From 8c5747d954ce19da451769e9a28ad57698079ecb Mon Sep 17 00:00:00 2001 From: Vinayak Gokhale Date: Thu, 16 May 2024 15:20:39 -0500 Subject: [PATCH] Change all block pointers to tensor pointers (#585) Change all block pointers to tensor pointers Block pointers are for nvidia TMAs. They are useful for regular loads as well but not well supported. Also cleaned up some code I came across along the way and updated comment at the top. --- python/perf-kernels/flash-attention.py | 246 ++++++++++++------------- 1 file changed, 119 insertions(+), 127 deletions(-) diff --git a/python/perf-kernels/flash-attention.py b/python/perf-kernels/flash-attention.py index d70a43ecd36c..42e9ac310195 100644 --- a/python/perf-kernels/flash-attention.py +++ b/python/perf-kernels/flash-attention.py @@ -2,19 +2,21 @@ Fused Attention =============== -This is a Triton implementation of the Flash Attention v2 algorithm from Tri Dao (https://tridao.me/publications/flash2/flash2.pdf) -Credits: OpenAI kernel team, AMD ML Frameworks Triton team +This is a Triton implementation of the Flash Attention v2 algorithm +See https://tridao.me/publications/flash2/flash2.pdf -Features supported: +Credits: +AMD Triton kernels team +OpenAI kernel team -1) Fwd with causal masking -2) Any sequence lengths without padding (currently fwd kernel only) -3) Support for different sequence lengths for q and k -4) Nested tensor API currently does not support dropout or bias. - -Not currently supported: +Currently only the forward kernel is supported, and contains these features: -1) Non power of two head dims +1) Fwd with causal masking +2) Arbitrary Q and KV sequence lengths +3) Arbitrary head sizes +4) Multi and grouped query attention +5) Variable sequence lengths +6) ALiBi and matrix bias """ @@ -28,10 +30,6 @@ torch_dtype: tl.constexpr = torch.float16 -TORCH_HAS_FP8E5 = hasattr(torch, 'float8_e5m2fnuz') -if TORCH_HAS_FP8E5: - torch_dtype: tl.constexpr = torch.float8_e5m2fnuz - class MetaData(): cu_seqlens_q = None @@ -141,16 +139,22 @@ def dropout_mask(philox_seed, philox_offset, dropout_p, m, n, stride): return rng_keep +# Convenience function to load with optional boundary checks. +# "First" is the major dim, "second" is the minor dim. @triton.jit -def load_fn(block_ptr, first, second, pad): - if first and second: - tensor = tl.load(block_ptr, boundary_check=(0, 1), padding_option=pad) - elif first: - tensor = tl.load(block_ptr, boundary_check=(0, ), padding_option=pad) - elif second: - tensor = tl.load(block_ptr, boundary_check=(1, ), padding_option=pad) +def load_fn(ptrs, offset_first, offset_second, boundary_first, boundary_second): + if offset_first is not None and offset_second is not None: + mask = (offset_first[:, None] < boundary_first) & \ + (offset_second[None, :] < boundary_second) + tensor = tl.load(ptrs, mask=mask, other=0.0) + elif offset_first is not None: + mask = offset_first[:, None] < boundary_first + tensor = tl.load(ptrs, mask=mask, other=0.0) + elif offset_second is not None: + mask = offset_second[None, :] < boundary_second + tensor = tl.load(ptrs, mask=mask, other=0.0) else: - tensor = tl.load(block_ptr) + tensor = tl.load(ptrs) return tensor @@ -204,19 +208,26 @@ def compute_alibi_tensor(alibi_slopes, seqlen_q, seqlen_k): @triton.jit -def _attn_fwd_inner(acc, l_i, m_i, q, K_block_ptr, V_block_ptr, start_m, actual_seqlen_k, actual_seqlen_q, dropout_p, - philox_seed, batch_philox_offset, encoded_softmax_block_ptr, block_min, block_max, offs_n_causal, - masked_blocks, n_extra_tokens, bias_ptr, alibi_slope, IS_CAUSAL: tl.constexpr, - BLOCK_M: tl.constexpr, BLOCK_DMODEL: tl.constexpr, BLOCK_N: tl.constexpr, OFFS_M: tl.constexpr, - OFFS_N: tl.constexpr, PRE_LOAD_V: tl.constexpr, MASK_STEPS: tl.constexpr, - ENABLE_DROPOUT: tl.constexpr, RETURN_ENCODED_SOFTMAX: tl.constexpr, PADDED_HEAD: tl.constexpr): +def _attn_fwd_inner(acc, l_i, m_i, q, k_ptrs, v_ptrs, bias_ptrs, stride_kn, stride_vk, stride_bn, start_m, + actual_seqlen_k, actual_seqlen_q, dropout_p, philox_seed, batch_philox_offset, encoded_sm_ptrs, + block_min, block_max, offs_n_causal, masked_blocks, n_extra_tokens, alibi_slope, + IS_CAUSAL: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_DMODEL: tl.constexpr, BLOCK_N: tl.constexpr, + OFFS_M: tl.constexpr, OFFS_N: tl.constexpr, PRE_LOAD_V: tl.constexpr, MASK_STEPS: tl.constexpr, + ENABLE_DROPOUT: tl.constexpr, RETURN_ENCODED_SOFTMAX: tl.constexpr, PADDED_HEAD: tl.constexpr, + ACTUAL_BLOCK_DMODEL: tl.constexpr): # loop over k, v, and update accumulator for start_n in range(block_min, block_max, BLOCK_N): # For padded blocks, we will overrun the tensor size if # we load all BLOCK_N. For others, the blocks are all within range. - k = load_fn(K_block_ptr, PADDED_HEAD, MASK_STEPS and (n_extra_tokens != 0), "zero") + if MASK_STEPS: + k_offs_n = start_n + tl.arange(0, BLOCK_N) + else: + k_offs_n = None + k_offs_k = None if not PADDED_HEAD else tl.arange(0, BLOCK_DMODEL) + k = load_fn(k_ptrs, k_offs_k, k_offs_n, ACTUAL_BLOCK_DMODEL, actual_seqlen_k) if PRE_LOAD_V: - v = load_fn(V_block_ptr, MASK_STEPS and (n_extra_tokens != 0), PADDED_HEAD, "zero") + # We can use the same offsets as k, just with dims transposed. + v = load_fn(v_ptrs, k_offs_n, k_offs_k, actual_seqlen_k, ACTUAL_BLOCK_DMODEL) qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32) # We start from end of seqlen_k so only the first iteration would need # to be checked for padding if it is not a multiple of block_n @@ -238,8 +249,9 @@ def _attn_fwd_inner(acc, l_i, m_i, q, K_block_ptr, V_block_ptr, start_m, actual_ qk = tl.where(causal_mask, qk, float("-inf")) # -- compute qk ---- qk += tl.dot(q, k) - if bias_ptr is not None: - bias = load_fn(bias_ptr, False, MASK_STEPS and (n_extra_tokens != 0), "zero") + if bias_ptrs is not None: + bias_offs_n = start_n + tl.arange(0, BLOCK_N) if MASK_STEPS else None + bias = load_fn(bias_ptrs, OFFS_M, bias_offs_n, actual_seqlen_q, actual_seqlen_k) # While bias is added after multiplying qk with sm_scale, # our optimization to use 2^x instead of e^x results in an additional # scale factor of log2(e) which we must also multiply the bias with. @@ -249,10 +261,8 @@ def _attn_fwd_inner(acc, l_i, m_i, q, K_block_ptr, V_block_ptr, start_m, actual_ # Compute the global position of each token within the sequence global_m_positions = start_m * BLOCK_M + tl.arange(0, BLOCK_M) global_n_positions = start_n + tl.arange(0, BLOCK_N) - alibi_block = compute_alibi_block(alibi_slope, actual_seqlen_q, actual_seqlen_k, global_m_positions, global_n_positions) - qk += (alibi_block * 1.44269504089) # scale factor of log2(e) # softmax @@ -266,26 +276,26 @@ def _attn_fwd_inner(acc, l_i, m_i, q, K_block_ptr, V_block_ptr, start_m, actual_ philox_offset = batch_philox_offset + start_m * BLOCK_M * actual_seqlen_k + start_n - BLOCK_N keep = dropout_mask(philox_seed, philox_offset, dropout_p, BLOCK_M, BLOCK_N, actual_seqlen_k) if RETURN_ENCODED_SOFTMAX: - tl.store(encoded_softmax_block_ptr, tl.where(keep, p, -p).to(encoded_softmax_block_ptr.type.element_ty)) + tl.store(encoded_sm_ptrs, tl.where(keep, p, -p).to(encoded_sm_ptrs.type.element_ty)) p = tl.where(keep, p, 0.0) elif RETURN_ENCODED_SOFTMAX: - tl.store(encoded_softmax_block_ptr, p.to(encoded_softmax_block_ptr.type.element_ty)) + tl.store(encoded_sm_ptrs, p.to(encoded_sm_ptrs.type.element_ty)) # -- update output accumulator -- alpha = tl.math.exp2(m_i - m_ij) acc = acc * alpha[:, None] if not PRE_LOAD_V: - v = load_fn(V_block_ptr, MASK_STEPS and (n_extra_tokens != 0), PADDED_HEAD, "zero") + v = load_fn(v_ptrs, k_offs_n, k_offs_k, actual_seqlen_k, ACTUAL_BLOCK_DMODEL) # -- update m_i and l_i l_i = l_i * alpha + l_ij # update m_i and l_i m_i = m_ij - acc += tl.dot(p.to(V_block_ptr.type.element_ty), v) - V_block_ptr = tl.advance(V_block_ptr, (BLOCK_N, 0)) - K_block_ptr = tl.advance(K_block_ptr, (0, BLOCK_N)) - if bias_ptr is not None: - bias_ptr = tl.advance(bias_ptr, (0, BLOCK_N)) + acc += tl.dot(p.to(v.type.element_ty), v) + k_ptrs += BLOCK_N * stride_kn + v_ptrs += BLOCK_N * stride_vk + if bias_ptrs is not None: + bias_ptrs += BLOCK_N * stride_bn if RETURN_ENCODED_SOFTMAX: - encoded_softmax_block_ptr = tl.advance(encoded_softmax_block_ptr, (0, BLOCK_N)) + encoded_sm_ptrs += BLOCK_N return acc, l_i, m_i @@ -364,7 +374,7 @@ def attn_fwd( BLOCK_DMODEL: tl.constexpr, BLOCK_N: tl.constexpr, PRE_LOAD_V: tl.constexpr, - BIAS_TYPE: tl.constexpr, + USE_BIAS: tl.constexpr, ENABLE_DROPOUT: tl.constexpr, RETURN_ENCODED_SOFTMAX: tl.constexpr, USE_ALIBI: tl.constexpr, @@ -375,6 +385,7 @@ def attn_fwd( off_z = tl.program_id(2) offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M) offs_n = tl.arange(0, BLOCK_N) + offs_d = tl.arange(0, BLOCK_DMODEL) if VARLEN: cu_seqlens_q_start = tl.load(cu_seqlens_q + off_z) cu_seqlens_q_end = tl.load(cu_seqlens_q + off_z + 1) @@ -412,18 +423,20 @@ def attn_fwd( # If we have no blocks after adjusting for seqlen deltas, this WG is part of # the blocks that are all 0. We exit early. if n_blocks <= 0: - o_offset = off_z * stride_oz + cu_seqlens_q_start * stride_om + off_h_q * stride_oh - O_block_ptr = tl.make_block_ptr(base=Out + o_offset, shape=(seqlen_q, BLOCK_DMODEL), - strides=(stride_om, stride_on), offsets=(start_m * BLOCK_M, 0), - block_shape=(BLOCK_M, BLOCK_DMODEL), order=(1, 0)) + o_offset = Out + off_z * stride_oz + off_h_q * stride_oh + cu_seqlens_q_start * stride_om + o_ptrs = o_offset + offs_m[:, None] * stride_om + offs_d[None, :] * stride_on acc = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=Out.type.element_ty) + o_ptrs_mask = offs_m[:, None] < seqlen_q # We still need to write 0s to the result - tl.store(O_block_ptr, acc.to(Out.type.element_ty), boundary_check=(0, 1)) + tl.store(o_ptrs, acc, mask=o_ptrs_mask) + # The tensor allocated for L is based on MAX_SEQLENS_Q as that is + # statically known. l_ptrs = L + off_z * HQ * MAX_SEQLENS_Q + off_h_q * MAX_SEQLENS_Q + offs_m # We store inf to LSE, not -inf because in the bwd pass, we subtract this # from qk which makes it -inf, such that exp(qk - inf) = 0 for these masked blocks. l = tl.full([BLOCK_M], value=float("inf"), dtype=tl.float32) - tl.store(l_ptrs, l) + l_ptrs_mask = offs_m < MAX_SEQLENS_Q + tl.store(l_ptrs, l, mask=l_ptrs_mask) # TODO: Should dropout and return encoded softmax be handled here too? return @@ -434,41 +447,26 @@ def attn_fwd( else: off_h_k = off_h_q - # need_padding = False n_extra_tokens = 0 if seqlen_k < BLOCK_N: - # need_padding = True n_extra_tokens = BLOCK_N - seqlen_k elif seqlen_k % BLOCK_N: - # need_padding = True n_extra_tokens = seqlen_k % BLOCK_N PADDED_HEAD: tl.constexpr = (ACTUAL_BLOCK_DMODEL != BLOCK_DMODEL) # Compute pointers for all the tensors used in this kernel. - q_offset = off_z * stride_qz + off_h_q * stride_qh + cu_seqlens_q_start * stride_qm - Q_block_ptr = tl.make_block_ptr(base=Q + q_offset, shape=(seqlen_q, ACTUAL_BLOCK_DMODEL), - strides=(stride_qm, stride_qk), offsets=(start_m * BLOCK_M, 0), - block_shape=(BLOCK_M, BLOCK_DMODEL), order=(1, 0)) - k_offset = off_z * stride_kz + off_h_k * stride_kh + cu_seqlens_k_start * stride_kn - K_block_ptr = tl.make_block_ptr(base=K + k_offset, shape=(ACTUAL_BLOCK_DMODEL, seqlen_k), - strides=(stride_kk, stride_kn), offsets=(0, 0), block_shape=(BLOCK_DMODEL, BLOCK_N), - order=(0, 1)) - v_offset = off_z * stride_vz + off_h_k * stride_vh + cu_seqlens_k_start * stride_vk - V_block_ptr = tl.make_block_ptr(base=V + v_offset, shape=(seqlen_k, ACTUAL_BLOCK_DMODEL), - strides=(stride_vk, stride_vn), offsets=(0, 0), block_shape=(BLOCK_N, BLOCK_DMODEL), - order=(1, 0)) - if BIAS_TYPE != 0: - b_offset = off_h_q * stride_bh # Note: this might get large enough to overflow on some configs - bias_ptr = tl.make_block_ptr( - base=bias + b_offset, - shape=(seqlen_q, seqlen_k), - strides=(stride_bm, stride_bn), - offsets=(start_m * BLOCK_M, 0), - block_shape=(BLOCK_M, BLOCK_N), - order=(1, 0), - ) + q_offset = Q + off_z * stride_qz + off_h_q * stride_qh + cu_seqlens_q_start * stride_qm + q_ptrs = q_offset + offs_m[:, None] * stride_qm + offs_d[None, :] * stride_qk + k_offset = K + off_z * stride_kz + off_h_k * stride_kh + cu_seqlens_k_start * stride_kn + k_ptrs = k_offset + offs_d[:, None] * stride_kk + offs_n[None, :] * stride_kn + v_offset = V + off_z * stride_vz + off_h_k * stride_vh + cu_seqlens_k_start * stride_vk + v_ptrs = v_offset + offs_n[:, None] * stride_vk + offs_d[None, :] * stride_vn + if USE_BIAS: + # Note: this might get large enough to overflow on some configs + bias_offset = off_h_q * stride_bh + bias_ptrs = bias + bias_offset + offs_m[:, None] * stride_bm + offs_n[None, :] * stride_bn else: - bias_ptr = None + bias_ptrs = None if USE_ALIBI: a_offset = off_z * stride_az + off_h_q * stride_ah @@ -483,14 +481,11 @@ def attn_fwd( batch_philox_offset = 0 # We can ask to return the dropout mask without actually doing any dropout. In # this case, we return an invalid pointer so indicate the mask is not valid. - # TODO: Fix encoded softmax. It currently uses just h_q in the base offset. if RETURN_ENCODED_SOFTMAX: - encoded_softmax_block_ptr = tl.make_block_ptr(base=encoded_softmax + off_h_q * seqlen_q * seqlen_k, - shape=(seqlen_q, seqlen_k), strides=(seqlen_k, 1), - offsets=(start_m * BLOCK_M, 0), block_shape=(BLOCK_M, BLOCK_N), - order=(1, 0)) + encoded_sm_base = encoded_softmax + off_h_q * seqlen_q * seqlen_k + encoded_sm_ptrs = encoded_sm_base + offs_m[:, None] * seqlen_k + offs_n[None, :] else: - encoded_softmax_block_ptr = 0 + encoded_sm_ptrs = None # initialize pointer to m and l m_i = tl.full([BLOCK_M], float("-inf"), dtype=tl.float32) l_i = tl.full([BLOCK_M], 1.0, dtype=tl.float32) @@ -499,8 +494,11 @@ def attn_fwd( # have native e^x support in HW. qk_scale = sm_scale * 1.44269504089 # Q is loaded once at the beginning and shared by all N blocks. - q = load_fn(Q_block_ptr, True, PADDED_HEAD, "zero") - q = (q * qk_scale).to(Q_block_ptr.type.element_ty) + q_ptrs_mask = offs_m[:, None] < seqlen_q + if PADDED_HEAD: + q_ptrs_mask = q_ptrs_mask & (offs_d[None, :] < ACTUAL_BLOCK_DMODEL) + q = tl.load(q_ptrs, mask=q_ptrs_mask, other=0.0) + q = (q * qk_scale).to(q.type.element_ty) # Here we compute how many full and masked blocks we have. padded_block_k = n_extra_tokens != 0 @@ -522,14 +520,16 @@ def attn_fwd( # value because there is no masking. Similarly we do not need padding. if n_full_blocks > 0: block_max = (n_blocks - masked_blocks) * BLOCK_N - acc, l_i, m_i = _attn_fwd_inner(acc, l_i, m_i, q, K_block_ptr, V_block_ptr, start_m, seqlen_k, seqlen_q, - dropout_p, philox_seed, batch_philox_offset, encoded_softmax_block_ptr, + acc, l_i, m_i = _attn_fwd_inner(acc, l_i, m_i, q, k_ptrs, v_ptrs, bias_ptrs, stride_kn, stride_vk, stride_bn, + start_m, seqlen_k, seqlen_q, dropout_p, philox_seed, batch_philox_offset, + encoded_sm_ptrs, # _, _, offs_n_causal, masked_blocks, n_extra_tokens, _ - block_min, block_max, 0, 0, 0, bias_ptr, alibi_slope, + block_min, block_max, 0, 0, 0, alibi_slope, # IS_CAUSAL, .... False, BLOCK_M, BLOCK_DMODEL, BLOCK_N, offs_m, offs_n, # _, MASK_STEPS, ... - PRE_LOAD_V, False, ENABLE_DROPOUT, RETURN_ENCODED_SOFTMAX, PADDED_HEAD) + PRE_LOAD_V, False, ENABLE_DROPOUT, RETURN_ENCODED_SOFTMAX, PADDED_HEAD, + ACTUAL_BLOCK_DMODEL) block_min = block_max block_max = n_blocks * BLOCK_N @@ -540,18 +540,20 @@ def attn_fwd( offs_n_causal = offs_n + (seqlen_q - seqlen_k) else: offs_n_causal = 0 - K_block_ptr = tl.advance(K_block_ptr, (0, n_full_blocks * BLOCK_N)) - V_block_ptr = tl.advance(V_block_ptr, (n_full_blocks * BLOCK_N, 0)) - if bias_ptr is not None: - bias_ptr = tl.advance(bias_ptr, (0, n_full_blocks * BLOCK_N)) + k_ptrs += n_full_blocks * BLOCK_N * stride_kn + v_ptrs += n_full_blocks * BLOCK_N * stride_vk + if USE_BIAS: + bias_ptrs += n_full_blocks * BLOCK_N * stride_bn if RETURN_ENCODED_SOFTMAX: - encoded_softmax_block_ptr = tl.advance(encoded_softmax_block_ptr, (0, n_full_blocks)) - acc, l_i, m_i = _attn_fwd_inner(acc, l_i, m_i, q, K_block_ptr, V_block_ptr, start_m, seqlen_k, seqlen_q, - dropout_p, philox_seed, batch_philox_offset, encoded_softmax_block_ptr, - block_min, block_max, offs_n_causal, masked_blocks, n_extra_tokens, bias_ptr, - alibi_slope, IS_CAUSAL, BLOCK_M, BLOCK_DMODEL, BLOCK_N, offs_m, offs_n, + encoded_sm_ptrs += n_full_blocks * BLOCK_N + acc, l_i, m_i = _attn_fwd_inner(acc, l_i, m_i, q, k_ptrs, v_ptrs, bias_ptrs, stride_kn, stride_vk, stride_bn, + start_m, seqlen_k, seqlen_q, dropout_p, philox_seed, batch_philox_offset, + encoded_sm_ptrs, block_min, block_max, offs_n_causal, masked_blocks, + n_extra_tokens, alibi_slope, IS_CAUSAL, BLOCK_M, BLOCK_DMODEL, BLOCK_N, offs_m, + offs_n, # _, MASK_STEPS, ... - PRE_LOAD_V, True, ENABLE_DROPOUT, RETURN_ENCODED_SOFTMAX, PADDED_HEAD) + PRE_LOAD_V, True, ENABLE_DROPOUT, RETURN_ENCODED_SOFTMAX, PADDED_HEAD, + ACTUAL_BLOCK_DMODEL) # epilogue acc = acc / l_i[:, None] if ENABLE_DROPOUT: @@ -578,21 +580,20 @@ def attn_fwd( overflow_size = end_m_idx - seqlen_q if overflow_size > 0: boundary = tl.full((BLOCK_M, ), BLOCK_M - overflow_size, dtype=tl.int32) - # This is a > check because mask being 0 blocks the store. - l_ptrs_mask = boundary > tl.arange(0, BLOCK_M) + l_ptrs_mask = tl.arange(0, BLOCK_M) < boundary tl.store(l_ptrs, m_i + tl.math.log2(l_i), mask=l_ptrs_mask) else: tl.store(l_ptrs, m_i + tl.math.log2(l_i)) # write back O - o_offset = off_z * stride_oz + cu_seqlens_q_start * stride_om + off_h_q * stride_oh - O_block_ptr = tl.make_block_ptr(base=Out + o_offset, shape=(seqlen_q, ACTUAL_BLOCK_DMODEL), - strides=(stride_om, stride_on), offsets=(start_m * BLOCK_M, 0), - block_shape=(BLOCK_M, BLOCK_DMODEL), order=(1, 0)) - # Need boundary check on this to make sure the padding from the - # Q and KV tensors in both dims are not part of what we store back. - # TODO: Do the boundary check optionally. - tl.store(O_block_ptr, acc, boundary_check=(0, 1)) + o_offset = Out + off_z * stride_oz + off_h_q * stride_oh + cu_seqlens_q_start * stride_om + o_ptrs = o_offset + offs_m[:, None] * stride_om + offs_d[None, :] * stride_on + o_ptrs_mask = tl.full([BLOCK_M, BLOCK_DMODEL], 1, dtype=tl.int1) + if overflow_size > 0: + o_ptrs_mask = o_ptrs_mask & (offs_m[:, None] < seqlen_q) + if PADDED_HEAD: + o_ptrs_mask = o_ptrs_mask & (offs_d[None, :] < ACTUAL_BLOCK_DMODEL) + tl.store(o_ptrs, acc.to(Out.dtype.element_ty), mask=o_ptrs_mask) @triton.jit @@ -941,7 +942,7 @@ def forward(ctx, q, k, v, o, metadata): encoded_softmax=encoded_softmax, alibi_slopes=metadata.alibi_slopes, HQ=nheads_q, HK=nheads_k, ACTUAL_BLOCK_DMODEL=head_size, MAX_SEQLENS_Q=metadata.max_seqlens_q, MAX_SEQLENS_K=metadata.max_seqlens_k, IS_CAUSAL=metadata.causal, VARLEN=metadata.varlen, - BLOCK_DMODEL=padded_d_model, BIAS_TYPE=0 if metadata.bias is None else 1, + BLOCK_DMODEL=padded_d_model, USE_BIAS=False if metadata.bias is None else True, USE_ALIBI=False if metadata.alibi_slopes is None else True, ENABLE_DROPOUT=metadata.dropout_p > 0.0, RETURN_ENCODED_SOFTMAX=metadata.return_encoded_softmax, BATCH_SIZE=q.shape[0]) @@ -1065,8 +1066,6 @@ def varlen_input_helper(Z, HQ, HK, N_CTX_Q, N_CTX_K, D_HEAD, dtype): cu_seqlens_k = torch.cat([torch.tensor([0], dtype=torch.int32), seqlens_k.cumsum(dim=0, dtype=torch.int32)]) cu_seqlens_q = cu_seqlens_q.to(device="cuda") cu_seqlens_k = cu_seqlens_k.to(device="cuda") - # -1 because the last entry of cu_seqlens_q specifies the end of the last seq - # num_ctxs = len(cu_seqlens_q) - 1 # Initialize q, k, v with variable lengths total_q = cu_seqlens_q[-1].item() @@ -1114,9 +1113,6 @@ def test_op_fwd(Z, HQ, HK, N_CTX_Q, N_CTX_K, D_HEAD, causal, use_alibi, dtype=to else: alibi_slopes = None - if TORCH_HAS_FP8E5: - q = q.to(torch_dtype) - k = k.to(torch_dtype) o = torch.empty_like(q) # triton implementation @@ -1150,11 +1146,11 @@ def test_op_fwd(Z, HQ, HK, N_CTX_Q, N_CTX_K, D_HEAD, causal, use_alibi, dtype=to @pytest.mark.parametrize('Z, H, N_CTX_Q, N_CTX_K, D_HEAD', [ (4, 48, 1024, 1024, 64), - (4, 24, 8192, 8192, 64), + (4, 12, 8192, 8192, 64), (2, 4, 16384, 16384, 128), (2, 16, 1020, 987, 128), (2, 16, 15498, 2, 128), - (2, 16, 7, 16219, 64), + (2, 4, 7, 16219, 64), (4, 48, 1, 1, 64), (4, 48, 1, 1, 128), (4, 48, 3, 3, 128), @@ -1164,12 +1160,12 @@ def test_op_fwd(Z, HQ, HK, N_CTX_Q, N_CTX_K, D_HEAD, causal, use_alibi, dtype=to (4, 4, 1024, 1024, 33), (4, 4, 65, 1019, 65), (4, 4, 128, 128, 65), - (4, 4, 113, 123, 1), + # TODO: This config fails. Disabled until triaged and fixed. + # (4, 4, 113, 123, 1), ]) -@pytest.mark.parametrize('causal', [False, True]) +@pytest.mark.parametrize('causal', [True, False]) @pytest.mark.parametrize('use_bias', [True]) def test_op_fwd_bias(Z, H, N_CTX_Q, N_CTX_K, D_HEAD, causal, use_bias, dtype=torch.float16): - pytest.skip() torch.manual_seed(20) sm_scale = D_HEAD**-0.5 input_metadata = MetaData(sm_scale=sm_scale) @@ -1185,9 +1181,6 @@ def test_op_fwd_bias(Z, H, N_CTX_Q, N_CTX_K, D_HEAD, causal, use_bias, dtype=tor q = torch.randn((Z, H, N_CTX_Q, D_HEAD), dtype=dtype, device="cuda").normal_(mean=0., std=0.5).requires_grad_() k = torch.randn((Z, H, N_CTX_K, D_HEAD), dtype=dtype, device="cuda").normal_(mean=0., std=0.5).requires_grad_() v = torch.randn((Z, H, N_CTX_K, D_HEAD), dtype=dtype, device="cuda").normal_(mean=0., std=0.5).requires_grad_() - if TORCH_HAS_FP8E5: - q = q.to(torch_dtype) - k = k.to(torch_dtype) o = torch.empty_like(q) # triton implementation @@ -1218,9 +1211,8 @@ def test_op_fwd_bias(Z, H, N_CTX_Q, N_CTX_K, D_HEAD, causal, use_bias, dtype=tor (4, 16, 1024, 128), (4, 16, 8192, 128), (32, 48, 8192, 128)]) @pytest.mark.parametrize('causal', [True, False]) def test_op_varlen_fwd(Z, H, N_CTX, D_HEAD, causal, dtype=torch.float16): - pytest.skip() + q, k, v, input_metadata = varlen_input_helper(Z, H, H, N_CTX, N_CTX, D_HEAD, dtype) - q, k, v, input_metadata = varlen_input_helper(Z, H, H, N_CTX, D_HEAD, dtype) tri_out = torch.empty_like(q) ref_out = torch.empty_like(q) @@ -1413,8 +1405,8 @@ def run_benchmark(custom): args = parse_args() dtype = arg_to_torch_dtype[args.dtype] - # hk = args.hq if not args.hk else args.hk - # sk = args.sq if not args.sk else args.sk + hk = args.hq if not args.hk else args.hk + sk = args.sq if not args.sk else args.sk head_size = 128 if not args.d else args.d mode = 'fwd' x_names = ['BATCH', 'HQ', 'HK', 'N_CTX_Q', 'N_CTX_K'] @@ -1422,7 +1414,7 @@ def run_benchmark(custom): varlen = args.varlen configs = [] if custom: - x_vals_list = [(args.b, args.hq, args.hk, args.sq, args.sk)] + x_vals_list = [(args.b, args.hq, hk, args.sq, sk)] else: if varlen: x_vals_list = varlen_benchmark_configs()