generated from nogibjj/python-template
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhtml_gpt.py
99 lines (82 loc) · 3.55 KB
/
html_gpt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import os
import requests
from bs4 import BeautifulSoup
# from dotenv import load_dotenv
import pinecone
from langchain.document_loaders import WebBaseLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.llms import OpenAI
from langchain.chains.question_answering import load_qa_chain
from langchain.vectorstores import Pinecone
# Load environment variables
# Load environment variables
# load_dotenv()
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY")
PINECONE_API_KEY = os.environ.get("PINECONE_API_KEY")
PINECONE_API_ENV = os.environ.get("PINECONE_API_ENV")
class Document:
def __init__(self, page_content, metadata, doc_id):
self.page_content = page_content
self.metadata = metadata
self.doc_id = doc_id
# Initialize Pinecone
pinecone.init(api_key=PINECONE_API_KEY, environment=PINECONE_API_ENV)
index_info = pinecone.list_indexes()
print(index_info)
# Collect web page content
introduction_url = "https://doc.rust-lang.org/stable/book/ch00-00-introduction.html"
page = requests.get(introduction_url)
soup = BeautifulSoup(page.content, "html.parser")
main_content = soup.find("div", class_="book-body")
if main_content is None:
main_content = soup.find("body")
page_content = main_content.get_text()
doc = Document(page_content=page_content, metadata={"source": introduction_url}, doc_id=0)
documents = [doc]
# Extract chapter URLs
chapter_list = soup.find("nav", class_="sidebar")
chapter_links = chapter_list.find_all("a")
chapter_urls = ["https://doc.rust-lang.org/stable/book/" + link["href"] for link in chapter_links]
# Iterate through chapter URLs and collect the content
doc_id = 0
documents = []
for url in chapter_urls:
page = requests.get(url)
soup = BeautifulSoup(page.content, "html.parser")
main_content = soup.find("div", class_="book-body")
if main_content is None:
main_content = soup.find("body")
page_content = main_content.get_text()
doc = Document(page_content=page_content, metadata={"source": url}, doc_id=doc_id)
documents.append(doc)
doc_id += 1
metadata_dict = {doc.doc_id: doc.metadata for doc in documents}
# Split documents into smaller chunks
max_len = 10000
splitter = RecursiveCharacterTextSplitter(chunk_size=max_len, chunk_overlap=0)
split_documents = splitter.split_documents(documents)
# Create embeddings and Pinecone indexes for each chunk
embeddings = OpenAIEmbeddings(openai_api_key=OPENAI_API_KEY)
index_names = []
doc_chunks = []
for i, doc_chunk in enumerate(split_documents):
index_name = f"langchain_{i}"
index_names.append(index_name)
chunk_data = [(doc.page_content, {"doc_id": doc.doc_id}) for doc in doc_chunk]
doc_chunks.append(chunk_data)
doc_texts = [doc.page_content for doc in doc_chunk]
docsearch = Pinecone.from_texts(doc_texts, embeddings, index_name=index_name, include_metadata=True)
# Create language model object
llm = OpenAI(temperature=0, openai_api_key=OPENAI_API_KEY)
chain = load_qa_chain(llm, chain_type="stuff")
# Define get_answer function
def get_answer(docsearch, chain, question, metadata_dict, top_n=20):
docs = docsearch.similarity_search(question, top_n=top_n, include_metadata=False)
docs_with_metadata = [Document(doc.page_content, metadata_dict[doc.doc_id], doc.doc_id) for doc in docs]
result = chain.run(input_documents=docs_with_metadata, question=question)
return result
# Example usage of get_answer function
question = "tell me rust for Students"
answer = get_answer(docsearch, chain, question, metadata_dict)
print(answer)