-
Notifications
You must be signed in to change notification settings - Fork 128
/
Copy pathnormal_gen.py
55 lines (51 loc) · 2.09 KB
/
normal_gen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import cv2
import copy
import numpy
import torch
import requests
from PIL import Image
from diffusers import DiffusionPipeline, ControlNetModel
from matting_postprocess import postprocess
def rescale(single_res, input_image, ratio=0.95):
# Rescale and recenter
image_arr = numpy.array(input_image)
ret, mask = cv2.threshold(numpy.array(input_image.split()[-1]), 0, 255, cv2.THRESH_BINARY)
x, y, w, h = cv2.boundingRect(mask)
max_size = max(w, h)
side_len = int(max_size / ratio)
padded_image = numpy.zeros((side_len, side_len, 4), dtype=numpy.uint8)
center = side_len//2
padded_image[center-h//2:center-h//2+h, center-w//2:center-w//2+w] = image_arr[y:y+h, x:x+w]
rgba = Image.fromarray(padded_image).resize((single_res, single_res), Image.LANCZOS)
return rgba
# Load the pipeline
pipeline: DiffusionPipeline = DiffusionPipeline.from_pretrained(
"sudo-ai/zero123plus-v1.2", custom_pipeline="sudo-ai/zero123plus-pipeline",
torch_dtype=torch.float16, local_files_only=True
)
normal_pipeline = copy.copy(pipeline)
normal_pipeline.add_controlnet(ControlNetModel.from_pretrained(
"sudo-ai/controlnet-zp12-normal-gen-v1", torch_dtype=torch.float16, local_files_only=True
), conditioning_scale=1.0)
pipeline.to("cuda:0", torch.float16)
normal_pipeline.to("cuda:0", torch.float16)
# Run the pipeline
cond = Image.open(requests.get("https://d.skis.ltd/nrp/sample-data/10_cond.png", stream=True).raw)
# Optional: rescale input image if it occupies only a small region in input
# cond = rescale(512, cond)
# Generate 6 images
genimg = pipeline(
cond,
prompt='', guidance_scale=4, num_inference_steps=75, width=640, height=960
).images[0]
# Generate normal image
# We observe that a higher CFG scale (4) is more robust
# but with CFG = 1 it is faster and is usually good enough for normal image
# You can adjust to your needs
normalimg = normal_pipeline(
cond, depth_image=genimg,
prompt='', guidance_scale=4, num_inference_steps=75, width=640, height=960
).images[0]
genimg, normalimg = postprocess(genimg, normalimg)
genimg.save("colors.png")
normalimg.save("normals.png")