-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_nn.py
137 lines (117 loc) · 5.59 KB
/
main_nn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Python version: 3.6
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import numpy as np
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
import torch.optim as optim
from torchvision import datasets, transforms
from utils.sampling import mnist_iid, mnist_noniid, cifar_iid, covidx_iid
from utils.options import args_parser
from models.Update import LocalUpdate
from models.Nets import MLP, CNNMnist, CNNCifar, CNN, CovidNet
from models.Fed import FedAvg
from models.test import test_img
from data_loader.covidxdataset import COVIDxDataset
from models.metric import accuracy
from utils.util import print_stats, print_summary, select_model, select_optimizer, MetricTracker
def test(net_g, data_loader):
# testing
test_loss = 0
correct = 0
l = len(data_loader)
for idx, (data, target) in enumerate(data_loader):
data, target = data.to(args.device), target.to(args.device)
log_probs = net_g(data)
test_loss += F.cross_entropy(log_probs, target).item()
y_pred = log_probs.data.max(1, keepdim=True)[1]
correct += y_pred.eq(target.data.view_as(y_pred)).long().cpu().sum()
test_loss /= len(data_loader.dataset)
return correct, test_loss
if __name__ == '__main__':
# parse args
args = args_parser()
args.device = torch.device('cuda:{}'.format(args.gpu) if torch.cuda.is_available() and args.gpu != -1 else 'cpu')
# load dataset and split users
if args.dataset == 'mnist':
trans_mnist = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
dataset_train = datasets.MNIST('../data/mnist/', train=True, download=True, transform=trans_mnist)
dataset_test = datasets.MNIST('../data/mnist/', train=False, download=True, transform=trans_mnist)
elif args.dataset == 'cifar':
trans_cifar = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
dataset_train = datasets.CIFAR10('../data/cifar', train=True, download=True, transform=trans_cifar)
dataset_test = datasets.CIFAR10('../data/cifar', train=False, download=True, transform=trans_cifar)
elif args.dataset == 'covidx':
dataset_train = COVIDxDataset(mode='train', n_classes=args.num_classes, dataset_path=args.root_path,
dim=(224, 224))
dataset_test = COVIDxDataset(mode='test', n_classes=args.num_classes, dataset_path=args.root_path,
dim=(224, 224))
else:
exit('Error: unrecognized dataset')
img_size = dataset_train[0][0].shape
# build model
if args.model == 'cnn' and args.dataset == 'cifar':
net_glob = CNNCifar(args=args).to(args.device)
elif args.model == 'cnn' and args.dataset == 'mnist':
net_glob = CNNMnist(args=args).to(args.device)
elif args.model == 'mlp':
len_in = 1
for x in img_size:
len_in *= x
net_glob = MLP(dim_in=len_in, dim_hidden=200, dim_out=args.num_classes).to(args.device)
elif args.model == 'covidnet_small':
net_glob = CovidNet('small', n_classes=args.num_classes).to(args.device)
elif args.model == 'covidnet_large':
net_glob = CovidNet('large', n_classes=args.num_classes).to(args.device)
elif args.model in ['resnet18', 'mobilenet2', 'densenet169', 'resneXt']:
net_glob = CNN(args.num_classes, args.model).to(args.device)
else:
exit('Error: unrecognized model')
if args.recover != "none":
net_glob.load_state_dict(torch.load(args.recover))
print(net_glob)
net_glob.train()
# training
optimizer = optim.Adam(net_glob.parameters(), lr=args.lr, weight_decay=args.weight_decay)
train_loader = DataLoader(dataset_train, batch_size=args.local_bs, shuffle=True)
list_loss = []
check_points = [i*50 for i in range(1, 10)]
net_glob.train()
for epoch in range(args.epochs):
batch_loss = []
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(args.device), target.to(args.device)
optimizer.zero_grad()
output = net_glob(data)
loss = F.cross_entropy(output, target)
loss.backward()
optimizer.step()
if batch_idx % 50 == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
batch_loss.append(loss.item())
if (epoch+1) in check_points:
torch.save(net_glob.state_dict(), './save/nn_{}_{}_{}_ckp{}.pkl'.format(args.dataset, args.model, args.epochs, epoch+1))
loss_avg = sum(batch_loss)/len(batch_loss)
print('\nTrain loss:', loss_avg)
list_loss.append(loss_avg)
# save result
np.save('./save/nn_{}_{}_{}_loss.npy'.format(args.dataset, args.model, args.epochs), np.array(list_loss))
torch.save(net_glob.state_dict(), './save/nn_{}_{}_{}.pkl'.format(args.dataset, args.model, args.epochs))
# plot loss
plt.figure()
plt.plot(range(len(list_loss)), list_loss)
plt.xlabel('epochs')
plt.ylabel('train loss')
plt.savefig('./save/nn_{}_{}_{}.png'.format(args.dataset, args.model, args.epochs))
# testing
net_glob.eval()
acc_train, loss_train = test(net_glob, dataset_train)
acc_test, loss_test = test(net_glob, dataset_test)
print("Training accuracy: {:.2f}".format(acc_train))
print("Testing accuracy: {:.2f}".format(acc_test))