-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSTGCN_example.py
274 lines (225 loc) · 10.2 KB
/
STGCN_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
import sys,os
add_path = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
sys.path.append(add_path.split('examples')[0])
print(add_path.split('examples')[0])
import os.path as osp
from cogdl import experiment
import time
import copy
import itertools
import os
import inspect
from collections import defaultdict, namedtuple
import warnings
import torch
import torch.nn as nn
import torch.multiprocessing as mp
import optuna
from tabulate import tabulate
from cogdl.utils import set_random_seed, tabulate_results, download_url, makedirs, untar
from cogdl.configs import BEST_CONFIGS
from cogdl.data import Dataset
from cogdl.models import build_model
from cogdl.datasets import build_dataset
from cogdl.wrappers import fetch_model_wrapper, fetch_data_wrapper
from cogdl.options import get_default_args
from cogdl.trainer import Trainer
import numpy as np
def output_results(results_dict, tablefmt="github"):
variant = list(results_dict.keys())[0]
col_names = ["Variant"] + list(results_dict[variant][-1].keys())
tab_data = tabulate_results(results_dict)
print(tabulate(tab_data, headers=col_names, tablefmt=tablefmt))
# 传入参数,加载模型
def train(args): # noqa: C901
if isinstance(args.dataset, list):
args.dataset = args.dataset[0]
if isinstance(args.model, list):
args.model = args.model[0]
if isinstance(args.seed, list):
args.seed = args.seed[0]
if isinstance(args.split, list):
args.split = args.split[0]
# dataset='cora', model='gcn', seed=1, split=0
# 设置随机种子
set_random_seed(args.seed)
# 要求字符串
model_name = args.model if isinstance(args.model, str) else args.model.model_name
dw_name = args.dw if isinstance(args.dw, str) else args.dw.__name__
mw_name = args.mw if isinstance(args.mw, str) else args.mw.__name__
# 打印训练关键信息
print(
f"""
|-------------------------------------{'-' * (len(str(args.dataset)) + len(model_name) + len(dw_name) + len(mw_name))}|
*** Running (`{args.dataset}`, `{model_name}`, `{dw_name}`, `{mw_name}`)
|-------------------------------------{'-' * (
len(str(args.dataset)) + len(model_name) + len(dw_name) + len(mw_name))}|"""
)
# 按照指定格式 构建数据集
"""
aa = Namespace(activation='relu', actnn=False, checkpoint_path='./checkpoints/model.pt', cpu=False, cpu_inference=False,
dataset=['cora'], devices=[0], distributed=False, dropout=0.5, dw='node_classification_dw', epochs=500, eval_step=1,
fp16=False, hidden_size=64, load_emb_path=None, local_rank=0, log_path='.', logger=None, lr=0.01, master_addr='localhost',
master_port=13425, max_epoch=None, model=['gcn'], mw='node_classification_mw', n_trials=3, n_warmup_steps=0, no_test=False,
norm=None, nstage=1, num_classes=None, num_features=None, num_layers=2, patience=100, progress_bar='epoch',
project='cogdl-exp', residual=False, resume_training=False, rp_ratio=1, save_emb_path=None, seed=[1], split=[0],
unsup=False, use_best_config=False, weight_decay=0)
"""
# 接受数据集类的实例化
dataset = build_dataset(args)
# cogdl.datasets.planetoid_data.CoraDataset
# 并且 args 已经根据 数据集发生改变了
# 获取模型封装,数据封装的类
mw_class = fetch_model_wrapper(args.mw)
dw_class = fetch_data_wrapper(args.dw) # node_classification_dw
if mw_class is None:
raise NotImplementedError("`model wrapper(--mw)` must be specified.")
if dw_class is None:
raise NotImplementedError("`data wrapper(--dw)` must be specified.")
# 定义 封装的参数
data_wrapper_args = dict()
model_wrapper_args = dict()
# setup data_wrapper
# 根据数据名称获取类的实例化
data_wrapper_args['batch_size'] = args.batch_size
data_wrapper_args['n_his'] = args.n_his
data_wrapper_args['n_pred'] = args.n_pred
data_wrapper_args['train_prop'] = args.train_prop
data_wrapper_args['val_prop'] = args.val_prop
data_wrapper_args['test_prop'] = args.test_prop
data_wrapper_args['pred_length'] = args.pred_length
dataset_wrapper = dw_class(dataset, **data_wrapper_args)
# cogdl.wrappers.data_wrapper.node_classification.node_classification_dw.FullBatchNodeClfDataWrapper
args.num_features = dataset.num_features
if hasattr(dataset, "num_nodes"):
args.num_nodes = dataset.num_nodes
if hasattr(dataset, "num_edges"):
args.num_edges = dataset.num_edges
if hasattr(dataset, "num_edge"):
args.num_edge = dataset.num_edge
if hasattr(dataset, "max_graph_size"):
args.max_graph_size = dataset.max_graph_size
if hasattr(dataset, "edge_attr_size"):
args.edge_attr_size = dataset.edge_attr_size
else:
args.edge_attr_size = [0]
if hasattr(args, "unsup") and args.unsup:
args.num_classes = args.hidden_size
else:
args.num_classes = dataset.num_classes
if hasattr(dataset.data, "edge_attr") and dataset.data.edge_attr is not None:
args.num_entities = len(torch.unique(torch.stack(dataset.data.edge_index)))
args.num_rels = len(torch.unique(dataset.data.edge_attr))
# setup model
if isinstance(args.model, nn.Module):
model = args.model
else:
model = build_model(args)
# specify configs for optimizer
optimizer_cfg = dict(
lr=args.lr,
weight_decay=args.weight_decay,
n_warmup_steps=args.n_warmup_steps,
epochs=args.epochs,
batch_size=args.batch_size if hasattr(args, "batch_size") else 0,
)
if hasattr(args, "hidden_size"):
optimizer_cfg["hidden_size"] = args.hidden_size
# setup model_wrapper
# 根据模型名称获取类的实例化
# renxs
model_wrapper_args['edge_index'] = dataset.data.edge_index
model_wrapper_args['edge_weight'] = dataset.data.edge_weight
model_wrapper_args['scaler'] = dataset_wrapper.scaler
model_wrapper_args['node_ids'] = dataset.data.node_ids
model_wrapper_args['pred_timestamp'] = dataset_wrapper.get_pre_timestamp()
if isinstance(args.mw, str) and "embedding" in args.mw:
model_wrapper = mw_class(model, **model_wrapper_args)
else:
model_wrapper = mw_class(model, optimizer_cfg, **model_wrapper_args)
os.makedirs("./checkpoints", exist_ok=True)
# setup controller
trainer = Trainer(
epochs=args.epochs,
device_ids=args.devices,
cpu=args.cpu,
save_emb_path=args.save_emb_path,
load_emb_path=args.load_emb_path,
cpu_inference=args.cpu_inference,
progress_bar=args.progress_bar,
distributed_training=args.distributed,
checkpoint_path=args.checkpoint_path,
resume_training=args.resume_training,
patience=args.patience,
eval_step=args.eval_step,
logger=args.logger,
log_path=args.log_path,
project=args.project,
no_test=args.no_test,
nstage=args.nstage,
actnn=args.actnn,
fp16=args.fp16,
)
# Go!!!
# 开始训练,传入 模型参数封装和数据集封装
result = trainer.run(model_wrapper, dataset_wrapper)
return result
def variant_args_generator(args, variants):
"""Form variants as group with size of num_workers"""
for idx, variant in enumerate(variants):
args.dataset, args.model, args.seed, args.split = variant
yield copy.deepcopy(args)
def gen_variants(**items):
Variant = namedtuple("Variant", items.keys())
return itertools.starmap(Variant, itertools.product(*items.values()))
def raw_experiment(args):
# 产生变量 [Variant(dataset='cora', model='gcn', seed=1, split=0)]
variants = list(gen_variants(dataset=args.dataset, model=args.model, seed=args.seed, split=args.split))
# defaultdict(<class 'list'>, {})
results_dict = defaultdict(list)
# train
results = []
for aa in variant_args_generator(args, variants):
"""
aa = Namespace(activation='relu', actnn=False, checkpoint_path='./checkpoints/model.pt', cpu=False, cpu_inference=False,
dataset=['cora'], devices=[0], distributed=False, dropout=0.5, dw='node_classification_dw', epochs=500, eval_step=1,
fp16=False, hidden_size=64, load_emb_path=None, local_rank=0, log_path='.', logger=None, lr=0.01, master_addr='localhost',
master_port=13425, max_epoch=None, model=['gcn'], mw='node_classification_mw', n_trials=3, n_warmup_steps=0, no_test=False,
norm=None, nstage=1, num_classes=None, num_features=None, num_layers=2, patience=100, progress_bar='epoch',
project='cogdl-exp', residual=False, resume_training=False, rp_ratio=1, save_emb_path=None, seed=[1], split=[0],
unsup=False, use_best_config=False, weight_decay=0)
"""
results.append(train(aa))
# results = [train(args) for args in variant_args_generator(args, variants)] # [ {'test_acc': 0.794, 'val_acc': 0.788} ]
# list(zip(variants, results)) [(Variant(dataset='cora', model='gcn', seed=1, split=0), {'test_acc': 0.794, 'val_acc': 0.788})]
for variant, result in zip(variants, results):
# 取('cora', 'gcn') :[ {'test_acc': 0.794, 'val_acc': 0.788} ]
results_dict[variant[:-2]].append(result)
tablefmt = "github"
output_results(results_dict, tablefmt)
return results_dict
def experiment(dataset, model=None, **kwargs):
dataset = [dataset]
model = [model]
# 获取 Namespace 参数空间
# 从 wrappers 获取初始化的参数, 继承基础参数设置,并 根据需要添加新的参数
args = get_default_args(dataset=[str(x) for x in dataset], model=[str(x) for x in model], **kwargs)
args.dataset = dataset
args.model = model
return raw_experiment(args)
def files_exist(files):
# 返回一个布尔变量
return all([osp.exists(f) for f in files])
if __name__ == "__main__":
kwargs = {"epochs":1,
"kernel_size":3,
"n_his":20,
"n_pred":1,
"channel_size_list":np.array([[ 1, 16, 64],[64, 64, 64],[64, 16, 64]]),
"num_layers":3,
"num_nodes":288,
"train_prop": 0.8,
"val_prop": 0.1,
"test_prop": 0.1,
"pred_length":288,}
experiment(dataset="pems-stgat", model="stgat", resume_training=False, **kwargs)