-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_umls.py
175 lines (122 loc) · 4.56 KB
/
run_umls.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
# -*- coding: utf-8 -*-
import csv
from tqdm import tqdm
from embedding import embd_umls
import graph
from PINYON_CACD import cacd
from tweets_process import tweets_helper
def edge_similarity(e1,e2):
n1_entities=e1.split(';')
n1_start=n1_entities[0]
n1_end=n1_entities[1]
n2_entities=e2.split(';')
n2_start=n2_entities[0]
n2_end=n2_entities[1]
similarity=0
temp=embd_umls.get_similarity(n1_start,n1_end)
if temp >0:
similarity+=temp
temp=embd_umls.get_similarity(n1_start,n2_start)
if temp >0:
similarity+=temp
temp=embd_umls.get_similarity(n1_start,n2_end)
if temp >0:
similarity+=temp
temp=embd_umls.get_similarity(n1_end,n2_start)
if temp >0:
similarity+=temp
temp=embd_umls.get_similarity(n1_end,n2_end)
if temp >0:
similarity+=temp
temp=embd_umls.get_similarity(n2_start,n2_end)
if temp >0:
similarity+=temp
similarity=similarity/6
return similarity
filename="data/TweetsCOV19_052020/entities_umls.csv"
with open(filename, 'r' , encoding='utf-8') as file:
reader = csv.reader(file,delimiter=',')
rows_umls=list(reader)
umls_entities=dict()
for row in rows_umls:
umls_entities[row[1]]=row[0]
all_entities=[]
all_entities.extend([x[1] for x in rows_umls[:]])
post_entities=['C0600558','C3657270','C1514888','C0007131','C0282460']
nodes=[]
for e in post_entities:
for e_c in all_entities:
nodes.append(e+';'+e_c)
nodes=list(set(nodes))
complement_graph=graph.graph()
similarity_max=0
counter=0
for i in tqdm(range(len(nodes))):
complement_graph.append(nodes[i],nodes[i],0)
for j in range(len(nodes)):
if j<i:
continue
if i==j:
continue
n1_entities=nodes[i].split(';')
n1_start=n1_entities[0]
n1_end=n1_entities[1]
n2_entities=nodes[j].split(';')
n2_start=n2_entities[0]
n2_end=n2_entities[1]
similarity=edge_similarity(nodes[i],nodes[j])
if n1_start!=n2_start and n1_end!=n2_end:
complement_graph.append(nodes[i],nodes[j],0)
complement_graph.append(nodes[j],nodes[i],0)
counter+=1
else:
if similarity<0.80:
complement_graph.append(nodes[i],nodes[j],0)
complement_graph.append(nodes[j],nodes[i],0)
counter+=1
complement_graph=graph.prune_graph(complement_graph)
graph.serialize_graph(complement_graph,"graphs/umls_graph.sif")
vertex_coloring=cacd(complement_graph)
unique_colors=dict()
for key,value in vertex_coloring.items():
if value not in unique_colors:
unique_colors[value]=[]
unique_colors[value].append(key)
colors_similarity=dict()
for key,value in unique_colors.items():
community_similarity=0
counter=0
for i in range(len(value)):
for j in range(i,len(value)):
if i==j:
continue
community_similarity+=edge_similarity(value[i],value[j])
counter+=1
if len(value)==1:
community_similarity=embd_umls.get_similarity(value[0].split(';')[0],value[0].split(';')[1])
else:
community_similarity=community_similarity/counter
colors_similarity[key]=community_similarity
community_similarity_ordered=sorted(colors_similarity.items(), key=lambda x: x[1], reverse=True)
returned_posts=dict()
for community in community_similarity_ordered:
if community[1]>0.60:
for edge in unique_colors[community[0]]:
mentions=tweets_helper.edge_2_mention(edge,'umls')
if mentions!="":
for mention in mentions:
posts=tweets_helper.mention_2_post(mention)
if posts!="":
for post in posts:
if post =="":
continue
if post not in returned_posts:
returned_posts[post]=[]
if mention not in returned_posts[post]:
returned_posts[post].append(mention)
ranked_posts=sorted(returned_posts, key=lambda k: len(returned_posts[k]), reverse=True)
ranked_posts_text=[]
for post in ranked_posts:
post_text=tweets_helper.post_2_text(post)
if post_text !="":
ranked_posts_text.append(tweets_helper.post_2_text(post))