-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathNightshade Antidote
199 lines (155 loc) · 11 KB
/
Nightshade Antidote
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
# Importing the required libraries
import cv2 # For image processing
import numpy as np # For numerical operations
import matplotlib.pyplot as plt # For plotting and visualization
import scipy.fftpack as fft # For Fourier Transform
from PIL import Image # For metadata extraction
from collections import Counter # For histogram calculation
from sklearn.neighbors import NearestNeighbors # For KNN search
import exiftool # For metadata extraction
# Loading and preprocessing the input image
img = cv2.imread("input.jpg") # Reading the image from file
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # Converting to grayscale
img = cv2.resize(img, (512, 512)) # Resizing to a fixed size
img = img / 255.0 # Normalizing the pixel values
# A function to detect block copying/pasting using KNN search
def detect_copy_move(img, patch_size=8, threshold=0.1):
flags = np.zeros_like(img) # A matrix to store the flags
dct_img = cv2.dct(img) # Applying DCT to the image
patches = [] # A list to store the patches
indices = [] # A list to store the patch indices
for i in range(0, img.shape[0], patch_size): # Looping over the rows
for j in range(0, img.shape[1], patch_size): # Looping over the columns
patch = dct_img[i:i+patch_size, j:j+patch_size] # Extracting a patch
patches.append(patch.flatten()) # Flattening and appending the patch to the list
indices.append((i, j)) # Appending the patch index to the list
patches = np.array(patches) # Converting the list of patches to a numpy array
nbrs = NearestNeighbors(n_neighbors=2, algorithm='auto').fit(patches) # Fitting a KNN model on the patches
distances, neighbors = nbrs.kneighbors(patches) # Finding the distances and neighbors for each patch
for i in range(len(patches)): # Looping over the patches
if distances[i][1] < threshold: # If the distance to the second nearest neighbor is less than the threshold
x1, y1 = indices[i] # Getting the index of the current patch
x2, y2 = indices[neighbors[i][1]] # Getting the index of the second nearest neighbor patch
flags[x1:x1+patch_size, y1:y1+patch_size] = 1 # Raising a flag for both patches
flags[x2:x2+patch_size, y2:y2+patch_size] = 1
return flags
# A function to analyze metadata using ExifTool instead of PIL or OpenCV
def analyze_metadata(img):
with exiftool.ExifTool() as et: # Creating an ExifTool object
metadata = et.get_metadata("input.jpg") # Extracting the metadata from the image file using ExifTool
for tag in metadata: # Looping over the metadata tags
print(f"{tag}: {metadata[tag]}") # Printing the tag name and value
# A function to apply spectral analysis and split into magnitude and phase spectra and plot them separately
def spectral_analysis(img):
f_img = fft.fft2(img) # Applying Fourier Transform to the image
f_img_shifted = fft.fftshift(f_img) # Shifting the zero-frequency component to the center of spectrum
magnitude_spectrum = np.log(np.abs(f_img_shifted)) # Computing the magnitude spectrum
phase_spectrum = np.angle(f_img_shifted) # Computing the phase spectrum
plt.figure(figsize=(10, 5)) # Creating a figure with a fixed size
plt.subplot(121) # Creating a subplot for magnitude spectrum
plt.imshow(magnitude_spectrum) # Plotting the magnitude spectrum
plt.title("Magnitude Spectrum") # Adding a title to the plot
plt.subplot(122) # Creating a subplot for phase spectrum
plt.imshow(phase_spectrum) # Plotting the phase spectrum
plt.title("Phase Spectrum") # Adding a title to the plot
plt.show() # Showing both plots
return magnitude_spectrum, phase_spectrum
# A function to inspect pixel ordering by comparing DCT coefficients with a reference image after alignment and normalization using correlation coefficient as a metric
def pixel_ordering_check(img):
ref_img = cv2.imread("reference.jpg") # Reading a reference image from file
ref_img = cv2.cvtColor(ref_img, cv2.COLOR_BGR2GRAY) # Converting to grayscale
img_dct = cv2.dct(img) # Applying DCT to the input image
ref_dct = cv2.dct(ref_img) # Applying DCT to the reference image
img_dct_normed = (img_dct - img_dct.mean()) / img_dct.std() # Normalizing the input DCT coefficients
ref_dct_normed = (ref_dct - ref_dct.mean()) / ref_dct.std() # Normalizing the reference DCT coefficients
corr_coeff = np.corrcoef(img_dct_normed.flatten(), ref_dct_normed.flatten())[0, 1] # Computing the correlation coefficient between the normalized DCT coefficients
return corr_coeff
# A function to identify compression artifacts by checking JPEG quantization artifacts in the DCT coefficients using a threshold
def compression_artifacts_check(img):
bit_depth = img.dtype.itemsize * 8 # Computing the bit depth of the image
compression_ratio = os.path.getsize("input.jpg") / (img.shape[0] * img.shape[1] * bit_depth / 8) # Computing the compression ratio of the image
print(f"Bit depth: {bit_depth}")
print(f"Compression ratio: {compression_ratio}")
dct_img = cv2.dct(img) # Applying DCT to the image
quantization_table = np.array([[16, 11, 10, 16, 24, 40, 51, 61], # The JPEG quantization table for luminance
[12, 12, 14, 19, 26, 58, 60, 55],
[14, 13, 16, 24, 40, 57, 69, 56],
[14, 17, 22, 29, 51, 87, 80, 62],
[18, 22, 37, 56, 68,109,103, 77],
[24, 35, 55, 64, 81,104,113, 92],
[49, 64, 78, 87,103,121,120,101],
[72, 92, 95, 98,112,100,103,99]])
quantization_artifacts = dct_img % quantization_table # Computing the remainder of dividing DCT coefficients by quantization table
threshold = quantization_table * 0.1 # Setting a threshold as a percentage of the quantization table values
flags = np.zeros_like(img) # A matrix to store the flags
flags[quantization_artifacts < threshold] = 1 # Raising a flag for any DCT coefficient that is less than the threshold
return flags
# A function to investigate file format conversions by checking the header and footer bytes
def file_format_check(img):
header = open("input.jpg", "rb").read(2) # Reading the first two bytes of the file
if header == b"\xff\xd8": # Checking if the header matches JPEG format
print("The file format is JPEG")
else:
print("The file format is not JPEG")
footer = open("input.jpg", "rb").read()[-2:] # Reading the last two bytes
if footer == b"\xff\xd9": # Checking if the footer matches JPEG format
print("The file format is JPEG")
else:
print("The file format is not JPEG")
# A function to output a report summarizing the forensic findings
def output_report(img):
report = "" # An empty string to store the report
report += "Image Forensics Report\n"
report += "=====================\n\n"
report += "Metadata Analysis\n"
report += "-----------------\n"
metadata = analyze_metadata(img) # Calling the metadata analysis function
report += metadata + "\n" # Adding the metadata to the report
report += "Copy-Move Forgery Detection\n"
report += "---------------------------\n"
flags = detect_copy_move(img) # Calling the copy-move detection function
num_flags = np.sum(flags) # Counting the number of flags raised
if num_flags > 0: # If there are any flags raised
report += f"Detected {num_flags} regions that are likely copied and pasted.\n" # Reporting the number of regions
plt.imshow(flags) # Plotting the flags on an image
plt.title("Copy-Move Regions") # Adding a title to the plot
plt.show() # Showing the plot
else: # If there are no flags raised
report += "No copy-move forgery detected.\n" # Reporting no forgery
report += "Spectral Analysis\n"
report += "-----------------\n"
magnitude_spectrum, phase_spectrum = spectral_analysis(img) # Calling the spectral analysis function and getting both spectra
plt.figure(figsize=(10, 5)) # Creating a figure with a fixed size
plt.subplot(121) # Creating a subplot for magnitude spectrum
plt.imshow(magnitude_spectrum) # Plotting the magnitude spectrum
plt.title("Magnitude Spectrum") # Adding a title to the plot
plt.subplot(122) # Creating a subplot for phase spectrum
plt.imshow(phase_spectrum) # Plotting the phase spectrum
plt.title("Phase Spectrum") # Adding a title to the plot
plt.show() # Showing both plots
# Checking for any anomalies in the spectra
mag_mean = np.mean(magnitude_spectrum) # Computing the mean of the magnitude spectrum
mag_std = np.std(magnitude_spectrum) # Computing the standard deviation of the magnitude spectrum
mag_threshold = mag_mean + 3 * mag_std # Setting a threshold as three standard deviations above the mean
mag_anomalies = np.where(magnitude_spectrum > mag_threshold) # Finding the indices where the magnitude spectrum exceeds the threshold
if len(mag_anomalies[0]) > 0: # If there are any anomalies
report += f"Detected {len(mag_anomalies[0])} anomalies in the magnitude spectrum.\n" # Reporting the number of anomalies
report += "These anomalies may indicate hidden messages, periodic noise, or resampling in the image.\n" # Explaining the possible causes of anomalies
plt.scatter(mag_anomalies[1], mag_anomalies[0], c='r', marker='x') # Plotting the anomalies on the magnitude spectrum
plt.title("Magnitude Spectrum Anomalies") # Adding a title to the plot
plt.show() # Showing the plot
else: # If there are no anomalies
report += "No anomalies detected in the magnitude spectrum.\n" # Reporting no anomalies
phase_mean = np.mean(phase_spectrum) # Computing the mean of the phase spectrum
phase_std = np.std(phase_spectrum) # Computing the standard deviation of the phase spectrum
phase_threshold = phase_mean + 3 * phase_std # Setting a threshold as three standard deviations above the mean
phase_anomalies = np.where(phase_spectrum > phase_threshold) # Finding the indices where the phase spectrum exceeds the threshold
if len(phase_anomalies[0]) > 0: # If there are any anomalies
report += f"Detected {len(phase_anomalies[0])} anomalies in the phase spectrum.\n" # Reporting the number of anomalies
report += "These anomalies may indicate geometric transformations, such as rotation, scaling, or cropping in the image.\n" # Explaining the possible causes of anomalies
plt.scatter(phase_anomalies[1], phase_anomalies[0], c='r', marker='x') # Plotting the anomalies on the phase spectrum
plt.title("Phase Spectrum Anomalies") # Adding a title to the plot
plt.show() # Showing the plot
else: # If there are no anomalies
report += "No anomalies detected in the phase spectrum.\n" # Reporting no anomalies
return magnitude_spectrum, phase_spectrum