Skip to content

Latest commit

 

History

History
39 lines (30 loc) · 1.2 KB

README.md

File metadata and controls

39 lines (30 loc) · 1.2 KB

ReGCL: Rethinking Message Passing in Graph Contrastive Learning

Code for AAAI 2024 paper "ReGCL: Rethinking Message Passing in Graph Contrastive Learning".

Dependencies

  • Python 3.8
  • PyTorch 1.13.1+ cu117
  • torch-geometric 2.3.0
  • torch-scatter 2.1.0
  • torch-sparse 0.6.15
  • torch-spline-conv 1.2.1
  • pyyaml 6.0.1
  • scikit-learn 1.3.0
  • numpy 1.21.6

Datasets

Citation Networks: 'Cora', 'Citeseer' and 'Pubmed'.

Co-occurence Networks: 'Amazon-Photo', 'Coauthor-CS'

Dataset # Nodes # Edges # Classes # Features
Cora 2,708 10,556 7 1,433
Citeseer 3,327 9,228 6 3,703
Pubmed 19,717 88,651 3 500
Amazon-Photo 7,650 287,326 8 745
Coauthor-CS 18,333 327,576 15 6,805

Usage

To run the codes, use the following commands:

#test:
python train.py --dataset Cora  --test 
#train:
python train.py --dataset Cora  --lr 5e-4 --tau 0.2 --dfr1 0.4 --dfr2 0.4 --der1 0.0 --der2 0.4