-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathconvert_to_coreml.py
52 lines (42 loc) · 1.58 KB
/
convert_to_coreml.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import argparse
import coremltools as ct
from timm import create_model
import torch
import warnings
warnings.filterwarnings('ignore')
from models import mobilevig
from util import *
def parse():
parser = argparse.ArgumentParser(description='Convert from PyTorch to CoreML')
parser.add_argument('--model', metavar='ARCH', default='mobilevig_ti')
parser.add_argument('--ckpt', default='', type=str, metavar='PATH',
help='Initialize model from this checkpoint (default: none)')
parser.add_argument("--resolution", default=224, type=int)
args = parser.parse_args()
return args
if __name__ == '__main__':
args = parse()
model = create_model(args.model)
try:
model.load_state_dict(torch.load(args.ckpt, map_location='cpu')['model'])
print('load success, model is initialized with pretrained checkpoint')
except:
print('model initialized without pretrained checkpoint')
model.eval()
dummy_input = torch.randn(1, 3, args.resolution, args.resolution)
with torch.no_grad():
profile = Profiler(model)
MACs, params = profile(dummy_input)
print(sum(MACs) / 1e9, 'GMACs')
print(sum(params) / 1e6, 'M parameters')
traced_model = torch.jit.trace(model, dummy_input)
model = ct.convert(
traced_model,
inputs=[ct.ImageType(
name="x_1",
shape=dummy_input.shape,
scale=1.0/(255.0*0.226),
bias=[-0.485/0.226, -0.456 / 0.226, -0.406 / 0.226])]
)
model.save(args.model + ".mlmodel")
print('exported coreml model')