-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtrain.py
222 lines (171 loc) · 8.85 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import os
import argparse
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
from data_loader import get_loader
from models import VqaModel, SANModel
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def main(args):
os.makedirs(args.log_dir, exist_ok=True)
os.makedirs(args.model_dir, exist_ok=True)
data_loader = get_loader(
input_dir=args.input_dir,
input_vqa_train='train.npy',
input_vqa_valid='valid.npy',
max_qst_length=args.max_qst_length,
max_num_ans=args.max_num_ans,
batch_size=args.batch_size,
num_workers=args.num_workers)
qst_vocab_size = data_loader['train'].dataset.qst_vocab.vocab_size
ans_vocab_size = data_loader['train'].dataset.ans_vocab.vocab_size
ans_unk_idx = data_loader['train'].dataset.ans_vocab.unk2idx
# model = VqaModel(
# embed_size=args.embed_size,
# qst_vocab_size=qst_vocab_size,
# ans_vocab_size=ans_vocab_size,
# word_embed_size=args.word_embed_size,
# num_layers=args.num_layers,
# hidden_size=args.hidden_size).to(device)
model = SANModel(
embed_size=args.embed_size,
qst_vocab_size=qst_vocab_size,
ans_vocab_size=ans_vocab_size,
word_embed_size=args.word_embed_size,
num_layers=args.num_layers,
hidden_size=args.hidden_size).to(device)
criterion = nn.CrossEntropyLoss()
# resume training
if args.resume_epoch!=0:
model = torch.load(args.saved_model)
torch.cuda.empty_cache()
optimizer = optim.Adam(model.parameters(), lr=args.learning_rate)
scheduler = lr_scheduler.StepLR(optimizer, step_size=args.step_size, gamma=args.gamma)
#callbacks = [EarlyStopping(monitor='val_loss', patience=5)]
#model.set_callbacks(callbacks)
early_stop_threshold = 3
best_loss = 99999
val_increase_count = 0
stop_training = False
prev_loss = 9999
for epoch in range(args.resume_epoch, args.num_epochs):
for phase in ['train', 'valid']:
running_loss = 0.0
running_corr_exp1 = 0
running_corr_exp2 = 0
batch_step_size = len(data_loader[phase].dataset) / args.batch_size
if phase == 'train':
scheduler.step()
model.train()
else:
model.eval()
for batch_idx, batch_sample in enumerate(data_loader[phase]):
<<<<<<< refs/remotes/origin/master
<<<<<<< refs/remotes/origin/master
# if batch_idx == 1:
# break
image = batch_sample['image'].to(device)
question = batch_sample['question'].to(device)
label = batch_sample['answer_label'].to(device)
multi_choice = batch_sample['answer_multi_choice'] # not tensor, list.
optimizer.zero_grad()
with torch.set_grad_enabled(phase == 'train'):
output = model(image, question) # [batch_size, ans_vocab_size=1000]
_, pred_exp1 = torch.max(output, 1) # [batch_size]
_, pred_exp2 = torch.max(output, 1) # [batch_size]
loss = criterion(output, label)
if phase == 'train':
loss.backward()
optimizer.step()
# Evaluation metric of 'multiple choice'
# Exp1: our model prediction to '<unk>' IS accepted as the answer.
# Exp2: our model prediction to '<unk>' is NOT accepted as the answer.
pred_exp2[pred_exp2 == ans_unk_idx] = -9999
running_loss += loss.item()
running_corr_exp1 += torch.stack([(ans == pred_exp1.cpu()) for ans in multi_choice]).any(dim=0).sum()
running_corr_exp2 += torch.stack([(ans == pred_exp2.cpu()) for ans in multi_choice]).any(dim=0).sum()
# Print the average loss after every batch.
if batch_idx % 1 == 0:
print('| {} SET | Epoch [{:02d}/{:02d}], Step [{:04d}/{:04d}], Loss: {:.4f}'
.format(phase.upper(), epoch+1, args.num_epochs, batch_idx, int(batch_step_size), loss.item()), end = '\r')
# Print the average loss and accuracy in an epoch.
epoch_loss = running_loss / batch_step_size
# epoch_loss = running_loss / 1 ## to be removed
# epoch_acc_exp1 = running_corr_exp1.double() / (args.batch_size * 1) ## to be removed
epoch_acc_exp1 = running_corr_exp1.double() / len(data_loader[phase].dataset) # multiple choice
epoch_acc_exp2 = running_corr_exp2.double() / len(data_loader[phase].dataset) # multiple choice
print('| {} SET | Epoch [{:02d}/{:02d}], Loss: {:.4f}, Acc(Exp1): {:.4f}, Acc(Exp2): {:.4f} \n'
.format(phase.upper(), epoch+1, args.num_epochs, epoch_loss, epoch_acc_exp1, epoch_acc_exp2))
# Log the loss and accuracy in an epoch.
with open(os.path.join(args.log_dir, '{}-{}-log-epoch-{:02}.txt')
.format(args.model_name, phase, epoch+1), 'w') as f:
f.write(str(epoch+1) + '\t'
+ str(epoch_loss) + '\t'
+ str(epoch_acc_exp1.item()) + '\t'
+ str(epoch_acc_exp2.item()))
if phase == 'valid':
if epoch_loss < best_loss:
best_loss = epoch_loss
torch.save(model, os.path.join(args.model_dir, 'best_model.pt'))
if epoch_loss > prev_loss:
val_increase_count += 1
else:
val_increase_count = 0
if val_increase_count >= early_stop_threshold:
stop_training = True
prev_loss = epoch_loss
# Save the model check points.
if (epoch+1) % args.save_step == 0:
# pass
# torch.save({'epoch': epoch+1, 'state_dict': model.state_dict()},
torch.save(model,
os.path.join(args.model_dir, '{}-epoch-{:02d}.pt'.format(args.model_name, epoch+1)))
if stop_training:
break
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--model_name', type=str,
help='model name.')
parser.add_argument('--input_dir', type=str, default='./datasets',
help='input directory for visual question answering.')
parser.add_argument('--log_dir', type=str, default='./logs',
help='directory for logs.')
parser.add_argument('--model_dir', type=str, default='./models',
help='directory for saved models.')
parser.add_argument('--max_qst_length', type=int, default=30,
help='maximum length of question. \
the length in the VQA dataset = 26.')
parser.add_argument('--max_num_ans', type=int, default=10,
help='maximum number of answers.')
parser.add_argument('--embed_size', type=int, default=1024,
help='embedding size of feature vector \
for both image and question.')
parser.add_argument('--word_embed_size', type=int, default=300,
help='embedding size of word \
used for the input in the LSTM.')
parser.add_argument('--num_layers', type=int, default=2,
help='number of layers of the RNN(LSTM).')
parser.add_argument('--hidden_size', type=int, default=512,
help='hidden_size in the LSTM.')
parser.add_argument('--learning_rate', type=float, default=0.001,
help='learning rate for training.')
parser.add_argument('--step_size', type=int, default=10,
help='period of learning rate decay.')
parser.add_argument('--gamma', type=float, default=0.1,
help='multiplicative factor of learning rate decay.')
parser.add_argument('--num_epochs', type=int, default=30,
help='number of epochs.')
parser.add_argument('--batch_size', type=int, default=256,
help='batch_size.')
parser.add_argument('--num_workers', type=int, default=8,
help='number of processes working on cpu.')
parser.add_argument('--save_step', type=int, default=1,
help='save step of model.')
parser.add_argument('--resume_epoch', type=int, default = 0,
help='load saved model from which epoch')
parser.add_argument('--saved_model', type=str, default = 'best_model.pt',
help='load saved model from which epoch')
args = parser.parse_args()
main(args)