-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathObserver.py
96 lines (77 loc) · 3.43 KB
/
Observer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import backtrader as bt
import pandas as pd
import datetime
class ThreeBars(bt.Indicator):
# 本指标中有两个lines,上下轨,在此声明
lines = ('up', 'down')
def __init__(self):
# 设定指标最小的周期,即第四个bar上才会有指标数值
self.addminperiod(4)
# 指标作图的时候是跟着哪个data走的(即本指标中的up和down将跟主图呈现在一起)
# self.plotinfo.plotmaster = self.data
def next(self):
# 其实就是self.up[0]
# .get(ago=-1, size=3)中,size表示取出3天的价格,ago表示从哪天开始取(-1表示从昨天开始),那么总的就是从昨天开始向前取3天的数据
self.lines[0][0] = max(max(self.data.close.get(ago=-1, size=3)), max(self.data.open.get(ago=-1, size=3)))
self.down[0] = min(min(self.data.close.get(ago=-1, size=3)), min(self.data.open.get(ago=-1, size=3)))
class MyStrategy(bt.Strategy):
def __init__(self):
self.up_down = ThreeBars(self.data)
# 指标线与主图显示在一起
self.up_down.plotinfo.plotmaster = self.data
self.buy_signal = bt.indicators.CrossOver(self.data.close, self.up_down.up)
self.sell_signal = bt.indicators.CrossDown(self.data.close, self.up_down.down)
# 不在图中显示buy_signal和sell_signal的值
self.buy_signal.plotinfo.plot = False
self.sell_signal.plotinfo.plot = False
def next(self):
# 如果此时没有仓位并且出现买入信号
if not self.position and self.buy_signal[0] == 1:
self.order = self.buy()
# 如果此时持空仓并且出现买入信号
if self.getposition().size < 0 and self.buy_signal[0] == 1:
self.order = self.close() # 清掉仓位
self.order = self.buy()
# 如果此时没仓位并且出现卖出信号
if not self.position and self.sell_signal[0] == 1:
self.order = self.sell()
# 如果此时持多仓并且出现卖出信号
if self.getposition().size > 0 and self.sell_signal[0] == 1:
self.order = self.close() # 清掉仓位
self.order = self.sell()
# 关闭默认添加的observers
cerebro = bt.Cerebro(stdstats=False)
# 资产净值
cerebro.addobserver(bt.observers.Value)
# 平仓信号点标记
cerebro.addobserver(bt.observers.Trades)
# 交易点位标记
cerebro.addobserver(bt.observers.BuySell)
# 净值曲线的回撤(往往不在observer里面观察回撤,而是在analyzer中)
cerebro.addobserver(bt.observers.DrawDown)
# 持仓每日带来的收益
cerebro.addobserver(bt.observers.TimeReturn)
# 读取数据的方法1
df = pd.read_csv('data/rbfi_day.csv')
df['datetime'] = pd.to_datetime(df['datetime'])
df.set_index('datetime', inplace=True)
df['openinterest'] = 0
# 注 能用pandas的地方尽量用pandas
# 将pandas的dateframe转换成cerebro能识别的数据形式
brf_daily = bt.feeds.PandasData(
dataname=df,
fromdate=datetime.datetime(2015, 5, 13),
todate=datetime.datetime(2017, 6, 20)
)
# 添加datafeed时指定name
cerebro.adddata(brf_daily, name='brf')
cerebro.addstrategy(MyStrategy)
cerebro.run()
# 查看仓位信息
pos = cerebro.broker.getposition(brf_daily)
print(f'持仓大小: {pos.size}')
print(f'持仓均价: {pos.price}')
print(f'资产净值: {cerebro.broker.get_value()}')
print(f'可用现金: {cerebro.broker.get_cash()}')
# 曲线为蜡烛图
cerebro.plot(style='candle')