-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathmembrane_cnn_95x95_train.py
361 lines (279 loc) · 14.5 KB
/
membrane_cnn_95x95_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
"""
Membrane classifier, based on Theano LeNet5 convolutional neural network:
http://deeplearning.net/tutorial/lenet.html
Training images generated from the ISBI 2013 challenge: 3D segmentation of neurites in EM images
Original images:
http://brainiac2.mit.edu/SNEMI3D/
Training datasets:
http://people.seas.harvard.edu/~seymourkb/TrainingData/
"""
import cPickle
import gzip
import os
import os.path
import sys
import time
import numpy
import theano
import theano.tensor as T
from theano.tensor.signal import downsample
from theano.tensor.nnet import conv
from logistic_sgd import LogisticRegression, load_data
from mlp import HiddenLayer
class LeNetConvPoolLayer(object):
"""Pool Layer of a convolutional network """
def __init__(self, rng, input, filter_shape, image_shape, poolsize=(2, 2)):
"""
Allocate a LeNetConvPoolLayer with shared variable internal parameters.
:type rng: numpy.random.RandomState
:param rng: a random number generator used to initialize weights
:type input: theano.tensor.dtensor4
:param input: symbolic image tensor, of shape image_shape
:type filter_shape: tuple or list of length 4
:param filter_shape: (number of filters, num input feature maps,
filter height,filter width)
:type image_shape: tuple or list of length 4
:param image_shape: (batch size, num input feature maps,
image height, image width)
:type poolsize: tuple or list of length 2
:param poolsize: the downsampling (pooling) factor (#rows,#cols)
"""
assert image_shape[1] == filter_shape[1]
self.input = input
# there are "num input feature maps * filter height * filter width"
# inputs to each hidden unit
fan_in = numpy.prod(filter_shape[1:])
# each unit in the lower layer receives a gradient from:
# "num output feature maps * filter height * filter width" /
# pooling size
fan_out = (filter_shape[0] * numpy.prod(filter_shape[2:]) /
numpy.prod(poolsize))
# initialize weights with random weights
W_bound = numpy.sqrt(6. / (fan_in + fan_out))
self.W = theano.shared(numpy.asarray(
rng.uniform(low=-W_bound, high=W_bound, size=filter_shape),
dtype=theano.config.floatX),
borrow=True)
# the bias is a 1D tensor -- one bias per output feature map
b_values = numpy.zeros((filter_shape[0],), dtype=theano.config.floatX)
self.b = theano.shared(value=b_values, borrow=True)
# convolve input feature maps with filters
conv_out = conv.conv2d(input=input, filters=self.W,
filter_shape=filter_shape, image_shape=image_shape)
# downsample each feature map individually, using maxpooling
pooled_out = downsample.max_pool_2d(input=conv_out,
ds=poolsize, ignore_border=True)
# add the bias term. Since the bias is a vector (1D array), we first
# reshape it to a tensor of shape (1,n_filters,1,1). Each bias will
# thus be broadcasted across mini-batches and feature map
# width & height
self.output = T.tanh(pooled_out + self.b.dimshuffle('x', 0, 'x', 'x'))
# store parameters of this layer
self.params = [self.W, self.b]
def evaluate_lenet5(learning_rate=0.005, n_epochs=8000,
dataset='MembraneSamples_95x95x1_mp0.50_train5000_valid1000_test1000.pkl.gz',
nkerns=[32, 32, 32, 32], batch_size=500):
""" Demonstrates lenet on MNIST dataset
:type learning_rate: float
:param learning_rate: learning rate used (factor for the stochastic
gradient)
:type n_epochs: int
:param n_epochs: maximal number of epochs to run the optimizer
:type dataset: string
:param dataset: path to the dataset used for training /testing (MNIST here)
:type nkerns: list of ints
:param nkerns: number of kernels on each layer
"""
rng = numpy.random.RandomState(23455)
#nsplits = 10
#current_split = 0
#datasets = load_data(dataset.format(current_split, nsplits))
datasets = load_data(dataset)
train_set_x, train_set_y = datasets[0]
valid_set_x, valid_set_y = datasets[1]
test_set_x, test_set_y = datasets[2]
# compute number of minibatches for training, validation and testing
n_train_batches = train_set_x.get_value(borrow=True).shape[0]
n_valid_batches = valid_set_x.get_value(borrow=True).shape[0]
n_test_batches = test_set_x.get_value(borrow=True).shape[0]
n_train_batches /= batch_size
n_valid_batches /= batch_size
n_test_batches /= batch_size
# allocate symbolic variables for the data
index = T.lscalar() # index to a [mini]batch
x = T.matrix('x') # the data is presented as rasterized images
y = T.ivector('y') # the labels are presented as 1D vector of
# [int] labels
ishape = (95, 95) # this is the size of white and black patches
######################
# BUILD ACTUAL MODEL #
######################
print '... building the model'
# Reshape matrix of rasterized images of shape (batch_size, 95*95)
# to a 4D tensor, compatible with our LeNetConvPoolLayer
layer0_input = x.reshape((batch_size, 1, 95, 95))
# Construct the first convolutional pooling layer:
# filtering reduces the image size to (95-4+1, 95-4+1)=(92, 92)
# maxpooling reduces this further to (92/2, 92/2) = (46, 46)
# 4D output tensor is thus of shape (batch_size,nkerns[0], 46, 46)
layer0 = LeNetConvPoolLayer(rng, input=layer0_input,
image_shape=(batch_size, 1, 95, 95),
filter_shape=(nkerns[0], 1, 4, 4), poolsize=(2, 2))
# Construct the second convolutional pooling layer
# filtering reduces the image size to (46-5+1, 46-5+1)=(42,42)
# maxpooling reduces this further to (42/2, 42/2) = (21,21)
# 4D output tensor is thus of shape (nkerns[0],nkerns[1], 21, 21)
layer1 = LeNetConvPoolLayer(rng, input=layer0.output,
image_shape = (batch_size, nkerns[0], 46, 46),
filter_shape = (nkerns[1], nkerns[0], 5, 5), poolsize=(2, 2))
# Construct the third convolutional pooling layer
# filtering reduces the image size to (21-4+1, 21-4+1) = (18, 18)
# maxpooling reduces this further to (18/2, 18/2) = (9, 9)
# 4D output tensor is thus of shape (nkerns[1], nkerns[2], 9, 9)
layer2 = LeNetConvPoolLayer(rng, input=layer1.output,
image_shape=(batch_size, nkerns[1], 21, 21),
filter_shape=(nkerns[2], nkerns[1], 4, 4), poolsize=(2, 2))
# Construct the fourth convolutional pooling layer
# filtering reduces the image size to (9-4+1, 9-4+1) = (6, 6)
# maxpooling reduces this further to (6/2, 6/2) = (3, 3)
# 4D output tensor is thus of shape (nkerns[2], nkerns[3], 3,3)
layer3 = LeNetConvPoolLayer(rng, input=layer2.output,
image_shape=(batch_size, nkerns[2], 9, 9),
filter_shape=(nkerns[3], nkerns[2], 4, 4), poolsize=(2, 2))
# the TanhLayer being fully-connected, it operates on 2D matrices of
# shape (batch_size, num_pixels) (i.e matrix of rasterized images).
layer4_input = layer3.output.flatten(2)
# construct a fully-connected sigmoidal layer
layer4 = HiddenLayer(rng, input=layer4_input, n_in=nkerns[3] * 3 * 3,
n_out=100, activation=T.tanh)
# classify the values of the fully-connected sigmoidal layer
layer5 = LogisticRegression(input=layer4.output, n_in=100, n_out=2)
# the cost we minimize during training is the NLL of the model
cost = layer5.negative_log_likelihood(y)
# create a function to compute the mistakes that are made by the model
test_model = theano.function([index], layer5.errors(y),
givens={
x: test_set_x[index * batch_size: (index + 1) * batch_size],
y: test_set_y[index * batch_size: (index + 1) * batch_size]})
validate_model = theano.function([index], layer5.errors(y),
givens={
x: valid_set_x[index * batch_size: (index + 1) * batch_size],
y: valid_set_y[index * batch_size: (index + 1) * batch_size]})
##### Attempt to load a progress file #####
epoch = 0
best_validation_loss = numpy.inf
outfile = dataset.replace('.pkl.gz', '.progress.pkl.gz')
if os.path.isfile(outfile):
f = gzip.open(outfile, 'rb')
iter, best_params, this_validation_loss, test_score = cPickle.load(f)
f.close()
epoch = numpy.floor(iter / n_train_batches)
best_validation_loss = this_validation_loss
layer5.W.set_value(best_params[0][0].get_value())
layer5.b.set_value(best_params[0][1].get_value())
layer4.W.set_value(best_params[1][0].get_value())
layer4.b.set_value(best_params[1][1].get_value())
layer3.W.set_value(best_params[2][0].get_value())
layer3.b.set_value(best_params[2][1].get_value())
layer2.W.set_value(best_params[3][0].get_value())
layer2.b.set_value(best_params[3][1].get_value())
layer1.W.set_value(best_params[4][0].get_value())
layer1.b.set_value(best_params[4][1].get_value())
layer0.W.set_value(best_params[5][0].get_value())
layer0.b.set_value(best_params[5][1].get_value())
print 'Loaded progress file. Up to epoch {0}, validation error {1}, test error {2}.'.format(epoch, this_validation_loss * 100, test_score * 100)
# create a list of all model parameters to be fit by gradient descent
params = layer5.params + layer4.params + layer3.params + layer2.params + layer1.params + layer0.params
# create a list of gradients for all model parameters
grads = T.grad(cost, params)
# train_model is a function that updates the model parameters by
# SGD Since this model has many parameters, it would be tedious to
# manually create an update rule for each model parameter. We thus
# create the updates dictionary by automatically looping over all
# (params[i],grads[i]) pairs.
#updates = {}
#for param_i, grad_i in zip(params, grads):
# updates[param_i] = param_i - learning_rate * grad_i
updates = []
for param_i, grad_i in zip(params, grads):
updates.append((param_i, param_i - learning_rate * grad_i))
train_model = theano.function([index], cost, updates=updates,
givens={
x: train_set_x[index * batch_size: (index + 1) * batch_size],
y: train_set_y[index * batch_size: (index + 1) * batch_size]})
###############
# TRAIN MODEL #
###############
print '... training'
# early-stopping parameters
patience = 10000 # look at this many examples regardless
patience_increase = 2 # wait this much longer when a new best is
# found
improvement_threshold = 0.995 # a relative improvement of this much is
# considered significant
validation_frequency = min(n_train_batches, patience / 2)
# go through this many
# minibatche before checking the network
# on the validation set; in this case we
# check every epoch
best_params = None
best_iter = 0
test_score = 0.
start_time = time.clock()
done_looping = False
while (epoch < n_epochs) and (not done_looping):
epoch = epoch + 1
for minibatch_index in xrange(n_train_batches):
iter = epoch * n_train_batches + minibatch_index
if iter % 100 == 0:
print 'training @ iter = ', iter
cost_ij = train_model(minibatch_index)
if (iter + 1) % validation_frequency == 0:
# compute zero-one loss on validation set
validation_losses = [validate_model(i) for i
in xrange(n_valid_batches)]
this_validation_loss = numpy.mean(validation_losses)
print('epoch %i, minibatch %i/%i, validation error %f %%' % \
(epoch, minibatch_index + 1, n_train_batches, \
this_validation_loss * 100.))
# if we got the best validation score until now
if this_validation_loss < best_validation_loss:
#improve patience if loss improvement is good enough
if this_validation_loss < best_validation_loss * \
improvement_threshold:
patience = max(patience, iter * patience_increase)
# save best validation score and iteration number
best_validation_loss = this_validation_loss
best_iter = iter
best_params = (layer5.params, layer4.params, layer3.params, layer2.params, layer1.params, layer0.params)
# test it on the test set
test_losses = [test_model(i) for i in xrange(n_test_batches)]
test_score = numpy.mean(test_losses)
print((' epoch %i, minibatch %i/%i, test error of best '
'model %f %%') %
(epoch, minibatch_index + 1, n_train_batches,
test_score * 100.))
f = gzip.open(outfile,'wb', compresslevel=1)
cPickle.dump((iter, best_params, this_validation_loss, test_score),f)
f.close()
print 'Progress saved.'
if patience <= iter:
done_looping = True
break
#Load a new dataset split after each epoch
# current_split = (current_split + 1) % nsplits
# datasets = load_data(dataset.format(current_split, nsplits))
# train_set_x, train_set_y = datasets[0]
# valid_set_x, valid_set_y = datasets[1]
# test_set_x, test_set_y = datasets[2]
end_time = time.clock()
print('Optimization complete.')
print('Best validation score of %f %% obtained at iteration %i,'\
'with test performance %f %%' %
(best_validation_loss * 100., best_iter + 1, test_score * 100.))
print >> sys.stderr, ('The code ran for %.2fm' % ((end_time - start_time) / 60.))
return best_params
if __name__ == '__main__':
best_params = evaluate_lenet5()
def experiment(state, channel):
evaluate_lenet5(state.learning_rate, dataset=state.dataset)