-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathexportOnnx.py
42 lines (33 loc) · 1.47 KB
/
exportOnnx.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import os
import cv2
import time
import argparse
import torch
import numpy as np
from deep_sort import build_tracker
from utils.draw import draw_boxes
from utils.parser import get_config
from tqdm import tqdm
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--config_deepsort", type=str, default="./configs/deep_sort.yaml", help='Configure tracker')
parser.add_argument("--cpu", dest="use_cuda", action="store_false", default=True, help='Run in CPU')
args = parser.parse_args()
cfg = get_config()
cfg.merge_from_file(args.config_deepsort)
use_cuda = args.use_cuda and torch.cuda.is_available()
torch.set_grad_enabled(False)
model = build_tracker(cfg, use_cuda=False)
model.reid = True
model.extractor.net.eval()
device = 'cuda'
output_onnx = 'deepsort.onnx'
# ------------------------ export -----------------------------
print("==> Exporting model to ONNX format at '{}'".format(output_onnx))
input_names = ['input']
output_names = ['output']
input_tensor = torch.randn(1, 3, 128, 64, device=device)
torch.onnx.export(model.extractor.net.cuda(), input_tensor, output_onnx, export_params=True, verbose=False,
input_names=input_names, output_names=output_names, opset_version=10,
do_constant_folding=True,
dynamic_axes={'input': {0: 'batch_size'}, 'output': {0: 'batch_size'}})