-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGCN-torch.py
172 lines (165 loc) · 7.35 KB
/
GCN-torch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import time
import math
import argparse
import numpy as np
import scipy.sparse as sp
import torch
import torch.optim as optim
from torch.nn.parameter import Parameter
from torch.nn.modules.module import Module
import torch.nn as nn
import torch.nn.functional as F
'''
定义一个显示超参数的函数,将代码中所有的超参数打印
'''
def show_Hyperparameter(args):
argsDict = args.__dict__
print(argsDict)
print('the settings are as following')
for key in argsDict:
print(key,':',argsDict[key])
parser = argparse.ArgumentParser()
parser.add_argument('--no-cuda', action='store_true', default=False,help='Disables CUDA training.')
parser.add_argument('--fastmode', action='store_true', default=False,help='Validate during training pass.')
parser.add_argument('--seed', type=int, default=42, help='Random seed.')
parser.add_argument('--epochs', type=int, default=200,help='Number of epochs to train.')
parser.add_argument('--lr', type=float, default=0.01,help='Initial learning rate.')
parser.add_argument('--weight_decay', type=float, default=5e-4,help='Weight decay (L2 loss on parameters).')
parser.add_argument('--hidden', type=int, default=16,help='Number of hidden units.')
parser.add_argument('--dropout', type=float, default=0.5,help='Dropout rate (1 - keep probability).')
args = parser.parse_args()
# show_Hyperparameter(args)
args.cuda = not args.no_cuda and torch.cuda.is_available()
np.random.seed(args.seed)
torch.manual_seed(args.seed) # 设置种子
if args.cuda:
torch.cuda.manual_seed(args.seed)
class GraphConvolution(Module):
def __init__(self, in_features, out_features, bias=True):
# ==== 请教师兄 ====
super(GraphConvolution, self).__init__() # 子类 GraphConvolution 调用父类的__init__()方法
self.in_features = in_features
self.out_features = out_features
self.weight = Parameter(torch.FloatTensor(in_features, out_features))
if bias:
self.bias = Parameter(torch.FloatTensor(out_features))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
stdv = 1. / math.sqrt(self.weight.size(1))
self.weight.data.uniform_(-stdv, stdv)
if self.bias is not None:
self.bias.data.uniform_(-stdv, stdv)
def forward(self, input, adj):
support = torch.mm(input, self.weight)
output = torch.spmm(adj, support)
if self.bias is not None:
return output + self.bias
else:
return output
def __repr__(self):
return self.__class__.__name__ + '(' + str(self.in_features) + '->' + str(self.out_features) + ')'
class GCN(nn.Module):
def __init__(self, nfeat, nhid, nclass, dropout):
super(GCN, self).__init__()
self.gc1 = GraphConvolution(nfeat, nhid)
self.gc2 = GraphConvolution(nhid, nclass)
self.dropout = dropout
def forward(self, x, adj):
x = F.relu(self.gc1(x, adj))
x = F.dropout(x, self.dropout, training=self.training)
x = self.gc2(x, adj)
return F.log_softmax(x, dim=1)
idx_features_labels = np.genfromtxt("./data/cora/cora.content", dtype=np.dtype(str)) # 按照空格分割
print(idx_features_labels)
edges_unordered = np.genfromtxt("./data/cora/cora.cites", dtype=np.int32) # 按照空格分割
print(edges_unordered)
features = sp.csr_matrix(idx_features_labels[:, 1:-1], dtype=np.float32)
all_labels = idx_features_labels[:, -1]
classes = set(all_labels)
one_hot_coding = np.identity(len(classes))
classes_dict = {c: one_hot_coding[i, :] for i, c in enumerate(classes)}
map_labels = map(classes_dict.get, all_labels)
labels = np.array(list(map_labels), dtype=np.int32)
idx = np.array(idx_features_labels[:, 0], dtype=np.int32)
idx_map = {j: i for i, j in enumerate(idx)}
edges_unordered_one_row = edges_unordered.flatten()
map_edge = map(idx_map.get, edges_unordered_one_row)
edges = np.array(list(map_edge), dtype=np.int32).reshape(edges_unordered.shape)
num_edges = edges.shape[0]
data_edge = np.ones(num_edges)
row_edge = edges[:, 0]
col_edge = edges[:, 1]
num_nodes = labels.shape[0]
adj = sp.coo_matrix((data_edge, (row_edge, col_edge)), shape=(num_nodes, num_nodes), dtype=np.float32)
adj = adj + adj.T
rowsum = np.array(features.sum(1))
r_inv = np.power(rowsum, -1).flatten()
r_inv[np.isinf(r_inv)] = 0.
r_mat_inv = sp.diags(r_inv)
features_normalize = r_mat_inv.dot(features)
adj_ = adj + sp.eye(adj.shape[0])
rowsum = np.array(adj_.sum(1))
r_inv = np.power(rowsum, -1).flatten()
r_inv[np.isinf(r_inv)] = 0.
r_mat_inv = sp.diags(r_inv)
adj_normalize = r_mat_inv.dot(adj_)
idx_train = range(140) # train
idx_val = range(200, 500) # val
idx_test = range(500, 1500) # test
features_tensor = torch.FloatTensor(np.array(features_normalize.todense()))
labels_ = np.where(labels)[1]
labels_tensor = torch.LongTensor(labels_)
sparse_mx = adj_normalize.tocoo().astype(np.float32)
indices = torch.from_numpy(np.vstack((sparse_mx.row, sparse_mx.col)).astype(np.int64))
values = torch.from_numpy(sparse_mx.data)
shape = torch.Size(sparse_mx.shape)
adj_tensor = torch.sparse.FloatTensor(indices, values, shape)
idx_train = torch.LongTensor(idx_train)
idx_val = torch.LongTensor(idx_val)
idx_test = torch.LongTensor(idx_test)
nfeat = features_tensor.shape[1]
nhid = args.hidden
nclass = labels_tensor.max().item() + 1
model = GCN(nfeat=nfeat, nhid=nhid, nclass=nclass, dropout=args.dropout)
optimizer = optim.Adam(model.parameters(),lr=args.lr, weight_decay=args.weight_decay)
t_total = time.time()
for epoch in range(args.epochs):
t = time.time()
model.train()
optimizer.zero_grad()
output_tensor = model(features_tensor, adj_tensor)
loss_train = F.nll_loss(output_tensor[idx_train], labels_tensor[idx_train])
preds = output_tensor[idx_train].max(1)[1].type_as(labels_tensor[idx_train])
correct = preds.eq(labels_tensor[idx_train]).double()
correct = correct.sum()
acc_train = correct / len(labels_tensor[idx_train])
loss_train.backward()
optimizer.step()
if not args.fastmode:
model.eval()
output_tensor = model(features_tensor, adj_tensor)
loss_val = F.nll_loss(output_tensor[idx_val], labels_tensor[idx_val])
preds = output_tensor[idx_val].max(1)[1].type_as(labels_tensor[idx_val])
correct = preds.eq(labels_tensor[idx_val]).double()
correct = correct.sum()
acc_val = correct / len(labels_tensor[idx_val])
print('Epoch: {:04d}'.format(epoch+1),
'loss_train: {:.4f}'.format(loss_train.item()),
'acc_train: {:.4f}'.format(acc_train.item()),
'loss_val: {:.4f}'.format(loss_val.item()),
'acc_val: {:.4f}'.format(acc_val.item()),
'time: {:.4f}s'.format(time.time() - t))
print("Optimization Finished!")
print("Total time elapsed: {:.4f}s".format(time.time() - t_total))
model.eval()
output_tensor = model(features_tensor, adj_tensor)
loss_test = F.nll_loss(output_tensor[idx_test], labels_tensor[idx_test])
preds = output_tensor[idx_test].max(1)[1].type_as(labels_tensor[idx_test])
correct = preds.eq(labels_tensor[idx_test]).double()
correct = correct.sum()
acc_test = correct / len(labels_tensor[idx_test])
print("Test set results:",
"loss= {:.4f}".format(loss_test.item()),
"accuracy= {:.4f}".format(acc_test.item()))