-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path_utils.py
464 lines (373 loc) · 20 KB
/
_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
import os
from typing import Optional, Tuple
import numpy as np
import torch
from PIL import Image
from scipy.stats import multivariate_normal
from skimage import feature, measure
from .._c.bindings import match_template_pool, peak_dist
from ..utils import write_to_xyz
from ._molecule_graph import MoleculeGraph
VDW_RADII = {1: 1.487, 6: 1.908, 7: 1.78, 8: 1.661, 9: 1.75, 14: 1.9, 15: 2.1, 16: 2.0, 17: 1.948, 35: 2.22}
# Reference: http://chemistry-reference.com/tables/Bond%20Lengths%20and%20Enthalpies.pdf
# fmt:off
BOND_LENGTHS = {
1: { 1: 0.74, 6: 1.09, 7: 1.01, 8: 0.96, 9: 0.92, 14: 1.48, 15: 1.42, 16: 1.34, 17: 1.27, 35: 1.41, 53: 1.61},
6: { 6: 1.54, 7: 1.47, 8: 1.43, 9: 1.33, 14: 1.86, 15: 1.87, 16: 1.81, 17: 1.77, 35: 1.94, 53: 2.13},
7: { 7: 1.46, 8: 1.44, 9: 1.39, 14: 1.72, 15: 1.77, 16: 1.68, 17: 1.91, 35: 2.14, 53: 2.22},
8: { 8: 1.48, 9: 1.42, 14: 1.61, 15: 1.60, 16: 1.51, 17: 1.64, 35: 1.72, 53: 1.94},
9: { 9: 1.43, 14: 1.56, 15: 1.56, 16: 1.58, 17: 1.66, 35: 1.78, 53: 1.87},
14: { 14: 2.34, 15: 2.27, 16: 2.10, 17: 2.04, 35: 2.16, 53: 2.40},
15: { 15: 2.21, 16: 2.10, 17: 2.04, 35: 2.22, 53: 2.43},
16: { 16: 2.04, 17: 2.01, 35: 2.25, 53: 2.34},
17: { 17: 1.99, 35: 2.18, 53: 2.43},
35: { 35: 2.28, 53: 2.48},
53: { 53: 2.66}
}
# fmt: on
def _find_peaks_cpu(
pos_dist: np.ndarray, box_borders: np.ndarray, match_threshold: float, std: float, method: str
) -> Tuple[list[np.ndarray], np.ndarray, np.ndarray]:
n_xyz = pos_dist.shape[1:]
res = [(box_borders[1][i] - box_borders[0][i]) / (n_xyz[i] - 1) for i in range(3)]
pos_dist[pos_dist < 1e-4] = 0 # Very small values cause instabilities in ZNCC values
# Create reference gaussian peak to compare against
r = 3 * std + 1e-6
r = [r - (r % res[i]) for i in range(3)]
x_ref, y_ref, z_ref = [np.arange(-r[i], r[i] + 1e-6, res[i]) for i in range(3)]
ref_grid = np.stack(np.meshgrid(x_ref, y_ref, z_ref, indexing="ij"), axis=-1)
ref_peak = multivariate_normal.pdf(ref_grid, mean=[0, 0, 0], cov=std**2)
# Match the reference gaussian peak shape with the position distributions
if method in ["mad", "msd", "mad_norm", "msd_norm"]:
matches = match_template_pool(pos_dist, ref_peak, method=method)
else:
matches = []
for d in pos_dist:
matches.append(feature.match_template(d, ref_peak, pad_input=True, mode="constant", constant_values=0))
matches = np.stack(matches, axis=0)
# Threshold the match map
if method == "zncc":
threshold_masks = matches > match_threshold
else:
threshold_masks = matches < match_threshold
# Loop over batch items to label matches and find atom positions
xyzs = []
labels = []
for match, threshold_mask in zip(matches, threshold_masks):
# Label connected regions
labels_, num_atoms = measure.label(threshold_mask, return_num=True)
# Loop over labelled regions to find atom positions
xyzs_ = []
for target_label in range(1, num_atoms + 1):
# Find best matching xyz position from the labelled region
match_masked = np.ma.array(match, mask=(labels_ != target_label))
best_ind = match_masked.argmax() if method == "zncc" else match_masked.argmin()
best_ind = np.unravel_index(best_ind, match_masked.shape)
xyz = [box_borders[0][i] + res[i] * best_ind[i] for i in range(3)]
xyzs_.append(xyz)
xyzs.append(np.array(xyzs_))
labels.append(labels_)
labels = np.stack(labels, axis=0)
return xyzs, matches, labels
def _find_peaks_cuda(
pos_dist: torch.Tensor, box_borders: np.ndarray, match_threshold: float, std: float, method: str
) -> Tuple[list[torch.Tensor], torch.Tensor, torch.Tensor]:
# This import triggers a JIT compilation, so let's put it here inside the function, so that you
# don't waste time on compilation when you don't need it.
from .._cuda.bindings import ccl, find_label_min
from .._cuda.bindings import match_template as match_template_cuda
if method == "zncc":
raise NotImplementedError("zncc not implemented for cuda tensors.")
n_xyz = pos_dist.shape[1:]
res = [(box_borders[1][i] - box_borders[0][i]) / (n_xyz[i] - 1) for i in range(3)]
# Create reference gaussian peak to compare against
r = 3 * std + 1e-6
r = [r - (r % res[i]) for i in range(3)]
x_ref, y_ref, z_ref = [np.arange(-r[i], r[i] + 1e-6, res[i]) for i in range(3)]
ref_grid = np.stack(np.meshgrid(x_ref, y_ref, z_ref, indexing="ij"), axis=-1)
ref_peak = multivariate_normal.pdf(ref_grid, mean=[0, 0, 0], cov=std**2)
ref_peak = torch.from_numpy(ref_peak).to(pos_dist.device).float()
# Match the reference gaussian peak shape with the position distributions
matches = match_template_cuda(pos_dist, ref_peak, method=method)
# Threshold the match map
threshold_masks = matches < match_threshold
# Label matched regions
labels = ccl(threshold_masks)
# Find minimum indices in labelled regions
min_inds = find_label_min(matches, labels)
# Convert indices into real-space coordinates
xyz_start = torch.tensor(box_borders[0], device=pos_dist.device, dtype=pos_dist.dtype)
res = torch.tensor(res, device=pos_dist.device, dtype=pos_dist.dtype)
xyzs = [xyz_start + res * m.type(pos_dist.dtype) for m in min_inds]
return xyzs, matches, labels
def find_gaussian_peaks(
pos_dist: np.ndarray | torch.Tensor, box_borders: np.ndarray, match_threshold: float = 0.7, std: float = 0.3, method: str = "mad"
) -> Tuple[list[np.ndarray], np.ndarray, np.ndarray] | Tuple[list[torch.Tensor], torch.Tensor, torch.Tensor]:
"""
Find real-space positions of gaussian peaks in a 3D position distribution grid.
Arguments:
pos_dist: Position distribution array. Should be of shape ``(n_batch, nx, ny, nz)``.
box_borders: Real-space extent of the distribution grid in Ångströms. The array should be of the form
``((x_start, y_start, z_start), (x_end, y_end, z_end))``.
match_threshold: Detection threshold for matching. Regions above the threshold are chosen for method ``'zncc'``,
and regions below the threshold are chosen for methods ``'mad'``, ``'msd'``, ``'mad_norm'``, and ``'msd_norm'``.
std: Standard deviation of peaks to search for in Ångströms.
method: Matching method to use. Either zero-normalized cross correlation (``'zncc'``), mean absolute distance (``'mad'``),
mean squared distance (``'msd'``), or the normalized version of the latter two (``'mad_norm'``, ``'msd_norm'``).
Returns:
Tuple (**xyzs**, **match**, **labels**), where
- **xyzs** - Positions of the found atoms. Each item in the list is an array of shape (num_atoms, 3)
that correspond to one batch item.
- **matches** - Array of matching values. Of the same shape as input **pos_dist**. For method ``'zncc'`` larger values,
and for ``'mad'``, ``'msd'``, ``'mad_norm'``, and ``'msd_norm'`` smaller values correspond to a better match.
- **labels** - Labelled regions where match is better than match_threshold. Of the same shape as input **pos_dist**.
The arrays are of same type as the input **pos_dist** array.
"""
if method not in ["zncc", "mad", "msd", "mad_norm", "msd_norm"]:
raise ValueError(f"Unknown matching method `{method}`.")
if isinstance(pos_dist, torch.Tensor):
if pos_dist.device == torch.device("cpu"):
xyzs, matches, labels = _find_peaks_cpu(pos_dist.numpy(), box_borders, match_threshold, std, method)
xyzs = [torch.from_numpy(xyz).type(pos_dist.dtype) for xyz in xyzs]
matches = torch.from_numpy(matches).type(pos_dist.dtype)
labels = torch.from_numpy(labels).type(pos_dist.dtype)
else:
xyzs, matches, labels = _find_peaks_cuda(pos_dist, box_borders, match_threshold, std, method)
else:
xyzs, matches, labels = _find_peaks_cpu(pos_dist, box_borders, match_threshold, std, method)
return xyzs, matches, labels
def make_position_distribution(
mols: list[MoleculeGraph], box_borders: np.ndarray, box_res: Tuple[float, float, float] = (0.125, 0.125, 0.1), std: float = 0.3
) -> np.ndarray:
"""
Make a distribution on a grid based on atom positions. Each atom is represented by a normal distribution.
Arguments:
mols: List of molecules.
box_borders: Real-space extent of the distribution grid in Ångströms. The array should be of the form
``((x_start, y_start, z_start), (x_end, y_end, z_end))``.
box_res: Real-space size of a voxel in each direction in Ångströms.
std: float. Standard deviation of normal distribution for each atom in Ångströms.
Returns:
Array of shape ``(n_batch, n_x, n_y, n_z)``.
"""
n_xyz = [int((box_borders[1][i] - box_borders[0][i]) / box_res[i] + 1.01) for i in range(3)]
atoms = [m.array(xyz=True) if len(m) > 0 else np.empty((0, 3)) for m in mols]
xyz_start = box_borders[0]
pos_dist = peak_dist(atoms, n_xyz, xyz_start, box_res, std)
return pos_dist
def shift_mols_window(molecules: list[MoleculeGraph], scan_windows: np.ndarray, start: Tuple[float, float] = (0, 0)) -> np.ndarray:
"""
Shift molecule xy coordinates to use the same scan window. All molecules should have the same scan window size.
Arguments:
molecules: Molecules whose atom positions to shift.
scan_windows: Scan window for each molecule. Arrays of shape ``(n_mol, 2, 3)``.
start: The lower left corner of the new scan window.
Returns:
Tuple (**new_molecules**, **new_scan_window**), where
- **new_molecules** - Molecules with shifted atom coordinates.
- **new_scan_window** - New scan window in the form ((x_start, y_start), (x_end, y_end)).
"""
assert len(molecules) == len(scan_windows)
swx = scan_windows[:, 1, 0] - scan_windows[:, 0, 0]
swy = scan_windows[:, 1, 1] - scan_windows[:, 0, 1]
if not (np.allclose(swx, swx[0]) and np.allclose(swy, swy[0])):
raise ValueError("All molecules do not have the same scan window size.")
x_size, y_size = swx[0], swy[0]
new_scan_window = np.array((start, (start[0] + x_size, start[1] + y_size)))
new_molecules = []
for mol, sw in zip(molecules, scan_windows):
shift = (start[0] - sw[0][0], start[1] - sw[0][1])
new_molecules.append(mol.transform_xy(shift=shift))
return new_molecules, new_scan_window
def add_rotation_reflection_graph(
X: list[np.ndarray],
mols: list[MoleculeGraph],
box_borders: np.ndarray,
num_rotations: int = 1,
reflections: bool = True,
crop: Optional[Tuple[int, int] | str] = None,
per_batch_item: bool = True,
) -> Tuple[list[np.ndarray], list[MoleculeGraph]]:
"""
Random rotation and reflection of AFM images and corresponding molecule graphs.
Arguments:
X: Batch of AFM images. Each array in the list is of the shape ``(batch, x, y, z)``.
mols: Molecule graphs corresponding to the AFM images.
box_borders: Real-space extent of the AFM image region in Ångströms. The array should be of the form
``((x_start, y_start, ...), (x_end, y_end, ...))``.
num_rotations: Number of rotations for each batch item. The batch size is multiplied by this number.
reflections: Whether to augment with reflections.
crop: If tuple, then output batch is cropped to specified size. If ``'max'``, the crop region will be maximized to fit into
the rotated image. Atoms outside the cropped region in the molecule graphs are deleted. The crop region is centered to
the middle of the image.
per_batch_item: If True, rotation is randomized per batch item, otherwise same rotation for all.
Returns:
Tuple (**X**, **mols**), where
- **X** - Rotation-augmented AFM images.
- **mols** - New rotated molecule graphs.
"""
box_center = ((box_borders[1][0] + box_borders[0][0]) / 2, (box_borders[1][1] + box_borders[0][1]) / 2)
mols_aug = []
X_aug = [[] for _ in range(len(X))]
for _ in range(num_rotations):
if per_batch_item:
rotations = 360 * np.random.rand(len(X[0]))
flip = [np.random.randint(2) == 1 if reflections else False for _ in range(len(X[0]))]
else:
rotations = np.array([360 * np.random.rand()] * len(X[0]))
flip = [np.random.randint(2) == 1 if reflections else False] * len(X[0])
for k, x in enumerate(X):
x = x.copy()
for i in range(x.shape[0]):
for j in range(x.shape[-1]):
x[i, :, :, j] = np.array(Image.fromarray(x[i, :, :, j]).rotate(rotations[i], resample=Image.BICUBIC))
if flip[i]:
x[i] = x[i, :, ::-1]
X_aug[k].append(x)
for i, mol in enumerate(mols):
mols_aug.append(mol.transform_xy(rot_xy=rotations[i], flip_y=flip[i], center=box_center))
X_aug = [np.concatenate(x, axis=0) for x in X_aug]
if crop is not None:
if crop == "max":
a = (rotations % 90) / 180 * np.pi
max_dist = int((X[0].shape[1] / (np.cos(a) + np.sin(a))).min())
crop = (max_dist, max_dist)
x_start = (X_aug[0].shape[1] - crop[0]) // 2
y_start = (X_aug[0].shape[2] - crop[1]) // 2
X_aug, mols_aug, box_borders = crop_graph(X_aug, mols_aug, (x_start, y_start), crop, box_borders)
return X_aug, mols_aug, box_borders
def find_bonds(molecules: list[np.ndarray], tolerance=0.2) -> list[list[Tuple[int, int]]]:
"""
Find bonds in molecules based on atomic distances and a tabulated bond lengths.
Arguments:
molecules: Molecule atom position and elements. List of arrays of shape ``(num_atoms, 4)``, where each row corresponds
to one atom with ``[x, y, z, element]``.
tolerance: float. Two atoms are bonded if their distance is at most by a factor of ``1 + tolerance`` as long as the table
value for the bond length.
Returns:
Indices of bonded atoms for each molecule.
"""
bonds = []
for mol in molecules:
bond_ind = []
for i in range(len(mol)):
for j in range(len(mol)):
if j <= i:
continue
atom_i = mol[i]
atom_j = mol[j]
r = np.linalg.norm(atom_i[:3] - atom_j[:3])
elems = sorted([atom_i[-1], atom_j[-1]])
bond_length = BOND_LENGTHS[elems[0]][elems[1]]
if r < (1 + tolerance) * bond_length:
bond_ind.append((i, j))
bonds.append(bond_ind)
return bonds
def threshold_atoms_bonds(molecules: list[MoleculeGraph], threshold: float = -1.0, use_vdW: bool = False) -> list[MoleculeGraph]:
"""
Remove atoms and corresponding bonds beyond threshold depth in molecules.
Arguments:
molecules: Molecules to threshold.
threshold: Deepest z-coordinate for included atoms (top is 0).
use_vdW: Whether to add vdW radii to the atom z coordinates when calculating depth.
Returns:
Molecules with deep atoms removed.
"""
new_molecules = []
for mol in molecules:
if len(mol) == 0:
new_molecules.append(mol.copy())
continue
zs = mol.array(xyz=True)[:, 2].copy()
if use_vdW:
zs += np.fromiter(map(lambda i: VDW_RADII[i], mol.array(element=True)[:, 0]), dtype=np.float64)
zs -= zs.max()
remove_inds = np.where(zs < threshold)[0]
new_molecule, removed = mol.remove_atoms(remove_inds)
new_molecules.append(new_molecule)
return new_molecules
def crop_graph(
X: list[np.ndarray],
mols: list[MoleculeGraph],
start: Tuple[int, int],
size: Tuple[int, int],
box_borders: np.ndarray,
new_start: Tuple[float, float] = (0.0, 0.0),
) -> Tuple[list[np.ndarray], list[MoleculeGraph], np.ndarray]:
"""
Crop AFM images and molecule graphs in a batch to a different size.
Arguments:
X: Batch of AFM images. Each array in the list is of the shape ``(batch, x, y, z)``.
mols: Molecule graphs corresponding to the AFM images.
start: Start pixels for crop in x and y directions.
size: Size of cropped region in x and y directions.
box_borders: Real-space extent of the AFM image region in Ångströms. The array should be of the form
``((x_start, y_start, ...), (x_end, y_end, ...))``.
new_start: The start coordinates of the cropped region in Ångströms.
Returns:
Tuple (**X**, **mols**, **box_borders**), where
- **X** - Cropped AFM images.
- **mols** - Cropped molecule graphs.
- **box_borders_cropped** - Real-space extent of the cropped region as ``((x_start, y_start, ...), (x_end, y_end, ...))``.
"""
x_size, y_size = X[0].shape[1], X[0].shape[2]
x_start, y_start = start
width, height = size
x_res = (box_borders[1][0] - box_borders[0][0]) / (x_size - 1)
y_res = (box_borders[1][1] - box_borders[0][1]) / (y_size - 1)
x_shift = new_start[0] - (box_borders[0][0] + x_start * x_res)
y_shift = new_start[1] - (box_borders[0][1] + y_start * y_res)
box_borders_cropped = (
(new_start[0], new_start[1], box_borders[0][2]),
(new_start[0] + (width - 1) * x_res, new_start[0] + (height - 1) * y_res, box_borders[1][2]),
)
X = [x[:, x_start : x_start + width, y_start : y_start + height] for x in X]
mols = [m.transform_xy(shift=(x_shift, y_shift)).crop_atoms(box_borders_cropped) for m in mols]
return X, mols, box_borders_cropped
def save_graphs_to_xyzs(
molecules: list[MoleculeGraph],
classes: list[list[int | str]],
outfile_format: str = "./{ind}_graph.xyz",
start_ind: int = 0,
verbose: int = 1,
):
"""
Save molecule graphs to xyz files.
Arguments:
molecules: Molecule graphs to save.
classes: Chemical elements for atom classification. Either atomic numbers of chemical symbols.
The element for each atom in the graph is the first element in the corresponding class.
outfile_format: Formatting string for saved files. Sample index is available in variable ``ind``.
start_ind: Index where file numbering starts.
verbose: Whether to print output information.
"""
ind = start_ind
for mol in molecules:
outfile = outfile_format.format(ind=ind)
outdir = os.path.dirname(outfile)
if not os.path.exists(outdir):
os.makedirs(outdir)
if len(mol) > 0:
mol_xyz = mol.array(xyz=True)
mol_elements = np.array([classes[int(m)][0] for m in mol.array(class_index=True).squeeze(1)])[:, None]
mol_arr = np.append(mol_xyz, mol_elements, axis=1)
else:
mol_arr = np.empty((0, 4))
write_to_xyz(mol_arr, outfile, verbose=verbose)
ind += 1
def make_box_borders(shape: Tuple[int, int], res: Tuple[float, float], z_range: Tuple[float, float]) -> np.ndarray:
"""
Make grid box borders for a given grid xy shape.
Arguments:
shape: Grid xy shape.
res: Grid xy pixel resolution in Ångströms.
z_range: Grid z start and end coordinates in Ångströms.
Returns:
Box start and end coordinates in the form ``((x_start, y_start, z_start), (x_end, y_end, z_end))``.
"""
# fmt:off
box_borders = np.array([
[ 0, 0, z_range[0]],
[res[0] * (shape[0] - 1), res[1] * (shape[1] - 1), z_range[1]]
]) # fmt:on
return box_borders