*r4>s*iUFHpa3jkn zkMtF$4xn1hGe;3niUNEuKsD80QnIP1eVh6y^GEO>;NxDh|b zHfGv?gxsLD_KW%-$0Pl}73z+0#RrBBiBm0zMcUky!f-`wb!93#eL9RHXqg6<_cRH# z%Ei|dN`NuY7Z?@*8wQ)-WlmI>S>coPthEj5dS}m#h;)>L)*|5Rz(fd5YgJU&qCS11 z9UV67+C#?z_IMohmMJAfXNV^+Me%Q8ypKvoY0@|}99p#8d9z$}d!<^A!Z2;pw8}sd?@1br{slHMO<8@nayh@s{6*kE0`R8ioMYCZkXfa^X+`gr+FYs4zPld{S zSz9hEh)o`kZG}lruBt-K(I6uXo=@`tuys4H%MpNa>J^}-jm?I>dgN+l^fz@RG(W`o zyd)kxn-n%HgKAfM27rsuUqwV;=r3957@JvjIWEom#c?M$Y-I<{i~txP1p%;;U{66C z1121OaRr`vMq1n6UN_h8<*g*#)+#BQav{(Kj0qSFYWqy?lCkXf^xOhtlw!bi`MT?f zb>F~rF|Y%$(RmQ`nnMoWJ3dxV=f!;9pUryxp0z-CyS3G7v~UGVkzoC(jk6x}_;|d( z--+hB-i=}K@i@D>n%~{6-@e_FRTl9DahL0%Kok)^j7QkX4~CtJJ&bkw-1Z=A2!QXODDEIPc3Aw3phP&dpF0? zao1nXL$~dI(?9NpqF>a56-Lgc4Xyi@sPt)Uve3wMFfSX1I%>sl{_^F2{^wuc{rxXu zzyjb><+7Nn9MGChqKv#5k{ZlvLq~+KWnU5ceOnXtc+@~AHYw4F&^sNsXOoW2VGk3U zw=svHF<3vwFWP=|nIy(!VGKGwv|u5$LNg21L~Se(It7XK|DxK6t@BjGmo%SD;w?%@n{SW{nJgy%Ht)R=H7qoUKM`HabejNOi`X!S- z@Wg}uy53Awe~entx{VB&{uOE3`S|IjxGWJZ52@q(|7dGB=TeZ%4!P9 zrQR*Z3=9EN55_lX=1wQ{ZOsM=!j|(vRWa>pdu=^sHl*acH;TKb)=8|_v}g%{6@avR z5%#0ZAyn9o9kBJ3>*MUWQY_62fjIF!aCnnrl_ytWQYz@;M>1^}_)V{D@&(Wy>`i3E*G`$=X z$f2Rh!BtDa^|fum=?;Mh|E44QH;q~YciSDM#)8zjV{0@y?SR?7Yl#Ygb~5*hXn?cV zWS~y}i-yuhUH1Kv_df4NVIzs-yNfNpbyF=JG$GoFnFSmk(O2KS{>Br z_AIrUO8~S&Spl$K7EX+mm4I1yGN-GT74!<)b*p0!BfferPqB`wL21-4Hj+00aIc#c z08b{tF$tSOEEcxnuZPyvRY!4s-PNt`SuDzvkyzm6Vpb5`9`34n#Z z7EXehfSe9Wu@cNJ2ZXnDminEXO>6WE))d_~f?_L$FOlGZjxDQfgo;LWl{{t!Q%4x$SZUU_IA+VajIy=mj|;V%^oDt$5~5>q$&b1f3#6MHzluLGPkLuB>E-+!{c^!+O31ZmKbOh#+{;| zR~Wo-TECh$w~Nkx)x(#NhG!kqnQR#Bqe>#LI`^mnBlV?Q`g-WzvS+#J0sxHa*6|>S zZCl!JrcFjeKk82UwuHMpoe8Cz>+!qC)$Pq>Yb}TF$dn3V(-9KgZK1-PS2)`0Wbgv2 zDZs#eais)+!QfKqoTLsgOeL5q?3#+$9`%32nKIb47R=3xYqYZyeQm3O-u zp&$Quv$S~~ma>B3;h+s09*^5v`i8@19L;ydz-n|LwmD$oZljxNxJN>&O!->)Dzp<2 znwi14EKn3W3SUdL=fM~_O({29m)>>tLYPgrvz{`Y)qvjC;8GFHeZ8Yf=*wU(-OiSy z9+mVI*sz|cKc^S*KWFGG+!Yt;_VRvfWn)Uk(`jioD^ImK@b}jAStDVve$<`O-Dt6@ zt~T|xiENnE#$lHn_YK9>p?TOf#a0E7lR;JhELc4r5^KEjCM;msa?YNArVI=KTNyYN zf_5!v;&8B&~ZRy~!NVZd>zYf5qv6g@ofEA-| z-VA+*dY$6T+o2W9NsW%^=}0S)HDMXkfUqTCha#X!M}F5`A4KUZti0*l%^IAO)q(-Dr@cZYP#&GWy$3*eVKud%e0& z$NT&J`}fxreIFhUUw-*c7_4J$b@d~f8~PDx==riQaNX|57%k}b_I~XO&sPFq{R&hL z6Gx_dwRNk8wKqkZVesxa67)WP*d4AX)PS#VW+bBH(2>wrLFcmoSkQZQJzA|>>rH24 zi91`880QcJPYgZ)01yC4L_t*X1%TZhuLA&^{==e&fUwPOrD@NYf(C7)mYQb3O5O2LY(KTZD*^J&;qBHMxvIU2lH zNG_kj^|dHRle?r|`u)duzx?t~QDIaMEeqW&!8zEb0Kll9V*Wu-7PIe2Wsze*VuG`J z(9LU;s{b(}?t0Pmmgyh~iAOK4z&h1ox^XlXL8$mYf<4iLC<3q*j8o=K6oPo}2Jcz)mC?TF!g$jGf0)%iF#?q4jXx&5Xp2F#$5wPJ<-=LV9_s5+ak(XP7Nn?Q%S zuU>FIFHrp*k8?ue&7unWGWZMn0>I>-nK%M{?{@9`P3wB$XD7kBQ#un{nu;?;2>c-F0TNRnH=8n3oJLFw^kil&ubfk7i=uw3!VB(Wae z9chymV?JEXXu=WzivjCJ#B_zeqP!x(Zy(lzVFiL4t96&oXPtfk@cz)(Jy+M-e{@&N zCQI0SQWN?Dz)Tsz8mHRcdWOI!Yi%x;9%;+U`WTY2rRpW4U-U*5^RKlp{`=qm^z$!2 zee>5p0l-!Ou7o*S+TY0b<6n!ie5~B-V%Fzet7Y*CrhbW%5qaa8k8*;(2=$SbWkiZO zZvYt3Rp`L9L>QUHlb~N?cvS0Sw_9e{MW1|-XYtZ03Tvi`?~Qw6MKpiGhmaIT8oFA^ ziy8dz)8GE_{a+5dnbinQ8oGemC8CdXM+X;b9}dQ{Ftz_ODomT3_KU`7Jqtb31rh|J z6Ch1rlbbiRpug4#?G;}E*b@mJ)~6@kvluq;A3;;XK=8z#Wi!N1yKN`hx35(ItgqY7 zfo@QyG}~ZrE9=(s7A`gd23sR{r#NaCM1qCE3%|#@%sf3#o}3Ib0vc#trR83$<3f2! zN0UH)>f3U0N~{+ES5zlMxi=NkLb!M~P4t>v)VLoCeeZ6k`V%%i?A_EnSSS_qw_$3? z)6uh&jwhGRDh1Cj^Y#dGk7;Xk_5_2^>5=YqDq29$jy@SHYQuo>H$=^Yh=V<+l32oB z0dUm%;H}1~Bs~(8-KIKOrxoS+A_m6m?sC-$o>8Nu4+&0rFfiO`m`)DWU)m%^g6Yzt zHtf0Rmx>@O?X}@t;Z3EM?e&}U#b~>oE*1mGiPwq3WcIUGH|yg=7jR#T`fG(SHTEz= zPk~QD^jF|Yy%w;j?EN70F0kfE%~h3emxv!gj-8t)v7MS zA@mh;i~I7o1pKZXslRTtm|rQV=~}^c8Du&Hz`CEIBfS}e_SS`UA2|Kh?Qkr*Y<9o1 zNlqcAyIKUh!2PzdUDsj2%UOQADg(O5ZPO9A7VEw#{WV)(6UK7MXv)Bb>$B2)TEvV2 z=#AnV5rApGf&m|wbw^)|n@w_D8Y+t)TLE~GpXxeq=X%YIqTkWhJ}0;p=#F~XVK>tk zk!@V)c4)#txl!M=I1~b4GS800g;p~o^oOoIeWKWe}VYq_)pFrIl%eDI*Biv;r`WHdIL z@%{Zy^cMiu@w<0d*7LlZuGb^1MrnRtZo2bTTj*;YRW}PEtAKelX`#y@^aXTMrRsu|%}h z+MVs0AGi(FmM4RT(ATAsvu5W$tkU&EgS0k4)#4jdpYTT1ol$zkm4g$G`pg>(2+hdZU`F7Hv?f~no$yic{&jN-EX>1f}3$HJ9_q+x|t_YW78~?IUGm7bfG)`LWW_J zgxm(N1Bz?Us!grc&IgH^1Z$(I&)fl63|Ii%sb&;3Leo|@YL&+AvWPNSYeR1TE|@9D z8%mtaBx2SB2J@Dyr$#M=g{c`M^+4;E5#r-a7%c3xuAki?_H6;@c+-N)^q0}(1;Z8w zbD1v}M)z$(X=9`uH!yn}4qc1X$l+AWle{#8!hG)~_tRvZNp+;Nz7?ZK+8PWSjRNDs z%+;LQ?P>y-Dk0d4Me$vC}s!(nJRWTDf6B@YwZ%IiX?X8OIRww|~S2U|vm;b+n8 zC_-h+#)YwDAp317YkF8&;iwVWRduGgj$f}}(g1Q^FaQqOW+S@+eK%Fz&s?wA zt%U=yP<%Nr>edg+dRc|ZL67pG;n~EWON)tBe-*;l&7>ssy1P*mSR_ov8#1YmvcHJifpB{No+NNXP5B&{|K~><4H}QuM|Ch~BH%1&u|L zRz2r@BZ$hsR z%WiRMEt+8=@Pp{{%IuH`3O!b>yXzgI!6qN@1A(EbNT|RPwPpRRH^H zHAA;N&Q9Xx9yt#?#0NDHyvq~76rJ^udtZ+`mz+neJCdSnim)ywF8 z2?iSp?i72?oS6hqo4@Ico(`&XfsF?x)HxIwCFw_fQ`#+w1TzF2CbQkD4|QeCToGuD ziqKIeI@-+95p8K(SGA1WQ^U)C$r{3woIbbJq-{;$j=?&x>b3qCZ6oSA0kHlB?ID<_ z!dF-@3;roMjEhj0=OZEFF;G2))rO=~T2boh0r?)++>!c1ck7h_5mE9Pf;A+R{aS z8#+Gp9VcyB>@ARFNB^r>e4WWWzqok*=FRUe&!3kHXIzyOhRdaFshCOorER7k5f3`0 zwIt4F!u#QT-k(f5qmj8GT_V(M80_d=q9+P>A=3b`=2))044RE&m2 zZ9903{(XH2BDDs(mDdVku#UCm@|_-SUQ6D0Dz-M2m&mIdl07-4(V zGaet0fB3`0mw$Np`1!3U>}oaCmBS1Jcr2iO`*!>IxM%cMG*ltD#a}Fp`R=ASH*39= z%Rz@>Bw?@~MlxCGD+X-ndmM@W3WI6O5&$!jMBNtv{_w@Ee&y}cW=ANrp3ber>!52% zW+s5W?KxOJL>Iz=mg8~F>%nFl3}ZN&7DrFZy07mYVXDyAHZj$+dgYD#JZ9pEt!|OK zvdm=K90Xbi4Xl!w!I=P9`{MDW_ub$B^6P(o`s0_M3xM;5jL^5>GVuVgHwhPgrl^3{ zL1dHA3vJ1@gw?90YNe>K1E2jssl!%;Qrgnxp3q2;q6eZk6O2?FdERqKAiGu?rV)ss zp`qr&SeGuDoADX8OGbxlm2;2F*a55Uh#4K0^-*L{y)WcmWiLO=XJ3(v)+w6*e?+|5b%$OCD%BH}K8Kv&Ga&k+X;GzI{DaPjZh3I5~ zvV&%>-^g~73=R!8UX^+pj@??@#HEL|ZX-)`89U%^uQ-_|uXlZWlm4~^r3hx> zq(ruvhAg2k-B<>|zdfZ=000mGNklP7I%4;AY|)B5I9e3PlsG&%c1!8NS}{76j7_o-YT_(pg)p@rD}I9a zkvSK+Q?C%z1S5MF!d+Z`4Sl=kZNXbV1J@i+P5m(#1$NG#bR`*K8fHaO1){>~?KV-Y z1fL6gmOvC9yqN1^s0oilZrKA51|0}}SDX6o&`_+mV!&lVuVTKg0>DOsy-&L??p{x8 z*zNOP=c3=e1b~H+0!vf8T2_Ulgb(b7K4+$W0pR~?yh;JsFxa0i`a7TIA;ADJ3|quk z4;F_$Y#Mr^(0wIzpIZL;xU4(z75cV`n@uA0-Oo)L8U`!?26rdj0+UFic8CVNfx84rTS>a}3S>^p$#8)VLbGM;K zS^zBc)tzr24}PZ+WzyXYIbiK@bv+iZy}q$_Xp!9%mCYOp5)Aq-yiACmpGd&faVQ3? z)ttsFZA!G_Q&}gmua65Y3*e0$gSaO7URt1SUKS-RPaxAyIhzj!z+%9E_~VD)q@c+{ z8vt8zwB&}YdF1gB{0p-9)q+P!fj<(hrvPwb4V;(3LA`oOb{B|^h-;16HZ1f;fj1H8 z%VaS6Rx~BKHB;WR&{;Als9PHeu3koeEmQ1r+hY_@wIivSa>$!}_N4$=8v^7rwL)#T z)9?TJw}1ZQueaChS_RAM3;--xiU4ebv+Y8ZsHCSUVlaF$=A21EBaIFZ7Ak|gFjte% z@)=@q2uL$(NH?ta!SdS(zz}7|f-QyXpw6%vv&h!%*v`#|joqR@6L=T^S4N$nQi)Qu z@RcmIad(&Lpe-wyK8=%^TR0d7dv~|?f+E2>OYP(o33eX5^hQWzqD?mIb|uP-ts$nF zx7UlinO?nG%iw%=w_xSl_!~*fKZzmGfX!Vq7A|crb%K=xPaf@!Um?>y+{Wz}||5pmZlD zmQPtP; zlO|vNG&k(--FhSn9(q8#E12s(6XH_w)oroznRzNyo|oz`Ypt_ZKcs@A?>*cX=v6$m zF^|oxx7)uUP2KLF_s3ZVfkv}}08%iy*wloe+kJDlYls2c{Ey@D@w&S|wr2*$B`3Zm zm^5P_C@)2t56OC8U+yZ4ZF#aN45wMW_;8v!3ionie$~p0O8K)|?XyPXRi|Y_ zR|4Q+KRX&^1e4;v0e6>G&nlNOP6!oWH%K_FsutdU1pxENCk&3xzSebRh)(`lNUWzE zx6SK)+q?+p=Dx5p5}eyki`VPAK==yh!vl0z34_IA-#)A#-)-rBA}!4HJy~eR4D>Jo ztzJa;GZ5^`lw-ZJ4dc79piox$YTa9h87)^P_3VPr0^Q^FGPYuYzV{DX9dNzvv=|*t zb_4pW9X$+#d*B&b>~s(97|#)6+;fBEqbzkhE!ln%fJ7gA2?Z$SWNvk)w5UVo(-1nL0m1%?6OIQ{_! zQ*}eh8RasRs$2mhi`EJ|1KlFZ!R8FLXCzsoEe8$H069M*a4oEjpbKp4emJ*_e`RRT zDY(8SD%MF=o06*N?~gxx_opwv=(X#5fZKCfgSY;ieQ1egZb4#&fSDw1v`aD)93`#{ zVyy;@NduK&?nwbSfhAjKmNzBE-hKi!jhSA&TAwo2>96o#0)T_s=)fvC`sfyu)}$u@ z76~?K^r#dq45p!M+PA4B>cj%w#jrNjW};hKj_R9fQ^(!0oG!w(R zlPB7zG;L|Kj?xxm!8*{3<71dMkOx!YDEDZ-_ij2wTNZMvF`aX2Ysgv3R7K>z(BBBa zr@hb-S%sr?LC0Am2<{^FN8<7D+Q@fLaXPk1Ly@7sX`R^rC<*yRpSew&k}ang6bk_;A(P z>>7gM;n*agT@l(ErhwjvzW$^2UafYu<+eK8mK1|Yt~bi`M&|Bd1>>l{e-{pf78*o0fENKsxS*3egeINeUXTbRcGoGE|t94Z;)!tn58g zZLwWVe{cZ){l|9^fSCi1J{fv2>dGzeSaAjXaJL zFgQBThzje?cvZWkcevjzfB62}@4o%>VZRa?@-Y>&@S^#vQ8{Z?&q3c)0Jb4ucT9@C z&_t@dVbGgeHMHE`xa&@Z^>`0mNIroRJXudQ0!jA5dQ)(+wr3z&1X?7R0zcTV`>h!p z1F>Er`U?XFfXyV>^+}j%w!tc0P0gZyg|)EZaj&u-C4yvuu`sybFeN*^fsU^6XZ|26w0#m(7D`1PN3U}Y$&jrA@H{!%&8(4Da)vY)&6q%|pg<8XZ8(v{J-i)095JU|{(2^0Q3l#WQgxT`x-1+0-I)TjC7jpEcH0!|7580l z6CtZWw?7Pi3<7e6?u-gnf@d8A=OVrq`^scp5X?sa?hgvgFWLW6c~L5US}y*sR(YP( zUI>E+oy+O4Ao>eT0>FmBv!VhF4(5Q%s6APy6>BeYd;-8e-CK2wg_5^fRbo<_qOx%J zYS&WeSBp_r=)0K}#i#G~4M8seECzhHYnl$_tg@X}P5gOe3X~IJYA4rkWxLLOBLLHE z6%x*li?m#syP_+4cFdgd(u)WtT7oI0h_68}1>lNBL|-~?;5X16nr=X7_qr)ZD?Mg0 zNj_8f5!u!CaCMkpr%;Nnx=zj8+tvO3Mwo}(D@|CaO9~^eZ`VRo8%DZb=_!Ih>Uv5qv@XK22#~KeCOtT7u)t}-6#yR(Hg~jJcf^1du^ZM? z^femR=pNUvDE$hC?W1!ecdUng1HkoiX0x0Cz+Zg+a0A*G`4npvY$@r{VGn?;YgBL#??4q4d) z^!U50gIIS8(Wf@HUX0DwcUyL(pR>14*nURl>?GWKpPSTD1} zwu{wH!ei_bT2aGNu^QGl!iH|Cmt@FAwc0st7KJqQE6}WfgEe^?h_b_EMcYI)t>{`X zdth&e7C(OfZu{_d#r#rqqGie`diAVVE$l`VG)wDOCerB^6rmx@#j{RDF-d)s%1)=b z{!6gdd-(IN%8~(tQBjQyIF^LL;3p3f7qE;~Vb>Mtdj8ovs^(2gS$Ur`{m)=<%qj=f zNxw68TE*Nl?AdfV-1miYGNETda8Ke`%AlySD!s&O8CHFMw8L(t&U zi7#x`$nmTcQqao^^w&hGy#IN-Z|X;p-QM6bwPEm><`t=gWDv2^vCtO)-d#6#H?843 zXU)=S42DJIy4sygz4EeBe6FaLJ`)BvlUM!r1pvI5m8b!4RyAk9Zfr0!WJNtAjf&G^ zAOF?yB6dNS9kT&olZ4#Pt$&JVxngAiVBOjz(kLqutXH_&)CIr~S8auOFuhm%Wn%6N zGi`pWGhIb}tt24T(Nama=@{F%afi9e{<;>i&MGz=i<;77`0| z>4=633vo9)Yt$0Y_FkKfDzH z7m8WxVS)a-ZA0{Iu}LI1pAk9GVgvw>$L)SU!4=pKwBA(&y(1H$ZO72}HP@{JFjkVn zT3UJ8Kp?%Mf6Y{^(`{LtO#+qmKkA7jhlALCIxcDR$Igj^8j0^n*w4{jZ!YLbfkjqp zkhTkYtD^E+l6Je<_y7FvyKld-cIa}hQMIvPc)!lcwzZF$TjD7I>sE*xrh!u!b`18h zy;gSE$xnu52jJFv(V#CHp;p}~NCuAqu;0+%2*AhsiG7Tx2R zr$JNG^&HAx#7!6%)=5hr8Fmhj4{HH1mP)5x)6xEcc_e4O4aeXHE&^aM)L#dl5bDO@ zM_$2fq+LHNop4R4NJqP`SE#l`HXP0n?yp`noB3X^LOqxUX}0)=owJ7R zm>nkL3{uP|$ILSrjDA*RwEu;{p7-LBVaO_l;h5;=HL-nU>?$^DVel}qK6Z20R&?#c zv{F%}atZoovoERpqKFWcrM*APnzI4}R@n0G1`N0_i1k|Yl&|ce<*I*a>1DSI98QbQ zeRJLZg~Iu34$hjEY^$dL%;c`C;&&LoZVs2$d9>1#D}Dns99XuKlr4Bw@s zhuBaz$%}B{5vzyUb{@e22NG2KO>c7EU(9-&)hH@Q>Xv*mC%UeIhlkzW-CD30(UdTG z4WHcAQ*_M45iA*~j(ySSb?C))9AzmLv`JgOI(1)|Eqda_7&F}5ZMOUWkF4|HapcO9 zwf@6f%t+mhG9+k`bf5(-XhDmzs4jyx5+t<*xfWzb(CqAB_Lsjn=ev2E>IDuGStN@^ zvY0n+91|fzJhFV<)#UPKc73-HzTVs}gu8GE+M9LN35KrpFe%y_(Ane| zjAmSMHcV0-$|ho1Q&&od0Ux$K*HLK#Eik-e5*)jr?cA%pF&7<+!TPKWgBKl}jB*S{ zngak116}Q~Z%~Z871;26*qGXga6y5Y(qd5Gj@yFXX*)3t9#nS z@-mKthuL#(hF%ix0Kgo*FkJDCT9{L!A)s75VLmOL6wk&+dSIAIVj&ruP5{{JTtSN? z7GmSDZ!G#o436i=6GtSOk^Y!_n|Dk~$I^0y@F<>zC<@+FQE$r|wS2?jB0Q$l>*bY> z!*EUSG@)7gxnXeTvvTp2+ECqRmY~9)2(eo2b3!oON(Xp^zMX!K8*PH9e{NcmZtE-7 zJDMg6;8Vvaye!;}Ra?5K!jB;xZM2wiVF5EmTnF7eVf1$*^v&`ktd}JAYE#)?G%v4v z+kG=I@0rKMybiS?u=ynyk#5vaDv9-BSu0lZS)=;AT|4PD&quxU=`aTXYZEY^2ftnc zp#n=HI-)~u*yG5m$V$KHTUqsYp7<^0h}jXjQ=(kbuX{gN{c_W|+SM+%)r(bfSeAKa z(ckqnS?imf(q91B#(e8%0f5_CW{q_0wlain1d>NX%SCqwc|}tUxUF5Y{)3rruc&Bu z^6n99MhnLPOllOYW!h5oR{)GntmqnDHt;zcN$Ms#zqwf5U2XQl%k>Cu3U=z;8>kzDQirdj*<;(}5y8FzZL49V!gNhBu=cjYhPNvqew1 z3k=`g?+=$V8x(c`7W$eH^v#^{U-Hkp{m@!TokJkLL3bE_40-_8Z^0e?dXCPs*dfA) zr0&HgU2vm7rc~JG*2sO-9-<*UkB=QmbOoCglIc*M7jn<`yXEh{{q&!I|M~cEQ!Hf) z#UR%gJ5!7bJ8wo?D!N~oikVl@#CnIrW{iHn-qH2nsr0+mVZW|>?E(F|{pj*3`p@e1 zi^%G~$v1%}Z2%ZEUAm~C^<<%8z@({Z*^2;d3Z|IFw#x3<(I7YAsgx3)OY}llOJPZ+ zgFd-@|`fG9)J{-kYRJ@RRBy5qUg9@>nG=#y{ zrRdHj^HC)=Uok}v&IjY)J(!6bRy>35D zrkZ<0ddWwUn5DJ?cDDi#782{d;QKV`Bou>pvo3~)vu=6bOTgf1&-@#JJzfkj2?p!S zeC@?ufD^-6Hqas%Li*>1OBKue%%7mXZfqK+7x>Tq>U_s#ztwHV$zpF=u590G#} z8#P{!Hg4;S%0v{Jptt;3;t{UcD&V=#OyhZ)n=0n5b2(t~mqcEVAs^8EZ$ zPfA;h76VHtdwgKPgwPk?h2z_yzaP+7Xg5tvox|BMxng2Ew~{aqqp4~owZQ-{Q>+*P+OjecAqO4;WLmCzgjr7VJCyn|G zn@6fX7Xuamcj~8u&gpEF7xXF?+7_fx3JFe8woHhjZs#RY*k~7c48T_XofUUSP)(hf zj;)B|y3rYM!=o0m+146uA@sGuUtP~B`cnOk0Bm6Fv!p`YR{gY5eW9bG(>zb@(@lQT zoFc78kZE9X+-zd|{1EH|Px^x@*gXOW~u|L>U;bJ!|Y7npWR-J$QP!yuMsv zkV3~YMxMe{XRG3`Q=zY*SI4WXh0xb?(T1ZmNeMyqc-$HUt7Ncgq89Yt-yejsj3GsT zB;5jpqu0TpFyp^t!NYoZbz_pz_m3Ao4ZO1HquV(i3?}-KHaY7=t5xhH&kApS$0UhG8)@!C9PV4G_o*8*cS4-j$zS{767JAiRoL%;C$VL z>rOM7PcIH@0r3C+=U)%^w*WAck-{hZfRWLNw!Tr@kDewvibZ)X^W3ZHDCiZf)RnJj zw-enGZ)`V9f?-;sDC;tfCXS^qQq)h@Kb_uYvLFy&zB56c!_+QoT6gIG^x@88!^+#n zT(uoB2GC$GE30?PUvv{>rRgQj=?R|vY^`d zSVUd0k9hDg0AuJIJDH=*Cz2hhu0<*Bkv?$@4qgt#aXLD(BPT|uI^GhQakLrc*Y!NwlHwwzw;6iPd~`77!OyZbH2m55 z>ED=%hbtQZx6M*8tLXMDmpd4jw4et<>{1&fp8;Uhm`xvJR%J*xnhptxk(~5NqzsIi zNn$I)NK@*WKw;4RD7%Xb}y731K_U>doI`=q+2mRh9Ewcj;)VdhVS!CD1S zbV>@(v1-@aLBkQ5)#beBu4H3toN1M~(&pZyk87B7Qvv5hh1b4EA;d!ZmoN8}gn?&MvfNKsn~~_Ro)!rXo!{K8 zZ(nZi9@aN6mzOs)Q;_!772p=(NvQD6?E*VO)}u@BCDBUsaKC1B5;lO!fsJGgjXs76 z+SF=|As>Apt69eynr2PJl8~PSfED^|wXH#Dg5DDWt@gr~SKHryHvoQlcU>xH1;E-J zyW0C{1Yqn7Eo<#80d-|$brmj&l}C`4+EVPgB-0Bznpg+Y94-<`N<8cdYG-<>NKDv( z?6@Y(V6sTB8IeUgtqiS&h$akVj&H8tQbLEzgz1xPt(+lkuBY|+;B$d4eP``zzERG= zc(kOtcEM*=t9BRkjS>moZsx!K^3yLr|M+lsDM&VfXan^RVjwg^Gt2|!#hnmHMyPTv z@;Wxd20^a?cqKIT(l43kI4Dd~+MA`#r-7E{DANenr0s|VFTsyAX9YLLesE->7cUG% z9SsnZ3?O+<~`f7tm#9DNRj#m3Q9cjUx@l=M%=G zH?~BqmjmW>5tXEcDs>qOLrTZ09W+Q6^UqP9A;Ck7R!mBR!ED`3z0y62LxI`K!vREf zqOWDd*EmfSxhw!2VbX-I{I_Dn-}*?Acflm3hFN4Lk=g)yVXF)s34P5t z!33&o0LhcjCRT+31LMLvTH@M$e@DaObYh9$&Bl76SDTt(c(xL|Ejk{Tyq`Ji)5E#> zvc%l5i0|&QE$F?t>e93&0&S^mQC0IhJ}Q_o+Y+E=bM|A(APV#3^h@+5?H!8^TIt6Yz`PGrFe|jm~Q;~>nC$S z@~1^bOE-!x>)yx5OQCg?>CmsE9c{JYhr`qBYx=G)uNM)3MSoY@&@zhP1_D@suGTCh zIE?=KYK5XbJm6Sj7by?zW6a^lQ}m#362eq%X+(-H>&Qf#L+zj@07hym2vZ&VxHvlmDvC-U(6f|XE2&Evcn76E5F?X62wJj@_3+ILWS*e&Qm$Jn| zfNV*wiirV}NQc+DLt+W>7G@vAltuBZ zlzWjBPO7CdL^pZ0h;#~oTh{oUF?~wUE{Xw&1Pf(F;%n7nt6BN#%eTM%`u>M+znly^ z`h=Ul^N9NoJg2Frg1GQt`k#ZGMbN6O2!jR20I-7OvrZ@giw(P;sQzDx&dG2@eJJd| zVwN?Qgt;ZcGa6W-19?;hhOL*)RWEp0u(I&27#|>2ZNcqg)D#aE^hVz&%TD*g=&;!d zw-Uvs-`J1Zt6@z%SbL7cx=#Zjqenq_@-WrL7nCJktXE4DgWe0@>fkr5Z}r8PuEW5F zodL%R@r?s>jN>PaR|NCHdgDwA=tq4Nn22NH5a}m>>>SohL<1)9dk zA2aFLVtuTr6>o`uD0X|%l13XE1~x&2q@EWZ*UghOLtgq5L)>8z^d;btBEII=>%Gl^ z^)g%(Sg+@wz4w?xFSiJB&2FLf9KkHhT|2QRvppC2Tl*;RzPaAlmfMPAwX=3D@9Oe_ zrL~oN1;BB7SPwSU$!!hME2|2x$_hd6c$174MFIva03P)7{a&uqJZsjB0XHkpbw27B z^w+fm5CAIz15PayA_Eqt3VjI@#m9rcG(V>dxDsJIG;Mi?dA}+vcFU4tyC`nv1wEc8 zcde^}Ld4hNXzCZ}C4{@3rXcpLRX6qKa^cgY_*p6ccby1^wYq6>L_8s2umiASI4Y+r zP75|hPmr}!rO9VwGwq^QQUP#M(&uy1sb>`J+BueaT616B@4t9`{dl+4MZR4RW|MYw z;6eO(CkmUYaEQeUAccQg3uwPW`59+lR5B3Ipa~1WroM~!ktu)}qQ3b;p4;2 zKYo87Q_#750N2O{P?hp(eG(+4@-MV^7Ic;JXSF2Xs+R@8ne*ogKo{H%zNAT})hhS< z^|nCH|1NBjtpHkAda1OG;o79vjH(w2XFZsirC7GmE~Md_lu?$_=(YEC7c$TE@&vJP zecrFO4gyZ%BfC1C-u=_$J+$ z!m4BSmp?(Joc?G17%_O`BRzB-19E+D8aPVDRq?b2mFelzmr7rFVQ}{R@60K+o#`IS zM;k~N&4wtXqaCL$-<#%s$s~u?s-qdCSj3H!NHO^wkyyVKlL}%E0Y?BfHay4@lz1cb64ra=>XO|-9tWgw z`^4svgxQVO3oHwxTqQJ`rvpbrf0l_}F$YWwv~U+fY_iYm1n5-+ z7h)FHESp;0(30KT0*HBfm+6UIvy(LC1VD zQ^ILi^M`aaly@_;Mra-%#U?H7JShj@XZ`<&Tnb23EFR_pq5Or(bZEBEUKa!U| z7Qhm?Vuhr=GcHMAd~vS_i2kltLp^}8CHFrWLw~>e>d{eu#gpi-Gggn|uVQyG0)Ux5 z64OQH3NRKASgtxuXlV7(!l8Y=t-lu&E4H~H2K@Zq0dJ4L$meY2>TQ(byX5Pgq%N{m%+-oJ((z#xt5Eq3@o!~HtryFC?2E)z+ z%1-5l#FW8|?-~hy{l{-VfB(%_lToYXyr0%_gKe`44n4>nX@UmZ@cdPK=MZdBh)uVl(HGcbb9h9q6 zvZW(i1k%X34GJLjQYlD*piJ4(|4*749!$3cl^Qs)u8t_*!TY6QEe>uSSBOao=*WD* zF`LBe;&@6p_A^_ici7N3lePwJJzZD%Q(XeI9Mbuf?v(2&L3+tqhdadEs$L(EF@gq%NyO4D%ppB3b@*Tq9 zPhhA5V5qPF*v5Q)u9q&VV?9Xo7jkDLE9*{^<4Q0#4C2kT#- zIbo_RKQ~N}@}hll)xEy%DGq{R8xgKKmY1RyNAU68)n2zOiclXl~@+sRDEWg4#l;Q6!|0ho5G&}p@5Y?t-pqAvivnN>`z z$~&+GrATF=nFS1cp4lP%h&^wo7U}I`z=_b;{EpmQVbaYHTb6AOvqqgf-OinMrlnWj zJZscXs+DKO!haQWe^Zq6&&cmZ07es$Hfdez+SHR&Qfu>eeYUMEPmqfpOY-n<8Dc`;xB*lWP~ zd?AAw12~O*0RSxQ5da4?N?jTBn0~kF(pNdRcsqrdRz$~rcmuCD{Hd5$6prFHsQ)r7 zN-vcFeXZ%;r@#^4(7sJy2?f1)`dyR2b!lis3A`!V%6lkW(zm6c3)*IR9es7wdBk8J zNwV&nYB|?wRuIM#3EpiNzy13D*I#~myuYwE=|+i}U8ld(n6Xi%c{IafZ|Hm;1N1J*~mB&&pq*gc5JEkMR$^0%`jR?S7_ddGxwk%x~(Fi=MM(d-{ zlbDIJSGd@Jkl)syHe=>qkvVB?+>hsWFr`)mrzvmVq|yW?Q5&}A;d(w+g=s>hEi3Zi zSQ19rRCj4N3-LADV^ex3mhnmcMaJ_E`fQgWZUY91T zqHtH}D1@&P9g7o`T-`yb$eCbVLKd zJDsQVzME;y!t&2m062~(rN!VhcReky$3-j%@j)VSy_l3|qvB+cANS4aNZgl+BZW?w zU({yV8lIbH&Bm#Md8(xRsc^TH3*4779srDTBy?G9c+kz`m6YD%jaqoDdW43Wb}<65 zo$}h2UcPyK5Q7v07VCxng2ZP1 zd%cA6Vwr$Yh5%SU-rpY>C^A^}erB|^=JOuy(85>YG2)a$+_g7d!+`ZN1iIv_O_#$( zE6pIq{ZnDO^o3qrPZ98=2}}11N_E0yux?*0+l)x+NS)6#ecZNP*gPCny1k-~Iu`)z z!qb(uTMZ7I5m^B?_-voK%$S0u1=^&bD9^XeO{kijM&LB;EN9yF;?v`;0Qlek`R}`z z*USNzN~Tl6igV0>ZMwgbMGBO9616d{S!i^)a+VcnG1VZyr$@$#%qSyZxk~rc3nFMp zDLDYsQUq6vvXr3OFvV}}JnYx&d5cCi zGT^@`Qw|%GUKN=RCWdhq5m^+zBAr1+2H}y|vMv(Luvv5*qJ0S+CrH?E!#4Oau385MsNfS7kVO=ox9f$4RSf{gLhRA>5$yKietrLPMK0RBo4SQ4-=T+*XTJ8%tZ3HBaD2=~ z1H;s|NeSQ(1)S4jjdUd+7pVd(s9(&mN8GLlK=0ZIYC%Wz@95}c%^3}}>{$OWv%<9O zMX~4zz>x=IcIgu0W~&P90h1_XDVQD7pF<6oKaFU?N0x;UT;0nA2M?xo>o}hrlg#{~ zD3x{GlNAfn5sc#laB*crtZP%t>?a}lJT~GR1D6GeuZ{N3YhdkIQ}^co9z=F^=yPcTShS)=U}w%<7=u|U@+ZPt4&RCi~5xdL4T0JG9|2C9SjD26+++9 zA`cA1fY~w3=Z3!1X=ywzOhy(u8M{WNUI{sH=74oHBo;s#YL+~8>;+&$-@0Jfka$)X z=tcluPpa_XZ8|#acO|i7i`FWk?`A@ib73*c+i_B!k4wQ)u#+3KvqVJSQMVxGstdK( z&9z(S5q;~m7q#RCws&*@MJpQtaIu;7ZuvE>QWK$ef@Ot`qf^ztN7ycD_z*SyiwlJSN7&+ zB^XA6)taK+CV}Q>q3p%g5Oum5 zFL$PKuXP0aOCJYQ7D!Y^K}s|z^!YdHXO-l6F!e+KHqk$&^!oMfAAkHL0KUDu!j6!h zDZtf?b=~6L`*#eqhTW>GS+&OfMzfl4RC1%9cxNIWtYu3WX0yLNoAe;#Cz9&f3j;{u zt}vM9OqNK>a*P#$F;;^}dj)`JeO1UsM|~?XNIoJYk?o!OHwxhnapjBcSSOyxE&;$y zOGAQnZr&2!&1X(Hh4XsF27>h#m+SRF7M_R>leOM{ zrJd`rlV>OhnGPYeFqjDf^9pphr9nLgUF*D~2*9!8dvO>n=Jm-qnN6$kU8aoCgbKzC zUK0(TLf+~K0|tZjU_l)NOQ?dgxiK-UZsk~`!@917$L(_8hlBghgF`V`jJcnP1W&X? zI0n0JPklZ}-@ET85F{7O8^uq(7NEZZNT%EMRfom$lA_KtX=hzB^iMDxf0NSR*rG`K znkFoGFi*lC(x1@7m{y9Pp|+|xBm%>DD{YR1s}%d~WVg{>19G!bz)~3OVjZW68S9!% zbmb^$PXLu7OUu?gpgKzm}%GVCm29|Xst>GwxVcd zygjOD#k-C(-f^OdOn^QIPYf9Q{{+OPdKynC*#=YIc|hD?y5ImzzM6BvvpvA+a&!;G zA}Jytu&OZAg<)nkD{eNm!=dG)y-gId82Js#8;i1T-0tg}T}{XJR=AtYR;Bs6GFv6{ zb(tP6A7`>4WowWuX|N7NdSDn>RZ`VO=S(np(LZ5=Z<=3|x zA?|WLba&pB85UhE+@4{{WU#Oq7bB8UuU=h0K3+z7OVZJ_N$beuF_mLMuO6(UXtBQf z`lDjKPp|eb@0YJ$?{p$0*0RFXV-ybpcTLrAH-IHm1A_`Y+%2vzMs(<`*6rEcGS7lx z9s7eaRU&ageOx+fr(*Q9neS`g-LC{g`%x8dT6e^&;1zEpWc9OZ&* z-2MLh5C8t3f8O0*6-&8X-klgeO#Pl)%droVnvinoOi(oH)h7M+xYrUjR0xa*9n;)! zxhqB_Ei+7`5GyR>5W1af9uG?0NG7@0Dd9+Oc-##N5)>>*mPFSqIId7iRPu5^a+wP= z_zNxH-hj56b;ws!0}grPdI5K!UPBbN7^O%|ilJ~`E$8Tkwr(sJ#(MYl+dqH*#VWyr zX04nd1zk78;4By%L^*sU2}_2>xN2M2VPYq4PDL~u=emMKf(1+DpTo?qE2VIwm44F! zZsa-XFgon}tEKR`I-k{q#AsaT$i2W!)QU1p@}fgjibje{=qQvD501WArhn3*n=I)! z%Zg#UGD};a$F4~?@Lcq$Rnjf1QB!a`71!_Ng~9Vd*)g~&9xPNga-0f}pxn+TfcK?c z1?|lONX&!Dmcvt{FCnF0T{2*>P8b;oB5~eng=rH0V8U!vN8r;#7jUJT!z?oLCZy{P z;N24fqvDV=*p6bgRrd;~#e;=LO!u-iq%cg6wAt?FpGW1asAS2Hz%ZQ?NOq8sJ}$(@ znP5DFV}hC@F=hQJy+-W$i@_iCrVs0Jz&v z=YY|9_5v_~nmQeoVn+Iy{)+oDkEDo2VmhU=G~bHZKSLb=zy1q-8Y zUWnVNpLQE(f%~@3y*_;kb8S>#gfQhuvriCbQs^YsdbN&3vtBcJubf2mO##?kkXy~u zcIylg5Vwc4%E?+T;=V1e#e zUpWMTRG@2=w_Oqa?KaB-V4WjBX>JWhe=BfYYfN^0 zY>23hLQ8@ef|G`ZevuhpPV^XqYHz0^a9qHVUPtVrQU20-^tfc&%>_8~G(ubdRIMNY z7UXn1rHm?;@tAT>VG_`_QoE6~>LyNkd9k4q{PN~tGr|50I#!CO!KdK}fT{H&!J(tI zK#!{SdKwvh?X~q`3md56ycO*W**)m>3w^<0rUq~ec52v(qKp8rel%xjpL|WN?CX?- zP0a(XG#{#tV_gD8p;WhHcG~8s?X7u1(j)dBlKK^(ksD?^ce2WYl~$= zfe2;DR8K$TwDpAI)2MR{$GN#fuVTNi3taaXO#!gr76vSKE4aP5YF}S>guZ&rc3WL- zlf}9u3|_A7UU6dU$=X!iHrPB66}(_Utgw~_D*>>AdEfc8Oh#IqIM@+-Yt?pMa{60! z^ld9rRp(@zCZ&T0R+@a)F+y*OzE<2F_j3xJEJw+DQdLa4d7-b@dJTPB)fWO_QqUr% zpl?$Ad$s(TpjStQ)(b7xN%@(gT>4B$z%`0*P*&8Bf@ixo;PkUv^|>K#^R&}GZ#G1o zp8>#Nuvx^kt;w058m+~Y7_A+;mR(F*SNo}sT9mOOIqasdUtfLs<;&M^E-pO3Bmn;A z-R;+3U5f#K{`OMw(s9nF`+cZaU#VcbYZ)FVtlRN?*~czWM^Rp8eCeDL`nq=2MtA8J zG1}L!Z>&6gw-xm6FQ#|*TRjPVSpNLlI8TJo3Wk?-oeT!nb?I6J3!$&#_HK^yGrlpx zT@zbhwCI0E28-FGOD}OD7^GF^)x+xMQVh7aU9}GT-rStE41l}Bu%0FDsdR!#C|U>| zL0|BR2D-t{{Q0LPY4e%~2U82@t zO3rQwZH?T6D$dXfonX$v)=lq)PCbM<+0_YSgj*tBjmkMQT2OZXe5`Go>~U(SP!R(L zO0}MPJGY6MXjP>vt>xl;olfQRFP?t><$HZT<8hm8fu6rod{HZ&Ff~gUl{5-yT5_iU z>=VG`V@W@RG*a?HFO?SMl$+L;vpT|9^go9#Xn%K%`7Rd?S5$7eJ5U3SWzk|`usaqs zDW4;x6bZh2yVC{ob>{|7=@9J)($nc ze+yrA;bL7K|38K1kO3FE>hhncob9ScN9fQ-x`7L1{= z$Hq#uc?LM2HNuRd8#x?nM@M)*9)F5A9xGyw$01)8q$nHBQ(f zUS4-zK8)_}hXP>ZzH7mJiOFCEC&FNC4fRKjqlffzVKT`pX0u|HYZk-`aRFeT{Y^Hj zda7nsLKy=9zT7l!_Fd6mJReBWasU7j07*naR27Z^IMQ5rEdU&Az_GPz)XVC)aCwc@ z*z5)816?Y*VDi1@xd0eFY5-V>D9{!9mh%5qF8#fde5Ru{Ta}-cik}t>e~-ri!(}ms z6B3v{HfIa8ZZV(1+G)M^LKrN>75XXy{dFp=9~o7m16Dw*V+Ve!cx_FdWwCy%GZ!1`B-;7enj?+1GQa2!J8Ppfd1$a3Nf>&;sCxyZO~& zaM*TNT5x9~H0DC1U#HI*63P5DpT9yV732ne>X!~U0r1qPu|R9U`zTL9O z(i83_-e=M#;{;u0 zg`k(?Zri=o7wmEr6RkwdOGj5F`szgx1-;FN_QdBc({;DqGp!i7PKDCA8%|L44Hzr} zcf^Cyixv!9=~tw`SDX*Z>q*UI-lJm#a?Vcoye&UHNuhLUM7nDwA-`?_HDZ6|>o zrbgAnm;iacL@l$YgN#H zPA7DINY_fg7u)839s8d@q@W|y1%MS1fJ2_y(RVtuW-EoDSGWrg)^U>Np9R1=i2y9V z3+M_v{b;Ve0^LIXZ!z>EQ7SwGaS5F#r56COA}I^1|4YOd5o`tMs~`Kl9K$fQ2tf{j zUIsduUey)5TUpnlE&x&3hll;u)#CPcEdYLFeE0C~>zki`eEQ-0hp*qge0jgNZR}x6 zYInIFis`O41EZ~X))XB^csC<~EA&@LyjTqoYNw6)@zoXa@N{|ma;Hb?0s0j^UJn-f z-rQLkSdVA?R{$)87W%sJ!<5k@Z9Gx468c_UPcE;<3Je&6Wt)#4>A3P*7to8D%+7~2 z{NnH3-OeHa3w`GkeNZKq5?v&%R-snQbULM`@Ts1yRL;u&UodYX7l@`tkPd?x0DBp@ ztj}DZyf`0f68ZB_b7!9lEOA8n;)@3{U;*%Uw<;&OZ0E|p%;{jP70e|gTLAijN(DreCIg1cM@Glu|{ zHW|zTL+rHSFh#cHg-)n^Cxz$C$g$fH7$*YP{EJfVGci}*zTOLzo%iDIu!3QeUr?Y- z*=&|-wS1>n{rt;^pMU-Kt9P%a<96LL&qcZj*$~*dbHr{V+o@;5C*LcA!K-N<_NfANLX&|#O5p{+>Iv}hr#vLI1ax?434R30GLv% z0GLex9Rrq&?iINn8Co0lY7u}ZodhMUg*QuMTu5LZyq$K|lZN+X6@%a905&g zQ8zoNk$Cf3oE{dt6%USJ&xFE09c0qtgJiU8X2E@3Ez1r5T=z8VI*y;|3!|^DH9z}M zKKsrfGgk^?u4JTj%W+}&7=|M~g{_i**19LGjrr`tV7oo2%7NYGxn%LNE*!rooE*vw|Td61;d%QtOR8__+E@0oXFnE+4HQ z175lbl9A?l$&oT|xVx{eH|71I_VT{}_U+=~VRU)f63Q+XMTM|-?P+JBufmJL73+?6 zJ!k8&npfzt5&+wCP6{?(G%hHFzJfy}FHF8lcsZ|v$}2-t91%iCmALO=(*S@?h2yWd zdyKx2UWBdgfM>(f2H_kla{G3*29Xsuej^*UDQdz85 zF#P{){MW*GaG~%_k0Yy|5t}G+B*05J3;SuJJQKlU*Em^=KkAn?!N!-{u|NXcekR& zE*WF)fnf`|8i?$|fQ78WNNT-TH*2PhET!!8LSn#n`_;WGXPlVyO>tDs}{^)yB^T8G<4A%*FZKr7LT;8x+`SiwX97Q)7TEZH5}=?53FVVn>2r33(J)}OXX*%|Xfl_(R9s0A~% zo_WUIuPc5tvmPP?U2V~Hq$;cvePI}ljh$|BE|wYD;{jrzmkdAc$HHKpP>N=Lnnbi> z+^x+9&H1p!z!II(0$`D2NbqLbTnwwjR({aTjXQbq;4mL7U>;USon$p>Ums>ydovN) zZ~Ae*8Ona#eidB~gEWU%n*JhG>B7+@qNDX;lu6f7Z;*8K!~I$h0E6Q$geRwU>qGar z^I+`AX#NVxs&wj_&&NI@vlR-}kQknS$|EP9Is02K^C_}fe92>BI3dzerLbGoCpr9J zR}3ODBNTmwwWNpygTWtBWPW76gN0?jXc-SqXNA%9z#cLFN*oksZ0VSM#~k%1jpkXU z`WzG4X6wA&F;~6Uo=gha#hx^EEZ)ntpWf~%hPdD z06d)*1i;gAem2SrfNdg340v2ppkoC?UFyQ~8Z8~pv8Efc%07eie*qZhBA$~DXF;#H zuh3UVZU>L&gHm|%X^sA8Kv&0!`S=P8wRoLa`;}8w{2#l6e4~9WhC=7ky-M)EyFr4%5eB6rIBno{k+q@gQ5cJMF zll!>;dNO$l0LLj_Bsi!I3wp;>bqOzP{D(2G?Plt@IVw5yffxBN#Z=k|CO| z7k0Q93V_9fg~z%==(Iv!fU8|6b7wX>3S1G}^B$A&{maFzXw9~}Tepq-&g(aqqn9_c z!?uTet}uAyT6en4gu!jEvo2x3EJSt;JbV973Cn>gWYtf7_l?RK39X2QqzlJK%jM|xZHtm zX*adHnM;x$NkVVXt4&5Ny)a}TZC!KGO8V!q2d2ar=UzA$s>N!tfnv9yuU4deS~rm% zB$b`|GkS|wNQ0j-ZNkT*S5>LyM1sHk`bi}C-Pdo&qb}WNCWd7@l05ZhtaB^K}>i|^5CTE1|=~&4u}C8WMYZ6d1`{BQqRf7&{|f3r~+W+Q3Y3q{4>5u4);j zu+hLG2jCs!L(<3*cjME-oB4|$vh?1QfkrHn>`^ik8qG$*J}XZ|$9BRPRE0@LN4<{F zE>JU-@+2(@$2Msy$53Ia!he}0^hqIFtLToV!#QGbRDrgcC0|k$+R&q08Rac`HsG9J zkKNIb=Vg)3>qF<}qJ7xZHmhW{C@ts3#jK#?c3s); ztyHYzLG*W>Y&Mnk+6Z(2VCT3vD~R|CdiBhsL2fe0TQih*BLkvL;wp3^bc_rYq(pBr zHC?EI)+^J!vRKdRiq*6Rax0AHj!UytQPQ4Pd+MPTgJ-Vr9G`qXN~XHn-Ea_@DjW7~ zXPMcBp^_(P4bJP`lSc2f**|M^&+8q5@oBYjQmI;$l9NK|dA|5ep_6hY%qhX1>&@rQ z_DQSt!a|7dVN}@Luc9IZtBkeJxXFyx(7WsT^~LCNZ&|g?y3NR-@XRi}o8{+U-hKP+ zt8cz}`s%BD5nn8R5zwGmGGB`R_U5bhde?XAxnT21@|n^vC)RuTOjM2^LJ z1>QPGFPaoI0DN&ZM=zQdYqplwHkpnZV}Qs2Qmp>c!x{J2v_r#&(c&16DoAi#y91J| z;7-JVg}D1oXT4}lN9E13DLfVcYw;BT)3$~S5Z74O3Gr&t#qS8FrB66$S(pG>Q2@a0 z7!iuXq6KZ)-AZoQtqFkt@%#J#{O`Zkn+0>gCGpWzDO&4@AX6){7HHI?7|GC%o(?S6 zNzMXA*3RR|%EFYY^p%`61Opibs}H_3!@f?;Em)XWujgAPC)Aivy9j+4UF#)bKjH6j zF=?3+*04g44>?|%eS{@YTlhg=Qvd)E07*naR5UmA$#mO67(^#}o(YDjsTZ|dSbtQ9kPH&6-B8**YCAmp{J$`iCFByuICNd(rd{!L2Fsym9jvN|QP!{MpIJ!FnNa zr+$WH2j6^NHacYpaH5;R+_s*?Tu*AJsBMrk1%Nlp7O|Mu3G==8CTfCDfZDTlUHP;E zAD#XvO~R=(iVGtTq1p{|{aX#(=`yI4=w#Fpk*zxVHWbE&d(}~^q@!i0ht>I@qT{qz z?$yr}PKArhVPidRt*0F`S@JxAp7yYDSIzxM7<_wWJXK%#<36dFE(S7n*UP)5Rse+4 zqgU9qD@8L396gee(~50bU@%#MV~;`tsE&!~*}O^hO4nwrF*70sVDowmwvn#%?Jr=Q zeu2&9THp4n8wOYWJ5LLAG&E$xs=Xay%4=Tc;Bp{otjn1$OIoI5vG%x`Il^$9BZ_j< z5anYxBt4Iw5DbpOThYrQwtYo-)&o9){t5|1aFL<}eF0s?V36(iGm1e!ug8eOLVpbc zQ~IkTq8WG#j%FpHua$c@0?z6p1!iHno=xa0m=s>FmlXl6*;8 zTjzs*A@qt*3!PE6+B>QBPwRs-9h<#Oe^MGvD~kT0-0tM-&0MXKt<=tw>RGw^qEbKA zV$rCZV3x^d34J@K-R@btZ7Jw_?KvY!0f7C2grKDUtkx9$`f>N&yZg6qOk3m5g<*A> z*_6@K#r5^_?tc5`^P8`~eo(x5bA5lm6T$T+=LK!g)}Oq#(y!3>;(96we0jeF9l>1z zs?bzn!$_MkrCdgPMS^ecwg9j|R}UarEie{ccKPVFLKv)ILV$sR+uJqRuNwhlZ5I?G zz5-y{IEA}Zd|5=;Yr}v6;FU`U0KhKvqc=Xez8H!D3wjsRs(7&Q_;TN$Pbyj>6##Iw zGaI_Ynn_#u)Qxx3lmWuf-RcWE`i^EgRLwv}0pMmeKkC)L{r2rY{_!Iz=%iBo2!N5B z7y1s($G2z`IEIS}dwj-uk(-9kk^cmA^#JRU9-0x2^=jF91KFMVw6mP|%t~_75!@=q z!)B+WErq_%?d80WE+FhyTSlXa)3(r;=~7bA47$MlfFD#lY)pAz=C1%SZPoe_M_6Xw z$QdBhp<}a}OGOo|7aC=07S?XR_Qh9^BEesO^IEU1;iTD-JNJPB`zJsX+_+a1`nIYk z4!vgRiA*%J0~lklfnXdc0j6U5|6O zOk@SaV4n%rT~UsMe%D~k=K#!%te|nX?&(8=0UHT!CF5=l!7Nc>VeoR;n(CIWwMo+j z9Wi*=%J=G-ej_`>RG9hTeq!(1s|Ne^P%wP49cv#cWEH{1UxAt~(96FSW~>|S(s1YO zb*j;ElX@k^K59s9%t!|#lT@_w*vgaC8g%*CaT)S$h^r65FGlC+)@1G({(dTB*~P}d z^Tu`m7)^3=Flh8mcBbY+;`vnJHE3oX12FcTm9$3VGVI~vvZqRUFc)nOU0PDEb>sY4aBP2Eeu2~JzN`{_)&IdCCC%!;tzn9a!FyIKi(b-;M zG}pV7CyRoDZfA2IT-ObKCqdg%Po)?QGUH)(HYo^zg|CO5)n9k3z(lvpM0k9;YnZX_ zvSRlhTDP}@o2%YtRZUeS-A@pR^`vnGU_AnDi6=K7KS#dn8Oy*TYiMzU}`bo2stG6=M#+gEkg+l1twyJ?SItzfC&F8i1vueeX z()x!&%UJ1`|gS#o1mBP!-*d2v z0S`vGMj`YiHAJ08FT@$f0Q+p#aQ}I@j)7V0`OYwN&c1FAN5N z#ei4y`gSGiBW5E)Qxffi0Z)8`%ud<*EJoJYi4Y(F922&-(P?Jum6KG*iuPTjeY7|U zV6=#Q_uc0L;D7zkpDXP;T?^XHfX^ZT3p)W|fJ(S%GVVSZ$($}`13>}NHTSVxg?Ew# zWhx0E6o**OJKOchF}S;!^&D~AeG%eeBZ}miFt3lwAie>_#v{0khBu` z5)U*Y1s820koRZV(P!v+B+v*+#lI-nC;0R*w~MpJ8CC$2D>vGl2#>vZTqW&{q81}e z5sA^nK-R;G#Qyy`jwohnBet`SCk9HRp@-yPXxmXFj#l# zmd&`aofrmB-KJvPD{mJa8xeM?FTB4VA2uer>MhW*rI{BQ87fI5E*wO%5UxSD6)Frv z1%olMP*~4|KQo>dbWt$x#3b?YABw$N+7Mj305yAJyBM#6AELgiE7yw#hP{8vH*-O< zqahv~orTKom{dN}$-=pW!9OY;UhFtUIZKz4zUnAQJ7kK;no-1f{K5D4*oZLpHXqv& zMxBk1v@L1B`k+90H2ZWsAFMC{h6F2`t@B>LVCXw20G394)1!cy>MsCniRfub=c2z3 zz$T_Ko)@RfvUv_FmSPE2D!#&U^3PUI9$NlcIBE=d+YrRk{lwtV#kMZ=71o+l?@Bzl zb$4Uvt4ErC5o16f^inU+5x^8FFs-Tw!H*HFKgKVpJX5Pu&lbC`Q z0E-j%M@5T4Suq^f$J1tSSQZA?n&-}dgK7r=+-#lIo6jq?Pm{`L^~T9ySX!>EL&Rnf zohx)|xpvhYZIi-tUGP7B_eS*h@#R{ZVg+M@=%8L+TkH;#!{rQTUty~752bQ^5rQ?Z z`}+!jZ*FH#ulBFsT!<)JX4oaJc%JoksHZ{>8egNwS66SpczJcRHWA9*1OV2r2$dE4 zi|KYh7WzIs9ROgVENYi}4UD>@y`}H5?xIGeH>-f};$=klrWv#NIzlFG?_2Wdwua0e z0DOBj-fud~nbuQroy0>_raw!?UQ1qtMj@XY#+uvo z7tIH^pdJ19-+%GPA3y!`zyDk;=Lm671I8-}(Fu~e__FnSwnp^36*r2ptY+%;+*C|P ztyGaCNN^yM095N`^Ww$Y#Vzdh`-@UZqX5Et<(P;u@<~x$^}R^ zW{JRy8#C}qT6N)KYc^_62F+A-qB!a#!BNVSF)i~kj4n@spor6iN^p|z_nO~+^Tp5a zzx(dp=d*DS`4JNGj3k9RG}_2!g;Wy{_7rr^Fxa)DKQvCaO^(Xcxy?q*3ig6eAQSoS z4_NLwcD=j9cAx-pb^UIZ;>2A{g)#jEzvCEj6!d@`1Hd1ef!(T|rmdKgH7;oXj%Kv1 z@KSe?PH*!McJpJfwo^Sb%IjL2sDSBS%e2?eC++;AUtW)@TfK4-eV63KqH(|KDfC82 zL<@sS`GTWyW*6QccLp(meB*tNFI`jmm1EQV4x{XkTAy)u^u)rP(AG`kXynRl~Tio{i)) z=-X?Z8VR=IYiOIYEVLJBNklK40W&Y8h)@mgaza6O=0cJlR>uW>Cw;q-T5ka0amfiZ zwPZ_)Lxm&yZpCKYew-zdTGgtNzW^ z;{I-PEne$Q_U0UNyHZ#a@@7Dt1NsX9lS4*Y^7iFUka=}GzrI^Auq5_uE?_>zdw0L( zc?84OQMDhN7vb&Z{_#S;MavbytPmbQJY9+w>tOG_|YE(E|j z7XXuCp3Up4wUv}?EXt>oV+R&)NO7)_y*Arz^!Wt9H`+s7jWuTT`7WU7Np3&tHAdqplVPf!k}PHLCIYZvre4=|)c)azFFyic41GfrR+2$Q z*_;@>P>R&877Oe7bj#k*zUvfR$j4NMWvaUc1=UA7fCSrGVuZw6y!1~;dlC^!Kex7& z`LyLzn1=Dgt~h-a)h+yXqJ%QY6sy0X|7g_E$AWSKTD}5N5ftqV#NdT|_CeM2HaK)t z3Zc8(NU*=_!>BHdxtN}*iJ-dyj0`T6^wzBdwVW#D>H6C>FGwVk>!G7iDm5%yD8 z0|59#a-x-^e_Q_`kzIXyh+112JGF#@8IzsXUEWUI1%P+!j=n7yhk@yp+J3qjXNV&V za|^0lHVCw6MS0}d{R99{+~zX63hMK>37k%aIyWDYwQx6!CXzL%D1@oeeo^PVWpkux zW);HVd9Nf4R-liq2M;^N&Ae?Gyy;)=N4Wp$`!B#dR?MI~j2`JI`wUCocs@z{*Ozxo zBH9$jS~4YJ;Fe!xcMBvdNJrDjMOvP}bv!u@3^QqMm*n+C>yk@JFAlqD3d1cA17iWO zLIB+BnX^#D;5f*KV-j=l4#OutahHh$1*EL8H5?4;LrZSkG0jD{$KznC7zdV)Y3@hT zT2UA)(%d-X^bwXvHY|D*02ulU_w9AFo%VUVbw*3A=__?khr?XpudcKl#T^}hMR^mt zlo?DC^wOUUF&z){(^1*N>!#MIJShZ8NRQO}ue@C*V!f+HLTy!di2;lI>cR7A-oxyS za5OUdyQ=FC1^PS4fxi9rnSs6)f&c&z07*naRP|wbqS!Lbeq00`Ed#*hpACJT&K?uo z1$k*FzJ|EtqP^_?QP}GIAq&l~uhLpF(jR*L3TwA^^aX$yCN28`fX7qU(VP{=^Wt!t z7Yw5pX1HsSYjv|Nt)bllC5m8PU3sPu{bhv7w4)oRBrvpv>JN$=mkU@en_7QOf(L0_ zCjki4)3V6bb#t|PdArs3dutk1HU@Y9xVI)`*GEP5lqxLEfkCO<0a!RH40a)^l|b>$ zn`i*u$ z4aK=hV(Ug1l%D8?jVHCC*4$}zx9>;v6%sQIjJ+D86bx6;c!f3)iFYz)T2e)HqM4(Q ziki4C-LsMGnx3|&5M5U?8x^6^$%?sF^txlet^t7S25{w9tGVg4`_qr#{Q1W(fBgB| zY(6fQGKJ!KQqBo-XbHw!7c&F2py|C51_Qw6l;Gvq@JIVKmmMfs4YgHLG@Heyd)f<7 zu}!75N^3o%mauu&{nV~CxGf1aA!G`2(G*bO+|WCaIPzdH%n;7ixGaC(x00}T7!^nl zL{K5z(s;8HuArf}E zSTYz17W(=$Gh$>$nq3#&1_6AAib^fm8ApfXOp!4&S5)S^5#&4Ob#GT3poc|7pWvu% z2?@3jXZaTlh6l$)Gyp6#qW)^N)k)j_1-`e_D`&FHG(IsBo;38<1gqxZ-OLGG!Qfdx z8MO;wFg$o6!q5wiX?j!IPwdu4f?<}_T$xRxZVd)AD5V>L(wJdJ)+R_urU|4A?_Nf7 zgp7S`q0$L1hu|&@nDgjt7)_autHOr&+pfq1wxMFct|Prv0K=##1H;pCdol_<*fH36 zaHCPER5FFai$cyu>JdE+-O=f!dz8)MUPk`(yS-j@;KL4SQ&q$B()D9=-{bhd_1$BU z%b1;xlflPoToH*w4Y=Jp?{#ycxmF2w(4~=wvEXh$Gjv-as=`06g zcw9jc{na;EUu9Hy0AL&)Oqb3DXlPkNA4*^AEB86DCaK*-j8otz4vH%^xQi;A(AV_J zUEJ#8YALXMe03!Z79QW-ZC<~=5mM^j<$9=JzqvE?JzPz0?^pZF@p9d_WU?ziGapPB zv;qJYkPCoyub}$sW+@2Y>_$S_$Hz;dFLs1M!_v)>ycf(~kFJeww=CSnXn_K-a2LO$ zC@DZk^xh?SA_)kIch8vFOo%DkSE5W3!$t5v(3fOB+E|s!nW9$9G>a$f4ra02EyG!{;XIyFBLOXs&HQbfQ7_9>1(-b ztA=DqR&u7zn>n>h~On&|V%r?XX-co)7V z#f&gm(92wMy;c$l{`vh6!r)gAH$vrFIn$`*a7TtIM*AZ$SSSSsQwDBp@hzVPp{`WY z)u!S7oJlGmlOZLm_}G@tq>kWr0$|UMn7GPtP@GOGLf_@05eXcfz=l96A*L^yEVpIp z(MEQ6`m~B!i|uKQCn0mO)xy2#(mfW^MY}bJ1Wh<4HnaFnBpg z6gm+GkJ`a9Ss#n2u%6$1MSWKa24m$5{Y6v~Jq;4nY%jQWn7si?BeF6R42tvMID^Es z7F~zqZ$W~Yhi2&Lmb6gNoim*TH6ozV{fLN|UN#{PEwW<6{UQK7Px&s8jFgo^573JT zagD(bw9zh1(_bMGjp!9q#Ws2Dw+H_1`RCAzH81N8hI)C>0!w_Xxj38Ur&F<_T(ETP zoHyEM`s5W2%P^mJJK0X#<`i8_Cy#5PU>N6MJ%;FXbF+C}k&2}2SI%h&(u!%mr*4RQ z|Fpii9?w^8ean~go;KaIDAO>t-H*jqX*L%6LVr!C?JzP4i~ZP}lb8387jHhld--q> zRTW+eLFsB%2s`zd)wTx!Zx2K9THRu0UJhn&b85XOaSg!#1 z_I8UagUuGZIg)M{05kH0>89yQrcOs3(GviDnLz@Z1-JBjvow%uvxUz^7ICvNyWC-g zPn)?z)G)LZ8lbumN4b2GB&QL8ttZ*72v8g&L&(glO&^uRfJE4US96QS;Fq7j7X$wN zAHPgzBXQqc_9OzZNoo{M^cSO(u1P5SMjn?K02sl=z?PbMG_b4%w3b)suheWZI1Bkk z-5x;<$G!DaOH z1&I{kFpm{BXWQ` zoKWnvkzfB<(B)v9hF)j_wyh&jWWTuVDXb*iOXwbmdfKC&k>E+ss@?i_308U6dYj8p z%``gtAs0Pvz0u|P$5$F9V3G;Z|8UTAXA3?6tV?3)4C&_S9U2eK`Uuws2 z&_cAEUhHRdFi-1S7?D}9}c`4>sarso-skJC!W zR5)^FcNeb2o-8dd%s#|vrPz&iZ1WH!&KG@D7(UKLA0zQ6THl4f;#&%>__gKxPMAq{LK5Qpz-N&0N5lN-%I3q?Vn@!1O=s&(S6g zpB9AcT)(RqFrBxB#IYAzN30BW#OXm`tgW%W++=lxzFHlYmcQyV=Fc9VGBEO!K{#{O zLA`RHCeVU7pC=*tlyKRjhI;JdD~f4iQbz#XXyiIV=yWpJ9PeFg2_rw)q$ALIs>y5s zDQGkX{PQ<|{PB|jcrqOdcLl(K1Q)b(e^JiA5XJz&RFN5Tq)&%IGV0LuU29p1V;IcQ zCP}7J2@4I1xT2({u;GbK;E=%{%p_9dhYV>?0GQ0JX+hKQm5N4T9*lR84c_=-3KYS` zc_k3Is%O-R<5>|JsdOR$&SgH+yVhEnIs1F|{8Ouxo0dqiQMYca+ndW@e*W>tAHIF{ zbT2ByFbS1lqv@_h7VH_^r$M9;47NF7H~8!8jaRdz!4b(~h8PBn#S^Vq0^oKhKM=mA zGK%`2x?ylr030Q*2)%1Cm=Y%6DBN&^IW9fwE?p9GyzW?a48UNpxfY6sIxR+g%}u4U z^r_*-NMAJRXcFvLBkPuh%XG~8$+%S*)U*ADMX#ReI!+6)^=#T>&Bx}d$qx15e*Nb4 z;ma?sU*0X@yOd)hqqXF)12Cc)Ts3hc8~doEwFBcxu^x#nCILbxlug!{(gi_W3K;=cMWWzYYfIr|%0 z98sVqDo95WX}Y)UtCe2Yo{?_Cg9*SGPJApg86~kIzJ638j{zEN<52i$neDqI0ot31$ozVa)CkMBCJ{Ibc-A zp!e9OcN}8HdV8IdZu^D!G0?kO5fx&ysqJ>==&)E-tdGfy){4=vNLf0jh^=1h?a;A% znGlPebn}V`!11oYaeD>bHR%@2|H~8Cps)R+V=xj|3K(-tSugCbl%qFGm;?5~Br4ni zfHzIEh45B2-J&0LR4kWO{ERKzKP>ipxvs#NGJM-chpmHpR5sRIKhck~X%&H<>7=5& zMnhW;umK0B6^1icsxA2}4IB zz7c@+oXfRnbXQMnh2(qPzR^*Liw6T#*c^r3w1g%s#5Y(S09w`yMB{WBYaPLr0gxss z4PObm0lxlX&#v?6V^go5yZAP{<8zmW&m#w2t)2^vL0?^vS{JmHF}gFVGVX%odgzXJ z!Mq?EP|dB^y8QO_>H>0P)tPk3J^$wT>t6t3D-!OP=MbZn;rUvV&G-+HVSm(a913EA+|$?2@M6Hi;McGAX+z?N@ga5+;a}{d1b8KJiIF-YM;%M%RCDOVLYjj- zlP8}=f4lQpbuup7EbFYwFUE%Om^qlQ+QejTTtXi#ZiZ3y;sYN=)-AYQsDCia6vH|e2Y`Pgj-^-=|SPWRW zBKm71zXI%$wJxW<)5d+731%vZ)HLE1R7v&tPV4!gcLJr30IWX;^eWblzLQzeJcj+R z1chpvydc4jktkI~!b%sFNbR_j!!B@^wpK-OHDvANqXRZv8Muv)2`KLP9a^a=Gn3PH zNQM(LXY4)FCCA|UZq?YW+X_Gz00x7pplh3Anw?W^nTs^UiTn0#KD#W$70R}nX9%&9 z|KU=Z&$L^&O{I_{h@X+G@wI?ms(9^wKUr;i53kJaz?3wwz}yQF2eU;-T-N%q?ss>0 zHqojWh(tufddpfGZ87RjS(sRc`fh+h6IMgWd#eD)_Q zS@O>nw>@Ar@djyowW2}rPFrzAMoqf!T>A+)J+=+nVbtr{2*9SLoB}YtX?l-wX+~kY z=^1-hFRJ@Tl!58Slho$noN}*an4M?SZA6=l?h+M_0E}K{vtFoH3U{{`KfnJ$B>3U} zx?U>zl$0sj9{q+1L?nX@gXXGNz-U!a*U@ThsM#5@wJ}#j{x-RNT8XtJ-)a5r8MX zs@^pgjboRq#LGb^dYjGUyk0tm_v=%lk3mNOSg58;;Pz%N41V>r6AX(G(_Iy@^Vq^c zZ;j3gsys2z{6V$KKbENSfu@JJH7Z)ElcTmK6(o%p^SXOX1!oBU#Lmmi#LE9Vj>21C z(1d5`W@yXXF?X^u!v)4`b@Yp7k5pHI09YX^jFAHv{82iZTy*T9 zwk(VG(A`P|U62*%jh$H$m5%`!NRFCW^kf|y3^OSFNk{atpJ(dSdwRAh`j1q}dC zQXCyQ{RMrG!PRds#BiyR8UibpdOo(-li|Kdp@ZO|1)|wKvx-4-b1p zGmOFtUp;&C@^%fEy?@-letXTJ5%pT#etB*B&t^k(vx572xAQ{aXL46tYpv1)guWhw z`O@4Mo?c&CAC~K00j1*5?#(ddSFZ0C`^&M=cQk3}MrMC?q6j_>E}Ql6bSbzM*6O!J zfAx|?eDyj7z@FcpF?<{WSl?#hw3Vww^@@K}RY zHMiYPfBof$-+uj306ZM^%B3tdU`s*gGm2{IM94&cua;NxjS+yyJ#*p%z`!s(Vd82+ z2^I%8q@H2G)^9awnIi)EH{0eHuy~@REik6J%(nklz_uK+y%Ipzv#HGLgpM0;JJ*Wb zbLV-hAdalv8sSVtF=5!+%EXCG(&@Z@>;+M%Zdgy&nJ_qe{wcy(-aAtWGr`||`Tpnc zzWwHl)pFuAI*Zeksm(OAhBVczJ{HukT%58W2l^tGsO0_A;D7M%x1mud1+30VdhF3rD6rN+IJ&J7wa-7Or>d0$``|54Fey9G;Hju4|=&P?R z*F1^}0#_4k^QBPt>S6ktioY^AdwaV!O{?prKXQ6^vq4??%dhVRb@~z*upK6Xx;LNS z*z}Q0UOYY?Aj*hx2%&|$x>rC*CRw3xk8XeYaCmxsts{-i%oO3x;5}9jz_&(fN0Sz` znBFUpn1(E&FVCYtA>1XWt#iG?&`s?-gV3kF8C&)DYR=c!hK3K*D3v9|6}}2(MRsu> zq;|!g9rPttNUDt;H{F{8-K)dc`qVbY4DL+Qa=2Wzbg>DF>h(geS6j_G8|^KoZJYFU z@L(yQjuPw8aZ6g7lIS!}Ia#^aD79)r%5v3hePO^qz5n)?Uw;q)4~AXgZma<(#hgO0 zXY)TjD`y(z)%xNXtfSF8mst=x>aQ>+_wAP=!TNQkrG>$sjZgO| z-f+Z-&Y+zeSqZ7SU36BHws^2UN$qArs=1x#O*tVh2ytWk2mp-6XY>qq<&6f$4CGqL zox~|4;D^CB1S!E_=(SErT+?qHd!ZEo@N(Xpde#*5jeHIOCUsBppx;aetqM|EhPA0} zuuUSh3xF{&9EPDAwl86FOy6F8hYy>Pj_epv$a;F*#;Kv$FvTD*mkA@hv1fuCnX2Gn z2ySpooD$YiPb&<*f4R81o?z@K3>Fn$Eyeq5w(nUsh0Q`}!LUGgxoAYw3ossFMqmf? z0}7~uRefSM5Im?mNezR%pf9-l|LZyr-ZrvqTlY_R)7@~81d$TK2!Q(5={pbDD3mBtVyd&w+F`9_PJ)^5@?j*q2DQlpg8^XB zH+XRd9_(Ru>`XC;b_2lFhQW9@EFYs%pr`j=G5D`Uw3paSLVrDE75xd*1tFp(pS|%1 zQ^Ib%*B=&zYC=15zh`GXOaFSscfG1E7iAif&rag2i{$d6dvP9#{t7r}F8eG1PIVkr z^q0l64Ti^MMIw&t1FvGh*hn~iE*L2toWHV8&!)5pMQLDA3aYeHHrEtA{I8H2`2Cs~~nd?^^-*WGsNEW!m%GmYo(b zi#H2>JwZK1_E|^$1^peMT7Mbt3*i>(>j+tguhY-PkDTicU@%MdYD~)?Ip|yQ(x<~a(Sy~6i%Fb)%2?M8VTlr zX@sUv?R1kc06Lzu1ij(`6PH)C?%$ayeuy-P@?u8_`ZD-LN4K^kX}^We7Y%DTNl@=p z(2&LYh|7~=G97;V{_)G#kH5cvt1mMEtamlbuevJ(0IaK6SF5f^ooEwtH17ex;=z_b z7&QfoG-2@xTEX53v8k^RItP`-cZI(G#V|q2<8|!*ND0ot*be}}L61Ujg3)4cTMN=9 z3aZY*aEWmp>ph;uMoHHr060l(o)tbvUDLgNGCf7JjcS#}gSD$O40adcrBh*{Z`v)5 zx>eyZ4u+6^n!_{I%vExIzIeDl(^3CD=w1Q603IDx+rk>q-$43tUjV8Z>I*8Bv|N$L zrtgG5etR<)07G*(M*`O_WY?#;Iy!gHN8`uBV9^YU$~o1Jbq6kOUA(r*cHYUzmNqW7 zcY*IN6UA)S-v(d>3ev)9FB>0E?8W7h-E)S;DL*0T)k^oFk$r`Yoi2`_w9DOPM8tVmm<3kI_T>?k5 zZS);>54e%*Ilrnc9Zi?Nz*zT8gA>c3m<|v066~n|;x2@?2^iN$!!kozdT!IyT$?=f zJWJEDg}tSVioZZ@EVR8iT(6=RxAV9(x-Al^M*KR#T(etB_s zdvblbG)n-VFJzYg@@j6Xt+yK?D4opuTA2RXYP4D;_b*OAe|&g&bN=?7u=5NO{OaLC zm}k?s-u5gc698kq0EK=1=8|q?-5&>}*&=pYd~x&Q1Yr#l%X6*l>r{wKBQ$u46eX!? z?2nLu){S&v(Haf9>mhnRdTx4@o)Q$C*(5V&aJbdcTe?Qv$GX70aZC)D5^w0eq9jah zI5>zceHTyl7vpq$-`MOQ4Yf{b?J&8YoB741sgd}eSNqu*2CSo*6SzDUsYR{tf?loo zORE~TY+6)s=;R}A9Wp~g*D-6TF8=e=g#h@^e}4bx|NIaD(*>QQZ>8C&(y_Tc4#d$L zn6q)3em;VXK^xk(T5E*Cv^{G}Aff+IAqpHmv2dE9s~)8aJ~QXA&JBr6_IbpX%w6e9qLEJuS~v)p*#MBvB?0 znKNLQhAwp)#`6TgmC}yht6crcqTQ+8zr6nT{qv{K@83M!btB6t#9mw%nWm9j0PMp# zW%kp4J-3>xTlT_CTbdNlqYQidS^IZnD)jzi{Icq~*F`U--C6OIvxiACbu6j7`fJg*Mszadh7+brQI?I;0%%jA=bIo zcf3cMqA#=?uQoXDiT8_98>ZhXNO@R2c#|^c$yzE5{)zlBHDG~d-=NnTp0)Z53D!ro zqfLEt+|bEtSrO|M@&SHEJ*TFaaeNes1fOg=LSJgV<9W?!?x>QCt4Uf(T;IcR-J7{Y ztQCXgVC1qM3aYl#QEkvGcH6sxVg7PZoizOoM_&je;iBkIT8Q~&YpZ?~>PIj1tMudD!=VlXhQ6K17+{#eh!=&yDR zV!AXr>#czAA~s^ZW6p`gJW{6bvo*DuIlUYW#ahUlonMTPPprBrfHCWpQFlET10Dgu zBEdHG>$5IL^T-x5!j9!=vfEeY4_2y29Mto_B zva)o`M4{WR#K|m{!ep_dOq4@!%VIwI{N;m4@TZTzua+|m<`DYG9Q|m*$^qE-%~frW zHj7xFRMsl&63Rl*;8ciejowd7)Vq_QK14{cU(pr4YP^9_bO&o0oQ3C+g(5?nL51Tk z1z?aPjKFSVaMpRWF>wi9#TevieUGi*-n7hm{kkGBHlGnM)JnS*YnU&fk3AVQt+p+4 z7FBw!f+=rwtB~V${(9MJ=ySpL`ynX2o{eYozZhq5Ndk0fg9=_rV6f%e^yD2@ne;^- zizN1TUi$xVXk)$j9XamybaHh$5$-xCHUJK=opndrd6tf5yBsvdmh)Jz#rm_3($ixb z6h1qdop`NkrQM8h*ZoDrk5}%Vf~T38eOd9?Fqn)BEms^tVlen`+R~9KbT1>~qk-w!tuXYt2 z0bsq!dIv5phWGb#EE9CiC=&J*ctZU~eYUo9Ua^ z*DvqR-aX!a`~K$TtCP(6(#;Y;U&I{+z_ee1zMv@p%$99DjRd-PFVBHqlF!1_Ei^UU z1%UPU6?9G0AU&DI={OoBEyZ}+(*qI4;+cqQ1HkBE31#&iMICw@fT8B}ZDH6T(oez} z0A_fR&TUfA&|*?pAyw!AtaVUSCO%q5qBxVZ#)kc9(_buY>*}uE9mQ%k*ep{4urLY# z9}EE2vknaeV!-GnZ38f)KFmBc#DJTJt#RwuF}7z6NPC- z&3jBG(UxVLc-7bQ?{yD=UTqYj_5pmIbo3SmSMq?rhQa<7VxE<5qo4oXNm|s^08V9HZBk8RJbL&xmrd!>C6m+GfyX66kT7POp;+R zt_iukC5h;)OqRPLQ5&X;jNlhJYU;Ze=ObaTQ(?W6x-bU_jnSNC%G>@}fLw1HevZ`9 zZSsCOU`|Pk;oa><;d&j@&1NDP7Wy99ap1xox%Ow$3}f*$E6{aSDLoJBl|ivG1U#5< zDtr){v!J=#E`+o?2g%88P0GKyGW;|an$D}!rDNx$q%dq-Rt3F6g7NG?A)F9exTk`Z zU7fdO9Z$mD%_cH)q=i1e%wlgiJxpdLTCM{6_T%DkSQG+f#tE(w4HA=Z9*?SKBj4L| z9m)oxS0P}Bi)Goufoi>URJM`gDlJa)NrMFMY*azwgAv})fhELEqJrYT0x;3<6yo;2 zj)GntISKF_ZYL3~BX_nt^u$Ywz0Q8Oy@y$Xy_~oxS}#tFvjs6o_L5N{ofSv(gXy9) zTb8w}&{5~aWNu0I)v9rJ*1x_Uy|`W6-ppyLBJS@`6~dVDMAuAwd$Sa&6|(;R`yEZf z`mnK2pgZ8z{kdyCPk(!R^X2Pnp%MEvdaQ)I2tmV`gC~-3j*5kKN59yJ{>~P$VEE?6 ziO?4}1!1RP74*f35X`22tUFT!7Uk8Q1-Hql6ZNX`pds{S7>R#GdinL6%ZEoxj|*{K zJZtPC(i`yD44Q7%%qA&xANsWQ&X{qNFAW5fNH~6ze9rRHc~*@P3uhr(Wg?-k!sbjy zbw~i}xS9Noo7ijR5)_FJ;zDTBSEGh|O-9~BP&sl9%K*T-K0OCp280Bt^?FelEC9Z_ zJ^%d2=O6$6@#jCkCTR}<)~{T_%4UVN%WfMU*kf_X306y1QuV~LuOm&mc(h~-LdZh1 zxR6FB3%6N|m0H0}01S{o=CrEXWNO-(dH=1QIDyvoLQo3&0>DT;!=h*`%BHPc2?U#T zX!p?~QRts?%N78)lDLW4QJO{w2inx8cPsoUi4BO5Foo9xToRGy?t=IFh0bS@tvb`O4jR064HiLdPv9aJ>13Bb--Tt;8 zgiUOo&_z$-!Ga3CA(eyY)kERL&OzbH?#{3KdruFFJLS?oVkt~KTX$Y_f7mX8!Bd}5 zT1|TEX*^FmRNRF|$8IKO`}kKU3N0W$!Q655jo6j0mewQ%42LH+(U*KP*qo+1>J^>l zj=xaheCl@+&==vk$2aG=5wq(BgXyxyxk0fx(!1Jo4DQ2v1;&>bWAfX< z*1IPRzP?<(ygPaG`r^gS(bdIDFf8=-$Tl~0yA7L9UVoMk=Dn=(2;M}n+*7d2I=hx?u5ax;U|*G{jQ7(? zA?Io(tc^tAG8Q|o33LU$HiNrpPqzR#otH5f$h?(21)V(#;{>1IMOm7eVBJTEl??U~ zh|aUhbx8K0jU@hoN z0JNNQ(rfK0K;Ox*D%j4Tx|gA^pckV+q8Arqx3#cIYfrq#gT4N6KTdasll^4AtC%bg zW@}-v_Bw^>;$Si_vgy(1A`I5W;F%fgLL{pUuf22Q-iyoGiGRi4Je&zuKYYA<`}Rg? zBsA4$%&@G^wblLo-7VkI_rJXmhh`AXhJd|~3By7CL0yv<7pv>*4fR(DD8y7h3QdK< z0#qN^wPt2IpGhg>so>bW#Qum@EIr)yDQEOZi~b6F8AGD_%O8i}iqtAVR{eMSu%Ns` zT!=VUOS&^p-oW_g$flWn_7~AwD#5lo_%twal+QJ?R+7kKp;^t_ZUfx+Mw@|<#__BM z%T(y1#TiM*AeB5z>&MI9#qp3vzm1Kov?poSJnV{$ndO-)DwJ^iZFgz{;J|W_7nw*|Er~aYd@;;(6Up#ZIE?t5;Wl{P|5J`1PyX zs8erL1l#UuC^}d_7<3GDL%@KwPZChfA432D5CBO;K~(NqoBF7+oU{bM3>5Xcg+~2p zrM6eC?<;gtuRV)RRHQaD_1UJ&gJ;f2ZnO|9XbU3w%p5QVCxPK1!C|w-q;Q=ql6@fq z0RSTi1v%!^0aS2D(9Ul-Y-n+h<0|h}fZpfNet!DwAG>=`3dQH8@_uHP<(6D-ifsDN zX4udvkGfUr!NTCB=Qa$3lcq3Om%p~HH@7PR@Wbm<;aolo1QVrO3LwmS?rcjsZj7d_ z=^{EhNtpBt7KEgo;k&_lfod_sPFkk!?~c%|G?DGxB1!jgnmcgpH{4|siH%N>kM+9p zkO?Jk)H2E*+@(SmUF81p;ZjJ9;T!aq2n;wtFO$UV@bot33exuVqYM-jWSL^8kJ9V$ zmX5C1_ktuX%2`3QQs+$i27Ssfj1)w&41m+|p%LGi;U&;3iYfFJ=nm6;BWmN2EY0Ze zaJb*^?+ylgX=<5Lq3>+kn0REaJ`TW>Mb-Z7s2Uh>CT8gkN3>ssM6{SOl27TdfIxIs z`khrX70FrM9G2Ei+zS?_-Dn-r8A!W<;50QyLY-vBL~|2x)`CddIiN4l>($?~C#8)6 z{|#;f;&z+6M7#E^)7%lnS{c}TvUDHtSkN0s1wxm!BJLGUhk0nal1QDzgF>&r-|IiO zNS>y%{o!mU9zRW{d!u<_G}T6DPcajSuJ~3cx*7aTI zZ||-?e0cfs<158)zrDb|SNGTP&Ev(V&oAFTUf6Z6ZSUn06sL@uRe9Y|LEB;Lnsyco z=0ShKyu1b4WU$UJR}^%q{t91p)T7KC>Gn8`Bq25_=nZ*hpc(^U&{y|o;t0qGW$Cx# zxpBJ{dNa}KW8fKR=RVqquojrzf;$1D|I8Q?K1f+Fv@eLjFgtp!G6LZBqH}#QzP^~a z+v`vqi1|ObCUldsXl^iI(o~{WXGh7^X^K+m#*`ddqhZ-S7)t+N2HYv%yg2>(qiPgYY!JC!FcR#2;~4|4?$=5?==ZYN(GG3Ol%0x^;Q8>&_Ya@Hz5o2_{bD{5 zDYV?ImyI#8AQ4SNmU!@D+!g=}cNrAaCuJ5Xf|g~J3{BOw)+p4Q#YXF(**Q`SXjPAp9Z05?~`#gFPvi<|_sRqx28PT?SWiTrY z!iT`Hj(QVH2hVnQf8N>o$MfBP?CkwqICxsF?vbcBy_B?Vb8AUMuX=zEWpp_1)#k(2 zdfZj8uOfFca}3_LC%L_uUtfvBre2E`3JysEqa{ht#C+8g`i}L5U&q-Mx25w;(U*B> zI4d_od0)Le27~o0((=J231d(S!;0-{F@J&kgkNz_!7z$ifeqU{*m5AIAsAL%oXxbe zp-iJ-WWc8evJrDqGO^p1@I`Hzg7luKup;ZaGQq4$XweVt==#c4D$lFc9l@~Wt1;Ap|ZqyTy z>@vkWnboKwi~DBowzGqDekcI8AD#Xt-Uv<0)ns%i0NySG8~XM|8TW+KC}%-`|1SUw zcNabx%s{Y(ITf11vkm-s-8a{lZs}w?s-=UH5H}ECBA~DLWc>#K2N(u@BVCXlt?JXL zwJV7AzKqf~X%+w*1CA|#-mbd@;%w3N=yZ3Y-fnmJOwk)X8BCvdr%yWLU%JC5ar!JC zKJ6zuKJN{l0n#w$G%@#uVNx3mO(I+$>T;Q2MIZovd~>dg=k=@2#}7Ax-ar3*|Mlym zNU%O*?Ywm9iW5YYu|mk>EGSVZ!V{oXCp0Awo|w z=&PgX)cIz3d6J+Oe&VKe>7bl>{zRouq+fmqW-AS7gT4W?znxrAf{h3v#MQoox9u7WT)+Ffd z(Cq)19wxgR6d6Ny8b>B-@U@2L zag`s<=GNTitGa_&uho4WYmvta0Uj%KpI&db7wx3O14f(B<;d*|>p?0D(*gk4%!SNf z$n2FwniZyJnJY^x1je(pW*x|uXU<@l(0SIJY_}hV`Yt8jUT0retFV-^qpy&-Q-7}8 zhoa7dvLP-lTJE-+NfsCdF~>kfC)#hdcblypg%z1vJFU)>PS?;kPL22qgFEAYv`7E1 zJ@}Gpr^_Mb-alc@hp(T(>M*b!>~t0i*auF;Fd(Df+h0?wDOPVQeGzyJN_ z^QZf--yXjIcof{;-EXwpqBGu%0w2%r?$_E#dUeNEgtN=()$LMbSAXH*;Zo4c7>}W^ zD=jO~d1jUu@Y9ded2hCebt98Vi`BrB(k8osJus430$LCkDlD943`sY-`qdJS%OEm< z3eyFTY2eCT9~Qu^88qb>92^qyDz;Mhf%@oc%;Q00AA0!Xjoqvnq$MOU?U8{%Yto^|XT7k700g342CIL%5e5%Uh2yA?0J|4QyL_Ggvd;CQCd3zfJ$Brs zYiaFwwze#H&BBK&o2YgXS^f85j=S(?;|z>lMax^qn|xbDd=;h2ZZ-d&pthDxQl(8d zD6Ea5(x6=&^~%;Jt?m1`yPEWZu~pF81o?CoTwaU?z&F=|;VJS}&`_PfykF}Y$yy!H zM#A9bQGb0rr0W8>#pRRY?s48Gjpz;UkKwdS*HJBEmkik@z05s%Zvk2|(z*L#LjIXH zF@CEfUFdXcXFC{|h7}Uy-$3#iuZy|MX(dS}Hx`t)DGYlw5tFHwcZ9*B!ulqgGP&V& zp2f-ZL5rb5ng%XJW{^?=fP+#r($F?$ayc_4hMT2Megb+2qeByhbfM;ezLR|7D4=hW z6mt5z4@FZ96Cd_XEd;<5SCg2{Y78C0bcuktLSLb>0wf;l@AUUE6AW^aZbw)P04(%1 zvFO!bakOf0)*W*sG*6^5Cc#z`&IKR=;2`xZ(Cv5j2}rQ@Wc3cVDX$1FrChSj77o3_ zVEtA!SKK!hA{tJcEjD`Sw8mtN!51~5Z=?CV-gu^HHJ>Zm(XZWD0Q{tvJnfBt?T&sC z04uub^Um;TJN~uR`=!#_dwh?FYmW8$r1+ZQxs$hYaicUe*Ey_ z>z7xSXMT5u2qpNWqp0oei^av|n4U&`#ce-(J->djx)(OTzIgrmLVGbdF^>1BE+g0C z4a^ftxkB8@tc%D7Q{*~&Bp3;c(c*3d`s!T4Iiwl&EB))6yY=PGLPzZbbh16^MBbb9 zGH|OS7D;qDnV0zO>gIaERvG}Ni!~F2pbT3a*0kBsVo0~lM?v;4U~*2>;4u8Gc9rCd-T`<0!PwYu%|erA2+;>S4v7YnSv>v8iGY1h*QzN!KPR#dJ|6X|I2;DEt8(gGbCr%}`*!w)$Q@JzLs1dqPqy5frazZCX< zY19hTK>`c|zyX6P9#cBWl19B67@U}ElU0bZm)IN+&M(F{w+m6DpN8WS${0GqCV^RA zPNwtf+{b~0#6sVGe^<~eW)=?$6g3Tl2Zw`U$uu`cHqoTVPUrPBSHc2}0bP84NIQeU z05B{W`$7dyg#mh*2?l@(q3?R#h5;TUfsOzG15ZgrK~&R_g_H+=O2PLR8-}1pDYzB) z4V7R3*l#R`if;hm5V~Ce+^#*dwk!u=qsUhJJ;3f8zY)_1_LW*oTf4O<+^yB0R%=fx z)n6O+r_IK*PWMT#|6BkZ4Sww;{{Voa$9@;{Nieci|_7UrDagji08GFgWVfB7gH6xr=Q8V0}3Sw1%~#_L0_&xROMN zX|HA`QE5}aY}oAbZQ3v5^~6eHwy|z7ng$JGypK!1()45lefjZ?c^bK zGCg+9tRV=!MTLjkQ_CcxGk+8}4~F=L?DY1S5bzwZ*+fy8f%adC8SC4ASbVy_`?Ib- zOuDEadpa5wtpcejVX!V_eQz;x=r{%=)*%443UOK=>+{tYPg@5u`}5KN0u$v-Rr^f4 QKL7v#07*qoM6N<$f{mKoHUIzs literal 295003 zcmV)*K#9MJP)7KrL-PfS+z31Y%LKz9NkcBK{Aq!bZq6CQs6h#WO zphOCkgDm6<46^F>2uq1zGMOZkWd3sP*svGCMOqJ3BTrGcq+rjZRPFCRR=@EX*!1 z&#$gRb1N%sPz!5o6z{@jGfPWa(~HZ{%+iXZ>4lY<#nstmPt_Yh+#8k=H}Yg)_N$k5e`F}kw|cRI~0qBcXq-%+tI|%_HI0uOzfm~ce80Ikx5bMWNLbH z>haSj%d0E<#|L{y#e-6@cu?3s*xxJer3<;;d^(oi*-pi_#OiQ(dwY9lXJ>bJH#S_V$`0h>=irc@)c5E{kT3HJ$ zudYE$E31pkD_qXbFEqBbb@cWw;Hcv5FD+rYv{DvVLNkkt(DcH>)cibU+E&wxi<9&7 z6LWJ|vLV7vex^8>`0SPf0X)$>4(!Sbp1r2c;oYgn>D@g{{MsqcaU8|&+v z8<06f!7Uss3db#M|00nHj#w-f<6%J~8jVK$zmWaIfyLq7*w_dJ0(?du2fnt2rDbS- zaS6w5a&AtJ1{x67Ow7(g<1;g3_)1%i;_K~eWO9-ko|qUKAEyRJN1^_a5iVK+*A>hJF!80zXD?CcxRvTOSAnRZ}l)!E-K>cRu@C|{k}xPK52Y47P1 zwRQKlcJ*M%2Gr8oO*MCPHMMs(wRKUAt)2BP9gS^W4YuJ3D;wH6nmW3kHMjo$FP}HH zcVkUsd*_qJ=En^U4Q*|8&Fy8iw6%2g{GZ?d@!$XRFOBWE+2X4W4}aR!0-*ubx3;r^ zHP{vOtf}p3W2@b5lfP`lQ+!ib2chw(zMkv35;yho>u1kIUp;;L)zdoY%O}rlgJQ1FqF9ypejacHfVg0kO8=igBSod{9{Wpyblzpj=8YsLq zZ1AY5QS`XEi3dbW4i^p}goDOUq`srGp|h*8tFx)QtEH=}wY$5uyAx{b>4KyIwfA;+ z^!2p#c4@WtbyMvFy`s*ceyD4B0O}kXggOSjM)$~Y_sD41@CcVZqho0F42|@Sj17!U zVA(f5);l(erD{xQ^-oOpPmE(dmZE{liNUE!EFs=2d*~S*5n+wKX=>Br8I!MEJURt=+z7cddcAK!C{;MMZLqLdOuip^!95K6UG|D zKyPzT_;>?aE1lB^h$wpl})z;A2@nv28UmiWi_T({%Vvs-)*sblY-M#_J-Fu1wX zsHLj|+{Myq5W~$qolsME2OD58mSiw_+}7U%0mB`GeU`_D79a;@K{7%Bi|~~*=p7mB z9~~!|Kq-g2K6;JFEe&9S8Qa1z^3vbusKeu00485YI){d#j=>?hbWkd9Kmcb~P5=jYblY7{I%;O)6js;sOl2{vXJZPN%bbS@`BcaUUuc_76)3rzeLO z=O@=!=XbYPcefWe*JoFkCnv|nTt2;0%PDNyL)@uJ3ByJz-Dm` z4i#1y^j)Yr$VNO$rv25&6PGnOo|HMZ0lXw|b$!$SGcVZx zgE5sQe5&3C{uOVNQ2`B9au-K0WB;<*ES5No#4tY^+)Vj@*ci-a$N^3o7{-CZOXBs4 zy<}Ozdm(iB&7u9}`vq&Y115uoz63BeFoqKl&O{?zioBcF@=~NPF{}Yh+)^Gy(HOd?5E8e8!B(x-2O9u)_rjq<&7IxAEja1{ z*g7hn6nyA<=&kQ)hj60*^EY1u6*zZb8~9+jRS<2bg+wnK@~sm93&4cIXaK+v=xa={!mWc|HU=iAG>o~Pgwv|!JIgDD{pytrE3Y}? z)7Mq|z#tpkfJ?6A`|_Rr2=T9Buki1^264l(4VI3*rt7sDAbQDNK`(w>&)VAgEBg$V z7dDrar7L9{npj-m5)%4i2>{dkQUowgMp)7fL%^^;*K6tUrWRStCFv{6ni`*-SMsf! zGHvwY#)VsKELbZ{0BaM>STq1k2Ez)2!I5~(GqaWl3I4^llkuH&JianN|Mbb@p6;&b zP80x+B~0Wwx)X*3z@#shG;L%9IAIu)&w#Pes_3uq`j+sW`1TV zuu1?!f?l~akxyaF`n+oTLbQP6{swGdJ+EvS*w6r$;|XnS8R0MF|Iv?&*k>=dxib{{+>BBnKa`QXr!|l5pE`uySRP|#iIB$@v*Ll%*7U7 zCtfgKHiYj31MfT(`un5%R&KNDdO zaiC5bZui&Q@NVHWG$CE2wWLq_UP+tNT~wA;47txD{H_-p|Zv~ zQL35hxNRpAz$fJrJH&2DT(P|3dIi9Az4|iuv!(U*`PEgNQYCIYwY&u4GT_W51oTqy zxHt##lqB?(vyV_&8)6YpbNZ(4Zgk+P-L2iyA+FKb%$%>8iU_JN8u4lXYX__W%z!83 zpA;QfdN+|u0JS^2@W!!NCXv_cCQhx6c%WS@ohW3h?{ex^Cpvk9m`D`|4I-+-z3CI9=Ckln4 zp^e}M`%@uU;i;Kv_~6m;G2Da?URd=*{VD{l0qoFMqyel+%*V2GL7QM4Pq~^2;?f`z z4XHl>n7y-HYUs)aq^}Oq^G}YL=?H-J&1J!0(ifCvd_wLL;a;rAg%lW!k98v)B!G$D zIeSgUOA`mcY~XuKY2s=s3z(hDPznGhhBbh-i>(H*h#0mVy`JRsC)fKxFBuH<4#0(s zjuXJ0CU#u`V9H}~S6@q~FxWd;TL#k&ckui!!Wz*ZzW7^Hx9N8@VNY!)8 zbkY!>;@|%8r$7DeOYEO}5C&Tw+pxCZF$}I~3~L_y?G_c9_DD>65x}z4&Qfpi4c7Zs z*muJh=An55LU*pY*FKUh7YajPA+rZ1se z6TPG_p)2;+0C;t4OBl?UvjCX%C3oR^y`?(!=#x&h#5d@3nMfm9s3|wWRLkJG>XW0< z%mPFtJNp^;AtA{%vkJgC|FRo+b#onB+uDFP!r2+;Xy!}-z_GZom|&(CG~P|%}5{rblO=8z(aLegQotc|$ZfzSH8KpM` zgC!j8_qAIFtAr!*!5X)WzPcE;9|TRX4n#8wZR{`1ZZrxR21lZjJY~=u{-|)+w|8Q^ z;z2`#|7du}2Zz-9U31}L8}zu8=_9~4e%@R>o!m+7g1%yZ13?oTCwToXXH>nVn;y)7%Q^euqxK0)7p+X-iLVMfGQ z`{?cE`PZti?0`Fan>)Ae`ZdL@lT000mGNklaxPl|HnW7Zy?iBxr}pSLwjPPMf!;?Zy1^`fW6p$WoSVd zOaOR_$YC*8LOy`GluH)US2p9pj3#!VNIVAgLR--=K2{ri zHU|N(klt4S?7jVu1NgtfVEIKjo|r!hp1CLoz=pC0%;iKXLYhnFZSkf?FHbilx}mR4 zgn_t!K7|0-s@uw#V9J=_P6K0LQf!kZu?}Oh0jT`#(IYf)x`*g`1;B>Eb`2N_0An+a zUd`ajj$sGDw8gFL>EwF3i&(1cIWFfb`Mt=E0$`CMaUFB4K7!$j9%2a^YX)n?GR~|s zv7LJz&}wldi2J0a83JO_rf^eVd^iBs2aU&5hod3K`092?Umq{XbVsj_KhyPU0Cx@a z`Scxx`bLJxNH4l${Vuo*@#Nn-20{<%K2!(5iorGL>)dpL&&u`I0I+@8L)zL3Xc-OG z=;ciZz%_f0d6Yok=Dr?{cE?idXTh>&%-N#1&3=^aq%W3FT3R8K1xFwnabaPSK zi3B>^>*r=h4h}Mhhq?V?%BYYt0c0B%Wd|i-3}>87!Lr4T$xbFrg0+=d=`naamWX0$ z(QA}SCm7rY$g!(@F3X^FGGnZBEER_{h9M3{41?_ep78qSR!?7lZ~p-33o%z&x<7G1 zI4VhxO(KbP@=*3FTs`3BZEc63&1g`hO)w6=#Q!PY zq#-6{9XvY#CUg%&F; zA!wnmj!rwlY9??Aq^&<5wqAL_Uugi$;Iqj@t>|E8AiB?$gMS1t1JNM*U%!6zZ-4j`Hq(CB@xB_a5@i+E62KbF6+o(iUSz#bSB66ZW=NCp=3p??(V!VM&FKPLHgEVF9Yn(yEGJm##@7(LvaKEFMKUfy3kJe=O$9bexRudWLR2Wfbo?%tMYY@>LT**i$)^2z)j zd~kMuFJIW-!x9pFLYZuu4Kt!ClOl$9lK}HhGG(~SHUt1;O(vVPUBc;19`<|}0LDuN zeItqONGufI4sxh5F$_062+!2rwYa>5x49JX#tRWe(iN&vByLzUM(1Ja&H{-sP(04q zGXv2)l5p*&uX-mEjDNS` z#~;98z?iAgOtuncNJ^2Wua*F~a!s>(Y^&z3y4j>maC1!u?B{Li0ZY19_^E`THAKN( z0Wg=|NGJa$*Hoo(dD}=%mTp&vpd}CuNsl<*wFa<*VSF6y9Uy>ZNRo~}YXDOk#(HEq zN4UxNM>Fu^)$+3BVg zPb`^MP6*CPQE^bMgLr(nIAAAmEf}uM2AZGn^RQ}VQ=3d(nln9eMq}8R!oaFwlEp9> zEX5zpDc+6-PG%B@!TDtAa1Q{6@qK=M`r-!MJ%9cD^3{vWm(MTmAC5rZ(~I2EY5M3W zUn*snmKWL%wWQ+p|3(sbqKvwQn_*l4O)0E}}G{4rH1=JyMG*an8%D#P5XYz|0< z5#LRvcjAdiG8M~Y6L>vPCcg`%b8x^g?68_JoM9|Y4UlLk95D)ogTc_&^z?L3PtW4w zVlWuABZGkF@MbW?@x;su*1k}zunw(lFFFGGsO4kXU2LI#dpUasYcM-t!VZLt$n|s*-ECZ9OQR?LPGPbOHJ!O2bRkI3B zH%mXU-o_tZEcVwMefzk+*{C*y8}zuKs-eRbCfEV6X^_@+&vaL@ZP)$n>9dM7>;{|feS;O-zxf=J>aNBU|2OA@j+!P@)&T>v`?Sx%p> z1u%Pa%Jp#Y!*Kwt_wU$WJ?My*m-MB|0RC8wDrb;}oNXm9dUUQLQ0%0PiYKn-vD~X~ zI$2%Psmu{gH32M|v_9AwNi1D`P6%4Y1l#PPRk6ZOuP~ewqn*1+FfV&{Sh%}9eRFsI z_Wt7aOQRPrPamEi-`tnZul9~kvW0_PV@%;tbGc|V+5vOW(gM?#-p{7?GSJ?Bws^2t zI@pIi5+8UvDD4*y3Wef6F^nxKU>FRBz+Esnorwdzd->GQhuI0JO#rfIgMbVt;fnGvm#^i$G3TYn8*`);*58;TZS$~a4?m`3D=4BH?MNz_%r7p?Ei6K$^6dP=%-sC+?A+AMY-JYPG&DXl zWtZk~@wXu3hNX7LAimolmsIwU%2_g)ScVj{hnTguxV@D7=oJsGN^Z&E<1PzeeOmF2 zvU{=?2IDOMr@#G8n`4Hi!8|}hg3{pMKmF^!HMVzFjyS5wbJhTMh8{`EmDHeM!^xVq zmbzWn@u&&lM|DjegB6A~jM=X8#I7U*OVCS^zLlzjzI@gI`FYMwBrX7qw%l|~u$L^| z;suJzo9#tJoCV)+Uio&fJSxxTB z=&>$1HSDz2mIk_{uV0y~yqSzeuB^G?xn9T1R@+l23hnsant4^cRMkD@)uW86)1Jv) zC;duNuE=2a{(61DPN_(aN2*4zl(t}KTB>3Z!{Um>$X1WjAYYvhV~$+XV<=@*rHB#f zN(NNWcWS;|%7aBbOgSwTS_DxT9i`Y4tZHKg#0N{SFizPflW1p$eUO>-?#XfK#lz{F zSC_B9y?pWd?BV6f?Ze^KP3iO;0NyJcl*7VMI+>cAnXPMR9GjSoXHqF^Z4XMt!_wZ- z;XZYEv=46$p+TWtJjfBrQ0cH>*}Mmf4AvHk*@II4|CIr9%E-KUdt#@8_~qIv!t`p5EM8GedZ606d*e@9gZ*JJS%G=(MeKxv;b><*{my zN>U8=BLBWMeqywVJ&=Iw z|M1tp{@Wk^#390;9_cG3uH>fa@3c3aij~?!R|l(|VwO7WT&Ay;;jw?O=|664ebUhK zu>iGK)N#Hi`62b#Fz-uyg}UpuVh1?^~UwZfe#}{dp zvz`5zssmuDA%%t$6D|*dV=$%)t};}~88qzI()!p2-iThiL*Z_@lvVX`Ag9yU>A0<# z^Za)K?5x)gxDvoRb==#h!D}!?7^}Gc*B8f^7spqZCs&temlvnko{n)Bb$NDtae8!qatPr`Pmd0u!{Xk`@&Xu47mmMd zHVfCx6sJ%mEQO*>iD^F;?F3ylfOTe^Q%=h!G)+@uGgDZCONho#000mGNkl^u>~OrW#rx0+`a+<{({X6qAfF)}^(4=vvoXS8qo; zm3w(BbFVz~K5A;#JeGk;P9WMD2W;N2m%L+qFpaN79Y|s<8G@F9+8V~r@L!!$@Y2nFjyO3C+6&goptcpzgfPhGUI?(Ha8(t5qfP+hoGfQf!C|5N0Iu_WnZ9-6w*UD zwDia&rj6i4U^OaL3#5#ntdR)zsEU71s(>dY3D58!RtwI(5QxICvv8N?BRFyfVqFfe zn4({%!)yT0WMI6x9u5X~Be7f}QHUoGb_=Juz2i*rD0_6aUpg-C6>|XaZqD?}X7|z% z3~@1+DedJ#Yk`5zuFd6zyYrKqtD}pv;`wO-%hQts3M3Y(o266W6C6D|M&l4R_qc@i z_2nUUa&>ideSJ*bT%TQEo!;D>lw~VfURq9HoF75wXNM3>b8u^YWp#ePkU2U&fUC~r zGl`UmS%;$$-|DT=0qfN0>OsT8V}isPPh4%CoopuFtX`5s`r-N$*Ll|>Cf3=`1<$+! zrE)Dr`Vzp^HW%{04{H=N1EAIQ)wPW^R;bB7C^$r+z5p9Q(gI%NW2#}<>pQt=8)?SOUdNnM1J{?*}Sxr(y?<#8~q=W^io z%(9l7m31!56C_A65a%xSkcy68vAl+tb_pVCtm39bjH|~Z{Z~{SY8K;5*UNyj<9(&x zq~ts+`c~+(6~mYnR6poDgf2UV>@YBUKn4XH^s_U`Mpe`m@gLcaGB>vN0%ojcjp%uhew->b8E9x7bk`1 zw`U+IWQ?rk;@N3QV2n0liMGA#2m*kQ4vPfvcQcd&NxgFrUiq#*?OwW+)ok3U2{9OR&jHi#(^x6--U0e!{waqMVjI zw&s2`fW>@E!D@c`l3vH21?GHN)Gad>tpUtnhG3XC@_MYNromtUcxZgmi%zRSCd~Y*HpHKQ{dJofl|=hX2mDQ49UU-S?Em=Z zf5u9gdO-u&@7XO!q&0LkTpa-G?p|k3f||1il}9M~pw(uVYwDWYD;QiA!LF);>0#I} zKiTMrIaZb7Wy4h8+BQ?#1cSA*ruIrzEQ4G$xkJx z;Ot;E&KQ~=2{YjjeQ^fBh%4e`b0T97tV5F1v>0DK6;db`v$G+2;<**~GF69en1_W2 z$|m=21)`yiSOkxa#N*q$@pw9!$tFSHVj+8UxDN{p-+6g?2&;N~ef)5D_U7U0a4!|w zSUf(+yncE0;^F)b?7TXpRTYzJ9%Y>?gUpu~rx)iZ;4ZB&+P?R70W7Q)`rhANLTEtO zw(616Dy8E=L* zaWr(sHJA8e@Vg;ZuYF9KJu{n69%ZMVGyvCcTnpaSug6{%)UwnKUaxIsK66ubkMG9- zj8~;&>}Cc=`)bKuNsg@^bfkwK34fF`VzfNiv9$EMYyRmrJbT2&dsX183v^w zjAZ6l2b?Qu%CsrhWcxtvlc#X-UsbBQ23D)Bs@_2R;E#D+VXd>JLtl}T>imhUD@WA< zYA*|#7^W2lU{<$48mtKb!}F`|l2lYm+AaR2yt@8Y6#eS2(mcyo7j|Kj-J<;lxeXK%l~dVYJnpWRL; zgAaGdFJ2zsKbS4AZcIoSk0O9QT^?Uvom^d?LKjzuXBP)p0-{_4pi;25H#aADcW1Y^ zrxe>*LihLQXk&vb8?|PD8eGTz^SR{g%y>AmVFop2lW{YWI1-GQ>5A>_4yzIZ)w2jo zG*~({|0|BRCTkt;I-spNMMNco=Ou}n(=P(RoK%>el>?En^k!wYGeF?ok-jpDNh*O0 zdO7l#gO9~P(;u6qKM$24oJ&daG61$9_ezWSa}`JJpDBy2=8EP^B$q7I3ho`{9WwuJeFh4;FQv<`^F`O|mYKEz$=NR(lE%v*IahCt;$rBA=shI^B z&;g_UFaQ4UUp#(nM#ZQJ7&JTm5?AeBX0I~7x*UgWCS#c#{ap-mbcfC|6)DJ-hk`iq zZ6{NVywnp5ijmd6R>zRV=KB4+=H8kU3mVJrhb7VA8`RL{lo%Azs{za!SpKP>+@;7} z`m-7&micJC)aag`4nF~2_i<|e=_!&VF0F}MJsnV$BnW_%Jb?PnVi(` z(@Dr0mV(l1=c?BTO+S&?tf4Cs`a0u%6?)sMWTD&Psjjn=jn5_)=OAy|K1*WyU;=n) zeQhzYsxzgftz|L1q8ZFd6#UUao?B($nxmLth08^l6?Us;z_+(2_xHf73{JHhG$WOK~|-fnw?Uvgbvsro@C`$|1e{h{n$0j zhMV+w-wkUS7~7#xq&SB^aTuGBQVM}55=kf?--WifcdYEI^s0xM*|hLk812MFu|&+4 zDK%4X?WRq#JtyZdqt15C(*WKu)?$e92?~RCkFqX>O@GWm-u$_d!OWe8tuY*GXs8A- zS^M>~XN18&{>#5O<*rCj0jdL0a@VO$$#K9k8*w#*Reg`Px+;_HP_`PnHP<-T0nWvN zSCLA&VZVY^OHC2~8qDH-HGSnB>ApbkE&CHv>6xjR|Ljba;cwv0WM$Q6XJ}x5F!9hS zB7pU5@EouN0C!f_$x_oIxdpQXz0wn0ZFXyRC;Pp&+F0u(WY>0ACq3!FvZiBASc>u0 znaP4o%~4ruD)VMd-0HsGnlWc*Do+70ar@MY0H!`0o1Yn-n`R9u!LW6B#sqVihh^|G zg$*3~N(Qwvy$k_Nm+aLy@B`N}8xMPh$EGJorzZTf08ZuQ>cl$s$o{`_z}X+pE2&k2 zUIX1wXx*M$DMk(<7E0t$QC1K3eXv0<>lm{$7<*U?2EkxlbhXeY9r z+=*x6$$T=omrCuY(}h%~n9d!h_l~p0v%SO1;^}4a2E$hD&+EMoSC6yDh}-?O}R%f7(`(v5!lA_xSX}c5Tl_}rK%+zx;k%85{S4I zXXYd#F&D`&LzhpnAn|bGr#+j5DI0bs8f9t+mXbDwDy>bFs?_{5uGAKz=Ep64z=pCG zz#LdCacPp(th8>`bI%IEG9uZFU`IkAs41yt>xy$4tJH2Xo6hX#3&s6|Lg8R{#;323e4qV9pJ8$AT2|LSu(n_-vgnJ25Uzv^mV#v z9RTYXva~hYE6Z8*+BM~5V`ub~UG_WZ{e)`Hh~RKk=&O+|kE$M7R6VVN|6x^RUHRc< zH-;hJSDRoDz$3F$5E|_31up>@X8+O$6TqycP!qs*0P!LRidZd5&#|0FMRWdCtdg-c zIX5#kFXw9x?JcJIMG`wh1h}ro000mGNkls%ivw0=Umv_mKS>U9wrz@DTMV=IH4A%%Ug25(t zeRl^u=3LaWJl#xj6fP7S6&ko@K`17C5R1L}mdlTnX#FM>A3GEuUK(v3e!tcsV!-C=J z0JX}OZY72p*VX8i>Ic;rb_V98l~a;5|JiCY7}PJWigFtNvhXB>(K%GT`qbvk;T9%7B{ zYWlYJbz2d!eQK~!uXepUO^mP2-t2SYz@MO|(@k6LU&&*!zuFKx9lhdioglM(E(*GO z&{4S~-v_W(8N;9XLolZ~qSwwew+P%a<^~3{(1D#09ROHHLi(uA#lBdtCqFU#;U2mxG6GuTUP7gU?3V(%y80*}ZgbKO=>-&;W^nm>a_68U}IXf*K9~F)c z_lt$>UOtsc?HUIMO|Nhm}r(CIL9wbmLJ1fGc z&NjX}9HXoquoHa#WPTPW^3!83+hrVxMx*0^W%i-U$sx*Pj=e-{yNwjiG%us2!-%iP zr=~nRPtbCq;Jh`?#7rYa0P9n{c3K+AK7c(FtmD;+xE_EdGt2S85{}khQ-%d|7HWsP zPQNb)7ij=jXHMyuHUZqy+vQJ4taFunwcq8XfKw7xPY|MkYA5w72Z}Xc?b5zqRl0=t zastifj-ICW?#9lZrmo(`S^?^s8C7zbRXwIieevABe4_Vhdpq@{t&RGO)eo4Nj9(-0 z37P^V47l+k+5_;C$$Xh!nu8{n=Ao(Oh3S<=-x+(g250@Ug6yA@ftBJ{{D8I>wYJGz z3*w&r5=aYLoPd_>=U`>Y1@orZ^MsW^Ag&us0C~gDkfI-=ym@tYW829c056i*4(>!C zI9CYR7U)tOAuZ*yg}%J(@GmU9ipq-;p!UZ*agsiXR7+2xjc`V68n&4&04KhuO-26)c&_A~G!CCrV+-`qkX;hW(QSD6`ep zy2(`zZfwG|<4M9>p=gMqT29@#o8C?5(%C&+zT`!?iIs+RcBWy@%`B5ba>nKIq|4C| zmvqKng-Z*2GyRl(Qiw2?*Jgs@v0!vJn%dhvzC6TdbZ5E-&gB!qM}{@HggU=0;p2ed zhD!(gh5a1duuPnlGGXT3lniw^jkx;ilU zpZ@hJh6SL$6NV((~@=D6~eb--YaAnD`_n<$>~W-<~$pn$XKuPZ6QJ zgt0?CILhmL_PnxrcAUW>?}DQepU#QfznEx~s}TQKbvlmL?>;Q2&Jwf?FB98>*y?U$ ze~!XVF}@Cfb$_rIe^#Wd9uD+r`}?uHW$C-Mabxlo^zHI(ZaK|Z60^ncdL6($T@WV} zVZ&b%$!1DT;1l9>Al{7ET|GEN_{womJHN3qi3py;90&ifn=-%b4`Qm z6n3r%y7+u`8glb-Ypd30u)mN$x#<+(M<>T}jGRSB06Yzcx-bK=L=o!~34Q%e;w6^w zl`cBp_^trJW>Om8O-cnWK8oK;6$Aj2yG#hjuB1R1*)I&%0G5&q3x1EduC&DjY+be32XMKIaVr|dW1Cvq z+dF%3(PN_Gv1oKRp2(yiTq^*{$xI?^sz9d?kM@sG_fOA@OpP{)(8dRwoM&R#?+HGa z>}c`65C9Aj#_(j&#c2t;x+s;3>9ys#NH9>yri-~uA)CdC9_Rh^ZURWAQi(XU3-e{! z9P$5P*HoSn{?c)5n1IpDz-!XXN!BjRTqGLibP+l$in+@EUzypUFK!Fp%fg*jLSF`H z1;79**pfC4(IR+dgAsh{T`<1?_J=<}EE%mQiswzDLgq2l z8^}N!!;-d|VD|9r@u}>3%j04N+Y*SbjA?t}Yd%~&DDnKH%}6I(>3nQ`LEul4sJf!P zK3YzSKs!}-SAJNyqRk*PFHO`?BF~Bu!0i21*0vn^#7%lB3y*g7T`PS*g}`_-g0)B9w^n)g>OhZaA2%aWDA;G zU0mK=Ln9F0T;2%ujSTVF_6!XKI7q=nZMX0R22glP2d4(dM@`%@yom=c2RE8~I{9gK z5B1ql<=R>(uoel9&P`X36mp^((sm@CxEjDB2fZGESr^bthO%`5LBR#Uaw8zakgy~g zLEMS?>G3(^l_&kmx4LvbfAEA8%LLA^ug(Qlc$e2nrUo2~o74c7AhslJ$q;1efhG&t zP+N0xw8%XyBiC|qXe)xV7gwsNC?m3T?+UEpJaB2 z%1Hv&M0{;h?n4cK+GGx`M;d!JSHn?4X2fSOJTx@&tiEA$j3T?_-;ZvIzeQLN1==xZW;9iI5?@Zhv$N=zRX_xxT=PepjjTvp~eM*E;xI4m7NM~9`8<0I(! z=n%q95Cz6=FQ1{TRl|jliJk7meI(nlG+qy^oysW`3Rxb9tbs27G1JPMcrm;M_yK_w zXFsHQWxf)-O9@)IUWz=%Qs@g*b0%g8H{qK-`)@((Sz$|7j&Ab$T(=`pfw3L$go`T9 z%VeU~+o5nAS5e_ac4z-6Upgz6&i4x^xqK;GINm!xFM!JD0P~eeZa2LNx91#khO4X6 zQSR_Ke{xnJn@#rn?a}RXFPZNC`UJYWIk~?*eYiV=Ufx|jzqz=*IKxL)JlH!tD()ZT zV~Hq(SfDTa$Z_Zb8=K3kW+o^BFn;(0e&(|P*o0&n8^K_ip+SOyv=mr={p{KQ`w#!{ z`8VJ2MCo&-({h&#HhdM+tjDlQNksv$^3c_Ox>I7&8o=U`2}lB16|Cs0u$X@Mw<0#! z(xR(BlDm9rrjiMF^~(?sT3vyGD-CY_0H#wQsS?19i*|`B9j!&LcL`!%5&^7}u&N@@ z9ggeOgmwTdK3GQk)bzVf=dP5+(DbdY*Qle)PN3UoFp0~)+iuAYtEj1I-zm@#j++xT zPS^8mOACSJP&~X93kG*W04Mf?H`p`WkJC7=cSAd&&F#?4@;uM#Tmsv+9fAVUP*b=0 z5aFJ&Hxv8Z4&mNFG=i7SUIRg|ES*}C4tgv4IDFPR^o1U^v=F-AG&hSrV~KpfaFs_^ z)7QJU4AI)otS(J1&5tk4j?K>)`p%gtUnb{fKwlDwDp%8mV+OO=Rv|ogdc{Pf31Bl; z(zlpQFxCK;ShPm3AEx$(9h1RAUtu}Lj$4Z3bZw~(uUE`^%`lJ_+}+-cM>e9t)!_Qd zR=_O78>d<%Fz-V_3Mt{WLVW3$6d@%`EPxuuom)xbKtCr!~JLf7xP7;fb%0v1S+8NQ78-`sV!f z>h$>XZ`7<;g~}RSZ$z)omcnthmY3)yHHE=kLpMwqb0iP_ zE+|XxTJ-KP^33h^PRR1|O*>9EwqrV9O{CY<2@ji>N4)uCnV3xt21gQ+SSpq~$d%4Y zP`;GU7PD9$o)nJH4$dwPE=@I+69%Pk?oL76{bDM$A5ZS>WDjhz{` zaeoMb!7uD=m@gjAIW4A{AM@ej<-_&!yGxD~$Cn|$m%&@Z%Uju8TUuXP-3qLS@%;=i zK!tCwR1!54Ci?R?$b?JZJbTvK)g=yCPf*AXIRN}3bI5X9L#76yZ7R~E)*CxeEv zTjXo^$S?tHZi33OAj~dK-CkVNZnF?r#P*xp8(Xo>mCz;tjL#a^o!%tn(I7S(n4FOL zdUZ(I!L61}fG6PomuT$*Uio0v$79Q6$kKB{{< zJTZo&Ix;yvJ~Oq9D}=*fNcHn^^M3D zF3ADlWIhQ7gS+YdGz1189PJ&Q775_%>toYd@ciuR?ikKEvlox0qTzTjk_>LA!{J0I z6c5HTvAx6G;YH#2>frkN=)t1*^~{%j^Rm)T+2jG3Q!sJD1~8Zt9YS9{dD3CiVrhb_XL^6!(D2{?>7Oh!0IfFd z4(V$N6~?Q5w0Hqqg%bla4J1c&(iTEp;sq;Hy2=S$)zcN|aj||VxZN?_VtfT}+MC)A z#cqGM-F#CmT|GKi)+vhQWb{-Hdg*ik?5o>34id(90@u|46@c|+!9gI6)8g ztp>2FNL3ABcM2wfy%=s;&w?S&ajS?W*pG$)hED}b0bsBeG~I}95}YHmb1LFIrn8ah_9~`?TV7zMmC3rY^V0C% zS(D6Rg3l}VT*H$NwY0v*JgKSWrHRD_naYstq)9bl-cWEkxV5;sF&9{~MtOz6#zP?K z0Cpt#R!#vg4PfcP6(5X)ZZ0FNx1L{LUEB;TuCL6m8EXz(KRP!(JTr-<@%R3;JR?&R z5E^6ClYrmUjK^R!re|l+7@wSgfMJ?ooP15>G~x|*0(5y3ji|Ltf?g7aX}7YH^!0{s z+EPkz>a$A=&8=-sEv;=G?E^!D(~GlkFgWkCcM}*clnSNe(!mjy#lw>W=;ZY9?ELur z!q)4seZ%Y+mLW;9B$9zfoX6>+V4+~7-aK5szQ1^PfBEg*#r=8l@-X`nJT?Z))$0d9 z_xknS_1lNrH}^NtxA!;i9&W#Ve)sOh{kN}fp|>w@pl@Fpy?uENffIN-FdjY|_WJaw za8NAl`L#S_c{;s9%4HVKvu{r*0B|U z#boj`FGD#O6YjzW_>o6b}E+IPwyXOOUL`S*GKfepf3da;sd?)i=&;Mm5z=JrNg~KF`LP!5-F2FfLFrr zJbQV(*&+Sm+GcvC@v)Jy(c#gNp^;%zlX7V2QC(fPKRJ>!xh!iqd{bBVyFdOBZDrTm zwN2EeE47FaVuo2WzBta7obE0cK<+4a@%nM^E;<}dIO*R7uz|XMZ7PiH#gG{rSLGf4E{2^#95UiacluWM z`_`N|L4wcKG3SrbSM~Dts!>DcWyrB|@}6`TEI(Fwvoe5}7n?iV1K~~F1b|Jnd36mY z)d6tVKp(Cn7i{_tzOj8HL%3G}+|bzuD%o;}TUMdY{$77pW)Hp9HBB8V`!}2AQH(7U zwA5D(R*j8BFB*TVs{?d_-rs-u<)0rv#?8;fXxinxq*ifU5cmX5ELuZs?I0&T1$E4* zhLt5|Y&lCXwMgyz=+ex%v}7|b@Nd3ni+JWC(2NPMvL`)UB|C^s}0 zSi!p(nV*JC)e*cY8%PInf!@KX@xJkq{)y4vvElwvBQ&HvG(I{C>+1t}X3m72!C+7s z>#=5jaRC6v$rq=4T{}?X%mQ6W1YD75-ODTJhc~y-`?uH7&+l%(e|2$pR`~Ye{JU4z-@X8z&!N}Pjov=LhJJW) z`{Tv3;x zHK6ktHWr4Sik5xWUyKPNkHNK^c>PqyM0qhm~tQ^blJoZ(OQ_ z;rP$5E?ayOz{_MUEk7HZ}Z-P#=h~fjo3Ce zhL*P0yM_mFrrof?X9$k#S#zT^OuV|vic+(Zt$n5f%M}2&=!L$huLo}b@YPp9FQ5wt z4DsI2q+`{BO&8O!zfxPMQicY3Gb>0*$jaO(@uouG@ddBihB#VDCkA?9e}P_XEc6vQ z+jy&K;OT;egFL(^wW1YA~5**RT12M|Lr|63`oCyegPPN_u~5dmp4DZy!++V zJ@o7A2kMu%&!JzxeSm&?_X2wV?eibsK49n2ySF!%!6rcc;{M7o`1<1F{N(KPSb7BeW|;yjN77{s>6k zTBib=0q0TB^2VwOWTLbk?7T)$2zzn9IUmbhh2d^$(zP^0*<_dcL@*DuZx;Z{R-3NX1 zd#Q9Tk;=v`ePN~}ruWwZSjOBl^>WNcp@&UL_OU^)B>N~}+}hsO*w)fJWF|zC5VTjg z--p@1{>OiCD6kkrU9M7dPH!XhC1Sx{PQ0q5pUablv^P+dLr^GbxpHuehvg2VD7(E}^FQa+xPevb#-OxjioU~_3 zr#iC?BB-8J)m!ctu-b9=Jo*a(DVciG}SXSWG1DqZq9nW_%Pkd&h^mM+d0h;X!a0BqodvkB0~QN#d~)b8hmg zW=?tlR@vZ8Ny9mv0c59=gNQEHG z?;ry5$L|b-fBNAT`uY3Y_wTNuAHThNep7mRcl5*C>+fD)0?E+(S2xgyw+|n_d->r< z>bcSTmsV&$e0cu?`sI6I_<`QqF!=Q~Bhuo7q1&s|tMj9a)6)6L!RgU~_)YM>9wwR7T(mLP&EdsnCdBAgB4q%4d2`AE#Fw{6 z=hvl+n*-?Nq5vHn?O}sVK9$TQc6PUMy@Flgxp-;9k%YW_l+pkG451VK6Qj5i#h2V* zcw+2HV|{B^hZzLy1K6pJz&RKQBq@?5&Q)$|ODD#Z5<|``degbk*~!%RS08x-zS-qv{FmIhI#;B}?7K%azUy5H%CU9RNGyZl%0b zO$Q7B<6BAxY`THBBe>bw*W(4TtOEv;8%&K9Z@NjGy*ZEx+b@UKn|nJJ@$2+GG^k+; zj;hGB#Gg64hAulQ6-M<$liKe}7cWE2SpN0tQ*)O^FStv6QP%+anh+KUXv@y zMOsyoPr7V{&0Jdg&X+rq{g}24F)|&`7PLU`TwqPQfeB*~dwKnFw|2jg%m4ro07*na zR9@i@J^iqrgqU@w`D$g5G4}x81CwJjIMEmY1F_6BF%9_LvB9p9eh2{WF_-*(oUa3) zqP@22wWpyz2=|i2I7z`48)pm{&rC5#8Zy1b^Rqb9iTx_~2>SEnNL@pG{P<3Qy9b@YAeviUlo}>%z)Ni>6DynRcs+O)(}`Hhb5!fzejfBaJSv@>9-o~bgTD6>kmJ@{Q3L)AHOvw8&;d) z=r^x!Bv*^Q!gtqa(9Px9)%nTA>Cwqy5tbOHIG+Q7lOPbd5=)qw38Yt87;GZXmcfR& znvv_cGFze+1ItE!T{b;V-7wgOktu<$-sWQfmf*8rDQuO2Xd~Y)ll|I=ODG#JUQ)fH zJ5iI5&3TjjKeQvU5UxM6dr46C;B2pOlG{JdZQs0A~H?!EqA@@&Z5O<_h&u{WI7I`xEG|8GnA#*!chb=}%ar1HUSC z+$AAjy;2!duj(NX+dVj})iX3=8-sR0)QD2Wbj6%Wz8bNDUYTv)Cvl&=em%RQ_*&g* z`st)F=?T`5*3!AnHeb3NPuBa_sa}kDYl>IX*8#AYV7Zs^XS4qvFDg#^D-Kvf&_Y(h zaJ8!D2r4^W;#LD#?s7uV)%10`d#fud>(V7P0gSKZM#S?iTe0xe;%rB6clo?(0qoCv zVY1vE0M~Ui@K{xh7>MN^e$5AHbhKdj`Mz`!Bx)cRkB%dxC|# zo*F#*8URcE3a6Y!wRkVBDl1_zKu!9ZXtQ0iL1%2evVpFy;mmQgWVx_bFpTB=dSHHi zV=e&n!oO}(3v1x$sxji0zPNJdRlLcQGPOizIG==0y4Iz#>;q?pC&$4~)5|+N2%2Ik z>KX3u8uXysX-fa}Q2K|>nk*o3_h3Jq@xZ9pPwe>yOJ&nBZ1cmt!eO}VSeRp7FjKYI zpRvxI8Li(1dM6jW!Ce#wIPrlr);NI68v%T=!nV(Nbb7pRq%Rx~7Y~aNT<`HoiNla! zf8l+BThJGx1ICgKn~inp0QmLmn{VIT3V`8v0o~u;-$NgMyfgaw?!zzlAAWj3`^Puu zZ|+M!zq|VFhg)NCe*tLUe)#b2!-qG9xJGaMHr9V@g?qm_Ws3BKitD)|M>3t z_iyjFR3@o>SQ^!?4{-Sq_o3?Jb=7V@leO!G>^tPCk}i z4P>9e^Q((8a8B1rHhy>2sIqM8%EvZ#Fw8Z4x@vizyV8pbk^`FoGMHt&Op#}finf2= z>=Ch$8Ka!tN$u^X_mf!eWMZ-OHmi%rQf9z$BoPYjY{4sIV;Emvi100VRdnWNB*D=B z7RFisS&C404G(mW0CN3s!1$hb`Zcf|lw#$dzx?t)zxaaXv7C-ukzOg~{so^bR3tOH z+abt!8KZsX%6J4fZDWjUWPq|@SV&BlEVkI8Z#96m{jGMx;!`DeNh4E3kpOmr#vG?B z81}|u`Jv#l6;?gsl8+`UwTqQ_vgU5hJS^z|*28?A-d|^ckcvx}x$DfQtIBAUiR+Y- z)^ZqJb3TJl^H@zj(OEMDjU%?Qxe4@o7B;X9kK_PY%7a4=fE&76pEWn)r0PWRgylCJi!_g+rEcCUVzGkKE02X~FUQ^eW68k6< z0Gp-fQ%&;l)bfH)Ur*#N8O&HT!^oyGrKyeOm2Q@bQDp7xy3xYMx`l244QO$5V{vl} zTHe@N*$iR{0mcNd9kM*dlL*fvwqb&4G{km5^Nbi`J!vuSW!M>4Ksd|bW9tQmhX#6V zyW2bC^!Rc|U$l1PvbTff(CCb@6XTLClD&}i$k32=#&Uf?mprvFgA*bx+T!{OQ&LSP z_R`$g?Bvko=-|Z2pdaNPx8=#qa4(ybj*A!^Mx0DxprgC7-CSxdxCREVt}pK&{}1Tf5~&6YCu^r!Exe+6`Zy8ZC}=GXT(hQ1#j zK74ro;n#=Xu=4xcpWa-&e|`Spr{@;5!q>M-pzlk2?^~b8T>0w5uP=W2`QiPKw?F=H z_uV@<@0;(wy?y)k?$s+VJDS6ySR~};`t0)Jm?>I&``KJRoyn%NITLbE+G?3Hf=F9o z`e60}ON3cQr~^fu#88i4=gsnT1(mGT0Cw)J25@;Od=-GrUDkguuNkcbR-o1ORcLKv zZGCH<^}J|;D+WHrLbm7IEVttkU^tmcq_U=SH;SqJ6VN zTs{%8DtyIt0Ivr4k|4C@rY_Va^EEk!n6FlX)p`v(k9ozQFB+uBT0>V?tMGiJSB2R2 zuy%FSb(RMRIsM0eFS3`XZBn)U__NddtCu>^tsOH2#BxB6su0rV7qe`a+9T3WEOZnM z*PQ3T=@{1Cx;k&mNwdDeQuUyW5OM z0^31oCA`r$KC%|^`gGX`%*rYpT+}l zGnU5i(*EM!!EuxDHDL3u;iO4%!kek-b2#m9nI1$|$cr^dnHtJ@1(g~OCm;)KE8P+;qQ(GUR3kR*yB=x<-$0Ko5FUqc>%fnMPDms^j% zAK-wmfBW(B!~3fbKi_TA-*2{|Oaz{)_7MqM+uAo${sVwvwHA8T_ z?r)Z{zXIJ)iyJ#tA)Nvmp9Ziq;gUX{PJv7(EU&Y)1i%nD5{}1Bp{vC9>{@_%RYTJ= zTZyPCrnD1=#usJ*V9*qTT_%7{9q-nb$IVUMBZC_;Lu=f-9NZv)zixOoFg1$D2DUfX zq8ou|2%8bT+WYFZXJPB=KY#M{_g{VqRruYydPrz(Aguvxha}YiFoy#{;2(QTrND(V z|Bs%8fYTq5!Nf50pBea-&Q~c=#i@k}4uqr&CIWf*=Y%7 z8!MdH$>wuw>w%%sA)K<$&X3`MS(y^zP+-BD`6TWa6Xxs4xH_D~9};x|YQn2gAAVX(BT z87$~^Dpxz9>1q>9^lAX>wkc;_1rHr-tw`#o{1CJRjRnB8p>`ggZZlk}ic-~sm9@jx zpmMhVbXhS;B`bF}>$gy8WQC^Ota=d9-y2`lEf4>MG(9yiIfe~- z$3}tVZyFmo@E13+zJJ0jJBRuu@+{t$oxWc;HA(f1KYa1!UmiXF{Mj>OcI!L|bhU5( zy1q&DO+z#FsIf(>0>B(lD`RS<%rdF$yI8N%q?#dkiRGhh1;>D%lvjl7j>XLYi)wLu zGm}AJb#-&onfQ<5%zd22Z^MT51K!+->i{q*D;ZTxUG|OUIN&PjoxrV^ux%@iaQYYC zHEat24UUaz2FtJ4{y4kHSCIyAtCd~}i51p{*z0c|8R#1Yj0Z=i#=zZ?>G7e-Q7ob1 zsWAeW4p;;R6T@r(#^Z3qb2Fy?i5>D}=Gx0#oy!D;oRp9a?wn7gGqX&w4nN6D z&!}idep>+hQ%VHsdTD(9BGo(OZYFP1ozt1!WGcR!+)3=lVmp!Ob|@6y3`e%0ppC=N zuP)9k&f^P10OO}2AsJE+_02P~IgGcrCrq8&lA6M^9!plAO>K4B; zjy~Y;4wS_eGk%6l1oN(mYdK&iE?pg(*7VgrxF&$b_;RK6RXaVVE$4fkUjP6Q07*na zRQ`Ol9)ZX|ABR$oLxRSRd~Ej!fGbj#x?BdcL)z)S6>jOQat&aaTS?Y9gMdHgO&wJa zC928Vsto5&J?!|?WkB@7(KS!1rDuYYGRrb&vtReIJQj!oP`w`9#+JuTtxpiCOe)#bQg6sY9{oVVY?y`_qqkYJOqW$*c@WuNhJbTo1~Yaj5*9W)c3BFz%9w8rV7gwQ7lOy#O~;Ae zbS_C524|B{DxH9U;do-(mQxFZ#F1#wl)eghxmR!xe%4jl{!$D<>mF9L30HBhLSJ#N zfBM_szysw+2l?x>I~*n;1(Pgnsp*R!9W^rPO@wM1AhBI3zg#xNB0E%eGP9f)tka}* z9+s2TtxYh&<0LCp14*&RWEfRvQ%jGs(~(>OJU6sf-c0IM$x}rc)bZhRsrn}XTss?T4>`%-r>!>M)qe)+>{^-pq>96rBL^icUpzq^)&vg1& zZLn(6$yQo=xRHTzUBefTpML($W9aK=^{~`l*^SCENP=@cl32zKn~EZ>9aMdLS3^fP zgofxdcvFalAqn7>(547?Ep3&{+X@I-@k&Tc0Nb|iMfUE+#-OjMYH925jM@5*W+sEB z1x_f$j2PJoq05@gHRlN?fXxuzVF^7k-aD*2me@uE7uSqPYZFZ2M_!$T!XL1ouhHoM z*h`+oFAcwnjy8~(YPRB*6&UX6>g?<327?Ftdx!gBf(OTkAu@Q#id6u;Q<6Os(Iv2d zTEx_AQ<-aFW_EcVXIL1W4Va#IG?U+rC!_yAWAEV_=as(w`w#ejd3QI#aS7SR?k2&> zZb-$69g^54&BQ6Bl593?cC)j!+O{gMS5~`@8iYlr|BMEgRjf6CkP(>A4ws9q8 z!+u|0_+9t8&U4S1XOz6ZaPj2P%xE-{XP(cw?sJ#IlH7{wlF^BwsaXlw&dpCVGz|yL zSxJ|q;j^@#r2V~d!|K+pjc>nM|Mzzn|NY(i_y6Abj{46<=->ad`ThU7O`S1U+-||1ett4A*KsdpdhQV^zH~(J0^{q&_`}M|+TkFuZ z8$#bJ*Q8{b00w=f+I4+yd36R1UR<7h5}%3im)`Z?COBJd%EDExv$J(CrU>+=pY9bVb8~NkOQSHscDp>F-*^`%|N8- zinj->0EX)&eTPQ}gQEi@!G0X&WK4vAadz9laVUsaD73~mc67J5cS>6lygl&wvL@Ke zy;1<1V}TnJmXA+H=&v))z=CmnoK_ZkR>I6T~ix92WiW0lgW^TAR`bPJ6 z;cx9Lwfd3YF&esVF1K_3g8|lbDfBC1+%56Sr+1Yo$3eL&1%m?LP4_ z%^mI9Yn~(~V!65NSz+c;*Si5~>4Q;QRZ!`b|CV@L|UHI#o=z1%WQ)HKYdV_;HOt1FH#^vf&;&U~m#X zd&Uq0#tEh?J;X;Qd6DW1ndz3nd08;Q#4s!`87#u3sYI-;{2i*Ri}5>_mP(iomrIi@ z#vCyS7zTr3oeRs0ORLMP8fqGG4ew~f^?EE69G@7jt*gk)N$u!vr3nVTWYpc}B9M0F zl1yK){hv(_EYkPp&2`y@{d&!4poq@;v~18G?mbzD?PpBD|mRuEr8jcV}o` zZSR_*A~vDq0+(xCTN7{C$zEDYO+2iyxCrlULYL!A@b)$%#jHxrv@x#Bi@fgZyf|=N zv2Hoh#1q4A2->&n>@rx7E_B^nqI0Lc>ZTmqbt^0LM}o0#E|r?p9~l?u>sl2J;H|8- zzaUtTOc2vjU|)XI4>{m1fBKd$=7$~=*=Llqq5K)n?&E*R`?|$c(ZOdQfH@#ir!u>P zi8LYT>a85}00A#ZMnnT2Kc?BmkX@%$htxO?>6`QtIMw8%ON$z`hBt4r^7n`d!Z zz+y02&v|nmQ}RUY0GgJQmy(&y1~S`RziX4B9P~DI1t8wr6tI!u25Ij{5;H(8B&L5= z0BcuEy57R7aSs%^I{ZnG1*nz!kuIvW-12b&*1{4%CX4$FtK+|Q5Z zkC3nU#QKt@iD5h&A+70}YJYtIj_x8$082Jj+65QDkj!W^w}8!f0DN#-c4m5RCg_{V zShPuawwD{zzXR2=f{X%X!Ejo-y3kfW_XU$mjD(9-(30T>$R_MtwJ|%t&+z)!SU;F)*(7q zF|XgO*>f*|eB;K(#>VXC<~(i$Wxx4$_1o{(H2D1Q?=M22GQSt-y?TA+%C%)kp(|q1 zl%X%sOYgg|G&#Q*5(#T3X@3oaX9;6|sh*gTY7?3s;Vx-kzf8N3jZ&`_Xm7tYwJ^%C z%N$~lBjeb@U?v+6_Tt-zN8me$nE4e9N_WhWAifLV+i#wKfXt?3$gwy2kaG-mw6HUM z((Wa*2RM6RX(J9Z$+(Af_W>A3I$#jj^xS~!?Sy*zvAlqlZ)@vlVIG#)-v&GNNTSfD zb-85Mo0I}#(%o}qa2U(J#MIQ(tSlQ1#>dS_&+&lMv9Tx4o#WmOsjQxrjMvt!g=UwB z?`=*o39q)LxX#F&6Trn@PaC}dDHp&dy(8>{HOlSo0s8=~l}`H6c9T5ZYX!xHySb|5 z=)<(-lN9YZS<`OtIl^u_^ALSA1l@8YjVDL6&USL9H2Yf1h23XxCQ^j=gY^e(X*ZSq zTSk(99LbT{QW1?ryf$8LJ22bgTYa8R%Wx+&yJM_$+LfL990g!btWx@(PfU(9uL;Uv zqL(3M*jAm;<#rBdsu%1jo*9o+^vY(lhge@tl-ns&ZzOK@#EyJUvs?ZgHf5EcO98{F z*}0}ax%61wR@>HG*WMy=X6dFIV8WCFxVgJS)zTSI2D=z0fHefoQY9Vdz{&^E7ow3Z zbi}M87r=#Hn;t5%U@_0#tfIJ@FjYelonW<{tcIcR>0(5h%X7x1`3aX!Ku#=+6$`#1 zeII>&049UM+IWY-3{BGn;{ou&w6JV%i7Oy}eI_>7)z{Y6)zsA2)HO;p9@ov1s%8{u_v`S=#x!p*>}=>Od%bu`cwtx~K+F_dU0YyTvs5;Fk>|OE z2`iy5oNkC1CUnio6mN&P{~ekPLgN!bkP^fi9)Y#(hWgEa1HkL>Fsq7TlqaV`Gt*PE zGt&@Gq#O147(>|vEl$9474D)Lr5`1Uc?7Lpf#3ZDJrIWnQ$4-is%~chGUpZ>`u4HP zhzyqa^Z2m!zCj?rcW?v_yUT-a3&bK|CPFv1)HgIs%Mk#Wd%#LKGFTa@l;z$BPQc69 zq@>KeJpWFuw?PZ@3j2#shu&q5#rA`2ehLX{*4CzJyqRAj!_#W2bwMCaX6mY#r_Gng zJt=NW@kRl#$`7Ty-`+5yE4*GVt{b*AW_Etria9oJ`db z8Y;I>NO(?Sz1VE|Ys>Dt2oa+!Q!v1;PasuIums^z8Ybym9tKMr8ii!K7dZZ96))Zr3X3lITa zW?*U{+FdNWAG7eg&4>|ZegJq&GJcRqFzkh?Z3x;2V6fBO%4Gx|S0$hqs%@wh0GozQ zmG#x7)#3(t(Nq)6`r`{(X{p)i8CjXxxj6+zg}A`gx7M={Lq}i7(D=aY^7PWhxrw=8 zeRE~cK>PZ|`Ab)%ga0)%LDmOgLRSVNnNncWDpF1qz=G%Nt2ZM@IDorwu|TPc7`}LE zesz8N>WwAGC`-Q8jjva)-&)~bFX@X{wYD+G95K^NWNvABp2H+?4)ntNG6fovJS+oX z55smR*l5xf7(6vSCKG{#!NU;gC9oVG9x?xojp1InBXgm9#6}$IRx5)~Mx`!d z4S-8xlM?d0wr+;grAA?E`}whBM77LN@;<`s+Q#m0dP1O9*Vfe3)lys#=!5lP%mu*_ z(w3Qc!Th=Ug7X~!YpR#8M~9XqxrJ5wq1NEDuFl;YZ>6yE0cNKk?l2soWS#TU?t=e2gvU{R!I@|!So8_eA9NfGuH!ALnAx9S@S+qoUGKsP% zegOLvO=90}6t@wphiYpr(#is4>t&HMEE40jm|J z16HQ0sWm+#%XqHI7e(fFjX4)O*&>QwZ5!!UIB2-ZM2ZODG>Vy1PFiw?e)hZ;Jh>)q zq*#j)-9ke;;D`zV9EG(h^tcJBDeh7fcO`j^aG4iP=%%EKE~KTVrl+Nt-W~9->VVy3 zlhX3C^2!QW1YD$W>14|!I2c}ov~^di0WhA5O3M%i=j7!U78jM(Q~=v`Ep?6Uje*{_ zk1iuSSgvQ}|f!LYZNuYLlX?|sS zVRdDZ;!d79>R>O#SN83krt z&fO@pja}rXL+fS1*SAs=qm!s>6Bb#w@45BzcU#^ocx5%B8;N~a0wL`w9 zlAQRfw%C1gpXF74|381O+cnzPM|#UnmcDIZ09Yp@X(qXwzZNw6N&y{mZ0s8#w$(17kOi?UjCIy2F_9BwF2jCNaquWL697I$+W?J~J~RD@&D_ zosFa1=;79!q`Q-ko#vfcZYS;Nsmb_8alkaekXtyUZdftw0@%ecZuf6@a81~9wWxZSc8y>g;$v&;#j&=8A@Y>jVW0U%mjDuajFEekX)udT#oDAy!= zLySM$=SfQy8KTn%=N9J|SC-3Ph-GHq3y}owonha=yHZI!MU6gUav(XrK0Zh13(L4r# z^X@f4jCxT4P#TdnD#LuNZd6%5lBE)aU{yDyDMtv3)Ss zOiVgpHNF}c)2-hvyG&~XOC9lKGk%?x7hsj^DSZ_5%?*scOKr79Zhl;2+wb_HDIBk@A9FsYEu) z<}Goy@krR4;=6!b=2c1Zb8?FIrgj6!uE&jxBnxqUO3KMm9)rXN#*szd;eKH*mD9E2 z%jOf9mCd&5mPW{8II@a23c#!n4#%Gvj^-_zAWZ;kqe_0L6u{x}30`-nQZN4O?)%dF zDs)*&OA)~CyMbd82w-393{9SLm$7=T{i?JklGBhb;9f&tT3hwLn(AzHAs(MYBMmOG zY>5CSeQ{)H8qb-Ul?8$B=~#5JrL z#IVr!(#-1GIJ9wb`tp_eZ@ylUdZcgH|MT4jM-zVk@6B(%UW0FjdsYAoeWTi2!Wo-z zv;?Tv*Jn01X0KmgH(6S1=6faOibE3FCQ}<{G7wDz8ip|okW3vg0Zivgj~k6)1u*Z0 z7?+-(n_QTmT9}`KJ=dHnh{(5^8z1Ku8g; z(c|dtTOWXVBH)a&zvOOQMg~LxYqTILd)y6K`?K8n=iOG-+yH^WI4XeM<{NI84AUN~ zg;ESN5Y5>>5QpnkHP*7>B1eBS!Ac{{HXT|6(OzhpH|o3ub--RjTHEC@dKIPsCWCQQ z`f6O-3r(jxDO%yqkzz4(tdq7~u56_*W%HS_{HNlQ6XPY%S?<+GI{U%EWCo-sL@%Ta z27TR9OKnr2i+%8z1xR)-jc22o@Rj8Kg4|lR>0O1nxg`aK<%K0xC1o`wmG$Lt!}YDT zt=)}XgY7WH10!Aa%@sqV-Eh6o#^&7m#aSFh7pK=Zrhv@V)v2q(;I;3*UHksu8~;a& zdI8||Z@*c&adYL`^(A81;#L^EeCg5>r^Hhdpf)2PE?-^*fR~mg@c5fI*Ks7a?U2OF z%PjVV@5Iq9J)$L5*>JQM7B)pkVdJaGSw0@S8^enW)5}Y|ZHD@85 zL&Q9mCP44Xiq$f1S)2j3=Vn7V0^vBpktYyrG`LHt;f7#{Lz6)sb;H7YB^z1 zFOIUU8|)h#>7|(4jH3<~)cs&J#9G~?W1!kP+Q{I>mPVJs+q-&5G#f~fz4HT zFX3IcC4l)|C(fQ`)JpeyrQ@cdFE9-5Qe?0TVD-UDTq0TBFb5Sg>rer#StEtvu`4B- zjpdb8g^Po??B1o2aJlPNNw~&Nr#0wMMd3~`{UQ@3!t7cYd+4P&=LY~Tud6Dpu^G-BC!pbIUCi1L zlaqL*{d%?puxEv%gCUvT1O?lIO1o$Hc7?SGyV(^M>&)jg&7ae>&$Cn78wRjc894wp z3{G(%Z5eFxqAi1AeCd7ZdI4SKE}I)@8){l%lYMGyMY8c1Fv03*0Ba}eBx|q3a}v!c zh}^uAf`T$3F;rAh1Q=I0RyMWO3) zS<&!lKLiqQ1>0hPIwP$~c-tgGR`kLyx2mouQm2%gYb){)y1h6l0tk6p( z;Y!_2$ik8NQ$F<42Sf^dAZOZ7Q zFMqBJGyaGl2e2E0jvi{{_U3f^mi!QaqwA!jlc>pHb@_fPpPJ$VI4U9?(dk-WHlK|h zsm>**So4~Zi4%O676|!fAi7l6-Cv&@cIg|No~}pt#vcK&`Nh)}z|joemRVAeS6Nz8 zUtKPrnMUnnWB_DltL|}Nz zis6|T2FcbrzHT_$wZGmi;eN1e73s^~(mv0g>rGVvD}5c=C^R3&q-X&6LRxxidPZ7C zW_o58ju~0mSvlF+xjEUnc{zFcUS|W_Y*L3ZvEQV2pwvlCEI>-n#1p1Nsp)nPSV^2> zx^9V~H$_UUHfFDnoT8lE;#|VG7>l2((#EE`&aU>VhN|qs?B>q;!SUXKvF^d~9w<09 zFuxpH+XSEH;s1bP*w%l4&qCgf?@W7*Z@!hbStfgH{hF7Mb?M6TmSVseM>yT-*&r;Y z4M7_K8~V<#Z7!^A%q_3aF0M{9|Ji0luS`>Z27BAXZlszdR`im-5szG+CVe+ImpJT! zvLv?tdk(_ye(~bMrHc!fHy1BoTru;Bmp9j!HaBpi{jRmu1u)p_%oTErpnL&vp5SOQ zwrnyN0j#;%1Tg9AiauBa)IcwrislFAkHF$uSzLo*{2)59Px&Q~wagS$&>GxJN+vkQ~63)9nc zlT))H3g^>v6EpLnxy306kKqY~2jjT7GP|^D0ZfmJ8}TjXsU%~|B{$sd+8XF9aHU6w zW#8NcN*8cc;Y-q2Z=tgXvmvY%SU0u2I?dv!>Df^zdLNo~Q_$SP1Y3yU7nz(Ho0u9K zpBx}Z8}-V|tQY;Wc* zJck2Q}1Z>4UIC5FD?!4le)T6donH-$1l&E z{>N8eo{Ept*Y9SYdr|rnAA^0tZ8!1CS9)aaa$1BGz213hOq#C=sB5)Nnpj#`Tx2lV zz73#dmu9@7!Qiy~9Ka9DOu(`V>t&OorL0wH#Su=pAM65HC!cGsqb>WZuPyP~Zg8m^ zl?f8=d&LxG9kifjNa;~gTmsmYhO9L%?f77~RycyYDtGtSZ1is7eYqvT)6S= z3Uuw(8U*^n6c4cOMZEk*jW_ERI4!5k%_6Pghy4%KPMyD1h zL-P|j84isMjt>ot4fh2H`$vZQh6j6x`};-)`bPTj;GyxM;fdjq&`5AHI65^tJ~IwY z%nF-@wNCC8ust~=$C-KQ-C_20r%B({^*PcMN8PvfMb3GzPed}vy&{{$lM74IjZ0$7 z(<3S^c2WtIO+?z3FE31BWk3KceHFB1u#Q`Bvz@hxrkP9F$uWyKy4)pbA)N3=en}Wp zWH3%_f69h%-L3QStiwkM?;J3%zOkXMpYK?Uh@Y?!VX9*~P^+)shUHc1> z&|YzE(v~&Bx{K*KV9Q;Pz7bQRedbvHlG$0lsv8z@XoJege zZ>WXe#Ss_=bR}o1qD)8N0fe}PqXT^aR{5gPb!N_*&L`*RTqiCtCzGE#?VjUH2`Px| z8t*P(?Pn%3iAfmjx#TSw?B-{=^=h8N0Ct;f_yFwAU2v4DVdsb)-^?taH#;{E$}5l_ z^z4OOT3#k?`Mh6WQ(bsXQP&GnYV&7TOtvCcT|?}aIYk55{Vts37UUKb7ZjEkmsFLN zRhE@kl^2#2CL|}sC&gCPR#9j2S+A%|Osqpc{TaNuuIk8x0CzHN-3_b!4vci_ED_UxLUz=cM_I+`q`xE){ z=#sTJHFKVIE4tXpbJp0HFG8ku$!_$BT}0fHq#u$3Sg$AU97B)6yjFyhuzcu^Za$?E zXIbuzISc2Af!t*s&zU@)&(UL21(50Sg-bhYxz z&HeU;)}36l@Q!andKLuSCS_$)(ez~m+rEYi7tW@nKsW((ain;Qg{$MyeXth`&g3#f z-?J%6VE}`>mcDh>oQ0s#WBF{9mgE)46g)}CsH(ud(F}IS1uB3!^PCL!NkdQG?14(2 z=m)aM+uh-M)6XF{!swCNmyu(CGBU$mAFtEdbd+Is`}CGYZ5GbPo4*jr8LP1qOSd zrjFL4%F?>l#`fM$Hacb3@y5=M`anBmresP9Ty0ykbSdxdXzA&s+WNW!1HB!CeVs%7 zJwtsIOmh!>Gdwg1JvuNF8k(3LlaWv+C_TS4y|6O1EIC$lEcWH5ue88)3V)g8rLk*x zXmXV0M#Sy-)DRS$8XTD%fQCc;AnU|baCBm5EHn%fOXacoE&>}T_+H$F2QbvExb+qO zYV{G(8)<(7Ot#{tuh0IHyKc0ZA|M%gRz;TyX?hgiS8U(GZ?qoQs5#JvHz(e84e|kR z&>x{>rEtzyVuRke7eCRIMev6z?{(jo%TR`(b!Ruv3pFcrwG&8WcMhqZimnXS_IW-} z?30N|yHV&cfHg=KZHRsCX?@MA6vi&0UFidO9=4>B$y`cS;?uj)9l4Vj6`D@qUaya@ zJjNv_>wcLo1>6^=7d`%(?#N`Xg;BOU_*KIRZqJh+N;~&3Y@0x-74}K{XMul!76%i- z;4-<4&N3=9D_nT3^o{PmX(H-Q2dng~q|BV;Y!TZ-x{+rMN^1=KOfo!cG8ycOH`3Qe zb{|VU?;G2Yl0@#h^bG@;1Bfa?1x--od2@sKW7F1(X@~e!;M0Ozs-*s}(T84p?f^KN z!EPpqhM{yWN|~|X%+iWZhqnK~2EY(a@RlKHcQaT4%wdA=$H`gS%J_sW0Sx;~zsucL z9#hlPOiENH%`W67IfJ|Tg;=%}8}D0MT3!MAR#a7jzP0sr?jNDtYyG3GdO=5bKUn34 zk=^_(S4wDww6)7jAoonLJh{n~E-ou3fUEFN-O^N3Tb+@boST*2-csMw+1l3L*wR`b z=xXU5=o}dC864>y8tsO_BS=VG+T6?yb zKONAm0^=#K9f$DVi+H^$h0U~dwBWEf}^>sC%QeX`@!CYBHMMq zzP(I0Ys4)Mc8#)|EbWsocUo8&WuWOneWC0vx0a31OEFV-+`6U&>U>I~+vHLg2XSmy z;6?R(FHbLq_+8xo`5a~8On1(A|H4j$GCwnN9>)I@z)=hi|0VH~&cw+qBluk$@jLPr z#zhP? zr7iFk`>TyFwEYDWlD$xKSk_;f0KT30R8~s+tIa0CV8w7m7N|Ef&WBzqC(mYbsa!UP zALjjZf?PL}4SloC5mHRZ(xIjK!`<$Zna z-Q6uM?M?8(Ub#ziM|UgKH`o;%A2yqsW1|y-UbA;Q*f%nSW7j|*SlH3q4S|b1a_o;q zrV+lx?~dOZFmCVZY3=H=^SGqkysgnwLu)J4D1~s%n(@aDFdXMcwRPdiy&u=t1$Fdw zbq(~;ANP&)!5I&Y4`I0wnjVKHXN*OjAA?+E+JYkQOSo8#FoUn2mmSb7Wt^BC<^k{( z55R*Nf}WZig+enU#P(=Nvz;SMunS-i*K)VN8*1y8Xfso;)b(<^*B^6c&a){%vSmn) z52k!yYSj>JYnfCGmen`a%WMyasbDaK^>kcvBEBTxb<4RafS+z})17aYNsz*#D%Wgj>DJY8)imEx?Awd z0fla)no#liV7nMaHa_-r?DHu5Y1=M1}vYvRKaVGbK#FVhX6-BPC# z6M14{(L!SDfTK1e7@6<_8wsjy3_h3CR^dp|3Rjs1t%_1|lulQNE-ZwGBz?nI?Q0-?r(ISv-P|9gy6$q zr0-(_SSKCnL?f2lx&SsUsAQuzoZeiJuWwv%lvfG@nB&+gtKovHz~K7E246=?ou6wzT!uXy83$|p6HGGC9d!Iw{B{05A^hapx|h0XD8Is(a{_T;Aqs|+8Kbz zS{SnCKpSP|>B__KEr!9u^)^5Y^y&`aq#fqCud8#Qr)#jcXSlyt%&};2Y*2V?LdR}{ zNp-Ha)8uq`?!uUPJOK=pdSyaACOjZy#RJ3yn?6|@vZiAe(>!WrYJB?)hNaTiYcSbK zzboqR#_9n8hTMR>4nd6TlQOOu12FLeYJ^l9Iv`7L*mip#rh6x#YBcjM)IjTNIxH zyb|6>`Vzp9Z?l;Iu6Dey9eiYl4~83VM6%YcFH*TQyL?^Z)7S- zjw-UsF~i-nbnP#J!Tlx|A-sI!C@02pIdl5L0QSu&jE+n5G0|-|qB~}|0|E7Frm;P5 z>!m$6SJu}TRa9_f7(X`py(G8F^}z~YqSqDI>B-8)H2a(iI8)jkmDn~{}C0JD>`P93MfT}tUo5x~+L zA!_`KMxphB!V{)X>yOYMg(FuS_k_&C&!1E z7K0n>lNUEaON+ySw%U@S%$BCgp@9G}9O!7~xY@>*T3F$}{_fx?coUSqPGciO!J*!v zfu6zs?t#8;Gv|k+e)~5Clu)Hf^d6xZ%?4t#-(ut!{nTv7|v2WaZm4XFC@0uSlHnBphS|#`^Q6r zZ1N0g!)H!F;zV8@3mEQWHQYNmWa9I|KHLHk!+^ACybl^0?GbqezNXIxt#GfI=^K&o zjI|E_0{Y@z^b*D{L@DKNb6YbNoe8z&Zn6FLKud0MzGN@AHiDFjZBc78RyjFEd3Zo` zM>GAdGT6|!QB67TQUeX55& zLMzOo>pLR44|()W^oVQw{o#UU=nHwnX$p1zx+QT*0c1mK4uIVOIo@B=Ew;|`Eo=Bg znPiUF0BYh&doCdkGQ?$&JX~X9cLN=HGhX>8HCOWV6o|KLx^=YQ)!xfm4aNOn_UM4w z1vpP90iy9nLRRZ~o%C{Ltt%xl1JT^mwXurGJUbN_d?qf=)wY7lGDwFJ;azT1u^2Rt z%75OH!MXtqa^us2e?R_1O8CeW7Hh*xDK9q9tetd(!L^m)k0>2*bvXg7D7F#6VNp8!NbV*D3MJV7w=U#7@;OqtJKA*IW;nZ` z6$(~W+RSH9HV>;d+=*T{!gXr8FWb{ccOTU8BdThub?6)8+u8!j?S+JI!MB6E5bSSZ zNg)AT-%!`u)-p8EF+V%Dad8@2T?;KOkIl`E4-R%#RTNZL7IyWu_6`O*I@=^UtF5U$ z(9+Y}IXp7JR*UTJ1O^X|40`i?;PVDYCq@~ghJxck9zknpcyt)zXx(;rdY4<3ROF3dveU#%!_rMF_p{@+waNCPXj!VQ3k*!k6*wk2{#;@#jv zG(J8tHaZr>BZo(ZIBu_@v9_|RY-kt&^ZHbHgYIQ$!C)_JH(mf|>+%*zCi)G)Yr}E( z36BkcyQH+KORb~=7+@xV+i`nuXP`IG3HlFq1H)or#|B7NxM3(Zqmg+^$7}qc-80^z9w!H0oxavu*&h-y{>SI9`w)M7|ydQ9ayYON3;?;z!loThVCe*dSAJ;PwaXc`dmJ2JA7*Ed34mVSpn?^2!x10=0M+gzXP<~-SZocFwx!J;6 zN2^2ZBRf3Xum%@UCWRr%&1irj##_PHfl`Z+WY%v+nhf{N&H;e&8h}Q^RXwPrS$T8F zX?fM8x>cC&d~!_)*X=HrN&~mxE`9`)xqx26p7f0dFysR;9w5lCsRV9ID@tK}i%N?i zoa2^itb*|G*526L*AblP3(X8q&5cgZ21C=MlQUzJGZPb2V_m)NCFKQm^_BE|-97DH zo$UktJ)jP!1F;jbX@ES=hKr%eF-{QTFoVT~X_d}4;5>uLP%tzx0u2xK*4C7_w$zUd z_f1WXPK*yvj0eZZMs&ii!dPed;TG_FXjm8w0Mio_z)WSL6}HiAla|#z*ee+B?c^q_ ziBY$A^mPD)+?SPj@^G*ET^;Ldew^G+0J{w4Cb73$%&@#QxZY%iZr@-*ZMYFOzLMe5GOj+)C+*MzzHXCv?-Y>#^BaA zwAHE4HapGr#tn-nHuSA=3!Hp0Eq=Q2{x!kndw6(%n=BbO;fE<}~V(dczX>iT$WH*s}CO>Lj) zGZhY%JA>eC_NZmB*#P!6>y;33P9^}HQJAL;&MM5!EP(43F~`OJ4U3}Ep-nu}3t5-s zm)asy{Dtw%{9WkOS-ldmt?rGzktFS;WGL1+ADo;xb^4Eg`r!E&4?p$XfhV7R=Fx*s zKu^7K@SRWI|9kA`N7K)oym0PB%31PEE<4s70XTooKJL(n*SIp;|}xmi~} z+-lvnEya$DiBdS=Oz0jzck1Yw6JMP=aqP^gZ44LN*+iA)x(!SQt7naNz&Ga(AD;t;w0GlHg9UA$jRda} z316C3SYlF2a`J_g#AJU1EN%%iZxBBVKN_EZ&8{N+*oGHh5{>RCa+{FitutKdEv(Ij za6&PHP4x0EcG*?2{~yQTNdG^R0cT4&O$b`z-qlqw!Qd_g`%3@=%y@i5bB&BI>}dln zm?#9{1Rxom7z$1f4~-8rwboTsmvr^C38tb==nh~h06Pv-ZjCRv+t$&-BilPimmB#ij(piquGtKk`Pl#f z5CBO;K~&WUvl?ZFrb%4w8qF`UAj8`RCtxa0@JVcHw?7)I6B&zHl4pXoKo6XP!QAaQ~sFAAe^5gHJsQ?S1j-w?6*UCox|gzi{?M!Z`>G7IT>xC$(7kv!|!% zbOgz$hNcPZo2~PsEQU=j_34CI$Se9{$+fv1_B~k}fBGAf5y0HvJslfsBTU4J$(|~J#p>~9v}{waevxhn{8NK$!%aY!EWf-*Nu{;z&;-TP>+s= z*5)R!X(iYIzUow9HlD5bx@c*u3b$Zihof<|tLaEK3u7w)>ylRcL%AIs-If~aYq?a! z8-nzu+;$vpQZ(nMVtI(y1GWLQO)bq3=-b@d($dx{t??z{Fzui^`TPrM99p~a5ZRrA|PVip05 z?`f(ggIQ|?62tX&_XTN4tk6`X;7=xTT`9xUs1QC=%y4IRyJVw=l7=G%2(E z*6dVWoItF#1z9hy&t38+99+4y1j(oaBiy*TF;5Z9moG1GY|ID8`UZwNXXm8*BS#Ez zx*zdIpQ_^uw2}uLRi{h)3(y){Y~hMWdf{K$e(oEjX|~X%8C49Em+H2SdYE;k78wAx zQRs2ITg+R=Cr7Y$@rD|OTU^=K+22X}iuq>Pxub=hPjCd`2;k_3RzB|fHhQ=Gk_l5f zvw=q!z(u7+Hl*C#Aa5a1*b6~}yXm>MPE_{{b@cl~VV&f9kF+P?d)+jrf$eaBAdww-tU zY{&MW8vXZ<+kd)y$K8+r;hlf{`CLxonXLHpX^F8J$@I8eVi@O4kdA(gkG{SgXg4v~ zrXXpw*$#Y5(?M{&-6gapVQHZz?j?iW*{s6d;(Q1s#xb{~KsVRj2|CP)lO{sN_+w)E z0+45I4eJ2d@vlasWBmaIa$s$>Por=NKG=_d~!eDctN$De-k!Ke1_efFv6{`m5rkA8eK_Vmfb^9=2RooAEc z&)F?`+xHRDAr^+O@ou*hr{Om54FlNgDJIW+Dn3T&94(1f;jSz__&; zgaDTCj|!^AB*uf0_>xWA*}76!!P+?59haugIC`*wwvKWNVKcXEs;ryDwxMHMYD($_ z9w`^n{wQ=_4gic504@_Snt*Owpj|I>ychw%<+Xq){=B#@I9dMM-nP^x9CA6yb!8!A zad;m`c>>*9lZ%w0FPI7u!}b=_?1jGRgIxeK3e6*JF%}B&zB*FSnWoi)gW0|sur0$3i_9X8Ux^|zjj-F4f(mfi@5VV^$X8Gu%n(t)Bdsvd>I$)csSy94uD&$M=a!s(c z!sbTxzM9IL?gh*)WTho%fK@5kg}I*}`|9rd_uRH?$L+g!-oAS`w0-yP+dyKY+i|<6 z?Yo7?|Go3JyYBh*k-xotDmy+lC*^#Wmnf8G8a6rok`%@=*vF(mJ8gs`DvlUO)uy=- zE$gF3o@+>%G*zeTdzhP?tmM`Op9A8iWu|52 zX5qZJOpJsY3<8*WCmzCu!D509fPHgrxEsjvHpwxmpZ@PJUU~ZU$M4<$(1ZIQ-+S=M zgU>#D_{f1*UU=?}BM07k;m|vWKRa{mRFd6Q75XM8#H1yI!Dmz8S>tVcERzX!K2fNt zO*-9foknrA(R?cNV8Yb`SQs3Uz%1cqxLW`fG=;uAa}xUe_|Y#;90Pq%#+*4GYZP<# ztFxz$o;wYFcJkOikACs5lV3vrJn_Xpj(@(5?@P@#)Y-k-mQo{`E^cjcQBz$_bA&mr ziF%k?WO2Y)R^!rub-iIQG2GbJ0^vu1lt)jU_~OJ@iD}8;C|obw#%ijt?T+a=b?x5n zrq25+5H$b79XF)yDadB+8>NuW$jWs4I7%x=2iWAU;h2^-tH#rA)I+woSz368wMAdxEzENRvftjJzkzDGS~-T zx2K>Ck25)0dg0SuWCFOcr5>IJFPpDiNzD4x-o7r$kTPjj@S5<@FwL-f1TgzJg2D5P zp@pRoF}%7yyLoZ?%H_FhS4G#aEmAkGFWtDlaQ&K48TYPVoLyO)nwcA!nC!RBD?-7M zu^~VUFR7)gVQ{>cGy6RB_JO<701K@3I)1cwceZtPw03e^w_{5HD}(8wJ@xx$?vlPl zH5tqv&W64N&h~H^z-~q~&b3oV??5=X%`iCrl8W9igC+88MXGVoFMD7q+qRVJeYtb2 z`^P-l62MHH#_A9kO?9q-Wkp?um+IUA7{dX>2Lru0LTt#z#w>VaaMN1D=03Sghj6NP zYYWuW(##__Yh=I1jBwBvT@uHx!}}TU>T;;uv%f4{)cqQ1X>L9U3Siq`JrcmOD`_@3 zag_OQCI#B92Dag`OxVPf^xVv2XHNWf&pnD**k2dGx9{2o`wQs07&e^VdE4E0zV(j} z;&LyXrBS=MrzQ>>0fAH{g zPrvr;tABY5_7`Hv_p6g9KmO#Czn}W_i@4)Q6VDt^KIaw%x!iT6$O& zOnGxij{K{bQ#j%l@b#~s|Km^p{OFH=|I1r{ z`O_PJ{^RR^e)pw!UqABR8#q$i7bz8vcV_Q!F%$VTTtx-k>I z-OZ46IjvNdoO?UIH-{O3dY9HaG3lCg&o7ij=t`^>a2YX|6~+>AZNh~K*Q}bR8vKQ2 zFD>ea+U}M4*$`76vb{|gx?zb+8?VoeTbr51f3K=?^S&=NvfIYA!Xmc$H8U{O2Sa+j z!-<~Dmj=BqfEB~|U6>`*)g9>T?I%*@P(40k69;MsY*F$@f^ug`35 z&cgusH5}rv3a(m-o zuzO_O`qBR2AQ>#BN`w7f{k>!`04y@8RhsrJ{VBa5vvz#!8|+fK!C^j<=Zsgoj@bk7 zfMQrnlH58a*($a*zMTqS&2yGF23>DgE9eV14Dl{o2W(C_0f_?`bmH%pBv$XMxYc2W z(E!%x;g{U7V3SKSk`B1By%EsOFU>D3FT{&f0CU%z0CpD*>WTGSmkz$4i$$u60M@8A z{4p;(I?&KWbPR(%TO3`or~uYB9pS*3H{Mh?ebWnaCE+Nt4C#W_N@QF}%}$3Ed*q3| z@U?f`xy$40E=uTo#|{Yeb)^{o@7=fm{J!7*^URlEaBMozn-twuLuE!FSmdY=b^)wW zXjb=1^NI|S(l^y_o!3n52Zi{^R4v zAK&-z!;k*{&;uWx`rluroIHBrlx^M_S%w>RwAoV9iYp-&P8Xnscmm==$IhP-3w!?5 zmuF9WapvfkXOH3d`RT7dKYRSs(?>r(_Sr{Y{_D@5e*E^|K6vB9_g?k1!SO-(RM4Wdq8JaGm>y>T#hC?Z@hGX( zGh+ZV+%T;0#>VXB%ZpcGe{U>bySXU3z5rdiI=^;NyfSDFA2~SGqb0UFvK}XW{jh{} zJ$-H3Ns3&wJeJI+-mcy*xBmti%r8k|ubx-)IJHcKX4X+Pn zpY96dNa2=&!EU_l-o6e^0V91qgDa9{O>cxcd)hn&oLDkKy;yo0G|K= z5CBO;K~x^ypW@z25sl0~WB#*@8TM|(n?cUI+wd32%t^0rs^u0n*OcB+CK}%+Bl5M` zd68SV;piB(vte9^pTbDBot$P83B94hRVwqAuF`S|SGIPsqQqq|!_L~PQUUBQ0@itA z=@&AxGhTc9O`sP5R`lMs6W({X3t+LuQ4E%iVUwcu;In&ArN^AlN;#7*TavOdxdniM zm2is*-TL*y&IXno`0dpWiJi?7rDUb003FlA5iI;`71z$fo^%eB-(N918^kea|e|_)Gzr6d}pWl4>{nuW4@3j}- zdF9zR0NNLR}v>UU=)sfmfg3``nX{J-h#@BZm&XcKE<6 zFKlA~2X9|2Jj2&$U%xtUBpK&}QnG{F-b{B}-xkpbTK9n6u(N=+vu#V+E`yAiwYT6i z348*sV%OU2P8B|@_%zxOv^U34#)dmDn>(HA`NDIE>*}iN>wT)It+j)gDyyK1s%jj| zDk^=_UDDF>@cP=FVJt7kl;^U;1{n>8J1y6vq3}R$&Jmqi`=nmcyk zt=Q5Sz|yc0!U@#W(d>$#V(i_lIl5VV>=yERCp}vN81yB8dwMNIW$V}DBKOz5#OzMi z3gZ}w;eg9vhpFvRcr#!&^pz-acN?QG8qlWaCWG6gv8YT{GKt^axLn%eX|MGd{@sPm z{hfFu0L&jv(U%(s+-9B@hPZ{#rjOBGVOP4h4cXK!vjpVE2k2`~Bmm9?OwyOCYpgLI zs|xQif|-@{t|4ZkH5u%7%Q7jrHuA)jE6|q!rsva+@kAZyd+O||-`#WXt~>8?y)OZ5 zEGS?{-+4V5U2{02c0MrUJbbpePgv&Wo~h%JM;6uogBK z+|9_#z_GBru(Y}qR~69LC%M#co1nJboQDC-ibv+P;6-w|-~w2VURjE438xwcn@$Xj z8=p>$fw$fSPo6mP%F7S!-TUBUkKME9zPs<;vwP3(1Fs$U zXUykcBpru&g^|TKN{rg<{`t{6fBWFA zzrGK9$|y0M>kDta^6cv`J#*xRC!Ra7?}Y=;ybQ`77QOx=K>O_5uZZ4#`OrH@4!!jf zL?l1+%5(b<(8>Iim@)j8hw@tTBbu6=qz)B;C$zY5|-pKAh;Rg*bw!if1n3|8A> ze6xUn$zyvw=~{pnW?rOQXN(grAUIvz&9#oM+~u|?i+WwzkG)gBYfE^&?vG@!Jkmz* zu{gkaHP-B0p);r+U9ZezX0|BHguiq1rNgCW`OEm;@*)^b^}d{=K+*D&!Q6&X0BcGM zj(8p z2_y~;jE4rNW`dwBSPKjTy6YQL7dL0t)}~ihCRbKwmY1g&=O^Z8#}?+sA)L%k2dAb+ zpvlSMP-tj6G&VIc+TRlhv^Mnjb&d@8*|K2MORI0N4`O>PtpFAVvxBr#P-|NjB|Iii2wBX?EuU2s$wiJ zxa7jo{1#HOW&Y{gJG)wq+Ff;Y`bn&N84i8xiC#|)nyclGY%;c30Br1UjUw5tt(W2g zCn1Z)Fm5%lo12;GOkzm&N`6@rK@4C8{Pw%=?AWy%0FHFPJAbxg#~nL&LAPzc1NzDK z+rVI(3vEtz?Am$9&K(5sPwu*X@3Z?)r^TH~k7u7OjY4Z8bYvElowlSWTpY+{A+p7g z{nG4JaaYymY?|&mW|LJCN??Vv^RlyYvodosQ!`Ro&0z(HwQ{}uZM0DLs=lqmM(vA9!T z#UB6k%ol$@@sAHb|H}uT{N??B{`sB1y$>(@%KL8^dn!8k>Wk2`ZyY&j>?uHtBX4~A z$aBxU^1_oZJqzLFfDs;m+xH!L_VL39A3OXs^yrIEJ@Uenj~)VCAN#|TkNkfB!++TS z=bEWXT^q#iLV&bXMtQqXI#0$HQ8?wi;f+$WZ>qvA_;wciy7HRQV_{xFNiKec z9s0{TMRdBLEkqK_2>>k9gtIs-A^hnw0EXGszz!>j)bfTmU^GBoU24{+cApG?A7hBC z`P<c3_+V~u6qR!IBMe++~tSd7-$Q0wBso9z7dz#{G!~f+>E9`Q`dm(w!)r{ zjL9fmnbtQs!tPp&i=pM^sg1SiOBba)iA74LBuP@HH#cUXOY5_nYcp#rldH?2wWX=m z#mVLQ(8A2v;`G?`*kEsG(@g)PX?a+ZAGmYQh-LuMug}kgJqP zf#6u5=j?kW5@3EKSzC0sDU3ThTPVg4xX;bvCAW>G*Rq4lK`B7TYaoDS8`wmT_((`P za2X6UMax3ktd-eaj=R6yakS-p-gIp*&oM7z%yxdRMxNaw2)3Ke$jaRJ^j(F+JCB&DYi$zVAyL2$!G75FJdU~nN$DvJqYQW@f1 z`WOc4_zLNyb4&7aiY1v#0Bkm=-BJ`zWr$C|V5S?Hxj3-D3AQkoA!0^}Eq4>nolHD` zBJu38_|qrOpFVc>Ra{;gMV zJn-s^PrmZ}{+FM_5qy2(r9+Rs@XVvnKmEvaPd##QKg{bR2lhSu%o8xO(C?q#d;e39 z-S_09d-gwa|Gr10Ps`p1?|$U>1noVK{sGX%QH2}vfcqYM@cz9IZDaPDu}9(Ipr&q5 z;DIZ+UDVW;<4fF#4-Y;PpdbgOsrb>gUz%i8A9o?`Mx=cb7%lYr1%`Lv@Z_K=0BjJ> zPjY~OCtRDoon!t82)BT~Y{5fAENyH%1DqGDP5Ct|M^*sLm<_Z`J_xf(BdZvN%EYrL zR`)WElPM%T_a!uO+?%^L$JIf~)y;K5h9;TWf*NqP-Bt~Zng7LM2?Q|H`Wb4D*yS~{ zZ8{8<*=dp=MSdQ%8jtzX?AKwgbk=#$5bHi7FWGc{bYLWIB!K0j-`ds$wY9eb!2Cvr z8QTLb6_uqqxtTcP+i@Kq9vuvtHX5PH;Oy+!;^O4e5-hK@<^XrETmpLMuU=lfc4g`M zWvgqK7O5*2=T(>2<~Nq6FD}n)uFS41gvN%u2L{?gq5he<(W#jc&M%q>jgC(Q+2oQi zwv8|BFCwqp7V4O#Bo|@iF;{iOFy1yDy%x756W^$=8wQ6+UxU&J^a7;}o7>LPlR>Ex z9vw6qW>+s}nVBvhz1rD>v1^mJ6>uAaxU-UM8kaS=)&aX|P`)6r-3j)H$d8x=qWd}k zLc9UIMDZS%!T49Js4nXp2yj3JyK+K!!REK_roZp$4PZ&(xM9I?dnevYO)Z^GtzB5P zH#W8drMR$ERW(#p)|YD-6PJ|wCcGi5tgkg!9>$HlO&kMb8>SZeYGzio%x$aEL}&#t zKV=GF&D&5P=>ixSQ2Pt|f=p-6$Nl=Z_w3yDiyb?E&TMB^{Q|(S#lQUJFL&ZDa*iQOF+wZz#$1iri`|$^fxv9z78M15ZjoLNi3UWB&UgsI;z_%QM zu9VCcnr=n1M^;ni77el?k4?!mj-P!nywV^GV4F%(m7Ej z@(pWYm$_A(SCW@2(9O**%7L;9v$^|==a;}Z0}p2Xfz=7nYr1DhpKZJz=yYPt$wY}2 zpGp99Pg7sTp8WjWu}@Ba`SGz&KK$~3|M8O#-~Q-NuYK^&p~ElS`@rw-{_XGf+;i`} z58VCC^G|`VpzNX7Ut}m4M=*8&;X}|`JePd@hh{f`2%_ZvqG-T%bH_dWiQ?Tohf!FwKi;BMgdk>ATz;Vu9G z5CBO;K~&#u1nvT~bh>z$o~ZEc+iX6q*dx223Yqw`ELYiSoz)2Bv3_z0V=2tt` z%P;LP(KZ{X)Vd2#v=kk@OZpxRbV(;5Q?l97hqZYdBVzz0Ukq@|HM=&Z_wDDo#+r}8 zMHVQP%_LJ1i%%@DDu6L72DLJ_EwC}-Cdw_@QuuxGf#)T_-4Q31r5?sa(wbTuVD&VZ zX6q|jnp#?IY6-h~;ZLgc)k}k17tAzYm%%QK?H;fJFxHPyX+<&VYtkH8Wn}XmaEZk2 zxK}${>GD(ei5ZdB#vSaI<)&hJ+rYN&hyhamGqE>?YrH6fTM-?wl3Qws+nWPeHnlXC z6c-d0<$=fSvCOW~3v*-3iy@fW_0_41>oZa!e0c`Cc6ILRmD#IT=C53yyMATi#??g} zU0u68fA!MbmCacmVUb~==VpedLjCizBQVMmWG6=rJ=w=aj}MGyA@v~x26-asM0 zqsxo(s?0AdJ-=)hu$39O`T5zgnW>Sf$??h1m>udc+B-DT4Gj)=S+<#|uXYI03~GgI z^og#bd?9G}k%VyzFxk_NwKd-PYzD&pT_a(9|4?^PX&zn`pgTGa^!5_Ke1*`!P$w}= zD@-?xqh)YF^0Qh4jZkx&Ecj~b!OJq*CM*qUq3|{~o4eJfa84pLRgKlvCh8{JH!#Y^ zD~p=yDjRCFg_`r2j@fr8RzZz)Th9;1+h?(B?e2<;00Izx?HIckQ@q z=N)%)b9eg=tGj;j^I!bxmpgawy6xvXZ~w)v+kbiIZNJ!k`)=^q0@y7~`q^DOezJS} z;rCxnE=teH&rHirXNHFsLyEyQ0c4GG$x^$xhz&K_o=E1K)m25zb9CD0nG1{jCBZyi zC?H@jyD(eG2kaGQLpaII&vXGS#`i+v*@PJB(-e0GIvH~YKJv>`UmZPj?CALuXOm;% zGLsUrQ&Mu%GK+U>xSx{ziRyJ1GC02Q*xp}~Cnc$f=H{1KUSp`{8S^+4YDQVA8 zj@i04JJSq7!+a-Yr^RQd#AYU)O^rL95<_46#rdNWE9Y0OX`NwVH;zO$GeAV)yjjN8$)~QPyOm9pxM@V`ir%}T zwaLAv8y}9{gYd*1Mr_g7&3H1X8R+Y1_WIyQCp(A{SCj=oMLpMOiMI=EkO)lG1$qi2&eGXmECRba8&%G@hIk`fkpExHoUk zee=!YH@6mUT*H^Mmo}$N(eMImg|AcGn9F?Y$ea=7y83Hjd2s7Kwf*-fG)k`vJ(@21N zP%jl+*hBh4?w}<6#K}+)%L2S4ygdAxc(o8-Erc&O)+f1QSXh{tpC6x{9}^P~m#GXk zfoSfd>k2@3RW(=6u6QEToqXK&p_eDj)q-F~VNxM4?9s(Pg~SQk>PssMhlAbJ$Y_sY za4$~qr2<&3FoV*P^4;AA2Db++eOubG)PupT#yhs8T)H>VA(6q1%2YM5oI!GHE3wwE zx7#H+DXT3nsV*(Wy1${iw7!Y~Ic_)FWo4D9qO!c)q(ch8%*TyvgLJTuTV5z#Cr#OF znqe?8j9ZRWgzny7WKQoEYu+BfdIl27mOg zkDq_#@WcBayXS%Xe)s#k?|pF3{reu+fB5OQ|Nj1`=f8?ck4wr;0YT%^6VIf?oJ)<1 z$%skLPtGVv%`8mAF9m_Pd+uo5 zsV~kS|M>K$A0GYqgU>&LqkZe6cVGYTtylm2+L8BPKK#y+7vFyArMHiW-hJ8V)fe76 z^4POaJpTOtXI^svbD7 z_x`6I`NNY|_wRe?-hB`5+5eE@)@NjKfcmXlz_;2lsn86op7O-R$a{0@B?O z493+&a!iJRTX@ibQ77e+7@`9PfI(JnRUE8_V^mXXonbIxEY(vAV8{nx zriZWxmQLh_w2L*1owTpDsJMUtmdrzmJeO&TKLLyzO-@#kCol5seT=ouq_&J^A0nl% zlmBc>Su};m1+a!dqh(UDIz`?%0p%9QCE=os3v^RsO?6f2$Vm6%VrX$`ba`cbeJunI zU4rqwzOcA5Qc<1R9w@(Ya}fZ(d}*3Jv%Hoa^JMU?n@eBcTE_9_jb$*H?K|X2HfKQM z*_naSU|@c3Xl+gEogkbnE>8k%GczJ)a>;DLi2=^*4NZR#!orSL7Sh#k5{_>TXi<^^c z>ys<16Duo|OG^`TizBlO!?W|j>Dl4Q*^%)nnZg9q$!sjFM?3o3HEt|1Wb@wETwCRj<1)m^)9`{k}*KXC7__CNURCm-7V@V!61_ZPSSd^Z>je@q6;(L9*B zS_j{JA)^8wF&Ac$=;h~{A5XTPsotX?l{l$hQ(%kJnGS$y+7A?U2A<;PHldAMOJEY+T*+@ce8%FmGZ;&$KPJMfBn=q z=i@J)I0dHOICuKSg;UqhpVq{gYa;OYwR0!0o|Sz*ac2{vlBkb1_-KSFE&{UE6dUOu z6&4&585kMnq4UxO7>vPw0bzmQD^u1OY4VSP3{}AC7ZG9zQ?kKKQ$O(p4%Vqsvr6R( zFzYm5vMpglOvcb4Sy9E0M%VkM3XyJy=*9E%UNYnJHCHv$|b ziGg7%8xaapyN4>BEBI%LTOqCbElxXCSz8BXj|3ZWaAl^PB*7iV+Iec*A+AQXrwBKx zZZ7m!Cp3IUU)w6mtcciW9Y?j6c*6YWlc1hAYNFHf`yYJNT^ zc!4Vf?#Q6s*5=CM!nECPURjy_^{*F*Pk*le`p?Z@{{8aBho$_A^sBed_6*ej^MBs{ z_3zgR#UV>{3IF?FuQ~qn?>GOZ*5TKGiBJ9U=gUvOY<&2*0i6H*^BQ2bwY4xi>sVf% zeDj71t;J-BwbwtdzI{tu&a5?Gy;^<#oJdSCe!eLBqn@p7%mXk|&uKxzzXe#!V-WdQ z!wK*BYF(g#cA$6jIaQgxc=hbno0YfkmOp-4|Lu0Xr{6Z-e_DP0b{Wvc z%3$+376fx^8?&pM^Uv017S?9wSEpy6O=E>RF+V;A^iDe+lZyQXXK1u3D4B@jp@B3w zL6dvn1%&($WxmSmh5w7Opv2|C+WPYp^aS1~tsRY&%9?df&yUW|k0IukCJ?iW<1-6m ze8iHP8`4;;%ZwK%qQPM3V1ym(*TKG?-p=lxj!s;39ngYca8r9%E8eL54#!)%qpz*K zSLuFX#x!@ea5Qx`H*`@nb~LnfH{+QU{hbJ^2@)r*J&KL1DtW1ern$3O=t7D{O|K3< zq^?co~h&ZH4Om-HTbfyx_b@N@ z`_!LqKe_w$eX4#s``wjO-&{O->*)>7!t6L}F}cVoY#CRLHSNKsP8pJTNv?QJJAZ%s&pCd+NOn zCO?RHFqrk|XCc%o!Y@3?7#<7~E1?1yCz7}_W6VI6G-Y=3aXUf+DYTEMe3hi%A)V#B zd<~xf01yC4L_t&|U&tPI-~n%3(L+{)w=9-dcprd0GQ&Ki#;|(j+sCb3XE8eMWFgB6 zm8lHM3SEmw6dv=)ZrPb5#ifIC!c>PPjE$yemS%9mQ^E0|w0+Axn19>3_=!EtU~!+~9j^`cPs67%KjwGW?Ofpb0PwmxUu+~(Nw+o{#} zGYju#M%HcCIkSCX@cAzrzy3cT|N4JF{_(%x|M{P{fBgIB-~Ra$sQ&%07k~ci)gS+S zi4#2X>5r{XzrXtR&o}RXdH(v{+KV^K8!r~tpD%Ie@#4z##EgA>+6JBxU$+*)xz|6h zzj?a>@eKwufbsa+#{A009LR^ST3Vd}ediX&m6)HD4MnoXN@)Tn)k}5DJOOFz`Rel* zYY3cdy?BPecSdZzScIZ|@p=)U{rUa!yN|1HKdj&cN_X@50)F)BI<;m&L^8&v7RM$R zM#twz#^#*3ln_9#eZpoNw_3-Pg)gqVLFFwy$Xy9?6d+r^;9_LU6#1XHqi9Q;qQD9M zzwovJgK-_Bn@3D&N5~>B88^Mdjp9KKMi=4oVoOO)PIdMWq)iZ<}mvKGf zVx;EaaXWWxkBnLoHeB)py~5|FrL7(4ZD?+*2Umm$?i4=HWcAS44nC2Xt8T2u5yB4A z3ec_VYN}|dDXuTiuP)9h&(5vL$t%l7r(w3FjBEVEp( zxanvTd0GK8(Jafh6+BXF#~d^{}gpyB5GyadmuD+=jQP)z3*Ms{E-(aPVXYO)7naYMC zaNC-iAYmJ7>guZjUGCNeQ@K+XOl7P>&T>kbv&seK#R&csj?lXZew@Cfw79go^3H+s1M!-4^*rL#6 zN%4^<cxoLnsWPfd~b$_&zc| z7s@-JD^Db+zfg;+6f-OahOljF$D4rP!FVeZjD<4BjliO=#M!KluKY>6%#ukjo*f^G zQ0%VQU`xV@VazHM-;h(yw5dE|#a)AKc-d}uZEF#COx(F}Uy#dfT=`6Q=B^6(0j+nP zOa)7uG&Zi|A!uAoC|c;KU;!7W@Plk*+ZS0j!l@ypZhW9mOb{BB4vuOJ(#EhbFu@vv ze@*(^ijCMEh}|Axr1m0jj}0Ckz-Jkv{e!){-Mga=>F?GYj9~zn-C1`4n74bu+VLsj zsxdvuJGd;EcHma4ad-GQvPYvFSD+1Pj=@VM?f_nYwG3^SUs-VL!R^a;uU@%#?Yq=l zcXRID&$<6F|6zJjT53TG?jzlUePgrZ6Z4bMf~zl`F`W|$1M>XZ$53l`DOjp z$JH0_R-eCJ*?hCI`eJcuV-8Pd)i|{obtK zApP?C?EJHdnT1gjl#BEym6go6f)KWGyH(2EQLD^6A!yYrE}73=>V{<~yFy|=`2WUW zP?m$2t+;SHx?6^AW}bYdZDhi0gEp;etfF5Z^j(^uZ1d6t(CeJCBJdZ6GR8GHIqjgJ zPNWeD;E{2XyjI%)xXUNQmj2#8FsBhjX>6)%Xs&B&g}|l2MaTP~;39}y)lgMYS3ymv zRiy>RdD(fHnK|iCGE#2-ccpS@V09}1X0=7U+*6hXfPQ9LIbpV*DpNK7)HnhICa5B-ynms z7aQb{Py}m;AAbs=3-gj-Nt&=)$`*W}OP6X>T+K65h? zKcW@TU#N*zg}zh*Ez12l#R?+gvyfS>9nFGFbzD6`{R32WB}DL~1;PG7(lAyQZAqsN z29mV5l;zf3flLc|`w&^030aIIbSJ)lv4; zL1Eu^kRP)4Bb1g2mA+JDKG4G(T^hr-9^vdm`^pSR9vY}^w_rkRtDR+N2%`7Q>U(+J$Cj)!s(=>^Jg!Jf9KAeKb>^u%&D{Y?%c1etgfxC zudc1BtfqDd{8blL7oKfATi#j#l9!(^AQqp`&u`AotW8g?OiqbxEtep0_Jx~V@eaiM zcFNk!&g9ZU{6u^Q7PWMlkPnw*$O+Kms!<%}aFiD7eDaw|h`4Hotu#x6FC3M= z%4H=c{_-R%n~JLDJu z8v880<8x!v^CJjoUs~3TnEP!#gU){I_|W*YjXpK&oSe3U!BaC%UJ5hdS^hel!=Ufr zP;bAvtFx<((A!vBTUS+6Uj;45Xym&JmiQ!m>#D12tI8_NQZrKT-MjbX$&=L7)U2$m z^vtZg_kX%}?Z(B6moJ{j8|LhVi|5asKYQ}@$;4BMiAg7qpGb&Jh`;~j0r(1j*VNb4 zHqZh85cjKn`w%RA@gXlJSo>;qFl*(&a8uHSQxLU~wj3uep9Wlg7a$WJCRMPI4G#>63<6VwV!{!@u@Tzf$K?rv zAsrAE78tE4V>Y+|Xu($ourbK!AL0-05^;kAbwL3L$wgMK#MdAKuy1gHB5i~H3D27B zF(X#+`}5Q>q;p81x5>{lz~B*}^D-H{1B_n&25+O@Q}4@h#Mk?;{MiJ!%3G~72KE(eGDt+t`j5$pJveSF+HHRXUn!AhJ{b^!4765ZW!AH+|D zN}#gIA+?}Gop-AZ2`X8RNDXtE#FX435*-4~2p)3Dma2#v(VR~3?revEhL$Ba05LX- z1-)uoJHUO4+&n-9jcO&c+|9*{#NU%s*<2XKUIdCAfiR=zvMIJ&)nuW&v;gK+1=Cks z|I8=MU|uNjup`z63aADJ6<&W_-y08)%JkoEA~iUuV|Qy}|$@YZ4zsO{C^ z#0XCT5usR7iW ze+Re=;`R+-ZQ9z_*#sox*wWRMUz*$A+X@ofM$A@c|DdC;1d0vHgBJ##d-svxf>zo4#=H)SF5xk?#I zw`Z`cZ@8y>ptG}|vTHQwprwhE;T3gNKyQ9&VO~i=u1F&@dI`Eh>C&LttTaFuasSDq zN2$qpBsC`kNG1U1WFa1BraeeYzLW9fhqOm`o<2Zaz5dO?LmmJyDPWfayZ7!x2;ocl z^L^qUUb-t5Acu||AnQ#s{Q7eL?tkptwfEq@;HVI?d{QkbLXSrU#fP)slNzDiDJv?9 z1C6w+3ep4^aUK!KTde>v!Y?wI*eO&jQ#K?n62a(Y+_DZf#YFf=Dy+o`%S}U=vOB93 zLxlzs>im8Eg8cwsR=|{M4l#kj9E?~zNRJ2k8w7oo?c0z*&MGTM0bt-6l=TiYcm?Ra z19hJMKEN%I85tj|5A+9OJ#;=t489&losUuP>u12x+o03=8*%Oh4C{P+{jn4X`g>Bv zAtew101yC4L_t*AFCxSk9?bjDUr1M)0k!u|(w6}&dtSK%hpR4e4`SMh5qs2phLavq zS_}}%dTEOaU?~tKefvejAD-VQ@K0UE0!8={+{wfCu(*i;6;w<+KaOByKd2Dv=rGrI z4Lk9I2PAqKZ$e`BY0)cv(MbNP^yMyfEGEQ8QIotBKU+Af20F^Mp?2=eB15t)AL!*- zfjCjhxXj($n@fuTv9{%E3#ngO{_?LZU2wU)O9EIKo=P4C<{ftD{QXr7ckO6BlEE*4 z6Xv1{TFIH?e-QUaKzGOR08!J+(|#5gmlhbw5XT5v1HA1x$ZbeUl5=}_fNbuP*uy#A zS6La^j~_mHeCN@lA0Ixt{UGa6Mt4(pe_MZ7TlcsV|G)FIv$Ki|v8V$A-2qXEfXw{t zuHk;$)Tm{`X`ddm&5T&49G0mO>+~pli8JFrvpG`@tp;rto?&Mhv2E{wC@6K1fw?L% zHG?(rF0>=eR;xT0A?(fBX;sbZ2=i1fL2!y~bZUzlU>FQW;HT6!fRvRul3;D9&CJRC_V%~w8EF-j<#G-; zkBmi>2*3W4s*182pt&kLJNw~J4<0>unEdE*dU6UV#n&S(mussS!0h=T=K^VY%mC&O z`3}HUT4`w+?(T;nY$=DV(Y3o(&kf!*m1bDG_wLzlKw?iyWheLmz!rHjCbKLjqbxJ4 zB0Hz7u%N1x7~H4;7{V6}27M7=KVFQqZZ4~-0DW_ybPIAaMOOJU?q;Sw$w_RX6=-UiUH8| z^z_#0{Cs_l_#@zVz;B26YX9yp_w53P-8>HgB>uvQ!jGh9FtBO}^_Srn790=}%A2yR zO%V!fiJ$~vuo;kMOJq(j<5P;X70(gHP#mHX3cwBv()QXSw(FC{IWd(KurKHf1_Qth zTK`a!A2e}r0FDe@Ly*xJ>_=P0fU8ih9E?vdgO8`)+tc9Vq4z%Ij)&*l3Fq&bdU7_4~22TluLQ8xf`i8}Fle>Ob`GYmx{=(^Rj>FF_zOdwOiqn( zn-H5wsD_9O%PWhjL(`nI13)LtH*V5I7TTerK^8ntHGh>~O!N!5E z=AoW0=g`m?)@XKiJe8*6>C=8^RQRDQark>t zf;C;;yl#fr9Rnk098&(`Lxf{&sIj#gZ&9kSZKg2A*`VXvG(o4QEb7Gzm<6iZ@f+@U;wzUzZ22h z*8vQ-;p%Iu%PYyrD#$3QF0O8>f-ZcV_W0{>ZWI<3lvkCPl$VrMl$Vy%sP=-=Vr}G= zmlRf&E93KOA&#qYtZ!`KK>}D+H#9e}=>(^&5IpdQXAkg>60e^50_W7U1aL-1){!Hg z5WzbD%#wGX+W~~)L%C-+2T_W1)GqtJQkAg;a9VL@YH?b6X+~B_J{VkFRaSxZM@yaP zBcgKdww@NOX|Nz*;agHwR!q|fim{{sdYP|aEr^Q%deeYd4R@Kr+7I~=tV*tY^G$qW z;+4DK-F$ra$A|a6y>r_~XN2}u_N|5LWd^$*bocV{H5&Z`0!%ucfwb=){9?QJh<}V> zFnHfV7cdDJW91qc6&w&58cd|BqZ5ywymS^C z9U|Bm6le?$K?H_{QG^DY!a{<=LxUs2a75s%@EqQ0_6at42kB)!7w4kMh=bek)niaFvH-5{_NHZB%C22{~I=*HVK}O<}gBt>mj5 zoGE8`)qXzMiw6K}#{hG%Z$?FRMQ%avlaxp2FP#mF2*S!MC@AFO#mgn7#hqOpz#b)s zu?XmCQ~C|MDSCQ4`^`NAgMCB8=3&c#)iz|Y4q9mcct91z3V_+7ZwG+4&&@qzhEs1( zZ@09llygY56N0%LcyOp+{6zf4$Tnnbe3ZLdfnjLh9RTJN#LDWDJTjGmVX~CclxWG} z0a663-DsoQvG5e*EKebNC!7;gj`7Kn$w}+TNLPO^{=!8SC0*tosRb4BH)8AT@5asO zaZcL9tdvW)zdm*SV&bI>cT=8rTg+ysMULtszB0@l%3KgRMicZEgDHDxG_uNIEqB3M z?Lh0k;X!%?m~?DU_kw7a6G~XTik(*uEAOxW9|6qGyVBoSWRETK7u*pNz07zXPomDW zr|xrJBCAcngj>ZhN1V&yfMP*F{r61Y$!W*Ll%07zWb3VOuEgaD#DZ9&K~@w-wc=P; zQeIS6S;B2IcpP{JAURPix@elf41kti%;+F6j1$3H&iZtSw)M`Qew^SEz+1fw+(qET zJkX2i>+gR27Ng>xi%S~b^miw>4(SYeAn@eS1P+t^TBU&jEJbN95em@jrNw-g)0RG*cantu4O z2MELfmOH)-VAq3gv@^PQ&yG+Ei8(~RniIT{iP5Qr>B)sDU~ooJZgy!wQDtdqO+^*{ zl2qSHf6P`Y-fm>=j#r3FAg`n#yD%4Tc(4}4MQD{S132aLU^UF*7)MCqpPoFrcd)m-ocP_&(+Zzt{>}T1BqtPKpV*+C$WDZ&6lSBO?!em1ffX!9e zO6of(fHL8leP#YNS-XERK0C@m6(v&&;Yf6ncl?+%mXjD(Tz^%w_3g@+scjc{ppnc7 zA)0ZQv4D!5ZJjMLlw`GRu7wmH?&DS;FqpH-2D$-aMMISs zhc+|G8ruLBi`vXo4kOYAyiDO*ZlzLMvB2$<0fgh5;E0NTO(#YO+4BXI4wAX1N3%@oaT*ae1CMhDD?Hq_*yfZBjHFu_HTXUQvh%fO4{y zKqhYCpr(VuY3~^{msVBae*uD(M?Uk;I!(oKTEXBu5ATJ?MutX3T)KYs)S0tq&Yf@X z?FJ_M=xM_|Q-L|k!xaY92YKiMqNA^;uB8b-h_&wy?y4g+2INs`z!R|C_9a!ve`$Mx zc-5$m=W}XHj%iUVt{v`8=azAH9ar1Kl$u9M{HWheCY5 zZ}s}6HIVAKNd=5^3u7~2@QjlfEYz@hxU03Z9*aU;8Z-=zxCQx$lg8$@`ked>NMXTa z3L%1pnQ&7bH}i-}%+`KOFLW@1#`G$M7v1beu9~NI;7Wu77V@`Syj^=K2F!PU{2??f z-u0*S39tdAR-8o^*lpU5ax?q2(Ob9`}$&V7eg0Fhv)F=U?-KO0hOAtb3!>nJG`eb%+6sC_1X~<3TcJ|ln z0t{TAEDD(Yxjxy)WR%5CTtcM}HF*UZ^-!)RKVKhjtRe7A`RXBRjb3`_TBEnY05yyk z9G(!Ja4{+J_%TCBuwPJ+e=wzp1ESO_ut*A16a~;56dP$00pj{aQZ8L|LxmY5LiD1G zNoiyX6)O)>9nDDg$CD!{55L_prTT%0lMq((IQfE`H#j)c%LaSADah9F>QpsxNpruT zu&h#jtj3t%BU27m(tK-ROA2B(-FnE5ZV1pF=904R_^$i9Cdz_ud zH3?qU)N`?AMMZU4abf z!pm*l-Y)vX3+@2LCDkSjceM^-VY*wQhT8XTZGL}jXU0~eG;Rkeeh#$n}ugbJ$v2%|rmoDU`3Blme>Ddv) z+`@SOQ0IW9n-|Aik)T%gwPB^0Uz9CK+{ggNi5kry9OrU6`r3L1yR1&L#nG=89`>`V zv+zCT3V%=;-0k7O<<9`NS*+QaSurs&moHyFmXw&9ok^4OD$2{s%8HAN8M>c^pl@zb z0nl4mTvSw2%m9X1Ea8l9YopS^ua+NDZAVL^Y~#T*@qLObOYwZb7yxD;W?A+jHl*r- z;f#zdC}1@O%~J^X@z$@4yBiN2)b{>L5llQ*^VRHxB?0_6?+F;3l9x#gF31658N+xz zxcPv)xC=qzQ@s_mZ&4n!F9HnaAPkHB-IUC9kX5UR8NeL8E6ksLnx6XL>Ekn3uY@0s z2YoO8@XeXa=S>kId)@Z$a*@KF01O@6x_y)oENQOTl;$`C}<_X^N^`s=)dj9k_v6tK}R zIKa!(!&QvL@C)zt0aS4v4gf3E6maEIGLYCPa4SR7m&(LKs0s{!CDOs6e!d|}{+WxYeS=MiFXoo1 zjZz8G0jW6UvbCO=g^r-^NnygS6zn{k+3ulS!VOxn&Ew)v$w=wO4glLnhPgR``x8WK zU`I!1Gr_p6p{BOHq`aV_x&(q1-~@rlQ+m=y9S*|hT^)Qj!VWv+_C9HKj1BQO`})@R>Km&jm=GL z+KdxG9pAH~v$eYiaHaek8~w;KC{d-{f_oY62zU+L$V7csl$KYv12rMa;&_{USZQb$ z_0?=>r33>Q=w&6%Nol_EDf(EQpDGZ3(%ckoB)957suIbgf8J{Q&xLF1TiidQ8{JC+koFxxbCnl#$||Qt5~x(vRwv8 zS9g1FUsu1GqRZUTJs>D<+?WHFK5L=-5bZUQTpmR7gzo05=1`!lIJAEIOgNnTvSm62J`MOmwoVlFzb6L;3G#oIRy>+icpz)(3Jsvz|Gao{h&G+c<(lb zHNzMf&j4_0Vfxejr-I&3Wq(44&LSF0#YiyupuVucJ=zSDfHEUPfQ=5`4u8LT@reACC!-jPUmLkp)d&27`|ug+9Q~NFvw>1q`P8 zhXe+M1#ux2j(E`9=zG}5!_C9p%VYo-sR1{bo{u=b`%w0BOrwlz$(!?)Wq%|yh|;uC2=H=(f}Qn1qj}9K8#;E zzyN6u+;Y_w2ftb>y$%(7z!1TUYxB#SOUvtXiz~Dj$nHgN-#>rzcH{ZW<*gUb__+Ce zX=7_?ZDWD`gBF&j@O-w=n_HQhU7qCLM|Sg3J!b791!rSV9LZpYrQJ4&!0NcGyS1gg zp{O)3CqJXAwhSL)y=-?5fWcU^&(71mM$RAQg}*SsQqayxISFGD!S+F1@aCbO?!I=` z!MH317hA-P%zBw&QdB}&Mf z9o^%Gw;9YCcrLTzTcLUr9G0QQ{D93ODvUIHke~P4$W|HfRVg-}9OZCMjo~Oec?iHF zv~4`R!wU5B7A#>{MKZZ$V^yJMdX-QGD?b6}%^hvPFoxInoaQ9o(kH%M_V;W&pE44EO0VZnfjb*|dm# ziGg7(n?xDokbT^$H2L}?NA|%6sKe%ZEG5~s z3d>4xw-fK^t~RWg%>&)IrVxF@6cWI4UC6V0)r>lojA1p*%VPTeB4s@>K9Zf49vc~z z5P$So(lIiisY3&OQEcSpE#EP9@QrDn z5^^j&xghOn?vuyak659~d@{8RzIG`nHZt&NWO&liS5XKC0Q1(h zF${V-fR(G(`oljwgg1aG5iRPp$>qaDT}k-GBjaN5@;rQf5r=)e4taYX^7cOL1$4EoQ(Aw@FTg6$Yi!CUT5QJ`SEhjB7jM?ye|+)j*Vi9@ zeev$o*4y_R?>=mD{QPeHFR~7Tyn*I+&%fu%Z|9G%ZwCVyKd8H}leT8fJvh=fE$&$ZT@a??_GA(B z4XLFBH!o2-PQ}cMSC_e`L$o&as`8f=u(B&@-4?;1FK3l07j5M}5VQ6^$Q{Ov77B|Z zKnHdtT{VrTS|bSAhbndLb~~(wwUWVVXRYXM9ieSqiyERl%04Vk2+3;q>UM3s&B8Bi zNQE>43Kh4-ww?~9v}(kLmvr^|wR=C^e{}!hw>NIu#6M0UuzQK3eN_d_^zBp68M-nz zAPU^fT(d@1;%fd`0+=fVwL|n;yIYyNJkp0<^6?>_1FdYa4*)qz?Scwm)}w-^Q!0I@ z+3iwk!WP<8VwGl=sFaoHWf;o`@gXO-d5!Csuqm!M6Ur1`Wg^*(1A+CcW~RdQ%p4hL z%+8NeQN@H6fK)CVfyw%YDk@Xx?*@Z`UL4uO836#}s#NMNY*?KreMg@|SLtHlfhBZ% zaSroUN&D85RG2+8Ig*zA@aB!H1-V)AiLtfK)wQ*?RaI3LmE{n@R03UD#>y2(4w0&* zP@9qHvr0-?H1_aJp1Ky$w5qfk>N!8Zlmhh4Day+!D#$G^RJv&k^YLK;KweQMtE1V6 zl8dl}0(RfO-)*;xs|ckIYo8m@_kh@6)aIgD1atS1#tWJN9F`FII5!#eeU$Z()ha`m zjWYOL%mh@tH5BxUVBAu{vs!7zJeC{4+bv1ysVP|*YNT;IN_}$S>uaHL(IF>dk6t=` z_VW4A=x}~j)Y=Qa?pCBN9>i}1O@H9v0T(xy{jU4>LjUgBvrGJ=DlDV1K|_{3w;u`xb6U&vV;eN_p|-8hCofBsNy1R@n16cZYq7#DFYPShBO z1%!qMga(_!LrtQ180QGTU=tWjrN{!kdXpb-1M_~c%OTfYE_>WO4^g8LtJ~lJARq7} z>IWJjn$^^?$QbjaBk>(TP`ogb?*T>+e?9ok#HF^~K&Ac}>y@C$P(*N47+6jsKF}DI zchLYTq%$ z7MQsE%WtJ_CySPAmEtlz%NgK)0X&hIrR~@r%P^wXI@D)Vns9h`wrdCrq5&Kc-NQq; z%E|Zu01yC4L_t)&R!g7FYIfL_W*!ZOIsWctpBrqU&hTPIXU^}&6`}#%@!_-zbUnt53<6R@>)qPSO?k9MABEfov`aCTbrrb zf3KVcoa&m4;S}y3D0fEaJS2CCz zd}UAe=cqAh)OBQGCkirtZP{5Bx+$vwshQinm1tncUCjC519tk%_x&7fIl~dt}4aUbh3#eAGA_=*LYvP^hObo;{Xu zTfLFB%G;fSB^kiqA$(HAH9aZw3J!^0zeef1EmSWF!B z@dSp0BO^niqJkqL{DOk;D?opPyP+`=A<^MYBo9sWf4#l1{^o`FVwC45B4r1TdXFP=Srz53?u1|;u?4_oiw zZ+?2ej(Gd?@|)L7>l@Q6s}sx1lN4)Xs~Z!WuV!DpTYCNe+0P$WUVd2Fc(btbd|`QO z9=e%hWrNNIjCpL?B#wyrXUZHE<-RlHq}!9YAbCALw=jltP!kJto{GA(Jhe?GBJ}i*s~{o0PaEQBK3fkvnskpuOf!;F(KH zWdANsxT%qEI#}|vgylkOUicI69R0)gKCl@Y8mz?)XwYsZV>w7+b2s-l^SBFcvQk~I z2Zgo5kjl<&(V(5J#Ldtg#Ae$N`D%&R+&$3C2G`SF zIt2vqKwk-9RR@m)z?+-%tEKW>({ppq#l^8_xZ)NkMjYn;-WFVdpr+DaFx1bz zLt>kQ_B9y5YCc98@*!51Tt_D6WRFttLWF-W$Zq`T1uO#Q$2M0MGm;vaONTN8AaLYg;@+d zg}ViLnfb~wyC4sNb0}j@aRcXgkA1FyT|{iVB?G`zUFGV!&&>@%Cn5{IU;W1zR(u=* z;Do63LI5?DBO^Z@=>0o`{|;c`X_YBc(0C+W>K0>YHTL#GRi zk2!Po(#hjVfkqQVs+W)VA)PmVov@gwh`5;W$e7^J2on@|L~wXqSVVkycx-HBe0)UQ zQD1*D%!)gmc;(vls2Bn;0^bnd78v#vCk$Z!kPrpHLH=BxElREewA;X(l*V%8ix+QJ zw_Yv3db9TPyUlm+HUQvXK5hQ`%hssvD`>yyjt!0N>O zvoXZN+9YCbWoqWx1Y%K)3tia&gXeg3s5S(TNg0!Y^WvCrr5^!waam$j&O^U(l>(f& z87(bOYkci_2KY2n8Nstzz;80Za|{g)_i>FS)U(Cb2OdKK1Igt0GvOGe{z&D%Aa;vw z8oZg+%&pSJ#C1$mx;fm-B_s@5K2e}6Lg~m9R=Pd?9kmUWAT;iPwsCtunR=RSV-~&* zNrw~efgb#P>adtY-pj*!WzrZSF)W?PQmmQlp_@RL>755hDj7!2W0_N zpSo`fFn13C=lxygK42KZ=b&$Ae?Pb@0|4eDF<5N1Dq2&e9m4$iHZ~zpGy-Yccx0ut zz^&-Y<*j1PF16yJ#t0vG^jHUKI-0868$sXOKi>ZF`yal!@ihZj?Ni6m$r#q!H1a|O ztCIm6{h>fp)qh(X3WJ65r>Nr{?xTJ%)#inlWmHDc)+7N8`XWloOLFpaT02@r9-C|^ z@b<%6lgcA_XztR4x)VGhrVcB@_p>r-bw+~ZtE^;{t#|x{&wB7gsBdh`X9{@A#vWJ@ z!Mqw+SRzC9*?H&qG&_w82QCU~VVF`{p0KvYHI5bh+S<(K`s~`u)XTNy^v4hG-n(5` zloNR}vb?3dvaP11vAnpd1W{I5R$5WYQB+x6UI+OL7?%`PP$*?tYLyoGB#ZhiKC*G6 z;*(qm27d-!1lcs^W+Q;84B^^{Pq9xjz7{xt@Zb>?u#3w<31D?N!2v$OQ60u`K>8<3 z3IwC}3q+f(RzA7Q;A71-vbP)#Ni9Or~aKa6uMu z`#9|>(2F4G=4WRY=JJkmMRi4OL+#_okB=We9(U%%g>SDx0f&T#{Qm=(Z8f#k-Cyq8 z^^d(@;ke6X4_86&cX!hVD#cAKQWduiE&~<-4h#$N6A4}fyDl?tc)q=|{VA%T@l0~7 z;K71nCfQuX;bjtL%YjBRvJl^m124cJ^4mIpqAwWi=5ZLhTo+(4g$IYnMA3${uaDkn z@Y3tO4F+$6pO@a~sn;XIkHwt5e(7|==|Fv;mzNIV?(3xs3Wzus7k)H0GCC$SJR&&E z6c!m09&vwA}e_na>cJ1x^jkh1x-hEvE@XPwA-!?x1y}xX||F91F z;`rg?#?SAUU;VuJ>fQ3ox6huxUE6rQy!v8sVQqSHe%v`}w@(b)#)oipPFct2oYPC= zxb;v;*V>Fk^1|ATGC^T+Y*qvSys$LE00wCBAy+;t1He~jag+nVDVD^BnaFJ89DzFv zNQ^Z*OWq+%57mhbbPo>oLi^$lLM79DUlSfc)9?81`IojSult921WA-geyLMbC-Y>ZXyd%4j)igcU~F!h+ah86{3os#7#3shf^u zAC3FItaj#63RH{MbYgi z_rJOSeQss(i8CjuMl>t^%JnN2`w-b*j1hy!C&nfw$5|KRtw`_2(Ln_N#i+AO%p2(H zZPWUhsG~c2Sl&rCb62Z0m*AO?a)*Nb!>d~AQ}QyOq&&g>j(01>H}4*{_u-wU%vKWn zFNzh0;I16oKwVy97OxB*OC<`S9a<9050#QDA$cWzcf2PR42uQm#Ec!w+}XtuS}re- zKUY~LoGsOdtOwu_-pSf)?l=dM4WfAMy!@Z`bw_kOxnRFWNY zIwrd!`(DQVl%mw!^1Qr?d@N|lh(nZO6;_nU5kOqV4A4@jnefz>>ZcuC8K+!CpCffdQ;l zkPynd_wHi=XXHcCrXkXD(=$|G$sO94dCY~)vgAq&V5*1~ubEqt(#0k*E`)4S_Br@F z6qFZYy;4$LT2WtF*I0u$ZBcIS*^?(@PbXZubwdU4UWDvm-gffZyGQN^A8?~uGyW|Y zx?kZKPT- zJ>;eVQ1m|R?I})tMd*+C5NMAWe8Y~%oVju7^og_Jwx_2r01O3;?;oBJ8*w5oA~rTO zDk>~83=tj|6@5G|>R2ot<6{AJtT_PSYu9c>N5|?!MHvJ5u-E_weG$I?{s6E+XY}^; z;c{`_^z{z*^QM+%1Hv~%FXIcUvHD2WRUbY*|M=?`g6ONphhH{<eN0w@X_u zXP>{Cd-Znx<xX-3=poYpyclQ# z76&+L?F+Ou)eKs#Zq^9s?V@Y?k|`Pn#WI@urtp2n95uC-ogJ+cG}&!izCaLAnaqU4 zG3ivN;#lcK%t&TPSVo2*9i(R=_nXQd7uT-kXi?`=HFdV)ysftr4>tF9)O9pJ$xS!K zhGWSLfW-bc000mGNkl_pq$ZZrcKKb(&K^7D z?`MlbRSF9XlVkJbtYcvJ0$b6Z=)-Hpu|aB*XE3IKk#JT^Dy zL`+RNCMWF^;||35n0;(i(Zq7^nJhNNkH+KDu16_An|01o;}euOUOe8b9j%tCxtGq@ z@8&mOPA<$jf4cY0=`$y;UB4KY7<=uztNL(#?3vi_?%sNunVglIm64r+1y*KGCPZo$ zDcAgrygU-DGHBFK7We9;Nt)(lsm~{+o0^xMlA8tMGIY~~eB{8BIkvw_oP_#L?|m>i+iU!O9}!mk6Wy^wS7!rY_0t^!fjSl!rCk9Tr$R`&T5 ziQvk~E9cH!Iu{UX+P~L@Dy+mZg8P8MT^7MWubcZp_rr${9XWjPkUOW)8Nf22h5=yO zXAKDuBMRt*=MF*g8iNAaNeZk20zLJ<-eQy3Q|IHM(*diTs>S1wu>Mg&CoY|eKX$_C zZ}K+!dqJcc{BXjqkU%NITbM92)VY$GQ`P~ZKw1LW*WU;LANKL`)O)*o9X{wmf!_im zm};ZE0b^gpK_5>5I5;6D>FY~LC(Z^KgT1^BR7j=s!S{(wjE_z_7Jcj(#BM}%M0iwq zWPD_7LTpSzeC&y%vB!@>aN{>UdM5Ge)vNLG@p>PBUoS-g^ENQ(d(g*whXMxLc?zMI zN#_~pi@=HSq|~!HA7*P znVgxQz*ljfF;67rp{>dzJit{zokI&_PEhl{7mm==5XTlsp%XTbpZ}8*7>xq}gX(OM~bKYn0~rT+KxLsokCJJzbrBJ&5++ZUpW%rto0D zK)-Vr&qW`L{r1OO0PyLHXWKhFXh4v|R$5gNop|)bh12PUS+(sAo#w6%{9gUtpg4mZ zL~rhD&>>F@j2(j+}QNuBn?Ymo?Tj+Tv!-iTbWs$9~*J> zZLH0#E>EtlOyT%!acp*Wbb8v!NAP$QZ&8QYZtou%85|oMo*cK#PCFK6M&_m*GkB>J z*2!_}^rU@y+&VR8nVlM*95eTKH(tM-q>J_}Z7%?QXBGxWY`u4GUyX^4JbmV5R7`YO zM7XcPJ2=dA``!6?I(L71`uI_5GJY->E%VAi2HsaRQc&cgd4<8l z7!()_^g^tYCkeMTR}>WqH=(kcvWmJ29x%o8hPwy4%X14ZCZ2-kJ8|jEja%OYM~328 z!0TfNO09<%&4$=7s zdJ}zVumMd(0JQ`B1A|PydVoyNo{ozA4GN?x4(OJS8|^fd)~2Pm_N@RAPsc<^sQ zTd+F)4gh-?bzupyr*B+JI(aU@Kg8S10BD2Ucs-zR%&Frs$B#$E#YIF#A|m6XgK^{-GvgaDX!U zP~cXM2bOlwUx2$1xBxISSVQ7XmBG&uIN<<>-+x+r{cdgZ<>Kn*{My#S!WvjR!P~$y z&&Hu{@!|X`Fg&%iF^eZ`yjXhvdiCYc>(5`WtUq5|UZ2H!95)v#l5!3pz%#bB0@b){ zaB>Eeon_FeY^Ok%0Zc)nS#idYbC=mVLvApuVBQ`=%&BblIg+Z5g`FmPxNsLoE(kBL zEzQVF`{w%_mu_6Z-4ILc@iP8F6`msd5^a7R{cQv*O) zP+D44US3{PQ&nGISyzW+U2`*n=SnrUwKTQ2wzRc^ot>SX-Q9|9HH&hnVMI5e&RiEm z6#9k+Dyk}D;$j0#fzh!s!4YBK{&4&8(ec=_=We6Tf@F?{W*2Pbr zKCY=HDwCyJU0GE_MNLyxT}utu%(I^6g%Ovnmeh>yytnrnc5*H&M`;z<>Iv5OQh%$p2 zu9CRGFaZ41lSeq-fBf*?Rt}goy zx+(@8su72TF|(OHEW_iX9;H3idNn^td5j}BAaQ7GvRLo(9(HzNt^_crnsW;C8NEc` z^5UY(QmEe2nzFK*61@F*${}ZB5CCvPdBwG}=b(VkeRBnCRxDxn@86GKge#oC-1Qa9 zU%X(Y57^TK7(U?U%G<+u0=O%KNxaKt4}>X}!aAeQNAKn7bHqDP7j+^wA|e9+iF&=> z&(F_C=gSVvI)5WpSGa5y9QsmtKskp8ho6W6fKQz|6A}_;@bf3%X1!hp01R?dN0VO1 z+M16DPHsb7>VpC1AYDk1L9{L530N6W8iRt1%*V1CY(8O?#cyx7#0!f z7ZB)U)N_XwMUX#vh6I~Tcs<<5EC9?+Q@$ZaeVD&70?;++Lj7=#qai%t3#eO}XXX|o z^?VKS?&GQqdXSCgt*WHMR8KQ}wYn9jz6_64lgs zIX5{wGY+YNn-tVAn^t!BwfC6Y*rm_n=vQQ}rX1$)r7@g{1HC|8)-KK|huPL|bqtaZ zzOe3M0LumvEr5B?*e-U3tqO4^fGynC$^D(2nikKrP;kOog|VGa=vz5?at_zUh?4Jq zF0N(Ga@0pSi!c-`qbiI5=z>QaY4}5jdCoyPEDGv2)BdT#n&BJ0+_rUu{#m zp$42van^v%l3kdO8|C-+?*>JLMIVblbMEZL%a=O3AY)s>b;z0^|A6q|kcPT?b6-DR zM*o1BMm38Q`5{OzW+d~#05Q9wuNRzF=Sqp_>jkhi(;hq6!Uec}n)>+R{X1#Nj~i;M z+L{}hn(G_LwX_ld2CAD{8x#fH-z5ReYa?|G^LD3@TI#I0OEO0p!+3-%A*N@ceW`v} zluA&=18>3LZA|a0aVPsr6KK`{Ss6+Zp8&AUVYb-%oOW|fRZ)7%qoVw*#-)L<+zVWX&FMqgrF388L zp|p5r-ZEru9W=M!xOVp8gL?(}Inm)U0fxZ9px__w+$}0CDkv_67$iE(uOfOC}8s{-r+QNKSc*mDA&7iYF;g9zA{ZFy%46 zwfqU0~k^mFJ7VVm;d<3S6?Fj*RC)BYxh?Yz<``Fz-aI{=!`zzI!{BW|LLpeP9!D- z1o{UB1^N5?1DvF!y*;6TL&8J+O?X5P#B#CHVP8*RDL6Ld*xBPJPo4@54c8k3ynQJ_ ztp#vUNHD$%!9`4;&p8M&gaq>>B5rMB)B%Cy1+CXHfIYo^Q~*;P^7i)B>!E-F;Kalv zyyx(eVcw_!000mGNklRaXZ7A%O@#@d9}CA$Kt2RUz2F8bPClO*#<<9*cz72JqVtYg~lI zAvS$i5pUkDynefkzzII&r%}b$`wcJ{@#e$o>-Q_K-Yva+yU53vZ=WGv{Jix1%_8v3 zt{oup#>=_QSMzuT@%-ho@YPye-&|0R8*{6x)6_#qtlCbbNfjzVJiykc-odO}Qz;TixV8@9X2-UIBhwJ|R0R!o%HbAr8&5F`*0@`}n(1QPCsI^IVnoFoA8UfXSLeI7uYOa>#NhxH^(>DMt*)dwY)I&$8W3u`PcLR{I&J3KQ<75{kHboFRQ-wL+uZdXs>yK5AfBsJK?_XE`gKr`N0REppHvjthMNfUzkKbIGb`HaK2Ho*fATGgRsKXn#zPWSnF2xV`4;}P4;C5*LfrD!0 zv#4-(*>~u$yNjpW5u?|Uqd{H?q3$7mU-=&1FQhP6K5G-voa{Z8l#r(Jy{1Fm_Q2FA8`HH-^ zx15F~_MvI7H#{La@$zYiT5{MB5gHv1zJ|qwg~#F~EHpY)jc^3mY>Eg0M-4*YlG&EO zFG3ecyTD{y?XP3IO~tEA%!)t&w>SrVae@yO01Kl^egePpFMj>wrP$xy;w&_~Z4iS$ zY`*`v#R1m7{&|(-&D%9VcL#t)EWdvLOpTT8c(?ZEy`q&7Okx5stKrXlE*B8fla`q& z>+16K+RDu8>a2+AwY8b$<;lgxvB^n`)7cLg1Iac=|FE@Z*xm~&D>a|fBQ#7x;Fhbp z5M1Gf+nHj>r=35q)KQO#7?;)`vU!O&gUv(Kn8Z8B(&vb)PDZ9}!z1RQ5wmmJHa6!R zopm6r<3mHve%tsE7tv_DO_;&b+WP+jU>jEz;g-F_V_}EWf>xR<7D!`uhN85e1cN1X zITU*Yu{$WYB&DYqXB~K90St2^%D`Y>c|}=fRtB#By2cu4!Q6uE?85AZwgyhIDvVKn z?%)n%LTP*<=qq|jhs@N6J+vJigS{MW=5F3a?ilE6>!&^7ww^AW=aviLnvGLpC4aZn!<5;X&e{V{EYR*=Iq+y#MH=OS9_JYw_$5*^yA0H4{&H=Z|$6`11exYwMrCy;@xyt*XdhU!9$t8nQdOTN|rR9*@qEQ{C5m10M>X=aHcvfBOSr$P0dJ7%S=hhN=eNIgVOWx~sv?X0mVtp5MldJmtrvaS99{sTX~_nkYMRHYD6MHK`h zLK3AaRg=k#=1$Sv_s(dlW+p|cN(hK5s;Ht0Q-m?dGy%3{Q$#VyRj#rPh$^b60+J}1 zlHarUIzHjf{YHz`bUJ$K@hk8gbS z<)<+hPhb1|*1v!FChBA~rUn1_#|IRGrnKk3fAA01<>|;FXy4(3IHqb@WP*2#0?~f~ zuy24*_=&KOzr6L)t(%ci5$DdIy>Rh-cw_{ycf{vdP)O*>Q*jYdkp$qwzP{Xv9)%Z= zJ$Lfzt!rm4o`;p(4Pek0BfjH6Dc?a9OaLb0QriZI@|#3wOgUNPIPu;BLjr?Bf44#RNIe#khG^;uZxH84z-5d{(35UX>LD|rdsF2{uU>vYx_}b&%y4GO< zej$FoA$|ejfdDXLFefW0OXaU=qyw>g#Jh&a-k%Eh;j7wzTU_!$Vy2Y{AhF(P(3nj<4x4t&V|2On z;%>!Jk8W&K&o(SNhQMP`S+DQWYE?r+$^pQyyS=Nc31C)txApXO_6;b&RAMmO;KX+) zV>DO>spc1LaH4CONa$f*kGR8_)kYZ9Fh4!g&1!gYd;(pxT*~S#v^PPLy3)#;;zmV7 zi$-4FP+TD^Y3iu&>S@KapiAA{+uy~P@mQG!(K<5|O!imEbXBtmWS@!_fO(%so)pFz zDfGJGmsfFw#6tX{nWkr^O)RWoGYc;(c+b0bvGbtVjfc{6cE{BzuZL_sEl$(s7M|?Q zQ-pfeZSBpH>WZ}VZd?%H173SXoau~ap+j%aL? zQ+Y2|RHU^DBIvRlu0|=iTg_H&Su$6ROqQ0D6Mgnn7>{V-8vXd`lc?z9_a59YDk(0l zs;HLMJ$mvuAt|wm=?TNataX0IVlk?_Ix72nWus#~+dHnU4JY%m%NA&J*}Ao2d%0xWS+Hy`*mf2H zS34LCe+9}w*Ev?-aHN$Kgo{QThXA^#8dABL#lvjEpU z@9#gb?;nTv911*oFwFNr=&{4W{{J{~;Qjq#o?iDklKiK!d`+MKN{>cqi5`=Ft zqNFOYKbZ%dQ@QJ<&ATkNoRx~%Ek?{jz}IYsUQjl>pg1SLC_BG6lc^x9ppcz`N=oxf z%L>Y?ipwgCip%mbmQ|Ky=Vji1bo==;s7{K zU%!yB@Y5I0Ma9Mh28U2Q*)JfF)`o%D*t2o5XHJDiMc{6@14LaJZ~(6fE`}YCWNmt5 zS(Qq$+b#v7N$<|^ZVh2E;lWWMA>lzmp=^~p;&=pj%nDL+@kL^9N)-2?z$zX1bIgF(8RcLe9Qngsm6M!Rn0oig&(}V=eD>-od=TRkpUPxam=FvNb_{E~1_qRatP&6ljN>9pwGlA( zXjR=q@3wpH-tozb2vP|{UY?Lvuf<$5>T<(o3H@s7g!7joh2G~>iJhB;rbgc7MzN*c z?wzItU@yp3v`#7RgrUdw_Gw^<8=Itg`PnI{$(dQWT&Ca}7oYm9vc952!}nS7oFMPo zq)>EIs21t1>Lqs0fe+pdU{(pFNe1+C`ZhpS_4QD-RGL>@{Lw!@i98_y7!KytnbS!r z$v&73iFKIoJ@IBgSgw3ik}d1F~V(twYz%(i7ol44KoGXS*dCs01z8eQBNwd!y@4RrYthweE@D(;T$cp0= z?y9>nT@NwR&E}sd z2H=#m)YSAeN;|^%{{*n;fS-EX)IUymD!O69@Z*HX5V_Ag5AT2f%THhb`0Wq3f4ckl zeiAE4$r7DtOHU%-5d1toBQPLp?+3on2YU}dyNf*k zSR#PQH}Bd1KJ?Xh{{nz{F=_@~yb2{Y3W-#?nRxY#>@>JrQfhW;Rsr+4FtvrH*~R6# zC1ttAr8&6HU@WW1tCSQf+y>RyYB?jOiz6UorA_4%8Idw8P6nqUL z1%-#gkH*HGggFLfgMq;C-~i??nebD}V~UQ8jXrgf(U*}m63h$ZortK{J!^5#BhnzK z$VH-NXhd*uSRnaVf~c?x%R{~-v9&O(sKxDRXlz8-$;jQJUd0eU5V}0E1CD&LQYNeF z<>f1JS7-*c>m`Wy)IX8S-#0vftULhhT3&IJR#rWtR@X)$@py5`Nt#=PKeqligT>Wi z_n4jl>>js_PTB~o6o1|=+`-||TRl3nYnbO};XY=JMoX{7KH&6dCuhvlQ+FnW zVcx#D;8N zrXIaPqa9WZ4s}9Qeh;XIs0N6)-WJ0!709IGd9+`dRTCUk38`M3f|T>cwjB?tyL&tG z3)4Tkbt57&G%`5+bWGgSd$)^oG8^m5x|Q<&{!Z9*sH^|=3a_K=8&UUYg<96T zOC8ZVvCt2PFJ`l4Kc2!(d#k9kIz|dP5{AXLbSzz*U%06;ySV*{jo#*W6!sKXvPBZ} z2suFBOO5d8Ks+P1c^}gD4-EEpc6F4Nm855+Kxvst$!X7%vy!T15|Ex6MT?CK!5FUp zC?CNqIq-HAyx62r8>GEe)*|;ZSjHGEt%IuS>S`Jq@(T+-{OBgW{OMWgp#IexmtjL$ zajTZb>W13K4<9{$77qZ+Tbdi1aiy;=EGvN(ru=H}4rWNz}J}>!@`^ya9vukGR@oJbb(}y z0Pxh5ZftA-lwDrL9n8y%HfU|hu{>`zj&vA?+dEn-;fYsP9Gjb?05Dwa+dn*S-%kGV zX8gq#Os#us&4u%;i|n!dCGc9Nr6miruw+_XHZQK2mR8L;m|rwbObj`l-42VUu|6*+ z^RZl3(%4)fZ7i*qO0M6y^zg~Ug5rX>*ptyw$6-#f-V=$?MbP5( z-7i#BKJfm*V+Zd)dyvXjaD~btc&+%91j?e~Wv+AbOLOxIvzUJ^FU7BqPj!BgkkwpS zQ&e4FS|csP2;$b%m16oLZ>er>t!ZhiZEmiWN-N4Min4Rkva(Z)igQcKnIW#OEvb{1 zW0r$^Dw|uL-+yrC+{H^*u7CXXXBR)d>gyA*Zx1W-_5S<&L=!CTT86~^&0=0Rk(k}{ z{r~-+_x@-9(StCr$4?wTdHUq(GbiItoj7y;)U8i%UjO)d%;}gj=g*uzcRD&Y8tyYV zBJB9d6Q?emIeG3>^obY{mkL~ftS3&#ox5=U;^j+m7tTb*#ZXsZ-;e;GAV0s*Kn7G= z(~S|t+AS~}8b)ityG7lTSl$zJrD2Sh5y4Qzi3kYn6GDWUUXgOJSzBLT+=_KL-W7bNGMPkQQ9?N|PGWvD7*?B}jR9C>ut;C=rpV?6 zwjar{uRB zYT#wzbOB(hi@CVqT3K|m+4`yzTEQE}Y+%8T3H}VOJ1nGToE+1GzHD@ljJp_#na1^# z69y2PAPp)Lp2;g)%)JJ^8V+@U@l4svT10e0w7Lui5A%IZyofx5pH|lo2`SdzJ~jpu zTcyL5v9-A_DqoYF2l*_4aqbm-lM{V0FJv z1NHVRATf+A27$=~iM4#G+81$`vc}lRTO*5&+1V-}?KvJ)s0X@smn{@~&C-QltU$86 zD=mKdmsYjAcc%WOS`)-KI;+|{S}Lo`vM{MnPfkdVPfU59k)K{CuZ0!v;l-Z7V_Kj7 zOYP!a0bn2yPPDwN zw4%JMtf-jvM47xXFuYH}V=`O{_2oKW-k8&RtTQ+4h;lmiag^a5mZE}==gbU@K#=Eg+&5X-K+>UNo)g5 zNmzd=Aqj~-m}XtW!`*s)ALz?wr~t5=eUjfc}7zW2-Xgr_Ooac1VEr{<*KgGx4( z>PzD#5|R_{{d@-#XrH}4NB0~BX*qxiuB-$HbqW$N>}^U&{+RBwhqr=<{=Vn`i#i#R zk(WUonOLQ&tn{4x9K1RZOKZ2_B~((HUt3pMQ_E~qR#04)Us+w+Ag^p{t!{3w zmABOZy?}0)szITab#~RachojCR906P!vW*rbbsE`trYZ?$|_~eRd`felkEPlKLfz0 z&tACv>Gks;T@DS7*!#f&@D?J2OK+ZbEfau+ZB*VZ!tWY0y#K%Neej-7pl@XCac~r% zJ##kh)alsM7f)Zib?xHyivaM+b0?wLQ?XF=sT0wBg*6IOte7ZJ83MV5m@qG8MO}Uc zba@?ZU_^)jzvVpvqVl3|aw2=l_004HlN7#YF=90hq@Y$SDS00Ko= z(sPO=7CkFf>0;sqBmaU=a?&jSD~k0%q|%atGbWeJoiXdxctU7CK}K09KN%y;2I!Z9 z1OV^$!LYgFNfOR500VgQw%r+9v@wb8N}4fGO*6rmGJ7iEneAetR))J*i{X+z;|A7h zX;ep<(oVPD;nGny7A&dJ*yjX6C(S}t>N$8{H?AgZwQ0?o3$=2lT114*q**t)EZqW9dMh0yr zEo3wfjEwXQ@rF)(p}MtG)d;n#8#}w@>fTleq{s79I|^zTCAN(c>KBS3YhJfRybohD z-x9i8LX(_+VY4!;8M4cFQgB!-)F4KrNwf`y0@T88RN<#8NX)yY)N5W=LLo+*G1fKI z zm_{V0B-GYawYU8Tbj6ldaKIvf!B^ViMNK&9x1joHV(J_n;E#g&6Xt3r(~#9VLNZyj z_y|#p5sI(Syoy>E^n2GV#4bjlugNrMwe&#_Yaa{txQA!P4GWVdXl2^EHfvv*vn+`m?IqS-#erbGUZcIDl860!;jM}>=Tmz8D zKIpXcX$KX`E?Hf*3Wa^= zVu5J30X;V-CoeZECp$AcD;ndpFOyL@7wRb`QgX!6CXW&eEVLcZ>aB{Bm4Is z-nZ`%Relx#%yIj{z7H6KcXvbbmZB70^7{w>{>{(-%E`~j%t_78V_8%fX-|1!30txS zFKc8HiL_EuS6bg#Ro_qnb`}?BOQn@Hb!82Wk~T$Mmqw=OZcz5fI+aqOw?k3i-c{G$ zUf%-sjHA0#jovMkMhQrx z{kwu~CCE|!6k(N0TE<1=CIy_qKNhp)?G9Nvt*{Ux)_*Ui5;%#YWMLzYhcOe(HwE$d zvyibxdB~KCOinZ?8dwefOOW~9FTx2*uSg&l&eJ4-H$V(I839qli6D%ubwngYjTYz` zsAi|of6$v0Ei6JG5Bu9+BG0%fLYD;eVjhieGDg_Yl|`6Q7*H1v2s?2g3O5%Po%0Jo zwQFvkmGU63EIMPc;>WHt9N{yz$tervRJ$A_PW$l0xDoVSoO41;^RDFuH?AfdYi`h& z#7Ml#v^yDu@-tVwiJF+&<2^&G3(hsXZSNVnD$#EQe#10C)0itv8pbCKF1OZZ?}seb zUhQz_pcbaHYp}l)*N&lqE;f!Rm`&%KLrfL`c*tV!vpV{LVYm~cxgVm&jzYqhaS&Ht z>O4b<*@Gj1Xs4#9Ri$ah*9jI`t#0n?gE>|XYSkmgezxzK_pT9_pV| zvtdcJH~U!N000mGNklbEmX}voN$P7U zYZ@44&bU?9($!K{UGeDo6VMmtth1|)T<^QEGlwxP15;iVjv0D+LjsHqEe&*r{txLt zL`*ejr5Ohlm|$UYNlAqmd4n&OfzLxP3hK^D5YYp#_^t=rH(ZdGnCn%}IsUa|~l`_77Ud)2^danV zZcb+6(}zjV9zD7HE0mi2x(aENq)t`|0N2!&7L{blnk1kvYm44d-P%=4817Oxbtq-+ zol=FW2^S4^>F8<0tOd`2$wYc?dSQ8C2Jgd|mYbASn3h$TnOTsLUyyhA-knR=KRkWm z(v5$A`pFMp-MDe<=utnI;P>C#D{gV7?h9gFXwmi3vA7caKkvVH)ZbTFi-m2C3?=x9 zTUvc1gDEge!CuCmm`KqGGMJr==Fp1b{gI-=;$pyE98(Zjnv}A{3TCrbgnMBAV#lw$NGYEbIHB2?Acry#kjuYCao>I*H=92Yolwcp0(A{ zm1Xzp5)%$ciwh3$7y_6V7TpjIIHw)nm0czrFU;GgCs;grZrZXiYonhM@(Hm7-Su@l z1O{^qyEfN7q5x^U|Mhh@i7^`&qZK!Mdqn7E7e%ny!HNUdow)_e?7Vq~Gk6-FSg`U! za+xrW>2L*cIR~AN0fSzt*MY&xp^?tvVYOc0V=#8Jrj3?f=7Vkh5MXR|3|gE_X6vA^ zpM*)v_3jKV$|ED1;SuGKwyU?d9iF?lw{vh%rPXR69k)J|q0M(v^-}+d-F3cbX<1lZ z=DpTQ)Qny5)0BhlT~?%;pv)zEHzN_D-)(B*Az~5U{HF>pR}`X`1t7gS)jajON14-VCk|k-ixeafTG`R1 zXz%Rq$}Y+|f9WjTHjE2Mj7uAsN2Q*<>0QD`WFj%FFxAomae>~v;zGD#O3tEeXPDr$ z+{_0L9+Z}rvL)O07BQoW0F04ZNm35;?#>N3PbXPcS5v*WIc}TS`1|yY~U(Me*vJ8`iB&+ZNu*vUz#Y zvM^_)>}$+u&6XakdB9>~4Jkgo@nJ%4LUDcZxl1RjYD~Q>)StM&zq6;Ot+%^X zqmp-aHnz7nw6`_2G&jiQwMbv-MjP6&p&?o`4?Az`uU4{_kJiT$*!+2Z)}uE zB*hgK1+_I5lB&{@qO9|0WBd;t^F45sy8rGu$V80__Va)H_&@T&!tvg{Y&`J6kzW<&FDR?XD=p6jZsASKYm19vPb-Qbcvh&as-Q+%-XNFMHk8*%E2^rC^NP~zWEB!w zc}-JgO;dSwV_AK3Ws5>epBznJo3guE-Pa5x*GS7MssZ(!%=~m=89O_j^>pIBkdt#W z60_4Xvoh}8zkBuO&C?ey!2VwU^45)yKaPrxJ#^>@Y_Dj4S#|4O#1$Je>^{c$kNqD6 zMTB^>f5S;ZC&JhgDLal7+cS_aB)C#bL80N`DS^IXQ+k3T8Ci-C6SRn_t`?1#}OGyoW*x5RoYaW5Vg85R;A5)u`{wiWR#Xm7LOaK1aaA&YZaZ(IF6yfnE}8-vqHA2^bbh z%$ALLK%0JdFM#p&TX&Nfw>CUmm`yWzw%13!a_?+-UTluO+!}kaJ+{5+VSD!9$xTyl z9Bi(-@j${M&VYQxyxnQlfZ}ce-gJODJIl0MbijO*I|n_mL3@%>g=_wO5Ib|9f*Ly}s;FX=OVaV@w8bj!P2D;Tlqo=)2*$c{PS!vCIhX zG$#OWLnSB}eDMSf{vjjRszg(IQz zhs~`mor*3>uo9D*MGRAx7S+(ETAuVO)UuHGJ#3S~QMWaTg{U}#F{S7d4Kd3|@7@)o zra2HT#`8=%mUFi&h5-S+2GaoRn&8m6$41!aaM?V!VwqVo&97Rg7EG>*A%}a==^29D zW5Z)pBNH=vXna~XI-&E7k6;{|)br4e9&$JbY&H#yFQ7{!cf*FMsbN~&d9~$wz3u*E z%k}%Flk{fGxwC4SnH;nj+YH8*>6xLWRpac!@a*geX>LxpFsFxbz>XITi;G5#Q&U5u z<65ViMUr%SHowFy)1d3t4XcN`HJ@C+cI%@XUw-k=6DPwfB}G~T0Ng&JQ{js`{idp{`;$+zx^`);jh^lPf7|?Bvm&w_q#rjf7LwRL=5hSTDgTUju28pb>rm>|K0A^`cb)}`1 z`5E~s6?G*gbw!2M`6YG5^cLsFJs`BBI^9$26^3t*k+3Iy>UQTLu zW=d8@VpjU|j8v*>`7A9NN={Ar@#mi|T)i3{7Z-Q!+?fwAUbuGU{ME}Lk>UFe9~5h6 z?glW$oW&}Y?|tyz-~aJ<2nR<3j!Gn9h0wR=}}^i((aNJ zyiRhc*s71hxzsQ?B32N~aE9ULo?BeRrMzN-F>3}K6&e~H7IHi^C?W`g{f&$ja<~|4 zV}nCa1_#9i1RVGCi#!%^{8;b_|9}|Zz!QFfCjtUu{QaYu0;2<%jt4>h#{(f81Vsmv zZzj(zl(pgjW_*naryfV-eK7{bM$)fCQw?D)S?t3YD=a+YzYz!T08AoitupV(Ah)^h z*xGPzZ@PB2+}qpk7cWLhJ3F4OE!XCzlZo!L?%Z6pZ*%ReIWU#pT65sc28&i%xp{Sg zvgA97m&~fJ3Xx>0zq7%KNDu`$=`9I&-nG||gi8iy{fw`~U7k@w!n}TVkqPdW8C+bs z=BzVwCK7NY2-4Djq66o zn8qheQ`6R&Su5QQKgHds=bFPg=&<)&Ej@6|MuW;|(wNNMCTow;!bXd|j{?^==Md0q zcWEJ~M~myMusS}f!xg!GdiN(eeVs8mL2I0E8g(i0(Rz^XX3pdPqMYPDNWTr$~Q&3hEpYrtn z)4NrYa=hFBc*R{g&tlk_%36tiEC~5TWwFvH08Dkqb{B^9?)QDy&qGLpSp5OkdEHkwzH8C&oSwZsCvdpBs+~?(G831rr=97xb z?3~=^6*bxA)md%rHSHa>9f}%NcSCb=*{zeOL;ijw;(gykhkOnkII{oXA!dm82_~2k zm#1PKICSvf;Y0iO?>%z#@V~zKxItdo&{!drl>_Iw`Dss69z9Qgno*KeRGS0K3)TY6 zwG9>3vWl9Dy7Ma>aNN0bSKxrZ z_~`P-H?Dm0;l*oLz+k*{+FP|}-(F$$cklZUU@Rs`3jp5p-qC<#!gihGOhQE}Uhj$a z&Jv=;eY7On0z`SgIHqkvyQ@{~PF#XNhQM8n6z`?3_HW}VAoO%ETk_Q#|9Ugov z_?;nU0p1Wl|4@H07$!Ii<_eFGzXFhW65e!<86LFka! zAkaGaM37g35Eu;KET&|`i_>pPzX+LlVlzgzxEmhI#D8}di#{&oOA9{O8-j-ZCgfgu z%_2m{-T<#{W6e$>-;E6iM8~^@JAlCe@Xm${db#C!xibneW^cM)Y{ECYV3(oI%~8_U z*4WmDd$$04VSnMGeRkRF58yYoDdE`->Es{RxyDBvqfB~81n$g=^3%wwQ#`j!2s}}RtXaK4|WafG*qj>WEmjQA~Zi961OuDh6f>pYp0+e92kU+1B3FrD$cuKYpE*kwh5g^lc)rHQ}1sF7|X1T0DWT)KI9ayCW?p z<-(Oy@CwP9$s&NgYsN60K&Bk>GPqTgxGxA}iKO&V!ee-d%DVEV7HLa+Bej+iTRjqY zY10weVs8;EVGUU5Z`dmIh@_Y^nPagI$?ksA@bT|lZy#%yE3EPkFoCrO1Ds;N-NAw) zR_l=2(g#^AEKEXWXIOrpq1R~YF`0Y4RcJIUzmKo?;}691_}I*BSg(R`fR7439wZ#& zQ-M454zvMX;5T?YIysC_zQNQ9WWqGVI#15(rsoYa3;OwG)8eXSY0ZjpcF};FI5{(G z!6#p#t}n03Xjj%a$F!64M)#!FH8u#r>@w)uHB7c%Of+eV0PfOT(it_NufwJt?(hEO z!>iJ!s_y>I>(|d06=i|G9KZ^*rQ78kaJvS_JWQkR0gtO6-yMgw*J9L|4Qk9{VUbmu z=IYv_ii+H(rYi7QH=?A@OTC)L{vLT}o20lPF)#C3QEsBNB)_k%$<*879M;(S6*^^e zkE~LfpIVsmur%XoO<7h|ae6~tzO**4rZTlnUeqkhAM9;VcUSihHrR$#%Eqb(AAND* zXpsM*V?O&1A2@Ib+J9i*!9xcQ9z1yH5WstI@7}$*dEnsw&~V>}kAG=yscLPjZj>|C z*H!)e)3-N1yb68(&8J`g{IBG!=P<+-b;Xsi-O^I1vZlDGEGMTpBRwzqVf;f(Pm{A! z64DcC?=o#}ex8^BJ4+Qhh1P^=0B!u!w8Tfr@sE=eo}?r`O-+L6SU8jT{Pu%;pMLhw zv**u&yH`KGNdUg_=||_TUi1$MV)ZxpGPaPAwTElhdN6qW!M+a;`5k3TzdXfBz^8XV z58sdz91tA>@h*EI-28=7Xquhhg zK0zm#ISz>p2#F40XCeV<{M4T*GB7MAH1cFrXtXe;z#Cu_0-m!?IvU`2#NQV>DfwUs+=V}e zFl&akxX3HhF`P6TH$9xYEK@9MR%Rf+uy0*_hrd(k0yW&Yd21hcU7ycwFBHo??-#&sNcBe0wMhwy|N8Q)FTVaPDI=j)E@@Q>v1r;g z+otS*c3177a5Na4l9d#9CiauhZhiFGN9V7euc?V|62x?WZ-kyc_JAcU7WZg*pwkW6d91YpX7CUXoU4#O?dS}gTNkEI^H zLc0sz7+c)k+s7B_*^UD-zhf8A{?oWMk|4dYj|AE5?_U}6gzkB$=!6S^m?BBry z$9#@Pg!%sSldEOrnJ~}*a7(L1-csAtT+`B0Usjd}8YVq|oRgb*|G}Nx4}U3@u*KjK zNda7ML3vJYL1tENT1HM%a{9A7kM7{Z`8@S`d`dj^W1z-Rw7m)=YfzDv5YJi*KYg0~ zU%B90J_y&gJ54DJ5MMj$SF21@>-wg)V|nI&hz>;~Xz`FrCL6LwcS404K>>JJ)46^!%`;cIQ10s$>{^3UgA`e6U5eEVy5Bf$N zITn7{FYKsq=#gW=hmQsx^bI{4b|N_T+{uX8NU8-5*dOutIqdIqB;XjJ%R3SV_yz~# z;IQAZBSHRDt(pZ4q9Y*k!6eGi{u`l7TpFW17Hd4AS3H^;;dW{mUGLKS;3cxl1P?m%}2xjBj9jK|@6Jz9@*$n9VuYbTrR z_u0%nR%Vwq%m!JRH)5Ay#~=?vYB5rDkyex$WvyUj57}aJ#yHmMH9Au-6*j>oo8)wX z>mzR0FfOJLUGC{ggsO+Q%A5LOR;cE~?!0ci1RYSIdzjTH5we8Dy)?vNYBUM@0z4f` zRzRDr;|_E&^>ndb%ZjeH)|Tv?tZ%;k8W?_-{G_6xvPI3-Qz;0{Y+YmTdVxq)k{?kMl*eIkz&j7iH~v2qs<9P8A*xhiPVdbko+|1 z>664KjK0awo+dxzJ%*Vm>`W!5LFlK?pFVi@04)FM?oa>z;ol$L`Y`rX?5T@q&tJQA z@y3}(0#W(muFoOu<1pESpS0{R*D&K zCMpa74(BAs%;2!!QEIdRuk6d{&J-9D=ojdB9~Gs(l9+`oSim+ql}$%-lBago)z!7uw(;zDWFY_+g9hz zYYW0&$+bD_>a1mb#L8GaM-)+$C83y>LFtM00U=o09H#9Y+!*$# zPCPTCGS4`p%3_2E%E6{$CbXYbqiI(tnsJrq4Xip?R#!ihvcI#dx4m86)}d)v_A22i zOG*oG-}(9TfB!Q+HJMztLF?UY2;rQpqr z7*ko-WSR|-%_Y7PdZ~fqe}=o8=nmp;F8Ut;_Jl@WS{3E1Qx?6D!N<+(Ad5>YH9ahN zKs~3ur8(f6mAxZsXu!}jY#GqmdWYd$ts0B7&oMSIHlv%EHQ7CbgTo#DLv2GkR&WiE zQunsEshS$wSt3uJtg^PDLf%%7->9*+*;3ipFmx8s_rIGS!ZTpZQQ4@C?z{5zNw{5tLxMn6cELn@u6j(TZ0M| z@9$Tr)vev?wjND;qpThPuB+N4Z{pTmQu6%g?eC+w?lNVxQFP(_Ha`N2yxD&CFAOG{Cgyi`6XAdu4IDPW$=@X~p zPQ*ps_~=S=n*?vWrK3*PTqSL)YLH7B>wkNi#29Q$x2DiOa_c$e7%Z)p85=51W-94JuwkK zN>AhwX%@2n<>&9d`26FWpIpJr=F-jc*FL#?{o|`A&O}F@j5;279Aji`WMp)BcvNUu zWLU)Uh{$N%jEp@Q9nGoc&lgz*TS=YuqW`0X0MSwCK)|;NiJ@ST)3jxXDnxqAMTG>$ zghDJ?DKdyfr1|qui7VPAOa(52BEq0xJRGkQ7Qz%6<{K956B+MbyiwuR>9;C?NV-Z23C=KmzFScAvn{FmL-hGCz;F3VQoizva zazj|z-Pv?Pe|Z$0-`;Rg5|$|3e6itpx#{#$Q{egw4tvsz&CwT|<3KX`Z2aiuh6m7v z8~$U<_2;(x&u!=19oHW(Jb%6%efw(S&zIxBZF>M_;<4zAS(zT%5X=F*zHH}SnXPBT zZR7cA>lAIWA_+U2=N*f4cHnb;-nPDI-&k^Zs}10QZDFERZAv8*Mbiihm}7nb;XOmY zt-D|I5cp#V$_&$fgA3E3?nL|PHi%(fn`fcC+3UBe2m9`=Ap}2u|AEi<@xRqt4!` zv7xys0}T4yjDB(6w76)5Xul?v3?mE!$#zFS?TV&VJs=sPY;C-j!Kfw@3%+ew1tTT2 zpy*RT-Mt+wpKDM745$Y>HG^Hsz79oiyP~hXtGBJAyR}`@LOYUcYAc>6JpSS5ZxWK9 zf)nkECQzY8(MWC*m}I2vQ9OG7=<>CT;AN?#{L+mp6_v%B?k-ku1k$uA)k5G`+~9<< zx~3c#waSWOMOQ0znj&uv?m|jMn})TLRN#Sdw2e)5^47-x+)dO@iCw!&ceT?xF1;dU zXyXmQ?o*Bx4lp5L?YVe*IWL@|92i!M(&~FC+HW%Tv#QQ~3gvK&*zLmxL;vt_Hy%Q( z#k5a})l?biY*jTitL3fTEf`xg%`F;?@-{VCC07o#^o(>47&MxpPE2~>Yvr8{b#e(@ zW~H>Ow5F)Mu0+~WQ(jxliX}Bjq>Xi$i`3LtmXsINH&-`xNV}AB{ITG4Dc7%~tD&)_ zhV784FPGGm)YVtvf2O5F%DRkbWU5|ypSFWpWWK;WG@xve*JNcp%g;@M$!1F-mL7O$ z5E}RC9>T<{O{Hq-=#aIyGfAqeE?>Fy>F1w*_T^`>XJg^&@K$RY+2jBd0wFc2p{lsD zFg-sdIXj`KGP_MB>*|xYs-+e6xhXl1^0OZlGM$^=bX~ym@s_zc{5`oEcu8 z(=E*FmKF^g%f`(W)8>+Kd&T@>!}5CD{`#eZ%l2a1yuGg9*)Z&^nxHrM3fMI|NqO$K z|9AV+&F@ZKx*8UJJ>tZbxVR6`ojVhEA|@*Q!sT-}KDzeV&Fj#|{HnRGyO=X4Dfd{|!xJO6@nOriyW0tf6(R+W?qar3 z8!}2PBNZ$rYWYRL_y%EQMKHi!zRj0vZqVu}m(Nii)P=M3fujxgT5WIFKgREfutUB+ z@9q5n3_cd-?-S~GER0#|py0rOK>tIB53<6bNA~%L`ulNtW6noF-_V#qzp$f6gAV!x zA0mOoWQZX;<~%+~X9NI89`ld#4Txf?(Re?=r%=#}Y_7K&S7@wv&oNI`+g*7>XhcXg zsCk2jzy1Ew^~WnWc=r2_`_+~UfPA@Wf3abEx$XeiXj=k#P|_Q2Ng@2`)s_Q#z3qhX zaEOk7d%^T($H6}I{EVnKJM0NTV%l*iyyAxIoz~o&i?$a_wpS|-2mt$I)BSdP^z92b z(@PhZhw04()9Z1(`9EHafyA#ioaB;UtU72#nOr-$%~0-n*Nx39H~-xErN^vk3}*uWdK%JH{8=9*6+Exy7`x z!Rpt;3NJ3Qa)9&RAU2C#?>b<6lzI9X?NOd$(Q=`l7cA_==*ZNlZqhR{=G1!ZgD!B_ z*5?E-t$=R7+ch-i)>@3}QID3@;^*}U;pw57iQ(ySEf_pGIyf~oG&?)8u&AGz)sBw# zPEN8`IWXdGkJjZLV(cFq85`H(0A~PWhkJ;p)Urr8+_uruYc}-&?HEmb7Z#));hix0 zI|l~3s3k`4KwIBndylpY!sS>!(5@b8(`ehtpLO-LDOitZwldna*{@|GI<~NXpMFNM)##R#(?ml~ooMmgK?*`Y3k}}22=5O!~xLQs%&g$URhdMS&*Loys$8{UD435 zg=_EVR5dm$q%Fz@%n3mBCj7@X)|Hf$T)uqyhuc5>`ryu)%V!_NKdh)P#Vnz$x}>VU zqN1)mwCf^C(i95G)Rb;#+p)23Sz9%& zubDSDtQc2Uc)WVew6<>EShwLDhdbc>`kE2iSTk&{8@D!xH#f9fE85NFq0MF8){1^- zS-&w!Ma;|%z)#KDq?}nfkh$)QWmlTXk1+WoL6~Q(bOLeZI1#T-8)D*d?{} zx68^h>npQ|ds}){O-!A2eO>ihg=|FCWaw@-_O#&GKBVxBXzT-BTBUrTQ>JKbkkypc zRFz69imNLMCFKR>rMXa9NscIhys|tGf6wB)tgmi;bnEgZOc&0aKZVIn%;}ipCyql= zC!>#hJK&y(I|0`V`wN904}~+ncIyg^^0iynE?m2SJB03{Dci;q!`ktB_vZ3MDhd?y zOk-HUP`*tFt`w#)Fg#dnu0YGQzQO)99t-kg0oy=dm{;&J`dsYEv!{>v9Xsmp4}rCO z4V8s+DX`yTZo1(b=;WOk#mB?-&-t{u{%h!@^_2|MvE+>+M_T+uz6D{xh>O1Ft#uX3P28h6{SL1<;QExjp*Fmf%X??f{2lZ(rfzV{hMh z{(R-a$es-&^x7>PK(F9j0ed`y^S5mm1ZLxzDZGs5e7iG-=X||p`)%F+$0pG0e9NBS z#nB4@yWZ|N*@$=b+t}ORC*J-x{`NKAp6BfjAnjuBgt=t4k&!JSZ?ctR5RvhonQuF$ z3#?Vke~EojSHM)u=AvbL*|xo6-CQz5Tg#T6Roja-JNa6|IY7%hwK2cTYtuV$lX|x? z(y!T|t#$kMhGVxjH|)3~h)duA@X8YFYQD5&;k9{9B#vY-*a-1677@?$vutUZ3K)^# zSus)pPO-2NJJ0J5&Q2H^p~r`(CPtLyG2+%t{GcZ2U zW3zWnO!m*s>E`G4ul$u6XNUvMgrj|l2%DQGnZBu8pyi?lLQQy#7OYTSB zR^Qp((l??8x=hUelmGw_07*naREkTpxlKRm~6(!qzo4Ef8p0QC)XgeVsPDEi0+6VXfBzQQB9UnUVb9{;!Sl8dgE6wXUtBp|hp2wXwb)7wqixyLW#1 z<>wy~Q=dF~cIWG#zD&-FPfB~5mX+}E>FwvqkMavMic51UDhec$Vrl?@zXhe{7L;Ta z6z2fa#bt%%RizbmC9uo&?X{w$tu>^&W=TV9O`EEzy|b~bB0oOies*rMvu`&oPKLo$Brk4W?elVquSKpV(4i#_O_XN+YH?;T4m#4S3_UB zRMT9eYN=7kCCbJswY<8wMb=hb{?*N!A6>X`?#h|d7vsR-^Ow$Exq0p6xl@s+qt9Ny zaOuW{%O766bmL0w**I8XR#+o4_~f~hAAWir0)Q{wxCB%Od#hZ5B4RBnVe?FAAORHz z)Q&JHG$8IwY}}bRA3qNM#VN?Vpafzqy#+INA7z=g&7zfb)+RE)beA^%V)nuD7o}4AQ@O-u^zy zxJdeaoSoUNH*Nv*Z^jrkVPSz)!uD&9CKUjfh`8z$)>}R!q}7j|lvX$E(&2F51mZ8RlRi z#22lt%gbic%8CWzr3_5Gn9)1*lIHlfOG@<;Nh}ui#T}>_4%4g=TADLqT$nLHb2B3z zSGUR1sWY@{wT%`_r`4fwxYcft#xvS&cXnHBD!o~u)we6u^)h*hq&ByxG^MC2vsjW9 zpLjbV`EE&RI#gViURaWvQ=FPrm<(kWB;}MO7gVGdRHWvYr(_qW=9Hx67A55rCKeQ@ z6qTmo{uuL$lW{VuI3cGrDW^0A$}LT2_bg<}D@f1ENq&@YJ3TLV5t)_o|V^?l+_lOO9~X47S=0}g_PNz9}2=#AI#qV4oy#McW)aD z0}OT0Mp%~RG@>yY`>eJ;u-0bp2YsEcAsk>T!*bu?tvTI!cmNKPEikvWHz_(=TjjF0 zrY2QKM@M^0vs~8LByEzjl8r6R4GncwrA4_tJsm1lOHW^?y1T7g(cZ67^!9f3_bXNE zj>e`sX+w3Dq_i9;Eh{W8$So<%%gIc`SW{6Zt*&aQkHWt~?!`ZUbobuR|Ni#N_{7KYDNmtisgI$A^ruOg@kyD_64IaGV^GsrhBu69 zO?!Joc6QRe2S4WIr4*NEfy52+$~swDbxnC~U1dRG{^cu|E?m2E?bc2FHSa#YTU=lC z?fq}Q{O+@d3HOpypQdFze{}Dsgs1nO-1+X8Z$3-7{e5YALU#JI)WiqziNB<0Jt`?r zl{OYBHI;pX^*WPm*dQIzS3|~;YO}u9G+b*Qsq0gg7G(aUQWf;|m1zg7T#ir4GZN(;2z1!WoIzO~H-M2Y6ygmb<4y;cNuFVXr zb5{+x?#vio%o=}Rv`y+eS0;MjteSR~hPM`mb{0lnEb5?_OZpef`kf`++EnkWW!>h& z(8m1W=ECsm%)rWc-||@R!f5Z(c>mJG0JJbRFy+vAj7pof%`(tz9c*z7wK%n{qq=UR zrseBTKKbPG<%`$PL-4^@u3x(G3I3DM96x*F%(e3X^Mz~YE?&O~=u#UZSh17m;|Rbv zKDlw_=9QS!v7tP#7*L6fJr2+wI>vIHgyr7gpnxF3=>~@dhJ-T{3~XP$aWyy$XM#f` zLPMh1B5v66$f($uh?wJ{Q4vAmp-^x{1Xmao5_|mQ<@2!@&aw`J(NPdJ`hC~KfQ#Ma zu2(36L5&bNp5ZUyl@A;}41^QX2(&?=K@jys0>8s!j#HoDz(_y1SX$Hd4?hA7`-Tek zS7a>?4*Gqt&*%NUNB;pTivR|j0pKGc2M!1CKOB6>2UeJeqk|#?d2)3iW&o_iV1&2K zWN5H&a3EYh&d_;EL!;bpjBHC)L_lD;|KFY@-^(maE|;dsI*T;J)g$)isinS^9mDI_ z)<6GraevH_EFS#n`123@+uv<(G5$t!GZvBr(0bnKk5NH?j=g;gaB_S?^r%1ZgdQdw zkZ}Ck&cH89c>Yn2Uj96|&s)GA#@+QFFZ8=O58yBc!gpMJ%@|hOiKzqJ`R^}XAo0s> z=MImw@2p!vM`&lo4!v5nzg~0vxdrx*vN^#He7Tb^JbPfQ#qvN@AqaZC2_#!zuG?@x z!gE68?;X|rgHnHA=JX4qowyh%K!PH=xY z5Hx2JwLEWTweoqF^`%9F+ojg&AT;nd*7nxouYIFu;nUOxgpa;6;+f(shZ4WG?StP0)mhz4W)`e5D*Y0 zh$^Z88-X#xUz^WM>4NBbNfpL6Um{_X$XYp+$& z*)3Cd)OB>$cXi6!R5fyWS$%y;Nq%~6##?z+KB&4ZyQ(y+qAaJXBCo!@pr$0RswAhn zG`FfeyRr<9=YeX=^JP_qu!WakiyDwCDmLMMR&IJmR%%*yYI@Fx^xTvW*~uB%?{hw(gC8=IU%z{ilJ+*gFuSlMub?~&5ccsGP$g}L0;3;R0Ew1nXJ5^ zAQR_tg!iI1HrFYY^(`tHF|(^swKt;mU__?nMn#QWRtp!Ysw`<%$l6qj4z)ey8T4kV zs>|VP0S13ad-p!&_1kwzK;rbYzt^q1e}?@U>=rEfEBf~hgge*^r@r*wipR*|M~tSzYW}TheSUw6D#z0s_nP9)T^M znra&CtsLm7(CMr7JvCjr>h`X3eP7+gbjQLM_2PU7ybH7p+vV={#m<#4?Hkh_Ym@Ef zVa@hL&)Yk+;}iuWa$Na?jdl-RRz2>9DQpw%7FAYyBYG#(;UHXL_vO zwy9fP=~!RuGOu)7R<&Epx{dj+jrs2NFB)L{!c6JT8}yMo`fps)Wavg4+|g z`+0cydlDWLO&ep+Dv(N0HD3whD~2crEk1&a8Q|m_xa~+8{e2~a?-NQhCH6W<_FU7% z7ECjc7`h8YWHl4I2&fd2hzkNE4oBdbfss@W1w~pB1I`$?n6E?-*16+R=rb;?Q_jqj zXDKHEz{Du@+2grk`&2PpC{Hq)6(MPiZB%s0lZ zfWWv-k-qFy}(J-MAVrx1&G7@Yawd2$7cM11=KnOGSh(M+tz~e}mn&>*C$Iknh z_xt~RP4sqv_w>=x6uQXaac=;60PuDP!m;24*us5rS748LBgfWY^EneEoLl*|}av!k6~Cc5Xx zw3CBvL%QbP4wK0 z2Q(AC-BbO#sR8XopJt@5&8TlNXA}uPlg8Ai8tPLG52}r0UD`gyt!K9x zUd+>s(b3@>K|7$=^y|7*s`^i#(vsdhdXRAY=AGZ30Focw z}YFgYimTo-fB5W+0oF_*$7+QKx!vqwK^0n zDpZCNWyT;R~c9?9kUfS;pLq+;IHOA(iUy95Bfblo5Rp0^gd&0o5Xmb<_7S1yk??k;Qg z*Ly(+t3CTGdf0wl?>kx>*j>;aE%i@zS1rscw#~YYmA0iXin($5@~qPCl^2mF$LcH_ z-AjwA)fM&nGIR?%Ru(#!=R43S_hj4BWc%Vo+x&RT(p1~>j2ijl`Of7z_0pG4ka>Qf zwJtl%-OG!^m$-@Cy`;W=UVi@G;g=$VBSXbLQZxj8!9Va~K+vT?|0qBAKrgPFfG*(( zd|ZLPVOPT=E=M2-OaPecCK7r{0l>J@5zk!=9-8lA&kczOT6yk5kic8Q^AvFa&OkB0 z+yzWmE|CHnmC@yT2yp}Ff_5wpX1X3vg%Vk=>=~qwS?h4U_OcDcuA_lYkPt>$BtXz5 z1ZEnnHiO4GOL9I(cA~QBfL^gwD3k~pYzBo*rE+K_z$DWJjUhA75lls~SHM??fVgMy9a>*B z5{NafAGh)GjU~7ODn|oX!*kO3nj5PI`xyAjAZT@|e{Q60ZB}PpHf*oL^9*k-8qM>@ zjXA@YDecsVdZ<@1VNy?xYA1#@Q{(!X$==zCe$e=cZfd-@-=GFRhgS@b4|Go(d!|j@ zpvjT$aZ}fXv2$dgZKO{%+TS)htR6A7n?}?VQ`)Y{)+=!lXSq%%nP*N@&YdEkJx6f{ zxlmjvbjqE3zv_YOV|t@WGiYentmPaFViEC77G_74- zEt-y2eK(M_AuZ)iZB@ClN#3H6fxsr#%PXp?OM$^9+X zYp%1`l2XdSXWMz%*{C3D)Bs2AwIEv?ae^?|0s=cV-@>nmx%1Y3LmOUWtwsZ(2(Cu7{?aPXH#t3*qNh`D5(i3PA)Se%X5VS^V}b;#S)@J1QF0;Vsh zw!Ta*uWV_NH8#{173QX-zb-D%tEefeZ>(%+uEs<3$R#({${T9rja70Kw_FJVxPk!l z80wDx0T^^R2tAvo=9=c_+P1cajt)g@tE{G`xEzf1r_9XEWB{#*&*4g`>G^M4+G;?> zpFRfrd%%~R@iEz5>cQjion6jxxXg^q=XLe@ZH@W;nwrh|p1lpz_G*uHS!bK;w0`bb znb9sxbWRSdhI-|reGSvbmWA>5wb|~C&s~;zt!+sMzH?(uzrL#5SngR}&`yoE3=hi3 z#@a?lRfGM_{k=^(ZKJBSvaCEK|I@qr$`6{h(y1=le6MoZ(6TY2UY${bcGo+s%PQNV z(z?)Wn``S+W~9da_V&)zw+Xl2#Q&B2BqsKc%Qvq7dj0CPD}My`ji_wPo$H@ltTRmm z%GBAx(xVN{(U#$0qwni#@8L?%;Y#1ZaxVw~d@!#YX)pRbT4!D9+?ZFH7u(HWI>0e+ z&2?KoYc}V**5^8AhHE$G+ZLvp0L&{ht)SJ}j?MXQ^P zH<*6p`{(*}EhX23!-8Gi{Q`Xgg8c#leL*2nVF6)50AL`ldx$#-tguIrx75c2Wv=*V z0Q-mfgKfoW6mhY7Tt|WLA>n(83DDY8MH1_61b}2+lHs3p zT<_1GJwqzQh;;xM7t=)xXN5eR#e&LX<0ZBr+@^5Rv^0&w;t2TyS21Attcw%M8Nz3? zxGXl0O=r>JSH*?l>`Zq8L4(9R?@UL7$tbY~+X?ZNdg?404LF}6pE$=jgoz+n7#*aC^+n)XG;92X}V+{=Z+VnF|Z!ejz~DLkel1wU z(Wo_zOQrG9qGSZ%yRoR4XuXexCXA77B>=ooePXoG!sgcgf z(Js*Jr0&a1FKnmAG^T##$Y3k{_L)q|p%K;OtoG@L#B-ce&NOEys*^L>83gFX4G@WP zIwA3%VMskbp*I=T1N|+%I;FlF)qm_%H#~hF&t#K)+@;|`0q#<_^bcu86(zpG{+U_t z(VF9SS!UK-shiN(&m$)zBO@i{8!cS!tp8zL~syaX;Fhkv`0La-_Np&>?gS)#` z+O9SraaX6RL*1foSGKn`x2Y7cZC5K>iCRoVUJg{|p-x^^QC;#e>jPSROaQn^Q4hux z7Z7akQs8C2D1e#BMgr6%>Itfd)Sd{F{R8c2xzPwpbcIq`89H!+Nu1Hl@pweyPYmFC zViwuXV|WSoAsnTyuwWPXS5lS>CL2+?SE=b~#$_}y)KP#p;e!FdGFgRESr4EsDa(^9 zs`2V6yj2`KW_Xnd4u@@BtE#509aTPPZLP!UIPeTN7H;EoA|Sn91zVl2wZFe>Xh^5m zt6N*;nIFN|yJzi# z>+f!AY^$2Jxz??94LH<2i*{#Ib7<~e|Jx^X9L zW_j>vZ|G>(aAehPes0*`>^j=*JK7#Nvh{zpA{}k@?{DZqN7jKO>)_H@!}@CLwpFve zuHG|uZLf6gZ|HVcd$*VM`{w@Ljo$V7w(WK8wpqVp>477MTZ6mSfo)6Qo^5b{+W-xa z#nQX6p<7+mFE49XR&;A?JKjVD&up^f}6@Q!c-pCY?A(1<;dJNK$}5=Up6X-0p9>Txf6v%;n7hIC0xjXM+1?$KxHabKmpPD z0ASJ&_u>G+cfSWPZrqQLA#^`FAsRd5*f^xP`1?o?9}tR;PmGCAj8Ax!koY9wS<;iF z_YXhhy!ur6uBs_ZJy<=qq*>V>THP^j?wG6xWBa?Khx_Bm;~tLg9gOVknYOk^LALEt zt8HZ4HoChrzOy~HWieUI!`7|Qoy`%@{^l_Bg%3B3M`l3dFp8$e06rW>gVopvV-JmW zG;%y$J%Y|TFxh8|2@E4UyKMqY?rj-C1T2l;3jr9%U2hE|*#M%$DBNuO8<;V79WL2E zOud6mFuFLP7tz;x{1!%mb^rhX5CBO;K~xkPMp%Covo?yZW{+RPHyW{@wmS}6?8Of@ zhxa#32kY>`QTxzr{~kcQ>vqKA!E-zbjpD-Aj5}*X4sEX*2pK_J>jo^#+900u#z?kn zb;uz&ZeBHDoLd$K&GQ3m3;io!dY3-yK?_s5PGw1P&a3>4XK6|IGG0ZG_sdsjG>e}# zU#2_0%yus?^uqbeb3IcdZ2<4jvzp0?_VF*ej@~-4zu1Z6M4?e#$Rx50iRA18047mM z=PAx0C+D+biJ(bd@_Bl2VnSmwwG9rah$0s4J-w}kg&9#%{@1RAhX#9lxVz@&d@QUe z@e1^XUvQ#)Q&Uk{mWNa*74xc!i#n9eo$X4sN`aTwG^pyDP=vD#jPkLkL@?H9S~SPm zm_ePLN(X~MxY5$8P_{G?)f7-I3Q&W*rnaUW+#4VYz>LcMs+)-Ffw+7{Gad&f=5bL* z3zS}}M}-qp;M^wt1GwN1%FYP5LMft-VTpO^@WHtK{Sn74I*)T{p>$e0RdY*CSw(Ko zfLfz((e|pkd(diQqECRlIM5eSRwakWmNir&j|;%A$XB57ZyB-HOOE5rQS=tN5i-yn zo$}7E29Ty3x&`PUN`^(`%yJ0PS7*;VjnjDHd|oS(>Osw|6^%_L>W(^9N9FK%=hB+iY#X#%`+;hkYyHa$+U2Dl`28_k z4500;k+I?Cg7hb;FYcC>KU?4I*;^Y+e|i7Tr9W<8L;#*!GeTc~f7f`hJ@9qcaJVxF z+kIQ#p0)R2ci`*30kprx#z!MruNw5I>O&pZU@@`MG0sN;N#8GL5&6jH|{b z+fAb_14E4?eX7ppia(<+UGfVI46@r_#Ne>tu*fi1FE^hcKfkB|P(W0$Pnf@VfS*t* zVY+ffzEVWrYY~xGE(Ax0x_Ns7n7LB1$jco7j7N;Y3IlP`I@jaH!QZX@<%m5cQZEl2 zX>}ZL#pSv3QO*jH0DP)F!kNzj=ZY5ovQQwBcaV>NU;u-~B+=<;%$7k1ou|`4BnA!m z3iJi6LIbbo0np+(V7x2}4g!ENn5k^KGmV5-52K$Hm-FY&pC(hB$xIhKO6-Ds@L7~j z5=hN)A+yjf0Qd~)#7XC$0l>$g1qPo55`)tv!lCT|1}X!3F`loV4vC`fgc=@!DC~qWm5kL!d+R*jLLqS_F(Vjs%q2o3KwUqtWc) zz*au@C?-`GF40sIr2rsp=FJT%%xV2)95HbguQl<7#+8nzM2h3mLar&YIouregDQ_#})vO1+)epgJTASqaJ|WLmz_G zCX6*`Z=KLFkH2Yc$f2E818(fCfAhp!tAik-jl#AufbB1>8;GyngxCxuUNL~saxB7s zZ!IDogP^emjrjrVtbRgUXP)Y^Olvmhbz4iln@c?)XqXrDYxDZerM}gr-i5jDxiv#> z=^OYHbm2H-0JEK)IW8_tk_(GWA~7f^r5xGC$@zTp%fz|Kp{XhD=xE1~5m?pQZ|vwb zw5#<^DOpJcC0UoRhr4;Y!e8275AJ&e`lV&Q@6aIoSX*Bl7~t(D6_%Igb*dHZ?M*6G z1CEPUsO2EkAl50tK@f)VH*=|O0$||eA)OtqKw=PXs8OM(X0W{Wv{uA?s$5HA1(eqg&CbZSK-38=5PN%d-K!u#4lr;LMhGIbPokB9>{@*UHOr z1UPu#>iSYZF8~;)Mj`=QiSg}5;$dWHpu4jH9s{;$ zmzcfAoCX_RTVGmMUI@y{%)S_P>Bh~g1;x3Am3ig$#UHXh1Vsehy8VZLfR9MX3kvkR z74v&dW4V5yMbp!y?UxS>w~WnpOwD(XOt$tK>IaAAlb_o^FKQ8cCe_2^ZD_&zXYIsH z*Z6ej@VI)wsO;*j&(C}N?sYYW9#l=q0!a~QwQYYy1f*Q24 z(W~mn?-{9C-0GQG>zZEeoL%dlUg-k3&U{giPqhw@DLS+jJ%h47g91KLpRu{$r0g*@ z>x~MXQK2_AYloUNgAJXA292>vJJgJ1P;?JAX$Bg*`Wy6ptyQ)8S1&|{1^RyvU=#=) z86x#|_we%q2MqEE@^%aGlz6(M@F)pi;_DH9IV|d0c3f)B>{+Ml5H z8lu7mTsnl}&{=i=-dCJ93=jp#|{iTko?bVwo^GaA@)0gMUG8)1bB`~ zd=mHK)sv6e@5(Fl8kD&MrlzT7&6myI1=}EKeRpK*>*Utn6w>aPb#MIOa2j;DHv>94 zK>B(x0Ur8rADr~)*FDqWuJL$ynGgmro_O9R1oS=pXMc=CxWN`5nCyez_C-x&NO*)C zYv1$@-sof_T8o9Eu}1f|hw+f|k!^@LlUNO9Ul4_+jgJ8EXff5$@h$Mw_{eeG_~^IJ z0haxliRt7cqKC0-`nqF0+BTx=!v$^7T^KsrG8|bA=-_v#-Zu{+Z5j^DLm=QZ77+Si z(}=aRHVE3@Fc2~lju~0!@4fQ(NVcsET9*evs6iaxSu-Isy)sB}eQ=O6reZE4ChH{J7jN{>^27)Fpf2bIY=FVb?~`-OSIZ}-*TuZBcLc?Sk& zXQmGHcIyBVn#T0BzXlr0mC@QIDi%fdlNRj zwXGf*Wg-F`Bbneme3|tvs=8WvS!rc{{->P0{OtU~{0H$5p1*yOk(Zg4lb)IX@qT;^ zPa?Q;_pj`nOfL^_u~6b0;+dKMp-xd=-B427R94eiDr+fkY^$nO6jnEWs#6v;cUGwN za%E?Ay|P5!TGpkN>-(Cqv^@&wG2r6aZHl@sRbyd(N~5e8%x+spZA)vVqPa{aFRrZ0 zt*XweuF0>f|0HiHs%tKmwUjorRe+jW%N42$WlOobqgJPF(00pv`Wg(zmZ^zuMPorq za$I?7YEju+lm&CD|5@U#n>ViAxOO@0dVs9GYIvr@IMqHnqc%;d21lFvha0p5HELa1 zyS5azDqXo!Q_|d3+R|O#s4jV(9``Qqakc7G%b;AYt7_@1?jBWW4f3x3x^{g{le(m$ zAxF_!Ay-${smiKbOR8FmE0l$xGDSg=Jhw=elV6jWS@t2V_5m_$Bs_W(e=GiGP^e!(uunjsw|{__V+#_xiNOTB1$lUcc=-hTdIfrW`uXrBXt}DJ zuV=*Nu#4BDE?m0+|8oi5Tv1|3F_+_xTrWe!rLgI)z;7>4o&ZHbgD`;UOtdNqP#O>( z7!el9=L%RX7Msn+xj4igVgR#5>c$s}fWd5m059_e0D}PS0a2mB!J$m%Hvl_CWiuTB zwwFF6hMjRjM}RIWJIJ>uqecZAh&8nwJ_}{p1Y3*}agbPSI*yhiG0y{Q&$ygAM?M2c z=7rBacMa6Gnn8rPBc@9{PM0LUd7P<+U96E{W3>fB!IM4%N3aD^Ca>?w|AiVMz4|m%EeCPhH+xPy0 z?cek_7&|Zw`raIW@0GtJG$t|f#|iOq@o};7@$qqS_V6w^{_t^p;_JBQDUaV|KTFO_ z$}Uc=ZYpk4*R<&xdxl#_=kzP<28(U%a2Lfu9qgGvhucF3HiO+?S`7!50oWqW0h558 zV1oCDaY&Ti93PGT%OtUh(DxI@D5m=B*HN_W3Oi{>Z1y3-Ji4Y0Ebq6-EHvy4CfH&; z+A<=W3$I!X2ex4%!VAp=BjXDOdWR5(?w;Xje~6g09ytypA2|*qA3lBzB2e7E?rZ$J z)nB9Eo)-EOyTr5;?m)l?w+-0^ZMdDI1F=mQajOwM8xaV$zcsvPG3{84XpZd|zyy5< z5S~|oxP4no{g%Z(>r%gMdB9}r0zH1rU-W=TB7=*3> zG`80IHrJ6hR`e?inz`k^#OJ@+lc7_nz*-+?mkl~l#?lHDSC;sl?=O%RHyGg{aUOa!1^xVVK{l&v*ZCg{f zx~@mlP+wb;mHAGuZ^!P6L2Cd25CBO;K~&P|+E4}ztr83(s{fe%fwrBM9&Y9Rl?5+9vGXaiBHP zKR^$Ue6!uD!*kZ59G10(#pStqg&CQ7nIH2%e#lC{`up|xrwK3Lzk2=l&5M^wzP|nf zfd~w7oxJMm0MG``6slrsU$zII4{2>7p-(E$pYnoVds`)WfZ1m zmwv307dNZxQI41P8bwPvp~@y@MN>n0b5mt*&fDs$+}gT)nY>U||4G?g)}kzLQ&qL9 zYLqQiN>w#8@|geUqM$ zmiIh4|B0%<4v2m?`s(#xuUxx+Ipn(khr)MdjX95#??*rV z?p^)$?v<-|FI>JI8TCh0*p0B@t3d&m{QaZ6y~EtygQRYOuF?RB*jFg<;&I*CTvrxH z!UVC!3>K=CN971;A}Pn$&jS+|XQTA<_XHjXhxvm8cK7x43iI)a@C%9z24wn%1c*Fb z!Kb?Wc|=@^ym0*@IN*?|Fjp@Ro0p8}fZ-V^Ou7q=LKkq6@g)``;cQcmFfJlTCXw1g$Ycr_JP8lr#{*!a zdJJT)008KGo_flOcKRIUXv&gAm|X*W+-HV*)K-i3Mw7!3B87==cmSZ82MECL2$ z9-pOvGe$>%$Jif(f29z^&Ol$nOrIyy5zC!O=g2e{=y^b2hs|RWcAUl+vEiS_0bq`~54bR_4R>u}-Q_J>f zuec}C4<6ln^!(nNlt&+PU)0KT`v)s0r<+$dx~w~Whew8EVxfuN!vo{t{xAqJ5)VP| z+ffbribJWtIxq%y)^zyQNC+B4#P!km{?YjE;poo(`1anIZFigy+Qmn$tUpSqJeO4H3=%{_=F%e}=Ofw&Y5CeG6h=l#Louk9Yi@1i44hFw1nP0@IBZJL}%rg&D%z><^axZivhH|jsz|l z?CkFP0BC=uA9S!f0D^-%t6+cou`r<#q&Ej`8v|H-TZYBiHar);V>Y0J>w^wiHwL%X z2P`Xn=H=d1v+>!hKj>^15RFQqQs58OiOZnz8B7+L0{^+VxGee)LtGGX8QzP`_5))Kuf+<9heTWkq$Vx~WX7s%fYxe*G*? zuWcDI=?unhQ2#(Xk)I0{`N2^_I7A2s4dFRUaHxHKY7jIAdR2!0_Q9SOLoZ6K-G^#6 zH-q3J$O{r7$GGMMUgO)^sZ^>JAi1(0(1@axi3lkyJW70Q5M_jSRN#?nWvi@FQG-)p z;^-#;q#cB6qG%GqT}SjXO6GMun2bWDaPDg&atha3DyuBY%>DpJ0ILoF+L1D}I$O(eKRgWH|mjmQdX8#Ubx8Xdu4;!DE=(zOD6>_{hwRi>X>Y@>Mm|eUdY%66ZSuPh>1lu6z6HPLz){fU z%a?gP9{kWhdy|x&n*josoSO9kwkaP|vG6VkUWIF><$Nfp$gXKB!ztAo6eSqIAmFQ_ zxgsO;Wo=zSYkPHvMh1?yw?_g0l)c2fdzYrMLjxa50spLMJ=l0xS2uhKB~2~Gb;|r2 zMQ(XRdU0J!cFD`k!skh;F}LC_M*R^KcEd0Hrr+hep_l#)zi>13`fpdS-MA8QG0-PK z>K7)Jc(Wx^uGp0$cH>CgxemduSi%#DxdK3wkS`Joq08v*CK3rb0`O{lmWa<1@|b)M zoyVrJm=rdPDgYV(n4TL2jObQg>geK+5AvI8q-^6>YDe=?Co40z+B991aW29v`C)ZxM8sHiBB zNCf|sd_JEe;=u{-er`dLfnHu-VzC%ZFb_VP05KQ@hFIV&4Z0i=78b>UjsuMaqA<~9 zu)_fZfWat}=u{N9MN|_)!sQMnIN35PGmPs50Ze1k;5jL5XJ`6ZXZk6S z3*{ULz|7(@=qxg{&y!9f6HNG8aJm56(=I=sKBn(!>L~!^DawhHWOV!tF-8rZl`3!n z2TW$4rf|;CxL}2y7#tTuBqo>46S5?30)dzV=;cBWNzA~5&yF-(c#RWs*rZb@Tu%OQ z>+YXez*G!f*y3Hsl!$GrfmCD*1bvV-sslu$d=V;+Xm}AiWcwgArT9CO?!5YfOY`1yQ5p%AZJTUFP#8*HMz~?@T=zDR zzOEaNHiiy2hmI^J?C+74-y#OOZD@%5z=FoK(R?#;KF}JwWCUZPk_=q=%aqEt(z~