-
Notifications
You must be signed in to change notification settings - Fork 95
/
Copy pathmlir.cpp
674 lines (593 loc) · 22.5 KB
/
mlir.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/gpu/mlir.hpp>
#ifdef MIGRAPHX_MLIR
#include <mlir-c/IR.h>
#include <mlir-c/BuiltinAttributes.h>
#include <mlir-c/BuiltinTypes.h>
#include <mlir-c/Diagnostics.h>
#include <mlir-c/Dialect/MIGraphX.h>
#include <mlir-c/IntegerSet.h>
#include <mlir-c/Pass.h>
#include <mlir-c/Registration.h>
#endif
#include <migraphx/env.hpp>
#include <migraphx/manage_ptr.hpp>
#include <migraphx/module.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/gpu/code_object_op.hpp>
#include <migraphx/gpu/context.hpp>
#include <migraphx/gpu/device_name.hpp>
#include <migraphx/iterator_for.hpp>
#include <migraphx/gpu/perfdb.hpp>
#include <deque>
#include <variant>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_TRACE_MLIR);
#ifdef MIGRAPHX_MLIR
template <class T, class F, F f> // NOLINT
struct mlir_handle
{
struct ptr
{
ptr() = default;
ptr(std::nullptr_t) {}
ptr(T x) : obj(x) {}
std::intptr_t get_value() const
{
static_assert(sizeof(T) == sizeof(std::intptr_t), "MLIR Handle different size");
return reinterpret_cast<const std::intptr_t&>(obj);
}
T get() const { return obj; }
friend bool operator==(ptr x, ptr y) { return x.get_value() == y.get_value(); }
friend bool operator!=(ptr x, ptr y) { return !(x == y); }
T obj{};
};
struct deleter
{
using pointer = ptr;
void operator()(pointer x) const
{
if(x != nullptr)
{
(void)f(x.obj);
}
}
};
mlir_handle() : handle(nullptr) {}
mlir_handle(T p) : handle(ptr{p}) {}
T get() const { return handle.get().get(); }
T release() { return handle.release().get(); }
private:
std::unique_ptr<ptr, deleter> handle;
};
#define MIGRAPHX_MANAGE_MLIR_HANDLE(T, F) migraphx::gpu::mlir_handle<T, decltype(&F), &F> // NOLINT
using mlir_context = MIGRAPHX_MANAGE_MLIR_HANDLE(MlirContext, mlirContextDestroy);
using mlir_module = MIGRAPHX_MANAGE_MLIR_HANDLE(MlirModule, mlirModuleDestroy);
using mlir_operation = MIGRAPHX_MANAGE_MLIR_HANDLE(MlirOperation, mlirOperationDestroy);
using mlir_op_printing_flags = MIGRAPHX_MANAGE_MLIR_HANDLE(MlirOpPrintingFlags,
mlirOpPrintingFlagsDestroy);
using mlir_region = MIGRAPHX_MANAGE_MLIR_HANDLE(MlirRegion, mlirRegionDestroy);
using mlir_block = MIGRAPHX_MANAGE_MLIR_HANDLE(MlirBlock, mlirBlockDestroy);
using mlir_pass_manager = MIGRAPHX_MANAGE_MLIR_HANDLE(MlirPassManager, mlirPassManagerDestroy);
std::string_view to_string_view(MlirStringRef s) { return {s.data, s.length}; }
MlirStringRef make_mlir_string_ref(const std::string_view& s)
{
return mlirStringRefCreate(s.data(), s.size());
}
template <class F, class T, class Printer>
void mlir_print(F f, T x, Printer printer)
{
f(
x,
+[](MlirStringRef s, void* data) {
(*reinterpret_cast<Printer*>(data))(to_string_view(s));
},
&printer);
}
template <class F, class T>
void mlir_print(F f, T x, std::ostream& os)
{
mlir_print(f, x, [&](auto s) { os << s; });
}
template <class F, class T>
std::string mlir_print(F f, T x)
{
std::stringstream ss;
mlir_print(f, x, [&](auto s) { ss << s; });
return ss.str();
}
const std::unordered_set<std::string>& get_xdlops_archs()
{
static std::unordered_set<std::string> supported_archs{"gfx908", "gfx90a"};
return supported_archs;
}
struct mlir_program
{
mlir_program()
: ctx(mlirContextCreate()),
location(mlirLocationUnknownGet(ctx.get())),
mmodule(mlirModuleCreateEmpty(location))
{
MlirDialectHandle mixr_handle = mlirGetDialectHandle__migraphx__();
mlirDialectHandleRegisterDialect(mixr_handle, ctx.get());
mlirRegisterAllDialects(ctx.get());
mlirContextSetAllowUnregisteredDialects(ctx.get(), true /*allow*/);
}
MlirType make_type(shape::type_t t) const
{
MlirType result;
shape::visit(t, [&](auto as) {
if(as.type_enum() == shape::float_type)
result = mlirF32TypeGet(ctx.get());
else if(as.type_enum() == shape::half_type)
result = mlirF16TypeGet(ctx.get());
else if(as.type_enum() == shape::double_type)
result = mlirF64TypeGet(ctx.get());
else if(as.is_integral())
{
if(as.is_signed())
result = mlirIntegerTypeSignedGet(ctx.get(), as.size() * 8);
else
result = mlirIntegerTypeGet(ctx.get(), as.size() * 8);
}
else
MIGRAPHX_THROW("Unsupported type: " + std::to_string(as.type_enum()));
});
return result;
}
MlirType make_tensor(const shape& s) const
{
assert(s.standard());
std::vector<int64_t> lens(s.lens().begin(), s.lens().end());
return mlirRankedTensorTypeGet(
lens.size(), lens.data(), make_type(s.type()), mlirAttributeGetNull());
}
template <class Range>
std::vector<MlirType> make_tensors(const Range& r)
{
std::vector<MlirType> result;
std::transform(r.begin(), r.end(), std::back_inserter(result), [&](const auto& s) {
return make_tensor(s);
});
return result;
}
MlirType make_function_type(const std::vector<shape>& inputs, const std::vector<shape>& outputs)
{
auto in = make_tensors(inputs);
auto out = make_tensors(outputs);
return mlirFunctionTypeGet(ctx.get(), in.size(), in.data(), out.size(), out.data());
}
MlirIdentifier id(const std::string_view& s) const
{
return mlirIdentifierGet(ctx.get(), make_mlir_string_ref(s));
}
MlirAttribute attribute(std::int64_t i) const
{
if(i < 0)
MIGRAPHX_THROW("MLIR cant handle negative values since they are ambiguous");
return mlirIntegerAttrGet(mlirIntegerTypeGet(ctx.get(), 64), i);
}
MlirAttribute attribute(std::uint64_t i) const
{
if(i > (std::numeric_limits<std::uint64_t>::max() / 2))
MIGRAPHX_THROW("MLIR cant handle large integer values since they are ambiguous");
return mlirIntegerAttrGet(mlirIntegerTypeGet(ctx.get(), 64), i);
}
MlirAttribute attribute(unsigned char i) const { return attribute(std::uint64_t(i)); }
MlirAttribute attribute(bool b) const { return mlirBoolAttrGet(ctx.get(), b ? 1 : 0); }
MlirAttribute attribute(double d) const
{
return mlirFloatAttrDoubleGet(ctx.get(), mlirF64TypeGet(ctx.get()), d);
}
MlirAttribute attribute(const std::string& s) const
{
return mlirStringAttrGet(ctx.get(), make_mlir_string_ref(s));
}
MlirAttribute attribute(std::nullptr_t) const { return {}; }
template <class T>
MlirAttribute attribute(const std::vector<T>& v) const
{
std::vector<MlirAttribute> attributes;
attributes.reserve(v.size());
std::transform(v.begin(), v.end(), std::back_inserter(attributes), [&](auto&& x) {
return attribute(x);
});
return mlirArrayAttrGet(ctx.get(), attributes.size(), attributes.data());
}
MlirAttribute attribute(const value& v) const
{
MlirAttribute attr;
v.visit_value([&](auto&& x) { attr = attribute(x); });
return attr;
}
MlirAttribute attribute(const std::vector<value>& v) const
{
if(v.empty())
{
return mlirArrayAttrGet(ctx.get(), 0, nullptr);
}
if(not v.front().get_key().empty())
{
std::vector<MlirNamedAttribute> attributes = name_attributes(v);
return mlirDictionaryAttrGet(ctx.get(), attributes.size(), attributes.data());
}
else
{
std::vector<MlirAttribute> attributes;
attributes.reserve(v.size());
std::transform(v.begin(), v.end(), std::back_inserter(attributes), [&](auto&& x) {
return attribute(x);
});
return mlirArrayAttrGet(ctx.get(), attributes.size(), attributes.data());
}
}
MlirAttribute attribute(MlirType t) const { return mlirTypeAttrGet(t); }
MlirAttribute attribute(MlirAttribute a) const { return a; }
template <class T>
MlirNamedAttribute name_attribute(const std::string_view& key, const T& x) const
{
MlirNamedAttribute attr;
attr.name = id(key);
attr.attribute = attribute(x);
return attr;
}
using attribute_t = std::variant<std::nullptr_t,
std::uint64_t,
unsigned char,
bool,
double,
std::string,
value,
std::vector<value>,
MlirType>;
using named_attribute_t = std::pair<std::string_view, attribute_t>;
MlirNamedAttribute name_attribute(const named_attribute_t& na) const
{
return name_attribute(na.first,
std::visit([&](const auto& x) { return attribute(x); }, na.second));
}
std::vector<MlirNamedAttribute>
name_attributes(const std::vector<named_attribute_t>& named_attrs) const
{
std::vector<MlirNamedAttribute> attributes;
attributes.reserve(named_attrs.size());
std::transform(named_attrs.begin(),
named_attrs.end(),
std::back_inserter(attributes),
[&](const named_attribute_t& a) { return name_attribute(a); });
return attributes;
}
std::vector<MlirNamedAttribute> name_attributes(const value& v) const
{
std::vector<MlirNamedAttribute> attributes;
attributes.reserve(v.size());
std::transform(v.begin(), v.end(), std::back_inserter(attributes), [&](const value& x) {
return name_attribute(x.get_key(), x.without_key());
});
return attributes;
}
struct mlir_operation_state
{
mlir_operation_state(mlir_program& p, const std::string_view& name)
: prog(&p), op_state(mlirOperationStateGet(make_mlir_string_ref(name), p.location))
{
}
mlir_operation_state& add_attributes(const std::vector<named_attribute_t>& named_attrs)
{
auto attributes = prog->name_attributes(named_attrs);
mlirOperationStateAddAttributes(&op_state, attributes.size(), attributes.data());
return *this;
}
mlir_operation_state& add_attribute_value(const value& v)
{
auto attributes = prog->name_attributes(v);
mlirOperationStateAddAttributes(&op_state, attributes.size(), attributes.data());
return *this;
}
mlir_operation_state& add_regions(std::vector<mlir_region> rs)
{
regions = std::move(rs);
return *this;
}
mlir_operation_state& add_region(mlir_region r)
{
regions.emplace_back(std::move(r));
return *this;
}
mlir_operation_state& add_results(const std::vector<shape>& outputs)
{
auto x = prog->make_tensors(outputs);
mlirOperationStateAddResults(&op_state, x.size(), x.data());
return *this;
}
mlir_operation_state& add_operands(const std::vector<MlirValue>& inputs)
{
mlirOperationStateAddOperands(&op_state, inputs.size(), inputs.data());
return *this;
}
mlir_operation create_operation()
{
std::vector<MlirRegion> mregions(regions.size());
std::transform(regions.begin(), regions.end(), mregions.begin(), [](const auto& r) {
return r.get();
});
mlirOperationStateAddOwnedRegions(&op_state, mregions.size(), mregions.data());
mlir_operation op(mlirOperationCreate(&op_state));
// Release memory since mlir_operation owns it
for(auto& r : regions)
r.release();
regions.clear();
return op;
}
mlir_program* prog;
MlirOperationState op_state;
std::vector<mlir_region> regions = {};
};
mlir_operation_state create_operation_state(const std::string_view& name)
{
return {*this, name};
}
std::vector<MlirValue> insert(MlirBlock body, mlir_operation_state ops)
{
std::vector<MlirValue> result;
mlir_operation op = ops.create_operation();
auto weak_op = op.get();
mlirBlockAppendOwnedOperation(body, op.release());
auto n = mlirOperationGetNumResults(weak_op);
result.reserve(n);
transform(range(n), std::back_inserter(result), [&](auto i) {
return mlirOperationGetResult(weak_op, i);
});
return result;
}
MlirBlock
insert(MlirBlock body, const module& m, std::unordered_map<instruction_ref, MlirValue>& ins_map)
{
auto names = m.get_parameter_names();
std::sort(names.begin(), names.end());
std::vector<shape> inputs;
std::transform(names.begin(),
names.end(),
std::back_inserter(inputs),
[&](const std::string& name) { return m.get_parameter_shape(name); });
std::vector<shape> outputs = m.get_output_shapes();
std::vector<MlirLocation> arg_locs(inputs.size(), location);
auto body_inputs = make_tensors(inputs);
mlir_region region = mlirRegionCreate();
mlir_block fbody = mlirBlockCreate(body_inputs.size(), body_inputs.data(), arg_locs.data());
MlirBlock result = fbody.get();
mlirRegionAppendOwnedBlock(region.get(), fbody.release());
auto ops = create_operation_state("func.func");
ops.add_attributes({{"function_type", make_function_type(inputs, outputs)},
{"sym_name", std::string("main")},
{"kernel", std::string("mixr")}});
ops.add_region(std::move(region));
insert(body, std::move(ops));
for(auto i : range(names.size()))
ins_map[m.get_parameter(names[i])] = mlirBlockGetArgument(result, i);
return result;
}
static std::string get_name(instruction_ref ins)
{
if(ins->name() == "@return")
return "func.return";
return "migraphx." + ins->name();
}
static value get_operator_value(const operation& op)
{
auto v = op.to_value();
if(op.name() == "convolution")
{
// Adjust symetrical padding
if(v.at("padding").size() == v.at("stride").size())
{
auto padding = v.at("padding");
std::copy(padding.begin(), padding.end(), std::back_inserter(v.at("padding")));
}
}
return v;
}
static shape get_shape(instruction_ref ins)
{
if(ins->name() == "@return")
{
assert(ins->inputs().size() == 1);
return ins->inputs().front()->get_shape();
}
return ins->get_shape();
}
void parse(const module& m)
{
auto mbody = mlirModuleGetBody(mmodule.get());
std::unordered_map<instruction_ref, MlirValue> ins_map;
auto fbody = insert(mbody, m, ins_map);
for(auto ins : iterator_for(m))
{
if(ins->name() == "@param")
continue;
auto name = get_name(ins);
auto ops = create_operation_state(name);
ops.add_attribute_value(get_operator_value(ins->get_operator()));
if(ins->name() != "@return")
ops.add_results({get_shape(ins)});
if(ins->name() == "convolution")
{
pp =
problem_params{ins->get_operator(), to_shapes(ins->inputs()), ins->get_shape()};
std::string tuned = get_tune_params();
if(!tuned.empty())
ops.add_attributes({{"perf_config", tuned}});
// check if HW supports xdlops
if(contains(get_xdlops_archs(), target_name))
ops.add_attributes({{"xdlopsV2", true}});
}
std::vector<MlirValue> inputs;
transform(
ins->inputs(), std::back_inserter(inputs), [&](auto i) { return ins_map.at(i); });
ops.add_operands(inputs);
auto outputs = insert(fbody, std::move(ops));
if(ins->name() != "@return")
{
assert(outputs.size() == 1);
ins_map[ins] = outputs.front();
}
}
}
code_object_op compile() MIGRAPHX_TIDY_CONST
{
mlir_pass_manager pm{mlirPassManagerCreate(ctx.get())};
// 1st pipeline to call
mlirMIGraphXAddHighLevelPipeline(pm.get());
// 2nd pipeline to call
mlirMIGraphXAddBackendPipeline(pm.get(), target_name.c_str(), "amdgcn-amd-amdhsa", "");
mlirPassManagerRun(pm.get(), mmodule.get());
code_object_op op{};
op.symbol_name = "main";
op.code_object = get_binary();
std::tie(op.global, op.local) = get_launch_params();
return op;
}
void find_target()
{
std::string tname = get_device_name();
// HACK: Since MLIR can't handle the full target name
target_name = trim(split_string(tname, ':').front());
if(tname.size() != target_name.size())
std::cout
<< "*************** WARNING: MLIR may not compile the correct target features for: "
<< tname << std::endl;
}
std::pair<std::size_t, std::size_t> get_launch_params() const
{
uint32_t attrs[2];
// returns block and grid sizes
mlirGetKernelAttrs(mmodule.get(), attrs);
std::size_t local = attrs[0];
std::size_t global = local * attrs[1];
return {global, local};
}
value::binary get_binary() const
{
int size = 0;
mlirGetBinary(mmodule.get(), &size, nullptr);
value::binary result(size);
if(mlirGetBinary(mmodule.get(), &size, reinterpret_cast<char*>(result.data())))
return result;
MIGRAPHX_THROW("Failed to compile mlir program");
}
std::string get_tune_params() { return get_mlir_perf_for_conv(pp); }
mlir_context ctx;
MlirLocation location;
mlir_module mmodule;
problem_params pp;
std::deque<std::string> strings{};
std::string target_name;
};
std::string dump_mlir(const module& m)
{
mlir_program mp;
mp.parse(m);
auto mod_op = mlirModuleGetOperation(mp.mmodule.get());
return mlir_print(&mlirOperationPrint, mod_op);
}
code_object_op compile_mlir(const context&, const module& m)
{
const bool trace = enabled(MIGRAPHX_TRACE_MLIR{});
if(trace)
std::cout << m << std::endl;
mlir_program mp;
mp.find_target();
mp.parse(m);
auto mod_op = mlirModuleGetOperation(mp.mmodule.get());
if(trace)
std::cout << mlir_print(&mlirOperationPrint, mod_op) << std::endl;
auto co = mp.compile();
co.output = m.get_output_shapes().front();
return co;
}
instruction_ref insert_mlir(module& m,
instruction_ref ins,
code_object_op co,
const std::vector<instruction_ref>& inputs)
{
std::vector<instruction_ref> refs;
refs.reserve(inputs.size() * 15);
std::unordered_map<uint64_t, instruction_ref> literal_map{};
auto get_literal = [&](uint64_t value) {
auto fi = literal_map.find(value);
if(fi != literal_map.end())
return fi->second;
auto lit = m.add_literal(value);
literal_map.emplace(value, lit);
return lit;
};
std::size_t last = 0;
for(auto input : inputs)
{
const size_t offset = 0;
auto s = input->get_shape();
last = refs.size();
refs.push_back(input);
refs.push_back(input);
refs.push_back(get_literal(offset)); // offset
// dim sizes
std::transform(s.lens().begin(),
s.lens().end(),
std::back_inserter(refs),
[&](const auto& lval) { return get_literal(lval); });
// refs.push_back(get_literal(1)); // G
// dim strides
std::transform(s.strides().begin(),
s.strides().end(),
std::back_inserter(refs),
[&](const auto& lval) { return get_literal(lval); });
// refs.push_back(get_literal(1)); // G
}
co.expected_inputs = to_shapes(refs);
co.output_arg = last;
return m.insert_instruction(ins, co, refs);
}
#else
std::string dump_mlir(const module&) { return {}; }
code_object_op compile_mlir(const context&, const module&) { return {}; }
template <class T>
void use(T&)
{
}
instruction_ref
// cppcheck-suppress funcArgNamesDifferent
insert_mlir(module& m, instruction_ref, code_object_op co, const std::vector<instruction_ref>&)
{
use(co);
return m.end();
}
#endif
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx