-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathreconstruction.py
87 lines (66 loc) · 3.58 KB
/
reconstruction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import os
from tqdm import tqdm
import torch
from torch.utils.data import DataLoader
from logger import Logger, Visualizer
import numpy as np
import imageio
def reconstruction(config, generator, kp_detector, tdmm, checkpoint, log_dir, dataset, with_eye=True):
png_dir = os.path.join(log_dir, 'reconstruction/png')
log_dir = os.path.join(log_dir, 'reconstruction')
if checkpoint is not None:
Logger.load_cpk(checkpoint, generator=generator, kp_detector=kp_detector, tdmm=tdmm)
else:
raise AttributeError("Checkpoint should be specified for mode='reconstruction'.")
dataloader = DataLoader(dataset, batch_size=1, shuffle=False, num_workers=1)
if not os.path.exists(log_dir):
os.makedirs(log_dir)
if not os.path.exists(png_dir):
os.makedirs(png_dir)
loss_list = []
if torch.cuda.is_available():
generator = generator.cuda()
kp_detector = kp_detector.cuda()
tdmm = tdmm.cuda()
generator.eval()
kp_detector.eval()
tdmm.eval()
for it, x in tqdm(enumerate(dataloader)):
if config['reconstruction_params']['num_videos'] is not None:
if it > config['reconstruction_params']['num_videos']:
break
with torch.no_grad():
predictions = []
visualizations = []
if torch.cuda.is_available():
x['video'] = x['video'].cuda()
kp_source = kp_detector(x['video'][:, :, 0])
source_codedict = tdmm.encode(x['video'][:, :, 0])
for frame_idx in range(x['video'].shape[2]):
source = x['video'][:, :, 0]
driving = x['video'][:, :, frame_idx]
kp_driving = kp_detector(driving)
driving_codedict = tdmm.encode(x['video'][:, :, frame_idx])
source_verts, source_transformed_verts, source_ldmk_2d = tdmm.decode_flame(source_codedict)
driving_verts, driving_transformed_verts, driving_ldmk_2d = tdmm.decode_flame(driving_codedict)
source_albedo = tdmm.extract_texture(source, source_transformed_verts, with_eye=with_eye)
render_ops = tdmm.render(source_transformed_verts, driving_transformed_verts, source_albedo)
out = generator(source, kp_source=kp_source, kp_driving=kp_driving,
render_ops=render_ops, driving_features=driving_codedict)
out['kp_source'] = kp_source
out['kp_driving'] = kp_driving
del out['sparse_deformed']
predictions.append(np.transpose(out['prediction'].data.cpu().numpy(), [0, 2, 3, 1])[0])
visualization = Visualizer(**config['visualizer_params']).visualize(source=source,
driving=driving, out=out)
visualizations.append(visualization)
loss_list.append(torch.abs(out['prediction'] - driving).mean().cpu().numpy())
if not os.path.exists(os.path.join(png_dir, x['name'][0])):
os.mkdir(os.path.join(png_dir, x['name'][0]))
# save png
for i in range(len(predictions)):
imageio.imsave(os.path.join(png_dir, x['name'][0] + '/%07d.png' % i), (255 * predictions[i]).astype(np.uint8))
# save gif/mp4
image_name = x['name'][0] + config['reconstruction_params']['format']
imageio.mimsave(os.path.join(log_dir, image_name), visualizations)
print("Reconstruction loss: %s" % np.mean(loss_list))