-
-
Notifications
You must be signed in to change notification settings - Fork 58
/
Copy patharray_partition.jl
562 lines (480 loc) · 17.5 KB
/
array_partition.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
"""
```julia
ArrayPartition(x::AbstractArray...)
```
An `ArrayPartition` `A` is an array, which is made up of different arrays `A.x`.
These index like a single array, but each subarray may have a different type.
However, broadcast is overloaded to loop in an efficient manner, meaning that
`A .+= 2.+B` is type-stable in its computations, even if `A.x[i]` and `A.x[j]`
do not match types. A full array interface is included for completeness, which
allows this array type to be used in place of a standard array where
such a type stable broadcast may be needed. One example is in heterogeneous
differential equations for [DifferentialEquations.jl](https://docs.sciml.ai/DiffEqDocs/stable/).
An `ArrayPartition` acts like a single array. `A[i]` indexes through the first
array, then the second, etc., all linearly. But `A.x` is where the arrays are stored.
Thus, for:
```julia
using RecursiveArrayTools
A = ArrayPartition(y, z)
```
we would have `A.x[1]==y` and `A.x[2]==z`. Broadcasting like `f.(A)` is efficient.
"""
struct ArrayPartition{T, S <: Tuple} <: AbstractVector{T}
x::S
end
## constructors
@inline ArrayPartition(f::F, N) where {F <: Function} = ArrayPartition(ntuple(f, Val(N)))
ArrayPartition(x...) = ArrayPartition((x...,))
function ArrayPartition(x::S, ::Type{Val{copy_x}} = Val{false}) where {S <: Tuple, copy_x}
T = promote_type(map(recursive_bottom_eltype, x)...)
if copy_x
return ArrayPartition{T, S}(map(copy, x))
else
return ArrayPartition{T, S}(x)
end
end
## similar array partitions
Base.similar(A::ArrayPartition{T, S}) where {T, S} = ArrayPartition{T, S}(similar.(A.x))
# return ArrayPartition when possible, otherwise next best thing of the correct size
function Base.similar(A::ArrayPartition, dims::NTuple{N, Int}) where {N}
if dims == size(A)
return similar(A)
else
return similar(A.x[1], eltype(A), dims)
end
end
# similar array partition of common type
@inline function Base.similar(A::ArrayPartition, ::Type{T}) where {T}
N = npartitions(A)
ArrayPartition(i -> similar(A.x[i], T), N)
end
# return ArrayPartition when possible, otherwise next best thing of the correct size
function Base.similar(A::ArrayPartition, ::Type{T}, dims::NTuple{N, Int}) where {T, N}
if dims == size(A)
return similar(A, T)
else
return similar(A.x[1], T, dims)
end
end
# similar array partition with different types
function Base.similar(A::ArrayPartition, ::Type{T}, ::Type{S}, R::DataType...) where {T, S}
N = npartitions(A)
N != length(R) + 2 &&
throw(DimensionMismatch("number of types must be equal to number of partitions"))
types = (T, S, R...) # new types
@inline function f(i)
similar(A.x[i], types[i])
end
ArrayPartition(f, N)
end
Base.copy(A::ArrayPartition) = ArrayPartition(map(copy, A.x))
## zeros
Base.zero(A::ArrayPartition) = ArrayPartition(map(zero, A.x))
# ignore dims since array partitions are vectors
Base.zero(A::ArrayPartition, dims::NTuple{N, Int}) where {N} = zero(A)
## Array
Base.Array(A::ArrayPartition) = reduce(vcat, Array.(A.x))
function Base.Array(VA::AbstractVectorOfArray{
T,
N,
A
}) where {T, N,
A <: AbstractVector{
<:ArrayPartition,
}}
reduce(hcat, Array.(VA.u))
end
## ones
# special to work with units
function Base.ones(A::ArrayPartition)
N = npartitions(A)
out = similar(A)
for i in 1:N
fill!(out.x[i], oneunit(eltype(out.x[i])))
end
out
end
# ignore dims since array partitions are vectors
Base.ones(A::ArrayPartition, dims::NTuple{N, Int}) where {N} = ones(A)
# mutable iff all components of ArrayPartition are mutable
@generated function ArrayInterface.ismutable(::Type{<:ArrayPartition{T, S}}) where {T, S
}
res = all(ArrayInterface.ismutable, S.parameters)
return :($res)
end
## vector space operations
for op in (:+, :-)
@eval begin
function Base.$op(A::ArrayPartition, B::ArrayPartition)
ArrayPartition(map((x, y) -> Base.broadcast($op, x, y), A.x, B.x))
end
function Base.$op(A::ArrayPartition, B::Number)
ArrayPartition(map(y -> Base.broadcast($op, y, B), A.x))
end
function Base.$op(A::Number, B::ArrayPartition)
ArrayPartition(map(y -> Base.broadcast($op, A, y), B.x))
end
end
end
function Base.:-(A::ArrayPartition)
return ArrayPartition(map(-, A.x))
end
for op in (:*, :/)
@eval function Base.$op(A::ArrayPartition, B::Number)
ArrayPartition(map(y -> Base.broadcast($op, y, B), A.x))
end
end
function Base.:*(A::Number, B::ArrayPartition)
ArrayPartition(map(y -> A .* y, B.x))
end
function Base.:\(A::Number, B::ArrayPartition)
B / A
end
Base.:(==)(A::ArrayPartition, B::ArrayPartition) = A.x == B.x
## Iterable Collection Constructs
Base.map(f, A::ArrayPartition) = ArrayPartition(map(x -> map(f, x), A.x))
function Base.mapreduce(f, op, A::ArrayPartition{T}; kwargs...) where {T}
mapreduce(f, op, (i for i in A); kwargs...)
end
Base.filter(f, A::ArrayPartition) = ArrayPartition(map(x -> filter(f, x), A.x))
Base.any(f, A::ArrayPartition) = any((any(f, x) for x in A.x))
Base.any(f::Function, A::ArrayPartition) = any((any(f, x) for x in A.x))
Base.any(A::ArrayPartition) = any(identity, A)
Base.all(f, A::ArrayPartition) = all(f, (all(f, x) for x in A.x))
Base.all(f::Function, A::ArrayPartition) = all((all(f, x) for x in A.x))
Base.all(A::ArrayPartition) = all(identity, A)
for type in [AbstractArray, PermutedDimsArray]
@eval function Base.copyto!(dest::$(type), A::ArrayPartition)
@assert length(dest) == length(A)
cur = 1
@inbounds for i in 1:length(A.x)
if A.x[i] isa Number
dest[cur:(cur + length(A.x[i]) - 1)] .= A.x[i]
else
dest[cur:(cur + length(A.x[i]) - 1)] .= vec(A.x[i])
end
cur += length(A.x[i])
end
dest
end
end
function Base.copyto!(A::ArrayPartition, src::ArrayPartition)
@assert length(src) == length(A)
if size.(A.x) == size.(src.x)
map(copyto!, A.x, src.x)
else
cnt = 0
for i in eachindex(A.x)
x = A.x[i]
for k in eachindex(x)
cnt += 1
x[k] = src[cnt]
end
end
end
A
end
## indexing
# Interface for the linear indexing. This is just a view of the underlying nested structure
@inline Base.firstindex(A::ArrayPartition) = 1
@inline Base.lastindex(A::ArrayPartition) = length(A)
Base.@propagate_inbounds function Base.getindex(A::ArrayPartition, i::Int)
@boundscheck checkbounds(A, i)
@inbounds for j in 1:length(A.x)
i -= length(A.x[j])
if i <= 0
return A.x[j][length(A.x[j]) + i]
end
end
throw(BoundsError(A, i))
end
"""
getindex(A::ArrayPartition, i::Colon, j...)
Returns the entry at index `j...` of every partition of `A`.
"""
Base.@propagate_inbounds function Base.getindex(A::ArrayPartition, i::Colon, j...)
return getindex.(A.x, (j...,))
end
"""
getindex(A::ArrayPartition, ::Colon)
Returns a vector with all elements of array partition `A`.
"""
Base.getindex(A::ArrayPartition{T, S}, ::Colon) where {T, S} = T[a for a in Chain(A.x)]
Base.@propagate_inbounds function Base.setindex!(A::ArrayPartition, v, i::Int)
@boundscheck checkbounds(A, i)
@inbounds for j in 1:length(A.x)
i -= length(A.x[j])
if i <= 0
A.x[j][length(A.x[j]) + i] = v
break
end
end
end
# workaround for https://github.com/SciML/RecursiveArrayTools.jl/issues/49
function Base._unsafe_getindex(::IndexStyle, A::ArrayPartition,
I::Vararg{Union{Real, AbstractArray}, N}) where {N}
# This is specifically not inlined to prevent excessive allocations in type unstable code
shape = Base.index_shape(I...)
dest = similar(A.x[1], shape)
Base._unsafe_getindex!(dest, A, I...) # usually a generated function, don't allow it to impact inference result
return dest
end
function Base._maybe_reshape(::IndexCartesian,
A::ArrayPartition,
I::Vararg{Union{Real, AbstractArray}, N}) where {N}
Vector(A)
end
## recursive methods
function recursivecopy!(A::ArrayPartition, B::ArrayPartition)
for (a, b) in zip(A.x, B.x)
recursivecopy!(a, b)
end
end
recursivecopy(A::ArrayPartition) = ArrayPartition(copy.(A.x))
recursive_mean(A::ArrayPartition) = mean((recursive_mean(x) for x in A.x))
# note: consider only first partition for recursive one and eltype
recursive_one(A::ArrayPartition) = recursive_one(first(A.x))
recursive_eltype(A::ArrayPartition) = recursive_eltype(first(A.x))
## iteration
Base.iterate(A::ArrayPartition) = iterate(Chain(A.x))
Base.iterate(A::ArrayPartition, state) = iterate(Chain(A.x), state)
Base.length(A::ArrayPartition) = sum(broadcast(length, A.x); init = 0)
Base.size(A::ArrayPartition) = (length(A),)
# redefine first and last to avoid slow and not type-stable indexing
Base.first(A::ArrayPartition) = first(first(A.x))
Base.last(A::ArrayPartition) = last(last(A.x))
## display
Base.summary(A::ArrayPartition) = string(typeof(A), " with arrays:")
Base.show(io::IO, m::MIME"text/plain", A::ArrayPartition) = show(io, m, A.x)
## broadcasting
struct ArrayPartitionStyle{Style <: Broadcast.BroadcastStyle} <:
Broadcast.AbstractArrayStyle{Any} end
ArrayPartitionStyle(::S) where {S} = ArrayPartitionStyle{S}()
ArrayPartitionStyle(::S, ::Val{N}) where {S, N} = ArrayPartitionStyle(S(Val(N)))
function ArrayPartitionStyle(::Val{N}) where {N}
ArrayPartitionStyle{Broadcast.DefaultArrayStyle{N}}()
end
# promotion rules
@inline function Broadcast.BroadcastStyle(::ArrayPartitionStyle{AStyle},
::ArrayPartitionStyle{BStyle}) where {AStyle,
BStyle}
ArrayPartitionStyle(Broadcast.BroadcastStyle(AStyle(), BStyle()))
end
function Broadcast.BroadcastStyle(::ArrayPartitionStyle{Style},
::Broadcast.DefaultArrayStyle{0}) where {
Style <:
Broadcast.BroadcastStyle,
}
ArrayPartitionStyle{Style}()
end
function Broadcast.BroadcastStyle(::ArrayPartitionStyle,
::Broadcast.DefaultArrayStyle{N}) where {N}
Broadcast.DefaultArrayStyle{N}()
end
combine_styles(::Type{Tuple{}}) = Broadcast.DefaultArrayStyle{0}()
function combine_styles(::Type{T}) where {T}
Broadcast.result_style(Broadcast.BroadcastStyle(T.parameters[1]),
combine_styles(Tuple{Base.tail((T.parameters...,))...}))
end
function Broadcast.BroadcastStyle(::Type{ArrayPartition{T, S}}) where {T, S}
Style = combine_styles(S)
ArrayPartitionStyle(Style)
end
@inline function Base.copy(bc::Broadcast.Broadcasted{
ArrayPartitionStyle{Style},
}) where {
Style,
}
N = npartitions(bc)
@inline function f(i)
copy(unpack(bc, i))
end
ArrayPartition(f, N)
end
@inline function Base.copyto!(dest::ArrayPartition,
bc::Broadcast.Broadcasted{ArrayPartitionStyle{Style}}) where {
Style,
}
N = npartitions(dest, bc)
@inline function f(i)
copyto!(dest.x[i], unpack(bc, i))
end
ntuple(f, Val(N))
dest
end
## broadcasting utils
"""
npartitions(A...)
Retrieve number of partitions of `ArrayPartitions` in `A...`, or throw an error if there are
`ArrayPartitions` with a different number of partitions.
"""
npartitions(A) = 0
npartitions(A::ArrayPartition) = length(A.x)
npartitions(bc::Broadcast.Broadcasted) = _npartitions(bc.args)
npartitions(A, Bs...) = common_number(npartitions(A), _npartitions(Bs))
@inline function _npartitions(args::Tuple)
common_number(npartitions(args[1]), _npartitions(Base.tail(args)))
end
_npartitions(args::Tuple{Any}) = npartitions(args[1])
_npartitions(args::Tuple{}) = 0
# drop axes because it is easier to recompute
@inline function unpack(bc::Broadcast.Broadcasted{Style}, i) where {Style}
Broadcast.Broadcasted(bc.f, unpack_args(i, bc.args))
end
@inline function unpack(bc::Broadcast.Broadcasted{ArrayPartitionStyle{Style}},
i) where {Style}
Broadcast.Broadcasted(bc.f, unpack_args(i, bc.args))
end
@inline function unpack(bc::Broadcast.Broadcasted{Style},
i) where {Style <: Broadcast.DefaultArrayStyle}
Broadcast.Broadcasted{Style}(bc.f, unpack_args(i, bc.args))
end
@inline function unpack(bc::Broadcast.Broadcasted{ArrayPartitionStyle{Style}},
i) where {Style <: Broadcast.DefaultArrayStyle}
Broadcast.Broadcasted{Style}(bc.f, unpack_args(i, bc.args))
end
unpack(x, ::Any) = x
unpack(x::ArrayPartition, i) = x.x[i]
@inline function unpack_args(i, args::Tuple)
(unpack(args[1], i), unpack_args(i, Base.tail(args))...)
end
unpack_args(i, args::Tuple{Any}) = (unpack(args[1], i),)
unpack_args(::Any, args::Tuple{}) = ()
## utils
function common_number(a, b)
a == 0 ? b :
(b == 0 ? a :
(a == b ? a :
throw(DimensionMismatch("number of partitions must be equal"))))
end
## Linear Algebra
ArrayInterface.zeromatrix(A::ArrayPartition) = ArrayInterface.zeromatrix(Vector(A))
function __get_subtypes_in_module(
mod, supertype; include_supertype = true, all = false, except = [])
return filter([getproperty(mod, name) for name in names(mod; all) if !in(name, except)]) do value
return value != Union{} && value isa Type && (value <: supertype) &&
(include_supertype || value != supertype) && !in(value, except)
end
end
for factorization in vcat(
__get_subtypes_in_module(LinearAlgebra, Factorization; include_supertype = false,
all = true, except = [:LU, :LAPACKFactorizations]),
LDLt{T, <:SymTridiagonal{T, V} where {V <: AbstractVector{T}}} where {T})
@eval function LinearAlgebra.ldiv!(A::T, b::ArrayPartition) where {T <: $factorization}
(x = ldiv!(A, Array(b)); copyto!(b, x))
end
end
function LinearAlgebra.ldiv!(
A::LinearAlgebra.QRPivoted{T, <:StridedMatrix{T}, <:AbstractVector{T}},
b::ArrayPartition{T}) where {T <: Union{Float32, Float64, ComplexF64, ComplexF32}}
x = ldiv!(A, Array(b))
copyto!(b, x)
end
function LinearAlgebra.ldiv!(A::LinearAlgebra.QRCompactWY{T, M, C},
b::ArrayPartition) where {
T <: Union{Float32, Float64, ComplexF64, ComplexF32},
M <: AbstractMatrix{T},
C <: AbstractMatrix{T}
}
(x = ldiv!(A, Array(b)); copyto!(b, x))
end
for type in [LU, LU{T, Tridiagonal{T, V}} where {T, V}]
@eval function LinearAlgebra.ldiv!(A::$type, b::ArrayPartition)
LinearAlgebra._ipiv_rows!(A, 1:length(A.ipiv), b)
ldiv!(UpperTriangular(A.factors), ldiv!(UnitLowerTriangular(A.factors), b))
return b
end
end
# block matrix indexing
@inbounds function getblock(A, lens, i, j)
ii1 = i == 1 ? 0 : sum(ii -> lens[ii], 1:(i - 1))
jj1 = j == 1 ? 0 : sum(ii -> lens[ii], 1:(j - 1))
ij1 = CartesianIndex(ii1, jj1)
cc1 = CartesianIndex((1, 1))
inc = CartesianIndex(lens[i], lens[j])
return @view A[(ij1 + cc1):(ij1 + inc)]
end
# fast ldiv for UpperTriangular and UnitLowerTriangular
# [U11 U12 U13] [ b1 ]
# [ 0 U22 U23] \ [ b2 ]
# [ 0 0 U33] [ b3 ]
for basetype in [UnitUpperTriangular, UpperTriangular, UnitLowerTriangular, LowerTriangular]
for type in [basetype, basetype{T, <:Adjoint{T}} where {T},
basetype{T, <:Transpose{T}} where {T}]
j_iter, i_iter = if basetype <: UnitUpperTriangular || basetype <: UpperTriangular
(:(n:-1:1), :((j - 1):-1:1))
else
(:(1:n), :((j + 1):n))
end
@eval function LinearAlgebra.ldiv!(A::$type, bb::ArrayPartition)
A = A.data
n = npartitions(bb)
b = bb.x
lens = map(length, b)
@inbounds for j in $j_iter
Ajj = $basetype(getblock(A, lens, j, j))
xj = ldiv!(Ajj, vec(b[j]))
for i in $i_iter
Aij = getblock(A, lens, i, j)
# bi = -Aij * xj + bi
mul!(vec(b[i]), Aij, xj, -1, true)
end
end
return bb
end
end
end
# TODO: optimize
function LinearAlgebra._ipiv_rows!(A::LU, order::OrdinalRange, B::ArrayPartition)
for i in order
if i != A.ipiv[i]
LinearAlgebra._swap_rows!(B, i, A.ipiv[i])
end
end
return B
end
function LinearAlgebra._swap_rows!(B::ArrayPartition, i::Integer, j::Integer)
B[i], B[j] = B[j], B[i]
return B
end
# linalg mul! overloads for ArrayPartition
function LinearAlgebra.mul!(C::ArrayPartition, A::ArrayPartition, B::AbstractArray)
if length(C.x) != length(A.x)
throw(DimensionMismatch("Length of C, $(length(C.x)), does not match length of A, $(length(A.x))"))
end
for index in 1:length(C.x)
mul!(C.x[index], A.x[index], B)
end
return C
end
function LinearAlgebra.mul!(C::ArrayPartition, A::ArrayPartition, B::ArrayPartition)
if length(C.x) != length(A.x)
throw(DimensionMismatch("Length of C, $(length(C.x)), does not match length of A, $(length(B.x))"))
end
if length(A.x) != length(B.x)
throw(DimensionMismatch("Length of A, $(length(A.x)), does not match length of B, $(length(B.x))"))
end
for index in 1:length(C.x)
mul!(C.x[index], A.x[index], B.x[index])
end
return C
end
function Base.convert(::Type{ArrayPartition{T, S}},
A::ArrayPartition{<:Any, <:NTuple{N, Any}}) where {N, T,
S <:
NTuple{N, Any}}
return ArrayPartition{T, S}(ntuple((@inline i -> convert(S.parameters[i], A.x[i])),
Val(N)))
end
@generated function Base.length(::Type{
<:ArrayPartition{F, T},
}) where {F, N,
T <: NTuple{N,
StaticArraysCore.StaticArray
}}
sum_expr = Expr(:call, :+)
for param in T.parameters
push!(sum_expr.args, :(length($param)))
end
return sum_expr
end