-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathConstant.agda
97 lines (81 loc) · 3.91 KB
/
Constant.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
module Mugen.Algebra.Displacement.Instances.Constant where
open import Order.Instances.Coproduct
open import Mugen.Prelude hiding (Const)
open import Mugen.Algebra.Displacement
open import Mugen.Algebra.Displacement.Action
open import Mugen.Algebra.OrderedMonoid
import Mugen.Order.Reasoning as Reasoning
--------------------------------------------------------------------------------
-- Constant Displacements
-- Section 3.3.2
--
-- Given a strict order 'A', a displacement algebra 'B', and a right displacement
-- action 'α : A → B → A', we can construct a displacement algebra whose carrier
-- is 'A ⊎ B'. Multiplication of an 'inl a' and 'inr b' uses the 'α' to have
-- 'b' act upon 'a'.
Constant
: ∀ {o r} {A B : Poset o r} {Y : Displacement-on B}
→ Right-displacement-action A Y
→ Displacement-on (A ⊎ᵖ B)
Constant {A = A} {B = B} {Y = Y} α = to-displacement-on mk where
module A = Poset A
module B = Reasoning B
module Y = Displacement-on Y
module α = Right-displacement-action α
open Reasoning (A ⊎ᵖ B)
_⊗_ : ⌞ A ⌟ ⊎ ⌞ B ⌟ → ⌞ A ⌟ ⊎ ⌞ B ⌟ → ⌞ A ⌟ ⊎ ⌞ B ⌟
_ ⊗ inl a = inl a
inl a ⊗ inr x = inl (⟦ α ⟧ʳ a x)
inr x ⊗ inr y = inr (x Y.⊗ y)
ε : ⌞ A ⌟ ⊎ ⌞ B ⌟
ε = inr Y.ε
associative : ∀ (x y z : ⌞ A ⌟ ⊎ ⌞ B ⌟) → (x ⊗ (y ⊗ z)) ≡ ((x ⊗ y) ⊗ z)
associative _ _ (inl _) = refl
associative _ (inl _) (inr _) = refl
associative (inl a) (inr y) (inr z) = ap inl α.compatible
associative (inr x) (inr y) (inr z) = ap inr Y.associative
idl : ∀ (x : ⌞ A ⌟ ⊎ ⌞ B ⌟) → (ε ⊗ x) ≡ x
idl (inl x) = refl
idl (inr x) = ap inr Y.idl
idr : ∀ (x : ⌞ A ⌟ ⊎ ⌞ B ⌟) → (x ⊗ ε) ≡ x
idr (inl x) = ap inl α.identity
idr (inr x) = ap inr Y.idr
left-invariant : ∀ (x y z : ⌞ A ⌟ ⊎ ⌞ B ⌟) → y ≤ z → (x ⊗ y) ≤ (x ⊗ z)
left-invariant _ (inl y) (inl z) y≤z = y≤z
left-invariant (inl x) (inr y) (inr z) (lift y≤z) = lift $ α.invariant y≤z
left-invariant (inr x) (inr y) (inr z) (lift y≤z) = lift $ Y.left-invariant y≤z
injectiver-on-related : ∀ (x y z : ⌞ A ⌟ ⊎ ⌞ B ⌟) → y ≤ z → (x ⊗ y) ≡ (x ⊗ z) → y ≡ z
injectiver-on-related _ (inl y) (inl z) _ p = p
injectiver-on-related (inl x) (inr y) (inr z) (lift y≤z) p =
ap inr $ α.injectiver-on-related y≤z (inl-inj p)
injectiver-on-related (inr x) (inr y) (inr z) (lift y≤z) p =
ap inr $ Y.injectiver-on-related y≤z (inr-inj p)
mk : make-displacement (A ⊎ᵖ B)
mk .make-displacement.ε = ε
mk .make-displacement._⊗_ = _⊗_
mk .make-displacement.idl {x} = idl x
mk .make-displacement.idr {x} = idr x
mk .make-displacement.associative {x} {y} {z} = associative x y z
mk .make-displacement.left-strict-invariant {x} {y} {z} p .fst = left-invariant x y z p
mk .make-displacement.left-strict-invariant {x} {y} {z} p .snd = injectiver-on-related x y z p
module _
{o r} {A B : Poset o r} {Y : Displacement-on B}
(α : Right-displacement-action A Y) where
private
module A = Poset A
module B = Poset B
module Y = Displacement-on Y
open Reasoning (A ⊎ᵖ B)
open Displacement-on (Constant α)
--------------------------------------------------------------------------------
-- Ordered Monoid
Constant-has-ordered-monoid
: has-ordered-monoid Y
→ (∀ {x y : ⌞ A ⌟} {z : ⌞ B ⌟} → x A.≤ y → ⟦ α ⟧ʳ x z A.≤ ⟦ α ⟧ʳ y z)
→ has-ordered-monoid (Constant α)
Constant-has-ordered-monoid B-ordered-monoid α-right-invariant =
let module B-ordered-monoid = is-ordered-monoid B-ordered-monoid in
right-invariant→has-ordered-monoid (Constant α) λ where
{x} {y} {inl z} x≤y → ≤-refl {inl z}
{inl x} {inl y} {inr z} (lift x≤y) → lift $ α-right-invariant x≤y
{inr x} {inr y} {inr z} (lift x≤y) → lift $ B-ordered-monoid.right-invariant x≤y