-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathsp_dense_sift.m
203 lines (156 loc) · 5.81 KB
/
sp_dense_sift.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
%
% compute dense SIFT feature for an image
%
%
function [sift_arr, grid_x, grid_y] = sp_dense_sift(I, options)%grid_spacing, patch_size , sigma_edge)
% I = imread('image_0174.jpg');
% [sift_arr, grid_x, grid_y] = sp_dense_sift(I, 4 , 9);
%
%
% Original script by Svetlana Lazebnick
% Adapted by Antonio Torralba: modified using convolutions to speed up the computations.
% And brought back into Svetlana's library
% if(~exist('grid_spacing','var'))
% grid_spacing = 1;
% end
% if(~exist('patch_size','var'))
% patch_size = 16;
% end
%I = rgb2gray(I);
% I = double(I);
% I = mean(I,3);
% I = I /max(I(:));
grid_spacing = options.gridspacing;
patch_size = options.patchsize;
if options.color == 1 % gray scale
im = rgb2gray(I);
elseif options.color == 2 % rgb
im = I;
else
im = rgb2lab(I);
end
[hgt, wid, ~] = size(I);
Nx = length(patch_size/2:grid_spacing:wid-patch_size/2);
Ny = length(patch_size/2:grid_spacing:hgt-patch_size/2);
grid_x = ceil(linspace(patch_size/2, wid-patch_size/2, Nx));
grid_y = ceil(linspace(patch_size/2, hgt-patch_size/2, Ny));
% parameters
num_angles = 8;
num_bins = 4;
num_samples = num_bins * num_bins;
alpha = 9; %% parameter for attenuation of angles (must be odd)
if nargin < 4
sigma_edge = 1;
end
angle_step = 2 * pi / num_angles;
angles = 0:angle_step:2*pi;
angles(num_angles+1) = []; % bin centers
[G_X,G_Y]=gen_dgauss(sigma_edge);
% sift_arr = zeros([length(grid_y) length(grid_x) num_angles*num_bins*num_bins], 'single');
sift_arr = zeros([num_angles*num_bins*num_bins, length(grid_y), length(grid_x), options.color], 'single');
for v = 1:options.color
I = double(im(:, :, v));
single_arr = zeros([length(grid_y) length(grid_x) num_angles*num_bins*num_bins], 'single');
% add boundary:
% I = [I(2:-1:1,:,:); I; I(end:-1:end-1,:,:)];
% I = [I(:,2:-1:1,:) I I(:,end:-1:end-1,:)];
%I = I-mean(I(:));
I_X = filter2(G_X, I, 'same'); % vertical edges
I_Y = filter2(G_Y, I, 'same'); % horizontal edges
% I_X = I_X(3:end-2,3:end-2,:);
% I_Y = I_Y(3:end-2,3:end-2,:);
I_mag = sqrt(I_X.^2 + I_Y.^2); % gradient magnitude
I_theta = atan2(I_Y,I_X);
%I_theta(find(isnan(I_theta))) = 0; % necessary????
% grid
% grid_x = patch_size/2:grid_spacing:wid-patch_size/2+1;
% grid_y = patch_size/2:grid_spacing:hgt-patch_size/2+1;
% make orientation images
I_orientation = zeros([hgt, wid, num_angles], 'single');
% for each histogram angle
cosI = cos(I_theta);
sinI = sin(I_theta);
for a=1:num_angles
% compute each orientation channel
tmp = (cosI*cos(angles(a))+sinI*sin(angles(a))).^alpha;
tmp = tmp .* (tmp > 0);
% weight by magnitude
I_orientation(:,:,a) = tmp .* I_mag;
end
% Convolution formulation:
%weight_kernel = zeros(patch_size,patch_size);
r = patch_size/2;
cx = r - 0.5;
sample_res = patch_size/num_bins;
weight_x = abs((1:patch_size) - cx)/sample_res;
weight_x = (1 - weight_x) .* (weight_x <= 1);
for a = 1:num_angles
%I_orientation(:,:,a) = conv2(I_orientation(:,:,a), weight_kernel, 'same');
I_orientation(:,:,a) = conv2(weight_x, weight_x', I_orientation(:,:,a), 'same');
end
% Sample SIFT bins at valid locations (without boundary artifacts)
% find coordinates of sample points (bin centers)
%[sample_x, sample_y] = meshgrid(linspace(1,patch_size+1,num_bins+1));
[sample_x, sample_y] = meshgrid(linspace(1,patch_size,num_bins+1));
sample_x = sample_x(1:num_bins,1:num_bins);
% sample_x = sample_x(:)-patch_size/2;
sample_x = ceil(sample_x(:)-patch_size/2);
sample_y = sample_y(1:num_bins,1:num_bins);
% sample_y = sample_y(:)-patch_size/2;
sample_y = ceil(sample_y(:)-patch_size/2);
b = 0;
for n = 1:num_bins*num_bins
single_arr(:,:,b+1:b+num_angles) = I_orientation(grid_y+sample_y(n), grid_x+sample_x(n), :);
b = b+num_angles;
end
clear I_orientation
% normalize SIFT descriptors
%[nrows, ncols, cols] = size(sift_arr);
%sift_arr = reshape(sift_arr, [nrows*ncols num_angles*num_bins*num_bins]);
%sift_arr = normalize_sift(sift_arr);
%sift_arr = reshape(sift_arr, [nrows ncols num_angles*num_bins*num_bins]);
ct = .000001;
single_arr = single_arr + ct;
tmp = sqrt(sum(single_arr.^2, 3));
single_arr = single_arr ./ repmat(tmp, [1 1 size(single_arr,3)]);
sift_arr(:, :, :, v) = shiftdim(single_arr, 2);
end
% Outputs:
[grid_x,grid_y] = meshgrid(grid_x, grid_y);
function [GX,GY]=gen_dgauss(sigma)
% laplacian of size sigma
%f_wid = 4 * floor(sigma);
%G = normpdf(-f_wid:f_wid,0,sigma);
%G = G' * G;
G = gen_gauss(sigma);
[GX,GY] = gradient(G);
GX = GX * 2 ./ sum(sum(abs(GX)));
GY = GY * 2 ./ sum(sum(abs(GY)));
function G=gen_gauss(sigma)
if all(size(sigma)==[1, 1])
% isotropic gaussian
f_wid = 4 * ceil(sigma) + 1;
G = fspecial('gaussian', f_wid, sigma);
% G = normpdf(-f_wid:f_wid,0,sigma);
% G = G' * G;
else
% anisotropic gaussian
f_wid_x = 2 * ceil(sigma(1)) + 1;
f_wid_y = 2 * ceil(sigma(2)) + 1;
G_x = normpdf(-f_wid_x:f_wid_x,0,sigma(1));
G_y = normpdf(-f_wid_y:f_wid_y,0,sigma(2));
G = G_y' * G_x;
end
function Lab = rgb2lab(img)
% convert RGB image into Lab space
cform = makecform('srgb2lab');
Lab = applycform(img, cform);
Lab = double(Lab);
%do normalization on each channel, such that the range of each
%channel is [0 1]. In this dataset, the maximum value of the L
%channel is 255, and the minimum is 0; the maximum value of the a
%channel is 187 and the minimum is 108; the maximum value of the b
%channel is 161 and the minimum is 81.
Lab(:,:,1) = Lab(:,:,1)/255;
Lab(:,:,2) = (Lab(:,:,2)-108)/(187-108);
Lab(:,:,3) = (Lab(:,:,3)-81)/(161-81);