diff --git a/mmdeploy/codebase/base/task.py b/mmdeploy/codebase/base/task.py index 813c9d93fd..1e27c35f50 100644 --- a/mmdeploy/codebase/base/task.py +++ b/mmdeploy/codebase/base/task.py @@ -68,7 +68,7 @@ def init_pytorch_model(self, def build_dataset(self, dataset_cfg: Union[str, mmcv.Config], dataset_type: str = 'val', - is_sort_dataset: bool = True, + is_sort_dataset: bool = False, **kwargs) -> Dataset: """Build dataset for different codebase. @@ -80,6 +80,7 @@ def build_dataset(self, is_sort_dataset (bool): When 'True', the dataset will be sorted by image shape in ascending order if 'dataset_cfg' contains information about height and width. + Default is `False`. Returns: Dataset: The built dataset. diff --git a/tools/test.py b/tools/test.py index 139f9bdfbb..d3957a19d4 100644 --- a/tools/test.py +++ b/tools/test.py @@ -107,9 +107,7 @@ def main(): # prepare the dataset loader dataset_type = 'test' - - dataset = task_processor.build_dataset( - model_cfg, dataset_type, is_sort_dataset=False) + dataset = task_processor.build_dataset(model_cfg, dataset_type) # override samples_per_gpu that used for training model_cfg.data['samples_per_gpu'] = args.batch_size data_loader = task_processor.build_dataloader(