-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathOsuStdEnv.py
49 lines (39 loc) · 1.66 KB
/
OsuStdEnv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import gym
from gym import spaces
import numpy as np
from gym.envs.registration import register
class ScreenEnv(gym.Env):
metadata = {'render.modes': ['human']}
def __init__(self):
super(ScreenEnv, self).__init__()
screen_len = 640
screen_height = 480
# 假设屏幕大小为640x480,图像为灰度图
self.observation_space = spaces.Box(low=0, high=255, shape=(screen_height, screen_len), dtype=np.uint8)
# 动作空间定义:x, y坐标和z, x键的按下状态
self.action_space = spaces.Dict({
"x": spaces.Box(low=0, high=screen_len-1, shape=(), dtype=np.int32),
"y": spaces.Box(low=0, high=screen_height-1, shape=(), dtype=np.int32),
"z_key": spaces.Discrete(2),
"x_key": spaces.Discrete(2),
})
def step(self, action):
# 实现环境的一步动作逻辑
# 这里需要根据action来更新环境状态,并返回新的观察、奖励、完成状态和额外信息
# 示例代码省略了实际逻辑
observation = np.random.randint(0, 256, self.observation_space.shape).astype(np.uint8)
reward = 0
done = False
info = {}
return observation, reward, done, info
def reset(self):
# 重置环境状态到初始状态并返回初始观察
# 示例代码省略了实际逻辑
return np.random.randint(0, 256, self.observation_space.shape).astype(np.uint8)
def render(self, mode='human', close=False):
# 可视化环境状态
pass # 可视化代码省略
register(
id='OsuStdEnv',
entry_point='your_module.ScreenEnv',
)