-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTypeSystem.agda
414 lines (328 loc) · 14.7 KB
/
TypeSystem.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
{-# OPTIONS --cubical --rewriting #-}
module TypeSystem where
open import Primitives public
open import Agda.Primitive hiding (i0 ; i1) public
Π : ∀{ℓA ℓB} (A : Set ℓA) → (B : A → Set ℓB) → Set (ℓB ⊔ ℓA)
Π A B = (a : A) → B a
hΠ : ∀{ℓA ℓB} (A : Set ℓA) → (B : A → Set ℓB) → Set (ℓB ⊔ ℓA)
hΠ A B = {a : A} → B a
---------------------------------
-- Identity type --
---------------------------------
postulate
_≡_ : ∀{ℓ} {A : Set ℓ} (a b : A) → Set ℓ
refl : ∀{ℓ} {A :{#} Set ℓ} (a :{#} A) → a ≡ a
J : ∀{ℓA ℓC} {A :{#} Set ℓA} {a b :{#} A} (e : a ≡ b) (C :{#} (y : A) → (w : a ≡ y) → Set ℓC) (c : C a (refl a))
→ C b e
rw-Jβ : ∀{ℓA ℓC} →
{A :{#} Set ℓA} →
{a :{#} A} →
(C :{#} (y : A) → (w : a ≡ y) → Set ℓC) →
(c : C a (refl a)) →
J (refl a) C c ≡ c
infix 1 _≡_
{-# BUILTIN REWRITE _≡_ #-}
{-# REWRITE rw-Jβ #-}
--postulate
-- funext : ∀{ℓA ℓB} {A : Set ℓA} {B : A → Set ℓB} {f g : Π A B} → ((x : A) → f x ≡ g x) → f ≡ g
-------------------------------------------
-- Σ-types --
-------------------------------------------
postulate
Σ #Σ : ∀{ℓA ℓB} → (A : Set ℓA) → (B : A → Set ℓB) → Set (ℓB ⊔ ℓA)
¶Σ : ∀{ℓA ℓB} → (A : Set ℓA) → (B : (_ :{¶} A) → Set ℓB) → Set (ℓB ⊔ ℓA)
-- Continuous Σ-type --
-----------------------
postulate
[_,_] : ∀{ℓA ℓB} → {A :{#} Set ℓA} → {B :{#} A → Set ℓB} → (a : A) → (b : B a) → Σ A B
fst : ∀{ℓA ℓB} → {A :{#} Set ℓA} → {B :{#} A → Set ℓB} → Σ A B → A
snd : ∀{ℓA ℓB} → {A :{#} Set ℓA} → {B :{#} A → Set ℓB} → (p : Σ A B) → B (fst p)
rw-fst : ∀{ℓA ℓB} → {A :{#} Set ℓA} → {B :{#} A → Set ℓB} → (a : A) → (b : B a)
→ fst ([_,_] {_}{_}{A}{B} a b) ≡ a
{-# REWRITE rw-fst #-}
postulate
rw-snd : ∀{ℓA ℓB} → {A :{#} Set ℓA} → {B :{#} A → Set ℓB} → (a : A) → (b : B a)
→ snd ([_,_] {_}{_}{A}{B} a b) ≡ b
rw-fst,snd : ∀{ℓA ℓB} → {A :{#} Set ℓA} → {B :{#} A → Set ℓB} → (p : Σ A B)
→ [_,_] {_}{_}{A}{B} (fst p) (snd p) ≡ p
{-# REWRITE rw-snd #-}
{-# REWRITE rw-fst,snd #-}
--An induction principle is definable in terms of fst and snd. We give only the continuous induction pr'ple
split : ∀{ℓA ℓB ℓC} → h#Π (Set ℓA) λ A → h#Π (A → Set ℓB) λ B
→ Π (Σ A B) λ p
→ #Π (Σ A B → Set ℓC) λ C
→ Π (Π A λ a → Π (B a) λ b → C [ a , b ]) λ c
→ C p
split {_}{_}{_} {A}{B} p C c = c (fst p) (snd p)
infix 2 Σ-syntax
Σ-syntax : ∀ {a b} (A : Set a) → (B : A → Set b) → Set (a ⊔ b)
Σ-syntax = Σ
syntax Σ-syntax A (λ x → B) = Σ[ x ∈ A ] B
_×_ : ∀{ℓA ℓB} → (A : Set ℓA) → (B : Set ℓB) → Set (ℓA ⊔ ℓB)
A × B = Σ[ _ ∈ A ] B
#uncurry : ∀ {a b c} → {A :{#} Set a} → {B :{#} A → Set b} →
{C :{#} Σ A B → Set c} →
((x : A) (y : B x) → C [ x , y ]) → (p : Σ A B) → C p
#uncurry f p = f (fst p) (snd p)
-- Parametric Σ-type (∃) --
---------------------------
--We should additionally postulate pointwise and parametric induction principles, but we only include the continuous one.
postulate
[#_,_] : ∀{ℓA ℓB} → {A :{#} Set ℓA} → {B :{#} A → Set ℓB} → #Π A λ a → (b : B a) → #Σ A B
#split : ∀{ℓA ℓB ℓC} → {A :{#} Set ℓA} → {B :{#} A → Set ℓB}
→ (p : #Σ A B)
→ (C :{#} #Σ A B → Set ℓC)
→ (c : (a :{#} A) → (b : B a) → C [# a , b ])
→ C p
rw-#Σ-β : ∀{ℓA ℓB ℓC} → {A :{#} Set ℓA} → {B :{#} A → Set ℓB}
→ (a :{#} A) → (b : B a)
→ (C :{#} #Σ A B → Set ℓC)
→ (c : (a :{#} A) → (b : B a) → C [# a , b ])
→ #split [# a , b ] C c ≡ c a b
{-# REWRITE rw-#Σ-β #-}
infix 2 #Σ-syntax
#Σ-syntax : ∀ {a b} (A : Set a) → (B : A → Set b) → Set (a ⊔ b)
#Σ-syntax = #Σ
syntax #Σ-syntax A (λ x → B) = #Σ[ x ∈ A ] B
uncurry# : ∀{ℓA ℓB ℓC} → {A :{#} Set ℓA} → {B :{#} A → Set ℓB}
→ {C :{#} #Σ A B → Set ℓC}
→ (c : (a :{#} A) → (b : B a) → C [# a , b ])
→ (p : #Σ A B)
→ C p
uncurry# {C = C} c p = #split p C c
-- Pointwise Σ-type --
----------------------
--We should additionally postulate pointwise and parametric induction principles, but we only include the continuous one.
--With the parametric induction principle, we could define ¶fst and ¶snd
postulate
[¶_,_] : ∀{ℓA ℓB} → {A :{#} Set ℓA} → {B :{#} (_ :{¶} A) → Set ℓB} → (a :{¶} A) → (b : B a) → ¶Σ A B
¶fst : ∀{ℓA ℓB} → {A :{#} Set ℓA} → {B :{#} (_ :{¶} A) → Set ℓB} → (_ :{#} ¶Σ A B) → A
¶snd : ∀{ℓA ℓB} → {A :{#} Set ℓA} → {B :{#} (_ :{¶} A) → Set ℓB} → (p : ¶Σ A B) → B (¶fst p)
rw-¶fst : ∀{ℓA ℓB} → {A :{#} Set ℓA} → {B :{#} (_ :{¶} A) → Set ℓB} → (a :{¶} A) → (b : B a)
→ ¶fst ([¶_,_] {_}{_}{A}{B} a b) ≡ a
{-# REWRITE rw-¶fst #-}
postulate
rw-¶snd : ∀{ℓA ℓB} → {A :{#} Set ℓA} → {B :{#} (_ :{¶} A) → Set ℓB} → (a :{¶} A) → (b : B a)
→ ¶snd ([¶_,_] {_}{_}{A}{B} a b) ≡ b
rw-¶fst,¶snd : ∀{ℓA ℓB} → {A :{#} Set ℓA} → {B :{#} A → Set ℓB} → (p : ¶Σ A B)
→ [¶_,_] {_}{_}{A}{B} (¶fst p) (¶snd p) ≡ p
{-# REWRITE rw-¶snd #-}
{-# REWRITE rw-¶fst,¶snd #-}
¶split : ∀{ℓA ℓB ℓC} → {A :{#} Set ℓA} → {B :{#} (_ :{¶} A) → Set ℓB}
→ (p : ¶Σ A B)
→ (C :{#} ¶Σ A B → Set ℓC)
→ (c : (a :{¶} A) → (b : B a) → C [¶ a , b ])
→ C p
¶split p C c = c (¶fst p) (¶snd p)
rw-¶Σ-β : ∀{ℓA ℓB ℓC} → {A :{#} Set ℓA} → {B :{#} (_ :{¶} A) → Set ℓB}
→ (a :{¶} A) → (b : B a)
→ (C :{#} ¶Σ A B → Set ℓC)
→ (c : (a :{¶} A) → (b : B a) → C [¶ a , b ])
→ ¶split [¶ a , b ] C c ≡ c a b
rw-¶Σ-β a b C c = refl _
¶split# : ∀{ℓA ℓB ℓC} → {A :{#} Set ℓA} → {B :{#} (_ :{¶} A) → Set ℓB}
→ (p :{#} ¶Σ A B)
→ (C :{#} (s :{#} ¶Σ A B) → Set ℓC)
→ (c : (a :{¶} A) → (b :{#} B a) → C [¶ a , b ])
→ C p
¶split# p C c = c (¶fst p) (¶snd p)
rw-¶Σ-β# : ∀{ℓA ℓB ℓC} → {A :{#} Set ℓA} → {B :{#} (_ :{¶} A) → Set ℓB}
→ (a :{¶} A) → (b :{#} B a)
→ (C :{#} (s :{#} ¶Σ A B) → Set ℓC)
→ (c : (a :{¶} A) → (b :{#} B a) → C [¶ a , b ])
→ ¶split# [¶ a , b ] C c ≡ c a b
rw-¶Σ-β# a b C c = refl _
{-¶fst : ∀{ℓA ℓB} → {A :{#} Set ℓA} → {B :{#} (_ :{¶} A) → Set ℓB} → (_ :{#} ¶Σ A B) → A
¶fst {_}{_}{A}{B} p = ¶split# p (λ _ → A) (λ a b → a)
¶snd : ∀{ℓA ℓB} → {A :{#} Set ℓA} → {B :{#} (_ :{¶} A) → Set ℓB} → (p : ¶Σ A B) → B (¶fst p)
¶snd {_}{_}{A}{B} p = ¶split p (λ p → B (¶fst p)) (λ a b → b)
-}
--¶snd : ∀{ℓA ℓB} → h#Π (Set ℓA) λ A → h#Π ((_ :{¶} A) → Set ℓB) λ B → (p : ¶Σ A B) → B (¶fst p)
--¶snd {_}{_}{A}{B} p = ¶split p (λ p → B (¶fst p)) (λ a b → b)
infix 2 ¶Σ-syntax
¶Σ-syntax : ∀ {a b} (A : Set a) → (B : (_ :{¶} A) → Set b) → Set (a ⊔ b)
¶Σ-syntax = ¶Σ
syntax ¶Σ-syntax A (λ x → B) = ¶Σ[ x ∈ A ] B
-------------------------------------------
-- Glueing and Welding --
-------------------------------------------
Glue : ∀{ℓ} (A : Set ℓ) → ∀ φ → (T : Partial (Set ℓ) φ) → (f :{¶} PartialP φ (λ o → T o → A)) → Set ℓ
Glue A φ T f = primGlue A φ T f
module Welding where
primitive
primCoGlue : _
prim^coglue : _ {- {la lb : Level} {A : Set la} #{φ : Prop}
{T : .(o : IsOne φ) → Set lb} ¶{f : .(o : IsOne φ) → A → T o} →
A → primCoGlue A φ T f -}
prim^mcoglue : _ {- {la lb lc : Level} #{A : Set la} #{φ : Prop}
#{T : .(o : IsOne φ) → Set lb} ¶{f : .(o : IsOne φ) → A → T o}
#{C : primCoGlue A φ T f → Set lc}
(c0 : (a : A) → C (prim^coglue a))
(c : .(o : IsOne φ) (t : T o) → C t) (b : primCoGlue A φ T f) →
C b -}
open Welding public renaming (primCoGlue to Weld ; prim^coglue to weld ; prim^mcoglue to mweld)
--Weld : ∀{ℓ} (A : Set ℓ) → ∀ φ → (T : Partial (Set ℓ) φ) → ¶Π (PartialP φ (λ o → A → T o)) λ f → Set ℓ
--Weld A φ T f = primWeld A φ T f
-------------------------------------------
-- PATH DEGENERACY AXIOM --
-------------------------------------------
postulate
pathDisc : ∀{ℓ} → {A :{#} Set ℓ} → (p :{#} (_ :{#} 𝕀) → A) → p ≡ (λ _ → p b0)
-------------------------------------------
-- AUXILIARY STUFF --
-------------------------------------------
-- FUNCTIONS
id : ∀{ℓ} {A :{#} Set ℓ} → A → A
id a = a
_∘_ : ∀{ℓA ℓB ℓC} →
{A :{#} Set ℓA} →
{B :{#} Set ℓB} →
{C :{#} B → Set ℓC} →
(g : (b : B) → C b) →
(f : A → B) →
((a : A) → C (f a))
_∘_ {ℓA}{ℓB}{ℓC}{A}{B}{C} g f a = g (f a)
infixr 20 _∘_
-- FUNCTION EXTENSIONALITY
postulate
funext : ∀{ℓA ℓB} → {A :{#} Set ℓA} → {B :{#} A → Set ℓB} →
{f g :{#} (a : A) → B a} →
((a : A) → f a ≡ g a) → f ≡ g
#funext : ∀{ℓA ℓB} → {A :{#} Set ℓA} → {B :{#} A → Set ℓB} →
{f g :{#} (a :{#} A) → B a} →
((a :{#} A) → f a ≡ g a) → f ≡ g
¶funext : ∀{ℓA ℓB} → {A :{#} Set ℓA} → {B :{#} (_ :{¶} A) → Set ℓB} →
{f g :{#} (a :{¶} A) → B a} →
((a :{¶} A) → f a ≡ g a) → f ≡ g
-- EQUALITY
subst : ∀ {a p} → {A :{#} Set a} → (P :{#} A → Set p) →
{x₁ :{#} _} → {x₂ :{#} _} → x₁ ≡ x₂ → P x₁ → P x₂
subst P eq p = J eq (\ y _ → P y) p
sym : ∀{ℓ} →
{A :{#} Set ℓ} →
{a b :{#} A} →
b ≡ a → a ≡ b
sym {ℓ}{A}{a}{b} e = J e (λ y w → y ≡ b) (refl b)
trans : ∀ {a} → {A :{#} Set a} → {x y z :{#} A} →
x ≡ y → y ≡ z → x ≡ z
trans p q = subst (\ x → _ ≡ x) q p
_•_ = trans
infixl 0 _•_
cong : ∀{ℓA ℓB} →
{A :{#} Set ℓA} →
{B :{#} Set ℓB} →
(f :{#} A → B) →
{a b :{#} A} →
(a ≡ b) → (f a ≡ f b)
cong {ℓA}{ℓB}{A}{B} f {a}{b} e = J e (λ y w → f a ≡ f y) (refl (f a))
cong-app : ∀{ℓA ℓB} →
{A :{#} Set ℓA} →
{B :{#} A → Set ℓB} →
{f g :{#} (a : A) → B a} →
(f ≡ g) →
(a :{#} A) →
f a ≡ g a
cong-app {ℓA}{ℓB}{A}{B}{f}{g} e a = J e (λ h w → f a ≡ h a) (refl (f a))
#cong-app : ∀{ℓA ℓB} →
{A :{#} Set ℓA} →
{B :{#} A → Set ℓB} →
{f g :{#} (a :{#} A) → B a} →
(f ≡ g) →
(a :{#} A) →
f a ≡ g a
#cong-app {ℓA}{ℓB}{A}{B}{f}{g} e a = J e (λ h w → f a ≡ h a) (refl (f a))
-- ANNOTATION
_∋_ : ∀{ℓ} → (A :{#} Set ℓ) → A → A
A ∋ a = a
-- PATH DEGENERACY
path-to-eq : ∀{ℓ} → {A :{#} Set ℓ} → (p :{#} (_ :{#} 𝕀) → A) → p i0 ≡ p i1
path-to-eq p = sym (#cong-app (pathDisc p) i1)
---------------------------------
-- Lifting --
---------------------------------
postulate
Lift : ∀{ℓ} → Set ℓ → Set (lsuc ℓ)
lift : ∀{ℓ} → {A :{#} Set ℓ} → A → Lift A
lower : ∀{ℓ} → {A :{#} Set ℓ} → Lift A → A
rw-lift-β : ∀{ℓ} → {A :{#} Set ℓ} → (a : A) → lower (lift a) ≡ a
rw-lift-η : ∀{ℓ} → {A :{#} Set ℓ} → (a : Lift A) → lift (lower a) ≡ a
{-# REWRITE rw-lift-β #-}
{-# REWRITE rw-lift-η #-}
---------------
-- Booleans
---------------
postulate
Bool : Set
true false : Bool
bool : ∀ {a} {A :{ # } Bool → Set a} → A true → A false → ∀ b → A b
bool-rw1 : ∀ {a} {A :{ # } Bool → Set a} → (t : A true) → (f : A false) → bool {A = A} t f true ≡ t
bool-rw2 : ∀ {a} {A :{ # } Bool → Set a} → (t : A true) → (f : A false) → bool {A = A} t f false ≡ f
{-# REWRITE bool-rw1 bool-rw2 #-}
infix 0 if_then_else_
if_then_else_ : ∀ {a} {A : Set a} → Bool → A → A → A
if_then_else_ b t f = bool t f b
_+_ : Set → Set → Set
A + B = Σ Bool \ b → if b then A else B
---------------
-- Unit
---------------
postulate
⊤ : Set
tt : ⊤
unit : ∀ {a} {A :{ # } ⊤ → Set a} → A tt → ∀ b → A b
unit-rw : ∀ {a} {A :{ # } ⊤ → Set a} → (t : A tt) → unit {A = A} t tt ≡ t
{-# REWRITE unit-rw #-}
unique-⊤ : (x y : ⊤) → x ≡ y
unique-⊤ x y = unit {A = λ t → t ≡ y} (unit {A = λ t' → tt ≡ t'} (refl tt) y) x
---------------
-- Numbers
---------------
postulate
Nat : Set
zero : Nat
succ : Nat → Nat
nat : ∀ {ℓ} {A :{#} Nat → Set ℓ}
→ (z : A zero)
→ (s : (n : Nat) → A n → A (succ n))
→ (n : Nat)
→ A n
nat-rw0 : ∀ {ℓ} {A :{#} Nat → Set ℓ}
→ (z : A zero)
→ (s : (n : Nat) → A n → A (succ n))
→ nat z s zero ≡ z
nat-rws : ∀ {ℓ} {A :{#} Nat → Set ℓ}
→ (z : A zero)
→ (s : (n : Nat) → A n → A (succ n))
→ (n : Nat)
→ nat z s (succ n) ≡ s n (nat z s n)
{-# REWRITE nat-rw0 #-}
{-# REWRITE nat-rws #-}
_+Nat_ : Nat → Nat → Nat
_+Nat_ m n = nat n (λ _ r → succ r) m
---------------
-- Lists
---------------
postulate
List : ∀ {ℓ} → Set ℓ → Set ℓ
[] : ∀ {ℓ} {A :{#} Set ℓ} → List A
_::_ : ∀ {ℓ} {A :{#} Set ℓ} → A → List A → List A
list : ∀ {ℓA ℓB} {A :{#} Set ℓA} {B :{#} List A → Set ℓB}
→ (empty : B [])
→ (cons : (a : A) → (l : List A) → (p : B l) → B (a :: l))
→ (l : List A)
→ B l
list-rw[] : ∀ {ℓA ℓB} {A :{#} Set ℓA} {B :{#} List A → Set ℓB}
→ (empty : B [])
→ (cons : (a : A) → (l : List A) → (p : B l) → B (a :: l))
→ list empty cons [] ≡ empty
list-rw:: : ∀ {ℓA ℓB} {A :{#} Set ℓA} {B :{#} List A → Set ℓB}
→ (empty : B [])
→ (cons : (a : A) → (l : List A) → (p : B l) → B (a :: l))
→ (a : A) → (l : List A)
→ list empty cons (a :: l) ≡ cons a l (list empty cons l)
{-# REWRITE list-rw[] #-}
{-# REWRITE list-rw:: #-}
sum : List Nat → Nat
sum l = list zero (λ n _ s → n +Nat s) l
concat : ∀ {ℓ} {A :{#} Set ℓ} → List (List A) → List A
concat ll = list [] (λ lh _ concat-lt → list concat-lt (λ h _ concat-t → h :: concat-t) lh) ll